PART 1: | Introduction and Centers X(1) - X(1000) | PART 2: | Centers X(1001) - X(3000) | PART 3: | Centers X(3001) - X(5000) |
PART 4: | Centers X(5001) - X(7000) | PART 5: | Centers X(7001) - X(10000) | PART 6: | Centers X(10001) - X(12000) |
PART 7: | Centers X(12001) - X(14000) | PART 8: | Centers X(14001) - X(16000) | PART 9: | Centers X(16001) - X(18000) |
PART 10: | Centers X(18001) - X(20000) | PART 11: | Centers X(20001) - X(22000) | PART 12: | Centers X(22001) - X(24000) |
PART 13: | Centers X(24001) - X(26000) | PART 14: | Centers X(26001) - X(28000) | PART 15: | Centers X(28001) - X(30000) |
PART 16: | Centers X(30001) - X(32000) | PART 17: | Centers X(32001) - X(34000) | PART 18: | Centers X(34001) - X(36000) |
PART 19: | Centers X(36001) - X(38000) | PART 20: | Centers X(38001) - X(40000) | PART 21: | Centers X(40001) - X(42000) |
PART 22: | Centers X(42001) - X(44000) | PART 23: | Centers X(44001) - X(46000) | PART 24: | Centers X(46001) - X(48000) |
PART 25: | Centers X(48001) - X(50000) | PART 26: | Centers X(50001) - X(52000) | PART 27: | Centers X(52001) - X(54000) |
PART 28: | Centers X(54001) - X(56000) | PART 29: | Centers X(56001) - X(58000) | PART 30: | Centers X(58001) - X(60000) |
PART 31: | Centers X(60001) - X(62000) | PART 32: | Centers X(62001) - X(64000) | PART 33: | Centers X(64001) - X(66000) |
PART 34: | Centers X(66001) - X(68000) | PART 35: | Centers X(68001) - X(70000) | PART 36: | Centers X(70001) - X(72000) |
X(66001) lies on these lines: {7, 80}, {104, 7133}, {1387, 30346}, {1768, 30400}, {2771, 63284}, {2800, 52808}, {5083, 30341}, {6203, 6326}, {6224, 52813}, {6264, 30319}, {6265, 30385}, {9946, 30276}, {9952, 30288}, {10265, 30380}, {11571, 30425}, {12515, 30296}, {12611, 30306}, {12619, 30313}, {12691, 30324}, {12758, 30333}, {12767, 30354}, {12770, 30360}, {12771, 30368}, {12772, 30418}, {12774, 30406}, {17638, 30375}, {18254, 30412}, {18460, 35774}, {49241, 52810}
X(66001) = reflection of X(i) in X(j) for these {i,j}: {66000, 11570}
X(66001) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2801, 11570, 66000}
X(66002) lies on these lines: {1, 66024}, {2, 12665}, {7, 80}, {11, 12528}, {57, 66061}, {72, 38693}, {100, 1071}, {104, 912}, {145, 2800}, {149, 63962}, {518, 64189}, {758, 64145}, {942, 17661}, {952, 14923}, {971, 10724}, {1320, 6001}, {1484, 38038}, {1537, 3873}, {1768, 3811}, {1858, 12740}, {2771, 7984}, {2802, 15071}, {2829, 3868}, {2950, 3870}, {3045, 47371}, {3218, 64188}, {3681, 64193}, {3869, 64191}, {3874, 34789}, {3876, 21154}, {3889, 64192}, {4996, 18446}, {5083, 14986}, {5603, 66044}, {5693, 11715}, {5731, 64139}, {5777, 31272}, {5840, 64358}, {5856, 12669}, {5884, 12751}, {5904, 46684}, {5927, 58587}, {6326, 35262}, {7080, 46685}, {10202, 64008}, {10711, 66047}, {10728, 24474}, {10742, 24475}, {11219, 47320}, {11220, 24466}, {12515, 62236}, {12531, 17654}, {13243, 18238}, {13278, 65998}, {13369, 34474}, {14266, 52409}, {14872, 59415}, {16173, 31803}, {16174, 61705}, {17100, 63399}, {18444, 51506}, {18861, 37700}, {34772, 48695}, {36845, 66060}, {40263, 59391}, {40266, 64742}, {64056, 66019}, {66021, 66045}
X(66002) = reflection of X(i) in X(j) for these {i,j}: {100, 1071}, {153, 11570}, {3869, 64191}, {5693, 11715}, {5904, 46684}, {10728, 24474}, {10742, 24475}, {12528, 11}, {12531, 17654}, {12532, 104}, {12665, 15528}, {12751, 5884}, {17661, 942}, {34789, 3874}, {40266, 64742}, {64056, 66019}, {66024, 1}
X(66002) = anticomplement of X(12665)
X(66002) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {104, 912, 12532}, {2801, 11570, 153}, {10202, 66049, 64008}, {11570, 12736, 18419}
X(66003) lies on these lines: {1, 6831}, {3, 51111}, {65, 104}, {79, 2829}, {355, 64274}, {515, 11263}, {517, 64268}, {523, 37628}, {546, 6261}, {944, 64345}, {997, 64294}, {999, 64284}, {1385, 64269}, {1476, 58595}, {1537, 65995}, {2646, 64173}, {2800, 47319}, {3244, 12616}, {3576, 64276}, {4511, 64270}, {4861, 14110}, {5450, 64044}, {5880, 31657}, {5884, 12114}, {5886, 64273}, {6001, 17637}, {6256, 64271}, {6264, 66006}, {6265, 63963}, {6583, 48694}, {6915, 37837}, {7354, 7702}, {10222, 66009}, {11500, 30147}, {11715, 66046}, {12650, 41865}, {12672, 66013}, {13375, 22766}, {17605, 21740}, {18493, 40257}, {22775, 31870}, {26066, 64275}, {35979, 64280}, {36975, 37468}, {39542, 64119}, {50371, 64201}, {64191, 65994}
X(66003) = midpoint of X(i) and X(j) for these {i,j}: {1, 64281}
X(66003) = reflection of X(i) in X(j) for these {i,j}: {355, 64274}, {6256, 64271}, {11500, 64286}, {64265, 63980}, {64266, 64293}, {64269, 1385}, {64298, 37837}
X(66004) lies on these lines: {11, 64382}, {21, 2800}, {58, 1768}, {81, 104}, {100, 64376}, {119, 5235}, {153, 333}, {952, 64720}, {1317, 64414}, {3193, 48694}, {4184, 12332}, {4221, 12515}, {4225, 22775}, {4653, 13253}, {5333, 6713}, {6224, 7415}, {9913, 64395}, {10058, 64420}, {10074, 64421}, {10698, 64415}, {10711, 64424}, {10742, 64405}, {11715, 64377}, {12138, 64378}, {12199, 64381}, {12248, 64384}, {12462, 64396}, {12463, 64397}, {12499, 64398}, {12751, 64401}, {12752, 64402}, {12753, 64403}, {12754, 64404}, {12761, 64406}, {12762, 64407}, {12763, 64408}, {12764, 64409}, {12767, 52680}, {12773, 64419}, {12775, 64422}, {12776, 64423}, {13913, 64417}, {13977, 64418}, {16704, 64009}, {16948, 57736}, {17551, 38133}, {17553, 50908}, {19081, 64385}, {19082, 64386}, {22799, 64399}, {35856, 64412}, {35857, 64413}, {37402, 46684}, {38602, 64393}, {38756, 64383}, {48464, 64379}, {48465, 64380}, {48684, 64387}, {48685, 64388}, {48686, 64389}, {48687, 64390}, {48692, 64391}, {48693, 64392}, {48695, 64394}, {48700, 64410}, {48701, 64411}, {64008, 64425}
X(66004) = reflection of X(i) in X(j) for these {i,j}: {66005, 64720}
X(66004) = X(104) of 2nd anti-Pavlov triangle
X(66004) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {952, 64720, 66005}
X(66005) lies on circumconic {{A, B, C, X(291), X(13143)}} and on these lines: {11, 5235}, {21, 2802}, {42, 81}, {58, 5541}, {80, 64401}, {104, 64376}, {119, 64400}, {149, 333}, {214, 64377}, {528, 4921}, {952, 64720}, {1043, 64743}, {1317, 64382}, {1320, 64415}, {1862, 64378}, {3035, 5333}, {3193, 48713}, {4184, 13205}, {4225, 22560}, {4653, 12653}, {4658, 15015}, {4720, 64056}, {6174, 42025}, {6224, 56018}, {9024, 41610}, {10087, 64420}, {10090, 64421}, {10707, 64424}, {10738, 64405}, {12331, 64419}, {13194, 64381}, {13199, 64384}, {13222, 64395}, {13228, 64396}, {13230, 64397}, {13235, 64398}, {13268, 64402}, {13269, 64403}, {13270, 64404}, {13271, 64406}, {13272, 64407}, {13273, 64408}, {13274, 64409}, {13278, 64422}, {13279, 64423}, {13922, 64417}, {13991, 64418}, {16173, 17557}, {16704, 20095}, {17553, 50891}, {19112, 64385}, {19113, 64386}, {22938, 64399}, {25438, 64394}, {31272, 64425}, {33814, 64393}, {35882, 64412}, {35883, 64413}, {38325, 53412}, {38484, 63917}, {48533, 64379}, {48534, 64380}, {48680, 64383}, {48703, 64387}, {48704, 64388}, {48705, 64389}, {48706, 64390}, {48711, 64391}, {48712, 64392}, {48714, 64410}, {48715, 64411}
X(66005) = reflection of X(i) in X(j) for these {i,j}: {66004, 64720}
X(66005) = X(100) of 2nd anti-Pavlov triangle
X(66005) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {952, 64720, 66004}
X(66006) lies on these lines: {1, 3925}, {9, 943}, {40, 3868}, {55, 191}, {65, 5541}, {78, 3646}, {79, 13146}, {149, 946}, {952, 65990}, {1058, 22836}, {1490, 5842}, {1855, 6198}, {1998, 31423}, {2136, 11529}, {2894, 5249}, {2949, 10902}, {2950, 65998}, {2951, 5762}, {3059, 44783}, {3174, 5880}, {3189, 3487}, {3333, 61033}, {3555, 7688}, {3970, 16550}, {4511, 40270}, {4654, 7702}, {5044, 5259}, {5528, 30424}, {5531, 65992}, {5905, 20066}, {6154, 65988}, {6264, 66003}, {7957, 41853}, {7982, 64316}, {13144, 64766}, {16558, 61763}, {31938, 63269}, {37625, 64276}, {37700, 40273}, {40263, 66020}, {41864, 52050}, {56176, 66009}, {64199, 66046}
X(66006) = reflection of X(i) in X(j) for these {i,j}: {64369, 943}
X(66006) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2894, 2949}, {5249, 9}, {63146, 40}
X(66007) lies on these lines: {7, 952}, {80, 38149}, {100, 329}, {104, 10427}, {119, 1156}, {149, 5805}, {153, 971}, {390, 6265}, {516, 5528}, {518, 66008}, {527, 48363}, {528, 10698}, {1484, 38107}, {2550, 2801}, {2800, 35514}, {3254, 59386}, {3488, 18801}, {4312, 5531}, {5083, 64155}, {5218, 5660}, {5220, 5657}, {5542, 6264}, {5728, 45043}, {5732, 12248}, {5762, 12331}, {5779, 11698}, {5856, 38665}, {6594, 21168}, {7972, 60924}, {7993, 59372}, {8236, 19907}, {9803, 59412}, {10265, 38052}, {10707, 38073}, {10738, 59385}, {10742, 36991}, {11038, 12737}, {11372, 21635}, {11729, 53055}, {12619, 40333}, {12730, 60926}, {12773, 31657}, {12775, 42843}, {15017, 51768}, {16116, 17857}, {17768, 66011}, {18230, 38752}, {19914, 59413}, {21630, 38036}, {33814, 59418}, {34122, 60959}, {38108, 66045}, {38137, 61601}, {38152, 66065}, {38755, 60901}, {57298, 60996}, {59381, 61562}, {61595, 66063}, {64008, 64738}
X(66007) = midpoint of X(i) and X(j) for these {i,j}: {4312, 5531}, {9809, 64696}
X(66007) = reflection of X(i) in X(j) for these {i,j}: {104, 10427}, {149, 5805}, {390, 6265}, {1156, 119}, {5759, 100}, {5779, 11698}, {6264, 5542}, {11372, 21635}, {12247, 2550}, {12248, 5732}, {12773, 31657}, {13199, 5528}, {36991, 10742}, {64264, 10265}, {66023, 37725}
X(66007) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {104, 10427, 21151}, {119, 1156, 5817}, {2550, 2801, 12247}, {5851, 37725, 66023}, {38052, 64264, 10265}
X(66008) lies on these lines: {2, 12737}, {3, 8}, {4, 2802}, {9, 64278}, {10, 6264}, {11, 5818}, {40, 12248}, {80, 497}, {119, 1320}, {145, 6265}, {149, 355}, {153, 517}, {214, 7967}, {376, 64145}, {388, 12749}, {392, 37162}, {515, 2950}, {518, 66007}, {519, 1512}, {528, 16112}, {631, 11715}, {758, 66017}, {938, 12735}, {946, 12653}, {962, 10742}, {1056, 12736}, {1317, 18391}, {1387, 31479}, {1482, 11698}, {1484, 5790}, {1537, 10711}, {1656, 32558}, {1768, 11362}, {1788, 10074}, {2096, 18802}, {2800, 5904}, {2801, 35514}, {2829, 6361}, {3086, 20586}, {3090, 16173}, {3241, 19907}, {3254, 38149}, {3421, 64139}, {3427, 56119}, {3476, 10090}, {3486, 10087}, {3487, 10956}, {3524, 50841}, {3545, 16174}, {3616, 38752}, {3617, 12619}, {3621, 12738}, {3632, 5531}, {3679, 7993}, {3873, 66047}, {3911, 41684}, {3913, 54134}, {4295, 12763}, {4677, 13146}, {5067, 32557}, {5176, 41389}, {5252, 17636}, {5533, 54361}, {5559, 20117}, {5587, 21630}, {5658, 64317}, {5660, 8166}, {5844, 48667}, {5853, 66010}, {5854, 10698}, {5881, 7701}, {5882, 15015}, {5886, 66045}, {6001, 44784}, {6713, 64141}, {6829, 63270}, {6842, 64201}, {6905, 22560}, {6906, 13205}, {6920, 45081}, {6941, 10912}, {6949, 22837}, {7972, 10573}, {7982, 21635}, {9778, 38753}, {9780, 57298}, {9802, 10738}, {9812, 22799}, {9897, 10572}, {9956, 66063}, {10057, 10629}, {10246, 61562}, {10595, 64137}, {10707, 38074}, {10724, 18499}, {10805, 64745}, {10806, 15863}, {11256, 34625}, {11500, 36972}, {11929, 64138}, {12115, 39776}, {12515, 59417}, {12747, 37705}, {12764, 30305}, {13253, 28234}, {13464, 15017}, {13607, 44848}, {16116, 25413}, {16202, 63917}, {17613, 28204}, {17660, 41687}, {18357, 51517}, {18446, 66062}, {19877, 34126}, {20075, 20085}, {22791, 38755}, {22935, 37727}, {24864, 32486}, {25415, 66012}, {28174, 38756}, {31162, 50906}, {31190, 33812}, {33337, 61296}, {33598, 64116}, {33709, 54447}, {33898, 66060}, {34611, 50798}, {34631, 50908}, {37002, 63133}, {37726, 59415}, {37736, 64163}, {37740, 41541}, {38138, 61601}, {38156, 66065}, {38762, 54445}, {39898, 66030}, {41701, 54366}, {44669, 66011}, {50810, 64189}, {50818, 64011}, {58659, 64734}, {63143, 64129}, {64322, 65948}
X(66008) = midpoint of X(i) and X(j) for these {i,j}: {153, 64743}, {3632, 5531}
X(66008) = reflection of X(i) in X(j) for these {i,j}: {4, 12751}, {8, 64140}, {104, 1145}, {145, 6265}, {149, 355}, {944, 100}, {962, 10742}, {1320, 119}, {1482, 11698}, {1768, 11362}, {6224, 12331}, {6264, 10}, {6361, 64136}, {7982, 21635}, {7993, 10265}, {9802, 10738}, {9803, 19914}, {9897, 47745}, {10698, 37725}, {12245, 64056}, {12247, 8}, {12248, 40}, {12653, 946}, {12747, 37705}, {12773, 5690}, {13199, 5541}, {26726, 25485}, {31162, 50906}, {34627, 50907}, {34631, 50908}, {37727, 22935}, {39898, 66030}, {49176, 15863}, {50810, 64746}, {50818, 64011}, {61296, 33337}, {64009, 12515}, {64136, 13996}, {66060, 33898}
X(66008) = anticomplement of X(12737)
X(66008) = X(1539) of 2nd-Conway triangle
X(66008) = X(6264) of outer-Garcia triangle
X(66008) = pole of line {2827, 39534} with respect to the polar circle
X(66008) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {153, 21290, 64743}
X(66008) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(63162)}}, {{A, B, C, X(517), X(2932)}}, {{A, B, C, X(1000), X(56757)}}, {{A, B, C, X(1809), X(12641)}}, {{A, B, C, X(34234), X(64290)}}
X(66008) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 952, 12247}, {8, 9803, 19914}, {100, 952, 944}, {104, 1145, 5657}, {119, 1320, 5603}, {153, 64743, 517}, {355, 10284, 13729}, {528, 50907, 34627}, {952, 1145, 104}, {952, 12331, 6224}, {952, 19914, 9803}, {952, 5690, 12773}, {952, 64140, 8}, {2800, 64056, 12245}, {2802, 12751, 4}, {2829, 13996, 64136}, {2829, 64136, 6361}, {3679, 7993, 10265}, {5660, 26726, 25485}, {5854, 37725, 10698}, {38752, 64742, 3616}, {59417, 64009, 12515}
X(66009) lies on these lines: {1, 6}, {7, 7702}, {10, 61030}, {35, 60989}, {65, 528}, {79, 3254}, {142, 3841}, {354, 2886}, {390, 64043}, {497, 3873}, {516, 5884}, {527, 3874}, {912, 54370}, {942, 5880}, {946, 2801}, {971, 16127}, {1071, 5735}, {1210, 41570}, {1376, 1998}, {1445, 37579}, {1479, 61011}, {1818, 21346}, {1858, 11520}, {2078, 41539}, {2550, 5178}, {3035, 61660}, {3059, 3826}, {3338, 56583}, {3485, 3889}, {3678, 60986}, {3742, 5231}, {3811, 8257}, {3812, 64370}, {3868, 5698}, {3869, 47357}, {3870, 33925}, {3885, 7672}, {3892, 64110}, {3893, 41575}, {3894, 60905}, {3901, 50836}, {4654, 11235}, {5045, 28628}, {5083, 25558}, {5439, 41859}, {5536, 10167}, {5542, 11263}, {5686, 10587}, {5696, 6173}, {5705, 58634}, {5709, 11495}, {5732, 12704}, {5851, 66020}, {5852, 15007}, {5853, 30329}, {5887, 62860}, {5927, 41858}, {7675, 26357}, {8543, 63159}, {8545, 62861}, {8581, 41857}, {10198, 16216}, {10202, 64113}, {10222, 66003}, {10391, 54408}, {10527, 11025}, {10529, 11038}, {10569, 41866}, {10902, 65405}, {10943, 20330}, {11012, 65426}, {11020, 24477}, {11281, 17609}, {11510, 41712}, {12005, 43177}, {12109, 52359}, {12564, 24391}, {12669, 55109}, {12672, 65990}, {12675, 41854}, {12711, 41864}, {13369, 43178}, {14100, 16142}, {17660, 66065}, {17781, 49736}, {18406, 49176}, {18499, 52682}, {21617, 26481}, {21620, 31936}, {21746, 24476}, {24299, 52769}, {24386, 58626}, {24473, 28534}, {24475, 65998}, {26363, 58564}, {34195, 53055}, {34772, 64154}, {34784, 38057}, {37615, 54203}, {37787, 41538}, {38054, 58607}, {38150, 65466}, {41865, 58563}, {45230, 62837}, {56176, 66006}, {60968, 65129}, {62859, 66013}, {64155, 65994}, {64197, 64669}, {64264, 65992}
X(66009) = midpoint of X(i) and X(j) for these {i,j}: {2550, 30628}, {3868, 5698}, {5728, 15185}
X(66009) = reflection of X(i) in X(j) for these {i,j}: {72, 15254}, {142, 20116}, {1001, 5572}, {3059, 3826}, {5542, 61033}, {5784, 25557}, {5880, 942}, {25558, 5083}, {43177, 12005}, {43178, 13369}
X(66009) = X(5728) of anti-inner-Yff triangle
X(66009) = pole of line {55, 1004} with respect to the Feuerbach hyperbola
X(66009) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(2911)}}, {{A, B, C, X(79), X(5526)}}, {{A, B, C, X(220), X(43740)}}, {{A, B, C, X(3254), X(52405)}}
X(66009) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {72, 10177, 15254}, {354, 5784, 25557}, {518, 15254, 72}, {518, 5572, 1001}, {942, 15733, 5880}, {5696, 18398, 6173}, {5728, 15185, 518}, {11020, 24477, 58578}, {11025, 41228, 38053}
X(66010) lies on circumconic {{A, B, C, X(36101), X(64330)}} and on these lines: {9, 952}, {40, 5851}, {63, 100}, {80, 15298}, {84, 66056}, {104, 6594}, {119, 3254}, {149, 63970}, {153, 516}, {390, 9897}, {518, 6326}, {527, 48363}, {528, 11372}, {971, 2950}, {1001, 6264}, {1484, 38108}, {2800, 64319}, {2802, 43166}, {3243, 6265}, {3895, 37712}, {4321, 10090}, {4326, 10087}, {5686, 9803}, {5728, 37736}, {5731, 60912}, {5735, 5856}, {5805, 11698}, {5853, 66008}, {7972, 15299}, {8545, 20119}, {10265, 38057}, {10269, 22935}, {10698, 54159}, {10707, 38075}, {10738, 59389}, {10742, 52835}, {11715, 64154}, {12247, 24393}, {12248, 63413}, {12737, 38316}, {12738, 52026}, {12773, 31658}, {15296, 64278}, {15297, 61296}, {17660, 41712}, {17768, 66017}, {18482, 38755}, {19914, 59414}, {20095, 36991}, {20195, 38752}, {20400, 38205}, {21630, 38037}, {30500, 34894}, {37587, 41689}, {38122, 61562}, {38139, 61601}, {38159, 66065}, {38665, 64197}, {43175, 51082}, {59388, 61004}, {59418, 64009}
X(66010) = midpoint of X(i) and X(j) for these {i,j}: {5223, 5531}, {20095, 36991}, {38665, 66023}
X(66010) = reflection of X(i) in X(j) for these {i,j}: {84, 66056}, {104, 6594}, {149, 63970}, {3243, 6265}, {3254, 119}, {5528, 12331}, {5732, 100}, {5805, 11698}, {6264, 1001}, {12247, 24393}, {12248, 63413}, {12773, 31658}, {43166, 64765}, {52835, 10742}, {64197, 66023}
X(66010) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 2801, 5732}, {104, 6594, 21153}, {119, 3254, 38150}, {971, 12331, 5528}, {2802, 64765, 43166}, {5223, 5531, 2801}
X(66011) lies on these lines: {21, 952}, {30, 153}, {72, 74}, {79, 66012}, {104, 15931}, {119, 11604}, {149, 6841}, {191, 5531}, {758, 5535}, {1006, 9803}, {2475, 10942}, {2800, 64280}, {2950, 13146}, {3065, 41166}, {3871, 13743}, {5253, 12009}, {5426, 7993}, {5428, 12773}, {6264, 35016}, {6265, 6583}, {6830, 42843}, {6920, 62354}, {6940, 22935}, {6950, 64313}, {7701, 8715}, {10087, 46816}, {10122, 37736}, {10202, 39778}, {10308, 51897}, {10698, 54161}, {10738, 52269}, {10742, 52841}, {10915, 12751}, {11499, 14450}, {11698, 37230}, {12247, 21677}, {12248, 44238}, {13465, 32141}, {15676, 16202}, {17484, 18524}, {17660, 41697}, {17768, 66007}, {20095, 37433}, {21635, 49177}, {26878, 58692}, {28461, 50907}, {31254, 38752}, {33557, 51525}, {33593, 60782}, {33667, 41701}, {33857, 41541}, {33860, 47032}, {37718, 63288}, {44258, 48680}, {44669, 66008}, {46028, 51517}
X(66011) = midpoint of X(i) and X(j) for these {i,j}: {191, 5531}, {20095, 37433}
X(66011) = reflection of X(i) in X(j) for these {i,j}: {104, 35204}, {149, 6841}, {3651, 100}, {6264, 35016}, {10308, 51897}, {11604, 119}, {12247, 21677}, {12248, 44238}, {12773, 5428}, {33858, 22935}, {34195, 6265}, {37230, 11698}, {48680, 44258}, {49177, 21635}, {52841, 10742}
X(66011) = pole of line {22765, 51420} with respect to the Stammler hyperbola
X(66011) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 2771, 3651}, {104, 35204, 21161}
X(66012) lies on these lines: {1, 153}, {5, 13751}, {10, 11571}, {11, 5045}, {12, 2771}, {30, 41541}, {55, 16128}, {65, 11698}, {79, 66011}, {80, 226}, {100, 1770}, {119, 912}, {214, 535}, {484, 17484}, {495, 17638}, {498, 1768}, {499, 15017}, {651, 56417}, {938, 37718}, {946, 7972}, {952, 11011}, {1145, 44663}, {1155, 61562}, {1317, 12611}, {1387, 4870}, {1478, 6326}, {1479, 37736}, {1484, 17605}, {1519, 25485}, {1836, 12331}, {1837, 38755}, {2800, 10039}, {2801, 8068}, {2829, 33597}, {3035, 3916}, {3085, 9809}, {3241, 18393}, {3452, 64012}, {3584, 29007}, {3585, 34772}, {3612, 12248}, {3614, 12009}, {3649, 6797}, {3822, 47320}, {3925, 58659}, {4187, 58591}, {4299, 15015}, {5080, 39778}, {5083, 39692}, {5219, 66059}, {5249, 6702}, {5252, 48667}, {5270, 45764}, {5531, 9612}, {5541, 34619}, {5570, 58613}, {5660, 10090}, {6224, 31053}, {6260, 10087}, {6265, 12763}, {7354, 22935}, {7951, 10265}, {8232, 51768}, {9803, 10590}, {10052, 66018}, {10058, 63259}, {10523, 17661}, {10572, 10742}, {10698, 12608}, {10738, 41701}, {10827, 12247}, {10895, 62354}, {10956, 12758}, {11375, 12773}, {11551, 12736}, {11813, 33812}, {12609, 59415}, {12647, 13253}, {12738, 13273}, {12743, 22799}, {12750, 59391}, {12767, 31434}, {13405, 63281}, {13601, 37725}, {16173, 21620}, {17100, 59719}, {17636, 39542}, {18480, 33594}, {19925, 53616}, {20118, 61580}, {25415, 66008}, {31272, 51706}, {37707, 64762}, {37730, 61605}, {37731, 46816}, {39991, 61231}, {53537, 56416}, {56419, 63334}, {60988, 66045}, {60992, 66023}
X(66012) = midpoint of X(i) and X(j) for these {i,j}: {3585, 41689}
X(66012) = reflection of X(i) in X(j) for these {i,j}: {3916, 3035}
X(66012) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2990, 19302}, {3065, 36052}, {21739, 32655}
X(66012) = X(i)-Dao conjugate of X(j) for these {i, j}: {119, 3065}
X(66012) = intersection, other than A, B, C, of circumconics {{A, B, C, X(484), X(18838)}}, {{A, B, C, X(1737), X(39991)}}, {{A, B, C, X(17484), X(64115)}}
X(66012) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {80, 226, 33593}, {119, 11570, 1737}, {119, 12831, 11570}, {1317, 12611, 30384}, {6265, 12763, 45287}, {11570, 66021, 66014}
X(66013) lies on these lines: {1, 90}, {65, 5840}, {224, 22766}, {354, 10948}, {405, 14454}, {920, 14054}, {942, 7702}, {946, 5083}, {950, 5884}, {1071, 1479}, {1210, 41540}, {1737, 41559}, {1864, 10523}, {3870, 11508}, {5248, 18232}, {5719, 61559}, {5722, 41688}, {5728, 5880}, {8069, 11517}, {8071, 10391}, {9581, 41703}, {10073, 65994}, {10122, 11019}, {10175, 10395}, {10202, 41552}, {10394, 10629}, {10399, 56583}, {11507, 63437}, {11570, 65998}, {12672, 66003}, {12831, 40263}, {13369, 17437}, {13411, 58415}, {16465, 22836}, {17660, 65991}, {17700, 64341}, {30274, 41865}, {32760, 41538}, {33594, 33667}, {34772, 45393}, {37736, 66018}, {43740, 62864}, {53615, 65134}, {62859, 66009}
X(66013) = midpoint of X(i) and X(j) for these {i,j}: {90, 41685}
X(66013) = reflection of X(i) in X(j) for these {i,j}: {7702, 942}
X(66013) = pole of line {15313, 59973} with respect to the incircle
X(66013) = pole of line {3, 7702} with respect to the Feuerbach hyperbola
X(66013) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {90, 41685, 912}
X(66014) lies on these lines: {1, 18254}, {4, 80}, {78, 51506}, {90, 12775}, {100, 920}, {119, 912}, {498, 46694}, {499, 5083}, {519, 64139}, {942, 38182}, {1210, 8068}, {1420, 6326}, {1445, 2801}, {1770, 41560}, {3811, 45393}, {5533, 49627}, {5570, 17533}, {5840, 41538}, {6594, 35204}, {6702, 18389}, {10057, 10941}, {10072, 18412}, {10073, 12649}, {10087, 14740}, {10391, 58666}, {12532, 18391}, {12736, 31164}, {12758, 23340}, {13750, 34122}, {17660, 66051}, {35976, 54432}, {39776, 41684}, {41562, 46684}, {50195, 58659}, {63399, 64188}
X(66014) = midpoint of X(i) and X(j) for these {i,j}: {10073, 41686}
X(66014) = reflection of X(i) in X(j) for these {i,j}: {11570, 12832}, {12758, 64042}
X(66014) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4564, 61239}
X(66014) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(11570)}}, {{A, B, C, X(80), X(912)}}, {{A, B, C, X(18838), X(32760)}}, {{A, B, C, X(41552), X(55126)}}
X(66014) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {119, 66016, 11570}, {11570, 66021, 66012}
X(66015) lies on these lines: {2, 5083}, {11, 5173}, {56, 12738}, {57, 2801}, {65, 546}, {100, 1708}, {119, 912}, {518, 41556}, {528, 41539}, {952, 64106}, {1617, 41701}, {1830, 10772}, {2078, 3935}, {2800, 18391}, {2802, 64736}, {3256, 41166}, {3681, 14151}, {3940, 12739}, {4511, 41554}, {7672, 10707}, {9809, 45043}, {10090, 12757}, {11219, 18412}, {12691, 12736}, {12755, 54366}, {14740, 37736}, {15733, 25606}, {17660, 61653}, {18254, 54318}, {41558, 64139}, {65986, 66046}
X(66015) = reflection of X(i) in X(j) for these {i,j}: {11, 64157}
X(66015) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3254, 36052}, {37143, 61214}, {42064, 63190}
X(66015) = X(i)-Dao conjugate of X(j) for these {i, j}: {119, 3254}
X(66015) = intersection, other than A, B, C, of circumconics {{A, B, C, X(912), X(3887)}}, {{A, B, C, X(1737), X(3935)}}, {{A, B, C, X(2078), X(18838)}}, {{A, B, C, X(6594), X(12831)}}, {{A, B, C, X(11570), X(52456)}}, {{A, B, C, X(12832), X(41553)}}, {{A, B, C, X(37787), X(64115)}}, {{A, B, C, X(55126), X(61030)}}
X(66015) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11570, 66014, 12665}, {11570, 66021, 12831}, {12832, 66016, 11570}
X(66016) lies on these lines: {11, 12691}, {12, 8261}, {56, 6326}, {65, 79}, {72, 12739}, {100, 7098}, {119, 912}, {201, 64710}, {226, 47320}, {517, 12743}, {518, 1317}, {758, 41558}, {942, 8068}, {952, 13292}, {1071, 64188}, {1125, 5083}, {1388, 5692}, {1768, 11509}, {1858, 2800}, {1864, 12764}, {1898, 34789}, {2099, 13253}, {2801, 52819}, {3555, 20586}, {5172, 33667}, {5221, 15096}, {5432, 58666}, {5433, 58591}, {5531, 37550}, {5660, 37566}, {5727, 52860}, {5777, 15094}, {5904, 11510}, {6001, 52836}, {7702, 12528}, {9964, 60782}, {10073, 24474}, {10265, 18389}, {10698, 64042}, {10956, 24987}, {12432, 41551}, {12532, 29007}, {12619, 13750}, {12736, 61663}, {12763, 14872}, {13751, 37701}, {14882, 17637}, {17636, 64278}, {17661, 18961}, {18962, 45638}, {37579, 41685}, {37583, 41689}, {40269, 64009}, {41389, 41554}, {41537, 45393}, {54065, 64040}
X(66016) = midpoint of X(i) and X(j) for these {i,j}: {100, 64715}
X(66016) = reflection of X(i) in X(j) for these {i,j}: {11, 44547}, {15094, 5777}
X(66016) = X(i)-isoconjugate-of-X(j) for these {i, j}: {11604, 36052}, {61214, 65238}
X(66016) = X(i)-Dao conjugate of X(j) for these {i, j}: {119, 11604}
X(66016) = pole of line {1532, 3583} with respect to the Feuerbach hyperbola
X(66016) = intersection, other than A, B, C, of circumconics {{A, B, C, X(79), X(11570)}}, {{A, B, C, X(265), X(912)}}, {{A, B, C, X(1737), X(2166)}}, {{A, B, C, X(5172), X(18838)}}, {{A, B, C, X(12832), X(41541)}}
X(66016) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1737, 11570, 66047}, {11570, 12665, 12831}, {11570, 12832, 18838}, {11570, 66014, 119}, {11570, 66015, 12832}
X(66017) lies on these lines: {30, 5538}, {79, 952}, {80, 16152}, {100, 16113}, {104, 51569}, {119, 3065}, {149, 16125}, {758, 66008}, {1768, 37401}, {2475, 5884}, {2771, 12751}, {2886, 66059}, {3649, 6264}, {3652, 11698}, {4301, 10698}, {5441, 6265}, {5531, 16118}, {5660, 38722}, {5690, 12767}, {6175, 10265}, {6923, 15096}, {7972, 16153}, {9809, 31806}, {11604, 12757}, {11827, 63267}, {12773, 49107}, {15017, 16617}, {16139, 37725}, {17768, 66010}, {21635, 21669}, {22798, 38755}, {33856, 38752}, {49176, 56790}, {50834, 66023}, {53616, 65994}
X(66017) = midpoint of X(i) and X(j) for these {i,j}: {5531, 16118}
X(66017) = reflection of X(i) in X(j) for these {i,j}: {104, 51569}, {149, 16125}, {1768, 37401}, {3065, 119}, {3652, 11698}, {5441, 6265}, {6264, 3649}, {12773, 49107}, {16113, 100}, {21669, 21635}, {49176, 56790}, {49177, 47034}
X(66018) lies on these lines: {36, 912}, {90, 952}, {100, 1158}, {153, 63136}, {944, 18232}, {1768, 63752}, {3927, 15094}, {5541, 5691}, {6261, 12532}, {6264, 62333}, {10052, 66012}, {11698, 41688}, {37736, 66013}
X(66018) = reflection of X(i) in X(j) for these {i,j}: {6264, 62333}, {41688, 11698}
X(66019) lies on these lines: {1, 1106}, {3, 214}, {4, 3754}, {5, 13145}, {8, 2801}, {10, 5777}, {20, 5903}, {30, 35004}, {40, 758}, {46, 64150}, {65, 516}, {72, 43174}, {73, 45269}, {80, 37437}, {103, 65364}, {104, 11014}, {165, 3869}, {191, 12767}, {355, 47032}, {388, 60896}, {411, 484}, {515, 37562}, {517, 550}, {518, 12640}, {519, 1071}, {551, 9940}, {581, 4868}, {601, 63292}, {912, 11362}, {942, 4301}, {944, 2802}, {946, 5883}, {960, 10164}, {962, 5902}, {971, 5836}, {991, 37598}, {993, 1158}, {997, 7971}, {1012, 30147}, {1125, 12672}, {1329, 21635}, {1385, 3898}, {1388, 15558}, {1479, 12736}, {1482, 3892}, {1490, 54286}, {1519, 3825}, {1709, 19860}, {1768, 2975}, {1858, 4848}, {2077, 21740}, {2093, 12432}, {2098, 5083}, {2099, 37022}, {2646, 17613}, {2771, 5690}, {2809, 43163}, {2886, 33899}, {2951, 7672}, {3057, 10167}, {3256, 45230}, {3340, 10860}, {3359, 6261}, {3474, 64075}, {3486, 64076}, {3576, 3884}, {3579, 14988}, {3626, 14872}, {3671, 50195}, {3678, 5657}, {3679, 12528}, {3680, 9845}, {3698, 5927}, {3740, 31821}, {3746, 18444}, {3753, 12688}, {3812, 3817}, {3814, 12608}, {3833, 8227}, {3868, 3895}, {3872, 10085}, {3873, 11531}, {3876, 9588}, {3877, 7987}, {3881, 7982}, {3889, 11224}, {3890, 30389}, {3899, 16192}, {3901, 63468}, {3911, 64042}, {3918, 5587}, {3919, 7686}, {3968, 5818}, {4018, 7957}, {4067, 63976}, {4134, 58643}, {4300, 4424}, {4315, 64132}, {4342, 50196}, {4511, 59326}, {4691, 18908}, {4757, 6361}, {4853, 30304}, {4973, 11249}, {5046, 34789}, {5119, 10884}, {5123, 64813}, {5250, 52769}, {5261, 30290}, {5267, 64118}, {5330, 13253}, {5433, 17638}, {5443, 6972}, {5445, 6960}, {5450, 51111}, {5534, 63132}, {5537, 34772}, {5538, 62830}, {5584, 11517}, {5603, 15016}, {5691, 9961}, {5694, 61524}, {5697, 5731}, {5734, 50190}, {5881, 64358}, {5885, 22791}, {5887, 6684}, {5904, 59417}, {6244, 12635}, {6256, 64745}, {6702, 6941}, {6735, 12059}, {6736, 41561}, {6769, 12559}, {6842, 64763}, {6882, 64762}, {6922, 11813}, {6925, 10573}, {6932, 18395}, {6943, 18393}, {7330, 64733}, {7580, 15556}, {7680, 11263}, {7992, 9623}, {7995, 54370}, {8666, 63399}, {9778, 20612}, {9785, 18419}, {9949, 63970}, {9957, 58567}, {10087, 11010}, {10106, 64704}, {10107, 15726}, {10165, 40296}, {10175, 31937}, {10202, 13464}, {10269, 51714}, {10273, 28150}, {10283, 26200}, {10310, 22836}, {10391, 13601}, {10571, 24025}, {10624, 64045}, {10866, 17626}, {10912, 30283}, {10914, 12680}, {11220, 14923}, {11227, 58679}, {11496, 30143}, {11529, 12564}, {11826, 17654}, {11849, 33858}, {12053, 18838}, {12247, 12255}, {12512, 14110}, {12514, 30503}, {12616, 25639}, {12664, 17646}, {12678, 64087}, {12684, 40587}, {12699, 31870}, {12705, 54318}, {12709, 13405}, {12758, 21842}, {13257, 21031}, {13528, 33597}, {13600, 51071}, {13607, 23340}, {13752, 31849}, {14647, 26363}, {15049, 58487}, {15528, 64137}, {15623, 53252}, {16189, 62854}, {16209, 35262}, {17170, 59813}, {17649, 40290}, {17768, 31799}, {18221, 41861}, {18357, 31828}, {18397, 37421}, {18412, 64696}, {18417, 37402}, {18421, 62864}, {18481, 25413}, {20070, 43161}, {20116, 43166}, {20117, 26446}, {21616, 54198}, {22793, 61541}, {24474, 28194}, {24728, 31785}, {25439, 49163}, {25917, 58441}, {26492, 32557}, {29057, 44039}, {31777, 44669}, {31793, 44663}, {31835, 50821}, {35000, 37733}, {35242, 63915}, {36279, 64077}, {37529, 63354}, {37531, 62822}, {37568, 45288}, {37569, 62860}, {37725, 41543}, {38112, 56762}, {41389, 59587}, {47319, 64044}, {50031, 51409}, {54295, 54400}, {56288, 59320}, {59333, 63986}, {64056, 66002}
X(66019) = midpoint of X(i) and X(j) for these {i,j}: {8, 15071}, {20, 5903}, {40, 64021}, {2951, 7672}, {3868, 7991}, {4018, 7957}, {4084, 5493}, {5691, 9961}, {5881, 64358}, {6361, 37625}, {10914, 12680}, {11571, 64189}, {18412, 64696}, {18481, 25413}, {64056, 66002}
X(66019) = reflection of X(i) in X(j) for these {i,j}: {4, 3754}, {5, 13145}, {10, 31788}, {72, 43174}, {946, 34339}, {960, 31787}, {1482, 12005}, {1483, 26201}, {3244, 12675}, {3874, 5884}, {3878, 3}, {4067, 63976}, {4297, 9943}, {4301, 942}, {5693, 3678}, {5694, 61524}, {5882, 13369}, {5887, 6684}, {7982, 3881}, {9856, 3812}, {9957, 58567}, {12672, 1125}, {12688, 19925}, {12699, 31870}, {14110, 12512}, {14872, 3626}, {22791, 5885}, {22793, 61541}, {23340, 13607}, {31803, 10}, {31806, 3579}, {31828, 18357}, {31849, 13752}, {31871, 3918}, {37625, 4757}, {40266, 20117}, {43166, 20116}, {45776, 9940}, {51118, 7686}, {61705, 3968}, {63967, 5690}, {64137, 15528}
X(66019) = X(3754) of anti-Euler triangle
X(66019) = X(4297) of inner-Garcia triangle
X(66019) = pole of line {226, 20323} with respect to the Feuerbach hyperbola
X(66019) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {8, 15071, 38507}
X(66019) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6909), X(44040)}}, {{A, B, C, X(63983), X(65952)}}
X(66019) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 64129, 63983}, {3, 2800, 3878}, {3, 40257, 214}, {8, 15071, 2801}, {10, 31803, 15064}, {10, 6001, 31803}, {40, 16132, 11491}, {40, 18446, 8715}, {40, 64021, 758}, {65, 12711, 6738}, {517, 12675, 3244}, {517, 13369, 5882}, {517, 26201, 1483}, {517, 5884, 3874}, {517, 9943, 4297}, {946, 34339, 5883}, {960, 31787, 10164}, {1482, 12005, 3892}, {2771, 5690, 63967}, {3359, 6261, 25440}, {3579, 14988, 31806}, {3753, 12688, 19925}, {3812, 9856, 3817}, {3918, 31871, 5587}, {3919, 51118, 7686}, {4084, 5493, 517}, {5603, 15016, 58565}, {6001, 31788, 10}, {7995, 64673, 54370}, {9940, 45776, 551}, {10914, 12680, 28236}, {26446, 40266, 20117}, {46684, 51717, 3}
X(66020) lies on these lines: {1, 971}, {4, 3812}, {7, 10309}, {9, 10310}, {40, 54135}, {55, 52684}, {210, 5537}, {382, 31788}, {516, 11827}, {517, 60905}, {946, 38055}, {997, 1012}, {1071, 6744}, {1156, 66055}, {1158, 5729}, {1466, 3358}, {1519, 25557}, {1532, 64113}, {1699, 3660}, {1709, 1864}, {1768, 61660}, {2801, 3244}, {2951, 37411}, {3059, 5779}, {3149, 43178}, {4312, 52860}, {5439, 64830}, {5572, 36996}, {5696, 5777}, {5698, 14110}, {5704, 30287}, {5728, 5884}, {5732, 37252}, {5805, 7702}, {5817, 15587}, {5851, 66009}, {5918, 19541}, {5927, 6745}, {6001, 10394}, {6172, 63976}, {6223, 12710}, {6700, 64699}, {6765, 12705}, {6769, 36973}, {6831, 10427}, {6906, 15254}, {7080, 25722}, {7330, 42014}, {7671, 12675}, {7681, 30379}, {8544, 22753}, {8545, 11496}, {8727, 17603}, {9843, 43182}, {9844, 9948}, {9940, 38107}, {10157, 41866}, {10177, 11263}, {10241, 11227}, {10391, 64130}, {10863, 17612}, {12666, 45776}, {12667, 36991}, {12671, 37434}, {12848, 64190}, {13600, 40266}, {13601, 18412}, {17650, 64163}, {17668, 63970}, {17768, 54145}, {21151, 58608}, {21628, 63257}, {21669, 64765}, {28160, 64332}, {31658, 59326}, {31786, 50836}, {31870, 66050}, {34789, 65986}, {37787, 64118}, {38036, 58576}, {40263, 66006}, {41560, 63266}, {60953, 64669}, {60992, 64658}, {63432, 63992}, {64155, 65987}
X(66020) = reflection of X(i) in X(j) for these {i,j}: {2951, 51489}, {3059, 5779}, {5696, 5777}, {5784, 54370}, {14110, 5698}, {14872, 64197}, {17668, 63970}, {31391, 5805}, {36996, 5572}
X(66020) = X(8548) of Ursa-minor triangle
X(66020) = pole of line {3900, 30235} with respect to the incircle
X(66020) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {15733, 64197, 14872}, {43177, 63973, 63989}
X(66021) lies on these lines: {2, 2801}, {11, 10157}, {72, 38757}, {100, 1709}, {119, 912}, {153, 18254}, {329, 14740}, {517, 50842}, {528, 5927}, {952, 5919}, {971, 6174}, {1071, 20400}, {1145, 58687}, {1768, 8580}, {2800, 3679}, {2802, 59387}, {2829, 64107}, {2950, 34293}, {3035, 10167}, {3219, 46684}, {3560, 12738}, {3678, 37437}, {4847, 21635}, {4915, 13253}, {5080, 64139}, {5083, 15017}, {5226, 18240}, {5531, 10382}, {5537, 60935}, {5777, 10039}, {5851, 61028}, {6326, 13384}, {6842, 56762}, {6893, 49176}, {6940, 64693}, {6941, 63967}, {9856, 13996}, {9947, 62616}, {10072, 61718}, {10156, 31235}, {10590, 12736}, {11678, 41338}, {12515, 58674}, {12647, 12751}, {12757, 66051}, {13257, 38211}, {13369, 38763}, {15528, 64008}, {21165, 64188}, {37712, 50907}, {41704, 59591}, {60782, 66023}, {64745, 66024}, {66002, 66045}
X(66021) = midpoint of X(i) and X(j) for these {i,j}: {10167, 17661}, {15104, 34789}
X(66021) = reflection of X(i) in X(j) for these {i,j}: {11, 10157}, {10167, 3035}, {15104, 14740}
X(66021) = intersection, other than A, B, C, of circumconics {{A, B, C, X(5537), X(18838)}}, {{A, B, C, X(60935), X(64115)}}
X(66021) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {119, 12665, 11570}, {119, 66049, 12665}, {5531, 30326, 51768}, {13227, 46694, 1768}
X(66022) lies on these lines: {1, 256}, {65, 2783}, {79, 4014}, {181, 5143}, {946, 23821}, {1401, 33097}, {3736, 20470}, {5880, 6007}, {5884, 29057}, {11263, 49676}, {15488, 24851}, {17637, 29301}, {20864, 50595}, {24210, 50362}, {50605, 51575}, {64119, 64122}, {64751, 64753}
X(66022) = pole of line {45902, 48005} with respect to the Brocard inellipse
X(66022) = pole of line {16696, 30097} with respect to the dual conic of Yff parabola
X(66023) lies on circumconic {{A, B, C, X(909), X(53911)}} and on these lines: {4, 5856}, {7, 119}, {9, 48}, {11, 5817}, {100, 971}, {142, 64008}, {144, 153}, {355, 20119}, {390, 952}, {392, 38669}, {480, 12332}, {516, 10728}, {517, 56551}, {518, 10698}, {527, 1512}, {528, 16112}, {912, 12755}, {1317, 60910}, {2096, 25606}, {2800, 5223}, {2802, 11372}, {2829, 5759}, {2950, 2951}, {3035, 21151}, {3062, 5541}, {3090, 38205}, {3254, 59391}, {3868, 66054}, {3911, 5660}, {4326, 66062}, {5083, 10398}, {5220, 5657}, {5316, 11219}, {5531, 41166}, {5732, 6594}, {5762, 10742}, {5785, 46694}, {5840, 36991}, {5843, 11698}, {5845, 66030}, {5850, 21635}, {6713, 18230}, {7993, 15558}, {8232, 38055}, {10031, 31156}, {10427, 36996}, {10724, 31672}, {10738, 60901}, {11038, 11729}, {12115, 60940}, {12248, 21168}, {12331, 60884}, {12653, 24644}, {12736, 60937}, {12737, 29007}, {12763, 60883}, {12764, 60919}, {12773, 51516}, {12775, 34894}, {12831, 54366}, {14151, 19907}, {14217, 63973}, {14872, 64173}, {15015, 64697}, {15017, 59372}, {15587, 58687}, {21630, 64699}, {22758, 60944}, {22799, 31671}, {30330, 46681}, {31272, 38108}, {31657, 38752}, {31658, 38693}, {38107, 61580}, {38124, 58421}, {38602, 59381}, {38665, 64197}, {38755, 60922}, {38761, 59418}, {39692, 60924}, {41389, 60935}, {43166, 54135}, {44848, 64830}, {45043, 60934}, {50834, 66017}, {52684, 64150}, {57298, 61511}, {60782, 66021}, {60957, 66052}, {60961, 64155}, {60966, 64139}, {60992, 66012}, {61006, 64009}, {62778, 66045}, {63346, 63384}
X(66023) = midpoint of X(i) and X(j) for these {i,j}: {144, 153}, {3062, 5541}, {12331, 60884}, {64197, 66010}
X(66023) = reflection of X(i) in X(j) for these {i,j}: {7, 119}, {104, 9}, {1156, 5779}, {2096, 25606}, {3254, 63970}, {3868, 66054}, {5732, 6594}, {5759, 6068}, {10698, 64765}, {10724, 31672}, {10738, 60901}, {14217, 63973}, {15587, 58687}, {20119, 355}, {21630, 64699}, {31671, 22799}, {35514, 1145}, {36996, 10427}, {38665, 66010}, {66007, 37725}
X(66023) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 2801, 104}, {952, 5779, 1156}, {2829, 6068, 5759}, {3254, 63970, 59391}, {5732, 6594, 34474}, {5851, 37725, 66007}, {10759, 66057, 10698}, {38124, 58421, 60996}
X(66024) lies on circumconic {{A, B, C, X(2745), X(46435)}} and on these lines: {1, 66002}, {4, 66044}, {8, 153}, {20, 64139}, {21, 104}, {72, 64189}, {78, 2950}, {80, 31803}, {100, 2745}, {119, 25005}, {214, 15071}, {390, 2801}, {517, 10728}, {758, 34789}, {912, 10698}, {952, 3885}, {960, 38693}, {997, 1768}, {1158, 4855}, {1320, 12672}, {1537, 3868}, {1697, 66061}, {1737, 11571}, {2829, 3869}, {3086, 11570}, {3091, 12736}, {3616, 15528}, {3873, 64192}, {3876, 64193}, {3877, 64191}, {3878, 64145}, {4511, 48695}, {4996, 6261}, {5086, 12761}, {5660, 18231}, {5692, 46684}, {5694, 12515}, {5777, 17654}, {5811, 12691}, {5927, 6797}, {6224, 64120}, {6246, 61705}, {6907, 11698}, {9588, 58698}, {9803, 10073}, {9961, 24466}, {10724, 12688}, {10742, 14988}, {12332, 38901}, {12531, 14872}, {12617, 33593}, {12755, 64765}, {12764, 45288}, {12775, 34772}, {14110, 63280}, {14740, 59417}, {17638, 20586}, {18446, 65739}, {18861, 45770}, {22799, 64044}, {27131, 32554}, {31788, 64141}, {31937, 59391}, {34339, 64008}, {37562, 66049}, {56288, 64188}, {64745, 66021}
X(66024) = reflection of X(i) in X(j) for these {i,j}: {4, 66044}, {8, 12665}, {20, 64139}, {80, 31803}, {104, 5887}, {1320, 12672}, {3868, 1537}, {9961, 24466}, {10724, 12688}, {11571, 21635}, {12515, 5694}, {12531, 14872}, {12532, 5693}, {12755, 64765}, {15071, 214}, {17654, 5777}, {37562, 66049}, {38669, 17638}, {64021, 119}, {64044, 22799}, {64145, 3878}, {64189, 72}, {66002, 1}
X(66024) = pole of line {38693, 61649} with respect to the Feuerbach hyperbola
X(66024) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1158, 6326, 17100}, {2771, 5887, 104}, {2800, 12665, 8}, {2800, 5693, 12532}
X(66025) lies on these lines: {4, 2826}, {514, 11247}, {523, 3743}, {659, 20831}, {918, 3874}, {942, 52305}, {2804, 3913}, {12607, 55133}, {15171, 53578}, {16126, 49276}, {23887, 63800}, {30591, 31936}, {45061, 55137}
X(66025) = pole of line {2775, 5540} with respect to the Moses-Feuerbach circumconic
X(66026) lies on these lines: {11, 11193}, {80, 11247}, {100, 650}, {149, 40166}, {513, 17660}, {528, 15914}, {654, 38325}, {3309, 34789}, {3738, 53523}, {11927, 13271}, {11934, 13274}, {16173, 32195}
X(66026) = reflection of X(i) in X(j) for these {i,j}: {11, 66064}, {80, 11247}, {42552, 11}
X(66026) = X(i)-Dao conjugate of X(j) for these {i, j}: {1252, 31615}
X(66026) = X(i)-Ceva conjugate of X(j) for these {i, j}: {149, 11}, {40166, 650}
X(66026) = pole of line {1090, 5532} with respect to the Feuerbach hyperbola
X(66026) = pole of line {21201, 63793} with respect to the Moses-Feuerbach circumconic
X(66026) = intersection, other than A, B, C, of circumconics {{A, B, C, X(11), X(5375)}}, {{A, B, C, X(1252), X(42552)}}
X(66026) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 66064, 11193}, {11193, 42552, 11}
X(66027) lies on these lines: {1, 2245}, {10, 9054}, {65, 528}, {511, 13476}, {518, 3686}, {524, 3874}, {594, 38485}, {674, 942}, {3664, 9047}, {3678, 49731}, {3779, 3826}, {3869, 49740}, {3901, 50296}, {4067, 50297}, {4259, 25557}, {4260, 64524}, {5904, 17330}, {16678, 63393}, {17061, 40952}, {17392, 18398}, {17768, 21746}, {20718, 39543}, {49738, 58565}, {49746, 64047}, {64751, 66071}
X(66028) lies on these lines: {6, 119}, {52, 10742}, {68, 952}, {100, 6146}, {104, 343}, {153, 6515}, {569, 38752}, {1209, 57298}, {2829, 17834}, {3035, 37476}, {5840, 64037}, {9913, 37488}, {10711, 61658}, {10738, 18474}, {11698, 13292}, {37478, 38753}, {37493, 38755}, {37513, 38762}, {37649, 64008}, {49162, 64069}, {63085, 66045}
X(66028) = reflection of X(i) in X(j) for these {i,j}: {66029, 119}, {66035, 68}
X(66028) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {68, 952, 66035}
X(66029) lies on these lines: {6, 119}, {11, 17814}, {100, 1181}, {104, 394}, {149, 11441}, {153, 1993}, {155, 952}, {323, 64009}, {511, 9913}, {576, 58543}, {1191, 6265}, {1484, 15068}, {1498, 5840}, {2323, 66058}, {2771, 17847}, {2783, 39849}, {2787, 39820}, {2829, 37498}, {3035, 37514}, {3045, 19357}, {5020, 58508}, {5422, 66045}, {5531, 56535}, {6713, 17811}, {6759, 13222}, {8674, 17838}, {9024, 19149}, {10601, 64008}, {10711, 63094}, {10738, 18451}, {10742, 36747}, {11432, 58504}, {11456, 13199}, {11698, 12161}, {12331, 18445}, {12515, 62245}, {15017, 16472}, {15811, 64186}, {17825, 58421}, {17834, 54065}, {20095, 43605}, {22758, 63346}, {22799, 44413}, {36749, 38755}, {36752, 38752}, {37483, 38753}
X(66029) = reflection of X(i) in X(j) for these {i,j}: {13222, 6759}, {17834, 54065}, {66028, 119}, {66036, 155}
X(66029) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {155, 952, 66036}
X(66030) lies on these lines: {4, 9024}, {6, 119}, {11, 10516}, {67, 2771}, {69, 153}, {100, 1503}, {104, 141}, {182, 38752}, {376, 51158}, {511, 10742}, {518, 12751}, {524, 10711}, {528, 47353}, {613, 39692}, {742, 66057}, {952, 1352}, {1317, 12589}, {1350, 2829}, {1351, 38755}, {1469, 12763}, {1484, 18358}, {2783, 11646}, {2800, 3416}, {2801, 47595}, {2802, 64085}, {2830, 36883}, {3035, 5085}, {3056, 12764}, {3098, 38753}, {3564, 11698}, {3589, 64008}, {3618, 66045}, {3620, 64009}, {3763, 6713}, {3818, 10738}, {5092, 38762}, {5227, 66058}, {5480, 10755}, {5820, 38144}, {5840, 36990}, {5845, 66023}, {5846, 10698}, {5847, 21635}, {5848, 12587}, {6174, 43273}, {6326, 39885}, {6776, 51157}, {8674, 14982}, {9041, 50907}, {9913, 37485}, {10519, 12248}, {10541, 38763}, {10707, 47354}, {10728, 29181}, {10778, 32274}, {11477, 38757}, {11729, 38315}, {12199, 42534}, {12331, 18440}, {14561, 61580}, {14810, 38754}, {15017, 16475}, {20400, 53093}, {22799, 31670}, {24206, 57298}, {24466, 48905}, {25485, 49681}, {28538, 50908}, {31884, 38761}, {32233, 53743}, {33814, 46264}, {33878, 38756}, {34380, 61605}, {34474, 44882}, {38119, 47355}, {38531, 51390}, {38758, 55711}, {38759, 55646}, {38760, 53094}, {39898, 66008}, {40341, 66052}, {48906, 61562}, {48910, 52836}, {59415, 63470}
X(66030) = midpoint of X(i) and X(j) for these {i,j}: {69, 153}, {6326, 39885}, {12331, 18440}, {33878, 38756}, {39898, 66008}
X(66030) = reflection of X(i) in X(j) for these {i,j}: {6, 119}, {104, 141}, {376, 51158}, {1350, 51007}, {1484, 18358}, {6776, 51157}, {10707, 47354}, {10738, 3818}, {10755, 5480}, {10778, 32274}, {31670, 22799}, {32233, 53743}, {38531, 51390}, {38753, 3098}, {43273, 6174}, {46264, 33814}, {48905, 24466}, {48906, 61562}, {48910, 52836}, {49681, 25485}, {66031, 6}, {66037, 1352}
X(66030) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {952, 1352, 66037}, {2829, 51007, 1350}, {38119, 58421, 47355}
X(66031) lies on these lines: {6, 119}, {11, 15069}, {100, 8550}, {104, 524}, {153, 1992}, {182, 38762}, {193, 48692}, {511, 38753}, {542, 10738}, {575, 38752}, {576, 10742}, {597, 64008}, {599, 6713}, {952, 63722}, {1350, 38759}, {1351, 38756}, {1352, 60759}, {1484, 3564}, {1503, 10724}, {2771, 64104}, {2783, 64092}, {2787, 64091}, {2829, 11477}, {3035, 53093}, {3045, 64061}, {3629, 10759}, {3763, 38119}, {4663, 12751}, {5085, 51007}, {5840, 64080}, {6776, 9024}, {8540, 12764}, {8584, 10711}, {8674, 64103}, {10541, 38760}, {11179, 33814}, {11482, 38755}, {12763, 19369}, {14912, 51157}, {20423, 22799}, {24466, 43273}, {25485, 47356}, {29959, 58508}, {34507, 57298}, {38069, 50993}, {38754, 52987}, {38757, 53858}, {38761, 53097}, {39897, 63270}, {47352, 58421}, {47353, 65948}, {50979, 61562}, {52836, 54131}, {59373, 66045}
X(66031) = reflection of X(i) in X(j) for these {i,j}: {100, 8550}, {10711, 8584}, {10742, 576}, {10759, 3629}, {12751, 4663}, {15069, 11}, {53097, 38761}, {66030, 6}, {66039, 63722}
X(66031) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {952, 63722, 66039}
X(66032) lies on these lines: {6, 119}, {11, 6289}, {100, 45406}, {104, 492}, {153, 62987}, {591, 48684}, {952, 45713}, {2783, 50719}, {2800, 49347}, {2829, 9733}, {3035, 43119}, {5840, 13748}, {6713, 45472}, {10711, 45421}, {10738, 45375}, {10742, 45488}, {10956, 45490}, {11729, 45398}, {12305, 38761}, {12751, 45426}, {13991, 39679}, {37725, 49317}, {37726, 45496}, {38752, 45411}, {44392, 48701}, {45438, 65948}
X(66032) = midpoint of X(i) and X(j) for these {i,j}: {13748, 48703}
X(66032) = reflection of X(i) in X(j) for these {i,j}: {66033, 119}, {66040, 49355}
X(66032) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {952, 49355, 66040}, {13748, 48703, 5840}
X(66033) lies on these lines: {6, 119}, {11, 6290}, {100, 45407}, {104, 491}, {153, 62986}, {952, 45714}, {1991, 48685}, {2783, 50720}, {2800, 49348}, {2829, 9732}, {3035, 43118}, {5840, 13749}, {6713, 45473}, {10711, 45420}, {10738, 45376}, {10742, 45489}, {10956, 45491}, {11729, 45399}, {12306, 38761}, {12751, 45427}, {13922, 39648}, {37725, 49318}, {37726, 45497}, {38752, 45410}, {44394, 48700}, {45439, 65948}
X(66033) = midpoint of X(i) and X(j) for these {i,j}: {13749, 48704}
X(66033) = reflection of X(i) in X(j) for these {i,j}: {66032, 119}, {66041, 49356}
X(66033) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {952, 49356, 66041}, {13749, 48704, 5840}
X(66034) lies on these lines: {30, 62305}, {72, 74}, {104, 112}, {214, 22054}, {376, 25252}, {900, 9409}, {2783, 9862}, {2828, 5667}, {3569, 9980}, {5191, 9978}, {5260, 11259}, {12775, 13265}, {40948, 44243}, {41191, 42662}, {44427, 55126}, {53252, 53282}
X(66034) = reflection of X(i) in X(j) for these {i,j}: {66042, 9409}
X(66034) = pole of line {53248, 53762} with respect to the circumcircle
X(66034) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {900, 9409, 66042}
X(66035) lies on these lines: {6, 11}, {52, 10738}, {68, 952}, {80, 7686}, {100, 343}, {104, 6146}, {149, 6515}, {161, 54065}, {528, 64060}, {569, 57298}, {1209, 38752}, {1484, 13292}, {2829, 64037}, {5840, 17834}, {6713, 37476}, {10071, 64069}, {10707, 61658}, {10742, 18474}, {11750, 38753}, {13222, 37488}, {21293, 38357}, {31272, 37649}, {37493, 51517}, {45089, 59391}, {63085, 66063}
X(66035) = reflection of X(i) in X(j) for these {i,j}: {66028, 68}, {66036, 11}
X(66035) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 5848, 66036}, {68, 952, 66028}
X(66036) lies on these lines: {1, 34976}, {6, 11}, {55, 53324}, {100, 394}, {104, 1181}, {119, 17814}, {149, 1993}, {153, 9370}, {154, 54065}, {155, 952}, {221, 2800}, {222, 1768}, {227, 66058}, {323, 20095}, {399, 18340}, {511, 13222}, {528, 37672}, {576, 58539}, {651, 9809}, {692, 1364}, {1191, 12740}, {1413, 66055}, {1484, 12161}, {1498, 2829}, {1854, 2771}, {2003, 64372}, {2192, 2801}, {2323, 66068}, {2783, 39820}, {2787, 39849}, {2807, 36059}, {3035, 17811}, {3562, 9803}, {4585, 27542}, {5020, 58504}, {5422, 66063}, {5531, 51361}, {5840, 37498}, {6326, 7078}, {6667, 17825}, {6713, 37514}, {6759, 9913}, {6797, 44414}, {8674, 17847}, {8679, 10535}, {8757, 16128}, {9371, 22128}, {9817, 58683}, {10058, 36746}, {10090, 36745}, {10265, 41344}, {10601, 31272}, {10707, 63094}, {10738, 36747}, {10742, 18451}, {10982, 59391}, {11432, 58508}, {11456, 12248}, {11698, 15068}, {12758, 64449}, {12767, 34043}, {12773, 18445}, {13243, 23144}, {13253, 34040}, {15805, 34126}, {15811, 52836}, {16473, 37718}, {17638, 64020}, {17660, 19354}, {19357, 58056}, {19372, 58613}, {21635, 34048}, {22938, 44413}, {23071, 45272}, {36749, 51517}, {36752, 57298}, {43605, 64009}, {53295, 53554}, {60691, 62354}
X(66036) = reflection of X(i) in X(j) for these {i,j}: {9913, 6759}, {66029, 155}, {66035, 11}
X(66036) = pole of line {5172, 44670} with respect to the Feuerbach hyperbola
X(66036) = pole of line {15252, 65808} with respect to the MacBeath circumconic
X(66036) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 5848, 66035}, {155, 952, 66029}
X(66037) lies on these lines: {2, 51157}, {6, 11}, {67, 8674}, {69, 149}, {80, 518}, {100, 141}, {104, 1503}, {119, 10516}, {182, 57298}, {511, 10738}, {524, 10707}, {528, 599}, {597, 59377}, {611, 8068}, {613, 5533}, {732, 32454}, {742, 66067}, {952, 1352}, {1086, 18343}, {1156, 5845}, {1317, 12588}, {1320, 5846}, {1350, 5840}, {1351, 51517}, {1386, 16173}, {1387, 5820}, {1469, 13273}, {1484, 3564}, {2771, 14982}, {2781, 10767}, {2787, 11646}, {2800, 64085}, {2802, 3416}, {2805, 36883}, {2810, 10770}, {2829, 36990}, {2854, 10778}, {3035, 3763}, {3036, 59407}, {3056, 13274}, {3315, 3448}, {3410, 62814}, {3583, 9037}, {3589, 31272}, {3618, 66063}, {3620, 20095}, {3675, 24713}, {3751, 37718}, {3818, 10742}, {3827, 17638}, {4265, 10058}, {4585, 31126}, {5085, 6713}, {5096, 10090}, {5227, 66068}, {5480, 10759}, {5847, 21630}, {5856, 50995}, {5969, 10769}, {6174, 21358}, {6264, 39885}, {6667, 47355}, {6702, 38047}, {7232, 21280}, {7289, 64372}, {7972, 49465}, {8679, 12764}, {9021, 12532}, {9041, 50890}, {9053, 12531}, {9897, 16496}, {10519, 13199}, {10711, 47354}, {10724, 29181}, {11442, 17597}, {11698, 18358}, {12019, 64070}, {12247, 39898}, {12587, 62616}, {12595, 15069}, {12773, 18440}, {13194, 42534}, {13222, 37485}, {14561, 60759}, {15863, 49688}, {16174, 38035}, {16686, 26932}, {20418, 64080}, {20987, 54065}, {21154, 53094}, {21356, 51158}, {22769, 39892}, {22938, 31670}, {24206, 38752}, {24466, 31884}, {25416, 49679}, {28538, 50891}, {29012, 38753}, {31523, 32298}, {32233, 53753}, {33709, 38049}, {33878, 48680}, {34378, 47320}, {34380, 61601}, {37998, 46158}, {38090, 51185}, {38119, 53093}, {38602, 46264}, {38693, 44882}, {38754, 48898}, {38759, 59411}, {38761, 48905}, {39692, 45729}, {40341, 66065}, {45310, 47352}, {48906, 61566}, {48910, 64186}, {49524, 59415}, {49681, 64137}, {50949, 64746}, {51003, 64011}, {53023, 65948}
X(66037) = midpoint of X(i) and X(j) for these {i,j}: {69, 149}, {6264, 39885}, {9897, 16496}, {12247, 39898}, {12773, 18440}, {33878, 48680}
X(66037) = reflection of X(i) in X(j) for these {i,j}: {6, 11}, {100, 141}, {7972, 49465}, {10711, 47354}, {10742, 3818}, {10759, 5480}, {11698, 18358}, {31670, 22938}, {32233, 53753}, {32298, 31523}, {46264, 38602}, {48905, 38761}, {48906, 61566}, {48910, 64186}, {49679, 25416}, {49681, 64137}, {49688, 15863}, {51008, 45310}, {64011, 51003}, {64746, 50949}, {66030, 1352}, {66039, 6}
X(66037) = anticomplement of X(51157)
X(66037) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 5848, 66039}, {11, 5848, 6}, {69, 149, 9024}, {952, 1352, 66030}, {10759, 59391, 5480}, {45310, 51008, 47352}
X(66038) lies on these lines: {2, 10769}, {11, 7664}, {23, 667}, {37, 100}, {110, 10755}, {149, 7665}, {952, 63719}, {2502, 9024}, {2783, 7417}, {3124, 51157}, {40915, 51007}, {46131, 53743}
X(66039) lies on circumconic {{A, B, C, X(36902), X(60362)}} and on these lines: {6, 11}, {69, 51157}, {80, 4663}, {100, 524}, {104, 8550}, {119, 15069}, {149, 1992}, {193, 9024}, {518, 7972}, {528, 15534}, {542, 10742}, {575, 57298}, {576, 10738}, {597, 31272}, {599, 3035}, {952, 63722}, {1351, 48680}, {1352, 61580}, {1503, 10728}, {2771, 64103}, {2783, 64091}, {2787, 64092}, {2829, 64080}, {2836, 11571}, {3242, 12735}, {3564, 11698}, {3629, 10755}, {3751, 9897}, {4316, 9037}, {5840, 11477}, {6174, 15533}, {6667, 47352}, {6713, 53093}, {6776, 12248}, {8540, 13274}, {8584, 10707}, {8674, 64104}, {9004, 17660}, {10541, 21154}, {11160, 51158}, {11179, 38602}, {11482, 51517}, {13273, 19369}, {15863, 47359}, {20423, 22938}, {21358, 31235}, {24466, 53097}, {25416, 51000}, {28538, 64056}, {29959, 58504}, {34507, 38752}, {35023, 40341}, {38119, 55711}, {38761, 43273}, {38762, 40107}, {45310, 51185}, {47356, 64137}, {50979, 61566}, {54131, 64186}, {58056, 64061}, {59373, 66063}, {59377, 63124}
X(66039) = reflection of X(i) in X(j) for these {i,j}: {6, 51198}, {69, 51157}, {80, 4663}, {104, 8550}, {599, 51008}, {10707, 8584}, {10738, 576}, {10755, 3629}, {11160, 51158}, {15069, 119}, {15533, 6174}, {40341, 51007}, {53097, 24466}, {66031, 63722}, {66037, 6}
X(66039) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 5848, 66037}, {952, 63722, 66031}, {5848, 51198, 6}
X(66040) lies on these lines: {6, 11}, {80, 45426}, {100, 492}, {104, 45406}, {119, 6289}, {149, 62987}, {528, 591}, {952, 45713}, {1145, 45444}, {1317, 45476}, {1387, 45398}, {2787, 50719}, {2802, 49347}, {2829, 13748}, {3035, 45472}, {5840, 9733}, {5851, 60888}, {5854, 49329}, {6713, 43119}, {10707, 45421}, {10738, 45488}, {10742, 45375}, {10956, 45458}, {12305, 24466}, {12959, 19048}, {13977, 39679}, {37725, 45456}, {37726, 45422}, {44392, 48715}, {45411, 57298}, {45428, 54065}, {45440, 65948}
X(66040) = midpoint of X(i) and X(j) for these {i,j}: {13748, 48684}, {45713, 49337}
X(66040) = reflection of X(i) in X(j) for these {i,j}: {66032, 49355}, {66041, 11}
X(66040) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 5848, 66041}, {952, 49355, 66032}, {13748, 48684, 2829}, {45713, 49337, 952}
X(66041) lies on these lines: {6, 11}, {80, 45427}, {100, 491}, {104, 45407}, {119, 6290}, {149, 62986}, {528, 1991}, {952, 45714}, {1145, 45445}, {1317, 45477}, {1387, 45399}, {2787, 50720}, {2802, 49348}, {2829, 13749}, {3035, 45473}, {5840, 9732}, {5851, 60889}, {5854, 49330}, {6713, 43118}, {10707, 45420}, {10738, 45489}, {10742, 45376}, {10956, 45459}, {12306, 24466}, {12958, 19047}, {13913, 39648}, {37725, 45457}, {37726, 45423}, {44394, 48714}, {45410, 57298}, {45429, 54065}, {45441, 65948}
X(66041) = midpoint of X(i) and X(j) for these {i,j}: {13749, 48685}, {45714, 49338}
X(66041) = reflection of X(i) in X(j) for these {i,j}: {66033, 49356}, {66040, 11}
X(66041) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 5848, 66040}, {952, 49356, 66033}, {13749, 48685, 2829}, {45714, 49338, 952}
X(66042) lies on these lines: {74, 104}, {100, 112}, {214, 40613}, {900, 9409}, {2787, 9862}, {2803, 5667}, {2804, 44427}, {3569, 9978}, {5191, 9980}, {53248, 53762}
X(66042) = reflection of X(i) in X(j) for these {i,j}: {66034, 9409}
X(66042) = pole of line {53252, 53282} with respect to the circumcircle
X(66042) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {900, 9409, 66034}
X(66043) lies on circumconic {{A, B, C, X(43972), X(64071)}} and on these lines: {10, 3995}, {65, 3159}, {502, 3178}, {519, 960}, {537, 64428}, {740, 4540}, {756, 3626}, {1089, 1125}, {1215, 3636}, {2901, 3697}, {3175, 4002}, {3244, 3952}, {3293, 14752}, {3634, 3666}, {3842, 4681}, {3874, 64426}, {3971, 4067}, {3992, 4065}, {4015, 58395}, {4125, 56221}, {5045, 59717}, {6534, 58565}, {6540, 32004}, {18398, 24068}, {21021, 24051}, {21864, 24067}, {27538, 50588}, {35633, 59718}, {51562, 56950}
X(66043) = midpoint of X(i) and X(j) for these {i,j}: {4075, 63800}
X(66043) = pole of line {47793, 48085} with respect to the Steiner inellipse
X(66043) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4075, 63800, 519}
Triangle CTR1-8 is defined by the Aubert (Steiner) lines of quadrilaterals ABPC, BCPA, CAPB, where P=X(8).
X(66044) lies on these lines: {4, 66024}, {11, 113}, {30, 64139}, {80, 18516}, {104, 55961}, {119, 5123}, {355, 2800}, {381, 12736}, {517, 12665}, {912, 1537}, {952, 12672}, {960, 38761}, {1071, 11729}, {1145, 17615}, {1376, 12515}, {1387, 17625}, {1709, 6326}, {2801, 10247}, {2802, 18525}, {2829, 5887}, {2950, 5720}, {3434, 12532}, {3869, 10728}, {5083, 11373}, {5541, 18528}, {5603, 66002}, {5657, 58674}, {5692, 35249}, {5693, 10525}, {5694, 11826}, {5777, 45080}, {5840, 12688}, {5886, 15528}, {5927, 9952}, {6246, 31871}, {6265, 12114}, {6923, 46435}, {9856, 64138}, {9943, 38760}, {9961, 34474}, {10698, 12528}, {10826, 11571}, {10914, 46685}, {10944, 12758}, {11715, 26321}, {12616, 21635}, {12699, 13271}, {12702, 14740}, {12735, 17622}, {12738, 13205}, {12773, 41554}, {12775, 37700}, {13369, 34123}, {14988, 22799}, {15071, 26492}, {15906, 44013}, {16138, 66048}, {17613, 33814}, {17614, 38602}, {17617, 35638}, {17618, 60759}, {17619, 61580}, {17660, 65991}, {18240, 18493}, {18542, 64745}, {20117, 46684}, {31235, 40296}, {31828, 64000}, {33898, 34293}, {38128, 58631}, {45764, 51897}, {45770, 48695}, {49171, 55298}, {51515, 63967}, {64197, 64267}
X(66044) = midpoint of X(i) and X(j) for these {i,j}: {4, 66024}, {3869, 10728}, {5693, 34789}, {10698, 12528}, {10742, 40266}, {12672, 17661}
X(66044) = reflection of X(i) in X(j) for these {i,j}: {11, 31937}, {1071, 11729}, {1145, 66049}, {6246, 31871}, {11570, 12611}, {12515, 18254}, {12702, 14740}, {33898, 34293}, {38761, 960}, {46684, 20117}, {64138, 9856}
X(66044) = X(1511) of Ursa-major triangle
X(66044) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {355, 16128, 12761}, {2771, 12611, 11570}, {10742, 40266, 2800}, {12672, 17661, 952}, {18519, 48667, 12737}
CTR5-2.2 is the triangle homothetic to ABC with center X(2) and ratio 2/7.
X(66045) lies on circumconic {{A, B, C, X(6713), X(57769)}} and on these lines: {2, 104}, {4, 33814}, {5, 149}, {8, 25485}, {10, 13253}, {11, 5056}, {20, 3035}, {100, 3091}, {140, 12248}, {145, 6981}, {210, 58613}, {214, 59387}, {354, 58687}, {376, 22799}, {381, 13199}, {498, 63281}, {528, 61936}, {549, 38756}, {631, 10742}, {632, 61605}, {952, 3090}, {1145, 8166}, {1317, 10589}, {1329, 6960}, {1387, 8164}, {1484, 5055}, {1537, 6969}, {1656, 11698}, {1698, 12767}, {1768, 3634}, {1862, 6622}, {2800, 9780}, {2801, 60996}, {2829, 3523}, {2932, 6912}, {3085, 39692}, {3146, 34474}, {3305, 66058}, {3522, 10728}, {3524, 38753}, {3525, 38602}, {3543, 24466}, {3544, 51525}, {3545, 10738}, {3577, 30852}, {3616, 12751}, {3617, 10698}, {3618, 66030}, {3620, 10759}, {3628, 12773}, {3814, 6840}, {3817, 5541}, {3832, 5840}, {3839, 6174}, {3850, 48680}, {3854, 10993}, {3855, 22938}, {3917, 58543}, {4666, 66062}, {4699, 66057}, {5067, 57298}, {5068, 20095}, {5070, 61566}, {5071, 60759}, {5076, 38636}, {5083, 5704}, {5187, 65739}, {5218, 12764}, {5226, 12736}, {5260, 22775}, {5422, 66029}, {5531, 59419}, {5550, 11715}, {5587, 6224}, {5603, 64743}, {5657, 12611}, {5660, 6702}, {5720, 39778}, {5731, 64012}, {5734, 64056}, {5748, 64139}, {5818, 6265}, {5886, 66008}, {5889, 58504}, {6264, 32558}, {6326, 10175}, {6594, 59385}, {6667, 38669}, {6856, 9952}, {6858, 66051}, {6859, 20085}, {6860, 10609}, {6879, 54448}, {6908, 32554}, {6933, 59415}, {6959, 20060}, {6979, 11681}, {6982, 61156}, {6993, 60782}, {7288, 12763}, {7485, 9913}, {7486, 10585}, {7988, 21630}, {7993, 33709}, {8068, 45043}, {8889, 12138}, {8972, 19082}, {9779, 14217}, {9802, 16174}, {9809, 19877}, {9956, 12247}, {10087, 10591}, {10090, 10590}, {10265, 54447}, {10299, 38754}, {10303, 31235}, {10595, 64140}, {10707, 61924}, {10956, 14986}, {11002, 58522}, {11231, 16128}, {11451, 58508}, {11500, 63917}, {12735, 47743}, {12738, 38182}, {12739, 54361}, {12747, 61259}, {13729, 27529}, {13941, 19081}, {15015, 19925}, {15022, 23513}, {15692, 38759}, {15717, 38761}, {17572, 18861}, {19907, 59388}, {20418, 46935}, {21154, 55864}, {22935, 61261}, {26364, 37437}, {27355, 58539}, {31412, 48715}, {32785, 48700}, {32786, 48701}, {33337, 37714}, {33812, 37712}, {34126, 61886}, {35023, 59390}, {35882, 42274}, {35883, 42277}, {37106, 64188}, {37126, 54065}, {37163, 63964}, {37718, 63259}, {37726, 61914}, {38042, 48667}, {38077, 61938}, {38084, 61913}, {38108, 66007}, {38141, 61945}, {38637, 61850}, {40333, 64765}, {42561, 48714}, {45310, 61906}, {50689, 64186}, {51529, 60781}, {54445, 58453}, {59373, 66031}, {59377, 61912}, {60988, 66012}, {62778, 66023}, {63085, 66028}, {66002, 66021}
X(66045) = reflection of X(i) in X(j) for these {i,j}: {66063, 3090}
X(66045) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 64009, 6713}, {104, 58421, 2}, {104, 64008, 58421}, {119, 58421, 104}, {119, 6713, 10711}, {140, 38755, 12248}, {1537, 64141, 59417}, {5068, 20095, 59391}, {5660, 6702, 9803}, {6713, 10711, 64009}, {10711, 64009, 153}, {10728, 38760, 3522}, {22799, 38762, 376}, {31235, 38693, 10303}, {31235, 38757, 38693}, {38752, 61580, 4}, {58453, 64145, 54445}
Triangle CTR7-2.7 vertices are the barycentric sums of the corresponding vertices of the cevian triangles of X(2) and X(7).
X(66046) lies on these lines: {1, 1389}, {79, 2800}, {515, 17637}, {517, 5499}, {952, 47319}, {2771, 65999}, {2829, 66048}, {3244, 6583}, {3754, 22765}, {5559, 61105}, {5880, 64044}, {5884, 18990}, {6246, 65995}, {11715, 66003}, {31806, 64275}, {45081, 64345}, {64199, 66006}, {65986, 66015}
X(66046) = reflection of X(i) in X(j) for these {i,j}: {1389, 31870}, {31806, 64275}
Triangle CTR7-2.7 vertices are the barycentric sums of the corresponding vertices of the cevian triangles of X(2) and X(7).
X(66047) lies on circumconic {{A, B, C, X(18838), X(22765)}} and on these lines: {5, 2771}, {11, 13750}, {65, 6265}, {72, 38752}, {100, 24474}, {104, 10202}, {119, 912}, {214, 517}, {354, 12737}, {355, 17660}, {942, 952}, {971, 22799}, {1071, 10742}, {1125, 2800}, {1317, 5570}, {1385, 58591}, {1387, 50195}, {1484, 11019}, {1537, 37374}, {1768, 3560}, {1858, 39692}, {2801, 60980}, {2829, 13369}, {2932, 37533}, {3035, 31837}, {3244, 6583}, {3306, 17654}, {3530, 31788}, {3555, 64140}, {3753, 19914}, {3812, 12619}, {3870, 12331}, {3873, 66008}, {3911, 14988}, {5045, 64742}, {5439, 57298}, {5535, 35204}, {5693, 15017}, {5777, 61580}, {5806, 22938}, {5886, 17638}, {5887, 11571}, {5902, 6326}, {6001, 12611}, {6264, 18398}, {6745, 61562}, {6826, 9803}, {6831, 33594}, {6893, 9809}, {6905, 39778}, {6917, 10044}, {6924, 22836}, {6929, 16128}, {6940, 10698}, {9940, 38602}, {10073, 65994}, {10087, 64046}, {10165, 13145}, {10167, 38753}, {10175, 47320}, {10247, 17652}, {10427, 66054}, {10711, 66002}, {11231, 58666}, {11698, 24475}, {11715, 13373}, {12532, 64008}, {12735, 50196}, {12739, 64045}, {15015, 37625}, {15556, 61530}, {15904, 56423}, {17100, 33596}, {17661, 38755}, {18254, 58421}, {18443, 66058}, {19920, 35597}, {24929, 38722}, {25413, 35262}, {27778, 38156}, {31838, 34123}, {31849, 53743}, {34474, 37585}, {36167, 46044}, {38042, 58659}, {38182, 58683}, {38762, 64107}, {40296, 46684}, {52005, 53537}, {56387, 64044}
X(66047) = midpoint of X(i) and X(j) for these {i,j}: {65, 6265}, {100, 24474}, {119, 11570}, {355, 17660}, {1071, 10742}, {3555, 64140}, {5884, 21635}, {5887, 11571}, {9946, 12736}, {10427, 66054}, {10698, 37562}, {11698, 24475}, {17654, 48667}
X(66047) = reflection of X(i) in X(j) for these {i,j}: {1385, 58591}, {1387, 58604}, {1484, 58587}, {5777, 61580}, {6797, 61541}, {11715, 13373}, {12611, 58613}, {12619, 3812}, {18254, 58421}, {22938, 5806}, {31837, 3035}, {38602, 9940}, {46684, 40296}, {64742, 5045}, {66049, 119}
X(66047) = X(i)-isoconjugate-of-X(j) for these {i, j}: {36052, 64290}
X(66047) = X(i)-Dao conjugate of X(j) for these {i, j}: {119, 64290}
X(66047) = pole of line {23087, 39200} with respect to the DeLongchamps ellipse
X(66047) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {113, 119, 11570}, {18341, 31849, 46044}
X(66047) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {119, 11570, 912}, {119, 912, 66049}, {952, 61541, 6797}, {1737, 11570, 66016}, {5884, 21635, 2771}, {6001, 58613, 12611}, {9946, 12736, 952}
Triangle CTR7-2.8 vertices are the barycentric sums of the corresponding vertices of the cevian triangles of X(2) and X(8).
X(66048) lies on these lines: {1, 10308}, {78, 7701}, {946, 58595}, {2771, 3244}, {2800, 64766}, {2829, 66046}, {3652, 3678}, {3742, 9955}, {3918, 47032}, {5880, 31672}, {6246, 65996}, {6831, 64345}, {7702, 16125}, {13145, 31673}, {16116, 18398}, {16138, 66044}, {31870, 65988}, {35982, 63267}, {41540, 51569}, {41865, 52269}
Triangle CTR7-2.8 vertices are the barycentric sums of the corresponding vertices of the cevian triangles of X(2) and X(8).
X(66049) lies on circumconic {{A, B, C, X(18838), X(35000)}} and on these lines: {3, 17661}, {5, 58587}, {10, 2771}, {72, 10742}, {80, 64041}, {100, 40263}, {119, 912}, {210, 12515}, {355, 17636}, {499, 17660}, {517, 22799}, {518, 12611}, {942, 61580}, {950, 952}, {971, 6594}, {1071, 38752}, {1145, 17615}, {1898, 10087}, {2800, 3626}, {2801, 6666}, {2802, 31937}, {2829, 31837}, {3035, 13369}, {3579, 58663}, {3872, 48667}, {3876, 12248}, {5044, 38602}, {5450, 22935}, {5541, 61705}, {5790, 17654}, {5887, 12751}, {5927, 10738}, {6001, 58687}, {6265, 14872}, {6326, 22758}, {6797, 18357}, {10058, 12738}, {10157, 60759}, {10167, 38762}, {10202, 64008}, {10265, 15064}, {10711, 12532}, {10728, 37585}, {11230, 58595}, {11729, 46681}, {12059, 37406}, {12619, 58631}, {12647, 17638}, {12672, 64140}, {12735, 64131}, {12749, 64042}, {12773, 19861}, {12775, 41560}, {15528, 58421}, {18443, 66061}, {18908, 19914}, {19919, 58640}, {21635, 63967}, {31838, 64191}, {34293, 40659}, {37562, 66024}, {38753, 64107}, {39991, 56881}, {46684, 58630}, {58573, 65388}, {58674, 64193}
X(66049) = midpoint of X(i) and X(j) for these {i,j}: {3, 17661}, {72, 10742}, {100, 40263}, {119, 12665}, {1145, 66044}, {5887, 12751}, {6265, 14872}, {10728, 37585}, {12672, 64140}, {21635, 63967}, {37562, 66024}
X(66049) = reflection of X(i) in X(j) for these {i,j}: {942, 61580}, {3579, 58663}, {6797, 18357}, {12619, 58631}, {13369, 3035}, {15528, 58421}, {38602, 5044}, {46684, 58630}, {64191, 31838}, {64193, 58674}, {66047, 119}
X(66049) = pole of line {35460, 40663} with respect to the Feuerbach hyperbola
X(66049) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {119, 12665, 912}, {119, 912, 66047}, {12665, 66021, 119}
Triangle CTR9-2.11 vertices are the barycentric sums of the corresponding vertices of the cevian triangle of X(2) and the anticevian triangle of X(11).
X(66050) lies on these lines: {1, 376}, {65, 27778}, {946, 13226}, {1125, 37545}, {3244, 24470}, {3306, 3646}, {3452, 11263}, {3671, 5122}, {3828, 51572}, {4640, 14150}, {4691, 5850}, {5183, 21620}, {5905, 11024}, {9948, 64119}, {10404, 11362}, {18480, 30424}, {31870, 66020}, {41869, 65383}
Triangle CTR9-2.11 vertices are the barycentric sums of the corresponding vertices of the cevian triangle of X(2) and the anticevian triangle of X(11).
X(66051) lies on these lines: {1, 5}, {3, 13257}, {4, 9963}, {7, 6911}, {9, 549}, {30, 908}, {78, 37406}, {100, 6361}, {104, 6883}, {140, 1071}, {149, 6849}, {153, 6827}, {214, 3452}, {224, 37356}, {381, 12690}, {515, 66052}, {528, 12611}, {550, 6259}, {631, 13243}, {912, 3911}, {936, 44222}, {942, 64475}, {1145, 3940}, {1512, 5844}, {1537, 12331}, {1768, 38760}, {1862, 15763}, {2771, 3035}, {2800, 31837}, {2801, 6666}, {2829, 22935}, {2932, 45393}, {3579, 35023}, {3652, 52793}, {3913, 18491}, {4304, 37290}, {4999, 56762}, {5433, 27778}, {5541, 50908}, {5692, 61524}, {5748, 6224}, {5761, 9802}, {5763, 51525}, {5770, 31188}, {5780, 38752}, {5806, 64192}, {5840, 21635}, {5843, 50573}, {5851, 31658}, {6001, 66053}, {6154, 12699}, {6174, 12515}, {6700, 13369}, {6702, 58463}, {6825, 64141}, {6848, 10698}, {6856, 59415}, {6858, 66045}, {6905, 17484}, {6970, 64142}, {7308, 64012}, {7682, 25485}, {8167, 38028}, {8257, 25558}, {8703, 31142}, {9803, 64008}, {9809, 34474}, {9844, 64476}, {9955, 66065}, {9956, 38758}, {9964, 61539}, {10090, 12831}, {10265, 58421}, {10609, 10742}, {10993, 34789}, {11108, 12773}, {11495, 12332}, {12619, 20400}, {12757, 66021}, {13411, 16617}, {15015, 38761}, {16128, 24466}, {17660, 66014}, {18228, 28466}, {18397, 34753}, {18516, 56177}, {18524, 51409}, {20117, 31659}, {25011, 64853}, {27065, 28465}, {27131, 28459}, {27385, 40263}, {28174, 44425}, {28452, 31053}, {29243, 34461}, {31835, 52265}, {31937, 59719}, {36922, 50823}, {38032, 38669}, {38042, 64335}, {38112, 61628}, {38602, 51506}, {44286, 64186}, {50205, 61566}, {52638, 61533}, {61562, 64193}
X(66051) = midpoint of X(i) and X(j) for these {i,j}: {3, 13257}, {11, 12738}, {119, 6326}, {1145, 48667}, {1537, 12331}, {5531, 37726}, {6154, 12699}, {6265, 37725}, {10609, 10742}, {10993, 34789}, {16128, 24466}, {18524, 51409}, {38665, 64138}
X(66051) = reflection of X(i) in X(j) for these {i,j}: {3579, 35023}, {10265, 58421}, {12619, 20400}, {13226, 140}, {64193, 61562}, {66065, 9955}
X(66051) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {3, 13257, 18342}
X(66051) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 12738, 952}, {5660, 6326, 119}, {5720, 37713, 5}
CTR9-2.2 is the triangle homothetic to ABC with center X(2) and ratio 5/4.
X(66052) lies on these lines: {2, 104}, {11, 3851}, {80, 11529}, {100, 3529}, {140, 38758}, {149, 61982}, {355, 7700}, {382, 5840}, {515, 66051}, {528, 15687}, {546, 946}, {550, 2829}, {1145, 16128}, {1478, 64341}, {1484, 38071}, {2771, 9947}, {2800, 3626}, {2801, 60980}, {3035, 3530}, {3036, 47320}, {3528, 38761}, {3544, 23513}, {3632, 12751}, {3636, 11729}, {3644, 66057}, {3855, 10597}, {3870, 12690}, {3982, 12736}, {5079, 12773}, {5083, 12019}, {5818, 13243}, {5841, 44425}, {5884, 18357}, {6174, 15688}, {6326, 18528}, {6667, 51529}, {6745, 9945}, {6929, 64735}, {9956, 13226}, {10299, 12248}, {10698, 20050}, {10707, 61967}, {10724, 62017}, {10728, 10993}, {10738, 14269}, {10759, 11008}, {11019, 38140}, {11715, 15808}, {11737, 60759}, {12138, 52285}, {12619, 50238}, {13199, 62042}, {14869, 20400}, {15017, 38032}, {15681, 24466}, {15700, 38762}, {15720, 38752}, {16205, 34747}, {20418, 35018}, {21154, 55863}, {28186, 54192}, {31235, 61850}, {34200, 38759}, {34474, 62097}, {34641, 50906}, {38665, 50688}, {38693, 38763}, {38754, 62074}, {40341, 66030}, {45310, 47478}, {51525, 62044}, {57298, 61905}, {59377, 61928}, {60957, 66023}, {61566, 61894}
X(66052) = midpoint of X(i) and X(j) for these {i,j}: {119, 153}, {355, 13257}, {382, 6154}, {1145, 16128}, {10728, 10993}, {10742, 37725}, {12331, 52836}, {24466, 38756}, {38665, 64186}
X(66052) = reflection of X(i) in X(j) for these {i,j}: {104, 58421}, {550, 35023}, {6713, 119}, {13226, 9956}, {20418, 61580}, {38602, 20400}, {38757, 61605}, {38759, 61562}, {51529, 6667}, {66065, 546}
X(66052) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {24466, 38756, 63407}
X(66052) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {104, 119, 58421}, {104, 58421, 6713}, {153, 10711, 119}, {546, 952, 66065}, {952, 61605, 38757}, {2829, 35023, 550}, {10742, 12331, 52836}, {10742, 37725, 5840}, {20418, 61580, 38319}, {37725, 52836, 12331}
CTR9-2.2 is the triangle homothetic to ABC with center X(2) and ratio 5/4.
X(66053) lies on these lines: {1, 13226}, {9, 119}, {100, 64144}, {952, 3913}, {1125, 2800}, {1145, 6244}, {1158, 10942}, {1387, 17626}, {1537, 36279}, {1768, 10956}, {2077, 9945}, {2829, 3579}, {3035, 31787}, {3256, 9952}, {5128, 34789}, {5552, 13257}, {5787, 6154}, {6001, 66051}, {6256, 61524}, {6735, 17613}, {10269, 64109}, {10528, 13243}, {10679, 14647}, {10915, 34862}, {11231, 12608}, {12019, 63266}, {12690, 64078}, {12751, 24466}, {18542, 64190}, {31794, 64192}, {35023, 64804}, {35445, 64145}, {38758, 64813}, {55297, 55301}, {64008, 66060}, {64191, 64951}
X(66053) = midpoint of X(i) and X(j) for these {i,j}: {119, 2950}, {5787, 6154}, {16128, 52116}
X(66053) = reflection of X(i) in X(j) for these {i,j}: {64804, 35023}
Triangle CTR1-7 is defined by the Aubert (Steiner) lines of quadrilaterals ABPC, BCPA, CAPB, where P=X(7).
X(66054) lies on these lines: {4, 12755}, {11, 5173}, {119, 518}, {517, 25606}, {952, 15185}, {971, 11570}, {1159, 2800}, {2801, 5805}, {3868, 66023}, {5817, 12532}, {5856, 24474}, {6594, 25485}, {7672, 10698}, {10427, 66047}, {10728, 12669}, {11372, 11571}, {11715, 20116}, {12738, 22753}, {18254, 38108}, {18861, 60948}, {38032, 58564}, {38053, 58604}, {57278, 66056}
X(66054) = midpoint of X(i) and X(j) for these {i,j}: {4, 12755}, {3868, 66023}, {7672, 10698}, {10728, 12669}, {11372, 11571}
X(66054) = reflection of X(i) in X(j) for these {i,j}: {10427, 66047}, {11715, 20116}
Triangle CTR4-100 is defined as follows. Let DEF be cevian triangle of X(100). AD intersects the circle (AEF) at A1 different from A. Define B1, C1 cyclically, then CTR4-100 is the triangle A1B1C1. It is similar to ABC.
X(66055) lies on these lines: {1, 104}, {3, 1633}, {4, 55966}, {11, 1466}, {20, 100}, {21, 54442}, {78, 12666}, {80, 59329}, {84, 2801}, {119, 6850}, {145, 12114}, {214, 12520}, {404, 64119}, {515, 5537}, {516, 48713}, {528, 64074}, {912, 56941}, {946, 64155}, {952, 3189}, {962, 13279}, {971, 12738}, {997, 12686}, {1012, 14647}, {1156, 66020}, {1376, 38757}, {1413, 66036}, {1537, 4295}, {1770, 10090}, {2077, 6745}, {2096, 8069}, {2475, 12761}, {2771, 17649}, {2932, 13257}, {3035, 6908}, {3065, 44861}, {3651, 5660}, {4189, 22775}, {4305, 64191}, {4511, 6001}, {5010, 5924}, {5440, 48697}, {5840, 6851}, {6174, 37427}, {6245, 49176}, {6256, 10711}, {6261, 37403}, {6700, 21635}, {6705, 11219}, {6713, 6892}, {6736, 12751}, {6845, 59391}, {6888, 31272}, {6895, 10724}, {6937, 64008}, {6940, 12608}, {6950, 14646}, {7971, 63983}, {9809, 10309}, {10087, 64145}, {10609, 12330}, {10707, 63980}, {11248, 34619}, {11496, 14986}, {11698, 33898}, {12515, 31788}, {12616, 21669}, {12675, 14151}, {12680, 41701}, {12737, 13600}, {13243, 18238}, {13601, 17654}, {18237, 51636}, {18419, 62873}, {18861, 40293}, {26333, 47744}, {31730, 64280}, {34772, 65998}, {35238, 64148}, {37401, 38752}, {37434, 45043}, {37560, 46684}, {37561, 50908}, {38697, 61221}, {43178, 52026}, {54052, 63168}, {56288, 64189}
X(66055) = reflection of X(i) in X(j) for these {i,j}: {100, 12332}, {104, 48695}, {12667, 37725}, {33898, 11698}, {38669, 12114}, {46435, 21635}, {48694, 5450}, {48697, 5440}, {49176, 6245}, {64267, 11715}, {66058, 46684}
X(66055) = pole of line {6366, 53305} with respect to the circumcircle
X(66055) = X(84) of anti-inner-Garcia triangle
X(66055) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1795), X(55966)}}, {{A, B, C, X(6001), X(37725)}}, {{A, B, C, X(15501), X(34894)}}
X(66055) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {78, 49171, 12666}, {153, 7080, 37725}, {1768, 10058, 104}, {2800, 11715, 64267}, {2800, 5450, 48694}, {2829, 37725, 12667}, {10310, 37725, 100}, {48694, 48695, 5450}
X(66056) lies on these lines: {9, 119}, {84, 66010}, {100, 971}, {104, 2346}, {480, 12665}, {518, 48695}, {952, 3358}, {1001, 2800}, {1158, 5851}, {1445, 1537}, {1768, 15298}, {2801, 6600}, {5728, 12775}, {6594, 64156}, {11372, 59390}, {17654, 53055}, {18230, 66060}, {24466, 58808}, {41166, 64338}, {57278, 66054}, {60970, 64189}, {64188, 65405}
X(66056) = midpoint of X(i) and X(j) for these {i,j}: {9, 2950}, {84, 66010}
X(66056) = reflection of X(i) in X(j) for these {i,j}: {64156, 6594}, {64188, 65405}
X(66057) lies on these lines: {37, 104}, {75, 119}, {153, 192}, {518, 10698}, {536, 10711}, {537, 50908}, {726, 21635}, {740, 12751}, {742, 66030}, {952, 20430}, {984, 2800}, {2801, 51058}, {2805, 38665}, {2829, 30273}, {3644, 66052}, {3739, 64008}, {4687, 6713}, {4699, 66045}, {4704, 64009}, {4751, 58421}, {5840, 51063}, {6174, 51044}, {7201, 12736}, {10707, 51038}, {10742, 29010}, {12332, 34247}, {13253, 49448}, {25485, 49490}, {29054, 34789}, {30271, 34474}, {38752, 64728}, {57298, 61522}
X(66057) = midpoint of X(i) and X(j) for these {i,j}: {153, 192}, {13253, 49448}
X(66057) = reflection of X(i) in X(j) for these {i,j}: {75, 119}, {104, 37}, {10707, 51038}, {30273, 51062}, {49490, 25485}, {51044, 6174}, {66067, 20430}
X(66057) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {952, 20430, 66067}, {2829, 51062, 30273}, {10698, 66023, 10759}
Let MaMbMc be the medial triangle. CTR12-1.2 is the triangle with vertices at the inversion poles of MbMc, MaMc, and MaMb wrt to the X(1)-circumconic.
X(66058) lies on circumconic {{A, B, C, X(36100), X(46435)}} and on these lines: {1, 22775}, {4, 64372}, {9, 119}, {11, 12858}, {40, 78}, {46, 80}, {57, 104}, {63, 153}, {144, 64148}, {165, 12332}, {191, 18242}, {227, 66036}, {484, 6001}, {515, 3218}, {517, 64267}, {518, 66062}, {908, 66060}, {912, 66061}, {952, 5709}, {1001, 58613}, {1158, 2475}, {1317, 7966}, {1445, 10265}, {1490, 2771}, {1697, 10698}, {1709, 12761}, {1727, 41698}, {2093, 17654}, {2323, 66029}, {2787, 24469}, {2801, 60990}, {2932, 6282}, {3035, 61122}, {3220, 9913}, {3305, 66045}, {3333, 11715}, {3336, 12114}, {3576, 64359}, {3587, 33814}, {3929, 10711}, {5119, 13253}, {5128, 12691}, {5220, 58687}, {5227, 66030}, {5251, 64118}, {5437, 6713}, {5531, 5904}, {5536, 7993}, {5541, 41338}, {5720, 40266}, {5727, 12248}, {5903, 59366}, {6260, 9809}, {6264, 12704}, {6596, 37531}, {6769, 13205}, {7171, 38753}, {7308, 64008}, {7330, 10742}, {7686, 15932}, {7951, 64119}, {7972, 65129}, {8068, 12705}, {8580, 58666}, {9841, 38761}, {9897, 49170}, {10058, 59335}, {10175, 61012}, {10980, 58595}, {11698, 26921}, {12331, 37584}, {12514, 21635}, {12616, 18406}, {12650, 12773}, {12751, 57279}, {12762, 41229}, {12764, 30223}, {13528, 58328}, {15015, 59340}, {15737, 64761}, {17638, 63992}, {17699, 63281}, {18237, 37567}, {18397, 56889}, {18443, 66047}, {18491, 31828}, {18540, 22799}, {18802, 63137}, {20420, 64265}, {24468, 64743}, {25485, 31393}, {31018, 40256}, {34256, 55931}, {34474, 37551}, {36922, 63132}, {37526, 38693}, {37534, 38602}, {37560, 46684}, {38036, 63254}, {48695, 59333}, {51768, 65948}, {51780, 58421}, {62354, 64261}, {63430, 64145}
X(66058) = reflection of X(i) in X(j) for these {i,j}: {1, 22775}, {84, 1768}, {2950, 12515}, {5531, 11500}, {6264, 48694}, {6326, 64188}, {6769, 13205}, {9809, 6260}, {12650, 12773}, {64261, 62354}, {66055, 46684}, {66068, 5709}
X(66058) = inverse of X(102) in the Bevan circle
X(66058) = X(2931) of excentral triangle
X(66058) = pole of line {102, 104} with respect to the Bevan circle
X(66058) = pole of line {16548, 66068} with respect to the Gheorghe circle
X(66058) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {952, 5709, 66068}, {1768, 2829, 84}, {2800, 64188, 6326}, {2950, 46435, 12686}, {6326, 64188, 52026}
Let QaQbQc be the cevian triangle of X(8). CTR12-1.8 is the triangle with vertices at the inversion poles of QbQc, QaQc, and QaQb wrt to the X(1)-circumconic.
X(66059) lies on the 2nd Evans circle and on these lines: {1, 399}, {3, 3711}, {9, 48}, {11, 3333}, {30, 51463}, {40, 550}, {46, 9897}, {57, 80}, {63, 6224}, {84, 1320}, {90, 56036}, {100, 4652}, {119, 11219}, {149, 41869}, {153, 3306}, {165, 12331}, {191, 34773}, {200, 2932}, {484, 28204}, {515, 3218}, {517, 7993}, {528, 58808}, {912, 4867}, {946, 9809}, {971, 64264}, {999, 60884}, {1012, 42871}, {1158, 3895}, {1317, 31393}, {1387, 50908}, {1484, 1699}, {1490, 22775}, {1537, 5851}, {1697, 7972}, {1698, 11698}, {1706, 15863}, {1709, 12737}, {2077, 3689}, {2093, 17636}, {2802, 6762}, {2829, 10864}, {2886, 66017}, {2950, 12703}, {2975, 16132}, {3036, 5794}, {3059, 7688}, {3219, 51705}, {3220, 9912}, {3336, 18525}, {3337, 18480}, {3338, 10742}, {3339, 6797}, {3340, 11571}, {3359, 19914}, {3464, 12407}, {3612, 41689}, {3624, 61566}, {3646, 34123}, {3881, 21669}, {3929, 64011}, {4654, 33593}, {5071, 50909}, {5131, 18524}, {5219, 66012}, {5258, 13369}, {5289, 5693}, {5437, 6702}, {5536, 28160}, {5563, 40263}, {5660, 6713}, {5691, 62354}, {5791, 13226}, {5881, 12247}, {5902, 18519}, {6001, 64267}, {6211, 56807}, {6265, 7330}, {6765, 13205}, {6909, 62236}, {7280, 35451}, {7308, 64012}, {7987, 22935}, {7989, 38755}, {8227, 21635}, {8580, 58659}, {8666, 64358}, {9355, 32486}, {9616, 35882}, {9802, 28194}, {9841, 38665}, {9845, 59347}, {9956, 35010}, {10057, 59335}, {10058, 37736}, {10074, 61762}, {10165, 35595}, {10389, 63281}, {10476, 13244}, {10529, 16127}, {10698, 12705}, {10860, 64189}, {10980, 58587}, {11010, 18526}, {11012, 12680}, {11014, 15071}, {11525, 39776}, {11529, 11570}, {11715, 64260}, {12248, 12625}, {12332, 52027}, {12514, 33337}, {12531, 63137}, {12611, 18540}, {12619, 37534}, {12687, 45632}, {12699, 64289}, {12738, 15015}, {12739, 27778}, {12740, 30223}, {12743, 54408}, {12747, 37532}, {13257, 20418}, {14217, 63974}, {14872, 37561}, {15017, 57298}, {15079, 18542}, {15096, 22758}, {17437, 53616}, {17857, 59332}, {18398, 18761}, {18518, 37524}, {18976, 37550}, {18991, 35856}, {18992, 35857}, {20095, 31730}, {21630, 31162}, {22560, 50528}, {22791, 64740}, {22936, 26089}, {23958, 50864}, {24390, 49178}, {25524, 58683}, {27003, 50796}, {27065, 50828}, {30282, 41541}, {31871, 45977}, {34628, 37584}, {34789, 37726}, {35638, 39552}, {37234, 50190}, {37612, 37714}, {37618, 45764}, {38617, 63911}, {38631, 64742}, {38753, 41338}, {45043, 60938}, {46681, 53055}, {47034, 57282}, {48713, 54441}, {50907, 51781}, {51780, 58453}, {54370, 61275}, {58609, 63266}, {60936, 63993}, {61261, 61605}, {63143, 64129}
X(66059) = midpoint of X(i) and X(j) for these {i,j}: {7993, 12767}, {9803, 64009}, {13243, 38669}
X(66059) = reflection of X(i) in X(j) for these {i,j}: {1, 12773}, {40, 1768}, {153, 10265}, {1490, 22775}, {5531, 3}, {5541, 12515}, {5691, 62354}, {5881, 12247}, {6264, 38669}, {6265, 51529}, {6326, 104}, {6765, 13205}, {7982, 6264}, {9809, 946}, {12738, 38602}, {13253, 12737}, {13257, 20418}, {16128, 1484}, {20095, 31730}, {34789, 37726}, {37725, 13226}, {38665, 46684}, {41869, 149}, {64278, 9803}, {64742, 38631}, {66068, 62858}
X(66059) = inverse of X(12515) in Bevan circle
X(66059) = X(399) of excentral triangle
X(66059) = X(3448) of hexyl triangle
X(66059) = X(6361) of anti-inner-Garcia triangle
X(66059) = pole of line {900, 12515} with respect to the Bevan circle
X(66059) = pole of line {8674, 14288} with respect to the Conway circle
X(66059) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(909), X(28193)}}, {{A, B, C, X(3065), X(52663)}}
X(66059) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {104, 2801, 6326}, {104, 6326, 3576}, {153, 10265, 5587}, {515, 9803, 64278}, {952, 12515, 5541}, {1484, 16128, 1699}, {1768, 5541, 12515}, {2771, 12773, 1}, {2800, 38669, 6264}, {2800, 6264, 7982}, {5541, 12515, 40}, {9803, 64009, 515}, {10742, 37718, 18492}, {12737, 13253, 16200}, {12738, 38602, 15015}, {13243, 38669, 2800}, {18540, 51816, 38021}
Let QaQbQc be the cevian triangle of X(85). CTR12-2.85 is the triangle with vertices at the inversion poles of QbQc, QaQc, and QaQb wrt to the Steiner circumconic.
X(66060) lies on these lines: {2, 2950}, {4, 6797}, {7, 104}, {8, 153}, {80, 64130}, {149, 9799}, {214, 63971}, {329, 55016}, {515, 9802}, {908, 66058}, {952, 6223}, {962, 1320}, {1158, 3306}, {1490, 20095}, {1519, 37789}, {1737, 12767}, {1768, 3086}, {2476, 11024}, {3616, 48695}, {4295, 12736}, {4345, 12248}, {5082, 17661}, {5328, 12515}, {5531, 54227}, {5658, 12331}, {5703, 12775}, {5811, 38755}, {5853, 66061}, {6001, 9803}, {9778, 64188}, {9785, 64191}, {10580, 15528}, {11037, 64192}, {11415, 17100}, {12246, 12773}, {12743, 64321}, {12761, 59387}, {13199, 54051}, {14450, 64120}, {14986, 45655}, {18228, 64193}, {18230, 66056}, {22775, 64190}, {24466, 64696}, {25005, 54156}, {30305, 64145}, {33898, 66008}, {36845, 66002}, {38460, 64009}, {64008, 66053}
X(66060) = reflection of X(i) in X(j) for these {i,j}: {153, 46435}, {5531, 54227}, {9799, 149}, {9809, 63962}, {12246, 12773}, {20095, 1490}, {64009, 64267}, {64190, 22775}, {66008, 33898}
X(66060) = anticomplement of X(2950)
X(66060) = X(2950) of anticomplementary triangle
X(66060) = X(5504) of 2nd-Conway triangle
X(66060) = X(i)-Dao conjugate of X(j) for these {i, j}: {2950, 2950}
X(66060) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2800, 46435, 153}, {2800, 63962, 9809}
Let QaQbQc be the cevian triangle of X(1). CTR12-9.1 is the triangle with vertices at the inversion poles of QbQc, QaQc, and QaQb wrt to the X(9)-circumconic.
X(66061) lies on these lines: {1, 17661}, {9, 48}, {57, 66002}, {153, 5727}, {912, 66058}, {952, 3680}, {1490, 66068}, {1537, 3243}, {1697, 66024}, {2136, 2800}, {2771, 5534}, {2829, 11523}, {2932, 30304}, {2950, 3158}, {3928, 64188}, {5437, 15528}, {5531, 5687}, {5853, 66060}, {6001, 66062}, {7982, 10728}, {7992, 13205}, {9803, 64115}, {12528, 64372}, {12767, 48696}, {15829, 64191}, {18443, 66049}, {34789, 41863}, {62218, 64193}
X(66061) = reflection of X(i) in X(j) for these {i,j}: {7992, 13205}, {66068, 1490}
Let QaQbQc be the medial triangle. CTR12-9.2 is the triangle with vertices at the inversion poles of QbQc, QaQc, and QaQb wrt to the X(9)-circumconic.
X(66062) lies on these lines: {1, 5}, {84, 13205}, {100, 10270}, {104, 200}, {153, 3870}, {518, 66058}, {519, 64267}, {528, 42470}, {912, 12767}, {936, 11715}, {1001, 58687}, {1145, 30503}, {1320, 16205}, {1490, 2802}, {1750, 14217}, {2057, 38669}, {2077, 3689}, {2771, 49163}, {2800, 6765}, {2801, 2950}, {2829, 6769}, {2900, 12641}, {2932, 63430}, {3158, 12332}, {3359, 12331}, {3935, 64009}, {4326, 66023}, {4666, 66045}, {5437, 58595}, {5840, 63981}, {6001, 66061}, {6282, 64145}, {6713, 8580}, {6735, 9803}, {6762, 22775}, {9913, 40910}, {10582, 64008}, {10679, 60884}, {10728, 12651}, {10738, 18528}, {11500, 66068}, {12565, 64136}, {12653, 63988}, {12705, 17661}, {14872, 64372}, {17654, 63137}, {18446, 66008}, {18529, 65948}, {22560, 52026}, {30350, 58604}, {30393, 58674}, {34474, 64679}, {37561, 64116}, {38752, 64668}, {42871, 58613}, {58663, 61122}, {58666, 62218}, {64150, 64743}
X(66062) = reflection of X(i) in X(j) for these {i,j}: {84, 13205}, {2950, 25438}, {5531, 5534}, {6762, 22775}, {66068, 11500}
X(66062) = X(5531) of anti-outer-Yff triangle
X(66062) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {952, 5534, 5531}, {2801, 25438, 2950}, {6264, 6326, 12740}
CTR5-2.2 is the triangle homothetic to ABC with center X(2) and ratio 2/7.
X(66063) lies on these lines: {1, 32558}, {2, 11}, {4, 38141}, {5, 153}, {8, 6702}, {10, 12653}, {20, 6713}, {80, 3616}, {88, 62221}, {104, 3091}, {119, 5056}, {140, 13199}, {144, 64738}, {145, 1387}, {210, 58611}, {214, 5550}, {354, 58683}, {376, 22938}, {377, 51636}, {381, 12248}, {404, 10593}, {499, 5046}, {549, 48680}, {551, 9897}, {631, 10738}, {632, 61601}, {952, 3090}, {956, 4193}, {962, 16174}, {1023, 26074}, {1125, 6224}, {1145, 46933}, {1156, 38205}, {1317, 10588}, {1320, 3617}, {1484, 1656}, {1537, 6956}, {1647, 33148}, {1698, 21630}, {1768, 3817}, {1862, 8889}, {2475, 7741}, {2486, 27342}, {2771, 61268}, {2802, 9780}, {2805, 4751}, {2829, 3832}, {2932, 17531}, {2975, 3847}, {3036, 3621}, {3085, 5533}, {3086, 5154}, {3146, 38693}, {3241, 15863}, {3243, 30852}, {3254, 18230}, {3305, 66068}, {3306, 64372}, {3315, 37691}, {3485, 20118}, {3522, 10724}, {3523, 5840}, {3525, 33814}, {3533, 38762}, {3543, 38761}, {3544, 51529}, {3545, 10742}, {3582, 5080}, {3583, 36004}, {3618, 66037}, {3619, 9024}, {3620, 10755}, {3623, 12531}, {3628, 12331}, {3634, 5541}, {3825, 5251}, {3839, 10728}, {3850, 38756}, {3855, 22799}, {3868, 58587}, {3877, 6797}, {3890, 17636}, {3917, 58539}, {3957, 64676}, {4188, 10058}, {4189, 10090}, {4430, 5748}, {4666, 5531}, {4678, 5854}, {4699, 66067}, {4857, 20107}, {4928, 38325}, {4996, 16865}, {5055, 11698}, {5057, 61649}, {5059, 38759}, {5067, 38752}, {5068, 20418}, {5070, 61562}, {5071, 38084}, {5076, 38637}, {5083, 5226}, {5087, 17484}, {5141, 39692}, {5219, 30318}, {5223, 27131}, {5225, 37307}, {5253, 7173}, {5260, 22560}, {5328, 46694}, {5422, 66036}, {5433, 15680}, {5528, 58433}, {5603, 12619}, {5704, 12736}, {5731, 6246}, {5775, 26129}, {5818, 12737}, {5848, 51171}, {5886, 12247}, {5889, 58508}, {6264, 10175}, {6622, 12138}, {6681, 65140}, {6856, 34123}, {6859, 11729}, {6879, 10698}, {6894, 63963}, {6904, 47744}, {6933, 12019}, {6952, 64792}, {6979, 18491}, {7288, 13273}, {7485, 13222}, {7486, 10587}, {7705, 11373}, {7972, 38314}, {7988, 21635}, {8047, 56365}, {8164, 12735}, {8166, 52682}, {8227, 10265}, {8972, 19113}, {9345, 17717}, {9669, 17566}, {9779, 34789}, {9802, 19877}, {9809, 11219}, {9812, 46684}, {9956, 66008}, {10006, 17494}, {10074, 10590}, {10171, 15017}, {10246, 61553}, {10303, 34474}, {10595, 19914}, {10711, 61924}, {10896, 37256}, {10993, 61856}, {11002, 58475}, {11230, 62354}, {11451, 58504}, {11604, 15674}, {11681, 63270}, {11715, 59387}, {12119, 54445}, {12747, 38028}, {13226, 38107}, {13595, 54065}, {13902, 49241}, {13941, 19112}, {13959, 49240}, {14217, 38133}, {15015, 19862}, {15022, 38669}, {15325, 20067}, {15677, 56790}, {15692, 38069}, {15717, 24466}, {16468, 29662}, {16859, 51506}, {17100, 17572}, {17483, 17728}, {17533, 54391}, {17570, 48713}, {17578, 59390}, {17605, 26842}, {17660, 64149}, {18240, 18412}, {18398, 47320}, {19632, 28222}, {20070, 64193}, {23343, 27290}, {24465, 64142}, {25005, 50443}, {25055, 33337}, {25416, 31145}, {25439, 27529}, {26102, 64710}, {26136, 58371}, {26492, 37437}, {27138, 37998}, {27186, 31249}, {27355, 58543}, {29688, 60688}, {29817, 37736}, {30143, 45764}, {30577, 44006}, {31276, 32454}, {31412, 48701}, {32785, 48714}, {32786, 48715}, {33703, 38754}, {35856, 42274}, {35857, 42277}, {37725, 61914}, {37758, 60459}, {38038, 64189}, {38077, 61985}, {38090, 63127}, {38099, 50894}, {38104, 50891}, {38161, 64145}, {38636, 61850}, {38665, 46936}, {38760, 55864}, {39778, 54392}, {41541, 62870}, {42561, 48700}, {48667, 61272}, {50689, 52836}, {51157, 63119}, {51198, 63123}, {51525, 60781}, {53620, 64056}, {59373, 66039}, {59388, 64742}, {59417, 64138}, {61595, 66007}, {63085, 66035}, {63975, 64155}
X(66063) = reflection of X(i) in X(j) for these {i,j}: {66045, 3090}
X(66063) = pole of line {918, 4409} with respect to the Steiner circumellipse
X(66063) = intersection, other than A, B, C, of circumconics {{A, B, C, X(105), X(24302)}}, {{A, B, C, X(149), X(56365)}}, {{A, B, C, X(3035), X(8047)}}, {{A, B, C, X(35023), X(43974)}}
X(66063) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 33709, 32558}, {2, 20095, 3035}, {11, 3035, 10707}, {11, 6667, 100}, {80, 32557, 3616}, {100, 6667, 2}, {104, 23513, 3091}, {381, 61566, 12248}, {952, 3090, 66045}, {1125, 37718, 6224}, {1156, 38205, 62778}, {1320, 34122, 3617}, {1387, 59415, 145}, {3035, 10707, 20095}, {3086, 5154, 20060}, {6713, 59391, 20}, {9669, 17566, 20066}, {10707, 20095, 149}, {10724, 21154, 3522}, {12737, 38182, 5818}, {15325, 37375, 20067}, {19914, 38044, 10595}, {26726, 38213, 8}, {33709, 59419, 1}, {37726, 38319, 64008}, {38141, 38753, 4}, {38319, 64008, 7486}, {38693, 65948, 3146}
Triangle CTR7-2.149 vertices are the barycentric sums of the corresponding vertices of the cevian triangles of X(2) and X(149).
X(66064) lies on these lines: {11, 11193}, {100, 31628}, {149, 885}, {497, 42547}, {513, 5083}, {528, 64440}, {663, 64710}, {952, 11247}, {1387, 32195}, {1862, 18344}, {2520, 37998}, {3035, 10006}, {3900, 14740}, {8641, 65739}, {11927, 42863}, {11934, 15914}, {13274, 40166}, {38325, 65664}
X(66064) = midpoint of X(i) and X(j) for these {i,j}: {11, 66026}
X(66064) = reflection of X(i) in X(j) for these {i,j}: {1387, 32195}, {10006, 17115}
X(66064) = X(i)-Ceva conjugate of X(j) for these {i, j}: {31611, 650}
X(66064) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11193, 66026, 11}
CTR9-2.2 is the triangle homothetic to ABC with center X(2) and ratio 5/4.
X(66065) lies on these lines: {1, 12690}, {2, 11}, {5, 25439}, {80, 3632}, {104, 3529}, {119, 3851}, {153, 59390}, {214, 15808}, {226, 15570}, {382, 2829}, {496, 17563}, {516, 13226}, {529, 3583}, {546, 946}, {550, 1484}, {900, 4458}, {956, 1479}, {960, 2802}, {1125, 9945}, {1145, 37718}, {1156, 60957}, {1279, 17070}, {1317, 3485}, {1320, 7319}, {1329, 9669}, {1387, 3636}, {1476, 11604}, {1537, 49176}, {1699, 3243}, {1837, 13463}, {1848, 1862}, {2805, 4739}, {2810, 38390}, {3039, 21090}, {3062, 3254}, {3436, 9671}, {3528, 24466}, {3530, 6713}, {3544, 38665}, {3616, 9963}, {3627, 62825}, {3629, 5848}, {3631, 9024}, {3644, 66067}, {3722, 37691}, {3742, 63972}, {3746, 6668}, {3756, 24715}, {3822, 15170}, {3838, 64162}, {3847, 5687}, {3855, 10599}, {3871, 7173}, {3873, 27778}, {3874, 31828}, {3913, 10591}, {3914, 59477}, {3982, 5083}, {4023, 21283}, {4031, 24465}, {4293, 34706}, {4512, 51791}, {4640, 24386}, {4649, 33106}, {4847, 15481}, {4857, 5251}, {4973, 28178}, {4996, 17574}, {4999, 15171}, {5057, 5852}, {5079, 12331}, {5082, 9711}, {5087, 5853}, {5176, 32426}, {5223, 24392}, {5225, 12513}, {5528, 38205}, {5533, 51636}, {5541, 31435}, {5572, 18240}, {5727, 34640}, {5794, 51785}, {5856, 24389}, {5880, 17051}, {6068, 60983}, {6261, 12737}, {6264, 63992}, {6326, 38038}, {6691, 37720}, {6982, 64735}, {7671, 33558}, {7681, 18491}, {7741, 64123}, {8256, 9581}, {8715, 10593}, {9041, 21093}, {9345, 33104}, {9668, 45700}, {9670, 10527}, {9802, 13996}, {9812, 13243}, {9897, 25416}, {9946, 13374}, {9955, 66051}, {10058, 19535}, {10090, 19537}, {10129, 37703}, {10299, 13199}, {10300, 18589}, {10529, 12953}, {10609, 16173}, {10711, 61967}, {10724, 49135}, {10728, 62017}, {10742, 14269}, {10755, 11008}, {10896, 12607}, {10993, 15720}, {11240, 12943}, {11698, 38071}, {11715, 65404}, {11737, 61580}, {11928, 18242}, {12248, 62042}, {12531, 20054}, {12630, 25568}, {12735, 50892}, {12915, 41871}, {13279, 50244}, {14740, 58683}, {14869, 33814}, {15172, 25639}, {15681, 38761}, {15687, 22938}, {15863, 34641}, {16468, 33141}, {16866, 51506}, {17533, 48696}, {17571, 48713}, {17606, 32157}, {17660, 66009}, {17719, 53534}, {17721, 66071}, {17757, 65140}, {17768, 26015}, {18483, 34791}, {18527, 64732}, {19641, 28162}, {20085, 62617}, {20850, 54065}, {22793, 49627}, {24477, 63975}, {26470, 64792}, {27065, 61032}, {30384, 44669}, {31936, 34503}, {32557, 51724}, {34126, 61853}, {34200, 61566}, {34474, 61814}, {35018, 60759}, {36835, 38200}, {37722, 52367}, {38069, 61829}, {38077, 61947}, {38140, 49626}, {38152, 66007}, {38156, 66008}, {38159, 66010}, {38319, 61562}, {38669, 50688}, {38693, 62097}, {38752, 61905}, {38753, 49139}, {38754, 62128}, {38760, 55863}, {38762, 61855}, {38763, 61892}, {39692, 65132}, {40341, 66037}, {42886, 64152}, {46816, 57002}, {51198, 62995}, {51525, 58421}, {51529, 62044}, {51768, 66068}, {52985, 64445}, {54391, 65632}, {61649, 63145}, {62354, 64138}, {62837, 65631}, {64140, 64335}
X(66065) = midpoint of X(i) and X(j) for these {i,j}: {1, 12690}, {11, 149}, {1320, 62616}, {1537, 49176}, {5057, 51463}, {9802, 13996}, {9897, 25416}, {10738, 37726}, {12773, 64186}, {20085, 62617}, {38669, 52836}, {38761, 48680}, {54391, 65632}, {62354, 64138}
X(66065) = reflection of X(i) in X(j) for these {i,j}: {100, 6667}, {3035, 11}, {3036, 12019}, {5083, 58611}, {9945, 1125}, {9946, 13374}, {12331, 20400}, {14740, 58683}, {20418, 1484}, {38757, 65948}, {38759, 20418}, {51525, 58421}, {66051, 9955}, {66052, 546}
X(66065) = complement of X(6154)
X(66065) = anticomplement of X(35023)
X(66065) = X(i)-Dao conjugate of X(j) for these {i, j}: {35023, 35023}
X(66065) = pole of line {659, 44807} with respect to the circumcircle
X(66065) = pole of line {17719, 53523} with respect to the incircle
X(66065) = pole of line {918, 27191} with respect to the Steiner inellipse
X(66065) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {11, 149, 10776}
X(66065) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4428), X(14947)}}, {{A, B, C, X(20095), X(43974)}}
X(66065) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 100, 6667}, {11, 149, 528}, {11, 6154, 2}, {100, 6667, 3035}, {149, 10707, 11}, {497, 11235, 2886}, {528, 6667, 100}, {546, 952, 66052}, {952, 65948, 38757}, {1479, 3813, 57288}, {1484, 5840, 20418}, {2802, 12019, 3036}, {3058, 11680, 6690}, {3434, 11238, 3816}, {5057, 51463, 5852}, {5840, 20418, 38759}, {9802, 59415, 13996}, {9897, 50891, 25416}, {10738, 12773, 64186}, {10738, 37726, 2829}, {12331, 23513, 20400}, {15171, 24387, 4999}, {24386, 51783, 4640}, {24646, 24647, 4428}, {37726, 64186, 12773}
Triangle CTR4-100 is defined as follows. Let DEF be cevian triangle of X(100). AD intersects the circle (AEF) at A1 different from A. Define B1, C1 cyclically, then CTR4-100 is the triangle A1B1C1. It is similar to ABC.
X(66066) lies on these lines: {1, 18339}, {10, 521}, {11, 12016}, {117, 24030}, {496, 942}, {502, 15232}, {900, 11798}, {1210, 31849}, {1385, 28347}, {1387, 25437}, {2695, 2720}, {10950, 15524}, {11373, 23869}, {12053, 24201}, {12608, 64512}, {13138, 50917}, {20264, 35580}, {37702, 56814}
X(66066) = midpoint of X(i) and X(j) for these {i,j}: {13138, 50917}
X(66066) = X(135) of Fuhrmann triangle
X(66067) lies on these lines: {11, 75}, {37, 100}, {80, 740}, {148, 24500}, {149, 192}, {190, 4516}, {335, 876}, {518, 1156}, {528, 4664}, {536, 4956}, {537, 50891}, {726, 21630}, {742, 66037}, {903, 3675}, {952, 20430}, {984, 2802}, {1025, 62764}, {2087, 37129}, {2161, 3573}, {2170, 24482}, {2310, 25048}, {2397, 13576}, {2611, 64863}, {2829, 51063}, {3035, 4687}, {3254, 14947}, {3644, 66065}, {3696, 59415}, {3739, 31272}, {4043, 4451}, {4440, 17463}, {4475, 24338}, {4499, 7202}, {4518, 24004}, {4688, 59377}, {4699, 66063}, {4704, 20095}, {4751, 6667}, {4777, 27493}, {4919, 36278}, {4941, 20274}, {5083, 7201}, {5840, 30273}, {5848, 49496}, {5854, 49450}, {5856, 51052}, {6174, 51488}, {7972, 49471}, {9024, 49509}, {9897, 49469}, {10427, 27475}, {10711, 51038}, {10738, 29010}, {12531, 28581}, {12653, 49448}, {13205, 34247}, {13243, 54344}, {14217, 29054}, {15863, 49459}, {16173, 24325}, {17660, 64546}, {21887, 22209}, {21889, 52923}, {24516, 24715}, {27809, 37842}, {30271, 38693}, {31057, 47842}, {32557, 40328}, {37718, 49474}, {38752, 61522}, {49457, 64056}, {49490, 64137}, {50111, 64011}, {51034, 64746}, {57298, 64728}, {59391, 64088}
X(66067) = midpoint of X(i) and X(j) for these {i,j}: {149, 192}, {9897, 49469}, {12653, 49448}
X(66067) = reflection of X(i) in X(j) for these {i,j}: {75, 11}, {100, 37}, {7972, 49471}, {10711, 51038}, {17660, 64546}, {49459, 15863}, {49490, 64137}, {64011, 50111}, {64056, 49457}, {64746, 51034}, {66057, 20430}
X(66067) = pole of line {8540, 9025} with respect to the Feuerbach hyperbola
X(66067) = intersection, other than A, B, C, of circumconics {{A, B, C, X(111), X(30992)}}, {{A, B, C, X(11609), X(24490)}}
X(66067) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 2805, 100}, {952, 20430, 66057}, {1156, 1320, 10755}
Let MaMbMc be the medial triangle. CTR12-1.2 is the triangle with vertices at the inversion poles of MbMc, MaMc, and MaMb wrt to the X(1)-circumconic.
X(66068) lies on these lines: {1, 6596}, {9, 11}, {38, 56317}, {40, 104}, {46, 2136}, {57, 100}, {63, 149}, {80, 57279}, {84, 5840}, {165, 13205}, {190, 4939}, {191, 3813}, {214, 3333}, {244, 3939}, {484, 3880}, {518, 5531}, {519, 5535}, {527, 9809}, {528, 1768}, {952, 5709}, {1001, 58611}, {1054, 61222}, {1145, 1706}, {1317, 37550}, {1320, 1697}, {1331, 1421}, {1484, 26921}, {1490, 66061}, {1616, 10899}, {1709, 13271}, {1750, 17661}, {2323, 66036}, {2771, 54422}, {2783, 24469}, {2900, 17660}, {2932, 15803}, {3035, 5437}, {3218, 5853}, {3219, 24386}, {3220, 13222}, {3305, 66063}, {3336, 3913}, {3337, 56176}, {3338, 15015}, {3359, 3655}, {3587, 38602}, {3601, 4996}, {3646, 32557}, {3738, 13256}, {3882, 26141}, {3894, 34600}, {3929, 10707}, {4666, 63917}, {4853, 17636}, {4860, 6600}, {5119, 12653}, {5220, 58683}, {5227, 66037}, {5436, 51506}, {5438, 10090}, {5528, 60968}, {5759, 24477}, {6224, 62874}, {6326, 11523}, {6597, 24298}, {6667, 51780}, {6713, 61122}, {6763, 65134}, {6765, 12331}, {6769, 12332}, {6797, 9623}, {7091, 12641}, {7289, 9024}, {7308, 31272}, {7330, 10738}, {7993, 12513}, {8580, 58663}, {8668, 37572}, {9802, 21627}, {9803, 24391}, {9841, 24466}, {10087, 59335}, {10389, 65739}, {10390, 34894}, {10427, 60955}, {10912, 11010}, {10980, 58591}, {11034, 35023}, {11500, 66062}, {11520, 39778}, {12119, 63430}, {12248, 12625}, {12514, 21630}, {12526, 17638}, {12629, 59318}, {12705, 14217}, {12773, 37584}, {13199, 63399}, {13243, 60990}, {13272, 37718}, {13274, 30223}, {13277, 53400}, {13279, 15829}, {14740, 60782}, {15932, 34791}, {16173, 31435}, {17059, 33115}, {17154, 65206}, {18240, 64154}, {18540, 22938}, {18839, 58328}, {20588, 30827}, {21342, 56178}, {21635, 28609}, {22770, 64267}, {23958, 64146}, {25438, 59333}, {26877, 64117}, {27003, 59584}, {30578, 60368}, {31393, 64137}, {33814, 37534}, {33895, 37563}, {34474, 37526}, {35445, 64359}, {36975, 44669}, {37551, 38693}, {38316, 64676}, {45043, 55869}, {49168, 64278}, {50865, 51897}, {51768, 66065}, {57036, 65164}, {62819, 64710}, {63130, 64743}, {63137, 64056}
X(66068) = reflection of X(i) in X(j) for these {i,j}: {1, 22560}, {2136, 5541}, {6326, 48713}, {6765, 12331}, {6769, 12332}, {7993, 12513}, {9802, 21627}, {9803, 24391}, {11523, 6326}, {12641, 13996}, {64267, 22770}, {64278, 49168}, {66058, 5709}, {66059, 62858}, {66061, 1490}, {66062, 11500}
X(66068) = inverse of X(1293) in Bevan circle
X(66068) = X(3189) of anti-inner-Garcia triangle
X(66068) = pole of line {100, 1293} with respect to the Bevan circle
X(66068) = pole of line {7677, 61035} with respect to the dual conic of Moses-Feuerbach circumconic
X(66068) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1280), X(6596)}}, {{A, B, C, X(3254), X(43760)}}
X(66068) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63, 149, 64372}, {952, 5709, 66058}, {5541, 5854, 2136}
Let QaQbQc be the medial triangle. CTR12-8.2 is the triangle with vertices at the inversion poles of QbQc, QaQc, and QaQb wrt to the X(8)-circumconic.
X(66069) lies on these lines: {11, 3161}, {100, 6557}, {149, 8055}, {952, 8834}, {2827, 9809}, {2899, 9802}, {5423, 13274}, {6224, 28661}, {20095, 62297}, {34122, 39800}
X(66069) = pole of line {24036, 65818} with respect to the dual conic of incircle
Let QaQbQc be the medial triangle. CTR12-10.2 is the triangle with vertices at the inversion poles of QbQc, QaQc, and QaQb wrt to the X(10)-circumconic.
X(66070) lies on the Yff contact circle and on these lines: {11, 37}, {72, 952}, {98, 100}, {125, 21091}, {149, 3995}, {428, 528}, {740, 51377}, {908, 29010}, {1145, 5295}, {1867, 37725}, {1868, 12138}, {2801, 22001}, {2802, 2901}, {3035, 31993}, {3191, 6326}, {3198, 6154}, {4024, 24979}, {4552, 18210}, {4847, 22004}, {5057, 29073}, {6224, 56318}, {6358, 21319}, {6745, 29347}, {10006, 55210}, {13244, 21061}, {18359, 65313}, {20095, 62227}, {21635, 22000}, {22014, 34789}, {24269, 32931}, {26893, 54035}, {28850, 38389}, {29327, 63145}, {38665, 41013}, {43223, 58397}
X(66070) = X(i)-Dao conjugate of X(j) for these {i, j}: {21091, 150}
X(66070) = X(i)-Ceva conjugate of X(j) for these {i, j}: {44184, 10}
X(66071) lies on circumconic {{A, B, C, X(34578), X(60276)}} and on these lines: {1, 528}, {2, 3712}, {5, 2486}, {6, 17768}, {8, 4389}, {10, 536}, {11, 4850}, {37, 1738}, {39, 5701}, {42, 3782}, {43, 4415}, {55, 7465}, {65, 22464}, {69, 49486}, {75, 4026}, {79, 11076}, {81, 5196}, {100, 17602}, {120, 26242}, {141, 740}, {142, 4356}, {192, 3932}, {238, 17366}, {239, 24723}, {244, 17051}, {321, 26251}, {386, 63997}, {495, 4868}, {496, 53564}, {516, 1386}, {518, 3663}, {519, 4743}, {524, 4655}, {527, 4663}, {545, 32935}, {550, 29032}, {575, 53792}, {594, 32784}, {597, 2796}, {612, 49732}, {614, 49736}, {726, 4085}, {752, 49477}, {758, 48847}, {846, 33132}, {942, 44670}, {946, 4719}, {950, 45275}, {968, 24789}, {984, 17246}, {986, 1834}, {1001, 4000}, {1009, 4436}, {1100, 50307}, {1125, 17067}, {1211, 32776}, {1266, 49483}, {1281, 7792}, {1284, 5132}, {1449, 4312}, {1503, 24257}, {1621, 33150}, {1698, 16676}, {1714, 18253}, {1756, 4271}, {1757, 17334}, {1836, 5256}, {1999, 33068}, {2177, 17724}, {2321, 3844}, {2550, 3672}, {2792, 8550}, {2795, 15048}, {2805, 5883}, {2831, 5884}, {2886, 3666}, {2887, 4970}, {2999, 24703}, {3008, 15254}, {3011, 4689}, {3035, 17720}, {3058, 7191}, {3120, 5718}, {3122, 24443}, {3123, 4642}, {3187, 32950}, {3210, 32773}, {3240, 33151}, {3247, 38052}, {3329, 5992}, {3416, 3875}, {3434, 17599}, {3589, 3923}, {3616, 48805}, {3618, 24280}, {3624, 50126}, {3626, 4407}, {3627, 29113}, {3629, 17770}, {3634, 17359}, {3644, 3790}, {3649, 19767}, {3662, 4966}, {3670, 57022}, {3683, 26723}, {3685, 16706}, {3696, 4357}, {3703, 4972}, {3704, 16062}, {3706, 54311}, {3717, 49523}, {3720, 40688}, {3729, 28556}, {3739, 39580}, {3740, 4656}, {3742, 24177}, {3743, 8728}, {3750, 33147}, {3751, 5852}, {3752, 3816}, {3756, 24217}, {3757, 19796}, {3772, 6690}, {3773, 28522}, {3775, 4709}, {3813, 37592}, {3815, 5988}, {3823, 4078}, {3829, 24239}, {3836, 3993}, {3848, 24175}, {3886, 17304}, {3891, 4030}, {3896, 17184}, {3912, 49462}, {3920, 34612}, {3924, 64158}, {3925, 28606}, {3931, 23537}, {3936, 64161}, {3943, 29674}, {3944, 37662}, {3980, 6703}, {4003, 26015}, {4021, 64174}, {4023, 26580}, {4046, 32782}, {4133, 17229}, {4202, 64071}, {4205, 28612}, {4260, 20718}, {4310, 42871}, {4331, 5228}, {4346, 64165}, {4353, 5853}, {4360, 4645}, {4361, 50295}, {4362, 44419}, {4365, 32781}, {4392, 51463}, {4395, 16825}, {4398, 24349}, {4399, 50308}, {4414, 33128}, {4417, 4734}, {4419, 5220}, {4424, 64172}, {4425, 5743}, {4438, 59583}, {4450, 17150}, {4523, 9021}, {4527, 50097}, {4640, 40940}, {4643, 17224}, {4646, 12607}, {4647, 13728}, {4648, 7613}, {4649, 17365}, {4650, 61661}, {4657, 50314}, {4660, 5846}, {4667, 30424}, {4676, 17367}, {4684, 49475}, {4693, 29637}, {4715, 64073}, {4716, 17362}, {4733, 5224}, {4780, 17235}, {4852, 5847}, {4863, 62833}, {4884, 29673}, {4899, 49513}, {4906, 64162}, {4991, 28508}, {4995, 29665}, {5057, 17012}, {5091, 5135}, {5222, 5698}, {5249, 37593}, {5262, 6284}, {5263, 17302}, {5313, 51409}, {5432, 33133}, {5434, 17015}, {5480, 29057}, {5699, 37340}, {5700, 37341}, {5902, 11809}, {6057, 29679}, {6147, 59301}, {6650, 20132}, {6679, 59580}, {6685, 48643}, {6738, 64932}, {7263, 24325}, {7354, 17016}, {8543, 37771}, {8584, 28558}, {8692, 52653}, {9052, 64553}, {9053, 49455}, {9055, 49519}, {9780, 50107}, {9791, 17277}, {10327, 50071}, {11269, 17595}, {11281, 19765}, {12722, 58562}, {13747, 43135}, {14267, 52902}, {15172, 30148}, {15338, 62802}, {16475, 64016}, {16670, 60905}, {16823, 37756}, {16830, 17320}, {17011, 20292}, {17017, 33094}, {17018, 33146}, {17024, 34611}, {17045, 50302}, {17056, 17592}, {17231, 49461}, {17237, 49468}, {17258, 60731}, {17274, 49495}, {17330, 24697}, {17340, 33159}, {17345, 34379}, {17351, 28526}, {17355, 28557}, {17369, 29633}, {17388, 32846}, {17390, 50281}, {17398, 24342}, {17529, 27785}, {17591, 33141}, {17593, 33140}, {17596, 33135}, {17600, 33109}, {17601, 29658}, {17717, 62221}, {17721, 66065}, {17726, 33104}, {17764, 49482}, {17765, 49464}, {17766, 49472}, {17771, 49685}, {17772, 50304}, {18139, 27804}, {18343, 36154}, {19623, 35916}, {19637, 40432}, {19784, 50044}, {19786, 32932}, {20160, 29590}, {20872, 41230}, {21850, 29301}, {21956, 41269}, {22791, 50604}, {23536, 37548}, {23681, 37553}, {24231, 49478}, {24293, 35101}, {24295, 51126}, {24440, 24456}, {24476, 40965}, {24692, 62467}, {24728, 29181}, {24988, 31035}, {25453, 32934}, {26227, 50102}, {27186, 62840}, {28174, 62828}, {28297, 50313}, {28329, 50781}, {28333, 50283}, {28534, 50114}, {28538, 49630}, {28542, 49726}, {28566, 49684}, {28570, 51196}, {28582, 49529}, {29093, 39884}, {29097, 48906}, {29243, 47373}, {29631, 32845}, {29659, 49493}, {29667, 50106}, {29815, 49719}, {29821, 33095}, {29850, 32936}, {30768, 50104}, {31083, 54291}, {31151, 50113}, {31264, 48642}, {32774, 32929}, {32911, 33100}, {32915, 33125}, {32924, 32947}, {32928, 32948}, {32937, 62229}, {33087, 48632}, {33098, 61358}, {33101, 42043}, {33103, 42042}, {33136, 46901}, {33139, 62796}, {33148, 37703}, {33152, 60714}, {33165, 49445}, {34937, 56176}, {35652, 62673}, {37159, 44396}, {37312, 41811}, {39543, 64524}, {39586, 41312}, {40724, 56851}, {42356, 53599}, {42819, 63977}, {44669, 48837}, {45398, 52805}, {45399, 52808}, {47356, 64299}, {47358, 49451}, {48631, 49471}, {48822, 49733}, {49446, 49688}, {49458, 50285}, {49491, 53601}, {49508, 49701}, {49515, 49772}, {49518, 49531}, {49520, 49693}, {49747, 50282}, {50065, 54418}, {50441, 62697}, {51400, 64306}, {56177, 60751}, {56519, 59536}, {60896, 62183}, {61716, 63008}, {63334, 64345}, {64751, 66027}
X(66071) = midpoint of X(i) and X(j) for these {i,j}: {6, 24248}, {8, 49453}, {69, 49486}, {3416, 3875}, {3663, 3755}, {3751, 17276}, {4655, 49488}, {4660, 32921}, {4780, 49511}, {17301, 50080}, {24476, 40965}, {47356, 64299}, {48829, 50101}, {49446, 49688}, {49518, 49531}, {49630, 50109}, {49747, 50282}
X(66071) = reflection of X(i) in X(j) for these {i,j}: {141, 3821}, {1386, 3946}, {2321, 3844}, {3629, 49489}, {3923, 3589}, {4133, 17229}, {12722, 58562}, {48810, 17382}, {48821, 50091}, {49465, 4353}, {49484, 1125}, {49511, 17235}, {49524, 4085}, {51147, 49472}
X(66071) = complement of X(5695)
X(66071) = X(53) of Fuhrmann triangle
X(66071) = perspector of circumconic {{A, B, C, X(35177), X(37143)}}
X(66071) = pole of line {9037, 18839} with respect to the Feuerbach hyperbola
X(66071) = pole of line {5164, 5692} with respect to the Kiepert hyperbola
X(66071) = pole of line {48550, 48571} with respect to the Steiner circumellipse
X(66071) = pole of line {1638, 4776} with respect to the Steiner inellipse
X(66071) = pole of line {527, 4688} with respect to the dual conic of Yff parabola
X(66071) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {11, 115, 1358}
X(66071) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1086, 25557}, {1, 33149, 1086}, {6, 24248, 17768}, {8, 50101, 49453}, {37, 1738, 3826}, {42, 33145, 3782}, {43, 33154, 4415}, {55, 19785, 17061}, {81, 33102, 11246}, {100, 33155, 17602}, {142, 4356, 15569}, {516, 3946, 1386}, {536, 50091, 48821}, {726, 4085, 49524}, {740, 3821, 141}, {1125, 28580, 49484}, {1125, 49484, 48810}, {3120, 46904, 5718}, {3589, 28530, 3923}, {3662, 49470, 4966}, {3663, 3755, 518}, {3751, 17276, 5852}, {3752, 24210, 3816}, {3823, 4681, 4078}, {3836, 3993, 17243}, {3844, 28484, 2321}, {4000, 64168, 1001}, {4353, 5853, 49465}, {4414, 33128, 35466}, {4646, 13161, 12607}, {4649, 32857, 17365}, {4655, 49488, 524}, {4660, 32921, 5846}, {4689, 50103, 3011}, {4780, 49511, 28581}, {17017, 33094, 63979}, {17235, 28581, 49511}, {17301, 50080, 528}, {17302, 62392, 5263}, {17382, 49484, 1125}, {17592, 17889, 17056}, {17596, 33135, 37646}, {17766, 49472, 51147}, {17770, 49489, 3629}, {25453, 32934, 44416}, {28606, 33131, 3925}, {29674, 49452, 3943}, {32776, 32860, 1211}, {32784, 49474, 594}, {48829, 49453, 8}, {48829, 50101, 28503}, {49630, 50109, 28538}, {49736, 59477, 614}
See Antreas Hatzipolakis and Ercole Suppa, euclid 7152.
X(66072) lies on these lines: {3, 125}, {15059, 39118}, {22823, 23515}
X(66072) = midpoint of X(125) and X(5961)
X(66073) lies on the cubic K1377 and these lines: {2, 46425}, {3, 47205}, {69, 14220}, {76, 58257}, {99, 107}, {114, 34336}, {125, 339}, {325, 523}, {328, 34767}, {343, 52744}, {525, 686}, {1368, 42665}, {1370, 2881}, {1494, 54988}, {1531, 30209}, {1636, 11064}, {1637, 5664}, {2373, 34168}, {2419, 18019}, {2799, 47236}, {7630, 30476}, {8552, 14592}, {12384, 14360}, {13203, 53331}, {14618, 20580}, {18314, 31174}, {23105, 45688}, {30786, 57799}, {36255, 65710}, {47230, 62307}, {53266, 57829}
X(66073) = reflection of X(i) in X(j) for these {i,j}: {15421, 8552}, {41079, 65757}, {42665, 1368}
X(66073) = isogonal conjugate of X(32715)
X(66073) = isotomic conjugate of X(1304)
X(66073) = anticomplement of X(46425)
X(66073) = polar conjugate of X(32695)
X(66073) = anticomplement of the isogonal conjugate of X(48373)
X(66073) = isotomic conjugate of the anticomplement of X(16177)
X(66073) = isotomic conjugate of the isogonal conjugate of X(9033)
X(66073) = isotomic conjugate of the polar conjugate of X(41079)
X(66073) = polar conjugate of the isogonal conjugate of X(41077)
X(66073) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {162, 51968}, {11744, 21221}, {22239, 5905}, {48373, 8}, {51967, 21294}, {65263, 59434}
X(66073) = X(i)-Ceva conjugate of X(j) for these (i,j): {328, 339}, {3267, 52624}, {6331, 36789}, {35139, 69}, {40832, 338}, {57932, 394}
X(66073) = X(i)-cross conjugate of X(j) for these (i,j): {1650, 11064}, {9033, 41079}, {16177, 2}, {52624, 3267}
X(66073) = X(i)-isoconjugate of X(j) for these (i,j): {1, 32715}, {6, 36131}, {19, 32640}, {25, 36034}, {31, 1304}, {32, 65263}, {48, 32695}, {74, 32676}, {112, 2159}, {162, 40352}, {163, 8749}, {560, 16077}, {662, 40354}, {799, 40351}, {1576, 36119}, {1973, 44769}, {2349, 61206}, {9247, 15459}, {9406, 34568}, {18808, 23995}, {18877, 24019}, {32713, 35200}, {36083, 44080}, {36114, 51821}, {36129, 61354}, {36831, 62268}, {40353, 56829}
X(66073) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 1304}, {3, 32715}, {6, 32640}, {9, 36131}, {30, 23347}, {115, 8749}, {125, 40352}, {133, 32713}, {525, 14380}, {647, 2433}, {1084, 40354}, {1249, 32695}, {1511, 1576}, {1637, 47230}, {1650, 1495}, {1990, 2442}, {3003, 61209}, {3163, 112}, {3258, 25}, {3284, 14591}, {4858, 36119}, {6337, 44769}, {6374, 16077}, {6376, 65263}, {6505, 36034}, {6587, 61215}, {8552, 526}, {9033, 9409}, {9410, 34568}, {11064, 15329}, {14401, 647}, {14918, 53176}, {15526, 74}, {18314, 18808}, {23285, 2394}, {34591, 2159}, {35071, 18877}, {35088, 35908}, {36901, 16080}, {38996, 40351}, {38999, 184}, {39005, 51821}, {39008, 6}, {39020, 15291}, {39170, 14560}, {44436, 46587}, {47296, 5502}, {52032, 36831}, {52869, 52604}, {52874, 57153}, {57295, 512}, {62551, 186}, {62569, 110}, {62572, 57487}, {62573, 14919}, {62576, 15459}, {62577, 52475}, {62594, 9717}, {62598, 4}, {62612, 15292}, {62613, 250}, {65730, 51262}, {65732, 17986}, {65753, 403}, {65757, 523}, {65760, 4230}, {65763, 17994}
X(66073) = cevapoint of X(i) and X(j) for these (i,j): {9033, 41077}, {9409, 14396}
X(66073) = crosspoint of X(99) and X(57829)
X(66073) = crosssum of X(i) and X(j) for these (i,j): {512, 44084}, {3049, 9407}, {14270, 61354}
X(66073) = trilinear pole of line {52624, 65753}
X(66073) = crossdifference of every pair of points on line {32, 40351}
X(66073) = barycentric product X(i)*X(j) for these {i,j}: {30, 3267}, {69, 41079}, {76, 9033}, {99, 65753}, {264, 41077}, {304, 36035}, {305, 1637}, {325, 65778}, {328, 5664}, {339, 2407}, {340, 18557}, {525, 3260}, {561, 2631}, {656, 46234}, {850, 11064}, {1494, 52624}, {1502, 9409}, {1636, 18022}, {1650, 6331}, {1990, 52617}, {3265, 46106}, {3268, 57482}, {3284, 44173}, {4143, 52661}, {4240, 36793}, {4563, 58261}, {6148, 14592}, {6333, 60869}, {6334, 52552}, {9214, 45807}, {11125, 40071}, {14206, 14208}, {14254, 45792}, {14345, 41530}, {14391, 34384}, {14396, 40421}, {14398, 40050}, {17879, 24001}, {23974, 58071}, {34767, 36789}, {43752, 60597}, {46229, 57819}, {57570, 58257}, {57799, 65754}, {57829, 65757}
X(66073) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 36131}, {2, 1304}, {3, 32640}, {4, 32695}, {6, 32715}, {30, 112}, {63, 36034}, {69, 44769}, {75, 65263}, {76, 16077}, {113, 61209}, {122, 61215}, {125, 2433}, {133, 2442}, {264, 15459}, {328, 39290}, {338, 18808}, {339, 2394}, {343, 36831}, {477, 32712}, {512, 40354}, {520, 18877}, {523, 8749}, {525, 74}, {647, 40352}, {656, 2159}, {669, 40351}, {686, 51821}, {850, 16080}, {1099, 56829}, {1494, 34568}, {1495, 61206}, {1511, 14591}, {1568, 1625}, {1577, 36119}, {1636, 184}, {1637, 25}, {1650, 647}, {1784, 24019}, {1990, 32713}, {2173, 32676}, {2407, 250}, {2416, 15404}, {2420, 57655}, {2525, 46147}, {2631, 31}, {2697, 59108}, {2799, 35908}, {3163, 23347}, {3258, 47230}, {3260, 648}, {3265, 14919}, {3267, 1494}, {3268, 57487}, {3284, 1576}, {4240, 23964}, {4846, 32681}, {5642, 61207}, {5664, 186}, {6148, 14590}, {6331, 42308}, {6333, 35910}, {6334, 14264}, {6793, 2445}, {8057, 15291}, {8552, 14385}, {9033, 6}, {9409, 32}, {11064, 110}, {11125, 1474}, {14206, 162}, {14208, 2349}, {14345, 154}, {14380, 40353}, {14391, 51}, {14395, 2194}, {14396, 206}, {14397, 44077}, {14398, 1974}, {14399, 2203}, {14400, 2299}, {14401, 1495}, {14417, 9717}, {14499, 52132}, {14500, 52131}, {14582, 40355}, {14592, 5627}, {14920, 53176}, {14977, 9139}, {15328, 40388}, {15421, 10419}, {15454, 32708}, {15526, 14380}, {16163, 2420}, {16177, 46425}, {18312, 17986}, {18557, 265}, {18558, 52153}, {23347, 41937}, {24001, 24000}, {24018, 35200}, {34767, 40384}, {35906, 32696}, {35912, 2715}, {36035, 19}, {36102, 36117}, {36789, 4240}, {36793, 34767}, {36891, 32697}, {37638, 65316}, {39008, 9409}, {41077, 3}, {41079, 4}, {42716, 5379}, {43083, 11079}, {43752, 16813}, {43768, 933}, {44204, 33885}, {45807, 36890}, {46106, 107}, {46229, 378}, {46234, 811}, {46809, 58994}, {47414, 14270}, {51254, 32662}, {51349, 32711}, {51360, 35325}, {51389, 4230}, {51392, 61203}, {51393, 61208}, {51394, 32661}, {51403, 61204}, {51937, 32649}, {52355, 15627}, {52485, 32687}, {52552, 687}, {52624, 30}, {52628, 52475}, {52661, 6529}, {52743, 34397}, {52945, 52604}, {53235, 32663}, {55141, 47228}, {55265, 44084}, {56399, 14560}, {57295, 40135}, {57482, 476}, {57606, 15292}, {58071, 23590}, {58085, 32646}, {58257, 39008}, {58261, 2501}, {58263, 1990}, {58346, 14581}, {60053, 15395}, {60597, 44715}, {60869, 685}, {62172, 52418}, {62569, 15329}, {62583, 46587}, {62624, 41433}, {63171, 36064}, {64603, 46249}, {65325, 64774}, {65722, 51262}, {65723, 48451}, {65753, 523}, {65754, 232}, {65755, 17994}, {65757, 403}, {65758, 3563}, {65759, 34212}, {65778, 98}
X(66073) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {850, 3268, 65972}, {850, 30474, 23285}, {3268, 65972, 35522}, {22339, 22340, 3265}, {30474, 57069, 3265}
X(66074) lies on the cubic K1377 and these lines: {2, 60498}, {30, 3260}, {76, 54600}, {99, 523}, {110, 2855}, {114, 325}, {316, 46988}, {877, 2396}, {2407, 2420}, {3003, 35297}, {3233, 51263}, {4576, 30474}, {5468, 57627}, {6563, 40049}, {14570, 64919}, {18020, 31510}, {18878, 53776}, {23342, 45808}, {36891, 52472}, {47207, 62310}, {51389, 65755}
X(66074) = midpoint of X(99) and X(14221)
X(66074) = X(65754)-cross conjugate of X(51389)
X(66074) = X(i)-isoconjugate of X(j) for these (i,j): {878, 36119}, {1910, 2433}, {2159, 2395}, {2349, 2422}, {35200, 53149}, {36034, 51441}, {36131, 51404}
X(66074) = X(i)-Dao conjugate of X(j) for these (i,j): {133, 53149}, {1511, 878}, {3163, 2395}, {3258, 51441}, {3284, 60777}, {5976, 2394}, {11672, 2433}, {35088, 12079}, {39008, 51404}, {51389, 53266}, {62569, 879}, {62590, 14380}, {62595, 18808}, {62613, 98}, {65760, 523}, {65763, 8029}
X(66074) = cevapoint of X(51389) and X(65754)
X(66074) = crossdifference of every pair of points on line {2422, 21906}
X(66074) = barycentric product X(i)*X(j) for these {i,j}: {30, 2396}, {99, 51389}, {325, 2407}, {877, 11064}, {2421, 3260}, {4240, 6393}, {4590, 65754}, {6035, 57431}, {15631, 60869}, {23997, 46234}, {31614, 65755}, {32458, 65776}, {42716, 51369}
X(66074) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 2395}, {297, 18808}, {325, 2394}, {511, 2433}, {877, 16080}, {1495, 2422}, {1511, 60777}, {1637, 51441}, {1990, 53149}, {2396, 1494}, {2407, 98}, {2420, 1976}, {2421, 74}, {2799, 12079}, {3233, 35906}, {3260, 43665}, {3284, 878}, {4230, 8749}, {4240, 6531}, {5642, 52038}, {6393, 34767}, {9033, 51404}, {11064, 879}, {14398, 15630}, {14966, 40352}, {15631, 35910}, {23347, 57260}, {23997, 2159}, {24001, 36120}, {32458, 65973}, {36212, 14380}, {36790, 32112}, {42743, 48451}, {51386, 62665}, {51389, 523}, {57431, 1640}, {58343, 14398}, {62555, 65756}, {62720, 36119}, {64607, 34369}, {65754, 115}, {65755, 8029}, {65760, 53266}, {65776, 41932}
X(66074) = {X(99),X(31998)}-harmonic conjugate of X(65713)
X(66075) lies on the cubic K1377 and these lines: {2, 94}, {99, 5649}, {110, 476}, {114, 5968}, {265, 2782}, {325, 34370}, {543, 56395}, {648, 47443}, {2421, 2799}, {4230, 16230}, {4558, 40173}, {5149, 11060}, {6054, 54554}, {6331, 46456}, {9149, 52153}, {16237, 47230}, {18384, 56390}, {32680, 37137}, {34368, 44114}, {35138, 54959}, {35139, 65271}, {35910, 51389}, {36166, 53768}, {36170, 51847}, {36173, 53771}, {39182, 64516}, {52056, 53793}, {53692, 53760}, {53725, 56397}
X(66075) = reflection of X(65975) in X(51389)
X(66075) = isogonal conjugate of X(60777)
X(66075) = X(i)-cross conjugate of X(j) for these (i,j): {2799, 65979}, {65754, 325}, {65762, 35908}
X(66075) = X(i)-isoconjugate of X(j) for these (i,j): {1, 60777}, {98, 2624}, {293, 47230}, {526, 1910}, {661, 14355}, {878, 52414}, {1821, 14270}, {1976, 32679}, {2088, 36084}, {2159, 65779}, {2395, 6149}, {16186, 36104}
X(66075) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 60777}, {132, 47230}, {3163, 65779}, {5976, 3268}, {8623, 39495}, {11672, 526}, {14993, 2395}, {15295, 2422}, {35088, 62551}, {36830, 14355}, {38970, 35235}, {38987, 2088}, {39000, 16186}, {39040, 32679}, {40601, 14270}, {55071, 18334}, {60596, 41078}, {62590, 8552}, {62595, 44427}, {65760, 5664}
X(66075) = cevapoint of X(2799) and X(51389)
X(66075) = crosssum of X(526) and X(39495)
X(66075) = trilinear pole of line {511, 868}
X(66075) = crossdifference of every pair of points on line {2088, 14270}
X(66075) = barycentric product X(i)*X(j) for these {i,j}: {94, 2421}, {99, 14356}, {265, 877}, {297, 60053}, {325, 476}, {328, 4230}, {511, 35139}, {1959, 32680}, {1989, 2396}, {2407, 65979}, {2799, 39295}, {14966, 20573}, {20022, 46155}, {23997, 63759}, {32662, 44132}, {32678, 46238}, {36061, 40703}, {36212, 46456}, {39290, 51389}, {58979, 62431}, {60524, 64516}
X(66075) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 60777}, {30, 65779}, {94, 43665}, {110, 14355}, {232, 47230}, {237, 14270}, {265, 879}, {297, 44427}, {325, 3268}, {476, 98}, {511, 526}, {684, 16186}, {877, 340}, {1755, 2624}, {1959, 32679}, {1989, 2395}, {2396, 7799}, {2421, 323}, {2799, 62551}, {3569, 2088}, {4230, 186}, {5968, 9213}, {6393, 45792}, {9155, 44814}, {11060, 2422}, {14356, 523}, {14559, 5967}, {14560, 1976}, {14582, 51404}, {14966, 50}, {15475, 51441}, {15631, 51383}, {16230, 35235}, {18384, 53149}, {23968, 34369}, {23997, 6149}, {32112, 56792}, {32662, 248}, {32678, 1910}, {32680, 1821}, {34370, 14998}, {35139, 290}, {36061, 293}, {36129, 36120}, {36212, 8552}, {36213, 39495}, {39295, 2966}, {39374, 35364}, {41392, 35906}, {41512, 52451}, {42717, 42701}, {44114, 65709}, {46155, 20021}, {46456, 16081}, {50567, 45808}, {51389, 5664}, {52153, 878}, {52449, 52076}, {56395, 52038}, {57482, 65778}, {58070, 52418}, {58979, 57742}, {60053, 287}, {60524, 41078}, {62720, 52414}, {63741, 57268}, {65317, 52190}, {65754, 3258}, {65979, 2394}
X(66075) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2493, 43084, 18883}, {23895, 23896, 14559}
X(66076) lies on the cubic K1377 and these lines: {2, 65624}, {20, 39265}, {30, 2967}, {99, 20580}, {112, 57065}, {147, 47105}, {232, 297}, {250, 523}, {401, 52058}, {441, 9475}, {525, 1625}, {1235, 44345}, {2409, 2445}, {3163, 40884}, {4230, 65754}, {4235, 5664}, {7482, 62510}, {14570, 57069}, {15595, 65980}, {16237, 18311}, {20577, 35318}, {35907, 40866}, {36891, 57493}, {41677, 57222}, {41678, 57071}, {44332, 50945}, {44333, 50944}, {53205, 65271}, {56601, 65771}
X(66076) = reflection of X(i) in X(j) for these {i,j}: {297, 232}, {30737, 441}
X(66076) = X(i)-Ceva conjugate of X(j) for these (i,j): {99, 4230}, {648, 34211}, {23582, 297}
X(66076) = X(55275)-cross conjugate of X(132)
X(66076) = X(i)-isoconjugate of X(j) for these (i,j): {293, 34212}, {661, 15407}, {798, 57761}, {810, 9476}, {1910, 2435}
X(66076) = X(i)-Dao conjugate of X(j) for these (i,j): {132, 34212}, {232, 523}, {441, 525}, {5976, 2419}, {11672, 2435}, {15595, 53173}, {23976, 879}, {31998, 57761}, {36830, 15407}, {39062, 9476}, {39073, 647}, {50938, 2395}, {62595, 43673}
X(66076) = cevapoint of X(132) and X(55275)
X(66076) = trilinear pole of line {132, 15595}
X(66076) = crossdifference of every pair of points on line {878, 41172}
X(66076) = barycentric product X(i)*X(j) for these {i,j}: {99, 132}, {162, 17875}, {297, 34211}, {325, 2409}, {648, 15595}, {877, 1503}, {2396, 16318}, {2407, 65980}, {2421, 60516}, {4230, 30737}, {4590, 55275}, {6331, 9475}, {6393, 23977}, {15631, 52641}, {55270, 57430}
X(66076) = barycentric quotient X(i)/X(j) for these {i,j}: {99, 57761}, {110, 15407}, {132, 523}, {232, 34212}, {297, 43673}, {325, 2419}, {441, 53173}, {511, 2435}, {648, 9476}, {877, 35140}, {1503, 879}, {2409, 98}, {2421, 64975}, {2445, 1976}, {4230, 1297}, {4590, 55274}, {9475, 647}, {15595, 525}, {15639, 51963}, {16318, 2395}, {17875, 14208}, {23977, 6531}, {24024, 36120}, {34211, 287}, {42671, 878}, {44704, 61189}, {51437, 2422}, {55275, 115}, {58070, 43717}, {60506, 47388}, {60516, 43665}, {65754, 65759}, {65980, 2394}
X(66077) lies on the cubic K1377 and these lines: {2, 2419}, {30, 41077}, {99, 20580}, {114, 60590}, {127, 525}, {523, 1297}, {2435, 4846}, {2799, 16318}, {5664, 51937}, {8057, 65749}, {11064, 14345}, {15351, 39359}, {16177, 65759}, {16251, 53016}, {31510, 44770}, {35140, 53201}, {40512, 60597}, {46115, 52613}, {52485, 65754}, {64975, 65325}
X(66077) = X(i)-isoconjugate of X(j) for these (i,j): {1304, 2312}, {1503, 36131}, {2159, 2409}, {2349, 2445}, {8766, 32695}, {16318, 36034}, {18877, 24024}, {23977, 35200}, {32676, 63856}, {42671, 65263}
X(66077) = X(i)-Dao conjugate of X(j) for these (i,j): {133, 23977}, {1650, 6793}, {3163, 2409}, {3258, 16318}, {15526, 63856}, {35088, 65980}, {38999, 8779}, {39008, 1503}, {61505, 35908}, {62569, 34211}, {62598, 60516}, {65763, 55275}
X(66077) = trilinear pole of line {9033, 65759}
X(66077) = crossdifference of every pair of points on line {2445, 42671}
X(66077) = barycentric product X(i)*X(j) for these {i,j}: {30, 2419}, {99, 65759}, {2435, 3260}, {3265, 52485}, {3267, 51937}, {6330, 41077}, {9033, 35140}, {11064, 43673}, {41079, 64975}, {55274, 65755}, {57761, 65754}
X(66077) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 2409}, {525, 63856}, {1297, 1304}, {1495, 2445}, {1636, 8779}, {1637, 16318}, {1784, 24024}, {1990, 23977}, {2419, 1494}, {2435, 74}, {2631, 2312}, {2799, 65980}, {6330, 15459}, {6793, 15639}, {9033, 1503}, {9409, 42671}, {11064, 34211}, {14391, 51363}, {14398, 51437}, {14401, 6793}, {34212, 8749}, {35140, 16077}, {35912, 60506}, {41077, 441}, {41079, 60516}, {43673, 16080}, {43717, 32695}, {51937, 112}, {52485, 107}, {61189, 10152}, {61505, 15292}, {64975, 44769}, {65754, 132}, {65755, 55275}, {65759, 523}, {65778, 57490}
X(66078) lies on the cubic K1377 and these lines: {2, 65618}, {3, 523}, {6, 1511}, {22, 842}, {24, 250}, {25, 3233}, {26, 3447}, {99, 264}, {186, 2407}, {232, 14966}, {237, 56925}, {262, 1995}, {325, 7418}, {381, 3613}, {511, 21525}, {1485, 44259}, {2070, 39371}, {2799, 40083}, {3425, 52505}, {4230, 6530}, {7468, 52472}, {7503, 58731}, {7514, 12028}, {7526, 59288}, {8430, 47079}, {9139, 10419}, {9307, 15078}, {12084, 48379}, {14356, 51389}, {15329, 16319}, {15478, 41768}, {16303, 44221}, {17928, 46426}, {18575, 31861}, {18878, 46142}, {32112, 47049}, {33752, 34157}, {35901, 61216}, {37123, 52692}, {38610, 59231}, {39375, 56400}
X(66078) = isogonal conjugate of X(52451)
X(66078) = isogonal conjugate of the anticomplement of X(47049)
X(66078) = X(65754)-cross conjugate of X(4230)
X(66078) = X(i)-isoconjugate of X(j) for these (i,j): {1, 52451}, {98, 1725}, {293, 403}, {336, 44084}, {1821, 3003}, {1910, 3580}, {2159, 65780}, {2315, 16081}, {6334, 36104}, {13754, 36120}, {21731, 36036}, {36084, 55121}
X(66078) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 52451}, {132, 403}, {2679, 21731}, {3163, 65780}, {11672, 3580}, {35088, 65972}, {38987, 55121}, {39000, 6334}, {39073, 53568}, {40601, 3003}, {46094, 13754}, {55071, 60342}, {62590, 62338}, {62595, 44138}
X(66078) = trilinear pole of line {3289, 3569}
X(66078) = crossdifference of every pair of points on line {3003, 55121}
X(66078) = barycentric product X(i)*X(j) for these {i,j}: {99, 65762}, {232, 57829}, {237, 40832}, {297, 5504}, {325, 14910}, {511, 2986}, {684, 687}, {868, 18879}, {877, 61216}, {1300, 36212}, {1959, 36053}, {2421, 15328}, {2799, 10420}, {3289, 65267}, {3569, 18878}, {4230, 15421}, {6333, 32708}, {10419, 51389}, {15454, 35910}, {16230, 43755}, {39371, 65979}, {39469, 57932}, {43034, 56103}, {46787, 51456}
X(66078) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 52451}, {30, 65780}, {232, 403}, {237, 3003}, {297, 44138}, {511, 3580}, {684, 6334}, {687, 22456}, {1300, 16081}, {1755, 1725}, {2211, 44084}, {2421, 61188}, {2491, 21731}, {2799, 65972}, {2986, 290}, {3289, 13754}, {3569, 55121}, {4230, 16237}, {5504, 287}, {9475, 53568}, {10420, 2966}, {14356, 57486}, {14910, 98}, {14966, 15329}, {15328, 43665}, {15454, 60869}, {17994, 47236}, {18878, 43187}, {18879, 57991}, {32112, 65614}, {32708, 685}, {35361, 61196}, {35910, 65715}, {36053, 1821}, {36212, 62338}, {39469, 686}, {40832, 18024}, {43755, 17932}, {51456, 46786}, {51980, 60498}, {52505, 31635}, {52557, 14355}, {57829, 57799}, {57932, 65272}, {60035, 53245}, {61216, 879}, {65262, 36036}, {65267, 60199}, {65754, 65757}, {65762, 523}
X(66078) = {X(3),X(15454)}-harmonic conjugate of X(51895)
X(66079) lies on the cubic K1377 and these lines: {99, 14995}, {325, 3233}, {1494, 51262}, {2482, 2799}, {5467, 52094}, {5642, 45808}, {14559, 36890}, {15303, 50567}, {34319, 36884}, {35522, 45662}
X(66079) = X(i)-isoconjugate of X(j) for these (i,j): {897, 9142}, {923, 9140}
X(66079) = X(i)-Dao conjugate of X(j) for these (i,j): {2482, 9140}, {6593, 9142}
X(66079) = cevapoint of X(2482) and X(5642)
X(66079) = trilinear pole of line {8030, 58347}
X(66079) = barycentric product X(524)*X(9141)
X(66079) = barycentric quotient X(i)/X(j) for these {i,j}: {187, 9142}, {524, 9140}, {9141, 671}
X(66080) lies on the cubic K1377 and these lines: {2, 65613}, {23, 12384}, {30, 51228}, {297, 2799}, {325, 34370}, {523, 54395}, {524, 39358}, {685, 10723}, {1990, 2407}, {3233, 14920}, {4230, 6530}, {24975, 59694}, {41079, 65780}, {46236, 62310}, {51389, 65755}, {53416, 62551}
X(66080) = reflection of X(i) in X(j) for these {i,j}: {2407, 1990}, {65774, 65765}
X(66080) = anticomplement of X(65774)
X(66080) = X(99)-Ceva conjugate of X(65754)
X(66080) = X(2159)-isoconjugate of X(65783)
X(66080) = X(i)-Dao conjugate of X(j) for these (i,j): {3163, 65783}, {65755, 523}
X(66080) = barycentric product X(i)*X(j) for these {i,j}: {99, 65763}, {325, 52472}, {2407, 65977}, {65754, 65768}
X(66080) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 65783}, {52472, 98}, {65754, 65766}, {65763, 523}, {65977, 2394}
X(66080) = {X(65765),X(65774)}-harmonic conjugate of X(2)
X(66081) lies on the cubic K1377 and these lines: {2, 65623}, {30, 41077}, {99, 65714}, {146, 147}, {325, 6333}, {523, 65722}, {1272, 57009}, {2407, 9033}, {4226, 65871}, {4230, 16230}, {5664, 16163}, {51389, 65754}
X(66081) = midpoint of X(4226) and X(65871)
X(66081) = X(99)-Ceva conjugate of X(51389)
X(66081) = X(i)-Dao conjugate of X(j) for these (i,j): {65754, 523}, {65782, 2394}, {65978, 98}
X(66081) = crosspoint of X(325) and X(2407)
X(66081) = crosssum of X(1976) and X(2433)
X(66081) = barycentric product X(i)*X(j) for these {i,j}: {325, 65782}, {2407, 65978}, {51389, 53383}
X(66081) = barycentric quotient X(i)/X(j) for these {i,j}: {65754, 65765}, {65782, 98}, {65978, 2394}
X(66082) lies on the cubic K1377 and these lines: {2, 51480}, {30, 21731}, {98, 35364}, {99, 34291}, {113, 114}, {115, 65610}, {230, 3569}, {351, 3233}, {403, 44427}, {523, 54395}, {526, 2407}, {804, 23350}, {1989, 15328}, {2411, 39985}, {4226, 6132}, {4230, 53263}, {14273, 62172}, {16230, 57609}, {35522, 62555}, {41079, 51479}, {51389, 65766}, {55121, 62551}
X(66082) = reflection of X(4226) in X(6132)
X(66082) = X(65754)-cross conjugate of X(523)
X(66082) = X(i)-isoconjugate of X(j) for these (i,j): {163, 65767}, {1101, 53266}, {34810, 36034}, {36084, 47049}
X(66082) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 65767}, {523, 53266}, {3258, 34810}, {35088, 65975}, {38987, 47049}
X(66082) = cevapoint of X(i) and X(j) for these (i,j): {526, 6132}, {1637, 55122}, {3569, 21731}
X(66082) = trilinear pole of line {1648, 3258}
X(66082) = barycentric product X(99)*X(65764)
X(66082) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 53266}, {523, 65767}, {1637, 34810}, {2799, 65975}, {3569, 47049}, {65754, 65760}, {65764, 523}
X(66083) lies on the cubic K1377 and these lines: {114, 468}, {523, 65722}, {524, 62590}, {2407, 56021}, {3564, 5967}, {5664, 6390}, {12079, 51456}, {16310, 24975}, {40429, 41254}, {51227, 60053}, {51228, 59634}, {51389, 65765}, {65730, 65734}
X(66083) = midpoint of X(2407) and X(62338)
X(66083) = reflection of X(16310) in X(24975)
X(66083) = X(65754)-cross conjugate of X(99)
X(66083) = X(i)-isoconjugate of X(j) for these (i,j): {798, 65768}, {2159, 52472}
X(66083) = X(i)-Dao conjugate of X(j) for these (i,j): {3163, 52472}, {23967, 1550}, {31998, 65768}, {35067, 52473}, {35088, 65977}
X(66083) = cevapoint of X(i) and X(j) for these (i,j): {325, 59634}, {684, 2088}
X(66083) = trilinear pole of line {690, 16163}
X(66083) = barycentric product X(i)*X(j) for these {i,j}: {99, 65766}, {325, 65783}
X(66083) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 52472}, {99, 65768}, {542, 1550}, {2799, 65977}, {3564, 52473}, {65754, 65763}, {65766, 523}, {65783, 98}
X(66083) = {X(65722),X(65760)}-harmonic conjugate of X(65774)
X(66084) lies on the cubics K1371 and K1377 and these lines: {2, 65613}, {30, 36890}, {99, 65714}, {114, 52094}, {476, 34767}, {1494, 54527}, {2799, 34211}, {2966, 43673}, {3233, 5468}, {3268, 4240}, {4226, 34765}, {4235, 5664}, {6337, 58271}, {30737, 52145}, {34761, 62645}, {53383, 65768}
X(66084) = isotomic conjugate of X(53383)
X(66084) = isotomic conjugate of the anticomplement of X(65754)
X(66084) = X(65754)-cross conjugate of X(2)
X(66084) = X(i)-isoconjugate of X(j) for these (i,j): {31, 53383}, {2159, 65782}
X(66084) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 53383}, {3163, 65782}, {35088, 65978}
X(66084) = cevapoint of X(i) and X(j) for these (i,j): {30, 2799}, {441, 9033}, {511, 8552}
X(66084) = trilinear pole of line {524, 3163}
X(66084) = barycentric product X(99)*X(65765)
X(66084) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 53383}, {30, 65782}, {2799, 65978}, {65765, 523}
See Antreas Hatzipolakis and Peter Moses, euclid 7158.
X(66085) lies on this line: {122, 154}
X(66085) = midpoint of X(122) and X(48448)
See Antreas Hatzipolakis and Peter Moses, euclid 7158.
X(66086) lies on this line: {25, 125}
X(66086) = midpoint of X(125) and X(10229)
Contributed by Chris van Tienhoven, December 8, 2024.
Points X(66087) and X(66089) can be calculated in a simple form using the concepts of Perspective Fields. For more information, see the introduction of ETC (November 22, 2024) and the links provded there.
Advantages of Perspective Fields
One advantage of Perspective Fields is that, once the perspective coordinates (n1: n2: n3) of a point are known in a Perspective Field [P1, P2, P3; P4], the actual coordinates can be calculated using this formula:
Px = n1.det[P4, P2, P3].P1 + n2.det[P1, P4, P3].P2 + n3.det[P1, P2, P4].P3.
This is particularly useful when working with points whose coordinates are given by elaborate trigonometric functions. By associating such points within a Perspective Field (PF) defined by four reference points---typically with simple coordinates---the calculations yield relatively straightforward results, as indicated by these three examples:
X(66087) has perspective coordinates (1 : 2 : 0) in PF[X(3), X(356), X(1134); X(1137)].
X(66089) has perspective coordinates (1 : -1: 1) in PF[X(4), X(356), X(1134); X(3279)].
X(5390) has perspective coordinates (2 : 1 : 2) in PF[X(2), X(1136), X(1137); X(3273)].
Finding a Perspective Field for a point
To determine the Perspective Field for a point, its perspective coordinates are calculated in different numeric configurations of two reference triangles. If the coordinates match for both configurations, the point is part of the Perspective Field, and its perspective coordinates are already known from previous calculations. Although it is impractical to perform theses calculations for many sets of four points in ETC, there are certainly many other sets of four points that are amenable to Mathematica, Maple, etc.
See Antreas Hatzipolakis and Chris van Tienhoven, euclid 7157.
X(66087) lies on this line: {3, 356}
X(66088) lies on these lines: {5, 50711}, {6, 13}, {74, 39809}, {99, 15081}, {110, 23514}, {114, 14644}, {125, 23698}, {620, 20304}, {671, 18331}, {690, 24978}, {1511, 6722}, {2782, 11801}, {2794, 10113}, {3448, 14639}, {6036, 15359}, {6321, 15357}, {6699, 38736}, {6721, 23515}, {9140, 9880}, {10264, 22515}, {10272, 15092}, {10628, 39806}, {10733, 38749}, {10991, 14849}, {11557, 58518}, {12121, 38737}, {12295, 53709}, {12383, 14061}, {12407, 38220}, {12902, 38224}, {14971, 64182}, {15025, 38751}, {15059, 38748}, {15061, 38738}, {15545, 38732}, {19457, 39825}, {20398, 53725}, {32423, 61576}, {33511, 38735}, {34127, 34153}, {34953, 46981}, {45311, 65722}
X(66088) = midpoint of X(i) and X(j) for these {i,j}: {74, 39809}, {115, 265}, {6321, 15357}, {9140, 9880}, {10113, 15535}, {10264, 22515}, {10733, 38749}, {12295, 53709}
X(66088) = reflection of X(i) in X(j) for these {i,j}: {620, 20304}, {1511, 6722}, {6036, 15359}, {10272, 15092}, {11557, 58518}, {38736, 6699}, {53725, 20398}, {53735, 6721}
X(66088) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6321, 38724, 15357}, {23515, 53735, 6721}
See Antreas Hatzipolakis and Chris van Tienhoven, euclid 7157.
X(66089) lies on this line: {3, 356}
X(66090) lies on the curve Q189 and these lines: {2, 7}, {4, 38290}, {342, 347}, {651, 36413}, {653, 8894}, {1119, 6848}, {1490, 5932}, {2060, 2062}, {3487, 52097}, {6356, 6908}, {6527, 18026}, {6617, 55114}, {7080, 55015}, {7282, 37434}, {8809, 16870}, {17037, 65355}, {33672, 46350}, {40837, 56943}, {46352, 47634}, {56873, 64156}
X(66090) = X(33672)-Ceva conjugate of X(5932)
X(66090) = X(1490)-cross conjugate of X(329)
X(66090) = X(i)-isoconjugate of X(j) for these (i,j): {84, 7037}, {282, 7152}, {650, 8064}, {1034, 2208}, {1433, 7007}, {1436, 47850}, {2188, 7149}, {2192, 3345}, {7118, 41514}, {7151, 57643}
X(66090) = X(i)-Dao conjugate of X(j) for these (i,j): {57, 3345}, {278, 40836}, {281, 40838}
X(66090) = barycentric product X(i)*X(j) for these {i,j}: {223, 33672}, {322, 47848}, {329, 5932}, {347, 56943}, {664, 8063}, {1490, 40702}, {40212, 47436}
X(66090) = barycentric quotient X(i)/X(j) for these {i,j}: {40, 47850}, {109, 8064}, {196, 7149}, {198, 7037}, {207, 7129}, {221, 7152}, {223, 3345}, {329, 1034}, {347, 41514}, {1035, 1436}, {1490, 282}, {2331, 7007}, {3176, 7003}, {3197, 2192}, {5932, 189}, {7952, 40838}, {8063, 522}, {13612, 5514}, {33672, 34404}, {40212, 3342}, {40702, 56596}, {40837, 40836}, {47848, 84}, {55015, 63877}, {56943, 280}, {57117, 40117}, {64082, 57643}, {64708, 8806}
X(66090) = {X(226),X(40212)}-harmonic conjugate of X(329)
X(66091) lies on the curve Q189 and these lines: {2, 271}, {8, 57643}, {85, 46352}, {92, 280}, {189, 3345}, {312, 46350}, {1311, 8064}, {2060, 7111}, {7020, 40838}, {7149, 52780}, {8806, 50442}, {63877, 64081}
X(66091) = X(56596)-Ceva conjugate of X(189)
X(66091) = X(i)-cross conjugate of X(j) for these (i,j): {3345, 1034}, {40836, 280}, {40838, 41514}
X(66091) = X(i)-isoconjugate of X(j) for these (i,j): {40, 1035}, {198, 47848}, {207, 7078}, {221, 1490}, {223, 3197}, {1415, 8063}, {2187, 5932}, {2199, 56943}, {3176, 7114}, {47438, 55015}
X(66091) = X(i)-Dao conjugate of X(j) for these (i,j): {1146, 8063}, {3341, 1490}, {3351, 40212}, {6129, 13612}
X(66091) = barycentric product X(i)*X(j) for these {i,j}: {189, 1034}, {280, 41514}, {282, 56596}, {309, 47850}, {3345, 34404}, {7037, 44190}, {7129, 57782}, {7149, 44189}, {7152, 57793}, {8064, 35519}, {46355, 63877}, {57643, 64988}
X(66091) = barycentric quotient X(i)/X(j) for these {i,j}: {84, 47848}, {189, 5932}, {280, 56943}, {282, 1490}, {522, 8063}, {1034, 329}, {1436, 1035}, {2192, 3197}, {3342, 40212}, {3345, 223}, {5514, 13612}, {7003, 3176}, {7007, 2331}, {7037, 198}, {7129, 207}, {7149, 196}, {7152, 221}, {8064, 109}, {8806, 64708}, {34404, 33672}, {40117, 57117}, {40836, 40837}, {40838, 7952}, {41514, 347}, {47850, 40}, {56596, 40702}, {57643, 64082}, {63877, 55015}
Contributed by Clark Kimberling and Peter Moses, November 7, 2024.
Early in November, 2024, Predrag Terzić contributed notes on three hyperbolas, and Peter Moses found equations and pass-through points for the hyperbolas.
Points X(66092)-X(66097), along with the points X(i) for i = 5, 13, 14, 15, 16, 549, lie on the 1st Terzić hyperbola, given by the following barycentric equation:
(b - c)^2*(b + c)^2*(-a^2 + b^2 - b*c + c^2)*(-a^2 + b^2 + b*c + c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 - 3*b^2*c^2 + c^4)*x^2 - (a - c)*(a + c)*(-b + c)*(b + c)*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 - 5*a^4*c^4 - 5*b^4*c^4 + 6*a^2*c^6 + 6*b^2*c^6 - 2*c^8)*x*y + (a - c)^2*(a + c)^2*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^4 - 2*a^2*b^2 + b^4 - 3*a^2*c^2 - 2*b^2*c^2 + c^4)*y^2 - (a - b)*(a + b)*(b - c)*(b + c)*(a^8 - 5*a^4*b^4 + 6*a^2*b^6 - 2*b^8 - 4*a^6*c^2 + 6*b^6*c^2 + 6*a^4*c^4 - 5*b^4*c^4 - 4*a^2*c^6 + c^8)*x*z - (a - b)*(a + b)*(a - c)*(a + c)*(2*a^8 - 6*a^6*b^2 + 5*a^4*b^4 - b^8 - 6*a^6*c^2 + 4*b^6*c^2 + 5*a^4*c^4 - 6*b^4*c^4 + 4*b^2*c^6 - c^8)*y*z + (a - b)^2*(a + b)^2*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^4 - 3*a^2*b^2 + b^4 - 2*a^2*c^2 - 2*b^2*c^2 + c^4)*z^2 = 0.
The center of this hyperbola is X(3055).
Points X(66098)-X(66102), along with the points X(i) for i = 1, 4, 9, 13, 14, 321, lie on the 2nd Terzić hyperbola, given by the following barycentric equation:
a*(b - c)^2*(b + c)*(a^2 - b^2 - c^2)*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*x^2 - (a - c)*(b - c)*c*(3*a^6*b + 3*a^5*b^2 - 6*a^4*b^3 - 6*a^3*b^4 + 3*a^2*b^5 + 3*a*b^6 + 2*a^6*c + 6*a^5*b*c - 2*a^4*b^2*c - 12*a^3*b^3*c - 2*a^2*b^4*c + 6*a*b^5*c + 2*b^6*c + 2*a^5*c^2 + 2*a^4*b*c^2 - 4*a^3*b^2*c^2 - 4*a^2*b^3*c^2 + 2*a*b^4*c^2 + 2*b^5*c^2 - a^4*c^3 + 4*a^2*b^2*c^3 - b^4*c^3 - a^3*c^4 + 2*a^2*b*c^4 + 2*a*b^2*c^4 - b^3*c^4 - a^2*c^5 - b^2*c^5 - a*c^6 - b*c^6)*x*y - b*(a - c)^2*(a + c)*(a^2 - b^2 + c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*y^2 + (a - b)*b*(b - c)*(2*a^6*b + 2*a^5*b^2 - a^4*b^3 - a^3*b^4 - a^2*b^5 - a*b^6 + 3*a^6*c + 6*a^5*b*c + 2*a^4*b^2*c + 2*a^2*b^4*c - b^6*c + 3*a^5*c^2 - 2*a^4*b*c^2 - 4*a^3*b^2*c^2 + 4*a^2*b^3*c^2 + 2*a*b^4*c^2 - b^5*c^2 - 6*a^4*c^3 - 12*a^3*b*c^3 - 4*a^2*b^2*c^3 - b^4*c^3 - 6*a^3*c^4 - 2*a^2*b*c^4 + 2*a*b^2*c^4 - b^3*c^4 + 3*a^2*c^5 + 6*a*b*c^5 + 2*b^2*c^5 + 3*a*c^6 + 2*b*c^6)*x*z + a*(a - b)*(a - c)*(a^6*b + a^5*b^2 + a^4*b^3 + a^3*b^4 - 2*a^2*b^5 - 2*a*b^6 + a^6*c - 2*a^4*b^2*c - 2*a^2*b^4*c - 6*a*b^5*c - 3*b^6*c + a^5*c^2 - 2*a^4*b*c^2 - 4*a^3*b^2*c^2 + 4*a^2*b^3*c^2 + 2*a*b^4*c^2 - 3*b^5*c^2 + a^4*c^3 + 4*a^2*b^2*c^3 + 12*a*b^3*c^3 + 6*b^4*c^3 + a^3*c^4 - 2*a^2*b*c^4 + 2*a*b^2*c^4 + 6*b^3*c^4 - 2*a^2*c^5 - 6*a*b*c^5 - 3*b^2*c^5 - 2*a*c^6 - 3*b*c^6)*y*z - (a - b)^2*(a + b)*c*(a^2 + b^2 - c^2)*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*z^2 = 0
Points X(66103)-X(66109), along with the points X(i) for i = 3, 4, 10, 13, 14, 386, lie on the 3rd Terzić hyperbola, given by the following barycentric equation:
(b - c)^2*(b + c)*(a^2 - b^2 - c^2)*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*x^2 + (a - c)*(b - c)*(a^7 - a^6*b - 3*a^5*b^2 + 3*a^4*b^3 + 3*a^3*b^4 - 3*a^2*b^5 - a*b^6 + b^7 - 4*a^5*c^2 + 3*a^4*b*c^2 + a^3*b^2*c^2 + a^2*b^3*c^2 + 3*a*b^4*c^2 - 4*b^5*c^2 - a^4*c^3 + 2*a^2*b^2*c^3 - b^4*c^3 + 2*a^3*c^4 - 3*a^2*b*c^4 - 3*a*b^2*c^4 + 2*b^3*c^4 - a^2*c^5 - b^2*c^5 + a*c^6 + b*c^6 + 2*c^7)*x*y - (a - c)^2*(a + c)*(a^2 - b^2 + c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*y^2 - (a - b)*(b - c)*(a^7 - 4*a^5*b^2 - a^4*b^3 + 2*a^3*b^4 - a^2*b^5 + a*b^6 + 2*b^7 - a^6*c + 3*a^4*b^2*c - 3*a^2*b^4*c + b^6*c - 3*a^5*c^2 + a^3*b^2*c^2 + 2*a^2*b^3*c^2 - 3*a*b^4*c^2 - b^5*c^2 + 3*a^4*c^3 + a^2*b^2*c^3 + 2*b^4*c^3 + 3*a^3*c^4 + 3*a*b^2*c^4 - b^3*c^4 - 3*a^2*c^5 - 4*b^2*c^5 - a*c^6 + c^7)*x*z + (a - b)*(a - c)*(2*a^7 + a^6*b - a^5*b^2 + 2*a^4*b^3 - a^3*b^4 - 4*a^2*b^5 + b^7 + a^6*c - 3*a^4*b^2*c + 3*a^2*b^4*c - b^6*c - a^5*c^2 - 3*a^4*b*c^2 + 2*a^3*b^2*c^2 + a^2*b^3*c^2 - 3*b^5*c^2 + 2*a^4*c^3 + a^2*b^2*c^3 + 3*b^4*c^3 - a^3*c^4 + 3*a^2*b*c^4 + 3*b^3*c^4 - 4*a^2*c^5 - 3*b^2*c^5 - b*c^6 + c^7)*y*z - (a - b)^2*(a + b)*(a^2 + b^2 - c^2)*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*z^2= 0
X(66092) lies on the 1st Terzić hyperbola and these lines: {2, 9301}, {3, 7777}, {4, 7897}, {5, 141}, {6, 43456}, {13, 53458}, {14, 53469}, {15, 53441}, {16, 53429}, {30, 99}, {83, 140}, {113, 46669}, {187, 549}, {262, 7937}, {315, 32151}, {376, 63021}, {381, 3314}, {385, 61560}, {524, 49006}, {550, 18860}, {632, 7889}, {754, 12042}, {1916, 15980}, {2021, 31406}, {2076, 2548}, {2782, 7813}, {3095, 7790}, {3098, 7775}, {3530, 38225}, {3580, 18322}, {3627, 13449}, {3628, 7944}, {3767, 15514}, {3793, 56370}, {3845, 31173}, {3849, 8703}, {3933, 39266}, {5025, 48673}, {5055, 16986}, {5066, 10302}, {5111, 5305}, {5149, 32459}, {5162, 7745}, {5184, 61524}, {5189, 38583}, {5207, 7776}, {5215, 61851}, {5965, 51523}, {5999, 9866}, {6034, 8586}, {6329, 35377}, {7470, 7941}, {7516, 54091}, {7575, 47570}, {7698, 15360}, {7752, 9821}, {7759, 14880}, {7773, 40279}, {7779, 12188}, {7812, 26316}, {7817, 55716}, {7818, 9996}, {7824, 42788}, {7832, 18502}, {7835, 34733}, {7840, 61102}, {7844, 37517}, {7845, 58849}, {7853, 44422}, {7858, 12054}, {7885, 37243}, {7892, 18501}, {9300, 54964}, {10150, 61890}, {10242, 10723}, {10264, 14962}, {10277, 65517}, {11318, 44456}, {11539, 15491}, {11676, 61561}, {11812, 26613}, {12100, 51224}, {13862, 22728}, {14485, 60213}, {15699, 31275}, {15712, 47113}, {15919, 44262}, {16188, 37938}, {18572, 46338}, {19924, 22566}, {20428, 41024}, {20429, 41025}, {21536, 51360}, {25338, 57311}, {29317, 38745}, {31415, 54173}, {32816, 35456}, {33330, 55051}, {34105, 37950}, {34209, 57272}, {36248, 36249}, {37466, 37690}, {38743, 40236}, {40927, 61545}, {41136, 48657}, {42010, 55009}, {42215, 53514}, {42216, 53511}, {44282, 47584}, {44289, 50858}, {46264, 47619}, {50855, 52649}, {53452, 60319}, {53463, 60318}, {54718, 60202}, {58309, 64474}
X(66092) = midpoint of X(i) and X(j) for these {i,j}: {4, 47618}, {316, 35002}, {5189, 38583}, {5207, 35458}, {7779, 12188}, {7845, 58849}
X(66092) = reflection of X(i) in X(j) for these {i,j}: {385, 61560}, {550, 18860}, {2080, 140}, {3627, 13449}, {3845, 31173}, {5184, 61524}, {7575, 47570}, {11676, 61561}, {43460, 61599}, {51224, 12100}, {51872, 325}
X(66092) = complement of X(9301)
X(66092) = reflection of X(51872) in the De Longchamps axis
X(66092) = complement of the isogonal conjugate of X(9302)
X(66092) = X(9302)-complementary conjugate of X(10)
X(66092) = crossdifference of every pair of points on line {3050, 6041}
X(66092) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {140, 2080, 38230}, {623, 624, 5103}, {626, 14881, 5}, {7818, 58851, 9996}, {7832, 18502, 44237}
X(66093) lies on the 1st Terzić hyperbola and these lines: {2, 13188}, {5, 542}, {15, 5469}, {16, 5470}, {30, 9166}, {98, 5066}, {99, 10124}, {114, 61910}, {115, 549}, {140, 671}, {147, 61920}, {148, 15694}, {381, 7806}, {543, 11539}, {546, 14830}, {547, 11632}, {550, 9880}, {620, 61869}, {631, 12355}, {632, 2482}, {1656, 12243}, {2782, 14971}, {2794, 23046}, {2796, 11231}, {3090, 48657}, {3524, 38732}, {3525, 8596}, {3526, 8591}, {3530, 12117}, {3628, 8724}, {3845, 6055}, {3857, 10991}, {5054, 38635}, {5055, 14651}, {5071, 12188}, {5465, 10264}, {5690, 12258}, {5969, 16509}, {5984, 61932}, {6033, 11737}, {6034, 8586}, {6036, 8703}, {6054, 10109}, {6321, 12100}, {6721, 61890}, {6722, 61885}, {8593, 51732}, {8981, 49215}, {9167, 61874}, {9830, 38110}, {9884, 51700}, {10054, 15325}, {10722, 61978}, {10723, 15690}, {10992, 61837}, {11006, 40685}, {11177, 19709}, {11540, 38750}, {11656, 20304}, {11812, 61600}, {12042, 15687}, {12101, 38741}, {12812, 52090}, {13172, 15701}, {13670, 42215}, {13790, 42216}, {13881, 42787}, {13908, 19117}, {13966, 49214}, {13968, 19116}, {14159, 63101}, {14891, 38730}, {14981, 61900}, {15092, 61942}, {15561, 47599}, {15686, 22515}, {15692, 38733}, {15703, 64090}, {15711, 38738}, {15712, 38734}, {15713, 33813}, {16239, 64019}, {17504, 23698}, {18583, 19905}, {20094, 61859}, {21166, 61827}, {22247, 51524}, {22505, 41148}, {23235, 48154}, {23514, 38071}, {34200, 38739}, {35018, 38664}, {35021, 61963}, {35404, 38749}, {36519, 61917}, {38064, 43620}, {38634, 62020}, {38731, 61782}, {38737, 45759}, {38743, 61924}, {38744, 41106}, {38747, 62154}, {38748, 61841}, {39809, 44903}, {41134, 47598}, {50881, 61272}, {52695, 61864}, {59378, 59384}, {59379, 59383}, {61575, 61916}, {61599, 61922}, {61896, 64089}
X(66093) = midpoint of X(i) and X(j) for these {i,j}: {3524, 38732}, {5054, 41135}, {5055, 14651}, {9166, 38224}, {11632, 23234}, {59378, 59384}, {59379, 59383}
X(66093) = reflection of X(i) in X(j) for these {i,j}: {11539, 34127}, {15561, 47599}, {15699, 14971}, {17504, 26614}, {21166, 61827}, {23234, 547}, {38071, 23514}, {38229, 9166}, {38731, 61782}, {41134, 47598}, {45759, 38737}, {51872, 23234}
X(66093) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {547, 11632, 51872}, {5461, 20398, 49102}, {5461, 49102, 5}, {6055, 61576, 3845}, {11632, 14061, 547}, {22566, 49102, 11623}
X(66094) lies on the 1st Terzić hyperbola and these lines: {2, 13188}, {3, 7777}, {4, 42788}, {5, 574}, {6, 38230}, {13, 44223}, {14, 52650}, {30, 43461}, {39, 14693}, {76, 140}, {141, 39498}, {182, 524}, {547, 52691}, {550, 9734}, {620, 24256}, {632, 7789}, {1352, 5116}, {2549, 38229}, {3094, 18583}, {3106, 61513}, {3107, 61514}, {3526, 7891}, {3530, 26316}, {3628, 7790}, {5066, 11669}, {6713, 51046}, {7619, 49102}, {7709, 61560}, {7844, 55856}, {8724, 55801}, {10277, 52036}, {10484, 11170}, {11539, 59780}, {11842, 33274}, {13108, 33015}, {13449, 37512}, {15464, 43084}, {15482, 51848}, {15920, 61548}, {17004, 32519}, {31406, 32134}, {38110, 59695}, {42215, 53498}, {42216, 53497}, {54482, 60233}, {61104, 62362}
X(66094) = midpoint of X(3) and X(7777)
X(66094) = reflection of X(i) in X(j) for these {i,j}: {5, 3055}, {37688, 140}
X(66095) lies on the 1st Terzić hyperbola and these lines: {2, 7711}, {3, 7797}, {5, 182}, {6, 43456}, {15, 53440}, {16, 53428}, {30, 3972}, {76, 140}, {230, 549}, {316, 3398}, {381, 7875}, {550, 20576}, {625, 50664}, {632, 7822}, {2549, 44532}, {2782, 7820}, {3091, 48674}, {3094, 5305}, {3407, 11170}, {3526, 46226}, {3628, 7943}, {3767, 5116}, {4045, 12042}, {4846, 43721}, {5026, 10168}, {5050, 5207}, {5054, 17004}, {5066, 14458}, {5092, 7817}, {5254, 44224}, {5989, 11185}, {6033, 7919}, {6036, 40108}, {6656, 32151}, {7622, 15713}, {7709, 61561}, {7775, 55710}, {7807, 32516}, {7827, 35002}, {7828, 12054}, {7829, 14881}, {7846, 44237}, {7851, 40279}, {7856, 9821}, {7866, 39899}, {7913, 9996}, {7920, 48673}, {7923, 37243}, {9301, 63019}, {9734, 15712}, {10124, 47005}, {10272, 15920}, {11318, 55705}, {11539, 58446}, {11623, 58445}, {12100, 52691}, {13334, 58448}, {14389, 21531}, {14693, 21163}, {15921, 61572}, {24206, 51523}, {32515, 37450}, {35705, 38224}, {37348, 38229}, {38064, 43620}, {39499, 53567}, {42215, 53515}, {42216, 53512}, {44380, 50979}, {60115, 60215}, {60659, 63047}
X(66095) = midpoint of X(7790) and X(26316)
X(66095) = {X(7834),X(14880)}-harmonic conjugate of X(5)
X(66096) lies on the 1st Terzić hyperbola and these lines: {2, 9301}, {3, 7875}, {5, 32}, {6, 51872}, {15, 44223}, {16, 52650}, {30, 3972}, {76, 44237}, {140, 262}, {381, 7806}, {495, 10047}, {496, 10038}, {546, 9873}, {547, 7811}, {549, 3098}, {576, 7908}, {590, 35783}, {598, 5066}, {615, 35782}, {952, 11368}, {1656, 2896}, {2076, 14561}, {2080, 7831}, {2782, 5355}, {3091, 18503}, {3094, 18583}, {3095, 7835}, {3096, 3628}, {3099, 5886}, {3104, 61537}, {3105, 61538}, {3398, 40239}, {3407, 44230}, {3526, 10357}, {3530, 35248}, {3850, 18500}, {5025, 18501}, {5055, 17004}, {5432, 65127}, {5901, 9941}, {6033, 12150}, {6680, 14881}, {7583, 44605}, {7584, 44604}, {7736, 37466}, {7753, 61575}, {7807, 40252}, {7819, 32521}, {7828, 18502}, {7865, 15699}, {7880, 55716}, {7892, 48673}, {7898, 10788}, {7907, 42788}, {7914, 55856}, {7919, 12110}, {8176, 61910}, {8254, 9985}, {8368, 22486}, {8782, 32447}, {9857, 38042}, {9923, 61544}, {9956, 49561}, {9981, 20253}, {9982, 20252}, {9983, 61550}, {9984, 61548}, {9997, 10283}, {10272, 13210}, {10277, 34845}, {10346, 37446}, {10347, 38227}, {10592, 10873}, {10593, 10874}, {10828, 13861}, {11272, 46283}, {11386, 21841}, {11623, 22681}, {11801, 12501}, {11842, 13862}, {12040, 42536}, {12042, 19130}, {12188, 63019}, {12495, 61510}, {12496, 61556}, {12497, 61524}, {12498, 61553}, {12499, 61566}, {12502, 61540}, {13235, 61562}, {13236, 61573}, {14389, 44215}, {14853, 35456}, {15092, 43457}, {15325, 18957}, {15806, 43854}, {16123, 61552}, {19011, 19117}, {19012, 19116}, {19686, 38733}, {22745, 61516}, {22746, 61515}, {24825, 61621}, {25555, 40108}, {30435, 43450}, {32268, 61543}, {32448, 63633}, {38229, 43449}, {54716, 62912}, {60900, 61509}
X(66096) = midpoint of X(i) and X(j) for these {i,j}: {9993, 26316}, {11842, 13862}
X(66096) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 32, 32151}, {140, 9821, 42787}, {381, 7806, 61560}, {7846, 9821, 140}
X(66097) lies on the 1st Terzić hyperbola and these lines: {2, 38230}, {5, 524}, {15, 53446}, {16, 53434}, {30, 43461}, {140, 598}, {148, 381}, {262, 5066}, {547, 7811}, {549, 3055}, {3628, 7936}, {3972, 10124}, {5611, 51483}, {5615, 51482}, {7753, 41675}, {8860, 14161}, {10796, 15699}, {14159, 22329}, {25154, 44289}, {25164, 52649}, {31415, 54173}, {38735, 61046}, {43450, 54964}
X(66097) = midpoint of X(381) and X(7777)
X(66097) = reflection of X(i) in X(j) for these {i,j}: {549, 3055}, {37688, 547}
X(66098) lies on the 2nd Terzić hyperbola and these lines: {1, 381}, {4, 3017}, {30, 35466}, {321, 54516}, {376, 24880}, {549, 24902}, {3019, 61983}, {3543, 24883}, {3839, 45924}, {3845, 56402}, {5721, 48861}, {6175, 48897}, {14269, 45923}, {15683, 24898}, {24936, 61936}, {37428, 41501}, {37718, 62491}, {48842, 63982}, {49744, 63318}
X(66099) lies on the 2nd Terzić hyperbola and these lines: {2, 3}, {8, 3058}, {10, 41872}, {13, 54379}, {14, 54378}, {56, 26127}, {81, 48870}, {145, 15170}, {149, 9708}, {329, 15933}, {392, 28204}, {517, 5640}, {519, 3681}, {528, 38057}, {529, 3475}, {535, 25055}, {540, 3794}, {551, 3897}, {553, 64002}, {612, 48827}, {614, 48818}, {936, 11015}, {950, 3876}, {958, 11238}, {993, 3582}, {1001, 5080}, {1211, 48859}, {1329, 4995}, {1478, 5284}, {1479, 5260}, {1621, 10056}, {1655, 7837}, {1724, 3017}, {1737, 62838}, {2346, 11239}, {2551, 3871}, {2829, 54445}, {2975, 10072}, {3219, 5722}, {3241, 5330}, {3303, 56880}, {3305, 3586}, {3419, 27065}, {3488, 31018}, {3578, 10449}, {3583, 33108}, {3584, 5248}, {3615, 43531}, {3616, 5434}, {3617, 15171}, {3621, 15172}, {3634, 65134}, {3648, 5221}, {3654, 34629}, {3679, 5178}, {3697, 31795}, {3720, 48825}, {3753, 28198}, {3816, 5298}, {3826, 65632}, {3828, 7705}, {3841, 18514}, {3868, 10399}, {3885, 5795}, {3889, 12527}, {3920, 48824}, {3951, 37723}, {4383, 48842}, {4428, 31141}, {4511, 4679}, {4512, 19875}, {4654, 54392}, {4669, 34719}, {4720, 14555}, {4745, 34649}, {5057, 54318}, {5251, 11680}, {5262, 50068}, {5283, 7753}, {5287, 48828}, {5303, 10200}, {5325, 6734}, {5362, 10654}, {5367, 10653}, {5550, 7354}, {5554, 50810}, {5985, 11632}, {6284, 9780}, {6740, 48863}, {7191, 48819}, {7679, 64086}, {7737, 37675}, {7739, 33854}, {7811, 18140}, {8167, 12943}, {8582, 50808}, {8583, 34628}, {9668, 33110}, {9709, 20066}, {9711, 63273}, {10197, 31160}, {10327, 48798}, {10479, 49729}, {10483, 19862}, {10546, 51420}, {11180, 63070}, {14537, 16589}, {14997, 48847}, {15934, 17484}, {15988, 20423}, {16998, 19570}, {17024, 48820}, {17127, 37715}, {17182, 57722}, {17183, 17378}, {17185, 48839}, {17194, 48868}, {17757, 61155}, {18135, 37671}, {18253, 56203}, {18444, 37822}, {18990, 46934}, {19767, 49739}, {19784, 34657}, {19860, 31162}, {19861, 50811}, {20195, 51790}, {21077, 62870}, {24564, 31673}, {24929, 27131}, {24987, 50796}, {25005, 50821}, {25011, 31730}, {26062, 34630}, {26543, 47354}, {29814, 48823}, {30117, 33151}, {32836, 45962}, {32911, 48857}, {33090, 48804}, {33091, 48800}, {34617, 51709}, {34637, 51108}, {34690, 51103}, {34695, 64143}, {34720, 51072}, {36263, 53619}, {36889, 57818}, {37657, 48848}, {37680, 48837}, {38074, 59416}, {40663, 60954}, {41698, 52769}, {44663, 61663}, {47353, 63470}, {48861, 63074}, {48866, 51382}, {50865, 64673}, {50890, 66008}, {56879, 64199}, {57721, 60079}, {57822, 57830}
X(66099) = orthocentroidal-circle-inverse of X(6175)
X(66099) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 6175}, {2, 376, 404}, {2, 381, 2476}, {2, 452, 31156}, {2, 549, 17566}, {2, 2475, 44217}, {2, 3543, 377}, {2, 4189, 549}, {2, 5046, 381}, {2, 5071, 7504}, {2, 5154, 547}, {2, 5187, 5071}, {2, 6175, 4197}, {2, 6872, 376}, {2, 7924, 33840}, {2, 11111, 17549}, {2, 11113, 11114}, {2, 11114, 17579}, {2, 15677, 3}, {2, 15683, 6904}, {2, 15692, 6921}, {2, 16859, 50202}, {2, 16865, 15670}, {2, 16920, 6661}, {2, 17561, 15671}, {2, 17576, 15692}, {2, 17692, 33246}, {2, 19686, 16915}, {2, 26117, 50321}, {2, 31156, 21}, {2, 33824, 7924}, {2, 36004, 16417}, {2, 37291, 15694}, {2, 37299, 16371}, {2, 48817, 51669}, {2, 50407, 14005}, {2, 50430, 17553}, {2, 51678, 19336}, {2, 61936, 6933}, {2, 61985, 5177}, {2, 62005, 37161}, {2, 62048, 56999}, {2, 62969, 17528}, {3, 6965, 6945}, {4, 5047, 4197}, {4, 6992, 7411}, {5, 15670, 2}, {21, 2478, 4193}, {376, 5084, 2}, {376, 6872, 15678}, {377, 3543, 15679}, {377, 5129, 17536}, {381, 405, 2}, {404, 15678, 376}, {405, 5046, 2476}, {442, 50202, 2}, {452, 2478, 21}, {452, 6919, 11106}, {547, 7483, 2}, {547, 15673, 7483}, {547, 50243, 15673}, {549, 4187, 2}, {549, 17525, 4189}, {549, 50241, 17525}, {550, 17575, 17572}, {1006, 6929, 6932}, {1995, 56960, 1325}, {2478, 6910, 6919}, {2478, 31156, 2}, {3091, 31789, 59355}, {3543, 5129, 2}, {3545, 17561, 2}, {3560, 6902, 6943}, {3830, 11108, 44217}, {3830, 44217, 2475}, {3845, 50202, 442}, {4187, 4189, 17566}, {4187, 17525, 549}, {4187, 50241, 4189}, {4190, 17559, 17535}, {4205, 50323, 2}, {5047, 6175, 2}, {5071, 6857, 2}, {5073, 16855, 56997}, {5084, 6872, 404}, {5187, 6857, 7504}, {5192, 50321, 2}, {6175, 15678, 33557}, {6827, 6976, 6912}, {6840, 6913, 10883}, {6868, 6898, 6915}, {6871, 16845, 31254}, {6893, 6936, 411}, {6910, 11106, 21}, {6919, 11106, 6910}, {6920, 6928, 6828}, {6930, 6947, 6909}, {6957, 6987, 36002}, {7924, 16918, 2}, {11108, 44217, 2}, {11114, 17566, 37430}, {15670, 17525, 12104}, {15671, 16858, 17561}, {15677, 37162, 2}, {16408, 50242, 37256}, {16417, 57006, 36004}, {16418, 17556, 2}, {16857, 17532, 2}, {16858, 37375, 2}, {16861, 17577, 2}, {16916, 17685, 17550}, {16918, 33824, 33840}, {17527, 57002, 4188}, {17528, 17542, 2}, {17552, 50727, 2}, {17558, 61936, 2}, {17590, 50395, 2}, {18586, 18587, 64473}, {20846, 28466, 17549}, {33046, 33246, 2}, {34606, 49736, 3241}
X(66100) lies on the 2nd Terzić hyperbola and these lines: {1, 2}, {30, 333}, {391, 3839}, {1010, 61661}, {1043, 15670}, {1330, 3578}, {1654, 19570}, {1834, 49730}, {2475, 50215}, {2891, 25466}, {3543, 43533}, {3545, 14555}, {3681, 61699}, {3695, 4102}, {4042, 11237}, {4405, 25455}, {4720, 15671}, {4921, 50171}, {5055, 5233}, {5123, 25679}, {5224, 51593}, {5295, 42033}, {5325, 7283}, {5737, 48842}, {5814, 42030}, {6757, 28612}, {11110, 49739}, {14534, 54786}, {15673, 52352}, {15682, 46976}, {16052, 41816}, {16267, 37834}, {16268, 37831}, {16418, 56946}, {17330, 56745}, {17346, 17532}, {17677, 49724}, {24597, 51591}, {25648, 64200}, {26051, 49744}, {26117, 49729}, {26131, 50256}, {32853, 48825}, {34258, 54677}, {37631, 56018}, {37652, 48870}, {41629, 50169}, {45923, 56440}, {48839, 54119}, {49735, 64424}, {50074, 56291}, {51668, 56974}, {54510, 60206}
X(66100) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 9780, 27558}, {8, 25446, 25650}, {10, 3017, 2}, {3578, 6175, 1330}, {6175, 64401, 3578}
X(66101) lies on the 2nd Terzić hyperbola and these lines: {2, 37}, {9, 3017}, {30, 2303}, {45, 24883}, {941, 1989}, {965, 48842}, {1333, 15677}, {1778, 61661}, {1901, 37631}, {2325, 25441}, {4021, 25651}, {4029, 25645}, {4873, 24931}, {6175, 53417}, {7739, 24275}, {16672, 24936}, {16673, 24937}, {16676, 24880}, {17330, 53427}, {17592, 61710}, {19570, 26110}, {19767, 62210}, {48818, 54385}, {48857, 52405}, {50066, 54405}, {61650, 61699}
X(66102) lies on the 2nd Terzić hyperbola and these lines: {2, 759}, {9, 80}, {30, 35466}, {1168, 5180}, {1751, 54528}, {1793, 31156}, {2166, 14583}, {3017, 52380}, {4075, 34857}, {5248, 6187}, {6740, 48863}, {9143, 56405}, {11114, 24624}, {12699, 56426}, {17537, 52367}, {21363, 28459}, {34311, 37718}, {37702, 57263}, {51303, 56645}
X(66102) = barycentric product X(i)*X(j) for these {i,j}: {80, 29833}, {14616, 53037}
X(66102) = barycentric quotient X(i)/X(j) for these {i,j}: {29833, 320}, {53037, 758}
X(66103) lies on the 3rd Terzić hyperbola and these lines: {4, 572}, {10, 54544}, {30, 386}, {381, 46976}, {2049, 32431}, {2794, 49130}, {3543, 19766}, {16124, 24725}, {17777, 28661}, {34258, 64748}, {35203, 48839}, {37823, 49129}
X(66104) lies on these lines: {1, 3838}, {2, 49734}, {3, 45939}, {4, 6}, {5, 4255}, {8, 4415}, {10, 45}, {20, 37646}, {21, 31187}, {30, 4252}, {31, 12953}, {40, 5036}, {42, 10895}, {55, 21935}, {58, 382}, {65, 1900}, {115, 2271}, {149, 37542}, {154, 37226}, {230, 7390}, {377, 37674}, {381, 386}, {443, 37682}, {497, 1616}, {546, 48847}, {595, 9668}, {599, 10449}, {938, 1086}, {940, 2475}, {950, 3772}, {966, 43533}, {995, 9669}, {1030, 37320}, {1104, 3586}, {1191, 1479}, {1193, 10896}, {1201, 11238}, {1203, 18514}, {1330, 40341}, {1468, 12943}, {1620, 37410}, {1656, 4256}, {1657, 4257}, {1714, 11113}, {1837, 1853}, {2047, 8253}, {2049, 5110}, {2334, 9656}, {2476, 19765}, {2478, 37679}, {2549, 5022}, {2650, 61716}, {3017, 3830}, {3052, 5230}, {3053, 49132}, {3086, 8572}, {3091, 37662}, {3146, 37642}, {3192, 37197}, {3214, 31141}, {3216, 17556}, {3242, 13161}, {3445, 37722}, {3485, 62221}, {3543, 61661}, {3583, 16466}, {3752, 9581}, {3755, 19925}, {3763, 16062}, {3767, 4258}, {3782, 12649}, {3815, 7407}, {3832, 63089}, {3845, 48857}, {3913, 37716}, {3915, 9670}, {3944, 12635}, {4190, 37634}, {4208, 17245}, {4214, 37538}, {4259, 15488}, {4294, 21000}, {4383, 5046}, {4385, 59407}, {4642, 7069}, {4646, 5587}, {4648, 37161}, {4857, 16483}, {5021, 7748}, {5064, 54426}, {5086, 33134}, {5096, 37415}, {5124, 37062}, {5129, 17337}, {5177, 17056}, {5187, 37663}, {5204, 29662}, {5275, 23903}, {5290, 49478}, {5295, 56541}, {5710, 52367}, {5717, 16884}, {5718, 6871}, {5722, 17054}, {5737, 26117}, {5793, 32773}, {5794, 24210}, {5814, 62224}, {6144, 56018}, {6703, 50408}, {6734, 50065}, {6840, 37537}, {6850, 37501}, {6872, 35466}, {6919, 51415}, {6923, 36746}, {6928, 36745}, {6998, 37637}, {7074, 10953}, {7297, 7713}, {7300, 54397}, {7354, 11269}, {7380, 31489}, {7773, 33296}, {7841, 17034}, {8252, 63810}, {8609, 15852}, {9598, 42316}, {9664, 14974}, {10448, 31245}, {10459, 31140}, {10479, 50056}, {10516, 50591}, {10525, 64449}, {10827, 64175}, {10894, 37529}, {11114, 24883}, {11236, 50581}, {11287, 29455}, {11354, 20083}, {11359, 50605}, {11679, 50050}, {12293, 56295}, {12433, 24159}, {12513, 33141}, {12572, 16885}, {13736, 62689}, {13740, 47355}, {13881, 18755}, {14893, 48861}, {15069, 37823}, {15668, 26051}, {15687, 48870}, {15955, 18525}, {16052, 48862}, {16394, 25441}, {16418, 24880}, {16644, 37144}, {16645, 37145}, {17276, 24391}, {17327, 37164}, {17334, 54398}, {17374, 35629}, {17392, 50736}, {17555, 26958}, {17577, 19767}, {17578, 37666}, {17676, 37660}, {17685, 20154}, {17720, 57287}, {17734, 64951}, {18961, 34046}, {19744, 37314}, {20131, 33030}, {20135, 33028}, {20155, 33031}, {20156, 33029}, {20157, 33026}, {21049, 62693}, {21949, 64673}, {23681, 37723}, {24443, 61717}, {25446, 48814}, {31295, 63078}, {31479, 33771}, {31884, 50425}, {33094, 37567}, {33137, 57288}, {33863, 44526}, {36695, 63534}, {37146, 43029}, {37147, 43028}, {37224, 41501}, {37234, 45926}, {37411, 54431}, {37424, 50677}, {37522, 50239}, {37540, 54355}, {37657, 63537}, {45219, 51785}, {48801, 50608}, {48841, 50740}, {48846, 50741}, {49168, 63997}, {50242, 52680}, {51118, 64016}, {51599, 64850}, {54698, 57720}, {56819, 64127}, {57282, 62223}, {63541, 63604}
X(66104) = reflection of X(4252) in X(5292)
X(66104) = crosspoint of X(4) and X(43533)
X(66104) = crosssum of X(3) and X(4252)
X(66104) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 1834, 6}, {5, 48837, 4255}, {1479, 64172, 1191}, {3146, 37642, 64159}, {5086, 33134, 37614}, {5230, 6284, 3052}, {5722, 23537, 17054}
X(66105) lies on the 3rd Terzić hyperbola and these lines: {3, 142}, {5, 28858}, {10, 54657}, {546, 28877}, {1699, 17367}, {2784, 18480}, {3008, 50802}, {6625, 54668}, {9955, 28854}, {9956, 28889}, {17397, 50865}, {19925, 28909}, {28866, 40273}, {29628, 30308}
X(66106) lies on the 3rd Terzić hyperbola and these lines: {1, 4}, {3, 45}, {30, 4415}, {31, 61705}, {36, 7069}, {44, 580}, {58, 2341}, {65, 52371}, {88, 6915}, {381, 30117}, {411, 62796}, {500, 46976}, {595, 31937}, {612, 50528}, {756, 7688}, {936, 54389}, {971, 37469}, {975, 41854}, {976, 41869}, {990, 5720}, {1071, 37520}, {2173, 57281}, {2783, 12738}, {3072, 31803}, {3073, 31871}, {3120, 18406}, {3149, 17595}, {3811, 28580}, {3924, 18492}, {3938, 31162}, {3961, 28194}, {4080, 34772}, {4217, 19861}, {4306, 37696}, {4346, 50700}, {4420, 32932}, {4887, 64001}, {5293, 31730}, {5396, 29061}, {6796, 17601}, {6831, 37691}, {6841, 24160}, {6849, 24159}, {7986, 18491}, {8583, 51673}, {11362, 54997}, {11552, 56422}, {12528, 37530}, {15955, 18525}, {16132, 59305}, {17012, 37732}, {18357, 30449}, {18480, 56426}, {18540, 37817}, {20117, 37570}, {33597, 54387}, {34627, 49494}, {34648, 49682}, {35242, 36510}, {37522, 64358}, {41543, 49745}, {41562, 54339}, {49712, 63967}, {50796, 60353}, {52544, 62210}, {54310, 66059}
X(66107) lies on the 3rd Terzić hyperbola and these lines: {1, 3838}, {3, 9}, {4, 11813}, {10, 16132}, {57, 64715}, {72, 484}, {73, 56317}, {78, 9579}, {80, 442}, {200, 3962}, {214, 6920}, {224, 5219}, {226, 2475}, {329, 37256}, {405, 37616}, {950, 6224}, {1376, 15071}, {1706, 17857}, {2099, 2900}, {2476, 9581}, {3419, 37707}, {3430, 16548}, {3452, 64707}, {4640, 16143}, {5172, 6597}, {5293, 35338}, {5436, 37525}, {5531, 5836}, {5714, 22836}, {5881, 6937}, {5903, 11523}, {5927, 59691}, {6326, 17647}, {6596, 13273}, {6598, 57285}, {6840, 63998}, {6913, 26287}, {6943, 30827}, {8583, 33576}, {10382, 34471}, {10483, 58798}, {12625, 36846}, {13089, 34871}, {14799, 37284}, {14800, 37249}, {15556, 35990}, {15829, 63988}, {17668, 56176}, {19925, 65990}, {30147, 50741}, {37163, 57284}, {37572, 54290}, {54305, 56824}
X(66108) lies on the 3rd Terzić hyperbola and these lines:{3, 17281}, {4, 519}, {10, 8235}, {84, 1766}, {321, 3429}, {386, 3553}, {511, 22036}, {946, 50589}, {2321, 3430}, {2345, 5438}, {3175, 13442}, {3971, 35099}, {5777, 50594}, {12528, 50633}, {12618, 50608}
X(66108) = midpoint of X(12528) and X(50633)
X(66108) = reflection of X(i) in X(j) for these {i,j}: {50589, 946}, {50594, 5777}
X(66109) lies on the 3rd Terzić hyperbola and these lines: {1, 3}, {946, 17012}, {962, 17013}, {1029, 31673}, {2999, 38021}, {3755, 18406}, {4646, 62210}, {5256, 31162}, {6684, 17021}, {7292, 39605}, {7592, 12705}, {16132, 59301}, {16474, 66059}, {17011, 28194}, {46976, 52524}, {48903, 56426}, {51599, 64673}
Contributed by Clark Kimberling and Peter Moses, November 7, 2024.
