PART 1: | Introduction and Centers X(1) - X(1000) | PART 2: | Centers X(1001) - X(3000) | PART 3: | Centers X(3001) - X(5000) |
PART 4: | Centers X(5001) - X(7000) | PART 5: | Centers X(7001) - X(10000) | PART 6: | Centers X(10001) - X(12000) |
PART 7: | Centers X(12001) - X(14000) | PART 8: | Centers X(14001) - X(16000) | PART 9: | Centers X(16001) - X(18000) |
PART 10: | Centers X(18001) - X(20000) | PART 11: | Centers X(20001) - X(22000) | PART 12: | Centers X(22001) - X(24000) |
PART 13: | Centers X(24001) - X(26000) | PART 14: | Centers X(26001) - X(28000) | PART 15: | Centers X(28001) - X(30000) |
PART 16: | Centers X(30001) - X(32000) | PART 17: | Centers X(32001) - X(34000) | PART 18: | Centers X(34001) - X(36000) |
PART 19: | Centers X(36001) - X(38000) | PART 20: | Centers X(38001) - X(40000) | PART 21: | Centers X(40001) - X(42000) |
PART 22: | Centers X(42001) - X(44000) | PART 23: | Centers X(44001) - X(46000) | PART 24: | Centers X(46001) - X(48000) |
PART 25: | Centers X(48001) - X(50000) | PART 26: | Centers X(50001) - X(52000) | PART 27: | Centers X(52001) - X(54000) |
PART 28: | Centers X(54001) - X(56000) | PART 29: | Centers X(56001) - X(58000) | PART 30: | Centers X(58001) - X(60000) |
PART 31: | Centers X(60001) - X(62000) | PART 32: | Centers X(62001) - X(64000) | PART 33: | Centers X(64001) - X(66000) |
PART 34: | Centers X(66001) - X(68000) | PART 35: | Centers X(68001) - X(70000) | PART 36: | Centers X(70001) - X(72000) |
X(20001) lies on these lines: {10, 75}, {519, 19933}
X(20021) = anticomplement of X(36213)
X(20002) lies on these lines: {10, 75}
X(20003) lies on these lines: {10, 75}, {5550, 19933}
X(20004) lies on these lines: {10, 75}, {19883, 19933}
X(20005) lies on these lines: {10, 75}
X(20006) lies on these lines: {10, 75}, {1698, 19887}
X(20007) lies on these lines: {1, 2}, {4, 3940}, {7, 11523}, {9, 4313}, {20, 72}, {21, 1260}, {29, 4720}, {55, 1183}, {63, 3522}, {69, 279}, {100, 5584}, {210, 3486}, {218, 4195}, {220, 346}, {280, 7538}, {307, 3160}, {318, 4671}, {329, 3146}, {341, 6555}, {376, 3927}, {390, 960}, {391, 1212}, {411, 5687}, {443, 11036}, {452, 3876}, {480, 958}, {515, 5815}, {518, 3600}, {908, 3832}, {942, 17580}, {948, 7270}, {950, 12536}, {952, 6865}, {956, 6986}, {959, 3779}, {965, 17314}, {1010, 5765}, {1145, 6962}, {1170, 1219}, {1229, 4673}, {1259, 4189}, {1320, 15998}, {1445, 4308}, {1446, 16284}, {1482, 6864}, {1610, 12329}, {1837, 8165}, {2550, 12635}, {2894, 6826}, {2895, 3152}, {2975, 8273}, {3057, 12632}, {3091, 3419}, {3149, 8158}, {3158, 5837}, {3219, 17576}, {3421, 6836}, {3434, 6894}, {3436, 6895}, {3452, 12625}, {3474, 3962}, {3487, 3824}, {3488, 5044}, {3523, 5440}, {3528, 9945}, {3555, 12128}, {3601, 5273}, {3681, 12125}, {3693, 15853}, {3711, 10950}, {3715, 10543}, {3812, 18221}, {3813, 18220}, {3868, 6904}, {3869, 7957}, {3871, 11344}, {3916, 10304}, {3998, 14552}, {4190, 9965}, {4292, 20059}, {4293, 5904}, {4294, 5692}, {4297, 5223}, {4661, 20076}, {4855, 5744}, {5068, 5748}, {5082, 5730}, {5086, 6870}, {5218, 18231}, {5261, 5794}, {5328, 9581}, {5435, 5438}, {5436, 18230}, {5690, 6988}, {5731, 9845}, {5761, 6843}, {5775, 6684}, {5780, 6939}, {5790, 6855}, {5844, 6918}, {5853, 9785}, {6224, 14740}, {6282, 9799}, {6828, 17757}, {6922, 12645}, {7958, 11680}, {7962, 12541}, {9776, 11520}, {9778, 12526}, {10465, 12126}, {11024, 11529}, {11111, 15650}, {11851, 17490}, {12433, 17559}, {13736, 16601}, {15683, 17781}, {15934, 17582}, {15935, 16853}, {17158, 17863}, {17644, 17658}
X(20007) = complement of X(20008)
X(20007) = anticomplement of X(938)
X(20008) lies on these lines: {1, 2}, {7, 12625}, {57, 12536}, {144, 950}, {307, 4460}, {518, 12125}, {960, 13867}, {971, 3146}, {1445, 2136}, {1446, 17158}, {1483, 6988}, {2550, 18221}, {3218, 9841}, {3419, 11036}, {3488, 11106}, {3681, 18247}, {3854, 9842}, {3869, 9848}, {3873, 9850}, {3889, 12128}, {4208, 15934}, {4452, 6604}, {5059, 9965}, {5129, 12433}, {5175, 5665}, {5274, 12635}, {5435, 12437}, {5794, 11038}, {5837, 8236}, {5844, 6865}, {5905, 17578}, {6855, 10247}, {6864, 12645}, {9846, 15185}, {9859, 16465}, {11024, 17706}, {15935, 16845}, {16284, 17863}
X(20008) = anticomplement of X(20007)
X(20009) lies on these lines: {1, 2}, {6, 1265}, {20, 192}, {37, 13736}, {55, 1791}, {69, 15882}, {72, 193}, {144, 20077}, {304, 3945}, {312, 5716}, {344, 1104}, {346, 2298}, {942, 11851}, {1043, 2303}, {1220, 3974}, {1257, 5738}, {1824, 4198}, {3210, 6904}, {3672, 4201}, {3685, 4339}, {3871, 11337}, {3879, 11523}, {3995, 6872}, {4190, 17147}, {4313, 5279}, {5844, 19547}, {11036, 17300}, {11106, 17742}, {17490, 17580}
X(20009) = anticomplement of anticomplement of X(975)
X(20010) lies on these lines: {10, 75}, {1125, 4169}, {3244, 19933}
X(20011) lies on these lines: {1, 2}, {55, 16704}, {81, 3996}, {192, 4661}, {193, 674}, {518, 3896}, {524, 4450}, {740, 17165}, {982, 17145}, {1621, 19742}, {2238, 17388}, {2813, 20096}, {3210, 4430}, {3681, 3995}, {3722, 3791}, {3755, 17184}, {3780, 7109}, {3871, 4184}, {3873, 17495}, {3891, 13576}, {4113, 15569}, {4192, 5844}, {4358, 4849}, {4392, 4734}, {4650, 4781}, {5263, 19717}, {7500, 20071}, {16714, 17377}, {20066, 20077}, {20086, 20095}
X(20011) = anticomplement of X(17135)
X(20012) lies on these lines: {1, 2}, {6, 3996}, {38, 4734}, {144, 6007}, {192, 3681}, {193, 3779}, {312, 4849}, {346, 7109}, {518, 3210}, {672, 3169}, {1011, 3871}, {1278, 17165}, {1621, 17349}, {2209, 17127}, {2238, 17314}, {2276, 5839}, {2550, 17778}, {2810, 9965}, {3689, 3769}, {3703, 4819}, {3728, 4704}, {3744, 3759}, {3873, 17490}, {4184, 16704}, {4192, 12245}, {4373, 8049}, {4430, 17495}, {4661, 17147}, {4713, 4971}, {4753, 7262}, {4974, 17715}, {5687, 13588}, {5844, 19540}, {20064, 20095}
X(20012) = anticomplement of X(10453)
X(20013) lies on these lines: {1, 2}, {20, 912}, {63, 12437}, {72, 6872}, {144, 15680}, {329, 12536}, {346, 2911}, {355, 6870}, {377, 6147}, {411, 12245}, {518, 20076}, {908, 12625}, {943, 16865}, {950, 3984}, {952, 6836}, {965, 17388}, {1482, 6835}, {1792, 16704}, {2287, 17314}, {2478, 3940}, {2800, 20095}, {3091, 5761}, {3146, 5758}, {3149, 5844}, {3189, 3869}, {3219, 4313}, {3419, 6871}, {3434, 12635}, {3485, 5178}, {3486, 3681}, {3488, 3876}, {3522, 3587}, {3523, 13151}, {3529, 9963}, {3600, 4430}, {3868, 4190}, {3951, 4304}, {4067, 4302}, {5059, 20070}, {5220, 10543}, {5738, 17377}, {5853, 11682}, {5905, 9579}, {6831, 12645}, {6986, 7967}, {6991, 10595}, {11851, 17495}, {15935, 16842}, {20080, 20082}
X(20013) = anticomplement of X(12649)
X(20014) lies on these lines: {1, 2}, {20, 5844}, {144, 12630}, {193, 9053}, {320, 4452}, {341, 4935}, {346, 4727}, {355, 3854}, {391, 16675}, {517, 5059}, {518, 4788}, {952, 3146}, {1317, 5265}, {1482, 3832}, {1483, 3523}, {2136, 3218}, {3057, 4661}, {3091, 12645}, {3189, 5183}, {3522, 12245}, {3543, 8148}, {3650, 15680}, {3672, 17360}, {3871, 17548}, {3873, 3893}, {4371, 4889}, {4395, 4869}, {4405, 4648}, {4430, 14923}, {4454, 4971}, {4969, 16885}, {4982, 5749}, {5056, 10247}, {5068, 18493}, {5253, 8168}, {5303, 12513}, {5839, 16814}, {5846, 20080}, {5853, 20059}, {5854, 12632}, {5855, 20075}, {5905, 12541}, {6767, 16859}, {7270, 19824}, {7408, 12135}, {7409, 11396}, {7492, 8192}, {7967, 15717}, {9779, 16189}, {10595, 15022}, {12571, 16191}, {16668, 17299}, {16674, 17362}, {16980, 16981}
X(20014) = anticomplement of X(3621)
X(20015) lies on these lines: {1, 2}, {144, 4661}, {329, 5853}, {390, 1864}, {516, 20070}, {518, 3474}, {1621, 5686}, {2801, 20078}, {3158, 5744}, {3243, 9776}, {3305, 8236}, {3555, 6904}, {3693, 5839}, {3869, 12632}, {3889, 17580}, {3984, 9785}, {4297, 18452}, {4358, 6555}, {4430, 7672}, {4863, 17605}, {5084, 18530}, {5178, 5261}, {5220, 10385}, {5809, 10388}, {5844, 19541}, {7057, 11686}, {7580, 12245}, {7994, 10430}, {8727, 12645}, {10005, 17776}, {11682, 12541}, {12630, 18228}, {14548, 17377}
X(20015) = anticomplement of X(36845)
X(20015) = anticomplement of anticomplement of X(200)
X(20016) lies on these lines: {1, 2}, {75, 20090}, {86, 4399}, {144, 4788}, {190, 4969}, {192, 5839}, {193, 742}, {319, 4852}, {320, 4725}, {391, 4704}, {514, 14779}, {524, 4440}, {536, 20072}, {952, 6999}, {1100, 5564}, {1482, 7384}, {1654, 4360}, {1931, 6630}, {2321, 17121}, {2895, 17152}, {3672, 17343}, {3686, 4464}, {3759, 17280}, {3765, 17144}, {3875, 6646}, {3879, 17117}, {3943, 4473}, {3945, 4772}, {3946, 17287}, {4000, 17373}, {4007, 17368}, {4021, 17252}, {4034, 17248}, {4346, 11160}, {4361, 17300}, {4371, 4699}, {4395, 17297}, {4405, 17392}, {4431, 4856}, {4445, 17380}, {4452, 20080}, {4460, 17257}, {4470, 17379}, {4478, 17307}, {4527, 16477}, {4644, 4740}, {4645, 4716}, {4690, 17320}, {4727, 17264}, {4758, 4967}, {4889, 17317}, {4910, 17275}, {5844, 6996}, {5846, 6653}, {7377, 12645}, {8682, 17141}, {16706, 17372}, {17119, 17378}, {17151, 17364}, {17270, 17396}, {17271, 17395}, {17277, 17388}, {17278, 17386}, {17295, 17366}, {17301, 17360}, {17309, 17352}, {17314, 17349}, {17315, 17348}, {17318, 17346}
X(20017) lies on these lines: {1, 2}, {6, 3969}, {31, 17772}, {69, 9022}, {81, 17377}, {192, 2895}, {321, 17299}, {345, 16704}, {594, 19684}, {740, 6327}, {952, 19645}, {1043, 17587}, {1211, 17388}, {1278, 17483}, {2345, 19717}, {2897, 6360}, {3101, 20074}, {3175, 4727}, {3210, 17373}, {3219, 17363}, {3416, 3896}, {3666, 17372}, {3782, 4971}, {3875, 17184}, {3945, 19825}, {3995, 5739}, {4359, 4851}, {4361, 18139}, {4383, 17309}, {4641, 4725}, {4886, 17315}, {5014, 19791}, {5278, 17362}, {5749, 19743}, {5839, 17776}, {5844, 19542}, {5847, 20064}, {6539, 19740}, {8025, 19822}, {9028, 20078}, {17369, 19738}, {17386, 19804}
X(20017) = complement of X(20046)
X(20017) = anticomplement of X(3187)
X(20017) = polar conjugate of X(36613)
X(20018) lies on these lines: {1, 2}, {6, 1043}, {20, 185}, {69, 4201}, {72, 192}, {213, 346}, {274, 3945}, {333, 19765}, {341, 4849}, {377, 17778}, {391, 941}, {405, 17349}, {443, 17300}, {579, 3169}, {942, 17490}, {964, 4720}, {986, 4734}, {1010, 17379}, {1104, 3759}, {1107, 5839}, {1150, 19278}, {1208, 5731}, {1265, 2176}, {1453, 17121}, {1654, 13725}, {1834, 4417}, {2209, 5247}, {2269, 4313}, {2271, 19312}, {2895, 17676}, {3189, 3779}, {3210, 3868}, {3295, 16289}, {3522, 18206}, {3555, 17480}, {3869, 3896}, {3871, 16452}, {3875, 11523}, {3996, 5710}, {4189, 16704}, {4255, 14829}, {4261, 17448}, {4292, 17364}, {4340, 20090}, {4402, 17050}, {4452, 17753}, {5132, 12513}, {5361, 16347}, {5844, 19543}, {5933, 7176}, {6762, 16574}, {6767, 16288}, {7283, 17350}, {7379, 7774}, {7513, 9308}, {7754, 13727}, {9535, 10454}, {11106, 16552}, {13728, 17238}, {14996, 19284}, {16865, 19742}, {16969, 17388}, {20064, 20066}
X(20018) = anticomplement of X(10449)
X(20019) lies on these lines: {1, 2}, {193, 1503}, {579, 2136}, {3868, 4452}, {4402, 11518}, {5059, 20077}, {5746, 12625}, {16704, 17576}
X(20019) = anticomplement of anticomplement of X(387)
X(20020) lies on these lines: {1, 2}, {22, 3871}, {144, 20064}, {149, 7394}, {192, 7500}, {193, 4661}, {390, 3995}, {940, 9053}, {1483, 16434}, {2550, 3891}, {3744, 17776}, {4220, 12245}, {4307, 17165}, {4419, 4450}, {4696, 5716}, {4901, 5294}, {4972, 19823}, {5275, 17388}, {5276, 17314}, {5322, 8715}, {5686, 19742}, {5739, 5846}, {5844, 19544}, {7391, 20060}, {7967, 19649}, {9965, 20068}, {17147, 17784}, {20062, 20066}, {20078, 20101}
X(20020) = anticomplement of anticomplement of X(612)
Let A'B'C' be the triangle whose barycentric vertex matrix is the sum of the matrices for the 3rd and 4th Euler triangles, so that A' = b^2 + c^2 : c^2 - a^2 : b^2 - a^2. Then A'B'C' is the complement of the tangential triangle (or tangential-of-medial triangle), and A'B'C' is also the reflection of the Kosnita triangle in X(140). X(20021) is the eigencenter of A'B'C'. (Randy Hutson, July 31 2018)
X(20021) lies on the cubics K267 and K1000, and on these lines: {2, 98}, {4, 263}, {6, 3613}, {66, 248}, {67, 526}, {69, 290}, {141, 1634}, {193, 25317}, {211, 27366}, {237, 1503}, {262, 30499}, {338, 2871}, {343, 7467}, {420, 685}, {427, 3051}, {511, 14957}, {524, 25324}, {599, 36822}, {660, 1821}, {694, 804}, {732, 46161}, {826, 46157}, {1613, 1853}, {1843, 46151}, {2396, 40708}, {2548, 10014}, {2549, 30495}, {2715, 9076}, {2782, 36790}, {2896, 8870}, {2966, 43098}, {3087, 6531}, {3094, 39906}, {3404, 15523}, {3564, 21531}, {3618, 25314}, {3917, 4576}, {5207, 20022}, {5475, 43950}, {6394, 15812}, {7736, 11175}, {7779, 36897}, {8050, 20290}, {9019, 35362}, {9463, 45096}, {11245, 20965}, {11257, 42313}, {11328, 18440}, {13137, 33873}, {14003, 34118}, {14265, 34507}, {14424, 46147}, {16063, 34095}, {18553, 34236}, {19558, 21458}, {20026, 34536}, {31125, 36827}, {32140, 37466}, {34214, 41520}, {35366, 46156}, {40847, 40858}
X(20021) = midpoint of X(69) and X(25051)
X(20021) = reflection of X(i) in X(j) for these {i,j}: {6, 7668}, {1634, 141}
X(20021) = isotomic conjugate of X(20022)
X(20021) = complement of X(25046)
X(20021) = anticomplement of X(36213)
X(20021) = psi-transform of X(36183)
X(20021) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1581, 147}, {1821, 25332}, {1910, 8782}, {1967, 39355}, {15391, 6360}, {34238, 192}, {36897, 8}, {39291, 7192}, {43763, 25046}
X(20021) = X(i)-Ceva conjugate of X(j) for these (i,j): {2715, 879}, {43187, 2395}
X(20021) = X(8623)-cross conjugate of X(2)
X(20021) = cevapoint of X(i) and X(j) for these (i,j): {141, 732}, {688, 41178}, {804, 7668}
X(20021) = crosspoint of X(98) and X(290)
X(20021) = crosssum of X(237) and X(511)
X(20021) = trilinear pole of line {39, 826}
X(20021) = crossdifference of every pair of points on line {3569, 36213}
X(20021) = X(i)-line conjugate of X(j) for these (i,j): {694, 3569}, {804, 3569}, {2395, 3569}, {11646, 3569}, {19637, 3569}
X(20021) = X(98)-daleth conjugate of X(2)
X(20021) = X(14957)-of-1st-Brocard-triangle
X(20021) = X(16549)-zayin conjugate of X(1755)
X(20021) = X(i)-isoconjugate of X(j) for these (i,j): {6, 3405}, {31, 20022}, {82, 511}, {83, 1755}, {232, 34055}, {237, 3112}, {240, 1176}, {251, 1959}, {308, 9417}, {2491, 4593}, {2799, 34072}, {3569, 4599}, {9418, 18833}, {10547, 40703}, {14966, 18070}, {17209, 18098}, {36213, 43763}
X(20021) = barycentric product X(i)*X(j) for these {i,j}: {38, 1821}, {39, 290}, {75, 3404}, {98, 141}, {248, 1235}, {287, 427}, {293, 20883}, {336, 17442}, {685, 2525}, {732, 36897}, {826, 2966}, {879, 41676}, {1634, 43665}, {1910, 1930}, {1976, 8024}, {2395, 4576}, {2715, 23285}, {3005, 43187}, {3051, 18024}, {3665, 15628}, {3917, 16081}, {3933, 6531}, {5967, 31125}, {6394, 27376}, {7813, 9154}, {8061, 36036}, {15412, 35362}, {34238, 35540}, {36824, 37858}
X(20021) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3405}, {2, 20022}, {38, 1959}, {39, 511}, {98, 83}, {141, 325}, {248, 1176}, {287, 1799}, {290, 308}, {293, 34055}, {427, 297}, {685, 42396}, {688, 2491}, {732, 5976}, {826, 2799}, {879, 4580}, {1235, 44132}, {1401, 43034}, {1634, 2421}, {1821, 3112}, {1843, 232}, {1910, 82}, {1923, 9417}, {1964, 1755}, {1976, 251}, {2422, 18105}, {2525, 6333}, {2715, 827}, {2966, 4577}, {3005, 3569}, {3051, 237}, {3404, 1}, {3917, 36212}, {3933, 6393}, {4553, 42717}, {4576, 2396}, {6531, 32085}, {8623, 36213}, {8861, 8928}, {14600, 10547}, {14617, 8840}, {16081, 46104}, {17187, 17209}, {17442, 240}, {17974, 28724}, {18024, 40016}, {20775, 3289}, {20883, 40703}, {21814, 5360}, {27369, 2211}, {27371, 39569}, {27376, 6530}, {33299, 44694}, {34238, 733}, {35325, 4230}, {35362, 14570}, {36036, 4593}, {36084, 4599}, {36897, 14970}, {39291, 41209}, {39691, 868}, {41178, 2679}, {41331, 9418}, {41676, 877}, {43187, 689}, {46147, 35910}, {46154, 5968}
X(20021) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 25046, 36213}, {98, 287, 1976}, {98, 11653, 35912}, {287, 1976, 5967}
X(20022) lies on the cubics K267 and K1000, and on these lines:
{2, 32}, {4, 18022}, {6, 16890}, {69, 263}, {76, 3060}, {81, 18096}, {141, 18092}, {237, 325}, {264, 10550}, {297, 2211}, {316, 512}, {333, 18703}, {420, 18020}, {689, 2698}, {827, 2857}, {1501, 10349}, {2396, 14251}, {3051, 7762}, {3112, 4388}, {3117, 7759}, {3229, 7845}, {4577, 5641}, {6656, 14822}, {7750, 14096}, {7776, 11328}, {7779, 14970}, {9308, 10549}, {10330, 14958}
X(20022) = isotomic conjugate of X(20021)
X(20022) = anticomplement X(8623)
X(20022) = cevapoint of X(325) and X(511)
X(20022) = crosspoint of X(83) and X(14970)
X(20022) = trilinear pole of line {2491, 2799}
X(20022) = crossdifference of every pair of points on line {3005, 3051}
X(20022) = crosssum of X(39) and X(8623)
X(20022) = X(83)-daleth conjugate of X(2)
X(20022) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {82, 8782}, {733, 192}, {1581, 2896}, {1934, 1369}, {14970, 8}
X(20022) = X(3569)-cross conjugate of X(2396)
X(20022) = X(i)-isoconjugate of X(j) for these (i,j): {6, 3404}, {38, 1976}, {39, 1910}, {98, 1964}, {248, 17442}, {290, 1923}, {293, 1843}, {1821, 3051}, {1930, 14601}, {2084, 2966}, {2715, 8061}, {4020, 6531}
X(20022) = X(83)-Hirst inverse of X(1799)
X(20022) = X(7762)-line conjugate of X(3051)
X(20022) = barycentric product X(i)*X(j) for these {i,j}: {75, 3405}, {83, 325}, {297, 1799}, {308, 511}, {689, 3569}, {877, 4580}, {1755, 18833}, {1959, 3112}, {2799, 4577}, {5976, 14970}
X(20022) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3404}, {82, 1910}, {83, 98}, {232, 1843}, {237, 3051}, {240, 17442}, {251, 1976}, {297, 427}, {308, 290}, {325, 141}, {511, 39}, {827, 2715}, {1176, 248}, {1755, 1964}, {1799, 287}, {1959, 38}, {2396, 4576}, {2421, 1634}, {2491, 688}, {2799, 826}, {3112, 1821}, {3405, 1}, {3569, 3005}, {4577, 2966}, {4580, 879}, {5976, 732}, {6333, 2525}, {6393, 3933}, {8840, 14617}, {8928, 8861}, {9417, 1923}, {10547, 14600}, {17209, 17187}, {18105, 2422}
X(20022) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (69, 17500, 308), (316, 3978, 14957)
X(20023) lies on the cubics K267 and K1037, and one these lines:
{2, 39}, {4, 18022}, {8, 18891}, {69, 290}, {83, 10014}, {183, 14096}, {193, 9230}, {237, 1975}, {263, 18906}, {308, 3618}, {315, 2387}, {327, 1007}, {561, 3212}, {592, 10359}, {1799, 12203}, {3051, 7754}, {3114, 7766}, {3231, 11333}, {3620, 6374}, {5921, 8920}, {5984, 8783}, {6620, 17984}, {7751, 8623}, {7897, 18896}
X(20023) = isotomic conjugate of X(263)
X(20023) = anticomplement X[3117]
X(20023) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {3113, 2}, {3114, 8}, {3407, 192}, {9063, 17217}, {18898, 17486}
X(20023) = X(14994)-cross conjugate of X(183)
X(20023) = X(i)-isoconjugate of X(j) for these (i,j): {6, 3402}, {31, 263}, {32, 2186}, {262, 560}, {327, 1917}
X(20023) = barycentric product X(i)*X(j) for these {i,j}: {75, 3403}, {76, 183}, {182, 1502}, {305, 458}, {308, 14994}, {3288, 4609}, {3978, 8842}
X(20023) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3402}, {2, 263}, {75, 2186}, {76, 262}, {182, 32}, {183, 6}, {458, 25}, {1502, 327}, {3288, 669}, {3403, 1}, {6784, 1084}, {8842, 694}, {10311, 1974}, {14096, 3051}, {14994, 39}, {15819, 5052}
X(20023) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (76, 3978, 2), (7754, 11338, 3051)
X(20024) lies on the cubic K267 and these lines: {2, 3398}, {69, 18896}
X(20024) = X(6)-isoconjugate of X(3409)
X(20024) = barycentric product X(i)*X(j) for these {i,j}: {75, 3408}, {3314, 3406}
X(20024) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3409}, {3094, 3095}, {3406, 3407}, {3408, 1}
X(20025) lies on the cubic K267 and these lines: {2, 1501}, {69, 3114}, {263, 18906}
X(20025) = X(i)-isoconjugate of X(j) for these (i,j): {6, 3408}, {3116, 3406}
X(20025) = barycentric product X(i)*X(j) for these {i,j}: {75, 3409}, {3095, 3114}
X(20025) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3408}, {3095, 3094}, {3407, 3406}, {3409, 1}
X(20026) lies on the cubic K267 and these lines: {2, 3095}, {69, 3114}, {3400, 4039}
X(20026) = X(i)-isoconjugate of X(j) for these (i,j): {6, 3401}, {1581, 3398}
X(20026) = barycentric product X(i)*X(j) for these {i,j}: {75, 3400}, {385, 3399}
X(20026) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3401}, {1691, 3398}, {3399, 1916}, {3400, 1}
X(20027) lies on the cubic K267 and these lines:
{2, 694}, {69, 18896}, {334, 1431}, {384, 14822}, {3618, 9468}, {6234, 14853}, {7018, 7077}
X(20027) = X(i)-isoconjugate of X(j) for these (i,j): {6, 3400}, {1933, 3399}
X(20027) = barycentric product X(i)*X(j) for these {i,j}: {75, 3401}, {3398, 18896}
X(20027) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3400}, {1916, 3399}, {3398, 1691}, {3401, 1}
X(20028) lies on the conic {{A,B,C,X(2)X(7)}}, cubics K254 and K267, and on these lines:
{2, 573}, {7, 10571}, {75, 3869}, {86, 4225}, {314, 1240}, {675, 17189}, {1122, 16727}, {1400, 17197}, {4373, 17753}, {14621, 14953}
X(20028) = isotomic conjugate of X(17751)
X(20028) = X(2363)-anticomplementary conjugate of X(1764)
X(20028) = X(i)-cross conjugate of X(j) for these (i,j): {65, 81}, {1193, 2}, {3752, 274}
X(20028) = X(i)-isoconjugate of X(j) for these (i,j): {31, 17751}, {37, 572}, {42, 2975}, {58, 14973}, {213, 14829}, {228, 11109}, {1334, 17074}
X(20028) = cevapoint of X(i) and X(j) for these (i,j): {124, 3910}, {513, 17197}, {1086, 6371}
X(20028) = trilinear pole of line {514, 6589}
X(20028) = barycentric product X(86)*X(2051)
X(20028) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 17751}, {27, 11109}, {37, 14973}, {58, 572}, {81, 2975}, {86, 14829}, {1014, 17074}, {2051, 10}, {7192, 17496}, {18191, 11998}
The trilinear polar of X(20029) passes through X(647). (Randy Hutson, July 31 2018)
See César Lozada, Hyacinthos 27810.
X(20029) lies on the Jerabek hyperbola, the cubic K321 and these lines: {2, 1798}, {3, 1211}, {6, 429}, {12, 478}, {65, 1899}, {68, 10441}, {69, 1228}, {72, 5928}, {73, 10372}, {1439, 10361}, {11442, 18123}
X(20029) = isogonal conjugate of X(11337)
X(20029) = perspector of Yiu conic
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 27812.
X(20030) lies on these lines: {2,3}, {6346,11801}, {14051, 16337}, {14072,15307}, {15425, 18016}
X(20030) = midpoint of X(i) and X(j) for these {i,j}: {4,10285}, {3627,14142}
X(20030) = reflection of X(i) in X(j) for these {i,j}: {140,15957}, {548,15327}, {10126,5}, {10205,10289}, {15334, 13469}, {18016,15425}
X(20030) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5, 10205, 10289), (10205, 10289, 10126), (13469, 15334, 2)
See Angel Montesdeoca, HG260618.
X(20031) lies on these lines: {98,6530}, {107,685}, {112,2966}, {648,17932}, {2422,2442}, {14273,15459}
Let ABC be an acute triangle, and let
A'B'C' = medial triangle
A''B''C'' = orthic triangle
U = circumcircle
OA = circle through A' and A'' tangent to U on the negative side of line BC; define OB and OC cyclically
Then X(20032 is the radical center of the circles OA, OB, OC.
See Kadir Altintas and Peter Moses, X(20032). See also X(20033) and X(20034).
Note that X(20032)-X(20034) are real if and only if ABC is an acute triangle.
X(20032) lies on the cubics K171 and K969, and also on these lines: {2, 20033}, {3, 31386}, {25, 20034}, {5374, 19588}
The circle externally tangent to OA, OB, OC constructed at X(20032), and here named the Altintas circle,, is tangent to the nine-point circle, and X(20033) is the touchpoint. See X(20032)
If you have GeoGebra, you can view X(20032) . In the sketch, X(20033) is labeled Fx.
X(20033) lies on the nine-point-circle and these lines: {2, 20032}, {5, 31386}, {427, 20034}
X(20034) lies on the curves Q066, Q103, K163, K233, K535, K539, and K701, and also on these lines: {4, 31386}, {25, 20032}, {427, 20033}
X(20034) = isogonal conjugate of X(5374)
X(20034) = barycentric product X(4)X(5374)
X(20034) = barycentric quotient X(i)/X(j) for these {i, j}: {6, 5374}, {5374, 69}
X(20035) lies on these lines: {1, 2}, {20, 20068}, {192, 20071}, {3189, 17147}, {4190, 17154}, {4310, 17690}, {5844, 19548}
X(20035) = anticomplement of anticomplement of X(976)
X(20036) lies on these lines: {1, 2}, {20, 15310}, {65, 17490}, {144, 194}, {192, 960}, {193, 330}, {346, 2176}, {391, 1107}, {518, 17480}, {958, 17349}, {992, 16969}, {1043, 1191}, {1183, 2975}, {1219, 1258}, {1400, 4308}, {2277, 5839}, {3210, 3869}, {3875, 15829}, {3890, 3896}, {4051, 4771}, {4190, 20101}, {4195, 16466}, {4225, 16704}, {4293, 20077}, {4298, 17364}, {4323, 4402}, {4373, 17753}, {5484, 5739}, {5844, 19549}, {6767, 19518}, {7967, 13731}, {12245, 19513}
X(20036) = anticomplement of anticomplement of X(978)
X(20037) lies on these lines: {1, 2}, {192, 3877}, {193, 2810}, {346, 2300}, {390, 6007}, {517, 3210}, {956, 19260}, {1056, 17778}, {1191, 17697}, {1319, 3769}, {1401, 3600}, {1469, 3476}, {3868, 17480}, {3875, 7962}, {4293, 20101}, {4352, 17152}, {4452, 10446}, {5844, 19550}, {6767, 19259}, {7967, 19262}, {20064, 20067}, {20076, 20077}
X(20037) = anticomplement of anticomplement of X(995)
X(20038) lies on these lines: {1, 2}, {3887, 20095}
X(20038) = anticomplement of anticomplement of X(1026)
X(20039) lies on these lines: {1, 2}, {193, 9039}, {517, 17154}, {1120, 16704}, {3880, 17495}, {3995, 5919}, {5844, 19335}, {20067, 20098}
X(20039) = anticomplement of anticomplement of X(1193)
X(20040) lies on these lines: {1, 2}, {20, 20064}, {31, 17539}, {65, 17495}, {193, 8679}, {944, 5752}, {952, 5754}, {958, 19742}, {959, 3476}, {960, 3995}, {992, 17388}, {1483, 13731}, {2274, 17178}, {2282, 6553}, {2392, 20067}, {2650, 17140}, {2895, 5484}, {2975, 4267}, {3057, 3896}, {3868, 17154}, {3869, 17147}, {3875, 11682}, {3891, 12635}, {4277, 5839}, {4430, 17480}, {4452, 17220}, {4645, 17690}, {4706, 10107}, {5711, 19284}, {5844, 19513}, {6767, 19283}, {11319, 16466}, {16685, 17314}, {17137, 18600}
X(20040) = anticomplement of X(17751)
X(20041) lies on these lines: {1, 2}, {193, 9026}, {1482, 15971}, {1483, 9840}, {2098, 3891}, {2390, 20064}, {2842, 14683}, {3057, 17147}, {3242, 15983}, {3869, 20068}, {3890, 3995}, {4442, 13463}, {5844, 19514}, {12513, 16704}, {14923, 17495}, {17154, 17480}
X(20041) = anticomplement of anticomplement of X(1201)
X(20042) lies on these lines: {1, 2}, {149, 900}, {497, 20068}, {1120, 12531}, {3976, 17690}, {4080, 10707}, {5844, 19515}, {20085, 20098}
X(20042) = complement of X(20058)
X(20042) = anticomplement of X(17780)
X(20043) lies on these lines: {1, 2}, {144, 17147}, {149, 7381}, {193, 3210}, {329, 3875}, {345, 3759}, {390, 3896}, {3666, 5839}, {3672, 5739}, {3879, 9776}, {3929, 4700}, {3945, 4359}, {4360, 14555}, {4361, 5712}, {4373, 17483}, {4383, 17314}, {4402, 5249}, {4452, 5905}, {4460, 18228}, {4470, 19722}, {4886, 17321}, {5844, 19517}, {7382, 20060}, {12245, 16435}, {17350, 20083}, {17377, 18141}, {19717, 19825}
X(20043) = anticomplement of X(34255)
X(20043) = anticomplement of anticomplement of X(2999)
X(20044) lies on these lines: {1, 2}, {512, 14712}, {5844, 19522}, {20064, 20102}
X(20044) = anticomplement of anticomplement of X(3009)
Let P and U be the circumcircle intercepts of the Nagel line. Then X(20045) = {P,U}-harmonic conjugate of X(2).
X(20045) lies on these lines: {1, 2}, {23, 385}, {31, 17165}, {55, 3891}, {63, 20068}, {100, 17495}, {105, 15571}, {171, 17140}, {192, 17002}, {238, 3952}, {244, 4434}, {321, 3744}, {518, 16704}, {528, 4442}, {536, 4760}, {537, 896}, {726, 902}, {740, 3722}, {752, 17491}, {952, 8229}, {1104, 4696}, {1150, 3242}, {1215, 17469}, {1279, 4358}, {1621, 3995}, {1918, 17142}, {2078, 4552}, {2094, 15590}, {3120, 17766}, {3218, 17154}, {3246, 4009}, {3550, 17155}, {3681, 19742}, {3745, 8025}, {3769, 3873}, {3772, 5014}, {3782, 4450}, {3871, 7465}, {3936, 5846}, {3994, 4432}, {4030, 4972}, {4080, 5057}, {4385, 11319}, {4968, 5266}, {5255, 17164}, {5905, 20064}, {7677, 14594}, {17483, 20101}, {17784, 19789}
X(20045) = anticomplement of X(3006)
X(20046) lies on these lines: {1, 2}, {193, 9022}, {740, 20064}, {1278, 20086}, {3578, 17318}, {3995, 5839}, {5278, 17388}, {5844, 19645}, {6327, 17772}, {17314, 19742}
X(20046) = anticomplement of X(20017)
X(20047) lies on these lines: {1, 2}, {2334, 8025}, {3913, 16704}, {5844, 19646}
X(20047) = anticomplement of anticomplement of X(3214)
X(20048) lies on these lines: {1, 2}, {193, 9024}, {3873, 4706}, {3896, 4661}, {5844, 19647}, {17784, 20086}
X(20048) = anticomplement of anticomplement of X(3240)
X(20049) lies on these lines: 1, 2}, {193, 9041}, {346, 16671}, {376, 5844}, {391, 16677}, {517, 15683}, {527, 12630}, {528, 20059}, {537, 4788}, {903, 4452}, {952, 3543}, {1320, 4930}, {1482, 3839}, {1483, 3524}, {1992, 9053}, {3545, 12645}, {3656, 3832}, {3880, 4430}, {4370, 17314}, {4460, 17274}, {5068, 10222}, {5071, 10247}, {5690, 15708}, {5846, 11160}, {6767, 16861}, {7967, 15692}, {7982, 17578}, {8148, 15682}, {9945, 10031}, {10032, 15680}, {10246, 15721}, {10304, 12245}, {11001, 18526}, {12513, 17548}, {12702, 15697}, {17678, 19824}
X(20049) = anticomplement of X(31145)
X(20049) = anticomplement of anticomplement of X(3241)
X(20050) lies on these lines: {1, 2}, {4, 11278}, {7, 10944}, {44, 3161}, {45, 5839}, {55, 17574}, {69, 4460}, {100, 19537}, {193, 4488}, {341, 4742}, {346, 16670}, {355, 3855}, {377, 19820}, {382, 952}, {391, 16676}, {517, 3529}, {518, 3644}, {546, 1482}, {550, 944}, {956, 17571}, {964, 19739}, {1150, 19289}, {1317, 1788}, {1320, 7319}, {1392, 5748}, {1475, 4050}, {1483, 3530}, {1621, 16866}, {1837, 4345}, {2136, 5128}, {2320, 5775}, {2899, 8834}, {2975, 19535}, {3091, 16200}, {3146, 11531}, {3189, 5854}, {3242, 3631}, {3295, 19526}, {3303, 17543}, {3304, 8168}, {3340, 3982}, {3476, 5221}, {3488, 15650}, {3523, 13607}, {3528, 3579}, {3555, 14923}, {3576, 4917}, {3600, 4031}, {3614, 3813}, {3629, 9053}, {3654, 15715}, {3655, 15710}, {3672, 4464}, {3680, 5556}, {3681, 9957}, {3851, 5603}, {3868, 3880}, {3871, 5217}, {3873, 10914}, {3875, 4346}, {3876, 5919}, {3878, 4661}, {3889, 5836}, {3895, 6762}, {3913, 5204}, {3951, 9819}, {4003, 4734}, {4189, 5288}, {4298, 16236}, {4299, 20095}, {4301, 10248}, {4314, 8275}, {4323, 5252}, {4358, 4935}, {4361, 4916}, {4371, 17390}, {4402, 4851}, {4419, 4725}, {4430, 5903}, {4452, 4887}, {4454, 17133}, {4644, 4971}, {4648, 4889}, {4869, 17067}, {4896, 17151}, {4910, 17372}, {5079, 5818}, {5080, 5225}, {5175, 5714}, {5226, 11011}, {5260, 6767}, {5296, 16672}, {5558, 18221}, {5687, 17573}, {5690, 15720}, {5708, 17563}, {5749, 16666}, {5881, 18483}, {5936, 17394}, {6361, 15681}, {7173, 12607}, {7270, 19830}, {7718, 10301}, {7967, 10299}, {7982, 9812}, {8236, 15254}, {9708, 17545}, {9782, 11037}, {9785, 10950}, {10031, 13996}, {10246, 14869}, {10592, 11680}, {10593, 11681}, {11034, 12577}, {11737, 18493}, {12019, 12531}, {12541, 14450}, {12653, 20085}, {15687, 18525}, {15733, 17648}, {16189, 19925}, {17315, 18230}
X(20050) = homothetic center of Caelum triangle and mid-triangle of medial and anticomplementary triangles
X(20050) = complement of X(20054)
X(20050) = anticomplement of X(3632)
X(20051) lies on these lines: {1, 2}, {1126, 19743}, {3295, 19742}, {3555, 17495}, {3871, 16704}, {3996, 11115}, {4043, 4696}, {4954, 16397}, {5844, 19648}, {20077, 20095}
X(20051) = anticomplement of anticomplement of X(3293)
X(20052) lies on these lines: {1, 2}, {20, 12645}, {319, 4452}, {346, 15492}, {391, 3943}, {517, 17578}, {518, 4821}, {952, 3522}, {956, 17548}, {1482, 5068}, {1483, 10303}, {2136, 3219}, {2975, 8168}, {3091, 5844}, {3146, 12245}, {3620, 9053}, {3681, 3893}, {3834, 4371}, {3839, 8148}, {3873, 3922}, {3877, 4533}, {3880, 4005}, {3962, 4661}, {3988, 5697}, {4007, 4700}, {4029, 4034}, {4399, 4869}, {4430, 5836}, {4461, 20072}, {4487, 4673}, {4720, 17539}, {4725, 4747}, {5059, 6361}, {5690, 15717}, {5790, 15022}, {5839, 16671}, {6767, 17570}, {6926, 19914}, {7270, 19826}, {7486, 10247}, {9708, 17544}, {10304, 18526}, {12531, 13996}, {12702, 15683}, {15174, 15676}, {16677, 17314}
X(20052) = anticomplement of X(3623)
X(20053) lies on these lines: {1, 2}, {319, 4460}, {346, 4700}, {391, 4029}, {404, 8168}, {518, 4764}, {548, 944}, {740, 9338}, {952, 1657}, {962, 3627}, {1392, 5828}, {1482, 3850}, {1483, 12108}, {3161, 3943}, {3295, 19538}, {3630, 9053}, {3832, 11224}, {3834, 4402}, {3843, 12645}, {3868, 3893}, {3873, 4004}, {3877, 4005}, {3880, 3962}, {4018, 14923}, {4127, 4661}, {4399, 4916}, {4409, 9041}, {4464, 5232}, {4488, 17765}, {4533, 9957}, {4737, 4935}, {4803, 17589}, {5072, 5603}, {5296, 16674}, {5657, 15712}, {5734, 9955}, {5749, 16668}, {5790, 12812}, {5846, 6144}, {5854, 9802}, {6224, 13996}, {7270, 19831}, {8162, 17536}, {9778, 12245}, {11015, 12536}, {11520, 11525}, {12630, 15481}, {12702, 15686}, {14892, 18493}, {15689, 18526}, {16669, 17299}, {16675, 17362}, {16814, 17314}, {17363, 20073}
X(20053) = anticomplement of X(3633)
X(20054) lies on these lines: {1, 2}, {312, 4935}, {320, 4373}, {346, 4969}, {382, 5844}, {546, 12645}, {550, 12245}, {952, 3529}, {956, 17574}, {1482, 3855}, {1483, 15720}, {3530, 7967}, {3839, 11278}, {3871, 19535}, {3885, 4661}, {3913, 5303}, {4007, 4982}, {4430, 10914}, {4454, 4725}, {4727, 5839}, {5068, 16200}, {5079, 10595}, {5288, 17548}, {5846, 11008}, {5854, 20085}, {6767, 17545}, {8148, 15687}, {11531, 17578}, {12632, 20066}, {16671, 17299}, {16677, 17362}
X(20054) = anticomplement of X(20050)
X(20055) lies on these lines: {1, 2}, {7, 4821}, {63, 4050}, {69, 1278}, {75, 17372}, {192, 319}, {320, 4740}, {536, 4741}, {594, 17377}, {599, 17160}, {712, 20081}, {894, 4007}, {1654, 4704}, {2321, 17350}, {3208, 3219}, {3295, 19237}, {3631, 4398}, {3644, 17344}, {3686, 17242}, {3739, 17386}, {3758, 4725}, {3759, 17229}, {3765, 4671}, {3875, 17236}, {3879, 4060}, {3943, 17346}, {3950, 17331}, {4034, 17260}, {4360, 4445}, {4361, 17232}, {4365, 9902}, {4389, 4971}, {4399, 17234}, {4422, 17233}, {4431, 17364}, {4454, 11160}, {4461, 20080}, {4464, 17396}, {4478, 5224}, {4664, 4690}, {4665, 17378}, {4681, 17328}, {4686, 17361}, {4688, 17387}, {4699, 4851}, {4718, 17329}, {4747, 20090}, {4764, 17345}, {4772, 17300}, {4788, 6646}, {4852, 17228}, {4889, 17394}, {4967, 17391}, {4969, 17354}, {5687, 19308}, {5839, 17280}, {5844, 7377}, {6996, 12645}, {6999, 12245}, {17117, 17296}, {17119, 17297}, {17121, 17286}, {17151, 17288}, {17239, 17393}, {17240, 17348}, {17270, 17319}, {17271, 17318}, {17275, 17315}, {17277, 17309}
X(20055) = anticomplement of X(4393)
X(20056) lies on these lines: {1, 2}, {346, 1914}, {385, 3996}, {983, 17127}, {1278, 17784}, {2783, 5984}, {3056, 3681}, {3744, 17280}, {3749, 3790}, {4030, 4854}, {9053, 14829}, {10389, 17242}, {17165, 20101}
X(20056) = anticomplement of anticomplement of X(7081)
X(20057) lies on these lines: {1, 2}, {7, 1392}, {20, 13607}, {65, 6049}, {86, 4460}, {100, 7373}, {104, 12000}, {354, 3885}, {376, 11278}, {377, 19830}, {382, 944}, {515, 10248}, {517, 3528}, {546, 1483}, {550, 1482}, {664, 5543}, {952, 3851}, {956, 16866}, {958, 17543}, {962, 3529}, {964, 19747}, {999, 19537}, {1058, 5080}, {1266, 3945}, {1317, 3485}, {1320, 5558}, {1385, 10299}, {1388, 5435}, {1449, 3161}, {1621, 19526}, {2098, 4313}, {2099, 4308}, {2320, 7320}, {2975, 6767}, {3057, 3889}, {3242, 3629}, {3247, 4700}, {3295, 19535}, {3303, 17574}, {3304, 3871}, {3340, 4031}, {3476, 3649}, {3486, 4345}, {3522, 11531}, {3530, 10246}, {3555, 3890}, {3579, 15710}, {3648, 15174}, {3672, 15600}, {3723, 5296}, {3748, 3897}, {3855, 9955}, {3868, 5919}, {3873, 4018}, {3876, 10179}, {3877, 3962}, {3878, 4430}, {3880, 3922}, {3892, 4757}, {3898, 4127}, {3943, 5749}, {3987, 9335}, {3988, 4661}, {4004, 5045}, {4297, 16189}, {4309, 20067}, {4315, 5586}, {4317, 20066}, {4344, 15590}, {4734, 4883}, {4916, 17045}, {4982, 16676}, {5048, 5180}, {5079, 5901}, {5226, 10944}, {5260, 17545}, {5288, 16865}, {5441, 14450}, {5657, 15720}, {5698, 5852}, {5727, 18220}, {5748, 12433}, {5818, 10283}, {5844, 14869}, {6224, 12735}, {7982, 9778}, {8148, 15688}, {8162, 12513}, {9654, 10707}, {9779, 13464}, {10301, 11396}, {10394, 17622}, {11491, 12001}, {12245, 15178}, {13624, 15715}, {14269, 18526}, {15934, 17563}, {17319, 20073}
X(20057) = anticomplement of anticomplement of X(15808)
X(20058) lies on these lines: {1, 2}, {900, 20095}, {4952, 17147}
X(20058) = anticomplement of X(20042)
X(20059) lies on these lines: {2, 7}, {4, 5843}, {6, 4346}, {8, 4312}, {20, 5762}, {69, 4454}, {72, 10861}, {145, 516}, {149, 5851}, {190, 4869}, {193, 4440}, {239, 4373}, {279, 6603}, {320, 346}, {390, 2098}, {391, 17347}, {518, 1278}, {528, 20049}, {545, 17314}, {954, 4189}, {962, 10864}, {971, 3146}, {1100, 3672}, {1320, 10307}, {1743, 4887}, {1757, 7613}, {1992, 4398}, {1999, 10442}, {2345, 17345}, {2550, 4678}, {2801, 20085}, {2951, 3870}, {3008, 4902}, {3059, 4661}, {3062, 9812}, {3091, 5779}, {3161, 4480}, {3474, 3689}, {3522, 5759}, {3543, 12690}, {3600, 5289}, {3617, 5223}, {3622, 5542}, {3663, 16667}, {3664, 16673}, {3681, 15587}, {3711, 11246}, {3731, 4896}, {3832, 5805}, {3869, 8581}, {3873, 14100}, {3912, 4488}, {3927, 4208}, {3945, 4419}, {3951, 5785}, {3957, 4326}, {4000, 16669}, {4060, 4659}, {4292, 20007}, {4293, 4867}, {4335, 17018}, {4363, 5232}, {4430, 15726}, {4470, 17253}, {4643, 7222}, {4648, 16675}, {4715, 5839}, {4718, 4916}, {4747, 17321}, {4851, 4912}, {4862, 5222}, {4880, 10590}, {4888, 5308}, {5068, 5817}, {5187, 5729}, {5221, 8165}, {5586, 18250}, {5686, 5880}, {5698, 11038}, {5735, 12649}, {5758, 7171}, {5819, 20072}, {5853, 20014}, {5856, 7674}, {6147, 17558}, {7229, 17272}, {9589, 9797}, {10056, 16558}, {11008, 17160}, {11036, 11106}, {17147, 18663}, {17183, 17207}, {17300, 20073}
X(20059) = isotomic conjugate of X(36605)
X(20059) = anticomplement of X(144)
X(20060) lies on these lines: {1, 5046}, {2, 12}, {3, 20067}, {4, 145}, {7, 5554}, {8, 79}, {10, 3218}, {20, 5841}, {21, 495}, {30, 3871}, {35, 535}, {55, 15680}, {63, 9578}, {65, 5176}, {78, 9613}, {80, 3874}, {100, 7354}, {104, 6972}, {119, 6979}, {144, 5857}, {193, 5849}, {355, 2888}, {377, 3421}, {385, 20102}, {390, 10965}, {404, 17757}, {452, 10587}, {497, 3623}, {515, 6895}, {518, 5086}, {519, 3585}, {908, 10106}, {944, 6840}, {950, 3957}, {956, 2476}, {962, 6256}, {993, 14804}, {999, 4193}, {1056, 2478}, {1376, 9657}, {1479, 3241}, {1621, 15888}, {1770, 10915}, {1836, 14923}, {1837, 3873}, {1993, 9370}, {2550, 4678}, {3006, 9369}, {3057, 5057}, {3085, 4189}, {3086, 5154}, {3091, 10529}, {3146, 5842}, {3219, 12527}, {3244, 3583}, {3295, 11114}, {3434, 3621}, {3555, 18480}, {3584, 5267}, {3633, 18513}, {3635, 4857}, {3681, 5794}, {3814, 5563}, {3820, 17531}, {3822, 5258}, {3832, 10893}, {3869, 5252}, {3870, 5691}, {3872, 9612}, {3885, 12699}, {3889, 5722}, {3897, 11374}, {3913, 12943}, {4188, 4293}, {4190, 7080}, {4197, 9708}, {4292, 6735}, {4294, 11239}, {4308, 5748}, {4311, 4881}, {4420, 17647}, {4430, 6894}, {4696, 7270}, {4737, 5300}, {4757, 15863}, {4861, 12047}, {4973, 5445}, {5141, 10527}, {5180, 5697}, {5187, 14986}, {5218, 17548}, {5249, 5795}, {5274, 10959}, {5290, 19860}, {5303, 5432}, {5541, 16118}, {5603, 13729}, {5687, 9655}, {5690, 6951}, {5727, 11520}, {5790, 6901}, {5837, 17781}, {5901, 6965}, {6827, 10805}, {6830, 11929}, {6844, 10524}, {6845, 18519}, {6848, 10530}, {6872, 11508}, {6893, 10597}, {6900, 18357}, {6902, 10246}, {6905, 10942}, {6910, 8164}, {6919, 10586}, {6923, 12245}, {6928, 7967}, {6929, 10595}, {6941, 10680}, {6960, 11249}, {6963, 16203}, {6985, 18545}, {7373, 17556}, {7382, 20043}, {7391, 20020}, {7394, 19993}, {7504, 10592}, {7785, 9263}, {7951, 8666}, {8256, 11246}, {8715, 10483}, {9342, 9711}, {9597, 17756}, {9650, 16975}, {9897, 11604}, {9961, 12678}, {10056, 15677}, {10057, 12532}, {10198, 15674}, {10591, 11240}, {10711, 13279}, {10728, 13278}, {10895, 11680}, {11260, 17605}, {12531, 13273}, {12702, 20084}, {13161, 17016}, {15971, 20101}
X(20060) = anticomplement of X(2975)
X(20060) = perspector of ABC and reflection of medial triangle in X(12)
X(20061) lies on these lines: {2, 19}, {8, 144}, {23, 1486}, {145, 20074}, {192, 7500}, {193, 3827}, {347, 1172}, {1278, 8680}, {1766, 5813}, {2263, 17016}, {3187, 4452}, {3434, 11683}, {3617, 10251}, {3920, 4319}, {4463, 17784}, {5802, 12848}, {7391, 11677}
X(20061) = anticomplement of X(4329)
X(20062) lies on these lines: {2, 3}, {193, 9019}, {251, 2549}, {323, 11206}, {612, 4324}, {614, 4316}, {1180, 7737}, {1899, 15107}, {2781, 14683}, {3424, 11140}, {3920, 4302}, {4293, 17024}, {4299, 7191}, {4549, 11455}, {5310, 10483}, {5971, 19583}, {6515, 14927}, {7802, 16276}, {8267, 20065}, {19993, 20067}, {20020, 20066}, {20083, 20095}
X(20062) = anticomplement of X(7391)
X(20063) lies on these lines: {2, 3}, {193, 8705}, {251, 7765}, {390, 5160}, {511, 14683}, {1369, 16276}, {3448, 15107}, {3600, 7286}, {3920, 4330}, {4316, 7292}, {4317, 17024}, {4324, 5297}, {4325, 7191}, {5032, 15826}, {5092, 7605}, {6776, 16981}, {8591, 13574}, {9019, 11061}, {9143, 19924}, {14712, 20099}
X(20063) = anticomplement of X(5189)
X(20063) = inverse-in-orthoptic-circle-of-Steiner-inellipse of X(3628)
X(20063) = inverse-in-orthoptic-circle-of-Steiner-circumellipse of X(5)
X(20064) lies on these lines: {2, 31}, {6, 4450}, {20, 20040}, {144, 20020}, {145, 758}, {193, 674}, {209, 17784}, {516, 3187}, {734, 20081}, {740, 20046}, {744, 1278}, {766, 19994}, {896, 4865}, {1707, 3006}, {2308, 4660}, {2390, 20041}, {2550, 19742}, {2835, 9965}, {3052, 3936}, {3434, 16704}, {3474, 17495}, {3617, 4680}, {3769, 5057}, {3891, 17768}, {3923, 6535}, {3938, 17770}, {3957, 17364}, {3995, 5698}, {4641, 5014}, {4655, 17469}, {4661, 20072}, {4683, 17716}, {4772, 18805}, {5847, 20017}, {5905, 20045}, {20012, 20095}, {20018, 20066}, {20037, 20067}, {20044, 20102}
X(20064) = anticomplement of X(6327)
X(20065) lies on these lines: {2, 32}, {3, 7762}, {4, 385}, {5, 3793}, {6, 7750}, {20, 185}, {30, 7754}, {39, 14907}, {69, 384}, {76, 7737}, {99, 7758}, {141, 16898}, {145, 760}, {148, 2794}, {183, 7745}, {187, 7759}, {192, 4294}, {217, 1993}, {230, 7773}, {297, 3172}, {316, 3767}, {317, 1968}, {325, 3053}, {330, 4293}, {371, 638}, {372, 637}, {376, 7783}, {377, 16998}, {401, 6515}, {443, 17000}, {491, 12963}, {492, 12968}, {524, 1975}, {574, 7838}, {620, 7903}, {631, 7777}, {736, 6658}, {746, 1278}, {766, 19994}, {966, 17688}, {1003, 3933}, {1007, 7907}, {1285, 3314}, {1352, 12110}, {1384, 7776}, {1654, 4195}, {1655, 6872}, {1916, 9862}, {1992, 7738}, {2243, 4950}, {2386, 7500}, {2475, 17002}, {2478, 16997}, {2549, 7760}, {2996, 3543}, {3090, 17004}, {3091, 9753}, {3329, 7904}, {3425, 7488}, {3491, 14826}, {3522, 13571}, {3523, 13335}, {3525, 17005}, {3552, 3926}, {3575, 9308}, {3617, 4769}, {3618, 7876}, {3619, 16895}, {3734, 7826}, {3788, 7845}, {3849, 7748}, {3852, 5596}, {3972, 7768}, {4201, 4340}, {4339, 17257}, {4352, 20090}, {5007, 7761}, {5008, 7834}, {5023, 9766}, {5025, 7735}, {5046, 17001}, {5067, 17006}, {5084, 16999}, {5171, 9744}, {5206, 7764}, {5254, 14614}, {5286, 6655}, {5304, 7797}, {5305, 7841}, {5306, 7851}, {5309, 7842}, {5319, 7790}, {5346, 7861}, {5355, 7872}, {5368, 7902}, {5475, 7780}, {6337, 7906}, {6656, 16989}, {6781, 7781}, {7736, 7824}, {7739, 7847}, {7746, 7843}, {7747, 7751}, {7755, 7825}, {7756, 7798}, {7767, 7770}, {7769, 7926}, {7771, 7858}, {7772, 7830}, {7782, 7905}, {7784, 7792}, {7788, 7789}, {7799, 7949}, {7801, 7882}, {7804, 7854}, {7806, 7885}, {7816, 7855}, {7819, 7879}, {7820, 7896}, {7822, 7848}, {7827, 7910}, {7828, 7860}, {7829, 7935}, {7831, 7878}, {7832, 7850}, {7835, 7917}, {7836, 7946}, {7840, 7891}, {7856, 7911}, {7859, 7936}, {7863, 7916}, {7875, 7928}, {7881, 8369}, {7892, 7939}, {7920, 7924}, {7931, 14069}, {8267, 20062}, {8356, 9605}, {8366, 19661}, {8591, 14645}, {9263, 20076}, {9983, 18906}, {9988, 10653}, {9989, 10654}, {11319, 17007}, {11361, 17129}, {11610, 13219}, {14033, 17128}, {16045, 16986}, {16991, 17526}, {16995, 17685}, {17300, 17691}, {17481, 18656}
X(20065) = anticomplement of X(315)
X(20065) = polar conjugate of isogonal conjugate of X(23163)
X(20065) = {X(7737),X(14023)}-harmonic conjugate of X(76)
X(20066) lies on these lines: {2, 35}, {3, 149}, {4, 11849}, {8, 191}, {10, 4330}, {20, 145}, {30, 3871}, {55, 2475}, {100, 1329}, {193, 9047}, {390, 2646}, {404, 15171}, {496, 13587}, {497, 4188}, {519, 4324}, {528, 2975}, {958, 15677}, {1043, 4450}, {1478, 13100}, {1770, 17483}, {1900, 6995}, {2550, 16865}, {3058, 5253}, {3146, 6256}, {3241, 4299}, {3244, 4316}, {3295, 17579}, {3434, 4189}, {3522, 10529}, {3600, 11011}, {3616, 4309}, {3617, 5086}, {3623, 4293}, {3635, 4325}, {3648, 5904}, {3811, 17484}, {3813, 5303}, {3874, 15228}, {3957, 4292}, {4193, 9668}, {4317, 20057}, {4421, 11681}, {4640, 5178}, {4855, 9580}, {4881, 12053}, {5080, 8715}, {5141, 5218}, {5154, 5225}, {5217, 11680}, {5281, 6871}, {5330, 10609}, {5433, 10707}, {5687, 11114}, {5697, 6224}, {5731, 11014}, {5840, 11491}, {5842, 6895}, {5905, 20084}, {6653, 17692}, {6840, 11248}, {6845, 18499}, {6894, 11496}, {6949, 10738}, {6960, 10525}, {9669, 17566}, {9778, 12649}, {10386, 11112}, {10527, 14794}, {10724, 18242}, {11330, 19763}, {11499, 13729}, {11604, 14795}, {12248, 18526}, {12632, 20054}, {14712, 20102}, {15676, 19854}, {20011, 20077}, {20018, 20064}, {20020, 20062}
X(20066) = anticomplement of anticomplement of X(35)
X(20066) = anticomplement of isogonal conjugate of X(34441)
X(20066) = anticomplement of isotomic conjugate of isogonal conjugate of X(20988)
X(20066) = anticomplement of polar conjugate of isogonal conjugate of X(22122)
X(20067) lies on these lines: {1, 5180}, {2, 36}, {3, 20060}, {8, 484}, {10, 4325}, {12, 5303}, {20, 145}, {21, 18990}, {30, 149}, {56, 5046}, {80, 4973}, {100, 529}, {104, 5841}, {153, 6905}, {193, 9037}, {194, 20102}, {388, 4189}, {390, 5048}, {404, 3820}, {452, 5126}, {495, 17549}, {513, 17496}, {515, 3218}, {519, 4316}, {550, 3871}, {758, 6224}, {908, 4881}, {956, 17579}, {999, 11114}, {1155, 3617}, {1319, 3485}, {1621, 5434}, {1770, 4861}, {1878, 6995}, {2077, 3522}, {2078, 10587}, {2392, 20040}, {2475, 2886}, {2476, 9655}, {2551, 17572}, {2802, 15228}, {3085, 17548}, {3146, 10529}, {3241, 4302}, {3244, 4324}, {3245, 3621}, {3436, 4188}, {3616, 4317}, {3623, 4294}, {3635, 4330}, {3648, 3878}, {3881, 5441}, {3957, 4304}, {4198, 5146}, {4297, 5538}, {4309, 20057}, {4511, 17484}, {4652, 9613}, {5078, 5484}, {5122, 5791}, {5141, 5229}, {5154, 7288}, {5183, 17784}, {5187, 5265}, {5193, 10586}, {5204, 11681}, {5267, 5270}, {5536, 12649}, {5657, 10225}, {5731, 5905}, {5844, 13199}, {6895, 12114}, {6972, 10526}, {6992, 18857}, {8666, 10483}, {9263, 14712}, {9778, 12648}, {11194, 11680}, {13587, 17757}, {19993, 20062}, {20037, 20064}, {20039, 20098}
X(20067) = anticomplement of X(5080)
X(20068) lies on these lines: {2, 38}, {20, 20035}, {63, 20045}, {144, 19993}, {145, 758}, {192, 4430}, {193, 9020}, {497, 20042}, {518, 3896}, {714, 1278}, {726, 4365}, {1227, 4346}, {3006, 4138}, {3210, 4661}, {3617, 4692}, {3681, 17495}, {3720, 17146}, {3869, 20041}, {3873, 3995}, {3891, 16704}, {3936, 4884}, {3938, 4427}, {3971, 17449}, {4080, 11680}, {4450, 9053}, {4651, 17155}, {4865, 17491}, {5014, 17276}, {9965, 20020}, {17024, 17350}
X(20068) = anticomplement of X(17165)
X(20069) lies on these lines: {1, 2}, {192, 20101}, {199, 3871}, {3744, 17315}, {3891, 17300}, {3996, 17388}, {4038, 17769}, {5844, 19516}, {17165, 20090}
X(20069) = anticomplement of anticomplement of X(1961)
X(20070) lies on these lines: {1, 3522}, {2, 40}, {3, 3622}, {4, 3617}, {7, 1697}, {8, 144}, {10, 3832}, {20, 145}, {23, 9911}, {30, 12245}, {46, 14986}, {57, 9785}, {65, 390}, {78, 7994}, {149, 6836}, {165, 3616}, {355, 3543}, {376, 1482}, {392, 17580}, {404, 6244}, {411, 10306}, {452, 5759}, {484, 3086}, {515, 3621}, {518, 9961}, {519, 15683}, {527, 2136}, {548, 10247}, {550, 7967}, {551, 15705}, {938, 2093}, {950, 12848}, {952, 3529}, {1000, 18990}, {1131, 13911}, {1132, 13973}, {1155, 5265}, {1159, 10386}, {1385, 10304}, {1420, 4345}, {1479, 3245}, {1483, 3534}, {1490, 3935}, {1537, 6927}, {1621, 5584}, {1657, 5844}, {1698, 9779}, {1699, 5068}, {1706, 18228}, {1768, 9802}, {1788, 5183}, {1836, 5261}, {1902, 6995}, {2094, 9841}, {2550, 6894}, {2800, 20013}, {2886, 18231}, {3057, 3474}, {3085, 11010}, {3091, 5657}, {3161, 10443}, {3219, 12705}, {3241, 4297}, {3295, 7411}, {3303, 11038}, {3339, 10580}, {3340, 4313}, {3359, 10586}, {3361, 4342}, {3428, 4189}, {3434, 6895}, {3485, 5281}, {3523, 3579}, {3524, 5901}, {3525, 18493}, {3528, 10246}, {3576, 5734}, {3601, 4323}, {3623, 5731}, {3651, 10679}, {3654, 3839}, {3655, 15697}, {3656, 15692}, {3671, 10578}, {3672, 5710}, {3681, 12688}, {3746, 12511}, {3753, 5129}, {3757, 12544}, {3817, 9588}, {3854, 18483}, {3869, 7957}, {3870, 12565}, {3871, 7580}, {3873, 9943}, {3876, 9856}, {3877, 6904}, {3889, 10167}, {3895, 20059}, {3915, 9441}, {3957, 10884}, {4188, 10310}, {4190, 14110}, {4293, 5697}, {4294, 5903}, {4295, 5119}, {4298, 9819}, {4300, 17018}, {4308, 7962}, {4314, 18421}, {4452, 10444}, {4661, 12528}, {4678, 11362}, {4848, 9580}, {5082, 10431}, {5128, 5435}, {5141, 15908}, {5180, 5552}, {5536, 11240}, {5541, 9809}, {5550, 10164}, {5698, 5836}, {5704, 9614}, {5709, 10529}, {5758, 10528}, {5840, 20085}, {5846, 14927}, {5881, 20052}, {5886, 10303}, {6001, 20015}, {6223, 20214}, {6762, 12541}, {6764, 10430}, {6766, 10860}, {6876, 11849}, {6925, 20060}, {7080, 11415}, {7288, 18220}, {7486, 9955}, {7672, 12711}, {7965, 9710}, {7973, 11206}, {8193, 14118}, {8236, 11518}, {9543, 9583}, {9593, 14930}, {9798, 12087}, {9799, 9804}, {10178, 17609}, {10248, 19925}, {10465, 20037}, {10591, 15079}, {11012, 17548}, {11106, 12651}, {11224, 20057}, {11239, 14450}, {11413, 12410}, {11496, 16865}, {12115, 20084}, {12571, 19875}, {12703, 17483}, {12717, 17350}, {15680, 16113}, {15704, 18526}
X(20070) = reflection of X(145) in X(20)
X(20070) = anticomplement of X(962)
X(20071) lies on these lines: {2, 41}, {144, 15680}, {145, 2809}, {192, 20035}, {193, 8679}, {766, 19994}, {2389, 20075}, {7500, 20011}
X(20071) = anticomplement of X(21285)
X(20071) = anticomplement of anticomplement of X(41)
X(20072) lies on these lines: {1, 17333}, {2, 44}, {6, 4389}, {7, 1405}, {8, 752}, {9, 17244}, {10, 894}, {37, 20090}, {45, 17378}, {69, 17230}, {72, 20077}, {86, 7277}, {144, 145}, {190, 524}, {238, 1468}, {239, 527}, {319, 17351}, {330, 957}, {344, 17375}, {346, 17373}, {385, 4831}, {391, 4699}, {513, 4380}, {519, 4480}, {536, 20016}, {540, 16086}, {545, 4969}, {597, 17305}, {599, 17354}, {651, 17950}, {903, 4395}, {1100, 17258}, {1278, 5839}, {1449, 17247}, {1743, 3662}, {1992, 4393}, {1999, 17781}, {2183, 3218}, {2325, 17310}, {2345, 17343}, {3180, 19551}, {3181, 7126}, {3210, 20078}, {3219, 17778}, {3246, 3622}, {3257, 4080}, {3589, 17273}, {3618, 17236}, {3620, 17358}, {3624, 17248}, {3629, 4360}, {3630, 17295}, {3631, 17285}, {3632, 3729}, {3663, 17121}, {3664, 17260}, {3681, 20101}, {3686, 17116}, {3707, 16815}, {3731, 17391}, {3759, 17276}, {3836, 19877}, {3879, 4029}, {3912, 4473}, {3973, 17298}, {3995, 20086}, {4062, 9395}, {4144, 7779}, {4357, 17120}, {4363, 17346}, {4371, 4821}, {4422, 17297}, {4431, 4701}, {4454, 4740}, {4461, 20052}, {4488, 17765}, {4499, 6007}, {4585, 17796}, {4649, 9791}, {4657, 17329}, {4661, 20064}, {4667, 16826}, {4683, 4722}, {4716, 17767}, {4772, 7222}, {4851, 17336}, {5032, 17014}, {5749, 17238}, {5750, 17252}, {5819, 20059}, {6144, 17262}, {6172, 17316}, {6361, 15310}, {6763, 13571}, {7232, 17352}, {7321, 17348}, {8584, 17395}, {9965, 17490}, {10025, 17036}, {10436, 17331}, {11008, 17314}, {15492, 17263}, {15533, 17269}, {15534, 17318}, {16666, 17320}, {16667, 17396}, {16669, 16706}, {16670, 17274}, {16671, 17235}, {16814, 17317}, {16885, 17234}, {17023, 17254}, {17253, 17381}, {17264, 17374}, {17271, 17369}, {17272, 17368}, {17277, 17365}, {17279, 17361}, {17281, 17360}, {17287, 17355}, {17288, 17353}, {17289, 17344}, {17296, 17339}, {17303, 17328}, {17483, 19742}, {17495, 20092}
X(20072) = anticomplement of X(320)
X(20072) = polar conjugate of isogonal conjugate of X(23166)
X(20073) lies on these lines: {1, 4480}, {2, 45}, {7, 17244}, {8, 17333}, {9, 1266}, {10, 2996}, {69, 3943}, {144, 145}, {239, 6172}, {344, 3834}, {346, 3620}, {391, 1278}, {452, 11851}, {527, 4029}, {894, 3616}, {1654, 4461}, {1992, 17318}, {2325, 17274}, {2345, 17250}, {3161, 3662}, {3618, 17246}, {3619, 17255}, {3622, 4676}, {3632, 4416}, {3644, 5839}, {3672, 17350}, {3875, 4700}, {3945, 4704}, {3995, 20078}, {4000, 17336}, {4371, 4764}, {4384, 17132}, {4393, 5032}, {4431, 4668}, {4452, 17349}, {4644, 4664}, {4675, 4912}, {4687, 7222}, {5296, 17116}, {5739, 20083}, {5749, 17247}, {6542, 11160}, {7229, 17248}, {11008, 17388}, {17300, 20059}, {17314, 17347}, {17319, 20057}, {17321, 17351}, {17363, 20053}, {17778, 20070}
X(20073) = anticomplement of anticomplement of X(45)
X(20074) lies on these lines: {2, 48}, {20, 916}, {144, 2801}, {145, 20061}, {193, 8679}, {3101, 20017}, {9028, 17134}
X(20074) = anticomplement of X(21270)
X(20074) = anticomplement of anticomplement of X(48)
X(20075) lies on these lines: {1, 4190}, {2, 11}, {3, 10529}, {4, 3871}, {7, 3957}, {8, 90}, {10, 4309}, {20, 145}, {21, 5082}, {35, 10527}, {36, 11240}, {40, 11920}, {63, 5853}, {69, 4450}, {78, 10624}, {144, 4661}, {192, 7500}, {193, 674}, {329, 2900}, {345, 5014}, {377, 3295}, {404, 1058}, {405, 10386}, {452, 3419}, {474, 15172}, {496, 6921}, {515, 3895}, {516, 3870}, {518, 20078}, {519, 4302}, {908, 3158}, {950, 5554}, {952, 6938}, {962, 6261}, {1000, 9963}, {1056, 17579}, {1320, 6948}, {1329, 9670}, {1478, 11239}, {1479, 3814}, {1482, 6934}, {1824, 3995}, {1998, 7994}, {2099, 3600}, {2389, 20071}, {2475, 10629}, {2478, 3820}, {3085, 6871}, {3146, 5842}, {3189, 3869}, {3210, 19993}, {3218, 9778}, {3241, 4293}, {3244, 4299}, {3421, 11114}, {3428, 3522}, {3436, 3913}, {3474, 3873}, {3486, 14923}, {3550, 11269}, {3586, 6735}, {3621, 11684}, {3622, 6904}, {3632, 4330}, {3633, 4324}, {3635, 4317}, {3681, 5698}, {3685, 10327}, {3744, 19785}, {3748, 5880}, {3749, 3914}, {3811, 11415}, {3813, 5217}, {3832, 7680}, {3839, 18407}, {3872, 4304}, {3898, 9951}, {3996, 5739}, {4030, 5695}, {4188, 8069}, {4305, 4861}, {4307, 17018}, {4314, 19860}, {4339, 17016}, {4344, 17011}, {4514, 17740}, {4640, 4863}, {4671, 7172}, {4855, 12053}, {5046, 7080}, {5172, 5265}, {5225, 11681}, {5249, 10389}, {5657, 6992}, {5690, 6936}, {5790, 6976}, {5840, 12115}, {5855, 20014}, {6182, 17494}, {6601, 7676}, {6767, 11112}, {6833, 11849}, {6836, 10306}, {6838, 11491}, {6868, 12245}, {6885, 10595}, {6890, 10530}, {6897, 16202}, {6911, 10596}, {6929, 12331}, {6931, 9669}, {6953, 10531}, {6955, 10246}, {6968, 10738}, {6977, 10943}, {8164, 17577}, {8236, 9776}, {9668, 17757}, {10269, 10993}, {10524, 10525}, {10597, 12000}, {11682, 12437}, {12410, 16049}, {12513, 15338}, {12575, 19861}, {12607, 12953}, {13243, 14646}
X(20075) = anticomplement of X(3434)
X(20075) = isogonal conjugate of X(38269)
X(20075) = {X(390),X(17784)}-harmonic conjugate of X(2)
X(20076) lies on these lines: {1, 5905}, {2, 12}, {3, 10528}, {4, 10529}, {8, 46}, {10, 4317}, {20, 145}, {21, 1056}, {35, 11239}, {36, 5552}, {40, 11919}, {57, 5554}, {63, 5837}, {78, 4311}, {104, 6890}, {149, 2829}, {153, 6848}, {193, 8679}, {329, 4308}, {376, 3871}, {377, 956}, {390, 2098}, {404, 3421}, {452, 3487}, {495, 6910}, {515, 12649}, {518, 20013}, {519, 4299}, {527, 11682}, {535, 1479}, {908, 1420}, {952, 6934}, {998, 5262}, {999, 2478}, {1058, 11114}, {1320, 12248}, {1385, 6992}, {1478, 6871}, {1482, 6938}, {1727, 10043}, {1788, 5176}, {1828, 6995}, {1836, 11260}, {1999, 10465}, {2390, 20041}, {2841, 20098}, {2886, 9657}, {3086, 5080}, {3241, 4294}, {3244, 4302}, {3306, 5795}, {3434, 7354}, {3474, 14923}, {3476, 3869}, {3486, 3873}, {3488, 3889}, {3522, 10310}, {3560, 10597}, {3616, 13407}, {3617, 6904}, {3621, 17784}, {3632, 4325}, {3633, 4316}, {3635, 4309}, {3813, 12943}, {3832, 7681}, {3870, 4297}, {3872, 4292}, {3890, 5698}, {3913, 15326}, {3957, 4313}, {4188, 7080}, {4189, 8069}, {4295, 4861}, {4298, 19860}, {4315, 12527}, {4661, 20007}, {4666, 12577}, {4678, 8256}, {5046, 10629}, {5082, 17579}, {5204, 12607}, {5218, 5303}, {5229, 11680}, {5267, 10056}, {5281, 17548}, {5690, 6955}, {5841, 12116}, {5854, 12632}, {5901, 6976}, {6734, 9613}, {6735, 15803}, {6837, 10532}, {6838, 10530}, {6868, 7967}, {6879, 11929}, {6880, 10942}, {6921, 17757}, {6930, 10595}, {6931, 15325}, {6933, 9654}, {6936, 10246}, {6947, 16203}, {6948, 12245}, {7373, 11113}, {7491, 10806}, {7500, 17480}, {8192, 16049}, {9263, 20065}, {9369, 10327}, {9373, 17494}, {10524, 10526}, {10596, 12001}, {11851, 17154}, {15829, 17781}, {17437, 18391}, {20037, 20077}
X(20076) = isogonal conjugate of X(38273)
X(20076) = anticomplement of X(3436)
X(20077) lies on these lines: {1, 6646}, {2, 58}, {6, 4201}, {7, 19851}, {8, 1046}, {20, 185}, {21, 17778}, {69, 4195}, {72, 20072}, {144, 20009}, {145, 758}, {239, 4292}, {320, 1104}, {385, 7379}, {390, 10544}, {405, 17300}, {443, 17349}, {452, 3794}, {524, 1043}, {962, 2792}, {1010, 1654}, {1453, 3662}, {1468, 4388}, {2392, 20040}, {2475, 16704}, {2842, 14683}, {2895, 11115}, {3430, 3522}, {3616, 5429}, {3832, 7683}, {3888, 10822}, {3936, 16948}, {3945, 13736}, {4190, 10974}, {4252, 4417}, {4293, 20036}, {4296, 17950}, {4641, 7270}, {4645, 5247}, {5059, 20019}, {6542, 7283}, {7762, 13727}, {8258, 9780}, {13725, 17379}, {13742, 17232}, {17206, 19312}, {20011, 20066}, {20037, 20076}, {20051, 20095}, {20096, 20102}
X(20077) = anticomplement of X(1330)
X(20078) lies on these lines: {2, 7}, {8, 1770}, {20, 912}, {55, 5852}, {69, 3969}, {72, 4190}, {81, 4419}, {90, 10529}, {145, 758}, {193, 17147}, {320, 17776}, {323, 347}, {377, 3927}, {388, 11684}, {390, 4430}, {515, 3621}, {518, 20075}, {940, 17334}, {943, 4189}, {993, 3622}, {1278, 8680}, {1478, 3617}, {1654, 19825}, {2095, 6957}, {2801, 20015}, {2975, 18967}, {3011, 16570}, {3210, 20072}, {3295, 3650}, {3434, 17768}, {3436, 18961}, {3474, 3681}, {3476, 3869}, {3488, 3868}, {3522, 18446}, {3586, 12649}, {3729, 4001}, {3870, 5850}, {3873, 5698}, {3935, 9778}, {3951, 4292}, {3995, 20073}, {4067, 4299}, {4307, 7226}, {4310, 17127}, {4395, 19750}, {4440, 19789}, {4454, 14552}, {4641, 17276}, {4643, 19822}, {4661, 17784}, {5220, 11246}, {5554, 12527}, {5739, 17347}, {5759, 11220}, {5762, 10431}, {5843, 7580}, {5904, 15228}, {6512, 6516}, {6763, 10527}, {7263, 19723}, {9028, 20017}, {9963, 11001}, {10032, 10385}, {10587, 12514}, {11036, 16865}, {14450, 19843}, {17328, 19797}, {17329, 19808}, {20020, 20101}
X(20078) = anticomplement of X(5905)
X(20078) = isotomic conjugate of polar conjugate of X(38295)
X(20078) = X(19)-isoconjugate of X(38248)
X(20078) = polar conjugate of X(36610)
X(20079) lies on these lines: {2, 66}, {6, 7378}, {20, 64}, {141, 11206}, {154, 3619}, {159, 3620}, {193, 7391}, {378, 19459}, {427, 19119}, {578, 3088}, {1352, 7400}, {1843, 6000}, {1853, 3618}, {1992, 15583}, {2393, 20080}, {2892, 14683}, {3091, 19149}, {3564, 12320}, {3818, 5656}, {5169, 15431}, {6293, 15741}, {7386, 13562}, {7408, 9969}, {8889, 19125}, {9833, 10519}, {12085, 19588}, {12294, 18945}, {14826, 15812}, {14853, 18381}, {14912, 15559}
X(20079) = anticomplement of X(5596)
X(20080) lies on these lines: {2, 6}, {4, 11898}, {7, 17117}, {8, 17116}, {20, 3564}, {22, 19588}, {76, 18845}, {111, 6339}, {144, 6542}, {145, 5847}, {148, 14645}, {187, 439}, {253, 401}, {315, 6392}, {319, 4644}, {320, 5839}, {340, 393}, {344, 15492}, {346, 17373}, {487, 6396}, {488, 6200}, {511, 3146}, {518, 1278}, {542, 15683}, {574, 3785}, {576, 15022}, {631, 1353}, {633, 5335}, {634, 5334}, {637, 12222}, {638, 12221}, {698, 19691}, {742, 4788}, {1204, 3098}, {1351, 3091}, {1352, 3832}, {1384, 3933}, {1503, 5059}, {1843, 7408}, {2345, 17360}, {2393, 20079}, {2979, 6467}, {3060, 14913}, {3089, 15068}, {3090, 5093}, {3161, 17310}, {3241, 17247}, {3247, 3879}, {3292, 19122}, {3313, 9027}, {3410, 7409}, {3416, 4678}, {3523, 7906}, {3541, 12325}, {3543, 18440}, {3616, 17252}, {3617, 3751}, {3622, 16491}, {3672, 4741}, {3723, 4643}, {3731, 4416}, {3767, 7882}, {3854, 5480}, {3912, 3973}, {4000, 17361}, {4371, 7321}, {4419, 17377}, {4445, 7277}, {4452, 20016}, {4461, 20055}, {4664, 4916}, {4667, 17270}, {4700, 17282}, {4715, 17299}, {4725, 17276}, {4748, 17394}, {4851, 16814}, {4856, 17304}, {4966, 8692}, {4969, 7232}, {5008, 7795}, {5024, 7767}, {5033, 7793}, {5050, 10303}, {5056, 7941}, {5068, 14853}, {5092, 10519}, {5107, 7946}, {5207, 8586}, {5210, 6337}, {5222, 17288}, {5286, 7768}, {5296, 17391}, {5308, 17331}, {5319, 7896}, {5505, 18124}, {5564, 7222}, {5596, 14683}, {5749, 17287}, {5846, 20014}, {5848, 20095}, {5984, 14931}, {6172, 17242}, {6199, 11292}, {6390, 15655}, {6391, 7396}, {6395, 11291}, {6636, 19459}, {7378, 12167}, {7400, 15032}, {7486, 18583}, {7739, 7848}, {7800, 7890}, {7813, 8588}, {7845, 18424}, {8681, 12058}, {8741, 19779}, {8742, 19778}, {9028, 20017}, {9544, 19121}, {9545, 19131}, {10112, 11821}, {10625, 12283}, {11003, 19126}, {11173, 14035}, {11179, 15705}, {11188, 16981}, {11245, 17040}, {11574, 15531}, {12219, 14984}, {14068, 18906}, {14531, 15741}, {15069, 17578}, {16063, 18935}, {16674, 17390}, {16677, 17332}, {17014, 17236}, {17312, 18230}, {17314, 17347}, {17321, 17344}, {20013, 20082}
X(20080) = reflection of X(11008) in X(6)
X(20080) = isogonal conjugate of X(36616)
X(20080) = isotomic conjugate of X(38259)
X(20080) = trilinear product X(i)*X(j) for these {i,j}: {2, 16570}, {75, 5023}
X(20080) = polar conjugate of X(36611)
X(20080) = anticomplement of X(193)
X(20080) = isotomic conjugate of isogonal conjugate of X(5023)
X(20081) lies on these lines: {2, 39}, {3, 17129}, {4, 7779}, {5, 7906}, {6, 17128}, {8, 726}, {20, 2782}, {21, 16996}, {23, 9917}, {30, 7893}, {69, 698}, {83, 7798}, {85, 3797}, {99, 5206}, {115, 7796}, {141, 7864}, {145, 730}, {148, 315}, {183, 7783}, {192, 1909}, {193, 732}, {230, 7891}, {262, 5068}, {312, 7187}, {316, 7855}, {330, 350}, {381, 7941}, {384, 7754}, {385, 1975}, {390, 13077}, {511, 3146}, {524, 7823}, {543, 7802}, {599, 7928}, {625, 7871}, {671, 7825}, {712, 20055}, {734, 20064}, {736, 6658}, {1078, 7781}, {1916, 2996}, {2548, 13571}, {2549, 2896}, {3091, 3095}, {3094, 3620}, {3096, 7765}, {3097, 9780}, {3104, 5334}, {3105, 5335}, {3210, 3765}, {3314, 5254}, {3522, 6194}, {3523, 7709}, {3600, 18982}, {3617, 12782}, {3621, 14839}, {3622, 12263}, {3623, 7976}, {3691, 16816}, {3729, 17752}, {3734, 7760}, {3770, 4277}, {3832, 6248}, {3839, 14881}, {3933, 5025}, {3972, 7805}, {3975, 17490}, {4479, 17448}, {4754, 17379}, {4941, 7275}, {5056, 7697}, {5261, 12837}, {5274, 12836}, {5276, 16913}, {5304, 14037}, {5305, 7892}, {5319, 10583}, {5355, 7846}, {5475, 7905}, {5905, 6542}, {5969, 8596}, {6179, 7816}, {6337, 17008}, {6390, 7907}, {6995, 12143}, {7486, 11272}, {7738, 10335}, {7745, 7837}, {7747, 7877}, {7748, 7768}, {7749, 14148}, {7752, 7813}, {7755, 7835}, {7756, 7811}, {7758, 7785}, {7762, 11361}, {7767, 7833}, {7770, 7839}, {7773, 7840}, {7774, 16044}, {7775, 15031}, {7776, 14041}, {7780, 7782}, {7788, 7885}, {7789, 7806}, {7790, 7794}, {7804, 7894}, {7809, 7916}, {7812, 7890}, {7819, 7920}, {7820, 7856}, {7841, 7939}, {7842, 7850}, {7843, 7949}, {7844, 7909}, {7847, 7854}, {7848, 7910}, {7849, 7918}, {7851, 7931}, {7857, 7863}, {7860, 7882}, {7861, 7922}, {7868, 7923}, {7869, 7919}, {7872, 7883}, {7876, 15048}, {7879, 7924}, {7881, 7901}, {7887, 7947}, {7888, 14061}, {7895, 7934}, {7896, 7911}, {7899, 7908}, {7902, 7944}, {7903, 18546}, {7921, 8370}, {7925, 13881}, {9870, 16055}, {10079, 14986}, {10303, 11171}, {14023, 14712}, {14034, 18907}, {14929, 19695}, {15301, 15513}, {16914, 16998}, {16915, 16995}, {16989, 19689}, {17001, 17693}, {17002, 17692}, {17033, 17350}, {17316, 17760}
X(20081) = isogonal conjugate of X(36615)
X(20081) = isotomic conjugate of X(38262)
X(20081) = isotomic conjugate of isogonal conjugate of X(21001)
X(20081) = crossdifference of every pair of points on line X(669)X(23472)
X(20081) = isotomic conjugate of the anticomplement of X(32746)
X(20081) = complement of X(20105)
X(20081) = anticomplement of X(194)
X(20081) = polar conjugate of isogonal conjugate of X(22152)
X(20082) lies on these lines: {2, 77}, {144, 4552}, {145, 516}, {3879, 5905}, {6360, 20078}, {9965, 18668}, {20013, 20080}, {20089, 20090}
X(20082) = anticomplement of X(5942)
X(20083) lies on these lines: {1, 2}, {3, 6693}, {5, 182}, {6, 3454}, {19, 17904}, {58, 16062}, {197, 16414}, {315, 17200}, {442, 1751}, {579, 1761}, {1724, 5051}, {1834, 17698}, {3812, 9895}, {3814, 5137}, {3824, 4670}, {4085, 8715}, {4153, 16972}, {4193, 17188}, {4197, 9275}, {4201, 4257}, {4252, 11359}, {4267, 19258}, {4655, 5165}, {4657, 5791}, {4658, 18134}, {4894, 17469}, {4972, 5264}, {5248, 6679}, {5708, 17290}, {6703, 8728}, {16908, 20132}
X(20083) = complement of complement of X(387)
X(20084) lies on these lines: {1, 5180}, {2, 79}, {4, 16150}, {8, 16118}, {20, 16116}, {21, 11544}, {23, 16119}, {30, 145}, {144, 1654}, {191, 9780}, {329, 10123}, {390, 16142}, {758, 3621}, {962, 6264}, {1770, 4420}, {2771, 20085}, {2894, 12849}, {3091, 3652}, {3218, 7701}, {3522, 16113}, {3600, 18977}, {3622, 3649}, {3623, 5441}, {3650, 6175}, {3832, 16125}, {5046, 5221}, {5261, 16140}, {5274, 16141}, {5550, 11263}, {5556, 15910}, {5905, 20066}, {6995, 16114}, {9965, 10308}, {10032, 18253}, {12702, 20060}, {13465, 18357}, {14986, 16153}, {15678, 16137}
X(20084) = anticomplement of X(3648)
X(20085) lies on these lines: {2, 80}, {4, 145}, {8, 191}, {11, 3622}, {20, 12247}, {23, 9912}, {100, 958}, {144, 528}, {355, 6888}, {390, 12743}, {515, 3218}, {519, 5180}, {944, 6960}, {1145, 9963}, {1317, 10707}, {1387, 10031}, {1478, 11604}, {1484, 6980}, {2475, 10950}, {2771, 20084}, {2800, 3146}, {2801, 20059}, {2802, 3621}, {3091, 6265}, {3241, 18393}, {3306, 5727}, {3522, 12119}, {3523, 12619}, {3600, 18976}, {3623, 7972}, {3689, 5176}, {3832, 6246}, {3839, 12611}, {3871, 13743}, {3895, 5881}, {4678, 15863}, {4867, 5080}, {5046, 5289}, {5261, 12739}, {5274, 12740}, {5691, 9809}, {5731, 10265}, {5854, 20054}, {6910, 10609}, {6914, 12331}, {6933, 12019}, {6995, 12137}, {9780, 15015}, {9812, 13253}, {10073, 14986}, {10528, 12751}, {11545, 13587}, {12653, 20050}, {13199, 19914}, {20042, 20098}
X(20085) = anticomplement of X(6224)
X(20086) lies on these lines: {2, 6}, {145, 758}, {1255, 17332}, {1278, 20046}, {1353, 19649}, {1999, 17484}, {2836, 4430}, {3187, 17364}, {3210, 20092}, {3219, 3879}, {3995, 20072}, {4001, 17011}, {4416, 17019}, {5337, 7890}, {6629, 17190}, {8682, 17141}, {9965, 18668}, {17316, 17744}, {17784, 20048}, {20011, 20095}
X(20086) = anticomplement of X(2895)
X(20087) lies on these lines: {2, 82}, {8, 1757}, {744, 1278}, {8272, 17150}
X(20087) = anticomplement of X(21289)
X(20087) = anticomplement of anticomplement of X(82)
X(20088) lies on these lines: {2, 32}, {3, 7921}, {4, 5984}, {6, 6655}, {8, 1757}, {20, 3095}, {23, 9918}, {30, 7839}, {39, 14712}, {61, 622}, {62, 621}, {99, 7838}, {147, 12110}, {148, 7747}, {187, 7858}, {193, 732}, {194, 6658}, {217, 1994}, {316, 5007}, {384, 3933}, {385, 7745}, {390, 13078}, {524, 17128}, {576, 3146}, {881, 9498}, {1003, 7906}, {1285, 16925}, {1384, 7907}, {1975, 7837}, {1992, 8596}, {2478, 16995}, {2542, 3557}, {2543, 3558}, {2549, 19691}, {3053, 7777}, {3091, 6287}, {3314, 19689}, {3329, 7750}, {3522, 9737}, {3552, 6337}, {3589, 7928}, {3600, 18983}, {3617, 12783}, {3622, 12264}, {3623, 7977}, {3734, 7877}, {3788, 7926}, {3832, 6249}, {3849, 5041}, {3972, 7759}, {4393, 5905}, {5008, 7828}, {5023, 11163}, {5207, 12212}, {5261, 12944}, {5274, 12954}, {5276, 17685}, {5304, 14063}, {5305, 14041}, {5395, 15589}, {5475, 6179}, {6392, 14068}, {6995, 12144}, {7735, 9478}, {7739, 19569}, {7748, 7894}, {7754, 11361}, {7758, 19693}, {7761, 7878}, {7768, 7804}, {7770, 7893}, {7772, 7802}, {7773, 7806}, {7776, 7892}, {7784, 7875}, {7789, 7840}, {7791, 9990}, {7792, 7885}, {7795, 7946}, {7801, 7949}, {7803, 7898}, {7805, 14537}, {7807, 7941}, {7816, 7905}, {7819, 7939}, {7820, 7917}, {7822, 7850}, {7825, 7856}, {7827, 7842}, {7829, 7911}, {7832, 7845}, {7833, 9605}, {7834, 7860}, {7835, 7903}, {7841, 7920}, {7859, 7873}, {7879, 16895}, {7881, 14036}, {7891, 9766}, {7897, 14001}, {7902, 14075}, {7904, 11174}, {7933, 16989}, {7947, 8369}, {8370, 17129}, {9751, 15717}, {9862, 14881}, {10080, 14986}, {15484, 16921}
X(20088) = anticomplement of X(2896)
X(20089) lies on these lines: {2, 85}, {514, 17753}, {518, 1278}, {672, 17090}, {3218, 16816}, {3732, 4209}, {4331, 6646}, {5905, 6542}, {9312, 10025}
X(20089) = anticomplement of X(3177)
X(20090) lies on these lines: {1, 6646}, {2, 6}, {7, 4393}, {9, 17391}, {37, 20072}, {42, 7184}, {44, 17317}, {75, 20016}, {142, 17121}, {144, 1959}, {145, 740}, {190, 7277}, {192, 4644}, {239, 3664}, {319, 4670}, {320, 1100}, {390, 2098}, {519, 17116}, {527, 17319}, {894, 2321}, {1014, 19308}, {1125, 17252}, {1330, 4658}, {1351, 7385}, {1442, 17950}, {1449, 3662}, {1743, 17244}, {1999, 4054}, {2269, 3218}, {2293, 3957}, {2345, 17373}, {2796, 3241}, {3056, 3873}, {3161, 6651}, {3247, 17333}, {3564, 7379}, {3572, 20100}, {3622, 5625}, {3723, 4715}, {3729, 4898}, {3758, 4851}, {3759, 4675}, {3834, 16668}, {3882, 18164}, {3912, 17120}, {3986, 4416}, {4034, 10436}, {4085, 4645}, {4098, 17261}, {4201, 7893}, {4340, 20018}, {4352, 20065}, {4360, 4440}, {4363, 17377}, {4389, 16884}, {4454, 4788}, {4473, 17243}, {4545, 4967}, {4643, 17394}, {4657, 17361}, {4678, 4733}, {4699, 5839}, {4725, 5564}, {4740, 7222}, {4741, 17321}, {4747, 20055}, {4795, 17299}, {4796, 4889}, {4852, 7321}, {4888, 16834}, {5021, 17695}, {5749, 17230}, {5750, 17287}, {7194, 9277}, {7202, 18714}, {7232, 17380}, {7380, 11898}, {16666, 16706}, {16667, 17298}, {16669, 17263}, {16670, 17338}, {16777, 17347}, {16831, 17331}, {17018, 20101}, {17023, 17288}, {17045, 17273}, {17165, 20069}, {17206, 17689}, {17220, 17483}, {17272, 17397}, {17274, 17396}, {17276, 17393}, {17279, 17387}, {17281, 17386}, {17289, 17374}, {17295, 17369}, {17296, 17368}, {17303, 17360}, {17310, 17355}, {17311, 17354}, {17312, 17353}, {17315, 17351}, {17320, 17345}, {17322, 17344}
X(20090) = anticomplement of X(1654)
X(20091) lies on these lines: {2, 87}, {145, 726}, {193, 3779}, {4293, 20036}
X(20091) = anticomplement of anticomplement of X(87)
X(20092) lies on these lines: {2, 45}, {145, 2802}, {193, 20093}, {1266, 3218}, {3210, 20086}, {3616, 4427}, {17495, 20072}
X(20092) = anticomplement of X(30578)
X(20093) lies on these lines: {2, 44}, {145, 3901}, {193, 20092}
X(20093) = anticomplement of anticomplement of X(89)
X(20094) lies on these lines: {2, 99}, {4, 13188}, {6, 19686}, {8, 13174}, {20, 2782}, {23, 13175}, {30, 7779}, {98, 3522}, {114, 3832}, {147, 3146}, {187, 19570}, {193, 5969}, {194, 6658}, {315, 19691}, {376, 12188}, {382, 7906}, {384, 15048}, {390, 3023}, {538, 14712}, {542, 15683}, {550, 17129}, {616, 6777}, {617, 6778}, {690, 14683}, {1285, 7766}, {1657, 7893}, {1916, 5395}, {1975, 3314}, {2786, 20096}, {2787, 20095}, {2794, 5059}, {2795, 15680}, {2796, 3241}, {2896, 7756}, {3027, 3600}, {3091, 6321}, {3523, 14651}, {3543, 6033}, {3545, 12355}, {3552, 5989}, {3616, 11599}, {3617, 13178}, {3620, 11646}, {3622, 11711}, {3623, 7983}, {3627, 7941}, {3815, 7783}, {3839, 8724}, {5056, 15092}, {5068, 14639}, {5186, 6995}, {5254, 16984}, {5261, 13182}, {5274, 13183}, {5281, 15452}, {5304, 8289}, {5985, 17576}, {6055, 15705}, {6390, 14041}, {7738, 8290}, {7747, 13571}, {7748, 7836}, {7762, 19696}, {7765, 10583}, {7777, 8716}, {7781, 7785}, {7787, 19693}, {7791, 11606}, {7795, 19690}, {7797, 7816}, {7799, 15301}, {7803, 19692}, {7809, 14148}, {7839, 19687}, {7864, 19689}, {7939, 19695}, {9293, 11123}, {9605, 14034}, {9778, 9860}, {9830, 11160}, {9861, 12087}, {10089, 14986}, {10304, 12042}, {10353, 14031}, {10723, 14981}, {10754, 14928}, {11121, 11489}, {11122, 11488}, {11177, 12117}, {11361, 15484}, {11632, 15692}, {14033, 14482}, {14144, 18582}, {14145, 18581}, {14830, 15697}, {14850, 15081}
X(20094) = anticomplement of X(148)
X(20094) = complement of X(35369)
X(20094) = inverse-in-Steiner-circumellipse of X(620)
X(20094) = inverse-in-orthoptic-circle-of-Steiner-circumellipse of X(126)
X(20094) = {X(99),X(671)}-harmonic conjugate of X(620)
X(20095) lies on these lines: {1, 9782}, {2, 11}, {4, 11698}, {7, 5528}, {8, 191}, {20, 952}, {23, 13222}, {40, 9803}, {80, 3617}, {104, 3522}, {119, 3832}, {145, 2802}, {153, 3146}, {192, 2805}, {193, 9024}, {214, 3622}, {376, 12773}, {452, 12690}, {495, 2475}, {516, 3935}, {519, 4316}, {631, 1484}, {678, 17719}, {900, 20058}, {944, 17654}, {962, 6326}, {1058, 17572}, {1145, 4678}, {1317, 3600}, {1320, 3296}, {1768, 9778}, {1862, 6995}, {2094, 12630}, {2771, 6361}, {2783, 5984}, {2787, 20094}, {2800, 20013}, {2801, 20015}, {2829, 5059}, {2895, 3996}, {2932, 4188}, {2950, 9799}, {3091, 10738}, {3218, 5853}, {3241, 12653}, {3474, 4430}, {3486, 17636}, {3488, 6797}, {3543, 10742}, {3616, 15015}, {3625, 4324}, {3626, 4330}, {3689, 5057}, {3870, 4312}, {3887, 20038}, {3913, 12943}, {3957, 5542}, {4189, 5082}, {4297, 7993}, {4299, 20050}, {4309, 9780}, {4344, 17013}, {4917, 9579}, {4996, 17548}, {5046, 5687}, {5047, 10386}, {5261, 13273}, {5493, 12767}, {5731, 6264}, {5848, 20080}, {5854, 12632}, {5856, 7674}, {6839, 10679}, {6868, 19914}, {6885, 19907}, {6888, 11849}, {6895, 10306}, {6904, 9945}, {7951, 8715}, {8674, 14683}, {9779, 15017}, {9913, 12087}, {10090, 14986}, {10465, 12550}, {10529, 17100}, {10724, 17578}, {10914, 11015}, {12531, 13996}, {13146, 14450}, {15172, 17531}, {17777, 17780}, {20011, 20086}, {20012, 20064}, {20051, 20077}, {20062, 20083}
X(20095) = anticomplement of X(149)
X(20095) = inverse-in-orthoptic-circle-of-Steiner-circumellipse of X(120)
X(20096) lies on these lines: {2, 101}, {7, 9317}, {8, 1281}, {20, 2808}, {69, 18047}, {103, 3522}, {118, 3832}, {144, 2801}, {145, 2809}, {152, 3146}, {193, 2810}, {390, 3022}, {515, 10025}, {664, 5845}, {944, 3177}, {952, 3732}, {976, 7281}, {1362, 3600}, {2774, 14683}, {2786, 20094}, {2813, 20011}, {3091, 10739}, {3259, 17036}, {3543, 10741}, {3622, 11712}, {3623, 10695}, {3887, 20038}, {4209, 6604}, {4393, 5813}, {4568, 6790}, {4644, 7200}, {4872, 6603}, {5185, 6995}, {6542, 7291}, {9028, 17950}, {10725, 17578}, {20077, 20102}
X(20096) = anticomplement of X(150)
X(20096) = inverse-in-orthoptic-circle-of-Steiner-circumellipse of X(5513)
X(20097) lies on these lines: {2, 11}, {8, 5540}, {145, 2809}, {1280, 5845}, {1292, 3522}, {1358, 3600}, {1897, 6995}, {2788, 5984}, {2795, 15680}, {2832, 20098}, {2834, 7500}, {2835, 9965}, {2836, 4430}, {2837, 20099}, {3091, 10743}, {3219, 3883}, {3543, 15521}, {3622, 11716}, {3623, 10699}, {3832, 5511}, {4344, 17024}, {10729, 17578}
X(20097) = anticomplement of X(20344)
X(20097) = anticomplement of anticomplement of X(105)
X(20097) = inverse-in-orthoptic-circle-of-Steiner-inellipse of X(6667)
X(20097) = inverse-in-orthoptic-circle-of-Steiner-circumellipse of X(11)
X(20098) lies on these lines: {1, 17777}, {2, 106}, {8, 1054}, {145, 2802}, {193, 2810}, {390, 6018}, {528, 1120}, {1145, 14193}, {1293, 3522}, {1320, 4440}, {1357, 3600}, {2789, 5984}, {2796, 3241}, {2832, 20097}, {2841, 20076}, {2842, 14683}, {2843, 20099}, {3091, 10744}, {3543, 15522}, {3616, 11814}, {3618, 18047}, {3622, 11717}, {3623, 10700}, {3832, 5510}, {4402, 9317}, {7200, 7222}, {10730, 17578}, {20039, 20067}, {20042, 20085}
X(20098) = anticomplement of X(21290)
X(20098) = anticomplement of anticomplement of X(106)
X(20099) lies on these lines: {2, 99}, {4, 11258}, {20, 14654}, {23, 5938}, {30, 9870}, {192, 2805}, {193, 2854}, {390, 6019}, {1296, 3522}, {2793, 5984}, {2813, 20011}, {2837, 20097}, {2843, 20098}, {2996, 10511}, {3091, 10748}, {3325, 3600}, {3523, 14650}, {3618, 10330}, {3622, 11721}, {3623, 10704}, {3832, 5512}, {5485, 10355}, {7492, 14652}, {7533, 7777}, {9143, 10552}, {10304, 14666}, {10734, 17578}, {14712, 20063}
X(20099) = anticomplement of X(14360)
X(20099) = inverse-in-orthoptic-circle-of-Steiner-inellipse of X(6722)
X(20099) = inverse-in-orthoptic-circle-of-Steiner-circumellipse of X(115)
X(20100) lies on these lines: {2, 798}, {192, 4132}, {513, 4380}, {3572, 20090}, {3733, 17379}, {4374, 4832}, {4498, 4785}
X(20100) = anticomplement of X(21294)
X(20100) = anticomplement of anticomplement of X(163)
X(20101) lies on these lines: {2, 31}, {8, 1046}, {20, 145}, {55, 17778}, {57, 5211}, {81, 4450}, {192, 20069}, {193, 3779}, {320, 3744}, {516, 1999}, {524, 3996}, {1330, 5264}, {1621, 17300}, {1742, 3870}, {1836, 3769}, {2792, 5905}, {3052, 18134}, {3210, 3474}, {3617, 5300}, {3681, 20072}, {3891, 4440}, {3920, 6646}, {3961, 17770}, {4190, 20036}, {4293, 20037}, {4650, 4865}, {4655, 17716}, {5311, 9791}, {5484, 5710}, {8270, 17950}, {8272, 17150}, {10327, 17350}, {15971, 20060}, {17018, 20090}, {17165, 20056}, {17483, 20045}, {20011, 20086}, {20020, 20078}
X(20110) = isotomic conjugate of polar conjugate of X(38300)
X(20101) = anticomplement of X(4388)
X(20102) lies on these lines: {2, 172}, {145, 760}, {149, 7823}, {192, 15680}, {193, 8679}, {194, 20067}, {385, 20060}, {388, 17002}, {3436, 17001}, {14712, 20066}, {20044, 20064}, {20077, 20096}
X(20102) = anticomplement of anticomplement of X(172)
X(20103) lies on these lines: {1, 2}, {3, 18250}, {9, 2272}, {55, 5316}, {57, 5850}, {165, 18228}, {210, 3911}, {226, 4413}, {404, 12527}, {443, 3947}, {474, 4298}, {497, 20196}, {515, 3820}, {516, 1376}, {518, 6692}, {946, 9709}, {971, 18227}, {1329, 8727}, {1699, 5328}, {1706, 4301}, {1864, 5432}, {1997, 3886}, {2550, 3817}, {2551, 4297}, {2801, 3035}, {2886, 10171}, {3361, 5815}, {3421, 4315}, {3523, 5234}, {3664, 17122}, {3683, 6174}, {3697, 13747}, {3711, 17728}, {3752, 4353}, {3781, 10440}, {3812, 12563}, {3814, 8226}, {3816, 5853}, {3844, 20201}, {3914, 9350}, {3956, 6681}, {3983, 5433}, {4082, 17740}, {4310, 8056}, {4314, 5084}, {4662, 6691}, {4731, 15950}, {5044, 6001}, {5218, 7308}, {5223, 5435}, {5249, 9342}, {5273, 5785}, {5290, 17580}, {5437, 5542}, {5687, 12575}, {5691, 8165}, {5784, 15064}, {5795, 9711}, {5811, 10270}, {6554, 19605}, {6666, 6690}, {6769, 6964}, {7580, 12512}, {9352, 17781}, {9708, 10165}, {10157, 15587}, {11814, 14942}
X(20103) = complement of X(11019)
X(20104) lies on these lines: {1, 2}, {35, 7504}, {140, 3822}, {442, 5326}, {516, 6863}, {535, 10592}, {632, 6681}, {1001, 5070}, {1656, 5248}, {3035, 3841}, {3526, 11929}, {3628, 3825}, {3754, 11231}, {3814, 7483}, {3817, 6949}, {3847, 15699}, {3884, 11230}, {3919, 5445}, {4297, 6952}, {5010, 5141}, {5267, 7951}, {6691, 16239}, {6825, 12512}, {6834, 12571}, {6853, 10164}, {6862, 19925}, {6959, 10171}, {17548, 18513}
X(20104) = complement of complement of X(498)
X(20105) lies on these lines: {2, 39}, {145, 726}, {148, 7758}, {193, 698}, {385, 5023}, {511, 5059}, {543, 7877}, {671, 7903}, {730, 3621}, {732, 20080}, {736, 19691}, {1384, 3552}, {1975, 7766}, {2549, 7929}, {2782, 3146}, {3091, 13108}, {3095, 3832}, {3522, 12251}, {3617, 9902}, {3854, 6248}, {3933, 7933}, {4678, 12782}, {5254, 7897}, {7408, 12143}, {7709, 15717}, {7748, 7946}, {7756, 9939}, {7765, 7938}, {7781, 7793}, {7787, 7798}, {7813, 7912}, {7855, 7898}, {7857, 14148}, {7917, 11648}, {9607, 16986}, {10335, 15589}, {11185, 13571}, {14031, 18906}, {14839, 20014}, {20016, 20078}, {20065, 20094}
X(20105) = anticomplement of X(20081)
X(20105) = isotomic conjugate of isogonal conjugate of X(36650)
X(20105) = anticomplementary conjugate of anticomplement of X(36615)
X(20105) = orthoptic-circle-of-Steiner-circumellipe-inverse of X(32530)
X(20106) lies on these lines: {1, 2}, {6, 4035}, {141, 5745}, {226, 17355}, {312, 17861}, {345, 3663}, {440, 3454}, {516, 2887}, {1211, 2348}, {2321, 3772}, {2325, 4415}, {3452, 17279}, {3664, 18134}, {3694, 3752}, {3782, 17132}, {3844, 6690}, {3923, 4138}, {3936, 5294}, {3977, 17184}, {4021, 19786}, {4417, 17353}, {4643, 5325}, {4656, 17776}, {5273, 17272}, {5717, 17698}, {5743, 6666}, {5750, 17056}, {5847, 6679}, {6692, 16608}, {6708, 14767}, {11500, 19517}
X(20106) = complement of complement of X(306)
X(20107) lies on these lines: {1, 2}, {5, 6681}, {140, 3825}, {214, 17606}, {516, 6958}, {549, 3847}, {632, 3816}, {1385, 6702}, {3526, 5248}, {3628, 3822}, {3754, 11230}, {3814, 5433}, {3817, 6952}, {3884, 11231}, {3919, 5443}, {4187, 7294}, {4193, 5267}, {4297, 6949}, {5057, 5442}, {5154, 7280}, {6690, 16239}, {6833, 12571}, {6861, 12436}, {6862, 10171}, {6891, 12512}, {6959, 19925}, {7741, 17566}
X(20107) = complement of complement of X(499)
X(20108) lies on these lines: {1, 2}, {140, 143}, {474, 14554}, {516, 19543}, {596, 1215}, {993, 16302}, {1001, 16291}, {1078, 17200}, {1764, 9569}, {2051, 19513}, {2277, 10469}, {3159, 3666}, {3678, 6682}, {3993, 18137}, {4021, 18147}, {4256, 13740}, {4261, 17355}, {4263, 17398}, {4653, 13741}, {5248, 16286}, {12436, 16415}, {15668, 16863}, {16862, 19701}
X(20108) = complement of complement of X(386)
X(20109) lies on these lines: {2, 213}, {6, 17152}, {8, 17499}, {144, 145}, {194, 20040}, {239, 20244}, {758, 17489}, {766, 19994}, {2388, 20011}, {4416, 10459}, {5369, 20101}, {5903, 17497}, {9263, 20041}, {20016, 20088}, {20077, 20096}
X(20109) = anticomplement of X(17137)
X(20110) lies on these lines: {2, 219}, {8, 3332}, {20, 916}, {63, 3879}, {144, 145}, {329, 3187}, {517, 20061}, {2256, 5738}, {2807, 20096}, {3872, 4416}, {3957, 8271}, {4329, 9028}, {5942, 10025}, {6360, 20078}, {10587, 17379}, {20015, 20212}
X(20110) = anticomplement of anticomplement of X(219)
X(20111) lies on these lines: {2, 220}, {8, 10025}, {20, 2808}, {63, 1334}, {69, 4513}, {144, 145}, {239, 329}, {348, 6603}, {391, 17152}, {527, 9312}, {544, 17732}, {2389, 20071}, {2996, 3436}, {3218, 7131}, {3729, 6737}, {3732, 12245}, {3912, 4936}, {4416, 4853}, {5744, 17244}, {17257, 19860}
X(20111) = anticomplement of X(6604)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27817.