Indices i < 40000 such that X(i) lies on the Lester circle:
3, 5, 13, 14, 1117, 5671, 14854, 15475, 15535, 15536, 15537, 15538, 15539, 15540, 15541, 15542, 15543, 15544, 15545, 15546, 15547, 15548, 15549, 15550, 15551, 15552, 15553, 15554, 15555, 34365
Indices i > 40000 such that X(i) lies on the Lester circle: 66110, 66111, 66112, 66113, 66114
X(66110) lies on the Lester circle and these lines: {3, 59251}, {5, 39}, {6, 15542}, {111, 53876}, {187, 46633}, {542, 15544}, {804, 15543}, {1989, 34365}, {2088, 11646}, {6034, 15540}, {10413, 15535}, {11632, 15546}, {12188, 44533}, {14579, 15554}, {15550, 56401}, {23969, 43654}
X(66110) = Moses-circle-inverse of X(44468)
X(66110) = {X(115),X(1569)}-harmonic conjugate of X(44468)
X(66111) lies on the Lester circle and these lines: {3, 14995}, {30, 15535}, {187, 46633}, {249, 14480}, {476, 691}, {477, 38702}, {511, 46632}, {512, 7471}, {523, 9181}, {842, 38700}, {1316, 9169}, {3111, 15536}, {3258, 40544}, {5099, 22104}, {7472, 62489}, {9158, 26613}, {9179, 47327}, {11537, 61472}, {11549, 61474}, {15538, 25641}, {16168, 38611}, {16181, 45879}, {16182, 45880}, {20957, 57307}, {36180, 62508}, {46998, 53726}, {47502, 62510}
X(66111) = midpoint of X(476) and X(691)
X(66111) = reflection of X(i) in X(j) for these {i,j}: {3258, 40544}, {5099, 22104}
X(66111) = reflection of X(53735) in the Euler line
X(66112) lies on the Lester circle and these lines: {5, 32}, {6, 15545}, {381, 15546}, {5476, 15544}, {10413, 15539}, {11182, 61743}, {14356, 15550}, {14854, 56395}, {15542, 53504}, {15543, 59893}
X(66112) = orthocentroidal circle inverse of X(15546)
X(66113) lies on the Lester circle and these lines: {3, 543}, {111, 53876}, {542, 15539}, {671, 57616}, {2782, 52036}, {2793, 14662}, {2854, 15536}, {11646, 15538}, {15342, 15544}
X(66113) = reflection of X(34010) in X(53726)
X(66114) lies on the Lester circle and these lines: {2, 15544}, {5, 44386}, {114, 399}, {3258, 40544}, {5461, 15546}, {13582, 15553}, {15550, 18883}
X(66115) lies on the cubic K1379 and these lines: {2, 2966}, {99, 7471}, {110, 685}, {250, 47259}, {316, 691}, {340, 687}, {450, 44146}, {476, 3268}, {892, 5466}, {3260, 56430}, {4240, 16077}, {4563, 14221}, {5651, 44155}, {5999, 26276}, {9140, 9141}, {9514, 30476}, {9979, 17708}, {10411, 18878}, {23357, 31072}, {30528, 57822}, {31174, 40866}, {32717, 34087}, {32729, 53365}, {52916, 65268}
X(66115) = X(36131)-anticomplementary conjugate of X(39356)
X(66115) = crosspoint of X(892) and X(16077)
X(66115) = crosssum of X(351) and X(9409)
X(66115) = barycentric product X(i)*X(j) for these {i,j}: {99, 48540}, {34537, 53327}, {43187, 56962}
X(66115) = barycentric quotient X(i)/X(j) for these {i,j}: {48540, 523}, {53327, 3124}, {56962, 3569}
X(66115) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 850, 65713}, {110, 65713, 54108}, {476, 3268, 65768}, {850, 18020, 54108}, {7471, 30474, 99}, {18020, 65713, 110}, {53379, 65872, 892}
X(66116) lies on the cubic K1379 and these lines: {2, 647}, {3, 47258}, {5, 47248}, {110, 879}, {111, 2373}, {183, 55974}, {378, 46984}, {476, 1304}, {523, 1995}, {525, 15066}, {2394, 2986}, {2433, 3580}, {4580, 10130}, {4993, 15412}, {5466, 15398}, {5468, 17708}, {6563, 65612}, {7493, 47263}, {9147, 14270}, {9168, 11638}, {14592, 18883}, {18117, 62949}, {30739, 47256}, {30744, 59742}, {33752, 47250}, {34767, 40384}, {43957, 47260}, {44210, 47261}, {44212, 47175}, {46425, 65972}, {47001, 47596}, {52743, 63036}
X(66116) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {9139, 21294}, {36034, 14360}, {36142, 146}, {65263, 34518}
X(66116) = crosspoint of X(i) and X(j) for these (i,j): {671, 46456}, {892, 40832}
X(66116) = crossdifference of every pair of points on line {237, 47414}
X(66116) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 31296, 62307}, {647, 18312, 2}, {2395, 53173, 46786}
X(66117) lies on the cubic K1379 and these lines: {2, 525}, {110, 476}, {146, 1499}, {323, 65977}, {520, 45237}, {524, 9141}, {647, 34834}, {690, 858}, {850, 36789}, {1637, 3580}, {2799, 40112}, {2986, 10754}, {3124, 62572}, {3268, 11064}, {5466, 51405}, {7426, 14697}, {11646, 65609}, {23870, 41888}, {23871, 41887}, {44427, 62628}, {47258, 53725}
X(66117) = reflection of X(i) in X(j) for these {i,j}: {3268, 11064}, {3580, 1637}, {7426, 14697}, {51227, 65782}
X(66117) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {923, 62639}, {9214, 21294}, {9406, 39356}, {24001, 34518}, {32729, 18668}, {36060, 45289}, {36142, 30}
X(66117) = X(56395)-Dao conjugate of X(14559)
X(66117) = crosspoint of X(i) and X(j) for these (i,j): {671, 39290}, {892, 31621}
X(66117) = crosssum of X(i) and X(j) for these (i,j): {187, 52743}, {351, 9408}
X(66117) = crossdifference of every pair of points on line {1495, 2088}
X(66118) lies on the cubic K1379 and these lines: {2, 523}, {30, 3268}, {110, 525}, {403, 44203}, {468, 9979}, {476, 65772}, {647, 60510}, {842, 2373}, {850, 34336}, {858, 14417}, {2799, 7426}, {2972, 37987}, {3258, 65978}, {3265, 14360}, {3580, 9033}, {6054, 30474}, {7665, 33294}, {9185, 47190}, {9529, 62288}, {10718, 34312}, {14611, 65776}, {17986, 34767}, {36904, 65782}, {41298, 47175}, {47325, 55135}
X(66118) = reflection of X(i) in X(j) for these {i,j}: {858, 14417}, {7426, 47219}, {9185, 47190}, {9979, 468}, {62629, 46986}
X(66118) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1304, 17491}, {16077, 21298}, {32715, 17497}, {36034, 858}, {36131, 524}, {65263, 316}
X(66118) = crosspoint of X(16077) and X(57539)
X(66118) = crosssum of X(9409) and X(39689)
X(66119) lies on the cubic K1379 and these lines: {2, 476}, {4, 110}, {5, 33927}, {264, 850}, {316, 5468}, {323, 18867}, {381, 9717}, {427, 65718}, {858, 5968}, {1007, 1272}, {1138, 3545}, {1553, 3543}, {3091, 59370}, {3268, 65775}, {3580, 35235}, {4240, 14165}, {6054, 31105}, {9140, 9214}, {9979, 53156}, {13448, 62551}, {14254, 20304}, {14355, 63036}, {15081, 51835}, {17511, 52772}, {18121, 37648}, {18301, 31857}, {38794, 58733}, {41724, 53351}, {47049, 51360}, {47050, 65086}, {47324, 57603}, {53346, 59422}, {61743, 64634}
X(66119) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {897, 3153}, {17983, 63642}, {36085, 65972}, {36128, 37779}, {52414, 14360}, {52668, 6360}
X(66119) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14731, 65770}, {2, 52472, 476}, {3258, 14356, 2}, {32112, 58263, 65714}
X(66120) lies on the cubic K1379 and these lines: {2, 17708}, {69, 110}, {76, 850}, {340, 4240}, {343, 65719}, {476, 65771}, {3580, 35910}, {5468, 37804}, {9140, 36890}, {14364, 52713}, {53348, 65715}, {60498, 65608}
X(66120) = anticomplement of X(60496)
X(66120) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {74, 17482}, {1494, 21274}, {2159, 14712}, {2349, 5189}, {16568, 146}, {65263, 9517}
X(66121) lies on the cubic K1379 and these lines: {2, 35909}, {23, 690}, {74, 2373}, {110, 62307}, {323, 9033}, {476, 2799}, {526, 3580}, {542, 850}, {858, 9517}, {895, 2986}, {3268, 65770}, {4240, 44427}, {47258, 62516}
X(66121) = reflection of X(47258) in X(62516)
X(66121) = X(48540)-anticomplementary conjugate of X(21294)
X(66122) lies on the cubic K1380 and these lines: {2, 647}, {3, 47004}, {5, 47002}, {125, 41167}, {126, 1560}, {523, 30739}, {525, 37648}, {549, 46984}, {858, 33752}, {879, 54012}, {1637, 5664}, {1648, 52628}, {1650, 3258}, {2394, 62927}, {2525, 65612}, {3265, 59766}, {3266, 50942}, {3267, 11059}, {5649, 6331}, {6676, 47262}, {6677, 47261}, {7493, 47255}, {7495, 47259}, {8371, 23105}, {8703, 46995}, {9148, 21731}, {10717, 54853}, {11064, 52743}, {14096, 42660}, {14618, 52147}, {18309, 53365}, {22112, 40550}, {30745, 57127}, {37439, 59742}, {40879, 47229}, {41357, 46371}, {43957, 47175}, {44210, 47252}, {44273, 47003}, {44814, 51479}, {44818, 47205}, {46336, 47254}, {47264, 52300}, {53327, 62489}, {57482, 65758}, {58900, 63084}
X(66122) = complement of X(66116)
X(66122) = X(43084)-Ceva conjugate of X(52628)
X(66122) = X(i)-isoconjugate of X(j) for these (i,j): {74, 36142}, {111, 36034}, {163, 9139}, {691, 2159}, {895, 36131}, {897, 32640}, {923, 44769}, {1304, 36060}, {2349, 32729}, {14908, 65263}, {36085, 40352}
X(66122) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 9139}, {1560, 1304}, {1637, 9213}, {1648, 9717}, {1649, 2433}, {2482, 44769}, {3163, 691}, {3258, 111}, {3284, 51478}, {6593, 32640}, {23992, 74}, {35582, 48451}, {38988, 40352}, {39008, 895}, {48317, 8749}, {57295, 10097}, {62569, 65321}, {62577, 2394}, {62594, 14919}, {62598, 671}, {65757, 14977}, {65763, 8430}
X(66122) = crosssum of X(i) and X(j) for these (i,j): {2433, 60499}, {10097, 60498}
X(66122) = crossdifference of every pair of points on line {237, 14908}
X(66122) = barycentric product X(i)*X(j) for these {i,j}: {30, 35522}, {468, 66073}, {524, 41079}, {670, 2682}, {690, 3260}, {850, 5642}, {1637, 3266}, {1990, 45807}, {2407, 52628}, {2642, 46234}, {4235, 65753}, {5468, 58261}, {5664, 43084}, {6148, 51479}, {9033, 44146}, {9214, 52629}, {13857, 65008}, {14210, 36035}, {14254, 45808}, {14417, 46106}, {36890, 58263}, {37778, 41077}, {52145, 65754}
X(66122) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 691}, {187, 32640}, {351, 40352}, {468, 1304}, {523, 9139}, {524, 44769}, {690, 74}, {896, 36034}, {1495, 32729}, {1511, 51478}, {1637, 111}, {1648, 2433}, {1649, 9717}, {2173, 36142}, {2631, 36060}, {2642, 2159}, {2682, 512}, {3258, 9213}, {3260, 892}, {5642, 110}, {9033, 895}, {9214, 34574}, {9409, 14908}, {11064, 65321}, {13857, 32583}, {14206, 36085}, {14273, 8749}, {14398, 32740}, {14417, 14919}, {14424, 46147}, {14559, 15395}, {32225, 65316}, {35522, 1494}, {36035, 897}, {36298, 9207}, {36299, 9206}, {37778, 15459}, {41079, 671}, {41586, 36831}, {43084, 39290}, {44102, 32715}, {44146, 16077}, {44814, 14385}, {45662, 51262}, {46106, 65350}, {51360, 36827}, {51429, 32112}, {51457, 35191}, {51479, 5627}, {52628, 2394}, {52629, 36890}, {52743, 52668}, {55265, 60498}, {58261, 5466}, {58263, 9214}, {58347, 2420}, {58349, 1495}, {60428, 32695}, {65753, 14977}, {65754, 5968}, {65755, 8430}, {66073, 30786}
X(66122) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 850, 18312}, {2, 62307, 647}, {5664, 65757, 52624}
X(66123) lies on the cubic K1380 and these lines: {2, 2966}, {112, 57587}, {115, 3154}, {125, 647}, {187, 468}, {1513, 1561}, {1637, 3258}, {1648, 1649}, {1650, 14401}, {2682, 58349}, {3284, 11064}, {6587, 65613}, {6781, 47351}, {10413, 18334}, {10418, 36166}, {14417, 62594}, {44892, 64603}
X(66123) = complement of X(66115)
X(66123) = isotomic conjugate of the polar conjugate of X(2682)
X(66123) = X(468)-Ceva conjugate of X(58349)
X(66123) = X(i)-isoconjugate of X(j) for these (i,j): {691, 65263}, {892, 36131}, {1304, 36085}, {16077, 36142}, {36034, 65350}, {36060, 42308}
X(66123) = X(i)-Dao conjugate of X(j) for these (i,j): {1560, 42308}, {1649, 16080}, {3258, 65350}, {14401, 30786}, {21905, 8749}, {23992, 16077}, {38988, 1304}, {38999, 65321}, {39008, 892}, {48317, 15459}, {57295, 671}, {62569, 52940}, {62598, 59762}, {65757, 18023}
X(66123) = crosspoint of X(1637) and X(60496)
X(66123) = crossdifference of every pair of points on line {691, 1304}
X(66123) = barycentric product X(i)*X(j) for these {i,j}: {69, 2682}, {125, 5642}, {187, 65753}, {351, 66073}, {468, 1650}, {690, 9033}, {1637, 14417}, {1648, 11064}, {3284, 52628}, {3292, 58261}, {9409, 35522}, {14273, 41077}, {14398, 45807}, {34767, 58349}, {35282, 65759}, {35912, 51429}, {43084, 47414}, {60496, 62594}
X(66123) = barycentric quotient X(i)/X(j) for these {i,j}: {351, 1304}, {468, 42308}, {690, 16077}, {1636, 65321}, {1637, 65350}, {1648, 16080}, {1650, 30786}, {2631, 36085}, {2642, 65263}, {2682, 4}, {5642, 18020}, {9033, 892}, {9409, 691}, {11064, 52940}, {14273, 15459}, {14443, 52475}, {20975, 9139}, {21906, 8749}, {33919, 18808}, {41079, 59762}, {58261, 46111}, {58349, 4240}, {65753, 18023}, {66073, 53080}
X(66123) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {125, 647, 65724}, {1637, 3258, 65755}, {3154, 9209, 115}
X(66124) lies on the cubic K1380 and these lines: {2, 523}, {23, 53318}, {30, 1637}, {107, 691}, {111, 2697}, {125, 525}, {468, 44564}, {512, 41670}, {647, 65729}, {671, 42738}, {858, 9979}, {895, 9007}, {1503, 14697}, {1560, 2501}, {2799, 47097}, {3233, 65776}, {3258, 65758}, {3265, 30786}, {3566, 13291}, {4846, 10097}, {5159, 14417}, {6055, 9209}, {9033, 11064}, {9140, 66117}, {10556, 15351}, {10561, 59652}, {12075, 47173}, {12079, 65978}, {14341, 47216}, {14401, 35912}, {14582, 51847}, {16177, 65759}, {24855, 47138}, {25644, 37969}, {31125, 33294}, {31621, 65973}, {37980, 53265}, {42736, 44569}, {46115, 47004}, {46982, 52450}, {46995, 62510}, {47159, 55122}, {52464, 52485}
X(66124) = midpoint of X(i) and X(j) for these {i,j}: {858, 9979}, {9140, 66117}, {16092, 62629}
X(66124) = reflection of X(i) in X(j) for these {i,j}: {468, 44564}, {14417, 5159}, {44569, 42736}, {47001, 9209}
X(66124) = complement of X(66118)
X(66124) = X(i)-isoconjugate of X(j) for these (i,j): {162, 9717}, {187, 65263}, {468, 36034}, {524, 36131}, {896, 1304}, {922, 16077}, {1101, 52475}, {2159, 4235}, {2349, 61207}, {5467, 36119}, {8749, 23889}, {14210, 32715}, {24039, 40354}, {32676, 36890}
X(66124) = X(i)-Dao conjugate of X(j) for these (i,j): {125, 9717}, {523, 52475}, {1511, 5467}, {1650, 5642}, {3163, 4235}, {3258, 468}, {8552, 45808}, {14401, 14417}, {15477, 32715}, {15526, 36890}, {15899, 1304}, {38999, 3292}, {39008, 524}, {39061, 16077}, {39170, 14559}, {57295, 690}, {62569, 5468}, {62598, 44146}, {65757, 35522}
X(66124) = crosssum of X(690) and X(12828)
X(66124) = crossdifference of every pair of points on line {187, 9717}
X(66124) = barycentric product X(i)*X(j) for these {i,j}: {30, 14977}, {111, 66073}, {525, 9214}, {671, 9033}, {691, 65753}, {895, 41079}, {1636, 46111}, {1637, 30786}, {1650, 65350}, {2407, 51258}, {2631, 46277}, {3260, 10097}, {3284, 52632}, {5466, 11064}, {5968, 65778}, {9139, 52624}, {9213, 57482}, {9409, 18023}, {17983, 41077}, {35912, 62629}, {58261, 65321}
X(66124) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 4235}, {111, 1304}, {115, 52475}, {525, 36890}, {647, 9717}, {671, 16077}, {895, 44769}, {897, 65263}, {923, 36131}, {1495, 61207}, {1636, 3292}, {1637, 468}, {1650, 14417}, {2631, 896}, {2682, 58780}, {3284, 5467}, {5466, 16080}, {8430, 35908}, {8753, 32695}, {9033, 524}, {9139, 34568}, {9178, 8749}, {9213, 57487}, {9214, 648}, {9409, 187}, {10097, 74}, {11064, 5468}, {14391, 41586}, {14398, 44102}, {14401, 5642}, {14908, 32640}, {14977, 1494}, {17983, 15459}, {23894, 36119}, {32740, 32715}, {36060, 36034}, {41077, 6390}, {41079, 44146}, {44203, 37855}, {47414, 44814}, {51258, 2394}, {55265, 12828}, {56399, 14559}, {60496, 60503}, {64258, 18808}, {65350, 42308}, {65753, 35522}, {65778, 52145}, {66073, 3266}
X(66125) lies on the cubic K1380 and these lines: {2, 476}, {3, 125}, {94, 7607}, {140, 14254}, {146, 59368}, {184, 65750}, {187, 1648}, {216, 647}, {328, 62698}, {373, 15000}, {376, 55319}, {381, 52056}, {468, 9176}, {549, 34209}, {631, 51835}, {1637, 60340}, {1656, 58733}, {1989, 10418}, {3523, 59428}, {3524, 5627}, {3530, 53137}, {5054, 14993}, {5055, 51345}, {5094, 53771}, {5467, 41586}, {5642, 9717}, {5651, 14560}, {5972, 33927}, {6053, 14264}, {6055, 47596}, {6070, 52772}, {6344, 52147}, {6639, 53168}, {6676, 57482}, {7493, 53768}, {7495, 43087}, {7499, 43089}, {7542, 58725}, {7664, 52145}, {8371, 15475}, {8553, 56404}, {9155, 14357}, {10272, 14670}, {11064, 16186}, {11078, 46825}, {11092, 46824}, {14389, 18114}, {14687, 61743}, {15329, 32223}, {18384, 52292}, {20125, 39239}, {24975, 47146}, {29012, 46602}, {30739, 43090}, {34577, 58926}, {35222, 44889}, {37779, 52603}, {43088, 65610}, {44210, 65620}, {44814, 51479}, {46127, 46155}, {47200, 66075}, {47327, 57603}, {50676, 59771}, {58723, 58729}, {59370, 64101}
X(66125) = complement of X(66119)
X(66125) = isotomic conjugate of the polar conjugate of X(56395)
X(66125) = isogonal conjugate of the polar conjugate of X(43084)
X(66125) = X(43084)-Ceva conjugate of X(56395)
X(66125) = X(i)-isoconjugate of X(j) for these (i,j): {92, 52668}, {111, 52414}, {162, 9213}, {186, 897}, {323, 36128}, {340, 923}, {2624, 65350}, {6149, 17983}, {9139, 35201}, {14165, 36060}, {14590, 23894}, {24006, 51478}, {34397, 46277}, {36085, 47230}, {36142, 44427}
X(66125) = X(i)-Dao conjugate of X(j) for these (i,j): {125, 9213}, {1560, 14165}, {1649, 35235}, {2482, 340}, {6593, 186}, {14993, 17983}, {15295, 8753}, {22391, 52668}, {23992, 44427}, {38988, 47230}, {39170, 9214}, {52881, 7799}, {62594, 3268}
X(66125) = cevapoint of X(5642) and X(41586)
X(66125) = crossdifference of every pair of points on line {186, 9126}
X(66125) = barycentric product X(i)*X(j) for these {i,j}: {3, 43084}, {69, 56395}, {94, 3292}, {187, 328}, {265, 524}, {476, 14417}, {525, 14559}, {690, 60053}, {1989, 6390}, {3266, 52153}, {4235, 43083}, {4558, 51479}, {5467, 14592}, {5468, 14582}, {9717, 57482}, {14560, 45807}, {20573, 23200}, {32662, 35522}, {36890, 56399}, {40709, 52040}, {40710, 52039}, {41586, 65326}, {44146, 50433}
X(66125) = barycentric quotient X(i)/X(j) for these {i,j}: {94, 46111}, {184, 52668}, {187, 186}, {265, 671}, {328, 18023}, {351, 47230}, {468, 14165}, {476, 65350}, {524, 340}, {647, 9213}, {690, 44427}, {896, 52414}, {1648, 35235}, {1989, 17983}, {3292, 323}, {5467, 14590}, {5642, 14920}, {6390, 7799}, {9717, 57487}, {11060, 8753}, {11079, 9139}, {14417, 3268}, {14559, 648}, {14567, 34397}, {14582, 5466}, {14592, 52632}, {23200, 50}, {23968, 53155}, {32661, 51478}, {32662, 691}, {35139, 59762}, {36061, 36085}, {41586, 14918}, {43083, 14977}, {43084, 264}, {44102, 52418}, {50433, 895}, {51479, 14618}, {52039, 471}, {52040, 470}, {52153, 111}, {56395, 4}, {56399, 9214}, {59209, 52750}, {59210, 52751}, {60053, 892}, {61207, 53176}
X(66125) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 476, 14356}, {2, 65770, 3258}, {3, 39170, 51254}, {476, 14356, 14583}, {52039, 52040, 56395}, {59209, 59210, 56399}
X(66126) lies on the cubic K1380 and these lines: {2, 525}, {74, 1499}, {125, 523}, {468, 690}, {524, 14417}, {647, 65734}, {1494, 18823}, {1503, 47219}, {1513, 9191}, {1637, 47296}, {1648, 50942}, {1649, 5967}, {2501, 14223}, {2799, 44569}, {3265, 50567}, {3266, 45807}, {3268, 3580}, {3906, 22264}, {4143, 4563}, {5486, 14380}, {6563, 62722}, {7471, 65316}, {9140, 66118}, {9164, 12036}, {9168, 36875}, {9204, 52039}, {9205, 52040}, {11005, 17986}, {11064, 66083}, {16103, 33921}, {16243, 44451}, {30476, 58416}, {34150, 62507}, {46808, 64919}, {51823, 65611}, {57539, 62629}
X(66126) = midpoint of X(i) and X(j) for these {i,j}: {3268, 3580}, {9140, 66118}, {51227, 65973}
X(66126) = reflection of X(1637) in X(47296)
X(66126) = complement of X(66117)
X(66126) = isotomic conjugate of the polar conjugate of X(52475)
X(66126) = X(i)-isoconjugate of X(j) for these (i,j): {30, 36142}, {163, 9214}, {691, 2173}, {892, 9406}, {895, 56829}, {897, 2420}, {923, 2407}, {1495, 36085}, {4240, 36060}, {14206, 32729}, {14908, 24001}, {35266, 36045}
X(66126) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 9214}, {1560, 4240}, {1648, 5642}, {1649, 1637}, {2482, 2407}, {6593, 2420}, {9410, 892}, {21905, 14398}, {23992, 30}, {31654, 35266}, {36896, 691}, {38988, 1495}, {48317, 1990}, {56792, 60498}, {62577, 41079}, {62594, 11064}, {62606, 65321}
X(66126) = cevapoint of X(9204) and X(9205)
X(66126) = crossdifference of every pair of points on line {1495, 2420}
X(66126) = barycentric product X(i)*X(j) for these {i,j}: {69, 52475}, {74, 35522}, {468, 34767}, {523, 36890}, {524, 2394}, {690, 1494}, {850, 9717}, {2433, 3266}, {2642, 33805}, {5468, 12079}, {5627, 45808}, {5967, 65973}, {6390, 18808}, {8749, 45807}, {9139, 52629}, {9204, 36308}, {9205, 36311}, {14380, 44146}, {14417, 16080}, {32112, 52145}, {37778, 62665}, {44769, 52628}, {50942, 51227}
X(66126) = barycentric quotient X(i)/X(j) for these {i,j}: {74, 691}, {187, 2420}, {351, 1495}, {468, 4240}, {523, 9214}, {524, 2407}, {690, 30}, {1494, 892}, {1648, 1637}, {1649, 5642}, {2159, 36142}, {2349, 36085}, {2394, 671}, {2433, 111}, {2642, 2173}, {2682, 58346}, {4750, 18653}, {5642, 3233}, {5967, 65776}, {9125, 35266}, {9139, 34574}, {9204, 41887}, {9205, 41888}, {9717, 110}, {11183, 51430}, {12079, 5466}, {14273, 1990}, {14380, 895}, {14385, 51478}, {14417, 11064}, {14419, 51420}, {14424, 51360}, {14432, 51382}, {14443, 2682}, {14919, 65321}, {16080, 65350}, {17986, 53155}, {18808, 17983}, {21906, 14398}, {32112, 5968}, {34767, 30786}, {35522, 3260}, {36875, 52035}, {36890, 99}, {40352, 32729}, {42713, 42716}, {44102, 23347}, {44814, 1511}, {45662, 64607}, {45808, 6148}, {46147, 36827}, {50567, 66074}, {50942, 51228}, {51227, 50941}, {51429, 65754}, {51479, 14254}, {52038, 35906}, {52475, 4}, {52628, 41079}, {56395, 41392}, {56792, 9213}, {58331, 58337}, {58349, 3081}, {65756, 62629}
X(66126) = {X(2394),X(63856)}-harmonic conjugate of X(1640)
X(66127) lies on the cubic K1380 and these lines: {2, 9141}, {30, 1637}, {125, 23967}, {187, 1648}, {230, 6128}, {441, 44569}, {511, 58900}, {524, 14417}, {542, 647}, {1650, 3284}, {2482, 62594}, {3163, 3258}, {9140, 36904}, {10991, 57425}, {11645, 65489}, {51360, 57465}
X(66127) = complement of X(9141)
X(66127) = complement of the isogonal conjugate of X(9142)
X(66127) = complement of the isotomic conjugate of X(9140)
X(66127) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 5642}, {9140, 2887}, {9142, 10}
X(66127) = X(2)-Ceva conjugate of X(5642)
X(66127) = X(5642)-Dao conjugate of X(2)
X(66127) = crosspoint of X(i) and X(j) for these (i,j): {2, 9140}, {30, 524}
X(66127) = crosssum of X(74) and X(111)
X(66127) = crossdifference of every pair of points on line {9213, 9717}
X(66127) = barycentric product X(5642)*X(9140)
X(66127) = barycentric quotient X(i)/X(j) for these {i,j}: {5642, 9141}, {9142, 9139}
X(66128) lies on the cubic K1380 and these lines: {2, 2986}, {115, 647}, {125, 61216}, {1637, 65764}, {3124, 14401}, {5642, 56395}, {6055, 51456}, {6388, 58900}, {8029, 20975}, {10418, 66078}, {14417, 52628}
X(66128) = X(i)-isoconjugate of X(j) for these (i,j): {15329, 36085}, {24041, 60498}, {36142, 61188}
X(66128) = X(i)-Dao conjugate of X(j) for these (i,j): {1649, 3580}, {3005, 60498}, {21905, 3003}, {23992, 61188}, {38988, 15329}, {48317, 16237}
X(66128) = cevapoint of X(2682) and X(21906)
X(66128) = crosspoint of X(43084) and X(52475)
X(66128) = crossdifference of every pair of points on line {15329, 21731}
X(66128) = barycentric product X(i)*X(j) for these {i,j}: {690, 15328}, {1648, 2986}, {2682, 40423}, {14273, 15421}, {14910, 52628}, {15470, 51479}, {18878, 33919}, {21906, 40832}
X(66128) = barycentric quotient X(i)/X(j) for these {i,j}: {351, 15329}, {690, 61188}, {1648, 3580}, {2682, 113}, {2986, 52940}, {3124, 60498}, {10420, 45773}, {14273, 16237}, {15328, 892}, {18878, 64460}, {21906, 3003}, {33919, 55121}, {61216, 65321}
X(66129) lies on the cubic K1380 and these lines: {2, 112}, {122, 35594}, {125, 65735}, {647, 15526}, {1637, 65753}, {1649, 2972}, {1650, 9409}, {3258, 65759}, {3269, 23616}, {10423, 57587}
X(66129) = X(i)-isoconjugate of X(j) for these (i,j): {24000, 60499}, {36131, 61181}, {46592, 65263}
X(66129) = X(i)-Dao conjugate of X(j) for these (i,j): {14401, 858}, {38999, 61198}, {39008, 61181}, {57295, 5523}
X(66129) = crossdifference of every pair of points on line {42665, 46592}
X(66129) = barycentric product X(i)*X(j) for these {i,j}: {1650, 2373}, {18876, 65753}, {41077, 60040}
X(66129) = barycentric quotient X(i)/X(j) for these {i,j}: {1636, 61198}, {1650, 858}, {2373, 42308}, {3269, 60499}, {9033, 61181}, {9409, 46592}, {60040, 15459}
X(66130) lies on the cubic K1380 and these lines: {2, 35909}, {468, 690}, {526, 47296}, {542, 30476}, {1637, 60496}, {1650, 9409}, {2781, 47252}, {2799, 22104}, {5159, 9517}, {6130, 9003}, {6699, 24284}, {9033, 11064}, {13202, 58344}, {47214, 55121}
X(66130) = complement of the isotomic conjugate of X(66115)
X(66130) = X(i)-complementary conjugate of X(j) for these (i,j): {1101, 44814}, {48540, 21253}, {53327, 24040}, {66115, 2887}
X(66130) = crosspoint of X(i) and X(j) for these (i,j): {2, 66115}, {690, 9033}
X(66130) = crosssum of X(691) and X(1304)
X(66131) lies on the cubic K1380 and these lines: {2, 65780}, {125, 18312}, {468, 9176}, {647, 65732}, {1637, 65753}, {3150, 14566}, {3258, 65757}, {11064, 60496}, {14417, 52628}, {62577, 62594}
X(66131) = complement of the isotomic conjugate of X(66116)
X(66131) = X(i)-complementary conjugate of X(j) for these (i,j): {661, 12827}, {66116, 2887}
X(66131) = crosspoint of X(2) and X(66116)
X(66132) lies on the cubics K1379 and K1380 and these lines: {2, 35909}, {113, 1560}, {125, 18312}, {265, 2433}, {468, 9517}, {526, 11064}, {542, 647}, {684, 1649}, {690, 858}, {1637, 14356}, {1648, 47138}, {1650, 6334}, {2799, 3258}, {3268, 66120}, {3580, 9033}, {5972, 60352}, {6333, 52629}, {9140, 66116}, {9979, 53156}, {14270, 15329}, {14314, 15354}, {16230, 58263}, {35235, 41079}, {47249, 62516}, {55121, 65709}
X(66132) = reflection of X(62516) in X(47249)
X(66132) = isotomic conjugate of X(66115)
X(66132) = complement of X(66121)
X(66132) = X(i)-isoconjugate of X(j) for these (i,j): {31, 66115}, {163, 48540}, {24041, 53327}, {36084, 56962}
X(66132) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 66115}, {115, 48540}, {3005, 53327}, {38987, 56962}
X(66132) = cevapoint of X(i) and X(j) for these (i,j): {686, 42665}, {690, 9033}, {1648, 65709}, {39474, 60340}
X(66132) = trilinear pole of line {23992, 39008}
X(66132) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 66115}, {523, 48540}, {3124, 53327}, {3569, 56962}
X(66133) lies on the cubic K1380 and these lines: {2, 65780}, {125, 65736}, {232, 1560}, {237, 47414}, {1637, 65762}, {3003, 16186}, {3289, 47405}, {15462, 23357}, {36212, 62569}, {41270, 58267}
X(66133) = X(162)-isoconjugate of X(66116)
X(66133) = X(125)-Dao conjugate of X(66116)
X(66133) = barycentric quotient X(647)/X(66116)
X(66134) lies on these lines: {4, 523}, {30, 15412}, {186, 15451}, {512, 14157}, {1510, 12112}, {3288, 7712}, {8718, 30210}, {9147, 47248}, {37941, 63830}, {64890, 65403}
X(66134) = reflection of X(186) in X(15451)
X(66134) = crossdifference of every pair of points on line {3284, 61691}
X(66135) lies on these lines: {4, 32}, {127, 2896}, {147, 10316}, {827, 64647}, {1297, 9821}, {1971, 11674}, {2076, 2781}, {2782, 10313}, {2799, 4580}, {3094, 10766}, {3098, 38717}, {3269, 62341}, {3455, 53026}, {5976, 28724}, {6720, 10583}, {7811, 10718}, {8743, 9861}, {9301, 53795}, {9941, 10705}, {9985, 58058}, {10357, 34841}, {10547, 14885}, {10749, 32151}, {12503, 38689}, {13116, 65127}, {13280, 49561}, {13313, 26318}, {13314, 26317}, {18503, 19163}, {18876, 35952}, {19114, 44605}, {19115, 44604}, {19165, 38525}, {20968, 39575}, {23128, 39836}, {26316, 38699}, {34217, 46283}, {39643, 39837}, {57304, 66096}
X(66135) = polar-circle inverse of X(27371)
X(66135) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {32, 13236, 112}, {11610, 53767, 112}
X(66136) lies on these lines: {4, 542}, {25, 39837}, {74, 8588}, {110, 37457}, {378, 39849}, {690, 15412}, {1614, 3455}, {5621, 38520}, {5622, 10485}, {5655, 66097}, {11623, 43602}, {11674, 32438}, {12083, 39836}, {12834, 61576}, {20398, 43600}, {35473, 57011}, {39846, 52294}
X(66137) lies on these lines: {1, 4}, {35, 2169}, {48, 1324}, {522, 15412}, {820, 5399}, {916, 52407}, {5396, 62266}, {32613, 52430}
X(66138) lies on these lines: {3, 13509}, {6, 186}, {74, 8588}, {112, 11202}, {160, 39201}, {187, 11464}, {352, 15655}, {574, 62341}, {577, 15035}, {1249, 48361}, {1511, 18472}, {1614, 5206}, {1970, 44879}, {1971, 35473}, {3098, 38717}, {3164, 15412}, {3288, 7712}, {3484, 10979}, {5023, 9707}, {5092, 49124}, {5210, 11456}, {6241, 15513}, {7749, 12289}, {10282, 41367}, {10298, 32661}, {10986, 11430}, {12096, 22052}, {14585, 21844}, {15577, 21397}, {17506, 39643}, {17821, 41376}, {23128, 38448}, {39565, 40242}
X(66138) = circumcircle-inverse of X(13509)
X(66139) lies on these lines: {4, 9}, {389, 23621}, {514, 15412}, {2305, 8607}, {2361, 17798}, {2818, 42669}, {4300, 52425}, {54058, 54081}
X(66140) lies on these lines: {3, 39098}, {4, 147}, {98, 7749}, {99, 32152}, {114, 52034}, {115, 32467}, {315, 13172}, {804, 15412}, {1352, 5152}, {2548, 62356}, {2896, 33813}, {6298, 36776}, {6299, 61634}, {7709, 43449}, {8289, 15561}, {8721, 9862}, {9744, 14651}, {9890, 34623}, {11676, 35464}, {12188, 37446}, {14639, 43457}, {37334, 51872}, {48657, 55008}, {52128, 62341}
X(66140) = reflection of X(52034) in X(114)
X(66141) lies on these lines: {1, 335}, {2, 4475}, {244, 17023}, {337, 24578}, {514, 661}, {1930, 62553}, {2809, 27919}, {3061, 36796}, {4554, 7146}, {14839, 40217}, {17284, 30846}, {17316, 17777}, {24255, 26590}, {27248, 27281}, {29960, 30000}
X(66142) lies on these lines: {44, 513}, {75, 384}, {1740, 54406}, {9596, 26042}, {27633, 28264}
X(66143) lies on these lines: {6, 194}, {325, 523}, {670, 59567}, {3003, 5976}, {3095, 58846}, {7750, 54334}, {7778, 30777}, {7792, 9465}, {14603, 40073}, {16084, 16098}, {19599, 40888}, {21531, 40074}
X(66143) = reflection of X(670) in X(59567)
X(66143) = crosspoint of X(99) and X(57988)
X(66143) = crossdifference of every pair of points on line {32, 3221}
X(66143) = {X(3001),X(35549)}-harmonic conjugate of X(325)
X(66144) lies on these lines: {23, 385}, {141, 384}, {194, 35707}, {2916, 52637}, {7792, 26257}, {9019, 16985}, {9229, 46288}, {10997, 30736}, {19596, 40858}
X(66145) lies on these lines: {2, 6}, {39, 4590}, {83, 31998}, {384, 523}, {892, 7804}, {2854, 4027}, {6680, 45212}, {7770, 36207}, {7783, 14588}, {7797, 54104}, {7816, 33799}, {7828, 23991}, {8289, 42007}, {8705, 10997}, {10583, 35511}, {14977, 46778}, {19686, 62508}, {36432, 41579}, {39565, 40429}, {46900, 53379}
X(66146) lies on these lines: {1, 257}, {141, 523}, {1581, 4475}, {24348, 35552}
crossdifference of every pair of points on line {1691, 45882}
X(66147) lies on these lines: {1, 257}, {514, 661}, {1089, 17760}, {1330, 1655}, {1930, 30077}, {2292, 49476}, {3061, 18140}, {4475, 27241}, {4876, 49753}, {20890, 30042}, {24632, 40773}, {29960, 45196}, {39044, 49755}, {52538, 59509}
X(66147) = crossdifference of every pair of points on line {31, 45882}
X(66148) lies on these lines: {75, 385}, {141, 523}, {35551, 36227}
X(66149) lies on these lines: {37, 8844}, {44, 513}, {75, 385}, {1333, 33295}, {1740, 3863}, {1914, 33891}, {2076, 8301}, {3509, 3862}, {4016, 4093}
X(661) lies on these lines: {3, 33786}, {32, 76}, {39, 32748}, {187, 237}, {538, 51322}, {737, 805}, {2080, 35399}, {2387, 56978}, {5026, 33875}, {5970, 39632}, {6310, 13335}, {7804, 56442}, {8023, 8024}, {50665, 56428}
X(66150) = isogonal conjugate of X(57935)
X(66150) = isogonal conjugate of the isotomic conjugate of X(706)
X(66150) = X(707)-Ceva conjugate of X(6)
X(66150) = X(i)-isoconjugate of X(j) for these (i,j): {1, 57935}, {75, 707}
X(66150) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 57935}, {206, 707}, {706, 35528}
X(66150) = crosspoint of X(6) and X(707)
X(66150) = crosssum of X(2) and X(706)
X(66150) = crossdifference of every pair of points on line {2, 17415}
X(66150) = barycentric product X(i)*X(j) for these {i,j}: {6, 706}, {32, 35528}
X(66150) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 57935}, {32, 707}, {706, 76}, {35528, 1502}
X(66150) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {187, 3229, 21444}, {21444, 57016, 3229}
X(66151) lies on these lines: {1, 2}, {6, 35957}, {37, 1016}, {75, 24281}, {86, 6631}, {99, 21888}, {190, 35103}, {335, 4482}, {514, 894}, {952, 26582}, {993, 62312}, {996, 31317}, {1145, 26629}, {1482, 26687}, {2345, 30225}, {2802, 4366}, {3125, 18047}, {3589, 45213}, {3754, 6645}, {3884, 16918}, {3918, 16917}, {4555, 4670}, {5697, 16916}, {6547, 16706}, {6630, 63053}, {7807, 8256}, {7824, 51111}, {7983, 20716}, {10944, 17670}, {11010, 17692}, {17116, 49751}, {17261, 32094}, {17289, 36230}, {17302, 54102}, {17351, 32028}, {18082, 29298}, {20172, 40587}, {24170, 62650}, {24358, 61187}, {33841, 37710}, {36234, 37756}, {36236, 46897}, {60480, 62324}
X(66151) = {X(86),X(6631)}-harmonic conjugate of X(36226)
X(66152) lies on these lines: {8, 20102}, {10, 894}, {58, 257}, {63, 41232}, {191, 1655}, {239, 514}, {385, 758}, {484, 17759}, {519, 3099}, {740, 5184}, {1759, 17033}, {3125, 33295}, {3496, 16574}, {3509, 40859}, {3570, 21839}, {3721, 30168}, {3875, 41319}, {5282, 30114}, {5692, 16997}, {5883, 17000}, {5902, 16998}, {6763, 21226}, {7793, 22836}, {8682, 17731}, {9278, 17930}, {10176, 16999}, {11611, 17929}, {16611, 20142}, {17023, 24627}, {17030, 54382}, {17735, 49753}, {17768, 47286}, {20065, 49168}, {20372, 41240}, {21764, 30111}, {24514, 49500}, {25264, 56288}, {26085, 30165}, {26099, 30150}, {27081, 29610}, {27091, 54406}, {35101, 50252}, {36531, 40860}
X(66152) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {53686, 69}, {57682, 20243}, {60043, 21293}
X(66152) = crosssum of X(5277) and X(5291)
X(66152) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1046, 17739, 17499}, {57017, 57029, 239}
X(66153) lies on these lines: {32, 76}, {647, 3221}
X(66153) = crossdifference of every pair of points on line {384, 17415}
X(66153) = X(i)-line conjugate of X(j) for these (i,j): {32, 384}, {647, 17415}
X(66154) lies on these lines: {32, 76}, {39, 512}, {695, 3493}, {2782, 51322}, {3095, 58212}
X(66154) = crossdifference of every pair of points on line {385, 17415}
X(66154) = X(i)-line conjugate of X(j) for these (i,j): {32, 385}, {39, 17415}
X(66155) lies on these lines: {1, 335}, {44, 513}, {190, 25800}, {1086, 25806}, {3758, 24722}, {4422, 25823}, {4440, 25805}, {9780, 26058}, {27627, 28264}
X(66155) = X(335)-line conjugate of X(1)
X(66155) = {X(1911),X(17738)}-harmonic conjugate of X(20356)
X(66156) lies on these lines: {2, 3}, {647, 22080}, {20966, 41172}
X(66156) = crossdifference of every pair of points on line {423, 647}
X(66156) = X(i)-line conjugate of X(j) for these (i,j): {2, 423}, {22080, 647}
X(66157) lies on these lines: {1, 257}, {39, 512}, {256, 36294}, {1934, 20356}, {52205, 59480}
X(66157) = crossdifference of every pair of points on line {385, 45882}
X(66157) = X(i)-line conjugate of X(j) for these (i,j): {1, 385}, {39, 45882}
X(66158) lies on these lines: {1, 257}, {44, 513}, {4396, 20356}, {4689, 8844}, {24628, 53541}
X(66158) = crossdifference of every pair of points on line {1, 45882}
X(66158) = X(i)-line conjugate of X(j) for these (i,j): {44, 45882}, {257, 1}
X(66158) = barycentric product X(350)*X(1908)
X(66158) = barycentric quotient X(1908)/X(291)
X(66159) lies on these lines: {32, 76}, {669, 688}, {3231, 41331}
X(66159) = crossdifference of every pair of points on line {76, 17415}
X(66159) = X(i)-line conjugate of X(j) for these (i,j): {32, 76}, {669, 17415}
X(66160) lies on these lines: {669, 1501}, {1084, 1974}, {1976, 41273}, {2715, 44116}, {35906, 52945}
X(66160) = X(i)-isoconjugate of X(j) for these (i,j): {325, 33805}, {561, 35910}, {799, 65973}, {1494, 46238}, {4602, 32112}, {24037, 65756}, {35908, 40364}
X(66160) = X(i)-Dao conjugate of X(j) for these (i,j): {512, 65756}, {38996, 65973}, {40368, 35910}
X(66160) = barycentric product X(i)*X(j) for these {i,j}: {30, 14601}, {32, 35906}, {98, 9407}, {248, 14581}, {669, 65776}, {878, 23347}, {1495, 1976}, {1501, 60869}, {1910, 9406}, {1974, 35912}, {1990, 14600}, {2420, 2422}, {2715, 14398}, {3284, 57260}, {9409, 32696}
X(66160) = barycentric quotient X(i)/X(j) for these {i,j}: {669, 65973}, {1084, 65756}, {1501, 35910}, {9406, 46238}, {9407, 325}, {9426, 32112}, {14581, 44132}, {14601, 1494}, {35906, 1502}, {35912, 40050}, {44162, 35908}, {58260, 65974}, {60869, 40362}, {65776, 4609}
X(66161) lies on the cubic K1378 and these liines: {2, 46425}, {4, 2881}, {25, 47205}, {76, 52459}, {98, 804}, {115, 127}, {132, 50938}, {230, 65778}, {297, 65780}, {403, 523}, {427, 42665}, {525, 23285}, {850, 6587}, {1304, 65356}, {1503, 39073}, {1636, 23292}, {1989, 14592}, {2079, 54089}, {2394, 46105}, {2485, 18314}, {2508, 3767}, {3267, 14638}, {3569, 60527}, {6330, 16081}, {9148, 59742}, {9478, 63894}, {9979, 65972}, {13567, 52744}, {14977, 51967}, {15352, 65181}, {15595, 39473}, {16040, 31296}, {18311, 65757}, {22456, 59024}, {23105, 55122}, {23881, 60597}, {34129, 53173}, {44817, 62307}, {47206, 53318}, {52624, 62577}, {60516, 65980}
X(66161) = reflection of X(i) in X(j) for these {i,j}: {2485, 52585}, {53265, 6130}, {62307, 44817}
X(66161) = polar conjugate of X(44770)
X(66161) = X(1973)-complementary conjugate of X(39000)
X(66161) = X(i)-Ceva conjugate of X(j) for these (i,j): {16081, 338}, {22456, 52641}
X(66161) = X(i)-cross conjugate of X(j) for these (i,j): {33504, 4}, {55275, 523}
X(66161) = X(i)-isoconjugate of X(j) for these (i,j): {3, 36046}, {48, 44770}, {63, 32649}, {163, 1297}, {255, 32687}, {577, 36092}, {1101, 34212}, {2172, 46967}, {4575, 43717}, {8767, 32661}, {23995, 43673}, {32676, 64975}, {34072, 46164}, {36034, 51937}, {52430, 65265}
X(66161) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 1297}, {136, 43717}, {232, 4230}, {339, 64974}, {441, 2421}, {523, 34212}, {647, 2435}, {1249, 44770}, {3162, 32649}, {3258, 51937}, {6523, 32687}, {15449, 46164}, {15526, 64975}, {15595, 4558}, {18314, 43673}, {23285, 2419}, {23976, 110}, {33504, 3}, {35078, 51343}, {36103, 36046}, {36901, 35140}, {38970, 39265}, {39071, 32661}, {39073, 14966}, {50938, 112}, {57606, 52058}, {60341, 58796}, {65726, 43754}, {65757, 66077}
X(66161) = crosspoint of X(i) and X(j) for these (i,j): {76, 22456}, {98, 1289}, {2409, 21458}, {14618, 43665}
X(66161) = crosssum of X(i) and X(j) for these (i,j): {32, 39469}, {511, 8673}, {2435, 46164}, {14966, 32661}
X(66161) = crossdifference of every pair of points on line {160, 206}
X(66161) = barycentric product X(i)*X(j) for these {i,j}: {107, 58258}, {338, 34211}, {339, 2409}, {441, 14618}, {523, 30737}, {525, 60516}, {850, 1503}, {2052, 39473}, {2312, 20948}, {2799, 57490}, {3267, 16318}, {3268, 43089}, {3569, 51257}, {6333, 52641}, {15595, 43665}, {17879, 24024}, {18018, 55129}, {21458, 23285}, {23977, 36793}, {35282, 52632}, {41079, 63856}, {42671, 44173}, {43187, 57430}, {55275, 57799}, {57426, 65269}, {60506, 62431}, {65778, 65980}
X(66161) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 44770}, {19, 36046}, {25, 32649}, {66, 46967}, {115, 34212}, {125, 2435}, {132, 4230}, {158, 36092}, {338, 43673}, {339, 2419}, {393, 32687}, {441, 4558}, {523, 1297}, {525, 64975}, {804, 51343}, {826, 46164}, {850, 35140}, {879, 15407}, {1503, 110}, {1637, 51937}, {2052, 65265}, {2312, 163}, {2409, 250}, {2445, 57655}, {2501, 43717}, {6793, 2420}, {8766, 4575}, {8779, 32661}, {9475, 14966}, {14618, 6330}, {15595, 2421}, {16230, 39265}, {16318, 112}, {17994, 51822}, {21458, 827}, {23285, 64974}, {23977, 23964}, {24006, 8767}, {24024, 24000}, {30737, 99}, {34156, 43754}, {34211, 249}, {35282, 5467}, {36894, 65321}, {39473, 394}, {42671, 1576}, {43045, 4565}, {43089, 476}, {43665, 9476}, {51257, 43187}, {51363, 1625}, {51434, 35325}, {51437, 61206}, {51960, 65305}, {51963, 2715}, {52641, 685}, {53568, 15329}, {55129, 22}, {55275, 232}, {56572, 10425}, {57296, 58796}, {57426, 9517}, {57430, 3569}, {57490, 2966}, {57799, 55274}, {58258, 3265}, {60506, 57742}, {60516, 648}, {62612, 52058}, {63856, 44769}, {65753, 66077}
X(66161) = {X(18312),X(41079)}-harmonic conjugate of X(35522)
X(66162) lies on the orthic asymptotic hyperbola, the cubic K1378, and these lines: {2, 36891}, {5, 34157}, {6, 56572}, {30, 61446}, {115, 525}, {141, 52091}, {230, 297}, {325, 52515}, {338, 3267}, {403, 935}, {523, 8754}, {524, 1989}, {671, 7799}, {868, 879}, {1503, 2065}, {2394, 60338}, {4064, 21043}, {4580, 34294}, {5139, 42399}, {6388, 55152}, {8773, 20337}, {11585, 53787}, {14120, 62489}, {14592, 52628}, {14977, 62551}, {15421, 62563}, {15526, 61339}, {15980, 51455}, {30476, 34988}, {34369, 65765}, {35078, 35132}, {42065, 44665}, {43705, 44377}, {44389, 57829}, {48982, 53419}
X(66162) = X(i)-Ceva conjugate of X(j) for these (i,j): {8781, 62645}, {35142, 35364}, {40428, 523}
X(66162) = X(i)-isoconjugate of X(j) for these (i,j): {162, 56389}, {163, 4226}, {230, 1101}, {249, 8772}, {662, 61213}, {1692, 24041}, {1733, 23357}, {17462, 57742}, {23995, 51481}, {23997, 60504}, {44099, 62719}
X(66162) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 4226}, {125, 56389}, {523, 230}, {647, 3564}, {1084, 61213}, {1649, 5477}, {3005, 1692}, {18314, 51481}, {35443, 6782}, {35444, 6783}, {41167, 47406}, {55267, 114}, {62562, 60504}
X(66162) = cevapoint of X(115) and X(868)
X(66162) = crosspoint of X(8781) and X(62645)
X(66162) = crosssum of X(1692) and X(61213)
X(66162) = trilinear pole of line {125, 8029}
X(66162) = crossdifference of every pair of points on line {56389, 61213}
X(66162) = barycentric product X(i)*X(j) for these {i,j}: {115, 8781}, {125, 35142}, {338, 2987}, {339, 3563}, {523, 62645}, {525, 60338}, {850, 35364}, {868, 40428}, {1109, 8773}, {2065, 62431}, {2394, 65758}, {2970, 43705}, {8029, 65277}, {8754, 57872}, {10425, 23105}, {12079, 36891}, {23962, 32654}, {23994, 36051}, {65756, 65781}
X(66162) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 230}, {125, 3564}, {338, 51481}, {512, 61213}, {523, 4226}, {647, 56389}, {868, 114}, {1109, 1733}, {1648, 5477}, {2065, 57742}, {2395, 60504}, {2643, 8772}, {2970, 44145}, {2971, 44099}, {2987, 249}, {3124, 1692}, {3563, 250}, {5466, 52035}, {8029, 55122}, {8754, 460}, {8773, 24041}, {8781, 4590}, {10425, 59152}, {12079, 36875}, {20975, 52144}, {22260, 42663}, {30465, 6782}, {30468, 6783}, {32654, 23357}, {32697, 47443}, {34246, 54965}, {35142, 18020}, {35364, 110}, {36051, 1101}, {40428, 57991}, {41172, 47406}, {42065, 47390}, {44114, 51335}, {51404, 65726}, {51441, 51820}, {57872, 47389}, {60338, 648}, {62645, 99}, {64258, 52450}, {65277, 31614}, {65354, 55270}, {65758, 2407}
X(66163) lies on the cubic K1378, and these lines: {2, 99}, {4, 35278}, {98, 868}, {107, 36191}, {125, 14651}, {187, 40885}, {230, 297}, {275, 14586}, {287, 11646}, {323, 7809}, {340, 16310}, {381, 51430}, {403, 1300}, {468, 39663}, {523, 17983}, {648, 3018}, {1316, 14639}, {1494, 1989}, {1632, 34981}, {1637, 2394}, {1993, 7926}, {2396, 8781}, {2450, 43460}, {2986, 18879}, {3545, 5642}, {3580, 14568}, {4226, 10723}, {5112, 38227}, {5191, 10722}, {5475, 52247}, {5477, 40867}, {5972, 23514}, {6036, 35922}, {6330, 16081}, {6529, 11547}, {6723, 38735}, {6781, 40853}, {6791, 37643}, {7473, 46982}, {7779, 60524}, {7831, 41237}, {7925, 36212}, {7934, 15066}, {8884, 52534}, {9142, 38393}, {9155, 64089}, {9410, 44576}, {10733, 64607}, {11007, 38224}, {11064, 33228}, {11176, 65488}, {11331, 13881}, {12066, 44877}, {14041, 51372}, {14590, 14910}, {16303, 37765}, {16312, 62237}, {16316, 36898}, {20218, 46208}, {30789, 53346}, {31998, 65730}, {32740, 65719}, {34473, 36163}, {38229, 57588}, {39563, 44575}, {40814, 52251}, {40884, 53419}, {43291, 44216}, {44533, 48871}, {44578, 63543}, {46453, 62955}, {52289, 63534}, {53266, 66082}, {53383, 65775}, {53485, 54105}, {53577, 57583}, {54837, 59091}, {65768, 66080}
X(66163) = isotomic conjugate of X(66083)
X(66163) = X(i)-isoconjugate of X(j) for these (i,j): {31, 66083}, {163, 65766}, {1755, 65783}
X(66163) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 66083}, {115, 65766}, {36899, 65783}, {65755, 65754}
X(66163) = crosspoint of X(15459) and X(60179)
X(66163) = crosssum of X(1636) and X(41172)
X(66163) = trilinear pole of line {1550, 52472}
X(66163) = barycentric product X(i)*X(j) for these {i,j}: {523, 65768}, {1494, 52472}, {1550, 5641}, {2966, 65977}, {35142, 52473}
X(66163) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 66083}, {98, 65783}, {523, 65766}, {1550, 542}, {52472, 30}, {52473, 3564}, {65763, 65754}, {65768, 99}, {65977, 2799}, {66080, 51389}
X(66163) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 115, 41254}, {2, 148, 65722}, {2, 54395, 99}, {4, 47200, 35278}, {115, 48982, 671}, {1989, 62551, 48540}, {48540, 62551, 1494}
X(66164) lies on the cubic K1378, and these lines: {2, 36894}, {98, 230}, {115, 523}, {125, 9209}, {403, 1989}, {647, 3154}, {671, 65768}, {868, 2395}, {1637, 12079}, {2394, 62551}, {2501, 6070}, {14061, 65713}, {18121, 63534}, {36204, 65620}, {48981, 53419}, {65767, 65774}, {65782, 65978}
X(66164) = midpoint of X(i) and X(j) for these {i,j}: {115, 65724}, {11646, 34369}
X(66164) = reflection of X(65613) in X(115)
X(66164) = X(i)-isoconjugate of X(j) for these (i,j): {163, 66084}, {1101, 65765}
X(66164) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 66084}, {523, 65765}, {65754, 51389}, {65782, 325}, {65978, 2407}
X(66164) = crosspoint of X(i) and X(j) for these (i,j): {98, 2394}, {6344, 43665}
X(66164) = crosssum of X(i) and X(j) for these (i,j): {511, 2420}, {14966, 22115}
X(66164) = crossdifference of every pair of points on line {5467, 41167}
X(66164) = barycentric product X(i)*X(j) for these {i,j}: {98, 65978}, {523, 53383}, {2394, 65782}
X(66164) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 65765}, {523, 66084}, {53383, 99}, {65782, 2407}, {65978, 325}, {66081, 66074}
X(66164) = {X(98),X(34366)}-harmonic conjugate of X(230)
X(66165) lies on the cubic K1378, and these lines: {2, 65618}, {4, 51895}, {5, 15454}, {30, 39986}, {98, 858}, {115, 647}, {125, 520}, {136, 16178}, {230, 8791}, {265, 2072}, {339, 3265}, {403, 1300}, {427, 16933}, {523, 2970}, {1312, 53384}, {1313, 53385}, {1368, 65729}, {1594, 38936}, {2351, 36192}, {3134, 12079}, {3150, 15421}, {3154, 8901}, {5576, 58924}, {7471, 13558}, {10024, 59288}, {11585, 16934}, {11799, 58942}, {13160, 58731}, {14611, 15928}, {14911, 47096}, {16089, 65267}, {16186, 43083}, {16221, 53993}, {30786, 57829}, {34209, 39375}, {37938, 39371}, {37987, 58353}, {42665, 51441}, {43090, 65765}, {47195, 62490}, {51404, 61216}
X(66165) = midpoint of X(39986) and X(60035)
X(66165) = X(i)-Ceva conjugate of X(j) for these (i,j): {1300, 15328}, {2986, 61216}, {10419, 523}, {57829, 15421}
X(66165) = X(1650)-cross conjugate of X(125)
X(66165) = X(i)-isoconjugate of X(j) for these (i,j): {162, 15329}, {163, 16237}, {250, 1725}, {403, 1101}, {662, 61209}, {2315, 23582}, {13754, 24000}, {23995, 44138}, {24041, 44084}, {32676, 61188}
X(66165) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 16237}, {125, 15329}, {523, 403}, {525, 62338}, {647, 3580}, {1084, 61209}, {1649, 12828}, {3005, 44084}, {14401, 62569}, {15526, 61188}, {18314, 44138}, {57295, 113}, {60342, 1986}
X(66165) = cevapoint of X(125) and X(16186)
X(66165) = crosspoint of X(i) and X(j) for these (i,j): {328, 2394}, {1300, 15328}, {15421, 57829}
X(66165) = crosssum of X(i) and X(j) for these (i,j): {110, 15472}, {2420, 34397}, {13754, 15329}, {44084, 61209}
X(66165) = crossdifference of every pair of points on line {15329, 61209}
X(66165) = barycentric product X(i)*X(j) for these {i,j}: {115, 57829}, {125, 2986}, {338, 5504}, {339, 14910}, {523, 15421}, {525, 15328}, {687, 5489}, {850, 61216}, {1300, 15526}, {3269, 65267}, {10419, 65753}, {12028, 62551}, {14592, 15470}, {16186, 40427}, {20902, 36053}, {20975, 40832}, {23105, 43755}, {30786, 66128}, {34767, 65615}, {35361, 62428}, {51456, 65727}, {53576, 60035}
X(66165) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 403}, {125, 3580}, {338, 44138}, {512, 61209}, {523, 16237}, {525, 61188}, {647, 15329}, {1300, 23582}, {1648, 12828}, {1650, 62569}, {2088, 1986}, {2986, 18020}, {3124, 44084}, {3269, 13754}, {3708, 1725}, {5489, 6334}, {5504, 249}, {8029, 47236}, {10420, 47443}, {12028, 39295}, {14582, 41512}, {14910, 250}, {15328, 648}, {15421, 99}, {15470, 14590}, {15526, 62338}, {16186, 34834}, {18210, 18609}, {18878, 55270}, {20975, 3003}, {35361, 35360}, {43755, 59152}, {47421, 52000}, {51404, 52451}, {57829, 4590}, {61216, 110}, {65615, 4240}, {65762, 4230}, {66128, 468}
X(66165) = {X(34978),X(37985)}-harmonic conjugate of X(125)
X(66166) lies on the cubic K1378, and these lines: {2, 525}, {115, 647}, {230, 3569}, {351, 50707}, {403, 47230}, {523, 1989}, {526, 61656}, {804, 2450}, {1138, 9213}, {1636, 44665}, {3288, 5915}, {6137, 61371}, {6138, 61370}, {14611, 41392}, {16171, 53416}, {16280, 22264}, {32120, 47200}, {35906, 56962}, {52743, 56395}
X(66166) = X(14356)-Dao conjugate of X(66075)
X(66166) = crosspoint of X(98) and X(39290)
X(66166) = crosssum of X(511) and X(52743)
X(66166) = crossdifference of every pair of points on line {1495, 15329}
X(66166) = barycentric product X(523)*X(65770)
X(66166) = barycentric quotient X(65770)/X(99)
X(66167) = 3 X[4] + X[36875], 3 X[4] - X[52472], 3 X[381] - 2 X[14356], 3 X[381] - X[34810], 4 X[7687] - 3 X[65617], 4 X[14356] - 3 X[14995], 3 X[14995] - 2 X[34810], 3 X[3839] - X[9214]
X(66167) lies on the cubic K1378, and these lines: {2, 3233}, {3, 30715}, {4, 523}, {5, 52772}, {6, 13}, {25, 16221}, {30, 53274}, {147, 5968}, {157, 378}, {230, 54380}, {403, 23347}, {427, 16933}, {804, 23350}, {868, 1503}, {1550, 52451}, {1634, 66078}, {1637, 52469}, {1651, 47296}, {1995, 45030}, {2794, 56967}, {3258, 9717}, {3839, 9214}, {4235, 47000}, {5094, 9756}, {5467, 57603}, {5502, 16319}, {7418, 43460}, {7577, 34845}, {8371, 63768}, {11005, 42738}, {13448, 46818}, {14611, 66119}, {15069, 36207}, {16303, 44228}, {17511, 33927}, {18494, 35372}, {30549, 44438}, {34212, 47105}, {42854, 63535}, {47146, 53319}, {47354, 57618}, {51431, 53568}, {53246, 56962}, {57598, 65728}
X(66167) = midpoint of X(36875) and X(52472)
X(66167) = reflection of X(i) in X(j) for these {i,j}: {5467, 57603}, {14559, 113}, {14995, 381}, {34810, 14356}, {52772, 5}, {53267, 868}
X(66167) = X(65776)-Ceva conjugate of X(523)
X(66167) = X(65756)-Dao conjugate of X(65973)
X(66167) = crosspoint of X(98) and X(5627)
X(66167) = crosssum of X(i) and X(j) for these (i,j): {511, 1511}, {18334, 39469}, {41172, 58345}
X(66167) = crossdifference of every pair of points on line {526, 3284}
X(66167) = barycentric product X(523)*X(65773)
X(66167) = barycentric quotient X(65773)/X(99)
X(66167) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 36875, 52472}, {4, 52488, 52219}, {381, 18440, 15928}, {381, 34810, 14356}, {14356, 34810, 14995}, {56395, 57464, 6}
X(66168) lies on the cubic K1378, and these lines: {2, 65624}, {4, 32}, {230, 2409}, {297, 65771}, {393, 523}, {868, 16318}, {1990, 62551}, {3545, 36435}, {5523, 7422}, {35088, 56601}, {37987, 51937}, {43291, 57608}
X(66168) = X(65759)-Dao conjugate of X(66077)
X(66167) lies on the cubic K1378, and these lines: {2, 66083}, {98, 858}, {115, 65622}, {523, 54395}, {524, 1989}, {868, 3564}, {1637, 3580}, {2394, 47286}, {2407, 16310}, {47159, 47348}, {62338, 62551}, {65719, 65765}, {65767, 65774}
X(66169) = reflection of X(i) in X(j) for these {i,j}: {2407, 16310}, {62338, 62551}
X(66169) = anticomplement of X(66083)
X(66169) = X(65768)-anticomplementary conjugate of X(17217)
X(66169) = X(65764)-Dao conjugate of X(66082)
on lines {2, 38225}, {3, 7777}, {4, 187}, {13, 33388}, {14, 33389}, {15, 36995}, {16, 36993}, {20, 2080}, {30, 8859}, {98, 6781}, {99, 5965}, {141, 35950}, {315, 61126}, {316, 631}, {376, 511}, {378, 54091}, {381, 38230}, {385, 13172}, {420, 35282}, {548, 47618}, {550, 9301}, {621, 13349}, {622, 13350}, {625, 3525}, {691, 1141}, {754, 21166}, {944, 5184}, {1285, 1692}, {1352, 35951}, {1503, 2076}, {1691, 10788}, {2459, 3069}, {2460, 3068}, {2549, 10631}, {2782, 33265}, {3090, 13449}, {3091, 14693}, {3153, 57307}, {3398, 33260}, {3522, 35002}, {3524, 3849}, {3528, 18860}, {3534, 9755}, {3545, 26613}, {3564, 8598}, {3972, 38317}, {5023, 37446}, {5050, 35955}, {5067, 58448}, {5085, 60653}, {5104, 6776}, {5162, 36998}, {5189, 38611}, {5207, 14907}, {5215, 61899}, {5603, 38221}, {5667, 10295}, {6321, 63047}, {6658, 10104}, {7487, 58309}, {7612, 15682}, {7684, 44015}, {7685, 44016}, {7697, 19686}, {7779, 33813}, {7809, 38748}, {7812, 9734}, {8356, 38110}, {8588, 43461}, {9855, 12243}, {10150, 61868}, {10242, 34127}, {10359, 32965}, {12022, 54082}, {12176, 29317}, {13083, 21158}, {13084, 21159}, {14561, 57633}, {14830, 43532}, {15702, 31173}, {22521, 35006}, {22712, 47101}, {26869, 35941}, {31275, 61867}, {32447, 34604}, {32762, 35921}, {34623, 35927}, {35383, 62174}, {35937, 61690}, {35944, 62987}, {35945, 62986}, {38741, 40236}, {39561, 52691}, {39647, 46034}, {39656, 53023}, {39872, 48892}, {40246, 49102}, {46264, 52994}
X(66170) = reflection of X(i) in X(j) for these {i,j}: {2, 38225}, {4, 38227}, {381, 38230}, {3153, 57307}, {3545, 26613}, {5603, 38221}, {7809, 38748}, {10242, 34127}, {14651, 21445}, {14853, 1691}, {38227, 187}, {59397, 39555}, {59398, 39554}, {62174, 35383}
X(66170) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 2080, 43453}, {316, 47113, 631}
X(66171) lies on these lines: {5, 147}, {76, 65518}, {1141, 7953}, {3153, 43453}, {3518, 34131}, {3818, 5890}, {5309, 50718}, {5667, 7576}, {14880, 58805}, {34864, 46226}, {37943, 42426}
X(66172) lies on these lines: {30, 568}, {53, 403}, {54, 41202}, {112, 32439}, {186, 2052}, {476, 1141}, {2790, 14157}, {3153, 56302}, {3567, 47153}, {5667, 13619}, {7575, 15112}, {14644, 32428}, {14651, 62490}, {15912, 32339}, {16237, 62345}, {54927, 60130}
X(66172) = reflection of X(15111) in X(186)
X(66173) lies opn these lines: {30, 14644}, {50, 112}, {1157, 19651}, {3534, 9159}, {6761, 13619}, {7575, 44967}, {10721, 47351}, {14989, 16080}
X(66173) = {X(47327),X(56369)}-harmonic conjugate of X(14989)
X(66174) lies on the cubic K067 and these lines: {5, 38585}, {112, 233}, {1157, 37943}, {1173, 3574}, {3518, 14656}, {10745, 42441}
X(66174) = X(5)-Ceva conjugate of X(37943)
X(66175) lies on the cubic K937 and these lines: {4, 33695}, {23, 53769}, {30, 112}, {98, 186}, {403, 1503}, {1899, 36191}, {3153, 38971}, {5012, 57583}, {5890, 18338}, {5938, 37917}, {10151, 51940}, {10295, 47242}, {14591, 35912}, {14880, 39575}, {23293, 43389}, {37938, 57346}, {37943, 42426}, {40118, 53875}, {44234, 57319}, {54632, 60133}
X(66175) = midpoint of X(186) and X(41377)
X(66175) = reflection of X(i) in X(j) for these {i,j}: {935, 186}, {3153, 38971}, {51940, 10151}
X(66176) lies on the cubic K938 and these lines: {2, 112}, {403, 44375}, {1993, 61203}, {2967, 18531}, {3563, 18533}, {5207, 22151}, {14644, 14853}, {17035, 50718}, {41676, 65518}
X(66177) lies on the cubic K939 and these lines: {3, 112}, {132, 52295}, {262, 61451}, {1157, 19189}, {2781, 14644}, {2794, 18559}, {6761, 46450}, {10986, 66135}, {14983, 44288}, {43678, 54705}
X(66178 lies on these lines: {3, 252}, {137, 52295}, {1157, 32428}, {5890, 32423}, {9381, 34418}, {11423, 27423}, {18353, 50718}, {25147, 39504}
X(66179) lies on these lines: {2, 53808}, {3, 3462}, {4, 137}, {5, 38585}, {20, 38616}, {631, 18401}, {3090, 20625}, {3518, 54067}, {5890, 10628}, {13599, 64256}, {14940, 64257}, {39849, 61203}
X(66179) = reflection of X(2) in X(57317)
X(66179) = anticomplement of X(57369)
X(66179) = {X(933),X(18402)}-harmonic conjugate of X(4)
See César Lozada, euclid 7201.
X(66180) lies on these lines: {3, 3276}, {4, 65155}
X(66180) = reflection of X(3276) in X(41109)
X(66180) = Cundy-Parry-Psi-transform of the anticomplement of X(41111)
See César Lozada, euclid 7201.
X(66181) lies on this line: {3, 3277}
X(66181) = reflection of X(3277) in X(41110)
X(66181) = Cundy-Parry-Psi-transform of the anticomplement of X(41109)
See César Lozada, euclid 7201.
X(66182) lies on this line: {3, 3276}
See César Lozada, euclid 7201.
X(66183) lies on this line: {3, 3277}
X(66184) lies on the cubic K1381 and these lines: {115, 826}, {230, 9482}, {262, 59273}, {688, 6784}, {732, 7840}, {1971, 39095}, {3124, 7668}, {4577, 13519}, {9019, 11673}, {9300, 11205}, {14416, 14424}, {20582, 45672}
X(66184) = X(i)-Ceva conjugate of X(j) for these (i,j): {262, 3005}, {59258, 23285}
X(66184) = X(4599)-isoconjugate of X(43357)
X(66184) = X(i)-Dao conjugate of X(j) for these (i,j): {3124, 43357}, {54263, 24273}
X(66184) = crosssum of X(i) and X(j) for these (i,j): {827, 41295}, {43357, 59262}
X(66184) = crossdifference of every pair of points on line {827, 43357}
X(66184) = barycentric product X(i)*X(j) for these {i,j}: {115, 10007}, {262, 55051}, {3329, 39691}, {14318, 23285}, {15449, 60860}, {59249, 62417}
X(66184) = barycentric quotient X(i)/X(j) for these {i,j}: {3005, 43357}, {10007, 4590}, {14318, 827}, {39691, 42006}, {55051, 183}, {60860, 57545}, {62417, 59262}
X(66185) lies on the cubic K1381 and these lines: {115, 3906}, {141, 12036}, {1648, 6784}, {3815, 5642}, {6786, 17430}, {7777, 58854}, {8288, 17416}, {8704, 12494}
X(66185) = tripolar centroid of X(34246)
X(66185) = X(i)-Ceva conjugate of X(j) for these (i,j): {60240, 62568}, {64973, 8704}
X(66185) = X(i)-Dao conjugate of X(j) for these (i,j): {8704, 64973}, {17413, 6233}, {17436, 11167}
X(66185) = crosspoint of X(8704) and X(64973)
X(66185) = crossdifference of every pair of points on line {6233, 11636}
X(66185) = barycentric product X(i)*X(j) for these {i,j}: {115, 64942}, {3906, 8704}, {8288, 11163}, {17416, 64973}
X(66185) = barycentric quotient X(i)/X(j) for these {i,j}: {8288, 11167}, {8704, 35138}, {11186, 11636}, {17414, 6233}, {64942, 4590}
X(66186) lies on the cubic K1381 and these lines: {115, 46462}, {523, 13722}, {671, 3413}, {1648, 8029}, {1989, 5638}, {13636, 64258}
X(66186) = reflection of X(46463) in X(13722)
X(66186) = tripolar centroid of X(13636)
X(66186) = X(i)-Ceva conjugate of X(j) for these (i,j): {3413, 13636}, {13722, 115}
X(66186) = X(i)-isoconjugate of X(j) for these (i,j): {1101, 6190}, {1379, 24041}
X(66186) = X(i)-Dao conjugate of X(j) for these (i,j): {523, 6190}, {3005, 1379}, {13636, 57576}, {13722, 99}, {39023, 4590}, {39068, 249}, {62561, 31614}
X(66186) = crosspoint of X(i) and X(j) for these (i,j): {115, 13722}, {523, 39023}, {3413, 13636}, {30508, 62640}
X(66186) = crossdifference of every pair of points on line {249, 1380}
X(66186) = barycentric product X(i)*X(j) for these {i,j}: {115, 3413}, {338, 5638}, {523, 13636}, {1380, 23105}, {5466, 46462}, {6189, 8029}, {13722, 39023}, {52722, 64258}
X(66186) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 6190}, {1380, 59152}, {3124, 1379}, {3413, 4590}, {5638, 249}, {6189, 31614}, {8029, 3414}, {8754, 57014}, {13636, 99}, {13722, 57576}, {22260, 5639}, {33919, 52723}, {42344, 46463}, {46462, 5468}, {57013, 55270}, {61339, 13722}
X(66187) lies on the cubic K1381 and these lines: {115, 46463}, {523, 13636}, {671, 3414}, {1648, 8029}, {1989, 5639}, {13722, 64258}
X(66187) = reflection of X(46462) in X(13636)
X(66187) = tripolar centroid of X(13722)
X(66187) = X(i)-Ceva conjugate of X(j) for these (i,j): {3414, 13722}, {13636, 115}
X(66187) = X(i)-isoconjugate of X(j) for these (i,j): {1101, 6189}, {1380, 24041}
X(66187) = X(i)-Dao conjugate of X(j) for these (i,j): {523, 6189}, {3005, 1380}, {13636, 99}, {13722, 57575}, {39022, 4590}, {39067, 249}, {62560, 31614}
X(66187) = crosspoint of X(i) and X(j) for these (i,j): {115, 13636}, {523, 39022}, {3414, 13722}, {30509, 62641}
X(66187) = crossdifference of every pair of points on line {249, 1379}
X(66187) = barycentric product X(i)*X(j) for these {i,j}: {115, 3414}, {338, 5639}, {523, 13722}, {1379, 23105}, {5466, 46463}, {6190, 8029}, {13636, 39022}, {52723, 64258}
X(66187) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 6189}, {1379, 59152}, {3124, 1380}, {3414, 4590}, {5639, 249}, {6190, 31614}, {8029, 3413}, {8754, 57013}, {13636, 57575}, {13722, 99}, {22260, 5638}, {33919, 52722}, {42344, 46462}, {46463, 5468}, {57014, 55270}, {61339, 13636}
X(66188) lies on the cubic K1381 and these lines: {101, 40750}, {115, 513}, {116, 38963}, {244, 665}, {838, 6784}, {3833, 61708}, {4893, 20982}, {5540, 24512}
X(66188) = tripolar centroid of X(60043)
X(66188) = X(59265)-Ceva conjugate of X(513)
X(66188) = X(765)-isoconjugate of X(59265)
X(66188) = X(513)-Dao conjugate of X(59265)
X(66188) = crosspoint of X(513) and X(59265)
X(66188) = crosssum of X(100) and X(59235)
X(66188) = barycentric product X(i)*X(j) for these {i,j}: {244, 51285}, {1086, 59235}
X(66188) = barycentric quotient X(i)/X(j) for these {i,j}: {1015, 59265}, {51285, 7035}, {59235, 1016}
X(66189) lies on the cubic K1381 and these lines: {11, 244}, {115, 514}, {594, 3807}, {834, 6784}, {1213, 25383}, {4415, 27493}, {6627, 45661}, {7277, 24712}, {10707, 17726}, {14041, 25434}, {14568, 25432}, {17395, 17722}, {22110, 28530}, {27081, 30566}, {30997, 48632}, {33228, 35101}
X(66189) = tripolar centroid of X(60042)
X(66189) = X(59267)-Ceva conjugate of X(514)
X(66189) = X(1110)-isoconjugate of X(59267)
X(66189) = X(i)-Dao conjugate of X(j) for these (i,j): {514, 59267}, {54256, 24342}
X(66189) = crosspoint of X(514) and X(59267)
X(66189) = crosssum of X(101) and X(59238)
X(66189) = barycentric product X(i)*X(j) for these {i,j}: {1086, 51353}, {1111, 51294}, {23989, 59238}
X(66189) = barycentric quotient X(i)/X(j) for these {i,j}: {1086, 59267}, {51294, 765}, {51353, 1016}, {59238, 1252}
X(66190) lies on the cubic K1381 and these lines: {32, 10694}, {115, 804}, {597, 732}, {2086, 11183}, {3329, 60707}, {9468, 22735}
X(66190) = tripolar centroid of X(58784)
X(66190) = X(39685)-Ceva conjugate of X(14318)
X(66190) = X(37134)-isoconjugate of X(43357)
X(66190) = X(62649)-Dao conjugate of X(60667)
X(66190) = crossdifference of every pair of points on line {805, 1634}
X(66190) = barycentric product X(i)*X(j) for these {i,j}: {115, 64947}, {2086, 60707}, {2679, 39685}, {14295, 14318}, {41178, 59249}, {56976, 66184}
X(66190) = barycentric quotient X(i)/X(j) for these {i,j}: {2086, 60667}, {3329, 39292}, {5027, 43357}, {14318, 805}, {41178, 59262}, {64947, 4590}, {66184, 56977}
X(66191) lies on the cubic K1381 and these lines: {115, 116}, {28602, 35080}, {60708, 60710}
X(66191) = tripolar centroid of X(4608)
X(66191) = X(37135)-isoconjugate of X(59080)
X(66191) = X(27929)-Dao conjugate of X(60669)
X(66191) = crossdifference of every pair of points on line {2702, 35327}
X(66191) = barycentric quotient X(5029)/X(59080)
X(66192) lies on the cubic K1381 and these lines: {115, 127}, {183, 458}, {327, 3314}, {381, 511}, {868, 35088}, {2373, 62512}, {6784, 45321}, {7778, 52251}, {7913, 34349}, {11168, 34094}, {22110, 45330}, {34765, 46245}, {36212, 65975}
X(66192) = tripolar centroid of X(850) Points releated to the 1st Van-Khea-Pavlov triangle: X(66193)-X(66259)
X(66192) = X(i)-Ceva conjugate of X(j) for these (i,j): {327, 41167}, {46806, 23878}, {46807, 2799}
X(66192) = X(i)-isoconjugate of X(j) for these (i,j): {110, 36132}, {163, 6037}, {662, 32716}, {2186, 57742}, {2715, 65252}, {3402, 57991}, {26714, 36084}, {36104, 65310}
X(66192) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 6037}, {244, 36132}, {1084, 32716}, {2799, 46807}, {23878, 46806}, {33569, 182}, {35088, 65271}, {36901, 53196}, {38970, 65349}, {38987, 26714}, {38997, 2715}, {39000, 65310}, {39009, 110}, {41167, 43718}, {41172, 63741}, {51580, 57991}, {54267, 5999}, {55267, 262}, {62596, 14966}
X(66192) = crosspoint of X(i) and X(j) for these (i,j): {2799, 46807}, {23878, 46806}, {44144, 63746}
X(66192) = crosssum of X(i) and X(j) for these (i,j): {2715, 51542}, {26714, 51543}
X(66192) = crossdifference of every pair of points on line {1576, 2715}
X(66192) = barycentric product X(i)*X(j) for these {i,j}: {115, 51373}, {182, 62431}, {183, 868}, {327, 62596}, {2799, 23878}, {9420, 44173}, {20023, 44114}, {34765, 45321}, {35088, 46806}, {41167, 63746}, {41172, 44144}, {51372, 65756}
X(66192) = barycentric quotient X(i)/X(j) for these {i,j}: {182, 57742}, {183, 57991}, {458, 60179}, {512, 32716}, {523, 6037}, {661, 36132}, {684, 65310}, {850, 53196}, {868, 262}, {2799, 65271}, {3288, 2715}, {3569, 26714}, {6784, 1976}, {9420, 1576}, {16230, 65349}, {23878, 2966}, {33569, 14966}, {35088, 46807}, {41167, 63741}, {41172, 43718}, {44114, 263}, {44144, 41174}, {45321, 34761}, {46806, 57562}, {51373, 4590}, {58260, 46319}, {59804, 51542}, {59805, 51543}, {62431, 327}, {62596, 182}
This preamble and centers X(66193)-X(66259) were contributed by Ivan Pavlov on Nov 13, 2024.
Let PaPbPc be the intouch triangle. Let Ab and Ac be the reflections of Pa in the midpoints of BPb and CPc. Let AbAc intersect PbPc at point Ta, and similarly define Tb and Tc. TaTbTc is homothetic to the excenters-midpoints triangle with center X(55) and ratio r/R. It is bilogic to the following triangles: ABC, Garcia-reflection, 1st Pavlov, extouch-of-Fuhrmann.
We will call TaTbTc the 1st Van-Khea-Pavlov triangle. For more information see this Euclid thread.
Some of the properties below refer to CTR-triangles. More info on these series is in this catalog.
X(66193) lies on these lines: {1, 37514}, {40, 65987}, {55, 49171}, {950, 49169}, {1697, 12751}, {3359, 45639}, {6256, 31397}, {7162, 39692}, {10388, 66201}, {10629, 49163}, {10965, 49184}, {14100, 26358}, {60896, 60961}
X(66194) lies on these lines: {9, 2343}, {21, 66213}, {40, 950}, {56, 5732}, {84, 497}, {1479, 10042}, {1697, 20588}, {3057, 12629}, {3486, 7966}, {3601, 64154}, {5698, 10384}, {6264, 15558}, {6284, 10860}, {6762, 66197}, {7160, 66199}, {9898, 41229}, {11372, 12053}, {12705, 64320}, {12710, 64328}, {13996, 66206}, {15299, 66198}, {15803, 41853}, {16132, 61762}, {16141, 54302}, {16572, 66234}, {31435, 62333}, {41869, 45633}, {51785, 64740}, {63430, 66248}
X(66194) = pole of line {936, 1466} with respect to the Feuerbach hyperbola
X(66195) lies on circumconic {{A, B, C, X(2287), X(10308)}} and on these lines: {1, 10308}, {9, 21}, {11, 6701}, {30, 553}, {35, 54190}, {55, 3647}, {57, 33557}, {72, 17525}, {79, 497}, {191, 9898}, {226, 37447}, {354, 51118}, {376, 10399}, {390, 3648}, {442, 9843}, {495, 22798}, {496, 49107}, {515, 66211}, {517, 66242}, {758, 3057}, {971, 63274}, {1058, 16116}, {1071, 64323}, {1210, 37401}, {1479, 11045}, {1697, 11684}, {1717, 63340}, {1725, 63356}, {1864, 15670}, {2475, 9776}, {2771, 12735}, {2801, 37080}, {3058, 3881}, {3065, 63288}, {3295, 3652}, {3303, 16140}, {3333, 63267}, {3486, 4302}, {3523, 61718}, {3529, 5902}, {3583, 58566}, {3649, 4890}, {3651, 10382}, {3743, 53524}, {3868, 15678}, {3873, 41864}, {3889, 60933}, {3982, 5045}, {4015, 4995}, {4294, 16113}, {4304, 15556}, {4313, 15677}, {4662, 18253}, {5044, 15673}, {5083, 63999}, {5218, 63286}, {5722, 47032}, {5883, 50239}, {5884, 6938}, {6001, 64282}, {6175, 9581}, {6284, 18977}, {6675, 58658}, {6767, 48668}, {6951, 37702}, {7354, 12564}, {7686, 66253}, {7701, 41546}, {9579, 11020}, {9965, 15680}, {10106, 12710}, {10176, 19526}, {10384, 16133}, {10385, 63278}, {10395, 44256}, {11034, 16118}, {11046, 16153}, {11047, 16154}, {11048, 16155}, {11220, 11518}, {11263, 66214}, {11281, 16120}, {12432, 15338}, {12512, 61663}, {12675, 64162}, {12680, 21628}, {12853, 41551}, {13145, 37730}, {13411, 16617}, {14450, 60926}, {14749, 50189}, {16117, 37545}, {16119, 16541}, {16132, 61762}, {16143, 66198}, {16148, 44623}, {16149, 44624}, {17768, 66210}, {18593, 48897}, {18839, 66207}, {20116, 52783}, {20117, 37571}, {24929, 31649}, {30384, 66254}, {33857, 34471}, {34195, 66197}, {37618, 66201}, {37724, 66019}, {44669, 66205}, {45230, 46816}, {45636, 49177}, {45637, 49178}, {50195, 66247}, {58380, 63332}, {59337, 63967}, {60911, 64342}, {60961, 63972}, {64160, 66248}, {64745, 66206}
X(66195) = midpoint of X(i) and X(j) for these {i,j}: {3555, 3650}, {6284, 18977}, {10543, 17637}, {15680, 39772}
X(66195) = reflection of X(i) in X(j) for these {i,j}: {11544, 5045}, {16120, 11281}, {40661, 21}
X(66195) = X(i)-Ceva conjugate of X(j) for these {i, j}: {63782, 650}
X(66195) = pole of line {3737, 4041} with respect to the incircle
X(66195) = pole of line {553, 1125} with respect to the Feuerbach hyperbola
X(66195) = pole of line {35057, 50346} with respect to the Suppa-Cucoanes circle
X(66195) = X(3519)-of-incircle-circles triangle triangle
X(66195) = X(3647)-of-Mandart-incircle triangle triangle
X(66195) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1479, 16152, 16125}, {10543, 17637, 758}
X(66196) lies on cubic K1082 and on these lines: {2, 60832}, {7, 3174}, {69, 35160}, {85, 344}, {144, 43762}, {279, 1445}, {347, 56783}, {480, 1358}, {1434, 41610}, {2369, 53888}, {6600, 40154}, {6601, 40615}, {8732, 17093}, {10509, 12848}, {17089, 56310}, {18230, 27818}, {23618, 60934}, {30379, 60831}, {41857, 57826}, {62782, 62784}
X(66196) = isotomic conjugate of X(56937)
X(66196) = trilinear pole of line {3309, 3676}
X(66196) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 3174}, {9, 21002}, {31, 56937}, {33, 22153}, {41, 36845}, {55, 16572}, {56, 24771}, {109, 59979}, {1253, 8732}, {2175, 20946}, {2194, 21096}, {3063, 65200}, {41573, 59141}
X(66196) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 24771}, {2, 56937}, {9, 3174}, {11, 59979}, {223, 16572}, {478, 21002}, {1214, 21096}, {3160, 36845}, {10001, 65200}, {17113, 8732}, {40593, 20946}
X(66196) = X(i)-Ceva conjugate of X(j) for these {i, j}: {63897, 2}
X(66196) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {63897, 6327}
X(66196) = X(i)-cross conjugate of X(j) for these {i, j}: {9, 7}, {277, 2}, {41790, 189}
X(66196) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(344)}}, {{A, B, C, X(4), X(43971)}}, {{A, B, C, X(7), X(85)}}, {{A, B, C, X(8), X(7674)}}, {{A, B, C, X(9), X(277)}}, {{A, B, C, X(57), X(8232)}}, {{A, B, C, X(142), X(12848)}}, {{A, B, C, X(144), X(30379)}}, {{A, B, C, X(189), X(673)}}, {{A, B, C, X(278), X(21446)}}, {{A, B, C, X(333), X(8051)}}, {{A, B, C, X(346), X(56322)}}, {{A, B, C, X(347), X(62786)}}, {{A, B, C, X(366), X(56707)}}, {{A, B, C, X(480), X(650)}}, {{A, B, C, X(514), X(6601)}}, {{A, B, C, X(1029), X(55937)}}, {{A, B, C, X(1156), X(42483)}}, {{A, B, C, X(1223), X(9311)}}, {{A, B, C, X(1440), X(30705)}}, {{A, B, C, X(3062), X(34578)}}, {{A, B, C, X(4373), X(24002)}}, {{A, B, C, X(5435), X(18230)}}, {{A, B, C, X(14189), X(41356)}}, {{A, B, C, X(15474), X(36101)}}, {{A, B, C, X(21454), X(41857)}}, {{A, B, C, X(21617), X(60939)}}, {{A, B, C, X(30275), X(52819)}}, {{A, B, C, X(37787), X(61019)}}, {{A, B, C, X(41563), X(60988)}}, {{A, B, C, X(41572), X(62778)}}, {{A, B, C, X(42309), X(62782)}}, {{A, B, C, X(42470), X(60832)}}, {{A, B, C, X(52803), X(58817)}}, {{A, B, C, X(60934), X(60992)}}, {{A, B, C, X(60941), X(60996)}}, {{A, B, C, X(60943), X(60948)}}, {{A, B, C, X(60955), X(60967)}}, {{A, B, C, X(61015), X(64142)}}, {{A, B, C, X(63178), X(63185)}}
X(66197) lies on these lines: {1, 1407}, {9, 66216}, {11, 11530}, {55, 22754}, {100, 1697}, {145, 329}, {200, 2136}, {390, 60961}, {497, 3680}, {518, 66198}, {944, 12575}, {952, 56038}, {960, 9898}, {1058, 4342}, {1482, 8000}, {1490, 7966}, {2098, 3243}, {3247, 14749}, {3340, 10580}, {4345, 11518}, {4853, 10866}, {5048, 64263}, {5687, 9819}, {5732, 20789}, {6762, 66194}, {7971, 64897}, {7972, 66061}, {8163, 62823}, {9778, 61630}, {10384, 36846}, {12260, 64328}, {17614, 53053}, {17622, 25893}, {23764, 48338}, {25011, 50443}, {30323, 64766}, {31393, 63986}, {31435, 66200}, {34195, 66195}, {57279, 66201}, {62333, 66223}, {66206, 66222}, {66207, 66221}, {66210, 66215}, {66219, 66220}
X(66197) = reflection of X(i) in X(j) for these {i,j}: {7091, 1}
X(66197) = inverse of X(11530) in Feuerbach hyperbola
X(66197) = pole of line {3304, 3698} with respect to the Feuerbach hyperbola
X(66198) lies on these lines: {57, 2951}, {100, 4326}, {144, 36845}, {390, 66205}, {497, 3062}, {516, 41824}, {518, 66197}, {950, 5759}, {1479, 10045}, {1743, 66234}, {3057, 5223}, {3339, 66227}, {3486, 7990}, {5768, 7992}, {7993, 15558}, {11379, 12053}, {15299, 66194}, {16143, 66195}, {18222, 60937}, {63277, 66207}
X(66198) = pole of line {8580, 60937} with respect to the Feuerbach hyperbola
X(66199) lies on these lines: {1, 104}, {2, 11}, {3, 1387}, {4, 11508}, {7, 33925}, {8, 4571}, {9, 14740}, {10, 25438}, {12, 12764}, {20, 11510}, {21, 643}, {33, 3749}, {35, 6940}, {36, 28194}, {40, 12736}, {56, 38693}, {57, 18240}, {65, 64189}, {80, 943}, {90, 66200}, {108, 52167}, {119, 3085}, {145, 10965}, {153, 10956}, {200, 46694}, {212, 8616}, {214, 3601}, {226, 11218}, {243, 37790}, {294, 38347}, {388, 2829}, {404, 11376}, {405, 1145}, {411, 12701}, {495, 10742}, {496, 11849}, {498, 6975}, {499, 65119}, {516, 2078}, {518, 1776}, {611, 10759}, {885, 15914}, {900, 53308}, {901, 14115}, {902, 1936}, {938, 12832}, {942, 12515}, {946, 64188}, {952, 3295}, {954, 13257}, {956, 25416}, {958, 5854}, {962, 37579}, {993, 7962}, {999, 38602}, {1000, 55966}, {1006, 5119}, {1012, 3476}, {1056, 12248}, {1058, 6977}, {1124, 19081}, {1155, 7677}, {1156, 2346}, {1259, 64068}, {1260, 38211}, {1279, 9371}, {1317, 3303}, {1319, 6909}, {1335, 19082}, {1385, 17622}, {1421, 24025}, {1478, 10728}, {1479, 6941}, {1484, 15172}, {1486, 54065}, {1497, 37529}, {1537, 3485}, {1612, 66249}, {1617, 3474}, {1618, 34949}, {1633, 20999}, {1697, 2802}, {1737, 65144}, {1788, 10306}, {1837, 3871}, {1858, 12532}, {1862, 7071}, {2066, 19113}, {2077, 44675}, {2098, 2975}, {2099, 62873}, {2293, 64710}, {2298, 14749}, {2310, 3722}, {2551, 55016}, {2646, 10179}, {2654, 5255}, {2771, 12711}, {2801, 10389}, {2831, 3744}, {2932, 34123}, {3036, 3913}, {3056, 10755}, {3065, 63288}, {3086, 6713}, {3091, 11501}, {3149, 38038}, {3218, 18839}, {3254, 66210}, {3256, 11019}, {3297, 48701}, {3298, 48700}, {3315, 53525}, {3487, 54441}, {3488, 12247}, {3579, 58587}, {3586, 6246}, {3616, 17100}, {3622, 22768}, {3651, 14798}, {3660, 17613}, {3681, 7082}, {3748, 10391}, {3750, 14547}, {3811, 18254}, {3870, 30223}, {3911, 5537}, {3938, 24430}, {3961, 7069}, {4031, 5563}, {4188, 18220}, {4189, 10966}, {4293, 38761}, {4294, 5840}, {4301, 37583}, {4302, 37430}, {4304, 12119}, {4305, 16202}, {4309, 6937}, {4313, 6224}, {4318, 8758}, {4326, 60964}, {4512, 10388}, {4551, 64013}, {4640, 17642}, {4996, 9785}, {5047, 64141}, {5048, 44663}, {5225, 11500}, {5229, 52836}, {5250, 64139}, {5251, 64056}, {5252, 6912}, {5258, 26726}, {5414, 19112}, {5531, 10382}, {5541, 53053}, {5603, 8069}, {5687, 34122}, {5722, 12619}, {5727, 15863}, {5734, 26437}, {5744, 42842}, {5851, 60934}, {5853, 58328}, {5901, 38722}, {5919, 20586}, {6264, 31393}, {6265, 24929}, {6284, 10724}, {6361, 7742}, {6596, 66219}, {6600, 64738}, {6702, 8715}, {6767, 12735}, {6796, 9614}, {6842, 10738}, {6888, 10957}, {6892, 37726}, {6897, 13199}, {6905, 30384}, {6914, 64742}, {6924, 38044}, {6946, 23708}, {6950, 22767}, {6981, 10591}, {6986, 37568}, {7080, 8668}, {7160, 66194}, {7162, 66201}, {7288, 10310}, {7489, 64140}, {7589, 8104}, {7676, 34879}, {7972, 28461}, {8071, 18861}, {8076, 13267}, {8543, 17718}, {9024, 10387}, {9654, 22799}, {9668, 22938}, {9669, 32141}, {9778, 37578}, {9809, 10578}, {9819, 12653}, {9848, 41541}, {9897, 50907}, {9898, 12868}, {9957, 12737}, {10056, 10711}, {10057, 10572}, {10106, 64145}, {10265, 63999}, {10321, 10531}, {10384, 64346}, {10386, 37438}, {10543, 63269}, {10595, 22766}, {10624, 10902}, {10679, 18391}, {10778, 46687}, {10950, 12531}, {11219, 64162}, {11256, 66256}, {11373, 26285}, {11374, 12611}, {11509, 14986}, {11604, 66207}, {11609, 66224}, {11688, 21333}, {11798, 49207}, {11997, 66067}, {12019, 12331}, {12332, 20418}, {12575, 21630}, {12641, 66205}, {12738, 63271}, {12739, 17638}, {12751, 31397}, {12763, 15888}, {12864, 35204}, {13143, 66242}, {13226, 41556}, {13266, 53523}, {13272, 15843}, {13405, 21635}, {14882, 37722}, {14935, 14947}, {15175, 24297}, {15179, 56036}, {15254, 58663}, {15298, 66023}, {15325, 35000}, {15446, 56040}, {15931, 64155}, {16371, 38026}, {16858, 64746}, {16865, 64743}, {17018, 61398}, {17127, 61397}, {17452, 38871}, {17603, 42819}, {17719, 35015}, {17724, 38357}, {18340, 24222}, {18990, 38753}, {19860, 39776}, {19914, 37730}, {21669, 45287}, {22775, 64192}, {23845, 53302}, {24840, 36237}, {25440, 32557}, {26476, 27529}, {28174, 41345}, {30117, 45269}, {31231, 65388}, {31479, 61580}, {32198, 66257}, {32635, 56121}, {33814, 64951}, {34772, 64042}, {35258, 54408}, {35445, 52769}, {36741, 38050}, {36868, 63268}, {37163, 63273}, {37403, 37618}, {37541, 42884}, {38759, 64074}, {40779, 66234}, {41546, 51897}, {42843, 63168}, {42886, 64151}, {43135, 47511}, {43974, 62306}, {44858, 61225}, {54318, 64745}, {56181, 64409}, {56288, 64046}, {58595, 64118}, {58604, 64670}, {59329, 64124}, {63208, 63983}, {64041, 66024}, {64290, 66211}
X(66199) = midpoint of X(i) and X(j) for these {i,j}: {37736, 64372}
X(66199) = reflection of X(i) in X(j) for these {i,j}: {51506, 5248}
X(66199) = inverse of X(64154) in Feuerbach hyperbola
X(66199) = isogonal conjugate of X(43947)
X(66199) = perspector of circumconic {{A, B, C, X(666), X(37136)}}
X(66199) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 43947}, {109, 43974}
X(66199) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 43947}, {11, 43974}, {64445, 40166}
X(66199) = X(i)-Ceva conjugate of X(j) for these {i, j}: {31615, 650}
X(66199) = X(i)-cross conjugate of X(j) for these {i, j}: {55334, 651}, {55379, 644}
X(66199) = pole of line {659, 53305} with respect to the circumcircle
X(66199) = pole of line {3738, 53523} with respect to the incircle
X(66199) = pole of line {59, 518} with respect to the Feuerbach hyperbola
X(66199) = pole of line {1319, 3286} with respect to the Stammler hyperbola
X(66199) = pole of line {30941, 43947} with respect to the Wallace hyperbola
X(66199) = pole of line {4435, 46393} with respect to the Hofstadter ellipse
X(66199) = pole of line {3008, 64115} with respect to the dual conic of Yff parabola
X(66199) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(52456)}}, {{A, B, C, X(9), X(56850)}}, {{A, B, C, X(11), X(64440)}}, {{A, B, C, X(100), X(54110)}}, {{A, B, C, X(104), X(14942)}}, {{A, B, C, X(105), X(45393)}}, {{A, B, C, X(109), X(1618)}}, {{A, B, C, X(497), X(14947)}}, {{A, B, C, X(514), X(14740)}}, {{A, B, C, X(522), X(5083)}}, {{A, B, C, X(528), X(42552)}}, {{A, B, C, X(650), X(3035)}}, {{A, B, C, X(673), X(34051)}}, {{A, B, C, X(1320), X(13576)}}, {{A, B, C, X(2342), X(28071)}}, {{A, B, C, X(7004), X(34949)}}, {{A, B, C, X(62715), X(64154)}}
X(66199) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10058, 104}, {1, 12758, 10698}, {1, 1768, 5083}, {1, 63281, 10058}, {11, 13274, 10707}, {11, 3058, 13274}, {11, 55, 100}, {11, 6667, 10589}, {35, 16173, 10090}, {55, 1001, 5218}, {57, 64676, 18240}, {80, 10087, 38665}, {80, 3746, 10087}, {104, 12775, 66055}, {498, 39692, 64008}, {1001, 13205, 3035}, {1479, 8068, 59391}, {5083, 41166, 1768}, {6284, 13273, 10724}, {6284, 63270, 13273}, {6767, 12773, 12735}, {10389, 64372, 37736}, {10965, 22760, 145}, {13243, 14151, 17660}, {17638, 37080, 12739}, {18240, 46684, 57}, {24646, 24647, 497}, {26358, 62333, 8}, {26358, 66206, 13278}, {30384, 32760, 6905}, {37736, 64372, 2801}, {47744, 64008, 39692}
X(66200) lies on these lines: {10, 50399}, {40, 64155}, {46, 18223}, {90, 66199}, {497, 7162}, {950, 6976}, {1478, 52860}, {1697, 47033}, {1709, 11508}, {3057, 9708}, {3295, 5779}, {3632, 66206}, {3872, 66219}, {5506, 51785}, {10058, 10085}, {10965, 66214}, {15558, 30323}, {21620, 60923}, {31435, 66197}, {41229, 62333}
X(66201) lies on these lines: {1, 11920}, {3, 14100}, {55, 58645}, {90, 497}, {191, 30223}, {946, 60924}, {950, 1728}, {1479, 1709}, {1697, 64056}, {2478, 42012}, {3057, 7082}, {3338, 18224}, {3586, 64292}, {5248, 66203}, {5250, 66205}, {6838, 62839}, {7162, 66199}, {7330, 37726}, {10075, 11508}, {10085, 18237}, {10382, 14798}, {10388, 66193}, {15845, 17437}, {16153, 37447}, {37618, 66195}, {43177, 62836}, {51090, 60949}, {57279, 66197}, {59316, 66239}
X(66202) lies on these lines: {119, 7160}, {950, 12648}, {3295, 12686}, {5119, 65996}, {10587, 10940}, {10965, 14100}, {11047, 59333}, {12000, 12872}, {15558, 19860}, {60925, 60961}
X(66203) lies on circumconic {{A, B, C, X(34056), X(34894)}} and on these lines: {1, 651}, {7, 18240}, {9, 14740}, {11, 142}, {55, 6594}, {80, 5809}, {100, 4326}, {214, 7675}, {390, 2802}, {497, 3254}, {516, 12736}, {518, 15558}, {527, 18839}, {528, 950}, {946, 38055}, {952, 63972}, {971, 1387}, {1445, 46684}, {1461, 61762}, {1479, 11023}, {1768, 30330}, {2771, 15008}, {2800, 5728}, {2829, 12573}, {3035, 58608}, {3057, 3271}, {3059, 46694}, {3601, 64154}, {3660, 15726}, {3878, 6172}, {5083, 5572}, {5248, 66201}, {5250, 9898}, {5528, 60782}, {5537, 37787}, {5660, 60943}, {5784, 38060}, {5853, 66206}, {5856, 66210}, {5903, 12848}, {6667, 15587}, {6736, 38211}, {6745, 15733}, {9844, 12855}, {9951, 10384}, {10058, 15299}, {10531, 45655}, {10889, 38484}, {11024, 45043}, {11281, 16120}, {11372, 64334}, {11544, 58576}, {11570, 41861}, {11715, 42884}, {12758, 18412}, {17620, 64699}, {18254, 45395}, {25722, 31272}, {30628, 46685}, {37541, 41166}, {42014, 62333}, {52653, 64139}, {55432, 66234}, {60937, 64676}, {60995, 66021}, {61019, 65388}, {61030, 66204}
X(66203) = midpoint of X(i) and X(j) for these {i,j}: {11, 14100}, {10427, 36868}, {12758, 18412}, {30628, 46685}
X(66203) = reflection of X(i) in X(j) for these {i,j}: {7, 18240}, {3035, 58608}, {3059, 46694}, {5083, 5572}, {14740, 9}, {15587, 6667}
X(66203) = inverse of X(4845) in incircle
X(66203) = inverse of X(10427) in Feuerbach hyperbola
X(66203) = pole of line {3887, 4845} with respect to the incircle
X(66203) = pole of line {527, 1155} with respect to the Feuerbach hyperbola
X(66203) = pole of line {30379, 43065} with respect to the dual conic of Yff parabola
X(66203) = X(895)-of-inverse-in-incircle triangle
X(66203) = X(5181)-of-intouch triangle
X(66203) = X(5972)-of-Honsberger triangle
X(66203) = X(6594)-of-Mandart-incircle triangle
X(66203) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {11, 3022, 14100}
X(66203) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 51768, 64765}, {5572, 5851, 5083}, {10177, 36868, 10427}, {51768, 64264, 1156}
X(66204) lies on these lines: {11, 6594}, {45, 66234}, {55, 5528}, {210, 34894}, {497, 55920}, {516, 63270}, {528, 24987}, {950, 45081}, {954, 17638}, {971, 63281}, {1155, 30379}, {1156, 2346}, {2801, 37080}, {3057, 5260}, {3295, 51768}, {3579, 64155}, {3683, 6068}, {5220, 62333}, {5851, 63265}, {8581, 10058}, {10389, 64264}, {16173, 31658}, {32636, 38055}, {36868, 61004}, {41166, 60961}, {61030, 66203}
X(66204) = inverse of X(6594) in Feuerbach hyperbola
X(66204) = pole of line {2078, 3935} with respect to the Feuerbach hyperbola
X(66205) lies on these lines: {1, 2}, {9, 45193}, {11, 64205}, {55, 12640}, {72, 28234}, {75, 18811}, {165, 63133}, {226, 32049}, {329, 11531}, {355, 63989}, {376, 63138}, {390, 66198}, {392, 46677}, {452, 9819}, {497, 3680}, {515, 10914}, {516, 14923}, {517, 12527}, {518, 13601}, {528, 66247}, {553, 10107}, {944, 37560}, {946, 64087}, {950, 3880}, {952, 13369}, {956, 5450}, {958, 64744}, {960, 5854}, {1000, 31435}, {1145, 6684}, {1222, 9364}, {1259, 25439}, {1319, 63990}, {1320, 41012}, {1329, 33895}, {1376, 41426}, {1466, 24391}, {1479, 64203}, {1482, 21075}, {1697, 20588}, {1706, 3476}, {1837, 21627}, {2098, 3452}, {2122, 56942}, {2136, 3486}, {2321, 55432}, {2478, 4342}, {2550, 37709}, {2551, 7962}, {2802, 10624}, {2886, 32537}, {2975, 43174}, {3057, 5795}, {3295, 64768}, {3419, 6260}, {3421, 7982}, {3436, 4301}, {3660, 33956}, {3664, 20895}, {3686, 14735}, {3689, 37734}, {3753, 66230}, {3812, 66228}, {3877, 18250}, {3879, 63151}, {3884, 51379}, {3885, 12575}, {3893, 5853}, {3895, 4314}, {3911, 8256}, {3962, 34689}, {4030, 9371}, {4073, 49527}, {4187, 64703}, {4294, 64202}, {4297, 63130}, {4308, 64112}, {4311, 54286}, {4315, 36977}, {4345, 8165}, {4513, 41006}, {4534, 52528}, {4692, 23528}, {4696, 24026}, {4848, 12513}, {4863, 66251}, {4901, 63598}, {5048, 21031}, {5082, 5881}, {5123, 33559}, {5128, 34610}, {5175, 37712}, {5176, 19925}, {5178, 12531}, {5218, 64204}, {5250, 66201}, {5252, 36972}, {5258, 10058}, {5433, 37829}, {5440, 13607}, {5687, 5882}, {5697, 12572}, {5727, 64068}, {5745, 44784}, {5794, 66240}, {5836, 10106}, {5837, 62333}, {5844, 13600}, {5850, 64047}, {5855, 64171}, {5901, 51362}, {6691, 44848}, {6692, 20323}, {8666, 40293}, {10246, 59587}, {10306, 22758}, {10912, 12053}, {10944, 17612}, {11041, 41863}, {11220, 28236}, {11530, 26040}, {11682, 21060}, {12059, 12672}, {12245, 57279}, {12437, 37740}, {12512, 63136}, {12607, 64160}, {12641, 66199}, {13370, 54391}, {13462, 26062}, {13464, 17757}, {13996, 37568}, {15862, 58415}, {15888, 51416}, {17355, 23617}, {18802, 46684}, {20789, 58650}, {23659, 63977}, {25405, 47742}, {25568, 64964}, {28228, 64002}, {30620, 45275}, {30806, 58816}, {31509, 34919}, {32426, 64162}, {34471, 59584}, {37526, 61296}, {37618, 59675}, {37725, 64200}, {42012, 63135}, {44669, 66195}, {47746, 64897}, {50810, 54290}, {51380, 58679}, {51423, 56880}, {55016, 64137}, {59417, 62824}, {59572, 63208}, {59591, 64953}, {63971, 64697}, {66239, 66245}
X(66205) = midpoint of X(i) and X(j) for these {i,j}: {3893, 10950}
X(66205) = reflection of X(i) in X(j) for these {i,j}: {145, 6738}, {3057, 5795}, {3885, 12575}, {5697, 12572}, {6737, 8}, {10106, 5836}, {10944, 57284}, {66256, 66257}, {66258, 66256}
X(66205) = X(i)-isoconjugate-of-X(j) for these {i, j}: {604, 42339}
X(66205) = X(i)-Dao conjugate of X(j) for these {i, j}: {3161, 42339}, {6692, 3663}
X(66205) = X(i)-Ceva conjugate of X(j) for these {i, j}: {25268, 650}
X(66205) = X(i)-complementary conjugate of X(j) for these {i, j}: {39628, 513}
X(66205) = pole of line {3667, 46004} with respect to the Spieker circle
X(66205) = pole of line {3057, 3452} with respect to the Feuerbach hyperbola
X(66205) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(20323)}}, {{A, B, C, X(2), X(6692)}}, {{A, B, C, X(8), X(18811)}}, {{A, B, C, X(9), X(36846)}}, {{A, B, C, X(596), X(49169)}}, {{A, B, C, X(936), X(4900)}}, {{A, B, C, X(1000), X(14986)}}, {{A, B, C, X(1210), X(5559)}}, {{A, B, C, X(1222), X(6736)}}, {{A, B, C, X(3621), X(56200)}}, {{A, B, C, X(3623), X(34919)}}, {{A, B, C, X(3680), X(19861)}}, {{A, B, C, X(4866), X(12629)}}, {{A, B, C, X(4882), X(56094)}}, {{A, B, C, X(10200), X(42285)}}, {{A, B, C, X(12641), X(24982)}}, {{A, B, C, X(14942), X(20103)}}, {{A, B, C, X(25005), X(55076)}}, {{A, B, C, X(31434), X(64793)}}
X(66205) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 6736, 6745}, {1, 8, 6736}, {8, 145, 200}, {8, 4853, 4847}, {8, 4861, 6735}, {8, 519, 6737}, {8, 6734, 3626}, {499, 3679, 10}, {519, 6738, 145}, {1479, 64203, 64767}, {2975, 51433, 43174}, {3057, 5795, 40998}, {3632, 4915, 8}, {3893, 10950, 5853}, {4861, 6735, 1125}, {5836, 38455, 10106}, {5881, 11525, 5082}, {8256, 11260, 3911}, {11682, 56879, 21060}, {32426, 66256, 66258}, {32426, 66257, 66256}, {66256, 66257, 64162}
X(66206) lies on these lines: {1, 5}, {8, 4571}, {9, 4534}, {46, 38761}, {55, 1145}, {56, 64188}, {57, 64145}, {65, 2829}, {100, 3486}, {104, 1470}, {140, 30538}, {153, 12831}, {390, 64743}, {480, 38211}, {497, 1320}, {499, 38032}, {515, 12736}, {517, 65516}, {519, 15558}, {528, 12743}, {908, 5048}, {950, 2802}, {1155, 38759}, {1159, 38756}, {1210, 11715}, {1319, 1512}, {1479, 64138}, {1519, 65948}, {1537, 2099}, {1697, 64056}, {1737, 6713}, {1788, 38693}, {1836, 3577}, {1858, 2800}, {1864, 12691}, {1877, 12138}, {2077, 40663}, {2098, 25416}, {2646, 3035}, {2801, 41558}, {3036, 3689}, {3057, 5854}, {3256, 9952}, {3295, 64140}, {3340, 34789}, {3359, 24466}, {3488, 66008}, {3586, 14217}, {3612, 38760}, {3632, 66200}, {4294, 64136}, {4295, 10728}, {4305, 34474}, {4848, 46684}, {5083, 6738}, {5193, 44425}, {5218, 64141}, {5552, 59415}, {5690, 65119}, {5795, 14740}, {5840, 10572}, {5853, 66203}, {6224, 60782}, {6246, 12608}, {6256, 13273}, {6596, 34918}, {6667, 17606}, {6737, 46694}, {6797, 34339}, {7354, 24465}, {7962, 26726}, {10058, 10573}, {10090, 10269}, {10106, 18240}, {10200, 34123}, {10385, 64746}, {10531, 10698}, {10543, 35204}, {10609, 22768}, {10679, 19914}, {10896, 38038}, {10915, 15863}, {10965, 49169}, {11011, 64192}, {11019, 41554}, {11239, 50890}, {11509, 48695}, {11871, 45628}, {11872, 45627}, {12053, 64137}, {12115, 64324}, {12119, 59333}, {12247, 12775}, {12531, 12648}, {12575, 66242}, {12611, 50194}, {12619, 55297}, {12665, 64041}, {12703, 30223}, {12709, 17661}, {12758, 23340}, {13384, 64012}, {13996, 66194}, {15096, 27778}, {15381, 40437}, {17652, 66226}, {20085, 45043}, {20118, 20418}, {20119, 60925}, {21154, 24914}, {22799, 39542}, {26364, 34122}, {28204, 58587}, {31272, 54361}, {34434, 58475}, {36279, 38753}, {37567, 64076}, {37606, 38762}, {41575, 46685}, {41684, 63281}, {41687, 49163}, {64078, 64189}, {64745, 66195}, {66012, 66052}, {66197, 66222}
X(66206) = midpoint of X(i) and X(j) for these {i,j}: {11, 10950}, {12743, 17636}, {41575, 46685}
X(66206) = reflection of X(i) in X(j) for these {i,j}: {3035, 66257}, {5083, 6738}, {6737, 46694}, {7354, 24465}, {10106, 18240}, {12735, 12433}, {14740, 5795}, {34434, 58475}
X(66206) = inverse of X(12740) in incircle
X(66206) = inverse of X(119) in Feuerbach hyperbola
X(66206) = perspector of circumconic {{A, B, C, X(655), X(46605)}}
X(66206) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2397, 650}
X(66206) = pole of line {900, 12740} with respect to the incircle
X(66206) = pole of line {119, 517} with respect to the Feuerbach hyperbola
X(66206) = pole of line {52663, 61214} with respect to the Orthic inconic
X(66206) = X(974)-of-Ursa-minor triangle
X(66206) = X(1145)-of-Mandart-incircle triangle
X(66206) = intersection, other than A, B, C, of circumconics {{A, B, C, X(119), X(40437)}}, {{A, B, C, X(1411), X(45393)}}, {{A, B, C, X(2006), X(12641)}}, {{A, B, C, X(14584), X(30513)}}, {{A, B, C, X(15381), X(34586)}}, {{A, B, C, X(26482), X(56143)}}
X(66206) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 12751, 10956}, {1, 1837, 26476}, {1, 355, 26482}, {1, 80, 119}, {1, 9897, 12749}, {11, 10950, 952}, {11, 10959, 5533}, {11, 1317, 12740}, {104, 18391, 12832}, {952, 12433, 12735}, {2099, 12764, 1537}, {9581, 16173, 11}, {12736, 15528, 18838}, {12743, 17636, 528}, {13278, 66199, 26358}, {23477, 23517, 10523}
X(66207) lies on these lines: {1, 30}, {9, 1837}, {11, 5259}, {12, 18406}, {21, 497}, {55, 442}, {56, 44238}, {191, 30223}, {283, 54399}, {354, 64003}, {388, 52841}, {390, 2475}, {496, 5428}, {499, 28465}, {517, 66211}, {519, 66242}, {528, 24987}, {758, 950}, {1001, 44256}, {1058, 26437}, {1479, 6841}, {1697, 47033}, {1839, 1841}, {1884, 64753}, {2330, 51747}, {2646, 5249}, {2771, 31795}, {3057, 31938}, {3065, 12750}, {3086, 21161}, {3295, 18499}, {3303, 26332}, {3304, 64075}, {3486, 5905}, {3583, 63288}, {3601, 26725}, {3647, 10916}, {3648, 28610}, {3651, 4294}, {3683, 6734}, {3962, 17781}, {4309, 10267}, {4314, 11263}, {4857, 16617}, {5048, 33961}, {5218, 31254}, {5221, 37428}, {5225, 52269}, {5229, 61027}, {5274, 15674}, {5426, 51785}, {5427, 11012}, {5432, 41859}, {5499, 10386}, {5693, 37290}, {5698, 11684}, {5709, 41697}, {5715, 6253}, {5722, 16139}, {5840, 24299}, {5842, 37080}, {5904, 10950}, {6175, 10385}, {6743, 40661}, {6826, 64342}, {6865, 64341}, {9670, 37447}, {10072, 44255}, {10122, 63999}, {10399, 31789}, {10529, 15677}, {10572, 40263}, {10624, 64721}, {10902, 63273}, {10943, 31649}, {10966, 57002}, {11019, 41547}, {11113, 49168}, {11238, 15670}, {11240, 15678}, {11276, 34871}, {11604, 66199}, {11827, 37724}, {12053, 35016}, {12116, 21669}, {12575, 15558}, {12704, 16113}, {13743, 18543}, {14100, 16142}, {14794, 15325}, {15338, 37583}, {16141, 54302}, {16202, 47032}, {17525, 45700}, {18527, 22937}, {18839, 66195}, {20084, 60984}, {24541, 49736}, {24929, 33592}, {27529, 31660}, {28146, 58586}, {28460, 35252}, {33557, 33925}, {37563, 64275}, {37726, 46816}, {37740, 41863}, {41861, 60883}, {61663, 64004}, {63277, 66198}, {66197, 66221}
X(66207) = midpoint of X(i) and X(j) for these {i,j}: {3649, 6284}, {16142, 17637}
X(66207) = reflection of X(i) in X(j) for these {i,j}: {10122, 63999}, {15174, 15172}
X(66207) = X(i)-Ceva conjugate of X(j) for these {i, j}: {65205, 650}
X(66207) = pole of line {442, 942} with respect to the Feuerbach hyperbola
X(66207) = pole of line {2911, 8818} with respect to the Kiepert hyperbola
X(66207) = pole of line {35193, 37579} with respect to the Stammler hyperbola
X(66207) = pole of line {6741, 40622} with respect to the dual conic of Wallace hyperbola
X(66207) = X(442)-of-Mandart-incircle triangle
X(66207) = X(973)-of-Ursa-minor triangle
X(66207) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6598), X(52374)}}, {{A, B, C, X(43740), X(52382)}}
X(66207) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 49177, 3649}, {30, 15172, 15174}, {79, 41864, 10543}, {497, 26357, 26475}, {3649, 10543, 33857}, {3649, 6284, 30}, {16142, 17637, 17768}, {17637, 64046, 39772}
X(66208) lies on these lines: {7, 145}, {8, 14121}, {519, 52805}, {528, 45719}, {2136, 6204}, {2802, 66000}, {3244, 30342}, {3632, 30432}, {3633, 30426}, {3813, 30314}, {3893, 30376}, {3913, 30386}, {5836, 30347}, {11519, 30355}, {12437, 30277}, {12448, 30289}, {12513, 30297}, {12607, 30307}, {12625, 30325}, {12629, 30401}, {12642, 30361}, {12643, 30369}, {12644, 30419}, {12646, 30407}, {21627, 30381}, {44669, 63283}, {52811, 66243}
X(66208) = reflection of X(i) in X(j) for these {i,j}: {8, 60902}, {66209, 145}
X(66208) = intersection, other than A, B, C, of circumconics {{A, B, C, X(14121), X(27818)}}, {{A, B, C, X(19604), X(42013)}}
X(66208) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 30334, 30413}, {145, 5853, 66209}
X(66209) lies on these lines: {7, 145}, {8, 7090}, {519, 52808}, {528, 45720}, {2136, 6203}, {2802, 66001}, {3241, 60902}, {3244, 30341}, {3632, 30431}, {3633, 30425}, {3813, 30313}, {3893, 30375}, {3913, 30385}, {5836, 30346}, {11519, 30354}, {11532, 31551}, {12437, 30276}, {12448, 30288}, {12513, 30296}, {12607, 30306}, {12625, 30324}, {12629, 30400}, {12642, 30360}, {12643, 30368}, {12644, 30418}, {12646, 30406}, {21627, 30380}, {44669, 63284}, {52813, 66243}
X(66209) = reflection of X(i) in X(j) for these {i,j}: {66208, 145}
X(66209) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7090), X(27818)}}, {{A, B, C, X(7133), X(19604)}}
X(66209) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 30333, 30412}, {145, 5853, 66208}
X(66210) lies on these lines: {1, 7}, {8, 9898}, {9, 497}, {10, 50399}, {11, 6594}, {38, 65671}, {55, 142}, {56, 63413}, {144, 36845}, {149, 60969}, {165, 8732}, {200, 7674}, {219, 66234}, {354, 60945}, {388, 52835}, {480, 3452}, {495, 18482}, {496, 31658}, {517, 29957}, {518, 950}, {519, 21084}, {527, 3058}, {528, 9951}, {553, 58563}, {673, 1223}, {946, 954}, {971, 15171}, {1001, 12053}, {1058, 5759}, {1253, 3008}, {1445, 11019}, {1479, 15298}, {1617, 11495}, {1697, 2550}, {1699, 8232}, {1837, 24393}, {2170, 42449}, {2257, 41325}, {2269, 18785}, {2346, 11218}, {3057, 3059}, {3062, 60934}, {3085, 38150}, {3086, 21153}, {3174, 10388}, {3243, 3486}, {3254, 66199}, {3295, 5805}, {3428, 42884}, {3474, 60955}, {3601, 38053}, {3748, 63258}, {3817, 60943}, {3911, 65405}, {3946, 41339}, {4357, 14942}, {4419, 4907}, {4995, 60999}, {5173, 5572}, {5218, 20195}, {5220, 10392}, {5223, 5809}, {5225, 59389}, {5274, 18230}, {5281, 60996}, {5432, 58433}, {5541, 45043}, {5686, 18250}, {5698, 10384}, {5728, 63999}, {5745, 6067}, {5762, 15172}, {5766, 19843}, {5850, 10394}, {5856, 66203}, {6173, 10385}, {6284, 8581}, {6600, 6745}, {6738, 7672}, {6767, 31671}, {7671, 41572}, {7676, 15931}, {7677, 59320}, {7678, 61015}, {8545, 51783}, {9580, 60937}, {9581, 38057}, {9614, 38037}, {9668, 31672}, {9669, 38108}, {9670, 60909}, {9848, 64723}, {10164, 61019}, {10171, 61017}, {10382, 61010}, {10386, 31657}, {10387, 47595}, {10580, 60939}, {10593, 38318}, {10947, 61004}, {11025, 60932}, {11238, 60986}, {11373, 38031}, {12706, 15071}, {12848, 30330}, {13464, 64286}, {14151, 64145}, {14746, 14749}, {14986, 59418}, {15726, 60961}, {15733, 61002}, {15841, 60938}, {17333, 63600}, {17768, 66195}, {18698, 42446}, {18839, 61033}, {19854, 38059}, {20330, 24929}, {21630, 51506}, {24466, 38055}, {25722, 34611}, {26015, 60970}, {29007, 64699}, {30223, 61005}, {30620, 41006}, {30621, 43035}, {30628, 60979}, {31393, 64316}, {34625, 50836}, {38036, 64001}, {38052, 53053}, {38122, 64951}, {40292, 44675}, {41573, 54408}, {42356, 64737}, {49736, 58608}, {50093, 63597}, {50865, 60967}, {51090, 60949}, {51099, 66229}, {52653, 64081}, {60910, 60942}, {60987, 64674}, {60990, 66239}, {63989, 64156}, {64163, 66211}, {66197, 66215}, {66216, 66219}
X(66210) = midpoint of X(i) and X(j) for these {i,j}: {6284, 8581}, {14100, 60919}, {30628, 60979}
X(66210) = reflection of X(i) in X(j) for these {i,j}: {390, 12575}, {4292, 5542}, {5223, 12572}, {5728, 63999}, {7672, 6738}, {12573, 1}, {14100, 15006}, {52819, 5572}, {60972, 49736}, {63972, 15172}
X(66210) = X(i)-Dao conjugate of X(j) for these {i, j}: {52542, 4847}
X(66210) = X(i)-Ceva conjugate of X(j) for these {i, j}: {65195, 650}
X(66210) = pole of line {514, 58322} with respect to the incircle
X(66210) = pole of line {142, 354} with respect to the Feuerbach hyperbola
X(66210) = pole of line {7, 218} with respect to the dual conic of Yff parabola
X(66210) = X(142)-of-Mandart-incircle triangle
X(66210) = X(3313)-of-intouch triangle
X(66210) = X(9969)-of-Ursa-minor triangle
X(66210) = intersection, other than A, B, C, of circumconics {{A, B, C, X(9), X(4350)}}, {{A, B, C, X(269), X(40505)}}, {{A, B, C, X(279), X(6601)}}, {{A, B, C, X(1223), X(62786)}}, {{A, B, C, X(10481), X(15909)}}, {{A, B, C, X(12573), X(14942)}}
X(66210) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 516, 12573}, {7, 390, 4326}, {9, 6601, 4847}, {11, 15837, 6666}, {390, 11038, 4313}, {390, 7675, 4314}, {516, 12575, 390}, {516, 5542, 4292}, {1479, 15298, 63970}, {2346, 21617, 13405}, {3058, 14100, 15006}, {3058, 60919, 14100}, {4314, 5542, 7675}, {5572, 38454, 52819}, {5762, 15172, 63972}, {7676, 30379, 43151}, {13405, 65452, 21617}, {14100, 17642, 15185}, {14100, 60919, 527}, {52819, 64162, 5572}
X(66211) lies on these lines: {1, 6831}, {9, 3632}, {55, 64275}, {497, 1389}, {515, 66195}, {517, 66207}, {519, 66219}, {952, 15174}, {1479, 64754}, {2346, 64270}, {3057, 5844}, {3295, 7489}, {3486, 11508}, {3746, 44669}, {4915, 41709}, {5794, 56583}, {5903, 38454}, {8069, 64269}, {8071, 64268}, {10039, 64294}, {10523, 64273}, {10543, 37621}, {10572, 13375}, {10944, 63287}, {11011, 12433}, {13750, 64284}, {15558, 63999}, {19920, 61286}, {24390, 37702}, {30323, 64766}, {37721, 64200}, {64163, 66210}, {64290, 66199}
X(66211) = midpoint of X(i) and X(j) for these {i,j}: {10572, 13375}, {10950, 45081}
X(66211) = pole of line {10039, 13375} with respect to the Feuerbach hyperbola
X(66212) lies on circumconic {{A, B, C, X(5559), X(59760)}} and on these lines: {1, 5235}, {8, 81}, {10, 5333}, {21, 519}, {58, 3632}, {86, 3617}, {100, 59302}, {145, 333}, {229, 17568}, {239, 26562}, {314, 4696}, {355, 64400}, {387, 32782}, {518, 41718}, {524, 2475}, {740, 11684}, {944, 64376}, {952, 64720}, {1014, 4848}, {1043, 3621}, {1046, 64010}, {1150, 19278}, {1408, 36920}, {1482, 64405}, {1724, 50638}, {1778, 17299}, {1817, 24391}, {1834, 2895}, {2098, 64409}, {2099, 64408}, {2287, 5839}, {2303, 17362}, {2975, 32853}, {3193, 13746}, {3241, 11110}, {3305, 35629}, {3578, 26117}, {3616, 64425}, {3626, 25526}, {3633, 4653}, {3679, 4658}, {3813, 14008}, {3828, 28618}, {3869, 17156}, {3913, 4184}, {3951, 42044}, {4101, 33133}, {4225, 12513}, {4255, 5372}, {4276, 5288}, {4278, 48696}, {4420, 18465}, {4642, 50016}, {4649, 59307}, {4677, 51669}, {4678, 8025}, {4803, 4816}, {4954, 8715}, {5016, 17363}, {5051, 31143}, {5174, 56014}, {5175, 56020}, {5178, 5847}, {5192, 10449}, {5253, 32919}, {5255, 39673}, {5260, 32864}, {5278, 56990}, {5284, 35633}, {5323, 41687}, {5361, 19765}, {5690, 64393}, {5846, 41610}, {6542, 16047}, {6765, 54356}, {8148, 64383}, {9534, 37633}, {10573, 64421}, {10912, 64406}, {10944, 64382}, {10950, 64414}, {11115, 31145}, {11362, 37402}, {12135, 64378}, {12195, 64381}, {12245, 64384}, {12410, 64395}, {12454, 64396}, {12455, 64397}, {12495, 64398}, {12626, 64402}, {12627, 64403}, {12628, 64404}, {12635, 64407}, {12645, 64419}, {12647, 64420}, {12648, 64422}, {13911, 64417}, {13973, 64418}, {14007, 53620}, {14552, 20019}, {14956, 64068}, {16050, 50079}, {16284, 16749}, {16454, 48850}, {16700, 21896}, {16859, 19723}, {17135, 62804}, {17151, 58786}, {17185, 63135}, {17553, 51093}, {17589, 42028}, {17697, 63060}, {17751, 27644}, {18206, 63130}, {19065, 64385}, {19066, 64386}, {19273, 19767}, {19875, 28620}, {20051, 29767}, {20054, 52352}, {20086, 49745}, {21997, 40891}, {22791, 64399}, {24632, 49770}, {24883, 30831}, {25446, 63344}, {25507, 46933}, {25650, 31204}, {26051, 42045}, {26064, 49718}, {26643, 29617}, {27368, 34195}, {27714, 42334}, {27754, 31446}, {28530, 31888}, {30939, 44720}, {33297, 33955}, {35842, 64412}, {35843, 64413}, {36846, 46877}, {37442, 62837}, {37652, 56989}, {40773, 49495}, {48493, 64379}, {48494, 64380}, {48746, 64389}, {48747, 64390}, {49060, 64391}, {49061, 64392}, {49169, 64394}, {49232, 64410}, {49233, 64411}, {49329, 64387}, {49330, 64388}, {50106, 54422}, {50625, 62848}, {53426, 63537}, {54335, 63333}
X(66212) = reflection of X(i) in X(j) for these {i,j}: {21, 64072}, {34195, 27368}
X(66212) = pole of line {5563, 16466} with respect to the Stammler hyperbola
X(66212) = pole of line {4346, 7321} with respect to the Wallace hyperbola
X(66212) = X(8)-of-2nd-anti-Pavlov triangle
X(66212) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 64401, 5235}, {8, 56018, 81}, {10, 28619, 17551}, {10, 64377, 5333}, {21, 64072, 4921}, {58, 3632, 4720}, {145, 333, 64415}, {519, 64072, 21}, {1043, 16704, 16948}, {3679, 4658, 14005}, {4658, 14005, 42025}, {17551, 64377, 28619}, {24883, 41014, 30831}, {32919, 59303, 5253}, {49718, 64167, 26064}
X(66213) lies on these lines: {7, 354}, {21, 66194}, {100, 4326}, {390, 3885}, {944, 63972}, {971, 17624}, {3243, 10384}, {4345, 9848}, {5274, 17668}, {12711, 18221}, {15845, 60988}, {17642, 60957}, {20075, 61009}, {27282, 63600}, {30330, 64129}, {30628, 60966}, {34784, 60910}, {40269, 66226}, {53055, 60964}, {58608, 59572}
X(66214) lies on these lines: {1, 1898}, {9, 26358}, {11, 41540}, {55, 58645}, {78, 62333}, {354, 10531}, {1479, 7702}, {3244, 15558}, {5880, 10940}, {9844, 10955}, {10965, 66200}, {11238, 13373}, {11248, 61653}, {11263, 66195}, {11376, 41871}, {18838, 41869}, {23340, 64766}
X(66214) = inverse of X(41540) in Feuerbach hyperbola
X(66214) = pole of line {46, 5552} with respect to the Feuerbach hyperbola
X(66215) lies on circumconic {{A, B, C, X(2191), X(53623)}} and on these lines: {1, 142}, {7, 34195}, {8, 6600}, {9, 3486}, {56, 8730}, {100, 1617}, {145, 7672}, {390, 3877}, {480, 10950}, {497, 2900}, {516, 7971}, {518, 944}, {519, 7966}, {527, 34628}, {528, 10698}, {952, 3427}, {1001, 3488}, {1420, 41573}, {1445, 41575}, {1998, 64747}, {2886, 33993}, {3158, 4847}, {3243, 3476}, {3244, 8000}, {3616, 64443}, {3826, 56177}, {3869, 12706}, {3880, 11041}, {3913, 5657}, {4297, 60990}, {5086, 60943}, {5173, 17784}, {5441, 5698}, {5531, 25568}, {5817, 42843}, {5856, 6224}, {6067, 34471}, {6666, 66251}, {6765, 64111}, {7673, 20075}, {7677, 12649}, {7990, 61294}, {8236, 12536}, {12625, 24389}, {12632, 18221}, {12635, 61010}, {15931, 24477}, {19843, 56176}, {20007, 40659}, {20013, 34784}, {24393, 47375}, {25252, 51190}, {34607, 41338}, {49168, 52769}, {54193, 64696}, {59340, 60974}, {59413, 63260}, {63168, 64737}, {66197, 66210}
X(66215) = midpoint of X(i) and X(j) for these {i,j}: {145, 7674}
X(66215) = reflection of X(i) in X(j) for these {i,j}: {8, 6600}, {3174, 12437}, {6601, 1}, {12625, 24389}, {49168, 52769}, {60990, 4297}, {61010, 12635}, {66251, 6666}
X(66215) = pole of line {26641, 31603} with respect to the Steiner circumellipse
X(66215) = X(8730)-of-2nd-anti-circumperp-tangential triangle
X(66215) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5853, 6601}, {5853, 12437, 3174}
X(66216) lies on these lines: {1, 84}, {8, 210}, {9, 66197}, {10, 15845}, {11, 5836}, {33, 37542}, {55, 4855}, {56, 63985}, {65, 6890}, {72, 7962}, {145, 1864}, {200, 66245}, {354, 4323}, {388, 12679}, {390, 3890}, {392, 936}, {496, 517}, {518, 2098}, {519, 64131}, {944, 18239}, {950, 952}, {962, 64106}, {971, 20789}, {1040, 1616}, {1201, 9371}, {1319, 9943}, {1387, 34339}, {1388, 58567}, {1476, 20323}, {1482, 11432}, {1708, 8158}, {1858, 5048}, {1898, 3486}, {2057, 3913}, {2646, 10179}, {2800, 50196}, {2932, 17614}, {2943, 9364}, {3295, 45770}, {3476, 12688}, {3600, 17634}, {3622, 17603}, {3623, 10394}, {3660, 66019}, {3680, 17658}, {3698, 10589}, {3748, 45230}, {3753, 50443}, {3812, 11376}, {3868, 4345}, {3869, 17642}, {3878, 4342}, {3884, 12575}, {3898, 4314}, {3911, 31798}, {4308, 63995}, {4640, 10966}, {5045, 26200}, {5123, 26476}, {5205, 9435}, {5274, 14923}, {5691, 30294}, {5697, 51785}, {5722, 23340}, {5727, 41389}, {5728, 64964}, {5782, 54359}, {5882, 66248}, {5887, 64897}, {5927, 37709}, {6049, 11220}, {6767, 10393}, {7686, 30384}, {8236, 14100}, {9581, 10914}, {9612, 39779}, {9856, 10106}, {10167, 63208}, {10178, 37605}, {10284, 18527}, {10382, 37556}, {10384, 64197}, {10388, 15829}, {10523, 22835}, {10624, 31786}, {10679, 55298}, {10950, 17615}, {10959, 26015}, {11019, 13601}, {11240, 44663}, {11260, 22760}, {11373, 37562}, {11508, 37837}, {11510, 65404}, {11531, 41539}, {12513, 30223}, {12640, 51380}, {12647, 58631}, {13369, 25405}, {13464, 50195}, {13600, 64163}, {14110, 30305}, {16189, 18412}, {16483, 54295}, {17638, 20586}, {17857, 31393}, {18908, 37711}, {22767, 64118}, {24928, 64132}, {26358, 56176}, {31788, 44675}, {31792, 32900}, {34471, 62856}, {37588, 51361}, {38271, 56038}, {41426, 64129}, {55921, 56029}, {66210, 66219}
X(66216) = midpoint of X(i) and X(j) for these {i,j}: {1837, 3057}, {1898, 37738}, {2098, 64042}, {17638, 20586}
X(66216) = reflection of X(i) in X(j) for these {i,j}: {50196, 64703}, {59691, 58679}, {63987, 20789}, {64132, 24928}
X(66216) = inverse of X(45080) in Feuerbach hyperbola
X(66216) = perspector of circumconic {{A, B, C, X(646), X(37141)}}
X(66216) = pole of line {8, 56} with respect to the Feuerbach hyperbola
X(66216) = X(5836)-of-2nd-Johnson-Yff triangle
X(66216) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(1413)}}, {{A, B, C, X(84), X(341)}}, {{A, B, C, X(222), X(55112)}}, {{A, B, C, X(312), X(1422)}}, {{A, B, C, X(1265), X(1433)}}, {{A, B, C, X(2192), X(5423)}}, {{A, B, C, X(3057), X(9435)}}, {{A, B, C, X(3701), X(52384)}}, {{A, B, C, X(4723), X(45824)}}, {{A, B, C, X(9363), X(9368)}}
X(66216) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 12672, 66250}, {950, 15558, 9957}, {971, 20789, 63987}, {1837, 3057, 3880}, {1858, 5048, 34791}, {1898, 5919, 37738}, {2098, 64042, 518}, {2800, 64703, 50196}, {3057, 10866, 497}, {3057, 17604, 3893}, {3877, 9785, 3057}, {5919, 9848, 3486}, {17622, 66226, 1}
X(66217) lies on these lines: {1, 6692}, {8, 15347}, {100, 6049}, {390, 3885}, {497, 3680}, {519, 7971}, {944, 3880}, {952, 10309}, {2802, 64076}, {3189, 7972}, {3243, 45194}, {3616, 63644}, {3816, 10912}, {4421, 64173}, {5658, 32426}, {5853, 64697}, {5854, 10698}, {7966, 37560}, {7990, 34607}, {8058, 14812}, {8256, 33994}, {10629, 64203}, {11041, 58609}, {12437, 66231}, {31788, 47746}, {34711, 59326}, {37711, 64068}, {64129, 66245}
X(66217) = reflection of X(i) in X(j) for these {i,j}: {8, 15347}, {56089, 1}
X(66218) lies on these lines: {1, 6600}, {9, 66197}, {145, 3174}, {390, 3872}, {518, 7971}, {519, 64319}, {944, 5732}, {952, 56273}, {1467, 2136}, {3880, 7966}, {4853, 6601}, {6764, 64150}, {7674, 36846}, {7990, 15347}, {8000, 42871}, {8726, 64173}, {10698, 54159}, {11526, 34195}, {15733, 18452}, {47375, 62835}
X(66218) = reflection of X(i) in X(j) for these {i,j}: {2136, 8730}, {42470, 1}
X(66219) lies on these lines: {1, 21}, {30, 9856}, {80, 58636}, {210, 66251}, {392, 442}, {405, 31806}, {452, 5692}, {497, 6598}, {517, 6675}, {519, 66211}, {950, 960}, {1479, 5175}, {1699, 46870}, {2475, 9812}, {2478, 10176}, {2800, 17009}, {3057, 4847}, {3145, 54180}, {3428, 37308}, {3452, 10958}, {3486, 66221}, {3649, 64106}, {3651, 63986}, {3872, 66200}, {3880, 58638}, {4301, 44256}, {4540, 59415}, {4853, 9898}, {5044, 12019}, {5086, 58699}, {5173, 8261}, {5693, 11111}, {5694, 50241}, {5697, 19843}, {5706, 16430}, {5745, 64043}, {5795, 14740}, {5883, 6910}, {5884, 16370}, {6362, 65442}, {6596, 66199}, {6857, 37625}, {6872, 31803}, {7173, 25917}, {7483, 31870}, {8582, 64107}, {10543, 14100}, {11019, 41574}, {11113, 20117}, {11114, 31871}, {11281, 58679}, {11344, 22836}, {11545, 58640}, {11729, 31838}, {12573, 17768}, {12635, 13615}, {12672, 44238}, {12758, 35204}, {14749, 40937}, {15071, 17576}, {15558, 18253}, {15680, 43161}, {15931, 51717}, {16139, 22770}, {17183, 18698}, {18250, 51379}, {19524, 54192}, {19861, 35979}, {25639, 41012}, {27086, 59320}, {28465, 37562}, {33858, 37292}, {35258, 66019}, {37286, 40257}, {44663, 58568}, {45955, 58479}, {61272, 64853}, {66197, 66220}, {66210, 66216}
X(66219) = midpoint of X(i) and X(j) for these {i,j}: {3057, 21677}, {3869, 39772}, {3878, 35016}, {10543, 44782}, {12672, 44238}, {12758, 35204}
X(66219) = reflection of X(i) in X(j) for these {i,j}: {10122, 35016}, {11281, 58679}, {40661, 960}
X(66219) = pole of line {2646, 5745} with respect to the Feuerbach hyperbola
X(66219) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {758, 35016, 10122}, {960, 44669, 40661}, {3869, 39772, 758}, {3877, 5250, 3878}
X(66220) lies on these lines: {21, 390}, {56, 8730}, {145, 35979}, {404, 18221}, {519, 64280}, {758, 7971}, {944, 3428}, {3189, 59317}, {3880, 64173}, {3913, 11041}, {4847, 6598}, {5173, 34195}, {5853, 59320}, {10698, 54161}, {16143, 64697}, {21161, 34625}, {40292, 64068}, {46870, 64737}, {66197, 66219}
X(66221) lies on these lines: {1, 442}, {21, 5837}, {30, 7971}, {100, 4848}, {145, 39772}, {517, 64287}, {519, 10902}, {631, 49168}, {758, 944}, {952, 6596}, {1420, 41574}, {2136, 37550}, {2475, 4323}, {3158, 5690}, {3189, 11041}, {3243, 37738}, {3486, 66219}, {3555, 7972}, {3649, 64263}, {3680, 8000}, {3880, 64766}, {3913, 36152}, {4301, 10698}, {6675, 37739}, {6762, 7966}, {6830, 22836}, {6904, 18221}, {6934, 37625}, {6987, 31806}, {7990, 34716}, {10106, 34195}, {10543, 66239}, {11523, 11827}, {12536, 33110}, {17768, 64697}, {21677, 37740}, {24987, 63260}, {46870, 64160}, {66197, 66207}
X(66221) = reflection of X(i) in X(j) for these {i,j}: {6598, 1}
X(66221) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 44669, 6598}
X(66222) lies on these lines: {1, 1145}, {80, 10912}, {100, 5193}, {145, 5083}, {390, 60940}, {519, 1519}, {528, 64697}, {944, 2802}, {952, 3680}, {1317, 2136}, {1320, 12053}, {1420, 18802}, {2804, 14812}, {2950, 6762}, {3158, 12735}, {3359, 3655}, {3586, 12653}, {3632, 39692}, {3880, 7972}, {3892, 11041}, {10073, 41702}, {10956, 64263}, {12531, 21627}, {12625, 13257}, {13271, 33956}, {13996, 45036}, {16173, 17619}, {16205, 64192}, {19907, 64768}, {25438, 34474}, {28234, 48695}, {34789, 38455}, {59415, 64205}, {66197, 66206}
X(66222) = reflection of X(i) in X(j) for these {i,j}: {80, 10912}, {2136, 1317}, {12531, 21627}, {12641, 1}, {64768, 19907}
X(66222) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5854, 12641}
X(66223) lies on these lines: {1, 11517}, {90, 956}, {100, 34489}, {145, 224}, {390, 4861}, {912, 6762}, {944, 12520}, {1056, 41540}, {3680, 7966}, {3872, 43740}, {5840, 12650}, {6261, 64317}, {7972, 56583}, {10395, 64081}, {10698, 66018}, {12629, 64287}, {37531, 66068}, {62333, 66197}
X(66223) = reflection of X(i) in X(j) for these {i,j}: {56278, 1}
X(66224) lies on these lines: {1, 256}, {9, 23638}, {11, 51571}, {55, 2092}, {238, 1682}, {314, 497}, {740, 950}, {2269, 3747}, {2328, 7083}, {3057, 3883}, {3688, 4073}, {3819, 41886}, {4116, 20753}, {4357, 21334}, {4443, 11574}, {6007, 14100}, {8681, 24437}, {10480, 50295}, {11609, 66199}, {23868, 42671}
X(66224) = inverse of X(51571) in Feuerbach hyperbola
X(66224) = X(i)-Ceva conjugate of X(j) for these {i, j}: {53332, 650}
X(66224) = pole of line {512, 62749} with respect to the incircle
X(66224) = pole of line {1211, 2092} with respect to the Feuerbach hyperbola
X(66224) = X(2092)-of-Mandart-incircle triangle
X(66224) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21746, 50621, 3056}
X(66225) lies on these lines: {1, 2}, {9, 30619}, {1897, 5236}, {2389, 16465}, {3434, 9312}, {3879, 30628}, {3900, 4025}, {3977, 58327}, {4513, 7123}, {9436, 43736}, {9503, 14942}, {25019, 30620}, {41789, 56382}
X(66225) = perspector of circumconic {{A, B, C, X(190), X(30705)}}
X(66225) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {269, 152}, {911, 30695}, {24016, 513}, {32668, 514}, {36101, 54113}, {43736, 3436}, {52156, 21286}, {65245, 20295}, {65294, 21301}
X(66225) = pole of line {4057, 63177} with respect to the circumcircle
X(66225) = pole of line {3667, 6180} with respect to the incircle
X(66225) = pole of line {1863, 7649} with respect to the polar circle
X(66225) = pole of line {3057, 50441} with respect to the Feuerbach hyperbola
X(66225) = pole of line {279, 514} with respect to the Steiner circumellipse
X(66225) = pole of line {644, 44448} with respect to the Hutson-Moses hyperbola
X(66225) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(614), X(43932)}}, {{A, B, C, X(9503), X(25930)}}, {{A, B, C, X(26531), X(56353)}}
X(66226) lies on these lines: {1, 84}, {8, 64131}, {11, 3753}, {55, 392}, {56, 64129}, {65, 4301}, {72, 519}, {78, 52804}, {200, 960}, {388, 6259}, {390, 3877}, {496, 37562}, {497, 517}, {516, 64106}, {518, 7962}, {551, 17603}, {758, 4342}, {912, 64897}, {938, 13601}, {942, 3656}, {944, 66248}, {956, 30223}, {971, 3476}, {995, 9371}, {1040, 16483}, {1060, 1480}, {1191, 54295}, {1259, 5250}, {1317, 2801}, {1319, 10167}, {1387, 10202}, {1420, 9943}, {1470, 17613}, {1478, 39779}, {1617, 64150}, {1699, 30294}, {1737, 15845}, {1788, 31798}, {1837, 10914}, {1858, 2098}, {1898, 10944}, {2078, 65404}, {2099, 5728}, {2800, 41556}, {3086, 31788}, {3100, 62848}, {3241, 10394}, {3295, 37700}, {3303, 10393}, {3486, 5887}, {3601, 4428}, {3616, 58623}, {3744, 45272}, {3752, 45269}, {3812, 31249}, {3869, 9785}, {3873, 4345}, {3876, 58696}, {3880, 5727}, {3884, 4314}, {3890, 4313}, {3895, 51379}, {3916, 10966}, {4002, 17606}, {4018, 64046}, {4294, 31786}, {4298, 17634}, {4308, 9961}, {4315, 63995}, {5048, 62822}, {5119, 64107}, {5252, 5927}, {5439, 11376}, {5603, 50195}, {5692, 9819}, {5697, 37721}, {5734, 62864}, {5836, 9581}, {5884, 64703}, {5903, 51785}, {6265, 24929}, {6735, 18236}, {6762, 66194}, {7288, 31787}, {7686, 9614}, {7982, 44547}, {8581, 66227}, {10106, 12688}, {10177, 53055}, {10179, 13384}, {10382, 31393}, {10480, 39594}, {10595, 16193}, {10624, 14110}, {10703, 14523}, {11224, 18412}, {11373, 34339}, {11508, 33597}, {12640, 46677}, {12647, 18908}, {12648, 17615}, {12680, 63987}, {12701, 64721}, {16465, 62826}, {17619, 26476}, {17626, 18838}, {17637, 33176}, {17652, 66206}, {18839, 24473}, {20103, 25917}, {20323, 64704}, {23340, 37730}, {31146, 44663}, {31397, 37725}, {31838, 64951}, {34434, 43213}, {34790, 64768}, {37539, 51476}, {37566, 66019}, {37610, 51361}, {40269, 66213}, {50196, 64021}, {58567, 63208}, {61718, 64736}, {61762, 64132}
X(66226) = midpoint of X(i) and X(j) for these {i,j}: {1864, 3057}, {3869, 36845}
X(66226) = reflection of X(i) in X(j) for these {i,j}: {65, 11019}, {200, 960}, {12711, 66239}, {17625, 1}, {17642, 4342}, {63995, 4315}, {64130, 9856}
X(66226) = perspector of circumconic {{A, B, C, X(37141), X(56248)}}
X(66226) = pole of line {521, 4895} with respect to the incircle
X(66226) = pole of line {10, 56} with respect to the Feuerbach hyperbola
X(66226) = X(997)-of-Mandart-incircle triangle
X(66226) = intersection, other than A, B, C, of circumconics {{A, B, C, X(84), X(44040)}}, {{A, B, C, X(1413), X(53089)}}
X(66226) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 12672, 12709}, {1, 6001, 17625}, {1, 66216, 17622}, {65, 10866, 12053}, {758, 4342, 17642}, {1858, 2098, 3555}, {1864, 3057, 519}, {3057, 64042, 72}, {3057, 9848, 950}, {3878, 12575, 3057}, {5919, 17638, 64041}, {6001, 66239, 12711}, {12711, 17622, 1}, {66227, 66228, 66229}
X(66227) lies on these lines: {1, 7955}, {7, 738}, {9, 7080}, {10, 60910}, {11, 38207}, {12, 64699}, {40, 61014}, {55, 21060}, {56, 43182}, {57, 64696}, {65, 516}, {142, 60925}, {144, 1697}, {226, 11372}, {388, 3062}, {390, 527}, {497, 553}, {499, 38123}, {946, 60923}, {971, 10106}, {1319, 43176}, {1386, 45275}, {1706, 61009}, {2310, 64174}, {2550, 10392}, {3057, 5850}, {3339, 66198}, {3476, 64697}, {3485, 24644}, {3486, 11531}, {3601, 52653}, {3911, 15299}, {4298, 9848}, {4307, 4907}, {4313, 60979}, {4326, 5698}, {4848, 10398}, {5083, 10391}, {5128, 60941}, {5759, 7994}, {5762, 10624}, {5779, 31397}, {5843, 9957}, {5851, 15558}, {5853, 10394}, {7221, 50294}, {7288, 64698}, {7675, 56387}, {7743, 61509}, {8236, 60936}, {8543, 63265}, {8581, 66226}, {9581, 59412}, {9614, 59386}, {9785, 20059}, {10593, 38172}, {10866, 12577}, {10896, 38151}, {11041, 28194}, {11373, 59380}, {11376, 38054}, {12573, 15726}, {12575, 60919}, {13257, 13405}, {15017, 51768}, {15587, 64131}, {16870, 52428}, {17768, 66195}, {21168, 61763}, {25722, 57284}, {30332, 41572}, {31393, 41705}, {31657, 44675}, {41339, 64017}, {42884, 43177}, {49476, 65952}, {50443, 62778}, {60896, 60993}, {60924, 63993}, {60926, 60962}, {60992, 63971}, {61012, 63990}, {63979, 65671}, {63998, 66248}
X(66227) = midpoint of X(i) and X(j) for these {i,j}: {30332, 41572}
X(66227) = reflection of X(i) in X(j) for these {i,j}: {950, 14100}, {25722, 57284}, {31391, 4298}, {60919, 12575}, {60961, 1}, {61003, 5698}
X(66227) = pole of line {226, 38054} with respect to the Feuerbach hyperbola
X(66227) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 10384, 12053}, {516, 14100, 950}, {10398, 35514, 4848}, {66226, 66229, 66228}
X(66228) lies on these lines: {1, 4}, {7, 7962}, {8, 5437}, {10, 3304}, {11, 51782}, {12, 10171}, {20, 37556}, {55, 4315}, {56, 10164}, {57, 59417}, {65, 10569}, {142, 3872}, {145, 9776}, {210, 34749}, {354, 519}, {377, 21627}, {390, 51779}, {443, 12629}, {495, 11230}, {496, 38140}, {516, 5434}, {517, 553}, {518, 60972}, {527, 3877}, {529, 10179}, {551, 17718}, {938, 37709}, {942, 5844}, {952, 5049}, {993, 33925}, {999, 3911}, {1000, 2093}, {1125, 15888}, {1210, 5790}, {1317, 38055}, {1319, 13405}, {1320, 60980}, {1387, 66052}, {1420, 54445}, {1697, 3600}, {1737, 37602}, {1836, 4342}, {1837, 21625}, {2098, 3671}, {2099, 5542}, {2136, 6904}, {2646, 63287}, {3057, 4298}, {3058, 28164}, {3085, 61762}, {3086, 54447}, {3241, 5853}, {3243, 60987}, {3244, 56997}, {3295, 4311}, {3303, 4297}, {3306, 12648}, {3333, 4848}, {3338, 11362}, {3340, 11037}, {3421, 5316}, {3474, 9819}, {3582, 10172}, {3601, 4308}, {3616, 5795}, {3622, 5748}, {3623, 57287}, {3663, 7223}, {3679, 46916}, {3742, 38455}, {3812, 66205}, {3817, 11237}, {3828, 61649}, {3879, 20037}, {3946, 9317}, {3947, 11376}, {3982, 64897}, {4292, 9957}, {4293, 31393}, {4301, 10404}, {4304, 6767}, {4317, 31730}, {4390, 5750}, {4512, 34610}, {4915, 26040}, {5045, 64163}, {5083, 50195}, {5218, 13462}, {5249, 38460}, {5252, 11019}, {5253, 63990}, {5261, 50443}, {5298, 58441}, {5442, 5563}, {5558, 18221}, {5586, 58245}, {5703, 63208}, {5719, 25405}, {5726, 10589}, {5727, 10580}, {5731, 10389}, {5745, 54391}, {5836, 32426}, {5837, 62874}, {5850, 31165}, {5902, 28234}, {6692, 6735}, {6736, 25524}, {6737, 34791}, {6738, 10944}, {6744, 10950}, {7288, 51784}, {7320, 20070}, {7354, 12575}, {7682, 64352}, {7966, 50701}, {8162, 30331}, {8236, 60967}, {8581, 66226}, {8582, 32049}, {9310, 61651}, {9578, 14986}, {9579, 9785}, {9581, 54448}, {9657, 51118}, {9843, 64087}, {9850, 12711}, {10039, 64124}, {10056, 10165}, {10072, 10175}, {10520, 43037}, {10578, 13384}, {10590, 37704}, {10624, 18990}, {10711, 16173}, {10914, 12436}, {11011, 12563}, {11035, 66250}, {11036, 64964}, {11224, 59372}, {11239, 35262}, {11240, 24386}, {11551, 63210}, {12527, 58679}, {12541, 56999}, {12573, 38454}, {12647, 51816}, {12943, 51783}, {13411, 24928}, {15170, 28160}, {15171, 28168}, {15172, 28190}, {15178, 63282}, {15558, 60961}, {16137, 33179}, {17614, 59722}, {17706, 50190}, {18527, 64839}, {19860, 51723}, {19925, 37722}, {22837, 51706}, {24391, 62832}, {24987, 62837}, {26062, 64204}, {27003, 51433}, {31735, 65454}, {31766, 65398}, {32636, 43174}, {33956, 58560}, {34605, 62835}, {34689, 61686}, {34716, 38316}, {36977, 54392}, {37717, 53618}, {40869, 61706}, {41558, 46681}, {41575, 62854}, {46943, 63126}, {50397, 51071}, {51103, 51112}, {51705, 59337}, {51714, 59719}, {52819, 64106}, {63430, 64322}, {64312, 64338}, {64377, 64582}
X(66228) = midpoint of X(i) and X(j) for these {i,j}: {210, 34749}, {3057, 11246}, {5434, 5919}
X(66228) = reflection of X(i) in X(j) for these {i,j}: {11246, 4298}, {40998, 10179}
X(66228) = pole of line {522, 21222} with respect to the incircle
X(66228) = pole of line {65, 4342} with respect to the Feuerbach hyperbola
X(66228) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1065), X(63993)}}, {{A, B, C, X(51565), X(64162)}}
X(66228) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10106, 950}, {1, 1056, 226}, {1, 10572, 40270}, {1, 13407, 13464}, {1, 388, 12053}, {1, 9613, 1058}, {495, 51788, 44675}, {529, 10179, 40998}, {999, 31397, 3911}, {3057, 11246, 28228}, {4298, 28228, 11246}, {5252, 61717, 38155}, {5434, 5919, 516}, {5558, 20050, 18221}, {6692, 6735, 44848}, {10944, 17609, 6738}, {11019, 38155, 61717}, {11239, 35262, 59584}, {15888, 20323, 1125}, {32636, 45081, 43174}, {66226, 66229, 66227}
X(66229) lies on these lines: {1, 10309}, {226, 12678}, {354, 950}, {388, 10864}, {515, 10391}, {516, 2099}, {1056, 66239}, {1125, 22760}, {1837, 12436}, {2646, 12572}, {3486, 4292}, {3601, 12527}, {3872, 60925}, {4293, 10382}, {4297, 10393}, {4304, 37569}, {4305, 64004}, {5048, 10543}, {5434, 14100}, {6700, 22768}, {6738, 18838}, {7675, 41570}, {8581, 66226}, {10106, 12680}, {10404, 12053}, {10572, 30274}, {10624, 16200}, {13384, 40998}, {37469, 51375}, {51099, 66210}, {63265, 64009}
X(66229) = pole of line {8058, 17418} with respect to the incircle
X(66229) = pole of line {3671, 37566} with respect to the Feuerbach hyperbola
X(66229) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {66227, 66228, 66226}
X(66230) lies on these lines: {1, 4}, {2, 5828}, {3, 4315}, {5, 51782}, {7, 7982}, {8, 3306}, {10, 999}, {12, 20323}, {20, 31393}, {30, 10105}, {40, 3600}, {55, 4311}, {56, 6684}, {57, 11362}, {65, 28234}, {84, 64322}, {145, 8000}, {354, 10944}, {355, 7373}, {376, 53053}, {377, 36846}, {382, 51783}, {392, 12527}, {443, 4853}, {474, 6736}, {495, 1125}, {496, 19925}, {499, 10172}, {516, 9957}, {517, 4298}, {519, 942}, {527, 3878}, {529, 12572}, {548, 51787}, {551, 11236}, {553, 5903}, {631, 13462}, {938, 5881}, {952, 5045}, {1000, 7991}, {1059, 10570}, {1060, 30145}, {1071, 9850}, {1155, 45081}, {1210, 3304}, {1319, 13411}, {1385, 13405}, {1387, 38757}, {1388, 17718}, {1420, 3085}, {1467, 64733}, {1482, 3671}, {1512, 45977}, {1697, 4293}, {1770, 28232}, {1788, 38127}, {2098, 10404}, {2550, 12629}, {2800, 66250}, {2829, 20789}, {3057, 4292}, {3086, 9578}, {3090, 5726}, {3091, 37704}, {3157, 62828}, {3241, 11036}, {3244, 4780}, {3295, 4297}, {3296, 3633}, {3303, 4304}, {3338, 4848}, {3339, 12245}, {3361, 5657}, {3421, 8583}, {3524, 64350}, {3528, 31508}, {3545, 50444}, {3555, 6737}, {3576, 4308}, {3601, 51705}, {3616, 25522}, {3622, 26129}, {3623, 41870}, {3624, 8164}, {3632, 10980}, {3634, 15325}, {3635, 12563}, {3636, 5087}, {3649, 5048}, {3654, 37545}, {3746, 21578}, {3753, 66205}, {3812, 38455}, {3817, 9654}, {3889, 41575}, {3890, 34605}, {3895, 4190}, {3911, 5445}, {3947, 5886}, {3982, 63210}, {3983, 34689}, {4294, 37556}, {4295, 7962}, {4301, 57282}, {4305, 10389}, {4313, 50811}, {4314, 6767}, {4317, 5119}, {4342, 12699}, {4349, 64572}, {4355, 11531}, {4658, 64582}, {4855, 11239}, {4860, 41687}, {4861, 5249}, {5049, 6744}, {5083, 13750}, {5179, 9327}, {5226, 9624}, {5250, 20076}, {5253, 6735}, {5261, 8227}, {5265, 31423}, {5266, 11700}, {5274, 18492}, {5436, 34716}, {5438, 34619}, {5587, 14986}, {5703, 64953}, {5719, 15178}, {5722, 21625}, {5728, 17644}, {5745, 8666}, {5837, 62858}, {5844, 31794}, {5854, 10107}, {5884, 17625}, {5919, 7354}, {6049, 64952}, {6147, 10222}, {6284, 28172}, {6361, 9819}, {6700, 12607}, {6734, 62837}, {6745, 17614}, {6897, 60992}, {6904, 63137}, {6940, 13370}, {7091, 37560}, {7288, 31434}, {7686, 12915}, {7743, 12571}, {7989, 47743}, {8581, 12672}, {8582, 64087}, {8726, 12855}, {9363, 37469}, {9579, 30305}, {9581, 50796}, {9655, 51118}, {9657, 12701}, {9785, 41869}, {9799, 9845}, {9948, 63430}, {9949, 12684}, {10056, 37618}, {10072, 10827}, {10171, 10592}, {10179, 57288}, {10528, 35262}, {10569, 10914}, {10573, 51816}, {10590, 50443}, {10915, 63990}, {10950, 17609}, {11009, 11551}, {11023, 11518}, {11038, 61291}, {11237, 11376}, {11260, 25466}, {12005, 50195}, {12433, 28204}, {12447, 34790}, {12573, 14110}, {12609, 22837}, {12640, 54286}, {12676, 54198}, {12735, 16137}, {13374, 16215}, {13375, 53615}, {13600, 31775}, {13883, 35768}, {13936, 35769}, {15006, 43179}, {15171, 28164}, {15172, 28160}, {15934, 37727}, {18220, 38021}, {18391, 37709}, {19860, 36977}, {19861, 21075}, {19862, 31479}, {20060, 41012}, {20449, 64133}, {21096, 24247}, {21842, 63259}, {22759, 33925}, {23675, 49487}, {24929, 64706}, {24987, 54391}, {25440, 49626}, {28174, 31776}, {28186, 31795}, {30148, 37697}, {30337, 64005}, {30960, 43223}, {31410, 51789}, {31424, 34610}, {31445, 64109}, {31734, 31766}, {31735, 31767}, {31788, 63994}, {31806, 64106}, {31870, 50196}, {34640, 51071}, {37582, 43174}, {37602, 37710}, {37707, 50190}, {37734, 44840}, {37828, 40726}, {44669, 58609}, {47299, 53994}, {51362, 52264}, {51723, 54318}, {53597, 56928}, {55174, 65398}, {59691, 59722}, {63258, 64283}
X(66230) = midpoint of X(i) and X(j) for these {i,j}: {1, 10106}, {145, 63146}, {3057, 4292}, {3244, 17647}, {3555, 6737}, {7354, 10624}, {9957, 18990}, {10944, 64163}, {13600, 31775}, {31734, 31766}, {31735, 31767}
X(66230) = reflection of X(i) in X(j) for these {i,j}: {942, 12577}, {950, 40270}, {5795, 1125}, {5836, 12436}, {6738, 5045}, {12572, 58679}, {12575, 31792}, {15006, 43179}, {34790, 12447}, {37730, 6744}, {64163, 17706}
X(66230) = pole of line {522, 48282} with respect to the incircle
X(66230) = pole of line {65, 63993} with respect to the Feuerbach hyperbola
X(66230) = pole of line {14837, 47796} with respect to the Steiner inellipse
X(66230) = pole of line {57, 4415} with respect to the dual conic of Yff parabola
X(66230) = X(185)-of-incircle-circles triangle
X(66230) = X(6684)-of-2nd-anti-circumperp-tangential triangle
X(66230) = intersection, other than A, B, C, of circumconics {{A, B, C, X(29), X(63993)}}, {{A, B, C, X(33), X(56038)}}, {{A, B, C, X(1058), X(10570)}}, {{A, B, C, X(1059), X(10571)}}, {{A, B, C, X(1065), X(12053)}}, {{A, B, C, X(4900), X(65128)}}, {{A, B, C, X(13464), X(60041)}}, {{A, B, C, X(51565), X(63999)}}
X(66230) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10106, 515}, {1, 1056, 21620}, {1, 1478, 12053}, {1, 226, 13464}, {1, 3476, 5882}, {1, 388, 946}, {1, 5270, 30384}, {1, 5290, 5603}, {1, 5691, 1058}, {1, 950, 40270}, {1, 9613, 497}, {10, 999, 64124}, {12, 20323, 44675}, {30, 31792, 12575}, {145, 11037, 11529}, {354, 10944, 64163}, {354, 64163, 17706}, {355, 7373, 11019}, {495, 24928, 1125}, {497, 9613, 31673}, {515, 40270, 950}, {519, 12436, 5836}, {519, 12577, 942}, {952, 5045, 6738}, {1319, 15888, 13411}, {1478, 12053, 18483}, {1697, 4293, 31730}, {3057, 4292, 28194}, {3057, 5434, 4292}, {3086, 9578, 10175}, {3244, 17647, 5853}, {3338, 12647, 4848}, {3890, 34605, 64002}, {5049, 37730, 6744}, {5563, 10039, 3911}, {5919, 7354, 10624}, {6744, 28236, 37730}, {6767, 18481, 4314}, {7354, 10624, 28150}, {9654, 11373, 3817}, {9957, 18990, 516}, {18391, 37709, 47745}, {25405, 37737, 3636}, {25524, 32049, 10}, {46681, 58566, 5045}, {57282, 64897, 4301}
X(66231) lies on these lines: {1, 3689}, {40, 7990}, {100, 13462}, {145, 3339}, {165, 7966}, {390, 519}, {517, 64697}, {944, 3633}, {952, 3062}, {956, 11519}, {1000, 3632}, {1001, 4915}, {1743, 4752}, {2093, 6154}, {2136, 3361}, {2802, 30353}, {3243, 3880}, {3244, 18221}, {3577, 16189}, {3679, 36835}, {3680, 64263}, {3900, 14812}, {3913, 45036}, {4677, 30393}, {4882, 66256}, {5290, 12541}, {5531, 10698}, {7971, 11531}, {7987, 64173}, {7993, 64320}, {8000, 39779}, {9851, 61296}, {10980, 11041}, {11407, 64323}, {12437, 66217}, {12526, 20014}, {12629, 25439}, {12632, 56090}, {30389, 64735}, {30392, 64733}, {36867, 64766}, {37712, 64322}, {41702, 64731}, {48696, 53058}, {51781, 61158}, {58221, 61154}, {63260, 64199}, {64142, 66233}
X(66231) = midpoint of X(i) and X(j) for these {i,j}: {12632, 56090}
X(66231) = reflection of X(i) in X(j) for these {i,j}: {3632, 1000}, {4900, 1}, {16236, 145}
X(66231) = pole of line {7962, 61686} with respect to the Feuerbach hyperbola
X(66231) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2136, 12127, 3361}, {3632, 30337, 4866}
X(66232) lies on these lines: {1, 728}, {57, 14839}, {145, 10025}, {518, 7962}, {644, 7290}, {664, 49446}, {1697, 8844}, {3241, 3685}, {3243, 4919}, {3872, 7174}, {3875, 65953}, {16834, 32926}
X(66232) = reflection of X(i) in X(j) for these {i,j}: {39959, 1}
X(66233) lies on these lines: {8, 9}, {519, 62095}, {3241, 64112}, {3880, 38314}, {3913, 20057}, {5550, 64123}, {5854, 10031}, {12541, 19877}, {12630, 13996}, {51786, 64151}, {64142, 66231}
X(66234) lies on these lines: {1, 56913}, {6, 4319}, {45, 66204}, {55, 1438}, {218, 950}, {219, 66210}, {220, 2082}, {294, 497}, {650, 949}, {1212, 62333}, {1743, 66198}, {3663, 6180}, {4513, 41006}, {16572, 66194}, {40779, 66199}, {51190, 62799}, {55432, 66203}
X(66234) = X(i)-Ceva conjugate of X(j) for these {i, j}: {390, 55}
X(66234) = pole of line {28043, 37580} with respect to the Feuerbach hyperbola
X(66235) lies on these lines: {1, 6}, {8, 343}, {34, 14872}, {52, 1482}, {55, 44706}, {68, 952}, {145, 6515}, {161, 9798}, {221, 912}, {227, 5534}, {515, 64037}, {517, 1854}, {519, 64060}, {569, 10246}, {774, 3938}, {920, 3052}, {944, 6146}, {973, 7979}, {975, 16193}, {1038, 12675}, {1040, 63976}, {1060, 34046}, {1062, 7074}, {1069, 66036}, {1071, 8270}, {1072, 1837}, {1209, 5790}, {1385, 37476}, {1390, 51496}, {1465, 17857}, {1483, 13292}, {1725, 11508}, {1735, 5687}, {1737, 17054}, {1807, 11249}, {1858, 64449}, {1870, 9370}, {2801, 4347}, {2807, 6293}, {2917, 32371}, {3086, 17597}, {3176, 41361}, {3241, 61658}, {3465, 64077}, {3616, 37649}, {3622, 63085}, {3623, 63012}, {3811, 17102}, {3874, 41344}, {3920, 62864}, {4318, 12528}, {5266, 62810}, {5603, 45089}, {5693, 34040}, {5709, 51361}, {5711, 18389}, {5777, 34036}, {5844, 64066}, {7004, 10310}, {7718, 39898}, {7986, 50193}, {9630, 61397}, {9643, 41339}, {9817, 13374}, {10247, 37493}, {10573, 64172}, {11396, 16980}, {11496, 24430}, {11500, 37591}, {12410, 37488}, {12702, 37478}, {14986, 62814}, {17809, 31811}, {18391, 37549}, {18474, 18525}, {18477, 41711}, {19372, 58631}, {22770, 45272}, {24391, 51375}, {30142, 62852}, {34048, 63967}, {36565, 62873}, {36745, 41538}, {36746, 64349}, {37674, 54401}, {40836, 56137}, {46974, 62858}, {49542, 64085}, {60689, 64021}, {60786, 64132}, {61086, 66248}
X(66235) = reflection of X(i) in X(j) for these {i,j}: {64022, 9798}, {64057, 4347}
X(66235) = pole of line {55, 7395} with respect to the Feuerbach hyperbola
X(66235) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1002), X(64722)}}, {{A, B, C, X(1280), X(64069)}}, {{A, B, C, X(1386), X(51496)}}, {{A, B, C, X(7078), X(56137)}}
X(66235) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5904, 7078}, {2801, 4347, 64057}
X(66236) lies on these lines: {1, 7664}, {2, 7983}, {8, 111}, {110, 51192}, {145, 7665}, {952, 63719}, {2502, 5846}, {3124, 49524}, {3416, 40915}, {5147, 32848}, {10554, 51001}, {28538, 58854}
X(66237) lies on these lines: {1, 6}, {3, 44659}, {8, 302}, {14, 7975}, {16, 51689}, {55, 65571}, {145, 62983}, {515, 41038}, {519, 9761}, {528, 37833}, {952, 63731}, {1082, 1376}, {1482, 5615}, {2809, 36940}, {3106, 14839}, {3241, 37785}, {3639, 5880}, {5698, 30339}, {11235, 51750}, {11295, 50849}, {11296, 50854}, {11480, 51688}, {11485, 11707}, {11705, 42974}, {17768, 37830}, {19781, 38221}, {25557, 30345}, {50254, 62197}
X(66237) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5240, 1001}
X(66238) lies on these lines: {1, 6}, {3, 44660}, {8, 303}, {13, 7974}, {15, 51691}, {55, 65572}, {145, 62984}, {515, 41039}, {519, 9763}, {528, 37830}, {559, 1376}, {952, 63732}, {1482, 5611}, {2809, 36941}, {3107, 14839}, {3241, 37786}, {3638, 5880}, {5698, 30338}, {11235, 51749}, {11295, 50857}, {11296, 50852}, {11481, 51690}, {11486, 11708}, {11706, 42975}, {17768, 37833}, {19780, 38221}, {25557, 30344}, {50254, 62198}
X(66238) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5239, 1001}
Let QaQbQc be the cevian triangle of X(8). CTR12-1.8 is the triangle with vertices at the inversion poles of QbQc, QaQc, and QaQb wrt to the X(1)-circumconic.
X(66239) lies on these lines: {1, 84}, {9, 55}, {11, 5437}, {19, 44695}, {31, 2257}, {33, 1395}, {35, 61122}, {40, 950}, {46, 37428}, {56, 5918}, {57, 497}, {63, 390}, {65, 12651}, {90, 3746}, {165, 15299}, {212, 16572}, {226, 11372}, {281, 7008}, {354, 12560}, {388, 21628}, {495, 18540}, {496, 37534}, {518, 10388}, {519, 1697}, {553, 3333}, {610, 20991}, {612, 2310}, {738, 30623}, {758, 7962}, {920, 4309}, {936, 64131}, {938, 63985}, {962, 62836}, {968, 2293}, {997, 3601}, {999, 7171}, {1001, 10383}, {1038, 35658}, {1040, 7290}, {1056, 66229}, {1058, 14646}, {1158, 63999}, {1190, 51418}, {1200, 28070}, {1210, 37560}, {1420, 12520}, {1445, 9778}, {1449, 61398}, {1453, 54295}, {1454, 9670}, {1467, 9943}, {1479, 59335}, {1490, 66248}, {1617, 5732}, {1621, 7675}, {1706, 1837}, {1711, 8616}, {1728, 61763}, {1743, 7074}, {1768, 41556}, {1858, 11523}, {2082, 28124}, {2136, 10950}, {2195, 23601}, {2328, 40979}, {2801, 10389}, {2999, 9371}, {3052, 8557}, {3057, 6762}, {3058, 3928}, {3086, 37526}, {3100, 62834}, {3219, 20015}, {3220, 16541}, {3295, 7330}, {3304, 7091}, {3305, 5281}, {3306, 5274}, {3338, 51785}, {3358, 63972}, {3359, 5722}, {3475, 60937}, {3583, 17699}, {3586, 5842}, {3600, 9800}, {3677, 7004}, {3870, 10394}, {4293, 58808}, {4307, 40960}, {4313, 5250}, {4321, 63995}, {4336, 62845}, {4413, 17604}, {4421, 15297}, {4666, 53055}, {4857, 17700}, {4863, 66252}, {5173, 43166}, {5218, 7308}, {5227, 10387}, {5249, 60925}, {5282, 54359}, {5432, 51780}, {5436, 62333}, {5441, 59342}, {5660, 51768}, {5687, 9844}, {5709, 15171}, {5727, 63137}, {5809, 17784}, {6244, 64157}, {6284, 37550}, {6769, 44547}, {6796, 66254}, {7069, 7322}, {7174, 24430}, {7221, 17469}, {7284, 37602}, {7701, 41546}, {7966, 10050}, {7994, 10398}, {8069, 52026}, {8545, 10578}, {8583, 18251}, {9578, 12617}, {9785, 28610}, {9845, 63987}, {10106, 10864}, {10167, 42884}, {10321, 63966}, {10386, 26921}, {10543, 66221}, {10582, 17603}, {10624, 62810}, {11220, 12706}, {11246, 60955}, {11518, 12564}, {12529, 19861}, {12575, 62858}, {12609, 50443}, {13405, 54370}, {14547, 37553}, {15006, 60974}, {15172, 24467}, {15298, 52665}, {15558, 66059}, {15829, 64042}, {16141, 63276}, {16670, 61397}, {16688, 23207}, {17594, 50616}, {17642, 62823}, {27542, 56519}, {30284, 62856}, {30503, 57278}, {31393, 61291}, {31795, 59318}, {32926, 65952}, {37730, 49163}, {38271, 58631}, {41229, 53053}, {41864, 54290}, {45633, 45637}, {55871, 63145}, {59316, 66201}, {60911, 64346}, {60990, 66210}, {61086, 62811}, {62776, 64108}, {62873, 64150}, {63969, 65671}, {66205, 66245}
X(66239) = midpoint of X(i) and X(j) for these {i,j}: {4294, 18391}, {12705, 63430}, {12711, 66226}
X(66239) = reflection of X(i) in X(j) for these {i,j}: {57, 62839}, {997, 5248}
X(66239) = isogonal conjugate of X(8829)
X(66239) = perspector of circumconic {{A, B, C, X(644), X(37141)}}
X(66239) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 8829}, {2, 8828}, {57, 56230}
X(66239) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 8829}, {5452, 56230}, {14986, 63151}, {32664, 8828}
X(66239) = pole of line {4394, 23224} with respect to the circumcircle
X(66239) = pole of line {9, 56} with respect to the Feuerbach hyperbola
X(66239) = pole of line {1014, 8829} with respect to the Stammler hyperbola
X(66239) = pole of line {8829, 57785} with respect to the Wallace hyperbola
X(66239) = pole of line {4162, 14298} with respect to the Hofstadter ellipse
X(66239) = pole of line {948, 24181} with respect to the dual conic of Yff parabola
X(66239) = intersection, other than A, B, C, of circumconics {{A, B, C, X(9), X(1422)}}, {{A, B, C, X(55), X(1413)}}, {{A, B, C, X(84), X(200)}}, {{A, B, C, X(210), X(52384)}}, {{A, B, C, X(222), X(55111)}}, {{A, B, C, X(480), X(2192)}}, {{A, B, C, X(1260), X(1433)}}, {{A, B, C, X(3694), X(52037)}}
X(66239) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 30304, 17625}, {1, 7992, 66250}, {1, 7995, 12709}, {31, 4319, 7070}, {33, 52428, 5269}, {55, 14100, 10382}, {55, 1864, 200}, {55, 60910, 210}, {57, 10384, 497}, {4314, 12514, 1697}, {4326, 4512, 55}, {4512, 42012, 9}, {4907, 5269, 33}, {7994, 10398, 41539}, {11019, 64129, 57}, {11496, 12710, 1}, {12705, 63430, 6001}
Let A'B'C' be the cevian triangle of X(8). CTR1-8 is triangle formed by the Aubert lines of the following quadrilaterals AB'PC', BC'PA', CA'PB'.
X(66240) lies on these lines: {1, 5123}, {4, 5854}, {8, 56}, {10, 35272}, {11, 145}, {40, 34620}, {355, 381}, {515, 64744}, {517, 64725}, {518, 3632}, {528, 64000}, {529, 11826}, {944, 4421}, {952, 3913}, {956, 59334}, {958, 11508}, {962, 34739}, {1317, 5552}, {1320, 10896}, {1483, 26492}, {1709, 2136}, {2098, 5176}, {2802, 18525}, {3036, 3086}, {3057, 17615}, {3189, 27870}, {3244, 11373}, {3336, 4677}, {3434, 3621}, {3436, 10947}, {3623, 10584}, {3625, 17647}, {3633, 10826}, {3679, 11260}, {3680, 37712}, {3811, 46920}, {3812, 17624}, {3813, 59388}, {3880, 5881}, {4428, 45081}, {4701, 24391}, {5057, 63209}, {5289, 64087}, {5330, 31141}, {5587, 33895}, {5687, 37707}, {5690, 11194}, {5727, 17622}, {5731, 32157}, {5790, 22837}, {5794, 66205}, {5836, 17625}, {5844, 10525}, {5853, 16112}, {5927, 12448}, {6735, 37738}, {6890, 54177}, {6891, 54176}, {7967, 64123}, {8666, 59503}, {8715, 18526}, {9041, 24834}, {9053, 12586}, {9897, 17652}, {9948, 12640}, {10528, 37734}, {10598, 38156}, {10785, 34619}, {10915, 37727}, {10948, 17757}, {10950, 10965}, {11256, 15863}, {11280, 11523}, {11499, 22560}, {11500, 40255}, {11865, 12455}, {11866, 12454}, {12700, 28234}, {12737, 22836}, {13463, 59387}, {13895, 44635}, {13952, 44636}, {14450, 15679}, {17617, 35634}, {17618, 37714}, {17626, 58609}, {17765, 36280}, {18236, 58679}, {18516, 37705}, {20035, 36576}, {20050, 25568}, {21290, 59598}, {21669, 44669}, {30852, 33176}, {31140, 64201}, {31145, 34605}, {32426, 64068}, {33812, 51577}, {34629, 34697}, {35262, 37829}, {36920, 62874}, {37739, 49626}, {37828, 63987}, {38155, 64205}, {42871, 64163}, {44784, 63130}, {45700, 61510}, {56176, 61296}, {59719, 61287}, {61244, 64768}, {63324, 63415}
X(66240) = midpoint of X(i) and X(j) for these {i,j}: {61244, 64768}
X(66240) = reflection of X(i) in X(j) for these {i,j}: {1, 32537}, {145, 12607}, {3913, 49169}, {10912, 355}, {11235, 34717}, {11256, 15863}, {12513, 8}, {12635, 32049}, {18526, 8715}, {22560, 64140}, {24391, 4701}, {34710, 11236}, {37727, 10915}, {47746, 49600}, {61296, 56176}
X(66240) = pole of line {11238, 66216} with respect to the Feuerbach hyperbola
X(66240) = X(145)-of-inner-Johnson triangle
X(66240) = X(2883)-of-Ursa-major triangle
X(66240) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 10944, 1376}, {8, 3476, 8256}, {8, 36977, 40663}, {8, 38455, 12513}, {355, 10912, 11235}, {355, 1482, 10893}, {355, 47746, 49600}, {355, 519, 10912}, {519, 11236, 34710}, {519, 32049, 12635}, {519, 49600, 47746}, {952, 49169, 3913}, {3632, 37708, 10914}, {3913, 12114, 13205}, {10912, 34717, 355}, {10915, 37727, 56177}, {32537, 33956, 1}
Let XYZ be the anticevian triangle of X(8). Denote with X' the Kimberling-Pavlov X-conjugate of X(8) and X(8), and similarly define Y' and Z'. CTR5-8.8 is the triangle X'Y'Z'.
X(66241) lies on these lines: {1, 4}, {10, 8162}, {145, 62218}, {519, 3983}, {527, 62854}, {553, 12575}, {938, 51779}, {1125, 3689}, {1420, 8236}, {2646, 43179}, {3058, 12577}, {3303, 3911}, {3304, 30331}, {3474, 30343}, {3623, 5795}, {3636, 63146}, {3672, 63578}, {3742, 66259}, {3982, 12701}, {4114, 9589}, {4292, 15170}, {4666, 21627}, {4848, 10580}, {5049, 10624}, {5442, 64124}, {5734, 64706}, {5919, 6744}, {7308, 9797}, {7320, 64736}, {9785, 44841}, {10586, 59584}, {10587, 24386}, {15172, 28182}, {28194, 50190}, {38314, 57284}, {40998, 58609}
X(66241) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40270, 950}, {3303, 21625, 3911}, {10580, 37556, 4848}, {12575, 17609, 553}
X(66242) lies on these lines: {1, 1389}, {9, 3885}, {497, 5559}, {517, 66195}, {519, 66207}, {950, 5844}, {1697, 64201}, {1837, 15862}, {3057, 3625}, {3486, 64766}, {3880, 58638}, {4342, 10958}, {5225, 64291}, {5493, 15338}, {7173, 12053}, {7962, 64199}, {9819, 11524}, {9957, 44685}, {12019, 15558}, {12575, 66206}, {13143, 66199}, {14100, 39777}, {20050, 61030}
X(66242) = pole of line {3626, 11011} with respect to the Feuerbach hyperbola
Let A'B'C' be the Gemini 29 trianlge. Denote with Pa the trace of AA' upon the circumconic with perspector X(8). Similarly define Pb and Pc. CTR10-8 is the triangle PaPbPc.
X(66243) lies on these lines: {1, 56090}, {2, 3680}, {4, 64768}, {7, 13601}, {8, 210}, {20, 519}, {57, 145}, {63, 66245}, {100, 6049}, {144, 3621}, {149, 7319}, {153, 962}, {390, 66198}, {404, 3241}, {443, 9874}, {517, 6223}, {952, 12246}, {1145, 5704}, {1320, 27383}, {1697, 11106}, {1788, 13996}, {2098, 64083}, {2475, 12648}, {3030, 36805}, {3085, 64203}, {3091, 64767}, {3149, 38665}, {3158, 3623}, {3189, 5854}, {3616, 10912}, {3632, 10624}, {3633, 4311}, {3648, 20053}, {3699, 8834}, {3895, 4313}, {4342, 8165}, {4345, 7080}, {4678, 24392}, {4848, 61630}, {4853, 5273}, {5328, 6736}, {5435, 36846}, {5697, 5815}, {5734, 6953}, {5768, 6764}, {5828, 30384}, {6556, 62297}, {6743, 8275}, {6766, 28234}, {7674, 12630}, {7963, 37743}, {7967, 47746}, {9623, 17554}, {9778, 32426}, {9779, 13463}, {9802, 13272}, {9812, 32049}, {9957, 17559}, {10580, 66256}, {11114, 34689}, {11260, 64108}, {12513, 34711}, {12629, 59417}, {12649, 64743}, {15347, 64114}, {15933, 16410}, {17460, 28016}, {20008, 64736}, {20014, 63145}, {20057, 56176}, {22837, 54445}, {28370, 61222}, {31509, 59414}, {31789, 34745}, {33895, 38314}, {34716, 50693}, {37709, 60961}, {38496, 64442}, {47444, 65966}, {49169, 59387}, {52804, 62837}, {52811, 66208}, {52813, 66209}
X(66243) = reflection of X(i) in X(j) for these {i,j}: {4, 64768}, {20, 64202}, {145, 2136}, {149, 12641}, {3680, 12640}, {6764, 12245}, {12536, 12632}, {12541, 8}, {12630, 7674}, {20050, 3189}, {64068, 64744}
X(66243) = anticomplement of X(3680)
X(66243) = X(i)-Ceva conjugate of X(j) for these {i, j}: {39126, 2}
X(66243) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {56, 3621}, {57, 21296}, {58, 11682}, {59, 3699}, {109, 3667}, {145, 3436}, {604, 17490}, {651, 4106}, {1252, 27834}, {1407, 4373}, {1412, 17151}, {1420, 8}, {1461, 3676}, {1743, 329}, {2149, 25268}, {3052, 144}, {3161, 54113}, {3451, 30567}, {3667, 33650}, {4394, 37781}, {4565, 4897}, {4848, 1330}, {4855, 52366}, {5435, 69}, {6049, 42020}, {8643, 39351}, {16948, 3869}, {18743, 21286}, {20818, 56943}, {30719, 150}, {32735, 53523}, {33628, 63}, {39126, 6327}, {40151, 33800}, {41629, 20245}, {51656, 149}, {57192, 4462}, {58858, 34548}, {62787, 3434}, {64736, 21291}
X(66243) = pole of line {4462, 4521} with respect to the Steiner circumellipse
X(66243) = pole of line {25268, 27834} with respect to the Yff parabola
X(66243) = pole of line {5328, 24175} with respect to the dual conic of Yff parabola
X(66243) = X(5895)-of-2nd-Conway triangle
X(66243) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(42020)}}, {{A, B, C, X(8), X(2137)}}, {{A, B, C, X(57), X(8055)}}, {{A, B, C, X(312), X(8051)}}, {{A, B, C, X(341), X(6553)}}, {{A, B, C, X(5423), X(56089)}}, {{A, B, C, X(7320), X(44301)}}
X(66243) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 3057, 18228}, {8, 3880, 12541}, {8, 3885, 9785}, {57, 66258, 145}, {145, 2136, 64146}, {145, 63130, 4308}, {519, 12632, 12536}, {519, 64202, 20}, {3189, 5854, 20050}, {3680, 12640, 2}, {3680, 64204, 64205}, {3880, 64744, 64068}, {12640, 64205, 64204}, {36846, 63133, 5435}, {42020, 64563, 8055}, {64068, 64744, 8}
Let A'B'C' be the intouch triangle. CTR1-7 is triangle formed by the Aubert lines of the following quadrilaterals AB'PC', BC'PA', CA'PB'.
X(66244) lies on these lines: {1, 6}, {7, 62830}, {8, 7679}, {11, 5748}, {78, 11526}, {390, 62826}, {517, 64312}, {519, 64731}, {527, 3655}, {528, 10698}, {944, 61010}, {1320, 12630}, {1376, 5173}, {1385, 60974}, {1389, 6601}, {1445, 56387}, {1482, 5805}, {1617, 5083}, {2099, 2550}, {3059, 11011}, {3174, 7982}, {3428, 56177}, {3811, 22753}, {3826, 5855}, {3869, 30284}, {3870, 17642}, {3897, 61024}, {3940, 24393}, {4018, 60968}, {4421, 41338}, {4511, 7672}, {4861, 34784}, {5330, 8236}, {5542, 62822}, {5780, 5886}, {5818, 12607}, {6265, 66054}, {6600, 22770}, {7373, 61033}, {7675, 11682}, {8730, 24474}, {10247, 61030}, {11038, 34195}, {11495, 14110}, {12573, 61021}, {13464, 24389}, {15934, 64734}, {15950, 64081}, {17614, 60985}, {17768, 36996}, {25893, 61663}, {30144, 30329}, {34588, 38288}, {38031, 60994}, {41712, 64154}, {44663, 65426}, {49168, 64294}
X(66244) = midpoint of X(i) and X(j) for these {i,j}: {944, 61010}, {3174, 7982}
X(66244) = reflection of X(i) in X(j) for these {i,j}: {6600, 22836}, {24389, 13464}, {49168, 64443}, {60974, 1385}
X(66244) = pole of line {1376, 25006} with respect to the dual conic of Moses-Feuerbach circumconic
X(66244) = intersection, other than A, B, C, of circumconics {{A, B, C, X(218), X(1389)}}, {{A, B, C, X(16601), X(56027)}}
Let QaQbQc be the cevian triangle of X(8). CTR12-1.8 is the triangle with vertices at the inversion poles of QbQc, QaQc, and QaQb wrt to the X(1)-circumconic.
X(66245) lies on these lines: {1, 11505}, {8, 9}, {40, 3880}, {57, 1476}, {63, 66243}, {84, 519}, {200, 66216}, {936, 3913}, {1210, 63137}, {1376, 12448}, {1706, 6692}, {2802, 66058}, {3158, 19861}, {3333, 10107}, {3576, 8668}, {4882, 58696}, {5435, 12541}, {5437, 64205}, {5854, 66059}, {6762, 63985}, {6765, 12672}, {7308, 64204}, {7320, 64146}, {7330, 64768}, {7701, 12703}, {7966, 64117}, {7991, 60990}, {7995, 15733}, {10864, 38455}, {11372, 32049}, {12536, 51786}, {12641, 64372}, {24392, 24982}, {34862, 49163}, {59335, 64203}, {64129, 66217}, {66205, 66239}
X(66245) = pole of line {1339, 4498} with respect to the Bevan circle
X(66245) = pole of line {4468, 60482} with respect to the Steiner circumellipse
X(66245) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(57), X(12640)}}, {{A, B, C, X(1476), X(3161)}}, {{A, B, C, X(2347), X(16945)}}
X(66245) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 2136, 12640}, {3895, 12632, 2136}
Let QaQbQc be the cevian triangle of X(2). CTR12-7.2 is the triangle with vertices at the inversion poles of QbQc, QaQc, and QaQb wrt to the X(7)-circumconic.
X(66246) lies on these lines: {1, 7}, {8, 36620}, {144, 64980}, {145, 31527}, {479, 2098}, {517, 56870}, {518, 15913}, {934, 8158}, {3057, 3599}, {3598, 61630}, {3623, 56309}, {3680, 56275}, {4460, 33673}, {7320, 9446}, {9533, 11531}, {9778, 45228}, {15511, 37714}, {16284, 25718}, {28610, 43044}, {32003, 34060}, {40133, 60941}, {52819, 56043}
X(66246) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(43182)}}, {{A, B, C, X(2951), X(3680)}}, {{A, B, C, X(3160), X(56026)}}, {{A, B, C, X(56275), X(62787)}}
Let QaQbQc be the cevian triangle of X(8). CTR12-8.8 is the triangle with vertices at the inversion poles of QbQc, QaQc, and QaQb wrt to the X(8)-circumconic.
X(66247) lies on these lines: {1, 4}, {2, 7319}, {8, 3929}, {10, 5217}, {20, 4848}, {30, 41551}, {63, 66251}, {65, 28164}, {80, 6684}, {144, 3621}, {145, 9580}, {149, 64205}, {355, 4304}, {382, 37739}, {390, 37709}, {498, 50796}, {499, 51705}, {516, 10950}, {517, 41562}, {519, 3962}, {527, 41575}, {528, 66205}, {551, 10896}, {553, 6738}, {942, 28186}, {952, 10624}, {1125, 7173}, {1145, 3626}, {1210, 18481}, {1385, 10593}, {1737, 5442}, {1770, 28172}, {1837, 3911}, {1898, 3878}, {2093, 3529}, {2098, 51783}, {2099, 51118}, {2646, 3614}, {2801, 64043}, {2829, 41558}, {2840, 18732}, {3057, 28236}, {3086, 50811}, {3091, 13384}, {3146, 3340}, {3244, 12701}, {3436, 12437}, {3600, 37723}, {3601, 59387}, {3612, 10175}, {3617, 5273}, {3625, 50242}, {3627, 50194}, {3634, 7483}, {3655, 9669}, {3671, 12943}, {3817, 34471}, {3828, 52793}, {4292, 28160}, {4294, 5881}, {4299, 37721}, {4301, 12953}, {4302, 11362}, {4305, 5587}, {4309, 37708}, {4311, 5722}, {4313, 9578}, {4314, 5252}, {4323, 17578}, {4330, 9897}, {4342, 9670}, {4551, 65670}, {5086, 5745}, {5119, 47745}, {5218, 37714}, {5274, 63208}, {5434, 6744}, {5441, 10039}, {5443, 17501}, {5493, 41687}, {5542, 9657}, {5657, 43734}, {5731, 9581}, {5818, 30282}, {5837, 6872}, {5903, 28150}, {6224, 41012}, {6700, 10609}, {6713, 12019}, {6735, 11015}, {6737, 57288}, {6743, 34606}, {6936, 64315}, {7080, 34701}, {7700, 51724}, {7987, 54361}, {9668, 37727}, {9778, 64895}, {9780, 46916}, {9812, 64964}, {9844, 64106}, {9957, 28224}, {10165, 10826}, {10392, 43161}, {10543, 13405}, {10573, 31730}, {10588, 53054}, {10589, 30389}, {10591, 64953}, {10592, 13411}, {10895, 34648}, {10944, 12575}, {11011, 65632}, {11041, 33703}, {11502, 63983}, {11545, 31663}, {12433, 50191}, {12512, 40663}, {12527, 44669}, {12571, 15950}, {12640, 20075}, {12736, 13369}, {12743, 62617}, {12764, 33337}, {13601, 15726}, {15171, 28204}, {15338, 43174}, {16193, 16616}, {16948, 64582}, {17632, 41539}, {17895, 18650}, {18220, 64849}, {18357, 61520}, {18525, 31397}, {18990, 28208}, {20007, 63916}, {20066, 51433}, {20070, 64736}, {20085, 64372}, {21578, 37702}, {22793, 37728}, {25440, 44848}, {26066, 63754}, {28194, 65134}, {28234, 37706}, {29353, 64580}, {30827, 63915}, {33697, 39542}, {34628, 53057}, {34773, 44675}, {37001, 54227}, {37080, 51782}, {37540, 44039}, {37606, 61261}, {37828, 63753}, {38127, 59316}, {38455, 66258}, {39892, 49505}, {40267, 41561}, {43759, 65822}, {49515, 64567}, {50195, 66195}, {50240, 64732}, {50693, 63207}, {59388, 61763}, {64087, 64117}
X(66247) = reflection of X(i) in X(j) for these {i,j}: {950, 10572}, {4292, 37730}, {6737, 57288}, {7354, 6738}, {10106, 950}, {10944, 12575}, {57287, 5795}
X(66247) = pole of line {65, 3817} with respect to the Feuerbach hyperbola
X(66247) = intersection, other than A, B, C, of circumconics {{A, B, C, X(34), X(7285)}}, {{A, B, C, X(5229), X(10570)}}
X(66247) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5229, 226}, {1, 5691, 5229}, {20, 5727, 4848}, {515, 10572, 950}, {515, 950, 10106}, {944, 3586, 12053}, {1837, 4297, 3911}, {3486, 5229, 1}, {5441, 37006, 10039}, {6738, 7354, 553}, {12943, 37724, 3671}, {12953, 37740, 4301}, {21578, 37702, 64124}, {28160, 37730, 4292}, {37568, 62616, 3626}
Let QaQbQc be the cevian triangle of X(21). CTR12-9.21 is the triangle with vertices at the inversion poles of QbQc, QaQc, and QaQb wrt to the X(9)-circumconic.
X(66248) lies on these lines: {1, 971}, {3, 30223}, {4, 12711}, {11, 9940}, {35, 3683}, {36, 31805}, {40, 1864}, {46, 64157}, {52, 517}, {55, 1898}, {56, 50528}, {65, 3586}, {72, 3189}, {90, 31445}, {100, 58649}, {210, 61763}, {226, 12710}, {354, 9614}, {380, 1903}, {390, 12528}, {392, 4305}, {405, 18251}, {443, 17668}, {452, 12529}, {496, 3660}, {497, 1071}, {498, 10157}, {499, 11227}, {516, 12432}, {518, 10624}, {912, 15171}, {938, 9961}, {942, 1479}, {944, 66226}, {946, 10391}, {950, 6001}, {960, 4304}, {962, 10394}, {1058, 17625}, {1210, 9943}, {1319, 16132}, {1385, 62333}, {1420, 63432}, {1467, 10092}, {1490, 66239}, {1617, 41854}, {1697, 14872}, {1728, 5584}, {1737, 31787}, {1770, 37544}, {1837, 31788}, {2310, 4300}, {2771, 31795}, {2801, 12575}, {3057, 5693}, {3085, 5927}, {3086, 10167}, {3295, 40263}, {3333, 63995}, {3465, 5266}, {3486, 12672}, {3488, 12709}, {3555, 30305}, {3583, 5806}, {3616, 17616}, {3624, 10855}, {3649, 5045}, {3871, 17615}, {3874, 51783}, {3962, 5697}, {4292, 15726}, {4295, 5728}, {4302, 31793}, {4314, 31803}, {4319, 7078}, {4857, 5570}, {5119, 34790}, {5128, 61718}, {5173, 12699}, {5259, 51768}, {5439, 10591}, {5441, 44782}, {5710, 36985}, {5711, 65128}, {5768, 17649}, {5784, 31435}, {5809, 12706}, {5882, 66216}, {5904, 64723}, {5918, 15803}, {6259, 10629}, {6361, 41539}, {6835, 60925}, {7082, 37601}, {7671, 11036}, {7743, 13373}, {7957, 18397}, {7965, 11018}, {7967, 17622}, {8069, 64804}, {8071, 34862}, {8193, 64121}, {8227, 17603}, {8715, 51380}, {9371, 37732}, {9589, 18412}, {9668, 24474}, {9669, 10202}, {9670, 64046}, {9812, 62864}, {9844, 18391}, {9942, 63989}, {9947, 10039}, {9957, 37738}, {10050, 11249}, {10058, 22935}, {10382, 12664}, {10393, 11496}, {10396, 12565}, {10523, 64813}, {10573, 31798}, {10966, 45632}, {11019, 64132}, {11220, 14986}, {11415, 16465}, {11529, 17634}, {11551, 15008}, {12053, 12675}, {12136, 34231}, {12514, 64171}, {12520, 57278}, {12669, 54228}, {12671, 63992}, {12758, 62617}, {13405, 31871}, {13407, 16201}, {13600, 37740}, {13601, 37730}, {15310, 37613}, {17637, 49177}, {17646, 54318}, {18236, 59591}, {18480, 64086}, {19541, 59335}, {24929, 31937}, {25466, 41871}, {25917, 30282}, {29207, 49542}, {31786, 64042}, {31822, 65632}, {33575, 59325}, {37411, 37550}, {37568, 58643}, {37722, 58576}, {38850, 58337}, {40262, 59334}, {41229, 42014}, {41339, 54301}, {41340, 64537}, {42450, 44670}, {44675, 58567}, {45120, 51090}, {51787, 56762}, {59316, 61709}, {61086, 66235}, {62810, 64077}, {63430, 66194}, {63998, 66227}, {63999, 66250}, {64160, 66195}
X(66248) = midpoint of X(i) and X(j) for these {i,j}: {1858, 6284}, {10624, 41562}
X(66248) = reflection of X(i) in X(j) for these {i,j}: {1770, 37544}, {13601, 37730}, {63999, 66254}, {66250, 63999}
X(66248) = pole of line {3900, 48302} with respect to the incircle
X(66248) = pole of line {5, 57} with respect to the Feuerbach hyperbola
X(66248) = pole of line {3900, 48307} with respect to the Suppa-Cucoanes circle
X(66248) = X(5777)-of-Mandart-incircle triangle
X(66248) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 64741, 64057}, {4, 12711, 50195}, {55, 1898, 5777}, {496, 13369, 3660}, {497, 1071, 50196}, {946, 10391, 16193}, {1058, 64358, 17625}, {1858, 6284, 517}, {3583, 13750, 5806}, {5584, 60910, 1728}, {10624, 41562, 518}, {12688, 14100, 1}
Let QaQbQc be the cevian triangle of X(29). CTR12-9.29 is the triangle with vertices at the inversion poles of QbQc, QaQc, and QaQb wrt to the X(9)-circumconic.
X(66249) lies on these lines: {1, 3}, {4, 7078}, {6, 950}, {8, 29}, {10, 7074}, {11, 1714}, {19, 43213}, {20, 222}, {30, 3157}, {33, 72}, {73, 7580}, {77, 63141}, {78, 56178}, {81, 4313}, {109, 41402}, {145, 7538}, {201, 64750}, {212, 405}, {221, 516}, {255, 1012}, {278, 412}, {347, 20070}, {355, 7524}, {382, 8757}, {387, 497}, {388, 3332}, {390, 54358}, {394, 57287}, {452, 55432}, {474, 22072}, {515, 1498}, {518, 15954}, {519, 2192}, {580, 57278}, {603, 37022}, {651, 3146}, {758, 1854}, {912, 64054}, {916, 6285}, {938, 52424}, {946, 37695}, {958, 2328}, {990, 66250}, {1013, 3869}, {1191, 12053}, {1210, 36745}, {1249, 22124}, {1253, 59305}, {1364, 37482}, {1396, 6060}, {1468, 65670}, {1479, 5721}, {1612, 66199}, {1657, 23070}, {1745, 37411}, {1780, 22760}, {1785, 5812}, {1794, 64840}, {1816, 3871}, {1826, 10367}, {1837, 16471}, {1838, 12699}, {1891, 22132}, {1935, 22117}, {1944, 52346}, {2184, 11523}, {2292, 4336}, {2323, 12625}, {2361, 62333}, {3074, 6913}, {3100, 3868}, {3149, 22350}, {3190, 3913}, {3194, 44695}, {3346, 15501}, {3419, 40950}, {3434, 37235}, {3486, 62843}, {3522, 17074}, {3560, 52408}, {3586, 54301}, {3616, 7572}, {3682, 5687}, {3811, 51361}, {3901, 9576}, {3927, 24430}, {4194, 41883}, {4200, 36949}, {4295, 55010}, {4297, 34046}, {4301, 59645}, {4302, 63339}, {4303, 37426}, {4304, 36746}, {4314, 62805}, {4319, 12711}, {4383, 9581}, {4646, 54369}, {4847, 34831}, {5044, 9817}, {5250, 40937}, {5315, 51785}, {5438, 25934}, {5603, 7567}, {5691, 9370}, {5722, 36754}, {5752, 40944}, {5758, 7952}, {5763, 15252}, {5777, 65128}, {5806, 19372}, {6056, 56831}, {6180, 9579}, {6284, 64020}, {6361, 30268}, {6848, 52659}, {6872, 55400}, {6890, 43043}, {7355, 15951}, {7412, 63436}, {7531, 12245}, {9555, 49653}, {9785, 62804}, {10373, 11471}, {10535, 42463}, {10571, 64077}, {10624, 64449}, {10914, 37393}, {11429, 56960}, {12329, 22299}, {12575, 62828}, {12635, 45272}, {12649, 55399}, {12672, 57276}, {13346, 36059}, {14872, 36985}, {14923, 37253}, {15811, 63998}, {15852, 45126}, {16370, 22361}, {16389, 40953}, {17018, 35981}, {17811, 57284}, {19541, 37694}, {19843, 25490}, {23144, 64707}, {24391, 55405}, {26091, 64081}, {26932, 27505}, {30265, 54400}, {31837, 37696}, {33137, 37370}, {34043, 64005}, {36986, 51490}, {37046, 40152}, {37498, 56293}, {37723, 52423}, {37730, 44414}, {44661, 64022}, {45729, 57288}, {54386, 64131}, {60803, 61229}, {60925, 63341}, {63130, 64082}
X(66249) = reflection of X(i) in X(j) for these {i,j}: {64057, 3157}
X(66249) = perspector of circumconic {{A, B, C, X(651), X(36797)}}
X(66249) = X(i)-Ceva conjugate of X(j) for these {i, j}: {18655, 11347}, {44699, 108}
X(66249) = pole of line {7178, 44426} with respect to the polar circle
X(66249) = pole of line {1, 7535} with respect to the Feuerbach hyperbola
X(66249) = pole of line {14331, 36054} with respect to the MacBeath circumconic
X(66249) = pole of line {21, 222} with respect to the Stammler hyperbola
X(66249) = pole of line {1897, 57192} with respect to the Hutson-Moses hyperbola
X(66249) = pole of line {314, 348} with respect to the Wallace hyperbola
X(66249) = pole of line {52355, 57168} with respect to the dual conic of incircle
X(66249) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2322)}}, {{A, B, C, X(3), X(2287)}}, {{A, B, C, X(8), X(1214)}}, {{A, B, C, X(29), X(57)}}, {{A, B, C, X(40), X(56146)}}, {{A, B, C, X(56), X(1172)}}, {{A, B, C, X(65), X(281)}}, {{A, B, C, X(219), X(22341)}}, {{A, B, C, X(517), X(3346)}}, {{A, B, C, X(607), X(1402)}}, {{A, B, C, X(942), X(64840)}}, {{A, B, C, X(1000), X(37528)}}, {{A, B, C, X(1429), X(14024)}}, {{A, B, C, X(2192), X(2352)}}, {{A, B, C, X(3362), X(15803)}}, {{A, B, C, X(7017), X(20618)}}, {{A, B, C, X(8758), X(43695)}}, {{A, B, C, X(14942), X(24310)}}, {{A, B, C, X(37582), X(55917)}}, {{A, B, C, X(41344), X(56261)}}
X(66249) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1754, 56}, {1, 40, 1214}, {4, 7078, 34048}, {20, 3562, 222}, {30, 3157, 64057}, {212, 2654, 405}, {382, 23071, 8757}, {1498, 64069, 3173}, {4319, 54421, 12711}
Let QaQbQc be the cevian triangle of X(81). CTR12-9.81 is the triangle with vertices at the inversion poles of QbQc, QaQc, and QaQb wrt to the X(9)-circumconic.
X(66250) lies on these lines: {1, 84}, {2, 37566}, {3, 64132}, {4, 18239}, {5, 226}, {7, 8}, {9, 1467}, {12, 3812}, {20, 3057}, {21, 1319}, {27, 18178}, {34, 6180}, {37, 37523}, {38, 1042}, {46, 63976}, {55, 9943}, {56, 63}, {57, 72}, {73, 3666}, {78, 1466}, {109, 5266}, {201, 241}, {210, 1788}, {224, 11509}, {225, 3782}, {227, 986}, {354, 1858}, {390, 9961}, {392, 1420}, {404, 51379}, {405, 34489}, {442, 64115}, {443, 65000}, {452, 60934}, {495, 34339}, {496, 31937}, {497, 9799}, {517, 4292}, {519, 13601}, {553, 15556}, {603, 37539}, {651, 5262}, {758, 4298}, {938, 1864}, {944, 12671}, {946, 50196}, {950, 971}, {962, 17634}, {964, 28968}, {976, 9316}, {990, 66249}, {999, 5887}, {1004, 11501}, {1038, 1407}, {1056, 64021}, {1104, 1935}, {1108, 15656}, {1125, 3660}, {1155, 58637}, {1214, 4306}, {1259, 1470}, {1317, 47008}, {1376, 2057}, {1386, 23144}, {1387, 2771}, {1388, 10179}, {1406, 64349}, {1427, 37591}, {1445, 3951}, {1451, 4641}, {1452, 41611}, {1457, 11031}, {1458, 2292}, {1465, 3670}, {1478, 7686}, {1617, 12514}, {1697, 5732}, {1699, 30290}, {1706, 17658}, {1708, 3927}, {1737, 58631}, {1829, 23154}, {1836, 55109}, {1876, 1883}, {2082, 5781}, {2099, 11520}, {2285, 5782}, {2646, 18444}, {2800, 66230}, {2801, 6738}, {2975, 15823}, {3157, 64722}, {3218, 57283}, {3296, 55964}, {3303, 7675}, {3304, 62836}, {3333, 5693}, {3339, 5904}, {3340, 3555}, {3361, 5692}, {3474, 7957}, {3486, 9960}, {3487, 6833}, {3488, 64358}, {3585, 16616}, {3600, 3869}, {3601, 10167}, {3649, 10957}, {3663, 5930}, {3665, 34855}, {3671, 3874}, {3698, 4208}, {3740, 24914}, {3742, 11375}, {3752, 37694}, {3753, 9578}, {3754, 51782}, {3811, 37541}, {3838, 26481}, {3876, 5435}, {3877, 4308}, {3878, 4315}, {3880, 10944}, {3889, 4323}, {3890, 17576}, {3897, 18467}, {3901, 4355}, {3911, 5044}, {3916, 19525}, {3947, 5883}, {4032, 15443}, {4198, 37516}, {4293, 14110}, {4303, 37528}, {4304, 9957}, {4305, 63432}, {4311, 31786}, {4313, 5919}, {4321, 12526}, {4327, 54421}, {4640, 37579}, {4654, 14054}, {4662, 40663}, {4723, 56173}, {4847, 18251}, {4848, 34790}, {4870, 13751}, {4880, 15932}, {5047, 29007}, {5119, 37426}, {5126, 31838}, {5192, 28997}, {5217, 10178}, {5219, 5439}, {5221, 41538}, {5226, 6931}, {5261, 18419}, {5269, 35672}, {5270, 53615}, {5273, 7288}, {5290, 5902}, {5293, 9364}, {5433, 54357}, {5434, 34742}, {5438, 17612}, {5555, 41871}, {5563, 54432}, {5570, 12047}, {5665, 60953}, {5703, 6966}, {5708, 5780}, {5710, 54400}, {5714, 6968}, {5722, 40263}, {5728, 11518}, {5735, 9579}, {5768, 12664}, {5815, 41824}, {5884, 21620}, {5927, 9581}, {6284, 15726}, {6734, 57285}, {6735, 45080}, {6864, 11023}, {6871, 64715}, {6923, 24474}, {6958, 10202}, {6993, 61663}, {7091, 15829}, {7269, 64377}, {7289, 64022}, {7330, 57278}, {7354, 64003}, {7373, 40266}, {7411, 37568}, {7702, 64086}, {8069, 64118}, {8071, 37837}, {8165, 11678}, {8544, 63141}, {8545, 54392}, {8582, 12059}, {8679, 44545}, {8829, 44692}, {9119, 54405}, {9370, 54418}, {9785, 10430}, {9844, 37723}, {9856, 12053}, {9859, 12536}, {9940, 13411}, {9942, 18446}, {9964, 17660}, {10394, 60998}, {10399, 38271}, {10431, 12701}, {10444, 10480}, {10461, 10475}, {10506, 11888}, {10571, 37592}, {10914, 37709}, {10916, 64127}, {11011, 58609}, {11018, 63274}, {11019, 31803}, {11020, 17609}, {11035, 66228}, {11281, 58578}, {11508, 37287}, {11510, 20835}, {11551, 62859}, {11570, 13407}, {12005, 16193}, {12527, 61002}, {12529, 36845}, {12560, 15185}, {12563, 62852}, {12609, 64737}, {12669, 14100}, {13161, 51421}, {13243, 17638}, {13369, 24929}, {13373, 37737}, {14872, 18391}, {14923, 37435}, {15325, 58573}, {15528, 18260}, {15558, 20789}, {15605, 31794}, {15803, 64107}, {15845, 63989}, {15934, 37234}, {17054, 19372}, {17531, 37789}, {17614, 41389}, {17626, 50443}, {17637, 41695}, {18191, 37113}, {18221, 40269}, {18398, 23708}, {18527, 31828}, {18593, 63396}, {20117, 64124}, {20118, 58683}, {20323, 62873}, {21578, 44238}, {21871, 57286}, {22759, 37228}, {22767, 37302}, {24159, 37695}, {24391, 64171}, {24928, 32153}, {25066, 56546}, {26011, 34831}, {26357, 65404}, {26651, 27410}, {28610, 31165}, {30384, 37447}, {31231, 31446}, {31397, 31788}, {31821, 58577}, {31835, 34753}, {31837, 37582}, {34035, 54292}, {34050, 34937}, {34880, 37300}, {37080, 62800}, {37105, 63211}, {37106, 37605}, {37224, 60964}, {37468, 45287}, {37722, 65465}, {37738, 66256}, {39791, 41003}, {41554, 51529}, {43177, 66019}, {44675, 58576}, {46878, 51399}, {51380, 63990}, {54408, 64077}, {55921, 64344}, {58405, 62357}, {60936, 64002}, {63999, 66248}, {64006, 64700}
X(66250) = midpoint of X(i) and X(j) for these {i,j}: {1829, 23154}, {7354, 64043}, {45288, 64721}
X(66250) = reflection of X(i) in X(j) for these {i,j}: {15556, 37544}, {44547, 942}, {66248, 63999}
X(66250) = perspector of circumconic {{A, B, C, X(4554), X(37141)}}
X(66250) = pole of line {521, 3669} with respect to the incircle
X(66250) = pole of line {18344, 57089} with respect to the polar circle
X(66250) = pole of line {34948, 48330} with respect to the DeLongchamps ellipse
X(66250) = pole of line {20, 56} with respect to the Feuerbach hyperbola
X(66250) = pole of line {53761, 65205} with respect to the Kiepert parabola
X(66250) = pole of line {2194, 3057} with respect to the Stammler hyperbola
X(66250) = pole of line {4885, 17924} with respect to the Steiner inellipse
X(66250) = pole of line {21, 20895} with respect to the Wallace hyperbola
X(66250) = pole of line {521, 4905} with respect to the Suppa-Cucoanes circle
X(66250) = pole of line {14298, 21348} with respect to the Hofstadter ellipse
X(66250) = pole of line {650, 9364} with respect to the dual conic of DeLongchamps circle
X(66250) = pole of line {1214, 3663} with respect to the dual conic of Yff parabola
X(66250) = pole of line {2, 1466} with respect to the dual conic of Moses-Feuerbach circumconic
X(66250) = X(960)-of-2nd-anti-circumperp-tangential triangle
X(66250) = X(6146)-of-intouch triangle
X(66250) = X(9943)-of-Mandart-incircle triangle
X(66250) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(322)}}, {{A, B, C, X(7), X(1413)}}, {{A, B, C, X(8), X(2192)}}, {{A, B, C, X(21), X(20895)}}, {{A, B, C, X(69), X(1433)}}, {{A, B, C, X(75), X(84)}}, {{A, B, C, X(85), X(1422)}}, {{A, B, C, X(221), X(55015)}}, {{A, B, C, X(1122), X(1408)}}, {{A, B, C, X(1231), X(52037)}}, {{A, B, C, X(1394), X(8829)}}, {{A, B, C, X(1441), X(1476)}}, {{A, B, C, X(5555), X(56927)}}, {{A, B, C, X(11496), X(60158)}}, {{A, B, C, X(42696), X(55964)}}, {{A, B, C, X(44692), X(66239)}}
X(66250) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1071, 10391}, {1, 12672, 66216}, {1, 15071, 12711}, {1, 7992, 66239}, {7, 3868, 65}, {7, 52385, 24471}, {12, 18838, 3812}, {55, 64704, 9943}, {56, 64041, 960}, {65, 5252, 5836}, {65, 8581, 388}, {553, 15556, 37544}, {912, 942, 44547}, {938, 12528, 1864}, {942, 5777, 1210}, {960, 63994, 56}, {1012, 1071, 18238}, {1071, 12672, 84}, {1478, 64045, 7686}, {1829, 23154, 34371}, {3057, 63995, 20}, {3057, 9850, 3476}, {3339, 5904, 41539}, {3600, 3869, 64106}, {3671, 3874, 5173}, {5083, 64160, 5045}, {5434, 45288, 64721}, {5570, 12047, 13374}, {5884, 21620, 50195}, {6147, 24475, 942}, {6180, 37549, 34}, {11036, 62864, 354}, {11520, 16465, 34791}, {11570, 13407, 13750}, {12005, 64110, 16193}, {12709, 17625, 1}, {17634, 17642, 962}, {18238, 45776, 1012}, {45288, 64721, 44663}
Let QaQbQc be the cevian triangle of X(10). CTR12-10.10 is the triangle with vertices at the inversion poles of QbQc, QaQc, and QaQb wrt to the X(10)-circumconic.
X(66251) lies on these lines: {1, 6856}, {8, 9}, {10, 6675}, {63, 66247}, {65, 17668}, {80, 21075}, {142, 5794}, {145, 5226}, {191, 10572}, {210, 66219}, {226, 5086}, {355, 381}, {495, 3244}, {515, 5709}, {527, 5691}, {528, 31799}, {758, 31673}, {952, 64804}, {1210, 17614}, {1479, 3421}, {1706, 62836}, {1837, 3452}, {2900, 19860}, {3158, 3617}, {3189, 3679}, {3243, 20008}, {3340, 5175}, {3419, 64163}, {3445, 51615}, {3486, 5745}, {3621, 3680}, {3625, 3878}, {3626, 3913}, {3634, 56177}, {3684, 63595}, {3753, 10122}, {3812, 9858}, {3893, 17658}, {3897, 6734}, {3919, 47319}, {4067, 47320}, {4082, 42378}, {4301, 5855}, {4701, 64744}, {4847, 10950}, {4848, 57287}, {4863, 66205}, {5325, 21677}, {5330, 12053}, {5534, 40257}, {5690, 64117}, {5790, 59722}, {5836, 15733}, {5844, 64272}, {5882, 10916}, {6173, 18221}, {6601, 37712}, {6666, 66215}, {6765, 59388}, {6872, 66253}, {8666, 35252}, {8715, 38127}, {9581, 26129}, {10106, 12649}, {10175, 22836}, {10573, 63146}, {11260, 51717}, {11523, 59387}, {11529, 41865}, {11530, 59413}, {12513, 28236}, {12515, 31730}, {12541, 31145}, {12607, 38155}, {12609, 14563}, {12629, 63986}, {12647, 41709}, {12684, 28164}, {13607, 45700}, {17016, 56317}, {18391, 57284}, {18395, 59587}, {20085, 66068}, {21095, 35104}, {21285, 52563}, {24174, 53614}, {24987, 62870}, {25568, 37714}, {26015, 63987}, {31399, 59719}, {32537, 38158}, {34625, 61296}, {34744, 64005}, {36845, 37709}, {44663, 51118}, {45036, 64114}, {49169, 49184}, {51071, 63282}, {51515, 64768}, {51978, 64582}, {54154, 63989}, {56088, 63169}, {57288, 60942}, {59311, 64739}, {59340, 60994}
X(66251) = midpoint of X(i) and X(j) for these {i,j}: {8, 12625}, {3621, 3680}, {3632, 64068}, {20085, 66068}
X(66251) = reflection of X(i) in X(j) for these {i,j}: {145, 64205}, {3244, 3813}, {3913, 3626}, {5882, 10916}, {12437, 10}, {12635, 19925}, {12640, 8}, {24391, 49168}, {64117, 5690}, {64744, 4701}, {66215, 6666}
X(66251) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {17097, 42020}
X(66251) = pole of line {3667, 5794} with respect to the Fuhrmann circle
X(66251) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3161), X(7319)}}, {{A, B, C, X(10005), X(63169)}}, {{A, B, C, X(55337), X(62178)}}
X(66251) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 12625, 5853}, {8, 5727, 5795}, {8, 5795, 24393}, {8, 5853, 12640}, {8, 950, 5837}, {10, 12437, 59584}, {10, 44669, 12437}, {145, 24392, 64205}, {515, 49168, 24391}, {519, 19925, 12635}, {1837, 6737, 3452}, {3617, 12536, 3158}, {4678, 64146, 64204}, {5086, 41575, 226}, {5794, 6738, 142}
Let A'B'C' be the X(1)-circumconcevian triangle of X(9). CTR13-1.9 is the tangential triangle of A'B'C' wrt X(1)-circumconic.
X(66252) lies on these lines: {1, 15587}, {7, 21627}, {8, 9}, {144, 12541}, {145, 60937}, {200, 17604}, {516, 6762}, {518, 3062}, {519, 11372}, {528, 1768}, {673, 30567}, {971, 12629}, {1001, 3158}, {2099, 3243}, {2550, 5437}, {2951, 12513}, {3059, 10866}, {3174, 8583}, {3189, 12447}, {3340, 30628}, {3621, 60966}, {3813, 38052}, {3880, 5223}, {3893, 60910}, {4853, 14100}, {4863, 66239}, {5438, 42884}, {5732, 30283}, {5785, 9957}, {5836, 30330}, {6601, 7091}, {6765, 9947}, {7308, 64146}, {7962, 41228}, {8236, 12437}, {8545, 12630}, {8582, 24389}, {9623, 63972}, {9841, 35514}, {9845, 43182}, {9846, 25722}, {9856, 11523}, {10398, 10914}, {11038, 64205}, {12536, 37556}, {15008, 40587}, {15299, 30286}, {17144, 64695}, {18227, 62218}, {24386, 40333}, {30290, 41863}, {32922, 65957}, {33576, 42470}, {34701, 43175}, {38036, 49600}, {38057, 64204}, {39126, 42309}, {60990, 63984}, {61012, 63142}
X(66252) = midpoint of X(i) and X(j) for these {i,j}: {144, 12541}, {3062, 11519}
X(66252) = reflection of X(i) in X(j) for these {i,j}: {7, 21627}, {2136, 9}, {2951, 12513}, {3189, 30331}, {11523, 43166}
X(66252) = intersection, other than A, B, C, of circumconics {{A, B, C, X(673), X(2136)}}, {{A, B, C, X(1697), X(17107)}}, {{A, B, C, X(3062), X(3161)}}, {{A, B, C, X(7091), X(55337)}}, {{A, B, C, X(33576), X(56937)}}
X(66252) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 10384, 9}, {9, 5853, 2136}, {3062, 11519, 518}, {11519, 12448, 3680}
Let A'B'C' be the X(8)-circumconcevian triangle of X(8). CTR13-8.8 is the tangential triangle of A'B'C' wrt X(8)-circumconic.
X(66253) lies on these lines: {1, 4}, {10, 19526}, {55, 38155}, {65, 28158}, {553, 28164}, {942, 28190}, {1837, 10164}, {2646, 10171}, {3058, 28236}, {3244, 9670}, {3626, 63273}, {3828, 6174}, {3911, 61717}, {3982, 12943}, {4292, 28168}, {4294, 63143}, {4297, 17728}, {4304, 26446}, {4309, 47745}, {4313, 54448}, {4345, 51791}, {4678, 5795}, {4701, 44784}, {4848, 9778}, {5219, 64836}, {5328, 63913}, {5441, 6684}, {5727, 59417}, {5844, 10624}, {5853, 6172}, {5902, 28172}, {6284, 28228}, {6738, 11246}, {6872, 66251}, {7686, 66195}, {9581, 54445}, {10385, 37712}, {10483, 17706}, {10543, 19925}, {11015, 63990}, {12563, 65631}, {13411, 38140}, {17647, 19878}, {17718, 34648}, {19877, 57284}, {28146, 37730}, {28174, 64163}, {30332, 64736}, {31730, 37721}, {37724, 51118}, {37740, 51783}, {46933, 57287}, {50796, 59337}
X(66253) = reflection of X(i) in X(j) for these {i,j}: {11246, 6738}
Let A'B'C' be the X(9)-circumconcevian triangle of X(21). CTR13-9.21 is the tangential triangle of A'B'C' wrt X(9)-circumconic.
X(66254) lies on these lines: {55, 64693}, {390, 63967}, {497, 12005}, {758, 31795}, {943, 51768}, {946, 12671}, {950, 2800}, {971, 40270}, {2801, 15172}, {3058, 41562}, {3646, 25722}, {3678, 10386}, {4015, 51787}, {4314, 20117}, {5882, 9848}, {6796, 66239}, {9670, 18389}, {9844, 11362}, {12564, 22793}, {12710, 18483}, {12711, 31870}, {30329, 48661}, {30331, 40263}, {30384, 66195}, {40273, 58626}, {63999, 66248}
X(66254) = midpoint of X(i) and X(j) for these {i,j}: {63999, 66248}
Let A'B'C' be the X(32)-circumconcevian triangle of X(6). CTR13-32.6 is the tangential triangle of A'B'C' wrt X(32)-circumconic.
X(66255) lies on these lines: {1, 19126}, {6, 12410}, {8, 1974}, {10, 19137}, {145, 19121}, {182, 517}, {184, 51192}, {206, 5846}, {952, 64052}, {962, 19124}, {1482, 19131}, {3416, 9306}, {5138, 37547}, {5157, 38315}, {5250, 26924}, {5844, 19154}, {5847, 52016}, {7983, 41274}, {8148, 19129}, {8193, 11574}, {9822, 11365}, {11511, 37546}, {12245, 19128}, {19127, 51147}, {19136, 49524}, {26923, 62874}, {37491, 64069}, {37515, 38029}, {56918, 59407}
X(66255) = midpoint of X(i) and X(j) for these {i,j}: {6, 12410}, {37491, 64069}
X(66255) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {6, 5091, 12410}
X(66256) lies on these lines: {1, 474}, {2, 3893}, {5, 49626}, {8, 3740}, {9, 11519}, {10, 10179}, {37, 4051}, {43, 45219}, {55, 11260}, {56, 3895}, {65, 3241}, {72, 3633}, {100, 20323}, {144, 145}, {210, 3621}, {226, 13463}, {354, 3623}, {392, 3632}, {495, 49600}, {496, 5123}, {497, 32049}, {515, 13600}, {517, 550}, {519, 960}, {528, 10106}, {529, 10624}, {912, 10284}, {936, 8168}, {942, 2802}, {950, 38455}, {952, 31937}, {958, 12629}, {962, 12678}, {1001, 4853}, {1071, 61291}, {1155, 62837}, {1193, 17460}, {1222, 3685}, {1319, 3871}, {1320, 11011}, {1329, 63993}, {1385, 25439}, {1386, 37542}, {1387, 59719}, {1420, 4421}, {1482, 6261}, {1697, 4640}, {1722, 16486}, {1837, 12648}, {2098, 3870}, {2550, 12541}, {2605, 57209}, {2646, 38460}, {2886, 21627}, {2951, 3243}, {3059, 12630}, {3208, 40133}, {3303, 3872}, {3304, 63130}, {3333, 64202}, {3340, 4321}, {3476, 56936}, {3485, 34640}, {3555, 3901}, {3579, 62825}, {3582, 38411}, {3616, 31233}, {3622, 3698}, {3625, 3898}, {3656, 16616}, {3681, 20014}, {3696, 30090}, {3697, 4677}, {3754, 5049}, {3811, 64897}, {3813, 31397}, {3816, 6736}, {3825, 51362}, {3838, 15888}, {3876, 20053}, {3877, 20050}, {3878, 4525}, {3881, 50193}, {3892, 31794}, {3896, 20041}, {3911, 32157}, {3916, 37563}, {3918, 51103}, {3919, 50192}, {3922, 64149}, {3931, 50637}, {4002, 25055}, {4004, 50190}, {4050, 44798}, {4067, 51096}, {4360, 24471}, {4413, 63142}, {4511, 64199}, {4679, 56879}, {4731, 5550}, {4738, 59582}, {4861, 37080}, {4882, 66231}, {5045, 51071}, {5048, 34772}, {5087, 12053}, {5267, 51787}, {5289, 6765}, {5690, 49627}, {5722, 49169}, {5727, 17622}, {5784, 12536}, {5794, 64068}, {5844, 63976}, {5853, 12448}, {5854, 64163}, {5904, 34747}, {6001, 23340}, {6600, 15347}, {6734, 45081}, {6735, 37722}, {6762, 9819}, {6767, 51715}, {7373, 54286}, {7686, 10222}, {7962, 12635}, {7967, 58567}, {7972, 17652}, {7982, 50528}, {7987, 61153}, {8148, 12559}, {8162, 54392}, {8236, 58608}, {8256, 11019}, {8544, 11520}, {8715, 24928}, {9578, 11235}, {9614, 11236}, {9785, 24703}, {9856, 28236}, {9955, 11698}, {10178, 31798}, {10202, 61284}, {10247, 13374}, {10391, 37734}, {10459, 15569}, {10528, 11376}, {10580, 66243}, {10942, 22835}, {10944, 34699}, {10950, 17615}, {11194, 61763}, {11239, 11375}, {11240, 24914}, {11256, 66199}, {11278, 62822}, {11373, 45701}, {11682, 41711}, {12245, 58637}, {12531, 58683}, {12546, 35628}, {12575, 57288}, {12631, 40587}, {12645, 58631}, {12672, 61296}, {12710, 37728}, {12737, 33596}, {13278, 20586}, {13373, 61283}, {13405, 64205}, {13601, 63987}, {13607, 31788}, {14759, 14839}, {14986, 37828}, {15016, 61285}, {15481, 63135}, {15558, 64131}, {17318, 34371}, {17609, 20057}, {17636, 58611}, {18258, 65454}, {18391, 64744}, {19860, 42819}, {19861, 51786}, {19907, 33179}, {19925, 66065}, {20052, 63961}, {20691, 62370}, {21214, 21896}, {21620, 64767}, {22837, 24929}, {24600, 59616}, {24926, 33595}, {25440, 51788}, {25681, 34619}, {25716, 34855}, {26066, 34625}, {28234, 31786}, {28534, 34749}, {31145, 58629}, {32426, 64162}, {32636, 63136}, {32937, 64563}, {33815, 50191}, {34339, 61286}, {34434, 49471}, {34710, 66009}, {34748, 40266}, {36638, 39126}, {36867, 37585}, {37562, 61287}, {37567, 62832}, {37568, 54391}, {37614, 49465}, {37738, 66250}, {39776, 58591}, {40296, 50824}, {40883, 49466}, {44675, 64123}, {44720, 59506}, {49163, 64128}, {49450, 58693}, {51779, 64673}, {59507, 62697}, {59722, 64703}, {62861, 64963}
X(66256) = midpoint of X(i) and X(j) for these {i,j}: {65, 3885}, {72, 3633}, {145, 3057}, {2136, 17648}, {3059, 12630}, {3555, 5697}, {7972, 17652}, {12672, 61296}, {23340, 37727}, {66205, 66258}
X(66256) = reflection of X(i) in X(j) for these {i,j}: {8, 58679}, {10, 31792}, {65, 58609}, {942, 3635}, {960, 9957}, {3625, 5044}, {3632, 4662}, {3740, 5919}, {4711, 3898}, {5836, 1}, {7686, 10222}, {8256, 20789}, {9943, 5882}, {10914, 3812}, {12245, 58637}, {12531, 58683}, {12645, 58631}, {12675, 1483}, {13369, 32900}, {14923, 10107}, {17636, 58611}, {18258, 65454}, {31145, 58629}, {31788, 13607}, {34339, 61286}, {34790, 3884}, {34791, 3244}, {39776, 58591}, {49450, 58693}, {50193, 3881}, {57288, 12575}, {66205, 66257}, {66257, 66259}
X(66256) = complement of X(3893)
X(66256) = perspector of circumconic {{A, B, C, X(27834), X(30610)}}
X(66256) = pole of line {4162, 30198} with respect to the incircle
X(66256) = pole of line {4491, 48302} with respect to the DeLongchamps ellipse
X(66256) = pole of line {2, 2098} with respect to the Feuerbach hyperbola
X(66256) = pole of line {3669, 31287} with respect to the Steiner inellipse
X(66256) = pole of line {3452, 31197} with respect to the dual conic of Yff parabola
X(66256) = pole of line {5265, 12513} with respect to the dual conic of Moses-Feuerbach circumconic
X(66256) = X(5893)-of-Ursa-minor triangle
X(66256) = X(5894)-of-intouch triangle
X(66256) = X(5895)-of-inverse-in-incircle triangle
X(66256) = X(6225)-of-2nd-Zaniah triangle
X(66256) = intersection, other than A, B, C, of circumconics {{A, B, C, X(145), X(1376)}}, {{A, B, C, X(3445), X(7320)}}, {{A, B, C, X(3680), X(39702)}}, {{A, B, C, X(5437), X(18743)}}, {{A, B, C, X(8056), X(9311)}}
X(66256) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10914, 3812}, {1, 2136, 1376}, {1, 3880, 5836}, {1, 3913, 59691}, {1, 48696, 17614}, {1, 5836, 3742}, {1, 63137, 25524}, {1, 64175, 4719}, {1, 64176, 52541}, {8, 58679, 3740}, {8, 5919, 58679}, {10, 31792, 10179}, {65, 3241, 58609}, {145, 3057, 518}, {354, 14923, 10107}, {392, 3632, 4662}, {517, 1483, 12675}, {517, 3244, 34791}, {517, 32900, 13369}, {517, 5882, 9943}, {519, 3884, 34790}, {1697, 12513, 4640}, {1837, 12648, 32537}, {2136, 17648, 3880}, {3241, 3885, 65}, {3555, 5697, 44663}, {3621, 3890, 210}, {3622, 3698, 3848}, {3623, 14923, 354}, {3625, 3898, 5044}, {3625, 5044, 4711}, {3812, 3880, 10914}, {3884, 34790, 960}, {4853, 37556, 1001}, {5697, 51093, 3555}, {7990, 11531, 2951}, {9819, 12127, 6762}, {9957, 34790, 3884}, {11019, 12640, 8256}, {11519, 30337, 9}, {12629, 31393, 958}, {13601, 63987, 63994}, {23340, 37727, 6001}, {32426, 66257, 66205}, {32426, 66259, 66257}, {66205, 66258, 32426}, {66257, 66259, 64162}
X(66257) lies on circumconic {{A, B, C, X(34918), X(56118)}} and on these lines: {1, 1329}, {2, 10950}, {5, 30147}, {8, 344}, {10, 6675}, {12, 11281}, {21, 14882}, {30, 3754}, {51, 64580}, {55, 5554}, {65, 17768}, {78, 9711}, {80, 442}, {100, 10543}, {140, 26287}, {145, 26105}, {210, 41575}, {214, 52264}, {355, 6881}, {388, 25557}, {405, 10573}, {484, 57002}, {495, 30143}, {497, 13463}, {515, 3812}, {516, 10107}, {517, 5462}, {518, 5795}, {519, 4015}, {524, 25371}, {528, 950}, {529, 942}, {535, 24470}, {938, 12513}, {944, 6946}, {952, 1125}, {958, 18391}, {960, 5855}, {997, 37739}, {1058, 10912}, {1145, 3746}, {1146, 41239}, {1213, 46823}, {1220, 17947}, {1376, 3486}, {1385, 6691}, {1389, 6902}, {1737, 4999}, {1770, 4004}, {1834, 60353}, {1837, 2886}, {2099, 2478}, {2292, 24433}, {2320, 17566}, {2329, 21049}, {2551, 12635}, {2646, 3035}, {2802, 15172}, {2829, 34339}, {3036, 10039}, {3057, 49736}, {3058, 14923}, {3304, 17051}, {3340, 24703}, {3419, 9710}, {3487, 11236}, {3488, 3913}, {3601, 37828}, {3616, 10944}, {3624, 37706}, {3649, 5080}, {3679, 5436}, {3698, 49732}, {3711, 20013}, {3740, 6737}, {3742, 10106}, {3753, 10572}, {3813, 5722}, {3814, 37737}, {3820, 22836}, {3822, 18357}, {3825, 5901}, {3826, 5727}, {3829, 9581}, {3833, 28224}, {3838, 19925}, {3847, 5886}, {3848, 28236}, {3868, 34606}, {3880, 63999}, {3884, 5844}, {3897, 5433}, {3924, 17061}, {3925, 5086}, {4193, 15950}, {4313, 4421}, {4640, 4848}, {4642, 64158}, {4679, 11682}, {4853, 37723}, {4860, 20076}, {4861, 37722}, {5084, 5289}, {5087, 64160}, {5123, 13411}, {5176, 15888}, {5248, 5690}, {5250, 15297}, {5251, 18253}, {5252, 54392}, {5259, 41684}, {5260, 21677}, {5330, 26127}, {5432, 25005}, {5439, 45287}, {5443, 17533}, {5445, 37298}, {5587, 28628}, {5691, 5880}, {5724, 41877}, {5784, 17632}, {5790, 10198}, {5837, 15254}, {5841, 61541}, {5852, 12527}, {5853, 58608}, {5854, 9957}, {5882, 9843}, {5883, 18990}, {5903, 11113}, {5919, 46677}, {5943, 34434}, {6224, 17531}, {6326, 64283}, {6692, 40262}, {6735, 37080}, {6744, 58609}, {6767, 49169}, {6840, 64754}, {6872, 37567}, {6920, 12247}, {7483, 18395}, {7681, 61146}, {8162, 36972}, {8261, 33961}, {8363, 30159}, {8582, 59691}, {9708, 49168}, {9946, 12675}, {10200, 10246}, {10385, 63133}, {10527, 61717}, {10582, 37709}, {10915, 33559}, {11011, 41012}, {11019, 11260}, {11415, 64963}, {11684, 63290}, {11729, 33281}, {12019, 25639}, {12104, 61524}, {12447, 58451}, {12572, 44663}, {12577, 58560}, {12609, 18480}, {12640, 30331}, {13205, 45080}, {13624, 58405}, {13747, 37525}, {14584, 54356}, {15325, 51111}, {17045, 21237}, {17070, 21935}, {17527, 30144}, {17540, 30124}, {17606, 24541}, {18243, 18516}, {18527, 49600}, {19861, 37740}, {20147, 54120}, {20292, 65631}, {20718, 58554}, {21031, 34772}, {21258, 24249}, {21616, 50194}, {24390, 37702}, {24926, 34123}, {24954, 56387}, {25055, 37707}, {25525, 37714}, {26007, 26532}, {28629, 59387}, {30389, 31190}, {31249, 63208}, {31284, 40483}, {31393, 64744}, {31397, 51715}, {31799, 38454}, {32198, 66199}, {32426, 64162}, {32537, 42819}, {33895, 63993}, {34640, 51785}, {34697, 64358}, {34749, 62854}, {35004, 37290}, {35010, 64145}, {35023, 63990}, {37162, 62826}, {37370, 51870}, {37733, 64282}, {40267, 60896}, {41711, 56879}, {49609, 59583}, {52835, 62178}, {56191, 63360}, {56426, 63318}, {56880, 63159}, {58565, 58570}, {59507, 64702}, {61286, 61551}, {62674, 62684}, {63136, 63273}
X(66257) = midpoint of X(i) and X(j) for these {i,j}: {10, 37730}, {65, 57288}, {950, 5836}, {960, 64163}, {3035, 66206}, {5795, 6738}, {35004, 37290}, {66205, 66256}
X(66257) = reflection of X(i) in X(j) for these {i,j}: {24470, 33815}, {58609, 6744}, {66256, 66259}
X(66257) = pole of line {200, 8256} with respect to the dual conic of Moses-Feuerbach circumconic
X(66257) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 24929, 64123}, {10, 37730, 44669}, {55, 5554, 8256}, {55, 8256, 32157}, {65, 57288, 17768}, {355, 54318, 25466}, {535, 33815, 24470}, {950, 5836, 528}, {960, 64163, 5855}, {1125, 6702, 3628}, {1125, 9956, 6668}, {2646, 24982, 3035}, {3698, 57287, 49732}, {5727, 64673, 5794}, {5794, 64673, 3826}, {5795, 6738, 518}, {6675, 11545, 10}, {18480, 64732, 12609}, {32426, 66259, 66256}, {64162, 66256, 66259}, {66205, 66256, 32426}
X(66258) lies on these lines: {8, 5316}, {57, 145}, {72, 519}, {144, 12630}, {226, 3680}, {553, 14923}, {944, 3633}, {1058, 3632}, {1210, 64768}, {3241, 5438}, {3244, 3304}, {3621, 18228}, {3626, 50038}, {3880, 10106}, {3885, 64002}, {3911, 12640}, {3913, 41426}, {5844, 31793}, {5853, 25722}, {5854, 41558}, {7308, 7320}, {9797, 61630}, {10531, 47745}, {10912, 64160}, {10914, 12436}, {12648, 21627}, {13464, 41702}, {20050, 56936}, {21620, 64203}, {26726, 38665}, {31397, 31493}, {32426, 64162}, {37567, 64117}, {38455, 66247}
X(66258) = reflection of X(i) in X(j) for these {i,j}: {66205, 66256}
X(66258) = pole of line {42312, 58858} with respect to the incircle
X(66258) = pole of line {20196, 40688} with respect to the dual conic of Yff parabola
X(66258) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2137), X(57666)}}, {{A, B, C, X(6553), X(44040)}}
X(66258) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {145, 2136, 63987}, {145, 51786, 12437}, {145, 66243, 57}, {12640, 36846, 3911}, {32426, 66256, 66205}, {66205, 66256, 64162}
X(66259) lies on these lines: {1, 528}, {145, 34689}, {390, 8163}, {519, 4547}, {529, 3635}, {1058, 12607}, {2829, 61286}, {2886, 10587}, {3058, 3623}, {3241, 57288}, {3244, 15170}, {3303, 6690}, {3616, 34699}, {3622, 49732}, {3742, 66241}, {3813, 6767}, {3816, 7080}, {3826, 64068}, {3871, 35023}, {3880, 40270}, {4301, 15570}, {5048, 33961}, {5220, 9797}, {5550, 34720}, {5794, 51779}, {5840, 33658}, {5842, 33179}, {5852, 34791}, {5854, 12433}, {5855, 9957}, {6284, 20057}, {6667, 27529}, {6691, 25439}, {6743, 58679}, {7680, 18543}, {9785, 42871}, {11019, 32157}, {11260, 30331}, {12575, 17768}, {15171, 51071}, {15888, 66065}, {17051, 63130}, {18530, 49169}, {21627, 42819}, {21630, 63282}, {31792, 44669}, {32426, 64162}, {38455, 63999}, {43179, 64205}
X(66259) = midpoint of X(i) and X(j) for these {i,j}: {3635, 15172}, {12575, 58609}, {66256, 66257}
X(66259) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {12575, 58609, 17768}, {64162, 66256, 66257}, {66256, 66257, 32426}
X(66260) lies on the cubic K1381 and these lines: {6, 11082}, {62, 36313}, {115, 30452}, {533, 5459}, {11136, 62199}, {15610, 58847}, {17403, 22511}, {18776, 42004}, {22738, 32037}, {35330, 61370}, {43229, 52868}, {44114, 66184}
X(66260) = tripolar centroid of X(20578)
X(66260) = X(i)-Ceva conjugate of X(j) for these (i,j): {14, 55223}, {17, 35444}
X(66260) = X(24041)-isoconjugate of X(34322)
X(66260) = X(3005)-Dao conjugate of X(34322)
X(66260) = crosssum of X(17402) and X(33527)
X(66260) = crossdifference of every pair of points on line {10410, 16807}
X(66260) = barycentric product X(i)*X(j) for these {i,j}: {14, 15610}, {115, 6672}, {533, 43967}
X(66260) = barycentric quotient X(i)/X(j) for these {i,j}: {3124, 34322}, {6672, 4590}, {15610, 299}, {43967, 11118}, {55223, 10410}
X(66261) lies on the cubic K1381 and these lines: {6, 11087}, {61, 36312}, {115, 30453}, {532, 5460}, {11135, 62200}, {15609, 58848}, {17402, 22510}, {18777, 42003}, {22739, 32036}, {35329, 61371}, {43228, 52867}, {44114, 66184}
X(66261) = tripolar centroid of X(20579)
X(66261) = X(i)-Ceva conjugate of X(j) for these (i,j): {13, 55221}, {18, 35443}
X(66261) = X(24041)-isoconjugate of X(34321)
X(66261) = X(3005)-Dao conjugate of X(34321)
X(66261) = crosssum of X(17403) and X(33526)
X(66261) = crossdifference of every pair of points on line {10409, 16806}
X(66261) = barycentric product X(i)*X(j) for these {i,j}: {13, 15609}, {115, 6671}, {532, 43968}
X(66261) = barycentric quotient X(i)/X(j) for these {i,j}: {3124, 34321}, {6671, 4590}, {15609, 298}, {43968, 11117}, {55221, 10409}
X(66262) lies on the cubic K1381 and these lines: {2, 17403}, {115, 23871}, {125, 526}, {141, 16536}, {233, 19294}, {302, 8838}, {471, 11081}, {532, 5459}, {624, 13162}, {2993, 11087}, {9205, 30468}, {15609, 46652}, {15610, 25178}, {19779, 34540}
X(66262) = midpoint of X(11126) and X(52220)
X(66262) = complement of X(17403)
X(66262) = complement of the isogonal conjugate of X(20579)
X(66262) = tripolar centroid of X(62631)
X(66262) = X(i)-complementary conjugate of X(j) for these (i,j): {14, 4369}, {301, 42327}, {661, 619}, {798, 40696}, {1109, 46651}, {2151, 8562}, {2154, 523}, {2643, 43962}, {3458, 14838}, {5994, 16598}, {8738, 8062}, {20579, 10}, {23896, 21254}, {30453, 8287}
X(66262) = X(i)-Ceva conjugate of X(j) for these (i,j): {338, 43962}, {2993, 523}, {13582, 23870}, {16771, 23872}, {19779, 23871}
X(66262) = X(1101)-isoconjugate of X(11087)
X(66262) = X(i)-Dao conjugate of X(j) for these (i,j): {523, 11087}, {647, 52203}, {11130, 249}, {15610, 52930}, {23871, 19779}, {23872, 16771}, {35443, 11600}, {35444, 17}, {38994, 16806}, {43962, 32036}, {47899, 65346}, {60342, 8603}
X(66262) = crosspoint of X(i) and X(j) for these (i,j): {16771, 23872}, {19779, 23871}
X(66262) = crosssum of X(i) and X(j) for these (i,j): {5994, 11141}, {16806, 51890}
X(66262) = crossdifference of every pair of points on line {1625, 5994}
X(66262) = barycentric product X(i)*X(j) for these {i,j}: {115, 11132}, {302, 30468}, {338, 11126}, {339, 10632}, {8838, 62551}, {11128, 43968}, {11135, 23962}, {16771, 43962}, {23871, 23872}, {23994, 35199}, {30465, 52220}
X(66262) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 11087}, {125, 52203}, {2088, 8603}, {6138, 16806}, {8838, 39295}, {10632, 250}, {11126, 249}, {11132, 4590}, {11135, 23357}, {16771, 57580}, {23283, 60051}, {23871, 32036}, {23872, 23896}, {30465, 11600}, {30468, 17}, {35199, 1101}, {43962, 19779}, {43968, 11085}, {52343, 37848}, {55221, 5994}, {64465, 47390}
X(66262) = {X(30468),X(62551)}-harmonic conjugate of X(43962)
X(66263) lies on the cubic K1381 and these lines: {2, 17402}, {115, 23870}, {125, 526}, {141, 16537}, {233, 19295}, {303, 8836}, {470, 11086}, {533, 5460}, {623, 13162}, {2992, 11082}, {9204, 30465}, {15609, 25173}, {15610, 46653}, {19778, 34541}
X(66263) = midpoint of X(11127) and X(52221)
X(66263) = complement of X(17402)
X(66263) = complement of the isogonal conjugate of X(20578)
X(66263) = tripolar centroid of X(62632)
X(66263) = X(i)-complementary conjugate of X(j) for these (i,j): {13, 4369}, {300, 42327}, {661, 618}, {798, 40695}, {1109, 46650}, {2152, 8562}, {2153, 523}, {2643, 43961}, {3457, 14838}, {5995, 16598}, {8737, 8062}, {20578, 10}, {23895, 21254}, {30452, 8287}
X(66263) = X(i)-Ceva conjugate of X(j) for these (i,j): {338, 43961}, {2992, 523}, {13582, 23871}, {16770, 23873}, {19778, 23870}
X(66263) = X(1101)-isoconjugate of X(11082)
X(66263) = X(i)-Dao conjugate of X(j) for these (i,j): {523, 11082}, {647, 52204}, {11131, 249}, {15609, 52929}, {23870, 19778}, {23873, 16770}, {35443, 18}, {35444, 11601}, {38993, 16807}, {43961, 32037}, {47898, 65347}, {60342, 8604}
X(66263) = crosspoint of X(i) and X(j) for these (i,j): {16770, 23873}, {19778, 23870}
X(66263) = crosssum of X(i) and X(j) for these (i,j): {5995, 11142}, {16807, 51891}
X(66263) = crossdifference of every pair of points on line {1625, 5995}
X(66263) = barycentric product X(i)*X(j) for these {i,j}: {115, 11133}, {303, 30465}, {338, 11127}, {339, 10633}, {8836, 62551}, {11129, 43967}, {11136, 23962}, {16770, 43961}, {23870, 23873}, {23994, 35198}, {30468, 52221}
X(66263) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 11082}, {125, 52204}, {2088, 8604}, {6137, 16807}, {8836, 39295}, {10633, 250}, {11127, 249}, {11133, 4590}, {11136, 23357}, {16770, 57579}, {23284, 60052}, {23870, 32037}, {23873, 23895}, {30465, 18}, {30468, 11601}, {35198, 1101}, {43961, 19778}, {43967, 11080}, {52342, 37850}, {55223, 5995}, {64464, 47390}
X(66263) = {X(30465),X(62551)}-harmonic conjugate of X(43961)
X(66264) lies on the cubic K1381 and these lines: {68, 7888}, {115, 525}, {122, 125}, {520, 6784}, {599, 45311}, {2482, 17702}, {3124, 13302}, {3564, 6055}, {5449, 7794}, {6388, 44564}, {6721, 52170}, {7687, 34360}, {7801, 14852}, {7821, 12359}, {7863, 9927}, {7873, 44158}, {31274, 32661}, {34767, 65756}, {34897, 38724}, {44569, 45312}
X(66264) = tripolar centroid of X(62645)
X(66264) = X(i)-complementary conjugate of X(j) for these (i,j): {40801, 4369}, {55972, 42327}, {64983, 21259}
X(66264) = X(i)-Ceva conjugate of X(j) for these (i,j): {37174, 64919}, {56267, 525}, {59257, 6368}
X(66264) = X(i)-isoconjugate of X(j) for these (i,j): {1101, 47735}, {23995, 42298}
X(66264) = X(i)-Dao conjugate of X(j) for these (i,j): {523, 47735}, {525, 56267}, {647, 7612}, {18314, 42298}, {54259, 5921}, {64919, 37174}
X(66264) = crosspoint of X(i) and X(j) for these (i,j): {525, 56267}, {37174, 64919}
X(66264) = crosssum of X(112) and X(59229)
X(66264) = crossdifference of every pair of points on line {112, 61213}
X(66264) = barycentric product X(i)*X(j) for these {i,j}: {115, 10008}, {125, 1007}, {338, 59211}, {339, 1351}, {525, 64919}, {15526, 37174}, {17879, 51288}, {36793, 59229}
X(66264) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 47735}, {125, 7612}, {338, 42298}, {1007, 18020}, {1351, 250}, {10008, 4590}, {15526, 56267}, {37174, 23582}, {51288, 24000}, {59211, 249}, {59229, 23964}, {64919, 648}
X(66265) lies on the cubic K1381 and these lines: {115, 524}, {351, 690}, {543, 5468}, {599, 5465}, {620, 51226}, {671, 61190}, {1648, 14971}, {9144, 14916}, {9166, 45291}, {9167, 11053}, {10717, 15342}, {14444, 31274}, {15300, 38239}
X(66265) = reflection of X(i) in X(j) for these {i,j}: {2482, 1641}, {51226, 620}
X(66265) = tripolar centroid of X(62672)
X(66266) lies on the cubic K1381 and these lines: {30, 115}, {1636, 1637}, {2482, 46229}, {4240, 6103}, {6128, 45311}, {44564, 45331}, {44569, 45312}
X(66266) = tripolar centroid of X(65716)
X(66266) = crossdifference of every pair of points on line {74, 34291}
X(66267) lies on the X-parabola of ABC (see X(12065)) and these lines: {2, 881}, {141, 523}, {427, 2501}, {476, 805}, {512, 7804}, {685, 4230}, {694, 804}, {733, 9076}, {850, 2528}, {876, 4581}, {892, 9178}, {1031, 17500}, {1502, 23285}, {1648, 35366}, {1916, 5466}, {2489, 51988}, {2492, 9468}, {2799, 23596}, {4024, 15523}, {5996, 8371}, {8430, 51494}, {8842, 45689}, {9479, 14316}, {11123, 65031}, {14970, 43098}, {15328, 36214}, {17941, 41209}, {17980, 47206}, {18105, 35222}, {18858, 53691}, {18896, 35522}, {19130, 32473}, {20027, 53331}, {23350, 36897}, {25423, 45329}, {30229, 64479}, {31065, 61418}, {37134, 60055}, {38393, 64258}, {40708, 62645}, {44768, 65327}, {58112, 59026}
X(66267) = isogonal conjugate of X(56980)
X(66267) = isotomic conjugate of X(17941)
X(66267) = isotomic conjugate of the isogonal conjugate of X(882)
X(66267) = isogonal conjugate of the isotomic conjugate of X(56981)
X(66267) = X(9477)-anticomplementary conjugate of X(21294)
X(66267) = X(i)-Ceva conjugate of X(j) for these (i,j): {18829, 1916}, {18858, 36897}, {39291, 47734}, {59026, 14970}, {65351, 694}
X(66267) = X(i)-cross conjugate of X(j) for these (i,j): {2799, 523}, {43665, 60036}
X(66267) = X(i)-isoconjugate of X(j) for these (i,j): {1, 56980}, {6, 56982}, {31, 17941}, {99, 1933}, {110, 1580}, {163, 385}, {419, 4575}, {560, 880}, {662, 1691}, {732, 34072}, {799, 14602}, {804, 1101}, {805, 51903}, {827, 2236}, {1576, 1966}, {1634, 56971}, {1926, 14574}, {1967, 46294}, {4164, 4570}, {4558, 56828}, {4579, 5009}, {4592, 44089}, {4593, 56915}, {4599, 8623}, {4602, 18902}, {5026, 36142}, {5027, 24041}, {9468, 46295}, {12215, 32676}, {14295, 23995}, {23997, 40820}, {24019, 58354}, {36034, 51430}, {36084, 36213}, {36134, 63736}, {37134, 51318}, {43754, 56679}
X(66267) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 17941}, {3, 56980}, {9, 56982}, {115, 385}, {136, 419}, {137, 63736}, {244, 1580}, {339, 35540}, {523, 804}, {647, 24284}, {1084, 1691}, {1649, 11183}, {3005, 5027}, {3124, 8623}, {3258, 51430}, {4858, 1966}, {4988, 4107}, {5139, 44089}, {6374, 880}, {8290, 46294}, {9467, 1576}, {15449, 732}, {15526, 12215}, {18314, 14295}, {23992, 5026}, {35071, 58354}, {35078, 4027}, {35088, 5976}, {35971, 16985}, {36901, 3978}, {38970, 39931}, {38986, 1933}, {38987, 36213}, {38996, 14602}, {39044, 46295}, {39092, 110}, {40810, 41337}, {41172, 46888}, {46669, 19576}, {47648, 2421}, {50330, 4164}, {55043, 2236}, {55050, 56915}, {55065, 4039}, {55152, 12829}, {60342, 39495}, {62562, 40820}
X(66267) = cevapoint of X(i) and X(j) for these (i,j): {523, 9479}, {868, 8029}, {3005, 3569}
X(66267) = crosspoint of X(i) and X(j) for these (i,j): {98, 65278}, {1916, 18829}, {14970, 59026}, {18858, 36897}
X(66267) = crosssum of X(i) and X(j) for these (i,j): {511, 5113}, {732, 24284}, {804, 63736}, {1691, 5027}, {8623, 62454}
X(66267) = trilinear pole of line {115, 826}
X(66267) = crossdifference of every pair of points on line {1691, 8623}
X(66267) = barycentric product X(i)*X(j) for these {i,j}: {6, 56981}, {76, 882}, {115, 18829}, {125, 65351}, {257, 35352}, {327, 39680}, {338, 805}, {512, 18896}, {523, 1916}, {661, 1934}, {669, 44160}, {694, 850}, {733, 23285}, {826, 14970}, {868, 39291}, {881, 1502}, {1109, 37134}, {1577, 1581}, {1967, 20948}, {2501, 40708}, {2799, 36897}, {2970, 65327}, {3267, 17980}, {8029, 39292}, {9468, 44173}, {9477, 9479}, {14295, 41517}, {14618, 36214}, {15449, 59026}, {17938, 23962}, {18858, 35088}, {18872, 52632}, {38947, 46245}, {39691, 41209}, {40810, 43665}, {43763, 62418}, {47734, 62645}, {52618, 56978}, {56977, 58784}, {60245, 60577}
X(66267) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 56982}, {2, 17941}, {6, 56980}, {76, 880}, {115, 804}, {125, 24284}, {148, 46291}, {262, 39681}, {338, 14295}, {385, 46294}, {512, 1691}, {520, 58354}, {523, 385}, {525, 12215}, {661, 1580}, {669, 14602}, {688, 56915}, {690, 5026}, {694, 110}, {733, 827}, {798, 1933}, {804, 4027}, {805, 249}, {826, 732}, {850, 3978}, {881, 32}, {882, 6}, {1577, 1966}, {1581, 662}, {1637, 51430}, {1648, 11183}, {1916, 99}, {1934, 799}, {1966, 46295}, {1967, 163}, {2088, 39495}, {2395, 40820}, {2489, 44089}, {2501, 419}, {2533, 27982}, {2799, 5976}, {3005, 8623}, {3120, 4107}, {3124, 5027}, {3125, 4164}, {3569, 36213}, {4010, 53681}, {4024, 4039}, {4444, 17103}, {5027, 51318}, {5466, 60863}, {8061, 2236}, {8789, 14574}, {9293, 46290}, {9426, 18902}, {9468, 1576}, {9477, 65278}, {9479, 8290}, {12077, 63736}, {14223, 57452}, {14251, 14966}, {14316, 19571}, {14618, 17984}, {14970, 4577}, {15391, 43754}, {16230, 39931}, {16732, 14296}, {17938, 23357}, {17970, 32661}, {17980, 112}, {17994, 51324}, {18105, 56975}, {18829, 4590}, {18858, 57562}, {18872, 5467}, {18896, 670}, {20948, 1926}, {22260, 2086}, {23285, 35540}, {23596, 56696}, {30671, 40731}, {34212, 51343}, {34238, 2715}, {35352, 894}, {36214, 4558}, {36897, 2966}, {37134, 24041}, {38947, 40866}, {39291, 57991}, {39292, 31614}, {39680, 182}, {40708, 4563}, {40810, 2421}, {41167, 46888}, {41517, 805}, {43534, 18047}, {43665, 14382}, {43763, 4599}, {44160, 4609}, {44173, 14603}, {46040, 16069}, {46292, 9218}, {47648, 41337}, {47734, 4226}, {52618, 56979}, {52651, 3573}, {52700, 9181}, {55122, 12829}, {55240, 56971}, {56977, 4576}, {56978, 1634}, {56981, 76}, {58784, 56976}, {59026, 57545}, {60028, 51510}, {60226, 47646}, {60338, 47736}, {60577, 27958}, {62417, 62454}, {65351, 18020}
X(66268) lies on the X-parabola (see X(12065)) and these lines: {2, 57295}, {20, 523}, {525, 33702}, {685, 53351}, {850, 14615}, {1249, 2501}, {1294, 5896}, {1650, 12079}, {2395, 34570}, {4024, 8804}, {4036, 52345}, {5466, 44877}, {8057, 33893}, {9033, 10152}, {14249, 18504}, {33897, 55127}, {42399, 52452}
X(66268) = isogonal conjugate of X(5502)
X(66268) = anticomplement of X(57295)
X(66268) = X(14345)-cross conjugate of X(525)
X(66268) = X(i)-isoconjugate of X(j) for these (i,j): {1, 5502}, {162, 21663}, {163, 47296}, {662, 40135}, {1576, 18699}, {4575, 10151}, {13202, 36034}, {32676, 40996}
X(66268) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 5502}, {115, 47296}, {125, 21663}, {136, 10151}, {1084, 40135}, {3258, 13202}, {4858, 18699}, {15526, 40996}, {16177, 11598}
X(66268) = cevapoint of X(i) and X(j) for these (i,j): {30, 5972}, {512, 46425}, {523, 9033}
X(66268) = crosspoint of X(16077) and X(46206)
X(66268) = crosssum of X(9409) and X(34569)
X(66268) = trilinear pole of line {115, 6587}
X(66268) = crossdifference of every pair of points on line {21663, 40135}
X(66268) = barycentric product X(i)*X(j) for these {i,j}: {523, 44877}, {850, 34570}
X(66268) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 5502}, {512, 40135}, {523, 47296}, {525, 40996}, {647, 21663}, {1577, 18699}, {1637, 13202}, {2501, 10151}, {5896, 46639}, {14345, 52874}, {34570, 110}, {44877, 99}, {46425, 11598}, {59652, 51998}
X(66269) lies on the X-parabola (see X(12065)) and these lines: {83, 523}, {308, 850}, {476, 58112}, {755, 39427}, {2501, 32085}, {4024, 18082}, {4036, 56186}, {5466, 18010}, {14970, 43098}, {31065, 40425}, {52395, 58784}
X(66269) = X(i)-isoconjugate of X(j) for these (i,j): {163, 52906}, {1101, 33907}, {1634, 2244}, {4020, 46543}, {14403, 24037}, {24041, 62456}, {52958, 55239}
X(66269) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 52906}, {512, 14403}, {523, 33907}, {3005, 62456}
X(66269) = trilinear pole of line {115, 58784}
X(66269) = barycentric product X(i)*X(j) for these {i,j}: {338, 58112}, {755, 52618}, {43098, 58784}
X(66269) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 33907}, {523, 52906}, {755, 1634}, {1084, 14403}, {3124, 62456}, {18105, 8627}, {32085, 46543}, {34294, 14420}, {43098, 4576}, {51906, 14428}, {52618, 35549}, {55240, 2244}, {58112, 249}, {58784, 754}
X(66270) lies on the X-parabola (see X(12065)) and these lines: {42, 2501}, {71, 523}, {306, 850}, {476, 35182}, {1796, 4608}, {2259, 14775}, {2359, 4581}, {2989, 60042}, {3690, 4024}, {3949, 4036}
X(66270) = X(i)-isoconjugate of X(j) for these (i,j): {81, 4243}, {757, 56742}, {1101, 55125}, {1736, 4556}, {8608, 52935}
X(66270) = X(i)-Dao conjugate of X(j) for these (i,j): {523, 55125}, {40586, 4243}, {40607, 56742}, {55065, 48381}
X(66270) = trilinear pole of line {115, 55230}
X(66270) = barycentric product X(i)*X(j) for these {i,j}: {12, 60569}, {338, 35182}, {339, 32699}, {917, 4064}, {2989, 4024}, {20902, 36107}, {55230, 57997}
X(66270) = barycentric quotient X(i)/X(j) for these {i,j}: {42, 4243}, {115, 55125}, {1500, 56742}, {2989, 4610}, {4024, 48381}, {4079, 8608}, {4705, 1736}, {32699, 250}, {35182, 249}, {55230, 916}, {57997, 55229}, {60569, 261}
X(66271) lies on the X-parabola (see X(12065)) and these lines: {6, 58784}, {39, 523}, {141, 850}, {688, 27375}, {755, 39427}, {826, 41440}, {1843, 2501}, {2395, 51869}, {3954, 4036}, {4024, 21035}, {5466, 46154}, {8599, 30489}, {31065, 52554}, {33666, 53495}, {56978, 66267}
X(66271) = X(888)-cross conjugate of X(523)
X(66271) = X(i)-isoconjugate of X(j) for these (i,j): {662, 5201}, {4575, 46511}, {36133, 38998}
X(66271) = X(i)-Dao conjugate of X(j) for these (i,j): {136, 46511}, {1084, 5201}, {39010, 38998}
X(66271) = cevapoint of X(i) and X(j) for these (i,j): {826, 9148}, {8029, 52625}
X(66271) = trilinear pole of line {115, 3005}
X(66271) = barycentric product X(i)*X(j) for these {i,j}: {523, 60111}, {826, 39427}
X(66271) = barycentric quotient X(i)/X(j) for these {i,j}: {512, 5201}, {888, 38998}, {2501, 46511}, {39427, 4577}, {60111, 99}
X(66272) lies on the X-parabola (see X(12065)) and these lines: {12, 523}, {80, 60029}, {476, 2222}, {655, 60055}, {685, 65329}, {850, 34388}, {892, 35174}, {1769, 52383}, {1825, 24006}, {2006, 60043}, {2501, 8736}, {4036, 21682}, {4581, 60074}, {5466, 60091}, {15328, 52391}, {18815, 60042}, {44768, 65299}, {52356, 56321}, {55250, 55253}
X(66272) = X(35174)-Ceva conjugate of X(60091)
X(66272) = X(i)-isoconjugate of X(j) for these (i,j): {36, 4636}, {215, 65283}, {249, 654}, {662, 4282}, {1101, 3738}, {1983, 2185}, {2150, 4585}, {2323, 4556}, {2361, 52935}, {3615, 52603}, {3904, 23357}, {4575, 17515}, {4610, 52426}, {4612, 7113}, {4996, 36069}, {6369, 14587}, {8648, 24041}, {34544, 37140}, {44428, 47390}, {52407, 52914}, {55237, 57657}
X(66272) = X(i)-Dao conjugate of X(j) for these (i,j): {136, 17515}, {523, 3738}, {1084, 4282}, {3005, 8648}, {15898, 4636}, {38982, 4996}, {55065, 4511}, {56325, 4585}, {62570, 55237}
X(66272) = crosspoint of X(35174) and X(60091)
X(66272) = crosssum of X(4282) and X(8648)
X(66272) = trilinear pole of line {115, 55197}
X(66272) = crossdifference of every pair of points on line {4282, 34544}
X(66272) = barycentric product X(i)*X(j) for these {i,j}: {12, 60074}, {115, 35174}, {125, 65329}, {338, 2222}, {523, 60091}, {655, 1109}, {1091, 60571}, {1365, 36804}, {1411, 52623}, {1441, 55238}, {1577, 52383}, {1825, 14592}, {2006, 4036}, {2610, 57645}, {2643, 46405}, {2970, 65299}, {4024, 18815}, {6354, 52356}, {6370, 34535}, {7178, 15065}, {8901, 62735}, {10412, 16577}, {14616, 55197}, {14618, 52391}, {20566, 57185}, {23994, 32675}
X(66272) = barycentric quotient X(i)/X(j) for these {i,j}: {12, 4585}, {80, 4612}, {115, 3738}, {181, 1983}, {512, 4282}, {655, 24041}, {1109, 3904}, {1365, 3960}, {1411, 4556}, {1441, 55237}, {1825, 14590}, {2006, 52935}, {2161, 4636}, {2222, 249}, {2501, 17515}, {2610, 4996}, {2643, 654}, {3124, 8648}, {4024, 4511}, {4036, 32851}, {4079, 2361}, {4705, 2323}, {8736, 4242}, {8754, 65104}, {14582, 1789}, {14616, 55196}, {15065, 645}, {16577, 10411}, {18815, 4610}, {20566, 4631}, {21131, 53525}, {21741, 52603}, {21833, 53562}, {30572, 17191}, {32675, 1101}, {34535, 65283}, {34857, 5546}, {35174, 4590}, {36804, 6064}, {41221, 2600}, {42666, 34544}, {46405, 24037}, {50487, 52426}, {52356, 7058}, {52383, 662}, {52391, 4558}, {55197, 758}, {55234, 52407}, {55238, 21}, {56285, 65162}, {57185, 36}, {60074, 261}, {60091, 99}, {61052, 21758}, {63750, 37140}, {64835, 52914}, {65329, 18020}
X(66273) lies on the X-parabola (see X(12065)) and these lines: {37, 2501}, {72, 523}, {476, 6099}, {685, 65344}, {850, 20336}, {915, 43659}, {943, 14775}, {1791, 4581}, {1807, 2804}, {2990, 60043}, {3695, 4036}, {3949, 4024}, {12532, 55126}, {45393, 60029}, {60055, 65248}
X(66273) = X(i)-isoconjugate of X(j) for these (i,j): {58, 3658}, {60, 61231}, {270, 56410}, {593, 61239}, {849, 56881}, {1101, 55126}, {4556, 8609}, {4636, 18838}, {11570, 36069}, {51649, 52914}
X(66273) = X(i)-Dao conjugate of X(j) for these (i,j): {10, 3658}, {523, 55126}, {4075, 56881}, {38982, 11570}, {55065, 1737}
X(66273) = trilinear pole of line {115, 55232}
X(66273) = barycentric product X(i)*X(j) for these {i,j}: {125, 65344}, {321, 3657}, {338, 6099}, {339, 32698}, {1109, 65248}, {2990, 4036}, {4064, 37203}, {20902, 36106}, {34388, 61214}, {36052, 52623}, {46133, 55232}
X(66273) = barycentric quotient X(i)/X(j) for these {i,j}: {37, 3658}, {115, 55126}, {594, 56881}, {756, 61239}, {2171, 61231}, {2197, 56410}, {2610, 11570}, {2990, 52935}, {3657, 81}, {4024, 1737}, {4036, 48380}, {4064, 914}, {4705, 8609}, {6099, 249}, {32698, 250}, {36052, 4556}, {45393, 4612}, {46133, 55231}, {55230, 2252}, {55232, 912}, {55234, 51649}, {57185, 18838}, {61214, 60}, {65248, 24041}, {65344, 18020}
X(66274) lies on the X-parabola (see X(12065)) and these lines: {101, 523}, {190, 850}, {1018, 4036}, {2501, 8750}, {4024, 4557}, {4608, 4629}, {4628, 58784}, {5134, 39993}, {10412, 56742}, {12079, 17747}, {18808, 41321}
X(66274) = isogonal conjugate of X(42744)
X(66274) = X(i)-isoconjugate of X(j) for these (i,j): {1, 42744}, {81, 2774}, {905, 2073}, {1019, 56808}
X(66274) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 42744}, {40586, 2774}
X(66274) = trilinear pole of line {42, 115}
X(66274) = barycentric product X(i)*X(j) for these {i,j}: {10, 2690}, {1897, 38535}
X(66274) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 42744}, {42, 2774}, {2690, 86}, {4557, 56808}, {8750, 2073}, {38535, 4025}, {39993, 57214}
X(66275) lies on the X-parabola (see X(12065)) and these lines: {12, 4036}, {65, 523}, {104, 60029}, {476, 2720}, {685, 60568}, {850, 1441}, {892, 54953}, {961, 2401}, {1254, 21134}, {1411, 30725}, {1880, 2501}, {2171, 4024}, {14775, 43933}, {17097, 43728}, {34051, 60043}, {37136, 60055}, {48276, 61238}
X(66275) = X(i)-isoconjugate of X(j) for these (i,j): {249, 46393}, {283, 4246}, {284, 64828}, {517, 4636}, {643, 859}, {1098, 23981}, {1101, 2804}, {2150, 2397}, {2183, 4612}, {2185, 2427}, {7054, 24029}, {17139, 65375}, {22350, 52914}, {24041, 53549}, {36069, 64139}, {55258, 57657}
X(66275) = X(i)-Dao conjugate of X(j) for these (i,j): {523, 2804}, {3005, 53549}, {15267, 23981}, {38982, 64139}, {40590, 64828}, {40622, 17139}, {55060, 859}, {55065, 6735}, {56325, 2397}, {62570, 55258}
X(66275) = trilinear pole of line {115, 57185}
X(66275) = barycentric product X(i)*X(j) for these {i,j}: {12, 2401}, {115, 54953}, {125, 65331}, {338, 2720}, {339, 32702}, {1109, 37136}, {1365, 13136}, {1441, 55259}, {2250, 4077}, {2423, 34388}, {4036, 34051}, {6354, 43728}, {7178, 38955}, {7180, 57984}, {18816, 57185}, {20902, 36110}, {21054, 47317}, {21134, 39294}, {23994, 32669}, {26942, 43933}, {36123, 57243}
X(66275) = barycentric quotient X(i)/X(j) for these {i,j}: {12, 2397}, {65, 64828}, {104, 4612}, {115, 2804}, {181, 2427}, {909, 4636}, {1254, 24029}, {1365, 10015}, {1441, 55258}, {1880, 4246}, {2250, 643}, {2401, 261}, {2423, 60}, {2610, 64139}, {2643, 46393}, {2720, 249}, {3124, 53549}, {4024, 6735}, {7178, 17139}, {7180, 859}, {8736, 53151}, {13136, 6064}, {18816, 4631}, {20975, 52307}, {21131, 35015}, {32669, 1101}, {32702, 250}, {34051, 52935}, {37136, 24041}, {38955, 645}, {43728, 7058}, {43933, 46103}, {51663, 16586}, {53545, 23788}, {54953, 4590}, {55195, 14010}, {55197, 17757}, {55232, 51379}, {55234, 22350}, {55259, 21}, {57185, 517}, {57984, 62534}, {61052, 3310}, {61238, 1098}, {65331, 18020}
X(66276) lies on the X-parabola (see X(12065)) and these lines: {103, 476}, {125, 4024}, {423, 685}, {516, 47107}, {523, 4466}, {892, 18025}, {1815, 44768}, {2395, 55257}, {2400, 60042}, {2501, 3120}, {4036, 20902}, {4608, 15634}, {24315, 53133}, {36101, 60055}
X(66276) = X(52781)-Ceva conjugate of X(55257)
X(66276) = X(i)-isoconjugate of X(j) for these (i,j): {249, 910}, {516, 1101}, {2426, 52935}, {4241, 4575}, {23357, 30807}, {23995, 35517}
X(66276) = X(i)-Dao conjugate of X(j) for these (i,j): {136, 4241}, {523, 516}, {647, 26006}, {4988, 14953}, {18314, 35517}, {36901, 55256}, {55065, 2398}
X(66276) = trilinear pole of line {115, 21134}
X(66276) = barycentric product X(i)*X(j) for these {i,j}: {103, 338}, {115, 18025}, {125, 52781}, {594, 15634}, {850, 55257}, {911, 23994}, {1109, 36101}, {1815, 2970}, {2400, 4024}, {2424, 52623}, {2643, 57996}, {4064, 53150}, {4092, 52156}, {20902, 36122}, {21131, 57928}, {57243, 60583}
X(66276) = barycentric quotient X(i)/X(j) for these {i,j}: {103, 249}, {115, 516}, {125, 26006}, {338, 35517}, {850, 55256}, {911, 1101}, {1109, 30807}, {1365, 43035}, {2400, 4610}, {2424, 4556}, {2501, 4241}, {2643, 910}, {3120, 14953}, {4024, 2398}, {4036, 42719}, {4079, 2426}, {4092, 40869}, {8754, 1886}, {15634, 1509}, {18025, 4590}, {21043, 17747}, {21046, 51366}, {21131, 676}, {21134, 39470}, {32657, 47390}, {36101, 24041}, {52156, 7340}, {52781, 18020}, {55257, 110}, {57996, 24037}
X(66277) lies on the X-parabola (see X(12065)) and these lines: {1, 2501}, {63, 523}, {72, 4024}, {92, 57083}, {293, 2395}, {304, 850}, {306, 4036}, {1214, 47887}, {1956, 62519}, {2349, 18808}, {2582, 39240}, {2583, 39241}, {6366, 9719}, {34055, 58784}
X(66277) = X(14414)-cross conjugate of X(522)
X(66277) = X(i)-isoconjugate of X(j) for these (i,j): {109, 1776}, {112, 64888}, {32676, 51608}
X(66277) = X(i)-Dao conjugate of X(j) for these (i,j): {11, 1776}, {15526, 51608}, {34591, 64888}
X(66277) = cevapoint of X(523) and X(6366)
X(66277) = trilinear pole of line {115, 656}
X(66277) = barycentric quotient X(i)/X(j) for these {i,j}: {525, 51608}, {650, 1776}, {656, 64888}, {14414, 52880}
X(66278) lies on the X-parabola (see X(12065)) and these lines: {76, 523}, {264, 2501}, {290, 2395}, {300, 20578}, {301, 20579}, {308, 53347}, {313, 4024}, {476, 9150}, {670, 34290}, {685, 32717}, {729, 2367}, {850, 1502}, {880, 886}, {882, 57993}, {3114, 46778}, {3978, 9178}, {4036, 27801}, {4581, 40827}, {5466, 14295}, {8599, 40826}, {10412, 20573}, {15328, 40832}, {18896, 35522}, {33919, 56981}, {34385, 55253}, {34389, 55199}, {34390, 55201}, {37132, 37219}, {50946, 57903}, {52632, 64258}, {53153, 57544}, {53154, 57543}
X(66278) = isotomic conjugate of X(5118)
X(66278) = isotomic conjugate of the isogonal conjugate of X(60028)
X(66278) = X(886)-Ceva conjugate of X(34087)
X(66278) = X(35366)-cross conjugate of X(60028)
X(66278) = X(i)-isoconjugate of X(j) for these (i,j): {31, 5118}, {163, 3231}, {560, 23342}, {662, 33875}, {887, 24041}, {888, 1101}, {1576, 2234}, {1917, 63747}, {4575, 46522}, {9148, 23995}, {24037, 65497}, {24039, 41294}, {34072, 52961}
X(66278) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 5118}, {115, 3231}, {136, 46522}, {512, 65497}, {523, 888}, {1084, 33875}, {3005, 887}, {4858, 2234}, {6374, 23342}, {15449, 52961}, {18314, 9148}, {35088, 6786}, {36901, 538}, {55065, 52894}
X(66278) = crosspoint of X(886) and X(34087)
X(66278) = crosssum of X(887) and X(33875)
X(66278) = trilinear pole of line {115, 850}
X(66278) = barycentric product X(i)*X(j) for these {i,j}: {76, 60028}, {115, 886}, {308, 35366}, {338, 9150}, {523, 34087}, {729, 44173}, {850, 3228}, {1502, 63749}, {3124, 57993}, {14608, 52632}, {20948, 37132}, {23962, 32717}, {23994, 36133}, {51510, 56981}
X(66278) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 5118}, {76, 23342}, {115, 888}, {338, 9148}, {512, 33875}, {523, 3231}, {729, 1576}, {826, 52961}, {850, 538}, {886, 4590}, {1084, 65497}, {1502, 63747}, {1577, 2234}, {2501, 46522}, {2799, 6786}, {3124, 887}, {3228, 110}, {4024, 52894}, {4036, 52893}, {5466, 14609}, {8029, 52625}, {9148, 52067}, {9150, 249}, {14608, 5467}, {22260, 1645}, {32717, 23357}, {34087, 99}, {35366, 39}, {35522, 45672}, {36133, 1101}, {37132, 163}, {40495, 30938}, {43665, 36822}, {44173, 30736}, {51510, 56980}, {52632, 52756}, {52752, 2420}, {52762, 9181}, {52765, 14966}, {57459, 41412}, {57540, 32717}, {57993, 34537}, {60028, 6}, {63749, 32}
X(66279) lies on the X-parabola (see X(12065)) and these lines: {8, 523}, {281, 2501}, {476, 6083}, {850, 3596}, {2321, 4024}, {2395, 15628}, {3701, 4036}, {4404, 6757}, {4581, 50351}, {5466, 60251}, {6370, 6740}, {15328, 56103}, {53341, 60055}
X(66279) = X(i)-isoconjugate of X(j) for these (i,j): {163, 35466}, {1101, 6089}, {1884, 4575}
X(66279) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 35466}, {136, 1884}, {523, 6089}, {6741, 44669}
X(66279) = cevapoint of X(i) and X(j) for these (i,j): {523, 6370}, {758, 16598}
X(66279) = trilinear pole of line {115, 3700}
X(66279) = barycentric product X(i)*X(j) for these {i,j}: {75, 35354}, {338, 6083}, {523, 60251}
X(66279) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 6089}, {523, 35466}, {2501, 1884}, {2533, 27970}, {3700, 44669}, {6083, 249}, {17058, 65463}, {35354, 1}, {60251, 99}
X(66280) lies on the X-parabola (see X(12065)) and these lines: {2, 38982}, {8, 58076}, {80, 758}, {100, 523}, {291, 21907}, {526, 64688}, {666, 9979}, {668, 850}, {901, 6089}, {1018, 4024}, {1783, 2501}, {3952, 4036}, {4427, 56321}, {4581, 53349}, {4596, 4608}, {4674, 5620}, {5379, 14775}, {5380, 5466}, {6370, 51562}, {10412, 56881}, {12079, 17757}, {18808, 53151}, {21956, 64258}
X(66280) = isogonal conjugate of X(42741)
X(66280) = isotomic conjugate of X(65669)
X(66280) = anticomplement of X(38982)
X(66280) = isotomic conjugate of the anticomplement of X(2610)
X(66280) = X(i)-cross conjugate of X(j) for these (i,j): {2610, 2}, {55238, 4080}
X(66280) = X(i)-isoconjugate of X(j) for these (i,j): {1, 42741}, {21, 51646}, {31, 65669}, {58, 8674}, {86, 42670}, {513, 5127}, {514, 19622}, {649, 37783}, {1019, 17796}, {1459, 2074}, {1790, 47235}, {3737, 5172}, {32849, 57129}, {36034, 57447}, {36069, 38982}
X(66280) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 65669}, {3, 42741}, {10, 8674}, {3258, 57447}, {5375, 37783}, {39026, 5127}, {40600, 42670}, {40611, 51646}
X(66280) = cevapoint of X(i) and X(j) for these (i,j): {10, 6370}, {513, 50757}, {523, 758}, {3738, 4999}
X(66280) = crosspoint of X(35156) and X(65238)
X(66280) = trilinear pole of line {37, 115}
X(66280) = barycentric product X(i)*X(j) for these {i,j}: {10, 65238}, {37, 35156}, {190, 5620}, {321, 1290}, {3952, 21907}, {4552, 11604}
X(66280) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 65669}, {6, 42741}, {37, 8674}, {100, 37783}, {101, 5127}, {213, 42670}, {692, 19622}, {1290, 81}, {1400, 51646}, {1637, 57447}, {1783, 2074}, {1824, 47235}, {2610, 38982}, {3952, 32849}, {4557, 17796}, {4559, 5172}, {5620, 514}, {11604, 4560}, {21907, 7192}, {35156, 274}, {61170, 41542}, {61171, 41541}, {61178, 37799}, {65238, 86}
X(66281) lies on the X-parabola (see X(12065)) and these lines: {10, 850}, {42, 523}, {291, 4453}, {476, 32682}, {659, 6187}, {675, 28482}, {756, 4036}, {1126, 4608}, {1500, 4024}, {2224, 60043}, {2333, 2501}, {4581, 60573}, {5466, 60135}, {23887, 65660}, {36087, 60055}, {53361, 56321}
X(66281) = X(i)-isoconjugate of X(j) for these (i,j): {593, 42723}, {662, 14964}, {674, 52935}, {1101, 23887}, {1444, 4249}, {2225, 4610}, {4556, 57015}, {4612, 43039}, {4623, 8618}, {24041, 65703}
X(66281) = X(i)-Dao conjugate of X(j) for these (i,j): {523, 23887}, {1084, 14964}, {3005, 65703}, {55065, 3006}
X(66281) = crosssum of X(14964) and X(65703)
X(66281) = trilinear pole of line {115, 4079}
X(66281) = barycentric product X(i)*X(j) for these {i,j}: {12, 60573}, {338, 32682}, {523, 60135}, {675, 4024}, {1109, 36087}, {2224, 4036}, {4079, 43093}, {4705, 37130}
X(66281) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 23887}, {512, 14964}, {675, 4610}, {756, 42723}, {2224, 52935}, {2333, 4249}, {3124, 65703}, {4024, 3006}, {4079, 674}, {4705, 57015}, {32682, 249}, {36087, 24041}, {37130, 4623}, {43093, 52612}, {50487, 2225}, {53581, 8618}, {60135, 99}, {60573, 261}
X(66282) lies on the X-parabola (see X(12065)) and these lines: {37, 523}, {105, 53686}, {294, 60029}, {321, 850}, {335, 918}, {476, 919}, {594, 4036}, {650, 6690}, {666, 892}, {673, 60042}, {685, 65333}, {756, 4024}, {885, 2298}, {1024, 2161}, {1255, 4608}, {1824, 2501}, {2171, 4079}, {2284, 53358}, {2395, 56853}, {5466, 13576}, {6354, 57185}, {16600, 21201}, {18098, 58784}, {21132, 21808}, {28132, 40500}, {36086, 60055}
X(66282) = X(i)-Ceva conjugate of X(j) for these (i,j): {666, 13576}, {65333, 56853}
X(66282) = X(4155)-cross conjugate of X(523)
X(66282) = X(i)-isoconjugate of X(j) for these (i,j): {60, 1025}, {81, 54353}, {110, 18206}, {163, 30941}, {241, 4636}, {249, 2254}, {518, 4556}, {593, 1026}, {662, 3286}, {665, 24041}, {672, 52935}, {757, 2284}, {849, 42720}, {883, 2150}, {918, 1101}, {1458, 4612}, {1509, 54325}, {1576, 18157}, {1790, 4238}, {2185, 2283}, {2206, 55260}, {2223, 4610}, {4558, 54407}, {4575, 15149}, {4623, 9454}, {7054, 41353}, {7340, 46388}, {9455, 52612}, {23225, 46254}
X(66282) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 30941}, {136, 15149}, {244, 18206}, {523, 918}, {1084, 3286}, {3005, 665}, {4075, 42720}, {4858, 18157}, {4988, 23829}, {33675, 4623}, {40586, 54353}, {40603, 55260}, {40607, 2284}, {55065, 3912}, {56325, 883}, {62554, 52935}, {62599, 4610}
X(66282) = crosspoint of X(i) and X(j) for these (i,j): {666, 13576}, {4444, 60574}
X(66282) = crosssum of X(665) and X(3286)
X(66282) = trilinear pole of line {115, 4705}
X(66282) = barycentric product X(i)*X(j) for these {i,j}: {12, 885}, {105, 4036}, {115, 666}, {125, 65333}, {321, 55261}, {338, 919}, {523, 13576}, {594, 62635}, {673, 4024}, {850, 56853}, {884, 34388}, {927, 4092}, {1024, 6358}, {1027, 1089}, {1109, 36086}, {1365, 36802}, {1438, 52623}, {1577, 18785}, {2481, 4705}, {2643, 51560}, {3124, 36803}, {4064, 36124}, {4079, 18031}, {6057, 43930}, {6354, 28132}, {10099, 41013}, {23696, 56285}, {23994, 32666}, {28654, 43929}, {36796, 57185}, {54235, 55232}
X(66282) = barycentric quotient X(i)/X(j) for these {i,j}: {12, 883}, {42, 54353}, {105, 52935}, {115, 918}, {181, 2283}, {294, 4612}, {321, 55260}, {512, 3286}, {523, 30941}, {594, 42720}, {661, 18206}, {666, 4590}, {673, 4610}, {756, 1026}, {872, 54325}, {884, 60}, {885, 261}, {919, 249}, {927, 7340}, {1024, 2185}, {1027, 757}, {1254, 41353}, {1365, 43042}, {1438, 4556}, {1500, 2284}, {1577, 18157}, {1824, 4238}, {2171, 1025}, {2195, 4636}, {2481, 4623}, {2501, 15149}, {2643, 2254}, {3120, 23829}, {3124, 665}, {4024, 3912}, {4036, 3263}, {4079, 672}, {4092, 50333}, {4155, 8299}, {4705, 518}, {6367, 4966}, {7063, 8638}, {10099, 1444}, {13576, 99}, {18031, 52612}, {18785, 662}, {20975, 53550}, {21043, 4088}, {21725, 53553}, {21833, 24290}, {24290, 16728}, {28132, 7058}, {32666, 1101}, {36086, 24041}, {36796, 4631}, {36802, 6064}, {36803, 34537}, {43929, 593}, {43930, 552}, {50487, 2223}, {51560, 24037}, {52030, 36066}, {52209, 65258}, {53581, 9454}, {54235, 55231}, {55230, 1818}, {55232, 25083}, {55261, 81}, {56853, 110}, {57185, 241}, {58289, 20683}, {61052, 53539}, {62635, 1509}, {65333, 18020}, {65751, 23225}
X(66283) lies on the X-parabola (see X(12065)) and these lines: {99, 41076}, {190, 523}, {335, 740}, {660, 4155}, {690, 4555}, {835, 2702}, {850, 1978}, {874, 4639}, {1016, 6367}, {1897, 2501}, {1929, 17763}, {2054, 4039}, {2395, 2398}, {3943, 6543}, {3952, 4024}, {4033, 4036}, {4062, 4080}, {4427, 4600}, {4562, 18009}, {4581, 17940}, {5466, 17780}, {6758, 54118}, {9278, 41683}, {17791, 18032}, {17934, 60042}, {23354, 66267}, {27804, 40725}, {34246, 56797}, {36238, 65873}, {39921, 57040}, {47318, 53341}, {64071, 64236}
X(66283) = X(i)-cross conjugate of X(j) for these (i,j): {18001, 9278}, {18004, 10}, {18014, 11599}, {35352, 13576}
X(66283) = X(i)-isoconjugate of X(j) for these (i,j): {58, 9508}, {81, 5029}, {244, 17943}, {423, 22383}, {513, 1326}, {514, 64215}, {649, 1931}, {667, 17731}, {741, 38348}, {757, 17990}, {849, 18004}, {1019, 17735}, {1333, 2786}, {1757, 3733}, {1919, 52137}, {3248, 17934}, {6542, 57129}, {7192, 18266}, {17976, 57200}, {18268, 27929}
X(66283) = X(i)-Dao conjugate of X(j) for these (i,j): {10, 9508}, {37, 2786}, {4075, 18004}, {5375, 1931}, {6631, 17731}, {8299, 38348}, {9296, 52137}, {35068, 27929}, {39026, 1326}, {40586, 5029}, {40607, 17990}, {52872, 28602}
X(66283) = cevapoint of X(i) and X(j) for these (i,j): {10, 18004}, {37, 4155}, {523, 740}, {812, 17045}, {4427, 62644}, {9278, 18001}, {11599, 18014}
X(66283) = trilinear pole of line {10, 115}
X(66283) = barycentric product X(i)*X(j) for these {i,j}: {10, 35148}, {99, 6543}, {190, 11599}, {313, 2702}, {321, 37135}, {594, 17930}, {668, 9278}, {1016, 18014}, {1018, 18032}, {1897, 57848}, {1929, 4033}, {1978, 2054}, {3952, 6650}, {17940, 28654}, {17962, 27808}, {17982, 52609}, {18001, 31625}, {18004, 57560}
X(66283) = barycentric quotient X(i)/X(j) for these {i,j}: {10, 2786}, {37, 9508}, {42, 5029}, {100, 1931}, {101, 1326}, {190, 17731}, {594, 18004}, {668, 52137}, {692, 64215}, {740, 27929}, {1016, 17934}, {1018, 1757}, {1252, 17943}, {1500, 17990}, {1897, 423}, {1929, 1019}, {2054, 649}, {2238, 38348}, {2702, 58}, {3943, 28602}, {3952, 6542}, {4033, 20947}, {4103, 6541}, {4557, 17735}, {4574, 17976}, {6367, 57461}, {6543, 523}, {6650, 7192}, {9278, 513}, {11599, 514}, {17780, 31059}, {17930, 1509}, {17940, 593}, {17962, 3733}, {17972, 7254}, {17982, 17925}, {18001, 1015}, {18004, 35080}, {18014, 1086}, {18032, 7199}, {35148, 86}, {37135, 81}, {40521, 20693}, {40767, 50456}, {57560, 17930}, {57681, 1459}, {57848, 4025}
X(66284) lies on the X-parabola (see X(12065)) and these lines: {1, 523}, {6, 55195}, {10, 522}, {19, 2501}, {35, 46611}, {36, 46610}, {37, 650}, {65, 513}, {75, 850}, {80, 900}, {82, 58784}, {190, 53359}, {225, 7649}, {476, 36069}, {512, 994}, {514, 4667}, {525, 56136}, {655, 885}, {656, 41501}, {659, 6187}, {676, 2006}, {759, 6089}, {826, 56149}, {892, 65283}, {897, 5466}, {1024, 2161}, {1168, 6550}, {1393, 4017}, {1411, 30725}, {1581, 66267}, {1647, 42754}, {1769, 52383}, {1807, 2804}, {1866, 54244}, {1910, 2395}, {2153, 20578}, {2154, 20579}, {2166, 10412}, {2168, 55253}, {2216, 50946}, {2222, 23981}, {2363, 4581}, {2397, 17780}, {2588, 39240}, {2589, 39241}, {2652, 9508}, {2826, 56426}, {3667, 31673}, {3668, 3676}, {3700, 17281}, {3738, 21112}, {4132, 34434}, {4151, 42285}, {4453, 63217}, {4608, 40438}, {4802, 21105}, {4926, 56174}, {4977, 14812}, {5425, 57130}, {5620, 10265}, {5903, 61637}, {6129, 61039}, {6370, 6740}, {6788, 38938}, {7252, 12077}, {8043, 62566}, {8599, 55927}, {8674, 17636}, {8677, 34242}, {8773, 57985}, {9268, 36236}, {10260, 39478}, {11125, 30572}, {14315, 56419}, {14616, 18827}, {15328, 36053}, {15475, 50344}, {16118, 28217}, {18011, 23352}, {18359, 41683}, {18808, 36119}, {20220, 39702}, {21186, 23604}, {23894, 64258}, {23987, 36110}, {26546, 26665}, {27529, 48204}, {28151, 30573}, {28161, 56221}, {28205, 56237}, {28221, 56135}, {29144, 40747}, {30591, 34920}, {34860, 65099}, {35055, 47054}, {35174, 53208}, {36801, 36804}, {37140, 60055}, {40172, 57051}, {40430, 56321}, {40437, 43728}, {42027, 64857}, {42337, 56259}, {42757, 52212}, {42763, 60845}, {47318, 53341}, {50333, 52351}, {51648, 52384}, {52371, 53523}, {52380, 60029}, {56284, 58322}, {56691, 65854}
X(66284) = reflection of X(i) in X(j) for these {i,j}: {24457, 21201}, {30572, 59837}, {48292, 44409}, {50350, 21186}, {50351, 62323}, {53314, 53522}, {53527, 21180}, {62329, 50574}, {62566, 8043}
X(66284) = polar conjugate of X(65162)
X(66284) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1168, 3448}, {32671, 30579}
X(66284) = X(i)-Ceva conjugate of X(j) for these (i,j): {476, 759}, {655, 2161}, {2222, 52383}, {23592, 64445}, {34535, 2170}, {40437, 11}, {51562, 80}, {65283, 24624}
X(66284) = X(i)-cross conjugate of X(j) for these (i,j): {244, 1168}, {1635, 514}, {1637, 7178}, {1647, 14584}, {1769, 513}, {2170, 34535}, {6089, 523}, {42666, 661}, {42759, 4}, {52338, 1086}, {55238, 60074}, {64445, 23592}
X(66284) = X(i)-isoconjugate of X(j) for these (i,j): {2, 1983}, {3, 4242}, {6, 4585}, {36, 100}, {48, 65162}, {50, 15455}, {59, 3738}, {99, 3724}, {101, 3218}, {109, 4511}, {110, 758}, {163, 3936}, {190, 7113}, {213, 55237}, {214, 901}, {215, 35174}, {249, 2610}, {320, 692}, {643, 1464}, {651, 2323}, {654, 4564}, {655, 34544}, {662, 2245}, {664, 2361}, {668, 52434}, {765, 53314}, {813, 27950}, {860, 4575}, {906, 17923}, {934, 58328}, {1016, 21758}, {1023, 40215}, {1101, 6370}, {1110, 4453}, {1227, 32719}, {1252, 3960}, {1290, 35204}, {1293, 4881}, {1331, 1870}, {1332, 52413}, {1415, 32851}, {1443, 3939}, {1492, 3792}, {1576, 35550}, {1783, 22128}, {1897, 52407}, {2149, 3904}, {2222, 4996}, {2720, 64139}, {3257, 17455}, {3699, 52440}, {4053, 4556}, {4282, 4552}, {4554, 52426}, {4567, 21828}, {4570, 53527}, {4588, 4867}, {4591, 40988}, {4592, 44113}, {4736, 36069}, {4880, 8652}, {4973, 8701}, {4998, 8648}, {5081, 36059}, {5377, 53555}, {5546, 18593}, {6011, 27086}, {6099, 11570}, {6149, 6742}, {6516, 52427}, {6733, 63779}, {6739, 36034}, {6757, 52603}, {7045, 53285}, {9268, 53535}, {13589, 39166}, {15742, 22379}, {16586, 32641}, {16944, 17780}, {17515, 23067}, {20924, 32739}, {23344, 52553}, {23703, 62703}, {23981, 56757}, {24041, 42666}, {27757, 34073}, {32665, 51583}, {34586, 36037}, {35069, 37140}, {36804, 52059}, {39149, 57119}, {39778, 65881}, {41804, 65375}, {44717, 65104}, {53546, 59149}
X(66284) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 4585}, {11, 4511}, {115, 3936}, {136, 860}, {244, 758}, {513, 53314}, {514, 4453}, {523, 6370}, {650, 3904}, {661, 3960}, {1015, 3218}, {1084, 2245}, {1086, 320}, {1146, 32851}, {1249, 65162}, {3005, 42666}, {3258, 6739}, {3259, 34586}, {4858, 35550}, {4988, 4707}, {5139, 44113}, {5190, 17923}, {5520, 52368}, {5521, 1870}, {6615, 3738}, {6626, 55237}, {8054, 36}, {14714, 58328}, {14838, 3268}, {14993, 6742}, {15898, 100}, {17115, 53285}, {20620, 5081}, {32664, 1983}, {34467, 52407}, {35092, 51583}, {36103, 4242}, {36909, 3699}, {38979, 214}, {38981, 64139}, {38982, 4736}, {38984, 4996}, {38986, 3724}, {38991, 2323}, {38995, 3792}, {39006, 22128}, {39025, 2361}, {40615, 17078}, {40617, 1443}, {40619, 20924}, {40622, 41804}, {40623, 27950}, {40627, 21828}, {50330, 53527}, {55045, 4867}, {55053, 7113}, {55055, 17455}, {55060, 1464}, {56416, 17780}, {61073, 27757}
X(66284) = cevapoint of X(i) and X(j) for these (i,j): {244, 6550}, {512, 3310}, {513, 59837}, {514, 45674}, {523, 900}, {661, 42666}, {1647, 21132}, {2310, 52316}, {3724, 21742}
X(66284) = crosspoint of X(i) and X(j) for these (i,j): {80, 51562}, {476, 2166}, {655, 18815}, {759, 2222}, {903, 65238}, {2401, 6548}, {4555, 60251}, {14616, 36804}, {24624, 65283}
X(66284) = crosssum of X(i) and X(j) for these (i,j): {1, 53406}, {36, 53314}, {55, 27780}, {523, 8068}, {526, 6149}, {654, 2361}, {758, 3738}, {2245, 42666}, {2323, 53285}, {2427, 23344}, {3724, 21758}
X(66284) = trilinear pole of line {115, 661}
X(66284) = crossdifference of every pair of points on line {36, 2245}
X(66284) = X(46610)-line conjugate of X(36)
X(66284) = barycentric product X(i)*X(j) for these {i,j}: {1, 60074}, {11, 655}, {12, 60571}, {57, 52356}, {80, 514}, {86, 55238}, {94, 2605}, {115, 65283}, {244, 36804}, {265, 65100}, {338, 36069}, {476, 8287}, {513, 18359}, {522, 2006}, {523, 24624}, {649, 20566}, {650, 18815}, {654, 57645}, {661, 14616}, {693, 2161}, {759, 1577}, {850, 34079}, {1019, 15065}, {1022, 51975}, {1086, 51562}, {1109, 37140}, {1168, 3762}, {1411, 4391}, {1635, 57788}, {1807, 17924}, {1989, 4467}, {2166, 14838}, {2170, 35174}, {2222, 4858}, {2341, 4077}, {2394, 56645}, {2401, 56416}, {2501, 57985}, {2611, 32680}, {3064, 52392}, {3120, 47318}, {3219, 43082}, {3261, 6187}, {3271, 46405}, {3669, 52409}, {3676, 36910}, {3737, 60091}, {3738, 34535}, {3904, 63750}, {4025, 64835}, {4049, 56950}, {4444, 36815}, {4560, 52383}, {6740, 7178}, {7004, 65329}, {7199, 34857}, {7649, 52351}, {9273, 23105}, {10015, 40437}, {10412, 40214}, {12077, 39277}, {14584, 60480}, {14618, 57736}, {14628, 23838}, {15475, 34016}, {17886, 32678}, {18070, 46160}, {20982, 35139}, {22094, 46456}, {23994, 32671}, {24002, 52371}, {30725, 36590}, {32675, 34387}, {34232, 60485}, {35015, 53811}, {37203, 61039}, {40166, 52377}, {42666, 57555}, {43728, 52212}, {45926, 56320}, {46107, 52431}, {52391, 57215}, {52780, 61041}
X(66284) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 4585}, {4, 65162}, {11, 3904}, {19, 4242}, {31, 1983}, {80, 190}, {86, 55237}, {115, 6370}, {244, 3960}, {512, 2245}, {513, 3218}, {514, 320}, {522, 32851}, {523, 3936}, {649, 36}, {650, 4511}, {654, 4996}, {655, 4998}, {657, 58328}, {659, 27950}, {661, 758}, {663, 2323}, {667, 7113}, {693, 20924}, {759, 662}, {764, 53546}, {798, 3724}, {900, 51583}, {1015, 53314}, {1022, 52553}, {1086, 4453}, {1168, 3257}, {1411, 651}, {1459, 22128}, {1577, 35550}, {1635, 214}, {1637, 6739}, {1769, 16586}, {1807, 1332}, {1919, 52434}, {1960, 17455}, {1989, 6742}, {2006, 664}, {2087, 53535}, {2161, 100}, {2166, 15455}, {2170, 3738}, {2222, 4564}, {2341, 643}, {2489, 44113}, {2501, 860}, {2605, 323}, {2610, 4736}, {2611, 32679}, {2643, 2610}, {3063, 2361}, {3064, 5081}, {3120, 4707}, {3122, 21828}, {3124, 42666}, {3125, 53527}, {3248, 21758}, {3250, 3792}, {3261, 40075}, {3271, 654}, {3310, 34586}, {3669, 1443}, {3676, 17078}, {3762, 1227}, {4017, 18593}, {4036, 61410}, {4394, 4881}, {4467, 7799}, {4705, 4053}, {4730, 40988}, {4777, 27757}, {4813, 4880}, {4893, 4867}, {4979, 4973}, {6187, 101}, {6545, 4089}, {6591, 1870}, {6729, 63779}, {6740, 645}, {7178, 41804}, {7180, 1464}, {7649, 17923}, {8287, 3268}, {8648, 34544}, {8735, 44428}, {9273, 59152}, {14582, 52388}, {14584, 62669}, {14616, 799}, {14936, 53285}, {15065, 4033}, {15475, 8818}, {18359, 668}, {18815, 4554}, {20566, 1978}, {20982, 526}, {22094, 8552}, {22383, 52407}, {23345, 40215}, {24624, 99}, {30725, 41801}, {32671, 1101}, {32675, 59}, {34079, 110}, {34535, 35174}, {34857, 1018}, {35015, 53045}, {36069, 249}, {36590, 4582}, {36804, 7035}, {36815, 3570}, {36910, 3699}, {37140, 24041}, {40172, 1023}, {40214, 10411}, {40437, 13136}, {42657, 26744}, {42666, 35069}, {43052, 36589}, {43082, 30690}, {45926, 65205}, {46393, 64139}, {47227, 52368}, {47318, 4600}, {51562, 1016}, {51975, 24004}, {52316, 57434}, {52338, 51402}, {52351, 4561}, {52356, 312}, {52371, 644}, {52377, 31615}, {52380, 4612}, {52383, 4552}, {52391, 65233}, {52392, 65164}, {52409, 646}, {52431, 1331}, {54244, 52414}, {55208, 1835}, {55238, 10}, {56416, 2397}, {56645, 2407}, {57099, 42701}, {57181, 52440}, {57645, 46405}, {57736, 4558}, {57985, 4563}, {59283, 42718}, {59837, 40612}, {60074, 75}, {60571, 261}, {61039, 914}, {61238, 56757}, {63750, 655}, {64835, 1897}, {65100, 340}, {65283, 4590}
X(66284) = {X(11125),X(30572)}-harmonic conjugate of X(59837)
X(66285) lies on the X-parabola (see X(12065)) and these lines: {10, 523}, {80, 900}, {88, 60043}, {106, 2372}, {313, 850}, {476, 901}, {513, 3754}, {514, 4472}, {594, 4024}, {685, 32719}, {892, 4555}, {903, 35162}, {1022, 1224}, {1089, 4036}, {1220, 4581}, {1268, 3004}, {1320, 60029}, {1826, 2501}, {3257, 60055}, {4013, 6370}, {4080, 5466}, {4642, 24457}, {4732, 4777}, {4802, 19947}, {4806, 8599}, {4841, 55263}, {6542, 62626}, {7649, 12135}, {17390, 21200}, {17953, 52747}, {18082, 58784}, {21051, 45095}, {21112, 53533}, {21119, 40086}, {23352, 28183}, {31946, 51870}, {50342, 62732}
X(66285) = midpoint of X(i) and X(j) for these {i,j}: {21112, 53565}, {21119, 40086}
X(66285) = X(4555)-Ceva conjugate of X(4080)
X(66285) = X(6370)-cross conjugate of X(523)
X(66285) = X(i)-isoconjugate of X(j) for these (i,j): {44, 4556}, {60, 23703}, {101, 30576}, {110, 52680}, {163, 16704}, {214, 36069}, {249, 1635}, {250, 53532}, {593, 1023}, {662, 3285}, {757, 23344}, {849, 17780}, {900, 1101}, {902, 52935}, {1319, 4636}, {1404, 4612}, {1415, 30606}, {1437, 46541}, {1576, 30939}, {1960, 24041}, {2150, 62669}, {2185, 61210}, {2206, 55243}, {2251, 4610}, {3762, 23357}, {4575, 37168}, {4623, 9459}, {17455, 37140}, {23995, 65867}, {32671, 51583}
X(66285) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 16704}, {136, 37168}, {244, 52680}, {523, 900}, {1015, 30576}, {1084, 3285}, {1146, 30606}, {3005, 1960}, {4075, 17780}, {4858, 30939}, {9460, 4610}, {18314, 65867}, {38982, 214}, {40594, 52935}, {40595, 4556}, {40603, 55243}, {40607, 23344}, {55065, 519}, {56325, 62669}
X(66285) = cevapoint of X(2610) and X(4705)
X(66285) = crosspoint of X(4080) and X(4555)
X(66285) = crosssum of X(1960) and X(3285)
X(66285) = trilinear pole of line {115, 4024}
X(66285) = crossdifference of every pair of points on line {3285, 17455}
X(66285) = barycentric product X(i)*X(j) for these {i,j}: {10, 4049}, {12, 60480}, {88, 4036}, {106, 52623}, {115, 4555}, {125, 65336}, {313, 55263}, {321, 55244}, {338, 901}, {514, 4013}, {523, 4080}, {594, 6548}, {903, 4024}, {1022, 1089}, {1109, 3257}, {1365, 4582}, {1441, 61179}, {1577, 4674}, {2610, 57788}, {4064, 6336}, {4079, 57995}, {4103, 6549}, {4615, 21043}, {4634, 21833}, {4705, 20568}, {6358, 23838}, {21131, 62536}, {23345, 28654}, {23962, 32719}, {23994, 32665}
X(66285) = barycentric quotient X(i)/X(j) for these {i,j}: {12, 62669}, {88, 52935}, {106, 4556}, {115, 900}, {181, 61210}, {313, 55262}, {321, 55243}, {338, 65867}, {512, 3285}, {513, 30576}, {522, 30606}, {523, 16704}, {594, 17780}, {661, 52680}, {756, 1023}, {901, 249}, {903, 4610}, {1022, 757}, {1089, 24004}, {1109, 3762}, {1168, 37140}, {1320, 4612}, {1365, 30725}, {1500, 23344}, {1577, 30939}, {1826, 46541}, {2171, 23703}, {2316, 4636}, {2501, 37168}, {2610, 214}, {2643, 1635}, {3124, 1960}, {3257, 24041}, {3708, 53532}, {4013, 190}, {4024, 519}, {4036, 4358}, {4049, 86}, {4064, 3977}, {4079, 902}, {4080, 99}, {4092, 1639}, {4555, 4590}, {4582, 6064}, {4674, 662}, {4705, 44}, {6057, 30731}, {6367, 4969}, {6370, 51583}, {6535, 4169}, {6548, 1509}, {17998, 5170}, {18004, 31059}, {20568, 4623}, {20975, 22086}, {21043, 4120}, {21046, 14429}, {21131, 1647}, {21833, 4730}, {23345, 593}, {23838, 2185}, {30575, 4622}, {32665, 1101}, {32719, 23357}, {42666, 17455}, {50487, 2251}, {52623, 3264}, {53527, 17191}, {53581, 9459}, {55197, 40663}, {55230, 22356}, {55232, 5440}, {55238, 56950}, {55244, 81}, {55263, 58}, {57185, 1319}, {57995, 52612}, {58289, 52963}, {60480, 261}, {61179, 21}, {65336, 18020}
X(66285) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 4049, 18011}, {18004, 18005, 4080}
X(66286) lies on the X-parabola (see X(12065)) and these lines: {75, 523}, {92, 2501}, {274, 50351}, {291, 4453}, {313, 3261}, {321, 693}, {335, 918}, {476, 36066}, {514, 3572}, {561, 850}, {660, 883}, {661, 25759}, {813, 2860}, {826, 52619}, {874, 4639}, {875, 3112}, {892, 65285}, {1441, 20504}, {1821, 2395}, {1934, 66267}, {2997, 65099}, {3004, 51868}, {3113, 4367}, {4049, 6381}, {4369, 24631}, {4406, 29144}, {4411, 29204}, {4458, 14296}, {4467, 17155}, {4562, 35171}, {4583, 6548}, {5466, 40017}, {10412, 63759}, {14616, 18827}, {15328, 57738}, {16708, 20511}, {18895, 65867}, {20908, 23596}, {23807, 23877}, {34284, 49303}, {48326, 65101}, {52716, 62634}, {53361, 53377}, {57987, 62645}, {60055, 65258}, {63223, 65869}
X(66286) = reflection of X(27855) in X(20518)
X(66286) = isotomic conjugate of X(3573)
X(66286) = isotomic conjugate of the isogonal conjugate of X(876)
X(66286) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {741, 39353}, {919, 39367}, {2311, 14732}, {4584, 20344}, {4589, 20552}, {51866, 148}, {52030, 21221}, {52209, 3448}
X(66286) = X(i)-Ceva conjugate of X(j) for these (i,j): {4583, 334}, {65285, 40017}
X(66286) = X(i)-cross conjugate of X(j) for these (i,j): {20908, 3261}, {35352, 4444}, {48326, 514}
X(66286) = X(i)-isoconjugate of X(j) for these (i,j): {31, 3573}, {32, 3570}, {100, 2210}, {101, 1914}, {110, 3747}, {163, 2238}, {190, 14599}, {238, 692}, {239, 32739}, {242, 32656}, {249, 46390}, {560, 874}, {659, 1110}, {662, 41333}, {668, 18892}, {740, 1576}, {812, 23990}, {813, 51328}, {825, 16514}, {827, 4093}, {862, 4575}, {906, 2201}, {1101, 4155}, {1252, 8632}, {1284, 65375}, {1331, 57654}, {1415, 3684}, {1428, 3939}, {1501, 27853}, {1933, 3903}, {1978, 18894}, {2149, 4435}, {3783, 34069}, {4148, 23979}, {4154, 17938}, {4432, 32719}, {4455, 4570}, {4557, 5009}, {4579, 61385}, {5384, 58864}, {6066, 43041}, {7193, 8750}, {8299, 32666}, {8300, 34067}, {14574, 35544}, {14602, 27805}, {32642, 51435}, {40729, 56982}, {51329, 52927}
X(66286) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 3573}, {115, 2238}, {136, 862}, {244, 3747}, {514, 659}, {523, 4155}, {650, 4435}, {661, 8632}, {1015, 1914}, {1084, 41333}, {1086, 238}, {1146, 3684}, {1577, 3716}, {2968, 58327}, {4369, 5027}, {4858, 740}, {4988, 21832}, {5190, 2201}, {5521, 57654}, {6374, 874}, {6376, 3570}, {6741, 4433}, {8054, 2210}, {9470, 692}, {14838, 53563}, {16592, 1580}, {26932, 7193}, {27929, 38348}, {35080, 8298}, {35088, 50440}, {35094, 8299}, {35119, 8300}, {36901, 3948}, {36906, 101}, {40615, 1429}, {40617, 1428}, {40618, 20769}, {40619, 239}, {40622, 1284}, {40623, 51328}, {40624, 3685}, {46398, 15507}, {50330, 4455}, {52656, 2284}, {55043, 4093}, {55053, 14599}, {61065, 3783}, {62557, 100}
X(66286) = cevapoint of X(i) and X(j) for these (i,j): {514, 4458}, {523, 918}, {4444, 60577}, {4858, 52305}, {6545, 21140}
X(66286) = crosspoint of X(i) and X(j) for these (i,j): {334, 4583}, {40017, 65285}
X(66286) = trilinear pole of line {115, 1111}
X(66286) = crossdifference of every pair of points on line {2210, 14599}
X(66286) = barycentric product X(i)*X(j) for these {i,j}: {75, 4444}, {76, 876}, {85, 60577}, {115, 65285}, {274, 35352}, {291, 3261}, {292, 40495}, {334, 514}, {335, 693}, {337, 17924}, {338, 36066}, {513, 18895}, {523, 40017}, {561, 3572}, {649, 44172}, {660, 23989}, {667, 44170}, {741, 20948}, {850, 37128}, {870, 23596}, {871, 30671}, {875, 1502}, {1086, 4583}, {1109, 65258}, {1111, 4562}, {1365, 36806}, {1577, 18827}, {1916, 4374}, {1934, 4369}, {2501, 57987}, {3120, 4639}, {3766, 40098}, {3801, 40834}, {4077, 36800}, {4367, 18896}, {4391, 7233}, {4458, 63895}, {4518, 24002}, {4584, 21207}, {4589, 16732}, {4817, 63228}, {4876, 52621}, {5378, 23100}, {7199, 43534}, {8033, 66267}, {14208, 65352}, {14618, 57738}, {14621, 63219}, {18268, 44173}, {23285, 39276}, {30663, 65101}, {44160, 56242}
X(66286) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 3573}, {11, 4435}, {75, 3570}, {76, 874}, {115, 4155}, {244, 8632}, {291, 101}, {292, 692}, {295, 906}, {334, 190}, {335, 100}, {337, 1332}, {512, 41333}, {513, 1914}, {514, 238}, {522, 3684}, {523, 2238}, {561, 27853}, {649, 2210}, {659, 51328}, {660, 1252}, {661, 3747}, {667, 14599}, {693, 239}, {741, 163}, {812, 8300}, {813, 1110}, {824, 3783}, {850, 3948}, {875, 32}, {876, 6}, {882, 40729}, {905, 7193}, {918, 8299}, {1019, 5009}, {1086, 659}, {1111, 812}, {1491, 16514}, {1577, 740}, {1911, 32739}, {1916, 3903}, {1919, 18892}, {1934, 27805}, {1980, 18894}, {2196, 32656}, {2311, 65375}, {2501, 862}, {2643, 46390}, {2786, 8298}, {2799, 50440}, {3120, 21832}, {3125, 4455}, {3239, 58327}, {3252, 54325}, {3261, 350}, {3572, 31}, {3669, 1428}, {3676, 1429}, {3700, 4433}, {3762, 4432}, {3766, 4366}, {3776, 56805}, {3801, 18904}, {3837, 17475}, {3942, 22384}, {4025, 20769}, {4036, 4037}, {4077, 16609}, {4086, 3985}, {4367, 1691}, {4369, 1580}, {4374, 385}, {4391, 3685}, {4411, 4396}, {4444, 1}, {4453, 27950}, {4458, 19557}, {4466, 53556}, {4486, 3802}, {4500, 4489}, {4518, 644}, {4562, 765}, {4583, 1016}, {4584, 4570}, {4589, 4567}, {4639, 4600}, {4791, 4693}, {4815, 4771}, {4823, 4716}, {4824, 16369}, {4858, 3716}, {4876, 3939}, {4957, 4800}, {4978, 4974}, {5378, 59149}, {6545, 27846}, {6591, 57654}, {7178, 1284}, {7199, 33295}, {7200, 4164}, {7233, 651}, {7649, 2201}, {8033, 17941}, {8061, 4093}, {8287, 53563}, {9505, 2702}, {10015, 15507}, {14296, 53681}, {16592, 5027}, {16732, 4010}, {17103, 56982}, {17205, 50456}, {17924, 242}, {18111, 56971}, {18268, 1576}, {18827, 662}, {18895, 668}, {18896, 56241}, {20518, 27916}, {20908, 17793}, {20948, 35544}, {20981, 1933}, {21053, 20681}, {21140, 62558}, {21202, 27943}, {22116, 2284}, {23596, 984}, {23989, 3766}, {24002, 1447}, {24026, 4148}, {27855, 6652}, {30663, 813}, {30669, 4579}, {30671, 869}, {34067, 23990}, {35352, 37}, {35519, 3975}, {36038, 51381}, {36066, 249}, {36800, 643}, {36806, 6064}, {37128, 110}, {37207, 5384}, {39276, 827}, {40017, 99}, {40098, 660}, {40166, 4124}, {40217, 1026}, {40495, 1921}, {40848, 52923}, {43042, 34253}, {43534, 1018}, {43931, 51321}, {44170, 6386}, {44172, 1978}, {51866, 32666}, {52030, 919}, {52205, 34067}, {52209, 36086}, {52619, 30940}, {52621, 10030}, {52633, 38367}, {53239, 35338}, {53544, 51329}, {54229, 56828}, {56154, 5546}, {56242, 14602}, {57215, 14024}, {57554, 36066}, {57566, 65363}, {57738, 4558}, {57987, 4563}, {59941, 62785}, {60074, 36815}, {60577, 9}, {62415, 3797}, {62429, 62552}, {63219, 3661}, {63228, 3807}, {63234, 3799}, {63241, 4505}, {63895, 51614}, {63896, 37135}, {65101, 39044}, {65258, 24041}, {65285, 4590}, {65352, 162}, {66267, 52651}
X(66287) lies on the X-parabola (see X(12065)) and these lines: {1, 60029}, {7, 60042}, {57, 60043}, {65, 513}, {73, 15328}, {109, 476}, {225, 18808}, {226, 5466}, {307, 62645}, {514, 4581}, {522, 17950}, {523, 656}, {651, 60055}, {653, 685}, {661, 2501}, {663, 7649}, {664, 892}, {850, 4077}, {900, 21111}, {1214, 47887}, {1254, 21134}, {1400, 2395}, {1409, 20980}, {1441, 20504}, {1813, 44768}, {1880, 65103}, {1882, 16228}, {2171, 4079}, {2254, 57252}, {2517, 48278}, {2605, 11125}, {2610, 4024}, {2785, 7253}, {3668, 35347}, {3669, 4802}, {3676, 4608}, {3737, 21180}, {3907, 65099}, {4036, 4064}, {4105, 8058}, {4139, 53558}, {4160, 21109}, {4397, 23877}, {4449, 57241}, {4474, 23874}, {4626, 65559}, {4642, 23775}, {4705, 51663}, {4778, 58858}, {4913, 31603}, {4977, 21112}, {4988, 7180}, {6614, 65539}, {8062, 14432}, {8611, 47124}, {8672, 23755}, {8678, 21108}, {10015, 17420}, {12079, 21054}, {15228, 62499}, {15932, 21203}, {17072, 20294}, {17094, 47934}, {20360, 53501}, {21052, 52355}, {21103, 53314}, {21105, 37558}, {21142, 53538}, {21179, 48307}, {21185, 42312}, {21957, 47134}, {23615, 40149}, {23758, 50350}, {23943, 53545}, {28161, 49300}, {28175, 30725}, {28179, 30724}, {28191, 30719}, {28195, 51656}, {28473, 44409}, {30573, 48283}, {35352, 66267}, {38469, 51643}, {47701, 51650}, {47800, 59929}, {48293, 57198}, {50349, 57139}, {50354, 55126}, {50522, 57181}, {54194, 54244}, {55210, 55236}, {56816, 57224}
X(66287) = midpoint of X(23758) and X(50350)
X(66287) = reflection of X(i) in X(j) for these {i,j}: {663, 7649}, {3737, 21180}, {4017, 7178}, {4064, 4036}, {4088, 4086}, {17418, 21186}, {17420, 10015}, {20294, 17072}, {21103, 53314}, {21105, 48281}, {21106, 21173}, {21132, 21102}, {21173, 59750}, {30572, 4017}, {42312, 21185}, {48278, 2517}, {48307, 21179}, {55282, 23752}, {62566, 656}
X(66287) = isogonal conjugate of X(4636)
X(66287) = polar conjugate of the isotomic conjugate of X(57243)
X(66287) = polar conjugate of the isogonal conjugate of X(55234)
X(66287) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1247, 33650}, {53633, 3869}
X(66287) = X(i)-Ceva conjugate of X(j) for these (i,j): {12, 1365}, {65, 3120}, {653, 1400}, {664, 226}, {1441, 53545}, {4605, 2171}, {6354, 115}, {7178, 57185}, {36127, 225}, {40149, 21044}, {56285, 1109}
X(66287) = X(i)-cross conjugate of X(j) for these (i,j): {115, 6354}, {1365, 12}, {2643, 2171}, {4092, 8736}, {4705, 4024}, {21134, 1109}, {21944, 10}, {55234, 57243}
X(66287) = X(i)-isoconjugate of X(j) for these (i,j): {1, 4636}, {3, 52914}, {6, 4612}, {9, 4556}, {21, 110}, {29, 4575}, {32, 4631}, {41, 4610}, {55, 52935}, {58, 643}, {59, 65575}, {60, 100}, {81, 5546}, {86, 65375}, {99, 2194}, {101, 2185}, {109, 1098}, {112, 1812}, {162, 283}, {163, 333}, {190, 2150}, {213, 55196}, {249, 650}, {250, 521}, {255, 52921}, {261, 692}, {270, 1331}, {284, 662}, {314, 1576}, {332, 32676}, {522, 1101}, {593, 644}, {645, 1333}, {648, 2193}, {651, 7054}, {663, 24041}, {667, 6064}, {757, 3939}, {799, 57657}, {849, 3699}, {906, 46103}, {931, 54417}, {934, 6061}, {960, 58982}, {1021, 52378}, {1172, 4558}, {1259, 52920}, {1332, 2189}, {1408, 7256}, {1412, 7259}, {1414, 2328}, {1415, 7058}, {1437, 36797}, {1783, 65568}, {1790, 65201}, {1813, 2326}, {1946, 18020}, {2175, 4623}, {2204, 4563}, {2206, 7257}, {2269, 65255}, {2287, 4565}, {2289, 52919}, {2299, 4592}, {2323, 37140}, {2327, 65232}, {2361, 65283}, {2617, 35196}, {3063, 4590}, {3683, 6578}, {3737, 4570}, {4282, 47318}, {4391, 23357}, {4511, 36069}, {4516, 59152}, {4566, 23609}, {4567, 7252}, {4578, 7341}, {5379, 23189}, {5548, 30576}, {6514, 24019}, {7258, 16947}, {7305, 40499}, {7340, 8641}, {9247, 55233}, {9447, 52612}, {13486, 35193}, {14574, 40072}, {14599, 36806}, {20967, 65281}, {23582, 36054}, {23995, 35519}, {24000, 57241}, {27083, 30238}, {30606, 32665}, {31623, 32661}, {32656, 57779}, {32671, 32851}, {32739, 52379}, {35518, 57655}, {36034, 51382}, {36059, 59482}, {44426, 47390}, {44769, 52949}, {47443, 53560}, {52425, 55231}, {56000, 65254}
X(66287) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 4636}, {9, 4612}, {10, 643}, {11, 1098}, {37, 645}, {115, 333}, {125, 283}, {136, 29}, {223, 52935}, {226, 4592}, {244, 21}, {478, 4556}, {523, 522}, {525, 52616}, {647, 6332}, {1015, 2185}, {1084, 284}, {1086, 261}, {1146, 7058}, {1214, 99}, {1365, 24161}, {1649, 14432}, {3005, 663}, {3125, 17185}, {3160, 4610}, {3258, 51382}, {4075, 3699}, {4858, 314}, {4988, 4560}, {5139, 2299}, {5190, 46103}, {5521, 270}, {6376, 4631}, {6523, 52921}, {6615, 65575}, {6626, 55196}, {6631, 6064}, {6741, 1043}, {8054, 60}, {10001, 4590}, {14714, 6061}, {15267, 109}, {15526, 332}, {18314, 35519}, {20620, 59482}, {21709, 4046}, {34591, 1812}, {35071, 6514}, {35092, 30606}, {36103, 52914}, {36901, 28660}, {36908, 1414}, {38982, 4511}, {38986, 2194}, {38991, 7054}, {38996, 57657}, {39006, 65568}, {39053, 18020}, {39060, 46254}, {40586, 5546}, {40590, 662}, {40593, 4623}, {40599, 7259}, {40600, 65375}, {40603, 7257}, {40607, 3939}, {40608, 2328}, {40611, 110}, {40615, 1509}, {40617, 757}, {40619, 52379}, {40622, 86}, {40627, 7252}, {47345, 648}, {50330, 3737}, {52119, 6734}, {55053, 2150}, {55060, 58}, {55064, 2287}, {55065, 8}, {55066, 2193}, {56325, 190}, {59577, 7256}, {59608, 4573}, {62565, 4563}, {62566, 7253}, {62570, 799}, {62576, 55233}, {62602, 55231}, {62614, 55207}
X(66287) = cevapoint of X(i) and X(j) for these (i,j): {2643, 21131}, {4705, 57185}
X(66287) = crosspoint of X(i) and X(j) for these (i,j): {225, 36127}, {226, 664}, {523, 24006}, {653, 57809}, {4077, 7178}
X(66287) = crosssum of X(i) and X(j) for these (i,j): {21, 65575}, {110, 4575}, {283, 57241}, {284, 663}, {3737, 54356}, {5546, 65375}, {46877, 57081}
X(66287) = trilinear pole of line {115, 1365}
X(66287) = crossdifference of every pair of points on line {60, 283}
X(66287) = barycentric product X(i)*X(j) for these {i,j}: {4, 57243}, {7, 4024}, {10, 7178}, {11, 4605}, {12, 514}, {37, 4077}, {56, 52623}, {57, 4036}, {65, 1577}, {73, 14618}, {75, 57185}, {85, 4705}, {86, 55197}, {108, 20902}, {109, 338}, {115, 664}, {125, 653}, {181, 3261}, {190, 1365}, {201, 17924}, {225, 525}, {226, 523}, {264, 55234}, {273, 55232}, {278, 4064}, {307, 2501}, {313, 7180}, {321, 4017}, {331, 55230}, {339, 32674}, {349, 512}, {513, 6358}, {522, 6354}, {594, 3676}, {647, 57809}, {649, 34388}, {651, 1109}, {656, 40149}, {658, 4092}, {661, 1441}, {693, 2171}, {756, 24002}, {810, 52575}, {826, 18097}, {850, 1400}, {905, 56285}, {1089, 3669}, {1111, 21859}, {1214, 24006}, {1254, 4391}, {1358, 4103}, {1402, 20948}, {1415, 23994}, {1425, 46110}, {1427, 4086}, {1446, 4041}, {1500, 52621}, {1813, 2970}, {1826, 17094}, {1880, 14208}, {1978, 61052}, {2006, 6370}, {2197, 46107}, {2533, 60245}, {2610, 18815}, {2632, 54240}, {2643, 4554}, {3064, 6356}, {3120, 4552}, {3124, 4572}, {3239, 6046}, {3267, 57652}, {3269, 52938}, {3649, 31010}, {3668, 3700}, {3701, 7216}, {3708, 18026}, {3952, 53545}, {4013, 30725}, {4025, 8736}, {4033, 53540}, {4049, 40663}, {4079, 6063}, {4080, 30572}, {4397, 7147}, {4444, 7235}, {4466, 61178}, {4551, 16732}, {4559, 21207}, {4566, 21044}, {4573, 21043}, {4620, 8029}, {4625, 21833}, {4707, 52383}, {4998, 21131}, {5930, 58759}, {6057, 58817}, {6535, 17096}, {6538, 30724}, {6545, 65958}, {6591, 57807}, {7143, 52622}, {7212, 43534}, {7250, 30713}, {7265, 52382}, {7649, 26942}, {8058, 13853}, {8754, 65164}, {11608, 18006}, {15526, 36127}, {16609, 35352}, {17422, 64990}, {18210, 65207}, {18359, 51663}, {20336, 55208}, {20567, 50487}, {20975, 46404}, {21054, 38340}, {21106, 31612}, {21124, 60086}, {21134, 46102}, {21824, 65292}, {23105, 52378}, {23752, 60188}, {27801, 51641}, {28654, 43924}, {37755, 44426}, {40086, 56326}, {40999, 55236}, {41013, 51664}, {41283, 53581}, {41804, 55238}, {43682, 57099}, {43683, 57107}, {43923, 52369}, {45196, 57162}, {50457, 60321}, {52565, 58757}, {53527, 60091}, {55242, 57810}, {55282, 60229}, {58005, 65796}
X(66287) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 4612}, {6, 4636}, {7, 4610}, {10, 645}, {12, 190}, {19, 52914}, {37, 643}, {42, 5546}, {56, 4556}, {57, 52935}, {65, 662}, {73, 4558}, {75, 4631}, {85, 4623}, {86, 55196}, {109, 249}, {115, 522}, {125, 6332}, {181, 101}, {190, 6064}, {201, 1332}, {210, 7259}, {213, 65375}, {225, 648}, {226, 99}, {264, 55233}, {273, 55231}, {307, 4563}, {313, 62534}, {321, 7257}, {331, 55229}, {334, 36806}, {338, 35519}, {349, 670}, {393, 52921}, {512, 284}, {513, 2185}, {514, 261}, {520, 6514}, {522, 7058}, {523, 333}, {525, 332}, {594, 3699}, {647, 283}, {649, 60}, {650, 1098}, {651, 24041}, {653, 18020}, {656, 1812}, {657, 6061}, {658, 7340}, {661, 21}, {663, 7054}, {664, 4590}, {667, 2150}, {669, 57657}, {693, 52379}, {756, 644}, {762, 4069}, {798, 2194}, {810, 2193}, {850, 28660}, {900, 30606}, {961, 65255}, {1042, 4565}, {1089, 646}, {1109, 4391}, {1118, 52919}, {1214, 4592}, {1231, 55202}, {1254, 651}, {1356, 1919}, {1365, 514}, {1367, 30805}, {1400, 110}, {1402, 163}, {1409, 4575}, {1411, 37140}, {1415, 1101}, {1425, 1813}, {1426, 65232}, {1427, 1414}, {1441, 799}, {1446, 4625}, {1459, 65568}, {1500, 3939}, {1577, 314}, {1637, 51382}, {1648, 14432}, {1824, 65201}, {1826, 36797}, {1880, 162}, {2006, 65283}, {2170, 65575}, {2171, 100}, {2197, 1331}, {2321, 7256}, {2489, 2299}, {2501, 29}, {2533, 27958}, {2610, 4511}, {2623, 35196}, {2643, 650}, {2970, 46110}, {3064, 59482}, {3120, 4560}, {3122, 7252}, {3124, 663}, {3125, 3737}, {3261, 18021}, {3269, 57241}, {3668, 4573}, {3669, 757}, {3676, 1509}, {3690, 4587}, {3700, 1043}, {3701, 7258}, {3708, 521}, {3709, 2328}, {3949, 4571}, {4013, 4582}, {4017, 81}, {4024, 8}, {4036, 312}, {4041, 2287}, {4064, 345}, {4077, 274}, {4079, 55}, {4092, 3239}, {4103, 4076}, {4155, 3684}, {4171, 56182}, {4516, 1021}, {4551, 4567}, {4552, 4600}, {4554, 24037}, {4559, 4570}, {4566, 4620}, {4572, 34537}, {4605, 4998}, {4620, 31614}, {4705, 9}, {4838, 64401}, {4931, 4720}, {5930, 36841}, {6046, 658}, {6057, 6558}, {6058, 4103}, {6063, 52612}, {6354, 664}, {6356, 65164}, {6358, 668}, {6367, 3686}, {6370, 32851}, {6516, 62719}, {6535, 30730}, {6591, 270}, {7140, 65160}, {7143, 1461}, {7147, 934}, {7178, 86}, {7180, 58}, {7203, 763}, {7211, 18047}, {7212, 33295}, {7216, 1014}, {7233, 65258}, {7235, 3570}, {7250, 1412}, {7314, 4605}, {7363, 65290}, {7649, 46103}, {8013, 30729}, {8029, 21044}, {8611, 1792}, {8736, 1897}, {8754, 3064}, {9391, 6518}, {11608, 17931}, {13853, 53642}, {14321, 52352}, {14618, 44130}, {15526, 52616}, {16732, 18155}, {17094, 17206}, {17096, 6628}, {17924, 57779}, {17992, 5060}, {18006, 40882}, {18026, 46254}, {18097, 4577}, {18344, 2326}, {20336, 55207}, {20902, 35518}, {20948, 40072}, {20975, 652}, {21043, 3700}, {21044, 7253}, {21046, 52355}, {21054, 57066}, {21131, 11}, {21132, 26856}, {21134, 26932}, {21675, 65197}, {21725, 3287}, {21810, 61223}, {21824, 35057}, {21833, 4041}, {21834, 56181}, {21859, 765}, {24002, 873}, {24006, 31623}, {26942, 4561}, {27691, 57060}, {30572, 16704}, {30724, 30593}, {32660, 47390}, {32674, 250}, {34388, 1978}, {35352, 36800}, {36127, 23582}, {36197, 58329}, {37755, 6516}, {39691, 48278}, {40149, 811}, {40160, 54951}, {40999, 55235}, {41804, 55237}, {42661, 2269}, {42666, 2323}, {43924, 593}, {48005, 4877}, {50330, 17185}, {50487, 41}, {50538, 3691}, {51640, 18604}, {51641, 1333}, {51663, 3218}, {51664, 1444}, {52378, 59152}, {52383, 47318}, {52567, 3882}, {52575, 57968}, {52623, 3596}, {53321, 52378}, {53528, 30576}, {53540, 1019}, {53545, 7192}, {53551, 18206}, {53560, 57081}, {53581, 2175}, {54240, 23999}, {55197, 10}, {55206, 4183}, {55208, 28}, {55210, 35193}, {55214, 3193}, {55230, 219}, {55232, 78}, {55234, 3}, {55236, 3615}, {55238, 6740}, {55242, 285}, {55282, 16713}, {56285, 6335}, {57099, 56440}, {57107, 56439}, {57109, 3719}, {57181, 849}, {57185, 1}, {57243, 69}, {57652, 112}, {57809, 6331}, {57810, 55241}, {58289, 1334}, {58304, 52405}, {58757, 8748}, {58759, 5931}, {58817, 552}, {60229, 55281}, {60245, 4594}, {60321, 65230}, {61052, 649}, {61058, 4091}, {61364, 32739}, {64984, 65281}, {65164, 47389}, {65796, 950}, {65958, 6632}
X(66287) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30574, 62566, 656}, {55197, 57185, 4024}
X(66288) lies on the X-parabola (see X(12065)) and these lines: {88, 60055}, {106, 476}, {115, 4024}, {519, 17953}, {523, 3120}, {685, 6336}, {850, 21207}, {892, 903}, {1022, 60043}, {1109, 4036}, {1647, 42754}, {1797, 44768}, {2395, 55263}, {2501, 21950}, {4049, 5466}, {4062, 4080}, {4581, 43922}, {4608, 6549}, {4674, 5620}, {6548, 60042}, {23838, 60029}, {50755, 62732}, {52753, 65716}, {52759, 62672}, {61707, 63851}
X(66288) = X(i)-Ceva conjugate of X(j) for these (i,j): {903, 4049}, {6336, 55263}
X(66288) = X(i)-isoconjugate of X(j) for these (i,j): {44, 249}, {250, 5440}, {519, 1101}, {902, 24041}, {1023, 4556}, {1252, 30576}, {1576, 55243}, {2149, 30606}, {2251, 4590}, {3264, 23995}, {3285, 4567}, {4358, 23357}, {4570, 52680}, {4575, 46541}, {4612, 61210}, {4636, 23703}, {4730, 59152}, {9273, 40988}, {9459, 24037}, {18020, 23202}, {23344, 52935}, {38462, 47390}
X(66288) = X(i)-Dao conjugate of X(j) for these (i,j): {136, 46541}, {512, 9459}, {523, 519}, {647, 3977}, {650, 30606}, {661, 30576}, {3005, 902}, {4858, 55243}, {4988, 16704}, {9460, 4590}, {17436, 4141}, {18314, 3264}, {36901, 55262}, {40594, 24041}, {40595, 249}, {40627, 3285}, {50330, 52680}, {55065, 17780}, {62582, 6064}
X(66288) = crosspoint of X(903) and X(4049)
X(66288) = trilinear pole of line {115, 21131}
X(66288) = barycentric product X(i)*X(j) for these {i,j}: {12, 60578}, {88, 1109}, {106, 338}, {115, 903}, {125, 6336}, {339, 8752}, {523, 4049}, {594, 6549}, {850, 55263}, {1022, 4036}, {1086, 4013}, {1365, 4997}, {1577, 55244}, {1797, 2970}, {2643, 20568}, {3120, 4080}, {3124, 57995}, {4024, 6548}, {4077, 61179}, {4555, 21131}, {4591, 23105}, {4615, 8029}, {4674, 16732}, {9456, 23994}, {12079, 52753}, {20902, 36125}, {21134, 65336}, {23345, 52623}, {28654, 43922}, {52759, 64258}
X(66288) = barycentric quotient X(i)/X(j) for these {i,j}: {11, 30606}, {88, 24041}, {106, 249}, {115, 519}, {125, 3977}, {244, 30576}, {338, 3264}, {850, 55262}, {903, 4590}, {1022, 52935}, {1084, 9459}, {1109, 4358}, {1365, 3911}, {1577, 55243}, {2501, 46541}, {2643, 44}, {2970, 46109}, {3120, 16704}, {3122, 3285}, {3124, 902}, {3125, 52680}, {3708, 5440}, {4013, 1016}, {4024, 17780}, {4036, 24004}, {4049, 99}, {4079, 23344}, {4080, 4600}, {4092, 2325}, {4591, 59152}, {4615, 31614}, {4674, 4567}, {4705, 1023}, {4997, 6064}, {6336, 18020}, {6548, 4610}, {6549, 1509}, {8029, 4120}, {8288, 4141}, {8752, 250}, {8754, 8756}, {9456, 1101}, {16732, 30939}, {20568, 24037}, {20975, 22356}, {21043, 3943}, {21131, 900}, {21833, 21805}, {22260, 14407}, {23345, 4556}, {23838, 4612}, {32659, 47390}, {43922, 593}, {55244, 662}, {55263, 110}, {57185, 23703}, {57995, 34537}, {60578, 261}, {61052, 1404}, {61179, 643}, {64258, 52747}
X(66288) lies on the X-parabola (see X(12065)) and these lines: {1, 850}, {31, 523}, {42, 4036}, {213, 4024}, {923, 5466}, {1967, 66267}, {1973, 2501}, {36051, 62645}, {37132, 37219}, {46289, 58784}
X(66288) = X(662)-isoconjugate of X(14963)
X(66288) = X(1084)-Dao conjugate of X(14963)
X(66288) = trilinear pole of line {115, 798}
X(66288) = barycentric product X(i)*X(j) for these {i,j}: {512, 37219}, {523, 60134}
X(66288) = barycentric quotient X(i)/X(j) for these {i,j}: {512, 14963}, {37219, 670}, {60134, 99}
X(66289) lies on the X-parabola (see X(12065)) and these lines: {11, 523}, {80, 758}, {476, 759}, {685, 36120}, {740, 51562}, {850, 17886}, {892, 14616}, {1365, 57423}, {1621, 36815}, {1807, 12081}, {2222, 3724}, {2292, 56416}, {2501, 8735}, {2650, 14584}, {2677, 4092}, {3992, 15065}, {4024, 21044}, {4036, 21054}, {4647, 51975}, {5466, 60074}, {6757, 37735}, {12077, 64445}, {13576, 34857}, {14628, 17874}, {18101, 58784}, {20566, 35544}, {24624, 60055}, {35016, 56950}, {35550, 57788}, {37702, 38938}, {56425, 63354}
X(66289) = X(i)-Ceva conjugate of X(j) for these (i,j): {14616, 60074}, {34535, 661}, {57788, 1577}, {60091, 55238}
X(66289) = X(i)-cross conjugate of X(j) for these (i,j): {10413, 7332}, {42759, 3120}
X(66289) = X(i)-isoconjugate of X(j) for these (i,j): {36, 4570}, {163, 4585}, {249, 2245}, {662, 1983}, {758, 1101}, {860, 47390}, {2323, 52378}, {3724, 24041}, {3936, 23357}, {4242, 4575}, {4282, 4564}, {4567, 7113}, {4600, 52434}, {4620, 52426}, {4736, 9274}, {5379, 52407}, {6742, 52603}, {9273, 35069}, {23995, 35550}, {32661, 65162}, {32739, 55237}, {42666, 59152}
X(66289) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 4585}, {136, 4242}, {523, 758}, {1084, 1983}, {3005, 3724}, {4988, 3218}, {6544, 17191}, {8287, 10411}, {15898, 4570}, {18314, 35550}, {40619, 55237}, {40627, 7113}, {50330, 36}, {50497, 52434}, {62566, 4511}, {62567, 4881}
X(66289) = crosspoint of X(i) and X(j) for these (i,j): {2166, 10412}, {14616, 60074}
X(66289) = crosssum of X(i) and X(j) for these (i,j): {1983, 3724}, {6149, 52603}
X(66289) = trilinear pole of line {115, 55195}
X(66289) = barycentric product X(i)*X(j) for these {i,j}: {11, 60091}, {80, 16732}, {94, 2611}, {115, 14616}, {338, 759}, {523, 60074}, {693, 55238}, {1086, 15065}, {1109, 24624}, {1989, 17886}, {2161, 21207}, {2166, 8287}, {3120, 18359}, {3125, 20566}, {4858, 52383}, {7178, 52356}, {7265, 43082}, {10412, 14838}, {14592, 54244}, {15475, 18160}, {18815, 21044}, {20982, 63759}, {23105, 37140}, {23989, 34857}, {23994, 34079}, {35174, 55195}, {52409, 53545}
X(66289) = barycentric quotient X(i)/X(j) for these {i,j}: {80, 4567}, {115, 758}, {338, 35550}, {512, 1983}, {523, 4585}, {693, 55237}, {759, 249}, {1109, 3936}, {1365, 18593}, {1411, 52378}, {1647, 17191}, {2161, 4570}, {2501, 4242}, {2611, 323}, {2643, 2245}, {3120, 3218}, {3121, 52434}, {3122, 7113}, {3124, 3724}, {3125, 36}, {3271, 4282}, {4516, 2323}, {8029, 2610}, {8034, 21758}, {8735, 17515}, {10412, 15455}, {14616, 4590}, {14838, 10411}, {15065, 1016}, {16732, 320}, {17886, 7799}, {18210, 22128}, {18359, 4600}, {18815, 4620}, {20566, 4601}, {20982, 6149}, {21043, 4053}, {21044, 4511}, {21054, 42701}, {21131, 53527}, {21207, 20924}, {21950, 4881}, {24006, 65162}, {24624, 24041}, {34079, 1101}, {34857, 1252}, {35174, 55194}, {36197, 58328}, {37140, 59152}, {42759, 16586}, {52356, 645}, {52383, 4564}, {52391, 44717}, {53545, 1443}, {54244, 14590}, {55195, 3738}, {55238, 100}, {57985, 62719}, {60074, 99}, {60091, 4998}, {63462, 8648}, {64835, 5379}
X(66290) lies on the X-parabola (see X(12065)) and these lines: {105, 476}, {338, 4036}, {518, 20556}, {523, 2486}, {673, 60055}, {685, 54235}, {885, 60029}, {892, 2481}, {1109, 4024}, {1814, 44768}, {2395, 55261}, {4581, 43921}, {10099, 15328}, {60043, 62635}
X(66290) = X(54235)-Ceva conjugate of X(55261)
X(66290) = X(i)-isoconjugate of X(j) for these (i,j): {110, 54353}, {249, 672}, {250, 1818}, {518, 1101}, {1861, 47390}, {2223, 24041}, {2283, 4636}, {2284, 4556}, {3263, 23995}, {3286, 4570}, {3912, 23357}, {4238, 4575}, {4590, 9454}, {9455, 24037}, {52935, 54325}
X(66290) = X(i)-Dao conjugate of X(j) for these (i,j): {136, 4238}, {244, 54353}, {512, 9455}, {523, 518}, {647, 25083}, {3005, 2223}, {4988, 18206}, {18314, 3263}, {33675, 4590}, {36901, 55260}, {50330, 3286}, {55065, 1026}, {62554, 249}, {62599, 24041}
X(66290) = barycentric product X(i)*X(j) for these {i,j}: {105, 338}, {115, 2481}, {125, 54235}, {339, 8751}, {673, 1109}, {850, 55261}, {1027, 52623}, {1365, 36796}, {1438, 23994}, {1814, 2970}, {2643, 18031}, {4036, 62635}, {4092, 34018}, {10099, 14618}, {13576, 16732}, {18785, 21207}, {20902, 36124}, {21131, 51560}, {23962, 64216}, {28654, 43921}
X(66290) = barycentric quotient X(i)/X(j) for these {i,j}: {105, 249}, {115, 518}, {125, 25083}, {338, 3263}, {661, 54353}, {673, 24041}, {850, 55260}, {885, 4612}, {1024, 4636}, {1027, 4556}, {1084, 9455}, {1109, 3912}, {1365, 241}, {1438, 1101}, {2481, 4590}, {2501, 4238}, {2643, 672}, {2970, 46108}, {3120, 18206}, {3124, 2223}, {3125, 3286}, {3708, 1818}, {4024, 1026}, {4036, 42720}, {4079, 54325}, {4092, 3693}, {4705, 2284}, {8029, 24290}, {8751, 250}, {8754, 5089}, {10099, 4558}, {13576, 4567}, {16732, 30941}, {18031, 24037}, {18785, 4570}, {20975, 20752}, {21043, 3930}, {21131, 2254}, {21207, 18157}, {21833, 20683}, {31637, 62719}, {32658, 47390}, {34018, 7340}, {36796, 6064}, {43921, 593}, {54235, 18020}, {55261, 110}, {57185, 2283}, {61052, 52635}, {62635, 52935}, {64216, 23357}
X(66291) lies on the X-parabola (see X(12065)) and these lines: {112, 685}, {262, 5466}, {263, 512}, {476, 26714}, {523, 3569}, {647, 4108}, {850, 2525}, {892, 65271}, {1637, 8599}, {2485, 50946}, {2501, 3005}, {3288, 54267}, {8288, 12079}, {10412, 62384}, {11182, 34246}, {14998, 47229}, {15328, 43718}, {22240, 33569}, {22734, 36900}, {42313, 62645}, {44768, 65310}, {53196, 53230}, {54262, 64919}, {55267, 66267}, {55275, 62519}, {60042, 60679}, {60055, 65252}
X(66291) = reflection of X(3288) in X(54267)
X(66291) = isotomic conjugate of the isogonal conjugate of X(52631)
X(66291) = X(i)-Ceva conjugate of X(j) for these (i,j): {65271, 262}, {65349, 263}
X(66291) = X(50549)-cross conjugate of X(850)
X(66291) = X(i)-isoconjugate of X(j) for these (i,j): {110, 52134}, {163, 183}, {182, 662}, {458, 4575}, {799, 34396}, {1101, 23878}, {1576, 3403}, {3288, 24041}, {4556, 60723}, {4558, 60685}, {4592, 10311}, {4599, 14096}, {5546, 60716}, {14994, 34072}, {23997, 46806}, {36034, 51372}, {36134, 59197}, {52935, 60726}
X(66291) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 183}, {136, 458}, {137, 59197}, {244, 52134}, {523, 23878}, {1084, 182}, {3005, 3288}, {3124, 14096}, {3258, 51372}, {4858, 3403}, {5139, 10311}, {15449, 14994}, {35088, 51373}, {36901, 20023}, {38996, 34396}, {55065, 60737}, {62562, 46806}, {63463, 59208}
X(66291) = crosspoint of X(262) and X(65271)
X(66291) = crosssum of X(i) and X(j) for these (i,j): {182, 3288}, {5052, 50550}, {23878, 59197}
X(66291) = trilinear pole of line {115, 44114}
X(66291) = crossdifference of every pair of points on line {182, 14096}
X(66291) = barycentric product X(i)*X(j) for these {i,j}: {76, 52631}, {115, 65271}, {125, 65349}, {262, 523}, {263, 850}, {327, 512}, {338, 26714}, {826, 42299}, {868, 6037}, {1109, 65252}, {1577, 2186}, {2395, 46807}, {2501, 42313}, {2970, 65310}, {3402, 20948}, {4024, 60679}, {10412, 57268}, {12077, 42300}, {14618, 43718}, {23285, 42288}, {23290, 51444}, {30735, 40803}, {32716, 62431}, {39682, 60036}, {43665, 51543}, {44114, 53196}, {44173, 46319}, {58757, 59257}
X(66291) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 23878}, {262, 99}, {263, 110}, {327, 670}, {512, 182}, {523, 183}, {661, 52134}, {669, 34396}, {826, 14994}, {850, 20023}, {1577, 3403}, {1637, 51372}, {2186, 662}, {2395, 46806}, {2422, 51542}, {2489, 10311}, {2501, 458}, {2799, 51373}, {3005, 14096}, {3124, 3288}, {3402, 163}, {4017, 60716}, {4024, 60737}, {4036, 42711}, {4079, 60726}, {4705, 60723}, {6037, 57991}, {12077, 59197}, {14618, 44144}, {15475, 56401}, {22260, 6784}, {26714, 249}, {32716, 57742}, {40803, 35575}, {42288, 827}, {42299, 4577}, {42313, 4563}, {43718, 4558}, {46319, 1576}, {46807, 2396}, {50549, 52658}, {51428, 45321}, {51513, 39530}, {51543, 2421}, {52631, 6}, {55219, 59208}, {57268, 10411}, {58260, 9420}, {58757, 33971}, {60679, 4610}, {61359, 35278}, {65252, 24041}, {65271, 4590}, {65349, 18020}, {66267, 8842}
X(66292) lies on the X-parabola (see X(12065)) and these lines: {162, 685}, {256, 60029}, {257, 26545}, {476, 29055}, {661, 2395}, {892, 65289}, {1431, 9013}, {1432, 27469}, {4017, 4369}, {4608, 29116}, {4804, 56321}, {5466, 27710}, {7249, 60042}, {16609, 58784}, {37137, 60055}
X(66292) = X(i)-Ceva conjugate of X(j) for these (i,j): {65289, 60245}, {65332, 65011}
X(66292) = X(i)-isoconjugate of X(j) for these (i,j): {60, 4579}, {163, 27958}, {171, 4636}, {172, 4612}, {249, 3287}, {1101, 3907}, {2150, 18047}, {2311, 56982}, {2329, 4556}, {2330, 52935}, {3955, 52914}, {4575, 14006}, {6064, 56242}, {14602, 36806}, {17103, 65375}, {18235, 58982}, {40608, 59152}, {56154, 56980}
X(66292) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 27958}, {136, 14006}, {523, 3907}, {16591, 17941}, {40622, 17103}, {55065, 7081}, {56325, 18047}
X(66292) = crosspoint of X(60245) and X(65289)
X(66292) = barycentric product X(i)*X(j) for these {i,j}: {115, 65289}, {125, 65332}, {338, 29055}, {523, 60245}, {850, 65011}, {1109, 37137}, {1365, 27805}, {1431, 52623}, {1432, 4036}, {4024, 7249}, {4077, 52651}, {7018, 57185}, {16609, 66267}, {32010, 55197}
X(66292) = barycentric quotient X(i)/X(j) for these {i,j}: {12, 18047}, {115, 3907}, {256, 4612}, {523, 27958}, {882, 2311}, {893, 4636}, {1284, 56982}, {1365, 4369}, {1431, 4556}, {1432, 52935}, {1934, 36806}, {2171, 4579}, {2501, 14006}, {2643, 3287}, {4024, 7081}, {4036, 17787}, {4077, 8033}, {4079, 2330}, {4092, 4529}, {4705, 2329}, {6354, 6649}, {7018, 4631}, {7178, 17103}, {7249, 4610}, {16609, 17941}, {21043, 4140}, {21131, 4459}, {27805, 6064}, {29055, 249}, {32010, 55196}, {37137, 24041}, {40729, 65375}, {52651, 643}, {53540, 18200}, {53545, 17212}, {55197, 1215}, {55234, 3955}, {57185, 171}, {60245, 99}, {61052, 20981}, {65011, 110}, {65289, 4590}, {65332, 18020}, {66267, 36800}
X(66293) lies on the X-parabola (see X(12065)) and these lines: {111, 385}, {115, 850}, {476, 729}, {523, 3124}, {685, 57260}, {1084, 4108}, {1648, 35366}, {1916, 3266}, {2028, 30509}, {2029, 30508}, {2395, 15630}, {2501, 2971}, {3291, 46156}, {4036, 21833}, {5466, 60028}, {5640, 52765}, {5996, 9151}, {7804, 14608}, {14498, 65767}, {37132, 60055}, {41309, 52752}, {51906, 58784}
X(66293) = X(i)-Ceva conjugate of X(j) for these (i,j): {3228, 60028}, {34087, 35366}
X(66293) = X(i)-isoconjugate of X(j) for these (i,j): {163, 23342}, {249, 2234}, {538, 1101}, {662, 5118}, {3231, 24041}, {23995, 30736}, {24037, 33875}, {46522, 62719}
X(66293) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 23342}, {512, 33875}, {523, 538}, {1084, 5118}, {1649, 45672}, {3005, 3231}, {18314, 30736}, {36901, 63747}
X(66293) = crosspoint of X(3228) and X(60028)
X(66293) = crosssum of X(3231) and X(5118)
X(66293) = trilinear pole of line {115, 22260}
X(66293) = crossdifference of every pair of points on line {5118, 38366}
X(66293) = barycentric product X(i)*X(j) for these {i,j}: {115, 3228}, {338, 729}, {523, 60028}, {850, 63749}, {886, 22260}, {1109, 37132}, {3124, 34087}, {8029, 9150}, {12079, 52752}, {14608, 64258}, {23099, 57993}, {23105, 32717}, {35366, 58784}
X(66293) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 538}, {338, 30736}, {512, 5118}, {523, 23342}, {729, 249}, {850, 63747}, {1084, 33875}, {1648, 45672}, {2643, 2234}, {2971, 46522}, {3124, 3231}, {3228, 4590}, {8029, 9148}, {9150, 31614}, {16732, 30938}, {21833, 52893}, {22260, 888}, {23099, 887}, {23610, 65497}, {32717, 59152}, {34087, 34537}, {35366, 4576}, {37132, 24041}, {44114, 6786}, {51441, 36822}, {52625, 52067}, {60028, 99}, {63749, 110}, {64258, 52756}
X(66294) lies on the X-parabola (see X(12065)) and these lines: {104, 476}, {125, 4036}, {422, 685}, {517, 38952}, {523, 18210}, {892, 18816}, {1365, 2970}, {2395, 55259}, {2401, 60043}, {2501, 3125}, {3708, 4024}, {4581, 15635}, {5885, 14266}, {34234, 60055}, {42703, 57847}, {43728, 60029}, {44768, 65302}
X(66294) = X(16082)-Ceva conjugate of X(55259)
X(66294) = X(i)-isoconjugate of X(j) for these (i,j): {163, 64828}, {249, 2183}, {250, 22350}, {517, 1101}, {859, 4570}, {908, 23357}, {1785, 47390}, {2427, 4556}, {3262, 23995}, {4246, 4575}, {4636, 23981}
X(66294) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 64828}, {136, 4246}, {523, 517}, {18314, 3262}, {36901, 55258}, {50330, 859}
X(66294) = barycentric product X(i)*X(j) for these {i,j}: {104, 338}, {115, 18816}, {125, 16082}, {850, 55259}, {909, 23994}, {1109, 34234}, {1365, 36795}, {2250, 21207}, {2401, 4036}, {2970, 65302}, {3125, 57984}, {15635, 28654}, {16732, 38955}, {20902, 36123}, {21134, 65223}, {23962, 34858}
X(66294) = barycentric quotient X(i)/X(j) for these {i,j}: {104, 249}, {115, 517}, {338, 3262}, {523, 64828}, {850, 55258}, {909, 1101}, {1109, 908}, {1365, 1465}, {2250, 4570}, {2401, 52935}, {2501, 4246}, {2643, 2183}, {3125, 859}, {3708, 22350}, {4036, 2397}, {4705, 2427}, {8754, 14571}, {14578, 47390}, {15635, 593}, {16082, 18020}, {16732, 17139}, {18816, 4590}, {21043, 21801}, {21131, 1769}, {21833, 51377}, {34234, 24041}, {34858, 23357}, {36795, 6064}, {38955, 4567}, {43728, 4612}, {55259, 110}, {56761, 30576}, {57185, 23981}, {57984, 4601}, {61238, 4636}
X(66295) lies on the X-parabola (see X(12065)) and these lines: {193, 523}, {850, 57518}, {2501, 6353}, {4024, 4028}, {4226, 44768}, {5466, 45687}, {8029, 58766}, {14977, 64217}, {40819, 55267}, {44554, 58784}, {53374, 65484}, {55122, 62645}
X(66295) = X(i)-cross conjugate of X(j) for these (i,j): {53374, 5466}, {65484, 2501}, {66162, 98}
X(66295) = X(i)-isoconjugate of X(j) for these (i,j): {163, 44377}, {662, 1570}, {24041, 63733}
X(66295) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 44377}, {1084, 1570}, {3005, 63733}
X(66295) = cevapoint of X(i) and X(j) for these (i,j): {512, 6132}, {523, 55122}
X(66295) = crosssum of X(1570) and X(63733)
X(66295) = trilinear pole of line {115, 3566}
X(66295) = barycentric product X(523)*X(60073)
X(66295) = barycentric quotient X(i)/X(j) for these {i,j}: {512, 1570}, {523, 44377}, {3124, 63733}, {60073, 99}
X(66296) lies on the X-parabola (see X(12065)) and these lines: {99, 685}, {183, 47194}, {476, 9146}, {523, 4143}, {525, 2395}, {2419, 64983}, {2501, 2799}, {3268, 8599}, {5466, 30474}, {6563, 58784}, {7804, 59991}, {15414, 57069}, {18808, 55972}, {54259, 54267}, {54262, 64919}
X(66296) = isotomic conjugate of X(35278)
X(66296) = X(i)-isoconjugate of X(j) for these (i,j): {31, 35278}, {163, 7735}, {662, 40825}, {1576, 4008}, {4575, 6620}, {6776, 32676}, {23995, 30735}
X(66296) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 35278}, {115, 7735}, {136, 6620}, {525, 47194}, {1084, 40825}, {4858, 4008}, {15526, 6776}, {18314, 30735}, {35088, 1513}, {36901, 40814}, {62573, 37188}
X(66296) = cevapoint of X(525) and X(54260)
X(66296) = crosspoint of X(60093) and X(65276)
X(66296) = barycentric product X(i)*X(j) for these {i,j}: {338, 35575}, {523, 40824}, {525, 55972}, {850, 40802}, {3265, 64983}, {3267, 40801}, {40799, 44173}
X(66296) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 35278}, {338, 30735}, {512, 40825}, {523, 7735}, {525, 6776}, {850, 40814}, {1577, 4008}, {2501, 6620}, {2799, 1513}, {3265, 37188}, {3267, 62698}, {14618, 43976}, {15526, 47194}, {23878, 9755}, {30476, 56372}, {35575, 249}, {40799, 1576}, {40801, 112}, {40802, 110}, {40803, 26714}, {40823, 14574}, {40824, 99}, {41074, 60179}, {44173, 40822}, {55972, 648}, {60597, 42353}, {64919, 9752}, {64983, 107}
X(66297) lies on the X-parabola (see X(12065)) and these lines: {4, 30200}, {65, 15328}, {108, 476}, {225, 7649}, {273, 60042}, {278, 60043}, {521, 38949}, {523, 24006}, {651, 44768}, {653, 60055}, {685, 54240}, {892, 18026}, {1365, 2970}, {1441, 62645}, {1880, 2395}, {2501, 57185}, {4581, 17924}, {5466, 40149}, {14775, 18344}, {16231, 39579}, {44426, 56321}
X(66297) = polar conjugate of X(4612)
X(66297) = polar conjugate of the isogonal conjugate of X(57185)
X(66297) = X(i)-Ceva conjugate of X(j) for these (i,j): {18026, 40149}, {54240, 1880}
X(66297) = X(8754)-cross conjugate of X(8736)
X(66297) = X(i)-isoconjugate of X(j) for these (i,j): {3, 4636}, {21, 4575}, {48, 4612}, {60, 1331}, {101, 65568}, {110, 283}, {112, 6514}, {163, 1812}, {212, 52935}, {219, 4556}, {249, 652}, {250, 57241}, {255, 52914}, {261, 32656}, {284, 4558}, {332, 1576}, {333, 32661}, {521, 1101}, {522, 47390}, {593, 4587}, {643, 1437}, {662, 2193}, {849, 4571}, {906, 2185}, {1092, 52921}, {1098, 36059}, {1332, 2150}, {1444, 65375}, {1790, 5546}, {1813, 7054}, {1946, 24041}, {2194, 4592}, {2200, 55196}, {2327, 4565}, {3063, 62719}, {4563, 57657}, {4570, 23189}, {4610, 52425}, {4631, 9247}, {6332, 23357}, {7058, 32660}, {14585, 55233}, {18604, 65201}, {22074, 65255}, {23090, 52378}, {23181, 35196}, {23995, 35518}, {52616, 57655}, {55229, 62257}
X(66297) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 1812}, {136, 21}, {244, 283}, {523, 521}, {1015, 65568}, {1084, 2193}, {1214, 4592}, {1249, 4612}, {3005, 1946}, {4075, 4571}, {4858, 332}, {5139, 2194}, {5190, 2185}, {5521, 60}, {6523, 52914}, {6741, 1792}, {10001, 62719}, {15267, 36059}, {18314, 35518}, {20620, 1098}, {34591, 6514}, {36103, 4636}, {38966, 6061}, {39053, 24041}, {39060, 4590}, {40590, 4558}, {40611, 4575}, {40622, 1444}, {40837, 52935}, {47345, 662}, {50330, 23189}, {55060, 1437}, {55064, 2327}, {55065, 78}, {56325, 1332}, {62566, 57081}, {62570, 4563}, {62576, 4631}, {62602, 4610}
X(66297) = crosspoint of X(18026) and X(40149)
X(66297) = crosssum of X(1946) and X(2193)
X(66297) = crossdifference of every pair of points on line {2193, 22074}
X(66297) = barycentric product X(i)*X(j) for these {i,j}: {12, 17924}, {34, 52623}, {65, 14618}, {108, 338}, {115, 18026}, {125, 54240}, {158, 57243}, {225, 1577}, {226, 24006}, {264, 57185}, {273, 4024}, {278, 4036}, {286, 55197}, {313, 55208}, {331, 4705}, {512, 52575}, {514, 56285}, {523, 40149}, {651, 2970}, {653, 1109}, {661, 57809}, {693, 8736}, {850, 1880}, {1231, 58757}, {1254, 46110}, {1365, 6335}, {1441, 2501}, {1826, 4077}, {2171, 46107}, {2643, 46404}, {2973, 21859}, {3120, 65207}, {3669, 7141}, {3708, 52938}, {4079, 57787}, {4092, 13149}, {4554, 8754}, {6354, 44426}, {6358, 7649}, {6591, 34388}, {7140, 24002}, {7178, 41013}, {16732, 61178}, {20902, 36127}, {20948, 57652}, {23994, 32674}, {28654, 43923}, {55234, 57806}
X(66297) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 4612}, {12, 1332}, {19, 4636}, {34, 4556}, {65, 4558}, {108, 249}, {115, 521}, {181, 906}, {225, 662}, {226, 4592}, {264, 4631}, {273, 4610}, {278, 52935}, {286, 55196}, {313, 55207}, {331, 4623}, {338, 35518}, {349, 55202}, {393, 52914}, {512, 2193}, {513, 65568}, {523, 1812}, {594, 4571}, {653, 24041}, {656, 6514}, {661, 283}, {664, 62719}, {756, 4587}, {1109, 6332}, {1254, 1813}, {1365, 905}, {1400, 4575}, {1402, 32661}, {1415, 47390}, {1426, 4565}, {1441, 4563}, {1577, 332}, {1824, 5546}, {1826, 643}, {1880, 110}, {2171, 1331}, {2333, 65375}, {2489, 2194}, {2501, 21}, {2643, 652}, {2970, 4391}, {2971, 3063}, {3064, 1098}, {3124, 1946}, {3125, 23189}, {3700, 1792}, {3708, 57241}, {4017, 1790}, {4024, 78}, {4036, 345}, {4041, 2327}, {4064, 3719}, {4077, 17206}, {4079, 212}, {4092, 57055}, {4516, 23090}, {4554, 47389}, {4705, 219}, {6046, 65296}, {6335, 6064}, {6354, 6516}, {6358, 4561}, {6520, 52921}, {6591, 60}, {7140, 644}, {7141, 646}, {7178, 1444}, {7180, 1437}, {7649, 2185}, {8029, 53560}, {8735, 65575}, {8736, 100}, {8754, 650}, {13149, 7340}, {14618, 314}, {17924, 261}, {18026, 4590}, {18344, 7054}, {20902, 52616}, {20975, 36054}, {21043, 8611}, {21044, 57081}, {21131, 7004}, {24006, 333}, {32674, 1101}, {36197, 58338}, {37755, 6517}, {40149, 99}, {41013, 645}, {42661, 22074}, {43923, 593}, {44426, 7058}, {46107, 52379}, {46404, 24037}, {50487, 52425}, {51663, 22128}, {52575, 670}, {52623, 3718}, {52938, 46254}, {53008, 7259}, {53540, 7254}, {54240, 18020}, {55197, 72}, {55206, 2328}, {55208, 58}, {55212, 1819}, {55214, 1800}, {55230, 2289}, {55232, 1259}, {55234, 255}, {55236, 1789}, {55238, 1793}, {56285, 190}, {57185, 3}, {57243, 326}, {57652, 163}, {57787, 52612}, {57806, 55233}, {57809, 799}, {58289, 52370}, {58757, 1172}, {61052, 22383}, {61178, 4567}, {65103, 6061}, {65207, 4600}
X(66298) lies on the X-parabola (see X(12065)) and these lines: {6, 5466}, {187, 523}, {249, 892}, {512, 64258}, {524, 850}, {843, 39450}, {2407, 62672}, {2501, 44102}, {4036, 21839}, {10412, 56395}, {12079, 44398}, {18872, 66267}, {34246, 51927}, {40879, 62645}
X(66298) = reflection of X(44398) in X(47229)
X(66298) = X(i)-isoconjugate of X(j) for these (i,j): {662, 46127}, {23889, 65320}
X(66298) = X(1084)-Dao conjugate of X(46127)
X(66298) = trilinear pole of line {115, 351}
X(66298) = barycentric product X(690)*X(39450)
X(66298) = barycentric quotient X(i)/X(j) for these {i,j}: {512, 46127}, {8029, 15359}, {9178, 65320}, {39450, 892}
X(66299) lies on the X-parabola (see X(12065)) and these lines: {4, 924}, {92, 57083}, {107, 476}, {264, 62645}, {393, 2395}, {403, 523}, {520, 16229}, {648, 44768}, {685, 15352}, {770, 2501}, {823, 60055}, {850, 6368}, {879, 57684}, {892, 6528}, {1093, 18808}, {1300, 53924}, {1896, 60029}, {2052, 5466}, {2970, 12079}, {6753, 15422}, {7650, 46110}, {8057, 39533}, {10412, 13450}, {14165, 47221}, {14249, 18504}, {16172, 57065}, {16868, 60342}, {18039, 62172}, {34334, 36169}, {44427, 59744}, {44732, 64935}, {46106, 47348}, {46151, 65183}, {59424, 63705}
X(66299) = midpoint of X(4) and X(57120)
X(66299) = reflection of X(14618) in X(23290)
X(66299) = polar conjugate of X(4558)
X(66299) = isotomic conjugate of the isogonal conjugate of X(58757)
X(66299) = polar conjugate of the isotomic conjugate of X(14618)
X(66299) = polar conjugate of the isogonal conjugate of X(2501)
X(66299) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {921, 34186}, {39416, 18664}, {60779, 21220}
X(66299) = X(i)-Ceva conjugate of X(j) for these (i,j): {107, 13450}, {1093, 2970}, {6528, 2052}, {15352, 393}
X(66299) = X(i)-cross conjugate of X(j) for these (i,j): {125, 6526}, {136, 4}, {2501, 14618}, {2970, 1093}, {8754, 393}, {23105, 2970}, {51513, 2501}, {65472, 58757}
X(66299) = X(i)-isoconjugate of X(j) for these (i,j): {3, 4575}, {48, 4558}, {63, 32661}, {99, 52430}, {101, 18604}, {110, 255}, {112, 6507}, {162, 1092}, {163, 394}, {184, 4592}, {249, 822}, {283, 36059}, {326, 1576}, {520, 1101}, {563, 65309}, {577, 662}, {643, 7335}, {648, 4100}, {656, 47390}, {799, 14585}, {811, 23606}, {820, 59039}, {906, 1790}, {1102, 61206}, {1331, 1437}, {1414, 6056}, {1415, 6514}, {1444, 32656}, {1804, 65375}, {1812, 32660}, {1813, 2193}, {2169, 23181}, {2194, 6517}, {2289, 4565}, {2315, 43755}, {2617, 19210}, {3049, 62719}, {3265, 23995}, {3964, 32676}, {3990, 4556}, {4020, 65307}, {4055, 52935}, {4563, 9247}, {4570, 23224}, {4602, 61361}, {4625, 62257}, {4636, 22341}, {5546, 7125}, {5562, 36134}, {7257, 62258}, {14575, 55202}, {15958, 44706}, {17974, 23997}, {22115, 36061}, {23357, 24018}, {24037, 58310}, {24041, 39201}, {36034, 51394}, {36054, 52378}, {36433, 57973}, {37754, 47443}, {44174, 63832}
X(66299) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 394}, {122, 35602}, {125, 1092}, {135, 1147}, {136, 3}, {137, 5562}, {139, 52032}, {244, 255}, {338, 52347}, {512, 58310}, {523, 520}, {647, 52613}, {1015, 18604}, {1084, 577}, {1146, 6514}, {1214, 6517}, {1249, 4558}, {2501, 52584}, {2970, 12359}, {3005, 39201}, {3162, 32661}, {3258, 51394}, {4858, 326}, {4988, 4091}, {5099, 58357}, {5139, 184}, {5190, 1790}, {5521, 1437}, {6523, 110}, {6741, 1259}, {14363, 23181}, {15259, 1576}, {15525, 10607}, {15526, 3964}, {16178, 13754}, {16221, 22115}, {17423, 23606}, {18314, 3265}, {20620, 283}, {23285, 4143}, {34591, 6507}, {35078, 58354}, {35088, 51386}, {36103, 4575}, {36901, 3926}, {38970, 36212}, {38986, 52430}, {38996, 14585}, {40596, 47390}, {40608, 6056}, {40622, 1804}, {47345, 1813}, {47898, 44718}, {47899, 44719}, {48317, 3292}, {50330, 23224}, {53983, 3917}, {53986, 49}, {53989, 50461}, {55060, 7335}, {55064, 2289}, {55065, 3682}, {55066, 4100}, {56792, 53785}, {62562, 17974}, {62566, 57241}, {62576, 4563}, {62605, 4592}, {63463, 418}
X(66299) = cevapoint of X(i) and X(j) for these (i,j): {512, 6753}, {523, 65694}, {2501, 58757}, {2970, 23105}, {38359, 57154}, {58865, 58867}
X(66299) = crosspoint of X(i) and X(j) for these (i,j): {107, 8884}, {264, 30450}, {2052, 6528}
X(66299) = crosssum of X(i) and X(j) for these (i,j): {184, 30451}, {520, 5562}, {577, 39201}, {23606, 32320}
X(66299) = trilinear pole of line {115, 135}
X(66299) = crossdifference of every pair of points on line {577, 1092}
X(66299) = barycentric product X(i)*X(j) for these {i,j}: {4, 14618}, {76, 58757}, {92, 24006}, {107, 338}, {115, 6528}, {125, 15352}, {136, 30450}, {158, 1577}, {225, 46110}, {264, 2501}, {275, 23290}, {276, 51513}, {308, 65472}, {311, 15422}, {339, 6529}, {393, 850}, {512, 18027}, {523, 2052}, {525, 1093}, {648, 2970}, {656, 6521}, {661, 57806}, {823, 1109}, {847, 57065}, {1096, 20948}, {1826, 46107}, {2207, 44173}, {2394, 52661}, {2489, 18022}, {2623, 62275}, {2643, 57973}, {3064, 57809}, {3267, 6524}, {4563, 62524}, {5466, 37778}, {5489, 34538}, {6331, 8754}, {6344, 44427}, {6368, 8794}, {6520, 14208}, {6530, 43665}, {6753, 55553}, {7141, 17925}, {8747, 52623}, {8795, 12077}, {8884, 18314}, {8901, 65183}, {9290, 62521}, {9291, 62520}, {10412, 14165}, {13450, 15412}, {14222, 57486}, {14249, 58759}, {14273, 46111}, {15415, 61362}, {15459, 58261}, {16081, 16230}, {16089, 62519}, {17924, 41013}, {17994, 60199}, {18344, 52575}, {18808, 46106}, {18817, 47230}, {20031, 62431}, {20902, 36126}, {21044, 52938}, {21666, 52607}, {23105, 23582}, {23962, 32713}, {23994, 24019}, {27376, 52618}, {30735, 64983}, {32002, 55251}, {35235, 46456}, {36434, 52617}, {39183, 44732}, {39240, 46815}, {39241, 46812}, {40149, 44426}, {41221, 42405}, {43678, 59932}, {44132, 53149}, {44145, 60338}, {44161, 57204}, {44705, 52581}, {47236, 65267}, {52582, 57070}, {52632, 60428}, {55206, 57787}, {55219, 57844}, {56285, 57215}, {57868, 58812}, {58756, 62274}, {59745, 60841}
X(66299) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 4558}, {19, 4575}, {25, 32661}, {53, 23181}, {92, 4592}, {107, 249}, {112, 47390}, {115, 520}, {125, 52613}, {136, 52584}, {158, 662}, {225, 1813}, {226, 6517}, {264, 4563}, {338, 3265}, {339, 4143}, {393, 110}, {436, 62522}, {460, 56389}, {512, 577}, {513, 18604}, {522, 6514}, {523, 394}, {525, 3964}, {647, 1092}, {656, 6507}, {661, 255}, {669, 14585}, {798, 52430}, {804, 58354}, {810, 4100}, {811, 62719}, {823, 24041}, {847, 65309}, {850, 3926}, {1084, 58310}, {1093, 648}, {1096, 163}, {1109, 24018}, {1118, 4565}, {1300, 43755}, {1577, 326}, {1637, 51394}, {1824, 906}, {1826, 1331}, {1857, 5546}, {1880, 36059}, {1896, 4612}, {1969, 55202}, {2052, 99}, {2207, 1576}, {2333, 32656}, {2395, 17974}, {2489, 184}, {2492, 58357}, {2501, 3}, {2508, 58358}, {2623, 19210}, {2643, 822}, {2799, 51386}, {2969, 7254}, {2970, 525}, {2971, 3049}, {2973, 15419}, {3049, 23606}, {3064, 283}, {3120, 4091}, {3124, 39201}, {3125, 23224}, {3267, 4176}, {3566, 10607}, {3700, 1259}, {3709, 6056}, {4017, 7125}, {4024, 3682}, {4036, 3998}, {4041, 2289}, {4077, 7183}, {4079, 4055}, {4086, 3719}, {4516, 36054}, {4705, 3990}, {6331, 47389}, {6344, 60053}, {6520, 162}, {6521, 811}, {6524, 112}, {6526, 46639}, {6528, 4590}, {6529, 250}, {6530, 2421}, {6531, 43754}, {6587, 35602}, {6591, 1437}, {6753, 1147}, {7140, 4574}, {7141, 52609}, {7178, 1804}, {7180, 7335}, {7649, 1790}, {8029, 3269}, {8735, 23189}, {8736, 23067}, {8737, 38414}, {8738, 38413}, {8747, 4556}, {8748, 4636}, {8754, 647}, {8794, 18831}, {8882, 15958}, {8884, 18315}, {9426, 61361}, {12075, 22401}, {12077, 5562}, {12079, 62665}, {13400, 1181}, {13450, 14570}, {14165, 10411}, {14208, 1102}, {14249, 36841}, {14273, 3292}, {14569, 1625}, {14618, 69}, {15352, 18020}, {15422, 54}, {15475, 50433}, {16081, 17932}, {16230, 36212}, {16732, 4131}, {17924, 1444}, {17983, 65321}, {17994, 3289}, {18022, 52608}, {18027, 670}, {18314, 52347}, {18344, 2193}, {18384, 32662}, {18808, 14919}, {20031, 57742}, {20975, 32320}, {21044, 57241}, {21207, 30805}, {21447, 57216}, {21666, 15411}, {23105, 15526}, {23290, 343}, {23582, 59152}, {23962, 52617}, {24006, 63}, {24019, 1101}, {27376, 1634}, {30450, 57763}, {30735, 37188}, {32085, 65307}, {32230, 47443}, {32713, 23357}, {34208, 65311}, {34294, 58353}, {34854, 14966}, {35235, 8552}, {36127, 52378}, {36197, 58340}, {36417, 14574}, {36426, 15631}, {36434, 32713}, {37778, 5468}, {39240, 46814}, {39241, 46811}, {39416, 57638}, {40149, 6516}, {41013, 1332}, {41204, 62523}, {41221, 17434}, {42069, 23090}, {42455, 16731}, {43665, 6394}, {44426, 1812}, {44427, 52437}, {44705, 15905}, {46107, 17206}, {46110, 332}, {47230, 22115}, {47236, 13754}, {51513, 216}, {52335, 57057}, {52418, 52603}, {52439, 61206}, {52448, 4611}, {52623, 52396}, {52661, 2407}, {52938, 4620}, {53008, 4587}, {53149, 248}, {53569, 58359}, {55195, 1364}, {55197, 7066}, {55206, 212}, {55208, 603}, {55219, 418}, {55248, 60794}, {55251, 3519}, {55276, 40948}, {56285, 65233}, {57065, 9723}, {57070, 59155}, {57071, 3167}, {57094, 41608}, {57185, 22341}, {57204, 14575}, {57211, 63805}, {57652, 32660}, {57787, 55205}, {57806, 799}, {57809, 65164}, {57844, 55218}, {57973, 24037}, {58261, 41077}, {58310, 36433}, {58756, 14533}, {58757, 6}, {58759, 15394}, {58784, 28724}, {58812, 454}, {58865, 5408}, {58867, 5409}, {58882, 6461}, {59139, 55227}, {59932, 20806}, {60338, 43705}, {60428, 5467}, {61178, 44717}, {61362, 14586}, {62519, 14941}, {62520, 57686}, {62521, 56290}, {62524, 2501}, {63462, 61054}, {64983, 35575}, {65176, 44174}, {65472, 39}, {65478, 12096}, {65609, 51253}, {65694, 6503}
X(66300) lies on the X-parabola (see X(12065)) and these lines: {4, 1510}, {54, 15328}, {95, 62645}, {96, 58727}, {186, 523}, {250, 476}, {275, 5466}, {340, 520}, {393, 55219}, {421, 2501}, {526, 562}, {685, 16813}, {687, 15958}, {688, 53149}, {879, 8795}, {892, 18831}, {924, 5962}, {1141, 32710}, {1825, 24006}, {2395, 8882}, {2713, 52779}, {3147, 47193}, {6368, 61440}, {7577, 34967}, {8739, 20579}, {8740, 20578}, {8884, 18808}, {8901, 12079}, {12077, 46088}, {15414, 57069}, {16230, 39182}, {18315, 44768}, {19128, 50946}, {23295, 53266}, {25044, 43088}, {36188, 43768}, {39177, 47844}, {43083, 59275}, {46138, 53346}, {60055, 65221}, {61181, 65716}, {62172, 64935}
X(66300) = reflection of X(i) in X(j) for these {i,j}: {4, 23290}, {15412, 23286}
X(66300) = isogonal conjugate of X(23181)
X(66300) = polar conjugate of X(14570)
X(66300) = anticomplement of the isogonal conjugate of X(65348)
X(66300) = isogonal conjugate of the anticomplement of X(53577)
X(66300) = isotomic conjugate of the anticomplement of X(47421)
X(66300) = isotomic conjugate of the isogonal conjugate of X(58756)
X(66300) = isotomic conjugate of the polar conjugate of X(15422)
X(66300) = polar conjugate of the isotomic conjugate of X(15412)
X(66300) = polar conjugate of the isogonal conjugate of X(2623)
X(66300) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {2168, 39352}, {32692, 6360}, {65221, 40697}, {65273, 4329}, {65348, 8}
X(66300) = X(i)-Ceva conjugate of X(j) for these (i,j): {107, 51887}, {933, 4}, {8884, 8901}, {16813, 8882}, {18831, 275}, {65348, 54}
X(66300) = X(i)-cross conjugate of X(j) for these (i,j): {512, 2623}, {2623, 15412}, {2970, 4}, {8901, 8884}, {20975, 393}, {34338, 254}, {47421, 2}, {58308, 55253}, {58756, 15422}
X(66300) = X(i)-isoconjugate of X(j) for these (i,j): {1, 23181}, {3, 2617}, {5, 4575}, {48, 14570}, {51, 4592}, {63, 1625}, {99, 62266}, {100, 44709}, {101, 16697}, {110, 44706}, {162, 5562}, {163, 343}, {216, 662}, {217, 799}, {255, 35360}, {304, 61194}, {326, 52604}, {418, 811}, {563, 65845}, {643, 30493}, {906, 17167}, {925, 63801}, {1087, 15958}, {1101, 6368}, {1154, 36061}, {1331, 18180}, {1414, 44707}, {1568, 36034}, {1576, 18695}, {1953, 4558}, {2179, 4563}, {2180, 65309}, {2290, 60053}, {2618, 47390}, {3737, 44710}, {4100, 65183}, {5546, 44708}, {6507, 61193}, {14213, 32661}, {15451, 24041}, {23997, 53174}, {23999, 58305}, {24037, 65485}, {32676, 52347}, {34055, 35319}, {35307, 65568}, {36084, 44716}, {36145, 52032}, {36148, 63805}, {40981, 55202}, {42293, 46254}, {44088, 57968}, {55219, 62719}
X(66300) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 23181}, {115, 343}, {125, 5562}, {135, 52}, {136, 5}, {244, 44706}, {512, 65485}, {523, 6368}, {647, 60597}, {1015, 16697}, {1084, 216}, {1249, 14570}, {2501, 63829}, {3005, 15451}, {3162, 1625}, {3258, 1568}, {4858, 18695}, {5139, 51}, {5190, 17167}, {5521, 18180}, {6523, 35360}, {8054, 44709}, {8901, 1216}, {15241, 63734}, {15259, 52604}, {15526, 52347}, {16178, 63735}, {16221, 1154}, {17423, 418}, {36103, 2617}, {36901, 28706}, {38970, 60524}, {38986, 62266}, {38987, 44716}, {38993, 44711}, {38994, 44712}, {38996, 217}, {39013, 52032}, {39018, 63805}, {40608, 44707}, {47898, 33529}, {47899, 33530}, {48317, 41586}, {53986, 143}, {53993, 5891}, {55060, 30493}, {62562, 53174}, {62603, 4563}, {63463, 61378}
X(66300) = cevapoint of X(i) and X(j) for these (i,j): {512, 2501}, {523, 924}, {2623, 58756}
X(66300) = crosspoint of X(i) and X(j) for these (i,j): {95, 65273}, {275, 18831}, {8795, 16813}, {46134, 60241}
X(66300) = crosssum of X(i) and X(j) for these (i,j): {51, 52317}, {216, 15451}, {418, 17434}, {647, 23195}, {684, 46094}, {20803, 23189}
X(66300) = trilinear pole of line {115, 136}
X(66300) = crossdifference of every pair of points on line {216, 217}
X(66300) = barycentric product X(i)*X(j) for these {i,j}: {4, 15412}, {54, 14618}, {69, 15422}, {76, 58756}, {92, 2616}, {95, 2501}, {96, 57065}, {107, 53576}, {115, 18831}, {125, 16813}, {136, 65273}, {264, 2623}, {275, 523}, {276, 512}, {317, 55253}, {338, 933}, {393, 62428}, {427, 39182}, {520, 8794}, {525, 8884}, {526, 65360}, {562, 2413}, {647, 8795}, {648, 8901}, {661, 40440}, {669, 57790}, {850, 8882}, {1109, 65221}, {1141, 44427}, {1577, 2190}, {2052, 23286}, {2167, 24006}, {2433, 43752}, {2489, 34384}, {2970, 18315}, {2971, 55218}, {3049, 57844}, {3267, 61362}, {3269, 52779}, {4580, 19174}, {6524, 15414}, {6591, 56189}, {6753, 34385}, {7649, 56246}, {16032, 58865}, {16037, 58867}, {17924, 56254}, {18027, 58308}, {18808, 43768}, {19189, 43665}, {20948, 62268}, {20975, 42405}, {34386, 58757}, {34980, 42401}, {35235, 64516}, {38808, 58759}, {39177, 56285}, {39181, 44732}, {39286, 55280}, {41221, 52939}, {44173, 62271}, {46138, 47230}, {55251, 63172}
X(66300) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 14570}, {6, 23181}, {19, 2617}, {25, 1625}, {54, 4558}, {95, 4563}, {96, 65309}, {115, 6368}, {125, 60597}, {136, 63829}, {275, 99}, {276, 670}, {317, 55252}, {393, 35360}, {512, 216}, {513, 16697}, {523, 343}, {525, 52347}, {647, 5562}, {649, 44709}, {661, 44706}, {669, 217}, {798, 62266}, {847, 65845}, {850, 28706}, {924, 52032}, {933, 249}, {1084, 65485}, {1093, 65183}, {1141, 60053}, {1510, 63805}, {1577, 18695}, {1637, 1568}, {1843, 35319}, {1974, 61194}, {2148, 4575}, {2167, 4592}, {2190, 662}, {2207, 52604}, {2395, 53174}, {2413, 63761}, {2433, 44715}, {2489, 51}, {2501, 5}, {2616, 63}, {2623, 3}, {2970, 18314}, {2971, 55219}, {3049, 418}, {3124, 15451}, {3569, 44716}, {3709, 44707}, {4017, 44708}, {4036, 42698}, {4559, 44710}, {6137, 44711}, {6138, 44712}, {6524, 61193}, {6591, 18180}, {6753, 52}, {7180, 30493}, {7649, 17167}, {8749, 36831}, {8754, 12077}, {8794, 6528}, {8795, 6331}, {8882, 110}, {8884, 648}, {8901, 525}, {14273, 41586}, {14586, 47390}, {14618, 311}, {15412, 69}, {15414, 4176}, {15422, 4}, {16230, 60524}, {16813, 18020}, {18808, 62722}, {18831, 4590}, {19174, 41676}, {19189, 2421}, {20578, 44713}, {20579, 44714}, {20975, 17434}, {23286, 394}, {23290, 45793}, {24006, 14213}, {32692, 44174}, {34384, 52608}, {35235, 41078}, {38808, 36841}, {39182, 1799}, {39286, 55279}, {40440, 799}, {41221, 57195}, {44427, 1273}, {44705, 42459}, {46088, 1092}, {47230, 1154}, {47236, 63735}, {51513, 36412}, {53149, 60517}, {53576, 3265}, {54034, 32661}, {55206, 7069}, {55208, 1393}, {55216, 63801}, {55219, 61378}, {55251, 25043}, {55253, 68}, {56246, 4561}, {56254, 1332}, {57065, 39113}, {57071, 41588}, {57204, 40981}, {57790, 4609}, {58306, 14966}, {58308, 577}, {58756, 6}, {58757, 53}, {58760, 3133}, {61193, 65959}, {61362, 112}, {62268, 163}, {62271, 1576}, {62276, 55202}, {62428, 3926}, {63634, 61195}, {65221, 24041}, {65273, 57763}, {65360, 35139}, {65472, 27371}, {65485, 46394}, {65751, 42293}
X(66300) = {X(2501),X(2623)}-harmonic conjugate of X(15422)
X(66301) lies on these lines: {2, 3}, {86, 55646}, {165, 48854}, {511, 63108}, {1350, 46922}, {1447, 30282}, {1766, 51064}, {3098, 17379}, {5092, 17349}, {5731, 48849}, {9441, 48856}, {9746, 58221}, {10186, 28885}, {11179, 50074}, {12017, 63050}, {15668, 55656}, {16830, 35242}, {17238, 46264}, {17271, 43273}, {17277, 55676}, {17307, 48905}, {17343, 48906}, {17346, 51737}, {17378, 54169}, {17381, 48881}, {18755, 63006}, {25055, 48932}, {33863, 63024}, {33878, 37677}, {50133, 54173}, {50310, 51705}, {50967, 63052}
X(66301) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 13634, 2}, {3, 36477, 36699}, {3, 36489, 37416}, {5004, 5005, 16373}
X(66302) lies on these lines: {2, 3}, {86, 55676}, {182, 63108}, {990, 51064}, {3098, 17349}, {5085, 46922}, {5092, 17379}, {7987, 48854}, {9441, 34632}, {11179, 50133}, {12017, 37677}, {16823, 35242}, {17232, 46264}, {17259, 55656}, {17277, 55646}, {17283, 48905}, {17297, 43273}, {17346, 54169}, {17352, 48881}, {17375, 48906}, {17378, 51737}, {17502, 44430}, {18755, 63024}, {24257, 51054}, {30282, 61018}, {33863, 63006}, {33878, 63050}, {50074, 54173}, {50286, 51705}, {50967, 63049}, {54174, 63086}
X(66302) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 13635, 2}, {3, 36699, 37416}
X(66303) lies on these lines: {2, 3}, {86, 55653}, {3098, 46922}, {10164, 24808}, {17277, 55672}, {17307, 48892}, {17349, 55678}, {17379, 55639}, {33878, 63108}, {35242, 48854}, {37677, 55604}, {48932, 51109}
X(66303) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 13634, 13635}, {13634, 13635, 6998}
X(66304) lies on these lines: {2, 3}, {86, 55672}, {5092, 46922}, {12017, 63108}, {17277, 55653}, {17283, 48892}, {17349, 55639}, {17379, 55678}, {44430, 58221}, {55604, 63050}
X(66304) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 13635, 13634}, {13634, 13635, 21554}
X(66305) lies on these lines: {2, 3}, {86, 55656}, {1350, 63108}, {3098, 37677}, {5092, 63050}, {16192, 48854}, {17349, 55676}, {17379, 55646}, {31884, 46922}, {50074, 51737}, {50133, 54169}
X(66305) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 3524, 13632}
X(66306) lies on these lines: {2, 3}, {3098, 63050}, {5085, 63108}, {5092, 37677}, {17277, 55656}, {17349, 55646}, {17379, 55676}, {39586, 58217}, {46922, 53094}, {48849, 64108}, {48854, 58221}, {50074, 54169}, {50133, 51737}
X(66306) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 3524, 13633}, {5004, 5005, 16421}
X(66307) lies on these lines: {2, 3}, {86, 33878}, {230, 48837}, {515, 48853}, {517, 9746}, {519, 8667}, {536, 46475}, {540, 9766}, {542, 17251}, {952, 48849}, {966, 48906}, {1213, 46264}, {1351, 46922}, {1447, 15934}, {1654, 39899}, {1766, 51038}, {2271, 5306}, {3098, 15668}, {3579, 39586}, {3584, 37576}, {3654, 50291}, {3655, 50305}, {3818, 17327}, {5021, 9300}, {5092, 17259}, {5093, 63108}, {5224, 18440}, {5268, 18506}, {5790, 29081}, {6707, 48881}, {7179, 18541}, {7735, 48847}, {7778, 48835}, {8556, 48862}, {10056, 37580}, {10246, 29331}, {11179, 17330}, {11237, 17798}, {12017, 17277}, {12702, 16830}, {15271, 48863}, {17271, 50955}, {17313, 50977}, {17349, 55705}, {17379, 44456}, {17392, 54173}, {17398, 31670}, {18755, 48842}, {19758, 50178}, {19761, 50182}, {21850, 63055}, {24257, 50096}, {28150, 64302}, {28178, 44431}, {28194, 48900}, {28198, 48944}, {28204, 48851}, {28216, 64308}, {31394, 48805}, {34718, 50286}, {34773, 39581}, {37607, 48828}, {37654, 50979}, {48852, 54388}, {48861, 63006}, {49731, 51737}, {49738, 54169}, {50962, 63052}, {50967, 63110}
X(66307) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 13634, 3}, {6998, 13634, 2}, {13632, 36490, 36721}, {21869, 21898, 22267}
X(66308) lies on these lines: {2, 3}, {86, 12017}, {542, 17313}, {990, 51038}, {1385, 48854}, {2271, 9300}, {3098, 17259}, {3582, 37576}, {3654, 50305}, {3655, 50291}, {3818, 17265}, {4648, 48906}, {4755, 46475}, {5021, 5306}, {5050, 46922}, {5092, 15668}, {5690, 48849}, {6211, 31178}, {6684, 48853}, {9441, 31162}, {10072, 37580}, {10246, 44430}, {11179, 17392}, {12702, 16823}, {13624, 39586}, {15934, 61018}, {16020, 22791}, {17234, 18440}, {17245, 46264}, {17251, 50977}, {17277, 33878}, {17297, 50955}, {17300, 39899}, {17330, 54173}, {17337, 31670}, {17349, 44456}, {17379, 55705}, {18358, 53665}, {21850, 37650}, {24257, 50111}, {26241, 35000}, {29085, 38107}, {29369, 59381}, {34718, 50310}, {37705, 39570}, {38034, 44431}, {39581, 61524}, {48851, 50821}, {48856, 50824}, {49731, 54169}, {49738, 51737}, {50962, 63049}, {50979, 63054}, {53091, 63108}
X(66308) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 13635, 3}, {13633, 36730, 36731}, {13635, 21554, 2}
X(66309) lies on these lines: {2, 3}, {86, 44456}, {355, 48853}, {966, 39899}, {990, 51049}, {1213, 18440}, {1482, 48854}, {2271, 3017}, {3584, 37580}, {3828, 48932}, {4688, 46475}, {5093, 46922}, {5275, 45923}, {6707, 31670}, {8148, 16830}, {11179, 49731}, {12017, 17259}, {12645, 48849}, {12702, 39586}, {15668, 33878}, {17251, 50955}, {17277, 55705}, {18481, 39580}, {18526, 39581}, {21850, 63014}, {26446, 28849}, {34718, 50291}, {34748, 50310}, {39605, 48661}, {48851, 50798}, {48856, 50805}, {49738, 54173}, {50962, 63054}
X(66309) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {381, 5054, 13632}
X(66310) lies on these lines: {2, 3}, {86, 55705}, {1766, 51049}, {3582, 37580}, {4648, 39899}, {8148, 16823}, {9441, 38021}, {10246, 48854}, {10247, 44430}, {11179, 49738}, {12017, 15668}, {17245, 18440}, {17259, 33878}, {17277, 44456}, {17313, 50955}, {18530, 24239}, {26446, 48853}, {34718, 50305}, {34748, 50286}, {37654, 50962}, {38066, 48851}, {46922, 53091}, {48849, 59503}, {49731, 54173}, {50979, 63110}
X(66310) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {381, 5054, 13633}
X(66311) lies on these lines: {2, 3}, {86, 37517}, {3818, 31248}, {5097, 46922}, {9441, 38068}, {11278, 16830}, {15668, 55582}, {16200, 48854}, {17259, 55699}, {17277, 50664}, {28858, 49631}, {38155, 48853}, {44430, 63468}, {51214, 63110}, {53018, 54447}
X(66311) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6998, 13634}, {2, 13634, 21554}
X(66312) lies on these lines: {2, 3}, {86, 50664}, {11278, 16823}, {15668, 55699}, {16200, 44430}, {17259, 55582}, {17277, 37517}, {24808, 38155}, {39561, 46922}, {39586, 64954}, {48854, 64952}
X(66312) ={X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 13635, 6998}, {2, 21554, 13635}
X(66313) lies on these lines: {1, 1447}, {2, 3}, {8, 20769}, {40, 16830}, {86, 1350}, {98, 43359}, {165, 39586}, {182, 17349}, {183, 1043}, {192, 46475}, {262, 48939}, {385, 20018}, {388, 17798}, {511, 17379}, {572, 48878}, {576, 63108}, {962, 28862}, {966, 25406}, {991, 18792}, {1213, 44882}, {1281, 8235}, {1351, 37677}, {1352, 17238}, {1503, 5224}, {1654, 6776}, {2271, 5304}, {3085, 37576}, {3564, 17343}, {3576, 16823}, {3579, 44430}, {3598, 11036}, {3815, 64159}, {3920, 37529}, {3923, 8245}, {3945, 62174}, {4292, 7179}, {4297, 49631}, {4300, 32462}, {4352, 19758}, {5021, 37665}, {5050, 63050}, {5085, 17277}, {5232, 5921}, {5275, 37537}, {5314, 27287}, {5480, 17381}, {5731, 39581}, {5882, 50310}, {6626, 7710}, {7735, 18755}, {7736, 33863}, {7774, 20077}, {7778, 59625}, {7991, 48854}, {8550, 17346}, {9534, 54388}, {10516, 17307}, {10519, 17300}, {11362, 50286}, {11477, 46922}, {14853, 63053}, {14912, 62989}, {15069, 17271}, {15668, 31884}, {15803, 61018}, {16020, 54445}, {17000, 37474}, {17206, 37668}, {17245, 21167}, {17251, 64080}, {17259, 53094}, {17327, 36990}, {17375, 48876}, {17398, 29181}, {19851, 33891}, {20090, 63428}, {20731, 37523}, {22712, 48894}, {23151, 54398}, {23863, 28265}, {24239, 37608}, {24320, 26059}, {24342, 24728}, {24467, 56512}, {25521, 51687}, {26277, 65659}, {26921, 56513}, {26939, 27547}, {26971, 31394}, {27401, 41828}, {30761, 64711}, {31089, 46483}, {31144, 43273}, {31730, 39605}, {33748, 62985}, {37527, 37683}, {39587, 59417}, {43174, 50291}, {44434, 48936}, {44698, 45141}, {48925, 64005}, {48944, 64308}, {50074, 63722}, {51212, 63055}, {55104, 56517}, {56511, 63399}
X(66313) = anticomplement of X(7380)
X(66313) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20, 7379}, {2, 22, 37103}, {2, 3146, 7407}, {2, 7390, 7385}, {3, 4, 37416}, {3, 5, 36697}, {3, 6998, 2}, {3, 13727, 20}, {3, 36477, 4}, {20, 36693, 4}, {631, 36705, 3}, {1010, 5999, 7379}, {1010, 37053, 2}, {4220, 56774, 411}, {5002, 5003, 7560}, {5004, 5005, 1011}, {6998, 13634, 3}, {7397, 36660, 36692}, {13725, 37182, 7379}, {14784, 14785, 36663}, {16060, 56562, 2}, {16062, 56731, 2}, {19310, 37099, 37442}, {37039, 60651, 7379}, {37149, 56774, 2}
X(66314) lies on these lines: {1, 61018}, {2, 3}, {8, 24591}, {40, 16823}, {86, 5085}, {98, 60236}, {147, 25650}, {182, 17379}, {391, 62174}, {511, 17349}, {516, 15485}, {575, 63108}, {962, 9441}, {1213, 21167}, {1350, 17277}, {1351, 63050}, {1352, 17232}, {1385, 44430}, {1447, 15803}, {1503, 17234}, {1654, 10519}, {2271, 37665}, {3086, 37576}, {3564, 17375}, {3576, 16830}, {3624, 48932}, {3705, 63146}, {3757, 10476}, {4298, 37608}, {4314, 24239}, {4648, 25406}, {4869, 5921}, {5021, 5304}, {5050, 37677}, {5268, 64679}, {5272, 12651}, {5480, 17352}, {5882, 50286}, {6194, 16552}, {6211, 24349}, {6776, 17300}, {7081, 57279}, {7179, 13411}, {7191, 37529}, {7288, 17798}, {7293, 27287}, {7735, 33863}, {7736, 18755}, {7987, 39586}, {8550, 17378}, {9588, 48851}, {9746, 16192}, {10165, 39605}, {10310, 26241}, {10444, 21153}, {10446, 13329}, {10516, 17283}, {11037, 37607}, {11362, 50310}, {11499, 31073}, {14853, 63051}, {14912, 20090}, {14986, 37580}, {15069, 17297}, {15271, 59625}, {15589, 17206}, {15668, 53094}, {16783, 54388}, {16825, 18788}, {17245, 44882}, {17259, 31884}, {17265, 36990}, {17313, 64080}, {17337, 29181}, {17343, 48876}, {18525, 24808}, {19782, 20018}, {20731, 37694}, {20769, 27383}, {23863, 28271}, {24467, 56513}, {26470, 31084}, {26921, 56512}, {27268, 46475}, {30389, 48854}, {33748, 62997}, {37521, 37683}, {37650, 51212}, {37800, 62314}, {43174, 50305}, {44431, 48900}, {46922, 53093}, {50133, 63722}, {55104, 56511}, {56517, 63399}, {62989, 63428}
X(66314) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20, 7385}, {2, 3522, 7390}, {2, 50699, 37443}, {3, 5, 36489}, {3, 4229, 10304}, {3, 6996, 20}, {3, 21554, 2}, {3, 36477, 36705}, {3, 36697, 37416}, {3, 49129, 376}, {20, 36692, 4}, {140, 7380, 2}, {631, 36699, 3}, {3090, 36705, 36477}, {5004, 5005, 4191}, {5999, 17682, 7385}, {7413, 16434, 2}, {7474, 40916, 2}, {13635, 21554, 3}, {14784, 14785, 36661}, {16061, 56563, 2}, {19512, 49131, 36652}, {19649, 56775, 6986}
X(66315) lies on these lines: {2, 3}, {86, 55639}, {3579, 48854}, {9746, 17502}, {15668, 55653}, {17259, 55672}, {17277, 55678}, {17327, 48892}, {17379, 55604}, {33878, 46922}, {34773, 48849}, {44456, 63108}, {48932, 51108}
X(66316) lies on these lines: {2, 3}, {86, 55678}, {12017, 46922}, {13624, 48854}, {15668, 55672}, {17259, 55653}, {17265, 48892}, {17277, 55639}, {17349, 55604}, {48849, 61524}, {55705, 63108}
X(66316) = midpoint of X(376) and X(36670)
X(66317) lies on these lines: {2, 3}, {148, 7884}, {698, 59373}, {1992, 42421}, {2896, 47005}, {3241, 51710}, {3329, 59634}, {3734, 19570}, {3972, 63044}, {5306, 17128}, {5309, 10583}, {7739, 63020}, {7753, 7836}, {7766, 32836}, {7785, 7880}, {7787, 32833}, {7788, 20088}, {7799, 7804}, {7809, 7820}, {7811, 46226}, {7822, 11057}, {7832, 14537}, {7846, 11648}, {7865, 14712}, {7875, 20094}, {9143, 64602}, {10353, 64090}, {14907, 60728}, {20081, 63006}, {32874, 63048}, {34604, 63939}
X(66317) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 376, 33021}, {2, 384, 19686}, {2, 3543, 7933}, {2, 6658, 7924}, {2, 6661, 19689}, {2, 14031, 3543}, {2, 19686, 6655}, {2, 19692, 6661}, {2, 32981, 33263}, {2, 33019, 33223}, {2, 33201, 33266}, {2, 33246, 33259}, {2, 33266, 33004}, {2, 61944, 33277}, {2, 61985, 33283}, {2, 62063, 33258}, {376, 16898, 2}, {381, 7892, 2}, {384, 6656, 19693}, {384, 6661, 2}, {384, 7819, 6658}, {384, 19689, 6655}, {384, 19692, 19689}, {384, 19694, 19687}, {384, 19697, 19692}, {384, 19702, 19691}, {384, 44230, 14031}, {547, 33245, 2}, {7770, 33246, 2}, {7819, 7924, 2}, {8368, 33013, 2}, {11286, 14036, 2}, {11361, 33237, 2}, {14033, 33196, 52942}, {16911, 50202, 2}, {16924, 33224, 2}, {19686, 19689, 2}, {19687, 19694, 19690}, {33005, 33197, 2}
X(66318) lies on these lines: {2, 3}, {83, 59634}, {698, 63124}, {3734, 5306}, {3793, 3972}, {6390, 7804}, {6781, 34573}, {7745, 7880}, {7750, 47005}, {7753, 7789}, {7788, 18907}, {7794, 63944}, {7820, 14537}, {7884, 32819}, {8556, 37809}, {8584, 42421}, {8667, 19661}, {13188, 51732}, {14614, 59780}, {18358, 55007}, {21358, 47102}, {30435, 32836}, {32892, 63954}, {47287, 63020}, {51071, 51710}, {51122, 59373}
X(66318) = midpoint of X(i) and X(j) for these {i,j}: {384, 6661}, {6656, 19686}, {7924, 19687}
X(66318) = reflection of X(i) in X(j) for these {i,j}: {6661, 19697}, {7819, 6661}, {7924, 8364}
X(66318) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1003, 8703}, {2, 3830, 33184}, {2, 8370, 5066}, {2, 8598, 8358}, {2, 8703, 8359}, {2, 11001, 11287}, {2, 14033, 3830}, {2, 15640, 33190}, {2, 32983, 61920}, {2, 32985, 15693}, {2, 33216, 61843}, {2, 35297, 11812}, {2, 41099, 11318}, {2, 44543, 61910}, {2, 61989, 33285}, {384, 19689, 19687}, {384, 19692, 6656}, {384, 19694, 19693}, {384, 19697, 7819}, {3830, 33237, 2}, {5055, 33242, 33224}, {5066, 8368, 2}, {6656, 19687, 19691}, {7770, 33255, 549}, {8363, 14034, 3853}, {8364, 19689, 7819}, {8367, 11812, 2}, {8370, 14036, 8368}, {11285, 33266, 17504}, {11286, 14039, 8369}, {14031, 33217, 3627}, {14033, 33237, 33184}, {14035, 33219, 15687}, {15687, 33185, 33219}, {19687, 19689, 8364}, {19691, 19692, 19689}, {19693, 19694, 19695}, {32971, 33224, 5055}, {33197, 61932, 2}, {33231, 61915, 2}
X(66319) lies on these lines: {2, 3}, {6, 47287}, {99, 9300}, {141, 11057}, {325, 14537}, {543, 39593}, {698, 8584}, {736, 14711}, {3314, 19569}, {3734, 37671}, {3972, 5306}, {5182, 42421}, {5309, 32819}, {6645, 15170}, {6680, 39563}, {6781, 40344}, {7737, 7788}, {7745, 7799}, {7747, 7880}, {7753, 7816}, {7762, 32833}, {7789, 7809}, {7792, 11648}, {7794, 63943}, {7802, 47005}, {7828, 63543}, {7835, 48913}, {7837, 18907}, {7868, 43618}, {13172, 18583}, {17130, 63952}, {20094, 63633}, {26686, 65140}, {31859, 63024}, {32815, 63006}, {40706, 53429}, {40707, 53441}, {51103, 51710}, {51123, 63028}, {52229, 63038}, {53428, 62877}, {53440, 62876}
X(66319) = midpoint of X(i) and X(j) for these {i,j}: {384, 19686}, {6658, 7924}, {6661, 19687}
X(66319) = reflection of X(i) in X(j) for these {i,j}: {6656, 6661}, {6661, 384}, {7924, 7819}, {19687, 19686}, {19695, 7924}
X(66319) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3534, 8356}, {2, 3845, 33228}, {2, 9855, 8354}, {2, 11361, 3845}, {2, 13586, 12100}, {2, 15682, 7841}, {2, 33005, 61908}, {2, 33007, 3534}, {2, 33013, 10109}, {2, 33016, 19709}, {2, 33274, 15713}, {2, 35287, 15719}, {2, 35927, 19708}, {2, 61966, 32984}, {2, 62007, 16041}, {2, 62051, 33210}, {2, 62094, 33215}, {2, 62160, 32986}, {381, 33255, 7807}, {382, 14037, 8363}, {384, 6655, 19697}, {384, 6658, 7819}, {384, 19687, 6656}, {384, 19696, 19689}, {384, 33256, 19692}, {1003, 8370, 35297}, {1003, 14033, 8370}, {1003, 44543, 32985}, {3534, 11286, 2}, {3543, 14001, 33219}, {3543, 33219, 33229}, {3552, 33015, 33227}, {3839, 33201, 33224}, {3839, 33224, 7887}, {3845, 8369, 2}, {6658, 7819, 19695}, {7753, 7816, 59634}, {7770, 32981, 33250}, {7819, 19695, 6656}, {7866, 15684, 33278}, {8369, 11361, 33228}, {11159, 35954, 8352}, {11286, 33007, 8356}, {11288, 19709, 2}, {14035, 33255, 381}, {14038, 33019, 33185}, {14039, 15682, 2}, {16924, 33266, 5054}, {19687, 19695, 6658}, {19689, 19696, 8357}, {19692, 33256, 8364}, {33191, 41106, 2}, {33278, 33280, 15684}, {35942, 35943, 6661}
X(66320) lies on these lines: {2, 3}, {698, 5032}, {3972, 19570}, {7739, 20094}, {7795, 19569}, {7836, 14537}, {8591, 10353}, {10583, 11648}, {11057, 46226}, {16984, 63543}, {16989, 35369}, {20088, 32833}, {32836, 50248}, {42421, 63127}, {59634, 63018}
X(66320) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 19686, 6658}, {2, 19691, 7924}, {2, 19693, 19686}, {2, 62005, 33290}, {381, 33225, 2}, {384, 6658, 19692}, {384, 19686, 2}, {384, 19687, 19689}, {384, 19693, 6658}, {384, 19696, 19697}, {549, 33020, 2}, {3543, 14037, 2}, {6655, 6661, 2}, {6655, 19689, 8364}, {6658, 19692, 19690}, {7924, 19689, 2}, {11286, 33265, 2}, {15692, 33269, 2}, {15721, 33261, 2}, {16044, 33246, 2}, {16913, 31156, 2}, {19687, 19689, 19691}, {19687, 19691, 6658}, {32966, 33224, 2}, {32971, 33266, 2}, {33198, 33263, 2}, {33262, 61912, 2}
X(66321) lies on these lines: {2, 3}, {698, 20583}, {1285, 32869}, {1384, 46951}, {3734, 3793}, {5026, 6329}, {6390, 7753}, {6680, 63543}, {7789, 14537}, {7816, 9300}, {12150, 52229}, {15484, 32837}, {18907, 32833}, {19661, 63955}, {32893, 46453}
X(66321) = midpoint of X(i) and X(j) for these {i,j}: {2, 19687}, {6661, 19686}
X(66321) = reflection of X(i) in X(j) for these {i,j}: {2, 19697}, {8357, 2}
X(66321) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 33187, 33254}, {2, 33235, 17504}, {2, 33239, 15688}, {2, 62003, 33292}, {384, 19686, 6661}, {384, 19687, 19697}, {384, 19693, 6656}, {3545, 33236, 2}, {3845, 33220, 8361}, {7770, 33187, 8703}, {8357, 19697, 7819}, {8368, 11361, 37350}, {8370, 33246, 547}, {11159, 14039, 33184}, {11361, 35954, 8368}, {14035, 33220, 3845}, {14269, 33242, 2}, {15684, 33237, 33223}, {19687, 19697, 8357}, {19687, 19702, 33256}, {33185, 33699, 33251}
X(66322) lies on these lines: {2, 3}, {32, 47005}, {83, 7880}, {99, 16987}, {187, 16988}, {599, 42421}, {698, 47352}, {736, 8859}, {3329, 7799}, {3589, 59634}, {3679, 51710}, {3734, 7884}, {3972, 7865}, {5306, 10583}, {5309, 7846}, {7739, 7875}, {7753, 7832}, {7783, 7889}, {7784, 19569}, {7787, 7788}, {7792, 19570}, {7795, 7837}, {7804, 7809}, {7811, 7822}, {7836, 9300}, {7839, 32833}, {7867, 48913}, {7883, 63943}, {7885, 7915}, {7906, 63024}, {7919, 39563}, {7923, 11648}, {7925, 60855}, {7928, 11057}, {7942, 18362}, {9140, 64602}, {10159, 35007}, {10333, 12150}, {10353, 48657}, {15513, 31268}, {16989, 32836}, {31652, 55767}, {32820, 51860}, {34604, 63944}, {37671, 46226}, {43527, 53096}, {48310, 52695}
X(66322) ={X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 376, 7876}, {2, 381, 7901}, {2, 384, 7924}, {2, 6661, 384}, {2, 7924, 7948}, {2, 8369, 33273}, {2, 8370, 14046}, {2, 11286, 14041}, {2, 14001, 33246}, {2, 14035, 33223}, {2, 14036, 13586}, {2, 14037, 376}, {2, 14039, 7833}, {2, 16913, 44217}, {2, 19686, 6656}, {2, 19689, 6661}, {2, 19692, 19686}, {2, 33020, 547}, {2, 33193, 33230}, {2, 33224, 7907}, {2, 33225, 549}, {2, 33246, 7824}, {2, 33261, 61895}, {2, 33262, 61859}, {2, 33263, 32956}, {2, 33266, 16043}, {2, 33269, 5071}, {2, 61936, 33248}, {381, 33217, 2}, {384, 6656, 19696}, {384, 7819, 19694}, {384, 7948, 33256}, {384, 19694, 7948}, {6655, 19697, 384}, {6656, 19692, 384}, {6661, 7819, 2}, {7770, 14043, 32967}, {7819, 19689, 384}, {7819, 19702, 19689}, {7819, 44224, 33217}, {7924, 19694, 2}, {8703, 37340, 11299}, {8703, 37341, 11300}, {14001, 16895, 7824}, {14037, 44230, 384}, {16044, 33185, 14047}, {16045, 33224, 2}, {16895, 33246, 2}, {33222, 61895, 2}, {33225, 44237, 384}
X(66323) lies on these lines: {2, 3}, {385, 47005}, {3329, 7880}, {5306, 46226}, {5346, 7846}, {7753, 7931}, {7799, 7889}, {7809, 7915}, {7820, 16987}, {7822, 63952}, {7875, 32833}, {7883, 63947}, {7884, 17128}, {7914, 11057}, {7920, 32836}, {7943, 11648}, {7944, 14537}, {7947, 9300}, {10583, 37671}, {12150, 63942}, {19875, 51710}, {21358, 42421}, {44562, 55778}
X(66323) = midpoint of X(2) and X(19689)
X(66323) = reflection of X(7948) in X(2)
X(66323) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3545, 14065}, {2, 6661, 7924}, {2, 33187, 32956}, {2, 33198, 33251}, {2, 33220, 7824}, {2, 33237, 13586}, {2, 33255, 7876}, {2, 33278, 33221}, {6661, 7924, 384}, {7819, 19694, 384}, {7948, 19689, 384}, {8364, 19692, 33256}, {14001, 16897, 33276}, {14038, 32956, 33267}, {14067, 16045, 16922}, {19692, 33256, 384}, {19696, 19697, 384}
X(66324) lies on these lines: {2, 3}, {76, 54748}, {115, 16988}, {141, 19570}, {316, 16987}, {385, 7865}, {698, 21358}, {2896, 5306}, {3096, 5309}, {3314, 7739}, {3329, 7809}, {4045, 7799}, {7753, 7859}, {7783, 7880}, {7788, 7839}, {7797, 37671}, {7803, 7837}, {7808, 48913}, {7811, 7834}, {7817, 31168}, {7831, 16984}, {7849, 39593}, {7852, 40344}, {7856, 63952}, {7864, 32833}, {7883, 63038}, {7893, 63006}, {7911, 14537}, {7914, 7918}, {7920, 63093}, {7935, 7943}, {7941, 9300}, {10356, 14458}, {12150, 63943}, {31268, 39565}, {34573, 63543}, {36811, 52088}, {60728, 64093}
X(66324) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 376, 7892}, {2, 549, 33245}, {2, 3543, 16898}, {2, 6655, 6661}, {2, 6656, 7924}, {2, 6661, 19694}, {2, 7791, 33246}, {2, 7924, 384}, {2, 7933, 381}, {2, 11287, 13586}, {2, 19686, 7819}, {2, 19690, 19686}, {2, 32965, 33224}, {2, 32986, 14036}, {2, 33021, 549}, {2, 33184, 33013}, {2, 33190, 11361}, {2, 33223, 5025}, {2, 33224, 14067}, {2, 33246, 14043}, {2, 33258, 15702}, {2, 33263, 14001}, {2, 33264, 33237}, {2, 33266, 14069}, {2, 33277, 61895}, {2, 33283, 5071}, {2, 44217, 16911}, {376, 33221, 2}, {549, 8363, 2}, {3096, 7923, 17129}, {3845, 37351, 11304}, {3845, 37352, 11303}, {5025, 32956, 16897}, {6655, 8364, 19694}, {6655, 19694, 384}, {6656, 7819, 19690}, {6656, 7948, 384}, {6656, 8363, 37243}, {6656, 8364, 6655}, {6661, 8364, 2}, {7791, 14043, 33276}, {7819, 19690, 33256}, {7819, 33256, 384}, {7824, 7866, 14047}, {7865, 7884, 385}, {7865, 7913, 7884}, {7884, 7937, 7865}, {7913, 7937, 385}, {7914, 7918, 17128}, {7914, 11648, 47005}, {7918, 47005, 11648}, {7924, 7948, 2}, {7948, 19694, 8364}, {8357, 19689, 19696}, {8363, 33021, 33245}, {11648, 47005, 17128}, {14036, 32986, 9855}, {14065, 16043, 16923}, {15694, 33218, 2}, {16895, 32974, 14042}, {16921, 33180, 33284}, {19689, 19696, 384}, {32956, 33223, 2}, {32965, 33194, 14067}, {33013, 33184, 33291}, {33194, 33224, 2}, {33245, 37243, 384}
X(66325) lies on these lines: {2, 3}, {698, 48310}, {3589, 7799}, {3828, 51710}, {5306, 7846}, {6390, 16987}, {7753, 7915}, {7771, 51128}, {7792, 17131}, {7809, 53489}, {7820, 59634}, {7822, 37671}, {7832, 9300}, {7835, 51126}, {7880, 7889}, {7881, 63024}, {7884, 47286}, {7919, 63543}, {9606, 43527}, {12150, 63944}, {20582, 42421}, {45311, 64602}
X(66325) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 381, 8363}, {2, 3543, 33221}, {2, 5071, 33218}, {2, 6661, 6656}, {2, 7819, 6661}, {2, 7892, 549}, {2, 7924, 8364}, {2, 16898, 381}, {2, 16911, 50395}, {2, 19686, 7948}, {2, 19689, 7924}, {2, 33013, 33213}, {2, 33198, 33223}, {2, 33224, 11285}, {2, 33237, 8356}, {2, 33245, 10124}, {2, 33246, 8362}, {6656, 7819, 19702}, {7819, 8364, 19689}, {7846, 47005, 5306}, {7948, 19695, 6656}, {7948, 19697, 19695}, {8363, 44251, 6656}, {8364, 19687, 6656}, {8364, 19689, 19687}, {16895, 33185, 32992}
X(66326) lies on these lines: {2, 3}, {115, 34573}, {141, 5309}, {597, 7818}, {626, 9300}, {698, 9466}, {736, 22110}, {3096, 5305}, {3314, 63633}, {3589, 7753}, {3619, 46951}, {3631, 5355}, {3763, 64093}, {3793, 7792}, {3933, 7739}, {4045, 6390}, {4995, 30104}, {5007, 63944}, {5024, 32837}, {5254, 7914}, {5298, 30103}, {5306, 7767}, {5319, 63951}, {5475, 51126}, {6329, 7845}, {6680, 40344}, {7750, 7943}, {7776, 63024}, {7788, 7803}, {7790, 47005}, {7794, 39593}, {7799, 7944}, {7809, 7859}, {7822, 11648}, {7829, 63939}, {7832, 59634}, {7837, 7938}, {7846, 11057}, {7861, 63543}, {7868, 15048}, {7869, 9607}, {7879, 63093}, {7883, 63940}, {7889, 14537}, {7915, 63548}, {7919, 43291}, {7923, 19570}, {12150, 63945}, {14535, 32827}, {14929, 16989}, {15170, 26590}, {15484, 63119}, {16987, 53489}, {18358, 39882}, {18840, 32874}, {19883, 51710}, {21356, 63954}, {21358, 63955}, {22165, 41748}, {22329, 31168}, {41750, 63124}, {42421, 48310}
X(66326) = midpoint of X(i) and X(j) for these {i,j}: {2, 6656}, {6661, 7924}, {7794, 39593}, {8352, 10997}, {37351, 37352}
X(66326) = reflection of X(i) in X(j) for these {i,j}: {2, 8364}, {7819, 2}
X(66326) = complement of X(6661)
X(66326) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3524, 32954}, {2, 3839, 16045}, {2, 7791, 33220}, {2, 7887, 15699}, {2, 7924, 6661}, {2, 8356, 8368}, {2, 10304, 14069}, {2, 11285, 11539}, {2, 11287, 8369}, {2, 14064, 5055}, {2, 15705, 33183}, {2, 15708, 33189}, {2, 16043, 5054}, {2, 32969, 61887}, {2, 32976, 61882}, {2, 32978, 61864}, {2, 32986, 33237}, {2, 33008, 8366}, {2, 33180, 3545}, {2, 33190, 11286}, {2, 33196, 11318}, {2, 33199, 61899}, {2, 33202, 3524}, {2, 33219, 5}, {2, 33220, 33185}, {2, 33223, 381}, {2, 33228, 8367}, {2, 33230, 11287}, {2, 33249, 47599}, {2, 33251, 7770}, {2, 33255, 33217}, {2, 33278, 16898}, {2, 35297, 8365}, {2, 61844, 32959}, {2, 61924, 32957}, {2, 66099, 17540}, {381, 33223, 33184}, {1003, 33263, 15686}, {3096, 7884, 37671}, {3363, 33184, 16041}, {3524, 33194, 2}, {5306, 7865, 7767}, {6656, 6661, 7924}, {6656, 7819, 8357}, {6656, 7948, 8364}, {6656, 8364, 7819}, {6656, 19687, 19690}, {7770, 33251, 3845}, {7791, 33220, 8703}, {7834, 7865, 5306}, {7866, 8362, 8361}, {7866, 32956, 8362}, {7876, 8363, 140}, {7884, 37671, 5305}, {8356, 8368, 27088}, {8356, 33246, 34200}, {8358, 8365, 35297}, {8368, 34200, 33246}, {8369, 11287, 8354}, {8703, 33185, 33220}, {11539, 33186, 2}, {15709, 32953, 2}, {19690, 19694, 19687}, {31693, 31694, 3860}, {32827, 63120, 14535}, {33187, 33234, 19710}, {33194, 33202, 32954}, {33246, 34200, 27088}, {37170, 37171, 3839}
X(66327) lies on these lines: {2, 3}, {698, 51185}, {5346, 17128}, {7753, 7947}, {7868, 19569}, {7880, 7941}, {7931, 14537}, {15534, 42421}, {16988, 40344}, {32892, 63065}, {51093, 51710}
X(66327) = midpoint of X(19686) and X(19690)
X(66327) = reflection of X(i) in X(j) for these {i,j}: {7924, 7948}, {19689, 6661}
X(66327) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3845, 14046}, {2, 11317, 33288}, {2, 14030, 8597}, {384, 7819, 33256}, {384, 19689, 7948}, {384, 19694, 19696}, {7948, 33256, 19690}, {8366, 19709, 2}, {14038, 33198, 7824}, {19689, 19690, 7819}, {19692, 19697, 384}
X(66328) lies on these lines: {2, 3}, {99, 14537}, {148, 5306}, {543, 63038}, {599, 14976}, {698, 15534}, {3314, 43618}, {3734, 11057}, {3972, 11648}, {7737, 7837}, {7747, 7799}, {7753, 7783}, {7785, 59634}, {7788, 19569}, {7809, 7816}, {7811, 17128}, {7823, 32833}, {7875, 43619}, {7880, 7885}, {7893, 32836}, {7923, 65633}, {7925, 48913}, {7928, 47005}, {8591, 41624}, {8859, 18546}, {9766, 11164}, {11152, 12156}, {12117, 44422}, {12150, 39593}, {14712, 37671}, {16529, 36366}, {16530, 36368}, {17005, 32456}, {18907, 20094}, {19570, 32819}, {32815, 63093}, {39141, 54131}, {42421, 51185}, {51105, 51710}
X(66328) = midpoint of X(i) and X(j) for these {i,j}: {6658, 19686}, {7924, 19696}
X(66328) = reflection of X(i) in X(j) for these {i,j}: {384, 19686}, {6655, 6661}, {7924, 384}, {19686, 19687}, {33256, 7924}
X(66328) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3830, 14041}, {2, 8352, 33291}, {2, 8703, 33273}, {2, 11001, 7833}, {2, 15640, 33017}, {2, 15697, 33008}, {2, 32994, 61901}, {2, 33193, 11001}, {2, 33208, 15698}, {2, 33265, 8703}, {2, 61989, 33006}, {2, 62168, 33272}, {4, 33187, 33246}, {384, 6655, 19694}, {384, 6658, 19696}, {384, 19696, 33256}, {384, 33256, 7948}, {1003, 3830, 2}, {3529, 14031, 7876}, {3543, 32981, 33255}, {3543, 33255, 5025}, {3545, 33239, 33266}, {3545, 33266, 7907}, {3552, 14042, 32967}, {3627, 33225, 14045}, {5066, 35297, 2}, {6656, 19693, 384}, {6658, 19687, 384}, {8370, 8703, 2}, {8370, 33265, 33273}, {11001, 14033, 2}, {11361, 13586, 33013}, {11361, 33007, 13586}, {11361, 33274, 33016}, {14001, 62042, 33278}, {14033, 33193, 7833}, {14035, 33214, 32968}, {14035, 33257, 7824}, {14068, 33239, 7907}, {14068, 33266, 3545}, {15684, 33219, 33019}, {15693, 44543, 2}, {15698, 32983, 2}, {16044, 33250, 33276}, {32979, 33254, 33015}, {32981, 33280, 5025}, {32985, 41099, 2}, {33007, 33016, 35927}, {33016, 35927, 33274}, {33018, 33235, 16923}, {33201, 33279, 14065}, {33216, 61932, 2}, {33224, 62017, 14063}, {33255, 33280, 3543}, {33274, 35927, 13586}
See Antreas Hatzipolakis and Peter Moses, euclid 7236.
X(66329) lies on these lines: {356, 357}, {1135, 3605}
See Antreas Hatzipolakis and Peter Moses, euclid 7236.
X(66330) lies on these lines: {358,3606}, {1136,1137}
See Antreas Hatzipolakis and Peter Moses, euclid 7236.
X(66331) lies on these lines: {356,1134}, {1137,3607}
See Peter Moses, euclid 7248.
X(66332) lies on these lines: { }
See Peter Moses, euclid 7248.
X(66333) lies on these lines: { }
X(66334) lies on these lines: {2, 3}, {698, 51143}, {5305, 7865}, {5306, 7913}, {7767, 7884}, {7788, 63633}, {7829, 63944}, {7853, 9300}, {7937, 37671}, {7944, 59634}, {14929, 63006}, {48310, 63956}
X(66334) = midpoint of X(i) and X(j) for these {i,j}: {6655, 66321}, {6656, 66326}, {6661, 8357}, {7819, 7924}
X(66334) = reflection of X(8364) in X(66326)
X(66334) = complement of X(66318)
X(66334) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5066, 8367}, {2, 6655, 66327}, {2, 7924, 66319}, {2, 8359, 11812}, {2, 8703, 8368}, {2, 11001, 33237}, {2, 11287, 8703}, {2, 11318, 61910}, {2, 33184, 5066}, {2, 33190, 3830}, {2, 33285, 61920}, {2, 61796, 33231}, {2, 62059, 33197}, {2, 66319, 7819}, {2, 66327, 66325}, {6655, 66325, 66321}, {6656, 7948, 8357}, {6656, 66324, 66326}, {7819, 8357, 6658}, {7866, 32990, 33212}, {7924, 66317, 19695}, {8362, 33219, 547}, {11812, 33213, 2}, {33211, 45759, 33224}
X(66335) lies on these lines: {2, 3}, {141, 11648}, {230, 40344}, {524, 39593}, {698, 14711}, {3589, 14537}, {3793, 5306}, {3934, 63543}, {4045, 9300}, {5254, 7865}, {5305, 7811}, {5309, 7767}, {6292, 39563}, {6390, 7853}, {7739, 7784}, {7750, 7884}, {7788, 15048}, {7790, 37671}, {7792, 11057}, {7827, 63940}, {7829, 63943}, {7831, 43291}, {7837, 63633}, {7847, 59634}, {7873, 63944}, {7875, 19569}, {7880, 63548}, {7902, 63952}, {7928, 19570}, {14929, 63093}, {15170, 26561}, {19661, 47102}, {21356, 32892}, {32819, 47005}, {32893, 55732}, {32896, 51122}, {44678, 47352}, {51109, 51710}, {51126, 62203}
X(66335) = midpoint of X(i) and X(j) for these {i,j}: {6655, 6661}, {6656, 7924}, {8357, 66326}, {19686, 19695}
X(66335) = reflection of X(i) in X(j) for these {i,j}: {6661, 8364}, {7819, 66326}, {8357, 7924}, {19686, 19697}, {66318, 2}, {66321, 7819}, {66326, 6656}
X(66335) = complement of X(66319)
X(66335) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3534, 8369}, {2, 6655, 66328}, {2, 7841, 3845}, {2, 8354, 27088}, {2, 8356, 12100}, {2, 15682, 11286}, {2, 16041, 19709}, {2, 19708, 11288}, {2, 32984, 61908}, {2, 32986, 3534}, {2, 33210, 15682}, {2, 33215, 15701}, {2, 33228, 10109}, {2, 62094, 33191}, {2, 62160, 14039}, {2, 66318, 7819}, {2, 66328, 6661}, {549, 33219, 8361}, {6655, 6656, 8364}, {6655, 66324, 6661}, {6656, 6661, 66324}, {6656, 8357, 7819}, {6656, 19695, 7948}, {6661, 66324, 8364}, {7770, 33278, 15687}, {7791, 33219, 549}, {7924, 66324, 6655}, {7948, 19686, 66325}, {7948, 19695, 19697}, {8360, 12100, 2}, {8364, 66324, 66326}, {11287, 33184, 8359}, {11287, 33190, 33184}, {15682, 33230, 2}, {15686, 33185, 33255}, {15701, 33240, 2}, {19686, 66325, 19697}, {19694, 66320, 6661}, {19695, 66325, 19686}, {19708, 33196, 2}, {33023, 33224, 15688}, {33025, 33232, 7866}, {33210, 33230, 11286}, {33220, 33263, 550}, {33234, 33255, 15686}, {66318, 66326, 2}, {66324, 66328, 2}
X(66336) lies on these lines: {2, 3}, {148, 47005}, {2896, 5346}, {3096, 19570}, {5306, 7928}, {5309, 7937}, {7739, 7938}, {7797, 7865}, {7811, 7913}, {7853, 63018}, {7923, 37671}, {7929, 63006}, {10583, 11057}, {11648, 46226}, {34604, 63947}, {50570, 55738}
X(66336) = midpoint of X(i) and X(j) for these {i,j}: {2, 19690}, {7924, 66323}
X(66336) = reflection of X(i) in X(j) for these {i,j}: {2, 7948}, {19689, 2}, {19693, 66327}
X(66336) = anticomplement of X(66323)
X(66336) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6655, 66317}, {2, 6658, 66322}, {2, 7924, 19686}, {2, 19692, 66325}, {2, 33025, 33187}, {2, 33251, 16044}, {2, 33260, 33220}, {2, 33287, 61924}, {2, 66320, 7819}, {5054, 14065, 2}, {6656, 7948, 19690}, {6656, 66324, 2}, {6656, 66326, 7924}, {6658, 66321, 19686}, {7876, 33219, 2}, {7924, 7948, 66323}, {7924, 19686, 6655}, {7924, 66324, 66326}, {7924, 66326, 2}, {7948, 19690, 19689}, {8357, 66325, 66328}, {8364, 66322, 2}, {8366, 14093, 33246}, {19689, 19690, 6655}, {32956, 33251, 2}, {33221, 33255, 2}, {66321, 66326, 8364}, {66325, 66328, 19692}
X(66337) lies on these lines: {2, 3}, {148, 7937}, {698, 21356}, {736, 41136}, {2896, 5309}, {3096, 11648}, {4045, 7809}, {5306, 7923}, {7739, 7779}, {7748, 47005}, {7753, 7911}, {7761, 7884}, {7768, 39593}, {7784, 7837}, {7788, 7864}, {7790, 7865}, {7797, 7811}, {7799, 7853}, {7827, 63939}, {7828, 40344}, {7834, 11057}, {7847, 7880}, {7859, 14537}, {7860, 51860}, {7868, 20094}, {7872, 46226}, {7885, 9300}, {7898, 63020}, {7900, 63024}, {7910, 10583}, {7913, 14712}, {7928, 37671}, {7929, 63093}, {7931, 59634}, {7936, 63952}, {7938, 32833}, {11185, 60728}, {16988, 53419}, {34604, 63943}, {42421, 63109}, {63038, 63944}
X(66337) = midpoint of X(i) and X(j) for these {i,j}: {6655, 66317}, {7924, 66324}
X(66337) = reflection of X(i) in X(j) for these {i,j}: {2, 66324}, {384, 66325}, {19686, 66317}, {66317, 2}, {66320, 66322}, {66324, 6656}, {66325, 66326}
X(66337) = complement of X(66320)
X(66337) = anticomplement of X(66322)
X(66337) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 376, 33225}, {2, 381, 33020}, {2, 6655, 19686}, {2, 6658, 6661}, {2, 7924, 6655}, {2, 15683, 14037}, {2, 19686, 19689}, {2, 19690, 7924}, {2, 19692, 66323}, {2, 32986, 33265}, {2, 33014, 33224}, {2, 33023, 33266}, {2, 33025, 33263}, {2, 33260, 33246}, {2, 33263, 3552}, {2, 33290, 61936}, {2, 61806, 33262}, {2, 61944, 33261}, {2, 61985, 33269}, {2, 66320, 66322}, {381, 7876, 2}, {384, 66326, 2}, {549, 7901, 2}, {6656, 7924, 2}, {6656, 8357, 7948}, {6656, 19690, 6655}, {6658, 8357, 6655}, {6661, 7948, 2}, {7790, 7865, 19570}, {7791, 32951, 33022}, {7791, 33223, 2}, {7865, 19570, 63044}, {7866, 33246, 2}, {7948, 8357, 6658}, {8359, 14046, 2}, {8360, 33273, 2}, {8364, 33256, 19692}, {8364, 66319, 66323}, {8364, 66323, 2}, {15702, 33248, 2}, {19694, 19695, 19693}, {33008, 33196, 2}, {33017, 33230, 2}, {33256, 66323, 66319}, {66319, 66323, 19692}, {66320, 66322, 66317}
X(66338) lies on these lines: {2, 3}, {698, 50993}, {5309, 7928}, {5346, 7811}, {7739, 7939}, {7865, 7918}, {7872, 47005}, {7883, 39593}, {7884, 7935}, {7913, 11057}, {7919, 40344}, {7937, 11648}, {31173, 55778}, {63038, 63942}
X(66338) = midpoint of X(7924) and X(7948)
X(66338) = reflection of X(i) in X(j) for these {i,j}: {384, 66323}, {7924, 19690}, {19693, 6661}, {66323, 7948}, {66327, 2}
X(66338) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6655, 66319}, {2, 11001, 14036}, {2, 66319, 66322}, {2, 66327, 66323}, {6655, 66326, 66322}, {6656, 7924, 66324}, {6656, 19690, 7948}, {7924, 66322, 6655}, {7924, 66324, 384}, {7948, 66327, 2}, {16897, 32974, 14044}, {66319, 66326, 2}, {66323, 66324, 7948}
X(66339) lies on these lines: {2, 3}, {141, 7884}, {736, 41133}, {3096, 5306}, {3589, 7809}, {4045, 59634}, {5254, 47005}, {5309, 7914}, {7739, 7868}, {7792, 7865}, {7811, 7943}, {7834, 37671}, {7853, 53489}, {7859, 9300}, {7879, 63006}, {7883, 63944}, {7913, 47286}, {7919, 34573}, {7934, 51126}, {14568, 20582}, {16988, 43291}
X(66339) = midpoint of X(i) and X(j) for these {i,j}: {2, 66324}, {6656, 66325}, {7924, 66317}
X(66339) = reflection of X(i) in X(j) for these {i,j}: {6656, 66324}, {6661, 66325}, {66317, 7819}, {66319, 66317}, {66324, 66326}, {66325, 2}
X(66339) = complement of X(66322)
X(66339) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 376, 33217}, {2, 6655, 66323}, {2, 6656, 6661}, {2, 7876, 549}, {2, 7901, 547}, {2, 7924, 7819}, {2, 7948, 66326}, {2, 14046, 8367}, {2, 15721, 33222}, {2, 19686, 19694}, {2, 33196, 44543}, {2, 33202, 33224}, {2, 33223, 7770}, {2, 33230, 1003}, {2, 33246, 33185}, {2, 33248, 15703}, {2, 33273, 8365}, {2, 66326, 6656}, {6655, 66323, 66318}, {6656, 7819, 19695}, {6656, 19702, 6655}, {6656, 66319, 7924}, {6661, 19695, 66319}, {7819, 7924, 66319}, {7819, 66319, 6661}, {7924, 66319, 19695}, {7948, 8364, 6656}, {8362, 33212, 33015}, {8364, 66326, 2}, {19702, 66318, 6661}, {66318, 66323, 19702}
X(66340) lies on these lines: {2, 3}, {141, 63952}, {620, 51127}, {698, 44562}, {736, 44401}, {3589, 7880}, {5306, 7822}, {7792, 47005}, {7846, 37671}, {7849, 63944}, {7859, 59634}, {7889, 9300}, {32833, 63633}, {32837, 63119}
X(66340) = midpoint of X(i) and X(j) for these {i,j}: {2, 7819}, {6656, 66318}, {6661, 66326}, {7924, 66321}, {8357, 66319}
X(66340) = reflection of X(8364) in X(2)
X(66340) = complement of X(66326)
X(66340) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3839, 33194}, {2, 5055, 33186}, {2, 6661, 66326}, {2, 14069, 5054}, {2, 16045, 5055}, {2, 16898, 33219}, {2, 19689, 66324}, {2, 19694, 66325}, {2, 32954, 11539}, {2, 32957, 61887}, {2, 32959, 61871}, {2, 33183, 15709}, {2, 33189, 61864}, {2, 33220, 8362}, {2, 61924, 32953}, {2, 66317, 7948}, {2, 66322, 6656}, {2, 66323, 6661}, {2, 66325, 7819}, {6656, 6661, 19686}, {6656, 19696, 8357}, {6656, 66322, 66318}, {6661, 7924, 66321}, {6661, 19686, 66318}, {6661, 66323, 7819}, {6661, 66325, 66323}, {7819, 8357, 19689}, {7819, 8364, 19697}, {7819, 66318, 66322}, {7819, 66326, 6661}, {7948, 19691, 6656}, {8359, 33246, 14891}, {8362, 33220, 12100}, {11286, 33223, 15687}, {11301, 11302, 3524}, {15699, 33211, 2}, {19686, 66322, 6661}, {19689, 66324, 66319}, {66319, 66324, 8357}, {66321, 66326, 7924}
X(66341) lies on these lines: {2, 3}, {141, 7856}, {597, 7922}, {698, 51128}, {3096, 63928}, {3589, 7858}, {6329, 7917}, {7752, 51126}, {7758, 7868}, {7792, 7854}, {7822, 7902}, {7828, 34573}, {7832, 59546}, {7834, 17131}, {7843, 7889}, {7846, 7936}, {7859, 7909}, {7863, 7915}, {7875, 7946}, {13468, 55738}, {16989, 63936}, {19878, 51710}, {31268, 58446}, {42421, 51127}, {47005, 63923}
X(66341) = midpoint of X(6656) and X(19702)
X(66341) = reflection of X(i) in X(j) for these {i,j}: {19692, 7819}, {19702, 19694}
X(66341) = complement of X(19694)
X(66341) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 7876, 33185}, {2, 7907, 33211}, {2, 7948, 7819}, {2, 8363, 32992}, {2, 8364, 6656}, {2, 14047, 3628}, {2, 16897, 140}, {2, 32956, 33217}, {2, 33194, 7887}, {2, 33221, 7770}, {2, 66326, 66325}, {384, 66326, 6656}, {6656, 6661, 19695}, {6656, 7819, 19687}, {6656, 66319, 8357}, {6656, 66325, 384}, {7819, 7948, 6656}, {7819, 8364, 7948}, {7819, 19687, 6661}, {7819, 19692, 19702}, {7876, 33185, 35297}, {7887, 33194, 8363}, {7948, 19696, 66324}, {8357, 19689, 66319}, {8357, 66324, 6656}, {8362, 33211, 7907}, {19689, 66324, 8357}, {19692, 19694, 7819}, {19696, 66319, 19687}, {32956, 33217, 8356}
X(66342) lies on these lines: {2, 3}, {141, 6179}, {325, 7889}, {597, 7796}, {620, 39784}, {626, 53489}, {698, 7786}, {736, 31239}, {1078, 34573}, {3589, 7832}, {3618, 7881}, {3634, 51710}, {3815, 7930}, {3933, 7875}, {5254, 7943}, {5305, 46226}, {5346, 7751}, {6329, 7905}, {6704, 7874}, {6723, 64602}, {7745, 7944}, {7750, 7914}, {7762, 7868}, {7763, 47355}, {7767, 10583}, {7789, 7859}, {7834, 17130}, {7836, 16987}, {7849, 63942}, {7852, 59635}, {7856, 47005}, {7864, 47287}, {7869, 41624}, {7870, 9606}, {7884, 63923}, {7888, 63101}, {7909, 9300}, {7913, 32819}, {7932, 64093}, {7938, 18907}, {7940, 15491}, {7945, 31406}, {18841, 62988}, {31400, 63120}, {39142, 55752}, {53033, 63119}, {55730, 55738}, {55732, 55735}, {55733, 55734}, {55744, 55829}, {55745, 55824}, {55746, 55820}, {55747, 55818}, {55749, 55801}, {55751, 55798}, {55753, 55796}, {55755, 55793}, {55757, 55788}, {55762, 55785}, {55767, 55778}, {55770, 55774}, {55771, 55773}, {56791, 61550}
X(66342) = midpoint of X(i) and X(j) for these {i,j}: {2, 66323}, {384, 19690}, {7948, 19689}
X(66342) = reflection of X(i) in X(j) for these {i,j}: {6656, 7948}, {19689, 7819}
X(66342) = complement of X(7948)
X(66342) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 384, 8364}, {2, 7770, 8363}, {2, 7819, 6656}, {2, 7892, 8362}, {2, 14043, 140}, {2, 14069, 11285}, {2, 16045, 7887}, {2, 16895, 5}, {2, 16898, 7866}, {2, 16921, 33186}, {2, 17540, 33034}, {2, 19689, 7948}, {2, 19694, 7819}, {2, 32968, 33218}, {2, 32971, 33194}, {2, 32987, 32953}, {2, 33020, 14047}, {2, 33183, 32978}, {2, 33198, 33221}, {2, 33217, 7807}, {2, 33225, 16897}, {2, 66322, 66326}, {2, 66325, 6661}, {384, 6656, 19695}, {384, 7819, 19702}, {384, 7948, 19690}, {384, 8364, 6656}, {384, 19695, 19687}, {384, 19702, 6661}, {631, 8366, 7807}, {632, 1656, 40336}, {6655, 19697, 66319}, {6655, 66322, 19697}, {6655, 66326, 6656}, {6656, 6661, 19687}, {6656, 7819, 6661}, {6656, 19702, 384}, {6656, 66319, 6655}, {6656, 66325, 7819}, {6661, 19695, 384}, {7770, 8363, 33228}, {7819, 8364, 384}, {7819, 19694, 66325}, {7819, 19697, 66322}, {7819, 66326, 19697}, {7866, 16898, 8370}, {7889, 7915, 325}, {7892, 8362, 35297}, {7948, 19694, 66323}, {7948, 66323, 19689}, {8364, 19702, 19695}, {11285, 14069, 7807}, {11285, 33217, 14069}, {11287, 14037, 33250}, {11307, 11308, 3530}, {14001, 33202, 33235}, {16045, 32953, 32987}, {16897, 33225, 8359}, {19689, 19690, 384}, {19689, 19693, 66327}, {19689, 66323, 7819}, {19697, 66326, 6655}, {32953, 32987, 7887}, {32971, 33194, 33219}, {33198, 33221, 7841}, {33202, 33235, 8356}, {39387, 39388, 15720}, {66319, 66322, 6661}, {66322, 66326, 66319}
X(66343) lies on these lines: {2, 3}, {141, 5346}, {698, 31239}, {1506, 51127}, {3096, 3793}, {3589, 7821}, {5305, 7943}, {6390, 7915}, {7746, 51128}, {7755, 20582}, {7767, 7914}, {7822, 63923}, {7852, 34573}, {7867, 51126}, {39784, 44377}
X(66343) = midpoint of X(6656) and X(19689)
X(66343) = reflection of X(i) in X(j) for these {i,j}: {7948, 8364}, {66321, 66327}
X(66343) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 8364, 7819}, {2, 11285, 33211}, {6656, 6661, 33256}, {6656, 19694, 19697}, {7819, 8357, 66318}, {7819, 8364, 66326}, {7819, 66326, 8357}, {7948, 19689, 6656}, {7948, 66323, 19690}, {15712, 33185, 8366}, {19694, 19697, 7819}, {32490, 32491, 61900}
X(66344) lies on these lines: {2, 3}, {597, 7869}, {698, 6683}, {736, 44381}, {3589, 7764}, {3631, 63929}, {3788, 51126}, {3793, 10583}, {5305, 7822}, {6329, 7895}, {6390, 7859}, {6680, 34573}, {6704, 44377}, {7767, 7846}, {7780, 20582}, {7795, 63633}, {7815, 42421}, {7821, 7889}, {7834, 63923}, {7849, 63940}, {7852, 43291}, {7914, 63935}, {10159, 22329}, {31406, 47355}, {32825, 63109}, {43527, 63101}, {50991, 63927}, {51073, 51710}
X(66344) = midpoint of X(i) and X(j) for these {i,j}: {6656, 19697}, {7819, 8364}
X(66344) = complement of X(8364)
X(66344) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1656, 33212}, {2, 7819, 8364}, {2, 16895, 8363}, {2, 16896, 32992}, {2, 19694, 6656}, {2, 32952, 3526}, {2, 33185, 140}, {2, 33195, 46219}, {2, 33217, 8362}, {2, 66325, 66326}, {140, 33185, 8365}, {384, 66325, 7819}, {632, 37466, 140}, {6655, 19702, 66318}, {6655, 66323, 19702}, {6656, 6658, 8357}, {6656, 6661, 6658}, {6656, 7819, 19697}, {6656, 19694, 7819}, {6658, 7948, 6656}, {6661, 7948, 8357}, {7770, 8360, 3850}, {7770, 33283, 3363}, {7819, 8357, 6661}, {7819, 66318, 19702}, {7819, 66326, 384}, {8361, 8367, 35018}, {8362, 8368, 3530}, {8362, 33217, 8368}, {8364, 19697, 6656}, {11315, 11316, 10303}, {19692, 19695, 66321}, {19692, 66324, 19695}, {19702, 66323, 7819}, {32956, 33237, 550}, {33202, 33242, 8703}
X(66345) lies on these lines: {2, 3}, {76, 14125}, {141, 7923}, {148, 7822}, {315, 63020}, {626, 55085}, {698, 3619}, {2896, 6179}, {3096, 7751}, {3589, 7885}, {3618, 7900}, {4045, 7836}, {5007, 63946}, {5319, 44367}, {5355, 32027}, {5550, 51710}, {6292, 7919}, {7745, 16987}, {7755, 31168}, {7759, 51860}, {7761, 7943}, {7779, 7803}, {7784, 7875}, {7785, 7853}, {7790, 7914}, {7792, 7928}, {7800, 7932}, {7827, 7849}, {7829, 7883}, {7831, 7852}, {7846, 7935}, {7847, 7915}, {7851, 16986}, {7854, 7884}, {7856, 7865}, {7864, 7868}, {7873, 34604}, {7879, 7920}, {7889, 7911}, {7902, 19570}, {7922, 13571}, {7929, 16989}, {10159, 63924}, {16988, 59635}, {31276, 60728}, {42421, 63119}
X(66345) = reflection of X(i) in X(j) for these {i,j}: {384, 19702}, {19692, 19694}
X(66345) = complement of X(19692)
X(66345) = anticomplement of X(19694)
X(66345) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5025, 33020}, {2, 6655, 19689}, {2, 6656, 6655}, {2, 6658, 7819}, {2, 7791, 33225}, {2, 7924, 66317}, {2, 7933, 16044}, {2, 19690, 384}, {2, 19692, 19694}, {2, 33010, 32957}, {2, 33014, 14069}, {2, 33018, 16045}, {2, 33019, 16898}, {2, 33021, 33259}, {2, 33025, 14037}, {2, 33180, 32966}, {2, 33200, 33269}, {2, 33202, 33004}, {2, 33260, 7892}, {2, 33283, 33002}, {2, 33287, 32987}, {2, 66320, 66323}, {5, 16897, 2}, {140, 14047, 2}, {384, 6656, 19690}, {384, 7924, 19695}, {384, 7948, 8364}, {384, 8357, 19691}, {384, 8364, 2}, {384, 19690, 6655}, {384, 19694, 19702}, {384, 19695, 6658}, {384, 19702, 19692}, {2896, 7834, 63019}, {3096, 7797, 63044}, {3096, 7913, 7797}, {4045, 7944, 7836}, {6655, 19689, 19686}, {6655, 66317, 6658}, {6656, 7819, 7924}, {6656, 7948, 2}, {6656, 8363, 11356}, {6656, 8364, 384}, {6656, 66326, 7948}, {6658, 7819, 66317}, {6658, 7924, 6655}, {6661, 33256, 19693}, {7761, 7943, 10583}, {7784, 7875, 20088}, {7790, 7914, 46226}, {7791, 14069, 33014}, {7791, 33221, 2}, {7800, 7932, 63047}, {7803, 7938, 7779}, {7819, 7924, 6658}, {7819, 19695, 384}, {7819, 66317, 19689}, {7822, 7918, 148}, {7824, 8363, 2}, {7834, 7937, 2896}, {7846, 7935, 14712}, {7853, 7859, 7785}, {7866, 7876, 2}, {7866, 11285, 14065}, {7876, 14065, 11285}, {7879, 7920, 50248}, {7892, 11287, 33260}, {7901, 8362, 2}, {7948, 66324, 6656}, {8357, 19691, 6655}, {10997, 32974, 6655}, {11285, 14065, 2}, {14037, 33025, 33264}, {14069, 33014, 33225}, {16043, 32953, 33000}, {16045, 33251, 33018}, {16898, 33190, 33019}, {16923, 33186, 2}, {16925, 33194, 2}, {19690, 19691, 8357}, {19696, 19697, 66320}, {19696, 66323, 19697}, {32953, 33000, 2}, {32960, 33248, 2}, {32987, 33180, 33287}, {32987, 33287, 32966}, {33004, 33202, 33021}, {33015, 33218, 2}, {33221, 33230, 7791}, {66324, 66326, 2}
X(66346) lies on these lines: {2, 3}, {141, 7902}, {3589, 7843}, {3793, 7928}, {4045, 59546}, {5305, 7854}, {6292, 43291}, {6390, 7944}, {7758, 63633}, {7767, 7856}, {7792, 7936}, {7825, 51126}, {7829, 63940}, {7834, 63928}, {7861, 34573}, {19662, 38627}, {20582, 63924}, {50991, 63925}
X(66346) = midpoint of X(i) and X(j) for these {i,j}: {6656, 8364}, {8357, 19697}
X(66346) = complement of X(19697)
X(66346) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6656, 8357}, {2, 8357, 19697}, {2, 19687, 7819}, {2, 33232, 382}, {2, 33241, 5}, {2, 33256, 19702}, {3, 33194, 33211}, {140, 7866, 33213}, {5025, 8367, 12811}, {6656, 6661, 19690}, {6656, 7948, 7819}, {6656, 66326, 8364}, {7791, 8368, 33923}, {7807, 8358, 61792}, {7819, 7948, 8364}, {7819, 8357, 19687}, {7819, 19687, 19697}, {7819, 66326, 7948}, {7866, 16043, 33186}, {8357, 66321, 33256}, {8360, 8362, 3628}, {8364, 19697, 2}, {11287, 33185, 548}, {11287, 33221, 33185}, {16043, 33186, 140}, {19694, 19695, 66318}, {19702, 33256, 66321}, {19702, 66321, 19697}, {32960, 33240, 55856}, {33025, 33237, 15704}, {33194, 33236, 2}, {33221, 33226, 2}
X(66347) lies on these lines: {2, 3}, {141, 7872}, {315, 63633}, {597, 63931}, {626, 59546}, {3589, 7842}, {3793, 7797}, {4045, 7843}, {5007, 63945}, {5254, 7854}, {5286, 14929}, {5305, 7761}, {6144, 10542}, {6292, 53419}, {6390, 7847}, {7750, 7856}, {7758, 7784}, {7767, 7790}, {7792, 7910}, {7794, 52229}, {7818, 9607}, {7829, 63941}, {7853, 7863}, {7858, 7911}, {7861, 43291}, {7864, 7946}, {7865, 63923}, {7873, 63940}, {7928, 47286}, {7937, 32819}, {15172, 26561}, {22110, 31652}, {32455, 44499}
X(66347) = midpoint of X(i) and X(j) for these {i,j}: {6655, 7819}, {6656, 8357}
X(66347) = reflection of X(i) in X(j) for these {i,j}: {8364, 6656}, {19697, 8364}
X(66347) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6655, 19696}, {3, 33180, 33186}, {20, 33194, 33242}, {140, 7791, 8358}, {384, 6656, 66326}, {546, 8362, 8367}, {550, 7866, 8368}, {550, 33211, 32973}, {3363, 32996, 546}, {3628, 5025, 8355}, {5025, 8359, 3628}, {5077, 14001, 15704}, {6655, 6656, 7819}, {6655, 7948, 19687}, {6655, 19693, 33256}, {6655, 19696, 19695}, {6656, 7924, 8357}, {6656, 19687, 7948}, {6656, 19695, 2}, {7761, 7902, 63928}, {7791, 33184, 140}, {7807, 8354, 33923}, {7819, 8357, 6655}, {7841, 8362, 546}, {7866, 32973, 33211}, {7866, 32986, 550}, {7902, 63928, 5305}, {7924, 19690, 6656}, {7933, 8356, 8361}, {7948, 19687, 7819}, {8356, 8361, 3530}, {8369, 33234, 12103}, {11286, 33238, 62036}, {11287, 32974, 5}, {11288, 33226, 46853}, {11318, 32990, 632}, {19691, 19694, 66319}, {27088, 33260, 62087}, {32954, 33023, 8703}, {32956, 33210, 382}, {32973, 33211, 8368}, {32992, 37350, 12811}, {33023, 33223, 32954}, {33025, 33190, 3}, {33180, 33186, 8360}, {33194, 33242, 33185}, {33212, 46853, 11288}, {33213, 33923, 7807}
X(66348) lies on these lines: {2, 3}, {148, 7914}, {2896, 7856}, {3096, 7902}, {4045, 7909}, {7758, 7938}, {7784, 63020}, {7797, 7854}, {7803, 7946}, {7818, 51860}, {7834, 7936}, {7843, 7859}, {7853, 7858}, {7863, 7944}, {7918, 46226}, {7920, 63936}, {7923, 63044}, {7928, 63019}, {7931, 59546}, {7935, 10583}, {7943, 14712}, {43527, 63956}
X(66348) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6655, 19692}, {2, 6656, 19690}, {2, 7924, 66320}, {2, 7933, 32993}, {2, 19690, 6658}, {2, 19691, 19689}, {2, 19693, 7819}, {2, 33287, 33010}, {384, 66325, 19689}, {3552, 33221, 2}, {6655, 7819, 19693}, {6655, 7948, 2}, {6655, 19687, 19691}, {6655, 19689, 19687}, {6655, 19692, 6658}, {6656, 7948, 6655}, {6656, 8364, 7924}, {6656, 66326, 384}, {7819, 19693, 19692}, {7866, 33021, 2}, {7924, 8364, 19689}, {7924, 19687, 6655}, {7924, 19689, 19691}, {7933, 32956, 2}, {8357, 19694, 19686}, {8363, 33259, 2}, {8364, 19689, 2}, {16897, 33020, 2}, {16897, 33184, 33020}, {19689, 19691, 66320}, {19690, 19692, 6655}, {19691, 66320, 6658}, {33182, 33258, 2}
X(66349) lies on these lines: {2, 3}, {115, 40344}, {316, 9300}, {598, 62893}, {626, 59634}, {671, 60217}, {698, 22165}, {754, 39593}, {2549, 7788}, {3314, 47287}, {3815, 48913}, {4045, 14537}, {5254, 7811}, {5306, 7790}, {5309, 7750}, {7739, 7762}, {7748, 7865}, {7753, 7842}, {7756, 7880}, {7760, 63944}, {7761, 11648}, {7765, 63939}, {7767, 19570}, {7784, 32833}, {7799, 7911}, {7802, 7884}, {7809, 7847}, {7827, 63941}, {7831, 53419}, {7837, 7898}, {7860, 9607}, {7868, 43619}, {7879, 32836}, {7935, 32819}, {7936, 63923}, {12156, 63124}, {13468, 55164}, {18362, 37688}, {18907, 19569}, {32480, 51123}, {32885, 63533}, {33458, 53428}, {33459, 53440}, {39563, 59635}, {51108, 51710}, {63006, 64018}, {63038, 63945}, {63101, 63956}
X(66349) = midpoint of X(i) and X(j) for these {i,j}: {6655, 7924}, {6661, 19695}, {19686, 33256}
X(66349) = reflection of X(i) in X(j) for these {i,j}: {384, 66326}, {6656, 7924}, {6658, 66321}, {6661, 6656}, {7924, 8357}, {19686, 7819}, {19687, 6661}, {66319, 2}, {66321, 8364}, {66328, 66318}
X(66349) = complement of X(66328)
X(66349) = anticomplement of X(66318)
X(66349) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3830, 8370}, {2, 5077, 8353}, {2, 7833, 8703}, {2, 8353, 8598}, {2, 8703, 35297}, {2, 11001, 1003}, {2, 14041, 5066}, {2, 15640, 14033}, {2, 15697, 32985}, {2, 19686, 66327}, {2, 33006, 61920}, {2, 33008, 15693}, {2, 33017, 3830}, {2, 33272, 11001}, {2, 33273, 11812}, {2, 33291, 8355}, {2, 41099, 44543}, {2, 61989, 32983}, {2, 62059, 33216}, {2, 66319, 6661}, {2, 66327, 7819}, {2, 66328, 66318}, {20, 33223, 33220}, {376, 32974, 33219}, {376, 33219, 7807}, {381, 33278, 33229}, {384, 66325, 6661}, {384, 66326, 66325}, {3830, 11287, 2}, {5066, 8359, 2}, {6655, 6656, 19695}, {6655, 8357, 6656}, {6655, 19690, 33256}, {6656, 19695, 19687}, {6656, 19702, 7948}, {6656, 66319, 2}, {6656, 66325, 66326}, {6658, 66322, 66321}, {7761, 11648, 37671}, {7790, 11057, 5306}, {7791, 33229, 32992}, {7791, 33278, 381}, {7819, 19690, 6656}, {7833, 33184, 35297}, {7841, 8356, 33228}, {7841, 32986, 8356}, {7866, 15681, 33255}, {7866, 32997, 33250}, {7924, 33256, 66324}, {7924, 66324, 19690}, {8358, 37350, 2}, {8364, 66321, 66322}, {8703, 33184, 2}, {11001, 33190, 2}, {11287, 33017, 8370}, {11318, 15693, 2}, {11648, 37671, 47286}, {15681, 33255, 33250}, {15689, 32954, 33266}, {15698, 33285, 2}, {19686, 19690, 66324}, {19686, 66324, 7819}, {19690, 33256, 7819}, {19696, 66323, 66320}, {19702, 66317, 6661}, {32974, 33234, 7807}, {32986, 33210, 7841}, {32997, 33255, 15681}, {33025, 33238, 7770}, {33180, 33247, 33235}, {33180, 62120, 33224}, {33190, 33272, 1003}, {33196, 35927, 8366}, {33200, 33226, 33233}, {33219, 33234, 376}, {33220, 33223, 8363}, {33224, 33247, 62120}, {33224, 62120, 33235}, {33251, 33263, 3}, {33253, 33266, 15689}, {33256, 66324, 19686}, {66318, 66328, 66319}, {66320, 66323, 19697}, {66324, 66327, 2}
X(66350) lies on the cubic K1381 and these lines: {115, 511}, {684, 2491}, {3016, 14966}, {6784, 56392}, {46303, 60517}
X(66351) lies on the cubic K1381 and these lines: {11, 1146}, {115, 522}, {3738, 66188}, {3910, 66189}, {6784, 8676}
X(66351) = barycentric product X(24026)*X(51305)
X(66351) = barycentric quotient X(51305)/X(7045)
X(66352) lies on the cubic K1381 and these lines: {6, 13}, {1640, 6041}, {34761, 35906}, {40138, 53155}, {46048, 57598}
X(66352) = tripolar centroid of X(476)
X(66352) = crossdifference of every pair of points on line {526, 842}
X(66352) = {X(23968),X(63788)}-harmonic conjugate of X(57464)
X(66353) lies on these lines: {2, 14588}, {50, 230}, {115, 523}, {524, 5103}, {671, 33799}, {1510, 14113}, {1648, 45294}, {2482, 9165}, {3124, 62572}, {4580, 34294}, {4590, 14061}, {5254, 18122}, {5461, 44397}, {9182, 54104}, {10026, 17162}, {13881, 40879}, {21906, 38393}, {22110, 62311}, {24345, 62322}, {28213, 41180}, {31372, 44373}, {32740, 65719}, {37804, 44377}, {40350, 47171}, {41254, 65774}, {47243, 47349}, {62508, 63543}
X(66353) = midpoint of X(i) and X(j) for these {i,j}: {115, 23991}, {9182, 54104}, {31644, 44398}, {45212, 61339}
X(66353) = reflection of X(i) in X(j) for these {i,j}: {115, 57515}, {14588, 36953}, {31644, 115}, {44398, 23991}, {64258, 31644}
X(66353) = complement of X(14588)
X(66353) = anticomplement of X(36953)
X(66353) = anticomplement of the isogonal conjugate of X(39024)
X(66353) = anticomplement of the isotomic conjugate of X(14061)
X(66353) = complement of the isotomic conjugate of X(42345)
X(66353) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {14060, 4329}, {14061, 6327}, {33799, 17217}, {33803, 7192}, {33809, 44445}, {39024, 8}, {62663, 21294}
X(66353) = X(i)-complementary conjugate of X(j) for these (i,j): {40429, 42327}, {42345, 2887}, {57728, 4369}
X(66353) = X(i)-Ceva conjugate of X(j) for these (i,j): {4590, 523}, {14061, 2}
X(66353) = X(1101)-isoconjugate of X(40511)
X(66353) = X(i)-Dao conjugate of X(j) for these (i,j): {523, 40511}, {8029, 115}, {12076, 40469}
X(66353) = crosspoint of X(2) and X(42345)
X(66353) = barycentric product X(99)*X(12076)
X(66353) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 40511}, {12076, 523}
X(66353) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14588, 36953}, {115, 44398, 64258}, {115, 45212, 61339}, {9166, 31998, 40429}, {23991, 57515, 31644}, {23991, 61339, 45212}
X(66354) lies on these lines: {2, 66192}, {3, 6}, {99, 50436}, {115, 57603}, {232, 4230}, {237, 44114}, {248, 57742}, {684, 2491}, {877, 40138}, {1640, 6041}, {1989, 34365}, {2421, 35910}, {2482, 2799}, {2493, 5106}, {3148, 44127}, {3455, 50433}, {3815, 11007}, {4226, 35906}, {5649, 46787}, {6103, 60502}, {7736, 35922}, {7820, 62431}, {9171, 55143}, {9513, 43718}, {10311, 36176}, {14995, 18487}, {22240, 37918}, {23976, 35067}, {33927, 61198}, {37183, 56980}, {39469, 47405}, {41273, 44533}, {42671, 61213}, {46807, 63028}, {47412, 47433}, {48451, 51262}, {53346, 60517}, {61067, 65905}, {61194, 61679}, {65906, 65918}, {65908, 65923}
X(66354) = reflection of X(66192) in X(2)
X(66354) = isogonal conjugate of the polar conjugate of X(54380)
X(66354) = tripolar centroid of X(i) for these i: {110, 36885}
X(66354) = X(i)-Ceva conjugate of X(j) for these (i,j): {5649, 41167}, {40083, 237}, {46786, 542}, {46787, 511}, {53695, 512}, {54439, 47079}, {61446, 5191}
X(66354) = X(i)-isoconjugate of X(j) for these (i,j): {842, 1821}, {1577, 53691}, {1910, 5641}, {2349, 53866}, {14223, 36084}, {14998, 36036}, {36120, 65308}
X(66354) = X(i)-Dao conjugate of X(j) for these (i,j): {511, 46787}, {542, 46786}, {2679, 14998}, {8623, 57452}, {11672, 5641}, {23967, 290}, {38987, 14223}, {40601, 842}, {41167, 65727}, {41172, 34765}, {42426, 16081}, {46094, 65308}, {65728, 43665}, {65730, 57799}
X(66354) = crosspoint of X(i) and X(j) for these (i,j): {248, 65736}, {511, 46787}, {542, 46786}, {5649, 57742}
X(66354) = crosssum of X(i) and X(j) for these (i,j): {6, 7418}, {98, 34369}, {297, 41253}, {842, 52199}, {868, 1640}, {5641, 57452}
X(66354) = crossdifference of every pair of points on line {98, 523}
X(66354) = barycentric product X(i)*X(j) for these {i,j}: {3, 54380}, {74, 57431}, {114, 61446}, {232, 65722}, {325, 5191}, {511, 542}, {523, 42743}, {684, 7473}, {1640, 2421}, {1959, 2247}, {2396, 6041}, {3289, 60502}, {3569, 14999}, {4230, 65723}, {5968, 45662}, {6103, 36212}, {9155, 16092}, {11672, 46786}, {14966, 18312}, {16188, 40083}, {23967, 46787}, {32112, 64607}, {33752, 53232}, {34369, 36790}, {34761, 41167}, {45321, 63741}, {48451, 51389}, {51262, 65754}, {52491, 65748}, {52492, 65750}
X(66354) = barycentric quotient X(i)/X(j) for these {i,j}: {237, 842}, {511, 5641}, {542, 290}, {1495, 53866}, {1576, 53691}, {1640, 43665}, {2247, 1821}, {2421, 6035}, {2491, 14998}, {3289, 65308}, {3569, 14223}, {5191, 98}, {6041, 2395}, {6103, 16081}, {7473, 22456}, {9155, 52094}, {9419, 52199}, {11672, 46787}, {14966, 5649}, {14999, 43187}, {23967, 46786}, {34369, 34536}, {36213, 57452}, {36885, 53196}, {39469, 35909}, {41167, 34765}, {41172, 65727}, {42743, 99}, {45321, 63746}, {45662, 52145}, {46786, 57541}, {46787, 57547}, {51335, 34174}, {54380, 264}, {57431, 3260}, {58262, 23350}, {60502, 60199}, {61446, 40428}, {65722, 57799}
X(66354) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 2420, 187}, {6, 3003, 21906}, {6, 5467, 3284}, {39, 187, 2088}, {9475, 47406, 11672}, {14966, 34349, 41172}, {41196, 41197, 41172}
X(66355) lies on the cubic K1382 and these lines: {6, 514}, {11, 244}, {37, 905}, {522, 17301}, {3672, 63251}, {4000, 60479}, {4025, 4363}, {4850, 27486}, {7178, 47935}, {7277, 23730}, {17354, 25259}, {17366, 42462}, {17369, 53583}, {17395, 23757}, {17720, 47787}, {21188, 23810}, {29212, 50313}, {31139, 44551}, {35093, 61066}, {40138, 53150}
X(66355) = tripolar centroid of X(675)
X(66355) = X(i)-isoconjugate of X(j) for these (i,j): {100, 38884}, {692, 57893}
X(66355) = X(i)-Dao conjugate of X(j) for these (i,j): {1086, 57893}, {8054, 38884}
X(66355) = crosssum of X(101) and X(52986)
X(66355) = crossdifference of every pair of points on line {101, 674}
X(66355) = barycentric product X(i)*X(j) for these {i,j}: {514, 544}, {23989, 52986}
X(66355) = barycentric quotient X(i)/X(j) for these {i,j}: {514, 57893}, {544, 190}, {649, 38884}, {52986, 1252}
X(66355) = {X(6),X(21202)}-harmonic conjugate of X(21133)
X(66356) lies on the cubic K1382 and these lines: {6, 526}, {2088, 16186}, {2420, 52603}, {2436, 34210}, {5890, 19902}, {40112, 45681}, {40138, 53158}
X(66356) = tripolar centroid of X(842)
X(66356) = crossdifference of every pair of points on line {476, 542}
X(66357) lies on the cubic K1382 and these lines: {6, 1345}, {647, 15167}, {1636, 1637}, {2593, 43530}, {8115, 65308}, {22340, 60872}, {32663, 57026}, {40138, 53154}
X(66357) = tripolar centroid of X(1113)
X(66357) = X(11064)-Ceva conjugate of X(14500)
X(66357) = X(i)-isoconjugate of X(j) for these (i,j): {74, 2581}, {1114, 2349}, {1304, 2582}, {1494, 2577}, {1823, 16080}, {2159, 15165}, {2574, 65263}, {2578, 16077}, {2584, 15459}, {2587, 14919}, {2588, 44769}, {2592, 36034}, {8116, 36119}, {22339, 36131}, {33805, 44124}, {35200, 46812}
X(66357) = X(i)-Dao conjugate of X(j) for these (i,j): {133, 46812}, {1312, 16080}, {1511, 8116}, {3163, 15165}, {3258, 2592}, {15167, 1494}, {38999, 46814}, {39008, 22339}, {62569, 46810}
X(66357) = crosssum of X(44068) and X(57025)
X(66357) = crossdifference of every pair of points on line {74, 1114}
X(66357) = barycentric product X(i)*X(j) for these {i,j}: {30, 2575}, {1113, 9033}, {1114, 14500}, {1495, 22340}, {1636, 46815}, {1637, 8115}, {1784, 2585}, {1822, 36035}, {1990, 46811}, {2173, 2583}, {2579, 14206}, {2580, 2631}, {2593, 3284}, {3260, 42667}, {8106, 11064}, {9409, 15164}, {14398, 46813}, {41079, 57026}, {44123, 66073}
X(66357) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 15165}, {1113, 16077}, {1495, 1114}, {1636, 46814}, {1637, 2592}, {1990, 46812}, {2173, 2581}, {2420, 39299}, {2575, 1494}, {2576, 65263}, {2579, 2349}, {2583, 33805}, {2631, 2582}, {3284, 8116}, {8106, 16080}, {9033, 22339}, {9406, 2577}, {9407, 44124}, {9409, 2574}, {11064, 46810}, {14398, 8105}, {14500, 22340}, {42667, 74}, {44123, 1304}, {57026, 44769}
X(66358) lies on the cubic K1382 and these lines: {6, 1344}, {647, 15166}, {1636, 1637}, {2592, 43530}, {8116, 65308}, {22339, 60872}, {32663, 57025}, {40138, 53153}
X(66358) = tripolar centroid of X(1114)
X(66358) = X(11064)-Ceva conjugate of X(14499)
X(66358) = X(i)-isoconjugate of X(j) for these (i,j): {74, 2580}, {1113, 2349}, {1304, 2583}, {1494, 2576}, {1822, 16080}, {2159, 15164}, {2575, 65263}, {2579, 16077}, {2585, 15459}, {2586, 14919}, {2589, 44769}, {2593, 36034}, {8115, 36119}, {22340, 36131}, {33805, 44123}, {35200, 46815}
X(66358) = X(i)-Dao conjugate of X(j) for these (i,j): {133, 46815}, {1313, 16080}, {1511, 8115}, {3163, 15164}, {3258, 2593}, {15166, 1494}, {38999, 46811}, {39008, 22340}, {62569, 46813}
X(66358) = crosssum of X(44067) and X(57026)
X(66358) = crossdifference of every pair of points on line {74, 1113}
X(66358) = barycentric product X(i)*X(j) for these {i,j}: {30, 2574}, {1113, 14499}, {1114, 9033}, {1495, 22339}, {1636, 46812}, {1637, 8116}, {1784, 2584}, {1823, 36035}, {1990, 46814}, {2173, 2582}, {2578, 14206}, {2581, 2631}, {2592, 3284}, {3260, 42668}, {8105, 11064}, {9409, 15165}, {14398, 46810}, {41079, 57025}, {44124, 66073}
X(66358) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 15164}, {1114, 16077}, {1495, 1113}, {1636, 46811}, {1637, 2593}, {1990, 46815}, {2173, 2580}, {2420, 39298}, {2574, 1494}, {2577, 65263}, {2578, 2349}, {2582, 33805}, {2631, 2583}, {3284, 8115}, {8105, 16080}, {9033, 22340}, {9406, 2576}, {9407, 44123}, {9409, 2575}, {11064, 46813}, {14398, 8106}, {14499, 22339}, {42668, 74}, {44124, 1304}, {57025, 44769}
X(66359) lies on these lines: {3, 58796}, {6, 520}, {184, 2430}, {217, 32320}, {1073, 52584}, {1636, 2972}, {6587, 41369}, {7729, 9242}, {39473, 41145}, {40138, 43701}
X(66359) = tripolar centroid of X(1297)
X(66359) = X(823)-isoconjugate of X(53914)
X(66359) = crossdifference of every pair of points on line {107, 1503}
X(66359) = barycentric product X(520)*X(9530)
X(66359) = barycentric quotient X(i)/X(j) for these {i,j}: {9530, 6528}, {39201, 53914}
X(66360) lies on these lines: {6, 30}, {184, 3081}, {577, 16190}, {1636, 1637}, {1640, 55141}, {1650, 5158}, {1990, 11251}, {3284, 12113}, {3580, 58875}, {4240, 40138}, {6749, 18507}, {8749, 9140}, {18554, 56399}, {20126, 51544}, {23967, 65911}, {40135, 56395}, {40385, 46233}, {45331, 45681}
X(66360) = tripolar centroid of X(1302)
X(66360) = X(i)-isoconjugate of X(j) for these (i,j): {841, 2349}, {2159, 57892}
X(66360) = X(i)-Dao conjugate of X(j) for these (i,j): {3163, 57892}, {53984, 16080}
X(66360) = crosssum of X(74) and X(52976)
X(66360) = crossdifference of every pair of points on line {74, 841}
X(66360) = barycentric product X(i)*X(j) for these {i,j}: {30, 541}, {36789, 52976}
X(66360) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 57892}, {541, 1494}, {1495, 841}, {52976, 40384}
X(66361) lies on the cubic K1382 and these lines: {6, 522}, {11, 1146}, {45, 59998}, {905, 3752}, {1212, 57055}, {8058, 17281}, {40138, 53152}
X(66361) = tripolar centroid of X(1311)
X(66361) = crossdifference of every pair of points on line {109, 8679}
X(66362) lies on the cubic K1382 and these lines: {6, 525}, {122, 125}, {216, 52613}, {520, 40673}, {523, 23327}, {599, 8057}, {2435, 5486}, {40138, 43673}, {41614, 57069}
X(66362) = tripolar centroid of X(2373)
X(66362) = crossdifference of every pair of points on line {112, 2393}
X(66363) lies on the cubic K1382 and these lines: {6, 517}, {45, 34345}, {1643, 35013}, {1769, 3310}, {5158, 35014}, {19297, 34346}, {40138, 53151}, {61066, 65926}
X(66363) = tripolar centroid of X(9058)
X(66363) = crossdifference of every pair of points on line {104, 9001}
X(66364) lies on the cubic K1382 and these lines: {6, 519}, {45, 62630}, {900, 1635}, {1647, 17369}, {4363, 62621}, {17354, 62620}, {17780, 54389}
X(66364) = tripolar centroid of X(9059)
X(66364) = crossdifference of every pair of points on line {106, 9002}
See Antreas Hatzipolakis and Peter Moses, euclid 7254.
X(66365) lies on the cubic K029 and this line: {357, 3605}
X(66365) = X(356)-Ceva conjugate of X(357)See Antreas Hatzipolakis and Peter Moses, euclid 7254.
X(66366) lies on the cubic K031 and this line: {1136, 3606}
X(66366) = X(3276)-Ceva conjugate of X(1136)See Antreas Hatzipolakis and Peter Moses, euclid 7254.
X(66367) lies on the cubic K030 and this line: {1134, 3607}
X(66367) = X(3277)-Ceva conjugate of X(1134)X(66368) lies on these lines: {2, 3}, {69, 5648}, {110, 54173}, {111, 21843}, {323, 50967}, {353, 63043}, {524, 6800}, {542, 35268}, {1350, 40112}, {1383, 7736}, {1495, 50977}, {1992, 11003}, {2781, 33884}, {3098, 5642}, {3241, 51692}, {3448, 64014}, {3580, 43273}, {3618, 48912}, {4549, 10706}, {5012, 44490}, {5210, 5913}, {5304, 14836}, {5640, 38064}, {5651, 32267}, {5987, 64090}, {6032, 43618}, {6776, 44555}, {7664, 14907}, {7693, 63119}, {8588, 10418}, {9019, 11002}, {9140, 46264}, {9544, 33522}, {9870, 37667}, {10168, 34417}, {10519, 35265}, {11057, 37804}, {11064, 50965}, {11160, 16789}, {11179, 15080}, {11645, 61644}, {12117, 62298}, {12824, 54334}, {14389, 54131}, {15066, 35266}, {15107, 20423}, {15448, 21766}, {16962, 54363}, {16963, 54362}, {18361, 52898}, {18911, 32225}, {20192, 50983}, {26233, 32833}, {26276, 56435}, {32269, 51737}, {36427, 52058}, {37645, 54170}, {37779, 50974}, {41896, 57822}, {44569, 44882}, {44822, 45317}, {45311, 48892}, {45331, 59227}, {45794, 64802}, {46818, 50955}, {47296, 50971}, {47582, 50979}, {51028, 63082}, {54174, 64058}, {54674, 60255}
X(66368) = midpoint of X(22) and X(47596)
X(66368) = reflection of X(i) in X(j) for these {i,j}: {2, 47596}, {7391, 31105}, {10304, 44837}, {31105, 2}, {47596, 44210}
X(66368) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20, 10989}, {2, 376, 16063}, {2, 3543, 5169}, {2, 7492, 376}, {2, 7519, 381}, {2, 7533, 5071}, {2, 15677, 31106}, {2, 15683, 31099}, {2, 15692, 7496}, {2, 20062, 31133}, {2, 33263, 31107}, {2, 37901, 4}, {2, 37909, 26255}, {2, 61936, 7570}, {3, 7426, 2}, {22, 1995, 12083}, {22, 6676, 20062}, {22, 7493, 44440}, {22, 7495, 44831}, {22, 7502, 7492}, {22, 16387, 20}, {22, 25337, 7519}, {22, 44210, 2}, {22, 44260, 37913}, {22, 44262, 37901}, {376, 7493, 2}, {381, 7495, 2}, {381, 47313, 7519}, {549, 1995, 2}, {549, 37904, 1995}, {3524, 26255, 2}, {4232, 15692, 2}, {5004, 5005, 31861}, {5094, 15681, 47314}, {6676, 31133, 2}, {7394, 16063, 18531}, {7426, 47313, 16619}, {7485, 44212, 2}, {7492, 7493, 16063}, {7492, 10298, 6636}, {7494, 37913, 7394}, {7495, 47313, 381}, {7555, 37969, 22}, {9832, 45662, 2}, {10201, 34006, 376}, {10298, 10565, 7493}, {10989, 52300, 2}, {11179, 15360, 37644}, {15080, 15360, 11179}, {16063, 44440, 7391}, {26257, 33246, 2}, {30775, 62130, 1370}, {35266, 54169, 15066}, {37900, 53843, 3830}, {37969, 44210, 44262}, {44210, 44261, 16387}, {56966, 62344, 3543}
X(66369) lies on these lines: {2, 3}, {69, 12367}, {98, 54782}, {110, 48873}, {125, 48896}, {146, 41465}, {154, 40112}, {184, 19924}, {251, 7739}, {542, 45794}, {543, 5986}, {1495, 48880}, {1627, 19220}, {1899, 15360}, {1992, 9019}, {1994, 54132}, {2781, 9143}, {3060, 11179}, {3163, 36414}, {3410, 33522}, {3448, 14927}, {3580, 48905}, {3796, 54131}, {5012, 20423}, {5370, 65134}, {5422, 51737}, {5476, 22352}, {5651, 48885}, {5987, 13172}, {6515, 64014}, {6800, 29181}, {7302, 10483}, {7712, 37645}, {7811, 16276}, {8193, 34668}, {8267, 63093}, {8878, 19569}, {10385, 29815}, {11002, 25406}, {11003, 51212}, {11442, 11645}, {13337, 63024}, {13338, 63006}, {14389, 48910}, {14683, 63428}, {14912, 16981}, {15066, 48881}, {15073, 54384}, {15080, 31670}, {15107, 37644}, {16165, 37669}, {18353, 62992}, {18911, 48898}, {19127, 59373}, {20099, 34106}, {22112, 33751}, {24981, 55587}, {29317, 35268}, {29323, 61644}, {31166, 41715}, {31383, 54173}, {32237, 48920}, {33534, 50434}, {33586, 43273}, {33878, 46818}, {34417, 48892}, {36967, 54363}, {36968, 54362}, {37636, 47353}, {37775, 42091}, {37776, 42090}, {37779, 39874}, {38314, 51692}, {48870, 54341}, {48879, 51360}, {48912, 63084}
X(66369) = midpoint of X(i) and X(j) for these {i,j}: {2, 20062}, {3534, 44457}
X(66369) = reflection of X(i) in X(j) for these {i,j}: {2, 22}, {378, 44261}, {7391, 2}, {15640, 35480}, {31133, 44210}, {31723, 44262}, {35481, 3534}, {44287, 7555}
X(66369) = anticomplement of X(31133)
X(66369) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3839, 37353}, {2, 7391, 31105}, {2, 7500, 62963}, {2, 10304, 15246}, {2, 33187, 16949}, {2, 33278, 63797}, {2, 35929, 33255}, {2, 37349, 3545}, {2, 37909, 6353}, {2, 62032, 7409}, {2, 62963, 7394}, {3, 7519, 62937}, {3, 37900, 7519}, {20, 23, 16063}, {22, 20062, 7391}, {22, 31133, 44210}, {378, 44261, 10304}, {427, 47596, 2}, {548, 10301, 40916}, {550, 37899, 1995}, {1995, 43957, 2}, {3524, 6997, 2}, {3529, 7493, 5189}, {3534, 47313, 2}, {5004, 5005, 7530}, {5054, 37990, 2}, {6636, 7500, 7394}, {6636, 62963, 2}, {6995, 10304, 2}, {7386, 26255, 2}, {7426, 31152, 2}, {7426, 52397, 31152}, {7492, 20063, 4}, {7500, 59343, 6636}, {7667, 47312, 44212}, {9909, 15681, 31152}, {9909, 31152, 7426}, {9909, 52397, 2}, {11414, 34726, 38323}, {12083, 44831, 44440}, {12103, 37910, 30739}, {15080, 31670, 63036}, {15107, 46264, 37644}, {15158, 15159, 10989}, {15681, 31152, 52397}, {15686, 44212, 7667}, {31101, 37907, 2}, {31133, 44210, 2}, {31723, 44262, 3545}, {34726, 38323, 31304}, {44218, 44837, 15692}, {52399, 52400, 7527}
X(66370) lies on these lines: {2, 3}, {154, 54173}, {3058, 7298}, {3167, 50967}, {3564, 35268}, {3796, 50979}, {3819, 32267}, {3917, 35266}, {5310, 15170}, {5345, 5434}, {5370, 18990}, {5943, 50983}, {6030, 11245}, {6800, 34380}, {7302, 15171}, {8584, 19127}, {8854, 52045}, {8855, 52046}, {9019, 21849}, {9306, 54169}, {10117, 61610}, {10192, 50965}, {11003, 61624}, {11179, 41588}, {11206, 50955}, {14677, 32227}, {14810, 15448}, {15080, 47582}, {15533, 16789}, {16165, 64062}, {17810, 38064}, {19924, 23292}, {20192, 43650}, {33651, 59634}, {35260, 55610}, {42912, 54363}, {42913, 54362}, {45298, 51737}, {47296, 48892}, {50992, 61771}, {51071, 51692}, {51108, 51718}, {55584, 64058}, {55593, 64177}, {55649, 61507}, {61345, 65006}
X(66370) = midpoint of X(i) and X(j) for these {i,j}: {22, 44210}, {12083, 44218}
X(66370) = reflection of X(i) in X(j) for these {i,j}: {6676, 44210}, {31133, 64852}, {64474, 549}
X(66370) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 428, 5066}, {2, 8703, 10691}, {2, 11001, 34609}, {2, 15640, 62975}, {2, 34608, 3830}, {2, 47313, 428}, {2, 52397, 47311}, {427, 44210, 47596}, {468, 548, 10300}, {468, 7492, 548}, {550, 7493, 5159}, {3530, 47630, 1995}, {6636, 7426, 43957}, {6636, 43957, 34200}, {6677, 34200, 43957}, {7426, 43957, 6677}, {7495, 37899, 546}, {8703, 10154, 2}, {8703, 18579, 12100}, {10128, 11812, 2}, {15698, 62979, 2}, {33923, 47316, 30739}, {37454, 37900, 3853}, {37911, 44245, 16063}
X(66371) lies on these lines: {2, 3}, {51, 51737}, {110, 48874}, {343, 11645}, {597, 22352}, {599, 31383}, {1495, 48881}, {1829, 34642}, {3058, 5322}, {3060, 50979}, {3796, 20423}, {3917, 50965}, {5310, 5434}, {5370, 6284}, {5972, 48920}, {7302, 7354}, {8584, 9019}, {9798, 34656}, {10192, 13857}, {11057, 45201}, {11064, 48880}, {11179, 33586}, {11180, 33522}, {11206, 50967}, {11245, 43273}, {11402, 54132}, {12135, 34712}, {12410, 34667}, {13394, 29317}, {14836, 33872}, {15080, 21850}, {15107, 48906}, {16276, 37671}, {16789, 22165}, {19127, 63124}, {25406, 61657}, {26276, 59766}, {26881, 40112}, {29181, 35268}, {29323, 45303}, {32223, 48891}, {32237, 48885}, {32269, 48898}, {34634, 49553}, {35283, 55649}, {37648, 48892}, {41586, 64196}, {42942, 54363}, {42943, 54362}, {43653, 47353}, {46128, 58347}, {46264, 47582}, {47298, 65633}, {51103, 51692}, {51110, 51718}, {54013, 55629}, {54174, 63174}, {59411, 61506}
X(66371) = midpoint of X(i) and X(j) for these {i,j}: {376, 12082}, {20062, 31133}
X(66371) = reflection of X(i) in X(j) for these {i,j}: {381, 16618}, {427, 44210}, {549, 7555}, {31133, 6676}, {44210, 22}, {44218, 7502}, {44285, 44261}, {61690, 35268}
X(66371) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3534, 7667}, {2, 9909, 37904}, {2, 15682, 5064}, {2, 34603, 3845}, {2, 37904, 62978}, {2, 62160, 44442}, {3, 37899, 10301}, {22, 6636, 7555}, {22, 7500, 16618}, {22, 12082, 25}, {22, 20062, 6676}, {23, 550, 30739}, {25, 376, 43957}, {428, 21213, 62978}, {548, 37910, 1995}, {1657, 7493, 46517}, {3529, 5094, 47095}, {3534, 9909, 2}, {3534, 44265, 8703}, {7492, 37900, 5}, {7493, 46517, 52293}, {7495, 20063, 3627}, {7667, 9909, 62978}, {7667, 37904, 2}, {7714, 19708, 2}, {8703, 44265, 44268}, {12103, 37897, 16063}, {43957, 47312, 25}, {44265, 47313, 37904}, {47630, 62123, 10300}
X(66372) lies on these lines: {2, 3}, {323, 54170}, {1992, 8547}, {2781, 64059}, {5032, 9019}, {5987, 8591}, {6031, 32815}, {9143, 50967}, {11003, 54132}, {11004, 51028}, {11160, 14683}, {11179, 15107}, {13857, 48880}, {14389, 51024}, {14836, 63005}, {15066, 50965}, {15080, 20423}, {15360, 46264}, {19127, 63127}, {19924, 35268}, {20099, 37667}, {32225, 48898}, {32267, 48885}, {35266, 48881}, {36415, 36427}, {37644, 43273}, {37648, 50971}, {41424, 50968}, {44300, 55675}, {44555, 64014}, {54131, 63036}, {55656, 59776}
X(66372) = reflection of X(31105) in X(47596)
X(66372) = anticomplement of X(31105)
X(66372) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15683, 5189}, {2, 20063, 3543}, {2, 37901, 7519}, {22, 12083, 23}, {23, 376, 2}, {23, 6636, 6644}, {549, 62937, 2}, {3534, 7426, 16063}, {3534, 47335, 376}, {7391, 44210, 2}, {7426, 16063, 2}, {7492, 37901, 2}, {7493, 10989, 2}, {7493, 11001, 10989}, {8703, 47312, 1995}, {9909, 15689, 47597}, {20063, 44831, 20062}, {31105, 47596, 2}, {33532, 44265, 376}, {35481, 37969, 4232}, {36445, 36463, 7514}, {46860, 46861, 20}, {52301, 62063, 2}
X(66373) lies on these lines: {2, 3}, {524, 35268}, {1495, 54169}, {3058, 7302}, {3098, 35266}, {5092, 20192}, {5210, 16317}, {5370, 5434}, {5642, 50965}, {9143, 50978}, {11179, 47582}, {13394, 19924}, {13857, 48881}, {14810, 32267}, {15018, 50987}, {15080, 50979}, {15360, 48906}, {16789, 24981}, {19127, 20583}, {26864, 50967}, {32225, 44882}, {34417, 50983}, {36427, 45141}, {37643, 50975}, {44109, 51132}, {50968, 59767}
X(66373) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15681, 46517}, {2, 37900, 15687}, {2, 47312, 10301}, {2, 62042, 62977}, {3534, 7493, 47097}, {7426, 7492, 8703}, {7426, 8703, 30739}, {7495, 37901, 3845}, {10304, 47597, 43957}, {34200, 37897, 2}
X(66374) lies on these lines: {2, 3}, {3058, 5345}, {3167, 54170}, {5322, 15170}, {5370, 15171}, {5434, 7298}, {7302, 18990}, {9019, 20583}, {9306, 50965}, {9591, 34634}, {15074, 21969}, {15448, 48885}, {32267, 53415}, {33522, 50955}, {33586, 50979}, {41588, 43273}, {47296, 48891}, {55593, 64059}
X(66374) = midpoint of X(i) and X(j) for these {i,j}: {12082, 44285}, {12083, 44261}
X(66374) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 62976, 38071}, {22, 12083, 44260}, {376, 9909, 44212}, {376, 44212, 10691}, {550, 37897, 10300}, {7492, 37899, 140}, {7493, 15704, 47315}, {7499, 62963, 5066}, {10154, 15686, 31152}, {15688, 20850, 2}, {20063, 37454, 62026}, {44245, 47630, 30739}, {47316, 62123, 16063}
X(66375) lies on these lines: {2, 3}, {3796, 9140}, {5422, 32225}, {5965, 61644}, {9019, 11451}, {9544, 50955}, {10168, 61645}, {11178, 35264}, {11402, 44555}, {15059, 53094}, {16789, 59373}, {19127, 21358}, {19875, 51692}, {23293, 43273}, {25561, 44082}, {26881, 47353}, {40112, 43653}
X(66375) = reflection of X(31236) in X(2)
X(66375) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6676, 47596}, {2, 13595, 5055}, {2, 15246, 32216}, {2, 26255, 37990}, {2, 31105, 64852}, {2, 37907, 5020}, {2, 37909, 37353}, {2, 44210, 31133}, {2, 47596, 22}, {1656, 37760, 1995}, {3545, 44261, 52842}, {5054, 37453, 2}, {5054, 44262, 378}, {5094, 15696, 60455}, {31133, 44210, 22}, {31133, 47596, 44210}
X(66376) lies on these lines: {2, 3}, {6, 6032}, {98, 54803}, {110, 47353}, {115, 9745}, {125, 5476}, {230, 41394}, {232, 36430}, {262, 15363}, {323, 50955}, {524, 45303}, {542, 11187}, {597, 18911}, {599, 41721}, {1007, 62299}, {1351, 44555}, {1352, 40112}, {1992, 51744}, {1993, 64802}, {2453, 34312}, {2781, 5640}, {3066, 15059}, {3241, 51718}, {3291, 18362}, {3580, 20423}, {3818, 5642}, {5306, 47298}, {5480, 44569}, {5651, 25561}, {5913, 43620}, {5968, 11184}, {5996, 53266}, {6054, 15928}, {6800, 11645}, {7693, 40920}, {7699, 10706}, {7736, 14836}, {7739, 15880}, {7811, 11056}, {7837, 19577}, {7840, 36207}, {7880, 30747}, {7998, 9019}, {8585, 39601}, {8724, 62298}, {9143, 18440}, {9166, 58046}, {9209, 39491}, {9759, 44420}, {10415, 51926}, {10418, 18424}, {10546, 16165}, {11064, 47354}, {11163, 14995}, {11174, 23297}, {11178, 13857}, {11179, 14389}, {11180, 37645}, {11477, 38397}, {14848, 26869}, {15107, 51024}, {15360, 37638}, {15431, 64058}, {15533, 23061}, {15534, 41724}, {19130, 45311}, {19924, 61644}, {20192, 47296}, {20481, 39602}, {30474, 65754}, {30718, 47284}, {30785, 47005}, {31125, 31859}, {31174, 33752}, {31176, 44823}, {32110, 51993}, {35908, 46808}, {37779, 50962}, {39490, 59969}, {39492, 59982}, {39493, 48182}, {41428, 64094}, {42972, 54362}, {42973, 54363}, {46818, 51023}, {46983, 66116}, {48310, 64730}, {50974, 63082}, {50977, 51360}, {50979, 63036}, {53136, 66119}, {54384, 58470}
X(66376) = midpoint of X(i) and X(j) for these {i,j}: {2, 31105}, {31133, 47596}
X(66376) = reflection of X(i) in X(j) for these {i,j}: {22, 47596}, {31105, 427}, {31133, 31105}, {44837, 5054}, {47596, 2}
X(66376) = orthocentroidal-circle-inverse of X(7426)
X(66376) = orthoptic-circle-of-Steiner-inellipse-inverse of X(44265)
X(66376) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 7426}, {2, 376, 7495}, {2, 381, 1995}, {2, 427, 31133}, {2, 3543, 7493}, {2, 3839, 26255}, {2, 5169, 381}, {2, 7391, 44210}, {2, 7394, 44212}, {2, 7496, 15694}, {2, 7570, 15703}, {2, 10989, 3}, {2, 16063, 549}, {2, 31074, 31152}, {2, 31099, 376}, {2, 31100, 44217}, {2, 31106, 15670}, {2, 31133, 22}, {2, 31152, 7485}, {2, 31857, 10989}, {2, 37901, 52300}, {2, 53161, 9832}, {2, 61985, 4232}, {2, 62975, 34603}, {5, 47097, 2}, {376, 31099, 47314}, {378, 1995, 22}, {381, 5094, 2}, {381, 7579, 39484}, {381, 44287, 378}, {381, 56966, 4}, {381, 56967, 11317}, {427, 5094, 378}, {427, 31236, 22}, {427, 37454, 31723}, {427, 39504, 5169}, {427, 52262, 31099}, {427, 64852, 7391}, {547, 30739, 2}, {549, 37454, 2}, {549, 47311, 16063}, {858, 53843, 2}, {1344, 1345, 23}, {1346, 1347, 858}, {1995, 7485, 6644}, {3524, 3839, 38320}, {3543, 7493, 47313}, {3545, 8889, 30775}, {3545, 30775, 2}, {3843, 52292, 14002}, {5055, 32216, 2}, {5071, 16051, 2}, {5094, 5169, 1995}, {5133, 8889, 30744}, {5169, 7577, 5133}, {5169, 44287, 31133}, {7391, 7533, 44263}, {7495, 47314, 376}, {7495, 52842, 22}, {7577, 8889, 5094}, {11178, 13857, 15066}, {15687, 37904, 7519}, {30769, 61936, 2}, {31133, 31236, 2}, {31861, 39484, 381}, {37454, 47311, 549}, {37638, 54131, 15360}, {39504, 44287, 381}, {44210, 64852, 2}, {44212, 62958, 2}, {44218, 56966, 378}, {47296, 50959, 20192}, {52267, 52268, 381}
X(66377) lies on these lines: {2, 3}, {69, 61655}, {1209, 9707}, {1698, 51692}, {1853, 15080}, {1993, 58447}, {2781, 44299}, {3410, 26864}, {3618, 16789}, {3763, 19127}, {3796, 23293}, {3819, 54384}, {3917, 58480}, {5012, 37638}, {5085, 26913}, {5422, 61646}, {5550, 51718}, {6030, 7703}, {6800, 21243}, {9019, 47355}, {11422, 64060}, {11442, 13394}, {11605, 58428}, {12270, 15151}, {15059, 16165}, {17005, 43980}, {17809, 41724}, {31267, 34177}, {33651, 64982}, {34507, 64064}, {37513, 61701}, {39576, 63611}, {41588, 63036}, {45794, 61690}, {51744, 63119}
X(66377) = crossdifference of every pair of points on line {647, 39481}
X(66377) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3, 30744}, {2, 22, 31236}, {2, 1995, 7571}, {2, 6353, 37990}, {2, 6636, 5094}, {2, 6676, 22}, {2, 7391, 64852}, {2, 7394, 37454}, {2, 7493, 5133}, {2, 7494, 858}, {2, 7495, 7485}, {2, 7496, 31255}, {2, 7499, 40916}, {2, 13595, 7539}, {2, 15246, 30771}, {2, 16063, 62958}, {2, 31101, 52298}, {2, 47596, 31133}, {2, 52300, 25}, {2, 62937, 11548}, {3, 46029, 35480}, {3, 52298, 31101}, {5, 44837, 52842}, {22, 6676, 47596}, {22, 31236, 31133}, {26, 7569, 7566}, {140, 52297, 2}, {3549, 7503, 63657}, {6353, 37990, 1995}, {6639, 7568, 7509}, {6676, 64852, 44210}, {7391, 44210, 22}, {7542, 7558, 17928}, {10154, 37454, 7394}, {11548, 62978, 62937}, {16419, 52292, 2}, {31101, 52298, 30744}, {31236, 47596, 22}, {44210, 64852, 7391}, {58447, 61644, 1993}
X(66378) lies on these lines: {2, 3}, {8, 51692}, {69, 9544}, {110, 43653}, {141, 35264}, {154, 37636}, {184, 5965}, {193, 16789}, {343, 6800}, {1194, 5346}, {1352, 26881}, {1369, 6031}, {1799, 14247}, {1899, 15080}, {1993, 13394}, {2979, 54384}, {3060, 58480}, {3410, 7712}, {3448, 16165}, {3580, 3796}, {3618, 9019}, {5012, 37644}, {5092, 61645}, {5422, 32269}, {5596, 34177}, {6030, 23293}, {6515, 11003}, {7998, 59543}, {9627, 29815}, {9973, 41578}, {10192, 15066}, {11002, 63085}, {11008, 13622}, {11427, 44439}, {11442, 61644}, {11456, 44201}, {14389, 33586}, {14826, 35265}, {16960, 54363}, {16961, 54362}, {16990, 21458}, {17809, 41628}, {18911, 22352}, {19126, 64724}, {19220, 21843}, {21243, 35268}, {21766, 53415}, {24206, 44082}, {26233, 34254}, {26883, 32348}, {32223, 43650}, {33522, 37645}, {33884, 37669}, {34507, 44110}, {37494, 61619}, {37517, 61659}, {38317, 44106}, {40897, 63021}, {46934, 51718}, {51707, 54445}
X(66378) = midpoint of X(22) and X(31236)
X(66378) = anticomplement of X(31236)
X(66378) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20, 31074}, {2, 22, 7391}, {2, 23, 7394}, {2, 25, 62937}, {2, 5189, 8889}, {2, 6636, 16063}, {2, 6995, 37353}, {2, 7492, 1370}, {2, 7500, 5169}, {2, 7519, 5133}, {2, 10565, 23}, {2, 14002, 7392}, {2, 20062, 427}, {2, 37913, 4}, {2, 59343, 31099}, {2, 59344, 31106}, {22, 427, 20062}, {22, 6676, 2}, {22, 47596, 6676}, {23, 37353, 6995}, {25, 7495, 2}, {26, 7558, 7544}, {427, 20062, 7391}, {468, 7485, 2}, {631, 7493, 37760}, {1995, 7499, 2}, {3410, 7712, 11206}, {3522, 30745, 16063}, {3523, 62973, 2}, {3549, 7512, 37444}, {5004, 5005, 7526}, {5054, 44457, 44236}, {5133, 9909, 7519}, {5899, 60763, 4}, {6030, 23293, 46264}, {6636, 52300, 2}, {6639, 7525, 47528}, {6676, 44210, 22}, {6677, 40916, 2}, {6995, 37353, 7394}, {7492, 60455, 17538}, {7493, 7494, 2}, {7499, 10154, 1995}, {7502, 37932, 38435}, {9715, 13160, 31304}, {15760, 44837, 20}, {22352, 61646, 18911}, {33522, 37645, 62188}, {38282, 46336, 2}, {44210, 47596, 2}
X(66379) lies on these lines: {2, 3}, {145, 51692}, {193, 19127}, {323, 33522}, {1899, 6030}, {3796, 37644}, {6800, 45794}, {9019, 51171}, {11002, 58480}, {11442, 35268}, {14683, 16165}, {15066, 59699}, {16789, 20080}, {16981, 63030}, {20079, 34177}, {26881, 43653}, {33586, 63036}, {33878, 61655}, {41736, 58439}, {52987, 64064}, {54384, 62188}
X(66379) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 22, 20062}, {2, 20063, 7378}, {2, 37913, 7519}, {2, 59343, 5189}, {22, 6676, 7391}, {22, 47596, 427}, {23, 6636, 15818}, {23, 7494, 2}, {1370, 52300, 2}, {3547, 38435, 31304}, {6353, 15246, 2}, {6636, 7493, 2}, {6676, 7391, 2}, {7394, 7495, 2}, {7495, 9909, 7394}, {7499, 62937, 2}, {13564, 37119, 20}, {16618, 44837, 44440}, {44440, 44837, 3522}
X(66380) lies on these lines: {2, 3}, {51, 51732}, {154, 48876}, {184, 34380}, {343, 35268}, {1350, 59553}, {3098, 10192}, {3167, 33522}, {3244, 51692}, {3580, 6030}, {3629, 19127}, {3631, 15585}, {3796, 41588}, {3819, 15448}, {5012, 47582}, {5206, 40326}, {5310, 15172}, {5345, 18990}, {5907, 15152}, {6329, 9019}, {6390, 33651}, {7298, 15171}, {8770, 21843}, {8780, 10519}, {8854, 35255}, {8855, 35256}, {11245, 15080}, {11402, 61624}, {14810, 53415}, {15153, 44829}, {15808, 51718}, {16165, 24981}, {16621, 32348}, {16789, 40341}, {17040, 63026}, {17809, 64067}, {17810, 38110}, {18289, 42216}, {18290, 42215}, {19126, 41585}, {22352, 32269}, {23332, 48898}, {29181, 58447}, {31884, 59543}, {35260, 62217}, {37669, 55610}, {43653, 61545}, {44110, 64062}, {44882, 61646}, {46728, 61607}, {54169, 59699}, {55584, 63092}, {55606, 61681}, {55614, 59551}
X(66380) = midpoint of X(i) and X(j) for these {i,j}: {22, 6676}, {7502, 16618}, {7555, 25337}, {12083, 64474}
X(66380) = reflection of X(64852) in X(6676)
X(66380) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 37900, 52285}, {3, 6677, 7734}, {3, 10154, 6677}, {3, 10565, 10154}, {22, 44210, 6676}, {22, 47596, 7391}, {25, 140, 10128}, {26, 16197, 9825}, {428, 7495, 11548}, {428, 11548, 3850}, {428, 37913, 37910}, {468, 6636, 10691}, {548, 7493, 37911}, {1595, 47525, 140}, {2937, 34002, 6756}, {5159, 7492, 44245}, {6636, 10691, 33923}, {6677, 10154, 47316}, {7494, 9909, 5}, {7495, 37910, 3850}, {7495, 37913, 428}, {7734, 47316, 6677}, {10128, 47630, 25}, {11548, 37910, 428}, {16531, 34200, 3530}, {22352, 32269, 45298}, {34609, 59343, 15704}, {44210, 44260, 25337}, {52300, 52397, 62958}, {52397, 62958, 47315}
X(66381) lies on these lines: {2, 3}, {51, 44882}, {154, 48872}, {184, 29181}, {251, 15048}, {343, 29012}, {394, 48873}, {612, 15338}, {614, 15326}, {1180, 18907}, {1196, 6781}, {1350, 31383}, {1353, 62187}, {1495, 59699}, {1799, 32819}, {1899, 47582}, {2781, 24981}, {2979, 48874}, {3060, 48906}, {3629, 6467}, {3631, 16789}, {3636, 51692}, {3796, 31670}, {3819, 48885}, {3917, 48881}, {5012, 21850}, {5310, 7354}, {5322, 6284}, {5345, 65134}, {5480, 22352}, {5943, 48892}, {6030, 14389}, {6329, 19127}, {7298, 10483}, {7712, 61655}, {7750, 16276}, {7802, 45201}, {8550, 21969}, {9306, 48880}, {9777, 25406}, {9924, 40341}, {10192, 51360}, {10313, 42459}, {10386, 29815}, {11064, 48879}, {11206, 64716}, {11245, 33586}, {11402, 51212}, {12220, 46444}, {12290, 33523}, {15107, 41588}, {16194, 35254}, {16655, 46728}, {17810, 59411}, {18289, 42276}, {18290, 42275}, {19924, 34986}, {21243, 29323}, {23292, 35268}, {26881, 59553}, {29317, 61690}, {31406, 38862}, {31802, 52525}, {31804, 64051}, {32269, 48896}, {36990, 43653}, {37636, 39884}, {37648, 48891}, {37649, 48901}, {40904, 47287}, {41628, 54036}, {41715, 64719}, {42087, 54363}, {42088, 54362}, {43291, 63538}, {43726, 51744}, {44082, 53415}, {44762, 45187}, {46818, 62188}, {50979, 53863}, {52987, 64062}, {53100, 54636}, {54426, 64159}, {61044, 63174}
X(66381) = midpoint of X(i) and X(j) for these {i,j}: {22, 20062}, {12082, 44831}
X(66381) = reflection of X(i) in X(j) for these {i,j}: {427, 22}, {7391, 6676}, {31723, 16618}
X(66381) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 382, 52285}, {3, 428, 37439}, {3, 7500, 428}, {20, 25, 7667}, {20, 34608, 25}, {20, 37899, 30739}, {20, 37945, 52069}, {20, 39568, 1885}, {22, 427, 44210}, {22, 7391, 6676}, {23, 1368, 62978}, {23, 52397, 1368}, {25, 7667, 30739}, {25, 34608, 37899}, {376, 6995, 7484}, {550, 37900, 10301}, {858, 10154, 52297}, {858, 37913, 10154}, {1368, 15704, 52397}, {1370, 9909, 468}, {1657, 9909, 1370}, {3146, 7494, 5064}, {3534, 44454, 49669}, {5059, 10565, 44442}, {5064, 7494, 37454}, {6636, 20063, 34603}, {6636, 34603, 5}, {6676, 7391, 427}, {7387, 18531, 47093}, {7396, 37453, 47097}, {7493, 17800, 47095}, {7493, 34609, 62958}, {7667, 37899, 25}, {10565, 44442, 5094}, {11414, 31305, 3575}, {18531, 47093, 235}, {31133, 64852, 427}, {31304, 33524, 31829}, {33586, 46264, 11245}, {34614, 37931, 21312}, {37910, 62144, 16063}, {47095, 62958, 34609}
X(66382) lies on these lines: {2, 3}, {154, 48873}, {251, 63633}, {394, 48874}, {3796, 21850}, {5310, 18990}, {5322, 15171}, {5345, 6284}, {6688, 33751}, {7298, 7354}, {7767, 16276}, {8280, 42272}, {8281, 42271}, {9019, 32366}, {9306, 48881}, {9641, 29815}, {10313, 59649}, {10625, 44544}, {11206, 33878}, {11245, 15107}, {13567, 48898}, {14826, 55610}, {15448, 48920}, {18289, 42264}, {18290, 42263}, {18439, 33523}, {18440, 33522}, {18583, 22352}, {23292, 29317}, {31383, 48876}, {32237, 53415}, {33586, 48906}, {39884, 43653}, {41588, 46264}, {41724, 54036}, {42122, 54363}, {42123, 54362}, {44106, 64730}, {44882, 45298}, {48896, 61646}, {51392, 61606}, {55584, 63174}, {61624, 62187}
X(66382) = midpoint of X(i) and X(j) for these {i,j}: {427, 20062}, {12082, 44239}, {44249, 44457}
X(66382) = reflection of X(i) in X(j) for these {i,j}: {6676, 22}, {7391, 64852}, {52262, 7555}, {64474, 7502}
X(66382) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 9909, 1368}, {22, 7391, 44210}, {22, 20062, 427}, {23, 7667, 6677}, {23, 12103, 10300}, {25, 550, 10691}, {428, 6636, 140}, {1368, 9909, 37897}, {1370, 10154, 5159}, {3522, 7714, 16419}, {3529, 10565, 34609}, {3534, 20850, 7386}, {6636, 37900, 428}, {6677, 7667, 10300}, {6677, 12103, 7667}, {7386, 20850, 44212}, {7391, 44210, 64852}, {7485, 10301, 10128}, {7492, 34603, 7499}, {7499, 34603, 546}, {7553, 13564, 16197}, {10128, 33923, 7485}, {10154, 15704, 1370}, {10691, 37910, 25}, {11414, 65376, 31829}, {34608, 59343, 3}, {37913, 52397, 468}, {44210, 64852, 6676}, {47630, 62136, 16063}
X(66383) lies on these lines: {2, 3}, {110, 48872}, {1495, 48879}, {1993, 19924}, {3060, 43273}, {3796, 51024}, {5012, 54131}, {5640, 59411}, {5651, 48920}, {6800, 29317}, {7605, 55682}, {9019, 15531}, {11057, 16276}, {14389, 43621}, {14683, 55584}, {15066, 48880}, {15080, 48910}, {15107, 48905}, {16789, 50990}, {19127, 51185}, {21766, 48885}, {29323, 61700}, {34417, 48891}, {34633, 37557}, {34712, 64039}, {34796, 44750}, {45968, 64014}, {51105, 51692}
X(66383) = reflection of X(i) in X(j) for these {i,j}: {7391, 44210}, {31133, 22)
X(66383) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11001, 52397}, {2, 15640, 62964}, {2, 34608, 47313}, {20, 37900, 1995}, {22, 31133, 47596}, {428, 8703, 2}, {550, 7519, 40916}, {10154, 47311, 2}, {11001, 34608, 2}, {15696, 62968, 7496}, {15704, 37899, 16063}, {31133, 47596, 31236}, {47313, 52397, 2}
See David Nguyen and Francisco Javier García Capitán, euclid 7255.
X(66384) lies on these lines:{1, 3}, {632, 5123}, {1532, 28208}, {3525, 5176}, {3627, 22835}, {3653, 6947}, {3655, 6880}, {4881, 38665}, {5087, 38028}, {6938, 51709}, {10598, 18481}, {12737, 35271}, {20418, 28204}, {21578, 38032}
X(66385) lies on the cubic K029 and these lines: {356, 1507}, {1135, 1508}
X(66385) = isogonal conjugate of X(1507)
X(66386) lies on the cubic K029 and these lines: {356, 1508}
X(66386) = isogonal conjugate of X(1508).
X(66387) lies on these lines: {2, 3}, {83, 44519}, {99, 7926}, {148, 1384}, {183, 6781}, {187, 18546}, {193, 47287}, {325, 43618}, {543, 14614}, {599, 11057}, {671, 62898}, {754, 1975}, {1351, 13172}, {2482, 63956}, {3053, 14568}, {3849, 7788}, {3972, 44526}, {5182, 54131}, {5858, 8595}, {5859, 8594}, {5969, 8593}, {7737, 31859}, {7753, 34504}, {7757, 12156}, {7774, 51123}, {7781, 41750}, {7782, 65630}, {7792, 43619}, {7802, 7879}, {7812, 8716}, {7816, 7818}, {7837, 8591}, {7840, 19569}, {7851, 65633}, {8667, 51224}, {10131, 18501}, {11163, 14537}, {11185, 13468}, {11648, 32479}, {11742, 60855}, {12154, 41100}, {12155, 41101}, {13846, 54507}, {13847, 54503}, {15031, 44535}, {15655, 17004}, {17503, 60073}, {20094, 22253}, {22486, 43273}, {23698, 39656}, {32456, 62203}, {32819, 63955}, {32821, 63931}, {32833, 63941}, {37671, 47102}, {41134, 48913}, {45103, 60178}, {47286, 63034}, {52229, 63093}
X(66387) = midpoint of X(33007) and X(33193)
X(66387) = reflection of X(i) in X(j) for these {i,j}: {1003, 33007}, {7818, 7816}, {7841, 1003}, {33017, 8369}, {33192, 33184}, {33219, 33187}
X(66387) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3534, 35955}, {2, 9855, 3534}, {2, 11001, 8353}, {2, 14030, 11286}, {2, 15682, 8352}, {2, 19686, 14030}, {2, 33288, 33240}, {2, 52942, 3845}, {2, 62094, 47061}, {2, 66328, 11159}, {3, 11361, 44543}, {4, 439, 33249}, {4, 33235, 33233}, {4, 33250, 33235}, {4, 35927, 35297}, {20, 14033, 8356}, {20, 19687, 7770}, {382, 3552, 7887}, {382, 11288, 14041}, {384, 1657, 33234}, {384, 33264, 11287}, {550, 14035, 11285}, {1003, 7841, 33220}, {1003, 8366, 33255}, {1003, 33219, 8369}, {1657, 11287, 33264}, {3146, 33239, 7807}, {3363, 12100, 2}, {3529, 14039, 33272}, {3529, 32981, 6656}, {3534, 11159, 2}, {3543, 32985, 33228}, {3552, 14041, 11288}, {3552, 19696, 382}, {3845, 27088, 2}, {3850, 33227, 33000}, {5059, 14001, 19695}, {6658, 33257, 3}, {6658, 33265, 11361}, {7819, 62155, 32997}, {7833, 14030, 2}, {7833, 19686, 11286}, {7837, 8591, 51122}, {7866, 49137, 33256}, {8353, 66319, 2}, {8356, 14033, 7770}, {8356, 19687, 14033}, {8357, 62159, 33271}, {8359, 15686, 33207}, {8361, 62041, 33279}, {8362, 62144, 33253}, {8366, 33192, 7841}, {8369, 33017, 33219}, {8369, 33187, 1003}, {9855, 11159, 35955}, {9855, 66328, 2}, {11286, 15681, 7833}, {11287, 33264, 33234}, {11288, 14041, 7887}, {11361, 33257, 33265}, {11361, 33265, 3}, {14031, 33253, 8362}, {14037, 33271, 8357}, {14039, 33272, 6656}, {14042, 33014, 1656}, {14066, 33259, 3851}, {14068, 33254, 140}, {16044, 33268, 3}, {16924, 33214, 548}, {32954, 49136, 33019}, {32973, 33229, 33218}, {32973, 33703, 33229}, {32981, 33272, 14039}, {33001, 33252, 33923}, {33007, 33017, 33187}, {33016, 33208, 549}, {33017, 33187, 8369}, {33017, 33219, 7841}, {33018, 33276, 3526}, {33184, 33255, 8366}, {33192, 33255, 33184}, {33198, 62152, 33247}, {33201, 33238, 8363}, {33201, 49140, 33238}, {33244, 33280, 5}, {33250, 35297, 35927}, {35297, 35927, 33235}, {35954, 66349, 2}, {44903, 66321, 33263}
X(66388) lies on these lines: {2, 3}, {6, 12156}, {115, 47101}, {183, 18546}, {316, 9766}, {325, 43619}, {385, 14976}, {543, 7788}, {598, 54905}, {671, 8667}, {754, 7748}, {1350, 10723}, {1975, 7818}, {2549, 41624}, {3849, 11648}, {5210, 14061}, {5969, 11161}, {7750, 63955}, {7752, 44519}, {7756, 7773}, {7792, 43618}, {7802, 14568}, {7809, 8716}, {7810, 63957}, {7811, 34505}, {7840, 51122}, {7847, 65630}, {7879, 32819}, {7910, 31168}, {8556, 55164}, {8860, 18362}, {9879, 62188}, {9939, 63954}, {10722, 55177}, {11054, 63951}, {11163, 63956}, {11174, 62203}, {11184, 48913}, {13449, 63424}, {13468, 14907}, {15514, 15534}, {17503, 60101}, {19569, 63038}, {19570, 63950}, {22329, 47102}, {22486, 51024}, {37668, 47287}, {41748, 63943}, {41750, 63931}, {43448, 63034}, {44969, 59231}, {45103, 60096}, {47286, 64018}, {60228, 60280}, {63093, 63945}
X(66388) = midpoint of X(i) and X(j) for these {i,j}: {7818, 65633}, {33017, 33192}
X(66388) = reflection of X(i) in X(j) for these {i,j}: {1003, 7841}, {1975, 7818}, {7818, 7842}, {7841, 33017}, {14614, 11648}, {33007, 33184}, {33193, 8369}, {33220, 33278}
X(66388) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3830, 11317}, {2, 8353, 35955}, {2, 8597, 3830}, {2, 11001, 8598}, {2, 33291, 11318}, {4, 8356, 44543}, {4, 19695, 33234}, {4, 33023, 32992}, {4, 33234, 11285}, {4, 33272, 8356}, {20, 16041, 35297}, {20, 33229, 7887}, {316, 44526, 31859}, {382, 6655, 7770}, {382, 11287, 11361}, {550, 14063, 33233}, {671, 11057, 8667}, {1003, 7841, 33219}, {1003, 33219, 8366}, {1657, 5025, 33235}, {1657, 11288, 33265}, {2549, 44678, 41624}, {3146, 33210, 14033}, {3146, 33238, 6656}, {3363, 8358, 2}, {3529, 32982, 7807}, {3529, 33285, 35927}, {3543, 32986, 8370}, {3830, 5077, 2}, {3845, 8354, 2}, {5025, 19691, 1657}, {5025, 33265, 11288}, {5059, 14064, 33250}, {5077, 8597, 11317}, {6655, 11361, 11287}, {7819, 62041, 33280}, {7841, 33220, 33184}, {7842, 65633, 1975}, {7866, 49136, 6658}, {8352, 8353, 2}, {8356, 19695, 33272}, {8356, 33272, 33234}, {8356, 44543, 11285}, {8357, 62036, 14035}, {8358, 12101, 3363}, {8359, 15687, 33016}, {8361, 62155, 33244}, {8362, 62026, 14068}, {8703, 37350, 2}, {11287, 11361, 7770}, {11288, 33265, 33235}, {11318, 15681, 13586}, {13586, 33291, 2}, {14033, 33210, 6656}, {14033, 33238, 33210}, {14041, 33256, 33264}, {14041, 33264, 3}, {14044, 33004, 3851}, {14062, 33260, 1656}, {14063, 33271, 550}, {16041, 35297, 7887}, {18362, 46893, 8860}, {19687, 32974, 33217}, {32954, 49137, 33257}, {32961, 33209, 548}, {32966, 33267, 3}, {32974, 33703, 19687}, {32982, 35927, 33285}, {32993, 33275, 3526}, {32996, 33253, 140}, {32997, 33279, 5}, {33000, 33243, 33923}, {33006, 33207, 549}, {33007, 33017, 33278}, {33007, 33184, 33220}, {33007, 33220, 1003}, {33007, 33278, 33184}, {33016, 33263, 8359}, {33019, 33256, 3}, {33019, 33264, 14041}, {33184, 33278, 7841}, {33193, 33251, 8369}, {33200, 49140, 33239}, {33227, 62136, 33252}, {33229, 35297, 16041}, {33234, 44543, 8356}, {33285, 35927, 7807}, {33292, 62147, 439}, {33824, 50239, 33035}
X(66389) lies on these lines: {2, 3}, {69, 14976}, {99, 44678}, {148, 63034}, {543, 63093}, {5969, 63064}, {6781, 17008}, {7737, 12156}, {7774, 43618}, {8591, 19569}, {11185, 47101}, {12154, 46334}, {12155, 46335}, {16989, 43619}, {32479, 63065}, {32480, 63024}, {32532, 60136}, {62203, 63083}
X(66389) = reflection of X(i) in X(j) for these {i,j}: {33007, 33193}, {33017, 33007}, {33192, 1003}
X(66389) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15640, 8597}, {2, 52943, 8353}, {4, 33014, 32998}, {4, 33254, 33000}, {20, 11361, 33008}, {20, 19696, 33280}, {20, 32979, 33275}, {20, 33280, 16924}, {382, 33244, 32961}, {384, 5059, 33271}, {439, 50691, 14062}, {550, 14068, 33001}, {1003, 33192, 33251}, {1657, 14035, 33253}, {3146, 33257, 16925}, {3146, 35927, 14041}, {3522, 14042, 32999}, {3528, 33018, 33003}, {3529, 6658, 7791}, {3529, 14033, 33264}, {3543, 13586, 33006}, {3552, 33279, 33248}, {3552, 33703, 33279}, {3830, 8598, 2}, {5073, 33250, 14063}, {5077, 66319, 2}, {6658, 33264, 14033}, {7770, 62155, 33209}, {8353, 11159, 2}, {8353, 15685, 52943}, {8370, 15681, 33207}, {8703, 11317, 2}, {11159, 15685, 8353}, {11285, 62144, 33243}, {11361, 33008, 16924}, {11541, 33239, 33019}, {14001, 62171, 19691}, {14033, 33264, 7791}, {14036, 33256, 33210}, {14041, 33257, 35927}, {14041, 35927, 16925}, {17800, 19687, 32997}, {19687, 32997, 16898}, {32971, 62152, 33267}, {32981, 33210, 14036}, {32981, 49140, 33256}, {32989, 50690, 14044}, {33007, 33017, 33255}, {33007, 33251, 1003}, {33008, 33280, 11361}, {33192, 33251, 33017}, {33235, 62036, 32996}, {33246, 33291, 2}
X(66390) lies on these lines: {2, 3}, {148, 14976}, {671, 47102}, {754, 65633}, {1992, 19569}, {3849, 63093}, {5969, 50992}, {7618, 48913}, {7739, 12156}, {7774, 43619}, {7802, 63955}, {11648, 63065}, {14712, 63034}, {14907, 18546}, {16989, 43618}, {17008, 47101}, {41624, 44526}
X(66390) = reflection of X(i) in X(j) for these {i,j}: {33007, 33017}, {33017, 33192}, {33193, 7841}
X(66390) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15682, 52942}, {2, 40246, 15682}, {2, 52943, 3534}, {2, 62160, 9855}, {4, 19691, 33271}, {4, 33008, 33005}, {4, 33253, 33001}, {4, 33260, 32999}, {4, 33264, 33008}, {4, 33271, 33253}, {20, 32980, 33276}, {20, 33279, 32961}, {20, 54097, 7907}, {382, 32997, 16924}, {550, 32996, 33000}, {1657, 14063, 33254}, {3146, 33256, 7791}, {3146, 33272, 11361}, {3522, 14062, 32998}, {3529, 16041, 33265}, {3529, 33019, 16925}, {3534, 8352, 2}, {3543, 7833, 33016}, {3830, 8353, 2}, {3832, 33275, 33003}, {3845, 35955, 2}, {5073, 19695, 14035}, {6655, 33280, 16898}, {6655, 33703, 33280}, {7841, 33193, 33255}, {7887, 62155, 33214}, {7924, 14030, 2}, {8354, 11317, 2}, {8354, 33699, 11317}, {11159, 66349, 2}, {11361, 33256, 33272}, {11361, 33272, 7791}, {11541, 33238, 6658}, {15681, 33228, 33208}, {16041, 33265, 16925}, {17800, 33229, 33244}, {32972, 62152, 33268}, {32974, 50692, 19696}, {32982, 49140, 33257}, {32990, 50690, 14066}, {33005, 33008, 33001}, {33005, 33253, 33008}, {33007, 33017, 33251}, {33008, 33264, 33253}, {33008, 33271, 33264}, {33017, 33255, 7841}, {33019, 33265, 16041}, {33023, 50691, 14042}, {33193, 33255, 33007}, {33226, 62021, 33018}, {33229, 33244, 33248}, {33233, 62144, 33252}, {33234, 62036, 14068}, {33246, 33288, 2}, {33247, 62028, 16044}, {41106, 47061, 2}
X(66391) lies on these lines: {2, 3}, {99, 12156}, {141, 6781}, {187, 13468}, {230, 18546}, {543, 5306}, {598, 12040}, {599, 47102}, {620, 53418}, {754, 3933}, {1285, 22253}, {1353, 13188}, {1383, 62299}, {1384, 32815}, {1569, 5052}, {1992, 51122}, {2482, 14537}, {3053, 63955}, {3314, 14976}, {3734, 47101}, {3815, 32456}, {3972, 15048}, {4558, 18373}, {5034, 63124}, {5215, 20112}, {5475, 32459}, {5480, 38738}, {6390, 7737}, {6645, 10386}, {7747, 59545}, {7750, 32027}, {7766, 47287}, {7778, 43618}, {7782, 31406}, {7788, 63945}, {7789, 7818}, {7801, 63941}, {7812, 59634}, {8182, 8556}, {8588, 58446}, {8589, 15491}, {8591, 63038}, {9890, 44532}, {10546, 43964}, {11164, 14614}, {11168, 46893}, {12154, 35692}, {12155, 35696}, {14568, 32819}, {14712, 14929}, {15655, 34229}, {16509, 26613}, {18362, 44401}, {18424, 44381}, {22110, 63956}, {22486, 50979}, {32833, 63940}, {32836, 63950}, {33458, 52022}, {33459, 52021}, {35007, 63923}, {37671, 51224}, {38741, 39884}, {41133, 48913}, {42052, 65030}, {44377, 62203}, {45103, 56064}, {49843, 49844}, {53142, 63024}
X(66391) = midpoint of X(i) and X(j) for these {i,j}: {1003, 33007}, {7841, 33193}
X(66391) = reflection of X(i) in X(j) for these {i,j}: {7818, 7789}, {7841, 8368}, {8369, 1003}, {33017, 8360}, {33184, 8369}
X(66391) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3534, 8354}, {2, 3830, 37350}, {2, 5077, 66335}, {2, 8598, 8703}, {2, 9855, 8353}, {2, 11001, 5077}, {2, 11317, 5066}, {2, 35955, 8358}, {20, 14039, 11287}, {99, 41624, 51123}, {140, 33235, 33227}, {376, 11286, 8359}, {382, 32973, 8361}, {384, 550, 8362}, {384, 33250, 550}, {384, 33265, 8356}, {1003, 7841, 33255}, {1003, 33193, 8368}, {1657, 14001, 8357}, {3529, 33201, 7866}, {3543, 33191, 11318}, {3552, 11361, 35297}, {3552, 19687, 5}, {6656, 33257, 15704}, {6658, 7807, 3627}, {7770, 33244, 548}, {7841, 33255, 8368}, {7887, 33280, 3853}, {8353, 9855, 19710}, {8353, 35954, 2}, {8354, 66318, 2}, {8356, 33250, 33265}, {8356, 33265, 550}, {8358, 15690, 35955}, {8359, 66321, 11286}, {8364, 62144, 33234}, {8366, 33251, 33213}, {8368, 33255, 8369}, {8370, 13586, 549}, {8598, 66319, 2}, {11159, 27088, 3363}, {11285, 33254, 33923}, {11287, 14039, 7819}, {11361, 35297, 5}, {12103, 19697, 7791}, {13586, 19686, 8370}, {14031, 33254, 11285}, {14033, 33239, 35927}, {14033, 35927, 3}, {14034, 33014, 32992}, {14035, 33235, 140}, {14036, 33257, 33264}, {14036, 33264, 6656}, {14037, 33234, 8364}, {14042, 33249, 3858}, {14068, 33233, 3850}, {15681, 33237, 32986}, {17800, 33242, 32974}, {18907, 51123, 41624}, {19687, 35297, 11361}, {19696, 33225, 33229}, {19696, 33229, 62041}, {32973, 54097, 33222}, {32981, 33239, 3}, {32981, 35927, 14033}, {32983, 35287, 5054}, {32986, 33237, 66326}, {32992, 33014, 15712}, {32997, 33217, 66347}, {33007, 33187, 1003}, {33007, 33255, 33193}, {33017, 33220, 8360}, {33185, 62155, 6655}, {33186, 62041, 33229}, {33193, 33255, 7841}, {33225, 33229, 33186}, {62139, 66340, 33263}, {62151, 66347, 32997}
X(66392) lies on these lines: {2, 3}, {6, 44678}, {115, 13468}, {230, 47101}, {316, 15048}, {325, 51123}, {524, 11648}, {597, 14537}, {598, 54773}, {671, 37671}, {754, 5254}, {1570, 8584}, {2031, 3849}, {2549, 9766}, {3589, 62203}, {3793, 63034}, {3933, 7748}, {4045, 53418}, {5024, 32827}, {5309, 63941}, {5461, 46893}, {5969, 14711}, {6321, 48876}, {6390, 44526}, {7615, 8556}, {7745, 7872}, {7750, 14568}, {7761, 18546}, {7765, 41750}, {7767, 44518}, {7778, 43619}, {7788, 52229}, {7789, 65633}, {7790, 18907}, {7810, 39563}, {7825, 63548}, {7827, 12156}, {7830, 63534}, {7843, 9607}, {7847, 31406}, {7865, 63957}, {7873, 63923}, {7897, 47287}, {7898, 14929}, {7910, 59635}, {7911, 32819}, {7998, 20326}, {8588, 44381}, {9300, 63956}, {11057, 22329}, {11168, 40344}, {14614, 63945}, {14907, 43291}, {15491, 43457}, {15655, 63104}, {15810, 20112}, {16509, 55164}, {17503, 60099}, {18424, 58446}, {23334, 63024}, {32532, 60259}, {32892, 50990}, {39764, 63124}, {39838, 44882}, {41748, 63944}, {44415, 63094}, {45103, 62894}, {48913, 52691}
X(66392) = midpoint of X(i) and X(j) for these {i,j}: {1003, 33192}, {7748, 7818}, {7841, 33017}
X(66392) = reflection of X(i) in X(j) for these {i,j}: {1003, 8360}, {3933, 7818}, {8369, 33184}, {33007, 8368}, {33184, 7841}
X(66392) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3534, 27088}, {2, 3845, 3363}, {2, 5077, 8354}, {2, 8352, 3845}, {2, 8353, 8703}, {2, 11159, 66318}, {2, 14030, 6661}, {2, 15682, 11159}, {2, 35955, 12100}, {2, 40246, 66328}, {2, 47061, 15701}, {2, 66328, 35954}, {4, 8357, 8362}, {4, 33210, 11287}, {20, 33285, 11288}, {381, 32986, 8359}, {382, 32974, 7819}, {1003, 7841, 33251}, {1003, 33251, 8360}, {3529, 33200, 32954}, {3543, 33190, 11286}, {3853, 66347, 7770}, {5025, 19695, 550}, {5025, 33264, 35297}, {5066, 8358, 2}, {6655, 14041, 8356}, {6655, 33229, 5}, {6656, 33019, 3627}, {7761, 53419, 64093}, {7770, 33279, 3853}, {7807, 33256, 15704}, {7833, 33228, 549}, {7841, 33192, 8360}, {7887, 32997, 548}, {7898, 47286, 14929}, {7901, 19691, 33250}, {7933, 19687, 33185}, {8352, 66349, 2}, {8354, 37350, 2}, {8355, 12100, 2}, {8356, 14041, 5}, {8356, 33229, 14041}, {8360, 33251, 33184}, {8364, 62026, 14035}, {8367, 14893, 33016}, {11285, 32996, 3850}, {11286, 33190, 66326}, {11287, 33210, 8357}, {11288, 33285, 8361}, {13586, 33288, 2}, {14045, 33260, 33249}, {14046, 33256, 33265}, {14046, 33265, 7807}, {14062, 32992, 3858}, {14063, 33234, 140}, {15681, 33240, 32985}, {15684, 33223, 66321}, {16041, 33238, 33272}, {16041, 33272, 3}, {16043, 54097, 3843}, {17800, 33241, 32973}, {19691, 33250, 62159}, {19695, 35297, 33264}, {32972, 33247, 3}, {32980, 33226, 3526}, {32982, 33238, 3}, {32982, 33272, 16041}, {33007, 33219, 8368}, {33017, 33251, 33192}, {33017, 33278, 7841}, {33185, 62041, 19687}, {33186, 62155, 3552}, {33192, 33251, 1003}, {33233, 33253, 33923}, {33235, 33271, 62144}, {33249, 33260, 15712}, {33253, 33290, 33233}, {33264, 35297, 550}, {33271, 33283, 33235}
X(6693) lies on these lines: {2, 3}, {6, 51123}, {99, 63633}, {141, 47101}, {524, 41413}, {754, 7789}, {2482, 9300}, {3589, 32456}, {3734, 13468}, {3972, 6390}, {5039, 8584}, {5305, 7816}, {5306, 52229}, {5969, 36521}, {7778, 44678}, {7799, 12156}, {7801, 63940}, {7804, 32459}, {7863, 41750}, {7880, 63941}, {8667, 37809}, {9766, 18907}, {11165, 63024}, {11544, 30123}, {12150, 59634}, {14148, 32455}, {14537, 22110}, {14614, 19661}, {15300, 39593}, {18546, 43291}, {18583, 33813}, {20582, 40344}, {21309, 32817}, {22331, 63926}, {32896, 63064}, {39141, 61624}, {47287, 63019}, {51122, 63006}
X(66393) =midpoint of X(i) and X(j) for these {i,j}: {1003, 8369}, {33007, 33184}
X(66393) =reflection of X(i) in X(j) for these {i,j}: {7841, 33213}, {8360, 8368}, {8368, 8369}, {33184, 8365}
X(66393) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3363, 10109}, {2, 3845, 8355}, {2, 8353, 66335}, {2, 8598, 8354}, {2, 8703, 8358}, {2, 9855, 66349}, {2, 11159, 3845}, {2, 14030, 8370}, {2, 27088, 12100}, {2, 35954, 66318}, {2, 66328, 8352}, {20, 33185, 66347}, {20, 33242, 33185}, {382, 33181, 33186}, {549, 11286, 8367}, {550, 14001, 8364}, {1003, 7841, 33187}, {1003, 33220, 33007}, {1003, 33255, 8369}, {3543, 33197, 33240}, {3552, 7819, 548}, {3552, 14036, 8356}, {6661, 13586, 8359}, {7866, 33239, 15704}, {7892, 33250, 8357}, {8354, 8598, 15690}, {8356, 14036, 7819}, {8357, 33250, 62144}, {8359, 13586, 34200}, {8361, 19687, 3853}, {8362, 33235, 33923}, {8365, 33220, 8368}, {8369, 33007, 8365}, {8369, 33184, 33220}, {8369, 33187, 33213}, {11285, 33227, 61792}, {11286, 32985, 549}, {11287, 35927, 550}, {11288, 14033, 5}, {14001, 35927, 11287}, {14030, 33246, 2}, {14033, 32973, 11288}, {14037, 33235, 8362}, {19687, 33225, 8361}, {27088, 66318, 2}, {32954, 32981, 3627}, {33007, 33220, 33184}, {33183, 33703, 33241}, {33184, 33220, 8365}, {33211, 62155, 32974}, {33246, 66321, 547}, {44245, 66344, 7791}
X(66394) lies on these lines: {2, 3}, {141, 18546}, {316, 12156}, {597, 63956}, {599, 42023}, {754, 5305}, {2549, 51123}, {3631, 32457}, {3793, 7898}, {5254, 7818}, {5306, 63945}, {5309, 63940}, {5461, 40344}, {5969, 19662}, {6390, 7934}, {7761, 13468}, {7767, 7911}, {7784, 63955}, {7790, 7926}, {7806, 14976}, {7817, 63941}, {7844, 47101}, {7853, 53419}, {7913, 53418}, {7935, 63534}, {8556, 16509}, {9300, 31173}, {9466, 63543}, {9766, 15048}, {11168, 18362}, {11544, 30119}, {11648, 52229}, {18907, 44678}, {31168, 59635}, {37672, 44415}, {39524, 63094}, {44401, 46893}, {48913, 63101}
X(66394) = midpoint of X(i) and X(j) for these {i,j}: {5254, 7818}, {7841, 33184}, {8369, 33017}
X(66394) = reflection of X(i) in X(j) for these {i,j}: {1003, 8365}, {8360, 33184}, {8368, 8360}, {8369, 33213}
X(66394) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5077, 8703}, {2, 8353, 27088}, {2, 8354, 12100}, {2, 8597, 66319}, {2, 33291, 33228}, {2, 37350, 5066}, {2, 66349, 8354}, {5, 32974, 66347}, {20, 33241, 33186}, {382, 33180, 33185}, {1003, 7841, 33278}, {3543, 33196, 33237}, {3627, 7866, 19697}, {3861, 66346, 7770}, {5025, 8357, 140}, {6655, 8361, 548}, {6655, 14046, 35297}, {7819, 33229, 3853}, {7841, 33219, 33017}, {7841, 33251, 33184}, {7866, 32982, 3627}, {7924, 33228, 8359}, {7924, 33291, 2}, {7933, 33229, 7819}, {8353, 27088, 15690}, {8355, 8358, 2}, {8359, 33228, 547}, {8362, 14063, 3850}, {8369, 33184, 33219}, {8369, 33219, 33213}, {11287, 16041, 5}, {11288, 33272, 550}, {11318, 32986, 549}, {14045, 19690, 32992}, {14046, 35297, 8361}, {14064, 33272, 11288}, {15687, 33223, 66340}, {16041, 32974, 11287}, {32954, 33238, 15704}, {33017, 33184, 33213}, {33017, 33219, 8369}, {33025, 33292, 1656}, {33182, 33703, 33242}, {33184, 33278, 8365}, {33200, 33210, 33285}, {33210, 33285, 3}, {33212, 62155, 32973}, {33213, 33219, 8360}, {33227, 33253, 41981}, {37350, 66335, 2}
X(66395) lies on these lines: {2, 3}, {32, 32479}, {543, 7754}, {598, 5013}, {599, 7802}, {671, 3053}, {1975, 3849}, {2482, 7773}, {5182, 51024}, {5206, 8860}, {5969, 10488}, {6337, 23334}, {7617, 15513}, {7622, 39590}, {7747, 11163}, {7759, 15300}, {7782, 11184}, {7785, 11165}, {7793, 40727}, {7801, 11164}, {7812, 31859}, {7817, 65633}, {7823, 8591}, {7827, 44526}, {7847, 47352}, {7936, 50993}, {8182, 59635}, {8593, 11477}, {9605, 32480}, {11152, 48673}, {11160, 32822}, {11456, 35706}, {12154, 42158}, {12155, 42157}, {12191, 38905}, {12355, 58765}, {13108, 22564}, {13881, 26613}, {14712, 63950}, {14907, 15598}, {20065, 52229}, {32826, 63029}, {33698, 62880}, {34505, 51224}, {34511, 43618}, {39785, 63931}, {44519, 52691}, {44678, 59634}, {53105, 60103}, {53109, 60211}, {54494, 60198}
X(66395) = reflection of X(i) in X(j) for these {i,j}: {7841, 33007}, {33192, 8369}, {65633, 7817}
X(66395) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14038, 33237}, {2, 14045, 11318}, {20, 8370, 35955}, {382, 33257, 33235}, {1003, 7841, 8366}, {1657, 6658, 7770}, {1657, 11159, 7833}, {3146, 32985, 8352}, {3146, 33250, 7887}, {3529, 19687, 33234}, {3552, 8597, 11318}, {3627, 27088, 33006}, {3627, 33244, 33233}, {5073, 11318, 8597}, {5206, 47617, 8860}, {6658, 7833, 11159}, {7747, 34504, 11163}, {7819, 62162, 33271}, {7833, 11159, 7770}, {7833, 14034, 2}, {7841, 8366, 33219}, {7841, 33007, 1003}, {7841, 33220, 8360}, {7866, 62170, 19691}, {8352, 32985, 7887}, {8352, 33250, 32985}, {8360, 33017, 7841}, {8362, 58203, 33209}, {8369, 33192, 7841}, {8370, 35955, 11285}, {11286, 15685, 33264}, {12102, 33227, 32963}, {14033, 15683, 8353}, {15682, 35927, 33228}, {19695, 32981, 33217}, {19695, 35954, 33190}, {27088, 33006, 33233}, {32981, 33190, 35954}, {32981, 49138, 19695}, {33006, 33244, 27088}, {33007, 33192, 8369}, {33190, 35954, 33217}, {33208, 52942, 5}, {33239, 49135, 33229}, {33264, 66328, 11286}
X(66396) lies on these lines: {2, 3}, {148, 63954}, {183, 63957}, {316, 8716}, {538, 65633}, {3849, 41748}, {5182, 48905}, {5969, 40341}, {7748, 14614}, {7754, 63941}, {7756, 63956}, {7757, 44526}, {7802, 8667}, {7818, 32479}, {7842, 7881}, {7880, 11164}, {11055, 63932}, {11057, 34505}, {11152, 38744}, {11185, 15598}, {12355, 34734}, {14976, 63950}, {22486, 48910}, {31859, 43619}, {33698, 60248}, {44562, 62203}, {53105, 62892}, {54494, 62922}
X(66396) = reflection of X(i) in X(j) for these {i,j}: {1003, 33017}, {14614, 7748}, {33193, 33184}
X(66396) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14034, 11286}, {2, 33284, 33240}, {381, 33264, 35955}, {382, 33256, 33234}, {1003, 33017, 7841}, {1003, 33219, 8368}, {1657, 33019, 7887}, {3146, 19695, 7770}, {3529, 33229, 33235}, {3543, 8356, 11317}, {3627, 8354, 33016}, {3627, 32997, 11285}, {3830, 7833, 44543}, {5077, 15684, 11361}, {7866, 49133, 19696}, {8354, 33016, 11285}, {8357, 62044, 33280}, {8368, 33007, 1003}, {8597, 33264, 381}, {11288, 62158, 9855}, {11318, 15685, 33265}, {11361, 40246, 15684}, {13586, 14045, 2}, {15682, 33272, 8370}, {15683, 16041, 8598}, {17538, 54097, 33249}, {17578, 33247, 32992}, {32982, 33250, 33218}, {32982, 49138, 33250}, {32997, 33016, 8354}, {33017, 33193, 33184}, {33184, 33193, 1003}, {33238, 49135, 19687}
X(66397) lies on these lines: {2, 3}, {148, 63950}, {543, 7855}, {626, 11164}, {1975, 32479}, {3849, 7754}, {5023, 9166}, {5585, 51237}, {7756, 11163}, {7773, 34504}, {7776, 8591}, {7802, 34505}, {7812, 44526}, {7893, 8596}, {7910, 21358}, {7926, 31859}, {11054, 63938}, {11161, 53097}, {14976, 63954}, {15300, 32821}, {44518, 51224}, {52691, 65630}, {53106, 60220}, {53107, 62895}, {54646, 62881}
X(66397) =reflection of X(7841) in X(33192)
X(66397) ={X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14040, 33237}, {2, 33289, 11318}, {382, 7833, 11317}, {3543, 8353, 44543}, {5073, 33256, 7770}, {7833, 11317, 11285}, {7833, 14066, 2}, {7833, 40246, 382}, {7841, 8369, 33219}, {7841, 33007, 8366}, {8359, 62036, 52942}, {8366, 33007, 1003}, {8369, 33017, 7841}, {9855, 11318, 33235}, {9855, 33019, 11318}, {11318, 17800, 9855}, {15704, 33279, 33233}, {15704, 37350, 33208}, {17800, 33019, 33235}, {19691, 40246, 7833}, {32997, 52942, 8359}, {33006, 52943, 550}, {33017, 33193, 33213}, {33208, 33279, 37350}, {33208, 37350, 33233}
X(66398) lies on these lines: {2, 3}, {543, 20065}, {3849, 7855}, {5969, 20105}, {6392, 8596}, {7620, 7793}, {7785, 53142}, {7812, 43618}, {7827, 43619}, {7926, 34511}, {8587, 38259}, {9939, 32815}, {10484, 18845}, {12154, 43633}, {12155, 43632}, {14976, 32836}, {15300, 63931}, {32816, 52695}, {35369, 63042}, {44519, 63101}, {44526, 63045}, {60113, 62904}
X(66398) = reflection of X(i) in X(j) for these {i,j}: {2, 33193}, {33192, 33007}
X(66398) = anticomplement of X(33192)
X(66398) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 33209, 7833}, {2, 33214, 33208}, {4, 9855, 33208}, {4, 33208, 2}, {4, 33268, 33206}, {4, 33276, 33270}, {382, 8598, 33006}, {1003, 7841, 8365}, {1003, 33278, 2}, {1657, 33280, 32965}, {3146, 33244, 32996}, {3528, 14066, 33009}, {3529, 7833, 52943}, {3529, 14035, 33209}, {3529, 19696, 14035}, {3543, 33265, 2}, {3627, 33254, 32963}, {5059, 6658, 32997}, {6658, 32997, 14031}, {7833, 14035, 2}, {7833, 52943, 33209}, {8359, 33269, 2}, {8369, 33007, 33187}, {8369, 33213, 8366}, {8370, 32965, 2}, {8597, 32985, 14063}, {8597, 33257, 32985}, {8598, 33006, 32964}, {9855, 33208, 33214}, {9855, 37461, 33265}, {11001, 11361, 33207}, {11361, 33207, 2}, {14033, 33263, 2}, {14035, 52943, 7833}, {14037, 33190, 2}, {14041, 33266, 2}, {14042, 17538, 33012}, {14063, 32985, 2}, {15704, 16924, 33243}, {15708, 32994, 2}, {19686, 33272, 2}, {19687, 49137, 33271}, {32964, 33006, 2}, {32985, 33703, 8597}, {33007, 33017, 8369}, {33007, 33192, 2}, {33017, 33187, 2}, {33192, 33193, 33007}, {33250, 49136, 33279}, {33257, 33703, 14063}
César Lozada, Nov 19, 2024.