Let A'B'C' be the antipedal triangle of X(2) wrt medial triangle. Then X(20112) = X(5)-of-A'B'C'. (Randy Hutson, July 31 2018)
Let Na be the nine-point center of BCX(2), and define Nb and Nc cyclically. Then X(20112) = X(3)-of-NaNbNc. (Randy Hutson, July 31 2018)
X(20112) lies on these lines: {2, 11147}, {4, 7610}, {5, 543}, {30, 5569}, {115, 597}, {141, 18424}, {230, 11317}, {381, 524}, {547, 7622}, {598, 5306}, {671, 3815}, {1153, 8703}, {3054, 8598}, {3091, 9770}, {3545, 7620}, {3734, 8355}, {3830, 8182}, {3832, 9740}, {3845, 3849}, {3850, 7775}, {3856, 7751}, {3859, 7759}, {5055, 7618}, {5066, 8176}, {5475, 8584}, {5485, 9766}, {5512, 11569}, {6321, 19911}, {6791, 13378}, {7619, 15699}, {7828, 8370}, {8352, 11168}, {8369, 14971}, {8550, 11632}, {8596, 17005}, {9877, 14639}, {9993, 11167}, {11165, 19709}, {11295, 16635}, {11296, 16634}
X(20112) = midpoint of X(i) and X(j) for these {i,j}: {4, 7610}, {381, 7615}, {3830, 8182}, {3845, 16509}, {5485, 9766}, {6321, 19911}
X(20112) = X(7610)-of-Euler triangle
X(20112) = X(9771)-of-Johnson triangle
X(20112) = QA-P15 (OrthoCenter of the Morley Triangle) of quadrangle ABCX(2)
X(20112) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (115, 3363, 597), (3545, 7620, 11184)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27817.
Let Na be the nine-point center of BCX(6), and define Nb and Nc cyclically. Then X(20113) = X(3)-of-NaNbNc. (Randy Hutson, July 31 2018)
X(20113) lies on these lines: {5, 2854}, {67, 15018}, {69, 7605}, {125, 597}, {141, 373}, {381, 8547}, {524, 547}, {3589, 5159}, {3818, 8546}, {4045, 11594}, {5480, 9019}, {5640, 8262}, {6593, 14389}, {7533, 12367}, {8705, 16511}, {14561, 18449}
X(20113) = midpoint of X(3818) and X(8546)
See César Lozada, Hyacinthos 27827.
X(20114) lies on the Bevan circle and these lines: {1, 3659}, {40, 18291}, {57, 12809}, {164, 10215}, {188, 5541}, {258, 363}
X(20114) = X(108)-of-excentral triangle
X(20114) = X(123)-of-6th mixtilinear triangle
X(20114) = X(10731)-of-excenters- reflections triangle
X(20114) = X(10746)-of-hexyl triangle
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 27820.
X(20115) lies on this line: {10095, 15345}
See Kadir Altintas and Angel Montesdeoca, ADGEOM 4766.
X(20116) lies on these lines: {1,1170}, {7,79}, {9,3874}, {10,15185}, {11,118}, {142,3841}, {390,5902}, {516,942}, {518,1125}, {758,1001}, {971,12005}, {997,3243}, {1699,12669}, {2550,5883}, {2802,14563}, {3059,5439}, {3086,11038}, {3305,3873}, {3336,7676}, {3338,7675}, {3670,4343}, {3754,5853}, {3826,3833}, {3889,8583}, {4312,7671}, {4349,14523}, {5425,12758}, {5708,11495}, {5732,10980}, {5762,6583}, {5903,8236}, {5904,18230}, {6684,16216}, {8232,10399}, {12755,16173}, {13751,13995}, {15008,15726}, {15299,18389}
X(20116) = midpoint of X(i) and X(j) for these (i, j): {9,3874}, {10,15185}, {942,5572}, {5542,5728}
X(20116) = reflection of X(3678) in X(6666)
See Kadir Altintas and Angel Montesdeoca, ADGEOM 4766.
X(20117) lies on these lines: {1,6920}, {2,5693}, {3,3647}, {4,5692}, {5,758}, {8,13729}, {9,1630}, {10,119}, {21,6326}, {40,3876}, {52,15049}, {65,3614}, {72,946}, {79,6901}, {140,2771}, {191,6905}, {210,11362}, {355,3878}, {392,5882}, {515,960}, {517,546}, {518,13464}, {631,15071}, {912,1125}, {936,1158}, {952,3884}, {956,12059}, {997,5450}, {1071,10165}, {1216,2392}, {1339,10247}, {1376,5780}, {1385,2801}, {1656,5883}, {1768,6940}, {1844,7551}, {1858,13411}, {1898,4304}, {1935,11700}, {2778,5893}, {2779,5907}, {2842,10170}, {3057,18908}, {3090,5902}, {3219,11012}, {3336,6946}, {3428,15650}, {3452,12616}, {3485,18397}, {3576,12528}, {3628,3833}, {3681,7982}, {3743,5396}, {3754,3838}, {3812,10172}, {3817,4067}, {3868,8227}, {3869,5587}, {3873,9624}, {3874,5886}, {3877,5881}, {3881,5901}, {3901,7988}, {3940,11496}, {3951,12704}, {4005,13865}, {4015,5690}, {4127,9955}, {4134,4301}, {4187,10265}, {4661,5734}, {5044,6001}, {5086,6246}, {5225,5697}, {5250,17857}, {5251,12691}, {5535,6915}, {5603,5904}, {5719,12564}, {5720,6796}, {5770,10200}, {5779,12114}, {5811,6256}, {5818,5903}, {5927,14110}, {6839,16125}, {6881,11263}, {6909,7701}, {6913,12635}, {6916,16127}, {6986,16132}, {7686,10157}, {10914,14740}, {11112,16120}, {11375,18389}, {11715,12665}, {12047,15556}, {12736,17606}
X(20117) = midpoint of X(i) and X(j) for these (i, j): {5,5694}, {10,5887}, {72,946}}, {355,3878}, {960,5777}}, {5693,5884}, {5882,14872}, {11362,12672}, {11715,12665}
X(20117) = reflection of X(i) in X(j) for these (i,j): {3754,9956}, {3881,5901}, {5690,4015}, {5885,3628}, {6684,5044}, {12005,1125}
X(20117) = complement of X(5884)
X(20117) = X(1)-of-X(5)-Brocard triangle
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 27840
X(20118) lies on these lines: {1,12619}, {2,12739}, {3,10073}, {5,11570}, {8,11256}, {10,1317}, {11,65}, {12,5083}, {40,13274}, {46,10738}, {56,80}, {57,13273}, {104,1837}, {119,14872}, {149,1788}, {214,5433}, {355,10074}, {496,12758}, {499,6265}, {517,5533}, {942,8068}, {952,1319}, {999,10057}, {1145,3893}, {1155,5840}, {1387,11011}, {1388,7972}, {1411,6788}, {1420,9897}, {1470,11219}, {1479,12515}, {1768,9581}, {2099,16173}, {2646,6713}, {2771,18838}, {3035,6734}, {3086,12247}, {3911,5427}, {4187,18254}, {4193,12532}, {5204,12119}, {5587,12763}, {5704,9803}, {5722,10058}, {5790,12749}, {5885,8070}, {6224,7288}, {6246,7354}, {6667,11281}, {7702,16128}, {7741,11571}, {8988,19028}, {10039,12735}, {10395,13257}, {10573,12737}, {10698,11376}, {10742,10826}, {10944,15863}, {10950,11715}, {10958,15528}, {11510,12331}, {13976,19027}, {14027,16338}, {18995,19078}, {18996,19077}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27847.
X(20119) lies on these lines: {1, 12730}, {2, 11}, {7, 952}, {8, 5856}, {65, 12755}, {80, 516}, {518, 12531}, {954, 12331}, {971, 17654}, {1317, 11038}, {1320, 3254}, {1387, 8236}, {2346, 10087}, {2801, 4312}, {2802, 8275}, {3036, 5686}, {4321, 7993}, {5223, 15863}, {5425, 5542}, {5528, 7675}, {5531, 12560}, {5657, 9668}, {5727, 10394}, {5728, 6797}, {5759, 5825}, {5762, 19914}, {5805, 10698}, {5809, 12690}, {5851, 12943}, {6173, 10031}, {6224, 10427}, {7673, 12758}, {7676, 10058}, {7677, 10090}, {7679, 8068}, {7951, 8543}, {10728, 12247}
X(20119) = reflection of X(i) in X(j) for these (i,j): (1320, 3254), (5223, 15863), (5728, 6797), (6224, 10427), (7673, 12758)
X(20119) = X(9970)-of-Honsberger-triangle
X(20119) = X(12730)-of-5th-mixtilinear-triangle
X(20119) = reflection of X(i) in the line X(j)X(k) for these (i,j,k): (100, 2550, 2826), (390, 11, 1111), (1156, 80, 514)
X(20119) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3036, 6068, 5686), (5542, 7972, 14151)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 27865.
X(20120) lies on this line: {2, 3}
X(20120) = reflection of X(i) in X(j) for these {i,j}: {3, 5501}, {5, 20030}, {10126, 19940}, {10205, 5}, {14142, 10285}
X(20120) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (10126, 19940, 5), (10126, 20030, 19940)
See Kadir Altintas and Angel Montesdeoca, ADGEOM 4791.
X(20121) lies on these lines: {1,7}, {948,4031}, {1358,18421}, {4495,7195}, {4859,7960}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27867.
X(20122) lies on these lines: {3, 11429}, {25, 222}, {30, 65}, {51, 1465}, {57, 5751}, {60, 2075}, {73, 859}, {81, 108}, {225, 18180}, {226, 18165}, {389, 17102}, {511, 1214}, {603, 11334}, {651, 4228}, {942, 1875}, {971, 1859}, {1401, 3660}, {1469, 1617}, {1708, 4259}, {2003, 2194}, {3060, 17080}, {3185, 8679}, {3560, 7352}, {3784, 19544}, {4303, 7420}, {13730, 19349}
See Angel Montesdeoca, ADGEOM 4801.
X(20123) lies on these lines: {30,146}, {74,18317}, {265,14919}, {1294,14677}, {1494,10264}, {1511,3163}, {6699,8552}, {10272,14920}, {16163,19223}
See Antreas Hatzipolakis, César Lozada and Angel Montesdeoca Hyacinthos 27871 and Hyacinthos 27872.
X(20124) lies on these lines: {2, 3}, {3258, 18285}, {5627, 11749}.
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27873.
X(20125) lies on these lines: {2, 399}, {3, 13392}, {4, 110}, {5, 14683}, {8, 11699}, {69, 19140}, {74, 3524}, {125, 5067}, {140, 12308}, {146, 376}, {184, 18933}, {186, 12168}, {193, 2914}, {265, 3545}, {468, 12165}, {541, 15051}, {542, 3618}, {631, 5663}, {1056, 10091}, {1058, 10088}, {1539, 15682}, {1986, 6353}, {2771, 3616}, {2777, 15034}, {2930, 14853}, {2935, 5656}, {2948, 5603}, {3068, 12376}, {3069, 12375}, {3089, 19504}, {3090, 3448}, {3146, 15039}, {3147, 7722}, {3522, 15040}, {3523, 10620}, {3525, 5972}, {3528, 12244}, {3529, 7728}, {3533, 15061}, {3542, 18947}, {3544, 14644}, {3832, 12902}, {5068, 11801}, {5218, 7727}, {5891, 15100}, {5898, 7545}, {5907, 15102}, {6126, 10072}, {6225, 13293}, {6593, 14912}, {6699, 15702}, {6759, 13203}, {7288, 19470}, {7343, 10056}, {7493, 12219}, {7494, 12358}, {7552, 15068}, {7577, 18440}, {7687, 11427}, {7736, 14901}, {7967, 11720}, {8780, 18559}, {9140, 12900}, {9544, 11597}, {10192, 17835}, {10299, 12041}, {10304, 11694}, {10601, 10821}, {10657, 11489}, {10658, 11488}, {10706, 11001}, {10990, 15036}, {11064, 12112}, {11433, 12227}, {11441, 14940}, {11557, 12273}, {12228, 18537}, {12284, 16223}, {15020, 16111}, {15032, 17838}, {15041, 15717}, {16252, 17847}, {18445, 18932}
X(20125) = reflection of X(3522) in X(15040)
X(20125) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 399, 12317), (113, 12383, 4), (146, 1511, 376), (399, 10272, 2), (1511, 5655, 146), (3448, 14643, 3090), (5609, 14643, 3448), (5642, 6053, 74), (11801, 15046, 5068), (12244, 15035, 3528), (15035, 15063, 12244)
X(20126) = = 4*X(2)-3*X(14643), 2*X(2)-3*X(15061), X(3)+2*X(16003), 2*X(4)-5*X(15027), 2*X(5)+X(15054), 2*X(74)+X(265), X(74)+2*X(10264), 5*X(74)+X(10733), 5*X(74)-2*X(14677), X(265)-4*X(10264), 5*X(265)-2*X(10733), 5*X(265)+4*X(14677), 2*X(5655)-3*X(14643), X(5655)-3*X(15061), 2*X(8724)-3*X(14850), 5*X(9140)-X(10733), 5*X(9140)+2*X(14677), 10*X(10264)-X(10733), 5*X(10264)+X(14677), X(10733)+2*X(14677)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27882.
Let P be a point on the Jerabek hyperbola. Let A' be the orthocenter of BCP, and define B' and C' cyclically. The locus of the centroid of A'B'C' as P varies is a rectangular hyperbola, H, centered at X(125), and passing through X(2), X(381), X(1853), X(9140), X(20126). X(20126) is the point on H when P = X(67), and is the antipode in H of X(381). (Randy Hutson, July 31 2018)
X(20126) lies on these lines: {2, 5655}, {3, 67}, {4, 15027}, {5, 10706}, {23, 15361}, {30, 74}, {110, 549}, {113, 5055}, {125, 381}, {140, 14094}, {146, 3545}, {210, 2771}, {376, 3448}, {382, 10990}, {399, 5054}, {523, 14851}, {524, 11579}, {539, 12901}, {547, 15059}, {548, 13393}, {550, 15021}, {567, 5622}, {568, 2781}, {597, 9970}, {631, 5609}, {671, 15535}, {690, 11632}, {804, 19902}, {1511, 3524}, {1539, 3839}, {1597, 12828}, {1656, 15063}, {1853, 2777}, {1989, 2088}, {2070, 13399}, {2782, 11006}, {3028, 10056}, {3058, 10065}, {3521, 13561}, {3526, 16534}, {3530, 15034}, {3534, 15041}, {3541, 13148}, {3543, 10113}, {3564, 13169}, {3582, 7727}, {3584, 19470}, {3653, 11720}, {3655, 11709}, {3796, 15693}, {3845, 14644}, {3850, 15025}, {3853, 15044}, {4870, 11670}, {4995, 10088}, {5050, 15303}, {5298, 10091}, {5434, 10081}, {5972, 12308}, {6055, 18332}, {6247, 7540}, {6723, 15703}, {7552, 13491}, {7687, 14269}, {7689, 15133}, {7722, 15101}, {8703, 15055}, {9033, 18317}, {9904, 12261}, {10168, 19140}, {10201, 17854}, {10272, 11539}, {10293, 11799}, {10304, 12383}, {10657, 16241}, {10658, 16242}, {10721, 11801}, {11177, 18331}, {11178, 14982}, {11179, 14805}, {11251, 16080}, {11557, 16226}, {11559, 11744}, {11658, 18776}, {11659, 18777}, {11693, 15707}, {11806, 14831}, {12100, 15035}, {12164, 15115}, {12295, 15684}, {12902, 15681}, {13171, 14070}, {13339, 15462}, {13340, 14984}, {13754, 13857}, {14666, 19905}, {14683, 15692}, {14848, 15118}, {14891, 15036}, {15020, 15712}, {15040, 15700}, {15051, 17504}, {15106, 18445}, {15128, 16270}, {15688, 16163}, {15738, 18439}, {16219, 18400}, {18128, 18364}
X(20126) = midpoint of X(i) and X(j) for these {i,j}: {74, 9140}, {376, 3448}, {3543, 12244}, {11177, 18331}, {12902, 15681}
X(20126) = reflection of X(i) in X(j) for these (i,j): (23, 15361), (110, 549), (376, 12041), (381, 125), (399, 5642), (671, 15535), (3543, 10113), (3655, 11709), (10721, 15687)
X(20126) = X(10706)-of-Johnson-triangle
X(20126) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 5655, 14643), (74, 10264, 265), (74, 10733, 14677), (125, 10620, 7728), (399, 5054, 5642), (3448, 12041, 12121), (3524, 9143, 1511), (3524, 12317, 9143), (5642, 6699, 5054), (5655, 15061, 2), (14094, 15057, 140)
= 3*X(3)-2*X(113), 5*X(3)-4*X(5972), 4*X(3)-3*X(14643), 2*X(4)-3*X(15061), 5*X(113)-6*X(5972), 4*X(113)-3*X(7728), 8*X(113)-9*X(14643), X(113)-3*X(16111), 8*X(5972)-5*X(7728), 16*X(5972)-15*X(14643), 2*X(5972)-5*X(16111), 2*X(7728)-3*X(14643), X(7728)-4*X(16111), 4*X(12041)-3*X(15061), 3*X(14643)-8*X(16111)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27882.
X(20127) lies on these lines: {2, 1539}, {3, 113}, {4, 12041}, {5, 10721}, {20, 5663}, {30, 74}, {35, 12373}, {36, 12374}, {52, 17855}, {67, 11559}, {110, 550}, {125, 382}, {146, 376}, {381, 6699}, {394, 399}, {542, 15681}, {546, 15059}, {548, 13392}, {567, 15472}, {568, 974}, {1533, 2070}, {1597, 15473}, {1657, 10620}, {2771, 3962}, {2781, 17710}, {2931, 12083}, {2937, 12893}, {3028, 4302}, {3098, 14982}, {3146, 10113}, {3357, 18565}, {3448, 3529}, {3520, 3521}, {3543, 15081}, {3579, 12368}, {3627, 14644}, {3830, 7687}, {3832, 15088}, {3851, 6723}, {3853, 15057}, {4316, 7727}, {4324, 19470}, {4846, 14805}, {5054, 12900}, {5073, 12295}, {5504, 10293}, {5609, 17538}, {5642, 15688}, {5878, 15647}, {5894, 6288}, {6033, 14850}, {6053, 15689}, {6241, 13201}, {6284, 10081}, {6321, 14849}, {6449, 8998}, {6450, 13990}, {6560, 19052}, {6561, 19051}, {6781, 14901}, {7354, 10065}, {7574, 19479}, {7722, 13491}, {7723, 18439}, {7731, 15072}, {8703, 10272}, {8717, 19381}, {8994, 13665}, {9730, 11807}, {9934, 10540}, {9976, 19924}, {10088, 15338}, {10091, 15326}, {10118, 18447}, {10152, 11251}, {10254, 11204}, {10483, 12903}, {10575, 10628}, {10723, 15535}, {11001, 12317}, {11709, 12699}, {12085, 13171}, {12102, 15025}, {12103, 14094}, {12108, 15029}, {12133, 18533}, {12279, 12281}, {12302, 19908}, {12358, 14826}, {12898, 18481}, {12901, 18859}, {12902, 16003}, {13785, 13969}, {14093, 15042}, {15040, 16534}, {15046, 15720}, {15054, 15704}, {15063, 15696}, {15138, 18441}, {16105, 16222}, {17812, 18451}, {18455, 19505}
X(20127) = midpoint of X(i) and X(j) for these {i,j}: {20, 12244}, {1657, 10620}, {3448, 3529}, {6241, 13201}, {12279, 12281}, {12902, 17800}
X(20127) = reflection of X(i) in X(j) for these (i,j): (3, 16111), (4, 12041), (52, 17855), (110, 550), (146, 1511), (3146, 10113), (5073, 12295), (5878, 15647), (7722, 13491), (10723, 15535), (12898, 18481), (12902, 16003)
X(20127) = anticomplement of X(1539)
X(20127) = X(7728)-of-ABC-X(3) reflections triangle
X(20127) = X(10721)-of-Johnson triangle
X(20127) = X(16111)-of-X(3)-ABC reflections triangle
X(20127) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 7728, 14643), (4, 12041, 15061), (74, 10733, 10264), (146, 376, 1511), (146, 1511, 5655), (382, 15041, 125), (399, 3534, 16163), (6699, 13202, 381), (8703, 10272, 15051), (10264, 10733, 265), (10706, 15051, 10272), (10721, 15055, 5)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 27891.
X(20128) lies on these lines: {2,3}, {2420,3163}, {12347,13188}, {12355,13179}
X(20128) = midpoint of X(3081) and X(12113)
X(20128) = reflection of X(i) in X(j) for these {i,j}: {381, 1651}, {3534, 12113}, {3830, 11251}, {11050, 549}, {12355, 13179}, {13188, 12347}
X(20128) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (381, 1651, 11911), (11050, 11845, 549)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 27901.
X(20129) lies on these lines: {30,553}, {35,186}, {516,15904}, {523,2488}, {1155,5160}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 27901.
X(20130) lies on these lines: {1,4}, {124,5853}, {522,17115}
X(20131 lies on these lines: {1, 11321}, {2, 6}, {55, 17032}, {238, 16831}, {1001, 14621}, {1003, 4653}, {1509, 5021}, {3286, 16367}, {3797, 4363}, {4038, 17026}, {4255, 16917}, {4360, 20181}, {4384, 4649}, {4850, 20166}, {5132, 11329}, {5263, 17316}, {16915, 19765}, {17394, 20179}, {20161, 20178}
X(20132) lies on these lines: {1, 335}, {2, 6}, {8, 16926}, {10, 16928}, {31, 17032}, {39, 1509}, {145, 16930}, {238, 16826}, {239, 4649}, {386, 16917}, {551, 16801}, {894, 3797}, {956, 19230}, {958, 19232}, {1001, 19237}, {1100, 20179}, {1125, 16929}, {1724, 16912}, {3242, 19236}, {3552, 19765}, {3616, 16927}, {3622, 16931}, {3666, 20166}, {4340, 7791}, {4393, 20172}, {4658, 17034}, {4672, 6651}, {5132, 19308}, {5254, 6625}, {5263, 6542}, {7783, 17103}, {16468, 16831}, {16474, 16829}, {16483, 19227}, {16908, 20083}, {16915, 19767}, {19791, 20167}
X(20133) lies on these lines: {1, 19231}, {2, 6}, {37, 20167}, {75, 20164}, {292, 4687}, {384, 1001}, {1964, 16826}, {4359, 20166}, {4649, 16819}, {5132, 16917}, {5263, 16926}, {6645, 19232}, {14621, 16690}, {15485, 19227}, {16484, 19228}, {17119, 20175}, {20174, 20178}
X(20134) lies on these lines: {2, 6}, {75, 20175}, {1001, 6645}, {2309, 17032}, {3210, 20166}, {7032, 16826}, {20164, 20178}
X(20135) lies on these lines: {2, 6}, {673, 3616}, {1001, 2223}, {3797, 17118}, {4649, 16832}, {5132, 16412}, {5263, 5308}, {5283, 16728}, {16777, 20181}, {16826, 20172}
X(20136) lies on these lines: {2, 6}, {37, 384}, {346, 16930}, {1125, 16800}, {2345, 16926}, {4261, 16917}, {4649, 16817}, {4687, 19224}, {16928, 17303}, {20170, 20172}
X(20137) lies on these lines: {1, 16911}, {2, 6}, {1125, 16801}, {2177, 17032}, {2666, 16610}, {3752, 20166}, {3797, 17116}, {4256, 16917}, {4366, 16484}, {4649, 16815}, {7839, 17175}, {9345, 17028}, {14621, 15485}, {16474, 16819}, {16490, 16829}, {17394, 20180}
X(20138) lies on these lines: {2, 6}, {10, 16801}, {238, 16815}, {239, 16484}, {1001, 16816}, {1724, 16911}, {3797, 17117}, {4257, 16917}, {4366, 4384}, {5315, 16819}, {8692, 20172}, {14621, 16832}, {16489, 16829}, {17028, 17125}, {17348, 20180}
X(20139) lies on these lines: {2, 6}, {75, 20167}, {192, 20164}, {3751, 16819}, {16496, 16829}, {20165, 20168}
X(20140) lies on these lines: {2, 6}, {37, 870}, {321, 20164}, {1001, 16916}, {1621, 16955}, {1918, 14621}, {2663, 4384}, {3286, 17684}, {3666, 20167}, {4649, 17030}, {5132, 16915}, {9534, 19231}, {17160, 20175}
X(20141) lies on these lines: {2, 6}, {3248, 16826}, {3797, 20178}, {4649, 16829}, {17118, 20175}, {20165, 20167}
X(20142) lies on these lines: {1, 16912}, {2, 6}, {37, 20166}, {58, 16917}, {238, 239}, {306, 16800}, {335, 1757}, {384, 1724}, {519, 16801}, {673, 6650}, {748, 17027}, {1001, 4393}, {1203, 16819}, {1330, 17673}, {1714, 5025}, {1834, 17685}, {1911, 2664}, {1931, 2669}, {2999, 4835}, {3008, 17770}, {3187, 16690}, {3216, 7824}, {3286, 19308}, {3454, 16908}, {3759, 20161}, {3842, 4649}, {3932, 6542}, {4093, 17011}, {4384, 14621}, {4733, 5263}, {5222, 9791}, {5247, 6645}, {5315, 16829}, {7839, 16552}, {9534, 17688}, {15485, 16834}, {16477, 16815}, {16503, 17121}, {16816, 20172}, {16918, 17034}, {16948, 17693}, {17348, 20179}
X(20143) lies on these lines: {2, 6}
X(20144) lies on these lines: {2, 6}, {384, 16500}, {4366, 16494}, {4649, 16820}, {14621, 16495}
X(20145) lies on these lines: {1, 16914}, {2, 6}, {2308, 17032}, {3552, 19767}, {3758, 3797}, {4307, 6653}, {4340, 17565}, {4393, 4649}, {5263, 20055}, {16468, 16826}
X(20146) lies on these lines: {2, 6}, {37, 330}, {75, 20168}, {1278, 20170}, {4254, 16917}, {4704, 17148}, {4772, 20174}, {16667, 16819}
X(20147) lies on these lines: {1, 7839}, {2, 6}, {75, 20180}, {238, 17120}, {384, 16783}, {537, 16484}, {894, 4366}, {1001, 17350}, {1278, 20162}, {1509, 5007}, {4251, 16917}, {4670, 20179}, {4754, 17128}, {6625, 7745}, {14621, 16779}, {16552, 16912}, {16911, 17175}, {16918, 17499}
X(20148) lies on these lines: {2, 6}, {55, 16957}, {239, 872}, {308, 3948}, {312, 20164}, {384, 5132}, {1001, 16918}, {3286, 7824}, {3752, 20167}, {4366, 18082}, {16826, 18170}, {16831, 18194}, {17318, 20175}
X(20149) lies on these lines: {2, 6}, {4366, 16792}, {5135, 16917}, {14621, 16793}
X(20150) lies on these lines: {1, 20174}, {2, 6}, {1125, 5156}, {1509, 5115}, {3286, 16289}, {3616, 16451}, {8053, 19340}, {16574, 16831}
X(20151) lies on these lines: {2, 6}, {75, 20178}
X(20152) lies on these lines: {2, 6}, {3624, 16801}, {8692, 14621}, {16484, 16831}, {16826, 20162}
X(20153) lies on these lines: {2, 6}, {4366, 16831}, {16610, 20166}, {16801, 19883}
X(20154) lies on these lines: {2, 6}, {238, 4384}, {239, 1001}, {335, 5220}, {673, 5698}, {958, 16827}, {1724, 11321}, {3008, 3821}, {3286, 11329}, {3679, 16801}, {3797, 4361}, {4252, 16917}, {4366, 16816}, {4423, 17027}, {4649, 16831}, {5132, 16367}, {5271, 16690}, {5695, 6651}, {11108, 17034}, {11285, 17749}, {14621, 16815}, {15485, 16833}, {16466, 16819}, {16468, 16832}, {16483, 16829}, {16484, 16834}, {16825, 17755}, {17026, 17123}
X(20155) lies on these lines: {2, 6}, {1509, 5022}, {3052, 17032}, {4649, 16833}
X(20156) lies on these lines: {2, 6}, {238, 16832}, {1001, 3696}, {1191, 16819}, {3286, 16412}, {3797, 17119}, {4482, 9708}, {8167, 17026}, {16484, 16833}, {16486, 16829}, {16801, 19875}, {16815, 20172}, {16816, 20162}
X(20157) lies on these lines: {2, 6}
X(20158) lies on these lines: {2, 6}, {238, 4393}, {239, 3923}, {387, 17685}, {1724, 16914}, {3241, 16801}, {3759, 3797}, {14621, 16477}
X(20159) lies on these lines: {1, 20179}, {2, 6}, {37, 14621}, {238, 4687}, {673, 17380}, {985, 1918}, {1509, 4253}, {1914, 17032}, {3759, 4649}, {3972, 4653}, {4360, 20172}, {4366, 16777}, {5263, 17233}, {16503, 17394}, {16884, 20180}, {17160, 20181}
X(20160) lies on these lines: {2, 6}, {4366, 16833}, {4669, 16801}
X(20161) lies on these lines: {2, 20168}, {75, 20166}, {3759, 20142}, {19791, 20170}, {20131, 20178}
X(20162) lies on these lines: {1, 11321}, {2, 3996}, {6, 190}, {55, 17027}, {75, 20250}, {86, 20181}, {238, 16834}, {239, 1001}, {673, 17316}, {1278, 20147}, {3295, 17034}, {3303, 17033}, {3750, 17026}, {3875, 16503}, {4384, 16484}, {4452, 17379}, {15668, 17380}, {16816, 20156}, {16826, 20152}, {17233, 17259}, {17277, 17314}, {17393, 20179}
X(20163) lies on these lines: {6, 20178}
X(20164) lies on these lines: {2, 20165}, {6, 3797}, {75, 20133}, {192, 20139}, {239, 16690}, {312, 20148}, {321, 20140}, {536, 20167}, {20134, 20178}
X(20165) lies on these lines: {2, 20164}, {20139, 20168}, {20141, 20167}
X(20166) lies on these lines: {6, 3219}, {37, 20142}, {75, 20161}, {81, 1918}, {3210, 20134}, {3666, 20132}, {3752, 20137}, {3774, 16826}, {4359, 20133}, {4850, 20131}, {16610, 20153}
X(20167) lies on these lines: {37, 20133}, {75, 20139}, {536, 20164}, {3666, 20140}, {3752, 20148}, {19791, 20132}, {20141, 20165}
X(20168) lies on these lines: {2, 20161}, {6, 190}, {75, 20146}, {86, 17490}, {87, 4970}, {194, 1449}, {330, 1100}, {1740, 4734}, {2269, 17027}, {3187, 17349}, {3210, 17011}, {3905, 16503}, {4699, 20174}, {4740, 20176}, {20139, 20165}
X(20169) lies on these lines: {2, 20164}, {75, 20161}, {238, 239}, {1918, 3187}
X(20170) lies on these lines: {2, 20164}, {6, 190}, {37, 17144}, {71, 17027}, {86, 3210}, {194, 1100}, {330, 16884}, {1001, 19851}, {1278, 20146}, {1655, 5839}, {1740, 4970}, {3995, 17349}, {15668, 17490}, {17018, 17142}, {17147, 17379}, {19791, 20161}, {20136, 20172}
X(20171) lies on these lines: {1, 20236}, {2, 37}, {78, 740}, {85, 17300}, {92, 1999}, {219, 239}, {273, 335}, {304, 20234}, {322, 6542}, {518, 1837}, {726, 1210}, {984, 6734}, {1111, 17298}, {1441, 17316}, {1446, 2996}, {1814, 2995}, {1827, 16465}, {3262, 17314}, {3662, 3673}, {3685, 4008}, {3718, 3948}, {3759, 18151}, {3875, 4858}, {3912, 17861}, {3993, 13411}, {4851, 16732}, {4872, 17481}, {4957, 17388}, {5905, 5928}, {6603, 17158}, {7264, 17304}, {16284, 17373}, {16749, 18157}, {16831, 18698}, {17386, 17791}
X(20172) lies on these lines: {1, 11321}, {2, 11}, {3, 17030}, {6, 75}, {8, 17686}, {10, 7770}, {19, 11341}, {56, 16915}, {81, 16748}, {86, 4000}, {171, 17026}, {183, 4386}, {238, 4384}, {274, 16502}, {335, 3242}, {350, 5275}, {384, 958}, {405, 16819}, {458, 1861}, {499, 17694}, {940, 17027}, {956, 16829}, {984, 17738}, {993, 1003}, {1107, 1975}, {1191, 16827}, {1329, 16924}, {1573, 3734}, {1574, 7808}, {1575, 11174}, {1738, 17023}, {1914, 16992}, {2345, 17277}, {2975, 16919}, {3797, 5695}, {3923, 17755}, {4360, 20159}, {4393, 20132}, {4441, 5276}, {4649, 16834}, {4699, 17000}, {4999, 16925}, {5204, 17693}, {5217, 17684}, {5228, 10030}, {5260, 16920}, {5710, 17033}, {5711, 17034}, {5819, 17257}, {6645, 12513}, {8053, 16367}, {8692, 20138}, {9708, 11286}, {9710, 16898}, {9780, 17541}, {10436, 16503}, {10896, 17669}, {14001, 19843}, {14377, 16887}, {14953, 16738}, {15485, 16832}, {15668, 16706}, {16468, 16833}, {16484, 16831}, {16815, 20156}, {16816, 20142}, {16826, 20135}, {17011, 19719}, {17014, 17379}, {17259, 17289}, {20136, 20170}
X(20173) lies on these lines: {2, 37}, {33, 92}, {85, 17316}, {190, 8557}, {200, 740}, {220, 239}, {322, 17314}, {329, 497}, {335, 1088}, {341, 1834}, {726, 11019}, {984, 4656}, {1921, 18153}, {1999, 10025}, {2324, 3875}, {2911, 3759}, {3208, 16609}, {3553, 4360}, {3673, 3912}, {3696, 3974}, {3950, 17861}, {3993, 13405}, {4044, 4385}, {4514, 5739}, {4872, 5905}, {4952, 20015}, {6542, 16284}, {7264, 17284}, {16673, 18698}, {16750, 18157}, {17789, 18156}
X(20174) lies on these lines: {1, 20150}, {2, 20164}, {6, 75}, {8, 9049}, {37, 16819}, {76, 17275}, {86, 4359}, {238, 4647}, {274, 1100}, {312, 17259}, {314, 3739}, {321, 17277}, {350, 1213}, {966, 4441}, {1001, 16817}, {1211, 19787}, {1269, 1654}, {1909, 17362}, {1930, 16503}, {2300, 10471}, {3686, 3770}, {3761, 4034}, {3963, 5564}, {4043, 17260}, {4261, 17030}, {4388, 15320}, {4651, 17142}, {4665, 17787}, {4688, 20176}, {4699, 20168}, {4772, 20146}, {4967, 17790}, {5262, 5263}, {15668, 19804}, {16685, 16827}, {16690, 16825}, {16738, 17495}, {16777, 17144}, {16815, 18137}, {17270, 18144}, {17287, 18143}, {20133, 20178}
X(20175) lies on these lines: {2, 594}, {75, 20134}, {4393, 18170}, {17118, 20141}, {17119, 20133}, {17160, 20140}, {17318, 20148}
X(20176) lies on these lines: {2, 20178}, {6, 4664}, {75, 20177}, {1100, 3227}, {4688, 20174}, {4740, 20168}
X(20177) lies on these lines: {6, 536}, {75, 20176}
X(20178) lies on these lines: {2, 20176}, {6, 20163}, {75, 20151}, {3797, 20141}, {20131, 20161}, {20133, 20174}, {20134, 20164}
X(20179) lies on these lines: {1, 20159}, {2, 1914}, {6, 75}, {10, 82}, {32, 17030}, {37, 4366}, {86, 142}, {274, 5299}, {330, 16913}, {350, 5276}, {384, 1107}, {976, 18055}, {993, 3972}, {1001, 4687}, {1100, 20132}, {1376, 11174}, {1475, 17103}, {1573, 7804}, {1575, 3329}, {1740, 17795}, {1760, 3496}, {1909, 17686}, {1911, 18170}, {2275, 16915}, {2345, 17349}, {2550, 3618}, {2886, 7792}, {3739, 17000}, {4000, 17379}, {4426, 7787}, {4429, 17381}, {4670, 20147}, {5280, 17143}, {5291, 16829}, {5332, 16998}, {5819, 17321}, {6376, 7770}, {6645, 17448}, {9454, 18042}, {10436, 16779}, {11321, 16502}, {15668, 17370}, {16604, 16917}, {17259, 17371}, {17348, 20142}, {17393, 20162}, {17394, 20131}
X(20180) lies on these lines: {6, 190}, {42, 3329}, {75, 20147}, {86, 17366}, {145, 1001}, {238, 17121}, {239, 16503}, {385, 2280}, {673, 17300}, {1100, 20132}, {1449, 14621}, {1475, 7783}, {3684, 16999}, {3720, 16993}, {3759, 20142}, {3972, 9346}, {6542, 17243}, {7806, 11269}, {16484, 17260}, {16779, 16834}, {16884, 20159}, {17014, 17379}, {17230, 17259}, {17348, 20138}, {17394, 20137}
X(20181) lies on these lines: {6, 75}, {86, 20162}, {141, 2550}, {274, 16781}, {673, 2345}, {1001, 3739}, {1376, 15271}, {1738, 4657}, {2886, 7778}, {3616, 4000}, {3734, 9708}, {3934, 9709}, {4360, 20131}, {4366, 4699}, {4386, 8667}, {4429, 17327}, {4441, 5275}, {4772, 17000}, {5013, 17030}, {5819, 17332}, {7789, 19843}, {11321, 17143}, {16777, 20135}, {17160, 20159}
X(20182) lies on these lines: {1, 3}, {2, 594}, {6, 3219}, {37, 3305}, {42, 3789}, {45, 17013}, {63, 1100}, {75, 19701}, {81, 16884}, {86, 3210}, {219, 16579}, {226, 4021}, {239, 19732}, {306, 4657}, {312, 17319}, {321, 17318}, {333, 4393}, {497, 17726}, {614, 15569}, {894, 19722}, {966, 20043}, {968, 1386}, {1001, 1962}, {1211, 17321}, {1376, 5311}, {1407, 1442}, {1427, 7190}, {1449, 4641}, {1953, 15509}, {1961, 4413}, {1999, 17393}, {2895, 17253}, {2999, 3247}, {3187, 5737}, {3242, 17018}, {3589, 17776}, {3663, 3982}, {3664, 4114}, {3672, 3782}, {3683, 16475}, {3723, 3752}, {3743, 16466}, {3758, 19739}, {3759, 19723}, {3929, 16667}, {3989, 5220}, {3993, 4387}, {4359, 15668}, {4363, 17147}, {4364, 5739}, {4389, 17778}, {4414, 9340}, {4419, 20214}, {4428, 17469}, {4445, 20017}, {4472, 19825}, {4850, 17019}, {4852, 5271}, {4886, 17248}, {5226, 5718}, {5249, 17301}, {5262, 19728}, {5284, 17025}, {5905, 17246}, {6703, 17740}, {7269, 17080}, {7277, 20078}, {7308, 16673}, {10180, 16825}, {11238, 17722}, {14997, 16677}, {16610, 17022}, {16672, 17012}, {16826, 17144}, {17056, 17395}, {17116, 19746}, {17117, 19749}, {17121, 19750}, {17184, 17323}, {17290, 18139}, {17302, 18134}, {17396, 19786}, {17397, 19808}, {17398, 19822}, {17602, 17783}
See Angel Montesdeoca, HG110718.
Let A'B'C' be the excentral triangle. Let A" be the Gergonne point of triangle A'BC, and define B" and C" cyclically. The lines A'A", B'B", C'C" concur in X(20183). (Randy Hutson, July 31 2018)
X(20183) lies on these lines: {9,362}, {40,164}, {57,173}, {63,16017}, {165,3659}, {168,7028}, {504,3928}, {1489,3645}, {1697,8078}
X(20183) = X(7048)-Ceva conjugate of X(1)
X(20183) = cevapoint of X(i) and X(j) for these (i,j): {164, 168}
X(20183) = X(55)-of-excentral-triangle
X(20183) = X(3434)-of-first-circumperp-triangle
X(20183) = X(i)-aleph conjugate of X(j) for these (i,j): {188, 166}, {7028, 167}
X(20183) = X(7028)-beth conjugate of X(8138)
X(20183) = X(i)-zayin conjugate of X(j) for these (i,j): {188, 9}, {8422, 173}
X(20183) = barycentric product X(i)*X(j) for these {i,j}: {7048, 13443}
X(20183) = barycentric quotient X(i)/X(j) for these {i,j}: {13443, 7057}, {16011, 8372}
X(20183) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (173, 258, 16015)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27908.
X(20184) lies on these lines: {30, 511}, {6247, 15543}, {8562, 14862}, {9123, 13223}, {9185, 13224}, {15099, 15451}, {15328, 16835}, {15475, 18381}
X(20184) = isogonal conjugate of X(20185)
X(20184) = circumnormal isogonal conjugate of X(2383)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27908.
X(20185) lies on the circumcircle and these lines: {3, 2383}, {20, 1141}, {22, 5966}, {74, 10625}, {550, 1300}, {1299, 3520}, {2071, 14979}, {2374, 7495}, {3563, 6636}, {11413, 18401}
X(20185) = isogonal conjugate of X(20184)
X(20185) = circumperp conjugate of X(2383)
X(20185) = circumcircle-antipode of X(2383)
X(20185) = trilinear pole of the line {6, 1493}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27908.
X(20186) lies on these lines: {3, 8651}, {30, 511}, {64, 10097}, {1593, 6753}, {2444, 17813}, {5652, 5656}
X(20186) = isogonal conjugate of X(20187)
X(20186) = circumnormal isogonal conjugate of X(2374)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27908.
X(20187) lies on the circumcircle and these lines: {3, 2374}, {20, 111}, {22, 9084}, {107, 11634}, {376, 3563}, {858, 10102}, {1301, 4235}, {1304, 7472}, {2071, 2770}, {2373, 11413}, {4221, 15344}, {4226, 9064}, {4229, 9085}, {4236, 9107}, {9061, 16049}
X(20187) = isogonal conjugate of X(20186)
X(20187) = circumperp conjugate of X(2374)
X(20187) = circumcircle-antipode of X(2374)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27908.
X(20188) lies on these lines: {30, 511}, {2492, 3050}, {2611, 3025}, {2623, 14397}, {3005, 6132}, {8562, 14809}, {14861, 15328}
X(20188) = isogonal conjugate of X(20189)
X(20188) = incentral isogonal conjugate of X(11)
X(20188) = circumnormal isogonal conjugate of X(13597)
X(20188) = complementary conjugate of X(11792)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27908.
X(20189) lies on the circumcircle and these lines: {2, 11792}, {3, 13597}, {74, 548}, {98, 15246}, {111, 3055}, {428, 3563}, {842, 20063}, {901, 5957}, {930, 1634}, {1290, 5959}, {1291, 14480}, {1300, 14865}, {1370, 13508}, {2703, 5958}, {3628, 11703}, {4226, 7953}, {10330, 10425}, {11414, 13507}, {14141, 14979}
X(20189) = anticomplement of X(11792)
X(20189) = circumperp conjugate of X(13597)
X(20189) = circumcircle-antipode of X(13597)
X(20189) = trilinear pole of the line {6, 3411}
X(20189) = isogonal conjugate of X(20188)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27912.
X(20190) lies on the these lines: {2, 18553}, {3, 6}, {5, 10168}, {20, 5476}, {23, 5643}, {51, 7492}, {110, 15082}, {140, 542}, {141, 14869}, {385, 9751}, {524, 3530}, {546, 3589}, {548, 19924}, {549, 8550}, {550, 597}, {599, 15720}, {1176, 16835}, {1352, 3525}, {1428, 3746}, {1495, 16042}, {1503, 3628}, {1992, 10299}, {1995, 6688}, {2330, 5563}, {3090, 3818}, {3146, 14561}, {3292, 3819}, {3357, 19153}, {3523, 11160}, {3526, 11178}, {3529, 3618}, {3564, 12108}, {3627, 19130}, {3796, 10219}, {3917, 11422}, {3934, 5026}, {4663, 17502}, {5054, 15069}, {5182, 7824}, {5462, 7555}, {5480, 15704}, {5609, 10170}, {5622, 12584}, {5650, 11003}, {5892, 7575}, {5907, 7550}, {6000, 15579}, {6636, 15019}, {6759, 10249}, {6776, 7945}, {6800, 12045}, {7859, 12252}, {7998, 9716}, {8537, 17506}, {8546, 8681}, {8549, 11202}, {8584, 17504}, {9019, 12006}, {9970, 15021}, {9976, 15035}, {10282, 15581}, {10594, 19124}, {11579, 15034}, {11649, 18571}, {11695, 12106}, {12103, 18583}, {12105, 13363}, {13171, 13402}, {13366, 15246}, {13474, 18374}, {14865, 19128}, {15054, 19140}, {15533, 15707}, {15534, 15700}, {15646, 15826}
X(20190) = midpoint of X(i) and X(j) for these {i,j}: {3, 575}, {5907, 12220}
X(20190) = reflection of X(3) in X(5157)
X(20190) = complement of X(18553)
X(20190) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 182, 575), (3, 5050, 11477), (3, 10541, 182), (3, 11477, 3098), (3, 11482, 1350), (3, 12017, 10541), (6, 17508, 14810), (182, 3098, 5050), (182, 5085, 5092), (182, 17508, 6), (575, 5092, 3), (3098, 5050, 5097), (5085, 10541, 3), (5085, 12017, 182), (5092, 14810, 17508), (8160, 8161, 11171)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27912.
X(20191) lies on the these lines: {2, 5448}, {3, 125}, {52, 11660}, {68, 3523}, {113, 11440}, {155, 5054}, {156, 10182}, {539, 549}, {578, 18580}, {631, 1147}, {1151, 13970}, {1152, 13909}, {1154, 5498}, {1192, 7706}, {1204, 6639}, {1216, 10257}, {1614, 16003}, {2777, 13406}, {2888, 15035}, {3357, 10201}, {3518, 18488}, {3520, 12897}, {3524, 12118}, {3525, 5654}, {3564, 12108}, {3917, 12606}, {5504, 13418}, {5562, 14156}, {5663, 10125}, {5876, 5972}, {5944, 10264}, {6000, 10020}, {6368, 11273}, {6689, 9730}, {6696, 13383}, {7487, 15431}, {7502, 17712}, {7568, 16836}, {7575, 13419}, {7756, 8571}, {9140, 12254}, {10018, 12162}, {10116, 13367}, {10164, 12259}, {10193, 11250}, {10274, 15132}, {10298, 11750}, {10303, 15083}, {11454, 16868}, {12111, 16534}, {12429, 15693}, {13353, 15136}, {13561, 15331}, {15059, 19479}, {15122, 15644}, {15332, 18379}, {18128, 18475}, {18324, 18381}
X(20191) = midpoint of X(i) and X(j) for these {i,j}: {3, 5449}, {6696, 13383}, {13561, 15331}, {15332, 18379}
X(20191) = complement of X(5448)
X(20191) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 7689, 5448), (549, 12359, 12038), (11440, 14940, 113)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27919.
X(20192) lies on the these lines: {2, 1350}, {25, 11179}, {51, 5642}, {110, 8584}, {125, 3845}, {141, 10545}, {343, 11178}, {373, 549}, {468, 5476}, {524, 1995}, {597, 5640}, {3124, 5306}, {3629, 10546}, {4240, 6749}, {5544, 15693}, {5943, 10168}, {6388, 14537}, {6791, 18907}, {8550, 14002}, {9140, 13567}, {9143, 13595}, {10301, 11645}
X(20192) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (597, 7426, 13394), (5640, 7426, 597)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27919.
X(20193) lies on the these lines: {4, 14677}, {5, 7691}, {51, 15806}, {140, 13598}, {143, 10272}, {1531, 3850}, {1656, 7693}, {8254, 10095}, {12106, 12118}, {13362, 14051}
X(20193) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (143, 10272, 11803), (10095, 10096, 8254)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27919.
X(20194) lies on the these lines: {6, 376}, {32, 8550}, {141, 8368}, {524, 1384}, {597, 2030}
X(20194) = {X(2030), X(18907)}-harmonic conjugate of X(597)
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,1698), (2,2), (3,1656), (4,631), (6,3763), (9, 20195), (57, 20196), (223, 20197), (282,20198), (1073, 20199), (1249, 20200)
Fifteen more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 1 : 2 : 2
m(-a : b : c) = a - 2b - 2c : 2a - b - 2c : 2a - 2b - c
m(a : b cos C : c cos B) = 6 a^2 : 7 a^2 - b^2 + c^2 : 7 a^2 + b^2 - c^2
m(A') = a^2 + 3 a b + 2 b^2 + 3 a c - 4 b c + 2 c^2 : 2 a^2 + 3 a b + b^2 + 4 a c - 3 b c + 2 c^2 : 2 a^2 + 4 a b + 2 b^2 + 3 a c - 3 b c + c^2
m(A'') = a^3 + 2 a^2 b - a b^2 - 2 b^3 + 2 a^2 c + 10 a b c + 2 b^2 c - a c^2 + 2 b c^2 - 2 c^3 : 2 a^3 + a^2 b - 2 a b^2 - b^3 + 2 a^2 c + 10 a b c + 2 b^2 c - 2 a c^2 + b c^2 - 2 c^3 : 2 a^3 + 2 a^2 b - 2 a b^2 - 2 b^3 + a^2 c + 10 a b c + b^2 c - 2 a c^2 + 2 b c^2 - c^3,
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
A' = -a (b + c + a) : b (c - a - b) : c (-a + b - c), the A-vertex of the extraversion triangle of X(9)
A'' = -a /(b + c + a) : b/(c - a - b) : c/(-a + b - c), the A-vertex of the extraversion triangle of X(57)
If P = x : y : z (barycentrics), then m(P) = x + 2y + 2z : 2x + y + 2z : 2x + 2y + z, and m is the collineation indicated by (A,B,C,X(2); m(A), m(B), m(C), X(2)); m maps the line X(1)X(2) onto itself and maps the Euler line onto itself.
Let f(a,b,c,x,y,z) = 6 (b^2-c^2) x^3+(19 a^2+4 b^2+2 c^2) y^2 z-(19 a^2+2 b^2+4 c^2) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, July 31, 2018)
X(20195) lies on these lines: {1, 3826}, {2, 7}, {3, 18482}, {5, 5732}, {10, 3243}, {11, 4326}, {12, 4321}, {35, 474}, {37, 4859}, {44, 4888}, {45, 4862}, {75, 4873}, {84, 6887}, {85, 10012}, {140, 5805}, {141, 16832}, {200, 6067}, {319, 4034}, {344, 4659}, {390, 5550}, {443, 4304}, {516, 631}, {518, 1698}, {632, 5762}, {673, 17370}, {936, 5719}, {954, 16862}, {971, 1656}, {1058, 1125}, {1086, 3731}, {1268, 4751}, {1375, 6707}, {1449, 3008}, {1699, 8167}, {1743, 4675}, {1890, 7521}, {2951, 7988}, {3035, 3254}, {3059, 5231}, {3158, 6601}, {3174, 3925}, {3247, 4000}, {3358, 6861}, {3475, 10390}, {3525, 5759}, {3526, 5735}, {3576, 6854}, {3616, 5853}, {3632, 15570}, {3634, 5542}, {3646, 12609}, {3663, 16676}, {3664, 16670}, {3672, 17067}, {3679, 17231}, {3686, 4869}, {3729, 17263}, {3739, 17265}, {3742, 15185}, {3824, 16853}, {3834, 17259}, {3848, 5572}, {3875, 17244}, {3912, 4007}, {3946, 5308}, {3973, 17365}, {4029, 4452}, {4197, 7675}, {4292, 17552}, {4312, 15254}, {4355, 5302}, {4413, 6600}, {4464, 17316}, {4657, 16593}, {4687, 17304}, {4688, 17267}, {4698, 17290}, {4699, 17266}, {4739, 17269}, {4755, 17323}, {4772, 17268}, {4798, 5845}, {4851, 16833}, {4902, 17334}, {5047, 9579}, {5067, 5817}, {5070, 5779}, {5220, 19872}, {5268, 17725}, {5272, 17722}, {5274, 15006}, {5284, 7676}, {5358, 17581}, {5686, 19877}, {5698, 19878}, {5722, 8728}, {5833, 16863}, {5851, 15017}, {5880, 7483}, {6667, 10427}, {6762, 19855}, {6833, 11372}, {6846, 9841}, {7227, 17279}, {7288, 12573}, {7504, 10861}, {7679, 9578}, {7958, 12565}, {8226, 10857}, {8583, 15950}, {9612, 16842}, {9780, 11038}, {10177, 15587}, {11375, 12560}, {12436, 16845}, {15668, 16503}, {16667, 17392}, {16673, 17301}, {16706, 16831}, {16815, 17232}, {16816, 17312}, {16834, 17317}, {17151, 17243}, {17241, 17294}, {17277, 17298}, {17313, 17348}, {20197, 20199}
X(20195) = complement of X(18230)
See X(20195)
X(20196) lies on these lines: {1, 3820}, {2, 7}, {5, 6282}, {10, 7962}, {11, 8580}, {40, 6944}, {84, 6967}, {165, 4679}, {200, 3816}, {210, 12915}, {354, 9954}, {474, 9579}, {497, 20103}, {498, 3646}, {517, 1656}, {936, 3419}, {958, 5193}, {997, 5727}, {999, 3624}, {1125, 3421}, {1329, 8583}, {1376, 9580}, {1420, 2551}, {1699, 4413}, {1997, 3687}, {2093, 5445}, {2095, 5070}, {2096, 3525}, {2478, 5438}, {3035, 4512}, {3090, 7682}, {3340, 8582}, {3359, 6863}, {3554, 17022}, {3601, 5084}, {3677, 5121}, {3740, 5231}, {3763, 20197}, {3782, 8056}, {3925, 7956}, {4853, 9711}, {4997, 19804}, {5176, 19861}, {5223, 17728}, {5234, 5433}, {5241, 18229}, {5251, 10269}, {5587, 6882}, {5741, 17296}, {6745, 10389}, {6889, 15239}, {7288, 18250}, {8165, 10106}, {9612, 16408}, {9614, 9709}, {9624, 11218}, {9843, 11518}, {12572, 17567}, {13411, 17559}, {17625, 18227}
X(20196) = {X(2),X(9)}-harmonic conjugate of X(31231)
See X(20195)
X(20197) lies on these lines: {2, 77}, {515, 631}, {3763, 20196}, {5705, 7515}, {20195, 20199}
See X(20195)
X(20198) lies on these lines: {2, 77}, {971, 1656}, {1698, 20200}
See X(20195)
X(20199) lies on these lines: {2, 253}, {1656, 6000}, {20195, 20197}
See X(20195)
X(20200) lies on these lines: {2, 253}, {95, 3619}, {631, 1503}, {1656, 15312}, {1698, 20198}, {3090, 10002}, {3533, 15258}, {5071, 9530}, {6330, 8797}
X(20200) = complement of polar conjugate of X(35515)
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,1125), (2,2), (3,140), (4,5), (6,3589), (9,6666), (57,6692), (223,20201), (282,20202), (1073,20203), (1249,20204)
Twelve more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 2 : 1 : 1
m(-a : b : c) = 2a - b - c: a - 2b - c : a - b - 2c
m(a : b cos C : c cos B) = 6 a^2 : 5 a^2 - b^2 + c^2 : 5 a^2 + b^2 - c^2
m(A') = 2 a^2 + 3 a b + b^2 + 3 a c - 2 b c + c^2 : a^2 + 3 a b + 2 b^2 + 2 a c - 3 b c + c^2 : a^2 + 2 a b + b^2 + 3 a c - 3 b c + 2 c^2,
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
A' = -a (b + c + a) : b (c - a - b) : c (-a + b - c), the A-vertex of the extraversion triangle of X(9)
If P = x : y : z (barycentrics), then m(P) = 2x + y + z : x + 2y + z : x + y + 2z, and m is the collineation indicated by (A,B,C,X(2); m(A), m(B), m(C), X(2)); m maps the line X(1)X(2) onto itself and maps the Euler line onto itself.
Let f(a,b,c,x,y,z) = 3 (b^2-c^2) x^3+(13 a^2+b^2+2 c^2) y^2 z-(13 a^2+2 b^2+c^2) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, July 31, 2018)
X(20201) lies on these lines: {2, 77}, {5, 515}, {142, 15509}, {3452, 17073}, {3589, 6692}, {3844, 20103}, {5219, 17917}, {6666, 20203}
X(20201) = complement of X(20205)
See X(20201).
X(20202) lies on these lines: {2, 77}, {140, 971}, {1125, 20204}, {6700, 17279}
X(20202) = complement of X(20206)
See X(20201).
X(20203) lies on these lines: {2, 253}, {140, 6000}, {6666, 20201}
X(20203) = complement of X(20207)
See X(20201).
X(20204) lies on these lines: {2, 253}, {3, 10002}, {5, 182}, {95, 6330}, {140, 15274}, {441, 17907}, {549, 6720}, {1125, 20202}, {1656, 15258}, {3628, 15576}, {6677, 15594}, {6692, 14743}, {7405, 19176}, {15252, 17279}
X(20204) = complement of X(20208)
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002), which is the complement of K002. The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
{2, 77}, {3, 10}, {5, 20210}, {57, 281}, {124, 3817}, {141, 3452}, {142, 6708}, {946, 5908}, {1146, 3752}, {1210, 1453}, {1386, 11019}, {1764, 8804}, {4183, 5324}, {4847, 7070}, {5325, 17359}, {6609, 6692}, {6703, 9843}, {6847, 9120}, {7365, 18634}
Fifteen more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : 1 : 1
m(-a : b : c) = b + c : c - a : b - a
m(a : b cos C : c cos B) = 2 a^2 : 3 a^2 - b^2 + c^2 : 3a^2 + b^2 - c^2
m(A') = a(b + c) + (b - c)^2 : b(a - c) + (a + c) ^2 : c(a - b) + (a + b)^2
m(A'') = (a + b + c)(ab + ac - (b - c)^2) : (a + b - c)(bc - ba + (a + c)^2)) : (a - b + c)(cb - ca + (a + b)^2),
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
A' = -a (b + c + a) : b (c - a - b) : c (-a + b - c), the A-vertex of the extraversion triangle of X(9)
A'' = -a/(b + c + a) : b/(c - a - b) : c/(-a + b - c), the A-vertex of the extraversion triangle of X(57)
If P = x : y : z (barycentrics), then m(P) = y + z : z + x : x + y, and m is the collineation indicated by (A,B,C,X(2); m(A), m(B), m(C), X(2)); m maps the line X(1)X(2) onto itself and maps the Euler line onto itself.
Let f(a,b,c,x,y,z) = (b^2-c^2) x^3+(3 a^2+b^2) y^2 z-(3 a^2+c^2) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, July 31, 2018)
X(20205) lies on these lines:
X(20205) = complement of X(223)
X(20205) = anticomplement of X(20201)
X(20205) = complementary conjugate of X(20206)
See X(20205).
X(20206) lies on these lines: {2, 77}, {5, 142}, {10, 17073}, {117, 18589}, {141, 20209}, {1125, 15836}, {1210, 1861}, {11019, 16608}
X(20206) = complement of X(282)
X(20206) = anticomplement of X(20202)
X(20206) = complementary conjugate of X(20205)
See X(20205).
X(20207) lies on these lines: {2, 253}, {3, 6523}, {5, 2883}, {10, 20209}, {132, 1368}, {142, 6708}, {6716, 10192}, {7526, 15874}
X(20207) = complement of X(1073)
X(20207) = anticomplement of X(20203)
X(20207) = complementary conjugate of X(20208)
See X(20205).
X(20208) lies on these lines: {2, 253}, {3, 66}, {5, 6523}, {6, 15526}, {10, 17073}, {30, 16253}, {69, 441}, {127, 133}, {140, 15258}, {142, 20210}, {216, 3763}, {264, 6330}, {281, 16596}, {343, 6617}, {458, 17035}, {577, 599}, {999, 16608}, {1656, 14059}, {2345, 6356}, {2968, 4000}, {2972, 5094}, {3164, 11331}, {3184, 10606}, {3452, 17279}, {3526, 6709}, {3589, 15851}, {5020, 15259}, {5054, 6760}, {5922, 14379}, {7400, 18840}, {7539, 13409}, {12167, 14003}, {17102, 17306}
X(20208) = complement of X(1249)
X(20208) = anticomplement of X(20204)
X(20208) = complementary conjugate of X(20207)
X(20208) = isotomic conjugate of polar conjugate of X(1853)
See X(20205).
X(20209) lies on these lines: {2, 271}, {3, 3452}, {10, 20207}, {141, 20206}, {936, 7952}, {1210, 7358}, {5911, 6245}
X(20209) = complement of X(3341)
X(20209) = complementary conjugate of X(20210)
See X(20205).
X(20210) lies on these lines: {2, 271}, {5, 20205}, {142, 20208}
X(20210) = complement of X(3342)
X(20210) = complementary conjugate of X(20209)
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002), which is the anticomplement of K007. The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,145), (2,2), (3,20), (4,3146), (6,193), (9,144), (57,9965), (223,20211), (282,20212), (1073,20213), (1249,17037)
Fifteen more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 3 : -1 : -1
m(-a : b : c) = 3a + b + c : -a - 3b + c : -a + b - 3
m(a : b cos C : c cos B) = a^2 : b^2 - c^2 : c^2 - b^2
m(A') = 3 a^2 + 2 a b - b^2 + 2 a c + 2 b c - c^2 : -a^2 + 2 a b + 3 b^2 - 2 a c - 2 b c - c^2 : -a^2 - 2 a b - b^2 + 2 a c - 2 b c + 3 c^2
m(A'') = 3 a^3 - a^2 b - 3 a b^2 + b^3 - a^2 c + 2 a b c - b^2 c - 3 a c^2 - b c^2 + c^3 : -a^3 + 3 a^2 b + a b^2 - 3 b^3 - a^2 c + 2 a b c -
b^2 c + a c^2 + 3 b c^2 + c^3 : -a^3 - a^2 b + a b^2 + b^3 + 3 a^2 c + 2 a b c + 3 b^2 c + a c^2 - b c^2 - 3 c^3,
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
A' = -a (b + c + a) : b (c - a - b) : c (-a + b - c), the A-vertex of the extraversion triangle of X(9)
A'' = -a/(b + c + a) : b/(c - a - b) : c/(-a + b - c), the A-vertex of the extraversion triangle of X(57)
If P = x : y : z (barycentrics), then m(P) = 3x - y - z : - x + 3y - z : - x - y + 3z, and m is the collineation indicated by (A,B,C,X(2); m(A), m(B), m(C), X(2)); m maps the line X(1)X(2) onto itself and maps the Euler line onto itself.
Let f(a,b,c,x,y,z) = 2 (b^2-c^2) x^3-(3 a^2+b^2-3 c^2) y^2 z+(3 a^2-3 b^2+c^2) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, July 31, 2018)
X(20211) lies on these lines: {2, 77}, {144, 6360}, {145, 515}, {175, 13387}, {176, 13386}, {193, 3210}, {279, 11433}, {391, 18607}, {1895, 5342}, {2895, 3152}, {5923, 6260}, {9799, 15237}
X(20211) = complement of X(20215)
X(20211) = anticomplement of X(22654)
X(20211) = anticomplementary conjugate of X(21279)
See X(20211).
X(20212) lies on these lines: {2, 77}, {20, 72}, {29, 10405}, {145, 17037}, {3345, 9799}, {20015, 20110}
X(20212) = complement of X(20216)
X(20212) = anticomplement of X(5932)
X(20212) = anticomplementary conjugate of anticomplement of X(7037)
See X(20211).
X(20213) lies on these lines: {2, 253}, {20, 2979}, {144, 6360}, {394, 6527}, {3346, 12324}
X(20213) = complement of X(20217)
X(20213) = anticomplement of X(14361)
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,3621), (2,2), (3,3146), (4,5059), (6,20080), (9,20059), (57,20214), (223,20215), (282,20216), (1073,20217), (1249,20215))
Nine more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = -5 : 3 : 3
m(-a : b : c) = 5a + 3b + 3c : -3a - 5b + 3c : -3a + 3b - 5c
m(a : b cos C : c cos B) = a^2 : a^2 - 2b^2 + 2c^2 : a^2 + 2b^2 - 2c^2,
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
If P = x : y : z (barycentrics), then m(P) = 5x - 3y - 3z : - 3x + 5y - 3z : - 3x - 3y + 5z, and m is the collineation indicated by (A,B,C,X(2); m(A), m(B), m(C), X(2)); m maps the line X(1)X(2) onto itself and maps the Euler line onto itself.
Let f(a,b,c,x,y,z) = 6 (b^2-c^2) x^3-(7 a^2+9 b^2-15 c^2) y^2 z+(7 a^2-15 b^2+9 c^2) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, July 31, 2018)
X(20214) lies on these lines: {2, 7}, {145, 10624}, {306, 4488}, {452, 15934}, {484, 7080}, {497, 5852}, {516, 20015}, {517, 3146}, {999, 16865}, {1255, 3945}, {2093, 3617}, {2095, 3091}, {2096, 3522}, {2097, 3620}, {2475, 3421}, {2895, 4461}, {3623, 6872}, {3748, 5698}, {3854, 7682}, {3897, 11106}, {3927, 5177}, {3935, 7994}, {4419, 20182}, {4430, 10394}, {4454, 5739}, {5059, 20013}, {5261, 11684}, {5712, 17334}, {5924, 9799}, {6223, 20070}, {12527, 18421}, {14552, 17347}, {17768, 17784}, {17778, 20073}, {20017, 20218}, {20080, 20215}
X(20214) = anticomplement of X(9965)
See X(20214).
X(20215) lies on these lines: {2, 77}, {515, 3621}, {5923, 6223}, {20008, 20086}, {20059, 20217}, {20080, 20214}
X(20215) = anticomplement of X(20211)
See X(20214).
X(20216) lies on these lines: {2, 77}, {971, 3146}, {3621, 20218}
X(20216) = anticomplement of X(20212)
See X(20214).
X(20217) lies on these lines: {2, 253}, {3146, 5889}, {5068, 15319}, {20059, 20215}
X(20217) = anticomplement of X(20213)
See X(20214).
X(20218) lies on these lines: {2, 253}, {1503, 5059}, {3146, 15312}, {3621, 20216}, {3854, 10002}, {5922, 6225}, {20017, 20214}
X(20218) = anticomplement of X(17037)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27920.
X(20219) lies on the circumcircle and these lines: {35, 2291}, {65, 15728}, {103, 7688}, {2742, 4557}, {3579, 15731}
X(20219) = X(9076)-of-2nd-circumperp-triangle
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,75), (2,1), (3,17220), (4,17134), (6,17135), ((9,3873), (57,3869), (223,2020), (282,20221)
Fifteen more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = -1 : 1 : 1
m(-a : b : c) = bc+ca+ab : -ab : -ac
m(a : b cos C : c cos B) = 2 a^3 - a^2 b - b^3 - a^2 c + b^2 c + b c^2 - c^3 : 3 a^2 b - 2 a b^2 - b^3 + a^2 c - b^2 c + 2 a c^2 + b c^2 + c^3 : a^2 b + 2 a b^2 + b^3 + 3 a^2 c + b^2 c - 2 a c^2 - b c^2 - c^3
m(A') = -a b c : c (a^2 + a b - b^2 + a c + b c) : b (a^2 + a b + a c + b c - c^2)
m(A'') = a b c (3 a + b + c) : -c (-a^3 - 2 a b^2 - b^3 + a b c + a c^2 + b c^2) : -b (-a^3 + a b^2 + a b c + b^2 c - 2 a c^2 - c^3),
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
A' = -a (b + c + a) : b (c - a - b) : c (-a + b - c), the A-vertex of the extraversion triangle of X(9)
A'' = -a/(b + c + a) : b/(c - a - b) : c/(-a + b - c), the A-vertex of the extraversion triangle of X(57)
If P = x : y : z (barycentrics), then m(P) = (b+c)x - (a+c)y - (a+b)z : : , and m is the collineation indicated by (A,B,C,X(2); m(A), m(B), m(C), X(1)), and m maps the line X(1)X(2) to X(1)X(75), the Euler line to the Soddy line, and the line X(2)X(6) to the line X(1)X(2).
Let f(a,b,c,x,y,z) = a^2 (b-c) (b+c)^2 x^3-b (a+c) (3 a^2 b+a b^2+2 a^2 c+a b c+b^2 c-2 a c^2-2 b c^2) y^2 z+(a+b) c (2 a^2 b-2 a b^2+3 a^2 c+a b c-2 b^2 c+a c^2+b c^2) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) - 2 (a-b) (a-c) (b-c) (a b+a c+b c) x y z = 0. (Peter Moses, July 31, 2018)
X(20220) lies on these lines: {1, 29}, {2, 227}, {8, 3427}, {75, 1444}, {189, 962}, {312, 3436}, {318, 515}, {329, 3702}, {341, 5176}, {946, 5342}, {1420, 4858}, {3600, 17862}, {3869, 4673}, {4293, 17869}, {4297, 17860}, {6350, 19843}, {10538, 12114}, {11681, 18743}, {11682, 14206}
See X(20220).
X(20221) lies on these lines: {1, 29}, {3873, 17220}, {6223, 9812}, {14544, 18750}
X(20220) = anticomplement of X(227)
X(20220) = anticomplementary conjugate of anticomplement of X(285)
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,1), (2,17147), (3,3868), (4,20222), (6,75), (9,3875), (57,63), (223,20223)
Fifteen more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = -1 : 1 : 1
m(-a : b : c) = a+b+c : -c : -b
m(a : b cos C : c cos B) = (a + b + c) (a^2 b - b^3 + a^2 c - 2 a b c + b^2 c + b c^2 - c^3) : (a^3 b + a^2 b^2 - a b^3 - b^4 - a^3 c + a b^2 c - a^2 c^2 + 3 a b c^2 + a c^3 + c^4) : - (a^3 b + a^2 b^2 - a b^3 - b^4 - a^3 c - 3a b^2 c - a^2 c^2 - a b c^2 + a c^3 + c^4)
m(A') = a^2 - b^2 - c^2 : c (a + b + c) : b (a + b + c)
m(A'') = a^3 + a^2 b + a b^2 + b^3 + a^2 c - b^2 c + a c^2 - b c^2 + c^3 : 2 a^2 b + 2 a b^2 - a^2 c + b^2 c - 2 a c^2 - c^3 : -a^2 b - 2 a b^2 - b^3 + 2 a^2 c + 2 a c^2 + b c^2
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
A' = -a (b + c + a) : b (c - a - b) : c (-a + b - c), the A-vertex of the extraversion triangle of X(9)
A'' = -a/(b + c + a) : b/(c - a - b) : c/(-a + b - c), the A-vertex of the extraversion triangle of X(57)
If P = x : y : z (barycentrics), then m(P) = -bc(b+c)x + ac(a+c)y + ab(a+b)z : : , and m is the collineation indicated by (A,B,C,X(1); m(A), m(B), m(C), X(1)).
Let f(a,b,c,x,y,z) = a (b-c) (b+c)^2 (a+b+c) x^3-(a+c) (2 a^3 b+2 a^2 b^2-a^3 c+a b^2 c+a b c^2-b^2 c^2+a c^3-b c^3) y^2 z-(a+b) (a^3 b-a b^3-2 a^3 c-a b^2 c+b^3 c-2 a^2 c^2-a b c^2+b^2 c^2) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) - 2 (a-b) (a-c) (b-c) (a+b+c)^2 x y z = 0. (Peter Moses, July 31, 2018)
X(20222) lies on these lines: {1, 18662}, {2, 1068}, {20, 145}, {22, 20045}, {75, 280}, {78, 4552}, {255, 14544}, {318, 17080}, {411, 1897}, {2406, 7114}, {3164, 7520}, {3875, 17134}, {4296, 4861}, {7538, 9538}
X(20222) = anticomplement of isogonal conjugate of X(1437)
X(20222) = anticomplement of isotomic conjugate of X(1444)
X(20222) = anticomplement of polar conjugate of X(81)
X(20222) = anticomplement of anticomplement of X(37565)
X(20222) = anticomplementary conjugate of anticomplement of X(1437)
See X(20222).
X(20223) lies on these lines: {1, 18662}, {19, 27}, {57, 17862}, {77, 6360}, {189, 9965}, {280, 962}, {329, 3687}, {345, 908}, {347, 18652}, {1043, 11682}, {1708, 4858}, {3101, 10444}, {3262, 3719}, {5249, 6350}, {5942, 20078}
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,1), (2,43), (3,46), (4,1745), (6,9), (9,1743), (57,165), (223,1750), (282,20224), (1073,20225), (1249,20226)
Fifteen more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = -a : b : c (A-vertex of excentral triangle)
m(-a : b : c) = 3a : -b : -c
m(a : b cos C : c cos B) = a (a^2 b - b^3 + a^2 c - 2 a b c + b^2 c + b c^2 - c^3) : -b (-a^2 b + b^3 + a^2 c - 2 a b c + b^2 c - b c^2 - c^3) : -c (a^2 b - b^3 - a^2 c - 2 a b c - b^2 c + b c^2 + c^3)
m(A') = a (a - b - c) : -b (-a + b - 3 c) : c(a + 3 b - c)
m(A'') = a (a^2 + 2 a b + b^2 + 2 a c - 2 b c + c^2) : b (a^2 + 2 a b + b^2 - 2 a c + 2 b c - 3 c^2) : c (a^2 - 2 a b - 3 b^2 + 2 a c + 2 b c + c^2)
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
A' = -a (b + c + a) : b (c - a - b) : c (-a + b - c), the A-vertex of the extraversion triangle of X(9)
A'' = -a/(b + c + a) : b/(c - a - b) : c/(-a + b - c), the A-vertex of the extraversion triangle of X(57)
If P = x : y : z (barycentrics), then m(P) = a(-bcx + cay + abc) : : , and m is the collineation indicated by (A,B,C,X(1); m(A), m(B), m(C), X(1)).
Let f(a,b,c,x,y,z) = b^2 (b-c) c^2 x^3-a^2 b (2 a-c) c y^2 z+a^2 (2 a-b) b c y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, July 31, 2018)
X(20224) lies on these lines: {1, 281}, {9, 1720}, {43, 1721}, {46, 1743}, {610, 1783}, {1394, 9376}, {1465, 1723}, {1722, 5018}, {1767, 1781}
See X(20224).
X(20225) lies on these lines: {1, 1073}, {43, 20226}, {46, 3182}, {1712, 1714}, {1723, 1779}, {1743, 1750}
See X(20224).
X(20226) lies on these lines: {1, 281}, {9, 1745}, {43, 20225}, {71, 165}, {219, 3362}, {2324, 3465}, {5657, 9121}
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,16583), (2,1196), (3,3767), (4,39), (6,6), (9,20227), (57,20310), (223,20311), (282,20312)
Nine more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : 1 : 1
m(-a : b : c) = a (b + c) (a^2 + b^2 - 2 b c + c^2) : b (a - c) c (a^2 + b^2 + 2 a c + c^2) : c (a - b) (a^2 + 2 a b + b^2 + c^2)
m(a : b cos C : c cos B) = a^2 (a^2 + b^2 - c^2) (a^2 - b^2 + c^2) (b^2 + c^2) : b^2 (a^4 - b^4 - 2 a^2 c^2 + 4 b^2 c^2 + c^4) : c^2 (a^4 - 2 a^2 b^2 + b^4 + 4 b^2 c^2 - c^4)
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
If P = x : y : z (barycentrics), then m(P) = a^2 c^2 (a^2 - b^2 +c^2)y + a^2 b^2(a^2 + b^2 - c^2) z : : , and m is the collineation indicated by (A,B,C,X(6); m(A), m(B), m(C), X(6)).
Let f(a,b,c,x,y,z) = (b^2-c^2) (a^6-a^4 b^2-a^2 b^4+b^6-a^4 c^2+4 a^2 b^2 c^2+b^4 c^2-a^2 c^4+b^2 c^4+c^6) x^3-(a^8+2 a^6 b^2-2 a^4 b^4-2 a^2 b^6+b^8+a^6 c^2-7 a^4 b^2 c^2+5 a^2 b^4 c^2+b^6 c^2-3 a^4 c^4+10 a^2 b^2 c^4-3 b^4 c^4-a^2 c^6-b^2 c^6+2 c^8) y^2 z+(a^8+a^6 b^2-3 a^4 b^4-a^2 b^6+2 b^8+2 a^6 c^2-7 a^4 b^2 c^2+10 a^2 b^4 c^2-b^6 c^2-2 a^4 c^4+5 a^2 b^2 c^4-3 b^4 c^4-2 a^2 c^6+b^2 c^6+c^8) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) + 4 (a-b) (a+b) (a-c) (b-c) (a+c) (b+c) (a^2+b^2+c^2) x y z = 0. (Peter Moses, July 31, 2018)
X(20227) lies on these lines: {2, 3718}, {6, 169}, {9, 982}, {19, 16502}, {37, 39}, {56, 5336}, {63, 19724}, {65, 2300}, {72, 992}, {142, 2092}, {229, 1169}, {244, 1400}, {284, 16716}, {604, 1880}, {610, 16780}, {614, 2285}, {910, 16946}, {941, 4850}, {1015, 1108}, {1086, 12610}, {1104, 5019}, {1149, 17452}, {1201, 2171}, {1575, 3694}, {1781, 5299}, {2256, 9620}, {2262, 3125}, {2298, 7191}, {3554, 14571}, {3666, 10436}, {3686, 16605}, {3713, 17597}, {3836, 17748}, {3965, 16610}, {5120, 16968}, {5257, 6682}, {16488, 16548}
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,213), (2,3051), (3,32), (4,217), (6,6), (9,20228), (57,20229), (223,20230), (282,20231), (1073,20232), (1249,20233)
Fifteen more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : b^2 : c^2
m(-a : b : c) = a^3 (b + c) : b^3 (a - c) : c^3 (a - b)
m(a : b cos C : c cos B) = a^2 (a^2 b^2 - b^4 + a^2 c^2 + 2 b^2 c^2 - c^4) : -b^4 (-a^2 + b^2 - 3 c^2), -c^4 (-a^2 - 3 b^2 + c^2)
m(A') = a^3 (a b - b^2 + a c + 2 b c - c^2), -b^3 (-a^2 + a b - 2 a c - b c - c^2), -c^3 (-a^2 - 2 a b - b^2 + a c - b c)
m(A'') = a^3 (a + b + c) (a b + b^2 + a c - 2 b c + c^2) : b^3 (a + b - c) (a^2 + a b + 2 a c - b c + c^2) : c^3 (a - b + c) (a^2 + 2 a b + b^2 + a c - b c),
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
A' = -a (b + c + a) : b (c - a - b) : c (-a + b - c), the A-vertex of the extraversion triangle of X(9)
A'' = -a/(b + c + a) : b/(c - a - b) : c/(-a + b - c), the A-vertex of the extraversion triangle of X(57)
If P = x : y : z (barycentrics), then m(P) = a^4 (c^2 y + b^2 z) : b^4 (c^2 x + a^2 z) : c^4 (b^2 x + a^2 y) , and m is the collineation indicated by (A,B,C,X(6); m(A), m(B), m(C), X(6)).
Let f(a,b,c,x,y,z) = b^6 c^6 (b^2-c^2) x^3-a^6 b^2 c^2 (c^2 (a^2+b^2+2 c^2) y^2 z-b^2 (a^2+2 b^2+c^2) y z^2), where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, July 31, 2018)
X(20228) lies on these lines: {1, 6}, {31, 5042}, {32, 604}, {39, 2269}, {48, 2251}, {109, 3451}, {163, 1333}, {217, 1404}, {572, 1914}, {573, 2275}, {992, 3686}, {1015, 1400}, {1193, 4263}, {1197, 2280}, {1201, 2347}, {1213, 19864}, {1403, 9315}, {1431, 1438}, {1572, 2285}, {1918, 3248}, {2183, 17053}, {2209, 2223}, {2220, 7113}, {2238, 3840}, {2241, 2268}, {2260, 4274}, {2262, 3125}, {2277, 4266}, {2288, 2317}, {3051, 9449}, {3752, 18163}, {3780, 4856}, {4268, 5301}, {4503, 4657}, {5816, 9599}, {20230, 20232}
X(20228) = isogonal conjugate of X(32017)
X(20228) = crosspoint of X(6) and X(604)
X(20228) = crosssum of X(2) and X(312)
X(20228) = crossdifference of every pair of points on line X(513)X(4397)
X(20228) = isogonal conjugate of polar conjugate of X(1828)
X(20228) = polar conjugate of isotomic conjugate of X(22344)
See X(20228).
X(20229) lies on these lines: {6, 57}, {31, 32}, {42, 1200}, {81, 294}, {109, 1174}, {218, 1707}, {220, 4512}, {584, 3990}, {607, 2355}, {651, 9446}, {1202, 1458}, {1212, 17194}, {1402, 9454}, {1409, 20233}, {1613, 16782}, {2170, 16971}, {2293, 8012}, {3051, 9449}, {14547, 16588}
X(20229) = isogonal conjugate of X(31618)
X(20229) = crossdifference of every pair of points on line X(693)X(3900)
X(20229) = isogonal conjugate of polar conjugate of X(1827)
X(20229) = polar conjugate of isotomic conjugate of X(22079)
See X(20228).
X(20230) lies on these lines: {6, 57}, {32, 7118}, {212, 16283}, {213, 217}, {3051, 20231}, {20228, 20232}
See X(20228).
X(20231) lies on these lines: {6, 282}, {32, 604}, {213, 20233}, {3051, 20230}
See X(20228).
X(20232) lies on these lines: {6, 1073}, {25, 32}, {3051, 20233}, {3767, 6619}, {20228, 20230}
See X(20228).
X(20233) lies on these lines: {4, 6}, {32, 14642}, {213, 20231}, {800, 3269}, {1409, 20229}, {2965, 18877}, {3051, 20232}, {5065, 14585}
X(20234) lies on these lines: {1,4812}, {2,2064}, {6,75}, {226,306}, {304,20171}, {312,17268}, {313,16732}, {315,17481}, {560,4381}, {696,4118}, {744,1918}, {760,17138}, {1227,17345}, {1229,17878}, {1281,8857}, {1916,18895}, {1930,17760}, {2887,7237}, {3094,3662}, {4019,16609}, {4136,16888}, {4150,16580}, {4178,17047}, {4385,9654}, {4647,4709}, {9229,18891}, {14963,17864}
X(20234) = X(75)-Ceva conjugate of X(3778)
X(20234) = X(16886)-cross conjugate of X(2887)
X(20234) = cevapoint of X(2887) and X(4136)
X(20234) = crosspoint of X(75) and X(1502)
X(20234) = crossdifference of every pair of points on line {788, 8636}
X(20234) = crosssum of X(31) and X(1501)
X(20234) = X(i)-isoconjugate of X(j) for these (i,j): {213, 7305}, {983, 1333}, {2194, 7132}, {2206, 17743}, {3736, 18898}, {7252, 8685}
X(20234) = barycentric product X(i)*X(j) for these {i,j}: {75, 2887}, {76, 3721}, {85, 4136}, {274, 16886}, {310, 7237}, {312, 16888}, {313, 982}, {321, 3662}, {349, 3061}, {561, 3778}, {668, 3801}, {850, 3888}, {1237, 3865}, {1441, 3705}, {1502, 16584}, {1930, 16889}, {3261, 7239}, {3701, 7185}, {3776, 4033}, {18895, 18904}
X(20234) = barycentric quotient X(i)/X(j) for these {i,j}: {10, 983}, {86, 7305}, {226, 7132}, {313, 7033}, {321, 17743}, {693, 7255}, {982, 58}, {2275, 1333}, {2887, 1}, {3056, 2194}, {3061, 284}, {3662, 81}, {3705, 21}, {3721, 6}, {3776, 1019}, {3777, 3733}, {3778, 31}, {3784, 1437}, {3794, 60}, {3801, 513}, {3810, 3737}, {3865, 1178}, {3888, 110}, {4033, 4621}, {4073, 2328}, {4136, 9}, {4531, 2175}, {4551, 8685}, {6385, 7307}, {7032, 2206}, {7185, 1014}, {7186, 17104}, {7237, 42}, {7239, 101}, {7248, 1408}, {8022, 1917}, {16584, 32}, {16886, 37}, {16888, 57}, {16889, 82}, {17415, 8630}, {18904, 1914}, {18905, 172}
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,1930), (2,321), (3,17864), (4,20235), (6,20234), (9,20236), (57,20237), (223,20238), (282,20239), (1073,20240), (1249,20241)
Fifteen more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : c : b
m(-a : b : c) = -b c (b^2 + c^2) : c a (a - c) (a + c) : a b (a - b) (a + b)
m(a : b cos C : c cos B) = b c (b + c) (a^2 + b^2 - 2 b c + c^2) : c a (2 a^3 + a^2 c - b^2 c + c^3) : a b (2 a^3 + a^2 b + b^3 - b c^2)
m(A') = b c (a b^2 + b^3 - b^2 c + a c^2 - b c^2 + c^3) : c a (a + c) (a^2 + a b - b c + c^2) : a b (a + b) c^2 (a^2 + b^2 + a c - b c)
m(A'') = -b c (a + b + c) (-a b^2 + b^3 - b^2 c - a c^2 - b c^2 + c^3) : c a (a + b - c) (a + c) (a^2 - a b + b c + c^2) : a b (a + b) (a - b + c) (a^2 + b^2 - a c + b c)
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
A' = -a (b + c + a) : b (c - a - b) : c (-a + b - c), the A-vertex of the extraversion triangle of X(9)
A'' = -a/(b + c + a) : b/(c - a - b) : c/(-a + b - c), the A-vertex of the extraversion triangle of X(57)
If P = x : y : z (barycentrics), then m(P) = b c (b y + c z) : c a (c z + a x) : a b (a x + b y ), and m is the collineation indicated by (A,B,C,X(75); m(A), m(B), m(C), X(75)).
Let f(a,b,c,x,y,z) = (a^7 b+a^4 b^4-a^7 c+a^3 b^4 c-a^4 c^4-a^3 b c^4) x^3+b^2 c (b+c) (3 a^4+a b^3-a b^2 c+b^3 c+a b c^2-b^2 c^2-a c^3+b c^3) y^2 z-b c^2 (b+c) (3 a^4-a b^3+a b^2 c+b^3 c-a b c^2-b^2 c^2+a c^3+b c^3) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) + 2 a b c (a-b) (a-c) (b-c) (a^2+a b+b^2+a c+b c+c^2) x y z = 0. (Peter Moses, July 31, 2018)
X(20235) lies on these lines: {4, 75}, {10, 307}, {63, 169}, {72, 1231}, {85, 443}, {321, 857}, {333, 16747}, {1722, 17861}, {1829, 18656}, {1930, 3687}, {2333, 8680}, {3673, 4000}, {4223, 16817}, {5179, 20236}, {7386, 17170}, {7490, 18750}, {7713, 18655}, {9798, 17134}, {16605, 16732}, {20234, 20241}
See X(20235).
X(20236) lies on these lines: {1, 20171}, {2, 17861}, {8, 6894}, {9, 75}, {63, 1746}, {80, 4692}, {85, 17298}, {92, 11679}, {141, 16732}, {312, 5219}, {314, 17788}, {321, 908}, {322, 17294}, {594, 4957}, {1089, 3790}, {1111, 3662}, {1150, 14206}, {1229, 1441}, {1234, 17052}, {1733, 3923}, {1930, 17760}, {2321, 3262}, {2911, 4361}, {3419, 15906}, {3553, 3875}, {3673, 17304}, {3992, 17057}, {4056, 17481}, {4385, 5587}, {4647, 5692}, {4812, 16788}, {5015, 18406}, {5179, 20235}, {5251, 16817}, {5526, 17117}, {6996, 11683}, {7264, 7797}, {7278, 17391}, {8680, 16574}, {16888, 17046}, {17023, 17863}, {17284, 17885}, {17295, 17791}, {17864, 20239}, {20238, 20240}
See X(20235).
X(20237) lies on these lines: {8, 79}, {57, 75}, {92, 3729}, {200, 17890}, {226, 3262}, {312, 646}, {321, 908}, {1733, 4362}, {1930, 17864}, {3706, 18839}, {3891, 17884}, {3912, 17862}, {4424, 6735}, {4970, 6745}, {17182, 17452}, {20234, 20238}
See X(20235).
X(20238) lies on these lines: {2, 17880}, {75, 223}, {92, 10888}, {226, 17858}, {318, 9612}, {321, 20239}, {1745, 4647}, {1763, 11679}, {1930, 3687}, {4417, 18695}, {18690, 19684}, {20234, 20237}, {20236, 20240}
See X(20235).
X(20239) lies on these lines: {75, 282}, {321, 20238}, {346, 347}, {1930, 20241}, {17864, 20236}
See X(20235).
X(20240) lies on these lines: {75, 1073}, {321, 20241}, {20236, 20238}
See X(20235).
X(20241) lies on these lines: {75, 1249}, {321, 20240}, {1930, 20239}, {20234, 20235}
X(20242) lies on these lines: {1, 17167}, {2, 228}, {4, 912}, {63, 14956}, {75, 1370}, {147, 149}, {314, 17135}, {315, 766}, {1331, 1746}, {1621, 7474}, {1998, 10888}, {4210, 17077}
X(20242) = anticomplement of X(228)
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,17135), (2,75), (3,20242), (4,20243), (6,17137), (9,20244), (57,20245), (223,20246)
Twelve more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = -1 : 1 : 1
m(-a : b : c) = a^2 b + a b^2 + a^2 c + b^2 c + a c^2 + b c^2 : -a^2 b - a b^2 - a^2 c - b^2 c + a c^2 + b c^2 : -a^2 b + a b^2 - a^2 c + b^2 c - a c^2 - b c^2
m(a : b cos C : c cos B) = a (a^2 b - b^3 + a^2 c - 2 a b c + b^2 c + b c^2 - c^3) : -a^3 b + a b^3 - 3 a^3 c + a b^2 c + 2 b^3 c - a b c^2 - a c^3 - 2 b c^3 : -3 a^3 b - a b^3 - a^3 c - a b^2 c - 2 b^3 c + a b c^2 + a c^3 + 2 b c^3
m(A') = a^3 b - a b^3 + a^3 c + 2 a^2 b c - b^3 c + 2 b^2 c^2 - a c^3 - b c^3 : -a^3 b + a b^3 - a^3 c - 2 a^2 b c + b^3 c - 2 a^2 c^2 - a c^3 - b c^3 : -a^3 b - 2 a^2 b^2 - a b^3 - a^3 c - 2 a^2 b c - b^3 c + a c^3 + b c^3
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
A' = -a (b + c + a) : b (c - a - b) : c (-a + b - c), the A-vertex of the extraversion triangle of X(9)
If P = x : y : z (barycentrics), then m(P) = a(b + c)x - b(c + a)y - c(a + b)z : : , and m is the collineation indicated by (A,B,C,X(2); m(A), m(B), m(C), X(75)).
Let f(a,b,c,x,y,z) = a^5 (b-c) (b+c)^2 x^3+b (a+c) (a^4 b^2-a^2 b^4+2 a^4 b c+a^2 b^3 c+a b^4 c+a^4 c^2+a b^3 c^2+2 b^4 c^2-a^2 c^4-2 a b c^4-b^2 c^4) y^2 z-(a+b) c (a^4 b^2-a^2 b^4+2 a^4 b c-2 a b^4 c+a^4 c^2-b^4 c^2+a^2 b c^3+a b^2 c^3-a^2 c^4+a b c^4+2 b^2 c^4) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) + 2 (a-b) (a-c) (b-c) (a b+a c+b c) (a^2 b+a b^2+a^2 c+a b c+b^2 c+a c^2+b c^2) x y z = 0. (Peter Moses, July 31, 2018)
X(20243) lies on these lines: {1, 1719}, {2, 1824}, {3, 11401}, {19, 4228}, {20, 145}, {22, 55}, {75, 1370}, {92, 14956}, {100, 4123}, {103, 13397}, {110, 10537}, {345, 4463}, {347, 5173}, {674, 12220}, {858, 2886}, {1043, 3869}, {1829, 6872}, {1871, 6837}, {1872, 6838}, {1900, 6871}, {2099, 4296}, {2915, 8144}, {3060, 10394}, {3153, 18407}, {3428, 11413}, {3873, 4360}, {3914, 15076}, {5842, 12225}, {5905, 17441}, {6182, 17161}, {6198, 11337}, {6327, 12530}, {7465, 10319}, {7520, 9538}, {9960, 12111}, {9961, 12279}, {10679, 11414}, {17135, 20246}, {17140, 18659}
X(20243) = anticomplement of X(1824)
See X(20243).
X(20244) lies on these lines: {1, 17136}, {2, 1334}, {7, 145}, {8, 3761}, {65, 20247}, {69, 9049}, {75, 3869}, {85, 14923}, {239, 20109}, {310, 2388}, {644, 17682}, {1018, 2140}, {2262, 20248}, {2389, 3434}, {3663, 10459}, {3739, 4520}, {3754, 7264}, {3873, 17158}, {3880, 4059}, {4441, 17751}, {4861, 5088}, {7223, 10912}, {16549, 17761}, {17134, 18654}, {17140, 18659}, {17483, 20016}
X(20244) = anticomplement of X(1334)
See X(20243).
X(20245) lies on these lines: {1, 17183}, {2, 7}, {8, 10435}, {69, 313}, {75, 3869}, {78, 10444}, {86, 2975}, {200, 10442}, {304, 18659}, {314, 17135}, {319, 5176}, {320, 18133}, {326, 17134}, {978, 4862}, {992, 1086}, {1193, 3663}, {1370, 6327}, {1760, 14543}, {1764, 3588}, {1930, 18656}, {1958, 14953}, {2277, 17276}, {2385, 4329}, {2852, 14360}, {3664, 12527}, {3718, 3952}, {3765, 15983}, {3870, 10889}, {3875, 11682}, {4225, 8822}, {4452, 20036}, {5224, 11681}, {5554, 5933}, {17137, 20246}, {17863, 20247}, {18658, 18695}
X(20245) = anticomplement of X(1400)
X(20245) = isotomic conjugate of isogonal conjugate of X(23361)
X(20245) = polar conjugate of isogonal conjugate of X(23131)
See X(20243).
X(20246) lies on these lines: {189, 9965}, {2995, 17220}, {17135, 20243}, {17137, 20245}
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,17165), (2,6), (3,3060), (4,22), (6,76), (9,20247), (57,20248), (223,20249)
Twelve more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = -1 : 1 : 1
m(-a : b : c) = a^2 b + a b^2 + a^2 c + b^2 c + a c^2 + b c^2 : -a^2 b - a b^2 + a^2 c + b^2 c - a c^2 - b c^2 : a^2 b - a b^2 - a^2 c - b^2 c - a c^2 + b c^2
m(a : b cos C : c cos B) = 2 a^4 - a^2 b^2 - b^4 - a^2 c^2 + 2 b^2 c^2 - c^4 : a^2 b^2 - b^4 + 3 a^2 c^2 + c^4 : 3 a^2 b^2 + b^4 + a^2 c^2 - c^4
m(A') = a^3 b - a b^3 + a^3 c - 2 a^2 b c - b^3 c + 2 b^2 c^2 - a c^3 - b c^3 : -a^3 b + a b^3 + a^3 c + 2 a b^2 c - b^3 c + 2 a^2 c^2 + a c^3 + b c^3 : a^3 b + 2 a^2 b^2 + a b^3 - a^3 c + b^3 c + 2 a b c^2 + a c^3 - b c^3
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
A' = -a (b + c + a) : b (c - a - b) : c (-a + b - c), the A-vertex of the extraversion triangle of X(9)
If P = x : y : z (barycentrics), then m(P) = (b^2 + c^2)x - (a^2 + c^2)y - (a^2 + b^2)z : : , and m is the collineation indicated by (A,B,C,X(2); m(A), m(B), m(C), X(6)).
Let f(a,b,c,x,y,z) = a^2 (b-c) (b+c) (b^2+c^2)^2 x^3-(a^2+c^2) (2 a^4 b^2+2 a^2 b^4-a^4 c^2+a^2 b^2 c^2+a^2 c^4-b^2 c^4) y^2 z-(a^2+b^2) (a^4 b^2-a^2 b^4-2 a^4 c^2-a^2 b^2 c^2+b^4 c^2-2 a^2 c^4) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) - 2 (a-b) (a+b) (a-c) (b-c) (a+c) (b+c) (a^2+b^2+c^2) x y z = 0. (Peter Moses, July 31, 2018)
X(20247) lies on these lines: {2, 17048}, {6, 20248}, {7, 2475}, {22, 17150}, {56, 17136}, {65, 20244}, {75, 17751}, {76, 17141}, {85, 3873}, {145, 3212}, {758, 7264}, {982, 18600}, {1111, 3874}, {3673, 3868}, {3892, 7278}, {3952, 18135}, {4352, 4392}, {4441, 17164}, {4566, 6604}, {5086, 7247}, {5208, 16749}, {6737, 10520}, {14923, 17158}, {17034, 17489}, {17169, 18398}, {17863, 20245}
X(20247) = anticomplement of X(33299)
See X(20247).
X(20248) lies on these lines: {6, 20247}, {63, 17495}, {76, 20249}, {144, 1278}, {198, 17136}, {329, 2893}, {2262, 20244}, {3060, 17165}
See X(20247).
X(20249) lies on these lines: {22, 17165}, {76, 20248}
X(20250) lies on this line: {536, 20141}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27926.
X(20251) lies on these lines: {574, 11004}, {8541, 19128}
X(20251) = isogonal conjugate of X(7603)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27926.
X(20252) lies on these lines: {2, 13103}, {5, 13}, {30, 5459}, {115, 6783}, {140, 6669}, {381, 6770}, {495, 10078}, {496, 10062}, {530, 547}, {542, 5066}, {549, 5473}, {616, 1656}, {618, 3628}, {952, 11705}, {2549, 18582}, {3055, 6115}, {5463, 15699}, {5470, 5613}, {5472, 11543}, {5886, 9901}, {7975, 10283}, {9916, 13861}, {10592, 12942}, {10593, 12952}, {15325, 18974}, {19073, 19117}, {19074, 19116}
X(20252) = midpoint of X(i) and X(j) for these {i,j}: {5, 13}, {618, 16001}
X(20252) = reflection of X(i) in X(j) for these (i,j): (140, 6669), (618, 3628)
X(20252) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (115, 10611, 14136), (5459, 5478, 6771), (10611, 14136, 11542)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27926.
X(20253) lies on these lines: {2, 13102}, {5, 14}, {30, 5460}, {115, 6782}, {140, 6670}, {381, 6773}, {495, 10077}, {496, 10061}, {531, 547}, {542, 5066}, {549, 5474}, {617, 1656}, {619, 3628}, {952, 11706}, {2549, 18581}, {3055, 6114}, {5464, 15699}, {5469, 5617}, {5471, 11542}, {5886, 9900}, {7974, 10283}, {9915, 13861}, {10592, 12941}, {10593, 12951}, {15325, 18975}, {19075, 19117}, {19076, 19116}
X(20253) = midpoint of X(i) and X(j) for these {i,j}: {5, 14}, {619, 16002}
X(20253) = reflection of X(i) in X(j) for these (i,j): (140, 6670), (619, 3628)
X(20253) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (115, 10612, 14137), (5460, 5479, 6774), (10612, 14137, 11543)
X(20254) lies on these lines: {1, 3}, {2, 17927}, {63, 17972}, {75, 20256}, {304, 7019}, {851, 20243}, {1368, 2968}, {1465, 19540}, {1565, 7182}, {3771, 17793}, {3784, 7004}, {3840, 20259}, {3955, 20277}, {4192, 17080}, {4516, 17064}, {6198, 19548}, {8555, 13323}, {17063, 20275}, {17185, 18175}, {20255, 20261}
X(20254) lies on these lines: {2, 1258}, {10, 141}, {75, 20271}, {76, 1086}, {116, 626}, {244, 7148}, {304, 3959}, {742, 16583}, {1500, 17243}, {1573, 16887}, {1930, 3125}, {2140, 3934}, {2238, 17137}, {3263, 3721}, {3501, 17279}, {3589, 17750}, {3661, 19804}, {3662, 6376}, {3730, 4422}, {3734, 14377}, {3752, 3912}, {3782, 3948}, {3831, 17050}, {3840, 20257}, {3924, 4372}, {3932, 12782}, {4361, 10449}, {4364, 16589}, {4713, 17753}, {4950, 5300}, {5031, 17047}, {7816, 17729}, {10436, 15985}, {16720, 17451}, {17034, 17366}, {17365, 17499}, {18157, 18189}, {20254, 20261}, {20258, 20259}
X(20255) = complement of X(2176)
X(20255) = complementary conjugate of X(6376)
X(20255) = isotomic conjugate of isogonal conjugate of X(22199)
X(20255) = polar conjugate of isogonal conjugate of X(22413)
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,3840), (2,75), (3,20256), (4,20254), (6,20255), (9,20257), (57,20258), (223,20259), (282,20260), (1249,20261)
Twelve more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : 1 : 1
m(-a : b : c) = a b^2 - 2 a b c + b^2 c + a c^2 + b c^2 : -(a - c) (a b + a c + b c) : -(a - b) (a b + a c + b c)
m(a : b cos C : c cos B) = 2 a^3 (b^3 + a b c - b^2 c - b c^2 + c^3) : a^2 (a^3 b + a b^3 + 3 a^3 c - a^2 b c - a b^2 c - b^3 c - a b c^2 + a c^3 + b c^3) : a^2 (3 a^3 b + a b^3 + a^3 c - a^2 b c - a b^2 c + b^3 c - a b c^2 + a c^3 - b c^3)
m(A') = a^2 b^2 + a b^3 - 2 a^2 b c + b^3 c + a^2 c^2 - 2 b^2 c^2 + a c^3 + b c^3 : a^3 b + a^2 b^2 + a^3 c + 2 a^2 c^2 - 2 a b c^2 - b^2 c^2 + a c^3 + b c^3 : a^3 b + 2 a^2 b^2 + a b^3 + a^3 c - 2 a b^2 c + b^3 c + a^2 c^2 - b^2 c^2
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
A' = -a (b + c + a) : b (c - a - b) : c (-a + b - c), the A-vertex of the extraversion triangle of X(9)
If P = x : y : z (barycentrics), then m(P) = (b c + a b - a c)y + (b c + a c - a b)z : : , and m is the collineation indicated by (A,B,C,X(2); m(A), m(B), m(C), X(75)).
Let f(a,b,c,x,y,z) = a (b-c) (a b+a c+b c) (a^3 b+a^3 c-3 a^2 b c+a b^2 c+a b c^2+b^2 c^2) x^3+c (3 a^4 b^3+a^3 b^4+6 a^4 b^2 c-8 a^3 b^3 c+2 a^2 b^4 c+3 a^4 b c^2-6 a^3 b^2 c^2+2 a^2 b^3 c^2+a b^4 c^2+2 a^3 b c^3-2 a b^3 c^3-a^3 c^4-a^2 b c^4+a b^2 c^4+b^3 c^4) y^2 z-b (-a^3 b^4+3 a^4 b^2 c+2 a^3 b^3 c-a^2 b^4 c+6 a^4 b c^2-6 a^3 b^2 c^2+a b^4 c^2+3 a^4 c^3-8 a^3 b c^3+2 a^2 b^2 c^3-2 a b^3 c^3+b^4 c^3+a^3 c^4+2 a^2 b c^4+a b^2 c^4) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) + 2 (a-b) (a-c) (b-c) (a b+a c+b c) (a^2 b+a b^2+a^2 c-a b c+b^2 c+a c^2+b c^2) x y z = 0. (Peter Moses, July 31, 2018)
X(20256) lies on these lines: {1, 15973}, {5, 226}, {11, 982}, {75, 20254}, {141, 9017}, {851, 20242}, {1565, 6063}, {1985, 5905}, {3142, 3868}, {3816, 4364}, {3820, 4104}, {3840, 20258}, {8727, 9436}, {10886, 10980}, {14008, 17483}, {14213, 18210}, {20257, 20260}
X(20257) lies on these lines: {1, 142}, {2, 3208}, {10, 3934}, {75, 3061}, {85, 4051}, {194, 1266}, {226, 239}, {274, 17197}, {330, 7185}, {519, 2140}, {527, 17753}, {672, 20244}, {673, 2329}, {908, 16816}, {946, 16825}, {1086, 17448}, {1107, 3663}, {2176, 3008}, {2321, 17143}, {2886, 17062}, {3244, 17758}, {3452, 4384}, {3753, 17048}, {3840, 20255}, {3880, 6706}, {3912, 17144}, {4323, 4402}, {4361, 12635}, {4393, 5249}, {4861, 9317}, {4904, 17046}, {5257, 16819}, {5316, 16815}, {6647, 11260}, {8666, 14377}, {12053, 16823}, {14951, 18159}, {16969, 17278}, {17205, 18172}, {20256, 20260}
X(20258) lies on these lines: {2, 7}, {10, 511}, {39, 3663}, {75, 3061}, {86, 2329}, {314, 646}, {946, 3923}, {1045, 3755}, {1329, 3836}, {1334, 17183}, {1738, 16571}, {2345, 10456}, {3501, 10446}, {3664, 17750}, {3685, 12053}, {3705, 7155}, {3840, 20256}, {3879, 17752}, {3946, 5105}, {4858, 20234}, {20255, 20259}
X(20258) = complement of X(1423)
X(20258) = complementary conjugate of X(20528)
X(20258) = polar conjugate of isogonal conjugate of X(20732)
X(20259) lies on these lines: {10, 1352}, {57, 281}, {75, 20260}, {894, 20262}, {3840, 20254}, {20255, 20258}
X(20260) lies on these lines: {75, 20259}, {223, 239}, {1210, 1861}, {2808, 6260}, {3840, 20261}, {20256, 20257}
X(20261) lies on these lines: {3840, 20260}, {18634, 20208}, {20254, 20255}
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002), which is the anticomplement of K099. The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,226), (2,6), (3,13567), (4,2), (6,5), (9,1210), (57,20262), (223,20263), (282,20264), (1073,20265), (1249,4)
Twelve more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : 1 : 1
m(-a : b : c) = (a + b - c) (a - b + c) (b + c) : (a - c) (a - b + c) (a + b + c) : (a - b) (a + b - c) (a + b + c)
m(a : b cos C : c cos B) = 2 a^2 (a^2 + b^2 - c^2) (a^2 - b^2 + c^2) : -a^2 (a - b - c) (a + b - c) (a - b + c) (a + b + c) : -a^2 (a - b - c) (a + b - c) (a - b + c) (a + b + c)
m(A') = -a^3 b - a^2 b^2 + a b^3 + b^4 - a^3 c + 2 a^2 b c - a b^2 c - a^2 c^2 - a b c^2 - 2 b^2 c^2 + a c^3 + c^4 : a^4 + a^3 b - a^2 b^2 - a b^3 + a^2 b c - 2 a b^2 c + b^3 c - 2 a^2 c^2 - a b c^2 - b^2 c^2 - b c^3 + c^4 : a^4 - 2 a^2 b^2 + b^4 + a^3 c + a^2 b c - a b^2 c - b^3 c - a^2 c^2 - 2 a b c^2 - b^2 c^2 - a c^3 + b c^3
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
A' = -a (b + c + a) : b (c - a - b) : c (-a + b - c), the A-vertex of the extraversion triangle of X(9)
If P = x : y : z (barycentrics), then m(P) = (a^2 - b^2 + c^2)y + (a^2 + b^2 - c^2)z : : , and m is the collineation indicated by (A,B,C,X(2); m(A), m(B), m(C), X(6)); m maps the line X(4)X(6) onto the Euler line and maps the Euler line onto the line X(2)X(6).
Let f(a,b,c,x,y,z) = (a-b-c) (b-c) (a+b-c) (a-b+c) (b+c) (a+b+c) (a^2-b^2-c^2) x^3-(3 a^8-6 a^6 b^2+4 a^4 b^4-2 a^2 b^6+b^8-5 a^6 c^2+7 a^4 b^2 c^2+a^2 b^4 c^2-3 b^6 c^2+a^4 c^4+3 b^4 c^4+a^2 c^6-b^2 c^6) y^2 z+(3 a^8-5 a^6 b^2+a^4 b^4+a^2 b^6-6 a^6 c^2+7 a^4 b^2 c^2-b^6 c^2+4 a^4 c^4+a^2 b^2 c^4+3 b^4 c^4-2 a^2 c^6-3 b^2 c^6+c^8) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, July 31, 2018)
X(20262) lies on these lines: {2, 77}, {4, 9}, {5, 5908}, {6, 1210}, {8, 2324}, {37, 1146}, {117, 374}, {142, 1439}, {198, 515}, {219, 3686}, {220, 17275}, {226, 6708}, {346, 6735}, {391, 6734}, {442, 10380}, {443, 3182}, {461, 7070}, {478, 2122}, {527, 10400}, {572, 14058}, {610, 6245}, {894, 20259}, {946, 2262}, {948, 18634}, {950, 4254}, {958, 13737}, {993, 15817}, {1211, 3452}, {1212, 1213}, {1329, 3844}, {1436, 6705}, {1449, 11019}, {1604, 12114}, {1609, 17010}, {1696, 5252}, {1737, 1743}, {1741, 4292}, {1903, 6260}, {1944, 4416}, {2178, 4311}, {2182, 12616}, {2321, 3965}, {2323, 10916}, {3041, 17049}, {3555, 11022}, {3663, 4858}, {3707, 7359}, {3731, 10039}, {3911, 5120}, {3925, 10374}, {3950, 10915}, {3973, 18395}, {5257, 5930}, {5745, 11347}, {5795, 10367}, {6603, 17362}, {7003, 7952}, {10368, 12527}, {10479, 15479}
X(20262) = complement of X(77)
X(20262) = isotomic conjugate of polar conjugate of X(1856)
X(20262) = complementary conjugate of X(34822)
See X(20262).
X(20263) lies on these lines: {2, 7}, {4, 282}, {5, 5908}, {6, 20264}, {268, 4292}, {281, 946}, {610, 6260}, {1210, 9119}, {1439, 20206}, {1838, 20226}, {1903, 6245}, {2262, 5514}, {2270, 6848}, {3668, 16596}, {10400, 20202}
See X(20262).
X(20264) lies on these lines: {1, 4}, {2, 271}, {5, 5911}, {6, 20263}, {10, 7358}, {1097, 4417}, {1210, 13567}, {18635, 20206}
See X(20262).
X(20265) lies on these lines: {2, 1032}, {4, 6}, {5, 5910}, {1033, 15311}, {1210, 9119}, {2130, 14092}, {13567, 20207}, {14642, 16318}
X(20266) lies on these lines: {2, 7}, {84, 3089}, {116, 13478}, {222, 13567}, {278, 4858}, {281, 7365}, {406, 4292}, {468, 1473}, {475, 1210}, {498, 3075}, {499, 1725}, {940, 16608}, {1375, 15509}, {2003, 11433}, {3086, 5573}, {3220, 6353}, {3546, 5709}, {3666, 17073}, {3752, 20269}, {3812, 19784}, {4000, 17917}, {4194, 9579}, {4200, 9581}, {5285, 7386}, {7293, 7493}, {16578, 17776}, {17043, 20182}, {17234, 19795}, {17595, 18644}, {18214, 18636}
X(20267) lies on these lines: {1, 17046}, {2, 1930}, {32, 4056}, {116, 3924}, {172, 7272}, {183, 17192}, {499, 1733}, {609, 4911}, {626, 4372}, {1089, 7795}, {1111, 3767}, {1759, 4920}, {3120, 14377}, {3403, 16706}, {3665, 5305}, {3772, 20269}, {3915, 5074}, {4376, 6680}, {4657, 19864}, {4872, 7031}, {5280, 7179}, {5299, 17181}, {7834, 16720}, {7867, 16886}
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,3772), (2,4000), (3,20268), (4,20266), (6,20267), (9,20269), (57,20270)
Nine more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = a : a - c : a - b
m(-a : b : c) = -a^3 + b^3 - b^2 c - b c^2 + c^3 : -a^3 + b^3 + a^2 c - a c^2 + c^3 : -a^3 + a^2 b - a b^2 + b^3 + c^3
m(a : b cos C : c cos B) = 2 a^4 + a^2 b^2 + b^4 - 2 a^2 b c + a^2 c^2 - 2 b^2 c^2 + c^4 : 2 a^4 + a^2 b^2 + b^4 - 3 a^3 c + a b^2 c + a^2 c^2 - 2 b^2 c^2 - a c^3 + c^4 : 2 a^4 - 3 a^3 b + a^2 b^2 - a b^3 + b^4 + a^2 c^2 + a b c^2 - 2 b^2 c^2 + c^4,
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
If P = x : y : z (barycentrics), then m(P) = a^2 x + (b - c)(b y - c z ) : : , and m is the collineation indicated by (A',B',C',X(75); m(A'), m(B'), m(C'), X(1)), where A' = 0 : c : b, and B' and C' are defined cyclically.
Let f(a,b,c,x,y,z) = a^2 (b-c) (a^8-a^7 b-2 a^6 b^2+a^5 b^3+2 a^4 b^4+a^3 b^5-2 a^2 b^6-a b^7+b^8-a^7 c+3 a^6 b c-a^5 b^2 c+a^4 b^3 c-3 a^3 b^4 c-3 a^2 b^5 c+5 a b^6 c-b^7 c-2 a^6 c^2-a^5 b c^2+9 a^4 b^2 c^2-10 a^3 b^3 c^2+4 a^2 b^4 c^2+3 a b^5 c^2-3 b^6 c^2+a^5 c^3+a^4 b c^3-10 a^3 b^2 c^3+12 a^2 b^3 c^3-3 a b^4 c^3-b^5 c^3+2 a^4 c^4-3 a^3 b c^4+4 a^2 b^2 c^4-3 a b^3 c^4+a^3 c^5-3 a^2 b c^5+3 a b^2 c^5-b^3 c^5-2 a^2 c^6+5 a b c^6-3 b^2 c^6-a c^7-b c^7+c^8) x^3-b (a^10-a^9 b-2 a^8 b^2+2 a^7 b^3+2 a^6 b^4-2 a^5 b^5-2 a^4 b^6+2 a^3 b^7+a^2 b^8-a b^9-4 a^9 c+11 a^8 b c-15 a^6 b^3 c+7 a^4 b^5 c+8 a^3 b^6 c-5 a^2 b^7 c-4 a b^8 c+2 b^9 c-14 a^7 b c^2+24 a^6 b^2 c^2+7 a^5 b^3 c^2-3 a^4 b^4 c^2-14 a^3 b^5 c^2-12 a^2 b^6 c^2+13 a b^7 c^2-b^8 c^2+6 a^7 c^3-10 a^6 b c^3-14 a^5 b^2 c^3+7 a^4 b^3 c^3-10 a^3 b^4 c^3+24 a^2 b^5 c^3+2 a b^6 c^3-5 b^7 c^3-a^6 c^4+13 a^5 b c^4-20 a^4 b^2 c^4+28 a^3 b^3 c^4-11 a^2 b^4 c^4-9 a b^5 c^4-4 a^5 c^5+12 a^4 b c^5-16 a^3 b^2 c^5+3 a^2 b^3 c^5-4 a b^4 c^5+5 b^5 c^5-a^4 c^6-4 a^3 b c^6+14 a^2 b^2 c^6-9 a b^3 c^6+4 b^4 c^6+6 a^3 c^7-14 a^2 b c^7+10 a b^2 c^7-3 b^3 c^7+6 a b c^8-4 b^2 c^8-4 a c^9+b c^9+c^10) y^2 z+c (a^10-4 a^9 b+6 a^7 b^3-a^6 b^4-4 a^5 b^5-a^4 b^6+6 a^3 b^7-4 a b^9+b^10-a^9 c+11 a^8 b c-14 a^7 b^2 c-10 a^6 b^3 c+13 a^5 b^4 c+12 a^4 b^5 c-4 a^3 b^6 c-14 a^2 b^7 c+6 a b^8 c+b^9 c-2 a^8 c^2+24 a^6 b^2 c^2-14 a^5 b^3 c^2-20 a^4 b^4 c^2-16 a^3 b^5 c^2+14 a^2 b^6 c^2+10 a b^7 c^2-4 b^8 c^2+2 a^7 c^3-15 a^6 b c^3+7 a^5 b^2 c^3+7 a^4 b^3 c^3+28 a^3 b^4 c^3+3 a^2 b^5 c^3-9 a b^6 c^3-3 b^7 c^3+2 a^6 c^4-3 a^4 b^2 c^4-10 a^3 b^3 c^4-11 a^2 b^4 c^4-4 a b^5 c^4+4 b^6 c^4-2 a^5 c^5+7 a^4 b c^5-14 a^3 b^2 c^5+24 a^2 b^3 c^5-9 a b^4 c^5+5 b^5 c^5-2 a^4 c^6+8 a^3 b c^6-12 a^2 b^2 c^6+2 a b^3 c^6+2 a^3 c^7-5 a^2 b c^7+13 a b^2 c^7-5 b^3 c^7+a^2 c^8-4 a b c^8-b^2 c^8-a c^9+2 b c^9) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) + 2 (a-b) (a-c) (b-c) (a^8-2 a^6 b^2+2 a^4 b^4-2 a^2 b^6+b^8+5 a^6 b c+a^5 b^2 c-6 a^4 b^3 c-6 a^3 b^4 c+a^2 b^5 c+5 a b^6 c-2 a^6 c^2+a^5 b c^2+8 a^4 b^2 c^2+2 a^3 b^3 c^2+8 a^2 b^4 c^2+a b^5 c^2-2 b^6 c^2-6 a^4 b c^3+2 a^3 b^2 c^3+2 a^2 b^3 c^3-6 a b^4 c^3+2 a^4 c^4-6 a^3 b c^4+8 a^2 b^2 c^4-6 a b^3 c^4+2 b^4 c^4+a^2 b c^5+a b^2 c^5-2 a^2 c^6+5 a b c^6-2 b^2 c^6+c^8) x y z = 0. (Peter Moses, July 31, 2018)
X(20268) lies on these lines: {2, 2006}, {57, 1748}, {3772, 20270}, {4000, 17917}, {5437, 16706}
X(20269) lies on these lines: {1, 4904}, {2, 277}, {57, 1375}, {116, 1837}, {142, 474}, {169, 3665}, {218, 9436}, {355, 9317}, {498, 6706}, {673, 17181}, {905, 2275}, {1565, 2082}, {1836, 14377}, {2140, 11375}, {3086, 4000}, {3419, 17046}, {3624, 4657}, {3732, 7185}, {3739, 19854}, {3752, 20266}, {3772, 20267}, {4209, 4911}, {4675, 5277}, {5074, 12701}, {5249, 16412}, {7179, 17682}, {11376, 17761}, {16458, 19758}, {17718, 17758}
(20270) lies on these lines: {1, 141}, {56, 12610}, {499, 3739}, {1210, 3946}, {1737, 4361}, {3086, 4000}, {3673, 17086}, {3772, 20268}, {4402, 5704}, {4852, 10573}, {4904, 18634}, {5749, 7961}, {10039, 17327}, {10072, 17382}, {12647, 17239}
X(20271) lies on these lines: {1, 1929}, {2, 3721}, {6, 169}, {8, 3726}, {37, 986}, {46, 17735}, {57, 16968}, {65, 2176}, {75, 20255}, {86, 18189}, {142, 3094}, {171, 16974}, {172, 3924}, {213, 5902}, {244, 2275}, {335, 6376}, {517, 16969}, {518, 16605}, {762, 19875}, {982, 1107}, {1086, 3673}, {1125, 3735}, {1698, 3954}, {1739, 3970}, {2087, 9336}, {2160, 5301}, {2238, 3868}, {2241, 5011}, {2271, 15934}, {2277, 2294}, {3061, 16604}, {3230, 5903}, {3339, 16970}, {3509, 4426}, {3616, 3727}, {3666, 19730}, {3670, 5283}, {3780, 3873}, {3836, 4136}, {3874, 16611}, {3931, 16777}, {3953, 16975}, {3976, 17448}, {3981, 5249}, {3999, 4875}, {5021, 5708}, {5275, 16519}, {5291, 17736}, {5573, 9575}, {5883, 16600}, {15668, 18179}, {16716, 18165}, {16726, 18176}, {17065, 18904}, {17175, 18167}, {20272, 20276}, {20274, 20275}
X(20272) lies on these lines: {244, 18671}, {499, 3708}, {3085, 17471}, {17063, 20273}, {20271, 20276}
X(20273) lies on these lines: {2, 18671}, {499, 18669}, {1953, 14986}, {2083, 3075}, {3061, 3840}, {3086, 17442}, {16604, 20275}, {17063, 20272}, {17181, 18730}
X(20274) lies on these lines: {2, 4118}, {6, 4475}, {75, 18208}, {86, 18190}, {244, 1953}, {894, 18168}, {982, 17445}, {1921, 18069}, {1964, 7146}, {2643, 4000}, {3248, 18161}, {3758, 18207}, {3763, 7237}, {4657, 17470}, {5272, 18713}, {17063, 17472}, {20271, 20275}
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1, 20271), (2,17063), (3,20272), (6,20274), (9,20275), (57,20276)
Nine more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = -bc : b(a - c) : c(a - b)
m(-a : b : c) = -a (b^3 + a b c - b^2 c - b c^2 + c^3) : b (a^3 - a^2 c + a b c + a c^2 - c^3) : c (-a^3 + a^2 b - a b^2 + b^3 - a b c)
m(a : b cos C : c cos B) = a (a^2 b^2 + b^4 - 4 a^2 b c + a^2 c^2 - 2 b^2 c^2 + c^4) : b (2 a^4 - 4 a^3 c + a^2 c^2 - b^2 c^2 + c^4) : c (2 a^4 - 4 a^3 b + a^2 b^2 + b^4 - b^2 c^2),
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
If P = x : y : z (barycentrics), then m(P) = a(-b c x + (b - c)(b y - c z)) : : , and m is the collineation indicated by (A',B',C',X(75); m(A'), m(B'), m(C'), X(75), where A' = 0 : c : b, and B' and C' are defined cyclically.
Let f(a,b,c,x,y,z) = b^2 (b-c) c^2 (2 a^10 b^2-3 a^9 b^3+a^8 b^4-4 a^10 b c+3 a^9 b^2 c+3 a^8 b^3 c-2 a^7 b^4 c-a^6 b^5 c+2 a^5 b^6 c-a^4 b^7 c+2 a^10 c^2+3 a^9 b c^2-10 a^8 b^2 c^2+5 a^7 b^3 c^2+3 a^5 b^5 c^2-7 a^4 b^6 c^2+4 a^3 b^7 c^2-3 a^9 c^3+3 a^8 b c^3+5 a^7 b^2 c^3-5 a^6 b^3 c^3+a^5 b^4 c^3-6 a^4 b^5 c^3+12 a^3 b^6 c^3-6 a^2 b^7 c^3+a^8 c^4-2 a^7 b c^4+a^5 b^3 c^4-5 a^4 b^4 c^4+11 a^3 b^5 c^4-12 a^2 b^6 c^4+4 a b^7 c^4-a^6 b c^5+3 a^5 b^2 c^5-6 a^4 b^3 c^5+11 a^3 b^4 c^5-12 a^2 b^5 c^5+6 a b^6 c^5-b^7 c^5+2 a^5 b c^6-7 a^4 b^2 c^6+12 a^3 b^3 c^6-12 a^2 b^4 c^6+6 a b^5 c^6-b^6 c^6-a^4 b c^7+4 a^3 b^2 c^7-6 a^2 b^3 c^7+4 a b^4 c^7-b^5 c^7) x^3-a^2 c (-2 a^5 b^9+3 a^4 b^10+3 a^8 b^5 c-4 a^7 b^6 c+a^6 b^7 c+3 a^5 b^8 c+5 a^4 b^9 c-12 a^3 b^10 c-12 a^8 b^4 c^2+10 a^7 b^5 c^2+3 a^6 b^6 c^2-15 a^4 b^8 c^2+18 a^2 b^10 c^2+18 a^8 b^3 c^3-10 a^7 b^4 c^3-13 a^6 b^5 c^3+3 a^5 b^6 c^3-2 a^4 b^7 c^3+27 a^3 b^8 c^3-12 a^2 b^9 c^3-12 a b^10 c^3-12 a^8 b^2 c^4+4 a^7 b^3 c^4+17 a^6 b^4 c^4-2 a^5 b^5 c^4+2 a^4 b^6 c^4-4 a^3 b^7 c^4-19 a^2 b^8 c^4+14 a b^9 c^4+3 b^10 c^4+3 a^8 b c^5+2 a^7 b^2 c^5-12 a^6 b^3 c^5+3 a^5 b^4 c^5+6 a^4 b^5 c^5-13 a^3 b^6 c^5+12 a^2 b^7 c^5+2 a b^8 c^5-5 b^9 c^5-2 a^7 b c^6+4 a^6 b^2 c^6-2 a^5 b^3 c^6+3 a^4 b^4 c^6-6 a^3 b^5 c^6+7 a^2 b^6 c^6-6 a b^7 c^6+2 b^8 c^6+4 a^5 b^2 c^7-14 a^4 b^3 c^7+15 a^3 b^4 c^7-5 a^2 b^5 c^7-a b^6 c^7+b^7 c^7-4 a^4 b^2 c^8+14 a^3 b^3 c^8-18 a^2 b^4 c^8+10 a b^5 c^8-2 b^6 c^8-a^5 c^9+7 a^4 b c^9-16 a^3 b^2 c^9+16 a^2 b^3 c^9-7 a b^4 c^9+b^5 c^9) y^2 z+a^2 b (-a^5 b^9+3 a^8 b^5 c-2 a^7 b^6 c+7 a^4 b^9 c-12 a^8 b^4 c^2+2 a^7 b^5 c^2+4 a^6 b^6 c^2+4 a^5 b^7 c^2-4 a^4 b^8 c^2-16 a^3 b^9 c^2+18 a^8 b^3 c^3+4 a^7 b^4 c^3-12 a^6 b^5 c^3-2 a^5 b^6 c^3-14 a^4 b^7 c^3+14 a^3 b^8 c^3+16 a^2 b^9 c^3-12 a^8 b^2 c^4-10 a^7 b^3 c^4+17 a^6 b^4 c^4+3 a^5 b^5 c^4+3 a^4 b^6 c^4+15 a^3 b^7 c^4-18 a^2 b^8 c^4-7 a b^9 c^4+3 a^8 b c^5+10 a^7 b^2 c^5-13 a^6 b^3 c^5-2 a^5 b^4 c^5+6 a^4 b^5 c^5-6 a^3 b^6 c^5-5 a^2 b^7 c^5+10 a b^8 c^5+b^9 c^5-4 a^7 b c^6+3 a^6 b^2 c^6+3 a^5 b^3 c^6+2 a^4 b^4 c^6-13 a^3 b^5 c^6+7 a^2 b^6 c^6-a b^7 c^6-2 b^8 c^6+a^6 b c^7-2 a^4 b^3 c^7-4 a^3 b^4 c^7+12 a^2 b^5 c^7-6 a b^6 c^7+b^7 c^7+3 a^5 b c^8-15 a^4 b^2 c^8+27 a^3 b^3 c^8-19 a^2 b^4 c^8+2 a b^5 c^8+2 b^6 c^8-2 a^5 c^9+5 a^4 b c^9-12 a^2 b^3 c^9+14 a b^4 c^9-5 b^5 c^9+3 a^4 c^10-12 a^3 b c^10+18 a^2 b^2 c^10-12 a b^3 c^10+3 b^4 c^10) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) - 2 a (a-b) b (a-c) (b-c) c (a^7 b^4+a^4 b^7-6 a^7 b^3 c-a^6 b^4 c-a^5 b^5 c-a^4 b^6 c-6 a^3 b^7 c+10 a^7 b^2 c^2+a^6 b^3 c^2-a^5 b^4 c^2-a^4 b^5 c^2+a^3 b^6 c^2+10 a^2 b^7 c^2-6 a^7 b c^3+a^6 b^2 c^3+6 a^5 b^3 c^3+2 a^4 b^4 c^3+6 a^3 b^5 c^3+a^2 b^6 c^3-6 a b^7 c^3+a^7 c^4-a^6 b c^4-a^5 b^2 c^4+2 a^4 b^3 c^4+2 a^3 b^4 c^4-a^2 b^5 c^4-a b^6 c^4+b^7 c^4-a^5 b c^5-a^4 b^2 c^5+6 a^3 b^3 c^5-a^2 b^4 c^5-a b^5 c^5-a^4 b c^6+a^3 b^2 c^6+a^2 b^3 c^6-a b^4 c^6+a^4 c^7-6 a^3 b c^7+10 a^2 b^2 c^7-6 a b^3 c^7+b^4 c^7) x y z = 0. (Peter Moses, July 31, 2018)
X(20275) lies on these lines: {1, 16422}, {2, 17447}, {9, 3675}, {244, 17452}, {4516, 4859}, {16604, 20273}, {17063, 20254}, {17278, 17463}, {20271, 20274}
See X(20275).
X(20276) lies on these lines: {17063, 20254}, {20271, 20272}
X(20277) lies on these lines: {1, 4}, {2, 14544}, {3, 7100}, {6, 18675}, {31, 8758}, {48, 354}, {55, 6611}, {65, 7114}, {77, 1040}, {184, 18210}, {201, 7078}, {212, 1214}, {222, 7004}, {603, 17102}, {614, 3554}, {836, 3720}, {912, 18477}, {940, 8766}, {1001, 6508}, {1062, 4303}, {1473, 3942}, {1754, 18593}, {1818, 6505}, {1836, 4336}, {1899, 4466}, {1936, 17080}, {2187, 3827}, {2188, 17603}, {2286, 17599}, {2658, 3924}, {3474, 5018}, {3955, 20254}, {4224, 18161}, {4332, 7138}, {5311, 17718}, {5452, 9502}, {6357, 8727}, {20278, 20280}
X(20278) lies on these lines: {1, 5136}, {48, 3721}, {20277, 20280}
X(20279) lies on these lines: {1, 20281}
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1, 1), (2,20277), (3,20278), (4,20280), (6,20279), (9,20281), (57,20282)
Nine more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = a^3 (a^2 - b^2 - c^2) : b(a^2 - c^2)(a^2 - b^2 + c^2) : c(a^2 - b^2)(a^2 + b^2 - c^2)
m(-a : b : c) = a (a^2 - b^2 - c^2) (a^4 + b^4 - 2 b^2 c^2 + c^4) : -b (-a^2 + b^2 - c^2) (a^4 + b^4 - c^4) : -c (-a^2 - b^2 + c^2) (a^4 - b^4 + c^4)
m(a : b cos C : c cos B) = a (a^2 b^2 + b^4 - 4 a^2 b c + a^2 c^2 - 2 b^2 c^2 + c^4) : b (2 a^4 - 4 a^3 c + a^2 c^2 - b^2 c^2 + c^4) : c (2 a^4 - 4 a^3 b + a^2 b^2 + b^4 - b^2 c^2)
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
If P = x : y : z (barycentrics), then m(P) = a(a^2 - b^2 - c^2)(a^3 x - (b^2 - c^2)(b y - c z)) : : , and m is the collineation indicated by (A',B',C',X(1); m(A'), m(B'), m(C'), X(1)), where A' = 0 : c : b, and B' and C' are defined cyclically, and m(A') = 0 : b : c..
Let f(a,b,c,x,y,z) = a b (b-c) c (a^2-b^2-c^2) (a^5-a^3 b^2-a^2 b^3+b^5-a^3 b c-a^2 b^2 c+a b^3 c+b^4 c-a^3 c^2-a^2 b c^2+2 a b^2 c^2-a^2 c^3+a b c^3+b c^4+c^5) x^3-a (a^10-2 a^8 b^2+a^6 b^4-a^5 b^5+2 a^3 b^7-a b^9+2 a^8 b c-2 a^6 b^3 c-2 a^2 b^7 c+2 b^9 c-a^8 c^2+4 a^6 b^2 c^2+a^5 b^3 c^2-3 a^4 b^4 c^2-4 a^3 b^5 c^2+3 a b^7 c^2-2 a^6 b c^3+3 a^4 b^3 c^3+4 a^2 b^5 c^3-5 b^7 c^3+4 a^3 b^3 c^4-a^2 b^4 c^4-a b^5 c^4-2 b^6 c^4-2 a^2 b^3 c^5+4 b^5 c^5-2 a^3 b c^6+2 a^2 b^2 c^6-3 a b^3 c^6+5 b^4 c^6-b^3 c^7-a^2 c^8+2 a b c^8-4 b^2 c^8+c^10) y^2 z+a (a^10-a^8 b^2-a^2 b^8+b^10+2 a^8 b c-2 a^6 b^3 c-2 a^3 b^6 c+2 a b^8 c-2 a^8 c^2+4 a^6 b^2 c^2+2 a^2 b^6 c^2-4 b^8 c^2-2 a^6 b c^3+a^5 b^2 c^3+3 a^4 b^3 c^3+4 a^3 b^4 c^3-2 a^2 b^5 c^3-3 a b^6 c^3-b^7 c^3+a^6 c^4-3 a^4 b^2 c^4-a^2 b^4 c^4+5 b^6 c^4-a^5 c^5-4 a^3 b^2 c^5+4 a^2 b^3 c^5-a b^4 c^5+4 b^5 c^5-2 b^4 c^6+2 a^3 c^7-2 a^2 b c^7+3 a b^2 c^7-5 b^3 c^7-a c^9+2 b c^9) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) + 2 (a-b) (a-c) (b-c) (a^8+a^7 b-a^6 b^2-a^5 b^3-a^3 b^5-a^2 b^6+a b^7+b^8+a^7 c+a^6 b c-a^5 b^2 c-a^4 b^3 c-a^3 b^4 c-a^2 b^5 c+a b^6 c+b^7 c-a^6 c^2-a^5 b c^2+a^4 b^2 c^2+2 a^3 b^3 c^2+a^2 b^4 c^2-a b^5 c^2-b^6 c^2-a^5 c^3-a^4 b c^3+2 a^3 b^2 c^3+2 a^2 b^3 c^3-a b^4 c^3-b^5 c^3-a^3 b c^4+a^2 b^2 c^4-a b^3 c^4-a^3 c^5-a^2 b c^5-a b^2 c^5-b^3 c^5-a^2 c^6+a b c^6-b^2 c^6+a c^7+b c^7+c^8) x y z = 0. (Peter Moses, July 31, 2018)
X(20280) lies on these lines: {1, 406}, {66, 73}, {3057, 3938}, {20277, 20278}
See X(20280).
X(20281) lies on these lines: {1, 20279}, {48, 16973}, {66, 73}, {836, 3720}
See X(20280).
X(20282) lies on these lines: {1, 5136}, {836, 3720}
X(20283) lies on these lines: {1, 20285}, {144, 145}, {3231, 10987}
X(20284) lies on these lines: {1, 893}, {2, 37}, {31, 19561}, {39, 17591}, {42, 19586}, {43, 6377}, {48, 1613}, {55, 3009}, {57, 292}, {172, 11328}, {237, 2352}, {694, 1469}, {982, 2275}, {1403, 2176}, {1740, 8844}, {1908, 17716}, {2056, 12835}, {2229, 17155}, {3051, 5332}, {3056, 3116}, {3121, 3873}, {3231, 10987}, {3662, 18905}, {3705, 18904}, {4116, 8619}, {6384, 19565}, {7075, 17475}, {17149, 19581}
X(20284) = isogonal conjugate of isotomic conjugate of X(33890)
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,192), (2,1), (3,20283), (4,20285), (6,20285), (9,20286), (57,20287)
Fifteen more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = a b c (a b + a c - b c) : b^2 (a - c)(a b - a c + b c) : c^2 (a - b)( a c - a b + b c)
m(-a : b : c) = a b c (a b + a c - b c) : b (2 a b - a c - 2 b c) (a b - a c + b c) : c (-a b + 2 a c - 2 b c) (-a b + a c + b c)
m(a : b cos C : c cos B) = a^2 (a b + a c - b c) (a^2 b^2 - b^4 - 2 a^2 b c + a^2 c^2 - c^4) : -b (a b - a c + b c) (-a^3 b^2 + a b^4 + 3 a^2 b^2 c - b^4 c + a^3 c^2 - 2 a b^2 c^2 + b^2 c^3 - a c^4) : -c (-a b + a c + b c) (a^3 b^2 - a b^4 - a^3 c^2 + 3 a^2 b c^2 - 2 a b^2 c^2 + b^3 c^2 + a c^4 - b c^4)
m(A') = a (a b + a c - b c) (2 a b^2 - 3 a b c + b^2 c + 2 a c^2 + b c^2), b (a b - a c + b c) (2 a b^2 + a^2 c + a b c - 2 b^2 c - a c^2), c (-a b + a c + b c) (a^2 b - a b^2 + a b c + 2 a c^2 - 2 b c^2)
m(A'') = a (a b + b^2 - 2 a c - b c) (a b + a c - b c) (2 a b - a c + b c - c^2) : b (a b - a c + b c) (2 a^2 b^2 + 2 a b^3 - a^3 c - 3 a b^2 c - 2 b^3 c - 2 a^2 c^2 + 2 b^2 c^2 - a c^3) : c (-a b + a c + b c) (-a^3 b - 2 a^2 b^2 - a b^3 + 2 a^2 c^2 - 3 a b c^2 + 2 b^2 c^2 + 2 a c^3 - 2 b c^3)
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
A' = -a (b + c + a) : b (c - a - b) : c (-a + b - c), the A-vertex of the extraversion triangle of X(9)
A'' = -a/(b + c + a) : b/(c - a - b) : c/(-a + b - c), the A-vertex of the extraversion triangle of X(57)
If P = x : y : z (barycentrics), then m(P) = a (a b + a c - b c)(b^2 c^2 x + a^2 (b - c)(c y - b z)), and m is the collineation indicated by (A',B',C',X(2); m(A'), m(B'), m(C'), X(1)).
Let f(a,b,c,x,y,z) = b^3 (b-c) c^3 (a b+a c-b c) (a^2-a b-a c+2 b c) x^3+a^3 c (a^3 b^4-5 a^3 b^3 c+2 a^2 b^4 c+6 a^3 b^2 c^2-a^2 b^3 c^2-2 a b^4 c^2-4 a^3 b c^3-2 a^2 b^2 c^3+5 a b^3 c^3-b^4 c^3+2 a^3 c^4-2 a b^2 c^4) y^2 z-a^3 b (2 a^3 b^4-4 a^3 b^3 c+6 a^3 b^2 c^2-2 a^2 b^3 c^2-2 a b^4 c^2-5 a^3 b c^3-a^2 b^2 c^3+5 a b^3 c^3+a^3 c^4+2 a^2 b c^4-2 a b^2 c^4-b^3 c^4) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) + 4 a^2 (a-b) b^2 (a-c) (b-c) c^2 (a b+a c+b c) x y z = 0. (Peter Moses, July 31, 2018)
X(20285) lies on these lines: {1, 20283}, {192, 3100}
See X(20285).
X(20286) lies on these lines: {1, 9315}, {2, 37}
See X(20285).
X(20287) lies on these lines: {1, 9315}, {144, 145}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27935.
X(20288 ) lies on these lines: {11, 8261}, {496, 2486}, {758, 9955}, {950, 3838}, {2475, 11376}
X(20289) lies on these lines: {4, 916}, {7, 3585}, {10, 20291}, {307, 18661}, {515, 17221}, {1441, 18480}, {1826, 14543}, {2893, 5080}, {4566, 7282}, {5229, 5738}, {5691, 17134}, {5736, 10895}, {5740, 7354}, {14953, 20305}, {18650, 19925}
X(20290) lies on these lines: {2, 2308}, {8, 3901}, {69, 674}, {306, 4427}, {319, 17163}, {320, 17140}, {321, 17491}, {524, 4972}, {1330, 2392}, {2887, 16704}, {2895, 4645}, {3006, 4001}, {3416, 17165}, {3448, 20351}, {3578, 3925}, {3873, 17361}, {3914, 17162}, {3936, 6690}, {3969, 17768}, {3995, 4683}, {4514, 17145}, {4655, 17147}, {4660, 20011}, {4741, 7226}, {4981, 17344}, {5284, 17297}, {5847, 17150}, {7191, 17288}, {7768, 20556}, {8050, 20021}, {15523, 17770}, {17137, 20352}
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,319), (2,10), (3,20289), (4,20291), (6,20290), (9,20292), (57,20320)
Fifteen more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = -1 : 1 : 1
m(-a : b : c) = a^2 + b^2 + c^2 + a b + c a + a b : -a^2 - a b - b^2 + a^2 : - a^2 - a c - c^2 + b^2
m(a : b cos C : c cos B) = 2 a^3 - a^2 b - b^3 - a^2 c + b^2 c + b c^2 - c^3 : -(4 a^3 + a^2 b - 2 a b^2 - 3 b^3 + 3 a^2 c - 3 b^2 c + 2 a c^2 + 3 b c^2 + 3 c^3) : a^2 (4 a^3 + 3 a^2 b + 2 a b^2 + 3 b^3 + a^2 c + 3 b^2 c - 2 a c^2 - 3 b c^2 - 3 c^3)
m(A') = a^2 (a b + a c - b c) (a^2 b^2 - b^4 - 2 a^2 b c + a^2 c^2 - c^4) : -b (a b - a c + b c) (-a^3 b^2 + a b^4 + 3 a^2 b^2 c - b^4 c + a^3 c^2 - 2 a b^2 c^2 + b^2 c^3 - a c^4) : -c (-a b + a c + b c) (a^3 b^2 - a b^4 - a^3 c^2 + 3 a^2 b c^2 - 2 a b^2 c^2 + b^3 c^2 + a c^4 - b c^4)
m(A') = a^3 + a^2 b - a b^2 - b^3 + a^2 c + a b c + b^2 c - a c^2 + b c^2 - c^3 : -a^3 - a^2 b + a b^2 + b^3 - 2 a^2 c - a b c - 2 a c^2 - c^3 : -a^3 - 2 a^2 b - 2 a b^2 - b^3 - a^2 c - a b c + a c^2 + c^3
m(A'') = a^4 - 2 a^2 b^2 + b^4 - a^2 b c - 3 a b^2 c - 2 a^2 c^2 - 3 a b c^2 - 2 b^2 c^2 + c^4 : -a^4 + 2 a^2 b^2 - b^4 - a^3 c - 2 a^2 b c - b^3 c - a b c^2 + a c^3 + b c^3 + c^4 : -a^4 - a^3 b + a b^3 + b^4 - 2 a^2 b c - a b^2 c + b^3 c + 2 a^2 c^2 - b c^3 - c^4
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
A' = -a (b + c + a) : b (c - a - b) : c (-a + b - c), the A-vertex of the extraversion triangle of X(9)
A'' = -a/(b + c + a) : b/(c - a - b) : c/(-a + b - c), the A-vertex of the extraversion triangle of X(57)
If P = x : y : z (barycentrics), then m(P) = (2a + b + c)x - (a + 2b + c)y - (a + b + 2c)z, and m is the collineation indicated by (A',B',C',X(2); m(A'), m(B'), m(C'), X(10)).
Let f(a,b,c,x,y,z) = a^2 (b-c) (2 a+b+c)^2 x^3+(a+2 b+c) (4 a^4+4 a^3 b+a^2 b^2+a b^3+2 b^4+4 a^3 c+2 a^2 b c+3 a b^2 c+7 b^3 c-2 a b c^2+2 b^2 c^2-4 a c^3-4 b c^3-4 c^4) y^2 z-(a+b+2 c) (4 a^4+4 a^3 b-4 a b^3-4 b^4+4 a^3 c+2 a^2 b c-2 a b^2 c-4 b^3 c+a^2 c^2+3 a b c^2+2 b^2 c^2+a c^3+7 b c^3+2 c^4) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) + 4 a^2 (a-b) b^2 (a-c) (b-c) c^2 (a b+a c+b c) x y z = 0. (Peter Moses, July 31, 2018)
X(20291) lies on these lines: {1, 7}, {2, 1839}, {10, 20289}, {22, 8053}, {30, 1441}, {71, 1654}, {74, 1305}, {86, 15320}, {319, 11684}, {674, 12220}, {916, 11412}, {1155, 5740}, {1836, 5736}, {2772, 12219}, {2897, 3648}, {3474, 5738}, {6284, 17863}, {8804, 14543}, {9028, 20017}, {9961, 12111}, {14953, 18589}
See X(20291).
X(20292) lies on these lines: {1, 11015}, {2, 1155}, {4, 9961}, {7, 3434}, {8, 4018}, {10, 79}, {21, 1770}, {31, 17889}, {35, 11263}, {46, 2476}, {57, 11680}, {63, 4312}, {65, 2475}, {72, 14450}, {75, 6327}, {80, 3919}, {81, 3914}, {86, 15320}, {100, 226}, {142, 5284}, {145, 10404}, {149, 354}, {171, 3120}, {191, 3841}, {210, 17484}, {319, 17163}, {320, 17135}, {321, 4645}, {376, 3616}, {377, 3869}, {388, 7702}, {392, 5180}, {404, 12047}, {443, 11415}, {484, 3822}, {516, 1621}, {517, 6951}, {518, 17483}, {528, 3957}, {693, 7196}, {750, 3944}, {758, 11552}, {894, 4972}, {908, 20103}, {946, 5253}, {956, 18541}, {962, 3890}, {1086, 7191}, {1111, 17884}, {1125, 17549}, {1158, 6828}, {1441, 16091}, {1478, 5176}, {1633, 4228}, {1699, 3306}, {1709, 10883}, {1737, 17577}, {1788, 6871}, {1999, 4442}, {2185, 5196}, {2550, 3681}, {2886, 3218}, {2887, 4418}, {2895, 3696}, {2975, 4292}, {3091, 14647}, {3219, 3925}, {3286, 17173}, {3452, 9342}, {3475, 20075}, {3485, 4190}, {3579, 16159}, {3583, 5883}, {3585, 3754}, {3622, 12701}, {3685, 18139}, {3753, 5080}, {3757, 4450}, {3772, 17126}, {3782, 3920}, {3812, 5046}, {3832, 12679}, {3868, 5178}, {3870, 4654}, {3871, 13407}, {3896, 17778}, {3897, 4299}, {3982, 5853}, {4004, 18480}, {4188, 11375}, {4197, 4338}, {4307, 19785}, {4359, 4388}, {4363, 4799}, {4415, 5297}, {4420, 11544}, {4430, 4863}, {4511, 11112}, {4514, 7321}, {4651, 17491}, {4666, 6173}, {4854, 17019}, {4860, 11235}, {4861, 18990}, {4865, 17155}, {4881, 15950}, {4911, 20556}, {4981, 6646}, {5229, 5554}, {5263, 17184}, {5302, 20084}, {5325, 10032}, {5439, 9782}, {5552, 5714}, {5603, 6948}, {5686, 20214}, {5734, 12700}, {5805, 9776}, {5812, 10585}, {5832, 9965}, {5836, 20060}, {5842, 18444}, {5886, 6950}, {5887, 6901}, {5927, 9809}, {6001, 6839}, {6894, 12688}, {6895, 9943}, {6915, 12608}, {6945, 12686}, {7226, 17276}, {7247, 20244}, {7270, 17164}, {7548, 12616}, {9579, 19860}, {9612, 11681}, {9779, 10584}, {10273, 12247}, {10572, 16154}, {10707, 11019}, {11281, 15338}, {12432, 16120}, {15679, 16152}, {17150, 19796}
X(20292) = anticomplement of X(3683)
X(20293) lies on these lines: {2, 1459}, {8, 522}, {69, 3261}, {340, 520}, {391, 657}, {513, 4397}, {514, 16086}, {521, 1948}, {656, 17496}, {693, 20297}, {834, 20295}, {966, 6586}, {2517, 9001}, {3699, 8050}, {3738, 4086}, {3762, 6003}, {3900, 4811}, {3907, 17420}, {3945, 17215}, {4036, 17751}, {4147, 17418}, {4163, 4778}, {4791, 10449}, {4963, 4977}, {7649, 9031}
X(20293) = anticomplement of X(1459)
X(20294) lies on these lines: {2, 7649}, {20, 3667}, {22, 4057}, {280, 18220}, {325, 523}, {513, 20296}, {514, 16086}, {521, 3904}, {522, 663}, {953, 2370}, {1305, 4561}, {3091, 16231}, {3699, 14513}, {3810, 17420}, {4571, 13397}, {4811, 6362}, {6129, 16757}, {14429, 20316}, {20295, 20298}
X(20294) = anticomplement of X(7649)
X(20294) = pole wrt de Longchamps circle of Nagel line
X(20295) lies on these lines: {2, 649}, {7, 3676}, {69, 9002}, {316, 512}, {320, 350}, {329, 4468}, {514, 4024}, {522, 17161}, {523, 4810}, {650, 4380}, {659, 4806}, {661, 812}, {786, 4826}, {788, 17135}, {802, 4502}, {804, 8663}, {830, 4170}, {834, 20293}, {885, 2520}, {900, 3004}, {901, 4998}, {1019, 17174}, {1836, 8049}, {1978, 8050}, {2786, 16892}, {3261, 17159}, {3309, 17896}, {3667, 4025}, {3837, 4784}, {4063, 4129}, {4367, 4992}, {4369, 4728}, {4379, 4932}, {4425, 17193}, {4453, 4897}, {4462, 8712}, {4521, 18228}, {4560, 14349}, {4651, 9400}, {4786, 7658}, {4790, 4885}, {4927, 4943}, {4978, 15309}, {6002, 17496}, {6327, 9313}, {6545, 17483}, {8025, 18200}, {9778, 15599}, {20294, 20298}
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,513), (3,20293), (4,20294), (6,20295), (223,20296), (282,20297), (1249,20298)
Fifteen more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = -1 : 1 : 1
m(-a : b : c) = 0 : (b - a) c: (a - c) b
m(a : b cos C : c cos B) = (3 a - b - c) (b - c) (a + b + c) : -(a + b - c) (2 a^2 - a b + b^2 - a c - c^2) : (a - b + c) (2 a^2 - a b - b^2 - a c + c^2)
m(A') = (b - c) (-a^2 - a b - a c + b c) : a b (a + b - 2 c) : -a c (a - 2 b + c)
m(A'') = (b - c) (a^3 - a b^2 + a b c + b^2 c - a c^2 + b c^2) : -a b (a^2 - b^2 + a c + b c - 2 c^2) : a c (a^2 + a b - 2 b^2 + b c - c^2)
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
A' = -a (b + c + a) : b (c - a - b) : c (-a + b - c), the A-vertex of the extraversion triangle of X(9)
A'' = -a/(b + c + a) : b/(c - a - b) : c/(-a + b - c), the A-vertex of the extraversion triangle of X(57)
If P = x : y : z (barycentrics), then m(P) = (b - c)x - (c - a)y - (a - b)z, and m is the collineation indicated by (A',B',C',X(2); m(A'), m(B'), m(C'), X(514)). Note that the points on the line X(2)X(7) are not in the domain of m.
Let f(a,b,c,x,y,z) = a^2 (2 a-b-c) (b-c)^2 x^3-b (a-c)^2 (a b-3 b^2+2 a c) y^2 z-(a-b)^2 c (2 a b+a c-3 c^2) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) + 2 (a^3 b^2+a^2 b^3-4 a^3 b c+2 a^2 b^2 c-4 a b^3 c+a^3 c^2+2 a^2 b c^2+2 a b^2 c^2+b^3 c^2+a^2 c^3-4 a b c^3+b^2 c^3) x y z = 0. (Peter Moses, July 31, 2018)
X(20296) lies on these lines: {2, 20318}, {63, 905}, {144, 17496}, {329, 4391}, {513, 20294}, {514, 20297}, {1332, 3257}, {1734, 12526}, {3869, 3900}, {4131, 6332}, {4462, 8712}
See X(20296).
X(20297) lies on these lines: {2, 20314}, {513, 20298}, {514, 20296}, {521, 4025}, {693, 20293}
See X(20296).
X(20298) lies on these lines: {2, 20319}, {20, 4025}, {513, 20297}, {652, 3101}, {901, 1305}, {20294, 20295}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27938.
X(20299) lies on these lines: {2, 6759}, {3, 161}, {4, 74}, {5, 2883}, {6, 19361}, {20, 11204}, {24, 11550}, {30, 5449}, {51, 15559}, {64, 381}, {66, 182}, {68, 13346}, {113, 7729}, {122, 14059}, {140, 1503}, {143, 2781}, {154, 3526}, {184, 11457}, {185, 1594}, {195, 17823}, {235, 13474}, {265, 13293}, {343, 15644}, {378, 13403}, {382, 10606}, {389, 427}, {403, 11381}, {468, 16655}, {511, 12235}, {523, 6662}, {539, 18356}, {542, 1147}, {546, 15311}, {576, 18951}, {578, 1899}, {631, 9833}, {632, 10192}, {858, 5562}, {1092, 11442}, {1116, 20184}, {1181, 5094}, {1192, 18494}, {1352, 3546}, {1368, 11793}, {1495, 10018}, {1498, 1656}, {1514, 10019}, {1568, 12111}, {1593, 15121}, {1595, 10110}, {1614, 6143}, {1657, 8567}, {1658, 20191}, {1971, 7749}, {2072, 12162}, {2393, 5447}, {2818, 15666}, {2979, 12226}, {3090, 12324}, {3091, 5878}, {3153, 11440}, {3484, 6801}, {3516, 18396}, {3525, 11206}, {3527, 16623}, {3545, 6225}, {3548, 9306}, {3574, 5890}, {3627, 5894}, {3628, 16252}, {3818, 6642}, {3830, 5925}, {3832, 12250}, {3841, 6001}, {3843, 5895}, {3850, 5893}, {3851, 13093}, {3858, 15105}, {5012, 10274}, {5054, 17821}, {5055, 12315}, {5056, 5656}, {5169, 15043}, {5448, 5663}, {5462, 19130}, {5576, 9730}, {5627, 13489}, {5907, 11585}, {5943, 7403}, {5965, 16266}, {5972, 6640}, {6102, 10115}, {6146, 11430}, {6240, 11572}, {6241, 7577}, {6285, 7741}, {6958, 14925}, {7355, 7951}, {7399, 16836}, {7507, 10605}, {7525, 15578}, {7552, 8718}, {7564, 7706}, {7592, 12242}, {7689, 18569}, {7703, 10574}, {7973, 18493}, {8889, 18909}, {9927, 12084}, {9934, 15059}, {10024, 10575}, {10060, 10896}, {10076, 10895}, {10112, 13352}, {10113, 11598}, {10114, 15463}, {10257, 12134}, {10576, 12964}, {10577, 12970}, {10675, 16966}, {10676, 16967}, {11250, 17702}, {11424, 18912}, {11455, 11704}, {11745, 16198}, {12085, 14852}, {12106, 15579}, {12233, 13382}, {12234, 15135}, {12262, 18480}, {12278, 16163}, {12290, 16868}, {13289, 15061}, {13371, 13754}, {13665, 19087}, {13785, 19088}, {13851, 18560}, {14157, 14940}, {14915, 15761}, {15113, 16534}, {15805, 19149}, {16111, 18430}, {17814, 17822}
X(20299) = midpoint of X(i) and X(j) for these {i,j}: {3, 18381}, {4, 3357}, {5, 6247}, {66, 182}, {68, 13346}, {265, 13293}, {3627, 5894}, {7689, 18569}, {9927, 12084}, {10113, 11598}, {12262, 18480}
X(20299) = reflection of X(i) in X(j) for these (i,j): (1498, 14862), (1658, 20191), (5448, 10224)
X(20299) = complement of X(6759)
X(20299) = complementary conjugate of X(14363)
X(20299) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 14216, 6759), (3, 1853, 18381), (24, 11550, 13419), (140, 10282, 10182), (185, 1594, 18388), (631, 9833, 11202), (1595, 13567, 10110), (1899, 3541, 578), (6640, 10539, 5972), (8567, 18405, 1657), (10018, 16659, 1495), (10255, 18439, 113)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27938.
X(20300) lies on these lines: {2, 161}, {3, 18382}, {5, 182}, {6, 70}, {30, 15578}, {51, 125}, {66, 5576}, {141, 1209}, {159, 1656}, {403, 10249}, {511, 5449}, {546, 15579}, {547, 15580}, {858, 1350}, {1352, 2072}, {1353, 10169}, {1595, 6696}, {1853, 5133}, {1907, 5894}, {3090, 15581}, {3564, 10224}, {3628, 15582}, {3827, 9956}, {3845, 19506}, {5085, 13160}, {5092, 18383}, {5462, 19130}, {6247, 7403}, {6776, 7577}, {7706, 15311}, {8549, 10516}, {10255, 18440}, {11216, 11898}, {14389, 15139}
X(20300) = midpoint of X(i) and X(j) for these {i,j}: {3, 18382}, {5092, 18383}
X(20300)= complement of X(15577)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27938.
X(20301) lies on these lines: {2, 12584}, {5, 542}, {6, 7579}, {67, 576}, {125, 511}, {143, 2781}, {182, 265}, {381, 16010}, {382, 5621}, {389, 16003}, {1177, 18381}, {1209, 5181}, {1352, 9976}, {1503, 11801}, {1594, 5095}, {1656, 2930}, {2836, 9956}, {2854, 16511}, {3098, 15061}, {3448, 14561}, {3818, 11579}, {5085, 12902}, {5092, 17702}, {5169, 5476}, {5449, 6698}, {5480, 10264}, {5663, 19130}, {5965, 11804}, {6034, 15545}, {6699, 14810}, {8262, 11649}, {8681, 15123}, {11061, 18912}, {11482, 16176}, {11645, 11799}, {12121, 17508}, {14763, 15516}, {14789, 15462}
X(20301) = midpoint of X(i) and X(j) for these {i,j}: {67, 576}, {182, 265}, {1177, 18381}, {1352, 9976}, {3448, 19140}, {3818, 11579}, {5480, 10264}
X(20301) = complement of X(12584)
X(20301) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3448, 14561, 19140), (11579, 14644, 3818)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27938.
X(20302) lies on these lines: {2, 9932}, {4, 9938}, {5, 578}, {68, 2072}, {125, 5562}, {155, 1594}, {381, 12301}, {403, 12293}, {427, 12162}, {550, 12901}, {858, 12163}, {1656, 9937}, {2931, 10018}, {3090, 12318}, {3564, 10224}, {5055, 12309}, {5449, 11793}, {5576, 5654}, {7488, 12319}, {7505, 8907}, {7741, 9931}, {7951, 19471}, {10024, 12118}, {10255, 12429}, {10282, 15761}, {10576, 12424}, {10577, 12425}, {10659, 16966}, {10660, 16967}, {13367, 15760}, {13371, 13754}, {14852, 15316}, {18569, 19908}
X(20302) = midpoint of X(i) and X(j) for these {i,j}: {4, 9938}, {18569, 19908}
X(20302) = complement of X(9932)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27938.
Let A'B'C' be the orthic triangle. X(20303) is the radical center of the tangential circles of AB'C', BC'A', CA'B'. (Randy Hutson, July 31 2018)
X(20303) lies on these lines: {2, 8907}, {5, 156}, {6, 70}, {52, 125}, {68, 2072}, {161, 7505}, {185, 18488}, {235, 7687}, {343, 1216}, {389, 427}, {858, 17834}, {973, 13567}, {974, 6247}, {1181, 5133}, {1853, 19360}, {1899, 5576}, {2917, 10018}, {3090, 15435}, {5169, 18909}, {6240, 19457}, {6689, 7405}, {10224, 13292}, {10605, 15559}, {11596, 15319}, {11750, 13851}, {13160, 18396}, {14788, 19357}
X(20303) = complement of X(8907)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27938.
X(20304) lies on these lines: {2, 265}, {3, 10113}, {4, 12041}, {5, 113}, {6, 13915}, {10, 12261}, {30, 6699}, {67, 14561}, {74, 381}, {110, 1656}, {114, 15535}, {140, 6723}, {141, 14984}, {143, 10224}, {146, 3545}, {147, 14849}, {148, 14850}, {156, 13198}, {382, 15055}, {399, 5055}, {403, 12133}, {468, 12140}, {498, 12904}, {499, 12903}, {511, 6698}, {539, 19481}, {541, 5066}, {542, 547}, {546, 2777}, {549, 16163}, {550, 12295}, {567, 3043}, {568, 12219}, {631, 12121}, {952, 11735}, {1001, 12334}, {1078, 12201}, {1112, 1594}, {1154, 2072}, {1209, 11804}, {1216, 11800}, {1533, 11563}, {1698, 12778}, {1853, 9934}, {1986, 5946}, {2771, 3812}, {2781, 6697}, {2782, 15359}, {2854, 16511}, {2931, 7514}, {3028, 7951}, {3047, 18350}, {3068, 19051}, {3069, 19052}, {3090, 3448}, {3091, 7728}, {3154, 16168}, {3526, 12902}, {3564, 15118}, {3616, 12898}, {3624, 12407}, {3627, 16111}, {3628, 5972}, {3832, 12244}, {3843, 10721}, {3845, 13202}, {3851, 10620}, {3858, 10990}, {5020, 12412}, {5054, 15051}, {5071, 5655}, {5072, 15054}, {5079, 14094}, {5094, 15472}, {5432, 12896}, {5433, 18968}, {5449, 11591}, {5462, 10628}, {5498, 13403}, {5504, 14852}, {5576, 18874}, {5622, 18440}, {5640, 7579}, {5642, 15699}, {5790, 7984}, {5886, 13211}, {5907, 11806}, {5943, 11557}, {5944, 11565}, {6053, 10109}, {6102, 7723}, {6644, 19457}, {7393, 12310}, {7486, 14683}, {7529, 13171}, {7846, 12501}, {7978, 18493}, {8252, 10820}, {8253, 10819}, {8976, 19111}, {9781, 13201}, {9820, 11264}, {9976, 11178}, {10020, 13470}, {10065, 10896}, {10081, 10895}, {10117, 13861}, {10175, 13605}, {10280, 12064}, {10516, 11579}, {10627, 11585}, {10706, 19709}, {10989, 15362}, {11230, 11720}, {11451, 15100}, {11465, 15102}, {11709, 18480}, {12106, 13289}, {12270, 15045}, {12281, 15043}, {12284, 15056}, {12292, 13491}, {12308, 15046}, {12790, 15183}, {12825, 15060}, {13169, 14848}, {13371, 15465}, {13448, 18781}, {13665, 19059}, {13785, 19060}, {13851, 15646}, {13951, 19110}, {14061, 18332}, {14731, 14993}, {15026, 16222}, {15036, 15720}, {15042, 15701}, {15068, 19456}, {15647, 18381}, {18420, 18933}
X(20304) = midpoint of X(i) and X(j) for these {i,j}: {3, 10113}, {4, 12041}, {5, 125}, {10, 12261}, {74, 1539}, {114, 15535}, {140, 11801}, {550, 12295}, {1209, 11804}, {1216, 11800}, {3627, 16111}, {5907, 11806}, {6102, 7723}, {11709, 18480}, {12292, 13491}, {13851, 15646}, {15647, 18381}
X(20304) = reflection of X(i) in X(j) for these (i,j): (5, 15088), (140, 6723), (143, 11746), (1112, 10095), (10627, 13416)
X(20304) = complement of X(1511)
X(20304) = nine-point circle-inverse-of X(10264)
X(20304) = X(1539)-of-Ehrmann mid triangle
X(20304) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 265, 1511), (2, 15081, 265), (3, 14644, 10113), (4, 15061, 12041), (5, 10264, 113), (74, 381, 1539), (113, 125, 10264), (547, 10272, 12900), (3090, 15027, 5609), (3448, 14643, 5609), (11561, 13363, 9826), (12099, 12358, 12236), (13915, 13979, 6), (14643, 15027, 3448), (14644, 15059, 3), (15025, 15059, 14644)
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,141), (2,10), (3,20305), (4,18589), (6,2887), (9,2886), (57,1329), (223,20306), (282,20307), (1073,20308), (1249,20309)
Fifteen more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : 1 : 1
m(-a : b : c) = b^2 + c^2 : c^2 - a^2 : b^2 - a^2
m(a : b cos C : c cos B) = (b + c) (a^2 + b^2 - 2 b c + c^2) : 2 a^3 + a^2 c - b^2 c + c^3 : 2 a^3 + a^2 b + b^3 - b c^2
m(A') = a b^2 + b^3 - b^2 c + a c^2 - b c^2 + c^3 : (a + c) (a^2 + a b - b c + c^2) : (a + b) (a^2 + b^2 + a c - b c)
m(A'') = (a + b + c) (a b^2 - b^3 + b^2 c + a c^2 + b c^2 - c^3) : (a + b - c) (a + c) (a^2 - a b + b c + c^2) : (a + b) (a - b + c) (a^2 + b^2 - a c + b c)
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
A' = -a (b + c + a) : b (c - a - b) : c (-a + b - c), the A-vertex of the extraversion triangle of X(9)
A'' = -a/(b + c + a) : b/(c - a - b) : c/(-a + b - c), the A-vertex of the extraversion triangle of X(57)
If P = x : y : z (barycentrics), then m(P) = b y + c z : c z + a x : a x + b y = complementary conjugate of ax : by : cz, and m is the collineation indicated by (A,B,C,X(2); m(A), m(B), m(C), X(10)).
Let f(a,b,c,x,y,z) = (a+b) (b-c) (a+c) (a^2-a b+b^2-a c+b c+c^2) x^3+(b+c) (3 a^4+a b^3-a b^2 c+b^3 c+a b c^2-b^2 c^2-a c^3+b c^3) y^2 z-(b+c) (3 a^4-a b^3+a b^2 c+b^3 c-a b c^2-b^2 c^2+a c^3+b c^3) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) + 2 (a-b) (a-c) (b-c) (a^2+a b+b^2+a c+b c+c^2) x y z = 0. (Peter Moses, July 31, 2018)
X(20305) lies on these lines: {2, 48}, {5, 916}, {10, 4523}, {12, 18635}, {37, 8287}, {63, 18747}, {71, 857}, {92, 18749}, {116, 119}, {141, 1329}, {150, 18162}, {226, 7363}, {307, 1826}, {355, 17073}, {442, 15669}, {952, 17043}, {1441, 4466}, {2260, 5740}, {2886, 20307}, {3740, 17239}, {4019, 4150}, {4648, 10588}, {4657, 17062}, {4920, 18179}, {5587, 18634}, {5788, 15668}, {8062, 9253}, {14953, 20289}, {16580, 16609}, {16732, 16888}, {17047, 20544}, {17181, 18161}, {18357, 18644}
X(20305) = isotomic conjugate of isogonal conjugate of X(23619)
X(20305) = polar conjugate of isogonal conjugate of X(22069)
X(20305) = complement of X(48)
See X(20305).
X(20306) lies on these lines: {2, 221}, {5, 117}, {8, 1854}, {10, 5777}, {30, 10570}, {64, 2550}, {65, 13567}, {141, 960}, {281, 1901}, {343, 3869}, {515, 19904}, {946, 5908}, {958, 1503}, {966, 3197}, {1146, 3959}, {1329, 2390}, {1376, 6696}, {1498, 19843}, {1853, 2551}, {1861, 12688}, {2883, 2886}, {3671, 16608}, {3820, 20299}, {3925, 7355}, {4999, 10192}, {6708, 12609}, {7686, 15873}, {7959, 12324}, {8251, 12514}, {9708, 14216}, {12359, 14988}
X(20306) = complement of X(221)
See X(20305).
X(20307) lies on these lines: {2, 2192}, {10, 5777}, {64, 2551}, {141, 20309}, {200, 223}, {221, 7080}, {860, 1834}, {958, 6696}, {997, 15836}, {1329, 2883}, {1376, 1503}, {1853, 2550}, {1861, 1864}, {2886, 20305}, {3035, 10192}, {3820, 6000}, {5795, 12262}, {6225, 8165}, {9709, 14216}, {11019, 16608}, {15583, 17792}
X(20307) = complement of X(2192)
See X(20305).
X(20308) lies on these lines: {2, 19614}, {10, 20309}, {1249, 17904}, {2883, 2886}
See X(20305).
X(20309) lies on these lines: {2, 204}, {3, 20106}, {10, 20308}, {123, 20205}, {141, 20307}, {1329, 1368}, {2887, 18589}
See X(20227).
X(20310) lies on these lines: 1, 5574}, {2, 7182}, {6, 20311}, {9, 171}, {37, 800}, {42, 3119}, {354, 17435}, {756, 8012}, {1196, 20227}, {1200, 2310}, {1212, 3452}, {1864, 20229}, {3767, 3772}, {6181, 17594}
See X(20227).
X(20311) lies on these lines: {6, 20310}, {39, 1212}, {1196, 20312}, {20227, 20313}
See X(20227).
X(20312) lies on these lines: {800, 1108}, {1196, 20311}, {3767, 20227}, {4008, 7952}
See X(20227).
X(20313) lies on these lines: {232, 800}, {3344, 5065}, {3767, 20207}, {6525, 20232}, {20227, 20311}
See X(20316).
X(20314) lies on these lines: {2, 20297}, {513, 20319}, {514, 20318}, {521, 7658}, {4885, 20316}
X(20315) lies on these lines: {2, 7649}, {3, 3667}, {5, 16231}, {513, 20318}, {514, 20316}, {522, 8062}, {523, 4885}, {656, 6332}, {1459, 9031}, {3239, 6586}, {3835, 20319}, {4025, 4064}
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,513), (2,514), (3,20316), (4,20315), (9,4885), (57,20317), (223,20318), (282,20314), (1249,20319)
Fifteen more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : 1 : 1
m(-a : b : c) = a (b - c) : a b - 2 a c + b c : 2 a b - a c - b c
m(a : b cos C : c cos B) = -(b - c) (-a^2 - 2 a b + b^2 - 2 a c + 2 b c + c^2) : -a^3 - a^2 b + a b^2 - b^3 + 2 a^2 c - a c^2 + b c^2 : a^3 - 2 a^2 b + a b^2 + a^2 c - b^2 c - a c^2 + c^3
m(A') = (c - b) (-a^2 - a b - a c + 2 b c) : -b (a^2 + a b - 2 a c + b c - c^2) : c (a^2 - 2 a b - b^2 + a c + b c)
m(A'') = (b - c) (a + b + c) (a^2 - a b - a c + 2 b c) : b (a + b - c) (-a^2 + a b - 2 a c + b c + c^2) : c (a - b + c) (a^2 + 2 a b - b^2 - a c - b c)
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
A' = -a (b + c + a) : b (c - a - b) : c (-a + b - c), the A-vertex of the extraversion triangle of X(9)
A'' = -a/(b + c + a) : b/(c - a - b) : c/(-a + b - c), the A-vertex of the extraversion triangle of X(57)
If P = x : y : z (barycentrics), then m(P) = (a - c)y - (a - b) z : : , and m is the collineation indicated by (A,B,C,X(2); m(A), m(B), m(C), X(514)).
Let f(a,b,c,x,y,z) = (a-b) (a-c) (a b^2-4 a b c+b^2 c+a c^2+b c^2) x^3-(b-c) (a^3 b-3 a^2 b^2+a^3 c+3 a^2 b c-5 a^2 c^2+4 a b c^2-b^2 c^2) y^2 z+(b-c) (a^3 b-5 a^2 b^2+a^3 c+3 a^2 b c+4 a b^2 c-3 a^2 c^2-b^2 c^2) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y)+ 2 (a^3 b^2+a^2 b^3-4 a^3 b c+2 a^2 b^2 c-4 a b^3 c+a^3 c^2+2 a^2 b c^2+2 a b^2 c^2+b^3 c^2+a^2 c^3-4 a b c^3+b^2 c^3) x y z = 0. (Peter Moses, July 31, 2018)
X(20316) lies on these lines: {2, 1459}, {10, 522}, {69, 17215}, {141, 9000}, {513, 3823}, {514, 20315}, {520, 6130}, {521, 8062}, {523, 4147}, {656, 4391}, {657, 966}, {834, 3835}, {1213, 6586}, {1734, 4985}, {1769, 4397}, {2517, 17420}, {3261, 5224}, {3716, 15313}, {4017, 14430}, {4025, 18160}, {4041, 7650}, {4163, 7661}, {4885, 20314}, {14429, 20294}
See X(20316).
X(20317) lies on these lines: {2, 3669}, {8, 4162}, {9, 4063}, {10, 3309}, {281, 17924}, {513, 3823}, {514, 4521}, {650, 3975}, {663, 14430}, {667, 958}, {905, 3762}, {918, 14837}, {960, 4083}, {1577, 4762}, {1639, 6332}, {1698, 4905}, {2787, 6050}, {3041, 9320}, {3239, 3910}, {3716, 3900}, {3835, 8712}, {4106, 4498}, {4129, 4940}, {4394, 6002}, {4468, 7178}, {4481, 4960}, {4490, 7662}, {4782, 5302}, {11068, 20319}
See X(20316).
X(20318) lies on these lines: {2, 20296}, {9, 905}, {513, 20315}, {514, 20314}, {960, 3900}, {3835, 8712}, {4391, 18228}, {6332, 14298}
See X(20316).
X(20319) lies on these lines: {2, 20298}, {3, 7658}, {440, 3239}, {464, 4025}, {513, 20314}, {652, 10319}, {3835, 20315}, {11068, 20317}
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,17861), (2,1), (3,75), (4,18691), (6,17871), (9,17860), (1073,158)
Twelve more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = a b c : c (a^2 - c2) : b(a^2 - b^2)
m(-a : b : c) = -b c (-a^3 + b^3 - b^2 c - b c^2 + c^3) : a c (a^3 - b^3 + a^2 c - a c^2 - c^3) : a b (a^3 + a^2 b - a b^2 - b^3 - c^3)
m(a : b cos C : c cos B) = 2 b c (a^4 + b^4 - 2 b^2 c^2 + c^4) : a c (a^2 + b^2 - c^2)^2 : a b (a^2 - b^2 + c^2)^2
m(A') = b c (a + b + c) (a^3 + b^3 - b^2 c - b c^2 + c^3) : a (a + b - c) c (a^3 + b^3 + a^2 c - a c^2 - c^3) : a b (a - b + c) (a^3 + a^2 b - a b^2 - b^3 + c^3)
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
A' = -a (b + c + a) : b (c - a - b) : c (-a + b - c), the A-vertex of the extraversion triangle of X(9)
If P = x : y : z (barycentrics), then m(P) = b c (a^2 x + (b^2 - c^2)(y - z)) : : , and m is the collineation indicated by (D,E,F,X(2); D',E',F', X(1)), where D = 0 : 1 : 1 and D' = 0 : c : b.
Let f(a,b,c,x,y,z) = a^5 (b-c) (b+c) (a^2-b^2-c^2)^2 x^3-b^2 c (a^8-2 a^6 b^2+2 a^4 b^4-2 a^2 b^6+b^8-a^6 c^2+a^4 b^2 c^2+a^2 b^4 c^2-b^6 c^2+2 a^2 b^2 c^4-a^2 c^6-b^2 c^6+c^8) y^2 z+b c^2 (a^8-a^6 b^2-a^2 b^6+b^8-2 a^6 c^2+a^4 b^2 c^2+2 a^2 b^4 c^2-b^6 c^2+2 a^4 c^4+a^2 b^2 c^4-2 a^2 c^6-b^2 c^6+c^8) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, July 31, 2018)
X(20320) lies on these lines: {1, 17860}, {4, 2823}, {10, 75}, {46, 20223}, {92, 4292}, {280, 3086}, {312, 6700}, {318, 1210}, {321, 936}, {377, 14213}, {443, 6358}, {1068, 20266}, {4066, 20103}, {4188, 18359}, {4311, 20220}, {4359, 5705}, {4968, 9623}, {13532, 18961}, {17871, 20321}
See X(20320).
X(20321) lies on these lines: {10, 158}, {347, 18698}, {17861, 17869}, {17871, 20320}
See X(20320).
X(20322) lies on these lines: {1, 29}, {17871, 18691}
Let m denote the indicated collineation, which maps the Thomson cubic, K002, onto a cubic, m(K002). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K002:
(1,1100), (2,1), (3,17438), (4,1953), (6,17469), (9,3748), (57,,20323), (223,20324), (1249,20325)
Fifteen more points on m(K002) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 2a : b : c
m(-a : b : c) = a (b + c - 2 a) : b (c - a + 2b) : c (b - a + 2a)
m(a : b cos C : c cos B) = 6 a^3 : b (5 a^2 + b^2 - c^2) : c (5 a^2 - b^2 + c^2)
m(A') = a (2 a^2 + 3 a b + b^2 + 3 a c - 2 b c + c^2) : b (a^2 + 3 a b + 2 b^2 + 2 a c - 3 b c + c^2) : c (a^2 + 2 a b + b^2 + 3 a c - 3 b c + 2 c^2)
m(A'') = a (2 a^3 + a^2 b - 2 a b^2 - b^3 + a^2 c + 8 a b c + b^2 c - 2 a c^2 + b c^2 - c^3) : -b (-a^3 - 2 a^2 b + a b^2 + 2 b^3 - a^2 c - 8 a b c - b^2 c + a c^2 - 2 b c^2 + c^3) : -c (-a^3 - a^2 b + a b^2 + b^3 - 2 a^2 c - 8 a b c - 2 b^2 c + a c^2 - b c^2 + 2 c^3)
where
-a : b : c = A-excenter
a : b cos C : c cos B = 2 a^2 : a^2 + b^2 - c^2 : c^2 + a^2 - b^2 = A-vertex of half-altitude triangle
A' = -a (b + c + a) : b (c - a - b) : c (-a + b - c), the A-vertex of the extraversion triangle of X(9)
A'' = -a/(b + c + a) : b/(c - a - b) : c/(-a + b - c), the A-vertex of the extraversion triangle of X(57)
If P = x : y : z (barycentrics), then m(P) = a (2 x + y + z) : : , and m is the collineation indicated by (D, E, F,X(2); D', E' F',X(1), where D' = -1 : 1 : 1 and D' = 0 : c : b.
Let f(a,b,c,x,y,z) = 3 b^3 (b-c) c^3 (b+c) x^3+a^3 b c^2 (13 a^2+b^2+2 c^2) y^2 z-a^3 b^2 c (13 a^2+2 b^2+c^2) y z^2, where x : y : z are barycentyrics of a variable point; then m(K002) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, July 31, 2018)
X(20323) lies on these lines: {1, 3}, {2, 11260}, {8, 17728}, {11, 10106}, {21, 10179}, {104, 15179}, {106, 15955}, {145, 3689}, {210, 12513}, {214, 3635}, {355, 10072}, {388, 6957}, {392, 8666}, {404, 3880}, {497, 4308}, {519, 17614}, {614, 3445}, {937, 16485}, {946, 5434}, {1056, 6898}, {1100, 2183}, {1104, 1149}, {1125, 15888}, {1210, 10944}, {1222, 5205}, {1376, 3893}, {1387, 12047}, {1475, 6603}, {1478, 11373}, {1537, 3649}, {1699, 9657}, {1836, 3600}, {1837, 3476}, {1858, 12740}, {1887, 15500}, {2320, 5558}, {2348, 9310}, {2551, 3616}, {2650, 17476}, {2842, 11717}, {2975, 3683}, {2999, 15839}, {3058, 4297}, {3086, 5252}, {3244, 5440}, {3306, 3922}, {3475, 3622}, {3487, 6976}, {3582, 9956}, {3585, 7743}, {3636, 12572}, {3698, 3872}, {3812, 4861}, {3884, 3916}, {3890, 4640}, {3962, 5289}, {4009, 9369}, {4293, 12701}, {4301, 11246}, {4311, 6284}, {4315, 7354}, {4317, 12699}, {4413, 4853}, {4646, 15854}, {4719, 17015}, {4731, 16408}, {4870, 5901}, {5044, 5288}, {5087, 20060}, {5250, 11194}, {5253, 5836}, {5258, 5506}, {5270, 9955}, {5298, 6684}, {5603, 10404}, {5691, 11238}, {5698, 11038}, {5794, 10529}, {6049, 10580}, {6691, 6735}, {7677, 15837}, {8227, 11237}, {9327, 16601}, {9613, 10896}, {9614, 12943}, {10039, 15325}, {10074, 17638}, {10199, 17619}, {10624, 15326}, {10915, 13747}, {10950, 11019}, {11189, 12262}, {12575, 15338}, {12675, 17637}, {17439, 17474}, {17469, 20324}, {17636, 20586}
See X(20323).
X(20324) lies on these lines: {1, 84}, {1100, 1953}, {1389, 1870}, {3057, 20277}, {17469, 20323}
See X(20323).
X(20325) lies on these lines: {1, 204}, {1953, 2312}, {2167, 8767}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27948.
X(20326) lies on these lines: {30, 12525}, {511, 3845}, {512, 16509}, {3363, 5640}, {3858, 6310}
X(20326) = reflection of X(3845) in the line X(512)X(20112)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27948.
X(20327) lies on these lines: {30, 5447}, {1154, 10285}, {5501, 10095}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27948.
X(20328) lies on these lines: {2, 1565}, {5, 6706}, {142, 517}, {277, 3295}, {2809, 3826}, {4000, 6767}, {4648, 15934}, {6147, 17758}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27948.
X(20329) lies on these lines: {3, 1033}, {5, 20203}, {140, 6523}, {550, 6759}, {1503, 16273}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27948.
X(20330) lies on these lines: {1, 5805}, {4, 11038}, {5, 518}, {6, 15251}, {7, 104}, {9, 5886}, {11, 18412}, {142, 517}, {226, 1538}, {354, 8727}, {355, 3243}, {390, 6934}, {495, 1512}, {496, 5728}, {515, 15935}, {516, 550}, {528, 19907}, {946, 971}, {1001, 5762}, {1125, 5763}, {1420, 4312}, {1445, 15325}, {1482, 2550}, {1483, 15570}, {1484, 2801}, {1503, 15939}, {2346, 6905}, {3090, 5686}, {3254, 6265}, {3333, 3358}, {3475, 19541}, {3616, 5759}, {3649, 10085}, {3656, 6173}, {3826, 3918}, {3873, 8226}, {4301, 10179}, {4860, 13226}, {5223, 8227}, {5432, 11218}, {5732, 12699}, {5779, 18493}, {5804, 9654}, {5809, 9669}, {5833, 15829}, {5856, 11729}, {5904, 7958}, {6244, 9776}, {6600, 6911}, {6601, 6826}, {6666, 11230}, {6675, 12704}, {7675, 15171}, {7680, 10265}, {8581, 12047}, {9779, 13257}, {9942, 16216}, {11375, 15298}, {11376, 15299}, {12116, 15911}
X(20330) = midpoint of X(i) and X(j) for these {i,j}: {1, 5805}, {355, 3243}, {946, 5542}, {1482, 2550}, {3254, 6265}, {3656, 6173}, {5732, 12699}
X(20330) = reflection of X(i) in X(j) for these (i,j): (1001, 5901), (1483, 15570)
X(20330) = X(5805)-of-anti-Aquila-triangle
X(20330) = X(18440)-of-3rd Euler-triangle
X(20330) = X(19139)-of-incircle-circles-triangle
X(20331) lies on the Brocard quartic Q143 and these lines: {1, 39}, {2, 45}, {6, 100}, {9, 1054}, {37, 244}, {42, 678}, {43, 4274}, {75, 17028}, {105, 6016}, {106, 4752}, {513, 649}, {574, 16788}, {644, 9259}, {1023, 8649}, {1100, 3722}, {1281, 2023}, {1334, 16604}, {1574, 16552}, {1914, 16786}, {2087, 2802}, {2325, 4871}, {3315, 16777}, {3550, 5332}, {3693, 3726}, {3780, 4253}, {4595, 9263}, {4969, 19998}, {5030, 5291}, {5264, 7772}, {5297, 16521}, {8297, 16468}, {8300, 16477}, {10987, 16779}, {15447, 15990}, {17029, 17160}
X(20331) = barycentric product X(1)*X(537)
X(20331) = barycentric quotient X(i)/X(j) for these (i,j): (1, 18822), (31, 2382), (537, 75)
X(20331) = trilinear product X(6)*X(537)
X(20331) = trilinear quotient X(i)/X(j) for these (i,j): (2, 18822), (6, 2382), (537, 2)
X(20331) = (1st circumperp)-isotomic conjugate of-X(2382)
X(20331) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (39, 16549, 2295), (44, 899, 2238), (44, 1155, 2243), (44, 1575, 899), (244, 14439, 37), (672, 899, 44), (672, 1575, 2238), (2229, 2245, 2238), (17029, 17759, 17160)
X(20332) lies on the cubic K155 and these lines: {2, 1977}, {6, 190}, {31, 43}, {75, 20639}, {81, 799}, {105, 2144}, {162, 2203}, {238, 660}, {239, 20669}, {256, 8843}, {604, 651}, {608, 653}, {658, 1407}, {662, 1333}, {739, 4607}, {823, 5317}, {1922, 6652}, {1979, 4383}, {3257, 9456}, {7121, 14823}
X(20332) = isogonal conjugate of X(1575)
X(20332) = complement of X(20355)
X(20332) = anticomplement of X(20343)
X(20332) = trilinear pole of line X(1)X(667)
X(20332) = X(2)-isoconjugate of X(3009)
X(20332) = X(92)-isoconjugate of X(20777)
X(20332) = eigencenter of Gemini triangle 30
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155), which is the complement of K002, as at X(20205). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,10), (2,2), (6,141), (31,2887), (105,120), (238,3836), (292,20333), (365,20334), (672,20335), (1423,20336), (1931,20337), (2053,20338), (2054,20339), (3009,20340), (2112,20341), (2144,20342)
Twenty-four more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : 1 : 1
m(A') = (b' + c')(b - b'c' + c) : (a' + c')(a - a' c' + c) : ((a' + b')(a - a' b' + b), where a' = a1/2, and b' and c' are defined cyclically
m(A1) = 2 b c : -a^2 + b c : -a^2 + b c
m(A2) = (b + c) (b^2 - b c + c^2) : c (-a b + c^2) : b (b^2 - a c)
m(A3) = (b + c) (a b + a c + b c) : -a^3 - a^2 b - a^2 c + a b c + a c^2 + b c^2 : -a^3 - a^2 b + a b^2 - a^2 c + a b c + b^2 c
m(A4) = -(a + b + c) (b^2 + c^2) : a^2 b + a^2 c + a b c - a c^2 - b c^2 - c^3 : a^2 b - a b^2 - b^3 + a^2 c + a b c - b^2 c
m(A5) = a^2 b + b^3 + a^2 c - 2 a b c - b^2 c - b c^2 + c^3 : a^3 + a^2 b + 2 a^2 c - a b c - b c^2 + c^3 : a^3 + 2 a^2 b + b^3 + a^2 c - a b c - b^2 c
m(A6) = (a + b + c) (a^2 b^2 - a b^3 - b^3 c + a^2 c^2 + 2 b^2 c^2 - a c^3 - b c^3) : (a^2 + b^2 - a c - b c) (a^3 - a^2 b - a b c + 2 a c^2 + b c^2 + c^3) : (a^3 + 2 a b^2 + b^3 - a^2 c - a b c + b^2 c) (a^2 - a b - b c + c^2),
where the 6 triangles A1B1C1 to A6B6C6 are given by A-vertices (found using the method described in the preamble just before X(2106)) as follows:
A1 = -a^2 : b c : b c
A2 = -a b c : b^3 : c^3
A3 = -a^2 (a + b + c) : b (b c + c a + a b) : c (b c + c a + a b)
A4 = -a/(a + b + c) : b^2/(b c + c a + a b) : c^2/(b c + c a + a b)
A5 = a^2 (a + b + c) : b (a^2 + b^2 - a c - b c) : c (a^2 + c^2 - a b - b c)
A6 = a/(a + b + c) : b^2/(a^2 + b^2 - a c - b c) : c^2/(a^2 + c^2 - a b - b c)
X(20333) lies on these lines: {2, 292}, {10, 3934}, {116, 3454}, {141, 9016}, {668, 19974}, {1086, 1213}, {1329, 20255}, {1921, 14603}, {2887, 20341}, {3846, 19563}, {3912, 20530}, {18205, 20457}, {20335, 20340}, {20356, 20484}, {20540, 20541}
X(20333) = complement of X(292)
X(20333) = complementary conjugate of X(3912)
See X(20333).
X(20334) lies on these lines: {2, 365}, {3661, 20357}, {4180, 20527}
X(20334) = complement of X(365)
X(20334) = complementary conjugate of X(20527)
See X(20333).
X(20335) lies on these lines: {2, 7}, {5, 17046}, {8, 20257}, {10, 2140}, {12, 17062}, {42, 3946}, {43, 4000}, {69, 17026}, {85, 3061}, {116, 3814}, {120, 3836}, {141, 674}, {295, 9470}, {334, 350}, {513, 3716}, {516, 8299}, {519, 17761}, {673, 3684}, {899, 17067}, {942, 17048}, {960, 6706}, {1009, 4292}, {1086, 1575}, {1125, 16850}, {1215, 3739}, {1266, 17759}, {1319, 6647}, {1738, 3783}, {1921, 18275}, {2238, 3008}, {2239, 3011}, {2276, 3663}, {2321, 4441}, {3136, 17052}, {3501, 17753}, {3717, 17794}, {3771, 12610}, {3817, 3840}, {3831, 3934}, {3879, 17027}, {3970, 7264}, {4051, 16284}, {4119, 4437}, {4361, 4685}, {4372, 8669}, {4465, 19593}, {4479, 17233}, {4511, 9317}, {4713, 17279}, {4851, 4865}, {4859, 16569}, {4869, 5274}, {4887, 20331}, {4904, 17757}, {5074, 11813}, {5847, 17031}, {5853, 13576}, {6823, 18639}, {8167, 15668}, {9320, 17072}, {10453, 17296}, {14828, 16503}, {15669, 16058}, {16593, 17747}, {17090, 20535}, {17192, 17211}, {17760, 18055}, {18067, 18144}, {20333, 20340}, {20358, 20486}, {20448, 20593}
X(20335) = complement of X(672)
X(20335) = complementary conjugate of X(16593)
See X(20333).
X(20336) lies on the hyperbola {{A,B,C,X(2),X(69)}} and these lines: {2,37}, {10,18697}, {12,313}, {28,7283}, {69,72}, {71,4019}, {95,7523}, {100,2373}, {190,5279}, {201,307}, {228,1799}, {253,322}, {264,1969}, {286,2064}, {287,336}, {306,3610}, {314,943}, {332,1807}, {668,1494}, {857,4150}, {894,2303}, {975,10436}, {1001,3702}, {1089,4078}, {1444,1791}, {1930,4357}, {2893,16086}, {2901,3875}, {3159,3663}, {3668,4082}, {3695,20235}, {3879,14210}, {3936,16580}, {3948,20234}, {3967,7211}, {3975,17788}, {4064,15413}, {4329,4463}, {4360,5262}, {4647,19857}, {5295,5722}, {6330,6335}, {6386,18024}, {9022,16685}, {9229,9239}, {16817,17143}, {17144,19851}, {18156,20009}
X(20336) = isogonal conjugate of X(2203)
X(20336) = isotomic conjugate of X(28)
X(20336) = X(15408)-complementary conjugate of X(1125)
X(20336) = X(i)-Ceva conjugate of X(j) for these (i,j): {304, 306}, {1978, 15416}, {3596, 313}, {4601, 1332}
X(20336) = X(i)-cross conjugate of X(j) for these (i,j): {72, 321}, {306, 1231}, {3695, 306}, {4466, 15413}, {18210, 525}
X(20336) = X(i)-beth conjugate of X(j) for these (i,j): {645, 5279}, {3596, 1441}, {3701, 4078}
X(20336) = X(1)-zayin conjugate of X(2203)
X(20336) = X(i)-isoconjugate of X(j) for these (i,j): {1, 2203}, {4, 2206}, {6, 1474}, {19, 1333}, {21, 1395}, {25, 58}, {27, 32}, {28, 31}, {29, 1397}, {33, 1408}, {34, 2194}, {41, 1396}, {48, 5317}, {56, 2299}, {57, 2204}, {81, 1973}, {86, 1974}, {112, 649}, {162, 667}, {163, 6591}, {184, 8747}, {250, 3122}, {270, 1402}, {281, 16947}, {283, 7337}, {284, 608}, {286, 560}, {593, 2333}, {604, 1172}, {607, 1412}, {648, 1919}, {811, 1980}, {849, 1824}, {1014, 2212}, {1096, 1437}, {1106, 4183}, {1169, 2354}, {1398, 2328}, {1400, 2189}, {1407, 2332}, {1472, 4206}, {1576, 7649}, {1790, 2207}, {1880, 2150}, {2201, 18268}, {2208, 3194}, {2360, 7151}, {2489, 4556}, {3248, 5379}, {3285, 8752}, {3733, 8750}, {4211, 7084}, {13854, 17186}
X(20336) = X(2)-Hirst inverse of X(16085)
X(20336) = cevapoint of X(i) and X(j) for these (i,j): {72, 3998}, {306, 3710}, {525, 18210}, {4064, 4466}
X(20336) = crosspoint of X(i) and X(j) for these (i,j): {304, 305}, {3596, 3718}, {4601, 6386}
X(20336) = trilinear pole of line {525, 14208}
X(20336) = crosssum of X(i) and X(j) for these (i,j): {1395, 1397}, {1973, 1974}, {1980, 3121}
X(20336) = barycentric product X(i)X(j) for these {i,j}: {8, 1231}, {10, 304}, {37, 305}, {63, 313}, {69, 321}, {71, 561}, {72, 76}, {75, 306}, {78, 349}, {85, 3710}, {100, 3267}, {125, 4601}, {190, 14208}, {226, 3718}, {228, 1502}, {264, 3998}, {274, 3695}, {307, 312}, {310, 3949}, {332, 6358}, {337, 3948}, {339, 4567}, {345, 1441}, {348, 3701}, {525, 668}, {646, 17094}, {647, 6386}, {656, 1978}, {799, 4064}, {850, 1332}, {1089, 17206}, {1214, 3596}, {1228, 1791}, {1265, 1446}, {1577, 4561}, {1928, 2200}, {1969, 3682}, {2321, 7182}, {3265, 6335}, {3690, 6385}, {3694, 6063}, {3952, 15413}, {3963, 7019}, {3990, 18022}, {4019, 7018}, {4025, 4033}, {4036, 4563}, {4466, 7035}, {4566, 15416}, {4572, 8611}
X(20336) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 1474}, {2, 28}, {3, 1333}, {4, 5317}, {6, 2203}, {7, 1396}, {8, 1172}, {9, 2299}, {10, 19}, {12, 1880}, {21, 2189}, {37, 25}, {42, 1973}, {48, 2206}, {55, 2204}, {63, 58}, {65, 608}, {69, 81}, {71, 31}, {72, 6}, {73, 604}, {75, 27}, {76, 286}, {77, 1412}, {78, 284}, {92, 8747}, {100, 112}, {125, 3125}, {190, 162}, {200, 2332}, {201, 1400}, {210, 607}, {213, 1974}, {219, 2194}, {222, 1408}, {226, 34}, {227, 3209}, {228, 32}, {283, 2150}, {295, 18268}, {304, 86}, {305, 274}, {306, 1}, {307, 57}, {312, 29}, {313, 92}, {318, 8748}, {321, 4}, {326, 1790}, {329, 3194}, {332, 2185}, {333, 270}, {339, 16732}, {341, 2322}, {343, 18180}, {344, 4233}, {345, 21}, {346, 4183}, {348, 1014}, {349, 273}, {394, 1437}, {440, 1104}, {442, 1841}, {521, 7252}, {523, 6591}, {525, 513}, {594, 1824}, {603, 16947}, {656, 649}, {668, 648}, {693, 17925}, {740, 2201}, {756, 2333}, {810, 1919}, {850, 17924}, {905, 3733}, {906, 1576}, {1016, 5379}, {1018, 8750}, {1043, 2326}, {1089, 1826}, {1211, 1829}, {1213, 2355}, {1214, 56}, {1215, 7119}, {1231, 7}, {1238, 16698}, {1259, 2193}, {1264, 1812}, {1265, 2287}, {1331, 163}, {1332, 110}, {1334, 2212}, {1368, 16716}, {1400, 1395}, {1409, 1397}, {1427, 1398}, {1439, 1407}, {1441, 278}, {1444, 593}, {1446, 1119}, {1565, 16726}, {1577, 7649}, {1790, 849}, {1791, 1169}, {1792, 7054}, {1812, 60}, {1824, 2207}, {1826, 1096}, {1880, 7337}, {1903, 7151}, {1930, 17171}, {1978, 811}, {2197, 1402}, {2200, 560}, {2292, 2354}, {2318, 41}, {2321, 33}, {2345, 4206}, {2397, 4246}, {2525, 2530}, {2895, 2906}, {3049, 1980}, {3175, 4186}, {3198, 3172}, {3263, 15149}, {3265, 905}, {3267, 693}, {3610, 612}, {3668, 1435}, {3682, 48}, {3690, 213}, {3692, 2328}, {3694, 55}, {3695, 37}, {3700, 18344}, {3701, 281}, {3708, 3122}, {3710, 9}, {3718, 333}, {3719, 283}, {3797, 17569}, {3926, 1444}, {3930, 2356}, {3932, 5089}, {3933, 16696}, {3936, 1870}, {3940, 4273}, {3948, 242}, {3949, 42}, {3952, 1783}, {3954, 1843}, {3958, 2308}, {3963, 7009}, {3964, 18604}, {3969, 6198}, {3975, 14024}, {3990, 184}, {3992, 8756}, {3995, 4222}, {3998, 3}, {4000, 4211}, {4019, 171}, {4025, 1019}, {4033, 1897}, {4036, 2501}, {4037, 862}, {4043, 14004}, {4055, 9247}, {4064, 661}, {4082, 7079}, {4086, 3064}, {4101, 1449}, {4121, 18167}, {4131, 7254}, {4143, 4131}, {4158, 3990}, {4397, 17926}, {4415, 1828}, {4463, 8743}, {4466, 244}, {4515, 7071}, {4552, 108}, {4561, 662}, {4567, 250}, {4571, 5546}, {4574, 692}, {4580, 18108}, {4592, 4556}, {4601, 18020}, {4647, 1839}, {4674, 8752}, {4705, 2489}, {4850, 4247}, {5257, 5338}, {5360, 2211}, {5440, 3285}, {5930, 3213}, {6332, 3737}, {6335, 107}, {6354, 1426}, {6356, 1427}, {6358, 225}, {6386, 6331}, {6390, 16702}, {6516, 4565}, {7017, 1896}, {7066, 1409}, {7182, 1434}, {8024, 16747}, {8611, 663}, {8680, 1430}, {8804, 204}, {9033, 14399}, {9723, 18605}, {11611, 17981}, {13576, 8751}, {14208, 514}, {14417, 14419}, {14429, 1635}, {15377, 18757}, {15413, 7192}, {15416, 7253}, {15523, 17442}, {15526, 18210}, {16732, 2969}, {17094, 3669}, {17206, 757}, {17216, 3942}, {17441, 16502}, {17740, 4227}, {17757, 14571}, {17759, 15148}, {17762, 2905}, {17787, 14006}, {17790, 422}, {17879, 4466}, {17880, 17197}, {17977, 5006}, {18210, 1015}, {18589, 614}, {18695, 17167}, {18697, 1848}, {18743, 4248}, {19799, 1010}, {20235, 4000}
X(20336) = pole wrt polar circle of trilinear polar of X(5317) (line X(667)X(6591))
X(20336) = polar conjugate of X(5317)
X(20336) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (75, 18147, 17863), (304, 3718, 69), (312, 19804, 19814), (313, 349, 1234), (1441, 3701, 313), (3610, 18589, 306), (4358, 17863, 18147)
See X(20333).
X(20337) lies on these lines: {2, 1931}, {10, 12}, {115, 3912}, {141, 5949}, {239, 10026}, {325, 18827}, {334, 3948}, {894, 1213}, {1230, 1237}, {3834, 8287}, {3836, 20339}, {3936, 6542}, {4129, 4369}, {5025, 18134}, {8818, 17279}, {16826, 17056}, {20360, 20488}
X(20337) = complement of X(1931)
X(20337) = complementary conjugate of X(20529)
X(20337) = polar conjugate of isogonal conjugate of X(20733)
See X(20333).
X(20338) lies on these lines: {2, 2053}, {12, 85}, {1329, 3836}, {2886, 17062}, {2887, 20255}, {14823, 17717}, {17046, 20547}, {20361, 20489}
X(20338) = complement of X(2053)
X(20338) = complementary conjugate of X(3061)
X(20338) = isotomic conjugate of isogonal conjugate of X(20462)
X(20338) = polar conjugate of isogonal conjugate of X(20734)
See X(20333).
X(20339) lies on these lines: {2, 846}, {141, 20341}, {3739, 20529}, {3741, 20548}, {3836, 20337}, {20362, 20490}
X(20339) = complement of X(2054)
X(20339) = complementary conjugate of X(10026)
X(20339) = isotomic conjugate of isogonal conjugate of X(20463)
X(20339) = polar conjugate of isogonal conjugate of X(20735)
See X(20333).
X(20340) lies on these lines: {1, 2}, {75, 4941}, {291, 3975}, {512, 625}, {515, 19522}, {726, 3948}, {982, 6376}, {1921, 19567}, {2887, 20255}, {3122, 3264}, {3501, 4011}, {3596, 17065}, {3836, 20343}, {3971, 12782}, {17793, 20358}, {20333, 20335}, {20341, 20541}, {20363, 20491}
X(20340) = complement of X(3009)
X(20340) = complementary conjugate of X(20532)
X(20340) = isotomic conjugate of isogonal conjugate of X(20464)
X(20340) = polar conjugate of isogonal conjugate of X(20736)
See X(20333).
X(20341) lies on these lines: {2, 2112}, {10, 116}, {141, 20339}, {2887, 20333}, {3496, 17671}, {3836, 9470}, {16830, 17062}, {20258, 20343}, {20340, 20541}, {20364, 20492}
X(20341) = complement of X(2112)
X(20341) = isotomic conjugate of isogonal conjugate of X(20465)
X(20341) = polar conjugate of isogonal conjugate of X(20737)
See X(20333).
X(20342) lies on these lines: {2, 2113}, {120, 20343}, {20365, 20493}
X(20342) = complement of X(2144)
See X(20333).
X(20343) lies on these lines: {2, 1977}, {11, 2887}, {75, 141}, {120, 20342}, {1211, 16592}, {3836, 20340}, {20258, 20341}, {20366, 20494}
X(20343) = complement of X(20332)
X(20343) = complementary conjugate of X(20530)
X(20343) = isotomic conjugate of isogonal conjugate of X(20467)
X(20343) = polar conjugate of isogonal conjugate of X(20738)
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155), which is K007. The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,8), (2,2), (6,69), (31,6327), (105,20344), (238,5645), (292,20345), (365,20346), (672,20347), (1423,20348), (1931,20349), (2053,20350), (2054,20351), (3009,20352), (2112,20353), (2144,20354), (20332,20355)
Twenty-four more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = -1 : 1 : 1
m(A') = a^(3/2) + b^(3/2) + c^(3/2) : -a^(3/2) - b^(3/2) + c^(3/2) : -a^(3/2) + b^(3/2) - c^(3/2)
m(A1) = a^2 + 2 b c : -a^2 : -a^2
m(A2) = b^3 + a b c + c^3 : -b^3 - a b c + c^3 : b^3 - a b c - c^3
m(A3) = -a^3 - a^2 b - a b^2 - a^2 c - 2 a b c - b^2 c - a c^2 - b c^2 : a^3 + a^2 b + a b^2 + a^2 c + b^2 c - a c^2 - b c^2 : a^3 + a^2 b - a b^2 + a^2 c - b^2 c + a c^2 + b c^2
m(A4) = a^2 b + a b^2 + b^3 + a^2 c + a b c + b^2 c + a c^2 + b c^2 + c^3 : -a^2 b - a b^2 - b^3 - a^2 c - a b c - b^2 c + a c^2 + b c^2 + c^3 : -a^2 b + a b^2 + b^3 - a^2 c - a b c + b^2 c - a c^2 - b c^2 - c^3
m(A5) = a^3 - b^3 + 2 a b c + b^2 c + b c^2 - c^3 : -a^3 + b^3 - 2 a^2 c - b^2 c + b c^2 - c^3 : -a^3 - 2 a^2 b - b^3 + b^2 c - b c^2 + c^3
m(A6) = a^5 - a^4 b - a^2 b^3 + a b^4 - a^4 c - a^3 b c + a b^3 c + b^4 c - b^3 c^2 - a^2 c^3 + a b c^3 - b^2 c^3 + a c^4 + b c^4 : -a^5 + a^4 b + a^2 b^3 - a b^4 + a^4 c + a^3 b c - a b^3 c - b^4 c - 2 a^3 c^2 - 2 a^2 b c^2 - 2 a b^2 c^2 - b^3 c^2 + a^2 c^3 + 3 a b c^3 + b^2 c^3 + a c^4 + b c^4 : -a^5 + a^4 b - 2 a^3 b^2 + a^2 b^3 + a b^4 + a^4 c + a^3 b c - 2 a^2 b^2 c + 3 a b^3 c + b^4 c - 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 - a b c^3 - b^2 c^3 - a c^4 - b c^4,
where A1, A2, A3, A4, A5, A6 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = -x + y + z : x - y + z : x + y - z : : , and m is the collineation indicated by (A,B,C,X(2); A'B'C',X(2)), where A'B'C' = anticomplementary triangle.