The equilateral Hatzipolakis-Moses triangle was introduced in Euclid 6964.
X(66399) lies on these lines: {3, 65156}, {5, 3280}, {30, 13590}
X(66399) = (X(3), X(65156))-harmonic conjugate of X(66400)
César Lozada, Nov 19, 2024.
The equilateral Hatzipolakis-Moses triangle was introduced in Euclid 6964.
X(66400) lies on these lines: {3, 65156}, {140, 3281}
X(66400) = (X(3), X(65156))-harmonic conjugate of X(66399)
Let ABC and A'B'C' be two triangles, neither inscribed in the other, such that AA', BB', CC' are concurrent. Let AB' meet BC at Ba, AC' meet BC at Ca, define Ab, Cb, Bc, Ac cyclically. Then six points Ba, Ca, Cb, Ab, Ac, Bc lie on a conic. (Dao Thanh Oai, Nov. 14, 2024)
(César Lozada, - Nov. 19, 2024): This conic is named here the 2nd Dao-perspeconic of ABC to A'B'C'. Of course, there exists a 2nd Dao-perspeconic of A'B'C' to ABC.
The appearance of (T, i, j) in the following list means that the centers of the 2nd Dao-perspeconic ABC to T and T to ABC are X(i) and X(j): (ABC-X3 reflections, 17807, 45188), (2nd Conway, 478, 66401), (Ehrmann-mid, 45191, 45192), (outer-Garcia, 3588, 45189), (Johnson, 31353, 45190), (5th mixtilinear, 45193, 45194), (orthic axes, 5702, 66402)The appearance of (T, i, j) in the following list means that the perspectors of the 2nd Dao-perspeconic ABC to T and T to ABC are X(i) and X(j): (circumsymmedial, 6, 6), (2nd mixtilinear, 1, 1), (orthic axes, 4, 4).
X(66401) lies on these lines: {2, 2140}, {8, 22278}
César Lozada, - Nov. 19, 2024.
The center of the reciprocal 2nd Dao perspeconic of these triangles is X(5702).
X(66402) lies on these lines: {4, 6}, {216, 34200}, {264, 20583}, {577, 44682}, {3284, 12108}, {5158, 62104}, {5421, 16328}, {15689, 15851}, {15693, 15905}, {15705, 36748}, {15860, 58203}, {27377, 63124}, {32001, 51185}, {36751, 58188}, {38292, 55863}, {43981, 63062}, {48154, 52704}, {52703, 62078}, {59657, 61942}
X(66402) = polar conjugate of the isotomic conjugate of X(61792)
X(66402) = pole of the line {3580, 3861} with respect to the Dou circles radical circle
X(66402) = pole of the line {44436, 61792} with respect to the Moses circles radical circle
X(66402) = barycentric product X(4)*X(61792)
X(66402) = trilinear product X(19)*X(61792)
X(66402) = trilinear quotient X(61792)/X(63)
X(66402) = (X(393), X(6749))-harmonic conjugate of X(6748)
See David Nguyen and Peter Moses, euclid 7262.
X(66403) lies on these lines: {11, 1385}, {10260, 10269}
See David Nguyen and Peter Moses, euclid 7262.
X(66404) lies on this line: {11, 1385}
X(66404) = midpoint of X(11) and X(66403)
X(66405) lies on these lines: {2, 3}, {99, 63956}, {148, 14614}, {316, 7908}, {385, 43618}, {524, 19569}, {538, 7823}, {543, 7837}, {2482, 48913}, {3329, 43619}, {3849, 14711}, {5182, 48901}, {6321, 58765}, {6781, 17004}, {7737, 63038}, {7747, 7757}, {7748, 7920}, {7777, 62203}, {7785, 8716}, {7802, 9466}, {7840, 44678}, {7864, 65633}, {7893, 32819}, {8591, 9766}, {8667, 14712}, {9300, 32480}, {11152, 23698}, {11185, 47102}, {14458, 54750}, {14537, 32479}, {14976, 37671}, {17129, 32826}, {17503, 60104}, {18362, 26613}, {18546, 51224}, {20081, 63940}, {20094, 51122}, {22253, 35369}, {22486, 29012}, {39141, 51163}, {45103, 60233}, {54540, 54839}
X(66405) = reflection of X(i) in X(j) for these {i,j}: {7757, 7747}, {7802, 9466}, {7833, 11361}, {14976, 37671}, {33264, 8370}
X(66405) = anticomplement of X(8353)
X(66405) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11159, 14030}, {2, 15640, 66390}, {2, 15682, 8597}, {2, 33264, 8354}, {2, 40246, 66388}, {2, 66389, 9855}, {4, 19696, 33257}, {4, 33193, 13586}, {4, 33244, 32967}, {4, 33257, 7907}, {20, 14042, 16921}, {20, 33016, 33273}, {381, 33265, 33274}, {381, 66395, 33265}, {382, 6658, 5025}, {550, 33018, 33015}, {1003, 33240, 33225}, {1657, 16044, 33275}, {3146, 33280, 384}, {3529, 14068, 7824}, {3529, 32983, 33207}, {3534, 11317, 2}, {3543, 33007, 14041}, {3552, 3627, 14062}, {3830, 66387, 2}, {3832, 33254, 16923}, {3845, 8598, 2}, {3853, 33250, 32966}, {5059, 16924, 33267}, {5073, 11286, 66396}, {5076, 33235, 32993}, {6655, 14034, 16895}, {7770, 49136, 19691}, {7841, 19686, 14036}, {7866, 19693, 14040}, {8352, 66391, 2}, {8354, 8370, 2}, {8597, 66328, 2}, {11159, 62040, 66388}, {11159, 66388, 2}, {11286, 66396, 6655}, {11287, 62045, 66397}, {13586, 19696, 33193}, {13586, 32967, 33216}, {13586, 33193, 33257}, {14031, 33238, 7948}, {14033, 33192, 7924}, {14033, 62042, 33192}, {14035, 33256, 7876}, {14035, 33703, 33256}, {14041, 33007, 33246}, {14042, 33273, 33016}, {14068, 33207, 32983}, {16925, 17578, 14044}, {19687, 33019, 7892}, {19687, 62036, 33019}, {32968, 62171, 33209}, {32971, 50692, 33271}, {32979, 49140, 33253}, {32981, 33279, 7901}, {32981, 50691, 33279}, {32983, 33207, 7824}, {32996, 33239, 33245}, {33016, 33273, 16921}, {33216, 33244, 13586}, {33239, 62021, 32996}, {33699, 66391, 8352}, {35480, 40890, 62954}, {35927, 50687, 33006}, {35954, 66394, 2}, {52942, 66389, 2}, {62040, 66388, 40246}, {66319, 66392, 2}
X(66406) lies on these lines: {2, 3}, {148, 8667}, {194, 63941}, {385, 43619}, {524, 14976}, {538, 7802}, {543, 11057}, {671, 47101}, {754, 11055}, {1078, 63957}, {2549, 63038}, {2794, 11152}, {3329, 43618}, {3849, 7837}, {5182, 48898}, {6781, 7806}, {7756, 7757}, {7777, 63956}, {7779, 51122}, {7785, 44519}, {7788, 8591}, {7809, 34504}, {7811, 14711}, {7842, 7891}, {7864, 12150}, {7877, 63947}, {7904, 9466}, {7906, 8716}, {7921, 63548}, {11648, 51224}, {14537, 52691}, {14614, 14712}, {15300, 32458}, {17004, 46893}, {19569, 32480}, {22165, 51374}, {22486, 29317}, {23698, 33706}, {33610, 49848}, {33611, 49847}, {38741, 58765}
X(66406) = reflection of X(i) in X(j) for these {i,j}: {2, 8353}, {7757, 7756}, {7823, 7757}, {7833, 33264}, {11361, 7833}, {19569, 41624}
X(66406) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 8353, 7833}, {2, 11001, 9855}, {2, 15640, 52942}, {2, 33264, 8353}, {2, 40246, 3830}, {2, 52943, 11001}, {2, 62160, 66389}, {2, 66328, 14030}, {2, 66389, 66328}, {2, 66390, 8597}, {4, 33207, 33273}, {4, 33209, 33267}, {4, 33267, 33275}, {4, 33275, 33015}, {20, 5025, 33268}, {20, 32982, 33254}, {20, 33017, 13586}, {20, 33256, 5025}, {20, 33271, 33256}, {376, 14041, 33274}, {376, 33192, 14041}, {382, 33260, 16921}, {550, 33019, 7907}, {1657, 6655, 33257}, {3146, 7824, 14066}, {3146, 33253, 7824}, {3522, 33279, 32967}, {3528, 32996, 16923}, {3529, 32986, 33193}, {3529, 32997, 384}, {3534, 66388, 2}, {3543, 33008, 33013}, {3830, 35955, 2}, {5059, 7791, 19696}, {5077, 15685, 66387}, {5077, 66387, 2}, {6655, 33257, 7892}, {6658, 7876, 14032}, {6658, 33234, 7876}, {7791, 19696, 14034}, {7841, 15681, 33265}, {7841, 33265, 33246}, {7924, 33007, 14036}, {7948, 32981, 14040}, {8352, 8703, 2}, {8358, 8370, 2}, {8598, 66392, 2}, {11287, 62158, 66395}, {11287, 66395, 19686}, {11541, 33226, 14068}, {12103, 33229, 33014}, {13586, 33017, 5025}, {13586, 33256, 33017}, {14033, 62161, 66398}, {14063, 17538, 33276}, {14064, 62146, 33214}, {15683, 33272, 33007}, {15704, 19695, 3552}, {16041, 62130, 33208}, {17800, 33234, 6658}, {19569, 32480, 41624}, {19710, 66392, 8598}, {32965, 33703, 14042}, {32970, 62133, 33252}, {32982, 33245, 5025}, {32982, 33254, 33245}, {32985, 33278, 14046}, {32986, 33193, 384}, {32997, 33193, 32986}, {33007, 33272, 7924}, {33023, 49140, 33280}, {33207, 33273, 33275}, {33238, 33244, 7901}, {33238, 62147, 33244}, {33247, 49138, 14035}, {33263, 66398, 14033}, {33267, 33273, 33207}, {35954, 66335, 2}, {41099, 47061, 2}, {54097, 62097, 33000}, {66349, 66391, 2}
X(66407) lies on these lines: {2, 3}, {543, 19569}, {5182, 48904}, {7766, 43618}, {7793, 63957}, {8591, 44678}, {8596, 63093}, {9939, 14711}, {10723, 58765}, {12150, 65633}, {14537, 32480}, {20081, 63941}, {22486, 29323}, {33623, 49938}, {33625, 49937}, {43619, 62994}, {63021, 63956}
X(66407) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15640, 40246}, {2, 52944, 15640}, {2, 62168, 52943}, {3543, 66398, 33265}, {3830, 9855, 2}, {3853, 33268, 33011}, {5073, 19696, 33019}, {8353, 11361, 2}, {8597, 66387, 2}, {11001, 52942, 2}, {11541, 33280, 19691}, {14030, 66349, 2}, {14066, 15704, 33022}, {15682, 66389, 2}, {15684, 66395, 14041}, {62040, 66387, 8597}, {66328, 66388, 2}
X(66408) lies on these lines: {2, 3}, {32, 63957}, {76, 63941}, {99, 53418}, {148, 18907}, {183, 43618}, {325, 62203}, {538, 7747}, {543, 14537}, {598, 9300}, {671, 5306}, {754, 14711}, {1503, 22486}, {2549, 53489}, {3849, 37671}, {3972, 53419}, {5182, 5480}, {5210, 53127}, {5254, 12150}, {6781, 37688}, {7620, 63034}, {7737, 14614}, {7745, 7757}, {7750, 9466}, {7754, 32826}, {7756, 44562}, {7774, 47287}, {7775, 59634}, {7788, 44678}, {7812, 11055}, {7823, 63940}, {7826, 63947}, {7837, 52229}, {7843, 32820}, {8556, 14907}, {8584, 8593}, {8591, 51123}, {8594, 33458}, {8595, 33459}, {8667, 11185}, {8716, 65630}, {8781, 45103}, {9777, 32463}, {11174, 43619}, {12154, 41107}, {12155, 41108}, {13468, 51224}, {14160, 38748}, {14458, 54751}, {14712, 64093}, {17131, 63948}, {17503, 60093}, {18513, 26629}, {18514, 26686}, {18546, 22329}, {18842, 54889}, {19569, 63945}, {19661, 41135}, {20065, 63954}, {20112, 26613}, {21969, 55005}, {22110, 48913}, {23698, 44422}, {32456, 37647}, {32479, 63101}, {32532, 62930}, {36521, 50280}, {60260, 60281}
X(66408) = reflection of X(i) in X(j) for these {i,j}: {7750, 9466}, {7756, 44562}, {7757, 7745}, {8353, 2}, {8356, 8370}, {8370, 11361}, {33264, 8359}, {41624, 14537}
X(66408) = anticomplement of X(8354)
X(66408) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3830, 8352}, {2, 7833, 8358}, {2, 8353, 8356}, {2, 8597, 66392}, {2, 9855, 8703}, {2, 11001, 35955}, {2, 11159, 66319}, {2, 14030, 66318}, {2, 15682, 66388}, {2, 15697, 47061}, {2, 52942, 3830}, {2, 66319, 35954}, {2, 66328, 66391}, {2, 66387, 8598}, {2, 66388, 66349}, {2, 66389, 3534}, {2, 66390, 5077}, {4, 1003, 33228}, {4, 19687, 7807}, {4, 32981, 7887}, {5, 6658, 33250}, {5, 33227, 16923}, {381, 33007, 35297}, {382, 11286, 33017}, {382, 14035, 6656}, {384, 3627, 33229}, {384, 33229, 8363}, {546, 3552, 33249}, {1003, 7887, 33191}, {1003, 33228, 7807}, {3146, 7770, 19695}, {3146, 32986, 66396}, {3363, 8703, 2}, {3529, 32979, 11285}, {3543, 14033, 7841}, {3552, 14066, 546}, {3830, 11159, 2}, {3832, 33239, 33233}, {3845, 66391, 2}, {5066, 27088, 2}, {5077, 62040, 66390}, {6658, 14042, 5}, {7747, 32819, 7762}, {7770, 66396, 32986}, {7819, 62026, 33019}, {7841, 14033, 6661}, {7866, 62023, 33279}, {7933, 14032, 19697}, {8352, 11159, 35954}, {8352, 66319, 2}, {8353, 8370, 2}, {8360, 66321, 14036}, {8361, 12102, 14062}, {8362, 62041, 33256}, {8369, 15687, 14041}, {11159, 52942, 8352}, {11286, 33017, 6656}, {11287, 15684, 33192}, {11288, 14269, 33006}, {11317, 66387, 2}, {12101, 66393, 37350}, {14031, 33279, 7866}, {14034, 33019, 7819}, {14035, 33017, 11286}, {14041, 19686, 8369}, {14068, 33193, 33016}, {14068, 33280, 3}, {16044, 19696, 550}, {19687, 33228, 1003}, {32456, 43457, 37647}, {32954, 62008, 32996}, {32971, 33703, 33234}, {32981, 33191, 1003}, {32986, 66396, 19695}, {32995, 33254, 3526}, {32999, 33214, 3}, {33002, 33268, 3530}, {33003, 33252, 3}, {33005, 33208, 5054}, {33006, 33187, 11288}, {33008, 66398, 15681}, {33013, 33265, 549}, {33016, 33193, 3}, {33016, 33280, 33193}, {33018, 33257, 140}, {33024, 33276, 632}, {33272, 62042, 66397}, {33699, 66392, 8597}, {37350, 66393, 2}, {44543, 66395, 376}, {66318, 66394, 2}
X(66409) lies on these lines: {2, 3}, {76, 63940}, {141, 62203}, {148, 53489}, {524, 14537}, {538, 7745}, {543, 9300}, {597, 11648}, {598, 11055}, {599, 44678}, {671, 62900}, {2548, 8716}, {2996, 43136}, {3055, 32456}, {3564, 22486}, {3734, 53418}, {3793, 7737}, {3933, 65630}, {3972, 43291}, {4027, 61600}, {5182, 6321}, {5254, 63957}, {5305, 12150}, {5306, 18546}, {5475, 6390}, {6781, 58446}, {7603, 32459}, {7615, 19661}, {7620, 63006}, {7747, 7767}, {7757, 32819}, {7788, 59780}, {7789, 39590}, {7804, 53419}, {7817, 63543}, {8556, 47102}, {9605, 32826}, {11054, 12156}, {11163, 51123}, {11164, 12040}, {11168, 47101}, {11185, 14614}, {11544, 30139}, {12154, 35693}, {12155, 35697}, {13669, 49261}, {13789, 49262}, {15271, 43618}, {15484, 32815}, {17503, 60215}, {18362, 20112}, {18800, 39593}, {21849, 55005}, {32892, 50992}, {37671, 63945}, {39601, 44381}, {40727, 63034}, {41748, 63923}, {43457, 44377}, {44562, 63548}, {45103, 60213}, {46951, 63950}, {47286, 63038}, {47287, 63018}, {49794, 49795}, {60201, 60281}
X(66409) = midpoint of X(i) and X(j) for these {i,j}: {7747, 9466}, {7757, 32819}, {8370, 11361}
X(66409) = reflection of X(i) in X(j) for these {i,j}: {7767, 9466}, {8353, 8358}, {8354, 2}, {8356, 8367}, {63548, 44562}
X(66409) = complement of X(8353)
X(66409) = anticomplement of X(8358)
X(66409) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3830, 66392}, {2, 3845, 37350}, {2, 8352, 66394}, {2, 8353, 8358}, {2, 8354, 8359}, {2, 8597, 66349}, {2, 8598, 12100}, {2, 11159, 66391}, {2, 11317, 3845}, {2, 14030, 35954}, {2, 15682, 5077}, {2, 52942, 66388}, {2, 66319, 66393}, {2, 66328, 8598}, {2, 66387, 8703}, {2, 66389, 35955}, {2, 66391, 27088}, {2, 66392, 66335}, {4, 11286, 33184}, {148, 53489, 63633}, {381, 14033, 8369}, {382, 32971, 8362}, {384, 546, 8361}, {384, 33228, 8368}, {546, 8368, 33228}, {1003, 33016, 5}, {3363, 11159, 27088}, {3363, 66391, 2}, {3526, 33239, 33227}, {3627, 7770, 8357}, {3839, 14039, 11318}, {3861, 19697, 5025}, {5066, 66393, 2}, {6656, 14042, 3853}, {6658, 32992, 548}, {6661, 14041, 8360}, {7737, 64093, 3793}, {7770, 14068, 3627}, {7807, 33018, 3850}, {8353, 8358, 8354}, {8360, 14893, 14041}, {8364, 12102, 33229}, {8368, 33228, 8361}, {8369, 14033, 66321}, {11285, 33280, 15704}, {11286, 33184, 7819}, {12101, 66394, 8352}, {14034, 33018, 7807}, {14035, 33016, 1003}, {14066, 33229, 12102}, {14269, 33237, 16041}, {16044, 19687, 140}, {16921, 33250, 3530}, {19686, 33013, 35297}, {32962, 33235, 632}, {32991, 33239, 3526}, {32995, 33233, 5}, {33007, 44543, 549}, {33008, 66395, 15686}, {33013, 35297, 547}, {33185, 61988, 14063}, {33242, 61970, 32972}, {33291, 66327, 2}, {35955, 66389, 19710}, {37350, 66318, 2}, {52942, 66388, 33699}, {62013, 66347, 33019}
X(66410) lies on these lines: {2, 3}, {83, 63957}, {538, 7921}, {598, 7837}, {3314, 63956}, {5346, 12150}, {5965, 22486}, {7753, 11055}, {7812, 14711}, {7823, 9466}, {8556, 14712}, {11057, 55730}, {11185, 63038}, {12154, 42520}, {12155, 42521}, {14537, 63942}, {16986, 62203}, {17503, 62891}, {20088, 63954}, {31276, 63941}, {51122, 63018}
X(66410) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 33264, 8358}, {3363, 66319, 2}, {3843, 19689, 5025}, {5066, 35954, 2}, {5076, 7770, 19690}, {13586, 32983, 16921}, {14033, 33013, 33246}, {14034, 16044, 7907}, {14035, 32983, 13586}, {14042, 32971, 7876}, {16044, 19693, 1656}, {19686, 44543, 33274}
X(66411) lies on these lines: {2, 3}, {39, 63947}, {148, 8556}, {538, 7904}, {543, 55730}, {2896, 8716}, {5346, 7864}, {7757, 7830}, {7790, 46893}, {7802, 44562}, {7837, 52691}, {7921, 63941}, {9300, 14976}, {11055, 55164}, {11057, 63028}, {14711, 40344}, {14907, 63038}, {19569, 63101}, {31168, 34504}, {32480, 37671}, {50991, 59548}
X(66411) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 8354, 7833}, {2, 9855, 14030}, {3522, 7791, 7948}, {7791, 33275, 7892}, {7876, 33260, 33268}, {7876, 33268, 14038}, {7924, 33008, 33274}, {8353, 8356, 8358}, {8353, 8358, 2}, {8354, 8356, 2}, {8354, 8358, 8353}, {8366, 11287, 66336}, {11287, 14093, 8366}, {14093, 66336, 33246}, {16043, 33267, 14034}, {16897, 33244, 14040}, {19689, 33260, 15696}, {19693, 62131, 33257}, {32965, 32986, 33273}, {32986, 33273, 5025}, {33215, 33263, 14041}, {33247, 33258, 14042}, {62104, 66342, 3552}
X(66412) lies on these lines: {2, 3}, {141, 63956}, {597, 18546}, {598, 37671}, {3934, 63941}, {5182, 51732}, {6329, 32457}, {7736, 51122}, {7737, 8556}, {7745, 7826}, {7753, 14711}, {7804, 43291}, {7808, 63957}, {8667, 18907}, {8716, 31406}, {9300, 52229}, {9766, 59780}, {10352, 61600}, {11185, 63633}, {12150, 59635}, {14535, 43448}, {14537, 63945}, {14614, 64093}, {15271, 47102}, {18841, 63536}, {22486, 34380}, {40727, 63006}, {46893, 58446}, {53489, 63038}, {55005, 58470}
X(66412) = midpoint of X(i) and X(j) for these {i,j}: {7745, 9466}, {8359, 11361}
X(66412) = reflection of X(8358) in X(2)
X(66412) = complement of X(8354)
X(66412) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3363, 5066}, {2, 3845, 66394}, {2, 5066, 8355}, {2, 8352, 66335}, {2, 8353, 8359}, {2, 11159, 8703}, {2, 11317, 66392}, {2, 11361, 8353}, {2, 27088, 11812}, {2, 66319, 27088}, {2, 66391, 12100}, {2, 66394, 66334}, {5, 11286, 8368}, {546, 7770, 8364}, {3850, 33213, 33228}, {3851, 33198, 33186}, {3856, 66344, 5025}, {7770, 33016, 33184}, {7819, 16044, 3850}, {7819, 33228, 33213}, {8358, 8367, 2}, {8368, 11286, 19697}, {8369, 44543, 547}, {11286, 32983, 5}, {11317, 66392, 12101}, {32954, 32991, 5}, {32971, 32983, 11286}, {33016, 33184, 546}
X(66413) lies on these lines: {2, 3}, {6, 19570}, {76, 7753}, {83, 5309}, {115, 7875}, {148, 11174}, {193, 32874}, {194, 9300}, {316, 7865}, {532, 25167}, {533, 25157}, {538, 63028}, {597, 39141}, {598, 754}, {626, 47005}, {671, 10352}, {1506, 7891}, {2548, 7906}, {2896, 65630}, {3096, 39590}, {3314, 5475}, {3329, 7739}, {3589, 63543}, {3734, 7777}, {3815, 59634}, {3934, 7811}, {3972, 17004}, {4027, 11632}, {4366, 10056}, {5024, 20094}, {5182, 39515}, {5306, 7787}, {5395, 32834}, {5640, 55005}, {6034, 42534}, {6645, 10072}, {6694, 16631}, {6695, 16630}, {6704, 7918}, {7603, 7835}, {7745, 7893}, {7747, 7904}, {7750, 19569}, {7752, 7880}, {7766, 53489}, {7773, 46226}, {7774, 32836}, {7779, 15484}, {7785, 7788}, {7790, 39563}, {7802, 31239}, {7804, 7806}, {7808, 7864}, {7812, 9466}, {7827, 18546}, {7828, 18362}, {7831, 62203}, {7834, 15031}, {7839, 63024}, {7846, 39565}, {7858, 17130}, {7878, 63924}, {7883, 63956}, {7898, 53418}, {7919, 18424}, {7925, 31415}, {7932, 63534}, {7934, 43457}, {8591, 42849}, {8667, 34604}, {10333, 10358}, {10583, 13881}, {14639, 38317}, {14712, 15271}, {14762, 52691}, {16984, 43620}, {17008, 32885}, {17129, 46951}, {26752, 49719}, {31404, 32837}, {31407, 32824}, {41135, 47352}, {47286, 62994}, {52713, 63017}, {63038, 63955}
X(66413) = reflection of X(60653) in X(5054)
X(66413) = orthocentroidal-circle-inverse of X(7924)
X(66413) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 7924}, {2, 376, 7824}, {2, 381, 5025}, {2, 384, 33246}, {2, 439, 15721}, {2, 549, 33015}, {2, 1003, 33274}, {2, 3543, 7791}, {2, 3552, 549}, {2, 3839, 33251}, {2, 5071, 32967}, {2, 6661, 7892}, {2, 7924, 7876}, {2, 7933, 66326}, {2, 8370, 11361}, {2, 11286, 14036}, {2, 11361, 7833}, {2, 14031, 33266}, {2, 14033, 13586}, {2, 14035, 376}, {2, 14037, 33224}, {2, 14063, 33223}, {2, 14068, 33263}, {2, 15677, 17684}, {2, 15683, 32990}, {2, 15692, 33001}, {2, 15721, 33003}, {2, 16044, 381}, {2, 16898, 66323}, {2, 16914, 15670}, {2, 19686, 3}, {2, 31156, 33047}, {2, 32962, 5071}, {2, 32964, 15702}, {2, 32979, 3543}, {2, 32981, 15692}, {2, 32983, 33013}, {2, 32991, 61936}, {2, 33002, 547}, {2, 33006, 14046}, {2, 33007, 33273}, {2, 33009, 61895}, {2, 33016, 14041}, {2, 33030, 44217}, {2, 33187, 3524}, {2, 33193, 33215}, {2, 33204, 61865}, {2, 33206, 61859}, {2, 33223, 7948}, {2, 33224, 33245}, {2, 33246, 7907}, {2, 33251, 66324}, {2, 33259, 15694}, {2, 33263, 16043}, {2, 33264, 8359}, {2, 33266, 631}, {2, 61912, 32998}, {2, 61927, 32988}, {2, 61936, 32961}, {2, 61944, 32972}, {2, 61972, 33200}, {2, 61985, 32974}, {2, 62005, 33025}, {2, 66317, 33220}, {5, 6661, 2}, {76, 7753, 7837}, {115, 60855, 7875}, {376, 14035, 66328}, {376, 32968, 2}, {376, 66328, 33257}, {381, 7770, 2}, {384, 16921, 7907}, {384, 16922, 16925}, {384, 16923, 32973}, {384, 16924, 16921}, {547, 7807, 2}, {547, 66318, 7807}, {549, 32992, 2}, {549, 66319, 3552}, {2548, 17128, 7906}, {3090, 14037, 33245}, {3090, 33224, 2}, {3091, 16898, 7901}, {3524, 14033, 33187}, {3524, 33187, 13586}, {3552, 32992, 33015}, {3839, 33251, 14041}, {3934, 14537, 7811}, {5025, 7770, 16895}, {5055, 11286, 33220}, {5055, 33220, 2}, {5071, 14001, 2}, {6175, 17541, 2}, {6656, 33018, 14062}, {6658, 11285, 33275}, {7745, 31276, 7893}, {7753, 7837, 7921}, {7770, 16044, 5025}, {7791, 32979, 14042}, {7811, 14537, 7823}, {7819, 32966, 14065}, {7824, 14035, 33257}, {7824, 66328, 376}, {7866, 32993, 5025}, {7887, 19689, 14067}, {7901, 66323, 2}, {7924, 60651, 7833}, {8356, 8367, 2}, {8362, 15687, 66349}, {8363, 66340, 2}, {8367, 37345, 32958}, {11286, 33220, 66317}, {11286, 44543, 2}, {14001, 32962, 32967}, {14030, 33274, 1003}, {14031, 33261, 631}, {14032, 33015, 3552}, {14035, 32968, 7824}, {14041, 66324, 33251}, {14044, 16897, 32974}, {14063, 16045, 7948}, {14068, 16043, 33256}, {14068, 33263, 15682}, {14893, 66335, 33229}, {15682, 16043, 33263}, {15682, 33263, 33256}, {15687, 66349, 33019}, {15702, 32975, 2}, {15703, 33233, 2}, {16045, 33223, 2}, {16045, 41099, 33223}, {16921, 33246, 2}, {16922, 32987, 16921}, {16924, 16925, 32987}, {16924, 32971, 384}, {16925, 32987, 16922}, {19686, 33020, 2}, {19687, 33004, 33268}, {19689, 33024, 7887}, {32961, 33198, 14043}, {32970, 61895, 2}, {32973, 32999, 16923}, {32977, 61888, 2}, {32981, 33001, 33276}, {32990, 33280, 33267}, {32991, 33198, 32961}, {32992, 66319, 549}, {33016, 33251, 3839}, {33033, 50202, 2}, {33181, 61912, 2}, {33198, 61936, 2}, {33220, 44543, 5055}, {33220, 66317, 14036}, {33221, 61964, 33290}, {33223, 41099, 14063}, {33261, 33266, 2}, {46951, 63093, 17129}, {47005, 48913, 626}, {53489, 64093, 7766}
X(66414) lies on these lines: {2, 3}, {39, 7811}, {99, 16986}, {141, 59634}, {147, 52771}, {148, 15271}, {183, 19570}, {187, 7875}, {194, 37671}, {316, 15482}, {385, 7739}, {532, 3107}, {533, 3106}, {538, 10335}, {574, 3314}, {597, 59232}, {599, 59236}, {620, 7937}, {754, 55164}, {1078, 5309}, {1384, 63020}, {1506, 7910}, {2896, 5013}, {2996, 32893}, {3096, 7880}, {3329, 14907}, {3785, 7839}, {3815, 7898}, {4027, 14830}, {4045, 7771}, {4995, 26561}, {5023, 10583}, {5024, 7779}, {5206, 7859}, {5298, 26590}, {5306, 7793}, {6034, 39652}, {6292, 7782}, {6683, 7802}, {6781, 60855}, {7738, 17129}, {7745, 19569}, {7749, 7918}, {7750, 7921}, {7753, 7786}, {7757, 7810}, {7760, 63952}, {7761, 7777}, {7763, 7928}, {7764, 7936}, {7768, 53096}, {7769, 7935}, {7780, 39593}, {7783, 7800}, {7790, 17004}, {7796, 31652}, {7801, 31168}, {7812, 44562}, {7815, 7847}, {7832, 15515}, {7834, 43459}, {7835, 8589}, {7836, 15815}, {7846, 15513}, {7860, 9698}, {7868, 9878}, {7872, 18362}, {7885, 31401}, {7900, 31406}, {7911, 31455}, {7941, 31400}, {7947, 32837}, {7998, 55005}, {9229, 57822}, {9863, 13334}, {9939, 41624}, {10333, 37479}, {10351, 12054}, {11174, 14712}, {12150, 47101}, {13571, 22332}, {16984, 21843}, {16990, 32836}, {20065, 63024}, {21358, 52695}, {24726, 25362}, {26801, 49719}, {31276, 63548}, {31859, 63044}, {32152, 61132}, {32885, 43448}, {39141, 51737}, {54393, 61104}, {55085, 63935}, {58446, 63543}, {63101, 63941}
X(66414) = midpoint of X(3524) and X(57633)
X(66414) = reflection of X(60654) in X(3524)
X(66414) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3, 33246}, {2, 376, 384}, {2, 381, 16921}, {2, 549, 7907}, {2, 3543, 16924}, {2, 3552, 6661}, {2, 5071, 16922}, {2, 6175, 33045}, {2, 6655, 381}, {2, 6661, 16895}, {2, 7791, 7924}, {2, 7833, 11361}, {2, 7924, 5025}, {2, 8356, 7833}, {2, 10304, 33255}, {2, 13586, 14036}, {2, 14001, 66323}, {2, 14063, 5071}, {2, 15677, 16916}, {2, 15683, 32971}, {2, 15692, 16925}, {2, 15702, 16923}, {2, 15721, 33000}, {2, 17565, 44217}, {2, 19686, 7770}, {2, 31156, 16918}, {2, 32963, 61895}, {2, 32964, 33224}, {2, 32965, 376}, {2, 32966, 547}, {2, 32980, 61912}, {2, 32982, 61936}, {2, 32986, 14041}, {2, 33004, 549}, {2, 33008, 13586}, {2, 33012, 15702}, {2, 33017, 33013}, {2, 33023, 3543}, {2, 33063, 15670}, {2, 33188, 61859}, {2, 33190, 14046}, {2, 33192, 32983}, {2, 33207, 14033}, {2, 33208, 14039}, {2, 33210, 33006}, {2, 33215, 33273}, {2, 33223, 7901}, {2, 33224, 14043}, {2, 33246, 7892}, {2, 33255, 66322}, {2, 33260, 19686}, {2, 33263, 4}, {2, 33264, 8370}, {2, 33265, 11286}, {2, 33266, 14001}, {2, 33270, 61888}, {2, 33272, 33016}, {2, 33273, 33274}, {2, 33278, 3545}, {2, 33823, 6175}, {2, 44651, 41231}, {2, 50410, 16900}, {2, 61778, 33205}, {2, 61806, 32989}, {2, 61936, 32999}, {2, 61985, 32987}, {2, 62063, 32973}, {2, 62081, 33201}, {2, 66336, 7866}, {2, 66337, 33219}, {2, 66369, 16950}, {3, 7876, 7892}, {3, 33021, 7876}, {3, 55008, 60651}, {39, 7811, 7837}, {39, 7904, 7893}, {39, 40344, 7811}, {376, 16043, 2}, {381, 11285, 2}, {384, 32965, 33275}, {384, 33275, 33268}, {549, 6656, 2}, {574, 7831, 3314}, {574, 7865, 7799}, {631, 33223, 2}, {2896, 5013, 7906}, {3096, 37512, 7891}, {3534, 7770, 19686}, {3534, 19686, 33257}, {3545, 32986, 33278}, {3545, 33278, 14041}, {3552, 8362, 16895}, {3552, 16895, 14038}, {4045, 7771, 7806}, {5025, 7824, 33015}, {5054, 11287, 33219}, {5054, 33219, 2}, {5071, 32978, 2}, {6655, 11285, 16921}, {6655, 16921, 14062}, {6656, 7907, 14065}, {6656, 33004, 7907}, {6661, 8362, 2}, {6661, 8703, 3552}, {7753, 7830, 11057}, {7753, 11057, 7823}, {7770, 33257, 14032}, {7770, 33260, 33257}, {7786, 7830, 7823}, {7786, 11057, 7753}, {7791, 7824, 5025}, {7791, 32961, 33025}, {7791, 32990, 7824}, {7791, 33001, 32974}, {7799, 7831, 7865}, {7799, 7865, 3314}, {7807, 66326, 2}, {7811, 7837, 7893}, {7811, 40344, 7904}, {7824, 7924, 2}, {7824, 32967, 33001}, {7833, 33246, 60651}, {7837, 7904, 7811}, {7876, 33246, 2}, {7887, 15694, 2}, {7901, 66338, 33223}, {7948, 16925, 14067}, {8354, 8370, 33264}, {8354, 33264, 7833}, {8356, 8359, 2}, {8356, 8370, 8354}, {8358, 8359, 8356}, {8359, 37345, 16043}, {8362, 8703, 6661}, {10124, 33249, 2}, {10304, 33255, 13586}, {11286, 35955, 33265}, {11287, 33219, 66337}, {12100, 66326, 7807}, {13586, 66322, 33255}, {14001, 19708, 33266}, {14033, 33207, 9855}, {14035, 33226, 33267}, {14063, 32978, 16922}, {14064, 15702, 2}, {14064, 33012, 16923}, {15670, 17670, 2}, {15690, 66321, 33250}, {15692, 33202, 2}, {15698, 32956, 33224}, {15698, 33224, 32964}, {15721, 33180, 2}, {16043, 32965, 384}, {16045, 33244, 384}, {16897, 33276, 14001}, {16897, 66323, 2}, {16924, 33023, 33256}, {16924, 33256, 14066}, {16925, 33202, 7948}, {19686, 33260, 3534}, {19708, 33266, 33276}, {32956, 32964, 14043}, {32956, 33224, 2}, {32957, 33247, 14068}, {32960, 33226, 14035}, {32962, 33238, 14044}, {32965, 37345, 7833}, {32967, 32974, 5025}, {32968, 32997, 14042}, {32969, 61859, 2}, {32971, 33253, 19696}, {32974, 33001, 32967}, {32976, 61865, 2}, {33008, 33255, 10304}, {33016, 33272, 8597}, {33044, 50727, 2}, {33199, 61846, 2}, {33216, 33230, 2}, {33246, 55008, 11361}, {33255, 66322, 14036}, {33258, 33263, 2}, {33259, 66336, 2}
X(66415) lies on these lines: {2, 3}, {6, 63955}, {32, 13468}, {69, 15484}, {76, 41624}, {83, 5305}, {115, 3589}, {141, 5475}, {183, 3793}, {187, 58446}, {230, 7804}, {316, 31168}, {385, 53489}, {524, 5052}, {538, 9300}, {543, 2023}, {574, 15491}, {597, 5034}, {598, 7811}, {620, 3055}, {671, 62894}, {754, 3934}, {1384, 34229}, {1506, 7789}, {1975, 31406}, {1992, 46951}, {2548, 3933}, {2882, 61676}, {3329, 47286}, {3564, 7697}, {3614, 30104}, {3618, 14535}, {3619, 32827}, {3629, 17131}, {3631, 7845}, {3734, 3815}, {3820, 20172}, {3972, 37688}, {4045, 53419}, {5008, 50774}, {5024, 32815}, {5031, 20582}, {5182, 11632}, {5254, 7808}, {5355, 6329}, {5544, 32463}, {5943, 55005}, {6033, 18358}, {6292, 39590}, {6337, 31467}, {6683, 63548}, {6704, 7861}, {7173, 30103}, {7603, 7820}, {7610, 19661}, {7615, 47352}, {7694, 10516}, {7737, 15271}, {7739, 34505}, {7747, 31239}, {7757, 52229}, {7761, 53418}, {7762, 31276}, {7772, 63923}, {7778, 31415}, {7781, 9606}, {7786, 32819}, {7792, 43291}, {7800, 44678}, {7810, 14537}, {7812, 37671}, {7815, 47101}, {7834, 63534}, {7835, 37647}, {7853, 34573}, {7859, 15031}, {7865, 63956}, {7880, 22110}, {7889, 39565}, {7904, 14976}, {7913, 18424}, {8584, 41748}, {8716, 42849}, {9698, 59546}, {11163, 32833}, {11168, 42535}, {11174, 11185}, {12150, 22329}, {13877, 49253}, {13930, 49252}, {14929, 16990}, {15171, 27020}, {15174, 30135}, {16137, 30139}, {18842, 32893}, {18990, 26959}, {20112, 48310}, {21309, 37667}, {22253, 37665}, {22682, 29181}, {22712, 34733}, {24273, 53484}, {24512, 50185}, {26687, 31419}, {29438, 49745}, {30111, 39544}, {30435, 32828}, {30886, 37691}, {31455, 59545}, {32837, 63025}, {32898, 39142}, {39141, 51732}, {40727, 59373}, {41134, 63647}, {47617, 63543}, {50280, 51143}, {51258, 52758}
X(66415) = midpoint of X(i) and X(j) for these {i,j}: {2, 8370}, {76, 41624}, {7753, 9466}, {7810, 14537}, {7812, 37671}, {8356, 11361}
X(66415) = reflection of X(i) in X(j) for these {i,j}: {2, 8367}, {7833, 8358}, {8354, 8359}, {8359, 2}
X(66415) = complement of X(8356)
X(66415) = orthocentroidal-circle-inverse of X(11287)
X(66415) = X(9069)-Ceva conjugate of X(523)
X(66415) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 11287}, {2, 381, 33184}, {2, 384, 35297}, {2, 1003, 549}, {2, 3091, 33285}, {2, 3363, 37350}, {2, 3545, 11318}, {2, 3839, 33190}, {2, 3845, 66335}, {2, 6661, 8368}, {2, 11286, 8369}, {2, 11287, 8362}, {2, 11361, 8356}, {2, 14033, 3}, {2, 14035, 33008}, {2, 14036, 7807}, {2, 14039, 11288}, {2, 14041, 6656}, {2, 16044, 14041}, {2, 16924, 44543}, {2, 19686, 33273}, {2, 32971, 14033}, {2, 32979, 33272}, {2, 32983, 381}, {2, 32984, 33240}, {2, 32985, 5054}, {2, 33006, 33219}, {2, 33008, 11285}, {2, 33013, 33228}, {2, 33016, 7841}, {2, 33184, 66326}, {2, 33216, 15694}, {2, 33228, 8360}, {2, 33265, 7824}, {2, 33272, 16043}, {2, 33285, 7866}, {2, 35297, 140}, {2, 44543, 5}, {2, 66319, 12100}, {3, 14033, 66391}, {4, 8362, 8357}, {4, 11287, 66392}, {5, 7770, 7819}, {5, 7819, 8361}, {5, 33185, 7887}, {5, 33186, 32961}, {83, 59635, 5305}, {140, 66393, 35297}, {183, 18907, 3793}, {381, 32983, 3363}, {381, 33184, 37350}, {384, 32992, 140}, {384, 33020, 32992}, {384, 35297, 66393}, {546, 66394, 14041}, {547, 8368, 2}, {549, 1003, 27088}, {1992, 46951, 63954}, {3090, 33198, 32954}, {3091, 16045, 7866}, {3329, 47286, 63633}, {3363, 33184, 381}, {3628, 19697, 7807}, {3734, 3815, 6390}, {3850, 8364, 5025}, {3861, 66347, 33229}, {3934, 7745, 7767}, {5055, 33237, 2}, {5066, 8360, 33228}, {5070, 33242, 32970}, {6656, 14041, 66394}, {6656, 16044, 546}, {7603, 7820, 44377}, {7770, 7887, 16898}, {7770, 16924, 5}, {7770, 32962, 33185}, {7770, 44543, 2}, {7807, 16921, 3628}, {7824, 19687, 548}, {7841, 33016, 3845}, {7876, 33018, 33229}, {7876, 33229, 66347}, {7887, 16898, 33185}, {7887, 32962, 5}, {7892, 33002, 33249}, {8355, 66340, 33213}, {8356, 8370, 11361}, {8362, 66392, 11287}, {8363, 16895, 66344}, {8367, 8370, 8359}, {8369, 11286, 66318}, {8598, 33273, 34200}, {11159, 11287, 14532}, {11174, 11185, 15048}, {11285, 14035, 550}, {11285, 66387, 33008}, {11286, 11288, 14039}, {11287, 66392, 8357}, {11288, 14039, 8369}, {11317, 33017, 15687}, {11737, 33213, 8355}, {14001, 32987, 1656}, {14031, 33001, 33235}, {14033, 32968, 2}, {14034, 33004, 33250}, {14035, 33008, 66387}, {14036, 16921, 2}, {14037, 32999, 33233}, {14042, 19695, 62026}, {14042, 33021, 19695}, {14064, 32991, 3851}, {14068, 33234, 62036}, {16043, 32979, 382}, {16045, 33285, 2}, {16895, 32966, 8363}, {16898, 16924, 32962}, {16898, 32962, 7887}, {16898, 33185, 7819}, {16918, 33033, 50205}, {16924, 33269, 7770}, {19686, 33273, 8598}, {19709, 33240, 32984}, {27088, 66321, 1003}, {31693, 31694, 5066}, {32815, 63041, 5024}, {32961, 33217, 33186}, {32968, 32971, 3}, {32973, 32975, 3526}, {32978, 32981, 3}, {32980, 33221, 33241}, {32992, 35297, 2}, {32999, 33233, 55856}, {33001, 33235, 15712}, {33002, 33249, 35018}, {33004, 33250, 33923}, {33008, 66387, 550}, {33013, 33228, 5066}, {33018, 33229, 3861}, {33183, 61914, 32958}, {33193, 35955, 15686}, {33197, 61899, 2}, {33207, 66395, 19710}, {33213, 66340, 2}, {33231, 61895, 2}, {33241, 61953, 32980}, {33263, 52942, 66396}, {35948, 35949, 54993}, {37170, 37171, 61936}, {37348, 44543, 3363}, {37350, 66326, 33184}, {37351, 37352, 547}, {37665, 52713, 22253}, {52942, 66396, 35404}
X(66416) lies on these lines: {2, 3}, {76, 9300}, {83, 5306}, {99, 15491}, {141, 7809}, {183, 53489}, {230, 60855}, {373, 55005}, {538, 14762}, {597, 12151}, {598, 63941}, {1506, 7880}, {2548, 7788}, {3055, 7835}, {3058, 27020}, {3096, 48913}, {3329, 19570}, {3589, 7884}, {3631, 7926}, {3734, 59634}, {3815, 7799}, {3934, 7753}, {3972, 58446}, {4045, 39563}, {5024, 47287}, {5309, 7808}, {5434, 26959}, {5475, 7865}, {6683, 32819}, {6704, 39565}, {7735, 32885}, {7736, 32836}, {7739, 11174}, {7745, 7811}, {7747, 40344}, {7750, 14537}, {7752, 47005}, {7754, 46951}, {7790, 63543}, {7804, 37688}, {7810, 63943}, {7812, 63944}, {7820, 37647}, {7831, 53418}, {7834, 18362}, {7837, 31276}, {7859, 63534}, {7868, 31415}, {7875, 43291}, {7881, 31404}, {7904, 19569}, {7919, 51126}, {7934, 34573}, {9166, 48310}, {9466, 41624}, {9698, 32820}, {10352, 11632}, {11842, 61618}, {12150, 13468}, {14535, 16989}, {14651, 38110}, {15484, 16990}, {17128, 31406}, {26590, 65140}, {27091, 49732}, {29438, 49744}, {31859, 63041}, {32828, 63006}, {32874, 37665}, {37678, 48848}, {38317, 39663}, {39593, 63924}, {55085, 63923}
X(66416) = midpoint of X(3839) and X(60654)
X(66416) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 376, 11285}, {2, 381, 6656}, {2, 384, 549}, {2, 547, 33249}, {2, 3091, 33223}, {2, 3543, 16043}, {2, 3545, 33219}, {2, 5025, 66326}, {2, 5071, 7887}, {2, 6175, 17670}, {2, 6661, 7807}, {2, 7770, 6661}, {2, 7907, 10124}, {2, 7924, 8362}, {2, 8370, 8356}, {2, 11286, 35297}, {2, 11361, 8359}, {2, 15692, 32978}, {2, 16044, 7924}, {2, 16895, 66340}, {2, 16916, 15670}, {2, 16918, 50202}, {2, 16921, 547}, {2, 16922, 61885}, {2, 16923, 61869}, {2, 16924, 381}, {2, 16925, 15694}, {2, 16950, 44210}, {2, 19686, 7824}, {2, 32971, 376}, {2, 32973, 15702}, {2, 32983, 7841}, {2, 32987, 5071}, {2, 32989, 61859}, {2, 32993, 66336}, {2, 32999, 15703}, {2, 33000, 15723}, {2, 33005, 11318}, {2, 33013, 33184}, {2, 33016, 11287}, {2, 33037, 50727}, {2, 33198, 33224}, {2, 33201, 15721}, {2, 33205, 61846}, {2, 33219, 66339}, {2, 33224, 33233}, {2, 33246, 140}, {2, 33255, 5054}, {2, 33266, 33001}, {2, 41231, 40884}, {2, 44543, 33228}, {2, 61912, 32969}, {2, 61927, 33199}, {2, 61936, 14064}, {2, 61944, 33180}, {2, 61985, 33202}, {2, 66323, 33185}, {2, 66336, 16897}, {140, 66318, 33246}, {376, 32957, 2}, {547, 7819, 2}, {3545, 33219, 33228}, {3845, 7924, 33229}, {3845, 8362, 7924}, {3934, 7753, 37671}, {5054, 11286, 33255}, {5054, 33255, 35297}, {5066, 66326, 5025}, {5071, 16045, 2}, {6661, 32992, 2}, {7753, 37671, 7762}, {7770, 32968, 32992}, {7770, 32992, 7807}, {7770, 33233, 33198}, {7819, 16921, 33249}, {7824, 19686, 8703}, {7887, 16045, 66342}, {7924, 16044, 3845}, {8353, 8359, 8356}, {8353, 8370, 11361}, {8359, 11361, 8353}, {8361, 66340, 2}, {8362, 16044, 33229}, {8370, 33249, 37345}, {8703, 19686, 33250}, {10109, 66340, 8361}, {11285, 32971, 19687}, {11286, 35297, 35954}, {11287, 14269, 33278}, {11287, 33016, 8352}, {12100, 66321, 3552}, {14069, 61895, 2}, {14269, 33278, 8352}, {15703, 32954, 2}, {16045, 32987, 7887}, {16895, 33002, 8361}, {16898, 33261, 1656}, {32957, 32971, 11285}, {32959, 61884, 2}, {32960, 32979, 33234}, {32967, 66323, 2}, {32975, 33198, 33233}, {32975, 33224, 2}, {33001, 33266, 15693}, {33016, 33278, 14269}, {33189, 61888, 2}, {33219, 44543, 3545}, {33228, 66339, 33219}, {46951, 63024, 7754}
X(66417) lies on these lines: {2, 3}, {39, 37671}, {141, 7799}, {183, 7739}, {230, 7884}, {316, 15491}, {325, 7865}, {524, 13331}, {574, 59634}, {597, 12212}, {754, 15810}, {1078, 5306}, {2896, 31406}, {3054, 7919}, {3055, 7934}, {3058, 26959}, {3582, 26590}, {3584, 26561}, {3589, 7771}, {3785, 63024}, {3793, 62994}, {3815, 7809}, {4045, 37688}, {5013, 32833}, {5024, 16990}, {5309, 7815}, {5434, 27020}, {5650, 55005}, {6292, 7880}, {6390, 16986}, {6683, 7750}, {6704, 15513}, {7738, 46951}, {7745, 11057}, {7762, 7786}, {7767, 7837}, {7768, 9606}, {7772, 63952}, {7788, 7800}, {7789, 47005}, {7790, 58446}, {7810, 41624}, {7827, 13468}, {7830, 14537}, {7835, 34573}, {7853, 37647}, {7869, 31457}, {7879, 31400}, {7881, 32837}, {7937, 44377}, {9605, 63093}, {10352, 14830}, {11168, 14568}, {11648, 59635}, {14907, 53489}, {14929, 63018}, {15048, 19570}, {15271, 47286}, {15602, 35022}, {17030, 49732}, {21445, 38110}, {26613, 48310}, {31239, 32819}, {31360, 57822}, {31450, 32821}, {31652, 32820}, {31859, 32836}, {37686, 48848}, {50652, 64802}, {55085, 63928}, {55164, 63941}, {63028, 63940}
X(66417) = midpoint of X(3545) and X(60653)
X(66417) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3, 6661}, {2, 376, 7770}, {2, 381, 32992}, {2, 549, 7807}, {2, 3523, 33224}, {2, 3524, 33220}, {2, 3543, 32968}, {2, 5025, 547}, {2, 7791, 381}, {2, 7824, 549}, {2, 7876, 66326}, {2, 7892, 66340}, {2, 7924, 5}, {2, 8356, 8370}, {2, 8359, 8356}, {2, 11287, 33228}, {2, 11361, 8367}, {2, 15677, 17541}, {2, 15692, 14001}, {2, 15702, 33233}, {2, 15721, 32970}, {2, 17684, 15670}, {2, 31107, 53843}, {2, 32961, 15703}, {2, 32967, 61885}, {2, 32972, 61895}, {2, 32974, 5071}, {2, 32986, 44543}, {2, 32988, 61888}, {2, 32990, 376}, {2, 32998, 61883}, {2, 33001, 15694}, {2, 33003, 15723}, {2, 33004, 33246}, {2, 33008, 11286}, {2, 33015, 10124}, {2, 33021, 7924}, {2, 33025, 61936}, {2, 33047, 50202}, {2, 33200, 61912}, {2, 33202, 33223}, {2, 33215, 1003}, {2, 33216, 8366}, {2, 33220, 66325}, {2, 33223, 7887}, {2, 33224, 33217}, {2, 33225, 66323}, {2, 33246, 7819}, {2, 33251, 5055}, {2, 33263, 16924}, {2, 33266, 16898}, {2, 33273, 8369}, {2, 33274, 8368}, {2, 44217, 33033}, {2, 61806, 33181}, {2, 61825, 33203}, {2, 61846, 32977}, {2, 61936, 32975}, {2, 62063, 33198}, {2, 66326, 8363}, {2, 66336, 7901}, {140, 7876, 8363}, {140, 66326, 2}, {376, 7770, 66319}, {376, 32960, 2}, {376, 66319, 33250}, {381, 7791, 66349}, {381, 66349, 33229}, {547, 66335, 5025}, {549, 8362, 2}, {3524, 33220, 35297}, {3830, 33263, 19695}, {5055, 11287, 33251}, {5055, 33251, 33228}, {6683, 40344, 7753}, {7753, 40344, 7750}, {7786, 7811, 9300}, {7791, 32992, 33229}, {7807, 37345, 8370}, {7810, 44562, 41624}, {7811, 9300, 7762}, {7819, 12100, 33246}, {7824, 8362, 7807}, {7824, 16897, 33259}, {7833, 8358, 8356}, {7866, 15694, 2}, {7887, 11285, 32978}, {7887, 33202, 6656}, {8354, 8367, 11361}, {8356, 8370, 8353}, {8359, 8362, 37345}, {8361, 10124, 2}, {8362, 33185, 16897}, {10124, 66334, 8361}, {11285, 16043, 6656}, {11286, 15688, 33187}, {11286, 33008, 8598}, {15688, 33187, 8598}, {15702, 32956, 2}, {16043, 32978, 33202}, {16897, 33259, 33185}, {16923, 66345, 33186}, {16924, 33263, 3830}, {32951, 61859, 2}, {32955, 61865, 2}, {32960, 32990, 7770}, {32978, 33202, 7887}, {32978, 33223, 2}, {32986, 44543, 8352}, {32992, 66349, 381}, {33004, 33246, 12100}, {33008, 33187, 15688}, {33185, 33259, 7807}, {33260, 66328, 15686}, {34200, 66318, 3552}, {35297, 66325, 33220}
X(66418) lies on these lines: {2, 3}, {141, 7908}, {183, 63633}, {325, 31168}, {524, 10007}, {597, 5039}, {620, 34573}, {754, 6683}, {3054, 7913}, {3055, 7853}, {3329, 3793}, {3564, 40108}, {3589, 41413}, {3618, 44839}, {3815, 7818}, {4045, 43291}, {5013, 51123}, {5305, 7815}, {5309, 11168}, {5480, 52770}, {5569, 48310}, {7736, 14929}, {7739, 8556}, {7753, 15810}, {7761, 15491}, {7767, 7786}, {7798, 15598}, {7800, 9766}, {7808, 47101}, {7810, 9300}, {7811, 63101}, {7854, 9606}, {7880, 20582}, {7937, 37647}, {8584, 63952}, {8716, 59780}, {9466, 52229}, {12040, 21358}, {15048, 15271}, {15172, 26959}, {21843, 47355}, {22246, 63042}, {31239, 63548}, {40344, 63941}, {42850, 63954}, {63024, 63950}
X(66418) = midpoint of X(i) and X(j) for these {i,j}: {2, 8359}, {7767, 41624}, {7810, 9300}, {8354, 8370}, {8358, 8367}
X(66418) = reflection of X(i) in X(j) for these {i,j}: {8358, 8359}, {8367, 2}
X(66418) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 549, 8368}, {2, 3524, 33237}, {2, 7791, 44543}, {2, 7824, 35297}, {2, 8368, 66340}, {2, 11287, 5}, {2, 11318, 15699}, {2, 14041, 32992}, {2, 15708, 33197}, {2, 15721, 33231}, {2, 16043, 11287}, {2, 32990, 14033}, {2, 33004, 14036}, {2, 33008, 7770}, {2, 33021, 14041}, {2, 33184, 547}, {2, 33190, 5055}, {2, 33202, 33285}, {2, 33215, 11286}, {2, 33230, 33240}, {2, 33258, 33008}, {2, 33272, 32968}, {2, 33273, 6661}, {2, 33285, 1656}, {2, 35297, 7819}, {2, 66326, 33213}, {2, 66335, 10109}, {5, 11287, 66394}, {140, 8362, 8364}, {547, 33184, 8355}, {3363, 33017, 14893}, {3526, 32956, 33186}, {4045, 58446, 43291}, {5077, 32983, 15687}, {6661, 33273, 27088}, {7770, 33008, 66391}, {7791, 44543, 66392}, {7819, 7824, 3530}, {7866, 32978, 632}, {7876, 8361, 66346}, {8356, 8370, 33264}, {8356, 33264, 8354}, {8357, 32992, 3850}, {8362, 11285, 140}, {10124, 33213, 2}, {10997, 35297, 27088}, {11286, 33215, 8703}, {11287, 66394, 66347}, {11301, 11302, 15702}, {12108, 66344, 7807}, {16239, 66346, 8361}, {27088, 33273, 14891}, {32992, 33021, 8357}, {33008, 66391, 548}, {33211, 61837, 32970}, {44543, 66392, 546}
X(66419) lies on these lines: {2, 3}, {32, 671}, {39, 598}, {76, 3849}, {83, 54737}, {99, 7775}, {148, 7737}, {187, 47617}, {194, 543}, {316, 7801}, {385, 34505}, {524, 7823}, {576, 8593}, {597, 7864}, {599, 7929}, {627, 10808}, {628, 10809}, {736, 43688}, {754, 19569}, {1383, 31125}, {1975, 7840}, {1992, 8596}, {2482, 7752}, {2549, 62994}, {3053, 8859}, {3095, 10811}, {3329, 44526}, {3734, 7883}, {3767, 41135}, {3926, 23334}, {3934, 55164}, {3972, 7817}, {4027, 10723}, {4366, 12943}, {5023, 8860}, {5206, 7617}, {5210, 17006}, {5461, 7857}, {5475, 34504}, {6179, 63922}, {6321, 10788}, {6337, 8786}, {6645, 12953}, {6781, 34506}, {7697, 34510}, {7745, 63028}, {7746, 26613}, {7748, 7787}, {7755, 36523}, {7756, 52691}, {7757, 14537}, {7762, 20105}, {7763, 52695}, {7764, 15300}, {7769, 8176}, {7773, 11164}, {7774, 20094}, {7777, 53418}, {7779, 32815}, {7782, 39590}, {7783, 11163}, {7785, 8591}, {7793, 51224}, {7799, 63956}, {7802, 7810}, {7806, 53419}, {7811, 14976}, {7816, 7870}, {7825, 7945}, {7842, 7938}, {7843, 39785}, {7862, 64019}, {7891, 22110}, {7893, 63945}, {7928, 21358}, {7946, 63931}, {8182, 32832}, {8594, 34509}, {8595, 34508}, {9466, 11057}, {9737, 12117}, {9830, 13330}, {9993, 39809}, {10131, 18502}, {10810, 59363}, {11055, 41750}, {11177, 36998}, {11185, 14712}, {11606, 54752}, {11645, 22486}, {11648, 12150}, {12154, 16965}, {12155, 16964}, {13657, 54507}, {13777, 54503}, {14484, 54833}, {14568, 63957}, {14711, 63943}, {15098, 62295}, {15515, 55801}, {16118, 30139}, {17129, 63950}, {20065, 32826}, {22561, 52674}, {32833, 44678}, {33342, 35703}, {33343, 35702}, {35295, 61743}, {35706, 61752}, {39141, 48901}, {41133, 59545}, {41895, 62905}, {42849, 44519}, {43448, 63019}, {43620, 51238}, {46313, 52088}, {51581, 54494}, {53101, 60234}, {54476, 62932}, {55005, 62187}, {60113, 60263}, {63044, 64018}, {63101, 63548}, {63107, 63533}
X(66419) = reflection of X(i) in X(j) for these {i,j}: {2, 11361}, {194, 7812}, {7757, 14537}, {7802, 7810}, {7812, 7747}, {7833, 8370}, {9878, 671}, {9939, 76}, {11055, 41750}, {11057, 9466}, {14976, 7811}, {15683, 60651}, {32480, 598}, {33264, 2}
X(66419) = anticomplement of X(7833)
X(66419) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3146, 33192}, {2, 6658, 33007}, {2, 7841, 7933}, {2, 15683, 33207}, {2, 19690, 33230}, {2, 32993, 32984}, {2, 33007, 3552}, {2, 33013, 33002}, {2, 33014, 33274}, {2, 33018, 33013}, {2, 33019, 7841}, {2, 33192, 6655}, {2, 33193, 33265}, {2, 33210, 66337}, {2, 33244, 35287}, {2, 33260, 33215}, {2, 35287, 33259}, {2, 66320, 14039}, {2, 66398, 20}, {3, 11317, 33013}, {3, 14042, 33018}, {3, 33013, 2}, {3, 33018, 33002}, {3, 66395, 9855}, {4, 3552, 32966}, {4, 6658, 3552}, {4, 16925, 32993}, {4, 32985, 33006}, {4, 33007, 2}, {4, 33239, 32961}, {4, 33280, 6658}, {4, 35951, 5}, {5, 8598, 33274}, {5, 33257, 33014}, {5, 33274, 2}, {20, 14068, 16044}, {20, 16044, 33004}, {148, 7737, 7766}, {376, 33016, 2}, {381, 13586, 2}, {381, 66387, 13586}, {382, 384, 33019}, {382, 7841, 8597}, {382, 11159, 7841}, {384, 7841, 2}, {384, 8597, 7841}, {384, 33019, 7933}, {439, 50689, 32963}, {546, 7907, 33011}, {546, 33250, 7907}, {550, 16921, 33022}, {1003, 3830, 14041}, {1003, 14041, 2}, {3091, 33244, 33259}, {3091, 35287, 2}, {3146, 14035, 6655}, {3146, 33192, 40246}, {3524, 33005, 2}, {3529, 16924, 33260}, {3534, 44543, 33273}, {3627, 8369, 8352}, {3627, 19687, 5025}, {3830, 66328, 2}, {3839, 35927, 2}, {3843, 33235, 32967}, {3853, 7807, 14062}, {5025, 8369, 2}, {5059, 32979, 32965}, {5073, 5077, 66397}, {5073, 7770, 33256}, {5076, 7887, 14044}, {5077, 66397, 33256}, {6655, 40246, 33192}, {7770, 66397, 5077}, {7785, 8591, 34511}, {7791, 33703, 19691}, {7816, 31173, 7870}, {7823, 32819, 20081}, {7833, 8370, 2}, {7833, 11361, 8370}, {7841, 8597, 33019}, {7841, 11159, 384}, {7870, 31173, 7912}, {7892, 8360, 2}, {7901, 8366, 2}, {7924, 11286, 2}, {8352, 8369, 5025}, {8352, 19687, 8369}, {8356, 8370, 8367}, {8360, 35954, 7892}, {8365, 14065, 2}, {8597, 11159, 2}, {8598, 33274, 33014}, {9855, 11317, 2}, {9855, 14042, 33013}, {9855, 19696, 66395}, {9855, 33013, 3}, {11001, 32983, 33008}, {11111, 33031, 2}, {11185, 43618, 14712}, {11285, 17800, 33267}, {11286, 15684, 66388}, {11286, 66388, 7924}, {11287, 62040, 66396}, {11317, 33013, 33018}, {11317, 66395, 3}, {11541, 16043, 33271}, {14001, 62028, 33279}, {14030, 66392, 2}, {14031, 32974, 19689}, {14033, 15682, 33017}, {14033, 33017, 2}, {14035, 33192, 2}, {14036, 33184, 2}, {14039, 33251, 2}, {14041, 66328, 1003}, {14042, 19696, 3}, {14042, 33013, 11317}, {14042, 66395, 2}, {14046, 33220, 2}, {14063, 32981, 33225}, {14066, 33257, 5}, {14068, 66398, 2}, {15687, 66391, 33228}, {15704, 32992, 33275}, {16041, 33255, 2}, {16898, 33230, 2}, {16898, 33238, 19690}, {16924, 33215, 2}, {16925, 32984, 2}, {17578, 32981, 14063}, {19696, 33013, 9855}, {32965, 32979, 33020}, {32968, 49138, 33253}, {32971, 32997, 33021}, {32971, 49135, 32997}, {32973, 50688, 32996}, {32983, 33008, 2}, {32985, 33006, 2}, {32986, 62042, 66390}, {32990, 49140, 33209}, {32991, 50693, 33012}, {32995, 33214, 3523}, {33006, 33007, 32985}, {33007, 52942, 4}, {33009, 33252, 15717}, {33014, 35951, 3552}, {33016, 66389, 376}, {33184, 66319, 14036}, {33201, 54097, 33283}, {33228, 33246, 2}, {33228, 66391, 33246}, {33229, 35954, 8360}, {33257, 33274, 8598}, {33273, 44543, 2}, {33280, 52942, 33007}
X(66420) lies on these lines: {2, 3}, {76, 14976}, {148, 43618}, {193, 35369}, {194, 41750}, {538, 19569}, {754, 20081}, {7752, 45017}, {7753, 32480}, {7757, 32479}, {7787, 65633}, {7793, 18546}, {7823, 20105}, {7900, 44678}, {14712, 63955}, {23698, 32469}, {39141, 48904}, {41895, 60136}, {43449, 54749}, {44526, 62994}, {51224, 63957}
X(66420) = reflection of X(i) in X(j) for these {i,j}: {14976, 76}, {33264, 11361}
X(66420) = anticomplement of X(33264)
X(66420) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 19691, 33272}, {2, 33265, 33014}, {4, 33014, 33011}, {4, 33265, 2}, {4, 66389, 33265}, {20, 33018, 33022}, {382, 19696, 3552}, {382, 66387, 14041}, {549, 32994, 2}, {550, 14066, 33002}, {1003, 15684, 8597}, {1657, 14042, 33004}, {3146, 6658, 33019}, {3543, 33193, 2}, {3552, 14041, 2}, {3627, 33257, 32966}, {3830, 66395, 13586}, {3839, 33208, 2}, {5059, 14068, 33260}, {6655, 14033, 2}, {7933, 14036, 2}, {11159, 62045, 66396}, {11159, 66396, 7924}, {11286, 62046, 66397}, {11317, 15681, 33273}, {11361, 33264, 2}, {14033, 33703, 66390}, {14033, 66390, 6655}, {14035, 33272, 2}, {14035, 49135, 19691}, {14036, 66392, 7933}, {14041, 19696, 66387}, {14041, 66387, 3552}, {16044, 33008, 2}, {17578, 33244, 32993}, {19686, 33017, 2}, {19686, 40246, 33017}, {19687, 66392, 14036}, {32966, 35297, 2}, {33004, 44543, 2}, {33017, 62042, 40246}, {33190, 66317, 2}, {33225, 33285, 2}, {33235, 62023, 14044}, {33250, 62026, 14062}, {33280, 33703, 6655}, {33280, 66390, 14033}, {35948, 35949, 35951}
X(66421) lies on these lines: {2, 3}, {76, 32479}, {194, 3849}, {315, 8591}, {316, 34504}, {524, 20105}, {538, 14976}, {543, 7802}, {671, 7793}, {2482, 7912}, {2549, 34604}, {5206, 9166}, {5254, 62204}, {7617, 43459}, {7747, 52691}, {7748, 51224}, {7756, 7812}, {7757, 19569}, {7766, 44526}, {7771, 47617}, {7782, 31173}, {7784, 11164}, {7796, 15300}, {7801, 7898}, {7825, 41134}, {7842, 7870}, {7860, 39785}, {7893, 52229}, {7900, 34511}, {7941, 11165}, {8596, 9878}, {8859, 44518}, {11054, 63935}, {11055, 63943}, {11161, 52987}, {11163, 44519}, {14712, 43619}, {17005, 44541}, {19570, 47102}, {20094, 64018}, {31276, 55164}, {32006, 41136}, {35369, 63046}, {39141, 48896}, {63028, 63548}
X(66421) = reflection of X(i) in X(j) for these {i,j}: {2, 33264}, {7812, 7756}, {8596, 9878}, {9939, 7802}, {11361, 8353}, {19569, 7757}, {20081, 9939}
X(66421) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5059, 66398}, {2, 19691, 33192}, {2, 33192, 33019}, {2, 66398, 6658}, {3, 66397, 8597}, {4, 33022, 33010}, {20, 19691, 33019}, {20, 32972, 33252}, {20, 33019, 33014}, {20, 33192, 2}, {382, 33267, 33004}, {382, 35955, 33013}, {550, 8352, 33274}, {1657, 7841, 9855}, {1657, 33256, 3552}, {3146, 33209, 33260}, {3146, 33260, 33018}, {3529, 33271, 6655}, {3534, 66396, 14041}, {3543, 33207, 2}, {3552, 7841, 2}, {3627, 33275, 33002}, {5059, 32997, 6658}, {5077, 17800, 66395}, {5077, 66395, 384}, {6655, 33007, 2}, {7756, 7812, 32480}, {7833, 11361, 8359}, {7841, 9855, 3552}, {7933, 8369, 2}, {8352, 33274, 32966}, {8353, 8359, 7833}, {9855, 33256, 7841}, {11001, 33017, 33265}, {14039, 66337, 2}, {14063, 35287, 2}, {15681, 66388, 13586}, {16044, 33215, 2}, {17538, 33279, 33259}, {19686, 32986, 2}, {19689, 33230, 2}, {19695, 33257, 7933}, {19695, 62155, 33257}, {32966, 33274, 2}, {32982, 62149, 33214}, {32984, 33259, 2}, {32986, 62161, 66389}, {32986, 66389, 19686}, {32997, 66398, 2}, {33004, 33013, 2}, {33013, 33267, 35955}, {33013, 35955, 33004}, {33017, 33265, 2}, {33187, 33210, 2}, {33192, 52943, 20}, {33193, 33272, 2}, {33215, 33703, 52942}, {33215, 52942, 16044}, {33229, 62144, 33268}, {33234, 49137, 19696}, {33247, 33280, 33021}, {33247, 62171, 33280}, {33253, 33703, 16044}, {33253, 52942, 33215}, {33272, 62160, 33193}, {33278, 35927, 2}
X(66422) lies on these lines: {2, 3}, {543, 7823}, {598, 7756}, {3053, 41135}, {3849, 7893}, {5569, 15031}, {7745, 32480}, {7747, 63028}, {7754, 8596}, {7773, 52695}, {7777, 34504}, {7812, 32450}, {7814, 36521}, {7827, 65633}, {7836, 11164}, {7891, 31173}, {7906, 8591}, {7929, 59780}, {7941, 23334}, {8587, 53105}, {9939, 32819}, {10484, 53109}, {14712, 34505}, {17004, 47617}, {20081, 63945}, {33698, 62904}, {37637, 51238}
X(66422) = reflection of X(9939) in X(32819)
X(66422) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 33192, 33238}, {2, 33276, 33274}, {2, 66395, 33257}, {4, 9855, 33274}, {4, 33214, 16923}, {4, 66398, 9855}, {20, 14066, 33015}, {20, 52942, 33013}, {382, 33257, 14062}, {382, 66395, 2}, {3146, 19696, 5025}, {3146, 33007, 8597}, {3529, 14042, 33275}, {3543, 66389, 13586}, {5073, 7841, 40246}, {6658, 40246, 7841}, {8359, 33264, 7833}, {8597, 19696, 33007}, {8597, 33007, 5025}, {9855, 33274, 33268}, {11159, 49136, 66397}, {11159, 66397, 6655}, {14068, 49138, 33267}, {14068, 52943, 33215}, {15682, 33193, 14041}, {33007, 33279, 2}, {33013, 52942, 14066}, {33017, 66328, 14036}, {33192, 52944, 33703}, {33215, 49138, 52943}, {33215, 52943, 33267}, {33244, 62028, 14044}, {33256, 33280, 14034}, {33280, 49135, 33256}
X(66423) lies on these lines: {2, 3}, {543, 41750}, {754, 32819}, {1975, 44678}, {3629, 10754}, {7747, 32450}, {7753, 32479}, {7767, 14976}, {7785, 51123}, {19569, 63940}, {22329, 63957}, {33698, 60073}, {43618, 63955}, {44526, 53489}, {47101, 59635}, {53105, 62898}, {53482, 54507}, {53483, 54503}, {53491, 60195}, {54494, 60178}, {59634, 63956}
X(66423) = reflection of X(i) in X(j) for these {i,j}: {8353, 8370}, {8356, 11361}, {14976, 7767}, {41624, 7747}
X(66423) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 33235, 35297}, {2, 33243, 33008}, {2, 33265, 33276}, {2, 62042, 66396}, {4, 33250, 33249}, {4, 66387, 35297}, {381, 33193, 8598}, {382, 19687, 33229}, {382, 33280, 19687}, {1003, 3543, 8352}, {1657, 14068, 32992}, {3146, 14033, 66388}, {3363, 15686, 33273}, {3627, 6658, 7807}, {3627, 66391, 14041}, {3830, 33007, 33228}, {5073, 11287, 66390}, {5073, 14035, 19695}, {6658, 14041, 66391}, {8356, 11361, 8370}, {8362, 62047, 19691}, {8597, 19686, 33184}, {11159, 15684, 33017}, {11159, 33017, 6661}, {11286, 33192, 66349}, {11286, 62040, 33192}, {11287, 66390, 19695}, {14033, 33238, 2}, {14033, 66388, 6656}, {14035, 66390, 11287}, {14036, 33019, 66394}, {14036, 66394, 8363}, {14041, 66391, 7807}, {15640, 32986, 66397}, {15683, 32983, 35955}, {19686, 33184, 35954}, {33016, 66398, 3534}, {33184, 35404, 8597}, {33193, 52942, 381}, {35297, 66387, 33250}
X(66424) lies on these lines: {2, 3}, {194, 63945}, {325, 34504}, {524, 7802}, {543, 7750}, {597, 7847}, {2482, 7842}, {2896, 59780}, {3629, 8586}, {3849, 7756}, {3933, 8591}, {5254, 51224}, {5461, 15513}, {6329, 10485}, {6781, 7817}, {7618, 7773}, {7745, 52691}, {7747, 63101}, {7748, 22329}, {7782, 22110}, {7795, 11164}, {7797, 19661}, {7810, 32479}, {7812, 63548}, {7821, 36521}, {7823, 32480}, {7825, 41133}, {7851, 37809}, {7885, 52695}, {7936, 50991}, {8176, 15515}, {8593, 64196}, {8596, 17129}, {9939, 52229}, {11054, 63928}, {11055, 63944}, {12154, 43632}, {12155, 43633}, {14907, 34505}, {14929, 20094}, {14976, 63940}, {15048, 34604}, {15300, 32820}, {15597, 43459}, {15814, 51581}, {17006, 51238}, {32006, 53142}, {32826, 42850}, {37688, 47617}, {41895, 55823}, {43618, 53489}, {43619, 47286}, {53101, 55794}, {53105, 60220}, {53109, 62895}, {54494, 62881}
X(66424) = reflection of X(i) in X(j) for these {i,j}: {7812, 63548}, {8353, 33264}, {8356, 8353}, {8370, 7833}, {11361, 8354}, {32819, 7810}
X(66424) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3529, 66395}, {2, 33192, 33279}, {2, 33238, 7841}, {2, 66395, 19687}, {3, 33192, 8352}, {20, 7841, 8598}, {20, 19695, 7807}, {20, 33238, 33235}, {376, 66388, 33228}, {548, 33019, 33249}, {548, 37350, 33274}, {550, 33256, 33229}, {1003, 33272, 66349}, {1657, 5077, 33007}, {1657, 32997, 6656}, {3146, 33215, 11317}, {3529, 33234, 19687}, {3534, 11318, 33208}, {3534, 33017, 35297}, {5059, 33247, 7770}, {5077, 33007, 6656}, {6655, 9855, 8369}, {6655, 15704, 33250}, {6655, 33250, 8363}, {6656, 33007, 35954}, {7791, 66398, 11159}, {7833, 8370, 8356}, {7841, 8598, 7807}, {7841, 33235, 2}, {8353, 8370, 7833}, {8357, 62151, 33257}, {8361, 62136, 33268}, {8362, 62162, 19696}, {8367, 11361, 8370}, {8369, 9855, 33250}, {8369, 15704, 9855}, {8598, 19695, 7841}, {11001, 33272, 1003}, {11159, 17800, 66398}, {11286, 62158, 66389}, {11287, 15685, 33193}, {11287, 33193, 66319}, {11317, 33215, 32992}, {11318, 33208, 35297}, {15683, 32986, 66387}, {15686, 66392, 13586}, {19691, 33267, 5}, {19710, 33184, 33265}, {32954, 62142, 33214}, {32986, 66387, 6661}, {32997, 33007, 5077}, {32997, 52943, 33007}, {33007, 52943, 1657}, {33013, 40246, 3627}, {33017, 33208, 11318}, {33019, 33274, 37350}, {33192, 33243, 2}, {33207, 66390, 381}, {33209, 33271, 3}, {33234, 66395, 2}, {33243, 33279, 3}, {33260, 40246, 33013}, {33263, 66389, 11286}, {33274, 37350, 33249}, {35955, 66397, 4}
X(66425) lies on these lines: {2, 3}, {543, 7762}, {598, 63548}, {3849, 7826}, {6781, 47617}, {7747, 32479}, {7756, 63101}, {7823, 52229}, {7843, 15300}, {7910, 20582}, {12154, 42431}, {12155, 42432}, {15031, 15597}, {26613, 63534}, {34504, 62203}, {35007, 36523}, {43618, 47286}, {43619, 53489}, {53106, 60103}, {53107, 60211}, {54493, 62880}, {54646, 60198}
X(66425) = reflection of X(8353) in X(11361) Points releated to the 2nd outer-Grebe triangle: X(66426)-X(66474)
X(66425) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 33703, 66397}, {2, 66397, 19695}, {4, 66395, 8598}, {382, 33007, 8352}, {3543, 66387, 33228}, {3627, 19696, 33250}, {3830, 33193, 35297}, {3853, 33257, 33249}, {5073, 11159, 33192}, {5073, 33280, 6656}, {6658, 8597, 8369}, {6658, 62036, 33229}, {7841, 19687, 35954}, {7841, 35954, 8363}, {8352, 33007, 7807}, {8353, 8370, 8359}, {8359, 11361, 8370}, {8369, 8597, 33229}, {8369, 62036, 8597}, {11159, 33192, 6656}, {11286, 62045, 66390}, {14033, 15640, 66396}, {14033, 66396, 66349}, {33192, 33280, 11159}, {52942, 66398, 3}
This preamble and centers X(66426)-X(66474) were contributed by Ivan Pavlov on Nov 25, 2024.
On the sides of ABC, construct squares ABCbCa, BCAcAb, and CABaBc. The triangle formed by lines BaCa, AbCb, and AcBc is called here the 2nd outer-Grebe triangle.
It is homothetic to the Artzt triangle and the center of homothety is X(6811).
For more information about the 2nd outer-Grebe triangle see this Euclid thread.
Some of the properties below refer to CTR-triangles. More info on these series of triangles is available in this catalog.
X(66426) lies on these lines: {3, 54874}, {30, 66438}, {376, 55041}, {1503, 13666}, {3316, 6250}, {3564, 66432}, {5420, 14234}, {6561, 39656}, {6811, 9757}, {11257, 66434}, {12117, 66431}, {12159, 66462}, {23698, 42024}, {32421, 53141}
X(66426) = reflection of X(i) in X(j) for these {i,j}: {54874, 3}
X(66427) lies on these lines: {2, 3}, {99, 13637}, {492, 51224}, {543, 13638}, {597, 66472}, {598, 11158}, {599, 66471}, {1285, 13759}, {1992, 66430}, {3068, 53142}, {8593, 66431}, {8974, 53141}, {9741, 13639}, {11147, 33338}, {11160, 66473}, {11161, 66442}, {11165, 13644}, {12150, 12158}, {12155, 66433}, {12159, 66436}, {13757, 66429}, {13758, 37809}, {13761, 50719}, {13789, 66439}, {22486, 66434}, {49543, 66437}
X(66427) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {66428, 66438, 13637}, {66430, 66443, 1992}
X(66428) lies on these lines: {2, 38423}, {3, 40286}, {4, 45574}, {30, 45484}, {98, 485}, {99, 13637}, {376, 3068}, {590, 21843}, {597, 15484}, {637, 19103}, {1587, 11825}, {2549, 13644}, {3311, 53491}, {5210, 13846}, {6564, 66464}, {7581, 35794}, {7583, 9732}, {7585, 58804}, {7790, 61389}, {8975, 23249}, {8982, 13886}, {9540, 12124}, {13639, 66430}, {13640, 66431}, {13646, 66433}, {13650, 66432}, {13651, 62986}, {13663, 66471}, {13664, 66472}, {13665, 13910}, {13712, 13920}, {13833, 66439}, {14242, 31412}, {18512, 33878}, {19102, 32489}, {22541, 32808}, {22722, 66434}, {31411, 53487}, {32419, 44594}, {38424, 51171}, {44656, 50721}, {49620, 66437}
X(66428) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 66443, 66429}, {13637, 66427, 66438}
X(66429) lies on circumconic {{A, B, C, X(9164), X(54627)}} and on these lines: {2, 38423}, {4, 13880}, {6, 41490}, {30, 50721}, {187, 13989}, {193, 13771}, {230, 32421}, {371, 45522}, {372, 6811}, {376, 3069}, {488, 45576}, {492, 41411}, {524, 620}, {574, 32788}, {591, 1384}, {615, 5475}, {639, 12968}, {641, 6423}, {754, 44390}, {1152, 45577}, {1692, 8997}, {1992, 13769}, {2459, 48726}, {3068, 55041}, {3830, 13988}, {5062, 64691}, {5092, 35256}, {5860, 46453}, {6398, 36733}, {6560, 66464}, {6566, 53498}, {6781, 53515}, {7584, 43141}, {11008, 13650}, {11315, 45574}, {12601, 13933}, {13665, 13692}, {13757, 66427}, {13759, 66430}, {13760, 66431}, {13763, 13847}, {13765, 66433}, {13770, 66432}, {13773, 43460}, {13782, 66439}, {13783, 66471}, {13784, 66472}, {13834, 58803}, {13849, 33457}, {13935, 45552}, {13966, 43121}, {13972, 21850}, {13993, 53492}, {21843, 41491}, {22723, 66434}, {26288, 37689}, {38425, 49786}, {39387, 45515}, {39679, 48734}, {41410, 62987}, {44391, 58448}, {49621, 66437}, {50723, 53497}
X(66429) = midpoint of X(i) and X(j) for these {i,j}: {187, 44392}, {6566, 53498}, {6781, 53515}
X(66429) = reflection of X(i) in X(j) for these {i,j}: {44391, 58448}
X(66429) = pole of line {9168, 38425} with respect to the Steiner inellipse
X(66429) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 66443, 66428}, {187, 44392, 32419}
X(66430) lies on these lines: {2, 13988}, {376, 524}, {538, 66434}, {543, 66431}, {1991, 5485}, {1992, 66427}, {5503, 14229}, {5860, 11165}, {5861, 52229}, {6811, 9770}, {11148, 13798}, {13639, 66428}, {13759, 66429}, {17132, 66437}, {32421, 53141}, {66464, 66466}
X(66430) = reflection of X(i) in X(j) for these {i,j}: {5485, 1991}, {5860, 11165}, {26288, 53142}, {66471, 66472}, {66473, 66471}
X(66430) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 66473, 66471}, {524, 53142, 26288}, {524, 66471, 66473}, {1992, 66427, 66443}, {66471, 66472, 376}
X(66431) lies on these lines: {69, 74}, {531, 66433}, {543, 66430}, {671, 6230}, {2482, 33430}, {2782, 66434}, {2796, 66437}, {5071, 50721}, {5477, 66443}, {6054, 6811}, {8593, 66427}, {12117, 66426}, {13640, 66428}, {13760, 66429}, {19109, 42602}, {23234, 50719}, {23235, 66439}, {26289, 66464}
X(66431) = reflection of X(i) in X(j) for these {i,j}: {671, 6230}, {33430, 2482}, {66442, 376}
X(66431) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 542, 66442}
X(66432) lies on these lines: {376, 5860}, {487, 1131}, {524, 66439}, {3564, 66426}, {6811, 9767}, {7615, 42602}, {12150, 12158}, {13650, 66428}, {13770, 66429}, {22485, 22592}
X(66432) = reflection of X(i) in X(j) for these {i,j}: {42024, 487}
X(66433) lies on these lines: {376, 530}, {531, 66431}, {543, 1991}, {5463, 23011}, {6306, 42035}, {6811, 9762}, {12155, 66427}, {13646, 66428}, {13765, 66429}, {41620, 66443}
X(66433) = reflection of X(i) in X(j) for these {i,j}: {42035, 6306}
X(66434) lies on these lines: {39, 19063}, {76, 22727}, {262, 486}, {371, 10841}, {376, 511}, {538, 66430}, {726, 66437}, {2782, 66431}, {5052, 66443}, {5871, 22699}, {6194, 6462}, {9732, 9755}, {9738, 21445}, {10851, 11824}, {11257, 66426}, {19108, 35840}, {22486, 66427}, {22525, 44486}, {22682, 66464}, {22712, 66438}, {22722, 66428}, {22723, 66429}, {22728, 36733}, {43532, 60195}, {49326, 66442}
X(66434) = reflection of X(i) in X(j) for these {i,j}: {76, 22727}, {262, 3103}, {33434, 39}
X(66435) lies on these lines: {2, 3}, {69, 42226}, {141, 42276}, {524, 6560}, {543, 1991}, {590, 43619}, {591, 3849}, {597, 6561}, {599, 42264}, {615, 43618}, {1327, 13835}, {1328, 54628}, {1588, 8411}, {1992, 42216}, {2549, 13644}, {2782, 66431}, {3589, 42275}, {3618, 42225}, {5860, 43256}, {5861, 52229}, {6200, 13663}, {6398, 13757}, {6452, 32807}, {6564, 32479}, {6565, 13783}, {7737, 8376}, {8584, 9974}, {12123, 45862}, {12158, 20423}, {13637, 13665}, {13639, 23267}, {13669, 46264}, {13763, 13847}, {13828, 13850}, {13846, 44526}, {15048, 19054}, {15533, 32421}, {15534, 32419}, {18907, 19053}, {21356, 58803}, {22485, 22592}, {32810, 64018}, {32811, 32815}, {38072, 45545}, {41946, 50681}, {42215, 59373}, {42263, 47352}, {45544, 54131}, {54656, 60195}, {63059, 63633}
X(66435) = midpoint of X(i) and X(j) for these {i,j}: {599, 42264}, {1992, 58804}
X(66435) = reflection of X(i) in X(j) for these {i,j}: {1992, 42216}, {6561, 597}, {54131, 45544}
X(66435) = X(1991)-of-anti-Artzt
X(66435) = intersection, other than A, B, C, of circumconics {{A, B, C, X(54628), X(62957)}}, {{A, B, C, X(60224), X(62956)}}
X(66435) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {66438, 66439, 66472}
X(66436) lies on these lines: {2, 13880}, {193, 13771}, {376, 5861}, {485, 1991}, {491, 13834}, {524, 19145}, {543, 22502}, {641, 5860}, {6278, 6811}, {7775, 22484}, {10519, 41491}, {12159, 66427}, {12222, 51952}, {13651, 62986}, {14645, 55040}, {19103, 45420}, {22485, 22592}, {22642, 22645}, {26289, 53016}, {32419, 66464}, {36733, 43139}, {60224, 60270}
X(66436) = reflection of X(i) in X(j) for these {i,j}: {485, 1991}, {5860, 641}, {6278, 9768}, {9768, 35685}, {42023, 485}
X(66437) lies on these lines: {40, 376}, {551, 66438}, {726, 66434}, {2796, 66431}, {4052, 49625}, {4856, 66443}, {6811, 49554}, {17132, 66430}, {28329, 66472}, {49543, 66427}, {49620, 66428}, {49621, 66429}
X(66437) = reflection of X(i) in X(j) for these {i,j}: {4052, 49625}
X(66438) lies on these lines: {2, 13988}, {6, 12040}, {30, 66426}, {99, 13637}, {371, 9770}, {376, 13666}, {485, 543}, {486, 9771}, {491, 55164}, {524, 19145}, {551, 66437}, {590, 40727}, {597, 38426}, {1151, 63945}, {1327, 13835}, {1328, 8176}, {1504, 9167}, {1991, 8182}, {1992, 13769}, {3068, 9741}, {3849, 53130}, {5418, 7610}, {5463, 23011}, {5464, 23002}, {5861, 13701}, {6054, 6811}, {6561, 66466}, {7615, 42602}, {7619, 43255}, {8592, 33343}, {9168, 54029}, {9540, 9740}, {11147, 12159}, {11163, 61389}, {11165, 32787}, {13639, 66443}, {13663, 38425}, {13690, 13828}, {13720, 14482}, {13846, 52229}, {13847, 63647}, {15597, 43254}, {20112, 42277}, {22712, 66434}, {26289, 48778}, {26613, 45420}, {27088, 61388}, {33456, 66462}, {35822, 53142}, {41963, 63950}, {54628, 60240}
X(66438) = reflection of X(i) in X(j) for these {i,j}: {60223, 2}
X(66438) = inverse of X(13637) in Wallace hyperbola
X(66438) = X(9741)-of-3rd-tri-squares-central
X(66438) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {13637, 13669, 13662}, {13637, 66427, 66428}, {66435, 66472, 66439}
X(66439) lies on these lines: {376, 13786}, {524, 66432}, {1327, 13835}, {6811, 13801}, {8182, 42023}, {8703, 60223}, {11148, 13798}, {13782, 66429}, {13789, 66427}, {13833, 66428}, {23235, 66431}, {32479, 55040}, {47102, 66471}
X(66439) = reflection of X(i) in X(j) for these {i,j}: {60224, 13835}
X(66439) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {66435, 66472, 66438}
X(66440) lies on these lines: {1, 2}, {226, 42051}, {312, 4072}, {345, 59579}, {518, 10440}, {524, 62189}, {527, 10443}, {536, 2051}, {573, 3928}, {740, 3817}, {752, 50808}, {908, 42044}, {1682, 31165}, {2092, 50092}, {2321, 37662}, {3175, 22020}, {3452, 3950}, {3596, 20942}, {3663, 4417}, {3739, 56226}, {3752, 4035}, {3846, 4356}, {3913, 19517}, {3932, 59686}, {3936, 24177}, {3977, 63010}, {3986, 5743}, {4058, 44417}, {4082, 32848}, {4098, 5233}, {4361, 58463}, {4656, 5741}, {4851, 6692}, {4856, 37642}, {4869, 8056}, {5085, 5847}, {5226, 17151}, {5542, 42053}, {5717, 19276}, {5814, 19279}, {5846, 59584}, {8715, 16435}, {9535, 64143}, {9568, 24391}, {9569, 19542}, {10445, 17132}, {15828, 56078}, {17314, 30827}, {17355, 63089}, {17490, 63589}, {18134, 24175}, {18228, 59585}, {21060, 42054}, {24386, 28581}, {27739, 50068}, {28313, 42047}, {31034, 62240}, {33071, 63969}, {34454, 34899}, {38408, 61661}, {42034, 50100}, {51090, 59547}, {59583, 60942}
X(66440) = midpoint of X(i) and X(j) for these {i,j}: {28609, 42049}
X(66440) = reflection of X(i) in X(j) for these {i,j}: {4052, 66465}
X(66440) = inverse of X(52907) in excircles-radical circle
X(66440) = pole of line {2976, 3667} with respect to the excircles-radical circle
X(66440) = intersection, other than A, B, C, of circumconics {{A, B, C, X(145), X(2051)}}, {{A, B, C, X(3009), X(7660)}}, {{A, B, C, X(4052), X(17751)}}, {{A, B, C, X(19998), X(37865)}}, {{A, B, C, X(54355), X(54553)}}
X(66440) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3752, 4035, 21255}, {28609, 42049, 17132}
X(66441) lies on these lines: {1, 2}, {37, 50088}, {75, 545}, {86, 50131}, {192, 50099}, {319, 17313}, {320, 31139}, {335, 50075}, {391, 17116}, {524, 27483}, {527, 17488}, {536, 16590}, {594, 17338}, {740, 31331}, {752, 24452}, {894, 37654}, {903, 4643}, {966, 17117}, {1213, 17396}, {1278, 50090}, {1573, 4850}, {1654, 17274}, {2796, 31310}, {3219, 21373}, {3618, 28635}, {3654, 6996}, {3662, 17271}, {3686, 4699}, {3696, 49746}, {3739, 17363}, {3758, 10022}, {3797, 50086}, {3829, 26019}, {3948, 4479}, {3997, 14997}, {4034, 17300}, {4044, 27772}, {4359, 33934}, {4360, 31332}, {4361, 17248}, {4370, 4665}, {4371, 17319}, {4395, 17250}, {4399, 4687}, {4402, 17324}, {4416, 4772}, {4421, 16367}, {4422, 62228}, {4478, 17241}, {4659, 17487}, {4664, 28309}, {4688, 4715}, {4690, 31138}, {4698, 50123}, {4725, 31306}, {4733, 48810}, {4739, 17347}, {4740, 28301}, {4751, 17362}, {4755, 50085}, {4785, 14433}, {4921, 26643}, {4967, 17349}, {4969, 41847}, {4971, 31322}, {5224, 17382}, {5233, 27747}, {5278, 11352}, {5564, 17242}, {5839, 63110}, {5936, 51171}, {6651, 50126}, {7263, 17328}, {7384, 31162}, {7406, 34632}, {10436, 63052}, {11194, 11329}, {14621, 55955}, {14839, 63961}, {17119, 17256}, {17120, 63086}, {17133, 27480}, {17227, 64712}, {17234, 50081}, {17251, 37756}, {17260, 42696}, {17261, 32087}, {17270, 48633}, {17277, 17281}, {17278, 32025}, {17301, 31144}, {17317, 62224}, {17337, 48630}, {17341, 48636}, {17343, 24199}, {17348, 17368}, {17360, 34824}, {17377, 31238}, {17381, 28633}, {17392, 50077}, {17755, 50096}, {17950, 36595}, {18146, 59212}, {19281, 19723}, {20132, 50283}, {20137, 49497}, {20138, 32941}, {20142, 50300}, {20152, 49680}, {20154, 48805}, {20533, 51102}, {24589, 64133}, {25057, 51583}, {25590, 62989}, {28329, 31319}, {28534, 60927}, {28562, 31329}, {28610, 50735}, {30044, 34282}, {30583, 47762}, {31151, 50308}, {31178, 50309}, {31347, 31352}, {32029, 47358}, {34627, 36698}, {35957, 64463}, {36588, 39721}, {40480, 48639}, {41842, 64299}, {41845, 50836}, {42026, 52755}, {43527, 65022}, {49725, 50289}, {50166, 50220}, {51381, 64906}, {59772, 63051}
X(66441) = midpoint of X(i) and X(j) for these {i,j}: {75, 66451}
X(66441) = reflection of X(i) in X(j) for these {i,j}: {17333, 66451}, {66451, 17330}
X(66441) = pole of line {1213, 17342} with respect to the Kiepert hyperbola
X(66441) = pole of line {514, 48183} with respect to the Steiner inellipse
X(66441) = pole of line {86, 4795} with respect to the Wallace hyperbola
X(66441) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(75), X(17310)}}, {{A, B, C, X(551), X(14621)}}, {{A, B, C, X(3241), X(39721)}}, {{A, B, C, X(3624), X(43527)}}, {{A, B, C, X(3661), X(55955)}}, {{A, B, C, X(3679), X(27483)}}, {{A, B, C, X(16826), X(39704)}}, {{A, B, C, X(17316), X(36588)}}, {{A, B, C, X(19875), X(57725)}}, {{A, B, C, X(29624), X(65081)}}, {{A, B, C, X(29834), X(57721)}}, {{A, B, C, X(36871), X(50016)}}, {{A, B, C, X(49769), X(60276)}}
X(66441) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3679, 3661}, {2, 4393, 551}, {75, 66451, 545}, {545, 17330, 66451}, {545, 66451, 17333}, {966, 17117, 17247}, {3679, 4384, 2}, {3686, 4699, 17364}, {3686, 50116, 50074}, {3739, 50082, 17378}, {4688, 17346, 50128}, {4699, 50074, 50116}, {4751, 17362, 17391}, {4751, 50132, 49738}, {4755, 50085, 50121}, {5564, 17259, 17242}, {17277, 28634, 48628}, {17277, 48628, 17339}, {17278, 32025, 48634}, {17330, 17333, 17331}, {17362, 49738, 50132}, {17378, 50082, 17363}, {31139, 66454, 320}, {49731, 50098, 4664}
X(66442) lies on these lines: {4, 6568}, {69, 74}, {98, 485}, {115, 23249}, {1503, 58033}, {2794, 5870}, {6230, 34473}, {6560, 10722}, {7694, 45510}, {10991, 33431}, {11161, 66427}, {12188, 36733}, {12256, 13989}, {13773, 43460}, {35820, 54877}, {48905, 49367}, {49326, 66434}
X(66442) = reflection of X(i) in X(j) for these {i,j}: {10722, 50719}, {33431, 10991}, {66431, 376}
X(66442) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 542, 66431}
X(66443) lies on circumconic {{A, B, C, X(52187), X(54627)}} and on these lines: {2, 38423}, {6, 376}, {20, 45515}, {30, 26456}, {115, 23249}, {187, 44594}, {372, 37665}, {597, 66471}, {599, 66473}, {1384, 19054}, {1587, 6423}, {1588, 5062}, {1992, 66427}, {2549, 43256}, {3068, 26288}, {3069, 15484}, {3146, 19102}, {3815, 13935}, {4856, 66437}, {5052, 66434}, {5477, 66431}, {5860, 13644}, {6221, 26462}, {6460, 15048}, {6560, 61322}, {7585, 41411}, {7586, 13770}, {7736, 8376}, {8974, 32421}, {9112, 33440}, {9113, 33442}, {9540, 12968}, {13639, 66438}, {15640, 19099}, {18907, 19053}, {19108, 26289}, {20583, 66472}, {21309, 26463}, {23253, 49221}, {23263, 62203}, {32787, 46453}, {35822, 37689}, {35944, 44502}, {35945, 44656}, {36733, 42216}, {41410, 63015}, {41620, 66433}, {43407, 44526}, {43511, 45512}, {44596, 62220}, {61389, 63058}
X(66443) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {66428, 66429, 2}
X(66444) lies on these lines: {2, 2415}, {10, 11359}, {40, 376}, {57, 3950}, {99, 17222}, {142, 59583}, {190, 45204}, {345, 21255}, {527, 10443}, {538, 62189}, {543, 34899}, {545, 66465}, {551, 3743}, {726, 10164}, {1018, 59173}, {2796, 6054}, {2802, 61671}, {3175, 22003}, {3218, 50292}, {3241, 6553}, {3752, 59579}, {3817, 28526}, {4061, 36263}, {4847, 32845}, {4856, 62820}, {5435, 55998}, {5437, 59585}, {5463, 49595}, {5464, 49594}, {5542, 59547}, {5745, 53594}, {6692, 17262}, {7757, 50114}, {9741, 51121}, {11019, 32934}, {15828, 37679}, {16833, 28638}, {24068, 59675}, {24386, 28530}, {28562, 55177}, {28582, 59584}, {28610, 64700}, {29573, 65384}, {29594, 31168}, {29671, 30424}, {31191, 44416}, {33116, 63589}, {42045, 62240}, {47039, 51122}, {47040, 51071}, {49517, 59593}, {49730, 52229}, {50109, 61661}, {52907, 59599}, {59572, 59732}
X(66444) = midpoint of X(i) and X(j) for these {i,j}: {3928, 42049}
X(66444) = reflection of X(i) in X(j) for these {i,j}: {4052, 2}
X(66444) = inverse of X(41629) in Wallace hyperbola
X(66444) = pole of line {28296, 59969} with respect to the orthoptic circle of the Steiner Inellipse
X(66444) = pole of line {3667, 25020} with respect to the Steiner inellipse
X(66444) = pole of line {17132, 41629} with respect to the Wallace hyperbola
X(66444) = pole of line {8, 21949} with respect to the dual conic of Yff parabola
X(66444) = X(4052)-of-Gemini-107
X(66444) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(17132), X(41629)}}, {{A, B, C, X(17951), X(60172)}}, {{A, B, C, X(18743), X(28655)}}, {{A, B, C, X(39980), X(47636)}}
X(66444) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17132, 4052}, {2, 8055, 28655}, {2, 8056, 66468}, {3928, 42049, 519}, {28655, 63621, 2}, {56078, 62300, 24175}
X(66445) lies on these lines: {2, 6}, {5, 49914}, {13, 41114}, {14, 36366}, {61, 532}, {99, 22488}, {376, 5865}, {381, 5873}, {383, 576}, {398, 22113}, {473, 648}, {530, 41101}, {531, 41107}, {533, 7760}, {598, 22487}, {616, 11485}, {618, 36386}, {621, 42974}, {622, 33626}, {628, 11302}, {633, 37352}, {634, 11297}, {671, 6778}, {1080, 63722}, {1351, 6770}, {1353, 6773}, {3105, 7757}, {3412, 50859}, {3534, 51484}, {3543, 5869}, {3758, 40713}, {3830, 33625}, {3845, 36319}, {5055, 51487}, {5097, 5613}, {5459, 42506}, {5463, 42532}, {5978, 44498}, {6179, 16962}, {7812, 22495}, {7858, 16268}, {8014, 23895}, {8594, 35692}, {8703, 51485}, {11055, 12155}, {11087, 11144}, {12154, 12156}, {13102, 61600}, {14537, 35693}, {14568, 22496}, {16267, 34508}, {22114, 42156}, {22491, 41119}, {22492, 41113}, {22573, 47866}, {22579, 36362}, {22580, 36383}, {22666, 51208}, {22855, 36368}, {33464, 42581}, {33613, 49961}, {33622, 42633}, {33623, 33699}, {33627, 49945}, {35696, 41745}, {35931, 42511}, {36396, 49955}, {36397, 49957}, {37171, 42999}, {40714, 62231}, {42533, 45880}, {42632, 51224}, {42976, 45879}, {46709, 66328}, {49855, 49911}
X(66445) = reflection of X(i) in X(j) for these {i,j}: {633, 37352}, {11299, 61}, {11303, 61719}
X(66445) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 39636}
X(66445) = pole of line {2501, 14446} with respect to the polar circle
X(66445) = pole of line {99, 39636} with respect to the Kiepert parabola
X(66445) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(396), X(8738)}}, {{A, B, C, X(524), X(12816)}}, {{A, B, C, X(18842), X(63102)}}
X(66445) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 5862}, {2, 3180, 5859}, {2, 5859, 299}, {2, 5862, 298}, {6, 5859, 2}, {396, 3181, 302}, {396, 3629, 3181}, {533, 61719, 11303}
X(66446) lies on these lines: {2, 6}, {5, 49911}, {13, 36368}, {14, 41115}, {62, 533}, {99, 22487}, {376, 5864}, {381, 5872}, {383, 63722}, {397, 22114}, {472, 648}, {530, 41108}, {531, 41100}, {532, 7760}, {576, 1080}, {598, 22488}, {617, 11486}, {619, 36388}, {621, 33627}, {622, 42975}, {627, 11301}, {633, 11298}, {634, 37351}, {671, 6777}, {1351, 6773}, {1353, 6770}, {3104, 7757}, {3411, 50860}, {3534, 51485}, {3543, 5868}, {3758, 40714}, {3830, 33623}, {3845, 36344}, {5055, 51486}, {5097, 5617}, {5460, 42507}, {5464, 42533}, {5979, 44497}, {6179, 16963}, {7812, 22496}, {7858, 16267}, {8015, 23896}, {8595, 35696}, {8703, 51484}, {11055, 12154}, {11082, 11143}, {12155, 12156}, {13103, 61600}, {14537, 35697}, {14568, 22495}, {16268, 34509}, {22113, 42153}, {22491, 41112}, {22492, 41120}, {22574, 47865}, {22579, 36382}, {22580, 36363}, {22665, 51209}, {22901, 36366}, {33465, 42580}, {33612, 49962}, {33624, 42634}, {33625, 33699}, {33626, 49946}, {34508, 61719}, {35692, 41746}, {35932, 42510}, {36400, 49956}, {36401, 49958}, {37170, 42998}, {40713, 62231}, {42532, 45879}, {42631, 51224}, {42977, 45880}, {46708, 66328}, {49858, 49914}
X(66446) = reflection of X(i) in X(j) for these {i,j}: {634, 37351}, {11300, 62}
X(66446) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 39637}
X(66446) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 39637}
X(66446) = pole of line {2501, 14447} with respect to the polar circle
X(66446) = pole of line {99, 39637} with respect to the Kiepert parabola
X(66446) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(395), X(8737)}}, {{A, B, C, X(524), X(12817)}}, {{A, B, C, X(18842), X(63103)}}
X(66446) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 5863}, {2, 3181, 5858}, {2, 5858, 298}, {2, 5863, 299}, {6, 5858, 2}, {62, 533, 11300}, {395, 3180, 303}, {395, 3629, 3180}
X(66447) lies on these lines: {2, 59535}, {6, 66448}, {76, 11287}, {99, 1384}, {376, 538}, {524, 39882}, {543, 14458}, {698, 13468}, {732, 33976}, {2549, 14711}, {3102, 55041}, {3103, 55040}, {5463, 23009}, {5464, 23000}, {5503, 60095}, {5969, 6054}, {7757, 8369}, {7837, 8592}, {8354, 37671}, {8667, 55178}, {8782, 32451}, {9466, 33230}, {9741, 63006}, {12203, 63954}
X(66447) = reflection of X(i) in X(j) for these {i,j}: {11055, 51122}, {60180, 2}
X(66447) = inverse of X(14614) in Wallace hyperbola
X(66447) = pole of line {14614, 41413} with respect to the Wallace hyperbola
X(66448) lies on these lines: {2, 60181}, {6, 66447}, {83, 1975}, {99, 12156}, {371, 6274}, {372, 6275}, {376, 754}, {524, 55178}, {538, 32467}, {543, 14492}, {732, 5085}, {3734, 14482}, {5182, 8290}, {5463, 23010}, {5464, 23001}, {5503, 8592}, {6054, 9765}, {6308, 46893}, {7788, 11165}, {7799, 8359}, {8716, 35701}, {9741, 63024}, {9766, 48905}, {11179, 64243}
X(66448) = midpoint of X(i) and X(j) for these {i,j}: {8716, 35701}
X(66448) = reflection of X(i) in X(j) for these {i,j}: {60181, 2}
X(66448) = inverse of X(41624) in Wallace hyperbola
X(66448) = pole of line {41622, 41624} with respect to the Wallace hyperbola
X(66449) lies on these lines: {2, 6}, {5, 648}, {30, 30258}, {53, 17035}, {216, 27377}, {297, 5158}, {381, 6530}, {401, 6749}, {671, 60121}, {1494, 42330}, {1513, 8541}, {1990, 52247}, {3087, 20477}, {3091, 15274}, {3164, 6748}, {3545, 41371}, {3759, 53821}, {3839, 42831}, {5007, 26205}, {7399, 7760}, {7750, 26216}, {7769, 36841}, {7772, 26155}, {7812, 34664}, {9744, 10602}, {14570, 32819}, {14912, 20792}, {15526, 52289}, {15851, 17907}, {15860, 23583}, {16813, 62603}, {17813, 64711}, {32002, 42459}, {34836, 56297}, {36794, 41005}, {37188, 62213}, {40065, 40680}, {42353, 60693}, {43461, 47277}, {44096, 44212}, {44285, 51224}, {52281, 64781}, {52766, 58875}, {62595, 64923}
X(66449) = midpoint of X(i) and X(j) for these {i,j}: {27377, 35937}
X(66449) = reflection of X(i) in X(j) for these {i,j}: {35937, 216}
X(66449) = X(i)-complementary conjugate of X(j) for these {i, j}: {54732, 2887}
X(66449) = pole of line {2501, 42731} with respect to the polar circle
X(66449) = pole of line {6467, 14461} with respect to the Jerabek hyperbola
X(66449) = pole of line {2, 54732} with respect to the Kiepert hyperbola
X(66449) = intersection, other than A, B, C, of circumconics {{A, B, C, X(524), X(60121)}}, {{A, B, C, X(11064), X(42330)}}
X(66449) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {216, 64783, 35937}
X(66450) lies on these lines: {2, 6}, {21, 6172}, {27, 31164}, {29, 648}, {78, 3758}, {190, 34772}, {284, 527}, {528, 5327}, {662, 1434}, {671, 54526}, {1043, 50107}, {1817, 2094}, {2966, 53193}, {4234, 50127}, {4248, 11520}, {4273, 17301}, {5703, 54280}, {6173, 16054}, {6734, 62231}, {14543, 34195}, {14616, 32040}, {14953, 60984}, {16053, 60986}, {17188, 31146}, {30728, 42724}, {34393, 65276}, {34619, 62843}, {50129, 56019}, {54966, 65835}, {56948, 60951}, {58786, 60971}, {60014, 65271}
X(66450) = midpoint of X(i) and X(j) for these {i,j}: {35935, 56020}
X(66450) = reflection of X(i) in X(j) for these {i,j}: {8822, 35935}, {35935, 284}
X(66450) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 28291}
X(66450) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 28291}
X(66450) = pole of line {2501, 30574} with respect to the polar circle
X(66450) = pole of line {99, 28291} with respect to the Kiepert parabola
X(66450) = pole of line {2, 51121} with respect to the Wallace hyperbola
X(66450) = pole of line {3265, 53334} with respect to the dual conic of Orthic inconic
X(66450) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(12848)}}, {{A, B, C, X(69), X(1121)}}, {{A, B, C, X(183), X(60014)}}, {{A, B, C, X(325), X(53193)}}, {{A, B, C, X(394), X(60047)}}, {{A, B, C, X(524), X(28292)}}, {{A, B, C, X(4585), X(32040)}}, {{A, B, C, X(5232), X(58002)}}, {{A, B, C, X(14548), X(39704)}}, {{A, B, C, X(14552), X(55956)}}, {{A, B, C, X(34393), X(37668)}}, {{A, B, C, X(37658), X(47375)}}, {{A, B, C, X(41570), X(51384)}}
X(66450) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {284, 56020, 8822}, {35935, 56020, 527}
X(66451) lies on these lines: {1, 31332}, {2, 44}, {8, 66452}, {9, 17228}, {10, 24452}, {37, 50074}, {45, 17310}, {75, 545}, {190, 3679}, {192, 50082}, {239, 24441}, {329, 41846}, {333, 17196}, {391, 17258}, {513, 31992}, {519, 751}, {524, 51488}, {903, 4384}, {1150, 27776}, {1386, 1992}, {1654, 17281}, {1743, 17400}, {1762, 31153}, {2550, 5080}, {3241, 62231}, {3644, 3686}, {3661, 4370}, {3707, 4389}, {3731, 17386}, {3759, 17257}, {3789, 24482}, {3929, 64907}, {3973, 17307}, {4416, 4687}, {4422, 48639}, {4690, 4908}, {4704, 50123}, {4751, 17347}, {4755, 50133}, {4762, 55954}, {4764, 50099}, {4859, 17274}, {4945, 65052}, {5224, 50115}, {5296, 63110}, {10005, 50107}, {10022, 29576}, {15492, 17238}, {15533, 29575}, {15534, 29580}, {16468, 25055}, {16814, 17240}, {16815, 31139}, {16885, 17252}, {17241, 17344}, {17247, 50112}, {17249, 17349}, {17253, 17370}, {17260, 17313}, {17261, 50087}, {17272, 17341}, {17294, 36911}, {17315, 63001}, {17321, 63086}, {17337, 48637}, {17338, 48638}, {17339, 48640}, {17363, 50113}, {17364, 49738}, {17389, 49737}, {17393, 50131}, {17394, 63052}, {19875, 24342}, {20917, 39996}, {20973, 62796}, {21356, 61023}, {22165, 29582}, {24697, 50287}, {25728, 32025}, {28301, 49748}, {28309, 29617}, {28606, 39974}, {28840, 62634}, {31225, 41801}, {36522, 64712}, {36872, 65054}, {38098, 50118}, {41312, 63049}, {42030, 42044}, {42034, 49724}, {48829, 60731}, {49499, 50305}, {49731, 50128}, {50297, 51055}
X(66451) = midpoint of X(i) and X(j) for these {i,j}: {2, 17488}, {17333, 66441}
X(66451) = reflection of X(i) in X(j) for these {i,j}: {2, 16590}, {75, 66441}, {24452, 10}, {39704, 2}, {66441, 17330}
X(66451) = pole of line {4777, 47775} with respect to the Steiner circumellipse
X(66451) = pole of line {4777, 47778} with respect to the Steiner inellipse
X(66451) = pole of line {5235, 25057} with respect to the Wallace hyperbola
X(66451) = pole of line {551, 24452} with respect to the dual conic of Yff parabola
X(66451) = intersection, other than A, B, C, of circumconics {{A, B, C, X(80), X(4795)}}, {{A, B, C, X(89), X(751)}}, {{A, B, C, X(519), X(29895)}}, {{A, B, C, X(3679), X(4715)}}, {{A, B, C, X(4945), X(26738)}}, {{A, B, C, X(5235), X(25057)}}, {{A, B, C, X(28658), X(41416)}}, {{A, B, C, X(31138), X(57725)}}, {{A, B, C, X(35170), X(39704)}}, {{A, B, C, X(52901), X(65054)}}, {{A, B, C, X(63233), X(65052)}}
X(66451) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 16590, 41848}, {2, 17488, 4715}, {2, 20072, 4795}, {2, 24616, 63233}, {2, 25057, 30608}, {2, 30564, 25057}, {2, 31056, 27751}, {2, 4741, 31138}, {2, 4795, 41847}, {9, 17271, 17342}, {37, 50074, 50132}, {45, 66454, 17310}, {545, 17330, 66441}, {1654, 17336, 48630}, {4643, 17335, 17227}, {4664, 17346, 50077}, {16590, 17488, 39704}, {16885, 17252, 17371}, {17256, 54280, 3758}, {17257, 37654, 17320}, {17271, 17342, 17228}, {17277, 17329, 48629}, {17310, 66454, 17360}, {17320, 37654, 3759}, {17328, 17342, 17271}, {17330, 17332, 17333}, {17330, 17333, 75}, {17331, 17333, 17330}, {17333, 66441, 545}, {17346, 50093, 4664}, {17347, 63978, 4751}, {39704, 41848, 2}, {50088, 50090, 3644}
X(66452) lies on circumconic {{A, B, C, X(3241), X(28301)}} and on these lines: {2, 1266}, {7, 545}, {8, 66451}, {190, 3241}, {192, 31349}, {346, 50090}, {390, 519}, {522, 31992}, {536, 61023}, {903, 29627}, {3161, 17352}, {3616, 31332}, {3950, 60957}, {4346, 41141}, {4353, 25055}, {4370, 5222}, {4419, 4908}, {4460, 25728}, {4488, 17378}, {4664, 15569}, {4733, 9791}, {4762, 63246}, {4901, 50093}, {5226, 36595}, {6707, 7229}, {17132, 59374}, {17160, 31722}, {17256, 51068}, {17261, 32087}, {17310, 20073}, {17316, 17487}, {17318, 36522}, {17333, 32099}, {17488, 50079}, {18228, 36916}, {18230, 55998}, {20090, 25269}, {24441, 29611}, {28503, 52653}, {28580, 59413}, {29573, 60971}, {31153, 64143}, {37654, 60983}, {37681, 50108}, {41140, 62706}, {59585, 60996}
X(66452) = reflection of X(i) in X(j) for these {i,j}: {2, 36911}, {36588, 2}
X(66452) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 28301, 36588}, {28301, 36911, 2}, {62706, 66456, 41140}
X(66453) lies on these lines: {2, 6603}, {85, 64462}, {527, 31169}, {664, 6173}, {1121, 40719}, {2550, 3241}, {3872, 17297}, {3900, 64149}, {4762, 39704}, {10004, 17079}, {23058, 55082}, {32007, 42050}, {38948, 60876}
X(66453) = reflection of X(i) in X(j) for these {i,j}: {55954, 2}
X(66454) lies on these lines: {2, 6}, {8, 545}, {9, 50081}, {10, 4795}, {45, 17310}, {144, 4478}, {190, 17488}, {319, 17262}, {320, 31139}, {519, 4643}, {527, 4669}, {536, 4677}, {742, 50075}, {903, 4741}, {3241, 4364}, {3679, 4363}, {3686, 7232}, {3707, 41141}, {3828, 4667}, {3830, 48938}, {4034, 17345}, {4042, 31134}, {4346, 4405}, {4357, 50131}, {4361, 17274}, {4370, 17269}, {4384, 31138}, {4389, 40891}, {4416, 4445}, {4644, 10022}, {4665, 64015}, {4670, 19875}, {4708, 25055}, {4713, 31136}, {4725, 51093}, {4748, 38314}, {4908, 17294}, {4945, 31172}, {5220, 64906}, {5839, 17323}, {5845, 50949}, {6172, 36522}, {6646, 50088}, {11354, 63939}, {16590, 17374}, {16666, 25503}, {16675, 17373}, {16677, 17386}, {16777, 17328}, {16884, 17252}, {16885, 17287}, {17230, 41138}, {17250, 62212}, {17253, 17320}, {17254, 50077}, {17255, 17362}, {17257, 50113}, {17272, 17382}, {17275, 50116}, {17276, 50099}, {17290, 41140}, {17293, 50115}, {17299, 50090}, {17309, 17332}, {17311, 17331}, {17325, 62231}, {17387, 41848}, {17677, 63933}, {20072, 61321}, {24699, 50095}, {25057, 27757}, {27949, 43287}, {28301, 34641}, {28333, 51072}, {29069, 50798}, {29615, 49721}, {29617, 49747}, {33082, 48829}, {35578, 51068}, {41312, 51071}, {48817, 63944}, {49742, 50079}, {50076, 50093}, {50275, 64912}, {50276, 57006}, {50950, 51034}, {51678, 63938}, {64802, 66307}
X(66454) = midpoint of X(i) and X(j) for these {i,j}: {4419, 31145}
X(66454) = reflection of X(i) in X(j) for these {i,j}: {3241, 4364}, {3679, 4690}, {4363, 3679}, {4644, 10022}, {4667, 3828}, {4795, 10}, {10022, 64712}, {17318, 24441}, {24441, 4643}
X(66454) = pole of line {1125, 31139} with respect to the dual conic of Yff parabola
X(66454) = X(4795)-of-outer-Garcia
X(66454) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {319, 17333, 50087}, {320, 66441, 31139}, {519, 24441, 17318}, {519, 4643, 24441}, {3679, 4715, 4363}, {4419, 31145, 28309}, {4644, 53620, 10022}, {4690, 4715, 3679}, {10022, 64712, 53620}, {17254, 50077, 50120}, {17310, 66451, 45}, {17332, 32099, 17309}, {17333, 50087, 17262}, {17344, 50082, 17274}, {17360, 66451, 17310}
X(66455) lies on circumconic {{A, B, C, X(83), X(13377)}} and on these lines: {2, 32}, {6, 63942}, {30, 22165}, {69, 543}, {76, 8597}, {141, 63945}, {183, 7617}, {325, 7622}, {376, 14981}, {524, 7761}, {538, 5077}, {574, 7840}, {599, 3734}, {620, 8182}, {625, 7610}, {671, 7898}, {1007, 7619}, {1992, 4045}, {2482, 7908}, {2549, 11160}, {2794, 54173}, {3314, 51224}, {3363, 63956}, {3631, 59780}, {3830, 6248}, {3933, 34504}, {5206, 7870}, {5254, 63953}, {5306, 63948}, {5461, 63029}, {5569, 22110}, {6054, 8722}, {6656, 63937}, {6722, 23055}, {7615, 15589}, {7618, 37668}, {7737, 21356}, {7739, 63064}, {7750, 7801}, {7751, 7841}, {7759, 8359}, {7764, 33215}, {7767, 7825}, {7768, 7781}, {7772, 7936}, {7779, 52691}, {7780, 11318}, {7784, 7817}, {7788, 35955}, {7790, 44367}, {7794, 33007}, {7804, 21358}, {7826, 7872}, {7827, 7893}, {7829, 33230}, {7830, 7916}, {7831, 63028}, {7842, 34505}, {7844, 22329}, {7845, 11163}, {7849, 33237}, {7854, 8370}, {7860, 33013}, {7863, 33208}, {7866, 63930}, {7869, 8369}, {7888, 33274}, {7897, 8588}, {7902, 14023}, {7903, 7904}, {7917, 15515}, {7919, 62204}, {7924, 41748}, {7934, 8859}, {7946, 53096}, {8176, 11168}, {8352, 18546}, {8355, 13468}, {8357, 63934}, {8360, 63928}, {8366, 35007}, {8584, 63940}, {9466, 11317}, {9737, 34510}, {9766, 40344}, {9855, 11057}, {10513, 14148}, {11007, 38239}, {11054, 11648}, {11286, 50993}, {11287, 15534}, {14033, 50994}, {14762, 15484}, {14971, 17008}, {15300, 32833}, {18907, 20582}, {21843, 22247}, {27088, 47101}, {32974, 63927}, {32986, 50992}, {33184, 63952}, {36523, 63955}, {42850, 66466}, {44543, 50280}, {47074, 47596}, {50991, 63941}, {51185, 63946}, {51186, 63947}, {55801, 63021}, {62203, 63044}, {63124, 63944}
X(66455) = midpoint of X(i) and X(j) for these {i,j}: {2549, 11160}, {5077, 15533}
X(66455) = reflection of X(i) in X(j) for these {i,j}: {599, 7848}, {1992, 4045}, {3734, 599}, {18907, 20582}, {59780, 3631}
X(66455) = pole of line {39, 353} with respect to the Stammler hyperbola
X(66455) = pole of line {826, 9191} with respect to the Steiner circumellipse
X(66455) = pole of line {141, 8598} with respect to the Wallace hyperbola
X(66455) = X(3098)-of-anti-Artzt
X(66455) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {183, 31173, 7617}, {315, 7810, 7775}, {599, 3849, 3734}, {3849, 7848, 599}, {5077, 15533, 538}, {7775, 7810, 7815}, {7784, 63950, 7817}, {7840, 55164, 574}, {7845, 15810, 11163}, {7850, 55164, 7840}, {7883, 9939, 32}, {7929, 9939, 7883}, {11163, 15810, 15482}
X(66456) lies on these lines: {2, 37}, {145, 545}, {391, 50090}, {519, 64015}, {3241, 4454}, {3623, 4795}, {3875, 63086}, {4346, 17310}, {4363, 66457}, {4373, 17313}, {4659, 38314}, {4677, 28313}, {4715, 20049}, {4747, 17318}, {4779, 49453}, {17132, 51093}, {17262, 32105}, {20059, 50132}, {20073, 40891}, {24441, 64712}, {28297, 51092}, {29069, 50872}, {35578, 51071}, {41140, 62706}, {50108, 55998}, {50121, 60984}, {50123, 62999}
X(66456) = reflection of X(i) in X(j) for these {i,j}: {4454, 3241}, {31145, 4419}
X(66456) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3241, 28301, 4454}, {41140, 66452, 62706}
X(66457) lies on these lines: {1, 545}, {2, 594}, {519, 4708}, {524, 49465}, {527, 51107}, {536, 51103}, {551, 4472}, {3241, 4364}, {3679, 25358}, {3723, 24199}, {4363, 66456}, {4395, 39260}, {4664, 36522}, {4665, 25055}, {4725, 51091}, {4745, 28329}, {6707, 50099}, {8584, 16973}, {9055, 50111}, {10022, 17318}, {16521, 29584}, {17133, 51108}, {17288, 17320}, {17330, 17393}, {17392, 36525}, {20582, 50013}, {24441, 64015}, {28297, 51104}, {28313, 41150}, {28337, 41312}, {28639, 50108}, {29580, 49733}, {31285, 41140}, {31332, 40891}, {46845, 50116}
X(66457) = midpoint of X(i) and X(j) for these {i,j}: {3241, 4364}, {10022, 17318}
X(66457) = reflection of X(i) in X(j) for these {i,j}: {3679, 25358}, {4472, 551}
X(66457) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {551, 28309, 4472}, {17318, 38314, 10022}
X(66458) lies on these lines: {2, 39}, {30, 55724}, {99, 11148}, {148, 23334}, {193, 543}, {385, 53142}, {524, 44526}, {549, 40925}, {671, 32827}, {754, 63116}, {1285, 11164}, {1992, 11159}, {2549, 11160}, {2782, 54132}, {2996, 7775}, {3618, 59780}, {3734, 61046}, {5032, 7798}, {5077, 50992}, {5485, 11163}, {6390, 63107}, {7615, 62988}, {7616, 15708}, {7617, 63077}, {7618, 37667}, {7620, 7774}, {7737, 63027}, {7754, 8598}, {7781, 35287}, {7812, 32826}, {7837, 52942}, {7840, 43448}, {8369, 32824}, {8584, 14033}, {8667, 47061}, {8724, 9752}, {9166, 63098}, {9741, 22329}, {9770, 47286}, {9855, 63093}, {11008, 63945}, {11147, 63654}, {11165, 23055}, {11287, 50990}, {11318, 32825}, {12040, 23053}, {15048, 21356}, {15300, 35927}, {15484, 63651}, {15533, 32986}, {15589, 52691}, {19569, 52944}, {27088, 51122}, {31859, 63029}, {32480, 63046}, {32515, 50967}, {32816, 37350}, {32820, 33197}, {33215, 63933}, {33272, 63118}, {35954, 63006}, {37689, 41134}, {40727, 63025}, {43619, 63942}, {51187, 63941}, {51224, 53141}, {52695, 63048}, {52713, 63101}, {53143, 62203}, {60118, 60228}, {63109, 63633}
X(66458) = reflection of X(i) in X(j) for these {i,j}: {1992, 22253}, {11160, 2549}, {32815, 1992}, {50992, 5077}
X(66458) = pole of line {512, 9189} with respect to the Steiner circumellipse
X(66458) = pole of line {6, 9741} with respect to the Wallace hyperbola
X(66458) = pole of line {9209, 23878} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(66458) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(39236)}}, {{A, B, C, X(11059), X(60268)}}
X(66458) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1992, 52229, 32815}, {22253, 52229, 1992}, {53141, 63042, 51224}
X(66459) lies on these lines: {2, 2782}, {3, 65767}, {4, 47202}, {6, 18575}, {51, 22682}, {98, 1316}, {110, 12188}, {115, 125}, {127, 5522}, {137, 46665}, {148, 35922}, {182, 56401}, {230, 47526}, {262, 37988}, {338, 523}, {339, 2972}, {381, 5640}, {389, 54005}, {401, 21445}, {458, 9755}, {511, 56392}, {542, 57618}, {671, 36194}, {895, 36207}, {1312, 2593}, {1313, 2592}, {1503, 50707}, {1650, 46229}, {1899, 7694}, {2450, 39663}, {2452, 48540}, {2453, 9142}, {2794, 57598}, {2967, 57583}, {2970, 2971}, {3001, 53474}, {3014, 25328}, {3018, 15118}, {3060, 22728}, {3134, 9191}, {3143, 65870}, {3148, 9756}, {3154, 51258}, {3258, 17436}, {3288, 59804}, {3424, 6620}, {3448, 6033}, {3580, 15980}, {3734, 13233}, {3767, 14003}, {4226, 12042}, {5094, 8426}, {5099, 6070}, {5309, 61743}, {5466, 46040}, {5475, 13410}, {5650, 9466}, {5652, 56788}, {6036, 65722}, {6055, 45662}, {6194, 37190}, {6248, 37338}, {6321, 36163}, {6784, 45321}, {7612, 37188}, {7753, 61712}, {8599, 12079}, {8719, 41275}, {8842, 20023}, {8902, 53570}, {9475, 60517}, {9775, 11284}, {9832, 63719}, {10485, 30540}, {10991, 51431}, {11007, 54395}, {11197, 11245}, {11328, 48663}, {11579, 15928}, {11623, 15000}, {11792, 46654}, {13188, 54439}, {14096, 15819}, {14356, 20301}, {14957, 63736}, {15271, 33900}, {15449, 55152}, {16052, 34122}, {17511, 38953}, {18911, 37348}, {20021, 46124}, {20775, 61684}, {21531, 32515}, {22087, 64782}, {22681, 62949}, {23635, 41760}, {25317, 64882}, {26235, 30739}, {31127, 61576}, {32216, 40727}, {32274, 66167}, {35933, 38225}, {36181, 38741}, {37916, 58849}, {38361, 38393}, {39266, 56442}, {41221, 53569}, {44651, 66170}, {44774, 52658}, {46512, 51430}, {50188, 57586}
X(66459) = midpoint of X(i) and X(j) for these {i,j}: {2, 53346}, {20021, 46124}
X(66459) = reflection of X(i) in X(j) for these {i,j}: {9155, 2}, {51335, 46124}
X(66459) = inverse of X(3569) in Kiepert hyperbola
X(66459) = perspector of circumconic {{A, B, C, X(523), X(23878)}}
X(66459) = center of circumconic {{A, B, C, X(183), X(262)}}
X(66459) = X(i)-isoconjugate-of-X(j) for these {i, j}: {110, 65252}, {162, 65310}, {163, 65271}, {249, 2186}, {262, 1101}, {263, 24041}, {327, 23995}, {662, 26714}, {2421, 36132}, {3402, 4590}, {4575, 65349}, {6037, 23997}, {24000, 54032}, {24037, 46319}, {36084, 63741}
X(66459) = X(i)-Dao conjugate of X(j) for these {i, j}: {115, 65271}, {125, 65310}, {136, 65349}, {244, 65252}, {512, 46319}, {523, 262}, {525, 59257}, {647, 42313}, {1084, 26714}, {3005, 263}, {4988, 60679}, {18314, 327}, {23878, 183}, {35078, 39681}, {38987, 63741}, {38997, 110}, {39009, 2421}, {51580, 4590}, {54262, 11328}, {55051, 1634}, {55267, 46807}, {60342, 57268}, {62562, 6037}, {63463, 52926}, {65728, 36885}
X(66459) = X(i)-Ceva conjugate of X(j) for these {i, j}: {183, 23878}, {262, 523}, {458, 3288}
X(66459) = X(i)-complementary conjugate of X(j) for these {i, j}: {30535, 4369}, {60101, 42327}
X(66459) = pole of line {7669, 21525} with respect to the circumcircle
X(66459) = pole of line {868, 7668} with respect to the nine-point circle
X(66459) = pole of line {6, 526} with respect to the orthocentroidal circle
X(66459) = pole of line {98, 804} with respect to the orthoptic circle of the Steiner Inellipse
X(66459) = pole of line {648, 1634} with respect to the polar circle
X(66459) = pole of line {523, 3569} with respect to the Kiepert hyperbola
X(66459) = pole of line {868, 8754} with respect to the MacBeath inconic
X(66459) = pole of line {249, 2080} with respect to the Stammler hyperbola
X(66459) = pole of line {148, 59775} with respect to the Steiner circumellipse
X(66459) = pole of line {115, 46656} with respect to the Steiner inellipse
X(66459) = pole of line {47284, 56962} with respect to the Yff hyperbola
X(66459) = pole of line {4590, 39099} with respect to the Wallace hyperbola
X(66459) = pole of line {3124, 23962} with respect to the dual conic of circumcircle
X(66459) = pole of line {4563, 23181} with respect to the dual conic of polar circle
X(66459) = pole of line {5, 76} with respect to the dual conic of Stammler hyperbola
X(66459) = pole of line {2, 51} with respect to the dual conic of Wallace hyperbola
X(66459) = X(237)-of-orthocentroidal
X(66459) = X(9155)-of-Gemini-107
X(66459) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {2, 9140, 53346}, {4, 22265, 50401}, {23, 14957, 33873}, {98, 6785, 11005}, {671, 6787, 9144}, {20021, 46124, 46130}
X(66459) = intersection, other than A, B, C, of circumconics {{A, B, C, X(115), X(43532)}}, {{A, B, C, X(125), X(46806)}}, {{A, B, C, X(182), X(2088)}}, {{A, B, C, X(183), X(1648)}}, {{A, B, C, X(262), X(59804)}}, {{A, B, C, X(338), X(458)}}, {{A, B, C, X(523), X(3288)}}, {{A, B, C, X(690), X(23878)}}, {{A, B, C, X(1637), X(8599)}}, {{A, B, C, X(1640), X(45321)}}, {{A, B, C, X(2081), X(3268)}}, {{A, B, C, X(2970), X(39691)}}, {{A, B, C, X(3124), X(6784)}}, {{A, B, C, X(5466), X(63746)}}, {{A, B, C, X(7668), X(60497)}}, {{A, B, C, X(8288), X(12079)}}, {{A, B, C, X(9155), X(46142)}}, {{A, B, C, X(11182), X(34246)}}, {{A, B, C, X(14223), X(31953)}}, {{A, B, C, X(20975), X(34396)}}, {{A, B, C, X(39680), X(56748)}}
X(66459) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 2782, 9155}, {2, 53346, 2782}, {98, 1316, 5191}, {98, 41254, 1316}, {115, 125, 868}, {125, 16280, 53132}, {338, 7668, 20975}, {339, 3150, 2972}, {7668, 59739, 338}, {30465, 30468, 8288}, {57583, 60502, 2967}
X(66460) lies on these lines: {2, 99}, {4, 9759}, {23, 51224}, {30, 63719}, {94, 60220}, {110, 1992}, {193, 10554}, {338, 11168}, {351, 523}, {519, 66236}, {524, 2502}, {528, 66038}, {542, 7417}, {597, 3124}, {599, 20998}, {648, 4232}, {804, 11631}, {1084, 9465}, {1634, 1995}, {1641, 5969}, {1648, 9830}, {2493, 45331}, {2770, 18823}, {2782, 14694}, {3363, 23297}, {4576, 12036}, {4590, 34539}, {5191, 37904}, {5640, 17430}, {5642, 46124}, {5648, 9129}, {5913, 8598}, {6054, 60066}, {6791, 18800}, {6792, 8593}, {7472, 52232}, {7493, 23055}, {7801, 16055}, {7812, 14002}, {8584, 39689}, {8860, 47596}, {9149, 46589}, {9169, 51798}, {9486, 16317}, {9745, 11317}, {9775, 64090}, {9829, 62411}, {9870, 11054}, {10552, 15534}, {10553, 63064}, {11172, 58268}, {11580, 26613}, {14568, 37907}, {14653, 57594}, {14666, 57620}, {14916, 35279}, {14932, 53374}, {15597, 53495}, {20583, 20976}, {23699, 57624}, {31173, 40350}, {32424, 57604}, {32479, 39602}, {33274, 39576}, {36168, 53136}, {37748, 46453}, {37775, 37785}, {37776, 37786}, {37855, 47187}, {37860, 62672}, {39024, 63127}, {40112, 57257}, {40283, 45662}, {48540, 63029}, {51438, 52231}, {55957, 60211}
X(66460) = reflection of X(i) in X(j) for these {i,j}: {2, 10418}, {58854, 2502}
X(66460) = inverse of X(10717) in Wallace hyperbola
X(66460) = perspector of circumconic {{A, B, C, X(598), X(892)}}
X(66460) = X(i)-isoconjugate-of-X(j) for these {i, j}: {163, 34206}, {2642, 53613}
X(66460) = X(i)-vertex conjugate of X(j) for these {i, j}: {1995, 9123}
X(66460) = X(i)-Dao conjugate of X(j) for these {i, j}: {115, 34206}
X(66460) = X(i)-Ceva conjugate of X(j) for these {i, j}: {598, 20381}
X(66460) = X(i)-cross conjugate of X(j) for these {i, j}: {20381, 598}
X(66460) = pole of line {1995, 9123} with respect to the circumcircle
X(66460) = pole of line {381, 2793} with respect to the orthoptic circle of the Steiner Inellipse
X(66460) = pole of line {5094, 14273} with respect to the polar circle
X(66460) = pole of line {524, 8288} with respect to the Kiepert hyperbola
X(66460) = pole of line {1499, 5468} with respect to the Kiepert parabola
X(66460) = pole of line {598, 65870} with respect to the Lemoine inellipse
X(66460) = pole of line {9134, 53418} with respect to the Orthic inconic
X(66460) = pole of line {187, 9027} with respect to the Stammler hyperbola
X(66460) = pole of line {690, 1992} with respect to the Steiner circumellipse
X(66460) = pole of line {597, 690} with respect to the Steiner inellipse
X(66460) = pole of line {53341, 65701} with respect to the Yff parabola
X(66460) = pole of line {524, 9146} with respect to the Wallace hyperbola
X(66460) = pole of line {7790, 9979} with respect to the dual conic of circumcircle
X(66460) = pole of line {44317, 50755} with respect to the dual conic of Yff parabola
X(66460) = pole of line {2, 1637} with respect to the dual conic of anti-Artzt circle
X(66460) = pole of line {1648, 3906} with respect to the dual conic of Wallace hyperbola
X(66460) = X(1641)-of-1st-anti-Brocard
X(66460) = X(7417)-of-2nd-Parry
X(66460) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {3448, 45291, 62295}
X(66460) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(23287)}}, {{A, B, C, X(99), X(34205)}}, {{A, B, C, X(111), X(46001)}}, {{A, B, C, X(351), X(574)}}, {{A, B, C, X(523), X(42008)}}, {{A, B, C, X(524), X(10717)}}, {{A, B, C, X(543), X(2770)}}, {{A, B, C, X(671), X(8599)}}, {{A, B, C, X(9100), X(22329)}}, {{A, B, C, X(9185), X(11167)}}, {{A, B, C, X(37860), X(41134)}}
X(66460) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 148, 42008}, {2, 8591, 10717}, {23, 62294, 51224}, {111, 7665, 7664}, {524, 2502, 58854}, {2482, 9172, 2}, {7426, 22329, 51541}, {7426, 62311, 22329}, {35279, 50639, 14916}
X(66461) lies on these lines: {2, 39}, {524, 52658}, {574, 56442}, {702, 9462}, {3231, 7798}, {3849, 33873}, {5106, 31859}, {6379, 59373}, {7781, 37338}, {7804, 62301}, {8623, 14614}, {8716, 11328}, {8842, 11163}, {10335, 53375}, {11183, 23878}, {13586, 41278}, {14608, 43950}, {14957, 63956}, {15048, 59765}, {22253, 62712}, {22486, 25332}, {52637, 63557}, {62949, 63957}
X(66461) = pole of line {512, 22564} with respect to the Steiner circumellipse
X(66461) = pole of line {6, 41143} with respect to the Wallace hyperbola
X(66461) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(41143)}}, {{A, B, C, X(538), X(43950)}}, {{A, B, C, X(7757), X(60667)}}, {{A, B, C, X(9462), X(60707)}}
X(66461) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20023, 9466}, {2, 7757, 3117}
X(66462) lies on these lines: {2, 3}, {487, 53856}, {489, 50992}, {490, 50990}, {1991, 66472}, {3595, 42276}, {5860, 66471}, {5861, 43209}, {6459, 63124}, {6460, 8584}, {6560, 13639}, {6781, 13950}, {11148, 13798}, {12159, 66426}, {13783, 52666}, {13849, 33457}, {15534, 42259}, {33456, 66438}, {42258, 51185}, {43133, 63116}, {43134, 63117}, {61389, 63058}
X(66462) = reflection of X(i) in X(j) for these {i,j}: {52666, 13783}
X(66463) lies on these lines: {2, 44202}, {3, 3268}, {4, 1637}, {20, 62438}, {30, 9979}, {74, 98}, {112, 30247}, {186, 42659}, {376, 2799}, {378, 53265}, {523, 9409}, {1499, 1513}, {2793, 9862}, {2826, 66034}, {2848, 5667}, {3524, 14417}, {3543, 44203}, {3545, 44564}, {3830, 44204}, {4235, 65776}, {5191, 9123}, {5664, 9517}, {5890, 39469}, {6130, 42733}, {6776, 9003}, {7612, 9180}, {9191, 16235}, {9479, 61776}, {9529, 11001}, {9744, 35909}, {10706, 14697}, {14582, 18316}, {14644, 42736}, {18556, 44810}, {25644, 35921}, {41377, 65107}, {42731, 58346}, {46229, 53345}, {47050, 66121}, {47333, 66118}
X(66463) = reflection of X(i) in X(j) for these {i,j}: {2, 44202}, {4, 1637}, {3268, 3}, {3543, 44203}, {3830, 44204}, {10706, 14697}, {18556, 44810}, {42733, 6130}, {66118, 47333}
X(66463) = pole of line {378, 53246} with respect to the circumcircle
X(66463) = pole of line {18361, 35481} with respect to the 2nd DrozFarny circle
X(66463) = pole of line {18568, 64923} with respect to the circumcircle of the Johnson triangle
X(66463) = pole of line {6, 67} with respect to the orthoptic circle of the Steiner Inellipse
X(66463) = pole of line {381, 64923} with respect to the polar circle
X(66463) = pole of line {6749, 47204} with respect to the Orthic inconic
X(66463) = pole of line {37645, 65767} with respect to the Steiner circumellipse
X(66463) = pole of line {9745, 9755} with respect to the Artzt circle
X(66463) = pole of line {31174, 52720} with respect to the dual conic of Wallace hyperbola
X(66463) = X(1637)-of-anti-Euler
X(66463) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {2, 11177, 62294}
X(66464) lies on these lines: {2, 3}, {6, 13794}, {69, 45438}, {115, 23249}, {193, 45375}, {485, 13920}, {488, 45542}, {638, 46951}, {1327, 6250}, {1328, 45101}, {1503, 13674}, {1587, 5309}, {1588, 7753}, {5475, 23259}, {6033, 62986}, {6054, 33432}, {6289, 22806}, {6560, 66429}, {6564, 66428}, {6776, 35822}, {9738, 13798}, {12124, 13701}, {12256, 45862}, {12257, 13846}, {12297, 13678}, {12322, 22625}, {12602, 48677}, {13082, 13695}, {13665, 39874}, {13696, 18988}, {13748, 32787}, {13812, 32806}, {14227, 14241}, {14853, 35823}, {15484, 23273}, {19054, 45406}, {20112, 66471}, {22631, 41022}, {22633, 41023}, {22682, 66434}, {23267, 61322}, {26289, 66431}, {26330, 45407}, {31463, 42283}, {32419, 66436}, {32788, 45440}, {32827, 49016}, {40727, 66473}, {42284, 62202}, {48778, 55041}, {66430, 66466}
X(66464) = midpoint of X(i) and X(j) for these {i,j}: {12297, 13678}, {12602, 48677}
X(66464) = reflection of X(i) in X(j) for these {i,j}: {1327, 6250}, {6289, 22806}, {12124, 13701}, {12257, 13846}, {13846, 45861}, {32810, 6289}, {55041, 48778}
X(66464) = anticomplement of X(60655)
X(66464) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1585), X(54652)}}, {{A, B, C, X(14229), X(62956)}}, {{A, B, C, X(45101), X(62957)}}
X(66465) lies on these lines: {2, 7}, {4, 12437}, {5, 24391}, {10, 3838}, {12, 5837}, {30, 6260}, {65, 18236}, {72, 17530}, {145, 7319}, {210, 61031}, {312, 4035}, {355, 381}, {516, 4421}, {518, 3817}, {528, 21635}, {529, 551}, {535, 28459}, {536, 2051}, {537, 49554}, {545, 66444}, {758, 10175}, {936, 5714}, {948, 59610}, {960, 3947}, {1001, 8171}, {1086, 45204}, {1125, 11194}, {1210, 17533}, {1329, 3671}, {1427, 16578}, {1699, 5853}, {1738, 36634}, {1770, 59587}, {1836, 6745}, {1997, 17298}, {2321, 4417}, {2325, 56084}, {2478, 63274}, {2886, 21060}, {3090, 54422}, {3091, 11523}, {3158, 9812}, {3175, 22000}, {3241, 12053}, {3243, 5274}, {3436, 64160}, {3475, 64667}, {3485, 5795}, {3543, 34701}, {3614, 3962}, {3649, 8582}, {3653, 34740}, {3663, 37662}, {3679, 12047}, {3687, 42029}, {3755, 3944}, {3811, 18483}, {3816, 5542}, {3823, 59686}, {3828, 12609}, {3832, 12625}, {3848, 38054}, {3873, 61718}, {3912, 20942}, {3946, 63089}, {3951, 6933}, {3984, 6871}, {4054, 4980}, {4104, 25385}, {4138, 59511}, {4187, 64664}, {4292, 16371}, {4295, 63990}, {4298, 25681}, {4301, 12607}, {4304, 33595}, {4312, 59572}, {4387, 50753}, {4428, 13405}, {4641, 37691}, {4644, 39980}, {4656, 5718}, {4667, 39595}, {4677, 18393}, {4698, 56226}, {4847, 17605}, {4848, 11681}, {4849, 62221}, {4869, 6557}, {4870, 34606}, {4892, 62673}, {4902, 36603}, {4921, 17167}, {4945, 52753}, {5055, 55108}, {5087, 11019}, {5121, 33103}, {5187, 11520}, {5261, 15829}, {5289, 51782}, {5493, 64123}, {5758, 63966}, {5763, 64813}, {5836, 58696}, {5850, 10171}, {5855, 38155}, {5880, 20103}, {5882, 6928}, {6147, 9843}, {6690, 51090}, {6700, 16417}, {6737, 10895}, {6842, 11362}, {6893, 13464}, {6919, 11518}, {7988, 24477}, {8727, 59687}, {9579, 27383}, {9580, 63168}, {9612, 57284}, {9779, 24392}, {10129, 25006}, {10164, 17768}, {10440, 20718}, {10588, 12526}, {10589, 62823}, {10591, 41863}, {10863, 30291}, {11374, 12572}, {11375, 12527}, {11522, 64205}, {11813, 37728}, {12536, 50689}, {12608, 28194}, {12610, 17132}, {12699, 59722}, {13407, 25055}, {13411, 16370}, {13587, 27385}, {14526, 63278}, {14554, 65021}, {15185, 17604}, {15677, 41550}, {16580, 41310}, {16602, 63589}, {16833, 20257}, {17067, 23511}, {17097, 34918}, {17133, 42047}, {17182, 42028}, {17197, 41629}, {17549, 64002}, {17718, 40998}, {17775, 44307}, {18134, 62297}, {18250, 28628}, {18589, 41313}, {18908, 38039}, {19517, 24328}, {19872, 28647}, {19875, 34744}, {19883, 34646}, {20060, 63987}, {21024, 29594}, {21096, 24045}, {21557, 31540}, {21562, 31541}, {21630, 51096}, {22019, 50100}, {22793, 64117}, {22836, 31673}, {23681, 63126}, {23806, 44567}, {24175, 51415}, {24177, 37663}, {24210, 42042}, {24239, 33101}, {25101, 41878}, {25760, 53663}, {27739, 50048}, {27747, 49724}, {28164, 56177}, {28301, 42049}, {28534, 50808}, {28645, 51073}, {28646, 31253}, {28657, 59646}, {29600, 44664}, {29639, 42039}, {30384, 51093}, {30568, 30828}, {31162, 34619}, {31397, 51409}, {31730, 35251}, {32856, 42040}, {33105, 42041}, {34048, 37672}, {34607, 50865}, {34625, 38021}, {34716, 38314}, {37364, 43177}, {37374, 41561}, {37634, 62240}, {38123, 58441}, {38204, 58451}, {39570, 59599}, {39948, 63007}, {41539, 46694}, {41883, 63844}, {45334, 46396}, {49511, 50609}, {49599, 49636}, {50829, 64113}, {51118, 56176}, {51724, 63282}, {52374, 56234}, {56089, 62178}, {57287, 62969}, {57477, 65415}, {60071, 60267}, {61029, 61686}, {62189, 64912}, {64011, 66012}
X(66465) = midpoint of X(i) and X(j) for these {i,j}: {355, 4930}, {1699, 25568}, {3158, 9812}, {3543, 34701}, {4052, 66440}, {11236, 34647}, {31162, 34619}, {34607, 50865}
X(66465) = reflection of X(i) in X(j) for these {i,j}: {11194, 1125}, {11235, 50802}, {24386, 3817}
X(66465) = complement of X(3928)
X(66465) = X(i)-complementary conjugate of X(j) for these {i, j}: {6, 45036}, {7319, 141}, {41441, 10}, {65046, 2886}, {65047, 2887}
X(66465) = pole of line {23865, 39225} with respect to the circumcircle
X(66465) = pole of line {28292, 59912} with respect to the orthoptic circle of the Steiner Inellipse
X(66465) = pole of line {3663, 17056} with respect to the Kiepert hyperbola
X(66465) = pole of line {522, 21052} with respect to the Steiner inellipse
X(66465) = pole of line {1, 4004} with respect to the dual conic of Yff parabola
X(66465) = pole of line {20907, 57244} with respect to the dual conic of Hofstadter ellipse
X(66465) = X(154)-of-Wasat
X(66465) = X(3928)-of-medial
X(66465) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(65065)}}, {{A, B, C, X(312), X(3929)}}, {{A, B, C, X(2051), X(5435)}}, {{A, B, C, X(3219), X(56234)}}, {{A, B, C, X(3928), X(65047)}}, {{A, B, C, X(4052), X(52358)}}, {{A, B, C, X(5745), X(34918)}}, {{A, B, C, X(7319), X(64114)}}, {{A, B, C, X(8732), X(54689)}}, {{A, B, C, X(14554), X(31231)}}, {{A, B, C, X(21454), X(60071)}}, {{A, B, C, X(37797), X(60172)}}, {{A, B, C, X(54366), X(54928)}}
X(66465) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 329, 3929}, {2, 3929, 5745}, {226, 3452, 142}, {226, 5316, 5249}, {226, 908, 3452}, {518, 3817, 24386}, {519, 50802, 11235}, {2886, 21060, 24393}, {3929, 5219, 2}, {4052, 66440, 536}, {11236, 34647, 519}, {12635, 19925, 66251}, {17533, 24473, 1210}, {18228, 25525, 6666}
X(66466) lies on these lines: {2, 187}, {3, 9771}, {4, 543}, {5, 7610}, {6, 37350}, {30, 7618}, {32, 14971}, {69, 43457}, {99, 52942}, {114, 19911}, {115, 1992}, {193, 18424}, {315, 33013}, {325, 11317}, {376, 7622}, {381, 524}, {511, 57634}, {538, 3839}, {546, 7758}, {574, 63025}, {591, 1327}, {597, 15484}, {599, 3363}, {671, 7774}, {754, 3545}, {1003, 41133}, {1007, 2482}, {1285, 6722}, {1328, 1991}, {1384, 44401}, {1506, 33215}, {2548, 7841}, {2549, 8352}, {3090, 34506}, {3091, 7843}, {3146, 34504}, {3524, 7619}, {3543, 32479}, {3767, 7812}, {3815, 5077}, {3830, 11165}, {3832, 7759}, {3845, 9766}, {3850, 63932}, {3851, 63950}, {3854, 63953}, {3855, 7751}, {3858, 63933}, {3859, 63926}, {5007, 32980}, {5008, 61304}, {5032, 5309}, {5055, 15597}, {5056, 63935}, {5066, 8667}, {5068, 7780}, {5071, 10788}, {5072, 63928}, {5076, 59546}, {5355, 63022}, {5395, 7852}, {5461, 7735}, {5485, 14492}, {6033, 9830}, {6561, 66438}, {6781, 34803}, {7739, 14041}, {7745, 11318}, {7747, 9167}, {7752, 33007}, {7753, 16041}, {7763, 52695}, {7768, 32995}, {7769, 33208}, {7773, 7795}, {7777, 8597}, {7784, 8367}, {7785, 41135}, {7791, 31417}, {7798, 36523}, {7801, 32816}, {7808, 33230}, {7809, 33016}, {7810, 32006}, {7811, 33005}, {7814, 14068}, {7818, 21356}, {7821, 32979}, {7825, 33190}, {7827, 14063}, {7829, 33292}, {7833, 31401}, {7838, 63533}, {7840, 11185}, {7842, 31404}, {7845, 11160}, {7854, 32991}, {7858, 32996}, {7860, 32962}, {7870, 14035}, {7873, 32987}, {7878, 33290}, {7883, 16924}, {7913, 63109}, {7926, 11054}, {7936, 33261}, {8355, 18907}, {8369, 65630}, {8591, 63021}, {8598, 43618}, {8703, 63647}, {8716, 15687}, {9698, 33238}, {9743, 60658}, {9761, 10653}, {9763, 10654}, {9888, 58851}, {9890, 22566}, {9939, 32832}, {10297, 16279}, {10717, 56435}, {11148, 61989}, {11159, 22110}, {11167, 54826}, {11179, 15980}, {11632, 63722}, {12101, 51123}, {13377, 46645}, {13468, 19709}, {13608, 14666}, {14160, 64802}, {14269, 53143}, {14866, 34165}, {14881, 18768}, {15533, 64093}, {17131, 50992}, {18309, 23878}, {18362, 63034}, {19695, 31450}, {19924, 64942}, {22329, 43620}, {27088, 50571}, {31105, 42008}, {32457, 63091}, {32515, 40277}, {32815, 39785}, {32833, 41136}, {32966, 34604}, {32988, 35007}, {33008, 55801}, {33017, 52691}, {33184, 47352}, {33210, 44562}, {36733, 66472}, {36775, 36970}, {36882, 64613}, {37348, 54173}, {37667, 39601}, {38071, 63940}, {41750, 63027}, {41895, 60095}, {42850, 66455}, {47332, 60696}, {50687, 53141}, {51122, 61993}, {53144, 61967}, {54616, 62900}, {54659, 60240}, {54753, 62895}, {54833, 60103}, {54841, 54901}, {54915, 60268}, {55823, 61899}, {57618, 61506}, {61924, 63943}, {61930, 63947}, {61943, 63948}, {61944, 63952}, {61948, 63944}, {61954, 63939}, {61955, 63936}, {61956, 63951}, {61964, 63924}, {61970, 63923}, {61977, 63651}, {61982, 63922}, {61985, 63957}, {61997, 63654}, {66430, 66464}
X(66466) = midpoint of X(i) and X(j) for these {i,j}: {2, 23334}, {4, 9770}, {3543, 53142}, {3830, 11165}, {8176, 63956}, {8182, 44678}
X(66466) = reflection of X(i) in X(j) for these {i,j}: {2, 8176}, {3, 9771}, {376, 7622}, {5485, 18546}, {7610, 5}, {7615, 381}, {7618, 11184}, {8182, 2}, {8667, 16509}, {8703, 63647}, {9770, 7775}, {14023, 9740}, {16509, 5066}, {19911, 114}, {23334, 63956}, {34511, 9770}, {40727, 20112}, {44678, 23334}, {47101, 1153}, {47102, 8182}, {63029, 7617}, {63955, 7615}
X(66466) = anticomplement of X(5569)
X(66466) = X(i)-Dao conjugate of X(j) for these {i, j}: {5569, 5569}
X(66466) = pole of line {1499, 23288} with respect to the orthocentroidal circle
X(66466) = pole of line {8704, 9125} with respect to the orthoptic circle of the Steiner Inellipse
X(66466) = pole of line {597, 2549} with respect to the Kiepert hyperbola
X(66466) = pole of line {3906, 39905} with respect to the Steiner circumellipse
X(66466) = X(5569)-of-anticomplementary
X(66466) = X(7610)-of-Johnson
X(66466) = X(8182)-of-Gemini-107
X(66466) = X(9770)-of-Euler
X(66466) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {4, 6792, 9770}
X(66466) = intersection, other than A, B, C, of circumconics {{A, B, C, X(5503), X(64982)}}, {{A, B, C, X(14492), X(61345)}}, {{A, B, C, X(14907), X(36882)}}, {{A, B, C, X(46645), X(55164)}}, {{A, B, C, X(51224), X(64613)}}, {{A, B, C, X(54826), X(64973)}}
X(66466) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 23334, 3849}, {2, 32827, 31173}, {2, 3849, 8182}, {2, 44678, 47102}, {2, 51224, 21843}, {2, 63956, 44678}, {2, 7737, 37809}, {4, 7775, 34511}, {4, 9770, 543}, {5, 63945, 7610}, {30, 11184, 7618}, {32, 14971, 63107}, {316, 8176, 49788}, {381, 40727, 20112}, {524, 20112, 40727}, {524, 7615, 63955}, {543, 7775, 9770}, {754, 7617, 63029}, {1153, 3849, 47101}, {3091, 7843, 14023}, {3543, 53142, 32479}, {3545, 63029, 7617}, {3849, 63956, 23334}, {3849, 8176, 2}, {7812, 33006, 3767}, {7812, 9166, 63065}, {8352, 11163, 2549}, {20112, 40727, 7615}, {22110, 53418, 11159}, {22491, 22492, 20423}, {31173, 50280, 5475}, {32984, 63107, 14971}, {33006, 63065, 9166}
X(66467) lies on circumconic {{A, B, C, X(19605), X(31507)}} and on these lines: {2, 3160}, {7, 31507}, {479, 11238}, {516, 32079}, {519, 66246}, {527, 15913}, {1996, 56331}, {2898, 65384}, {3058, 3599}, {9533, 50865}, {10004, 50802}, {11019, 62788}, {15511, 30308}, {36640, 51364}, {36644, 42047}, {56310, 59374}
X(66467) = X(i)-Ceva conjugate of X(j) for these {i, j}: {36605, 7}
X(66467) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {31527, 36620, 3160}
X(66468) lies on these lines: {2, 2415}, {8, 31509}, {519, 8834}, {528, 66069}, {1997, 4488}, {2899, 3241}, {5325, 31722}, {5328, 42033}, {5423, 11238}, {11679, 56075}, {16284, 20942}, {25567, 28530}, {28808, 56201}, {39570, 50802}, {46937, 54689}, {56084, 65384}, {56085, 59374}
X(66468) = reflection of X(i) in X(j) for these {i,j}: {2, 28655}
X(66468) = X(i)-Ceva conjugate of X(j) for these {i, j}: {36606, 8}
X(66468) = pole of line {514, 2490} with respect to the dual conic of incircle
X(66468) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8056), X(31509)}}, {{A, B, C, X(47636), X(54689)}}
X(66468) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4052, 62403}, {2, 8056, 66444}, {3161, 4052, 6557}, {3161, 8055, 8056}, {4373, 8055, 62297}, {6557, 62297, 4052}, {6557, 8055, 3161}, {17132, 28655, 2}
X(66469) lies on these lines: {1, 2}, {9, 4428}, {30, 5534}, {55, 3929}, {57, 3689}, {63, 31508}, {72, 53053}, {100, 53056}, {165, 518}, {171, 39959}, {210, 10389}, {326, 50132}, {354, 46917}, {373, 64685}, {390, 21060}, {405, 4866}, {480, 30330}, {516, 64143}, {527, 2951}, {528, 1750}, {529, 34628}, {536, 65957}, {537, 58035}, {758, 63468}, {956, 33595}, {968, 42041}, {1001, 30393}, {1054, 1280}, {1260, 10398}, {1376, 3243}, {1449, 44798}, {1490, 28194}, {1697, 31165}, {1699, 5853}, {1707, 4712}, {1708, 41553}, {1721, 17132}, {1743, 3693}, {1992, 56179}, {2093, 48696}, {2136, 11531}, {2177, 42039}, {3058, 10388}, {3189, 5691}, {3219, 64343}, {3304, 16411}, {3333, 16417}, {3339, 5687}, {3361, 3555}, {3419, 5726}, {3475, 38052}, {3543, 12651}, {3545, 64669}, {3550, 62820}, {3553, 50087}, {3576, 33575}, {3654, 30503}, {3656, 5720}, {3680, 16189}, {3681, 4512}, {3697, 17542}, {3711, 3748}, {3722, 62875}, {3731, 3750}, {3740, 38316}, {3744, 16469}, {3745, 39948}, {3746, 13615}, {3829, 7988}, {3830, 18528}, {3845, 18529}, {3869, 4917}, {3871, 12526}, {3873, 64112}, {3880, 11224}, {3886, 42034}, {3889, 36006}, {3893, 64964}, {3913, 7580}, {3940, 31393}, {3973, 8616}, {3996, 42029}, {4018, 63138}, {4301, 12632}, {4312, 17784}, {4314, 5815}, {4321, 65384}, {4326, 6172}, {4383, 16487}, {4413, 44841}, {4654, 34612}, {4661, 35258}, {4662, 5436}, {4702, 59597}, {4849, 7290}, {4863, 5219}, {4864, 5573}, {4921, 17194}, {4930, 7982}, {4936, 64579}, {4954, 50106}, {4980, 63131}, {4995, 10383}, {5054, 64668}, {5234, 16418}, {5264, 16398}, {5274, 12630}, {5290, 63146}, {5437, 30350}, {5438, 34791}, {5440, 13462}, {5537, 30304}, {5732, 28610}, {5785, 62800}, {5850, 9778}, {5881, 8727}, {5904, 61763}, {5927, 24644}, {6173, 41548}, {6174, 37736}, {6282, 50811}, {6600, 15931}, {6762, 7987}, {6766, 64804}, {7323, 41239}, {7411, 8715}, {7674, 63974}, {7675, 50835}, {7992, 10306}, {8056, 56009}, {8167, 36835}, {8226, 12607}, {9588, 24391}, {9589, 50696}, {9851, 37022}, {9909, 40910}, {9954, 14100}, {10025, 55998}, {10075, 10396}, {10304, 34646}, {10382, 10385}, {10860, 64697}, {10883, 61252}, {11235, 17618}, {11518, 37271}, {11522, 64068}, {11525, 50194}, {12565, 34632}, {12739, 50842}, {12767, 25438}, {13587, 62874}, {14022, 37721}, {14828, 25590}, {14942, 65047}, {15671, 64680}, {15699, 64670}, {15829, 30337}, {15909, 42470}, {16126, 35990}, {16192, 62858}, {16370, 57279}, {16496, 60714}, {16667, 17716}, {17151, 32920}, {17314, 40869}, {17549, 62824}, {17658, 18412}, {17715, 60846}, {17857, 31162}, {18228, 30331}, {18421, 63137}, {18443, 50821}, {18446, 50810}, {19346, 54327}, {19605, 36627}, {20173, 49469}, {21031, 37723}, {24216, 63621}, {24283, 49446}, {24477, 59584}, {25439, 53052}, {25524, 30343}, {25716, 31627}, {28204, 37531}, {28534, 41860}, {30291, 66252}, {30353, 60971}, {30392, 56177}, {31164, 49719}, {31231, 51463}, {32946, 52164}, {33092, 40609}, {34195, 63142}, {34631, 63986}, {34894, 64264}, {36002, 58245}, {37364, 37727}, {37533, 50798}, {37615, 38066}, {37703, 41867}, {37712, 44669}, {38031, 58688}, {38455, 61294}, {42040, 62695}, {42054, 65952}, {42819, 51780}, {47352, 64671}, {47375, 61030}, {50827, 64733}, {51576, 64951}, {51786, 62826}, {59374, 64672}, {59376, 64676}, {61154, 63214}, {62856, 63961}, {64005, 64117}
X(66469) = reflection of X(i) in X(j) for these {i,j}: {165, 3158}, {1699, 25568}, {3928, 4421}, {6762, 11194}, {7982, 4930}, {11194, 56176}, {24477, 59584}, {28610, 50808}, {34628, 34701}, {34632, 34639}, {50865, 28609}
X(66469) = X(i)-Ceva conjugate of X(j) for these {i, j}: {10405, 9}
X(66469) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(8), X(32003)}}, {{A, B, C, X(1280), X(3621)}}, {{A, B, C, X(3008), X(36603)}}, {{A, B, C, X(3617), X(39959)}}, {{A, B, C, X(3912), X(65047)}}, {{A, B, C, X(3957), X(34525)}}, {{A, B, C, X(4847), X(65952)}}, {{A, B, C, X(4853), X(56098)}}, {{A, B, C, X(4882), X(56140)}}, {{A, B, C, X(5222), X(39980)}}, {{A, B, C, X(6744), X(60078)}}, {{A, B, C, X(8580), X(56179)}}, {{A, B, C, X(9282), X(51615)}}, {{A, B, C, X(10582), X(56330)}}, {{A, B, C, X(11019), X(55993)}}, {{A, B, C, X(15909), X(36845)}}, {{A, B, C, X(17014), X(39948)}}, {{A, B, C, X(20008), X(62178)}}, {{A, B, C, X(20057), X(56030)}}, {{A, B, C, X(27304), X(36871)}}, {{A, B, C, X(29627), X(56722)}}, {{A, B, C, X(36627), X(64083)}}
X(66469) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 62823, 53056}, {200, 3870, 1}, {518, 4421, 3928}, {528, 28609, 50865}, {529, 34701, 34628}, {1001, 62218, 30393}, {1376, 3243, 10980}, {2136, 12635, 11531}, {3158, 3928, 4421}, {3689, 41711, 57}, {3711, 3748, 7308}, {3870, 3935, 200}, {3873, 64135, 64112}, {3913, 11523, 7991}, {3928, 4421, 165}, {5437, 42871, 30350}, {5534, 6769, 63981}, {5687, 41863, 3339}, {5853, 25568, 1699}, {6762, 56176, 7987}, {8715, 54422, 63469}, {12607, 12625, 37714}, {59216, 63087, 3973}
X(66470) lies on circumconic {{A, B, C, X(45819), X(60125)}} and on these lines: {2, 1974}, {6, 9909}, {20, 32300}, {22, 11511}, {23, 8541}, {25, 9813}, {26, 576}, {30, 182}, {49, 50962}, {68, 542}, {110, 11160}, {154, 8681}, {184, 1992}, {206, 524}, {376, 19128}, {381, 19131}, {511, 11202}, {519, 66255}, {541, 19138}, {543, 39840}, {569, 14848}, {575, 7387}, {578, 20423}, {599, 9306}, {671, 41274}, {1092, 50967}, {1147, 33591}, {1176, 34608}, {1351, 10245}, {1495, 41614}, {1576, 5171}, {1614, 50974}, {1658, 6593}, {2937, 8538}, {3098, 18324}, {3506, 64923}, {3543, 19124}, {3618, 44442}, {3830, 19129}, {5012, 63127}, {5027, 64925}, {5085, 54992}, {5157, 34609}, {5158, 6660}, {6403, 37939}, {6800, 40673}, {7488, 11470}, {8263, 15448}, {8584, 64028}, {9426, 64916}, {10168, 44441}, {10201, 11178}, {10226, 55675}, {10243, 64026}, {10244, 11482}, {10282, 44492}, {10539, 50955}, {10984, 34621}, {11003, 63000}, {11188, 44082}, {11250, 55681}, {11265, 44473}, {11266, 44474}, {11416, 37913}, {11477, 16195}, {11574, 19118}, {11645, 34775}, {12084, 55687}, {12085, 20190}, {12107, 55721}, {13346, 64061}, {13347, 50983}, {13383, 34507}, {14790, 25555}, {15331, 55637}, {15462, 37480}, {16199, 17809}, {17714, 22234}, {19125, 63094}, {19132, 37491}, {19143, 32419}, {19144, 32421}, {21637, 21969}, {22112, 30775}, {23327, 29012}, {25406, 61744}, {26881, 37784}, {26883, 51023}, {30558, 35287}, {32223, 63129}, {34117, 46730}, {34148, 51028}, {34351, 50977}, {34643, 38023}, {34713, 38087}, {34725, 38072}, {35264, 61667}, {35268, 52238}, {37478, 45016}, {37515, 38064}, {37897, 41585}, {37904, 44080}, {39561, 64599}, {39568, 53093}, {41719, 64883}, {43572, 63428}, {43650, 63109}, {43812, 51176}, {44077, 44210}, {44108, 61692}, {44489, 50979}, {47354, 63663}, {50978, 61753}
X(66470) = midpoint of X(i) and X(j) for these {i,j}: {6, 9909}, {37491, 37672}
X(66470) = reflection of X(i) in X(j) for these {i,j}: {3098, 18324}, {11178, 10201}, {44441, 10168}, {50977, 34351}
X(66470) = pole of line {3620, 7998} with respect to the Stammler hyperbola
X(66470) = X(9876)-of-1st-Brocard
X(66470) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {6, 1316, 9909}
X(66470) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {597, 51745, 5476}, {1974, 19121, 19126}, {1974, 19126, 19137}, {19127, 19136, 182}, {19127, 32217, 19136}
X(66471) lies on these lines: {376, 524}, {591, 3849}, {597, 66443}, {599, 66427}, {1991, 8182}, {5860, 66462}, {6811, 7610}, {13663, 66428}, {13783, 66429}, {20112, 66464}, {36733, 40727}, {47102, 66439}
X(66471) = midpoint of X(i) and X(j) for these {i,j}: {66430, 66473}
X(66471) = reflection of X(i) in X(j) for these {i,j}: {1991, 8182}, {66430, 66472}
X(66471) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 66430, 66472}, {376, 66473, 66430}, {66430, 66473, 524}
X(66472) lies on these lines: {376, 524}, {597, 66427}, {1327, 13835}, {1991, 66462}, {6811, 9771}, {13664, 66428}, {13784, 66429}, {13801, 45863}, {20583, 66443}, {28329, 66437}, {36733, 66466}
X(66472) = midpoint of X(i) and X(j) for these {i,j}: {66430, 66471}
X(66472) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 66430, 66471}, {66430, 66471, 524}, {66438, 66439, 66435}
X(66473) lies on these lines: {2, 40286}, {376, 524}, {599, 66443}, {5485, 54652}, {5861, 13701}, {6811, 9740}, {11160, 66427}, {40727, 66464}
X(66473) = reflection of X(i) in X(j) for these {i,j}: {66430, 66471}
X(66473) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {66430, 66471, 376}
Let P be a point on line X(3)X(6). In this case the 2nd outer-Grebe triangle is orthologic to the pedal of P. The locus of the orthology center is a conic with center X(66474). The locus of the reciprocal orthology center is X(2)X(6).
X(66474) lies on these lines: {2, 50721}, {3, 42009}, {69, 74}, {114, 489}, {115, 590}, {147, 51952}, {148, 50722}, {187, 13989}, {487, 6230}, {491, 39809}, {543, 1991}, {620, 6200}, {637, 12974}, {639, 15885}, {671, 43536}, {2482, 13701}, {2794, 11824}, {5418, 60270}, {5477, 49267}, {5861, 49096}, {5981, 35748}, {6033, 36733}, {6036, 33341}, {6564, 63957}, {6721, 12322}, {7692, 62348}, {9894, 13835}, {13821, 13968}, {14061, 43374}, {14645, 49367}, {19108, 26289}, {21166, 33430}, {23235, 33431}, {23514, 45509}, {31274, 41945}, {43124, 43134}
X(66474) = midpoint of X(i) and X(j) for these {i,j}: {23235, 33431}
X(66474) = reflection of X(i) in X(j) for these {i,j}: {148, 50722}, {13968, 13821}, {50719, 620}
X(66474) = anticomplement of X(50721)
X(66474) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {49266, 58033, 115}
Let ABC be a triangle, and HAHBHC be the orthic triangle. Let SA be X(15) = 1st isodynamic point of AHBHC. Define SB, SC cyclically. Let AAABAC be the pedal triangle of SA with respect to AHBHC. Define BBBCBA, CCCACB cyclically. Let MA be the midpoint of ABAC. Define MB, MC cyclically. Then, MAMBMC is an equilateral triangle. This property holds when we replace X(15) with X(16). (Keita Miyamoto, Nov 28, 2024)
The center of MAMBMC is X(66475). For X(16), the center is X(66476). For X(15), barycentric coordinates of MA is
{a^4*b^2 - 2*a^2*b^4 + b^6 + a^4*c^2 - 16*a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6 - 2*Sqrt[3]*(a^2*b^2 - b^4 + a^2*c^2 + 6*b^2*c^2 - c^4)*S, b^2*(-a^2 + b^2 + c^2)*(a^2 - b^2 - 3*c^2 - 2*Sqrt[3]*S), c^2*(-a^2 + b^2 + c^2)*(a^2 - 3*b^2 - c^2 - 2*Sqrt[3]*S)}.
For the X(16) version, replace S with -S. (Peter Moses, Nov 29, 2024)
X(66475) lies on these lines: {6,1196}, {13,6000}, {17,11793}, {51,37640}, {52,42988}, {61,10110}, {62,11695}, {303,51386}, {373,37641}, {389,40693}, {395,6688}, {396,511}, {397,9729}, {1154,42496}, {3060,63032}, {3819,16644}, {3917,11488}, {5321,13570}, {5335,64100}, {5340,46850}, {5472,50387}, {5640,63079}, {5907,42156}, {9730,42974}, {10219,23303}, {10653,16836}, {11243,36757}, {11451,63080}, {11459,43542}, {11542,13754}, {12111,22235}, {13348,16772}, {13382,42992}, {13474,42162}, {13598,22236}, {14845,42975}, {14915,43416}, {15030,43403}, {15644,42152}, {16194,42128}, {16645,63632}, {17704,42148}, {21849,49947}, {21969,49813}, {23039,42817}, {40578,54472}, {42166,44870}, {42998,64854}, {43228,58470}
X(66475) = crossdifference of every pair of points on line {3566, 10676}
X(66476) lies on these lines: {6,1196}, {14,6000}, {18,11793}, {51,37641}, {52,42989}, {61,11695}, {62,10110}, {302,51386}, {373,37640}, {389,40694}, {395,511}, {396,6688}, {398,9729}, {1154,42497}, {3060,63033}, {3819,16645}, {3917,11489}, {5318,13570}, {5334,64100}, {5339,46850}, {5471,50387}, {5640,63080}, {5907,42153}, {9730,42975}, {10219,23302}, {10654,16836}, {11244,36758}, {11451,63079}, {11459,43543}, {11543,13754}, {12111,22237}, {13348,16773}, {13382,42993}, {13474,42159}, {13598,22238}, {14845,42974}, {14915,43417}, {15030,43404}, {15644,42149}, {16194,42125}, {16644,63632}, {17704,42147}, {21849,49948}, {21969,49812}, {23039,42818}, {40579,54473}, {42163,44870}, {42999,64854}, {43229,58470}
X(66476) = crossdifference of every pair of points on line {3566, 10675}
See David Nguyen and Juan José Isach Mayo, euclid 7317.
X(66477) lies on these lines: {11, 21172}, {125, 656}, {222, 61732}, {513, 1364}, {522, 4081}, {971, 1785}, {1071, 51889}, {1456, 15524}, {1464, 45272}, {1768, 55315}, {14584, 18340}, {16870, 60062}, {18838, 43909}, {35014, 57291}, {35015, 55359}
X(66477) = reflection of X(1456) in X(51616)
X(66477) = X(15252)-Dao conjugate of X(8)
X(66477) = crosspoint of X(7) and X(26932)
X(66477) = crosssum of X(55) and X(7115)
X(66477) = barycentric product X(15252)*X(26932)
X(66477) = barycentric quotient X(15252)/X(46102)
See Antreas Hatzipolakis and César Lozada, euclid 7318.
X(66478) lies on these lines: {3, 356}, {376, 5455}
See Antreas Hatzipolakis and César Lozada, euclid 7318.
X(66479) lies on these lines: {3, 3276}, {20, 65156}, {356, 5635}
See Antreas Hatzipolakis and César Lozada, euclid 7318.
X(66480) lies on these lines: {3, 356}, {1134, 66183}, {5454, 10258}
X(66480) = (X(8002), X(15857))-harmonic conjugate of X(356)
See Antreas Hatzipolakis and César Lozada, euclid 7318.
X(66481) lies on these lines: {356, 5635}, {357, 1134}, {3277, 41111}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 7321.
X(66482) lies on these lines: {3, 6}, {4, 63835}, {20, 63762}, {26, 12095}, {30, 53171}, {97, 3547}, {394, 454}, {1092, 44405}, {1154, 59369}, {1628, 34756}, {4558, 11411}, {6759, 13557}, {7387, 39109}, {13398, 57697}, {44752, 47195}, {61748, 64035}
See Sriram Panchapakesan and César Lozada, euclid 7324.
X(66483) lies on these lines: {2, 6}, {1357, 1358}
X(66483) = perspector of the circumconic through X(99) X(17096)
X(66483) = pole of the line {4897, 53538} with respect to the incircle
X(66483) = pole of the line {1125, 4106} with respect to the circumhyperbola dual of Yff parabola
X(66483) = pole of the line {6, 6065} with respect to the Stammler hyperbola
X(66483) = pole of the line {2, 4076} with respect to the Steiner-Wallace hyperbola
X(66483) = barycentric product X(7192)*X(47884)
X(66483) = trilinear product X(1019)*X(47884)
X(66483) = trilinear quotient X(i)/X(j) for these (i,j): (7203, 59117), (47884, 1018)
See Sriram Panchapakesan and César Lozada, euclid 7324.
X(66484) lies on these lines: {7, 55}, {11, 116}, {5432, 56255}, {42454, 42462}, {45293, 62728}
X(66484) = cross-difference of every pair of points on the line X(10581)X(35326)
X(66484) = pole of the line {2310, 21104} with respect to the incircle
X(66484) = pole of the line {650, 58816} with respect to the circumhyperbola dual of Yff parabola
X(66484) = pole of the line {514, 5572} with respect to the Feuerbach circumhyperbola
X(66484) = barycentric product X(i)*X(j) for these {i,j}: {11, 62728}, {1638, 62725}, {6366, 56322}, {6606, 52334}, {21453, 33573}
X(66484) = trilinear product X(i)*X(j) for these {i,j}: {1170, 33573}, {1638, 62747}, {2170, 62728}, {6366, 58322}, {14392, 65552}, {14413, 62725}, {52334, 65222}, {56322, 65680}
X(66484) = trilinear quotient X(i)/X(j) for these (i,j): (1638, 63203), (4858, 62731), (6366, 35338), (33573, 1212), (52334, 21127), (56284, 35348), (56322, 37139), (58322, 14733), (62728, 4564), (65680, 35326)
See Sriram Panchapakesan and César Lozada, euclid 7324.
X(66485) lies on these lines: {8, 56}, {11, 1357}, {4081, 61079}
X(66485) = pole of the line {3667, 66216} with respect to the Feuerbach circumhyperbola
X(66485) = barycentric product X(i)*X(j) for these {i,j}: {900, 60482}, {1647, 40420}, {3911, 40451}, {6613, 52338}, {30725, 56323}
X(66485) = trilinear product X(i)*X(j) for these {i,j}: {1319, 40451}, {1476, 1647}, {1635, 60482}, {2087, 40420}, {30725, 62748}, {40528, 62789}, {53528, 56323}
X(66485) = trilinear quotient X(i)/X(j) for these (i,j): (900, 61222), (1476, 9268), (1647, 3057), (2087, 2347), (3762, 25268), (6550, 6615), (30572, 61166), (30725, 21362), (40420, 5376), (40451, 1320), (53528, 23845), (60482, 3257), (62748, 5548)
See Sriram Panchapakesan and César Lozada, euclid 7324.
X(66486) lies on these lines: {2, 7}, {11, 1111}, {1647, 3676}, {2006, 56783}, {2078, 37757}, {3254, 43762}, {3323, 14027}, {4904, 43960}, {4997, 35160}, {5091, 17718}, {10589, 40154}, {12019, 59490}, {15728, 60782}, {17181, 63574}, {30857, 43760}, {40629, 57435}, {53546, 57442}
X(66486) = perspector of the circumconic through X(664) X(24002)
X(66486) = pole of the line {1086, 3676} with respect to the incircle
X(66486) = pole of the line {105, 28292} with respect to the orthoptic circle of Steiner inellipse
X(66486) = pole of the line {3064, 56183} with respect to the polar circle
X(66486) = pole of the line {1, 3676} with respect to the circumhyperbola dual of Yff parabola
X(66486) = pole of the line {3309, 14100} with respect to the Feuerbach circumhyperbola
X(66486) = pole of the line {522, 4904} with respect to the Steiner inellipse
X(66486) = barycentric product X(i)*X(j) for these {i,j}: {11, 37757}, {693, 43050}, {1111, 37787}, {1358, 17264}, {2078, 23989}, {3676, 30565}, {3887, 24002}, {4858, 38459}, {22108, 52621}, {40629, 62723}, {52156, 57439}
X(66486) = trilinear product X(i)*X(j) for these {i,j}: {11, 38459}, {514, 43050}, {1086, 37787}, {1111, 2078}, {1358, 3935}, {2170, 37757}, {3669, 30565}, {3676, 3887}, {6549, 41553}, {8645, 52621}, {17264, 53538}, {22108, 24002}, {34051, 57435}, {34056, 40629}, {43736, 57439}
X(66486) = trilinear quotient X(i)/X(j) for these (i,j): (11, 42064), (693, 60488), (1111, 3254), (2078, 1110), (3676, 1308), (3887, 3939), (3935, 6065), (19624, 6066), (23100, 60489), (24002, 37143), (30565, 644), (37757, 4564), (37787, 1252), (38459, 59), (40629, 6603), (43050, 101), (47007, 19624), (52621, 35171), (57439, 41339)
See Sriram Panchapakesan and César Lozada, euclid 7324.
X(66487) lies on these lines: {662, 2407}, {3960, 4560}, {21222, 30690}
X(66487) = pole of the line {3874, 6742} with respect to the Steiner circumellipse
X(66487) = barycentric product X(i)*X(j) for these {i,j}: {85, 62746}, {3025, 35139}, {3615, 4453}, {3904, 52393}, {7192, 63642}, {18155, 56844}
X(66487) = trilinear product X(i)*X(j) for these {i,j}: {7, 62746}, {1019, 63642}, {3025, 32680}, {3615, 3960}, {3738, 52393}, {3904, 52375}, {4560, 56844}
X(66487) = trilinear quotient X(i)/X(j) for these (i,j): (7, 63202), (3025, 2624), (3904, 3678), (3960, 2594), (4453, 16577), (4560, 56422), (7192, 65228), (7199, 63778), (18155, 41226), (32679, 7144), (32680, 46649), (52375, 32675), (52393, 2222), (53314, 21741), (53525, 55210), (53527, 21794), (56844, 4559), (62746, 55), (63642, 1018)
See Sriram Panchapakesan and César Lozada, euclid 7324.
X(66488) lies on these lines: {514, 4581}, {693, 3669}, {927, 8687}, {961, 29162}, {3676, 28094}, {4017, 6002}, {4444, 60086}, {4462, 25981}, {4555, 6648}, {4560, 7180}, {4608, 30725}, {6548, 30724}, {7178, 7192}, {8707, 59117}, {15309, 51659}, {17096, 52619}, {17925, 29126}, {21222, 41299}, {27469, 51664}, {30719, 58860}, {36098, 37143}
X(66488) = cross-difference of every pair of points on the line X(2269)X(20967)
X(66488) = perspector of the circumconic through X(31643) X(64984)
X(66488) = pole of the line {4298, 49598} with respect to the incircle
X(66488) = pole of the line {3704, 3965} with respect to the polar circle
X(66488) = pole of the line {65, 1999} with respect to the Steiner circumellipse
X(66488) = pole of the line {3812, 39595} with respect to the Steiner inellipse
X(66488) = barycentric product X(i)*X(j) for these {i,j}: {7, 4581}, {85, 62749}, {278, 15420}, {513, 31643}, {514, 64984}, {693, 961}, {1086, 6648}, {1111, 36098}, {1220, 3676}, {1240, 43924}, {1357, 65282}, {1358, 8707}, {1365, 65281}, {2298, 24002}, {2363, 4077}, {3668, 57161}, {3669, 30710}, {7178, 14534}, {7180, 40827}, {7192, 60086}
X(66488) = trilinear product X(i)*X(j) for these {i,j}: {7, 62749}, {34, 15420}, {57, 4581}, {244, 6648}, {513, 64984}, {514, 961}, {649, 31643}, {1019, 60086}, {1086, 36098}, {1111, 8687}, {1169, 4077}, {1220, 3669}, {1240, 57181}, {1357, 65229}, {1358, 36147}, {1365, 65255}, {1427, 57161}, {1434, 57162}, {2298, 3676}, {2363, 7178}
X(66488) = trilinear quotient X(i)/X(j) for these (i,j): (2, 61223), (7, 3882), (34, 61205), (57, 53280), (65, 61168), (85, 53332), (226, 61172), (244, 52326), (278, 61226), (513, 2269), (514, 960), (522, 3965), (523, 21033), (649, 20967), (661, 40966), (693, 3687), (961, 101), (1019, 4267), (1086, 17420), (1111, 3910)
X(66488) = (X(7178), X(57079))-harmonic conjugate of X(7192)
See Sriram Panchapakesan and César Lozada, euclid 7324.
X(66489) lies on these lines: {2, 1577}, {4608, 20578}, {7192, 37772}, {62631, 66284}
X(66489) = trilinear product X(11073)*X(16755)
X(66489) = trilinear quotient X(i)/X(j) for these (i,j): (1019, 42623), (7192, 3179)
See Sriram Panchapakesan and César Lozada, euclid 7324.
X(66490) lies on these lines: {2, 1577}, {4608, 20579}, {7192, 37773}, {62632, 66284}
X(66490) = barycentric product X(i)*X(j) for these {i,j}: {7150, 7199}, {42624, 52619}
X(66490) = trilinear product X(i)*X(j) for these {i,j}: {7150, 7192}, {7199, 42624}, {11072, 16755}
X(66490) = trilinear quotient X(i)/X(j) for these (i,j): (7150, 4557), (7192, 41225)
See Antreas Hatzipolakis and César Lozada, euclid 7325.
X(66491) lies on these lines: {30, 974}, {3003, 44436}, {3580, 16237}
See Antreas Hatzipolakis and César Lozada, euclid 7325.
X(66492) lies on the cubic K500 and these lines: {64, 155}, {459, 56063}, {1073, 1993}, {1112, 1301}, {1539, 20123}, {6102, 14379}, {6793, 11064}, {13157, 64923}, {51491, 64505}
X(66492) = pole of the line {15291, 52948} with respect to the Stammler hyperbola
X(66492) = barycentric product X(i)*X(j) for these {i, j}: {64, 6148}, {253, 1511}, {340, 11589}, {1073, 14920}, {5664, 46639}, {19611, 35201}, {34403, 39176}, {44326, 52743}
X(66492) = trilinear product X(i)*X(j) for these {i, j}: {1073, 35201}, {1511, 2184}, {2155, 6148}, {11589, 52414}, {14920, 19614}, {19611, 39176}
X(66492) = trilinear quotient X(i)/X(j) for these (i, j): (1511, 610), (2155, 40355), (2184, 5627), (5664, 17898), (6148, 18750), (6149, 15291), (14920, 1895), (19614, 11079), (35201, 1249), (39176, 204), (52414, 10152)
See Antreas Hatzipolakis and Peter Moses, euclid 7333.
X(66493) lies on these lines: {2, 6120}, {140, 358}, {631, 6123}
See Antreas Hatzipolakis and Peter Moses, euclid 7333.
X(66494) lies on these lines: {2, 6122}, {140, 1137}, {631, 6125}
See Antreas Hatzipolakis and Peter Moses, euclid 7333.
X(66495) lies on these lines: {2, 6121}, {140, 1135}, {631, 6124}
See Antreas Hatzipolakis and Peter Moses, euclid 7333.
X(66496) lies on these lines: { }
See Antreas Hatzipolakis and Peter Moses, euclid 7333.
X(66497) lies on these lines: { }
See Tran Quang Hung and Peter Moses, euclid 7347.
X(66498) lies on these lines: {2, 53247}, {4, 53263}, {5, 690}, {12, 53563}, {30, 14270}, {113, 526}, {115, 804}, {140, 44826}, {235, 16230}, {247, 53577}, {351, 54395}, {403, 44427}, {512, 51548}, {523, 11799}, {550, 39477}, {858, 9185}, {1637, 15543}, {2450, 3566}, {2491, 5254}, {2797, 6132}, {6140, 62489}, {6334, 15760}, {6753, 16229}, {9189, 30739}, {9208, 21531}, {9409, 46985}, {11176, 51389}, {14271, 44882}, {14295, 59635}, {15367, 45147}, {43917, 55121}
X(66498) = midpoint of X(i) and X(j) for these {i,j}: {4, 53263}, {21731, 41079}
X(66498) = reflection of X(i) in X(j) for these {i,j}: {5, 39509}, {550, 39477}, {15543, 1637}, {34964, 59745}, {44826, 140}, {44882, 14271}, {53567, 5}
X(66498) = complement of X(53247)
X(66498) = X(2433)-Ceva conjugate of X(523)
X(66498) = crosspoint of X(2394) and X(52618)
X(66498) = crossdifference of every pair of points on line {1634, 5063}
X(66498) = {X(19912),X(41079)}-harmonic conjugate of X(21731)
See Antreas Hatzipolakis and Peter Moses, euclid 7356.
X(66499) lies on this line: {9214, 50687}
X(66499) = trilinear pole of line {30, 12900}
See Antreas Hatzipolakis and Peter Moses, euclid 7356.
X(66500) lies on this line: {2407, 61209}
X(66500) = trilinear pole of line {30, 9826}
See Antreas Hatzipolakis and Peter Moses, euclid 7357.
X(66501) lies on these lines: { }
X(66501) = trilinear pole of line {517, 58421}
See Antreas Hatzipolakis, David Nguyen and Peter Moses, euclid 7358.
X(66502) lies on these lines: {1, 88}, {121, 58453}, {1960, 2827}, {2800, 38604}, {2801, 59783}, {6246, 57300}, {6702, 6715}, {10774, 32557}, {11814, 34123}, {21290, 64012}, {38695, 46684}
X(66502) = midpoint of X(106) and X(214)
X(66502) = reflection of X(i) in X(j) for these {i,j}: {121, 58453}, {6702, 6715}
See David Nguyen and Juan José Isach Mayo, euclid 7366.
X(66503) lies on these lines: {7, 4076}, {1357, 16185}, {3667, 40617}, {5048, 37743}, {14027, 14112}, {52907, 60058}
X(66503) = crosspoint of X(7) and X(40617)
See David Nguyen and Juan José Isach Mayo, euclid 7366.
X(66504) lies on these lines: {7, 46649}, {900, 4542}, {952, 43909}, {2827, 3025}
See David Nguyen and Juan José Isach Mayo, euclid 7366.
X(66505) lies on these lines: {7, 6065}, {527, 60059}, {1358, 16184}, {3309, 40615}
X(66505) = crosspoint of X(7) and X(40615)
See Juan José Isach Mayo, euclid 7390.
X(66506) lies on these lines: {2, 59266}, {83, 40163}, {141, 1369}, {512, 5943}, {5133, 42421}, {7745, 20022}, {7804, 40379}, {8878, 24273}, {10191, 29012}, {39691, 59180}
X(66506) = crosspoint of X(8) and X(1031)
X(66506) = crosssum of X(39) and X(10329)
As a point on the Euler line, X(66507) has Shinagawa coefficients {-(E + F)^3 - 2 e S^2 + 3 (E +F) S^2, 8 e S^2 -(E + F) ((E +F)^2 + 13 S^2)}
See Juan José Isach Mayo, euclid 7390.
X(66507) lies on this line: {2, 3}
X(66508) = lies on these lines: {2, 3257}, {7, 655}, {11, 513}, {44, 3911}, {121, 3836}, {320, 2245}, {495, 56750}, {514, 1086}, {518, 1145}, {523, 43909}, {527, 4370}, {679, 8046}, {900, 4542}, {908, 3834}, {1279, 11700}, {1387, 14190}, {1647, 42084}, {3328, 53578}, {3942, 45234}, {4089, 46398}, {4129, 8287}, {4293, 36944}, {4530, 21129}, {4675, 9318}, {4957, 28851}, {4977, 7336}, {5218, 56758}, {6544, 40629}, {16597, 34587}, {16732, 23755}, {17237, 24318}, {17301, 60692}, {17455, 41801}, {20317, 26932}, {21127, 38375}, {22102, 39154}, {23766, 42754}, {24870, 61730}, {28217, 55376}, {30379, 39063}, {35023, 46973}, {35175, 36804}, {36275, 37651}, {37691, 51908}, {40622, 51664}, {52556, 53665}
X(66508) = midpoint of X(i) and X(j) for these {i,j}: {7, 37131}, {320, 3218}, {679, 8046}
X(66508) = reflection of X(i) in X(j) for these {i,j}: {44, 3911}, {908, 3834}, {14190, 1387}, {39154, 22102}
X(66508) = complement of X(3257)
X(66508) = complement of the isogonal conjugate of X(1635)
X(66508) = complement of the isotomic conjugate of X(3762)
X(66508) = medial-isogonal conjugate of X(4928)
X(66508) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 4928}, {2, 53571}, {6, 900}, {31, 3960}, {32, 3310}, {42, 59737}, {44, 513}, {56, 44902}, {58, 45674}, {101, 62630}, {213, 21894}, {512, 3936}, {513, 3834}, {514, 21241}, {519, 3835}, {649, 519}, {650, 5123}, {667, 16610}, {900, 141}, {902, 514}, {1015, 1647}, {1017, 6544}, {1023, 24003}, {1252, 6550}, {1319, 4885}, {1333, 59837}, {1404, 522}, {1635, 10}, {1639, 1329}, {1647, 116}, {1877, 46396}, {1919, 8610}, {1960, 2}, {2087, 11}, {2226, 33922}, {2251, 650}, {2279, 45328}, {2316, 59997}, {2325, 59971}, {2384, 33920}, {2423, 1387}, {3251, 16594}, {3264, 21262}, {3285, 523}, {3310, 56416}, {3572, 25351}, {3689, 20317}, {3733, 4395}, {3762, 2887}, {3911, 17072}, {3943, 31946}, {4120, 3454}, {4358, 21260}, {4432, 27854}, {4448, 20333}, {4530, 124}, {4730, 1211}, {4768, 21244}, {4775, 27751}, {4895, 3452}, {6187, 21198}, {6544, 121}, {8661, 6547}, {8756, 20316}, {9459, 6586}, {14407, 1213}, {14408, 34832}, {14418, 34823}, {14425, 2885}, {14584, 46397}, {16704, 512}, {17780, 27076}, {21758, 52537}, {21805, 4129}, {22086, 3}, {22356, 20315}, {22383, 60415}, {23344, 4422}, {23703, 21232}, {25426, 45342}, {30572, 17052}, {30573, 31844}, {30576, 52601}, {30725, 2886}, {30731, 3038}, {30939, 42327}, {32641, 22102}, {35092, 3259}, {37168, 30476}, {43924, 17067}, {45144, 53573}, {47420, 10017}, {52338, 46100}, {52556, 6085}, {52680, 4369}, {52963, 661}, {53528, 142}, {53532, 18589}, {60665, 45340}, {60865, 6373}, {60873, 9461}, {61210, 3035}, {62789, 46399}, {65867, 626}
X(66508) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 3960}, {7, 900}, {89, 23888}, {1111, 1647}, {7192, 6550}, {8046, 514}, {8047, 519}, {40218, 30725}, {41801, 53535}, {54452, 513}
X(66508) = X(66504)-cross conjugate of X(7)
X(66508) = X(i)-isoconjugate of X(j) for these (i,j): {1168, 1252}, {2149, 36590}, {2161, 9268}, {2222, 5548}, {2316, 52377}, {5376, 6187}, {23990, 57788}, {32665, 51562}, {32719, 36804}, {52925, 58955}
X(66508) = X(i)-Dao conjugate of X(j) for these (i,j): {44, 765}, {650, 36590}, {661, 1168}, {1639, 8}, {3310, 56416}, {3936, 1016}, {3960, 2}, {6544, 80}, {21198, 30578}, {35092, 51562}, {38984, 5548}, {40584, 9268}, {40612, 5376}
X(66508) = cevapoint of X(3259) and X(35092)
X(66508) = crosspoint of X(i) and X(j) for these (i,j): {2, 3762}, {514, 3911}
X(66508) = crosssum of X(i) and X(j) for these (i,j): {6, 32665}, {101, 2316}
X(66508) = crossdifference of every pair of points on line {2427, 23344}
X(66508) = barycentric product X(i)*X(j) for these {i,j}: {7, 51402}, {11, 41801}, {214, 1111}, {244, 1227}, {320, 1647}, {519, 4089}, {693, 53535}, {900, 4453}, {1086, 51583}, {2087, 20924}, {3762, 3960}, {3904, 30725}, {4358, 53546}, {4530, 17078}, {14425, 27836}, {16727, 40988}, {16732, 17191}, {17455, 23989}, {40218, 46398}, {53314, 65867}
X(66508) = barycentric quotient X(i)/X(j) for these {i,j}: {11, 36590}, {36, 9268}, {214, 765}, {244, 1168}, {320, 62536}, {654, 5548}, {900, 51562}, {1111, 57788}, {1227, 7035}, {1319, 52377}, {1647, 80}, {2087, 2161}, {3025, 62703}, {3218, 5376}, {3259, 56416}, {3762, 36804}, {3904, 4582}, {3960, 3257}, {4089, 903}, {4453, 4555}, {4530, 36910}, {6550, 66284}, {14027, 14584}, {14584, 46649}, {17191, 4567}, {17455, 1252}, {21758, 32665}, {30725, 655}, {41801, 4998}, {42084, 40172}, {51402, 8}, {51583, 1016}, {53314, 901}, {53525, 1320}, {53528, 2222}, {53535, 100}, {53537, 65573}, {53546, 88}, {56761, 40437}, {57434, 51984}
X(66509) lies on these lines: {1, 2885}, {2, 1280}, {10, 1387}, {11, 9458}, {100, 16594}, {121, 952}, {149, 30855}, {244, 58413}, {513, 3038}, {518, 50535}, {519, 11731}, {528, 11814}, {545, 1054}, {900, 3035}, {1120, 3616}, {1293, 38384}, {1358, 25605}, {1644, 3722}, {1698, 26727}, {2611, 65561}, {3952, 43055}, {4432, 35023}, {4997, 26073}, {5048, 60443}, {5121, 9053}, {5205, 5846}, {5853, 52907}, {6154, 24709}, {6557, 25567}, {6692, 59596}, {6788, 65742}, {9791, 62379}, {15325, 59669}, {17044, 27076}, {17259, 24669}, {17279, 65957}, {17719, 40480}, {20103, 62674}, {20315, 55317}, {20316, 36951}, {24988, 37691}, {26139, 43290}, {28530, 62297}, {30566, 44006}, {31235, 33115}, {33070, 37663}, {34824, 61158}, {35466, 37762}, {37828, 59704}, {52264, 59666}, {56176, 65993}, {58451, 62689}, {59506, 59583}, {59572, 59580}, {59599, 63621}
X(66509) = midpoint of X(i) and X(j) for these {i,j}: {1, 52871}, {2, 12035}, {121, 6789}, {1293, 38384}, {3699, 3756}, {5205, 51415}, {6788, 65742}
X(66509) = complement of X(3756)
X(66509) = X(i)-complementary conjugate of X(j) for these (i,j): {59, 12640}, {100, 5510}, {101, 40617}, {692, 40621}, {765, 2885}, {1110, 3161}, {1293, 11}, {2149, 63621}, {3680, 46100}, {5382, 141}, {15403, 3057}, {23990, 63622}, {27834, 116}, {31343, 124}, {32665, 62559}, {34080, 1086}, {36042, 1647}, {38266, 6547}, {38828, 4904}, {53647, 21252}, {59095, 24237}, {65173, 17059}
X(66509) = crossdifference of every pair of points on line {8659, 9259}
X(66509) = barycentric quotient X(66503)/X(40617)
X(66509) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3699, 3756}, {3035, 24003, 4422}, {3756, 12035, 3699}, {4997, 26073, 62221}, {24003, 62630, 3035}, {26139, 43290, 53534}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 7406.
X(66510) lies on these lines: {5, 275}, {30, 58468}, {140, 233}, {381, 3462}, {546, 6750}, {3628, 58417}, {3850, 7687}, {4993, 15780}, {5462, 32438}, {8955, 18538}, {13147, 32078}, {14635, 35717}, {15712, 60171}, {31389, 35311}
See Antreas Hatzipolakis, Antonio Roberto Martínez Fernández, and Francisco Javier García Capitán, euclid 7394.
X(66511) lies on these lines: {2, 187}, {5, 543}, {30, 7619}, {39, 9166}, {148, 64809}, {381, 7622}, {524, 547}, {538, 5055}, {597, 6722}, {620, 3363}, {671, 17005}, {754, 15597}, {1506, 7817}, {1656, 7610}, {2482, 37647}, {2548, 63107}, {2782, 14159}, {3055, 37350}, {3090, 7758}, {3091, 34504}, {3399, 5503}, {3545, 7618}, {3628, 7843}, {3815, 5461}, {4045, 8355}, {5056, 34511}, {5066, 63647}, {5071, 7615}, {5079, 34505}, {5459, 33474}, {5460, 33475}, {5485, 54645}, {6114, 33476}, {6115, 33477}, {6683, 11318}, {7486, 7759}, {7620, 61924}, {7746, 63065}, {7751, 61905}, {7764, 35018}, {7769, 52695}, {7781, 61919}, {7816, 33013}, {7844, 42849}, {7848, 11168}, {7849, 32999}, {7861, 32984}, {7870, 33002}, {7880, 41133}, {7883, 16922}, {7915, 8367}, {8370, 9167}, {8589, 8597}, {8598, 43457}, {8667, 61901}, {8716, 61925}, {9761, 22495}, {9763, 22496}, {9766, 61908}, {9830, 25561}, {10109, 52229}, {11159, 18584}, {11165, 18546}, {11317, 32456}, {12506, 14666}, {12812, 63924}, {13335, 26614}, {13468, 61898}, {14041, 55801}, {14061, 33694}, {14161, 64802}, {16509, 61910}, {19911, 64089}, {21358, 40332}, {31274, 35954}, {31455, 33006}, {31652, 33011}, {32457, 63083}, {32480, 39563}, {33274, 39590}, {39565, 41135}, {43620, 63025}, {47478, 53144}, {47599, 63941}, {51123, 61918}, {53141, 61930}, {53142, 61936}, {54750, 62895}, {55857, 63931}, {61886, 63935}, {61887, 63943}, {61889, 63947}, {61894, 63930}, {61897, 63946}, {61899, 63029}, {61912, 63955}
In the following, ℓ(⊥AB, P, θ) denotes the line obtained by rotating ℓ(⊥AB, P) by angle θ about P, where ℓ(⊥AB, P) denotes the line through a point P perpendicular to a line AB, and -π/2 < θ ≤ π/2 (counter-clockwise is the positive direction).
Let A1B1C1 and A2B2C2 be two triangles.
If there exists θ = θ0 such that the three lines ℓ(⊥B2C2, A1, θ0), ℓ(⊥C2A2, B1, θ0), ℓ(⊥A2B2, C1, θ0) concur in a point P1, then, the three lines ℓ(⊥B1C1, A2, -θ0), ℓ(⊥C1A1, B2, -θ0), ℓ(⊥A1B1, C2, -θ0) also concur in a point P2. Here, we call A1B1C1 and A2B2C2 the θ0-isologic triangles. We call P1 the isologic center of A1B1C1 with respect to A2B2C2, and P2 the isologic center of A2B2C2 with respect to A1B1C1, and θ0 the isologic angle of A1B1C1 and A2B2C2.
Let P be a point in the plane. Let A' = B1C1 ∩ ℓ(⊥PA2, P1, θ0). Define B', C' cyclically. Similarly, let A'' = B2C2 ∩ ℓ(⊥PA1, P2, -θ0). Define B'', C'' cyclically. Then,
Note that isologic centers are not necessarily uniquely determined. For example, let ABC be a triangle, and let A1B1C1 and A2B2C2 be the pedal triangles of X(15), X(16), respectively. Then, A1B1C1 and A2B2C2 have infinitely many isologic centers. This is because A1B1C1 and A2B2C2 are inversely similar. Also, if θ0 = 0 and P1 coincides with P2, then, the two isologic transversals of P always coincide, and the isologic conjugate of P is undefined.
If θ0 = 0, then, A1B1C1 and A2B2C2 are orthologic. In this case, we call Q the orthologic conjugate of P with respect to A1B1C1 and A2B2C2. For example, X(47805) is the orthologic conjugate of X(2) with respect to ABC and the excentral triangle. The orthologic conjugates of X(4), X(6), X(9) with respect to ABC and the excentral triangle were found by Peter Moses, Dec 14, 2024. The line P1P2 is the isologic polar.
If θ0 = π/2, then, A1B1C1 and A2B2C2 are parallelogic.
Based on notes by Keita Miyamoto, Dec 3, 2024, updated on Dec 23, 2024.
X(66512) lies on these lines: {4,513}, {25,47805}, {27,47763}, {28,57246}, {108,53702}, {186,523}, {242,514}, {273,57167}, {427,48164}, {451,48165}, {469,47759}, {522,45766}, {631,59973}, {649,17926}, {650,57166}, {1119,24002}, {1172,21007}, {2812,4086}, {3064,62748}, {3520,48390}, {3545,44923}, {3937,21666}, {4091,28623}, {4212,47824}, {4213,47821}, {4581,17924}, {4778,54239}, {4817,53150}, {4977,39534}, {6198,48307}, {6353,47804}, {6590,57043}, {6949,42769}, {7192,46107}, {7490,47762}, {7718,48324}, {8672,14618}, {8889,44429}, {13619,62492}, {16231,28225}, {17496,23187}, {20949,54314}, {26704,59073}, {35360,37966}, {38282,47803}, {47136,57224}, {47802,52299}, {48246,52252}, {48298,58313}
X(66512) = reflection of X(i) in X(j) for these {i,j}: {4, 44426}, {17496, 23187}, {59915, 7649}
X(66512) = polar conjugate of X(56188)
X(66512) = polar conjugate of the isotomic conjugate of X(17496)
X(66512) = X(108)-Ceva conjugate of X(4)
X(66512) = X(51662)-cross conjugate of X(21173)
X(66512) = X(i)-isoconjugate of X(j) for these (i,j): {3, 56194}, {48, 56188}, {71, 65260}, {72, 59006}, {184, 56252}, {228, 65275}, {906, 2051}, {1331, 34434}, {4574, 53083}, {4575, 51870}, {6516, 60817}, {22350, 53702}, {32656, 54121}
X(66512) = X(i)-Dao conjugate of X(j) for these (i,j): {136, 51870}, {1249, 56188}, {4391, 35518}, {5190, 2051}, {5521, 34434}, {21189, 57111}, {34589, 72}, {36103, 56194}, {53566, 22076}, {62605, 56252}
X(66512) = cevapoint of X(650) and X(21645).
X(66512) = crosspoint of X(i) and X(j) for these (i,j): {107, 57669}, {286, 653}, {8795, 54240}
X(66512) = crosssum of X(i) and X(j) for these (i,j): {228, 652}, {408, 520}, {418, 36054}, {1459, 22344}, {22368, 65102}, {22383, 23196}
X(66512) = trilinear pole of line {11998, 53566}
X(66512) = crossdifference of every pair of points on line {71, 216}
X(66512) = barycentric product X(i)*X(j) for these {i,j}: {4, 17496}, {19, 57244}, {92, 21173}, {108, 40624}, {278, 57091}, {514, 11109}, {572, 46107}, {648, 53566}, {653, 34589}, {1847, 58339}, {1897, 24237}, {2052, 23187}, {2973, 65203}, {2975, 17924}, {7649, 14829}, {11998, 18026}, {17074, 44426}, {17751, 17925}, {31623, 51662}, {36123, 64825}, {37558, 57215}, {38344, 52938}, {40149, 57125}
X(66512) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 56188}, {19, 56194}, {27, 65275}, {28, 65260}, {92, 56252}, {572, 1331}, {1474, 59006}, {2501, 51870}, {2975, 1332}, {6591, 34434}, {7649, 2051}, {11109, 190}, {11998, 521}, {14829, 4561}, {17074, 6516}, {17496, 69}, {17751, 52609}, {17924, 54121}, {17925, 20028}, {20986, 906}, {21173, 63}, {23187, 394}, {24237, 4025}, {34589, 6332}, {36123, 64824}, {37558, 65233}, {38344, 57241}, {40624, 35518}, {43925, 52150}, {46107, 57905}, {51662, 1214}, {52139, 4574}, {53566, 525}, {55323, 23067}, {55362, 23113}, {57091, 345}, {57125, 1812}, {57200, 53083}, {57244, 304}, {58339, 3692}
Contributed by Peter Moses, Dec 14, 2024.
X(66513) lies on these lines: {1,54249}, {6,513}, {111,2711}, {187,237}, {514,4435}, {523,4501}, {525,4976}, {650,1734}, {652,10581}, {654,17425}, {661,6004}, {693,24285}, {739,14665}, {826,48277}, {832,48022}, {840,59049}, {1019,1429}, {1480,41162}, {1499,4773}, {2291,12032}, {2724,32726}, {3247,21348}, {3287,3667}, {3709,48340}, {3723,48302}, {3731,21390}, {3800,48276}, {4079,61036}, {4132,63785}, {4378,16971}, {4380,57148}, {4394,48331}, {4724,45755}, {4776,37680}, {4782,16514}, {4784,16782}, {4785,23597}, {4839,29302}, {4979,22383}, {6185,30804}, {6586,48306}, {6590,48305}, {7180,51652}, {7927,48275}, {7950,50482}, {8693,35280}, {13401,36054}, {14996,47763}, {14997,47759}, {16489,21786}, {16785,48324}, {17023,23828}, {17117,20906}, {17494,53335}, {20295,24601}, {20963,54253}, {21005,50500}, {21127,65102}, {21261,30836}, {22155,48616}, {23892,41436}, {28478,58773}, {36274,48352}, {37633,47762}, {37675,47804}, {46385,50539}, {48026,48586}, {49293,65097}
X(66513) = midpoint of X(17494) and X(53335)
X(66513) = reflection of X(i) in X(j) for these {i,j}: {649, 8659}, {693, 24285}, {3063, 21007}, {4378, 24286}, {20980, 3063}, {24290, 650}
X(66513) = isogonal conjugate of X(32041)
X(66513) = isogonal conjugate of the anticomplement of X(61076)
X(66513) = isogonal conjugate of the isotomic conjugate of X(4762)
X(66513) = X(i)-Ceva conjugate of X(j) for these (i,j): {100, 40732}, {3423, 3271}, {4784, 54279}, {8693, 6}, {35280, 37580}
X(66513) = X(i)-isoconjugate of X(j) for these (i,j): {1, 32041}, {2, 37138}, {37, 51563}, {75, 8693}, {99, 60677}, {100, 27475}, {101, 59255}, {190, 1002}, {644, 62784}, {651, 60668}, {658, 59269}, {664, 40779}, {668, 2279}, {672, 53227}, {673, 63743}, {919, 63231}, {1461, 59260}, {3263, 36138}, {3699, 42290}, {3799, 63882}, {3939, 62946}, {3952, 42302}, {4033, 51443}, {4554, 60673}, {35338, 42310}, {36086, 62622}, {59193, 65195}
X(66513) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 32041}, {206, 8693}, {1015, 59255}, {2276, 4505}, {8054, 27475}, {32664, 37138}, {35508, 59260}, {38980, 63231}, {38986, 60677}, {38989, 62622}, {38991, 60668}, {39012, 3263}, {39025, 40779}, {40589, 51563}, {40617, 62946}, {55053, 1002}, {55059, 321}, {61076, 76}, {62554, 53227}
X(66513) = crosspoint of X(i) and X(j) for these (i,j): {6, 8693}, {100, 14621}, {651, 52013}, {54440, 60721}
X(66513) = crosssum of X(i) and X(j) for these (i,j): {2, 4762}, {37, 4824}, {390, 650}, {513, 2276}, {514, 29571}, {518, 33570}, {3700, 4733}, {3797, 62552}
X(66513) = crossdifference of every pair of points on line {2, 210}
X(66513) = barycentric product X(i)*X(j) for these {i,j}: {1, 4724}, {6, 4762}, {57, 45755}, {58, 4804}, {244, 54440}, {513, 1001}, {514, 2280}, {522, 1471}, {647, 31926}, {649, 4384}, {650, 5228}, {657, 42309}, {661, 60721}, {663, 40719}, {665, 63236}, {667, 4441}, {693, 60722}, {739, 45338}, {798, 60735}, {840, 45322}, {1019, 59207}, {1893, 23189}, {1919, 21615}, {2223, 63221}, {2310, 65187}, {3063, 60720}, {3669, 37658}, {3696, 3733}, {3737, 42289}, {3886, 43924}, {3900, 59242}, {4044, 57129}, {4702, 23345}, {6185, 33570}, {6591, 23151}, {8693, 61076}, {28809, 57181}, {54251, 56705}, {58322, 59217}
X(66513) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 32041}, {31, 37138}, {32, 8693}, {58, 51563}, {105, 53227}, {513, 59255}, {649, 27475}, {663, 60668}, {665, 62622}, {667, 1002}, {798, 60677}, {1001, 668}, {1471, 664}, {1919, 2279}, {2223, 63743}, {2254, 63231}, {2280, 190}, {3063, 40779}, {3669, 62946}, {3675, 63223}, {3696, 27808}, {3789, 4505}, {3900, 59260}, {4384, 1978}, {4441, 6386}, {4724, 75}, {4762, 76}, {4804, 313}, {5228, 4554}, {8641, 59269}, {31926, 6331}, {33570, 4437}, {37658, 646}, {40719, 4572}, {40732, 3799}, {42309, 46406}, {43924, 62784}, {45338, 35543}, {45755, 312}, {54440, 7035}, {57129, 42302}, {57181, 42290}, {59207, 4033}, {59242, 4569}, {60721, 799}, {60722, 100}, {60735, 4602}, {63236, 36803}
X(66513) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {649, 663, 665}, {649, 8632, 667}, {667, 8632, 8657}, {4790, 7252, 57181}
Contributed by Peter Moses, Dec 14, 2024.
X(66514) lies on these lines: {2,30804}, {9,513}, {104,43079}, {241,514}, {392,3250}, {647,3800}, {649,3309}, {667,3900}, {812,54264}, {885,40127}, {1024,42884}, {1436,61040}, {1635,14077}, {2256,21007}, {2291,2725}, {2516,48344}, {2530,47966}, {2726,59049}, {2826,47766}, {3239,59590}, {3667,4130}, {3887,42322}, {4521,59979}, {4790,42325}, {5316,47760}, {5744,47762}, {8659,48329}, {8732,24002}, {9001,22108}, {24562,48060}, {27013,53357}, {40551,47803}, {48026,48591}, {57167,62775}
X(66514) = midpoint of X(i) and X(j) for these {i,j}: {4130, 17410}, {43042, 47890}
X(66514) = complement of X(30804)
X(66514) = complement of the isotomic conjugate of X(37223)
X(66514) = X(i)-complementary conjugate of X(j) for these (i,j): {37223, 2887}, {39959, 21252}, {52013, 17059}
X(66514) = crosspoint of X(i) and X(j) for these (i,j): {2, 37223}, {100, 39273}
X(66514) = crosssum of X(i) and X(j) for these (i,j): {513, 40131}, {650, 3242}
X(66514) = crossdifference of every pair of points on line {55, 614}
X(66514) = {X(650),X(665)}-harmonic conjugate of X(905)
See Tran Viet Hung and Juan José Isach Mayo, euclid 7416.
X(66515) lies on these lines: {1, 6}, {2, 165}, {3, 2951}, {5, 10268}, {7, 1125}, {8, 25101}, {10,390}, {21, 3062}, {31, 17022}, {35, 16293}, {36, 9814}, {40,5806}, {46, 25542}, {55, 7308}, {56, 60937}, {57, 3683}, {63,5284}, {100, 36835}, {104, 46947}, {105, 14439}, {140, 10270}, {142,3624}, {144, 3616}, {145, 43179}, {191, 60974}, {200, 1621}, {210,10389}, {214, 1156}, {333, 35613}, {344, 3883}, {354, 3929}, {355,61511}, {386, 4343}, {406, 1890}, {442, 42356}, {443, 63413}, {452,5691}, {474, 11495}, {480, 3295}, {496, 6067}, {515, 5817}, {517,16857}, {519, 5686}, {527, 17561}, {528, 19875}, {551, 5850}, {612,62875}, {614, 46901}, {673, 4432}, {740, 16833}, {748, 968}, {846,5272}, {936, 4326}, {938, 18249}, {943, 42015}, {946, 5759}, {962,17554}, {971, 3576}, {978, 4335}, {993, 4321}, {997, 5785}, {999,36973}, {1011, 35289}, {1282, 28345}, {1319, 60909}, {1376,31508}, {1385, 5779}, {1387, 6068}, {1420, 8581}, {1445,3339}, {1456, 59215}, {1471, 4328}, {1479, 1698}, {1519,6878}, {1697, 15837}, {1707, 26102}, {1709, 10857}, {1721, 56775}, {1738, 31183}, {1750, 13615}, {1764, 16345}, {1768,11407}, {1836, 41867}, {2093, 8257}, {2293, 56809}, {2346,4866}, {2478, 7989}, {2551, 51784}, {2646, 60910}, {2771,18443}, {2801, 16858}, {2802, 9623}, {2975, 60966}, {3059,5044}, {3158, 3740}, {3174, 5506}, {3219, 4666}, {3306,62838}, {3333, 31445}, {3336, 60985}, {3337, 60968}, {3338,60990}, {3340, 41712}, {3358, 7992}, {3485, 52819}, {3486,10392}, {3487, 61003}, {3523, 43151}, {3579, 16853}, {3601,5696}, {3612, 5784}, {3622, 17120}, {3625, 12630}, {3632,24393}, {3634, 30332}, {3636, 60983}, {3647, 16133}, {3649,63277}, {3663,16020}, {3671, 60939}, {3678, 34784}, {3679,5853}, {3681, 62856}, {3685, 4384}, {3715, 3748}, {3720,62812}, {3729, 16823}, {3742, 3928}, {3744, 7322}, {3745,25430}, {3746, 6600}, {3753, 17542}, {3755, 37650}, {3757,30568}, {3795, 36634}, {3814, 7679}, {3826, 4187}, {3828,38201}, {3868, 20116}, {3869, 30329}, {3870, 27065}, {3874,11025}, {3876, 30628}, {3877, 11224}, {3878, 7672}, {3886,17277}, {3897, 17543}, {3916, 60955}, {3923, 25590}, {3925,9580}, {3984, 62870}, {4002, 63138}, {4189, 43178}, {4208,51118}, {4297, 11106}, {4307, 29571}, {4313, 12447}, {4349,5308}, {4356, 5222}, {4383, 37553}, {4385, 56085}, {4413, 35445}, {4414, 62695}, {4421, 58451}, {4640, 5437}, {4652,5550}, {4668, 41709}, {4669, 50839}, {4676, 10436}, {4677, 59414}, {4679, 5219}, {4684, 54280}, {4759, 60960}, {4853,5260}, {4855, 25722}, {4859, 24248}, {4888, 24695}, {4900,55920}, {4915, 9708}, {5018, 21446}, {5047, 5250}, {5085,35273}, {5131, 28534}, {5159, 47470}, {5204, 31391}, {5218, 5316}, {5231, 54357}, {5257, 5819}, {5267, 8544}, {5268, 8616}, {5269, 44307}, {5273, 11019}, {5281, 20103}, {5287, 17127}, {5290, 8232}, {5296, 19868}, {5325, 24477}, {5432, 20196}, {5438, 15587}, {5439, 54290}, {5493, 11024}, {5541,6594}, {5563, 60965}, {5587, 34746}, {5603, 21168}, {5657,38130}, {5726, 61015}, {5735, 41012}, {5745, 26105}, {5750,41325}, {5762, 5886}, {5766, 19843}, {5790, 38179}, {5805,6675}, {5832, 23708}, {5833, 26363}, {5843, 38028}, {5846, 41313}, {5847, 29573}, {5851, 34123}, {5852, 51110}, {5856,16173}, {5857, 37701}, {5880, 7483}, {5918, 10855}, {6173,15670}, {6210, 16850}, {6684, 17559}, {6690, 30827}, {6702,20119}, {6744, 54398}, {6763, 61005}, {6872, 24564}, {6883,30503}, {6910, 16209}, {6986, 12565}, {7162, 42470}, {7262,62820}, {7288, 60992}, {7489, 37611}, {7611, 38029}, {7671, 10176}, {7676, 25440}, {7678, 25639}, {7688, 50204}, {7982,16860}, {8056, 17596}, {8582, 9588}, {8728, 41869}, {9589,17552}, {9614, 19854}, {9624, 20330}, {9791, 17304}, {9843,62775}, {9955, 31671}, {10004, 17106}, {10058, 15015}, {10165, 21151}, {10175, 38149}, {10198, 60943}, {10200, 61019}, {10246,51516}, {10383, 30223}, {10434, 16058}, {10442, 10455}, {10578,21060}, {10624, 19855}, {10856, 25514}, {10882, 28383}, {10886,37370}, {10916, 31446}, {11113, 59389}, {11230, 38107}, {11231,38121}, {11375, 60883}, {11376, 60919}, {11496, 61122}, {11522,60959}, {11531, 16859}, {12437, 45085}, {12512, 17580}, {12526,54392}, {12669, 31803}, {12699, 50205}, {12717, 16849}, {12730,15863}, {13405, 18228}, {13745, 29181}, {15006, 63146}, {15726,16370}, {15733, 59337}, {15808, 30340}, {15908, 17527}, {15950,61007}, {16112, 17614}, {16189, 17544}, {16287, 61124}, {16357,62320}, {16367, 35291}, {16408, 35242}, {16593, 32784}, {16825, 17151}, {16834, 27484}, {16842, 63469}, {16863, 31663}, {16865,19861}, {17021, 30653}, {17123, 17594}, {17125, 54390}, {17140,25734}, {17185, 35621}, {17259, 49484}, {17261, 49446}, {17282,24723}, {17284, 50295}, {17308, 20533}, {17313, 28570}, {17349,49495}, {17355, 39581}, {17556, 61264}, {17582, 31730}, {17588,43169}, {17687, 48900}, {17718, 31142}, {18222, 37551}, {18393,60978}, {18398, 58564}, {18421, 37787}, {18481, 50243}, {19225,31996}, {19862, 60996}, {19863, 25513}, {19872, 61001}, {19876,31159}, {19883, 59374}, {20059, 43180}, {20835, 41860}, {21154,21164}, {21165, 59386}, {21616, 21617}, {21628, 37423}, {21677,37723}, {22793, 50726}, {24199, 24280}, {24325, 51052}, {24349,25728}, {24392, 49736}, {24541, 60895}, {24646, 52790}, {24647,52791}, {24697, 47595}, {24703, 25525}, {24929, 42014}, {24953,50443}, {24987, 37714}, {25557, 60933}, {26446, 38113}, {27475,50300}, {27549, 49466}, {28363, 45047}, {28503, 36911}, {28516,55998}, {29576, 41845}, {29598, 38187}, {29602, 50284}, {29628,62392}, {30144, 30284}, {30147, 60954}, {30315, 37162}, {30318,51111}, {30326, 54348}, {30343, 62874}, {30571, 39980}, {31156,34628}, {31162, 50202}, {31249, 59491}, {31672, 50241}, {33761,62833}, {35595, 61155}, {36277, 37633}, {37224, 59340}, {37244,59320}, {37270, 41853}, {37569, 54203}, {37617, 46943}, {37712,38154}, {38046, 41312}, {38047, 49740}, {38049, 59405}, {38101,53620}, {38126, 63143}, {38137, 61269}, {38158, 59387}, {38194,59406}, {38216, 59415}, {38217, 59416}, {38318, 54447}, {39586,49482}, {40719, 52511}, {40966, 63511}, {41228, 62829}, {41857,51706}, {41859, 50206}, {43173, 56769}, {44675, 60997}, {45043,59419}, {45834, 56203}, {48830, 59408}, {49451, 60731}, {49511,51190}, {49598, 58398}, {50111, 51053}, {50834, 51103}, {50835,51071}, {50837, 51108}, {50838, 51093}, {50840, 51098}, {50996,51005}, {50997, 51003}, {51006, 51191}, {51066, 51102}, {51099,51105}, {51409, 60982}, {51700, 61596}, {52050, 63264}, {52457,60923}, {52682, 61595}, {53052, 63137}, {53058, 60935}, {54422,61024}, {60949, 62858}, {63292, 63384}
X(66515) = midpoint of X(i) and X(j) for these {i,j}: {2, 52653}, {9, 38316}, {165, 24644}, {390, 59413}, {5603,21168}, {5686, 8236}, {5692, 41861}, {6172, 11038}, {10246,51516}, {10384, 46917}, {15015, 51768}, {30331, 38210}, {38052,50836}, {38054, 51090}, {38057, 47357}
X(66515) = reflection of X(i) in X(j) for these {i,j}: {1, 38316}, {2, 38059}, {7, 38054}, {8, 38210}, {165, 21153}, {1699,38037}, {3576, 38031}, {3679, 38057}, {4677, 59414}, {5587, 38108}, {5657, 38130}, {5790, 38179}, {5886, 38043}, {11038,551}, {16173, 38060}, {16475, 38048}, {21151, 10165}, {25055,38025}, {26446, 38113}, {37701, 38061}, {37712, 38154}, {38024,25055}, {38030, 38028}, {38036, 5886}, {38052, 2}, {38054,1125}, {38057, 60986}, {38107, 11230}, {38121, 11231}, {38137, 61269}, {38149, 10175}, {38151, 10171}, {38201, 3828}, {38316,1001}, {41861, 10177}, {45043, 59419}, {50836, 52653}, {53620, 38101}, {59372, 38053}, {59374, 19883}, {59385, 3817}, {59387,38158}, {59405, 38049}, {59406, 38194}, {59412, 38204}, {59413, 10}, {59415, 38216}, {59416, 38217}, {63143, 38126}
Let T = (t1:t2:t3), P = (p1:p2:p3), Q(T, P) = orthologic conjugate of P wrt ABC and antipedal triangle of T. Then
Q(T, P) = c^2*(a^2 - b^2 + c^2)*p1*p2*t1 - b^2*(a^2 + b^2 - c^2)*p1*p3*t1 - 2*a^2*(b - c)*(b + c)*p2*p3*t1 - c^2*(a^2 + b^2 - c^2)*p1^2*t2 - 2*a^2*c^2*p1*p2*t2 - a^2*(a^2 + b^2 - c^2)*p1*p3*t2 - 2*a^4*p2*p3*t2 + b^2*(a^2 - b^2 + c^2)*p1^2*t3 + a^2*(a^2 - b^2 + c^2)*p1*p2*t3 + 2*a^2*b^2*p1*p3*t3 + 2*a^4*p2*p3*t3::
Contributed by Peter Moses, Dec 15, 2024.
X(66516) lies on these lines: {7,513}, {239,514}, {663,3676}, {693,3309}, {1444,57246}, {1459,17096}, {2320,14154}, {3126,47824}, {3887,47780}, {3900,17166}, {4040,20520}, {4367,8638}, {4374,57091}, {4379,54264}, {4435,21104}, {4453,45695}, {4897,6362}, {5744,47762}, {6003,46402}, {14330,28878}, {20295,42325}, {21390,38379}, {23828,35355}, {31019,47759}, {40551,47821}, {43041,48151}, {43349,54440}, {43932,59936}, {47694,50556}
X(66516) = midpoint of X(7192) and X(53357)
X(66516) = X(43349)-anticomplementary conjugate of X(69)
X(66516) = X(6183)-Ceva conjugate of X(7)
X(66516) = X(692)-isoconjugate of X(60227)
X(66516) = X(1086)-Dao conjugate of X(60227)
X(66516) = crosspoint of X(190) and X(42310)
X(66516) = crossdifference of every pair of points on line {42, 8012}
X(66516) = barycentric product X(i)*X(j) for these {i,j}: {514, 14828}, {693, 62797}, {4025, 37389}
X(66516) = barycentric quotient X(i)/X(j) for these {i,j}: {514, 60227}, {14828, 190}, {37389, 1897}, {62797, 100}
Contributed by Peter Moses, Dec 15, 2024.
X(66517) lies on these lines: {8,513}, {522,4318}, {900,4057}, {2827,20293}, {3616,59972}, {3667,4063}, {4394,57168}, {4397,30198}, {4926,48330}, {4962,7253}, {6615,48243}, {8689,53343}, {23838,25005}, {24457,48246}, {28183,48304}, {34758,48390}, {43728,63163}, {56940,61040}
X(66517) = X(56145)-anticomplementary conjugate of X(33650)
X(66517) = crossdifference of every pair of points on line {2347, 17053}
Contributed by Peter Moses, Dec 15, 2024.
X(66518) lies on these lines: {10,513}, {514,4581}, {522,1324}, {523,48328}, {3667,6211}, {4063,57091}, {4448,59726}, {4807,6003}, {4962,48063}, {6006,50344}, {6615,47817}, {7081,47805}, {16824,48320}, {30115,48307}, {33138,47824}, {47845,48293}, {48283,49682}
X(66518) = midpoint of X(i) and X(j) for these {i,j}: {4063, 57091}, {4581, 50346}
Contributed by Peter Moses, Dec 15, 2024.
X(66519) lies on these lines: {11,513}, {108,43933}, {514,11715}, {522,46684}, {659,14667}, {676,1421}, {900,1768}, {2804,13205}, {2826,22775}, {2829,42455}, {6264,6366}, {11700,21201}, {15252,24457}, {53298,53878}, {53321,64440}
X(66519) = crossdifference of every pair of points on line {2427, 13006}
Contributed by Peter Moses, Dec 15, 2024.
X(66520) lies on these lines: {2,44426}, {20,513}, {22,47805}, {100,44710}, {280,61040}, {347,24002}, {521,17496}, {522,663}, {523,2071}, {1331,41906}, {1370,48164}, {2804,65099}, {3091,16228}, {3151,47759}, {3153,62492}, {3832,44923}, {4025,8058}, {4296,48281}, {4391,57101}, {6360,45290}, {7361,63744}, {7396,44429}, {7488,48383}, {7560,47763}, {8062,14414}, {9538,48302}, {10565,47804}, {14304,48243}, {16049,57246}, {20222,64362}, {20298,47995}, {27086,44428}, {28623,57108}, {37437,42769}, {42455,48165}, {57072,57089}
X(66520) = midpoint of X(20294) and X(59926)
X(66520) = reflection of X(i) in X(j) for these {i,j}: {4391, 57101}, {7253, 57241}, {44426, 59973}
X(66520) = anticomplement of X(44426)
X(66520) = anticomplement of the isogonal conjugate of X(36059)
X(66520) = anticomplement of the isotomic conjugate of X(6516)
X(66520) = isotomic conjugate of the polar conjugate of X(57166)
X(66520) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {3, 33650}, {48, 37781}, {59, 20293}, {73, 3448}, {77, 21293}, {108, 5906}, {109, 4}, {163, 92}, {184, 39351}, {222, 150}, {255, 34188}, {603, 149}, {651, 21270}, {653, 317}, {664, 11442}, {692, 5942}, {906, 329}, {1214, 21294}, {1262, 46400}, {1331, 3436}, {1332, 21286}, {1409, 21221}, {1414, 20242}, {1415, 5905}, {1461, 56927}, {1813, 69}, {2149, 4391}, {4558, 20245}, {4565, 17220}, {4575, 3869}, {4587, 54113}, {6516, 6327}, {6517, 1370}, {23067, 1330}, {24027, 521}, {32651, 52673}, {32656, 144}, {32660, 2}, {32661, 63}, {32669, 48380}, {32674, 6515}, {32739, 30694}, {36040, 5081}, {36059, 8}, {40152, 13219}, {44717, 20295}, {52378, 850}, {52411, 4440}, {52610, 2893}, {65164, 315}, {65179, 21279}, {65233, 21287}, {65296, 21285}, {65299, 21277}, {65300, 21276}
X(66520) = X(6516)-Ceva conjugate of X(2)
X(66520) = X(108)-isoconjugate of X(57672)
X(66520) = X(i)-Dao conjugate of X(j) for these (i,j): {38983, 57672}, {40626, 57838}
X(66520) = crosspoint of X(664) and X(31623)
X(66520) = crosssum of X(i) and X(j) for these (i,j): {513, 64522}, {663, 1409}
X(66520) = crossdifference of every pair of points on line {800, 1400}
X(66520) = barycentric product X(i)*X(j) for these {i,j}: {69, 57166}, {412, 6332}, {3562, 4391}, {35518, 38860}
X(66520) = barycentric quotient X(i)/X(j) for these {i,j}: {412, 653}, {652, 57672}, {3562, 651}, {6332, 57838}, {38860, 108}, {57166, 4}
X(66520) = {X(44426),X(59973)}-harmonic conjugate of X(2)
Contributed by Peter Moses, Dec 15, 2024.
X(66521) lies on these lines: {2,44426}, {4,44429}, {25,513}, {230,231}, {427,16228}, {905,8760}, {1829,48332}, {3063,45786}, {3737,51644}, {4232,47805}, {4233,57246}, {6353,47804}, {6995,48164}, {6997,44923}, {7713,48335}, {11363,48327}, {16231,44432}, {20621,50933}, {39534,47799}, {44428,47798}, {47757,54239}, {47797,59915}
X(66521) = {X(16228),X(47802)}-harmonic conjugate of X(427)
Contributed by Peter Moses, Dec 15, 2024.
X(66522) lies on these lines: {31,513}, {58,48320}, {81,48281}, {171,47824}, {238,47821}, {595,48352}, {649,834}, {661,22384}, {663,22160}, {748,47822}, {750,47823}, {985,4817}, {1451,43052}, {1468,4378}, {1621,48307}, {2254,6003}, {2280,3063}, {2605,65703}, {3915,4775}, {4017,18108}, {4581,48106}, {5276,21390}, {17124,48216}, {17125,48197}, {20949,33295}, {21761,47918}, {21791,57171}, {23752,48101}, {48283,62821}, {48302,62849}
X(66522) = X(100)-isoconjugate of X(45964)
X(66522) = X(8054)-Dao conjugate of X(45964)
X(66522) = crossdifference of every pair of points on line {10, 17451}
X(66522) = barycentric product X(i)*X(j) for these {i,j}: {514, 5135}, {649, 37670}
X(66522) = barycentric quotient X(i)/X(j) for these {i,j}: {649, 45964}, {5135, 190}, {37670, 1978}
Contributed by Peter Moses, Dec 15, 2024.
X(66523) lies on these lines: {37,513}, {649,50355}, {650,667}, {661,4367}, {665,830}, {798,38469}, {814,6590}, {1019,24290}, {3309,4790}, {3669,14349}, {3700,6002}, {3777,4813}, {4140,4581}, {4435,48322}, {4832,35057}, {16785,48324}, {21438,21613}, {23882,47678}, {28475,47881}, {29051,48276}, {29170,48269}, {29246,49293}, {30836,31250}, {32779,47762}, {32849,47763}, {48022,50353}, {50342,50541}
X(66523) = crosspoint of X(100) and X(40776)
X(66523) = crosssum of X(513) and X(40750)
X(66523) = crossdifference of every pair of points on line {238, 846}
Contributed by Peter Moses, Dec 15, 2024.
X(66524) lies on these lines: {2,6008}, {44,513}, {55,667}, {57,1022}, {100,6017}, {105,2384}, {165,3309}, {354,4083}, {522,4773}, {523,47768}, {665,29350}, {812,45313}, {824,45679}, {891,54249}, {900,4944}, {901,52985}, {905,48011}, {918,4786}, {1002,43928}, {1019,47921}, {1639,3667}, {2291,2718}, {2487,48398}, {2490,48269}, {2527,6590}, {2529,48275}, {2786,47770}, {3004,48605}, {3063,21786}, {3700,4962}, {3748,48330}, {3798,47890}, {3835,45675}, {3887,42322}, {3900,58140}, {4025,48095}, {4041,58143}, {4106,4928}, {4369,48125}, {4380,4885}, {4705,58146}, {4729,58138}, {4730,58141}, {4750,30520}, {4752,6014}, {4762,47762}, {4763,4785}, {4765,28147}, {4776,44567}, {4777,14435}, {4778,47876}, {4820,28221}, {4822,58180}, {4834,6050}, {4841,28229}, {4860,14421}, {4895,58136}, {4897,11068}, {4905,53056}, {4926,4984}, {4932,47962}, {4940,26853}, {4976,28161}, {4977,47883}, {5273,20317}, {5338,18344}, {6002,48559}, {6006,52593}, {6009,21183}, {6084,47758}, {7192,47920}, {7234,22314}, {7653,47672}, {7658,23729}, {8027,9010}, {8678,58144}, {10196,28867}, {11051,61238}, {14422,48332}, {14425,28217}, {14838,48128}, {15931,39227}, {16892,48132}, {17069,47960}, {17494,48133}, {20295,31287}, {21196,49281}, {21301,26040}, {23813,24924}, {23880,48565}, {23882,48566}, {25577,35310}, {25666,48016}, {26777,48107}, {27115,48079}, {27486,28894}, {28175,45745}, {28195,47878}, {28205,47873}, {28213,49293}, {28250,28255}, {28840,48560}, {28846,47884}, {28882,45674}, {28898,47771}, {29078,48219}, {29150,48561}, {29178,45664}, {29328,47803}, {29370,48222}, {31150,47763}, {31207,48114}, {38347,61674}, {39386,47764}, {42316,59239}, {43067,48008}, {43079,53608}, {45326,47786}, {46919,47756}, {47755,47892}, {47785,47880}, {47882,48558}, {47914,48000}, {47915,48003}, {47919,48101}, {47965,48064}, {48099,58179}, {48111,63207}, {48189,48220}, {48322,58142}, {48327,58139}, {48329,63211}, {48557,53333}, {50500,50510}, {50501,50512}, {50504,50515}, {50507,58182}, {55163,59921}
X(66524) = isogonal conjugate of X(65235)
X(66524) = X(39960)-complementary conjugate of X(116)
X(66524) = X(i)-Ceva conjugate of X(j) for these (i,j): {4752, 16666}, {56150, 3248}, {65235, 1}
X(66524) = X(i)-isoconjugate of X(j) for these (i,j): {1, 65235}, {2, 6014}, {6, 53659}, {100, 39963}, {101, 36588}, {109, 56075}, {190, 41436}, {651, 4900}, {662, 56159}, {692, 40029}, {901, 36915}, {4638, 36924}
X(66524) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 65235}, {9, 53659}, {11, 56075}, {1015, 36588}, {1084, 56159}, {1086, 40029}, {8054, 39963}, {32664, 6014}, {38979, 36915}, {38991, 4900}, {52593, 693}, {55053, 41436}
X(66524) = crosspoint of X(i) and X(j) for these (i,j): {1, 65235}, {89, 100}
X(66524) = crosssum of X(i) and X(j) for these (i,j): {45, 513}, {514, 5316}, {650, 7962}
X(66524) = crossdifference of every pair of points on line {1, 3689}
X(66524) = barycentric product X(i)*X(j) for these {i,j}: {1, 6006}, {75, 8656}, {89, 52593}, {513, 3241}, {514, 16670}, {522, 13462}, {649, 30829}, {650, 64142}, {1019, 4029}, {3669, 62706}, {4982, 47947}, {7192, 21870}, {17924, 23073}
X(66524) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 53659}, {6, 65235}, {31, 6014}, {512, 56159}, {513, 36588}, {514, 40029}, {649, 39963}, {650, 56075}, {663, 4900}, {667, 41436}, {1635, 36915}, {3241, 668}, {3251, 36924}, {4029, 4033}, {4982, 65161}, {6006, 75}, {8656, 1}, {13462, 664}, {16670, 190}, {21870, 3952}, {23073, 1332}, {30829, 1978}, {52593, 4671}, {62706, 646}, {64142, 4554}
X(66524) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {649, 650, 4790}, {649, 4394, 650}, {650, 4790, 48026}, {654, 17410, 4790}, {661, 2516, 650}, {667, 50499, 4162}, {4106, 31286, 31250}, {4380, 27013, 4885}, {4834, 6050, 50508}, {4897, 11068, 48087}, {17069, 48060, 47960}, {26853, 31209, 4940}, {50501, 50512, 50517}, {50504, 58145, 50515}
Contributed by Peter Moses, Dec 15, 2024.
X(66525) lies on these lines: {1,57246}, {58,513}, {86,23790}, {284,21007}, {512,1326}, {656,3737}, {757,57059}, {1019,4017}, {4040,65575}, {4653,48307}, {4658,48281}, {7180,7252}, {42741,48306}, {50346,57093}, {51646,57239}, {57125,57148}
X(66525) = isogonal conjugate of the isotomic conjugate of X(57248)
X(66525) = X(109)-Ceva conjugate of X(58)
X(66525) = X(i)-isoconjugate of X(j) for these (i,j): {1018, 55090}, {4551, 55091}
X(66525) = X(4560)-Dao conjugate of X(35519)
X(66525) = crosspoint of X(i) and X(j) for these (i,j): {109, 55101}, {4565, 52558}
X(66525) = crosssum of X(i) and X(j) for these (i,j): {522, 55091}, {523, 21674}, {3700, 8013}, {4171, 21704}
X(66525) = crossdifference of every pair of points on line {1213, 2294}
X(66525) = barycentric product X(i)*X(j) for these {i,j}: {1, 57189}, {6, 57248}, {57, 57093}, {81, 50346}, {109, 40625}, {110, 24224}, {651, 64416}, {1019, 5260}, {1509, 58302}, {3733, 55095}, {4560, 55101}, {7192, 55100}, {7252, 55096}
X(66525) = barycentric quotient X(i)/X(j) for these {i,j}: {3733, 55090}, {5260, 4033}, {7252, 55091}, {24224, 850}, {40625, 35519}, {50346, 321}, {55095, 27808}, {55100, 3952}, {55101, 4552}, {57093, 312}, {57189, 75}, {57248, 76}, {58302, 594}, {64416, 4391}
X(66525) = {X(57093),X(57189)}-harmonic conjugate of X(50346)
Contributed by Peter Moses, Dec 15, 2024.
X(66526) lies on these lines: {59,513}, {60,37019}, {100,2742}, {101,649}, {109,663}, {110,1019}, {517,7291}, {650,64616}, {840,59021}, {934,2720}, {999,1318}, {1155,11349}, {1290,58974}, {1292,6099}, {1878,57654}, {2078,8647}, {2222,53243}, {2283,57105}, {2340,5537}, {4511,6001}, {4588,53887}, {5057,6996}, {5091,5222}, {5126,26884}, {10426,37541}, {13589,14513}, {25268,39185}, {34921,58104}, {38674,38682}, {39026,48340}, {43344,65881}, {44858,61435}, {51682,52213}, {55380,64372}
X(66526) = reflection of X(59) in X(1618)
X(66526) = reflection of X(7291) in the anti-Orthic axis
X(66526) = isogonal conjugate of the anticomplement of X(52873)
X(66526) = crosspoint of X(840) and X(18771)
X(66526) = crosssum of X(i) and X(j) for these (i,j): {528, 3035}, {23757, 45884}, {62579, 65858}
X(66526) = crossdifference of every pair of points on line {1647, 17435}
X(66526) = barycentric product X(i)*X(j) for these {i,j}: {651, 53055}, {1275, 58370}
X(66526) = barycentric quotient X(i)/X(j) for these {i,j}: {53055, 4391}, {58370, 1146}
Contributed by Peter Moses, Dec 15, 2024.
X(66527) lies on these lines: {63,513}, {522,693}, {649,6003}, {656,47785}, {1734,4560}, {2504,44409}, {3733,8646}, {4784,65401}, {4905,23887}, {8676,57184}, {13277,47823}, {21189,47798}, {44551,59753}, {50354,64917}, {53361,62811}
X(66527) = crossdifference of every pair of points on line {41, 3924}
Contributed by Peter Moses, Dec 15, 2024.
X(66528) lies on these lines: {21,48352}, {81,513}, {512,57189}, {661,1021}, {669,2106}, {1499,4560}, {1621,57246}, {2775,57227}, {4017,7203}, {4775,64415}, {4789,7253}, {4833,47827}, {5235,47821}, {5333,47824}, {47822,64425}, {48320,64377}, {51356,57059}
X(66528) = crossdifference of every pair of points on line {2650, 16589}
See Antreas Hatzipolakis and Peter Moses, euclid 7426.
X(66529) lies on these lines: {2, 3}, {51, 3564}, {53, 10314}, {98, 54629}, {143, 31831}, {154, 14561}, {161, 61610}, {184, 18583}, {206, 597}, {230, 36412}, {262, 54496}, {264, 65063}, {275, 54709}, {343, 18358}, {394, 21850}, {519, 51719}, {524, 9969}, {528, 35652}, {539, 58545}, {542, 11746}, {612, 15171}, {614, 18990}, {801, 14492}, {1184, 18907}, {1196, 7745}, {1351, 14826}, {1352, 17810}, {1353, 9777}, {1495, 37649}, {1498, 9815}, {1503, 5943}, {1611, 7737}, {1899, 3066}, {1992, 6391}, {3060, 34380}, {3070, 8855}, {3071, 8854}, {3163, 15527}, {3167, 14853}, {3527, 6193}, {3796, 38110}, {3818, 13567}, {3819, 29181}, {3867, 19137}, {3917, 35283}, {3920, 15172}, {5012, 51732}, {5050, 11206}, {5093, 63174}, {5268, 6284}, {5272, 7354}, {5322, 15325}, {5345, 5433}, {5432, 7298}, {5462, 18914}, {5475, 34481}, {5480, 9306}, {5544, 14927}, {5640, 11245}, {5806, 31832}, {5907, 11745}, {6390, 16276}, {6688, 29012}, {7693, 34545}, {7767, 40022}, {8280, 42273}, {8281, 42270}, {8770, 65630}, {8780, 11427}, {9157, 57304}, {9300, 53420}, {9729, 16621}, {9827, 58484}, {10095, 13292}, {10110, 13142}, {10219, 29323}, {10311, 65809}, {10547, 42037}, {10601, 31383}, {11179, 64719}, {11402, 59399}, {11433, 18440}, {11542, 54362}, {11543, 54363}, {11550, 37648}, {11566, 12358}, {12134, 61713}, {13157, 61349}, {13394, 44082}, {13419, 64038}, {13568, 44870}, {14458, 37874}, {14615, 37671}, {15024, 16659}, {15045, 16658}, {15311, 46847}, {15435, 37491}, {15448, 58447}, {15466, 16264}, {16187, 51163}, {16654, 64100}, {16655, 64854}, {16656, 46850}, {17359, 49732}, {17811, 31670}, {17814, 31802}, {17825, 46264}, {18289, 42265}, {18290, 42262}, {18928, 62209}, {19125, 59373}, {19130, 23292}, {19139, 52077}, {19568, 52229}, {19583, 32826}, {19875, 34657}, {19883, 34633}, {20423, 37672}, {21969, 64062}, {23291, 51537}, {24981, 34565}, {25055, 34634}, {26864, 63085}, {27355, 61139}, {32269, 44106}, {32819, 57518}, {33586, 48876}, {33651, 59635}, {34612, 50126}, {34656, 53620}, {34668, 38314}, {35259, 38136}, {35264, 61690}, {35266, 64064}, {37636, 47582}, {39899, 63031}, {40179, 43136}, {40326, 53418}, {43588, 58531}, {43670, 60127}, {44683, 64095}, {44935, 54040}, {45089, 61607}, {45303, 61645}, {45968, 61657}, {47328, 63475}, {50675, 64781}, {51212, 62217}, {54836, 60125}, {59655, 63005}, {64919, 65393}
X(66529) = midpoint of X(i) and X(j) for these {i,j}: {2, 428}, {5, 13490}, {3575, 52069}, {7576, 34664}, {7667, 34603}, {12134, 61713}, {16654, 64100}, {21969, 64062}, {31833, 44804}, {38323, 62962}, {43957, 62963}, {44935, 54040}
X(66529) = reflection of X(i) in X(j) for these {i,j}: {2, 10128}, {6756, 13490}, {7667, 7734}, {7734, 13361}, {10127, 23410}, {10691, 2}, {13488, 44804}, {44804, 546}, {45298, 5943}
X(66529) = complement of X(7667)
X(66529) = anticomplement of X(7734)
X(66529) = orthocentroidal circle inverse of X(34609)
X(66529) = orthoptic-circle-of-the-Steiner-inellipse inverse of X(46451)
X(66529) = pole of line {6, 34609} with respect to the Kiepert circumhyperbola
X(66529) = pole of line {185, 21850} with respect to the Jerabek circumhyperbola
X(66529) = pole of line {3574, 18583} with respect to the ABCHN
X(66529) = pole of line {1196, 10154} with respect to the ABCGK
X(66529) = pole of line {3589, 5907} with respect to the Jerabek circumhyperbola of the medial triangle
X(66529) = pole of line {12111, 44456} with respect to the Jerabek circumhyperbola of the anticomplementary triangle
X(66529) = pole of line {525, 55190} with respect to the Steiner inellipse
X(66529) = pole of line {523, 34609} with respect to the Yff hyperbola
X(66529) = pole of line {5650, 59553} with respect to the Thomson-Gibert-Moses hyperbola
X(66529) = pole of line {6, 34609} with respect to the BG KHO conic
X(66529) = pole of line {523, 34609} with respect to the orthocentroidal circle
X(66529) = pole of line {523, 46451} with respect to the orthoptic-circle-of-the-Steiner-inellipse
X(66529) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 34609}, {2, 25, 10154}, {2, 3839, 62975}, {2, 6995, 34608}, {2, 7667, 7734}, {2, 7714, 9909}, {2, 10154, 6676}, {2, 21213, 34477}, {2, 26255, 62965}, {2, 34603, 7667}, {2, 34608, 3}, {2, 34609, 1368}, {2, 52397, 43957}, {2, 62963, 52397}, {2, 62964, 31152}, {2, 66371, 12100}, {4, 5020, 1368}, {4, 7398, 5020}, {4, 9825, 31829}, {5, 25, 6676}, {5, 6676, 11548}, {5, 6756, 12362}, {5, 7715, 3}, {5, 10154, 2}, {5, 13861, 21841}, {5, 21841, 63667}, {5, 37440, 140}, {5, 44233, 37942}, {5, 65376, 7395}, {22, 25, 37440}, {22, 37439, 140}, {22, 62937, 37439}, {23, 7499, 66380}, {23, 37990, 7499}, {25, 6676, 37897}, {25, 6995, 7715}, {25, 6997, 5}, {25, 7539, 7493}, {140, 10301, 37910}, {427, 1995, 6677}, {427, 6677, 5159}, {427, 7394, 546}, {428, 7667, 34603}, {428, 10128, 10691}, {428, 34658, 7540}, {428, 34664, 34659}, {468, 5133, 64852}, {468, 7533, 3850}, {546, 1995, 5159}, {546, 6677, 427}, {546, 31833, 13488}, {858, 37349, 52285}, {1352, 17810, 41588}, {1370, 62976, 3627}, {1595, 6642, 16196}, {1598, 7401, 6823}, {1656, 20850, 7494}, {1995, 7394, 427}, {2043, 2044, 11479}, {3545, 7576, 34664}, {3545, 62979, 2}, {3627, 11284, 10300}, {3628, 66380, 7499}, {3839, 38323, 62962}, {3843, 30771, 7378}, {3845, 10154, 15809}, {3845, 39487, 5066}, {3850, 13163, 31830}, {3850, 64852, 5133}, {3856, 37911, 5169}, {5004, 5005, 16661}, {5020, 34609, 2}, {5133, 13595, 468}, {6644, 64474, 16976}, {6995, 7392, 3}, {7378, 40132, 30771}, {7386, 7408, 382}, {7392, 7715, 6676}, {7392, 34608, 2}, {7395, 37122, 65376}, {7403, 7506, 140}, {7405, 7517, 16197}, {7484, 7500, 550}, {7484, 62968, 7500}, {7485, 7519, 66381}, {7485, 66381, 548}, {7494, 52301, 20850}, {7499, 37990, 3628}, {7528, 7529, 5}, {7533, 13595, 5133}, {7545, 37347, 37971}, {7667, 7734, 10691}, {7734, 10128, 13361}, {7734, 13361, 2}, {10110, 64035, 13142}, {10154, 15818, 66370}, {10301, 37439, 22}, {10301, 62937, 140}, {10601, 31383, 48906}, {11112, 11113, 48817}, {11284, 62976, 1370}, {11548, 37897, 6676}, {12106, 52262, 37935}, {12811, 47316, 37454}, {13361, 34603, 10691}, {13621, 50137, 7542}, {14002, 37454, 47316}, {15765, 18585, 1595}, {17928, 63666, 1907}, {18586, 18587, 6643}, {20405, 20406, 7426}, {34559, 34562, 50138}, {35018, 47630, 7495}, {37349, 52285, 3861}, {37439, 37440, 6676}, {47597, 62980, 2}, {63838, 65154, 5159}
See Juan José Isach Mayo, euclid 7425.
X(66530) lies on these lines: {1, 442}, {2, 25419}, {55, 35997}, {524, 10180}, {846, 63401}, {1962, 17768}, {3712, 8025}, {3742, 35104}, {4028, 28639}, {4046, 5333}, {4658, 18253}, {4682, 59584}, {4733, 25507}, {4854, 37635}, {4938, 8040}, {5625, 6703}, {6690, 37595}, {6707, 21085}, {15569, 40998}, {17390, 43223}, {17392, 17592}, {17770, 58381}, {20182, 25557}, {23812, 28530}, {27811, 42045}, {29580, 33126}, {42028, 59574}, {49564, 49728}, {49724, 53034}, {49734, 58399}, {49743, 58380}
X(66530) = midpoint of X(1962) and X(37631)
See Juan José Isach Mayo, euclid 7425.
X(66531) lies on these lines: {2, 21167}, {4, 64}, {5, 46728}, {6, 6995}, {20, 17825}, {22, 3589}, {23, 37649}, {25, 5480}, {30, 5892}, {51, 428}, {53, 52448}, {125, 52285}, {141, 6997}, {154, 7714}, {159, 43726}, {161, 10594}, {184, 10301}, {185, 16656}, {343, 7394}, {373, 7667}, {389, 16621}, {427, 34417}, {468, 44106}, {524, 3060}, {546, 21243}, {578, 7715}, {597, 3796}, {1216, 23411}, {1350, 7392}, {1368,48901}, {1370, 3066}, {1495, 61659}, {1595, 23329}, {1598, 12233}, {1619, 15583}, {1629, 1990}, {1864, 1890}, {1885, 50709}, {1899, 62976}, {1906, 5893}, {1907, 6696}, {1995, 53415}, {2051, 33302}, {2393, 51745}, {2883, 5198}, {2979, 35283}, {3146, 18928}, {3167, 20423}, {3168, 16264}, {3527, 9833}, {3564, 21849}, {3567, 16655}, {3575, 44079}, {3580, 37349}, {3763, 33522}, {3818, 41588}, {3819, 10128}, {3845, 51993}, {3850, 13565}, {3867, 23327}, {3981, 7745}, {4186, 5799}, {5012, 6329}, {5020, 31670}, {5064, 23332}, {5085, 34608}, {5102, 63174}, {5133, 32269}, {5422, 7519}, {5640, 34603}, {5890,16654}, {5894, 11403}, {6030, 47313}, {6146, 9781}, {6201, 19219}, {6217, 6218}, {6353, 31860}, {6676, 19130}, {6688, 10691}, {6703, 35996}, {6756, 10110}, {7354, 63511}, {7378, 26958}, {7386, 48910}, {7391, 37648}, {7398, 17811}, {7408, 11433}, {7409, 37643}, {7484, 48881}, {7500, 10601}, {7533, 37636}, {7545, 51425}, {7576, 16657}, {7687, 11566}, {7693, 15246}, {7734, 63632}, {8550, 9777}, {9306, 21850}, {9815, 39568}, {9825, 13598}, {9909, 14561}, {9969, 15255}, {10095, 61299}, {10154, 38136}, {10169, 19136}, {10982, 34782}, {11002, 61658}, {11064, 13595}, {11427, 52301}, {11451, 52397}, {11477, 14826}, {11645, 32068}, {11746, 36201}, {11808, 44056}, {12007, 15004}, {13361, 15082}, {13391, 23410}, {13490, 44665}, {13621, 59648}, {13861, 59659}, {15045, 34613}, {15107, 34573}, {15274, 61348}, {15360, 50960}, {15559, 38848}, {16419, 48873}, {17845, 52518}, {18388, 61612}, {19468, 34484}, {20192, 31133}, {22352, 37899}, {25555, 37910}, {26005, 37456}, {26926, 52789}, {29012, 45298}, {34093, 62509}, {34796, 61989}, {35266, 51130}, {35919 ,63440}, {37353, 48912}, {37645, 59699}, {37897, 58447}, {37935, 46265}, {42874, 43462}, {43588, 58533}, {43621, 62209}, {44082, 61690}, {45440, 52291}, {45474, 45475}, {45862, 52286}, {45863, 52287}, {46818, 53863}, {47328, 63688}, {53094, 59343}, {58434, 61743}, {61680, 62979}, {61735, 62975}
X(66531) = midpoint of X(i) and X(j) for these {i,j}: {51, 428}, {3575, 61744}, {5890, 16654},{ 7576, 16657} Points related to the Kirikami-Steiner trifolium: X(66532)-X(66547)
X(66531) = reflection of X(i) in X(j) for these {i,j}: {3819, 10128}, {10691, 6688}, {45298, 58470}
X(66531) = crosspoint of X(i) in X(j) for these {i,j}: {4, 57408}, {253, 10159}
This preamble and centers X(66532)-X(66547) were contributed by Ivan Pavlov on Dec 18, 2024.
Let P be a point not on the sides of ABC and G its centroid. Denote A' = Kirikami center of PBCQ, A'' = Kirikami center of PCBQ and similarly define B',B'',C',C''. The locus of points P for which A'B'C' and A''B''C'' are perspective is a circumquartic, which is called here the Kirikami-Steiner trifolium. It is tangent to the Steiner circumellipse at A, B, and C and has a triple point at G. The Kirikami-Steiner trifolium is the inverse image of K015 in the Steiner circumellipse.
In the following list (i,j) means that for P=X(i) the perspector of A'B'C' and A''B''C'' is X(j): (1,66543), (3,66544), (6,66545), (37,66546), (39,66547)
For more information see this Euclid post.
X(66532) lies on the Kirikami-Steiner trifolium and on these lines: {2, 3}, {107, 39533}, {525, 648}, {685, 1499}, {15351, 46115}, {16076, 64923}, {23583, 39008}, {32662, 41679}, {42307, 42308}
X(66532) = midpoint of X(i) and X(j) for these {i,j}: {648, 16077}, {23582, 39062}
X(66532) = reflection of X(i) in X(j) for these {i,j}: {39008, 23583}
X(66532) = inverse of X(4240) in Steiner circumellipse
X(66532) = inverse of X(402) in Steiner inellipse
X(66532) = isotomic conjugate of X(62624)
X(66532) = trilinear pole of line {1651, 47204}
X(66532) = perspector of circumconic {{A, B, C, X(648), X(42308)}}
X(66532) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 62624}, {810, 53201}, {2159, 47071}, {2631, 41433}
X(66532) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 62624}, {3163, 47071}, {39062, 53201}, {64923, 52720}
X(66532) = X(i)-cross conjugate of X(j) for these {i, j}: {52720, 64923}
X(66532) = pole of line {3, 1636} with respect to the Stammler hyperbola
X(66532) = pole of line {525, 4240} with respect to the Steiner circumellipse
X(66532) = pole of line {402, 525} with respect to the Steiner inellipse
X(66532) = pole of line {69, 41077} with respect to the Wallace hyperbola
X(66532) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(16076)}}, {{A, B, C, X(3), X(44769)}}, {{A, B, C, X(4), X(15459)}}, {{A, B, C, X(25), X(32695)}}, {{A, B, C, X(30), X(648)}}, {{A, B, C, X(99), X(40884)}}, {{A, B, C, X(376), X(2966)}}, {{A, B, C, X(381), X(53205)}}, {{A, B, C, X(402), X(39062)}}, {{A, B, C, X(468), X(47204)}}, {{A, B, C, X(476), X(46869)}}, {{A, B, C, X(525), X(1650)}}, {{A, B, C, X(868), X(42733)}}, {{A, B, C, X(3154), X(14223)}}, {{A, B, C, X(4240), X(23582)}}, {{A, B, C, X(6528), X(40885)}}, {{A, B, C, X(11050), X(53201)}}, {{A, B, C, X(15184), X(40512)}}, {{A, B, C, X(15351), X(45289)}}, {{A, B, C, X(18831), X(44651)}}, {{A, B, C, X(31152), X(53202)}}, {{A, B, C, X(31153), X(35169)}}, {{A, B, C, X(31154), X(53203)}}, {{A, B, C, X(31155), X(53206)}}, {{A, B, C, X(44216), X(53639)}}
X(66532) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {648, 39062, 16077}, {16077, 23582, 648}
X(66533) lies on the Kirikami-Steiner trifolium and on these lines: {2, 7}, {522, 664}, {651, 30181}, {927, 6006}, {17044, 35091}
X(66533) = midpoint of X(i) and X(j) for these {i,j}: {664, 35157}, {1275, 10001}
X(66533) = reflection of X(i) in X(j) for these {i,j}: {35091, 17044}
X(66533) = inverse of X(56543) in Steiner circumellipse
X(66533) = trilinear pole of line {14477, 64462}
X(66533) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3063, 53212}
X(66533) = X(i)-Dao conjugate of X(j) for these {i, j}: {10001, 53212}, {64462, 14476}
X(66533) = X(i)-cross conjugate of X(j) for these {i, j}: {14476, 64462}
X(66533) = pole of line {522, 56543} with respect to the Steiner circumellipse
X(66533) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(35157)}}, {{A, B, C, X(7), X(60487)}}, {{A, B, C, X(522), X(14476)}}, {{A, B, C, X(527), X(664)}}, {{A, B, C, X(666), X(6172)}}, {{A, B, C, X(1275), X(56543)}}, {{A, B, C, X(10001), X(36956)}}, {{A, B, C, X(31142), X(53208)}}, {{A, B, C, X(31164), X(53211)}}
X(66533) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {664, 10001, 35157}, {1275, 35157, 664}
X(66534) lies on the Kirikami-Steiner trifolium and on these lines: {2, 11}, {666, 918}, {900, 34906}, {927, 6009}
X(66534) = inverse of X(63745) in Steiner circumellipse
X(66534) = pole of line {918, 63745} with respect to the Steiner circumellipse
X(66534) = intersection, other than A, B, C, of circumconics {{A, B, C, X(528), X(666)}}, {{A, B, C, X(10707), X(53214)}}, {{A, B, C, X(10712), X(53213)}}, {{A, B, C, X(57536), X(63745)}}
X(66535) lies on the Kirikami-Steiner trifolium and on these lines: {2, 37}, {513, 668}, {1015, 40552}, {1978, 4411}, {3761, 35043}, {4568, 64867}, {4583, 4777}, {9295, 36957}, {27076, 39011}, {33908, 46796}
X(66535) = midpoint of X(i) and X(j) for these {i,j}: {668, 889}, {9296, 31625}
X(66535) = reflection of X(i) in X(j) for these {i,j}: {1015, 40552}, {39011, 27076}
X(66535) = inverse of X(41314) in Steiner circumellipse
X(66535) = trilinear pole of line {33908, 36847}
X(66535) = X(i)-isoconjugate-of-X(j) for these {i, j}: {649, 59053}
X(66535) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 59053}, {33908, 14474}
X(66535) = X(i)-cross conjugate of X(j) for these {i, j}: {14474, 33908}
X(66535) = pole of line {513, 41314} with respect to the Steiner circumellipse
X(66535) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(889)}}, {{A, B, C, X(190), X(41142)}}, {{A, B, C, X(513), X(1646)}}, {{A, B, C, X(536), X(668)}}, {{A, B, C, X(4562), X(4664)}}, {{A, B, C, X(4688), X(53216)}}, {{A, B, C, X(4740), X(54985)}}, {{A, B, C, X(9296), X(36957)}}, {{A, B, C, X(18830), X(41144)}}, {{A, B, C, X(31625), X(41314)}}
X(66535) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {668, 889, 513}, {668, 9296, 889}, {889, 31625, 668}
X(66536) lies on the Kirikami-Steiner trifolium and on these lines: {2, 39}, {99, 9489}, {512, 670}, {36950, 39010}
X(66536) = midpoint of X(i) and X(j) for these {i,j}: {670, 886}, {9428, 44168}
X(66536) = reflection of X(i) in X(j) for these {i,j}: {39010, 36950}
X(66536) = inverse of X(63747) in Steiner circumellipse
X(66536) = X(i)-isoconjugate-of-X(j) for these {i, j}: {798, 59051}
X(66536) = X(i)-Dao conjugate of X(j) for these {i, j}: {31998, 59051}
X(66536) = pole of line {32, 65497} with respect to the Stammler hyperbola
X(66536) = pole of line {512, 63747} with respect to the Steiner circumellipse
X(66536) = pole of line {6, 887} with respect to the Wallace hyperbola
X(66536) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(886)}}, {{A, B, C, X(76), X(57993)}}, {{A, B, C, X(99), X(41143)}}, {{A, B, C, X(512), X(1645)}}, {{A, B, C, X(538), X(670)}}, {{A, B, C, X(7757), X(18829)}}, {{A, B, C, X(44168), X(63747)}}
X(66536) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {670, 886, 512}, {670, 9428, 886}, {886, 44168, 670}
X(66537) lies on the Kirikami-Steiner trifolium and on these lines: {2, 98}, {685, 2793}, {690, 43113}, {2799, 2966}
X(66537) = inverse of X(34761) in Steiner circumellipse
X(66537) = pole of line {2799, 34761} with respect to the Steiner circumellipse
X(66537) = intersection, other than A, B, C, of circumconics {{A, B, C, X(125), X(42738)}}, {{A, B, C, X(542), X(2966)}}, {{A, B, C, X(648), X(6054)}}, {{A, B, C, X(9140), X(53229)}}, {{A, B, C, X(34761), X(57562)}}
X(66538) lies on the Kirikami-Steiner trifolium and on these lines: {2, 351}, {6, 47646}, {5939, 5970}, {5969, 35146}
X(66538) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(351), X(59051)}}, {{A, B, C, X(804), X(35146)}}
X(66539) lies on the Kirikami-Steiner trifolium and on these lines: {2, 512}, {187, 9150}, {385, 729}, {538, 886}, {1084, 66547}, {3972, 41309}, {7804, 51510}, {41143, 46156}
X(66539) = midpoint of X(i) and X(j) for these {i,j}: {886, 3228}
X(66539) = reflection of X(i) in X(j) for these {i,j}: {1084, 66547}
X(66539) = inverse of X(63749) in Steiner circumellipse
X(66539) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2234, 59051}
X(66539) = pole of line {538, 63749} with respect to the Steiner circumellipse
X(66539) = pole of line {23342, 52067} with respect to the Wallace hyperbola
X(66539) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(886)}}, {{A, B, C, X(512), X(3228)}}, {{A, B, C, X(538), X(62611)}}, {{A, B, C, X(1916), X(5996)}}, {{A, B, C, X(57540), X(63749)}}
X(66539) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {886, 57540, 3228}
X(66540) lies on K296, Kirikami-Steiner trifolium and on these lines: {1, 52574}, {2, 514}, {88, 41140}, {106, 9089}, {239, 42026}, {291, 40833}, {320, 519}, {350, 20568}, {545, 6633}, {551, 27922}, {1086, 64463}, {1644, 34762}, {3912, 4945}, {4080, 17310}, {4480, 9326}, {4615, 6629}, {4997, 41141}, {17378, 49751}, {17487, 53582}, {26749, 50116}, {32106, 36522}, {39704, 42482}, {40891, 62732}
X(66540) = midpoint of X(i) and X(j) for these {i,j}: {903, 4555}, {9460, 54974}
X(66540) = reflection of X(i) in X(j) for these {i,j}: {903, 6549}, {1086, 66543}, {6633, 35121}, {17487, 53582}
X(66540) = inverse of X(6548) in Steiner circumellipse
X(66540) = trilinear pole of line {14475, 545}
X(66540) = perspector of circumconic {{A, B, C, X(903), X(34762)}}
X(66540) = X(i)-isoconjugate-of-X(j) for these {i, j}: {44, 2384}, {101, 52225}, {692, 34764}, {1017, 64459}, {2251, 35168}
X(66540) = X(i)-Dao conjugate of X(j) for these {i, j}: {545, 1644}, {1015, 52225}, {1086, 34764}, {9460, 35168}, {35121, 519}, {40595, 2384}
X(66540) = X(i)-cross conjugate of X(j) for these {i, j}: {1644, 545}, {33920, 6633}
X(66540) = pole of line {519, 6548} with respect to the Steiner circumellipse
X(66540) = pole of line {903, 1647} with respect to the dual conic of Yff parabola
X(66540) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4555)}}, {{A, B, C, X(291), X(4792)}}, {{A, B, C, X(350), X(27921)}}, {{A, B, C, X(514), X(545)}}, {{A, B, C, X(519), X(1644)}}, {{A, B, C, X(679), X(1022)}}, {{A, B, C, X(1266), X(21129)}}, {{A, B, C, X(4379), X(4510)}}, {{A, B, C, X(6545), X(6549)}}, {{A, B, C, X(6548), X(54974)}}, {{A, B, C, X(14421), X(52745)}}, {{A, B, C, X(14475), X(35121)}}, {{A, B, C, X(23598), X(36594)}}, {{A, B, C, X(24841), X(24858)}}, {{A, B, C, X(31992), X(35168)}}, {{A, B, C, X(44009), X(62413)}}
X(66540) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {545, 35121, 6633}, {903, 4555, 519}, {903, 54974, 6549}, {903, 9460, 4555}, {4555, 54974, 903}, {17953, 46795, 46790}, {36887, 52755, 52759}, {64463, 66543, 1086}
X(66541) lies on the Kirikami-Steiner trifolium, circumconic {{A, B, C, X(3226), X(4785)}}, and on these lines: {2, 649}, {726, 3226}, {3253, 49479}, {4759, 8709}
X(66541) = midpoint of X(i) and X(j) for these {i,j}: {33678, 57535}
X(66541) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {33678, 57535, 726}
X(66542) lies on the Kirikami-Steiner trifolium and on these lines: {2, 690}, {543, 18823}, {2482, 9170}, {31632, 36521}
X(66542) = inverse of X(34763) in Steiner circumellipse
X(66542) = pole of line {543, 34763} with respect to the Steiner circumellipse
X(66542) = intersection, other than A, B, C, of circumconics {{A, B, C, X(690), X(18823)}}, {{A, B, C, X(34763), X(57561)}}
X(66542) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9180, 51226, 2}
X(66543) lies on these lines: {2, 52574}, {519, 7238}, {545, 6549}, {903, 6631}, {1086, 64463}, {4370, 32106}, {4795, 36234}, {6547, 35168}, {6550, 21204}, {24628, 41140}
X(66543) = midpoint of X(i) and X(j) for these {i,j}: {903, 35121}, {1086, 66540}
X(66544) lies on these lines: {2, 31621}, {1494, 39062}, {11049, 38240}, {15526, 16076}
X(66544) = midpoint of X(i) and X(j) for these {i,j}: {15526, 16076}
X(66545) lies on these lines: {2, 52551}, {115, 17948}, {523, 5461}, {524, 32457}, {543, 40553}, {671, 31998}, {892, 41135}, {4590, 8596}, {9166, 23992}, {9169, 51428}, {9172, 16092}, {10278, 33919}, {14971, 40486}, {18823, 23991}, {39061, 44373}, {44401, 47171}
X(66545) = midpoint of X(i) and X(j) for these {i,j}: {115, 17948}, {671, 35087}
X(66545) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {115, 17948, 46980}, {16092, 16278, 51258}
X(66545) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {35087, 61339, 671}
X(66546) lies on these lines: {2, 57542}, {1015, 46796}, {3227, 9296}, {33908, 40552}, {33917, 38238}
X(66546) = midpoint of X(i) and X(j) for these {i,j}: {1015, 46796}
X(66547) lies on these lines: {2, 57540}, {1084, 66539}, {3228, 9428}, {33918, 38237}
X(66547) = midpoint of X(i) and X(j) for these {i,j}: {1084, 66539}
See Antreas Hatzipolakis, Elias Hagos and Peter Moses, euclid 7446.
X(66548) lies on this line: {186, 2970}
See Juan José Isach Mayo, euclid 7450.
X(66549) lies on these lines: {1, 6}, {2, 4856}, {41, 30343}, {81, 18186}, {86, 16833}, {346, 3635}, {391, 551}, {572, 7991}, {573, 17474}, {604, 3339}, {902, 62842}, {940, 8056}, {966, 25055}, {988, 1384}, {1051, 5268}, {1419, 7274}, {1698, 4982}, {1766, 11224}, {2177, 62845}, {2262, 18398}, {2268, 9819}, {2269, 53054}, {2270, 51816}, {2276, 46189}, {2277, 9336}, {2280, 10980}, {2297, 41434}, {2321, 51093}, {2345, 3633}, {2999, 37633}, {3187, 19741}, {3217,9327}, {3241, 4898}, {3244, 5749}, {3337, 54420}, {3361, 4262}, {3618, 29573}, {3619, 3879}, {3620, 17023}, {3623, 3950}, {3624, 3686}, {3630, 4657}, {3631, 17306}, {3632, 5750}, {3636, 5296}, {3663, 60984}, {3664, 17014}, {3672, 60976}, {3679, 4545}, {3729, 29584}, {3746, 5120}, {3758, 55998}, {3759, 16832}, {3875, 46922}, {3945, 4859}, {3946, 4888}, {3986, 38314}, {4034, 17398}, {4058, 20050}, {4060, 26039}, {4254, 5563}, {4263, 63493}, {4357, 11008}, {4384, 31312}, {4393, 4821}, {4416, 63061}, {4512, 21747}, {4648, 60999}, {4667, 4862}, {4668, 17303}, {4677, 59772}, {4747, 53594}, {4851, 51126}, {4889, 61344}, {4902, 17301}, {4910, 7227}, {4969, 34595}, {5024, 37552}, {5256, 14996}, {5271, 19740}, {5272, 37675}, {5287, 14997}, {5393, 13941}, {5405, 8972}, {5540, 54385}, {6144, 41311}, {6173, 63401}, {7222, 50109}, {7271, 33633}, {7987, 37508}, {10199, 27524}, {11011, 38296}, {15048, 48827}, {15668, 50124}, {16192, 41456}, {16829, 20146}, {16831, 17121}, {16834, 17117}, {17011, 62812}, {17022, 37680}, {17120, 25269}, {17257, 63026}, {17272, 20080}, {17275, 61302}, {17284, 63119}, {17294, 63053}, {17296, 34573}, {17299, 34747}, {17304, 20090}, {17319, 63108}, {17321, 62996}, {17330, 51110}, {17349, 29597}, {17353, 29602}, {17363, 29603}, {17368, 29605}, {17393, 50127}, {17395, 60933}, {17396, 63052}, {18907, 48818}, {19743, 56082}, {19745, 31993}, {19876, 50082}, {20818, 44841}, {21309, 37592}, {24239, 37689}, {24512, 42043}, {25101, 63123}, {29574, 51171}, {29578, 31313}, {29580, 63050}, {30308, 32431}, {30337, 55100}, {32087, 49543}, {32455, 41312}, {33630, 34231}, {37654, 51105}, {37685, 62818}, {42042, 63066}, {46475, 55716}, {47355, 50125}, {48824, 63633}
X(66549) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 6, 3731}, {1, 1449, 16667}, {1, 1743, 16673}, {1, 3973, 3247}, {1, 16475, 60846}, {1, 16667, 1743}, {6, 3247, 3973}, {6, 3723, 9}, {6, 3731,1743}, {6, 15492, 16670}, {6, 16674, 44}, {6, 16777, 15492}, {6,16884, 3723}, {9, 1449, 16666}, {9, 3247, 16677}, {9, 16884,1}, {1100, 1449, 1}, {1100, 16666, 16884}, {1100, 62212,1449}, {3241, 17355, 4898}, {3247, 3973, 3731}, {3723, 16666,6}, {3723, 16677, 3247}, {3731, 16667, 6}, {3945, 50114, 4859}, {3946, 63054, 4888}, {4034, 17398, 19875}, {5256, 14996, 62695}, {15492, 16668, 6}, {16666, 16884, 9}, {16668, 16777, 16670}, {16671, 16672, 9}, {16834, 17379, 25590}, {17398, 50131, 4034}, {29584, 37677, 3729}, {38314, 62985, 3986}
See Juan José Isach Mayo, euclid 7450.
X(66550) lies on these lines: {1, 6}, {2, 4898}, {346, 3636}, {391, 51071}, {573, 16189}, {594, 34595}, {966, 51093}, {1213, 4677}, {1255, 2999}, {1766, 30392}, {2171, 13462}, {2321, 25055}, {3175, 19746}, {3241, 3986}, {3619, 29573}, {3620, 29574}, {3622, 3950}, {3624, 17314}, {3631, 41312}, {3633, 5257}, {3635, 5296}, {3663, 59375}, {3729, 29580}, {3945, 60971}, {4021, 29624}, {4034,34747}, {4058, 5550}, {4668, 17388}, {4686, 36834}, {4740, 17319}, {4764, 10436}, {4772, 16826}, {4788, 17116}, {4902, 17392}, {5287, 62695}, {7991, 37508}, {9331, 17053}, {10980, 41423}, {14996, 27789}, {15655, 37552}, {15828, 51104}, {16831, 17117}, {16833, 17393}, {17019, 23958}, {17022, 62851}, {17272, 29585}, {17299, 19875}, {17321, 29602}, {17330, 51097}, {17355, 38314}, {17398, 51110}, {19741, 56082}, {21871, 50190}, {25502, 60724}, {37499, 58245}, {37587, 54285}, {37602, 54322}, {37633, 62816}, {41456, 63468}, {46475, 55594}, {50093, 62996}, {50110, 63014}, {50113, 59772}, {50123, 51066}, {51105, 63055}, {51107, 63086}
X(66550) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 37, 16667}, {1, 3247, 3731}, {1, 16673, 1743}, {9, 3247, 16674}, {37, 3973, 3731}, {37, 62212, 9}, {1449, 46845, 1}, {3247,3723, 1}, {3247, 3731, 16673}, {3723, 16777, 3247}, {3723, 16814, 46845}, {3731, 16667, 3973}, {16672, 46845, 1449}, {16826, 17151, 31312}, {17299, 62648, 19875}, {17319, 29597, 25590}
See Juan José Isach Mayo, euclid 7450.
X(66551) lies on these lines: {1, 6}, {78, 62695}, {200, 4695}, {902, 12526}, {3241, 4656}, {3339, 56010}, {3430, 7991}, {3940, 23511}, {3953, 7963}, {3961, 18421}, {3984, 8951}, {4257, 54422}, {4902, 11112}, {7322, 44840}, {11520, 37633}, {13462, 62865}, {16371, 33795}, {17022, 63159}, {17276, 34701}, {17597, 46943}, {54310, 62823}
X(66551) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3973, 16485}, {1, 5692, 60846}, {72, 16485, 3973}, {10179, 15600, 1}
See Antreas Hatzipolakis and Juan José Isach Mayo, euclid 7477.
X(66552) lies on these lines: {3, 8745}, {4, 52350}, {24, 394}, {52, 8882}, {96, 56303}, {97, 7488}, {317, 3926}, {389, 17974}, {1073, 6642}, {1594, 52415}, {7401, 14376}, {7509, 63154}, {7576, 14111}, {14919, 44802}, {31626, 37126}, {46728, 54032}, {53173, 58734}
X(66552) = isogonal conjugate of X(6146)
See Tran Quang Hung and Ercole Suppa, euclid 7485.
X(66553) lies on these lines: {2, 3}, {8029, 31990}
Many thanks to Chris van Tienhoven for sharing his deep knowledge on this topic.
Two triangles related to the original Morley triangles are recovered and renamed here:
J1 = 0 : sin((A - C + π)/3) : sin((A - B + π)/3) (See Peter Moses, X(3272))
A" = -1 : (a*(-1+4*z^2)-(2*(y-2*x*z))*c)/((-1+4*z^2)*b-(2*(x-2*y*z))*c): (a*(-1+4*y^2)-(2*(z-2*x*y))*b)/((-1+4*y^2)*c-(2*(x-2*y*z))*b)or, equivalently,where x = cos(A/3), y = cos(B/3), z = cos(C/3)
A" = cos((2*(B-C))/3)+2*cos((B-C)/3)*sin(A+π/6) :
-2*csc((B-C+π)/3)*sin((A-C+π)/3)*(sin(C)*sin((B-A+π)/3)+sin(A)*sin((B-C+π)/3)) :
-2*csc((C-B+π)/3)*sin((A-B+π)/3)*(sin(B)*sin((C-A+π)/3)+sin(A)*sin((C-B+π)/3))
X(66554) lies on these lines: {3, 356}, {357, 5456}, {358, 66557}, {1135, 66560}, {3273, 66568}, {3275, 3604}, {8065, 66575}, {66555, 66563}, {66556, 66564}
X(66555) lies on these lines: {356, 41109}, {357, 8065}, {358, 66558}, {1135, 66561}, {3273, 66569}, {3274, 3602}, {3278, 31934}, {3279, 31931}, {66554, 66563}, {66556, 66565}
X(66556) lies on these lines: {2, 5456}, {356, 41110}, {357, 38417}, {358, 66559}, {1134, 15859}, {1135, 66562}, {3273, 3603}, {3275, 46642}, {3277, 66479}, {3278, 31935}, {3279, 31932}, {3283, 5635}, {8065, 66577}, {66554, 66564}, {66555, 66565}
X(66556) = (X(3273), X(66570))-harmonic conjugate of X(3603)
X(66557) lies on these lines: {357, 15857}, {358, 66554}, {1136, 38415}, {1137, 66560}, {3273, 46641}, {3274, 3602}, {3276, 41111}, {3279, 5636}, {3280, 31933}, {3281, 31930}, {8066, 66575}, {66558, 66563}, {66559, 66564}
X(66557) = barycentric product X(7309)*X(38415)
X(66557) = (X(3274), X(66568))-harmonic conjugate of X(3604)
X(66558) lies on these lines: {3, 3276}, {358, 66555}, {1136, 38416}, {1137, 66561}, {3273, 3602}, {3274, 66569}, {8066, 66576}, {66557, 66563}, {66559, 66565}
X(66559) lies on these lines: {358, 66556}, {1136, 8066}, {1137, 66562}, {3272, 7309}, {3274, 66570}, {3275, 3602}, {3276, 41110}, {3280, 31935}, {3281, 31932}, {66557, 66564}, {66558, 66565}
X(66560) lies on these lines: {1134, 8067}, {1135, 66554}, {1137, 66557}, {3272, 5456}, {3273, 3603}, {3275, 66568}, {3277, 41111}, {3282, 31933}, {3283, 31930}, {66561, 66563}, {66562, 66564}
X(66561) lies on these lines: {2, 7309}, {1134, 38416}, {1135, 66555}, {1136, 15858}, {1137, 66558}, {3274, 46643}, {3275, 3602}, {3277, 41109}, {3281, 5634}, {3282, 31934}, {3283, 31931}, {8067, 66576}, {66560, 66563}, {66562, 66565}
X(66561) = barycentric product X(5456)*X(38416)
X(66561) = trilinear quotient X(5456)/X(7047)
X(66561) = (X(3275), X(66569))-harmonic conjugate of X(3602)
X(66562) lies on these lines: {3, 3277}, {1134, 7309}, {1135, 66556}, {1137, 66559}, {3274, 3603}, {3275, 66570}, {8067, 66577}, {66560, 66564}, {66561, 66565}
X(66563) lies on these lines: {2, 3604}, {395, 66564}, {3602, 38415}, {5454, 5455}, {31930, 31931}, {31933, 31934}, {41109, 41111}, {66554, 66555}, {66557, 66558}, {66560, 66561}, {66568, 66569}, {66575, 66576}
X(66563) = (X(2), X(38416))-harmonic conjugate of X(23030)
X(66564) lies on these lines: {2, 3603}, {395, 66563}, {3277, 65156}, {3604, 38417}, {7309, 65155}, {31930, 31932}, {31933, 31935}, {41110, 41111}, {66554, 66556}, {66557, 66559}, {66560, 66562}, {66568, 66570}, {66575, 66577}
X(66564) = (X(2), X(38415))-harmonic conjugate of X(23029)
X(66565) lies on these lines: {2, 3602}, {357, 5455}, {395, 66563}, {3603, 38416}, {31931, 31932}, {31934, 31935}, {41109, 41110}, {66555, 66556}, {66558, 66559}, {66561, 66562}, {66569, 66570}, {66576, 66577}
X(66565) = (X(2), X(38417))-harmonic conjugate of X(23031)
X(66566) lies on these lines: {356, 1134}, {358, 66567}, {3273, 66571}, {8065, 14166}
X(66567) lies on these lines: {357, 1137}, {358, 66566}, {3274, 66571}, {3276, 11228}, {3280, 3602}, {8066, 14166}
X(66568) lies on these lines: {3272, 41111}, {3273, 66554}, {3274, 3602}, {3275, 66560}, {3334, 31933}, {3335, 31930}, {66563, 66569}, {66564, 66570}
X(66568) = barycentric product X(3604)*X(23029)
X(66568) = (X(3604), X(66557))-harmonic conjugate of X(3274)
X(66569) lies on these lines: {358, 66480}, {3272, 41109}, {3273, 66555}, {3274, 66558}, {3275, 3602}, {3334, 31934}, {3335, 31931}, {66563, 66568}, {66565, 66570}
X(66569) = barycentric product X(3602)*X(23030)
X(66569) = (X(3602), X(66561))-harmonic conjugate of X(3275)
X(66570) lies on these lines: {3272, 41110}, {3273, 3603}, {3274, 66559}, {3275, 66562}, {3334, 31935}, {3335, 31932}, {66564, 66568}, {66565, 66569}
X(66570) = barycentric product X(3603)*X(23031)
X(66570) = (X(3603), X(66556))-harmonic conjugate of X(3273)
X(66571) lies on these lines: {3272, 11228}, {3273, 66566}, {3274, 66567}, {3275, 3604}
X(66572) lies on these lines: {3, 3272}, {6, 14146}, {3273, 8002}, {3274, 8003}, {3275, 8004}, {3526, 3609}
X(66572) = (X(3272), X(3335))-harmonic conjugate of X(3)
X(66573) lies on these lines: {3, 8011}, {3279, 8065}, {3281, 8066}, {3283, 8067}, {31930, 66575}, {31931, 66576}, {31932, 66577}
X(66573) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (3, 8011, 66574), (3, 66580, 8011)
X(66574) lies on these lines: {3, 8011}, {16, 358}, {31933, 66575}, {31934, 66576}, {31935, 66577}
X(66574) = (X(3), X(8011))-harmonic conjugate of X(66573)
X(66575) lies on these lines: {2, 3273}, {1134, 8067}, {3604, 23029}, {8011, 41111}, {8065, 66554}, {8066, 66557}, {31930, 66573}, {31933, 66574}, {66563, 66576}, {66564, 66577}
X(66576) lies on these lines: {2, 3274}, {357, 8065}, {3602, 23030}, {8011, 41109}, {8066, 66558}, {8067, 66561}, {31931, 66573}, {31934, 66574}, {66563, 66575}, {66565, 66577}
X(66577) lies on these lines: {2, 3275}, {1136, 8066}, {3603, 23031}, {8011, 41110}, {8065, 66556}, {8067, 66562}, {31932, 66573}, {31935, 66574}, {66564, 66575}, {66565, 66576}
X(66578) lies on these lines: {358, 5390}, {3602, 8065}, {8066, 66582}
X(66579) lies on these lines: {1137, 10258}, {3603, 8066}, {8067, 66583}
X(66580) lies on these lines: {3, 8011}, {8002, 8065}, {8003, 8066}, {8004, 8067}
X(66580) = (X(8011), X(66573))-harmonic conjugate of X(3)
Chris van Tienhoven - Dec 10, 2024.
The reciprocal tripolar perspector of these triangles is X(3602).
Note: Tripolar perspectors, or perspective centroids, were introduced in the preamble of X(58747).
X(66581) lies on the curves Q104, Q174 and these lines: {356, 357}, {3273, 3603}, {3278, 6120}, {3279, 6123}, {3605, 5628}, {8065, 14166}
X(66581) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (356, 358, 357), (356, 3602, 58843), (357, 358, 3276), (358, 58843, 3602), (3273, 3604, 3603), (3602, 58843, 357)
Chris van Tienhoven - Dec 10, 2024.
The reciprocal tripolar perspector of these triangles is X(3603).
Note: Tripolar perspectors, or perspective centroids, were introduced in the preamble of X(58747).
X(66582) lies on these lines: {1136, 1137}, {3274, 3602}, {3280, 6122}, {3281, 6125}, {3606, 5630}, {8066, 66578}
X(66582) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1136, 1137, 3277), (1137, 3276, 1136), (1137, 58844, 3603), (3274, 3602, 3604), (3276, 3603, 58844), (3603, 58844, 1136)
Chris van Tienhoven - Dec 10, 2024.
The reciprocal tripolar perspector of these triangles is X(3604).
Note: Tripolar perspectors, or perspective centroids, were introduced in the preamble of X(58747).
X(66583) lies on these lines: {356, 1134}, {3275, 3602}, {3282, 6121}, {3283, 6124}, {3607, 5632}, {8067, 66579}
X(66583) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1134, 1135, 356), (1135, 3277, 1134), (1135, 58845, 3604), (3275, 3603, 3602), (3277, 3604, 58845), (3604, 58845, 1134)
As a point on the Euler line, X(66584) has Shinagawa coefficients (E + 16*F, -3*E - 12*F)
See David Nguyen and Ercole Suppa, euclid 7494.
X(66584) lies on these lines: {2, 3}, {69, 1511}, {524, 47391}, {542, 11202}, {599, 44201}, {1992, 15361}, {2931, 35228}, {3018, 21843}, {3098, 48378}, {3431, 37644}, {3581, 37645}, {4549, 5972}, {5569, 64781}, {5642, 63425}, {5654, 10182}, {5663, 35260}, {5892, 38064}, {5944, 18909}, {5946, 59373}, {6225, 32210}, {6699, 46264}, {7622, 64783}, {7712, 20773}, {8182, 14649}, {9126, 64920}, {9826, 18438}, {9833, 20191}, {10264, 39874}, {11179, 18475}, {11411, 32171}, {11464, 18917}, {11472, 15448}, {11645, 23329}, {13367, 18951}, {14805, 63084}, {15136, 64061}, {15303, 15462}, {17821, 44158}, {18451, 35266}, {18931, 61752}, {20423, 64095}, {22151, 50967}, {25406, 34513}, {32223, 64096}, {32620, 61507}, {32837, 52149}, {35254, 59767}, {35268, 38727}, {39242, 61506}, {41465, 51391}, {43273, 62376}, {43394, 64048}, {58484, 64050}, {63649, 64802}
X(66584) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (2, 376, 18531), (3, 381, 44285), (3, 468, 49669), (41465, 62708, 51391)
As a point on the Euler line, X(66585) has Shinagawa coefficients (36*F^2,-E^2-8*E*F+20*F^2)
See David Nguyen and Ercole Suppa, euclid 7494.
X(66585) lies on these lines: {2, 3}, {17986, 47188}, {32274, 62375}
X(66585) = (X(378), X(403))-harmonic conjugate of X(47332)
As a point on the Euler line, X(66586) has Shinagawa coefficients (E^3 + 24*E^2*F - 3344*F^3, -3*E^3 + 576*E*F^2 + 816*F^3)
See David Nguyen and Ercole Suppa, euclid 7494.
X(66586) lies on this line: {2, 3}
X(66586) = midpoint of X(66584) and X(66585)
See Juan José Isach Mayo, euclid 7505.
X(66587) lies on these lines: {2, 11147}, {3, 1153}, {4, 524}, {5, 7618}, {6, 598}, {30, 7610}, {76, 33698}, {83, 60630}, {114, 381}, {115, 11159}, {126, 10355}, {148, 11163}, {183, 8597}, {316, 15533}, {376, 15597}, {382, 53144}, {405, 7621}, {538, 14269}, {542, 53017}, {546, 34511}, {597, 43448}, {599, 8352}, {754, 38335}, {1003, 9166}, {1656, 7619}, {1657, 34506}, {1992, 53418}, {1995, 42008}, {2453, 36196}, {2482, 18424}, {2549, 3363}, {2996, 54476}, {3053, 8859}, {3091, 53141}, {3096, 7841}, {3529, 55823}, {3534, 5569}, {3543, 63029}, {3545, 9771}, {3767, 19661}, {3830, 3849}, {3839, 9742}, {3843, 7775}, {3845, 9766}, {3860, 51123}, {5013, 32480}, {5032, 7745}, {5055, 7622}, {5066, 12040}, {5077, 15271}, {5085, 7606}, {5210, 8860}, {5215, 18362}, {5254, 59373}, {5463, 55950}, {5464, 55951}, {5476, 38734}, {5503, 54713}, {6329, 18842}, {7751, 62008}, {7758, 61988}, {7759, 61990}, {7764, 61975}, {7773, 41136}, {7777, 8596}, {7778, 37350}, {7780, 62023}, {7781, 61970}, {7784, 21356}, {7803, 8370}, {7843, 61991}, {7874, 11318}, {7907, 51238}, {8556, 55164}, {8598, 37637}, {8719, 40248}, {9169, 15638}, {9740, 50687}, {9741, 41099}, {9877, 13860}, {9878, 11361}, {10302, 17503}, {11167, 54718}, {11286, 39563}, {11288, 14971}, {11295, 31710}, {11296, 31709}, {12101, 44678}, {12102, 14023}, {13233, 33980}, {13449, 50955}, {13468, 15682}, {13881, 33007}, {14033, 63543}, {14066, 34604}, {15031, 15815}, {15534, 47286}, {15685, 46893}, {16808, 36775}, {22110, 32815}, {22165, 52713}, {22329, 52942}, {23234, 42011}, {27088, 43620}, {32532, 54616}, {32819, 33006}, {32826, 32984}, {32985, 41139}, {33016, 63101}, {33192, 59635}, {33208, 44535}, {33699, 47102}, {37809, 43291}, {38259, 54639}, {44541, 53127}, {44543, 52691}, {45103, 60626}, {47101, 62040}, {51122, 61974}, {51170, 53101}, {53105, 60238}, {53106, 60131}, {54646, 60228}, {54720, 60629}, {54871, 54913}, {59546, 61964}, {60113, 60628}, {62939, 62945}
X(66587) = midpoint of X(i) in X(j) for these {i,j}: {4, 7620}, {3543, 63029}, {3830, 40727}, {5485, 23334}, {34511, 53143}
X(66587) = reflection of X(i) in X(j) for these {i,j}: {2, 20112}, {3, 7617}, {376, 15597}, {3534, 5569}, {7610, 7615}, {7617, 47617}, {7618, 5}, {8182, 16509}, {8667, 40727}, {8716, 11184}, {8719, 40248}, {11165, 8176}, {11184, 381}, {12040, 5066}, {34504, 7619}, {34505, 7620}, {40727, 18546}, {53142, 9771}
X(66587) = {X (i), X (j)} -harmonic conjugate of X (k) for these {i, j, k} : {4, 5485, 23334}, {381, 11165, 8176}, {671, 11317, 6}, {2549, 3363, 42849}, {3545, 53142, 9771}, {3830, 18546, 8667}, {7615, 8182, 16509}, {7620, 23334, 5485}, {8176, 11165, 11184}, {8182, 16509, 7610}, {8352, 11185, 599}, {8860, 9855, 5210}, {22575, 22576, 381}
See Juan José Isach Mayo, euclid 7519.
X(66588) lies on these lines: {2, 154}, {5, 15448}, {140, 5663}, {141, 6090}, {182, 47296}, {373, 468}, {427, 35268}, {441, 21163}, {466, 21158}, {511, 6676}, {524, 61644}, {546, 32237}, {597, 61506}, {631, 59767}, {632, 16187}, {852, 41328}, {1176, 15139}, {1368, 17508}, {1495, 37454}, {1624, 54004}, {3091, 41424}, {3292, 3631}, {3523, 62708}, {3525, 11456}, {3547, 37497}, {3549, 12241}, {3580, 12007}, {5050, 13567}, {5066, 32267}, {5092, 5159}, {5094, 44882}, {5102, 11427}, {5157, 5651}, {5480, 7493}, {5640, 37649}, {5642, 20582}, {5646, 10303}, {5650, 7499}, {5893, 10117}, {6677, 63632}, {6689, 11743}, {6696, 15072}, {6723, 20190}, {6748, 41203}, {7386, 55673}, {7494, 31884}, {7495, 7998}, {7542, 9730}, {7552, 16657}, {7568, 9820}, {7605, 37907}, {7789, 9155}, {8359, 35282}, {8550, 37638}, {10020, 13363}, {10154, 38136}, {10300, 55674}, {10691, 55670}, {11002, 14389}, {11188, 15585}, {11284, 35707}, {11746, 44479}, {11801, 40291}, {12024, 14852}, {12039, 47449}, {12045, 58445}, {12099, 44323}, {14915, 52262}, {15030, 16252}, {15055, 15131}, {15520, 41588}, {15760, 39242}, {16051, 53094}, {16511, 47457}, {17825, 38282}, {18583, 32223}, {19130, 37897}, {22352, 62958}, {23515, 37513}, {25328, 32227}, {26958, 55703}, {29181, 44210}, {30771, 55682}, {32225, 61657}, {32348, 61607}, {32455, 41586}, {34664, 36518}, {34828, 44888}, {37643, 53093}, {37904, 50959}, {37910, 48895}, {38317, 44212}, {39561, 61646}, {40132, 47355}, {40280, 62378}, {40550, 47249}, {43650, 52297}, {44158, 45956}, {44201, 61619}, {44891, 46127}, {45298, 55706}, {46847, 63679}, {47200, 58446}, {47311, 50971}, {47315, 48892}, {47597, 48310}, {48905, 52284}, {49731, 61694}, {52292, 54012}, {55166, 55292}, {55711, 63081}, {58437, 61676}
X(66588) = midpoint of X(i) in X(j) for these {i,j}: {2, 13394}, {5, 34513}, {427, 35268}, {6800, 45303}, {15760, 39242}, {44210, 61743}, {61644, 61690}
X(66588) = complement of X(45303)
X(66588) = center of bicevian conic X(2) and X(6800)
X(66588) = {X (i), X (j)} -harmonic conjugate of X (k) for these {i, j, k} : {2, 3796, 23332}, {2, 6800, 45303}, {2, 25406, 61735}, {2, 35260, 10516}, {2, 61680, 61507}, {140, 44516, 59659}, {3589, 32218, 25488}, {6676, 58447, 23292}, {13394, 45303, 6800}, {14389, 52300, 32269}
As a point on the Euler line, X(66589) has Shinagawa coefficients (E + 8*F, -3*E - 6*F)
See David Nguyen and Ercole Suppa, euclid 7509.
X(66589) lies on these lines: {2, 3}, {69, 51393}, {524, 23041}, {1154, 64177}, {1568, 41465}, {5944, 18951}, {6193, 17821}, {6515, 11464}, {8780, 44683}, {10282, 11411}, {11427, 64095}, {11433, 18475}, {12245, 51696}, {12317, 20773}, {13367, 64048}, {13754, 35260}, {14826, 44201}, {16111, 40196}, {18925, 61713}, {18928, 37513}, {19154, 22115}, {19357, 61658}, {20806, 50967}, {28708, 54170}, {34781, 44158}, {37478, 37669}, {44673, 46264}, {45011, 56071}, {46730, 61681}, {51392, 62708}, {63703, 64802}
X(66589) = midpoint of X(5054) and X(10245)
X(66589) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (2, 20, 31180), (2, 376, 6643)
See David Nguyen and Ercole Suppa, euclid 7509.
X(66590) lies on these lines: {4, 193}, {25, 15591}, {51, 63544}, {132, 37197}, {235, 9752}, {382, 2971}, {460, 6525}, {2207, 41521}, {3053, 5139}, {5140,27373}, {8754, 17813}, {14593, 58878}, {32982, 63549}, {54097, 63545}
X(66590) = barycentric product of X(i) and X(j) for these (i,j): (4, 63611), (6353, 44518), (34481, 54412)
X(66590) = barycentric quotient of X(i) and X(j) for these {i,j}: {6353, 63182}, {19118, 56362}, {34481, 6391}, {44518, 6340}, {63611, 69}
X(66590) = trilinear product X(19)*X(63611)
X(66590) = trilinear quotient X(63611)/X(63)
X(66590) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (4, 6392, 5203), (4, 14248, 63535)
See David Nguyen, euclid 7517.
X(66591) lies on these lines: {2, 3}, {21663, 44750}, {38793, 55610}, {43273, 44673}, {50955, 51393}
X(66591) = reflection of X(30775) in X(11539)
X(66591) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 37458, 381}, {5054, 66589, 10245}, {9909, 34477, 15701}
See Antreas Hatzipolakis and Ercole Suppa, euclid 7532.
X(66592) lies on these lines: {2, 10732}, {3, 58426}, {4, 102}, {5, 6718}, {20, 38784}, {30, 6711}, {109, 3091}, {117, 381}, {140, 38783}, {151, 3839}, {382, 38776}, {389, 58526}, {515, 11734}, {522, 44927}, {546, 2818}, {1656, 38777}, {1657, 38786}, {1699, 13532}, {2773, 7687}, {2779, 46686}, {2800, 19925}, {2817, 18483}, {3090, 38697}, {3146, 38691}, {3526, 38778}, {3627, 38600}, {3738, 65948}, {3817, 11700}, {3832, 33650}, {3843, 10740}, {3850, 61578}, {3851, 38780}, {3853, 38782}, {3857,51534}, {5066, 61571}, {6000, 58506}, {9955, 11727}, {10175, 14690}, {10703, 59387}, {10709, 41099}, {11713, 31673}, {12295, 53749}, {13202, 53713}, {13570, 58541}, {15033, 58060}, {18492, 50899}, {23513, 53752}, {23514, 53724}, {23515, 53717}, {36518, 53758}, {36519, 53734}, {38573, 61984}, {38667, 50689}, {38674, 61964}, {39809, 53731}, {51527, 61988}, {52836, 53748}, {53740,64186}
X(66592) = midpoint of X(i) and X(j) for these (i,j): {4, 124}, {117, 10747}, {382, 63404}, {3627, 38600}, {3853, 61564}, {10732, 38785}, {11713, 31673}, {12295, 53749}, {13202, 53713}, {39809, 53731}, {52836, 53748}, {53740, 64186}
X(66592) = reflection of X(i) in X(j) for these (i,j): (3, 58426), (389, 58526), (6711, 61585), (6718, 5), (11727, 9955), (38607, 58419), (38783, 140), (61578, 3850)
X(66592) = (X(i), X(j))-harmonic conjugate of X(k) for these (i,j,k): (2, 10732, 38785), (5, 38607, 58419), (381, 10747, 117), (382, 38776, 63404), (3843, 38779, 10740), (3851, 38780, 57303), (38607, 58419, 6718)
See Antreas Hatzipolakis and Peter Moses, euclid 7591.
X(66593) lies on these lines: {1, 2}, {3, 3100}, {4, 1060}, {5, 1870}, {11, 13160}, {20, 33}, {21, 40396}, {22, 11399}, {23, 54428}, {29, 64194}, {34, 3091}, {35, 22467}, {36, 14118}, {37, 775}, {48, 20273}, {55, 17928}, {56, 7503}, {58, 1736}, {65, 41733}, {72, 3562}, {77, 1490}, {81, 44547}, {140, 18455}, {171, 774}, {201, 1936}, {222, 12528}, {225, 6839}, {240, 27059}, {255, 3219}, {278, 6835}, {318, 24537}, {329, 54289}, {347, 50700}, {350, 26166}, {371, 9634}, {372, 9632}, {376, 64054}, {377, 7952}, {381, 32047}, {388, 6816}, {404, 15500}, {411, 1214}, {442, 15252}, {443, 63965}, {451, 60427}, {496, 7399}, {497, 6815}, {580, 37787}, {581, 1442}, {603, 24430}, {611, 26206}, {631, 1062}, {651, 5777}, {908, 52362}, {940, 62864}, {942, 7549}, {943, 8759}, {946, 4318}, {962, 8270}, {984, 1496}, {999, 7395}, {1040, 3523}, {1056, 6804}, {1058, 6803}, {1068, 6826}, {1069, 7592}, {1071, 17074}, {1076, 6895}, {1092, 9637}, {1155, 38336}, {1398, 11479}, {1399, 1776}, {1425, 5907}, {1433, 55400}, {1443, 66106}, {1465, 6915}, {1699, 4347}, {1771, 56288}, {1785, 2475}, {1807, 7567}, {1829, 33849}, {1837, 54292}, {1838, 6894}, {1872, 37404}, {1877, 13729}, {1897, 23661}, {1905, 35996}, {1935, 7069}, {1995, 11398}, {2275, 26216}, {2356, 7379}, {2478, 34231}, {3053, 9595}, {3074, 27065}, {3075, 3218}, {3090, 37697}, {3101, 11337}, {3146, 65128}, {3149, 17080}, {3270, 9729}, {3333, 62770}, {3465, 4303}, {3522, 9539}, {3528, 9644}, {3561, 62777}, {3583, 34007}, {3585, 4351}, {3601, 55875}, {3681, 64069}, {3868, 41344}, {3873, 66235}, {3876, 7078}, {3911, 33178}, {4194, 52366}, {4220, 37613}, {4224, 11363}, {4354, 5010}, {4907, 35658}, {5046, 56814}, {5056, 19372}, {5081, 24983}, {5160, 44280}, {5206, 9636}, {5217, 15078}, {5280, 52058}, {5348, 7098}, {5432, 9627}, {5433, 9630}, {5587, 59285}, {5720, 64347}, {5728, 37594}, {5746, 56225}, {5749, 41084}, {5889, 19366}, {5890, 6238}, {5927, 64055}, {6284, 38323}, {6285, 15072}, {6350, 27379}, {6449, 9633}, {6840, 40950}, {6854, 38295}, {6864, 37800}, {6905, 37565}, {6940, 60415}, {6991, 37695}, {7291, 57281}, {7352, 11459}, {7354, 52069}, {7355, 15305}, {7373, 64585}, {7544, 11393}, {7718, 26118}, {7987, 9577}, {8555, 37732}, {9576, 16192}, {9594, 15815}, {9611, 35242}, {9628, 15326}, {9629, 15338}, {9635, 15515}, {9638, 64049}, {9643, 15717}, {9645, 10323}, {9654, 16072}, {10055, 18912}, {10118, 15055}, {10149, 52793}, {10246, 21484}, {10394, 36746}, {10396, 62809}, {10535, 52525}, {10574, 11446}, {11189, 20791}, {11344, 62857}, {11392, 37444}, {11396, 37366}, {11429, 34148}, {11436, 15043}, {11441, 19349}, {11523, 55874}, {12022, 18970}, {12888, 15035}, {12943, 63676}, {13434, 19365}, {14639, 39815}, {14644, 19469}, {15056, 19367}, {15058, 19368}, {15060, 32143}, {16287, 23171}, {16293, 38288}, {17529, 65816}, {18228, 54305}, {18444, 37523}, {18477, 27003}, {18990, 34664}, {19182, 61111}, {20277, 37694}, {20420, 59611}, {21147, 59387}, {21166, 39822}, {21318, 37259}, {22464, 64001}, {23071, 31835}, {24929, 37275}, {26154, 26590}, {26878, 52408}, {26998, 60685}, {31803, 34043}, {32911, 64722}, {34473, 39851}, {35194, 52407}, {37113, 54407}, {37157, 38462}, {37277, 64415}, {37456, 49542}, {37522, 62811}, {37539, 62873}, {37554, 62836}, {37558, 45272}, {37941, 59325}, {41081, 46350}, {41088, 57483}, {41339, 58637}, {44802, 52427}, {46878, 58402}, {54361, 57277}, {55476, 55898}, {55481, 55896}, {55482, 55894}, {56317, 57284}, {57278, 62802}, {64003, 64708}
X(66593) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 975, 5703}, {1, 1210, 5262}, {1, 3086, 7191}, {1, 18391, 17016}, {1, 54401, 3085}, {1, 64163, 17015}, {3, 6198, 3100}, {3, 37729, 6198}, {4, 1060, 4296}, {5, 18447, 1870}, {33, 1038, 20}, {34, 9817, 3091}, {72, 65702, 3562}, {1060, 37696, 4}, {3075, 44706, 3218}, {3085, 54401, 5297}, {3523, 9538, 1040}, {6894, 37798, 1838}
See Antreas Hatzipolakis and Ercole Suppa, euclid 7532.
X(66594) lies on these lines: {2, 10735}, {3, 58428}, {4, 127}, {5, 2794}, {30, 34841}, {112, 3091}, {132, 381}, {382, 57332}, {389, 58528}, {546, 53795}, {1562, 43389}, {1699, 13280}, {2781, 46686}, {2799, 39491}, {2806, 65948}, {2848, 14566}, {3090, 38699}, {3146, 38717}, {3153, 40676}, {3545, 13200}, {3627, 38624}, {3817, 11722}, {3832, 13219}, {3839, 10718}, {3843, 12918}, {3845, 9530}, {3850, 61591}, {3851, 14900}, {3857, 51536}, {5066, 61573}, {6560, 13985}, {6561, 13918}, {7526, 34217}, {7687, 9517},{9818, 19165}, {10151, 12145}, {10705, 59387}, {10895, 13297}, {10896, 13296}, {11479, 11641}, {12265, 31673}, {12413, 18535}, {12784, 18492}, {13115, 61984}, {13166, 23047}, {13923, 42265}, {13992, 42262}, {14269, 48658}, {15033, 58064}, {19093, 23249}, {19094, 23259}, {19114, 42561}, {19115, 31412}, {23513, 53755}, {23514, 53727}, {23515, 53719}, {36518, 53760}, {36519, 53737}, {38639, 61923}, {38676, 61964}, {38689, 50689}, {38747, 62686}, {39838, 40856}, {42270, 49271}, {42273, 49270}, {42283, 49218}, {42284, 49219}, {44931, 62510}, {63838, 63919}
X(66594) = midpoint of X(i) and X(j) for these (i,j): {4, 127}, {5, 19163}, {132, 10749}, {382, 63410}, {1562, 43389}, {3627, 38624}, {10735, 14689}, {12265, 31673}, {14900, 48681}
X(66594) = reflection of X(i) in X(j) for these (i,j): (3, 58428), (389, 58528), (6720, 5), (34841, 61586), (38608, 58430), (61591, 3850)
X(66594) = (X(i), X(j))-harmonic conjugate of X(k) for these (i,j,k): (2, 10735, 14689), (5, 38608, 58430), (381, 10749, 132), (382, 57332, 63410), (3851, 48681, 57304), (38608, 58430, 6720), (48681, 57304, 14900)
As a point on the Euler line, X(66595) has Shinagawa coefficients: (E-11*F,-E+17*F)
See Keita Miyamoto and Ercole Suppa, euclid 7537.
X(66595) lies on these lines: {2, 3}, {40, 47469}, {74, 32272}, {99, 40996}, {477, 58097}, {516, 51725}, {523, 8142}, {935, 5896}, {1038, 5160}, {1040, 7286}, {1495, 20725}, {1503, 32257}, {2951, 47470}, {3564, 16163}, {5493, 47491}, {5667, 59661}, {7991, 47489}, {8705, 52520}, {11511, 48881}, {12164, 27082}, {13416, 14915}, {15074, 64100}, {16227, 45186}, {16308, 22401}, {25406, 47277}, {29181, 47457}, {32113, 59411}, {34109, 38749}, {34628, 47488}, {34632, 47493}, {34638, 47495}, {38723, 63720}, {44541, 52703}, {46264, 47468}, {46991, 47262}, {47000, 63440}, {47003, 47256}, {47455, 48872}, {47459, 51212}, {47474, 48905}, {47541, 54170}, {47546, 53097}, {47551, 64014}, {47552, 64080}, {47569, 48898}, {47571, 48873}, {47581, 48880}, {51136, 63653}, {51693, 59420}
X(66595) = midpoint of X(i) and X(j) for these (i,j): {3, 47308}, {20, 468}, {40, 47469}, {376, 47031}, {550, 47335}, {1495, 20725}, {1657, 47309}, {2951, 47470}, {3534, 47333}, {5493, 47491}, {7464, 47340}, {7991, 47489}, {11001, 47310}, {12103, 18571}, {13619, 47090}, {15681, 47332}, {15686, 18579}, {15704, 47336}, {16386, 37931}, {19710, 47334}, {22249, 62136}, {34628, 47488}, {34632, 47493}, {34638, 47495}, {44961, 62144}, {46264, 47468}, {47000, 63440}, {47339, 56369}, {47474, 48905}, {47541, 54170}, {47546, 53097}, {47551, 64014}, {47552, 64080}, {47569, 48898}, {47571, 48873}, {47581, 48880}
X(66595) = reflection of X(i) in X(j) for these (i,j): (4, 37911), (5159, 3), (13473, 44912), (16976, 47114), (18403, 63860), (37897, 37934), (37934, 47335), (37942, 15646), (44911, 37968), (46991, 47262), (47338, 37897), (47339, 47629), (62344, 47630)
See Antreas Hatzipolakis and Ercole Suppa, euclid 7541.
X(66596) lies on the Huygens hyperbola and these lines: {3, 32085}, {4, 3917}, {39, 393}, {264, 1595}, {378, 1179}, {427, 1093}, {847, 15559}, {1105, 1597}, {1300, 35502}, {1593, 8884}, {1885, 16263}, {6526, 47392}, {7378, 18855}, {7507, 46147}, {8801, 43976}, {13488, 18848}, {13596, 59278}, {15424, 52295}, {62962, 64844}, {64474, 65006}
X(66596) = isogonal conjugate of X(10984)
X(66596) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3088)}} and {{A, B, C, X(3), X(39)}}
X(66596) = barycentric product X(264)*X(46952)
X(66596) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 10601}, {19, 1497}, {264, 32828}, {393, 1598}, {46929, 63128}, {46952, 3}
X(66596) = trilinear product X(92)*X(46952)
X(66596) = trilinear quotient X(i)/X(j) for these (i,j): (4, 1497), (92, 10601), (158, 1598), (1969, 32828), (46952, 48)
See Antreas Hatzipolakis and Ercole Suppa, euclid 7541.
X(66597) lies on the Jerabek circumhyperbola, the circumconic {{A, B, C, X(2), X(847)}} and these lines: {2, 15316}, {3, 6515}, {5, 38260}, {6, 3542}, {52, 4846}, {54, 3147}, {64, 6146}, {66, 50649}, {68, 5891}, {69, 7999}, {74, 18909}, {184, 57387}, {235, 3527}, {378, 18910}, {468, 43908}, {569, 5504}, {631, 57648}, {895, 3090}, {1176, 14912}, {1614, 57388}, {1885, 3426}, {3524, 56068}, {3525, 55976}, {3532, 35485}, {5063, 57703}, {5890, 15740}, {6145, 15739}, {6241, 35512}, {6776, 34207}, {6815, 12235}, {7493,40441}, {7503, 18934}, {7592, 59349}, {10293, 13148}, {11402, 13383}, {11411, 12022}, {11423, 43697}, {11487, 61701}, {11576, 61116}, {11744, 16105}, {12324, 16835}, {13416, 18952}, {14528, 35486}, {15317, 63085}, {16000, 18918}, {16238, 63084}, {18474, 32533}, {18532, 18925}, {18550, 31725}, {22334, 64037}, {25739, 38442}, {42021, 46336}, {43689, 61713}, {45073, 46430}, {45089, 52518}, {45788,49669}
X(66597) = isogonal conjugate of X(6642)
X(66597) = trilinear pole of line {647, 65694}
See Antonio Roberto Martínez Fernández and Juan José Isach Mayo, euclid 7551.
X(66598) lies on these lines: {3, 6}, {4, 211}, {99, 5889}, {2387, 36998}, {2548, 54032}, {2794, 61139}, {3202, 37123}, {3734, 5562}, {5446, 58851}, {7756, 40254}, {8178, 39817}, {9753, 37121}, {10619, 63554}, {11675, 40279}, {13860, 27375}, {15045, 61104}, {21213, 58306}, {38738, 58212}, {39641, 39642}, {41196, 41197}
X(66598) = reflection of X(i) in X(j) for these (i,j): {4, 211}, {41262, 3}
X(66598) = {X (i), X (j)} -harmonic conjugate of X(k) for these {i,j,k}: {3, 6}, {4, 211}, {99, 5889}, {2387, 36998}, {2548, 54032}, {2794, 61139}, {3202, 37123}, {3734, 5562}, {5446, 58851}, {7756, 40254}, {8178, 39817}, {9753, 37121}, {10619, 63554}, {11675, 40279}, {13860, 27375}, {15045, 61104}, {21213, 58306}, {38738, 58212}
See Juan José Isach Mayo, euclid 7550.
X(66599) lies on these lines: {1, 3}, {2, 18908}, {140, 6745}, {214, 58595}, {392, 50739}, {515, 3742}, {518, 10165}, {551, 6001}, {581, 52541}, {631, 3555}, {912, 38028}, {944, 5439}, {946, 15726}, {960, 12005}, {971, 5886}, {1012, 4666}, {1071, 3616}, {1125, 2801}, {1279, 37469}, {1437, 17560}, {1656, 9947}, {1699, 63432}, {2771, 38032}, {2800, 10179}, {3296, 5758}, {3488, 17626}, {3523, 3889}, {3525, 3697}, {3622, 12672}, {3624, 14872}, {3636, 45776}, {3681, 27383}, {3698, 61296}, {3740, 4999}, {3753, 7967}, {3812, 5882}, {3817, 6260}, {3824, 26470}, {3833, 28236}, {3848, 9843}, {3873, 54445}, {3892, 10164}, {3893, 61288}, {4297, 13374}, {4298, 31789}, {4300, 46190}, {5044, 30478}, {5253, 33597}, {5298, 61663}, {5450, 51715}, {5534, 16408}, {5542, 51489}, {5603, 10167}, {5660, 57298}, {5806, 18481}, {5836, 13607}, {5884, 58679}, {5901, 9856}, {5918, 31162}, {5927, 6846}, {6245, 51723}, {6261, 58588}, {6684, 34791}, {6736, 38112}, {6849, 12667}, {6864, 59387}, {6865, 11037}, {6891, 11035}, {6907, 11019}, {6909, 29817}, {6913, 10582}, {6916, 10580}, {6922, 21620}, {6923, 18527}, {7113, 61650}, {7491, 31776}, {7671, 14986}, {7686, 58565}, {8227, 12680}, {8582, 38042}, {9624, 12688}, {9844, 47743}, {9858, 31419}, {9943, 13464}, {9956, 37725}, {10156, 24477}, {10157, 11230}, {10172, 38758}, {10178, 28194}, {10391, 44675}, {10427, 37726}, {11220, 37434}, {11281, 18238}, {11362, 58609}, {11700, 58593}, {11709, 58601}, {11710, 58590}, {11711, 58589}, {11712, 58594}, {11713, 58600}, {11714, 58592}, {11715, 58591}, {11720, 58582}, {12265, 58603}, {12528, 46934}, {12699, 31805}, {13865, 33592}, {14100, 37704}, {15064, 19883}, {15733, 45700}, {15808, 31803}, {17558, 24558}, {17582, 59388}, {18260, 40257}, {19843, 61028}, {19862, 58631}, {22753, 58564}, {23204, 36014}, {24475, 31838}, {26105, 37822}, {26201, 31937}, {31157, 38033}, {32213, 51362}, {33858, 58619}, {34381, 38029}, {38036, 59380}, {38316, 52027}, {39870, 58581}, {40658, 58579}, {51698, 54185}, {51705, 58560}, {54318, 58623}, {58441, 59722}, {61271, 61740}
X(66599) = midpoint of X(i) and X(j) for these {i,j}: {354, 3576}, {1699, 63432}, {3753, 7967}, {3892, 10164}, {5045, 33574}, {5049, 11227}, {5603, 10167}, {5918, 31162}, {10202, 10246}
X(66599) = reflection of X(i) in X(j) for these {i,j}: {3, 33574}, {10157, 11230}, {10175, 3848}, {10202, 58615}, {26446, 10156}
X(66599) = complement of X(18908)
X(66599) = {X(i), X(j)}-harmonic conjugate of X(k) for these {i,j,k} :{ 1, 3660, 942}, {1, 9940, 31788}, {1, 11407, 40}, {1, 31788, 13600}, {1, 37526, 10306}, {56, 16193, 942}, {631, 3555, 58643}, {942, 1385, 31786}, {1125, 12675, 5777}, {1385, 3660, 31788}, {1385, 13373, 942}, {2646, 50196, 9957}, {3660, 16193, 58576}, {5901, 13369, 9856}, {8273, 12704, 3579}, {9940, 13373, 3660}, {10222, 40296, 31798}, {10582, 63430, 6913}, {11018, 51774, 999}, {15178, 34339, 9957}, {16202, 37612, 3579}, {16203, 37615, 1385}, {18398, 30389, 14110}, {24299, 37535, 13624}, {37562, 37624, 31792}
See Juan José Isach Mayo, euclid 7550.
X(66600) lies on these lines: {2, 8550}, {3, 8584}, {4, 51185}, {5, 55708}, {6, 376}, {30, 575}, {51, 47312}, {69, 15721}, {140, 33749}, {141, 15694}, {182, 524}, {193, 55699}, {230, 10485}, {378, 15471}, {381, 597}, {511, 20583}, {542, 547}, {548, 22330}, {550, 22234}, {569, 6696}, {576, 8703}, {599, 14912}, {631, 15533}, {1350, 5032}, {1351, 14093}, {1352, 15703}, {1660, 44212}, {1992, 5085}, {2854, 5892}, {3098, 15714}, {3398, 37461}, {3522, 53858}, {3523, 63064}, {3524, 10541}, {3525, 51186}, {3530, 55698}, {3534, 53092}, {3543, 5480}, {3545, 15153}, {3564, 10124}, {3618, 47353}, {3629, 12017}, {3631, 55702}, {3763, 61865}, {3818, 38079}, {3845, 41153}, {4663, 51705}, {5012, 7426}, {5038, 9300}, {5054, 22165}, {5066, 25555}, {5071, 6776}, {5092, 14891}, {5093, 62088}, {5097, 62089}, {5102, 54170}, {5182, 6661}, {5476, 6329}, {5622, 34319}, {5946, 8705}, {6055, 8787}, {6593, 56567}, {6644, 8546}, {6800, 20192}, {9143, 35283}, {9730, 47333}, {9755, 11168}, {9974, 53131}, {9975, 53130}, {10109, 18553}, {10303, 50990}, {10304, 11477}, {10488, 14651}, {10516, 61912}, {10519, 61809}, {11003, 35266}, {11160, 61825}, {11178, 38110}, {11180, 61895}, {11255, 48368}, {11482, 15688}, {11539, 34507}, {11645, 14893}, {11737, 51732}, {11812, 40107}, {12061, 15043}, {12083, 37827}, {12100, 20190}, {13353, 43810}, {13366, 43957}, {14810, 50970}, {14848, 15684}, {14853, 62042}, {15019, 47313}, {15516, 15691}, {15585, 44211}, {15681, 20423}, {15683, 25406}, {15686, 29181}, {15693, 63115}, {15698, 55684}, {15708, 50992}, {15709, 50993}, {15710, 55614}, {15711, 55681}, {15712, 55694}, {15713, 41152}, {15715, 50967}, {15717, 63117}, {15718, 21167}, {15719, 51187}, {15723, 50955}, {15759, 55606}, {15826, 44265}, {15860, 44248}, {17504, 55687}, {18440, 61925}, {18842, 46034}, {19130, 61978}, {19708, 53097}, {20126, 25329}, {21356, 61846}, {21358, 50974}, {21850, 44903}, {23292, 47097}, {24206, 50958}, {25328, 37347}, {25561, 61922}, {29012, 62015}, {31670, 62158}, {31884, 62058}, {32300, 44920}, {32599, 54006}, {32621, 63650}, {33878, 62068}, {33923, 55718}, {34380, 55695}, {34545, 37901}, {34573, 61869}, {35403, 51022}, {35404, 59399}, {35707, 51519}, {36990, 61980}, {37077, 43697}, {37351, 51012}, {37352, 51015}, {37649, 53843}, {38072, 51171}, {38317, 61916}, {39874, 61947}, {39884, 50960}, {39899, 51126}, {40330, 51027}, {41139, 43461}, {41943, 51203}, {41944, 51200}, {44102, 62962}, {44502, 52048}, {45298, 58434}, {45759, 52987}, {46853, 55721}, {47310, 51742}, {47355, 61888}, {47459, 61744}, {48662, 50956}, {48872, 50975}, {48873, 51166}, {48874, 50972}, {48889, 51025}, {48898, 51135}, {48901, 51130}, {48905, 62048}, {48910, 62166}, {50968, 61044}, {50973, 63027}, {50989, 61833}, {50994, 61844}, {51023, 61944}, {51024, 62161}, {51028, 63062}, {51129, 61972}, {51142, 61843}, {51163, 62045}, {51170, 55676}, {51176, 61951}, {51188, 61822}, {51189, 61838}, {51212, 62129}, {53023, 62011}, {54174, 55646}, {55580, 62070}, {55582, 63073}, {55583, 62069}, {55588, 58190}, {55595, 62065}, {55597, 62064}, {55600, 62062}, {55626, 62059}, {55631, 58187}, {55637, 62057}, {55641, 62056}, {55674, 61624}, {55677, 61779}, {55679, 61782}, {55713, 62114}, {55724, 62073}, {58470, 63688}, {61812, 63116}, {61820, 63118}
X(66600) = midpoint of X(i) and X(j) for these {i,j}: {2, 8550}, {3, 8584}, {6, 51737}, {182, 50979}, {576, 8703}, {597, 11179}, {1350, 51132}, {1351, 50965}, {1352, 51136}, {1353, 50977}, {1992, 54169}, {3629, 54173}, {4663, 51705}, {5476, 48906}, {5480, 43273}, {6055, 8787}, {6776, 47354}, {11255, 48368}, {12007, 50983}, {15826, 44265}, {20126, 25329}, {20423, 44882}, {22165, 63722}, {48873, 51166}, {48876, 51140}, {48881, 54132}
X(66600) = reflection of X(i) in X(j) for these {i,j}: {182, 51138}, {547, 46267}, {5066, 25555}, {5476, 6329}, {12007, 50979}, {12100, 20190}, {18553, 10109}, {20582, 10168}, {34507, 51143}, {39884, 50960}, {40107, 11812}, {48874, 50972}, {48876, 50984}, {48898, 51135}, {48901, 51130}, {50958, 24206}, {50959, 18583}, {50970, 14810}, {50983, 182}, {50991, 140}, {51025, 48889}, {55606, 15759}, {63124, 575}, {63688, 58470}
X(66600) = {X(i), X(j)}-harmonic conjugate of X(k) for these {i,j,k} : {547, 46267, 3589}, {1350, 5032, 51132}, {1992, 5085, 54169}, {5050, 11179, 597}, {5054, 63722, 22165}, {6776, 47352, 47354}, {10304, 63022, 11477}, {10541, 15534, 3524}, {11539, 34507, 51143}, {25406, 63127, 54131}, {33749, 55704, 140}, {43273, 55711, 59373}, {43273, 59373, 5480}, {48310, 51136, 1352}, {48906, 55710, 6329}, {50977, 51140, 51183}, {50979, 50987, 51140}, {50979, 50988, 51180}, {50979, 51138, 50983}, {50979, 51181, 50977}, {50984, 50987, 50983}, {50987, 51140, 50984}, {51181, 51183, 50987}, {54170, 63000, 5102}
See David Nguyen and Ercole Suppa, euclid 7562.
X(66601) lies on the Jerabek circumhyperbola and these lines: {3, 2934}, {54, 53477}, {248, 9722}, {53414, 57703}
X(66601) = isogonal conjugate of X(66602)
As a point on the Euler line, X(66602) has Shinagawa coefficients: (E^2 + 4*E*F + 4*F^2 - 4 S^2, -2*E^2 - 6*E*F - 4*F^2 + 4*S^2)
See David Nguyen and Ercole Suppa, euclid 7562.
X(66602) lies on these lines: {2, 3}, {52, 8883}, {110, 52032}, {157, 40697}, {324, 925}, {343, 56308}, {394, 37813}, {570, 5012}, {571, 3060}, {1993, 60776}, {1994, 14652}, {2351, 6515}, {4558, 27365}, {6403, 63835}, {8154, 56292}, {8905, 14516}, {10539, 15827}, {11442, 52350}, {14806, 15080}, {15958, 45832}, {19161, 38873}, {34218,34986}
X(66602) = isogonal conjugate of X(66601)
X(66602) = {X(i), X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {41169, 54034, 1994}, {60776, 61629, 1993}
See Antreas Hatzipolakis, David Nguyen and Francisco Javier García Capitán, euclid 7572.
X(66603) lies on these lines: {5, 1614}, {140, 14769}, {157, 1656}, {570, 1506}, {1594, 13856}, {2165, 25738}, {6146, 15367}, {16837, 39504}, {21975, 37938}, {32551, 34826}
See Antreas Hatzipolakis, Antonio Roberto Martínez Fernández and Francisco Javier García Capitán, euclid 7573.
X(66604) lies on these lines: {3, 6403}, {4, 94}, {24, 12006}, {25, 5946}, {30, 47328}, {51, 1596}, {52, 1595}, {74, 7730}, {185, 973}, {186, 13339}, {235, 10095}, {378, 13391}, {389, 1503}, {403, 13364}, {427, 1154}, {428, 52000}, {468, 13363}, {511, 44683}, {542, 51994}, {1593, 10263}, {1594, 11591}, {1597, 3060}, {1598, 3567}, {1843, 9730}, {1906, 58533}, {3088, 6243}, {3515, 34513}, {3517, 6800}, {3520, 6152}, {3541, 6101}, {3542, 15026}, {3575, 13630}, {5094, 15067}, {5446, 13488}, {5462, 21841}, {5562, 45303}, {5876, 7507}, {5889, 61700}, {5890, 18494}, {5892, 37935}, {5943, 37942}, {6240, 11576}, {6242, 35482}, {7487, 37481}, {7505, 32205}, {7545, 16222}, {7547, 45958}, {8541, 13352}, {8705, 16836}, {8889, 23039}, {9826, 12106}, {10110, 43392}, {11411, 31810}, {11430, 44668}, {11438, 16270}, {11561, 12140}, {11808, 17855}, {12173, 13491}, {12233, 32364}, {12235, 13142}, {13321, 18535}, {13416, 18281}, {13474, 32392}, {14708, 38322}, {15037, 19128}, {15074, 37506}, {16982, 35502}, {18369, 22750}, {19124, 37478}, {23047, 45959}, {27371, 53493}, {32136, 52432}, {32142, 37119}, {35503, 55286}, {37460, 40280}, {37475, 54183}, {37933, 43584}, {39871, 63475}, {44413, 61724}, {61749, 63659}
See Antreas Hatzipolakis and Peter Moses, euclid 7591.
X(66605) lies on these lines: {1, 21160}, {2, 40}, {3, 3101}, {4, 15941}, {19, 20}, {55, 17928}, {71, 23900}, {140, 18453}, {169, 16389}, {452, 1753}, {517, 37275}, {631, 8251}, {1697, 55875}, {1715, 56288}, {1842, 37437}, {1869, 6840}, {1871, 30267}, {1902, 4223}, {2550, 6815}, {2939, 63395}, {3091, 9816}, {3522, 9536}, {3523, 9537}, {3579, 7549}, {3611, 9729}, {3925, 13160}, {4219, 9895}, {4296, 41227}, {5584, 7503}, {5691, 15940}, {5890, 6237}, {6253, 38323}, {6254, 15072}, {6836, 54294}, {7291, 10884}, {7688, 14118}, {7713, 37421}, {7987, 9572}, {9573, 16192}, {10119, 15055}, {10536, 52525}, {10574, 11445}, {10902, 22467}, {11190, 20791}, {11428, 34148}, {11435, 15043}, {12528, 63434}, {12661, 15035}, {14110, 37277}, {16547, 63998}, {17576, 36984}, {18406, 34007}, {18444, 18673}, {19181, 61111}, {21166, 39821}, {27402, 55478}, {27535, 30687}, {31498, 52793}, {34473, 39850}, {36986, 37435}
X(66605) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 6197, 3101}, {3523, 9537, 10319}, {9816, 11471, 3091}
See Antreas Hatzipolakis and Peter Moses, euclid 7591.
X(66606) lies on these lines: {2, 6241}, {3, 54}, {4, 5943}, {5, 7703}, {6, 43600}, {20, 3567}, {24, 37475}, {25, 8718}, {26, 15053}, {30, 9781}, {51, 3529}, {52, 3522}, {64, 43613}, {74, 7503}, {140, 12111}, {143, 3534}, {155, 43602}, {182, 3520}, {185, 631}, {186, 10984}, {373, 3855}, {376, 389}, {378, 37514}, {381, 12279}, {382, 5640}, {511, 3528}, {546, 11451}, {548, 568}, {549, 11444}, {550, 3060}, {569, 2071}, {632, 18435}, {974, 12284}, {1092, 15032}, {1173, 44413}, {1181, 43617}, {1192, 44837}, {1199, 13346}, {1204, 35921}, {1216, 15717}, {1352, 43895}, {1614, 17928}, {1656, 13491}, {1657, 5946}, {1658, 15080}, {2781, 10541}, {2929, 63658}, {3090, 6000}, {3091, 5892}, {3146, 5462}, {3313, 33750}, {3357, 35500}, {3523, 7999}, {3524, 5562}, {3525, 5907}, {3526, 5663}, {3530, 7998}, {3543, 14641}, {3544, 6688}, {3545, 11381}, {3576, 65423}, {3628, 18439}, {3796, 32534}, {3819, 61814}, {3830, 15026}, {3832, 14915}, {3843, 13363}, {3917, 10299}, {5054, 5876}, {5067, 12045}, {5068, 16194}, {5070, 45959}, {5071, 44870}, {5072, 32137}, {5073, 10095}, {5076, 13364}, {5092, 41716}, {5286, 15575}, {5422, 12085}, {5447, 15692}, {5656, 31978}, {5878, 54012}, {5891, 10303}, {6243, 8703}, {6247, 14788}, {6293, 23328}, {6361, 64662}, {6403, 25406}, {6642, 14157}, {6644, 26882}, {6699, 12281}, {6800, 43804}, {6815, 11457}, {6823, 26879}, {6937, 34462}, {6997, 45073}, {7383, 18913}, {7393, 43806}, {7464, 11424}, {7485, 12163}, {7495, 44158}, {7506, 43584}, {7509, 10605}, {7512, 11438}, {7514, 11440}, {7558, 26937}, {7569, 40686}, {7689, 37126}, {7722, 38727}, {7729, 16252}, {7731, 14708}, {7738, 50387}, {7987, 31728}, {8717, 12087}, {9465, 48262}, {9541, 12240}, {9705, 19347}, {9786, 10323}, {9825, 16659}, {9826, 10721}, {10024, 11704}, {10110, 33703}, {10170, 55864}, {10226, 14805}, {10263, 15696}, {10304, 10625}, {10601, 35502}, {10606, 41589}, {10996, 18916}, {11001, 13598}, {11003, 12038}, {11017, 61911}, {11250, 13353}, {11270, 20190}, {11284, 12315}, {11413, 15033}, {11425, 52003}, {11426, 13482}, {11454, 13339}, {11456, 43598}, {11464, 22467}, {11468, 13336}, {11561, 15041}, {11591, 15720}, {11592, 61794}, {11802, 13423}, {12022, 31829}, {12082, 43899}, {12084, 13434}, {12241, 44458}, {12244, 16223}, {12250, 41580}, {12253, 16225}, {12270, 15061}, {12283, 48906}, {12289, 38323}, {13160, 23294}, {13292, 54040}, {13321, 62131}, {13340, 46853}, {13347, 63425}, {13348, 14831}, {13367, 61128}, {13391, 62100}, {13421, 62093}, {13451, 62159}, {13505, 38710}, {14094, 17814}, {14128, 15694}, {14269, 18874}, {14449, 62104}, {14531, 62066}, {14644, 44573}, {14845, 50689}, {14869, 44299}, {14912, 52520}, {15012, 17538}, {15060, 46219}, {15066, 43596}, {15067, 61811}, {15073, 40929}, {15100, 61548}, {15103, 52300}, {15606, 55166}, {15644, 21735}, {15688, 55286}, {15693, 32142}, {15712, 23039}, {15760, 26917}, {15805, 63664}, {15873, 62344}, {16625, 36987}, {16868, 43846}, {17854, 64101}, {18128, 34799}, {18394, 34007}, {18488, 37353}, {18559, 44829}, {18560, 64038}, {18570, 37471}, {18952, 50435}, {21166, 39808}, {21849, 62130}, {26216, 50678}, {26881, 45735}, {27355, 41099}, {31732, 35242}, {31738, 58221}, {31833, 64032}, {32062, 61964}, {32138, 34864}, {32184, 64037}, {32191, 59411}, {33879, 55863}, {33884, 61788}, {33923, 37484}, {34473, 39837}, {35477, 37476}, {35497, 39242}, {36983, 61749}, {37473, 51737}, {37513, 43604}, {38321, 64718}, {38795, 54037}, {41614, 43812}, {43130, 64014}, {43621, 58549}, {43652, 56292}, {43809, 61752}, {43810, 44493}, {44324, 61802}, {44832, 46728}, {44863, 50687}, {45187, 61807}, {46847, 61945}, {50008, 58922}, {55320, 61799}, {58470, 62042}, {58492, 64034}, {58531, 62041}, {58533, 62150}, {61886, 64029}, {62067, 62188}, {62085, 63414}, {62097, 62187}, {62147, 65093}
X(66606) = reflection of X(i) in X(j) for these {i,j}: {7999, 3523}, {9781, 15043}, {15056, 3526}
X(66606) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6241, 15058}, {2, 40647, 6241}, {3, 5890, 11412}, {3, 6102, 2979}, {3, 7592, 43574}, {3, 10574, 5890}, {3, 11412, 54041}, {3, 13630, 5889}, {4, 9729, 15045}, {4, 15045, 15024}, {5, 12290, 16261}, {5, 15072, 12290}, {5, 64030, 11439}, {20, 9730, 3567}, {24, 37475, 43597}, {185, 631, 11459}, {185, 16836, 631}, {373, 13474, 3855}, {376, 389, 64051}, {378, 37514, 43651}, {382, 12006, 5640}, {548, 568, 64050}, {549, 34783, 11444}, {550, 37481, 3060}, {631, 61136, 185}, {974, 15035, 12284}, {1204, 37515, 35921}, {1656, 13491, 15305}, {3091, 5892, 11465}, {3091, 10575, 11455}, {3357, 43650, 35500}, {3530, 18436, 7998}, {3530, 45956, 18436}, {5462, 14855, 3146}, {5562, 17704, 3524}, {5640, 52093, 382}, {5889, 10574, 13630}, {5889, 13630, 5890}, {5892, 10575, 3091}, {6644, 52525, 26882}, {6815, 11457, 41171}, {9729, 46850, 64854}, {9729, 64100, 4}, {10024, 26913, 11704}, {10303, 64025, 5891}, {10574, 20791, 3}, {11381, 11695, 3545}, {11413, 36752, 15033}, {11439, 15072, 64030}, {11439, 64030, 12290}, {11455, 11465, 3091}, {12279, 15028, 381}, {14708, 15055, 7731}, {16836, 61136, 11459}, {22467, 64049, 11464}, {37470, 64049, 22467}, {46850, 64854, 4}, {64100, 64854, 46850}
See Antreas Hatzipolakis and Peter Moses, euclid 7591.
X(66607) lies on these lines: {2, 3}, {6, 1092}, {35, 10046}, {36, 10037}, {40, 11365}, {51, 37498}, {54, 5050}, {64, 15030}, {68, 26869}, {74, 65095}, {95, 51887}, {110, 16270}, {154, 10984}, {155, 6090}, {159, 5085}, {165, 9911}, {182, 14913}, {184, 37514}, {185, 5651}, {216, 55415}, {371, 8277}, {372, 8276}, {373, 11424}, {389, 394}, {569, 9937}, {570, 60775}, {574, 44527}, {578, 10601}, {601, 7083}, {602, 1460}, {620, 39803}, {801, 13599}, {1033, 65809}, {1038, 11398}, {1040, 11399}, {1070, 37579}, {1073, 45301}, {1075, 9308}, {1076, 54394}, {1078, 14615}, {1105, 41372}, {1147, 5892}, {1151, 44599}, {1152, 44598}, {1181, 9306}, {1192, 63425}, {1209, 15121}, {1216, 37489}, {1217, 6524}, {1351, 3567}, {1385, 8192}, {1398, 37697}, {1473, 37534}, {1486, 10310}, {1498, 31978}, {1578, 5412}, {1579, 5413}, {1587, 13889}, {1588, 13943}, {1609, 9608}, {1614, 8780}, {1619, 6247}, {1660, 58492}, {1899, 64035}, {1992, 11431}, {1993, 11432}, {2917, 31521}, {2929, 45015}, {2931, 15115}, {2935, 36518}, {2936, 11623}, {3066, 10110}, {3086, 16541}, {3092, 10963}, {3093, 10961}, {3167, 7592}, {3220, 37526}, {3426, 11439}, {3527, 5640}, {3564, 18916}, {3576, 9798}, {3796, 10282}, {3819, 46730}, {3917, 17834}, {3964, 7763}, {4550, 43604}, {5024, 26216}, {5093, 63069}, {5157, 23041}, {5171, 10790}, {5204, 18954}, {5217, 10833}, {5285, 61122}, {5286, 34809}, {5420, 9682}, {5422, 11426}, {5432, 10831}, {5433, 10832}, {5446, 37483}, {5447, 37486}, {5462, 9777}, {5544, 22550}, {5562, 9786}, {5594, 45532}, {5595, 45533}, {5621, 38729}, {5646, 45813}, {5656, 15740}, {5657, 12410}, {5709, 26935}, {5889, 15066}, {5890, 12164}, {5891, 12163}, {5907, 10605}, {5943, 10982}, {5946, 16266}, {5972, 12168}, {6036, 39832}, {6102, 58891}, {6193, 11245}, {6684, 8193}, {6689, 32333}, {6697, 10516}, {6699, 13171}, {6723, 19457}, {6759, 16836}, {7071, 37696}, {7330, 26927}, {7607, 54836}, {7689, 10170}, {7789, 45030}, {7987, 8185}, {8273, 20989}, {8542, 32621}, {8549, 29959}, {8550, 63180}, {8726, 57281}, {9588, 37546}, {9673, 63756}, {9707, 61134}, {9723, 19440}, {9751, 9918}, {9815, 45089}, {9826, 19504}, {9861, 34473}, {9910, 52027}, {9913, 38693}, {9914, 10606}, {9915, 21157}, {9916, 21156}, {9917, 22712}, {9919, 15055}, {9925, 50979}, {9932, 38396}, {10117, 38727}, {10164, 49553}, {10168, 19468}, {10184, 23709}, {10267, 10835}, {10269, 10834}, {10312, 15905}, {10314, 22401}, {10519, 37491}, {10574, 11441}, {10602, 44503}, {10902, 26308}, {11412, 62217}, {11423, 43572}, {11425, 17825}, {11430, 63128}, {11438, 11793}, {11442, 26944}, {11444, 15053}, {11456, 43598}, {11457, 18440}, {11459, 43597}, {11464, 12017}, {11465, 15033}, {11641, 38699}, {11820, 52093}, {12006, 12161}, {12038, 37506}, {12162, 37470}, {12165, 14708}, {12174, 18451}, {12233, 53415}, {12301, 14852}, {12302, 23515}, {12310, 15035}, {12315, 15072}, {12412, 15061}, {12413, 38717}, {12429, 18912}, {13093, 15305}, {13175, 21166}, {13222, 34474}, {13335, 39653}, {13336, 51393}, {13367, 37476}, {13630, 15068}, {14248, 15261}, {14379, 61349}, {14516, 18911}, {14530, 35264}, {14657, 38804}, {14673, 23239}, {14826, 18909}, {14912, 19588}, {14938, 56361}, {15024, 43574}, {15026, 39522}, {15034, 55701}, {15056, 43601}, {15106, 25711}, {15114, 34128}, {15177, 31423}, {15259, 45188}, {15462, 32251}, {15466, 41365}, {15577, 15583}, {15581, 51737}, {15582, 50983}, {15644, 33586}, {15815, 44524}, {15960, 38710}, {16035, 19179}, {16223, 17847}, {16226, 37672}, {16252, 61507}, {17810, 45186}, {18350, 40280}, {18910, 54164}, {18917, 31831}, {18950, 64756}, {19137, 52520}, {19173, 61111}, {19460, 22955}, {19467, 54012}, {19596, 55684}, {20791, 32063}, {20987, 53094}, {21151, 60897}, {21154, 54065}, {22115, 36753}, {22241, 26166}, {22549, 22968}, {23039, 37490}, {23328, 64759}, {23329, 32321}, {23514, 39812}, {24320, 63399}, {25406, 39879}, {25440, 39475}, {26309, 37561}, {26864, 43586}, {26866, 37612}, {30270, 40689}, {32000, 41425}, {32401, 38398}, {32620, 33540}, {35283, 65151}, {36519, 39841}, {36745, 37538}, {36754, 44094}, {36794, 45062}, {37547, 64107}, {37581, 55104}, {37582, 62770}, {37648, 39571}, {37874, 40448}, {38737, 39857}, {38748, 39828}, {39242, 43898}, {39582, 52769}, {40330, 58378}, {41614, 43815}, {43130, 54183}, {43136, 52058}, {43527, 54709}, {54496, 60171}, {55354, 63176}, {55874, 63439}, {59325, 65122}, {64024, 64179}, {64195, 65094}
X(66607) = midpoint of X(3) and X(7529)
X(66607) = reflection of X(5198) in X(7529)
X(66607) = isogonal conjugate of X(45011)
X(66607) = complement of X(6816)
X(66607) = circumcircle inverse of X(47093)
X(66607) = X(62897)-Ceva conjugate of X(6)
X(66607) = X(1)-isoconjugate of X(45011)
X(66607) = crosssum of X(1587) and X(1588)
X(66607) = barycentric quotient X(6)/X(45011)
X(66607) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3, 7395}, {2, 20, 6804}, {2, 6803, 7399}, {2, 6815, 5}, {2, 7503, 64585}, {2, 13160, 1656}, {2, 16925, 26205}, {2, 17928, 3}, {2, 22467, 7503}, {2, 26154, 7866}, {3, 4, 21312}, {3, 5, 1593}, {3, 24, 9715}, {3, 25, 11414}, {3, 140, 7484}, {3, 381, 12085}, {3, 1597, 11413}, {3, 1598, 20}, {3, 1656, 9818}, {3, 3517, 22}, {3, 3526, 7393}, {3, 4245, 37302}, {3, 5020, 4}, {3, 6642, 25}, {3, 6644, 3515}, {3, 6883, 37246}, {3, 7387, 37198}, {3, 7395, 54994}, {3, 7506, 7387}, {3, 7517, 35243}, {3, 7526, 11410}, {3, 9818, 3516}, {3, 9909, 10323}, {3, 11479, 378}, {3, 11484, 1597}, {3, 13621, 12083}, {3, 16195, 7512}, {3, 16419, 7509}, {3, 18534, 550}, {3, 21308, 5073}, {3, 22462, 3843}, {3, 37814, 55576}, {3, 37949, 62107}, {3, 39568, 376}, {3, 44457, 62100}, {3, 45735, 14070}, {3, 47751, 62080}, {3, 51519, 13564}, {3, 55570, 38444}, {3, 55571, 2071}, {3, 55572, 7488}, {3, 55574, 10298}, {3, 61970, 35452}, {3, 64585, 7503}, {5, 140, 3548}, {5, 3548, 5094}, {5, 13487, 3545}, {5, 16196, 3541}, {5, 31829, 4}, {5, 44226, 3091}, {20, 1995, 1598}, {20, 6804, 34664}, {22, 1995, 52301}, {22, 3523, 3}, {22, 44802, 3517}, {24, 631, 3}, {24, 7512, 16195}, {25, 37198, 7387}, {26, 549, 3}, {51, 43652, 37498}, {140, 1658, 7516}, {140, 6644, 3}, {140, 9825, 1368}, {140, 37458, 46336}, {185, 5651, 17814}, {186, 3525, 7509}, {186, 7509, 3}, {371, 8277, 19005}, {372, 8276, 19006}, {376, 10594, 39568}, {378, 3090, 11479}, {381, 12085, 11403}, {389, 394, 12160}, {417, 6641, 3}, {550, 13861, 18534}, {578, 11695, 10601}, {631, 3541, 16196}, {632, 37814, 7514}, {1092, 64854, 6}, {1113, 1114, 47093}, {1147, 5892, 36752}, {1147, 36752, 11402}, {1368, 9825, 4}, {1593, 11284, 5}, {1597, 11484, 3091}, {1658, 7516, 3}, {1658, 32144, 12084}, {1993, 15043, 11432}, {2041, 2042, 30739}, {2043, 2044, 62962}, {2070, 15720, 3}, {2071, 5056, 63664}, {2071, 63664, 55571}, {2937, 61811, 3}, {3091, 11413, 1597}, {3147, 7383, 6676}, {3515, 7484, 3}, {3518, 3524, 10323}, {3518, 10323, 9909}, {3523, 44802, 22}, {3524, 10323, 3}, {3525, 7509, 16419}, {3526, 43809, 3}, {3528, 34484, 12082}, {3541, 7512, 12084}, {3546, 7401, 427}, {3549, 16238, 37453}, {3575, 30739, 6643}, {5020, 21313, 1995}, {5054, 45735, 3}, {5073, 21308, 63665}, {5422, 34148, 11426}, {5447, 64095, 37486}, {5462, 36747, 9777}, {5943, 13346, 10982}, {5946, 16266, 37493}, {6143, 14789, 7569}, {6642, 7387, 7506}, {6642, 9818, 64586}, {6644, 7516, 1658}, {6677, 6823, 3542}, {6947, 37117, 37415}, {6986, 11337, 3}, {7387, 7506, 25}, {7387, 35243, 47748}, {7387, 37198, 11414}, {7393, 43809, 15750}, {7484, 11284, 5094}, {7485, 7488, 3}, {7488, 10303, 7485}, {7503, 17928, 22467}, {7503, 22467, 3}, {7503, 64585, 7395}, {7507, 31255, 11585}, {7512, 16195, 9715}, {7514, 37814, 3}, {7517, 47748, 7387}, {7528, 23335, 5064}, {9306, 9729, 1181}, {9786, 17811, 5562}, {10127, 23335, 7528}, {10282, 37515, 3796}, {10601, 35602, 578}, {10996, 40132, 3089}, {11585, 18420, 7507}, {13367, 43650, 37476}, {13564, 15693, 3}, {14002, 21734, 12087}, {14118, 15078, 3}, {14782, 14783, 3546}, {14784, 14785, 18537}, {14791, 31830, 382}, {15028, 34148, 5422}, {15708, 38435, 45308}, {15805, 47391, 569}, {16432, 16433, 440}, {16453, 37034, 37257}, {17814, 37475, 185}, {18451, 40647, 12174}, {18531, 31833, 12173}, {19467, 54012, 64038}, {21844, 61867, 7550}, {32534, 35921, 3}, {35264, 52525, 14530}, {35477, 61128, 3}, {35500, 61128, 35477}, {37126, 38444, 3}, {37126, 55864, 40916}, {38444, 40916, 37126}, {43615, 48154, 49671}, {61128, 61886, 35500}
See Antreas Hatzipolakis and Peter Moses, euclid 7591.
X(66608) lies on these lines: {1, 56262}, {2, 1498}, {3, 49}, {4, 10601}, {5, 54012}, {6, 20}, {22, 9786}, {24, 37475}, {25, 9729}, {30, 10982}, {40, 55399}, {51, 39568}, {52, 35243}, {54, 37497}, {64, 1176}, {84, 55400}, {110, 15151}, {140, 18451}, {154, 17928}, {182, 1593}, {195, 15688}, {206, 31978}, {323, 21734}, {343, 7400}, {376, 7592}, {378, 37476}, {381, 15805}, {382, 7706}, {389, 11414}, {399, 38727}, {411, 36745}, {428, 9815}, {511, 37198}, {548, 12161}, {549, 32139}, {550, 36747}, {569, 12085}, {578, 21312}, {631, 11456}, {940, 6890}, {1038, 19354}, {1040, 19349}, {1184, 37182}, {1192, 7488}, {1199, 17538}, {1203, 12565}, {1350, 5889}, {1370, 12233}, {1503, 6815}, {1598, 3066}, {1620, 10298}, {1657, 36753}, {1853, 13160}, {1899, 6823}, {1907, 14561}, {1993, 3522}, {1994, 50693}, {2003, 9841}, {2323, 37551}, {2883, 6816}, {3060, 33524}, {3088, 37649}, {3089, 37648}, {3091, 15811}, {3146, 5422}, {3157, 10167}, {3313, 45813}, {3357, 54994}, {3523, 11441}, {3528, 15032}, {3530, 15068}, {3534, 36749}, {3547, 37638}, {3567, 12082}, {3574, 34609}, {3575, 46264}, {3955, 26927}, {4383, 6838}, {4846, 12605}, {5012, 11413}, {5020, 26883}, {5050, 11424}, {5059, 34545}, {5067, 12112}, {5157, 63420}, {5198, 5943}, {5228, 55109}, {5256, 63985}, {5262, 64449}, {5446, 8717}, {5462, 18534}, {5480, 41256}, {5656, 6804}, {5663, 7516}, {5706, 6836}, {5707, 37374}, {5709, 55437}, {5731, 64069}, {5732, 54301}, {5878, 34664}, {5890, 10323}, {5892, 7529}, {5894, 34117}, {5895, 52069}, {5907, 7484}, {6000, 7395}, {6102, 37486}, {6241, 7509}, {6293, 34778}, {6461, 9838}, {6676, 26937}, {6759, 16836}, {6776, 10996}, {6795, 36179}, {6800, 17821}, {6803, 34781}, {6909, 19767}, {6960, 37679}, {6972, 37674}, {6997, 16621}, {7078, 10884}, {7193, 26935}, {7330, 55438}, {7387, 9730}, {7393, 12162}, {7399, 14216}, {7401, 16655}, {7485, 12111}, {7486, 59777}, {7494, 18913}, {7500, 11745}, {7506, 40280}, {7512, 61136}, {7514, 13491}, {7527, 10541}, {7530, 12006}, {7544, 36990}, {7580, 36754}, {7729, 23041}, {7957, 45728}, {8546, 53097}, {8547, 40929}, {8548, 19467}, {8549, 17845}, {8703, 16266}, {8718, 10594}, {9306, 17704}, {9715, 11438}, {9723, 19500}, {9777, 13598}, {9818, 10575}, {9825, 31383}, {9911, 64662}, {9914, 41580}, {9919, 16223}, {9943, 64020}, {10192, 46372}, {10263, 33532}, {10304, 37672}, {10606, 14118}, {10990, 45016}, {11004, 46945}, {11179, 44492}, {11381, 11479}, {11402, 13346}, {11432, 45186}, {11433, 52404}, {11472, 13339}, {11477, 64050}, {12083, 37481}, {12084, 37506}, {12123, 19461}, {12124, 19462}, {12160, 15644}, {12168, 17855}, {12173, 44829}, {12203, 37200}, {12241, 37201}, {12279, 63664}, {12315, 15030}, {12413, 16225}, {12680, 45729}, {13154, 15060}, {13329, 16471}, {13340, 33543}, {13382, 46728}, {13434, 51739}, {13564, 37490}, {13567, 59349}, {13623, 15317}, {13630, 37489}, {14516, 64080}, {14528, 41427}, {14531, 33878}, {14532, 43843}, {14627, 62131}, {14641, 47527}, {14805, 47524}, {15018, 17578}, {15035, 17838}, {15037, 17800}, {15038, 49137}, {15043, 17810}, {15052, 55864}, {15054, 56568}, {15055, 17847}, {15056, 40916}, {15066, 15717}, {15080, 37487}, {15087, 62100}, {15246, 64025}, {15305, 33537}, {15696, 43845}, {15704, 39522}, {15708, 51959}, {15873, 63084}, {16072, 61749}, {16195, 35268}, {16466, 64150}, {16472, 64005}, {17809, 34148}, {17822, 32064}, {17849, 20792}, {18396, 19360}, {18405, 34007}, {18925, 61113}, {19153, 46373}, {19180, 61111}, {19456, 38726}, {19457, 44573}, {19459, 52520}, {19504, 37853}, {20423, 34614}, {21166, 39820}, {21735, 56292}, {22129, 63399}, {22416, 36751}, {23329, 40285}, {26206, 54050}, {26913, 63657}, {32392, 63431}, {32911, 37421}, {33534, 33703}, {34473, 39849}, {34474, 66029}, {34938, 45089}, {35502, 43651}, {36742, 37022}, {37126, 53094}, {37196, 44480}, {37480, 64026}, {37496, 62105}, {38693, 66036}, {38736, 39810}, {38747, 39839}, {41257, 53023}, {41424, 43584}, {44158, 47525}, {45957, 64105}, {50692, 63040}, {54444, 63984}, {55098, 63429}, {55104, 55466}, {61398, 64074}, {62124, 62990}, {62152, 63076}, {62155, 64099}
X(66608) = reflection of X(i) in X(j) for these {i,j}: {7395, 37515}, {10982, 36752}
X(66608) = isogonal conjugate of the polar conjugate of X(18928)
X(66608) = X(19)-isoconjugate of X(60237)
X(66608) = X(6)-Dao conjugate of X(60237)
X(66608) = barycentric product X(3)*X(18928)
X(66608) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 60237}, {18928, 264}
X(66608) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 184, 35602}, {3, 1181, 394}, {3, 3167, 43652}, {3, 10984, 3796}, {3, 12164, 3917}, {3, 19347, 1092}, {3, 40647, 10605}, {3, 58891, 5447}, {3, 64049, 19357}, {4, 37514, 10601}, {22, 10574, 9786}, {64, 5085, 7503}, {182, 46850, 1593}, {376, 7592, 37498}, {378, 61134, 37476}, {389, 11414, 33586}, {548, 12161, 37483}, {569, 14855, 12085}, {631, 11456, 17814}, {1204, 22352, 3}, {1598, 64854, 3066}, {1657, 36753, 44413}, {3523, 11441, 17811}, {5012, 11413, 11425}, {5890, 10323, 17834}, {5907, 13347, 7484}, {6800, 22467, 17821}, {7400, 18909, 343}, {7484, 12174, 5907}, {7503, 15072, 64}, {7592, 37498, 63094}, {8718, 15045, 10594}, {10575, 13336, 9818}, {10984, 64100, 3}, {11381, 43650, 11479}, {12315, 64585, 15030}, {13568, 44882, 20}, {15080, 43601, 38444}, {15717, 43605, 15066}, {15740, 25406, 20}, {15811, 17825, 3091}, {17928, 52525, 154}, {18925, 61113, 63631}, {20791, 52525, 17928}, {31829, 48906, 19467}, {33537, 58795, 15305}, {38444, 43601, 37487}
See Antreas Hatzipolakis and Peter Moses, euclid 7591.
X(66609) lies on these lines: {2, 1181}, {3, 54}, {4, 5422}, {5, 11456}, {6, 20}, {22, 389}, {23, 16227}, {24, 6800}, {25, 15043}, {26, 37481}, {30, 36753}, {49, 40280}, {52, 10323}, {64, 7527}, {81, 6890}, {84, 54444}, {110, 16270}, {140, 18445}, {143, 12083}, {154, 44802}, {155, 631}, {182, 185}, {184, 9729}, {235, 45298}, {323, 15717}, {376, 1199}, {378, 569}, {382, 13470}, {394, 3523}, {399, 5070}, {411, 36754}, {516, 16472}, {550, 36749}, {567, 12084}, {575, 11424}, {578, 11413}, {940, 6972}, {1092, 16836}, {1192, 10298}, {1203, 64150}, {1216, 21766}, {1351, 37198}, {1498, 3091}, {1503, 7544}, {1593, 5050}, {1597, 12279}, {1598, 5640}, {1614, 6642}, {1656, 13561}, {1657, 39522}, {1899, 13160}, {1907, 18583}, {1994, 3522}, {1995, 6759}, {2071, 11425}, {2904, 35477}, {3060, 11414}, {3088, 63085}, {3089, 63084}, {3090, 15805}, {3098, 14531}, {3146, 10982}, {3193, 6865}, {3515, 15053}, {3517, 26881}, {3520, 37506}, {3524, 56292}, {3526, 15068}, {3527, 15019}, {3528, 37483}, {3529, 44413}, {3534, 14627}, {3541, 14389}, {3547, 3580}, {3549, 26879}, {3567, 7387}, {3575, 39588}, {3618, 12324}, {3796, 7488}, {3832, 15018}, {3839, 15811}, {3843, 15047}, {3855, 12112}, {3917, 13347}, {4297, 16473}, {4383, 6960}, {4846, 18560}, {5020, 15028}, {5056, 17825}, {5059, 63076}, {5073, 15038}, {5085, 20806}, {5133, 14216}, {5359, 37182}, {5446, 12082}, {5462, 10594}, {5562, 7485}, {5706, 6840}, {5707, 6943}, {5892, 10539}, {5907, 43650}, {5943, 26883}, {5946, 7517}, {6000, 63664}, {6241, 9818}, {6247, 37649}, {6293, 44883}, {6515, 7400}, {6636, 17834}, {6640, 61619}, {6644, 9707}, {6776, 6815}, {6823, 11245}, {6838, 32911}, {6909, 36742}, {6935, 64394}, {6997, 34781}, {7078, 18444}, {7383, 11411}, {7391, 45089}, {7393, 11459}, {7394, 16655}, {7395, 12111}, {7399, 11442}, {7484, 11444}, {7486, 15052}, {7502, 37490}, {7506, 12006}, {7509, 13336}, {7512, 37489}, {7514, 34783}, {7516, 13339}, {7526, 13353}, {7528, 16659}, {7529, 14157}, {7558, 12359}, {7566, 11550}, {7580, 37509}, {7667, 31802}, {7689, 37513}, {7703, 48669}, {7706, 11750}, {7999, 58891}, {8152, 39515}, {8546, 40929}, {8550, 41614}, {8718, 9781}, {9545, 17809}, {9715, 15080}, {9777, 39568}, {9815, 31383}, {10024, 18952}, {10303, 17811}, {10304, 63094}, {10575, 35502}, {10605, 14118}, {10884, 54301}, {10990, 34155}, {10996, 14912}, {11002, 12087}, {11003, 19357}, {11004, 21734}, {11179, 19467}, {11284, 43614}, {11426, 21312}, {11433, 59349}, {11438, 38444}, {11439, 12315}, {11440, 54994}, {11451, 32063}, {11454, 19362}, {11464, 43597}, {11479, 12174}, {11793, 40916}, {12017, 19139}, {12038, 37470}, {12085, 15033}, {12163, 35921}, {12168, 27866}, {12227, 38727}, {12233, 37444}, {12241, 44440}, {12834, 18535}, {13346, 13366}, {13364, 63665}, {13367, 15078}, {13382, 63425}, {13445, 55571}, {13598, 15004}, {14831, 46728}, {14852, 43808}, {15023, 55981}, {15035, 19456}, {15054, 45016}, {15055, 19504}, {15056, 64585}, {15057, 15106}, {15062, 55705}, {15114, 64101}, {15466, 51031}, {15692, 37672}, {15720, 50461}, {15750, 43603}, {15760, 18912}, {15836, 55871}, {16196, 61690}, {16252, 37648}, {16621, 63666}, {16661, 62187}, {17074, 56293}, {17578, 63040}, {17704, 34986}, {17800, 64099}, {17824, 20376}, {18128, 18474}, {18390, 64179}, {18396, 34007}, {18420, 34224}, {18475, 32534}, {18494, 64718}, {19153, 43815}, {20299, 31236}, {21166, 39810}, {22128, 37526}, {22352, 46730}, {23128, 50678}, {23293, 26944}, {26864, 43584}, {26958, 58805}, {30739, 61607}, {31732, 37557}, {31861, 64030}, {31978, 41593}, {32140, 37347}, {32269, 59351}, {33524, 45186}, {33534, 50692}, {33703, 35237}, {33749, 44493}, {34473, 39839}, {35243, 37493}, {36750, 37022}, {37200, 41334}, {37421, 63074}, {37487, 38448}, {37496, 62085}, {37570, 61395}, {39242, 43604}, {43596, 64097}, {44076, 50008}, {44829, 52842}, {45011, 52404}, {45957, 49671}, {46372, 62947}, {50693, 62990}, {52093, 53091}, {52099, 58198}, {52100, 62008}, {53094, 64195}, {54434, 61867}, {58726, 61128}
X(66609) = reflection of X(7509) in X(13336)
X(66609) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1181, 11441}, {2, 43605, 17814}, {3, 7592, 1993}, {3, 11402, 34148}, {3, 12160, 2979}, {3, 15087, 16266}, {3, 43845, 12161}, {4, 36752, 5422}, {5, 11457, 61700}, {24, 64049, 6800}, {155, 631, 15066}, {182, 185, 7503}, {184, 9729, 17928}, {376, 1199, 36747}, {389, 10984, 22}, {569, 40647, 378}, {575, 46850, 11424}, {578, 64100, 11413}, {631, 15032, 155}, {1181, 17814, 43605}, {1181, 37514, 2}, {1351, 37198, 64050}, {1498, 10601, 3091}, {1593, 5050, 13434}, {1614, 6642, 35264}, {1614, 15045, 6642}, {1994, 3522, 37498}, {3146, 34545, 10982}, {3547, 18916, 3580}, {3796, 9786, 7488}, {5012, 10574, 3}, {5562, 37515, 7485}, {5890, 61134, 3}, {6241, 43651, 9818}, {6759, 64854, 1995}, {6776, 6815, 14516}, {7383, 11411, 37636}, {7399, 18914, 11442}, {7484, 12164, 11444}, {8718, 9781, 18534}, {9730, 64049, 24}, {10024, 18952, 61701}, {10605, 37476, 14118}, {11003, 22467, 19357}, {11414, 11432, 3060}, {11479, 12174, 15305}, {12006, 61752, 7506}, {12161, 43845, 7592}, {13339, 18436, 7516}, {13434, 15072, 1593}, {14157, 15024, 7529}, {15043, 52525, 25}, {15805, 18451, 3090}, {16836, 64026, 1092}, {17704, 34986, 43652}, {17809, 35602, 9545}, {17814, 43605, 11441}, {19357, 37475, 22467}, {20791, 34148, 3}, {34783, 37471, 7514}, {35243, 37493, 64051}
See Antreas Hatzipolakis and Peter Moses, euclid 7591.
X(66610) lies on these lines: {1, 2}, {3, 1398}, {4, 1062}, {5, 6198}, {6, 62864}, {11, 9627}, {12, 9630}, {20, 34}, {21, 162}, {22, 11398}, {33, 3091}, {35, 14118}, {36, 22467}, {37, 41891}, {40, 4318}, {55, 7503}, {56, 17928}, {73, 18444}, {77, 3345}, {81, 37277}, {92, 27378}, {140, 18447}, {165, 4347}, {212, 37591}, {223, 10884}, {225, 6840}, {226, 33178}, {238, 774}, {240, 26998}, {255, 3218}, {278, 6836}, {347, 37423}, {376, 64053}, {377, 34231}, {381, 8144}, {388, 6815}, {404, 46974}, {411, 1465}, {442, 65816}, {495, 7399}, {497, 6816}, {578, 9637}, {580, 3561}, {613, 26206}, {631, 1060}, {651, 1071}, {939, 977}, {942, 3562}, {954, 26215}, {962, 34036}, {982, 1496}, {1006, 37565}, {1038, 3523}, {1056, 6803}, {1058, 6804}, {1068, 6827}, {1074, 2475}, {1076, 37798}, {1104, 62873}, {1167, 1331}, {1214, 6986}, {1254, 37570}, {1393, 1936}, {1421, 12053}, {1425, 9729}, {1442, 8555}, {1453, 62836}, {1456, 9943}, {1482, 21484}, {1656, 37729}, {1718, 10572}, {1724, 62811}, {1735, 56288}, {1776, 7299}, {1785, 5046}, {1828, 28029}, {1829, 4224}, {1838, 6895}, {1851, 28104}, {1861, 58403}, {1877, 37437}, {1905, 4228}, {1909, 26166}, {1935, 7004}, {1995, 11399}, {2276, 26216}, {2356, 7385}, {2361, 7098}, {2478, 7952}, {2646, 54292}, {3074, 3219}, {3075, 27003}, {3090, 37696}, {3101, 37231}, {3157, 7592}, {3270, 5907}, {3295, 7395}, {3339, 21160}, {3468, 4303}, {3486, 57277}, {3576, 59285}, {3583, 4354}, {3585, 34007}, {3681, 66235}, {3832, 9539}, {3843, 9641}, {3851, 9642}, {3855, 9644}, {3868, 7078}, {3873, 64069}, {4187, 15252}, {4193, 15500}, {4200, 52365}, {4351, 7280}, {4857, 38458}, {5056, 9817}, {5081, 24984}, {5084, 63965}, {5204, 15078}, {5218, 64349}, {5273, 54305}, {5299, 52058}, {5432, 64339}, {5436, 55874}, {5439, 65702}, {5731, 21147}, {5744, 54289}, {5889, 11436}, {5890, 7352}, {6238, 11459}, {6284, 52069}, {6285, 15305}, {6767, 64585}, {6828, 37695}, {6839, 40950}, {6865, 57477}, {6906, 60415}, {6947, 38295}, {7009, 51558}, {7071, 11479}, {7100, 23707}, {7173, 10149}, {7269, 53821}, {7286, 44280}, {7354, 38323}, {7355, 15072}, {7488, 52427}, {7520, 24611}, {7544, 11392}, {7549, 24929}, {7713, 37254}, {7989, 9577}, {8273, 15832}, {8743, 21148}, {8757, 64358}, {9540, 9634}, {9594, 44518}, {9610, 18492}, {9631, 35821}, {9632, 10576}, {9638, 10539}, {9645, 10594}, {9669, 16072}, {9799, 54425}, {9940, 17074}, {10071, 18912}, {10167, 64055}, {10393, 56418}, {10574, 19367}, {11108, 64750}, {11109, 23661}, {11220, 64057}, {11363, 33849}, {11393, 37444}, {11429, 13434}, {11441, 19354}, {11446, 15056}, {11461, 15058}, {11518, 55875}, {11700, 37561}, {12022, 12428}, {12528, 34048}, {12888, 14644}, {12953, 63669}, {13595, 54428}, {13732, 20254}, {13740, 26165}, {14639, 39822}, {14709, 34593}, {14710, 34592}, {14953, 46883}, {15035, 19469}, {15043, 19366}, {15055, 19505}, {15060, 32168}, {15171, 34664}, {15338, 34005}, {15394, 60800}, {16410, 38288}, {16453, 23171}, {17126, 59335}, {17605, 38336}, {18389, 54301}, {18443, 64347}, {18477, 27065}, {19175, 61111}, {19365, 34148}, {19649, 37613}, {20277, 37523}, {20791, 32065}, {21166, 39815}, {21740, 34586}, {22464, 64004}, {23071, 24475}, {26154, 26561}, {26877, 52407}, {26888, 52525}, {27059, 60685}, {32911, 44547}, {34473, 39844}, {37106, 54320}, {37431, 41340}, {37449, 64039}, {37582, 63388}, {37941, 59319}, {41012, 51616}, {43035, 64706}, {50195, 57280}, {52362, 59491}, {54994, 64951}, {55475, 55894}, {55476, 55896}, {55481, 55898}, {56535, 62859}, {56839, 60970}, {57483, 60803}
X(66610) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 614, 14986}, {1, 1103, 3870}, {1, 3085, 3920}, {1, 22350, 34772}, {1, 51784, 30145}, {3, 1870, 4296}, {4, 1062, 3100}, {5, 18455, 6198}, {33, 19372, 3091}, {34, 1040, 20}, {1062, 37697, 4}, {1074, 56814, 2475}, {3074, 44706, 3219}, {3091, 9538, 33}, {3832, 9539, 65128}, {5262, 19767, 17016}, {9643, 65128, 9539}, {34036, 54295, 962}
See Antreas Hatzipolakis and Peter Moses, euclid 7591.
X(66611) lies on these lines: {2, 371}, {3, 5410}, {6, 2929}, {20, 5412}, {22, 1579}, {24, 11418}, {140, 18457}, {186, 10898}, {372, 22467}, {590, 13160}, {631, 10897}, {1151, 7503}, {1152, 15078}, {1995, 3092}, {2071, 11474}, {3068, 6815}, {3070, 38323}, {3091, 10961}, {3093, 11413}, {3146, 35764}, {3523, 11513}, {5050, 8912}, {5413, 44802}, {5890, 10665}, {6200, 14118}, {6221, 7395}, {6449, 54994}, {6457, 10960}, {6459, 6816}, {6564, 34007}, {6644, 10881}, {6823, 13884}, {7399, 8981}, {7488, 11514}, {7592, 8909}, {9729, 21640}, {10533, 52525}, {10574, 11447}, {11241, 20791}, {11266, 45735}, {12891, 15035}, {12964, 15072}, {13287, 15055}, {13595, 35765}, {15305, 49250}, {18459, 37814}, {19183, 61111}, {21166, 39823}, {26879, 49225}, {32589, 55567}, {34473, 39852}, {35841, 63069}, {42258, 52069}, {42263, 63677}
X(66611) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 10880, 11417}, {10961, 11473, 3091}
See Antreas Hatzipolakis and Peter Moses, euclid 7591.
X(66612) lies on these lines: {2, 372}, {3, 5411}, {6, 2929}, {20, 5413}, {22, 1578}, {24, 11417}, {140, 18459}, {186, 10897}, {371, 22467}, {615, 13160}, {631, 10898}, {1151, 15078}, {1152, 7503}, {1995, 3093}, {2071, 11473}, {3069, 6815}, {3071, 38323}, {3091, 10963}, {3092, 11413}, {3146, 35765}, {3523, 11514}, {5412, 44802}, {5890, 10666}, {6396, 14118}, {6398, 7395}, {6450, 54994}, {6458, 10962}, {6460, 6816}, {6565, 34007}, {6644, 10880}, {6823, 13937}, {7399, 13966}, {7488, 11513}, {8954, 55566}, {9729, 21641}, {10534, 52525}, {10574, 11448}, {11242, 20791}, {11265, 45735}, {12892, 15035}, {12970, 15072}, {13288, 15055}, {13595, 35764}, {15305, 49251}, {18457, 37814}, {19184, 61111}, {21166, 39824}, {26879, 49224}, {34473, 39853}, {35840, 63069}, {42259, 52069}, {42264, 63678}
X(66612) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 10881, 11418}, {10963, 11474, 3091}
See Tran Quang Hung, Peter Moses and Ercole Suppa, euclid 7598 and euclid 7599.
X(66613) lies on these lines: {2, 3}, {512, 9513}, {2420, 60695}, {6787, 41167}, {10568, 47213}, {32761, 57742}
X(66613) = reflection of X(9513) in the Brocard axis
X(66613) = second Brocard Circle inverse of X(10684)
X(66613) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 56957, 4230}, {2554, 2555, 10684}, {7482, 50401, 23}
See David Nguyen and Peter Moses, euclid 7600.
X(66614) lies on these lines: {2, 3}, {66, 47353}, {74, 18358}, {83, 54709}, {98, 54836}, {99, 45198}, {112, 65809}, {141, 63425}, {185, 64035}, {343, 11438}, {373, 61744}, {389, 61658}, {524, 14831}, {539, 11802}, {541, 54376}, {542, 974}, {570, 6128}, {578, 63631}, {801, 60121}, {1071, 31832}, {1076, 1852}, {1092, 12233}, {1209, 44158}, {1352, 10605}, {1503, 29959}, {1511, 61619}, {1568, 53415}, {1899, 37475}, {2777, 35283}, {3058, 64349}, {3060, 54040}, {3564, 5890}, {3567, 13142}, {3580, 15053}, {3589, 16163}, {3654, 34656}, {4846, 18451}, {5085, 23327}, {5157, 15583}, {5562, 13568}, {5642, 17701}, {5892, 12099}, {5925, 33537}, {5943, 16657}, {5946, 61657}, {6146, 9729}, {6776, 53022}, {7583, 66611}, {7584, 66612}, {7757, 66449}, {7767, 26166}, {7811, 14615}, {9530, 46700}, {9722, 47297}, {9730, 11245}, {9786, 64060}, {9815, 10982}, {9833, 66608}, {10112, 15012}, {10516, 10606}, {10574, 14516}, {10984, 34782}, {11064, 18388}, {11202, 13394}, {11430, 37649}, {11695, 13403}, {11745, 45186}, {12006, 12370}, {12022, 15045}, {12118, 36752}, {12134, 40647}, {12241, 64854}, {12383, 39562}, {12429, 18916}, {13292, 37481}, {13346, 45089}, {13599, 54496}, {14542, 37672}, {15030, 15311}, {15033, 18583}, {15066, 64729}, {15171, 66593}, {15435, 61088}, {15740, 34781}, {15940, 34746}, {16252, 64179}, {16655, 46850}, {16836, 18400}, {17704, 44829}, {18390, 37648}, {18474, 37470}, {18990, 66610}, {19467, 37514}, {21659, 64038}, {21850, 26206}, {23292, 51394}, {23300, 63422}, {23329, 45303}, {26879, 43597}, {29181, 36987}, {31162, 51719}, {31804, 66609}, {31831, 34783}, {32110, 44201}, {32833, 52347}, {34224, 66606}, {34634, 51705}, {34785, 37515}, {36201, 61676}, {36753, 43595}, {36989, 43273}, {37490, 64066}, {37636, 44683}, {37874, 60122}, {40448, 54629}, {41612, 66600}, {43584, 50435}, {43586, 51425}, {43670, 54763}, {43831, 59659}, {44386, 47000}, {47391, 61690}, {47582, 64095}, {51745, 54131}, {52077, 63649}, {54013, 64094}, {54169, 54374}
X(66614) = midpoint of X(i) and X(j) for these {i,j}: {2, 38323}, {3, 38321}, {4, 44458}, {20, 34603}, {376, 7576}, {3060, 54040}, {3534, 7540}, {3575, 7667}, {8703, 38322}, {10304, 38320}, {11001, 34613}, {31829, 66529}
X(66614) = reflection of X(i) in X(j) for these {i,j}: {4, 66529}, {381, 10127}, {3575, 38321}, {3845, 23410}, {7667, 3}, {11245, 9730}, {12022, 45298}, {12362, 7734}, {16657, 5943}, {31162, 51719}, {34603, 6756}, {34614, 3534}, {34634, 51705}, {34656, 3654}, {34664, 2}, {38321, 31833}, {44458, 31829}, {54131, 51745}, {60749, 14891}, {61658, 389}, {62962, 381}, {66529, 9825}
X(66614) = complement of X(52069)
X(66614) = orthocentroidal circle inverse of X(16072)
X(66614) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 16072}, {2, 376, 54994}, {2, 15078, 549}, {2, 26173, 66326}, {3, 381, 44441}, {3, 427, 47090}, {3, 6815, 7399}, {3, 18420, 427}, {3, 18494, 1370}, {3, 18533, 44239}, {3, 31833, 3575}, {3, 37347, 52262}, {4, 61113, 21312}, {5, 549, 61736}, {5, 10257, 62958}, {5, 34152, 44236}, {5, 44241, 378}, {20, 6803, 7395}, {20, 6997, 1597}, {376, 54994, 44285}, {381, 549, 47097}, {381, 44441, 427}, {547, 48411, 37454}, {547, 52262, 48411}, {549, 44273, 15078}, {549, 61736, 10257}, {550, 31830, 7553}, {631, 6240, 12362}, {1656, 63671, 5}, {1995, 44440, 1596}, {2043, 2044, 1593}, {2071, 5133, 64474}, {3091, 52071, 13488}, {3520, 14788, 63679}, {3850, 47337, 35484}, {6644, 10201, 44211}, {6644, 15760, 468}, {6644, 50008, 15760}, {7405, 44240, 7526}, {7487, 10996, 11414}, {7499, 7667, 43957}, {7499, 37931, 3}, {7528, 12085, 1907}, {7544, 11413, 1595}, {9825, 31829, 4}, {10024, 43809, 16238}, {10201, 44211, 468}, {10323, 65376, 59348}, {10574, 14516, 18914}, {11284, 44438, 18537}, {11299, 11300, 40884}, {12022, 15045, 45298}, {13160, 22467, 140}, {13595, 47096, 64471}, {15760, 44211, 10201}, {15765, 18585, 11585}, {16072, 61113, 44285}, {16072, 66607, 2}, {16386, 37990, 7527}, {16976, 64852, 37118}, {18420, 44441, 381}, {18533, 44239, 47340}, {35948, 35949, 35941}, {36437, 36455, 31152}, {36439, 36457, 44218}, {37118, 61128, 16976}, {37347, 48411, 547}, {37347, 52262, 37454}, {40894, 40895, 35491}, {44247, 63679, 3520}, {52399, 52400, 52398}
See Keita Miyamoto and Peter Moses, euclid 7617.
X(66615) lies on these lines: {3, 12039}, {20, 48539}, {141, 47315}, {182, 5946}, {206, 58357}, {511, 8547}, {524, 15686}, {1350, 2393}, {2854, 51522}, {3098, 8542}, {3313, 63183}, {5651, 54334}, {8546, 37517}, {8681, 55590}, {9027, 33878}, {9145, 30270}, {9813, 37283}, {9968, 51941}, {9971, 22112}, {10510, 35268}, {11443, 12220}, {11511, 32217}, {11579, 37478}, {11820, 34146}, {15303, 66372}, {16063, 41583}, {16511, 31670}, {21766, 29959}, {32154, 55672}, {32621, 55722}, {33851, 37480}, {41398, 54374}
X(66615) = reflection of X(i) in X(j) for these {i,j}: {8542, 3098}, {31670, 16511}, {37517, 8546}
X(66615) = {X(9813),X(55655)}-harmonic conjugate of X(37283)
See Keita Miyamoto and Peter Moses, euclid 7617.
X(66616) lies on these lines: {{2, 11147}, {3, 543}, {4, 9771}, {6, 8598}, {20, 9770}, {30, 7618}, {99, 599}, {148, 8860}, {183, 8591}, {316, 11742}, {376, 524}, {381, 7622}, {538, 15688}, {548, 63926}, {549, 7615}, {550, 34511}, {574, 11159}, {598, 66387}, {671, 37637}, {754, 15689}, {1003, 5116}, {1153, 15693}, {1285, 20583}, {1296, 11568}, {1657, 7775}, {2482, 5077}, {2549, 27088}, {3053, 33208}, {3522, 9740}, {3524, 7620}, {3526, 47617}, {3534, 3849}, {3830, 8176}, {3845, 63647}, {3972, 42536}, {5013, 33007}, {5054, 7617}, {5055, 7619}, {5210, 22329}, {5215, 11648}, {5254, 35287}, {5485, 13468}, {5503, 9774}, {5585, 47286}, {6031, 62309}, {6114, 9886}, {6115, 9885}, {6560, 66438}, {7606, 35925}, {7739, 19661}, {7748, 14971}, {7751, 62085}, {7752, 66397}, {7756, 9167}, {7758, 44245}, {7759, 62121}, {7761, 36521}, {7763, 66424}, {7764, 62131}, {7773, 66421}, {7780, 62082}, {7781, 62100}, {7782, 7841}, {7784, 7833}, {7827, 33235}, {7831, 51186}, {7843, 62143}, {7847, 8366}, {7870, 33234}, {8182, 8667}, {8356, 21358}, {8370, 15815}, {8596, 17004}, {9166, 44518}, {9761, 35931}, {9763, 35932}, {9855, 11163}, {9877, 21166}, {10304, 53141}, {10516, 57633}, {11001, 23334}, {11148, 62094}, {11149, 14061}, {11168, 32815}, {11317, 31489}, {11645, 64942}, {11676, 54131}, {12100, 16509}, {12154, 63198}, {12155, 63199}, {13586, 32480}, {13663, 66427}, {13881, 33274}, {14023, 62104}, {14039, 48310}, {14105, 50977}, {14907, 15533}, {15048, 37809}, {15069, 64090}, {15534, 31859}, {15685, 63956}, {15690, 47102}, {15694, 63957}, {15695, 47101}, {15696, 63938}, {15707, 53144}, {15710, 55823}, {17504, 53143}, {17538, 59546}, {19710, 44678}, {19911, 33813}, {21735, 63923}, {22165, 32817}, {22332, 33250}, {23698, 40248}, {23878, 53275}, {32985, 63548}, {33017, 41133}, {33190, 59545}, {33207, 59634}, {33216, 41139}, {33265, 63028}, {33268, 34604}, {33474, 43404}, {33475, 43403}, {34200, 63955}, {35927, 59373}, {35948, 53502}, {35949, 53503}, {36775, 36968}, {37350, 43619}, {42008, 47596}, {43448, 44401}, {44543, 55801}, {46893, 62073}, {53418, 63025}, {54995, 59231}, {61811, 63922}, {62076, 63651}, {62088, 63954}, {62093, 63953}, {62097, 63928}, {62101, 63654}, {62107, 63935}, {62111, 63940}, {62112, 63944}, {62120, 63941}, {62134, 63931}, {65630, 66395}
X(66616) = midpoint of X(i) and X(j) for these {i,j}: {20, 9770}, {376, 53142}, {3534, 11165}, {11001, 23334}, {53141, 63029}
X(66616) = reflection of X(i) in X(j) for these {i,j}: {4, 9771}, {381, 7622}, {3830, 8176}, {3845, 63647}, {5485, 13468}, {7610, 3}, {7615, 549}, {7620, 15597}, {8182, 8703}, {8667, 8182}, {8716, 53142}, {9766, 11165}, {11184, 7618}, {16509, 12100}, {18546, 1153}, {19911, 33813}, {34505, 7610}, {40727, 5569}, {63933, 9740}, {66466, 12040}, {66587, 2}
X(66616) = anticomplement of X(20112)
X(66616) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 40727, 5569}, {99, 35955, 599}, {376, 63424, 43273}, {574, 11159, 42849}, {599, 44541, 35955}, {1003, 52691, 47352}, {2482, 5077, 7778}, {3524, 7620, 15597}, {5569, 40727, 7610}, {7618, 66466, 12040}, {10304, 53141, 63029}, {12040, 66466, 11184}, {15690, 51123, 47102}, {15695, 51122, 47101}, {31859, 51224, 15534}, {32815, 47061, 11168}, {47101, 51122, 63951}
X(66617) lies on these lines: {395, 66563}, {1136, 3282}, {1137, 66182}, {3272, 41110}, {3274, 7309}, {3275, 3602}, {31935, 66572}
X(66618) lies on these lines: {3272, 8065}, {3273, 66561}, {3274, 3603}, {3275, 46643}
See Antreas Hatzipolakis and Peter Moses euclid 7638.
X(66619) lies on the curve Q033 and these lines : {2, 66557}, {30, 65155}, {1136, 38416}, {1137, 15858}, {3272, 66555}, {3275, 3602}, {3276, 3606}, {3607, 41109}, {5456, 7309}
X(66619) = isotomic conjugate of the polar conjugate of X(16871)
X(66619) = X(19)-isoconjugate of X(16839)
X(66619) = X(6)-Dao conjugate of X(16839)
X(66619) = cevapoint of X(3276) and X(3603)
X(66619) = barycentric product X(69)*X(16871)
X(66619) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 16839}, {1137, 3604}, {3273, 1136}, {6122, 3273}, {15858, 66563}, {16840, 5456}, {16841, 7309}, {16871, 4}, {66556, 38417}
See Ivan Pavlov, euclid 7623.
X(66620) lies on the Kiepert circumhyperbola, the circumconic {{A, B, C, X(6), X(32425)}} and this line: {598, 52238}
See Ivan Pavlov, euclid 7623.
X(66621) lies on the Jerabek circumhyperbola and these lines: { }
X(66621) = intersection, other than A, B, C, of circumconics: {{A, B, C, X(2), X(43956)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(1499), X(45103)}}, {{A, B, C, X(8704), X(51224)}}, {{A, B, C, X(52236), X(60588)}}
If you have GeoGebra, you can view X(66622) and X(66623).
X(66622) lies on these lines: {5, 3276}, {20, 3280}, {358, 3608}, {631, 3281}, {3274, 3609}, {3526, 8003}
If you have GeoGebra, you can view X(66622) and X(66623).
X(66623) lies on these lines: {5, 3277}, {20, 3282}, {631, 3283}, {1135, 3608}, {3275, 3609}, {3526, 8004}
X(66624) lies on these lines: {2, 66557}, {3, 3277}, {1136, 8066}, {3273, 3603}, {5456, 66561}, {23030, 66558}, {56620, 66555}
X(66624) = X(31)-complementary conjugate of X(3604)
X(66624) = X(2)-Ceva conjugate of X(3604)
X(66624) = X(3604)-Dao conjugate of X(2)
X(66624) = barycentric product X(38417)*X(66561)
X(66624) = barycentric quotient X(i)/X(j) for these {i,j}: {358, 3602}, {3274, 357}, {5456, 38415}, {16839, 66557}
X(66624) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 66619, 66557}, {3603, 66556, 7309}, {7309, 66556, 3604}, {8004, 66183, 3277}, {15859, 41110, 66562}, {15859, 66562, 3277}
X(66625) lies on the Steiner minor axis, the Kirikami-Steiner trifolium, and these lines: {2, 1340}, {30, 14501}, {99, 1379}, {187, 524}, {543, 39022}, {620, 39023}, {671, 22244}, {1380, 5182}, {2029, 5969}, {5468, 52722}, {5638, 35356}, {6189, 41134}, {7771, 47088}, {10754, 22243}, {13722, 62672}, {18553, 19660}, {39365, 52695}, {57014, 65353}
X(66625) = midpoint of X(i) and X(j) for these {i,j}: {99, 6190}, {57576, 62560}
X(66625) = reflection of X(39023) in X(620)
X(66625) = X(i)-cross conjugate of X(j) for these (i,j): {46463, 52723}, {52722, 524}
X(66625) = X(i)-isoconjugate of X(j) for these (i,j): {897, 5638}, {923, 3413}, {1380, 23894}, {13636, 36142}
X(66625) = X(i)-Dao conjugate of X(j) for these (i,j): {524, 52722}, {1648, 46462}, {1649, 66186}, {2482, 3413}, {6593, 5638}, {13636, 64258}, {23992, 13636}, {39022, 5466}, {39067, 9178}, {62560, 671}
X(66625) = cevapoint of X(i) and X(j) for these (i,j): {524, 52722}, {46463, 52723}
X(66625) = trilinear pole of line {524, 46462}
X(66625) = crossdifference of every pair of points on line {5638, 9178}
X(66625) = X(35356)-line conjugate of X(5638)
X(66625) = pole of line {5461, 39022} with respect to the Kiepert circumhyperbola
X(66625) = pole of line {671, 3413} with respect to the Steiner / Wallace right hyperbola
X(66625) = pole of line {111, 1380} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(66625) = pole of line {671, 3413} with respect to the Kiepert circumhyperbola of the anticomplementary triangle
X(66625) = pole of line {3413, 30508} with respect to the Steiner circumellipse
X(66625) = pole of line {1649, 3413} with respect to the Steiner inellipse
X(66625) = pole of line {6189, 30508} with respect to the Kiepert parabola
X(66625) = barycentric product X(i)*X(j) for these {i,j}: {99, 52723}, {524, 6190}, {1379, 3266}, {3414, 5468}, {4590, 46463}, {6390, 57014}, {52722, 57576}
X(66625) = barycentric quotient X(i)/X(j) for these {i,j}: {187, 5638}, {524, 3413}, {690, 13636}, {1379, 111}, {1648, 66186}, {1649, 46462}, {2482, 52722}, {3414, 5466}, {4235, 57013}, {5467, 1380}, {5468, 6189}, {5639, 9178}, {6190, 671}, {13722, 64258}, {46463, 115}, {52722, 39023}, {52723, 523}, {57014, 17983}
X(66625) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {99, 57576, 6190}, {6190, 62560, 99}, {39204, 39205, 30508}
X(66626) lies on the Steiner minor axis, the Kirikami-Steiner trifolium, and these lines: {2, 1341}, {30, 14502}, {99, 1380}, {187, 524}, {543, 39023}, {620, 39022}, {671, 22245}, {1379, 5182}, {2028, 5969}, {5468, 52723}, {5639, 35356}, {6190, 41134}, {7771, 47089}, {10754, 22242}, {13636, 62672}, {18553, 19659}, {39366, 52695}, {57013, 65353}
X(66626) = midpoint of X(i) and X(j) for these {i,j}: {99, 6189}, {57575, 62561}
X(66626) = reflection of X(39022) in X(620)
X(66626) = X(i)-cross conjugate of X(j) for these (i,j): {46462, 52722}, {52723, 524}
X(66626) = X(i)-isoconjugate of X(j) for these (i,j): {897, 5639}, {923, 3414}, {1379, 23894}, {13722, 36142}
X(66626) = X(i)-Dao conjugate of X(j) for these (i,j): {524, 52723}, {1648, 46463}, {1649, 66187}, {2482, 3414}, {6593, 5639}, {13722, 64258}, {23992, 13722}, {39023, 5466}, {39068, 9178}, {62561, 671}
X(66626) = cevapoint of X(i) and X(j) for these (i,j): {524, 52723}, {46462, 52722}
X(66626) = trilinear pole of line {524, 46463}
X(66626) = crossdifference of every pair of points on line {5639, 9178}
X(66626) = X(35356)-line conjugate of X(5639)
X(66626) = pole of line {5461, 39023} with respect to the Kiepert circumhyperbola
X(66626) = pole of line {671, 3414} with respect to the Steiner / Wallace right hyperbola
X(66626) = pole of line {111, 1379} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(66626) = pole of line {671, 3414} with respect to the Kiepert circumhyperbola of the anticomplementary triangle
X(66626) = pole of line {3414, 30509} with respect to the Steiner circumellipse
X(66626) = pole of line {1649, 3414} with respect to the Steiner inellipse
X(66626) = pole of line {6190, 30509} with respect to the Kiepert parabola
X(66626) = barycentric product X(i)*X(j) for these {i,j}: {99, 52722}, {524, 6189}, {1380, 3266}, {3413, 5468}, {4590, 46462}, {6390, 57013}, {52723, 57575}
X(66626) = barycentric quotient X(i)/X(j) for these {i,j}: {187, 5639}, {524, 3414}, {690, 13722}, {1380, 111}, {1648, 66187}, {1649, 46463}, {2482, 52723}, {3413, 5466}, {4235, 57014}, {5467, 1379}, {5468, 6190}, {5638, 9178}, {6189, 671}, {13636, 64258}, {46462, 115}, {52722, 523}, {52723, 39022}, {57013, 17983}
X(66626) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {99, 57575, 6189}, {6189, 62561, 99}, {39202, 39203, 30509}
See Benjamin Warren and Francisco Javier García Capitán, euclid 7671.
X(66627) lies on these lines:{1, 11219}, {2, 952}, {3, 13279}, {7, 104}, {11, 515}, {100, 54445}, {119, 11230}, {149, 6916}, {153, 6939}, {165, 50891}, {354, 2800}, {442,24927}, {517, 61674}, {528, 3576}, {551, 2801}, {944, 12019}, {997,38211}, {1086, 41343}, {1125, 37725}, {1145, 3872}, {1317, 10265}, {1320,59417}, {1385, 10609}, {1420, 37468}, {1482, 6966}, {1484, 6907}, {1699, 2829}, {1768, 11034}, {2095, 64189}, {2802, 10164}, {2826, 14413}, {3035, 6264}, {3304, 48694}, {3616, 38669}, {3624, 20400}, {5126, 30379}, {5434, 38039}, {5533, 15845}, {5570, 12758}, {5587, 45310}, {5660, 25055}, {5731, 10707}, {5794, 49176}, {5840, 37429}, {5844, 25416}, {5851, 50908}, {5854, 63143}, {5882, 17606}, {5886, 38026}, {5901, 6912}, {6174, 10165}, {6667, 12751}, {6684, 13996}, {6702, 38155}, {6735, 12619}, {6831, 24928}, {6909, 22765}, {6913, 11729}, {6925, 10738}, {6932, 18549}, {6935, 10698}, {6945, 60759}, {6957, 10742}, {6974, 48667}, {7373, 12776}, {7972, 31434}, {7993, 64012}, {8227, 38757}, {9709, 38665}, {9778, 38693}, {10058, 22767}, {10171, 32557}, {10175, 59376}, {10269, 51636}, {10956, 61648}, {10993, 13624}, {11231, 38069}, {11570, 58595}, {12247, 12735}, {12648, 19914}, {12732, 33814}, {12736, 64106}, {12831, 15950}, {13462, 64155}, {13463, 59332}, {13607, 62617}, {14217, 38759}, {15178, 64283}, {15528, 17638}, {15558, 17654}, {16174, 52836}, {18395, 54176}, {20323, 63257}, {21630, 24466}, {22938, 28190}, {23513, 38140}, {25485, 44840}, {28146, 38761}, {28168, 64186}, {28228, 46684}, {30392, 64011}, {38084, 61262}, {38127, 50842}, {38156, 9419}, {41555, 50371}, {50841, 58441}, {51525, 64173}, {51768, 63430}, {52478, 55314}, {59377, 59387}
See Benjamin Warren and Francisco Javier García Capitán, euclid 7671.
X(66628) lies on these lines: {2, 14646}, {3, 8}, {9, 1768}, {11, 516}, {20, 12019}, {40, 20418}, {46, 16173}, {55, 41556}, {57, 38055}, {65, 15558}, {80, 38759}, {88, 15251}, {119, 11231}, {149, 35514}, {165, 528}, {210, 2801}, {392, 2800}, {442, 10172}, {517, 61674}, {658, 38941}, {1000, 12735}, {1158, 13747}, {1317, 37600}, {1376, 38211}, {1387, 6966}, {1512, 12619}, {1537, 3306}, {1565, 56543}, {1635, 2826}, {1698, 38757}, {1699, 45310}, {2646, 41554}, {2771, 38727}, {2807, 34583}, {2827, 4763}, {2829, 5587}, {2950, 3646}, {3036, 37712}, {3576, 50843}, {3579, 37726}, {3817, 59376}, {4187, 64118}, {4188, 33899}, {4297, 62616}, {5083, 17603}, {5281, 14151}, {5316, 21635}, {5432, 12831}, {5435, 53055}, {5531, 35023}, {5584, 48713}, {5603, 38026}, {5784, 17661}, {5817, 37240}, {5840, 37428}, {5880, 6667}, {6246, 28172}, {6684, 37725}, {6702, 52836}, {6831, 23513}, {6932, 55918}, {6955, 12248}, {7082, 64129}, {7580, 60782}, {8166, 52682}, {8727, 9352}, {9778, 10707}, {9779, 31272}, {9809, 38113}, {9812, 59377}, {10058, 57278}, {10265, 12690}, {10283, 38032}, {10860, 51768}, {10884, 12738}, {10993, 31663}, {11230, 38069}, {11715, 25416}, {12616, 38156}, {12665, 58666}, {12767, 64012}, {13996, 43174}, {14110, 17652}, {14647, 16371}, {14936, 43065}, {16128, 58421}, {16209, 26066}, {17647, 38213}, {20400, 31423}, {22775, 52148}, {22799, 61262}, {22938, 28182}, {24025, 43047}, {24465, 54366}, {28154, 64186}, {28212, 61566}, {34126, 61269}, {35242, 49176}, {37541, 42884}, {37713, 55297}, {37718, 58887}, {38038, 57298}, {38099, 38155}, {38128, 38176}, {38319, 61266}, {43055, 64013}, {46685, 51380}, {50889, 59420}, {50891, 63468}, {53056, 64155}, {58221, 64011}, {59390, 59419}, {61275, 64192}, {64009, 64141}
X(66629) lies on these lines: {2, 3603}, {5456, 66561}
X(66629) = barycentric quotient X(i)/X(j) for these {i,j}: {358, 357}, {5628, 5457}, {6123, 5629} Points related to some P-anticomplementary triangles: X(66630)-X(66869)
This preamble and centers X(66630)-X(66869) were contributed by Ivan Pavlov on Jan 14, 2025.
Let ABC be a triangle and P a point and PaPbPc the cevian triangle of P. Denote by Ma, Mb, Mc the midpoints of APa, BPb, CPc, resp. and by P1, P2, P3 the the isogonal conjugates of P wrt triangles MaBC, MbCA, McAB, resp. If P lies on the circumcircle, P1P2P3 is similar to ABC and its circumcircle is the anticomplementary circle.
This fact suggests that for each point P we name the triangle P1P2P3 - P-anticomplementary triangle.
Some other properties, if P lies on the circumcircle, include:
- The orthology center of ABC and P1P2P3 is Λ(X(3), P), and lies on the circumcircle.
- The orthology center P1P2P3 and ABC is the reflection of X(20) in P and lies on the anticomplementary circle.
- The X(1)-anticomplementary triangle is homothetic to the Artzt triangle with center X(66632)
- The X(4)-anticomplementary triangle is homothetic to the orthic triangle with center X(20)
Some of the properties below refer to CTR-triangles. More info on these series of triangles is available in this catalog.
X(66630) lies on these lines: {1, 88}, {2, 10058}, {3, 119}, {8, 10074}, {9, 45633}, {10, 104}, {11, 474}, {35, 64012}, {36, 6735}, {46, 64139}, {55, 34123}, {56, 1145}, {78, 11570}, {79, 27385}, {80, 14803}, {140, 38722}, {149, 17572}, {377, 8068}, {405, 31235}, {411, 15017}, {496, 13271}, {499, 38901}, {516, 1519}, {519, 5193}, {528, 16417}, {535, 13587}, {936, 1768}, {952, 1376}, {958, 38602}, {960, 12515}, {993, 38693}, {997, 2800}, {999, 5854}, {1125, 66199}, {1155, 41389}, {1317, 5687}, {1324, 19335}, {1377, 48700}, {1378, 48701}, {1387, 13205}, {1470, 5434}, {1537, 10310}, {1706, 6264}, {1877, 32757}, {2057, 14740}, {2551, 12248}, {2801, 21164}, {2804, 53313}, {2886, 57298}, {2950, 10270}, {2975, 64141}, {3036, 9709}, {3149, 24466}, {3244, 66222}, {3256, 50844}, {3304, 25416}, {3419, 20118}, {3434, 5533}, {3560, 58421}, {3624, 63281}, {3647, 51897}, {3811, 5083}, {3814, 6909}, {3878, 64189}, {3913, 12735}, {4187, 12764}, {4188, 4293}, {4315, 10915}, {4413, 34122}, {4925, 19916}, {5248, 58453}, {5438, 6326}, {5440, 12739}, {5542, 34894}, {5554, 6224}, {5563, 64056}, {5794, 12619}, {5836, 12737}, {5840, 6911}, {5856, 42885}, {6265, 37562}, {6600, 45637}, {6667, 16408}, {6700, 21635}, {6713, 26363}, {6906, 64008}, {6915, 10724}, {6918, 65948}, {6921, 59334}, {6924, 11248}, {6942, 64111}, {6946, 59391}, {8256, 37535}, {9679, 19047}, {10073, 57287}, {10246, 15813}, {10265, 57284}, {10306, 64192}, {10427, 60896}, {10531, 13199}, {10586, 20095}, {10609, 22768}, {10698, 30144}, {10707, 36006}, {10728, 37403}, {10738, 45976}, {10914, 20586}, {10942, 61562}, {10958, 37308}, {11112, 13273}, {11517, 45639}, {11698, 47742}, {12115, 18861}, {12331, 16203}, {12611, 25681}, {12641, 15179}, {12665, 63399}, {12740, 17614}, {12758, 19861}, {12761, 31775}, {12763, 17757}, {12832, 49168}, {13243, 47320}, {13272, 17563}, {13747, 26476}, {15528, 37534}, {15863, 38669}, {17531, 25639}, {17573, 35023}, {19048, 48715}, {19112, 26465}, {19113, 26459}, {19524, 52793}, {21616, 34789}, {22775, 64193}, {22935, 34339}, {30305, 65119}, {31418, 66063}, {31419, 61566}, {32557, 38052}, {32612, 37828}, {33337, 38665}, {36741, 51007}, {37022, 52836}, {40293, 55016}, {45631, 61580}, {45635, 52148}, {45649, 51576}, {45729, 51157}, {48696, 66641}, {49148, 53720}, {49152, 53711}, {49178, 51569}, {49202, 53729}, {49204, 53743}, {49206, 53745}, {49732, 62395}, {55302, 64129}, {56176, 58591}
X(66630) = midpoint of X(i) and X(j) for these {i,j}: {15015, 64112}
X(66630) = pole of line {2804, 4491} with respect to the circumcircle
X(66630) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(50733)}}, {{A, B, C, X(765), X(25438)}}
X(66630) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 100, 25438}, {2, 17100, 10058}, {3, 119, 48695}, {3, 3035, 51506}, {100, 10090, 48713}, {100, 13279, 5541}, {100, 404, 10090}, {100, 5253, 1320}, {119, 3035, 26364}, {119, 38760, 55297}, {214, 25440, 100}, {214, 64745, 1}, {474, 2932, 11}, {936, 1768, 18254}, {2950, 10270, 46684}, {9709, 12773, 3036}, {11729, 33814, 11248}, {12751, 37561, 104}, {12775, 34474, 2077}, {13205, 25524, 1387}, {15015, 64112, 2802}
X(66631) lies on the Kiepert hyperbola and on these lines: {10, 1319}, {57, 4080}, {321, 3911}, {553, 65021}, {2051, 37634}, {3669, 4049}, {6539, 31231}, {13576, 29662}, {14554, 37646}, {16371, 60079}, {17533, 60078}, {27797, 64114}, {31188, 56209}
X(66631) = trilinear pole of line {523, 53528}
X(66631) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 5330}
X(66631) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 5330}
X(66631) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(27), X(13747)}}, {{A, B, C, X(57), X(1319)}}, {{A, B, C, X(278), X(8051)}}, {{A, B, C, X(333), X(12641)}}, {{A, B, C, X(553), X(31231)}}, {{A, B, C, X(1088), X(43948)}}, {{A, B, C, X(1255), X(56040)}}, {{A, B, C, X(2006), X(10944)}}, {{A, B, C, X(3676), X(56358)}}, {{A, B, C, X(3912), X(29662)}}, {{A, B, C, X(4031), X(64114)}}, {{A, B, C, X(4114), X(31188)}}, {{A, B, C, X(5433), X(64984)}}, {{A, B, C, X(5435), X(65028)}}, {{A, B, C, X(7224), X(56365)}}, {{A, B, C, X(8056), X(17614)}}, {{A, B, C, X(14829), X(37634)}}, {{A, B, C, X(25430), X(30608)}}, {{A, B, C, X(42339), X(43759)}}, {{A, B, C, X(49494), X(62621)}}
X(66632) lies on these lines: {1, 2}, {3, 13161}, {4, 37552}, {5, 5266}, {9, 7735}, {11, 3744}, {12, 37360}, {22, 59334}, {25, 1324}, {30, 37589}, {31, 908}, {35, 4220}, {36, 19649}, {37, 230}, {38, 59491}, {39, 25075}, {44, 5306}, {55, 17720}, {56, 16434}, {57, 6211}, {58, 21077}, {98, 109}, {100, 3914}, {140, 37592}, {142, 17122}, {144, 16570}, {165, 24248}, {183, 4357}, {190, 59544}, {192, 59547}, {210, 35466}, {225, 4231}, {238, 3452}, {262, 66638}, {312, 4008}, {319, 30761}, {321, 1733}, {325, 3879}, {329, 1707}, {333, 4104}, {354, 17724}, {376, 66672}, {381, 66639}, {385, 4416}, {404, 23536}, {427, 10523}, {474, 24178}, {497, 3749}, {511, 20359}, {515, 37716}, {516, 3550}, {518, 37646}, {527, 4650}, {549, 37599}, {553, 33103}, {595, 21616}, {611, 940}, {613, 4383}, {631, 988}, {750, 5249}, {756, 11031}, {759, 4228}, {846, 4656}, {896, 17781}, {946, 5255}, {982, 3911}, {984, 5745}, {986, 6684}, {1054, 24177}, {1072, 6905}, {1074, 59353}, {1100, 3815}, {1104, 1329}, {1155, 3782}, {1191, 25681}, {1194, 13006}, {1279, 3816}, {1284, 37619}, {1368, 46974}, {1376, 1738}, {1386, 37662}, {1423, 20368}, {1429, 12197}, {1447, 3663}, {1449, 7736}, {1469, 37521}, {1478, 26118}, {1743, 5304}, {1756, 28387}, {1757, 21060}, {1758, 64708}, {1834, 56176}, {1836, 37540}, {1848, 60685}, {2223, 4192}, {2321, 33160}, {2330, 37527}, {2550, 17064}, {2887, 4434}, {3035, 3752}, {3052, 24703}, {3054, 3723}, {3091, 4339}, {3175, 3712}, {3218, 33153}, {3247, 62992}, {3508, 56558}, {3524, 48818}, {3545, 48827}, {3579, 63997}, {3585, 37456}, {3598, 4862}, {3664, 7179}, {3666, 5432}, {3677, 31231}, {3699, 33118}, {3701, 56778}, {3714, 65543}, {3717, 4438}, {3731, 37689}, {3745, 5718}, {3751, 25568}, {3755, 33135}, {3756, 4906}, {3769, 4417}, {3814, 49480}, {3817, 33106}, {3821, 59679}, {3846, 3883}, {3915, 41012}, {3947, 7379}, {3952, 56520}, {3955, 5061}, {3967, 44416}, {3971, 56078}, {3973, 63097}, {3976, 64124}, {3977, 32925}, {4000, 59572}, {4001, 33065}, {4011, 62297}, {4035, 32846}, {4052, 17958}, {4054, 4418}, {4078, 33116}, {4082, 33164}, {4090, 4518}, {4135, 33889}, {4138, 4645}, {4292, 37603}, {4298, 37608}, {4299, 50699}, {4302, 50698}, {4304, 37443}, {4307, 5226}, {4310, 5435}, {4314, 7385}, {4349, 64302}, {4353, 17591}, {4356, 49631}, {4364, 13468}, {4413, 24789}, {4415, 4640}, {4422, 59506}, {4643, 8667}, {4646, 64123}, {4657, 15271}, {4663, 61661}, {4682, 17056}, {4689, 4854}, {4851, 7778}, {4883, 37703}, {4903, 17339}, {5020, 38903}, {5054, 48819}, {5055, 48824}, {5133, 8068}, {5204, 21487}, {5217, 50065}, {5218, 17594}, {5219, 5269}, {5247, 21075}, {5253, 23675}, {5257, 26244}, {5264, 12047}, {5281, 9746}, {5294, 32931}, {5305, 25066}, {5310, 32760}, {5316, 17123}, {5322, 37449}, {5440, 64172}, {5542, 61018}, {5573, 31190}, {5657, 60751}, {5658, 64741}, {5710, 11375}, {5711, 11374}, {5716, 10588}, {5717, 7380}, {5719, 66687}, {5725, 31479}, {5853, 33141}, {5883, 26728}, {6051, 52531}, {6057, 50104}, {6174, 50103}, {6353, 7952}, {6676, 17102}, {6677, 15252}, {6679, 7792}, {6688, 63522}, {6691, 52541}, {6692, 17063}, {6998, 37573}, {7249, 15903}, {7290, 30827}, {7298, 35988}, {7386, 10629}, {7427, 51889}, {7484, 8071}, {7485, 14793}, {7610, 41312}, {7806, 25101}, {8070, 37990}, {8229, 10572}, {8556, 17325}, {8616, 40998}, {8889, 34231}, {9300, 16666}, {9342, 26724}, {9352, 33146}, {9355, 59687}, {9598, 39255}, {9769, 66679}, {9770, 66637}, {10165, 37617}, {10175, 37717}, {11168, 41311}, {11376, 37542}, {11508, 37366}, {11512, 17567}, {11539, 48820}, {11681, 62802}, {12053, 37588}, {12572, 54354}, {12609, 24160}, {13407, 37522}, {13464, 66650}, {13638, 66635}, {13758, 66636}, {14792, 15246}, {14829, 33126}, {15298, 56518}, {15589, 17272}, {16475, 63089}, {16496, 24477}, {16667, 37665}, {16670, 63006}, {16777, 37637}, {16884, 31489}, {17010, 51630}, {17045, 58446}, {17070, 21949}, {17126, 31053}, {17127, 27131}, {17182, 38832}, {17257, 37667}, {17262, 59536}, {17321, 34229}, {17332, 50774}, {17337, 58451}, {17351, 59574}, {17390, 44377}, {17597, 17728}, {17601, 33154}, {17605, 37691}, {17625, 43043}, {17715, 24217}, {17716, 17717}, {17760, 59720}, {17889, 56010}, {17927, 38282}, {18235, 60723}, {18758, 19522}, {19540, 37590}, {19845, 23537}, {20258, 20498}, {20964, 29967}, {21185, 47766}, {21554, 21620}, {21935, 57287}, {22110, 50125}, {22329, 50093}, {22712, 66690}, {23681, 64112}, {24025, 26231}, {24046, 58405}, {24241, 64702}, {24325, 58443}, {24349, 59730}, {24440, 63990}, {24695, 28609}, {24752, 50576}, {24808, 66643}, {24851, 31730}, {24914, 37549}, {24929, 37715}, {25111, 59563}, {25430, 57726}, {25494, 26264}, {25760, 63134}, {26243, 32917}, {27003, 33148}, {30384, 37610}, {30758, 44735}, {30831, 33078}, {30852, 62834}, {31508, 66673}, {32775, 32918}, {32780, 53663}, {32851, 32926}, {32911, 61647}, {32927, 33119}, {32930, 35263}, {32932, 37759}, {33071, 49684}, {33094, 63145}, {33096, 66465}, {33111, 58463}, {33121, 49529}, {33132, 56009}, {33649, 57605}, {34379, 37683}, {37559, 37731}, {37574, 66313}, {37593, 52638}, {37631, 64802}, {37685, 61652}, {39572, 45287}, {39599, 54350}, {39954, 56218}, {41629, 64073}, {44409, 47807}, {44430, 64110}, {47804, 66518}, {49523, 59583}, {50418, 50622}, {51196, 62998}, {51400, 54325}, {51476, 64013}, {53015, 66685}, {54280, 63034}, {54366, 60786}, {56731, 63800}, {62819, 63078}, {62845, 63008}, {64160, 66646}, {64711, 66684}
X(66632) = midpoint of X(i) and X(j) for these {i,j}: {3550, 3944}, {3769, 4417}, {4650, 33101}
X(66632) = complement of X(3705)
X(66632) = X(i)-Ceva conjugate of X(j) for these {i, j}: {65291, 514}
X(66632) = X(i)-complementary conjugate of X(j) for these {i, j}: {983, 1329}, {7132, 141}, {8685, 513}, {17743, 21244}, {38813, 960}, {56358, 2887}, {56556, 51582}, {65291, 21260}
X(66632) = pole of line {4057, 53262} with respect to the circumcircle
X(66632) = pole of line {3667, 4458} with respect to the incircle
X(66632) = pole of line {3667, 21186} with respect to the orthoptic circle of the Steiner Inellipse
X(66632) = pole of line {7649, 48209} with respect to the polar circle
X(66632) = pole of line {514, 3287} with respect to the Steiner inellipse
X(66632) = pole of line {3667, 4707} with respect to the Suppa-Cucoanes circle
X(66632) = pole of line {86, 24239} with respect to the Wallace hyperbola
X(66632) = pole of line {3239, 28529} with respect to the dual conic of incircle
X(66632) = pole of line {2, 1429} with respect to the dual conic of Yff parabola
X(66632) = pole of line {3239, 4107} with respect to the dual conic of Suppa-Cucoanes circle
X(66632) = pole of line {8, 39897} with respect to the dual conic of Moses-Feuerbach circumconic
X(66632) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2), X(26665)}}, {{A, B, C, X(8), X(98)}}, {{A, B, C, X(78), X(293)}}, {{A, B, C, X(81), X(26639)}}, {{A, B, C, X(86), X(24239)}}, {{A, B, C, X(759), X(997)}}, {{A, B, C, X(936), X(1247)}}, {{A, B, C, X(2726), X(47624)}}, {{A, B, C, X(3616), X(57726)}}, {{A, B, C, X(3705), X(56358)}}, {{A, B, C, X(17316), X(56218)}}, {{A, B, C, X(19861), X(39954)}}, {{A, B, C, X(29857), X(57925)}}
X(66632) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 498, 5530}, {2, 614, 5121}, {2, 7081, 10}, {55, 17720, 24210}, {57, 33144, 24231}, {100, 33133, 3914}, {171, 17719, 226}, {171, 226, 50307}, {549, 66675, 37599}, {750, 33127, 5249}, {940, 17783, 17718}, {1054, 33147, 24177}, {1376, 3772, 1738}, {1738, 59593, 1376}, {3035, 17061, 3752}, {3550, 3944, 516}, {3663, 10164, 17596}, {3699, 41806, 33118}, {3745, 61648, 5718}, {3755, 59584, 60714}, {3769, 4417, 5847}, {3817, 63969, 33106}, {4650, 33101, 527}, {4854, 4995, 4689}, {5219, 5269, 26098}, {5393, 5405, 3912}, {5432, 17602, 3666}, {6679, 59511, 17353}, {6684, 34937, 986}, {14829, 33126, 49511}, {17122, 33130, 142}, {17126, 31053, 41011}, {17596, 33152, 3663}, {17597, 17728, 24216}, {17715, 24217, 64162}, {17724, 37634, 354}, {25568, 37642, 3751}, {32775, 32918, 54311}, {32927, 33119, 63147}, {33135, 60714, 3755}, {37691, 63979, 17605}, {58463, 64174, 33111}
X(66633) lies on these lines: {2, 27817}, {81, 63588}, {145, 388}, {226, 17315}, {333, 53545}, {553, 37756}, {4859, 42304}, {5219, 18044}, {5435, 7365}, {9311, 23681}, {24175, 65241}, {37652, 63575}
X(66633) = isotomic conjugate of X(56078)
X(66633) = trilinear pole of line {3583, 21185}
X(66633) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 56176}, {31, 56078}, {41, 3879}, {55, 4641}, {219, 11363}, {28615, 59592}
X(66633) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 56078}, {9, 56176}, {223, 4641}, {1015, 66704}, {1213, 59592}, {3160, 3879}, {40615, 4897}
X(66633) = X(i)-cross conjugate of X(j) for these {i, j}: {1125, 7}, {19786, 64984}, {23537, 273}, {24161, 86}, {24178, 75}, {24210, 1088}, {24781, 673}
X(66633) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(145)}}, {{A, B, C, X(27), X(1029)}}, {{A, B, C, X(57), X(1411)}}, {{A, B, C, X(75), X(30699)}}, {{A, B, C, X(81), X(34195)}}, {{A, B, C, X(85), X(278)}}, {{A, B, C, X(86), X(17778)}}, {{A, B, C, X(92), X(673)}}, {{A, B, C, X(189), X(43759)}}, {{A, B, C, X(226), X(553)}}, {{A, B, C, X(277), X(312)}}, {{A, B, C, X(279), X(44733)}}, {{A, B, C, X(321), X(4442)}}, {{A, B, C, X(333), X(514)}}, {{A, B, C, X(903), X(60257)}}, {{A, B, C, X(1010), X(19786)}}, {{A, B, C, X(1121), X(1751)}}, {{A, B, C, X(1125), X(25507)}}, {{A, B, C, X(1255), X(43760)}}, {{A, B, C, X(1268), X(56239)}}, {{A, B, C, X(1427), X(1432)}}, {{A, B, C, X(2006), X(10944)}}, {{A, B, C, X(2051), X(34578)}}, {{A, B, C, X(3668), X(50197)}}, {{A, B, C, X(3729), X(23681)}}, {{A, B, C, X(3891), X(18044)}}, {{A, B, C, X(4102), X(60075)}}, {{A, B, C, X(4656), X(24199)}}, {{A, B, C, X(4859), X(30568)}}, {{A, B, C, X(4997), X(8056)}}, {{A, B, C, X(5249), X(41571)}}, {{A, B, C, X(6063), X(56783)}}, {{A, B, C, X(7233), X(21453)}}, {{A, B, C, X(19831), X(28605)}}, {{A, B, C, X(24161), X(40605)}}, {{A, B, C, X(24175), X(62297)}}, {{A, B, C, X(24624), X(56947)}}, {{A, B, C, X(25430), X(32015)}}, {{A, B, C, X(34914), X(56226)}}, {{A, B, C, X(37131), X(55987)}}, {{A, B, C, X(39747), X(60482)}}, {{A, B, C, X(39963), X(42339)}}, {{A, B, C, X(40154), X(62528)}}, {{A, B, C, X(40573), X(64086)}}, {{A, B, C, X(42318), X(56086)}}, {{A, B, C, X(42335), X(64240)}}, {{A, B, C, X(43762), X(57722)}}, {{A, B, C, X(52352), X(56078)}}, {{A, B, C, X(55948), X(60167)}}, {{A, B, C, X(55962), X(65045)}}, {{A, B, C, X(60107), X(65047)}}, {{A, B, C, X(60251), X(65059)}}, {{A, B, C, X(62919), X(65028)}}, {{A, B, C, X(63164), X(65046)}}
X(66634) lies on the Kiepert hyperbola and on these lines: {4, 24880}, {10, 6675}, {226, 4641}, {321, 54357}, {333, 60251}, {759, 21161}, {3008, 60245}, {3219, 4080}, {3772, 33996}, {3911, 43682}, {4049, 14838}, {4052, 5325}, {5745, 43683}, {6703, 56226}, {10164, 52834}, {11599, 51090}, {13478, 31187}, {13576, 33138}, {14534, 41806}, {16418, 60079}, {17558, 25446}, {17758, 37646}, {17781, 65021}, {18249, 43677}, {24624, 31204}, {27321, 56197}, {31205, 60235}, {31229, 60082}, {32911, 62920}, {37650, 45098}, {50104, 60267}, {50757, 60116}
X(66634) = isotomic conjugate of X(41878)
X(66634) = trilinear pole of line {523, 66704}
X(66634) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 34195}, {31, 41878}, {1333, 27690}
X(66634) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 41878}, {9, 34195}, {37, 27690}
X(66634) = X(i)-cross conjugate of X(j) for these {i, j}: {10543, 7}, {21811, 1}
X(66634) = pole of line {2646, 41501} with respect to the dual conic of Yff parabola
X(66634) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(63194)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(21), X(5745)}}, {{A, B, C, X(27), X(6675)}}, {{A, B, C, X(57), X(759)}}, {{A, B, C, X(81), X(35016)}}, {{A, B, C, X(86), X(30101)}}, {{A, B, C, X(277), X(8051)}}, {{A, B, C, X(306), X(24880)}}, {{A, B, C, X(333), X(514)}}, {{A, B, C, X(596), X(59759)}}, {{A, B, C, X(673), X(6690)}}, {{A, B, C, X(967), X(3453)}}, {{A, B, C, X(1000), X(65046)}}, {{A, B, C, X(1211), X(41806)}}, {{A, B, C, X(1247), X(2339)}}, {{A, B, C, X(1268), X(26751)}}, {{A, B, C, X(1375), X(7658)}}, {{A, B, C, X(2006), X(37730)}}, {{A, B, C, X(2349), X(39963)}}, {{A, B, C, X(3008), X(4369)}}, {{A, B, C, X(3219), X(3911)}}, {{A, B, C, X(3437), X(57663)}}, {{A, B, C, X(3452), X(37797)}}, {{A, B, C, X(3668), X(40412)}}, {{A, B, C, X(3840), X(27321)}}, {{A, B, C, X(3912), X(33138)}}, {{A, B, C, X(3936), X(31204)}}, {{A, B, C, X(4417), X(31187)}}, {{A, B, C, X(5226), X(64836)}}, {{A, B, C, X(5273), X(62389)}}, {{A, B, C, X(5325), X(5435)}}, {{A, B, C, X(6692), X(29007)}}, {{A, B, C, X(7490), X(17558)}}, {{A, B, C, X(11545), X(26743)}}, {{A, B, C, X(15174), X(52374)}}, {{A, B, C, X(16602), X(24004)}}, {{A, B, C, X(16815), X(59726)}}, {{A, B, C, X(16824), X(39595)}}, {{A, B, C, X(17056), X(31205)}}, {{A, B, C, X(17277), X(37646)}}, {{A, B, C, X(17781), X(31231)}}, {{A, B, C, X(17927), X(51090)}}, {{A, B, C, X(19804), X(50104)}}, {{A, B, C, X(21446), X(63167)}}, {{A, B, C, X(26750), X(43759)}}, {{A, B, C, X(31229), X(32782)}}, {{A, B, C, X(32017), X(36954)}}, {{A, B, C, X(37870), X(44572)}}, {{A, B, C, X(39130), X(51501)}}, {{A, B, C, X(40420), X(42326)}}, {{A, B, C, X(42318), X(59584)}}, {{A, B, C, X(43731), X(65047)}}, {{A, B, C, X(59491), X(65249)}}, {{A, B, C, X(60942), X(64114)}}
X(66635) lies on these lines: {1, 1336}, {2, 7}, {3, 31561}, {4, 32556}, {5, 31562}, {6, 5405}, {10, 485}, {37, 590}, {44, 615}, {45, 8253}, {165, 64617}, {169, 31591}, {176, 23058}, {190, 32792}, {198, 16433}, {281, 1659}, {344, 32806}, {406, 55431}, {475, 55430}, {481, 10253}, {482, 46835}, {491, 3912}, {492, 4416}, {515, 44038}, {587, 55116}, {631, 32555}, {946, 6212}, {962, 51955}, {1001, 60848}, {1100, 32787}, {1125, 30556}, {1146, 31538}, {1212, 31535}, {1267, 4384}, {1271, 17296}, {1376, 60847}, {1449, 7585}, {1583, 15817}, {1698, 7090}, {1699, 64336}, {1743, 3069}, {1991, 4851}, {2048, 64701}, {2067, 31532}, {2321, 56386}, {2323, 55877}, {2324, 65083}, {3243, 64300}, {3244, 49620}, {3247, 8972}, {3301, 3302}, {3634, 31595}, {3679, 64314}, {3686, 56385}, {3729, 5391}, {3731, 6351}, {3740, 13360}, {3742, 13359}, {3879, 62986}, {3973, 32786}, {4356, 49632}, {4364, 45871}, {4643, 45472}, {4659, 32794}, {5514, 58039}, {5590, 17272}, {5591, 17284}, {5603, 64309}, {5816, 19216}, {6213, 6684}, {6348, 55397}, {7026, 36440}, {7043, 36458}, {7110, 15889}, {7374, 66685}, {7586, 16670}, {8252, 16885}, {8963, 13006}, {8965, 8969}, {8968, 40937}, {9616, 52808}, {12572, 63810}, {13389, 20262}, {13390, 51841}, {13637, 29574}, {13638, 66632}, {13639, 66637}, {13644, 66639}, {13653, 66678}, {13654, 66679}, {13663, 41312}, {13846, 16777}, {13882, 31582}, {15234, 15833}, {15492, 32790}, {16432, 54322}, {16583, 31583}, {16667, 19054}, {16669, 32788}, {16779, 36553}, {16814, 32789}, {16973, 36492}, {17277, 32791}, {17279, 45473}, {17335, 32803}, {17336, 32804}, {17369, 18234}, {17747, 45704}, {17805, 63592}, {22722, 66638}, {24388, 42013}, {24811, 66643}, {25728, 32796}, {31438, 63055}, {31472, 31533}, {31473, 55432}, {31546, 34125}, {32805, 54280}, {58412, 64229}, {63336, 64357}
X(66635) = complement of X(65082)
X(66635) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 34215}, {56, 15889}
X(66635) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 15889}, {9, 34215}, {31534, 2}
X(66635) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 31534}, {7110, 66636}, {31534, 32083}, {43190, 54019}
X(66635) = X(i)-complementary conjugate of X(j) for these {i, j}: {31, 31534}, {1973, 5393}, {2066, 18589}, {2212, 66636}, {6502, 34822}, {13389, 18639}, {13390, 17046}, {14121, 2887}, {16232, 2886}, {30556, 1368}, {42013, 141}, {53064, 17073}, {53065, 3}, {54016, 4885}, {58838, 21252}, {60849, 142}, {60851, 31590}, {60852, 10}, {60853, 626}, {61400, 21258}
X(66635) = pole of line {5393, 17056} with respect to the Kiepert hyperbola
X(66635) = pole of line {54019, 57223} with respect to the MacBeath circumconic
X(66635) = pole of line {522, 58838} with respect to the Steiner inellipse
X(66635) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(52420)}}, {{A, B, C, X(7), X(485)}}, {{A, B, C, X(57), X(64210)}}, {{A, B, C, X(63), X(15891)}}, {{A, B, C, X(3305), X(15892)}}, {{A, B, C, X(6203), X(56225)}}, {{A, B, C, X(14121), X(65082)}}, {{A, B, C, X(61387), X(61412)}}
X(66635) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 590, 5393}, {1125, 31594, 30556}, {3068, 6352, 1}
X(66636) lies on these lines: {1, 1123}, {2, 7}, {3, 31562}, {4, 32555}, {5, 31561}, {6, 5393}, {10, 486}, {19, 8231}, {37, 615}, {44, 590}, {45, 8252}, {165, 64336}, {169, 31590}, {175, 23058}, {190, 32791}, {198, 8233}, {219, 31473}, {281, 3536}, {344, 32805}, {406, 55430}, {475, 55431}, {481, 46835}, {482, 10252}, {491, 4416}, {492, 3912}, {591, 4851}, {631, 32556}, {910, 45704}, {946, 6213}, {962, 51957}, {966, 31438}, {1001, 60847}, {1100, 32788}, {1125, 30557}, {1146, 31539}, {1212, 31534}, {1267, 3729}, {1270, 17296}, {1376, 60848}, {1449, 7586}, {1584, 15817}, {1659, 51842}, {1698, 14121}, {1699, 64617}, {1743, 3068}, {2047, 12572}, {2048, 10445}, {2321, 56385}, {2323, 55876}, {3244, 49621}, {3247, 13941}, {3299, 3300}, {3634, 31594}, {3686, 56386}, {3731, 6352}, {3740, 13359}, {3742, 13360}, {3879, 62987}, {3973, 32785}, {4356, 49633}, {4364, 45872}, {4384, 5391}, {4643, 45473}, {4659, 32793}, {5514, 58041}, {5590, 17284}, {5591, 17272}, {5657, 64309}, {5816, 19215}, {6212, 6684}, {6347, 55398}, {6502, 31533}, {7000, 66685}, {7026, 36458}, {7043, 36440}, {7110, 15890}, {7133, 24388}, {7585, 16670}, {8224, 34125}, {8225, 34121}, {8253, 16885}, {8965, 8977}, {10175, 44038}, {13388, 20262}, {13757, 29574}, {13758, 66632}, {13759, 66637}, {13763, 66639}, {13773, 66678}, {13774, 66679}, {13783, 41312}, {13847, 16777}, {13934, 31583}, {15233, 15833}, {15492, 32789}, {16433, 54322}, {16583, 31582}, {16667, 19053}, {16669, 32787}, {16779, 36552}, {16814, 32790}, {16973, 36491}, {17277, 32792}, {17279, 45472}, {17335, 32804}, {17336, 32803}, {17802, 63592}, {22723, 66638}, {24812, 66643}, {25101, 32807}, {25728, 32795}, {31532, 44622}, {32806, 54280}, {58412, 64230}, {63337, 64356}
X(66636) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 34216}, {56, 15890}
X(66636) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 15890}, {9, 34216}, {8965, 6347}, {31535, 2}
X(66636) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 31535}, {7110, 66635}, {31535, 32082}, {43190, 54017}
X(66636) = X(i)-complementary conjugate of X(j) for these {i, j}: {31, 31535}, {1659, 17046}, {1973, 5405}, {2067, 34822}, {2212, 66635}, {2362, 2886}, {5414, 18589}, {7090, 2887}, {7133, 141}, {13388, 18639}, {30557, 1368}, {53063, 17073}, {53066, 3}, {54018, 4885}, {58840, 21252}, {60850, 142}, {60851, 10}, {60852, 31591}, {60854, 626}, {61401, 21258}
X(66636) = pole of line {5405, 17056} with respect to the Kiepert hyperbola
X(66636) = pole of line {54017, 57223} with respect to the MacBeath circumconic
X(66636) = pole of line {522, 58840} with respect to the Steiner inellipse
X(66636) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(52419)}}, {{A, B, C, X(7), X(486)}}, {{A, B, C, X(57), X(64209)}}, {{A, B, C, X(63), X(15892)}}, {{A, B, C, X(3305), X(15891)}}, {{A, B, C, X(6204), X(56225)}}, {{A, B, C, X(61386), X(61412)}}
X(66636) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 615, 5405}, {3069, 6351, 1}
X(66637) lies on these lines: {1, 524}, {2, 1449}, {6, 29573}, {7, 50109}, {9, 1992}, {37, 15534}, {44, 29602}, {86, 4034}, {141, 66549}, {145, 4659}, {193, 3247}, {344, 63022}, {390, 527}, {519, 4349}, {536, 49469}, {538, 48827}, {542, 66685}, {597, 4851}, {599, 1100}, {664, 60982}, {754, 48818}, {894, 50089}, {966, 4909}, {984, 50952}, {1654, 62648}, {1743, 8584}, {2321, 62997}, {2663, 25573}, {3169, 18164}, {3244, 4644}, {3617, 4758}, {3624, 4690}, {3625, 4470}, {3629, 3731}, {3632, 4670}, {3633, 4363}, {3635, 4419}, {3636, 4748}, {3664, 49543}, {3679, 4649}, {3707, 29624}, {3723, 6144}, {3729, 50121}, {3758, 4873}, {3759, 20195}, {3849, 66672}, {3875, 20090}, {3883, 51001}, {3912, 59373}, {3946, 62999}, {3973, 32455}, {4007, 17377}, {4357, 11160}, {4360, 60933}, {4416, 63064}, {4472, 4668}, {4545, 5936}, {4648, 4856}, {4654, 42045}, {4657, 22165}, {4677, 28337}, {4684, 38314}, {4700, 5308}, {4715, 49675}, {4747, 20050}, {4795, 4971}, {4852, 4888}, {4898, 17351}, {4901, 47359}, {4910, 7228}, {4912, 17318}, {4916, 17355}, {4933, 62846}, {4966, 38023}, {4969, 16832}, {4982, 5222}, {5032, 16670}, {5219, 31179}, {5847, 48830}, {6173, 16834}, {7277, 55998}, {7290, 51005}, {9579, 50234}, {9741, 66680}, {9770, 66632}, {10436, 29617}, {11165, 37589}, {11520, 31293}, {13639, 66635}, {13759, 66636}, {15533, 16884}, {15569, 51155}, {16666, 17284}, {16668, 17311}, {16673, 49737}, {16676, 29585}, {16831, 62231}, {16833, 17392}, {16885, 63125}, {17023, 21356}, {17151, 49727}, {17224, 50130}, {17243, 20583}, {17251, 25055}, {17253, 51188}, {17274, 29584}, {17279, 63124}, {17286, 37677}, {17294, 46922}, {17310, 63108}, {17313, 50124}, {17314, 50118}, {17321, 50992}, {17332, 63115}, {17346, 29597}, {17349, 29620}, {17353, 63127}, {17360, 29603}, {17374, 21358}, {17379, 29615}, {17384, 50993}, {17389, 50127}, {17394, 31144}, {19875, 32846}, {20057, 64015}, {20086, 62816}, {24239, 63029}, {25101, 62995}, {25430, 63009}, {25590, 50098}, {26685, 63000}, {28558, 50281}, {29069, 61291}, {29580, 50074}, {29601, 63062}, {31143, 62801}, {31339, 50279}, {32004, 37792}, {34511, 37552}, {37592, 63950}, {38093, 41140}, {39586, 50309}, {41610, 62246}, {48819, 63940}, {49478, 51000}, {49495, 49720}, {49721, 50123}, {49748, 60977}, {50080, 62467}, {50095, 63110}, {50101, 60963}, {50116, 50129}, {51105, 66454}, {52229, 66639}, {60980, 62403}, {60986, 63086}, {64712, 64850}, {66466, 66691}, {66692, 66699}
X(66637) = midpoint of X(i) and X(j) for these {i,j}: {145, 35578}
X(66637) = reflection of X(i) in X(j) for these {i,j}: {4659, 35578}, {35578, 4667}
X(66637) = perspector of circumconic {{A, B, C, X(37210), X(58135)}}
X(66637) = pole of line {28147, 46915} with respect to the Steiner circumellipse
X(66637) = pole of line {28147, 47784} with respect to the Steiner inellipse
X(66637) = intersection, other than A, B, C, of circumconics {{A, B, C, X(28626), X(34914)}}, {{A, B, C, X(34916), X(39948)}}
X(66637) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 50125, 29573}, {145, 35578, 17133}, {145, 4667, 4659}, {1449, 3879, 17296}, {1992, 29574, 9}, {4667, 17133, 35578}, {8584, 17390, 41313}, {8584, 41313, 1743}, {15533, 16884, 41311}, {15533, 41311, 17272}, {16834, 17378, 6173}, {17374, 62212, 29598}
X(66638) lies on these lines: {1, 256}, {9, 5052}, {37, 13330}, {39, 1449}, {76, 3879}, {194, 4339}, {262, 66632}, {386, 24523}, {538, 48827}, {726, 3244}, {730, 50284}, {988, 5188}, {1100, 3094}, {1743, 44500}, {2274, 25048}, {3095, 5266}, {3744, 12837}, {3934, 17296}, {4259, 18170}, {4260, 18194}, {4349, 66640}, {4443, 9047}, {4649, 5145}, {4851, 24256}, {7189, 28288}, {7709, 66680}, {9821, 37592}, {11171, 37589}, {12836, 37539}, {13331, 16666}, {16475, 63526}, {16667, 64713}, {16884, 44453}, {17231, 40332}, {17760, 32451}, {19767, 23473}, {22486, 29574}, {22676, 66692}, {22682, 66691}, {22712, 24239}, {22722, 66635}, {22723, 66636}, {22729, 50745}, {24230, 48934}, {32846, 37717}, {46180, 66683}, {49488, 50584}, {49675, 62822}, {50600, 51902}
X(66638) = reflection of X(i) in X(j) for these {i,j}: {1, 66688}, {12782, 5145}, {66690, 1}
X(66638) = pole of line {30097, 48629} with respect to the dual conic of Yff parabola
X(66638) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3056, 50616}, {1, 511, 66690}, {511, 66688, 1}
X(66639) lies on these lines: {1, 30}, {2, 37589}, {3, 24239}, {4, 4339}, {5, 37552}, {8, 48817}, {9, 18907}, {10, 3052}, {20, 37592}, {21, 29664}, {31, 3419}, {36, 17721}, {37, 7737}, {42, 11355}, {55, 5725}, {171, 5722}, {306, 50060}, {355, 3073}, {376, 37599}, {381, 66632}, {382, 13161}, {390, 66694}, {495, 3749}, {515, 63969}, {517, 3056}, {519, 5695}, {535, 50130}, {550, 988}, {595, 5794}, {612, 11113}, {614, 11112}, {754, 4643}, {758, 64016}, {950, 5711}, {976, 58798}, {999, 53618}, {1100, 2549}, {1104, 21949}, {1125, 11359}, {1191, 17647}, {1386, 48837}, {1449, 15048}, {1478, 3744}, {1479, 37539}, {1597, 56814}, {1647, 16383}, {1698, 48807}, {1737, 37540}, {1770, 37549}, {1785, 18494}, {1837, 5264}, {2886, 37817}, {3011, 17532}, {3187, 50170}, {3416, 48863}, {3488, 4307}, {3534, 66692}, {3550, 26446}, {3583, 17720}, {3586, 5269}, {3616, 48646}, {3617, 48798}, {3621, 48806}, {3624, 48815}, {3625, 48804}, {3626, 48800}, {3632, 48812}, {3663, 28150}, {3666, 4302}, {3705, 4234}, {3723, 43618}, {3734, 4851}, {3772, 49480}, {3845, 66691}, {3849, 41312}, {3912, 11286}, {3920, 11114}, {3931, 4294}, {4195, 5015}, {4217, 10327}, {4252, 10916}, {4309, 37548}, {4314, 5717}, {4353, 28158}, {4364, 63941}, {4385, 20056}, {4657, 7761}, {4663, 48870}, {4676, 16086}, {4680, 32777}, {4683, 50236}, {4968, 50322}, {5119, 5724}, {5121, 16417}, {5248, 56970}, {5250, 63360}, {5252, 37610}, {5271, 50168}, {5297, 66099}, {5300, 11319}, {5429, 33141}, {5530, 64951}, {5710, 10572}, {5718, 59337}, {5791, 54354}, {5814, 21085}, {5880, 30117}, {5886, 33106}, {5988, 38744}, {6175, 29681}, {7191, 17579}, {7514, 59334}, {7739, 16666}, {7804, 17279}, {8069, 9818}, {8071, 35243}, {9668, 24210}, {9812, 60751}, {11159, 29574}, {11237, 50745}, {11287, 17023}, {11295, 53588}, {11296, 53589}, {11512, 17563}, {11529, 28915}, {13405, 36721}, {13644, 66635}, {13735, 29641}, {13763, 66636}, {14033, 17316}, {14929, 17272}, {15934, 50307}, {16370, 29639}, {16466, 57287}, {16475, 48847}, {16498, 33147}, {16667, 63633}, {16823, 48816}, {16830, 48814}, {16884, 44526}, {17015, 34611}, {17275, 24275}, {17321, 64018}, {17549, 29680}, {17577, 29665}, {17602, 65632}, {17677, 29634}, {18541, 24231}, {20075, 64175}, {20269, 26099}, {23536, 50239}, {24248, 28146}, {24296, 54342}, {24703, 30115}, {24929, 26098}, {26131, 62870}, {26626, 32986}, {28897, 64168}, {29365, 66640}, {29840, 51678}, {31140, 50759}, {31460, 39255}, {31520, 37603}, {31795, 37594}, {32859, 50269}, {32941, 38456}, {33137, 64166}, {34937, 51118}, {36574, 37582}, {36731, 39595}, {37542, 45287}, {37554, 66682}, {37573, 49129}, {37695, 64086}, {37727, 66650}, {37739, 66646}, {38047, 48866}, {43223, 56969}, {48869, 62231}, {50230, 54335}, {50582, 63996}, {52229, 66637}, {52367, 62802}, {56964, 59305}, {62834, 64172}, {62845, 64167}, {62858, 64159}, {66684, 66688}
X(66639) = reflection of X(i) in X(j) for these {i,j}: {3416, 48863}, {48819, 48824}, {48824, 48827}, {48837, 1386}, {66672, 66675}
X(66639) = pole of line {523, 48327} with respect to the incircle
X(66639) = pole of line {942, 17720} with respect to the Feuerbach hyperbola
X(66639) = pole of line {523, 48324} with respect to the Suppa-Cucoanes circle
X(66639) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 41869, 63997}, {1, 65134, 50065}, {1, 66658, 10404}, {1, 66672, 66675}, {2, 66680, 37589}, {4, 4339, 5266}, {30, 48824, 48819}, {30, 48827, 48824}, {30, 66675, 66672}, {3488, 4307, 66687}, {3586, 5269, 37715}, {4294, 5716, 3931}, {66687, 66689, 3488}
X(66640) lies on these lines: {1, 3}, {6, 50014}, {8, 2650}, {10, 4417}, {12, 17775}, {37, 44663}, {42, 64176}, {43, 3753}, {58, 30147}, {72, 59311}, {75, 519}, {81, 49487}, {145, 17140}, {221, 2647}, {226, 37716}, {238, 54318}, {386, 3754}, {392, 26102}, {515, 50307}, {529, 17365}, {595, 30143}, {750, 4511}, {758, 984}, {956, 32913}, {958, 1046}, {969, 55392}, {976, 34195}, {978, 3812}, {987, 4332}, {989, 5665}, {993, 4650}, {995, 5883}, {997, 17122}, {1149, 64149}, {1193, 24174}, {1478, 33097}, {1572, 16503}, {1737, 17717}, {1739, 5313}, {1757, 9708}, {1870, 60685}, {2170, 63066}, {2177, 63136}, {2276, 65695}, {2292, 64047}, {3061, 17750}, {3210, 3241}, {3240, 4695}, {3419, 33109}, {3555, 59310}, {3671, 13161}, {3679, 4113}, {3698, 6048}, {3720, 3877}, {3751, 9623}, {3758, 49755}, {3868, 10459}, {3869, 59305}, {3871, 63333}, {3872, 62819}, {3880, 49478}, {3881, 50637}, {3920, 49454}, {3924, 16478}, {3938, 63159}, {3944, 37715}, {3945, 21271}, {3987, 5312}, {4051, 20963}, {4295, 24851}, {4307, 28850}, {4312, 66672}, {4349, 66638}, {4413, 5529}, {4418, 49492}, {4642, 19767}, {4644, 35102}, {4646, 10107}, {4648, 21233}, {4673, 35633}, {4675, 49777}, {4732, 48850}, {4848, 5530}, {4862, 48818}, {4888, 66686}, {5080, 24725}, {5230, 24161}, {5247, 19860}, {5251, 7262}, {5289, 37674}, {5293, 12635}, {5439, 21214}, {5440, 56010}, {5692, 22275}, {5718, 40663}, {5722, 33106}, {5836, 50581}, {6001, 64134}, {7232, 48801}, {10448, 56288}, {10950, 49745}, {11237, 53537}, {11551, 33103}, {11573, 50630}, {12109, 50621}, {15950, 37634}, {16468, 64732}, {16474, 49494}, {16483, 29820}, {16490, 41702}, {16498, 17469}, {16821, 32853}, {17015, 62821}, {17017, 54315}, {17300, 60452}, {17450, 38314}, {17461, 48855}, {17721, 53619}, {17889, 64172}, {18166, 18177}, {18174, 52680}, {18391, 26098}, {18395, 37693}, {19684, 60684}, {19875, 27739}, {21281, 36479}, {21805, 53620}, {24046, 33815}, {24211, 33949}, {24217, 30384}, {24471, 50612}, {24473, 62865}, {24715, 48837}, {26727, 51381}, {28082, 62804}, {28228, 63977}, {28561, 66704}, {29365, 66639}, {30115, 62822}, {30117, 62828}, {31165, 44307}, {31477, 41322}, {32945, 49687}, {37633, 62826}, {39595, 44733}, {41239, 54382}, {42042, 64175}, {42051, 51093}, {44370, 50308}, {44430, 64110}, {45955, 64006}, {48858, 49471}, {49743, 50631}, {54286, 60714}, {54386, 64673}, {64449, 64731}, {65632, 65698}
X(66640) = reflection of X(i) in X(j) for these {i,j}: {984, 30116}
X(66640) = pole of line {513, 48289} with respect to the incircle
X(66640) = pole of line {513, 48289} with respect to the DeLongchamps ellipse
X(66640) = pole of line {17496, 47780} with respect to the Steiner circumellipse
X(66640) = pole of line {905, 47779} with respect to the Steiner inellipse
X(66640) = pole of line {513, 48288} with respect to the Suppa-Cucoanes circle
X(66640) = pole of line {314, 4653} with respect to the Wallace hyperbola
X(66640) = pole of line {226, 4389} with respect to the dual conic of Yff parabola
X(66640) = pole of line {4791, 57187} with respect to the dual conic of Hofstadter ellipse
X(66640) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(7), X(37617)}}, {{A, B, C, X(8), X(37573)}}, {{A, B, C, X(10), X(10474)}}, {{A, B, C, X(55), X(56094)}}, {{A, B, C, X(56), X(39704)}}, {{A, B, C, X(57), X(20569)}}, {{A, B, C, X(75), X(2099)}}, {{A, B, C, X(983), X(24929)}}, {{A, B, C, X(986), X(17097)}}, {{A, B, C, X(987), X(2646)}}, {{A, B, C, X(988), X(5665)}}, {{A, B, C, X(989), X(3601)}}, {{A, B, C, X(994), X(10473)}}, {{A, B, C, X(1000), X(3750)}}, {{A, B, C, X(1319), X(63226)}}, {{A, B, C, X(1389), X(37598)}}, {{A, B, C, X(1402), X(53114)}}, {{A, B, C, X(3577), X(17594)}}, {{A, B, C, X(3670), X(15173)}}, {{A, B, C, X(17595), X(44733)}}, {{A, B, C, X(19765), X(43073)}}
X(66640) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3339, 988}, {1, 5119, 3750}, {1, 5902, 982}, {1, 65, 986}, {1, 942, 3976}, {386, 3754, 24440}, {758, 30116, 984}, {3924, 57280, 16478}, {4883, 5919, 1}, {5251, 49500, 7262}, {18391, 26098, 37717}, {19860, 54421, 5247}, {33815, 50604, 24046}
X(66641) lies on these lines: {1, 5}, {2, 38213}, {8, 64012}, {35, 10074}, {36, 10087}, {79, 10222}, {100, 3244}, {104, 3746}, {145, 214}, {149, 20057}, {516, 14151}, {528, 59372}, {551, 59415}, {944, 25485}, {1125, 12531}, {1145, 3633}, {1156, 43179}, {1320, 3635}, {1385, 5559}, {1388, 5445}, {1482, 12119}, {1537, 18243}, {2771, 5919}, {2800, 7967}, {2801, 8236}, {2802, 3241}, {3035, 3632}, {3036, 3624}, {3057, 11571}, {3065, 15174}, {3158, 5854}, {3254, 15570}, {3303, 12773}, {3304, 12331}, {3338, 5541}, {3582, 38752}, {3583, 12763}, {3584, 57298}, {3585, 13274}, {3616, 15863}, {3617, 58453}, {3622, 6702}, {3623, 6224}, {3625, 64141}, {3636, 31272}, {3679, 34123}, {3884, 12532}, {3913, 66222}, {4309, 12248}, {4317, 13199}, {4325, 11278}, {4330, 38753}, {4677, 50846}, {4857, 10742}, {4996, 62825}, {5045, 17636}, {5048, 28160}, {5083, 5903}, {5270, 10738}, {5281, 37525}, {5288, 51506}, {5424, 64330}, {5426, 51112}, {5441, 5882}, {5444, 12647}, {5542, 12730}, {5657, 21842}, {5691, 64192}, {5697, 5731}, {5840, 16200}, {6174, 34747}, {6246, 10595}, {6713, 64952}, {6797, 17609}, {8098, 30408}, {8666, 65739}, {9657, 48680}, {9670, 38756}, {9957, 17660}, {10031, 15679}, {10165, 41558}, {10247, 61716}, {10609, 12653}, {10914, 58591}, {11009, 63987}, {11038, 64155}, {11237, 51517}, {11238, 38755}, {11531, 24466}, {11715, 37571}, {12053, 66012}, {12515, 37563}, {12611, 18526}, {12619, 37624}, {12641, 56176}, {12736, 50190}, {12748, 30420}, {12832, 63208}, {13253, 64191}, {13407, 21630}, {13602, 55929}, {14480, 61479}, {14804, 62837}, {15178, 19914}, {15228, 28212}, {17100, 25439}, {17439, 61730}, {17638, 31792}, {18395, 51515}, {18398, 46681}, {19077, 44636}, {19078, 44635}, {20323, 22935}, {21154, 30392}, {24928, 41541}, {25055, 34122}, {25405, 41684}, {28236, 65140}, {30389, 64193}, {32557, 38314}, {34748, 61717}, {37556, 66059}, {38637, 64951}, {38669, 46816}, {38760, 63143}, {46819, 61478}, {47745, 64008}, {48696, 66630}, {49498, 51062}, {50844, 51096}, {50889, 51107}, {50890, 51103}, {50894, 51091}, {50910, 51705}, {51767, 51816}
X(66641) = midpoint of X(i) and X(j) for these {i,j}: {7972, 16173}, {15015, 51093}, {51767, 66700}
X(66641) = reflection of X(i) in X(j) for these {i,j}: {80, 16173}, {3679, 34123}, {10057, 17718}, {15015, 50843}, {16173, 1}, {41684, 61649}, {50890, 59419}, {59415, 551}, {59419, 51103}, {61649, 25405}, {63143, 38760}, {64155, 11038}
X(66641) = anticomplement of X(38213)
X(66641) = X(i)-Dao conjugate of X(j) for these {i, j}: {38213, 38213}
X(66641) = pole of line {900, 21105} with respect to the Suppa-Cucoanes circle
X(66641) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(5557), X(14584)}}, {{A, B, C, X(13606), X(56416)}}, {{A, B, C, X(24302), X(56422)}}
X(66641) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10944, 5443}, {1, 1317, 7972}, {1, 37727, 37702}, {1, 7972, 80}, {1, 952, 16173}, {1, 9897, 1387}, {100, 3244, 26726}, {944, 25485, 34789}, {952, 17718, 10057}, {1317, 12735, 1}, {3241, 11274, 64011}, {3244, 33812, 100}, {3244, 5563, 64766}, {3623, 6224, 64137}, {5533, 10956, 7951}, {5854, 50843, 15015}, {5882, 10698, 64145}, {7972, 16173, 952}, {10031, 51071, 50891}, {19907, 37727, 12751}
X(66642) lies on circumconic {{A, B, C, X(49743), X(56141)}} and on these lines: {1, 30}, {36, 37402}, {80, 3931}, {191, 64167}, {256, 5559}, {1962, 63319}, {2475, 58380}, {3244, 4683}, {3585, 37593}, {3624, 17070}, {3632, 24697}, {3743, 47033}, {3745, 4330}, {3746, 30362}, {3924, 48841}, {4324, 37594}, {4356, 10572}, {5258, 41856}, {5443, 24210}, {5445, 17594}, {5903, 64168}, {12579, 64072}, {15228, 37559}, {16113, 45923}, {17491, 20057}, {17768, 63310}, {19765, 37701}, {24883, 63286}, {26725, 36250}, {27785, 48837}, {27804, 36974}, {32167, 47032}, {33100, 63354}, {37553, 37719}, {39595, 59325}
X(66642) = pole of line {523, 4822} with respect to the Suppa-Cucoanes circle
X(66642) = pole of line {553, 64424} with respect to the dual conic of Yff parabola
X(66642) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 16118, 49743}, {1, 64158, 5441}, {49739, 63997, 1}
X(66643) lies on these lines: {1, 5}, {8, 3722}, {10, 31205}, {100, 26727}, {106, 33337}, {109, 41558}, {145, 3952}, {214, 6788}, {238, 519}, {244, 6224}, {515, 24231}, {517, 66689}, {944, 3976}, {950, 10703}, {986, 3486}, {1054, 10609}, {1319, 53619}, {1331, 5247}, {2784, 4356}, {2802, 25048}, {3244, 10700}, {3361, 61079}, {3488, 66674}, {3632, 3695}, {3635, 4013}, {3911, 53614}, {4307, 28850}, {5086, 24161}, {5255, 64163}, {5293, 66257}, {5425, 33097}, {5854, 53534}, {6738, 37607}, {6790, 24003}, {10572, 24851}, {12647, 17715}, {13541, 25416}, {14563, 50307}, {15485, 64734}, {16786, 50027}, {16793, 49688}, {18193, 50811}, {18201, 21578}, {20085, 33148}, {23057, 30709}, {23869, 33812}, {24715, 46458}, {24795, 26140}, {24807, 29574}, {24808, 66632}, {24811, 66635}, {24812, 66636}, {28160, 32857}, {28236, 53599}, {28877, 64168}, {33096, 62822}, {33106, 50194}, {33135, 49682}, {36867, 49498}, {44669, 60353}, {53115, 64016}, {66648, 66652}
X(66643) = inverse of X(17719) in Feuerbach hyperbola
X(66643) = perspector of circumconic {{A, B, C, X(655), X(6632)}}
X(66643) = pole of line {517, 17719} with respect to the Feuerbach hyperbola
X(66643) = pole of line {10015, 10196} with respect to the Steiner inellipse
X(66643) = pole of line {900, 6161} with respect to the Suppa-Cucoanes circle
X(66643) = pole of line {3911, 27191} with respect to the dual conic of Yff parabola
X(66643) = pole of line {40663, 43290} with respect to the dual conic of Moses-Feuerbach circumconic
X(66643) = intersection, other than A, B, C, of circumconics {{A, B, C, X(80), X(4076)}}, {{A, B, C, X(765), X(1411)}}, {{A, B, C, X(1016), X(2006)}}, {{A, B, C, X(17719), X(40437)}}
X(66643) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5727, 37716}, {1, 80, 17719}, {1, 9897, 24222}
X(66644) lies on these lines: {1, 30}, {4, 17592}, {8, 192}, {10, 42033}, {21, 33135}, {55, 30362}, {81, 63280}, {145, 4683}, {171, 31730}, {333, 12579}, {387, 7262}, {405, 33132}, {846, 1834}, {950, 29040}, {958, 41856}, {986, 1725}, {988, 24217}, {1010, 1125}, {1043, 4425}, {1046, 3650}, {1210, 17593}, {1479, 17722}, {1697, 1756}, {1698, 3712}, {1962, 2475}, {2173, 66101}, {2650, 33100}, {3017, 3647}, {3120, 64415}, {3178, 17677}, {3242, 26731}, {3244, 38456}, {3623, 17491}, {3663, 32007}, {3679, 4918}, {3750, 13161}, {3931, 8143}, {3944, 19765}, {3989, 5178}, {3993, 7270}, {4021, 7247}, {4038, 4292}, {4065, 36974}, {4085, 56311}, {4294, 17716}, {4335, 5880}, {4649, 64002}, {4703, 20018}, {5046, 46904}, {5051, 33160}, {5429, 57002}, {5691, 66663}, {6175, 27577}, {6186, 37405}, {7283, 32780}, {10180, 26051}, {10371, 49469}, {10448, 33134}, {11533, 44669}, {12953, 20182}, {16062, 33158}, {16484, 23536}, {16865, 33128}, {17598, 63999}, {17676, 32915}, {17719, 37573}, {17720, 37574}, {17733, 37038}, {17778, 58399}, {19767, 33096}, {24715, 59305}, {27368, 49735}, {27714, 64010}, {28645, 33099}, {29658, 37327}, {30143, 48841}, {33079, 63800}, {33143, 62870}, {33147, 51715}, {33149, 54392}, {33152, 37080}, {37715, 61524}, {49462, 50050}, {50080, 64673}
X(66644) = perspector of circumconic {{A, B, C, X(27805), X(38340)}}
X(66644) = pole of line {8818, 17275} with respect to the Kiepert hyperbola
X(66644) = pole of line {14985, 21295} with respect to the Kiepert parabola
X(66644) = pole of line {25666, 41800} with respect to the Steiner inellipse
X(66644) = pole of line {523, 4170} with respect to the Suppa-Cucoanes circle
X(66644) = pole of line {9404, 21834} with respect to the Hofstadter ellipse
X(66644) = pole of line {3879, 17103} with respect to the Wallace hyperbola
X(66644) = pole of line {333, 553} with respect to the dual conic of Yff parabola
X(66644) = pole of line {6741, 21944} with respect to the dual conic of Wallace hyperbola
X(66644) = intersection, other than A, B, C, of circumconics {{A, B, C, X(79), X(4451)}}, {{A, B, C, X(256), X(52372)}}, {{A, B, C, X(257), X(52374)}}, {{A, B, C, X(37631), X(42033)}}, {{A, B, C, X(49744), X(56141)}}
X(66644) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 16118, 49744}, {1, 24851, 33097}, {3649, 49739, 1}, {4653, 36250, 24161}
X(66645) lies on these lines: {1, 550}, {40, 17722}, {145, 28516}, {171, 12053}, {962, 17716}, {3486, 29054}, {4038, 12575}, {5255, 12047}, {5484, 28494}, {5493, 17593}, {5710, 33095}, {9589, 33154}, {17606, 33106}, {21620, 33097}, {24715, 62804}, {59310, 64016}
X(66646) lies on these lines: {1, 3}, {6, 4051}, {8, 1215}, {10, 5233}, {21, 18174}, {38, 64047}, {42, 14923}, {43, 5836}, {145, 740}, {238, 19860}, {386, 64176}, {388, 33097}, {518, 59310}, {519, 17789}, {595, 30147}, {611, 2647}, {612, 11682}, {956, 1046}, {958, 7262}, {960, 59311}, {962, 33095}, {976, 62830}, {978, 3753}, {983, 17097}, {984, 3869}, {987, 1389}, {989, 3577}, {995, 3754}, {1193, 24440}, {1201, 17063}, {1468, 4861}, {1572, 41239}, {1616, 29820}, {1706, 56009}, {1743, 4875}, {1837, 33106}, {2171, 20594}, {2275, 65695}, {2295, 3061}, {2329, 54382}, {2975, 4650}, {3241, 17480}, {3436, 33096}, {3485, 17719}, {3486, 29054}, {3623, 62867}, {3632, 5295}, {3664, 39126}, {3671, 33103}, {3679, 5827}, {3698, 16569}, {3720, 3890}, {3731, 4520}, {3742, 45219}, {3743, 17461}, {3751, 4853}, {3752, 10107}, {3812, 21214}, {3872, 54421}, {3874, 50637}, {3877, 59305}, {3878, 30116}, {3918, 17749}, {3919, 24046}, {3922, 16610}, {3924, 62804}, {3938, 34195}, {3961, 12635}, {3962, 49448}, {3987, 5313}, {4018, 53115}, {4087, 24524}, {4090, 44720}, {4257, 51111}, {4301, 24210}, {4343, 7673}, {4655, 5484}, {4678, 21805}, {4848, 24239}, {5086, 33104}, {5258, 49500}, {5268, 15829}, {5293, 5730}, {5437, 56630}, {5529, 9709}, {5530, 11362}, {5717, 28234}, {5794, 33109}, {5835, 32778}, {6763, 16499}, {7201, 28369}, {8256, 37662}, {9369, 32935}, {9623, 54386}, {10106, 50307}, {10573, 37717}, {10914, 50581}, {10944, 49745}, {10950, 63979}, {11281, 29675}, {11520, 49675}, {12047, 37716}, {12053, 24217}, {12513, 32913}, {12607, 51411}, {12653, 63310}, {15955, 62805}, {16466, 60353}, {16478, 62828}, {17122, 19861}, {17123, 64673}, {17140, 20041}, {17460, 20057}, {20040, 32860}, {20060, 24725}, {20108, 56175}, {21281, 59509}, {21746, 23497}, {22299, 59315}, {22791, 37715}, {24987, 33111}, {25524, 47623}, {26102, 58679}, {27003, 32577}, {28082, 62848}, {29010, 37740}, {29968, 35274}, {30143, 40091}, {31448, 41322}, {31503, 39742}, {36846, 62819}, {37739, 66639}, {39567, 41920}, {42027, 49470}, {44417, 59313}, {49478, 66256}, {49487, 57280}, {49712, 63135}, {56010, 59691}, {56804, 58565}, {60714, 63130}, {64160, 66632}, {65631, 65698}
X(66646) = reflection of X(i) in X(j) for these {i,j}: {3632, 5295}
X(66646) = pole of line {513, 4504} with respect to the incircle
X(66646) = pole of line {513, 4504} with respect to the DeLongchamps ellipse
X(66646) = pole of line {1, 19540} with respect to the Feuerbach hyperbola
X(66646) = pole of line {4369, 17496} with respect to the Steiner circumellipse
X(66646) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(37617)}}, {{A, B, C, X(57), X(62882)}}, {{A, B, C, X(982), X(17097)}}, {{A, B, C, X(983), X(2646)}}, {{A, B, C, X(986), X(1389)}}, {{A, B, C, X(987), X(1385)}}, {{A, B, C, X(988), X(3577)}}, {{A, B, C, X(989), X(3576)}}, {{A, B, C, X(1000), X(37573)}}, {{A, B, C, X(1320), X(37598)}}, {{A, B, C, X(2099), X(34860)}}, {{A, B, C, X(3340), X(39742)}}, {{A, B, C, X(3680), X(17594)}}, {{A, B, C, X(3750), X(7320)}}, {{A, B, C, X(3953), X(15173)}}, {{A, B, C, X(4424), X(21398)}}, {{A, B, C, X(10474), X(42027)}}
X(66646) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1697, 3750}, {1, 2093, 988}, {1, 3550, 2646}, {1, 5902, 3976}, {1, 5903, 986}, {1, 65, 982}, {145, 2650, 49490}, {1482, 5711, 1}, {3869, 10459, 984}
X(66647) lies on these lines: {1, 3}, {6, 66256}, {9, 59310}, {31, 36846}, {43, 1050}, {58, 56113}, {145, 3685}, {238, 4853}, {519, 42032}, {612, 3890}, {614, 14923}, {899, 63142}, {975, 3898}, {978, 63137}, {983, 3680}, {987, 56038}, {989, 1000}, {1104, 10912}, {1191, 3880}, {1193, 3895}, {1201, 63130}, {1222, 4676}, {1376, 45219}, {1468, 17460}, {1616, 5272}, {1706, 21214}, {1707, 12513}, {1722, 10914}, {1743, 4513}, {2943, 10860}, {3052, 11260}, {3208, 9575}, {3241, 54421}, {3247, 3727}, {3486, 50635}, {3623, 62819}, {3772, 13463}, {3812, 16486}, {3869, 16496}, {3872, 3915}, {3885, 54418}, {3893, 4383}, {3938, 11682}, {3961, 15829}, {4051, 16970}, {4301, 33144}, {4344, 7320}, {5247, 12629}, {5268, 58679}, {5438, 47623}, {9578, 33106}, {9614, 37716}, {9785, 24210}, {9950, 63969}, {11362, 36574}, {11512, 54286}, {11522, 17719}, {12514, 50637}, {13161, 30305}, {13464, 36573}, {16475, 62804}, {16491, 17016}, {17717, 51784}, {20041, 32929}, {21627, 33137}, {22837, 37817}, {25079, 51284}, {32926, 64563}, {62850, 64047}, {64176, 64202}
X(66647) = pole of line {11068, 17496} with respect to the Steiner circumellipse
X(66647) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(65), X(56113)}}, {{A, B, C, X(982), X(3680)}}, {{A, B, C, X(983), X(1420)}}, {{A, B, C, X(986), X(56038)}}, {{A, B, C, X(987), X(61762)}}, {{A, B, C, X(988), X(1000)}}, {{A, B, C, X(989), X(999)}}, {{A, B, C, X(3577), X(3976)}}, {{A, B, C, X(3953), X(56152)}}, {{A, B, C, X(4694), X(17098)}}, {{A, B, C, X(7160), X(37617)}}, {{A, B, C, X(7320), X(17594)}}
X(66647) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2093, 3976}, {1, 3550, 1420}, {1, 5119, 988}, {1376, 45219, 56630}, {1616, 5836, 5272}, {2098, 3744, 1}, {3885, 62848, 54418}, {10914, 16483, 1722}
X(66648) lies on these lines: {1, 971}, {390, 16496}, {497, 24231}, {511, 63601}, {950, 24248}, {984, 4326}, {1697, 49448}, {1721, 5728}, {1722, 9844}, {1738, 5809}, {2310, 7675}, {3100, 16475}, {3749, 66239}, {3751, 4319}, {4327, 7671}, {4334, 18216}, {4862, 24851}, {7221, 16491}, {8544, 21346}, {9440, 64197}, {9441, 10398}, {9539, 62845}, {10382, 17594}, {16823, 63600}, {26098, 65671}, {34524, 56176}, {62313, 66234}, {66643, 66652}
X(66648) = pole of line {57, 7262} with respect to the Feuerbach hyperbola
X(66648) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4319, 10394, 3751}
X(66649) lies on these lines: {1, 971}, {31, 9539}, {33, 171}, {238, 2310}, {497, 17598}, {511, 3022}, {726, 14942}, {950, 29040}, {984, 4319}, {1040, 17123}, {1724, 9576}, {1736, 9441}, {1738, 45275}, {1742, 64750}, {1757, 41339}, {1936, 9629}, {2361, 5160}, {3073, 8144}, {3074, 4354}, {3684, 7281}, {3923, 65952}, {4038, 10391}, {4336, 4649}, {5018, 15726}, {7004, 18201}, {7070, 7262}, {7071, 7295}, {9371, 56009}, {10382, 17592}, {15837, 51294}, {16468, 60910}, {16825, 63597}, {16870, 17719}, {17716, 66239}, {24210, 65671}, {33097, 40960}, {37570, 64054}, {37998, 42312}, {44694, 58327}, {50301, 60925}
X(66649) = pole of line {960, 3900} with respect to the incircle
X(66649) = pole of line {57, 1929} with respect to the Feuerbach hyperbola
X(66649) = pole of line {72, 3900} with respect to the Suppa-Cucoanes circle
X(66649) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 15430, 64134}, {2310, 3100, 238}, {4336, 10394, 4649}, {9629, 53524, 1936}
X(66650) lies on these lines: {1, 3}, {6, 10912}, {8, 21805}, {30, 50631}, {31, 4861}, {42, 3885}, {43, 10914}, {58, 22837}, {72, 59310}, {145, 17165}, {191, 16499}, {213, 4051}, {355, 33106}, {386, 2802}, {388, 53530}, {392, 59311}, {474, 47623}, {518, 50635}, {519, 4066}, {726, 3244}, {758, 50637}, {902, 3897}, {944, 29057}, {946, 37716}, {962, 24851}, {976, 62826}, {978, 5836}, {983, 1389}, {984, 3878}, {987, 1320}, {989, 3680}, {995, 24440}, {1046, 12513}, {1191, 60353}, {1193, 14923}, {1201, 24174}, {1203, 49494}, {1468, 38460}, {1572, 2329}, {1834, 13463}, {2650, 3241}, {2667, 63354}, {2943, 64074}, {3623, 17154}, {3632, 3706}, {3751, 12629}, {3753, 21214}, {3754, 17063}, {3812, 45219}, {3872, 5247}, {3877, 10459}, {3880, 50581}, {3884, 27784}, {3890, 22294}, {3924, 62848}, {3938, 62830}, {3944, 22791}, {3961, 5730}, {4002, 62711}, {4018, 62865}, {4067, 49503}, {4301, 13161}, {4307, 66667}, {4650, 8666}, {4853, 54386}, {4919, 54416}, {5013, 41322}, {5258, 7262}, {5288, 49500}, {5289, 5293}, {5493, 66692}, {5718, 45081}, {5883, 56804}, {9363, 54400}, {9589, 66672}, {10039, 17717}, {10107, 52541}, {10944, 63979}, {11362, 24239}, {12559, 49675}, {12672, 64134}, {13464, 66632}, {15955, 62828}, {16478, 49487}, {17164, 20041}, {17614, 56010}, {17721, 41687}, {17765, 50624}, {24429, 38504}, {29311, 50616}, {29381, 30869}, {29510, 30850}, {30030, 35274}, {30147, 40091}, {32911, 64201}, {33141, 49600}, {36846, 54421}, {37727, 66639}, {39702, 53114}, {45955, 50621}, {48827, 51093}, {50307, 66230}, {54382, 56530}, {63493, 65695}
X(66650) = reflection of X(i) in X(j) for these {i,j}: {986, 1}
X(66650) = pole of line {1, 19549} with respect to the Feuerbach hyperbola
X(66650) = pole of line {17496, 27013} with respect to the Steiner circumellipse
X(66650) = pole of line {650, 59836} with respect to the Hofstadter ellipse
X(66650) = pole of line {226, 48629} with respect to the dual conic of Yff parabola
X(66650) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(37617)}}, {{A, B, C, X(982), X(1389)}}, {{A, B, C, X(983), X(1385)}}, {{A, B, C, X(986), X(1320)}}, {{A, B, C, X(987), X(1319)}}, {{A, B, C, X(988), X(3680)}}, {{A, B, C, X(989), X(1420)}}, {{A, B, C, X(1482), X(57723)}}, {{A, B, C, X(2099), X(39702)}}, {{A, B, C, X(3670), X(21398)}}, {{A, B, C, X(3976), X(17097)}}, {{A, B, C, X(4694), X(15173)}}, {{A, B, C, X(7320), X(37573)}}, {{A, B, C, X(17594), X(56038)}}
X(66650) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3550, 1385}, {1, 517, 986}, {1, 5903, 982}, {1, 65, 3976}, {1193, 14923, 64176}, {2098, 5710, 1}, {49487, 62804, 16478}
X(66651) lies on these lines: {1, 1565}, {10, 41391}, {12, 48900}, {65, 28849}, {226, 41339}, {390, 14927}, {516, 3057}, {752, 34749}, {942, 60373}, {950, 64306}, {1388, 10186}, {1478, 48944}, {1503, 1854}, {1721, 10401}, {2256, 11677}, {2550, 4513}, {2784, 10950}, {3485, 53014}, {4292, 28881}, {4307, 37542}, {4336, 41003}, {4356, 29043}, {4904, 52015}, {5432, 48932}, {5434, 28854}, {6284, 28845}, {9310, 50441}, {9612, 64305}, {10572, 28901}, {10944, 28850}, {11246, 28858}, {14942, 56928}, {18343, 21258}, {28874, 52783}, {28877, 66666}, {28893, 66667}, {29207, 66673}
X(66651) = reflection of X(i) in X(j) for these {i,j}: {6284, 66670}, {10950, 66669}, {66652, 64168}
X(66651) = pole of line {918, 4449} with respect to the incircle
X(66651) = pole of line {918, 48282} with respect to the Suppa-Cucoanes circle
X(66651) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1503, 64168, 66652}, {28845, 66670, 6284}
X(66652) lies on these lines: {1, 10401}, {11, 50302}, {55, 1211}, {65, 516}, {69, 390}, {497, 940}, {740, 10950}, {752, 3058}, {1503, 1854}, {1697, 10371}, {1837, 50314}, {2098, 50284}, {2268, 4026}, {2646, 50290}, {3057, 5847}, {3303, 10372}, {3416, 54359}, {4349, 12053}, {4356, 29046}, {5432, 50298}, {5928, 10382}, {5933, 30332}, {10319, 66239}, {10441, 15171}, {31530, 31567}, {31531, 31568}, {37734, 50281}, {66643, 66648}
X(66652) = reflection of X(i) in X(j) for these {i,j}: {66651, 64168}
X(66652) = pole of line {663, 3910} with respect to the incircle
X(66652) = pole of line {226, 3846} with respect to the Feuerbach hyperbola
X(66652) = pole of line {3910, 4040} with respect to the Suppa-Cucoanes circle
X(66652) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1503, 64168, 66651}
X(66653) lies on these lines: {1, 10401}, {55, 4028}, {497, 37595}, {516, 2099}, {740, 37740}, {950, 4349}, {1837, 50302}, {2268, 3416}, {2646, 50295}, {3057, 50284}, {3486, 4307}, {10393, 64349}, {10950, 50314}, {11376, 50293}, {34471, 50290}, {64168, 66654}, {66665, 66673}
X(66653) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {64168, 66684, 66654}
X(66654) lies on these lines: {1, 1565}, {56, 28849}, {145, 41792}, {388, 53014}, {516, 2098}, {1479, 28901}, {1837, 2784}, {3486, 64306}, {4311, 28881}, {5252, 48900}, {9613, 64305}, {11712, 20269}, {12701, 28845}, {17728, 28909}, {28850, 37738}, {28870, 41687}, {37724, 66666}, {37740, 66669}, {45287, 48944}, {64168, 66653}, {66664, 66673}
X(66654) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {64168, 66684, 66653}
X(66655) lies on these lines: {1, 85}, {516, 3670}, {740, 872}, {1479, 64168}, {1930, 54291}, {3755, 21073}, {3760, 49470}, {3896, 4044}, {3931, 20616}, {3947, 4356}, {3953, 66671}, {4056, 24248}, {4307, 18398}, {4424, 66670}, {4894, 50295}, {8299, 24786}, {13576, 16600}, {14523, 43915}, {17721, 66662}, {18698, 40934}, {24172, 63969}, {28611, 50314}, {37549, 48944}
X(66655) = pole of line {812, 48264} with respect to the Suppa-Cucoanes circle
X(66655) = intersection, other than A, B, C, of circumconics {{A, B, C, X(18082), X(56783)}}, {{A, B, C, X(34018), X(56186)}}
X(66656) lies on these lines: {1, 7}, {8, 25264}, {10, 27523}, {213, 5698}, {388, 50175}, {497, 980}, {968, 23682}, {982, 66666}, {986, 66669}, {2550, 5283}, {3295, 50177}, {3434, 40773}, {3685, 27248}, {3755, 21384}, {4393, 20064}, {4419, 6007}, {4854, 21010}, {7283, 19853}, {9534, 50295}, {10385, 50178}, {16020, 24790}, {19785, 23407}, {24178, 50290}, {28850, 37598}, {32092, 39581}, {37590, 50067}, {37603, 48925}, {66668, 66674}
X(66656) = pole of line {4025, 27647} with respect to the Steiner circumellipse
X(66656) = pole of line {7, 24592} with respect to the dual conic of Yff parabola
X(66656) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {390, 4352, 1}
X(66657) lies on these lines: {1, 7}, {2, 23682}, {8, 194}, {40, 56556}, {171, 37416}, {192, 32117}, {238, 17691}, {239, 63140}, {274, 39581}, {329, 869}, {497, 37596}, {982, 66669}, {984, 25242}, {986, 28850}, {1107, 2550}, {1738, 27304}, {1975, 5263}, {2176, 5698}, {2223, 37400}, {2664, 18228}, {3434, 62803}, {3550, 48925}, {3976, 66666}, {4195, 50302}, {4201, 41886}, {4393, 20101}, {4645, 7791}, {5222, 16476}, {5283, 6184}, {5847, 20018}, {5992, 20094}, {6999, 26098}, {7226, 25257}, {7613, 17050}, {9598, 20539}, {10327, 31036}, {15971, 44431}, {16830, 50408}, {18391, 24464}, {22267, 52133}, {23407, 37175}, {29960, 33202}, {33296, 51192}, {37425, 37590}, {37552, 64301}, {37598, 66668}, {37617, 48900}, {44447, 62813}, {66667, 66674}
X(66657) = pole of line {24782, 44432} with respect to the orthoptic circle of the Steiner Inellipse
X(66657) = pole of line {3250, 4025} with respect to the Steiner circumellipse
X(66657) = pole of line {7, 17026} with respect to the dual conic of Yff parabola
X(66658) lies on these lines: {1, 30}, {3, 37693}, {4, 37469}, {6, 50239}, {8, 540}, {10, 896}, {21, 63344}, {35, 37425}, {36, 9840}, {46, 48883}, {58, 2475}, {65, 64539}, {80, 48937}, {141, 50391}, {145, 50234}, {171, 3585}, {229, 37919}, {230, 62322}, {316, 17103}, {377, 1724}, {382, 940}, {386, 17579}, {388, 37610}, {442, 24902}, {484, 48882}, {511, 5903}, {524, 3632}, {535, 10459}, {543, 50263}, {546, 37634}, {550, 5718}, {580, 6951}, {754, 4754}, {846, 63319}, {964, 48835}, {1046, 47033}, {1125, 49735}, {1478, 1777}, {1503, 9613}, {1657, 19765}, {1698, 49728}, {1754, 6850}, {1770, 4424}, {1785, 46468}, {1962, 63370}, {2099, 48907}, {2476, 4257}, {2646, 48926}, {2650, 63366}, {3017, 15679}, {3057, 49557}, {3120, 63292}, {3146, 4340}, {3216, 11112}, {3244, 42045}, {3245, 48917}, {3336, 37717}, {3454, 11115}, {3529, 5712}, {3550, 37719}, {3564, 37708}, {3578, 3626}, {3583, 37607}, {3616, 50165}, {3617, 50215}, {3624, 13745}, {3647, 21674}, {3670, 4292}, {3679, 49716}, {3750, 4330}, {3849, 50260}, {3912, 50170}, {3945, 49135}, {4202, 48866}, {4234, 25645}, {4252, 17532}, {4255, 56998}, {4256, 37256}, {4293, 50419}, {4298, 4694}, {4299, 26098}, {4312, 29181}, {4324, 37573}, {4325, 37617}, {4333, 17594}, {4418, 36974}, {4647, 38456}, {4653, 15680}, {4668, 49718}, {4883, 31795}, {4896, 15936}, {5255, 5270}, {5258, 33109}, {5267, 33105}, {5337, 36707}, {5400, 37281}, {5496, 64710}, {5563, 33106}, {5710, 9655}, {5711, 12943}, {5713, 6938}, {5794, 49500}, {5902, 63580}, {5919, 10108}, {6003, 13375}, {6175, 16948}, {6625, 14712}, {6923, 37530}, {7280, 15447}, {7737, 16783}, {7741, 37608}, {7747, 24512}, {7748, 63099}, {7802, 37632}, {7951, 15973}, {8370, 29438}, {8666, 33104}, {9612, 13442}, {9654, 37540}, {9780, 49729}, {10039, 48935}, {10106, 53530}, {10572, 50307}, {10573, 48877}, {11009, 48909}, {11010, 48915}, {13329, 37163}, {13464, 15368}, {14636, 59319}, {15677, 24936}, {17023, 50166}, {17056, 57002}, {17284, 50168}, {17563, 37663}, {17577, 45939}, {17596, 52685}, {17647, 41011}, {17676, 43531}, {17677, 25441}, {17768, 63360}, {18393, 48931}, {18395, 48887}, {18541, 37549}, {20050, 50256}, {20077, 64072}, {20108, 60078}, {20132, 33256}, {21669, 45924}, {21842, 48894}, {22836, 24725}, {24387, 54310}, {24931, 51669}, {25526, 26117}, {25650, 51678}, {28146, 37548}, {28369, 29012}, {29317, 32857}, {29598, 50167}, {29674, 50164}, {31295, 48837}, {32479, 50266}, {32847, 50156}, {34605, 50637}, {35203, 37572}, {37524, 48939}, {37525, 48893}, {37567, 48928}, {37679, 56997}, {37715, 65631}, {45287, 46483}, {48863, 50322}, {48921, 53794}, {49719, 50575}, {52841, 64420}, {56191, 57288}, {57000, 63089}, {60933, 63394}, {63354, 64164}
X(66658) = reflection of X(i) in X(j) for these {i,j}: {1, 49745}, {2650, 63366}, {3057, 49557}, {49716, 49734}, {49723, 50171}, {50165, 50226}, {52524, 13408}, {64158, 49743}, {66659, 1}
X(66658) = pole of line {523, 48328} with respect to the incircle
X(66658) = pole of line {523, 1325} with respect to the Suppa-Cucoanes circle
X(66658) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3656), X(54613)}}, {{A, B, C, X(24851), X(56141)}}, {{A, B, C, X(60085), X(63171)}}
X(66658) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 16118, 24851}, {1, 30, 66659}, {1, 49745, 49744}, {30, 13408, 52524}, {30, 49743, 64158}, {442, 64159, 52680}, {10404, 66639, 1}, {15447, 48930, 7280}, {15680, 26131, 4653}, {49716, 49734, 3679}, {49728, 50169, 1698}, {49745, 64158, 49743}
X(66659) lies on these lines: {1, 30}, {4, 37693}, {6, 50242}, {8, 49723}, {10, 49735}, {20, 37522}, {21, 24880}, {35, 9840}, {36, 37425}, {58, 15680}, {145, 540}, {171, 4324}, {187, 23903}, {382, 19765}, {386, 11114}, {442, 25652}, {484, 48915}, {511, 5697}, {524, 3633}, {543, 4754}, {548, 37634}, {846, 47033}, {940, 1657}, {950, 3670}, {1125, 50171}, {1319, 48926}, {1479, 15971}, {1503, 66673}, {1698, 13745}, {1714, 11111}, {1724, 6872}, {1754, 6868}, {1834, 52680}, {2098, 48907}, {2475, 4653}, {2549, 16783}, {3017, 15678}, {3120, 35016}, {3216, 11113}, {3293, 57288}, {3578, 3625}, {3583, 46704}, {3585, 37573}, {3586, 13442}, {3616, 50172}, {3617, 49729}, {3621, 50215}, {3622, 50226}, {3623, 50234}, {3624, 50169}, {3627, 5718}, {3632, 49716}, {3679, 49728}, {3746, 24222}, {3750, 5270}, {3912, 50166}, {3944, 37571}, {3945, 49140}, {4202, 48836}, {4234, 25441}, {4252, 57006}, {4256, 5046}, {4267, 13744}, {4294, 37610}, {4302, 5264}, {4304, 48890}, {4316, 37607}, {4330, 5255}, {4340, 5059}, {4424, 10572}, {4668, 49724}, {4674, 66257}, {4677, 49718}, {4689, 18480}, {4694, 63999}, {4857, 37617}, {4883, 31776}, {4887, 15936}, {5010, 48930}, {5080, 33771}, {5119, 48883}, {5426, 24161}, {5712, 33703}, {5919, 49557}, {6097, 14792}, {6693, 17539}, {7491, 63982}, {7741, 15973}, {7756, 24512}, {7951, 37574}, {8356, 29438}, {9598, 16788}, {10479, 37038}, {10624, 50631}, {11010, 48882}, {11015, 30115}, {11319, 48843}, {12647, 48877}, {14636, 59325}, {15338, 37715}, {15368, 64703}, {15447, 24217}, {15670, 24902}, {15677, 24883}, {15792, 36171}, {16052, 25669}, {16370, 66104}, {17023, 50170}, {17284, 50167}, {17549, 45939}, {17596, 37702}, {17601, 18395}, {17676, 48863}, {17677, 25645}, {17717, 18514}, {17749, 66099}, {19696, 20132}, {20053, 50277}, {21842, 48893}, {28160, 37548}, {28369, 29317}, {29598, 50168}, {29659, 50164}, {30147, 33094}, {31649, 45926}, {33098, 62860}, {33099, 41696}, {34611, 50637}, {37290, 37732}, {37525, 48894}, {37572, 48919}, {37674, 56998}, {37710, 48937}, {43531, 50322}, {46468, 56814}, {48909, 63210}, {50415, 65140}, {50416, 65141}, {50418, 65142}, {53419, 62322}, {64159, 64167}
X(66659) = reflection of X(i) in X(j) for these {i,j}: {1, 64158}, {3632, 49716}, {49723, 50165}, {66658, 1}
X(66659) = pole of line {523, 48347} with respect to the incircle
X(66659) = pole of line {523, 4833} with respect to the Suppa-Cucoanes circle
X(66659) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3655), X(54613)}}, {{A, B, C, X(33097), X(56141)}}
X(66659) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 16118, 33097}, {1, 30, 66658}, {1, 66658, 49744}, {1834, 57002, 52680}, {6872, 48837, 1724}, {10543, 63997, 1}, {13745, 49734, 1698}, {17677, 52352, 25645}
X(66660) lies on these lines: {1, 971}, {3, 1743}, {4, 3664}, {6, 5732}, {9, 991}, {37, 64197}, {40, 511}, {42, 10860}, {44, 21153}, {57, 5751}, {77, 10394}, {84, 581}, {165, 4641}, {200, 55406}, {222, 10382}, {223, 10391}, {238, 3576}, {241, 10398}, {269, 5728}, {380, 63434}, {386, 9841}, {500, 7330}, {515, 4307}, {516, 4644}, {517, 18766}, {651, 7675}, {916, 1697}, {936, 37501}, {938, 62787}, {940, 1750}, {942, 7271}, {944, 63969}, {990, 1449}, {1064, 50614}, {1212, 5785}, {1385, 60846}, {1394, 10393}, {1453, 10884}, {1490, 36746}, {1709, 37553}, {1721, 4649}, {1736, 59215}, {1935, 3601}, {1998, 22129}, {2003, 7070}, {2257, 63395}, {2801, 7174}, {2808, 31393}, {2999, 10167}, {3008, 21151}, {3060, 39592}, {3243, 61086}, {3332, 4667}, {3333, 4334}, {3486, 66693}, {3663, 36996}, {3666, 30304}, {3731, 5779}, {3755, 63971}, {3811, 35658}, {3931, 7992}, {3945, 36991}, {3973, 31658}, {4000, 43177}, {4297, 64017}, {4300, 57279}, {4303, 10396}, {4340, 63998}, {4383, 10857}, {4416, 36706}, {4648, 63970}, {4659, 29016}, {4663, 11495}, {4675, 38150}, {4854, 41706}, {4859, 31657}, {4888, 5805}, {4896, 59386}, {4924, 12245}, {5085, 63390}, {5256, 11220}, {5396, 7171}, {5658, 39595}, {5691, 49745}, {5711, 63981}, {5717, 9799}, {5735, 17365}, {5817, 29571}, {5927, 17022}, {6173, 53599}, {7580, 62812}, {7613, 64830}, {7982, 12652}, {7991, 62181}, {7995, 37548}, {8765, 37441}, {8766, 18446}, {10383, 34048}, {10430, 63007}, {10436, 48878}, {10442, 49130}, {11227, 23511}, {11407, 16610}, {11477, 30271}, {12618, 17296}, {12675, 14523}, {13329, 16670}, {15251, 38030}, {15569, 16112}, {15601, 52769}, {15852, 54422}, {16466, 64679}, {16485, 18444}, {16673, 60884}, {17298, 36652}, {18540, 50317}, {18991, 31563}, {18992, 31564}, {19767, 63984}, {21255, 36682}, {26921, 48927}, {30326, 44307}, {31183, 38122}, {36742, 41854}, {37469, 52026}, {37526, 37732}, {37560, 37699}, {38316, 64013}, {40979, 54411}, {43166, 49478}, {46475, 64953}, {50303, 50811}, {51212, 64700}, {56821, 66229}, {58808, 63982}, {63089, 64705}
X(66660) = reflection of X(i) in X(j) for these {i,j}: {1, 62183}, {3332, 4667}, {66661, 1}
X(66660) = pole of line {3900, 39548} with respect to the Conway circle
X(66660) = pole of line {3900, 39541} with respect to the incircle
X(66660) = pole of line {3900, 44410} with respect to the Suppa-Cucoanes circle
X(66660) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 64741, 11372}, {1, 971, 66661}, {971, 62183, 1}, {1490, 36746, 37554}, {1742, 3751, 40}, {12652, 49490, 7982}
X(66661) lies on these lines: {1, 971}, {3, 1696}, {4, 3663}, {5, 4859}, {6, 64197}, {9, 990}, {33, 15285}, {37, 5732}, {40, 984}, {45, 21153}, {57, 1736}, {84, 2298}, {165, 7322}, {220, 5785}, {269, 64750}, {511, 7982}, {515, 64168}, {516, 4419}, {527, 3332}, {612, 10860}, {631, 25072}, {912, 18506}, {916, 3340}, {940, 30304}, {942, 7274}, {944, 63977}, {946, 4310}, {975, 9841}, {991, 3247}, {1086, 38150}, {1386, 16112}, {1423, 33536}, {1699, 3677}, {1709, 5269}, {1723, 5398}, {1738, 5587}, {1743, 5779}, {1750, 3666}, {1754, 3929}, {2310, 4327}, {2324, 5784}, {2808, 11529}, {2999, 5927}, {3008, 5817}, {3100, 8545}, {3242, 43166}, {3576, 7611}, {3664, 36996}, {3672, 36991}, {3729, 13727}, {3817, 5573}, {3875, 48878}, {3931, 63981}, {3973, 64198}, {4000, 63970}, {4328, 5728}, {4346, 59385}, {4353, 63973}, {4383, 30326}, {4648, 43177}, {4862, 5805}, {4887, 59386}, {5228, 10398}, {5287, 11220}, {5542, 18216}, {5691, 5724}, {5710, 7995}, {5711, 7992}, {5712, 41561}, {5717, 6223}, {5735, 17276}, {5751, 11518}, {6051, 64679}, {6912, 16485}, {7190, 10394}, {7290, 54370}, {7580, 62818}, {8226, 23681}, {9355, 16475}, {9812, 62833}, {9950, 19868}, {10157, 23511}, {10167, 17022}, {10444, 51063}, {10857, 44307}, {10861, 25930}, {12618, 17306}, {12684, 37594}, {15601, 60911}, {16200, 49675}, {16484, 37474}, {16667, 60884}, {17304, 36652}, {18492, 33149}, {21151, 29571}, {24199, 36660}, {24231, 38036}, {24695, 41705}, {30142, 35658}, {31183, 38108}, {34937, 37434}, {39586, 59620}, {39587, 64696}, {41339, 60909}, {52026, 66106}, {53599, 59389}, {54424, 63434}, {58834, 62181}, {59687, 63089}, {63971, 64174}
X(66661) = reflection of X(i) in X(j) for these {i,j}: {66660, 1}
X(66661) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 15430, 4907}, {1, 64134, 11372}, {1, 971, 66660}, {984, 1721, 40}
X(66662) lies on circumconic {{A, B, C, X(1001), X(17916)}} and on these lines: {1, 1565}, {3, 142}, {4, 5089}, {5, 120}, {10, 52528}, {20, 28897}, {30, 48854}, {32, 64016}, {40, 16549}, {105, 20269}, {140, 9746}, {169, 50441}, {355, 28850}, {497, 37597}, {500, 1503}, {517, 24326}, {550, 64301}, {944, 11200}, {962, 36706}, {988, 51785}, {991, 64085}, {1058, 37592}, {1385, 10186}, {1482, 28849}, {1490, 29207}, {1566, 46835}, {1656, 64302}, {1742, 64122}, {1836, 2223}, {2293, 41004}, {2550, 25066}, {2784, 37727}, {3434, 25083}, {3487, 4307}, {3523, 64308}, {3526, 49631}, {3646, 56734}, {3656, 28854}, {3755, 9605}, {3851, 64303}, {3886, 3933}, {4026, 61087}, {4301, 28881}, {4319, 41007}, {4326, 41010}, {4356, 40270}, {4643, 29353}, {5044, 50295}, {5722, 66669}, {5752, 63976}, {7758, 28581}, {7795, 49484}, {8359, 64299}, {9812, 36698}, {10595, 53014}, {11522, 64305}, {11677, 40937}, {12701, 37575}, {13329, 38035}, {14023, 28570}, {14942, 17181}, {15733, 24316}, {17721, 66655}, {18481, 28845}, {20344, 25082}, {21514, 40998}, {22793, 36674}, {26006, 35273}, {26446, 28885}, {28877, 61287}, {28893, 61276}, {29043, 66684}, {29291, 46475}, {29365, 36663}, {31419, 50314}, {37590, 57282}, {41869, 49132}, {43136, 64017}
X(66662) = reflection of X(i) in X(j) for these {i,j}: {48944, 946}, {66665, 1}
X(66662) = pole of line {918, 21185} with respect to the incircle
X(66662) = pole of line {650, 44435} with respect to the orthoptic circle of the Steiner Inellipse
X(66662) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 946, 48944}
X(66663) lies on these lines: {1, 10401}, {3, 142}, {4, 941}, {5, 5955}, {40, 4205}, {355, 740}, {381, 28580}, {515, 4356}, {517, 50295}, {752, 3656}, {962, 13725}, {968, 19542}, {1402, 1836}, {1482, 5847}, {1503, 48903}, {1699, 17594}, {1721, 49131}, {1766, 4026}, {2050, 24210}, {2051, 24703}, {2263, 41007}, {3685, 7377}, {3696, 5816}, {3755, 64701}, {4307, 5603}, {4349, 13464}, {4643, 29311}, {5019, 64016}, {5480, 54370}, {5691, 66644}, {5751, 6001}, {5755, 5799}, {5787, 66666}, {7384, 62392}, {7680, 30444}, {7694, 26333}, {10222, 50284}, {10446, 24723}, {12560, 41010}, {24248, 64126}, {26446, 50298}, {29046, 66684}, {29327, 36663}, {36728, 50080}, {37727, 50281}, {38035, 64013}, {41004, 42289}, {50293, 61276}, {60634, 64004}
X(66663) = midpoint of X(i) and X(j) for these {i,j}: {4, 64168}
X(66663) = reflection of X(i) in X(j) for these {i,j}: {3, 50290}, {4349, 13464}, {37727, 50281}, {50284, 10222}, {50314, 5}, {66664, 1}
X(66663) = pole of line {3910, 21185} with respect to the incircle
X(66663) = pole of line {3669, 44435} with respect to the orthoptic circle of the Steiner Inellipse
X(66663) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 29207, 66664}, {516, 50290, 3}
X(66664) lies on these lines: {1, 10401}, {3, 5847}, {355, 50302}, {500, 1503}, {515, 4349}, {516, 1482}, {517, 50284}, {572, 3416}, {740, 37727}, {752, 3655}, {944, 4307}, {952, 50314}, {1385, 50295}, {4356, 13607}, {4851, 63968}, {5886, 50293}, {7967, 64168}, {10246, 50290}, {12675, 37482}, {19542, 62845}, {26446, 50308}, {49132, 64084}, {66654, 66673}
X(66664) = midpoint of X(i) and X(j) for these {i,j}: {944, 4307}
X(66664) = reflection of X(i) in X(j) for these {i,j}: {355, 50302}, {4356, 13607}, {50295, 1385}, {66663, 1}, {66665, 66684}
X(66664) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 29207, 66663}, {516, 66684, 66665}
X(66665) lies on these lines: {1, 1565}, {3, 28849}, {4, 28901}, {30, 50258}, {40, 17736}, {355, 2784}, {515, 48944}, {516, 1482}, {546, 53018}, {550, 28905}, {962, 28897}, {1483, 28915}, {1503, 48903}, {3655, 28854}, {3656, 36732}, {4297, 28881}, {4336, 41004}, {4851, 24309}, {5690, 9746}, {5691, 64305}, {5731, 28913}, {5805, 24257}, {5886, 28877}, {8550, 54370}, {10186, 15178}, {10595, 44431}, {12650, 29207}, {12699, 28845}, {18343, 20269}, {25935, 35273}, {26446, 28909}, {28850, 37727}, {28893, 61284}, {37739, 66669}, {46835, 50896}, {66653, 66673}
X(66665) = reflection of X(i) in X(j) for these {i,j}: {355, 48900}, {66662, 1}, {66664, 66684}
X(66665) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 66684, 66664}, {2784, 48900, 355}
X(66666) lies on these lines: {1, 85}, {10, 37}, {65, 64306}, {354, 66671}, {516, 942}, {774, 938}, {950, 28845}, {982, 66656}, {991, 59677}, {1125, 52542}, {1446, 42289}, {2784, 37730}, {3361, 64301}, {3947, 64303}, {3976, 66657}, {4032, 4890}, {4068, 21231}, {4251, 51435}, {4335, 44735}, {4343, 17863}, {4433, 21967}, {4642, 22219}, {5787, 66663}, {6007, 25371}, {6706, 15569}, {6738, 28849}, {8299, 17048}, {10186, 14986}, {10624, 28862}, {11019, 37597}, {13576, 21808}, {15934, 48944}, {16137, 66105}, {17706, 28881}, {18398, 64307}, {21258, 66071}, {24424, 64751}, {24929, 48932}, {28870, 64163}, {28877, 66651}, {28885, 64162}, {28897, 31795}, {29611, 32915}, {37582, 48925}, {37724, 66654}, {40718, 60265}, {50302, 64675}
X(66666) = midpoint of X(i) and X(j) for these {i,j}: {1, 66669}, {65, 66670}, {24424, 64751}
X(66666) = reflection of X(i) in X(j) for these {i,j}: {66667, 1}
X(66666) = perspector of circumconic {{A, B, C, X(3952), X(34085)}}
X(66666) = pole of line {812, 4040} with respect to the incircle
X(66666) = pole of line {5244, 20358} with respect to the Feuerbach hyperbola
X(66666) = pole of line {31290, 53357} with respect to the Steiner circumellipse
X(66666) = pole of line {661, 66516} with respect to the Steiner inellipse
X(66666) = pole of line {812, 47970} with respect to the Suppa-Cucoanes circle
X(66666) = pole of line {4132, 46388} with respect to the Hofstadter ellipse
X(66666) = pole of line {3739, 9436} with respect to the dual conic of Yff parabola
X(66666) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(34018)}}, {{A, B, C, X(37), X(56783)}}, {{A, B, C, X(85), X(3932)}}, {{A, B, C, X(2321), X(2481)}}, {{A, B, C, X(3694), X(31637)}}, {{A, B, C, X(3773), X(60265)}}, {{A, B, C, X(3991), X(40718)}}, {{A, B, C, X(4515), X(14942)}}
X(66666) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 28850, 66667}, {1, 66669, 28850}, {10, 3993, 3991}
X(66667) lies on circumconic {{A, B, C, X(34018), X(58279)}} and on these lines: {1, 85}, {10, 40133}, {516, 9957}, {730, 5717}, {740, 3244}, {3057, 66671}, {3600, 36638}, {4292, 28862}, {4307, 66650}, {5711, 49488}, {5903, 64307}, {5919, 66670}, {9746, 61762}, {10106, 28845}, {12629, 50314}, {16679, 21231}, {24928, 48932}, {28885, 66228}, {28893, 66651}, {30143, 50293}, {49777, 50023}, {53053, 64301}, {66657, 66674}
X(66667) = midpoint of X(i) and X(j) for these {i,j}: {1, 66668}, {3057, 66671}
X(66667) = reflection of X(i) in X(j) for these {i,j}: {66666, 1}
X(66667) = pole of line {812, 48282} with respect to the incircle
X(66667) = pole of line {9436, 17235} with respect to the dual conic of Yff parabola
X(66667) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 28850, 66666}, {1, 66668, 28850}
X(66668) lies on these lines: {1, 85}, {8, 27340}, {10, 4875}, {65, 64307}, {145, 740}, {171, 239}, {354, 43040}, {516, 3057}, {517, 66671}, {730, 17760}, {984, 3177}, {1319, 48932}, {1420, 9746}, {1770, 28862}, {2550, 4051}, {2784, 10944}, {3056, 4032}, {3085, 10186}, {3252, 17451}, {3923, 4513}, {3941, 21231}, {4310, 43983}, {4344, 25718}, {4349, 29016}, {4518, 40794}, {4520, 51090}, {4853, 50314}, {5542, 52563}, {5847, 6737}, {8299, 59516}, {9025, 24336}, {9310, 51435}, {9957, 66670}, {10459, 30082}, {13405, 43035}, {16609, 21010}, {17244, 17717}, {17316, 26098}, {18788, 41245}, {19860, 50302}, {20111, 24695}, {20435, 24325}, {20978, 25001}, {24564, 50298}, {25237, 49456}, {28845, 45287}, {35102, 56542}, {37568, 48925}, {37598, 66657}, {48944, 64897}, {56714, 59511}, {61763, 64301}, {66656, 66674}
X(66668) = reflection of X(i) in X(j) for these {i,j}: {1, 66667}, {66669, 1}, {66670, 9957}
X(66668) = pole of line {812, 4449} with respect to the incircle
X(66668) = pole of line {11019, 20358} with respect to the Feuerbach hyperbola
X(66668) = pole of line {4369, 53357} with respect to the Steiner circumellipse
X(66668) = pole of line {812, 48282} with respect to the Suppa-Cucoanes circle
X(66668) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 28850, 66669}, {28850, 66667, 1}
X(66669) lies on these lines: {1, 85}, {8, 192}, {10, 3693}, {41, 51435}, {42, 30807}, {43, 30854}, {55, 16609}, {65, 516}, {75, 4335}, {210, 49757}, {241, 11019}, {390, 3212}, {497, 7146}, {517, 66670}, {674, 24424}, {730, 41794}, {942, 64307}, {982, 66657}, {986, 66656}, {1125, 24774}, {1155, 48925}, {1193, 30011}, {1441, 4343}, {1742, 44735}, {1757, 32024}, {2263, 34059}, {2293, 17863}, {2646, 48932}, {2784, 10950}, {2887, 3912}, {3057, 64306}, {3086, 10186}, {3601, 9746}, {3751, 30625}, {3755, 41006}, {3914, 25935}, {4059, 5542}, {4356, 29016}, {4384, 17594}, {4642, 24513}, {4712, 25237}, {4955, 30424}, {5228, 24283}, {5722, 66662}, {6604, 24248}, {8236, 17090}, {8680, 64751}, {10572, 28845}, {11200, 14986}, {12433, 28915}, {13576, 17451}, {15803, 64301}, {16284, 49470}, {16823, 16994}, {20880, 24325}, {21049, 50441}, {21271, 42446}, {24268, 37580}, {28058, 60714}, {28849, 64163}, {29616, 32915}, {30331, 43037}, {30806, 49471}, {32007, 32857}, {37739, 66665}, {37740, 66654}, {43040, 64162}, {46904, 53382}, {50302, 54392}, {50314, 64673}, {53597, 53617}, {54291, 59509}, {65952, 66673}
X(66669) = midpoint of X(i) and X(j) for these {i,j}: {10950, 66651}
X(66669) = reflection of X(i) in X(j) for these {i,j}: {1, 66666}, {66668, 1}, {66671, 942}
X(66669) = perspector of circumconic {{A, B, C, X(27805), X(34085)}}
X(66669) = pole of line {663, 812} with respect to the incircle
X(66669) = pole of line {226, 20358} with respect to the Feuerbach hyperbola
X(66669) = pole of line {661, 53357} with respect to the Steiner circumellipse
X(66669) = pole of line {812, 4040} with respect to the Suppa-Cucoanes circle
X(66669) = pole of line {21834, 46388} with respect to the Hofstadter ellipse
X(66669) = pole of line {9436, 24199} with respect to the dual conic of Yff parabola
X(66669) = intersection, other than A, B, C, of circumconics {{A, B, C, X(256), X(56783)}}, {{A, B, C, X(257), X(34018)}}, {{A, B, C, X(2481), X(4451)}}, {{A, B, C, X(3693), X(14828)}}
X(66669) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 28850, 66668}, {942, 66671, 64307}, {10950, 66651, 2784}, {28850, 66666, 1}
X(66670) lies on these lines: {1, 7}, {10, 1018}, {35, 48932}, {36, 48925}, {55, 48900}, {65, 64306}, {72, 740}, {213, 3755}, {497, 37555}, {517, 66669}, {950, 28849}, {1001, 17050}, {1420, 64301}, {1441, 42446}, {2269, 45305}, {2481, 60734}, {2784, 10572}, {3057, 28850}, {3058, 20358}, {3295, 48944}, {3361, 64304}, {3685, 29960}, {3747, 3914}, {3883, 17143}, {3947, 54668}, {3970, 3993}, {4068, 15320}, {4384, 40998}, {4424, 66655}, {4847, 62817}, {4854, 5244}, {5045, 64307}, {5082, 50295}, {5698, 21384}, {5853, 56542}, {5919, 66667}, {6007, 24705}, {6284, 28845}, {9746, 61763}, {9957, 66668}, {10950, 28870}, {11019, 20367}, {12053, 37575}, {12433, 28905}, {12527, 20111}, {16552, 51090}, {16827, 62392}, {21246, 64727}, {23682, 33094}, {24424, 44670}, {27304, 52653}, {28881, 63999}, {31435, 50314}, {31730, 37609}, {37086, 58327}, {44447, 62853}, {63259, 66105}, {64162, 64560}
X(66670) = midpoint of X(i) and X(j) for these {i,j}: {6284, 66651}
X(66670) = reflection of X(i) in X(j) for these {i,j}: {65, 66666}, {66668, 9957}
X(66670) = pole of line {7, 37657} with respect to the dual conic of Yff parabola
X(66670) = pole of line {23772, 52335} with respect to the dual conic of Wallace hyperbola
X(66670) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(62786)}}, {{A, B, C, X(269), X(18785)}}, {{A, B, C, X(279), X(13576)}}, {{A, B, C, X(1018), X(41353)}}, {{A, B, C, X(1334), X(1458)}}, {{A, B, C, X(10004), X(60229)}}, {{A, B, C, X(10481), X(54668)}}
X(66670) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {65, 64306, 66666}, {1334, 13576, 10}, {6284, 66651, 28845}
X(66671) lies on these lines: {1, 7}, {10, 672}, {31, 379}, {35, 48925}, {36, 48932}, {56, 48900}, {65, 28850}, {171, 6996}, {194, 50289}, {226, 2223}, {238, 17682}, {239, 20101}, {274, 3883}, {354, 66666}, {405, 20992}, {443, 27626}, {517, 66668}, {527, 56542}, {553, 64560}, {740, 3555}, {752, 11112}, {869, 41011}, {942, 64307}, {946, 37609}, {999, 48944}, {1125, 30949}, {1400, 45305}, {1434, 14942}, {1446, 53547}, {1475, 13576}, {1738, 16476}, {1836, 21010}, {2176, 64016}, {2550, 21384}, {2784, 45287}, {2887, 37326}, {3057, 66667}, {3294, 51090}, {3434, 62853}, {3474, 37555}, {3485, 10186}, {3601, 64301}, {3755, 20963}, {3779, 5847}, {3914, 20985}, {3923, 17742}, {3941, 34830}, {3953, 66655}, {4032, 12723}, {4384, 63140}, {4645, 29960}, {4847, 18206}, {5234, 19853}, {5249, 23407}, {5283, 64174}, {5434, 28854}, {5711, 49130}, {5880, 17050}, {7354, 28845}, {9441, 41245}, {9746, 15803}, {10106, 28849}, {10944, 28870}, {11246, 20358}, {12527, 50408}, {12572, 39586}, {13405, 37400}, {15320, 16679}, {16783, 33682}, {16830, 64002}, {16831, 40998}, {17529, 50298}, {17609, 64306}, {20420, 29207}, {21514, 25496}, {21620, 37425}, {24470, 28915}, {24790, 53241}, {24980, 36274}, {25264, 39350}, {25933, 25970}, {26098, 36698}, {27304, 59412}, {28881, 66230}, {37195, 56144}, {37590, 57282}, {37596, 63979}, {37603, 66314}, {44421, 50314}, {53053, 64304}, {61762, 64305}
X(66671) = reflection of X(i) in X(j) for these {i,j}: {3057, 66667}, {66669, 942}
X(66671) = pole of line {514, 53553} with respect to the Suppa-Cucoanes circle
X(66671) = pole of line {7, 52635} with respect to the dual conic of Yff parabola
X(66671) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(279), X(60617)}}, {{A, B, C, X(17753), X(56144)}}
X(66671) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4344, 4352, 1}, {64307, 66669, 942}