Let f(a,b,c,x,y,z) = a^3 (b-c) (b^2+b c+c^2) x^3-b c (a^4+a b^3-b^2 c^2-a c^3) y^2 z+b c (a^4-a b^3-b^2 c^2+a c^3) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 7, 2018)
X(20344) lies on these lines: {2, 11}, {4, 10743}, {8, 150}, {10, 5540}, {20, 1292}, {145, 10699}, {146, 2775}, {147, 2788}, {148, 1655}, {151, 2814}, {152, 2820}, {153, 2826}, {193, 10760}, {329, 2835}, {346, 11677}, {388, 1358}, {612, 3120}, {1370, 2834}, {2551, 3039}, {2836, 2895}, {2837, 14360}, {2838, 5300}, {2968, 7386}, {3034, 9534}, {3091, 5511}, {3146, 10729}, {3263, 4872}, {3616, 11716}, {3622, 11730}, {3755, 7191}, {3920, 5249}, {4009, 5057}, {4368, 4660}, {4645, 17794}, {5800, 20020}, {6078, 14506}, {7427, 13199}, {8055, 9519}, {9523, 12384}, {14839, 18343}, {16550, 20495}, {17522, 20066}, {20060, 20089}, {20354, 20355}
X(20344) = isogonal conjugate of X(34183)
X(20344) = complement of X(20097)
X(20344) = anticomplement of X(105)
X(20344) = anticomplementary conjugate of X(518)
X(20344) = orthoptic-circle-of-Steiner-circumellipse-inverse of X(100)
X(20344) = de-Longchamps-circle-inverse of X(26703)
X(20344) = 1st-Brocard-to-ABC similarity image of X(18343)
See X(20344).
X(20345) lies on these lines: {2, 292}, {7, 4572}, {8, 76}, {69, 9016}, {75, 1654}, {150, 1330}, {350, 6542}, {561, 4388}, {670, 19643}, {752, 4495}, {1909, 5484}, {1921, 2113}, {1978, 17777}, {3263, 3975}, {6327, 20353}, {17738, 20496}, {20347, 20352}, {20552, 20553}
X(20345) = isotomic conjugate of X(2113)
X(20345) = anticomplement of X(292)
X(20345) = anticomplementary conjugate of X(6542)
X(20345) = perspector of Gemini triangle 32 and cross-triangle of Gemini triangles 32 and 34
X(20345) = polar conjugate of isogonal conjugate of X(20742)
See X(20344).
X(20346) lies on these lines: {2, 365}, {510, 20497}
X(20346) = anticomplement of X(365)
X(20346) = anticomplementary conjugate of X(20534)
See X(20344).
X(20347) lies on these lines: {2, 7}, {8, 3761}, {42, 3663}, {43, 4862}, {69, 674}, {75, 3681}, {76, 17137}, {85, 3869}, {86, 5284}, {150, 5080}, {310, 20028}, {320, 350}, {518, 13576}, {758, 1111}, {899, 4887}, {960, 4059}, {1086, 2238}, {1125, 17169}, {1193, 18600}, {1266, 19998}, {1434, 5253}, {1621, 14828}, {1909, 17152}, {2140, 16552}, {2276, 17276}, {2481, 20556}, {2890, 2893}, {3240, 4346}, {3263, 3952}, {3294, 17758}, {3436, 6604}, {3664, 3720}, {3672, 17018}, {3673, 3868}, {3691, 17050}, {3789, 5880}, {3812, 4955}, {3874, 7264}, {3875, 20011}, {3884, 7278}, {4184, 8822}, {4440, 17759}, {4452, 20012}, {4465, 7238}, {4479, 17361}, {4511, 5088}, {4645, 17794}, {4713, 7232}, {4902, 16569}, {5180, 5195}, {5259, 17201}, {5289, 7223}, {6147, 16850}, {6647, 17439}, {7269, 18654}, {8299, 17768}, {9312, 11682}, {9812, 10439}, {11415, 17170}, {14923, 16284}, {17027, 17364}, {17031, 17770}, {17032, 17247}, {17033, 20109}, {20089, 20535}, {20345, 20352}
X(20347) = isotomic conjugate of isogonal conjugate of X(20470)
X(20347) = isotomic conjugate of anticomplement of X(39046)
X(20347) = anticomplement of X(672)
X(20347) = anticomplementary conjugate of X(20533)
See X(20344).
X(20348) lies on these lines: {2, 7}, {8, 511}, {69, 17786}, {75, 2262}, {192, 1959}, {1201, 4310}, {1278, 20535}, {3436, 4645}, {3729, 10446}, {3927, 15973}, {4307, 10459}, {4363, 11683}, {4454, 17220}, {5069, 17276}, {7155, 10453}, {7779, 20537}, {17364, 17752}, {20353, 20355}, {20368, 20498}
X(20348) = anticomplement of X(1423)
X(20348) = anticomplementary conjugate of X(20537)
See X(20344).
X(20349) lies on these lines: {2, 1931}, {8, 79}, {76, 1029}, {148, 6542}, {1577, 7192}, {1654, 4363}, {4645, 20351}, {17484, 17789}, {20016, 20536}, {20369, 20499}
X(20349) = isotomic conjugate of isogonal conjugate of X(20472)
X(20349) = isotomic conjugate of anticomplement of X(39042)
X(20349) = anticomplement of X(1931)
X(20349) = anticomplementary conjugate of X(20538)
See X(20344).
X(20350) lies on these lines: {2, 2053}, {377, 2227}, {1370, 17149}, {3434, 20537}, {3436, 4645}, {6327, 20352}, {20060, 20089}, {20370, 20503}
X(20350) = anticomplement of X(2053)
X(20350) = anticomplementary conjugate of X(20535)
See X(20344).
X(20351) lies on these lines: {2, 846}, {69, 20353}, {75, 20538}, {3448, 20290}, {4576, 17135}, {4645, 20349}, {20371, 20500}
X(20351) = anticomplement of X(2054)
X(20351) = anticomplementary conjugate of X(20536)
See X(20344).
X(20352) lies on these lines: {1, 2}, {192, 3764}, {313, 17142}, {316, 512}, {674, 3264}, {952, 19522}, {1909, 17140}, {2295, 18091}, {3051, 3780}, {3765, 17165}, {3948, 14839}, {3952, 3975}, {3963, 17049}, {4446, 17148}, {4645, 20355}, {6327, 20350}, {7270, 19816}, {8622, 16704}, {9902, 17155}, {17137, 20290}, {20023, 20244}, {20345, 20347}, {20353, 20553}, {20372, 20501}
X(20352) = anticomplement of X(3009)
X(20352) = anticomplementary conjugate of X(39354)
See X(20344).
X(20353) lies on these lines: {2, 2112}, {8, 150}, {69, 20351}, {334, 7357}, {4495, 4645}, {6327, 20345}, {20348, 20355}, {20352, 20553}, {20373, 20502}
X(20353) = anticomplement of X(2112)
See X(20344).
X(20354) lies on these lines: {2, 2113}, {20344, 20355}
X(20354) = anticomplement of X(2144)
See X(20344).
X(20355) lies on these lines: {2, 1977}, {69, 1278}, {149, 6327}, {4645, 20352}, {20344, 20354}, {20348, 20353}
X(20355) = anticomplement of X(20332)
X(20355) = anticomplementary conjugate of X(350)
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,37), (2,1), (6,38), (31,3721), (105,17464), (238,3726), (292,20356), (365,20357), (672,20358), (1423,20359), (1931,20360), (2053,20361), (2054,20362), (3009,20363), (2112,20364), (2144,20365), (20332,20366)
Twenty-four more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : b : c
m(A') = -a (Sqrt[b] + Sqrt[c]) (b - Sqrt[b] Sqrt[c] + c), b (Sqrt[a] - Sqrt[c]) (a + Sqrt[a] Sqrt[c] + c), (Sqrt[a] - Sqrt[b]) (a + Sqrt[a] Sqrt[b] + b) c
m(A1) = -2 a b c : -b (-a^2 + b c) : -c (-a^2 + b c)
m(A2) = a (b + c) (b^2 - b c + c^2) : -b c (a b - c^2) : b c (b^2 - a c)
m(A3) = a (b + c) (a b + a c + b c) : -b (a^3 + a^2 b + a^2 c - a b c - a c^2 - b c^2) : -c (a^3 + a^2 b - a b^2 + a^2 c - a b c - b^2 c)
m(A4) = a (a + b + c) (b^2 + c^2) : -b (a^2 b + a^2 c + a b c - a c^2 - b c^2 - c^3) : -c (a^2 b - a b^2 - b^3 + a^2 c + a b c - b^2 c)
m(A5) = -a (a^2 b + b^3 + a^2 c - 2 a b c - b^2 c - b c^2 + c^3) : -b (a^3 + a^2 b + 2 a^2 c - a b c - b c^2 + c^3) : -c (a^3 + 2 a^2 b + b^3 + a^2 c - a b c - b^2 c)
m(A6) = a (a + b + c) (a^2 b^2 - a b^3 - b^3 c + a^2 c^2 + 2 b^2 c^2 - a c^3 - b c^3) : -b (a^2 + b^2 - a c - b c) (-a^3 + a^2 b + a b c - 2 a c^2 - b c^2 - c^3) : -c (-a^3 - 2 a b^2 - b^3 + a^2 c + a b c - b^2 c) (a^2 - a b - b c + c^2),
where A1, A2, A3, A4, A5, A6 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = a(y + z) : b(z + x) : c(x + y) , and m is the collineation indicated by (A,B,C,X(2); A'B'C',X(2)), where A'B'C' = incentral triangle.
Let f(a,b,c,x,y,z) = b^2 (b-c) c^2 (a^2-b c) (b^2+b c+c^2) x^3-a^2 c (-2 a^3 b^3+3 a^4 b c+a b^4 c-a^3 c^3-b^3 c^3) y^2 z+a^2 b (-a^3 b^3+3 a^4 b c-2 a^3 c^3-b^3 c^3+a b c^4) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, July 31, 2018)
X(20356) lies on these lines: {1, 335}, {37, 17445}, {38, 20591}, {244, 1962}, {350, 1926}, {354, 17459}, {3721, 20364}, {3938, 6654}, {4016, 4022}, {20333, 20484}, {20358, 20363}, {20589, 20590}
See X(20356).
X(20357) lies on these lines: {1, 510}, {76, 18297}, {984, 20458}, {3661, 20334}
See X(20356).
X(20358) lies on these lines: {1, 3}, {2, 4517}, {7, 3056}, {38, 1107}, {72, 16825}, {142, 3688}, {175, 6405}, {176, 6283}, {210, 4384}, {239, 335}, {244, 3009}, {320, 9025}, {330, 20535}, {350, 19567}, {497, 6604}, {511, 1463}, {527, 3271}, {614, 2176}, {649, 4083}, {651, 8540}, {674, 1086}, {869, 3752}, {960, 16823}, {1002, 17014}, {1100, 13476}, {1266, 6007}, {1279, 3747}, {1469, 4310}, {1738, 9052}, {1836, 4911}, {1920, 3706}, {1953, 17447}, {2262, 16973}, {2295, 3720}, {2348, 18785}, {2481, 18033}, {2664, 16610}, {3290, 16514}, {3309, 4077}, {3662, 17792}, {3681, 16816}, {3726, 17464}, {3740, 16815}, {3742, 16826}, {3779, 4000}, {3799, 17266}, {3812, 16830}, {3834, 4553}, {3873, 4393}, {3912, 14839}, {3925, 17050}, {3975, 17794}, {4014, 4887}, {4021, 4890}, {4022, 17445}, {4298, 10544}, {4357, 17049}, {4395, 9054}, {4641, 16476}, {4847, 20257}, {4969, 9038}, {5572, 11997}, {5728, 12721}, {6384, 10453}, {6666, 7064}, {7238, 9024}, {9309, 20059}, {11851, 20036}, {12109, 13161}, {12723, 14523}, {14100, 17635}, {14267, 20556}, {17444, 17463}, {17793, 20340}, {18179, 18183}, {18191, 18206}, {20335, 20486}, {20356, 20363}
See X(20356).
X(20359) lies on these lines: {1, 3}, {2, 3056}, {10, 10544}, {11, 2887}, {37, 1755}, {72, 8669}, {81, 2330}, {210, 333}, {312, 7155}, {321, 4459}, {497, 4645}, {518, 3769}, {613, 16434}, {1428, 19649}, {1463, 3784}, {1837, 7270}, {1964, 3752}, {2262, 4386}, {2319, 3061}, {3011, 3917}, {3271, 3452}, {3688, 5745}, {3693, 7075}, {3726, 17452}, {3831, 17606}, {3893, 3996}, {3944, 15310}, {4310, 7248}, {4417, 9025}, {4517, 5273}, {4640, 11688}, {4682, 18165}, {5325, 7064}, {5432, 6685}, {5918, 17635}, {7004, 20364}, {7186, 17719}, {7220, 17063}, {10167, 12721}, {17448, 20594}, {20258, 20487}
See X(20356).
X(20360) lies on these lines: {1, 1326}, {37, 65}, {171, 1962}, {335, 740}, {518, 2643}, {758, 1757}, {942, 17470}, {2611, 17449}, {2650, 4649}, {3726, 20362}, {3812, 6042}, {3963, 4647}, {3999, 17476}, {4132, 4367}, {5202, 7193}, {16598, 18201}, {20337, 20488}
See X(20356).
X(20361) lies on these lines: {1, 20370}, {7, 192}, {2294, 20284}, {3721, 17470}, {3726, 17452}, {17447, 20596}, {20338, 20489}
See X(20356).
X(20362) lies on these lines: {1, 1929}, {38, 20364}, {1107, 20597}, {3726, 20360}, {4966, 10026}, {17149, 17778}, {20339, 20490}
See X(20356).
X(20363) lies on these lines: {1, 6}, {39, 3993}, {75, 16604}, {192, 2275}, {292, 3685}, {312, 16606}, {350, 19565}, {536, 9296}, {726, 1015}, {740, 1575}, {798, 4083}, {982, 17459}, {1574, 4709}, {1921, 20530}, {3121, 4358}, {3721, 17470}, {3726, 20366}, {3912, 18904}, {4871, 6377}, {16742, 18157}, {17475, 20459}, {20340, 20491}, {20356, 20358}, {20364, 20590}
See X(20356).
X(20364) lies on these lines: {1, 3506}, {37, 17447}, {38, 20362}, {3721, 20356}, {7004, 20359}, {20341, 20492}, {20363, 20590}
See X(20356).
X(20365) lies on these lines: {1, 18783}, {17464, 20366}, {20342, 20493}
See X(20356).
X(20366) lies on these lines: {1, 727}, {2, 38}, {2170, 3721}, {2292, 4128}, {2611, 4137}, {3726, 20363}, {7004, 20359}, {17464, 20365}, {20343, 20494}
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155), which is K343. The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,9), (2,1), (6,63), (31,1759), (105,16550), (238,3509), (292,17738), (365,510), (672,20367), (1423,20368), (1931,20369), (2053,20370), (2054,20371), (3009,20372), (2112,20373), (2144,20375), (20332, 20375)
Twenty-four more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = -a : b : c
m(A') = a (a^(3/2) + b^(3/2) + c^(3/2)) : -b (a^(3/2) + b^(3/2) - c^(3/2)) : -c (a^(3/2) - b^(3/2) + c^(3/2))
m(A1) = -a^2 - 2 b c : a b : a c
m(A2) = a (b^3 + a b c + c^3) : -b (b^3 + a b c - c^3) : -c (-b^3 + a b c + c^3)
m(A3) = -a (a^3 + a^2 b + a b^2 + a^2 c + 2 a b c + b^2 c + a c^2 + b c^2) : b (a^3 + a^2 b + a b^2 + a^2 c + b^2 c - a c^2 - b c^2) : c (a^3 + a^2 b - a b^2 + a^2 c - b^2 c + a c^2 + b c^2)
m(A4) = a (a^2 b + a b^2 + b^3 + a^2 c + a b c + b^2 c + a c^2 + b c^2 + c^3) : -b (a^2 b + a b^2 + b^3 + a^2 c + a b c + b^2 c - a c^2 - b c^2 - c^3) : -c (a^2 b - a b^2 - b^3 + a^2 c + a b c - b^2 c + a c^2 + b c^2 + c^3)
m(A5) = a (a^5 - a^4 b - a^2 b^3 + a b^4 - a^4 c - a^3 b c + a b^3 c + b^4 c - b^3 c^2 - a^2 c^3 + a b c^3 - b^2 c^3 + a c^4 + b c^4), -b (a^5 - a^4 b - a^2 b^3 + a b^4 - a^4 c - a^3 b c + a b^3 c + b^4 c + 2 a^3 c^2 + 2 a^2 b c^2 + 2 a b^2 c^2 + b^3 c^2 - a^2 c^3 - 3 a b c^3 - b^2 c^3 - a c^4 - b c^4), -c (a^5 - a^4 b + 2 a^3 b^2 - a^2 b^3 - a b^4 - a^4 c - a^3 b c + 2 a^2 b^2 c - 3 a b^3 c - b^4 c + 2 a b^2 c^2 - b^3 c^2 - a^2 c^3 + a b c^3 + b^2 c^3 + a c^4 + b c^4),
where A1, A2, A3, A4, A5 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = a(-x + y + z) : b(x - y + z) : c(x + y - z) , and m is the collineation indicated by (A,B,C,X(2); A'B'C',X(1)), where A'B'C' = excentral triangle.
Let f(a,b,c,x,y,z) = a b (b-c) c (b^2+b c+c^2) x^3-a c (a^4+a b^3-b^2 c^2-a c^3) y^2 z+a b (a^4-a b^3-b^2 c^2+a c^3) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 7, 2018)
X(20367) lies on these lines: {1, 3}, {2, 2140}, {7, 573}, {9, 3739}, {19, 16551}, {63, 169}, {71, 142}, {75, 16574}, {101, 11349}, {116, 857}, {150, 6999}, {213, 3752}, {239, 514}, {244, 3747}, {307, 12610}, {320, 3882}, {527, 2183}, {579, 4000}, {583, 17366}, {672, 3008}, {673, 20605}, {1018, 3912}, {1054, 2664}, {1086, 2245}, {1100, 18164}, {1111, 16609}, {1400, 3663}, {1423, 4862}, {1445, 1766}, {1462, 13329}, {1765, 18655}, {2260, 3946}, {2269, 3664}, {2270, 5781}, {2481, 6996}, {3191, 16453}, {3219, 16815}, {3306, 6205}, {3501, 17284}, {3509, 16550}, {3928, 5792}, {4253, 5222}, {4266, 4644}, {4271, 17365}, {4292, 15970}, {4312, 6210}, {4447, 14839}, {4650, 16476}, {4858, 8680}, {5290, 9548}, {5745, 17050}, {11024, 19853}, {11343, 16788}, {12717, 15299}, {14829, 17143}, {16548, 16560}, {17077, 17220}, {17175, 17185}, {17738, 20372}
X(20367) = X(241)-of-tangential-of-excentral-triangle
See X(20365).
X(20368) lies on these lines: {1, 3}, {2, 6210}, {4, 3831}, {9, 1755}, {31, 19649}, {43, 511}, {63, 6194}, {238, 16434}, {516, 3840}, {537, 3928}, {573, 6685}, {750, 4220}, {975, 8235}, {978, 19514}, {1350, 1376}, {1695, 15489}, {1698, 15973}, {1730, 11358}, {1742, 4192}, {1766, 3509}, {1768, 20373}, {2050, 11372}, {2319, 20606}, {2941, 20369}, {3305, 7609}, {3646, 19273}, {3736, 18163}, {3753, 19530}, {3794, 13588}, {5250, 19278}, {5437, 9746}, {6684, 9548}, {8227, 19864}, {10860, 12717}, {15310, 19540}, {17122, 19544}, {20348, 20498}
Barycentrics a (a^5 + 2 a^4 b + a^3 b^2 - a^2 b^3 - 2 a b^4 - b^5 + 2 a^4 c + 4 a^3 b c + a^2 b^2 c - 2 a b^3 c - 2 b^4 c + a^3 c^2 + a^2 b c^2 + a b^2 c^2 + b^3 c^2 - a^2 c^3 - 2 a b c^3 + b^2 c^3 - 2 a c^4 - 2 b c^4 - c^5) : :
See X(20365).
X(20369) lies on these lines: {1, 1326}, {9, 46}, {75, 267}, {484, 4645}, {523, 1019}, {750, 846}, {1719, 11679}, {1757, 2640}, {2941, 20368}, {3336, 3821}, {3337, 17302}, {3509, 4037}, {20349, 20499}
X(20369) = isogonal conjugate of isotomic conjugate of X(20450)
See X(20365).
X(20370) lies on these lines: {1, 20361}, {194, 5088}, {1759, 16566}, {1766, 3509}, {16551, 20608}, {20350, 20503}
See X(20365).
X(20371) lies on these lines: {1, 1929}, {63, 20373}, {3509, 4037}, {16552, 20609}, {20351, 20500}
See X(20365).
X(20372) lies on these lines: {1, 6}, {672, 4368}, {726, 20459}, {798, 812}, {1018, 3685}, {1759, 16566}, {2225, 4358}, {2235, 18792}, {3509, 20375}, {3923, 16549}, {4011, 5364}, {4253, 17350}, {5150, 19554}, {16574, 18046}, {17738, 20367}, {20352, 20501}, {20373, 20602}
See X(20365).
X(20373) lies on these lines: {1, 3506}, {9, 141}, {63, 20371}, {335, 7096}, {1759, 3760}, {1768, 20368}, {3509, 4396}, {20353, 20502}, {20372, 20602}
See X(20365).
X(20374) lies on these lines: {1, 18783}, {16550, 20375}
See X(20365).
X(20375) lies on these lines: {1, 727}, {63, 1054}, {165, 15323}, {191, 5539}, {1698, 5518}, {1759, 5540}, {1768, 20368}, {3509, 20372}, {16550, 20374}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27952.
X(20376) lies on these lines: {5, 13289}, {54, 67}, {140, 13470}, {511, 11262}, {631, 2917}, {1209, 10257}, {3541, 15578}, {3574, 13568}, {5054, 9920}, {5498, 12038}, {6689, 6696}, {6699, 11802}, {8254, 10628}, {11574, 16196}
X(20376) = complement of the complement of X(32345)
X(20377) lies on these lines: {5, 25560}, {13, 627}, {17, 671}, {115, 8259}, {140, 6669}, {530, 629}, {6694, 22832}, {10611, 33465}, {11305, 22737}, {11602, 32552}, {20415, 33560}
X(20378) lies on these lines: {5, 25559}, {14, 628}, {18, 671}, {115, 8260}, {140, 6670}, {531, 630}, {6695, 22831}, {10612, 33464}, {11306, 22736}, {11603, 32553}, {20416, 33561}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27952.
X(20379) lies on these lines: {2, 5609}, {3, 9140}, {4, 15027}, {5, 113}, {20, 265}, {26, 5621}, {30, 15153}, {67, 18281}, {74, 382}, {110, 3526}, {140, 542}, {143, 2781}, {146, 3855}, {381, 15054}, {399, 5070}, {541, 546}, {548, 13470}, {631, 1511}, {632, 5642}, {858, 1154}, {1112, 15559}, {1204, 18379}, {1539, 3843}, {1594, 13148}, {1595, 12828}, {1656, 14094}, {1657, 15021}, {1899, 18580}, {1986, 15101}, {2777, 3853}, {3090, 5655}, {3525, 9143}, {3528, 12121}, {3530, 6699}, {3564, 15115}, {3627, 10990}, {3628, 13393}, {3830, 15044}, {3832, 7728}, {3851, 10706}, {3856, 13566}, {3861, 7687}, {4301, 12261}, {4309, 12904}, {4317, 12903}, {5054, 15034}, {5067, 12317}, {5169, 5946}, {5498, 10116}, {5622, 15132}, {5890, 7579}, {5972, 16239}, {6070, 16340}, {6723, 10272}, {9588, 12778}, {9657, 10081}, {9670, 10065}, {9714, 13171}, {9729, 13565}, {10095, 12099}, {10627, 12359}, {10733, 15041}, {11362, 13605}, {11563, 13399}, {11579, 15069}, {11645, 12105}, {11693, 15713}, {12079, 16168}, {12161, 15106}, {12244, 17578}, {12295, 14677}, {12383, 15717}, {12824, 15026}, {12902, 15055}, {13567, 15465}, {14849, 18331}, {15020, 15720}, {15039, 15694}, {15357, 15535}
X(20379) = midpoint of X(i) and X(j) for these {i,j}: {5, 16003}, {74, 10113}, {1539, 10620}, {1986, 15101}, {3627, 10990}, {3628, 13393}, {6070, 16340}, {11563, 13399}, {12295, 14677}, {15357, 15535}
X(20379) = complement of X(5609)
X(20379) = X(13451)-of-anti-orthocentroidal triangle
X(20379) = reflection of X(113) in the line X(526)X(15088)
X(20379) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5, 10264, 16003), (125, 16003, 5), (3448, 15061, 1511), (10620, 14644, 1539), (10706, 15025, 3851), (13561, 16270, 20304), (15027, 20126, 4)
Centers X(20380)-X(20390) were contributed by César Lozada, July 23, 2018.
X(20380) lies on the Lemoine inellipse, the conic {A, B, C, X(67), X(524)} and these lines: {2,67}, {6,598}, {524,7664}, {597,8288}, {690,15303}, {1383,1992}, {5032,20099}, {5182,11636}, {9855,10510}
X(20380) = antipode of X(8288) in the Lemoine inellipse
X(20380) = barycentric product X(598)*X(2482)
X(20380) = barycentric quotient X(i)/X(j) for these (i,j): (1383, 10630), (1649, 3906), (2482, 599)
X(20381) lies on the Lemoine inellipse and these lines: {524,8288}, {1499,20380}, {7841,14246}
X(20381) = antipode of X(20382) in the Lemoine inellipse
X(20382) lies on the Lemoine inellipse and these lines: {524,7664}, {597,20381}, {598,843}, {599,6082}, {1499,8288}, {1648,5099}, {3124,8599}, {6791,12073}
X(20382) = antipode of X(20381) in the Lemoine inellipse
Lemoine inellipse and 3rd Lemoine circle pass both through the vertices of the Lemoine triangle (cevian triangle of X(598)). X(20383) is their 4th intersection.
X(20383) lies on the 3rd Lemoine circle, the Lemoine inellipse and the line {597,20384}
X(20384) lies on the Lemoine inellipse and the line {597,20383}
X(20384) = antipode of X(20383) in the Lemoine inellipse
X(20385) lies on the Lemoine inellipse and these lines: {524,20383}, {597,20386}, {1499,20384}, {12073,20381}
X(20386) lies on the Lemoine inellipse and these lines: {524,20384}, {597,20385}, {1499,20383}, {6791,12073}
X(20386) = antipode of X(20385) in the Lemoine inellipse
X(20387) lies on the 3rd Lemoine circle and these lines: {114,547}, {115,8145}
X(20387) = reflection of X(115) in X(8145)
X(20387) = antipode of X(115) in the 3rd Lemoine circle
X(20388) lies on the 3rd Lemoine circle and the line {8145,20383}
X(20388) = reflection of X(20383) in X(8145)
X(20388) = antipode of X(20383) in the 3rd Lemoine circle
X(20389) lies on the 3rd Lemoine circle, the nine-point circle and these lines: {2,12074}, {113,20301}, {114,547}, {126,3934}, {3258,17436}, {5099,7668}, {6092,20388}, {7711,7859}, {7797,11638}
X(20389) = complement of X(12074)
X(20390) lies on the 3rd Lemoine circle and these lines: {115,5066}, {8145,20389}
X(20390) = antipode of X(20389) in the 3rd Lemoine circle
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27960.
X(20391) lies on these lines: {30, 20191}, {125, 20376}, {140, 14076}, {597, 15047}, {1503, 7542}, {2937, 15578}, {3520, 15081}, {5893, 15062}, {6696, 10024}, {10628, 12006}
X(20391) = midpoint of X(6696) and X(10024)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 27962.
X(20392) lies on this line: {2,3}
X(20393) = X(3448)-3*X(20124) = 2*X(13392)+X(14731)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27964.
X(20393) lies on these lines: {5, 1138}, {30, 110}, {3448, 20124}, {3628, 14993}, {13392, 14731}
X(20393) = midpoint of X(5) and X(1138)
X(20394) = X(61)+3*X(5459) = X(635)-3*X(6669) = X(635)+3*X(14136)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27964.
X(20394) lies on these lines: {17, 299}, {61, 5459}, {115, 8259}, {397, 530}, {546, 20252}
X(20395) = X(62)+3*X(5460) = X(636)-3*X(6670) = X(636)+3*X(14137)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27964.
X(20395) lies on these lines: {18, 298}, {62, 5460}, {115, 8260}, {398, 531}, {546, 20253}
X(20396) = 3*X(2)+5*X(15027), 7*X(5)-3*X(113), X(5)+3*X(125), 5*X(5)+3*X(10264), 5*X(5)-X(15063), 2*X(5)-3*X(15088), 3*X(5)+X(16003), X(5)-3*X(20304), X(113)+7*X(125), 5*X(113)+7*X(10264), 15*X(113)-7*X(15063), 2*X(113)-7*X(15088), 9*X(113)+7*X(16003), X(113)-7*X(20304), 3*X(113)+7*X(20379), 5*X(125)-X(10264), 15*X(125)+X(15063), 2*X(125)+X(15088), 9*X(125)-X(16003)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27964.
X(20396) lies on these lines: {2, 15027}, {5, 113}, {20, 10113}, {74, 3843}, {110, 5070}, {143, 12099}, {156, 5622}, {265, 631}, {381, 15025}, {382, 12041}, {541, 3850}, {542, 3628}, {547, 16534}, {548, 6699}, {858, 13391}, {1511, 3526}, {1539, 3832}, {1656, 5609}, {1657, 15044}, {2777, 3861}, {2781, 10095}, {3091, 20126}, {3448, 5067}, {3530, 17702}, {3830, 15021}, {3845, 10990}, {3851, 15054}, {3853, 7687}, {3855, 7728}, {5055, 14094}, {5056, 5655}, {5072, 10706}, {5169, 13364}, {5449, 6698}, {5621, 13861}, {5946, 7579}, {6723, 16239}, {7486, 14643}, {7577, 13148}, {9656, 10081}, {9671, 10065}, {10109, 13393}, {10125, 11565}, {10733, 15696}, {11362, 12261}, {11482, 13169}, {11704, 13491}, {12121, 15717}, {12358, 13358}, {13371, 16982}, {14981, 15535}, {15020, 15694}, {15023, 15707}, {15055, 17800}, {15101, 16222}, {15153, 16531}, {17578, 20127}
X(20396) = midpoint of X(i) and X(j) for these {i,j}: {5, 20379}, {12358, 13358}, {15153, 16531}
X(20396) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5, 125, 20379), (5, 10264, 15063), (382, 15057, 12041), (1656, 9140, 5609), (14644, 15057, 382), (15061, 15081, 10113), (20304, 20379, 5)
X(20397) = 9*X(2)-X(14094), 3*X(2)+X(16003), X(3)+3*X(125), 5*X(3)+3*X(265), X(3)-3*X(6699), 11*X(3)-3*X(12121), 13*X(3)+3*X(12902), 3*X(3)+5*X(15027), X(3)-9*X(15061), 7*X(3)-3*X(16163), 5*X(125)-X(265), 11*X(125)+X(12121), 13*X(125)-X(12902), 9*X(125)-5*X(15027), X(125)+3*X(15061), 7*X(125)+X(16163), X(265)+5*X(6699), 11*X(265)+5*X(12121), 13*X(265)-5*X(12902), X(265)+15*X(15061), 7*X(265)+5*X(16163), X(14094)+3*X(16003), X(14094)-3*X(16534)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27964.
X(20397) lies on these lines: {2, 14094}, {3, 125}, {4, 15021}, {5, 541}, {74, 3091}, {110, 3525}, {113, 3090}, {140, 542}, {146, 15022}, {182, 15132}, {381, 10990}, {539, 10257}, {546, 2777}, {576, 15118}, {631, 9140}, {632, 5609}, {895, 3546}, {1147, 5622}, {1511, 14869}, {1539, 3857}, {1656, 15063}, {2781, 5462}, {3146, 14644}, {3292, 14156}, {3448, 10303}, {3524, 15023}, {3526, 5642}, {3529, 12295}, {3541, 12828}, {3592, 8994}, {3594, 13969}, {3627, 7687}, {3628, 5663}, {5056, 10706}, {5070, 5655}, {5072, 7728}, {5076, 20127}, {5079, 10620}, {5159, 13754}, {5446, 12099}, {5447, 14984}, {5621, 6642}, {7555, 17712}, {10113, 15704}, {10124, 13393}, {10628, 15012}, {10733, 17538}, {11693, 15702}, {11801, 12103}, {11806, 12358}, {12106, 15579}, {12359, 15115}, {12811, 15088}, {13202, 15041}, {17853, 18439}, {18400, 18571}
X(20397) = midpoint of X(i) and X(j) for these {i,j}: {140, 20379}, {11806, 12358}, {12359, 15115}
X(20397) = complement of X(16534)
X(20397) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 16003, 16534), (125, 15061, 6699), (632, 5609, 5972), (632, 10264, 5609), (1656, 20126, 15063), (3090, 15054, 113), (3448, 10303, 15034), (3529, 15044, 12295), (3529, 15081, 15044), (15021, 15025, 4), (15025, 15057, 15021), (15044, 15055, 3529), (15054, 15059, 3090), (15055, 15081, 12295)
X(20398) = X(3)+3*X(115), X(3)-3*X(6036), 5*X(3)+3*X(6321), X(4)+3*X(6055), X(4)-9*X(9166), X(5)-3*X(5461), X(20)+3*X(9880), 3*X(98)+5*X(3091), 3*X(99)-11*X(3525), 3*X(114)-7*X(3090), X(114)-5*X(14061), X(114)+3*X(14651), 5*X(115)-X(6321), 7*X(3090)-15*X(14061), 7*X(3090)+9*X(14651), 3*X(5461)+X(11623), X(5609)+3*X(15535), 5*X(6036)+X(6321), X(6055)+3*X(9166), 5*X(14061)+3*X(14651)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27964.
X(20398) lies on these lines: {3, 115}, {4, 6055}, {5, 542}, {20, 9880}, {98, 3091}, {99, 3525}, {114, 3090}, {125, 18347}, {140, 543}, {147, 15022}, {148, 10303}, {381, 10991}, {546, 2794}, {576, 3767}, {620, 632}, {625, 5965}, {631, 671}, {1656, 11632}, {2165, 11511}, {2482, 3526}, {2782, 3628}, {3146, 14639}, {3455, 7506}, {3592, 8980}, {3594, 13967}, {3627, 12042}, {3843, 14830}, {5056, 6054}, {5067, 12243}, {5068, 11177}, {5070, 8724}, {5072, 6033}, {5079, 12188}, {5465, 16003}, {5663, 11554}, {6034, 11477}, {6771, 10654}, {6774, 10653}, {7607, 7833}, {7617, 10168}, {10723, 17538}, {11005, 15025}, {11318, 19662}, {11362, 12258}, {12117, 15717}, {12811, 15092}, {14060, 14669}, {14160, 18907}, {14162, 15516}, {15027, 18332}, {15300, 15694}
X(20398) = midpoint of X(5) and X(11623)
X(20398) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (631, 671, 10992), (1656, 11632, 14981), (5461, 11623, 5), (14061, 14651, 114), (14971, 14981, 1656)
X(20399) = 3*X(2)+X(14981), X(3)+3*X(114), X(3)-3*X(620), 5*X(3)+3*X(6033), X(3)-9*X(15561), X(4)+3*X(2482), 5*X(4)+3*X(12117), 3*X(98)-11*X(3525), 3*X(99)+5*X(3091), 5*X(114)-X(6033), X(114)+3*X(15561), 5*X(620)+X(6033), X(620)-3*X(15561), 5*X(2482)-X(12117), X(6033)+15*X(15561)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27964.
X(20399) lies on these lines: {2, 11623}, {3, 114}, {4, 2482}, {5, 543}, {98, 3525}, {99, 3091}, {115, 3090}, {140, 542}, {147, 10303}, {148, 15022}, {381, 10992}, {538, 10011}, {575, 6680}, {576, 7764}, {631, 6054}, {632, 6036}, {671, 5056}, {1656, 5461}, {2782, 3628}, {2936, 7395}, {3455, 7509}, {3526, 6055}, {3544, 14639}, {3545, 15300}, {3592, 8997}, {3594, 13989}, {3851, 9880}, {5067, 14971}, {5068, 8591}, {5070, 11632}, {5072, 6321}, {5079, 13188}, {5965, 14693}, {6248, 15850}, {7486, 9166}, {7619, 11178}, {7786, 9772}, {7815, 12177}, {9754, 17131}, {9881, 11522}, {10516, 14928}, {10722, 17538}, {11005, 15034}, {12042, 14869}, {14094, 15357}, {14830, 15720}, {15069, 18800}
X(20399) = complement of X(11623)
X(20399) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 14981, 11623), (114, 15561, 620), (631, 6054, 10991), (9167, 10991, 631)
X(20400) = X(3)+3*X(119), X(3)-3*X(3035), 5*X(3)+3*X(10742), X(4)+3*X(6174), 3*X(11)-7*X(3090), 3*X(100)+5*X(3091), 3*X(104)-11*X(3525), 5*X(119)-X(10742), 3*X(149)-19*X(15022), 3*X(153)+13*X(10303), 3*X(381)+X(10993), 5*X(631)+3*X(10711), 5*X(632)-3*X(6713), 5*X(632)+3*X(11698), 5*X(3035)+X(10742)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27964.
X(20400) lies on these lines: {3, 119}, {4, 6174}, {5, 528}, {11, 1058}, {12, 6946}, {100, 3091}, {104, 3525}, {149, 15022}, {153, 10303}, {381, 10993}, {546, 5840}, {631, 10711}, {632, 6713}, {952, 1125}, {1145, 7982}, {1376, 6982}, {1532, 5537}, {1537, 7991}, {1698, 5660}, {2551, 12762}, {2800, 5044}, {2801, 3634}, {3036, 6265}, {3304, 10956}, {3544, 6154}, {3592, 13922}, {3594, 13991}, {3614, 14882}, {3814, 5842}, {3913, 6981}, {4421, 6973}, {4995, 6965}, {5056, 10707}, {5072, 10738}, {5079, 12331}, {5552, 7681}, {5587, 10609}, {5603, 13996}, {5704, 14151}, {5851, 11231}, {5854, 10915}, {6691, 10942}, {6826, 13272}, {6863, 9711}, {6959, 12607}, {6970, 11236}, {10175, 12019}, {10728, 17538}, {10778, 15025}, {13145, 20117}
X(20400) = midpoint of X(i) and X(j) for these {i,j}: {3036, 6265}, {6246, 9945}
X(20401) = X(3)+3*X(118), X(3)-3*X(6710), 5*X(3)+3*X(10741), 3*X(101)+5*X(3091), 3*X(103)-11*X(3525), 3*X(116)-7*X(3090), 5*X(118)-X(10741), 3*X(150)-19*X(15022), 3*X(152)+13*X(10303), 5*X(631)+3*X(10710), 5*X(632)-3*X(6712), 11*X(5056)-3*X(10708), 11*X(5072)-3*X(10739), 5*X(5818)+3*X(15735), 5*X(6710)+X(10741)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27964.
X(20401) lies on these lines:
{3, 118}, {5, 544}, {101, 3091}, {103, 3525}, {116, 3090}, {150, 15022}, {152, 10303}, {631, 10710}, {632, 6712}, {2801, 13373}, {2808, 3628}, {4845, 10588}, {5056, 10708}, {5072, 10739}, {5818, 15735}, {10727, 17538}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27967.
X(20402) lies on these lines: {1843, 5895}, {3051, 20232}
Let La, Lb, Lc be the lines through A, B, C, resp. parallel to the Fermat axis. Let Ma, Mb, Mc be the reflections of BC, CA, AB in La, Lb, Lc, resp. Let A' = Mb∩Mc, and define B' and C' cyclically. Triangle A'B'C' is inversely similar to, and 3 times the size of, ABC. Also, X(20404) = X(2)-of-A'B'C'. (See Hyacinthos #16741/16782, Sep 2008.) (Randy Hutson, August 29, 2018)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27967.
X(20404) lies on the circumcircle and these lines: {74, 14830}, {110, 1649}, {111, 1648}, {476, 804}, {477, 2782}, {526, 805}, {542, 842}, {690, 691}, {729, 14901}, {2698, 5663}, {2857, 5939}, {11636, 15342}
X(20404) = isogonal conjugate of X(20403)
X(20404) = reflection of X(i) in the line X(j)X(k) for these (i, j, k): (110, 3, 11006), (476, 3, 76), (477, 3, 804), (691, 3, 67), (805, 3, 74), (842, 3, 6334) , (2698, 3, 14933)
X(20404) = reflection of X(476) in line X(3)X(76)
X(20404) = anticomplement of X(35582)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27974.
X(20405) lies on these lines: {2, 3}, {15162, 17810}
X(20405) = {X(1113), X(1312)}-harmonic conjugate of X(468)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27974.
X(20406) lies on these lines: {2, 3}, {15163, 17810}
X(20406) = {X(1114), X(1313)}-harmonic conjugate of X(468)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27974.
X(20407) lies on this line: {2, 3}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27975.
X(20408) lies on the Steiner circle and these lines: {2, 3}, {2100, 9589}, {2101, 9588}, {2102, 5734}, {2574, 14500}, {2575, 16003}
X(20408) = complement of X(15156)
X(20408) = {X(20),X(858)}-harmonic conjugate of X(20409)
X(20408) = {X(10720), X(15157)}-harmonic conjugate of X(4)
X(20409) = (|OH|+3*R)*X(3)+(|OH|-3*R)*X(4)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27975.
X(20409) lies on the Steiner circle and these lines: {2, 3}, {2100, 9588}, {2101, 9589}, {2103, 5734}, {2574, 16003}, {2575, 14499}
X(20409) = complement of X(15157)
X(20409) = {X(20),X(858)}-harmonic conjugate of X(20408)
X(20409) = {X(10719), X(15156)}-harmonic conjugate of X(4)
X(20410) = X(112)+2*X(13166)
See César Lozada, Hyacinthos 27984.
X(20410) lies on the cubic K475 and these lines: {4, 67}, {24, 14649}, {25, 111}, {127, 5133}, {132, 403}, {381, 10718}, {648, 16175}, {1842, 2844}, {1859, 11988}, {1995, 18876}, {2393, 5523}, {2794, 7576}, {7394, 13219}, {8743, 19153}, {8744, 18374}, {9517, 9979}, {10735, 18494}, {10749, 11818}, {12145, 18386}, {18403, 19160}
X(20410) = polar-circle-inverse of X(67)
X(20410) = reflection of X(67) in the line X(9517) X(18310)
X(20410) = barycentric product X(i)*X(j) for these {i,j}: {23, 5523}, {316, 14580}, {858, 8744}, {1560, 14246}
X(20410) = orthic-isogonal conjugate of-X(5523)
See César Lozada, Hyacinthos 27984.
X(20411) lies on the cubic K050 and these lines: {4, 11600}, {16, 186}, {51, 6117}, {53, 1263}, {389, 397}, {1154, 6116}, {1986, 16538}, {2383, 2902}
X(20411) = polar circle-inverse-of X(11600)
X(20411) = X(13)-of-orthic triangle, if ABC is obtuse
X(20411) = X(14)-of-orthic triangle, if ABC is acute
X(20411) = X(616)-of-2nd anti-Conway triangle
X(20411) = X(5473)-of-2nd Euler triangle
See César Lozada, Hyacinthos 27984.
X(20412) lies on the cubic K050 and these lines: {4, 11601}, {15, 186}, {51, 6116}, {53, 1263}, {389, 398}, {1154, 6117}, {1986, 16539}, {2383, 2903}
X(20412) = polar circle-inverse-of X(11601)
X(20412) = X(14)-of-orthic triangle, if ABC is obtuse
X(20412) = X(13)-of-orthic triangle, if ABC is acute
X(20412) = X(617)-of-2nd anti-Conway triangle
X(20412) = X(5474)-of-2nd Euler triangle
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 27986.
X(20413) lies on these lines: {5, 195}, {137, 140}, {547, 13856}, {10096, 15226}, {10615, 14051}
X(20413) = midpoint of X(5) and X(3459)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27992.
X(20414) lies on these lines: {3, 15307}, {4, 54}, {5, 6150}, {30, 13856}, {546, 12026}, {1154, 10285}, {1209, 19552}, {1263, 1493}, {1503, 15557}, {1510, 10095}, {10126, 15425}, {13431, 18370}
X(20414) = reflection of X(10126) in X(15425)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27993.
X(20415) lies on these lines: {3, 13}, {5, 542}, {61, 115}, {62, 1506}, {83, 16627}, {140, 530}, {182, 18582}, {397, 6108}, {511, 11542}, {546, 20252}, {616, 3525}, {618, 632}, {620, 630}, {623, 5965}, {3090, 5617}, {3091, 6770}, {3303, 10078}, {3304, 10062}, {3412, 5470}, {3518, 12142}, {3526, 5463}, {3627, 5478}, {3628, 6669}, {5318, 13350}, {5335, 9736}, {5611, 16960}, {6036, 6115}, {6427, 19073}, {6428, 19074}, {9735, 11488}, {10657, 15037}, {11543, 15516}, {14651, 16626}
X(20415) = midpoint of X(i) and X(j) for these {i,j}: {3, 16001}, {5318, 13350}
X(20415) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 13, 16001), (5, 575, 20416), (6771, 16001, 3)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27993.
X(20416) lies on these lines: {3, 14}, {5, 542}, {61, 1506}, {62, 115}, {83, 16626}, {140, 531}, {182, 18581}, {398, 6109}, {511, 11543}, {546, 20253}, {617, 3525}, {619, 632}, {620, 629}, {624, 5965}, {3090, 5613}, {3091, 6773}, {3303, 10077}, {3304, 10061}, {3411, 5469}, {3518, 12141}, {3526, 5464}, {3627, 5479}, {3628, 6670}, {5321, 13349}, {5334, 9735}, {5615, 16961}, {6036, 6114}, {6427, 19075}, {6428, 19076}, {9736, 11489}, {10658, 15037}, {11542, 15516}, {14651, 16627}
X(20416) = midpoint of X(i) and X(j) for these {i,j}: {3, 16002}, {5321, 13349}
X(20416) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 14, 16002), (5, 575, 20415), (6774, 16002, 3)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27993.
X(20417) lies on these lines: {2, 15054}, {3, 67}, {4, 74}, {5, 541}, {20, 9140}, {30, 15153}, {64, 10293}, {110, 3523}, {113, 1656}, {140, 5663}, {146, 5056}, {184, 10193}, {185, 10294}, {186, 13399}, {265, 1657}, {382, 15027}, {389, 2781}, {399, 15720}, {468, 6000}, {549, 5609}, {550, 10264}, {578, 5095}, {631, 5642}, {690, 6130}, {974, 10628}, {1181, 15106}, {1511, 15712}, {1539, 3858}, {1593, 12828}, {1899, 11204}, {3090, 10706}, {3269, 6103}, {3448, 3522}, {3515, 13171}, {3516, 13293}, {3517, 10117}, {3524, 15034}, {3526, 5655}, {3543, 15044}, {3832, 15025}, {3850, 20304}, {3851, 7728}, {5059, 10733}, {5073, 12295}, {5094, 10605}, {5493, 13605}, {5882, 11709}, {5890, 14448}, {5965, 10564}, {6241, 17853}, {6247, 13419}, {7486, 15029}, {7533, 15053}, {7689, 14791}, {8550, 11430}, {9143, 15020}, {9904, 11522}, {9938, 12901}, {10018, 14862}, {10110, 12099}, {10112, 11250}, {10113, 14677}, {10116, 10226}, {10182, 11456}, {10295, 18400}, {10299, 12317}, {10606, 18390}, {10745, 13611}, {11270, 11564}, {11425, 16176}, {11693, 15039}, {11735, 13464}, {11746, 11807}, {12227, 17847}, {13358, 13421}, {13393, 15605}, {13431, 15089}, {13491, 20191}, {13754, 15115}, {14683, 15051}, {14915, 16619}, {14984, 15644}, {15126, 15311}, {16219, 18381}
X(20417) = midpoint of X(i) and X(j) for these {i,j}: {3, 16003}, {4, 10990}, {113, 10620}, {186, 13399}, {265, 16111}, {3448, 16163}, {10113, 14677}
X(20417) = reflection of X(i) in X(j) for these (i,j): (113, 6723), (389, 16270)
X(20417) = complement of X(15063)
X(20417) = X(10990)-of-Euler-triangle
X(20417) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 15054, 15063), (3, 20126, 16003), (4, 74, 10990), (74, 14644, 12244), (113, 15061, 6723), (125, 10990, 4), (125, 13202, 14644), (140, 16534, 5972), (265, 15041, 16111), (631, 14094, 5642), (6699, 16534, 140), (9140, 15021, 20), (10620, 15061, 113), (12244, 14644, 13202), (15054, 15057, 2)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27993.
X(20418) lies on these lines: {1, 11219}, {3, 528}, {4, 11}, {5, 10199}, {10, 140}, {20, 10707}, {36, 5842}, {100, 3523}, {119, 1656}, {149, 3522}, {153, 5056}, {355, 6691}, {388, 12762}, {496, 5450}, {499, 18242}, {515, 5126}, {529, 6882}, {550, 1484}, {631, 6174}, {676, 2826}, {942, 1387}, {944, 5433}, {999, 7680}, {1012, 10072}, {1020, 3333}, {1125, 2801}, {1145, 4853}, {1158, 11373}, {1317, 12247}, {1532, 3582}, {1537, 1768}, {1657, 10738}, {2771, 11281}, {2787, 11623}, {2886, 10269}, {3058, 6950}, {3090, 10711}, {3303, 6977}, {3304, 6833}, {3419, 3576}, {3428, 13279}, {3600, 10894}, {3612, 12750}, {3624, 5660}, {3660, 6001}, {3829, 6923}, {3851, 10742}, {3913, 6961}, {4857, 5533}, {4860, 5603}, {5059, 10724}, {5083, 16193}, {5204, 12116}, {5217, 10806}, {5270, 8068}, {5289, 5770}, {5298, 6905}, {5432, 7967}, {5434, 6830}, {5563, 6831}, {5657, 13996}, {5703, 14151}, {5848, 8550}, {5851, 5886}, {5854, 12737}, {5881, 13747}, {5884, 5901}, {6154, 10299}, {6326, 8583}, {6690, 10246}, {6827, 11194}, {6879, 11237}, {6891, 12513}, {6922, 8666}, {6938, 11238}, {6948, 11235}, {6952, 15888}, {6958, 12607}, {6966, 11240}, {6978, 11236}, {7288, 11500}, {7742, 10090}, {8071, 10058}, {9952, 12735}, {10074, 15844}, {10085, 18243}, {10310, 10529}, {11375, 12831}, {11496, 14986}, {11570, 12709}, {12119, 12690}, {12331, 15720}, {12691, 17660}, {12758, 17622}
X(20418) = reflection of X(119) in X(6667)
X(20418) = complement of X(37725)
X(20418) = X(11799)-of-K798i-triangle
X(20418) = X(15133)-of-inverse-in- incircle-triangle
X(20418) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1768, 16173, 1537), (3086, 12114, 7681)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27995.
X(20419) lies on these lines: {1807, 11012}, {7100, 10902}
As a point on the Euler line, X(20420) center has Shinagawa coefficients (r, -4*R-3*r).
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27995.
X(20420) lies on these lines: {1, 5805}, {2, 3}, {57, 1837}, {72, 5762}, {78, 5763}, {142, 4297}, {225, 15252}, {355, 5709}, {495, 11500}, {515, 942}, {516, 960}, {517, 5907}, {528, 4301}, {944, 11037}, {946, 4314}, {950, 5806}, {952, 3555}, {962, 5730}, {971, 4292}, {1466, 12943}, {1479, 7956}, {1503, 4260}, {1512, 5771}, {1538, 18483}, {1699, 3601}, {1728, 3358}, {1750, 6259}, {1770, 12688}, {2095, 18525}, {2096, 12684}, {2829, 6245}, {2968, 5174}, {3058, 11522}, {3587, 12705}, {3833, 11227}, {3940, 5758}, {4304, 18482}, {4640, 12617}, {4848, 9952}, {5082, 8158}, {5122, 6705}, {5138, 5480}, {5234, 5587}, {5259, 7958}, {5396, 13408}, {5434, 11518}, {5603, 15172}, {5708, 5768}, {5715, 11374}, {5720, 5812}, {5729, 12246}, {5735, 11523}, {5744, 5789}, {5745, 19925}, {5755, 16552}, {5840, 9945}, {5843, 12528}, {5880, 12520}, {6147, 18446}, {6282, 11826}, {6796, 7680}, {7965, 15338}, {9623, 12120}, {9655, 12667}, {9947, 12527}, {10106, 11035}, {10157, 12572}, {10483, 10826}, {10526, 18491}, {10592, 10894}, {11012, 18406}, {11246, 15071}, {11249, 18517}, {12651, 12699}, {13464, 15170}, {18443, 18481}
X(20420) = midpoint of X(i) and X(j) for these {i,j}: {1, 6253}, {1770, 12688}
X(20420) = reflection of X(950) in X(5806)
X(20420) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 4, 8727), (3, 382, 6851), (4, 1532, 546), (4, 3149, 5), (4, 6848, 381), (4, 6905, 6831), (4, 6927, 6844), (4, 6934, 1012), (4, 6942, 6845), (21, 6894, 8226), (1012, 6934, 550), (6831, 6905, 140), (6834, 6847, 6861), (6844, 6927, 1656), (6849, 6868, 6913), (6851, 6885, 3)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27995.
X(20421) lies on the Jerabek hyperbola and these lines: {2, 18550}, {64, 12112}, {68, 3528}, {69, 19708}, {74, 11202}, {186, 3426}, {248, 8588}, {265, 376}, {378, 3531}, {631, 3521}, {895, 3098}, {1173, 11438}, {1495, 11738}, {3520, 3527}, {3524, 4846}, {3529, 17505}, {3532, 11456}, {6415, 6451}, {6416, 6452}, {7712, 12041}, {8617, 9210}, {8717, 15055}, {10298, 11559}, {10299, 14861}, {11204, 13603}, {11270, 11464}, {11430, 13472}, {11468, 13452}, {13418, 18909}, {13619, 18434}, {13623, 15698}, {14528, 15032}, {14530, 17506}
X(20421) = isogonal conjugate of X(3830)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 27995.
X(20422) lies on these lines: {2, 3}, {136, 155}, {254, 3564}, {5962, 12429}, {12359, 14593}
See César Lozada, Hyacinthos 27996.
X(20423) lies on the cubic K582 and these lines: {2, 51}, {3, 597}, {4, 542}, {5, 599}, {6, 30}, {20, 575}, {69, 1568}, {114, 9770}, {115, 19905}, {141, 5055}, {143, 18281}, {146, 9976}, {182, 376}, {193, 3818}, {230, 11173}, {381, 524}, {382, 8550}, {518, 3656}, {541, 11579}, {543, 12177}, {546, 15069}, {548, 10541}, {549, 1350}, {567, 19127}, {568, 2781}, {611, 3058}, {613, 5434}, {1353, 15687}, {1370, 15004}, {1386, 3655}, {1469, 10072}, {1478, 8540}, {1479, 19369}, {1482, 9041}, {1499, 9178}, {1503, 3830}, {1513, 11163}, {1570, 14537}, {2080, 8182}, {2104, 10720}, {2105, 10719}, {2777, 10250}, {2854, 5655}, {3056, 10056}, {3070, 9975}, {3071, 9974}, {3088, 16625}, {3091, 7946}, {3095, 5969}, {3098, 3524}, {3522, 20190}, {3534, 5050}, {3543, 5032}, {3564, 3845}, {3589, 5054}, {3629, 14269}, {3763, 15699}, {3767, 6034}, {3832, 18553}, {4663, 12699}, {5028, 7753}, {5052, 5309}, {5066, 10516}, {5085, 8703}, {5092, 10304}, {5107, 5475}, {5182, 12110}, {5485, 14485}, {5486, 11799}, {5648, 5654}, {5878, 8549}, {5921, 18392}, {6054, 7774}, {6055, 7735}, {6243, 14787}, {6321, 9830}, {6329, 12017}, {6811, 13757}, {6813, 13637}, {7000, 13639}, {7374, 13759}, {7500, 13366}, {7519, 11422}, {7540, 9833}, {7583, 13662}, {7584, 13782}, {7766, 11177}, {7775, 14645}, {7840, 13862}, {8262, 15362}, {9023, 19912}, {9140, 10752}, {9143, 11004}, {9740, 11167}, {9813, 18537}, {10169, 10249}, {10707, 10759}, {10708, 10758}, {10709, 10764}, {10710, 10756}, {10711, 10755}, {10716, 10757}, {10989, 18911}, {11064, 20192}, {11161, 14639}, {11663, 15073}, {11694, 12106}, {12007, 15684}, {12156, 14912}, {12294, 14831}, {12355, 13111}, {12584, 14002}, {13169, 14644}, {13352, 15462}, {13482, 19128}, {13490, 19139}, {14810, 15692}, {15019, 16063}, {15303, 17702}, {15361, 18580}, {15516, 15683}, {15582, 18378}, {15826, 18325}, {17508, 19708}
X(20423) = reflection of X(i) in X(j) for these (i,j): (2, 5476), (3, 597), (69, 11178), (381, 5480), (549, 18583), (3098, 10168), (9143, 19140)
X(20423) = X(597)-of-X3-ABC-reflections-triangle
X(20423) = X(599)-of-Johnson-triangle
X(20423) = X(1992)-of-Euler-triangle
X(20423) = X(7737)-of-Artzt-triangle
X(20423) = X(11579)-of-orthocentroidal-triangle
X(20423) = reflection of X(i) in the line X(j)X(k) for these (i,j,k): (2, 512, 5476), (376, 182, 12073), (381, 1499, 5480), (1352, 381, 8371), (1992, 576, 690)
X(20423) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 5476, 14561), (2, 14853, 5476), (3, 14848, 597), (69, 3545, 11178), (193, 3839, 11180), (382, 11482, 8550), (1351, 5480, 1352), (3098, 10168, 3524), (3524, 3618, 10168), (3543, 5032, 6776), (3839, 11180, 3818), (10653, 10654, 7737), (11178, 19130, 3545), (13352, 19136, 15462)
Let Na be the reflection of X(5) in the A-altitude. Define Nb and Nc cyclically; then X(20424) = X(54)-of-NaNbNc. (Randy Hutson, August 29, 2018)
See César Lozada, Hyacinthos 27996.
X(20424) lies on these lines: {2, 12307}, {3, 8254}, {4, 195}, {5, 51}, {11, 7356}, {12, 6286}, {30, 54}, {140, 3581}, {235, 6152}, {381, 2888}, {382, 12254}, {403, 6242}, {427, 12300}, {495, 13079}, {496, 18984}, {539, 3845}, {546, 6288}, {549, 6689}, {550, 10610}, {568, 10224}, {576, 12899}, {1199, 7574}, {1493, 2883}, {1503, 19150}, {1531, 15807}, {1596, 11576}, {2070, 15806}, {2072, 16881}, {3060, 13406}, {3070, 12971}, {3071, 12965}, {3091, 12325}, {3153, 14627}, {3519, 3850}, {3843, 11271}, {3858, 5480}, {5318, 10678}, {5321, 10677}, {5446, 11563}, {5448, 11808}, {5946, 11802}, {6102, 10115}, {6145, 13292}, {6153, 10110}, {6823, 12363}, {7530, 9920}, {7564, 12160}, {9905, 12699}, {10024, 14449}, {10066, 15171}, {10082, 18990}, {10203, 13434}, {10263, 18388}, {11264, 11572}, {11702, 17702}, {12002, 13433}, {12161, 17824}, {12234, 12241}, {12295, 14049}, {12606, 15760}, {12785, 18357}, {13366, 13470}, {13561, 14831}, {14076, 16625}
X(20424) = midpoint of X(i) and X(j) for these {i,j}: {4, 195}, {382, 12254}, {9905, 12699}, {12295, 14049}
X(20424) = reflection of X(i) in X(j) for these (i,j): (3, 8254), (5, 3574), (550, 10610), (6102, 10115), (6153, 10110), (12785, 18357)
X(20424) = complement of X(12307)
X(20424) = X(195)-of-Euler-triangle
X(20424) = X(2888)-of-Ehrmann-mid-triangle
X(20424) = X(8254)-of-X3-ABC-reflections-triangle
X(20424) = reflection of X(5) in the line X(1510)X(3574)
X(20424) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (381, 12316, 2888), (1568, 10095, 5)
See César Lozada, Hyacinthos 27996.
X(20425) lies on these lines: {2, 5615}, {3, 396}, {4, 3180}, {5, 298}, {13, 511}, {14, 576}, {15, 5472}, {30, 5611}, {62, 6774}, {230, 11486}, {381, 524}, {385, 1080}, {530, 2080}, {531, 6321}, {532, 5617}, {533, 5478}, {546, 16628}, {3095, 5613}, {5340, 5865}, {5473, 13350}, {5474, 16529}, {6771, 14538}, {7737, 11485}, {9736, 16241}, {10788, 11299}, {11303, 12251}
X(20425) = midpoint of X(4) and X(3180)
X(20425) = reflection of X(i) in X(j) for these (i,j): (3, 396), (5473, 13350)
X(20425) = X(298)-of-Johnson triangle
X(20425) = X(396)-of-X3-ABC reflections triangle
X(20425) = X(3180)-of-Euler triangle
X(20425) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (381, 1351, 20426), (5473, 16962, 13350), (14538, 16267, 6771)
See César Lozada, Hyacinthos 27996.
X(20426) lies on these lines: {2, 5611}, {3, 395}, {4, 3181}, {5, 299}, {13, 576}, {14, 511}, {16, 5471}, {30, 5615}, {61, 6771}, {230, 11485}, {381, 524}, {383, 385}, {530, 6321}, {531, 2080}, {532, 5479}, {533, 5613}, {546, 16629}, {3095, 5617}, {5339, 5864}, {5473, 16530}, {5474, 13349}, {6774, 14539}, {7737, 11486}, {9735, 16242}, {10788, 11300}, {11304, 12251}
X(20426) = midpoint of X(4) and X(3181)
X(20426) = reflection of X(i) in X(j) for these (i,j): (3, 395), (5474, 13349)
X(20426) = X(299)-of-Johnson triangle
X(20426) = X(395)-of-X3-ABC reflections triangle
X(20426) = X(3181)-of-Euler triangle
X(20426) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (381, 1351, 20425), (5474, 16963, 13349), (14539, 16268, 6774)
See César Lozada, Hyacinthos 27996.
X(20427) lies on the cubic K928 and these lines: {2, 18504}, {3, 1661}, {4, 74}, {5, 5895}, {20, 2979}, {30, 64}, {35, 12940}, {36, 12950}, {140, 8567}, {146, 13293}, {154, 548}, {376, 6225}, {381, 6696}, {382, 6247}, {541, 1147}, {550, 1498}, {631, 11204}, {1192, 1596}, {1503, 1657}, {1597, 13568}, {1656, 5893}, {1853, 3627}, {1885, 10605}, {1899, 18560}, {2935, 5654}, {3146, 18381}, {3184, 14379}, {3426, 16621}, {3522, 5656}, {3525, 10193}, {3528, 11202}, {3529, 12324}, {3534, 12315}, {3543, 18383}, {3548, 15125}, {3579, 12779}, {4299, 6285}, {4302, 7355}, {4317, 11189}, {4846, 7526}, {5663, 12118}, {6102, 7729}, {6241, 19467}, {6284, 10076}, {6293, 13491}, {6640, 7728}, {7354, 10060}, {7487, 13474}, {7505, 11468}, {7723, 18439}, {8703, 17821}, {8778, 15341}, {8991, 13665}, {9681, 11241}, {9786, 13488}, {9908, 9938}, {9934, 10539}, {9967, 10575}, {10117, 14677}, {10182, 10299}, {11206, 17538}, {11381, 18533}, {11441, 16386}, {11744, 12041}, {12262, 12699}, {12364, 16266}, {12897, 18951}, {13403, 18909}, {13785, 13980}, {14363, 16253}, {14791, 15138}, {15704, 17845}, {17578, 18376}, {18390, 18913}, {18431, 51002}
X(20427) = midpoint of X(i) and X(j) for these {i,j}: {20, 12250}, {3529, 12324}
X(20427) = reflection of X(i) in X(j) for these (i,j): (3, 5894), (4, 3357), (146, 13293), (382, 6247), (3146, 18381), (6293, 13491), (9934, 16111), (10117, 14677), (11744, 12041)
X(20427) = X(5878)-of-ABC-X3 reflections triangle
X(20427) = X(5894)-of-X3-ABC reflections triangle
X(20427) = X(5895)-of-Johnson triangle
X(20427) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (376, 6225, 6759), (3522, 5656, 10282), (5895, 10606, 5)
See César Lozada, Hyacinthos 27997.
X(20428) lies on these lines: {2, 13350}, {3, 623}, {4, 69}, {5, 15}, {13, 11602}, {14, 10796}, {30, 5463}, {114, 1080}, {137, 11127}, {182, 11303}, {187, 18581}, {302, 9736}, {381, 531}, {397, 1353}, {398, 18583}, {470, 5972}, {473, 9306}, {532, 13103}, {533, 5478}, {546, 16627}, {1656, 6671}, {2080, 7685}, {3564, 5318}, {5334, 14561}, {5640, 16771}, {5872, 16965}, {5886, 11707}, {5965, 16001}, {6298, 13188}, {6774, 11300}, {10613, 10654}, {13111, 16628}, {14138, 16644}, {16002, 19130}, {16267, 20252}, {18424, 18582}
X(20428) = midpoint of X(4) and X(621)
X(20428) = reflection of X(i) in X(j) for these (i,j): (3, 623), (15, 5), (2080, 7685)
X(20428) = complement of X(36993)
X(20428) = anticomplement of X(13350)
X(20428) = X(15)-of-Johnson-triangle
X(20428) = X(621)-of-Euler-triangle
X(20428) = X(623)-of-X3-ABC-reflections-triangle
X(20428) = X(5611)-of-Ehrmann-mid-triangle
X(20428) = {X(381), X(5611)}-harmonic conjugate of X(7684)
X(20428) = {X(4),X(1352)}-harmonic conjugate of X(20429)
See César Lozada, Hyacinthos 27997.
X(20429) lies on these lines: {2, 13349}, {3, 624}, {4, 69}, {5, 16}, {13, 10796}, {14, 11603}, {30, 5464}, {114, 383}, {137, 11126}, {182, 11304}, {187, 18582}, {303, 9735}, {381, 530}, {397, 18583}, {398, 1353}, {471, 5972}, {472, 9306}, {532, 5479}, {533, 13102}, {546, 16626}, {1656, 6672}, {2080, 7684}, {3564, 5321}, {5335, 14561}, {5640, 16770}, {5873, 16964}, {5886, 11708}, {5965, 16002}, {6299, 13188}, {6771, 11299}, {10614, 10653}, {13111, 16629}, {14139, 16645}, {16001, 19130}, {16268, 20253}, {18424, 18581}
X(20429) = midpoint of X(4) and X(622)
X(20429) = reflection of X(i) in X(j) for these (i,j): (3, 624), (16, 5), (2080, 7684)
X(20429) = complement of X(36995)
X(20429) = anticomplement of X(13349)
X(20429) = X(16)-of-Johnson triangle
X(20429) = X(622)-of-Euler-triangle
X(20429) = X(624)-of-X3-ABC reflections-triangle
X(20429) = X(5615)-of-Ehrmann-mid-triangle
X(20429) = {X(4),X(1352)}-harmonic conjugate of X(20428)
X(20429) = {X(381), X(5615)}-harmonic conjugate of X(7685)
See César Lozada, Hyacinthos 27997.
X(20430) lies on these lines: {3, 37}, {4, 192}, {5, 75}, {20, 4704}, {30, 4664}, {40, 8245}, {140, 4687}, {226, 20254}, {355, 740}, {381, 536}, {382, 4681}, {515, 3993}, {517, 984}, {518, 1351}, {537, 3656}, {546, 3644}, {726, 946}, {742, 1352}, {942, 7201}, {1278, 3091}, {1656, 3739}, {2805, 11258}, {3090, 4699}, {3295, 11997}, {3526, 4698}, {3545, 4740}, {3628, 4751}, {3666, 19540}, {3696, 5790}, {3751, 4516}, {3797, 7377}, {3832, 4788}, {3843, 4718}, {3850, 4764}, {3851, 4686}, {4385, 4451}, {4688, 5055}, {4726, 5072}, {4739, 5079}, {4755, 5054}, {4772, 5056}, {4821, 5068}, {4850, 19546}, {5480, 9055}, {6831, 20171}, {8727, 20173}, {9548, 17038}, {10246, 15569}, {10679, 18534}, {11849, 15624}
X(20430) = midpoint of X(4) and X(192)
X(20430) = reflection of X(3) in X(37)
X(20430) = reflection of X(75) in X(5)
X(20430) = X(192)-of-Euler-triangle
X(20430) = X(75)-of-Johnson-triangle
X(20430) = {X(1482), X(5779)}-harmonic conjugate of X(1351)
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,321), (2,75), (6,1930), (31,20234), (105,20431), (238,20432), (292,20433), (365,20434), (672,20435), (1423,20436), (1931,20437), (2053,20438), (2054,20439), (3009,20440), (2112, 20441), (2144,20442), (20332,20553)
Twenty-four more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : c : b
m(A') = -b c (Sqrt[b] + Sqrt[c]) (b - Sqrt[b] Sqrt[c] + c) : c a (Sqrt[a] - Sqrt[c]) (a + Sqrt[a] Sqrt[c] + c) : a b(Sqrt[a] - Sqrt[b]) (a + Sqrt[a] Sqrt[b] + b)
m(A1) = -2 b^2 c^2 : a c (a^2 - b c) : a b (a^2 - b c)
m(A2) = -b c (b + c) (b^2 - b c + c^2) : a c (a b - c^2) : a b (a c - b^2)
m(A3) = - b c (b + c) (a b + a c + b c) : a c (a^3 + a^2 b + a^2 c - a b c - a c^2 - b c^2) : a b (a^3 + a^2 b - a b^2 + a^2 c - a b c - b^2 c)
m(A4) = -b c (a + b + c) (b^2 + c^2) : a c (a^2 b + a^2 c + a b c - a c^2 - b c^2 - c^3) : a b (a^2 b - a b^2 - b^3 + a^2 c + a b c - b^2 c)
m(A5) = b c (a^2 b + b^3 + a^2 c - 2 a b c - b^2 c - b c^2 + c^3) : a c (a^3 + a^2 b + 2 a^2 c - a b c - b c^2 + c^3) : a b (a^3 + 2 a^2 b + b^3 + a^2 c - a b c - b^2 c)
m(A6) = -b c (a + b + c) (-a^2 b^2 + a b^3 + b^3 c - a^2 c^2 - 2 b^2 c^2 + a c^3 + b c^3) : a c (a^2 + b^2 - a c - b c) (a^3 - a^2 b - a b c + 2 a c^2 + b c^2 + c^3) : a b (a^3 + 2 a b^2 + b^3 - a^2 c - a b c + b^2 c) (a^2 - a b - b c + c^2),
where A1, A2, A3, A4, A5, A6 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = b c (y + z) : c a (z + x) : a b (x + y) , and m is the collineation indicated by (A,B,C,X(2); A'B'C',X(2)), where A'B'C' = incentral triangle.
Let f(a,b,c,x,y,z) = a^4 (b-c) (a^2-b c) (b^2+b c+c^2) x^3-b^2 c (-2 a^3 b^3+3 a^4 b c+a b^4 c-a^3 c^3-b^3 c^3) y^2 z+b c^2 (-a^3 b^3+3 a^4 b c-2 a^3 c^3-b^3 c^3+a b c^4) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 7, 2018)
X(20431) lies on these lines: {9, 75}, {321, 20441}, {1109, 4712}, {4431, 18674}, {4568, 17877}, {6063, 6358}, {20432, 20435}, {20442, 20443}
See X(20431).
X(20432) lies on these lines: {6, 75}, {312, 17266}, {321, 1930}, {377, 16086}, {514, 17894}, {519, 2650}, {696, 2643}, {1281, 6660}, {3008, 4359}, {3263, 3948}, {3264, 16732}, {3888, 9017}, {3954, 17184}, {4385, 17528}, {4812, 10436}, {5300, 5904}, {17886, 20634}, {18891, 18895}, {20237, 20436}, {20431, 20435}, {20437, 20439}, {20440, 20443}
See X(20431).
X(20433) lies on these lines: {75, 291}, {1111, 4647}, {1930, 20630}, {20234, 20441}, {20435, 20440}, {20628, 20629}
See X(20431).
X(20434) lies on these lines: {75, 366}
See X(20431).
X(20435) lies on these lines: {7, 8}, {76, 3790}, {192, 3673}, {514, 4374}, {726, 1111}, {1233, 3703}, {1921, 3263}, {1930, 17760}, {2350, 4359}, {2481, 3685}, {3705, 6063}, {3739, 16720}, {3963, 4431}, {3967, 18142}, {3993, 7264}, {20431, 20432}, {20433, 20440}
See X(20431).
X(20436) lies on these lines: {7, 8}, {76, 3705}, {274, 7081}, {321, 1959}, {3701, 4518}, {3761, 17866}, {4073, 17157}, {17880, 20441}, {20237, 20432}
See X(20431).
X(20437) lies on these lines: {75, 8033}, {226, 306}, {1109, 3263}, {1909, 4647}, {20432, 20439}
See X(20431).
X(20438) lies on these lines: {75, 2319}, {6063, 6358}, {20234, 20440}, {20237, 20432}
See X(20431).
X(20439) lies on these lines: {75, 1654}, {1930, 20441}, {20432, 20437}
See X(20431).
X(20440) lies on these lines: {2, 37}, {335, 4087}, {661, 17893}, {3662, 6382}, {18275, 18891}, {20234, 20438}, {20432, 20443}, {20433, 20435}, {20441, 20629}
See X(20431).
X(20441) lies on these lines: {75, 1281}, {321, 20431}, {1930, 20439}, {17880, 20436}, {20234, 20433}, {20440, 20629}
See X(20431).
X(20442) lies on these lines: {20431, 20443}
See X(20431).
X(20443) lies on these lines: {75, 87}, {76, 334}, {4128, 4647}, {4858, 20234}, {17880, 20436}, {20431, 20442}, {20432, 20440}
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,312), (2,75), (6,304), (31,20444), (238,17789), (292,20446), (365,20447), (672,20448), (1423,20449), (1931,20450), (2053,20451), (2054,20452), (3009,20453), (2112,20454)
Twenty-one more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = -1/a : 1/b : 1/c
m(A') = - b c (a^(3/2) + b^(3/2) + c^(3/2)) : c a (a^(3/2) + b^(3/2) - c^(3/2)) : a b (a^(3/2) - b^(3/2) + c^(3/2))
m(A1) = b c (a^2 + 2 b c) : -a^3 c : -a^3 b
m(A2) = - b c (b^3 + a b c + c^3) : c a (b^3 + a b c - c^3) : a b (-b^3 + a b c + c^3)
m(A3) = - b c (a^3 + a^2 b + a b^2 + a^2 c + 2 a b c + b^2 c + a c^2 + b c^2) : c a (a^3 + a^2 b + a b^2 + a^2 c + b^2 c - a c^2 - b c^2) : a b (a^3 + a^2 b - a b^2 + a^2 c - b^2 c + a c^2 + b c^2)
m(A4) = -b c (a^2 b + a b^2 + b^3 + a^2 c + a b c + b^2 c + a c^2 + b c^2 + c^3) : a c (a^2 b + a b^2 + b^3 + a^2 c + a b c + b^2 c - a c^2 - b c^2 - c^3) : a b (a^2 b - a b^2 - b^3 + a^2 c + a b c - b^2 c + a c^2 + b c^2 + c^3)
m(A5) = - b c (a^3 - b^3 + 2 a b c + b^2 c + b c^2 - c^3) : c a (a^3 - b^3 + 2 a^2 c + b^2 c - b c^2 + c^3) : a b (a^3 + 2 a^2 b + b^3 - b^2 c + b c^2 - c^3),
where A1, A2, A3, A4, A5 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = b c (-x + y + z) : c a (- y + z + x) : a b (-x + x + y) , and m is the collineation indicated by (A,B,C,X(2); A'B'C',X(2)), where A'B'C' = incentral triangle.
Let f(a,b,c,x,y,z) = a^6 (b-c) (b^2+b c+c^2) x^3-b^3 c^2 (a^4+a b^3-b^2 c^2-a c^3) y^2 z+ b^2 c^3 (a^4-a b^3-b^2 c^2+a c^3) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 7, 2018)
X(20444) lies on these lines: {6, 75}, {85, 18143}, {304, 18137}, {312, 1230}, {321, 17299}, {322, 4033}, {744, 2209}, {1100, 4812}, {2064, 4417}, {2210, 4412}, {4381, 7122}, {14963, 18050}, {16580, 18744}, {17786, 17791}, {18051, 20644}, {18138, 20641}, {20446, 20454}, {20451, 20453}, {20650, 20652}
X(20444) = isotomic conjugate of X(7096)
See X(20444).
X(20445) lies on these lines: {9, 75}, {149, 321}, {312, 8024}, {322, 4033}, {2345, 16732}, {7112, 20643}, {17789, 20448}
See X(20444).
X(20446) lies on these lines: {75, 291}, {76, 4485}, {304, 18050}, {312, 561}, {1502, 17788}, {17789, 18891}, {20444, 20454}, {20448, 20453}, {20642, 20643}
See X(20444).
X(20447) lies on these lines: {75, 366}
See X(20444).
X(20448) lies on these lines: {7, 8}, {76, 4043}, {304, 18137}, {306, 1233}, {312, 18142}, {514, 1921}, {561, 18138}, {740, 1111}, {3739, 4875}, {4359, 16708}, {4417, 6063}, {16727, 17495}, {17789, 20445}, {18031, 20646}, {18045, 18134}, {20335, 20593}, {20446, 20453}
See X(20444).
X(20449) lies on these lines: {7, 8}, {76, 946}, {312, 1959}, {315, 6256}, {325, 1329}, {3761, 9612}, {7788, 11236}, {10912, 17144}, {17789, 20451}
See X(20444).
X(20450) lies on these lines: {75, 8033}, {312, 1230}, {850, 7199}, {3761, 17762}, {17789, 20452}
X(20450) = isotomic conjugate of isogonal conjugate of X(20369)
See X(20444).
X(20451) lies on these lines: {75, 2319}, {17789, 20449}, {20444, 20453}
See X(20444).
X(20452) lies on these lines: {75, 1654}, {304, 20454}, {17789, 20450}, {18137, 20650}
See X(20444).
X(20453) lies on these lines: {2, 37}, {76, 18050}, {190, 20610}, {661, 786}, {1215, 17445}, {1920, 18143}, {3735, 6376}, {4033, 4087}, {4485, 18040}, {17789, 20644}, {18051, 18138}, {20444, 20451}, {20446, 20448}, {20454, 20643}
See X(20444).
X(20454) lies on these lines: {75, 1281}, {304, 20452}, {312, 8024}, {20444, 20446}, {20453, 20643}
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,42), (2,6), (6,39), (31,3778), (105,20455), (238,20456), (292,20457), (365,20458), (672,20459), (1423,20460), (1931,20461), (2053,20462), (2054,20463), (3009,20464), (2112,20465)
Twenty-four more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : b^2 : c^2
m(A') = a^2 (Sqrt[b] + Sqrt[c]) (b - Sqrt[b] Sqrt[c] + c) : -b^2 (Sqrt[a] - Sqrt[c]) (a + Sqrt[a] Sqrt[c] + c) : -(Sqrt[a] - Sqrt[b]) (a + Sqrt[a] Sqrt[b] + b) c^2
m(A1) = 2 a^2 b c : b^2 (-a^2 + b c) : c^2 (-a^2 + b c)
m(A2) = a^2 (b + c) (b^2 - b c + c^2) : -b^2 c (a b - c^2) : b c^2 (b^2 - a c)
m(A3) = -a^2 (b + c) (a b + a c + b c) : b^2 (a^3 + a^2 b + a^2 c - a b c - a c^2 - b c^2) : c^2 (a^3 + a^2 b - a b^2 + a^2 c - a b c - b^2 c)
m(A4) = a^2 (a + b + c) (b^2 + c^2) : -b^2 (a^2 b + a^2 c + a b c - a c^2 - b c^2 - c^3) : -c^2 (a^2 b - a b^2 - b^3 + a^2 c + a b c - b^2 c)
m(A5) = -a^2 (a^2 b + b^3 + a^2 c - 2 a b c - b^2 c - b c^2 + c^3) : -b^2 (a^3 + a^2 b + 2 a^2 c - a b c - b c^2 + c^3) : -c^2 (a^3 + 2 a^2 b + b^3 + a^2 c - a b c - b^2 c)
m(A6) = a^2 (a + b + c) (a^2 b^2 - a b^3 - b^3 c + a^2 c^2 + 2 b^2 c^2 - a c^3 - b c^3) : -b^2 (a^2 + b^2 - a c - b c) (-a^3 + a^2 b + a b c - 2 a c^2 - b c^2 - c^3) : -c^2 (-a^3 - 2 a b^2 - b^3 + a^2 c + a b c - b^2 c) (a^2 - a b - b c + c^2)
where A1, A2, A3, A4, A5, A6 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = a^2 (y + z) : b^2 (z + x) : c^2 (x + y) , and m is the collineation indicated by (A,B,C,X(2); A'B'C',X(6)), where A'B'C' = m(ABC).
Let f(a,b,c,x,y,z) = b^5 (b-c) c^5 (a^2-b c) (b^2+b c+c^2) x^3-a^5 b c^3 (-2 a^3 b^3+3 a^4 b c+a b^4 c-a^3 c^3-b^3 c^3) y^2 z+a^5 b^3 c (-a^3 b^3+3 a^4 b c-2 a^3 c^3-b^3 c^3+a b c^4) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 7, 2018)
X(20455) lies on these lines: {6, 692}, {42, 20465}, {43, 57}, {100, 2991}, {193, 3888}, {209, 4028}, {511, 9441}, {518, 3717}, {579, 3939}, {1814, 5091}, {2347, 3778}, {2835, 3755}, {3034, 17205}, {3169, 3174}, {3688, 16973}, {3802, 9052}, {4014, 5845}, {4517, 16496}, {5580, 15615}, {6373, 8659}, {9032, 14404}, {20456, 20459}, {20466, 20467}
X(20455) = crosssum of X(2) and X(105)
X(20455) = crosspoint of X(6) and X(518)
X(20455) = polar conjugate of isotomic conjugate of X(20728)
See X(20455).
X(20456) lies on these lines: {6, 560}, {31, 4253}, {36, 386}, {38, 17023}, {39, 42}, {44, 3122}, {75, 749}, {210, 16604}, {239, 291}, {244, 3008}, {256, 17120}, {524, 2228}, {527, 3123}, {579, 2209}, {583, 1918}, {672, 3747}, {674, 3248}, {756, 1125}, {869, 2275}, {982, 17367}, {984, 17397}, {1015, 3009}, {2239, 18206}, {2308, 11205}, {3589, 4022}, {3728, 5750}, {3758, 4443}, {3759, 4446}, {3779, 7032}, {4283, 4649}, {4380, 4905}, {4393, 12782}, {4433, 20331}, {4735, 16666}, {12263, 17165}, {16707, 16887}, {17065, 17349}, {18038, 19560}, {20455, 20459}, {20460, 20462}, {20461, 20463}, {20464, 20467}, {20669, 20670}
See X(20455).
X(20457) lies on these lines: {6, 291}, {42, 20663}, {213, 14839}, {239, 3978}, {668, 17033}, {672, 20669}, {1015, 1193}, {2238, 4974}, {3778, 20465}, {4368, 17475}, {18205, 20333}, {20459, 20464}
See X(20455).
X(20458) lies on these lines: {6, 20469}, {75, 366}, {256, 2069}, {291, 2068}, {984, 20357}
See X(20455).
X(20459) lies on these lines: {6, 41}, {9, 16823}, {39, 2309}, {57, 20665}, {105, 238}, {239, 19565}, {244, 2225}, {330, 16827}, {573, 16779}, {614, 5364}, {667, 6373}, {673, 10030}, {726, 20372}, {910, 8850}, {1001, 1334}, {1170, 1432}, {1438, 13329}, {1445, 2082}, {1909, 3691}, {2110, 2340}, {2112, 7193}, {2209, 16502}, {2269, 16503}, {2279, 16469}, {2308, 2350}, {3730, 15485}, {4253, 5144}, {4279, 5299}, {4498, 6084}, {4649, 17474}, {5701, 20593}, {14964, 18792}, {17475, 20363}, {20455, 20456}, {20457, 20464}
See X(20455).
X(20460) lies on these lines: {1, 20665}, {6, 41}, {8, 2319}, {21, 644}, {42, 237}, {291, 8848}, {511, 20667}, {1201, 3051}, {2053, 3056}, {2082, 3509}, {2170, 3721}, {7117, 20465}, {7991, 9315}, {20456, 20462}
X(20460) = polar conjugate of isotomic conjugate of X(20732)
See X(20455).
X(20461) lies on these lines: {1, 9560}, {6, 2248}, {39, 2653}, {42, 181}, {111, 6083}, {115, 1737}, {291, 1757}, {511, 741}, {517, 16613}, {519, 5213}, {579, 3981}, {672, 3124}, {1015, 5164}, {1169, 1171}, {1213, 1215}, {1914, 20666}, {2245, 17735}, {3721, 16589}, {20456, 20463}
X(20461) = polar conjugate of isotomic conjugate of X(20733)
See X(20455).
X(20462) lies on these lines: {6, 20473}, {43, 57}, {3778, 20464}, {20456, 20460}
X(20462) = isogonal conjugate of isotomic conjugate of X(20338)
X(20462) = polar conjugate of isotomic conjugate of X(20734)
See X(20455).
X(20463) lies on these lines: {6, 2054}, {39, 20465}, {194, 1046}, {291, 8935}, {20456, 20461}
X(20463) = isogonal conjugate of isotomic conjugate of X(20339)
X(20463) = polar conjugate of isotomic conjugate of X(20735)
See X(20455).
X(20464) lies on these lines: {2, 18194}, {6, 31}, {43, 7032}, {239, 3510}, {291, 8851}, {350, 3226}, {669, 2451}, {899, 9362}, {1575, 3248}, {1911, 3684}, {2227, 9025}, {2238, 3009}, {2998, 17157}, {3720, 18170}, {3778, 20462}, {4704, 17018}, {20456, 20467}, {20457, 20459}
X(20464) = isogonal conjugate of isotomic conjugate of X(20340)
X(20464) = polar conjugate of isotomic conjugate of X(20736)
See X(20455).
X(20465) lies on these lines: {6, 8852}, {39, 20463}, {42, 20455}, {291, 9472}, {3778, 20457}, {7117, 20460}
X(20465) = isogonal conjugate of isotomic conjugate of X(20341)
X(20465) = polar conjugate of isotomic conjugate of X(20737)
See X(20455).
X(20466) lies on these lines: {20455, 20467}
See X(20455).
X(20467) lies on these lines: {1, 39}, {1575, 20532}, {3271, 3778}, {7117, 20460}, {20455, 20466}, {20456, 20464}
X(20467) = isogonal conjugate of isotomic conjugate of X(20343)
X(20467) = polar conjugate of isotomic conjugate of X(20738)
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,55), (2,6), (6,3), (31,1631), (105,20468), (365,20469), (672,20470), (1423,20471), (1931,20472), (2053,20473), (2054,20474), (3009,20475), (2112,20476)
Twenty-four more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = a^2 : -b^2 : -c^2
m(A') = a^2 (a^(3/2) + b^(3/2) + c^(3/2)) : -b^2 (a^(3/2) + b^(3/2) - c^(3/2)) : -c^2 (a^(3/2) - b^(3/2) + c^(3/2))
m(A1) = -a^2 - 2 b c : b^2 : c^2
m(A2) = a^2 (b^3 + a b c + c^3) : -b^2 (b^3 + a b c - c^3) : -c^2 (-b^3 + a b c + c^3)
m(A3) = -a^2 (a^3 + a^2 b + a b^2 + a^2 c + 2 a b c + b^2 c + a c^2 + b c^2) : b^2 (a^3 + a^2 b + a b^2 + a^2 c + b^2 c - a c^2 - b c^2) : c^2 (a^3 + a^2 b - a b^2 + a^2 c - b^2 c + a c^2 + b c^2)
m(A4) = a^2 (a^2 b + a b^2 + b^3 + a^2 c + a b c + b^2 c + a c^2 + b c^2 + c^3) : -b^2 (a^2 b + a b^2 + b^3 + a^2 c + a b c + b^2 c - a c^2 - b c^2 - c^3) : -c^2 (a^2 b - a b^2 - b^3 + a^2 c + a b c - b^2 c + a c^2 + b c^2 + c^3)
m(A5) = a^2 (a^3 - b^3 + 2 a b c + b^2 c + b c^2 - c^3) : b^2 (-a^3 + b^3 - 2 a^2 c - b^2 c + b c^2 - c^3) : c^2 (-a^3 - 2 a^2 b - b^3 + b^2 c - b c^2 + c^3)
m(A6) = a^2 (a^5 - a^4 b - a^2 b^3 + a b^4 - a^4 c - a^3 b c + a b^3 c + b^4 c - b^3 c^2 - a^2 c^3 + a b c^3 - b^2 c^3 + a c^4 + b c^4) : -b^2 (a^5 - a^4 b - a^2 b^3 + a b^4 - a^4 c - a^3 b c + a b^3 c + b^4 c + 2 a^3 c^2 + 2 a^2 b c^2 + 2 a b^2 c^2 + b^3 c^2 - a^2 c^3 - 3 a b c^3 - b^2 c^3 - a c^4 - b c^4) : -c^2 (a^5 - a^4 b + 2 a^3 b^2 - a^2 b^3 - a b^4 - a^4 c - a^3 b c + 2 a^2 b^2 c - 3 a b^3 c - b^4 c + 2 a b^2 c^2 - b^3 c^2 - a^2 c^3 + a b c^3 + b^2 c^3 + a c^4 + b c^4)
where A1, A2, A3, A4, A5, A6 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = a^2 (-x + y + z) : b^2 (-y + z + x) : c^2 (-z + x + y) , and m is the collineation indicated by (A,B,C,X(2); A'B'C',X(6)), where A' = m(A).
Let f(a,b,c,x,y,z) = b^3 (b-c) c^3 (b^2+b c+c^2) x^3-a^3 c^2 (a^4+a b^3-b^2 c^2-a c^3) y^2 z+a^3 b^2 (a^4-a b^3-b^2 c^2+a c^3) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 7, 2018)
X(20468) lies on these lines: {6, 692}, {38, 55}, {100, 4437}, {159, 3197}, {197, 1615}, {198, 480}, {518, 3220}, {926, 8659}, {1030, 2870}, {1350, 2807}, {1357, 1460}, {1633, 5845}, {2110, 5096}, {2930, 8674}, {3270, 10387}
See X(20468).
X(20469) lies on these lines: {6, 20458}, {366, 1631}, {2068, 4497}, {2069, 4471}
See X(20468).
X(20470) lies on these lines: {1, 5132}, {2, 16678}, {3, 142}, {6, 41}, {10, 16414}, {11, 851}, {25, 1626}, {35, 16484}, {36, 238}, {37, 12721}, {55, 750}, {57, 3185}, {86, 4225}, {105, 16693}, {197, 1617}, {228, 354}, {241, 3827}, {244, 3724}, {404, 5263}, {474, 19863}, {518, 4557}, {602, 14529}, {614, 2352}, {669, 2487}, {673, 7677}, {674, 1818}, {692, 13329}, {740, 15571}, {855, 15326}, {958, 17259}, {993, 4245}, {995, 5156}, {1011, 4423}, {1054, 5143}, {1086, 1284}, {1201, 1918}, {1279, 2223}, {1376, 3741}, {1386, 16679}, {1402, 3752}, {1473, 15494}, {1621, 4210}, {1698, 16297}, {1699, 7416}, {2110, 5096}, {2283, 4318}, {2340, 9049}, {2886, 16056}, {2933, 10835}, {2975, 17277}, {2999, 16878}, {3000, 5204}, {3149, 15622}, {3242, 4022}, {3246, 16694}, {3576, 7420}, {3616, 16451}, {3624, 16287}, {3685, 4436}, {3816, 4192}, {3825, 19648}, {3847, 19646}, {3941, 7290}, {4038, 18185}, {4068, 15569}, {4184, 5284}, {4267, 18166}, {4293, 19256}, {4316, 13744}, {4366, 19308}, {4447, 5846}, {4649, 5563}, {5251, 19241}, {5259, 17524}, {5272, 16778}, {5303, 7419}, {5437, 10434}, {5550, 16452}, {5701, 20605}, {6645, 20148}, {6667, 19546}, {6685, 19342}, {6691, 19513}, {7191, 16687}, {7280, 7428}, {7354, 13724}, {8167, 16058}, {8301, 17031}, {9342, 16057}, {10013, 19760}, {10200, 19543}, {11329, 20172}, {15507, 17768}, {16020, 18610}, {16286, 19862}, {16291, 19878}, {16684, 16823}
X(20470) = isogonal conjugate of isotomic conjugate of X(20347)
X(20470) = isogonal conjugate of anticomplement of X(39046)
X(20470) = anticomplement of complementary conjugate of X(39046)
X(20470) = crossdifference of every pair of points on line X(37)X(522)
X(20470) = polar conjugate of isotomic conjugate of X(20744)
See X(20468).
X(20471) lies on these lines: {3, 2329}, {6, 41}, {55, 237}, {101, 15654}, {197, 17798}, {280, 1436}, {910, 17448}, {1610, 8301}, {1755, 2176}, {2076, 20676}, {2933, 20476}, {5204, 20331}, {14829, 15509}, {16969, 20674}
See X(20468).
X(20472) lies on these lines: {2, 1029}, {6, 2248}, {55, 199}, {661, 3733}, {958, 19329}, {2242, 18755}, {2702, 20675}, {2915, 16974}, {3509, 4053}, {9509, 17798}
X(20472) = isogonal conjugate of isotomic conjugate of X(20349)
X(20472) = isogonal conjugate of anticomplement of X(39042)
See X(20468).
X(20473) lies on these lines: {6, 20462}, {55, 17459}, {159, 1740}, {197, 17798}, {1486, 20676}, {1631, 20475}
See X(20468).
X(20474) lies on these lines: {1, 20677}, {3, 2784}, {6, 2054}, {1634, 8053}, {3511, 20475}, {9509, 17798}
See X(20468).
X(2047562) lies on these lines: {6, 31}, {10, 16683}, {23, 385}, {100, 16693}, {171, 16679}, {183, 18613}, {238, 18793}, {404, 16691}, {519, 8618}, {1631, 20473}, {1634, 17731}, {1755, 9016}, {3511, 20474}, {3550, 3941}, {3684, 4557}, {3750, 4068}, {5030, 8671}, {8266, 16678}, {8301, 17031}, {8844, 9055}, {17448, 18758}, {18092, 18093}
See X(20468).
X(20476) lies on these lines: {3, 2784}, {6, 8852}, {38, 55}, {291, 4497}, {753, 7236}, {1283, 17592}, {1631, 4361}, {2933, 20471}, {4443, 4471}, {7281, 16560}
Let A'B'C' be the tangential triangle. Let La be the reflection of line B'C' in the perpedicular bisector of BC, and define Lb and Lc cyclically. Let A" = Lb∩Lc, and define B" and C" cyclically. Triangle A"B"C" is also the tangential triangle of the dual-of-orthic triangle, and X(20477) = X(7)-of-A"B"C". (Randy Hutson, August 29, 2018)
See Angel Montesdeoca, HG220718.
X(20477) lies on these lines: {2,53}, {3,95}, {6,401}, {20,64}, {22,157}, {30,317}, {75,10538}, {76,11414}, {97,19212}, {99,1294}, {159,1632}, {216,458}, {286,1012}, {297,6389}, {302,19772}, {303,19773}, {325,1370}, {338,8553}, {339,12083}, {340,1657}, {394,8613}, {441,17907}, {511,6751}, {577,9308}, {648,15905}, {925,2373}, {940,18667}, {1007,7396}, {1078,9715}, {1235,10323}, {1238,7788}, {1272,13219}, {1305,2370}, {1494,15681}, {1993,19180}, {2871,12220}, {3151,4417}, {3153,18380}, {3186,11676}, {3260,9723}, {6515,18953}, {6617,15466}, {6638,16089}, {7560,14829}, {9307,10602}, {10313,14614}, {10979,14767}, {11257,19459}, {11412,19206}, {19121,19156}
X(20477) = isogonal conjugate of X(32319)
X(20477) = isotomic conjugate of X(15318)
X(20477) = anticomplement of X(53)
X(20477) = X(6)-of-dual-of-orthic-triangle
See Angel Montesdeoca, HG220718.
X(20478) lies on these lines: {2,3}, {578,14374}, {1147,2574}, {2575,3357}, {6102,13414}
X(20478) = {X(3),X(4)}-harmonic conjugate of X(20479)
See Angel Montesdeoca, HG220718.
X(20479) lies on these lines: {2,3}, {578,14375}, {1147,2575}, {2574,3357}, {6102,13415}
X(20479) = {X(3),X(4)}-harmonic conjugate of X(20478)
See Angel Montesdeoca, HG220718 and Hyacinthos 27999.
X(20480) lies on these lines: {110,382}, {476,15646}
See Angel Montesdeoca, HG030818.
X(20481) lies on these lines: {2,6}, {3,111}, {22,8588}, {23,5210}, {25,15655}, {187,1995}, {353,5085}, {399,9759}, {549,16317}, {574,3291}, {647,9175}, {1350,13192}, {1383,3053}, {1384,11284}, {2030,5651}, {2502,6800}, {5023,14002}, {5024,9465}, {5055,6032}, {5569,9172}, {5585,7492}, {5640,11173}, {7485,8589}, {8716,9870}, {8770,15246}, {9225,10485}
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,594), (2,10), (6,15523), (31,16886), (105,20482), (238,20483), (292,20484), (365,20485), (672,20486), (1423,20487), (1931,20488), (2053,20489), (2054,20490), (3009,20491), (2112,20492), (2144,20493), (20332,20494)
Twenty-four more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : a + c : a + b
m(A') = (Sqrt[b] + Sqrt[c]) (b + c) (b - Sqrt[b] Sqrt[c] + c) : -(Sqrt[a] - Sqrt[c]) (a + c) (a + Sqrt[a] Sqrt[c] + c) : -(Sqrt[a] - Sqrt[b]) (a + b) (a + Sqrt[a] Sqrt[b] + b)
m(A1) = 2 b c (b + c) : -(a + c) (a^2 - b c) : -(a + b) (a^2 - b c)
m(A2) = (b + c)^2 (b^2 - b c + c^2) : c (a + c) (-a b + c^2) : b (a + b) (b^2 - a c)
m(A3) = (b + c)^2 (a b + a c + b c) : -(a + c) (a^3 + a^2 b + a^2 c - a b c - a c^2 - b c^2) : -(a + b) (a^3 + a^2 b - a b^2 + a^2 c - a b c - b^2 c)
m(A4) = -(b + c) (a + b + c) (b^2 + c^2) : (a + c) (a^2 b + a^2 c + a b c - a c^2 - b c^2 - c^3) : (a + b) (a^2 b - a b^2 - b^3 + a^2 c + a b c - b^2 c)
m(A5) = (b + c) (a^2 b + b^3 + a^2 c - 2 a b c - b^2 c - b c^2 + c^3) : (a + c) (a^3 + a^2 b + 2 a^2 c - a b c - b c^2 + c^3) : (a + b) (a^3 + 2 a^2 b + b^3 + a^2 c - a b c - b^2 c)
m(A6) = -(b + c) (a + b + c) (-a^2 b^2 + a b^3 + b^3 c - a^2 c^2 - 2 b^2 c^2 + a c^3 + b c^3) : (a + c) (a^2 + b^2 - a c - b c) (a^3 - a^2 b - a b c + 2 a c^2 + b c^2 + c^3) : (a + b) (a^3 + 2 a b^2 + b^3 - a^2 c - a b c + b^2 c) (a^2 - a b - b c + c^2)
where A1, A2, A3, A4, A5, A6 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = (b + c)(y + z) : (c + a)(z + x): (a + b)(x + y) , and m is the collineation indicated by (A,B,C,X(2); A'B'C',X(10)), where A' = m(A).
X(20482) lies on these lines: {10, 1018}, {120, 17464}, {594, 20492}, {1441, 16603}, {20483, 20486}, {20493, 20494}, {20653, 20656}
See X(20482).
Let f(a,b,c,x,y,z) = a (a+b)^3 (b-c) (a+c)^3 (a^2-b c) (b^2+b c+c^2) x^3-(a+b)^2 (a+c) (b+c)^3 (-2 a^3 b^3+3 a^4 b c+a b^4 c-a^3 c^3-b^3 c^3) y^2 z+(a+b) (a+c)^2 (b+c)^3 (-a^3 b^3+3 a^4 b c-2 a^3 c^3-b^3 c^3+a b c^4) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 7, 2018)
X(20483) lies on these lines: {10, 213}, {37, 4972}, {115, 3992}, {594, 2294}, {661, 20659}, {762, 3454}, {1575, 3006}, {3263, 20541}, {3290, 3823}, {3726, 3836}, {3932, 4037}, {4426, 5300}, {8013, 10026}, {20482, 20486}, {20487, 20489}, {20488, 20490}, {20491, 20494}
See X(20482).
X(20484) lies on these lines: {10, 20496}, {594, 2486}, {1211, 3120}, {16886, 20492}, {20333, 20356}, {20486, 20491}, {20654, 20658}
See X(20482).
X(20485) lies on these lines: {10, 20497}, {3661, 20334}
See X(20482).
X(20486) lies on these lines: {2, 4447}, {10, 12}, {11, 3912}, {76, 3703}, {325, 334}, {354, 17048}, {661, 2533}, {1086, 2228}, {1500, 4854}, {1836, 3501}, {2486, 3943}, {2886, 3661}, {3136, 15523}, {3507, 17719}, {3782, 12782}, {3816, 17244}, {3836, 20340}, {3932, 3948}, {4044, 6057}, {4433, 13576}, {4518, 17789}, {8299, 20556}, {11680, 17230}, {16587, 16589}, {20335, 20358}, {20482, 20483}, {20484, 20491}
See X(20482).
X(20487) lies on these lines: {10, 12}, {11, 312}, {3452, 7064}, {4193, 4903}, {16569, 17719}, {20258, 20359}, {20483, 20489}, {20492, 20494}
See X(20482).
X(20488) lies on these lines: {10, 894}, {12, 594}, {1215, 8013}, {1220, 1268}, {2533, 4977}, {4062, 17719}, {20337, 20360}, {20483, 20490}, {20491, 20658}
See X(20482).
X(20489) lies on these lines: {10, 20503}, {1441, 16603}, {16886, 20491}, {20338, 20361}, {20483, 20487}
See X(20482).
X(20490) lies on these lines: {10, 115}, {594, 20531}, {15523, 20492}, {20339, 20362}, {20483, 20488}
See X(20482).
X(20491) lies on these lines: {10, 37}, {141, 10009}, {1086, 20549}, {3836, 20532}, {16886, 20489}, {17786, 20271}, {20340, 20363}, {20483, 20494}, {20484, 20486}, {20488, 20658}
See X(20482).
X(20492) lies on these lines: {10, 4154}, {594, 20482}, {15523, 20490}, {16886, 20484}, {20341, 20364}, {20487, 20494}
See X(20482).
X(20493) lies on these lines: {20342, 20365}, {20482, 20494}
See X(20482).
X(20494) lies on these lines: {10, 18793}, {321, 2887}, {20343, 20366}, {20482, 20493}, {20483, 20491}, {20487, 20492}
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,2321), (2,10), (6,306), (31,4153), (105,20495), (238,4071), (292,20496), (365,20497), (1423,20498), (1931,20499), (2053,20581), (2054,20500), (3009,20501), (2112,20502)
Twenty-one more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = - b - c : a + c : a + b
m(A') = (b + c) (a^(3/2) + b^(3/2) + c^(3/2)) : -(a + c) (a^(3/2) + b^(3/2) - c^(3/2)) : -(a + b) (a^(3/2) - b^(3/2) + c^(3/2))
m(A1) = (b + c) (a^2 + 2 b c) : -a^2 (a + c) : -a^2 (a + b)
m(A2) = (b + c) (b^3 + a b c + c^3) : -(a + c) (b^3 + a b c - c^3) : -(a + b) (-b^3 + a b c + c^3)
m(A3) = (b + c) (a^3 + a^2 b + a b^2 + a^2 c + 2 a b c + b^2 c + a c^2 + b c^2) : -(a + c) (a^3 + a^2 b + a b^2 + a^2 c + b^2 c - a c^2 - b c^2) : -(a + b) (a^3 + a^2 b - a b^2 + a^2 c - b^2 c + a c^2 + b c^2)
m(A4) = (b + c) (a^2 b + a b^2 + b^3 + a^2 c + a b c + b^2 c + a c^2 + b c^2 + c^3) : -(a + c) (a^2 b + a b^2 + b^3 + a^2 c + a b c + b^2 c - a c^2 - b c^2 - c^3) : -(a + b) (a^2 b - a b^2 - b^3 + a^2 c + a b c - b^2 c + a c^2 + b c^2 + c^3)
m(A5) = (b + c) (-a^3 + b^3 - 2 a b c - b^2 c - b c^2 + c^3) : (a + c) (a^3 - b^3 + 2 a^2 c + b^2 c - b c^2 + c^3) : (a + b) (a^3 + 2 a^2 b + b^3 - b^2 c + b c^2 - c^3),
where A1, A2, A3, A4, A5 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = (b + c)(-x + y + z) : (c + a)(-y + z + x): (a + b)(-z + x + y) , and m is the collineation indicated by (A,B,C,X(2); A'B'C',X(10)), where A' = m(A).
Let f(a,b,c,x,y,z) = a^3 (a+b)^3 (b-c) (a+c)^3 (b^2+b c+c^2) x^3-b (a+b)^2 c (a+c) (b+c)^3 (a^4+a b^3-b^2 c^2-a c^3) y^2 z+b (a+b) c (a+c)^2 (b+c)^3 (a^4-a b^3-b^2 c^2+a c^3) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 7, 2018)
X(20495) lies on these lines: {10, 1018}, {2321, 18589}, {4103, 4153}, {16550, 20344}
See X(20495).
X(20496) lies on these lines: {10, 20484}, {313, 2321}, {321, 1109}, {668, 18037}, {1921, 3912}, {3596, 17788}, {3948, 6541}, {4153, 20502}, {17738, 20345}
See X(20495).
X(20497) lies on these lines: {10, 20485}, {510, 20346}
See X(20495).