X(66672) lies on these lines: {1, 30}, {2, 66691}, {4, 988}, {8, 48807}, {9, 2549}, {10, 48812}, {20, 13161}, {36, 56960}, {37, 44526}, {165, 37716}, {240, 15942}, {376, 66632}, {381, 37599}, {382, 37592}, {452, 24178}, {497, 53618}, {515, 24248}, {517, 17635}, {519, 50992}, {535, 50080}, {543, 66678}, {612, 17579}, {614, 11114}, {958, 21949}, {978, 56964}, {982, 3586}, {986, 5691}, {993, 17064}, {1072, 6938}, {1125, 48817}, {1449, 7737}, {1478, 17594}, {1597, 8071}, {1657, 5266}, {1698, 11359}, {1699, 37617}, {1707, 64172}, {1722, 57288}, {1743, 15048}, {2475, 29664}, {2478, 11512}, {3247, 43619}, {3488, 24231}, {3534, 37589}, {3576, 3944}, {3624, 11354}, {3625, 48798}, {3626, 48806}, {3663, 28164}, {3666, 12943}, {3734, 17306}, {3749, 4302}, {3751, 48837}, {3849, 66637}, {3872, 33094}, {3875, 38456}, {3879, 64018}, {3912, 32986}, {3931, 9655}, {4293, 24210}, {4304, 33144}, {4312, 66640}, {4333, 5264}, {4339, 5059}, {4342, 37743}, {4357, 32815}, {4652, 21935}, {4663, 48842}, {4689, 11237}, {4816, 48800}, {5077, 29573}, {5219, 24296}, {5229, 5530}, {5255, 64005}, {5268, 11112}, {5271, 50166}, {5272, 11113}, {5290, 37573}, {5529, 31142}, {5587, 17596}, {5722, 18193}, {5988, 13172}, {6872, 23536}, {7514, 14792}, {7739, 16670}, {7761, 17296}, {9581, 31520}, {9589, 66650}, {9612, 56959}, {9613, 37598}, {9623, 24715}, {9657, 37548}, {9818, 14793}, {10629, 35513}, {11001, 66680}, {11286, 29598}, {11287, 17284}, {11355, 26102}, {11529, 32857}, {14033, 17023}, {15076, 44662}, {15326, 17720}, {15677, 29681}, {16485, 33147}, {16667, 18907}, {17276, 44669}, {17316, 33272}, {17601, 31434}, {17719, 30282}, {17721, 65632}, {18541, 66687}, {18961, 54320}, {20067, 33134}, {23698, 46475}, {28158, 63969}, {29634, 51678}, {29665, 37299}, {29680, 62969}, {35243, 59334}, {37607, 49130}, {37608, 49129}, {39586, 48816}, {48799, 50126}, {48801, 49484}, {48815, 64850}, {54386, 64002}, {66673, 66674}, {66685, 66690}
X(66672) = reflection of X(i) in X(j) for these {i,j}: {3751, 48837}, {48812, 48813}, {48827, 48818}, {50126, 48799}, {66639, 66675}
X(66672) = pole of line {523, 48332} with respect to the Suppa-Cucoanes circle
X(66672) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 13161, 37552}, {30, 48818, 48827}, {30, 66675, 66639}, {10404, 64158, 1}, {66673, 66686, 66674}
X(66673) lies on these lines: {1, 7}, {8, 55998}, {10, 3161}, {40, 37715}, {45, 38200}, {165, 24210}, {238, 50080}, {528, 7174}, {740, 3632}, {752, 49695}, {968, 33094}, {986, 66682}, {988, 51785}, {1001, 4859}, {1086, 38316}, {1125, 7613}, {1449, 64016}, {1503, 66659}, {1621, 23681}, {1697, 50065}, {1698, 4429}, {1699, 17594}, {1738, 31183}, {1743, 3755}, {1756, 5119}, {1836, 37553}, {2550, 3731}, {3008, 52653}, {3058, 3677}, {3158, 4415}, {3243, 17276}, {3340, 64158}, {3434, 62818}, {3586, 4424}, {3616, 63589}, {3622, 63576}, {3624, 50290}, {3633, 5847}, {3666, 9580}, {3679, 3717}, {3685, 17284}, {3727, 24274}, {3749, 33154}, {3751, 60905}, {3782, 10389}, {3816, 63621}, {3870, 33100}, {3883, 17151}, {3886, 17272}, {3914, 4512}, {3931, 41869}, {3973, 51090}, {4000, 60846}, {4034, 49468}, {4384, 62392}, {4414, 5231}, {4419, 5853}, {4645, 29573}, {4656, 17784}, {4659, 28530}, {4660, 6541}, {4666, 33102}, {4689, 5219}, {4854, 5269}, {4864, 49747}, {4898, 49462}, {4899, 20073}, {4901, 17262}, {5290, 24851}, {5573, 49736}, {5691, 37598}, {5772, 50118}, {6646, 49451}, {7290, 66071}, {7322, 34612}, {8056, 26105}, {9579, 37548}, {9778, 39595}, {13161, 53053}, {13462, 66692}, {16593, 24715}, {16673, 64174}, {17255, 49467}, {17306, 49484}, {17318, 28566}, {17399, 25055}, {17720, 35445}, {18421, 28881}, {19785, 62875}, {23511, 40998}, {24169, 25509}, {24239, 31326}, {25072, 40333}, {26098, 50865}, {28202, 48828}, {28494, 50281}, {28526, 36479}, {28913, 66700}, {28915, 31393}, {29207, 66651}, {29571, 59412}, {29598, 53600}, {29817, 63584}, {31508, 66632}, {32784, 50126}, {33134, 35258}, {33146, 62856}, {34611, 62833}, {37549, 41864}, {37573, 48944}, {37574, 48900}, {37599, 37704}, {37610, 50066}, {37634, 63207}, {39570, 59585}, {44447, 62812}, {49478, 60933}, {49522, 49690}, {49698, 49748}, {49742, 51102}, {51795, 66678}, {54359, 61087}, {60977, 64070}, {65952, 66669}, {66643, 66648}, {66653, 66665}, {66654, 66664}, {66672, 66674}
X(66673) = reflection of X(i) in X(j) for these {i,j}: {4307, 4356}
X(66673) = pole of line {4025, 47769} with respect to the Steiner circumellipse
X(66673) = pole of line {7658, 14350} with respect to the Steiner inellipse
X(66673) = pole of line {3732, 30728} with respect to the Yff parabola
X(66673) = pole of line {514, 50508} with respect to the Suppa-Cucoanes circle
X(66673) = pole of line {7, 24599} with respect to the dual conic of Yff parabola
X(66673) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3664), X(65952)}}, {{A, B, C, X(4888), X(56144)}}
X(66673) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 4312, 4888}, {1, 4902, 5542}, {390, 3663, 1}, {516, 4356, 4307}, {1738, 66515, 31183}, {3755, 5698, 1743}, {3886, 24723, 17272}, {4666, 33102, 63583}, {17594, 33095, 1699}, {66672, 66674, 66686}
X(66674) lies on these lines: {1, 3}, {2, 4695}, {8, 756}, {10, 4673}, {31, 17015}, {37, 3169}, {38, 3241}, {42, 3877}, {43, 392}, {45, 50014}, {145, 2292}, {244, 38314}, {256, 1000}, {291, 48830}, {386, 3884}, {388, 24851}, {495, 3944}, {497, 37717}, {515, 64134}, {519, 751}, {551, 17063}, {612, 3895}, {750, 63136}, {758, 2667}, {846, 956}, {941, 17452}, {960, 4849}, {968, 3872}, {978, 4646}, {995, 3898}, {997, 60714}, {1001, 60353}, {1056, 24248}, {1125, 24440}, {1149, 4850}, {1193, 3890}, {1254, 4323}, {1478, 33095}, {1500, 3061}, {1621, 49487}, {1737, 24217}, {1739, 25055}, {2177, 4511}, {2802, 30116}, {3052, 5429}, {3058, 5724}, {3488, 66643}, {3616, 4642}, {3622, 9335}, {3624, 3987}, {3636, 24046}, {3664, 28228}, {3678, 50575}, {3679, 3706}, {3721, 22431}, {3731, 4915}, {3735, 51058}, {3752, 10179}, {3753, 26102}, {3885, 10459}, {3902, 31330}, {3913, 5293}, {3915, 16478}, {3957, 49454}, {3971, 4737}, {4017, 28561}, {4051, 5283}, {4135, 4385}, {4315, 66692}, {4356, 66690}, {4389, 49779}, {4414, 54391}, {4419, 35102}, {4457, 9534}, {4719, 45219}, {4723, 64178}, {4742, 30942}, {4861, 10448}, {4880, 16490}, {4905, 28319}, {5044, 59294}, {5180, 24725}, {5247, 5250}, {5248, 15955}, {5251, 49494}, {5268, 63137}, {5316, 38471}, {5492, 18526}, {5530, 12053}, {5725, 33106}, {5726, 66691}, {6048, 25917}, {6051, 10914}, {7320, 45989}, {9331, 57015}, {9522, 51769}, {9620, 16503}, {10056, 17719}, {10944, 64158}, {13606, 15315}, {14923, 59305}, {16474, 49500}, {16483, 29821}, {16484, 54318}, {16498, 62806}, {17017, 62848}, {17122, 54286}, {17301, 49777}, {17717, 30384}, {17725, 50745}, {21746, 45955}, {24210, 31397}, {24239, 44430}, {24357, 35101}, {24429, 24864}, {24430, 37740}, {24552, 60684}, {24627, 38475}, {25079, 59299}, {25439, 30115}, {26098, 30305}, {28194, 48825}, {28850, 64168}, {30144, 33771}, {30358, 37728}, {31327, 31339}, {31395, 50620}, {36226, 48840}, {39739, 53114}, {42450, 50578}, {44663, 49478}, {49517, 59717}, {49518, 64133}, {49984, 63961}, {66656, 66668}, {66657, 66667}, {66672, 66673}
X(66674) = pole of line {1, 9567} with respect to the Feuerbach hyperbola
X(66674) = pole of line {17496, 47775} with respect to the Steiner circumellipse
X(66674) = pole of line {905, 47778} with respect to the Steiner inellipse
X(66674) = pole of line {513, 48291} with respect to the Suppa-Cucoanes circle
X(66674) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(8), X(37607)}}, {{A, B, C, X(56), X(751)}}, {{A, B, C, X(57), X(62884)}}, {{A, B, C, X(171), X(1000)}}, {{A, B, C, X(256), X(999)}}, {{A, B, C, X(941), X(37617)}}, {{A, B, C, X(2099), X(39739)}}, {{A, B, C, X(3304), X(45989)}}, {{A, B, C, X(5255), X(7320)}}, {{A, B, C, X(5264), X(13606)}}, {{A, B, C, X(5559), X(37522)}}, {{A, B, C, X(13602), X(37610)}}
X(66674) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1697, 5255}, {1, 4424, 982}, {1, 5119, 171}, {1, 986, 3976}, {392, 64175, 43}, {982, 4424, 986}, {3666, 5919, 1}, {3885, 62831, 10459}, {3898, 4868, 995}, {3915, 17016, 16478}, {4646, 58679, 978}, {4850, 62835, 1149}, {6051, 10914, 59311}, {24210, 31397, 37716}
X(66675) lies on these lines: {1, 30}, {5, 13161}, {8, 11359}, {9, 63633}, {10, 4884}, {36, 17602}, {37, 15048}, {38, 64172}, {45, 7739}, {140, 988}, {145, 48813}, {442, 29664}, {495, 3666}, {515, 4353}, {517, 3663}, {518, 48847}, {519, 4743}, {538, 4364}, {548, 37552}, {549, 37599}, {550, 5266}, {952, 12588}, {956, 19785}, {982, 37715}, {986, 5690}, {993, 17061}, {995, 4415}, {999, 56960}, {1056, 3672}, {1072, 8727}, {1086, 30116}, {1100, 18907}, {1385, 34937}, {1478, 17599}, {1597, 7952}, {1657, 4339}, {1737, 4003}, {2549, 16777}, {2782, 66696}, {2975, 56970}, {3187, 50167}, {3242, 48837}, {3419, 62833}, {3487, 56959}, {3534, 66680}, {3616, 11354}, {3617, 48804}, {3621, 48800}, {3622, 48817}, {3624, 48812}, {3633, 48807}, {3677, 5722}, {3705, 16052}, {3734, 17045}, {3752, 3820}, {3813, 36250}, {3873, 64167}, {3879, 14929}, {3920, 11112}, {3944, 38034}, {4000, 9708}, {4045, 17243}, {4201, 20056}, {4234, 29838}, {4298, 37594}, {4307, 18541}, {4310, 15934}, {4349, 28897}, {4385, 56734}, {4389, 48838}, {4663, 48861}, {4689, 50745}, {4719, 21077}, {4850, 17757}, {4883, 58813}, {4968, 13728}, {5066, 66691}, {5290, 36636}, {5695, 48803}, {5711, 24470}, {5716, 9655}, {5719, 33144}, {5846, 48835}, {6051, 23675}, {6767, 28915}, {6913, 15251}, {7191, 11113}, {7514, 8071}, {7737, 16884}, {7761, 17390}, {7798, 17332}, {8703, 37589}, {8728, 23536}, {9780, 48806}, {9818, 15252}, {10246, 60751}, {10453, 56969}, {10580, 36721}, {10629, 18420}, {11037, 49130}, {11114, 17024}, {11286, 26626}, {11287, 17316}, {11355, 29814}, {15325, 17720}, {15670, 29681}, {16020, 16857}, {16370, 26228}, {16821, 19796}, {17246, 64109}, {17257, 22253}, {17530, 29680}, {17579, 29815}, {17591, 37716}, {17677, 29840}, {17768, 62828}, {18494, 34231}, {19765, 63282}, {19993, 50055}, {20050, 48798}, {21949, 23537}, {24210, 53618}, {24231, 66687}, {24248, 28174}, {28146, 63969}, {28503, 48808}, {29365, 66694}, {29585, 32986}, {29648, 51672}, {29665, 37298}, {31339, 50153}, {32515, 66690}, {33100, 62848}, {33151, 51409}, {33152, 37617}, {33155, 54391}, {34824, 48844}, {37549, 37730}, {37559, 52783}, {38456, 49472}, {40688, 56191}, {41311, 59780}, {41312, 52229}, {48801, 49453}, {48843, 49524}, {48857, 64070}, {50103, 50759}
X(66675) = midpoint of X(i) and X(j) for these {i,j}: {3242, 48837}, {48818, 48819}, {66639, 66672}
X(66675) = reflection of X(i) in X(j) for these {i,j}: {48820, 48819}, {49524, 48843}
X(66675) = pole of line {523, 48335} with respect to the incircle
X(66675) = pole of line {553, 49727} with respect to the dual conic of Yff parabola
X(66675) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10404, 49743}, {1, 3782, 39542}, {1, 50065, 15171}, {1, 63997, 22791}, {1, 66672, 66639}, {30, 48819, 48820}, {13161, 37592, 5}, {37589, 66692, 8703}, {48818, 48819, 30}, {48843, 59717, 49524}
X(66676) lies on these lines: {1, 7}, {165, 17717}, {171, 50865}, {181, 45829}, {752, 4677}, {1743, 64016}, {2550, 3973}, {3434, 62820}, {3911, 22166}, {4659, 28566}, {4864, 60963}, {5219, 65698}, {5880, 60846}, {7174, 28534}, {11529, 66689}, {16469, 24715}, {19875, 50295}, {20292, 62875}, {24239, 64308}, {28494, 50314}, {28580, 34747}, {31183, 59412}, {31781, 35679}, {33094, 62842}, {33106, 53056}, {37554, 48661}, {37608, 48944}, {37715, 41869}, {45204, 52180}, {50289, 55998}, {50298, 64850}
X(66676) = pole of line {514, 2496} with respect to the incircle
X(66676) = intersection, other than A, B, C, of circumconics {{A, B, C, X(79), X(63577)}}, {{A, B, C, X(4902), X(56144)}}
X(66676) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 4312, 4902}, {390, 4888, 1}
X(66677) lies on these lines: {1, 29353}, {2, 6007}, {7, 354}, {144, 52020}, {165, 1400}, {256, 941}, {513, 63054}, {517, 7961}, {527, 1002}, {1362, 60998}, {1423, 4343}, {1449, 9309}, {1469, 5919}, {1475, 24708}, {3241, 9025}, {3271, 17014}, {3672, 21746}, {3681, 17257}, {3740, 5296}, {3888, 29585}, {3945, 4890}, {3946, 63498}, {4307, 29349}, {4310, 39543}, {4334, 14519}, {4346, 64560}, {4419, 64751}, {4430, 6646}, {4452, 17049}, {4648, 64552}, {5902, 24248}, {9054, 24441}, {9791, 54383}, {14969, 58893}, {17319, 25304}, {18135, 24351}, {18230, 61034}, {21296, 64546}, {21808, 24341}, {24482, 59373}, {24717, 34284}, {25570, 63520}, {29574, 60929}, {35980, 46923}, {52902, 63852}, {58655, 62608}, {61650, 62693}, {61687, 64108}, {61729, 63008}
X(66677) = pole of line {650, 29350} with respect to the incircle
X(66677) = pole of line {7, 4003} with respect to the Feuerbach hyperbola
X(66677) = pole of line {661, 29350} with respect to the Suppa-Cucoanes circle
X(66677) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {60930, 60931, 11220}
X(66678) lies on these lines: {1, 542}, {9, 115}, {10, 190}, {37, 11646}, {44, 6034}, {80, 256}, {98, 109}, {99, 4357}, {148, 17257}, {238, 5127}, {484, 1756}, {528, 24711}, {543, 66672}, {620, 17306}, {690, 66679}, {759, 24436}, {984, 13178}, {988, 14981}, {1100, 64092}, {1281, 33115}, {1449, 5477}, {2782, 66690}, {2784, 4356}, {2794, 66685}, {3027, 50616}, {3883, 7983}, {3952, 5992}, {4416, 10754}, {4643, 5969}, {4657, 5026}, {4683, 7081}, {4689, 12350}, {5182, 17023}, {5293, 35338}, {5985, 29681}, {6054, 24239}, {7290, 11725}, {8724, 37599}, {9830, 41312}, {9862, 66680}, {10053, 50745}, {10991, 37552}, {11161, 29574}, {11599, 60235}, {13161, 38664}, {13653, 66635}, {13773, 66636}, {14061, 17353}, {14830, 37589}, {16667, 41672}, {17272, 50567}, {17491, 37764}, {17768, 53424}, {20774, 56814}, {22047, 32846}, {37592, 52090}, {41311, 51798}, {50296, 50886}, {51795, 66673}
X(66678) = pole of line {690, 4458} with respect to the incircle
X(66678) = pole of line {44669, 53426} with respect to the Kiepert hyperbola
X(66678) = pole of line {21209, 45661} with respect to the Steiner inellipse
X(66678) = pole of line {690, 4010} with respect to the Suppa-Cucoanes circle
X(66678) = pole of line {6629, 38456} with respect to the Wallace hyperbola
X(66678) = pole of line {662, 1429} with respect to the dual conic of Yff parabola
X(66679) lies on these lines: {9, 125}, {37, 67}, {110, 4357}, {542, 46475}, {690, 66678}, {895, 4416}, {984, 13211}, {1001, 32238}, {1100, 64104}, {1449, 5095}, {1486, 32262}, {1743, 15118}, {2777, 66685}, {2854, 4643}, {2930, 17253}, {3448, 17257}, {3879, 32244}, {3883, 7984}, {4026, 32278}, {4657, 6593}, {5181, 17272}, {5251, 24697}, {5972, 17306}, {6698, 17279}, {7290, 11735}, {9140, 50093}, {9769, 66632}, {11061, 17321}, {13169, 29574}, {13654, 66635}, {13774, 66636}, {15059, 17353}, {16176, 16884}, {17023, 52699}, {17045, 25329}, {17296, 32257}, {17325, 52697}, {17332, 25328}, {17384, 64764}, {25320, 54280}, {25321, 26626}, {34319, 41311}, {50296, 50921}
X(66680) lies on circumconic {{A, B, C, X(3296), X(53904)}} and on these lines: {1, 376}, {2, 37589}, {3, 4339}, {4, 37552}, {8, 4234}, {9, 1285}, {20, 5266}, {35, 5716}, {55, 4221}, {58, 3189}, {109, 3476}, {112, 281}, {171, 3488}, {344, 3972}, {377, 29681}, {378, 8069}, {388, 50745}, {516, 60751}, {601, 944}, {612, 11111}, {988, 3528}, {995, 35338}, {999, 1292}, {1003, 17316}, {1056, 3749}, {2223, 19262}, {2550, 37817}, {3486, 5264}, {3487, 33097}, {3522, 37592}, {3524, 24239}, {3529, 13161}, {3534, 66675}, {3550, 5657}, {3576, 63969}, {3744, 4293}, {3757, 51668}, {3879, 32817}, {3912, 14039}, {4000, 49480}, {4257, 24477}, {4294, 37539}, {4297, 35658}, {4304, 5269}, {4305, 5710}, {4307, 24929}, {4313, 5711}, {4314, 37554}, {4340, 37080}, {4349, 64301}, {4353, 59420}, {4689, 50070}, {5281, 5725}, {5297, 31156}, {5393, 26619}, {5405, 26620}, {5698, 30115}, {5712, 59337}, {5714, 36573}, {6661, 29579}, {7081, 48817}, {7709, 66638}, {7952, 18533}, {8356, 26626}, {9741, 66637}, {9862, 66678}, {9957, 35672}, {10304, 37599}, {11001, 66672}, {11115, 59760}, {14015, 54294}, {14482, 16667}, {14793, 44832}, {14907, 17321}, {15689, 48820}, {17024, 36004}, {17579, 26228}, {18391, 37540}, {19276, 39581}, {20056, 48806}, {22676, 66696}, {23536, 57000}, {26227, 50061}, {29585, 35927}, {29634, 48813}, {29815, 37299}, {31402, 39255}, {34626, 66071}, {34937, 64005}, {35921, 59334}, {37331, 37590}, {37603, 53619}, {39587, 50742}, {41312, 66699}, {41422, 64146}, {46974, 61113}, {48818, 62130}, {48819, 62120}, {60374, 61762}
X(66681) lies on circumconic {{A, B, C, X(30568), X(60077)}} and on these lines: {1, 8055}, {2, 988}, {4, 10743}, {8, 4082}, {10, 3161}, {20, 46937}, {144, 56079}, {145, 3952}, {341, 390}, {344, 5261}, {345, 8165}, {346, 2551}, {391, 3714}, {452, 3701}, {950, 5423}, {1125, 6557}, {1219, 26105}, {1722, 4452}, {1997, 5265}, {3189, 6555}, {3339, 4488}, {3486, 4009}, {3522, 5205}, {3598, 18135}, {3600, 18743}, {3617, 36926}, {3812, 4454}, {3832, 29641}, {3913, 4578}, {3945, 56083}, {3992, 4294}, {4385, 5129}, {4723, 56936}, {5068, 30741}, {5290, 29627}, {7081, 11106}, {9780, 56078}, {12437, 59599}, {17784, 52353}, {19877, 59779}, {20007, 27538}, {20076, 46938}, {21630, 66069}, {24280, 56080}, {29583, 33822}, {30179, 33050}, {30740, 32841}, {38057, 43533}, {46933, 56313}
X(66681) = pole of line {14350, 28478} with respect to the Steiner inellipse
X(66681) = pole of line {1635, 4765} with respect to the dual conic of incircle
X(66681) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {452, 3701, 7172}, {2899, 56311, 2}, {4779, 6552, 3913}
X(66682) lies on these lines: {1, 4}, {2, 4314}, {3, 18527}, {7, 6744}, {8, 4082}, {10, 390}, {11, 3601}, {12, 10389}, {20, 3361}, {21, 5231}, {30, 3333}, {36, 37426}, {40, 5722}, {46, 37428}, {55, 1698}, {57, 6284}, {65, 9580}, {80, 7160}, {145, 4342}, {149, 19860}, {164, 31769}, {165, 1210}, {191, 30223}, {200, 2478}, {354, 4355}, {355, 15172}, {376, 64124}, {377, 10582}, {380, 1855}, {382, 5045}, {387, 16469}, {404, 31249}, {452, 4847}, {495, 18492}, {496, 3576}, {499, 30282}, {516, 938}, {517, 9848}, {518, 9844}, {519, 5815}, {528, 1706}, {551, 50736}, {936, 50399}, {942, 4312}, {958, 24392}, {960, 12625}, {962, 6738}, {986, 66673}, {988, 49131}, {995, 65670}, {1000, 47745}, {1125, 4208}, {1203, 66249}, {1279, 66104}, {1329, 3158}, {1385, 37704}, {1387, 64952}, {1420, 37722}, {1697, 1837}, {1737, 4309}, {1768, 66194}, {1788, 63469}, {1834, 7290}, {1836, 11518}, {1858, 3901}, {1864, 5904}, {2098, 4930}, {2099, 51791}, {2475, 4666}, {2550, 15006}, {2551, 4882}, {2646, 11238}, {2886, 5436}, {2894, 5833}, {2948, 46687}, {2951, 64706}, {2955, 2961}, {3057, 3632}, {3062, 9799}, {3085, 7989}, {3086, 4304}, {3091, 13405}, {3146, 4298}, {3189, 3452}, {3295, 5587}, {3303, 9578}, {3305, 5178}, {3337, 4333}, {3338, 65134}, {3340, 12701}, {3419, 31435}, {3434, 64673}, {3543, 11037}, {3600, 21625}, {3612, 15845}, {3616, 37161}, {3633, 7962}, {3634, 5281}, {3635, 4345}, {3636, 18220}, {3671, 9812}, {3677, 50065}, {3746, 10826}, {3748, 10895}, {3812, 10177}, {3816, 5438}, {3817, 5703}, {3832, 3947}, {3870, 5046}, {3874, 10394}, {3880, 18247}, {3894, 64046}, {3899, 64042}, {3911, 16192}, {3927, 60910}, {4292, 10980}, {4295, 50865}, {4297, 13462}, {4302, 15803}, {4305, 30389}, {4311, 34628}, {4326, 38052}, {4330, 58887}, {4339, 39595}, {4512, 6734}, {4848, 63468}, {4862, 24851}, {4898, 17452}, {4900, 12541}, {4915, 5795}, {5044, 17604}, {5049, 9655}, {5057, 11520}, {5073, 31776}, {5084, 8580}, {5119, 37702}, {5217, 31231}, {5218, 64850}, {5219, 10896}, {5223, 5809}, {5226, 12571}, {5230, 62875}, {5248, 5705}, {5252, 37556}, {5261, 8236}, {5271, 31049}, {5432, 19872}, {5435, 12512}, {5440, 25522}, {5441, 37618}, {5493, 30332}, {5534, 6929}, {5536, 62810}, {5558, 50690}, {5559, 55931}, {5572, 52835}, {5697, 37721}, {5698, 24391}, {5704, 10164}, {5708, 28146}, {5726, 19925}, {5728, 63974}, {5735, 62864}, {5744, 51576}, {5768, 7992}, {5787, 11372}, {5794, 49736}, {5806, 63972}, {5840, 37534}, {5847, 35629}, {5881, 9947}, {5884, 66254}, {5902, 12711}, {5919, 37709}, {6173, 34706}, {6223, 64697}, {6684, 31508}, {6736, 56936}, {6743, 18228}, {6745, 6919}, {6762, 57288}, {6763, 54408}, {6766, 31799}, {6767, 18480}, {6769, 6827}, {6836, 12651}, {6872, 26015}, {6923, 64668}, {6925, 64679}, {7288, 58221}, {7373, 28160}, {7671, 12564}, {7675, 64675}, {7681, 52026}, {7741, 59337}, {7743, 9624}, {7957, 64157}, {7982, 37730}, {7988, 10591}, {7991, 10624}, {8165, 64146}, {8185, 16541}, {8227, 9669}, {8274, 11435}, {8582, 17784}, {8583, 57287}, {8726, 64698}, {9576, 33178}, {9591, 10833}, {9671, 17605}, {9897, 15558}, {10072, 37427}, {10165, 47743}, {10385, 19875}, {10386, 26446}, {10391, 18398}, {10396, 41338}, {10398, 64004}, {10404, 44841}, {10483, 51816}, {10525, 18443}, {10543, 11376}, {10588, 61264}, {10589, 34595}, {10724, 18240}, {10725, 14760}, {10728, 46681}, {10738, 37615}, {10889, 17272}, {10893, 63966}, {10916, 31424}, {11015, 35262}, {11018, 36999}, {11034, 16118}, {11113, 57279}, {11114, 31146}, {11362, 30286}, {11373, 64953}, {11523, 24703}, {11529, 12433}, {11531, 16236}, {11680, 62829}, {11826, 37526}, {11928, 24299}, {11934, 47724}, {11997, 49474}, {12019, 38180}, {12514, 50836}, {12526, 12649}, {12527, 36845}, {12563, 15933}, {12653, 66206}, {12680, 12915}, {12764, 37736}, {12943, 17609}, {13273, 64676}, {13370, 63991}, {13740, 14942}, {13888, 44623}, {13942, 44624}, {15071, 66248}, {15338, 17728}, {15829, 44669}, {15932, 62839}, {15934, 22793}, {15935, 40273}, {16200, 37739}, {16215, 37001}, {17284, 17681}, {17622, 37708}, {17626, 58567}, {17637, 64289}, {17721, 64158}, {18249, 52653}, {18481, 61762}, {18525, 31792}, {18541, 50192}, {18908, 37711}, {19846, 27542}, {20075, 24982}, {21075, 66469}, {21554, 37574}, {21628, 24644}, {23681, 28082}, {23708, 37571}, {24177, 28080}, {24386, 30478}, {24388, 46878}, {24914, 35445}, {24928, 50811}, {25466, 38316}, {25509, 33833}, {25525, 51715}, {26105, 57284}, {28074, 62695}, {29598, 33838}, {30294, 45776}, {30337, 37712}, {30827, 56176}, {31266, 62870}, {31397, 37714}, {31423, 64951}, {31428, 31451}, {31479, 63271}, {31730, 53056}, {31778, 64534}, {31794, 48661}, {32925, 44040}, {34607, 63990}, {34611, 63130}, {34701, 59691}, {36500, 56082}, {36731, 48827}, {37415, 40910}, {37554, 66639}, {37568, 61717}, {37692, 65140}, {37718, 66199}, {37724, 64964}, {37737, 38021}, {38456, 39584}, {41538, 61718}, {41863, 58798}, {48680, 58587}, {49176, 51768}, {50196, 52860}, {51090, 54398}, {52367, 54392}, {52840, 64543}, {54198, 64324}, {54422, 60905}, {54432, 65129}, {57278, 59320}, {57282, 59372}, {58576, 63432}, {61296, 64897}, {61649, 63756}, {62823, 64002}
X(66682) = reflection of X(i) in X(j) for these {i,j}: {1, 1058}, {3339, 938}, {3600, 21625}, {4882, 2551}
X(66682) = pole of line {522, 4990} with respect to the incircle
X(66682) = pole of line {65, 3679} with respect to the Feuerbach hyperbola
X(66682) = pole of line {522, 47965} with respect to the Suppa-Cucoanes circle
X(66682) = intersection, other than A, B, C, of circumconics {{A, B, C, X(29), X(5290)}}, {{A, B, C, X(34), X(4866)}}, {{A, B, C, X(278), X(56086)}}, {{A, B, C, X(1067), X(1699)}}, {{A, B, C, X(1870), X(7160)}}
X(66682) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1479, 1699}, {1, 3583, 9612}, {1, 3586, 5691}, {1, 4, 5290}, {1, 4857, 9614}, {1, 9614, 11522}, {8, 12575, 9819}, {8, 18250, 4866}, {10, 390, 53053}, {11, 3601, 3624}, {20, 11019, 3361}, {55, 9581, 1698}, {57, 6284, 64005}, {65, 9580, 9589}, {65, 9670, 9580}, {354, 12953, 9579}, {354, 9579, 4355}, {355, 15172, 31393}, {382, 18530, 5045}, {452, 4847, 5234}, {497, 3486, 12053}, {516, 938, 3339}, {942, 41869, 4312}, {942, 4312, 5586}, {942, 9668, 41869}, {950, 12053, 3486}, {962, 6738, 18421}, {1056, 40270, 1}, {1125, 4313, 53054}, {1125, 5274, 50444}, {1210, 4294, 165}, {1697, 1837, 3679}, {1737, 4309, 61763}, {1737, 61763, 9588}, {1837, 3058, 1697}, {2551, 5853, 4882}, {2646, 11238, 50443}, {2646, 50443, 25055}, {3057, 3632, 8275}, {3057, 5727, 3632}, {3057, 64131, 5692}, {3086, 4304, 7987}, {3146, 10580, 4298}, {3295, 5587, 51784}, {3746, 10826, 31434}, {3832, 10578, 3947}, {4297, 14986, 13462}, {4305, 44675, 30389}, {4313, 5274, 1125}, {5084, 63146, 8580}, {5722, 15171, 40}, {5795, 64068, 4915}, {6738, 51783, 962}, {6744, 51118, 7}, {7962, 10950, 3633}, {9580, 37723, 65}, {9581, 41864, 55}, {9669, 24929, 8227}, {10543, 11376, 13384}, {10591, 13411, 7988}, {10624, 18391, 7991}, {10896, 37080, 5219}, {11531, 64163, 16236}, {12433, 12699, 11529}, {18527, 31795, 3}, {21625, 28164, 3600}, {26389, 26413, 497}, {30305, 64163, 11531}, {31673, 40270, 1056}
X(66683) lies on circumconic {{A, B, C, X(1751), X(34919)}} and on these lines: {1, 527}, {6, 226}, {63, 3945}, {219, 3664}, {515, 3332}, {524, 4847}, {553, 54369}, {758, 4349}, {991, 63438}, {1108, 7277}, {1214, 62240}, {1449, 61011}, {1723, 61004}, {2257, 8545}, {3553, 4341}, {3668, 6610}, {4363, 6737}, {4648, 5745}, {4848, 24315}, {5173, 34371}, {5905, 62997}, {7290, 64110}, {8680, 49478}, {17243, 59595}, {18389, 64887}, {21620, 62843}, {24316, 64160}, {24779, 60980}, {25080, 63401}, {31266, 37681}, {37650, 58463}, {40960, 62819}, {46180, 66638}
X(66683) = perspector of circumconic {{A, B, C, X(1305), X(65242)}}
X(66683) = pole of line {7649, 46919} with respect to the Steiner inellipse
X(66683) = pole of line {3, 5735} with respect to the dual conic of Yff parabola
X(66684) lies on these lines: {1, 1503}, {3, 4851}, {4, 1100}, {9, 8550}, {10, 20818}, {37, 6776}, {44, 14912}, {182, 17279}, {281, 15258}, {319, 66313}, {355, 29219}, {376, 50125}, {516, 1482}, {542, 41312}, {631, 17231}, {944, 3332}, {1001, 39870}, {1350, 3879}, {1352, 4657}, {1449, 5480}, {1486, 39879}, {1743, 12007}, {2784, 36942}, {3207, 62343}, {3476, 4307}, {3564, 4643}, {3576, 4966}, {3723, 39874}, {3759, 7385}, {3912, 5085}, {4026, 39885}, {4349, 64572}, {4357, 15069}, {4864, 7967}, {5266, 8721}, {5733, 64126}, {5839, 7390}, {5847, 12513}, {5880, 24257}, {5921, 17321}, {6603, 26939}, {6998, 17275}, {7379, 17394}, {9756, 24239}, {10516, 17023}, {10519, 17374}, {10541, 17267}, {11179, 41313}, {11180, 41311}, {12705, 44762}, {13634, 50076}, {14853, 16666}, {16777, 64080}, {16884, 36990}, {17311, 53094}, {17316, 25406}, {17317, 66314}, {17353, 53093}, {17384, 40330}, {17390, 44882}, {24328, 64875}, {26118, 37595}, {29016, 37727}, {29043, 66662}, {29046, 66663}, {29223, 61284}, {29573, 51737}, {29574, 43273}, {29585, 66755}, {34791, 50284}, {37456, 62801}, {37592, 59363}, {44302, 46483}, {48932, 50308}, {49737, 51136}, {49776, 50677}, {53023, 62212}, {54280, 66742}, {64168, 66653}, {64711, 66632}, {66639, 66688}
X(66684) = midpoint of X(i) and X(j) for these {i,j}: {944, 3332}, {66664, 66665}
X(66684) = reflection of X(i) in X(j) for these {i,j}: {4643, 46475}, {50308, 48932}
X(66684) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {66653, 66654, 64168}, {66664, 66665, 516}
X(66685) lies on circumconic {{A, B, C, X(281), X(3424)}} and on these lines: {1, 1503}, {3, 17306}, {4, 9}, {20, 4357}, {37, 36990}, {44, 53023}, {57, 26118}, {63, 37456}, {165, 19542}, {226, 3424}, {238, 1699}, {329, 7172}, {344, 51537}, {355, 4901}, {440, 4512}, {515, 7174}, {542, 66637}, {740, 12625}, {752, 28609}, {946, 3332}, {950, 4907}, {962, 3883}, {984, 5691}, {988, 8721}, {1012, 3220}, {1100, 64080}, {1350, 17272}, {1352, 17296}, {1423, 9579}, {1449, 6776}, {1486, 63420}, {1490, 29207}, {1743, 5480}, {1848, 7070}, {1901, 64016}, {2257, 5800}, {2777, 66679}, {2794, 66678}, {2893, 3886}, {3072, 5715}, {3091, 17353}, {3146, 17257}, {3243, 39898}, {3487, 4349}, {3488, 4356}, {3543, 50093}, {3586, 4424}, {3717, 59387}, {3755, 5802}, {3832, 26685}, {3879, 5921}, {4416, 51212}, {4643, 29181}, {4649, 39878}, {4655, 43173}, {4657, 44882}, {5085, 29598}, {5250, 52364}, {5257, 7390}, {5264, 9612}, {5338, 21912}, {5436, 50290}, {5706, 16470}, {5732, 49131}, {5735, 64126}, {5750, 7407}, {5777, 64537}, {5847, 11523}, {5881, 29016}, {5927, 45829}, {5928, 10382}, {6833, 56452}, {6834, 56454}, {6847, 56445}, {6848, 56446}, {6949, 56470}, {6952, 56468}, {7000, 66636}, {7374, 66635}, {7379, 10436}, {7413, 25525}, {7710, 24239}, {7989, 33159}, {7991, 33076}, {7995, 12779}, {8227, 29223}, {8550, 16667}, {9312, 62314}, {9581, 56547}, {9746, 50298}, {10516, 17284}, {11531, 49506}, {14853, 16670}, {14927, 17321}, {15601, 18483}, {15972, 31394}, {16469, 38035}, {17023, 25406}, {17045, 64196}, {17237, 31884}, {17253, 48872}, {17282, 66314}, {17325, 59411}, {17332, 51163}, {17344, 53097}, {17384, 53094}, {18446, 29046}, {18634, 51687}, {20195, 21554}, {22021, 39885}, {25894, 26032}, {26626, 66755}, {27509, 37434}, {28897, 56959}, {29012, 46475}, {29085, 36663}, {29219, 61296}, {29335, 36477}, {29573, 47353}, {29574, 51023}, {30810, 66515}, {31435, 37179}, {32555, 36714}, {32556, 36709}, {33165, 37714}, {36706, 64700}, {37552, 59363}, {49516, 51063}, {49737, 51022}, {50296, 50865}, {50699, 54311}, {51538, 54280}, {53015, 66632}, {66672, 66690}
X(66685) = reflection of X(i) in X(j) for these {i,j}: {3332, 946}
X(66685) = pole of line {14837, 47766} with respect to the orthoptic circle of the Steiner Inellipse
X(66685) = pole of line {1864, 40959} with respect to the Feuerbach hyperbola
X(66685) = pole of line {525, 21185} with respect to the Suppa-Cucoanes circle
X(66685) = pole of line {610, 4000} with respect to the dual conic of Yff parabola
X(66685) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 5759, 10445}
X(66686) lies on these lines: {1, 4}, {2, 4315}, {3, 51784}, {5, 61762}, {7, 519}, {8, 3339}, {9, 529}, {10, 3361}, {12, 1420}, {20, 53053}, {30, 31393}, {36, 31434}, {40, 18990}, {56, 1698}, {57, 3679}, {63, 34605}, {65, 3632}, {79, 30323}, {80, 41556}, {145, 3671}, {164, 31734}, {165, 4293}, {354, 5727}, {355, 3333}, {376, 31508}, {377, 4853}, {381, 37704}, {382, 31792}, {390, 28164}, {474, 13370}, {495, 3576}, {496, 18492}, {516, 9814}, {517, 4312}, {518, 60982}, {528, 51767}, {535, 8545}, {541, 51794}, {542, 51793}, {543, 51795}, {544, 51766}, {551, 5226}, {553, 4677}, {651, 62828}, {938, 12577}, {942, 5881}, {952, 11529}, {978, 60086}, {988, 31326}, {999, 5587}, {1000, 28194}, {1125, 4308}, {1203, 9370}, {1210, 37714}, {1317, 50891}, {1319, 5219}, {1323, 48856}, {1387, 38021}, {1447, 48851}, {1458, 30116}, {1617, 5251}, {1697, 7354}, {1706, 32049}, {1836, 7962}, {2093, 12647}, {2099, 4654}, {2171, 4898}, {2475, 36846}, {2550, 4915}, {2948, 46683}, {2975, 55867}, {3057, 9579}, {3058, 51779}, {3085, 4311}, {3086, 7989}, {3091, 50444}, {3146, 12575}, {3241, 50737}, {3243, 44669}, {3296, 17706}, {3304, 9581}, {3306, 5176}, {3338, 37710}, {3340, 3633}, {3421, 8580}, {3436, 8583}, {3474, 63468}, {3528, 64350}, {3534, 51787}, {3543, 51783}, {3598, 48849}, {3601, 15888}, {3616, 3947}, {3634, 5265}, {3635, 4323}, {3636, 6049}, {3649, 37738}, {3655, 5719}, {3677, 5724}, {3729, 60452}, {3753, 63994}, {3828, 64114}, {3895, 17579}, {3899, 64041}, {3911, 19875}, {3919, 18419}, {3982, 34747}, {4032, 49448}, {4292, 7991}, {4295, 11531}, {4296, 30145}, {4299, 61763}, {4304, 34628}, {4306, 10459}, {4317, 9588}, {4321, 9623}, {4325, 31436}, {4328, 48837}, {4333, 37563}, {4342, 9812}, {4551, 5313}, {4668, 4848}, {4669, 65384}, {4816, 41687}, {4859, 60353}, {4862, 10401}, {4863, 34749}, {4882, 57284}, {4888, 66640}, {5045, 18525}, {5048, 61716}, {5082, 11519}, {5083, 9897}, {5086, 62832}, {5119, 15228}, {5123, 31190}, {5126, 31479}, {5218, 58221}, {5223, 12573}, {5231, 54391}, {5289, 28609}, {5315, 34048}, {5433, 19872}, {5438, 12607}, {5444, 15844}, {5542, 28236}, {5543, 57826}, {5563, 10827}, {5657, 53056}, {5692, 64106}, {5697, 12709}, {5705, 8666}, {5710, 34043}, {5731, 13405}, {5745, 34610}, {5787, 9845}, {5794, 6762}, {5806, 12128}, {5815, 12447}, {5818, 64124}, {5842, 7966}, {5880, 38455}, {5902, 17625}, {5903, 66250}, {5919, 9580}, {6001, 39779}, {6147, 37727}, {6284, 37556}, {6735, 64112}, {6736, 6904}, {6738, 11037}, {6763, 37550}, {6765, 17647}, {6767, 28160}, {7091, 64087}, {7176, 36480}, {7179, 48854}, {7201, 49469}, {7223, 21314}, {7247, 9312}, {7273, 63360}, {7288, 64850}, {7308, 34606}, {7373, 18480}, {7982, 57282}, {7988, 10590}, {8164, 10165}, {8227, 9654}, {9363, 37522}, {9591, 18954}, {9592, 31409}, {9655, 9957}, {9785, 51118}, {9799, 9851}, {10056, 21578}, {10085, 64291}, {10107, 66240}, {10521, 31994}, {10588, 34595}, {10589, 61264}, {10624, 30337}, {10895, 20323}, {10950, 11518}, {10956, 15015}, {10980, 18391}, {11019, 59387}, {11108, 51773}, {11112, 63137}, {11236, 30827}, {11238, 51792}, {11374, 64953}, {11375, 63208}, {11929, 24927}, {12127, 64068}, {12526, 20078}, {12625, 17644}, {12645, 31794}, {12672, 30290}, {12702, 31776}, {13374, 17624}, {13384, 17718}, {13411, 30389}, {13888, 31472}, {13942, 44622}, {14986, 19925}, {15325, 54447}, {15326, 35445}, {15932, 54288}, {15934, 28204}, {15950, 51105}, {16200, 39542}, {16417, 51362}, {16474, 37543}, {17284, 41245}, {17306, 48801}, {17609, 37723}, {18398, 37711}, {18526, 41870}, {18540, 51768}, {18976, 37736}, {19004, 31408}, {19860, 27186}, {19861, 20060}, {20067, 35258}, {20076, 24987}, {20196, 31141}, {20789, 37001}, {22759, 37583}, {23681, 49487}, {24465, 64056}, {24864, 60718}, {24929, 50811}, {25405, 61275}, {25525, 34716}, {25716, 33949}, {28158, 30332}, {28304, 30719}, {28739, 48803}, {30275, 38024}, {30286, 59388}, {30305, 50865}, {30503, 64698}, {31162, 64897}, {31164, 62826}, {31778, 64533}, {34046, 37559}, {34929, 50898}, {36279, 63143}, {36975, 59337}, {37541, 48696}, {37721, 50190}, {37730, 58813}, {37737, 64952}, {44663, 60933}, {47299, 54008}, {49719, 51786}, {49732, 51781}, {50194, 61291}, {53620, 64142}, {54318, 61008}, {60883, 64734}, {60905, 60946}, {60995, 66515}, {66672, 66673}
X(66686) = reflection of X(i) in X(j) for these {i,j}: {1, 1056}, {4915, 2550}, {16236, 18421}, {18421, 7}, {66700, 59372}
X(66686) = pole of line {65, 51785} with respect to the Feuerbach hyperbola
X(66686) = pole of line {57, 4346} with respect to the dual conic of Yff parabola
X(66686) = pole of line {1788, 4323} with respect to the dual conic of Moses-Feuerbach circumconic
X(66686) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(36588)}}, {{A, B, C, X(29), X(51785)}}, {{A, B, C, X(33), X(4900)}}, {{A, B, C, X(1065), X(1699)}}, {{A, B, C, X(6198), X(56038)}}, {{A, B, C, X(11522), X(54972)}}, {{A, B, C, X(23710), X(47881)}}
X(66686) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1478, 1699}, {1, 3585, 9614}, {1, 388, 5290}, {1, 5270, 9612}, {1, 9612, 11522}, {1, 9613, 5691}, {2, 4315, 13462}, {2, 51782, 5726}, {7, 519, 18421}, {8, 4298, 3339}, {10, 3600, 3361}, {12, 1420, 3624}, {56, 9578, 1698}, {57, 5252, 3679}, {65, 37709, 3632}, {65, 4355, 5586}, {226, 10106, 3476}, {226, 3476, 1}, {388, 3476, 226}, {519, 18421, 16236}, {952, 59372, 66700}, {1319, 11237, 5219}, {1319, 5219, 25055}, {1697, 7354, 64005}, {3057, 9579, 9589}, {3057, 9657, 9579}, {3085, 4311, 7987}, {3340, 10944, 3633}, {3632, 4355, 65}, {3649, 37738, 64964}, {4293, 31397, 165}, {4317, 10039, 15803}, {5123, 40726, 31190}, {5219, 51789, 11237}, {5252, 5434, 57}, {5731, 13405, 53054}, {5919, 12943, 9580}, {9654, 24928, 8227}, {9655, 9957, 41869}, {10039, 15803, 9588}, {10404, 10944, 3340}, {10590, 44675, 7988}, {10980, 37712, 18391}, {20076, 24987, 62824}, {66672, 66674, 66673}
X(66687) lies on these lines: {1, 3}, {6, 54318}, {8, 37153}, {10, 4035}, {30, 50307}, {37, 758}, {38, 24473}, {42, 3753}, {72, 756}, {210, 56191}, {226, 37715}, {244, 64664}, {386, 3812}, {387, 28629}, {392, 3720}, {394, 19860}, {405, 54421}, {495, 20256}, {515, 3664}, {518, 30116}, {519, 3696}, {551, 6682}, {581, 7686}, {595, 51715}, {750, 5440}, {956, 62819}, {975, 12635}, {995, 3742}, {997, 37674}, {1046, 31445}, {1100, 20227}, {1104, 30143}, {1125, 37646}, {1149, 17450}, {1191, 64675}, {1193, 5439}, {1279, 62828}, {1386, 30117}, {1441, 3945}, {1707, 16418}, {1737, 5718}, {1738, 48847}, {1770, 64158}, {1834, 12609}, {1870, 1880}, {1882, 56814}, {2292, 4018}, {2295, 3991}, {2647, 64055}, {2654, 12711}, {3214, 4002}, {3241, 3896}, {3293, 3698}, {3486, 4340}, {3488, 4307}, {3555, 10459}, {3616, 63078}, {3636, 45219}, {3671, 6354}, {3683, 49500}, {3743, 4084}, {3751, 9708}, {3752, 5883}, {3754, 4646}, {3782, 11551}, {3833, 16602}, {3868, 7226}, {3869, 6051}, {3877, 29814}, {3880, 58583}, {3914, 64167}, {3916, 10448}, {3918, 21896}, {3919, 4868}, {3920, 63159}, {3921, 21805}, {3922, 3987}, {3940, 5268}, {4004, 4642}, {4135, 63800}, {4138, 16052}, {4162, 28319}, {4245, 20967}, {4296, 17097}, {4310, 48819}, {4344, 15933}, {4349, 28850}, {4457, 59302}, {4511, 37633}, {4640, 4653}, {4641, 5251}, {4649, 60353}, {4666, 16483}, {4667, 25371}, {4682, 30115}, {4719, 24046}, {4731, 21870}, {4757, 58380}, {4795, 48833}, {5086, 26131}, {5249, 64172}, {5292, 28628}, {5295, 49598}, {5311, 49454}, {5313, 16610}, {5692, 44307}, {5712, 5725}, {5717, 6738}, {5719, 66632}, {5722, 26098}, {5724, 37631}, {5880, 48837}, {6147, 13161}, {7743, 24217}, {10108, 50631}, {10572, 49745}, {11108, 54386}, {11113, 41011}, {12563, 34937}, {15569, 44663}, {15935, 29365}, {16466, 54392}, {16485, 62842}, {16589, 21874}, {16605, 20970}, {16666, 50014}, {16824, 56018}, {17011, 54315}, {17016, 17518}, {17018, 64175}, {17061, 26728}, {17606, 37693}, {17722, 53619}, {17750, 25066}, {18527, 33106}, {18541, 66672}, {21331, 36409}, {24210, 39542}, {24231, 66675}, {28194, 63977}, {28204, 48825}, {28534, 48841}, {28537, 66287}, {29817, 62848}, {30142, 62860}, {30818, 49999}, {31138, 48808}, {31197, 49992}, {34032, 66693}, {34231, 40149}, {34772, 63333}, {34790, 59311}, {37703, 50745}, {37730, 49743}, {39595, 64110}, {39779, 52024}, {40091, 42819}, {41575, 63360}, {41825, 59387}, {42042, 64176}, {42053, 51071}, {43065, 63066}, {46922, 49755}, {48858, 49470}, {49479, 64545}, {49487, 62821}, {50594, 58493}, {50604, 52541}, {50627, 65460}, {50637, 58609}, {56288, 64415}, {60724, 65695}, {62831, 64047}, {62841, 64166}
X(66687) = X(i)-isoconjugate-of-X(j) for these {i, j}: {284, 62919}
X(66687) = X(i)-Dao conjugate of X(j) for these {i, j}: {40590, 62919}
X(66687) = pole of line {513, 48288} with respect to the incircle
X(66687) = pole of line {7655, 44429} with respect to the orthoptic circle of the Steiner Inellipse
X(66687) = pole of line {513, 48288} with respect to the DeLongchamps ellipse
X(66687) = pole of line {3822, 5257} with respect to the Kiepert hyperbola
X(66687) = pole of line {905, 4379} with respect to the Steiner inellipse
X(66687) = pole of line {513, 47683} with respect to the Suppa-Cucoanes circle
X(66687) = pole of line {226, 4364} with respect to the dual conic of Yff parabola
X(66687) = pole of line {4957, 62221} with respect to the dual conic of Wallace hyperbola
X(66687) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(19765)}}, {{A, B, C, X(10), X(3340)}}, {{A, B, C, X(37), X(2099)}}, {{A, B, C, X(56), X(28658)}}, {{A, B, C, X(57), X(53114)}}, {{A, B, C, X(72), X(54320)}}, {{A, B, C, X(1063), X(64348)}}, {{A, B, C, X(1243), X(35612)}}, {{A, B, C, X(1389), X(37548)}}, {{A, B, C, X(2298), X(24929)}}, {{A, B, C, X(3577), X(37553)}}, {{A, B, C, X(3931), X(17097)}}, {{A, B, C, X(4674), X(18421)}}, {{A, B, C, X(56174), X(64963)}}, {{A, B, C, X(56221), X(64964)}}
X(66687) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5711, 5266}, {1, 5902, 3666}, {1, 65, 3931}, {3488, 4307, 66639}, {3488, 66639, 66689}, {3754, 59301, 4646}, {3918, 50587, 21896}, {4731, 21870, 31855}, {5712, 18391, 5725}, {30143, 62805, 1104}, {50604, 58565, 52541}
X(66688) lies on these lines: {1, 256}, {9, 44500}, {37, 5052}, {39, 1100}, {538, 48824}, {726, 3635}, {1449, 64713}, {3094, 16884}, {3879, 14994}, {3934, 4851}, {4260, 18170}, {4339, 11257}, {4854, 22711}, {4883, 49563}, {5145, 14839}, {5188, 37592}, {6351, 22723}, {6352, 22722}, {9466, 50125}, {13330, 16777}, {13331, 62212}, {13334, 37552}, {15819, 24239}, {17231, 31239}, {17311, 40332}, {17390, 24256}, {17760, 41622}, {21163, 37589}, {24212, 48934}, {49477, 50596}, {50600, 64170}, {66639, 66684}
X(66688) = midpoint of X(i) and X(j) for these {i,j}: {1, 66638}
X(66688) = reflection of X(i) in X(j) for these {i,j}: {66696, 1}
X(66688) = pole of line {24782, 31207} with respect to the Steiner inellipse
X(66688) = pole of line {30097, 48631} with respect to the dual conic of Yff parabola
X(66688) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 50635, 31394}, {1, 511, 66696}, {1, 66638, 511}
X(66689) lies on these lines: {1, 382}, {30, 24231}, {517, 66643}, {535, 4864}, {950, 5266}, {1647, 35271}, {3011, 12690}, {3488, 4307}, {3534, 18193}, {3999, 4316}, {4162, 4170}, {4304, 37599}, {4356, 28845}, {4689, 54342}, {5121, 9945}, {5122, 53619}, {5722, 37589}, {7292, 9963}, {11529, 66676}, {15935, 50307}, {17717, 24929}, {24695, 36867}, {28154, 32857}
X(66689) = pole of line {4777, 49462} with respect to the incircle
X(66689) = pole of line {5902, 17719} with respect to the Feuerbach hyperbola
X(66689) = pole of line {4777, 6161} with respect to the Suppa-Cucoanes circle
X(66689) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3488, 66639, 66687}
X(66690) lies on these lines: {1, 256}, {2, 56312}, {5, 24230}, {9, 39}, {10, 75}, {35, 983}, {37, 3094}, {38, 3705}, {44, 13331}, {194, 17257}, {226, 262}, {238, 993}, {386, 51902}, {518, 4443}, {538, 48818}, {698, 4364}, {730, 50295}, {732, 4643}, {1100, 13330}, {1449, 5052}, {1463, 37596}, {1743, 64713}, {1757, 17795}, {2275, 56533}, {2276, 3508}, {2292, 17247}, {2782, 66678}, {3095, 37592}, {3097, 16569}, {3616, 22172}, {3666, 12837}, {3670, 7951}, {3751, 24575}, {3764, 32922}, {3778, 24349}, {3864, 41531}, {3883, 7976}, {3934, 17306}, {3976, 5542}, {4283, 32935}, {4310, 26125}, {4356, 66674}, {4415, 20545}, {4416, 32451}, {4424, 7235}, {4446, 49483}, {4476, 31008}, {4657, 24256}, {4735, 28582}, {4941, 37598}, {5188, 37552}, {5266, 9821}, {5969, 41312}, {6211, 17596}, {7174, 14839}, {7295, 23850}, {7757, 50093}, {7786, 17353}, {8965, 12840}, {9363, 10571}, {10007, 17279}, {11171, 37599}, {13077, 50065}, {14994, 17272}, {16667, 44500}, {16777, 44453}, {17065, 24325}, {17155, 20966}, {17244, 22220}, {17248, 45197}, {17321, 18906}, {17332, 32449}, {17368, 28288}, {17384, 40332}, {17749, 24530}, {18170, 37516}, {19804, 21936}, {20284, 52651}, {22008, 33087}, {22712, 66632}, {24174, 24199}, {24212, 48888}, {24443, 25024}, {24456, 50290}, {24463, 50314}, {24464, 32857}, {25928, 56311}, {26029, 27549}, {28402, 59305}, {32453, 49516}, {32515, 66675}, {36405, 62331}, {37597, 49692}, {45804, 49612}, {49477, 50592}, {49613, 56949}, {50591, 64170}, {53425, 53476}, {66672, 66685}
X(66690) = reflection of X(i) in X(j) for these {i,j}: {1, 66696}, {66638, 1}
X(66690) = perspector of circumconic {{A, B, C, X(1978), X(35009)}}
X(66690) = pole of line {512, 23815} with respect to the incircle
X(66690) = pole of line {28470, 65848} with respect to the Spieker circle
X(66690) = pole of line {23657, 45902} with respect to the Brocard inellipse
X(66690) = pole of line {3666, 50616} with respect to the Feuerbach hyperbola
X(66690) = pole of line {3835, 24782} with respect to the Steiner inellipse
X(66690) = pole of line {512, 24719} with respect to the Suppa-Cucoanes circle
X(66690) = pole of line {3287, 17458} with respect to the Hofstadter ellipse
X(66690) = pole of line {75, 7146} with respect to the dual conic of Yff parabola
X(66690) = pole of line {2, 3250} with respect to the dual conic of Gheorghe circle
X(66690) = intersection, other than A, B, C, of circumconics {{A, B, C, X(75), X(1431)}}, {{A, B, C, X(76), X(1432)}}, {{A, B, C, X(256), X(262)}}, {{A, B, C, X(2319), X(50635)}}, {{A, B, C, X(3718), X(7015)}}, {{A, B, C, X(3865), X(15315)}}
X(66690) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 256, 50616}, {1, 511, 66638}, {984, 41886, 10}, {31394, 50615, 1}
X(66691) lies on these lines: {1, 381}, {2, 66672}, {4, 37552}, {5, 988}, {9, 115}, {10, 56084}, {612, 17577}, {614, 37375}, {986, 7989}, {1072, 6968}, {1449, 5475}, {1479, 50745}, {1596, 10523}, {1698, 16052}, {1699, 37716}, {1785, 6623}, {3091, 13161}, {3247, 18424}, {3545, 24239}, {3583, 3749}, {3586, 17719}, {3614, 50065}, {3830, 37589}, {3839, 48827}, {3843, 5266}, {3845, 66639}, {3851, 37592}, {3879, 32827}, {3912, 16041}, {3944, 5587}, {4193, 11512}, {4339, 50689}, {5046, 29681}, {5055, 37599}, {5066, 66675}, {5187, 23536}, {5268, 17532}, {5272, 17556}, {5309, 16670}, {5726, 66674}, {5928, 9612}, {6919, 24178}, {7081, 48807}, {7951, 17594}, {7988, 37617}, {8068, 15760}, {8069, 18535}, {9581, 53619}, {10175, 24248}, {10590, 24210}, {15484, 16667}, {17023, 32983}, {17272, 64093}, {17284, 33184}, {17596, 54447}, {18534, 59334}, {20112, 41312}, {21935, 54386}, {22682, 66638}, {23046, 48824}, {29573, 37350}, {29596, 33223}, {29598, 66415}, {31434, 33095}, {37346, 54287}, {38071, 48819}, {48820, 61957}, {61261, 63997}, {64168, 64303}, {66466, 66637}
X(66692) lies on these lines: {1, 376}, {2, 66672}, {3, 13161}, {20, 988}, {21, 24178}, {30, 24239}, {35, 50745}, {36, 4221}, {99, 4357}, {378, 1785}, {452, 11512}, {515, 17596}, {516, 37617}, {548, 5266}, {550, 37592}, {950, 53619}, {982, 4304}, {986, 4297}, {993, 1738}, {1003, 17023}, {1072, 6950}, {1104, 59477}, {1125, 4234}, {1285, 16667}, {1838, 4227}, {3011, 17549}, {3058, 53618}, {3488, 18193}, {3522, 37552}, {3534, 66639}, {3537, 10629}, {3576, 24248}, {3666, 15326}, {3782, 37600}, {3879, 14907}, {3912, 8356}, {3920, 36004}, {3944, 10165}, {3946, 5429}, {3976, 4314}, {4189, 23536}, {4229, 37607}, {4292, 7415}, {4293, 17594}, {4298, 37573}, {4311, 37598}, {4315, 66674}, {4339, 50693}, {4416, 31859}, {4424, 21578}, {4643, 8716}, {4689, 5434}, {4719, 64159}, {4862, 53054}, {4881, 33100}, {5121, 11113}, {5122, 37715}, {5204, 50065}, {5255, 12512}, {5267, 17512}, {5272, 11111}, {5393, 35948}, {5405, 35949}, {5493, 66650}, {5530, 7354}, {5988, 33813}, {7191, 37299}, {7292, 15677}, {7952, 60765}, {8071, 21312}, {8703, 37589}, {10164, 37716}, {10304, 48818}, {12575, 60374}, {13462, 66673}, {13624, 63997}, {14039, 29598}, {14636, 50175}, {14792, 35921}, {15688, 48819}, {15689, 48824}, {16020, 50742}, {16777, 44541}, {17102, 44241}, {17272, 32817}, {17276, 56177}, {17579, 29639}, {17601, 31397}, {17678, 50752}, {18533, 56814}, {21620, 37574}, {22676, 66638}, {24231, 24929}, {26626, 35927}, {28150, 33106}, {28164, 37717}, {29574, 35955}, {29826, 50061}, {30282, 33144}, {32636, 64158}, {32857, 64110}, {33095, 44675}, {34606, 38471}, {35931, 53589}, {35932, 53588}, {35935, 40940}, {37331, 37575}, {41312, 66616}, {46943, 50836}, {46974, 66718}, {48820, 62098}, {48827, 62120}, {54052, 64741}, {59420, 63969}, {64168, 64301}, {66637, 66699}
X(66692) = reflection of X(i) in X(j) for these {i,j}: {24239, 37599}
X(66692) = pole of line {4654, 41629} with respect to the dual conic of Yff parabola
X(66692) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 37599, 24239}, {8703, 66675, 37589}
X(66693) lies on these lines: {1, 84}, {9, 1409}, {31, 1420}, {34, 1831}, {40, 73}, {57, 959}, {65, 223}, {77, 3869}, {109, 3601}, {145, 40862}, {207, 3194}, {227, 2093}, {278, 3671}, {581, 17831}, {603, 3576}, {608, 1449}, {651, 19860}, {1103, 31788}, {1214, 12526}, {1419, 2263}, {1425, 40212}, {1453, 64020}, {1457, 3333}, {1464, 37550}, {1465, 3339}, {1467, 16466}, {1697, 4300}, {1706, 4551}, {1771, 52026}, {2099, 34039}, {2293, 37556}, {2654, 11372}, {2910, 5693}, {3057, 10964}, {3485, 34050}, {3486, 66660}, {3562, 64150}, {3624, 43043}, {3931, 43058}, {4292, 56821}, {4295, 5930}, {4307, 10106}, {4318, 11520}, {4332, 64964}, {4339, 63987}, {4347, 12559}, {4348, 49454}, {5193, 15839}, {5219, 34030}, {5399, 49163}, {6357, 63310}, {6765, 60689}, {7070, 12520}, {7078, 30503}, {7273, 56848}, {7290, 34489}, {8270, 11523}, {9370, 9623}, {9575, 52635}, {9579, 56819}, {9581, 34029}, {9612, 51421}, {11518, 34036}, {12565, 66249}, {15832, 44663}, {17074, 19861}, {20986, 47380}, {22350, 37560}, {23070, 61146}, {24806, 57279}, {30456, 54424}, {31435, 37523}, {34032, 66687}, {34048, 64673}, {34586, 37534}, {37618, 58738}, {41344, 63992}, {42448, 45963}, {51766, 59310}, {53537, 64349}, {54290, 54320}, {54427, 59336}, {64021, 64347}
X(66693) = X(i)-Ceva conjugate of X(j) for these {i, j}: {969, 57}
X(66693) = intersection, other than A, B, C, of circumconics {{A, B, C, X(40), X(1012)}}, {{A, B, C, X(84), X(959)}}, {{A, B, C, X(2192), X(2258)}}
X(66693) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2956, 1012}, {1, 34043, 1394}, {1042, 54421, 57}, {1419, 3340, 21147}, {2263, 2650, 3340}
X(66694) lies on these lines: {1, 3}, {2, 3902}, {8, 6051}, {37, 519}, {42, 392}, {145, 13736}, {227, 64160}, {321, 50122}, {386, 58679}, {390, 66639}, {495, 24210}, {496, 5530}, {497, 5725}, {515, 63977}, {551, 3752}, {581, 45776}, {758, 49478}, {941, 1000}, {956, 968}, {962, 41825}, {975, 3913}, {995, 10179}, {1056, 64168}, {1100, 5042}, {1125, 4646}, {1149, 46904}, {1320, 25060}, {1334, 39247}, {1386, 40091}, {1500, 25066}, {1575, 48822}, {1621, 17015}, {2177, 5440}, {2276, 48830}, {2292, 3555}, {3175, 4692}, {3241, 28606}, {3244, 3743}, {3290, 48854}, {3293, 25917}, {3626, 27784}, {3632, 27785}, {3634, 21896}, {3636, 52541}, {3664, 28194}, {3669, 28319}, {3672, 48819}, {3679, 44307}, {3693, 9331}, {3720, 3753}, {3877, 17018}, {3880, 15569}, {3884, 59301}, {3890, 19767}, {3892, 21342}, {3895, 5287}, {3921, 49984}, {3938, 56219}, {3991, 36479}, {4301, 15852}, {4356, 28850}, {4359, 50083}, {4428, 37817}, {4641, 16474}, {4642, 5439}, {4657, 48803}, {4662, 50575}, {4695, 30950}, {4702, 48863}, {4723, 31035}, {4737, 41839}, {4793, 31238}, {4849, 10176}, {4850, 38314}, {4861, 64415}, {4975, 30818}, {5044, 50581}, {5256, 16483}, {5712, 30305}, {5717, 12575}, {5718, 30384}, {5774, 39594}, {7743, 17717}, {8616, 64166}, {10056, 17720}, {10578, 60751}, {10914, 59305}, {12047, 17775}, {12513, 62871}, {14547, 66226}, {14563, 25065}, {16484, 60353}, {16583, 36480}, {16610, 25055}, {17011, 62848}, {17022, 63137}, {17279, 48831}, {17320, 49779}, {17395, 49777}, {17450, 64664}, {17461, 44663}, {17602, 50745}, {18527, 37717}, {19883, 31197}, {21620, 50197}, {24473, 62867}, {25092, 40133}, {26102, 64176}, {26242, 48856}, {28174, 50307}, {28198, 48825}, {29365, 66675}, {29817, 54315}, {30117, 42819}, {31397, 37715}, {31855, 61686}, {32943, 60684}, {33771, 59691}, {36409, 52964}, {37633, 63136}, {37674, 54286}, {39543, 45955}, {45219, 50604}, {45287, 64158}, {48847, 64109}, {48853, 52959}, {49487, 62849}, {49523, 59717}, {50580, 58497}, {59586, 64178}
X(66694) = reflection of X(i) in X(j) for these {i,j}: {30116, 15569}
X(66694) = pole of line {513, 48291} with respect to the incircle
X(66694) = pole of line {513, 48291} with respect to the DeLongchamps ellipse
X(66694) = pole of line {905, 4893} with respect to the Steiner inellipse
X(66694) = pole of line {650, 58298} with respect to the Hofstadter ellipse
X(66694) = pole of line {226, 34824} with respect to the dual conic of Yff parabola
X(66694) = intersection, other than A, B, C, of circumconics {{A, B, C, X(56), X(39974)}}, {{A, B, C, X(57), X(42285)}}, {{A, B, C, X(940), X(1000)}}, {{A, B, C, X(941), X(999)}}, {{A, B, C, X(5711), X(7320)}}, {{A, B, C, X(13606), X(37559)}}
X(66694) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1697, 5711}, {1, 3295, 5266}, {1, 4424, 354}, {1, 5119, 940}, {1, 5902, 4883}, {1, 982, 5049}, {1, 986, 5045}, {1, 988, 7373}, {551, 4868, 3752}, {3880, 15569, 30116}
X(66695) lies on these lines: {1, 538}, {2, 21024}, {8, 50158}, {30, 50263}, {145, 50278}, {519, 49717}, {524, 3241}, {543, 49744}, {551, 50160}, {698, 7985}, {940, 8716}, {1003, 63099}, {1655, 24522}, {3679, 50174}, {4677, 50271}, {5969, 17319}, {7757, 24512}, {8667, 19765}, {23903, 33228}, {25055, 50163}, {27804, 35101}, {29573, 50173}, {29574, 50178}, {37631, 50170}, {38314, 50155}, {48856, 50265}, {49724, 50129}, {50185, 52229}, {50259, 51071}, {63941, 64158}
X(66695) = midpoint of X(i) and X(j) for these {i,j}: {145, 50278}, {3241, 50184}
X(66695) = reflection of X(i) in X(j) for these {i,j}: {8, 50158}, {3679, 50174}, {4677, 50271}, {4754, 49749}, {49717, 50179}, {49749, 1}, {50155, 50180}, {50160, 551}, {50259, 51071}
X(66695) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 538, 49749}, {519, 50179, 49717}, {538, 49749, 4754}, {3241, 50184, 524}, {38314, 50155, 50180}
X(66696) lies on these lines: {1, 256}, {5, 24212}, {9, 64713}, {10, 28358}, {37, 39}, {45, 13331}, {76, 17321}, {344, 7786}, {386, 64170}, {518, 15953}, {538, 41312}, {595, 8424}, {730, 50290}, {732, 4364}, {986, 31395}, {988, 13334}, {1001, 5145}, {1100, 5052}, {1193, 60723}, {1449, 44500}, {1573, 18904}, {2025, 36405}, {2092, 32921}, {2782, 66675}, {3094, 16777}, {3097, 25502}, {3666, 5432}, {3931, 4021}, {3934, 4657}, {4078, 46827}, {4261, 49453}, {4263, 49477}, {4357, 14994}, {4443, 9052}, {5188, 5266}, {5711, 64827}, {6051, 17760}, {6248, 13161}, {6683, 17279}, {7241, 24923}, {9466, 41311}, {10007, 17243}, {12837, 17599}, {13330, 16884}, {14839, 19258}, {16825, 21796}, {17045, 24256}, {17257, 32451}, {17384, 31239}, {17448, 34379}, {21163, 37599}, {21803, 28288}, {22475, 64110}, {22676, 66680}, {24231, 37596}, {24357, 64870}, {28606, 29634}, {33890, 62831}, {41313, 44562}, {50595, 51902}, {56800, 64007}
X(66696) = midpoint of X(i) and X(j) for these {i,j}: {1, 66690}
X(66696) = reflection of X(i) in X(j) for these {i,j}: {66688, 1}
X(66696) = perspector of circumconic {{A, B, C, X(8050), X(37137)}}
X(66696) = pole of line {28470, 45902} with respect to the Gallatly circle
X(66696) = pole of line {512, 24719} with respect to the incircle
X(66696) = pole of line {649, 24782} with respect to the Steiner inellipse
X(66696) = pole of line {141, 16603} with respect to the dual conic of Yff parabola
X(66696) = intersection, other than A, B, C, of circumconics {{A, B, C, X(596), X(1432)}}, {{A, B, C, X(1431), X(39798)}}, {{A, B, C, X(50629), X(52133)}}
X(66696) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 511, 66688}, {1, 6210, 50629}, {1, 66690, 511}
X(66697) lies on these lines: {2, 39126}, {7, 536}, {65, 537}, {85, 4740}, {241, 4664}, {519, 8581}, {524, 60952}, {545, 60932}, {553, 3175}, {651, 50124}, {1448, 50072}, {3058, 17635}, {4298, 50122}, {4327, 48805}, {4440, 32007}, {4654, 42051}, {4681, 17092}, {4912, 60951}, {5228, 50127}, {5434, 28580}, {6180, 16834}, {7263, 41857}, {16833, 60937}, {17262, 60938}, {17320, 40892}, {28333, 60936}, {29600, 60992}, {35652, 65384}, {40862, 46922}, {41801, 50125}, {44664, 60984}, {50079, 63152}, {60963, 64780}
X(66698) lies on these lines: {1, 971}, {37, 5542}, {40, 7274}, {241, 59372}, {354, 1736}, {495, 1738}, {726, 3991}, {942, 984}, {954, 4327}, {1056, 64168}, {1212, 5850}, {1418, 43180}, {1721, 3295}, {3333, 3731}, {3487, 4310}, {3663, 3931}, {3694, 49483}, {3720, 10569}, {5228, 15298}, {6051, 11037}, {8965, 30342}, {10980, 44307}, {16484, 24928}, {21342, 58626}, {22475, 64110}, {24231, 37597}, {25072, 64124}, {26102, 58577}, {30329, 49515}, {31569, 38487}, {49675, 50194}, {63977, 66230}
X(66698) = pole of line {3900, 4978} with respect to the incircle
X(66698) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 64134, 63972}
X(66699) lies on these lines: {2, 187}, {3, 9770}, {4, 7610}, {20, 543}, {30, 7620}, {69, 8598}, {99, 11160}, {147, 19911}, {148, 52943}, {193, 66703}, {315, 25486}, {376, 524}, {439, 7870}, {538, 22676}, {550, 63950}, {591, 26616}, {597, 1285}, {631, 9771}, {671, 37667}, {754, 7618}, {1003, 21356}, {1991, 26615}, {1992, 35955}, {2482, 37668}, {2794, 9877}, {3053, 33190}, {3091, 34506}, {3522, 34511}, {3523, 7775}, {3524, 11184}, {3528, 63938}, {3529, 34505}, {3534, 52229}, {3543, 7615}, {3545, 15597}, {3785, 17128}, {3830, 16509}, {3839, 7617}, {3926, 9939}, {5028, 5032}, {5059, 7780}, {5077, 7735}, {5206, 9167}, {5210, 22110}, {5286, 7833}, {5485, 8667}, {5860, 13798}, {5861, 13678}, {6200, 66438}, {6781, 15589}, {7619, 15708}, {7622, 15692}, {7750, 32985}, {7757, 63027}, {7758, 62097}, {7759, 21734}, {7764, 62067}, {7781, 62110}, {7784, 33197}, {7790, 61304}, {7793, 33192}, {7802, 9166}, {7811, 35927}, {7812, 31400}, {7827, 33023}, {7841, 63107}, {7843, 61820}, {7873, 33205}, {7883, 32973}, {7917, 51579}, {8352, 23055}, {8353, 63034}, {8354, 63006}, {8356, 40825}, {8588, 63098}, {8591, 63046}, {8597, 17008}, {8703, 11165}, {8859, 33017}, {9766, 19708}, {9774, 36998}, {9830, 9862}, {9855, 32815}, {10303, 63931}, {10513, 32456}, {10519, 66170}, {11148, 15697}, {11159, 42850}, {11163, 47061}, {11164, 37671}, {11167, 54856}, {11180, 11676}, {11287, 19661}, {11317, 34229}, {13168, 52484}, {13468, 15682}, {13608, 31729}, {14023, 34504}, {14039, 21358}, {14482, 20583}, {14853, 57633}, {15533, 32817}, {15640, 18546}, {15655, 37690}, {15683, 32479}, {15686, 63954}, {15688, 63940}, {15690, 51122}, {15693, 63647}, {15695, 51123}, {15705, 63943}, {16508, 40278}, {17538, 63928}, {17578, 47617}, {21735, 63932}, {22329, 43448}, {31407, 33004}, {31859, 63064}, {32480, 33207}, {32816, 33274}, {32824, 33268}, {32825, 33276}, {32826, 66398}, {32828, 66419}, {32836, 33265}, {32837, 41136}, {32965, 34604}, {33008, 63028}, {33025, 35007}, {33193, 46951}, {33215, 63101}, {33216, 41133}, {37350, 62992}, {41312, 66680}, {41895, 62892}, {44245, 63936}, {44367, 66458}, {49140, 63924}, {53143, 62153}, {53144, 62037}, {54170, 54996}, {54993, 64014}, {59546, 62084}, {62048, 63957}, {62056, 63947}, {62086, 63944}, {62095, 63939}, {62109, 63654}, {62115, 63951}, {62121, 63926}, {62124, 63953}, {62127, 63933}, {62129, 63952}, {62138, 63651}, {62147, 63923}, {66637, 66692}
X(66699) = midpoint of X(i) and X(j) for these {i,j}: {20, 9740}, {5485, 11001}, {8182, 47102}
X(66699) = reflection of X(i) in X(j) for these {i,j}: {2, 8182}, {4, 7610}, {147, 19911}, {3543, 7615}, {3830, 16509}, {5485, 8667}, {7620, 63029}, {8176, 46893}, {8182, 47101}, {9741, 66616}, {9770, 3}, {11165, 8703}, {15682, 66587}, {23334, 2}, {44678, 8176}, {53142, 376}, {63956, 1153}, {66466, 5569}, {66587, 13468}
X(66699) = anticomplement of X(66466)
X(66699) = X(i)-Dao conjugate of X(j) for these {i, j}: {66466, 66466}
X(66699) = pole of line {8704, 59982} with respect to the orthoptic circle of the Steiner Inellipse
X(66699) = pole of line {574, 35259} with respect to the Stammler hyperbola
X(66699) = pole of line {599, 32815} with respect to the Wallace hyperbola
X(66699) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {20, 9740, 38940}, {9862, 14654, 37748}
X(66699) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(32827), X(36882)}}, {{A, B, C, X(54856), X(64973)}}, {{A, B, C, X(60150), X(61345)}}
X(66699) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3849, 23334}, {3, 63945, 9770}, {20, 9740, 543}, {30, 63029, 7620}, {376, 50974, 63424}, {376, 524, 53142}, {376, 9741, 66616}, {524, 66616, 9741}, {1153, 3849, 63956}, {3545, 55823, 15597}, {3849, 46893, 8176}, {3849, 47101, 8182}, {3849, 5569, 66466}, {3849, 8176, 44678}, {8182, 47102, 3849}, {8182, 66466, 5569}, {14907, 51224, 2}
X(66700) lies on these lines: {1, 631}, {40, 15174}, {65, 31805}, {79, 3577}, {145, 4900}, {226, 61254}, {354, 51093}, {516, 18421}, {517, 41861}, {519, 11038}, {942, 61291}, {952, 11529}, {999, 61285}, {1159, 4312}, {1210, 61274}, {1698, 36922}, {3241, 64112}, {3244, 18221}, {3333, 61287}, {3338, 7966}, {3339, 5731}, {3340, 12701}, {3475, 4677}, {3485, 61264}, {3624, 64734}, {3632, 40587}, {3633, 11518}, {3679, 17718}, {3899, 61663}, {4668, 63274}, {4816, 15888}, {5290, 37712}, {5563, 64735}, {5586, 64324}, {5727, 61716}, {5903, 12710}, {6147, 61247}, {6738, 51785}, {7972, 11034}, {7988, 18391}, {8236, 9819}, {9589, 64963}, {11522, 45035}, {12645, 41870}, {15933, 21153}, {17728, 51105}, {18398, 39779}, {25055, 61649}, {25681, 64263}, {28913, 66673}, {30286, 64110}, {34747, 66228}, {37714, 64313}, {37724, 64005}, {44840, 64736}, {50194, 61275}, {51767, 51816}, {51784, 59503}, {53054, 64108}, {61271, 64160}, {61283, 61762}
X(66700) = reflection of X(i) in X(j) for these {i,j}: {9819, 8236}, {51767, 66641}, {59372, 11529}, {66686, 59372}
X(66700) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 11041, 16236}, {1, 16236, 8275}, {952, 11529, 59372}, {952, 59372, 66686}, {11041, 14563, 1}, {11525, 36867, 3633}, {36922, 64732, 1698}
X(66701) lies on these lines: {2, 44}, {69, 41138}, {144, 545}, {145, 66702}, {190, 31145}, {346, 50074}, {390, 519}, {391, 17116}, {752, 5686}, {903, 24599}, {1992, 3242}, {3672, 17121}, {4346, 41140}, {4370, 29616}, {4461, 50082}, {4488, 50099}, {5232, 50115}, {7290, 38314}, {16833, 36588}, {17014, 24441}, {17274, 37681}, {17281, 63001}, {17310, 62706}, {19875, 50307}, {20049, 62231}, {20073, 40891}, {24452, 24695}, {28333, 59375}, {50101, 62985}, {50127, 53620}, {54389, 66454}
X(66701) = reflection of X(i) in X(j) for these {i,j}: {36588, 16833}
X(66701) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {17333, 63086, 3672}, {20073, 40891, 66456}
X(66702) lies on circumconic {{A, B, C, X(751), X(40434)}} and on these lines: {2, 3943}, {37, 50088}, {45, 40891}, {145, 66701}, {190, 3241}, {192, 545}, {519, 751}, {536, 36494}, {903, 17316}, {1278, 49738}, {1992, 50790}, {3644, 50116}, {3758, 51071}, {3773, 19875}, {3828, 62228}, {3950, 17342}, {4026, 53620}, {4029, 41140}, {4033, 18146}, {4072, 17400}, {4360, 26685}, {4370, 4393}, {4389, 17310}, {4398, 17313}, {4677, 17256}, {4681, 17333}, {4687, 50099}, {4704, 17330}, {4715, 17389}, {4898, 17258}, {4908, 17354}, {5224, 50087}, {6542, 24441}, {10022, 29570}, {16590, 29617}, {16834, 36911}, {17133, 51488}, {17233, 17306}, {17234, 50101}, {17242, 17382}, {17247, 50081}, {17261, 50131}, {17262, 63052}, {17271, 17314}, {17274, 17315}, {17281, 17319}, {17347, 50090}, {17352, 50112}, {17369, 66457}, {17388, 50074}, {17393, 50115}, {17487, 29588}, {17488, 49742}, {19883, 50100}, {24452, 49452}, {25055, 60688}, {28301, 29574}, {29569, 31139}, {29622, 62682}, {34747, 62231}, {38314, 48810}, {41848, 50095}, {42697, 66456}, {49462, 50286}, {49700, 51093}, {50301, 51059}
X(66702) = midpoint of X(i) and X(j) for these {i,j}: {24452, 49452}
X(66702) = reflection of X(i) in X(j) for these {i,j}: {17488, 49742}, {29617, 16590}, {39704, 29574}, {49722, 39704}, {50088, 66441}, {66441, 37}
X(66702) = pole of line {28209, 47775} with respect to the Steiner circumellipse
X(66702) = pole of line {28209, 47778} with respect to the Steiner inellipse
X(66702) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {192, 50113, 17378}, {4664, 50110, 50121}, {4664, 50121, 17346}, {4681, 50123, 17333}, {17333, 50123, 17377}, {28301, 29574, 39704}, {28301, 39704, 49722}
X(66703) lies on circumconic {{A, B, C, X(39389), X(44557)}} and on these lines: {2, 5355}, {32, 52695}, {76, 8367}, {99, 1285}, {193, 66699}, {194, 543}, {376, 51140}, {385, 5569}, {524, 3094}, {538, 63028}, {574, 44367}, {576, 64090}, {598, 11055}, {620, 62204}, {671, 7774}, {754, 32480}, {1078, 9740}, {2482, 7766}, {3629, 8598}, {3849, 7837}, {3860, 54643}, {3972, 8584}, {5032, 12150}, {5461, 63021}, {5485, 54905}, {5503, 54752}, {5965, 57633}, {7610, 7754}, {7617, 19570}, {7622, 41748}, {7735, 64019}, {7752, 9166}, {7758, 7883}, {7760, 16925}, {7763, 63107}, {7764, 14971}, {7775, 13571}, {7777, 66511}, {7781, 34604}, {7790, 7840}, {7796, 7827}, {7801, 7839}, {7802, 63945}, {7805, 33274}, {7817, 7906}, {7820, 61046}, {7824, 63953}, {7831, 15533}, {7833, 7877}, {7835, 39785}, {7841, 7905}, {7856, 7870}, {7857, 9167}, {7858, 34505}, {7871, 8360}, {7890, 9939}, {7894, 8369}, {7917, 33190}, {7926, 8352}, {8182, 63093}, {8596, 62203}, {9993, 48657}, {11054, 11163}, {11148, 12156}, {11164, 51122}, {11165, 14614}, {11184, 14568}, {11185, 66458}, {12040, 22329}, {14039, 63062}, {14711, 14762}, {14907, 63064}, {15534, 31859}, {19661, 59634}, {19911, 36849}, {19924, 34624}, {20112, 47286}, {20583, 35954}, {31407, 32987}, {32479, 41750}, {32817, 63022}, {32833, 59373}, {32995, 43676}, {41651, 62578}, {47005, 48310}, {50962, 63424}, {53142, 63027}, {55730, 66417}, {55801, 63029}, {59780, 60855}, {63654, 66391}
X(66703) = midpoint of X(i) and X(j) for these {i,j}: {598, 11055}
X(66703) = reflection of X(i) in X(j) for these {i,j}: {76, 63101}, {598, 41624}, {7811, 52691}, {14711, 14762}, {52691, 7757}
X(66703) = pole of line {9123, 9208} with respect to the Steiner circumellipse
X(66703) = pole of line {597, 3734} with respect to the Wallace hyperbola
X(66703) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {524, 7757, 52691}, {598, 11055, 52229}, {7760, 41134, 63065}, {7838, 66419, 7812}, {9166, 9770, 7752}, {11163, 22253, 11054}, {11165, 14614, 26613}, {15534, 31859, 51224}, {34511, 63065, 41134}, {41624, 52229, 598}
X(66704) lies on circumconic {{A, B, C, X(643), X(4017)}} and on these lines: {1, 4017}, {11, 31946}, {33, 54244}, {35, 39210}, {55, 3733}, {513, 4162}, {519, 4404}, {520, 53554}, {521, 663}, {522, 3904}, {656, 2605}, {661, 38469}, {798, 2269}, {832, 48131}, {834, 65697}, {1459, 2254}, {1769, 48302}, {2268, 20981}, {2785, 65099}, {3024, 3025}, {3057, 4132}, {3287, 4171}, {3309, 43924}, {3667, 53528}, {3716, 20293}, {3737, 4041}, {3738, 6615}, {3887, 21173}, {3900, 17418}, {3907, 7253}, {4036, 45686}, {4435, 21127}, {4724, 50519}, {4977, 47704}, {6006, 59968}, {6161, 6363}, {6362, 21106}, {6366, 21119}, {6371, 48150}, {7178, 39540}, {7252, 8611}, {7661, 59980}, {8062, 21052}, {8702, 50349}, {9001, 48340}, {9013, 50332}, {10543, 14284}, {11934, 48021}, {14413, 23800}, {14432, 52355}, {17452, 21834}, {17460, 34194}, {21189, 48294}, {22379, 48390}, {23226, 53306}, {24006, 40950}, {28155, 50767}, {28473, 44409}, {28561, 66640}, {30200, 51646}, {33176, 55244}, {39547, 50457}, {47811, 48297}, {48151, 48281}, {48283, 50354}, {48306, 58369}, {48345, 57155}, {50338, 55969}
X(66704) = reflection of X(i) in X(j) for these {i,j}: {656, 2605}, {1769, 48302}, {2254, 1459}, {4017, 1}, {4041, 3737}, {6615, 48307}, {7178, 39540}, {17420, 663}, {20293, 3716}, {21189, 48294}, {23738, 48342}, {42312, 4162}, {48151, 48281}, {50338, 55969}, {50354, 48283}, {50457, 39547}, {57155, 48345}, {66287, 44409}
X(66704) = perspector of circumconic {{A, B, C, X(1247), X(2339)}}
X(66704) = X(i)-Dao conjugate of X(j) for these {i, j}: {1015, 66633}, {3686, 65161}, {17058, 75}
X(66704) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1, 17476}, {47947, 650}
X(66704) = pole of line {896, 1473} with respect to the circumcircle
X(66704) = pole of line {758, 12548} with respect to the Conway circle
X(66704) = pole of line {758, 3057} with respect to the incircle
X(66704) = pole of line {56, 896} with respect to the mixtilinear incircles radical circle
X(66704) = pole of line {244, 2611} with respect to the Feuerbach hyperbola
X(66704) = pole of line {1635, 36637} with respect to the Kiepert hyperbola
X(66704) = pole of line {5744, 17490} with respect to the Steiner circumellipse
X(66704) = pole of line {145, 758} with respect to the Suppa-Cucoanes circle
X(66704) = pole of line {9, 21} with respect to the Hofstadter ellipse
X(66704) = pole of line {21811, 62706} with respect to the dual conic of incircle
X(66704) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {1, 62316, 63210}, {36, 7972, 45764}
X(66704) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 6003, 4017}, {513, 4162, 42312}, {513, 48342, 23738}, {521, 663, 17420}, {1459, 15313, 2254}, {2605, 8674, 656}, {3737, 35057, 4041}, {3738, 48307, 6615}, {28473, 44409, 66287}
X(66705) lies on these lines: {2, 19136}, {3, 34416}, {4, 83}, {6, 110}, {51, 22151}, {69, 5651}, {115, 62289}, {143, 1351}, {156, 53092}, {184, 18919}, {206, 7693}, {373, 52238}, {381, 5622}, {458, 32713}, {567, 18583}, {575, 1614}, {576, 43811}, {578, 25712}, {597, 5012}, {691, 52471}, {858, 3589}, {1177, 5169}, {1209, 40330}, {1350, 17928}, {1352, 44490}, {1843, 37777}, {1992, 9306}, {1994, 64599}, {2080, 40981}, {2393, 13595}, {2781, 15053}, {2892, 6697}, {3003, 37335}, {3090, 44470}, {3148, 14060}, {3398, 9407}, {3518, 44479}, {3619, 16187}, {3818, 11579}, {4558, 11328}, {5020, 41614}, {5050, 61752}, {5063, 37465}, {5092, 7464}, {5133, 62375}, {5138, 16428}, {5157, 31099}, {5422, 19153}, {5467, 35222}, {5476, 15033}, {5480, 38323}, {5943, 44102}, {5946, 45016}, {6677, 62382}, {6776, 43573}, {7394, 23327}, {7506, 15073}, {7529, 19125}, {7533, 15118}, {8547, 20987}, {8549, 19132}, {8722, 33578}, {9426, 45690}, {9544, 63127}, {9781, 44469}, {9969, 63069}, {9970, 43578}, {9971, 11416}, {10297, 19129}, {10540, 50979}, {10594, 44503}, {11179, 14157}, {11413, 53094}, {11440, 63723}, {11482, 61753}, {11511, 34417}, {11842, 14575}, {13339, 38110}, {13352, 14853}, {13434, 17845}, {13621, 15074}, {14389, 41613}, {14913, 32127}, {15024, 44480}, {15043, 34117}, {15069, 43614}, {15107, 54334}, {15516, 43130}, {16042, 53777}, {16051, 19126}, {16511, 37760}, {19127, 31133}, {20113, 47453}, {20423, 43574}, {20819, 47618}, {21308, 39562}, {21637, 60774}, {21766, 37485}, {21850, 37477}, {23061, 37827}, {23300, 41738}, {25488, 47458}, {26206, 64023}, {29959, 37784}, {31670, 43576}, {32237, 44091}, {32621, 35264}, {32738, 34289}, {34545, 64692}, {37283, 51126}, {37480, 51212}, {37489, 41716}, {38072, 51739}, {41593, 61664}, {41617, 61667}, {41719, 63084}, {43598, 63722}, {43650, 63109}, {44802, 50649}, {47527, 55692}, {51163, 52071}, {51170, 63646}, {52016, 62995}, {52525, 53093}, {56428, 59232}, {58471, 63063}, {63123, 64028}
X(66705) = perspector of circumconic {{A, B, C, X(691), X(42396)}}
X(66705) = pole of line {826, 63250} with respect to the 1st Brocard circle
X(66705) = pole of line {858, 7745} with respect to the Kiepert hyperbola
X(66705) = pole of line {524, 3917} with respect to the Stammler hyperbola
X(66705) = pole of line {3266, 3933} with respect to the Wallace hyperbola
X(66705) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(46154)}}, {{A, B, C, X(83), X(895)}}, {{A, B, C, X(111), X(32085)}}, {{A, B, C, X(598), X(11188)}}, {{A, B, C, X(32581), X(42007)}}
X(66705) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 11188, 895}, {6, 1995, 11188}, {597, 18374, 5012}, {895, 35904, 49125}, {1974, 3618, 1176}, {3589, 56918, 19121}, {5476, 15462, 15033}, {53093, 63663, 52525}
X(66706) lies on these lines: {2, 5477}, {6, 598}, {32, 19911}, {69, 64019}, {98, 50979}, {99, 1285}, {110, 52141}, {114, 50974}, {115, 63127}, {148, 63000}, {182, 55801}, {193, 2482}, {249, 524}, {385, 64943}, {542, 3545}, {543, 5032}, {575, 19905}, {597, 11161}, {618, 51204}, {619, 51201}, {620, 11160}, {1351, 12117}, {1353, 8724}, {1570, 32479}, {1692, 8859}, {3564, 23234}, {3620, 22247}, {3751, 9884}, {5026, 15534}, {5028, 32480}, {5034, 58765}, {5052, 11152}, {5095, 11006}, {5107, 9855}, {5461, 51171}, {5503, 41624}, {6054, 37071}, {6114, 51200}, {6115, 51203}, {7610, 12829}, {7617, 39764}, {7809, 41137}, {7827, 8550}, {7983, 51005}, {8584, 10754}, {8591, 51170}, {8592, 63038}, {8596, 63122}, {8781, 9770}, {9112, 40672}, {9113, 40671}, {9169, 39689}, {9877, 63065}, {9881, 51196}, {10302, 54839}, {10552, 14916}, {10723, 20423}, {10753, 11179}, {11646, 63124}, {11711, 50952}, {12150, 12177}, {12154, 41620}, {12155, 41621}, {13637, 13761}, {13642, 13757}, {14614, 62578}, {14639, 14848}, {14645, 33684}, {14928, 62995}, {15303, 15342}, {19662, 63109}, {20774, 37765}, {22566, 39899}, {32135, 51140}, {33749, 55085}, {33813, 50962}, {36521, 63117}, {38738, 51028}, {38750, 50978}, {40107, 51237}, {43535, 54905}, {47356, 50888}, {49102, 53091}, {50567, 63064}, {50955, 64089}, {50986, 61561}, {51197, 51578}, {52035, 63853}, {54749, 60238}
X(66706) = midpoint of X(i) and X(j) for these {i,j}: {52695, 63027}
X(66706) = reflection of X(i) in X(j) for these {i,j}: {7809, 41137}, {8859, 1692}, {9166, 59373}, {14639, 14848}, {41134, 5182}
X(66706) = pole of line {8352, 14061} with respect to the Kiepert hyperbola
X(66706) = pole of line {3124, 5107} with respect to the Stammler hyperbola
X(66706) = pole of line {115, 8355} with respect to the Wallace hyperbola
X(66706) = intersection, other than A, B, C, of circumconics {{A, B, C, X(249), X(52230)}}, {{A, B, C, X(598), X(63854)}}, {{A, B, C, X(4590), X(18818)}}
X(66706) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 8593, 671}, {6, 8787, 8593}, {524, 5182, 41134}, {542, 59373, 9166}, {597, 64092, 11161}, {671, 8593, 45018}, {1992, 18800, 99}, {8584, 51798, 10754}, {18800, 41672, 1992}, {42062, 42063, 14061}, {52695, 63027, 14645}, {57575, 57576, 26613}, {59378, 59379, 23514}
X(66707) lies on these lines: {2, 216}, {4, 61646}, {76, 66708}, {107, 5133}, {275, 3580}, {340, 343}, {436, 21243}, {458, 26958}, {459, 3618}, {598, 38253}, {648, 23292}, {801, 62382}, {1992, 56346}, {3079, 51537}, {3088, 52578}, {3575, 14860}, {5012, 51939}, {5449, 37127}, {6530, 64852}, {7527, 34170}, {7542, 8884}, {10154, 16264}, {13567, 36794}, {16080, 40393}, {18022, 37804}, {26906, 46724}, {31371, 36965}, {32002, 37638}, {34603, 53027}, {37649, 51358}, {37669, 44134}, {40413, 42330}, {41203, 42400}, {41204, 58447}, {43462, 52253}, {43530, 66710}, {53506, 56022}, {61655, 65177}
X(66707) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(14118)}}, {{A, B, C, X(324), X(42410)}}, {{A, B, C, X(40393), X(46106)}}
X(66707) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 324, 14165}
X(66708) lies on the Kiepert hyperbola and on these lines: {76, 66707}, {3541, 60618}, {3542, 31363}, {5064, 54704}, {7378, 54705}, {7505, 13599}, {13579, 62953}, {37119, 40448}, {37943, 54763}, {52280, 62938}, {54640, 62975}, {60121, 62961}
X(66708) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(7505), X(62953)}}, {{A, B, C, X(18532), X(63154)}}, {{A, B, C, X(26958), X(28408)}}, {{A, B, C, X(37119), X(52280)}}
X(66709) lies on the Kiepert hyperbola and on these lines: {4, 61646}, {69, 60137}, {83, 26958}, {262, 64852}, {275, 37638}, {343, 43530}, {10154, 14458}, {13380, 63667}, {17811, 44877}, {20850, 60132}, {22468, 41899}, {37643, 62896}, {37669, 62952}, {37765, 54710}, {37874, 47296}
X(66709) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 12173}
X(66709) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 12173}
X(66709) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(141), X(26958)}}, {{A, B, C, X(249), X(63154)}}, {{A, B, C, X(343), X(37638)}}, {{A, B, C, X(458), X(64852)}}, {{A, B, C, X(1073), X(30541)}}, {{A, B, C, X(1799), X(41530)}}, {{A, B, C, X(6330), X(56067)}}, {{A, B, C, X(10154), X(11331)}}, {{A, B, C, X(15717), X(32841)}}, {{A, B, C, X(17811), X(47296)}}, {{A, B, C, X(18022), X(34412)}}, {{A, B, C, X(18817), X(57909)}}, {{A, B, C, X(31626), X(63811)}}, {{A, B, C, X(42313), X(61646)}}
X(66710) lies on the Kiepert hyperbola and on these lines: {4, 34796}, {275, 37644}, {343, 60255}, {1994, 56346}, {2986, 45794}, {3580, 13579}, {6639, 60160}, {7578, 11433}, {10201, 54498}, {13567, 62938}, {15018, 62896}, {34545, 62926}, {37669, 56063}, {43530, 66707}, {44555, 54784}, {56015, 62916}, {58805, 60159}, {59771, 60137}, {60193, 63012}, {62951, 63085}
X(66710) = trilinear pole of line {23323, 44929}
X(66710) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 35471}
X(66710) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 35471}
X(66710) = X(i)-cross conjugate of X(j) for these {i, j}: {15761, 264}
X(66710) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(37490)}}, {{A, B, C, X(69), X(18817)}}, {{A, B, C, X(343), X(37644)}}, {{A, B, C, X(1073), X(11559)}}, {{A, B, C, X(3580), X(45794)}}, {{A, B, C, X(18022), X(41896)}}, {{A, B, C, X(31626), X(56071)}}, {{A, B, C, X(37192), X(58805)}}, {{A, B, C, X(44175), X(46111)}}, {{A, B, C, X(44177), X(55553)}}
X(66711) lies on these lines: {2, 3}, {64, 64718}, {74, 41470}, {146, 32063}, {394, 66723}, {511, 66720}, {1092, 40276}, {1181, 63725}, {1498, 41482}, {1531, 11202}, {1853, 11454}, {1993, 66716}, {2781, 12220}, {2979, 66714}, {3060, 66713}, {3100, 66724}, {4296, 66719}, {5012, 66712}, {5925, 12279}, {7592, 11536}, {9019, 48872}, {9812, 51718}, {10313, 44526}, {11412, 66715}, {11416, 43273}, {11417, 42264}, {11418, 42263}, {11420, 42097}, {11421, 42096}, {11440, 64037}, {11441, 34785}, {11449, 59551}, {11636, 34168}, {12111, 17845}, {12163, 12289}, {12219, 54048}, {12293, 40242}, {12383, 58891}, {13398, 13530}, {14689, 14983}, {15033, 40909}, {18392, 18434}, {18400, 41730}, {18405, 23293}, {19121, 48910}, {19127, 59411}, {20477, 35520}, {26913, 37487}, {32110, 61701}, {37493, 43818}, {41869, 51707}, {46850, 54384}, {51538, 51744}, {53953, 53954}, {58789, 61702}, {64025, 64717}
X(66711) = midpoint of X(i) and X(j) for these {i,j}: {11412, 66715}
X(66711) = reflection of X(i) in X(j) for these {i,j}: {22, 20}, {14983, 14689}, {41869, 51707}, {48910, 51739}, {54384, 46850}
X(66711) = anticomplement of X(66725)
X(66711) = X(i)-Dao conjugate of X(j) for these {i, j}: {66725, 66725}
X(66711) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1294), X(35480)}}, {{A, B, C, X(3534), X(39434)}}, {{A, B, C, X(3542), X(13530)}}, {{A, B, C, X(5094), X(34168)}}, {{A, B, C, X(5897), X(35473)}}, {{A, B, C, X(37951), X(53954)}}, {{A, B, C, X(39436), X(47596)}}, {{A, B, C, X(53934), X(56369)}}
X(66711) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 30, 22}
X(66712) lies on these lines: {4, 63658}, {6, 74}, {22, 11425}, {24, 63659}, {25, 63737}, {30, 578}, {54, 35480}, {182, 66718}, {184, 66725}, {389, 18570}, {427, 11424}, {567, 66721}, {569, 13568}, {1192, 43651}, {1593, 32341}, {2929, 15024}, {3541, 46374}, {3567, 37970}, {3575, 44078}, {5012, 66711}, {6676, 13346}, {7502, 11430}, {7576, 63663}, {9306, 66726}, {9786, 13434}, {11402, 66716}, {11422, 66714}, {11423, 66715}, {11426, 43845}, {11427, 44440}, {11429, 66724}, {11801, 18390}, {13352, 15760}, {13366, 66720}, {13403, 44288}, {13567, 52262}, {15004, 44281}, {16657, 45179}, {17702, 18388}, {17809, 66723}, {18376, 66728}, {18533, 64061}, {19127, 29181}, {19365, 66719}, {35921, 37473}, {36753, 52003}, {44285, 63124}, {44547, 51707}
X(66712) = pole of line {11064, 11444} with respect to the Stammler hyperbola
X(66712) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 378, 66713}
X(66713) lies on these lines: {4, 41589}, {6, 74}, {22, 9786}, {24, 63658}, {25, 66716}, {30, 143}, {51, 66720}, {52, 44249}, {54, 37970}, {185, 427}, {376, 37473}, {381, 25711}, {511, 66718}, {546, 58546}, {568, 66721}, {578, 6102}, {973, 6240}, {1112, 61744}, {1154, 11430}, {1192, 44837}, {1503, 51994}, {1595, 41725}, {1994, 53781}, {2807, 51718}, {2929, 43597}, {3060, 66711}, {3088, 6293}, {3567, 35480}, {5640, 66714}, {5663, 18388}, {5889, 11425}, {5892, 47296}, {5907, 64852}, {5943, 66726}, {5946, 7706}, {6000, 58550}, {6676, 9729}, {6746, 21659}, {7502, 11438}, {7542, 63740}, {7576, 63688}, {7577, 15738}, {7592, 44269}, {7687, 11561}, {7722, 61715}, {7723, 61711}, {7729, 34944}, {8584, 14831}, {9019, 19161}, {9730, 13567}, {9781, 66715}, {10151, 63737}, {10575, 46027}, {11432, 66717}, {11433, 44440}, {11436, 66724}, {11702, 12227}, {12006, 46029}, {12111, 31236}, {13366, 44281}, {13382, 64474}, {13413, 45959}, {13491, 44288}, {13754, 23292}, {14216, 14542}, {14457, 14861}, {15012, 58480}, {15032, 52417}, {15045, 26958}, {15053, 16165}, {15072, 52842}, {16657, 52000}, {17810, 66723}, {18400, 66604}, {19366, 66719}, {20791, 37487}, {23047, 63728}, {31728, 51707}, {34146, 51744}, {35371, 66600}, {37481, 39571}, {39588, 63422}, {41670, 62947}, {44226, 63697}, {44831, 61136}, {52070, 63683}, {54034, 54077}
X(66713) = midpoint of X(i) and X(j) for these {i,j}: {52, 44249}, {185, 427}, {6102, 18570}, {13491, 44288}, {14831, 44285}, {31728, 51707}, {66720, 66725}
X(66713) = reflection of X(i) in X(j) for these {i,j}: {5907, 64852}, {6676, 9729}, {45959, 13413}, {46029, 12006}, {58480, 15012}
X(66713) = pole of line {1495, 3575} with respect to the Jerabek hyperbola
X(66713) = pole of line {403, 36412} with respect to the Kiepert hyperbola
X(66713) = pole of line {526, 17434} with respect to the Orthic inconic
X(66713) = pole of line {11064, 13160} with respect to the Stammler hyperbola
X(66713) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {52, 36160, 44249}, {185, 427, 36179}
X(66713) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 378, 66712}, {51, 66720, 66725}, {389, 13403, 143}, {389, 13630, 52003}, {389, 40647, 13568}, {5890, 15033, 1986}, {5946, 18390, 11746}, {31954, 31955, 17835}
X(66714) lies on these lines: {2, 66720}, {3, 66715}, {4, 63660}, {22, 64}, {30, 11412}, {74, 44259}, {110, 378}, {265, 5890}, {427, 11439}, {2781, 12272}, {2979, 66711}, {3060, 66725}, {5012, 66716}, {5640, 66713}, {5889, 12293}, {6000, 11442}, {6241, 32140}, {7391, 11381}, {7502, 11454}, {7722, 61724}, {7998, 66718}, {11422, 66712}, {11441, 66717}, {11443, 66722}, {11444, 44249}, {11446, 66724}, {11449, 15058}, {11451, 66726}, {11455, 31723}, {11459, 66721}, {12162, 35481}, {12307, 44457}, {14915, 44831}, {15072, 15760}, {15078, 15738}, {16261, 39504}, {19122, 51739}, {19367, 66719}, {44239, 50434}, {44837, 52093}, {46029, 66606}, {46850, 66378}, {52262, 66756}, {54384, 64025}
X(66714) = reflection of X(i) in X(j) for these {i,j}: {5889, 35480}, {7391, 11381}, {12279, 22}, {35481, 12162}, {64025, 54384}, {66715, 3}
X(66714) = anticomplement of X(66720)
X(66714) = X(i)-Dao conjugate of X(j) for these {i, j}: {66720, 66720}
X(66714) = pole of line {156, 44242} with respect to the Stammler hyperbola
X(66714) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {12270, 18392, 5890}, {12292, 18451, 15305}, {14516, 18439, 12111}
X(66715) lies on these lines: {3, 66714}, {4, 63661}, {22, 74}, {24, 66723}, {30, 5889}, {54, 66716}, {154, 12292}, {195, 12174}, {378, 1498}, {427, 7699}, {2781, 12283}, {2979, 12121}, {3567, 66725}, {5890, 18396}, {6000, 35481}, {7391, 14915}, {7502, 11468}, {7999, 66718}, {9781, 66713}, {9927, 10575}, {10540, 11464}, {10574, 18394}, {10721, 41715}, {11412, 66711}, {11423, 66712}, {11456, 66717}, {11458, 66722}, {11459, 44249}, {11461, 66724}, {11465, 66726}, {12111, 66721}, {12902, 17854}, {13509, 19220}, {14157, 44269}, {14855, 66378}, {15072, 18392}, {15738, 35472}, {15760, 23294}, {16261, 31236}, {19123, 51739}, {19368, 66719}, {20791, 46029}, {25337, 43607}, {26882, 37970}, {32608, 44457}, {52296, 63728}, {58480, 61136}
X(66715) = reflection of X(i) in X(j) for these {i,j}: {4, 66720}, {11412, 66711}, {12111, 66721}, {12290, 378}, {44440, 10575}, {66714, 3}
X(66715) = pole of line {44242, 61753} with respect to the Stammler hyperbola
X(66715) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6241, 40242, 5889}, {34224, 64030, 6241}
X(66716) lies on these lines: {3, 43689}, {6, 66723}, {22, 185}, {25, 66713}, {30, 1181}, {54, 66715}, {155, 44249}, {184, 378}, {394, 66718}, {427, 1498}, {1204, 44837}, {1614, 44269}, {1899, 14852}, {1993, 66711}, {2781, 12165}, {3534, 43590}, {3541, 40285}, {5012, 66714}, {5073, 19362}, {5422, 13851}, {6467, 37517}, {6676, 26937}, {6776, 37784}, {7502, 10605}, {7592, 21659}, {9707, 37970}, {10601, 66726}, {10602, 66722}, {10938, 44754}, {11402, 66712}, {11441, 13367}, {12082, 54384}, {12174, 32333}, {13403, 35603}, {18396, 44263}, {18445, 66721}, {18451, 52262}, {18570, 19357}, {18913, 66378}, {18925, 35481}, {19125, 51739}, {19347, 66717}, {19349, 66719}, {19354, 66724}, {21637, 32062}, {29012, 52842}, {34117, 44438}, {48669, 55571}
X(66716) = pole of line {7503, 11438} with respect to the Jerabek hyperbola
X(66716) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 66723, 66725}, {184, 66720, 378}
X(66717) lies on these lines: {2, 3}, {6, 18373}, {32, 44528}, {49, 1498}, {52, 3357}, {54, 12279}, {64, 15317}, {74, 3060}, {110, 11455}, {155, 18439}, {182, 14855}, {184, 14915}, {185, 36749}, {195, 13093}, {265, 1853}, {394, 11472}, {399, 3167}, {525, 53330}, {568, 10605}, {569, 46850}, {575, 66758}, {578, 10575}, {999, 9642}, {1147, 11381}, {1181, 37472}, {1204, 5446}, {1350, 41714}, {1351, 2781}, {1511, 35264}, {1899, 64096}, {1968, 22120}, {1993, 5663}, {2936, 6033}, {2979, 43576}, {3098, 29959}, {3295, 66724}, {3581, 33586}, {3796, 14805}, {3917, 4550}, {3964, 18354}, {5012, 64098}, {5050, 51739}, {5563, 9644}, {5621, 54131}, {5866, 32827}, {5890, 13445}, {5891, 37480}, {5895, 32321}, {5925, 15800}, {5943, 37470}, {6000, 13352}, {6241, 12161}, {6243, 12163}, {6247, 25738}, {6321, 39841}, {6696, 41587}, {6699, 61645}, {6759, 66723}, {6781, 8553}, {7592, 13491}, {7689, 45186}, {7728, 12302}, {8185, 33697}, {8717, 22352}, {8780, 32609}, {9019, 33878}, {9306, 10564}, {9544, 12112}, {9609, 43619}, {9659, 65134}, {9672, 10483}, {9682, 42284}, {9694, 13925}, {9707, 43394}, {9781, 43601}, {9813, 37511}, {10112, 52102}, {10169, 47571}, {10193, 32223}, {10246, 51707}, {10263, 32138}, {10539, 13474}, {10540, 47391}, {10601, 40280}, {10606, 37489}, {10688, 56400}, {10982, 37481}, {10984, 14641}, {11204, 32110}, {11412, 15062}, {11422, 13482}, {11424, 36753}, {11426, 43845}, {11432, 66713}, {11440, 64051}, {11441, 66714}, {11444, 43613}, {11456, 66715}, {11457, 12370}, {11482, 66722}, {11550, 17702}, {11605, 48681}, {12017, 19127}, {12038, 26883}, {12041, 12099}, {12111, 16266}, {12118, 64036}, {12121, 36990}, {12162, 13346}, {12164, 12301}, {12244, 34796}, {12290, 32139}, {12295, 13293}, {12315, 46372}, {12412, 38790}, {12901, 13202}, {12984, 48659}, {12985, 48660}, {13142, 61540}, {13353, 66608}, {13598, 64027}, {14216, 44076}, {15033, 15072}, {15037, 52719}, {15040, 16165}, {15043, 43899}, {15060, 15066}, {15061, 26958}, {15068, 15305}, {15177, 28146}, {15534, 16010}, {15578, 51163}, {16111, 48901}, {17834, 63392}, {18350, 35602}, {18436, 37498}, {18440, 62381}, {18451, 22115}, {19347, 66716}, {19457, 20127}, {20987, 48884}, {21663, 64095}, {21766, 54044}, {22089, 58346}, {22549, 22800}, {22765, 63429}, {23039, 37483}, {23327, 31670}, {23329, 63735}, {28198, 37546}, {31521, 52099}, {32048, 52863}, {32062, 46261}, {32137, 61753}, {32608, 61724}, {33842, 40349}, {33974, 35463}, {34417, 58871}, {34545, 61136}, {35453, 38593}, {37475, 58480}, {37476, 61150}, {37494, 63425}, {37496, 64097}, {37672, 63720}, {39809, 39860}, {39831, 39838}, {39899, 53019}, {40914, 58885}, {41617, 44456}, {44754, 62217}, {45015, 52100}, {46349, 63085}, {48891, 52990}, {50435, 61702}, {52093, 61134}
X(66717) = reflection of X(i) in X(j) for these {i,j}: {3, 378}, {18445, 13352}, {37494, 63425}, {48681, 11605}, {64030, 66720}, {66723, 6759}
X(66717) = inverse of X(47335) in circumcircle
X(66717) = inverse of X(11799) in 1st DrozFarny circle
X(66717) = inverse of X(46030) in orthocentroidal circle
X(66717) = inverse of X(46030) in Yff hyperbola
X(66717) = X(i)-vertex conjugate of X(j) for these {i, j}: {523, 47335}
X(66717) = pole of line {523, 44205} with respect to the circumcircle
X(66717) = pole of line {2451, 7651} with respect to the cosine circle
X(66717) = pole of line {523, 11799} with respect to the 1st DrozFarny circle
X(66717) = pole of line {523, 46030} with respect to the orthocentroidal circle
X(66717) = pole of line {185, 7506} with respect to the Jerabek hyperbola
X(66717) = pole of line {6, 46030} with respect to the Kiepert hyperbola
X(66717) = pole of line {523, 46030} with respect to the Yff hyperbola
X(66717) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(35481)}}, {{A, B, C, X(20), X(15317)}}, {{A, B, C, X(64), X(7505)}}, {{A, B, C, X(250), X(47335)}}, {{A, B, C, X(264), X(46030)}}, {{A, B, C, X(265), X(44440)}}, {{A, B, C, X(376), X(5504)}}, {{A, B, C, X(403), X(3426)}}, {{A, B, C, X(1105), X(7506)}}, {{A, B, C, X(1294), X(12083)}}, {{A, B, C, X(1657), X(34426)}}, {{A, B, C, X(2693), X(15122)}}, {{A, B, C, X(3527), X(18560)}}, {{A, B, C, X(3531), X(44438)}}, {{A, B, C, X(6391), X(44458)}}, {{A, B, C, X(10018), X(43719)}}, {{A, B, C, X(10201), X(11559)}}, {{A, B, C, X(15002), X(34350)}}, {{A, B, C, X(18401), X(44213)}}, {{A, B, C, X(35472), X(64615)}}, {{A, B, C, X(35490), X(46255)}}, {{A, B, C, X(35491), X(43908)}}, {{A, B, C, X(38260), X(52071)}}
X(66717) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 1597, 381}, {30, 378, 3}, {64, 36747, 34783}, {394, 11472, 18435}, {6000, 13352, 18445}, {10564, 16194, 9306}, {10605, 44413, 568}, {12290, 34148, 32139}, {15305, 43574, 15068}, {18439, 37495, 155}, {32062, 51394, 46261}, {37472, 64030, 1181}
X(66718) lies on these lines: {2, 3}, {99, 41008}, {112, 59649}, {113, 61606}, {182, 66712}, {185, 31807}, {394, 66716}, {511, 66713}, {516, 51718}, {1038, 66719}, {1040, 66724}, {1060, 7221}, {1062, 4348}, {1285, 15851}, {2781, 11574}, {2883, 34472}, {3564, 63425}, {3917, 66720}, {4549, 47391}, {5663, 45118}, {5890, 18438}, {6696, 44829}, {7689, 18914}, {7811, 40996}, {7998, 66714}, {7999, 66715}, {9019, 52520}, {9967, 64100}, {10317, 63633}, {10605, 48906}, {10606, 46264}, {10634, 42123}, {10635, 42122}, {11425, 31802}, {11438, 45298}, {11511, 51737}, {11821, 53050}, {12163, 31804}, {12358, 44324}, {13142, 46730}, {13367, 35240}, {13416, 38726}, {14907, 41005}, {15033, 19129}, {15107, 44935}, {15812, 55646}, {16165, 17701}, {16789, 31884}, {17702, 44201}, {17704, 58480}, {17811, 66723}, {19126, 48881}, {21659, 61544}, {24301, 28174}, {29181, 51744}, {31730, 51707}, {32269, 61744}, {36748, 44541}, {36987, 37511}, {43660, 59004}, {44665, 44683}, {44882, 63431}, {46974, 66692}, {51033, 66727}, {58762, 59411}, {63433, 63440}
X(66718) = midpoint of X(i) and X(j) for these {i,j}: {20, 427}, {31730, 51707}, {48881, 51739}
X(66718) = reflection of X(i) in X(j) for these {i,j}: {58480, 17704}
X(66718) = complement of X(66725)
X(66718) = anticomplement of X(66726)
X(66718) = X(i)-Dao conjugate of X(j) for these {i, j}: {66726, 66726}
X(66718) = pole of line {185, 13394} with respect to the Jerabek hyperbola
X(66718) = intersection, other than A, B, C, of circumconics {{A, B, C, X(841), X(37932)}}, {{A, B, C, X(1294), X(6676)}}, {{A, B, C, X(1594), X(43660)}}, {{A, B, C, X(2693), X(37972)}}, {{A, B, C, X(3524), X(44156)}}, {{A, B, C, X(7512), X(53909)}}, {{A, B, C, X(43970), X(44242)}}
X(66718) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 427, 30}
X(66719) lies on these lines: {1, 30}, {2, 9639}, {4, 9628}, {5, 63676}, {8, 9640}, {11, 33}, {12, 1062}, {20, 64339}, {22, 55}, {31, 53524}, {34, 65631}, {35, 7502}, {36, 18570}, {43, 52371}, {56, 378}, {57, 9577}, {78, 6057}, {181, 9551}, {212, 24431}, {215, 9637}, {221, 66723}, {388, 9538}, {390, 20062}, {497, 7391}, {517, 37478}, {612, 4995}, {990, 11246}, {999, 9642}, {1015, 9636}, {1038, 66718}, {1040, 5268}, {1060, 15326}, {1319, 51707}, {1425, 66720}, {1428, 51739}, {1469, 2781}, {1478, 18455}, {1479, 31723}, {1500, 9635}, {1626, 21318}, {1682, 9550}, {1697, 9576}, {1837, 33178}, {1870, 12943}, {2242, 19220}, {2275, 9595}, {2276, 9594}, {2330, 19127}, {2361, 7262}, {2477, 9638}, {2646, 51692}, {3023, 39851}, {3027, 39822}, {3028, 12888}, {3056, 9019}, {3175, 22836}, {3270, 54384}, {3295, 4354}, {3303, 12082}, {3582, 44287}, {3583, 44288}, {3584, 44262}, {3585, 44263}, {3703, 4123}, {4293, 35481}, {4294, 44831}, {4296, 66711}, {4299, 18447}, {4319, 66381}, {4387, 4511}, {5204, 66593}, {5217, 44837}, {5218, 66378}, {5281, 66379}, {5297, 47596}, {5298, 44218}, {5348, 7004}, {5433, 37696}, {6046, 7190}, {6285, 18984}, {6767, 44457}, {7071, 10832}, {7191, 11238}, {7292, 66376}, {7741, 39504}, {7951, 46029}, {8141, 9626}, {8614, 64358}, {8727, 45946}, {9643, 15888}, {9644, 37722}, {9667, 10535}, {9817, 64852}, {10385, 29815}, {10895, 66610}, {11605, 13297}, {12945, 14983}, {12953, 52842}, {15325, 44236}, {15338, 44239}, {16577, 34879}, {17637, 62805}, {19349, 66716}, {19365, 66712}, {19366, 66713}, {19367, 66714}, {19368, 66715}, {19369, 66722}, {19372, 66726}, {31019, 63327}, {36985, 57277}, {37578, 64750}, {45916, 49127}, {52793, 54401}, {65128, 66728}
X(66719) = reflection of X(i) in X(j) for these {i,j}: {66724, 1}
X(66719) = inverse of X(5160) in intangents circle
X(66719) = pole of line {1491, 48382} with respect to the circumcircle
X(66719) = pole of line {206, 942} with respect to the Feuerbach hyperbola
X(66719) = pole of line {8818, 39690} with respect to the Kiepert hyperbola
X(66719) = intersection, other than A, B, C, of circumconics {{A, B, C, X(79), X(4056)}}, {{A, B, C, X(3415), X(52372)}}, {{A, B, C, X(6198), X(12699)}}, {{A, B, C, X(7100), X(10623)}}
X(66719) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10483, 32047}, {1, 1717, 12699}, {1, 30, 66724}, {1, 64054, 6284}, {388, 9538, 9627}, {497, 9539, 9629}, {5434, 10149, 1}, {9628, 9630, 4}
X(66720) lies on circumconic {{A, B, C, X(45195), X(45788)}} and on these lines: {2, 66714}, {3, 45788}, {4, 63661}, {22, 1204}, {25, 66723}, {30, 52}, {51, 66713}, {125, 15760}, {156, 12162}, {184, 378}, {373, 66726}, {389, 35480}, {427, 2883}, {511, 66711}, {549, 15738}, {1181, 37472}, {1425, 66719}, {1511, 5891}, {1514, 32062}, {1899, 15072}, {2781, 6467}, {3270, 66724}, {3581, 10605}, {3917, 66718}, {5562, 35240}, {6241, 19467}, {6759, 44269}, {7391, 12279}, {7502, 14855}, {7526, 34116}, {9730, 13851}, {10282, 37970}, {10574, 58480}, {10619, 15105}, {11424, 35603}, {12174, 46373}, {12294, 41729}, {13366, 66712}, {13754, 66721}, {14915, 31723}, {15030, 51425}, {16194, 39504}, {16659, 22948}, {17704, 66377}, {18439, 19357}, {18475, 32607}, {18560, 41725}, {18918, 61136}, {19220, 39643}, {21637, 51739}, {21639, 66722}, {23291, 66747}, {31236, 44870}, {35452, 43590}, {44110, 44281}, {44218, 64064}, {45179, 51403}, {57582, 61749}
X(66720) = midpoint of X(i) and X(j) for these {i,j}: {4, 66715}, {6241, 35481}, {7391, 12279}, {64030, 66717}
X(66720) = reflection of X(i) in X(j) for these {i,j}: {22, 46850}, {5562, 44249}, {11381, 427}, {12162, 18570}, {35480, 389}, {54384, 185}, {66725, 66713}
X(66720) = complement of X(66714)
X(66720) = pole of line {5, 4550} with respect to the Jerabek hyperbola
X(66720) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 185, 54384}, {378, 66716, 184}, {6146, 13491, 185}, {66713, 66725, 51}
X(66721) lies on these lines: {2, 3}, {68, 63392}, {69, 11559}, {113, 11202}, {265, 35257}, {339, 14907}, {567, 66712}, {568, 66713}, {577, 3018}, {1060, 4316}, {1062, 4324}, {2549, 10317}, {2781, 17710}, {3357, 11750}, {3521, 56071}, {4299, 18447}, {4302, 18455}, {4549, 7723}, {6515, 32608}, {6560, 18457}, {6561, 18459}, {7689, 21659}, {7728, 15647}, {7756, 10316}, {9019, 48873}, {9833, 18439}, {9967, 48898}, {10634, 42100}, {10635, 42099}, {10897, 42267}, {10898, 42266}, {10984, 43577}, {11179, 18449}, {11440, 12289}, {11442, 30522}, {11454, 25739}, {11457, 32138}, {11459, 66714}, {11511, 15303}, {11574, 48891}, {12111, 66715}, {12118, 18436}, {12162, 34785}, {12163, 44076}, {12241, 37490}, {12254, 22815}, {12290, 41482}, {12295, 41674}, {12358, 54042}, {12383, 22584}, {12606, 20427}, {12699, 51707}, {13568, 36753}, {13754, 66720}, {14216, 65149}, {14676, 14689}, {14915, 45118}, {14983, 38608}, {15032, 34796}, {15062, 64032}, {16165, 38723}, {16789, 55610}, {17702, 63425}, {17845, 64036}, {18388, 39242}, {18390, 32110}, {18437, 65770}, {18445, 66716}, {18451, 66723}, {18468, 42086}, {18470, 42085}, {18472, 43619}, {18474, 61685}, {18918, 38724}, {19126, 48879}, {19129, 31670}, {19131, 29317}, {19467, 34783}, {22120, 63548}, {23115, 44519}, {24301, 28146}, {32046, 34798}, {35254, 44754}, {35260, 38789}, {37496, 41465}, {37511, 48880}, {38790, 66752}, {38898, 44573}, {40242, 58922}, {40647, 54384}, {48920, 52520}, {50461, 66735}, {58546, 63660}, {61744, 64095}, {63649, 63720}
X(66721) = midpoint of X(i) and X(j) for these {i,j}: {12111, 66715}
X(66721) = reflection of X(i) in X(j) for these {i,j}: {22, 550}, {382, 427}, {12699, 51707}, {14983, 38608}, {31670, 51739}, {44754, 35254}, {54384, 40647}
X(66721) = anticomplement of X(44263)
X(66721) = X(i)-Dao conjugate of X(j) for these {i, j}: {44263, 44263}
X(66721) = pole of line {185, 6639} with respect to the Jerabek hyperbola
X(66721) = pole of line {69, 13619} with respect to the Wallace hyperbola
X(66721) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(25), X(11559)}}, {{A, B, C, X(68), X(34797)}}, {{A, B, C, X(69), X(13619)}}, {{A, B, C, X(265), X(35480)}}, {{A, B, C, X(1105), X(6639)}}, {{A, B, C, X(3520), X(56071)}}, {{A, B, C, X(3521), X(7547)}}, {{A, B, C, X(4846), X(7577)}}, {{A, B, C, X(6143), X(15740)}}, {{A, B, C, X(10298), X(18850)}}, {{A, B, C, X(14861), X(52296)}}, {{A, B, C, X(16934), X(47335)}}, {{A, B, C, X(18386), X(18550)}}
X(66721) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 427, 382}, {30, 550, 22}
X(66722) lies on circumconic {{A, B, C, X(51739), X(65308)}} and on these lines: {4, 63673}, {6, 74}, {22, 11422}, {25, 15135}, {30, 576}, {67, 7577}, {184, 37969}, {186, 37473}, {376, 10510}, {381, 9970}, {389, 44274}, {427, 11470}, {511, 7502}, {524, 15760}, {542, 44263}, {575, 18570}, {597, 52262}, {1147, 40929}, {1154, 44493}, {1351, 8547}, {1503, 8541}, {1597, 64031}, {1992, 44440}, {1995, 63694}, {2854, 18445}, {5476, 39504}, {5480, 18390}, {6403, 19596}, {6593, 6644}, {6759, 12061}, {7514, 44480}, {7555, 55721}, {7706, 25329}, {8262, 10201}, {8537, 35480}, {8538, 44249}, {8540, 66724}, {8722, 65006}, {8753, 53017}, {9813, 47354}, {9971, 52294}, {10298, 43697}, {10602, 66716}, {11179, 18449}, {11188, 56568}, {11416, 43273}, {11438, 51733}, {11443, 66714}, {11458, 66715}, {11482, 66717}, {11511, 51737}, {11649, 61752}, {12834, 31236}, {13248, 64094}, {13366, 50649}, {13382, 22330}, {13567, 51742}, {14831, 53777}, {15011, 58480}, {15019, 66376}, {15053, 52699}, {15069, 66731}, {15118, 44287}, {15305, 51941}, {15582, 44110}, {17813, 66723}, {18374, 47485}, {19153, 55572}, {19161, 44102}, {19369, 66719}, {20423, 31723}, {21637, 35228}, {21639, 66720}, {21851, 41593}, {23061, 47596}, {31133, 53863}, {32217, 64095}, {32366, 55716}, {33851, 47391}, {34155, 52989}, {34507, 46029}, {34986, 44260}, {37457, 61748}, {37517, 64028}, {37942, 63699}, {44218, 63124}, {44285, 66600}, {44456, 55039}, {44831, 54132}, {44832, 54334}, {44837, 53097}, {47449, 61606}, {49116, 61736}, {52842, 54131}, {55718, 64026}
X(66722) = midpoint of X(i) and X(j) for these {i,j}: {22, 11477}, {35480, 64080}, {50649, 54384}
X(66722) = reflection of X(i) in X(j) for these {i,j}: {18570, 575}, {34507, 46029}, {44218, 63124}, {44285, 66600}, {51739, 6}
X(66722) = pole of line {3050, 9517} with respect to the cosine circle
X(66722) = pole of line {1495, 64061} with respect to the Jerabek hyperbola
X(66722) = pole of line {403, 18424} with respect to the Kiepert hyperbola
X(66722) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 2781, 51739}
X(66723) lies on these lines: {6, 66716}, {22, 64}, {24, 66715}, {25, 66720}, {30, 155}, {154, 378}, {161, 6000}, {206, 32062}, {221, 66719}, {394, 66711}, {427, 15811}, {1181, 12289}, {1503, 41614}, {1657, 40285}, {1853, 15760}, {2192, 66724}, {2781, 9924}, {2883, 7391}, {3543, 34117}, {6225, 20062}, {6293, 39568}, {6696, 66378}, {6759, 66717}, {7502, 10606}, {7509, 63728}, {8567, 44837}, {9703, 32063}, {10605, 56924}, {12082, 58795}, {12174, 54384}, {12315, 44457}, {14070, 15138}, {15139, 21312}, {15305, 15577}, {15311, 44831}, {16165, 58762}, {17809, 66712}, {17810, 66713}, {17811, 66718}, {17813, 66722}, {17814, 44249}, {17821, 18570}, {17825, 66726}, {18405, 44263}, {18451, 66721}, {19127, 52028}, {19132, 51739}, {19149, 52842}, {25337, 65151}, {34780, 52100}, {34782, 35481}, {36749, 46027}, {48669, 49136}, {52262, 61680}
X(66723) = midpoint of X(i) and X(j) for these {i,j}: {6225, 20062}, {12315, 44457}
X(66723) = reflection of X(i) in X(j) for these {i,j}: {64, 22}, {7391, 2883}, {35481, 34782}, {66717, 6759}
X(66723) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {66716, 66725, 6}
X(66724) lies on these lines: {1, 30}, {3, 18763}, {4, 63676}, {5, 63669}, {11, 1060}, {12, 34}, {20, 9630}, {22, 56}, {33, 65632}, {35, 18570}, {36, 7502}, {38, 51654}, {55, 378}, {65, 1397}, {77, 1358}, {87, 1411}, {201, 7299}, {221, 45288}, {278, 64086}, {388, 7391}, {497, 44440}, {517, 13352}, {614, 5298}, {982, 52440}, {986, 18360}, {999, 4351}, {1038, 5272}, {1040, 66718}, {1062, 15338}, {1319, 40961}, {1398, 10831}, {1399, 4650}, {1406, 37549}, {1425, 54384}, {1428, 19127}, {1442, 7223}, {1448, 52783}, {1456, 64041}, {1469, 9019}, {1478, 31723}, {1479, 18447}, {1718, 26446}, {2099, 4318}, {2192, 66723}, {2218, 41393}, {2241, 19220}, {2330, 51739}, {2646, 51707}, {2781, 3028}, {3023, 39815}, {3024, 19469}, {3027, 39844}, {3057, 59285}, {3100, 66711}, {3146, 9628}, {3270, 66720}, {3295, 66717}, {3304, 12082}, {3582, 44262}, {3583, 37729}, {3584, 44287}, {3585, 44288}, {3600, 20062}, {3614, 54401}, {3665, 7210}, {3868, 8614}, {3872, 4081}, {3877, 52368}, {3920, 11237}, {4293, 44831}, {4294, 9627}, {4302, 18455}, {4320, 66381}, {4995, 44218}, {5172, 17080}, {5204, 44837}, {5217, 66610}, {5221, 5262}, {5265, 66379}, {5297, 66376}, {5427, 37817}, {5432, 37697}, {6198, 12953}, {6907, 45946}, {7288, 66378}, {7292, 47596}, {7355, 13079}, {7373, 44457}, {7741, 46029}, {7951, 39504}, {8270, 40663}, {8540, 66722}, {9639, 11114}, {9652, 26888}, {9817, 66726}, {10896, 66593}, {10944, 21147}, {11429, 66712}, {11436, 66713}, {11446, 66714}, {11461, 66715}, {11510, 15832}, {11605, 13296}, {12943, 52842}, {12955, 14983}, {15325, 25337}, {15326, 44239}, {15950, 34036}, {17016, 64963}, {17024, 66369}, {18477, 53524}, {18593, 49480}, {19354, 66716}, {19372, 64852}, {45916, 49128}, {49454, 53537}
X(66724) = reflection of X(i) in X(j) for these {i,j}: {66719, 1}
X(66724) = X(i)-isoconjugate-of-X(j) for these {i, j}: {8, 22453}
X(66724) = pole of line {942, 4550} with respect to the Feuerbach hyperbola
X(66724) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(64615)}}, {{A, B, C, X(79), X(977)}}, {{A, B, C, X(87), X(56844)}}
X(66724) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 30, 66719}, {1, 41869, 38336}, {1, 64053, 7354}, {1, 65134, 8144}, {34, 4348, 64349}, {34, 64349, 12}, {4318, 54292, 2099}, {8270, 57277, 40663}
X(66725) lies on these lines: {2, 3}, {6, 66716}, {33, 65632}, {34, 65631}, {51, 66713}, {52, 46027}, {53, 3018}, {64, 38443}, {98, 52777}, {125, 23324}, {148, 27377}, {184, 66712}, {185, 6746}, {230, 42391}, {232, 53418}, {1112, 11562}, {1503, 8541}, {1514, 44080}, {1539, 12140}, {1699, 51718}, {1829, 31673}, {1843, 2781}, {1862, 64186}, {1892, 3586}, {1899, 18405}, {1902, 51118}, {1974, 51739}, {2883, 61139}, {3060, 66714}, {3092, 22615}, {3093, 22644}, {3567, 66715}, {3580, 18392}, {3818, 41584}, {5090, 41869}, {5186, 39809}, {5318, 8740}, {5321, 8739}, {5410, 23249}, {5411, 23259}, {5412, 42284}, {5413, 42283}, {5480, 44102}, {5523, 18907}, {5621, 23300}, {5890, 10938}, {5893, 26883}, {6000, 47328}, {6146, 34786}, {6247, 11572}, {6403, 15305}, {6564, 13884}, {6565, 13937}, {6749, 14836}, {6776, 11405}, {7737, 16318}, {7747, 14581}, {8901, 19177}, {9019, 12294}, {10311, 53419}, {10632, 42138}, {10633, 42135}, {10641, 42102}, {10642, 42101}, {10722, 16264}, {10733, 12596}, {10735, 14983}, {11245, 18396}, {11363, 18483}, {11381, 11576}, {11392, 12953}, {11393, 12943}, {11408, 42134}, {11409, 42133}, {11438, 18376}, {11473, 42271}, {11474, 42272}, {11475, 42108}, {11476, 42109}, {11550, 15311}, {11597, 15472}, {12131, 39838}, {12135, 12699}, {12138, 52836}, {12165, 64183}, {12167, 64716}, {12174, 64034}, {12233, 13366}, {12241, 15004}, {12278, 66727}, {12289, 31804}, {13148, 14831}, {13403, 45089}, {13567, 13851}, {13603, 45733}, {15010, 43823}, {15033, 34397}, {15048, 53026}, {16655, 22802}, {16789, 29181}, {17809, 19467}, {18388, 61690}, {18394, 26879}, {18918, 26869}, {19124, 19127}, {19128, 38136}, {20299, 43903}, {21663, 23332}, {26926, 34775}, {28164, 51692}, {31670, 44935}, {31672, 60879}, {34563, 64029}, {34782, 43831}, {36990, 39871}, {41588, 50435}, {42117, 56514}, {42118, 56515}, {44076, 52863}, {46454, 59275}, {46657, 50938}, {46850, 58480}, {47354, 64724}, {51032, 61110}, {51744, 53023}, {52837, 52849}, {60428, 62203}
X(66725) = midpoint of X(i) and X(j) for these {i,j}: {10735, 14983}, {11381, 54384}
X(66725) = reflection of X(i) in X(j) for these {i,j}: {427, 4}, {46850, 58480}, {51707, 18483}, {66720, 66713}
X(66725) = inverse of X(18386) in orthocentroidal circle
X(66725) = inverse of X(10296) in polar circle
X(66725) = inverse of X(18386) in Yff hyperbola
X(66725) = complement of X(66711)
X(66725) = anticomplement of X(66718)
X(66725) = X(i)-Dao conjugate of X(j) for these {i, j}: {66718, 66718}
X(66725) = pole of line {523, 18386} with respect to the orthocentroidal circle
X(66725) = pole of line {523, 10296} with respect to the polar circle
X(66725) = pole of line {185, 23047} with respect to the Jerabek hyperbola
X(66725) = pole of line {6, 13851} with respect to the Kiepert hyperbola
X(66725) = pole of line {2501, 14398} with respect to the Orthic inconic
X(66725) = pole of line {523, 18386} with respect to the Yff hyperbola
X(66725) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(20), X(38443)}}, {{A, B, C, X(64), X(38444)}}, {{A, B, C, X(264), X(18386)}}, {{A, B, C, X(265), X(44249)}}, {{A, B, C, X(381), X(16263)}}, {{A, B, C, X(393), X(3839)}}, {{A, B, C, X(523), X(10296)}}, {{A, B, C, X(546), X(8884)}}, {{A, B, C, X(1093), X(3843)}}, {{A, B, C, X(1105), X(23047)}}, {{A, B, C, X(3091), X(51032)}}, {{A, B, C, X(3426), X(14070)}}, {{A, B, C, X(3521), X(7542)}}, {{A, B, C, X(4230), X(52777)}}, {{A, B, C, X(6526), X(50689)}}, {{A, B, C, X(6662), X(52843)}}, {{A, B, C, X(7488), X(64615)}}, {{A, B, C, X(7507), X(18848)}}, {{A, B, C, X(7527), X(8749)}}, {{A, B, C, X(8703), X(45733)}}, {{A, B, C, X(8882), X(37940)}}, {{A, B, C, X(10151), X(32085)}}, {{A, B, C, X(10254), X(43917)}}, {{A, B, C, X(13603), X(37939)}}, {{A, B, C, X(14860), X(63662)}}, {{A, B, C, X(15619), X(58805)}}, {{A, B, C, X(18324), X(32902)}}, {{A, B, C, X(22466), X(34005)}}, {{A, B, C, X(37897), X(60132)}}, {{A, B, C, X(44285), X(54512)}}, {{A, B, C, X(52262), X(61116)}}
X(66725) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 1885, 1907}, {4, 24, 546}, {4, 30, 427}, {4, 382, 1885}, {6, 66723, 66716}, {51, 66720, 66713}
X(66726) lies on these lines: {2, 3}, {182, 23324}, {373, 66720}, {2781, 9822}, {3564, 18388}, {3574, 13142}, {3817, 51718}, {3818, 34774}, {5050, 18918}, {5475, 65809}, {5943, 66713}, {9019, 13570}, {9306, 66712}, {9813, 47354}, {9817, 66724}, {9827, 20584}, {10601, 66716}, {11451, 66714}, {11465, 66715}, {12233, 61544}, {13851, 37649}, {14389, 18392}, {15484, 59657}, {16789, 53023}, {17825, 66723}, {18390, 18583}, {19137, 51739}, {19372, 66719}, {44870, 58480}, {50935, 53830}
X(66726) = midpoint of X(i) and X(j) for these {i,j}: {44870, 58480}
X(66726) = complement of X(66718)
X(66726) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(265), X(64852)}}, {{A, B, C, X(14860), X(63679)}}
X(66726) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {381, 1596, 546}
X(66727) lies on circumconic {{A, B, C, X(254), X(31363)}} and on these lines: {2, 9786}, {3, 61619}, {4, 155}, {5, 568}, {20, 6800}, {23, 2917}, {24, 5654}, {30, 49}, {52, 403}, {54, 12605}, {68, 7547}, {110, 3575}, {113, 5446}, {140, 43597}, {154, 31304}, {184, 12225}, {185, 858}, {186, 9820}, {193, 3832}, {195, 12370}, {235, 3060}, {265, 32358}, {323, 34007}, {378, 19908}, {381, 12160}, {382, 32111}, {389, 1568}, {427, 12111}, {511, 43831}, {542, 11572}, {546, 6288}, {567, 52073}, {578, 52069}, {946, 64715}, {1092, 38323}, {1147, 6240}, {1154, 10024}, {1181, 37444}, {1351, 37197}, {1368, 10574}, {1498, 7391}, {1503, 43605}, {1531, 13403}, {1594, 13754}, {1595, 15305}, {1715, 46488}, {1885, 41615}, {1906, 21850}, {1907, 11439}, {1994, 12241}, {2070, 61608}, {2072, 6102}, {2883, 3146}, {2979, 6823}, {3091, 6515}, {3153, 6146}, {3167, 12173}, {3518, 51425}, {3521, 37477}, {3522, 41427}, {3564, 8537}, {3574, 5133}, {3581, 10020}, {3853, 10733}, {4232, 15741}, {5012, 12362}, {5254, 60028}, {5422, 6816}, {5562, 13160}, {5576, 5876}, {5890, 11585}, {5891, 14788}, {5893, 52403}, {5946, 50143}, {6143, 44158}, {6241, 23335}, {6243, 15761}, {6247, 31074}, {6284, 9637}, {6643, 66609}, {6676, 7691}, {6748, 62360}, {6815, 15066}, {6894, 40571}, {6995, 32605}, {7399, 11444}, {7403, 15058}, {7487, 35264}, {7503, 14389}, {7505, 37489}, {7507, 11442}, {7517, 31815}, {7544, 17814}, {7553, 14157}, {7576, 10539}, {7577, 12359}, {7592, 18531}, {7689, 37118}, {7722, 23306}, {9544, 34782}, {9833, 52842}, {10112, 13851}, {10151, 13142}, {10254, 63734}, {10263, 11799}, {10294, 30714}, {10295, 12038}, {10297, 13292}, {10540, 11819}, {10564, 43577}, {11002, 15873}, {11064, 13568}, {11412, 15760}, {11430, 34005}, {11432, 16072}, {11449, 59553}, {11456, 14790}, {11563, 14449}, {11591, 37347}, {11745, 13595}, {12007, 43838}, {12022, 12161}, {12084, 50434}, {12086, 15311}, {12087, 29181}, {12118, 35480}, {12162, 15559}, {12163, 37119}, {12174, 34609}, {12278, 66725}, {12324, 31099}, {12429, 18386}, {13346, 52071}, {13352, 18560}, {13367, 61655}, {13371, 34783}, {13434, 34664}, {13474, 15063}, {13598, 51403}, {13630, 37452}, {14118, 23292}, {14643, 44232}, {14853, 40318}, {15026, 50139}, {15044, 32272}, {15054, 61540}, {15060, 31810}, {15062, 64474}, {15083, 18474}, {15644, 64179}, {16063, 66608}, {16196, 43601}, {16621, 62967}, {16659, 31723}, {16868, 41587}, {18281, 43607}, {18350, 31830}, {18377, 44076}, {18378, 46817}, {18392, 63662}, {18400, 43844}, {18445, 18569}, {18466, 61690}, {18504, 44960}, {18572, 45970}, {18951, 61701}, {19161, 26156}, {21243, 45187}, {21659, 34986}, {22151, 22555}, {24981, 32340}, {26881, 65376}, {26883, 34603}, {26937, 30744}, {31831, 41171}, {32110, 43839}, {32144, 43608}, {32534, 64181}, {33586, 64024}, {34725, 64717}, {34787, 51212}, {34798, 44246}, {34799, 41362}, {35471, 47391}, {35487, 63735}, {35500, 61715}, {37368, 41723}, {37472, 52070}, {37473, 62382}, {37498, 44440}, {38321, 61753}, {38848, 44233}, {40111, 45971}, {40647, 51392}, {40929, 62381}, {41590, 45118}, {41724, 61544}, {43823, 63709}, {44288, 64036}, {44802, 59659}, {44920, 53863}, {45186, 47096}, {46818, 61139}, {46850, 51360}, {51033, 66718}, {52000, 58545}, {61711, 63392}, {63674, 64066}
X(66727) = midpoint of X(i) and X(j) for these {i,j}: {4, 56292}
X(66727) = reflection of X(i) in X(j) for these {i,j}: {58922, 23047}
X(66727) = pole of line {155, 5876} with respect to the Stammler hyperbola
X(66727) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 155, 14516}, {4, 56292, 44665}, {5, 5889, 3580}, {52, 5448, 403}, {195, 18403, 12370}, {235, 31802, 3060}, {3564, 23047, 58922}, {3574, 5907, 5133}, {3575, 61607, 110}, {5562, 18388, 13160}, {7507, 12164, 11442}, {10540, 15800, 11819}, {11064, 13568, 22467}, {11563, 54157, 14449}, {12161, 18404, 12022}, {13630, 51391, 37452}, {18445, 18569, 34224}, {31074, 64025, 6247}, {31723, 32139, 16659}, {45186, 61749, 47096}, {66725, 66762, 12278}
X(66728) lies on these lines: {2, 3}, {6, 44836}, {52, 61544}, {53, 5475}, {68, 31802}, {113, 46026}, {115, 6748}, {128, 5139}, {133, 42874}, {206, 51739}, {317, 64093}, {389, 32392}, {393, 15484}, {495, 11393}, {496, 11392}, {511, 51994}, {515, 51718}, {578, 15872}, {1112, 11801}, {1154, 47328}, {1353, 11405}, {1495, 61606}, {1503, 18388}, {1514, 32062}, {1829, 18357}, {1843, 5891}, {1902, 40273}, {1905, 12019}, {1990, 7753}, {2781, 7687}, {3426, 66752}, {3527, 38442}, {3531, 16774}, {3564, 8541}, {3574, 6146}, {3817, 51692}, {3818, 3867}, {5090, 22791}, {5309, 6749}, {5412, 18538}, {5413, 18762}, {5480, 18390}, {5523, 53026}, {5893, 13474}, {6000, 58550}, {6403, 23039}, {7173, 54428}, {7713, 61261}, {7718, 18493}, {7745, 14581}, {8739, 11543}, {8740, 11542}, {9820, 45286}, {9927, 13142}, {9955, 49542}, {10272, 12140}, {10311, 43291}, {10516, 16789}, {10592, 11398}, {10593, 11399}, {10605, 64729}, {10632, 42627}, {10633, 42628}, {10641, 42146}, {10642, 42143}, {10880, 13925}, {10881, 13993}, {11178, 41585}, {11245, 25739}, {11363, 61272}, {11396, 37705}, {11426, 18945}, {11438, 23332}, {11475, 42136}, {11476, 42137}, {11632, 20774}, {12134, 61607}, {12167, 58891}, {12233, 18381}, {12241, 18383}, {12292, 61598}, {12294, 15432}, {13364, 44084}, {13367, 32340}, {13419, 16252}, {13567, 23325}, {13568, 20299}, {13754, 66604}, {13851, 16657}, {14576, 33842}, {14635, 63634}, {14845, 44079}, {14852, 41588}, {14853, 18918}, {15004, 45089}, {15473, 20304}, {16165, 36518}, {16621, 61749}, {16654, 51403}, {16655, 43831}, {17809, 31804}, {18376, 66712}, {18400, 23292}, {18445, 39588}, {18451, 19139}, {18583, 44102}, {19125, 32063}, {19161, 61542}, {19347, 64034}, {19596, 61610}, {20424, 32358}, {21243, 44683}, {25641, 53987}, {31415, 59229}, {31673, 51707}, {31815, 64066}, {31843, 53992}, {32250, 56567}, {33843, 53419}, {34449, 61110}, {35764, 42273}, {35765, 42270}, {36990, 64719}, {41722, 61510}, {44110, 61139}, {45180, 48317}, {45303, 63425}, {45383, 63535}, {46437, 53984}, {46682, 61574}, {46849, 58545}, {46929, 52452}, {51538, 58764}, {52578, 66596}, {58496, 63709}, {65128, 66719}
X(66728) = midpoint of X(i) and X(j) for these {i,j}: {4, 427}, {31673, 51707}
X(66728) = reflection of X(i) in X(j) for these {i,j}: {44683, 21243}
X(66728) = inverse of X(18494) in orthocentroidal circle
X(66728) = inverse of X(18494) in Yff hyperbola
X(66728) = complement of X(44239)
X(66728) = pole of line {523, 18494} with respect to the orthocentroidal circle
X(66728) = pole of line {185, 973} with respect to the Jerabek hyperbola
X(66728) = pole of line {6, 18400} with respect to the Kiepert hyperbola
X(66728) = pole of line {523, 18494} with respect to the Yff hyperbola
X(66728) = pole of line {6587, 14396} with respect to the dual conic of DeLongchamps circle
X(66728) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(44836)}}, {{A, B, C, X(6), X(44837)}}, {{A, B, C, X(98), X(37454)}}, {{A, B, C, X(252), X(3525)}}, {{A, B, C, X(264), X(18494)}}, {{A, B, C, X(265), X(6676)}}, {{A, B, C, X(631), X(38442)}}, {{A, B, C, X(2165), X(3545)}}, {{A, B, C, X(3091), X(34449)}}, {{A, B, C, X(3426), X(54994)}}, {{A, B, C, X(3524), X(16774)}}, {{A, B, C, X(3527), X(9715)}}, {{A, B, C, X(3531), X(9909)}}, {{A, B, C, X(5133), X(43917)}}, {{A, B, C, X(6756), X(14860)}}, {{A, B, C, X(7512), X(64615)}}, {{A, B, C, X(10565), X(45088)}}, {{A, B, C, X(12173), X(66596)}}, {{A, B, C, X(13160), X(61133)}}, {{A, B, C, X(14492), X(44210)}}, {{A, B, C, X(31304), X(45195)}}, {{A, B, C, X(33703), X(46255)}}, {{A, B, C, X(35500), X(51032)}}, {{A, B, C, X(35921), X(38305)}}, {{A, B, C, X(37899), X(54890)}}, {{A, B, C, X(44239), X(61116)}}
X(66728) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 381, 1596}, {4, 403, 428}, {4, 427, 30}, {3574, 11572, 6146}, {5480, 23324, 18390}, {12233, 18381, 18914}, {31687, 31688, 6748}
X(66729) lies on circumconic {{A, B, C, X(60166), X(66597)}} and on these lines: {2, 1181}, {3, 6515}, {4, 4846}, {5, 12174}, {20, 9786}, {69, 3523}, {140, 6090}, {182, 26937}, {184, 22955}, {185, 6816}, {376, 43573}, {389, 1370}, {631, 1147}, {1498, 37648}, {1593, 45298}, {1853, 2883}, {1899, 6815}, {1995, 34781}, {2979, 3538}, {3060, 52398}, {3066, 16621}, {3088, 5422}, {3090, 26913}, {3147, 64049}, {3515, 48906}, {3522, 37644}, {3525, 11487}, {3529, 12897}, {3541, 35603}, {3546, 7592}, {3547, 26879}, {3567, 34938}, {3580, 7400}, {3618, 34117}, {5050, 46444}, {5056, 45303}, {5562, 46336}, {5739, 37112}, {5889, 7386}, {5890, 6643}, {5907, 54012}, {6146, 37475}, {6241, 18537}, {6247, 10601}, {6353, 52525}, {6776, 17928}, {6803, 11442}, {6804, 12111}, {6823, 26869}, {6997, 14216}, {7383, 12359}, {7392, 15028}, {7399, 26944}, {7401, 11457}, {7486, 51261}, {7488, 25406}, {7493, 10984}, {7503, 18913}, {7528, 12006}, {7544, 32064}, {8907, 18910}, {9815, 11550}, {10299, 51033}, {10605, 64038}, {10996, 18950}, {11179, 13367}, {11206, 44802}, {11402, 16196}, {11426, 47090}, {12058, 46363}, {12118, 37470}, {12164, 30739}, {12317, 15059}, {12325, 61807}, {13160, 23291}, {13347, 43653}, {13567, 59349}, {13630, 18531}, {14118, 18931}, {14790, 37481}, {14912, 34148}, {15035, 18932}, {15055, 18947}, {15108, 61816}, {15717, 45794}, {15740, 22466}, {16226, 62964}, {16657, 46349}, {18912, 66606}, {18914, 66607}, {18915, 66610}, {18918, 34007}, {18919, 66731}, {18921, 66605}, {18922, 66593}, {18923, 66611}, {18924, 66612}, {18933, 66734}, {18934, 66735}, {18935, 66736}, {18936, 66738}, {18945, 38323}, {18946, 66739}, {18953, 20792}, {19119, 66730}, {19161, 41256}, {19166, 61111}, {21166, 39804}, {22966, 38942}, {25738, 40280}, {30744, 43841}, {31099, 45089}, {31152, 31802}, {31255, 61607}, {32241, 66740}, {32284, 63428}, {32334, 66737}, {34473, 39833}, {34944, 41589}, {36753, 44441}, {37198, 41588}, {37201, 39571}, {37444, 52003}, {37498, 63012}, {37649, 40686}, {37779, 61791}, {39874, 43584}, {40928, 66752}, {41719, 43815}, {43652, 63722}, {46927, 51031}, {52404, 63081}, {63656, 66733}
X(66729) = pole of line {5446, 6642} with respect to the Stammler hyperbola
X(66729) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 18916, 6515}, {3541, 36752, 63085}, {10574, 18911, 4}, {11457, 15045, 7401}, {12324, 18928, 3091}, {13567, 66608, 59349}, {14216, 64854, 6997}, {39571, 64100, 37201}
X(66730) lies on these lines: {2, 98}, {3, 19118}, {4, 26212}, {6, 2929}, {20, 1974}, {24, 12220}, {26, 41464}, {54, 5050}, {64, 1176}, {140, 19129}, {186, 9967}, {193, 1092}, {206, 6816}, {376, 64052}, {389, 63063}, {511, 22467}, {567, 51732}, {569, 6803}, {578, 51171}, {631, 19131}, {1147, 14912}, {1177, 15055}, {1350, 15078}, {1351, 43574}, {1353, 22115}, {1386, 66741}, {1428, 66610}, {1614, 48906}, {1843, 44802}, {2071, 12294}, {2330, 66593}, {2979, 37488}, {3091, 19124}, {3523, 19126}, {3564, 26156}, {3589, 13160}, {3618, 6815}, {3818, 43811}, {5092, 14118}, {5157, 41719}, {5480, 38323}, {5656, 10984}, {5889, 20806}, {5890, 19139}, {6403, 6644}, {6642, 39588}, {6677, 39871}, {6759, 66755}, {6804, 64049}, {7386, 44077}, {7395, 11456}, {7399, 12022}, {7488, 11574}, {8537, 43809}, {9545, 33748}, {9706, 64028}, {9729, 21637}, {10249, 66756}, {10304, 66470}, {10312, 14965}, {10519, 44470}, {10539, 39874}, {10574, 19122}, {11449, 44503}, {13482, 14848}, {14060, 37813}, {14157, 16072}, {14810, 37941}, {15033, 18583}, {15035, 19138}, {15053, 19161}, {15077, 46865}, {15305, 63420}, {15389, 47733}, {15801, 64195}, {16774, 40441}, {18374, 44882}, {18438, 37814}, {18440, 43598}, {19119, 66729}, {19123, 66606}, {19125, 66609}, {19127, 53094}, {19130, 34007}, {19133, 66605}, {19136, 51212}, {19140, 66734}, {19150, 66739}, {19153, 20791}, {19156, 20792}, {19171, 61111}, {21166, 39811}, {22538, 50009}, {26216, 50659}, {29181, 56918}, {30739, 34397}, {32046, 55705}, {32111, 34664}, {32217, 44280}, {32220, 51733}, {32344, 66737}, {33971, 41238}, {34473, 39840}, {35264, 39879}, {36989, 41257}, {37472, 59399}, {37477, 44273}, {37480, 61044}, {37648, 58357}, {39530, 46571}, {39899, 43812}, {40132, 44080}, {40823, 40825}, {43273, 65565}, {43391, 48679}, {43652, 62174}, {44102, 52520}, {44268, 48874}, {44489, 51170}, {48716, 65767}, {48905, 63663}, {52016, 66742}, {55697, 64585}, {59417, 66255}
X(66730) = midpoint of X(i) and X(j) for these {i,j}: {22467, 63069}
X(66730) = perspector of circumconic {{A, B, C, X(2966), X(59039)}}
X(66730) = pole of line {511, 1368} with respect to the Stammler hyperbola
X(66730) = intersection, other than A, B, C, of circumconics {{A, B, C, X(64), X(20021)}}, {{A, B, C, X(98), X(41890)}}, {{A, B, C, X(287), X(57648)}}, {{A, B, C, X(1352), X(43727)}}, {{A, B, C, X(6391), X(53174)}}, {{A, B, C, X(18911), X(27867)}}
X(66730) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 19128, 19121}, {3, 26206, 66750}, {6, 17928, 66736}, {6, 66736, 66731}, {182, 1352, 5622}, {206, 25406, 52525}, {5085, 19132, 66608}, {5085, 64061, 1176}, {19124, 19137, 3091}, {22467, 63069, 511}
X(66731) lies on these lines: {2, 576}, {3, 8537}, {4, 54796}, {5, 32244}, {6, 2929}, {20, 8541}, {26, 6403}, {54, 14984}, {140, 18449}, {182, 51033}, {389, 37784}, {511, 7691}, {524, 13160}, {542, 9972}, {575, 22467}, {631, 8538}, {895, 8550}, {1176, 42059}, {1199, 32284}, {1351, 7395}, {1992, 6815}, {2393, 52525}, {2781, 15062}, {2888, 64883}, {3060, 44492}, {3091, 9813}, {3523, 11511}, {3564, 66751}, {4663, 66741}, {5012, 15073}, {5050, 43804}, {5093, 13363}, {5097, 63069}, {5622, 43601}, {5889, 41614}, {5890, 8548}, {6030, 11649}, {6776, 12278}, {7399, 64067}, {7503, 11477}, {7592, 15531}, {8539, 66605}, {8540, 66593}, {8549, 15072}, {9729, 21639}, {9926, 66735}, {9968, 51023}, {9970, 18553}, {9976, 66734}, {10323, 12220}, {10574, 11443}, {10602, 66609}, {10984, 34788}, {11188, 34117}, {11216, 20791}, {11458, 66606}, {11482, 66607}, {11574, 45308}, {12085, 39588}, {12118, 14912}, {12167, 39568}, {12596, 15035}, {13248, 15055}, {13434, 50649}, {13564, 41464}, {13630, 39562}, {15054, 41743}, {15069, 66722}, {15074, 61134}, {15078, 53093}, {15107, 44493}, {15305, 64031}, {15331, 19129}, {15826, 44280}, {17813, 66608}, {18583, 26156}, {18919, 66729}, {19128, 45735}, {19178, 61111}, {19369, 66610}, {20190, 37941}, {21166, 39819}, {26166, 39099}, {29959, 43614}, {32249, 43598}, {32368, 66737}, {34155, 43811}, {34473, 39848}, {34545, 44495}, {43600, 50979}, {44102, 44802}, {44413, 63727}, {44500, 52058}, {54131, 63673}, {54994, 55724}, {58805, 64724}
X(66731) = pole of line {575, 13567} with respect to the Stammler hyperbola
X(66731) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7608), X(41890)}}, {{A, B, C, X(54796), X(57648)}}
X(66731) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 8537, 11416}, {6, 66736, 66730}, {9813, 11470, 3091}, {13630, 39562, 43812}, {15073, 44480, 5012}
X(66732) lies on the Kiepert hyperbola and on these lines: {2, 51316}, {4, 14831}, {30, 46729}, {96, 44837}, {98, 9909}, {264, 56346}, {275, 9308}, {305, 60262}, {324, 60161}, {338, 44877}, {343, 54636}, {524, 54496}, {599, 54911}, {671, 64060}, {1992, 54531}, {3830, 54895}, {5395, 40814}, {6515, 54761}, {6676, 7607}, {10565, 43537}, {11433, 54797}, {12012, 53104}, {14615, 43670}, {15466, 38253}, {37644, 54765}, {37669, 54812}, {37874, 41760}, {38259, 51481}, {40448, 54994}, {41628, 54913}, {44555, 54801}, {52282, 54703}, {54774, 64062}, {57518, 62932}, {60120, 61658}
X(66732) = isotomic conjugate of X(37672)
X(66732) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 37672}, {48, 3515}, {560, 32831}, {2148, 14531}, {2155, 45248}, {9247, 32001}
X(66732) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 37672}, {216, 14531}, {1249, 3515}, {6374, 32831}, {45245, 45248}, {62576, 32001}
X(66732) = X(i)-cross conjugate of X(j) for these {i, j}: {20, 264}
X(66732) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(16625)}}, {{A, B, C, X(290), X(41530)}}, {{A, B, C, X(297), X(9909)}}, {{A, B, C, X(305), X(46111)}}, {{A, B, C, X(343), X(63094)}}, {{A, B, C, X(467), X(44837)}}, {{A, B, C, X(524), X(64060)}}, {{A, B, C, X(525), X(36609)}}, {{A, B, C, X(1494), X(34410)}}, {{A, B, C, X(1993), X(63811)}}, {{A, B, C, X(3532), X(16879)}}, {{A, B, C, X(3580), X(30477)}}, {{A, B, C, X(5641), X(65063)}}, {{A, B, C, X(6676), X(52282)}}, {{A, B, C, X(7017), X(65047)}}, {{A, B, C, X(9308), X(13157)}}, {{A, B, C, X(10565), X(62955)}}, {{A, B, C, X(18022), X(59256)}}, {{A, B, C, X(21849), X(42313)}}, {{A, B, C, X(34412), X(35142)}}, {{A, B, C, X(41760), X(62545)}}, {{A, B, C, X(52280), X(54994)}}, {{A, B, C, X(57908), X(59756)}}
X(66733) lies on these lines: {2, 3}, {113, 9707}, {146, 12174}, {578, 1531}, {1853, 15062}, {1993, 13403}, {2979, 63740}, {5890, 43837}, {5895, 15072}, {6800, 61749}, {7689, 61701}, {8743, 40234}, {9729, 63670}, {9781, 40909}, {9927, 32263}, {10574, 63660}, {10733, 11444}, {11441, 21659}, {11459, 12293}, {12111, 18396}, {12278, 17814}, {12289, 18451}, {12943, 63676}, {12953, 63669}, {15030, 34786}, {15035, 63685}, {15043, 63659}, {15055, 63695}, {15305, 63728}, {15647, 64024}, {17710, 36990}, {18383, 61700}, {20791, 63737}, {20792, 63739}, {21166, 63687}, {25406, 63699}, {26156, 48873}, {26206, 29012}, {26216, 65630}, {34148, 63658}, {34473, 63696}, {34785, 35264}, {34796, 43816}, {35240, 61646}, {38700, 63708}, {38701, 63715}, {38790, 63684}, {40242, 43598}, {40341, 41716}, {40342, 64080}, {41869, 63698}, {42096, 63680}, {42097, 63681}, {42263, 63677}, {42264, 63678}, {43676, 54610}, {48905, 63663}, {48910, 63688}, {53100, 54871}, {54131, 63673}, {54684, 60142}, {61111, 63668}, {61721, 66608}, {63629, 66737}, {63656, 66729}, {63661, 66606}, {63675, 66605}, {63686, 66735}, {63690, 66738}, {63693, 66739}, {63694, 66740}, {63697, 64100}, {63702, 66742}, {63714, 66747}, {63721, 66749}, {63724, 66751}, {63726, 66752}
X(66733) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1658), X(34233)}}, {{A, B, C, X(6240), X(9307)}}, {{A, B, C, X(18848), X(47096)}}, {{A, B, C, X(34801), X(37814)}}, {{A, B, C, X(52071), X(64812)}}, {{A, B, C, X(54610), X(62978)}}
X(66734) lies on these lines: {2, 5655}, {3, 3043}, {4, 14708}, {20, 1986}, {54, 12901}, {74, 11562}, {110, 185}, {113, 6241}, {125, 10574}, {140, 22584}, {146, 17854}, {265, 13630}, {389, 10733}, {399, 17928}, {511, 66740}, {542, 66736}, {631, 7723}, {974, 3448}, {1112, 3146}, {1154, 38723}, {1181, 3047}, {1216, 15036}, {1511, 34783}, {1539, 64030}, {2071, 15463}, {2771, 66741}, {2777, 15072}, {2781, 25321}, {3091, 9826}, {3520, 12228}, {3522, 13148}, {3523, 12358}, {3567, 12295}, {3832, 12133}, {5012, 32607}, {5562, 15051}, {5876, 38794}, {5889, 16163}, {5890, 17702}, {5972, 12111}, {6000, 16223}, {6102, 12121}, {6293, 11598}, {6699, 12281}, {6815, 12317}, {7503, 10620}, {7592, 12302}, {7687, 15043}, {7724, 66605}, {7727, 66593}, {7728, 11561}, {7729, 41670}, {7731, 16111}, {7998, 48375}, {8718, 11560}, {9706, 43392}, {9729, 15059}, {9730, 14644}, {9970, 63069}, {9976, 66731}, {10113, 37481}, {10264, 13160}, {10272, 45957}, {10575, 10721}, {10628, 15055}, {11381, 41671}, {11412, 38726}, {11413, 19504}, {11440, 27866}, {11444, 48378}, {11459, 38793}, {11559, 63729}, {11744, 41589}, {12086, 15472}, {12162, 64101}, {12226, 44242}, {12227, 34148}, {12279, 13202}, {12284, 30714}, {12290, 46686}, {12308, 66607}, {12375, 66611}, {12376, 66612}, {12824, 66752}, {12825, 18931}, {12900, 15058}, {13201, 14448}, {13211, 65423}, {13289, 52525}, {13382, 21649}, {13416, 15717}, {13417, 46850}, {13445, 34155}, {13754, 15035}, {14677, 34005}, {14927, 40949}, {14984, 66742}, {15012, 15044}, {15045, 23515}, {15054, 17855}, {15078, 32609}, {15100, 20417}, {15102, 16003}, {15305, 36518}, {17835, 66608}, {17856, 38791}, {18439, 61574}, {18933, 66729}, {18947, 37201}, {19140, 66730}, {19195, 61111}, {19457, 66609}, {19470, 66610}, {20127, 38898}, {20773, 44879}, {20791, 38727}, {26206, 51941}, {32234, 37511}, {32244, 52520}, {32423, 38323}, {34146, 52699}, {38790, 63684}, {41673, 53050}, {46430, 66749}
X(66734) = reflection of X(i) in X(j) for these {i,j}: {4, 16222}, {11459, 38793}, {14644, 9730}, {15055, 64100}, {15305, 36518}, {16222, 14708}
X(66734) = pole of line {12295, 18403} with respect to the Stammler hyperbola
X(66734) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 7722, 12219}, {1986, 44573, 20}, {9826, 12292, 3091}, {10575, 11557, 10721}, {10628, 64100, 15055}, {11561, 13491, 7728}, {11562, 40647, 74}, {12281, 66606, 6699}, {14448, 37853, 13201}, {17854, 25711, 146}
X(66735) lies on these lines: {2, 12022}, {3, 69}, {4, 110}, {7, 66760}, {20, 155}, {24, 54217}, {30, 3167}, {52, 25712}, {54, 6815}, {68, 631}, {140, 12429}, {186, 6515}, {193, 37460}, {265, 62708}, {376, 2979}, {381, 59553}, {382, 61607}, {511, 41719}, {539, 3524}, {542, 65151}, {550, 12164}, {567, 3618}, {568, 1992}, {569, 6803}, {578, 7401}, {912, 5731}, {944, 9928}, {1069, 4294}, {1092, 6643}, {1181, 63631}, {1351, 37458}, {1352, 11430}, {1370, 43574}, {1503, 37497}, {1511, 37643}, {1587, 8909}, {1596, 8780}, {1614, 37201}, {1899, 51394}, {1993, 18533}, {2072, 18918}, {2931, 37644}, {3085, 18970}, {3086, 12428}, {3088, 12134}, {3090, 9927}, {3091, 9820}, {3146, 22660}, {3147, 11449}, {3157, 4293}, {3517, 13142}, {3518, 32048}, {3522, 12163}, {3523, 12359}, {3525, 5449}, {3526, 61544}, {3528, 7689}, {3529, 41482}, {3541, 14516}, {3546, 6146}, {3547, 13394}, {3548, 44076}, {3580, 35486}, {3581, 11008}, {3619, 14805}, {4846, 55976}, {5067, 43839}, {5218, 10055}, {5418, 35836}, {5420, 35837}, {5663, 54050}, {5664, 8057}, {5768, 66761}, {5892, 61666}, {6000, 54038}, {6090, 34664}, {6225, 32139}, {6241, 30552}, {6353, 51393}, {6459, 10666}, {6460, 10665}, {6623, 51425}, {6640, 38724}, {6642, 43595}, {6644, 11433}, {6684, 9896}, {6800, 54040}, {6851, 41608}, {6995, 44413}, {6997, 15033}, {7288, 10071}, {7404, 10516}, {7487, 36747}, {7493, 11464}, {7494, 18475}, {7502, 33522}, {7503, 11487}, {7512, 19908}, {7528, 37472}, {7540, 51538}, {7592, 15316}, {7735, 32661}, {7738, 23128}, {8550, 37475}, {8681, 11179}, {8889, 18474}, {9143, 54037}, {9306, 18537}, {9540, 49224}, {9544, 44440}, {9545, 18882}, {9707, 59349}, {9729, 21651}, {9730, 14912}, {9815, 37505}, {9818, 14826}, {9825, 11426}, {9833, 13346}, {9908, 10323}, {9923, 10357}, {9926, 66731}, {9929, 10517}, {9930, 10518}, {9931, 66593}, {9932, 18916}, {9933, 12245}, {9937, 17928}, {9938, 14118}, {10257, 23291}, {10298, 45794}, {10359, 12193}, {10564, 39874}, {10574, 12271}, {10619, 43652}, {10625, 59346}, {10661, 42120}, {10662, 42119}, {10992, 48960}, {10996, 64049}, {11001, 54036}, {11004, 40640}, {11064, 18396}, {11180, 44218}, {11202, 66589}, {11402, 66614}, {11427, 18420}, {11432, 14914}, {11438, 63722}, {11585, 18945}, {12084, 12324}, {12085, 34781}, {12106, 12310}, {12174, 63441}, {12219, 17854}, {12235, 15043}, {12241, 61507}, {12254, 47528}, {12282, 66606}, {12302, 14683}, {12309, 66607}, {12317, 12901}, {12417, 66605}, {12424, 66611}, {12425, 66612}, {13160, 23307}, {13367, 61644}, {13935, 49225}, {14216, 61751}, {14915, 54039}, {14927, 37477}, {15024, 58496}, {15061, 25738}, {15068, 49669}, {15078, 45968}, {15083, 17538}, {15136, 16063}, {15717, 44158}, {16238, 54163}, {16657, 35259}, {17834, 41729}, {17836, 66608}, {18281, 32423}, {18390, 59543}, {18440, 64474}, {18445, 34966}, {18531, 22115}, {18912, 63701}, {18934, 66729}, {18950, 61713}, {18951, 37814}, {19119, 37511}, {19139, 51212}, {19149, 29181}, {19196, 61111}, {19347, 31829}, {19458, 66609}, {19471, 66610}, {20191, 61814}, {22661, 34007}, {23306, 64183}, {23335, 64034}, {25321, 25711}, {26937, 38727}, {27082, 34783}, {32064, 44441}, {32539, 33565}, {33748, 36752}, {34350, 64726}, {34621, 64059}, {35471, 44752}, {35513, 41619}, {36891, 42065}, {37478, 63428}, {37480, 46264}, {38282, 63735}, {38323, 66749}, {40132, 43586}, {41588, 55572}, {41615, 61752}, {41744, 44469}, {43755, 53788}, {44249, 58891}, {44261, 50967}, {44265, 63064}, {44275, 45082}, {44407, 44442}, {45184, 62092}, {45522, 48738}, {45523, 48739}, {50461, 66721}, {50974, 66740}, {51471, 65323}, {52077, 61113}, {52104, 61138}, {54173, 64883}, {55724, 63702}, {62381, 64080}, {63686, 66733}, {64051, 66754}
X(66735) = midpoint of X(i) and X(j) for these {i,j}: {376, 63174}, {5654, 12118}
X(66735) = reflection of X(i) in X(j) for these {i,j}: {2, 47391}, {4, 5654}, {381, 59553}, {5654, 1147}, {32064, 44441}, {61666, 5892}, {63174, 63649}
X(66735) = inverse of X(46261) in Stammler hyperbola
X(66735) = anticomplement of X(14852)
X(66735) = perspector of circumconic {{A, B, C, X(687), X(4563)}}
X(66735) = X(i)-Dao conjugate of X(j) for these {i, j}: {14852, 14852}
X(66735) = pole of line {55121, 58757} with respect to the polar circle
X(66735) = pole of line {13881, 46262} with respect to the Kiepert hyperbola
X(66735) = pole of line {4558, 30512} with respect to the Kiepert parabola
X(66735) = pole of line {3049, 9209} with respect to the MacBeath circumconic
X(66735) = pole of line {25, 13754} with respect to the Stammler hyperbola
X(66735) = pole of line {6563, 44427} with respect to the Steiner circumellipse
X(66735) = pole of line {4, 62338} with respect to the Wallace hyperbola
X(66735) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(62338)}}, {{A, B, C, X(68), X(58942)}}, {{A, B, C, X(69), X(1300)}}, {{A, B, C, X(2986), X(3926)}}, {{A, B, C, X(3431), X(9723)}}, {{A, B, C, X(3964), X(5504)}}, {{A, B, C, X(8884), X(11411)}}, {{A, B, C, X(13754), X(46261)}}, {{A, B, C, X(38936), X(52437)}}, {{A, B, C, X(52347), X(60035)}}
X(66735) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 11898, 44683}, {3, 18917, 18931}, {3, 6193, 11411}, {3, 66762, 6193}, {68, 12038, 631}, {193, 37460, 37489}, {376, 63174, 13754}, {487, 488, 62338}, {1092, 19467, 6643}, {1147, 12118, 4}, {1147, 17702, 5654}, {1147, 5654, 64177}, {3523, 64756, 12359}, {5504, 12383, 12319}, {5654, 12118, 17702}, {6146, 35602, 3546}, {9820, 12293, 3091}, {9833, 13346, 34938}, {9927, 64181, 3090}, {11425, 64035, 7404}, {13754, 63649, 63174}, {18531, 22115, 37669}, {18909, 53050, 3}, {34782, 37498, 31305}, {44665, 47391, 2}
X(66736) lies on these lines: {2, 51}, {3, 6403}, {4, 11382}, {5, 26156}, {6, 2929}, {20, 1843}, {24, 19121}, {52, 6803}, {67, 15100}, {69, 5889}, {140, 18438}, {141, 11444}, {143, 44456}, {159, 52525}, {182, 11443}, {185, 5921}, {186, 19131}, {193, 389}, {382, 63475}, {518, 66741}, {542, 66734}, {568, 34380}, {576, 63069}, {631, 9967}, {1092, 63063}, {1112, 11284}, {1176, 15577}, {1181, 63183}, {1350, 7503}, {1351, 3567}, {1352, 12111}, {1353, 37481}, {1469, 66610}, {1503, 7729}, {1974, 44802}, {1986, 32244}, {2071, 9813}, {2211, 15355}, {2393, 20791}, {2781, 10516}, {2854, 66740}, {2871, 20792}, {3056, 66593}, {3091, 9822}, {3094, 26216}, {3098, 14118}, {3518, 64052}, {3523, 11574}, {3564, 5890}, {3589, 40929}, {3618, 15028}, {3620, 5562}, {3779, 66605}, {3818, 11439}, {5032, 16226}, {5039, 52058}, {5050, 14914}, {5085, 15078}, {5093, 5946}, {5181, 12273}, {5446, 6804}, {5892, 61724}, {5965, 52989}, {6102, 11898}, {6241, 18440}, {6467, 9729}, {6644, 19128}, {6776, 10574}, {6816, 9969}, {6823, 41584}, {7378, 12058}, {7386, 47328}, {7392, 65654}, {7395, 33878}, {7398, 64820}, {7399, 11412}, {7488, 19126}, {7592, 12271}, {7722, 32275}, {8548, 43597}, {8681, 66742}, {8705, 44280}, {9019, 31884}, {9730, 14912}, {9781, 21850}, {9924, 66608}, {9971, 29181}, {9973, 44882}, {10263, 55584}, {10323, 41464}, {10733, 32246}, {11160, 14831}, {11286, 53795}, {11387, 31305}, {11449, 44480}, {11459, 66751}, {11470, 19137}, {11477, 32191}, {11649, 17508}, {12006, 53091}, {12017, 15074}, {12219, 32257}, {12251, 26214}, {12279, 43130}, {12282, 19588}, {12283, 48906}, {12284, 63700}, {12290, 39884}, {13391, 55593}, {13491, 48662}, {13630, 39899}, {13754, 66749}, {14516, 26926}, {14532, 16983}, {14708, 32234}, {14927, 52093}, {15024, 18583}, {15053, 41614}, {15056, 40330}, {15058, 18358}, {15062, 34778}, {15102, 32306}, {15305, 29959}, {15812, 37444}, {16223, 25321}, {16776, 53023}, {17710, 53094}, {18436, 61545}, {18935, 66729}, {18950, 61666}, {19129, 37814}, {19154, 45735}, {19197, 61111}, {19459, 66609}, {21167, 54334}, {22253, 40281}, {30262, 54003}, {31829, 39871}, {33523, 37636}, {33748, 40673}, {34005, 48881}, {34381, 66744}, {36990, 41579}, {37669, 58550}, {39807, 50567}, {39874, 40647}, {39878, 65423}, {40132, 44084}, {40280, 44273}, {41482, 41714}, {43273, 66753}, {43614, 64031}, {44495, 63123}, {45016, 58881}, {45186, 61044}, {45198, 51374}, {46442, 64035}, {48910, 63688}, {51171, 64854}, {51994, 52842}, {54994, 55610}, {55616, 63414}, {58480, 59543}, {61676, 61723}
X(66736) = reflection of X(i) in X(j) for these {i,j}: {2979, 10519}, {5032, 16226}, {5093, 5946}, {14912, 9730}, {15531, 14912}, {25321, 16223}, {53023, 16776}, {54334, 21167}, {66750, 2}, {66755, 64100}
X(66736) = perspector of circumconic {{A, B, C, X(59039), X(65271)}}
X(66736) = pole of line {6776, 7396} with respect to the Jerabek hyperbola
X(66736) = pole of line {3815, 26216} with respect to the Kiepert hyperbola
X(66736) = pole of line {182, 6676} with respect to the Stammler hyperbola
X(66736) = pole of line {183, 7503} with respect to the Wallace hyperbola
X(66736) = intersection, other than A, B, C, of circumconics {{A, B, C, X(182), X(61646)}}, {{A, B, C, X(262), X(41890)}}, {{A, B, C, X(263), X(14542)}}, {{A, B, C, X(42313), X(57648)}}
X(66736) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 511, 66750}, {3, 6403, 12220}, {6, 17928, 66730}, {69, 19161, 5889}, {141, 37473, 41716}, {141, 41716, 11444}, {185, 14913, 5921}, {511, 10519, 2979}, {1350, 64023, 64050}, {1351, 66607, 26206}, {1843, 52520, 20}, {3589, 40929, 44439}, {9730, 34382, 14912}, {9822, 12294, 3091}, {10574, 12272, 6776}, {12283, 66606, 48906}, {14912, 34382, 15531}, {66730, 66731, 6}
X(66737) lies on these lines: {2, 10182}, {3, 54}, {4, 6689}, {5, 41482}, {20, 3574}, {24, 11451}, {30, 6030}, {35, 10082}, {36, 10066}, {40, 12266}, {51, 7488}, {74, 11597}, {110, 5891}, {140, 6288}, {154, 7503}, {182, 10298}, {185, 41726}, {186, 5892}, {371, 19095}, {372, 19096}, {376, 39242}, {378, 15080}, {381, 34513}, {539, 3524}, {548, 20424}, {549, 9140}, {550, 8254}, {567, 53863}, {578, 62187}, {631, 1209}, {826, 53383}, {930, 27196}, {973, 15043}, {1151, 49257}, {1152, 49256}, {1176, 2781}, {1385, 7979}, {1511, 5888}, {1587, 8995}, {1588, 13986}, {1614, 18435}, {1656, 22804}, {1658, 43651}, {1899, 2888}, {2070, 13364}, {2071, 22352}, {2917, 17928}, {3060, 37506}, {3091, 32340}, {3153, 58447}, {3431, 41462}, {3515, 11576}, {3516, 52093}, {3518, 14845}, {3519, 15712}, {3520, 14855}, {3522, 12242}, {3526, 13565}, {3530, 21230}, {3543, 35268}, {3627, 64486}, {3796, 10606}, {3819, 13367}, {4993, 14635}, {5054, 61702}, {5085, 15078}, {5092, 5622}, {5171, 12208}, {5204, 18984}, {5217, 13079}, {5432, 12946}, {5433, 12956}, {5562, 9706}, {5640, 14070}, {5643, 7575}, {5907, 44108}, {5943, 37940}, {5944, 34864}, {5965, 10519}, {6000, 14118}, {6145, 20376}, {6152, 32534}, {6242, 11802}, {6247, 32359}, {6276, 45553}, {6277, 45552}, {6286, 59325}, {6636, 11430}, {6676, 50435}, {6684, 12785}, {6688, 44802}, {6699, 33565}, {6800, 15305}, {6815, 32346}, {7280, 47378}, {7356, 59319}, {7496, 15020}, {7502, 14805}, {7509, 11449}, {7514, 11464}, {7526, 11455}, {7527, 32062}, {7550, 51393}, {7558, 12278}, {7730, 15045}, {7987, 9905}, {7998, 47391}, {8718, 14130}, {8882, 53038}, {9703, 33533}, {9705, 11591}, {9707, 15056}, {9729, 12226}, {9818, 26881}, {9920, 66607}, {9972, 55687}, {9977, 20190}, {10115, 10625}, {10125, 43866}, {10184, 37846}, {10267, 13122}, {10269, 13121}, {10274, 10984}, {10282, 43614}, {10299, 12325}, {10304, 61659}, {10545, 47485}, {10564, 44832}, {10628, 15055}, {10733, 15760}, {10902, 49191}, {11003, 63425}, {11189, 32383}, {11271, 61138}, {11424, 38435}, {11425, 64050}, {11440, 64049}, {11444, 19357}, {11803, 62069}, {11804, 12121}, {11805, 20127}, {11808, 46865}, {12006, 32196}, {12017, 55576}, {12038, 61772}, {12100, 50708}, {12107, 38848}, {12234, 43603}, {12300, 35477}, {13160, 32330}, {13169, 51737}, {13336, 21844}, {13339, 15646}, {13363, 37922}, {13391, 13482}, {13394, 52069}, {13431, 61787}, {13445, 18570}, {13620, 15018}, {14389, 44239}, {14641, 35478}, {14810, 19150}, {15019, 64095}, {15036, 15089}, {15052, 44110}, {15067, 43572}, {15246, 51394}, {15331, 37471}, {15605, 61804}, {15805, 35479}, {16163, 36853}, {16625, 34566}, {16835, 23060}, {16836, 37941}, {17502, 64107}, {17701, 44321}, {17704, 21660}, {17824, 66608}, {18390, 52300}, {18396, 66377}, {19153, 66750}, {20584, 55856}, {20585, 61789}, {22051, 33923}, {22115, 44324}, {22467, 23358}, {26937, 32377}, {30531, 62104}, {32064, 32354}, {32065, 32382}, {32334, 66729}, {32344, 66730}, {32350, 66610}, {32365, 34007}, {32368, 66731}, {32370, 66605}, {32378, 66593}, {32384, 66611}, {32385, 66612}, {34577, 43821}, {34664, 61606}, {35450, 48669}, {35473, 52417}, {35497, 43581}, {37475, 38446}, {37514, 38438}, {37561, 49192}, {37955, 43804}, {41724, 44201}, {43602, 63392}, {43809, 44515}, {44935, 66370}, {45186, 58489}, {46853, 54157}, {54201, 61792}, {63629, 66733}
X(66737) = midpoint of X(i) and X(j) for these {i,j}: {154, 32345}, {376, 61715}, {7691, 55038}, {10274, 11204}, {32064, 32354}, {35450, 48669}
X(66737) = reflection of X(i) in X(j) for these {i,j}: {154, 32391}, {6145, 23332}, {15801, 55038}, {23332, 20376}, {55038, 54}
X(66737) = isogonal conjugate of X(38305)
X(66737) = pole of line {323, 7691} with respect to the Jerabek hyperbola
X(66737) = pole of line {5, 32223} with respect to the Stammler hyperbola
X(66737) = pole of line {311, 38305} with respect to the Wallace hyperbola
X(66737) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(54), X(64660)}}, {{A, B, C, X(7691), X(65090)}}, {{A, B, C, X(25044), X(57713)}}
X(66737) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 10610, 54}, {3, 54, 7691}, {3, 61134, 43601}, {54, 1154, 55038}, {154, 7503, 66756}, {182, 10298, 15053}, {631, 12254, 1209}, {1154, 55038, 15801}, {2888, 3523, 32348}, {3526, 48675, 13565}, {5944, 34864, 43598}, {7502, 14805, 15033}, {7502, 15033, 15107}, {7691, 55038, 1154}, {10619, 32348, 2888}, {10984, 11204, 66747}, {14118, 52525, 15062}, {15331, 37471, 43597}, {18475, 35921, 110}, {32340, 32396, 3091}, {37476, 38444, 15043}, {37506, 44837, 3060}
X(66738) lies on the Thomson-Gibert-Moses hyperbola and on these lines: {2, 61744}, {3, 22497}, {6, 2929}, {20, 22970}, {110, 185}, {140, 22808}, {154, 15072}, {354, 66741}, {631, 22834}, {3091, 22538}, {3167, 5890}, {3523, 22581}, {5544, 22550}, {5644, 13363}, {5646, 7503}, {5648, 51136}, {5654, 66749}, {5655, 44273}, {5888, 14118}, {6030, 37941}, {6815, 22555}, {7395, 61774}, {9729, 21652}, {10574, 22534}, {11456, 48670}, {11598, 15062}, {12022, 15035}, {13160, 23308}, {15020, 22828}, {15131, 35904}, {16222, 43809}, {17837, 66608}, {18911, 22533}, {18936, 66729}, {18950, 61713}, {19198, 61111}, {19460, 66609}, {19472, 66610}, {22535, 66606}, {22647, 53050}, {22816, 34007}, {22840, 66605}, {22954, 66593}, {25406, 61683}, {35264, 54039}, {43586, 45019}, {49109, 51033}, {51394, 65402}, {55038, 66739}, {63690, 66733}, {66614, 66751}
X(66738) = pole of line {13567, 44241} with respect to the Stammler hyperbola
X(66738) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 22750, 22528}, {2929, 22966, 57648}, {22529, 57648, 34148}, {22538, 22973, 3091}, {22955, 22962, 43616}
X(66739) lies on these lines: {2, 568}, {3, 6242}, {5, 12219}, {20, 6152}, {52, 1173}, {54, 5504}, {140, 22815}, {195, 17928}, {323, 389}, {373, 43581}, {511, 7691}, {539, 5890}, {631, 12606}, {973, 11002}, {1209, 5448}, {1493, 37481}, {2888, 11411}, {2917, 6800}, {3043, 43809}, {3091, 9827}, {3146, 11576}, {3519, 6102}, {3521, 5663}, {3523, 12363}, {3574, 5640}, {5050, 32333}, {5189, 66604}, {5643, 16625}, {5965, 52989}, {6153, 14915}, {6255, 66605}, {6286, 66593}, {6644, 52417}, {6815, 12325}, {7356, 66610}, {7395, 54202}, {7503, 12307}, {7592, 18882}, {7998, 32338}, {9729, 21660}, {9972, 11579}, {10574, 10619}, {10610, 40280}, {10628, 15030}, {12234, 34148}, {12242, 15043}, {12254, 61136}, {12291, 66606}, {12316, 66607}, {12319, 43816}, {12383, 13630}, {12965, 66611}, {12971, 66612}, {13160, 21230}, {13754, 66751}, {15032, 25714}, {15055, 32401}, {15072, 18400}, {16836, 37941}, {17824, 35259}, {17846, 66608}, {18946, 66729}, {19150, 66730}, {19207, 61111}, {19468, 66609}, {25406, 44668}, {32377, 34799}, {32379, 35265}, {32423, 38323}, {32609, 47360}, {33884, 41590}, {36853, 45237}, {37645, 65094}, {41465, 63727}, {41578, 66752}, {43815, 63063}, {50708, 66614}, {55038, 66738}, {63693, 66733}
X(66739) = midpoint of X(i) and X(j) for these {i,j}: {11459, 32339}
X(66739) = reflection of X(i) in X(j) for these {i,j}: {54, 9730}, {9730, 11802}, {11459, 1209}, {36853, 45237}, {41726, 11459}
X(66739) = pole of line {567, 58447} with respect to the Stammler hyperbola
X(66739) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 6242, 12226}, {1209, 32339, 41726}, {9827, 12300, 3091}, {10574, 12280, 10619}
X(66740) lies on these lines: {2, 98}, {3, 32234}, {6, 10733}, {20, 5095}, {30, 11416}, {67, 15057}, {69, 15051}, {74, 44285}, {113, 39874}, {140, 32272}, {193, 16163}, {399, 26206}, {511, 66734}, {524, 44280}, {575, 15044}, {631, 32275}, {895, 8550}, {1177, 52525}, {1353, 12121}, {1503, 52699}, {1511, 39899}, {1986, 12220}, {2777, 25321}, {2781, 15072}, {2836, 66741}, {2854, 66736}, {2930, 17928}, {3091, 32250}, {3523, 32257}, {3534, 44573}, {3564, 15035}, {3620, 48378}, {5050, 14644}, {5181, 15020}, {5648, 51136}, {5663, 66750}, {5890, 14984}, {6403, 14708}, {6593, 41737}, {6698, 10541}, {6815, 32255}, {7503, 16010}, {7687, 51171}, {7722, 9967}, {7984, 39870}, {9729, 32260}, {10113, 53091}, {10574, 32248}, {10706, 11456}, {10752, 46264}, {10819, 39894}, {10820, 39893}, {11061, 15054}, {11574, 12219}, {11645, 34155}, {11720, 39878}, {12022, 50979}, {12227, 63063}, {12228, 44287}, {12584, 22467}, {13160, 25328}, {13169, 51737}, {14094, 34664}, {14118, 32305}, {14912, 17702}, {15021, 32247}, {15025, 32274}, {15034, 63700}, {15036, 48876}, {15043, 32246}, {15055, 25406}, {15303, 36201}, {15471, 62288}, {18440, 64101}, {19110, 49228}, {19111, 49229}, {19140, 63069}, {20304, 55705}, {20774, 53161}, {23061, 54215}, {23327, 51023}, {32241, 66729}, {32245, 34148}, {32249, 66606}, {32251, 66609}, {32254, 66607}, {32258, 61111}, {32259, 66610}, {32273, 33749}, {32276, 66608}, {32277, 66605}, {32286, 66593}, {32291, 66611}, {32292, 66612}, {32599, 37978}, {34128, 55697}, {34319, 52069}, {34380, 38723}, {37643, 64606}, {37941, 64802}, {38726, 63428}, {38851, 43815}, {41586, 54216}, {41595, 64196}, {44273, 64182}, {44882, 64104}, {48662, 61574}, {50974, 66735}, {63694, 66733}, {64880, 66742}
X(66740) = midpoint of X(i) and X(j) for these {i,j}: {25321, 66755}
X(66740) = reflection of X(i) in X(j) for these {i,j}: {5622, 11179}, {9140, 5622}, {10706, 45016}, {14644, 5050}, {15055, 25406}
X(66740) = pole of line {325, 46982} with respect to the Wallace hyperbola
X(66740) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 32234, 32244}, {542, 11179, 5622}, {542, 5622, 9140}, {6593, 64080, 41737}, {8550, 32233, 895}, {25321, 66755, 2777}, {32250, 32300, 3091}
X(66741) lies on these lines: {1, 17928}, {2, 392}, {3, 11396}, {8, 6815}, {10, 13160}, {20, 1829}, {40, 5314}, {65, 66605}, {186, 24301}, {354, 66738}, {389, 64715}, {515, 34668}, {516, 52069}, {518, 66736}, {912, 5890}, {952, 66614}, {960, 41733}, {962, 6816}, {971, 61726}, {1074, 1845}, {1385, 22467}, {1386, 66730}, {1482, 66607}, {1824, 6840}, {1828, 37437}, {1871, 6895}, {1872, 5046}, {1902, 3091}, {1905, 3100}, {2093, 62770}, {2771, 66734}, {2836, 66740}, {3057, 66593}, {3523, 37613}, {3576, 15078}, {3579, 14118}, {3827, 25406}, {4663, 66731}, {5090, 7544}, {5690, 7399}, {5731, 44662}, {5902, 21160}, {6001, 15072}, {6197, 37231}, {6803, 12245}, {6828, 9895}, {6986, 41340}, {6987, 20243}, {7395, 12702}, {7549, 37585}, {7592, 9928}, {7968, 66612}, {7969, 66611}, {9590, 51692}, {9825, 12135}, {10202, 15035}, {11363, 44802}, {12259, 26879}, {12610, 26167}, {12688, 41591}, {15043, 44547}, {17441, 18444}, {17502, 37941}, {18480, 34007}, {21484, 25413}, {24474, 37275}, {28174, 34664}, {31730, 34005}, {34148, 64722}, {34381, 66742}, {37277, 41723}, {40660, 52525}, {41581, 66752}, {41869, 63698}, {45735, 51696}, {64022, 66608}, {64040, 66609}
X(66741) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 41722, 64039}
X(66742) lies on these lines: {2, 3167}, {3, 20080}, {4, 1353}, {5, 63123}, {6, 3091}, {20, 185}, {25, 54219}, {30, 63027}, {52, 12283}, {69, 3523}, {98, 62988}, {110, 63081}, {141, 55703}, {146, 5095}, {147, 5304}, {153, 51198}, {155, 63069}, {182, 3620}, {287, 11348}, {317, 15258}, {373, 14826}, {376, 34380}, {381, 63000}, {382, 61624}, {389, 12272}, {390, 39900}, {524, 10304}, {542, 3839}, {568, 7487}, {575, 40330}, {576, 50688}, {597, 61912}, {599, 15721}, {631, 11898}, {895, 64183}, {962, 39878}, {1181, 40318}, {1350, 11008}, {1351, 3146}, {1352, 5056}, {1370, 54218}, {1503, 1992}, {1570, 43448}, {1587, 39894}, {1588, 39893}, {1692, 37689}, {1899, 63092}, {1993, 7396}, {1994, 7378}, {2071, 53019}, {2996, 54873}, {3089, 13292}, {3090, 53091}, {3098, 43814}, {3424, 60095}, {3448, 32234}, {3522, 48906}, {3525, 55705}, {3528, 55624}, {3529, 44456}, {3534, 50986}, {3545, 59399}, {3546, 43588}, {3547, 32358}, {3580, 64058}, {3589, 46935}, {3600, 39901}, {3618, 7486}, {3619, 53093}, {3629, 49135}, {3630, 53094}, {3631, 10541}, {3785, 21163}, {3832, 18440}, {4208, 15988}, {4232, 35265}, {5059, 64067}, {5066, 51180}, {5067, 51732}, {5068, 18583}, {5092, 61798}, {5334, 33517}, {5335, 33518}, {5395, 6248}, {5476, 61958}, {5480, 61982}, {5640, 7398}, {5654, 11232}, {5731, 34379}, {5847, 59417}, {5890, 34382}, {5965, 10519}, {5984, 38383}, {5999, 63091}, {6054, 61304}, {6144, 44882}, {6193, 9730}, {6194, 9764}, {6515, 6800}, {6623, 18445}, {6995, 11002}, {7379, 62997}, {7385, 62985}, {7390, 62989}, {7407, 37677}, {7488, 19459}, {7500, 16981}, {7592, 64756}, {7710, 14614}, {7812, 46034}, {8549, 20079}, {8584, 51023}, {8681, 66736}, {8703, 51179}, {9027, 53021}, {9544, 19128}, {9734, 39647}, {9744, 37667}, {9748, 63038}, {9936, 10170}, {10250, 55038}, {10296, 47277}, {10516, 59373}, {11001, 50962}, {11003, 19131}, {11004, 31099}, {11061, 64103}, {11171, 32990}, {11177, 22664}, {11180, 14561}, {11206, 61658}, {11411, 37506}, {11427, 45303}, {11433, 35259}, {11442, 63030}, {11477, 14927}, {11482, 39884}, {11645, 62037}, {11806, 32249}, {12017, 61820}, {12100, 51175}, {12221, 45407}, {12222, 45406}, {13748, 49056}, {13749, 49057}, {13862, 63005}, {14136, 51200}, {14137, 51203}, {14484, 60280}, {14683, 45237}, {14848, 61954}, {14913, 15043}, {14984, 66734}, {14986, 39873}, {15022, 18358}, {15081, 32272}, {15533, 21167}, {15534, 29181}, {15589, 51373}, {15640, 29012}, {15697, 43273}, {15698, 50978}, {15708, 55695}, {15717, 48876}, {15759, 51183}, {17538, 55584}, {17558, 63070}, {17578, 21850}, {17809, 66588}, {17928, 19588}, {18909, 37497}, {18916, 63703}, {18935, 37444}, {19119, 59349}, {19122, 43844}, {19924, 58204}, {20086, 50699}, {20423, 62007}, {21356, 61844}, {21649, 32248}, {21734, 55643}, {22165, 51139}, {23291, 34986}, {29317, 62166}, {30769, 37645}, {31670, 50691}, {32064, 63094}, {32284, 64025}, {32366, 41716}, {32455, 36990}, {32603, 34469}, {33181, 39141}, {33699, 51172}, {33749, 55707}, {33750, 51178}, {33878, 50693}, {34381, 66741}, {34507, 55706}, {35287, 38225}, {36757, 63032}, {36758, 63033}, {37174, 41204}, {37182, 63042}, {37200, 41374}, {37488, 38435}, {37957, 47279}, {38072, 63062}, {38317, 61906}, {40107, 55693}, {40341, 55673}, {40673, 66750}, {40926, 63065}, {41149, 51024}, {41590, 54334}, {41617, 54216}, {41624, 53015}, {41672, 50641}, {43465, 51206}, {43466, 51207}, {43537, 60198}, {43621, 55718}, {44665, 66749}, {44802, 63183}, {46451, 52238}, {46818, 52301}, {47352, 61897}, {47354, 61938}, {48874, 62124}, {50954, 61926}, {50961, 51141}, {50965, 51187}, {50966, 62099}, {50967, 55603}, {50977, 55686}, {50983, 50990}, {50984, 50989}, {50985, 62054}, {50987, 61833}, {50992, 51737}, {50993, 51138}, {51027, 63124}, {51173, 61987}, {51174, 51177}, {51181, 61843}, {51182, 62090}, {51184, 61797}, {51214, 63115}, {51216, 63125}, {51537, 63073}, {52016, 66730}, {52987, 58195}, {53346, 62595}, {54170, 59411}, {54280, 66684}, {55580, 62125}, {55589, 62112}, {55604, 62092}, {55614, 58193}, {55616, 62084}, {55629, 62078}, {55649, 62067}, {55654, 58188}, {55660, 58186}, {55670, 61783}, {55692, 61814}, {55701, 61848}, {55711, 63119}, {55722, 64196}, {55724, 62152}, {61113, 61136}, {62999, 66314}, {63001, 66313}, {63034, 64711}, {63702, 66733}, {64880, 66740}
X(66742) = midpoint of X(i) and X(j) for these {i,j}: {193, 66755}, {5093, 39899}, {6144, 55591}, {14912, 50974}
X(66742) = reflection of X(i) in X(j) for these {i,j}: {2, 14912}, {4, 5093}, {20, 66755}, {69, 5085}, {1352, 39561}, {3839, 5032}, {5085, 8550}, {5093, 1353}, {9742, 33684}, {10519, 11179}, {11160, 10519}, {11180, 14561}, {15533, 21167}, {18440, 38136}, {31670, 55717}, {34507, 55706}, {50955, 38110}, {51023, 53023}, {51538, 5102}, {53023, 8584}, {54170, 59411}, {55591, 44882}, {55610, 48906}, {62174, 25406}, {63428, 55610}, {66750, 40673}, {66755, 6776}
X(66742) = pole of line {22159, 59933} with respect to the cosine circle
X(66742) = pole of line {16229, 59549} with respect to the polar circle
X(66742) = pole of line {20, 37637} with respect to the Kiepert hyperbola
X(66742) = pole of line {1351, 9306} with respect to the Stammler hyperbola
X(66742) = pole of line {647, 44552} with respect to the Steiner circumellipse
X(66742) = pole of line {44565, 59652} with respect to the Steiner inellipse
X(66742) = pole of line {1007, 1975} with respect to the Wallace hyperbola
X(66742) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3091), X(32831)}}, {{A, B, C, X(7612), X(9307)}}, {{A, B, C, X(9289), X(15077)}}, {{A, B, C, X(9292), X(14528)}}, {{A, B, C, X(40819), X(54873)}}
X(66742) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14912, 33748}, {4, 1353, 51170}, {6, 5921, 3091}, {182, 3620, 10303}, {193, 6776, 20}, {193, 66755, 511}, {511, 6776, 66755}, {524, 25406, 62174}, {542, 5032, 3839}, {1351, 39874, 3146}, {1352, 51171, 5056}, {1353, 39899, 4}, {1503, 5102, 51538}, {1992, 51538, 5102}, {3146, 63061, 1351}, {3448, 63082, 52284}, {3564, 33684, 9742}, {3564, 38110, 50955}, {3629, 64080, 51212}, {5965, 10519, 11160}, {5965, 11179, 10519}, {6776, 63722, 193}, {11160, 11179, 15692}, {11180, 63127, 61936}, {11245, 63174, 2}, {12007, 15069, 3618}, {14912, 50974, 3564}, {14927, 62996, 11477}, {15534, 51136, 64014}, {15534, 64014, 51028}, {15640, 54132, 51211}, {25406, 62174, 10304}, {39878, 51196, 962}, {43273, 54174, 15697}, {43273, 63064, 54174}, {46473, 46476, 63534}, {48906, 63428, 3522}, {51028, 64014, 62160}, {51140, 54132, 63117}, {51178, 54173, 63118}, {55705, 61545, 3525}
X(66743) lies on these lines: {5, 51}, {27, 916}, {440, 511}, {469, 3060}, {674, 2328}, {1351, 16058}, {8021, 26893}, {11435, 46882}, {13754, 15762}, {14053, 56000}, {16290, 54356}
X(66743) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1305, 2616}, {2190, 28786}
X(66743) = X(i)-Dao conjugate of X(j) for these {i, j}: {5, 28786}
X(66743) = pole of line {54, 28786} with respect to the Stammler hyperbola
X(66743) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(343), X(56000)}}, {{A, B, C, X(1154), X(8676)}}, {{A, B, C, X(2352), X(39271)}}
X(66744) lies on these lines: {2, 912}, {7, 6835}, {20, 14054}, {65, 9803}, {72, 6986}, {78, 37561}, {104, 34772}, {411, 1071}, {517, 15072}, {518, 5731}, {936, 35010}, {938, 1858}, {942, 6828}, {1210, 11570}, {1445, 18397}, {2771, 52269}, {2801, 60932}, {3868, 5758}, {3869, 64324}, {5693, 54392}, {5728, 6912}, {5777, 6991}, {5884, 6734}, {5889, 18732}, {5904, 35202}, {6001, 9812}, {6245, 39772}, {6831, 24475}, {6860, 66250}, {6894, 40263}, {6895, 24474}, {6909, 16465}, {6915, 9964}, {6945, 64157}, {6974, 11020}, {10884, 60974}, {11520, 64334}, {11551, 31803}, {12649, 64021}, {15094, 31272}, {15528, 27385}, {17502, 64107}, {20846, 24467}, {22467, 66761}, {26877, 35979}, {34381, 66736}, {37301, 37700}, {41717, 64662}, {50695, 64358}, {59387, 61663}, {66002, 66016}
X(66744) = reflection of X(i) in X(j) for these {i,j}: {41717, 64662}, {59387, 61663}
X(66744) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {18444, 60970, 6986}
X(66745) lies on these lines: {5, 51}, {21, 26878}, {27, 40263}, {28, 912}, {29, 24474}, {72, 36011}, {511, 21530}, {859, 37700}, {1071, 52012}, {1351, 11108}, {1780, 41538}, {1817, 13369}, {3060, 5142}, {3157, 54407}, {3868, 37168}, {3940, 29531}, {5044, 64544}, {5722, 18178}, {5889, 37372}, {6827, 64048}, {6883, 36747}, {6985, 37489}, {8021, 26921}, {8757, 46883}, {11374, 18165}, {12528, 31900}, {13754, 15763}, {14054, 30733}, {14953, 64358}, {37532, 52889}, {56001, 66760}
X(66745) = X(i)-isoconjugate-of-X(j) for these {i, j}: {54, 23604}, {2148, 43675}, {2190, 28787}, {2616, 13397}, {2623, 65247}
X(66745) = X(i)-Dao conjugate of X(j) for these {i, j}: {5, 28787}, {216, 43675}
X(66745) = pole of line {54, 10202} with respect to the Stammler hyperbola
X(66745) = intersection, other than A, B, C, of circumconics {{A, B, C, X(5), X(30733)}}, {{A, B, C, X(52), X(41332)}}, {{A, B, C, X(343), X(40571)}}, {{A, B, C, X(1154), X(15313)}}, {{A, B, C, X(5562), X(41608)}}, {{A, B, C, X(37579), X(39271)}}
X(66745) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30733, 40571, 41608}
X(66746) lies on these lines: {5, 51}, {141, 37355}, {442, 25977}, {468, 59632}, {469, 48875}, {511, 34119}, {1211, 37370}, {1654, 2905}, {1790, 61694}, {1899, 36477}, {2328, 47100}, {3060, 57525}, {3136, 3580}, {5224, 16058}, {6822, 17238}, {8731, 41809}, {9956, 25970}, {13567, 47514}, {14873, 41329}, {16056, 25000}, {21243, 48888}, {33586, 36663}, {37636, 47513}
X(66746) = X(i)-isoconjugate-of-X(j) for these {i, j}: {54, 13610}, {95, 18757}, {2148, 6625}, {2167, 2248}, {2616, 53628}, {2623, 65257}, {51865, 54034}
X(66746) = X(i)-Dao conjugate of X(j) for these {i, j}: {216, 6625}, {21196, 8901}, {40588, 2248}
X(66746) = X(i)-Ceva conjugate of X(j) for these {i, j}: {21011, 5}
X(66746) = pole of line {54, 37510} with respect to the Stammler hyperbola
X(66746) = intersection, other than A, B, C, of circumconics {{A, B, C, X(5), X(4213)}}, {{A, B, C, X(52), X(18755)}}, {{A, B, C, X(343), X(1654)}}, {{A, B, C, X(2905), X(17167)}}, {{A, B, C, X(5562), X(22139)}}, {{A, B, C, X(51857), X(59197)}}
X(66746) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1654, 4213, 22139}
X(66747) lies on these lines: {2, 5656}, {3, 9544}, {4, 12006}, {6, 37944}, {20, 52}, {30, 11002}, {51, 3146}, {110, 17853}, {143, 49138}, {154, 22467}, {182, 13445}, {185, 2979}, {186, 7712}, {373, 61954}, {376, 1154}, {389, 5059}, {511, 62120}, {548, 54048}, {568, 11001}, {631, 13491}, {1204, 43606}, {1216, 62067}, {1597, 15018}, {1994, 21312}, {2071, 11003}, {2393, 66755}, {2781, 25321}, {3060, 15683}, {3090, 64030}, {3091, 5892}, {3153, 4846}, {3431, 34152}, {3448, 44573}, {3523, 5891}, {3524, 5663}, {3525, 18439}, {3528, 34783}, {3529, 13630}, {3533, 45959}, {3534, 45956}, {3543, 9730}, {3544, 32137}, {3545, 40280}, {3567, 12002}, {3819, 12111}, {3832, 9729}, {3839, 14845}, {3854, 13474}, {3917, 62063}, {5056, 12290}, {5068, 6688}, {5446, 49140}, {5447, 58188}, {5462, 50688}, {5562, 21734}, {5640, 50687}, {5644, 11403}, {5650, 61812}, {5876, 10299}, {5889, 36987}, {5907, 44299}, {5943, 61985}, {5946, 15682}, {6101, 62092}, {6102, 17538}, {6145, 15740}, {6243, 62127}, {6636, 10605}, {6800, 37941}, {7503, 35450}, {7525, 43807}, {7729, 11206}, {7998, 15705}, {7999, 61788}, {8703, 54047}, {9716, 43574}, {9781, 50691}, {9786, 12087}, {9971, 14927}, {10095, 62021}, {10110, 50690}, {10170, 15721}, {10263, 62147}, {10274, 10984}, {10303, 12162}, {10304, 13754}, {10606, 14118}, {10625, 62110}, {10627, 62084}, {11202, 52525}, {11402, 11413}, {11412, 62097}, {11438, 37913}, {11439, 15022}, {11444, 61791}, {11449, 44108}, {11454, 22352}, {11459, 15692}, {11591, 61138}, {11793, 61804}, {12086, 66609}, {13346, 55038}, {13363, 41099}, {13382, 62124}, {13391, 62130}, {13451, 62040}, {13595, 37475}, {13620, 37487}, {14157, 37470}, {14449, 62143}, {14683, 17855}, {14831, 62129}, {15024, 61982}, {15043, 17578}, {15056, 17704}, {15058, 55864}, {15060, 15702}, {15062, 37515}, {15067, 15698}, {15080, 21663}, {15644, 62102}, {15751, 45979}, {16194, 61936}, {16226, 62032}, {16261, 61924}, {16386, 48906}, {16881, 49137}, {16981, 62148}, {17854, 54037}, {17928, 32063}, {18436, 21735}, {18475, 35493}, {18911, 52403}, {18931, 66378}, {18950, 37201}, {19708, 23039}, {21849, 62168}, {21969, 62145}, {23291, 66720}, {31829, 34799}, {32142, 61787}, {33703, 37481}, {33879, 61830}, {35237, 37945}, {35473, 52416}, {35513, 37644}, {37484, 62113}, {40670, 51537}, {41589, 64726}, {42160, 61698}, {42161, 61697}, {44870, 61914}, {45186, 62152}, {45958, 60781}, {46847, 61944}, {47090, 59771}, {49670, 52000}, {50689, 64854}, {55286, 62061}, {58470, 62018}, {58531, 62016}, {61128, 61752}, {62140, 66748}, {63714, 66733}
X(66747) = midpoint of X(i) and X(j) for these {i,j}: {15072, 20791}, {16981, 62148}, {62140, 66748}
X(66747) = reflection of X(i) in X(j) for these {i,j}: {2, 20791}, {3545, 40280}, {3839, 15045}, {20791, 64100}, {33884, 10304}, {50687, 5640}, {54047, 8703}
X(66747) = anticomplement of X(66756)
X(66747) = X(i)-Dao conjugate of X(j) for these {i, j}: {66756, 66756}
X(66747) = pole of line {382, 37480} with respect to the Stammler hyperbola
X(66747) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 5890, 62187}, {389, 52093, 5059}, {3567, 14641, 49135}, {5890, 14855, 20}, {5892, 10575, 11455}, {6000, 64100, 20791}, {9729, 32062, 11451}, {10304, 13754, 33884}, {10574, 46850, 3146}, {10575, 66606, 3091}, {10984, 11204, 66737}, {11451, 12279, 32062}, {11451, 32062, 3832}, {13474, 15028, 3854}, {14855, 40647, 5890}, {14915, 15045, 3839}, {15072, 20791, 6000}, {15072, 64100, 2}, {15072, 66753, 15305}, {15305, 66753, 16836}, {16836, 64100, 66753}, {17704, 64029, 15056}, {64100, 66758, 15072}
X(66748) lies on these lines: {3, 6}, {30, 16981}, {51, 19709}, {110, 41448}, {143, 3851}, {185, 49134}, {373, 15703}, {381, 11002}, {382, 45957}, {1154, 5055}, {1216, 55866}, {1657, 14449}, {1993, 32609}, {2979, 15701}, {3060, 3830}, {3426, 13417}, {3526, 16881}, {3534, 61136}, {3567, 5070}, {3580, 7579}, {3819, 61857}, {3843, 5889}, {3917, 61843}, {5054, 33884}, {5073, 6102}, {5446, 62008}, {5462, 55860}, {5562, 61919}, {5650, 61864}, {5876, 61968}, {5890, 15681}, {5891, 61925}, {5892, 61829}, {5943, 61901}, {5946, 7998}, {6000, 62027}, {6101, 55863}, {6241, 16982}, {6242, 55578}, {6800, 15087}, {7395, 54202}, {7506, 12316}, {7574, 37644}, {7575, 11004}, {9703, 64095}, {9781, 61955}, {10095, 61935}, {10113, 11564}, {10170, 14531}, {10254, 41588}, {10255, 31802}, {10263, 15072}, {10574, 13421}, {10620, 64099}, {10627, 61815}, {11412, 13363}, {11444, 61903}, {11451, 61893}, {11591, 61923}, {12006, 61818}, {12111, 61991}, {12160, 13621}, {12902, 40909}, {13142, 18565}, {13364, 61931}, {13391, 15689}, {13491, 62053}, {13630, 62121}, {13754, 14269}, {14070, 55039}, {14831, 14915}, {15019, 33533}, {15026, 61892}, {15030, 44863}, {15043, 61832}, {15045, 15707}, {15054, 33887}, {15056, 58533}, {15060, 61950}, {15082, 61872}, {15305, 61996}, {15685, 21969}, {15693, 62188}, {15718, 54042}, {15723, 44324}, {18435, 21849}, {18436, 61953}, {18917, 51538}, {20791, 62080}, {21308, 58891}, {21852, 61667}, {25330, 54131}, {26864, 37923}, {31834, 61946}, {32062, 35401}, {32608, 39522}, {34417, 63720}, {34783, 62023}, {35259, 50461}, {36852, 61574}, {40647, 62142}, {45186, 49139}, {58192, 63414}, {58531, 61911}, {61849, 64854}, {61882, 63632}, {62016, 64025}, {62105, 64050}, {62116, 64100}, {62131, 64051}, {62140, 66747}
X(66748) = midpoint of X(i) and X(j) for these {i,j}: {5889, 16261}, {61136, 62187}
X(66748) = reflection of X(i) in X(j) for these {i,j}: {381, 11002}, {3534, 61136}, {5055, 13321}, {7998, 5946}, {23039, 373}, {54047, 15045}, {54048, 7998}, {62140, 66747}
X(66748) = pole of line {184, 19709} with respect to the Jerabek hyperbola
X(66748) = pole of line {2, 11935} with respect to the Stammler hyperbola
X(66748) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1154, 13321, 5055}, {5946, 54048, 15694}, {15045, 54047, 15707}
X(66749) lies on these lines: {2, 32620}, {3, 41465}, {4, 4846}, {5, 18931}, {20, 37506}, {30, 5050}, {69, 50008}, {113, 40132}, {146, 18489}, {373, 18537}, {376, 39242}, {381, 66752}, {541, 3545}, {546, 3426}, {568, 63709}, {569, 3529}, {631, 4549}, {1514, 3066}, {1531, 54012}, {1539, 10293}, {1597, 38136}, {2777, 14561}, {2888, 11411}, {3090, 4550}, {3091, 11472}, {3146, 35237}, {3521, 18431}, {3523, 35254}, {3547, 13568}, {3618, 49669}, {3619, 64105}, {3627, 11820}, {3830, 45298}, {3845, 44750}, {3855, 43817}, {5654, 66738}, {5663, 18420}, {5878, 46847}, {6090, 66614}, {6225, 7528}, {6643, 16836}, {6699, 62960}, {6800, 18533}, {6803, 10170}, {6815, 11459}, {6816, 45073}, {6997, 16261}, {7401, 15030}, {7403, 12250}, {8703, 53780}, {9812, 10273}, {9815, 22802}, {10605, 45303}, {10938, 13630}, {11002, 44440}, {11179, 23048}, {11206, 38321}, {12233, 37497}, {12363, 13340}, {13754, 66736}, {14118, 52019}, {14389, 35485}, {14790, 15740}, {14855, 44442}, {14912, 17702}, {14927, 64098}, {15081, 34802}, {15682, 51993}, {16051, 37470}, {16111, 35483}, {18531, 40280}, {18909, 45956}, {18916, 34007}, {18918, 44263}, {33534, 51163}, {35481, 63085}, {38323, 66735}, {39588, 66755}, {40330, 64097}, {44665, 66742}, {46430, 66734}, {49670, 51171}, {49671, 63119}, {63721, 66733}
X(66749) = reflection of X(i) in X(j) for these {i,j}: {1597, 38136}
X(66749) = anticomplement of X(32620)
X(66749) = X(i)-Dao conjugate of X(j) for these {i, j}: {32620, 32620}
X(66749) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3521), X(59429)}}, {{A, B, C, X(31371), X(39263)}}
X(66749) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3091, 65563, 11472}, {4846, 7706, 4}
X(66750) lies on these lines: {2, 51}, {3, 19118}, {4, 9967}, {5, 6403}, {6, 5889}, {20, 11574}, {54, 19139}, {66, 41257}, {69, 6816}, {141, 44439}, {146, 1205}, {182, 1204}, {193, 5562}, {389, 51171}, {568, 59399}, {578, 63063}, {631, 37511}, {895, 12273}, {1154, 5093}, {1176, 34117}, {1216, 6804}, {1350, 17928}, {1351, 7395}, {1352, 12272}, {1353, 18436}, {1469, 66593}, {1503, 15305}, {1843, 3091}, {1974, 7488}, {2211, 22240}, {2393, 66756}, {2781, 5085}, {3056, 66610}, {3098, 22467}, {3313, 6815}, {3523, 52520}, {3564, 11459}, {3567, 18583}, {3589, 15028}, {3618, 15043}, {3620, 11793}, {3796, 41715}, {3851, 63475}, {5050, 5890}, {5054, 16222}, {5056, 9822}, {5095, 12219}, {5480, 13160}, {5663, 66740}, {5876, 39899}, {5891, 34382}, {5907, 5921}, {6000, 66755}, {6101, 44456}, {6102, 53091}, {6146, 46442}, {6241, 48906}, {6515, 33523}, {6530, 41237}, {6656, 44704}, {6776, 12111}, {6803, 10625}, {7387, 41464}, {7399, 21850}, {7494, 65654}, {7512, 64052}, {7527, 11511}, {7528, 11387}, {7529, 12363}, {7691, 37488}, {7723, 32234}, {7999, 26156}, {8538, 35500}, {9019, 53023}, {9818, 11416}, {10516, 11188}, {10565, 64820}, {10610, 19155}, {10627, 55584}, {10628, 25321}, {10752, 13201}, {10753, 39836}, {10754, 39807}, {10984, 34779}, {11061, 15100}, {11287, 53795}, {11440, 44503}, {11441, 19459}, {11470, 19126}, {11479, 12167}, {11591, 11898}, {11663, 43129}, {12017, 66606}, {12162, 39874}, {12251, 26164}, {12279, 46264}, {12283, 15058}, {12358, 32244}, {13562, 14516}, {13630, 55705}, {13754, 14912}, {14531, 58555}, {14644, 14984}, {14831, 63127}, {15045, 38110}, {15062, 63420}, {15072, 25406}, {15078, 31884}, {15644, 61044}, {17710, 36990}, {17814, 63183}, {18449, 49671}, {18537, 45118}, {18906, 26166}, {19123, 45016}, {19131, 35921}, {19136, 54374}, {19137, 44802}, {19149, 52525}, {19153, 66737}, {20806, 34148}, {21167, 47455}, {21851, 64854}, {23039, 34380}, {29181, 38323}, {30258, 54004}, {33878, 66607}, {34005, 44882}, {34007, 48901}, {34573, 40929}, {34787, 43614}, {37481, 51732}, {37941, 55649}, {40673, 66742}, {44495, 51170}, {45959, 48662}, {50666, 54003}, {54041, 55610}, {54042, 55593}, {54044, 55624}
X(66750) = reflection of X(i) in X(j) for these {i,j}: {568, 59399}, {3060, 14853}, {5890, 5050}, {11188, 10516}, {15072, 25406}, {55593, 54042}, {62174, 3917}, {66736, 2}, {66742, 40673}
X(66750) = pole of line {6776, 10565} with respect to the Jerabek hyperbola
X(66750) = pole of line {3815, 13160} with respect to the Kiepert hyperbola
X(66750) = pole of line {182, 1368} with respect to the Stammler hyperbola
X(66750) = pole of line {183, 17928} with respect to the Wallace hyperbola
X(66750) = intersection, other than A, B, C, of circumconics {{A, B, C, X(262), X(41891)}}, {{A, B, C, X(263), X(14457)}}
X(66750) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 511, 66736}, {4, 9967, 12220}, {5, 18438, 6403}, {6, 41716, 5889}, {511, 14853, 3060}, {511, 3917, 62174}, {1352, 15073, 12272}, {3313, 51212, 64050}, {3618, 19161, 15043}, {5907, 6467, 5921}, {10516, 44668, 11188}, {11574, 12294, 20}, {12272, 15056, 1352}, {12283, 15058, 18440}, {14118, 63069, 182}, {15074, 18440, 12283}, {17710, 63723, 36990}, {25406, 34146, 15072}
X(66751) lies on circumconic {{A, B, C, X(53957), X(60121)}} and on these lines: {2, 43804}, {3, 7699}, {4, 83}, {5, 74}, {20, 46027}, {30, 6030}, {54, 17702}, {113, 43578}, {140, 18442}, {381, 11451}, {382, 15080}, {546, 5643}, {567, 10733}, {631, 35240}, {1531, 7550}, {1656, 11454}, {2394, 6368}, {2916, 12082}, {3090, 34563}, {3091, 4846}, {3448, 43596}, {3545, 65151}, {3564, 66731}, {3567, 15103}, {3830, 54036}, {3832, 44866}, {3843, 52100}, {3851, 7703}, {5012, 44263}, {5890, 14852}, {6143, 38727}, {6240, 13394}, {6241, 61700}, {7527, 10721}, {7547, 66606}, {7564, 12279}, {7565, 14915}, {7566, 63727}, {9019, 54131}, {9140, 45956}, {9729, 54001}, {9730, 14644}, {9976, 15032}, {10113, 15037}, {10254, 15053}, {10296, 37513}, {10516, 15058}, {10706, 15030}, {11423, 12293}, {11456, 48662}, {11459, 66736}, {11559, 20304}, {12022, 50979}, {12270, 13630}, {12811, 44755}, {12897, 66765}, {13339, 18572}, {13445, 39504}, {13482, 61715}, {13619, 58447}, {13754, 66739}, {14094, 14982}, {14130, 34584}, {14789, 42786}, {15024, 22948}, {15035, 38323}, {15047, 43865}, {15100, 45959}, {15761, 38848}, {16219, 49674}, {18388, 43574}, {18394, 66609}, {18567, 37471}, {21663, 54000}, {23325, 61136}, {25320, 43812}, {31807, 64051}, {37649, 57584}, {43598, 43831}, {43600, 43837}, {43602, 58922}, {43846, 64854}, {62982, 64100}, {63724, 66733}, {66614, 66738}
X(66751) = reflection of X(i) in X(j) for these {i,j}: {13482, 61715}
X(66751) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 64179, 8718}, {5, 3521, 15062}, {5, 43597, 43866}, {3521, 15062, 43599}, {9730, 14644, 43836}
X(66752) lies on these lines: {2, 10606}, {3, 61606}, {4, 51}, {5, 12250}, {20, 154}, {30, 3167}, {64, 3091}, {69, 146}, {107, 6624}, {140, 64758}, {161, 37945}, {376, 2777}, {381, 66749}, {382, 31802}, {388, 11189}, {403, 18931}, {497, 12940}, {546, 13093}, {631, 11204}, {962, 12779}, {1204, 6622}, {1249, 1562}, {1498, 1993}, {1503, 1992}, {1514, 6623}, {1559, 6525}, {1596, 64094}, {1853, 3839}, {1885, 11402}, {2393, 41735}, {2979, 37201}, {3043, 9934}, {3060, 54039}, {3090, 3357}, {3332, 52844}, {3426, 66728}, {3448, 64588}, {3521, 7528}, {3522, 5925}, {3523, 5894}, {3524, 46265}, {3525, 64027}, {3529, 6759}, {3545, 65151}, {3566, 65754}, {3618, 10249}, {3619, 34778}, {3627, 12315}, {3819, 10996}, {3832, 6247}, {3851, 61540}, {3853, 34780}, {3855, 20299}, {4846, 5892}, {5056, 6696}, {5059, 34782}, {5068, 15105}, {5071, 23329}, {5225, 7355}, {5229, 6285}, {5596, 52842}, {5889, 36982}, {6001, 9812}, {6353, 51403}, {6459, 11241}, {6460, 11242}, {6515, 52403}, {6616, 15005}, {6643, 14855}, {6776, 44438}, {6815, 66756}, {6816, 15740}, {7502, 9919}, {7503, 9914}, {7728, 13203}, {8567, 10303}, {9729, 30443}, {9833, 33703}, {9899, 19925}, {10002, 58758}, {10060, 10590}, {10076, 10591}, {10117, 10298}, {10151, 23291}, {10182, 15698}, {10192, 10304}, {10193, 15709}, {10282, 17538}, {10299, 64063}, {10675, 42140}, {10676, 42141}, {10990, 52290}, {11243, 42119}, {11244, 42120}, {12083, 41465}, {12167, 64716}, {12174, 18945}, {12824, 66734}, {13202, 34779}, {14118, 64759}, {14530, 15704}, {14853, 62962}, {14862, 62127}, {14865, 32321}, {14912, 61744}, {14927, 19149}, {15043, 31978}, {15072, 41580}, {15077, 32392}, {15303, 36201}, {15305, 29959}, {15682, 18400}, {15683, 40112}, {15692, 61680}, {16051, 38791}, {17578, 63012}, {17812, 40640}, {17821, 50693}, {17845, 49135}, {17928, 46373}, {18405, 50687}, {18439, 44544}, {18533, 32111}, {18535, 64729}, {18560, 18925}, {18913, 37197}, {18917, 31726}, {18928, 34944}, {18951, 44271}, {19153, 25406}, {21663, 38282}, {23324, 61985}, {23325, 41099}, {25563, 61886}, {30227, 66076}, {31412, 49250}, {31725, 64048}, {32125, 62947}, {32767, 61945}, {33893, 38808}, {34469, 58378}, {34622, 59553}, {34783, 63709}, {34785, 49138}, {34786, 62021}, {35513, 36987}, {35864, 42269}, {35865, 42268}, {37077, 59373}, {37487, 62973}, {38790, 66721}, {40928, 66729}, {41362, 50688}, {41578, 66739}, {41581, 66741}, {41602, 47096}, {42561, 49251}, {43585, 45073}, {43841, 55571}, {44762, 50691}, {44883, 63119}, {44935, 54132}, {47546, 62288}, {50414, 62146}, {50434, 62708}, {50709, 62160}, {53781, 64025}, {54961, 64711}, {56605, 65837}, {61735, 61936}, {62036, 64033}, {63726, 66733}
X(66752) = midpoint of X(i) and X(j) for these {i,j}: {154, 5895}, {3060, 54039}, {6225, 32064}, {35450, 48672}, {61721, 64714}
X(66752) = reflection of X(i) in X(j) for these {i,j}: {20, 154}, {64, 23332}, {154, 2883}, {3543, 61721}, {5894, 58434}, {11204, 61749}, {11206, 5656}, {12250, 35450}, {12324, 32064}, {14216, 18376}, {15072, 41580}, {20427, 11204}, {23332, 5893}, {31978, 58544}, {32064, 4}, {34622, 59553}, {35450, 5}, {54050, 2}, {54961, 64711}, {61088, 10249}, {64014, 41719}
X(66752) = anticomplement of X(10606)
X(66752) = perspector of circumconic {{A, B, C, X(15352), X(36841)}}
X(66752) = X(i)-isoconjugate-of-X(j) for these {i, j}: {18850, 19614}
X(66752) = X(i)-Dao conjugate of X(j) for these {i, j}: {4, 18850}, {10606, 10606}
X(66752) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {16251, 8}
X(66752) = pole of line {8057, 45325} with respect to the orthoptic circle of the Steiner Inellipse
X(66752) = pole of line {16237, 52913} with respect to the Kiepert parabola
X(66752) = pole of line {64, 1092} with respect to the Stammler hyperbola
X(66752) = pole of line {44552, 66073} with respect to the Steiner circumellipse
X(66752) = pole of line {44565, 52585} with respect to the Steiner inellipse
X(66752) = pole of line {253, 2071} with respect to the Wallace hyperbola
X(66752) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(10605)}}, {{A, B, C, X(20), X(1093)}}, {{A, B, C, X(69), X(34170)}}, {{A, B, C, X(154), X(6524)}}, {{A, B, C, X(1249), X(1514)}}, {{A, B, C, X(1562), X(58261)}}, {{A, B, C, X(2052), X(10152)}}, {{A, B, C, X(4846), X(36876)}}, {{A, B, C, X(13450), X(33893)}}, {{A, B, C, X(14249), X(31371)}}, {{A, B, C, X(15740), X(59424)}}, {{A, B, C, X(27082), X(38808)}}, {{A, B, C, X(47392), X(52452)}}, {{A, B, C, X(57219), X(58071)}}
X(66752) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15311, 54050}, {3, 64187, 64726}, {4, 14361, 34170}, {4, 5878, 6225}, {4, 6000, 32064}, {4, 6225, 12324}, {5, 48672, 12250}, {20, 32605, 35602}, {30, 5656, 11206}, {64, 5893, 3091}, {1498, 51491, 3146}, {1503, 61721, 3543}, {1514, 10605, 6623}, {1514, 65563, 37643}, {2883, 5895, 20}, {3091, 54211, 64}, {5894, 64024, 3523}, {6000, 18376, 14216}, {6225, 32064, 6000}, {6622, 32601, 1204}, {6623, 65563, 10605}, {11744, 64587, 146}, {36201, 41719, 64014}, {51892, 52448, 4}, {61721, 64714, 1503}
X(66753) lies on these lines: {2, 5656}, {3, 9706}, {20, 15012}, {30, 9781}, {51, 62160}, {52, 376}, {143, 62137}, {185, 15692}, {373, 61966}, {381, 11465}, {389, 62120}, {511, 50969}, {547, 12290}, {549, 12111}, {568, 15690}, {1154, 62073}, {1216, 15715}, {1657, 58533}, {2979, 19708}, {3060, 3534}, {3515, 61771}, {3522, 14831}, {3524, 11444}, {3529, 12002}, {3543, 9729}, {3545, 12279}, {3567, 15681}, {3819, 61805}, {3830, 13364}, {3839, 15028}, {3845, 11451}, {3917, 61781}, {5054, 6241}, {5055, 11439}, {5071, 10575}, {5446, 46333}, {5447, 61780}, {5462, 62042}, {5562, 15705}, {5640, 14855}, {5663, 15701}, {5876, 15707}, {5889, 10304}, {5890, 8703}, {5891, 61822}, {5892, 41099}, {5907, 15721}, {5943, 62007}, {5946, 15685}, {6101, 62070}, {6102, 14093}, {6243, 62098}, {6688, 61943}, {7484, 15054}, {7998, 12100}, {7999, 15700}, {9730, 11001}, {9909, 15053}, {10095, 62045}, {10109, 16261}, {10110, 62048}, {10124, 18439}, {10170, 61838}, {10263, 62116}, {10625, 62086}, {10627, 62068}, {10984, 37941}, {11002, 62145}, {11381, 61924}, {11412, 34200}, {11414, 43603}, {11455, 19709}, {11459, 15693}, {11539, 15058}, {11591, 15718}, {11695, 61954}, {11793, 61812}, {12006, 15684}, {12162, 15709}, {13363, 61993}, {13382, 21734}, {13391, 62109}, {13434, 54992}, {13474, 61944}, {13491, 15694}, {13598, 62153}, {13630, 15688}, {13754, 15698}, {14531, 62083}, {14641, 62017}, {14845, 61987}, {14891, 18436}, {14915, 41106}, {15024, 15687}, {15026, 62020}, {15056, 15702}, {15057, 66377}, {15060, 61847}, {15067, 61797}, {15078, 66608}, {15080, 18324}, {15606, 62060}, {15640, 58470}, {15644, 62081}, {15683, 16226}, {15686, 37481}, {15689, 64051}, {15697, 21969}, {15699, 64030}, {15708, 17704}, {15711, 23039}, {15713, 18435}, {15723, 45959}, {15759, 45956}, {16194, 61926}, {16625, 62110}, {17504, 34783}, {26881, 37470}, {32062, 61958}, {32137, 61925}, {32205, 61971}, {33879, 61833}, {33884, 62054}, {36987, 62099}, {37484, 62089}, {41983, 45957}, {43273, 66736}, {43597, 51519}, {43601, 44837}, {44870, 61906}, {45186, 62129}, {45187, 61788}, {45958, 61882}, {46847, 61938}, {46865, 55571}, {50687, 64854}, {54042, 62065}, {54048, 62071}, {55286, 62080}, {55864, 64029}, {61806, 64025}, {62152, 65093}
X(66753) = reflection of X(i) in X(j) for these {i,j}: {7999, 15700}, {15056, 15702}
X(66753) = pole of line {546, 37480} with respect to the Stammler hyperbola
X(66753) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {15305, 20791, 16836}, {15305, 66747, 15072}, {16836, 64100, 66747}, {16836, 66747, 15305}
X(66754) lies on circumconic {{A, B, C, X(1485), X(34428)}} and on these lines: {5, 389}, {6, 9908}, {25, 52}, {26, 206}, {51, 68}, {143, 3564}, {185, 18531}, {195, 41615}, {539, 11808}, {568, 7529}, {578, 19908}, {912, 42450}, {1092, 54384}, {1154, 13383}, {1216, 6676}, {1351, 15316}, {2781, 15115}, {3060, 6193}, {3167, 6243}, {3542, 5889}, {3549, 5562}, {3567, 6997}, {3819, 7568}, {3917, 47525}, {5446, 6756}, {5447, 52520}, {5504, 13417}, {5890, 6816}, {5892, 44158}, {6000, 18569}, {6101, 59553}, {6642, 19161}, {6688, 53999}, {7387, 41580}, {7395, 9730}, {7493, 11412}, {7502, 12038}, {7507, 12162}, {7514, 7689}, {7564, 44870}, {7715, 34382}, {9715, 10625}, {9927, 10110}, {9932, 64095}, {9933, 16980}, {9936, 21651}, {9967, 19125}, {10095, 61544}, {10263, 66762}, {11002, 64756}, {11225, 32166}, {11479, 34801}, {11557, 16534}, {11591, 15011}, {11807, 11819}, {12118, 45186}, {12134, 47328}, {12259, 58469}, {12301, 44413}, {12362, 40647}, {12420, 63722}, {12421, 61658}, {13474, 44288}, {13861, 15083}, {14449, 14984}, {14786, 64854}, {15809, 23307}, {15818, 64049}, {16881, 23411}, {17712, 46850}, {18553, 65093}, {18555, 63710}, {19458, 37493}, {20193, 44233}, {21637, 40441}, {21851, 43586}, {21969, 63649}, {23335, 34146}, {25738, 60774}, {26944, 34783}, {31810, 41588}, {32046, 44479}, {32140, 51756}, {32321, 44469}, {33563, 58482}, {34938, 41715}, {36747, 65654}, {37440, 41597}, {41587, 44084}, {41619, 58726}, {41671, 46085}, {58484, 63734}, {58547, 64066}, {63701, 64048}, {64051, 66735}
X(66754) = midpoint of X(i) and X(j) for these {i,j}: {52, 155}, {5504, 13417}, {9933, 16980}, {9936, 21651}, {10263, 66762}, {12118, 45186}, {21969, 63649}
X(66754) = reflection of X(i) in X(j) for these {i,j}: {5, 58545}, {68, 58496}, {1216, 9820}, {5446, 63683}, {5907, 5448}, {7689, 9729}, {9927, 10110}, {12235, 143}, {12259, 58469}, {12359, 5462}, {15644, 12038}, {33563, 58482}, {46085, 41671}, {61544, 10095}, {63734, 58484}
X(66754) = pole of line {10984, 21659} with respect to the Jerabek hyperbola
X(66754) = pole of line {3541, 6193} with respect to the Stammler hyperbola
X(66754) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {26, 19139, 1147}, {51, 68, 58496}, {143, 3564, 12235}, {5448, 13754, 5907}, {5462, 13754, 12359}, {13754, 58545, 5}, {44665, 63683, 5446}
X(66755) lies on these lines: {2, 154}, {3, 3620}, {4, 5050}, {5, 55697}, {6, 3146}, {20, 185}, {23, 63081}, {30, 5032}, {69, 3522}, {140, 48662}, {141, 15717}, {159, 22467}, {182, 3091}, {184, 7396}, {373, 7398}, {376, 3564}, {516, 16834}, {524, 55591}, {542, 10304}, {546, 55705}, {548, 11898}, {550, 39899}, {568, 31305}, {575, 50688}, {576, 49140}, {597, 61985}, {599, 62063}, {631, 18440}, {858, 64058}, {962, 39870}, {1003, 15428}, {1176, 38443}, {1181, 63063}, {1205, 12270}, {1350, 20080}, {1351, 3529}, {1352, 3523}, {1353, 1657}, {1370, 63092}, {1428, 5274}, {1498, 26206}, {1570, 43619}, {1691, 37689}, {1692, 43448}, {1843, 10574}, {1899, 10565}, {1992, 15683}, {2330, 5261}, {2393, 66747}, {2777, 25321}, {2794, 33272}, {2854, 53021}, {2996, 39646}, {3088, 37506}, {3090, 12017}, {3098, 62097}, {3332, 7406}, {3525, 18358}, {3528, 48876}, {3534, 34380}, {3543, 11179}, {3545, 38110}, {3589, 5068}, {3618, 3832}, {3619, 53094}, {3622, 64085}, {3627, 53091}, {3628, 55692}, {3629, 48872}, {3630, 55614}, {3631, 55651}, {3763, 61834}, {3818, 5056}, {3830, 59399}, {3839, 11645}, {3843, 51732}, {3845, 51216}, {3860, 51181}, {4232, 18911}, {4293, 39900}, {4294, 39901}, {4297, 39878}, {5012, 7378}, {5059, 5102}, {5092, 10303}, {5097, 43621}, {5189, 63082}, {5207, 63098}, {5218, 39891}, {5265, 12589}, {5281, 12588}, {5286, 65417}, {5304, 40236}, {5334, 36758}, {5335, 36757}, {5422, 7408}, {5476, 62007}, {5480, 17578}, {5596, 11469}, {5640, 6995}, {5650, 14826}, {5800, 6895}, {5847, 9778}, {5870, 48743}, {5871, 48742}, {5965, 15697}, {5976, 5984}, {5999, 62988}, {6000, 66750}, {6090, 7386}, {6146, 52404}, {6225, 34774}, {6241, 9967}, {6403, 40647}, {6459, 49229}, {6460, 49228}, {6515, 59343}, {6623, 19128}, {6759, 66730}, {6803, 64033}, {6816, 64719}, {7288, 39892}, {7388, 14242}, {7389, 14227}, {7391, 63030}, {7400, 34224}, {7409, 63085}, {7486, 55693}, {7487, 9730}, {7500, 11002}, {7667, 63174}, {7714, 45298}, {7782, 10008}, {8584, 62168}, {8703, 51177}, {8718, 64052}, {8721, 32973}, {9308, 41374}, {9744, 63077}, {9753, 55177}, {9779, 38049}, {9812, 16475}, {9833, 16836}, {9909, 18950}, {10168, 61912}, {10323, 64756}, {10541, 15022}, {10783, 12222}, {10784, 12221}, {10984, 64034}, {10991, 45018}, {10996, 64717}, {11001, 51028}, {11003, 31099}, {11008, 53097}, {11061, 64102}, {11178, 15721}, {11180, 15692}, {11188, 36989}, {11220, 34381}, {11245, 34608}, {11293, 39887}, {11294, 39888}, {11402, 44442}, {11413, 19459}, {11477, 62152}, {11482, 11541}, {11574, 12111}, {11579, 64183}, {11812, 50954}, {12007, 48910}, {12022, 34621}, {12103, 55584}, {12203, 32974}, {12215, 37668}, {12225, 19119}, {12272, 52520}, {12279, 12294}, {12283, 37511}, {13331, 37665}, {13442, 19783}, {13491, 18438}, {14118, 20079}, {14484, 62994}, {14683, 32233}, {14810, 62083}, {14848, 62017}, {14855, 34382}, {15030, 34776}, {15059, 32250}, {15069, 21734}, {15520, 31670}, {15533, 50971}, {15534, 62145}, {15640, 20423}, {15682, 50979}, {15690, 50966}, {15695, 50978}, {15704, 44456}, {15705, 21167}, {15708, 55680}, {15740, 17845}, {15751, 19132}, {15988, 37435}, {16051, 26864}, {16111, 32234}, {16661, 37485}, {16981, 20062}, {17538, 33878}, {17576, 63070}, {17928, 39879}, {18533, 54184}, {18553, 55686}, {18914, 59346}, {18925, 37497}, {18935, 37201}, {18945, 19121}, {19130, 55707}, {19149, 63069}, {19708, 50955}, {19710, 50962}, {19924, 62153}, {20070, 51192}, {20190, 46936}, {20582, 61825}, {20806, 43605}, {21163, 32990}, {21358, 61812}, {21850, 33703}, {22165, 51135}, {23042, 36518}, {24206, 55685}, {26626, 66685}, {26881, 62973}, {29317, 54132}, {29585, 66684}, {31152, 64177}, {31304, 52003}, {31804, 52398}, {32244, 37853}, {32621, 37944}, {33017, 53016}, {33524, 37491}, {33749, 48904}, {33751, 55640}, {33879, 54013}, {34507, 55657}, {34573, 55684}, {34624, 35927}, {34779, 64187}, {35429, 61102}, {35840, 43407}, {35841, 43408}, {36201, 52699}, {37182, 37667}, {37334, 55797}, {38047, 54448}, {38064, 61924}, {38072, 61992}, {38079, 61967}, {38317, 55700}, {39588, 66749}, {39893, 42261}, {39894, 42260}, {40107, 55660}, {41256, 41735}, {41464, 46730}, {41716, 64025}, {42786, 55690}, {43150, 55664}, {44245, 55604}, {46332, 51184}, {46336, 46818}, {46935, 58445}, {47352, 61954}, {47355, 61914}, {48874, 62127}, {48881, 62124}, {48885, 55589}, {48892, 55603}, {48901, 50691}, {50687, 53023}, {50689, 53093}, {50698, 63037}, {50699, 63057}, {50957, 61915}, {50963, 62009}, {50965, 50992}, {50970, 51188}, {50975, 51215}, {50977, 55663}, {50981, 61786}, {50986, 62138}, {50987, 61920}, {50990, 51027}, {50994, 62054}, {51022, 51185}, {51024, 62051}, {51136, 62132}, {51164, 62030}, {51166, 63125}, {51172, 62167}, {51173, 62022}, {51175, 62109}, {51179, 62115}, {51196, 64005}, {51213, 62040}, {52238, 52403}, {52301, 63084}, {53092, 62028}, {54131, 62048}, {54169, 62081}, {54170, 62129}, {54211, 64716}, {54520, 59266}, {54832, 60161}, {55580, 62133}, {55599, 62112}, {55606, 58195}, {55616, 62104}, {55618, 62102}, {55629, 62092}, {55632, 62091}, {55637, 58193}, {55639, 62084}, {55646, 62078}, {55667, 61788}, {55674, 61798}, {55676, 61804}, {55678, 61814}, {55687, 61863}, {55701, 61964}, {55722, 62996}, {55724, 62146}, {61624, 62155}, {61842, 63121}, {61944, 63109}, {62005, 66600}, {62018, 63124}, {62147, 64067}, {62148, 63027}, {64100, 66736}
X(66755) = midpoint of X(i) and X(j) for these {i,j}: {20, 66742}, {5102, 48905}, {14927, 51538}, {25406, 64014}, {31884, 64080}, {39899, 55593}, {62148, 63027}
X(66755) = reflection of X(i) in X(j) for these {i,j}: {2, 25406}, {4, 5050}, {69, 31884}, {193, 66742}, {1352, 17508}, {3146, 51538}, {3543, 14853}, {3818, 55695}, {3830, 59399}, {5050, 48906}, {5102, 8550}, {9812, 16475}, {10516, 51737}, {11160, 62174}, {14853, 11179}, {18553, 55686}, {25321, 66740}, {25406, 43273}, {31670, 15520}, {31884, 44882}, {32064, 52028}, {34507, 55657}, {43150, 55664}, {48901, 55713}, {50687, 59373}, {51023, 10516}, {51212, 5102}, {51538, 6}, {52403, 52238}, {55589, 48885}, {55593, 550}, {55603, 48892}, {62017, 14848}, {62174, 376}, {63428, 55593}, {66736, 64100}, {66742, 6776}
X(66755) = perspector of circumconic {{A, B, C, X(43188), X(65276)}}
X(66755) = pole of line {3288, 22159} with respect to the cosine circle
X(66755) = pole of line {3832, 7735} with respect to the Kiepert hyperbola
X(66755) = pole of line {35278, 36841} with respect to the Kiepert parabola
X(66755) = pole of line {1350, 9306} with respect to the Stammler hyperbola
X(66755) = pole of line {1975, 3146} with respect to the Wallace hyperbola
X(66755) = pole of line {31401, 61877} with respect to the 1st Terzić hyperbola
X(66755) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3146), X(32840)}}, {{A, B, C, X(3424), X(9307)}}, {{A, B, C, X(3532), X(9292)}}, {{A, B, C, X(5395), X(9289)}}
X(66755) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 39874, 5921}, {6, 14927, 3146}, {6, 64196, 14927}, {20, 193, 61044}, {20, 6776, 193}, {20, 66742, 511}, {69, 44882, 3522}, {376, 3564, 62174}, {511, 6776, 66742}, {550, 39899, 63428}, {1503, 10516, 51023}, {1503, 25406, 2}, {1503, 43273, 25406}, {1503, 51737, 10516}, {1503, 52028, 32064}, {2777, 66740, 25321}, {3534, 50974, 54174}, {3589, 51537, 5068}, {3618, 36990, 3832}, {3619, 53094, 61820}, {5059, 51170, 51212}, {6776, 46264, 20}, {8550, 51212, 51170}, {11179, 29012, 14853}, {12017, 39884, 3090}, {14853, 29012, 3543}, {14853, 33748, 63127}, {17578, 63123, 5480}, {20080, 50693, 1350}, {25406, 64014, 1503}, {44882, 64080, 69}, {46264, 63722, 48898}, {48905, 51212, 5059}, {50974, 54174, 63116}, {50975, 54173, 62094}, {51215, 62094, 54173}, {62048, 63000, 54131}
X(66756) lies on circumconic {{A, B, C, X(20791), X(54988)}} and on these lines: {2, 5656}, {3, 11439}, {4, 1216}, {5, 5890}, {20, 3819}, {30, 7998}, {51, 3091}, {52, 3855}, {110, 9818}, {113, 15100}, {125, 54037}, {140, 12290}, {141, 47096}, {143, 61953}, {154, 7503}, {155, 55038}, {184, 15052}, {185, 5056}, {186, 4550}, {373, 61924}, {376, 10170}, {381, 1154}, {382, 7999}, {389, 5068}, {511, 3839}, {546, 11412}, {568, 5066}, {631, 12279}, {632, 64030}, {1209, 44958}, {1352, 50435}, {1568, 5169}, {1596, 37636}, {1597, 15066}, {1656, 6241}, {1657, 54044}, {2071, 5651}, {2072, 7703}, {2392, 61740}, {2393, 66750}, {2781, 10516}, {3090, 5892}, {3098, 37945}, {3146, 11793}, {3153, 3818}, {3410, 18390}, {3522, 13474}, {3523, 11381}, {3524, 14915}, {3525, 10575}, {3529, 46849}, {3543, 3917}, {3544, 5462}, {3545, 5640}, {3567, 3851}, {3627, 44324}, {3628, 18439}, {3830, 15067}, {3832, 5562}, {3843, 11591}, {3845, 23039}, {3850, 9781}, {3854, 10110}, {3857, 31834}, {3858, 6243}, {3861, 37484}, {5012, 18451}, {5020, 15053}, {5055, 5663}, {5067, 40647}, {5070, 13491}, {5071, 9730}, {5072, 6102}, {5073, 32142}, {5076, 10627}, {5079, 11465}, {5446, 61964}, {5447, 33703}, {5650, 10304}, {5691, 65435}, {5888, 35237}, {5899, 33533}, {5921, 40673}, {5943, 61936}, {5946, 19709}, {6101, 61984}, {6403, 18386}, {6642, 11440}, {6644, 11454}, {6696, 36983}, {6723, 17853}, {6815, 66752}, {6816, 32064}, {6849, 41723}, {7394, 33523}, {7395, 32063}, {7486, 9729}, {7488, 44082}, {7514, 14157}, {7516, 8718}, {7526, 11449}, {7527, 9306}, {7687, 12273}, {7691, 10594}, {9778, 52796}, {9927, 12271}, {9971, 41716}, {10095, 61946}, {10109, 45956}, {10151, 18358}, {10249, 66730}, {10250, 63069}, {10263, 61970}, {10264, 50142}, {10299, 14641}, {10303, 46850}, {10539, 35500}, {10540, 49671}, {10545, 64097}, {10605, 43584}, {10606, 15062}, {10982, 15801}, {11002, 61954}, {11180, 15531}, {11188, 47354}, {11189, 66610}, {11202, 14118}, {11204, 22467}, {11284, 15054}, {11402, 11441}, {11410, 12133}, {11442, 18537}, {11446, 37697}, {11468, 43809}, {11472, 13445}, {11592, 62121}, {11695, 61914}, {12006, 61919}, {12099, 12825}, {12270, 64101}, {12281, 61574}, {12812, 45957}, {13160, 41715}, {13201, 46686}, {13321, 61948}, {13340, 15687}, {13348, 49135}, {13363, 61920}, {13391, 14269}, {13451, 61956}, {13570, 21969}, {13595, 63425}, {13596, 54434}, {13598, 61982}, {13851, 15073}, {14076, 18504}, {14449, 41991}, {14831, 61944}, {15022, 64025}, {15026, 61937}, {15029, 25711}, {15033, 15068}, {15082, 15708}, {15086, 18488}, {15311, 35283}, {15644, 17578}, {15699, 40280}, {16072, 61700}, {16226, 61930}, {16654, 52397}, {16981, 61962}, {17704, 61856}, {17814, 34148}, {17821, 63728}, {18350, 63682}, {18388, 37353}, {18392, 41171}, {18492, 31751}, {18952, 43895}, {19130, 36852}, {19367, 37696}, {21243, 62947}, {21849, 61958}, {23061, 44413}, {23294, 50143}, {24206, 51403}, {26881, 35921}, {26883, 37126}, {26911, 37584}, {31412, 62248}, {31656, 54045}, {31861, 43574}, {32065, 66593}, {32139, 43651}, {32205, 61923}, {32620, 44837}, {33884, 50687}, {35243, 41462}, {35264, 54994}, {35450, 66607}, {35473, 43586}, {37478, 52294}, {38397, 63735}, {40247, 45186}, {42561, 62247}, {44325, 48675}, {46451, 61644}, {46935, 64029}, {51215, 61692}, {52073, 64032}, {52262, 66714}, {54040, 62962}, {55166, 61812}, {55286, 61815}, {58470, 61943}, {61136, 61899}, {61844, 62184}, {61906, 63632}, {61985, 62188}, {62023, 63414}
X(66756) = midpoint of X(i) and X(j) for these {i,j}: {3830, 54047}, {15305, 20791}, {33884, 50687}
X(66756) = reflection of X(i) in X(j) for these {i,j}: {5640, 3545}, {10304, 5650}, {15045, 5055}, {15072, 20791}, {20791, 2}, {40280, 15699}, {54047, 15067}
X(66756) = complement of X(66747)
X(66756) = pole of line {5059, 18945} with respect to the Jerabek hyperbola
X(66756) = pole of line {548, 37480} with respect to the Stammler hyperbola
X(66756) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15030, 15305}, {2, 15305, 15072}, {2, 6000, 20791}, {4, 11444, 64050}, {4, 5891, 2979}, {5, 12111, 15043}, {5, 15058, 12111}, {5, 34783, 15024}, {5, 5890, 11451}, {154, 7503, 66737}, {381, 11459, 3060}, {381, 15060, 11459}, {1656, 45959, 6241}, {2979, 15056, 5891}, {2979, 5891, 11444}, {3090, 12162, 10574}, {3091, 5907, 5889}, {3523, 11381, 52093}, {3545, 13754, 5640}, {3628, 18439, 66606}, {3819, 32062, 20}, {3819, 44870, 32062}, {3843, 11591, 64051}, {3850, 18436, 9781}, {3851, 5876, 3567}, {3917, 46847, 3543}, {5079, 13630, 11465}, {5876, 11017, 3851}, {5890, 15058, 18435}, {7514, 14157, 15080}, {10170, 16194, 376}, {10625, 46852, 4}, {11441, 11479, 13434}, {11451, 12111, 5890}, {15305, 20791, 6000}, {35921, 46261, 26881}
X(66757) lies on these lines: {1, 20122}, {3, 63}, {517, 1854}, {1158, 23843}, {1319, 56293}, {1385, 3157}, {3211, 64125}, {3576, 47371}, {3868, 7412}, {5812, 39598}, {5882, 64875}, {5887, 24320}, {6001, 9798}, {6261, 23361}, {6825, 28796}, {6891, 28774}, {6928, 12259}, {7689, 49127}, {8666, 11713}, {9840, 13754}, {10246, 66760}, {12136, 40263}, {12163, 37562}, {12528, 37305}, {24328, 64887}, {24928, 56294}, {31786, 34381}, {36059, 37618}, {37391, 41560}, {37404, 64358}, {37615, 45963}
X(66757) = midpoint of X(i) and X(j) for these {i,j}: {63435, 66235}
X(66757) = reflection of X(i) in X(j) for these {i,j}: {3157, 1385}
X(66757) = pole of line {17102, 62333} with respect to the Feuerbach hyperbola
X(66757) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63435, 66235, 517}
X(66758) lies on these lines: {2, 5656}, {3, 3532}, {20, 13382}, {30, 143}, {51, 15682}, {52, 15681}, {64, 37515}, {74, 22352}, {185, 376}, {373, 11455}, {381, 9729}, {382, 15012}, {511, 3534}, {542, 17855}, {547, 11017}, {549, 5907}, {568, 15685}, {575, 66717}, {578, 54992}, {631, 64029}, {1154, 15690}, {1192, 10245}, {1204, 44837}, {1216, 34200}, {1657, 16625}, {2807, 51705}, {2979, 62094}, {3060, 62160}, {3146, 65093}, {3357, 54994}, {3426, 17825}, {3522, 15606}, {3523, 40247}, {3524, 6241}, {3528, 45187}, {3543, 10110}, {3545, 11381}, {3567, 62042}, {3796, 11204}, {3819, 5663}, {3830, 9730}, {3839, 12279}, {3845, 5943}, {3860, 13363}, {3917, 19708}, {5054, 12162}, {5055, 44870}, {5066, 5892}, {5071, 12290}, {5085, 35450}, {5447, 45759}, {5462, 15687}, {5562, 10304}, {5640, 62007}, {5642, 17854}, {5650, 15719}, {5876, 17504}, {5889, 62120}, {5890, 11001}, {5891, 15693}, {5946, 33699}, {6053, 53415}, {6101, 62098}, {6102, 15686}, {6243, 62137}, {6676, 20417}, {6688, 16194}, {7399, 52102}, {7464, 13366}, {7998, 61781}, {7999, 15715}, {8703, 13754}, {8718, 37939}, {9781, 62029}, {9909, 11438}, {10095, 62015}, {10109, 63632}, {10124, 45959}, {10170, 11812}, {10193, 13394}, {10219, 61908}, {10263, 44903}, {10282, 15078}, {10620, 55674}, {10625, 15689}, {10627, 62089}, {10984, 64027}, {11002, 62051}, {11413, 64026}, {11432, 61150}, {11439, 61924}, {11444, 15705}, {11451, 61966}, {11459, 15698}, {11465, 61947}, {11591, 14891}, {11645, 38321}, {11648, 50387}, {11737, 32137}, {11820, 17810}, {12002, 62044}, {12006, 14893}, {12045, 61893}, {12085, 37505}, {12111, 15692}, {13321, 62050}, {13340, 62109}, {13348, 15688}, {13364, 61997}, {13367, 37948}, {13391, 62138}, {13421, 62141}, {13570, 61993}, {14093, 18436}, {14128, 61827}, {14216, 15740}, {14531, 17538}, {14845, 61974}, {15024, 61980}, {15026, 61995}, {15028, 61954}, {15035, 44108}, {15043, 50687}, {15045, 32062}, {15054, 15246}, {15056, 15721}, {15058, 15709}, {15060, 15082}, {15067, 15711}, {15683, 45186}, {15684, 37481}, {15694, 18439}, {15697, 36987}, {15701, 18435}, {16261, 61926}, {16982, 62156}, {18324, 64098}, {18874, 41987}, {19710, 45956}, {21312, 63094}, {21851, 46264}, {22330, 35001}, {22467, 50414}, {22967, 34782}, {23039, 62073}, {27355, 61967}, {31732, 34638}, {31834, 55286}, {32142, 61782}, {32205, 61957}, {32767, 64179}, {34006, 43807}, {34146, 51737}, {34648, 58487}, {35501, 53093}, {37480, 37672}, {37484, 62116}, {37940, 43601}, {37941, 52525}, {38071, 46849}, {38727, 46265}, {40284, 61944}, {40928, 44273}, {40948, 46832}, {41112, 66475}, {41113, 66476}, {41580, 44750}, {44110, 61128}, {44863, 62001}, {45958, 47599}, {46332, 54044}, {46333, 64051}, {46852, 61942}, {50664, 64624}, {50829, 52796}, {50865, 64662}, {54041, 62077}, {62063, 64025}, {62114, 63414}, {62129, 64050}, {62145, 62187}
X(66758) = midpoint of X(i) and X(j) for these {i,j}: {20, 14831}, {52, 15681}, {185, 376}, {381, 10575}, {549, 13491}, {5642, 17854}, {6102, 15686}, {10263, 44903}, {11001, 21969}, {15072, 64100}, {15683, 45186}, {31732, 34638}
X(66758) = reflection of X(i) in X(j) for these {i,j}: {381, 9729}, {1216, 34200}, {3543, 10110}, {3830, 58470}, {5907, 549}, {10627, 62089}, {11591, 14891}, {13474, 381}, {14831, 13382}, {14893, 12006}, {15644, 376}, {15687, 5462}, {16194, 6688}, {16836, 64100}, {32137, 11737}, {34648, 58487}, {45959, 10124}, {46847, 5892}, {62015, 10095}, {63414, 62114}
X(66758) = pole of line {631, 43831} with respect to the Jerabek hyperbola
X(66758) = pole of line {3146, 37480} with respect to the Stammler hyperbola
X(66758) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {52, 15681, 36160}, {185, 376, 36179}
X(66758) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3543, 16226, 10110}, {3830, 9730, 58470}, {5890, 11001, 21969}, {6000, 64100, 16836}, {9729, 10575, 13474}, {13598, 13630, 389}, {13598, 46850, 14641}, {13630, 14641, 13598}, {14641, 40647, 13630}, {15030, 64100, 20791}, {15072, 64100, 6000}, {15072, 66747, 64100}, {16194, 40280, 6688}
X(66759) lies on these lines: {3, 11415}, {4, 9352}, {7, 8069}, {8, 6948}, {20, 46}, {40, 11919}, {56, 962}, {57, 64078}, {100, 2096}, {165, 45701}, {376, 517}, {377, 64118}, {382, 61530}, {404, 64190}, {516, 10072}, {1155, 6925}, {1158, 4190}, {1478, 46684}, {1770, 6890}, {1836, 6966}, {2077, 5905}, {2099, 38759}, {2829, 14647}, {3091, 52860}, {3336, 64076}, {3436, 5828}, {3476, 64189}, {3522, 63391}, {3523, 21616}, {3616, 6950}, {4188, 63962}, {4294, 17437}, {4313, 64045}, {5010, 60896}, {5603, 38032}, {5657, 28458}, {5734, 24928}, {5880, 6974}, {5918, 61722}, {6361, 10680}, {6836, 64128}, {6838, 58887}, {6872, 59333}, {6921, 64119}, {6935, 20292}, {6951, 9780}, {7411, 10310}, {10270, 64002}, {10884, 12512}, {12616, 31295}, {12704, 31730}, {12775, 60743}, {17549, 54445}, {17768, 59418}, {30295, 64696}, {33899, 56998}, {34744, 38455}, {37300, 66055}, {38122, 52653}, {58798, 62710}, {63145, 63430}, {63985, 64079}
X(66759) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3474, 6909, 962}, {14647, 17579, 59387}, {52860, 58405, 3091}
X(66760) lies on these lines: {1, 90}, {3, 77}, {5, 59613}, {7, 66735}, {30, 5930}, {33, 8757}, {34, 60691}, {35, 47057}, {37, 9724}, {47, 8758}, {57, 47391}, {65, 5504}, {68, 11374}, {72, 18447}, {73, 34800}, {81, 1175}, {110, 2906}, {184, 18732}, {213, 61201}, {222, 1062}, {223, 6985}, {226, 44665}, {241, 582}, {255, 20277}, {354, 10082}, {517, 4347}, {518, 64195}, {521, 33649}, {603, 60415}, {651, 6198}, {916, 14520}, {942, 1147}, {943, 1442}, {950, 22660}, {971, 8144}, {1060, 7078}, {1068, 37826}, {1071, 18455}, {1125, 64875}, {1210, 9820}, {1214, 1794}, {1386, 5045}, {1419, 41854}, {1437, 17441}, {1449, 3211}, {1456, 12699}, {1459, 40591}, {1770, 41492}, {1870, 3562}, {1876, 13352}, {1936, 3468}, {1993, 14054}, {2646, 7352}, {3159, 23874}, {3167, 15934}, {3487, 6193}, {3564, 5719}, {3601, 12163}, {3955, 41340}, {4296, 37585}, {5219, 14852}, {5248, 64887}, {5453, 13754}, {5654, 5722}, {5703, 11411}, {5707, 19471}, {5728, 36750}, {5777, 37729}, {5812, 59606}, {5905, 38295}, {6001, 46372}, {6147, 66762}, {6238, 37080}, {6505, 11517}, {6644, 46017}, {6849, 54425}, {6851, 18623}, {7373, 42461}, {8614, 9627}, {9538, 64358}, {9612, 12293}, {10055, 17718}, {10071, 11375}, {10202, 66610}, {10246, 66757}, {10481, 24470}, {10942, 51375}, {12038, 37582}, {12047, 12428}, {12118, 57282}, {12259, 37737}, {12359, 13411}, {12433, 61607}, {12888, 63769}, {13407, 18970}, {14529, 44662}, {14544, 41013}, {15524, 37700}, {16473, 61663}, {17016, 63341}, {17102, 52407}, {20760, 38284}, {22117, 26921}, {22457, 62736}, {23072, 24467}, {23156, 51692}, {31730, 65415}, {31825, 51694}, {34048, 37696}, {34050, 37356}, {37506, 62770}, {37697, 41344}, {41538, 56535}, {42450, 51695}, {44547, 58726}, {49682, 63354}, {56001, 66745}, {58380, 64888}, {64053, 66249}, {64054, 64057}
X(66760) = midpoint of X(i) and X(j) for these {i,j}: {1, 3157}, {64053, 66249}, {64054, 64057}
X(66760) = reflection of X(i) in X(j) for these {i,j}: {66761, 1147}
X(66760) = inverse of X(2906) in Stammler hyperbola
X(66760) = perspector of circumconic {{A, B, C, X(65216), X(65296)}}
X(66760) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 56587}
X(66760) = X(i)-Dao conjugate of X(j) for these {i, j}: {36033, 56587}, {52388, 52344}
X(66760) = X(i)-Ceva conjugate of X(j) for these {i, j}: {943, 3}, {1442, 1214}
X(66760) = pole of line {3, 4354} with respect to the Feuerbach hyperbola
X(66760) = pole of line {650, 15313} with respect to the MacBeath circumconic
X(66760) = pole of line {2906, 3193} with respect to the Stammler hyperbola
X(66760) = pole of line {57094, 57224} with respect to the Steiner inellipse
X(66760) = pole of line {3064, 15313} with respect to the dual conic of DeLongchamps circle
X(66760) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(7072)}}, {{A, B, C, X(77), X(90)}}, {{A, B, C, X(1069), X(1804)}}, {{A, B, C, X(7053), X(57695)}}, {{A, B, C, X(7100), X(41492)}}
X(66760) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3157, 912}, {222, 1062, 13369}, {255, 20277, 37565}, {651, 6198, 40263}, {1060, 7078, 31837}, {1069, 3157, 3173}, {1870, 3562, 24474}, {3157, 56294, 155}, {7100, 52408, 1214}, {18447, 23071, 72}, {18455, 23070, 1071}