X(20498) lies on these lines: {10, 12}, {329, 6210}, {518, 20545}, {908, 3705}, {946, 4385}, {984, 3452}, {4071, 20503}, {4859, 16569}, {20348, 20368}
See X(20495).
X(20499) lies on these lines: {10, 894}, {313, 502}, {514, 4036}, {2321, 4053}, {4071, 20500}, {20349, 20369}
See X(20495).
X(20500) lies on these lines: {10, 115}, {306, 20502}, {321, 20636}, {4071, 20499}, {4568, 18035}, {20351, 20371}
See X(20495).
X(20501) lies on these lines: {10, 37}, {536, 20549}, {3963, 17867}, {4079, 4129}, {4153, 20503}, {10009, 17233}, {20352, 20372}
See X(20495).
X(20502) lies on these lines: {10, 4154}, {306, 20500}, {2321, 18589}, {4153, 20496}, {20353, 20373}
X(20503) lies on these lines: {10, 20493}, {20354, 20374}
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,523), (2,514), (6,16892), (31,3801), (105,20504), (238,4791), (292,20505), (365,20506), (672,20607), (1423,20508), (1931,20509), (2053,20510), (2054,20511), (3009,20512), (2112,20513), (2144,20514), (20332,20515)
Twenty-four more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : a - c : -a + b
m(A') = -(Sqrt[b] - Sqrt[c]) (Sqrt[b] + Sqrt[c])^2 (b - Sqrt[b] Sqrt[c] + c) : -(Sqrt[a] - Sqrt[c])^2 (Sqrt[a] + Sqrt[c]) (a + Sqrt[a] Sqrt[c] + c) : (Sqrt[a] - Sqrt[b])^2 (Sqrt[a] + Sqrt[b]) (a + Sqrt[a] Sqrt[b] + b)
m(A1) = -2 b (b - c) c : -(a - c) (a^2 - b c) : (a - b) (a^2 - b c)
m(A2) = -(b - c) (b + c) (b^2 - b c + c^2) : -(a - c) c (a b - c^2) : (a - b) b (-b^2 + a c)
m(A3) = (b - c) (b + c) (a b + a c + b c) : (a - c) (a^3 + a^2 b + a^2 c - a b c - a c^2 - b c^2) : -(a - b) (a^3 + a^2 b - a b^2 + a^2 c - a b c - b^2 c)
m(A4) = (b - c) (a + b + c) (b^2 + c^2) : (a - c) (a^2 b + a^2 c + a b c - a c^2 - b c^2 - c^3) : -(a - b) (a^2 b - a b^2 - b^3 + a^2 c + a b c - b^2 c)
m(A5) = (-b + c) (a^2 b + b^3 + a^2 c - 2 a b c - b^2 c - b c^2 + c^3) : (a - c) (a^3 + a^2 b + 2 a^2 c - a b c - b c^2 + c^3) : -(a - b) (a^3 + 2 a^2 b + b^3 + a^2 c - a b c - b^2 c)
m(A6) = (b - c) (a + b + c) (-a^2 b^2 + a b^3 + b^3 c - a^2 c^2 - 2 b^2 c^2 + a c^3 + b c^3) : (a - c) (a^2 + b^2 - a c - b c) (a^3 - a^2 b - a b c + 2 a c^2 + b c^2 + c^3) : -(a - b) (a^3 + 2 a b^2 + b^3 - a^2 c - a b c + b^2 c) (a^2 - a b - b c + c^2)
where A1, A2, A3, A4, A5, A6 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = (b - c)(y + z) : (c - a)(z + x): (a - b)(x + y) , and m is the collineation indicated by (A,B,C,X(2); A'B'C',X(514)), where A' = m(A).
Let f(a,b,c,x,y,z) = a (a-b)^2 (a-c)^2 (a^2-b c) (b^2+b c+c^2) x^3-(a-b) (b-c)^2 (-2 a^3 b^3+3 a^4 b c+a b^4 c-a^3 c^3-b^3 c^3) y^2 z-(a-c) (b-c)^2 (-a^3 b^3+3 a^4 b c-2 a^3 c^3-b^3 c^3+a b c^4) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 7, 2018)
X(20504) lies on these lines: {1, 514}, {523, 20513}, {1441, 20510}, {2191, 7649}, {20514, 20515}
See X(20504).
X(20505) lies on these lines: {514, 3572}, {523, 3728}, {3004, 4988}, {3801, 20513}, {20507, 20512}
See X(20504).
X(20506) lies on these lines: {514, 20519}
See X(20504).
X(20507) lies on these lines: {241, 514}, {244, 4124}, {335, 918}, {3801, 16892}, {20505, 20512}
See X(20504).
X(20508) lies on these lines: {241, 514}, {312, 3700}, {1278, 4467}, {3287, 7192}, {17069, 17490}, {20513, 20515}
See X(20504).
X(20509) lies on these lines: {148, 150}, {514, 17212}, {523, 656}, {4369, 4988}, {16892, 17422}
See X(20504).
X(20510) lies on these lines: {514, 20523}, {1441, 20504}, {3801, 20512}
See X(20504).
X(20511) lies on these lines: {514, 1125}, {16892, 20513}
See X(20504).
X(20512) lies on these lines: {30, 511}, {3801, 20510}, {20505, 20507}
X(20512) = isogonal conjugate of X(20640)
See X(20504).
X(20513) lies on these lines: {514, 20526}, {523, 20504}, {3801, 20505}, {16892, 20511}, {20508, 20515}
See X(20504).
X(20514) lies on these lines: {20504, 20515}
See X(20504).
X(20515) lies on these lines: {321, 693}, {330, 514}, {20504, 20514}, {20508, 20513}
See X(20517).
X(20516) lies on these lines: {1, 514}, {10, 4163}, {281, 7649}, {522, 3663}, {1734, 3670}, {2812, 11028}, {4025, 4392}, {4458, 19965}, {13259, 14430}
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,522), (2,514), (6,4025), (31,20517), (105,20516), (238,4458), (292,20518), (365,20519), (672,20520), (1423,20521), (1931,20522), (2053,20523), (2054,20524), (3009,20525), (2112,20526)
Twenty-one more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = - b + c : - a + c : a - b
m(A') = (c - b)(a^(3/2) + b^(3/2) + c^(3/2)) : (c - a)(a^(3/2) + b^(3/2) - c^(3/2)) : (a - b)(a^(3/2) - b^(3/2) + c^(3/2))
m(A1) = (c - b) (a^2 + 2 b c) : -a^2 (a - c) : a^2 (a - b)
m(A2) = (c - b) (b^3 + a b c + c^3) : (c - a) (b^3 + a b c - c^3) : (a - b) (-b^3 + a b c + c^3)
m(A3) = (b - c) (a^3 + a^2 b + a b^2 + a^2 c + 2 a b c + b^2 c + a c^2 + b c^2) : (a - c) (a^3 + a^2 b + a b^2 + a^2 c + b^2 c - a c^2 -
b c^2) : (b - a) (a^3 + a^2 b - a b^2 + a^2 c - b^2 c + a c^2 + b c^2)
m(A4) = (b - c) (a^2 b + a b^2 + b^3 + a^2 c + a b c + b^2 c + a c^2 + b c^2 + c^3) : (a - c) (a^2 b + a b^2 + b^3 + a^2 c + a b c + b^2 c - a c^2 - b c^2 - c^3) : -(a - b) (a^2 b - a b^2 - b^3 + a^2 c + a b c - b^2 c + a c^2 + b c^2 + c^3)
m(A5) = -(-b + c) (a^3 - b^3 + 2 a b c + b^2 c + b c^2 - c^3) : (a - c) (a^3 - b^3 + 2 a^2 c + b^2 c - b c^2 + c^3) : -(a - b) (a^3 + 2 a^2 b + b^3 - b^2 c + b c^2 - c^3),
where A1, A2, A3, A4, A5 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = (b - c)(-x + y + z) : (c - a)(-y + z + x): (a - b)(-z + x + y) , and m is the collineation indicated by (A,B,C,X(2); A'B'C',X(514)), where A' = m(A).
Let f(a,b,c,x,y,z) = a^3 (a-b)^2 (a-c)^2 (b^2+b c+c^2) x^3-(a-b) b (b-c)^2 c (a^4+a b^3-b^2 c^2-a c^3) y^2 z-b (a-c) (b-c)^2 c (a^4-a b^3-b^2 c^2+a c^3) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 7, 2018)
X(20517) lies on these lines: {10, 4163}, {514, 659}, {522, 4823}, {525, 676}, {663, 4707}, {826, 4874}, {1125, 6332}, {3810, 3960}, {4025, 8714}, {4453, 4905}, {7649, 14618}, {20518, 20526}, {20523, 20525}
See X(20517).
X(20518) lies on these lines: {75, 522}, {514, 3572}, {693, 4359}, {2786, 3766}, {3676, 6063}, {13246, 14296}, {20517, 20526}, {20520, 20525}
See X(20517).
X(20519) lies on these lines: {514, 20506}
See X(20517).
X(20520) lies on these lines: {10, 13259}, {241, 514}, {244, 1111}, {522, 4411}, {693, 1734}, {1769, 3663}, {2785, 15903}, {3664, 3738}, {4025, 8714}, {4458, 19965}, {4674, 6548}, {20518, 20525}
See X(20517).
X(20521) lies on these lines: {241, 514}, {4458, 20523}
See X(20517).
X(20522) lies on these lines: {514, 17212}, {522, 4823}, {4458, 20524}, {16732, 17205}
See X(20517).
X(20523) lies on these lines: {514, 20510}, {3551, 3667}, {4458, 20521}, {20517, 20525}
See X(20517).
X(20524) lies on these lines: {514, 1125}, {693, 4425}, {3741, 4025}, {4458, 20522}, {8714, 16887}
See X(20517).
X(20525) lies on these lines: {30, 511}, {3310, 6685}, {20517, 20523}, {20518, 20520}
X(20525) = isogonal conjugate of X(20696)
See X(20517).
X(20526) lies on these lines: {514, 20513}, {522, 3663}, {3741, 4025}, {20517, 20518}
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,1), (2,37), (6,10), (31,141), (105,16593), (292,17793), (365,20527), (1423,3061), (1931,10026), (2053,20528), (2054,20529), (3009,20530), (2112,20531)
Twenty-four more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : 1 : 1
m(A') = Sqrt[b] + Sqrt[c] : -Sqrt[a] + Sqrt[c] : -Sqrt[a] + Sqrt[b]
m(A1) = b + c : -a + b : -a + c
m(A2) = b^2 + c^2 : c (c - b) : b (b - c)
m(A3) = 2 (a b + a c + b c) : -a^2 + b c : -a^2 + b c
m(A4) = (b + c) (a + b + c) : c^2 - a b : b^2 - a c
m(A5) = 2 a^2 - a b + b^2 - a c - 2 b c + c^2 : 2 a^2 + a c - b c + c^2 : 2 a^2 + a b + b^2 - b c
m(A6) = a (a + b + c) (a b - b^2 + a c - c^2) : (a^2 + b^2 - a c - b c) (a^2 - a b + a c + 2 c^2) : (a^2 + a b + 2 b^2 - a c) (a^2 - a b - b c +
c^2)
where A1, A2, A3, A4, A5, A6 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = y/b + z/c : z/c + x/a : x/a + y/b , and m is the collineation indicated by (A,B,C,X(1); A'B'C',X(2)), where A' = medial triangle.
Let f(a,b,c,x,y,z) = (b-c) (a^2-b c) x^3+(-a^2 b+a b^2-2 a^2 c+a c^2+b c^2) y^2 z+(2 a^2 b-a b^2+a^2 c-b^2 c-a c^2) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 7, 2018)
X(20527) lies on these lines: {2, 366}, {75, 18297}, {86, 20664}, {4180, 20334}
X(20527) = complement of X(366)
X(20527) = complementary conjugate of X(20334)
See X(20527).
X(20528) lies on these lines: {2, 2319}, {141, 3816}, {142, 17063}, {226, 335}, {325, 20258}, {2884, 12607}, {2886, 17062}, {3061, 3452}, {3835, 3971}, {17052, 20547}, {18589, 20254}
X(20528) = complement of X(2319)
X(20528) = complementary conjugate of X(20258)
See X(20527).
X(20529) lies on these lines: {2, 9278}, {10, 20531}, {37, 86}, {620, 1125}, {3739, 20339}, {3834, 16597}, {3912, 10026}, {8287, 17239}, {19563, 20530}
X(20529) = complement of X(9278)
X(20529) = complementary conjugate of X(20337)
See X(20527).
X(20530) lies on these lines: {2, 37}, {11, 20541}, {43, 4852}, {76, 16604}, {141, 3816}, {172, 17541}, {244, 20598}, {513, 3716}, {518, 17793}, {620, 6681}, {626, 3825}, {672, 4465}, {730, 1125}, {1001, 15271}, {1015, 6381}, {1107, 18140}, {1921, 20363}, {2275, 18135}, {3741, 17239}, {3836, 20531}, {3912, 20333}, {3946, 6686}, {4361, 16569}, {4384, 16515}, {4562, 17266}, {4713, 17351}, {5248, 7815}, {5332, 17001}, {6376, 17448}, {6384, 18144}, {6685, 17045}, {6691, 7789}, {7795, 10200}, {10453, 17372}, {16525, 17026}, {16999, 20179}, {19563, 20529}d
X(20530) = isotomic conjugate of antitomic conjugate of X(38247)
X(20530) = complement of X(1575)
X(20530) = complementary conjugate of X(20343)
See X(20527).
X(20531) lies on these lines: {2, 11}, {10, 20529}, {12, 664}, {37, 5988}, {116, 14839}, {141, 17793}, {325, 3932}, {594, 20490}, {760, 5074}, {857, 4447}, {918, 3837}, {1146, 1329}, {1961, 17056}, {3509, 17747}, {3813, 16825}, {3836, 20530}, {3844, 3846}, {4553, 8287}, {5311, 17724}
X(20531) = complement of X(8301)
X(20531) = complementary conjugate of X(9470)
See X(20527).
X(20532) lies on these lines: {2, 3226}, {10, 1015}, {75, 141}, {115, 3454}, {1084, 1213}, {1146, 1329}, {1575, 20467}, {1977, 8050}, {2885, 3815}, {3768, 4370}, {3836, 20491}, {3912, 20333}, {6374, 6386}, {17293, 20139}
X(20532) = complement of X(3226)
X(20532) = complementary conjugate of X(20340)
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,2), (2,192), (6,8), (31,69), (105,20533), (365,20534), (1423,20535), (1931,20536), (2053,20537), (2054,20538), (3009,350), (2112,25539)
Twenty-four more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = -1 : 1 : 1
m(A') = Sqrt[a] + Sqrt[b] + Sqrt[c] : -Sqrt[a] - Sqrt[b] + Sqrt[c] : -Sqrt[a] + Sqrt[b] - Sqrt[c]
m(A1) = a + b + c : -a + b - c : -a - b + c
m(A2) = b^2 + b c + c^2 : -b^2 - b c + c^2 : b^2 - b c - c^2
m(A3) = -a^2 - 3 a b - 3 a c - 2 b c : a (a + b + c) : a (a + b + c)
m(A4) = 2 a b + b^2 + 2 a c + 3 b c + c^2 : -2 a b - b^2 - b c + c^2 : b^2 - 2 a c - b c - c^2
m(A5) = a^2 - 2 a b + b^2 - 2 a c - 2 b c + c^2 : (a - b + c) (a + b + c) : (a + b - c) (a + b + c)
m(A6) = (a^2 - b c) (a^2 - 2 a b + b^2 - 2 a c - 2 b c + c^2) : -a^4 + 2 a^3 b - a^2 b^2 + a^2 b c - 4 a b^2 c - b^3 c - a^2 c^2 + 2 a b c^2 - 2 b^2 c^2 + 2 a c^3 + 3 b c^3 : -a^4 - a^2 b^2 + 2 a b^3 + 2 a^3 c + a^2 b c + 2 a b^2 c + 3 b^3 c - a^2 c^2 - 4 a b c^2 - 2 b^2 c^2 - b c^3
where A1, A2, A3, A4, A5, A6 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = -x/a + y/b + z/c : -y/b + z/c + x/a : -z/c + x/a + y/b , and m is the collineation indicated by (A,B,C,X(1); A'B'C',X(2)), where A' = anticomplementary triangle.
Let f(a,b,c,x,y,z) = a (b-c) (a+b+c) x^3+(-a^2 b-a b^2-a^2 c+a c^2+2 b c^2) y^2 z+(a^2 b-a b^2+a^2 c-2 b^2 c+a c^2) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 7, 2018)
X(20533) lies on these lines: {2, 11}, {7, 192}, {8, 17755}, {9, 1654}, {63, 2890}, {69, 144}, {71, 16560}, {142, 16826}, {150, 1018}, {239, 5853}, {312, 18037}, {344, 5819}, {516, 3685}, {518, 2113}, {527, 17310}, {544, 4752}, {644, 20096}, {908, 14732}, {966, 4422}, {1086, 3672}, {1818, 3100}, {2796, 4312}, {3119, 18228}, {3243, 17389}, {3693, 4872}, {3790, 5223}, {3991, 4911}, {4294, 17691}, {4660, 17284}, {5687, 17671}, {5698, 17230}, {5880, 6650}, {6172, 17488}, {7291, 20601}, {9055, 17314}, {11997, 15587}, {14100, 17792}, {15171, 17681}, {17358, 18230}, {17375, 20059}
X(20533) = anticomplement of X(673)
X(20533) = anticomplementary conjugate of X(20347)
See X(20527).
X(20534) lies on these lines: {2, 366}, {7, 4180}, {8, 18297}, {144, 4182}, {510, 5011}
X(20534) = anticomplement of X(366)
X(20534) = anticomplementary conjugate of X(20346)
See X(20527).
X(20535) lies on these lines: {2, 257}, {8, 7985}, {63, 4393}, {144, 145}, {312, 10405}, {329, 6542}, {330, 20358}, {894, 3340}, {908, 17230}, {1278, 20348}, {3436, 20539}, {3666, 17014}, {3672, 3727}, {3729, 11531}, {3732, 5730}, {3735, 4352}, {10025, 11682}, {11683, 17379}, {17090, 20335}, {17489, 20037}, {20089, 20347}
X(20535) = anticomplement of X(3212)
X(20535) = anticomplementary conjugate of X(20350)
See X(20527).
X(20536) lies on these lines: {2, 6}, {8, 6625}, {148, 519}, {523, 4963}, {540, 14712}, {4037, 6542}, {4062, 9395}, {11104, 20077}, {11599, 20558}, {13174, 17770}, {20016, 20349}
X(20536) = anticomplement of X(17731)
X(20536) = anticomplementary conjugate of X(20351)
X(20536) = anticomplementary isotomic conjugate of X(13174)
See X(20527).
X(20537) lies on these lines: {2, 2319}, {8, 3978}, {69, 350}, {329, 6542}, {1432, 17778}, {2893, 20559}, {3434, 20350}, {3888, 17082}, {7779, 20348}
X(20537) = anticomplement of X(2319)
X(20537) = anticomplementary conjugate of X(20348)
See X(20527).
X(20538) lies on these lines: {1, 99}, {2, 9278}, {8, 7261}, {75, 20351}, {192, 4644}, {4037, 6542}
X(20538) = anticomplement of X(9278)
X(20538) = anticomplementary conjugate of X(20349)
See X(20527).
X(20539) lies on these lines: {2, 11}, {4, 1840}, {8, 7261}, {69, 17794}, {150, 14839}, {192, 5992}, {312, 3416}, {350, 4645}, {388, 664}, {516, 3509}, {518, 4872}, {760, 5195}, {1146, 2551}, {1478, 9875}, {1836, 20173}, {2784, 4919}, {2802, 10770}, {2893, 3688}, {3120, 5311}, {3436, 20535}, {3696, 4514}, {3952, 3974}, {4294, 13723}, {4447, 6999}, {5282, 5698}, {17778, 20069}
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,141), (2,10), (6,2887), (31,626), (105,20540), (238,20541), (292,20542), (365,20543), (672,20544), (1423,20545), (1931,20546), (2053,20547), (2054,20548), (3009,20549), (2112,20550), (20332, 20551)
Twenty-four more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : 1 : 1
m(A') = -(Sqrt[b] + Sqrt[c]) (b^2 - b^(3/2) Sqrt[c] + b c - Sqrt[b] c^(3/2) + c^2) : (Sqrt[a] - Sqrt[c]) (a^2 + a^(3/2) Sqrt[c] + a c + Sqrt[a] c^(3/2) + c^2) : (Sqrt[a] - Sqrt[b]) (a^2 + a^(3/2) Sqrt[b] + a b + Sqrt[a] b^(3/2) + b^2)
m(A1) = b c (b + c) : (-a^3 + b c^2) : (-a^3 + b^2 c)
m(A2) = (b^4 + c^4) : c (c^3 - a^2 b) : b (b^3 - a^2 c)
m(A3) = (a b + a c + b c) (b^2 + c^2) : -a^4 - a^3 b - a^3 c + a b c^2 + a c^3 + b c^3 : -a^4 - a^3 b + a b^3 - a^3 c + a b^2 c + b^3 c
m(A4) = -(b + c) (a + b + c) (b^2 - b c + c^2) : a^3 b + a^3 c + a^2 b c - a c^3 - b c^3 - c^4 : a^3 b - a b^3 - b^4 + a^3 c + a^2 b c - b^3 c
m(A5) = a^2 b^2 + b^4 - a b^2 c - b^3 c + a^2 c^2 - a b c^2 - b c^3 + c^4 : -(-a^4 - a^3 b - a^3 c - a^2 c^2 + a b c^2 + b c^3 - c^4) : a^4 + a^3 b + a^2 b^2 + b^4 + a^3 c - a b^2 c - b^3 c
m(A6) = (a + b + c) (a^2 b^3 - a b^4 - b^4 c + b^3 c^2 + a^2 c^3 + b^2 c^3 - a c^4 - b c^4) : (a^2 + b^2 - a c - b c) (a^4 - a^3 b - a^2 b c + a^2 c^2 + a c^3 + b c^3 + c^4) : (a^4 + a^2 b^2 + a b^3 + b^4 - a^3 c - a^2 b c + b^3 c) (a^2 - a b - b c + c^2)
where A1, A2, A3, A4, A5, A6 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = by + cz : cz + ax : ax + by, and m is the collineation indicated by (A,B,C,X(1); A'B'C',X(2)), where A' = 0 : 1 : 1.
Let (b-c) (a^2-b c) (-a^3 b^3-a^2 b^4+a^4 b c-a^3 b^2 c-a^2 b^3 c-a b^4 c-a^3 b c^2-a b^3 c^2-a^3 c^3-a^2 b c^3-a b^2 c^3+b^3 c^3-a^2 c^4-a b c^4) x^3+(-3 a^5 b^4-a^4 b^5+3 a^6 b^2 c+a^2 b^6 c+3 a^6 b c^2+a b^6 c^2-3 a^5 c^4-b^5 c^4+a^4 c^5-b^4 c^5-a^2 b c^6+a b^2 c^6) y^2 z+(3 a^5 b^4-a^4 b^5-3 a^6 b^2 c+a^2 b^6 c-3 a^6 b c^2-a b^6 c^2+3 a^5 c^4+b^5 c^4+a^4 c^5+b^4 c^5-a^2 b c^6-a b^2 c^6) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) + 2 (a-b) (a-c) (b-c) (-b^2+a c) (a^2-b c) (a b-c^2) x y z = 0. (Peter Moses, August 7, 2018)
X(20540) lies on these lines: {2, 1438}, {10, 116}, {141, 2876}, {626, 1329}, {1213, 6666}, {5248, 8299}, {20333, 20541}
See X(20540).
X(20541) lies on these lines: {2, 1914}, {10, 626}, {11, 20530}, {75, 3314}, {115, 6381}, {120, 3823}, {141, 674}, {315, 4426}, {325, 1575}, {625, 3814}, {742, 4071}, {834, 3835}, {908, 1211}, {958, 7784}, {993, 7761}, {1107, 6656}, {1376, 7778}, {1573, 7853}, {1574, 7821}, {1999, 3772}, {2238, 4766}, {3096, 17030}, {3263, 20483}, {3739, 3925}, {3924, 4950}, {3954, 17211}, {4119, 9055}, {4372, 5300}, {4396, 17737}, {4643, 10025}, {4799, 5282}, {4805, 16788}, {5025, 6376}, {5267, 7830}, {7868, 20172}, {16604, 17670}, {17046, 20255}, {17061, 17390}, {17064, 17296}, {20333, 20540}, {20340, 20341}, {20545, 20547}, {20546, 20548}, {20549, 20551}
X(20541) = complement of X(1914)
X(20541) = complementary conjugate of X(17755)
See X(20540).
X(20542) lies on these lines: {2, 1911}, {10, 6656}, {11, 1211}, {141, 9016}, {626, 20550}, {3836, 20340}, {20544, 20549}
X(20542) = complement of X(1911)
X(20542) = complementary conjugate of X(1575)
See X(20540).
X(20543) lies on these lines: {2, 18753}
See X(20540).
X(20544) lies on these lines: {2, 2223}, {5, 10}, {11, 3912}, {36, 16377}, {76, 3705}, {512, 625}, {536, 2486}, {626, 766}, {760, 16609}, {1699, 3501}, {2548, 17750}, {3006, 3948}, {3035, 19512}, {3262, 4516}, {3661, 11680}, {3703, 4044}, {3739, 18252}, {3741, 3934}, {3742, 17758}, {3944, 12782}, {4138, 20256}, {9025, 17197}, {17047, 20305}, {18208, 19950}, {20333, 20540}, {20542, 20549}
X(20544) = complement of X(2223)
X(20544) = complementary conjugate of X(6184)
See X(20540).
X(20545) lies on these lines: {2, 1284}, {5, 10}, {11, 312}, {37, 3815}, {75, 20276}, {124, 20550}, {518, 20498}, {958, 13740}, {978, 3772}, {995, 17061}, {3035, 3185}, {3714, 3813}, {3840, 20256}, {4193, 19582}, {4999, 17698}, {16569, 17064}, {17070, 17749}, {20541, 20547}
X(20545) = complement of X(1403)
See X(20540).
X(20546) lies on these lines: {2, 1326}, {5, 141}, {10, 14873}, {115, 726}, {121, 5099}, {187, 17698}, {316, 13740}, {1213, 20666}, {1698, 2959}, {2679, 20551}, {3836, 8287}, {5145, 7752}, {20541, 20548}
X(20546) = complement of X(1326)
See X(20540).
X(20547) lies on these lines: {2, 20559}, {626, 20549}, {16603, 18896}, {17046, 20338}, {17052, 20528}, {20541, 20545}
See X(20540).
X(20548) lies on these lines: {2, 20560}, {10, 20529}, {2887, 20550}, {3741, 20339}, {20541, 20546}
See X(20540).
X(20549) lies on these lines: {2, 20561}, {10, 141}, {536, 20501}, {626, 20547}, {1086, 20491}, {3662, 10009}, {5224, 17030}, {20541, 20551}, {20542, 20544}
X(20549) = complement of X(21760)
See X(20540).
X(20550) lies on these lines: {2, 20562}, {124, 20545}, {141, 2876}, {626, 20542}, {2887, 20548}
See X(20540).
X(20551) lies on these lines: {2, 727}, {10, 5518}, {11, 2887}, {115, 3454}, {116, 626}, {124, 20545}, {2679, 20546}, {20541, 20549}
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,69), (2,8), (6,6327), (31,315), (105,20552), (238,20553), (292,20554), (365,20555), (672,20556), (1423,20557), (1931,20558), (2053,20559), (2054,20560), (3009,20561), (2112,20562)
Twenty-one more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = -1 : 1 : 1
m(A') = a^(5/2) + b^(5/2) + c^(5/2) : - a^(5/2) - b^(5/2) + c^(5/2)) : - a^(5/2) + b^(5/2) - c^(5/2)
m(A1) = a^3 + b^2 c + b c^2 : - a^3 - b^2 c + b c^2 : - a^3 + b^2 c - b c^2
m(A2) = b^4 + a^2 b c + c^4 : - b^4 - a^2 b c + c^4 : b^4 - a^2 b c - c^4
m(A3) = a^4 + a^3 b + a b^3 + a^3 c + a b^2 c + b^3 c + a b c^2 + a c^3 + b c^3 : - (a^4 + a^3 b + a b^3 + a^3 c +
a b^2 c + b^3 c - a b c^2 - a c^3 - b c^3) : - (a^4 + a^3 b - a b^3 + a^3 c - a b^2 c - b^3 c + a b c^2 + a c^3 + b c^3)
m(A4) = a^3 b + a b^3 + b^4 + a^3 c + a^2 b c + b^3 c + a c^3 + b c^3 + c^4 : -a^3 b - a b^3 - b^4 - a^3 c - a^2 b c - b^3 c + a c^3 + b c^3 + c^4 : -a^3 b + a b^3 + b^4 - a^3 c - a^2 b c + b^3 c - a c^3 - b c^3 - c^4
m(A5) = a^4 + a^3 b - a^2 b^2 - b^4 + a^3 c + a b^2 c + b^3 c - a^2 c^2 + a b c^2 + b c^3 - c^4 : - (a^4 + a^3 b - a^2 b^2 - b^4 + a^3 c + a b^2 c + b^3 c + a^2 c^2 - a b c^2 - b c^3 + c^4) : - (a^4 + a^3 b + a^2 b^2 + b^4 + a^3 c - a b^2 c - b^3 c - a^2 c^2 + a b c^2 + b c^3 - c^4)
where A1, A2, A3, A4, A5 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = - ax + by + cz : ax - by + cz : ax + by - cz, and m is the collineation indicated by (A,B,C,X(75); A'B'C',X(2)), where A' = -1 : 1 : 1.
Let a^5 (b-c) (-b^3+a b c-b^2 c-b c^2-c^3) x^3+b^2 (-a^5 b^2+a^4 b^3+a^6 c-a^2 b^4 c+2 a b^4 c^2-2 b^3 c^4+b^2 c^5-a c^6) y^2 z-c^2 (a^6 b-a b^6-a^5 c^2+b^5 c^2+a^4 c^3-2 b^4 c^3-a^2 b c^4+2 a b^2 c^4) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) + 2 (a-b) (a-c) (b-c) (-b^2+a c) (a^2-b c) (a b-c^2) x y z = 0. (Peter Moses, August 7, 2018)
X(20552) lies on these lines: {2, 1438}, {8, 150}, {9, 1654}, {69, 2876}, {315, 668}, {2481, 3434}, {7185, 9312}, {20345, 20553}
See X(20552).
X(20553) lies on these lines: {2, 1914}, {8, 315}, {69, 674}, {75, 1369}, {86, 4972}, {100, 325}, {149, 350}, {183, 11680}, {304, 5300}, {316, 668}, {319, 321}, {385, 17737}, {754, 5291}, {834, 20293}, {883, 16091}, {1479, 18135}, {1909, 2475}, {2975, 7750}, {3263, 4872}, {3583, 6381}, {3684, 4766}, {3785, 10527}, {3879, 3914}, {3891, 17377}, {3959, 4950}, {4589, 4645}, {4911, 5100}, {5046, 6376}, {5195, 16086}, {5687, 7776}, {6653, 7779}, {7261, 20022}, {7761, 16975}, {7768, 17143}, {7773, 11681}, {7774, 17756}, {20345, 20552}, {20352, 20353}, {20557, 20559}, {20558, 20560}
X(20553) = isotomic conjugate of isogonal conjugate of X(20872)
X(20553) = isotomic conjugate of anticomplement of X(39029)
X(20553) = anticomplement of X(1914)
X(20553) = anticomplementary conjugate of X(33888)
See X(20552).
X(20554) lies on these lines: {2, 1911}, {8, 6653}, {69, 9016}, {149, 2895}, {315, 20562}, {4645, 20352}, {20556, 20561}
X(20554) = anticomplement of X(1911)
X(20554) = anticomplementary conjugate of X(17759)
See X(20552).
X(20555) lies on these lines: {2, 18753}
See X(20552).
X(20556) lies on these lines: {2, 2223}, {4, 8}, {11, 4447}, {36, 16376}, {75, 12530}, {76, 17135}, {100, 6996}, {149, 6542}, {239, 13576}, {315, 766}, {316, 512}, {497, 17316}, {528, 4433}, {674, 17139}, {908, 2340}, {1909, 4514}, {2295, 7745}, {2481, 20347}, {2975, 13727}, {3006, 14956}, {3208, 9580}, {3673, 3873}, {3780, 5254}, {4039, 17766}, {4911, 20292}, {4972, 6656}, {5284, 17681}, {7377, 11680}, {7406, 17784}, {7768, 20290}, {8299, 20486}, {13740, 19874}, {14267, 20358}, {16381, 17798}, {20345, 20552}, {20554, 20561}
X(20556) = anticomplement of X(2223)
X(20556) = isotomic conjugate of isogonal conjugate of X(20875)
X(20556) = anticomplementary conjugate of X(39350)
See X(20552).
X(20557) lies on these lines: {2, 1284}, {4, 8}, {43, 908}, {63, 3741}, {69, 4485}, {192, 497}, {1193, 19785}, {1469, 5905}, {1836, 17792}, {2292, 2478}, {2975, 4195}, {3891, 20037}, {4441, 20245}, {4972, 11681}, {6818, 17777}, {6872, 8240}, {7155, 10453}, {20553, 20559}
X(20557) = anticomplement of X(1403)
See X(20552).
X(20558) lies on these lines: {2, 1326}, {4, 69}, {10, 2959}, {148, 726}, {966, 20666}, {1029, 17165}, {1213, 20675}, {1654, 3923}, {3944, 17778}, {4195, 14712}, {5145, 7785}, {11599, 20536}, {20553, 20560}
X(20558) = anticomplement of X(1326)
X(20558) = anticomplementary conjugate of X(13174)
See X(20552).
X(20559) lies on these lines: {2, 20547}, {315, 20561}, {2893, 20537}, {20553, 20557}
See X(20552).
X(20560) lies on these lines: {2, 20548}, {8, 7261}, {4576, 17135}, {6327, 20562}, {20553, 20558}
See X(20552).
X(20561) lies on these lines: {2, 20549}, {7, 8}, {315, 20559}, {788, 17217}, {3783, 18792}, {20554, 20556}
X(20561) = anticomplement of X(21760)
See X(20552).
X(20562) lies on these lines: {2, 20550}, {69, 2876}, {315, 20554}, {6327, 20560}
X(20563) lies on these lines: {2, 311}, {68, 69}, {76, 95}, {253, 3260}, {264, 847}, {305, 1238}, {317, 5962}, {325, 18018}, {339, 3964}, {925, 2373}, {1494, 14615}, {1799, 2351}, {5866, 18354}
X(20563) = isotomic conjugate of X(24)
X(20563) = polar conjugate of X(8745)
X(20563) = X(i)-cross conjugate of X(j) for these (i,j): {68, 5392}, {338, 3267}, {394, 76}, {11585, 2}
X(20563) = X(i)-isoconjugate of X(j) for these (i,j): {19, 571}, {24, 31}, {25, 47}, {32, 1748}, {48, 8745}, {163, 6753}, {317, 560}, {393, 563}, {1096, 1147}, {1973, 1993}, {2148, 14576}, {2180, 8882}, {2333, 18605}, {9247, 11547}
X(20563) = cevapoint of X(i) and X(j) for these (i,j): {339, 3265}, {394, 16391}
X(20563) = barycentric product X(i)*X(j) for these {i,j}: {68, 76}, {69, 5392}, {91, 304}, {305, 2165}, {561, 1820}, {847, 3926}, {925, 3267}, {1502, 2351}, {16391, 18027}
X(20563) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 24}, {3, 571}, {4, 8745}, {5, 14576}, {63, 47}, {68, 6}, {69, 1993}, {75, 1748}, {76, 317}, {91, 19}, {96, 8882}, {255, 563}, {264, 11547}, {305, 7763}, {311, 467}, {328, 18883}, {338, 136}, {343, 52}, {394, 1147}, {485, 5412}, {486, 5413}, {523, 6753}, {525, 924}, {847, 393}, {925, 112}, {1444, 18605}, {1820, 31}, {2165, 25}, {2351, 32}, {3267, 6563}, {3926, 9723}, {5392, 4}, {6563, 15423}, {9033, 14397}, {11090, 372}, {11091, 371}, {11140, 14111}, {13430, 1599}, {13441, 1600}, {14593, 2207}, {16391, 577}
X(20564) lies on these lines: {69, 70}, {95, 7516}, {264, 5576}, {1288, 2373}, {7512, 18354}
X(20564) = isotomic conjugate of X(26)
X(20564) = polar conjugate of X(8746)
X(20564) = X(i)-cross conjugate of X(j) for these (i,j): {1993, 76}, {13371, 2}
X(20564) = X(i)-isoconjugate of X(j) for these (i,j): {26, 31}, {48, 8746}
X(20564) = cevapoint of X(i) and X(j) for these (i,j): {2, 14790}, {339, 6563}
X(20564) = barycentric product X(i)*X(j) for these {i,j}: {70, 76}, {561, 2158}, {1288, 3267}
X(20564) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 26}, {4, 8746}, {70, 6}, {1288, 112}, {2158, 31}
X(20565) lies on these lines: {75, 3260}, {79, 314}, {312, 1230}, {319, 349}, {328, 1441}, {3596, 6757}, {7110, 15455}, {7321, 18816}
X(20565) = isotomic conjugate of X(35)
X(20565) = X(4359)-cross conjugate of X(76)
X(20565) = X(i)-isoconjugate of X(j) for these (i,j): {3, 14975}, {6, 2174}, {31, 35}, {32, 3219}, {41, 2003}, {42, 17104}, {50, 2161}, {55, 1399}, {184, 6198}, {319, 560}, {692, 2605}, {1397, 4420}, {1415, 9404}, {1442, 2175}, {2194, 2594}, {2206, 3678}, {2477, 7073}, {6149, 6187}, {9447, 17095}, {18359, 19627}
X(20565) = trilinear pole of line {4391, 4707}
X(20565) = barycentric product X(i)*X(j) for these {i,j}: {76, 79}, {94, 320}, {274, 6757}, {310, 8818}, {328, 17923}, {349, 3615}, {561, 2160}, {693, 15455}, {1502, 6186}, {1969, 7100}, {3261, 6742}, {6063, 7110}
X(20565) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 2174}, {2, 35}, {7, 2003}, {19, 14975}, {36, 50}, {57, 1399}, {75, 3219}, {76, 319}, {79, 6}, {81, 17104}, {85, 1442}, {92, 6198}, {94, 80}, {226, 2594}, {312, 4420}, {313, 3969}, {320, 323}, {321, 3678}, {331, 7282}, {514, 2605}, {522, 9404}, {554, 2307}, {693, 14838}, {850, 7265}, {1111, 7202}, {1125, 17454}, {1269, 3578}, {1441, 16577}, {1789, 2193}, {1989, 6187}, {2003, 2477}, {2160, 31}, {2166, 2161}, {3218, 6149}, {3261, 4467}, {3615, 284}, {3662, 7186}, {4359, 3647}, {4707, 526}, {5249, 500}, {6063, 17095}, {6186, 32}, {6742, 101}, {6757, 37}, {7073, 41}, {7100, 48}, {7110, 55}, {8818, 42}, {13486, 163}, {14844, 18755}, {15455, 100}, {16709, 17190}, {16732, 2611}, {17095, 7279}, {17923, 186}
X(20566) lies on these lines: {75, 311}, {76, 1227}, {80, 313}, {312, 3969}, {320, 18816}, {328, 1441}, {759, 839}, {1226, 7321}, {1807, 18147}, {3260, 17791}, {3596, 15065}
X(20566) = isotomic conjugate of X(36)
X(20566) = X(3596)-beth conjugate of X(668)
X(20566) = X(i)-cross conjugate of X(j) for these (i,j): {3262, 75}, {3814, 2}, {4358, 76}, {15065, 18359}
X(20566) = X(i)-isoconjugate of X(j) for these (i,j): {6, 7113}, {31, 36}, {32, 3218}, {50, 2160}, {56, 2361}, {58, 3724}, {109, 8648}, {184, 1870}, {215, 1411}, {320, 560}, {604, 2323}, {649, 1983}, {654, 1415}, {758, 2206}, {902, 16944}, {1333, 2245}, {1397, 4511}, {1400, 4282}, {1443, 2175}, {1464, 2194}, {1919, 4585}, {6149, 6186}, {9247, 17923}, {9447, 17078}, {9456, 17455}, {13486, 14270}
X(20566) = cevapoint of X(i) and X(j) for these (i,j): {2, 5080}, {10, 908}, {75, 17791}, {313, 3264}, {3219, 4511}
X(20566) = trilinear pole of line {321, 4391}
X(20566) = barycentric product X(i)*X(j) for these {i,j}: {75, 18359}, {76, 80}, {94, 319}, {274, 15065}, {312, 18815}, {321, 14616}, {349, 6740}, {561, 2161}, {1502, 6187}, {1807, 1969}, {2006, 3596}
X(20566) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 7113}, {2, 36}, {8, 2323}, {9, 2361}, {10, 2245}, {21, 4282}, {35, 50}, {37, 3724}, {75, 3218}, {76, 320}, {80, 6}, {85, 1443}, {88, 16944}, {92, 1870}, {94, 79}, {100, 1983}, {226, 1464}, {264, 17923}, {312, 4511}, {313, 3936}, {319, 323}, {321, 758}, {519, 17455}, {522, 654}, {650, 8648}, {655, 109}, {668, 4585}, {693, 3960}, {759, 1333}, {850, 4707}, {1089, 4053}, {1168, 9456}, {1411, 604}, {1441, 18593}, {1793, 2193}, {1807, 48}, {1989, 6186}, {2006, 56}, {2161, 31}, {2166, 2160}, {2222, 1415}, {2323, 215}, {2341, 2194}, {3219, 6149}, {3261, 4453}, {3262, 16586}, {3661, 3792}, {4036, 2610}, {4358, 214}, {4359, 4973}, {4391, 3738}, {4671, 4867}, {6063, 17078}, {6187, 32}, {6335, 4242}, {6740, 284}, {7017, 5081}, {7026, 7127}, {7265, 526}, {14584, 1404}, {14616, 81}, {14628, 1319}, {15065, 37}, {17484, 6126}, {18359, 1}, {18743, 4881}, {18815, 57}
X(20567) lies on these lines: {7, 871}, {75, 4572}, {76, 1229}, {77, 4625}, {85, 6385}, {273, 310}, {274, 16743}, {305, 561}, {349, 1502}, {1088, 1240}
X(20567) = isogonal conjugate of X(9447)
X(20567) = isotomic conjugate of X(41)
X(20567) = polar conjugate of X(2212)
X(20567) = X(670)-beth conjugate of X(75)
X(20567) = complement of polar conjugate of isogonal conjugate of X(23175)
X(20567) = anticomplement of polar conjugate of isogonal conjugate of X(23211)
X(20567) = X(i)-cross conjugate of X(j) for these (i,j): {76, 561}, {349, 6063}, {1233, 76}, {3261, 4572}, {16888, 7}, {17046, 2}, {20236, 75}
X(20567) = X(i)-isoconjugate of X(j) for these (i,j): {1, 9447}, {2, 9448}, {6, 2175}, {8, 1501}, {9, 560}, {21, 2205}, {31, 41}, {32, 55}, {33, 9247}, {48, 2212}, {56, 14827}, {60, 7109}, {184, 607}, {212, 1973}, {213, 2194}, {219, 1974}, {220, 1397}, {228, 2204}, {249, 7063}, {281, 14575}, {284, 1918}, {294, 9455}, {312, 1917}, {577, 6059}, {604, 1253}, {643, 1924}, {644, 1980}, {645, 9426}, {669, 5546}, {692, 3063}, {872, 2150}, {919, 8638}, {1015, 6066}, {1106, 6602}, {1334, 2206}, {1395, 1802}, {1415, 8641}, {1576, 3709}, {1857, 14585}, {1914, 18265}, {1919, 3939}, {1977, 6065}, {2187, 7118}, {2195, 9454}, {2200, 2299}, {2207, 6056}, {2316, 9459}, {2330, 7104}, {2344, 18900}, {2353, 4548}, {3449, 9449}, {3596, 9233}, {3684, 14598}, {3685, 18897}, {3700, 14574}, {3712, 19626}, {3975, 18893}, {4518, 18894}, {4876, 18892}, {5547, 14567}, {6064, 9427}, {7077, 14599}
X(20567) = cevapoint of X(i) and X(j) for these (i,j): {7, 17075}, {57, 7210}, {76, 6063}, {85, 7182}, {1111, 3776}
X(20567) = barycentric product X(i)*X(j) for these {i,j}: {7, 561}, {56, 1928}, {57, 1502}, {75, 6063}, {76, 85}, {77, 18022}, {226, 6385}, {264, 7182}, {273, 305}, {274, 349}, {304, 331}, {310, 1441}, {334, 18033}, {348, 1969}, {670, 4077}, {693, 4572}, {850, 4625}, {871, 7179}, {1088, 3596}, {3261, 4554}, {3665, 18833}, {3676, 6386}, {4017, 4609}, {4602, 7178}, {6382, 7209}, {7018, 7205}, {7034, 7185}, {7183, 18027}, {7233, 18891}, {10030, 18895}
X(20567) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 2175}, {2, 41}, {4, 2212}, {6, 9447}, {7, 31}, {8, 1253}, {9, 14827}, {12, 872}, {27, 2204}, {31, 9448}, {34, 1974}, {56, 560}, {57, 32}, {65, 1918}, {69, 212}, {75, 55}, {76, 9}, {77, 184}, {85, 6}, {86, 2194}, {92, 607}, {142, 20229}, {158, 6059}, {189, 7118}, {222, 9247}, {226, 213}, {241, 9454}, {264, 33}, {269, 1397}, {273, 25}, {274, 284}, {278, 1973}, {279, 604}, {286, 2299}, {291, 18265}, {304, 219}, {305, 78}, {307, 228}, {309, 2192}, {310, 21}, {311, 7069}, {312, 220}, {313, 210}, {314, 2328}, {318, 7071}, {320, 2361}, {321, 1334}, {322, 7074}, {326, 6056}, {331, 19}, {334, 7077}, {341, 480}, {342, 3195}, {345, 1802}, {346, 6602}, {347, 2187}, {348, 48}, {349, 37}, {479, 1106}, {514, 3063}, {522, 8641}, {552, 849}, {561, 8}, {603, 14575}, {604, 1501}, {658, 1415}, {664, 692}, {668, 3939}, {670, 643}, {693, 663}, {765, 6066}, {799, 5546}, {850, 4041}, {873, 60}, {1014, 2206}, {1088, 56}, {1089, 7064}, {1111, 3271}, {1119, 1395}, {1121, 18889}, {1214, 2200}, {1226, 1864}, {1229, 8012}, {1231, 71}, {1233, 1212}, {1269, 3683}, {1275, 2149}, {1319, 9459}, {1358, 3248}, {1397, 1917}, {1400, 2205}, {1401, 1923}, {1414, 1576}, {1428, 18892}, {1429, 14599}, {1432, 7104}, {1434, 1333}, {1440, 2208}, {1441, 42}, {1446, 1400}, {1447, 2210}, {1458, 9455}, {1469, 18900}, {1502, 312}, {1509, 2150}, {1577, 3709}, {1760, 4548}, {1847, 608}, {1909, 2330}, {1920, 2329}, {1921, 3684}, {1928, 3596}, {1930, 3688}, {1969, 281}, {1978, 644}, {2171, 7109}, {2254, 8638}, {2481, 2195}, {2643, 7063}, {2887, 4531}, {3212, 2209}, {3261, 650}, {3263, 2340}, {3264, 3689}, {3267, 8611}, {3596, 200}, {3665, 1964}, {3668, 1402}, {3669, 1919}, {3673, 7083}, {3674, 2300}, {3718, 1260}, {3729, 16283}, {3911, 2251}, {3926, 2289}, {4017, 669}, {4025, 1946}, {4077, 512}, {4086, 4524}, {4391, 657}, {4397, 4105}, {4453, 8648}, {4554, 101}, {4569, 109}, {4572, 100}, {4573, 163}, {4602, 645}, {4609, 7257}, {4623, 4636}, {4625, 110}, {4635, 4565}, {4815, 8653}, {4858, 14936}, {4998, 1110}, {5018, 18262}, {6063, 1}, {6357, 9406}, {6358, 1500}, {6374, 7075}, {6382, 3208}, {6383, 2319}, {6384, 2053}, {6385, 333}, {6386, 3699}, {7017, 7079}, {7035, 6065}, {7055, 255}, {7056, 603}, {7125, 14585}, {7176, 7122}, {7178, 798}, {7179, 869}, {7180, 1924}, {7181, 922}, {7182, 3}, {7183, 577}, {7185, 7032}, {7196, 172}, {7199, 7252}, {7205, 171}, {7209, 2162}, {7210, 206}, {7217, 2085}, {7233, 1911}, {7243, 2241}, {7249, 904}, {7282, 14975}, {7340, 1101}, {8817, 7084}, {9436, 2223}, {10030, 1914}, {13436, 606}, {13453, 605}, {14256, 2199}, {14615, 7070}, {15413, 652}, {15466, 7156}, {15467, 2218}, {16603, 3774}, {16739, 4267}, {16888, 16584}, {17076, 2172}, {17078, 7113}, {17094, 810}, {17095, 2174}, {17206, 2193}, {17451, 9449}, {17880, 3270}, {18021, 1098}, {18022, 318}, {18026, 8750}, {18031, 294}, {18033, 238}, {18036, 7281}, {18135, 3217}, {18160, 9404}, {18815, 6187}, {18816, 2342}, {18891, 3685}, {18895, 4876}, {19804, 4258}, {20236, 16588}, {20336, 2318}
X(20567) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (7205, 18033, 7)
X(20568) lies on these lines: {2, 4403}, {75, 537}, {76, 1978}, {80, 320}, {85, 4554}, {88, 274}, {106, 789}, {214, 4597}, {286, 811}, {291, 19957}, {334, 4013}, {767, 901}, {1320, 2481}, {1966, 17960}, {3766, 6548}, {4358, 4945}, {4593, 9456}, {4602, 6385}, {4792, 17143}, {14210, 18032}
X(20568) = isogonal conjugate of X(2251)
X(20568) = isotomic conjugate of X(44)
X(20568) = X(i)-zayin conjugate of X(j) for these (i,j): {1, 2251}, {1740, 44}
X(20568) = X(i)-cross conjugate of X(j) for these (i,j): {3262, 6063}, {3762, 668}, {3834, 2}, {4080, 903}, {4358, 75}, {18359, 18816}
X(20568) = X(i)-isoconjugate of X(j) for these (i,j): {1, 2251}, {2, 9459}, {6, 902}, {31, 44}, {32, 519}, {41, 1319}, {42, 3285}, {55, 1404}, {101, 1960}, {106, 1017}, {110, 14407}, {163, 4730}, {184, 8756}, {560, 4358}, {604, 3689}, {667, 1023}, {678, 9456}, {692, 1635}, {1110, 2087}, {1397, 2325}, {1415, 4895}, {1492, 14436}, {1501, 3264}, {1576, 4120}, {1918, 16704}, {1919, 17780}, {1922, 4432}, {1973, 5440}, {1974, 3977}, {2175, 3911}, {2206, 3943}, {2429, 8643}, {4434, 7104}, {6187, 17455}
X(20568) = cevapoint of X(i) and X(j) for these (i,j): {2, 320}, {75, 4358}, {903, 4997}, {1086, 4927}, {1111, 3762}, {4049, 6549}
X(20568) = trilinear pole of line {75, 693}
X(20568) = complement of polar conjugate of isogonal conjugate of X(23178)
X(20568) = anticomplement of polar conjugate of isogonal conjugate of X(23214)
X(20568) = X(19)-isoconjugate of X(23202)
X(20568) = barycentric product X(i)*X(j) for these {i,j}: {75, 903}, {76, 88}, {85, 4997}, {106, 561}, {274, 4080}, {304, 6336}, {310, 4674}, {523, 4634}, {668, 6548}, {679, 3264}, {693, 4555}, {799, 4049}, {850, 4622}, {873, 4013}, {1022, 1978}, {1320, 6063}, {1502, 9456}, {1577, 4615}, {1797, 1969}, {3257, 3261}, {6549, 7035}
X(20568) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 902}, {2, 44}, {6, 2251}, {7, 1319}, {8, 3689}, {31, 9459}, {44, 1017}, {57, 1404}, {69, 5440}, {75, 519}, {76, 4358}, {81, 3285}, {85, 3911}, {88, 6}, {92, 8756}, {106, 31}, {190, 1023}, {273, 1877}, {274, 16704}, {304, 3977}, {312, 2325}, {313, 3992}, {320, 214}, {321, 3943}, {350, 4432}, {513, 1960}, {514, 1635}, {519, 678}, {522, 4895}, {523, 4730}, {561, 3264}, {661, 14407}, {668, 17780}, {679, 106}, {693, 900}, {764, 8661}, {900, 3251}, {901, 692}, {903, 1}, {1022, 649}, {1086, 2087}, {1111, 1647}, {1168, 6187}, {1266, 17460}, {1269, 4975}, {1320, 55}, {1417, 1397}, {1577, 4120}, {1797, 48}, {1909, 4434}, {2226, 9456}, {2316, 41}, {2403, 4394}, {3218, 17455}, {3239, 14427}, {3250, 14436}, {3257, 101}, {3261, 3762}, {3262, 1145}, {3264, 4738}, {3596, 4723}, {3762, 6544}, {3766, 4448}, {3835, 14408}, {3912, 14439}, {4013, 756}, {4033, 4169}, {4049, 661}, {4080, 37}, {4358, 4370}, {4359, 4969}, {4374, 4922}, {4391, 1639}, {4397, 4528}, {4441, 4702}, {4462, 14425}, {4510, 750}, {4555, 100}, {4582, 644}, {4591, 163}, {4615, 662}, {4618, 901}, {4622, 110}, {4634, 99}, {4671, 4908}, {4674, 42}, {4723, 4152}, {4728, 14437}, {4738, 8028}, {4768, 4543}, {4792, 2177}, {4801, 4773}, {4823, 4958}, {4858, 4530}, {4945, 45}, {4978, 4984}, {4997, 9}, {5376, 1252}, {6332, 14418}, {6336, 19}, {6548, 513}, {6549, 244}, {8752, 1973}, {9268, 1110}, {9456, 32}, {9460, 9324}, {14208, 14429}, {17089, 14122}, {17960, 5168}, {18815, 14584}, {18821, 14191}, {19804, 4700}
X(20568) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1111, 18159, 668)
X(20569) lies on these lines: {2, 4403}, {75, 519}, {76, 4358}, {85, 3911}, {89, 274}, {767, 4588}, {870, 2163}, {903, 17461}, {1016, 4363}, {2320, 2481}, {6063, 14628}
X(20569) = isotomic conjugate of X(45)
X(20569) = isotomic of the isogonal of X(89)
X(20569) = cevapoint of X(693) and X(4957)
X(20569) = X(i)-cross conjugate of X(j) for these (i,j): {4957, 693}, {5718, 7}
X(20569) = X(i)-isoconjugate of X(j) for these (i,j): {6, 2177}, {31, 45}, {32, 3679}, {41, 2099}, {42, 4273}, {55, 1405}, {101, 4775}, {163, 4770}, {213, 4653}, {560, 4671}, {604, 3711}, {667, 4752}, {692, 4893}, {1397, 4873}, {1415, 4814}, {1576, 4931}, {1918, 5235}, {1919, 4767}, {1922, 4693}, {1973, 3940}, {2175, 5219}, {2251, 4792}, {4945, 9459}
X(20569) = trilinear pole of line {693, 900}
X(20569) = complement of polar conjugate of isogonal conjugate of X(23179)
X(20569) = anticomplement of polar conjugate of isogonal conjugate of X(23215)
X(20569) = barycentric product X(i)*X(j) for these {i,j}: {76, 89}, {561, 2163}, {693, 4597}, {2320, 6063}, {3261, 4604}
X(20569) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 2177}, {2, 45}, {7, 2099}, {8, 3711}, {57, 1405}, {69, 3940}, {75, 3679}, {76, 4671}, {81, 4273}, {85, 5219}, {86, 4653}, {89, 6}, {190, 4752}, {274, 5235}, {312, 4873}, {313, 4125}, {314, 4720}, {320, 4867}, {350, 4693}, {513, 4775}, {514, 4893}, {522, 4814}, {523, 4770}, {668, 4767}, {693, 4777}, {903, 4792}, {982, 4787}, {1269, 4717}, {1577, 4931}, {2163, 31}, {2320, 55}, {2364, 41}, {3261, 4791}, {3766, 4800}, {4358, 4908}, {4374, 4774}, {4389, 17461}, {4391, 4944}, {4406, 4844}, {4588, 692}, {4597, 100}, {4604, 101}, {4777, 4825}, {5385, 1252}, {6381, 4937}, {7192, 4833}, {14210, 4933}
X(20570) lies on these lines: {75, 7318}, {90, 314}, {309, 320}, {312, 319}, {7040, 18147}
X(20570) = isotomic conjugate of X(46)
X(20570) = X(69)-cross conjugate of X(75)
X(20570) = X(i)-isoconjugate of X(j) for these (i,j): {6, 2178}, {25, 3157}, {31, 46}, {32, 5905}, {55, 1406}, {184, 1068}, {1397, 5552}, {1402, 3193}, {1973, 6505}, {2207, 6511}
X(20570) = cevapoint of X(i) and X(j) for these (i,j): {2, 11415}, {90, 6513}, {514, 17888}, {693, 17877}, {14208, 17886}
X(20570) = trilinear pole of line {4391, 4467}
X(20570) = trilinear product of PU(129)
X(20570) = barycentric product X(i)*X(j) for these {i,j}: {75, 2994}, {76, 90}, {264, 6513}, {304, 7040}, {312, 7318}, {561, 2164}, {1069, 1969}
X(20570) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 2178}, {2, 46}, {57, 1406}, {63, 3157}, {69, 6505}, {75, 5905}, {90, 6}, {92, 1068}, {312, 5552}, {326, 6511}, {333, 3193}, {1069, 48}, {1812, 1800}, {2164, 31}, {2994, 1}, {5905, 1079}, {6512, 255}, {6513, 3}, {7040, 19}, {7042, 2164}, {7072, 41}, {7318, 57}, {7363, 1254}
X(20571) lies on these lines: {75, 91}, {92, 18041}, {321, 5392}, {1760, 1820}, {2168, 18042}
X(20571) = isotomic conjugate of X(47)
X(20571) = X(i)-cross conjugate of X(j) for these (i,j): {63, 1969}, {18695, 75}
X(20571) = X(i)-isoconjugate of X(j) for these (i,j): {6, 571}, {19, 563}, {24, 184}, {25, 1147}, {31, 47}, {32, 1993}, {213, 18605}, {317, 14575}, {577, 8745}, {924, 1576}, {1501, 7763}, {1748, 9247}, {1974, 9723}, {2148, 2180}, {5412, 8911}, {6563, 14574}, {11547, 14585}, {14533, 14576}, {18883, 19627}
X(20571) = cevapoint of X(4) and X(18682)
X(20571) = barycentric product X(i)*X(j) for these {i,j}: {68, 1969}, {75, 5392}, {76, 91}, {304, 847}, {561, 2165}, {1820, 18022}
X(20571) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 571}, {2, 47}, {3, 563}, {5, 2180}, {63, 1147}, {68, 48}, {75, 1993}, {86, 18605}, {91, 6}, {92, 24}, {96, 2148}, {158, 8745}, {264, 1748}, {304, 9723}, {561, 7763}, {847, 19}, {925, 163}, {1577, 924}, {1820, 184}, {1969, 317}, {2165, 31}, {2351, 9247}, {5392, 1}, {14213, 52}, {14593, 1973}, {16391, 4100}
X(20572) lies on these lines: {93, 264}, {311, 18817}, {317, 562}, {340, 3519}, {2052, 11140}, {2963, 16081}
X(20572) = isotomic conjugate of X(49)
X(20572) = isotomic of the isogonal of X(93)
X(20572) = polar conjugate of X(2965)
X(20572) = X(i)-isoconjugate of X(j) for these (i,j): {31, 49}, {48, 2965}, {184, 2964}, {1994, 9247}
X(20572) = cevapoint of X(93) and X(11140)
X(20572) = barycentric product X(i)*X(j) for these {i,j}: {76, 93}, {264, 11140}, {1969, 2962}, {2963, 18022}, {3519, 18027}
X(20572) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 49}, {4, 2965}, {92, 2964}, {93, 6}, {252, 14533}, {264, 1994}, {324, 143}, {562, 50}, {2052, 3518}, {2962, 48}, {2963, 184}, {3519, 577}, {11140, 3}, {13450, 14577}, {14111, 571}, {14618, 1510}, {18022, 7769}, {19552, 9380}
X(20573) lies on these lines: {76, 94}, {264, 328}, {265, 290}, {276, 6331}, {300, 623}, {301, 624}, {308, 1989}, {476, 2367}, {3114, 11060}, {11057, 18316}, {14254, 14387}
X(20573) = isogonal conjugate of X(19627)
X(20573) = isotomic conjugate of X(50)
X(20573) = X(i)-cross conjugate of X(j) for these (i,j): {94, 18817}, {3260, 18022}
X(20573) = X(i)-isoconjugate of X(j) for these (i,j): {1, 19627}, {31, 50}, {32, 6149}, {163, 14270}, {186, 9247}, {323, 560}, {810, 14591}, {1576, 2624}, {1917, 7799}, {1924, 10411}, {9406, 14385}, {9417, 14355}
X(20573) = cevapoint of X(94) and X(328)
X(20573) = trilinear pole of line {311, 850}
X(20573) = barycentric product X(i)*X(j) for these {i,j}: {69, 18817}, {76, 94}, {264, 328}, {265, 18022}, {300, 301}, {305, 6344}, {561, 2166}, {670, 10412}, {1502, 1989}, {4609, 15475}, {6331, 14592}, {14356, 18024}
X(20573) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 50}, {6, 19627}, {75, 6149}, {76, 323}, {94, 6}, {264, 186}, {265, 184}, {290, 14355}, {300, 16}, {301, 15}, {311, 1154}, {324, 11062}, {328, 3}, {338, 2088}, {339, 16186}, {340, 3043}, {476, 1576}, {523, 14270}, {648, 14591}, {670, 10411}, {850, 526}, {1494, 14385}, {1502, 7799}, {1577, 2624}, {1989, 32}, {2166, 31}, {3260, 1511}, {3267, 8552}, {6331, 14590}, {6344, 25}, {6757, 3724}, {8836, 11136}, {8838, 11135}, {10412, 512}, {11060, 1501}, {14213, 2290}, {14254, 1495}, {14356, 237}, {14560, 14574}, {14582, 3049}, {14583, 9407}, {14592, 647}, {14616, 17104}, {15455, 1983}, {15475, 669}, {16770, 11134}, {16771, 11137}, {18022, 340}, {18027, 14165}, {18314, 2081}, {18359, 2174}, {18384, 1974}, {18557, 1636}, {18815, 1399}, {18817, 4}, {18883, 571}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28005.
X(20574) lies on the these lines: {49, 418}, {51, 54}, {185, 18212}, {217, 2965}, {1141, 1487}, {3432, 19468}
X(20574) = isogonal conjugate of X(14978)
X(20574) = X(92)-isoconjugate of X(233)
X(20574) = barycentric product X(i)*X(j) for these {i,j}: {3, 288}, {97, 1173}
X(20574) = barycentric quotient X(i)/X(j) for these (i,j): (97, 1232), (184, 233), (217, 3078), (288, 264), (1173, 324)
X(20574) = trilinear product X(i)*X(j) for these {i,j}: {48, 288}, {1173, 2169}
X(20574) = trilinear quotient X(i)/X(j) for these (i,j): (48, 233), (288, 92)
= {X(54), X(1173)}-harmonic conjugate of X(288)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28005.
X(20575) lies on the these lines: {5, 31}, {140, 6679}, {547, 752}, {674, 18583}, {758, 5901}, {1656, 6327}, {2887, 3628}, {3090, 20064}
X(20575) = midpoint of X(5) and X(31)
X(20575) = reflection of X(i) in X(j) for these (i,j): (140, 6679), (2887, 3628)
X(20575) = reflection of X(140) in the line X(834)X(6679)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28005.
X(20576) lies on the these lines: {3, 7792}, {4, 7806}, {5, 32}, {30, 7817}, {114, 5007}, {140, 143}, {262, 7857}, {315, 1656}, {546, 2794}, {547, 754}, {576, 3788}, {626, 3628}, {631, 7875}, {760, 5901}, {1513, 3398}, {2080, 6656}, {2782, 5305}, {3090, 17004}, {3095, 7807}, {3425, 7506}, {5017, 14561}, {5025, 10788}, {5097, 7764}, {5171, 7834}, {5368, 14981}, {6055, 6249}, {6248, 7755}, {6321, 19687}, {7709, 7920}, {7789, 18806}, {7797, 11676}, {7818, 15699}, {7828, 12110}, {7829, 13334}, {7856, 11257}, {7889, 15819}, {7892, 12251}, {10983, 11288}, {12106, 18121}, {16285, 19139}
X(20576) = midpoint of X(5) and X(32)
X(20576) = reflection of X(i) in X(j) for these (i,j): (140, 6680), (626, 3628)
X(20576) = reflection of X(140) in the line X(512)X(6680)
X(20576) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (140, 18583, 11272), (7746, 10358, 5), (7828, 12110, 15980), (11272, 14693, 140)
See Tran Quang Hung and César Lozada, Hyacinthos 28006.
X(20577) lies on the these lines: {52, 512}, {216, 18311}, {324, 14592}, {523, 2070}, {525, 15340}, {1994, 2413}, {12077, 18314}
X(20577) = crossdifference of every pair of points on line X(570)X(8603)
See Tran Quang Hung and César Lozada, Hyacinthos 28006.
X(20578) lies on the these lines: {13, 5466}, {51, 512}, {395, 523}, {462, 2501}, {476, 5995}, {892, 9206}, {1637, 6137}, {2395, 3457}, {5471, 12077}, {8737, 18808}
X(20578) = isogonal conjugate of X(17402)
See Tran Quang Hung and César Lozada, Hyacinthos 28006.
X(20579) lies on the these lines: {14, 5466}, {51, 512}, {396, 523}, {463, 2501}, {476, 5994}, {892, 9207}, {1637, 6138}, {2395, 3458}, {5472, 12077}, {8738, 18808}, {11092, 14447}
X(20579) = isogonal conjugate of X(17403)
See Tran Quang Hung and César Lozada, Hyacinthos 28006.
X(20580) lies on the these lines: {20, 14343}, {394, 2416}, {441, 525}, {523, 2071}, {684, 3566}, {4143, 14638}, {5664, 6503}, {8057, 15427}
See Angel Montesdeoca, HG040818.
X(20581) lies on these lines: {1741,8758}, {2331,7649}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28007.
X(20582) lies on the these lines: {2, 6}, {10, 9041}, {30, 14810}, {37, 17225}, {140, 542}, {182, 11539}, {376, 10516}, {511, 547}, {518, 3828}, {519, 3844}, {538, 10007}, {545, 17359}, {549, 1503}, {551, 5846}, {575, 16239}, {594, 17291}, {620, 9830}, {626, 8367}, {635, 5460}, {636, 5459}, {671, 6656}, {698, 9466}, {742, 4755}, {1086, 17292}, {1350, 3545}, {1352, 5054}, {1386, 19883}, {1656, 20423}, {2482, 6292}, {2781, 10170}, {2854, 15082}, {3096, 8370}, {3098, 3845}, {3525, 15069}, {3526, 8550}, {3530, 18553}, {3564, 10124}, {3661, 4395}, {3662, 7227}, {3679, 9053}, {3818, 8703}, {3819, 9019}, {3834, 4472}, {3917, 16776}, {3934, 5461}, {3943, 17305}, {4265, 16858}, {4364, 16676}, {4370, 17254}, {4399, 16706}, {4422, 17237}, {4478, 17228}, {4665, 17290}, {4688, 9055}, {4912, 17355}, {4971, 17382}, {5026, 9167}, {5050, 15723}, {5055, 5480}, {5066, 19924}, {5067, 11477}, {5070, 14848}, {5071, 10519}, {5085, 11180}, {5092, 11812}, {5206, 7822}, {5237, 5463}, {5238, 5464}, {5349, 11304}, {5350, 11303}, {5476, 15699}, {5646, 8547}, {5650, 8705}, {5651, 19127}, {5888, 12367}, {6034, 7944}, {6173, 10022}, {6697, 7734}, {6776, 15709}, {7228, 17289}, {7238, 17227}, {7263, 17293}, {7516, 15582}, {7745, 7883}, {7801, 8362}, {7810, 7819}, {7817, 8364}, {7820, 15810}, {7831, 8598}, {7835, 11149}, {7844, 16509}, {7874, 8787}, {7915, 8365}, {7998, 9971}, {8262, 13857}, {8288, 20385}, {8361, 12815}, {8596, 17128}, {9939, 16895}, {10109, 19130}, {10302, 11054}, {11179, 15694}, {11645, 12100}, {12040, 15482}, {14561, 15703}, {14927, 15705}, {15246, 19596}, {15561, 19905}, {15701, 18440}, {16187, 19136}, {16673, 17243}, {17045, 17231}, {17132, 17235}, {17133, 17229}, {17230, 17395}, {17236, 17340}, {17246, 17285}, {17332, 17357}, {17334, 17358}, {17362, 17370}, {17365, 17371}, {17383, 17388}, {17384, 17390}, {20382, 20384}
X(20582) = midpoint of X(i) and X(j) for these {i,j}: {2, 141}, {549, 11178}, {597, 599}, {620, 19662}, {3098, 3845}, {3818, 8703}, {3917, 16776}, {8262, 13857}
X(20582) = reflection of X(5092) in X(11812)
X(20582) = complement of X(597)
X(20582) = X(140)-of-anti-Artzt triangle
X(20582) = X(5461)-of-1st Brocard triangle
X(20582) = X(19662)-of-McCay triangle
X(20582) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 599, 597), (2, 7778, 9771), (2, 11184, 15491), (2, 15271, 15597), (6, 599, 11160), (141, 597, 599), (141, 3589, 3631), (141, 3629, 3620), (3619, 3763, 141), (9761, 9763, 9740), (11180, 15702, 5085), (13637, 13757, 14614), (17227, 17369, 7238), (17228, 17366, 4478)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28007.
X(20583) lies on the these lines: {2, 6}, {30, 5097}, {182, 17504}, {376, 5102}, {382, 8550}, {542, 546}, {547, 5965}, {550, 576}, {575, 3530}, {671, 7745}, {1350, 15710}, {1351, 15688}, {1353, 5476}, {1503, 15520}, {2482, 5007}, {3244, 4432}, {3528, 11477}, {3544, 15069}, {3564, 11737}, {3851, 14848}, {4399, 17120}, {4472, 4700}, {4686, 17225}, {5041, 8359}, {5050, 15700}, {5085, 15715}, {5093, 11179}, {5305, 5461}, {5480, 14269}, {6154, 8539}, {7228, 17121}, {7805, 8367}, {7838, 8360}, {7839, 8591}, {7894, 8370}, {8541, 10301}, {10488, 14042}, {10706, 16657}, {12150, 13196}, {15484, 20112}, {16668, 17332}, {16671, 17390}, {20380, 20386}, {20381, 20383}
X(20583) = midpoint of X(i) and X(j) for these {i,j}: {2, 3629}, {1353, 5476}
X(20583) = reflection of X(2) in X(6329)
X(20583) = complement of isotomic conjugate of X(33698)
X(20583) = X(546)-of-anti-Artzt triangle
X(20583) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 1992, 597), (6, 3629, 6329), (6, 5032, 8584), (141, 3629, 11008), (597, 8584, 1992), (1992, 11160, 15534), (3629, 6329, 3631), (3631, 6329, 3589), (13639, 19053, 13783), (13664, 13784, 2), (13759, 19054, 13663)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28007.
X(20584) lies on the these lines: {5, 49}, {30, 13565}, {140, 11572}, {195, 3545}, {539, 11737}, {546, 1209}, {547, 10610}, {1154, 3850}, {2888, 3851}, {3091, 12325}, {3574, 5066}, {3628, 18400}, {3832, 12307}, {3845, 7691}, {5055, 12254}, {10019, 12300}, {10115, 13364}, {10592, 12956}, {10593, 12946}, {11591, 11808}, {13365, 13754}
X(20584) = midpoint of X(i) and X(j) for these {i,j}: {546, 1209}, {2888, 11803}, {11591, 11808}
X(20584) = {X(5), X(6288)}-harmonic conjugate of X(8254)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28007.
X(20585) lies on the these lines: {5, 49}, {195, 376}, {539, 10124}, {1154, 13348}, {1493, 12103}, {1657, 11803}, {3146, 20424}, {3523, 12325}, {3530, 5965}, {3574, 14893}, {3830, 12254}, {10610, 12100}, {12102, 18400}
X(20585) = midpoint of X(i) and X(j) for these {i,j}: {546, 1209}, {2888, 11803}, {11591, 11808}
X(20585) = {X(5), X(6288)}-harmonic conjugate of X(8254)
See Tran Quang Hung and César Lozada, Hyacinthos 28008.
X(20586) lies on the these lines: {1, 5}, {8, 11256}, {34, 5151}, {55, 11715}, {56, 2802}, {57, 12653}, {65, 1320}, {100, 1319}, {104, 3057}, {109, 10700}, {149, 3476}, {214, 1388}, {515, 13274}, {517, 10074}, {944, 12743}, {946, 12763}, {1385, 10087}, {1420, 5541}, {1470, 13205}, {1482, 11570}, {1537, 12679}, {1768, 7962}, {2098, 2800}, {2099, 3892}, {2829, 12701}, {3036, 19861}, {3304, 12736}, {3885, 17100}, {3968, 4413}, {4308, 9802}, {4345, 9809}, {5048, 6001}, {5330, 12532}, {5697, 12515}, {5854, 12832}, {6224, 18467}, {7354, 14217}, {8581, 14151}, {9957, 10058}, {10085, 13253}, {10106, 13273}, {10895, 16174}, {12053, 12764}, {12619, 12647}, {12758, 12773}, {17636, 20323}
X(20586) = midpoint of X(10085) and X(13253)
X(20586) = X(12751) of 2nd Johnson-Yff triangle
X(20586) = reflection of X(80) in the line X(496)X(900)
X(20586) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 1317, 12739), (1, 6264, 11), (1, 7972, 6265), (149, 3476, 18976), (1387, 10956, 11375), (5048, 17660, 10698)
See Angel Montesdeoca, HG040818.
X(20587) lies on this line: {3523,3620}
See Angel Montesdeoca, HG040818.
X(20588) lies on these lines: {1,1167}, {2,15298}, {8,90}, {9,497}, {10,10629}, {36,78}, {40,2123}, {46,7080}, {55,17658}, {57,6745}, {63,100}, {72,3428}, {191,4882}, {210,11502}, {354,8257}, {518,1260}, {944,6737}, {1040,3939}, {1158,5687}, {1259,3811}, {1478,6735}, {1490,12059}, {1709,17784}, {1741,3694}, {3190,3751}, {3305,5231}, {3717,3719}, {3729,17860}, {3870,18412}, {3872,5251}, {3885,4853}, {4430,4511}, {4863,7082}, {5176,5691}, {5552,13407}, {6600,10391}
X(20588) = extouch-isogonal conjugate of X(3059)
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,38), (2,37), (6,3721), (31,41178), (105,20589), (238,20590), (292,20591), (365,20592), (672,20593), (1423,20594), (1931,20595), (2053,20596), (2054,20597), (3009,20598), (2112,20599), (20332,20600)
Twenty-four more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : b : c
m(A') = a (Sqrt[b] + Sqrt[c]) (b^2 - b^(3/2) Sqrt[c] + b c - Sqrt[b] c^(3/2) + c^2) : -b (Sqrt[a] - Sqrt[c]) (a^2 + a^(3/2) Sqrt[c] + a c + Sqrt[a] c^(3/2) + c^2) : -(Sqrt[a] - Sqrt[b]) (a^2 + a^(3/2) Sqrt[b] + a b + Sqrt[a] b^(3/2) + b^2) c
m(A1) = a b c (b + c) : b (-a^3 + b c^2) : c (-a^3 + b^2 c)
m(A2) = a (b^4 + c^4) : -b c (a^2 b - c^3) : b c (b^3 - a^2 c)
m(A3) = a (a b + a c + b c) (b^2 + c^2) : -b (a^4 + a^3 b + a^3 c - a b c^2 - a c^3 - b c^3) : -c (a^4 + a^3 b - a b^3 + a^3 c - a b^2 c -b^3 c)
m(A4) = -a (b + c) (a + b + c) (b^2 - b c + c^2) : b (a^3 b + a^3 c + a^2 b c - a c^3 - b c^3 - c^4) : c (a^3 b - a b^3 - b^4 + a^3 c + a^2 b c - b^3 c)
m(A5) = a (a^2 b^2 + b^4 - a b^2 c - b^3 c + a^2 c^2 - a b c^2 - b c^3 + c^4) : b (a^4 + a^3 b + a^3 c + a^2 c^2 - a b c^2 - b c^3 + c^4) : c (a^4 + a^3 b + a^2 b^2 + b^4 + a^3 c - a b^2 c - b^3 c)
m(A6) = a (a + b + c) (a^2 b^3 - a b^4 - b^4 c + b^3 c^2 + a^2 c^3 + b^2 c^3 - a c^4 - b c^4) : -b (a^2 + b^2 - a c - b c) (-a^4 + a^3 b + a^2 b c - a^2 c^2 - a c^3 - b c^3 - c^4) : -c (-a^4 - a^2 b^2 - a b^3 - b^4 + a^3 c + a^2 b c - b^3 c) (a^2 - a b - b c + c^2)
where A1, A2, A3, A4, A5, A6 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = y/c + z/b : z/a + x/c : x/b + y/a, and m is the collineation indicated by (A,B,C,X(75); A'B'C',X(1)), where A' = 0 : b : c.
Let b^3 (b-c) c^3 (a^2-b c) (-a^3 b^3-a^2 b^4+a^4 b c-a^3 b^2 c-a^2 b^3 c-a b^4 c-a^3 b c^2-a b^3 c^2-a^3 c^3-a^2 b c^3-a b^2 c^3+b^3 c^3-a^2 c^4-a b c^4) x^3+a^3 b c^2 (-3 a^5 b^4-a^4 b^5+3 a^6 b^2 c+a^2 b^6 c+3 a^6 b c^2+a b^6 c^2-3 a^5 c^4-b^5 c^4+a^4 c^5-b^4 c^5-a^2 b c^6+a b^2 c^6) y^2 z-a^3 b^2 c (-3 a^5 b^4+a^4 b^5+3 a^6 b^2 c-a^2 b^6 c+3 a^6 b c^2+a b^6 c^2-3 a^5 c^4-b^5 c^4-a^4 c^5-b^4 c^5+a^2 b c^6+a b^2 c^6) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) + 2 a^2 (a-b) b^2 (a-c) (b-c) c^2 (-b^2+a c) (a^2-b c) (a b-c^2) x y z = 0. (Peter Moses, August 7, 2018)
X(20589) lies on these lines: {1, 20601}, {37, 17447}, {38, 20599}, {1962, 2611}, {3675, 16593}, {4118, 17452}, {17279, 20275}, {17459, 20596}, {20356, 20590}
See X(20589).
X(20590) lies on these lines: {1, 2210}, {2, 18208}, {37, 4118}, {38, 1107}, {517, 2292}, {536, 2643}, {612, 18788}, {760, 3747}, {1278, 17891}, {1959, 3009}, {2309, 17446}, {3720, 17456}, {3868, 3924}, {3912, 4475}, {4357, 7237}, {4414, 9441}, {16735, 17187}, {17234, 18168}, {17279, 20274}, {17300, 18207}, {17443, 17445}, {17444, 17472}, {20356, 20589}, {20363, 20364}, {20594, 20596}, {20595, 20597}, {20598, 20600}
See X(20589).
X(20591) lies on these lines: {1, 1922}, {37, 8299}, {38, 20356}, {337, 2275}, {1107, 2170}, {2276, 4518}, {3094, 4493}, {3726, 20363}, {3802, 5283}, {4118, 20599}, {20593, 20598}
See X(20589).
X(20592) lies on these lines: {1, 20604}
See X(20589).
X(20593) lies on these lines: {1, 9454}, {37, 1953}, {75, 3061}, {518, 2170}, {798, 4083}, {1107, 17445}, {1921, 18061}, {2228, 18904}, {3721, 4022}, {5701, 20459}, {13476, 17474}, {20271, 20274}, {20335, 20448}, {20356, 20589}, {20591, 20598}
See X(20589).
X(20594) lies on these lines: {1, 20606}, {8, 2170}, {37, 1953}, {55, 16689}, {2098, 16969}, {3056, 3728}, {3959, 20284}, {7148, 12836}, {17448, 20359}, {20590, 20596}, {20599, 20600}
See X(20589).
X(20595) lies on these lines: {1, 20607}, {38, 1755}, {1575, 2643}, {2611, 3726}, {20590, 20597}
See X(20589).
X(20596) lies on these lines: {1, 20608}, {192, 3434}, {1934, 4518}, {4118, 20598}, {17447, 20361}, {17459, 20589}, {20590, 20594}
See X(20589).
X(20597) lies on these lines: {1, 20609}, {1107, 20362}, {3721, 20599}, {20590, 20595}
See X(20589).
X(20598) lies on these lines: {1, 20610}, {37, 38}, {244, 20530}, {4118, 20596}, {20590, 20600}, {20591, 20593}
See X(20589).
X(20599) lies on these lines: {1, 20611}, {38, 20589}, {3721, 20597}, {4118, 20591}, {20594, 20600}
See X(20589).
X(20600) lies on these lines: {2170, 3721}, {2643, 3728}, {4118, 17463}, {20590, 20598}, {20594, 20599}
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,63), (2,9), (6,1759), (31,1760), (105,20601), (238,20602), (292,20603), (365,20604), (672,20605), (1423,20606), (1931,20607), (2053,20608), (2054,20609), (3009,20610), (2112,20611)
Twenty-one more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = -a : b : c
m(A') = a (a^(5/2) + b^(5/2) + c^(5/2)) : -b (a^(5/2) + b^(5/2) - c^(5/2)) : -c (a^(5/2) - b^(5/2) + c^(5/2))
m(A1) = -a (a^3 + b^2 c + b c^2), b (a^3 + b^2 c - b c^2), c (a^3 - b^2 c + b c^2)
m(A2) = a (b^4 + a^2 b c + c^4) : -b (b^4 + a^2 b c - c^4) : -c (-b^4 + a^2 b c + c^4)
m(A3) = -a (a^4 + a^3 b + a b^3 + a^3 c + a b^2 c + b^3 c + a b c^2 + a c^3 + b c^3) : b (a^4 + a^3 b + a b^3 + a^3 c + a b^2 c + b^3 c - a b c^2 - a c^3 - b c^3) : c (a^4 + a^3 b - a b^3 + a^3 c - a b^2 c - b^3 c + a b c^2 + a c^3 + b c^3)
m(A4) = a (a^3 b + a b^3 + b^4 + a^3 c + a^2 b c + b^3 c + a c^3 + b c^3 + c^4) : -b (a^3 b + a b^3 + b^4 + a^3 c + a^2 b c + b^3 c - a c^3 - b c^3 - c^4) : -c (a^3 b - a b^3 - b^4 + a^3 c + a^2 b c - b^3 c + a c^3 + b c^3 + c^4)
m(A5) = a (a^4 + a^3 b - a^2 b^2 - b^4 + a^3 c + a b^2 c + b^3 c - a^2 c^2 + a b c^2 + b c^3 - c^4) : b (-a^4 - a^3 b + a^2 b^2 + b^4 - a^3 c - a b^2 c - b^3 c - a^2 c^2 + a b c^2 + b c^3 - c^4) : c (-a^4 - a^3 b - a^2 b^2 - b^4 - a^3 c + a b^2 c + b^3 c + a^2 c^2 - a b c^2 - b c^3 + c^4)
where A1, A2, A3, A4, A5 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = a(-ax + by + cz) : b(ax - by + cz): c(ax + by - cz), and m is the collineation indicated by (A,B,C,X(75); A'B'C',X(1)), where A' = -a : b : c.
Let a^3 b (b-c) c (-b^3+a b c-b^2 c-b c^2-c^3) x^3+a b (-a^5 b^2+a^4 b^3+a^6 c-a^2 b^4 c+2 a b^4 c^2-2 b^3 c^4+b^2 c^5-a c^6) y^2 z-a c (a^6 b-a b^6-a^5 c^2+b^5 c^2+a^4 c^3-2 b^4 c^3-a^2 b c^4+2 a b^2 c^4) y z^2 , where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) + 2 (a-b) (a-c) (b-c) (-b^2+a c) (a^2-b c) (a b-c^2) x y z = 0. (Peter Moses, August 7, 2018)
X(20601) lies on these lines: {1, 20589}, {9, 141}, {55, 846}, {63, 15487}, {169, 673}, {190, 1760}, {971, 6211}, {1761, 16565}, {2195, 2809}, {4437, 17742}, {7291, 20533}, {16557, 20608}, {17738, 20602}
See X(20601).
X(20602) lies on these lines: {1, 2210}, {2, 16555}, {9, 1760}, {10, 191}, {19, 3729}, {63, 169}, {75, 16547}, {81, 16600}, {101, 1959}, {190, 16548}, {239, 5540}, {536, 7297}, {666, 2311}, {894, 1781}, {1026, 18788}, {1748, 7719}, {1762, 17739}, {2082, 16834}, {2664, 17799}, {3008, 3218}, {3405, 3508}, {3661, 17744}, {3912, 7291}, {3929, 19797}, {4063, 4380}, {4416, 5279}, {4641, 16583}, {4852, 7300}, {5081, 7713}, {5341, 17351}, {5525, 6542}, {6763, 16825}, {7289, 17298}, {17294, 17742}, {17738, 20601}, {20372, 20373}, {20606, 20608}, {20607, 20609}
X(20602) = isogonal conjugate of isotomic conjugate of X(20643)
See X(20601).
X(20603) lies on these lines: {1, 1922}, {9, 2108}, {63, 17026}, {191, 2795}, {846, 18794}, {1760, 20611}, {3099, 3508}, {3509, 20372}, {20605, 20610}
See X(20601).
X(20604) lies on these lines: {1, 20592}
See X(20601).
X(20605) lies on these lines: {1, 9454}, {4, 9}, {75, 16552}, {238, 18785}, {672, 1738}, {673, 20367}, {798, 812}, {1757, 5540}, {1759, 1760}, {2082, 3751}, {3294, 5263}, {3509, 17031}, {3886, 17742}, {4000, 4253}, {4192, 16588}, {4429, 16549}, {5701, 20470}, {10436, 16818}, {16600, 17446}, {17738, 20601}, {20603, 20610}
See X(20601).
X(20606) lies on these lines: {1, 20594}, {3, 1107}, {4, 9}, {43, 2082}, {63, 3765}, {147, 18596}, {386, 9575}, {517, 2176}, {1764, 4384}, {1914, 13732}, {2275, 19514}, {2300, 10441}, {2319, 20368}, {5540, 6048}, {7991, 18785}, {8245, 17038}, {10476, 16825}, {16434, 16502}, {20602, 20608}
See X(20601).
X(20607) lies on these lines: {1, 20595}, {19, 27}, {267, 16549}, {846, 4386}, {1046, 3959}, {1247, 4426}, {1575, 2640}, {2959, 17735}, {20602, 20609}
See X(20601).
X(20608) lies on these lines: {1, 20596}, {1760, 20610}, {16551, 20370}, {16557, 20601}, {20602, 20606}
See X(20601).
X(20609) lies on these lines: {1, 20597}, {9, 1654}, {1759, 20611}, {16552, 20371}, {20602, 20607}
See X(20601).
X(20610) lies on these lines: {1, 20598}, {2, 7}, {190, 20453}, {802, 18197}, {1755, 17755}, {1760, 20608}, {3271, 8844}, {16514, 18206}, {20603, 20605}
See X(20601).
X(20611) lies on these lines: {1, 20599}, {63, 15487}, {1759, 20609}, {1760, 20603}
X(20612) lies on these lines: {8,18389}, {10,3580}, {35,758}, {40,3868}, {65,16465}, {100,15556}, {145,2802}, {214,14804}, {908,1858}, {1046,1331}, {1825,1897}, {1998,3339}, {2801,20060}, {3340,3873}, {3555,5844}, {3562,12016}, {3601,3869}, {3925,8261}, {5552,18397}, {5554,18412}, {5902,12649}, {5904,10528}, {5905,15071}, {6734,13750}, {10529,18398}, {11248,12515}, {11571,16126}, {12435,20243}
X(20612) = midpoint of X(3868) and X(3871)
X(20612) = reflection of X(6734) in X(13750)
X(20612) = X(643)-beth conjugate of X(15556)
X(20613) lies on the cubic K1058 and these lines: {6, 19}, {12, 208}, {33, 7337}, {37, 3209}, {56, 5089}, {57, 5236}, {85, 653}, {108, 17916}, {169, 1783}, {196, 948}, {281, 388}, {1452, 2333}, {1826, 11392}, {1891, 5727}, {14257, 17905}
X(20613) = X(4025)-zayin conjugate of X(652)
X(20613) = X(7)-Ceva conjugate of X(33)
X(20613) = barycentric product X(i)*X(j) for these {i,j}: {4, 8270}, {34, 10327}, {273, 12329}, {278, 17742}, {653, 2509}, {1041, 11677}
X(20613) = barycentric quotient X(i)/X(j) for these {i,j}: {2509, 6332}, {8270, 69}, {10327, 3718}, {12329, 78}, {17742, 345}
X(20614) lies on the cubic K1058 and these lines: {12, 116}, {65, 1418}, {354, 7264}
X(20614) = barycentric product X(13476)X(17077)
X(20614) = barycentric quotient X(i)/X(j) for these {i,j}: {16552, 3996}, {17077, 17143}
X(20615) lies on the cubic K1058 and these lines: {1, 16528}, {12, 121}, {44, 583}, {65, 519}, {404, 765}, {1042, 1319}, {1417, 5253}, {1426, 1877}, {5252, 8050}, {7248, 10404}
X(20615) = isogonal conjugate of X(3871)
X(20615) = X(i)-cross conjugate of X(j) for these (i,j): {2171, 57}, {3649, 65}
X(20615) = X(i)-isoconjugate of X(j) for these (i,j): {1, 3871}, {8, 595}, {21, 3293}, {41, 18140}, {55, 4360}, {60, 4075}, {78, 4222}, {284, 3995}, {312, 2220}, {643, 4132}, {644, 4063}, {3699, 4057}, {3939, 20295}, {4076, 8054}, {4129, 5546}, {4587, 17922}
X(20615) = cevapoint of X(1357) and X(4017)
X(20615) = trilinear pole of line {1635, 7180}
X(20615) = barycentric product X(i)*X(j) for these {i,j}: {57, 596}, {3669, 8050}
X(20615) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 3871}, {7, 18140}, {57, 4360}, {65, 3995}, {596, 312}, {604, 595}, {608, 4222}, {1397, 2220}, {1400, 3293}, {2171, 4075}, {3669, 20295}, {4017, 4129}, {7180, 4132}, {8050, 646}, {15222, 105}
X(20615) = {X(5434),X(17114)}-harmonic conjugate of X(65)
X(20616) lies on the cubic K1058 and these lines: {1, 4559}, {12, 115}, {37, 65}, {39, 15950}, {85, 4552}, {241, 553}, {950, 5724}, {1107, 11011}, {1825, 5089}, {2099, 5283}, {2276, 11375}, {3175, 3991}, {4032, 4059}, {5277, 14882}, {9331, 9578}, {15556, 16601}
X(20616) = X(7)-Ceva conjugate of X(181)
X(20616) = X(i)-isoconjugate of X(j) for these (i,j): {60, 17758}, {261, 2350}, {2185, 13476}
X(20616) = barycentric product X(i)*X(j) for these {i,j}: {12, 1621}, {65, 4651}, {181, 17143}, {201, 14004}, {226, 3294}, {1254, 3996}, {1400, 4043}, {2171, 17277}, {4151, 4551}, {4251, 6358}
X(20616) = barycentric quotient X(i)/X(j) for these {i,j}: {181, 13476}, {1621, 261}, {2171, 17758}, {3294, 333}, {4151, 18155}, {4251, 2185}, {4651, 314}, {17143, 18021}
X(20616) = {X(5434),X(17114)}-harmonic conjugate of X(65)
X(20616) = {X(5434),X(17114)}-harmonic conjugate of X(65)
{X(1334),X(2171)}-harmonic conjugate of X(15443)
{X(1334),X(2171)}-harmonic conjugate of X(15443)
X(20617) lies on the cubic K1058 and these lines: {1, 15622}, {12, 125}, {42, 65}, {85, 4566}, {226, 15267}, {515, 942}, {1426, 1882}, {1439, 15232}, {1876, 1888}, {2647, 18165}, {3649, 17705}, {6354, 7143}, {10441, 15832}
X(20617) = midpoint of X(65) and X(73)
X(20617) = X(7)-Ceva conjugate of X(6354)
X(20617) = X(i)-isoconjugate of X(j) for these (i,j): {2051, 7054}, {2328, 20028}
X(20617) = crosspoint of X(7) and X(17074)
X(20617) = barycentric product X(i)*X(j) for these {i,j}: {12, 17074}, {279, 14973}, {1254, 14829}, {1427, 17751}, {2975, 6354}
X(20617) = barycentric quotient X(i)/X(j) for these {i,j}: {572, 1098}, {1254, 2051}, {1427, 20028}, {2975, 7058}, {14973, 346}, {17074, 261}
X(20617) = {X(5434),X(17114)}-harmonic conjugate of X(65)
X(20617) = {X(1334),X(2171)}-harmonic conjugate of X(15443)
X(20618) lies on the cubic K1058 and these lines: {1, 5894}, {12, 1367}, {65, 1439}, {85, 1952}, {201, 6356}, {222, 279}, {278, 14256}, {347, 20070}, {1071, 10481}
X(20618) = X(6354)-cross conjugate of X(6355)
X(20618) = X(i)-isoconjugate of X(j) for these (i,j): {19, 6061}, {21, 2332}, {33, 7054}, {55, 2326}, {60, 7079}, {200, 2189}, {220, 270}, {250, 3119}, {284, 4183}, {607, 1098}, {1043, 2204}, {1172, 2328}, {2150, 7046}, {2185, 7071}, {2194, 2322}, {2212, 7058}, {2287, 2299}
X(20618) = barycentric product X(i)*X(j) for these {i,j}: {7, 6356}, {12, 7056}, {69, 6046}, {201, 1088}, {304, 7147}, {305, 7143}, {307, 3668}, {339, 7339}, {347, 6355}, {348, 6354}, {479, 3695}, {1214, 1446}, {1231, 1427}, {1254, 7182}, {1425, 6063}, {1439, 1441}, {4064, 4626}, {4566, 17094}, {6358, 7177}
X(20618) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 6061}, {12, 7046}, {57, 2326}, {65, 4183}, {73, 2328}, {77, 1098}, {125, 4081}, {181, 7071}, {201, 200}, {222, 7054}, {226, 2322}, {269, 270}, {307, 1043}, {348, 7058}, {1042, 2299}, {1214, 2287}, {1254, 33}, {1367, 2968}, {1400, 2332}, {1407, 2189}, {1410, 2194}, {1425, 55}, {1427, 1172}, {1439, 21}, {2171, 7079}, {2197, 220}, {3668, 29}, {3690, 480}, {3695, 5423}, {3708, 3119}, {3949, 728}, {4064, 4163}, {6046, 4}, {6354, 281}, {6355, 280}, {6356, 8}, {6358, 7101}, {7053, 60}, {7056, 261}, {7066, 1260}, {7099, 2150}, {7138, 212}, {7143, 25}, {7147, 19}, {7177, 2185}, {7178, 17926}, {7314, 7140}, {7339, 250}, {10376, 4206}, {13853, 7003}, {17094, 7253}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28010.
X(20619) lies on the nine-point circle and these lines: {1, 124}, {2, 2370}, {4, 106}, {11, 1883}, {37, 5514}, {53, 5190}, {116, 4000}, {117, 1769}, {121, 4768}, {123, 4187}, {125, 1834}, {127, 16052}, {225, 5521}, {1319, 1846}
X(20619) = complement of X(2370)
X(20619) = orthoptic circle of Steiner inellipse-inverse-of X(9088)
X(20619) = polar circle-inverse-of X(106)
X(20619) = reflection of X(i) in the line X(j)X(k) for these (i, j, k): (117, 5, 11727), (121, 5, 6715)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28010.
X(20620) lies on the nine-point circle and these lines: {4, 109}, {33, 118}, {116, 7004}, {121, 11105}, {122, 3137}, {123, 14010}, {2969, 3259}, {5514, 8735}, {7649, 15608}, {13999, 16228}
X(20620) = polar circle-inverse-of X(109)
X(20620) = reflection of X(124) in the line X(5)X(6718)
X(20620) = center of hyperbola {{A,B,C,X(4),X(29)}} (the locus of trilinear poles of lines passing through X(3064))
X(20620) = perspector of circumconic centered at X(3064)
X(20620) = crosssum of circumcircle intercepts of line X(3)X(73)
X(20620) = X(2)-Ceva conjugate of X(3064)
X(20620) = orthopole of line X(3)X(73)
X(20620) = Kirikami-six-circles image of X(29)
X(20621) is the touchpoint, other than X(11), of the line through X(676) tangent to the nine-point circle. (Randy Hutson, August 29, 2018)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28010.
X(20621) lies on the nine-point circle and these lines: {2, 108}, {4, 105}, {11, 33}, {12, 208}, {25, 5521}, {115, 429}, {116, 1210}, {122, 18592}, {124, 226}, {125, 15904}, {127, 442}, {225, 5190}, {431, 5139}, {468, 5520}, {1368, 15252}, {1566, 5089}, {1595, 15251}, {1785, 15612}, {3011, 13999}, {5230, 5517}, {15253, 15809}
X(20621) = reflection of X(i) in the line X(j)X(k) for these (i, j, k): (11, 5, 676), (105, 676, 6714), (120, 5, 6714)
X(20621) = orthoptic-circle-of-Steiner-inellipse-inverse of X(108)
X(20621) = polar circle-inverse-of X(105)
X(20621) = nine-point-circle intercept, other than X(11), of circle {{X(11),X(105),X(108)}}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28010.
X(20622) lies on the nine-point circle and these lines: {4, 103}, {11, 1427}, {122, 3136}, {123, 8226}, {124, 1699}, {125, 430}, {235, 5190}, {1855, 5514}
X(20622) = polar circle-inverse-of X(103)
X(20622) = reflection of X(118) in the line X(5)X(6712)
X(20622) = perspector of circumconic centered at X(1886)
X(20622) = center of circumconic that is locus of trilinear poles of lines passing through X(1886)
X(20622) = X(2)-Ceva conjugate of X(1886)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28010.
X(20623) lies on the nine-point circle and these lines: {6, 11}, {9, 123}, {19, 5521}, {33, 13529}, {116, 226}, {120, 1639}, {122, 18591}, {124, 20262}, {127, 1211}, {136, 1865}, {1699, 5511}, {3925, 5514}, {5099, 5164}, {5179, 15612}
X(20623) = polar circle-inverse-of X(20624)
X(20623) = reflection of X(119) in the line X(5)X(5848)
X(20623) = orthopole of PU(125)
X(20623) = crosssum of circumcircle-intercepts of line PU(125) (line X(3)X(650))
X(20623) = Kirikami six circles image of X(651)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28010.
X(20624) lies on the circumcircle and these lines: {19, 109}, {33, 101}, {100, 281}, {108, 393}, {110, 1172}, {243, 929}, {278, 934}, {1310, 8777}, {2202, 8776}, {2722, 5523}, {7129, 8059}
X(20624) = trilinear pole of the line {6, 18344}
X(20624) = polar circle-inverse-of X(20623)
X(20624) = polar conjugate of isotomic conjugate of X(8759)
X(20624) = X(63)-isoconjugate of X(8758)
X(20624) = Ψ(X(i), X(j)) for these (i,j): (3, 650), (6, 18344)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28010.
X(20625) lies on the MacBeath circle, the nine-point circle and these lines: {2, 933}, {3, 128}, {4, 18401}, {5, 18402}, {23, 14918}, {113, 1209}, {114, 6676}, {115, 8902}, {131, 10600}, {132, 5133}, {133, 546}, {136, 15526}, {233, 1560}, {2072, 16336}, {2972, 3258}, {5576, 10214}, {6639, 8157}, {8439, 8798}, {11563, 18809}
X(20625) = midpoint of X(4) and X(18401)
X(20625) = complement of X(933)
X(20625) = circumcircle-inverse-of X(15959)
X(20625) = antipode of X(18402) in the nine-point circle
X(20625) = perspector of orthic triangle and tangential triangle of hyperbola {{A,B,C,X(2),X(5)}}
X(20625) = reflection of X(i) in the line X(j)X(k) for these (i, j, k): (115, 5, 1576), (122, 5, 107), (125, 5, 11557), (128, 5, 14225), (136, 5, 5961), (137, 5, 11701)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28010.
X(20626) lies on the circumcircle and these lines: {4, 18401}, {24, 1141}, {74, 6145}, {110, 16039}, {186, 18284}, {403, 14979}, {427, 1297}, {550, 5897}, {827, 2409}, {1294, 3520}, {1298, 6403}, {2383, 3542}, {2693, 13619}, {5966, 6353}, {7473, 11635}
X(20626) = trilinear pole of the line {6, 3574}
X(20626) = polar circle-inverse of X(20625)
X(20626) = Ψ(X(6), X(3574))
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,1930), (2,321), (6,20234), (31,20627), (105,20628), (238,20629), (292,20630), (365,20631), (672,20632), (1423,20633), (2053,20635), (2054,20636), (3009,20637), (2112,20638), (20332,20639)
Twenty-one more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : c : b
m(A') = - b c (Sqrt[b] + Sqrt[c]) (b^2 - b^(3/2) Sqrt[c] + b c - Sqrt[b] c^(3/2) + c^2) : c a (Sqrt[a] - Sqrt[c]) (a^2 + a^(3/2) Sqrt[c] + a c + Sqrt[a] c^(3/2) + c^2) : a b (Sqrt[a] - Sqrt[b]) (a^2 + a^(3/2) Sqrt[b] + a b + Sqrt[a] b^(3/2) + b^2)
m(A1) = - b^2 c^2 (b + c) : c a (a^3 - b c^2) : a b (a^3 - b^2 c)
m(A2) = - b c (b^4 + c^4) : c a (a^2 b - c^3) : a b (-b^3 + a^2 c)
m(A3) = - b c (a b + a c + b c) (b^2 + c^2) : c a (a^4 + a^3 b + a^3 c - a b c^2 - a c^3 - b c^3) : a b (a^4 + a^3 b - a b^3 + a^3 c - a b^2 c - b^3 c)
m(A4) = -b c (b + c) (a + b + c) (b^2 - b c + c^2) : a c (a^3 b + a^3 c + a^2 b c - a c^3 - b c^3 - c^4) : a b (a^3 b - a b^3 - b^4 + a^3 c + a^2 b c - b^3 c)
m(A5) = b c (a^2 b^2 + b^4 - a b^2 c - b^3 c + a^2 c^2 - a b c^2 - b c^3 + c^4) : c a (a^4 + a^3 b + a^3 c + a^2 c^2 - a b c^2 - b c^3 + c^4) : a b (a^4 + a^3 b + a^2 b^2 + b^4 + a^3 c - a b^2 c - b^3 c)
where A1, A2, A3, A4, A5 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = b c (b y + c a) : c a (c z + a x) : a b (a x + b y), and m is the collineation indicated by (A,B,C,X(75); A'B'C',X(75)), where A' = 0 : c : b = 0 : 1/b : 1/c.
X(20627) lies on these lines: {31, 75}, {304, 17871}, {321, 4766}, {561, 1109}, {746, 2205}, {1930, 1959}, {4118, 16891}, {4121, 4178}, {14210, 17884}, {17870, 17883}, {17881, 17890}, {20234, 20632}, {20237, 20628}, {20630, 20638}, {20635, 20637}
See X(20627).
X(20628) lies on these lines: {75, 105}, {321, 20431}, {1930, 20638}, {4647, 10624}, {5278, 17755}, {20237, 20627}, {20433, 20629}
X(20627) = isotomic conjugate of isogonal conjugate of X(4118)
See X(20627).
X(20629) lies on these lines: {75, 238}, {321, 4766}, {349, 9238}, {1930, 17760}, {3262, 18697}, {3263, 5988}, {4362, 20641}, {7237, 17211}, {20433, 20628}, {20440, 20441}, {20633, 20635}, {20634, 20636}, {20637, 20639}
See X(20627).
X(20630) lies on these lines: {75, 292}, {1930, 20433}, {4858, 18697}, {20432, 20440}, {20627, 20638}, {20632, 20637}
See X(20627).
X(20631) lies on these lines: (none yet)
See X(20627).
X(20632) lies on these lines: {75, 672}, {76, 4165}, {313, 20659}, {321, 908}, {661, 17893}, {3262, 3930}, {3263, 4858}, {17871, 20171}, {20234, 20627}, {20433, 20628}, {20630, 20637}
See X(20627).
X(20633) lies on these lines: {8, 17153}, {75, 1423}, {321, 908}, {3210, 17861}, {3596, 4858}, {20629, 20635}, {20638, 20639}
See X(20627).
X(20634) lies on these lines: {75, 1931}, {321, 4109}, {1930, 1959}, {17886, 20432}, {20629, 20636}
See X(20627).
X(20635) lies on these lines: {75, 2053}, {20627, 20637}, {20629, 20633}
See X(20627).
X(20636) lies on these lines: {75, 2054}, {321, 20500}, {20234, 20638}, {20629, 20634}
See X(20627).
X(20637) lies on these lines: {75, 3009}, {321, 1930}, {20627, 20635}, {20629, 20639}, {20630, 20632}
See X(20627).
X(20638) lies on these lines: {75, 2112}, {1930, 20628}, {20234, 20636}, {20627, 20630}, {20633, 20639}
See X(20627).