X(66761) lies on these lines: {3, 63}, {5, 40942}, {24, 14054}, {28, 110}, {46, 3173}, {54, 10202}, {57, 3157}, {68, 5791}, {155, 610}, {182, 9940}, {219, 8251}, {517, 6759}, {518, 15577}, {916, 3579}, {942, 1147}, {952, 39130}, {970, 37623}, {1092, 18732}, {1439, 23070}, {2095, 3167}, {2182, 5812}, {2771, 12262}, {3564, 5771}, {3868, 7501}, {4219, 40263}, {5654, 5805}, {5707, 12417}, {5768, 66735}, {5787, 12118}, {6197, 62798}, {6675, 12259}, {6684, 9028}, {8717, 31793}, {8718, 36029}, {9122, 37584}, {9820, 55108}, {11347, 37532}, {13754, 48924}, {14018, 37826}, {14667, 41537}, {18443, 47391}, {22467, 66744}, {24475, 44220}, {36059, 37566}, {37052, 37533}, {37812, 56176}, {39582, 63976}, {44665, 51755}
X(66761) = midpoint of X(i) and X(j) for these {i,j}: {1071, 63707}
X(66761) = reflection of X(i) in X(j) for these {i,j}: {66760, 1147}
X(66761) = inverse of X(28) in Stammler hyperbola
X(66761) = pole of line {6129, 22383} with respect to the MacBeath circumconic
X(66761) = pole of line {28, 912} with respect to the Stammler hyperbola
X(66761) = pole of line {7649, 46389} with respect to the dual conic of DeLongchamps circle
X(66761) = intersection, other than A, B, C, of circumconics {{A, B, C, X(28), X(912)}}, {{A, B, C, X(54), X(11517)}}, {{A, B, C, X(72), X(915)}}, {{A, B, C, X(2990), X(3998)}}
X(66761) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1071, 63707, 912}
X(66762) lies on these lines: {2, 12429}, {3, 69}, {4, 3167}, {5, 578}, {6, 9815}, {20, 12164}, {24, 41588}, {25, 13142}, {30, 155}, {49, 15760}, {52, 5095}, {54, 7399}, {68, 140}, {110, 235}, {184, 6823}, {185, 44241}, {195, 38321}, {323, 12225}, {343, 13367}, {382, 51261}, {389, 1353}, {394, 12362}, {427, 14516}, {495, 18970}, {496, 12428}, {511, 34774}, {524, 46730}, {539, 549}, {542, 6247}, {546, 5654}, {548, 9936}, {550, 6101}, {567, 7405}, {569, 38110}, {576, 11745}, {590, 35836}, {615, 35837}, {631, 64756}, {632, 5449}, {858, 34799}, {912, 31786}, {952, 9928}, {1069, 15171}, {1092, 1368}, {1181, 31829}, {1351, 7487}, {1352, 11425}, {1370, 64717}, {1503, 13346}, {1539, 3627}, {1595, 12134}, {1596, 10539}, {1614, 41615}, {1620, 47552}, {1658, 64066}, {1885, 11441}, {1899, 16196}, {1993, 3575}, {3043, 45177}, {3088, 18440}, {3089, 8780}, {3091, 64177}, {3146, 46818}, {3157, 18990}, {3292, 21659}, {3515, 6515}, {3517, 64048}, {3518, 12310}, {3580, 11449}, {3628, 14852}, {3629, 16625}, {3845, 5448}, {3917, 10619}, {5050, 6803}, {5446, 7715}, {5504, 6145}, {5844, 9933}, {5890, 12271}, {5946, 12235}, {6090, 6816}, {6147, 66760}, {6240, 12383}, {6241, 63441}, {6391, 14912}, {6642, 12309}, {6644, 9937}, {6676, 19357}, {6677, 39571}, {6746, 27365}, {6756, 19139}, {6759, 41619}, {6815, 11402}, {7401, 11426}, {7403, 37472}, {7404, 18358}, {7502, 19908}, {7507, 37645}, {7526, 12301}, {7528, 38136}, {7583, 8909}, {7592, 66614}, {7689, 8703}, {8548, 36752}, {8550, 8681}, {8727, 41608}, {8884, 18831}, {8979, 49086}, {8981, 49224}, {9545, 13160}, {9703, 10024}, {9730, 21651}, {9786, 63722}, {9896, 26446}, {9931, 37729}, {9932, 32358}, {9938, 18570}, {9968, 29181}, {10071, 15325}, {10112, 13567}, {10154, 10282}, {10257, 25738}, {10263, 66754}, {10264, 34115}, {10272, 63710}, {10574, 12282}, {10605, 44247}, {10625, 48874}, {10661, 42118}, {10662, 42117}, {10665, 42216}, {10666, 42215}, {10982, 66529}, {11206, 39568}, {11245, 17928}, {11381, 24981}, {11412, 44239}, {11457, 47090}, {11477, 63702}, {11479, 14826}, {11585, 22115}, {12086, 14683}, {12160, 18533}, {12161, 14542}, {12233, 34986}, {12250, 34622}, {12259, 38028}, {12278, 66725}, {12318, 18420}, {12319, 31724}, {12324, 54992}, {12421, 43588}, {12675, 34381}, {13348, 44882}, {13406, 32123}, {13434, 37439}, {13488, 18451}, {13966, 49225}, {14216, 37497}, {14869, 63652}, {14914, 51170}, {15026, 58496}, {15048, 23128}, {15077, 62708}, {15083, 15704}, {15135, 38323}, {15331, 50708}, {15665, 53577}, {15712, 44158}, {15958, 46454}, {16238, 63701}, {16386, 64025}, {16881, 61724}, {16976, 26937}, {17821, 44277}, {17834, 34380}, {18356, 23336}, {18436, 44249}, {18563, 50461}, {18945, 37669}, {22467, 32334}, {22661, 44263}, {23061, 41482}, {23236, 37495}, {25712, 37460}, {26864, 59349}, {26958, 45248}, {32048, 37440}, {32144, 61702}, {32145, 62155}, {32171, 34351}, {32284, 46363}, {33878, 59346}, {34224, 43574}, {34609, 64034}, {34783, 44240}, {34938, 64033}, {37505, 59399}, {38444, 45794}, {39871, 63183}, {41587, 51393}, {42022, 48469}, {43586, 58806}, {43605, 52071}, {43617, 57648}, {43839, 55856}, {44682, 52104}, {44912, 59551}, {44960, 51425}, {45172, 46443}, {45298, 66607}, {48847, 56295}, {51847, 53169}, {52525, 54040}, {58465, 59543}, {58726, 64729}, {61666, 64854}, {64050, 66381}
X(66762) = midpoint of X(i) and X(j) for these {i,j}: {3, 6193}, {20, 12164}, {155, 12118}, {6776, 19588}, {9833, 37498}, {9936, 12163}, {13346, 61751}, {34938, 64033}, {39899, 63703}
X(66762) = reflection of X(i) in X(j) for these {i,j}: {4, 61607}, {5, 1147}, {68, 140}, {3627, 22660}, {9927, 9820}, {10263, 66754}, {11477, 63702}, {12163, 548}, {12293, 546}, {12359, 12038}, {12421, 43588}, {12429, 61544}, {18356, 23336}, {21850, 19139}, {22660, 41597}, {63710, 10272}, {63734, 32171}, {64066, 1658}, {65376, 34782}
X(66762) = inverse of X(22750) in Stammler hyperbola
X(66762) = complement of X(12429)
X(66762) = anticomplement of X(61544)
X(66762) = X(i)-Dao conjugate of X(j) for these {i, j}: {61544, 61544}
X(66762) = pole of line {3917, 16196} with respect to the Jerabek hyperbola
X(66762) = pole of line {577, 13881} with respect to the Kiepert hyperbola
X(66762) = pole of line {3049, 6587} with respect to the MacBeath circumconic
X(66762) = pole of line {25, 5889} with respect to the Stammler hyperbola
X(66762) = pole of line {4, 50572} with respect to the Wallace hyperbola
X(66762) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(50572)}}, {{A, B, C, X(69), X(22261)}}, {{A, B, C, X(3564), X(8884)}}, {{A, B, C, X(3926), X(43670)}}, {{A, B, C, X(6145), X(62338)}}, {{A, B, C, X(9723), X(14528)}}, {{A, B, C, X(11411), X(34449)}}, {{A, B, C, X(14542), X(40697)}}, {{A, B, C, X(35142), X(52347)}}
X(66762) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 12429, 61544}, {3, 31804, 48906}, {3, 39899, 18909}, {3, 6193, 3564}, {4, 3167, 61607}, {5, 1147, 59553}, {20, 63174, 12164}, {68, 47391, 140}, {155, 12118, 30}, {185, 63631, 44241}, {394, 19467, 12362}, {487, 488, 50572}, {511, 34782, 65376}, {539, 12038, 12359}, {1092, 6146, 1368}, {1147, 44665, 5}, {1147, 9927, 9820}, {1352, 11425, 63679}, {1595, 12134, 39884}, {1899, 35602, 16196}, {1993, 3575, 31802}, {5654, 12293, 546}, {6756, 36747, 21850}, {7401, 11426, 18583}, {9545, 13160, 61690}, {9820, 44665, 9927}, {12038, 12359, 549}, {12118, 63649, 155}, {12134, 13352, 1595}, {12278, 66727, 66725}, {12383, 56292, 6240}, {13346, 61751, 1503}, {14516, 34148, 427}, {14852, 64181, 3628}, {17702, 22660, 3627}, {17702, 41597, 22660}, {18913, 53050, 3}, {22115, 44076, 11585}, {23236, 37495, 64036}, {32171, 63734, 34351}
X(66763) lies on these lines: {2, 6}, {4, 22234}, {20, 66600}, {30, 53092}, {32, 47061}, {83, 60627}, {182, 13482}, {376, 575}, {511, 15698}, {542, 41106}, {549, 11482}, {576, 3524}, {598, 32532}, {631, 22330}, {671, 60284}, {1285, 52691}, {1350, 61781}, {1351, 12100}, {1352, 61926}, {1353, 10109}, {1503, 61989}, {2271, 22355}, {3090, 64802}, {3098, 61777}, {3523, 53858}, {3528, 55708}, {3534, 51212}, {3545, 18553}, {3564, 61920}, {3751, 51103}, {3758, 52709}, {3830, 14853}, {3839, 8550}, {3845, 6776}, {4254, 21497}, {4663, 38314}, {4669, 51192}, {4677, 51005}, {4745, 51169}, {5007, 33215}, {5021, 22351}, {5041, 6337}, {5050, 8703}, {5066, 50957}, {5071, 63722}, {5085, 51028}, {5092, 62055}, {5093, 15693}, {5095, 52299}, {5097, 15719}, {5102, 50983}, {5120, 21498}, {5182, 15300}, {5286, 11317}, {5476, 14912}, {5480, 62007}, {5485, 60283}, {5702, 62959}, {5921, 61943}, {6997, 32255}, {7378, 15471}, {7426, 47460}, {7620, 53489}, {7714, 44102}, {7738, 9855}, {7772, 32985}, {7860, 33190}, {7878, 11054}, {8541, 62979}, {8593, 36523}, {8787, 41135}, {9166, 41672}, {9605, 27088}, {9777, 37904}, {10168, 55714}, {10169, 32064}, {10299, 55718}, {10304, 53093}, {10519, 11812}, {10541, 62063}, {10754, 36521}, {11001, 20423}, {11147, 22246}, {11178, 61913}, {11179, 14927}, {11180, 18583}, {11185, 18842}, {11216, 35260}, {11286, 66458}, {11405, 62978}, {11426, 44273}, {11477, 15692}, {11540, 61624}, {11645, 62009}, {11898, 61893}, {12007, 38072}, {12017, 15759}, {13651, 13782}, {13662, 13770}, {14001, 39785}, {14561, 50974}, {14891, 55580}, {15019, 26255}, {15069, 61924}, {15303, 25320}, {15520, 51141}, {15531, 64692}, {15640, 33748}, {15685, 21850}, {15694, 64067}, {15697, 50976}, {15705, 53097}, {15709, 46267}, {15710, 20190}, {15711, 33878}, {15713, 51732}, {15715, 52987}, {15716, 44456}, {15826, 37909}, {15860, 37188}, {16226, 44495}, {16475, 51071}, {16477, 48830}, {16491, 51107}, {16496, 51104}, {16668, 41313}, {16671, 41312}, {17014, 49748}, {17503, 60281}, {17504, 55724}, {17508, 50966}, {18440, 61956}, {18950, 41720}, {19130, 61961}, {19705, 37492}, {19924, 55712}, {20192, 64058}, {21735, 55704}, {22579, 36331}, {22580, 35750}, {25555, 61899}, {26613, 44496}, {26615, 44657}, {26616, 44656}, {28538, 51068}, {29181, 62132}, {31670, 62165}, {32029, 36522}, {33604, 54525}, {33605, 54524}, {34200, 55701}, {34380, 61851}, {34507, 61895}, {34566, 63174}, {35749, 51012}, {36327, 51015}, {37765, 40065}, {37827, 37913}, {37907, 47458}, {38005, 43697}, {38047, 51001}, {38049, 50952}, {38079, 40330}, {38110, 50962}, {38136, 61977}, {39874, 61987}, {39884, 61969}, {39899, 61950}, {40107, 61861}, {40138, 52281}, {40673, 58470}, {41119, 51203}, {41120, 51200}, {41151, 54523}, {43957, 52719}, {44882, 62145}, {46264, 62049}, {47313, 52238}, {47314, 47545}, {47353, 51133}, {47354, 61938}, {47865, 59409}, {48876, 61847}, {48906, 62040}, {49536, 51095}, {49543, 50107}, {50108, 50127}, {50664, 62077}, {50955, 61910}, {50963, 61997}, {50965, 55703}, {50975, 62138}, {50977, 61838}, {50978, 61860}, {50986, 61890}, {50987, 55610}, {50999, 51105}, {51024, 62168}, {51029, 62039}, {51069, 51196}, {51132, 62174}, {51138, 62099}, {51140, 61904}, {51164, 62030}, {51172, 55697}, {51178, 61896}, {52282, 62213}, {53023, 62002}, {53094, 62054}, {53101, 54896}, {54131, 62160}, {54169, 61805}, {54616, 60638}, {54637, 60282}, {55583, 61787}, {55584, 61786}, {55595, 61782}, {55606, 61780}, {55614, 61778}, {55684, 62056}, {55687, 62058}, {55694, 62061}, {55698, 62066}, {55705, 62073}, {55710, 62090}, {55711, 62094}, {55721, 61138}, {55725, 55783}, {55726, 55781}, {55791, 55823}, {55794, 55820}, {59405, 60963}, {60143, 62943}, {60239, 60641}, {60287, 60637}, {61985, 64080}, {62032, 64196}
X(66763) = midpoint of X(i) and X(j) for these {i,j}: {1992, 3619}, {50969, 54132}, {51217, 64014}
X(66763) = reflection of X(i) in X(j) for these {i,j}: {47353, 51133}, {50964, 5476}, {50976, 51737}, {54173, 51141}, {62063, 10541}
X(66763) = isotomic conjugate of X(60637)
X(66763) = anticomplement of X(51186)
X(66763) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 60637}, {51186, 51186}
X(66763) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60287, 2}
X(66763) = X(i)-complementary conjugate of X(j) for these {i, j}: {54642, 2887}
X(66763) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {60287, 6327}
X(66763) = pole of line {2, 54642} with respect to the Kiepert hyperbola
X(66763) = pole of line {6, 62184} with respect to the Stammler hyperbola
X(66763) = pole of line {2, 60637} with respect to the Wallace hyperbola
X(66763) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(22165)}}, {{A, B, C, X(69), X(45103)}}, {{A, B, C, X(83), X(63022)}}, {{A, B, C, X(141), X(60627)}}, {{A, B, C, X(524), X(60284)}}, {{A, B, C, X(598), X(50992)}}, {{A, B, C, X(599), X(32532)}}, {{A, B, C, X(671), X(50994)}}, {{A, B, C, X(1992), X(60283)}}, {{A, B, C, X(3055), X(34288)}}, {{A, B, C, X(3108), X(20481)}}, {{A, B, C, X(5395), X(63116)}}, {{A, B, C, X(5485), X(50993)}}, {{A, B, C, X(15533), X(60281)}}, {{A, B, C, X(15534), X(18842)}}, {{A, B, C, X(17503), X(50990)}}, {{A, B, C, X(21356), X(60228)}}, {{A, B, C, X(21358), X(60641)}}, {{A, B, C, X(34898), X(47355)}}, {{A, B, C, X(41909), X(63000)}}, {{A, B, C, X(50991), X(54637)}}, {{A, B, C, X(51143), X(60143)}}, {{A, B, C, X(51186), X(60637)}}, {{A, B, C, X(51189), X(54647)}}, {{A, B, C, X(52187), X(62993)}}, {{A, B, C, X(52188), X(62992)}}, {{A, B, C, X(54616), X(63124)}}, {{A, B, C, X(55958), X(63098)}}, {{A, B, C, X(59373), X(62943)}}, {{A, B, C, X(60282), X(63064)}}, {{A, B, C, X(63062), X(63156)}}
X(66763) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 597, 5032}, {69, 5032, 1992}, {597, 5032, 69}, {1992, 3619, 524}, {5102, 50983, 54174}, {5476, 14912, 51023}, {14853, 50979, 64014}
X(66764) lies on these lines: {2, 34568}, {30, 1294}, {525, 40384}, {1494, 51358}, {2394, 2416}, {4846, 52933}, {9139, 66124}, {11064, 44769}, {14165, 32646}, {14919, 15459}, {16077, 44436}, {39290, 57482}, {41433, 43701}, {46809, 59499}
X(66764) = isogonal conjugate of X(47433)
X(66764) = isotomic conjugate of X(62583)
X(66764) = trilinear pole of line {74, 1294}
X(66764) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 47433}, {19, 40948}, {31, 62583}, {48, 133}, {1099, 51964}, {2173, 6000}, {2631, 46587}, {4575, 55276}, {42074, 57488}
X(66764) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 62583}, {3, 47433}, {6, 40948}, {136, 55276}, {647, 57424}, {1249, 133}, {36896, 6000}, {62606, 44436}, {65911, 57448}
X(66764) = X(i)-cross conjugate of X(j) for these {i, j}: {4, 1494}, {122, 34767}, {520, 16077}, {15404, 57762}, {15526, 2416}, {51964, 74}, {56683, 54988}, {63247, 648}
X(66764) = pole of line {40948, 47433} with respect to the Stammler hyperbola
X(66764) = pole of line {47433, 62583} with respect to the Wallace hyperbola
X(66764) = Tripole of perspectivity axis of these triangles: X(30)-anticomplementary and antipedal-of-X(146)
X(66764) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(30)}}, {{A, B, C, X(4), X(1515)}}, {{A, B, C, X(95), X(18020)}}, {{A, B, C, X(253), X(3265)}}, {{A, B, C, X(287), X(57570)}}, {{A, B, C, X(520), X(44436)}}, {{A, B, C, X(1073), X(6760)}}, {{A, B, C, X(1304), X(9139)}}, {{A, B, C, X(2052), X(51892)}}, {{A, B, C, X(2373), X(57761)}}, {{A, B, C, X(6330), X(10714)}}, {{A, B, C, X(10152), X(16080)}}, {{A, B, C, X(38956), X(62583)}}, {{A, B, C, X(40435), X(46102)}}, {{A, B, C, X(40800), X(58353)}}, {{A, B, C, X(44181), X(62428)}}
X(66765) lies on circumconic {{A, B, C, X(3459), X(57718)}} and on these lines: {2, 52}, {4, 567}, {5, 195}, {20, 22352}, {23, 2918}, {51, 58805}, {54, 45286}, {68, 62990}, {110, 12242}, {155, 37353}, {193, 5056}, {323, 14788}, {381, 34799}, {546, 43835}, {578, 12278}, {1173, 63735}, {1199, 3448}, {1209, 37779}, {1594, 34545}, {1614, 37349}, {1656, 7605}, {2070, 8254}, {2904, 7577}, {3090, 45794}, {3091, 11422}, {3153, 3574}, {3410, 12161}, {3462, 30506}, {3527, 63657}, {3549, 11002}, {5068, 5654}, {5169, 7592}, {5189, 17712}, {5208, 6884}, {5476, 15073}, {5946, 6143}, {6146, 7565}, {6152, 10095}, {6642, 59771}, {7403, 43605}, {7488, 14389}, {7527, 12233}, {7528, 9544}, {7533, 10539}, {7544, 9545}, {7558, 62187}, {7566, 11402}, {7569, 37493}, {9378, 36412}, {9706, 61659}, {9729, 44450}, {10110, 46451}, {11424, 50009}, {11432, 31236}, {11585, 15018}, {11745, 37940}, {12006, 65085}, {12219, 15739}, {12897, 66751}, {13142, 13160}, {13353, 46450}, {13364, 41713}, {13399, 43612}, {13630, 35482}, {14643, 18874}, {14644, 58807}, {14789, 16266}, {15026, 61711}, {15033, 34007}, {15043, 61743}, {15047, 37938}, {15087, 50138}, {15806, 18369}, {18488, 43602}, {18912, 63076}, {20304, 46084}, {20424, 34864}, {23292, 44802}, {25739, 43838}, {26944, 66376}, {31074, 36752}, {32396, 41586}, {33332, 43845}, {34484, 61619}, {36753, 52295}, {37126, 37649}, {37444, 63085}, {37760, 38848}, {39504, 43808}, {43575, 54007}, {44862, 46865}, {62967, 64049}
X(66765) = pole of line {7488, 15109} with respect to the Kiepert hyperbola
X(66765) = pole of line {195, 569} with respect to the Stammler hyperbola
X(66765) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 1994, 2888}, {5, 22051, 50461}, {1199, 5576, 3448}, {1594, 34545, 43816}, {3574, 13434, 3153}, {7544, 11427, 9545}, {14389, 45089, 7488}, {38848, 44516, 37760}
X(66766) lies on these lines: {2, 3}, {6, 34799}, {49, 61715}, {51, 58922}, {52, 2888}, {54, 45286}, {74, 18488}, {96, 11538}, {107, 14860}, {110, 3574}, {143, 6288}, {182, 64718}, {265, 10095}, {323, 64035}, {324, 58736}, {389, 3448}, {567, 12254}, {569, 64032}, {827, 10548}, {1141, 1166}, {1173, 58806}, {1493, 23236}, {1568, 43614}, {1576, 31976}, {1625, 60589}, {1994, 14516}, {3410, 5889}, {3521, 32137}, {3567, 18474}, {3580, 11745}, {3585, 38458}, {3818, 12111}, {5012, 61139}, {5422, 64037}, {5462, 25739}, {5480, 63063}, {5943, 11572}, {5946, 43808}, {6145, 41589}, {6146, 34545}, {6193, 11004}, {6241, 7706}, {6696, 13203}, {6776, 44494}, {7693, 18383}, {7823, 59220}, {8882, 9380}, {8884, 37766}, {9143, 43844}, {9706, 12242}, {9781, 9927}, {9786, 61700}, {9815, 18911}, {9820, 12319}, {9833, 11003}, {10110, 50435}, {10112, 53863}, {10574, 11550}, {11381, 48889}, {11412, 15108}, {11422, 61751}, {11424, 12278}, {11449, 61743}, {11557, 59493}, {11591, 15800}, {11750, 43651}, {12026, 50471}, {12134, 14683}, {12219, 12300}, {12233, 43605}, {12370, 64183}, {12383, 37472}, {12824, 63659}, {13219, 44142}, {13364, 43821}, {13419, 52525}, {13434, 18400}, {13585, 57718}, {14129, 19169}, {14389, 32346}, {14627, 32423}, {15032, 64036}, {15038, 45970}, {15043, 18381}, {15052, 22660}, {15053, 20299}, {15340, 41334}, {15619, 17500}, {16625, 41724}, {18128, 43600}, {18354, 32819}, {18514, 54401}, {18553, 45187}, {18925, 63036}, {19130, 21659}, {20088, 41205}, {20424, 50461}, {20806, 53023}, {30522, 43818}, {31610, 57746}, {31873, 53957}, {32184, 63716}, {32337, 41725}, {32365, 64063}, {33565, 38898}, {33643, 38332}, {34514, 37481}, {36245, 61378}, {36982, 61664}, {38463, 53418}, {38848, 63735}, {38896, 58733}, {41738, 58492}, {43578, 46686}, {43695, 45835}, {44407, 61134}, {52449, 58704}, {54705, 62911}, {54870, 62925}
X(66766) = anticomplement of X(37126)
X(66766) = X(i)-Dao conjugate of X(j) for these {i, j}: {37126, 37126}
X(66766) = pole of line {6, 43838} with respect to the Kiepert hyperbola
X(66766) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(96), X(6143)}}, {{A, B, C, X(140), X(57746)}}, {{A, B, C, X(186), X(1166)}}, {{A, B, C, X(235), X(38305)}}, {{A, B, C, X(265), X(34864)}}, {{A, B, C, X(427), X(15619)}}, {{A, B, C, X(467), X(11538)}}, {{A, B, C, X(1141), X(1594)}}, {{A, B, C, X(1217), X(31723)}}, {{A, B, C, X(2070), X(66552)}}, {{A, B, C, X(3153), X(14860)}}, {{A, B, C, X(3459), X(7577)}}, {{A, B, C, X(3521), X(13564)}}, {{A, B, C, X(4846), X(7525)}}, {{A, B, C, X(5133), X(54705)}}, {{A, B, C, X(7487), X(22454)}}, {{A, B, C, X(7492), X(31371)}}, {{A, B, C, X(7512), X(18401)}}, {{A, B, C, X(7558), X(31363)}}, {{A, B, C, X(11413), X(45835)}}, {{A, B, C, X(13585), X(52253)}}, {{A, B, C, X(14118), X(18125)}}, {{A, B, C, X(14940), X(57718)}}, {{A, B, C, X(14979), X(37932)}}, {{A, B, C, X(18569), X(18855)}}, {{A, B, C, X(18848), X(62967)}}, {{A, B, C, X(20062), X(31361)}}, {{A, B, C, X(32533), X(49671)}}, {{A, B, C, X(37126), X(65090)}}, {{A, B, C, X(46450), X(53959)}}
X(66766) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {52, 2888, 37779}, {5462, 25739, 43816}, {6146, 34545, 43838}, {10095, 22804, 265}, {14516, 45089, 1994}, {15038, 48675, 45970}
X(66767) lies on these lines: {2, 39}, {3, 62310}, {25, 32819}, {69, 125}, {99, 7493}, {126, 17008}, {140, 59766}, {183, 30739}, {308, 46328}, {315, 858}, {316, 31099}, {317, 54381}, {325, 5094}, {427, 7773}, {468, 1975}, {1007, 1273}, {1078, 46336}, {1352, 56430}, {1368, 7767}, {1370, 7802}, {1502, 6331}, {1560, 55227}, {1799, 6340}, {1899, 37894}, {1995, 11185}, {2549, 26257}, {3314, 30777}, {3933, 5159}, {3964, 37688}, {4176, 61382}, {4232, 32815}, {5169, 5971}, {5485, 52141}, {6353, 16276}, {6393, 37638}, {6997, 15031}, {7396, 16275}, {7492, 14360}, {7494, 19583}, {7495, 62299}, {7519, 26276}, {7750, 31152}, {7759, 15820}, {7788, 47097}, {7791, 59768}, {7887, 47298}, {7917, 40123}, {8781, 60256}, {8791, 42407}, {8889, 32823}, {9753, 56442}, {11284, 59635}, {11336, 22329}, {11547, 62278}, {14907, 16063}, {15822, 32965}, {16080, 40824}, {18157, 28793}, {18906, 61506}, {30769, 37668}, {30771, 45201}, {30776, 45962}, {32216, 37671}, {32816, 52284}, {32817, 52290}, {32818, 62960}, {32820, 52292}, {32821, 52293}, {32824, 53857}, {32826, 52301}, {33769, 55224}, {34336, 55252}, {35923, 53784}, {37454, 52347}, {39602, 63046}, {40831, 52583}, {43187, 52672}, {47286, 62702}, {59552, 66588}
X(66767) = X(i)-isoconjugate-of-X(j) for these {i, j}: {351, 36115}, {560, 60266}, {669, 37217}, {798, 30247}, {1973, 5486}, {2642, 32709}
X(66767) = X(i)-Dao conjugate of X(j) for these {i, j}: {574, 8541}, {5512, 2489}, {6337, 5486}, {6374, 60266}, {31998, 30247}, {62607, 60317}
X(66767) = X(i)-cross conjugate of X(j) for these {i, j}: {41614, 11185}
X(66767) = pole of line {8681, 63554} with respect to the Jerabek hyperbola
X(66767) = pole of line {32, 44102} with respect to the Stammler hyperbola
X(66767) = pole of line {512, 60445} with respect to the Steiner inellipse
X(66767) = pole of line {6, 468} with respect to the Wallace hyperbola
X(66767) = pole of line {647, 690} with respect to the dual conic of polar circle
X(66767) = pole of line {99, 39382} with respect to the dual conic of Jerabek hyperbola
X(66767) = pole of line {3267, 14417} with respect to the dual conic of Orthic inconic
X(66767) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(895)}}, {{A, B, C, X(3), X(34241)}}, {{A, B, C, X(39), X(40319)}}, {{A, B, C, X(69), X(3266)}}, {{A, B, C, X(76), X(11185)}}, {{A, B, C, X(125), X(32133)}}, {{A, B, C, X(538), X(30209)}}, {{A, B, C, X(1194), X(19136)}}, {{A, B, C, X(1196), X(13854)}}, {{A, B, C, X(1799), X(57518)}}, {{A, B, C, X(2165), X(3291)}}, {{A, B, C, X(3767), X(8791)}}, {{A, B, C, X(3948), X(14209)}}, {{A, B, C, X(5286), X(52583)}}, {{A, B, C, X(5485), X(16051)}}, {{A, B, C, X(6340), X(8024)}}, {{A, B, C, X(7801), X(14376)}}, {{A, B, C, X(8869), X(19577)}}, {{A, B, C, X(8891), X(29959)}}, {{A, B, C, X(11059), X(64982)}}, {{A, B, C, X(11511), X(53777)}}, {{A, B, C, X(14262), X(54558)}}, {{A, B, C, X(16080), X(40814)}}, {{A, B, C, X(23106), X(53784)}}, {{A, B, C, X(32833), X(57799)}}, {{A, B, C, X(37804), X(42407)}}, {{A, B, C, X(51481), X(60256)}}, {{A, B, C, X(55135), X(64880)}}
X(66767) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 19577, 3767}, {2, 3266, 7763}, {11056, 11059, 2}, {16063, 26233, 14907}
X(66768) lies on the Kiepert hyperbola and on these lines: {4, 12041}, {94, 47296}, {323, 44877}, {3580, 56063}, {16080, 64496}, {18316, 44214}, {37648, 62951}, {41254, 53106}, {54395, 60209}, {62952, 63036}
X(66768) = trilinear pole of line {3627, 21269}
X(66768) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 64890}
X(66768) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 64890}
X(66768) = X(i)-cross conjugate of X(j) for these {i, j}: {14677, 1494}, {46031, 264}
X(66768) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(323), X(47296)}}, {{A, B, C, X(338), X(57926)}}, {{A, B, C, X(525), X(34584)}}, {{A, B, C, X(12041), X(14919)}}, {{A, B, C, X(40423), X(51967)}}
X(66769) lies on these lines: {2, 5627}, {30, 12317}, {146, 31874}, {265, 1138}, {381, 18285}, {3146, 32417}, {3448, 66788}, {3522, 6070}, {3832, 14480}, {12383, 14993}, {15022, 55308}, {15081, 45694}, {33855, 38724}, {50687, 52472}
X(66769) = midpoint of X(i) and X(j) for these {i,j}: {31874, 57471}
X(66769) = reflection of X(i) in X(j) for these {i,j}: {146, 57471}, {1138, 265}, {12383, 14993}
X(66770) lies on these lines: {1, 477}, {2, 66779}, {10, 31379}, {30, 11720}, {40, 38701}, {56, 59825}, {214, 62491}, {355, 57306}, {476, 3576}, {515, 3258}, {517, 38610}, {523, 11709}, {944, 66796}, {946, 64510}, {1125, 25641}, {1319, 33965}, {1385, 16168}, {1699, 14989}, {2646, 33964}, {3616, 34193}, {3622, 66788}, {3624, 66787}, {5550, 66815}, {5587, 66801}, {5603, 66773}, {5731, 14731}, {5886, 66781}, {7987, 38700}, {9955, 66778}, {10165, 22104}, {10246, 38581}, {11363, 66771}, {11365, 66777}, {11375, 66782}, {11376, 66783}, {11700, 15326}, {11710, 62489}, {11711, 62490}, {11712, 62493}, {11713, 62495}, {11714, 62494}, {11715, 62492}, {11716, 62497}, {11717, 62499}, {11718, 51701}, {11719, 62504}, {11721, 62507}, {11722, 62509}, {11831, 66780}, {12265, 62510}, {12898, 14851}, {13211, 65086}, {13624, 38609}, {14480, 33535}, {15808, 66816}, {16475, 66805}, {18319, 38028}, {18481, 20957}, {18493, 66772}, {25055, 66786}, {28160, 66795}, {30389, 38677}, {34312, 50811}, {36179, 43822}, {38314, 66817}, {38678, 64953}, {53809, 66858}, {59387, 66819}, {65856, 66843}, {66515, 66804}
X(66770) = midpoint of X(i) and X(j) for these {i,j}: {1, 477}, {40, 66800}, {944, 66796}, {14480, 33535}, {18481, 20957}, {34312, 50811}, {66776, 66784}
X(66770) = reflection of X(i) in X(j) for these {i,j}: {10, 31379}, {25641, 1125}, {38609, 13624}, {66778, 9955}, {66789, 1385}
X(66770) = complement of X(66779)
X(66770) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {1, 477, 59826}
X(66770) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 66776, 66784}, {477, 66784, 66776}, {1385, 16168, 66789}, {7987, 66793, 38700}, {38701, 66800, 40}
X(66771) lies on circumconic {{A, B, C, X(16171), X(34193)}} and on these lines: {4, 14670}, {24, 38610}, {25, 477}, {30, 1112}, {33, 33964}, {34, 33965}, {235, 3258}, {378, 38609}, {382, 12091}, {427, 25641}, {468, 31379}, {476, 1593}, {523, 12133}, {1595, 18319}, {1597, 38580}, {1598, 38581}, {1862, 62491}, {1876, 59825}, {3154, 53803}, {3515, 38701}, {3516, 38700}, {3541, 57305}, {3542, 57306}, {3575, 64510}, {5064, 66786}, {5090, 66779}, {5094, 66787}, {5185, 62493}, {5186, 62490}, {5198, 38678}, {6622, 66819}, {6995, 66788}, {7487, 66773}, {7713, 66776}, {7714, 66817}, {8889, 66815}, {10151, 62501}, {11363, 66770}, {11392, 66782}, {11393, 66783}, {11396, 66784}, {11403, 38677}, {11832, 66780}, {12052, 36179}, {12131, 62489}, {12138, 62492}, {12145, 62510}, {12167, 66805}, {12173, 14989}, {13166, 62509}, {15472, 36193}, {18494, 66772}, {34312, 62966}, {37981, 47323}, {44281, 47327}, {44438, 44967}, {52285, 66816}, {53809, 66859}, {65856, 66844}
X(66771) = midpoint of X(i) and X(j) for these {i,j}: {382, 12091}
X(66771) = reflection of X(i) in X(j) for these {i,j}: {36179, 12052}, {66790, 4}
X(66771) = inverse of X(34193) in polar circle
X(66771) = pole of line {16171, 34193} with respect to the polar circle
X(66771) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 16168, 66790}
X(66772) lies on these lines: {3, 16177}, {4, 38581}, {5, 66773}, {20, 18319}, {30, 3448}, {113, 60741}, {381, 477}, {382, 14264}, {399, 36172}, {476, 1657}, {523, 38790}, {549, 66815}, {999, 66783}, {1351, 66810}, {1656, 38610}, {3258, 3843}, {3295, 66782}, {3526, 38701}, {3534, 38609}, {3627, 14731}, {3830, 20957}, {3845, 66817}, {3850, 66819}, {3851, 57306}, {3853, 11749}, {5054, 66787}, {5055, 31379}, {5072, 66801}, {5076, 38678}, {5663, 31874}, {7687, 14851}, {9655, 33965}, {9668, 33964}, {10113, 57471}, {12702, 66779}, {14993, 16111}, {15041, 34209}, {15681, 66816}, {15696, 38700}, {17511, 21269}, {18480, 66776}, {18493, 66770}, {18494, 66771}, {18508, 66780}, {18526, 66784}, {18541, 59825}, {21316, 65086}, {22251, 64642}, {28146, 66793}, {31726, 47324}, {33703, 66802}, {33878, 66809}, {34150, 38724}, {34312, 38335}, {36179, 43835}, {37924, 45811}, {38677, 49136}, {38733, 62490}, {38744, 62489}, {38756, 62492}, {38768, 62494}, {38780, 62496}, {38800, 62508}, {39899, 66805}, {48658, 62510}, {48680, 62491}, {48681, 62509}, {53809, 66860}
X(66772) = midpoint of X(i) and X(j) for these {i,j}: {33703, 66802}
X(66772) = reflection of X(i) in X(j) for these {i,j}: {3, 66781}, {20, 18319}, {382, 14989}, {399, 36172}, {477, 66778}, {1657, 476}, {3534, 66786}, {11749, 3853}, {12702, 66779}, {14731, 3627}, {17511, 21269}, {18508, 66780}, {18526, 66784}, {33878, 66809}, {38580, 34193}, {38581, 4}, {38678, 66795}, {39899, 66805}, {66773, 5}, {66776, 18480}, {66791, 382}, {66817, 3845}
X(66772) = pole of line {14809, 55141} with respect to the circumcircle
X(66772) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 34193, 38580}, {382, 16168, 66791}, {477, 66778, 381}, {14989, 16168, 382}, {64510, 66781, 3}
X(66773) lies on circumconic {{A, B, C, X(477), X(20123)}} and on these lines: {2, 38610}, {3, 18319}, {4, 477}, {5, 66772}, {20, 16168}, {24, 66777}, {30, 146}, {140, 66815}, {186, 34178}, {376, 476}, {381, 66819}, {515, 66776}, {523, 12244}, {550, 38580}, {631, 25641}, {1515, 64890}, {1553, 20125}, {3085, 66782}, {3086, 66783}, {3090, 31379}, {3091, 57306}, {3146, 20957}, {3488, 59823}, {3522, 38609}, {3523, 57305}, {3524, 22104}, {3525, 66787}, {3528, 38700}, {3529, 38678}, {3534, 66820}, {3543, 66795}, {3545, 66801}, {4293, 33965}, {4294, 33964}, {5603, 66770}, {5627, 55319}, {5657, 66779}, {5667, 13619}, {6776, 66813}, {7487, 66771}, {7687, 57471}, {7967, 66784}, {9862, 62489}, {10113, 14851}, {10299, 66816}, {10519, 66809}, {11845, 66780}, {12079, 36164}, {12082, 66794}, {12248, 62492}, {12253, 62510}, {12317, 14508}, {13172, 62490}, {13199, 62491}, {13200, 56369}, {14654, 62507}, {14912, 66805}, {14934, 36172}, {15081, 34150}, {15160, 53154}, {15161, 53153}, {15682, 34312}, {17538, 38677}, {21168, 66804}, {31730, 66793}, {33703, 44967}, {36179, 43818}, {38726, 60603}, {53809, 66861}, {60741, 61574}, {62493, 63416}, {62494, 63418}, {62495, 63417}, {65856, 66845}
X(66773) = midpoint of X(i) and X(j) for these {i,j}: {20, 66788}
X(66773) = reflection of X(i) in X(j) for these {i,j}: {4, 477}, {3146, 20957}, {12317, 14508}, {14731, 38581}, {14989, 3258}, {15682, 34312}, {33703, 44967}, {34193, 3}, {36172, 14934}, {38580, 550}, {66772, 5}, {66781, 38610}, {66791, 11749}, {66792, 20}, {66793, 31730}, {66820, 3534}
X(66773) = anticomplement of X(66781)
X(66773) = X(i)-Dao conjugate of X(j) for these {i, j}: {66781, 66781}
X(66773) = pole of line {39491, 55141} with respect to the polar circle
X(66773) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 66788, 16168}, {30, 11749, 66791}, {376, 51835, 47050}, {477, 14989, 3258}, {3258, 14989, 4}, {3258, 64510, 14989}, {11749, 66791, 14731}, {14731, 66817, 38581}, {34150, 65086, 15081}, {38581, 66791, 11749}, {57306, 66778, 3091}
X(66774) lies on circumconic {{A, B, C, X(1296), X(34210)}} and on these lines: {3, 66775}, {30, 110}, {99, 65872}, {476, 1296}, {523, 48953}, {691, 48951}, {1499, 14480}, {3258, 36174}, {3568, 38613}, {9145, 16171}, {9216, 66785}, {9855, 40866}, {13586, 47327}, {14120, 66801}, {36166, 38701}, {36172, 57431}, {36173, 64510}, {38702, 53728}, {47293, 48954}, {48539, 55130}, {48690, 62491}, {48709, 62492}, {48947, 57616}, {48948, 62509}
X(66774) = reflection of X(i) in X(j) for these {i,j}: {476, 7472}, {36172, 57431}, {36174, 3258}, {66775, 3}
X(66774) = pole of line {5663, 9126} with respect to the Stammler hyperbola
X(66774) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7472, 62507, 476}
X(66775) lies on these lines: {3, 66774}, {30, 74}, {111, 477}, {376, 50941}, {523, 22265}, {691, 53728}, {842, 43654}, {3258, 66163}, {7472, 38700}, {9142, 16171}, {9158, 9215}, {9179, 54995}, {11676, 47327}, {25641, 36173}, {36170, 66787}, {46303, 53793}, {46585, 53327}, {48452, 52694}, {48540, 55130}, {48691, 62491}, {48710, 62492}, {48980, 61102}, {48981, 53419}, {48985, 60508}
X(66775) = reflection of X(i) in X(j) for these {i,j}: {477, 36166}, {691, 53728}, {11676, 47327}, {36173, 25641}, {66774, 3}
X(66775) = pole of line {46608, 53328} with respect to the circumcircle
X(66775) = pole of line {1989, 22265} with respect to the Kiepert hyperbola
X(66775) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {34150, 47323, 66786}, {36166, 62507, 477}
X(66776) lies on the Bevan circle and on these lines: {1, 477}, {8, 66788}, {10, 34193}, {30, 2948}, {40, 16168}, {57, 33965}, {165, 476}, {515, 66773}, {516, 14731}, {517, 38581}, {519, 66817}, {523, 9904}, {1054, 62499}, {1282, 62493}, {1697, 33964}, {1698, 25641}, {1699, 3258}, {1768, 62492}, {3062, 66806}, {3339, 59825}, {3576, 38610}, {3579, 38580}, {3624, 31379}, {3633, 66818}, {3634, 66815}, {3679, 66779}, {3817, 66819}, {5540, 62497}, {5541, 62491}, {5587, 66781}, {5691, 64510}, {7713, 66771}, {7987, 38701}, {7988, 66801}, {7991, 38678}, {8185, 66777}, {8227, 57306}, {9578, 66782}, {9579, 66798}, {9580, 66799}, {9581, 66783}, {9778, 66802}, {9860, 62489}, {11531, 66800}, {11749, 28174}, {11852, 66780}, {12261, 14851}, {12408, 62510}, {13174, 62490}, {13221, 62509}, {16192, 38700}, {18319, 26446}, {18480, 66772}, {18492, 66778}, {19875, 66786}, {20403, 66823}, {20957, 41869}, {28146, 66791}, {31423, 57305}, {31730, 66792}, {34312, 50865}, {34464, 65856}, {35242, 38609}, {36179, 43830}, {38677, 63469}, {39156, 62494}, {50808, 66820}, {53793, 66835}, {53809, 66863}, {62495, 64760}, {62496, 64761}, {64850, 66787}
X(66776) = midpoint of X(i) and X(j) for these {i,j}: {8, 66788}
X(66776) = reflection of X(i) in X(j) for these {i,j}: {1, 477}, {3062, 66806}, {5691, 66796}, {11531, 66800}, {34193, 10}, {38580, 3579}, {41869, 20957}, {50865, 34312}, {66772, 18480}, {66784, 66770}, {66792, 31730}, {66793, 40}, {66820, 50808}
X(66776) = pole of line {16171, 66776} with respect to the Bevan circle
X(66776) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {40, 16168, 66793}, {477, 66784, 66770}, {38701, 66789, 7987}, {64510, 66796, 5691}, {66770, 66784, 1}
X(66777) lies on these lines: {3, 16177}, {22, 34193}, {23, 66788}, {24, 66773}, {25, 477}, {30, 12310}, {476, 11414}, {523, 9919}, {1593, 14989}, {1598, 3258}, {5020, 31379}, {5899, 14673}, {6642, 38610}, {7387, 16168}, {7484, 66787}, {7485, 66815}, {7517, 38581}, {7529, 57306}, {8185, 66776}, {8192, 66784}, {8193, 66779}, {9818, 66778}, {9861, 62489}, {9913, 62492}, {10831, 66782}, {10832, 66783}, {10833, 33964}, {11365, 66770}, {11641, 37924}, {11853, 66780}, {12082, 66792}, {12083, 38580}, {12087, 66802}, {12168, 36172}, {12413, 62510}, {13175, 62490}, {13222, 62491}, {18534, 20957}, {18954, 33965}, {19459, 66805}, {20403, 66824}, {21284, 47323}, {35243, 38609}, {36179, 43829}, {37198, 38700}, {37485, 66809}, {38701, 66607}, {63665, 63715}, {65856, 66847}
X(66777) = reflection of X(i) in X(j) for these {i,j}: {66794, 7387}
X(66777) = pole of line {31379, 45681} with respect to the circumcircle
X(66777) = pole of line {20957, 53320} with respect to the Stammler circle
X(66777) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7387, 16168, 66794}
X(66778) lies on these lines: {3, 14989}, {4, 14670}, {5, 31379}, {20, 57305}, {30, 125}, {110, 57471}, {113, 33505}, {265, 36172}, {376, 66815}, {381, 477}, {382, 476}, {523, 1539}, {546, 3258}, {550, 22104}, {1478, 66783}, {1479, 66782}, {1511, 36169}, {1553, 32423}, {1656, 38701}, {1657, 38700}, {2777, 34209}, {2972, 18403}, {3091, 57306}, {3543, 66792}, {3583, 33964}, {3585, 33965}, {3627, 18319}, {3830, 38580}, {3839, 66788}, {3843, 38581}, {3851, 66801}, {3855, 66819}, {5076, 38677}, {5627, 10620}, {5663, 34150}, {6699, 21315}, {7687, 16340}, {9818, 66777}, {9955, 66770}, {10733, 36193}, {11563, 53577}, {11749, 61988}, {12079, 51522}, {12699, 66779}, {14269, 34312}, {14480, 38789}, {14508, 38724}, {14934, 61574}, {15687, 66816}, {17702, 21269}, {18323, 47323}, {18440, 66805}, {18492, 66776}, {18507, 66780}, {18525, 66784}, {19160, 62510}, {19163, 62509}, {20304, 36164}, {20403, 66826}, {20423, 66810}, {21317, 38726}, {22505, 62489}, {22515, 44267}, {22799, 62492}, {22938, 62491}, {23046, 66818}, {28160, 66789}, {31670, 66809}, {31671, 66804}, {34584, 46632}, {36179, 43865}, {37440, 63708}, {37853, 47852}, {38678, 61984}, {41099, 66817}, {49117, 62501}, {50688, 66802}, {53793, 66836}, {53809, 66864}, {62017, 66820}, {65856, 66849}
X(66778) = midpoint of X(i) and X(j) for these {i,j}: {3, 14989}, {4, 66781}, {265, 36172}, {382, 476}, {477, 66772}, {3627, 18319}, {3830, 66786}, {10733, 36193}, {12699, 66779}, {18323, 47323}, {18440, 66805}, {18507, 66780}, {18525, 66784}, {20957, 34193}, {31670, 66809}, {31671, 66804}, {38580, 44967}, {38677, 66791}
X(66778) = reflection of X(i) in X(j) for these {i,j}: {125, 21316}, {550, 22104}, {1511, 36169}, {3258, 546}, {14934, 61574}, {16340, 7687}, {21317, 38726}, {36164, 20304}, {38609, 25641}, {38610, 5}, {51522, 12079}, {66770, 9955}, {66795, 4}
X(66778) = inverse of X(34193) in circumcircle of the Johnson triangle
X(66778) = pole of line {16171, 34193} with respect to the circumcircle of the Johnson triangle
X(66778) = pole of line {55141, 62364} with respect to the nine-point circle
X(66778) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {3, 14989, 46632}, {4, 34150, 66781}, {265, 36172, 36184}, {382, 476, 7471}, {3258, 6070, 16177}, {3627, 18319, 21269}, {18323, 47323, 47347}
X(66778) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 16168, 66795}, {4, 34193, 20957}, {5, 64510, 38610}, {30, 21316, 125}, {30, 25641, 38609}, {265, 60741, 36172}, {381, 66772, 477}, {3830, 38580, 44967}, {20957, 34193, 16168}, {20957, 66781, 34193}
X(66779) lies on these lines: {1, 25641}, {2, 66770}, {8, 34193}, {10, 477}, {30, 13211}, {40, 64510}, {65, 66782}, {80, 62491}, {355, 16168}, {388, 59825}, {476, 515}, {516, 14989}, {517, 66781}, {518, 66809}, {519, 66784}, {523, 12368}, {944, 66789}, {946, 66800}, {952, 18319}, {1125, 66787}, {1385, 57305}, {1698, 31379}, {1837, 33964}, {3057, 66783}, {3258, 5587}, {3576, 22104}, {3616, 66815}, {3617, 66788}, {3632, 66816}, {3679, 66776}, {4297, 38700}, {4663, 66810}, {5090, 66771}, {5252, 33965}, {5627, 13605}, {5657, 66773}, {5691, 66793}, {5790, 38581}, {5847, 66805}, {6070, 33535}, {6684, 38701}, {8193, 66777}, {9864, 62489}, {9956, 57306}, {10175, 66801}, {11749, 38138}, {11900, 66780}, {12699, 66778}, {12702, 66772}, {12751, 62492}, {12784, 62510}, {13178, 62490}, {13280, 62509}, {13532, 62496}, {14731, 59387}, {18391, 59823}, {18480, 20957}, {18481, 38609}, {18525, 38580}, {26446, 38610}, {31673, 44967}, {34312, 50796}, {36179, 43827}, {50864, 66820}, {50896, 62493}, {50899, 62495}, {50903, 62494}, {50911, 62497}, {50914, 62499}, {50916, 62501}, {50917, 62504}, {50924, 62507}, {53620, 66817}, {53809, 66865}, {65856, 66850}
X(66779) = midpoint of X(i) and X(j) for these {i,j}: {8, 34193}, {5691, 66793}, {12702, 66772}, {18525, 38580}, {50864, 66820}
X(66779) = reflection of X(i) in X(j) for these {i,j}: {1, 25641}, {477, 10}, {944, 66789}, {12699, 66778}, {18481, 38609}, {20957, 18480}, {33535, 6070}, {34312, 50796}, {44967, 31673}, {66796, 355}, {66800, 946}, {66810, 4663}
X(66779) = anticomplement of X(66770)
X(66779) = X(i)-Dao conjugate of X(j) for these {i, j}: {66770, 66770}
X(66780) lies on these lines: {30, 74}, {402, 477}, {523, 12369}, {1650, 25641}, {3258, 11897}, {4240, 34193}, {5489, 55141}, {11251, 16168}, {11831, 66770}, {11832, 66771}, {11845, 66773}, {11852, 66776}, {11853, 66777}, {11900, 66779}, {11905, 66782}, {11906, 66783}, {11909, 33964}, {11910, 66784}, {11911, 38581}, {12113, 64510}, {12181, 62489}, {12752, 62492}, {12796, 62510}, {13179, 62490}, {13268, 62491}, {13281, 62509}, {15183, 31379}, {15184, 66787}, {18507, 66778}, {18508, 66772}, {18958, 33965}, {26451, 38610}, {30716, 47111}, {35241, 38609}, {36179, 43849}
X(66780) = midpoint of X(i) and X(j) for these {i,j}: {4240, 34193}, {18508, 66772}
X(66780) = reflection of X(i) in X(j) for these {i,j}: {477, 402}, {1650, 25641}, {18507, 66778}, {35241, 38609}, {66797, 11251}
X(66780) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {476, 4240, 34193}
X(66781) lies on K448 Neuberg axial cubic, circumcircle of the Johnson triangle and on these lines: {1, 66782}, {2, 38610}, {3, 16177}, {4, 14670}, {5, 477}, {20, 38609}, {30, 74}, {140, 38701}, {381, 3258}, {382, 38580}, {399, 1553}, {511, 66809}, {517, 66779}, {523, 7728}, {542, 66813}, {546, 38678}, {550, 38700}, {576, 66810}, {631, 66815}, {952, 66784}, {1304, 11251}, {1478, 33965}, {1479, 33964}, {1656, 31379}, {3091, 66788}, {3146, 66792}, {3154, 14851}, {3233, 64182}, {3543, 66802}, {3545, 66817}, {3564, 66805}, {3583, 66799}, {3585, 66798}, {3627, 38677}, {3818, 66812}, {3830, 66167}, {3845, 11749}, {5072, 66818}, {5587, 66776}, {5655, 14611}, {5663, 36172}, {5722, 59823}, {5762, 66804}, {5886, 66770}, {6033, 62489}, {6070, 10620}, {6321, 18325}, {7471, 12121}, {10113, 17511}, {10738, 62491}, {10739, 62493}, {10740, 62495}, {10741, 62494}, {10742, 62492}, {10743, 62497}, {10744, 62499}, {10745, 18403}, {10746, 62504}, {10747, 62496}, {10748, 62507}, {10749, 18323}, {11799, 58942}, {12918, 62510}, {13392, 64642}, {13556, 31726}, {14380, 55141}, {14643, 14934}, {14644, 16340}, {15059, 21315}, {15061, 36164}, {15112, 44271}, {15521, 62498}, {15522, 62500}, {15682, 66820}, {17702, 36193}, {18480, 66796}, {18481, 66789}, {18534, 66794}, {20304, 65086}, {20403, 66827}, {21850, 66807}, {22337, 62502}, {22338, 62508}, {22791, 66800}, {32417, 38790}, {33566, 62505}, {34153, 60605}, {36179, 43821}, {38730, 53738}, {38741, 53728}, {38794, 47084}, {38954, 65856}, {40100, 53809}, {41869, 66793}, {47324, 47336}, {53793, 66837}, {57282, 59825}, {59428, 61502}, {60901, 66806}, {63671, 63715}
X(66781) = midpoint of X(i) and X(j) for these {i,j}: {3, 66772}, {4, 34193}, {382, 38580}, {476, 14989}, {3146, 66792}, {15682, 66820}, {38677, 44967}, {41869, 66793}
X(66781) = reflection of X(i) in X(j) for these {i,j}: {3, 25641}, {4, 66778}, {20, 38609}, {74, 34209}, {265, 34150}, {399, 1553}, {476, 18319}, {477, 5}, {10620, 6070}, {10733, 21269}, {12121, 7471}, {14508, 10264}, {14731, 66795}, {14934, 36169}, {16340, 21316}, {17511, 10113}, {18481, 66789}, {20127, 46632}, {20957, 4}, {34312, 3845}, {38581, 3258}, {38730, 53738}, {38741, 53728}, {44967, 3627}, {47324, 47336}, {66773, 38610}, {66796, 18480}, {66800, 22791}, {66806, 60901}, {66807, 21850}, {66810, 576}, {66812, 3818}
X(66781) = complement of X(66773)
X(66781) = anticomplement of X(38610)
X(66781) = X(i)-Dao conjugate of X(j) for these {i, j}: {38610, 38610}
X(66781) = pole of line {46608, 55141} with respect to the circumcircle
X(66781) = pole of line {16171, 66781} with respect to the circumcircle of the Johnson triangle
X(66781) = pole of line {16171, 62172} with respect to the polar circle
X(66781) = pole of line {55141, 66794} with respect to the Stammler circle
X(66781) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {4, 34193, 36172}, {382, 36193, 38580}, {476, 1304, 14989}
X(66781) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 66773, 38610}, {3, 25641, 57305}, {3, 66772, 64510}, {4, 14731, 66795}, {4, 34193, 16168}, {5, 477, 57306}, {30, 10264, 14508}, {30, 21269, 10733}, {30, 34150, 265}, {30, 34209, 74}, {30, 46632, 20127}, {476, 14989, 30}, {476, 66786, 18319}, {5627, 14508, 10264}, {10733, 57471, 21269}, {14731, 66795, 20957}, {14934, 36169, 14643}, {14989, 66786, 476}, {14993, 20127, 46632}, {16168, 66778, 4}, {16168, 66795, 14731}, {16340, 21316, 14644}, {25641, 64510, 3}, {66782, 66783, 1}
X(66782) lies on the 1st Johnson-Yff circle and on these lines: {1, 66781}, {4, 33964}, {12, 477}, {30, 10065}, {36, 57305}, {55, 64510}, {56, 25641}, {65, 66779}, {388, 33965}, {476, 7354}, {498, 38610}, {523, 12373}, {1469, 66809}, {1478, 16168}, {1479, 66778}, {1837, 59823}, {3024, 36172}, {3085, 66773}, {3258, 10895}, {3295, 66772}, {3585, 20957}, {3614, 66801}, {4299, 38609}, {5204, 22104}, {5229, 14731}, {5261, 66788}, {5432, 38701}, {5433, 66787}, {5434, 66786}, {6284, 14989}, {7288, 66815}, {7951, 57306}, {9578, 66776}, {9579, 66793}, {9654, 38581}, {9655, 38580}, {10081, 34209}, {10404, 59825}, {10831, 66777}, {11375, 66770}, {11392, 66771}, {11905, 66780}, {12184, 62489}, {12763, 62492}, {12904, 34150}, {12945, 62510}, {13182, 62490}, {13273, 62491}, {13296, 62509}, {15326, 38700}, {18319, 18990}, {18968, 36193}, {19369, 66810}, {20403, 66828}, {36179, 43833}, {39897, 66805}, {44967, 65631}, {53793, 66838}, {53809, 66866}, {60883, 66804}, {65856, 66851}
X(66782) = reflection of X(i) in X(j) for these {i,j}: {66798, 1478}
X(66782) = pole of line {16171, 66782} with respect to the 1st Johnson-Yff circle
X(66782) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 66781, 66783}, {1478, 16168, 66798}
X(66783) lies on the 2nd Johnson-Yff circle and on these lines: {1, 66781}, {4, 33965}, {11, 477}, {30, 10081}, {35, 57305}, {55, 25641}, {56, 64510}, {476, 6284}, {497, 33964}, {499, 38610}, {523, 12374}, {999, 66772}, {1478, 66778}, {1479, 16168}, {1836, 59825}, {3028, 36172}, {3056, 66809}, {3057, 66779}, {3058, 66786}, {3086, 66773}, {3258, 10896}, {3583, 20957}, {4302, 38609}, {5217, 22104}, {5218, 66815}, {5225, 14731}, {5274, 66788}, {5432, 66787}, {5433, 38701}, {7173, 66801}, {7354, 14989}, {7741, 57306}, {8540, 66810}, {9580, 66793}, {9581, 66776}, {9668, 38580}, {9669, 38581}, {10065, 34209}, {10832, 66777}, {11376, 66770}, {11393, 66771}, {11906, 66780}, {12185, 62489}, {12764, 62492}, {12896, 36193}, {12903, 34150}, {12955, 62510}, {13183, 62490}, {13274, 62491}, {13297, 62509}, {15171, 18319}, {15338, 38700}, {20403, 66829}, {36179, 43832}, {39873, 66805}, {44967, 65632}, {53793, 66839}, {53809, 66867}, {60919, 66804}, {65856, 66852}
X(66783) = reflection of X(i) in X(j) for these {i,j}: {66799, 1479}
X(66783) = pole of line {16171, 66783} with respect to the 2nd Johnson-Yff circle
X(66783) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 66781, 66782}, {4, 33965, 66798}, {497, 34193, 33964}, {1479, 16168, 66799}
X(66784) lies on these lines: {1, 477}, {8, 25641}, {10, 66787}, {30, 7984}, {40, 38700}, {145, 34193}, {476, 517}, {515, 14989}, {518, 66804}, {519, 66779}, {523, 7978}, {944, 64510}, {946, 66796}, {952, 66781}, {1320, 62491}, {1385, 38701}, {1482, 16168}, {2098, 33964}, {2099, 33965}, {3258, 5603}, {3340, 59825}, {3616, 31379}, {3617, 66815}, {3623, 66788}, {3656, 34312}, {5627, 13211}, {5657, 22104}, {5690, 57305}, {5844, 18319}, {5846, 66809}, {5886, 66801}, {5901, 57306}, {7967, 66773}, {7970, 62489}, {7982, 38677}, {7983, 62490}, {8148, 38580}, {8192, 66777}, {10222, 38678}, {10246, 38610}, {10247, 38581}, {10695, 62493}, {10696, 62495}, {10697, 62494}, {10698, 62492}, {10699, 62497}, {10700, 62499}, {10701, 62501}, {10702, 62504}, {10703, 62496}, {10704, 62507}, {10705, 62509}, {11396, 66771}, {11531, 66793}, {11735, 65086}, {11910, 66780}, {12699, 44967}, {12702, 38609}, {12778, 60605}, {13099, 62510}, {18525, 66778}, {18526, 66772}, {20050, 66816}, {20957, 22791}, {36179, 43824}, {47324, 47471}, {50872, 66820}, {65856, 66853}
X(66784) = midpoint of X(i) and X(j) for these {i,j}: {145, 34193}, {8148, 38580}, {11531, 66793}, {18526, 66772}, {50872, 66820}
X(66784) = reflection of X(i) in X(j) for these {i,j}: {8, 25641}, {40, 66789}, {477, 1}, {12702, 38609}, {18525, 66778}, {20957, 22791}, {34312, 3656}, {44967, 12699}, {47324, 47471}, {66776, 66770}, {66796, 946}, {66800, 1482}
X(66784) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 66776, 66770}, {66770, 66776, 477}
X(66785) lies on the Parry circle and on these lines: {2, 44814}, {15, 9201}, {16, 9200}, {23, 9185}, {30, 9138}, {110, 476}, {111, 477}, {351, 9158}, {353, 2395}, {690, 36188}, {3569, 66811}, {5191, 66814}, {5466, 52772}, {5996, 36173}, {6137, 15743}, {6138, 11586}, {9131, 55141}, {9147, 62490}, {9156, 62508}, {9157, 62510}, {9213, 58856}, {9216, 66774}, {9978, 62492}, {9979, 41626}, {9980, 62491}, {11673, 20403}, {13114, 62509}, {46616, 53327}, {47159, 47324}, {47263, 52125}, {53793, 66831}
X(66785) = reflection of X(i) in X(j) for these {i,j}: {9158, 351}, {47324, 47159}
X(66785) = pole of line {9158, 14995} with respect to the circumcircle
X(66785) = pole of line {14356, 57603} with respect to the orthoptic circle of the Steiner Inellipse
X(66785) = pole of line {16168, 66785} with respect to the Parry circle
X(66785) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {351, 16171, 9158}
X(66786) lies on these lines: {2, 477}, {4, 38677}, {5, 38678}, {30, 74}, {376, 38700}, {381, 15111}, {519, 66779}, {523, 10706}, {524, 66805}, {527, 66804}, {541, 36172}, {547, 57306}, {549, 38701}, {671, 62490}, {1551, 10717}, {2394, 55141}, {3058, 66783}, {3258, 3545}, {3524, 22104}, {3534, 38609}, {3543, 66820}, {3656, 66800}, {3830, 38580}, {3839, 14731}, {3845, 20957}, {4654, 59825}, {5054, 38610}, {5055, 38581}, {5064, 66771}, {5434, 66782}, {5655, 14480}, {6054, 62489}, {8584, 66810}, {9158, 11799}, {10707, 62491}, {10708, 62493}, {10709, 62495}, {10710, 62494}, {10711, 62492}, {10712, 62497}, {10713, 62499}, {10714, 62501}, {10715, 62504}, {10716, 62496}, {10718, 62509}, {11237, 33965}, {11238, 33964}, {11749, 38071}, {12117, 53738}, {14269, 66795}, {14851, 21315}, {15682, 66792}, {19875, 66776}, {20423, 66807}, {22265, 47347}, {25055, 66770}, {32640, 66266}, {36179, 43836}, {38335, 66791}, {45311, 65086}, {46456, 52494}, {47324, 47332}, {47354, 66812}, {50687, 66802}, {50796, 66796}, {50811, 66789}, {50865, 66793}, {51038, 66808}, {54651, 66111}, {60605, 64182}, {61924, 66819}, {62966, 66790}, {65856, 66854}
X(66786) = midpoint of X(i) and X(j) for these {i,j}: {2, 34193}, {3534, 66772}, {3543, 66820}, {3830, 38580}, {15682, 66792}, {50865, 66793}
X(66786) = reflection of X(i) in X(j) for these {i,j}: {2, 25641}, {477, 2}, {3534, 38609}, {3830, 66778}, {9158, 11799}, {12117, 53738}, {14480, 5655}, {14508, 20126}, {14851, 21315}, {20126, 34209}, {20957, 3845}, {34312, 381}, {38701, 57305}, {44967, 3830}, {47324, 47332}, {50811, 66789}, {66796, 50796}, {66800, 3656}, {66807, 20423}, {66808, 51038}, {66810, 8584}, {66812, 47354}
X(66786) = complement of X(66817)
X(66786) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {2, 34193, 36172}, {3830, 36193, 38580}
X(66786) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 20126, 14508}, {30, 34209, 20126}, {381, 16168, 34312}, {476, 66781, 14989}, {477, 25641, 66787}, {18319, 66781, 476}, {25641, 31379, 66815}, {25641, 34193, 477}, {25641, 66816, 34193}, {34150, 47323, 66775}, {34193, 66815, 66788}, {38580, 66778, 44967}, {66788, 66815, 31379}
X(66787) lies on circumconic {{A, B, C, X(31379), X(35520)}} and on these lines: {2, 477}, {3, 14989}, {4, 22104}, {5, 476}, {10, 66784}, {30, 15059}, {74, 36169}, {110, 5627}, {140, 38701}, {141, 66805}, {142, 66804}, {265, 21315}, {381, 38609}, {523, 64101}, {597, 66810}, {631, 64510}, {1125, 66779}, {1656, 16168}, {3090, 3258}, {3525, 66773}, {3526, 38610}, {3545, 66792}, {3589, 66809}, {3614, 66798}, {3624, 66770}, {3628, 18319}, {3851, 66795}, {5054, 66772}, {5055, 34312}, {5056, 14731}, {5070, 38581}, {5072, 66791}, {5094, 66771}, {5159, 47323}, {5219, 59825}, {5432, 66783}, {5433, 66782}, {5587, 66789}, {5886, 66800}, {6699, 36172}, {6723, 65086}, {7173, 66799}, {7471, 14644}, {7484, 66777}, {7486, 66819}, {7988, 66793}, {9781, 16978}, {10175, 66796}, {10296, 66173}, {10297, 66811}, {11749, 61900}, {11801, 64652}, {12068, 15035}, {12079, 14094}, {12121, 21316}, {14061, 62490}, {14480, 14643}, {14508, 15061}, {14561, 66807}, {14639, 53738}, {15022, 66802}, {15036, 57471}, {15184, 66780}, {17511, 23515}, {20127, 47852}, {20304, 36193}, {21269, 38723}, {31272, 62491}, {31273, 62493}, {36170, 66775}, {36179, 43866}, {36184, 60603}, {38108, 66806}, {61924, 66820}, {62489, 64089}, {62492, 64008}, {63664, 63708}, {64850, 66776}, {65856, 66855}
X(66787) = reflection of X(i) in X(j) for these {i,j}: {66801, 1656}
X(66787) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 25641, 477}, {2, 34193, 31379}, {2, 66815, 25641}, {4, 22104, 38700}, {5, 57305, 476}, {140, 66781, 38701}, {381, 38609, 44967}, {477, 25641, 66786}, {3628, 18319, 57306}, {14643, 34209, 14480}, {18319, 57306, 38678}, {25641, 31379, 34193}
X(66788) lies on these lines: {2, 477}, {4, 38581}, {8, 66776}, {20, 16168}, {23, 66777}, {30, 12308}, {376, 38580}, {382, 11749}, {390, 33964}, {476, 3522}, {523, 64102}, {631, 18319}, {1138, 7728}, {3091, 66781}, {3146, 14731}, {3258, 3832}, {3448, 66769}, {3523, 38610}, {3543, 20957}, {3600, 33965}, {3617, 66779}, {3620, 66809}, {3622, 66770}, {3623, 66784}, {3839, 66778}, {5056, 57306}, {5068, 66819}, {5261, 66782}, {5274, 66783}, {5984, 62489}, {6995, 66771}, {9778, 66793}, {10303, 57305}, {10304, 38609}, {12087, 66794}, {14851, 15081}, {14989, 17578}, {15022, 66801}, {15717, 38701}, {17702, 60008}, {20094, 62490}, {20095, 62491}, {20096, 62493}, {20097, 62497}, {20098, 62499}, {20099, 62507}, {20127, 60740}, {21454, 59825}, {21734, 38700}, {22104, 61820}, {33703, 66791}, {34312, 50687}, {36179, 43838}, {37760, 47323}, {37853, 60604}, {38677, 50693}, {47324, 52403}, {50688, 66795}, {51170, 66805}, {61006, 66804}, {62120, 66820}, {62492, 64009}, {65856, 66857}
X(66788) = reflection of X(i) in X(j) for these {i,j}: {2, 66817}, {4, 38581}, {8, 66776}, {20, 66773}, {382, 11749}, {3146, 14731}, {14731, 38678}, {25641, 66818}, {33703, 66791}, {34193, 477}, {66802, 20}
X(66788) = anticomplement of X(34193)
X(66788) = X(i)-Dao conjugate of X(j) for these {i, j}: {34193, 34193}
X(66788) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {34192, 8}
X(66788) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 16168, 66802}, {477, 66786, 31379}, {14731, 64510, 3146}, {16168, 66773, 20}, {25641, 66818, 477}, {31379, 66786, 66815}, {31379, 66815, 2}, {34193, 66815, 66786}
X(66789) lies on these lines: {1, 476}, {2, 66796}, {10, 22104}, {30, 11709}, {40, 38700}, {56, 59823}, {214, 62492}, {355, 57305}, {477, 3576}, {515, 25641}, {517, 38609}, {523, 11720}, {944, 66779}, {1125, 3258}, {1319, 33964}, {1385, 16168}, {1699, 44967}, {2646, 33965}, {2948, 60605}, {3616, 14731}, {3622, 66802}, {3624, 66801}, {3649, 31524}, {4297, 64510}, {5550, 66819}, {5587, 66787}, {5603, 66792}, {5627, 12407}, {5731, 34193}, {5886, 20957}, {7984, 60603}, {7987, 38701}, {9955, 66795}, {10165, 31379}, {10246, 38580}, {11363, 66790}, {11365, 66794}, {11375, 66798}, {11376, 66799}, {11700, 62495}, {11710, 51693}, {11711, 62489}, {11712, 62494}, {11713, 62496}, {11714, 62493}, {11715, 62491}, {11716, 62498}, {11717, 62500}, {11718, 62502}, {11719, 62505}, {11721, 47495}, {11722, 62510}, {11831, 66797}, {12265, 62509}, {12898, 14993}, {13624, 38610}, {16475, 66807}, {16978, 31757}, {18319, 34773}, {18481, 66781}, {18493, 66791}, {25055, 34312}, {28160, 66778}, {30389, 38678}, {37401, 42422}, {38314, 66820}, {38677, 64953}, {49585, 55141}, {50811, 66786}, {53809, 61278}, {59387, 66815}, {65856, 66858}, {66515, 66806}
X(66789) = midpoint of X(i) and X(j) for these {i,j}: {1, 476}, {40, 66784}, {944, 66779}, {18319, 34773}, {18481, 66781}, {50811, 66786}, {66793, 66800}
X(66789) = reflection of X(i) in X(j) for these {i,j}: {10, 22104}, {3258, 1125}, {16978, 31757}, {38610, 13624}, {66770, 1385}, {66795, 9955}
X(66789) = complement of X(66796)
X(66789) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {1, 476, 59828}
X(66789) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 66793, 66800}, {476, 66800, 66793}, {1385, 16168, 66770}, {7987, 66776, 38701}, {38700, 66784, 40}
X(66790) lies on circumconic {{A, B, C, X(14731), X(16171)}} and on these lines: {4, 14670}, {24, 38609}, {25, 476}, {30, 12133}, {33, 33965}, {34, 33964}, {235, 16178}, {378, 38610}, {381, 12091}, {403, 15367}, {427, 3258}, {468, 6036}, {477, 1593}, {523, 1112}, {1596, 18319}, {1597, 38581}, {1598, 38580}, {1862, 62492}, {1876, 59823}, {1885, 64510}, {2790, 12079}, {2970, 7480}, {3515, 38700}, {3516, 38701}, {3541, 57306}, {3542, 57305}, {5064, 34312}, {5090, 66796}, {5094, 66801}, {5185, 62494}, {5186, 14052}, {5198, 38677}, {6622, 66815}, {6746, 10223}, {6995, 66802}, {7487, 66792}, {7713, 66793}, {7714, 66820}, {8889, 66819}, {9159, 52292}, {11363, 66789}, {11392, 66798}, {11393, 66799}, {11396, 66800}, {11403, 38678}, {11832, 66797}, {12052, 34093}, {12138, 62491}, {12145, 62509}, {12167, 66807}, {12173, 44967}, {13166, 62510}, {13473, 62501}, {14480, 19504}, {14989, 15111}, {15112, 37197}, {18494, 66791}, {32428, 47351}, {36169, 53802}, {37981, 47324}, {53809, 66844}, {62966, 66786}, {65856, 66859}
X(66790) = reflection of X(i) in X(j) for these {i,j}: {66771, 4}
X(66790) = inverse of X(14731) in polar circle
X(66790) = pole of line {14731, 16171} with respect to the polar circle
X(66790) = pole of line {2437, 61209} with respect to the Orthic inconic
X(66790) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 16168, 66771}
X(66791) lies on these lines: {3, 3258}, {4, 18319}, {5, 66792}, {30, 146}, {113, 52056}, {381, 476}, {382, 14264}, {457, 43911}, {477, 1657}, {523, 12902}, {549, 66819}, {999, 66799}, {1351, 66813}, {1656, 38609}, {2070, 66811}, {3295, 66798}, {3526, 38700}, {3534, 34312}, {3627, 34193}, {3830, 66167}, {3843, 25641}, {3845, 66820}, {3850, 66815}, {3851, 57305}, {5054, 66801}, {5055, 22104}, {5072, 66787}, {5073, 64510}, {5076, 38677}, {5899, 43919}, {7687, 14993}, {9655, 33964}, {9668, 33965}, {10620, 17511}, {12079, 36184}, {12702, 66796}, {14851, 16111}, {15039, 33505}, {15041, 16340}, {15051, 45694}, {15696, 38701}, {18325, 48658}, {18403, 35372}, {18480, 66793}, {18493, 66789}, {18494, 66790}, {18508, 66797}, {18526, 66800}, {18541, 59823}, {28146, 66776}, {31726, 47323}, {33703, 66788}, {33878, 66812}, {36193, 38789}, {38335, 66786}, {38678, 49136}, {38733, 62489}, {38744, 62490}, {38756, 62491}, {38768, 62493}, {38780, 62495}, {38800, 62507}, {39899, 66807}, {47324, 52169}, {48680, 62492}, {48681, 62510}, {58207, 66818}, {60603, 61574}, {65856, 66860}
X(66791) = midpoint of X(i) and X(j) for these {i,j}: {33703, 66788}
X(66791) = reflection of X(i) in X(j) for these {i,j}: {3, 20957}, {382, 44967}, {476, 66795}, {1657, 477}, {3534, 34312}, {10620, 17511}, {12702, 66796}, {18508, 66797}, {18526, 66800}, {33878, 66812}, {34193, 3627}, {36193, 46045}, {38580, 4}, {38581, 14731}, {38677, 66778}, {39899, 66807}, {52056, 113}, {66772, 382}, {66773, 11749}, {66792, 5}, {66793, 18480}, {66802, 18319}, {66820, 3845}
X(66791) = pole of line {55130, 62173} with respect to the circumcircle
X(66791) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 66802, 18319}, {30, 11749, 66773}, {382, 16168, 66772}, {476, 66795, 381}, {11749, 66773, 38581}, {14731, 66773, 11749}, {16168, 44967, 382}, {18319, 66802, 38580}, {36193, 46045, 38789}
X(66792) lies on circumconic {{A, B, C, X(38580), X(52056)}} and on these lines: {2, 20957}, {3, 14731}, {4, 476}, {5, 66791}, {20, 16168}, {24, 66794}, {30, 3448}, {113, 60603}, {140, 66819}, {146, 36193}, {186, 47324}, {376, 477}, {381, 66815}, {382, 18319}, {515, 66793}, {523, 12383}, {548, 11749}, {550, 38581}, {631, 3258}, {1138, 14934}, {3085, 66798}, {3086, 66799}, {3090, 22104}, {3091, 57305}, {3146, 66781}, {3488, 59825}, {3522, 38610}, {3523, 57306}, {3524, 31379}, {3525, 66801}, {3528, 38701}, {3529, 38677}, {3534, 66817}, {3543, 66778}, {3545, 66787}, {4293, 33964}, {4294, 33965}, {5603, 66789}, {5654, 66803}, {5657, 66796}, {5663, 52056}, {5667, 57120}, {6776, 66810}, {7464, 12253}, {7487, 66790}, {7728, 51345}, {7967, 66800}, {9862, 62490}, {10113, 14993}, {10295, 47291}, {10519, 66812}, {10733, 60604}, {11845, 66797}, {12082, 66777}, {12248, 62491}, {13172, 62489}, {13199, 62492}, {13200, 62510}, {14651, 53728}, {14654, 62508}, {14912, 66807}, {14989, 33703}, {15081, 36184}, {15682, 66786}, {17511, 46632}, {17538, 38678}, {20125, 60605}, {21168, 66806}, {31730, 66776}, {34773, 53809}, {38953, 47076}, {53793, 61136}, {62042, 66816}, {62493, 63418}, {62494, 63416}, {62496, 63417}, {65856, 66861}
X(66792) = midpoint of X(i) and X(j) for these {i,j}: {20, 66802}
X(66792) = reflection of X(i) in X(j) for these {i,j}: {4, 476}, {146, 36193}, {382, 18319}, {3146, 66781}, {11749, 548}, {14731, 3}, {15682, 66786}, {17511, 46632}, {20957, 38609}, {33703, 14989}, {34193, 38580}, {38581, 550}, {44967, 25641}, {66773, 20}, {66776, 31730}, {66791, 5}, {66817, 3534}
X(66792) = anticomplement of X(20957)
X(66792) = X(i)-Dao conjugate of X(j) for these {i, j}: {20957, 20957}
X(66792) = pole of line {14480, 55130} with respect to the Kiepert parabola
X(66792) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {476, 1291, 39138}
X(66792) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 16168, 66773}, {20, 66802, 16168}, {30, 38580, 34193}, {476, 44967, 25641}, {3258, 38700, 631}, {20957, 38609, 2}, {25641, 44967, 4}, {34193, 66820, 38580}, {57305, 66795, 3091}
X(66793) lies on the Bevan circle and on these lines: {1, 476}, {5, 5520}, {8, 66802}, {10, 14731}, {30, 9904}, {40, 16168}, {57, 33964}, {165, 477}, {515, 66792}, {516, 34193}, {517, 38580}, {519, 66820}, {523, 2948}, {1054, 62500}, {1282, 62494}, {1697, 33965}, {1698, 3258}, {1699, 25641}, {1749, 21381}, {1768, 62491}, {2940, 52010}, {3062, 66804}, {3339, 59823}, {3576, 38609}, {3579, 38581}, {3624, 22104}, {3634, 66819}, {3679, 66796}, {3817, 66815}, {5540, 62498}, {5541, 62492}, {5587, 20957}, {5691, 66779}, {7713, 66790}, {7984, 60604}, {7987, 38700}, {7988, 66787}, {7991, 38677}, {8185, 66794}, {8227, 57305}, {9578, 66798}, {9579, 66782}, {9580, 66783}, {9581, 66799}, {9778, 66788}, {9860, 62490}, {11531, 66784}, {11720, 60603}, {11749, 61524}, {11809, 16310}, {11852, 66797}, {12261, 14993}, {12408, 62509}, {12699, 18319}, {12898, 51345}, {13174, 62489}, {13221, 62510}, {14985, 18285}, {16192, 38701}, {18480, 66791}, {18492, 66795}, {19875, 34312}, {20403, 66835}, {28146, 66772}, {31423, 57306}, {31730, 66773}, {35242, 38610}, {38588, 53283}, {38678, 63469}, {39156, 62493}, {41869, 66781}, {47273, 57263}, {50254, 62508}, {50808, 66817}, {50865, 66786}, {53793, 66823}, {62495, 64761}, {62496, 64760}, {64005, 64510}, {64850, 66801}, {65856, 66863}
X(66793) = midpoint of X(i) and X(j) for these {i,j}: {8, 66802}
X(66793) = reflection of X(i) in X(j) for these {i,j}: {1, 476}, {3062, 66804}, {5691, 66779}, {11531, 66784}, {11749, 61524}, {12699, 18319}, {14731, 10}, {38581, 3579}, {41869, 66781}, {50865, 66786}, {66773, 31730}, {66776, 40}, {66791, 18480}, {66800, 66789}, {66817, 50808}
X(66793) = pole of line {16171, 66793} with respect to the Bevan circle
X(66793) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {40, 16168, 66776}, {476, 66800, 66789}, {38700, 66770, 7987}, {66789, 66800, 1}
X(66794) lies on these lines: {3, 3258}, {22, 14731}, {23, 66802}, {24, 66792}, {25, 476}, {30, 9919}, {477, 11414}, {523, 12310}, {669, 11641}, {1351, 16978}, {1593, 44967}, {1598, 25641}, {5020, 22104}, {6642, 38609}, {7387, 16168}, {7484, 66801}, {7485, 66819}, {7517, 38580}, {7529, 57305}, {7530, 18319}, {8185, 66793}, {8192, 66800}, {8193, 66796}, {9818, 66795}, {9861, 37972}, {9913, 62491}, {10831, 66798}, {10832, 66799}, {10833, 33965}, {11365, 66789}, {11853, 66797}, {12082, 66773}, {12083, 38581}, {12087, 66788}, {12413, 37928}, {13171, 17511}, {13175, 62489}, {13222, 62492}, {14673, 62502}, {18534, 66781}, {18954, 33964}, {19459, 66807}, {21284, 47324}, {34333, 35372}, {35243, 38610}, {37198, 38701}, {37485, 66812}, {37921, 53793}, {37973, 47327}, {38700, 66607}, {39568, 64510}, {53809, 66847}, {63665, 63708}
X(66794) = reflection of X(i) in X(j) for these {i,j}: {66777, 7387}
X(66794) = pole of line {22104, 24975} with respect to the circumcircle
X(66794) = pole of line {55130, 66781} with respect to the Stammler circle
X(66794) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7387, 16168, 66777}
X(66795) lies on circumconic {{A, B, C, X(1511), X(51349)}} and on these lines: {3, 44967}, {4, 14670}, {5, 22104}, {20, 57306}, {30, 113}, {376, 66819}, {381, 476}, {382, 477}, {523, 10113}, {546, 25641}, {550, 31379}, {1154, 16978}, {1478, 66799}, {1479, 66798}, {1656, 38700}, {1657, 38701}, {2777, 16340}, {3091, 57305}, {3154, 12041}, {3543, 66773}, {3583, 33965}, {3585, 33964}, {3627, 64510}, {3830, 9717}, {3839, 66802}, {3843, 38580}, {3845, 18319}, {3851, 66787}, {3855, 66815}, {5076, 38678}, {5663, 10689}, {5946, 12052}, {6070, 11801}, {6723, 47852}, {7471, 61574}, {7687, 34209}, {7728, 17511}, {9818, 66794}, {9955, 66789}, {10264, 32417}, {11749, 15687}, {12091, 18403}, {12699, 66796}, {12902, 14480}, {14254, 51349}, {14269, 66786}, {14508, 38790}, {14677, 55319}, {16171, 18577}, {18323, 47324}, {18440, 66807}, {18492, 66793}, {18507, 66797}, {18525, 66800}, {18572, 22505}, {19160, 47336}, {19163, 62510}, {20127, 65086}, {20304, 46632}, {20403, 66836}, {20423, 66813}, {22515, 62489}, {22799, 62491}, {22938, 62492}, {28160, 66770}, {30714, 33505}, {31670, 66812}, {31671, 66806}, {34153, 55308}, {34584, 36164}, {37440, 63715}, {37958, 66173}, {38677, 61984}, {41099, 66820}, {44283, 62501}, {44961, 47327}, {49117, 62502}, {50688, 66788}, {53728, 61576}, {53738, 61575}, {53793, 66826}, {53809, 66849}, {58733, 61502}, {62017, 66817}, {65856, 66864}
X(66795) = midpoint of X(i) and X(j) for these {i,j}: {3, 44967}, {4, 20957}, {382, 477}, {476, 66791}, {3830, 34312}, {7728, 17511}, {12699, 66796}, {12902, 14480}, {14508, 38790}, {14731, 66781}, {14989, 38581}, {18323, 47324}, {18440, 66807}, {18507, 66797}, {18525, 66800}, {31670, 66812}, {31671, 66806}, {36184, 46045}, {38678, 66772}
X(66795) = reflection of X(i) in X(j) for these {i,j}: {550, 31379}, {1539, 52219}, {6070, 11801}, {7471, 61574}, {12041, 3154}, {14677, 55319}, {25641, 546}, {30714, 33505}, {34153, 55308}, {34209, 7687}, {38609, 5}, {38610, 3258}, {46632, 20304}, {47327, 44961}, {53728, 61576}, {53738, 61575}, {66778, 4}, {66789, 9955}
X(66795) = inverse of X(14731) in circumcircle of the Johnson triangle
X(66795) = pole of line {14731, 16171} with respect to the circumcircle of the Johnson triangle
X(66795) = pole of line {16171, 18808} with respect to the polar circle
X(66795) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {3, 14934, 44967}, {4, 20957, 36184}, {382, 477, 36164}, {476, 14611, 66791}, {18323, 47324, 47348}
X(66795) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 14731, 66781}, {4, 16168, 66778}, {30, 3258, 38610}, {30, 52219, 1539}, {381, 66791, 476}, {3091, 66792, 57305}, {3830, 38581, 14989}, {14731, 66781, 16168}, {14989, 34312, 38581}, {20957, 66781, 14731}, {36184, 46045, 5663}
X(66796) lies on these lines: {1, 3258}, {2, 66789}, {8, 14731}, {10, 476}, {30, 12368}, {65, 66798}, {80, 57099}, {355, 16168}, {388, 59823}, {477, 515}, {516, 44967}, {517, 20957}, {518, 66812}, {519, 34312}, {523, 13211}, {740, 66808}, {944, 66770}, {946, 66784}, {1125, 66801}, {1385, 57306}, {1698, 22104}, {1837, 33965}, {2687, 21669}, {3057, 66799}, {3576, 31379}, {3616, 66819}, {3617, 66802}, {3679, 66793}, {4297, 38701}, {4663, 66813}, {5090, 66790}, {5252, 33964}, {5587, 25641}, {5657, 66792}, {5691, 64510}, {5790, 38580}, {5847, 66807}, {6684, 38700}, {8193, 66794}, {9864, 62490}, {9904, 32417}, {9956, 57305}, {10175, 66787}, {11709, 65086}, {11749, 37705}, {11900, 66797}, {12699, 66795}, {12702, 66791}, {12751, 62491}, {12784, 47321}, {13178, 62489}, {13280, 62510}, {13532, 62495}, {14989, 31673}, {18319, 18357}, {18391, 59825}, {18480, 66781}, {18481, 38610}, {18525, 38581}, {26446, 38609}, {34193, 59387}, {50772, 50924}, {50796, 66786}, {50864, 66817}, {50896, 62494}, {50899, 62496}, {50903, 62493}, {50911, 62498}, {50914, 62500}, {50916, 62502}, {50917, 62505}, {53620, 66820}, {53809, 66850}, {65856, 66865}
X(66796) = midpoint of X(i) and X(j) for these {i,j}: {8, 14731}, {5691, 66776}, {11749, 37705}, {12702, 66791}, {18525, 38581}, {50864, 66817}
X(66796) = reflection of X(i) in X(j) for these {i,j}: {1, 3258}, {476, 10}, {944, 66770}, {12699, 66795}, {14989, 31673}, {18319, 18357}, {18481, 38610}, {66779, 355}, {66781, 18480}, {66784, 946}, {66786, 50796}, {66813, 4663}
X(66796) = anticomplement of X(66789)
X(66796) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {355, 16168, 66779}, {5691, 66776, 64510}
X(66797) lies on these lines: {30, 110}, {402, 476}, {523, 13212}, {1650, 3258}, {4240, 14731}, {11251, 16168}, {11831, 66789}, {11832, 66790}, {11845, 66792}, {11852, 66793}, {11853, 66794}, {11897, 25641}, {11900, 66796}, {11905, 66798}, {11906, 66799}, {11909, 33965}, {11910, 66800}, {11911, 38580}, {12181, 62490}, {12752, 62491}, {12796, 62509}, {13179, 62489}, {13268, 62492}, {13281, 62510}, {15183, 22104}, {15184, 66801}, {18507, 66795}, {18508, 66791}, {18958, 33964}, {26451, 38609}, {35241, 38610}
X(66797) = midpoint of X(i) and X(j) for these {i,j}: {4240, 14731}, {18508, 66791}
X(66797) = reflection of X(i) in X(j) for these {i,j}: {476, 402}, {1650, 3258}, {18507, 66795}, {35241, 38610}, {66780, 11251}
X(66797) = perspector of circumconic {{A, B, C, X(30528), X(41079)}}
X(66797) = pole of line {74, 6070} with respect to the dual conic of Wallace hyperbola
X(66797) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {4240, 14731, 17511}
X(66797) = intersection, other than A, B, C, of circumconics {{A, B, C, X(110), X(55141)}}, {{A, B, C, X(477), X(58261)}}, {{A, B, C, X(3258), X(34210)}}
X(66797) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3258, 55141, 1650}, {11251, 16168, 66780}
X(66798) lies on the 1st Johnson-Yff circle and on these lines: {1, 20957}, {4, 33965}, {12, 476}, {30, 10088}, {36, 57306}, {56, 3258}, {65, 66796}, {388, 14731}, {477, 7354}, {498, 38609}, {523, 12903}, {1469, 66812}, {1478, 16168}, {1479, 66795}, {1837, 59825}, {3028, 17511}, {3085, 66792}, {3295, 66791}, {3585, 66781}, {3614, 66787}, {4299, 38610}, {5204, 31379}, {5229, 34193}, {5261, 66802}, {5432, 38700}, {5433, 66801}, {5434, 34312}, {6284, 44967}, {7288, 66819}, {7951, 57305}, {9578, 66793}, {9579, 66776}, {9654, 38580}, {9655, 38581}, {10081, 16340}, {10404, 59823}, {10831, 66794}, {10895, 25641}, {11375, 66789}, {11392, 66790}, {11905, 66797}, {12184, 62490}, {12374, 46045}, {12763, 62491}, {12904, 36184}, {12943, 64510}, {12945, 62509}, {13182, 62489}, {13273, 62492}, {13296, 62510}, {14989, 65631}, {15326, 38701}, {19369, 66813}, {20403, 66838}, {39897, 66807}, {53793, 66828}, {53809, 66851}, {60883, 66806}, {65856, 66866}
X(66798) = reflection of X(i) in X(j) for these {i,j}: {66782, 1478}
X(66798) = pole of line {16171, 66798} with respect to the 1st Johnson-Yff circle
X(66798) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 33965, 66783}, {388, 14731, 33964}, {1478, 16168, 66782}
X(66799) lies on the 2nd Johnson-Yff circle and on these lines: {1, 20957}, {4, 33964}, {11, 476}, {30, 10091}, {35, 57306}, {55, 3258}, {477, 6284}, {497, 14731}, {499, 38609}, {523, 12904}, {999, 66791}, {1478, 66795}, {1479, 16168}, {1836, 59823}, {3024, 17511}, {3056, 66812}, {3057, 66796}, {3058, 34312}, {3086, 66792}, {3583, 66781}, {4302, 38610}, {5217, 31379}, {5218, 66819}, {5225, 34193}, {5274, 66802}, {5432, 66801}, {5433, 38700}, {7173, 66787}, {7354, 44967}, {7741, 57305}, {8540, 66813}, {9580, 66776}, {9581, 66793}, {9668, 38581}, {9669, 38580}, {10065, 16340}, {10832, 66794}, {10896, 25641}, {11376, 66789}, {11393, 66790}, {11906, 66797}, {12185, 62490}, {12373, 46045}, {12764, 62491}, {12903, 36184}, {12953, 64510}, {12955, 62509}, {13183, 62489}, {13274, 62492}, {13297, 62510}, {14989, 65632}, {15338, 38701}, {20403, 66839}, {39873, 66807}, {53793, 66829}, {53809, 66852}, {60919, 66806}, {65856, 66867}
X(66799) = reflection of X(i) in X(j) for these {i,j}: {66783, 1479}
X(66799) = pole of line {16171, 66799} with respect to the 2nd Johnson-Yff circle
X(66799) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 20957, 66798}, {4, 33964, 66782}, {497, 14731, 33965}, {1479, 16168, 66783}
X(66800) lies on these lines: {1, 476}, {8, 3258}, {10, 66801}, {30, 6742}, {40, 38701}, {145, 14731}, {477, 517}, {515, 44967}, {518, 66806}, {519, 34312}, {523, 6740}, {946, 66779}, {952, 20957}, {962, 64510}, {1320, 62492}, {1385, 38700}, {1482, 16168}, {2098, 33965}, {2099, 33964}, {2611, 62713}, {3340, 59823}, {3616, 22104}, {3617, 66819}, {3623, 66802}, {3656, 66786}, {5603, 25641}, {5627, 12261}, {5657, 31379}, {5690, 57306}, {5846, 66812}, {5886, 66787}, {5901, 57305}, {7967, 66792}, {7970, 62490}, {7982, 38678}, {7983, 62489}, {8148, 38581}, {8192, 66794}, {10222, 38677}, {10246, 38609}, {10247, 38580}, {10695, 62494}, {10696, 62496}, {10697, 62493}, {10698, 62491}, {10699, 62498}, {10700, 62500}, {10701, 62502}, {10702, 62505}, {10703, 62495}, {10704, 62508}, {10705, 62510}, {11396, 66790}, {11531, 66776}, {11720, 60605}, {11910, 66797}, {12699, 14989}, {12702, 38610}, {13099, 62509}, {13869, 53809}, {18525, 66795}, {18526, 66791}, {22791, 66781}, {47323, 47471}, {50872, 66817}
X(66800) = midpoint of X(i) and X(j) for these {i,j}: {145, 14731}, {8148, 38581}, {11531, 66776}, {18526, 66791}, {50872, 66817}
X(66800) = reflection of X(i) in X(j) for these {i,j}: {8, 3258}, {40, 66770}, {476, 1}, {12702, 38610}, {14989, 12699}, {18525, 66795}, {47323, 47471}, {66779, 946}, {66781, 22791}, {66784, 1482}, {66786, 3656}, {66793, 66789}
X(66800) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 66793, 66789}, {40, 66770, 38701}, {1482, 16168, 66784}, {66789, 66793, 476}
X(66801) lies on circumconic {{A, B, C, X(3268), X(22104)}} and on these lines: {2, 476}, {3, 44967}, {4, 31379}, {5, 477}, {10, 66800}, {30, 15051}, {110, 3154}, {113, 14508}, {125, 14480}, {140, 20957}, {141, 66807}, {142, 66806}, {146, 55319}, {381, 14989}, {523, 15059}, {547, 18319}, {597, 66813}, {1125, 66796}, {1656, 16168}, {2979, 16978}, {3060, 12052}, {3090, 25641}, {3091, 64510}, {3448, 55308}, {3525, 66792}, {3526, 38609}, {3545, 66773}, {3589, 66812}, {3614, 66782}, {3624, 66789}, {3628, 38677}, {3739, 66808}, {3851, 66778}, {5054, 66791}, {5055, 38581}, {5056, 34193}, {5070, 38580}, {5072, 66772}, {5094, 66790}, {5159, 47324}, {5219, 59823}, {5432, 66799}, {5433, 66798}, {5587, 66770}, {5627, 20304}, {5886, 66784}, {5972, 17511}, {7173, 66783}, {7484, 66794}, {7486, 66815}, {7988, 66776}, {9140, 14611}, {9158, 47097}, {10175, 66779}, {10733, 47084}, {11749, 15699}, {12068, 60603}, {12091, 15111}, {12383, 31378}, {14061, 62489}, {14120, 66774}, {14561, 66805}, {14643, 16340}, {14644, 14934}, {15022, 66788}, {15035, 36184}, {15055, 46045}, {15184, 66797}, {18571, 66173}, {23589, 66123}, {30745, 62490}, {31272, 62492}, {31273, 62494}, {36172, 36518}, {38108, 66804}, {44214, 66811}, {53809, 66855}, {61924, 66817}, {62491, 64008}, {63664, 63715}, {64850, 66793}
X(66801) = reflection of X(i) in X(j) for these {i,j}: {66787, 1656}
X(66801) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14731, 22104}, {4, 31379, 38701}, {5, 57306, 477}, {113, 65086, 14508}, {140, 20957, 38700}, {381, 38610, 14989}, {476, 3258, 34312}, {1656, 16168, 66787}, {3258, 22104, 14731}, {5972, 17511, 60605}, {14731, 22104, 476}
X(66802) lies on these lines: {2, 476}, {3, 11749}, {4, 18319}, {8, 66793}, {20, 16168}, {23, 66794}, {30, 12317}, {74, 60008}, {125, 60604}, {376, 38581}, {385, 20099}, {390, 33965}, {477, 3522}, {523, 14683}, {1138, 1511}, {1482, 36171}, {2453, 7533}, {3091, 20957}, {3146, 14989}, {3447, 14652}, {3523, 38609}, {3543, 66781}, {3600, 33964}, {3617, 66796}, {3620, 66812}, {3622, 66789}, {3623, 66800}, {3832, 25641}, {3839, 66795}, {4704, 66808}, {5056, 57305}, {5059, 64510}, {5068, 66815}, {5189, 62509}, {5261, 66798}, {5274, 66799}, {5984, 20063}, {6995, 66790}, {9778, 66776}, {10303, 57306}, {10304, 38610}, {12079, 17511}, {12087, 66777}, {12383, 52056}, {14993, 15081}, {15022, 66787}, {15717, 38700}, {16978, 16981}, {17578, 44967}, {20094, 62489}, {20095, 62492}, {20096, 62494}, {20097, 62498}, {20098, 62500}, {20425, 44462}, {20426, 44466}, {21454, 59823}, {21734, 38701}, {23965, 65768}, {24977, 30258}, {31379, 61820}, {33703, 66772}, {37760, 47324}, {38678, 50693}, {47323, 52403}, {50687, 66786}, {50688, 66778}, {51170, 66807}, {61006, 66806}, {62120, 66817}, {62491, 64009}
X(66802) = reflection of X(i) in X(j) for these {i,j}: {2, 66820}, {4, 38580}, {8, 66793}, {20, 66792}, {1138, 51345}, {3146, 34193}, {12383, 52056}, {14731, 476}, {33703, 66772}, {34193, 38677}, {60008, 74}, {66788, 20}, {66791, 18319}
X(66802) = anticomplement of X(14731)
X(66802) = X(i)-Dao conjugate of X(j) for these {i, j}: {14731, 14731}
X(66802) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {34191, 8}
X(66802) = pole of line {14566, 24975} with respect to the Steiner circumellipse
X(66802) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 16168, 66788}, {476, 34312, 22104}, {14731, 66819, 34312}, {14731, 66820, 476}, {16168, 66792, 20}, {18319, 66791, 4}, {22104, 34312, 66819}, {22104, 66819, 2}, {38580, 66791, 18319}
X(66803) lies on circumconic {{A, B, C, X(15468), X(54073)}} and on these lines: {30, 33547}, {476, 1147}, {3258, 36159}, {5449, 22104}, {5504, 60603}, {5654, 66792}, {7471, 15468}, {7689, 38700}, {9927, 57305}, {12038, 16168}, {12091, 13367}, {12901, 36193}, {13754, 38609}, {14731, 64181}, {31379, 36178}, {38580, 47391}
X(66803) = midpoint of X(i) and X(j) for these {i,j}: {476, 1147}, {12901, 36193}
X(66803) = reflection of X(i) in X(j) for these {i,j}: {3258, 43839}, {5449, 22104}
X(66804) lies on these lines: {7, 25641}, {9, 477}, {142, 66787}, {144, 34193}, {476, 971}, {516, 14989}, {518, 66784}, {527, 66786}, {1156, 62491}, {3062, 66793}, {3258, 5817}, {5732, 38700}, {5759, 64510}, {5762, 66781}, {5779, 16168}, {5843, 18319}, {5845, 66809}, {10398, 59823}, {18230, 31379}, {20957, 60901}, {21151, 22104}, {21168, 66773}, {31657, 57305}, {31658, 38701}, {31671, 66778}, {31672, 44967}, {33964, 60910}, {33965, 60909}, {38108, 66801}, {38580, 60884}, {38581, 51516}, {38610, 59381}, {38677, 64197}, {38678, 64198}, {57306, 61511}, {59825, 60937}, {60883, 66782}, {60919, 66783}, {60957, 66816}, {61006, 66788}, {62492, 66023}, {62778, 66815}, {66515, 66770}
X(66804) = midpoint of X(i) and X(j) for these {i,j}: {144, 34193}, {3062, 66793}, {38580, 60884}
X(66804) = reflection of X(i) in X(j) for these {i,j}: {7, 25641}, {477, 9}, {20957, 60901}, {31671, 66778}, {44967, 31672}, {66806, 5779}
X(66805) lies on these lines: {6, 477}, {30, 895}, {67, 5627}, {69, 25641}, {141, 66787}, {182, 38701}, {193, 34193}, {476, 511}, {518, 66784}, {523, 10752}, {524, 66786}, {542, 36172}, {576, 38678}, {935, 35908}, {1350, 38700}, {1351, 16168}, {1503, 14989}, {2395, 52198}, {3258, 14853}, {3564, 66781}, {3618, 31379}, {3620, 66815}, {3629, 66810}, {5032, 66817}, {5050, 38610}, {5093, 38581}, {5480, 66812}, {5622, 36164}, {5847, 66779}, {6070, 32247}, {6776, 64510}, {8749, 10295}, {9970, 14480}, {10519, 22104}, {10753, 62489}, {10754, 62490}, {10755, 62491}, {10756, 62493}, {10757, 62495}, {10758, 62494}, {10759, 62492}, {10760, 62497}, {10761, 62499}, {10762, 62501}, {10763, 62504}, {10764, 62496}, {10765, 62507}, {10766, 62509}, {11008, 66816}, {11477, 38677}, {11579, 14508}, {12167, 66771}, {14561, 66801}, {14912, 66773}, {14934, 52699}, {14984, 36193}, {15118, 65086}, {16475, 66770}, {18319, 34380}, {18440, 66778}, {18583, 57306}, {19459, 66777}, {20423, 34312}, {20957, 21850}, {31670, 44967}, {33878, 38609}, {36181, 54132}, {38580, 44456}, {39873, 66783}, {39897, 66782}, {39899, 66772}, {44972, 52472}, {47324, 47571}, {48876, 57305}, {51028, 66820}, {51170, 66788}, {63073, 66818}
X(66805) = midpoint of X(i) and X(j) for these {i,j}: {193, 34193}, {38580, 44456}, {39899, 66772}, {51028, 66820}
X(66805) = reflection of X(i) in X(j) for these {i,j}: {69, 25641}, {477, 6}, {14480, 9970}, {14508, 11579}, {18440, 66778}, {20957, 21850}, {32247, 6070}, {33878, 38609}, {34312, 20423}, {44967, 31670}, {47324, 47571}, {66807, 1351}, {66810, 3629}, {66812, 5480}
X(66806) lies on these lines: {7, 3258}, {9, 476}, {142, 66801}, {144, 14731}, {477, 971}, {516, 44967}, {518, 66800}, {527, 34312}, {1156, 62492}, {3062, 66776}, {5732, 38701}, {5762, 20957}, {5779, 16168}, {5817, 25641}, {5845, 66812}, {10398, 59825}, {14989, 31672}, {18230, 22104}, {21151, 31379}, {21168, 66792}, {31657, 57306}, {31658, 38700}, {31671, 66795}, {33964, 60909}, {33965, 60910}, {36991, 64510}, {38108, 66787}, {38580, 51516}, {38581, 60884}, {38609, 59381}, {38677, 64198}, {38678, 64197}, {57305, 61511}, {59823, 60937}, {60883, 66798}, {60901, 66781}, {60919, 66799}, {61006, 66802}, {62491, 66023}, {62778, 66819}, {66515, 66789}
X(66806) = midpoint of X(i) and X(j) for these {i,j}: {144, 14731}, {3062, 66776}, {38581, 60884}
X(66806) = reflection of X(i) in X(j) for these {i,j}: {7, 3258}, {476, 9}, {14989, 31672}, {31671, 66795}, {66781, 60901}, {66804, 5779}
X(66806) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5779, 16168, 66804}, {66807, 66808, 66800}
X(66807) lies on these lines: {6, 476}, {30, 10752}, {69, 3258}, {141, 66801}, {182, 38700}, {193, 14731}, {477, 511}, {518, 66800}, {523, 895}, {524, 34312}, {576, 38677}, {842, 2407}, {1350, 38701}, {1351, 16168}, {1503, 44967}, {2452, 53793}, {2549, 48945}, {2770, 5968}, {2781, 14508}, {2854, 14480}, {3564, 20957}, {3618, 22104}, {3620, 66819}, {3629, 66813}, {4558, 46634}, {5032, 66820}, {5050, 38609}, {5093, 38580}, {5182, 53738}, {5480, 66809}, {5622, 46632}, {5847, 66796}, {6070, 25320}, {6593, 60605}, {7471, 52699}, {9179, 36696}, {10519, 31379}, {10753, 62490}, {10754, 62489}, {10755, 62492}, {10756, 62494}, {10757, 62496}, {10758, 62493}, {10759, 62491}, {10760, 62498}, {10761, 62500}, {10762, 62502}, {10763, 62505}, {10764, 62495}, {10765, 62508}, {10766, 62510}, {11477, 38678}, {12167, 66790}, {13479, 47290}, {14060, 46981}, {14561, 66787}, {14853, 25641}, {14912, 66792}, {14989, 31670}, {16092, 44398}, {16475, 66789}, {16978, 64023}, {18332, 60053}, {18440, 66795}, {18583, 57305}, {19459, 66794}, {20423, 66786}, {21850, 66781}, {32220, 62509}, {33878, 38610}, {38581, 44456}, {39873, 66799}, {39897, 66798}, {39899, 66791}, {41721, 47348}, {41737, 46045}, {47323, 47571}, {47327, 52238}, {48876, 57306}, {51028, 66817}, {51170, 66802}, {51212, 64510}
X(66807) = midpoint of X(i) and X(j) for these {i,j}: {193, 14731}, {38581, 44456}, {39899, 66791}, {51028, 66817}
X(66807) = reflection of X(i) in X(j) for these {i,j}: {69, 3258}, {476, 6}, {14989, 31670}, {18440, 66795}, {33878, 38610}, {41721, 47348}, {41737, 46045}, {47323, 47571}, {64023, 16978}, {66781, 21850}, {66786, 20423}, {66805, 1351}, {66809, 5480}, {66813, 3629}
X(66807) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1351, 16168, 66805}, {66800, 66806, 66808}
X(66808) lies on these lines: {37, 476}, {75, 3258}, {192, 14731}, {518, 66800}, {536, 34312}, {740, 66796}, {742, 66812}, {3739, 66801}, {4687, 22104}, {4699, 66819}, {4704, 66802}, {7201, 59823}, {16168, 20430}, {20957, 29010}, {30271, 38701}, {51038, 66786}, {51063, 64510}, {51064, 66817}, {57305, 61522}, {57306, 64728}, {62491, 66057}, {62492, 66067}
X(66808) = midpoint of X(i) and X(j) for these {i,j}: {192, 14731}, {51064, 66817}
X(66808) = reflection of X(i) in X(j) for these {i,j}: {75, 3258}, {476, 37}, {66786, 51038}
X(66808) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {66800, 66806, 66807}
X(66809) lies on these lines: {6, 25641}, {30, 67}, {69, 34193}, {141, 477}, {182, 57305}, {476, 1503}, {511, 66781}, {518, 66779}, {523, 14982}, {524, 66786}, {542, 36193}, {1350, 64510}, {1352, 16168}, {1469, 66782}, {1553, 51941}, {1989, 11799}, {2781, 36172}, {3056, 66783}, {3258, 10516}, {3564, 18319}, {3589, 66787}, {3618, 66815}, {3620, 66788}, {3763, 31379}, {3818, 20957}, {5085, 22104}, {5480, 66807}, {5627, 25328}, {5845, 66804}, {5846, 66784}, {6070, 16010}, {6698, 65086}, {7471, 32233}, {10519, 66773}, {11579, 34209}, {11646, 47275}, {12588, 33965}, {12589, 33964}, {14989, 29181}, {17511, 32274}, {18440, 38580}, {21356, 66817}, {24206, 57306}, {31670, 66778}, {33878, 66772}, {34312, 47354}, {36883, 62507}, {37485, 66777}, {38609, 46264}, {38700, 44882}, {38953, 66167}, {40341, 66816}, {46633, 51894}, {47284, 47353}, {51023, 66820}, {62491, 66037}, {62492, 66030}
X(66809) = midpoint of X(i) and X(j) for these {i,j}: {69, 34193}, {18440, 38580}, {33878, 66772}, {51023, 66820}
X(66809) = reflection of X(i) in X(j) for these {i,j}: {6, 25641}, {477, 141}, {11579, 34209}, {16010, 6070}, {17511, 32274}, {20957, 3818}, {31670, 66778}, {32233, 7471}, {34312, 47354}, {46264, 38609}, {51941, 1553}, {66807, 5480}, {66810, 6}, {66812, 1352}
X(66810) lies on these lines: {6, 25641}, {30, 64104}, {476, 8550}, {477, 524}, {523, 64103}, {542, 20957}, {575, 57305}, {576, 66781}, {597, 66787}, {599, 31379}, {1351, 66772}, {1503, 44967}, {1992, 34193}, {3258, 15069}, {3564, 66812}, {3629, 66805}, {4663, 66779}, {6144, 66818}, {6776, 66792}, {8540, 66783}, {8584, 66786}, {11179, 38609}, {11477, 64510}, {11799, 60739}, {16168, 63722}, {19369, 66782}, {20423, 66778}, {22104, 53093}, {34507, 57306}, {47323, 47549}, {59373, 66815}, {62489, 64091}, {62490, 64092}, {62491, 66039}, {62492, 66031}, {63064, 66817}
X(66810) = midpoint of X(i) and X(j) for these {i,j}: {63064, 66817}
X(66810) = reflection of X(i) in X(j) for these {i,j}: {476, 8550}, {15069, 3258}, {47323, 47549}, {66779, 4663}, {66781, 576}, {66786, 8584}, {66805, 3629}, {66809, 6}, {66813, 63722}
X(66810) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {16168, 63722, 66813}
X(66811) lies on these lines: {4, 47327}, {30, 74}, {50, 112}, {186, 3258}, {376, 61508}, {858, 38700}, {2070, 66791}, {2088, 7737}, {3269, 18578}, {3569, 66785}, {5191, 9158}, {5667, 13619}, {7574, 38609}, {7575, 20957}, {9409, 16171}, {9862, 62490}, {10296, 25641}, {10297, 66787}, {10721, 47347}, {11657, 14644}, {11799, 44967}, {12091, 40948}, {12112, 32417}, {14895, 38848}, {15111, 18533}, {17511, 32110}, {18571, 57306}, {18572, 57305}, {31379, 37952}, {34312, 44265}, {38701, 47335}, {41626, 50187}, {44214, 66801}, {44427, 55130}, {46045, 47351}, {46585, 53329}, {51939, 56369}, {62491, 66034}, {62492, 66042}
X(66811) = reflection of X(i) in X(j) for these {i,j}: {4, 47327}, {477, 10295}, {7574, 38609}, {10296, 25641}, {10721, 47347}, {14989, 47323}, {17511, 32110}, {20957, 7575}, {34312, 44265}, {44967, 11799}, {46045, 47351}, {58789, 34209}, {66814, 9409}
X(66811) = pole of line {46608, 53330} with respect to the circumcircle
X(66811) = pole of line {43083, 62172} with respect to the polar circle
X(66811) = pole of line {1989, 14644} with respect to the Kiepert hyperbola
X(66811) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(186), X(32663)}}, {{A, B, C, X(477), X(14165)}}, {{A, B, C, X(1990), X(34209)}}
X(66811) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 34209, 58789}, {30, 47323, 14989}, {477, 66173, 10295}, {9409, 16171, 66814}, {10295, 62509, 477}
X(66812) lies on these lines: {6, 3258}, {30, 5648}, {67, 523}, {69, 14731}, {141, 476}, {182, 57306}, {477, 1503}, {511, 20957}, {518, 66796}, {524, 34312}, {742, 66808}, {842, 62551}, {1352, 16168}, {1469, 66798}, {2854, 17511}, {3056, 66799}, {3564, 66810}, {3589, 66801}, {3618, 66819}, {3620, 66802}, {3763, 22104}, {3818, 66781}, {5085, 31379}, {5480, 66805}, {5621, 55319}, {5845, 66806}, {5846, 66800}, {9996, 50146}, {10516, 25641}, {10519, 66792}, {11579, 16340}, {11646, 62489}, {12588, 33964}, {12589, 33965}, {14934, 32233}, {16319, 18374}, {18319, 18358}, {18440, 38581}, {21356, 66820}, {24206, 57305}, {29181, 44967}, {31670, 66795}, {32113, 62509}, {33878, 66791}, {36883, 62508}, {36990, 64510}, {37485, 66794}, {38610, 46264}, {38701, 44882}, {47146, 62376}, {47327, 47450}, {47354, 66786}, {51023, 66817}, {52697, 55308}, {62491, 66030}, {62492, 66037}
X(66812) = midpoint of X(i) and X(j) for these {i,j}: {69, 14731}, {18440, 38581}, {33878, 66791}, {51023, 66817}
X(66812) = reflection of X(i) in X(j) for these {i,j}: {6, 3258}, {476, 141}, {11579, 16340}, {18319, 18358}, {31670, 66795}, {32233, 14934}, {46264, 38610}, {66781, 3818}, {66786, 47354}, {66805, 5480}, {66809, 1352}, {66813, 6}
X(66812) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1352, 16168, 66809}
X(66813) lies on these lines: {6, 3258}, {30, 64103}, {67, 12079}, {476, 524}, {477, 8550}, {523, 64104}, {542, 66781}, {575, 57306}, {576, 20957}, {597, 66801}, {599, 22104}, {1351, 66791}, {1353, 11749}, {1503, 14989}, {1992, 14731}, {3233, 5648}, {3564, 18319}, {3629, 66807}, {4663, 66796}, {6776, 66773}, {8540, 66799}, {8584, 34312}, {11179, 38610}, {14480, 25329}, {14611, 34319}, {15069, 25641}, {16168, 63722}, {19369, 66798}, {20423, 66795}, {31379, 53093}, {34507, 57305}, {47276, 47327}, {47280, 62509}, {47324, 47549}, {59373, 66819}, {62489, 64092}, {62490, 64091}, {62491, 66031}, {62492, 66039}, {63064, 66820}, {64080, 64510}
X(66813) = midpoint of X(i) and X(j) for these {i,j}: {63064, 66820}
X(66813) = reflection of X(i) in X(j) for these {i,j}: {477, 8550}, {14480, 25329}, {15069, 25641}, {20957, 576}, {34312, 8584}, {47276, 47327}, {47324, 47549}, {66796, 4663}, {66807, 3629}, {66810, 63722}, {66812, 6}
X(66813) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {16168, 63722, 66810}
X(66814) lies on circumconic {{A, B, C, X(14220), X(41392)}} and on these lines: {74, 477}, {112, 476}, {525, 14508}, {3569, 9158}, {5191, 66785}, {5667, 57120}, {9409, 16171}, {9862, 62489}, {32112, 65086}, {44427, 55141}, {46608, 53330}, {47050, 65714}, {52076, 65779}, {62491, 66042}, {62492, 66034}
X(66814) = reflection of X(i) in X(j) for these {i,j}: {66811, 9409}
X(66814) = pole of line {46585, 53329} with respect to the circumcircle
X(66814) = pole of line {11251, 62551} with respect to the polar circle
X(66814) = pole of line {8552, 42742} with respect to the Stammler hyperbola
X(66815) lies on these lines: {2, 477}, {4, 38609}, {5, 14731}, {20, 22104}, {140, 66773}, {146, 36169}, {376, 66778}, {381, 66792}, {476, 3091}, {549, 66772}, {631, 66781}, {1656, 18319}, {2453, 62947}, {3090, 16168}, {3146, 38700}, {3153, 47327}, {3154, 60008}, {3258, 5056}, {3522, 14989}, {3523, 64510}, {3525, 38610}, {3545, 20957}, {3616, 66779}, {3617, 66784}, {3618, 66809}, {3620, 66805}, {3628, 38581}, {3634, 66776}, {3817, 66793}, {3839, 44967}, {3850, 66791}, {3855, 66795}, {5067, 57306}, {5068, 66802}, {5218, 66783}, {5226, 59825}, {5550, 66770}, {5627, 14683}, {5704, 59823}, {6622, 66790}, {7288, 66782}, {7485, 66777}, {7486, 66801}, {7687, 60603}, {8889, 66771}, {10303, 38701}, {10588, 33965}, {10589, 33964}, {11749, 35018}, {12902, 64652}, {14993, 61574}, {15022, 38677}, {15081, 21315}, {30745, 47323}, {34312, 61924}, {38678, 46936}, {38726, 57471}, {59373, 66810}, {59387, 66789}, {60605, 64183}, {62491, 66063}, {62492, 66045}, {62778, 66804}
X(66815) = reflection of X(i) in X(j) for these {i,j}: {66819, 3090}
X(66815) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 25641, 34193}, {2, 66788, 31379}, {21315, 36193, 15081}, {25641, 31379, 66786}, {25641, 66787, 2}, {31379, 66786, 66788}
X(66816) lies on these lines: {2, 477}, {382, 38580}, {476, 3529}, {546, 16168}, {550, 18319}, {3258, 3851}, {3530, 22104}, {3544, 38678}, {3632, 66779}, {3982, 59825}, {5079, 38581}, {10299, 66773}, {11008, 66805}, {14269, 20957}, {14731, 61982}, {14869, 38610}, {14989, 49135}, {15681, 66772}, {15687, 66778}, {15720, 57305}, {15808, 66770}, {20050, 66784}, {34312, 61967}, {37900, 47323}, {38677, 50688}, {38700, 62097}, {38701, 61814}, {40341, 66809}, {44967, 62017}, {52285, 66771}, {57306, 61905}, {60957, 66804}, {62037, 66820}, {62042, 66792}, {62491, 66065}, {62492, 66052}
X(66816) = midpoint of X(i) and X(j) for these {i,j}: {25641, 34193}
X(66816) = reflection of X(i) in X(j) for these {i,j}: {31379, 25641}, {66818, 31379}
X(66816) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {34193, 66786, 25641}
X(66817) lies on these lines: {2, 477}, {20, 38678}, {30, 146}, {376, 16168}, {476, 10304}, {519, 66776}, {3258, 3839}, {3522, 38677}, {3524, 38610}, {3534, 66792}, {3543, 34312}, {3545, 66781}, {3845, 66772}, {5032, 66805}, {5054, 18319}, {5071, 57306}, {7714, 66771}, {8591, 62490}, {8703, 38580}, {10385, 33964}, {11177, 62489}, {14989, 50687}, {15640, 44967}, {15682, 20957}, {15692, 38701}, {15702, 57305}, {15708, 22104}, {15933, 59823}, {19708, 38609}, {21356, 66809}, {37749, 62508}, {37907, 47323}, {38314, 66770}, {38700, 62063}, {41099, 66778}, {50808, 66793}, {50864, 66796}, {50872, 66800}, {51023, 66812}, {51028, 66807}, {51064, 66808}, {53620, 66779}, {55141, 63248}, {59825, 65384}, {61924, 66801}, {62017, 66795}, {62120, 66802}, {63064, 66810}
X(66817) = midpoint of X(i) and X(j) for these {i,j}: {2, 66788}
X(66817) = reflection of X(i) in X(j) for these {i,j}: {2, 477}, {3543, 34312}, {15640, 44967}, {15682, 20957}, {34193, 2}, {38580, 8703}, {50864, 66796}, {50872, 66800}, {51023, 66812}, {51028, 66807}, {51064, 66808}, {63064, 66810}, {66772, 3845}, {66792, 3534}, {66793, 50808}, {66820, 376}
X(66817) = anticomplement of X(66786)
X(66817) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 16168, 66820}, {477, 66788, 34193}, {34312, 64510, 3543}, {38581, 66773, 14731}
X(66818) lies on these lines: {2, 477}, {476, 21735}, {548, 16168}, {1657, 38581}, {3258, 3843}, {3627, 64510}, {3633, 66776}, {5072, 66781}, {6144, 66810}, {11749, 62164}, {12108, 22104}, {14093, 38580}, {14731, 49140}, {15684, 20957}, {15712, 38610}, {17538, 38678}, {18319, 61837}, {23046, 66778}, {33703, 44967}, {34312, 62029}, {38609, 45759}, {38677, 62083}, {38700, 58188}, {38701, 61138}, {57305, 61840}, {57306, 61919}, {58207, 66791}, {63073, 66805}
X(66818) = midpoint of X(i) and X(j) for these {i,j}: {25641, 66788}
X(66818) = reflection of X(i) in X(j) for these {i,j}: {31379, 477}, {66816, 31379}
X(66818) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {477, 66788, 25641}
X(66819) lies on these lines: {2, 476}, {4, 38610}, {5, 34193}, {20, 31379}, {140, 66792}, {146, 65086}, {265, 45694}, {376, 66795}, {381, 66773}, {477, 3091}, {547, 11749}, {549, 66791}, {631, 20957}, {1138, 34209}, {3090, 16168}, {3146, 38701}, {3154, 3448}, {3233, 17511}, {3522, 44967}, {3525, 38609}, {3545, 66781}, {3616, 66796}, {3617, 66800}, {3618, 66812}, {3620, 66807}, {3628, 38580}, {3634, 66793}, {3817, 66776}, {3832, 64510}, {3839, 14989}, {3850, 66772}, {3855, 66778}, {4699, 66808}, {5055, 18319}, {5056, 25641}, {5067, 57305}, {5068, 66788}, {5218, 66799}, {5226, 59823}, {5550, 66789}, {5704, 59825}, {6622, 66771}, {7288, 66798}, {7485, 66794}, {7486, 66787}, {8889, 66790}, {10303, 38700}, {10588, 33964}, {10589, 33965}, {11002, 12052}, {14683, 55308}, {14851, 61574}, {15022, 38678}, {16978, 62188}, {30745, 47324}, {31101, 59231}, {38677, 46936}, {55319, 64102}, {59373, 66813}, {59387, 66770}, {61924, 66786}, {62491, 66045}, {62492, 66063}, {62778, 66806}
X(66819) = reflection of X(i) in X(j) for these {i,j}: {66815, 3090}
X(66819) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3258, 14731}, {2, 66802, 22104}, {3090, 16168, 66815}, {3258, 22104, 34312}, {3258, 66801, 2}, {22104, 34312, 66802}
X(66820) lies on these lines: {2, 476}, {20, 38677}, {23, 7669}, {30, 3448}, {376, 16168}, {477, 10304}, {519, 66793}, {523, 9143}, {542, 31876}, {1316, 15542}, {3522, 38678}, {3524, 38609}, {3534, 66773}, {3543, 66786}, {3545, 20957}, {3830, 18319}, {3839, 25641}, {3845, 66791}, {5032, 66807}, {5071, 57305}, {5642, 60603}, {7605, 34094}, {7714, 66790}, {8591, 62489}, {8703, 38581}, {9140, 60604}, {9158, 37909}, {10385, 33965}, {10989, 62509}, {11002, 53793}, {11177, 37901}, {11749, 12100}, {14989, 15640}, {15682, 66781}, {15683, 64510}, {15692, 38700}, {15702, 57306}, {15708, 31379}, {15933, 59825}, {19708, 38610}, {21356, 66812}, {37749, 62507}, {37907, 47324}, {38314, 66789}, {38583, 57618}, {38701, 62063}, {41099, 66795}, {41512, 51345}, {44462, 51482}, {44466, 51483}, {44967, 50687}, {46632, 60008}, {47313, 60508}, {50808, 66776}, {50864, 66779}, {50872, 66784}, {51023, 66809}, {51028, 66805}, {52695, 53738}, {53620, 66796}, {59823, 65384}, {61924, 66787}, {62017, 66778}, {62037, 66816}, {62120, 66788}, {63064, 66813}
X(66820) = midpoint of X(i) and X(j) for these {i,j}: {2, 66802}
X(66820) = reflection of X(i) in X(j) for these {i,j}: {2, 476}, {3543, 66786}, {3830, 18319}, {9158, 47327}, {11749, 12100}, {14731, 2}, {15640, 14989}, {15682, 66781}, {38581, 8703}, {50864, 66779}, {50872, 66784}, {51023, 66809}, {51028, 66805}, {63064, 66813}, {66773, 3534}, {66776, 50808}, {66791, 3845}, {66817, 376}
X(66820) = anticomplement of X(34312)
X(66820) = X(i)-Dao conjugate of X(j) for these {i, j}: {34312, 34312}
X(66820) = pole of line {8371, 14809} with respect to the circumcircle
X(66820) = pole of line {45331, 66352} with respect to the Steiner circumellipse
X(66820) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 16168, 66817}, {476, 66802, 14731}, {9158, 47327, 37909}, {38580, 66792, 34193}
X(66821) lies on these lines: {3, 805}, {4, 57347}, {5, 66826}, {20, 66837}, {30, 2679}, {35, 66830}, {36, 44042}, {140, 33330}, {187, 1511}, {376, 66834}, {498, 66828}, {499, 66829}, {511, 5026}, {512, 12042}, {549, 22103}, {631, 57310}, {1657, 44971}, {3111, 15536}, {3576, 66823}, {3972, 41330}, {4299, 66838}, {4302, 66839}, {5092, 38611}, {5946, 65517}, {6071, 61560}, {6072, 61561}, {6642, 66824}, {7771, 64687}, {12188, 14509}, {13137, 46172}, {13188, 14510}, {13391, 16979}, {14962, 38615}, {20403, 38610}, {26316, 66825}, {31513, 38730}, {35242, 66835}, {38608, 52992}, {38617, 65864}, {51872, 55312}
X(66821) = midpoint of X(i) and X(j) for these {i,j}: {3, 2698}, {20, 66837}, {805, 66832}, {1657, 44971}, {12188, 14509}, {13188, 14510}, {31513, 38730}
X(66821) = reflection of X(i) in X(j) for these {i,j}: {5, 66833}, {6071, 61560}, {6072, 61561}, {13137, 46172}, {33330, 140}, {51872, 55312}, {66826, 5}, {66836, 2679}
X(66821) = inverse of X(66832) in circumcircle
X(66821) = complement of X(66827)
X(66821) = pole of line {22735, 65767} with respect to the Stammler hyperbola
X(66821) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 2698, 53797}, {3, 66832, 805}, {3, 66840, 38703}, {30, 2679, 66836}, {631, 66822, 57310}, {805, 2698, 66832}
X(66822) lies on the anticomplementary circle and on these lines: {2, 2698}, {4, 53797}, {5, 66832}, {10, 66823}, {20, 805}, {22, 66824}, {147, 512}, {148, 511}, {315, 64687}, {388, 44042}, {497, 66829}, {516, 66835}, {631, 57310}, {2679, 3091}, {2896, 31848}, {3090, 57347}, {3448, 14957}, {3522, 38703}, {3523, 22103}, {3543, 44971}, {5207, 13219}, {5225, 66839}, {5229, 66838}, {6071, 14510}, {6072, 14509}, {9218, 52128}, {11674, 40853}, {14731, 33884}, {20403, 34193}, {34186, 56376}, {56688, 64686}, {65864, 66846}
X(66822) = reflection of X(i) in X(j) for these {i,j}: {4, 66827}, {20, 805}, {2698, 33330}, {14509, 6072}, {14510, 6071}, {66823, 10}, {66825, 31848}, {66832, 5}, {66834, 4}, {66837, 66826}
X(66822) = inverse of X(48259) in DeLongchamps circle
X(66822) = inverse of X(66826) in circumcircle of the Johnson triangle
X(66822) = anticomplement of X(2698)
X(66822) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1, 2782}, {19, 57257}, {2782, 8}, {16068, 17493}, {24037, 14509}, {36036, 55143}
X(66822) = pole of line {2698, 48259} with respect to the DeLongchamps circle
X(66822) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 53797, 66834}, {2698, 33330, 2}, {44042, 66828, 388}, {53797, 66826, 66837}, {53797, 66827, 4}, {66827, 66837, 66826}, {66829, 66830, 497}
X(66823) lies on the Bevan circle and on these lines: {1, 2698}, {10, 66822}, {40, 53797}, {57, 44042}, {165, 805}, {511, 13174}, {512, 9860}, {516, 66834}, {517, 66832}, {1697, 66830}, {1698, 33330}, {1699, 2679}, {3099, 66825}, {3576, 66821}, {3579, 66840}, {3624, 66833}, {5587, 66827}, {8185, 66824}, {8227, 57347}, {9578, 66828}, {9579, 66838}, {9580, 66839}, {9581, 66829}, {16192, 38703}, {18492, 66826}, {20403, 66776}, {31423, 57310}, {34464, 65864}, {41869, 66837}, {53793, 66793}
X(66823) = reflection of X(i) in X(j) for these {i,j}: {1, 2698}, {41869, 66837}, {66822, 10}, {66835, 40}, {66840, 3579}
X(66823) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {40, 53797, 66835}
X(66824) lies on these lines: {3, 22103}, {22, 66822}, {25, 2698}, {511, 13175}, {512, 9861}, {805, 11414}, {1351, 38583}, {1598, 2679}, {2080, 14673}, {5020, 66833}, {6642, 66821}, {7387, 53797}, {7517, 66832}, {7529, 57347}, {8185, 66823}, {9818, 66826}, {10828, 66825}, {10831, 66828}, {10832, 66829}, {10833, 66830}, {11432, 65517}, {12083, 66840}, {12310, 60522}, {18534, 66837}, {18954, 44042}, {20403, 66777}, {37198, 38703}, {37921, 53793}, {65864, 66847}
X(66824) = pole of line {55143, 66833} with respect to the circumcircle
X(66824) = pole of line {55143, 66837} with respect to the Stammler circle
X(66825) lies on circumconic {{A, B, C, X(842), X(9469)}} and on these lines: {32, 2698}, {147, 511}, {316, 39118}, {399, 3511}, {512, 9862}, {647, 9998}, {805, 842}, {1495, 9999}, {2076, 13236}, {2679, 6785}, {2896, 31848}, {3094, 34235}, {3096, 33330}, {3099, 66823}, {6787, 9996}, {7811, 64687}, {7846, 66833}, {9821, 53797}, {10828, 66824}, {10873, 66828}, {10874, 66829}, {10877, 66830}, {18321, 32151}, {18500, 66826}, {18957, 44042}, {24206, 46669}, {26316, 66821}, {41330, 66096}, {65864, 66848}
X(66825) = reflection of X(i) in X(j) for these {i,j}: {64686, 2679}, {66822, 31848}
X(66825) = pole of line {39495, 58262} with respect to the circumcircle
X(66825) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2679, 64686, 6785}
X(66826) lies on these lines: {4, 53797}, {5, 66821}, {20, 57310}, {30, 33330}, {381, 2698}, {382, 805}, {511, 22515}, {512, 22505}, {546, 2679}, {550, 22103}, {1478, 66829}, {1479, 66828}, {1657, 38703}, {3091, 57347}, {3583, 66830}, {3585, 44042}, {3830, 44971}, {3843, 66832}, {6102, 65517}, {9818, 66824}, {10113, 13449}, {14509, 38743}, {14510, 38732}, {18321, 64686}, {18492, 66823}, {18500, 66825}, {20403, 66778}, {38229, 55313}, {53793, 66795}, {65864, 66849}
X(66826) = midpoint of X(i) and X(j) for these {i,j}: {4, 66827}, {382, 805}, {18321, 64686}, {44971, 66840}, {66822, 66837}
X(66826) = reflection of X(i) in X(j) for these {i,j}: {550, 22103}, {2679, 546}, {6102, 65517}, {66821, 5}, {66836, 4}
X(66826) = inverse of X(66822) in circumcircle of the Johnson triangle
X(66826) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 53797, 66836}, {4, 66822, 66837}, {4, 66827, 53797}, {3830, 66840, 44971}, {66827, 66837, 66822}
X(66827) lies on the circumcircle of the Johnson triangle and on these lines: {1, 66828}, {3, 22103}, {4, 53797}, {5, 2698}, {30, 805}, {265, 290}, {381, 2679}, {382, 66840}, {511, 6321}, {512, 6033}, {550, 38703}, {568, 65517}, {1478, 44042}, {1479, 66830}, {1656, 66833}, {3583, 66839}, {3585, 66838}, {3627, 44971}, {5167, 13556}, {5475, 23017}, {5587, 66823}, {6071, 12188}, {6072, 13188}, {6234, 46292}, {6787, 9996}, {14509, 51872}, {15980, 51404}, {18321, 54393}, {20403, 66781}, {22515, 31513}, {38527, 40279}, {38954, 65864}, {41869, 66835}
X(66827) = midpoint of X(i) and X(j) for these {i,j}: {4, 66822}, {382, 66840}, {41869, 66835}, {64686, 64687}
X(66827) = reflection of X(i) in X(j) for these {i,j}: {3, 33330}, {4, 66826}, {2698, 5}, {12188, 6071}, {13188, 6072}, {14509, 51872}, {31513, 22515}, {44971, 3627}, {66832, 2679}, {66834, 66836}, {66837, 4}
X(66827) = anticomplement of X(66821)
X(66827) = X(i)-Dao conjugate of X(j) for these {i, j}: {66821, 66821}
X(66827) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {805, 22456, 64686}
X(66827) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 33330, 57310}, {4, 53797, 66837}, {4, 66822, 53797}, {4, 66834, 66836}, {381, 66832, 2679}, {53797, 66826, 4}, {53797, 66836, 66834}, {66828, 66829, 1}
X(66828) lies on the 1st Johnson-Yff circle and on these lines: {1, 66827}, {4, 66830}, {12, 2698}, {36, 57310}, {56, 33330}, {388, 44042}, {498, 66821}, {511, 13182}, {512, 12184}, {805, 7354}, {1478, 53797}, {1479, 66826}, {2679, 10895}, {3585, 66837}, {5204, 22103}, {5229, 66834}, {7951, 57347}, {9578, 66823}, {9579, 66835}, {9654, 66832}, {9655, 66840}, {10831, 66824}, {10873, 66825}, {15326, 38703}, {20403, 66782}, {44971, 65631}, {53793, 66798}, {65864, 66851}
X(66828) = reflection of X(i) in X(j) for these {i,j}: {66838, 1478}
X(66828) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1478, 53797, 66838}
X(66829) lies on the 2nd Johnson-Yff circle and on these lines: {1, 66827}, {4, 44042}, {11, 2698}, {35, 57310}, {55, 33330}, {497, 66822}, {499, 66821}, {511, 13183}, {512, 12185}, {805, 6284}, {1478, 66826}, {1479, 53797}, {2679, 10896}, {3583, 66837}, {5217, 22103}, {5225, 66834}, {7741, 57347}, {9580, 66835}, {9581, 66823}, {9668, 66840}, {9669, 66832}, {10832, 66824}, {10874, 66825}, {15338, 38703}, {20403, 66783}, {44971, 65632}, {53793, 66799}, {65864, 66852}
X(66829) = reflection of X(i) in X(j) for these {i,j}: {66839, 1479}
X(66829) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 66827, 66828}, {4, 44042, 66838}, {497, 66822, 66830}, {1479, 53797, 66839}
X(66830) lies on the incircle and on these lines: {1, 44042}, {4, 66828}, {11, 33330}, {12, 2679}, {35, 66821}, {55, 2698}, {56, 805}, {57, 66835}, {388, 66834}, {497, 66822}, {498, 57347}, {499, 57310}, {511, 3023}, {512, 3027}, {999, 66840}, {1478, 66837}, {1479, 66827}, {1697, 66823}, {3295, 66832}, {3583, 66826}, {3585, 66836}, {5194, 7333}, {5204, 38703}, {5432, 66833}, {5433, 22103}, {5663, 44051}, {10833, 66824}, {10877, 66825}, {12943, 44971}, {13182, 31513}, {13756, 65864}, {20403, 33964}, {33965, 53793}, {44048, 53798}, {59808, 65865}
X(66830) = reflection of X(i) in X(j) for these {i,j}: {44042, 1}
X(66830) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 53797, 44042}, {388, 66834, 66838}, {66828, 66839, 4}
X(66831) lies on the Parry circle and on these lines: {2, 512}, {23, 5027}, {110, 669}, {111, 2698}, {351, 11673}, {511, 9147}, {523, 46303}, {647, 9998}, {804, 33873}, {888, 13207}, {2395, 13137}, {3266, 53331}, {3569, 32526}, {7711, 14318}, {9131, 55143}, {9158, 20403}, {14660, 60777}, {15630, 52076}, {25047, 31296}, {44135, 53347}, {53793, 66785}
X(66831) = reflection of X(i) in X(j) for these {i,j}: {11673, 351}
X(66831) = pole of line {5118, 11673} with respect to the 1st Brocard circle
X(66831) = pole of line {2421, 5201} with respect to the circumcircle
X(66831) = pole of line {53797, 66831} with respect to the Parry circle
X(66831) = pole of line {237, 9147} with respect to the Kiepert parabola
X(66831) = pole of line {804, 5118} with respect to the Stammler hyperbola
X(66831) = pole of line {14295, 23342} with respect to the Wallace hyperbola
X(66831) = intersection, other than A, B, C, of circumconics {{A, B, C, X(805), X(60106)}}, {{A, B, C, X(2698), X(14608)}}, {{A, B, C, X(5970), X(47044)}}, {{A, B, C, X(17938), X(63749)}}, {{A, B, C, X(35366), X(46161)}}, {{A, B, C, X(52765), X(58784)}}
X(66832) lies on the Stammler circle and on these lines: {3, 805}, {5, 66822}, {6, 38582}, {183, 64687}, {381, 2679}, {382, 66837}, {399, 3511}, {511, 13188}, {512, 12188}, {517, 66823}, {999, 44042}, {1656, 33330}, {3295, 66830}, {3526, 57310}, {3579, 66835}, {3830, 66836}, {3843, 66826}, {5054, 22103}, {5073, 44971}, {7517, 66824}, {9654, 66828}, {9655, 66838}, {9668, 66839}, {9669, 66829}, {13111, 31850}, {13321, 65517}, {20403, 38581}, {31513, 38733}, {36822, 38580}, {38586, 65864}
X(66832) = reflection of X(i) in X(j) for these {i,j}: {3, 2698}, {382, 66837}, {805, 66821}, {5073, 44971}, {38733, 31513}, {66822, 5}, {66827, 2679}, {66835, 3579}, {66840, 3}
X(66832) = inverse of X(66821) in circumcircle
X(66832) = pole of line {39495, 66821} with respect to the circumcircle
X(66832) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 53797, 66840}, {805, 2698, 66821}, {2679, 66827, 381}, {2698, 53797, 3}, {33330, 57347, 1656}, {53797, 66821, 805}, {57310, 66833, 3526}
X(66833) lies on these lines: {2, 2698}, {3, 2679}, {5, 66821}, {140, 22103}, {376, 44971}, {441, 34844}, {511, 620}, {512, 6036}, {550, 66836}, {631, 805}, {1656, 66827}, {2782, 55312}, {3523, 38703}, {3526, 57310}, {3624, 66823}, {5020, 66824}, {5054, 66840}, {5204, 66838}, {5217, 66839}, {5432, 66830}, {5433, 44042}, {5462, 65517}, {5972, 14693}, {6071, 38224}, {6072, 15561}, {7749, 31848}, {7846, 66825}, {10625, 16979}, {14509, 14651}, {20403, 31379}, {21166, 31513}, {22104, 53793}, {40544, 58445}, {65864, 66856}
X(66833) = midpoint of X(i) and X(j) for these {i,j}: {3, 2679}, {5, 66821}, {550, 66836}, {2698, 33330}, {10625, 16979}, {55312, 55313}
X(66833) = reflection of X(i) in X(j) for these {i,j}: {22103, 140}, {65517, 5462}
X(66833) = complement of X(33330)
X(66833) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {3, 2679, 14113}, {22103, 55312, 55313}
X(66833) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 2698, 33330}, {3, 57347, 2679}, {140, 53797, 22103}, {3523, 66834, 38703}, {3526, 66832, 57310}, {55312, 55313, 2782}
X(66834) lies on the anticomplementary circle, circumconic {{A, B, C, X(9469), X(53704)}}, and on these lines: {2, 805}, {4, 53797}, {5, 66840}, {10, 66835}, {20, 2698}, {146, 43453}, {147, 511}, {148, 512}, {315, 37841}, {376, 66821}, {388, 66830}, {497, 44042}, {516, 66823}, {631, 57347}, {688, 54104}, {888, 39356}, {3090, 57310}, {3091, 33330}, {3124, 46292}, {3146, 44971}, {3221, 35511}, {3448, 44445}, {3523, 38703}, {4027, 41429}, {5225, 66829}, {5229, 66828}, {5984, 14510}, {6655, 38527}, {6792, 11002}, {9009, 44373}, {11185, 64687}, {13219, 66841}, {14360, 25332}, {14509, 20094}, {14731, 20403}, {14732, 65865}, {14957, 41520}, {16979, 62187}, {20859, 24973}, {31670, 52451}, {34193, 53793}, {44007, 45291}, {65864, 66862}
X(66834) = reflection of X(i) in X(j) for these {i,j}: {4, 66837}, {20, 2698}, {148, 31513}, {315, 37841}, {805, 2679}, {3146, 44971}, {5984, 14510}, {14957, 52446}, {20094, 14509}, {66822, 4}, {66827, 66836}, {66835, 10}, {66840, 5}
X(66834) = inverse of X(66836) in circumcircle of the Johnson triangle
X(66834) = anticomplement of X(805)
X(66834) = X(i)-Dao conjugate of X(j) for these {i, j}: {805, 805}
X(66834) = X(i)-Ceva conjugate of X(j) for these {i, j}: {14295, 2}
X(66834) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1, 804}, {19, 3569}, {171, 50343}, {385, 7192}, {419, 7253}, {512, 17493}, {656, 56376}, {659, 38}, {661, 7779}, {662, 2396}, {798, 40858}, {804, 8}, {812, 17152}, {897, 34290}, {1215, 46403}, {1284, 3907}, {1577, 5207}, {1580, 523}, {1691, 4560}, {1910, 2395}, {1924, 19566}, {1926, 44445}, {1933, 31296}, {1966, 512}, {2086, 21220}, {2238, 661}, {2295, 812}, {2533, 4645}, {3287, 1959}, {3570, 799}, {3766, 17153}, {3963, 21303}, {3978, 17217}, {4010, 4388}, {4039, 513}, {4107, 75}, {4140, 56883}, {4164, 1}, {4367, 740}, {4369, 30941}, {4455, 21226}, {4593, 880}, {5027, 192}, {7212, 56928}, {7234, 17759}, {14295, 6327}, {14296, 17135}, {14603, 21305}, {17103, 4155}, {17941, 21295}, {17984, 21300}, {18047, 874}, {18070, 20022}, {18111, 30940}, {18787, 876}, {20981, 62636}, {21832, 6646}, {23597, 60683}, {23894, 11646}, {24284, 4329}, {24533, 2227}, {36036, 805}, {37134, 18829}, {43763, 882}, {44089, 17498}, {51934, 881}, {55240, 732}, {56828, 525}, {56971, 826}, {56980, 6758}, {56982, 99}, {57234, 6542}, {61164, 42720}
X(66834) = pole of line {45693, 66833} with respect to the orthoptic circle of the Steiner Inellipse
X(66834) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 53797, 66822}, {512, 31513, 148}, {38703, 66833, 3523}, {44042, 66839, 497}, {53797, 66836, 66827}, {53797, 66837, 4}, {66827, 66837, 66836}, {66830, 66838, 388}
X(66835) lies on the Bevan circle and on these lines: {1, 805}, {10, 66834}, {40, 53797}, {57, 66830}, {165, 2698}, {511, 9860}, {512, 13174}, {516, 66822}, {517, 66840}, {1697, 44042}, {1698, 2679}, {1699, 33330}, {3579, 66832}, {3624, 22103}, {5587, 66837}, {7987, 38703}, {8227, 57310}, {9578, 66838}, {9579, 66828}, {9580, 66829}, {9581, 66839}, {17799, 21381}, {18492, 66836}, {20403, 66793}, {31423, 57347}, {35242, 66821}, {41869, 66827}, {53793, 66776}, {65864, 66863}
X(66835) = reflection of X(i) in X(j) for these {i,j}: {1, 805}, {41869, 66827}, {66823, 40}, {66832, 3579}, {66834, 10}
X(66836) lies on these lines: {3, 44971}, {4, 53797}, {5, 22103}, {20, 57347}, {30, 2679}, {381, 805}, {382, 2698}, {511, 22505}, {512, 22515}, {546, 33330}, {550, 66833}, {1154, 16979}, {1478, 66839}, {1479, 66838}, {1656, 38703}, {3091, 57310}, {3583, 44042}, {3585, 66830}, {3830, 66832}, {3843, 66840}, {6033, 31513}, {14509, 38733}, {14510, 38744}, {18492, 66835}, {20403, 66795}, {31707, 31708}, {53793, 66778}, {65864, 66864}
X(66836) = midpoint of X(i) and X(j) for these {i,j}: {3, 44971}, {4, 66837}, {382, 2698}, {6033, 31513}, {14509, 38733}, {14510, 38744}, {66827, 66834}
X(66836) = reflection of X(i) in X(j) for these {i,j}: {550, 66833}, {33330, 546}, {66821, 2679}, {66826, 4}
X(66836) = inverse of X(66834) in circumcircle of the Johnson triangle
X(66836) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 53797, 66826}, {4, 66834, 66827}, {4, 66837, 53797}, {30, 2679, 66821}, {66827, 66837, 66834}
X(66837) lies on the circumcircle of the Johnson triangle and on these lines: {1, 66838}, {3, 2679}, {4, 53797}, {5, 805}, {20, 66821}, {30, 2698}, {140, 38703}, {381, 33330}, {382, 66832}, {511, 6033}, {512, 6321}, {1478, 66830}, {1479, 44042}, {1656, 22103}, {2782, 31513}, {3583, 66829}, {3585, 66828}, {5587, 66835}, {6071, 38732}, {6072, 38743}, {6243, 16979}, {7728, 63711}, {18534, 66824}, {20403, 20957}, {38953, 48901}, {40100, 65864}, {41869, 66823}, {53793, 66781}
X(66837) = midpoint of X(i) and X(j) for these {i,j}: {4, 66834}, {382, 66832}, {2698, 44971}, {41869, 66823}
X(66837) = reflection of X(i) in X(j) for these {i,j}: {3, 2679}, {4, 66836}, {20, 66821}, {805, 5}, {6243, 16979}, {66822, 66826}, {66827, 4}, {66840, 33330}
X(66837) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {4, 31513, 66834}, {14509, 61497, 64687}, {14510, 61496, 64686}
X(66837) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 2679, 57347}, {4, 53797, 66827}, {4, 66822, 66826}, {4, 66834, 53797}, {381, 66840, 33330}, {2698, 44971, 30}, {53797, 66826, 66822}, {53797, 66836, 4}, {66838, 66839, 1}
X(66838) lies on the 1st Johnson-Yff circle and on these lines: {1, 66837}, {4, 44042}, {12, 805}, {36, 57347}, {56, 2679}, {388, 66830}, {511, 12184}, {512, 13182}, {1478, 53797}, {1479, 66836}, {2698, 7354}, {3027, 31513}, {3585, 66827}, {4299, 66821}, {5204, 66833}, {5229, 66822}, {5432, 38703}, {6284, 44971}, {7951, 57310}, {9578, 66835}, {9579, 66823}, {9654, 66840}, {9655, 66832}, {10895, 33330}, {20403, 66798}, {53793, 66782}, {65864, 66866}
X(66838) = reflection of X(i) in X(j) for these {i,j}: {66828, 1478}
X(66838) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 66837, 66839}, {4, 44042, 66829}, {388, 66834, 66830}, {1478, 53797, 66828}
X(66839) lies on the 2nd Johnson-Yff circle and on these lines: {1, 66837}, {4, 66828}, {11, 805}, {35, 57347}, {55, 2679}, {497, 44042}, {511, 12185}, {512, 13183}, {1478, 66836}, {1479, 53797}, {2698, 6284}, {3023, 31513}, {3583, 66827}, {4302, 66821}, {5217, 66833}, {5225, 66822}, {5433, 38703}, {7354, 44971}, {7741, 57310}, {9580, 66823}, {9581, 66835}, {9668, 66832}, {9669, 66840}, {10896, 33330}, {20403, 66799}, {53793, 66783}, {65864, 66867}
X(66839) = reflection of X(i) in X(j) for these {i,j}: {66829, 1479}
X(66839) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 66837, 66838}, {4, 66830, 66828}, {497, 66834, 44042}, {1479, 53797, 66829}
X(66840) lies on the Stammler circle and on these lines: {3, 805}, {5, 66834}, {381, 33330}, {382, 66827}, {511, 12188}, {512, 13188}, {517, 66835}, {999, 66830}, {1350, 38583}, {1656, 2679}, {1975, 64687}, {3295, 44042}, {3526, 22103}, {3579, 66823}, {3830, 44971}, {3843, 66836}, {5054, 66833}, {9301, 32595}, {9654, 66838}, {9655, 66828}, {9668, 66829}, {9669, 66839}, {10620, 47618}, {12083, 66824}, {13115, 35456}, {15567, 33704}, {20403, 38580}, {31513, 38732}, {31875, 31878}, {38581, 53793}, {38584, 65864}
X(66840) = midpoint of X(i) and X(j) for these {i,j}: {31875, 31878}
X(66840) = reflection of X(i) in X(j) for these {i,j}: {3, 805}, {382, 66827}, {44971, 66826}, {66823, 3579}, {66832, 3}, {66834, 5}, {66837, 33330}
X(66840) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 53797, 66832}, {2679, 57310, 1656}, {22103, 57347, 3526}, {33330, 66837, 381}, {44971, 66826, 3830}
X(66841) lies on these lines: {2, 9218}, {148, 826}, {249, 5099}, {316, 13485}, {325, 42398}, {511, 52403}, {512, 3448}, {525, 36174}, {1648, 9217}, {2533, 21221}, {2888, 18321}, {4010, 54455}, {5080, 20558}, {9143, 33803}, {13219, 66834}, {15081, 38582}, {34953, 47291}, {47290, 58908}, {53379, 58907}
X(66841) = reflection of X(i) in X(j) for these {i,j}: {249, 5099}, {47290, 58908}, {47291, 34953}, {53379, 58907}
X(66841) = anticomplement of X(9218)
X(66841) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {661, 31372}, {9217, 4560}, {9293, 8}, {9395, 523}, {9396, 2}, {19610, 21220}, {35511, 7192}, {37880, 21295}
X(66842) lies on cubic K738 and on these lines: {2, 4609}, {6, 670}, {25, 5989}, {37, 6386}, {42, 1978}, {76, 52660}, {111, 53080}, {251, 689}, {263, 25332}, {308, 6375}, {694, 698}, {1084, 1502}, {1400, 4572}, {1920, 16606}, {1976, 43187}, {2395, 18024}, {3228, 6379}, {8770, 59248}, {9178, 18023}, {18898, 32544}, {19567, 52662}, {21461, 55220}, {21462, 55222}, {25054, 32747}, {25326, 30736}, {30545, 65011}, {34087, 53365}, {36803, 56853}, {37133, 43761}, {55263, 57995}, {60667, 62610}
X(66842) = midpoint of X(i) and X(j) for these {i,j}: {25054, 32747}
X(66842) = reflection of X(i) in X(j) for these {i,j}: {670, 6374}, {2998, 1084}
X(66842) = isogonal conjugate of X(32748)
X(66842) = isotomic conjugate of X(3229)
X(66842) = trilinear pole of line {76, 32547}
X(66842) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 32748}, {6, 51907}, {31, 3229}, {32, 2227}, {48, 52460}, {560, 698}, {662, 9429}, {798, 41337}, {922, 36821}, {1755, 32540}, {1917, 35524}, {1927, 39080}, {1933, 47648}, {1967, 51322}, {9468, 51912}
X(66842) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 3229}, {3, 32748}, {9, 51907}, {1084, 9429}, {1249, 52460}, {6374, 698}, {6376, 2227}, {8290, 51322}, {31998, 41337}, {35078, 62649}, {36899, 32540}, {39044, 51912}, {39061, 36821}, {62604, 59567}, {62610, 39080}, {65925, 59802}
X(66842) = X(i)-cross conjugate of X(j) for these {i, j}: {804, 670}, {1916, 290}, {14603, 308}, {35524, 76}, {39927, 43715}
X(66842) = pole of line {3229, 32748} with respect to the Wallace hyperbola
X(66842) = pole of line {23301, 23807} with respect to the dual conic of 2nd Brocard circle
X(66842) = pole of line {804, 66842} with respect to the dual conic of Brocard inellipse
X(66842) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6)}}, {{A, B, C, X(4), X(11333)}}, {{A, B, C, X(75), X(1920)}}, {{A, B, C, X(76), X(10010)}}, {{A, B, C, X(83), X(44165)}}, {{A, B, C, X(194), X(30496)}}, {{A, B, C, X(290), X(3978)}}, {{A, B, C, X(670), X(689)}}, {{A, B, C, X(671), X(44168)}}, {{A, B, C, X(698), X(804)}}, {{A, B, C, X(729), X(43094)}}, {{A, B, C, X(850), X(44160)}}, {{A, B, C, X(888), X(6379)}}, {{A, B, C, X(1502), X(6374)}}, {{A, B, C, X(1921), X(40845)}}, {{A, B, C, X(3224), X(42486)}}, {{A, B, C, X(5969), X(42010)}}, {{A, B, C, X(5989), X(57799)}}, {{A, B, C, X(8781), X(57541)}}, {{A, B, C, X(8842), X(25332)}}, {{A, B, C, X(17949), X(35540)}}, {{A, B, C, X(18277), X(19567)}}, {{A, B, C, X(20023), X(63170)}}, {{A, B, C, X(31622), X(60100)}}, {{A, B, C, X(31639), X(46156)}}, {{A, B, C, X(40016), X(41297)}}, {{A, B, C, X(40832), X(54841)}}, {{A, B, C, X(42328), X(63487)}}, {{A, B, C, X(43950), X(54621)}}, {{A, B, C, X(44144), X(62932)}}, {{A, B, C, X(44371), X(59765)}}, {{A, B, C, X(57539), X(57571)}}
X(66843) lies on these lines: {1, 953}, {2, 66850}, {10, 66856}, {36, 53530}, {40, 38707}, {56, 33645}, {214, 517}, {355, 57320}, {513, 11715}, {515, 3259}, {901, 3576}, {944, 66865}, {1125, 31841}, {1318, 47645}, {1319, 1361}, {1385, 53800}, {1699, 44979}, {2646, 13756}, {3616, 66846}, {3622, 66857}, {3624, 66855}, {5603, 66845}, {5731, 66862}, {5886, 38954}, {6264, 14513}, {6326, 14511}, {7987, 38705}, {7993, 63911}, {9955, 66849}, {10165, 22102}, {10246, 38586}, {10265, 55314}, {11362, 53799}, {11363, 66844}, {11365, 66847}, {11368, 66848}, {11375, 66851}, {11376, 66852}, {11709, 61637}, {11711, 53792}, {11719, 25405}, {11720, 61638}, {12119, 31512}, {13624, 38614}, {13752, 37535}, {18481, 40100}, {21842, 38513}, {23153, 37525}, {25055, 66854}, {28160, 66864}, {38682, 64953}, {47622, 51625}, {53809, 61278}, {65856, 66770}
X(66843) = midpoint of X(i) and X(j) for these {i,j}: {1, 953}, {944, 66865}, {6264, 14513}, {6326, 14511}, {12119, 31512}, {18481, 40100}, {34464, 66853}
X(66843) = reflection of X(i) in X(j) for these {i,j}: {10, 66856}, {10265, 55314}, {31841, 1125}, {38614, 13624}, {66849, 9955}, {66858, 1385}
X(66843) = complement of X(66850)
X(66843) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {1, 953, 2718}, {3025, 3259, 3326}
X(66843) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 34464, 66853}, {953, 66853, 34464}, {1319, 39756, 11700}, {1385, 53800, 66858}, {7987, 66863, 38705}
X(66844) lies on these lines: {4, 38954}, {24, 38617}, {25, 953}, {33, 13756}, {34, 3025}, {235, 3259}, {378, 38614}, {427, 31841}, {468, 66856}, {513, 12138}, {517, 1862}, {901, 1593}, {1112, 1884}, {1597, 38584}, {1598, 38586}, {1866, 6746}, {1876, 33645}, {3515, 38707}, {3516, 38705}, {3541, 57313}, {3542, 57320}, {5064, 66854}, {5090, 66850}, {5094, 66855}, {5186, 53792}, {5198, 38682}, {6995, 66857}, {7487, 66845}, {7713, 34464}, {11363, 66843}, {11386, 66848}, {11392, 66851}, {11393, 66852}, {11396, 66853}, {12133, 61637}, {12173, 44979}, {17516, 38513}, {23153, 65128}, {44438, 44973}, {53809, 66790}, {65856, 66771}
X(66844) = reflection of X(i) in X(j) for these {i,j}: {66859, 4}
X(66844) = inverse of X(66846) in polar circle
X(66844) = pole of line {65854, 66846} with respect to the polar circle
X(66844) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 53800, 66859}
X(66845) lies on these lines: {2, 38617}, {3, 66846}, {4, 953}, {20, 53800}, {24, 66847}, {30, 38586}, {186, 10016}, {376, 901}, {513, 12248}, {515, 34464}, {517, 6224}, {550, 38584}, {631, 31841}, {3025, 4293}, {3085, 66851}, {3086, 66852}, {3090, 66856}, {3091, 57320}, {3146, 40100}, {3488, 24201}, {3522, 38614}, {3523, 57313}, {3524, 22102}, {3525, 66855}, {3528, 38705}, {3529, 38682}, {3543, 66864}, {4294, 13756}, {4302, 23153}, {5603, 66843}, {5657, 66850}, {7487, 66844}, {7967, 66853}, {9862, 66848}, {12244, 61637}, {12383, 20067}, {13172, 53792}, {21844, 39479}, {31730, 66863}, {33703, 44973}, {34773, 53809}, {37525, 51886}, {65856, 66773}
X(66845) = midpoint of X(i) and X(j) for these {i,j}: {20, 66857}
X(66845) = reflection of X(i) in X(j) for these {i,j}: {4, 953}, {3146, 40100}, {33703, 44973}, {38584, 550}, {38954, 38617}, {44979, 3259}, {66846, 3}, {66861, 20}, {66862, 38586}, {66863, 31730}
X(66845) = anticomplement of X(38954)
X(66845) = X(i)-Dao conjugate of X(j) for these {i, j}: {38954, 38954}
X(66845) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {45812, 8}
X(66845) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 53800, 66861}, {20, 66857, 53800}, {953, 44979, 3259}, {3259, 44979, 4}, {38617, 38954, 2}, {57320, 66849, 3091}
X(66846) lies on the anticomplementary circle and on these lines: {2, 953}, {3, 66845}, {4, 38954}, {5, 38586}, {7, 33645}, {8, 66850}, {10, 34464}, {20, 901}, {22, 66847}, {30, 38584}, {145, 66853}, {146, 61637}, {148, 53792}, {149, 517}, {153, 513}, {376, 38614}, {388, 3025}, {497, 13756}, {516, 66863}, {631, 38617}, {938, 24201}, {1479, 23153}, {1837, 23152}, {2896, 66848}, {3090, 57320}, {3091, 3259}, {3146, 44979}, {3436, 64688}, {3448, 61638}, {3522, 38705}, {3523, 22102}, {3543, 44973}, {3616, 66843}, {3627, 66860}, {5046, 38513}, {5080, 33650}, {5176, 34188}, {5225, 66867}, {5229, 66866}, {5690, 14731}, {5731, 66858}, {5903, 51886}, {6073, 14513}, {6075, 14511}, {6960, 38568}, {7488, 10016}, {10298, 39479}, {10573, 56691}, {14732, 53801}, {15680, 38569}, {20293, 21290}, {34193, 65856}, {37437, 38512}, {59387, 66865}, {65864, 66822}
X(66846) = reflection of X(i) in X(j) for these {i,j}: {2, 66854}, {4, 38954}, {8, 66850}, {20, 901}, {145, 66853}, {953, 31841}, {3146, 44979}, {14511, 6075}, {14513, 6073}, {34464, 10}, {38586, 5}, {38682, 3259}, {40100, 66849}, {66845, 3}, {66857, 953}, {66860, 3627}, {66861, 38584}, {66862, 4}
X(66846) = inverse of X(2734) in DeLongchamps circle
X(66846) = inverse of X(66849) in circumcircle of the Johnson triangle
X(66846) = inverse of X(66844) in polar circle
X(66846) = complement of X(66857)
X(66846) = anticomplement of X(953)
X(66846) = X(i)-Dao conjugate of X(j) for these {i, j}: {953, 953}
X(66846) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1, 952}, {765, 14513}, {952, 8}, {2265, 2}, {36037, 35013}, {43043, 7}, {52478, 519}, {56644, 2802}, {57456, 21297}, {61481, 517}, {65249, 46136}
X(66846) = pole of line {65854, 66846} with respect to the anticomplementary circle
X(66846) = pole of line {953, 2734} with respect to the DeLongchamps circle
X(66846) = pole of line {65854, 66849} with respect to the circumcircle of the Johnson triangle
X(66846) = pole of line {65854, 66844} with respect to the polar circle
X(66846) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 66857, 953}, {4, 53800, 66862}, {30, 38584, 66861}, {953, 66854, 31841}, {953, 66855, 66856}, {3025, 66851, 388}, {13756, 66852, 497}, {31841, 66856, 66855}, {38954, 40100, 66849}, {38954, 53800, 4}, {53800, 66849, 40100}, {66855, 66856, 2}
X(66847) lies on these lines: {3, 2222}, {22, 66846}, {23, 66857}, {24, 66845}, {25, 953}, {513, 9913}, {517, 13222}, {901, 11414}, {1593, 44979}, {1598, 3259}, {3025, 18954}, {5020, 66856}, {5957, 13507}, {6642, 38617}, {7387, 53800}, {7484, 66855}, {7517, 38586}, {7529, 57320}, {8185, 34464}, {8192, 66853}, {8193, 66850}, {9818, 66849}, {9919, 61637}, {10828, 66848}, {10831, 66851}, {10832, 66852}, {10833, 13756}, {11365, 66843}, {11432, 65516}, {12082, 66861}, {12083, 38584}, {12310, 61638}, {13175, 53792}, {18534, 40100}, {23153, 65122}, {35243, 38614}, {37198, 38705}, {38707, 66607}, {53809, 66794}, {65856, 66777}, {65864, 66824}
X(66847) = reflection of X(i) in X(j) for these {i,j}: {3, 10016}
X(66847) = pole of line {35013, 66856} with respect to the circumcircle
X(66847) = pole of line {35013, 40100} with respect to the Stammler circle
X(66848) lies on these lines: {32, 953}, {513, 12499}, {517, 13235}, {901, 3098}, {2896, 66846}, {3025, 18957}, {3096, 31841}, {3099, 34464}, {3259, 9993}, {7846, 66856}, {7865, 66854}, {7914, 66855}, {8782, 53792}, {9301, 38586}, {9821, 53800}, {9857, 66850}, {9862, 66845}, {9984, 61637}, {9996, 38954}, {9997, 66853}, {10828, 66847}, {10873, 66851}, {10874, 66852}, {10877, 13756}, {11368, 66843}, {11386, 66844}, {13210, 61638}, {18500, 66849}, {23153, 65127}, {26316, 38617}, {35248, 38614}, {65864, 66825}
X(66849) lies on these lines: {3, 44979}, {4, 38954}, {5, 38617}, {20, 57313}, {30, 31841}, {381, 953}, {382, 901}, {513, 22799}, {517, 6246}, {546, 3259}, {550, 22102}, {952, 51442}, {1478, 66852}, {1479, 66851}, {1539, 61637}, {1656, 38707}, {1657, 38705}, {3025, 3585}, {3091, 57320}, {3543, 66861}, {3583, 13756}, {3830, 38584}, {3839, 66857}, {3843, 38586}, {5076, 66860}, {6102, 65516}, {7526, 10016}, {9818, 66847}, {9955, 66843}, {10113, 61638}, {12699, 66850}, {14511, 51517}, {14513, 38755}, {18492, 34464}, {18500, 66848}, {18514, 23153}, {18525, 66853}, {18570, 39479}, {22515, 53792}, {28160, 66858}, {38682, 61984}, {53809, 66795}, {65856, 66778}, {65864, 66826}
X(66849) = midpoint of X(i) and X(j) for these {i,j}: {3, 44979}, {4, 38954}, {382, 901}, {3830, 66854}, {12699, 66850}, {18525, 66853}, {38584, 44973}, {40100, 66846}
X(66849) = reflection of X(i) in X(j) for these {i,j}: {550, 22102}, {3259, 546}, {6102, 65516}, {38614, 31841}, {38617, 5}, {66843, 9955}, {66864, 4}
X(66849) = inverse of X(66846) in circumcircle of the Johnson triangle
X(66849) = pole of line {65854, 66846} with respect to the circumcircle of the Johnson triangle
X(66849) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 38954, 53800}, {4, 53800, 66864}, {4, 66846, 40100}, {3830, 38584, 44973}, {38954, 40100, 66846}
X(66850) lies on these lines: {1, 31841}, {2, 66843}, {8, 66846}, {10, 953}, {65, 66851}, {80, 517}, {355, 53800}, {388, 33645}, {513, 12751}, {515, 901}, {516, 44979}, {519, 66853}, {944, 66858}, {1125, 66855}, {1385, 57313}, {1698, 66856}, {1837, 13756}, {3025, 5252}, {3057, 66852}, {3259, 5587}, {3576, 22102}, {3617, 66857}, {3679, 34464}, {4297, 38705}, {5090, 66844}, {5176, 13532}, {5657, 66845}, {5691, 66863}, {5790, 38586}, {6073, 6326}, {6075, 6264}, {6246, 31512}, {6684, 38707}, {7982, 53799}, {8193, 66847}, {9857, 66848}, {9956, 57320}, {10016, 15177}, {10265, 14511}, {12368, 61637}, {12699, 66849}, {13178, 53792}, {13211, 61638}, {18391, 24201}, {18480, 40100}, {18481, 38614}, {18525, 38584}, {26446, 38617}, {31673, 44973}, {32486, 60353}, {53809, 66796}, {59387, 66862}, {65856, 66779}
X(66850) = midpoint of X(i) and X(j) for these {i,j}: {8, 66846}, {5691, 66863}, {18525, 38584}
X(66850) = reflection of X(i) in X(j) for these {i,j}: {1, 31841}, {944, 66858}, {953, 10}, {6264, 6075}, {6326, 6073}, {12699, 66849}, {14511, 10265}, {18481, 38614}, {31512, 6246}, {40100, 18480}, {44973, 31673}, {66865, 355}
X(66850) = anticomplement of X(66843)
X(66850) = X(i)-Dao conjugate of X(j) for these {i, j}: {66843, 66843}
X(66850) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {901, 51562, 64688}
X(66851) lies on the 1st Johnson-Yff circle and on these lines: {1, 38954}, {4, 13756}, {11, 14511}, {12, 953}, {36, 57313}, {56, 31841}, {65, 66850}, {388, 3025}, {498, 38617}, {513, 12763}, {517, 10057}, {901, 7354}, {952, 63750}, {1478, 53800}, {1479, 66849}, {1837, 24201}, {3085, 66845}, {3259, 10895}, {3585, 23153}, {4299, 38614}, {5204, 22102}, {5229, 66862}, {5252, 60845}, {5261, 66857}, {5432, 38707}, {5433, 66855}, {5434, 66854}, {6284, 44979}, {7951, 57320}, {9578, 34464}, {9579, 66863}, {9654, 38586}, {9655, 38584}, {9659, 10016}, {10404, 33645}, {10831, 66847}, {10873, 66848}, {11375, 66843}, {11392, 66844}, {12373, 61637}, {12903, 61638}, {13182, 53792}, {15326, 38705}, {20060, 64688}, {23152, 66865}, {37710, 56691}, {44973, 65631}, {53809, 66798}, {65856, 66782}, {65864, 66828}
X(66851) = reflection of X(i) in X(j) for these {i,j}: {66866, 1478}
X(66851) = pole of line {65854, 66851} with respect to the 1st Johnson-Yff circle
X(66851) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 38954, 66852}, {1478, 53800, 66866}, {3585, 23153, 40100}
X(66852) lies on the 2nd Johnson-Yff circle and on these lines: {1, 38954}, {4, 3025}, {11, 953}, {35, 57313}, {55, 31841}, {497, 13756}, {499, 38617}, {513, 12764}, {517, 10073}, {901, 6284}, {1478, 66849}, {1479, 53800}, {1836, 33645}, {3057, 66850}, {3058, 66854}, {3086, 66845}, {3259, 10896}, {3583, 40100}, {4302, 38614}, {4857, 23153}, {5046, 64688}, {5217, 22102}, {5225, 66862}, {5274, 66857}, {5432, 66855}, {5433, 38707}, {5722, 60845}, {7354, 44979}, {7741, 57320}, {9580, 66863}, {9581, 34464}, {9668, 38584}, {9669, 38586}, {9672, 10016}, {10832, 66847}, {10874, 66848}, {11376, 66843}, {11393, 66844}, {12374, 61637}, {12904, 61638}, {13183, 53792}, {13273, 14115}, {15338, 38705}, {37702, 56691}, {37815, 52383}, {44973, 65632}, {53809, 66799}, {65856, 66783}, {65864, 66829}
X(66852) = reflection of X(i) in X(j) for these {i,j}: {66867, 1479}
X(66852) = pole of line {65854, 66852} with respect to the 2nd Johnson-Yff circle
X(66852) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 38954, 66851}, {4, 3025, 66866}, {497, 66846, 13756}, {1479, 53800, 66867}
X(66853) lies on these lines: {1, 953}, {8, 31841}, {10, 66855}, {40, 38705}, {104, 517}, {145, 66846}, {513, 10698}, {515, 44979}, {519, 66850}, {946, 66865}, {952, 38954}, {1168, 32486}, {1317, 60845}, {1385, 38707}, {1391, 47645}, {1482, 53800}, {2098, 13756}, {2099, 3025}, {3259, 5603}, {3340, 33645}, {3616, 66856}, {3623, 66857}, {5048, 10702}, {5330, 31847}, {5657, 22102}, {5690, 57313}, {5697, 38569}, {5901, 57320}, {6073, 66008}, {6075, 12247}, {6265, 14513}, {7962, 35065}, {7967, 66845}, {7972, 51886}, {7978, 61637}, {7983, 53792}, {7984, 61638}, {8148, 38584}, {8192, 66847}, {9997, 66848}, {10222, 38682}, {10246, 38617}, {10247, 38586}, {10700, 48303}, {10703, 23153}, {11396, 66844}, {11531, 66863}, {12699, 44973}, {12702, 38614}, {13869, 53809}, {18525, 66849}, {22791, 40100}, {31512, 64138}, {35013, 43728}, {52005, 61768}, {62826, 64688}, {65856, 66784}
X(66853) = midpoint of X(i) and X(j) for these {i,j}: {145, 66846}, {8148, 38584}, {11531, 66863}
X(66853) = reflection of X(i) in X(j) for these {i,j}: {8, 31841}, {40, 66858}, {104, 52478}, {953, 1}, {12247, 6075}, {12702, 38614}, {14511, 12737}, {14513, 6265}, {18525, 66849}, {31512, 64138}, {34464, 66843}, {38513, 13756}, {40100, 22791}, {44973, 12699}, {66008, 6073}, {66865, 946}
X(66853) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 34464, 66843}, {40, 66858, 38705}, {517, 12737, 14511}, {517, 52478, 104}, {34464, 66843, 953}
X(66854) lies on these lines: {2, 953}, {5, 38682}, {30, 901}, {376, 38705}, {381, 53800}, {513, 10711}, {517, 10707}, {519, 66850}, {547, 57320}, {549, 38707}, {671, 53792}, {3025, 11237}, {3058, 66852}, {3259, 3545}, {3524, 22102}, {3534, 38614}, {3830, 38584}, {3839, 66862}, {3845, 40100}, {4654, 33645}, {5054, 38617}, {5055, 38586}, {5064, 66844}, {5434, 66851}, {7865, 66848}, {9140, 61638}, {10016, 44837}, {10706, 61637}, {10716, 31160}, {11114, 38569}, {11238, 13756}, {14269, 66864}, {15682, 66861}, {17556, 38513}, {19875, 34464}, {23153, 65140}, {24808, 47771}, {25055, 66843}, {34312, 53809}, {34631, 53799}, {38335, 66860}, {40663, 60845}, {50796, 66865}, {50811, 66858}, {50865, 66863}, {62966, 66859}, {65856, 66786}
X(66854) = midpoint of X(i) and X(j) for these {i,j}: {2, 66846}, {3830, 38584}, {15682, 66861}, {50865, 66863}
X(66854) = reflection of X(i) in X(j) for these {i,j}: {2, 31841}, {953, 2}, {3534, 38614}, {3830, 66849}, {38707, 57313}, {40100, 3845}, {44973, 3830}, {50811, 66858}, {66865, 50796}
X(66854) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {901, 38954, 44979}, {953, 31841, 66855}, {31841, 66846, 953}, {38584, 66849, 44973}
X(66855) lies on these lines: {2, 953}, {3, 44979}, {4, 22102}, {5, 901}, {10, 66853}, {140, 38707}, {381, 38614}, {513, 64008}, {517, 31272}, {1125, 66850}, {1656, 53800}, {3090, 3259}, {3525, 66845}, {3526, 38617}, {3545, 66861}, {3614, 66866}, {3624, 66843}, {3628, 38682}, {3851, 66864}, {4193, 38569}, {5055, 38584}, {5056, 66862}, {5070, 38586}, {5072, 66860}, {5094, 66844}, {5219, 33645}, {5432, 66852}, {5433, 66851}, {5587, 66858}, {7173, 66867}, {7484, 66847}, {7509, 10016}, {7914, 66848}, {7988, 66863}, {10175, 66865}, {10595, 53799}, {11412, 65516}, {14061, 53792}, {14511, 57298}, {14513, 38752}, {15059, 61638}, {23153, 65141}, {23513, 31512}, {34464, 64850}, {35921, 39479}, {36590, 56754}, {53809, 66801}, {61637, 64101}, {65856, 66787}
X(66855) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 31841, 953}, {2, 66846, 66856}, {4, 22102, 38705}, {5, 57313, 901}, {140, 38954, 38707}, {381, 38614, 44973}, {953, 31841, 66854}, {31841, 66856, 66846}
X(66856) lies on these lines: {2, 953}, {3, 3259}, {4, 38707}, {5, 38617}, {10, 66843}, {140, 22102}, {376, 44973}, {468, 66844}, {513, 6713}, {517, 3035}, {549, 38614}, {550, 66864}, {620, 53792}, {631, 901}, {952, 55314}, {1656, 38954}, {1698, 66850}, {3025, 5433}, {3090, 66845}, {3091, 44979}, {3523, 38705}, {3524, 66861}, {3525, 38682}, {3526, 38586}, {3576, 66865}, {3616, 66853}, {3624, 34464}, {3911, 33645}, {5020, 66847}, {5054, 38584}, {5204, 66866}, {5217, 66867}, {5432, 13756}, {5462, 65516}, {5690, 6789}, {5972, 61521}, {6073, 38752}, {6075, 57298}, {6642, 10016}, {6644, 39479}, {6681, 6718}, {6699, 61637}, {7846, 66848}, {10165, 66858}, {13411, 24201}, {17566, 38513}, {20328, 40554}, {22104, 53809}, {23153, 65142}, {31379, 65856}, {31380, 44432}, {31512, 34474}, {38032, 52478}, {65864, 66833}
X(66856) = midpoint of X(i) and X(j) for these {i,j}: {3, 3259}, {5, 38617}, {10, 66843}, {550, 66864}, {953, 31841}, {3025, 31847}, {55314, 55317}
X(66856) = reflection of X(i) in X(j) for these {i,j}: {22102, 140}, {65516, 5462}
X(66856) = complement of X(31841)
X(66856) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {3, 3259, 10017}, {953, 31841, 39535}, {3025, 31847, 44013}, {22102, 55314, 55317}
X(66856) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 66846, 66855}, {2, 953, 31841}, {3, 57320, 3259}, {140, 53800, 22102}, {953, 66854, 66857}, {953, 66855, 66846}, {3523, 66862, 38705}, {3526, 38586, 57313}, {55314, 55317, 952}
X(66857) lies on these lines: {2, 953}, {4, 38586}, {8, 34464}, {20, 53800}, {23, 66847}, {376, 38584}, {390, 13756}, {513, 64009}, {517, 20095}, {901, 3522}, {1482, 36171}, {3025, 3600}, {3091, 38954}, {3146, 38682}, {3259, 3832}, {3486, 23152}, {3523, 38617}, {3543, 40100}, {3617, 66850}, {3622, 66843}, {3623, 66853}, {3839, 66849}, {4294, 23153}, {5056, 57320}, {5261, 66851}, {5274, 66852}, {6995, 66844}, {9778, 66863}, {10303, 57313}, {10304, 38614}, {14683, 61638}, {15680, 38513}, {15717, 38707}, {17578, 44979}, {20094, 53792}, {20097, 47729}, {21454, 33645}, {21734, 38705}, {22102, 61820}, {33703, 66860}, {50688, 66864}, {61637, 64102}, {65856, 66788}
X(66857) = reflection of X(i) in X(j) for these {i,j}: {4, 38586}, {8, 34464}, {20, 66845}, {3146, 66862}, {33703, 66860}, {66846, 953}, {66862, 38682}
X(66857) = anticomplement of X(66846)
X(66857) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {953, 66854, 66856}, {53800, 66845, 20}
X(66858) lies on these lines: {1, 901}, {2, 66865}, {10, 22102}, {36, 244}, {40, 38705}, {56, 24201}, {214, 513}, {355, 57313}, {515, 31841}, {517, 4973}, {523, 56749}, {944, 66850}, {953, 1308}, {1054, 1168}, {1125, 3259}, {1319, 1357}, {1385, 53800}, {1699, 44973}, {2646, 3025}, {2802, 52478}, {3244, 53799}, {3616, 66862}, {4432, 11796}, {5126, 11716}, {5587, 66855}, {5603, 66861}, {5731, 66846}, {5886, 40100}, {7280, 56691}, {7987, 34464}, {9955, 66864}, {10165, 66856}, {10246, 38584}, {11363, 66859}, {11375, 66866}, {11376, 66867}, {11709, 61638}, {11710, 53792}, {11714, 50371}, {11720, 61637}, {13624, 38617}, {13753, 37535}, {14513, 15015}, {16173, 31512}, {18481, 38954}, {18493, 66860}, {21842, 23153}, {23152, 37605}, {28160, 66849}, {30389, 38682}, {37606, 59234}, {50811, 66854}, {53809, 66770}, {65856, 66789}
X(66858) = midpoint of X(i) and X(j) for these {i,j}: {1, 901}, {40, 66853}, {944, 66850}, {18481, 38954}, {23153, 38512}, {50811, 66854}
X(66858) = reflection of X(i) in X(j) for these {i,j}: {10, 22102}, {3259, 1125}, {38617, 13624}, {66843, 1385}, {66864, 9955}
X(66858) = complement of X(66865)
X(66858) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {1, 901, 2222}, {3025, 6075, 14027}, {18340, 23153, 38512}
X(66858) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7987, 34464, 38707}, {38705, 66853, 40}
X(66859) lies on these lines: {4, 38954}, {24, 38614}, {25, 901}, {33, 3025}, {34, 13756}, {235, 31841}, {378, 38617}, {427, 3259}, {468, 22102}, {513, 1862}, {517, 12138}, {953, 1593}, {1112, 1830}, {1597, 38586}, {1598, 38584}, {1876, 24201}, {3515, 38705}, {3516, 38707}, {3541, 57320}, {3542, 57313}, {5090, 66865}, {7487, 66861}, {7713, 66863}, {11363, 66858}, {11392, 66866}, {11393, 66867}, {11403, 38682}, {12131, 53792}, {12133, 61638}, {12173, 44973}, {17516, 38512}, {18494, 66860}, {44438, 44979}, {53809, 66771}, {62966, 66854}, {65856, 66790}
X(66859) = reflection of X(i) in X(j) for these {i,j}: {66844, 4}
X(66859) = inverse of X(66862) in polar circle
X(66859) = pole of line {65854, 66862} with respect to the polar circle
X(66859) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 53800, 66844}
X(66860) lies on these lines: {3, 3259}, {4, 38584}, {5, 66861}, {30, 38586}, {381, 901}, {382, 44973}, {513, 48680}, {517, 38756}, {953, 1657}, {999, 66867}, {1656, 38614}, {3025, 9668}, {3295, 66866}, {3526, 38705}, {3534, 38617}, {3627, 66846}, {3830, 38954}, {3843, 31841}, {3851, 57313}, {5055, 22102}, {5072, 66855}, {5076, 66849}, {5899, 10016}, {9655, 13756}, {12702, 66865}, {12773, 31512}, {12902, 61637}, {12943, 23153}, {15696, 38707}, {17101, 35448}, {18480, 66863}, {18493, 66858}, {18494, 66859}, {18541, 24201}, {28146, 34464}, {33703, 66857}, {38335, 66854}, {38682, 49136}, {38744, 53792}, {38790, 61638}, {53809, 66772}, {65856, 66791}
X(66860) = midpoint of X(i) and X(j) for these {i,j}: {33703, 66857}
X(66860) = reflection of X(i) in X(j) for these {i,j}: {3, 40100}, {382, 44973}, {901, 66864}, {1657, 953}, {12702, 66865}, {12773, 31512}, {35448, 17101}, {38584, 4}, {38586, 66862}, {66846, 3627}, {66861, 5}, {66863, 18480}
X(66860) = pole of line {10016, 45945} with respect to the Stammler circle
X(66860) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 66862, 38586}, {901, 66864, 381}, {44973, 53800, 382}
X(66861) lies on these lines: {2, 38614}, {3, 66862}, {4, 901}, {5, 66860}, {20, 53800}, {30, 38584}, {376, 953}, {513, 13199}, {515, 66863}, {517, 12248}, {550, 38586}, {631, 3259}, {3025, 4294}, {3085, 66866}, {3086, 66867}, {3090, 22102}, {3091, 57313}, {3146, 38954}, {3488, 33645}, {3522, 38617}, {3523, 57320}, {3524, 66856}, {3528, 38707}, {3543, 66849}, {3545, 66855}, {4293, 13756}, {4299, 23153}, {5603, 66858}, {5657, 66865}, {7487, 66859}, {7556, 39479}, {9862, 53792}, {10016, 12088}, {12082, 66847}, {12244, 61638}, {12383, 61637}, {15682, 66854}, {17538, 38682}, {31730, 34464}, {33703, 44979}, {53809, 66773}, {65856, 66792}
X(66861) = reflection of X(i) in X(j) for these {i,j}: {4, 901}, {3146, 38954}, {15682, 66854}, {33703, 44979}, {34464, 31730}, {38586, 550}, {40100, 38614}, {44973, 31841}, {66845, 20}, {66846, 38584}, {66860, 5}, {66862, 3}
X(66861) = anticomplement of X(40100)
X(66861) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 53800, 66845}, {30, 38584, 66846}, {3259, 38705, 631}, {31841, 44973, 4}, {57313, 66864, 3091}
X(66862) lies on the anticomplementary circle and on these lines: {2, 901}, {3, 66861}, {4, 38954}, {5, 38584}, {7, 24201}, {8, 66865}, {10, 66863}, {20, 953}, {23, 10016}, {30, 38586}, {146, 61638}, {147, 30579}, {148, 31290}, {149, 513}, {150, 20295}, {153, 517}, {376, 38617}, {388, 13756}, {497, 3025}, {516, 34464}, {631, 38614}, {938, 33645}, {1478, 23153}, {1836, 23152}, {3090, 57313}, {3091, 31841}, {3146, 38682}, {3434, 64688}, {3436, 17101}, {3448, 61637}, {3522, 38707}, {3523, 38705}, {3543, 44979}, {3616, 66858}, {3621, 53799}, {3839, 66854}, {4009, 5057}, {4106, 8047}, {4440, 48156}, {5046, 38512}, {5056, 66855}, {5080, 21282}, {5180, 60452}, {5225, 66852}, {5229, 66851}, {5731, 66843}, {6960, 38569}, {10777, 36175}, {11002, 65516}, {14511, 64009}, {14513, 20095}, {14731, 65856}, {14732, 44009}, {15680, 38568}, {17036, 26853}, {20042, 65866}, {24222, 39148}, {33110, 61729}, {34193, 53809}, {37437, 38513}, {38385, 51562}, {59387, 66850}, {65864, 66834}
X(66862) = midpoint of X(i) and X(j) for these {i,j}: {3146, 66857}, {38586, 66860}, {38682, 44973}
X(66862) = reflection of X(i) in X(j) for these {i,j}: {4, 40100}, {8, 66865}, {20, 953}, {149, 31512}, {901, 3259}, {3146, 44973}, {3436, 17101}, {20095, 14513}, {38584, 5}, {38954, 66864}, {51562, 38385}, {64009, 14511}, {66845, 38586}, {66846, 4}, {66857, 38682}, {66861, 3}, {66863, 10}
X(66862) = inverse of X(66864) in circumcircle of the Johnson triangle
X(66862) = inverse of X(66859) in polar circle
X(66862) = anticomplement of X(901)
X(66862) = X(i)-Dao conjugate of X(j) for these {i, j}: {901, 901}
X(66862) = X(i)-Ceva conjugate of X(j) for these {i, j}: {65867, 2}
X(66862) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1, 900}, {2, 21297}, {6, 21222}, {19, 10015}, {28, 53352}, {44, 514}, {57, 4453}, {81, 53333}, {87, 21343}, {88, 6548}, {100, 17780}, {101, 2397}, {105, 53361}, {190, 61186}, {244, 20042}, {274, 53368}, {513, 519}, {514, 320}, {519, 513}, {522, 5176}, {643, 23831}, {649, 17495}, {650, 908}, {661, 63071}, {678, 44009}, {679, 33922}, {693, 21282}, {759, 66284}, {765, 6550}, {876, 24715}, {900, 8}, {902, 17494}, {905, 3007}, {909, 2401}, {1019, 17160}, {1022, 903}, {1023, 190}, {1027, 24841}, {1120, 23836}, {1319, 522}, {1404, 17496}, {1635, 2}, {1639, 329}, {1647, 149}, {1877, 521}, {1960, 192}, {2087, 4440}, {2161, 60480}, {2222, 51562}, {2251, 21225}, {2325, 4462}, {2429, 25268}, {3227, 53376}, {3251, 17487}, {3257, 4555}, {3264, 21301}, {3285, 4560}, {3572, 31061}, {3669, 1266}, {3689, 4468}, {3737, 62826}, {3762, 69}, {3911, 693}, {4120, 2895}, {4169, 65161}, {4358, 20295}, {4370, 63246}, {4448, 17794}, {4530, 37781}, {4730, 1654}, {4768, 3436}, {4773, 41915}, {4895, 144}, {4984, 41821}, {5440, 20294}, {6164, 1647}, {6544, 30578}, {7192, 17145}, {8056, 4927}, {8756, 4391}, {14407, 1655}, {14408, 21219}, {14418, 56943}, {14425, 8055}, {14427, 30695}, {14429, 52364}, {14437, 39360}, {14584, 3738}, {14628, 46401}, {16704, 7192}, {17780, 3952}, {21805, 31290}, {22086, 6360}, {23344, 65195}, {23703, 100}, {23757, 153}, {23835, 26727}, {23838, 12531}, {24004, 668}, {30572, 2475}, {30576, 17161}, {30725, 7}, {30939, 512}, {35348, 10707}, {36037, 901}, {36086, 36236}, {36872, 891}, {37168, 7253}, {37627, 1120}, {37790, 46400}, {38462, 20293}, {39771, 64743}, {39982, 1022}, {40172, 47772}, {40400, 2403}, {40401, 23888}, {42084, 39349}, {42285, 14286}, {43931, 17449}, {46541, 53349}, {46972, 33905}, {52225, 545}, {52654, 48167}, {52680, 523}, {52746, 53364}, {52747, 30709}, {52924, 4781}, {53528, 145}, {53532, 20}, {53535, 6224}, {55243, 53338}, {55262, 53363}, {56939, 4397}, {58322, 62236}, {58794, 4887}, {59487, 537}, {61171, 3882}, {61210, 4552}, {61238, 34234}, {62635, 53381}, {62669, 21272}, {62789, 3900}, {63217, 21283}, {63233, 47780}, {65867, 6327}, {66284, 80}
X(66862) = pole of line {65854, 66862} with respect to the anticomplementary circle
X(66862) = pole of line {65854, 66864} with respect to the circumcircle of the Johnson triangle
X(66862) = pole of line {65854, 66859} with respect to the polar circle
X(66862) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 53800, 66846}, {30, 38586, 66845}, {513, 31512, 149}, {3025, 66867, 497}, {13756, 66866, 388}, {38586, 66860, 30}, {38614, 57320, 631}, {38705, 66856, 3523}, {38954, 40100, 66864}, {38954, 66864, 4}, {53800, 66864, 38954}
X(66863) lies on the Bevan circle and on these lines: {1, 901}, {10, 66862}, {40, 34464}, {44, 3245}, {46, 23153}, {57, 13756}, {100, 63911}, {165, 953}, {244, 39148}, {484, 1054}, {513, 5541}, {515, 66861}, {516, 66846}, {517, 1768}, {1052, 4674}, {1697, 3025}, {1698, 3259}, {1699, 31841}, {2948, 61637}, {3339, 24201}, {3576, 38614}, {3579, 38586}, {3624, 22102}, {3633, 53799}, {3679, 66865}, {5587, 40100}, {5691, 66850}, {7713, 66859}, {7987, 38705}, {7988, 66855}, {8227, 57313}, {9578, 66866}, {9579, 66851}, {9580, 66852}, {9581, 66867}, {9591, 10016}, {9778, 66857}, {9860, 53792}, {9904, 61638}, {11010, 38512}, {11531, 66853}, {16192, 38707}, {18480, 66860}, {18492, 66864}, {23152, 37567}, {31423, 57320}, {31512, 37718}, {31730, 66845}, {35242, 38617}, {38682, 63469}, {38954, 41869}, {50530, 64760}, {50865, 66854}, {53809, 66776}, {63130, 64688}, {65856, 66793}, {65864, 66835}
X(66863) = reflection of X(i) in X(j) for these {i,j}: {1, 901}, {5691, 66850}, {11531, 66853}, {34464, 40}, {38586, 3579}, {41869, 38954}, {50865, 66854}, {66845, 31730}, {66860, 18480}, {66862, 10}
X(66863) = X(i)-Dao conjugate of X(j) for these {i, j}: {37222, 35175}
X(66863) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2802, 1}
X(66864) lies on these lines: {3, 44973}, {4, 38954}, {5, 22102}, {20, 57320}, {30, 3259}, {381, 901}, {382, 953}, {513, 22938}, {517, 22799}, {546, 31841}, {550, 66856}, {952, 38385}, {1478, 66867}, {1479, 66866}, {1539, 61638}, {1656, 38705}, {1657, 38707}, {3025, 3583}, {3091, 57313}, {3543, 66845}, {3585, 13756}, {3830, 38586}, {3843, 38584}, {3851, 66855}, {5076, 38682}, {7530, 10016}, {9955, 66858}, {10113, 61637}, {10742, 31512}, {12699, 66865}, {14269, 66854}, {14511, 38756}, {14513, 48680}, {18492, 66863}, {18513, 23153}, {22505, 53792}, {28160, 66843}, {37440, 39479}, {37705, 53799}, {50688, 66857}, {53809, 66778}, {65856, 66795}, {65864, 66836}
X(66864) = midpoint of X(i) and X(j) for these {i,j}: {3, 44973}, {4, 40100}, {382, 953}, {901, 66860}, {10742, 31512}, {12699, 66865}, {14511, 38756}, {14513, 48680}, {38586, 44979}, {38954, 66862}
X(66864) = reflection of X(i) in X(j) for these {i,j}: {550, 66856}, {31841, 546}, {38614, 5}, {38617, 3259}, {66849, 4}, {66858, 9955}
X(66864) = inverse of X(66862) in circumcircle of the Johnson triangle
X(66864) = pole of line {65854, 66862} with respect to the circumcircle of the Johnson triangle
X(66864) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 53800, 66849}, {4, 66862, 38954}, {30, 3259, 38617}, {381, 66860, 901}, {3091, 66861, 57313}, {3830, 38586, 44979}, {38954, 40100, 66862}, {38954, 66862, 53800}
X(66865) lies on circumconic {{A, B, C, X(2758), X(38544)}} and on these lines: {1, 3259}, {2, 66858}, {8, 66862}, {10, 901}, {36, 53279}, {65, 66866}, {80, 513}, {153, 16110}, {355, 53800}, {388, 24201}, {515, 953}, {516, 44973}, {517, 10742}, {519, 15343}, {523, 38950}, {944, 66843}, {946, 66853}, {1168, 3120}, {1385, 57320}, {1647, 2718}, {1698, 22102}, {1837, 3025}, {2802, 31512}, {3057, 66867}, {3576, 66856}, {3585, 39136}, {3632, 53799}, {3679, 66863}, {3952, 5080}, {4297, 38707}, {5086, 64688}, {5090, 66859}, {5176, 50914}, {5252, 13756}, {5587, 31841}, {5657, 66861}, {5691, 34464}, {5790, 38584}, {6075, 37718}, {6684, 38705}, {8185, 10016}, {9590, 39479}, {9864, 53792}, {9956, 57313}, {10057, 44013}, {10175, 66855}, {12368, 61638}, {12699, 66864}, {12702, 66860}, {12747, 34431}, {13211, 61637}, {15015, 55317}, {16173, 52478}, {18391, 33645}, {18480, 38954}, {18481, 38617}, {18525, 38586}, {23152, 66851}, {23153, 37710}, {25436, 51562}, {26446, 38614}, {31673, 44979}, {50796, 66854}, {53809, 66779}, {59387, 66846}, {65856, 66796}
X(66865) = midpoint of X(i) and X(j) for these {i,j}: {8, 66862}, {5691, 34464}, {12702, 66860}, {18525, 38586}
X(66865) = reflection of X(i) in X(j) for these {i,j}: {1, 3259}, {901, 10}, {944, 66843}, {12699, 66864}, {18481, 38617}, {38954, 18480}, {44979, 31673}, {51562, 25436}, {66850, 355}, {66853, 946}, {66854, 50796}
X(66865) = anticomplement of X(66858)
X(66865) = pole of line {3326, 14027} with respect to the Suppa-Cucoanes circle
X(66865) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {8, 31512, 66862}
X(66865) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {355, 53800, 66850}
X(66866) lies on the 1st Johnson-Yff circle and on these lines: {1, 40100}, {4, 3025}, {12, 901}, {36, 57320}, {56, 3259}, {65, 66865}, {79, 56691}, {388, 13756}, {498, 38614}, {513, 13273}, {517, 12749}, {953, 7354}, {1317, 31512}, {1478, 53800}, {1479, 66864}, {1837, 33645}, {1846, 41282}, {2475, 64688}, {3085, 66861}, {3295, 66860}, {3585, 38954}, {3614, 66855}, {4299, 38617}, {5204, 66856}, {5229, 66846}, {5270, 23153}, {5432, 38705}, {6284, 44973}, {7951, 57313}, {9578, 66863}, {9579, 34464}, {9654, 38584}, {9655, 38586}, {9658, 10016}, {10404, 24201}, {10895, 31841}, {11375, 66858}, {11392, 66859}, {12184, 53792}, {12373, 61638}, {12761, 46044}, {12764, 14115}, {12903, 61637}, {15326, 38707}, {44979, 65631}, {53809, 66782}, {65856, 66798}, {65864, 66838}
X(66866) = reflection of X(i) in X(j) for these {i,j}: {63750, 13273}, {66851, 1478}
X(66866) = pole of line {65854, 66866} with respect to the 1st Johnson-Yff circle
X(66866) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40100, 66867}, {4, 3025, 66852}, {388, 66862, 13756}, {513, 13273, 63750}, {1478, 53800, 66851}
X(66867) lies on the 2nd Johnson-Yff circle and on these lines: {1, 40100}, {4, 13756}, {11, 901}, {35, 57320}, {55, 3259}, {80, 517}, {149, 64688}, {497, 3025}, {499, 38614}, {513, 13274}, {953, 6284}, {999, 66860}, {1478, 66864}, {1479, 53800}, {1836, 24201}, {2098, 3326}, {3057, 66865}, {3086, 66861}, {4302, 38617}, {5217, 66856}, {5225, 66846}, {5433, 38705}, {7173, 66855}, {7354, 44973}, {7741, 57313}, {9580, 34464}, {9581, 66863}, {9668, 38586}, {9669, 38584}, {9673, 10016}, {10896, 31841}, {11376, 66858}, {11393, 66859}, {12185, 53792}, {12374, 61638}, {12904, 61637}, {13271, 34151}, {15338, 38707}, {44979, 65632}, {53809, 66783}, {65856, 66799}, {65864, 66839}
X(66867) = reflection of X(i) in X(j) for these {i,j}: {66852, 1479}
X(66867) = pole of line {65854, 66867} with respect to the 2nd Johnson-Yff circle
X(66867) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40100, 66866}, {4, 13756, 66851}, {497, 66862, 3025}, {1479, 53800, 66852}, {3583, 23153, 38954}
X(66868) lies on these lines: {4, 513}, {104, 517}, {521, 18341}, {909, 5011}, {912, 51562}, {915, 1870}, {953, 14115}, {1795, 34242}, {2810, 6073}, {2818, 6075}, {4193, 31847}, {5176, 38955}, {5570, 15501}, {6882, 61638}, {6911, 45145}, {6973, 61729}, {12832, 65516}, {14923, 36944}, {22102, 65743}, {31841, 34151}, {36819, 54286}, {38617, 46174}, {44013, 59391}, {53800, 56761}, {55314, 61674}
X(66868) = reflection of X(i) in X(j) for these {i,j}: {104, 15635}, {953, 14115}, {34151, 31841}, {38617, 46174}, {46044, 31849}, {65743, 22102}
X(66868) = X(i)-Dao conjugate of X(j) for these {i, j}: {31841, 517}
X(66868) = pole of line {2401, 48380} with respect to the Steiner circumellipse
X(66868) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(901)}}, {{A, B, C, X(513), X(36058)}}, {{A, B, C, X(915), X(1320)}}, {{A, B, C, X(2720), X(14266)}}, {{A, B, C, X(10428), X(43933)}}, {{A, B, C, X(15381), X(43728)}}, {{A, B, C, X(31841), X(52478)}}
X(66868) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 31849, 46044}, {517, 15635, 104}
X(66869) lies on the anticomplementary circle and on these lines: {2, 1296}, {3, 61572}, {4, 10748}, {5, 38593}, {7, 59819}, {20, 111}, {23, 14657}, {30, 11258}, {126, 3091}, {141, 37751}, {146, 2854}, {147, 543}, {148, 2793}, {149, 2830}, {150, 2824}, {151, 2852}, {152, 2813}, {153, 2805}, {376, 14650}, {388, 6019}, {497, 3325}, {550, 52698}, {631, 38623}, {2780, 3448}, {2819, 33650}, {2837, 34547}, {2843, 34548}, {2847, 34549}, {2851, 34550}, {3048, 9545}, {3090, 57331}, {3146, 20099}, {3522, 38698}, {3523, 6719}, {3524, 38806}, {3528, 38798}, {3529, 51535}, {3545, 40340}, {3618, 14688}, {3839, 10717}, {5046, 38518}, {5189, 39157}, {5731, 11721}, {5999, 38662}, {6076, 6082}, {7486, 58427}, {9146, 14856}, {9172, 10304}, {9522, 20344}, {9526, 21290}, {9529, 34186}, {9531, 34188}, {9540, 11835}, {9543, 11833}, {9544, 58059}, {11001, 14666}, {11836, 13935}, {13219, 62506}, {14514, 31654}, {14731, 36174}, {15043, 58514}, {15682, 32424}, {15717, 38804}, {16063, 55029}, {25406, 28662}, {34193, 62508}, {37182, 38651}, {37437, 38509}, {38802, 55864}, {38807, 61820}, {38951, 62309}, {50924, 59387}, {51782, 51815}, {51783, 51814}
X(66869) = midpoint of X(i) and X(j) for these {i,j}: {3146, 20099}, {11258, 38800}, {38675, 44987}
X(66869) = reflection of X(i) in X(j) for these {i,j}: {4, 22338}, {20, 111}, {126, 38801}, {1296, 5512}, {3146, 44987}, {6082, 6076}, {9146, 14856}, {11001, 14666}, {14360, 4}, {14514, 31654}, {14654, 11258}, {20099, 38675}, {37749, 2}, {37751, 141}, {38593, 5}, {38688, 126}, {38797, 14650}, {62309, 38951}
X(66869) = inverse of X(20187) in DeLongchamps circle
X(66869) = anticomplement of X(1296)
X(66869) = X(i)-Dao conjugate of X(j) for these {i, j}: {1296, 1296}
X(66869) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1, 1499}, {37, 65701}, {661, 11160}, {662, 9146}, {897, 65870}, {1384, 4560}, {1499, 8}, {1992, 7192}, {2408, 17491}, {2444, 17497}, {4232, 7253}, {4786, 75}, {6791, 21221}, {8644, 192}, {11059, 17217}, {14207, 69}, {23894, 8352}, {30234, 1}, {36277, 523}, {37216, 35179}, {42724, 20295}, {55927, 8599}, {58782, 21300}
X(66869) = pole of line {6088, 66869} with respect to the anticomplementary circle
X(66869) = pole of line {1296, 20187} with respect to the DeLongchamps circle
X(66869) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 33962, 14360}, {30, 11258, 14654}, {111, 64508, 20}, {1296, 5512, 2}, {3146, 20099, 23699}, {6719, 38716, 3523}, {11258, 38800, 30}, {14650, 38797, 376}, {22338, 33962, 4}, {23699, 38675, 20099}, {23699, 44987, 3146}, {38593, 38799, 5}, {38623, 38796, 631}, {38688, 38801, 3091}, {38698, 38805, 3522}
See Ivan Pavlov, euclid 7685.
X(66870) lies on the De Longchamps circle, the circumconic {{A, B, C, X(30786), X(34168)}} and this line: {2, 3}
See Ivan Pavlov, euclid 7685.
X(66871) lies on the De Longchamps circle, the circumconic {{A, B, C, X(30786), X(34168)}} and this line: {2, 3}
X(66872) lies on thesae lines: {6, 110}, {14, 530}, {15, 17402}, {16, 691}, {62, 14246}, {298, 30465}, {302, 30786}, {395, 16092}, {526, 47072}, {892, 60016}, {3439, 14908}, {3440, 11486}, {6151, 9178}, {8741, 17983}, {8753, 56515}, {9139, 9206}, {9162, 11617}, {9196, 17964}, {9207, 36297}, {9213, 57122}, {9214, 11080}, {9761, 42008}, {10097, 58911}, {10653, 52483}, {11543, 51258}, {31125, 62983}, {40694, 59422}, {48354, 51891}, {49948, 51926}, {54362, 57481}
X(66872) = isogonal conjugate of X(52039)
X(66872) = X(i)-isoconjugate of X(j) for these (i,j): {1, 52039}, {13, 896}, {300, 922}, {524, 2153}, {897, 30454}, {2152, 43084}, {2642, 23895}, {3457, 14210}, {9205, 32678}, {20578, 23889}, {36307, 42081}, {51805, 52040}, {56395, 65570}
X(66872) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 52039}, {6593, 30454}, {15477, 3457}, {15899, 13}, {18334, 9205}, {30471, 3266}, {35443, 52628}, {38993, 690}, {39061, 300}, {40579, 43084}, {40580, 524}, {43961, 35522}
X(66872) = trilinear pole of line {15, 6137}
X(66872) = crossdifference of every pair of points on line {690, 9117}
X(66872) = pole of line {858, 53447} with respect to the Kiepert circumhyperbola
X(66872) = pole of line {187, 14183} with respect to the ABCGK
X(66872) = pole of line {524, 30454} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(66872) = pole of line {4062, 52039} with respect to the Kiepert circumhyperbola of the excentral triangle
X(66872) = pole of line {42713, 52039} with respect to the Jerabek circumhyperbola of the excentral triangle
X(66872) = pole of line {3266, 52039} with respect to the Kiepert circumhyperbola of the anticomplementary triangle
X(66872) = pole of line {187, 14183} with respect to the Moses-Lemoine conic
X(66872) = barycentric product X(i)*X(j) for these {i,j}: {15, 671}, {111, 298}, {301, 52668}, {323, 36310}, {470, 895}, {691, 23870}, {892, 6137}, {897, 65569}, {2151, 46277}, {3268, 9207}, {5466, 17402}, {6151, 52751}, {8739, 30786}, {9139, 41887}, {9204, 34574}, {9213, 23896}, {11131, 36307}, {17983, 44718}, {18023, 34394}, {46111, 46112}, {47072, 52748}, {60010, 65350}
X(66872) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 52039}, {14, 43084}, {15, 524}, {111, 13}, {187, 30454}, {298, 3266}, {470, 44146}, {526, 9205}, {671, 300}, {691, 23895}, {895, 40709}, {923, 2153}, {2151, 896}, {3458, 56395}, {5994, 14559}, {6137, 690}, {8739, 468}, {8753, 8737}, {9139, 36308}, {9178, 20578}, {9204, 52629}, {9206, 36839}, {9207, 476}, {9213, 23871}, {10630, 36307}, {11086, 52040}, {14908, 36296}, {17402, 5468}, {20579, 51479}, {23870, 35522}, {30465, 52628}, {32729, 5995}, {32740, 3457}, {34394, 187}, {36297, 66125}, {36310, 94}, {44718, 6390}, {46112, 3292}, {51478, 17403}, {52668, 16}, {52751, 41001}, {57122, 9204}, {60010, 14417}, {65569, 14210}
X(66873) lies on these lines: {6, 110}, {13, 531}, {15, 691}, {16, 17403}, {61, 14246}, {299, 30468}, {303, 30786}, {396, 16092}, {526, 47073}, {892, 60015}, {2981, 9178}, {3438, 14908}, {3441, 11485}, {8742, 17983}, {8753, 56514}, {9139, 9207}, {9163, 11618}, {9197, 17964}, {9206, 36296}, {9213, 57123}, {9214, 11085}, {9763, 42008}, {10097, 58910}, {10654, 52483}, {11542, 51258}, {31125, 62984}, {40693, 59422}, {48356, 51890}, {49947, 51926}, {54363, 57481}
X(66873) = isogonal conjugate of X(52040)
X(66873) = X(i)-isoconjugate of X(j) for these (i,j): {1, 52040}, {14, 896}, {301, 922}, {524, 2154}, {897, 30455}, {2151, 43084}, {2642, 23896}, {3458, 14210}, {9204, 32678}, {20579, 23889}, {36310, 42081}, {51806, 52039}, {56395, 65569}
X(66873) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 52040}, {6593, 30455}, {15477, 3458}, {15899, 14}, {18334, 9204}, {30472, 3266}, {35444, 52628}, {38994, 690}, {39061, 301}, {40578, 43084}, {40581, 524}, {43962, 35522}
X(66873) = trilinear pole of line {16, 6138}
X(66873) = crossdifference of every pair of points on line {690, 9115}
X(66873) = pole of line {858, 53435} with respect to the Kiepert circumhyperbola
X(66873) = pole of line {187, 14184} with respect to the ABCGK
X(66873) = pole of line {524, 30455} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(66873) = pole of line {4062, 52040} with respect to the Kiepert circumhyperbola of the excentral triangle
X(66873) = pole of line {42713, 52040} with respect to the Jerabek circumhyperbola of the excentral triangle
X(66873) = pole of line {3266, 52040} with respect to the Kiepert circumhyperbola of the anticomplementary triangle
X(66873) = pole of line {187, 14184} with respect to the Moses-Lemoine conic
X(66873) = barycentric product X(i)*X(j) for these {i,j}: {16, 671}, {111, 299}, {300, 52668}, {323, 36307}, {471, 895}, {691, 23871}, {892, 6138}, {897, 65570}, {2152, 46277}, {2981, 52750}, {3268, 9206}, {5466, 17403}, {8740, 30786}, {9139, 41888}, {9205, 34574}, {9213, 23895}, {11130, 36310}, {17983, 44719}, {18023, 34395}, {46111, 46113}, {47073, 52749}, {60009, 65350}
X(66873) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 52040}, {13, 43084}, {16, 524}, {111, 14}, {187, 30455}, {299, 3266}, {471, 44146}, {526, 9204}, {671, 301}, {691, 23896}, {895, 40710}, {923, 2154}, {2152, 896}, {3457, 56395}, {5995, 14559}, {6138, 690}, {8740, 468}, {8753, 8738}, {9139, 36311}, {9178, 20579}, {9205, 52629}, {9206, 476}, {9207, 36840}, {9213, 23870}, {10630, 36310}, {11081, 52039}, {14908, 36297}, {17403, 5468}, {20578, 51479}, {23871, 35522}, {30468, 52628}, {32729, 5994}, {32740, 3458}, {34395, 187}, {36296, 66125}, {36307, 94}, {44719, 6390}, {46113, 3292}, {51478, 17402}, {52668, 15}, {52750, 41000}, {57123, 9205}, {60009, 14417}, {65570, 14210}
See Johan Meyer, Michael de Villiers and Peter Moses, euclid 7714.
For a generalization, let t be any angle and D the point with trilinears csc(A + t) : : in triangle ABC. Let A' be the point with trilinears csc(A - t) : : in triangle DBC, and define B' and C' cyclically. Then AA', BB', CC' concur in the point having trilinears
[1 / (y(B,A,C) y(C,A,B)) + 1 / (y(B,A,C) y(C,B,A)) + 1 / (y(B,C,A) y(C,A,B))] / (sin(B - t) csc(B + t) + sin(C - t) csc(C + t) + 2) : : ,
where y(A,B,C) = sin(t) csc(A + t) - sin(B - t) csc(C + t).
Setting t = π/3 in the original problem gives X(66874). Setting t = -7π/3 gives X(66875). Setting t = 0 gives X(2), and the limit as t tends to π/2 or -π/2 is X(2052). See Jeremy Tan, euclid 7722
X(66974) lies on these lines: {13, 2981}, {300, 40707}, {1989, 2380}, {6669, 11119}, {8737, 51446}, {11080, 16459}, {11082, 15929}, {11139, 34321}, {36209, 39132}, {37847, 47481}
X(66874) = X(618)-isoconjugate of X(1094)
X(66874) = barycentric product X(i)*X(j) for these {i,j}: {5618, 62631}, {11080, 11119}
X(66874) = barycentric quotient X(i)/X(j) for these {i,j}: {5618, 35314}, {11080, 618}, {11084, 36209}, {11119, 11129}, {16459, 11131}, {36211, 14922}
See Johan Meyer, Michael de Villiers and Peter Moses, euclid 7714.
X(66875) lies on these lines: {14, 5675}, {301, 40706}, {1989, 2381}, {6670, 11120}, {8738, 51447}, {11085, 16460}, {11087, 15930}, {11138, 34322}, {36208, 39133}, {37849, 47482}
X(66875) = X(619)-isoconjugate of X(1095)
X(66875) = barycentric product X(i)*X(j) for these {i,j}: {5619, 62632}, {11085, 11120}
X(66875) = barycentric quotient X(i)/X(j) for these {i,j}: {5619, 35315}, {11085, 619}, {11089, 36208}, {11120, 11128}, {16460, 11130}, {36210, 14921}
X(66876) lies on the cubics K215 and K1352 and on these lines: {6, 1344}, {39, 23109}, {115, 125}, {512, 44125}, {525, 62592}, {647, 15167}, {878, 42667}, {1113, 2715}, {2105, 52198}, {2433, 8106}, {2501, 39241}, {2575, 10097}, {2592, 40814}, {2593, 43665}, {3148, 42668}, {6785, 8426}, {8115, 65321}, {13415, 35901}, {14499, 60500}, {15164, 53202}, {32662, 57026}, {46814, 59211}, {46815, 65357}
X(66876) = isogonal conjugate of X(39299)
X(66876) = complement of the isotomic conjugate of X(53154)
X(66876) = isogonal conjugate of the polar conjugate of X(39241)
X(66876) = psi-transform of X(8427)
X(66876) = X(i)-complementary conjugate of X(j) for these (i,j): {32676, 64822}, {41941, 4369}, {44125, 34846}, {52131, 18589}, {53154, 2887}, {57543, 21263}
X(66876) = X(i)-Ceva conjugate of X(j) for these (i,j): {1113, 42667}, {1312, 20975}, {2574, 512}, {2592, 523}, {8105, 647}, {8115, 2575}, {50944, 23110}, {62592, 125}
X(66876) = X(i)-cross conjugate of X(j) for these (i,j): {3124, 44125}, {3269, 15167}, {20975, 1312}
X(66876) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39299}, {99, 2577}, {110, 2581}, {162, 8116}, {163, 15165}, {249, 2588}, {250, 2582}, {648, 1823}, {662, 1114}, {799, 44124}, {811, 57025}, {1101, 2592}, {2578, 18020}, {2580, 15460}, {2584, 23582}, {2587, 4558}, {4575, 46812}, {4599, 46167}, {8105, 24041}, {24000, 46814}, {32676, 46810}, {32680, 44068}, {42668, 46254}
X(66876) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 39299}, {115, 15165}, {125, 8116}, {136, 46812}, {244, 2581}, {523, 2592}, {647, 22339}, {1084, 1114}, {1312, 648}, {2575, 8115}, {3005, 8105}, {3124, 46167}, {8106, 15164}, {15167, 99}, {15526, 46810}, {17423, 57025}, {38986, 2577}, {38996, 44124}, {46811, 46813}, {55066, 1823}, {62580, 4590}, {62592, 4563}
X(66876) = crosspoint of X(i) and X(j) for these (i,j): {2, 53154}, {4, 50944}, {6, 52131}, {523, 2592}, {525, 2574}, {1113, 2593}, {2501, 8105}, {2575, 8115}
X(66876) = crosssum of X(i) and X(j) for these (i,j): {2, 50945}, {3, 52132}, {6, 53385}, {110, 57026}, {112, 1113}, {1114, 8105}, {2574, 57025}, {4558, 8115}, {8116, 46814}
X(66876) = crossdifference of every pair of points on line {110, 1114}
X(66876) = X(10097)-line conjugate of X(2575)
X(66876) = barycentric product X(i)*X(j) for these {i,j}: {3, 39241}, {115, 8115}, {125, 1113}, {338, 57026}, {339, 44123}, {512, 22340}, {523, 2575}, {525, 8106}, {647, 2593}, {656, 2589}, {661, 2583}, {850, 42667}, {1109, 1822}, {1312, 2574}, {1577, 2579}, {2394, 66357}, {2501, 46811}, {2576, 20902}, {2580, 3708}, {2585, 24006}, {2586, 2632}, {2592, 15167}, {3124, 46813}, {3269, 46815}, {8105, 62592}, {15164, 20975}, {22339, 44125}, {23110, 53153}, {39240, 53384}
X(66876) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 39299}, {115, 2592}, {125, 22339}, {512, 1114}, {523, 15165}, {525, 46810}, {647, 8116}, {661, 2581}, {669, 44124}, {798, 2577}, {810, 1823}, {1113, 18020}, {1312, 15164}, {1822, 24041}, {2501, 46812}, {2575, 99}, {2579, 662}, {2580, 46254}, {2583, 799}, {2585, 4592}, {2586, 23999}, {2589, 811}, {2592, 57544}, {2593, 6331}, {2643, 2588}, {3005, 46167}, {3049, 57025}, {3124, 8105}, {3269, 46814}, {3708, 2582}, {8029, 39240}, {8106, 648}, {8115, 4590}, {14270, 44068}, {15167, 8115}, {20975, 2574}, {22340, 670}, {39241, 264}, {39298, 55270}, {42667, 110}, {42668, 15460}, {44123, 250}, {44125, 1113}, {46811, 4563}, {46813, 34537}, {52131, 39298}, {57026, 249}, {62592, 46813}, {65751, 42668}, {66357, 2407}
X(66876) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 8105, 66358}, {35607, 35608, 8105}
X(66877) lies on the cubics K215 and K1352 and on these lines: {6, 1345}, {39, 23110}, {115, 125}, {512, 44126}, {525, 62593}, {647, 15166}, {878, 42668}, {1114, 2715}, {2104, 52198}, {2433, 8105}, {2501, 39240}, {2574, 10097}, {2592, 43665}, {2593, 40814}, {3148, 42667}, {6785, 8427}, {8116, 65321}, {13414, 35901}, {14500, 60500}, {15165, 53202}, {32662, 57025}, {46811, 59211}, {46812, 65357}
X(66877) = isogonal conjugate of X(39298)
X(66877) = complement of the isotomic conjugate of X(53153)
X(66877) = isogonal conjugate of the polar conjugate of X(39240)
X(66877) = psi-transform of X(8426)
X(66877) = X(i)-complementary conjugate of X(j) for these (i,j): {32676, 64821}, {41942, 4369}, {44126, 34846}, {52132, 18589}, {53153, 2887}, {57544, 21263}
X(66877) = X(i)-Ceva conjugate of X(j) for these (i,j): {1114, 42668}, {1313, 20975}, {2575, 512}, {2593, 523}, {8106, 647}, {8116, 2574}, {50945, 23109}, {62593, 125}
X(66877) = X(i)-cross conjugate of X(j) for these (i,j): {3124, 44126}, {3269, 15166}, {20975, 1313}
X(66877) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39298}, {99, 2576}, {110, 2580}, {162, 8115}, {163, 15164}, {249, 2589}, {250, 2583}, {648, 1822}, {662, 1113}, {799, 44123}, {811, 57026}, {1101, 2593}, {2579, 18020}, {2581, 15461}, {2585, 23582}, {2586, 4558}, {4575, 46815}, {4599, 46166}, {8106, 24041}, {24000, 46811}, {32676, 46813}, {32680, 44067}, {42667, 46254}
X(66877) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 39298}, {115, 15164}, {125, 8115}, {136, 46815}, {244, 2580}, {523, 2593}, {647, 22340}, {1084, 1113}, {1313, 648}, {2574, 8116}, {3005, 8106}, {3124, 46166}, {8105, 15165}, {15166, 99}, {15526, 46813}, {17423, 57026}, {38986, 2576}, {38996, 44123}, {46814, 46810}, {55066, 1822}, {62581, 4590}, {62593, 4563}
X(66877) = crosspoint of X(i) and X(j) for these (i,j): {2, 53153}, {4, 50945}, {6, 52132}, {523, 2593}, {525, 2575}, {1114, 2592}, {2501, 8106}, {2574, 8116}
X(66877) = crosssum of X(i) and X(j) for these (i,j): {2, 50944}, {3, 52131}, {6, 53384}, {110, 57025}, {112, 1114}, {1113, 8106}, {2575, 57026}, {4558, 8116}, {8115, 46811}
X(66877) = crossdifference of every pair of points on line {110, 1113}
X(66877) = X(10097)-line conjugate of X(2574)
X(66877) = barycentric product X(i)*X(j) for these {i,j}: {3, 39240}, {115, 8116}, {125, 1114}, {338, 57025}, {339, 44124}, {512, 22339}, {523, 2574}, {525, 8105}, {647, 2592}, {656, 2588}, {661, 2582}, {850, 42668}, {1109, 1823}, {1313, 2575}, {1577, 2578}, {2394, 66358}, {2501, 46814}, {2577, 20902}, {2581, 3708}, {2584, 24006}, {2587, 2632}, {2593, 15166}, {3124, 46810}, {3269, 46812}, {8106, 62593}, {15165, 20975}, {22340, 44126}, {23109, 53154}, {39241, 53385}
X(66877) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 39298}, {115, 2593}, {125, 22340}, {512, 1113}, {523, 15164}, {525, 46813}, {647, 8115}, {661, 2580}, {669, 44123}, {798, 2576}, {810, 1822}, {1114, 18020}, {1313, 15165}, {1823, 24041}, {2501, 46815}, {2574, 99}, {2578, 662}, {2581, 46254}, {2582, 799}, {2584, 4592}, {2587, 23999}, {2588, 811}, {2592, 6331}, {2593, 57543}, {2643, 2589}, {3005, 46166}, {3049, 57026}, {3124, 8106}, {3269, 46811}, {3708, 2583}, {8029, 39241}, {8105, 648}, {8116, 4590}, {14270, 44067}, {15166, 8116}, {20975, 2575}, {22339, 670}, {39240, 264}, {39299, 55270}, {42667, 15461}, {42668, 110}, {44124, 250}, {44126, 1114}, {46810, 34537}, {46814, 4563}, {52132, 39299}, {57025, 249}, {62593, 46810}, {65751, 42667}, {66358, 2407}
X(66877) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 8106, 66357}, {14899, 35609, 8106}
X(66878) = lies on these lines: {1, 6}, {42, 21820}, {43, 21883}, {101, 1326}, {172, 59243}, {190, 2669}, {209, 22200}, {210, 22206}, {321, 56167}, {512, 798}, {726, 4115}, {740, 2238}, {742, 42713}, {756, 7109}, {762, 40607}, {846, 8845}, {872, 1500}, {894, 51314}, {896, 3231}, {899, 52893}, {1018, 21897}, {1197, 3683}, {1255, 57397}, {1334, 3774}, {1501, 61367}, {1613, 7262}, {1962, 21753}, {2054, 58287}, {2076, 24436}, {2251, 40096}, {2295, 3842}, {2667, 20970}, {3125, 20718}, {3690, 21813}, {3696, 52579}, {3725, 21838}, {3739, 29460}, {3747, 41333}, {3780, 49471}, {4039, 39926}, {4043, 33938}, {4650, 21001}, {4687, 17750}, {4709, 24044}, {4974, 17475}, {5098, 55210}, {5277, 46197}, {6652, 18098}, {14974, 34247}, {16827, 60719}, {17735, 20675}, {20593, 49758}, {21241, 22038}, {21814, 40586}, {22171, 22275}, {24049, 49469}, {24052, 56009}, {24064, 32865}, {24071, 33136}, {24512, 59218}, {26082, 26975}, {27623, 49518}, {27697, 49516}, {27982, 40759}, {30940, 39916}, {31323, 62813}, {33761, 38853}, {40859, 52049}
X(66878) = isogonal conjugate of the isotomic conjugate of X(4037)
X(66878) = X(i)-Ceva conjugate of X(j) for these (i,j): {292, 42}, {4584, 7234}
X(66878) = X(i)-isoconjugate of X(j) for these (i,j): {27, 57738}, {58, 40017}, {81, 18827}, {86, 37128}, {238, 57554}, {274, 741}, {291, 1509}, {292, 873}, {310, 18268}, {334, 593}, {335, 757}, {513, 65258}, {514, 36066}, {552, 4876}, {649, 65285}, {763, 43534}, {805, 16737}, {849, 18895}, {875, 52612}, {876, 4610}, {1014, 36800}, {1019, 4589}, {1434, 56154}, {1444, 65352}, {1474, 57987}, {1922, 57992}, {2185, 7233}, {2311, 57785}, {3572, 4623}, {3733, 4639}, {4444, 52935}, {4556, 66286}, {4584, 7192}, {5378, 61403}, {7303, 30669}, {10030, 62714}, {16887, 39276}, {17212, 37134}, {18200, 18829}, {36806, 43924}, {39292, 53541}, {40164, 45783}
X(66878) = X(i)-Dao conjugate of X(j) for these (i,j): {10, 40017}, {740, 1921}, {1500, 40094}, {4075, 18895}, {5375, 65285}, {8299, 274}, {9470, 57554}, {19557, 873}, {35068, 310}, {38978, 514}, {39026, 65258}, {39028, 57992}, {39029, 1509}, {40586, 18827}, {40600, 37128}, {40607, 335}, {51574, 57987}, {62553, 6385}, {62649, 7200}
X(66878) = crosspoint of X(i) and X(j) for these (i,j): {42, 292}, {2238, 3747}
X(66878) = crosssum of X(i) and X(j) for these (i,j): {86, 239}, {335, 40093}, {18827, 37128}, {21832, 53541}
X(66878) = crossdifference of every pair of points on line {86, 513}
X(66878) = barycentric product X(i)*X(j) for these {i,j}: {6, 4037}, {10, 3747}, {37, 2238}, {42, 740}, {55, 7235}, {65, 4433}, {72, 862}, {100, 4155}, {181, 3685}, {190, 46390}, {210, 1284}, {213, 3948}, {238, 756}, {239, 1500}, {242, 3690}, {291, 4094}, {292, 35068}, {321, 41333}, {350, 872}, {594, 1914}, {659, 40521}, {874, 50487}, {1018, 21832}, {1089, 2210}, {1254, 58327}, {1334, 16609}, {1400, 3985}, {1428, 6057}, {1447, 7064}, {1874, 2318}, {1918, 35544}, {1921, 7109}, {2171, 3684}, {2201, 3949}, {2334, 4829}, {3027, 7077}, {3570, 4079}, {3573, 4705}, {3695, 57654}, {3952, 4455}, {4010, 4557}, {4087, 61364}, {4093, 18082}, {4103, 8632}, {4435, 21859}, {4518, 61059}, {5009, 6535}, {7140, 7193}, {14599, 28654}, {16369, 60676}, {18786, 21803}, {18793, 20681}, {27853, 53581}, {53563, 56193}
X(66878) = barycentric quotient X(i)/X(j) for these {i,j}: {37, 40017}, {42, 18827}, {72, 57987}, {100, 65285}, {101, 65258}, {181, 7233}, {213, 37128}, {228, 57738}, {238, 873}, {292, 57554}, {350, 57992}, {594, 18895}, {644, 36806}, {692, 36066}, {740, 310}, {756, 334}, {862, 286}, {872, 291}, {1018, 4639}, {1089, 44172}, {1284, 57785}, {1334, 36800}, {1428, 552}, {1500, 335}, {1914, 1509}, {1918, 741}, {2086, 7200}, {2205, 18268}, {2210, 757}, {2238, 274}, {2333, 65352}, {3027, 18033}, {3570, 52612}, {3573, 4623}, {3684, 52379}, {3685, 18021}, {3690, 337}, {3747, 86}, {3948, 6385}, {3985, 28660}, {4010, 52619}, {4037, 76}, {4079, 4444}, {4093, 16887}, {4094, 350}, {4155, 693}, {4433, 314}, {4455, 7192}, {4557, 4589}, {4705, 66286}, {5009, 6628}, {5027, 17212}, {7064, 4518}, {7109, 292}, {7235, 6063}, {14599, 593}, {16369, 51314}, {18265, 62714}, {18892, 849}, {21832, 7199}, {28654, 44170}, {35068, 1921}, {39786, 16727}, {40521, 4583}, {40607, 40094}, {41267, 46159}, {41333, 81}, {46390, 514}, {50487, 876}, {53581, 3572}, {58289, 35352}, {58292, 40095}, {61059, 1447}, {61385, 7303}
X(66878) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 21873, 49509}, {37, 21879, 984}, {899, 61163, 52893}, {21830, 52963, 39258}
X(66879) lies on the Jerabek circumhyperbola and these lines: {3, 287}, {4, 263}, {6, 98}, {30, 54998}, {54, 1976}, {64, 33877}, {67, 51943}, {69, 53174}, {74, 6037}, {248, 47388}, {290, 511}, {327, 1352}, {542, 9513}, {804, 35364}, {879, 39469}, {1176, 17974}, {1177, 11653}, {1503, 1987}, {1513, 43702}, {1843, 8795}, {3431, 5967}, {3564, 36214}, {5480, 60670}, {5486, 52451}, {5921, 40803}, {5999, 46806}, {6000, 54962}, {6776, 43718}, {9140, 36885}, {12177, 54086}, {12215, 43705}, {14355, 19151}, {14853, 60517}, {33971, 45031}, {34156, 43706}, {35912, 43697}, {36132, 57735}, {38449, 57490}, {41204, 43717}, {47741, 51542}, {57562, 57742}
X(66879) = reflection of X(39682) in X(51543)
X(66879) = X(6776)-cross conjugate of X(47388)
X(66879) = X(i)-isoconjugate of X(j) for these (i,j): {182, 240}, {183, 57653}, {232, 52134}, {458, 1755}, {511, 60685}, {811, 9420}, {1959, 10311}, {1973, 51373}, {2211, 3403}, {3288, 62720}, {3289, 51315}, {9417, 44144}, {34396, 40703}
X(66879) = X(i)-Dao conjugate of X(j) for these (i,j): {647, 66192}, {6337, 51373}, {17423, 9420}, {36899, 458}, {39058, 44144}, {39085, 182}
X(66879) = cevapoint of X(i) and X(j) for these (i,j): {262, 39682}, {511, 1352}
X(66879) = trilinear pole of line {647, 879}
X(66879) = barycentric product X(i)*X(j) for these {i,j}: {98, 42313}, {248, 327}, {262, 287}, {263, 57799}, {290, 43718}, {336, 2186}, {525, 6037}, {647, 53196}, {879, 65271}, {3267, 32716}, {6531, 59257}, {14208, 36132}, {16081, 54032}, {17932, 66291}, {42300, 53174}, {43665, 65310}, {46807, 47388}, {51444, 53245}, {53173, 65349}
X(66879) = barycentric quotient X(i)/X(j) for these {i,j}: {69, 51373}, {98, 458}, {125, 66192}, {248, 182}, {262, 297}, {263, 232}, {287, 183}, {290, 44144}, {293, 52134}, {327, 44132}, {336, 3403}, {878, 3288}, {879, 23878}, {1910, 60685}, {1976, 10311}, {2186, 240}, {3049, 9420}, {3402, 57653}, {6037, 648}, {6531, 33971}, {14600, 34396}, {26714, 4230}, {32716, 112}, {35912, 51372}, {36120, 51315}, {36132, 162}, {39469, 33569}, {39682, 62595}, {42313, 325}, {43718, 511}, {46319, 2211}, {47388, 46806}, {51404, 66459}, {51543, 2967}, {52631, 17994}, {53174, 59197}, {53196, 6331}, {54032, 36212}, {57799, 20023}, {59257, 6393}, {60517, 39530}, {65252, 62720}, {65271, 877}, {65310, 2421}, {66291, 16230}
X(66880) lies on the cubic K777 and these lines: {4, 32}, {6, 1632}, {20, 1562}, {193, 253}, {290, 14614}, {293, 5247}, {325, 441}, {384, 59527}, {401, 8779}, {1249, 57153}, {1294, 2715}, {1461, 1910}, {1976, 52223}, {2395, 34570}, {2409, 43717}, {3172, 14249}, {3346, 13346}, {5304, 51431}, {9475, 35278}, {12150, 64621}, {14615, 15905}, {16251, 35912}, {21166, 47406}, {31635, 52251}, {39927, 39941}, {51542, 57408}
X(66880) = X(i)-Ceva conjugate of X(j) for these (i,j): {287, 98}, {51963, 36899}
X(66880) = X(i)-isoconjugate of X(j) for these (i,j): {64, 1959}, {232, 19611}, {237, 57921}, {240, 1073}, {253, 1755}, {297, 19614}, {325, 2155}, {511, 2184}, {684, 65224}, {2211, 57780}, {8809, 59734}, {9417, 41530}, {14642, 40703}, {17209, 65574}, {23997, 58759}, {33581, 46238}, {34403, 57653}, {43034, 44692}, {53521, 56235}
X(66880) = X(i)-Dao conjugate of X(j) for these (i,j): {4, 297}, {122, 2799}, {36899, 253}, {39020, 6333}, {39058, 41530}, {39085, 1073}, {45245, 325}, {45248, 36212}, {45249, 60524}, {52874, 51389}, {62562, 58759}, {65726, 16096}
X(66880) = crosssum of X(i) and X(j) for these (i,j): {511, 59662}, {2491, 57294}
X(66880) = trilinear pole of line {154, 6587}
X(66880) = barycentric product X(i)*X(j) for these {i,j}: {20, 98}, {154, 290}, {204, 336}, {248, 15466}, {287, 1249}, {293, 1895}, {610, 1821}, {685, 8057}, {879, 52913}, {1562, 60179}, {1910, 18750}, {1976, 14615}, {2395, 36841}, {2422, 55224}, {2966, 6587}, {3172, 57799}, {6394, 6525}, {6531, 37669}, {10152, 35912}, {14249, 17974}, {14944, 34156}, {15291, 60869}, {15628, 18623}, {15905, 16081}, {17898, 36084}, {17932, 44705}, {20031, 20580}, {22456, 42658}, {33629, 53245}, {38808, 53174}, {43187, 62176}, {44704, 47388}, {53173, 57219}, {60506, 61189}
X(66880) = barycentric quotient X(i)/X(j) for these {i,j}: {20, 325}, {98, 253}, {154, 511}, {204, 240}, {248, 1073}, {287, 34403}, {290, 41530}, {293, 19611}, {336, 57780}, {610, 1959}, {685, 53639}, {1249, 297}, {1821, 57921}, {1895, 40703}, {1910, 2184}, {1976, 64}, {2395, 58759}, {2715, 46639}, {2966, 44326}, {3079, 44704}, {3172, 232}, {6525, 6530}, {6531, 459}, {6587, 2799}, {7070, 44694}, {8057, 6333}, {14600, 14642}, {14601, 33581}, {15291, 35910}, {15466, 44132}, {15905, 36212}, {16081, 52581}, {17974, 15394}, {18750, 46238}, {20031, 65181}, {32696, 1301}, {34156, 16096}, {35602, 51386}, {36104, 65224}, {36841, 2396}, {37669, 6393}, {42459, 60524}, {42658, 684}, {44705, 16230}, {51508, 51862}, {52345, 42703}, {52913, 877}, {53173, 14638}, {57153, 4230}, {57260, 41489}, {60517, 13157}, {62175, 2491}, {62176, 3569}
X(66880) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {248, 6531, 98}, {248, 35906, 6531}, {2966, 31636, 6394}, {34156, 45031, 98}
X(66881) lies on the circumconic {{A,B,C,X(1),X(3)}} and these lines: {1, 810}, {3, 525}, {29, 663}, {77, 51640}, {98, 102}, {219, 52355}, {283, 6332}, {284, 522}, {287, 60047}, {290, 60046}, {293, 1795}, {332, 57241}, {336, 31637}, {521, 7015}, {945, 28473}, {947, 29037}, {1821, 23707}, {2338, 15628}, {2395, 60038}, {2715, 2769}, {2966, 7462}, {8764, 16081}, {17973, 39471}, {35196, 48278}, {43665, 54972}
X(66881) = X(53556)-cross conjugate of X(521)
X(66881) = X(i)-isoconjugate of X(j) for these (i,j): {65, 4230}, {108, 511}, {109, 240}, {225, 23997}, {232, 651}, {237, 18026}, {297, 1415}, {608, 42717}, {653, 1755}, {664, 57653}, {877, 1402}, {1214, 58070}, {1231, 34859}, {1400, 62720}, {1783, 43034}, {1880, 2421}, {1897, 51651}, {1959, 32674}, {2211, 4554}, {3289, 54240}, {6516, 34854}, {6530, 36059}, {7012, 53521}, {9417, 46404}, {14966, 40149}, {32714, 59734}, {46152, 51862}
X(66881) = X(i)-Dao conjugate of X(j) for these (i,j): {11, 240}, {1146, 297}, {7358, 44694}, {20620, 6530}, {34467, 51651}, {35072, 1959}, {36899, 653}, {38983, 511}, {38991, 232}, {39006, 43034}, {39025, 57653}, {39058, 46404}, {39085, 109}, {40582, 62720}, {40602, 4230}, {40605, 877}, {40624, 40703}, {40626, 325}, {55058, 44704}, {62562, 225}, {62566, 16230}, {62647, 42717}
X(66881) = crosssum of X(51651) and X(53521)
X(66881) = crossdifference of every pair of points on line {232, 1755}
X(66881) = barycentric product X(i)*X(j) for these {i,j}: {29, 53173}, {98, 6332}, {248, 35519}, {283, 43665}, {287, 522}, {290, 652}, {293, 4391}, {306, 60568}, {332, 2395}, {333, 879}, {336, 650}, {521, 1821}, {663, 57799}, {878, 28660}, {1910, 35518}, {1946, 46273}, {3064, 6394}, {4025, 15628}, {6531, 52616}, {16081, 57241}, {17932, 21044}, {17974, 46110}, {36036, 53560}
X(66881) = barycentric quotient X(i)/X(j) for these {i,j}: {21, 62720}, {78, 42717}, {98, 653}, {248, 109}, {283, 2421}, {284, 4230}, {287, 664}, {290, 46404}, {293, 651}, {332, 2396}, {333, 877}, {336, 4554}, {521, 1959}, {522, 297}, {650, 240}, {652, 511}, {663, 232}, {878, 1400}, {879, 226}, {1459, 43034}, {1821, 18026}, {1910, 108}, {1946, 1755}, {1976, 32674}, {2193, 23997}, {2299, 58070}, {2395, 225}, {2422, 57652}, {3063, 57653}, {3064, 6530}, {3404, 46152}, {4391, 40703}, {6332, 325}, {6394, 65164}, {6531, 36127}, {7117, 53521}, {14331, 44704}, {15628, 1897}, {16081, 52938}, {17932, 4620}, {17974, 1813}, {21044, 16230}, {22383, 51651}, {23189, 17209}, {35518, 46238}, {35519, 44132}, {36120, 54240}, {43665, 57809}, {43754, 52378}, {51404, 66287}, {52616, 6393}, {53173, 307}, {53556, 16591}, {57055, 44694}, {57108, 59734}, {57241, 36212}, {57799, 4572}, {60568, 27}
X(66882) lies on the cubic K1023 and these lines: {2, 7033}, {8, 7077}, {10, 41531}, {11, 312}, {75, 141}, {244, 25756}, {264, 20883}, {291, 3741}, {292, 2345}, {309, 337}, {314, 646}, {321, 1916}, {325, 52664}, {333, 51858}, {660, 32850}, {668, 18037}, {984, 20542}, {1911, 5263}, {1966, 6542}, {3006, 65210}, {3403, 17294}, {3596, 4858}, {3717, 3975}, {3948, 52662}, {4087, 4119}, {4554, 56661}, {4562, 18816}, {4768, 60577}, {5207, 56883}, {6063, 6358}, {7332, 40001}, {16603, 18896}, {17389, 52138}, {18036, 46238}, {18787, 50314}, {18891, 44172}, {20570, 46738}, {20908, 21261}, {24233, 30866}, {28798, 32851}, {30642, 40098}, {30713, 40072}, {31058, 41314}, {31623, 53008}, {32778, 34258}, {37128, 43262}, {40017, 60267}, {40094, 57815}, {40364, 44170}, {46747, 46750}
X(66882) = isotomic conjugate of X(1429)
X(66882) = isotomic conjugate of the complement of X(56883)
X(66882) = isotomic conjugate of the isogonal conjugate of X(4876)
X(66882) = X(18895)-Ceva conjugate of X(334)
X(66882) = X(i)-cross conjugate of X(j) for these (i,j): {4119, 8}, {4518, 334}
X(66882) = X(i)-isoconjugate of X(j) for these (i,j): {6, 1428}, {7, 14599}, {31, 1429}, {32, 1447}, {56, 1914}, {57, 2210}, {85, 18892}, {109, 8632}, {222, 57654}, {238, 604}, {239, 1397}, {242, 52411}, {292, 12835}, {560, 10030}, {603, 2201}, {608, 7193}, {659, 1415}, {740, 16947}, {1014, 41333}, {1106, 3684}, {1284, 1333}, {1395, 20769}, {1400, 5009}, {1403, 51321}, {1408, 2238}, {1412, 3747}, {1431, 1691}, {1432, 1933}, {1438, 51329}, {1501, 18033}, {1576, 7212}, {1921, 41280}, {2149, 27846}, {2175, 62785}, {2206, 16609}, {3573, 57181}, {3685, 52410}, {4037, 7342}, {4124, 23979}, {4455, 4565}, {6063, 18894}, {7175, 61385}, {7249, 14602}, {7366, 58327}, {8850, 34077}, {22384, 32674}, {32660, 65106}, {32739, 43041}, {34252, 41526}, {34253, 64216}, {41281, 44169}
X(66882) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 1914}, {2, 1429}, {9, 1428}, {11, 8632}, {37, 1284}, {650, 27846}, {1146, 659}, {1577, 27918}, {2968, 4435}, {3161, 238}, {4858, 7212}, {5452, 2210}, {6184, 51329}, {6374, 10030}, {6376, 1447}, {6552, 3684}, {6741, 21832}, {7952, 2201}, {9470, 604}, {17755, 34253}, {19557, 12835}, {20532, 8850}, {35072, 22384}, {36906, 56}, {40582, 5009}, {40593, 62785}, {40599, 3747}, {40603, 16609}, {40619, 43041}, {40624, 812}, {40625, 50456}, {52656, 1458}, {55064, 4455}, {59577, 2238}, {62557, 57}, {62558, 61061}, {62566, 39786}, {62584, 20769}, {62585, 239}, {62587, 39775}, {62647, 7193}
X(66882) = cevapoint of X(i) and X(j) for these (i,j): {2, 56883}, {2321, 3717}
X(66882) = trilinear pole of line {3701, 3810}
X(66882) = barycentric product X(i)*X(j) for these {i,j}: {8, 334}, {9, 18895}, {41, 44170}, {55, 44172}, {75, 4518}, {76, 4876}, {291, 3596}, {292, 28659}, {312, 335}, {313, 56154}, {314, 43534}, {318, 337}, {321, 36800}, {341, 7233}, {522, 4583}, {561, 7077}, {646, 4444}, {660, 35519}, {668, 60577}, {693, 36801}, {1502, 51858}, {1911, 40363}, {1916, 17787}, {1928, 18265}, {1934, 7081}, {2311, 27801}, {2321, 40017}, {2329, 18896}, {2344, 63241}, {3263, 33676}, {3699, 66286}, {3700, 4639}, {3701, 18827}, {3975, 40098}, {4024, 36806}, {4086, 4589}, {4087, 30663}, {4136, 40834}, {4391, 4562}, {4522, 41072}, {5378, 34387}, {7257, 35352}, {14598, 44159}, {27424, 40848}, {30713, 37128}, {35518, 65338}, {36796, 40217}, {40094, 55076}, {52133, 63228}, {52652, 63234}, {53008, 57987}, {53239, 63239}, {57996, 65954}
X(66882) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 1428}, {2, 1429}, {8, 238}, {9, 1914}, {10, 1284}, {11, 27846}, {21, 5009}, {33, 57654}, {41, 14599}, {55, 2210}, {75, 1447}, {76, 10030}, {78, 7193}, {85, 62785}, {210, 3747}, {238, 12835}, {281, 2201}, {291, 56}, {292, 604}, {295, 603}, {312, 239}, {314, 33295}, {318, 242}, {321, 16609}, {334, 7}, {335, 57}, {337, 77}, {341, 3685}, {345, 20769}, {346, 3684}, {518, 51329}, {521, 22384}, {522, 659}, {561, 18033}, {646, 3570}, {650, 8632}, {660, 109}, {693, 43041}, {726, 8850}, {741, 1408}, {813, 1415}, {876, 43924}, {1089, 7235}, {1334, 41333}, {1577, 7212}, {1581, 1431}, {1808, 1437}, {1896, 34856}, {1911, 1397}, {1916, 1432}, {1934, 7249}, {2175, 18892}, {2196, 52411}, {2311, 1333}, {2319, 51321}, {2321, 2238}, {2329, 1691}, {2330, 1933}, {3239, 4435}, {3252, 52635}, {3263, 39775}, {3501, 51956}, {3572, 57181}, {3596, 350}, {3684, 51328}, {3685, 8300}, {3699, 3573}, {3700, 21832}, {3701, 740}, {3702, 4974}, {3705, 56805}, {3717, 8299}, {3790, 3783}, {3810, 3808}, {3862, 56556}, {3864, 1469}, {3907, 4164}, {3912, 34253}, {3975, 4366}, {4041, 4455}, {4082, 4433}, {4086, 4010}, {4087, 39044}, {4136, 18904}, {4391, 812}, {4397, 3716}, {4444, 3669}, {4451, 18786}, {4494, 4396}, {4518, 1}, {4522, 30665}, {4560, 50456}, {4562, 651}, {4583, 664}, {4584, 4565}, {4589, 1414}, {4639, 4573}, {4723, 4432}, {4768, 4448}, {4811, 4830}, {4858, 27918}, {4876, 6}, {5378, 59}, {5423, 58327}, {6735, 15507}, {7077, 31}, {7081, 1580}, {7155, 34252}, {7233, 269}, {7336, 24193}, {8684, 8685}, {9447, 18894}, {14598, 41280}, {17786, 39930}, {17787, 385}, {18265, 560}, {18268, 16947}, {18827, 1014}, {18893, 41281}, {18895, 85}, {21044, 39786}, {22116, 1458}, {24026, 4124}, {27424, 39914}, {27846, 61061}, {28659, 1921}, {28660, 30940}, {30669, 7175}, {30713, 3948}, {31623, 31905}, {32851, 27950}, {32937, 56413}, {33676, 105}, {35352, 4017}, {35519, 3766}, {36796, 6654}, {36800, 81}, {36801, 100}, {36806, 4610}, {37128, 1412}, {40017, 1434}, {40094, 55082}, {40217, 241}, {40363, 18891}, {40848, 1423}, {41013, 1874}, {41531, 1403}, {42712, 4771}, {43534, 65}, {44159, 44171}, {44170, 20567}, {44172, 6063}, {44426, 65106}, {51858, 32}, {51861, 39919}, {51973, 41526}, {52030, 1416}, {52085, 5018}, {52209, 1462}, {52355, 53556}, {52409, 36815}, {52652, 63237}, {52664, 39940}, {52922, 46153}, {53008, 862}, {53239, 1418}, {56154, 58}, {56802, 51935}, {59761, 3975}, {60577, 513}, {60730, 20142}, {63228, 7179}, {63234, 7146}, {63489, 62791}, {65338, 108}, {65352, 1396}, {65954, 910}, {66286, 3676}
X(66882) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 63228, 334}, {321, 30179, 7018}
X(66883) lies on the cubic K741 and these lines: {2, 19553}, {3, 15620}, {5, 25043}, {30, 930}, {54, 140}, {93, 1594}, {128, 1154}, {137, 44028}, {186, 562}, {325, 46139}, {523, 29495}, {539, 38618}, {546, 31392}, {550, 39171}, {1157, 57316}, {1209, 13856}, {1487, 35018}, {2072, 34900}, {3575, 14111}, {3628, 24385}, {3850, 18370}, {5501, 34804}, {5965, 10615}, {6150, 13372}, {6592, 32744}, {9221, 11140}, {11062, 65906}, {11600, 40668}, {11601, 40667}, {15699, 56738}, {16336, 25150}, {16337, 61587}, {18349, 37452}, {31376, 32551}, {35442, 46427}, {44674, 58429}, {45198, 57765}
X(66883) = midpoint of X(i) and X(j) for these {i,j}: {930, 19552}, {14072, 14140}
X(66883) = reflection of X(i) in X(j) for these {i,j}: {6150, 13372}, {16337, 61587}, {24147, 10615}, {24385, 3628}, {40631, 140}, {44674, 58429}
X(66883) = complement of X(19553)
X(66883) = X(i)-isoconjugate of X(j) for these (i,j): {163, 2413}, {1141, 2964}, {2148, 30529}, {2166, 25044}, {62268, 63761}
X(66883) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 2413}, {216, 30529}, {11597, 25044}, {14920, 32002}, {17433, 1510}, {18402, 3518}, {21975, 1141}, {39171, 265}, {40604, 63172}, {52032, 63761}, {61504, 5}, {65906, 1994}
X(66883) = crosssum of X(49) and X(45083)
X(66883) = crossdifference of every pair of points on line {2965, 57137}
X(66883) = barycentric product X(i)*X(j) for these {i,j}: {323, 25043}, {343, 562}, {850, 2439}, {930, 41078}, {1154, 11140}, {1273, 2963}, {2081, 46139}, {3519, 14918}, {14165, 60824}, {55283, 65784}
X(66883) = barycentric quotient X(i)/X(j) for these {i,j}: {5, 30529}, {50, 25044}, {93, 65360}, {186, 57489}, {323, 63172}, {343, 63761}, {523, 2413}, {562, 275}, {930, 64516}, {1154, 1994}, {1273, 7769}, {2081, 1510}, {2290, 2964}, {2439, 110}, {2963, 1141}, {3519, 65326}, {11062, 3518}, {11140, 46138}, {14918, 32002}, {25043, 94}, {41078, 41298}, {47423, 45083}, {51477, 11077}, {55132, 20577}, {65784, 57137}
X(66883) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {128, 61504, 19268}, {252, 21975, 140}, {3519, 21975, 252}
X(66884) lies on the Lemoine asymptotic hyperbola, the cubic K215, and these lines: {6, 5638}, {351, 865}, {512, 2029}, {523, 13722}, {597, 52722}, {691, 1379}, {3413, 7757}, {3414, 60028}, {5639, 9178}, {6190, 18829}, {51441, 66187}
X(66884) = isogonal conjugate of the isotomic conjugate of X(13722)
X(66884) = tripolar centroid of X(5639)
X(66884) = X(i)-Ceva conjugate of X(j) for these (i,j): {1379, 5639}, {2029, 3124}, {5638, 512}, {14633, 13636}
X(66884) = X(3124)-cross conjugate of X(2029)
X(66884) = X(i)-isoconjugate of X(j) for these (i,j): {662, 6189}, {799, 1380}, {3413, 24041}, {4592, 57013}, {5638, 24037}, {36085, 66626}
X(66884) = X(i)-Dao conjugate of X(j) for these (i,j): {512, 5638}, {1084, 6189}, {3005, 3413}, {5139, 57013}, {13636, 76}, {21905, 52722}, {38988, 66626}, {38996, 1380}, {39022, 670}, {39067, 99}, {39068, 57575}, {62560, 34537}
X(66884) = crosspoint of X(i) and X(j) for these (i,j): {6, 41881}, {512, 5638}, {1379, 5639}
X(66884) = crosssum of X(i) and X(j) for these (i,j): {2, 30509}, {99, 6190}, {3413, 6189}
X(66884) = crossdifference of every pair of points on line {99, 1380}
X(66884) = X(60028)-line conjugate of X(3414)
X(66884) = barycentric product X(i)*X(j) for these {i,j}: {6, 13722}, {110, 66187}, {111, 46463}, {115, 1379}, {512, 3414}, {523, 5639}, {2029, 3413}, {3124, 6190}, {5638, 39022}, {9178, 52723}, {13636, 41881}, {20975, 57014}
X(66884) = barycentric quotient X(i)/X(j) for these {i,j}: {351, 66626}, {512, 6189}, {669, 1380}, {1084, 5638}, {1379, 4590}, {2029, 6190}, {2489, 57013}, {3124, 3413}, {3414, 670}, {5638, 57575}, {5639, 99}, {6190, 34537}, {13722, 76}, {21906, 52722}, {22260, 13636}, {46463, 3266}, {66187, 850}
X(66885) lies on the Lemoine asymptotic hyperbola, the cubic K215, and these lines: {6, 5639}, {351, 865}, {512, 2028}, {523, 13636}, {597, 52723}, {691, 1380}, {3413, 60028}, {3414, 7757}, {5638, 9178}, {6189, 18829}, {51441, 66186}
X(66885) = isogonal conjugate of the isotomic conjugate of X(13636)
X(66885) = tripolar centroid of X(5638)
X(66885) = X(i)-Ceva conjugate of X(j) for these (i,j): {1380, 5638}, {2028, 3124}, {5639, 512}, {14632, 13722}
X(66885) = X(3124)-cross conjugate of X(2028)
X(66885) = X(i)-isoconjugate of X(j) for these (i,j): {662, 6190}, {799, 1379}, {3414, 24041}, {4592, 57014}, {5639, 24037}, {36085, 66625}
X(66885) = X(i)-Dao conjugate of X(j) for these (i,j): {512, 5639}, {1084, 6190}, {3005, 3414}, {5139, 57014}, {13722, 76}, {21905, 52723}, {38988, 66625}, {38996, 1379}, {39023, 670}, {39067, 57576}, {39068, 99}, {62561, 34537}
X(66885) = crosspoint of X(i) and X(j) for these (i,j): {6, 41880}, {512, 5639}, {1380, 5638}
X(66885) = crosssum of X(i) and X(j) for these (i,j): {2, 30508}, {99, 6189}, {3414, 6190}
X(66885) = crossdifference of every pair of points on line {99, 1379}
X(66885) = X(60028)-line conjugate of X(3413)
X(66885) = barycentric product X(i)*X(j) for these {i,j}: {6, 13636}, {110, 66186}, {111, 46462}, {115, 1380}, {512, 3413}, {523, 5638}, {2028, 3414}, {3124, 6189}, {5639, 39023}, {9178, 52722}, {13722, 41880}, {20975, 57013}
X(66885) = barycentric quotient X(i)/X(j) for these {i,j}: {351, 66625}, {512, 6190}, {669, 1379}, {1084, 5639}, {1380, 4590}, {2028, 6189}, {2489, 57014}, {3124, 3414}, {3413, 670}, {5638, 99}, {5639, 57576}, {6189, 34537}, {13636, 76}, {21906, 52723}, {22260, 13722}, {46462, 3266}, {66186, 850}
X(66886) lies on these lines: {2, 1634}, {3, 524}, {6, 160}, {22, 41624}, {23, 63028}, {25, 6749}, {32, 39231}, {39, 2393}, {50, 34396}, {69, 41328}, {95, 45838}, {141, 20794}, {157, 19459}, {182, 9145}, {184, 1576}, {193, 8266}, {206, 5065}, {216, 32366}, {338, 39906}, {353, 669}, {417, 14528}, {418, 17809}, {523, 7709}, {526, 9420}, {542, 35934}, {566, 20975}, {570, 6467}, {574, 9142}, {577, 64028}, {597, 11328}, {599, 14096}, {682, 15815}, {702, 7781}, {800, 22829}, {878, 46616}, {887, 6088}, {1503, 32444}, {1599, 44197}, {1600, 44198}, {1624, 64058}, {1843, 5421}, {1899, 16030}, {1992, 5201}, {1995, 63101}, {2549, 53328}, {2854, 11171}, {2871, 3094}, {2980, 45857}, {3003, 40673}, {3095, 9019}, {3117, 33875}, {3135, 13366}, {3431, 14380}, {3589, 59651}, {3631, 22152}, {4497, 16872}, {4558, 5012}, {5306, 20885}, {5319, 11360}, {5467, 11003}, {6309, 9045}, {6618, 55354}, {6636, 7837}, {6660, 35707}, {6776, 53246}, {7418, 9744}, {7467, 9766}, {7468, 50149}, {7485, 37671}, {7669, 37457}, {7736, 34098}, {7739, 21177}, {7757, 35924}, {7772, 20960}, {7783, 44371}, {8681, 13334}, {8705, 32447}, {9027, 21163}, {9044, 42660}, {9178, 56394}, {9544, 61211}, {9605, 23208}, {9607, 11325}, {9971, 13337}, {11169, 45819}, {11326, 22332}, {11332, 45914}, {11402, 23195}, {13338, 62190}, {13341, 58471}, {13351, 23635}, {14270, 62412}, {14981, 16511}, {15069, 54004}, {15919, 56373}, {16285, 59994}, {17710, 50645}, {17938, 18872}, {19136, 33871}, {22062, 40341}, {23333, 53477}, {30540, 38997}, {31952, 64196}, {32085, 35226}, {32480, 36182}, {34416, 46327}, {34452, 62991}, {35222, 51171}, {37338, 47352}, {37465, 59373}, {37827, 37914}, {40138, 52604}, {41237, 45921}, {43273, 47620}, {44109, 58267}, {44221, 50979}, {51862, 63017}, {54003, 64080}, {62351, 62508}
X(66886) = isogonal conjugate of the isotomic conjugate of X(7998)
X(66886) = X(11169)-Ceva conjugate of X(6)
X(66886) = X(75)-isoconjugate of X(45819)
X(66886) = X(i)-Dao conjugate of X(j) for these (i,j): {206, 45819}, {373, 64093}
X(66886) = crosspoint of X(6) and X(30542)
X(66886) = crosssum of X(2) and X(11002)
X(66886) = crossdifference of every pair of points on line {18487, 23878}
X(66886) = barycentric product X(i)*X(j) for these {i,j}: {6, 7998}, {1340, 1341}
X(66886) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 45819}, {7998, 76}
X(66886) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 20775, 160}, {184, 5063, 1576}, {1992, 37184, 5201}, {7669, 50660, 37457}
X(66887) lies on these lines: {13, 5611}, {14, 2782}, {17, 671}, {99, 6672}, {110, 22738}, {115, 16966}, {148, 22689}, {542, 16964}, {619, 22846}, {1605, 32628}, {5469, 8724}, {6034, 7765}, {6778, 10722}, {8594, 16267}, {8787, 22580}, {9113, 25235}, {9116, 16963}, {9982, 44459}, {11080, 25230}, {11361, 12154}, {12355, 59410}, {14185, 61370}, {22510, 61513}, {22577, 51798}, {22847, 61561}, {22997, 53435}, {25156, 44487}, {33386, 33460}, {36782, 38224}
X(66887) = reflection of X(14) in X(46855)
X(66887) = {X(11603),X(16529)}-harmonic conjugate of X(13)
X(66888) lies on these lines: {13, 2782}, {14, 5615}, {18, 671}, {99, 6671}, {110, 22739}, {115, 16967}, {148, 22687}, {542, 16965}, {618, 22891}, {1606, 32627}, {5470, 8724}, {6034, 7765}, {6777, 10722}, {8595, 16268}, {8787, 22579}, {9112, 25236}, {9114, 16962}, {9981, 44463}, {11085, 25229}, {11361, 12155}, {14187, 61371}, {22511, 61514}, {22578, 51798}, {22893, 61561}, {22998, 53447}, {25166, 44488}, {33387, 33461}
X(66888) = reflection of X(13) in X(46854)
X(66888) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {99, 22510, 36782}, {11602, 16530, 14}
X(66889) lies on these lines: {1, 14}, {13, 52382}, {79, 10651}, {203, 54399}, {553, 554}, {1125, 5239}, {3337, 41225}, {3376, 3412}, {5719, 10218}, {8818, 16777}, {33654, 39151}, {44069, 46073}
X(66889) = isogonal conjugate of X(7005)
X(66889) = isotomic conjugate of X(46176)
X(66889) = X(41225)-cross conjugate of X(14)
X(66889) = X(i)-isoconjugate of X(j) for these (i,j): {1, 7005}, {16, 7150}, {31, 46176}, {35, 42677}, {559, 10638}, {1095, 14359}, {5357, 46073}, {42624, 65570}, {54020, 54025}
X(66889) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 46176}, {3, 7005}
X(66889) = barycentric product X(30690)*X(42680)
X(66889) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 46176}, {6, 7005}, {203, 11130}, {2154, 7150}, {2160, 42677}, {3458, 42624}, {11073, 46073}, {11085, 14359}, {33654, 559}, {41225, 65570}, {42680, 3219}
X(66890) lies on these lines: {1, 13}, {14, 52382}, {79, 1251}, {202, 54399}, {553, 1081}, {1125, 5240}, {2306, 39150}, {3179, 3337}, {3383, 3411}, {5719, 10217}, {8818, 16777}, {42623, 52375}, {44070, 46077}
X(66890) = isogonal conjugate of X(7006)
X(66890) = isotomic conjugate of X(46175)
X(66890) = X(3179)-cross conjugate of X(13)
X(66890) = X(i)-isoconjugate of X(j) for these (i,j): {1, 7006}, {31, 46175}, {35, 42680}, {1082, 1250}, {1094, 14358}, {5353, 46077}, {54022, 54027}
X(66890)) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 46175}, {3, 7006}
X(66890) = barycentric product X(i)*X(j) for these {i,j}: {300, 42623}, {30690, 42677}
X(66890) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 46175}, {6, 7006}, {202, 11131}, {2160, 42680}, {2306, 1082}, {3179, 65569}, {11072, 46077}, {11080, 14358}, {42623, 15}, {42677, 3219}
See Ivan Pavlov, euclid 7724.