X(20639) lies on these lines: {75, 20332}, {4858, 20234}, {20629, 20637}, {20633, 20638}
X(20640) lies on the circumcircle and these lines: {513, 20340}, {514, 20363}
X(20640) = isogonal conjugate of X(20512)
X(20640) = X(i)-isoconjugate of X(j) for these (i,j): {513, 20340}, {514, 20363}
X(20640) = barycentric quotient X(i)/X(j) for these {i,j}: {101, 20340}, {692, 20363}
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,304), (2,312), (6,20444), (31,20641), (105,20642), (238,20643), (292,20644), (365,20645), (672,20646), (1423,20647), (1931,20648), (2053,20649), (2054,20650), (3009,20651), (2112,20652)
Twenty-one more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = -1/a : 1/b : 1/c
m(A') = -a^2 b^3 c^3 (a^(5/2) + b^(5/2) + c^(5/2)) : a^3 b^2 c^3 (a^(5/2) + b^(5/2) - c^(5/2)) : a^3 b^3 c^2 (a^(5/2) - b^(5/2) + c^(5/2))
m(A1) = - b c (a^3 + b^2 c + b c^2) : c a (a^3 + b^2 c - b c^2) : a b (a^3 - b^2 c + b c^2)
m(A2) = - b c (b^4 + a^2 b c + c^4) : c a (b^4 + a^2 b c - c^4) : c a (-b^4 + a^2 b c + c^4)
m(A3) = - b c (a^4 + a^3 b + a b^3 + a^3 c + a b^2 c + b^3 c + a b c^2 + a c^3 + b c^3) : c a (a^4 + a^3 b + a b^3 + a^3 c + a b^2 c + b^3 c - a b c^2 - a c^3 - b c^3) : a b (a^4 + a^3 b - a b^3 + a^3 c - a ^2 c - b^3 c + a b c^2 + a c^3 + b c^3)
m(A4) = -b c (b + c) (a + b + c) (b^2 - b c + c^2) : a c (a^3 b + a^3 c + a^2 b c - a c^3 - b c^3 - c^4) : a b (a^3 b - a b^3 - b^4 + a^3 c + a^2 b c - b^3 c)
m(A5) = -b c (a^4 + a^3 b - a^2 b^2 - b^4 + a^3 c + a b^2 c + b^3 c - a^2 c^2 + a b c^2 + b c^3 - c^4) : c a (a^4 + a^3 b - a^2 b^2 - b^4 + a^3 c + a b^2 c + b^3 c + a^2 c^2 - a b c^2 - b c^3 + c^4) : a b (a^4 + a^3 b + a^2 b^2 + b^4 + a^3 c - a b^2 c - b^3 c - a^2 c^2 + a b c^2 + b c^3 - c^4)
where A1, A2, A3, A4, A5 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = b c (- a x + b y + c z) : c a (a x - b y + c z ) : a b (a x + b y - c z), and m is the collineation indicated by (A,B,C,X(75); A'B'C',X(75)), where A' = -1/a : 1/b : 1/c.
Let f(a,b,c,x,y,z) = a^8 (b-c) (-b^3+a b c-b^2 c-b c^2-c^3) x^3+b^4 c (-a^5 b^2+a^4 b^3+a^6 c-a^2 b^4 c+2 a b^4 c^2-2 b^3 c^4+b^2 c^5-a c^6) y^2 z-b c^4 (a^6 b-a b^6-a^5 c^2+b^5 c^2+a^4 c^3-2 b^4 c^3-a^2 b c^4+2 a b^2 c^4) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) + 2 a (a-b) b (a-c) (b-c) c (-b^2+a c) (a^2-b c) (a b-c^2) x y z = 0. (Peter Moses, August 8, 2018)
X(20641) lies on these lines: {31, 75}, {92, 304}, {305, 2064}, {312, 4766}, {315, 4463}, {326, 1096}, {799, 18750}, {1966, 17871}, {1978, 20642}, {3403, 14213}, {4362, 20629}, {14210, 18056}, {18064, 18156}, {18138, 20444}, {20644, 20652}, {20649, 20651}
See X(20641).
X(20642) lies on these lines: {8, 7261}, {75, 105}, {304, 20652}, {312, 8024}, {1978, 20641}, {20446, 20643}
See X(20641).
X(20643) lies on these lines: {75, 238}, {76, 18744}, {304, 18137}, {312, 4766}, {313, 502}, {1921, 18151}, {4639, 17789}, {7112, 20445}, {14349, 18081}, {20446, 20642}, {20453, 20454}, {20647, 20649}, {20648, 20650}
X(20643) = isotomic conjugate of isogonal conjugate of X(20602)
See X(20641).
X(20644) lies on these lines: {75, 292}, {304, 18050}, {17788, 18137}, {17789, 20453}, {18051, 20444}, {20641, 20652}, {20646, 20651}
See X(20641).
X(20645) lies on these lines: {75, 365}
See X(20641).
X(20646) lies on these lines: {75, 672}, {92, 264}, {561, 18137}, {661, 786}, {3262, 3693}, {18031, 20448}, {18138, 20444}, {20446, 20642}, {20644, 20651}
See X(20641).
X(20647) lies on these lines: {69, 3765}, {75, 1423}, {76, 12610}, {92, 264}, {192, 3262}, {20643, 20649}
See X(20641).
X(20648) lies on these lines: {75, 1931}, {92, 304}, {3765, 17762}, {20643, 20650}
See X(20641).
X(20649) lies on these lines: {75, 2053}, {20641, 20651}, {20643, 20647}
See X(20641).
X(20650) lies on these lines: {75, 2054}, {312, 18035}, {18137, 20452}, {20444, 20652}, {20643, 20648}
See X(20641).
X(20651) lies on these lines: {75, 3009}, {76, 85}, {772, 3250}, {3797, 18157}, {18051, 18137}, {20641, 20649}, {20644, 20646}
See X(20641).
X(20652) lies on these lines: {75, 2112}, {304, 20642}, {20444, 20650}, {20641, 20644}
See X(20655).
X(20653) lies on these lines:
See X(20655).
X(20654) lies on these lines:
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,20653), (2,8013), (6,20654), (31,(20655), (105,20656), (238,20657), (292,20658), (672,20659), (1423,20660), (1931,20661), (2053,20662), (2054,20663), (3009,20664), (2112,20665), (2054,20679)
Fifteen-one more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : a + c : a + b
m(A1) = b c (b + c)^2 (2 a + b + c) : -(a + c)^2 (a^3 + a^2 b - b^2 c - b c^2) : -(a + b)^2 (a^3 + a^2 c - b^2 c - b c^2)
m(A2) = -(b + c)^2 (a b^3 + b^4 + a c^3 + c^4) : -c (a + c)^2 (-a^2 b - a b^2 + b c^2 + c^3) : -b (a + b)^2 (b^3 - a^2 c + b^2 c - a c^2)
m(A3) = (b + c)^2 (a b + a c + b c) (a b + b^2 + a c + c^2) : -(a + c)^2 (a^4 + 2 a^3 b + a^2 b^2 + a^3 c + a^2 b c - a b^2 c - 2 a b c^2 - b^2 c^2 - a c^3 - b c^3) : -(a + b)^2 (a^4 + a^3 b - a b^3 + 2 a^3 c + a^2 b c - 2 a b^2 c - b^3 c + a^2 c^2 - a b c^2 - b^2 c^2)
m(A4) = (b + c)^2 (a + b + c) (a b^2 + b^3 + a c^2 + c^3) : -(a + c)^2 (a^3 b + a^2 b^2 + a^3 c + 2 a^2 b c + a b^2 c - a b c^2 - b^2 c^2 - a c^3 - 2 b c^3 - c^4) : -(a + b)^2 (a^3 b - a b^3 - b^4 + a^3 c + 2 a^2 b c - a b^2 c - 2 b^3 c + a^2 c^2 + a b c^2 - b^2 c^2)
where A1, A2, A3, A4 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = (b + c)^2 (a y + b y + a z + c z) : : , and m is the collineation indicated by (A,B,C,X(10); A'B'C',X(10)), where A' = 0 : a + c : a + b.
Let f(a,b,c,x,y,z) = (a+b)^3 (b-c) (a+c)^3 (a^6 b^2+3 a^5 b^3+3 a^4 b^4+a^3 b^5+4 a^5 b^2 c+7 a^4 b^3 c+2 a^3 b^4 c-3 a^2 b^5 c-2 a b^6 c+a^6 c^2+4 a^5 b c^2+6 a^4 b^2 c^2+a^3 b^3 c^2-7 a^2 b^4 c^2-5 a b^5 c^2+3 a^5 c^3+7 a^4 b c^3+a^3 b^2 c^3-8 a^2 b^3 c^3-6 a b^4 c^3+b^5 c^3+3 a^4 c^4+2 a^3 b c^4-7 a^2 b^2 c^4-6 a b^3 c^4+2 b^4 c^4+a^3 c^5-3 a^2 b c^5-5 a b^2 c^5+b^3 c^5-2 a b c^6) x^3-(a+b)^2 (a+c) (b+c)^3 (-3 a^6 b^3-7 a^5 b^4-5 a^4 b^5-a^3 b^6+6 a^7 b c+9 a^6 b^2 c-a^5 b^3 c-8 a^4 b^4 c-3 a^3 b^5 c+3 a^2 b^6 c+2 a b^7 c+9 a^6 b c^2+12 a^5 b^2 c^2+3 a^4 b^3 c^2+a^3 b^4 c^2+4 a^2 b^5 c^2+3 a b^6 c^2-3 a^6 c^3+a^5 b c^3+3 a^4 b^2 c^3+a^2 b^4 c^3-a b^5 c^3-b^6 c^3-5 a^5 c^4-4 a^4 b c^4-a^3 b^2 c^4+a^2 b^3 c^4-4 a b^4 c^4-3 b^5 c^4-a^4 c^5-3 a^3 b c^5-a b^3 c^5-3 b^4 c^5+a^3 c^6-a^2 b c^6+a b^2 c^6-b^3 c^6) y^2 z+(a+b) (a+c)^2 (b+c)^3 (-3 a^6 b^3-5 a^5 b^4-a^4 b^5+a^3 b^6+6 a^7 b c+9 a^6 b^2 c+a^5 b^3 c-4 a^4 b^4 c-3 a^3 b^5 c-a^2 b^6 c+9 a^6 b c^2+12 a^5 b^2 c^2+3 a^4 b^3 c^2-a^3 b^4 c^2+a b^6 c^2-3 a^6 c^3-a^5 b c^3+3 a^4 b^2 c^3+a^2 b^4 c^3-a b^5 c^3-b^6 c^3-7 a^5 c^4-8 a^4 b c^4+a^3 b^2 c^4+a^2 b^3 c^4-4 a b^4 c^4-3 b^5 c^4-5 a^4 c^5-3 a^3 b c^5+4 a^2 b^2 c^5-a b^3 c^5-3 b^4 c^5-a^3 c^6+3 a^2 b c^6+3 a b^2 c^6-b^3 c^6+2 a b c^7) y z^2 , where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) + 2 a (a-b) b (a-c) (b-c) c (-b^2+a c) (a^2-b c) (a b-c^2) x y z 2 (a-b) (a+b)^2 (a-c) (b-c) (a+c)^2 (b+c)^2 (a+b+c) (a^3 b^2+a^2 b^3+a^3 c^2+b^3 c^2+a^2 c^3+b^2 c^3) x y z = 0. (Peter Moses, August 8, 2018)
X(20655) lies on these lines: {10, 31}, {3613, 15523}, {8013, 20657}, {17757, 20653}
See X(20655).
X(20656) lies on these lines: {10, 105}, {20482, 20653}, {20657, 20659}
See X(20655).
X(20657) lies on these lines: {10, 82}, {12, 594}, {2886, 15523}, {3178, 4360}, {4062, 17724}, {8013, 20655}, {20656, 20659}, {20661, 20679}
See X(20655).
X(20658) lies on these lines: {10, 292}, {594, 6543}, {20484, 20654}, {20488, 20491}
See X(20655).
X(20659) lies on these lines: {10, 672}, {210, 8013}, {313, 20632}, {661, 20483}, {3613, 15523}, {20656, 20657}
See X(20655).
X(20660) lies on these lines: {10, 1423}, {210, 8013}
See X(20655).
X(20661) lies on these lines: {10, 1931}, {17757, 20653}, {20657, 20679}
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,6), (2,213), (6,42), (31,39), (105,20662), (238,673), (292,20663), (365,20664), (672,223), (1423,20665), (1931,20666), (2053,20667), (2054,20668), (3009,20669), (2112,20670), (20332,20671)
Twenty-four more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : b^2 : c^2
m(A') = a^2 (Sqrt[b] + Sqrt[c]) : - b^2 (Sqrt[a] - Sqrt[c]) : - c^2 (Sqrt[a] - Sqrt[b])
m(A1) = a^2 (b + c) : b^2 (b - a) : c^2 (c - a)
m(A2) = a^2 (b^2 + c^2), b^2 c (c - b), b c^2 (b - c)
m(A3) = 2 a^2 (a b + a c + b c) : b^2 (-a^2 + b c) : c^2 (-a^2 + b c)
m(A4) = a^2 (b + c) (a + b + c) : b^2 (c^2 - a b) : c^2 (b^2 - a c)
m(A5) = -a^2 (2 a^2 - a b + b^2 - a c - 2 b c + c^2) : b^2 (-2 a^2 - a c + b c - c^2) : c^2 (-2 a^2 - a b - b^2 + b c)
m(A6) = a^3 (a + b + c) (a b - b^2 + a c - c^2) : -b^2 (a^2 + b^2 - a c - b c) (-a^2 + a b - a c - 2 c^2) : -c^2 (-a^2 - a b - 2 b^2 + a c) (a^2 - a b - b c + c^2)
where A1, A2, A3, A4, A5, A6 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = a^3 (c y + b z) : : , and m is the collineation indicated by (A,B,C,X(1); A'B'C',X(6)), where A' = 0 : b^2 : c^2.
Let f(a,b,c,x,y,z) = b^6 (b-c) c^6 (a^2-b c) x^3-a^6 b^2 c^4 (a^2 b-a b^2+2 a^2 c-a c^2-b c^2) y^2 z+a^6 b^4 c^2 (2 a^2 b-a b^2+a^2 c-b^2 c-a c^2) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 8, 2018)
X(20662) lies on these lines: {6, 692}, {39, 41}, {56, 101}, {213, 1015}, {292, 2279}, {294, 5091}, {672, 2223}, {1017, 1055}, {1026, 19593}, {1423, 1743}, {1642, 17464}, {2348, 3008}, {3675, 9502}, {3768, 8658}, {9321, 15615}
See X(20662).
X(20663) lies on these lines: {6, 292}, {31, 43}, {39, 20670}, {42, 20457}, {238, 239}, {748, 17026}, {899, 8622}, {1197, 1977}, {1691, 2210}, {1740, 3888}, {1923, 3216}, {2092, 2309}, {2209, 3169}, {2223, 20669}, {2876, 3778}, {4455, 8632}, {16476, 20158}, {20455, 20456}
See X(20662).
X(20664) lies on these lines: {1, 364}, {6, 18753}, {86, 20527}, {1220, 4181}
See X(20662).
X(20665) lies on these lines: {1, 20460}, {2, 7167}, {6, 893}, {8, 3495}, {9, 2319}, {31, 32}, {38, 2170}, {42, 263}, {43, 165}, {55, 7077}, {57, 20459}, {63, 194}, {184, 18038}, {190, 7033}, {292, 2162}, {894, 19591}, {1334, 4512}, {1397, 19554}, {2112, 9306}, {2275, 7248}, {2311, 2344}, {2361, 9447}, {3061, 3794}, {3116, 7032}, {3185, 9454}, {3271, 16588}, {3507, 3730}, {3685, 7075}, {4020, 16502}, {4253, 17795}, {4362, 5282}, {11031, 17451}, {14936, 20670}
X(20665) = isogonal conjugate of isotomic conjugate of X(3061)
See X(20662).
X(20666) lies on these lines: {3, 6}, {9, 2959}, {35, 2653}, {115, 516}, {512, 798}, {672, 20668}, {902, 3124}, {966, 20558}, {1155, 16592}, {1213, 20546}, {1500, 2670}, {1914, 20461}, {2054, 3747}, {2108, 2238}, {2702, 17735}, {3496, 5184}, {10026, 17770}
See X(20662).
X(20667) lies on these lines: {6, 20676}, {39, 20669}, {43, 165}, {292, 694}, {511, 20460}, {1334, 1655}, {3501, 17350}
See X(20662).
X(20668) lies on these lines: {6, 20677}, {42, 20670}, {58, 101}, {672, 20666}, {1757, 8298}, {2308, 5147}
See X(20662).
X(20669) lies on these lines: {1, 6}, {39, 20667}, {239, 20332}, {667, 6373}, {672, 20457}, {899, 1977}, {1575, 18793}, {2162, 16569}, {2223, 20663}, {2235, 4974}, {2308, 8622}, {8054, 8620}, {20456, 20670}
X(20669) = isogonal conjugate of antitomic conjugate of X(38247)
See X(20662).
X(20670) lies on these lines: {6, 692}, {39, 20663}, {42, 20668}, {44, 9018}, {109, 181}, {291, 2144}, {511, 1757}, {665, 3572}, {984, 2810}, {1469, 2114}, {1654, 3888}, {3688, 9016}, {14936, 20665}, {20456, 20669}
See X(20662).
X(20671) lies on the Brocard inellipse and these lines: {1, 39}, {6, 727}, {32, 8671}, {42, 1977}, {43, 16557}, {76, 1574}, {194, 668}, {537, 3774}, {538, 13466}, {672, 20457}, {726, 1575}, {1569, 2787}, {2092, 3029}, {2810, 3094}, {14936, 20665}, {17756, 17794}
X(20671) = refection of X(1015) in X(39)
X(20671) = antipode of X(1015) in Brocard inellipse
X(20671) = barycentric square of X(1575)
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,6), (2,2176), (6,55), (31,3), (105,20672), (238,17735), (292,2110), (365,20673), (1423,20674), (1931,20675), (2053,20676), (2054,20677), (3009,238), (2112,20678)
Twenty-four more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = -a^2 : b^2 : c^2
m(A') = a^2 (Sqrt[a] + Sqrt[b] + Sqrt[c]) : - b^2 (Sqrt[a] + Sqrt[b] - Sqrt[c]) : - c^2 (Sqrt[a] - Sqrt[b] + Sqrt[c])
m(A1) = a^2 (a + b + c) : b^2 (-a + b - c) : c^2 (-a - b + c)
m(A2) = a^2 (b^2 + b c + c^2) : -b^2 (b^2 + b c - c^2) : -c^2 (-b^2 + b c + c^2)
m(A3) = -a (a^2 + 3 a b + 3 a c + 2 b c) : b^2 (a + b + c) : c^2 (a + b + c)
m(A4) = a^2 (2 a b + b^2 + 2 a c + 3 b c + c^2) : -b^2 (2 a b + b^2 + b c - c^2) : -c^2 (-b^2 + 2 a c + b c + c^2)
m(A5) = a^2 (a^2 - 2 a b + b^2 - 2 a c - 2 b c + c^2) : -b^2 (-a + b - c) (a + b + c) : (a + b - c) c^2 (a + b + c)
m(A6) = a^2 (a^2 - b c) (a^2 - 2 a b + b^2 - 2 a c - 2 b c + c^2) : -b^2 (a^4 - 2 a^3 b + a^2 b^2 - a^2 b c + 4 a b^2 c + b^3 c + a^2 c^2 - 2 a b c^2 + 2 b^2 c^2 - 2 a c^3 - 3 b c^3) : -c^2 (a^4 + a^2 b^2 - 2 a b^3 - 2 a^3 c - a^2 b c - 2 a b^2 c - 3 b^3 c + a^2 c^2 + 4 a b c^2 + 2 b^2 c^2 + b c^3)
where A1, A2, A3, A4, A5, A6 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = a^2 (- x/a + b/y + c/z) : b^2 (x/a - b/y + c/z) : c^2 (x/a + b/y - c/z), and m is the collineation indicated by (A,B,C,X(1); A'B'C',X(6)), where A' = a^2 : b^2 : c^2.
Let f(a,b,c,x,y,z) = b^5 (b-c) c^5 (a+b+c) x^3-a^5 b c^3 (a^2 b+a b^2+a^2 c-a c^2-2 b c^2) y^2 z+a^5 b^3 c (a^2 b-a b^2+a^2 c-2 b^2 c+a c^2) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 8, 2018)
X(20672) lies on these lines: {3, 101}, {6, 692}, {9, 8245}, {37, 16560}, {41, 2276}, {56, 292}, {672, 2112}, {910, 9441}, {1015, 1191}, {1642, 16550}, {1914, 8647}, {2223, 16514}, {2279, 17962}, {3196, 8658}, {5091, 18785}, {6996, 17747}, {9508, 9509}, {16549, 19329}, {16777, 17463}
See X(20672).
X(20673) lies on these lines: {6, 18753}, {55, 365}
See X(20672).
X(20674) lies on these lines: {6, 893}, {9, 165}, {55, 19586}, {197, 20678}, {198, 17735}, {649, 4191}, {1615, 2110}, {2176, 2223}, {4650, 5022}, {16969, 20471}
See X(20672).
X(20675) lies on these lines: {3, 6}, {37, 2959}, {55, 2248}, {238, 9509}, {1213, 20558}, {2702, 20472}, {14712, 17688}, {17735, 20677}
See X(20672).
X(20676) lies on these lines: {3, 238}, {6, 20667}, {55, 192}, {198, 17735}, {1486, 20473}, {2053, 17792}, {2076, 20471}, {3010, 3556}
See X(20672).
X(20677) lies on these lines: {1, 20474}, {6, 20668}, {31, 110}, {55, 846}, {2108, 4455}, {2276, 2503}, {3571, 8300}, {4650, 16575}, {8301, 13174}, {17735, 20675}
See X(20672).
X(20678) lies on these lines: {3, 2110}, {6, 692}, {25, 5364}, {55, 846}, {56, 2114}, {109, 1460}, {197, 20674}, {238, 17798}, {2223, 3220}, {8301, 17755}, {10828, 14974}
See X(20655).
X(20679) lies on these lines: {10, 2054}, {15523, 20490}, {20657, 20661}
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,37), (2,1500), (6,756), (31,3954), (105,20680), (238,3930), (292,20681), (365,20683), (672,20683), (1423,20684), (1931,20685), (2053,20686), (2054,20687), (3009,20688), (2112,20689), (20332,20690)
Twenty-four more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : b(a + c) : c(b + a)
m(A') = -a (Sqrt[b] + Sqrt[c]) (b + c) : b (Sqrt[a] - Sqrt[c]) (a + c) : (Sqrt[a] - Sqrt[b]) (a + b) c
m(A1) = a (b + c)^2 : b (b - a) (c + a) : c (c - a)(b + a)
m(A2) = a (b + c) (b^2 + c^2) : b c (c - b) (a + c) : b c (b - c) (a + b)
m(A3) = 2 a (b + c) (a b + a c + b c) : - b (a + c) (a^2 - b c) : - c(a + b) (a^2 - b c)
m(A4) = a (b + c)^2 (a + b + c) : b (a + c) (c^2 - a b), c (a + b) (b^2 -a c)
m(A5) = -a (b + c) (2 a^2 - a b + b^2 - a c - 2 b c + c^2) : b (a + c) (-2 a^2 - a c + b c - c^2) : -(a + b) c (2 a^2 + a b + b^2 - b c)
m(A6) = a^2 (b + c) (a + b + c) (a b - b^2 + a c - c^2) : -b (a + c) (a^2 + b^2 - a c - b c) (-a^2 + a b - a c - 2 c^2) : (a + b) c (a^2 + a b + 2 b^2 - a c) (a^2 - a b - b c + c^2)
where A1, A2, A3, A4, A5, A6 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = a^2 (b + c) (c y + b z ) : : , and m is the collineation indicated by (A,B,C,X(1); A'B'C',X(37)), where A' = 0 : b (a + c) : c (b + a).
Let f(a,b,c,x,y,z) = b^3 (a+b)^3 (b-c) c^3 (a+c)^3 (a^2-b c) x^3-a^3 b (a+b)^2 c^2 (a+c) (b+c)^3 (a^2 b-a b^2+2 a^2 c-a c^2-b c^2) y^2 z+a^3 b^2 (a+b) c (a+c)^2 (b+c)^3 (2 a^2 b-a b^2+a^2 c-b^2 c-a c^2) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 11, 2018)
X(20680) lies on these lines: {37, 4068}, {55, 16550}, {65, 1018}, {1334, 3954}, {1500, 3125}, {3295, 5540}, {3675, 6184}, {3930, 20683}
See X(20680).
X(20681) lies on these lines: {1, 6651}, {37, 3122}, {42, 3952}, {190, 1911}, {192, 869}, {612, 1281}, {726, 3009}, {740, 3948}, {756, 20704}, {1962, 3121}, {3728, 4516}, {3954, 20689}, {4037, 4093}, {4094, 4155}, {17475, 20663}, {17755, 20356}, {20363, 20456}, {20683, 20688}, {20702, 20703}
See X(20680).
X(20682) lies on these lines: {1, 364}, {10, 4179}, {37, 20695}, {75, 18297}
See X(20680).
X(20683) lies on these lines: {1, 4517}, {6, 3688}, {9, 3779}, {10, 12}, {31, 5007}, {37, 4890}, {39, 869}, {42, 213}, {43, 12782}, {44, 674}, {55, 218}, {71, 4878}, {100, 2711}, {101, 17798}, {187, 18266}, {190, 6007}, {200, 3501}, {238, 9052}, {239, 14839}, {241, 1362}, {291, 2664}, {511, 1757}, {512, 661}, {518, 3717}, {524, 4553}, {527, 4014}, {594, 4111}, {612, 17750}, {650, 9320}, {668, 3978}, {672, 2223}, {692, 17796}, {740, 20694}, {756, 3954}, {872, 2092}, {908, 20544}, {984, 4260}, {1002, 5308}, {1015, 3009}, {1017, 8626}, {1018, 4433}, {1026, 4447}, {1279, 9049}, {1402, 2318}, {1458, 14626}, {1463, 5850}, {1469, 5223}, {1631, 3204}, {1743, 3056}, {1931, 3110}, {2175, 2911}, {2238, 18785}, {2245, 4557}, {2808, 9441}, {2810, 3792}, {3008, 20358}, {3059, 12723}, {3303, 16466}, {3661, 3681}, {3751, 3781}, {3789, 17308}, {3799, 6542}, {3873, 17244}, {3888, 20072}, {3930, 20680}, {3948, 3952}, {3967, 4044}, {3974, 10449}, {4259, 5220}, {4416, 17792}, {4422, 9054}, {4531, 4849}, {4661, 17230}, {5179, 5532}, {5247, 10544}, {6376, 18045}, {7322, 11518}, {9038, 17374}, {13476, 17245}, {17049, 17277}, {20681, 20688}, {20692, 20693}
See X(20680).
X(20684) lies on these lines: {10, 20707}, {37, 20697}, {41, 3190}, {42, 213}, {55, 9447}, {226, 20706}, {306, 3948}, {1196, 3009}, {2170, 4847}, {2886, 20593}, {2887, 7239}, {3056, 20665}, {3061, 3705}, {3094, 20284}, {3688, 16588}, {3721, 18905}, {3778, 16584}, {3930, 3950}, {4876, 7081}, {5285, 19554}, {10544, 20460}, {20689, 20690}
See X(20680).
X(20685) lies on these lines: {1, 6}, {2238, 20708}, {3125, 20360}, {3930, 20687}, {4079, 4155}, {5277, 13610}, {9509, 20369}
See X(20680).
X(20686) lies on these lines: {37, 20699}, {3930, 3950}, {3954, 20688}
See X(20680).
X(20687) lies on these lines: {1, 39}, {37, 20700}, {756, 20689}, {3930, 20685}, {6541, 20693}, {16589, 20710}
See X(20680).
X(20688) lies on these lines: {10, 37}, {39, 192}, {512, 20706}, {538, 19565}, {726, 1015}, {3121, 3994}, {3175, 16584}, {3840, 17459}, {3912, 20343}, {3930, 20690}, {3954, 20686}, {4135, 16606}, {4358, 6377}, {4526, 6165}, {4704, 5283}, {4854, 16587}, {6378, 7230}, {17475, 20372}, {20681, 20683}, {20689, 20703}
See X(20680).
X(20689) lies on these lines: {37, 4068}, {756, 20687}, {3675, 20364}, {3954, 20681}, {20684, 20690}, {20688, 20703}
See X(20680).
X(20690) lies on these lines: {10, 762}, {37, 18793}, {756, 3121}, {3930, 20688}, {20684, 20689}
See X(20692).
X(20691) lies on these lines: {1, 1575}, {2, 17144}, {6, 979}, {8, 1107}, {10, 37}, {32, 8715}, {35, 5291}, {39, 519}, {42, 2229}, {43, 2176}, {44, 3730}, {55, 4426}, {65, 20692}, {72, 20693}, {76, 536}, {100, 172}, {101, 1939}, {145, 2275}, {192, 4110}, {213, 1018}, {518, 3094}, {528, 7745}, {535, 7756}, {574, 8666}, {672, 3780}, {978, 16969}, {980, 17294}, {1015, 3244}, {1045, 17792}, {1100, 5105}, {1125, 1574}, {1334, 2238}, {1475, 20331}, {1573, 3626}, {1698, 9331}, {1909, 17759}, {1914, 3871}, {2136, 9575}, {2277, 17314}, {2329, 3507}, {3053, 4421}, {3125, 3970}, {3159, 4103}, {3175, 3948}, {3216, 3230}, {3434, 9596}, {3436, 9598}, {3632, 16975}, {3661, 3666}, {3679, 5283}, {3701, 4037}, {3721, 3930}, {3752, 3912}, {3811, 9620}, {3813, 3815}, {3914, 20486}, {3954, 4006}, {3961, 16519}, {3992, 4099}, {4028, 18905}, {4125, 7230}, {4261, 10449}, {4263, 17355}, {4277, 17281}, {4386, 5687}, {4531, 4849}, {4595, 16742}, {4718, 6381}, {4734, 20284}, {4850, 17230}, {4852, 17034}, {4882, 16517}, {4970, 17459}, {5013, 12513}, {5247, 17735}, {5254, 12607}, {5277, 16785}, {6184, 12640}, {6603, 9367}, {6762, 9574}, {6765, 9593}, {9592, 12629}, {11194, 15815}, {16610, 17244}, {16696, 17372}, {17351, 17499}
X(20691) = complement of X(17144)
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,37), (2,20602), (6,210), (31,72), (105,20692), (238,20693), (292,20694), (365,20695), (672,20683), (1423,20697), (1931,20698), (2053,20699), (2054,20700), (3009,740), (2112,20701)
Twenty-one more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = - a(b + c) : b(a + c) : c(b + a)
m(A') = a (Sqrt[a] + Sqrt[b] + Sqrt[c]) (b + c) : - b (Sqrt[a] + Sqrt[b] - Sqrt[c]) (a + c), - c (a + b) (Sqrt[a] - Sqrt[b] + Sqrt[c])
m(A1) = a (b + c) (a + b + c) : b (- a + b - c) (a + c) : c (- a + c - b) (a + b)
m(A2) = a (b + c) (b^2 + b c + c^2) : b (a + c) (c^2 - b c - b^2) : c (a + b) (b^2 - b c - c^2)
m(A3) = - (b + c) (a^2 + 3 a b + 3 a c + 2 b c), b (a + c) (a + b + c), c (a + b) (a + b + c)
m(A4) = a (b + c) (2 a b + b^2 + 2 a c + 3 b c + c^2) : -b (a + c) (2 a b + b^2 + b c - c^2) : - c (a + b) (-b^2 + 2 a c + b c + c^2)
m(A5) = a (b + c) (a^2 - 2 a b + b^2 - 2 a c - 2 b c + c^2) : -b (-a + b - c) (a + c) (a + b + c) : c (a + b) (a + b - c) (a + b + c)
where A1, A2, A3, A4, A5 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = a (b + c) (-x/a + y/b + c/z) : : , and m is the collineation indicated by (A,B,C,X(1); A'B'C',X(37)), where A' = -a (c + a) : b (a + c) : c (b + a).
Let f(a,b,c,x,y,z) = b^2 (a+b)^3 (b-c) c^2 (a+c)^3 (a+b+c) x^3-a^2 (a+b)^2 c (a+c) (b+c)^3 (a^2 b+a b^2+a^2 c-a c^2-2 b c^2) y^2 z+a^2 b (a+b) (a+c)^2 (b+c)^3 (a^2 b-a b^2+a^2 c-2 b^2 c+a c^2) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 11, 2018)
(20692) lies on these lines: {37, 4068}, {65, 20691}, {72, 1018}, {910, 16550}, {1282, 20672}, {1334, 2503}, {2809, 6184}, {3125, 4646}, {3746, 5540}, {3930, 4433}, {20683, 20693}
See X(20692).
X(20693) lies on these lines: {1, 762}, {6, 3961}, {8, 9596}, {37, 42}, {44, 765}, {72, 20691}, {172, 4420}, {200, 4386}, {213, 4006}, {291, 518}, {312, 17299}, {319, 7779}, {519, 4103}, {594, 1215}, {661, 4132}, {740, 20716}, {899, 3726}, {1100, 3920}, {1255, 3723}, {1500, 3678}, {1574, 3874}, {1757, 8298}, {2276, 3681}, {2321, 4090}, {3214, 3721}, {3293, 3954}, {3509, 5524}, {3555, 16604}, {3711, 5275}, {3811, 4426}, {3936, 20483}, {3943, 3985}, {3952, 4037}, {4009, 4727}, {4015, 16589}, {4053, 20708}, {4568, 8682}, {4661, 17756}, {5529, 9259}, {5839, 20056}, {6048, 20271}, {6541, 20687}, {6542, 20529}, {9278, 20715}, {20683, 20692}, {20697, 20699}, {20698, 20700}
See X(20692).
X(20694) lies on these lines: {37, 3122}, {42, 2107}, {72, 20701}, {75, 4517}, {190, 7077}, {210, 321}, {335, 3799}, {518, 2113}, {740, 20683}, {14839, 17755}, {20714, 20715}
See X(20692).
X(20695) lies on these lines: {37, 20682}, {210, 4179}, {364, 20673}
X(20696) lies on the circumcircle and these lines: {595, 14665}, {689, 4600}
X(20696) = isogonal conjugate of X(20525)
X(20696) = X(i)-isoconjugate of X(j) for these (i,j): {1, 20525}, {513, 20352}, {514, 20372}
X(20696) = barycentric quotient X(i)/X(j) for these {i,j}: {101, 20352}, {692, 20372}
See X(20692).
X(20697) lies on these lines: {37, 20684}, {2321, 3967}, {3094, 3752}, {3740, 19584}, {4531, 4849}, {6184, 10440}, {20693, 20699}
See X(20692).
X(20698) lies on these lines: {1, 6}, {2238, 20360}, {20693, 20700}
See X(20692).
X(20699) lies on these lines: {37, 20686}, {72, 740}, {20693, 20697}
See X(20692).
X(20700) lies on these lines: {10, 20529}, {37, 20687}, {42, 81}, {210, 3773}, {4155, 18004}, {10026, 20720}, {20693, 20698}
See X(20692).
X(20701) lies on these lines: {37, 4068}, {72, 20694}, {210, 3773}, {740, 20715}, {2809, 20455}
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,756), (2,37), (6,3954), (31,7237), (105,20702), (238,20703), (292,20704), (365,20705), (672,20706), (1423,20707), (1931,20708), (2053,20709), (2054,20710), (3009,20711), (2112,20712)
Eighteen more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : b (c + a) : c(a + b)
m(A') = a (Sqrt[b] + Sqrt[c]) (b + c) (b - Sqrt[b] Sqrt[c] + c) : - b (Sqrt[a] - Sqrt[c]) (a + c) (a + Sqrt[a] Sqrt[c] + c) : -c (Sqrt[a] - Sqrt[b]) (a + b) (a + Sqrt[a] Sqrt[b] + b)
m(A1) = 2 a b c (b + c), - b (a + c) (a^2 - b c), - c (a + b) (a^2 - b c)
m(A2) = a (b + c)^2 (b^2 - b c + c^2) : b c (a + c) (c^2 - a b) : b (a + b) c (b^2 - a c)
m(A3) = a (b + c)^2 (a b + a c + b c) : - b (a + c) (a^3 + a^2 b + a^2 c - a b c - a c^2 - b c^2) : - (a + b) c (a^3 + a^2 b - a b^2 + a^2 c - a b c - b^2 c)
m(A4) = a (b + c) (a + b + c) (b^2 + c^2) : -b (a + c) (a^2 b + a^2 c + a b c - a c^2 - b c^2 - c^3) : - c (a + b) (a^2 b - a b^2 - b^3 + a^2 c + a b c - b^2 c)
m(A5) = a (b + c) (a^2 b + b^3 + a^2 c - 2 a b c - b^2 c - b c^2 + c^3) : b (a + c) (a^3 + a^2 b + 2 a^2 c - a b c - b c^2 + c^3) : c (a + b) (a^3 + 2 a^2 b + b^3 + a^2 c - a b c - b^2 c)
m(A6) = a (b + c) (a + b + c) (a^2 b^2 - a b^3 - b^3 c + a^2 c^2 + 2 b^2 c^2 - a c^3 - b c^3) : -b (a + c) (a^2 + b^2 - a c - b c) (-a^3 + a^2 b + a b c - 2 a c^2 - b c^2 - c^3) : c (a + b) (a^3 + 2 a b^2 + b^3 - a^2 c - a b c + b^2 c) (a^2 - a b - b c + c^2)
where A1, A2, A3, A4, A5, A6 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = a (b + c) (y + z) : : , and m is the collineation indicated by (A,B,C,X(1); A'B'C',X(37)), where A' = 0 : a + c : a + b.
Let f(a,b,c,x,y,z) = b^2 (a+b)^3 (b-c) c^2 (a+c)^3 (a^2-b c) (b^2+b c+c^2) x^3-a^2 (a+b)^2 c (a+c) (b+c)^3 (-2 a^3 b^3+3 a^4 b c+a b^4 c-a^3 c^3-b^3 c^3) y^2 z+a^2 b (a+b) (a+c)^2 (b+c)^3 (-a^3 b^3+3 a^4 b c-2 a^3 c^3-b^3 c^3+a b c^4) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 11, 2018)
X(20702) lies on these lines: {37, 4068}, {120, 20431}, {226, 3971}, {756, 20712}, {3675, 16593}, {16550, 20678}, {17464, 20455}, {20681, 20703}
See X(20702).
X(20703) lies on these lines: {37, 1918}, {42, 3970}, {756, 3954}, {1961, 17799}, {2643, 3943}, {3726, 20456}, {3836, 20432}, {3912, 4475}, {4118, 17243}, {4647, 6535}, {17241, 18168}, {17266, 18208}, {17267, 20274}, {17312, 18207}, {20681, 20702}, {20688, 20689}, {20707, 20709}, {20708, 20710}
See X(20702).
X(20704) lies on these lines: {37, 4368}, {756, 20681}, {2292, 3125}, {3930, 20688}, {5283, 18061}, {7237, 20712}, {17793, 20591}, {20333, 20433}, {20356, 20457}, {20706, 20711}
See X(20702).
X(20705) lies on these lines: {37, 20717}, {984, 20357}, {3773, 20485}, {20334, 20434}, {20527, 20592}
See X(20702).
X(20706) lies on these lines: {37, 65}, {75, 18055}, {226, 20684}, {244, 8620}, {335, 1959}, {390, 17452}, {512, 20688}, {518, 2170}, {740, 3930}, {984, 17451}, {1237, 4043}, {3726, 20363}, {3728, 3954}, {3774, 4642}, {3970, 3993}, {4006, 4709}, {4137, 17456}, {4645, 4876}, {4892, 7239}, {20335, 20435}, {20358, 20459}, {20681, 20702}, {20704, 20711}
See X(20702).
X(20707) lies on these lines: {8, 2170}, {10, 20684}, {37, 65}, {756, 5360}, {1959, 17752}, {3208, 17452}, {5836, 20593}, {16886, 20494}, {20258, 20436}, {20359, 20460}, {20703, 20709}
See X(20702).
X(20708) lies on these lines: {37, 171}, {181, 756}, {295, 14196}, {1255, 2298}, {2238, 20685}, {4037, 4071}, {4053, 20693}, {4526, 4979}, {10026, 20595}, {20337, 20437}, {20360, 20461}, {20703, 20710}
See X(20702).
X(20709) lies on these lines: {37, 20721}, {226, 3971}, {7237, 20711}, {20338, 20438}, {20361, 20462}, {20528, 20596}, {20703, 20707}
See X(20702).
X(20710) lies on these lines: {37, 2054}, {1655, 6625}, {3954, 20712}, {16589, 20687}, {20339, 20439}, {20362, 20463}, {20529, 20597}, {20703, 20708}
See X(20702).
X(20711) lies on these lines: {37, 42}, {244, 20530}, {3116, 18743}, {3123, 3263}, {3701, 7148}, {3778, 3971}, {7237, 20709}, {20340, 20440}, {20363, 20464}, {20704, 20706}
See X(20702).
X(20712) lies on these lines: {37, 20724}, {756, 20702}, {3954, 20710}, {7237, 20704}, {20341, 20441}, {20364, 20465}, {20531, 20599}
See X(20714).
X(20713) lies on these lines: {37, 1918}, {42, 4016}, {72, 3696}, {141, 760}, {210, 8013}, {517, 3818}, {518, 4523}, {692, 5279}, {758, 4085}, {1234, 4463}, {1631, 1759}, {1824, 14973}, {2239, 4118}, {3061, 3941}, {3663, 9020}, {3681, 5564}, {3970, 4068}, {4716, 5904}, {6327, 20444}, {20716, 20724}, {20721, 20723}
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,210), (2,37), (6,72), (31,20713), (105,20714), (238,20715), (292,20716), (365,20717), (672,20718), (1423,20719), (1931,20720), (2053,20721), (2054,20722), (3009,20723), (2112,20724)
Twenty-one more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = a (b + c) : -b (a + c) : - c (a + b)
m(A') = a (b + c) (a^(3/2) + b^(3/2) + c^(3/2)) : -b (a + c) (a^(3/2) + b^(3/2) - c^(3/2)) : - c (a + b) (a^(3/2) - b^(3/2) + c^(3/2))
m(A1) = (b + c) (a^2 + 2 b c) : -a b (a + c) : -a c (a + b)
m(A2) = a (b + c) (b^3 + a b c + c^3) : -b (a + c) (b^3 + a b c - c^3) : - c (a + b) (-b^3 + a b c + c^3)
m(A3) = -a (b + c) (a^3 + a^2 b + a b^2 + a^2 c + 2 a b c + b^2 c + a c^2 + b c^2) : b (a + c) (a^3 + a^2 b + a b^2 + a^2 c + b^2 c - a c^2 - b c^2) : c (a + b) (a^3 + a^2 b - a b^2 + a^2 c - b^2 c + a c^2 + b c^2)
m(A4) = a (b + c) (a^2 b + a b^2 + b^3 + a^2 c + a b c + b^2 c + a c^2 + b c^2 + c^3) : -b (a + c) (a^2 b + a b^2 + b^3 + a^2 c + a b c + b^2 c - a c^2 - b c^2 - c^3) : - c (a + b) (a^2 b - a b^2 - b^3 + a^2 c + a b c - b^2 c + a c^2 + b c^2 + c^3)
m(A5) = a (b + c) (a^3 - b^3 + 2 a b c + b^2 c + b c^2 - c^3) : b (a + c) (-a^3 + b^3 - 2 a^2 c - b^2 c + b c^2 - c^3) : - c (a + b) (a^3 + 2 a^2 b + b^3 - b^2 c + b c^2 - c^3)
where A1, A2, A3, A4, A5 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = a (b + c) (- x + y + z) : : , and m is the collineation indicated by (A,B,C,X(2); A'B'C',X(37)), where A' = - b - c : a + c : a + b.
Let f(a,b,c,x,y,z) = a b (a+b)^3 (b-c) c (a+c)^3 (b^2+b c+c^2) x^3-a (a+b)^2 c (a+c) (b+c)^3 (a^4+a b^3-b^2 c^2-a c^3) y^2 z+a b (a+b) (a+c)^2 (b+c)^3 (a^4-a b^3-b^2 c^2+a c^3) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 11, 2018)
X(20714) lies on these lines: {37, 4068}, {210, 15523}, {2809, 16593}, {16550, 20468}, {20344, 20445}, {20694, 20715}
See X(20714).
X(20715) lies on these lines: {10, 12}, {37, 1918}, {42, 2240}, {55, 3496}, {171, 17799}, {239, 335}, {354, 17023}, {512, 3700}, {740, 20701}, {756, 2295}, {760, 3912}, {960, 16830}, {982, 17795}, {1086, 9020}, {1824, 1840}, {1959, 4447}, {2239, 20590}, {2330, 5279}, {3509, 17798}, {3683, 16601}, {3689, 5011}, {3744, 12194}, {3869, 4517}, {3930, 4433}, {3948, 20716}, {4053, 4557}, {4645, 17789}, {5044, 19856}, {9278, 20693}, {17770, 20670}, {20694, 20714}, {20719, 20721}, {20720, 20722}
See X(20714).
X(20716) lies on these lines: {10, 115}, {37, 4368}, {149, 3706}, {190, 1281}, {210, 321}, {312, 3416}, {335, 9507}, {350, 518}, {668, 18035}, {740, 20693}, {760, 6381}, {804, 18004}, {984, 4713}, {1215, 4026}, {2795, 4568}, {3755, 4090}, {3932, 3985}, {3948, 20715}, {4009, 5057}, {8301, 17738}, {9470, 18034}, {17205, 19895}, {20345, 20446}, {20713, 20724}, {20718, 20723}
See X(20714).
X(20717) lies on these lines: {37, 20705}, {510, 20469}, {20346, 20447}
See X(20714).
X(20718) lies on these lines: {1, 3286}, {8, 3770}, {10, 15281}, {30, 511}, {37, 65}, {40, 15624}, {72, 3696}, {75, 3869}, {181, 4415}, {191, 18180}, {209, 3914}, {226, 15282}, {321, 14973}, {354, 1962}, {672, 20593}, {846, 18165}, {872, 4642}, {896, 18191}, {942, 3743}, {960, 3739}, {984, 1756}, {1046, 18178}, {1155, 3724}, {1279, 3747}, {1319, 12081}, {1385, 5496}, {1469, 17276}, {1829, 1839}, {1858, 14053}, {1959, 16728}, {2262, 3958}, {2293, 2650}, {3678, 4732}, {3681, 17163}, {3690, 3925}, {3704, 10381}, {3725, 3752}, {3742, 10180}, {3753, 19870}, {3754, 3842}, {3781, 5880}, {3812, 4698}, {3874, 4065}, {3909, 17491}, {3917, 11246}, {3928, 10439}, {3993, 4084}, {4043, 17751}, {4067, 4709}, {4553, 4645}, {5091, 5096}, {5695, 10477}, {7235, 16732}, {7957, 18673}, {11684, 18722}, {14752, 17449}, {20347, 20448}, {20367, 20470}, {20694, 20714}, {20716, 20723}
See X(20714).
X(20719) lies on these lines: {37, 65}, {72, 4095}, {210, 5360}, {517, 3061}, {672, 20594}, {2262, 2345}, {2276, 3057}, {16969, 20358}, {20348, 20449}, {20368, 20471}, {20715, 20721}
See X(20714).
X(20720) lies on these lines: {37, 171}, {210, 8013}, {319, 321}, {513, 4024}, {10026, 20700}, {20349, 20450}, {20369, 20472}, {20715, 20722}
See X(20714).
X(20721) lies on these lines: {37, 20709}, {20350, 20451}, {20370, 20473}, {20713, 20723}, {20715, 20719}
See X(20714).
X(20722) lies on these lines: {10, 20529}, {37, 2054}, {72, 20724}, {319, 4553}, {20351, 20452}, {20371, 20474}, {20715, 20720}
See X(20714).
X(20723) lies on these lines: {37, 42}, {518, 17793}, {899, 20598}, {2388, 4103}, {4010, 4036}, {20352, 20453}, {20372, 20475}, {20713, 20721}, {20716, 20718}
See X(20714).
X(20724) lies on these lines: {37, 20712}, {72, 20722}, {210, 15523}, {20353, 20454}, {20373, 20476}, {20713, 20716}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28015.
X(20725) lies on these lines: {3, 1514}, {20, 64}, {30, 125}, {110, 15311}, {550, 10539}, {1499, 6333}, {1657, 12359}, {2071, 10117}, {2420, 15341}, {2777, 11064}, {3534, 4549}, {3564, 10990}, {5159, 13202}, {5504, 10293}, {5876, 12103}, {6723, 10151}, {12112, 17538}, {12358, 14915}
X(20725) = isogonal conjugate of X(20726)
X(20725) = X(1514)-of-ABC-X(3)-reflections-triangle
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28015.
X(20726) lies on this line: {154, 15035
X(20726) = isogonal conjugate of X(20725)
See X(20728).
X(20727) lies on these lines: {3, 9247}, {10, 14963}, {71, 73}, {2275, 3056}, {2887, 3061}, {3399, 7594}, {3721, 18905}, {3784, 20783}, {3917, 20731}, {3949, 4101}, {4020, 11573}, {4136, 7239}, {7117, 20738}, {20730, 20737}, {20734, 20736}, {20819, 20823}, {20827, 20829}
X(20727) = isogonal conjugate of polar conjugate of X(2887)
X(20727) = isotomic conjugate of polar conjugate of X(3778)
X(20727) = {X(71),X(73)}-harmonic conjugate of X(22061)
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,71), (2,3), (6,3917), (31,20727), (105,20728), (238,20729), (292,20730), (672,20731), (1423,20732), (1931,20733), (2053,20734), (2054,20735), (3009,20736), (2112,20737), (20332,20738)
Eighteen more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : sin 2B : sin 2C
m(A') = - (Sqrt[b] + Sqrt[c]) (b - Sqrt[b] Sqrt[c] + c) sin 2A : (Sqrt[a] - Sqrt[c]) (a + Sqrt[a] Sqrt[c] + c) sin 2B : (Sqrt[a] - Sqrt[b]) (a + Sqrt[a] Sqrt[b] + b) sin 2C
m(A1) = 2 b c sin 2A : (a^2 - b c) sin 2B : (a^2 -b c) sin 2C
m(A2) = (b + c) (b^2 - b c + c^2) sin 2A: c (c^2 - a b) sin 2B : b (b^2 - a c) sin 2C
m(A3) = (b + c) (a b + a c + b c) sin 2A : - (a^3 + a^2 b + a^2 c - a b c - a c^2 - b c^2) sin 2B : - (a^3 + a^2 b - a b^2 + a^2 c - a b c - b^2 c) sin 2C
m(A4) = - (a + b + c) (b^2 + c^2) sin 2A : (a^2 b + a^2 c + a b c - a c^2 - b c^2 - c^3) sin 2B : (a^2 b - a b^2 - b^3 + a^2 c + a b c - b^2 c) sin 2C
where A1, A2, A3, A4 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = (y + z) sin 2A : : , and m is the collineation indicated by (A,B,C,X(2); A'B'C',X(3)), where A' = 0 : sin 2B : sin 2C.
Let f(a,b,c,x,y,z) = b^5 (b-c) c^5 (a^2-b c) (a^2+b^2-c^2)^3 (a^2-b^2+c^2)^3 (b^2+b c+c^2) x^3+a^5 b c^3 (a^2-b^2-c^2)^3 (a^2+b^2-c^2)^2 (a^2-b^2+c^2) (-2 a^3 b^3+3 a^4 b c+a b^4 c-a^3 c^3-b^3 c^3) y^2 z-a^5 b^3 c (a^2-b^2-c^2)^3 (a^2+b^2-c^2) (a^2-b^2+c^2)^2 (-a^3 b^3+3 a^4 b c-2 a^3 c^3-b^3 c^3+a b c^4) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 11, 2018)
X(20728) lies on these lines: {3, 906}, {39, 2280}, {71, 20737}, {77, 2197}, {665, 1642}, {1292, 8751}, {2293, 3778}, {18591, 20776}, {20729, 20731}
X(20728) = isogonal conjugate of polar conjugate of X(120)
X(20728) = isotomic conjugate of polar conjugate of X(20455)
See X(20728).
X(20729) lies on these lines: {3, 9247}, {48, 7293}, {71, 3917}, {3937, 20785}, {3949, 4001}, {20728, 20731}, {20732, 20734}, {20733, 20735}, {20736, 20738}, {20757, 20758}
See X(20728).
X(20730) lies on these lines: {3, 20742}, {71, 20750}, {1818, 20757}, {3917, 20822}, {3937, 20778}, {20727, 20737}, {20731, 20736}, {20820, 20821}
See X(20728).
X(20731) lies on these lines: {3, 73}, {77, 20753}, {1401, 18758}, {1458, 17798}, {1814, 1818}, {2635, 6996}, {2654, 13727}, {3917, 20727}, {3937, 20777}, {20728, 20729}, {20730, 20736}
See X(20728).
X(20732) lies on these lines: {3, 73}, {63, 20753}, {71, 3289}, {1364, 20737}, {1808, 1812}, {1936, 4203}, {2654, 4195}, {5145, 14547}, {20729, 20734}
X(20732) = isogonal conjugate of polar conjugate of X(20258)
X(20732) = isotomic conjugate of polar conjugate of X(20460)
See X(20728).
X(20733) lies on these lines: {3, 20746}, {71, 73}, {125, 914}, {7193, 20754}, {20729, 20735}
X(20733) = isogonal conjugate of polar conjugate of X(20337)
X(20733) = isotomic conjugate of polar conjugate of X(20461)
See X(20728).
X(20734) lies on these lines: {77, 2197}, {18591, 20783}, {20727, 20736}, {20729, 20732}
X(20734) = isogonal conjugate of polar conjugate of X(20338)
X(20734) = isotomic conjugate of polar conjugate of X(20462)
See X(20728).
X(20735) lies on these lines: {3, 17972}, {3917, 20737}, {20729, 20733}
X(20735) = isogonal conjugate of polar conjugate of X(20339)
X(20735) = isotomic conjugate of polar conjugate of X(20463)
See X(20728).
X(20736) lies on these lines: {3, 48}, {2524, 3049}, {20727, 20734}, {20729, 20738}, {20730, 20731}, {20737, 20821}
X(20736) = isogonal conjugate of polar conjugate of X(20340)
X(20736) = isotomic conjugate of polar conjugate of X(20464)
See X(20728).
X(20737) lies on these lines: {3, 20748}, {71, 20728}, {1364, 20732}, {3917, 20735}, {20727, 20730}, {20736, 20821}
X(20737) = isogonal conjugate of polar conjugate of X(20341)
X(20737) = isotomic conjugate of polar conjugate of X(20465)
See X(20728).
X(20738) lies on these lines: {63, 295}, {1364, 20732}, {7117, 20727}, {20729, 20736}
X(20738) = isogonal conjugate of polar conjugate of X(20343)
X(20738) = isotomic conjugate of polar conjugate of X(20467)
See X(20728).
X(20739) lies on these lines: {3, 9247}, {6, 10}, {48, 11573}, {219, 3157}, {394, 4001}, {4456, 14529}, {4574, 7078}, {6327, 17904}, {20742, 20748}, {20806, 20811}, {20815, 20817}
X(20739) = isogonal conjugate of polar conjugate of X(6327)
X(20739) = isotomic conjugate of polar conjugate of X(1631)
X(20739) = X(19)-isoconjugate of X(7357)
X(20739) = X(92)-isoconjugate of X(7087)
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,219), (2,3), (6,394), (31,20739), (105,20740), (238,20741), (292,20742), (365,20743), (672,20744), (1423,20745), (1931,20746), (3009,20747), (2112,20748)
Twenty-one more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = - sin 2A : sin 2B : sini 2C
m(A') = - (a^(3/2) + b^(3/2) + c^(3/2)) sin 2A : (a^(3/2) + b^(3/2) - c^(3/2)) sin 2B : (a^(3/2) - b^(3/2) + c^(3/2)) sin 2C
m(A1) = - (a^2 + 2 b c) sin 2A : sin 2B : sin 2C
m(A2) = - (b^3 + a b c + c^3) sin 2A: (b^3 + a b c - c^3) sin 2B : (c^3 + a b c - b^3) sin 2C
m(A3) = (a^3 + a^2 b + a b^2 + a^2 c + 2 a b c + b^2 c + a c^2 + b c^2) sin 2A : - (a^3 + a^2 b + a b^2 + a^2 c + b^2 c - a c^2 - b c^2) sin 2B : - (a^3 + a^2 b - a b^2 + a^2 c - b^2 c + a c^2 + b c^2) sin 2C
m(A4) = - (a^2 b + a b^2 + b^3 + a^2 c + a b c + b^2 c + a c^2 + b c^2 + c^3) sin 2A : (a^2 b + a b^2 + b^3 + a^2 c + a b c + b^2 c - a c^2 - b c^2 - c^3) sin 2B : (a^2 b - a b^2 - b^3 + a^2 c + a b c - b^2 c + a c^2 + b c^2 + c^3) sin 2C
m(A5) = (a^3 - b^3 + 2 a b c + b^2 c + b c^2 - c^3) sin 2A : (-a^3 + b^3 - 2 a^2 c - b^2 c + b c^2 - c^3) sin 2B : (-a^3 - 2 a^2 b - b^3 + b^2 c - b c^2 + c^3) sin 2C
where A1, A2, A3, A4, A5 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = (-x + y + z) sin 2A : : , and m is the collineation indicated by (A,B,C,X(2); A'B'C',X(3)), where A' = - sin 2A : sin 2B : sin 2C.
Let f(a,b,c,x,y,z) = b^3 (b-c) c^3 (a^2+b^2-c^2)^3 (a^2-b^2+c^2)^3 (b^2+b c+c^2) x^3+a^3 c^2 (a^2-b^2-c^2)^3 (a^2+b^2-c^2)^2 (a^2-b^2+c^2) (a^4+a b^3-b^2 c^2-a c^3) y^2 z-a^3 b^2 (a^2-b^2-c^2)^3 (a^2+b^2-c^2) (a^2-b^2+c^2)^2 (a^4-a b^3-b^2 c^2+a c^3) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 11, 2018)
X(20740) lies on these lines: {3, 906}, {6, 3939}, {219, 20748}, {4574, 7078}, {9605, 13006}, {20741, 20744}
See X(20740).
X(20741) lies on these lines: {3, 9247}, {6, 43}, {48, 3784}, {63, 77}, {71, 3955}, {295, 17972}, {521, 2522}, {579, 1397}, {1324, 14963}, {1758, 2323}, {1818, 20761}, {2201, 15310}, {3509, 5018}, {17798, 18262}, {20740, 20744}, {20747, 20809}, {20769, 20770}
X(20741) = isogonal conjugate of polar conjugate of X(4645)
X(20741) = isotomic conjugate of polar conjugate of X(17798)
X(20741) = X(19)-isoconjugate of X(7261)
X(20741) = X(92)-isoconjugate of X(8852)
See X(20740).
X(20742) lies on these lines: {3, 20730}, {6, 17755}, {63, 17972}, {69, 219}, {394, 20809}, {17976, 20769}, {20739, 20748}, {20744, 20747}, {20807, 20808}
X(20742) = isogonal conjugate of polar conjugate of X(20345)
X(20742) = isotomic conjugate of polar conjugate of X(8301)
X(20742) = X(19)-isoconjugate of X(2113)
See X(20740).
X(20743) lies on these lines: (none)
See X(20740).
X(20744) lies on these lines: {3, 73}, {6, 142}, {394, 4001}, {651, 6996}, {905, 4131}, {1814, 20811}, {3562, 13727}, {20740, 20741}, {20742, 20747}
X(20744) = isotomic conjugate of polar conjugate of X(20470)
See X(20740).
X(20745) lies on these lines: {3, 73}, {219, 3289}, {3562, 4195}
See X(20740).
X(20746) lies on these lines: {3, 20733}, {219, 3157}, {656, 7254}, {17972, 20800}
See X(20740).
X(20747) lies on these lines: {3, 48}, {6, 726}, {525, 3049}, {20741, 20809}, {20742, 20744}, {20748, 20808}
See X(20740).
X(20748) lies on these lines: {3, 20737}, {219, 20740}, {20739, 20742}, {20747, 20808}
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,3), (2,228), (6,71), (31,3917), (105,20749), (238,1818), (292,20750), (365,20751), (672,20752), (1423,20753), (1931,20754), (2053,20755), (2054,20756), (3009, 20757), (2112,20758), (20332,20759)
Twenty-four more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : sin 2B : sini 2C
m(A') = - (Sqrt[b] + Sqrt[c]) sin 2A : (Sqrt[a] - Sqrt[c]) sin 2B : (Sqrt[a] - Sqrt[b]) sin 2C
m(A1) = - (b + c) sin 2A : (a - b) sin2B : (a - c) sin 2C
m(A2) = - (b^2 + c^2) sin 2A : c (b - c) sin 2B : b (c - b) sin 2C
m(A3) = - 2 (a b + a c + b c) sin 2A : (a^2 - b c) sin 2B : (a^2 - b c) sin 2C
m(A4) = (b + c) (a + b + c) sin 2A : (c^2 - a b) sin 2B : c^2 (b^2 - a c) sin 2C
m(A5) = - (2 a^2 - a b + b^2 - a c - 2 b c + c^2) sin 2A : (-2 a^2 - a c + b c - c^2) sin 2B : (-2 a^2 - a b - b^2 + b c) sin 2C
m(A6) = - a (a + b + c) (a b - b^2 + a c - c^2) sin 2A : (a^2 + b^2 - a c - b c) (-a^2 + a b - a c - 2 c^2) sin 2B : (-a^2 - a b - 2 b^2 + a c) (a^2 - a b - b c + c^2) sin 2C
where A1, A2, A3, A4, A5, A6 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = (c y + b z) sin 2A : : , and m is the collineation indicated by (A,B,C,X(2); A'B'C',X(3)), where A' = 0 : sin 2B : sin 2C.
Let f(a,b,c,x,y,z) = b^6 (b-c) c^6 (a^2-b c) (a^2+b^2-c^2)^3 (a^2-b^2+c^2)^3 x^3+a^6 b^2 c^4 (a^2-b^2-c^2)^3 (a^2+b^2-c^2)^2 (a^2-b^2+c^2) (a^2 b-a b^2+2 a^2 c-a c^2-b c^2) y^2 z-a^6 b^4 c^2 (a^2-b^2-c^2)^3 (a^2+b^2-c^2) (a^2-b^2+c^2)^2 (2 a^2 b-a b^2+a^2 c-b^2 c-a c^2) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 11, 2018)
X(20749) lies on these lines: {3, 906}, {212, 1364}, {222, 1331}, {228, 3937}, {1279, 3021}, {1818, 20752}
X(20749) = isogonal conjugate of polar conjugate of X(16593)
See X(20749).
X(20750) lies on these lines: {3, 295}, {48, 1332}, {71, 20730}, {2638, 20753}, {3917, 20758}, {7117, 20822}, {8850, 17475}, {20728, 20729}, {20752, 20757}, {20777, 20785}
X(20750) = isogonal conjugate of polar conjugate of X(17793)
See X(20749).
X(20751) lies on these lines: {3, 20763}, {27, 20527}, {57, 367}, {58, 20664}
See X(20749).
X(20752) lies on these lines: {6, 354}, {41, 1496}, {48, 184}, {63, 77}, {71, 3917}, {101, 1951}, {112, 2749}, {213, 1468}, {295, 7193}, {518, 5089}, {520, 647}, {603, 1802}, {604, 5364}, {651, 10025}, {672, 1362}, {968, 2256}, {1455, 4559}, {1818, 20749}, {2196, 20777}, {2200, 4020}, {2223, 9455}, {2280, 20229}, {2284, 3693}, {2300, 3051}, {2323, 3509}, {2333, 16980}, {3063, 5098}, {3167, 20760}, {3230, 17439}, {4574, 5440}, {7078, 7124}, {17976, 20761}, {20750, 20757}, {20762, 20769}
X(20752) = X(19)-isoconjugate of X(2481)
X(20752) = X(92)-isoconjugate of X(105)
X(20752) = crossdifference of every pair of points on line X(4)X(885)
X(20752) = isogonal conjugate of polar conjugate of X(518)
X(20752) = isotomic conjugate of polar conjugate of X(2223)
See X(20749).
X(20753) lies on these lines: {3, 7015}, {48, 184}, {55, 1964}, {63, 20732}, {77, 20731}, {326, 1040}, {560, 2361}, {869, 2330}, {1818, 4855}, {2274, 2646}, {2275, 3056}, {2638, 20750}, {3270, 20758}
X(20753) = X(92)-isoconjugate of X(7132)
X(20753) = isogonal conjugate of polar conjugate of X(3061)
See X(20749).
X(20754) lies on these lines: {3, 49}, {647, 810}, {1818, 20756}, {3690, 15377}, {7193, 20733}
X(20754) = isogonal conjugate of polar conjugate of X(10026)
See X(20749).
X(20755) lies on these lines: {3, 20767}, {73, 295}, {1818, 4855}, {3917, 20757}
See X(20749).
X(20756) lies on these lines: {3, 20768}, {71, 20758}, {228, 295}, {1818, 20754}
See X(20749).
X(20757) lies on these lines: {3, 63}, {1818, 20730}, {3917, 20755}, {7117, 20821}, {20729, 20758}, {20750, 20752}
See X(20749).
X(20758) lies on these lines: {3, 906}, {71, 20756}, {1813, 2197}, {3270, 20753}, {3917, 20750}, {20729, 20757}
See X(20749).
X(20759) lies on these lines: {63, 295}, {71, 20787}, {1818, 20730}, {3270, 20753}
See X(20761).
X(20760) lies on these lines: {2, 20256}, {3, 63}, {6, 9017}, {7, 16056}, {8, 9840}, {9, 16058}, {41, 11328}, {43, 1403}, {48, 3955}, {55, 846}, {57, 16059}, {100, 11689}, {101, 9306}, {184, 1331}, {198, 3509}, {212, 7193}, {218, 5364}, {219, 7015}, {222, 295}, {329, 4192}, {394, 17976}, {497, 15507}, {511, 3190}, {518, 3185}, {851, 5905}, {859, 5208}, {894, 11358}, {908, 19540}, {968, 3295}, {1011, 3219}, {1215, 1376}, {1402, 3751}, {1707, 2223}, {1818, 3784}, {1824, 20430}, {1985, 20242}, {2200, 3504}, {2318, 3781}, {2352, 4641}, {2783, 17860}, {3157, 7016}, {3167, 20752}, {3173, 17975}, {3191, 10441}, {3218, 4191}, {3306, 16409}, {3868, 13738}, {4199, 17257}, {4203, 17350}, {4245, 15934}, {4385, 5687}, {4640, 15624}, {5223, 10434}, {5273, 8731}, {5437, 16421}, {5708, 16414}, {5748, 19546}, {6147, 16415}, {6745, 20498}, {7078, 20803}, {7124, 20812}, {7580, 10025}, {9318, 16379}, {12649, 13724}, {15650, 16287}, {16777, 18185}, {17441, 20254}
X(20760) = isogonal conjugate of polar conjugate of X(192)
X(20760) = isotomic conjugate of polar conjugate of X(2176)
X(20760) = crossdifference of every pair of points on line X(814)X(6591)
X(20760) = X(19)-isoconjugate of X(330)
X(20760) = X(92)-isoconjugate of X(2162)
X(20760) = {X(23161),X(23162)}-harmonic conjugate of X(23158)
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,3), (2,20760), (6,219), (31,394), (105,20761), (238,17976), (292,20762), (365,20763), (672,20753), (1423,20765), (1931,20766), (2053,20767), (2054,20768), (3009, 20769), (2112,20770)
Twenty-one more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = - sin 2A : sin 2B : sini 2C
m(A') = - (Sqrt[a] + Sqrt[b] + Sqrt[c]) sin 2A : (Sqrt[a] + Sqrt[b] - Sqrt[c]) sin 2B : (Sqrt[a] - Sqrt[b] + Sqrt[c]) sin 2C
m(A1) = - (a + b + c) sin 2A : (a - b + c) sin 2B : (a + b - c) sin 2C
m(A2) = - (b^2 + b c + c^2) sin 2A : (b^2 + b c - c^2) sin 2B : (c^2 + b c - b^2) sin 2C
m(A3) = (a^2 + 3 a b + 3 a c + 2 b c) sin 2A : - b c (a + b + c) sin 2B : - b c (a + b + c) sin 2C
m(A4) = - (2 a b + b^2 + 2 a c + 3 b c + c^2) sin 2A : (2 a b + b^2 + b c - c^2) sin 2B : (-b^2 + 2 a c + b c + c^2) sin 2C
m(A5) = - (a^2 - 2 a b + b^2 - 2 a c - 2 b c + c^2) sin 2A : (-a + b - c) (a + b + c) sin 2B : (-a + c - b) (a + b + c) sin 2C
m(A6) = - (a^2 - b c) (a^2 - 2 a b + b^2 - 2 a c - 2 b c + c^2) sin 2A : (a^4 - 2 a^3 b + a^2 b^2 - a^2 b c + 4 a b^2 c + b^3 c + a^2 c^2 - 2 a b c^2 + 2 b^2 c^2 - 2 a c^3 - 3 b c^3) sin 2B : (a^4 + a^2 b^2 - 2 a b^3 - 2 a^3 c - a^2 b c - 2 a b^2 c - 3 b^3 c + a^2 c^2 + 4 a b c^2 + 2 b^2 c^2 + b c^3) sin 2C
where A1, A2, A3, A4, A5, A6 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = (-x/a + y/b + z/c) sin 2A : : , and m is the collineation indicated by (A,B,C,X(1); A'B'C',X(3)), where A' = -sin 2A : sin 2B : sin 2C.
Let f(a,b,c,x,y,z) = b^5 (b-c) c^5 (a+b+c) (a^2+b^2-c^2)^3 (a^2-b^2+c^2)^3 x^3+a^5 b c^3 (a^2-b^2-c^2)^3 (a^2+b^2-c^2)^2 (a^2-b^2+c^2) (a^2 b+a b^2+a^2 c-a c^2-2 b c^2) y^2 z-a^5 b^3 c (a^2-b^2-c^2)^3 (a^2+b^2-c^2) (a^2-b^2+c^2)^2 (a^2 b-a b^2+a^2 c-2 b^2 c+a c^2) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 11, 2018)
X(20761) lies on these lines: {3, 906}, {43, 8298}, {48, 20786}, {212, 3781}, {219, 20778}, {222, 295}, {394, 1260}, {991, 14827}, {1282, 2114}, {1818, 20741}, {17976, 20752}
See X(20749).
X(20762) lies on these lines: {3, 295}, {69, 219}, {394, 20770}, {2284, 20672}, {20740, 20741}, {20752, 20769}, {20785, 20796}
See X(20749).
X(20763) lies on thei line: {3, 20751}
See X(20749).
X(20764) lies on these lines: {1, 3}, {8, 856}, {109, 6759}, {155, 17975}, {222, 20803}, {243, 6985}, {255, 8763}, {273, 3149}, {296, 1069}, {495, 18641}, {653, 1075}, {851, 1068}, {1092, 1813}, {1148, 1816}, {1410, 18446}, {1870, 13738}, {2055, 7335}, {2655, 8757}, {3157, 7016}, {3487, 6349}, {6056, 6760}, {6638, 20805}, {7049, 8762}, {7066, 14059}, {7515, 15325}, {8555, 19763}, {11374, 17073}, {11700, 15654}, {15905, 20818}
See X(20749).
X(20765) lies on these lines:
See X(20749).
X(20766) lies on these lines: {3, 49}, {17976, 20768}
See X(20749).
X(20767) lies on these lines: {3, 20755}, {219, 12215}, {222, 20801}, {394, 7124}, {7078, 17976}
See X(20749).
X(20768) lies on these lines: {3, 20756}, {48, 4558}, {219, 20770}, {17976, 20766}
See X(20749).
X(20769) lies on these lines: {1, 19310}, {2, 41}, {3, 63}, {7, 1958}, {9, 16367}, {36, 18206}, {48, 69}, {57, 11329}, {75, 18162}, {81, 1193}, {100, 2340}, {101, 2862}, {141, 2174}, {171, 869}, {193, 604}, {213, 5337}, {222, 7364}, {238, 2210}, {239, 385}, {241, 17966}, {284, 4357}, {297, 2202}, {306, 1799}, {319, 18042}, {320, 662}, {326, 7289}, {350, 2201}, {394, 7124}, {518, 17798}, {524, 7113}, {572, 4416}, {584, 4657}, {905, 4131}, {908, 6996}, {936, 19314}, {942, 19329}, {1580, 3783}, {1790, 4001}, {1812, 7116}, {1814, 1818}, {1959, 4511}, {2185, 6626}, {2187, 10565}, {2196, 20785}, {2239, 18266}, {2268, 17257}, {2271, 5256}, {2278, 4643}, {2323, 3882}, {2327, 18650}, {2329, 3661}, {3204, 17279}, {3218, 19308}, {3220, 16876}, {3306, 16412}, {3570, 3975}, {3666, 16519}, {3693, 20672}, {4251, 17023}, {4289, 17325}, {4303, 14868}, {5249, 16054}, {5294, 16061}, {6734, 6998}, {7120, 9308}, {7175, 17364}, {7269, 17868}, {8301, 20358}, {9310, 17316}, {9318, 16381}, {14953, 20347}, {1650 3, 17397}, {16738, 18724}, {16788, 17308}, {17976, 20742}, {20741, 20770}, {20752, 20762}
X(20769) = isogonal conjugate of polar conjugate of X(350)
X(20769) = isotomic conjugate of polar conjugate of X(238)
X(20769) = X(19)-isoconjugate of X(291)
X(20769) = X(92)-isoconjugate of X(1911)
X(20769) = crossdifference of every pair of points on line X(1824)X(6591) (the line through the polar conjugates of PU(10))
See X(20749).
X(20770) lies on these lines: {3, 906}, {6, 292}, {219, 20768}, {394, 20762}, {1813, 2286}, {20741, 20769}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28019.
X(20771 ) lies on these lines: {3, 9934}, {24, 110}, {25, 5504}, {30, 113}, {49, 16222}, {74, 15078}, {125, 12134}, {156, 14708}, {159, 15462}, {186, 12825}, {235, 17702}, {399, 8780}, {974, 6644}, {1112, 1147}, {1204, 5663}, {1899, 12419}, {1974, 14984}, {3043, 12824}, {5609, 11562}, {5972, 10282}, {6593, 11597}, {6642, 13198}, {7506, 11746}, {7723, 18350}, {9306, 12358}, {10111, 13567}, {11413, 15035}, {12041, 12162}, {12106, 12236}, {12133, 12901}, {12900, 18475}, {14643, 18404}, {15063, 17701}, {18474, 20304}
X(20771) = midpoint of X(24) and X(110)
X(20771) = reflection of X(125) in X(16238)
X(20771) = center of the circle through {X(24), X(110), X(1301), X(7471)}
X(20771) = {X(9306), X(13289)}-harmonic conjugate of X(12358)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28019.
X(20772 ) lies on these lines: {25, 110}, {30, 113}, {125, 6677}, {154, 15462}, {468, 12827}, {542, 13567}, {1092, 16105}, {1368, 5972}, {1595, 15115}, {1596, 17702}, {1625, 2502}, {1660, 15580}, {1995, 12099}, {2063, 9909}, {2393, 6593}, {2781, 9306}, {2854, 19136}, {3564, 12828}, {5020, 5622}, {5609, 6102}, {5651, 12041}, {5663, 6644}, {6642, 16270}, {7529, 15465}, {9140, 10546}, {10117, 13416}, {10294, 15741}, {10601, 13198}, {11441, 13148}, {14643, 18531}, {15087, 16222}, {15116, 16977}
X(20772) = midpoint of X(25) and X(110)
X(20772) = reflection of X(i) in X(j) for these (i,j): (125, 6677), (1368, 5972)
X(20772) = center of the circle through {X(25), X(110), X(7471), X(9064)}
X(20772) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1495, 5642, 16165), (5642, 16165, 1511)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28019.
X(20773 ) lies on these lines: {3, 12292}, {5, 12140}, {23, 3043}, {24, 14708}, {25, 12228}, {26, 110}, {30, 113}, {74, 18324}, {125, 10020}, {154, 2931}, {159, 19138}, {184, 12236}, {206, 14984}, {265, 10201}, {399, 14070}, {1658, 5663}, {1986, 2070}, {2854, 19154}, {3518, 16222}, {5609, 12107}, {5944, 10113}, {5972, 13371}, {7488, 7723}, {7502, 12358}, {7517, 15463}, {7525, 13416}, {7530, 15472}, {7556, 12219}, {7687, 18475}, {9714, 19504}, {10117, 15132}, {10226, 15030}, {10282, 15761}, {10533, 12892}, {10534, 12891}, {10540, 12825}, {10575, 12041}, {10733, 11464}, {11202, 12901}, {11597, 12824}, {12084, 15035}, {12085, 15040}, {12133, 18570}, {12295, 13367}, {12302, 17821}, {12596, 19153}, {14643, 18569}, {16111, 17701}
X(20773) = midpoint of X(i) and X(j) for these {i,j}: {26, 110}, {159, 19138}, {10117, 15132}
X(20773) = reflection of X(125) in X(10020)
X(20773) = center of the circle through {X(26), X(110), X(7471)}
See Tran Quang Hung and Randy Hutson, Hyacinthos 28021.
X(20774) lies on these lines: {4,542}, {25,6054}, {98,275}, {99,317}, {107,11005}, {114,6353}, {115,3087}, {147,6995}, {250,403}, {297,5182}, {393,5477}, {1304,16933}, {1596,6033}, {1632,5877}, {2782,18494}, {2790,5186}, {3088,10991}, {5984,7409}, {6034,6749}, {6055,8889}, {6748,11646}, {7378,11177}, {7487,14981}, {7577,14061}, {14639,18386}
X(20774) = perspector of ABC and cross-triangle of 3rd and 4th isodynamic-Dao triangles
See X(20776).
X(20775) lies on these lines: {3, 69}, {6, 160}, {22, 7774}, {25, 3087}, {39, 1843}, {48, 2196}, {71, 20777}, {95, 98}, {99, 9230}, {141, 1634}, {159, 3148}, {184, 418}, {206, 5063}, {216, 6467}, {217, 4173}, {228, 20785}, {264, 11257}, {311, 2782}, {317, 9744}, {325, 7467}, {417, 13367}, {427, 16030}, {524, 8266}, {570, 2393}, {1176, 4558}, {1974, 5065}, {3001, 17710}, {3135, 11402}, {3186, 7709}, {3269, 6751}, {3491, 14133}, {3618, 11328}, {3629, 5201}, {3796, 10607}, {5013, 9924}, {5106, 6375}, {5305, 11360}, {5421, 9969}, {6636, 7779}, {7485, 16990}, {7669, 15109}, {7738, 11325}, {9233, 14567}, {9973, 13351}, {11171, 11188}, {11574, 20819}, {13188, 18354}, {13334, 14913}, {15143, 17907}, {15905, 19125}, {16872, 17798}, {17423, 18475}, {20780, 20781}
X(20775) = crosssum of X(4) and X(264)
X(20775) = crosspoint of X(3) and X(184)
X(20775) = X(83)-isoconjugate of X(92)
X(20775) = crossdifference of every pair of points on line X(2489)X(4580)
X(20775) = isogonal conjugate of polar conjugate of X(39)
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,228), (2,20775), (6,3), (31,71), (105,20776), (238,20777), (292,20778), (365,20779), (672,20780), (1423,20781), (1931,20782), (2053,20783), (2054,20784, (3009, 20785), (2112,20786), (20332,20787)
Twenty-one more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : sin 2B : sini 2C
m(A') = - a^(1/2) (Sqrt[b] + Sqrt[c]) sin 2A : b^(1/2) (Sqrt[a] - Sqrt[c]) sin 2B : c^(1/2)(Sqrt[a] - Sqrt[b]) sin 2C
m(A1) = (b^2 + c^2) sin 2A : b (b - c) sin 2B : c (c - b) (a^2 + b^2 - c^2) sin 2C
m(A2) = a (b + c) sin 2A : c (a - b) sin 2B : b (a - c) sin 2C
m(A3) = (b + c)(a b + c a + b c) sin 2A : b (c^2 - a b) sin 2B : c (b^2 - a c) sin 2C
m(A4) = 2 a (a + b + c) sin 2A : (a^2 - b c) sin 2B : (a^2 - b c) sin 2C
m(A5) = - a (a b - b^2 + a c - c^2) sin 2A : b (-a^2 + a b - a c - 2 c^2) sin 2B : c (-a^2 - a b - 2 b^2 + a c) sin 2C
where A1, A2, A3, A4, A5 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = a^2 (c^2 y + b^2 z) sin 2A : : , and m is the collineation indicated by (A,B,C,X(6); A'B'C',X(3)), where A' = 0 : sin 2B : sin 2C.
X(20776) lies on these lines: {3, 1814}, {48, 2196}, {71, 3270}, {228, 3937}, {583, 3779}, {2223, 20455}, {18591, 20728}, {20777, 20780}
X(20776) = X(92)-isoconjugate of X(6185)
X(20776) = isogonal conjugate of polar conjugate of X(6184)
See X(20776).
X(20777) lies on these lines: {3, 63}, {31, 18758}, {55, 17448}, {71, 20775}, {184, 15373}, {212, 20781}, {237, 672}, {810, 822}, {854, 899}, {908, 19522}, {2196, 20752}, {3937, 20731}, {20750, 20785}, {20776, 20780}, {20782, 20784}
X(20777) = isogonal conjugate of polar conjugate of X(1575)
X(20777) = isotomic conjugate of polar conjugate of X(21760)
X(20777) = X(19)-isoconjugate of X(32020)
X(20777) = X(92)-isoconjugate of X(20332)
See X(20776).
X(20778) lies on these lines: {3, 295}, {63, 212}, {71, 11574}, {219, 20761}, {603, 6517}, {846, 16579}, {1282, 3939}, {1818, 20749}, {3509, 13329}, {3937, 20730}, {20780, 20785}
X(20778) = isogonal conjugate of polar conjugate of X(17755)
See X(20776).
X(20779) lies on these lines:
See X(20776).
X(20780) lies on these lines: {3, 20798}, {56, 20673}, {104, 4180}
X(20780) = isogonal conjugate of polar conjugate of X(3008)
See X(20776).
X(20781) lies on these lines: {3, 48}, {36, 1618}, {42, 1626}, {212, 1473}, {238, 1633}, {672, 5096}, {692, 1458}, {971, 2265}, {991, 2317}, {1279, 8647}, {1459, 1946}, {1471, 1486}, {2183, 3220}, {2261, 5732}, {2267, 5085}, {2269, 4265}, {3100, 16560}, {14547, 16064}, {20775, 20781}, {20776, 20777}, {20778, 20785}
See X(20776).
X(20782) lies on these lines: {3, 20800}, {71, 228}, {20777, 20784}
See X(20776).
X(20783) lies on these lines: {3, 7116}, {63, 69}, {212, 20777}, {222, 2196}, {3094, 20665}, {3784, 20727}, {18591, 20734}
See X(20776).
X(20784) lies on these lines: {3, 17972}, {71, 4558}, {20777, 20782}
See X(20776).
X(20785) lies on these lines: {6, 20284}, {9, 3840}, {48, 3955}, {63, 69}, {72, 4020}, {219, 20801}, {228, 20775}, {295, 1818}, {518, 1755}, {520, 647}, {1282, 2272}, {1463, 1575}, {2179, 3555}, {2183, 3509}, {2196, 20769}, {3169, 16557}, {3912, 20610}, {3937, 20729}, {7193, 20797}, {8608, 9026}, {8844, 9025}, {16973, 20665}, {17976, 20804}, {20750, 20777}, {20762, 20796}, {20778, 20780}
X(20785) = isotomic conjugate of polar conjugate of X(3009)
X(20785) = X(19)-isoconjugate of X(3226)
See X(20776).
X(20786) lies on these lines: {3, 17972}, {48, 20761}, {71, 11574}, {228, 3937}, {295, 1818}, {1331, 5314}, {1797, 1810}, {3781, 20797}, {20781, 20787}
See X(20776).
X(20787) lies on these lines: {3, 4561}, {71, 20759}, {20750, 20777}, {20781, 20786}
Let A'B'C' be the 3rd Conway triangle of ABC. Let A* = X(11)-of-AB'C' and define B* and C* cyclically. The Euler lines of AB*C*, BC*A*, CA*B* concur in X(20788). (César Lozada, August 11, 2018)
X(20788) lies on these lines: {1, 3}, {511, 10478}, {5208, 19645}, {10454, 15488}, {16343, 18180}
X(20788) = X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1764, 10439, 10441), (1764, 10470, 165)
Let A'B'C' be the Hutson-intouch triangle of ABC. Let A* = X(11)-of-AB'C' and define B* and C* cyclically. The Euler lines of AB*C*, BC*A*, CA*B* concur in X(20789). (César Lozada, Aug 11, 2018)
X(20789) lies on these lines: {1, 3}, {1329, 10179}, {1476, 17613}, {3476, 9856}, {3623, 5728}, {3880, 6691}, {5795, 18227}, {5854, 6738}, {6049, 10167}, {6944, 11373}, {8256, 11019}, {9947, 10944}, {10107, 18240}, {10914, 17567}, {12128, 12709}, {14923, 17626}
X(20789) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 3057, 12915), (1420, 1697, 165), (1697, 5919, 9957), (3476, 17622, 9856)
Let A'B'C' be the incircle-circles triangle of ABC. Let A* = X(11)-of-AB'C', and define B* and C* cyclically. The Euler lines of AB*C*, BC*A*, CA*B* concur in X(20790). (César Lozada, August 11, 2018)
X(20790) lies on these lines: {1, 3}, {3555, 17558}, {4666, 19521}, {5777, 15008}, {6846, 9947}, {6849, 18527}, {10578, 16845}, {10580, 17582}
X(20790) = X(16197)-of-incircle-circles-triangle
X(20790) = X(16198)-of-inverse-in-incircle-triangle
X(20790) = X(16201)-of-anti-Aquila-triangle
X(20790) = {X(3333), X(5049)}-harmonic conjugate of X(5045)
Let A'B'C' be the ABC-X3-reflections-triangle of ABC. Let A* = X(51)-of-AB'C', and define B* and C* cyclically. The Euler lines of AB*C*, BC*A*, CA*B* concur in X(20791). (César Lozada, August 11, 2018)
X(20791) lies on these lines: {2, 5656}, {3, 54}, {4, 5892}, {5, 11455}, {20, 51}, {22, 15053}, {30, 5640}, {52, 3528}, {74, 7514}, {140, 6241}, {143, 15696}, {154, 17928}, {182, 2071}, {185, 3523}, {186, 15080}, {373, 3839}, {376, 3060}, {382, 13364}, {389, 3522}, {511, 5032}, {546, 11465}, {549, 11459}, {550, 3567}, {568, 8703}, {631, 5891}, {632, 18439}, {974, 12273}, {1204, 13347}, {1216, 10299}, {1656, 11017}, {1657, 9781}, {2781, 5085}, {3090, 10575}, {3091, 6688}, {3520, 13336}, {3524, 7998}, {3525, 12162}, {3526, 13491}, {3529, 5462}, {3530, 7999}, {3534, 5946}, {3537, 6515}, {3543, 5943}, {3545, 14915}, {3796, 15078}, {3830, 13363}, {3832, 11695}, {3917, 15692}, {5054, 5663}, {5055, 16261}, {5056, 11381}, {5059, 10110}, {5068, 13474}, {5071, 16194}, {5073, 15026}, {5446, 17538}, {5562, 15717}, {5650, 15708}, {5876, 15720}, {5907, 10303}, {5972, 17853}, {6030, 14070}, {6636, 11438}, {6699, 12270}, {6816, 15740}, {7395, 15062}, {7485, 10605}, {7503, 10606}, {7506, 8718}, {7509, 11440}, {7729, 10192}, {7738, 15575}, {10095, 17800}, {10127, 16658}, {10170, 15702}, {10546, 14157}, {10733, 12099}, {10984, 11202}, {10996, 18950}, {11002, 16226}, {11179, 15531}, {11410, 12017}, {11413, 13434}, {13201, 14708}, {13321, 15689}, {13339, 18570}, {13391, 15688}, {13451, 19710}, {15060, 15694}, {15067, 15693}, {15712, 18436}, {16227, 16386}
X(20791) = midpoint of X(13321) and X(15689)
X(20791) = reflection of X(i) in X(j) for these (i,j): (4, 14845), (11002, 16226)
X(20791) = X(3524)-of-circumorthic-triangle
X(20791) = X(3545)-of-3rd anti-Euler-triangle
X(20791) = X(5055)-of-4th anti-Euler-triangle
X(20791) = X(10304)-of-1st anti-circumperp-triangle
X(20791) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 15072, 15305), (3, 5890, 2979), (3, 10574, 5889), (3, 13630, 11412), (4, 5892, 11451), (20, 9729, 15043), (140, 6241, 15056), (185, 3523, 11444), (185, 17704, 3523), (376, 9730, 3060), (974, 15051, 12273), (2979, 5890, 5889), (2979, 10574, 5890), (5892, 11451, 15028), (5892, 14855, 4)
Let A'B'C' be the ABC-X3-reflections-triangle of ABC. Let A* =X(53)-of-AB'C', and define B* and C* cyclically. The Euler lines of AB*C*, BC*A*, CA*B* concur in X(20792). (César Lozada, Auguse 11, 2018)
X(20792) lies on these lines: {{2, 154}, {3, 95}, {20, 53}, {140, 18437}, {157, 17928}, {6751, 9729}, {13860, 19124}
X(20792) = X(5085)-of-circumorthic-triangle
X(20793) lies on these lines: {3, 77}, {219, 20795}, {255, 7193}, {861, 5942}, {3167, 20752}
X(20793) = isogonal conjugate of polar conjugate of X(3177)
X(20793) = isotomic conjugate of polar conjugate of X(20995)
Let T = anticevian triangle of X(3). Then X(20794) is the perspector, with respect to T, of the pivotal conic of the conico-pivotal cubic cK(#3,X(394). (Angel Montesdeoca, May 4, 2019)
X(20794) lies on these lines: {3, 69}, {6, 694}, {22, 7779}, {25, 7774}, {39, 14913}, {48, 3955}, {95, 10104}, {159, 6660}, {160, 524}, {184, 3504}, {193, 237}, {194, 3186}, {216, 8681}, {219, 20796}, {255, 7193}, {264, 2782}, {311, 13108}, {1249, 15143}, {1424, 1740}, {1843, 3095}, {1975, 9230}, {3167, 3289}, {3620, 14096}, {4558, 14575}, {5020, 7736}, {5065, 9306}, {5201, 6144}, {5943, 13341}, {7484, 16990}, {7758, 9917}, {9155, 15531}, {11257, 14615}, {20795, 20818}
X(20794) = isogonal conjugate of polar conjugate of X(194)
X(20794) = isotomic conjugate of polar conjugate of X(1613)
X(20794) = X(19)-isoconjugate of X(2998)
X(20794) = X(92)-isoconjugate of X(3224)
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,20760), (2,20794), (6,3), (31,219), (105,20795), (238,20796), (292,20797), (365,20798), (672,7913), (1423,20799), (1931,20800), (2053,20801), (2054,20802), (3009, 20785), (2112,20804)
Twenty-one more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = - sin 2A : sin 2B : sin 2C
m(A') = (u + v + w) sin 2A : (- u - v + w) sin 2B : (- u + v - w) sin 2C, where (u, v, w) = (1/sqrt(a), 1/sqrt(b), 1/sqrt(c))
m(A1) = (b^2 + b c + c^2) sin 2A : (b^2 - b c - c^2) sin 2B : (-b^2 - b c + c^2) sini 2C
m(A2) = - (a b + a c + b c) sin 2A : (a b - a c + b c) sin 2B : (-a b + a c + b c) sin 2C
m(A3) = (a b^2 + 3 a b c + 2 b^2 c + a c^2 + 2 b c^2) sin 2A : (a b^2 - a b c - a c^2 - 2 b c^2) sin 2B : (-a b^2 - a b c - 2 b^2 c + a c^2) sin 2C
m(A4) = - (2 a^2 + 3 a b + 3 a c + b c) sin 2A : (a b + a c + b c) sin 2B : (a b + a c + b c) sin 2C
m(A5) = - (a - b - c) (a b + a c + b c) sin 2A : (-a^2 b + a b^2 + a^2 c - a b c + b^2 c - a c^2 - 3 b c^2) sin 2B : (a^2 b - a b^2 - a^2 c - a b c - 3 b^2 c + a c^2 + b c^2) sin 2C
where A1, A2, A3, A4, A5 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = (-x/a^2 + y/b^2 + z/c^2) sin 2A : : , and m is the collineation indicated by (A,B,C,X(6); A'B'C',X(3)), where A' = - sin 2A : sin 2B : sin 2C.
Let f(a,b,c,x,y,z) = b^6 (b-c) c^6 (a b+a c+b c) (a^2+b^2-c^2)^3 (a^2-b^2+c^2)^3 x^3+a^6 b^2 c^4 (a^2-b^2-c^2)^3 (a^2+b^2-c^2)^2 (a^2-b^2+c^2) (2 a^2 b+a b^2-b^2 c-a c^2-b c^2) y^2 z-a^6 b^4 c^2 (a^2-b^2-c^2)^3 (a^2+b^2-c^2) (a^2-b^2+c^2)^2 (-a b^2+2 a^2 c-b^2 c+a c^2-b c^2) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) = 0. (Peter Moses, August 13, 2018)
X(20795) lies on these lines: {3, 1814}, {219, 20793}, {222, 295}, {7193, 20796}, {20794, 20818}
X(20795) = isogonal conjugate of polar conjugate of X(39350)
X(20795) = isotomic conjugate of polar conjugate of crosspoint of PU(97)
See X(20795).
X(20796) lies on these lines: {3, 63}, {57, 16420}, {218, 11328}, {219, 20794}, {329, 19545}, {1634, 17796}, {1783, 15143}, {2200, 3955}, {3219, 16372}, {7193, 20795}, {15148, 17759}, {20762, 20785}, {20799, 20801}, {20800, 20802}
X(20796) = isogonal conjugate of polar conjugate of X(17759)
X(20796) = isotomic conjugate of polar conjugate of X(21788)
See X(20795).
X(20797) lies on these lines: {3, 295}, {63, 17972}, {184, 1331}, {219, 20804}, {3561, 20799}, {3781, 20786}, {7193, 20785}, {17976, 20752}
X(20797) = isogonal conjugate of polar conjugate of X(33888)
X(20797) = X(92)-isoconjugate of X(2109)
See X(20795).
X(20798) lies on these lines: {3, 20779}
See X(20795).
X(20799) lies on these lines: {3, 20781}, {255, 7193}, {3561, 20797}, {7078, 20804}, {20796, 20801}
See X(20795).
X(20800) lies on these lines: {3, 20782}, {219, 7015}, {17972, 20746}, {20796, 20802}
See X(20795).
X(20801) lies on these lines: {3, 7116}, {219, 20785}, {222, 20767}, {20796, 20799}
See X(20795).
X(20802) lies on these lines: {3, 17972}, {48, 4558}, {20796, 20800}
X(20803) lies on these lines: {1, 859}, {3, 201}, {56, 12005}, {222, 20764}, {228, 17102}, {3075, 18162}, {7078, 20760}
X(20803) = isogonal conjugate of polar conjugate of X(18662)
X(20803) = isotomic conjugate of polar conjugate of X(21770)
See X(20795).
X(20804) lies on these lines: {3, 17972}, {109, 3033}, {219, 20797}, {222, 295}, {1331, 7085}, {7078, 20799}, {17976, 20785}
X(20805) lies on these lines: {3, 63}, {56, 1046}, {194, 3732}, {219, 4020}, {255, 7193}, {329, 19513}, {474, 894}, {758, 15654}, {855, 12649}, {908, 19549}, {1403, 5247}, {1409, 20818}, {3086, 15507}, {3218, 13738}, {3682, 3784}, {4245, 5708}, {4737, 5687}, {5744, 13731}, {6638, 20764}, {15650, 16374}, {18732, 20254}, {19514, 20348}
X(20805) = isogonal conjugate of polar conjugate of X(3210)
X(20805) = isotomic conjugate of polar conjugate of X(21769)
See X(20807).
Let A'B'C' be the cevian triangle of X(22). Let A" be the inverse-in-circumcircle of A', and define B", C" cyclically. The lines AA", BB", CC" concur in X(20806). (Randy Hutson, August 29, 2018)
X(20806) lies on the conic {{X(3),X(6),X(24),X(60),X(143),X(1511),X(1986)}} and these lines: {2, 6}, {3, 1176}, {20, 19149}, {22, 206}, {24, 511}, {51, 19137}, {66, 858}, {110, 159}, {143, 1351}, {146, 17812}, {155, 6643}, {157, 3001}, {182, 5562}, {184, 11574}, {219, 20808}, {287, 20563}, {297, 8745}, {311, 458}, {315, 8743}, {427, 13562}, {577, 9723}, {648, 14615}, {651, 18629}, {895, 6391}, {1147, 9967}, {1216, 19131}, {1264, 1332}, {1350, 7488}, {1352, 1594}, {1370, 5596}, {1498, 14927}, {1503, 11441}, {1511, 10752}, {1568, 3818}, {1760, 7210}, {1843, 9306}, {1986, 15462}, {1995, 9969}, {2979, 19121}, {3092, 12322}, {3093, 12323}, {3167, 19459}, {3193, 5800}, {3260, 9308}, {3292, 6467}, {3564, 11585}, {3917, 19126}, {3964, 4558}, {5050, 7393}, {5157, 7485}, {5408, 11513}, {5409, 8911}, {5480, 7544}, {5622, 12358}, {5651, 9822}, {5907, 19124}, {5921, 8549}, {6090, 11188}, {6101, 19154}, {7386, 19119}, {7396, 20079}, {7401, 14853}, {7405, 18583}, {8541, 14913}, {8548, 11898}, {9973, 10510}, {10602, 19588}, {10627, 19155}, {11061, 17847}, {11412, 19128}, {11416, 12272}, {12294, 13346}, {14561, 14788}, {14570, 20477}, {15068, 18440}, {16163, 19140}, {17928, 19161}, {20739, 20811}, {20809, 20817}, {20814, 20816
X(20806) = isogonal conjugate of X(13854)
X(20806) = isotomic conjugate of polar conjugate of X(22)
X(20806) = X(19)-isoconjugate of X(66)
X(20806) = X(92)-isoconjugate of X(2353)
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,394), (2,219), (6,20739), (31,20806), (105,20807), (238,20808), (292,20809), (365,20810), (672,20811), (1423,20812), (1931,20813), (2053,20814), (2054,20815), (3009, 20816), (2112,20817)
Eighteen more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = - sin 2A : sin 2B : sin 2C
m(A') = - (a^(5/2) + b^(5/2) + c^(5/2)) sin 2A : (a^(5/2) + b^(5/2) - c^(5/2)) sin 2A : (a^(5/2) - b^(5/2) + c^(5/2)) sin 2A :
m(A1) = (a^3 + b^2 c + b c^2) sin 2A : (b^2 - b c - c^2) sin 2B : (-b^2 - b c + c^2) sin 2C
m(A2) = - (a b + a c + b c) sin 2A : (a^3 + b^2 c - b c^2) sin 2B : (a^3 - b^2 c + b c^2) sin 2C
m(A3) = - (a^4 + a^3 b + a b^3 + a^3 c + a b^2 c + b^3 c + a b c^2 + a c^3 + b c^3) sin 2A : (a^4 + a^3 b + a b^3 + a^3 c + a b^2 c + b^3 c - a b c^2 - a c^3 - b c^3) sin 2B : (a^4 + a^3 b - a b^3 + a^3 c - a b^2 c - b^3 c + a b c^2 + a c^3 + b c^3) sin 2C
m(A4) = - (a^3 b + a b^3 + b^4 + a^3 c + a^2 b c + b^3 c + a c^3 + b c^3 + c^4) sin 2A : (a^3 b + a b^3 + b^4 + a^3 c + a^2 b c + b^3 c - a c^3 - b c^3 - c^4) sin 2B : (a b + a c + b c) sin 2C
where A1, A2, A3, A4 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = (-a x + b y + c z) sin 2A : : , and m is the collineation indicated by (A,B,C,X(75); A'B'C',X(3)), where A' = - sin 2A : sin 2B : sin 2C.
Let f(a,b,c,x,y,z) = a b^2 (b-c) c^2 (a^2+b^2-c^2)^3 (a^2-b^2+c^2)^3 (-b^3+a b c-b^2 c-b c^2-c^3) x^3-a^2 (a^2-b^2-c^2)^3 (a^2+b^2-c^2)^2 (a^2-b^2+c^2) (-a^5 b^2+a^4 b^3+a^6 c-a^2 b^4 c+2 a b^4 c^2-2 b^3 c^4+b^2 c^5-a c^6) y^2 z+a^2 (a^2-b^2-c^2)^3 (a^2+b^2-c^2) (a^2-b^2+c^2)^2 (a^6 b-a b^6-a^5 c^2+b^5 c^2+a^4 c^3-2 b^4 c^3-a^2 b c^4+2 a b^2 c^4) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) + 2 (a-b) (a-c) (b-c) (-b^2+a c) (a^2-b c) (a b-c^2) (a^2-b^2-c^2)^2 (a^2+b^2-c^2)^2 (a^2-b^2+c^2)^2 x y z= 0. (Peter Moses, August 13, 2018)
X(20807) lies on these lines: {3, 20820}, {6, 16593}, {212, 3781}, {219, 20740}, {394, 20817}, {1264, 1332}, {1814, 17170}, {20742, 20808}
See X(20807).
X(20808) lies on these lines: {3, 20821}, {6, 3879}, {72, 18447}, {218, 1993}, {219, 20806}, {394, 4001}, {4511, 16466}, {20742, 20807}, {20747, 20748}, {20812, 20814}, {20813, 20815}
See X(20807).
X(20809) lies on these lines: {3, 20822}, {6, 17793}, {219, 20797}, {394, 20742}, {20741, 20747}, {20806, 20817}, {20811, 20816}
See X(20807).
X(20810) lies on these lines: {6, 20527}
See X(20807).
X(20811) lies on these lines: {1, 6}, {3, 20823}, {525, 3049}, {1814, 20744}, {20739, 20806}, {20742, 20807}, {20809, 20816}
See X(20807).
X(20812) lies on these lines: {1, 6}, {3, 20824}, {7124, 20760}, {20808, 20814}
See X(20807).
X(20813) lies on these lines: {2, 6}, {3, 20825}, {20808, 20815}
See X(20807).
X(20814) lies on these lines: {3, 20826}, {6, 20528}, {20806, 20816}, {20808, 20812}
See X(20807).
X(20815) lies on these lines: {3, 20827}, {6, 20529}, {219, 20768}, {20739, 20817}, {20808, 20813}
See X(20807).
X(20816) lies on these lines: {3, 20828}, {6, 20530}, {63, 77}, {20806, 20814}, {20809, 20811}
See X(20807).
X(20817) lies on these lines: {3, 20829}, {6, 20531}, {394, 20807}, {20739, 20815}, {20806, 20809}
X(20818) lies on these lines: {1, 2264}, {3, 48}, {6, 101}, {9, 1385}, {19, 1482}, {145, 4248}, {154, 3190}, {169, 1100}, {184, 1260}, {198, 2323}, {218, 604}, {220, 572}, {281, 952}, {282, 5534}, {284, 2256}, {380, 9957}, {496, 5802}, {517, 610}, {573, 3207}, {692, 6600}, {857, 20074}, {956, 2287}, {965, 9708}, {1319, 1723}, {1404, 3217}, {1409, 20805}, {1420, 1743}, {1436, 11248}, {1437, 2327}, {1449, 5045}, {1766, 6603}, {1781, 2099}, {1813, 7053}, {1826, 18525}, {1901, 9655}, {1953, 10247}, {2172, 12410}, {2173, 8148}, {2174, 4254}, {2273, 9605}, {2302, 16202}, {2329, 5783}, {2911, 5120}, {3167, 20752}, {3173, 7011}, {3197, 6759}, {3692, 5440}, {3731, 13384}, {3940, 5227}, {5279, 5730}, {5746, 18990}, {5747, 9654}, {5819, 20330}, {6510, 7289}, {7359, 18526}, {7982, 18594}, {8804, 18481}, {9028, 17073}, {15831, 18446}, {15905, 20764}, {20794, 20795}
X(20818) = isogonal conjugate of polar conjugate of X(145)
X(20818) = isotomic conjugate of polar conjugate of X(3052)
X(20818) = X(19)-isoconjugate of X(4373)
X(20818) = X(92)-isoconjugate of X(3445)
See X(20820).
X(20819) lies on these lines: {3, 1176}, {71, 20821}, {141, 3001}, {160, 9155}, {216, 3289}, {237, 3313}, {570, 14096}, {1634, 17710}, {2967, 17907}, {2972, 6389}, {3095, 3618}, {8041, 18899}, {8265, 16717}, {11574, 20775}, {14881, 17500}, {20727, 20823}, {20822, 20829}, {20826, 20828}
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,3917), (2,71), (6,2020727), (31,20819), (105,20820), (238,20821), (292,20822), (672,20823), (1423,20824), (1931,20825), (2053,20826), (2054,20827), (3009, 20828), (2112,20829), (203232,20830)
Eighteen more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : sin 2B : sin 2C
m(A1) = b c (b + c) sin 2A : (-a^3 + b c^2) sin 2B : (-a^3 + b^2 c) sin 2C
m(A2) = (b^4 + c^4) sin 2A : c (c^3 - a^2 b) sin 2B : (b ( b^3 - a^ c) sin 2C
m(A3) = - (a b + a c + b c) (b^2 + c^2) sin 2A : (a^4 + a^3 b + a^3 c - a b c^2 - a c^3 - b c^3) sin 2B : (a^4 + a^3 b - a b^3 + a^3 c - a b^2 c - b^3 c) sin 2C
m(A4) = - (b + c) (a + b + c) (b^2 - b c + c^2) sin 2A : (a^3 b + a^3 c + a^2 b c - a c^3 - b c^3 - c^4) sin 2B : (a^3 b - a b^3 - b^4 + a^3 c + a^2 b c - b^3 c) sin 2C
m(A5) = (a^2 b^2 + b^4 - a b^2 c - b^3 c + a^2 c^2 - a b c^2 - b c^3 + c^4) sin 2A : (a^4 + a^3 b + a^3 c + a^2 c^2 - a b c^2 - b c^3 + c^4) sin 2B : (a^4 + a^3 b + a^2 b^2 + b^4 + a^3 c - a b^2 c - b^3 c) sin 2C
where A1, A2, A3, A4, A5 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = (b y + c z) sin 2A : : , and m is the collineation indicated by (A,B,C,X(75); A'B'C',X(3)), where A' = 0 : sin 2B : sin 2C.
Let f(a,b,c,x,y,z) = b^6 (b-c) c^6 (a^2-b c) (a^2+b^2-c^2)^3 (a^2-b^2+c^2)^3 (-a^3 b^3-a^2 b^4+a^4 b c-a^3 b^2 c-a^2 b^3 c-a b^4 c-a^3 b c^2-a b^3 c^2-a^3 c^3-a^2 b c^3-a b^2 c^3+b^3 c^3-a^2 c^4-a b c^4) x^3-a^6 b^2 c^4 (a^2-b^2-c^2)^3 (a^2+b^2-c^2)^2 (a^2-b^2+c^2) (-3 a^5 b^4-a^4 b^5+3 a^6 b^2 c+a^2 b^6 c+3 a^6 b c^2+a b^6 c^2-3 a^5 c^4-b^5 c^4+a^4 c^5-b^4 c^5-a^2 b c^6+a b^2 c^6) y^2 z+a^6 b^4 c^2 (a^2-b^2-c^2)^3 (a^2+b^2-c^2) (a^2-b^2+c^2)^2 (-3 a^5 b^4+a^4 b^5+3 a^6 b^2 c-a^2 b^6 c+3 a^6 b c^2+a b^6 c^2-3 a^5 c^4-b^5 c^4-a^4 c^5-b^4 c^5+a^2 b c^6+a b^2 c^6) y z^2, where x : y : z are barycentyrics of a variable point; then m(K155) is given by f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,x,z,y) + 2 a^4 (a-b) b^4 (a-c) (b-c) c^4 (-b^2+a c) (a^2-b c) (a b-c^2) (a^2-b^2-c^2)^2 (a^2+b^2-c^2)^2 (a^2-b^2+c^2)^2 x y z = 0. (Peter Moses, August 13, 2018)
X(20820) lies on these lines: {3, 20807}, {71, 20728}, {3917, 20829}, {20730, 20821}
See X(20820).
X(20821) lies on these lines: {3, 20808}, {71, 20819}, {3917, 20727}, {7117, 20757}, {20730, 20820}, {20736, 20737}, {20824, 20826}, {20825, 20827}, {20828, 20830}
See X(20820).
X(20822) lies on these lines: {3, 20809}, {71, 11574}, {3917, 20730}, {7117, 20750}, {20729, 20736}, {20819, 20829}, {20823, 20828}
See X(20820).
X(20823) lies on these lines: {3, 20811}, {71, 216}, {1818, 7117}, {2524, 3049}, {20727, 20819}, {20730, 20820}, {20822, 20828}
See X(20820).
X(20824) lies on these lines: {3, 20812}, {71, 216}, {78, 7117}, {20821, 20826}, {20829, 20830}
See X(20820).
X(20825) lies on these lines: {3, 20813}, {216, 3289}, {20821, 20827}
See X(20820).
X(20826) lies on these lines: {3, 20814}, {20819, 20828}, {20821, 20824}
See X(20820).
X(20827) lies on these lines: {3, 20815}, {71, 20756}, {20727, 20829}, {20821, 20825}
See X(20820).
X(20828) lies on these lines: {3, 20816}, {71, 3917}, {20819, 20826}, {20821, 20830}, {20822, 20823}
See X(20820).
X(20829) lies on these lines: {3, 20817}, {3917, 20820}, {20727, 20827}, {20819, 20822}, {20824, 20830}
See X(20820).
X(20830) lies on these lines: {3837, 20532}, {7117, 20727}, {20821, 20828}, {20824, 20829}
Suppose that X is a point in the plane of a triangle ABC. Let m(x) be the image of X under the collineation (X(1), X(2), X(6), X(31); X(3), X(55), X(1631), X(22)). If X is on the line X(1)X(21), then m(X) is on the Euler line. The appearance of (i,j) in the following list means that m(X(i) = X(j):
(1,3), (21,3145), (31,22), (38,2), (47,26), (58,2915), (63,25), (81,199), (191,20831), (255,24), (283,20832), (595,20833), (758,859), (774,20), (846,20834), (896,23), (920,7387), (968,20835), (993,11334), (1046,20836), (1496,17928), (1497,10323), (1580,6660), (1621,16064), (1707,9909), (1725,30), (3561,20837), (3562,20838), (3573,20839), (3647,20840), (8616,20841), (8666,20842), (5330,20843), (5429,20844), (5208,20845), (10448,20846), (10457,20847), (10458,20848), (11533,20849), (12514,13730), (16570,20850), (16948,20851), (17185,20852), (17194,20853), (17469,6636), (17799,20854), (18169,20855), (18192,20856), (18206,20857), (18756,20858), (18477,378)
X(20831) lies on these lines:
See X(20831).
X(20832) lies on these lines: {2, 3}, {19, 1030}, {35, 1824}, {56, 1835}, {65, 11363}, {225, 5172}, {232, 2204}, {498, 11391}, {607, 18755}, {608, 2305}, {993, 5130}, {1474, 2245}, {1825, 14882}, {1829, 2646}, {1843, 5135}, {1844, 11399}, {1974, 4259}, {2203, 10974}, {3295, 11401}, {3612, 7713}, {5089, 5277}, {10835, 16541}
X(20832) = isogonal conjugate of X(18123)
See X(20831).
X(20833) lies on these lines: {1, 2916}, {2, 3}, {36, 2920}, {56, 2922}, {58, 5347}, {72, 3220}, {942, 7293}, {956, 8193}, {988, 7298}, {1030, 5283}, {1125, 20988}, {1376, 8185}, {1610, 10609}, {1724, 5096}, {2077, 9626}, {2921, 8069}, {2932, 2933}, {3556, 5730}, {3703, 5687}, {3916, 5285}, {5204, 14667}, {5266, 5322}, {7295, 16466}, {12114, 15177}
See X(20831).
X(20834) lies on these lines: {2, 3}, {55, 846}, {256, 7083}, {511, 2328}, {991, 9306}, {1001, 1626}, {1284, 1617}, {1423, 8616}, {1486, 8424}, {1495, 1790}, {1621, 9791}, {2292, 3295}, {2822, 14673}, {3303, 11533}, {3423, 11031}, {4389, 16099}, {5248, 12579}, {5329, 20992}, {5943, 13329}, {7193, 14547}, {7961, 13097}, {8245, 15931}, {9798, 12567}, {9959, 10267}, {16678, 20988}, {17975, 20122}
See X(20831).
X(20835) lies on these lines: {1, 18607}, {2, 3}, {7, 1617}, {35, 200}, {36, 10582}, {55, 63}, {56, 4666}, {84, 10902}, {100, 5273}, {154, 1790}, {159, 1626}, {224, 960}, {394, 991}, {572, 3796}, {954, 5905}, {967, 4252}, {993, 4304}, {1001, 1836}, {1071, 10267}, {1074, 1860}, {1078, 18153}, {1260, 3219}, {1444, 14548}, {1486, 16678}, {1709, 4512}, {1754, 17194}, {2975, 4313}, {3218, 11020}, {3295, 3868}, {3303, 11520}, {3681, 6600}, {3683, 5784}, {3838, 4423}, {3871, 20015}, {3877, 18444}, {4292, 5248}, {4414, 11031}, {5010, 8580}, {5217, 5302}, {5250, 6001}, {5267, 8071}, {5435, 15804}, {5584, 19860}, {7054, 15905}, {7676, 17784}, {8069, 13405}, {8273, 19861}, {8822, 14828}, {10601, 13329}, {14988, 16202}, {18603, 19765}, {19718, 19759}, {19790, 19841}
See X(20831).
X(20836) lies on these lines: {2, 3}, {56, 5429}, {283, 1495}, {511, 2360}, {958, 1631}, {999, 1036}, {1962, 3295}, {2178, 16974}, {2816, 14673}, {4057, 5592}, {4298, 5144}, {5247, 17798}, {13558, 14663}, {14815, 16466}
See X(20831).
X(20837) lies on these lines: {2, 3}, {36, 1426}, {55, 1825}, {1824, 10902}, {1845, 11398}, {11363, 14110}
See X(20831).
X(20838) lies on these lines: {2, 3}, {36, 1410}, {56, 20277}, {185, 2360}, {580, 13367}, {947, 16980}, {1035, 5204}, {1622, 8192}, {1631, 5584}, {6197, 21318}, {15622, 20989}
See X(20831).
X(20839) lies on these lines: {2, 3}, {8638, 20999}, {16686, 16873}
See X(20831).
X(20840) lies on these lines: {2, 3}, {500, 1495}
See X(20831).
X(20841) lies on these lines: {2, 3}, {1283, 1403}, {1626, 20872}, {2223, 5345}, {2328, 3098}, {3220, 20760}
See X(20831).
X(20842) lies on these lines: {1, 2933}, {2, 3}, {56, 1324}, {88, 20999}, {197, 8071}, {386, 1437}, {1470, 9798}, {1626, 7280}, {1737, 2217}, {1993, 5754}, {2360, 4256}, {3420, 12410}, {15654, 20989}
See X(20831).
X(20843) lies on this line: {2, 3}
See X(20831).
X(20844) lies on these lines: {2, 3}, {3796, 9567}
See X(20831).
X(20845) lies on these lines: {2, 3}, {171, 228}, {198, 1755}, {5156, 5320}
See X(20831).
X(20846) lies on these lines: {2, 3}, {6, 7054}, {35, 78}, {55, 3869}, {63, 10393}, {157, 8053}, {283, 581}, {386, 1780}, {580, 5422}, {936, 5010}, {938, 8071}, {958, 5086}, {965, 1030}, {993, 6734}, {1210, 5267}, {1259, 3219}, {1444, 5738}, {1470, 5303}, {1617, 3622}, {1621, 3485}, {1792, 5739}, {1858, 4640}, {2975, 3486}, {3616, 7742}, {3871, 20013}, {3876, 11517}, {3877, 10267}, {3890, 11510}, {3897, 11249}, {4652, 10399}, {4881, 8273}, {5057, 5172}, {5248, 12047}, {5250, 6261}, {5330, 16202}, {5703, 8069}, {5705, 14794}, {5736, 17139}, {7098, 11509}, {7677, 10586}, {15931, 19861}, {19716, 19759}, {19788, 19841}
See X(20831).
X(20847) lies on this line: {2, 3}
See X(20831).
X(20848) lies on these lines: {2, 3}, {1030, 17735}
See X(20831).
X(20849) lies on these lines: {2, 3}, {56, 846}, {999, 2292}, {1283, 5217}, {3304, 11533}, {5253, 9791}, {9959, 10269}
See X(20831).
X(20850) lies on these lines: {2, 3}, {52, 14530}, {154, 1351}, {159, 3629}, {182, 5644}, {184, 5093}, {187, 8770}, {511, 8780}, {1196, 1384}, {1495, 3167}, {2056, 11173}, {2936, 13175}, {3244, 9798}, {3531, 14805}, {3632, 8185}, {3636, 11365}, {3920, 9642}, {5050, 17810}, {5943, 12017}, {6154, 13222}, {6221, 8854}, {6398, 8855}, {6428, 20197}, {6800, 9777}, {7716, 9813}, {8192, 20057}, {9157, 13310}, {9673, 16541}, {10311, 15851}, {11008, 19588}, {11416, 19118}, {11482, 17809}, {13598, 17821}, {13665, 18289}, {13785, 18290}
X(20850) = circumcircle-inverse of X(37911)
See X(20831).
X(20851) lies on these lines: {2, 3}, {1030, 1696}, {1324, 9591}, {1495, 3430}
See X(20831).
X(20852) lies on these lines: {2, 3}, {197, 1030}, {1460, 1486}
See X(20831).
X(20853) lies on these lines: {2, 3}, {1030, 1604}
See X(20831).
X(20854) lies on these lines: {2, 3}, {32, 9918}, {669, 3800}, {1495, 9301}, {2076, 3229}, {2080, 14673}, {5201, 19596}, {5943, 12054}, {8623, 20998}, {9306, 9821}
See X(20831).
X(20855) lies on these lines: {2, 3}, {5201, 18185}
See X(20831).
X(20856) lies on this line: {2, 3}
See X(20831).
X(20857) lies on these lines: {2, 3}, {55, 5277}, {197, 3207}, {650, 667}, {1030, 1486}, {2223, 3290}, {2305, 7083}
See X(20831).
X(20858) lies on this line: {2, 3}
See X(20860).
X(20859) lies on these lines: {2, 694}, {6, 22}, {23, 1915}, {39, 51}, {42, 8628}, {76, 19562}, {141, 6664}, {154, 10542}, {184, 5028}, {323, 2056}, {343, 5254}, {511, 1194}, {626, 3118}, {689, 711}, {695, 6655}, {698, 8024}, {732, 8267}, {1184, 1350}, {1185, 4259}, {1196, 3231}, {1570, 13366}, {1613, 2979}, {1627, 2076}, {1691, 6636}, {1899, 2549}, {1994, 5111}, {2502, 9306}, {3155, 6421}, {3156, 6422}, {3291, 3819}, {3410, 11646}, {3721, 17184}, {3778, 8629}, {5013, 10601}, {5017, 5359}, {5034, 15004}, {5104, 5354}, {6656, 14820}, {7738, 11433}, {7748, 11550}, {7760, 13511}, {7998, 21001}, {8216, 8219}, {8265, 16717}, {8620, 20684}, {10328, 16276}, {11002, 13331}, {11451, 15302}, {12055, 15018}, {12963, 13617}, {12968, 13616}, {18203, 21324}, {20862, 20869}, {20866, 20868}, {20870, 20974}
X(20859) = isogonal conjugate of isotomic conjugate of X(626)
X(20859) = isotomic conjugate of X(38830)
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,39), (2,42), (6,3778), (31,20859), (105,20860), (238,20861), (292,20862), (672,20863), (1423,20864), (1931,20865), (2053,20866), (2054,20867), (3009, 20868), (2112,20869), (203232,20870)
Eighteen more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = 0 : b^2 : c^2
m(A1) = a^2 b c (b + c) : b^2 (-a^3 + b c^2) : c^2 (-a^3 + b^2 c)
m(A2) = a^2 (b^4 + c^4) : b^2 c (c^3 - a^2 b) : b c^2 (b^3 - a^2 c)
m(A3) = a^2 (a b + a c + b c) (b^2 + c^2) : -b^2 (a^4 + a^3 b + a^3 c - a b c^2 - a c^3 - b c^3) : -c^2 (a^4 + a^3 b - a b^3 + a^3 c - a b^2 c - b^3 c)
m(A4) = a^2 (b + c) (a + b + c) (b^2 - b c + c^2) : -b^2 (a^3 b + a^3 c + a^2 b c - a c^3 - b c^3 - c^4) : -c^2 (a^3 b - a b^3 - b^4 + a^3 c + a^2 b c - b^3 c)
m(A5) = -a^2 (a^2 b^2 + b^4 - a b^2 c - b^3 c + a^2 c^2 - a b c^2 - b c^3 + c^4) : -b^2 (a^4 + a^3 b + a^3 c + a^2 c^2 - a b c^2 - b c^3 + c^4) : -c^2 (a^4 + a^3 b + a^2 b^2 + b^4 + a^3 c - a b^2 c - b^3 c)
where A1, A2, A3, A4, A5 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = a^2 (b y + c z) : : , and m is the collineation indicated by (A,B,C,X(75); A'B'C',X(6)), where A' = 0 : b^2 : c^2.
X(20860) lies on these lines: {6, 20871}, {39, 20869}, {42, 20455}, {672, 20778}, {3930, 4966}, {20457, 20861}, {20662, 20970}, {20866, 20971}
See X(20860).
X(20861) lies on these lines: {1, 3094}, {6, 7295}, {39, 2309}, {42, 8628}, {43, 3981}, {213, 4260}, {899, 3124}, {1194, 1197}, {1570, 20958}, {1738, 3125}, {2092, 2183}, {3096, 3662}, {3123, 20706}, {3271, 20669}, {3720, 8041}, {3721, 3821}, {3726, 4071}, {3954, 4357}, {8637, 20979}, {20457, 20860}, {20464, 20465}, {20864, 20866}, {20865, 20867}, {20868, 20870}, {20961, 20965}, {20962, 20977}, {20963, 20969}
See X(20860).
X(20862) lies on these lines: {6, 14598}, {39, 20457}, {42, 1194}, {386, 8300}, {869, 4876}, {2092, 2309}, {20456, 20464}, {20859, 20869}, {20863, 20868}
See X(20860).
X(20863) lies on these lines: {2, 3056}, {6, 9455}, {42, 51}, {669, 2451}, {672, 3271}, {674, 2238}, {766, 3125}, {2309, 20965}, {3726, 9016}, {3778, 8629}, {4531, 17451}, {5369, 16583}, {20347, 20358}, {20457, 20860}, {20862, 20868}
See X(20860).
X(20864) lies on these lines: {6, 20876}, {9, 3056}, {42, 51}, {213, 5052}, {20861, 20866}, {20869, 20870}
See X(20860).
X(20865) lies on these lines: {6, 20877}, {39, 51}, {42, 2653}, {3009, 3124}, {3747, 5164}, {5168, 20754}, {20456, 20982}, {20861, 20867}
See X(20860).
X(20866) lies on these lines: {43, 169}, {1432, 1916}, {20859, 20868}, {20860, 20971}, {20861, 20864}
See X(20860).
X(20867) lies on these lines: {42, 20668}, {2309, 20463}, {3778, 20869}, {20861, 20865}
See X(20860).
X(20868) lies on these lines: {6, 20878}, {39, 42}, {1125, 21327}, {2275, 4393}, {4359, 16604}, {8630, 20983}, {20859, 20866}, {20861, 20870}, {20862, 20863}
See X(20860).
X(20869) lies on these lines: {39, 20860}, {3778, 20867}, {20859, 20862}, {20864, 20870}
See X(20860).
X(20870) lies on these lines: {3009, 20759}, {3124, 20671}, {3271, 3778}, {20859, 20974}, {20861, 20868}, {20864, 20869}
Let m denote the indicated collineation, which maps the 2nd equal areas cubic, K155, onto a cubic, m(K155). The appearance of (i,j) in the following list means that m(X(i)) = X(j), where X(i) is on K155:
(1,39), (2,42), (6,3778), (31,20859), (105,20860), (238,20861), (292,20862), (672,20863), (1423,20864), (1931,20865), (2053,20866), (2054,20867), (3009, 20868), (2112,20869), (203232,20870)
Eighteen more points on m(K155) are given as vertices of central triangles, represented here by A-vertices:
m(A) = - a^2 : b^2 : c^2
m(A') = a^2 (a^(5/2) + b^(5/2) + c^(5/2)) : -b^2 (a^(5/2) + b^(5/2) - c^(5/2)) : -c^2 (a^(5/2) - b^(5/2) + c^(5/2))
m(A1) = -a^2 (a^3 + b^2 c + b c^2) : b^2 (a^3 + b^2 c - b c^2) : c^2 (a^3 - b^2 c + b c^2)
m(A2) = a^2 (b^4 + a^2 b c + c^4) : -b^2 (b^4 + a^2 b c - c^4) : -c^2 (-b^4 + a^2 b c + c^4)
m(A3) = -a^2 (a^4 + a^3 b + a b^3 + a^3 c + a b^2 c + b^3 c + a b c^2 + a c^3 + b c^3) : b^2 (a^4 + a^3 b + a b^3 + a^3 c + a b^2 c + b^3 c - a b c^2 - a c^3 - b c^3) : c^2 (a^4 + a^3 b - a b^3 + a^3 c - a b^2 c - b^3 c + a b c^2 + a c^3 + b c^3)
m(A4) = a^2 (a^3 b + a b^3 + b^4 + a^3 c + a^2 b c + b^3 c + a c^3 + b c^3 + c^4) : -b^2 (a^3 b + a b^3 + b^4 + a^3 c + a^2 b c + b^3 c - a c^3 - b c^3 - c^4) : -c^2 (a^3 b - a b^3 - b^4 + a^3 c + a^2 b c - b^3 c + a c^3 + b c^3 + c^4)
m(A5) = a^2 (a^4 + a^3 b - a^2 b^2 - b^4 + a^3 c + a b^2 c + b^3 c - a^2 c^2 + a b c^2 + b c^3 - c^4) : b^2 (-a^4 - a^3 b + a^2 b^2 + b^4 - a^3 c - a b^2 c - b^3 c - a^2 c^2 + a b c^2 + b c^3 - c^4) : c^2 (-a^4 - a^3 b - a^2 b^2 - b^4 - a^3 c + a b^2 c + b^3 c + a^2 c^2 - a b c^2 - b c^3 + c^4)
where A1, A2, A3, A4, A5 are defined at X(20333).
If P = x : y : z (barycentrics), then m(P) = a^2 (- a x + b y + c z) : : , and m is the collineation indicated by (A,B,C,X(75); A'B'C',X(6)), where A' = 0 : b^2 : c^2.
X(20871) lies on these lines: {3, 8299}, {6, 20860}, {22, 100}, {31, 20786}, {38, 55}, {41, 2276}, {105, 1486}, {1282, 3220}, {1283, 17594}, {4712, 12329}, {7248, 9316}, {7295, 8300}, {8301, 20872}
X(20871) = isogonal conjugate of isotomic conjugate of X(20552)
See X(20871).
X(20872) lies on these lines: {1, 2916}, {2, 20988}, {3, 142}, {6, 7295}, {10, 20831}, {21, 4026}, {22, 55}, {23, 100}, {24, 10310}, {25, 1376}, {26, 11248}, {31, 5347}, {35, 37}, {36, 1279}, {56, 4318}, {197, 4421}, {238, 5096}, {354, 7293}, {511, 692}, {518, 3220}, {522, 1324}, {674, 7193}, {902, 5078}, {958, 8193}, {1012, 15177}, {1155, 14667}, {1283, 5143}, {1284, 5172}, {1329, 4222}, {1621, 6636}, {1626, 20841}, {1633, 17768}, {1770, 16580}, {1995, 4413}, {2077, 9625}, {2175, 4259}, {2323, 9047}, {2886, 4224}, {2931, 12327}, {2933, 20876}, {2937, 11849}, {3052, 5329}, {3145, 8424}, {3286, 16876}, {3556, 12635}, {3666, 5310}, {3683, 5314}, {3744, 5322}, {3749, 5345}, {3816, 19649}, {3826, 4223}, {3913, 9798}, {3925, 4228}, {4220, 6690}, {4423, 7485}, {4429, 17522}, {4640, 5285}, {4689, 7302}, {5217, 11337}, {5220, 12329}, {5259, 17384}, {5284, 15246}, {5537, 9590}, {5687, 8185}, {5899, 18524}, {7298, 17594}, {7301, 16468}, {7387, 11500}, {7484, 8167}, {7517, 11499}, {7530, 18491}, {8301, 20871}, {9658, 11501}, {9673, 11502}, {9712, 14017}, {10117, 13204}, {11349, 16593}, {11491, 12088}, {12340, 19165}, {12410, 12513}, {15228, 16581}, {15338, 16049}, {15577, 18621}, {16064, 16678}, {20475, 20476}
X(20872) = isogonal conjugate of isotomic conjugate of X(20553)
X(20872) = isogonal conjugate of anticomplement of X(39029)
X(20872) = anticomplement of complementary conjugate of X(39029)
See X(20871).
X(20873) lies on these lines: {3, 8301}, {6, 14598}, {55, 16515}, {1030, 2110}, {1604, 20876}, {1631, 8266}, {2196, 9016}, {2915, 16681}, {16683, 19329}, {16693, 19308}, {17798, 20475}, {20875, 20878}
See X(20871).
X(20874) lies on these lines: (none)
See X(20871).
X(20875) lies on these lines: {2, 8053}, {3, 9305}, {6, 9455}, {19, 25}, {22, 1602}, {23, 385}, {105, 16693}, {517, 16680}, {614, 3941}, {859, 8618}, {2223, 3290}, {3263, 4436}, {3920, 4068}, {4224, 16872}, {5272, 16688}, {6636, 16994}, {7191, 16679}, {7292, 16694}, {8301, 20871}, {13595, 16993}, {16686, 17735}, {20873, 20878}
X(20875) = isogonal conjugate of isotomic conjugate of X(20556)
See X(20871).
X(20876) lies on these lines: {3, 3923}, {6, 20864}, {19, 25}, {48, 2309}, {159, 16559}, {1284, 13738}, {1604, 20873}, {2053, 20471}, {2176, 5017}, {2183, 2209}, {2933, 20872}, {16434, 20545}
See X(20871).
X(20877) lies on these lines: {2, 3}, {6, 20865}, {110, 20766}, {1495, 20754}, {2054, 20675}, {3009, 20998}, {3444, 20990}, {17798, 21004}
See X(20871).
X(20878) lies on these lines: {1, 3}, {6, 20868}, {11, 19522}, {100, 20352}, {237, 8299}, {518, 20777}, {814, 7255}, {1755, 20750}, {3226, 20475}, {4366, 19308}, {8053, 8266}, {20873, 20875}
X(20879) lies on these lines: {8, 5884}, {19, 27}, {38, 1733}, {321, 20881}, {908, 4359}, {1150, 20237}, {1232, 21012}, {2975, 4647}, {3218, 6358}, {3219, 4858}, {3262, 4001}, {4714, 5176}, {6507, 18695}, {16585, 18662}, {17168, 17438}, {20889, 20903}
X(20879) = isotomic conjugate of isogonal conjugate of X(17438)
X(20879) = trilinear product X(2)*X(140)
X(20880) lies on these lines: {2, 277}, {7, 8}, {10, 1111}, {21, 99}, {27, 16747}, {63, 169}, {72, 20347}, {76, 3263}, {142, 1229}, {150, 5086}, {273, 4200}, {304, 3702}, {318, 1847}, {321, 1930}, {348, 10527}, {354, 16708}, {404, 1447}, {517, 20244}, {664, 4861}, {728, 4659}, {894, 17686}, {942, 20247}, {964, 10436}, {1010, 16749}, {1071, 15970}, {1086, 3721}, {1125, 7264}, {1233, 3925}, {1269, 20336}, {1385, 17136}, {1446, 6734}, {2170, 20257}, {2292, 3663}, {2329, 9317}, {2475, 4911}, {2476, 7179}, {2886, 3665}, {2975, 5088}, {3006, 3933}, {3120, 4920}, {3241, 17158}, {3244, 7278}, {3419, 21285}, {3434, 17170}, {3598, 6904}, {3693, 6706}, {3740, 18142}, {3757, 7411}, {3760, 4358}, {3761, 4696}, {3869, 17753}, {3872, 4350}, {3902, 17143}, {3953, 17205}, {4198, 5342}, {4202, 4357}, {4208, 4385}, {4688, 16732}, {4723, 20925}, {4742, 18156}, {4847, 10481}, {4980, 17294}, {5208, 10471}, {5273, 19804}, {5308, 20173}, {6646, 17680}, {7200, 17448}, {7223, 12513}, {10914, 21272}, {1105 7, 17579}, {11680, 17181}, {16465, 17140}, {16720, 21264}, {16727, 16887}, {17046, 21029}, {17050, 17451}, {17116, 17741}, {17274, 17679}, {17862, 20890}, {17864, 20901}, {20236, 20905}, {20433, 20899}, {20906, 21129}
X(20880) = isotomic conjugate of X(2346)
X(20880) = complement of X(25237)
X(20880) = anticomplement of X(16601)
X(20881) lies on these lines: {8, 2801}, {9, 75}, {63, 20237}, {321, 20879}, {527, 3262}, {536, 8609}, {545, 16732}, {573, 20633}, {726, 1733}, {1089, 5445}, {1111, 4440}, {1227, 4033}, {2397, 16578}, {2786, 3762}, {3554, 3875}, {3904, 18689}, {3928, 20928}, {4416, 20895}, {4459, 14839}, {4647, 5258}, {4947, 19950}, {4997, 19804}, {14206, 20887}, {17116, 18698}, {17439, 18645}
X(20882) lies on these lines: {8, 2891}, {36, 4647}, {57, 75}, {63, 1746}, {321, 20879}, {333, 4858}, {1150, 14213}, {1733, 3741}, {1790, 17880}, {3670, 6734}, {3687, 3936}, {3929, 20927}, {4673, 13384}, {5231, 17591}, {5295, 10202}, {14206, 20886}, {17185, 21233}, {17304, 19788}, {17440, 18646}
X(20883) lies on these lines: {19, 27}, {47, 1733}, {48, 17859}, {82, 162}, {278, 2345}, {281, 4000}, {321, 1848}, {427, 3703}, {607, 4361}, {608, 4363}, {1089, 5142}, {1109, 17872}, {1235, 21016}, {1441, 5236}, {1478, 1845}, {1740, 17901}, {1821, 2148}, {1826, 20236}, {1838, 1861}, {1891, 4968}, {1928, 1969}, {1930, 16747}, {1953, 17858}, {1959, 17865}, {3064, 20909}, {3739, 5089}, {7079, 17681}, {11677, 17860}, {17289, 17923}, {17880, 18161}
X(20883) = isotomic conjugate of X(34055)
X(20883) = pole wrt polar circle of trilinear polar of X(82) (line X(661)X(830))
X(20883) = polar conjugate of X(82)
X(20884) lies on these lines: {19, 27}, {824, 1577}, {1236, 21017}, {1733, 6149}, {1930, 18717}, {1959, 20902}, {2173, 17882}, {2234, 17901}, {4118, 17900}, {4647, 18719}, {17172, 18669}, {17858, 18041}, {17859, 18042}, {17865, 18672}, {18049, 18693}, {18691, 18713}, {18692, 18714}, {18694, 18715}, {18695, 18716}, {18696, 18718}, {18697, 18720}, {18698, 18721}, {18699, 18722}, {18747, 20236}
X(20885) lies on these lines: {2, 3}, {51, 3094}, {154, 21001}, {160, 230}, {184, 1613}, {263, 9777}, {305, 5976}, {385, 20794}, {1184, 3117}, {1196, 2021}, {1634, 8667}, {1993, 11673}, {2187, 3009}, {2548, 10790}, {3051, 11402}, {5201, 9766}, {7735, 20775}, {7763, 9917}, {7778, 8266}, {18371, 19153}
X(20886) lies on these lines: {75, 3219}, {92, 1150}, {321, 908}, {1109, 3741}, {1211, 4957}, {1441, 18139}, {3262, 3969}, {4358, 6358}, {4359, 4858}, {14206, 20882}, {16732, 17184}, {17173, 17443}, {20629, 20889}, {20891, 20896}
X(20887) lies on these lines: {8, 6917}, {75, 1150}, {321, 908}, {514, 17894}, {527, 3578}, {726, 1109}, {3262, 3936}, {3891, 17871}, {3911, 4359}, {4358, 4858}, {5014, 17860}, {5739, 17484}, {14206, 20881}, {17174, 17444}, {17862, 18139}, {20435, 20901}, {20629, 20904}
X(20888) lies on these lines: {1, 4441}, {2, 3760}, {7, 10447}, {8, 3761}, {10, 75}, {39, 21264}, {85, 3671}, {99, 5267}, {142, 21071}, {194, 17030}, {239, 17499}, {274, 350}, {310, 3741}, {314, 3664}, {321, 1930}, {334, 6538}, {349, 9436}, {519, 1909}, {524, 4410}, {536, 1500}, {538, 1107}, {551, 4479}, {609, 16919}, {668, 3626}, {894, 17034}, {993, 1975}, {1086, 21024}, {1089, 3263}, {1111, 4647}, {1235, 1861}, {1574, 9466}, {1575, 3934}, {1655, 16819}, {1698, 18135}, {1848, 16747}, {2238, 4721}, {2886, 3933}, {3120, 17211}, {3244, 17144}, {3501, 4659}, {3634, 18140}, {3661, 17184}, {3686, 3770}, {3687, 17866}, {3702, 14210}, {3706, 4059}, {3720, 16748}, {3729, 3730}, {3734, 4426}, {3739, 16589}, {3828, 18145}, {3948, 4359}, {3963, 4431}, {3997, 17033}, {4058, 17786}, {4253, 17026}, {4363, 17750}, {4377, 4665}, {4386, 7751}, {4396, 5277}, {4671, 17244}, {4686, 20691}, {4696, 4986}, {4717, 17762}, {4754, 20963}, {4791, 20907}, {4980, 20889}, {4999, 6390}, {5011, 17739}, {5179, 20235}, {5248, 16992}, {5280, 17686}, {6063, 10481}, {7031, 17002}, {7195, 7243}, {7263, 20255}, {7754, 20172}, {7760, 20179}, {7794, 20541}, {9238, 17046}, {10030, 10521}, {14994, 17792}, {16705, 19863}, {16829, 21226}, {20518, 21201}
X(20888) = complement of X(25264)
X(20888) = anticomplement of X(25092)
X(20889) lies on these lines: {31, 3403}, {38, 75}, {63, 16564}, {244, 1920}, {321, 20433}, {756, 1921}, {896, 1965}, {1109, 20898}, {1930, 1959}, {1966, 3112}, {1969, 2181}, {3920, 4495}, {3994, 18152}, {4374, 8042}, {4683, 20345}, {4980, 20888}, {7191, 7244}, {17176, 17445}, {20629, 20886}, {20632, 20891}, {20879, 20903}, {20934, 20944}
X(20889) = isotomic conjugate of isogonal conjugate of X(17445)
X(20890) lies on these lines: {55, 75}, {304, 17887}, {321, 20431}, {1930, 17864}, {4388, 7112}, {7081, 20940}, {7217, 17047}, {14213, 20435}, {17177, 17447}, {17862, 20880}, {20234, 20627}, {20438, 20635}
X(20890) = complement of X(25246)
X(20891) lies on these lines: {2, 37}, {8, 3781}, {38, 21080}, {69, 3765}, {76, 3662}, {141, 313}, {142, 20913}, {239, 314}, {257, 1921}, {320, 3770}, {335, 1240}, {518, 4696}, {561, 6374}, {594, 3264}, {668, 17287}, {714, 4022}, {726, 1089}, {740, 1193}, {942, 4385}, {982, 17157}, {984, 3701}, {1086, 1269}, {1107, 16738}, {1230, 17184}, {1441, 7146}, {1654, 3975}, {1909, 17300}, {1930, 17760}, {2228, 21238}, {3057, 3696}, {3230, 16827}, {3250, 20906}, {3596, 3661}, {3663, 4044}, {3728, 3741}, {3729, 20367}, {3760, 17304}, {3761, 17298}, {3763, 18044}, {3834, 18143}, {3840, 21330}, {3912, 3963}, {3948, 4357}, {4033, 17229}, {4361, 16685}, {4377, 17231}, {4384, 10447}, {4494, 17286}, {4673, 20036}, {4858, 18697}, {5739, 21279}, {6376, 17238}, {6385, 16703}, {10471, 16819}, {17142, 20358}, {17227, 18144}, {17230, 17786}, {17232, 20917}, {17237, 18133}, {17326, 18140}, {17792, 21278}, {20245, 20248}, {20439, 20636}, {20632, 20889}, {20886, 20896}
X(20892) lies on these lines: {2, 37}, {7, 3765}, {141, 3264}, {142, 3963}, {239, 20228}, {313, 1086}, {314, 17117}, {561, 6383}, {646, 17268}, {668, 17288}, {726, 3701}, {740, 1201}, {850, 20508}, {1269, 7263}, {1930, 20899}, {3123, 21257}, {3596, 3662}, {3663, 3948}, {3696, 3893}, {3702, 21214}, {3770, 7321}, {3834, 18040}, {3902, 4709}, {3975, 6646}, {4033, 17231}, {4110, 17230}, {4377, 18143}, {4494, 17282}, {4609, 6385}, {4858, 20234}, {6376, 17236}, {10009, 20911}, {16722, 17178}, {17232, 17786}, {17235, 18133}, {17290, 18044}, {17324, 18140}, {17792, 20352}, {20236, 20432}, {20436, 20633}, {20906, 21123}
X(20892) = isotomic conjugate of isogonal conjugate of X(17448)
X(20893) lies on these lines: {7, 16086}, {75, 519}, {76, 4125}, {85, 4737}, {274, 17200}, {321, 1930}, {514, 4374}, {712, 1086}, {1111, 3263}, {1281, 5144}, {2140, 17760}, {3008, 17789}, {3262, 20900}, {3264, 6549}, {3626, 20955}, {3673, 18743}, {3760, 17266}, {4487, 4986}, {4568, 20335}, {4714, 20911}, {4742, 14210}, {17179, 17449}, {17886, 20437}
X(20894) lies on these lines: {75, 537}, {76, 3992}, {85, 18421}, {274, 7264}, {321, 1930}, {1266, 4424}, {3125, 7263}, {3263, 4125}, {3673, 16832}, {3760, 18743}, {4441, 14210}, {4479, 4975}, {7278, 17144}, {17180, 17450}
X(20895) lies on these lines: {2, 20270}, {7, 8}, {72, 21273}, {78, 3875}, {86, 4861}, {200, 17151}, {306, 17862}, {312, 5328}, {314, 1320}, {321, 908}, {347, 2123}, {517, 20245}, {536, 3965}, {1229, 2321}, {1385, 18654}, {2170, 20258}, {3057, 17183}, {3263, 3705}, {3264, 20336}, {3306, 4359}, {3596, 3701}, {3663, 4642}, {3672, 7080}, {3673, 4452}, {3713, 4361}, {3718, 4723}, {3872, 10436}, {3895, 10889}, {3912, 20905}, {3998, 18662}, {4021, 6745}, {4345, 4673}, {4357, 6735}, {4360, 4511}, {4416, 20881}, {4420, 17160}, {4686, 16732}, {4712, 21084}, {4847, 17874}, {4882, 17885}, {4967, 5740}, {5552, 17321}, {10446, 14923}, {10447, 11521}, {12610, 21074}, {17452, 21246}, {17658, 20347}, {17880, 20900}, {19809, 20929}, {20234, 20431}, {21030, 21244}
X(20895) = isotomic conjugate of X(1476)
X(20895) = {X(7),X(8)}-harmonic conjugate of isotomic conjugate of X(5555)
X(20896) lies on these lines: {75, 81}, {226, 306}, {278, 17740}, {388, 17164}, {519, 2650}, {740, 3891}, {1109, 20639}, {1230, 16732}, {1930, 1959}, {2294, 18139}, {2887, 4137}, {3262, 19835}, {4016, 17184}, {4358, 20106}, {4359, 18698}, {17778, 20017}, {20046, 20090}, {20433, 20901}, {20886, 20891}
X(20897) lies on these lines: {2, 3}, {32, 1495}, {51, 7772}, {154, 15257}, {157, 11063}, {184, 5007}, {1843, 5158}, {1974, 3284}, {2351, 3456}, {3053, 5191}, {3398, 6800}, {5188, 5651}, {8541, 15860}, {9821, 15066}
X(20897) = isogonal conjugate of isotomic conjugate of X(31670)
X(20898) lies on these lines: {31, 75}, {38, 1930}, {63, 16545}, {756, 3263}, {1109, 20889}, {3008, 4359}, {3219, 17755}, {16707, 17200}, {17193, 17457}, {21037, 21248}
X(20898) = isotomic conjugate of isogonal conjugate of X(17457)
X(20899) lies on these lines: {8, 20350}, {75, 330}, {76, 321}, {1930, 20892}, {20237, 20432}, {20433, 20880}, {20628, 20635}
X(20899) = isotomic conjugate of isogonal conjugate of X(17459)
X(20900) lies on these lines: {75, 537}, {321, 3452}, {646, 18743}, {1266, 4695}, {3262, 20893}, {3264, 3992}, {3762, 14442}, {3875, 4561}, {17195, 17460}, {17880, 20895}, {17886, 18697}
X(20900) = isotomic conjugate of isogonal conjugate of X(17460)
X(20901) lies on these lines: {75, 100}, {321, 20431}, {693, 15634}, {824, 21339}, {1109, 1111}, {3119, 4858}, {4467, 7004}, {5057, 7112}, {7046, 13577}, {17198, 17463}, {17864, 20880}, {17878, 20902}, {20433, 20896}, {20435, 20887}, {20627, 20639}
X(20901) = isotomic conjugate of isogonal conjugate of X(17463)
X(20902) lies on these lines: {2, 16599}, {19, 18691}, {48, 75}, {92, 823}, {125, 7068}, {321, 21091}, {339, 21046}, {523, 4081}, {1109, 2632}, {1733, 8766}, {1930, 18671}, {1953, 17858}, {1959, 20884}, {2173, 18699}, {2286, 17118}, {2294, 18692}, {3708, 4466}, {3942, 17880}, {4431, 18674}, {4605, 6358}, {4647, 18673}, {4858, 17761}, {6508, 14213}, {7124, 17119}, {17438, 17859}, {17442, 18693}, {17446, 17900}, {17878, 20901}, {18669, 18694}, {18670, 18695}, {18672, 18696}, {18675, 18698}, {18722, 20916}, {21252, 21340}
X(20902) = anticomplement of X(16599)
X(20902) = pole wrt polar circle of trilinear polar of X(24000) (line X(162)X(163))
X(20902) = polar conjugate of X(24000)
X(20902) = isotomic conjugate of isogonal conjugate of X(3708)
X(20902) = isotomic conjugate of polar conjugate of X(1109)
X(20902) = X(i)-isoconjugate of X(j) for these {i,j}: {3, 23964}, {4, 23357}, {19, 1101}, , {48, 24000}, {92, 23995}
X(20902) = trilinear product X(i)*X(j) for these {i,j}: {2, 125}, {63, 1109}, {523, 525}, {656, 1577}
X(20903) lies on these lines: {63, 20627}, {75, 799}, {9396, 17882}, {14206, 20904}, {17199, 17467}, {20879, 20889}
X(20904) lies on these lines: {75, 896}, {661, 17893}, {1930, 1959}, {14206, 20903}, {14210, 17897}, {17204, 17472}, {17871, 18156}, {20629, 20887}
X(20905) lies on these lines: {2, 37}, {7, 14524}, {85, 10004}, {92, 1119}, {142, 1441}, {322, 4869}, {857, 12610}, {894, 1462}, {1125, 17869}, {1446, 21258}, {3187, 17811}, {3262, 17234}, {3662, 17435}, {3701, 8582}, {3702, 8583}, {3886, 19861}, {3912, 20895}, {4008, 16020}, {4859, 17861}, {5905, 18928}, {7205, 18031}, {7321, 18151}, {10582, 17860}, {13567, 17184}, {17023, 18690}, {20236, 20880}
X(20905) = complement of X(25243)
X(20906) lies on these lines: {2, 21348}, {75, 513}, {239, 3063}, {274, 4378}, {321, 4079}, {325, 523}, {514, 4374}, {522, 3766}, {650, 14296}, {661, 17893}, {824, 4391}, {894, 20980}, {918, 4462}, {1441, 20504}, {3250, 20891}, {3762, 21130}, {3777, 20512}, {4083, 17217}, {4086, 4509}, {4361, 21007}, {4406, 4977}, {4408, 4777}, {4411, 4802}, {4449, 17215}, {4762, 20950}, {4775, 17143}, {7628, 21183}, {14349, 20629}, {20880, 21129}, {20892, 21123}, {21055, 21262}
X(20906) = isotomic conjugate of X(932)
X(20906) = anticomplement of X(21348)
X(20907) lies on these lines: {1, 17215}, {7, 20293}, {75, 522}, {514, 4374}, {523, 4411}, {657, 4384}, {693, 17894}, {850, 4025}, {900, 4408}, {1459, 10436}, {1577, 17893}, {2517, 4509}, {3667, 3766}, {3739, 6586}, {4086, 15413}, {4357, 20316}, {4406, 4778}, {4449, 17218}, {4699, 21225}, {4791, 20888}, {6005, 17159}, {6590, 20909}, {17066, 21348}, {21178, 21180}
X(20908) lies on these lines: {75, 812}, {312, 4928}, {321, 4728}, {514, 4374}, {523, 2530}, {693, 4838}, {764, 20512}, {786, 4481}, {824, 1577}, {850, 16892}, {918, 1086}, {1635, 4359}, {2786, 3766}, {4155, 4647}, {4369, 20952}, {4444, 18895}, {4763, 19804}, {14838, 21225}
X(20909) lies on these lines: {75, 649}, {244, 21197}, {321, 3835}, {514, 17894}, {661, 17893}, {693, 4838}, {824, 850}, {3064, 20883}, {3250, 20637}, {3261, 4024}, {3676, 6358}, {4382, 20950}, {4408, 4820}, {4468, 14213}, {4521, 4858}, {4785, 4980}, {4813, 20949}, {6590, 20907}
X(20910) lies on these lines: {75, 798}, {313, 21055}, {661, 17893}, {824, 1577}, {14207, 14213}
X(20911) lies on these lines: {2, 304}, {7, 8}, {10, 1930}, {22, 18616}, {37, 17489}, {41, 16822}, {76, 321}, {81, 239}, {86, 5262}, {141, 3721}, {257, 1921}, {279, 7182}, {312, 18135}, {314, 17863}, {315, 5016}, {333, 7291}, {348, 17080}, {350, 3702}, {517, 17152}, {668, 4696}, {693, 18015}, {742, 2295}, {976, 3905}, {1089, 6381}, {1111, 4647}, {1125, 14210}, {1211, 1228}, {1254, 9436}, {1446, 6063}, {1575, 16720}, {1655, 3797}, {2082, 4384}, {2292, 4357}, {3125, 21240}, {3210, 4352}, {3218, 17206}, {3454, 17211}, {3616, 18156}, {3626, 4986}, {3666, 16705}, {3670, 16887}, {3673, 4441}, {3674, 3687}, {3691, 17755}, {3701, 6376}, {3718, 5232}, {3739, 17497}, {3902, 17144}, {3926, 17740}, {4109, 4766}, {4167, 17062}, {4320, 9312}, {4358, 17292}, {4372, 4386}, {4376, 4426}, {4714, 20893}, {5015, 20553}, {5178, 20552}, {5222, 19804}, {5224, 20336}, {5813, 14555}, {6734, 17875}, {8024, 19835}, {9534, 20235}, {10009, 20892}, {10447, 17861}, {10471, 17866}, {15523, 20590}, {16886, 20541}, {17135, 20247}, {17164, 20347}, {17322, 20932}, {17495, 18600}, {21024, 21138}
X(20911) = isotomic conjugate of X(2298)
X(20912) lies on these lines: {75, 524}, {226, 306}, {316, 17482}, {514, 4374}, {3262, 20432}, {3948, 16732}, {16581, 21094}, {21048, 21256}
X(20913) lies on these lines: {2, 39}, {10, 38}, {37, 1269}, {44, 4410}, {75, 141}, {81, 17034}, {85, 5244}, {142, 20891}, {183, 11329}, {239, 1909}, {241, 349}, {312, 17244}, {313, 3739}, {314, 17300}, {319, 20174}, {321, 1930}, {350, 16826}, {377, 5208}, {379, 1150}, {730, 21352}, {940, 19281}, {964, 10458}, {1078, 19308}, {1213, 18133}, {1235, 15149}, {1500, 17147}, {1920, 18891}, {1975, 16367}, {1999, 19787}, {3009, 12263}, {3264, 4377}, {3596, 4699}, {3687, 20436}, {3688, 17142}, {3734, 11320}, {3760, 16831}, {3761, 3765}, {3770, 17277}, {3975, 16815}, {4043, 17243}, {4044, 4358}, {4385, 8728}, {4441, 17316}, {5224, 18144}, {6376, 18136}, {6542, 17143}, {7081, 16056}, {10447, 17298}, {12782, 17155}, {15488, 15971}, {15668, 18147}, {16709, 17398}, {16823, 16850}, {16994, 19224}, {17031, 20985}, {17049, 21278}, {17116, 17787}, {17144, 17389}, {17165, 20683}, {17245, 18137}, {17303, 18044}
X(20914) lies on these lines: {2, 85}, {4, 75}, {76, 5179}, {92, 349}, {169, 1760}, {253, 322}, {304, 4417}, {312, 857}, {329, 1231}, {379, 19804}, {1441, 2551}, {3732, 18596}, {4687, 18721}, {5142, 18738}, {5813, 14555}, {6376, 18749}
X(20914) = isotomic conjugate of X(7097)
X(20915) lies on these lines: {19, 27}, {304, 18715}, {1959, 18672}, {2964, 4008}
X(20916) lies on these lines: {19, 27}, {1577, 20950}, {1959, 20941}, {18722, 20902}
X(20917) lies on these lines: {2, 330}, {7, 17787}, {8, 20358}, {10, 982}, {37, 18144}, {48, 18048}, {75, 141}, {76, 85}, {86, 18044}, {142, 3596}, {274, 17308}, {313, 17234}, {314, 17296}, {321, 17230}, {327, 2186}, {350, 17316}, {388, 18141}, {646, 4659}, {668, 4384}, {870, 16826}, {940, 19806}, {1269, 17233}, {1959, 18055}, {1999, 19803}, {3210, 20691}, {3419, 7270}, {3705, 20486}, {3761, 17284}, {3770, 17279}, {3834, 4377}, {3948, 17056}, {4043, 17240}, {4385, 18208}, {4410, 17359}, {4417, 20449}, {4445, 20174}, {4479, 17310}, {4494, 6173}, {4517, 17794}, {4675, 17790}, {4687, 18133}, {5236, 7017}, {5308, 18135}, {5834, 16284}, {6542, 17144}, {7247, 19807}, {10436, 18065}, {16831, 18140}, {17063, 20340}, {17143, 17294}, {17232, 20891}, {17241, 18137}, {17317, 18147}, {17394, 18046}, {17788, 20930}, {19584, 21101}
X(20918) lies on these lines: {2, 3}, {522, 1324}, {1030, 16675}
X(20919) lies on these lines: {2, 16732}, {75, 3219}, {92, 264}, {190, 14213}, {321, 4886}, {333, 20236}, {561, 20643}, {1233, 7112}, {3112, 6654}, {4676, 17871}, {5745, 19804}, {14206, 14829}, {18137, 20929}, {18142, 20940}, {18152, 20944}
X(20920) lies on these lines: {75, 1150}, {92, 264}, {190, 14206}, {319, 321}, {333, 6358}, {514, 17789}, {1109, 17763}, {1978, 20643}, {3769, 17871}, {3911, 19804}, {3936, 17791}, {4358, 18151}, {14213, 14829}, {20448, 20940}
X(20921) lies on these lines: {2, 85}, {7, 18928}, {63, 17277}, {75, 329}, {78, 5342}, {92, 264}, {144, 4359}, {189, 18141}, {190, 20223}, {342, 15466}, {1441, 18228}, {1763, 6996}, {2999, 3673}, {3436, 6997}, {3618, 19802}, {3869, 4651}, {4664, 18662}, {5222, 19790}, {5748, 18743}, {6818, 17441}, {7360, 19541}, {10446, 14557}, {11678, 17165}, {17158, 20043}, {17791, 20942}, {18134, 20946}
X(20922) lies on these lines: {55, 75}, {85, 18045}, {92, 20448}, {304, 20926}, {312, 8024}, {4417, 7112}, {18138, 20444}, {18142, 20927}, {20451, 20649}
X(20923) lies on these lines: {2, 37}, {69, 3975}, {76, 142}, {85, 6385}, {141, 6376}, {244, 17157}, {304, 1921}, {313, 17234}, {314, 4384}, {325, 21239}, {341, 518}, {668, 17296}, {740, 978}, {982, 21080}, {984, 3831}, {1909, 4648}, {3264, 4110}, {3596, 3912}, {3662, 3948}, {3696, 4673}, {3718, 17755}, {3760, 4859}, {3765, 17300}, {3770, 4675}, {3834, 18144}, {3963, 17244}, {4033, 17240}, {4361, 16827}, {6381, 21255}, {6383, 20335}, {10447, 16832}, {10472, 16819}, {16817, 19282}, {17227, 18133}, {17241, 18040}, {17283, 18044}, {17306, 18140}, {17789, 20927}, {18151, 20444}, {20449, 20647}, {20719, 21281}
X(20923) = isotomic conjugate of isogonal conjugate of X(21384)
X(20924) lies on these lines: {10, 20955}, {39, 7187}, {69, 16086}, {75, 519}, {76, 85}, {81, 239}, {99, 5088}, {142, 17788}, {257, 21240}, {279, 3926}, {315, 17170}, {316, 4872}, {320, 758}, {321, 17310}, {325, 1565}, {335, 712}, {345, 17079}, {348, 7763}, {350, 1111}, {514, 1921}, {538, 3797}, {668, 3263}, {760, 4645}, {766, 3888}, {1016, 1275}, {1269, 20932}, {1447, 5977}, {1909, 1930}, {2795, 3685}, {3262, 4555}, {3264, 17791}, {3596, 20930}, {3662, 3735}, {3666, 16712}, {3673, 18156}, {3739, 16724}, {3766, 6550}, {3834, 21331}, {3902, 17143}, {4358, 4945}, {4562, 18895}, {4673, 12563}, {4717, 17762}, {4812, 17391}, {5249, 20929}, {6381, 18159}, {6542, 20432}, {7270, 7768}, {7752, 17181}, {7769, 17095}, {7799, 17078}, {16711, 17495}, {17234, 20444}, {17266, 18140}, {17300, 20234}, {18061, 20335}, {18146, 18743}, {20450, 20951}
X(20924) = isotomic conjugate of X(2161)
X(20925) lies on these lines: {69, 3419}, {75, 537}, {76, 85}, {183, 5088}, {274, 8056}, {320, 1478}, {1269, 20930}, {1847, 1969}, {1909, 3673}, {3729, 21232}, {3760, 4975}, {3765, 4359}, {3902, 4441}, {4403, 9466}, {4680, 17360}, {4723, 20880}, {4872, 11185}, {16284, 17143}, {18143, 20927}, {18145, 18743}, {18146, 20569}
X(20925) = isotomic conjugate of polar conjugate of X(3294)
X(20926) lies on these lines: {3, 75}, {55, 17887}, {85, 18359}, {304, 20922}, {312, 857}, {664, 11109}, {4872, 17492}, {5074, 7112}, {6376, 20951}, {14963, 18050}
X(20926) = isogonal conjugate of X(7139)
X(20926) = isotomic conjugate of X(7094)
X(20927) lies on these lines: {2, 15474}, {6, 20171}, {9, 75}, {69, 1229}, {76, 5179}, {80, 4737}, {85, 17234}, {92, 264}, {239, 2911}, {304, 18137}, {321, 14555}, {341, 5587}, {344, 1441}, {346, 3262}, {857, 1234}, {1111, 17282}, {1479, 4523}, {1760, 6996}, {3553, 4360}, {3618, 17863}, {3673, 7803}, {3718, 5816}, {3912, 20930}, {3929, 20882}, {4008, 4676}, {4043, 21078}, {4123, 14004}, {4957, 17340}, {5219, 18044}, {5342, 7270}, {5747, 18147}, {6376, 20547}, {14829, 18750}, {16284, 17295}, {16732, 17279}, {17240, 17791}, {17353, 17861}, {17789, 20923}, {17862, 18928}, {18031, 20642}, {18142, 20922}, {18143, 20925}, {18152, 20641}
X(20927) = isotomic conjugate of anticomplement of complementary conjugate of X(34847)
X(20928) lies on these lines: {2, 3262}, {57, 75}, {69, 321}, {92, 264}, {190, 3719}, {226, 20930}, {304, 20922}, {318, 7270}, {1897, 4123}, {1978, 20641}, {2064, 14615}, {3769, 4008}, {3827, 20557}, {3928, 20881}, {4673, 7982}, {5928, 21277}, {10453, 18839}, {16284, 17294}, {17763, 17871}, {17789, 20449}, {17862, 18141}, {18151, 20942}, {18747, 21062}
X(20929) lies on these lines: {2, 17788}, {75, 81}, {92, 304}, {306, 2064}, {312, 1230}, {321, 1909}, {322, 19799}, {345, 6360}, {1441, 19810}, {1999, 20234}, {3262, 19811}, {4463, 7270}, {5249, 20924}, {18134, 18714}, {18137, 20919}, {18138, 20446}, {19809, 20895}
X(20930) lies on these lines: {7, 8}, {63, 21231}, {86, 998}, {92, 914}, {226, 20928}, {264, 20570}, {273, 664}, {304, 313}, {309, 20566}, {312, 1230}, {314, 17098}, {326, 9312}, {355, 21276}, {1111, 3875}, {1150, 19804}, {1269, 20925}, {3007, 18133}, {3596, 20924}, {3673, 4360}, {3758, 15988}, {3761, 18697}, {3879, 17861}, {3912, 20927}, {3957, 17393}, {4654, 20237}, {4851, 16732}, {4858, 17298}, {5307, 8897}, {5736, 17394}, {5748, 18743}, {6350, 18750}, {6376, 18749}, {7146, 20647}, {8257, 17277}, {10587, 17321}, {16817, 19285}, {17220, 21272}, {17241, 18151}, {17270, 18698}, {17296, 20236}, {17315, 20173}, {17786, 17789}, {17788, 20917}, {18147, 18156}, {18589, 18747}, {20347, 21271}, {20945, 20947}
X(20930) = isotomic conjugate of X(90)
X(20931) lies on these lines: {1, 29}, {75, 2172}, {304, 1760}, {610, 1930}, {18049, 18058}
X(20932) lies on these lines: {1, 75}, {69, 2836}, {306, 18720}, {312, 1230}, {313, 502}, {319, 20336}, {321, 17315}, {322, 3260}, {1269, 20924}, {3263, 5564}, {3596, 20937}, {3718, 17360}, {3912, 18714}, {4043, 17789}, {15523, 20947}, {17233, 20445}, {17322, 20911}, {17788, 18137}, {18133, 20955}, {20538, 21289}
X(20932) = isotomic conjugate of X(267)
X(20933) lies on these lines: {2, 16720}, {75, 83}, {76, 18744}, {1031, 17788}, {6376, 20444}, {18050, 20951}
X(20934) lies on these lines: {2, 16720}, {31, 75}, {69, 3974}, {304, 9239}, {561, 17957}, {1930, 1965}, {1966, 17884}, {3403, 17890}, {15523, 20955}, {17135, 17762}, {18133, 18138}, {20889, 20944}
X(20935) lies on these lines: {8, 2898}, {69, 350}, {75, 1088}, {85, 2886}, {200, 4554}, {312, 4437}, {319, 16090}, {322, 325}, {673, 2319}, {693, 3681}, {948, 1909}, {2550, 7196}, {3061, 3452}, {18056, 19806}
X(20936) lies on these lines: {75, 330}, {85, 20446}, {304, 1921}, {312, 17230}, {698, 17762}, {6376, 20532}, {17760, 17786}, {17789, 20449}, {20642, 20649}
X(20937) lies on these lines: {75, 537}, {304, 20938}, {312, 3969}, {3262, 4723}, {3264, 17791}, {3596, 20932}, {16284, 18816}, {20445, 20496}
X(20938) lies on these lines: {75, 519}, {304, 20937}, {312, 17791}
X(20939) lies on these lines: {75, 799}, {92, 1934}, {561, 17957}, {1821, 18750}, {1966, 14206}, {3120, 18032}, {4671, 17762}, {14212, 18056}, {17777, 20538}, {18060, 20941}, {18066, 18159}, {18149, 18151}, {20450, 20947}, {20641, 20945}
X(20940) lies on these lines: {75, 100}, {85, 18359}, {92, 18031}, {304, 1978}, {312, 8024}, {321, 20533}, {908, 7112}, {7081, 20890}, {18066, 18159}, {18138, 20446}, {18142, 20919}, {20448, 20920}
X(20941) lies on these lines: {48, 75}, {897, 17876}, {1930, 16563}, {1959, 20916}, {2349, 18750}, {17233, 20445}, {18060, 20939}, {18061, 18151}
X(20942) lies on these lines: {2, 37}, {69, 8055}, {190, 3928}, {226, 17241}, {304, 18145}, {319, 18228}, {329, 17361}, {341, 519}, {518, 4903}, {551, 4385}, {3241, 3701}, {3452, 17233}, {3679, 4673}, {3685, 4421}, {3769, 4011}, {3790, 3816}, {3829, 3932}, {3912, 20943}, {3929, 14829}, {3992, 4677}, {4009, 10453}, {4135, 17063}, {4387, 5205}, {4415, 17227}, {4417, 17240}, {4428, 7081}, {4647, 19876}, {4656, 17249}, {4737, 4975}, {7283, 16371}, {11679, 17335}, {16817, 19536}, {16833, 17144}, {17791, 20921}, {18151, 20928}
X(20942) = isotomic conjugate of X(36603)
X(20943) lies on these lines: {1, 18145}, {8, 4479}, {10, 75}, {85, 20947}, {145, 350}, {304, 18159}, {312, 17230}, {330, 20530}, {561, 3994}, {668, 3632}, {1125, 18146}, {1575, 20081}, {1909, 3616}, {3624, 3761}, {3644, 20691}, {3661, 4415}, {3662, 21025}, {3814, 7796}, {3834, 18144}, {3912, 20942}, {3943, 17786}, {3948, 17056}, {4080, 18066}, {4386, 17128}, {4400, 16916}, {4426, 17129}, {4441, 4678}, {4668, 17143}, {4713, 17752}, {4871, 6384}, {4892, 18067}, {4903, 17090}, {5087, 20449}, {9466, 17030}, {9902, 17793}, {10449, 17360}, {17149, 18152}, {17228, 21024}, {17240, 21071}, {17342, 18073}, {17448, 21219}, {17787, 20073}
X(20943) = isotomic conjugate of X(36598)
X(20943) = anticomplement of X(32005)
X(20944) lies on these lines: {75, 896}, {92, 304}, {661, 786}, {799, 14206}, {1109, 1966}, {1580, 3112}, {1965, 20627}, {1978, 20643}, {14210, 18075}, {18152, 20919}, {20889, 20934}
X(20945) lies on these lines: {31, 18075}, {38, 75}, {312, 17230}, {1707, 1966}, {1920, 6376}, {1921, 6384}, {1965, 18056}, {3706, 4479}, {17472, 18069}, {20641, 20939}, {20930, 20947}
X(20945) = isotomic conjugate of X(38275)
X(20946) lies on these lines: {2, 37}, {85, 17234}, {190, 1445}, {273, 6335}, {282, 309}, {322, 3912}, {341, 938}, {936, 3886}, {1210, 3717}, {1332, 3759}, {1998, 3699}, {3673, 17282}, {3948, 18635}, {7283, 16410}, {17241, 18151}, {18134, 20921}, {18136, 18751}, {18141, 18750}
X(20947) lies on these lines: {2, 37}, {7, 4903}, {10, 17762}, {85, 20943}, {86, 1215}, {190, 3509}, {210, 319}, {257, 21025}, {274, 1089}, {304, 6376}, {313, 1920}, {320, 4009}, {325, 3932}, {334, 3948}, {341, 18156}, {668, 3992}, {693, 4036}, {765, 4600}, {985, 4676}, {1111, 18145}, {1655, 16720}, {1757, 17731}, {1909, 3701}, {1921, 20446}, {1926, 6386}, {1930, 18140}, {2227, 20711}, {3264, 4087}, {3596, 4485}, {3685, 8301}, {3706, 5564}, {3807, 3930}, {3879, 4090}, {4075, 16887}, {4372, 16916}, {4376, 16997}, {4553, 20723}, {4583, 18157}, {4645, 20716}, {4975, 4986}, {5282, 17336}, {5311, 17394}, {6381, 18159}, {6541, 18035}, {6542, 20529}, {6651, 17735}, {7283, 19329}, {15523, 20932}, {16825, 17144}, {16886, 17669}, {17017, 17393}, {18133, 18138}, {18151, 20646}, {19582, 21281}, {20450, 20939}, {20538, 20722}, {20930, 20945}
X(20948) is the trilinear pole of line X(1109)X(21207), which is the tangent to the inellipse that is the trilinear square of the de Longchamps line, at X(1109) (the trilinear square of X(523)). (Randy Hutson, October 15, 2018)
X(20948): Let P1 and P2 be the two points on the de Longchamps line whose trilinear polars are parallel to the de Longchamps line. P1 and P2 lie on the Kiepert hyperbola and circle {{X(2), X(98), X(99)}}. X(20948) is the trilinear product P1*P2. (Randy Hutson, October 15, 2018)
X(20948) lies on these lines: {75, 656}, {76, 18160}, {92, 14209}, {313, 4086}, {661, 786}, {792, 8630}, {824, 1577}, {850, 4036}, {4043, 4171}, {8062, 18147}, {14208, 18076}
X(20948) = isotomic conjugate of X(163)
X(20948) = crossdifference of every pair of points on line X(560)X(1917)
X(20948) = polar conjugate of X(32676)
X(20949) lies on these lines: {75, 513}, {239, 21007}, {312, 4776}, {514, 1921}, {523, 3766}, {661, 786}, {693, 4036}, {3063, 3759}, {3250, 18080}, {3758, 20980}, {3762, 4509}, {3835, 17458}, {4043, 4079}, {4132, 20295}, {4374, 4977}, {4391, 18158}, {4406, 4778}, {4462, 15413}, {4687, 21348}, {4775, 17144}, {4813, 20909}, {14349, 18081}, {15419, 21222}, {16709, 17212}, {16755, 17496}, {21051, 21349}, {21055, 21261}
X(20950) lies on these lines: {75, 812}, {312, 4728}, {321, 21297}, {335, 918}, {514, 1921}, {693, 20952}, {824, 20954}, {850, 18071}, {1019, 10566}, {1577, 20916}, {1635, 19804}, {2517, 4801}, {3762, 18150}, {3837, 4518}, {4033, 4568}, {4382, 20909}, {4391, 4408}, {4762, 20906}, {4928, 18743}, {7200, 16726}, {16892, 18155}
X(20951) lies on these lines: {8, 7261}, {75, 99}, {3596, 20932}, {6376, 20926}, {17789, 20648}, {18050, 20933}, {18061, 18151}, {18066, 18159}, {20450, 20924}
X(20951) = isotomic conjugate of X(39137)
X(20952) lies on these lines: {75, 649}, {92, 3064}, {312, 3835}, {321, 20295}, {514, 17789}, {650, 14296}, {661, 786}, {693, 20950}, {772, 3250}, {824, 18155}, {3261, 6590}, {3700, 3766}, {4024, 20954}, {4369, 20908}
X(20953) lies on these lines: {75, 798}, {92, 14207}, {313, 21099}, {321, 4132}, {661, 786}, {1577, 20916}
X(20954) lies on these lines: {37, 21225}, {75, 522}, {86, 21173}, {319, 20293}, {320, 350}, {514, 4079}, {523, 3766}, {649, 18154}, {657, 17335}, {788, 18081}, {798, 812}, {824, 20950}, {900, 4374}, {1459, 17394}, {2533, 9400}, {3667, 4406}, {3673, 21182}, {4024, 20952}, {4130, 4391}, {4382, 18071}, {4408, 4777}, {4411, 4926}, {4455, 18077}, {4687, 6586}, {4785, 4823}, {4791, 6376}, {4985, 18160}, {16709, 16755}, {18072, 18133}, {20955, 21132}, {21178, 21185}, {21179, 21205}
X(20955) lies on these lines: {7, 8}, {10, 20924}, {76, 4485}, {141, 257}, {274, 17731}, {304, 6376}, {312, 17230}, {668, 1930}, {742, 17752}, {1111, 17143}, {1575, 7187}, {3626, 20893}, {3661, 17789}, {3662, 3959}, {3673, 17144}, {4417, 7146}, {4479, 4673}, {4760, 17692}, {4812, 17373}, {7182, 9364}, {8682, 17034}, {14210, 18140}, {14829, 16609}, {15523, 20934}, {16816, 19804}, {17152, 21272}, {17228, 20444}, {17287, 20234}, {18133, 20932}, {20954, 21132}
X(20956) lies on these lines: {75, 524}, {257, 17227}, {312, 1230}, {514, 1921}, {4033, 17789}, {4359, 16704}, {4892, 17472}, {16581, 18745}, {17788, 18143}, {17790, 17953}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 28036.
X(20957) lies on these lines: {3,3258}, {4,14670}, {5,476}, {30,110}, {74,16340}, {265,523}, {381,2453}, {546,18319}, {1624,2070}, {3001,6033}, {3154,15061}, {3470,3627}, {5627,11801}, {5663,17511}, {6243,16978}, {6787,9996}, {7471,14643}, {11799,12918}, {12028,14674}, {12030,13743}, {12079,15027}, {12091,18404}, {14851,20127}, {15112,18377}, {18697,20897}, {20641,20918}
X(20957) = midpoint of X(i) and X(j) for these {i,j}: {4, 14731}, {3627, 11749}
X(20957) = reflection of X(i) in X(j) for these {i,j}: {3, 3258}, {74, 16340}, {476, 5}, {6243, 16978}, {12121, 14934}, {14989, 3627}, {18319, 546}
X(20957) = reflection of X(265) in the Euler line
X(20958) lies on these lines: {1, 575}, {6, 692}, {42, 13366}, {181, 215}, {651, 4014}, {899, 3292}, {1404, 2223}, {1495, 20962}, {1570, 20861}, {1960, 9262}, {2265, 4516}, {2323, 20683}, {3035, 18645}, {3157, 17114}, {3240, 11422}, {4557, 17455}, {4579, 14839}, {5007, 18758}, {5040, 20976}
X(20958) = crosssum of X(2) and X(11)
X(20958) = crosspoint of X(6) and X(59)
X(20958) = crossdifference of every pair of points on line X(918)X(4440)
X(20958) = isogonal conjugate of isotomic conjugate of X(3035)
X(20958) = polar conjugate of isotomic conjugate of X(22055)
X(20959) lies on these lines: {6, 181}, {42, 13366}, {43, 575}, {215, 2194}, {1197, 1692}, {1402, 2317}, {1495, 20961}, {2308, 3724}, {3292, 3720}, {4999, 18646}, {11422, 17018}
X(20959) = crosssum of X(2) and X(12)
X(20959) = crosspoint of X(6) and X(60)
X(20959) = isogonal conjugate of isotomic conjugate of X(4999)
X(20959) = polar conjugate of isotomic conjugate of X(22056)
X(20960) lies on these lines: {2, 3}, {32, 206}, {39, 160}, {211, 3202}, {682, 1384}, {1501, 14820}, {1627, 8793}, {1634, 7758}, {1974, 10316}, {2353, 20987}, {3053, 20993}, {3933, 9917}, {5201, 14023}, {7767, 13562}, {7800, 8266}, {9605, 20775}, {10790, 18907}, {13236, 14691}, {18374, 20968}
X(20961) lies on these lines: {1, 3060}, {6, 20988}, {42, 51}, {43, 5640}, {181, 902}, {511, 3720}, {674, 756}, {748, 4259}, {899, 5943}, {1197, 3124}, {1495, 20959}, {2308, 3271}, {2309, 20966}, {3056, 5311}, {3724, 14547}, {3792, 5284}, {4332, 19366}, {4336, 11436}, {4883, 9037}, {6186, 7113}, {11002, 17018}, {11451, 16569}, {20861, 20965}
X(20961) = isogonal conjugate of isotomic conjugate of X(25639)
X(20961) = polar conjugate of isotomic conjugate of X(22058)
X(20961) = {X(42),X(51)}-harmonic conjugate of X(20962)
X(20962) lies on these lines: {1, 5640}, {6, 20989}, {42, 51}, {43, 3060}, {181, 2308}, {244, 8679}, {375, 756}, {511, 899}, {667, 20456}, {902, 3271}, {1201, 16980}, {1495, 20958}, {1736, 2611}, {1739, 2392}, {2183, 3724}, {2361, 6187}, {2810, 17449}, {2979, 16569}, {3240, 11002}, {3720, 5943}, {3814, 17174}, {3836, 3909}, {4424, 15049}, {6373, 8661}, {9037, 16610}, {20459, 20974}, {20861, 20977}
X(20962) = isogonal conjugate of isotomic conjugate of X(3814)
X(20962) = polar conjugate of isotomic conjugate of X(22059)
X(20962) = {X(42),X(51)}-harmonic conjugate of X(20961)
X(20963) lies on these lines: {1, 6}, {8, 17750}, {10, 3780}, {31, 2241}, {32, 1468}, {36, 18755}, {39, 42}, {41, 2242}, {55, 5021}, {56, 2271}, {58, 1914}, {76, 17027}, {81, 239}, {86, 16819}, {141, 16818}, {172, 2251}, {194, 712}, {292, 1126}, {350, 4721}, {354, 16583}, {384, 20180}, {386, 2275}, {519, 2295}, {524, 4503}, {604, 2304}, {672, 1500}, {758, 3727}, {894, 17143}, {940, 4384}, {942, 3125}, {980, 5256}, {1015, 1193}, {1125, 2238}, {1258, 3227}, {1400, 4263}, {1409, 4332}, {1574, 3214}, {1575, 3293}, {1909, 17034}, {2082, 20229}, {2092, 2260}, {2170, 2650}, {2268, 5042}, {2269, 10544}, {2276, 4253}, {2277, 4270}, {2279, 2334}, {2303, 16817}, {2308, 3747}, {2653, 20982}, {3009, 20965}, {3051, 21352}, {3063, 4378}, {3216, 16604}, {3244, 3997}, {3290, 5045}, {3303, 14974}, {3664, 17050}, {3666, 6155}, {3684, 5277}, {3691, 3720}, {3721, 3874}, {3726, 3881}, {3735, 3868}, {3739, 17175}, {3746, 17735}, {3758, 17144}, {3767, 11269}, {3959, 5902}, {4065, 17475}, {4273, 7113}, {4352, 17014}, {4383, 16831}, {4502, 4775}, {4559, 11011}, {4644, 17753}, {4667, 20257}, {4754, 20888}, {5007, 8624}, {5115, 5301}, {5202, 20976}, {5271, 19714}, {5276, 16823}, {5439, 16605}, {5563, 21008}, {5839, 9534}, {10452, 15985}, {14597, 18732}, {14996, 16816}, {16549, 20691}, {16827, 17121}, {16828, 17398}, {17451, 20752}, {18163, 20367}, {18398, 20271}, {20459, 20964}, {20463, 20668}, {20861, 20969}
X(20963) = isogonal conjugate of X(32009)
X(20963) = crosssum of X(2) and X(37)
X(20963) = crosspoint of X(6) and X(81)
X(20963) = polar conjugate of isotomic conjugate of X(22060)
X(20963) = isogonal conjugate of isotomic conjugate of X(3739)
X(20964) lies on these lines: {1, 1258}, {2, 17153}, {6, 292}, {9, 31}, {37, 1918}, {38, 16574}, {42, 181}, {58, 1757}, {78, 1468}, {81, 2663}, {100, 1045}, {171, 385}, {172, 1691}, {213, 6378}, {238, 3842}, {284, 18266}, {314, 17763}, {750, 10436}, {757, 765}, {760, 17470}, {798, 18105}, {813, 5970}, {976, 10477}, {983, 985}, {984, 5156}, {1089, 3923}, {1237, 1966}, {1420, 1471}, {1500, 2670}, {2210, 19133}, {2223, 2309}, {2239, 4357}, {2245, 21035}, {2260, 20456}, {2300, 3009}, {2650, 15556}, {3685, 5255}, {3688, 4274}, {3728, 21061}, {3952, 17126}, {3963, 4039}, {4579, 18787}, {4687, 16690}, {16476, 17349}, {18082, 21238}, {20459, 20963}
X(20964) = isogonal conjugate of X(32010)
X(20964) = complement of X(17153)
X(20964) = crosspoint of X(6) and X(82)
X(20964) = crosssum of X(2) and X(38)
X(20964) = crossdifference of every pair of points on line X(812)X(4560)
X(20964) = isogonal conjugate of isotomic conjugate of X(1215)
X(20964) = polar conjugate of isotomic conjugate of X(22061)
X(20965) is the perspector of the symmedial triangle and the tangential triangle, wrt the medial triangle, of the bicevian conic of X(2) and X(6). (Randy Hutson, August 29, 2018)
X(20965) lies on these lines: {2, 6}, {23, 10329}, {25, 11175}, {32, 10014}, {39, 51}, {42, 20457}, {83, 1207}, {110, 14153}, {171, 1977}, {182, 1501}, {184, 5034}, {187, 14765}, {213, 21352}, {217, 1899}, {238, 7109}, {251, 1691}, {263, 9777}, {373, 1196}, {427, 2211}, {511, 8041}, {694, 3108}, {899, 1197}, {1180, 3981}, {1186, 7808}, {1194, 3124}, {1627, 12212}, {1915, 5012}, {2076, 15246}, {2235, 4359}, {2295, 18091}, {2308, 8622}, {2309, 20863}, {2451, 10567}, {2970, 14768}, {2979, 13330}, {3009, 20963}, {3060, 3094}, {3117, 7772}, {3229, 5041}, {3266, 4074}, {3291, 6688}, {3331, 5475}, {3787, 5650}, {3917, 5052}, {3934, 17176}, {3995, 17475}, {4048, 16932}, {4121, 7764}, {5007, 8623}, {5017, 7485}, {5028, 15004}, {5106, 14990}, {5111, 11673}, {5116, 6636}, {5135, 5371}, {6593, 17413}, {6656, 14822}, {6676, 14965}, {7745, 14957}, {7770, 20023}, {7878, 9490}, {8789, 8842}, {8881, 12050}, {9465, 11451}, {9605, 11328}, {10328, 12215}, {10339, 16897}, {11245, 20021}, {12055, 15107}, {13341, 19032}, {13366, 20976}, {20372, 21327}, {20861, 20961}
X(20965) = isogonal conjugate of isotomic conjugate of X(3934)
X(20965) = polar conjugate of isotomic conjugate of X(22062)
X(20966) lies on these lines: {2, 4476}, {6, 199}, {31, 2245}, {38, 1211}, {39, 51}, {42, 181}, {201, 1834}, {210, 4735}, {244, 17056}, {256, 4418}, {325, 16891}, {386, 4225}, {511, 17187}, {726, 1230}, {756, 1213}, {982, 3936}, {986, 5051}, {1193, 10974}, {1724, 17521}, {1865, 2181}, {1962, 3122}, {2238, 5282}, {2251, 20456}, {2292, 4205}, {2309, 20961}, {3060, 5145}, {3120, 3136}, {3124, 20671}, {3454, 3670}, {3728, 8013}, {3909, 18601}, {3948, 12782}, {4137, 18202}, {4199, 4414}, {4215, 4261}, {6535, 21024}, {14992, 20683}, {20457, 20974}
X(20966) = isogonal conjugate of isotomic conjugate of X(3454)
X(20966) = polar conjugate of isotomic conjugate of X(22073)
X(20967) lies on these lines: {1, 20760}, {3, 1707}, {6, 1402}, {9, 55}, {21, 1183}, {31, 32}, {42, 51}, {43, 6210}, {48, 1397}, {65, 1730}, {181, 2183}, {198, 1460}, {212, 2175}, {239, 11688}, {931, 14534}, {960, 4267}, {968, 2082}, {988, 20805}, {1036, 1259}, {1400, 10460}, {1403, 2999}, {1621, 4981}, {1743, 10434}, {1962, 2170}, {2092, 2354}, {2150, 2193}, {2174, 20986}, {2300, 3725}, {2308, 3724}, {2318, 3688}, {2646, 17194}, {3011, 21319}, {3052, 15624}, {3056, 3190}, {3198, 12723}, {3271, 14547}, {3687, 18235}, {3794, 4511}, {3871, 4723}, {4640, 5132}, {4641, 16678}, {4849, 15621}, {5745, 21321}, {6737, 8240}, {12514, 19763}, {15569, 18185}, {18163, 21334}, {20460, 20985}
X(20967) = isogonal conjugate of X(31643)
X(20967) = isogonal conjugate of isotomic conjugate of X(960)
X(20967) = polar conjugate of isotomic conjugate of X(22074)
X(20968) lies on these lines: {3, 1177}, {6, 2353}, {32, 682}, {51, 5007}, {76, 827}, {206, 10316}, {217, 2909}, {864, 14602}, {1180, 14885}, {2387, 18796}, {3202, 9419}, {3398, 14561}, {7737, 11380}, {8743, 11610}, {10317, 15270}, {18374, 20960}
X(20968) = isogonal conjugate of isotomic conjugate of X(206)
X(20968) = polar conjugate of isotomic conjugate of X(22075)
X(20969) lies on these lines: {6, 20994}, {38, 7794}, {72, 4735}, {213, 3778}, {826, 4041}, {2308, 11205}, {3954, 21035}, {4484, 16466}, {14992, 20683}, {17192, 18183}, {20861, 20963}
X(20969) = isogonal conjugate of isotomic conjugate of complement of X(82)
X(20969) = isogonal conjugate of isotomic conjugate of X(21249)
X(20969) = polar conjugate of isotomic conjugate of X(22077)
X(20970) lies on these lines: {1, 1573}, {3, 6}, {37, 3678}, {41, 6186}, {42, 213}, {43, 1574}, {56, 9346}, {81, 5277}, {101, 1126}, {115, 118}, {172, 20461}, {387, 3767}, {512, 18001}, {519, 21024}, {524, 16887}, {538, 17499}, {661, 1643}, {798, 3249}, {810, 10581}, {978, 1449}, {1015, 1193}, {1017, 3124}, {1100, 1125}, {1201, 16971}, {1203, 1914}, {1211, 17023}, {1509, 16917}, {2140, 17366}, {2229, 3240}, {2240, 17012}, {2241, 16466}, {2251, 20456}, {2275, 5313}, {2276, 5312}, {2292, 6155}, {2295, 3293}, {2332, 14581}, {2334, 9351}, {2503, 2653}, {2650, 3125}, {2901, 7230}, {3008, 17056}, {3192, 3199}, {3454, 10026}, {3759, 17030}, {3811, 16972}, {3934, 17034}, {3936, 17367}, {3948, 4393}, {3997, 20691}, {4065, 4115}, {4205, 6537}, {5283, 19767}, {5292, 7746}, {5795, 6603}, {7410, 7735}, {8649, 16474}, {9427, 20671}, {16604, 16666}, {17275, 19858}, {20662, 20860}
X(20970) = isogonal conjugate of X(32014)
X(20970) = complement of X(33297)
X(20970) = crosspoint of X(6) and X(42)
X(20970) = crosssum of X(2) and X(86)
X(20970) = isogonal conjugate of isotomic conjugate of X(1213)
X(20970) = isogonal conjugate of polar conjugate of X(430)
X(20970) = trilinear pole wrt symmedial triangle of antiorthic axis
X(20970) = polar conjugate of isotomic conjugate of X(22080)
X(20971) lies on these lines: {1, 2}, {6, 7121}, {39, 20667}, {192, 14823}, {213, 20671}, {1475, 20457}, {2275, 20464}, {18758, 20663}, {20456, 20460}, {20860, 20866}
X(20971) = isogonal conjugate of isotomic conjugate of X(34832)
X(20971) = polar conjugate of isotomic conjugate of X(22081)
X(20972) lies on these lines: {6, 101}, {39, 20973}, {42, 3271}, {43, 4274}, {44, 519}, {906, 16946}, {1018, 1743}, {1401, 1405}, {2092, 20982}, {2347, 7117}, {3052, 3939}, {3707, 3840}, {3768, 8658}, {9283, 16554}, {16594, 17195}
X(20972) = isogonal conjugate of polar conjugate of X(5151)
X(20972) = isogonal conjugate of isotomic conjugate of X(16594)
X(20972) = polar conjugate of isotomic conjugate of X(22082)
X(20973) lies on these lines: {6, 36}, {37, 3169}, {39, 20972}, {42, 2183}, {43, 44}, {45, 3679}, {100, 751}, {750, 9349}, {995, 4266}, {1405, 4273}, {2316, 4256}, {2347, 4261}, {4286, 16670}, {4715, 17595}
X(20973) = isogonal conjugate of isotomic conjugate of complement of X(89)
X(20973) = isogonal conjugate of isotomic conjugate of complementary conjugate of X(34824)
X(20973) = polar conjugate of isotomic conjugate of X(22083)
X(20974) lies on these lines: {6, 20999}, {11, 661}, {42, 20455}, {116, 17198}, {181, 2350}, {649, 3937}, {1015, 3124}, {1331, 10756}, {2170, 2969}, {2225, 8679}, {3271, 8645}, {17435, 18210}, {20457, 20966}, {20459, 20962}, {20859, 20870}
X(20974) = isogonal conjugate of isotomic conjugate of X(116)
X(20974) = crosssum of X(2) and X(101)
X(20974) = crosspoint of X(6) and X(514)
X(20974) = polar conjugate of isotomic conjugate of X(22084)
X(20975) lies on these lines: {2, 16098}, {3, 895}, {4, 1942}, {6, 157}, {25, 8749}, {32, 3455}, {39, 682}, {69, 20819}, {98, 648}, {115, 2971}, {122, 125}, {184, 5158}, {216, 6467}, {237, 2393}, {246, 526}, {264, 9307}, {338, 523}, {351, 865}, {524, 3001}, {542, 18114}, {656, 3942}, {661, 2310}, {800, 1843}, {842, 9139}, {1316, 1632}, {1624, 11746}, {1634, 2854}, {1818, 20733}, {1899, 13409}, {1992, 3095}, {2023, 14772}, {2092, 20455}, {2407, 12042}, {2782, 14570}, {2970, 8901}, {3005, 8288}, {3014, 18122}, {3053, 17813}, {3269, 9409}, {3271, 20982}, {3675, 17058}, {3964, 6391}, {4092, 4705}, {4551, 6044}, {5024, 10765}, {5095, 10991}, {5201, 9019}, {6746, 16035}, {8266, 17710}, {8287, 17463}, {8573, 12167}, {9178, 14998}, {10745, 18933}, {11188, 11328}, {11579, 14687}, {13198, 13558}, {14270, 17423}, {15000, 15118}, {15851, 19125}, {18591, 20728}, {20759, 20830}, {20785, 20825}
X(20975) = isogonal conjugate of X(18020)
X(20975) = crosssum of X(2) and X(110)
X(20975) = crosspoint of X(6) and X(523)
X(20975) = crossdifference of every pair of points on line X(99)X(112)
X(20975) = pole wrt polar circle of line X(99)X
X(20975) = isotomic conjugate of polar conjugate of X(3124)
X(20975) = polar conjugate of isotomic conjugate of X(3269)
X(20975) = X(19)-isoconjugate of X(4590)
X(20975) = X(63)-isoconjugate of X(23582)
(107)
X(20975) = X(92)-isoconjugate of X(249)
X(20976) lies on these lines: {2, 12829}, {6, 110}, {23, 5111}, {32, 9155}, {39, 5191}, {125, 5477}, {141, 10552}, {184, 5028}, {323, 1691}, {351, 10567}, {511, 8627}, {620, 17199}, {1495, 1570}, {1501, 1993}, {1648, 5972}, {1692, 3231}, {1915, 1994}, {1976, 11402}, {2308, 5147}, {3094, 11003}, {3266, 13196}, {3269, 13198}, {3311, 7598}, {3312, 7599}, {3448, 8288}, {3569, 14397}, {3629, 7664}, {3981, 9544}, {4563, 5182}, {4576, 5026}, {5007, 5106}, {5008, 9486}, {5012, 5116}, {5027, 14778}, {5040, 20958}, {5162, 14602}, {5202, 20963}, {5642, 6388}, {5969, 10330}, {6034, 9143}, {6409, 7601}, {6410, 7602}, {9463, 9716}, {11004, 13330}, {11205, 14153}, {11646, 14683}, {13303, 14396}, {13366, 20965}, {15107, 15514}
X(20976) = isogonal conjugate of isotomic conjugate of X(620)
X(20976) = polar conjugate of isotomic conjugate of X(22085)
X(20976) = crosspoint of X(6) and X(249)
X(20976) = crosssum of X(2) and X(115)
X(20976) = crossdifference of every pair of points on line X(148)X(690)
X(20977) lies on these lines: {6, 23}, {39, 51}, {110, 5111}, {111, 8586}, {323, 15514}, {511, 3124}, {625, 17204}, {669, 2451}, {671, 8785}, {858, 1648}, {1112, 2211}, {1495, 1570}, {1691, 15107}, {1692, 8627}, {2493, 3289}, {2502, 3292}, {2549, 16311}, {3051, 3060}, {3094, 5640}, {3266, 5969}, {5038, 15019}, {5116, 15018}, {5189, 6792}, {5943, 8041}, {6034, 15360}, {8352, 14263}, {9463, 16981}, {10330, 13196}, {10542, 17810}, {10601, 15815}, {20861, 20962}
X(20977) = isogonal conjugate of isotomic conjugate of X(625)
X(20977) = polar conjugate of isotomic conjugate of X(22087)
X(20978) lies on these lines: {1, 144}, {6, 31}, {58, 13404}, {105, 7175}, {244, 1418}, {269, 479}, {604, 7083}, {991, 1193}, {1042, 1104}, {1108, 2310}, {1149, 16487}, {1191, 4322}, {1201, 1419}, {1279, 20323}, {1400, 3271}, {1404, 2175}, {1449, 4343}, {1453, 4300}, {1742, 5222}, {1743, 2340}, {2170, 12723}, {2183, 3941}, {2195, 3451}, {2223, 2347}, {2263, 3924}, {3000, 4000}, {3009, 16970}, {3554, 4336}, {3720, 3945}, {4266, 16688}, {4335, 17014}, {4344, 10459}, {4878, 16669}
X(20978) = isogonal conjugate of isotomic conjugate of X(11019)
X(20978) = polar conjugate of isotomic conjugate of X(22088)
X(20979) lies on these lines: {2, 21191}, {6, 1919}, {37, 17458}, {44, 513}, {86, 18196}, {239, 9294}, {512, 4502}, {514, 19565}, {573, 3667}, {663, 788}, {665, 6363}, {667, 6373}, {669, 2451}, {802, 3766}, {812, 4391}, {813, 6163}, {834, 4079}, {1400, 3572}, {1459, 5029}, {1475, 8656}, {1654, 21304}, {2309, 8630}, {3063, 8632}, {3249, 4253}, {3250, 3709}, {3835, 17217}, {4063, 4785}, {4083, 14408}, {4139, 4526}, {4379, 7199}, {4382, 18071}, {4491, 21007}, {5224, 21262}, {5383, 8709}, {6586, 9002}, {8637, 20861}, {8643, 9010}, {20316, 21053}
X(20979) = isogonal conjugate of X(4598)
X(20979) = anticomplement of X(21191)
X(20979) = polar conjugate of isotomic conjugate of X(22090)
X(20980) lies on these lines: {6, 513}, {9, 21348}, {81, 4776}, {213, 4378}, {512, 1570}, {514, 3287}, {649, 6363}, {650, 9364}, {651, 666}, {652, 7180}, {657, 665}, {667, 6373}, {668, 5383}, {894, 20906}, {900, 4501}, {1459, 3709}, {1919, 3768}, {2483, 9002}, {2484, 6371}, {2509, 9001}, {3049, 8672}, {3667, 4435}, {3758, 20949}, {4502, 4775}, {4885, 17218}, {8540, 9320}, {8646, 20983}
X(20980) = isogonal conjugate of X(30610)
X(20980) = polar conjugate of isotomic conjugate of X(22091)
X(20980) = crossdifference of every pair of points on line X(144)X(145) (the line of the degenerate cross-triangle of Gemini triangles 29 and 30)
X(20981) lies on these lines: {6, 798}, {101, 6163}, {385, 4369}, {513, 1919}, {572, 6003}, {604, 4017}, {649, 854}, {661, 3737}, {662, 4590}, {663, 4502}, {667, 6373}, {741, 5970}, {1019, 1924}, {1024, 3451}, {1100, 4132}, {1459, 2484}, {2451, 8639}, {2483, 21123}, {2605, 4079}, {3248, 18105}, {3261, 4508}, {3287, 3805}, {3407, 4444}, {3709, 5029}, {3768, 4057}, {4107, 4374}, {4140, 4922}, {4504, 4529}, {5750, 21099}, {8060, 18160}, {8061, 9013}, {17217, 17379}, {17303, 21055}, {21261, 21304}
X(20981) = isogonal conjugate of X(27805)
X(20981) = polar conjugate of isotomic conjugate of X(22093)
X(20981) = crossdifference of every pair of points on line X(8)X(192) (the line of the degenerate cross-triangle of Gemini triangles 17 and 18)
X(20982) lies on these lines: {6, 163}, {101, 2503}, {115, 661}, {672, 5164}, {1015, 3124}, {2087, 16613}, {2088, 2624}, {2092, 20972}, {2161, 3013}, {2238, 14963}, {2653, 20963}, {3125, 16592}, {3269, 14936}, {3271, 20975}, {3942, 17058}, {5213, 20331}, {7202, 8287}, {8818, 18393}, {20456, 20865}, {20662, 20860}
X(20982) = isogonal conjugate of isotomic conjugate of X(8287)
X(20982) = polar conjugate of isotomic conjugate of X(22094)
X(20983) lies on these lines: {6, 1980}, {42, 8640}, {51, 8642}, {512, 4813}, {513, 4380}, {649, 6373}, {650, 9010}, {661, 788}, {667, 20456}, {669, 2451}, {838, 4705}, {891, 4382}, {984, 21350}, {3004, 9040}, {4083, 20295}, {4394, 8027}, {4502, 8663}, {4507, 4979}, {4524, 6363}, {8630, 20868}, {8646, 20980}
X(20983) = isogonal conjugate of isotomic conjugate of X(21260)
X(20983) = polar conjugate of isotomic conjugate of X(22095)
X(20984) lies on these lines: {6, 922}, {42, 181}, {667, 6373}, {2183, 20456}, {2245, 3122}, {3123, 20367}, {3764, 20985}, {4787, 21010}, {4892, 18201}, {8540, 8586}
X(20984) = isogonal conjugate of isotomic conjugate of X(4892)
X(20984) = polar conjugate of isotomic conjugate of X(22098)
X(20985) lies on these lines: {1, 21}, {2, 16476}, {6, 292}, {39, 42}, {82, 757}, {171, 239}, {172, 2210}, {213, 2308}, {238, 16826}, {583, 21035}, {748, 16831}, {750, 4384}, {756, 16552}, {902, 16971}, {940, 16354}, {980, 17017}, {1100, 1918}, {1107, 3745}, {1449, 2209}, {2177, 5030}, {2239, 17023}, {2260, 3778}, {2667, 8053}, {2668, 6626}, {3122, 4749}, {3764, 20984}, {4251, 18266}, {4393, 4781}, {4418, 17143}, {5247, 16830}, {5283, 5311}, {6533, 16825}, {7122, 19133}, {8622, 21352}, {14996, 16497}, {16684, 18166}, {16689, 17798}, {16690, 17394}, {16815, 17122}, {16832, 17124}, {17031, 20913}, {20460, 20967}
X(20985) = isogonal conjugate of isotomic conjugate of X(24325)
X(20985) = polar conjugate of isotomic conjugate of X(22099)
X(20986) lies on these lines: {1, 1437}, {6, 181}, {19, 2203}, {31, 48}, {42, 2317}, {51, 20989}, {54, 11491}, {55, 184}, {60, 1610}, {100, 5012}, {110, 1621}, {154, 1486}, {171, 5135}, {182, 1376}, {198, 4275}, {212, 15624}, {227, 19365}, {228, 2148}, {386, 2933}, {518, 3955}, {567, 18524}, {569, 11499}, {572, 9562}, {578, 11500}, {595, 17104}, {612, 2261}, {674, 5285}, {756, 2265}, {958, 13323}, {982, 5197}, {991, 1626}, {1001, 9306}, {1036, 3435}, {1147, 10267}, {1324, 5396}, {1402, 7113}, {1408, 1468}, {1428, 3752}, {1495, 20988}, {1630, 16679}, {1660, 18621}, {1790, 16678}, {1962, 17438}, {1977, 5371}, {1980, 4394}, {2003, 8679}, {2162, 20995}, {2174, 20967}, {2175, 3052}, {2182, 3745}, {2183, 2308}, {2304, 9247}, {2328, 8053}, {3198, 11428}, {3703, 17977}, {3914, 5137}, {4259, 5329}, {4423, 5651}, {4640, 7193}, {5138, 15509}, {6759, 11496}, {7074, 17809}, {9563, 15792}, {10310, 10984}, {11688, 18042}
X(20986) = isogonal conjugate of isotomic conjugate of X(2975)
X(20986) = polar conjugate of isotomic conjugate of X(22118)
X(20987) lies on these lines: {3, 2916}, {4, 15577}, {6, 25}, {22, 141}, {23, 69}, {24, 1503}, {26, 1352}, {66, 21213}, {67, 10117}, {113, 18534}, {157, 237}, {160, 3148}, {182, 7506}, {211, 5017}, {403, 18382}, {511, 7517}, {518, 8185}, {599, 9909}, {1216, 1350}, {1351, 18378}, {1469, 9658}, {1486, 16777}, {1609, 7669}, {1995, 3589}, {2070, 18440}, {2076, 5167}, {2353, 20960}, {2930, 6144}, {2931, 14982}, {3016, 11641}, {3056, 9673}, {3098, 5891}, {3242, 9798}, {3313, 9306}, {3518, 6776}, {3542, 20303}, {3618, 13595}, {3619, 6636}, {3711, 12329}, {3827, 11363}, {3867, 10192}, {4265, 13730}, {5050, 13621}, {5085, 6642}, {5157, 9822}, {5480, 10594}, {5621, 13289}, {5654, 7530}, {5800, 17562}, {6697, 11550}, {6759, 19161}, {6800, 16776}, {7494, 15435}, {7502, 18358}, {7505, 20300}, {8550, 15580}, {9019, 20806}, {9714, 15069}, {9920, 12242}, {10323, 16621}, {10387, 10833}, {10519, 12088}, {11188, 19121}, {11414, 15030}, {12140, 19457}, {134 74, 14810}, {13562, 16789}, {13861, 14561}, {15462, 20773}
X(20987) = isogonal conjugate of isotomic conjugate of X(7391)
X(20987) = polar conjugate of isotomic conjugate of X(22120)
X(20988) lies on these lines: {1, 20831}, {2, 20872}, {3, 1699}, {6, 20961}, {11, 4224}, {12, 4222}, {19, 25}, {22, 1001}, {23, 1621}, {24, 11496}, {28, 6284}, {31, 3122}, {51, 692}, {56, 1448}, {100, 13595}, {161, 18621}, {199, 8053}, {210, 17744}, {238, 5347}, {354, 3220}, {667, 11193}, {748, 5096}, {940, 7295}, {1011, 1631}, {1125, 20833}, {1279, 5322}, {1376, 1995}, {1473, 4860}, {1495, 20986}, {1610, 10543}, {1633, 11246}, {1829, 9627}, {1836, 14667}, {1953, 7073}, {2886, 4228}, {2915, 5248}, {3295, 8185}, {3303, 9798}, {3683, 5285}, {3715, 12329}, {3720, 4265}, {3742, 7293}, {3925, 4223}, {4185, 12953}, {4186, 10895}, {4219, 7965}, {4294, 17562}, {4413, 5020}, {5078, 8616}, {5172, 11334}, {5284, 6636}, {5314, 15254}, {5584, 9911}, {6642, 10310}, {6913, 15177}, {7083, 16470}, {7485, 8167}, {7506, 11248}, {7517, 10267}, {7545, 18524}, {8273, 11414}, {9342, 16042}, {9658, 11510}, {10594, 11500}, {11499, 13861}, {11849, 13621}, {16064, 20470}, {16372, 16681}, {16678, 20834}, {18613, 20999}
X(20988) = isogonal conjugate of isotomic conjugate of isogonal conjugate of X(34441)
X(20988) = isogonal conjugate of isotomic conjugate of complement of X(20066)
X(20988) = isogonal conjugate of isotomic conjugate of anticomplement of X(35)
X(20988) = polar conjugate of isotomic conjugate of X(22122)
X(20989) lies on these lines: {3, 1698}, {6, 20962}, {10, 2915}, {12, 28}, {19, 25}, {22, 1376}, {23, 100}, {24, 11500}, {26, 11499}, {35, 20831}, {36, 16610}, {42, 2174}, {43, 5347}, {51, 20986}, {56, 998}, {111, 919}, {181, 2194}, {199, 21011}, {209, 10536}, {210, 5285}, {238, 5078}, {650, 667}, {692, 1495}, {750, 4265}, {759, 859}, {899, 5096}, {902, 16686}, {958, 11337}, {1001, 1995}, {1155, 3220}, {1325, 5080}, {1466, 18954}, {1610, 10950}, {1621, 13595}, {1626, 4191}, {2070, 18524}, {2183, 2361}, {2360, 2594}, {2551, 7520}, {3085, 17562}, {3303, 11365}, {3304, 8192}, {3518, 11491}, {3689, 5525}, {3711, 12329}, {3715, 7085}, {3724, 6187}, {3740, 5314}, {3752, 5322}, {3826, 7465}, {3925, 4220}, {4026, 4239}, {4185, 10895}, {4186, 12953}, {4222, 6284}, {4224, 5432}, {4228, 6690}, {4383, 5329}, {4423, 5020}, {5061, 18191}, {5217, 13730}, {5363, 16468}, {6253, 7412}, {6644, 15943}, {7387, 10310}, {7506, 10267}, {7517, 11248}, {8661, 21003}, {9342, 15246}, {9627, 11363}, {9639, 20243}, {9658, 11509}, {9659, 10830}, {10594, 11496}, {11502, 15509}, {11849, 18378}, {15622, 20838}, {15654, 20842}, {20470, 20999}
X(20989) = isogonal conjugate of isotomic conjugate of X(5080)
X(20989) = polar conjugate of isotomic conjugate of X(22123)
X(20989) = Stevanovic-circle-inverse of X(32758)
X(20990) lies on these lines: {1, 5132}, {2, 16684}, {6, 292}, {7, 2283}, {9, 3941}, {32, 16683}, {37, 2223}, {45, 16694}, {55, 199}, {56, 976}, {100, 4360}, {141, 4447}, {171, 18162}, {192, 4436}, {198, 4471}, {214, 999}, {228, 3745}, {474, 6533}, {583, 20683}, {612, 2352}, {674, 1400}, {851, 17602}, {983, 3733}, {984, 3286}, {1009, 3932}, {1376, 4361}, {1402, 15621}, {1475, 4878}, {1696, 21002}, {1918, 3009}, {2174, 19133}, {2245, 3688}, {2260, 2340}, {2298, 16872}, {2330, 7113}, {3185, 5269}, {3244, 4097}, {3444, 20877}, {3731, 16688}, {3744, 18613}, {3920, 16678}, {4191, 17599}, {4286, 21035}, {4386, 20475}, {4433, 17388}, {5276, 16693}, {8299, 17243}, {9310, 21059}, {16056, 17061}, {17365, 21320}
X(20990) = isogonal conjugate of isotomic conjugate of X(17165)
X(20990) = polar conjugate of isotomic conjugate of X(22164)
X(20991) lies on the cubic K180 and these lines: 1, 37260}, {3, 4512}, {6, 2187}, {19, 25}, {28, 11496}, {31, 56}, {40, 13737}, {42, 17810}, {51, 4285}, {84, 963}, {165, 37269}, {184, 5115}, {204, 3209}, {497, 15509}, {516, 11347}, {859, 2328}, {902, 33589}, {958, 28376}, {1001, 4224}, {1350, 25941}, {1376, 33849}, {1402, 7083}, {1456, 6611}, {1503, 28379}, {1617, 3220}, {1621, 37254}, {1661, 2352}, {1884, 36999}, {1962, 3303}, {2177, 31860}, {2178, 3052}, {2182, 30223}, {2183, 7074}, {2195, 33581}, {2208, 375191}, {2308, 17809}, {3475, 24328}, {3925, 37367}, {3941, 23204}, {4191, 5646}, {4196, 7965}, {4222, 11500}, {4413, 37366}, {5217, 37259}, {5248, 37052}, {5250, 37250}, {5285, 36641}, {5584, 13738}, {6253, 28076}, {6353, 25968}, {7053, 34033}, {7151, 32674}, {8185, 11508}, {9778, 11349}, {9911, 10310}, {10267, 20831}, {10434, 13615}, {11350, 35258}, {11495, 37262}, {11688, 26241}, {12953, 37226}, {15803, 34498}, {18613, 22769}, {19297, 21000}, {19649, 25893}, {20368, 25934}, {21628, 37046}, {22654, 23372}, {23853, 24320}, {24309, 37270}, {25514, 31394}, {31730, 37273}
X(20991) = isogonal conjugate of the isotomic conjugate of X(962)
X(20991) = isogonal conjugate of isotomic conjugate of X(962)
X(20991) = polar conjugate of the isotomic conjugate of X(22124)
X(20991) = X(i)-Ceva conjugate of X(j) for these (i,j): {{84, 6}, {962, 22124}}
X(20991) = X(75)-isoconjugate of X(963)
X(20991) = crosspoint of X(7115) and X(8059)
X(20991) = crosssum of X(i) and X(j) for these (i,j): {{2, 20070}, {8058, 26932}}
X(20991) = crossdifference of every pair of points on line {905, 3239}
X(20991) = barycentric product X(i)*X(j) for these {i,j}: {{1, 2270}, {4, 22124}, {6, 962}, {31, 20921}, {56, 27508}, {58, 21068}, {101, 7661}}
X(20991) = barycentric quotient X(i)/X(j) for these {i,j}: {{32, 963}, {962, 76}, {2270, 75}, {7661, 3261}, {20921, 561}, {21068, 313}, {22124, 69}, {27508, 3596}}
X(20991) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {{55, 1696, 612}, {55, 15494, 198}, {84, 1622, 963}, {1486, 3185, 55}, {3556, 23383, 56}, {20988, 20989, 9673}}
X(20992) lies on these lines: {1, 20793}, {3, 238}, {6, 31}, {7, 21}, {9, 2223}, {35, 16468}, {36, 15485}, {37, 3941}, {44, 15624}, {45, 16694}, {69, 8299}, {87, 8616}, {100, 17349}, {144, 21320}, {171, 16058}, {190, 7155}, {198, 2110}, {220, 9454}, {241, 20275}, {344, 4447}, {572, 2175}, {573, 3271}, {595, 5145}, {673, 11495}, {692, 4268}, {748, 4191}, {750, 16373}, {958, 4195}, {964, 19874}, {999, 16484}, {1030, 4471}, {1045, 16476}, {1108, 11997}, {1191, 2274}, {1376, 4203}, {1397, 2328}, {1402, 4512}, {1403, 4640}, {1460, 13615}, {1475, 4343}, {1486, 17798}, {1617, 7175}, {1621, 17379}, {1631, 5124}, {1964, 2176}, {2053, 20471}, {2305, 16372}, {2352, 3683}, {3000, 5204}, {3295, 4649}, {3304, 10448}, {3688, 3730}, {3736, 16466}, {3747, 7032}, {4068, 16884}, {4097, 4700}, {4184, 17127}, {4215, 15494}, {4216, 8692}, {4261, 4749}, {4279, 11490}, {4361, 4436}, {4363, 16684}, {4413, 16405}, {4423, 15668}, {4433, 5839}, {4557, 16885}, {5120, 16503}, {5132, 5217}, {5156, 16287}, {5248, 19762}, {5329, 20834}, {7262, 20760}, {10458, 18166}, {10473, 17194}, {14621, 16367}, {16059, 17123}, {16678, 16690}, {16679, 16777}
X(20992) = isogonal conjugate of isotomic conjugate of X(10453)
X(20992) = isogonal conjugate of polar conjugate of X(17920)
X(20992) = polar conjugate of isotomic conjugate of X(22127)
X(20993) lies on these lines: {3, 206}, {5, 7694}, {6, 2353}, {22, 8793}, {25, 32}, {26, 19165}, {39, 19125}, {157, 15257}, {159, 10316}, {1181, 2909}, {3053, 20960}, {3202, 19357}, {3785, 7493}, {5188, 9715}, {6676, 7800}, {7539, 7889}, {7795, 13562}, {9918, 14673}, {14023, 15594}
X(20993) = isogonal conjugate of isotomic conjugate of X(5596)
X(20993) = trilinear pole, wrt tangential triangle, of de Longchamps line
X(20993) = polar conjugate of isotomic conjugate of X(22135)
X(20994) lies on these lines: {1, 2916}, {6, 20969}, {31, 2275}, {191, 20677}, {831, 7794}, {1631, 2176}, {14370, 21035}
X(20994) = isogonal conjugate of isotomic conjugate of X(21249)
X(20994) = polar conjugate of isotomic conjugate of X(22137)
X(20995) lies on these lines: {3, 9241}, {6, 57}, {41, 9316}, {48, 1613}, {101, 16283}, {109, 14827}, {198, 1755}, {218, 4650}, {220, 4640}, {294, 17074}, {971, 20310}, {991, 16588}, {1200, 1458}, {1403, 9454}, {1436, 5110}, {2162, 20986}, {2176, 2223}, {2225, 4191}, {2272, 2276}, {2284, 4421}, {5275, 5781}, {6180, 9446}
X(20995) = isogonal conjugate of isotomic conjugate of X(3177)
X(20995) = polar conjugate of isotomic conjugate of X(20793)
X(20996) lies on these lines: {3, 238}, {6, 7121}, {43, 17105}, {55, 3009}, {56, 664}, {197, 17798}, {614, 20757}, {995, 11490}, {1575, 2053}
X(20997) lies on these lines: {3, 3196}, {6, 36}, {45, 5010}, {55, 16672}, {1030, 16675}
X(20998) lies on these lines: {2, 4048}, {3, 5106}, {6, 110}, {15, 14704}, {16, 14705}, {22, 21001}, {23, 2076}, {25, 694}, {31, 2054}, {51, 2056}, {55, 5147}, {100, 9509}, {115, 5972}, {125, 10418}, {141, 7665}, {148, 11053}, {154, 1976}, {199, 16365}, {230, 15448}, {247, 15131}, {323, 15514}, {351, 2872}, {373, 5038}, {511, 9225}, {512, 9217}, {542, 6388}, {574, 16187}, {647, 13558}, {902, 20675}, {1030, 5163}, {1151, 7598}, {1152, 7599}, {1196, 1915}, {1495, 1691}, {1648, 3448}, {1979, 5040}, {2079, 3569}, {2176, 5202}, {2177, 5168}, {2305, 8775}, {2641, 16575}, {3009, 20877}, {3051, 13595}, {3053, 5191}, {3094, 5651}, {3121, 17962}, {3229, 5162}, {3292, 5111}, {3444, 16685}, {3629, 10553}, {3763, 7664}, {3981, 5028}, {4563, 5969}, {4576, 5108}, {5013, 9155}, {5027, 9431}, {5029, 9259}, {5210, 9486}, {5642, 6034}, {5943, 14153}, {6429, 7601}, {6430, 7602}, {6719, 14928}, {6792, 14683}, {7492, 8617}, {8178, 11052}, {8288, 15059}, {8623, 20854}, {9169, 10488}, {9463, 14002}, {9924, 10836}, {15145, 17984}, {17735, 20472}
X(20998) = isogonal conjugate of X(35511)
X(20998) = isogonal conjugate of isotomic conjugate of X(148)
X(20998) = anticomplement of complementary conjugate of X(31998)
X(20998) = crosssum of X(i) and X(j) for these {i,j}: {2, 20094}, {523, 23991}, {524, 23992}
X(20998) = crosspoint of X(111) and X(34539)
X(20998) = crossdifference of every pair of points on line X(620)X(690) (the orthic axis of the 1st Brocard triangle)
X(20998) = trilinear pole, wrt tangential triangle, of Brocard axis
X(20998) = polar conjugate of isotomic conjugate of X(22143)
X(20998) = crosspoint of PU(105)
X(20999) lies on these lines: {1, 1283}, {3, 8}, {6, 20974}, {21, 5484}, {22, 6360}, {25, 105}, {31, 1469}, {36, 1054}, {38, 55}, {56, 244}, {88, 20842}, {109, 3937}, {149, 13589}, {197, 4191}, {198, 2246}, {199, 8301}, {228, 1282}, {291, 5329}, {388, 13733}, {580, 16980}, {659, 14667}, {678, 5217}, {947, 13367}, {999, 3315}, {1011, 8299}, {1331, 2810}, {1364, 2342}, {1402, 5322}, {1621, 9791}, {1622, 3515}, {1769, 4491}, {2078, 3220}, {2222, 6075}, {2361, 8679}, {2659, 14024}, {2930, 8053}, {2933, 5204}, {3129, 10648}, {3130, 10647}, {3286, 5078}, {3436, 13732}, {3446, 3733}, {3556, 11510}, {4458, 13558}, {4712, 7085}, {5029, 9259}, {5285, 9451}, {7669, 16873}, {7742, 9798}, {8638, 20839}, {9780, 16422}, {10016, 21119}, {10527, 19548}, {11337, 19851}, {12248, 14127}, {13576, 16378}, {18613, 20988}, {20470, 20989}
X(20999) = isogonal conjugate of isotomic conjugate of X(150)
X(20999) = polar conjugate of isotomic conjugate of X(22145)
X(20999) = anticomplement of complementary conjugate of X(39026)
X(20999) = pole wrt circumcircle of Feuerbach tangent line (line X(11)X(244))
X(21000) lies on these lines: {1, 19535}, {3, 1616}, {6, 31}, {35, 1191}, {36, 16486}, {44, 3158}, {45, 4512}, {165, 1279}, {171, 4428}, {197, 16686}, {200, 16885}, {220, 2251}, {238, 4421}, {518, 16570}, {595, 4255}, {612, 16675}, {968, 16672}, {1001, 3550}, {1086, 9778}, {1376, 8616}, {1407, 2078}, {2223, 5023}, {2241, 5022}, {2328, 3285}, {3207, 8647}, {3242, 3749}, {3295, 4252}, {3445, 5204}, {3579, 17054}, {3750, 9332}, {3757, 17118}, {3915, 5217}, {3928, 4864}, {4257, 6767}, {4258, 14974}, {4370, 5423}, {5010, 16483}, {5057, 17783}, {5210, 9259}, {5269, 16777}, {5292, 10386}, {7172, 17340}, {8692, 16569}, {9668, 17734}, {10578, 17365}, {19750, 19998}
X(21000) = isogonal conjugate of X(36606)
X(21000) = crosspoint of X(1252) and X(1293)
X(21000) = crosssum of X(1086) and X(3667)
X(21000) = crossdifference of every pair of points on line X(514)X(2490)
X(21000) = polar conjugate of isotomic conjugate of X(22147)
X(21001) lies on these lines: {2, 6}, {3, 3229}, {22, 20998}, {25, 2076}, {55, 3009}, {57, 16514}, {76, 11333}, {154, 20885}, {171, 2176}, {182, 2056}, {184, 9225}, {237, 5023}, {238, 2162}, {420, 2207}, {694, 1350}, {1194, 5650}, {1196, 3094}, {1206, 9345}, {1575, 7075}, {1691, 9306}, {1915, 5651}, {2178, 17735}, {2235, 18743}, {2319, 21214}, {2979, 3124}, {3052, 8622}, {3053, 8601}, {3117, 5013}, {3224, 7793}, {3230, 3550}, {3290, 20359}, {3291, 3917}, {3499, 11285}, {3666, 16515}, {3752, 16525}, {3787, 5943}, {3959, 21334}, {5017, 5020}, {5052, 6688}, {5106, 5210}, {5116, 7484}, {5638, 21036}, {5639, 21032}, {7485, 10329}, {7998, 20859}, {8041, 9465}, {11205, 15302}, {12212, 16187}, {13331, 15082}, {14096, 15815}, {17475, 17490}
X(21001) = isogonal conjugate of X(38262)
X(21001) = crosspoint of X(3222) and X(34537)
X(21001) = crosssum of X(i) and X(j) for these {i,j}: {2, 20105}, {1084, 3221}
X(21001) = crossdifference of every pair of points on line X(512)X(31286)
X(21001) = isogonal conjugate of isotomic conjugate of X(20081)
X(21001) = isogonal conjugate of the anticomplement of X(32746)
X(21001) = polar conjugate of isotomic conjugate of X(22152)
X(21002) lies on these lines: {3, 7290}, {6, 31}, {21, 4344}, {35, 16469}, {36, 15287}, {44, 480}, {56, 1279}, {198, 2223}, {221, 1458}, {269, 1617}, {595, 991}, {604, 8647}, {608, 8750}, {934, 2377}, {958, 4339}, {1001, 4307}, {1035, 1456}, {1042, 1616}, {1104, 5584}, {1108, 4319}, {1191, 4300}, {1419, 2078}, {1436, 2195}, {1466, 1471}, {1612, 3332}, {1621, 3945}, {1631, 5204}, {1661, 2352}, {1696, 20990}, {1723, 15733}, {1743, 6600}, {2178, 16686}, {2257, 4326}, {2650, 4068}, {3174, 16572}, {3304, 16679}, {4000, 11495}, {4349, 5248}, {4413, 17337}, {4423, 17245}, {5222, 7676}, {5269, 13615}, {7368, 14974}, {8557, 14100}, {8614, 11510}, {10310, 13329}
X(21002) = isogonal conjugate of isotomic conjugate of X(36845)
X(21002) = polar conjugate of isotomic conjugate of X(22153)
X(21003) lies on these lines: {3, 19903}, {6, 6373}, {36, 238}, {55, 890}, {512, 2076}, {649, 21005}, {659, 918}, {663, 9313}, {665, 20678}, {788, 21007}, {926, 8659}, {1473, 2504}, {1635, 8650}, {1911, 3572}, {1960, 9259}, {2483, 17990}, {2484, 14407}, {2509, 6050}, {3063, 9010}, {4790, 8646}, {4979, 8635}, {5040, 8027}, {5096, 6165}, {7192, 18108}, {8661, 20989}
X(21003) = isogonal conjugate of isotomic conjugate of anticomplement of X(659)
X(21003) = polar conjugate of isotomic conjugate of X(22155)
X(21004) lies on these lines: {3, 9509}, {6, 163}, {9, 1030}, {35, 20677}, {36, 20472}, {41, 2276}, {115, 759}, {1324, 17735}, {2503, 5546}, {2915, 4426}, {3568, 21051}, {4455, 7669}, {5029, 9259}, {5127, 5164}, {9696, 17104}, {17798, 20877}
X(21004) = isogonal conjugate of isotomic conjugate of X(21221)
X(21004) = isogonal conjugate of anticomplement of X(39054)
X(21004) = crossdifference of every pair of points on line X(4458)X(6370)
X(21004) = polar conjugate of isotomic conjugate of X(22156)
X(21005) lies on these lines: {6, 1980}, {23, 385}, {25, 884}, {55, 8640}, {197, 4394}, {513, 5078}, {649, 21003}, {650, 667}, {661, 8635}, {788, 7252}, {814, 7255}, {1491, 3733}, {2512, 8639}, {3004, 4367}, {4383, 20473}, {4401, 11068}
X(21005) = isogonal conjugate of isotomic conjugate of X(21301)
X(21005) = polar conjugate of isotomic conjugate of X(22157)
X(21006) lies on these lines: {3, 9489}, {6, 3221}, {23, 385}, {25, 2489}, {159, 924}, {351, 2514}, {512, 2076}, {688, 3050}, {804, 5152}, {1634, 14588}, {1995, 15724}, {2485, 8651}, {3049, 9009}, {4840, 16874}, {9491, 13586}, {16692, 16695}
X(21006) = isogonal conjugate of isotomic conjugate of anticomplement of X(669)
X(21006) = isogonal conjugate of anticomplement of X(38996)
X(21006) = crossdifference of every pair of points on line X(39)X(698)
X(21006) = polar conjugate of isotomic conjugate of X(22159)
X(21006) = pole of line X(2)X(39) wrt circumcircle
X(21007) lies on these lines: {6, 513}, {239, 20949}, {512, 1691}, {523, 4435}, {649, 834}, {650, 15313}, {663, 6586}, {665, 2605}, {788, 21003}, {798, 4057}, {889, 5383}, {900, 3287}, {919, 1618}, {1980, 16874}, {2176, 4775}, {2509, 3309}, {3250, 16685}, {4164, 9400}, {4361, 20906}, {4383, 4776}, {4491, 20979}, {4501, 4777}, {4507, 8633}, {4932, 18199}, {6371, 8659}, {8640, 16692}, {9015, 15413}, {16777, 21348}, {17212, 18166}, {18106, 20295}
X(21007) = isogonal conjugate of isotomic conjugate of X(17494)
X(21007) = polar conjugate of isotomic conjugate of X(22160)
X(21007) = crossdifference of every pair of points on line X(10)X(141) (the complement of line X(1)X(6))
X(21008) lies on these lines: {1, 1929}, {3, 2176}, {6, 41}, {32, 995}, {35, 3230}, {36, 213}, {37, 5110}, {39, 101}, {45, 5782}, {55, 3009}, {169, 9619}, {187, 595}, {190, 7783}, {214, 16600}, {220, 5013}, {284, 17053}, {386, 2242}, {404, 2295}, {501, 5006}, {574, 3730}, {869, 17798}, {904, 1964}, {978, 4426}, {999, 2271}, {1015, 4251}, {1030, 16685}, {1191, 3053}, {1201, 1914}, {1385, 16583}, {1429, 3752}, {1434, 17365}, {1500, 4256}, {1575, 2329}, {1740, 8424}, {1975, 4713}, {2238, 2975}, {2241, 4262}, {2251, 5299}, {2276, 9310}, {2646, 3290}, {3052, 5023}, {3204, 5069}, {3216, 5291}, {3570, 21226}, {3576, 16968}, {3684, 17448}, {3721, 4511}, {4210, 7109}, {4258, 16781}, {4286, 17796}, {4628, 9481}, {4642, 17439}, {5134, 7756}, {5563, 20963}, {7749, 17734}, {7987, 16970}, {14260, 17969}, {16777, 19765}
X(21008) = isogonal conjugate of isotomic conjugate of X(6646)
X(21008) = polar conjugate of isotomic conjugate of X(22161)
X(21009) lies on these lines: {3, 7611}, {6, 922}, {36, 238}, {55, 199}, {56, 4471}, {198, 4497}, {674, 1055}, {2174, 8539}, {2486, 14953}, {3122, 3285}, {4038, 18173}, {4436, 19308}, {4516, 15586}, {4557, 17798}, {4890, 17454}, {5547, 9142}, {7113, 8540}, {16686, 16694}
X(21009) = isogonal conjugate of isotomic conjugate of X(17491)
X(21009) = polar conjugate of isotomic conjugate of X(22162)
X(21010) lies on these lines: {1, 3}, {2, 4447}, {6, 292}, {11, 7377}, {12, 7380}, {25, 16974}, {31, 172}, {37, 3941}, {42, 2275}, {48, 19133}, {71, 16516}, {100, 4393}, {145, 4433}, {181, 12836}, {183, 870}, {198, 16972}, {239, 1376}, {348, 3475}, {388, 7379}, {474, 16825}, {497, 6999}, {579, 3688}, {604, 2330}, {612, 1107}, {672, 4517}, {750, 21352}, {958, 16830}, {985, 11328}, {1001, 14621}, {1011, 5311}, {1088, 7176}, {1100, 15624}, {1284, 4307}, {1397, 10799}, {1400, 3056}, {1405, 8540}, {1475, 2340}, {1696, 16970}, {1914, 16524}, {1961, 16058}, {2260, 3779}, {2276, 16523}, {2308, 7296}, {2664, 4383}, {3052, 3747}, {3061, 20715}, {3185, 20471}, {3247, 16688}, {3715, 16552}, {4191, 17017}, {4253, 20683}, {4362, 11358}, {4384, 4413}, {4423, 16831}, {4436, 17318}, {4471, 19297}, {4644, 21320}, {4787, 20984}, {7085, 16519}, {7198, 11246}, {8053, 16777}, {8299, 17316}, {8301, 11329}, {9440, 20793}, {10578, 17081}, {15668, 16684}, {16405, 17763}, {16515, 17735 }, {16672, 16694}, {17754, 19584}
X(21010) = isogonal conjugate of isotomic conjugate of X(24349)
X(21010) = polar conjugate of isotomic conjugate of X(22163)
X(21011) lies on these lines: {2, 17221}, {4, 9}, {5, 1953}, {12, 2294}, {37, 21044}, {42, 2165}, {48, 355}, {53, 2181}, {80, 284}, {101, 1141}, {199, 20989}, {201, 1865}, {219, 5790}, {306, 8797}, {311, 14213}, {313, 327}, {579, 18395}, {594, 21018}, {857, 21231}, {952, 17438}, {1018, 21065}, {1108, 17606}, {1251, 11082}, {1441, 4466}, {1737, 2260}, {1761, 5080}, {1903, 3698}, {2173, 18357}, {2267, 17303}, {2980, 21034}, {3136, 21028}, {3613, 15523}, {3949, 17757}, {4024, 10412}, {4628, 18082}, {5239, 11099}, {5240, 11100}, {5747, 10573}, {17751, 21076}, {20486, 21023}, {21035, 21043}, {21061, 21066}
X(21011) = barycentric product X(5)*X(10)
X(21012) lies on these lines: {4, 9}, {101, 13597}, {140, 17438}, {594, 21013}, {1232, 20879}, {1953, 5690}, {2260, 10039}, {2267, 17275}, {3958, 17757}, {4062, 15464}, {4466, 21231}, {5742, 8256}, {21022, 21047}
X(21013) lies on these lines: {2, 4919}, {10, 1018}, {71, 21030}, {594, 21012}, {672, 6735}, {966, 16561}, {1145, 2170}, {1146, 14439}, {1475, 10915}, {3035, 17439}, {5282, 5657}, {8256, 17451}
X(21014) lies on these lines: {9, 11604}, {10, 1400}, {48, 17275}, {71, 21029}, {594, 21012}, {1213, 2294}, {1405, 5831}, {2269, 6734}, {3724, 8013}, {4999, 17440}, {5742, 17451}
X(21015) lies on these lines: {2, 7085}, {5, 3305}, {9, 427}, {10, 429}, {11, 212}, {12, 201}, {40, 235}, {63, 1368}, {71, 1213}, {125, 3690}, {219, 1899}, {220, 1853}, {228, 440}, {343, 3781}, {468, 5285}, {516, 2355}, {594, 21028}, {858, 3219}, {1473, 7386}, {1851, 6554}, {1883, 12572}, {1985, 2886}, {2323, 11245}, {2550, 4207}, {3220, 7667}, {3914, 16583}, {3955, 11064}, {4026, 4204}, {4679, 17111}, {5314, 6676}, {6358, 7140}, {7293, 10691}, {15523, 21033}, {17441, 18589}, {21020, 21029}
X(21015) = barycentric product X(i)*X(j) for these {i,j}: {10, 18589}, {306, 3914}, {594, 17170}, {3695, 4000}
X(21016) lies on these lines: {4, 9}, {42, 13854}, {427, 15523}, {429, 21029}, {860, 1840}, {1235, 20883}, {1969, 18022}, {1973, 5090}, {4466, 16607}, {5307, 17308}, {16583, 21044}, {20235, 20305}
X(21016) = polar conjugate of isotomic conjugate of X(15523)
X(21016) = barycentric product X(10)*X(427)
X(21017) lies on these lines: {4, 9}, {101, 2697}, {850, 1577}, {858, 18669}, {1236, 20884}, {4062, 10415}, {4466, 21234}, {16607, 20235}, {16611, 21044}
X(21018) lies on these lines: {10, 21065}, {115, 4016}, {594, 21011}, {758, 8818}, {1213, 21044}, {2160, 2475}, {2174, 5086}, {2294, 5949}, {3728, 21043}, {8287, 18698}, {16732, 17052}, {20654, 21024}
X(21019) lies on these lines: {10, 2245}, {594, 21011}, {661, 20483}, {3262, 21237}, {3814, 17444}, {3943, 21044}, {4053, 17757}, {5053, 17303}, {5123, 8609}, {5176, 7113}, {20486, 21045}
X(21020) lies on these lines: {1, 4720}, {2, 740}, {8, 2650}, {10, 321}, {31, 5271}, {37, 4365}, {38, 75}, {42, 3696}, {63, 1719}, {210, 20718}, {244, 3741}, {274, 18059}, {333, 896}, {354, 4688}, {442, 20653}, {512, 14433}, {523, 6545}, {536, 3989}, {594, 2294}, {690, 14430}, {718, 16829}, {726, 4980}, {748, 3747}, {750, 11679}, {758, 3679}, {804, 1635}, {846, 5235}, {894, 4722}, {899, 3725}, {997, 12081}, {1045, 10458}, {1109, 4712}, {1150, 3980}, {1211, 3120}, {1213, 4037}, {1215, 4651}, {1376, 3724}, {1654, 4683}, {1698, 3743}, {1733, 11031}, {1836, 3958}, {2234, 17187}, {2643, 4137}, {2667, 3706}, {2783, 11203}, {2887, 20360}, {2901, 16828}, {3136, 21033}, {3263, 4967}, {3578, 17770}, {3617, 17164}, {3634, 4065}, {3703, 4665}, {3722, 3757}, {3775, 17184}, {3842, 3995}, {3896, 4709}, {3923, 5278}, {3932, 6535}, {3936, 21085}, {4042, 4363}, {4046, 4062}, {4054, 4104}, {4068, 4423}, {4093, 21264}, {4155, 4728}, {4201, 15349}, {4361, 17017}, {4387, 17259}, {4414, 5737}, {4457, 19998}, {465 0, 5361}, {4672, 19742}, {4697, 16704}, {4699, 10453}, {4716, 17011}, {4739, 7449}, {4763, 9147}, {4847, 17874}, {4931, 10278}, {5260, 12567}, {5263, 17469}, {5695, 19732}, {6186, 19329}, {6682, 17495}, {8025, 17162}, {10436, 17156}, {16454, 17733}, {17119, 17599}, {20486, 21021}, {20711, 21238}, {21015, 21029}
X(21020) = homothetic center of Gemini triangle 18 and cross-triangle of Gemini triangles 16 and 18
X(21020) = barycentric product X(10)*X(3739)
X(21021) lies on these lines: {8, 9596}, {10, 762}, {12, 594}, {37, 3701}, {39, 4692}, {172, 7081}, {321, 20691}, {442, 20483}, {756, 7148}, {894, 4400}, {984, 7242}, {1089, 1500}, {1107, 4696}, {1215, 2295}, {1237, 3963}, {1575, 4968}, {1909, 7187}, {2276, 4385}, {3726, 3831}, {3930, 21024}, {3992, 16589}, {4030, 7745}, {4680, 9650}, {4894, 5475}, {6645, 7267}, {7264, 9466}, {7272, 7854}, {20486, 21020}
X(21021) = barycentric product X(10)*X(1215)
X(21022) lies on these lines: {10, 75}, {594, 2486}, {2533, 21143}, {3122, 3963}, {3613, 15523}, {3778, 4377}, {3934, 17445}, {4039, 18082}, {21012, 21047}, {21038, 21043}, {21083, 21094}
X(21023) lies on these lines: {10, 21069}, {594, 20482}, {1930, 4178}, {15523, 21028}, {16886, 16894}, {17046, 17447}, {17047, 20236}, {20486, 21011}
X(21024) lies on these lines: {6, 10449}, {8, 2176}, {10, 37}, {75, 20255}, {76, 141}, {115, 3454}, {257, 312}, {314, 15985}, {321, 1237}, {407, 1840}, {442, 19584}, {519, 20970}, {524, 17499}, {538, 16887}, {762, 3992}, {960, 1146}, {1043, 18755}, {1086, 20888}, {1089, 3954}, {1107, 3741}, {1575, 3831}, {1654, 17685}, {1901, 10381}, {2229, 2275}, {2245, 3501}, {2292, 4037}, {2295, 17751}, {3061, 20545}, {3125, 4647}, {3136, 15523}, {3159, 7230}, {3169, 17275}, {3589, 17034}, {3679, 4050}, {3702, 3727}, {3725, 4046}, {3726, 4968}, {3730, 17340}, {3780, 17135}, {3840, 16604}, {3912, 17056}, {3930, 21021}, {3936, 17230}, {4044, 4415}, {4266, 17330}, {4272, 17299}, {4362, 16974}, {5105, 17398}, {5283, 10479}, {5774, 14974}, {6535, 20966}, {11679, 16968}, {14973, 20683}, {16918, 17277}, {17128, 19667}, {17228, 20943}, {17369, 17750}, {18035, 18277}, {20653, 20658}, {20654, 21018}, {20911, 21138}
X(21024) = complement of X(33296)
X(21024) = barycentric product X(10)*X(3741)
X(21025) lies on these lines: {8, 16969}, {10, 37}, {11, 20594}, {76, 1086}, {116, 7794}, {141, 6376}, {257, 20947}, {312, 3959}, {1089, 3125}, {1107, 3831}, {1146, 1329}, {1930, 21138}, {2084, 21051}, {2140, 9466}, {2238, 17751}, {3122, 7148}, {3501, 17340}, {3661, 5743}, {3662, 20943}, {3701, 3721}, {3703, 20284}, {3726, 4696}, {3727, 4358}, {3730, 4370}, {3840, 17448}, {3948, 4415}, {3954, 3992}, {4037, 4642}, {4385, 20271}, {4465, 17152}, {4713, 21281}, {5233, 16594}, {6381, 21240}, {7277, 17499}, {10449, 17362}, {14377, 17130}, {15523, 21040}, {16886, 20494}, {17747, 20719}, {20483, 21029}
X(21025) = complement of X(34063)
X(21025) = barycentric product X(10)*X(3840)
X(21026) lies on these lines: {2, 4434}, {10, 2650}, {38, 3662}, {75, 18054}, {244, 3006}, {594, 2294}, {661, 2533}, {756, 2887}, {896, 4645}, {899, 3823}, {1213, 4144}, {1962, 4972}, {3120, 3932}, {3703, 7263}, {3834, 17449}, {3914, 3950}, {3952, 4892}, {3992, 4013}, {4062, 4819}, {4071, 5257}, {4358, 21241}, {4432, 21282}, {4442, 6541}, {17234, 17450}, {17757, 21041}, {20488, 21054}
X(21027) lies on these lines: {10, 3120}, {38, 7263}, {594, 2294}, {1647, 21242}, {2887, 8013}, {3696, 4062}, {3822, 21042}, {3841, 20653}, {3842, 4442}, {3914, 5257}, {3936, 4732}, {3950, 4365}, {4819, 17056}
X(21028) lies on these lines: {10, 228}, {12, 7363}, {125, 6358}, {594, 21015}, {756, 21054}, {3136, 21011}, {3925, 21045}, {14213, 21243}, {15523, 21023}, {16886, 20655}, {20305, 21318}, {21091, 21319}
X(21029) lies on these lines: {1, 17737}, {4, 5282}, {8, 4109}, {9, 5046}, {10, 1018}, {12, 3930}, {38, 5254}, {41, 3419}, {71, 21014}, {115, 3954}, {191, 5134}, {321, 4136}, {355, 4390}, {429, 21016}, {594, 21011}, {672, 6734}, {976, 3767}, {1055, 17647}, {1475, 10916}, {1647, 16604}, {2329, 5086}, {2475, 3509}, {2886, 17451}, {3061, 11680}, {3120, 3721}, {3136, 15523}, {3684, 5178}, {3691, 5179}, {3822, 3970}, {3925, 21049}, {4071, 17751}, {4119, 4696}, {4414, 9598}, {5794, 9310}, {17046, 20880}, {17048, 17672}, {17739, 20553}, {20483, 21025}, {20653, 20659}, {21015, 21020}
X(21030) lies on these lines: {10, 1400}, {71, 21013}, {210, 8013}, {594, 21011}, {1329, 17452}, {2171, 17757}, {2269, 6735}, {2321, 21044}, {15523, 21023}, {20483, 20487}, {20895, 21244}
X(21031) lies on these lines: {1, 3820}, {2, 3304}, {3, 6174}, {5, 3656}, {8, 11}, {10, 12}, {21, 4995}, {40, 12679}, {55, 452}, {56, 3421}, {78, 10950}, {100, 15338}, {119, 5690}, {120, 3314}, {140, 5258}, {145, 3816}, {191, 11698}, {200, 1837}, {220, 5514}, {341, 3703}, {354, 8582}, {377, 11236}, {388, 4413}, {392, 10915}, {404, 529}, {443, 11237}, {474, 5434}, {495, 1698}, {496, 3632}, {497, 8165}, {498, 9708}, {519, 4187}, {528, 5046}, {551, 17575}, {594, 21011}, {908, 5836}, {936, 5252}, {950, 3689}, {956, 5433}, {958, 5432}, {960, 6735}, {997, 10944}, {1001, 10528}, {1145, 3878}, {1155, 12527}, {1319, 6700}, {1376, 3436}, {1377, 19028}, {1378, 19027}, {1478, 9709}, {1532, 11362}, {1697, 4679}, {1706, 1836}, {1727, 16154}, {1788, 5815}, {1834, 2318}, {1904, 17281}, {2476, 9710}, {2478, 3058}, {2550, 10895}, {2646, 5795}, {2886, 3614}, {2899, 4387}, {2975, 3035}, {3057, 3452}, {3061, 4534}, {3085, 16845}, {3303, 5084}, {3584, 6675}, {3625, 3825}, {3626, 3814}, {3683, 18250}, {3695, 3992}, {3701, 3704}, {3714, 4046}, {3826, 5686}, {3828, 17529}, {3829, 5154}, {3869, 8256}, {3893, 12053}, {3929, 9588}, {3930, 21049}, {3940, 10573}, {3971, 4918}, {4317, 16417}, {4415, 4642}, {4421, 6872}, {4646, 4854}, {4662, 5123}, {4668, 7741}, {4669, 17533}, {4678, 11680}, {4745, 17530}, {4847, 17606}, {4853, 11376}, {4860, 9780}, {4863, 4882}, {4866, 5557}, {4999, 5326}, {5044, 10039}, {5082, 10896}, {5187, 11235}, {5220, 10940}, {5260, 6690}, {5288, 15325}, {5293, 5724}, {5298, 8666}, {5554, 12635}, {5587, 6769}, {5657, 18242}, {5687, 6154}, {5697, 13996}, {5791, 10954}, {5818, 6990}, {5828, 15844}, {5881, 6922}, {6762, 17728}, {6904, 9657}, {6919, 11238}, {6921, 11194}, {6949, 20400}, {7355, 20307}, {7681, 12245}, {7794, 13466}, {7956, 11531}, {7958, 10175}, {7965, 19925}, {8164, 19855}, {8167, 10587}, {8580, 9578}, {8715, 11113}, {9565, 10406}, {9623, 11375}, {9843, 17609}, {10056, 11108}, {10106, 20103}, {10391, 18247}, {10916, 17619}, {11499, 11827}, {12616, 18908}, {12953, 17784}, {13724, 15621}, {16160, 18357}, {16886, 20482}
X(21031) = barycentric product X(10)*X(3452)
X(21032) lies on these lines: {2, 3}, {51, 1341}, {154, 5638}, {184, 1379}, {3557, 13366}, {5639, 21001}, {14631, 15004}
X(21033) lies on these lines: {8, 17452}, {9, 21}, {10, 2171}, {37, 42}, {38, 2277}, {72, 1400}, {101, 2359}, {198, 199}, {346, 3985}, {391, 3061}, {429, 20653}, {573, 5692}, {594, 21011}, {604, 997}, {896, 2305}, {936, 2285}, {960, 2269}, {966, 17451}, {1213, 2294}, {1229, 3452}, {1334, 3694}, {1654, 1959}, {1743, 5429}, {1766, 2960}, {1953, 17275}, {2092, 2292}, {2170, 3686}, {2245, 3958}, {2298, 5293}, {2321, 3701}, {3136, 21020}, {3169, 3877}, {3678, 21061}, {3942, 17344}, {3950, 4006}, {3970, 3986}, {4069, 4538}, {4111, 4516}, {4511, 17440}, {4866, 16673}, {5227, 9310}, {5232, 7146}, {5777, 15979}, {6007, 10868}, {15523, 21015}
X(21033) = barycentric product X(10)*X(960)
X(21034) lies on these lines: {10, 16277}, {22, 2172}, {25, 41}, {48, 10829}, {101, 306}, {206, 4548}, {1918, 18892}, {2980, 21011}
X(21034) = barycentric product X(10)*X(206)
Let L be the isogonal conjugate of the isotomic conjugate of the Nagel line (i.e., line X(6)X(31)).
Let M be the isotomic conjugate of the isogonal conjugate of the Nagel line (i.e., line X(10)X(75)).
Then X(21035) = L∩M. (Randy Hutson, July 11, 2019)
X(21035) lies on these lines: {1, 4283}, {2, 4446}, {6, 31}, {9, 3764}, {10, 75}, {35, 5009}, {37, 3122}, {38, 141}, {39, 1964}, {86, 291}, {100, 745}, {101, 755}, {190, 256}, {191, 1045}, {192, 4443}, {244, 17245}, {560, 2273}, {583, 20985}, {594, 3728}, {714, 3963}, {756, 1213}, {869, 4261}, {872, 2092}, {882, 4079}, {982, 17234}, {1030, 18266}, {1100, 20456}, {1500, 2667}, {1654, 4651}, {1740, 3097}, {2200, 2353}, {2245, 20964}, {2274, 3781}, {2277, 4517}, {2292, 4026}, {3123, 17246}, {3214, 5220}, {3670, 3836}, {3690, 3725}, {3912, 4022}, {3948, 21238}, {3954, 20969}, {3971, 21257}, {4016, 7237}, {4085, 4424}, {4286, 20990}, {4392, 17232}, {4415, 20487}, {4484, 16777}, {4553, 16696}, {4642, 21039}, {4685, 17346}, {4687, 17065}, {5069, 7032}, {7226, 17238}, {14370, 20994}, {14839, 17445}, {16556, 17596}, {17243, 21330}, {18179, 20590}, {21011, 21043}
X(21035) = complement of X(17142)
X(21035) = crossdifference of every pair of points on line X(514)X(1919)
X(21035) = crosssum of X(58) and X(86)
X(21035) = crosspoint of X(10) and X(42)
X(21035) = trilinear pole of line X(2084)X(3005)
X(21035) = barycentric product X(10)*X(39)
X(21036) lies on these lines: {2, 3}, {51, 1340}, {154, 5639}, {184, 1380}, {3558, 13366}, {5638, 21001}, {14630, 15004}
X(21037) lies on these lines: {10, 18098}, {756, 16886}, {1213, 20483}, {4071, 5276}, {4972, 16600}, {17456, 21249}, {20898, 21248}
X(21038) lies on these lines: {10, 82}, {38, 141}, {71, 15321}, {1213, 20483}, {2292, 3932}, {3589, 4030}, {6292, 17457}, {21022, 21043}
X(21038) = barycentric product X(10)*X(6292)
X(21039) lies on these lines: {2, 21346}, {9, 294}, {10, 307}, {37, 42}, {38, 4000}, {75, 4712}, {220, 4336}, {227, 3983}, {244, 17278}, {391, 4073}, {612, 2257}, {984, 3672}, {1212, 2293}, {1229, 4847}, {1827, 8012}, {2170, 3688}, {2171, 20683}, {2292, 3755}, {3000, 15587}, {3242, 3924}, {3715, 7069}, {3779, 17451}, {3958, 20713}, {4328, 5223}, {4343, 16601}, {4516, 7064}, {4517, 17452}, {4642, 21035}, {7308, 18216}
X(21039) = barycentric product X(10)*X(1212)
X(21040) lies on these lines: {2, 3226}, {10, 16606}, {210, 20721}, {313, 321}, {2887, 20491}, {3925, 20484}, {6382, 21250}, {15523, 21025}, {20483, 20487}
X(21041) lies on these lines: {2, 9457}, {8, 11814}, {10, 3120}, {80, 10713}, {121, 1647}, {214, 1644}, {594, 21044}, {668, 17213}, {1317, 12035}, {9458, 21290}, {15523, 21042}, {16594, 17460}, {17757, 21026}, {20653, 21054}
X(21042) lies on these lines: {10, 2650}, {321, 4013}, {594, 17757}, {1698, 16474}, {1739, 3662}, {2099, 3679}, {3822, 21027}, {4793, 21251}, {15523, 21041}, {17239, 17313}
X(21043) lies on these lines: {10, 190}, {42, 1989}, {58, 502}, {115, 2643}, {313, 1934}, {338, 1109}, {594, 6543}, {662, 13178}, {1826, 1918}, {3120, 18004}, {3122, 21044}, {3728, 21018}, {3932, 20488}, {4036, 16732}, {4039, 4156}, {4516, 4705}, {17719, 21098}, {21011, 21035}, {21022, 21038}
X(21043) = barycentric product X(10)*X(115)
X(21044) lies on these lines: {2, 9317}, {5, 17451}, {8, 4919}, {9, 11604}, {10, 1018}, {11, 1146}, {12, 21049}, {37, 21011}, {41, 1837}, {80, 101}, {115, 125}, {116, 1111}, {150, 9318}, {169, 10826}, {226, 4566}, {257, 17669}, {284, 7110}, {312, 4165}, {355, 9310}, {484, 5134}, {515, 1055}, {594, 21041}, {672, 1737}, {857, 16609}, {952, 17439}, {1015, 1647}, {1109, 3708}, {1210, 1475}, {1212, 17606}, {1213, 21018}, {1229, 21244}, {1400, 1826}, {1565, 21139}, {1566, 5532}, {1577, 21207}, {1884, 2312}, {2082, 9581}, {2246, 12019}, {2280, 5722}, {2310, 8735}, {2321, 21030}, {2345, 16561}, {2347, 20262}, {2486, 21045}, {3061, 4193}, {3121, 16613}, {3122, 21043}, {3496, 5046}, {3509, 5080}, {3583, 5011}, {3691, 6734}, {3693, 5123}, {3701, 4136}, {3702, 4167}, {3730, 18395}, {3767, 3924}, {3930, 17757}, {3943, 21019}, {4092, 4516}, {4109, 17751}, {4119, 4723}, {4466, 8287}, {5060, 7424}, {5517, 5521}, {5540, 10773}, {7200, 17213}, {9956, 16601}, {15523, 20684}, {16583, 21016}, {16611, 21017}, {16886, 20494}, {20653, 20658}, {21046, 21054}
X(21044) = isotomic conjugate of X(4620)
X(21044) = complement of X(17136)
X(21044) = crosspoint, wrt medial triangle, of X(115) and X(1146)
X(21044) = crossdifference of every pair of points on line X(109)X(110)
X(21044) = barycentric product X(10)*X(11)
X(21045) lies on these lines: {10, 4557}, {116, 17463}, {125, 136}, {523, 4466}, {594, 20482}, {1826, 15320}, {2486, 21044}, {3120, 18004}, {3925, 21028}, {4092, 16732}, {4516, 8287}, {4858, 21252}, {6741, 18210}, {17886, 21340}, {20484, 20654}, {20486, 21019}
X(21046) lies on these lines: {10, 98}, {42, 8791}, {71, 265}, {115, 2643}, {125, 3708}, {163, 13211}, {306, 4561}, {339, 20902}, {4024, 12079}, {16886, 20658}, {17886, 21253}, {20482, 20653}, {21044, 21054}
X(21046) = X(27)-isoconjugate of X(1101)
X(21046) = barycentric product X(10)*X(125)
X(21047) lies on these lines: {10, 190}, {71, 16894}, {620, 17467}, {4062, 9164}, {9293, 9396}, {17768, 20488}, {21012, 21022}
X(21048) lies on these lines: {10, 598}, {625, 17472}, {3613, 15523}, {4079, 20491}, {20912, 21256}
X(21049) lies on these lines: {1, 1146}, {6, 938}, {10, 37}, {11, 17451}, {12, 21044}, {65, 17747}, {169, 5722}, {220, 18391}, {857, 5244}, {910, 950}, {942, 5179}, {1086, 3673}, {1100, 5199}, {1210, 1212}, {1426, 1826}, {1446, 18635}, {1737, 16601}, {1759, 11113}, {2256, 17362}, {2275, 3756}, {3061, 3816}, {3207, 3486}, {3208, 8256}, {3488, 4258}, {3721, 4415}, {3753, 21073}, {3754, 21090}, {3925, 21029}, {3930, 21031}, {3970, 17757}, {4251, 12433}, {4437, 6376}, {4513, 5554}, {4882, 17299}, {4904, 7264}, {5011, 15171}, {5286, 17054}, {6706, 17245}, {6765, 17388}, {9310, 10950}, {17060, 21138}
X(21050) lies on these lines: {4024, 21052}, {4079, 20491}, {17899, 21259}
X(21051) lies on these lines: {2, 4367}, {8, 4879}, {10, 512}, {12, 7178}, {141, 9040}, {513, 3823}, {514, 3837}, {523, 1577}, {525, 18004}, {650, 814}, {659, 21301}, {661, 2533}, {693, 4490}, {784, 4791}, {804, 3709}, {900, 1734}, {1019, 1698}, {1491, 4391}, {1826, 16229}, {2084, 21025}, {2530, 3762}, {2787, 14838}, {3566, 14321}, {3568, 21004}, {3777, 4462}, {3801, 4088}, {3835, 4083}, {4010, 4041}, {4079, 20491}, {4122, 21124}, {4151, 4770}, {4170, 4730}, {4761, 4983}, {4784, 9780}, {4874, 8678}, {5518, 21138}, {5996, 8034}, {6002, 9508}, {9276, 10278}, {20949, 21349}
X(21052) lies on these lines: {2, 3907}, {10, 1577}, {42, 17478}, {512, 14431}, {514, 14430}, {523, 14429}, {656, 4036}, {661, 2533}, {693, 4147}, {814, 1635}, {905, 4474}, {1698, 14838}, {1734, 4791}, {2254, 4391}, {2517, 17420}, {3566, 4120}, {3716, 21302}, {4010, 4729}, {4017, 4086}, {4024, 21050}, {4083, 4728}, {4088, 7178}, {4129, 4761}, {4170, 4807}, {4449, 4885}, {4560, 9780}, {4724, 20317}, {4931, 10278}
X(21053) lies on these lines: {2, 4107}, {115, 125}, {121, 5513}, {523, 21055}, {649, 17072}, {661, 2533}, {850, 1577}, {1213, 14407}, {3005, 4705}, {3250, 21260}, {3261, 21262}, {3766, 21261}, {3837, 20532}, {4036, 8061}, {4375, 21303}, {20316, 20979}
X(21054) lies on these lines: {2, 2606}, {10, 21}, {11, 5952}, {79, 502}, {125, 1109}, {388, 9405}, {756, 21028}, {2607, 3448}, {2611, 6741}, {3120, 18004}, {4705, 18210}, {6186, 15168}, {8013, 20656}, {15523, 20531}, {20488, 21026}, {20494, 20655}, {20653, 21041}, {21044, 21046}
X(21055) lies on these lines: {10, 798}, {313, 20910}, {523, 21053}, {661, 20483}, {4079, 20491}, {4086, 8061}, {4129, 4826}, {17303, 20981}, {17458, 21260}, {20906, 21262}, {20949, 21261}
X(21056) lies on these lines: {850, 1577}, {4079, 20491}
X(21057) lies on these lines: {2, 7267}, {12, 594}, {44, 966}, {115, 4037}, {316, 4760}, {325, 7200}, {625, 14210}, {661, 2533}, {17316, 17720}, {17757, 20483}
X(21058) lies on these lines: {19, 614}, {31, 607}, {55, 17409}, {1783, 17784}, {2332, 7169}, {3101, 8743}, {5452, 8750}
X(21058) = X(57)-Ceva conjugate of X(25)
X(21058) = barycentric product X(4)*X(18621)
X(21058) = barycentric quotient X(18621)/X(69)
X(21059) lies on these lines: {6,31}, {19,2195}, {32,1802}, {40,595}, {41,15624}, {44,3059}, {48,2175}, {56,20780}, {57,2191}, {65,1279}, {109,269}, {171,4648}, {218,4878}, {238,2550}, {572,16688}, {580,6769}, {601,991}, {603,1458}, {604,692}, {748,3925}, {750,17245}, {995,7688}, {1104,7957}, {1191,5584}, {1400,1486}, {1418,9316}, {1423,1633}, {1496,4252}, {1582,3550}, {1743,3174}, {2093,16487}, {2176,3010}, {2183,7083}, {2187,2352}, {2260,10934}, {2294,3747}, {2303,2328}, {2340,2911}, {3072,3332}, {3189,5247}, {3217,4557}, {3752,7964}, {3945,17126}, {4000,9441}, {4319,8557}, {4336,8609}, {4644,9440}, {8551,16283}, {11406,14975}, {15287,16483}, {17127,17784}
X(21059) = X(i)-Ceva conjugate of X(j) for these (i,j): {57, 41}, {1037, 48}
X(21059) = crosspoint of X(i) and X(j) for these (i,j): {57, 4350}, {109, 1110}, {218, 1617}, {3870, 7719}
X(21059) = crosssum of X(i) and X(j) for these (i,j): {277, 6601}, {522, 1111}, {1086, 6362}
X(21059) = X(i)-isoconjugate of X(j) for these (i,j): {2, 277}, {7, 6601}, {75, 2191}, {312, 17107}, {693, 1292}, {13577, 14268}
X(21059) = barycentric product X(i)*X(j) for these {i,j}: {1, 218}, {3, 7719}, {6, 3870}, {9, 1617}, {31, 344}, {41, 6604}, {55, 1445}, {57, 6600}, {58, 3991}, {71, 4233}, {81, 4878}, {101, 3309}, {190, 8642}, {220, 4350}, {692, 4468}, {1026, 2440}, {1110, 4904}, {1174, 15185}, {1253, 17093}
X(21059) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 277}, {32, 2191}, {41, 6601}, {218, 75}, {344, 561}, {1397, 17107}, {1445, 6063}, {1617, 85}, {3309, 3261}, {3870, 76}, {3991, 313}, {4878, 321}, {6600, 312}, {6604, 20567}, {7719, 264}, {8642, 514}, {15185, 1233}
X(21059) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 19624, 1253), (31, 1253, 6), (218, 6600, 4878), (595, 13329, 7290), (692, 3941, 604), (1400, 8647, 1486), (1471, 3915, 1279), (2175, 2223, 48)
X(21060) lies on these lines: {1, 5129}, {2, 5223}, {4, 6743}, {7, 8580}, {8, 1699}, {9, 13405}, {10, 12}, {40, 5658}, {42, 4356}, {43, 3663}, {57, 5850}, {63, 6745}, {78, 4297}, {100, 10032}, {142, 3740}, {144, 165}, {200, 329}, {306, 3952}, {321, 4061}, {354, 5316}, {388, 12447}, {480, 7580}, {497, 519}, {515, 3940}, {518, 3452}, {527, 1376}, {551, 956}, {553, 4413}, {612, 4349}, {908, 3681}, {936, 4298}, {946, 10157}, {962, 4882}, {997, 4315}, {1125, 3475}, {1210, 5904}, {1836, 3711}, {2318, 4551}, {2321, 3967}, {2551, 6738}, {2999, 4353}, {3059, 5927}, {3085, 18249}, {3158, 5698}, {3210, 5212}, {3244, 4679}, {3436, 3984}, {3625, 4863}, {3664, 5268}, {3679, 10590}, {3701, 4101}, {3705, 4899}, {3715, 17718}, {3717, 4417}, {3755, 4415}, {3811, 4314}, {3868, 8582}, {3869, 6736}, {3874, 9843}, {3927, 6684}, {3929, 5218}, {3930, 3950}, {3932, 4035}, {3949, 8804}, {3951, 5552}, {3965, 10443}, {3986, 21061}, {4052, 4685}, {4054, 4651}, {4058, 21074}, {4078, 4096}, {4133, 4135}, {4355, 17580}, {4416, 7081}, {4667, 4682}, {4684, 18743}, {5084, 6744}, {5220, 5745}, {5226, 5686}, {5231, 5748}, {5234, 5703}, {5281, 6172}, {5325, 6690}, {5493, 5687}, {5691, 20007}, {5712, 7322}, {5763, 9947}, {5775, 11551}, {5795, 12635}, {5811, 6769}, {5837, 12607}, {6765, 12575}, {7074, 16870}, {7080, 12526}, {8583, 12577}, {10324, 16284}, {11362, 18242}, {12053, 17604}
X(21060) = barycentric product X(10)*X(144)
X(21061) lies on these lines: {1, 6}, {2, 10468}, {3, 3713}, {8, 573}, {10, 1400}, {19, 1759}, {40, 5295}, {56, 5783}, {57, 18229}, {58, 2298}, {63, 321}, {71, 1018}, {75, 16574}, {78, 10470}, {101, 2287}, {144, 10446}, {190, 314}, {200, 228}, {210, 1402}, {307, 1020}, {319, 3882}, {329, 10478}, {346, 3730}, {519, 2269}, {572, 2975}, {579, 2345}, {583, 17369}, {594, 2245}, {604, 8666}, {672, 3741}, {758, 2171}, {798, 4404}, {894, 10455}, {966, 3421}, {992, 17053}, {993, 2268}, {1213, 17757}, {1334, 3950}, {1423, 17272}, {1709, 7996}, {1710, 1761}, {1730, 5271}, {1781, 3509}, {1824, 12549}, {1999, 3219}, {2092, 3293}, {2183, 3686}, {2260, 5750}, {2277, 3216}, {2901, 12514}, {3159, 17733}, {3161, 10453}, {3169, 3632}, {3175, 3929}, {3218, 17116}, {3436, 5816}, {3678, 21033}, {3694, 4006}, {3728, 20964}, {3780, 4263}, {3869, 11521}, {3878, 17452}, {3912, 10452}, {3927, 10441}, {3953, 20227}, {3962, 10474}, {3986, 21060}, {4032, 18698}, {4253, 5749}, {4266, 5839}, {4271, 17362}, {4362, 5282}, {4363, 10472}, {4416, 15983}, {4670, 18164}, {4847, 10445}, {5120, 5782}, {5231, 10886}, {5257, 21075}, {5279, 10461}, {5296, 5815}, {8804, 21073}, {12435, 12526}, {18785, 21084}, {21011, 21066}
X(21061) = barycentric product X(10)*X(2975)
X(21062) lies on these lines: {2, 1766}, {9, 1848}, {10, 429}, {25, 516}, {37, 226}, {40, 406}, {92, 5179}, {219, 5928}, {306, 21078}, {321, 857}, {329, 17742}, {405, 946}, {427, 12618}, {517, 13567}, {908, 17776}, {990, 7386}, {1104, 12053}, {1763, 4329}, {1826, 6358}, {2321, 21072}, {3178, 3971}, {3294, 4456}, {3695, 4082}, {4425, 12567}, {5249, 14021}, {5905, 18651}, {6836, 16388}, {16050, 17182}, {18747, 20928}
X(21063) lies on these lines: {4, 9}, {306, 4174}, {4066, 21073}, {7391, 16545}, {8680, 16607}
X(21064) lies on these lines: {4, 9}, {5189, 16546}, {8680, 21234}
X(21065) lies on these lines: {9, 5046}, {10, 21018}, {37, 115}, {100, 7110}, {594, 4015}, {1018, 21011}, {1089, 1826}, {1761, 5134}, {3686, 5179}, {4043, 21094}, {4044, 4150}, {5051, 5257}, {5750, 13740}, {21070, 21076}
X(21066) lies on these lines: {10, 2245}, {281, 11392}, {502, 594}, {661, 4071}, {908, 18359}, {1089, 1826}, {1220, 5053}, {2323, 5176}, {2325, 5179}, {3814, 8609}, {3943, 21090}, {3984, 4007}, {4033, 21094}, {4092, 20715}, {5080, 16548}, {11813, 17444}, {21011, 21061}
X(21067) lies on these lines: {10, 762}, {37, 4075}, {274, 3807}, {321, 4006}, {514, 17760}, {519, 7753}, {594, 3454}, {596, 1575}, {726, 3774}, {758, 4095}, {1089, 3930}, {1334, 4115}, {1500, 3159}, {1909, 4568}, {2321, 4053}, {3263, 17758}, {3294, 3952}, {3701, 3970}, {3934, 9055}, {3943, 7230}, {3967, 3991}, {3994, 4099}, {4125, 21071}, {4710, 20501}, {16549, 17165}
X(21068) lies on these lines: {4, 2324}, {6, 12053}, {9, 946}, {37, 226}, {71, 3294}, {198, 516}, {346, 908}, {517, 20262}, {950, 3553}, {962, 2270}, {1089, 1826}, {1696, 1836}, {1778, 17197}, {2262, 4301}, {2345, 3452}, {3731, 12047}, {3950, 21077}, {3986, 12609}, {4254, 10624}, {5316, 17303}, {13407, 16673}
X(21069) lies on these lines: {10, 21023}, {37, 17052}, {306, 21072}, {857, 21078}, {2321, 18589}, {4150, 4153}, {5074, 7112}, {16551, 21285}
X(21070) lies on these lines: {8, 3294}, {10, 37}, {69, 17732}, {72, 2809}, {76, 4043}, {101, 1043}, {169, 3886}, {213, 519}, {306, 1230}, {321, 1930}, {346, 3730}, {536, 21240}, {596, 3726}, {1018, 17751}, {1089, 3930}, {1330, 5134}, {2140, 4441}, {2292, 4099}, {3159, 3954}, {3501, 4873}, {3661, 3995}, {3678, 3985}, {3701, 4006}, {3706, 16601}, {3948, 3969}, {4066, 21101}, {4109, 21081}, {4253, 10453}, {4568, 18035}, {5179, 21078}, {6057, 20683}, {6542, 17499}, {16552, 17135}, {17034, 17280}, {17281, 17750}, {21065, 21076}
X(21071) lies on these lines: {9, 10449}, {10, 37}, {39, 3840}, {72, 3985}, {76, 85}, {142, 20888}, {306, 3948}, {346, 1400}, {519, 2176}, {536, 20255}, {1089, 3970}, {1334, 17751}, {1770, 4987}, {2276, 3831}, {2325, 3730}, {3496, 3685}, {3509, 7283}, {3661, 21216}, {3663, 21240}, {3691, 17135}, {3701, 3930}, {3702, 17451}, {3721, 4037}, {3741, 5283}, {3760, 20335}, {3767, 3771}, {3879, 17499}, {3954, 3971}, {3992, 4006}, {4067, 4115}, {4071, 21073}, {4082, 20683}, {4099, 4424}, {4101, 19582}, {4125, 21067}, {4135, 7230}, {4153, 21090}, {4441, 17050}, {6376, 17233}, {8804, 10381}, {10445, 15488}, {16968, 17733}, {17034, 17353}, {17240, 20943}, {17355, 17750}
X(21071) = barycentric product X(10)*X(10453)
X(21072) lies on these lines: {10, 228}, {226, 4605}, {306, 21069}, {429, 2901}, {440, 594}, {516, 11550}, {857, 3969}, {1726, 21270}, {2321, 21062}, {3971, 21098}, {4153, 4177}, {16577, 20305}
X(21073) lies on these lines: {1, 5286}, {4, 17742}, {5, 3693}, {8, 5179}, {9, 1479}, {10, 1018}, {12, 3991}, {37, 442}, {63, 17732}, {72, 17747}, {75, 17671}, {142, 7264}, {169, 3434}, {200, 4207}, {220, 3419}, {226, 3970}, {306, 1230}, {312, 7377}, {321, 857}, {346, 3091}, {355, 4513}, {516, 1759}, {527, 4056}, {594, 3697}, {644, 5086}, {672, 10916}, {728, 5587}, {950, 16788}, {1089, 1826}, {1146, 10914}, {1210, 16549}, {1229, 12610}, {1714, 16970}, {1737, 3501}, {1766, 6836}, {1770, 3509}, {1802, 1855}, {2329, 10572}, {2345, 5084}, {2886, 16601}, {3178, 3947}, {3208, 10039}, {3290, 14019}, {3583, 17744}, {3585, 5525}, {3686, 4894}, {3692, 5816}, {3730, 6734}, {3744, 5305}, {3753, 21049}, {3760, 3912}, {3914, 16600}, {3930, 21077}, {4043, 4150}, {4066, 21063}, {4071, 21071}, {4292, 17736}, {4515, 17757}, {4847, 16552}, {5082, 6554}, {7283, 7379}, {8804, 21061}, {9310, 17647}, {9605, 17721}, {16842, 17303}, {17281, 17556}
X(21074) lies on these lines: {9, 10039}, {10, 1400}, {37, 17757}, {72, 594}, {200, 7102}, {281, 17742}, {306, 21069}, {346, 5179}, {355, 3713}, {393, 2324}, {573, 6735}, {956, 17303}, {1018, 8804}, {1089, 1826}, {1766, 3436}, {2171, 21077}, {2269, 10915}, {2345, 3421}, {4033, 4150}, {4058, 21060}, {4071, 20498}, {4072, 21090}, {4404, 21099}, {5252, 5783}, {5296, 5828}, {5730, 17299}, {6736, 10445}, {12610, 20895}
X(21075) lies on these lines: {1, 2551}, {2, 3333}, {3, 6745}, {4, 200}, {5, 4847}, {8, 908}, {9, 3085}, {10, 12}, {40, 329}, {42, 3191}, {43, 13161}, {46, 527}, {55, 12572}, {56, 6700}, {63, 5552}, {78, 515}, {100, 16113}, {119, 14740}, {142, 1698}, {219, 20263}, {225, 2318}, {306, 857}, {341, 4417}, {354, 9843}, {355, 3940}, {388, 936}, {405, 13405}, {406, 7079}, {443, 5290}, {474, 4298}, {480, 516}, {495, 5044}, {497, 6765}, {498, 5745}, {517, 6736}, {518, 1210}, {519, 1837}, {529, 4311}, {612, 5717}, {912, 12059}, {938, 8165}, {942, 3820}, {950, 3811}, {956, 1125}, {958, 13411}, {960, 12607}, {984, 5530}, {997, 10106}, {1056, 8583}, {1089, 1826}, {1103, 2324}, {1259, 6796}, {1260, 11500}, {1376, 4292}, {1479, 5853}, {1519, 12245}, {1699, 4882}, {1706, 4295}, {1737, 5904}, {1738, 6048}, {1757, 20258}, {1782, 6211}, {1834, 4849}, {1848, 3974}, {2057, 6256}, {2096, 10270}, {2478, 3870}, {2550, 9612}, {2886, 4662}, {2975, 10165}, {3086, 6762}, {3090, 5231}, {3158, 4294}, {3178, 4078}, {3189, 3586}, {3214, 3914}, {3293, 3755}, {3303, 4679}, {3338, 6692}, {3361, 17567}, {3419, 6743}, {3434, 18483}, {3485, 9623}, {3555, 4187}, {3584, 5325}, {3610, 21076}, {3617, 5828}, {3625, 11813}, {3634, 4860}, {3679, 12047}, {3681, 6734}, {3682, 4551}, {3687, 4385}, {3689, 6284}, {3694, 8804}, {3695, 4082}, {3699, 7270}, {3704, 3967}, {3710, 3952}, {3711, 10895}, {3751, 21246}, {3812, 9711}, {3813, 5087}, {3814, 10916}, {3838, 9710}, {3869, 6735}, {3872, 13464}, {3878, 10915}, {3912, 17671}, {3913, 10624}, {3916, 10164}, {3930, 21096}, {3931, 4656}, {3932, 18589}, {3935, 5046}, {3965, 10445}, {3976, 5121}, {3992, 4035}, {4061, 5295}, {4101, 17751}, {4103, 4153}, {4125, 21081}, {4253, 8568}, {4293, 5438}, {4297, 5440}, {4301, 10914}, {4314, 11113}, {4315, 17614}, {4413, 10404}, {4415, 4646}, {4420, 5080}, {4511, 5882}, {4515, 17747}, {4668, 18393}, {4696, 5741}, {4853, 5603}, {4863, 10896}, {4866, 6856}, {4915, 11522}, {5045, 17527}, {5129, 10578}, {5175, 18492}, {5219, 19843}, {5234, 6857}, {5249, 9780}, {5250, 10528}, {5257, 21061}, {5274, 6764}, {5302, 6690}, {5328, 14986}, {5439, 5542}, {5534, 6827}, {5657, 12526}, {5658, 12565}, {5692, 5837}, {5697, 12640}, {5705, 10588}, {5709, 20588}, {5748, 8227}, {5794, 11236}, {5811, 12705}, {6223, 10860}, {6244, 6259}, {6245, 14872}, {6282, 12667}, {6831, 18908}, {6851, 18528}, {7078, 20264}, {7081, 7379}, {7682, 17658}, {8727, 9947}, {9708, 11374}, {9948, 11678}, {10572, 12437}, {10582, 17559}, {11520, 17706}, {11523, 18391}, {12616, 17615}, {12617, 15064}, {13227, 18239}, {15481, 18253}, {15650, 18249}
X(21075) = barycentric product X(10)*X(329)
X(21076) lies on these lines: {6, 10}, {37, 3178}, {92, 264}, {594, 1215}, {1330, 1761}, {1901, 3704}, {2160, 4987}, {2294, 3936}, {2321, 4053}, {2345, 20653}, {2385, 8804}, {3610, 21075}, {4062, 17314}, {4261, 17748}, {7119, 7270}, {17751, 21011}, {20496, 21091}, {21065, 21070}
X(21076) = barycentric product X(10)*X(1330)
X(21077) lies on these lines: {1, 908}, {2, 3338}, {4, 2900}, {5, 518}, {8, 6871}, {9, 10198}, {10, 12}, {11, 3555}, {35, 16154}, {40, 10786}, {46, 5552}, {63, 498}, {78, 1478}, {100, 1770}, {101, 7119}, {142, 3634}, {191, 3584}, {200, 9612}, {214, 4311}, {225, 3191}, {306, 1089}, {329, 3085}, {354, 4187}, {355, 381}, {386, 13161}, {388, 997}, {392, 15888}, {405, 17718}, {430, 1867}, {474, 10404}, {495, 960}, {496, 5087}, {515, 10526}, {516, 5812}, {517, 10915}, {527, 6684}, {529, 1385}, {535, 4297}, {551, 20323}, {726, 12610}, {912, 12616}, {920, 18232}, {936, 5290}, {942, 1329}, {950, 10953}, {956, 11375}, {958, 999}, {993, 12527}, {1004, 1259}, {1079, 6505}, {1210, 3814}, {1330, 7081}, {1479, 3870}, {1519, 7982}, {1537, 2802}, {1698, 5249}, {1699, 6765}, {1724, 3011}, {1737, 3868}, {1836, 5687}, {1838, 3190}, {1901, 3694}, {2171, 21074}, {2321, 4053}, {2475, 4420}, {2476, 3681}, {2548, 16973}, {2550, 5714}, {2551, 3487}, {2784, 12183}, {2796, 12349}, {2801, 6245}, {3057, 10955}, {3086, 5748}, {3120, 3214}, {3178, 3971}, {3244, 5048}, {3293, 3914}, {3333, 10200}, {3419, 10895}, {3421, 3485}, {3475, 5084}, {3579, 17768}, {3632, 18393}, {3695, 3967}, {3701, 3936}, {3740, 8728}, {3742, 17527}, {3743, 4656}, {3751, 5292}, {3812, 3820}, {3813, 9955}, {3816, 5045}, {3817, 18908}, {3824, 3826}, {3825, 3881}, {3838, 4662}, {3869, 10039}, {3871, 5057}, {3873, 4193}, {3878, 10954}, {3879, 21277}, {3880, 16616}, {3901, 18395}, {3913, 12699}, {3916, 5432}, {3930, 21073}, {3931, 4415}, {3932, 16580}, {3940, 5794}, {3950, 21068}, {3991, 17747}, {4013, 15232}, {4035, 4125}, {4054, 4647}, {4075, 4078}, {4109, 21101}, {4295, 7080}, {4298, 6700}, {4299, 4855}, {4325, 15015}, {4363, 5955}, {4385, 4417}, {4430, 5154}, {4511, 20060}, {4658, 17182}, {4661, 5141}, {4880, 5445}, {4968, 5741}, {5080, 10572}, {5119, 10528}, {5178, 17577}, {5223, 5705}, {5226, 5815}, {5227, 5747}, {5247, 17719}, {5248, 12572}, {5250, 10056}, {5252, 5730}, {5288, 5443}, {5302, 6675}, {5316, 17590}, {5328, 11037}, {5434, 17614}, {5440, 7354}, {5542, 9843}, {5587, 10599}, {5777, 7680}, {5810, 5847}, {5852, 11231}, {5853, 18483}, {5854, 11278}, {5880, 9709}, {5883, 8582}, {5886, 12001}, {5901, 11260}, {5903, 6735}, {5904, 6734}, {6048, 17889}, {6068, 11662}, {6541, 21095}, {6762, 8227}, {6764, 9779}, {6831, 14872}, {6834, 12704}, {6890, 10085}, {6922, 12675}, {8165, 11036}, {8258, 20258}, {10106, 18962}, {10395, 14054}, {10477, 19754}, {10524, 10826}, {10742, 12437}, {11522, 12629}, {11682, 12647}, {11684, 14526}, {12059, 18389}, {12436, 20103}, {12559, 18391}, {12625, 18492}, {12688, 13257}, {12934, 17766}, {13205, 16128}, {16478, 17725}, {21090, 21096}
X(21077) = barycentric product X(10)*X(5905)
X(21078) lies on these lines: {1, 6}, {8, 5816}, {10, 2171}, {78, 1766}, {101, 2327}, {190, 332}, {198, 1759}, {200, 1824}, {226, 18698}, {306, 21062}, {321, 908}, {517, 3965}, {519, 17452}, {572, 4511}, {573, 3869}, {594, 17757}, {758, 1400}, {857, 21069}, {997, 2285}, {1018, 3694}, {1089, 1826}, {1744, 3509}, {1953, 3686}, {1959, 4416}, {2092, 4424}, {2269, 3878}, {2277, 3670}, {2294, 5257}, {2345, 5747}, {3169, 5697}, {3421, 17314}, {3713, 3940}, {3727, 4263}, {3930, 3950}, {3953, 17053}, {4043, 20927}, {4149, 12329}, {4557, 20713}, {4643, 18726}, {5179, 21070}, {5295, 5587}, {5822, 5839}, {5831, 11375}, {7146, 17272}, {16566, 20769}, {17233, 18747}, {17256, 18714}, {17330, 17443}, {17346, 18041}, {17362, 17444}, {20498, 21101}
X(21079) lies on these lines: {10, 16277}, {33, 42}, {306, 1763}, {5596, 16544}
X(21080) lies on these lines: {2, 17157}, {10, 75}, {37, 714}, {38, 20891}, {42, 192}, {71, 4039}, {72, 740}, {190, 1918}, {194, 1740}, {306, 3797}, {321, 3728}, {522, 4097}, {536, 4685}, {698, 17792}, {730, 3688}, {872, 4090}, {982, 20923}, {1278, 4651}, {1826, 21089}, {2273, 4112}, {2667, 3159}, {3009, 17148}, {3186, 7075}, {3778, 3948}, {3840, 4022}, {3950, 21100}, {4028, 8804}, {4043, 4135}, {4358, 21330}, {4446, 20340}, {4699, 17155}, {4718, 4946}, {4735, 21238}, {4788, 19998}, {6374, 17149}, {8680, 20721}, {17142, 21352}
X(21080) = complement of X(17157)
X(21080) = barycentric product X(10)*X(194)
X(21081) lies on these lines: {1, 2}, {37, 6537}, {72, 7068}, {191, 2895}, {261, 319}, {442, 4046}, {502, 1089}, {542, 3579}, {662, 2126}, {740, 3454}, {758, 3704}, {993, 10371}, {1211, 3743}, {2321, 4053}, {3416, 8715}, {3647, 3712}, {3678, 3695}, {3696, 3841}, {3701, 21087}, {3702, 11813}, {3710, 4134}, {3822, 5295}, {3932, 4015}, {3936, 4647}, {3952, 7206}, {4006, 20495}, {4035, 12609}, {4065, 4425}, {4067, 4101}, {4075, 6541}, {4109, 21070}, {4125, 21075}, {4717, 12047}, {4851, 5955}, {5248, 5814}, {17299, 20654}
X(21081) = barycentric product X(10)*X(2895)
X(21082) lies on these lines: {10, 18098}, {37, 744}, {251, 17766}, {321, 17873}, {2321, 4177}, {3971, 4153}, {4388, 17744}, {16555, 21289}
X(21083) lies on these lines: {10, 82}, {37, 744}, {72, 3773}, {306, 3797}, {313, 21089}, {1031, 4388}, {2175, 9857}, {2896, 16556}, {3159, 6541}, {21022, 21094}
X(21084) lies on these lines: {10, 307}, {72, 740}, {726, 5223}, {1742, 3177}, {3178, 4078}, {3930, 3950}, {4712, 20895}, {4847, 20236}, {18785, 21061}
X(21085) lies on these lines: {1, 2}, {37, 9281}, {69, 3980}, {100, 8935}, {171, 319}, {210, 3773}, {226, 7235}, {238, 4886}, {313, 4087}, {321, 1109}, {333, 8298}, {502, 6538}, {524, 4697}, {594, 1215}, {740, 1211}, {756, 3969}, {846, 1654}, {894, 20536}, {896, 3578}, {1213, 4771}, {1376, 4445}, {1914, 3686}, {2321, 3971}, {2784, 4220}, {2796, 4683}, {2887, 3696}, {2895, 4418}, {3120, 17163}, {3175, 4527}, {3666, 3775}, {3678, 3690}, {3706, 3846}, {3740, 17229}, {3745, 17772}, {3791, 17362}, {3914, 4709}, {3923, 5739}, {3925, 4732}, {3936, 21020}, {3952, 6535}, {3967, 21089}, {4011, 14555}, {4042, 4438}, {4058, 21060}, {4096, 4535}, {4133, 4656}, {4199, 4433}, {4357, 4970}, {4399, 17061}, {4434, 4478}, {4640, 4690}, {4649, 19808}, {4682, 17372}, {4703, 5695}, {4716, 19786}, {4733, 17056}, {4734, 17238}, {4914, 17765}, {5224, 17592}, {7262, 17346}, {17270, 17594}
X(21085) = barycentric product X(10)*X(1654)
X(21086) lies on these lines: {10, 16606}, {226, 20496}, {306, 3948}, {2321, 4135}, {3971, 20690}, {4071, 20498}
X(21087) lies on these lines: {10, 3120}, {80, 4767}, {121, 537}, {306, 21088}, {519, 13541}, {2321, 4103}, {3701, 21081}, {3936, 3992}, {4152, 12690}, {4723, 11813}, {9457, 14028}
X(21088) lies on these lines: {10, 2650}, {306, 21087}, {391, 10197}, {519, 21251}, {551, 5233}, {4417, 4669}
X(21089) lies on these lines: {10, 190}, {37, 6543}, {148, 2640}, {313, 21083}, {502, 3159}, {645, 13178}, {1826, 21080}, {2643, 11599}, {3967, 21085}, {4150, 21095}, {6370, 12078}, {6541, 20499}, {21090, 21100}
X(21090) lies on these lines: {10, 1018}, {37, 115}, {80, 644}, {149, 5540}, {321, 17886}, {502, 6543}, {519, 4919}, {594, 3956}, {758, 17747}, {1146, 2802}, {1826, 3950}, {2250, 8804}, {2321, 4103}, {2795, 20531}, {3509, 5134}, {3693, 3814}, {3754, 21049}, {3943, 21066}, {4072, 21074}, {4109, 21070}, {4120, 21093}, {4153, 21071}, {5046, 17744}, {5080, 5525}, {16561, 17355}, {21077, 21096}, {21089, 21100}, {21092, 21098}
X(21090) = barycentric product X(10)*X(149)
X(21091) lies on these lines: {10, 4557}, {37, 8287}, {116, 16578}, {150, 16560}, {226, 4605}, {306, 4033}, {321, 20902}, {594, 20692}, {692, 2784}, {908, 18151}, {2321, 18589}, {3912, 17790}, {4466, 4552}, {6370, 12078}, {17243, 21239}, {20496, 21076}, {21028, 21319}
X(21092) lies on these lines: {10, 98}, {306, 4568}, {1826, 6344}, {3448, 16562}, {3708, 13605}, {4006, 20495}, {5546, 13211}, {21090, 21098}
X(21093) lies on these lines: {1, 17777}, {10, 3120}, {11, 537}, {37, 16592}, {100, 2796}, {149, 519}, {190, 17719}, {226, 3971}, {244, 11814}, {306, 4135}, {321, 1109}, {329, 4362}, {527, 4396}, {545, 3035}, {726, 908}, {740, 4819}, {1054, 4440}, {1155, 17767}, {1215, 4026}, {1647, 17154}, {1699, 4929}, {2887, 3967}, {3159, 3178}, {3689, 17764}, {3717, 21241}, {3741, 17794}, {3836, 4009}, {3914, 4090}, {3925, 4096}, {3932, 4892}, {3936, 3994}, {3993, 12080}, {3995, 6758}, {4010, 21100}, {4052, 4685}, {4075, 11263}, {4082, 4138}, {4120, 21090}, {4368, 4656}, {4432, 17724}, {4434, 17768}, {4672, 17602}, {4676, 17725}, {4780, 4946}, {5057, 17766}, {5992, 7081}, {6370, 12078}, {6381, 18066}, {6543, 6627}, {17484, 17763}
X(21093) = barycentric product X(10)*X(4440)
X(21094) lies on these lines: {10, 598}, {75, 18745}, {92, 264}, {190, 5641}, {316, 16568}, {447, 4570}, {3912, 18073}, {4033, 21066}, {4039, 4156}, {4043, 21065}, {4079, 4129}, {16581, 20912}, {17280, 20654}, {17735, 19732}, {17861, 18744}, {21022, 21083}
X(21094) = barycentric product X(10)*X(316)
X(21095) lies on these lines: {10, 75}, {714, 21257}, {2321, 4135}, {3963, 3971}, {4111, 4709}, {4150, 21089}, {6541, 21077}, {16571, 20081}, {17157, 20340}
X(21096) lies on these lines: {10, 37}, {101, 12437}, {169, 5853}, {201, 4099}, {220, 519}, {226, 3970}, {346, 938}, {527, 17732}, {536, 21258}, {728, 18391}, {950, 17742}, {1018, 4848}, {1210, 3693}, {2324, 6554}, {2325, 8557}, {3208, 11362}, {3673, 3912}, {3913, 8074}, {3930, 21075}, {4035, 4153}, {4847, 16601}, {5525, 10572}, {6706, 17243}, {6744, 17355}, {21077, 21090}
X(21097) lies on these lines: {2, 3}, {39, 20197}, {51, 6398}, {154, 6200}, {184, 6221}, {371, 17809}, {494, 8400}, {1160, 5406}, {1161, 5408}, {1495, 6451}, {3311, 10133}, {3312, 15004}, {6199, 11402}, {6395, 9777}, {6396, 17810}, {6449, 10132}, {8903, 8939}
X(21098) lies on these lines: {10, 21}, {37, 6627}, {210, 3773}, {2796, 9140}, {3701, 21081}, {3936, 20499}, {3971, 21072}, {6370, 12078}, {6742, 14844}, {8287, 16598}, {17719, 21043}, {21090, 21092}
X(21099) lies on these lines: {10, 798}, {313, 20953}, {594, 4132}, {661, 4071}, {804, 3709}, {3661, 17217}, {3733, 17303}, {4079, 4129}, {4404, 21074}, {5750, 20981}, {21260, 21348}
X(21100) lies on these lines: {10, 3122}, {37, 1084}, {291, 646}, {714, 3943}, {726, 4684}, {3950, 21080}, {3971, 4029}, {4010, 21093}, {4110, 17065}, {9263, 9359}, {18150, 19945}, {21089, 21090}
X(21101) lies on these lines: {9, 3757}, {10, 762}, {12, 4136}, {37, 714}, {65, 4095}, {75, 20335}, {142, 3263}, {172, 8669}, {226, 306}, {594, 2887}, {672, 17165}, {726, 2276}, {756, 3778}, {1089, 3970}, {1909, 4876}, {2238, 4090}, {2886, 4119}, {3509, 7081}, {3681, 3686}, {3726, 3840}, {3950, 4037}, {3994, 4029}, {4006, 4647}, {4058, 4138}, {4066, 21070}, {4109, 21077}, {4167, 12607}, {4685, 20693}, {4696, 17451}, {4771, 4849}, {4797, 17351}, {4865, 17299}, {6382, 17786}, {9055, 21264}, {16604, 20467}, {17155, 17756}, {17754, 19587}, {19584, 20917}, {20498, 21078}
X(21102) lies on these lines: {1, 21179}, {65, 513}, {242, 514}, {523, 1769}, {656, 10015}, {2081, 2600}, {2517, 3810}, {2618, 6369}, {3904, 8062}, {4064, 4391}, {4802, 6129}, {4988, 6589}, {14429, 20294}, {14874, 21201}, {16892, 21110}, {17496, 21187}, {20507, 21114}, {21123, 21131}, {21173, 21180}
X(21103) lies on these lines: {242, 514}, {523, 2650}, {1769, 4977}, {2457, 3960}, {2605, 21132}, {3904, 4064}, {14429, 20293}, {21113, 21135}
X(21104) lies on these lines: {81, 6654}, {241, 514}, {354, 2488}, {513, 11934}, {523, 2254}, {525, 4978}, {649, 6084}, {658, 9358}, {661, 6545}, {676, 1459}, {693, 918}, {812, 4897}, {900, 4382}, {1635, 2487}, {1639, 4468}, {2490, 6546}, {2499, 6372}, {2512, 2530}, {3798, 4773}, {3835, 4927}, {3910, 4801}, {4025, 4762}, {4105, 6366}, {4162, 8713}, {4374, 18071}, {4380, 6009}, {4453, 17069}, {4728, 14321}, {6362, 6608}, {14324, 21348}, {17422, 21141}, {20505, 21128}, {21117, 21133}
X(21105) lies on these lines: {1, 514}, {145, 522}, {227, 3669}, {513, 3057}, {523, 2650}, {1459, 3924}, {1647, 4124}, {2170, 14825}, {2254, 6366}, {2403, 4778}, {2785, 21222}, {2826, 4895}, {2899, 6332}, {3160, 3676}, {3624, 21198}, {3632, 4543}, {3762, 14432}, {3904, 4088}, {6161, 6550}, {10015, 14413}, {11125, 21112}
X(21106) lies on these lines: {514, 4581}, {522, 4959}, {523, 2650}, {650, 2457}, {1459, 21118}, {3737, 21132}, {4977, 17420}, {4985, 14432}, {11125, 21111}
X(21107) lies on these lines: {514, 6591}, {523, 21117}, {525, 14208}, {647, 1214}, {652, 2504}, {661, 6587}, {676, 1459}, {2501, 4077}, {3700, 4415}, {4468, 10015}, {16892, 17420}, {17069, 17595}
X(21108) lies on these lines: {242, 514}, {1828, 18344}
X(21109) lies on these lines: {242, 514}, {1111, 3120}, {2832, 21132}
X(21110) lies on these lines: {514, 1919}, {1459, 21135}, {3261, 21131}, {3801, 21114}, {16892, 21102}
X(21111) lies on these lines: {514, 2605}, {523, 1769}, {4977, 21132}, {4979, 17422}, {4985, 6370}, {11125, 21106}
X(21112) lies on these lines: {244, 21142}, {514, 21180}, {523, 1769}, {900, 21132}, {3762, 6370}, {11125, 21105}, {20507, 21133}
X(21113) lies on these lines: {514, 1921}, {523, 3728}, {786, 3766}, {2483, 4508}, {3250, 4408}, {3837, 4824}, {4107, 10566}, {4374, 21143}, {14407, 21225}, {16892, 21102}, {21103, 21135}, {21126, 21131}, {21194, 21205}
X(21114) lies on these lines: {514, 3063}, {523, 20504}, {3287, 21202}, {3801, 21110}, {16892, 21117}, {20507, 21102}
X(21115) lies on these lines: {244, 4124}, {514, 1635}, {523, 2254}, {661, 3776}, {693, 4931}, {918, 4120}, {1638, 6546}, {1639, 14475}, {3762, 4049}, {4382, 4926}, {4458, 4778}, {4750, 4773}, {4809, 4977}, {4928, 6548}, {4958, 21297}, {4984, 6009}, {10015, 21129}, {20509, 21141}
X(21116) lies on these lines: {2, 514}, {523, 2254}, {661, 4927}, {693, 4120}, {918, 4931}, {3667, 4382}, {3776, 4988}, {4750, 4762}
X(21117) lies on these lines: {514, 21184}, {523, 21107}, {661, 21141}, {2501, 17094}, {2525, 4086}, {2799, 14208}, {4077, 12077}, {16892, 21114}, {21104, 21133}
X(21118) lies on these lines: {1, 514}, {522, 17950}, {523, 1769}, {693, 3810}, {784, 21124}, {1459, 21106}, {2254, 6362}, {3737, 21179}, {3777, 6545}, {3801, 16892}, {3910, 4804}, {4041, 10015}, {4088, 4391}, {4142, 4560}, {4458, 17496}, {4707, 8714}, {5075, 17494}, {7649, 17418}
X(21119) lies on these lines: {8, 522}, {514, 4581}, {523, 1769}, {650, 4802}, {1459, 3924}, {2804, 6615}, {3810, 4397}, {4017, 10015}, {4036, 15523}, {4147, 20294}, {4449, 7649}, {10016, 20999}, {16892, 21114}, {20508, 20510}
X(21120) lies on these lines: {241, 514}, {333, 4560}, {522, 4546}, {523, 1769}, {525, 3762}, {652, 4498}, {654, 4063}, {657, 6084}, {663, 6366}, {676, 4449}, {918, 4462}, {1211, 1577}, {1639, 6332}, {1734, 2826}, {3700, 3910}, {3801, 20504}, {3810, 4147}, {4041, 6362}, {4504, 13246}, {4534, 21138}, {4977, 17418}, {6615, 14284}, {8712, 14298}, {14077, 21185}, {17069, 17496}
X(21121) lies on these lines: {513, 4707}, {514, 3733}, {523, 656}, {826, 4036}, {1635, 2527}, {4057, 4142}, {4088, 21125}, {7336, 16732}, {16892, 21102}, {20505, 21133}
X(21122) lies on these lines: {31, 652}, {58, 4025}, {514, 21190}
X(21123) lies on these lines: {37, 513}, {75, 18080}, {86, 10566}, {514, 1921}, {522, 17458}, {649, 834}, {661, 1639}, {663, 9313}, {665, 798}, {688, 3005}, {786, 4374}, {900, 21834}, {2084, 2530}, {2483, 20981}, {2605, 8632}, {3063, 20228}, {3709, 3768}, {3805, 21349}, {4057, 5029}, {4486, 18160}, {6084, 21127}, {6586, 9002}, {8714, 21836}, {14825, 17192}, {16892, 21126}, {20892, 20906}, {21102, 21131}, {21173, 21389}
X(21124) lies on these lines: {2, 8045}, {239, 514}, {522, 21301}, {523, 656}, {525, 661}, {690, 4983}, {784, 21118}, {824, 4391}, {826, 4088}, {850, 1577}, {905, 21828}, {3004, 3910}, {3125, 6547}, {3566, 4822}, {3776, 4801}, {3800, 4729}, {3810, 4818}, {4049, 6539}, {4120, 4129}, {4122, 21051}, {4379, 21188}, {4458, 17166}, {4467, 6002}, {4730, 7927}, {4770, 4808}, {4978, 6545}, {6590, 14837}, {7216, 17094}, {20504, 21134}, {21125, 21727}, {21129, 21141}
X(21125) lies on these lines: {38, 16892}, {514, 18108}, {661, 3801}, {4088, 21121}, {4977, 21126}, {21124, 21727}
X(21126) lies on these lines: {514, 1919}, {918, 4079}, {4977, 21125}, {16892, 21123}, {21113, 21131}
X(21127) lies on these lines: {44, 513}, {284, 1024}, {514, 7216}, {522, 4171}, {523, 2294}, {663, 6182}, {665, 4017}, {926, 4041}, {1459, 17412}, {1769, 6586}, {2170, 3328}, {2488, 6607}, {2820, 4040}, {3239, 4811}, {3667, 14282}, {3709, 6615}, {4148, 20293}, {4501, 4895}, {4778, 14330}, {4976, 8611}, {6084, 21123}, {6362, 14283}, {14413, 17425}
X(21128) lies on these lines: {325, 523}, {514, 21197}, {3776, 20512}, {20505, 21104}, {20508, 20510}
X(21128) = isotomic conjugate of X(35572)
X(21129) lies on these lines: {2, 514}, {8, 3667}, {63, 4498}, {321, 4462}, {523, 2292}, {900, 4543}, {918, 14442}, {1145, 2826}, {1281, 2789}, {3578, 6002}, {3669, 16602}, {3762, 4120}, {4370, 6084}, {4778, 11530}, {4927, 16594}, {10015, 21115}, {16892, 21130}, {20880, 20906}, {21124, 21141}
X(21130) lies on these lines: {514, 1635}, {523, 10015}, {693, 4049}, {3679, 4777}, {3762, 20906}, {4791, 4931}, {5902, 9001}, {16892, 21129}
X(21131) lies on these lines: {86, 514}, {523, 1213}, {594, 4024}, {649, 2160}, {661, 2294}, {918, 20509}, {1474, 1919}, {1577, 18697}, {1648, 8029}, {2171, 4079}, {2533, 21922}, {2642, 6089}, {3125, 14442}, {3261, 21110}, {4107, 21205}, {4988, 6544}, {6545, 21133}, {6627, 12078}, {21102, 21123}, {21113, 21126}, {21132, 21143}, {21832, 22108}
X(21132) lies on these lines: {1, 514}, {8, 522}, {34, 7649}, {65, 513}, {279, 3676}, {523, 2292}, {650, 1212}, {659, 8648}, {676, 14413}, {764, 1647}, {900, 21112}, {1024, 2082}, {1577, 3454}, {1698, 21198}, {1828, 18344}, {2254, 2826}, {2605, 21103}, {2832, 21109}, {3667, 5691}, {3701, 3810}, {3716, 3904}, {3737, 21106}, {3762, 4088}, {3801, 20515}, {3893, 3900}, {3924, 8578}, {3954, 4024}, {4041, 6362}, {4142, 17496}, {4163, 6556}, {4458, 21222}, {4508, 4750}, {4530, 14393}, {4778, 14812}, {4895, 6366}, {4977, 21111}, {7004, 15914}, {10006, 14475}, {14825, 17451}, {18328, 18343}, {20954, 20955}, {21131, 21143}, {21134, 21141}
X(21133) lies on these lines: {6, 514}, {513, 12723}, {522, 17276}, {523, 20504}, {1880, 3669}, {2424, 7649}, {3239, 17267}, {4025, 4361}, {6545, 21131}, {20505, 21121}, {20507, 21112}, {21104, 21117}
X(21134) lies on these lines: {58, 514}, {523, 1834}, {810, 2658}, {1459, 7100}, {3695, 4064}, {4025, 17206}, {4079, 21799}, {7649, 8747}, {20504, 21124}, {21132, 21141}
X(21135) lies on these lines: {86, 514}, {1459, 21110}, {4024, 17390}, {11125, 21136}, {21103, 21113}
X(21136) lies on these lines: {514, 21205}, {3122, 20512}, {11125, 21135}, {16892, 21102}
X(21137) lies on these lines:
X(21138) lies on these lines:
X(21138) = isotomic conjugate of X(5383)
X(21138) = complement of X(33946)
X(21139) lies on these lines:
X(21140) lies on these lines:
X(21141) lies on these lines:
X(21142) lies on these lines:
X(21143) lies on these lines:
X(21143) = isotomic conjugate of isogonal conjugate of X(3249)
X(21144) lies on these lines:
X(21145) lies on these lines:
X(21146) lies on these lines:
X(21147) lies on the cubic K619 and these lines: {1, 4}, {3, 227}, {6, 8898}, {7, 17016}, {8, 1943}, {10, 1038}, {12, 975}, {40, 109}, {46, 603}, {56, 998}, {57, 961}, {63, 12089}, {65, 222}, {72, 9370}, {77, 1441}, {78, 4551}, {145, 4318}, {175, 9789}, {221, 517}, {304, 664}, {341, 14594}, {355, 1060}, {478, 1766}, {519, 4347}, {610, 2331}, {612, 9578}, {614, 1420}, {651, 3869}, {912, 19471}, {958, 1214}, {971, 1854}, {982, 9363}, {990, 7354}, {1035, 3428}, {1040, 4297}, {1062, 18481}, {1103, 6282}, {1104, 1617}, {1125, 19372}, {1319, 8283}, {1393, 3338}, {1398, 8192}, {1419, 2263}, {1422, 9623}, {1425, 16980}, {1456, 3057}, {1458, 3924}, {1610, 1763}, {1708, 5247}, {1722, 3911}, {1880, 2286}, {1935, 12514}, {2000, 5086}, {2807, 7355}, {2975, 17080}, {3600, 5262}, {3660, 17054}, {3680, 9372}, {3751, 15556}, {3872, 4968}, {3920, 18624}, {4308, 7191}, {4351, 10573}, {4642, 9316}, {5252, 6357}, {5484, 17086}, {5725, 15844}, {5887, 8757}, {6180, 12709}, {6796, 11700}, {7004, 10085}, {7078, 14110}, {7971, 10703}, {9817, 19925}, {11109, 20220}, {12114, 17102}, {18447, 18525}, {18596, 20613}
X(21147) = X(75)-Ceva conjugate of X(57)
X(21147) = X(197)-cross conjugate of X(1766)
X(21147) = crosspoint of X(i) and X(j) for these (i,j): {75, 20928}, {664, 7128}
X(21147) = X(i)-beth conjugate of X(j) for these (i,j): {1, 1406}, {100, 78}
X(21147) = X(i)-isoconjugate of X(j) for these (i,j): {8, 3435}, {55, 8048}, {2968, 15385}
X(21147) = cevapoint of X(i) and X(j) for these (i,j): {73, 12089}, {197, 478}
X(21147) = barycentric product X(i)*X(j) for these {i,j}: {7, 1766}, {56, 20928}, {57, 3436}, {63, 14257}, {75, 478}, {85, 197}, {123, 7128}, {205, 6063}, {226, 16049}, {304, 17408}, {664, 6588}
X(21147) = barycentric quotient X(i)/X(j) for these {i,j}: {57, 8048}, {197, 9}, {205, 55}, {478, 1}, {604, 3435}, {1766, 8}, {3436, 312}, {6588, 522}, {14257, 92}, {16049, 333}, {17408, 19}, {20928, 3596}
X(21147) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 223, 10571), (1, 1745, 6261), (1, 5691, 33), (8, 4296, 8270), (40, 1394, 109), (227, 1455, 3), (944, 1870, 1), (958, 15832, 1214), (1254, 1468, 57)
X(21148) lies on these lines: {1, 2138}, {6, 1854}, {19, 614}, {42, 3195}, {204, 4319}, {346, 1783}, {604, 608}, {857, 18683}, {1880, 2207}, {4329, 17903}, {8750, 12329}
X(21148) = isogonal conjugate of isotomic conjugate of X(17903)
X(21148) = X(i)-Ceva conjugate of X(j) for these (i,j): {1, 25}, {17903, 3556}
X(21148) = crosspoint of X(1) and X(1763)
X(21148) = crosssum of X(1) and X(7097)
X(21148) = X(112)-beth conjugate of X(478)
X(21148) = X(i)-isoconjugate of X(j) for these (i,j): {63, 7219}, {69, 7097}, {304, 7169}
X(21148) = barycentric product X(i)*X(j) for these {i,j}: {4, 3556}, {6, 17903}, {19, 1763}, {25, 4329}, {1039, 8900}, {1973, 20914}
X(21148) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 7219}, {1763, 304}, {1973, 7097}, {1974, 7169}, {3556, 69}, {4329, 305}, {17903, 76}
X(21149) lies on these lines: (none)
X(21150) lies on these lines: {55, 1149}, {220, 2183}, {513, 956}, {517, 997}, {2099, 3938}, {3478, 16610}
X(21151) lies on these lines: {2, 971}, {3, 7}, {4, 142}, {9, 631}, {20, 5805}, {24, 7717}, {40, 5542}, {84, 16845}, {104, 10427}, {140, 5779}, {144, 3523}, {165, 553}, {226, 10857}, {376, 516}, {390, 1385}, {405, 12246}, {443, 10884}, {517, 11038}, {518, 5657}, {527, 3524}, {549, 5843}, {572, 5819}, {944, 2550}, {946, 2951}, {962, 20330}, {990, 4648}, {991, 4000}, {1001, 6906}, {1006, 2096}, {1056, 4321}, {1058, 4326}, {1125, 9841}, {1156, 6713}, {1445, 6988}, {1483, 12630}, {1490, 17582}, {1788, 18412}, {2346, 11248}, {3059, 12675}, {3062, 3624}, {3085, 8581}, {3086, 14100}, {3090, 20195}, {3146, 18482}, {3243, 12245}, {3254, 13199}, {3332, 4675}, {3358, 6857}, {3428, 8255}, {3474, 15931}, {3485, 4312}, {3488, 6916}, {3525, 6666}, {3528, 5735}, {3826, 5818}, {3911, 10398}, {3928, 5850}, {4208, 5787}, {4295, 8273}, {4512, 14646}, {4644, 13329}, {5085, 5845}, {5129, 6259}, {5218, 15298}, {5223, 6684}, {5698, 6875}, {5714, 6865}, {5728, 6908}, {5731, 11112}, {5745, 5785}, {5784, 6889}, {5809, 6907}, {5832, 6955}, {5853, 7967}, {5880, 6934}, {6223, 11108}, {6244, 10578}, {6260, 17559}, {6361, 11495}, {6825, 10394}, {6880, 8257}, {6926, 8232}, {6948, 13151}, {6989, 12669}, {7288, 15299}, {7580, 9776}, {7676, 10267}, {7677, 10269}, {8129, 8389}, {8130, 8388}, {8226, 10430}, {8236, 10246}, {8728, 9799}, {10785, 17668}, {11025, 13373}, {12680, 19855}, {13159, 16113}, {15587, 19843}, {15717, 20059}
X(21151) = reflection of X(i) in X(j) for these {i,j}: {5817, 2}, {8236, 10246}
X(21151) = anticomplement of X(38108)
X(21151) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 7, 5759), (140, 5779, 18230), (142, 5732, 4), (6916, 18443, 3488)
See Le Viet An and César Lozada, Hyacinthos 28052.
X(21152) lies on the these lines: {3, 6}, {804, 11620}
X(21152) = 1st-Lemoine circle-inverse of X(2674)
X(21152) = center of circle {{X(5),X(115),PU(1)}}
Gibert-Moses Centroids: X(21153)-X(21168)
Suppose that P = p : q : r (barycentrics) is a point in the plane of a triangle ABC, not on one of the sidelines BC, CA, AB. Let pK(K, P) denote the pivotal isocubic with pole K and pivot P (see Bernard Gibert's Notations.
The cubic pK(K,P) intersects the circumcircle in A, B, C and three other points, Q1, Q2, Q3. The centroid of {Q1, Q2, Q3} is the point, here named the P-Gibert-Moses centroid, given by the combo G(P) = 2*X(3) + P and
G(P) = (b2 + c2 - a2)(3a4 + b4 + c4 - 4 a2 b2 - 4 a2 c2 - 2 b2 c2)p - 2 a2 (q + r) : :
These centroids and formulas were contributed by Peter Moses, August 20, 2018.
X(21153) lies on these lines: {1, 1170}, {2, 165}, {3, 9}, {4, 6666}, {7, 3523}, {20, 18230}, {35, 4326}, {36, 4321}, {40, 1001}, {46, 12560}, {56, 15837}, {57, 954}, {63, 10857}, {78, 5223}, {104, 6594}, {140, 5805}, {142, 631}, {144, 4652}, {200, 15931}, {376, 5817}, {380, 5132}, {390, 1210}, {411, 2951}, {480, 8273}, {518, 3576}, {527, 3524}, {549, 5762}, {990, 3731}, {991, 1743}, {1006, 6282}, {1385, 3243}, {1621, 7994}, {1656, 18482}, {1698, 6836}, {1708, 10383}, {1750, 3305}, {1754, 17022}, {2550, 5705}, {2801, 15015}, {3085, 12573}, {3149, 11372}, {3174, 10902}, {3218, 11407}, {3254, 6713}, {3361, 5542}, {3586, 6992}, {3587, 6883}, {3601, 5728}, {3612, 18412}, {3683, 10860}, {3826, 6831}, {3876, 12669}, {3928, 11227}, {3929, 10167}, {4292, 8232}, {4297, 5234}, {4304, 5809}, {4423, 7964}, {5204, 8581}, {5217, 14100}, {5259, 12651}, {5302, 10864}, {5584, 16410}, {5657, 5853}, {5686, 5731}, {5698, 6988}, {5715, 6989}, {5766, 8732}, {5833, 6926}, {5843, 12100}, {6172, 15692}, {6600, 6765}, {6734, 9588}, {6895, 7989}, {7308, 7580}, {7675, 10398}, {10856, 19649}, {10861, 13587}, {12652, 15485}, {14793, 15518}
X(21153) = midpoint of X(i) and X(j) for these {i,j}: {376, 5817}, {5686, 5731}
X(21153) = X(9)-Gibert-Moses centroid; see the preamble just before X(21153); the cubic is K351
X(21153) = crossdifference of every pair of points on line {6129, 21127}
X(21153) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 9, 5732), (35, 15299, 4326), (36, 15298, 4321), (140, 5805, 20195), (142, 5759, 5735), (631, 5759, 142), (3305, 7411, 1750), (6684, 6865, 5705), (11495, 15254, 11372)
X(21154) lies on these lines: {2, 2829}, {3, 11}, {4, 6667}, {40, 1387}, {56, 6961}, {72, 15528}, {80, 7987}, {100, 3523}, {104, 631}, {119, 140}, {149, 15717}, {153, 10303}, {165, 16173}, {371, 13977}, {372, 13913}, {392, 2800}, {442, 17009}, {517, 5298}, {528, 3524}, {549, 952}, {944, 3036}, {1001, 12775}, {1006, 18861}, {1071, 18254}, {1125, 1537}, {1145, 6684}, {1317, 1385}, {1484, 10993}, {1532, 6681}, {2077, 15325}, {2478, 12761}, {2646, 12832}, {2771, 11227}, {2802, 10164}, {3090, 10728}, {3333, 10075}, {3522, 10724}, {3525, 12248}, {3526, 10742}, {3530, 6154}, {3816, 6950}, {4297, 6702}, {4861, 18802}, {4995, 10246}, {4996, 6986}, {4999, 6940}, {5010, 5533}, {5044, 12665}, {5085, 5848}, {5204, 6891}, {5432, 10269}, {5450, 13747}, {5587, 17564}, {5657, 5854}, {5842, 13587}, {5851, 21151}, {6326, 8726}, {6691, 6906}, {6827, 13273}, {6842, 7294}, {6850, 12764}, {6882, 15326}, {6921, 12114}, {6922, 7280}, {6958, 7354}, {6978, 12943}, {7288, 10310}, {9540, 19081}, {9615, 19077}, {9940, 11570}, {10265, 10609}, {10299, 13199}, {10707, 15692}, {10711, 15702}, {10778, 15051}, {11698, 14869}, {11729, 12515}, {12019, 12119}, {12619, 13624}, {12736, 14110}, {12737, 13996}, {12739, 18443}, {12773, 15720}, {13935, 19082}, {17566, 18242}
X(21154) = midpoint of X(i) and X(j) for these {i,j}: {165, 16173}, {11219, 15015}
X(21154) = X(11)-Gibert-Moses centroid; see the preamble just before X(21153)
X(21154) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 499, 11826), (3, 5433, 15908), (3, 6713, 11), (104, 631, 3035), (549, 3576, 21155), (5204, 6891, 11827), (6684, 11715, 1145)
X(21155) lies on these lines: {2, 5842}, {3, 12}, {4, 6668}, {35, 15908}, {55, 6954}, {119, 7508}, {140, 3925}, {517, 4995}, {529, 3524}, {549, 952}, {631, 1376}, {758, 10164}, {1001, 6880}, {1006, 3035}, {1329, 6875}, {2829, 17549}, {2975, 3523}, {3428, 5218}, {3614, 7491}, {3753, 10165}, {4189, 18242}, {4423, 6970}, {5010, 6907}, {5085, 5849}, {5217, 6825}, {5298, 10246}, {5326, 6882}, {5433, 10267}, {5440, 6684}, {5535, 5719}, {5657, 5855}, {5852, 21151}, {6253, 6862}, {6256, 19535}, {6284, 6863}, {6690, 6905}, {6796, 7483}, {6842, 15338}, {6910, 11500}, {6961, 8273}, {6962, 11496}, {6988, 10310}, {10175, 15670}, {15717, 20060}
X(21155) = X(12)-Gibert-Moses centroid; see the preamble just before X(21153)
X(21155) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 498, 11827), (549, 3576, 21154), (631, 11491, 4999), (5217, 6825, 11826)
X(21156) lies on these lines: {2, 9749}, {3, 13}, {4, 6669}, {14, 6036}, {15, 230}, {16, 9112}, {20, 5478}, {35, 10078}, {36, 10062}, {40, 11705}, {62, 9606}, {98, 619}, {115, 5474}, {140, 5617}, {182, 16242}, {371, 19073}, {372, 19074}, {376, 5459}, {396, 14538}, {511, 16962}, {530, 3524}, {542, 5054}, {549, 5463}, {550, 20252}, {616, 3523}, {617, 5982}, {618, 631}, {1080, 6671}, {1385, 7975}, {1587, 13917}, {1588, 13982}, {2794, 11297}, {3412, 5864}, {3515, 12142}, {5050, 16963}, {5171, 12205}, {5204, 18974}, {5217, 13076}, {5432, 12942}, {5433, 12952}, {5464, 6055}, {5472, 11481}, {5479, 14061}, {5613, 12042}, {5868, 11309}, {6108, 14539}, {6684, 12781}, {6774, 6777}, {6779, 13349}, {7987, 9901}, {8980, 19076}, {9114, 11632}, {9751, 9762}, {10267, 13107}, {10269, 13105}, {11710, 12780}, {13967, 19075}, {14136, 14540}, {14541, 16772}, {16960, 20425}
X(21156) = X(13)-Gibert-Moses centroid; see the preamble just before X(21153)
X(21156) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 13, 5473), (3, 6771, 13), (631, 6770, 618), (5054, 5085, 21157), (5340, 10611, 13), (13103, 20415, 13)
X(21157) lies on these lines: {2, 9750}, {3, 14}, {4, 6670}, {13, 6036}, {15, 9113}, {16, 230}, {20, 5479}, {35, 10077}, {36, 10061}, {40, 11706}, {61, 9606}, {98, 618}, {115, 5473}, {140, 5613}, {182, 16241}, {371, 19075}, {372, 19076}, {376, 5460}, {383, 6672}, {395, 14539}, {511, 16963}, {531, 3524}, {542, 5054}, {549, 5464}, {550, 20253}, {616, 5983}, {617, 3523}, {619, 631}, {1385, 7974}, {1587, 13916}, {1588, 13981}, {2794, 11298}, {3411, 5865}, {3515, 12141}, {5050, 16962}, {5171, 12204}, {5204, 18975}, {5217, 13075}, {5432, 12941}, {5433, 12951}, {5463, 6055}, {5471, 11480}, {5478, 14061}, {5617, 12042}, {5869, 11310}, {6109, 14538}, {6684, 12780}, {6771, 6778}, {6780, 13350}, {7987, 9900}, {8980, 19074}, {9116, 11632}, {9751, 9760}, {10267, 13106}, {10269, 13104}, {11710, 12781}, {13967, 19073}, {14137, 14541}, {14540, 16773}, {16961, 20426}
X(21157) = X(14)-Gibert-Moses centroid; see the preamble just before X(21153)
X(21157) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 14, 5474), (3, 6774, 14), (631, 6773, 619), (5054, 5085, 21156), (5339, 10612, 14), (13102, 20416, 14)
X(21158) lies on these lines: {2, 16652}, {3, 6}, {4, 6671}, {20, 7684}, {40, 11707}, {140, 20428}, {373, 3132}, {396, 5473}, {531, 3524}, {621, 3523}, {623, 631}, {3564, 5463}, {5474, 6109}, {6104, 16461}, {9126, 9162}, {11146, 14170}
X(21158) = X(15)-Gibert-Moses centroid; see the preamble just before X(21153)
X(21158) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 15, 14538), (3, 182, 10646), (3, 5085, 21159), (3, 5238, 14541), (3, 11480, 14539), (3, 13350, 15), (187, 11480, 15)
X(21159) lies on these lines: {2, 16653}, {3, 6}, {4, 6672}, {20, 7685}, {40, 11708}, {140, 20429}, {373, 3131}, {395, 5474}, {530, 3524}, {622, 3523}, {624, 631}, {3564, 5464}, {5473, 6108}, {6105, 16462}, {9126, 9163}, {11145, 14169}
X(21159) = X(16)-Gibert-Moses centroid; see the preamble just before X(21153)
X(21159) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 16, 14539), (3, 182, 10645), (3, 5237, 14540), (3, 5085, 21158), (3, 11481, 14538), (3, 13349, 16), (187, 11481, 16)
X(21160) lies on these lines: {2, 165}, {3, 19}, {35, 4319}, {46, 2263}, {515, 15940}, {534, 3524}, {631, 18589}, {990, 1781}, {1486, 10310}, {1844, 9643}, {2939, 10884}, {3523, 4329}, {3668, 15803}, {3827, 5085}, {4219, 9816}, {5338, 7580}, {5732, 18594}, {6803, 11677}, {7535