X(66891) lies on these lines: {2, 35319}, {2421, 10330}, {4230, 35311}, {5968, 7533}, {9513, 14683}, {35910, 62730}, {46726, 65271}
X(66891) = trilinear pole of line {140, 143}
X(66891) = X(i)-isoconjugate-of-X(j) for these {i, j}: {163, 59739}, {18070, 42444}
X(66891) = X(i)-Dao conjugate of X(j) for these {i, j}: {115, 59739}
X(66891) = X(i)-cross conjugate of X(j) for these {i, j}: {7838, 4590}, {31296, 2}
X(66891) = pole of line {1078, 33798} with respect to the Kiepert parabola
X(66891) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(110)}}, {{A, B, C, X(99), X(10330)}}, {{A, B, C, X(476), X(55279)}}, {{A, B, C, X(648), X(13582)}}, {{A, B, C, X(907), X(56008)}}, {{A, B, C, X(930), X(42396)}}, {{A, B, C, X(2966), X(20189)}}, {{A, B, C, X(3448), X(46250)}}, {{A, B, C, X(4235), X(7533)}}, {{A, B, C, X(4551), X(35058)}}, {{A, B, C, X(4576), X(18829)}}, {{A, B, C, X(5468), X(63018)}}, {{A, B, C, X(7953), X(41676)}}, {{A, B, C, X(9087), X(65178)}}, {{A, B, C, X(14570), X(30529)}}, {{A, B, C, X(14683), X(40866)}}, {{A, B, C, X(16770), X(23895)}}, {{A, B, C, X(16771), X(23896)}}, {{A, B, C, X(23357), X(35319)}}, {{A, B, C, X(34594), X(54118)}}, {{A, B, C, X(35138), X(38262)}}, {{A, B, C, X(35360), X(53205)}}, {{A, B, C, X(38259), X(65284)}}, {{A, B, C, X(44144), X(46726)}}, {{A, B, C, X(55189), X(58121)}}
See Ivan Pavlov, euclid 7724.
X(66892) lies on these lines: {140, 143}, {2782, 51249}
X(66893) lies on these lines: {2, 647}, {23, 47175}, {193, 9030}, {523, 2528}, {525, 15340}, {804, 8664}, {1278, 64868}, {2394, 60191}, {2492, 4580}, {2525, 41298}, {3005, 53365}, {3146, 30209}, {3268, 55280}, {3700, 62227}, {3906, 20081}, {3995, 58361}, {4140, 27712}, {5059, 64788}, {6655, 10097}, {7426, 47260}, {8552, 15412}, {8675, 20080}, {10562, 31125}, {17147, 18155}, {17414, 59568}, {17494, 20952}, {19778, 23870}, {19779, 23871}, {20094, 62489}, {23357, 65713}, {26798, 42664}, {30474, 47122}, {30745, 47248}, {32747, 44007}, {37760, 47252}, {37907, 47261}, {47253, 47259}, {61791, 65389}
X(66893) = reflection of X(i) in X(j) for these {i,j}: {2, 63786}, {31296, 850}, {31299, 58784}, {41298, 2525}
X(66893) = isotomic conjugate of X(66891)
X(66893) = anticomplement of X(31296)
X(66893) = perspector of circumconic {{A, B, C, X(290), X(10159)}}
X(66893) = X(i)-isoconjugate-of-X(j) for these {i, j}: {163, 45108}
X(66893) = X(i)-Dao conjugate of X(j) for these {i, j}: {115, 45108}, {31296, 31296}, {59739, 1506}
X(66893) = X(i)-Ceva conjugate of X(j) for these {i, j}: {11794, 2}
X(66893) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {163, 8266}, {3613, 21294}, {11794, 6327}, {27375, 21221}, {27867, 7192}
X(66893) = pole of line {2, 160} with respect to the anticomplementary circle
X(66893) = pole of line {6636, 60514} with respect to the circumcircle
X(66893) = pole of line {22, 157} with respect to the DeLongchamps circle
X(66893) = pole of line {232, 428} with respect to the polar circle
X(66893) = pole of line {826, 41298} with respect to the Kiepert parabola
X(66893) = pole of line {30737, 37990} with respect to the MacBeath inconic
X(66893) = pole of line {14966, 35324} with respect to the Stammler hyperbola
X(66893) = pole of line {5, 141} with respect to the Steiner circumellipse
X(66893) = pole of line {511, 3628} with respect to the Steiner inellipse
X(66893) = pole of line {49273, 53336} with respect to the Yff parabola
X(66893) = pole of line {2421, 10330} with respect to the Wallace hyperbola
X(66893) = pole of line {36212, 61658} with respect to the dual conic of 1st DrozFarny circle
X(66893) = pole of line {2979, 3978} with respect to the dual conic of half Moses circle
X(66893) = pole of line {384, 1994} with respect to the dual conic of nine-point circle
X(66893) = pole of line {538, 3589} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(66893) = pole of line {7767, 36212} with respect to the dual conic of polar circle
X(66893) = pole of line {17753, 62636} with respect to the dual conic of Spieker circle
X(66893) = pole of line {401, 40207} with respect to the dual conic of Johnson circumconic
X(66893) = pole of line {37688, 39998} with respect to the dual conic of orthic inconic
X(66893) = pole of line {2799, 20577} with respect to the dual conic of Stammler hyperbola
X(66893) = pole of line {3569, 7927} with respect to the dual conic of Wallace hyperbola
X(66893) = pole of line {76, 850} with respect to the dual conic of 1st Terzic hyperbola
X(66893) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(5661), X(46271)}}, {{A, B, C, X(31065), X(39183)}}, {{A, B, C, X(31068), X(52145)}}, {{A, B, C, X(60191), X(60869)}}
X(66893) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {647, 850, 31072}, {804, 58784, 31299}, {850, 23878, 31296}, {850, 36900, 30476}, {23878, 63786, 2}, {31072, 31296, 647}, {31296, 63786, 850}
X(66894) lies on these lines: {6, 523}, {338, 39182}, {512, 2076}, {647, 11063}, {688, 53272}, {924, 47133}, {1510, 39232}, {2514, 2872}, {2623, 55280}, {3063, 4145}, {3447, 46253}, {3569, 20188}, {3737, 16685}, {3800, 47125}, {4132, 21007}, {4151, 21791}, {5023, 42660}, {5027, 18105}, {5116, 8723}, {6137, 51891}, {6138, 51890}, {7950, 22159}, {14533, 57138}, {17414, 21001}, {42293, 53255}, {47122, 65694}, {47355, 55190}, {56748, 59236}
X(66894) = midpoint of X(i) and X(j) for these {i,j}: {3050, 63785}
X(66894) = reflection of X(i) in X(j) for these {i,j}: {6, 3050}, {3050, 3288}, {18105, 5027}
X(66894) = isogonal conjugate of X(66891)
X(66894) = perspector of circumconic {{A, B, C, X(98), X(252)}}
X(66894) = X(i)-isoconjugate-of-X(j) for these {i, j}: {662, 45108}
X(66894) = X(i)-Dao conjugate of X(j) for these {i, j}: {1084, 45108}, {31296, 57082}
X(66894) = pole of line {45900, 46283} with respect to the 2nd Brocard circle
X(66894) = pole of line {39, 51} with respect to the circumcircle
X(66894) = pole of line {30, 5097} with respect to the cosine circle
X(66894) = pole of line {297, 14129} with respect to the polar circle
X(66894) = pole of line {237, 5041} with respect to the Brocard inellipse
X(66894) = pole of line {804, 18105} with respect to the Kiepert parabola
X(66894) = pole of line {575, 3564} with respect to the MacBeath circumconic
X(66894) = pole of line {1503, 10110} with respect to the orthic inconic
X(66894) = pole of line {2421, 10330} with respect to the Stammler hyperbola
X(66894) = pole of line {385, 15246} with respect to the Steiner circumellipse
X(66894) = pole of line {230, 5421} with respect to the Steiner inellipse
X(66894) = pole of line {39, 698} with respect to the dual conic of nine-point circle
X(66894) = pole of line {2799, 20577} with respect to the dual conic of Wallace hyperbola
X(66894) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(39182)}}, {{A, B, C, X(523), X(59739)}}, {{A, B, C, X(879), X(39180)}}, {{A, B, C, X(3288), X(36198)}}, {{A, B, C, X(55280), X(57137)}}
X(66894) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {523, 3288, 3050}, {3050, 63785, 523}, {3288, 63785, 6}
X(66895) lies on these lines: {4, 512}, {420, 2501}, {523, 37943}, {526, 562}, {3525, 52584}, {4108, 62979}, {4145, 44426}, {6130, 15412}, {6331, 65960}, {8675, 57120}, {14940, 34291}, {15328, 45972}, {18314, 53345}, {35489, 62489}, {44918, 61945}
X(66895) = polar conjugate of X(66891)
X(66895) = perspector of circumconic {{A, B, C, X(16081), X(39284)}}
X(66895) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4575, 45108}
X(66895) = X(i)-Dao conjugate of X(j) for these {i, j}: {136, 45108}
X(66895) = pole of line {511, 14864} with respect to the anticomplementary circle
X(66895) = pole of line {511, 18379} with respect to the circumcircle of the Johnson triangle
X(66895) = pole of line {140, 143} with respect to the polar circle
X(66895) = pole of line {15559, 44145} with respect to the MacBeath inconic
X(66895) = pole of line {232, 52285} with respect to the orthic inconic
X(66895) = pole of line {7762, 41628} with respect to the Steiner circumellipse
X(66895) = pole of line {684, 57135} with respect to the dual conic of Wallace hyperbola
X(66895) = intersection, other than A, B, C, of circumconics {{A, B, C, X(879), X(39180)}}, {{A, B, C, X(31065), X(39183)}}, {{A, B, C, X(45972), X(52451)}}
See Antreas Hatzipolakis, Jeremy Tan and Peter Moses, euclid 7726.
X(66896) lies on these lines: {3, 648}, {264, 40800}, {418, 44110}, {577, 52177}, {1093, 13855}, {2660, 22341}, {2972, 46093}, {3269, 41212}, {8754, 35236}, {20975, 47409}, {22052, 42556}, {28783, 52439}, {34980, 35071}, {36748, 57012}
X(66896) = isogonal conjugate of the polar conjugate of X(35071)
X(66896) = X(i)-Ceva conjugate of X(j) for these (i,j): {3, 32320}, {13855, 647}, {28783, 3049}, {40800, 520}
X(66896) = X(i)-isoconjugate of X(j) for these (i,j): {19, 57556}, {92, 34538}, {264, 24021}, {823, 15352}, {1093, 23999}, {1969, 23590}, {6521, 23582}, {6528, 36126}, {6529, 57973}, {18022, 24022}, {32230, 57806}
X(66896) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 57556}, {520, 264}, {17434, 18027}, {22391, 34538}, {46093, 6528}, {58305, 61378} .
X(66896) = crosspoint of X(i) and X(j) for these (i,j): {3, 32320}, {54114, 62428}
X(66896) = crosssum of X(i) and X(j) for these (i,j): {4, 15352}, {32445, 52604}
X(66896) = crossdifference of every pair of points on line {2404, 15352}
X(66896) = barycentric product X(i)*X(j) for these {i,j}: {3, 35071}, {63, 42080}, {97, 41219}, {112, 23103}, {219, 1363}, {222, 7065}, {228, 16730}, {255, 37754}, {339, 36433}, {394, 34980}, {520, 32320}, {577, 2972}, {648, 23613}, {1092, 3269}, {2632, 4100}, {4143, 58310}, {9247, 24020}, {14379, 47409}, {14575, 23974}, {15526, 23606}, {39201, 52613}
X(66896) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 57556}, {184, 34538}, {1363, 331}, {2972, 18027}, {4100, 23999}, {7065, 7017}, {9247, 24021}, {14575, 23590}, {14585, 32230}, {16730, 57796}, {23103, 3267}, {23216, 36434}, {23286, 42401}, {23606, 23582}, {23613, 525}, {23974, 44161}, {32320, 6528}, {34980, 2052}, {35071, 264}, {36433, 250}, {37754, 57806}, {39201, 15352}, {40373, 23975}, {41219, 324}, {42080, 92}, {46088, 52779}, {58305, 65183}, {58310, 6529}, {62428, 42369}
X(66896) = {X(34980),X(35071)}-harmonic conjugate of X(41219)
See Antreas Hatzipolakis, Jeremy Tan and Peter Moses, euclid 7726.
X(66897) lies on these lines: {5, 648}, {418, 51477}, {8884, 33664}, {24862, 39019}
X(66897) = X(i)-Ceva conjugate of X(j) for these (i,j): {5, 57195}, {33664, 12077}
X(66897) = X(2148)-isoconjugate of X(57573)
X(66897) = X(i)-Dao conjugate of X(j) for these (i,j): {216, 57573}, {6368, 95}, {39019, 52939}, {64773, 57844}
X(66897) = crosspoint of X(5) and X(57195)
X(66897) = barycentric product X(i)*X(j) for these {i,j}: {5, 39019}, {324, 41212}, {343, 24862}, {6368, 57195}, {15526, 23607}, {18314, 34983}, {35442, 36412}
X(66897) = barycentric quotient X(i)/X(j) for these {i,j}: {5, 57573}, {6368, 52939}, {23607, 23582}, {24862, 275}, {34983, 18315}, {39019, 95}, {41212, 97}, {46394, 14587}, {57195, 18831}
X(66897) = {X(24862),X(39019)}-harmonic conjugate of X(41212)
See Antreas Hatzipolakis, Jeremy Tan and Peter Moses, euclid 7726.
X(66898) lies on these lines: {21, 648}, {283, 296}, {1364, 61054}, {2193, 65375}, {3270, 35072}, {18191, 35014}, {62736, 62756}
X(66898) = X(i)-Ceva conjugate of X(j) for these (i,j): {21, 23090}, {283, 36054}
X(66898) = X(i)-isoconjugate of X(j) for these (i,j): {65, 24032}, {225, 55346}, {226, 23984}, {349, 23985}, {653, 52607}, {1020, 54240}, {1400, 57538}, {1441, 24033}, {4566, 36127}, {7128, 40149}, {32714, 65207}, {36118, 61178}, {52938, 53321}, {59151, 66299}
X(66898) = X(i)-Dao conjugate of X(j) for these (i,j): {521, 1441}, {656, 57809}, {3239, 52575}, {40582, 57538}, {40602, 24032}, {55068, 52938}
X(66898) = crosspoint of X(21) and X(23090)
X(66898) = crosssum of X(65) and X(52607)
X(66898) = barycentric product X(i)*X(j) for these {i,j}: {21, 35072}, {55, 16731}, {112, 58253}, {283, 34591}, {284, 24031}, {314, 39687}, {333, 2638}, {521, 23090}, {648, 23614}, {652, 57081}, {905, 58338}, {1021, 57241}, {1364, 2287}, {1792, 7117}, {1802, 17219}, {1812, 3270}, {1946, 15411}, {2193, 2968}, {2194, 23983}, {2310, 6514}, {2327, 7004}, {3737, 57057}, {4081, 18604}, {4091, 58329}, {4560, 58340}, {6332, 57134}, {7253, 36054}, {15526, 23609}, {23189, 57055}
X(66898) = barycentric quotient X(i)/X(j) for these {i,j}: {21, 57538}, {284, 24032}, {1021, 52938}, {1364, 1446}, {1946, 52607}, {2193, 55346}, {2194, 23984}, {2638, 226}, {2968, 52575}, {3270, 40149}, {16731, 6063}, {18604, 59457}, {21789, 54240}, {23090, 18026}, {23189, 13149}, {23609, 23582}, {23614, 525}, {24031, 349}, {34591, 57809}, {35072, 1441}, {36054, 4566}, {39687, 65}, {57081, 46404}, {57108, 65207}, {57134, 653}, {57657, 24033}, {58253, 3267}, {58338, 6335}, {58340, 4552}, {61054, 1427}, {65102, 61178}
See Antreas Hatzipolakis, Jeremy Tan and Peter Moses, euclid 7726.
X(66899) lies on these lines: {30, 648}, {122, 125}, {1494, 56371}, {1651, 23583}, {3081, 3163}, {9530, 46472}, {11050, 39352}
X(66899) = reflection of X(i) in X(j) for these {i,j}: {1494, 56371}, {3081, 3163}
X(66899) = tripolar centroid of X(14401)
X(66899) = X(i)-Ceva conjugate of X(j) for these (i,j): {30, 14401}, {1650, 39008}, {20123, 1636}, {34297, 1637}
X(66899) = X(i)-isoconjugate of X(j) for these (i,j): {2159, 57570}, {24000, 59145}, {34568, 65263}
X(66899) = X(i)-Dao conjugate of X(j) for these (i,j): {30, 42308}, {1650, 16077}, {3163, 57570}, {9033, 1494}, {14401, 31621}, {62685, 9410}
X(66899) = crosspoint of X(i) and X(j) for these (i,j): {30, 14401}, {1650, 39008}, {3163, 9033}, {34767, 46270}
X(66899) = crosssum of X(i) and X(j) for these (i,j): {74, 34568}, {1304, 40384}, {9412, 23347}
X(66899) = crossdifference of every pair of points on line {112, 34568}
X(66899) = barycentric product X(i)*X(j) for these {i,j}: {30, 39008}, {112, 58257}, {1636, 58263}, {1650, 3163}, {3081, 15526}, {3269, 23097}, {9033, 14401}, {9409, 52624}, {41077, 58346}, {41079, 58345}
X(66899) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 57570}, {1650, 31621}, {3081, 23582}, {3163, 42308}, {3269, 59145}, {9409, 34568}, {14401, 16077}, {39008, 1494}, {58257, 3267}, {58344, 32695}, {58345, 44769}, {58346, 15459}
See Antreas Hatzipolakis, Jeremy Tan and Peter Moses, euclid 7726.
X(66900) lies on these lines: {25, 648}, {669, 47430}, {865, 15526}, {1084, 23216}, {1974, 9468}, {2971, 51906}, {3964, 15369}, {19626, 44162}, {27369, 35007}, {40525, 42067}
X(66900) = isogonal conjugate of the isotomic conjugate of X(42068)
X(66900) = polar conjugate of the isotomic conjugate of X(9427)
X(66900) = X(i)-Ceva conjugate of X(j) for these (i,j): {25, 57204}, {15369, 3049}, {42068, 9427}
X(66900) = X(i)-isoconjugate of X(j) for these (i,j): {63, 44168}, {304, 34537}, {305, 24037}, {561, 47389}, {670, 55202}, {799, 52608}, {1101, 40360}, {1502, 62719}, {4563, 4602}, {4590, 40364}, {4592, 4609}, {24041, 40050}, {55205, 62534}
X(66900) = X(i)-Dao conjugate of X(j) for these (i,j): {512, 305}, {523, 40360}, {3005, 40050}, {3162, 44168}, {5139, 4609}, {38996, 52608}, {40368, 47389}
X(66900) = crosspoint of X(25) and X(57204)
X(66900) = crosssum of X(69) and X(52608)
X(66900) = crossdifference of every pair of points on line {52608, 65171}
X(66900) = barycentric product X(i)*X(j) for these {i,j}: {4, 9427}, {6, 42068}, {19, 4117}, {25, 1084}, {28, 52065}, {32, 2971}, {112, 23099}, {115, 44162}, {393, 23216}, {512, 57204}, {607, 1356}, {608, 7063}, {648, 23610}, {669, 2489}, {1501, 8754}, {1974, 3124}, {2207, 65751}, {2211, 15630}, {2501, 9426}, {2970, 9233}, {7109, 42067}, {8739, 41993}, {8740, 41994}, {20975, 36417}, {22260, 61206}, {27369, 51906}, {57260, 58260}, {61361, 62524}
X(66900) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 44168}, {115, 40360}, {669, 52608}, {1084, 305}, {1356, 57918}, {1501, 47389}, {1917, 62719}, {1924, 55202}, {1974, 34537}, {2489, 4609}, {2970, 40359}, {2971, 1502}, {3124, 40050}, {4117, 304}, {7063, 57919}, {8754, 40362}, {9426, 4563}, {9427, 69}, {23099, 3267}, {23216, 3926}, {23610, 525}, {42068, 76}, {44162, 4590}, {52065, 20336}, {57204, 670}
See Elias M. Hagos and Peter Moses, euclid 7731.
X(66901) lies on these lines: {2, 51}, {9148, 39469}, {11123, 55143}, {13409, 20859}, {14966, 43650}
X(66901) = reflection of X(23611) in X(2)
X(66901) = crosspoint of X(290) and X(511)
X(66901) = crosssum of X(98) and X(237)
X(66901) = {X(23611),X(62596)}-harmonic conjugate of X(2)
See Elias M. Hagos and Peter Moses, euclid 7731.
X(66902) lies on these lines: {2, 51}, {22, 56393}, {114, 51335}, {230, 47734}, {325, 18873}, {351, 2799}, {385, 40820}, {419, 17941}, {877, 6353}, {1180, 34349}, {2396, 59707}, {4226, 14265}, {5306, 66354}, {5976, 36213}, {6248, 57615}, {6676, 41172}, {8623, 63736}, {39998, 62431}, {44215, 45330}, {46840, 46888}, {47200, 57257}
X(66902) = X(i)-Ceva conjugate of X(j) for these (i,j): {230, 114}, {385, 12829}, {419, 36213}
X(66902) = X(i)-isoconjugate of X(j) for these (i,j): {1581, 2065}, {1967, 40428}, {8773, 34238}, {36051, 36897}
X(66902) = X(i)-Dao conjugate of X(j) for these (i,j): {114, 36897}, {230, 1916}, {325, 8781}, {868, 66267}, {8290, 40428}, {8623, 2987}, {19576, 2065}, {36212, 40708}, {39072, 34238}
X(66902) = crosspoint of X(i) and X(j) for these (i,j): {230, 12829}, {385, 5976}
X(66902) = crosssum of X(694) and X(34238)
X(66902) = crossdifference of every pair of points on line {3288, 15391}
X(66902) = barycentric product X(i)*X(j) for these {i,j}: {114, 385}, {230, 5976}, {325, 12829}, {419, 62590}, {1966, 17462}, {3564, 39931}, {3978, 51335}, {14265, 46888}, {17941, 55267}, {17984, 47406}, {36213, 51481}
X(66902) = barycentric quotient X(i)/X(j) for these {i,j}: {114, 1916}, {230, 36897}, {385, 40428}, {1691, 2065}, {1692, 34238}, {4226, 39291}, {5976, 8781}, {12829, 98}, {17462, 1581}, {17941, 55266}, {36213, 2987}, {39931, 35142}, {46888, 52091}, {47406, 36214}, {51324, 3563}, {51335, 694}, {51430, 65781}, {52144, 15391}, {55267, 66267}, {60504, 18858}, {62590, 40708}
See Elias M. Hagos and Peter Moses, euclid 7731.
X(66903) lies on these lines: {2, 51}, {132, 15595}, {401, 32545}, {441, 51960}, {877, 37669}, {1636, 2799}, {8779, 30737}, {10311, 63464}, {13346, 50437}, {23292, 41172}, {40684, 62431}, {52128, 62595}
X(66903) = X(441)-Ceva conjugate of X(15595)
X(66903) = X(i)-Dao conjugate of X(j) for these (i,j): {297, 6330}, {441, 1972}, {39073, 1987}, {39081, 9476}
X(66903) v= crosspoint of X(401) and X(62595)
X(66903) = barycentric product X(i)*X(j) for these {i,j}: {401, 15595}, {441, 62595}, {1955, 17875}, {9475, 44137}, {30737, 52128} .
X(66903) = barycentric quotient X(i)/X(j) for these {i,j}: {401, 9476}, {9475, 1987}, {15595, 1972}, {52128, 1297}, {55275, 62519}, {62595, 6330}, {66076, 53205}
See Elias M. Hagos and Peter Moses, euclid 7731.
X(66904) lies on these lines: {2, 51}, {114, 36790}, {325, 40810}, {868, 23098}, {877, 8889}, {1368, 41172}, {2799, 8029}, {5999, 40820}, {8024, 62431}, {9300, 66354}, {21531, 47648}, {36213, 38383}, {44132, 51843}, {51820, 58849}
X(66904) = X(2023)-Ceva conjugate of X(46840)
X(66904) = X(i)-Dao conjugate of X(j) for these (i,j): {2023, 385}, {46840, 98} .
X(66904) = crosspoint of X(325) and X(1916)
X(66904) = crosssum of X(1691) and X(1976)
X(66904) = crossdifference of every pair of points on line {3288, 51327}
X(66904) = barycentric product X(i)*X(j) for these {i,j}: {325, 2023}, {1916, 46840}
X(66904) = barycentric quotient X(i)/X(j) for these {i,j}: {2023, 98}, {46840, 385}
See Elias M. Hagos and Peter Moses, euclid 7731.
X(66905) lies on these lines: {2, 51}, {297, 40804}, {324, 62431}, {2799, 14391}, {2967, 15595}, {13567, 41172}, {46730, 50437}
X(66905) = crosspoint of X(297) and X(1972)
X(66905) = crosssum of X(248) and X(1971)
See Elias M. Hagos and Peter Moses, euclid 7731.
X(66906) lies on these lines: {2, 51}, {184, 32485}, {3229, 47648}
X(66906) = X(39080)-Ceva conjugate of X(3229)
X(66906) = X(41520)-isoconjugate of X(43761)
X(66906) = X(39080)-Dao conjugate of X(41520)
X(66906) = crosspoint of X(25332) and X(39092)
X(66906) = crossdifference of every pair of points on line {3288, 41520}
X(66906) = barycentric product X(i)*X(j) for these {i,j}: {698, 3511}, {3229, 25332}, {39080, 39092}
X(66906) = barycentric quotient X(i)/X(j) for these {i,j}: {3229, 41520}, {3511, 3225}, {25332, 66842}, {32748, 61098}
See Elias M. Hagos and Peter Moses, euclid 7731.
X(66907) lies on these lines: {2, 51}, {114, 43935}, {232, 40810}, {877, 3168}, {9306, 14966}, {9419, 36213}, {10278, 55143}, {11176, 39469}, {23098, 36212}
X(66907) = midpoint of X(2) and X(23611)
X(66907) = X(i)-Ceva conjugate of X(j) for these (i,j): {11672, 511}, {39058, 39355}
X(66907) = X(39355)-cross conjugate of X(511)
X(66907) = X(i)-isoconjugate of X(j) for these (i,j): {1821, 61099}, {1910, 46271}
X(66907) = X(i)-Dao conjugate of X(j) for these (i,j): {290, 57541}, {11672, 46271}, {40601, 61099}
X(66907) = crosspoint of X(39058) and X(39355)
X(66907) = crossdifference of every pair of points on line {3288, 61099}
X(66907) = barycentric product X(i)*X(j) for these {i,j}: {325, 46272}, {511, 39355}, {1959, 39342}, {11672, 39058}
X(66907) = barycentric quotient X(i)/X(j) for these {i,j}: {237, 61099}, {511, 46271}, {39058, 57541}, {39342, 1821}, {39355, 290}, {46272, 98}
X(66907) = {X(2),X(63741)}-harmonic conjugate of X(23611)
See Elias M. Hagos and Peter Moses, euclid 7731.
X(66908) lies on these lines: {2, 51}, {351, 38237}, {694, 52009}, {3229, 14251}, {32485, 43650}
X(66908) = crosspoint of X(694) and X(41520)
X(66908) = crosssum of X(385) and X(3511)
See Elias M. Hagos and Peter Moses, euclid 7731.
X(66909) lies on the cubic K700 and these lines: {2, 51}, {3981, 41172}, {10190, 55143}, {39469, 45689}
X(66909) = complement of X(23611)
X(66909) = X(34536)-complementary conjugate of X(16591)
X(66909) = crosspoint of X(290) and X(46271)
X(66909) = crosssum of X(237) and X(46272)
X(66910) lies on the cubic K1383 and these lines: {671, 56395}, {14356, 66267}
X(66910) = trilinear quotient X(2166)/X(66911)
X(66911) lies on the cubic K1383 and these lines: {5182, 60864}, {10754, 65278}
X(66911) = trilinear quotient X(2166)/X(66910)
X(66912) lies on the cubics K295, K1384a and these lines: {2, 1380}, {9214, 45819}
X(66913) lies on the cubics K295, K1384b and these lines: {2, 1379}, {9214, 45819}
X(66914) lies on the cubic K611 and these lines: {2, 648}, {4, 94}, {69, 36789}, {92, 17483}, {107, 14683}, {110, 47204}, {193, 2986}, {297, 44555}, {317, 46723}, {323, 15262}, {338, 11433}, {340, 37779}, {459, 56063}, {468, 14611}, {470, 51271}, {471, 51264}, {542, 16240}, {877, 14360}, {1272, 52166}, {1656, 35442}, {1990, 3580}, {2052, 13582}, {2501, 66117}, {3168, 3410}, {4240, 9143}, {5032, 58268}, {5059, 64505}, {5189, 12384}, {5702, 63036}, {5984, 52301}, {6110, 11078}, {6111, 11092}, {6392, 54395}, {9381, 60191}, {9979, 40867}, {10421, 66769}, {11331, 56015}, {14361, 45794}, {14391, 24978}, {15018, 52289}, {16237, 18301}, {18366, 43530}, {31127, 52284}, {34163, 60516}, {34834, 47228}, {41079, 63247}, {41361, 50188}, {43816, 56303}, {44427, 46229}, {46105, 62925}, {47146, 52169}, {47172, 47348}, {48540, 63081}, {52710, 53348}
X(66914) = reflection of X(i) in X(j) for these {i,j}: {193, 65322}, {14919, 62583}
X(66914) = anticomplement of X(14919)
X(66914) = polar conjugate of X(1138)
X(66914) = anticomplement of the isogonal conjugate of X(1990)
X(66914) = anticomplement of the isotomic conjugate of X(46106)
X(66914) = isotomic conjugate of the anticomplement of X(62606)
X(66914) = isotomic conjugate of the isogonal conjugate of X(52166)
X(66914) = polar conjugate of the isotomic conjugate of X(1272)
X(66914) = polar conjugate of the isogonal conjugate of X(399)
X(66914) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {19, 30}, {25, 18668}, {28, 18661}, {30, 4329}, {31, 62308}, {34, 41804}, {158, 340}, {162, 3268}, {240, 65771}, {661, 45289}, {811, 53369}, {1096, 3580}, {1495, 6360}, {1783, 53342}, {1784, 69}, {1990, 8}, {2173, 20}, {2631, 34186}, {4240, 7192}, {6357, 52365}, {6520, 50435}, {7359, 52366}, {9406, 3164}, {14206, 1370}, {14400, 34188}, {14581, 192}, {18653, 20243}, {23347, 4560}, {24001, 512}, {24019, 9033}, {35201, 1272}, {36035, 13219}, {36104, 53383}, {36119, 1494}, {36120, 53348}, {36125, 53380}, {36128, 9140}, {46106, 6327}, {51420, 17134}, {51654, 347}, {52661, 21270}, {52954, 75}, {52955, 1}, {52956, 3869}, {56829, 523}
X(66914) = X(i)-Ceva conjugate of X(j) for these (i,j): {340, 4}, {46106, 2}
X(66914) = X(i)-cross conjugate of X(j) for these (i,j): {399, 1272}, {62606, 2}
X(66914) = X(i)-isoconjugate of X(j) for these (i,j): {48, 1138}, {2159, 20123}, {9247, 40705}, {11070, 35200}, {19303, 57700}
X(66914) = X(i)-Dao conjugate of X(j) for these (i,j): {133, 11070}, {1249, 1138}, {1637, 19223}, {1989, 265}, {3163, 20123}, {52166, 9919}, {62576, 40705}
X(66914) = cevapoint of X(399) and X(52166)
X(66914) = crosspoint of X(6528) and X(57570)
X(66914) = crosssum of X(647) and X(47414)
X(66914) = barycentric product X(i)*X(j) for these {i,j}: {4, 1272}, {76, 52166}, {264, 399}, {340, 14993}, {457, 40705}, {648, 14566}, {1969, 19303}, {6331, 58900}, {36789, 40391}, {46106, 62606}
X(66914) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 1138}, {30, 20123}, {264, 40705}, {399, 3}, {403, 18781}, {457, 399}, {1117, 15392}, {1138, 57700}, {1272, 69}, {1990, 11070}, {2914, 14354}, {3258, 19223}, {5667, 46035}, {11074, 11079}, {14566, 525}, {14581, 40356}, {14993, 265}, {15766, 50461}, {16080, 54837}, {19303, 48}, {37943, 14451}, {39176, 59500}, {40391, 40384}, {40705, 57871}, {42656, 9409}, {46036, 8431}, {50467, 50464}, {52166, 6}, {58900, 647}, {62606, 14919}
X(66914) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {648, 16080, 14920}, {3163, 46808, 2}, {14919, 62583, 2}, {14920, 16080, 2}, {51358, 56021, 62628}, {56021, 62628, 323}
X(66915) lies on the circumconic {{A,B,C,X(2),X(6)}} and these lines: {2, 571}, {4, 64833}, {5, 2963}, {6, 26}, {25, 8746}, {32, 2165}, {37, 2216}, {50, 7568}, {51, 14573}, {111, 59004}, {206, 263}, {308, 57903}, {393, 1179}, {570, 7512}, {577, 9698}, {1166, 3518}, {1976, 9969}, {1989, 13490}, {2395, 50946}, {3003, 41891}, {3108, 5421}, {5063, 46952}, {6748, 8791}, {7502, 13351}, {7506, 60775}, {8744, 33631}, {10311, 13854}, {18353, 63672}, {33872, 52223}, {40802, 64195}, {42354, 59137}
X(66915) = isogonal conjugate of X(37636)
X(66915) = isogonal conjugate of the anticomplement of X(37649)
X(66915) = isogonal conjugate of the complement of X(1994)
X(66915) = isogonal conjugate of the isotomic conjugate of X(40393)
X(66915) = isogonal conjugate of the polar conjugate of X(1179)
X(66915) = polar conjugate of the isotomic conjugate of X(40441)
X(66915) = X(40393)-Ceva conjugate of X(40441)
X(66915) = X(i)-cross conjugate of X(j) for these (i,j): {51, 40449}, {12077, 112}
X(66915) = X(i)-isoconjugate of X(j) for these (i,j): {1, 37636}, {10, 16698}, {19, 1238}, {63, 1594}, {75, 570}, {92, 1216}, {304, 47328}, {656, 41677}, {1209, 2167}, {1225, 2148}, {1577, 50947}, {1930, 60587}, {1969, 23195}, {2349, 51392}, {2962, 62589}, {14208, 61203}, {14213, 51255}, {40440, 42445}, {59172, 62272}
X(66915) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 37636}, {6, 1238}, {206, 570}, {216, 1225}, {3162, 1594}, {22391, 1216}, {40588, 1209}, {40596, 41677}
X(66915) = cevapoint of X(i) and X(j) for these (i,j): {6, 2965}, {32, 51}
X(66915) = crosspoint of X(1179) and X(40393)
X(66915) = crosssum of X(i) and X(j) for these (i,j): {6, 2918}, {570, 1216}, {1209, 42445}
X(66915) = trilinear pole of line {512, 55204}
X(66915) = barycentric product X(i)*X(j) for these {i,j}: {1, 2216}, {3, 1179}, {4, 40441}, {5, 1166}, {6, 40393}, {32, 57903}, {54, 40449}, {110, 50946}, {523, 59004}, {54034, 59137}
X(66915) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 1238}, {5, 1225}, {6, 37636}, {25, 1594}, {32, 570}, {51, 1209}, {112, 41677}, {184, 1216}, {217, 42445}, {1166, 95}, {1179, 264}, {1333, 16698}, {1495, 51392}, {1576, 50947}, {1974, 47328}, {2216, 75}, {2965, 62589}, {14573, 59172}, {14575, 23195}, {40393, 76}, {40441, 69}, {40449, 311}, {41593, 41594}, {46288, 60587}, {50946, 850}, {54034, 51255}, {56918, 41578}, {57903, 1502}, {59004, 99}, {59137, 62278}, {61206, 61203}
X(66916) lies on the circumconic {{A,B,C,X(2),X(6)}} and these lines: {2, 490}, {6, 6415}, {154, 8577}, {493, 1151}, {494, 3594}, {588, 3592}, {589, 6432}, {3108, 34516}, {5413, 41489}, {6200, 32564}, {6411, 13617}, {6412, 41438}, {6425, 32563}, {6438, 41437}, {6443, 39389}, {8576, 17810}, {8770, 12968}, {8854, 12305}, {20850, 43124}, {34515, 39955}
X(66916) = isogonal conjugate of X(1270)
X(66916) = isogonal conjugate of the anticomplement of X(3068)
X(66916) = isogonal conjugate of the isotomic conjugate of X(1131)
X(66916) = polar conjugate of the isotomic conjugate of X(6415)
X(66916) = X(1131)-Ceva conjugate of X(6415)
X(66916) = X(6423)-cross conjugate of X(6)
X(66916) = X(i)-isoconjugate of X(j) for these (i,j): {1, 1270}, {63, 3535}, {75, 1151}, {304, 5411}
X(66916) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 1270}, {206, 1151}, {3162, 3535}
X(66916) = crosssum of X(i) and X(j) for these (i,j): {2, 51953}, {6, 8904}
X(66916) = barycentric product X(i)*X(j) for these {i,j}: {4, 6415}, {6, 1131}, {493, 8037}, {1152, 46208}, {5410, 15749}
X(66916) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 1270}, {25, 3535}, {32, 1151}, {1131, 76}, {1152, 32841}, {1974, 5411}, {6415, 69}, {6423, 33364}
X(66917) lies on the circumconic {{A,B,C,X(2),X(6)}} and these lines: {2, 489}, {6, 6416}, {154, 8576}, {393, 19219}, {493, 3592}, {494, 1152}, {588, 6431}, {589, 3594}, {3108, 34515}, {5412, 41489}, {6396, 32571}, {6411, 41437}, {6412, 13616}, {6426, 32570}, {6437, 41438}, {6444, 39389}, {8577, 17810}, {8770, 12963}, {8855, 12306}, {20850, 43125}, {34516, 39955}
X(66917) = isogonal conjugate of X(1271)
X(66917) = isogonal conjugate of the anticomplement of X(3069)
X(66917) = isogonal conjugate of the isotomic conjugate of X(1132)
X(66917) = polar conjugate of the isotomic conjugate of X(6416)
X(66917) = X(1132)-Ceva conjugate of X(6416)
X(66917) = X(6424)-cross conjugate of X(6)
X(66917) = X(i)-isoconjugate of X(j) for these (i,j): {1, 1271}, {63, 3536}, {75, 1152}, {304, 5410}, {55397, 55471}
X(66917) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 1271}, {206, 1152}, {3162, 3536}
X(66917) = crosssum of X(i) and X(j) for these (i,j): {2, 51952}, {6, 8903}
X(66917) = barycentric product X(i)*X(j) for these {i,j}: {4, 6416}, {6, 1132}, {494, 8038}, {1151, 46208}, {5411, 15749}
X(66917) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 1271}, {25, 3536}, {32, 1152}, {1132, 76}, {1151, 32841}, {1974, 5410}, {6416, 69}, {6424, 33365}, {8576, 55471}
X(66918) lies on the cubic K1284 and these lines: {6, 41}, {19, 8608}, {34, 8610}, {36, 22118}, {37, 226}, {53, 225}, {57, 4261}, {65, 2197}, {71, 1042}, {108, 5317}, {141, 241}, {169, 50653}, {201, 56541}, {579, 4306}, {583, 52635}, {608, 5301}, {651, 1778}, {800, 910}, {948, 17075}, {1104, 17053}, {1108, 5930}, {1155, 22071}, {1212, 5257}, {1254, 2294}, {1333, 37583}, {1407, 37500}, {1409, 1464}, {1415, 41332}, {1457, 16685}, {1465, 40941}, {1758, 1761}, {1914, 56907}, {1950, 5172}, {2245, 3990}, {2303, 57283}, {2345, 52358}, {2354, 23383}, {3002, 59681}, {3911, 46838}, {3965, 4101}, {4848, 21858}, {5542, 10443}, {7175, 62692}, {17348, 45890}, {18134, 27396}, {21854, 21933}, {22021, 51574}, {22132, 59317}, {25466, 40937}, {28387, 62214}, {37582, 50650}, {40942, 58411}, {46839, 59646}, {53417, 57285}, {54346, 56325}
X(66918) = isogonal conjugate of the isotomic conjugate of X(56559)
X(66918) = X(278)-Ceva conjugate of X(65)
X(66918) = X(2198)-cross conjugate of X(209)
X(66918) = X(i)-isoconjugate of X(j) for these (i,j): {9, 272}, {21, 1751}, {41, 57784}, {78, 40574}, {81, 56146}, {270, 40161}, {284, 2997}, {333, 2218}, {522, 65254}, {650, 65274}, {662, 23289}, {1021, 1305}, {2185, 41506}, {2194, 40011}, {2326, 28786}, {4391, 58986}, {7252, 51566}
X(66918) = X(i)-Dao conjugate of X(j) for these (i,j): {72, 345}, {478, 272}, {1084, 23289}, {1214, 40011}, {3160, 57784}, {40586, 56146}, {40590, 2997}, {40611, 1751}, {59608, 15467}
X(66918) = crosspoint of X(1262) and X(59090)
X(66918) = crossdifference of every pair of points on line {522, 21789}
X(66918) = barycentric product X(i)*X(j) for these {i,j}: {6, 56559}, {7, 209}, {10, 4306}, {56, 57808}, {57, 22021}, {65, 3868}, {73, 5125}, {85, 2198}, {100, 51658}, {226, 579}, {278, 51574}, {523, 65315}, {1400, 18134}, {1427, 27396}, {1441, 2352}, {3190, 3668}, {4551, 23800}, {4552, 43060}, {4566, 8676}, {6354, 56000}, {7178, 57217}, {15232, 19367}, {20294, 53321}, {40572, 55010}, {41320, 56382}, {52610, 57043}, {57173, 65233}
X(66918) = barycentric quotient X(i)/X(j) for these {i,j}: {7, 57784}, {42, 56146}, {56, 272}, {65, 2997}, {109, 65274}, {181, 41506}, {209, 8}, {226, 40011}, {512, 23289}, {579, 333}, {608, 40574}, {1400, 1751}, {1402, 2218}, {1415, 65254}, {1425, 28786}, {2197, 40161}, {2198, 9}, {2352, 21}, {3190, 1043}, {3668, 15467}, {3868, 314}, {4306, 86}, {4551, 51566}, {5125, 44130}, {8676, 7253}, {18134, 28660}, {22021, 312}, {23800, 18155}, {41320, 2322}, {43060, 4560}, {51574, 345}, {51658, 693}, {53321, 1305}, {56000, 7058}, {56559, 76}, {57173, 57215}, {57217, 645}, {57501, 2327}, {57808, 3596}, {65315, 99}
X(66918) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {65, 2197, 56926}, {73, 1400, 6}, {608, 37579, 5301}, {1254, 2294, 56908}
X(66919) lies on the circumconic {{A,B,C,X(4),X(5)}} and these lines: {4, 39}, {5, 41480}, {6, 2980}, {51, 52878}, {216, 17500}, {248, 251}, {263, 2165}, {311, 36412}, {327, 3314}, {427, 51334}, {1141, 11060}, {2186, 52383}, {2450, 3613}, {3148, 46319}, {3289, 14881}, {3619, 8797}, {3767, 9781}, {10412, 62384}, {10625, 54032}, {12077, 61196}, {13450, 27371}, {33631, 39286}, {40799, 58851}, {46317, 66879}, {52631, 60037}, {60032, 60679}, {60034, 65271}
X(66919) = X(26714)-Ceva conjugate of X(66291)
X(66919) = X(i)-isoconjugate of X(j) for these (i,j): {54, 52134}, {97, 60685}, {182, 2167}, {183, 2148}, {458, 2169}, {3403, 54034}, {10311, 62277}, {19210, 51315}, {20023, 62269}, {23878, 36134}, {34396, 62276}, {44144, 62267}
X(66919) = X(i)-Dao conjugate of X(j) for these (i,j): {137, 23878}, {216, 183}, {6663, 59197}, {14363, 458}, {40588, 182}, {52869, 51372}, {60596, 51373}, {63463, 3288}
X(66919) = barycentric product X(i)*X(j) for these {i,j}: {5, 262}, {51, 327}, {53, 42313}, {263, 311}, {324, 43718}, {850, 52926}, {2186, 14213}, {2618, 65252}, {3402, 62272}, {6368, 65349}, {12077, 65271}, {13450, 54032}, {14569, 59257}, {14570, 66291}, {18314, 26714}, {21011, 60679}, {23290, 65310}, {36412, 42300}, {39569, 66879}, {46319, 62278}, {46807, 60517}, {51444, 60828}, {51543, 53245}, {61196, 63741}
X(66919) = barycentric quotient X(i)/X(j) for these {i,j}: {5, 183}, {51, 182}, {53, 458}, {262, 95}, {263, 54}, {311, 20023}, {324, 44144}, {327, 34384}, {1393, 60716}, {1953, 52134}, {2181, 60685}, {2186, 2167}, {3199, 10311}, {3402, 2148}, {12077, 23878}, {14213, 3403}, {14569, 33971}, {21011, 60737}, {21807, 60723}, {26714, 18315}, {36412, 59197}, {40981, 34396}, {41221, 66459}, {42299, 39287}, {42313, 34386}, {43718, 97}, {46319, 54034}, {52631, 2623}, {52926, 110}, {52945, 51372}, {55219, 3288}, {60517, 46806}, {60524, 51373}, {61196, 63746}, {62260, 59208}, {62261, 39530}, {65349, 18831}, {66291, 15412}
X66920) lies on the circumconic {{A,B,C,X(1),X(3)}} and these lines: {1, 573}, {3, 1409}, {9, 10570}, {19, 29}, {31, 284}, {40, 54972}, {48, 283}, {55, 60038}, {63, 332}, {71, 78}, {77, 22097}, {102, 32693}, {212, 2359}, {219, 228}, {282, 2357}, {572, 52185}, {604, 16778}, {612, 56225}, {931, 2249}, {1036, 2281}, {1037, 16678}, {1630, 2155}, {1821, 65230}, {2148, 35196}, {2215, 4269}, {2250, 51565}, {2282, 37870}, {2300, 45787}, {3169, 17156}, {3185, 46889}, {3478, 16685}, {5271, 34258}, {7100, 15945}, {7163, 39578}, {18655, 58008}, {22080, 23526}, {23707, 65225}, {24310, 44733}, {32038, 60046}, {34263, 56148}
X(66920) = isogonal conjugate of X(5307)
X(66920) = isotomic conjugate of the polar conjugate of X(2258)
X(66920) = isogonal conjugate of the polar conjugate of X(31359)
X(66920) = X(31359)-Ceva conjugate of X(2258)
X(66920) = X(i)-isoconjugate of X(j) for these (i,j): {1, 5307}, {2, 4185}, {4, 940}, {19, 10436}, {25, 34284}, {27, 59305}, {28, 31993}, {34, 11679}, {57, 54396}, {65, 44734}, {81, 1867}, {92, 1468}, {108, 23880}, {162, 50457}, {264, 5019}, {273, 2268}, {278, 958}, {648, 8672}, {653, 17418}, {1119, 3713}, {1396, 3714}, {1398, 61414}, {1783, 43067}, {1897, 48144}, {6331, 8639}, {7012, 53526}, {7649, 65168}, {13149, 58332}, {14257, 34279}, {15742, 53543}, {40149, 54417}, {53561, 55346}
X(66920) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 5307}, {6, 10436}, {125, 50457}, {5452, 54396}, {6505, 34284}, {11517, 11679}, {22391, 1468}, {32664, 4185}, {34467, 48144}, {36033, 940}, {38983, 23880}, {39006, 43067}, {40586, 1867}, {40591, 31993}, {40602, 44734}, {55066, 8672}
X(66920) = crosssum of X(i) and X(j) for these (i,j): {8672, 53561}, {48144, 53526}
X(66920) = trilinear pole of line {652, 810}
X(66920) = crossdifference of every pair of points on line {17418, 50457}
X(66920) = barycentric product X(i)*X(j) for these {i,j}: {1, 34259}, {3, 31359}, {48, 34258}, {63, 941}, {69, 2258}, {71, 37870}, {72, 5331}, {78, 959}, {212, 58008}, {219, 44733}, {283, 60321}, {521, 65225}, {647, 65230}, {652, 32038}, {656, 931}, {810, 65280}, {5227, 34260}, {6332, 32693}, {9247, 40828}, {52931, 57081}
X(66920) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 10436}, {6, 5307}, {31, 4185}, {42, 1867}, {48, 940}, {55, 54396}, {63, 34284}, {71, 31993}, {184, 1468}, {212, 958}, {219, 11679}, {228, 59305}, {284, 44734}, {647, 50457}, {652, 23880}, {810, 8672}, {906, 65168}, {931, 811}, {941, 92}, {959, 273}, {1459, 43067}, {1802, 3713}, {1946, 17418}, {2258, 4}, {2318, 3714}, {3692, 61414}, {5331, 286}, {7117, 53526}, {9247, 5019}, {22086, 53536}, {22383, 48144}, {31359, 264}, {32038, 46404}, {32693, 653}, {34258, 1969}, {34259, 75}, {37870, 44129}, {44733, 331}, {52425, 2268}, {58008, 57787}, {60321, 57809}, {65225, 18026}, {65230, 6331}, {65280, 57968}
X(66921) lies on the Jerabek circumhyperbola and these lines: {3, 1433}, {4, 57}, {6, 603}, {28, 57734}, {56, 64}, {58, 57392}, {65, 2357}, {69, 271}, {71, 22341}, {72, 856}, {74, 8059}, {282, 579}, {285, 37141}, {290, 53642}, {672, 7367}, {895, 65179}, {1243, 37544}, {1246, 1440}, {1400, 1903}, {1408, 57735}, {1422, 51223}, {1427, 8811}, {1451, 7151}, {1470, 2208}, {1795, 57422}, {2213, 6612}, {2260, 7129}, {2272, 7156}, {4848, 38955}, {6355, 28786}, {7004, 37566}, {34259, 41081}, {47438, 54431}, {57732, 65330}
X(66921) = isogonal conjugate of the polar conjugate of X(8808)
X(66921) = X(i)-Ceva conjugate of X(j) for these (i,j): {84, 52384}, {52037, 41087}, {52389, 73}, {56972, 52037}
X(66921) = X(i)-cross conjugate of X(j) for these (i,j): {1400, 52373}, {1410, 73}
X(66921) = X(i)-isoconjugate of X(j) for these (i,j): {8, 3194}, {9, 41083}, {19, 27398}, {21, 7952}, {27, 2324}, {28, 7080}, {29, 40}, {33, 8822}, {81, 55116}, {86, 40971}, {107, 57101}, {158, 1819}, {162, 8058}, {196, 2287}, {198, 31623}, {208, 1043}, {223, 2322}, {227, 59482}, {270, 21075}, {281, 1817}, {283, 47372}, {284, 64211}, {286, 7074}, {314, 3195}, {318, 2360}, {322, 2299}, {329, 1172}, {333, 2331}, {342, 2328}, {347, 4183}, {643, 54239}, {648, 14298}, {823, 10397}, {1896, 7078}, {2185, 53009}, {2187, 44130}, {2326, 64708}, {2332, 40702}, {5317, 55112}, {5379, 38357}, {5546, 59935}, {6129, 36797}, {8748, 64082}, {14837, 65201}, {17926, 65159}, {21871, 46103}, {24019, 57245}, {41082, 44695}, {57049, 65232}
X(66921) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 27398}, {125, 8058}, {226, 322}, {478, 41083}, {1147, 1819}, {35071, 57245}, {36908, 342}, {38985, 57101}, {40586, 55116}, {40590, 64211}, {40591, 7080}, {40600, 40971}, {40611, 7952}, {55060, 54239}, {55066, 14298}, {59608, 40701}
X(66921) = cevapoint of X(1400) and X(2357)
X(66921) = crosspoint of X(i) and X(j) for these (i,j): {3, 47849}, {84, 1433}, {55117, 56972}
X(66921) = crosssum of X(i) and X(j) for these (i,j): {4, 1712}, {9, 44695}, {40, 7952}, {40971, 55116}
X(66921) = trilinear pole of line {647, 51640}
X(66921) = crossdifference of every pair of points on line {8058, 10397}
X(66921) = barycentric product X(i)*X(j) for these {i,j}: {1, 52037}, {3, 8808}, {7, 41087}, {10, 55117}, {37, 56972}, {42, 34400}, {56, 56944}, {57, 52389}, {63, 52384}, {65, 41081}, {71, 1440}, {72, 1422}, {73, 189}, {77, 1903}, {84, 1214}, {222, 39130}, {226, 1433}, {268, 3668}, {271, 1427}, {280, 52373}, {282, 1439}, {283, 13853}, {284, 6355}, {285, 37755}, {306, 1413}, {307, 1436}, {309, 1409}, {326, 2358}, {348, 2357}, {520, 65330}, {523, 65179}, {525, 8059}, {647, 53642}, {656, 37141}, {905, 61229}, {1014, 53010}, {1020, 61040}, {1042, 44189}, {1073, 52078}, {1231, 2208}, {1410, 34404}, {1446, 2188}, {2192, 56382}, {3682, 55110}, {3710, 6612}, {6516, 55242}, {7129, 52385}, {7151, 52565}, {7177, 53013}, {13138, 51664}, {17094, 36049}, {22341, 64988}, {40152, 40836}, {51640, 65270}
X(66921) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 27398}, {42, 55116}, {56, 41083}, {65, 64211}, {71, 7080}, {73, 329}, {84, 31623}, {181, 53009}, {189, 44130}, {213, 40971}, {222, 8822}, {228, 2324}, {268, 1043}, {520, 57245}, {577, 1819}, {603, 1817}, {604, 3194}, {647, 8058}, {810, 14298}, {822, 57101}, {1042, 196}, {1214, 322}, {1400, 7952}, {1402, 2331}, {1409, 40}, {1410, 223}, {1413, 27}, {1422, 286}, {1425, 64708}, {1427, 342}, {1433, 333}, {1436, 29}, {1439, 40702}, {1440, 44129}, {1880, 47372}, {1903, 318}, {2188, 2287}, {2192, 2322}, {2197, 21075}, {2200, 7074}, {2208, 1172}, {2357, 281}, {2358, 158}, {3668, 40701}, {3682, 55112}, {4017, 59935}, {4055, 55111}, {6355, 349}, {6516, 55241}, {7118, 4183}, {7129, 1896}, {7151, 8748}, {7180, 54239}, {8059, 648}, {8808, 264}, {13853, 57809}, {22341, 64082}, {23224, 57213}, {32652, 65201}, {34400, 310}, {36049, 36797}, {37141, 811}, {37755, 57810}, {39130, 7017}, {39201, 10397}, {41081, 314}, {41087, 8}, {51640, 64885}, {51664, 17896}, {52037, 75}, {52078, 15466}, {52373, 347}, {52384, 92}, {52389, 312}, {52411, 2360}, {53010, 3701}, {53013, 7101}, {53642, 6331}, {55117, 86}, {55242, 44426}, {56944, 3596}, {56972, 274}, {61229, 6335}, {65179, 99}, {65330, 6528}
X(66921) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 1433, 2188}, {57, 3182, 208}, {84, 3341, 7008}
X(66922) lies on the circumconic {{A,B,C,X(1),X(2)}} and these lines: {1, 564}, {2, 94}, {57, 24624}, {81, 16732}, {88, 32680}, {105, 476}, {265, 44229}, {274, 16734}, {448, 32662}, {1255, 18359}, {2224, 32678}, {2401, 66487}, {2982, 18815}, {2990, 37783}, {3227, 35139}, {10412, 60043}, {14592, 60044}, {14616, 25417}, {15475, 60045}, {16082, 46456}, {34051, 47317}, {36122, 36129}, {37251, 56407}, {37887, 52381}, {37959, 53768}, {60091, 64991}
X(66922) = isotomic conjugate of X(42701)
X(66922) = X(i)-cross conjugate of X(j) for these (i,j): {3582, 86}, {18609, 81}, {51420, 286}
X(66922) = X(i)-isoconjugate of X(j) for these (i,j): {10, 50}, {31, 42701}, {35, 2245}, {37, 6149}, {42, 323}, {71, 186}, {100, 2624}, {101, 526}, {190, 14270}, {228, 52414}, {306, 34397}, {313, 19627}, {340, 2200}, {692, 32679}, {758, 2174}, {1331, 47230}, {1464, 52405}, {1826, 22115}, {1918, 7799}, {1983, 57099}, {2088, 4570}, {2290, 56254}, {2323, 2594}, {2333, 52437}, {2361, 16577}, {3219, 3724}, {3268, 32739}, {3678, 7113}, {3682, 52418}, {3969, 52434}, {4024, 52603}, {4053, 17104}, {4055, 14165}, {4062, 52668}, {4064, 14591}, {4079, 10411}, {4511, 21741}, {8552, 8750}, {14590, 55230}, {32656, 44427}, {40999, 52426}, {57268, 60726}
X(66922) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 42701}, {1015, 526}, {1086, 32679}, {5521, 47230}, {8054, 2624}, {14993, 37}, {15295, 213}, {26932, 8552}, {34021, 7799}, {40589, 6149}, {40592, 323}, {40619, 3268}, {50330, 2088}, {55053, 14270}, {56847, 4053}
X(66922) = cevapoint of X(1989) and X(2166)
X(66922) = trilinear pole of line {79, 513}
X(66922) = crossdifference of every pair of points on line {2624, 14270}
X(66922) = barycentric product X(i)*X(j) for these {i,j}: {28, 328}, {58, 63759}, {79, 14616}, {81, 94}, {86, 2166}, {99, 43082}, {265, 286}, {274, 1989}, {476, 693}, {513, 35139}, {514, 32680}, {759, 20565}, {905, 46456}, {1333, 20573}, {1437, 18817}, {1444, 6344}, {3261, 32678}, {3615, 18815}, {4025, 36129}, {4623, 15475}, {6385, 11060}, {10412, 52935}, {14560, 40495}, {14582, 55231}, {16697, 65360}, {16732, 39295}, {17924, 60053}, {18180, 46138}, {18359, 52393}, {18609, 40427}, {20566, 52375}, {24624, 30690}, {36061, 46107}, {52153, 57796}
X(66922) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 42701}, {27, 52414}, {28, 186}, {58, 6149}, {79, 758}, {80, 3678}, {81, 323}, {94, 321}, {265, 72}, {274, 7799}, {286, 340}, {328, 20336}, {476, 100}, {513, 526}, {514, 32679}, {649, 2624}, {667, 14270}, {693, 3268}, {759, 35}, {905, 8552}, {1141, 56254}, {1333, 50}, {1411, 2594}, {1437, 22115}, {1444, 52437}, {1989, 37}, {2006, 16577}, {2160, 2245}, {2166, 10}, {2203, 34397}, {2341, 52405}, {3125, 2088}, {3615, 4511}, {4164, 39495}, {5317, 52418}, {6186, 3724}, {6344, 41013}, {6591, 47230}, {6740, 4420}, {8818, 4053}, {10412, 4036}, {11060, 213}, {14158, 6126}, {14399, 52743}, {14419, 44814}, {14560, 692}, {14582, 55232}, {14616, 319}, {15065, 7206}, {15413, 45792}, {15475, 4705}, {16732, 62551}, {17924, 44427}, {18180, 1154}, {18210, 16186}, {18359, 3969}, {18384, 1824}, {18609, 34834}, {18815, 40999}, {18883, 42700}, {20565, 35550}, {20573, 27801}, {24624, 3219}, {30234, 9126}, {30602, 39149}, {30690, 3936}, {32662, 906}, {32678, 101}, {32680, 190}, {34079, 2174}, {34948, 44808}, {35139, 668}, {36061, 1331}, {36129, 1897}, {39295, 4567}, {43082, 523}, {43083, 57109}, {43084, 42713}, {46138, 56189}, {46155, 4553}, {46456, 6335}, {50433, 3990}, {51369, 51383}, {51420, 1511}, {52153, 228}, {52372, 1464}, {52374, 18593}, {52375, 36}, {52380, 35193}, {52393, 3218}, {52920, 53176}, {52935, 10411}, {52954, 35201}, {52955, 39176}, {55236, 2610}, {56395, 21839}, {56401, 60723}, {57736, 52408}, {60053, 1332}, {60074, 7265}, {63759, 313}, {66075, 42717}, {66284, 57099}, {66289, 21054}
X(66922) = {X(14194),X(52002)}-harmonic conjugate of X(476)
X(66923) lies on the circumconic {{A,B,C,X(1),X(2)}} and these lines: {1, 280}, {2, 34404}, {57, 189}, {84, 1208}, {105, 65362}, {271, 51498}, {278, 1440}, {279, 54284}, {309, 17862}, {346, 56354}, {961, 7157}, {1255, 24553}, {7003, 55117}, {8059, 39451}, {9965, 53642}, {20991, 58990}, {40399, 44189}, {42549, 59263}, {44327, 56234}
X(66923) = X(i)-cross conjugate of X(j) for these (i,j): {1422, 189}, {40836, 1440}, {52571, 309}
X(66923) = X(i)-isoconjugate of X(j) for these (i,j): {6, 1103}, {40, 198}, {41, 55015}, {55, 40212}, {208, 55111}, {221, 2324}, {223, 7074}, {329, 2187}, {2149, 3318}, {2199, 7080}, {2331, 7078}, {2360, 21871}, {3195, 64082}, {7011, 40971}, {7114, 55116}, {14298, 57118}, {24027, 61075}
X(66923) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 1103}, {223, 40212}, {522, 61075}, {650, 3318}, {3160, 55015}, {3341, 2324}
X(66923) = cevapoint of X(6) and X(1622)
X(66923) = barycentric product X(i)*X(j) for these {i,j}: {7, 46355}, {75, 1256}, {84, 309}, {189, 189}, {261, 7157}, {280, 1440}, {693, 65362}, {1413, 57793}, {1422, 34404}, {1436, 44190}, {7003, 34400}, {7020, 56972}, {41081, 64988}, {44189, 55110}, {52384, 57795}, {55211, 55242}
X(66923) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 1103}, {7, 55015}, {11, 3318}, {57, 40212}, {84, 40}, {189, 329}, {268, 55111}, {280, 7080}, {282, 2324}, {309, 322}, {1146, 61075}, {1256, 1}, {1413, 221}, {1422, 223}, {1433, 7078}, {1436, 198}, {1440, 347}, {1903, 21871}, {2192, 7074}, {2208, 2187}, {6612, 6611}, {7003, 55116}, {7008, 40971}, {7129, 2331}, {7151, 3195}, {7157, 12}, {7367, 7368}, {8059, 57118}, {8808, 64708}, {37141, 65159}, {39130, 21075}, {40836, 7952}, {41081, 64082}, {44189, 55112}, {46355, 8}, {52384, 227}, {52571, 6260}, {55110, 196}, {55117, 7011}, {55211, 55241}, {55242, 55212}, {56972, 7013}, {60803, 41088}, {61040, 57101}, {64988, 64211}, {65362, 100}
X(66924) lies on the Jerabek circumhyperbola and these lines: {3, 1459}, {4, 2457}, {6, 649}, {65, 4017}, {67, 46150}, {69, 4025}, {71, 647}, {72, 656}, {74, 106}, {88, 37142}, {248, 32659}, {290, 903}, {513, 24443}, {895, 1797}, {901, 57741}, {1022, 51223}, {1201, 61637}, {1246, 6548}, {1903, 55242}, {3257, 57740}, {4256, 57130}, {4591, 57742}, {4615, 57739}, {4674, 4707}, {6336, 57732}, {8752, 43717}, {9409, 43693}, {9456, 57735}, {15232, 66285}, {15328, 66288}, {17690, 20293}, {22376, 23226}, {36058, 57736}, {36125, 57734}, {43922, 53525}, {56049, 57737}
X(66924) = isogonal conjugate of X(46541)
X(66924) = isotomic conjugate of the polar conjugate of X(55263)
X(66924) = isogonal conjugate of the polar conjugate of X(4049)
X(66924) = X(i)-Ceva conjugate of X(j) for these (i,j): {4049, 55263}, {4591, 32659}, {23838, 55244}
X(66924) = X(i)-isoconjugate of X(j) for these (i,j): {1, 46541}, {25, 55243}, {27, 1023}, {28, 17780}, {29, 23703}, {44, 648}, {100, 37168}, {107, 5440}, {110, 38462}, {112, 4358}, {162, 519}, {163, 46109}, {286, 23344}, {643, 1877}, {662, 8756}, {811, 902}, {823, 22356}, {900, 5379}, {1172, 62669}, {1319, 36797}, {1396, 30731}, {1474, 24004}, {1783, 16704}, {1897, 52680}, {1973, 55262}, {2251, 6331}, {2325, 65232}, {3264, 32676}, {3285, 6335}, {3911, 65201}, {3977, 24019}, {4242, 56950}, {4246, 36944}, {4622, 42070}, {4730, 18020}, {5546, 37790}, {6528, 23202}, {8750, 30939}, {9459, 57968}, {14407, 46254}, {14429, 24000}, {31623, 61210}, {40663, 52914}, {46103, 61171}, {52963, 55231}
X(66924) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 46541}, {115, 46109}, {125, 519}, {244, 38462}, {1084, 8756}, {6337, 55262}, {6505, 55243}, {8054, 37168}, {9460, 6331}, {15526, 3264}, {17423, 902}, {26932, 30939}, {34467, 52680}, {34591, 4358}, {35071, 3977}, {38985, 5440}, {39006, 16704}, {40591, 17780}, {40594, 811}, {40595, 648}, {51574, 24004}, {55060, 1877}, {55066, 44}
X(66924) = crosspoint of X(903) and X(4591)
X(66924) = crosssum of X(i) and X(j) for these (i,j): {519, 14429}, {902, 4120}
X(66924) = crossdifference of every pair of points on line {519, 8756}
X(66924) = barycentric product X(i)*X(j) for these {i,j}: {3, 4049}, {63, 55244}, {69, 55263}, {71, 6548}, {72, 1022}, {73, 60480}, {77, 61179}, {88, 656}, {106, 525}, {125, 4591}, {306, 23345}, {520, 6336}, {523, 1797}, {647, 903}, {810, 20568}, {850, 32659}, {901, 4466}, {905, 4674}, {1214, 23838}, {1320, 51664}, {1459, 4080}, {1577, 36058}, {1790, 66285}, {2226, 14429}, {2316, 17094}, {3049, 57995}, {3257, 18210}, {3265, 8752}, {3708, 4622}, {4013, 7254}, {4558, 66288}, {4574, 6549}, {4580, 46150}, {4615, 20975}, {8611, 56049}, {9456, 14208}, {10097, 52759}, {14380, 52753}, {23067, 60578}, {24018, 36125}, {30575, 53532}, {43922, 52609}
X(66924) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 46541}, {63, 55243}, {69, 55262}, {71, 17780}, {72, 24004}, {73, 62669}, {88, 811}, {106, 648}, {228, 1023}, {512, 8756}, {520, 3977}, {523, 46109}, {525, 3264}, {647, 519}, {649, 37168}, {656, 4358}, {661, 38462}, {810, 44}, {822, 5440}, {903, 6331}, {905, 30939}, {1022, 286}, {1409, 23703}, {1417, 65232}, {1459, 16704}, {1797, 99}, {2200, 23344}, {2316, 36797}, {2318, 30731}, {2441, 4248}, {3049, 902}, {3269, 14429}, {3690, 4169}, {4017, 37790}, {4049, 264}, {4120, 65585}, {4466, 65867}, {4591, 18020}, {4622, 46254}, {4674, 6335}, {6336, 6528}, {6548, 44129}, {7180, 1877}, {8611, 4723}, {8752, 107}, {9456, 162}, {10097, 52747}, {14407, 42070}, {14429, 36791}, {18210, 3762}, {20568, 57968}, {20975, 4120}, {22379, 17191}, {22383, 52680}, {23189, 30606}, {23345, 27}, {23838, 31623}, {32659, 110}, {32665, 5379}, {36058, 662}, {36125, 823}, {39201, 22356}, {43922, 17925}, {46150, 41676}, {53532, 16729}, {53560, 4768}, {55230, 3943}, {55232, 3992}, {55234, 40663}, {55244, 92}, {55263, 4}, {60480, 44130}, {61179, 318}, {65751, 14407}, {66288, 14618}
X(66925) lies on the cubic K497 and these lines: {25, 1989}, {30, 50531}, {64, 265}, {94, 3424}, {476, 858}, {1042, 1411}, {1495, 19656}, {5627, 57584}, {9003, 43088}, {14993, 18403}, {18576, 34209}, {18859, 51345}, {18883, 52449}, {32319, 34751}, {32738, 56918}, {40355, 62361}, {52169, 60739}, {52945, 56924}
X(66925) = X(265)-Ceva conjugate of X(1989)
X(66925) = X(i)-isoconjugate of X(j) for these (i,j): {50, 57921}, {186, 19611}, {253, 6149}, {323, 2184}, {340, 19614}, {1073, 52414}, {2155, 7799}, {2349, 66492}, {2624, 44326}, {8552, 65224}, {32679, 46639}, {34397, 57780}
X(66925) = X(i)-Dao conjugate of X(j) for these (i,j): {4, 340}, {122, 3268}, {14993, 253}, {15295, 64}, {39020, 45792}, {45245, 7799}, {45248, 52437}, {45249, 1273}, {52874, 6148}
X(66925) = crossdifference of every pair of points on line {8552, 66492}
X(66925) = barycentric product X(i)*X(j) for these {i,j}: {20, 1989}, {94, 154}, {265, 1249}, {328, 3172}, {476, 6587}, {610, 2166}, {1141, 42459}, {6344, 15905}, {10152, 56399}, {11060, 14615}, {14249, 50433}, {14254, 15291}, {14356, 66880}, {14582, 52913}, {14592, 57153}, {15466, 52153}, {15475, 36841}, {17898, 32678}, {18384, 37669}, {35139, 62176}, {36296, 44703}, {36297, 44702}, {42658, 46456}, {43083, 57219}, {44705, 60053}
X(66925) = barycentric quotient X(i)/X(j) for these {i,j}: {20, 7799}, {94, 41530}, {154, 323}, {204, 52414}, {265, 34403}, {476, 44326}, {1249, 340}, {1495, 66492}, {1989, 253}, {2166, 57921}, {3172, 186}, {3198, 42701}, {6344, 52581}, {6525, 14165}, {6587, 3268}, {8057, 45792}, {11060, 64}, {14560, 46639}, {15475, 58759}, {15905, 52437}, {18384, 459}, {42459, 1273}, {42658, 8552}, {43083, 14638}, {44705, 44427}, {50433, 15394}, {52153, 1073}, {57153, 14590}, {62175, 14270}, {62176, 526}
X(66925) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {14583, 52153, 18384}, {18384, 52153, 1989}
X(66926) lies on the Simmons circumconic (perspector X(13)) and these lines: {10, 36316}, {13, 4080}, {100, 54026}, {101, 476}, {145, 21466}, {190, 23895}, {835, 5995}, {1331, 60051}, {1897, 36306}, {2153, 41683}, {3457, 27809}, {3943, 11537}, {4393, 60858}, {6542, 11078}, {17763, 51805}, {18359, 46073}, {20578, 66283}, {37794, 52039}, {38414, 44765}
X(66926) = X(i)-isoconjugate of X(j) for these (i,j): {15, 513}, {28, 60010}, {81, 6137}, {298, 667}, {470, 22383}, {514, 2151}, {649, 65569}, {693, 34394}, {905, 8739}, {1333, 23870}, {2605, 39152}, {3125, 17402}, {6591, 44718}, {14419, 66872}, {17924, 46112}, {43924, 44688}, {46077, 53314}
X(66926) = X(i)-Dao conjugate of X(j) for these (i,j): {37, 23870}, {5375, 65569}, {6631, 298}, {39026, 15}, {40578, 514}, {40586, 6137}, {40591, 60010}, {55065, 30465}
X(66926) = cevapoint of X(522) and X(5240)
X(66926) = trilinear pole of line {10, 13}
X(66926) = barycentric product X(i)*X(j) for these {i,j}: {10, 23895}, {13, 190}, {101, 300}, {306, 36306}, {313, 5995}, {651, 44690}, {668, 2153}, {1897, 40709}, {1978, 3457}, {4561, 8737}, {4600, 20578}, {15455, 46073}, {36804, 39153}
X(66926) = barycentric quotient X(i)/X(j) for these {i,j}: {10, 23870}, {13, 514}, {42, 6137}, {71, 60010}, {100, 65569}, {101, 15}, {190, 298}, {300, 3261}, {644, 44688}, {692, 2151}, {1331, 44718}, {1897, 470}, {2153, 513}, {3457, 649}, {4024, 30465}, {4062, 9204}, {4570, 17402}, {5995, 58}, {7026, 54015}, {8737, 7649}, {8750, 8739}, {20578, 3120}, {23895, 86}, {30452, 21131}, {30720, 44725}, {32656, 46112}, {32739, 34394}, {36072, 19373}, {36296, 1459}, {36299, 11125}, {36306, 27}, {36307, 62626}, {36933, 54021}, {38414, 1790}, {39153, 3960}, {40709, 4025}, {44690, 4391}, {46073, 14838}, {52039, 4750}, {54022, 2307}, {54026, 2306}
X(66927) lies on the Simmons circumconic (perspector X(13)) and these lines: {10, 36317}, {14, 4080}, {100, 54024}, {101, 476}, {145, 21467}, {190, 23896}, {835, 5994}, {1331, 60052}, {1897, 36309}, {2154, 41683}, {3458, 27809}, {3943, 11549}, {4393, 60859}, {6542, 11092}, {17763, 51806}, {18359, 46077}, {20579, 66283}, {37795, 52040}, {38413, 44765}
X(66927) = X(i)-isoconjugate of X(j) for these (i,j): {16, 513}, {28, 60009}, {81, 6138}, {299, 667}, {471, 22383}, {514, 2152}, {649, 65570}, {693, 34395}, {905, 8740}, {1333, 23871}, {2605, 39153}, {3125, 17403}, {6591, 44719}, {14419, 66873}, {17924, 46113}, {43924, 44689}, {46073, 53314}
X(66927) = X(i)-Dao conjugate of X(j) for these (i,j): {37, 23871}, {5375, 65570}, {6631, 299}, {39026, 16}, {40579, 514}, {40586, 6138}, {40591, 60009}, {55065, 30468}
X(66927) = cevapoint of X(522) and X(5239)
X(66927) = trilinear pole of line {10, 14}
X(66927) = barycentric product X(i)*X(j) for these {i,j}: {10, 23896}, {14, 190}, {101, 301}, {306, 36309}, {313, 5994}, {651, 44691}, {668, 2154}, {1897, 40710}, {1978, 3458}, {4561, 8738}, {4600, 20579}, {15455, 46077}, {36804, 39152}
X(66927) = barycentric quotient X(i)/X(j) for these {i,j}: {10, 23871}, {14, 514}, {42, 6138}, {71, 60009}, {100, 65570}, {101, 16}, {190, 299}, {301, 3261}, {644, 44689}, {692, 2152}, {1331, 44719}, {1897, 471}, {2154, 513}, {3458, 649}, {4024, 30468}, {4062, 9205}, {4570, 17403}, {5994, 58}, {7043, 54014}, {8738, 7649}, {8750, 8740}, {20579, 3120}, {23896, 86}, {30453, 21131}, {30720, 44726}, {32656, 46113}, {32739, 34395}, {36073, 7051}, {36297, 1459}, {36298, 11125}, {36309, 27}, {36310, 62626}, {36932, 54023}, {38413, 1790}, {39152, 3960}, {40710, 4025}, {44691, 4391}, {46077, 14838}, {52040, 4750}, {54024, 33654}
X(66928) lies on the Lemoine asymptotic hyperbola and these lines: {1, 60031}, {56, 60050}, {57, 60045}, {65, 876}, {73, 35364}, {109, 691}, {226, 60028}, {512, 810}, {523, 656}, {651, 60057}, {663, 6589}, {664, 4589}, {667, 1402}, {798, 2489}, {834, 43924}, {1400, 9178}, {1734, 47715}, {1769, 48400}, {1813, 60054}, {1880, 18344}, {2254, 3910}, {3309, 3931}, {3676, 57247}, {4079, 17411}, {4162, 37593}, {4367, 53521}, {4424, 4905}, {4572, 57993}, {4705, 42666}, {4784, 57079}, {4834, 57181}, {5075, 21789}, {6367, 55197}, {8034, 59174}, {8676, 23655}, {10474, 48333}, {17072, 35519}, {21348, 21957}, {21725, 51441}, {23740, 29051}, {23877, 58333}, {32674, 32696}, {48080, 60321}, {48322, 65703}, {50343, 66488}, {55210, 58302}, {57162, 57234}
X(66928) = reflection of X(i) in X(j) for these {i,j}: {663, 6589}, {35519, 17072}, {51641, 7180}
X(66928) = polar conjugate of X(55233)
X(66928) = isogonal conjugate of the isotomic conjugate of X(66287)
X(66928) = polar conjugate of the isotomic conjugate of X(55234)
X(66928) = X(i)-Ceva conjugate of X(j) for these (i,j): {109, 1400}, {181, 61052}, {1402, 3122}, {4017, 57185}, {4572, 226}, {57185, 4079}, {66287, 55234}
X(66928) = X(i)-cross conjugate of X(j) for these (i,j): {50487, 4079}, {61052, 181}
X(66928) = X(i)-isoconjugate of X(j) for these (i,j): {2, 4612}, {6, 4631}, {8, 52935}, {9, 4610}, {21, 99}, {29, 4592}, {37, 55196}, {41, 52612}, {48, 55233}, {55, 4623}, {58, 7257}, {60, 668}, {69, 52914}, {75, 4636}, {81, 645}, {86, 643}, {100, 261}, {101, 52379}, {110, 314}, {162, 332}, {163, 28660}, {190, 2185}, {212, 55229}, {219, 55231}, {249, 4391}, {250, 35518}, {270, 4561}, {274, 5546}, {283, 811}, {284, 799}, {310, 65375}, {312, 4556}, {326, 52921}, {333, 662}, {513, 6064}, {521, 18020}, {522, 24041}, {552, 4578}, {593, 646}, {644, 1509}, {648, 1812}, {650, 4590}, {651, 7058}, {652, 46254}, {663, 24037}, {664, 1098}, {670, 2194}, {692, 18021}, {757, 3699}, {763, 30730}, {823, 6514}, {873, 3939}, {960, 65281}, {1014, 7256}, {1021, 4620}, {1043, 1414}, {1101, 35519}, {1172, 4563}, {1264, 52920}, {1331, 57779}, {1332, 46103}, {1333, 62534}, {1412, 7258}, {1434, 7259}, {1444, 36797}, {1474, 55207}, {1576, 40072}, {1914, 36806}, {1978, 2150}, {2193, 6331}, {2204, 52608}, {2287, 4573}, {2299, 55202}, {2326, 65164}, {2328, 4625}, {2332, 55205}, {2341, 55237}, {2651, 17931}, {3063, 34537}, {3064, 62719}, {3257, 30606}, {3684, 65258}, {3685, 36066}, {3686, 62535}, {3687, 65255}, {3702, 6578}, {3719, 52919}, {3737, 4600}, {3900, 7340}, {4069, 6628}, {4511, 65283}, {4516, 31614}, {4554, 7054}, {4558, 31623}, {4560, 4567}, {4569, 6061}, {4570, 18155}, {4575, 44130}, {4582, 30576}, {4601, 7252}, {4602, 57657}, {4603, 27958}, {4616, 56182}, {4998, 65575}, {6335, 65568}, {6516, 59482}, {17194, 55281}, {17206, 65201}, {18344, 47389}, {23999, 57241}, {24000, 52616}, {26856, 31615}, {32851, 37140}, {35192, 55209}, {52550, 53280}, {53560, 55270}, {54417, 65280}, {56053, 56181}
X(66928) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 4631}, {10, 7257}, {37, 62534}, {115, 28660}, {125, 332}, {136, 44130}, {206, 4636}, {223, 4623}, {226, 55202}, {244, 314}, {478, 4610}, {512, 663}, {523, 35519}, {1015, 52379}, {1084, 333}, {1086, 18021}, {1214, 670}, {1249, 55233}, {3005, 522}, {3160, 52612}, {4858, 40072}, {5139, 29}, {5521, 57779}, {8054, 261}, {10001, 34537}, {15259, 52921}, {15267, 664}, {17423, 283}, {21905, 14432}, {32664, 4612}, {36906, 36806}, {36908, 4625}, {38978, 3685}, {38986, 21}, {38991, 7058}, {38996, 284}, {39025, 1098}, {39026, 6064}, {40586, 645}, {40589, 55196}, {40590, 799}, {40599, 7258}, {40600, 643}, {40607, 3699}, {40608, 1043}, {40611, 99}, {40617, 873}, {40622, 310}, {40627, 4560}, {40837, 55229}, {47345, 6331}, {50330, 18155}, {50497, 3737}, {51574, 55207}, {55053, 2185}, {55055, 30606}, {55060, 86}, {55065, 3596}, {55066, 1812}, {56325, 1978}, {62565, 52608}, {62570, 4602}
X(66928) = crosspoint of X(i) and X(j) for these (i,j): {65, 21859}, {109, 1400}, {225, 32674}, {226, 4572}, {664, 18097}, {4017, 7180}
X(66928) = crosssum of X(i) and X(j) for these (i,j): {99, 4592}, {283, 6332}, {332, 52616}, {333, 522}, {514, 24161}, {643, 645}, {3737, 17185}
X(66928) = trilinear pole of line {3124, 21823}
X(66928) = crossdifference of every pair of points on line {261, 284}
X(66928) = barycentric product X(i)*X(j) for these {i,j}: {1, 57185}, {4, 55234}, {6, 66287}, {7, 4079}, {10, 7180}, {12, 649}, {25, 57243}, {34, 55232}, {37, 4017}, {42, 7178}, {48, 66297}, {56, 4024}, {57, 4705}, {58, 55197}, {59, 21131}, {65, 661}, {72, 55208}, {73, 2501}, {85, 50487}, {101, 1365}, {108, 3708}, {109, 115}, {125, 32674}, {172, 66292}, {181, 514}, {190, 61052}, {201, 6591}, {210, 7216}, {213, 4077}, {225, 647}, {226, 512}, {227, 55242}, {244, 21859}, {278, 55230}, {307, 2489}, {321, 51641}, {349, 669}, {513, 2171}, {523, 1400}, {525, 57652}, {594, 43924}, {604, 4036}, {608, 4064}, {650, 1254}, {651, 2643}, {653, 20975}, {656, 1880}, {657, 6046}, {663, 6354}, {664, 3124}, {667, 6358}, {756, 3669}, {762, 7203}, {798, 1441}, {810, 40149}, {872, 24002}, {951, 65796}, {1018, 53540}, {1020, 4516}, {1042, 3700}, {1084, 4572}, {1089, 57181}, {1109, 1415}, {1356, 1978}, {1357, 4103}, {1397, 52623}, {1402, 1577}, {1404, 66285}, {1409, 24006}, {1411, 2610}, {1414, 21833}, {1425, 3064}, {1426, 8611}, {1427, 4041}, {1434, 58289}, {1439, 55206}, {1446, 63461}, {1458, 66282}, {1459, 8736}, {1461, 4092}, {1464, 55238}, {1500, 3676}, {1813, 8754}, {1824, 51664}, {1919, 34388}, {2006, 42666}, {2161, 51663}, {2183, 66275}, {2197, 7649}, {2321, 7250}, {2333, 17094}, {2533, 65011}, {2594, 55236}, {2970, 32660}, {2971, 65164}, {3005, 18097}, {3049, 57809}, {3120, 4559}, {3122, 4552}, {3125, 4551}, {3239, 7143}, {3261, 61364}, {3269, 36127}, {3271, 4605}, {3572, 7235}, {3649, 58294}, {3668, 3709}, {3900, 7147}, {3949, 43923}, {4557, 53545}, {4565, 21043}, {4620, 22260}, {6063, 53581}, {7063, 46406}, {7064, 58817}, {7109, 52621}, {7113, 66272}, {7115, 21134}, {7148, 43051}, {7233, 46390}, {7234, 60245}, {8029, 52378}, {11608, 17992}, {17411, 64978}, {18344, 37755}, {18785, 53551}, {21044, 53321}, {21143, 65958}, {21725, 37137}, {21823, 65289}, {21824, 26700}, {21828, 52383}, {22383, 56285}, {34294, 46153}, {35576, 58298}, {40085, 51650}, {40152, 58757}, {40521, 53538}, {40663, 55263}, {42661, 64984}, {43039, 66281}, {46404, 65751}, {51421, 55255}, {52065, 55213}, {52374, 58304}, {52382, 55210}, {52384, 55212}, {52567, 62749}, {61210, 66288}
X(66928) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 4631}, {4, 55233}, {7, 52612}, {10, 62534}, {12, 1978}, {31, 4612}, {32, 4636}, {34, 55231}, {37, 7257}, {42, 645}, {56, 4610}, {57, 4623}, {58, 55196}, {65, 799}, {72, 55207}, {73, 4563}, {101, 6064}, {108, 46254}, {109, 4590}, {115, 35519}, {181, 190}, {210, 7258}, {213, 643}, {225, 6331}, {226, 670}, {227, 55241}, {278, 55229}, {291, 36806}, {307, 52608}, {349, 4609}, {512, 333}, {513, 52379}, {514, 18021}, {523, 28660}, {604, 52935}, {647, 332}, {649, 261}, {651, 24037}, {661, 314}, {663, 7058}, {664, 34537}, {667, 2185}, {669, 284}, {756, 646}, {798, 21}, {810, 1812}, {872, 644}, {1042, 4573}, {1084, 663}, {1214, 55202}, {1254, 4554}, {1334, 7256}, {1356, 649}, {1365, 3261}, {1397, 4556}, {1400, 99}, {1402, 662}, {1409, 4592}, {1415, 24041}, {1425, 65164}, {1427, 4625}, {1439, 55205}, {1441, 4602}, {1446, 55213}, {1461, 7340}, {1464, 55237}, {1500, 3699}, {1577, 40072}, {1813, 47389}, {1880, 811}, {1918, 5546}, {1919, 60}, {1924, 2194}, {1960, 30606}, {1973, 52914}, {1980, 2150}, {2171, 668}, {2197, 4561}, {2205, 65375}, {2207, 52921}, {2333, 36797}, {2489, 29}, {2501, 44130}, {2594, 55235}, {2643, 4391}, {2971, 3064}, {3049, 283}, {3063, 1098}, {3121, 3737}, {3122, 4560}, {3124, 522}, {3125, 18155}, {3269, 52616}, {3669, 873}, {3708, 35518}, {3709, 1043}, {4017, 274}, {4024, 3596}, {4036, 28659}, {4064, 57919}, {4077, 6385}, {4079, 8}, {4092, 52622}, {4117, 3063}, {4155, 3975}, {4551, 4601}, {4559, 4600}, {4572, 44168}, {4705, 312}, {4826, 64401}, {5930, 55224}, {6046, 46406}, {6354, 4572}, {6358, 6386}, {6591, 57779}, {7063, 657}, {7064, 6558}, {7109, 3939}, {7143, 658}, {7147, 4569}, {7178, 310}, {7180, 86}, {7203, 57949}, {7216, 57785}, {7234, 27958}, {7235, 27853}, {7250, 1434}, {7337, 52919}, {8034, 17197}, {8663, 3686}, {8754, 46110}, {9426, 57657}, {14398, 51382}, {17992, 40882}, {18097, 689}, {20975, 6332}, {21131, 34387}, {21815, 40499}, {21823, 3907}, {21833, 4086}, {21859, 7035}, {21906, 14432}, {22260, 21044}, {24002, 57992}, {32674, 18020}, {36059, 62719}, {39201, 6514}, {40149, 57968}, {40663, 55262}, {42661, 3687}, {42666, 32851}, {43924, 1509}, {46390, 3685}, {50487, 9}, {51421, 55254}, {51641, 81}, {51663, 20924}, {52065, 63461}, {52378, 31614}, {52382, 55209}, {52384, 55211}, {52623, 40363}, {53321, 4620}, {53540, 7199}, {53545, 52619}, {53551, 18157}, {53581, 55}, {55197, 313}, {55208, 286}, {55230, 345}, {55232, 3718}, {55234, 69}, {55242, 57795}, {57181, 757}, {57185, 75}, {57204, 2299}, {57243, 305}, {57652, 648}, {58289, 2321}, {58290, 4877}, {58304, 42033}, {59174, 3882}, {61052, 514}, {61058, 30805}, {61364, 101}, {62192, 4616}, {62749, 52550}, {63461, 2287}, {65011, 4594}, {65751, 652}, {66287, 76}, {66292, 44187}, {66297, 1969}
X(66928) = {X(4705),X(42666)}-harmonic conjugate of X(55230)
X(66929) lies on the circumconic {{A,B,C,X(2),X(6)}} and these lines: {2, 4590}, {6, 249}, {25, 250}, {32, 14948}, {37, 4567}, {42, 4570}, {99, 18311}, {110, 39527}, {111, 34539}, {263, 21460}, {393, 23582}, {648, 60511}, {670, 62577}, {671, 1989}, {687, 65350}, {691, 5467}, {694, 32740}, {892, 2395}, {895, 1976}, {1383, 23357}, {1400, 52378}, {1576, 14606}, {2421, 2433}, {3228, 19626}, {3457, 66873}, {3458, 66872}, {3572, 36142}, {4558, 5649}, {4591, 55263}, {8105, 39299}, {8106, 39298}, {8749, 66354}, {8770, 57491}, {8791, 30786}, {9171, 9218}, {9182, 18310}, {9214, 57650}, {9273, 34079}, {11636, 53613}, {13854, 44183}, {14246, 14366}, {14590, 32697}, {14908, 16098}, {14910, 18879}, {16081, 18023}, {18309, 48947}, {18818, 57552}, {32717, 32729}, {36085, 37140}, {39292, 42370}, {40879, 60863}, {46154, 46286}, {47390, 61379}, {55226, 60040}, {60867, 66387}
X(66929) = isogonal conjugate of X(1648)
X(66929) = isotomic conjugate of X(52628)
X(66929) = isogonal conjugate of the anticomplement of X(11053)
X(66929) = isogonal conjugate of the complement of X(5468)
X(66929) = isogonal conjugate of the isotomic conjugate of X(52940)
X(66929) = X(i)-Ceva conjugate of X(j) for these (i,j): {34539, 249}, {45773, 691}, {64460, 32729}
X(66929) = X(i)-cross conjugate of X(j) for these (i,j): {6, 34574}, {23, 99}, {111, 691}, {187, 110}, {249, 34539}, {691, 45773}, {895, 892}, {2393, 670}, {3291, 112}, {5467, 59152}, {11580, 11636}, {19626, 32729}, {32729, 64460}, {34010, 9080}, {37784, 648}, {39024, 10630}, {40350, 3565}, {52630, 47443}, {53777, 35138}
X(66929) = X(i)-isoconjugate of X(j) for these (i,j): {1, 1648}, {31, 52628}, {75, 21906}, {115, 896}, {187, 1109}, {338, 922}, {351, 1577}, {468, 3708}, {523, 2642}, {524, 2643}, {656, 14273}, {661, 690}, {662, 33919}, {798, 35522}, {897, 23992}, {1649, 23894}, {1725, 66128}, {1910, 51429}, {2157, 5099}, {2349, 2682}, {2624, 51479}, {2631, 52475}, {2632, 60428}, {3120, 21839}, {3122, 42713}, {3124, 14210}, {3125, 4062}, {4024, 14419}, {4092, 51653}, {4590, 45775}, {4705, 4750}, {6629, 21833}, {8029, 23889}, {8061, 22105}, {14207, 58754}, {14424, 55240}, {14432, 57185}, {14443, 36085}, {14567, 23994}, {16702, 21043}, {20902, 44102}, {22260, 24039}, {24041, 42344}, {36119, 66123}, {42081, 64258}, {46277, 59801}
X(66929) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 52628}, {3, 1648}, {206, 21906}, {1084, 33919}, {1511, 66123}, {3005, 42344}, {6593, 23992}, {11672, 51429}, {15477, 3124}, {15899, 115}, {31998, 35522}, {36830, 690}, {38988, 14443}, {39061, 338}, {40583, 5099}, {40596, 14273}, {62607, 339}, {62613, 66122}
X(66929) = cevapoint of X(i) and X(j) for these (i,j): {6, 5467}, {110, 187}, {111, 691}, {112, 37777}, {4558, 22151}, {19626, 32729}, {51253, 61198}, {52630, 57481}
X(66929) = crosssum of X(i) and X(j) for these (i,j): {14444, 23992}, {33919, 42344}
X(66929) = trilinear pole of line {110, 249}
X(66929) = crossdifference of every pair of points on line {2682, 14443}
X(66929) = barycentric product X(i)*X(j) for these {i,j}: {6, 52940}, {99, 691}, {110, 892}, {111, 4590}, {187, 57552}, {249, 671}, {250, 30786}, {512, 64460}, {523, 45773}, {524, 34539}, {648, 65321}, {662, 36085}, {670, 32729}, {799, 36142}, {895, 18020}, {897, 24041}, {923, 24037}, {1101, 46277}, {1576, 53080}, {3124, 42370}, {4558, 65350}, {4577, 36827}, {5380, 52935}, {5466, 59152}, {5468, 34574}, {5547, 7340}, {5649, 50941}, {5968, 57991}, {6064, 7316}, {8753, 47389}, {9170, 23348}, {9178, 31614}, {9182, 53690}, {10097, 55270}, {10425, 52035}, {14221, 35191}, {14977, 47443}, {18023, 23357}, {19626, 44168}, {23995, 57999}, {32583, 35138}, {32661, 59762}, {32740, 34537}, {34205, 53613}, {35139, 51478}, {36060, 46254}, {36128, 62719}, {46111, 47390}
X(66929) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 52628}, {6, 1648}, {23, 5099}, {32, 21906}, {99, 35522}, {110, 690}, {111, 115}, {112, 14273}, {163, 2642}, {187, 23992}, {249, 524}, {250, 468}, {351, 14443}, {476, 51479}, {511, 51429}, {512, 33919}, {671, 338}, {691, 523}, {827, 22105}, {892, 850}, {895, 125}, {897, 1109}, {923, 2643}, {1101, 896}, {1304, 52475}, {1379, 46463}, {1380, 46462}, {1495, 2682}, {1576, 351}, {1634, 14424}, {2407, 66122}, {2715, 52038}, {3124, 42344}, {3284, 66123}, {4556, 4750}, {4558, 14417}, {4563, 45807}, {4567, 42713}, {4570, 4062}, {4590, 3266}, {4636, 14432}, {5380, 4036}, {5466, 23105}, {5467, 1649}, {5468, 52629}, {5547, 4092}, {5649, 50942}, {5968, 868}, {7316, 1365}, {7468, 55131}, {8753, 8754}, {9139, 12079}, {9171, 14423}, {9178, 8029}, {9181, 33921}, {9206, 20578}, {9207, 20579}, {9214, 58261}, {10317, 47415}, {10411, 45808}, {10630, 64258}, {11634, 55271}, {11636, 23287}, {14567, 59801}, {14908, 20975}, {14910, 66128}, {15398, 51258}, {17402, 9204}, {17403, 9205}, {17983, 2970}, {18020, 44146}, {18023, 23962}, {19626, 1084}, {22151, 62594}, {23348, 8371}, {23357, 187}, {23582, 37778}, {23963, 14567}, {23964, 60428}, {23995, 922}, {24041, 14210}, {30786, 339}, {32583, 3906}, {32729, 512}, {32740, 3124}, {34539, 671}, {34574, 5466}, {35138, 65008}, {35191, 51480}, {35265, 38395}, {36060, 3708}, {36085, 1577}, {36142, 661}, {36827, 826}, {37777, 48317}, {39295, 43084}, {39689, 14444}, {41294, 1645}, {42007, 8288}, {42370, 34537}, {44769, 66126}, {45773, 99}, {46154, 39691}, {46277, 23994}, {47390, 3292}, {47443, 4235}, {50941, 18312}, {51478, 526}, {51980, 44114}, {52603, 44814}, {52630, 18311}, {52668, 2088}, {52940, 76}, {53080, 44173}, {53613, 34206}, {53690, 9180}, {54274, 46049}, {56980, 11183}, {57470, 53132}, {57481, 62563}, {57552, 18023}, {57655, 44102}, {57742, 5967}, {57991, 52145}, {58979, 14559}, {59152, 5468}, {61207, 58780}, {64460, 670}, {65306, 65611}, {65320, 15359}, {65321, 525}, {65350, 14618}, {66872, 30465}, {66873, 30468}
X(66929) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {691, 23348, 34574}, {2407, 50941, 892}, {5467, 23348, 691}
X(66930) lies on the Lemoine asymptotic hyperbola and these lines: {512, 4559}, {523, 4552}, {666, 53280}, {691, 59101}, {876, 2283}, {884, 32666}, {919, 8687}, {927, 8708}, {2149, 16874}, {2222, 53281}, {4705, 21859}, {5377, 60031}, {16680, 52927}, {23844, 56639}, {32735, 50344}, {36086, 43069}, {50343, 53644}
X(66930) = X(i)-isoconjugate of X(j) for these (i,j): {21, 23829}, {261, 2254}, {665, 52379}, {757, 50333}, {873, 926}, {918, 2185}, {1025, 26856}, {1098, 43042}, {3286, 18155}, {3737, 30941}, {4238, 17219}, {4560, 18206}, {4610, 17435}, {4636, 62429}, {7058, 53544}, {7252, 18157}, {8638, 57992}, {9436, 65575}, {24041, 52305}, {53550, 57779}
X(66930) = X(i)-Dao conjugate of X(j) for these (i,j): {3005, 52305}, {15267, 43042}, {40607, 50333}, {40611, 23829}
X(66930) = trilinear pole of line {181, 3124}
X(66930) = barycentric product X(i)*X(j) for these {i,j}: {12, 919}, {59, 66282}, {105, 21859}, {115, 59101}, {181, 666}, {594, 32735}, {756, 36146}, {872, 34085}, {927, 1500}, {1416, 4103}, {1462, 40521}, {2171, 36086}, {2195, 4605}, {2197, 65333}, {4079, 39293}, {4551, 18785}, {4552, 56853}, {4559, 13576}, {5377, 57185}, {6354, 52927}, {6358, 32666}, {7109, 46135}, {36803, 61364}, {43929, 65958}, {55261, 65573}
X(66930) = barycentric quotient X(i)/X(j) for these {i,j}: {181, 918}, {666, 18021}, {884, 26856}, {919, 261}, {1400, 23829}, {1500, 50333}, {3124, 52305}, {4551, 18157}, {4559, 30941}, {5377, 4631}, {7109, 926}, {18785, 18155}, {21859, 3263}, {32666, 2185}, {32735, 1509}, {34085, 57992}, {36086, 52379}, {36146, 873}, {39293, 52612}, {50487, 17435}, {52927, 7058}, {56853, 4560}, {57185, 62429}, {59101, 4590}, {61364, 665}, {65573, 55260}, {66282, 34387}
X(66931) lies on the cubic K1034 and these lines: {31, 893}, {58, 7303}, {238, 7018}, {560, 9418}, {701, 30670}, {904, 2194}, {1432, 55086}, {1915, 51979}, {1927, 2205}, {2175, 7104}, {4586, 51909}, {4603, 38832}, {8022, 9468}, {17127, 17493}, {51974, 56836}
X(66931) = isogonal conjugate of the isotomic conjugate of X(904)
X(66931) = X(14599)-cross conjugate of X(14598)
X(66931) = X(i)-isoconjugate of X(j) for these (i,j): {2, 1920}, {8, 7205}, {75, 1909}, {76, 894}, {85, 17787}, {86, 1237}, {171, 561}, {172, 1502}, {274, 3963}, {291, 1926}, {292, 14603}, {305, 7009}, {308, 16720}, {310, 1215}, {312, 7196}, {313, 17103}, {321, 8033}, {334, 1966}, {335, 3978}, {337, 17984}, {349, 27958}, {385, 18895}, {668, 4374}, {670, 2533}, {871, 40790}, {880, 35352}, {1240, 59509}, {1580, 44172}, {1691, 44170}, {1921, 30669}, {1922, 18901}, {1928, 7122}, {1978, 4369}, {2295, 6385}, {2329, 20567}, {2330, 41283}, {3261, 18047}, {3596, 7176}, {3805, 46132}, {3907, 4572}, {3955, 18022}, {4019, 44129}, {4032, 28660}, {4033, 16737}, {4367, 6386}, {4434, 57995}, {4529, 46406}, {4579, 40495}, {4583, 14296}, {4589, 14295}, {4602, 57234}, {4609, 7234}, {6063, 7081}, {6383, 17752}, {6384, 41318}, {6645, 44187}, {6649, 35519}, {7034, 7184}, {7119, 40364}, {7175, 28659}, {7200, 31625}, {7211, 18021}, {7244, 57947}, {7267, 18023}, {17212, 27808}, {17789, 40846}, {17797, 18836}, {18275, 39933}, {18298, 27890}, {18787, 18891}, {18896, 27982}, {19567, 52175}, {21803, 57992}, {21823, 44168}, {27697, 40827}, {27891, 42027}, {30639, 41072}, {30642, 39044}, {45882, 52611}
X(66931) = X(i)-Dao conjugate of X(j) for these (i,j): {206, 1909}, {9467, 334}, {19557, 14603}, {32664, 1920}, {39028, 18901}, {39029, 1926}, {39092, 44172}, {40368, 171}, {40369, 7122}, {40600, 1237}
X(66931) = barycentric product X(i)*X(j) for these {i,j}: {1, 7104}, {6, 904}, {25, 7116}, {31, 893}, {32, 256}, {41, 1431}, {58, 40729}, {213, 1178}, {238, 9468}, {239, 1927}, {257, 560}, {292, 61385}, {350, 8789}, {669, 4603}, {694, 2210}, {1432, 2175}, {1501, 7018}, {1581, 14599}, {1914, 1967}, {1916, 18892}, {1917, 44187}, {1918, 40432}, {1919, 3903}, {1922, 18786}, {1924, 4594}, {1934, 18894}, {1973, 7015}, {1980, 27805}, {2194, 65011}, {2201, 17970}, {2205, 32010}, {2206, 52651}, {2209, 51974}, {3063, 29055}, {7109, 7303}, {7122, 59480}, {7249, 9447}, {7260, 9426}, {8022, 40835}, {8640, 58981}, {8852, 41882}, {14598, 17493}, {14604, 18891}, {17938, 21832}, {18900, 40738}, {18903, 44171}, {30670, 46386}, {34251, 63883}, {40728, 40763}, {51919, 57265}
X(66931) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 1920}, {32, 1909}, {213, 1237}, {238, 14603}, {256, 1502}, {257, 1928}, {350, 18901}, {560, 894}, {604, 7205}, {694, 44172}, {893, 561}, {904, 76}, {1178, 6385}, {1397, 7196}, {1431, 20567}, {1432, 41283}, {1501, 171}, {1581, 44170}, {1914, 1926}, {1917, 172}, {1918, 3963}, {1919, 4374}, {1923, 16720}, {1924, 2533}, {1927, 335}, {1967, 18895}, {1980, 4369}, {2175, 17787}, {2205, 1215}, {2206, 8033}, {2210, 3978}, {4603, 4609}, {7015, 40364}, {7018, 40362}, {7104, 75}, {7116, 305}, {8022, 18905}, {8789, 291}, {9233, 7122}, {9426, 57234}, {9427, 21725}, {9447, 7081}, {9448, 2329}, {9468, 334}, {14598, 30669}, {14599, 1966}, {14604, 1911}, {17493, 44171}, {17938, 4639}, {18786, 44169}, {18892, 385}, {18894, 1580}, {18897, 18787}, {18903, 14598}, {30670, 52611}, {40729, 313}, {41280, 7175}, {44162, 7119}, {51856, 30642}, {57265, 18275}, {61385, 1921}, {62420, 41318}
X(66931) = {X(31),X(61385)}-harmonic conjugate of X(893)
X(66932) lies on the cubic K318 and these lines: {1, 268}, {3, 223}, {21, 7149}, {58, 60800}, {255, 7011}, {405, 40838}, {1034, 1809}, {1073, 1433}, {1259, 6617}, {1295, 41227}, {1413, 55044}, {2193, 2360}, {2289, 7078}, {24565, 66091}, {36746, 40407}, {39167, 64722}, {40616, 40836}, {46352, 63185}, {46974, 52063}
X(66932) = isogonal conjugate of X(3176)
X(66932) = isotomic conjugate of the polar conjugate of X(7152)
X(66932) = isogonal conjugate of the polar conjugate of X(41514)
X(66932) = X(41514)-Ceva conjugate of X(7152)
X(66932) = X(i)-cross conjugate of X(j) for these (i,j): {56, 3}, {19614, 1433}
X(66932) = X(i)-isoconjugate of X(j) for these (i,j): {1, 3176}, {4, 1490}, {8, 207}, {9, 40837}, {10, 8885}, {19, 56943}, {25, 33672}, {33, 5932}, {92, 3197}, {108, 14302}, {208, 46350}, {225, 13614}, {281, 47848}, {318, 1035}, {522, 57117}, {3195, 47436}, {3341, 7952}, {3352, 8894}, {7008, 66090}, {8063, 40117}, {46881, 47372}, {47637, 53011}
X(66932) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 3176}, {6, 56943}, {478, 40837}, {3351, 64211}, {6505, 33672}, {22391, 3197}, {36033, 1490}, {38983, 14302}
X(66932) = cevapoint of X(i) and X(j) for these (i,j): {3, 38290}, {1459, 55044}, {7037, 57454}
X(66932) = crosssum of X(2331) and X(8802)
X(66932) = barycentric product X(i)*X(j) for these {i,j}: {3, 41514}, {48, 56596}, {57, 57643}, {63, 3345}, {69, 7152}, {77, 47850}, {222, 1034}, {268, 46352}, {348, 7037}, {394, 7149}, {604, 57782}, {1433, 63877}, {1790, 8806}, {1804, 40838}, {1812, 8811}, {3342, 41081}, {7007, 7183}, {7011, 66091}, {37669, 60800}
X(66932) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 56943}, {6, 3176}, {48, 1490}, {56, 40837}, {63, 33672}, {184, 3197}, {222, 5932}, {268, 46350}, {603, 47848}, {604, 207}, {652, 14302}, {1034, 7017}, {1333, 8885}, {1415, 57117}, {2193, 13614}, {3342, 64211}, {3345, 92}, {7011, 66090}, {7037, 281}, {7149, 2052}, {7152, 4}, {8064, 65213}, {8811, 40149}, {41081, 47436}, {41514, 264}, {46352, 40701}, {47440, 8802}, {47850, 318}, {52411, 1035}, {56596, 1969}, {57454, 7952}, {57643, 312}, {57782, 28659}, {58995, 54240}, {60800, 459}
X(66933) lies on the cubic K863 and these lines: {1, 1581}, {38, 9285}, {72, 36214}, {75, 19600}, {92, 1934}, {226, 335}, {293, 1808}, {295, 7015}, {304, 3708}, {306, 7019}, {662, 19572}, {694, 56219}, {805, 26702}, {1926, 46238}, {1927, 45232}, {2349, 37134}, {4020, 4592}, {18829, 35145}, {37596, 47642}, {66267, 66277}
X(66933) = isogonal conjugate of X(56828)
X(66933) = isotomic conjugate of the polar conjugate of X(1581)
X(66933) = isogonal conjugate of the polar conjugate of X(1934)
X(66933) = X(1934)-Ceva conjugate of X(1581)
X(66933) = X(i)-isoconjugate of X(j) for these (i,j): {1, 56828}, {2, 44089}, {4, 1691}, {6, 419}, {19, 1580}, {25, 385}, {32, 17984}, {92, 1933}, {98, 51324}, {112, 804}, {171, 2201}, {172, 242}, {232, 40820}, {238, 7119}, {264, 14602}, {427, 56975}, {648, 5027}, {699, 52462}, {880, 57204}, {894, 57654}, {1474, 4039}, {1692, 47736}, {1783, 4164}, {1840, 5009}, {1843, 56976}, {1910, 56679}, {1914, 7009}, {1966, 1973}, {1974, 3978}, {1976, 39931}, {2086, 18020}, {2207, 12215}, {2211, 14382}, {2489, 17941}, {2501, 56980}, {2679, 60179}, {3563, 12829}, {4027, 17980}, {4107, 8750}, {5026, 8753}, {5976, 57260}, {6524, 58354}, {6531, 36213}, {8623, 32085}, {8744, 36820}, {8749, 51430}, {8882, 63736}, {11325, 39927}, {11380, 54129}, {14295, 61206}, {14603, 44162}, {16318, 51343}, {17442, 56971}, {18022, 18902}, {20964, 31905}, {22061, 34856}, {24284, 32713}, {27369, 56979}, {32542, 41204}, {32544, 52460}, {35540, 61383}, {37892, 51320}, {41363, 50732}, {44102, 60863}, {46104, 56915}, {46522, 51510}, {56920, 64981}
X(66933) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 56828}, {6, 1580}, {9, 419}, {6337, 1966}, {6376, 17984}, {6505, 385}, {9467, 1973}, {9470, 7119}, {11672, 56679}, {22391, 1933}, {26932, 4107}, {32664, 44089}, {34591, 804}, {36033, 1691}, {36906, 7009}, {39006, 4164}, {39040, 39931}, {39092, 19}, {40618, 14296}, {47648, 240}, {51574, 4039}, {55066, 5027}, {62604, 1926}
X(66933) = barycentric product X(i)*X(j) for these {i,j}: {1, 40708}, {3, 1934}, {48, 18896}, {63, 1916}, {69, 1581}, {75, 36214}, {256, 337}, {291, 7019}, {295, 7018}, {304, 694}, {305, 1967}, {334, 7015}, {336, 40810}, {525, 37134}, {561, 17970}, {656, 18829}, {805, 14208}, {882, 55202}, {1577, 65327}, {1927, 40050}, {2196, 44187}, {3708, 39292}, {3933, 43763}, {4575, 56981}, {4592, 66267}, {7116, 18895}, {9247, 44160}, {9468, 40364}, {15391, 46238}, {24018, 65351}, {34055, 56977}
X(66933) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 419}, {3, 1580}, {6, 56828}, {31, 44089}, {48, 1691}, {63, 385}, {69, 1966}, {72, 4039}, {75, 17984}, {184, 1933}, {256, 242}, {291, 7009}, {292, 7119}, {293, 40820}, {295, 171}, {304, 3978}, {305, 1926}, {326, 12215}, {336, 14382}, {337, 1909}, {511, 56679}, {656, 804}, {694, 19}, {805, 162}, {810, 5027}, {876, 54229}, {893, 2201}, {904, 57654}, {905, 4107}, {1176, 56971}, {1459, 4164}, {1581, 4}, {1755, 51324}, {1916, 92}, {1927, 1974}, {1934, 264}, {1959, 39931}, {1967, 25}, {2196, 172}, {2227, 52462}, {3917, 2236}, {4020, 8623}, {4025, 14296}, {4558, 56982}, {4575, 56980}, {4592, 17941}, {6507, 58354}, {7015, 238}, {7018, 40717}, {7019, 350}, {7116, 1914}, {8773, 47736}, {9247, 14602}, {9468, 1973}, {14208, 14295}, {14251, 57653}, {15391, 1910}, {17938, 32676}, {17970, 31}, {17980, 1096}, {18829, 811}, {18896, 1969}, {20769, 53681}, {24018, 24284}, {34055, 56976}, {36214, 1}, {36897, 36120}, {37134, 648}, {37893, 51904}, {39292, 46254}, {40364, 14603}, {40432, 31905}, {40708, 75}, {40810, 240}, {43763, 32085}, {44706, 63736}, {47642, 51913}, {55202, 880}, {56154, 14006}, {56977, 20883}, {56978, 17442}, {57738, 17103}, {65327, 662}, {65351, 823}, {66267, 24006}
X(66933) = {X(295),X(7015)}-harmonic conjugate of X(17970)
X(66934) lies on the circumconic {{A,B,C,X(2),X(6)}} and these lines: {1, 65011}, {2, 40432}, {6, 6043}, {37, 893}, {42, 904}, {171, 256}, {257, 1999}, {612, 32468}, {694, 56154}, {733, 8707}, {941, 40729}, {1220, 16606}, {1427, 7176}, {1581, 1961}, {1880, 7009}, {1916, 14534}, {1967, 35334}, {2248, 2363}, {3572, 62749}, {3666, 7061}, {3745, 41532}, {3903, 3920}, {4343, 9403}, {4854, 19637}, {7350, 50614}, {8770, 19310}, {9281, 37548}, {9468, 21838}, {14829, 32010}, {16352, 21448}, {18140, 40835}, {19312, 50622}, {19765, 39967}, {27805, 39979}, {30710, 40738}, {37099, 45988}, {37553, 59272}
X(66934) = isogonal conjugate of X(28369)
X(66934) = isogonal conjugate of the anticomplement of X(15985)
X(66934) = isogonal conjugate of the complement of X(15983)
X(66934) = polar conjugate of the isotomic conjugate of X(57690)
X(66934) = X(i)-cross conjugate of X(j) for these (i,j): {1, 2298}, {650, 37137}, {8240, 9}, {50622, 941}, {66224, 8}
X(66934) = X(i)-isoconjugate of X(j) for these (i,j): {1, 28369}, {6, 59509}, {57, 18235}, {58, 27697}, {63, 444}, {171, 3666}, {172, 4357}, {894, 1193}, {960, 7175}, {1215, 40153}, {1848, 3955}, {1909, 2300}, {2092, 17103}, {2269, 7176}, {2295, 54308}, {2329, 24471}, {2330, 3674}, {3725, 8033}, {3882, 4367}, {4032, 4267}, {4369, 53280}, {4579, 48131}, {6371, 18047}, {6649, 52326}, {7009, 22097}, {7081, 61412}, {7122, 20911}, {7196, 20967}, {16705, 20964}, {17212, 61168}, {18200, 61172}, {20981, 53332}, {27455, 51902}
X(66934) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 28369}, {9, 59509}, {10, 27697}, {3162, 444}, {5452, 18235}
X(66934) = cevapoint of X(i) and X(j) for these (i,j): {1, 256}, {893, 52651}
X(66934) = trilinear pole of line {512, 3287}
X(66934) = barycentric product X(i)*X(j) for these {i,j}: {4, 57690}, {25, 57859}, {256, 1220}, {257, 2298}, {893, 30710}, {904, 1240}, {961, 4451}, {3903, 4581}, {4594, 57162}, {14534, 52651}, {14624, 40432}, {27805, 62749}, {40729, 40827}
X(66934) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 59509}, {6, 28369}, {25, 444}, {37, 27697}, {55, 18235}, {256, 4357}, {257, 20911}, {893, 3666}, {904, 1193}, {961, 7176}, {1178, 54308}, {1220, 1909}, {1431, 24471}, {1432, 3674}, {2298, 894}, {2363, 17103}, {3903, 53332}, {4581, 4374}, {7104, 2300}, {7116, 22097}, {14534, 8033}, {14624, 3963}, {30710, 1920}, {31643, 7205}, {32010, 16739}, {32736, 4579}, {36098, 6649}, {36147, 18047}, {40432, 16705}, {40729, 2092}, {51974, 27455}, {52651, 1211}, {56257, 65191}, {57162, 2533}, {57690, 69}, {57859, 305}, {60245, 45196}, {62749, 4369}, {64984, 7196}
X(66935) lies on the cubic K360 and these lines: {1, 256}, {4, 36120}, {6, 59480}, {31, 237}, {41, 41882}, {42, 4531}, {56, 741}, {57, 40737}, {65, 40718}, {145, 3903}, {181, 2295}, {213, 40729}, {238, 45986}, {257, 3869}, {604, 18757}, {672, 45240}, {694, 2176}, {875, 51641}, {893, 2258}, {923, 51980}, {1096, 34854}, {1178, 16466}, {1400, 23493}, {1402, 40935}, {1967, 14251}, {1973, 2211}, {2296, 7249}, {2698, 36065}, {3112, 4388}, {3503, 6196}, {3868, 52135}, {10473, 32010}, {17027, 39917}, {17033, 40849}, {18826, 65289}, {20683, 56190}, {34157, 36051}, {37132, 37137}, {57265, 63553}, {58306, 62268}
X(66935) = X(i)-Ceva conjugate of X(j) for these (i,j): {1431, 65011}, {55018, 29055}, {65011, 40729}
X(66935) = X(i)-cross conjugate of X(j) for these (i,j): {1084, 7180}, {51641, 29055}
X(66935) = X(i)-isoconjugate of X(j) for these (i,j): {2, 27958}, {8, 17103}, {9, 8033}, {21, 1909}, {60, 1237}, {69, 14006}, {81, 17787}, {86, 7081}, {99, 3907}, {171, 314}, {172, 28660}, {261, 1215}, {274, 2329}, {284, 1920}, {310, 2330}, {332, 7009}, {333, 894}, {385, 36800}, {391, 65019}, {643, 4374}, {644, 16737}, {645, 4369}, {646, 18200}, {799, 3287}, {1043, 7176}, {1509, 4095}, {1808, 17984}, {1966, 56154}, {2053, 27891}, {2185, 3963}, {2287, 7196}, {2295, 52379}, {2311, 3978}, {2328, 7205}, {3699, 17212}, {3955, 44130}, {4019, 46103}, {4032, 7058}, {4140, 4610}, {4367, 7257}, {4459, 4600}, {4477, 4625}, {4529, 4573}, {4560, 18047}, {4579, 18155}, {4631, 57234}, {6064, 53559}, {6649, 7253}, {7122, 40072}, {17941, 60577}, {18021, 20964}, {20981, 62534}, {24037, 40608}, {30584, 56053}, {38810, 56558}, {52133, 56696}, {52652, 56441}
X(66935) = X(i)-Dao conjugate of X(j) for these (i,j): {478, 8033}, {512, 40608}, {9467, 56154}, {16591, 1926}, {32664, 27958}, {36908, 7205}, {38986, 3907}, {38996, 3287}, {40586, 17787}, {40590, 1920}, {40600, 7081}, {40611, 1909}, {50497, 4459}, {55060, 4374}
X(66935) = cevapoint of X(1356) and X(51641)
X(66935) = crosspoint of X(1967) and X(34238)
X(66935) = crosssum of X(i) and X(j) for these (i,j): {1966, 5976}, {7081, 17787}
X(66935) = trilinear pole of line {798, 2491}
X(66935) = barycentric product X(i)*X(j) for these {i,j}: {1, 65011}, {7, 40729}, {31, 60245}, {37, 1431}, {42, 1432}, {56, 52651}, {65, 893}, {163, 66292}, {181, 40432}, {213, 7249}, {225, 7116}, {226, 904}, {256, 1400}, {257, 1402}, {512, 37137}, {661, 29055}, {694, 1284}, {798, 65289}, {810, 65332}, {1178, 2171}, {1441, 7104}, {1880, 7015}, {1967, 16609}, {3569, 36065}, {3903, 7180}, {16591, 34238}, {16592, 55018}, {27805, 51641}, {43924, 56257}
X(66935) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 27958}, {42, 17787}, {56, 8033}, {65, 1920}, {181, 3963}, {213, 7081}, {256, 28660}, {257, 40072}, {604, 17103}, {669, 3287}, {798, 3907}, {805, 36806}, {872, 4095}, {893, 314}, {904, 333}, {1042, 7196}, {1084, 40608}, {1178, 52379}, {1284, 3978}, {1356, 16592}, {1400, 1909}, {1402, 894}, {1423, 27891}, {1427, 7205}, {1431, 274}, {1432, 310}, {1918, 2329}, {1927, 2311}, {1967, 36800}, {1973, 14006}, {2171, 1237}, {2205, 2330}, {3121, 4459}, {3903, 62534}, {7104, 21}, {7116, 332}, {7180, 4374}, {7249, 6385}, {9468, 56154}, {16609, 1926}, {21755, 3023}, {29055, 799}, {36065, 43187}, {37137, 670}, {40432, 18021}, {40729, 8}, {40935, 56558}, {43924, 16737}, {50487, 4140}, {51641, 4369}, {52651, 3596}, {56556, 56696}, {57181, 17212}, {59174, 27697}, {60245, 561}, {61364, 2295}, {63461, 4529}, {65011, 75}, {65289, 4602}, {65332, 57968}, {66292, 20948}
X(66936) lies on the Feuerbach circumhyperbola and these lines: {1, 1755}, {4, 39}, {7, 43034}, {8, 59734}, {104, 26714}, {263, 941}, {284, 983}, {981, 46319}, {1156, 65252}, {2481, 65271}, {3736, 43738}, {8759, 65310}, {40773, 41527}, {42313, 57818}, {52631, 60031}, {57268, 60021}, {60029, 66291}, {62742, 65349}
X(66936) = X(2276)-cross conjugate of X(284)
X(66936) = X(i)-isoconjugate of X(j) for these (i,j): {7, 60726}, {37, 60716}, {56, 60737}, {57, 60723}, {65, 52134}, {73, 458}, {109, 23878}, {182, 226}, {183, 1400}, {307, 10311}, {349, 34396}, {604, 42711}, {664, 3288}, {1214, 60685}, {1402, 3403}, {4620, 6784}, {14096, 18097}, {22341, 51315}, {33971, 40152}, {52378, 66459}
X(66936) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 60737}, {11, 23878}, {3161, 42711}, {5452, 60723}, {39025, 3288}, {40582, 183}, {40589, 60716}, {40602, 52134}, {40605, 3403}
X(66936) = cevapoint of X(2186) and X(43718)
X(66936) = barycentric product X(i)*X(j) for these {i,j}: {9, 60679}, {21, 262}, {263, 314}, {327, 2194}, {333, 2186}, {521, 65349}, {522, 65252}, {650, 65271}, {1172, 42313}, {1896, 54032}, {3402, 28660}, {4391, 26714}, {4612, 66291}, {4631, 52631}, {31623, 43718}, {40072, 46319}, {44426, 65310}
X(66936) = barycentric quotient X(i)/X(j) for these {i,j}: {8, 42711}, {9, 60737}, {21, 183}, {41, 60726}, {55, 60723}, {58, 60716}, {262, 1441}, {263, 65}, {284, 52134}, {314, 20023}, {333, 3403}, {650, 23878}, {1172, 458}, {2186, 226}, {2194, 182}, {2204, 10311}, {2299, 60685}, {3063, 3288}, {3402, 1400}, {4516, 66459}, {8748, 51315}, {26714, 651}, {31623, 44144}, {42313, 1231}, {43718, 1214}, {46319, 1402}, {52631, 57185}, {52949, 51372}, {54032, 52385}, {60679, 85}, {65252, 664}, {65271, 4554}, {65310, 6516}, {65349, 18026}
X(66937) lies on the circumconic {{A,B,C,X(1),X(6)}} and these lines: {1, 512}, {6, 798}, {34, 57079}, {56, 16695}, {58, 667}, {81, 8027}, {86, 513}, {87, 3737}, {106, 741}, {269, 7250}, {292, 5029}, {295, 2774}, {333, 38238}, {649, 25426}, {659, 2665}, {805, 65365}, {870, 7192}, {996, 4160}, {1120, 56154}, {1126, 58301}, {1220, 35352}, {1431, 43924}, {1438, 18268}, {2703, 36066}, {3226, 18827}, {4040, 39949}, {4444, 15309}, {4584, 5378}, {4589, 55243}, {4591, 9268}, {4833, 55919}, {4840, 10013}, {5235, 14474}, {6085, 7312}, {6371, 9277}, {7077, 34893}, {7199, 55975}, {8632, 17962}, {9002, 34916}, {9508, 45783}, {16704, 43928}, {17954, 18002}, {18200, 40763}, {37128, 37129}, {40746, 57129}, {47844, 58021}, {50487, 57112}, {53216, 65285}
X(66937) = X(i)-Ceva conjugate of X(j) for these (i,j): {4584, 292}, {4589, 37128}
X(66937) = X(i)-cross conjugate of X(j) for these (i,j): {3122, 9506}, {4455, 649}, {53542, 30648}
X(66937) = X(i)-isoconjugate of X(j) for these (i,j): {10, 3573}, {37, 3570}, {42, 874}, {100, 740}, {101, 3948}, {190, 2238}, {213, 27853}, {238, 3952}, {239, 1018}, {350, 4557}, {385, 56257}, {643, 7235}, {644, 16609}, {651, 3985}, {660, 4368}, {662, 4037}, {664, 4433}, {668, 3747}, {692, 35544}, {765, 4010}, {799, 66878}, {862, 4561}, {901, 4783}, {1016, 21832}, {1284, 3699}, {1429, 30730}, {1447, 4069}, {1874, 4571}, {1914, 4033}, {1978, 41333}, {2201, 52609}, {2210, 27808}, {3684, 4552}, {3685, 4551}, {3716, 65573}, {3783, 4613}, {3903, 4039}, {3975, 4559}, {4094, 4589}, {4155, 4600}, {4455, 7035}, {4566, 58327}, {4584, 35068}, {4601, 46390}, {4606, 4771}, {4614, 4829}, {4621, 18904}, {6632, 39786}, {8298, 66283}, {8709, 20681}, {15742, 53556}, {16369, 65288}, {17493, 61164}, {33295, 40521}, {50456, 61402}
X(66937) = X(i)-Dao conjugate of X(j) for these (i,j): {513, 4010}, {1015, 3948}, {1084, 4037}, {1086, 35544}, {6626, 27853}, {8054, 740}, {9470, 3952}, {36906, 4033}, {38979, 4783}, {38991, 3985}, {38996, 66878}, {39025, 4433}, {40589, 3570}, {40592, 874}, {40620, 1921}, {40625, 4087}, {50497, 4155}, {55053, 2238}, {55060, 7235}, {55067, 3975}, {62557, 27808}
X(66937) = cevapoint of X(i) and X(j) for these (i,j): {649, 4455}, {875, 3572}, {18200, 50456}
X(66937) = crosspoint of X(4589) and X(37128)
X(66937) = crosssum of X(i) and X(j) for these (i,j): {659, 4974}, {740, 4010}, {2238, 4455}, {3932, 18004}
X(66937) = trilinear pole of line {649, 3121}
X(66937) = crossdifference of every pair of points on line {740, 2238}
X(66937) = barycentric product X(i)*X(j) for these {i,j}: {58, 4444}, {81, 876}, {86, 3572}, {244, 4584}, {274, 875}, {291, 1019}, {292, 7192}, {295, 17925}, {334, 57129}, {335, 3733}, {337, 43925}, {513, 37128}, {514, 741}, {593, 35352}, {649, 18827}, {660, 16726}, {667, 40017}, {693, 18268}, {694, 17212}, {805, 7200}, {813, 17205}, {1015, 4589}, {1333, 66286}, {1412, 60577}, {1459, 65352}, {1581, 18200}, {1911, 7199}, {1922, 52619}, {1967, 16737}, {2311, 3676}, {2530, 39276}, {3121, 65285}, {3122, 65258}, {3125, 36066}, {3248, 4639}, {3669, 56154}, {4455, 57554}, {4876, 7203}, {5378, 8042}, {6591, 57738}, {7077, 17096}, {7212, 62714}, {7233, 7252}, {10566, 46159}, {16727, 34067}, {23829, 51866}, {30663, 50456}, {36800, 43924}, {37134, 53541}, {40834, 50514}
X(66937) = barycentric quotient X(i)/X(j) for these {i,j}: {58, 3570}, {81, 874}, {86, 27853}, {291, 4033}, {292, 3952}, {295, 52609}, {335, 27808}, {512, 4037}, {513, 3948}, {514, 35544}, {649, 740}, {663, 3985}, {667, 2238}, {669, 66878}, {741, 190}, {875, 37}, {876, 321}, {1015, 4010}, {1019, 350}, {1333, 3573}, {1357, 7212}, {1635, 4783}, {1911, 1018}, {1919, 3747}, {1922, 4557}, {1967, 56257}, {1977, 4455}, {1980, 41333}, {2311, 3699}, {3063, 4433}, {3121, 4155}, {3248, 21832}, {3572, 10}, {3733, 239}, {3737, 3975}, {3937, 24459}, {4444, 313}, {4455, 35068}, {4560, 4087}, {4584, 7035}, {4589, 31625}, {4832, 4829}, {7077, 30730}, {7180, 7235}, {7192, 1921}, {7199, 18891}, {7200, 14295}, {7203, 10030}, {7252, 3685}, {8027, 39786}, {8632, 4368}, {9506, 66283}, {16726, 3766}, {16737, 1926}, {17096, 18033}, {17205, 65101}, {17212, 3978}, {17925, 40717}, {18200, 1966}, {18268, 100}, {18827, 1978}, {20981, 4039}, {30671, 3773}, {35352, 28654}, {36066, 4601}, {37128, 668}, {40017, 6386}, {43924, 16609}, {43925, 242}, {46159, 4568}, {50456, 39044}, {50514, 18904}, {51858, 4069}, {52619, 44169}, {56154, 646}, {57129, 238}, {57181, 1284}, {58140, 4771}, {60577, 30713}, {66286, 27801}
X(66938) lies on the Jerabek circumhyperbola and these lines: {3, 810}, {4, 4444}, {6, 798}, {65, 876}, {67, 46159}, {69, 656}, {71, 1459}, {72, 905}, {73, 22090}, {74, 741}, {290, 18827}, {291, 2401}, {292, 2424}, {875, 1245}, {1019, 1244}, {2196, 22155}, {4369, 19222}, {4584, 57740}, {15232, 29324}, {15320, 29328}, {18268, 57735}, {20507, 58375}, {20758, 22092}, {21202, 66286}, {24018, 43698}, {24396, 36817}, {37128, 37142}, {57732, 65352}, {57739, 65258}
X(66938) = isotomic conjugate of the polar conjugate of X(3572)
X(66938) = isogonal conjugate of the polar conjugate of X(4444)
X(66938) = X(4444)-Ceva conjugate of X(3572)
X(66938) = X(i)-cross conjugate of X(j) for these (i,j): {22092, 905}, {53550, 1459}
X(66938) = X(i)-isoconjugate of X(j) for these (i,j): {4, 3573}, {19, 3570}, {25, 874}, {99, 862}, {100, 242}, {108, 3685}, {112, 3948}, {162, 740}, {190, 2201}, {238, 1897}, {239, 1783}, {350, 8750}, {419, 3903}, {643, 1874}, {648, 2238}, {653, 3684}, {659, 15742}, {668, 57654}, {685, 50440}, {692, 40717}, {765, 65106}, {811, 3747}, {1018, 31905}, {1284, 36797}, {1309, 15507}, {1429, 65160}, {1447, 56183}, {1914, 6335}, {1973, 27853}, {3716, 7012}, {3975, 32674}, {3985, 65232}, {4010, 5379}, {4148, 7128}, {4155, 18020}, {4242, 36815}, {4435, 46102}, {4551, 14024}, {4613, 17569}, {6331, 41333}, {7235, 52914}, {8299, 65333}, {8300, 65338}, {16609, 65201}, {27805, 56828}, {32676, 35544}, {36118, 58327}, {37135, 52468}, {44089, 56241}, {46254, 46390}, {51435, 65218}, {55231, 66878}
X(66938) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 3570}, {125, 740}, {513, 65106}, {1086, 40717}, {6337, 27853}, {6505, 874}, {8054, 242}, {9470, 1897}, {15526, 35544}, {16592, 17984}, {17423, 3747}, {26932, 350}, {34467, 238}, {34591, 3948}, {35072, 3975}, {36033, 3573}, {36906, 6335}, {38983, 3685}, {38986, 862}, {39006, 239}, {40618, 1921}, {40626, 4087}, {55053, 2201}, {55060, 1874}, {55066, 2238}
X(66938) = crosssum of X(i) and X(j) for these (i,j): {238, 3716}, {242, 65106}
X(66938) = trilinear pole of line {647, 3937}
X(66938) = crossdifference of every pair of points on line {242, 740}
X(66938) = barycentric product X(i)*X(j) for these {i,j}: {3, 4444}, {48, 66286}, {63, 876}, {69, 3572}, {222, 60577}, {291, 905}, {292, 4025}, {295, 514}, {304, 875}, {334, 22383}, {335, 1459}, {337, 649}, {520, 65352}, {525, 741}, {647, 18827}, {652, 7233}, {656, 37128}, {660, 3942}, {661, 57738}, {693, 2196}, {798, 57987}, {810, 40017}, {813, 1565}, {1790, 35352}, {1808, 7178}, {1911, 15413}, {1916, 22093}, {2311, 17094}, {3708, 36066}, {3937, 4562}, {4369, 36214}, {4580, 46159}, {4584, 18210}, {7254, 43534}, {14208, 18268}, {20975, 65258}, {20981, 40708}, {22384, 40098}, {51664, 56154}, {52209, 53550}, {53559, 65327}
X(66938) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 3570}, {48, 3573}, {63, 874}, {69, 27853}, {291, 6335}, {292, 1897}, {295, 190}, {337, 1978}, {514, 40717}, {521, 3975}, {525, 35544}, {647, 740}, {649, 242}, {652, 3685}, {656, 3948}, {667, 2201}, {741, 648}, {798, 862}, {810, 2238}, {813, 15742}, {875, 19}, {876, 92}, {905, 350}, {1015, 65106}, {1459, 239}, {1565, 65101}, {1808, 645}, {1911, 1783}, {1919, 57654}, {1922, 8750}, {1946, 3684}, {2196, 100}, {2311, 36797}, {3049, 3747}, {3270, 4148}, {3572, 4}, {3733, 31905}, {3937, 812}, {3942, 3766}, {4025, 1921}, {4369, 17984}, {4444, 264}, {5029, 52468}, {6332, 4087}, {7077, 65160}, {7117, 3716}, {7180, 1874}, {7233, 46404}, {7252, 14024}, {7254, 33295}, {8677, 51381}, {15413, 18891}, {18268, 162}, {18827, 6331}, {20981, 419}, {22086, 4432}, {22092, 17793}, {22093, 385}, {22096, 8632}, {22379, 27950}, {22383, 238}, {22384, 4366}, {23224, 20769}, {36066, 46254}, {36214, 27805}, {37128, 811}, {40017, 57968}, {43925, 34856}, {46159, 41676}, {51858, 56183}, {51866, 65333}, {52205, 65338}, {53550, 17755}, {55230, 4037}, {55234, 7235}, {56242, 56828}, {57738, 799}, {57987, 4602}, {60577, 7017}, {65102, 58327}, {65352, 6528}, {65751, 46390}, {66286, 1969}
X(66939) lies on the orthic inconic and these lines: {4, 685}, {69, 65354}, {114, 66080}, {125, 2501}, {132, 468}, {136, 2679}, {297, 511}, {338, 23290}, {424, 42072}, {523, 8754}, {868, 41172}, {924, 34980}, {1316, 40542}, {1495, 57432}, {1990, 5095}, {3154, 41357}, {14120, 39533}, {16229, 58907}, {16230, 51429}, {17994, 38987}, {18121, 50649}, {47390, 65962}
X(66939) = reflection of X(47390) in X(65962)
X(66939) = polar conjugate of X(57562)
X(66939) = polar conjugate of the isotomic conjugate of X(35088)
X(66939) = polar conjugate of the isogonal conjugate of X(59805)
X(66939) = orthic-isogonal conjugate of X(16230)
X(66939) = X(4)-Ceva conjugate of X(16230)
X(66939) = X(59805)-cross conjugate of X(35088)
X(66939) = X(i)-isoconjugate of X(j) for these (i,j): {48, 57562}, {293, 57742}, {1101, 47388}, {4575, 41173}, {36084, 43754}
X(66939) = X(i)-Dao conjugate of X(j) for these (i,j): {132, 57742}, {136, 41173}, {511, 47390}, {523, 47388}, {1249, 57562}, {2799, 69}, {35088, 17932}, {38970, 2966}, {38987, 43754}, {41167, 17974}, {41172, 4558}, {55267, 287}, {62595, 57991}, {65763, 35912}
X(66939) = crosspoint of X(4) and X(16230)
X(66939) = crosssum of X(3) and X(43754)
X(66939) = crossdifference of every pair of points on line {43754, 56389}
X(66939) = barycentric product X(i)*X(j) for these {i,j}: {4, 35088}, {125, 36426}, {232, 62431}, {264, 59805}, {297, 868}, {338, 2967}, {339, 51334}, {685, 46052}, {1990, 65974}, {2501, 62555}, {2799, 16230}, {2970, 36790}, {8754, 32458}, {14618, 41167}, {44114, 44132}
X(66939) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 57562}, {115, 47388}, {232, 57742}, {297, 57991}, {868, 287}, {2501, 41173}, {2799, 17932}, {2967, 249}, {2970, 34536}, {3569, 43754}, {6530, 60179}, {8754, 41932}, {11672, 47390}, {16230, 2966}, {17994, 2715}, {32458, 47389}, {35088, 69}, {36426, 18020}, {41167, 4558}, {41172, 17974}, {41181, 53783}, {44114, 248}, {46052, 6333}, {51334, 250}, {55275, 60506}, {57430, 34156}, {58260, 14600}, {58262, 32661}, {59805, 3}, {62431, 57799}, {62555, 4563}, {65755, 35912}
X(66940) lies on the Feuerbach circumhyperbola and these lines: {1, 329}, {2, 84}, {4, 3753}, {7, 2478}, {8, 1864}, {9, 7080}, {10, 38271}, {20, 30500}, {21, 18228}, {72, 1000}, {80, 5175}, {104, 405}, {145, 56038}, {149, 9874}, {226, 7091}, {318, 7003}, {377, 10429}, {390, 42470}, {442, 10308}, {943, 13615}, {950, 3680}, {962, 3577}, {1005, 10310}, {1156, 9780}, {1172, 55432}, {1320, 9785}, {1389, 5758}, {1476, 3616}, {1728, 5744}, {1750, 6904}, {2255, 2298}, {2346, 52653}, {2475, 64329}, {2899, 7155}, {3062, 5177}, {3296, 58576}, {3419, 43734}, {3427, 12667}, {3487, 15179}, {3617, 55931}, {3877, 7320}, {3885, 56090}, {3897, 63163}, {4194, 5749}, {4313, 56101}, {4512, 59722}, {4866, 6736}, {4900, 66205}, {5084, 9940}, {5250, 5815}, {5294, 27530}, {5550, 55921}, {5658, 37244}, {5714, 14022}, {5766, 34894}, {5809, 6601}, {5817, 47510}, {6734, 60997}, {6919, 9612}, {7151, 7952}, {7162, 34619}, {7284, 37692}, {8165, 60925}, {8583, 59687}, {9844, 15998}, {10306, 44861}, {10309, 63876}, {10390, 61010}, {11037, 41012}, {11106, 31018}, {11415, 17097}, {12541, 56091}, {12625, 31509}, {17183, 56048}, {26062, 37421}, {27529, 55961}, {27538, 56277}, {31156, 64344}, {34404, 46355}, {34695, 64143}, {38314, 56029}, {50865, 62178}, {55922, 60987}, {55960, 61023}, {56262, 60995}, {59387, 64265}, {61009, 64696}, {64130, 64673}
X(66940) = isogonal conjugate of X(1466)
X(66940) = X(937)-anticomplementary conjugate of X(9874)
X(66940) = X(i)-cross conjugate of X(j) for these (i,j): {2551, 8}, {5717, 29}
X(66940) = X(i)-isoconjugate of X(j) for these (i,j): {1, 1466}, {56, 936}, {57, 2256}, {77, 11406}, {14550, 34046}
X(66940) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 936}, {3, 1466}, {5452, 2256}
X(66940) = cevapoint of X(i) and X(j) for these (i,j): {1, 37560}, {9, 10382}
X(66940) = trilinear pole of line {650, 8058}
X(66940) = barycentric product X(i)*X(j) for these {i,j}: {9, 58001}, {312, 937}, {2255, 3596}, {4391, 58991}
X(66940) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 1466}, {9, 936}, {55, 2256}, {607, 11406}, {937, 57}, {2255, 56}, {58001, 85}, {58957, 8059}, {58991, 651}
X(66941) lies on the circumconic {{A,B,C,X(2),X(6)}} and these lines: {2, 4554}, {6, 7}, {25, 105}, {37, 1441}, {42, 226}, {57, 2350}, {85, 26978}, {111, 927}, {251, 61404}, {279, 42290}, {321, 56260}, {335, 883}, {348, 39981}, {349, 27040}, {393, 54235}, {664, 56855}, {666, 17950}, {694, 41352}, {885, 1769}, {941, 2481}, {954, 28071}, {1020, 1400}, {1202, 40940}, {1284, 46501}, {1365, 61059}, {1438, 28081}, {1446, 16583}, {1458, 43035}, {1463, 43921}, {1469, 46149}, {1500, 60229}, {1880, 52607}, {1976, 32735}, {2006, 43050}, {2195, 4331}, {2248, 18625}, {2987, 65301}, {3011, 14197}, {3125, 4566}, {3188, 16968}, {3228, 46135}, {3572, 43041}, {3963, 56258}, {5226, 39967}, {5296, 6559}, {5435, 39966}, {5736, 31637}, {5764, 40724}, {6650, 39293}, {7200, 65174}, {7212, 55261}, {7365, 57663}, {8770, 57477}, {8791, 37799}, {10030, 39979}, {10481, 24790}, {10578, 14942}, {16606, 52358}, {16752, 34085}, {17077, 17278}, {17090, 52660}, {17205, 63203}, {17301, 39974}, {17321, 63229}, {19785, 63236}, {20234, 45744}, {21454, 39965}, {22464, 51929}, {26100, 52422}, {26134, 27162}, {30572, 62764}, {31598, 45988}, {34062, 36640}, {34079, 36146}, {36802, 62392}, {37759, 51560}, {45966, 52029}, {52555, 53417}
X(66941) = X(i)-Ceva conjugate of X(j) for these (i,j): {34085, 43930}, {36146, 62635}
X(66941) = X(i)-cross conjugate of X(j) for these (i,j): {1284, 7}, {7212, 4552}, {18785, 13576}, {39690, 4}, {39786, 4017}, {51436, 15320}, {53551, 4566}
X(66941) = X(i)-isoconjugate of X(j) for these (i,j): {9, 3286}, {21, 672}, {29, 20752}, {41, 30941}, {55, 18206}, {58, 3693}, {60, 3930}, {63, 37908}, {81, 2340}, {99, 46388}, {163, 50333}, {212, 15149}, {219, 54407}, {241, 2328}, {261, 39258}, {283, 5089}, {284, 518}, {314, 9454}, {333, 2223}, {643, 665}, {650, 54353}, {652, 4238}, {662, 926}, {799, 8638}, {918, 65375}, {1021, 2283}, {1025, 21789}, {1026, 7252}, {1043, 52635}, {1172, 1818}, {1333, 3717}, {1414, 52614}, {1458, 2287}, {1812, 2356}, {1861, 2193}, {1876, 2327}, {2150, 3932}, {2175, 18157}, {2185, 20683}, {2194, 3912}, {2195, 16728}, {2254, 5546}, {2284, 3737}, {2299, 25083}, {2311, 8299}, {3263, 57657}, {4560, 54325}, {4570, 17435}, {4636, 24290}, {7259, 53539}, {9455, 28660}, {53550, 65201}
X(66941) = X(i)-Dao conjugate of X(j) for these (i,j): {10, 3693}, {37, 3717}, {115, 50333}, {223, 18206}, {226, 25083}, {478, 3286}, {1084, 926}, {1214, 3912}, {3160, 30941}, {3162, 37908}, {16591, 17755}, {33675, 314}, {36908, 241}, {38986, 46388}, {38996, 8638}, {39063, 16728}, {40586, 2340}, {40590, 518}, {40593, 18157}, {40608, 52614}, {40611, 672}, {40615, 23829}, {40622, 918}, {40837, 15149}, {47345, 1861}, {50330, 17435}, {55060, 665}, {56325, 3932}, {59608, 9436}, {62554, 21}, {62570, 3263}, {62599, 333}
X(66941) = cevapoint of X(i) and X(j) for these (i,j): {226, 16609}, {3125, 53551}
X(66941) = crosspoint of X(i) and X(j) for these (i,j): {673, 54235}, {34018, 56783}
X(66941) = crosssum of X(672) and X(20752)
X(66941) = trilinear pole of line {65, 512}
X(66941) = crossdifference of every pair of points on line {926, 8638}
X(66941) = barycentric product X(i)*X(j) for these {i,j}: {7, 13576}, {10, 56783}, {37, 34018}, {65, 2481}, {85, 18785}, {105, 1441}, {225, 31637}, {226, 673}, {294, 1446}, {307, 36124}, {313, 1416}, {321, 1462}, {349, 1438}, {512, 46135}, {523, 927}, {661, 34085}, {666, 7178}, {850, 32735}, {885, 4566}, {1214, 54235}, {1231, 8751}, {1400, 18031}, {1427, 36796}, {1577, 36146}, {1814, 40149}, {2501, 65301}, {3120, 39293}, {3668, 14942}, {3709, 65847}, {3952, 43930}, {4017, 51560}, {4077, 36086}, {4552, 62635}, {4554, 55261}, {4573, 66282}, {6063, 56853}, {7180, 36803}, {10099, 18026}, {14625, 57826}, {16609, 52209}, {17094, 65333}, {32658, 52575}, {36057, 57809}, {53241, 60229}
X(66941) = barycentric quotient X(i)/X(j) for these {i,j}: {7, 30941}, {10, 3717}, {12, 3932}, {25, 37908}, {34, 54407}, {37, 3693}, {42, 2340}, {56, 3286}, {57, 18206}, {65, 518}, {73, 1818}, {85, 18157}, {105, 21}, {108, 4238}, {109, 54353}, {181, 20683}, {225, 1861}, {226, 3912}, {241, 16728}, {278, 15149}, {294, 2287}, {512, 926}, {523, 50333}, {666, 645}, {669, 8638}, {673, 333}, {798, 46388}, {884, 21789}, {885, 7253}, {919, 5546}, {927, 99}, {1020, 1025}, {1024, 1021}, {1027, 3737}, {1042, 1458}, {1214, 25083}, {1284, 8299}, {1400, 672}, {1402, 2223}, {1409, 20752}, {1416, 58}, {1426, 1876}, {1427, 241}, {1438, 284}, {1441, 3263}, {1446, 40704}, {1462, 81}, {1814, 1812}, {1880, 5089}, {2171, 3930}, {2195, 2328}, {2481, 314}, {3125, 17435}, {3649, 4966}, {3668, 9436}, {3671, 4684}, {3676, 23829}, {3709, 52614}, {4017, 2254}, {4551, 1026}, {4552, 42720}, {4554, 55260}, {4559, 2284}, {4566, 883}, {4848, 4899}, {7178, 918}, {7180, 665}, {7212, 62552}, {7216, 53544}, {7250, 53539}, {8751, 1172}, {10099, 521}, {13576, 8}, {14625, 391}, {14942, 1043}, {16609, 17755}, {18031, 28660}, {18785, 9}, {23696, 57081}, {28071, 56182}, {31637, 332}, {32658, 2193}, {32666, 65375}, {32735, 110}, {34018, 274}, {34085, 799}, {36057, 283}, {36086, 643}, {36124, 29}, {36146, 662}, {36802, 7256}, {36803, 62534}, {39293, 4600}, {40149, 46108}, {42752, 42771}, {43921, 18191}, {43929, 7252}, {43930, 7192}, {46135, 670}, {51436, 56785}, {51560, 7257}, {51866, 2311}, {52023, 51384}, {52029, 3786}, {52030, 56154}, {52209, 36800}, {53241, 16713}, {53321, 2283}, {53540, 3675}, {53551, 3126}, {54235, 31623}, {55261, 650}, {56783, 86}, {56853, 55}, {57185, 24290}, {57652, 2356}, {62635, 4560}, {64216, 2194}, {65301, 4563}, {65333, 36797}, {66282, 3700}, {66287, 4088}
X(66941) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {673, 56783, 1462}, {37798, 46784, 927}
X(669422) lies on the cubic K864 and these lines: {1, 19603}, {19, 1581}, {31, 1927}, {71, 7015}, {163, 19578}, {228, 7116}, {292, 694}, {805, 2249}, {893, 47642}, {1409, 2196}, {1821, 1934}, {1916, 60088}, {1964, 9288}, {2281, 9468}, {20727, 40708}, {20741, 23186}, {43763, 65252}, {45240, 54317}
X(66942) = isotomic conjugate of the polar conjugate of X(1967)
X(66942) = isogonal conjugate of the polar conjugate of X(1581)
X(66942) = X(1581)-Ceva conjugate of X(1967)
X(66942) = X(i)-isoconjugate of X(j) for these (i,j): {2, 419}, {4, 385}, {6, 17984}, {19, 1966}, {25, 3978}, {27, 4039}, {75, 56828}, {76, 44089}, {92, 1580}, {98, 39931}, {107, 24284}, {112, 14295}, {172, 40717}, {230, 47736}, {232, 14382}, {239, 7009}, {242, 894}, {264, 1691}, {275, 63736}, {290, 51324}, {297, 40820}, {350, 7119}, {393, 12215}, {427, 56976}, {468, 60863}, {648, 804}, {732, 32085}, {862, 8033}, {880, 2489}, {1093, 58354}, {1215, 31905}, {1235, 56975}, {1783, 14296}, {1821, 56679}, {1840, 33295}, {1843, 56979}, {1874, 27958}, {1897, 4107}, {1909, 2201}, {1920, 57654}, {1926, 1973}, {1933, 1969}, {1974, 14603}, {2501, 17941}, {2679, 41174}, {3186, 39927}, {3225, 52462}, {3570, 54229}, {4019, 34856}, {4032, 14024}, {4154, 65352}, {4164, 6335}, {5026, 17983}, {5027, 6331}, {5117, 64981}, {5976, 6531}, {6103, 57452}, {8623, 46104}, {11183, 65350}, {12829, 35142}, {14006, 16609}, {14602, 18022}, {14618, 56980}, {16080, 51430}, {16081, 36213}, {16089, 32542}, {16985, 37892}, {18047, 65106}, {18901, 44162}, {18902, 44161}, {20883, 56971}, {24006, 56982}, {36820, 37765}, {39495, 46456}, {47646, 56390}, {51343, 60516}
X(66942) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 1966}, {9, 17984}, {206, 56828}, {6337, 1926}, {6505, 3978}, {9467, 19}, {22391, 1580}, {32664, 419}, {34467, 4107}, {34591, 14295}, {36033, 385}, {38985, 24284}, {39006, 14296}, {39092, 92}, {40601, 56679}, {47648, 40703}, {55066, 804}
X(66942) = crosssum of X(1580) and X(56828)
X(66942) = trilinear pole of line {810, 4020}
X(66942) = X(19)-line conjugate of X(56679)
X(66942) = barycentric product X(i)*X(j) for these {i,j}: {1, 36214}, {3, 1581}, {31, 40708}, {48, 1916}, {63, 694}, {69, 1967}, {75, 17970}, {184, 1934}, {256, 295}, {257, 2196}, {291, 7015}, {293, 40810}, {304, 9468}, {305, 1927}, {326, 17980}, {335, 7116}, {336, 14251}, {337, 904}, {647, 37134}, {656, 805}, {661, 65327}, {810, 18829}, {822, 65351}, {881, 55202}, {882, 4592}, {1911, 7019}, {1959, 15391}, {3917, 43763}, {4020, 14970}, {4575, 66267}, {8789, 40364}, {9247, 18896}, {14208, 17938}, {34055, 56978}
X(66942) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 17984}, {3, 1966}, {31, 419}, {32, 56828}, {48, 385}, {63, 3978}, {69, 1926}, {184, 1580}, {228, 4039}, {237, 56679}, {255, 12215}, {256, 40717}, {293, 14382}, {295, 1909}, {304, 14603}, {560, 44089}, {656, 14295}, {694, 92}, {805, 811}, {810, 804}, {822, 24284}, {875, 54229}, {882, 24006}, {904, 242}, {1459, 14296}, {1581, 264}, {1755, 39931}, {1911, 7009}, {1916, 1969}, {1922, 7119}, {1927, 25}, {1934, 18022}, {1967, 4}, {2196, 894}, {4020, 732}, {4100, 58354}, {4575, 17941}, {4592, 880}, {7015, 350}, {7019, 18891}, {7104, 2201}, {7116, 239}, {8789, 1973}, {9247, 1691}, {9417, 51324}, {9468, 19}, {10547, 56971}, {14251, 240}, {14575, 1933}, {15391, 1821}, {17938, 162}, {17970, 1}, {17980, 158}, {18829, 57968}, {20775, 2236}, {22383, 4107}, {32661, 56982}, {34055, 56979}, {34238, 36120}, {36051, 47736}, {36060, 60863}, {36214, 75}, {37134, 6331}, {40364, 18901}, {40708, 561}, {40810, 40703}, {42061, 46507}, {43763, 46104}, {51907, 52462}, {56978, 20883}, {62266, 63736}, {65327, 799}, {65351, 57973}
X(66943) lies on the X-parabola of ABC (see X(12065)) and these lines: {4, 58784}, {67, 15328}, {427, 523}, {476, 935}, {685, 43665}, {850, 1235}, {892, 65269}, {2395, 8791}, {2501, 23105}, {4024, 21016}, {5466, 46105}, {8599, 14618}, {9517, 11605}, {10412, 16230}, {17708, 44768}, {18019, 62645}, {18312, 47627}, {19174, 66300}, {35311, 60503}
X(66943) = polar conjugate of X(52630)
X(66943) = X(i)-Ceva conjugate of X(j) for these (i,j): {65269, 46105}, {65356, 8791}
X(66943) = X(14273)-cross conjugate of X(14618)
X(66943) = X(i)-isoconjugate of X(j) for these (i,j): {23, 4575}, {48, 52630}, {162, 58357}, {163, 22151}, {255, 52916}, {662, 10317}, {1101, 9517}, {4592, 18374}, {9247, 55226}, {16165, 36034}, {16568, 32661}, {24041, 42659}
X(66943) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 22151}, {125, 58357}, {136, 23}, {523, 9517}, {1084, 10317}, {1249, 52630}, {3005, 42659}, {3258, 16165}, {5139, 18374}, {6523, 52916}, {15900, 4558}, {16178, 12824}, {36901, 37804}, {48317, 6593}, {53983, 9019}, {62576, 55226}
X(66943) = crosspoint of X(46105) and X(65269)
X(66943) = crosssum of X(10317) and X(42659)
X(66943) = trilinear pole of line {115, 53987}
X(66943) = crossdifference of every pair of points on line {10317, 58357}
X(66943) = barycentric product X(i)*X(j) for these {i,j}: {67, 14618}, {115, 65269}, {125, 65356}, {338, 935}, {523, 46105}, {850, 8791}, {2501, 18019}, {2970, 17708}, {5466, 57496}, {34897, 66299}, {39269, 60040}
X(66943) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 52630}, {67, 4558}, {115, 9517}, {264, 55226}, {393, 52916}, {512, 10317}, {523, 22151}, {647, 58357}, {850, 37804}, {935, 249}, {1637, 16165}, {2157, 4575}, {2489, 18374}, {2501, 23}, {2970, 9979}, {3124, 42659}, {3455, 32661}, {5466, 57481}, {8754, 2492}, {8791, 110}, {9076, 65307}, {10415, 65321}, {10511, 65328}, {11605, 4611}, {14273, 6593}, {14618, 316}, {18019, 4563}, {23105, 62563}, {24006, 16568}, {33919, 47415}, {46105, 99}, {47236, 12824}, {57496, 5468}, {58757, 8744}, {65269, 4590}, {65356, 18020}, {66299, 37765}
X(66944 lies on the Jerabek circumhyperbola and these lines: {3, 494}, {4, 61391}, {6, 8946}, {68, 8036}, {69, 486}, {72, 26504}, {371, 64629}, {372, 31975}, {1505, 6414}, {1588, 24243}, {5058, 6413}, {6391, 10666}, {6459, 26506}, {6561, 49387}, {8940, 11291}, {11293, 21464}, {15004, 27367}, {34817, 45726}, {39384, 45514}, {44193, 45598}
X(66944) = isogonal conjugate of X(39388)
X(66944) = isogonal conjugate of the anticomplement of X(32490)
X(66944) = isogonal conjugate of the complement of X(32488)
X(66944) = X(494)-Ceva conjugate of X(6414)
X(66944) = X(26455)-cross conjugate of X(494)
X(66944) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39388}, {662, 14326}, {1586, 19216}, {3069, 55397}
X(66944) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 39388}, {1084, 14326}
X(66944) = trilinear pole of line {647, 58827}
X(66944) = barycentric product X(i)*X(j) for these {i,j}: {486, 494}, {5491, 8576}, {6414, 24243}, {8946, 11091}, {26461, 34392}, {54984, 58827}
X(66944) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 39388}, {494, 491}, {512, 14326}, {5491, 45806}, {6414, 487}, {8576, 3069}, {8946, 1586}, {11091, 46743}, {26455, 642}, {26461, 372}, {26922, 8223}, {53062, 1600}
X(66944) = {X(6),X(8946)}-harmonic conjugate of X(53062)
X(66945) lies on the circumconic {{A,B,C,X(1),X(6)}} and these lines: {1, 661}, {6, 512}, {34, 55208}, {56, 7180}, {58, 649}, {86, 514}, {106, 111}, {269, 7216}, {513, 34916}, {523, 24275}, {671, 3226}, {691, 2702}, {830, 9277}, {892, 53195}, {895, 2774}, {897, 37129}, {923, 1438}, {1126, 58294}, {1960, 17962}, {2832, 7312}, {3768, 17954}, {4775, 25426}, {5378, 5380}, {5466, 43531}, {15309, 56328}, {36052, 36060}, {36085, 65239}, {36123, 36128}, {50349, 55919}
X(66945) = isogonal conjugate of the isotomic conjugate of X(62626)
X(66945) = X(i)-isoconjugate of X(j) for these (i,j): {6, 42721}, {10, 23889}, {37, 5468}, {42, 24039}, {72, 4235}, {99, 21839}, {100, 524}, {101, 14210}, {110, 42713}, {187, 668}, {190, 896}, {321, 5467}, {351, 4601}, {468, 1332}, {644, 7181}, {651, 3712}, {660, 4760}, {662, 4062}, {690, 4567}, {692, 3266}, {765, 4750}, {906, 44146}, {922, 1978}, {1016, 14419}, {1018, 6629}, {1023, 52759}, {1275, 58331}, {1783, 6390}, {2434, 42724}, {2482, 5380}, {2642, 4600}, {3292, 6335}, {3699, 51653}, {3903, 7267}, {3908, 51541}, {3952, 16702}, {4553, 52898}, {4557, 16741}, {4564, 14432}, {4604, 4933}, {4606, 4831}, {4938, 37211}, {5379, 14417}, {5385, 30605}, {5967, 42717}, {6386, 14567}, {9717, 42716}, {14559, 42701}, {20336, 61207}, {23343, 52757}, {31013, 35342}, {36085, 52068}
X(66945) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 42721}, {244, 42713}, {513, 4750}, {1015, 14210}, {1084, 4062}, {1086, 3266}, {4988, 35522}, {5190, 44146}, {8054, 524}, {15477, 101}, {15899, 190}, {38986, 21839}, {38988, 52068}, {38991, 3712}, {39006, 6390}, {39061, 1978}, {40589, 5468}, {40592, 24039}, {40627, 690}, {50497, 2642}, {55053, 896}
X(66945) = crosssum of X(i) and X(j) for these (i,j): {524, 4750}, {14419, 21839}
X(66945) = trilinear pole of line {649, 3122}
X(66945) = crossdifference of every pair of points on line {524, 896}
X(66945) = barycentric product X(i)*X(j) for these {i,j}: {6, 62626}, {10, 43926}, {27, 10097}, {58, 5466}, {81, 23894}, {86, 9178}, {111, 514}, {244, 5380}, {513, 897}, {522, 7316}, {649, 671}, {667, 46277}, {691, 3120}, {693, 923}, {892, 3122}, {895, 7649}, {905, 36128}, {1459, 17983}, {1474, 14977}, {1919, 18023}, {1980, 57999}, {2206, 52632}, {3125, 36085}, {3261, 32740}, {3676, 5547}, {4025, 8753}, {4556, 64258}, {4750, 10630}, {9139, 11125}, {9154, 53521}, {10422, 21109}, {10566, 46154}, {14908, 46107}, {16732, 36142}, {17924, 36060}, {21205, 64218}, {21207, 32729}, {23345, 52747}
X(66945) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 42721}, {58, 5468}, {81, 24039}, {111, 190}, {351, 52068}, {512, 4062}, {513, 14210}, {514, 3266}, {649, 524}, {661, 42713}, {663, 3712}, {667, 896}, {671, 1978}, {691, 4600}, {798, 21839}, {895, 4561}, {897, 668}, {923, 100}, {1015, 4750}, {1019, 16741}, {1333, 23889}, {1459, 6390}, {1474, 4235}, {1919, 187}, {1980, 922}, {2206, 5467}, {3120, 35522}, {3121, 2642}, {3122, 690}, {3248, 14419}, {3271, 14432}, {3733, 6629}, {4466, 45807}, {4750, 36792}, {4775, 4933}, {4834, 4938}, {5380, 7035}, {5466, 313}, {5547, 3699}, {7316, 664}, {7649, 44146}, {8632, 4760}, {8753, 1897}, {9178, 10}, {10097, 306}, {10561, 21094}, {14419, 24038}, {14908, 1331}, {14977, 40071}, {19626, 32739}, {20981, 7267}, {21123, 7813}, {21131, 52628}, {23345, 52759}, {23892, 52757}, {23894, 321}, {32729, 4570}, {32740, 101}, {36060, 1332}, {36085, 4601}, {36128, 6335}, {36142, 4567}, {41272, 46148}, {43924, 7181}, {43926, 86}, {46154, 4568}, {46277, 6386}, {50344, 31013}, {53521, 50567}, {57129, 16702}, {57181, 51653}, {58140, 4831}, {62626, 76}, {64258, 52623}
X(66946) lies on the circumconic {{A,B,C,X(1),X(6)}} and these lines: {1, 313}, {6, 321}, {34, 57809}, {56, 1441}, {58, 75}, {86, 561}, {92, 1474}, {106, 839}, {292, 17303}, {977, 1909}, {1126, 4385}, {1269, 56328}, {1431, 15991}, {2215, 5271}, {3226, 57979}, {4360, 5331}, {5252, 43070}, {5262, 57824}, {8747, 57806}, {10436, 39949}, {32926, 40433}, {51686, 56875}, {52150, 54121}
X(66946) = isotomic conjugate of the isogonal conjugate of X(54336)
X(66946) = X(i)-cross conjugate of X(j) for these (i,j): {46385, 190}, {50449, 799}
X(66946) = X(i)-isoconjugate of X(j) for these (i,j): {6, 4261}, {32, 32782}, {100, 838}, {184, 5142}, {667, 65314}, {1333, 56541}
X(66946) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 4261}, {37, 56541}, {6376, 32782}, {6631, 65314}, {8054, 838}, {62605, 5142}
X(66946) = cevapoint of X(i) and X(j) for these (i,j): {1, 5271}, {75, 17394}
X(66946) = trilinear pole of line {649, 1577}
X(66946) = barycentric product X(i)*X(j) for these {i,j}: {75, 60082}, {76, 54336}, {514, 839}, {649, 57979}, {20948, 59112}
X(66946) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 4261}, {10, 56541}, {75, 32782}, {92, 5142}, {190, 65314}, {313, 56564}, {649, 838}, {839, 190}, {54336, 6}, {57979, 1978}, {59112, 163}, {60082, 1}
X(66947) lies on the circumconic {{A,B,C,X(2),X(6)}} and these lines: {2, 649}, {6, 1919}, {37, 798}, {42, 669}, {111, 727}, {263, 8643}, {308, 10566}, {513, 39798}, {661, 16606}, {694, 5029}, {1400, 51650}, {2054, 5027}, {2998, 21225}, {3226, 3228}, {3768, 39982}, {4893, 56162}, {20332, 37128}, {21832, 27809}, {23572, 39952}, {34077, 34079}, {54117, 54253}
X(66947) = X(21832)-cross conjugate of X(649)
X(66947) = X(i)-isoconjugate of X(j) for these (i,j): {81, 23354}, {99, 1575}, {100, 62636}, {110, 52043}, {163, 35538}, {190, 18792}, {643, 43040}, {645, 1463}, {662, 726}, {670, 21760}, {799, 3009}, {811, 20785}, {3837, 4567}, {4570, 20908}, {4584, 17793}, {4589, 17475}, {4601, 6373}, {4623, 21830}, {4639, 20663}, {6331, 20777}, {20681, 65258}, {21053, 24041}, {27044, 34594}, {40881, 62530}
X(66947) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 35538}, {244, 52043}, {1084, 726}, {3005, 21053}, {8054, 62636}, {17423, 20785}, {33678, 670}, {38986, 1575}, {38996, 3009}, {40586, 23354}, {40627, 3837}, {50330, 20908}, {55053, 18792}, {55060, 43040}
X(66947) = cevapoint of X(798) and X(4455)
X(66947) = crosssum of X(726) and X(21053)
X(66947) = crossdifference of every pair of points on line {726, 3009}
X(66947) = barycentric product X(i)*X(j) for these {i,j}: {10, 23355}, {42, 62638}, {512, 3226}, {513, 18793}, {523, 727}, {649, 27809}, {661, 20332}, {798, 32020}, {1577, 34077}, {3122, 8709}, {4010, 63881}, {4017, 8851}, {7180, 36799}, {55263, 60865}
X(66947) = barycentric quotient X(i)/X(j) for these {i,j}: {42, 23354}, {512, 726}, {523, 35538}, {649, 62636}, {661, 52043}, {667, 18792}, {669, 3009}, {727, 99}, {798, 1575}, {1924, 21760}, {3049, 20785}, {3122, 3837}, {3124, 21053}, {3125, 20908}, {3226, 670}, {4455, 17793}, {7180, 43040}, {8034, 21140}, {8851, 7257}, {17990, 59724}, {18001, 64236}, {18793, 668}, {20332, 799}, {21832, 62553}, {23355, 86}, {27809, 1978}, {32020, 4602}, {34077, 662}, {36799, 62534}, {42752, 42766}, {51641, 1463}, {53581, 21830}, {58288, 27044}, {60865, 55262}, {62421, 36860}, {62638, 310}, {63881, 4589}
X(66948) lies on the Jerabek circumhyperbola and these lines: {3, 326}, {4, 75}, {6, 63}, {54, 62277}, {64, 19611}, {65, 307}, {69, 17441}, {71, 3998}, {72, 52396}, {73, 52385}, {74, 1310}, {290, 54982}, {695, 27633}, {1036, 57659}, {1246, 57923}, {1444, 1798}, {1903, 56944}, {2213, 7013}, {3781, 43698}, {3962, 9399}, {7019, 57690}, {19766, 51223}, {24310, 57702}, {36099, 43717}, {37142, 37215}, {44733, 56367}, {57677, 57972}, {57732, 65341}, {57735, 65298}
X(66948) = isogonal conjugate of X(4206)
X(66948) = isotomic conjugate of the polar conjugate of X(56219)
X(66948) = isogonal conjugate of the polar conjugate of X(60197)
X(66948) = X(60197)-Ceva conjugate of X(56219)
X(66948) = X(i)-isoconjugate of X(j) for these (i,j): {1, 4206}, {4, 44119}, {19, 2303}, {25, 1010}, {27, 54416}, {28, 612}, {29, 1460}, {33, 5323}, {58, 7102}, {112, 6590}, {162, 8678}, {388, 2299}, {648, 2484}, {811, 8646}, {1172, 2285}, {1184, 40411}, {1474, 2345}, {1974, 44154}, {2203, 4385}, {2286, 8748}, {2326, 8898}, {2328, 7103}, {2332, 7365}, {2517, 32676}, {2522, 24019}, {3610, 36420}, {4183, 4320}, {5227, 5317}, {5286, 57386}, {7085, 8747}, {8750, 47844}, {23874, 32713}, {40184, 56832}
X(66948) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 4206}, {6, 2303}, {10, 7102}, {125, 8678}, {226, 388}, {6505, 1010}, {15526, 2517}, {17423, 8646}, {26932, 47844}, {34591, 6590}, {35071, 2522}, {36033, 44119}, {36908, 7103}, {40591, 612}, {51574, 2345}, {55066, 2484}, {62564, 4385}
X(66948) = trilinear pole of line {647, 24018}
X(66948) = barycentric product X(i)*X(j) for these {i,j}: {3, 60197}, {69, 56219}, {71, 57923}, {73, 64989}, {304, 1245}, {305, 2281}, {306, 56328}, {307, 2339}, {520, 65341}, {525, 1310}, {647, 54982}, {656, 37215}, {1036, 1231}, {1039, 52565}, {1214, 30479}, {1472, 40071}, {2221, 20336}, {3265, 36099}, {14208, 65298}, {17441, 63195}, {22363, 40831}
X(66948) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 2303}, {6, 4206}, {37, 7102}, {48, 44119}, {63, 1010}, {71, 612}, {72, 2345}, {73, 2285}, {222, 5323}, {228, 54416}, {304, 44154}, {306, 4385}, {520, 2522}, {525, 2517}, {647, 8678}, {656, 6590}, {810, 2484}, {905, 47844}, {1036, 1172}, {1039, 8748}, {1214, 388}, {1245, 19}, {1310, 648}, {1409, 1460}, {1425, 8898}, {1427, 7103}, {1439, 7365}, {1472, 1474}, {2221, 28}, {2281, 25}, {2339, 29}, {3049, 8646}, {3682, 5227}, {3694, 3974}, {3990, 7085}, {3998, 54433}, {17441, 5286}, {22341, 2286}, {22363, 1184}, {24018, 23874}, {30479, 31623}, {32691, 24019}, {36099, 107}, {37215, 811}, {40152, 1038}, {51686, 5317}, {52373, 4320}, {52385, 56367}, {52387, 3610}, {52396, 19799}, {54982, 6331}, {55232, 48395}, {56219, 4}, {56328, 27}, {57923, 44129}, {60197, 264}, {64989, 44130}, {65233, 14594}, {65298, 162}, {65341, 6528}
X(66949) lies on the Jerabek circumhyperbola and these lines: {3, 6332}, {4, 21302}, {6, 522}, {65, 1577}, {67, 2773}, {71, 52355}, {73, 525}, {74, 1311}, {248, 66881}, {512, 15232}, {2769, 32689}, {3309, 57671}, {5486, 8999}, {8673, 28788}
X(66949) = isogonal conjugate of X(7463)
X(66949) = X(i)-isoconjugate of X(j) for these (i,j): {1, 7463}, {162, 8679}, {32676, 33864}
X(66949) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 7463}, {125, 8679}, {15526, 33864}
X(66949) = barycentric product X(i)*X(j) for these {i,j}: {306, 60580}, {525, 1311}
X(66949) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 7463}, {525, 33864}, {647, 8679}, {1311, 648}, {60580, 27}
X(66950) lies on the Kiepert circumhyperbola and these lines: {2, 250}, {4, 1554}, {67, 16080}, {76, 18020}, {98, 8791}, {107, 14223}, {321, 5379}, {393, 62671}, {459, 15384}, {598, 23582}, {685, 43665}, {935, 1304}, {2052, 32230}, {4240, 17708}, {6530, 54554}, {11605, 60133}, {18019, 39297}, {39269, 43678}, {52583, 61500}, {52916, 65268}, {57655, 61743}
X(66950) = polar conjugate of X(62563)
X(66950) = isogonal conjugate of the complement of X(61181)
X(66950) = X(i)-cross conjugate of X(j) for these (i,j): {67, 935}, {468, 107}, {1177, 691}, {5523, 648}, {8791, 65356}, {10766, 2966}, {11605, 65269}, {15139, 110}, {18374, 112}, {32264, 53895}, {38851, 10423}, {43291, 65181}, {62376, 1289}
X(66950) = X(i)-isoconjugate of X(j) for these (i,j): {23, 2632}, {48, 62563}, {656, 9517}, {822, 9979}, {1109, 58357}, {2492, 24018}, {3269, 16568}, {3708, 22151}, {10317, 20902}, {14208, 42659}, {17879, 18374}, {36060, 62594}, {37754, 37765}
X(66950) = X(i)-Dao conjugate of X(j) for these (i,j): {1249, 62563}, {1560, 62594}, {15900, 15526}, {40596, 9517}, {50938, 57426}
X(66950) = cevapoint of X(i) and X(j) for these (i,j): {6, 46592}, {67, 935}, {110, 858}, {112, 18374}, {468, 60503}, {32713, 60428}
X(66950) = trilinear pole of line {112, 523}
X(66950) = barycentric product X(i)*X(j) for these {i,j}: {67, 23582}, {107, 17708}, {110, 65356}, {112, 65269}, {250, 46105}, {648, 935}, {850, 58980}, {2157, 23999}, {8791, 18020}, {11605, 44183}, {18019, 23964}, {32230, 34897}, {42308, 60496}, {60503, 65350}, {60507, 65268}
X(66950) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 62563}, {67, 15526}, {107, 9979}, {112, 9517}, {250, 22151}, {468, 62594}, {935, 525}, {2157, 2632}, {3455, 3269}, {5523, 38971}, {8791, 125}, {11605, 127}, {15388, 54060}, {16318, 57426}, {17708, 3265}, {18019, 36793}, {18020, 37804}, {18374, 55048}, {20031, 52076}, {23357, 58357}, {23582, 316}, {23964, 23}, {23999, 20944}, {24000, 16568}, {32230, 37765}, {32713, 2492}, {35907, 55142}, {41937, 18374}, {44102, 47415}, {46105, 339}, {52919, 21205}, {57655, 10317}, {58070, 33752}, {58980, 110}, {59153, 52916}, {60428, 5099}, {60496, 1650}, {60503, 14417}, {61206, 42659}, {64775, 35911}, {65269, 3267}, {65356, 850}
X(66951) lies on the Jerabek circumhyperbola and these lines: {2, 40602}, {4, 580}, {6, 3145}, {31, 65}, {44, 1903}, {54, 581}, {58, 51223}, {69, 283}, {71, 52425}, {72, 212}, {73, 184}, {74, 58986}, {219, 52561}, {255, 28787}, {272, 1246}, {290, 40011}, {386, 1175}, {579, 2189}, {603, 1439}, {1243, 5398}, {1245, 60722}, {1305, 59016}, {2198, 2253}, {2213, 4252}, {2292, 59282}, {2342, 38955}, {5127, 43712}, {7538, 37652}, {15232, 41506}, {18591, 57704}, {37142, 65254}
X(66951) = isogonal conjugate of X(5125)
X(66951) = isogonal conjugate of the anticomplement of X(7515)
X(66951) = isogonal conjugate of the complement of X(7538)
X(66951) = isogonal conjugate of the polar conjugate of X(1751)
X(66951) = X(i)-cross conjugate of X(j) for these (i,j): {3271, 652}, {4055, 48}
X(66951) = X(i)-isoconjugate of X(j) for these (i,j): {1, 5125}, {4, 3868}, {19, 18134}, {27, 22021}, {28, 57808}, {85, 41320}, {92, 579}, {108, 20294}, {190, 57173}, {209, 286}, {264, 2352}, {273, 3190}, {278, 27396}, {318, 4306}, {651, 57043}, {664, 57092}, {1172, 56559}, {1897, 23800}, {2198, 44129}, {4551, 57072}, {4564, 5190}, {6335, 43060}, {7115, 17878}, {8676, 18026}, {17924, 57217}, {36118, 58333}, {36797, 51658}, {40149, 56000}, {44426, 65315}
X(66951) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 5125}, {6, 18134}, {22391, 579}, {34467, 23800}, {36033, 3868}, {38983, 20294}, {38991, 57043}, {39025, 57092}, {40591, 57808}, {40628, 17878}, {55053, 57173}, {57502, 19367}
X(66951) = crosspoint of X(3) and X(39945)
X(66951) = crosssum of X(i) and X(j) for these (i,j): {4, 1714}, {5190, 57092}
X(66951) = crossdifference of every pair of points on line {57043, 57173}
X(66951) = barycentric product X(i)*X(j) for these {i,j}: {3, 1751}, {48, 2997}, {58, 40161}, {63, 2218}, {71, 272}, {184, 40011}, {222, 56146}, {284, 28786}, {525, 58986}, {647, 65274}, {652, 1305}, {656, 65254}, {1790, 41506}, {1813, 23289}, {2200, 57784}, {3682, 40574}, {6056, 58074}, {15467, 52425}, {22383, 51566}
X(66951) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 18134}, {6, 5125}, {48, 3868}, {71, 57808}, {73, 56559}, {184, 579}, {212, 27396}, {228, 22021}, {272, 44129}, {652, 20294}, {663, 57043}, {667, 57173}, {1305, 46404}, {1751, 264}, {2175, 41320}, {2200, 209}, {2218, 92}, {2997, 1969}, {3063, 57092}, {3271, 5190}, {3937, 65118}, {4055, 51574}, {7004, 17878}, {7252, 57072}, {9247, 2352}, {22383, 23800}, {23289, 46110}, {28786, 349}, {32656, 57217}, {32660, 65315}, {40011, 18022}, {40161, 313}, {52411, 4306}, {52425, 3190}, {56146, 7017}, {58986, 648}, {62257, 57501}, {65102, 58333}, {65254, 811}, {65274, 6331}
X(66952) lies on the Mandart circumellipse and these lines: {100, 59128}, {108, 36086}, {109, 65215}, {190, 32714}, {278, 673}, {658, 1783}, {662, 8269}, {1020, 36099}, {1037, 23707}, {1041, 1156}, {7131, 36100}, {13149, 34085}, {30705, 37214}, {36101, 56359}, {36118, 37206}, {40116, 65245}, {52607, 65247}, {52778, 59090}
X(66952) = polar conjugate of the isotomic conjugate of X(8269)
X(66952) = X(i)-cross conjugate of X(j) for these (i,j): {25, 55346}, {269, 7128}, {7719, 7012}, {60786, 7045}
X(66952) = X(i)-isoconjugate of X(j) for these (i,j): {63, 17115}, {497, 652}, {521, 2082}, {522, 7124}, {614, 57055}, {650, 1040}, {657, 17170}, {663, 27509}, {905, 4319}, {1021, 17441}, {1260, 48398}, {1407, 58776}, {1459, 6554}, {1473, 3239}, {1633, 34591}, {1851, 57057}, {1863, 4091}, {2254, 23601}, {2327, 48403}, {2328, 21107}, {3270, 3732}, {3673, 65102}, {3900, 7289}, {3914, 23090}, {4000, 57108}, {4025, 30706}, {5324, 8611}, {6332, 7083}, {7253, 23620}, {15411, 40934}, {16583, 57081}, {17926, 22057}, {18589, 21789}, {53510, 57134}
X(66952) = X(i)-Dao conjugate of X(j) for these (i,j): {3162, 17115}, {24771, 58776}, {36908, 21107}
X(66952) = cevapoint of X(1783) and X(32714)
X(66952) = trilinear pole of line {1, 1037}
X(66952) = barycentric product X(i)*X(j) for these {i,j}: {4, 8269}, {75, 59128}, {108, 8817}, {653, 7131}, {664, 1041}, {1020, 40411}, {1037, 18026}, {1119, 52778}, {1398, 54967}, {1407, 42384}, {1783, 30705}, {1897, 56359}, {7123, 13149}, {7128, 48070}, {8816, 36099}, {30701, 32714}, {36118, 56179}, {40403, 52607}, {63178, 65160}
X(66952) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 17115}, {108, 497}, {109, 1040}, {200, 58776}, {651, 27509}, {919, 23601}, {934, 17170}, {1020, 18589}, {1037, 521}, {1041, 522}, {1415, 7124}, {1426, 48403}, {1427, 21107}, {1435, 48398}, {1461, 7289}, {1783, 6554}, {4566, 20235}, {7084, 57108}, {7123, 57055}, {7128, 3732}, {7131, 6332}, {8269, 69}, {8750, 4319}, {8817, 35518}, {30701, 15416}, {30705, 15413}, {32674, 2082}, {32714, 4000}, {36118, 3673}, {40403, 15411}, {42384, 59761}, {52607, 53510}, {52778, 1265}, {53321, 17441}, {56183, 4012}, {56359, 4025}, {57386, 1021}, {59128, 1}
X(66953) lies on the cubic K1302 and these lines: {4, 110}, {24, 34338}, {54, 65348}, {112, 39013}, {186, 1299}, {378, 34333}, {421, 52498}, {687, 19128}, {3520, 50529}, {3563, 18879}, {7505, 53788}, {8744, 32708}, {8745, 61208}, {8882, 14586}, {10419, 39465}, {15328, 38534}, {18878, 44146}, {32734, 58066}, {45177, 52534}, {52415, 52416}, {52432, 52917}, {56307, 66078}, {57582, 66165}
X(66953) = polar conjugate of X(52504)
X(66953) = polar conjugate of the isotomic conjugate of X(52505)
X(66953) = X(18879)-Ceva conjugate of X(32708)
X(66953) = X(51393)-cross conjugate of X(24)
X(66953) = X(i)-isoconjugate of X(j) for these (i,j): {48, 52504}, {63, 62361}, {68, 1725}, {91, 13754}, {686, 65251}, {1820, 3580}, {2315, 5392}, {6334, 36145}
X(66953) = X(i)-Dao conjugate of X(j) for these (i,j): {135, 55121}, {1249, 52504}, {3162, 62361}, {34116, 13754}, {39013, 6334}
X(66953) = cevapoint of X(i) and X(j) fr these (i,j): {24, 52416}, {1147, 12095}, {44077, 52952}
X(66953) = trilinear pole of line {571, 6753}
X(66953) = barycentric product X(i)*X(j) for these {i,j}: {4, 52505}, {24, 2986}, {136, 18879}, {317, 14910}, {571, 65267}, {687, 924}, {1300, 1993}, {1748, 36053}, {5504, 11547}, {6563, 32708}, {6753, 18878}, {8745, 57829}, {10420, 57065}, {15328, 41679}, {15421, 52917}, {18883, 38936}, {34952, 57932}, {36114, 63827}, {40423, 52952}, {40427, 52416}, {40832, 44077}
X(66953) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 52504}, {24, 3580}, {25, 62361}, {571, 13754}, {687, 46134}, {924, 6334}, {1300, 5392}, {1993, 62338}, {2986, 20563}, {5504, 52350}, {6753, 55121}, {8745, 403}, {10420, 65309}, {11547, 44138}, {14576, 63735}, {14910, 68}, {15423, 65473}, {18879, 57763}, {32708, 925}, {34952, 686}, {36114, 65251}, {36416, 52000}, {38936, 37802}, {41679, 61188}, {44077, 3003}, {51393, 62569}, {52415, 57486}, {52416, 34834}, {52505, 69}, {52917, 16237}, {52952, 113}, {57065, 65972}, {61208, 15329}, {65267, 57904}
X(66953) = {X(1300),X(38936)}-harmonic conjugate of X(5504)
X(66954) lies on the circumconic {{A,B,C,X(1),X(2)}} and these lines: {1, 91}, {2, 311}, {5, 51503}, {57, 24595}, {68, 6826}, {86, 56041}, {88, 65251}, {96, 6905}, {105, 925}, {274, 16698}, {286, 18605}, {1812, 2990}, {1820, 2282}, {2224, 36145}, {3227, 46134}, {16082, 30450}, {16732, 18604}, {31631, 56352}, {32020, 55215}, {51500, 56272}
X(66954) = isotomic conjugate of X(42700)
X(66954) = X(i)-cross conjugate of X(j) for these (i,j): {499, 86}, {1437, 286}, {16697, 81}, {37565, 7}
X(66954) = X(i)-isoconjugate of X(j) for these (i,j): {10, 571}, {24, 71}, {31, 42700}, {37, 47}, {42, 1993}, {100, 55216}, {101, 924}, {190, 34952}, {213, 44179}, {228, 1748}, {306, 44077}, {313, 52436}, {317, 2200}, {563, 41013}, {692, 63827}, {756, 18605}, {1018, 34948}, {1147, 1826}, {1331, 6753}, {1783, 63832}, {1897, 30451}, {1918, 7763}, {2180, 56254}, {2333, 9723}, {3682, 8745}, {4055, 11547}, {4064, 61208}, {4570, 47421}, {6563, 32739}, {8750, 52584}, {32656, 57065}, {41679, 55230}, {50487, 55249}
X(66954) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 42700}, {1015, 924}, {1086, 63827}, {5521, 6753}, {6626, 44179}, {8054, 55216}, {26932, 52584}, {34021, 7763}, {34467, 30451}, {34853, 37}, {37864, 213}, {39006, 63832}, {40589, 47}, {40592, 1993}, {40619, 6563}, {50330, 47421}, {55053, 34952}
X(66954) = cevapoint of X(i) and X(j) for these (i,j): {91, 2165}, {905, 16732}
X(66954) = crossdifference of every pair of points on line {34952, 55216}
X(66954) = barycentric product X(i)*X(j) for these {i,j}: {28, 20563}, {58, 20571}, {68, 286}, {81, 5392}, {86, 91}, {274, 2165}, {513, 46134}, {514, 65251}, {649, 55215}, {693, 925}, {847, 1444}, {905, 30450}, {1333, 57904}, {1437, 55553}, {1790, 57716}, {1820, 44129}, {2351, 57796}, {3261, 36145}, {4610, 55250}, {6385, 60501}, {15413, 65176}, {17924, 65309}, {18180, 34385}, {32734, 40495}
X(66954) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 42700}, {27, 1748}, {28, 24}, {58, 47}, {68, 72}, {81, 1993}, {86, 44179}, {91, 10}, {96, 56254}, {274, 7763}, {286, 317}, {513, 924}, {514, 63827}, {593, 18605}, {649, 55216}, {667, 34952}, {693, 6563}, {847, 41013}, {905, 52584}, {925, 100}, {1333, 571}, {1437, 1147}, {1444, 9723}, {1459, 63832}, {1820, 71}, {2165, 37}, {2203, 44077}, {2351, 228}, {3125, 47421}, {3733, 34948}, {4610, 55249}, {5317, 8745}, {5392, 321}, {6591, 6753}, {14399, 14397}, {14593, 1824}, {16697, 52032}, {17167, 63808}, {17924, 57065}, {18180, 52}, {18605, 63835}, {20563, 20336}, {20571, 313}, {21207, 17881}, {22383, 30451}, {30450, 6335}, {32734, 692}, {34385, 56189}, {36145, 101}, {37802, 42701}, {43082, 43088}, {44709, 63801}, {46134, 668}, {51369, 51439}, {51420, 51393}, {52350, 3998}, {52920, 52917}, {52955, 52952}, {55215, 1978}, {55231, 55227}, {55250, 4024}, {55549, 3990}, {56891, 21874}, {57904, 27801}, {60501, 213}, {65176, 1783}, {65251, 190}, {65309, 1332}
X(66955) lies on the circumconic {{A,B,C,X(2),X(6)}} and these lines: {2, 2207}, {6, 1619}, {22, 41890}, {25, 2138}, {235, 13854}, {308, 21447}, {1593, 39951}, {1611, 40323}, {2395, 13400}, {6339, 40318}, {6995, 52223}, {8745, 46952}, {42407, 56364}, {52188, 52418}, {59229, 60775}
X(66955) = X(i)-isoconjugate of X(j) for these (i,j): {63, 7386}, {304, 19459}, {326, 5286}, {1038, 27509}, {1040, 56367}, {1473, 19799}, {5227, 17170}, {7289, 54433}
X(66955) = X(i)-Dao conjugate of X(j) for these (i,j): {3162, 7386}, {15259, 5286}
X(66955) = cevapoint of X(2207) and X(55415)
X(66955) = barycentric product X(i)*X(j) for these {i,j}: {1039, 1041}, {2207, 63195}, {36417, 40831}
X(66955) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 7386}, {1974, 19459}, {2207, 5286}, {36417, 1184}, {40144, 40185}, {51686, 17170}
X(66956) lies on the Jerabek circumhyperbola and these lines: {1, 68}, {3, 47}, {4, 1061}, {42, 52391}, {56, 57667}, {65, 44113}, {69, 1442}, {71, 21741}, {72, 2594}, {73, 3724}, {74, 36076}, {265, 1411}, {429, 15232}, {1042, 52390}, {1242, 1456}, {1439, 1464}, {1798, 4225}, {1858, 5396}, {2003, 5504}, {2148, 57703}, {2194, 57736}, {4846, 50527}, {34259, 55936}, {38535, 42289}
X(66956) = isogonal conjugate of X(11103)
X(66956) = X(i)-isoconjugate of X(j) for these (i,j): {1, 11103}, {2, 62700}, {21, 1478}, {29, 1060}, {81, 54283}, {1172, 56457}, {4351, 6740}
X(66956) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 11103}, {32664, 62700}, {40586, 54283}, {40611, 1478}
X(66956) = crosspoint of X(1061) and X(3422)
X(66956) = crosssum of X(1060) and X(1478)
X(66956) = trilinear pole of line {647, 55216}
X(66956) = barycentric product X(i)*X(j) for these {i,j}: {65, 55936}, {226, 3422}, {525, 36076}, {1061, 1214}, {18532, 18588}
X(66956) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 11103}, {31, 62700}, {42, 54283}, {73, 56457}, {1061, 31623}, {1400, 1478}, {1409, 1060}, {3422, 333}, {36076, 648}, {55936, 314}
X(66957) lies on the curve Q078 and these lines: {108, 7661}, {109, 522}, {117, 515}, {221, 31866}, {934, 2222}, {1456, 60062}, {1537, 51616}, {2765, 56183}, {3326, 53529}, {4551, 57241}, {6735, 50368}, {7115, 14331}, {9056, 35187}, {15252, 44014}, {15633, 40558}, {16870, 34049}, {23979, 52587}, {23987, 42755}, {43924, 61227}, {52616, 57757}
X(66957) = midpoint of X(38554) and X(52109)
X(66957) = reflection of X(i) in X(j) for these {i,j}: {15633, 40558}, {39762, 11700}, {44014, 15252}
X(66957) = X(664)-Ceva conjugate of X(2406)
X(66957) = X(i)-isoconjugate of X(j) for these (i,j): {2399, 32677}, {2432, 36100}, {3063, 57551}, {15633, 36040}, {36055, 53152}
X(66957) = X(i)-Dao conjugate of X(j) for these (i,j): {515, 522}, {10001, 57551}, {10017, 15633}, {23986, 2399}, {51221, 53152}, {57291, 2968}
X(66957) = crosspoint of X(664) and X(2406)
X(66957) = crosssum of X(663) and X(2432)
X(66957) = trilinear pole of line {1359, 23986}
X(66957) = barycentric product X(i)*X(j) for these {i,j}: {109, 59205}, {190, 1359}, {515, 2406}, {651, 24034}, {653, 38554}, {664, 23986}, {1455, 42718}, {1813, 65584}, {2425, 35516}, {4554, 42076}, {7452, 51368}, {24035, 46974}
X(66957) = barycentric quotient X(i)/X(j) for these {i,j}: {515, 2399}, {664, 57551}, {1359, 514}, {2406, 34393}, {2425, 102}, {8755, 53152}, {23986, 522}, {23987, 52780}, {24034, 4391}, {38554, 6332}, {42076, 650}, {59205, 35519}, {65584, 46110}
X(66958) lies on the curve Q078 and these lines: {98, 895}, {99, 53383}, {110, 5466}, {476, 32729}, {542, 1550}, {671, 10733}, {690, 691}, {892, 9033}, {2421, 9976}, {5465, 52483}, {5468, 9140}, {5968, 53725}, {9178, 14559}, {31655, 51938}, {34761, 50941}
X(66958) = X(892)-Ceva conjugate of X(50941)
X(66958) = X(i)-Dao conjugate of X(j) for these (i,j): {542, 690}, {23967, 50942}, {42426, 53156}, {61503, 53177}
X(66958) = crosspoint of X(892) and X(50941)
X(66958) = barycentric product X(i)*X(j) for these {i,j}: {542, 50941}, {892, 23967}, {7473, 51405}, {14999, 16092}, {30786, 60505}, {38552, 65321}, {53155, 65722}, {65350, 65750}
vbarycentric quotient X(i)/X(j) for these {i,j}: {542, 50942}, {892, 57547}, {6103, 53156}, {14999, 52094}, {16092, 14223}, {23967, 690}, {50941, 5641}, {60505, 468}, {65750, 14417}
X(66959) lies on the curve Q078 and these lines: {114, 32271}, {125, 5466}, {542, 842}, {543, 36825}, {690, 2682}, {2770, 64775}, {2799, 3258}, {5468, 5642}, {6791, 14998}, {11006, 52483}, {13202, 34174}, {14444, 58780}, {16278, 65727}, {34763, 50942}
X(66959) = X(5641)-Ceva conjugate of X(50942)
X(66959) = X(i)-isoconjugate of X(j) for these (i,j): {2247, 34539}, {36142, 50941}
X(66959) = X(i)-Dao conjugate of X(j) for these (i,j): {690, 542}, {1648, 14999}, {1649, 16092}, {23992, 50941}, {48317, 53155}
X(66959) = crosspoint of X(i) and X(j) for these (i,j): {5641, 50942}, {14223, 52094}
X(66959) = barycentric product X(i)*X(j) for these {i,j}: {690, 50942}, {1648, 52094}, {1649, 14223}, {5095, 65727}, {5641, 23992}, {6035, 14443}, {14417, 53156}, {14998, 52629}
X(66959) = barycentric quotient X(i)/X(j) for these {i,j}: {690, 50941}, {842, 34539}, {1648, 16092}, {1649, 14999}, {5641, 57552}, {14273, 53155}, {14443, 1640}, {14444, 45662}, {14998, 34574}, {23992, 542}, {50942, 892}, {52094, 52940}, {53156, 65350}, {58780, 7473}, {59801, 5191}
X(66960) lies on the curve Q078 and these lines: {2, 24650}, {25, 13415}, {110, 1113}, {125, 1312}, {394, 13414}, {468, 511}, {542, 20405}, {1345, 3066}, {2972, 46811}, {3124, 8106}, {6331, 15164}, {6353, 24651}, {8105, 35325}, {13416, 64821}, {14710, 43584}, {15473, 45995}, {17702, 45994}, {23181, 46814}, {25407, 37669}, {39241, 53154}, {41518, 64058}, {52131, 66876}
X(66960) = X(i)-Ceva conjugate of X(j) for these (i,j): {1113, 53384}, {8115, 52131}, {15164, 50944}, {15461, 2575}
X(66960) = X(66876)-cross conjugate of X(62592)
X(66960) = X(i)-isoconjugate of X(j) for these (i,j): {1823, 53153}, {2577, 50945}, {2581, 52132}, {2582, 41942}, {2587, 53385}, {2588, 15460}, {23109, 24000}
X(66960) = X(i)-Dao conjugate of X(j) for these (i,j): {1312, 53153}, {2575, 2574}, {8106, 2592}, {15167, 50945}, {46811, 22339}, {66877, 62593}
X(66960) = cevapoint of X(44125) and X(66876)
X(66960) = crosspoint of X(i) and X(j) for these (i,j): {1113, 53154}, {15164, 50944}
X(66960) = crosssum of X(i) and X(j) for these (i,j): {2574, 53385}, {42668, 52132}
X(66960) = trilinear pole of line {15167, 23110}
X(66960) = crossdifference of every pair of points on line {52132, 66877}
X(66960) = barycentric product X(i)*X(j) for these {i,j}: {648, 23110}, {1113, 62592}, {1312, 8115}, {2575, 50944}, {2593, 53384}, {15164, 15167}, {22340, 52131}, {44125, 46813}, {46811, 53154}
X(66960) = barycentric quotient X(i)/X(j) for these {i,j}: {1312, 2592}, {2575, 50945}, {3269, 23109}, {8106, 53153}, {15164, 57544}, {15167, 2574}, {15461, 39299}, {23110, 525}, {42667, 52132}, {44123, 41942}, {44125, 8105}, {50944, 15165}, {52131, 1114}, {53154, 46812}, {53384, 8116}, {57026, 15460}, {62592, 22339}, {66876, 1313}
X(66960) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 24650, 52465}, {1113, 65319, 46166}
X(66961) lies on the curve Q078 and these lines: {2, 24651}, {25, 13414}, {110, 1114}, {125, 1313}, {394, 13415}, {468, 511}, {542, 20406}, {1344, 3066}, {2972, 46814}, {3124, 8105}, {6331, 15165}, {6353, 24650}, {8106, 35325}, {13416, 64822}, {14709, 43584}, {15473, 45994}, {17702, 45995}, {23181, 46811}, {25408, 37669}, {39240, 53153}, {41519, 64058}, {52132, 66877}
X(66961) = X(i)-Ceva conjugate of X(j) for these (i,j): {1114, 53385}, {8116, 52132}, {15165, 50945}, {15460, 2574}
X(66961) = X(66877)-cross conjugate of X(62593)
X(66961) = X(i)-isoconjugate of X(j) for these (i,j): {1822, 53154}, {2576, 50944}, {2580, 52131}, {2583, 41941}, {2586, 53384}, {2589, 15461}, {23110, 24000}
X(66961) = X(i)-Dao conjugate of X(j) for these (i,j): {1313, 53154}, {2574, 2575}, {8105, 2593}, {15166, 50944}, {46814, 22340}, {66876, 62592}
X(66961) = cevapoint of X(44126) and X(66877)
X(66961) = crosspoint of X(i) and X(j) for these (i,j): {1114, 53153}, {15165, 50945}
X(66961) = crosssum of X(i) and X(j) for these (i,j): {2575, 53384}, {42667, 52131}
X(66961) = trilinear pole of line {15166, 23109}
X(66961) = crossdifference of every pair of points on line {52131, 66876}
X(66961) = barycentric product X(i)*X(j) for these {i,j}: {648, 23109}, {1114, 62593}, {1313, 8116}, {2574, 50945}, {2592, 53385}, {15165, 15166}, {22339, 52132}, {44126, 46810}, {46814, 53153}
X(66961) = barycentric quotient X(i)/X(j) for these {i,j}: {1313, 2593}, {2574, 50944}, {3269, 23110}, {8105, 53154}, {15165, 57543}, {15166, 2575}, {15460, 39298}, {23109, 525}, {42668, 52131}, {44124, 41941}, {44126, 8106}, {50945, 15164}, {52132, 1113}, {53153, 46815}, {53385, 8115}, {57025, 15461}, {62593, 22340}, {66877, 1312}
X(66961) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 24651, 52466}, {1114, 65318, 46167}
X(66962) lies on the curve Q078 and these lines: {121, 519}, {1293, 3667}, {2415, 17780}, {2743, 4578}, {3445, 6789}, {4103, 34080}, {4152, 14027}, {4555, 4561}, {4738, 39752}, {6556, 6790}, {9041, 15637}, {14112, 66509}, {31343, 51562}
X(66962) = midpoint of X(14507) and X(65742)
X(66962) = reflection of X(14112) in X(66509)
X(66962) = X(53647)-Ceva conjugate of X(2415)
X(66962) = X(39771)-cross conjugate of X(4738)
X(66962) = X(i)-isoconjugate of X(j) for these (i,j): {88, 2441}, {679, 8643}, {1318, 51656}, {2226, 4394}, {2403, 9456}, {4462, 41935}, {15637, 36042}
X(66962) = X(i)-Dao conjugate of X(j) for these (i,j): {519, 3667}, {900, 23764}, {1647, 3756}, {4370, 2403}, {5516, 15637}
X(66962) = cevapoint of X(4152) and X(6544)
X(66962) = crosspoint of X(2415) and X(53647)
X(66962) = crosssum of X(2441) and X(8643)
X(66962) = barycentric product X(i)*X(j) for these {i,j}: {519, 2415}, {1293, 36791}, {2429, 3264}, {4370, 53647}, {4373, 53582}, {4738, 27834}, {65337, 65742}
X(66962) = barycentric quotient X(i)/X(j) for these {i,j}: {519, 2403}, {678, 4394}, {902, 2441}, {1017, 8643}, {1293, 2226}, {1317, 30719}, {2415, 903}, {2429, 106}, {4152, 4521}, {4370, 3667}, {4543, 4534}, {4738, 4462}, {5382, 4618}, {6544, 3756}, {8028, 14425}, {14425, 15637}, {17780, 31227}, {21821, 4729}, {27834, 679}, {35092, 23764}, {39771, 40617}, {53582, 145}, {53647, 54974}
X(66963) lies on the curve Q078 and these lines: {99, 64776}, {126, 524}, {892, 4563}, {1296, 1499}, {2418, 2434}, {5108, 21448}, {5485, 14916}, {5969, 58753}, {9141, 38951}, {15638, 61488}, {17952, 52231}, {38940, 51215}
X(66963) = midpoint of X(6077) and X(65747)
X(66963) = reflection of X(50565) in X(5108)
X(66963) = X(35179)-Ceva conjugate of X(2418)
X(66963) = X(i)-isoconjugate of X(j) for these (i,j): {897, 2444}, {923, 2408}, {14207, 41936}, {15638, 36045}
X(66963) = X(i)-Dao conjugate of X(j) for these (i,j): {524, 1499}, {1648, 6791}, {2482, 2408}, {6593, 2444}, {31654, 15638}
X(66963) = crosspoint of X(2418) and X(35179)
X(66963) = crosssum of X(2444) and X(8644)
X(66963) = trilinear pole of line {2482, 62656}
X(66963) = barycentric product X(i)*X(j) for these {i,j}: {524, 2418}, {1296, 36792}, {2434, 3266}, {2482, 35179}, {24038, 37216}, {65353, 65747}
X(66963) = barycentric quotient X(i)/X(j) for these {i,j}: {187, 2444}, {524, 2408}, {1296, 10630}, {1649, 6791}, {2418, 671}, {2434, 111}, {2482, 1499}, {5468, 52141}, {8030, 9125}, {9125, 15638}, {24038, 14207}, {35179, 57539}, {39689, 8644}, {57467, 9178}, {62656, 55140}
X(66963) = {X(2418),X(5468)}-harmonic conjugate of X(2434)
X(66964) lies on the curve Q078 and these lines: {122, 3265}, {127, 525}, {316, 10152}, {325, 64974}, {850, 36793}, {1297, 1503}, {2373, 46967}, {2419, 34767}, {6330, 51358}, {6393, 15407}, {11064, 17708}, {32269, 44770}, {41370, 56601}, {42854, 52485}
X(66964) = reflection of X(14117) in X(127)
X(66964) = X(i)-Ceva conjugate of X(j) for these (i,j): {35140, 2419}, {57761, 3265}
X(66964) = X(i)-isoconjugate of X(j) for these (i,j): {162, 2445}, {163, 23977}, {1576, 24024}, {2312, 23964}, {2409, 32676}, {15639, 36046}, {24000, 42671}
X(66964) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 23977}, {125, 2445}, {525, 1503}, {647, 16318}, {4858, 24024}, {14401, 6793}, {15526, 2409}, {17434, 8779}, {23285, 60516}, {33504, 15639}, {35441, 51363}, {61505, 58070}, {62573, 34211}
X(66964) = crosspoint of X(2419) and X(35140)
X(66964) = crosssum of X(2445) and X(42671)
X(66964) = trilinear pole of line {15526, 55269}
X(66964) = barycentric product X(i)*X(j) for these {i,j}: {339, 64975}, {525, 2419}, {1297, 36793}, {2435, 3267}, {3265, 43673}, {14638, 61189}, {15526, 35140}, {23107, 44770}, {34212, 52617}, {34767, 66077}
X(66964) = barycentric quotient X(i)/X(j) for these {i,j}: {125, 16318}, {339, 60516}, {523, 23977}, {525, 2409}, {647, 2445}, {1297, 23964}, {1367, 43045}, {1577, 24024}, {1650, 6793}, {2419, 648}, {2435, 112}, {2632, 2312}, {2972, 8779}, {3265, 34211}, {3269, 42671}, {6330, 32230}, {6333, 66076}, {12037, 1529}, {15526, 1503}, {20975, 51437}, {34212, 32713}, {35140, 23582}, {35442, 51363}, {36793, 30737}, {43673, 107}, {44770, 59153}, {53173, 60506}, {57761, 60179}, {61189, 57219}, {64975, 250}, {65759, 1990}, {66077, 4240}
X(66965) lies on the curve Q078 and these lines: {2, 22244}, {6, 47089}, {69, 47088}, {99, 1379}, {115, 2029}, {524, 620}, {3543, 31863}, {9167, 22245}, {13722, 30508}, {31274, 39023}, {39365, 66626}, {52886, 62561}
X(66965) = midpoint of X(i) and X(j) for these {i,j}: {6190, 66625}, {39365, 66626}
X(66965) = reflection of X(2) in X(22244)
X(66965) = X(i)-Ceva conjugate of X(j) for these (i,j): {6190, 30508}, {57576, 3414}
X(66965) = X(13722)-cross conjugate of X(39022)
X(66965) = X(i)-Dao conjugate of X(j) for these (i,j): {3414, 3413}, {13636, 39023}, {39022, 30509}, {39067, 41880}, {62560, 57575}
X(66965) = cevapoint of X(13722) and X(39022)
X(66965) = crosspoint of X(6190) and X(30508)
X(66965) = crosssum of X(5638) and X(41880)
X(66965) = trilinear pole of line {39022, 66187}
X(66965) = crossdifference of every pair of points on line {41880, 66885}
X(66965) = barycentric product X(i)*X(j) for these {i,j}: {3414, 30508}, {6190, 39022}, {13722, 57576}
X(66965) = barycentric quotient X(i)/X(j) for these {i,j}: {2029, 5638}, {3414, 30509}, {5639, 41880}, {6190, 57575}, {13722, 39023}, {30508, 6189}, {39022, 3413}, {41881, 1380}, {66884, 2028}
X(66965) = {X(6190),X(57576)}-harmonic conjugate of X(66625)
X(66966) lies on the curve Q078 and these lines: {2, 22245}, {6, 47088}, {69, 47089}, {99, 1380}, {115, 2028}, {524, 620}, {3543, 31862}, {9167, 22244}, {13636, 30509}, {31274, 39022}, {39366, 66625}, {52886, 62560}
X(66966) = midpoint of X(i) and X(j) for these {i,j}: {6189, 66626}, {39366, 66625}
X(66966) = reflection of X(2) in X(22245)
X(66966) = X(i)-Ceva conjugate of X(j) for these (i,j): {6189, 30509}, {57575, 3413}
X(66966) = X(13636)-cross conjugate of X(39023)
X(66966) = X(i)-Dao conjugate of X(j) for these (i,j): {3413, 3414}, {13722, 39022}, {39023, 30508}, {39068, 41881}, {62561, 57576}
X(66966) = cevapoint of X(13636) and X(39023)
X(66966) = crosspoint of X(6189) and X(30509)
X(66966) = crosssum of X(5639) and X(41881)
X(66966) = trilinear pole of line {39023, 66186}
X(66966) = crossdifference of every pair of points on line {41881, 66884}
X(66966) = barycentric product X(i)*X(j) for these {i,j}: {3413, 30509}, {6189, 39023}, {13636, 57575}
X(66966) = barycentric quotient X(i)/X(j) for these {i,j}: {2028, 5639}, {3413, 30508}, {5638, 41881}, {6189, 57576}, {13636, 39022}, {30509, 6190}, {39023, 3414}, {41880, 1379}, {66885, 2029}
X(66966) = {X(6189),X(57575)}-harmonic conjugate of X(66626)
X(66967) lies on these lines: {2, 3676}, {7, 522}, {77, 23465}, {85, 21132}, {514, 21446}, {664, 30573}, {693, 23615}, {883, 1026}, {918, 16593}, {1441, 20504}, {2402, 30188}, {3239, 30813}, {3870, 4025}, {4077, 63218}, {4088, 63223}, {4453, 36905}, {9312, 21105}, {9436, 63742}, {14476, 21183}, {20518, 60720}, {21104, 28143}, {23877, 59941}, {30181, 36595}, {39771, 39775}, {52621, 55282}, {52715, 60480}
X(66967) = X(664)-Ceva conjugate of X(9436)
X(66967) = X(3126)-cross conjugate of X(53583)
X(66967) = X(i)-isoconjugate of X(j) for these (i,j): {105, 52927}, {294, 919}, {644, 41934}, {692, 62715}, {884, 5377}, {2195, 36086}, {3063, 57536}, {3939, 51838}, {14942, 32666}, {28071, 32735}, {36802, 64216}
X(66967) = X(i)-Dao conjugate of X(j) for these (i,j): {518, 3939}, {918, 522}, {1086, 62715}, {10001, 57536}, {17435, 9}, {17755, 36802}, {35094, 14942}, {36905, 666}, {38980, 294}, {38989, 2195}, {39046, 52927}, {39063, 36086}, {40615, 6185}, {40617, 51838}
X(66967) = crosspoint of X(i) and X(j) for these (i,j): {664, 9436}, {1025, 7131}
X(66967) = crosssum of X(i) and X(j) for these (i,j): {663, 2195}, {1024, 2082}
X(66967) = trilinear pole of line {3323, 35094}
X(66967) = crossdifference of every pair of points on line {2195, 8647}
X(66967) = barycentric product X(i)*X(j) for these {i,j}: {7, 53583}, {57, 62430}, {85, 3126}, {190, 3323}, {664, 35094}, {918, 9436}, {1025, 62429}, {1362, 3261}, {1978, 61056}, {2254, 40704}, {3263, 53544}, {3676, 4437}, {3912, 43042}, {4077, 16728}, {4572, 35505}, {4712, 24002}, {4925, 10029}, {6184, 52621}, {18157, 53551}, {50333, 62786}
X(66967) = barycentric quotient X(i)/X(j) for these {i,j}: {241, 36086}, {514, 62715}, {664, 57536}, {665, 2195}, {672, 52927}, {918, 14942}, {1025, 5377}, {1362, 101}, {1458, 919}, {2254, 294}, {3126, 9}, {3323, 514}, {3669, 51838}, {3675, 1024}, {3676, 6185}, {3912, 36802}, {4437, 3699}, {4712, 644}, {5236, 65333}, {6184, 3939}, {9436, 666}, {16728, 643}, {34337, 65160}, {34855, 36146}, {35094, 522}, {35505, 663}, {40704, 51560}, {43042, 673}, {43924, 41934}, {50333, 6559}, {52304, 42462}, {52621, 57537}, {52635, 32666}, {53539, 1438}, {53544, 105}, {53551, 18785}, {53583, 8}, {61055, 32739}, {61056, 649}, {62430, 312}, {62786, 927}, {65744, 4587}
X(66968) lies on these lines: {1, 522}, {77, 3676}, {109, 35011}, {214, 3738}, {513, 1385}, {514, 24315}, {521, 33649}, {663, 2320}, {900, 7623}, {1457, 37629}, {1769, 31667}, {1870, 53047}, {2457, 3468}, {2605, 24457}, {2773, 53305}, {3667, 40257}, {3737, 21106}, {3939, 9268}, {4105, 64343}, {7647, 59285}, {8677, 38607}, {8999, 43149}, {10571, 14812}, {20293, 27529}, {21105, 37558}, {23345, 59234}, {25005, 48228}, {26285, 32475}, {30573, 52368}, {32612, 39226}, {37535, 39199}, {38617, 45949}, {38984, 53525}, {39771, 39778}, {40612, 62579}, {42757, 66843}, {53555, 57130}, {55340, 57252}, {55969, 66284}, {58741, 61042}
X(66968) = reflection of X(i) in X(j) for these {i,j}: {1, 63820}, {1769, 31667}
X(66968) = X(i)-Ceva conjugate of X(j) for these (i,j): {664, 3218}, {4996, 3025}
X(66968) = X(3025)-cross conjugate of X(4996)
X(66968) = X(i)-isoconjugate of X(j) for these (i,j): {80, 2222}, {100, 63750}, {101, 34535}, {513, 46649}, {650, 23592}, {655, 2161}, {692, 57645}, {1411, 51562}, {2099, 52934}, {3063, 57568}, {6187, 35174}, {18359, 32675}, {52377, 66284}, {52431, 65329}, {64835, 65299}
X(66968) = X(i)-Dao conjugate of X(j) for these (i,j): {1015, 34535}, {1086, 57645}, {3738, 522}, {6149, 100}, {8054, 63750}, {10001, 57568}, {35128, 18359}, {35204, 51562}, {38984, 80}, {39026, 46649}, {40584, 655}, {40612, 35174}, {57434, 52409}, {66508, 18815}
X(66968) = crosspoint of X(664) and X(3218)
X(66968) = crosssum of X(i) and X(j) for these (i,j): {42, 55238}, {663, 2161}, {14584, 66284}
X(66968) = trilinear pole of line {3025, 35128}
X(66968) = crossdifference of every pair of points on line {2161, 2183}
X(66968) = barycentric product X(i)*X(j) for these {i,j}: {36, 3904}, {75, 57174}, {190, 3025}, {215, 3261}, {320, 654}, {514, 4996}, {664, 35128}, {693, 34544}, {2323, 4453}, {3218, 3738}, {3960, 4511}, {4585, 53525}, {8648, 20924}, {17078, 53285}, {22128, 44428}, {32851, 53314}, {35519, 52059}, {41282, 52622}
X(66968) = barycentric quotient X(i)/X(j) for these {i,j}: {36, 655}, {101, 46649}, {109, 23592}, {215, 101}, {320, 46405}, {513, 34535}, {514, 57645}, {649, 63750}, {654, 80}, {664, 57568}, {1870, 65329}, {1983, 52377}, {2323, 51562}, {2364, 52934}, {3025, 514}, {3028, 4605}, {3218, 35174}, {3261, 57789}, {3738, 18359}, {3904, 20566}, {3960, 18815}, {4511, 36804}, {4996, 190}, {7113, 2222}, {8648, 2161}, {21758, 1411}, {21828, 52383}, {34544, 100}, {35128, 522}, {41282, 1461}, {52059, 109}, {52303, 42462}, {52407, 65299}, {52434, 32675}, {53046, 56416}, {53285, 36910}, {53314, 2006}, {53525, 60074}, {53527, 60091}, {53535, 14628}, {57174, 1}, {58313, 64835}
X(66969) lies on these lines: {1, 8058}, {2, 59998}, {8, 522}, {347, 3676}, {517, 42755}, {521, 10914}, {523, 56839}, {850, 18697}, {1145, 1769}, {1441, 17896}, {3738, 39771}, {3872, 37628}, {3900, 66284}, {3939, 52377}, {4086, 23104}, {4397, 23528}, {4768, 55124}, {6073, 23101}, {6366, 53535}, {6735, 37629}, {7046, 53152}, {14812, 58858}, {16586, 62579}, {17369, 66361}, {21105, 21147}, {23615, 52356}, {23706, 53047}, {24457, 42337}, {30573, 52368}, {35015, 57434}
X(66969) = anticomplement of X(59998)
X(66969) = X(i)-Ceva conjugate of X(j) for these (i,j): {664, 908}, {26611, 55153}, {55016, 3326}
X(66969) = X(i)-cross conjugate of X(j) for these (i,j): {3326, 55016}, {55153, 26611}
X(66969) = X(i)-isoconjugate of X(j) for these (i,j): {104, 2720}, {651, 41933}, {909, 37136}, {1415, 59196}, {1795, 36110}, {14578, 65331}, {32641, 34051}, {32669, 34234}, {32702, 65302}, {34858, 54953}
X(66969) = X(i)-Dao conjugate of X(j) for these (i,j): {517, 109}, {1145, 36037}, {1146, 59196}, {2804, 522}, {16586, 54953}, {23757, 43728}, {23980, 37136}, {25640, 36110}, {35014, 1}, {35015, 52178}, {38981, 104}, {38991, 41933}, {39004, 1795}, {40613, 2720}, {55153, 34234}, {57293, 603}
X(66969) = crosspoint of X(i) and X(j) for these (i,j): {664, 908}, {24029, 56287}
X(66969) = crosssum of X(i) and X(j) for these (i,j): {663, 909}, {30223, 61238}
X(66969) = trilinear pole of line {3326, 55153}
X(66969) = crossdifference of every pair of points on line {909, 1404}
X(66969) = barycentric product X(i)*X(j) for these {i,j}: {75, 60339}, {190, 3326}, {312, 42757}, {514, 55016}, {522, 26611}, {664, 55153}, {908, 2804}, {1361, 52622}, {2397, 35015}, {3262, 46393}, {4391, 24028}, {4858, 15632}, {6332, 21664}, {6735, 10015}, {23980, 35519}, {41215, 46404}, {46110, 65743}, {53045, 56416}
X(66969) = barycentric quotient X(i)/X(j) for these {i,j}: {517, 37136}, {522, 59196}, {663, 41933}, {908, 54953}, {1361, 1461}, {1769, 34051}, {1785, 65331}, {2183, 2720}, {2804, 34234}, {3326, 514}, {6735, 13136}, {14571, 36110}, {15632, 4564}, {21664, 653}, {23101, 24029}, {23757, 40218}, {23980, 109}, {24028, 651}, {26611, 664}, {35015, 2401}, {35519, 57550}, {41215, 652}, {42072, 32674}, {42078, 1415}, {42757, 57}, {46393, 104}, {52307, 1795}, {52315, 42462}, {53151, 39294}, {53549, 909}, {55016, 190}, {55153, 522}, {56416, 53811}, {60339, 1}, {65743, 1813}
X(66970) lies on the cubic K1049 and these lines: {6, 19302}, {31, 3122}, {50, 7113}, {65, 11069}, {109, 2161}, {163, 1333}, {1400, 14579}, {1409, 1415}, {2245, 6149}, {2624, 21758}, {6126, 26744}, {11062, 52413}, {11076, 14158}, {23980, 59798}, {36910, 46819}
X(66970) = isogonal conjugate of the isotomic conjugate of X(40612)
X(66970) = X(i)-Ceva conjugate of X(j) for these (i,j): {6, 7113}, {109, 42657}, {58970, 21828}
X(66970) = X(i)-isoconjugate of X(j) for these (i,j): {2, 63868}, {8, 26743}, {75, 11075}, {80, 21739}, {94, 7343}, {693, 14147}, {2161, 40716}, {3065, 18359}, {19302, 20566}, {51562, 60486}
X(66970) = X(i)-Dao conjugate of X(j) for these (i,j): {206, 11075}, {3218, 76}, {32664, 63868}, {40584, 40716}
X(66970) = crosspoint of X(6) and X(19297)
X(66970) = crosssum of X(2) and X(21739)
X(66970) = crossdifference of every pair of points on line {21630, 52356}
X(66970) = barycentric product X(i)*X(j) for these {i,j}: {1, 6126}, {6, 40612}, {15, 46071}, {16, 46075}, {36, 484}, {57, 26744}, {186, 50462}, {323, 11076}, {1870, 23071}, {3218, 19297}, {3724, 56935}, {6149, 50148}, {7113, 17484}, {17455, 47058}, {17791, 52434}
X(66970) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 63868}, {32, 11075}, {36, 40716}, {484, 20566}, {604, 26743}, {6126, 75}, {7113, 21739}, {11076, 94}, {19297, 18359}, {21758, 60486}, {26744, 312}, {32739, 14147}, {40612, 76}, {42657, 52356}, {46071, 300}, {46075, 301}, {50148, 63759}, {50462, 328}, {52434, 3065}, {58285, 15065}
X(66971) lies on the cubic K971 and K1017 and these lines: {1, 1581}, {2, 39917}, {6, 41532}, {8, 192}, {37, 27880}, {38, 17152}, {39, 512}, {42, 4531}, {55, 869}, {65, 3778}, {75, 27891}, {85, 53559}, {210, 20691}, {612, 32468}, {694, 19586}, {714, 56129}, {756, 4095}, {758, 3865}, {805, 12031}, {986, 52135}, {1002, 1432}, {1178, 3915}, {1215, 7148}, {1334, 3774}, {1431, 2334}, {1916, 12782}, {2227, 59509}, {2275, 4128}, {2276, 45240}, {2309, 23544}, {2643, 3764}, {2667, 3863}, {3208, 4094}, {3795, 63627}, {4154, 17743}, {4642, 13576}, {4850, 65209}, {5147, 9310}, {7018, 32773}, {7034, 35544}, {7121, 35105}, {7146, 55037}, {7170, 17103}, {7249, 39741}, {9278, 23929}, {10180, 39738}, {16584, 23493}, {16969, 46195}, {17144, 32010}, {17451, 24513}, {18829, 35040}, {23659, 41015}, {23944, 24478}, {25123, 63486}, {25124, 27447}, {25775, 40608}, {27853, 33938}, {28358, 31309}, {28471, 29055}, {37614, 56093}, {40936, 62753}, {41882, 54416}, {44661, 56147}, {44720, 65192}, {51974, 60665}
X(66971) = isogonal conjugate of X(17103)
X(66971) = X(i)-Ceva conjugate of X(j) for these (i,j): {1, 45240}, {256, 52651}, {893, 40729}, {43763, 18786}, {58981, 798}, {65289, 661}
X(66971) = X(i)-cross conjugate of X(j) for these (i,j): {512, 3903}, {2092, 42}, {2276, 59272}, {21838, 37}, {40729, 65011}
X(66971) = X(i)-isoconjugate of X(j) for these (i,j): {1, 17103}, {6, 8033}, {21, 7176}, {57, 27958}, {58, 1909}, {77, 14006}, {81, 894}, {86, 171}, {99, 4367}, {100, 17212}, {101, 16737}, {110, 4374}, {172, 274}, {190, 18200}, {284, 7196}, {286, 3955}, {310, 7122}, {333, 7175}, {385, 37128}, {419, 57738}, {444, 57853}, {593, 3963}, {662, 4369}, {670, 56242}, {732, 39276}, {741, 1966}, {757, 1215}, {763, 21021}, {799, 20981}, {804, 36066}, {811, 22093}, {849, 1237}, {870, 40731}, {873, 20964}, {875, 880}, {876, 17941}, {985, 56696}, {1014, 7081}, {1019, 18047}, {1333, 1920}, {1412, 17787}, {1414, 3907}, {1434, 2329}, {1444, 7009}, {1449, 65019}, {1509, 2295}, {1580, 18827}, {1691, 40017}, {2185, 4032}, {2194, 7205}, {2330, 57785}, {2363, 59509}, {2533, 52935}, {3287, 4573}, {3737, 6649}, {3978, 18268}, {4107, 4584}, {4128, 24037}, {4164, 4589}, {4444, 56982}, {4477, 4616}, {4529, 4637}, {4567, 7200}, {4579, 7192}, {4590, 16592}, {4592, 54229}, {4600, 53541}, {4610, 57234}, {4622, 4922}, {4623, 7234}, {4697, 40438}, {4754, 40408}, {5027, 65285}, {6628, 21803}, {6645, 40432}, {7119, 17206}, {7121, 27891}, {7184, 40415}, {7340, 40608}, {14534, 28369}, {14621, 56441}, {16720, 52376}, {16739, 59159}, {18169, 59158}, {18787, 33295}, {21755, 34537}, {24041, 53559}, {24533, 56053}, {27697, 64457}, {40745, 40773}, {44089, 57987}, {56980, 66286}
X(66971) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 17103}, {9, 8033}, {10, 1909}, {37, 1920}, {244, 4374}, {512, 4128}, {960, 59509}, {1015, 16737}, {1084, 4369}, {1214, 7205}, {2887, 7184}, {3005, 53559}, {3741, 51575}, {3789, 56696}, {4075, 1237}, {5139, 54229}, {5452, 27958}, {8054, 17212}, {8299, 1966}, {9467, 741}, {17423, 22093}, {35068, 3978}, {38978, 804}, {38986, 4367}, {38996, 20981}, {39092, 18827}, {40586, 894}, {40590, 7196}, {40598, 27891}, {40599, 17787}, {40600, 171}, {40607, 1215}, {40608, 3907}, {40611, 7176}, {40627, 7200}, {50497, 53541}, {52877, 4434}, {55053, 18200}, {62553, 1926}, {63486, 64224}
X(66971) = cevapoint of X(37) and X(21902)
X(66971) = crosspoint of X(i) and X(j) for these (i,j): {65, 63886}, {256, 893}
X(66971) = crosssum of X(i) and X(j) for these (i,j): {171, 894}, {385, 4154}, {4369, 53559}, {6626, 33296}
X(66971) = trilinear pole of line {3709, 4093}
X(66971) = crossdifference of every pair of points on line {385, 4369}
X(66971) = barycentric product X(i)*X(j) for these {i,j}: {1, 52651}, {8, 65011}, {10, 893}, {37, 256}, {42, 257}, {55, 60245}, {75, 40729}, {210, 1432}, {213, 7018}, {313, 7104}, {321, 904}, {512, 27805}, {513, 56257}, {594, 1178}, {661, 3903}, {694, 740}, {756, 40432}, {762, 7303}, {798, 56241}, {881, 27853}, {882, 3570}, {1215, 59480}, {1334, 7249}, {1400, 4451}, {1431, 2321}, {1500, 32010}, {1581, 2238}, {1826, 7015}, {1916, 3747}, {1918, 44187}, {1934, 41333}, {1967, 3948}, {2162, 63492}, {2333, 7019}, {3700, 29055}, {3709, 65289}, {3863, 56196}, {3971, 51974}, {4041, 37137}, {4079, 4594}, {4093, 14970}, {4154, 41517}, {4155, 37134}, {4603, 4705}, {5546, 66292}, {7116, 41013}, {7180, 65192}, {7260, 50487}, {9468, 35544}, {18829, 46390}, {20964, 40099}, {21051, 58981}, {23493, 63486}, {52208, 63627}
X(66971) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 8033}, {6, 17103}, {10, 1920}, {37, 1909}, {42, 894}, {55, 27958}, {65, 7196}, {181, 4032}, {192, 27891}, {210, 17787}, {213, 171}, {226, 7205}, {256, 274}, {257, 310}, {512, 4369}, {513, 16737}, {594, 1237}, {607, 14006}, {649, 17212}, {661, 4374}, {667, 18200}, {669, 20981}, {694, 18827}, {740, 3978}, {756, 3963}, {798, 4367}, {805, 65258}, {869, 56441}, {872, 2295}, {881, 3572}, {882, 4444}, {893, 86}, {904, 81}, {1084, 4128}, {1178, 1509}, {1334, 7081}, {1400, 7176}, {1402, 7175}, {1431, 1434}, {1432, 57785}, {1500, 1215}, {1581, 40017}, {1918, 172}, {1924, 56242}, {1927, 18268}, {1967, 37128}, {2092, 59509}, {2200, 3955}, {2205, 7122}, {2238, 1966}, {2276, 56696}, {2333, 7009}, {2334, 65019}, {2489, 54229}, {2667, 4754}, {3049, 22093}, {3121, 53541}, {3122, 7200}, {3124, 53559}, {3570, 880}, {3690, 4019}, {3709, 3907}, {3725, 28369}, {3747, 385}, {3774, 40790}, {3778, 7187}, {3863, 33947}, {3903, 799}, {3948, 1926}, {4079, 2533}, {4093, 732}, {4117, 21755}, {4451, 28660}, {4455, 4107}, {4524, 4529}, {4531, 56558}, {4557, 18047}, {4559, 6649}, {4594, 52612}, {4603, 4623}, {7015, 17206}, {7018, 6385}, {7064, 4095}, {7104, 58}, {7109, 20964}, {7116, 1444}, {7303, 57949}, {9468, 741}, {14407, 4922}, {16584, 7184}, {17980, 65352}, {18105, 18111}, {18786, 30940}, {20691, 41318}, {20964, 6645}, {20970, 4697}, {21035, 16720}, {21755, 7207}, {21832, 14296}, {21838, 51575}, {21883, 27890}, {23928, 27966}, {27805, 670}, {29055, 4573}, {35544, 14603}, {37134, 65285}, {37137, 4625}, {39258, 4447}, {40432, 873}, {40728, 40731}, {40729, 1}, {41333, 1580}, {46390, 804}, {48005, 4842}, {50487, 57234}, {50491, 64865}, {52651, 75}, {52963, 4434}, {53581, 7234}, {56241, 4602}, {56257, 668}, {58981, 56053}, {59480, 32010}, {60245, 6063}, {63461, 3287}, {63492, 6382}, {65011, 7}, {65192, 62534}, {66878, 4039}
X(66971) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2276, 59480, 45240}, {3903, 40432, 1}
X(66972) lies on the circumeconic {{A,.B C,X(1),X(2)}}, the cubic K990, and these lines: {1, 893}, {2, 256}, {57, 87}, {81, 1178}, {105, 8848}, {171, 904}, {257, 330}, {274, 32010}, {291, 694}, {940, 40763}, {985, 2162}, {1219, 7275}, {1403, 1580}, {1432, 27455}, {1581, 20359}, {1582, 34249}, {1613, 7104}, {1967, 7081}, {3494, 17596}, {3840, 7018}, {4451, 39703}, {4598, 43763}, {7148, 39722}, {7249, 17063}, {10180, 39738}, {18271, 60707}, {19522, 20368}, {30710, 42027}, {39914, 40738}, {40432, 56066}, {51902, 53129}, {52651, 52654}, {53128, 57264}
X(66973) lies on the cubic K1003 and these lines: {6, 291}, {55, 1911}, {56, 292}, {171, 18787}, {295, 3862}, {335, 940}, {741, 813}, {875, 21003}, {1967, 16365}, {2248, 21779}, {2295, 6645}, {2363, 18268}, {3053, 18265}, {3572, 21786}, {3864, 54416}, {3952, 25819}, {4363, 18895}, {4497, 21776}, {4518, 5275}, {4557, 21783}, {4579, 21755}, {6180, 63489}, {8424, 16360}, {12329, 21787}, {16679, 21777}, {17750, 24294}, {17794, 25804}, {18267, 51928}, {18755, 40770}, {20476, 62444}, {21001, 41531}, {21792, 40730}, {23538, 26241}, {30663, 51921}, {37128, 40153}, {40750, 43534}, {51333, 56853}
X(66973) = isogonal conjugate of X(17493)
X(66973) = isogonal conjugate of the anticomplement of X(1966)
X(66973) = isogonal conjugate of the complement of X(30662)
X(66973) = isogonal conjugate of the isotomic conjugate of X(30669)
X(66973) = X(i)-cross conjugate of X(j) for these (i,j): {1580, 6}, {5027, 4579}
vX(i)-isoconjugate of X(j) for these (i,j): {1, 17493}, {2, 18786}, {76, 61385}, {172, 30643}, {238, 257}, {239, 256}, {350, 893}, {659, 27805}, {694, 39044}, {740, 40432}, {812, 3903}, {904, 1921}, {1178, 3948}, {1429, 4451}, {1431, 3975}, {1432, 3685}, {1580, 40099}, {1581, 4366}, {1909, 30658}, {1914, 7018}, {1916, 8300}, {1934, 51328}, {1966, 59480}, {1967, 56660}, {2201, 7019}, {2210, 44187}, {2238, 32010}, {3684, 7249}, {3716, 37137}, {3783, 40738}, {3797, 40763}, {4010, 4603}, {4037, 7303}, {4435, 65289}, {4455, 7260}, {4486, 30670}, {4594, 21832}, {7104, 18891}, {7116, 40717}, {8632, 56241}, {9468, 64222}, {33295, 52651}, {34252, 63486}, {41532, 64231}
X(66973) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 17493}, {8290, 56660}, {9467, 59480}, {9470, 257}, {16587, 35544}, {16592, 65101}, {19576, 4366}, {32664, 18786}, {36906, 7018}, {39031, 8300}, {39043, 39044}, {39044, 64222}, {39092, 40099}, {40597, 350}, {62557, 44187}, {62650, 1921}
X(66973) = cevapoint of X(i) and X(j) for these (i,j): {291, 16362}, {5027, 21755}, {8623, 21752}
X(66973) = crosspoint of X(741) and X(39276)
X(66973) = crosssum of X(i) and X(j) for these (i,j): {2, 30668}, {812, 39786}
X(66973) = trilinear pole of line {20964, 20981}
X(66973) = crossdifference of every pair of points on line {3716, 30665}
X(66973) = barycentric product X(i)*X(j) for these {i,j}: {1, 18787}, {6, 30669}, {171, 291}, {172, 335}, {239, 30657}, {292, 894}, {295, 7009}, {334, 7122}, {385, 52205}, {660, 4367}, {694, 6645}, {741, 1215}, {813, 4369}, {876, 4579}, {1580, 30663}, {1691, 40098}, {1909, 1911}, {1920, 1922}, {1926, 18267}, {2210, 30642}, {2295, 37128}, {2311, 4032}, {2330, 7233}, {3572, 18047}, {3805, 30664}, {3862, 40745}, {3963, 18268}, {3978, 51856}, {4374, 34067}, {4447, 52030}, {4562, 20981}, {4583, 56242}, {4584, 57234}, {4589, 7234}, {4876, 7175}, {5378, 53541}, {7077, 7176}, {7196, 51858}, {7205, 18265}, {16362, 63888}, {16587, 39276}, {18099, 46159}, {18827, 20964}, {22061, 65352}, {22093, 65338}, {37207, 45882}, {41072, 58862}
X(66973) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 17493}, {31, 18786}, {171, 350}, {172, 239}, {256, 30643}, {291, 7018}, {292, 257}, {295, 7019}, {335, 44187}, {385, 56660}, {560, 61385}, {660, 56241}, {694, 40099}, {741, 32010}, {813, 27805}, {894, 1921}, {1215, 35544}, {1580, 39044}, {1691, 4366}, {1909, 18891}, {1911, 256}, {1920, 44169}, {1922, 893}, {1933, 8300}, {1966, 64222}, {2295, 3948}, {2329, 3975}, {2330, 3685}, {4164, 27855}, {4367, 3766}, {4369, 65101}, {4447, 64223}, {4579, 874}, {4584, 7260}, {6645, 3978}, {7009, 40717}, {7077, 4451}, {7081, 4087}, {7104, 30658}, {7122, 238}, {7175, 10030}, {7176, 18033}, {7234, 4010}, {9468, 59480}, {14598, 904}, {14602, 51328}, {18047, 27853}, {18267, 1967}, {18268, 40432}, {18787, 75}, {18897, 7104}, {20964, 740}, {20981, 812}, {21755, 39786}, {30642, 44172}, {30657, 335}, {30663, 1934}, {30669, 76}, {34067, 3903}, {40098, 18896}, {40745, 63242}, {41534, 64231}, {45882, 4486}, {51856, 694}, {51973, 63486}, {52205, 1916}, {56242, 659}, {58862, 30665}
X(66973) = {X(291),X(1922)}-harmonic conjugate of X(6)
X(66974) lies on the cubic K783 and these lines: {3, 40803}, {6, 160}, {20, 60601}, {69, 65271}, {253, 3164}, {262, 14484}, {327, 3619}, {511, 14252}, {1249, 65349}, {1297, 3098}, {2186, 28358}, {3094, 51997}, {6037, 51963}, {37665, 65005}, {39874, 66879}, {46317, 50659}
X(66974) = X(40803)-Ceva conjugate of X(263)
X(66974) = X(i)-isoconjugate of X(j) for these (i,j): {3424, 52134}, {42287, 60685}
X(66974) = barycentric product X(i)*X(j) for these {i,j}: {262, 1350}, {263, 37668}, {2186, 51304}, {7710, 40803}, {10002, 54032}, {42313, 45141}, {43718, 52283}
X(66974) = barycentric quotient X(i)/X(j) for these {i,j}: {262, 59256}, {263, 3424}, {1350, 183}, {26714, 65276}, {37668, 20023}, {43718, 42287}, {45141, 458}, {51304, 3403}, {52283, 44144}
X(66974) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 51338, 263}, {6, 51543, 51338}, {43718, 51338, 6}, {43718, 51543, 263}
Contributed by Clark Kimberling, January 25, 2025
The preamble is based on notes received from Peter Moses, January 23-25, 2025. In the plane of a triangle ABC, the Moses inparabola is here introduced as the curve given by the following barycentric equation:
(a - b - c)^2*(b - c)^2*x^2 - 2*(a - c)*(a - b - c)*(b - c)*(a - b + c)*x*y + (a - c)^2*(a - b + c)^2*y^2 + 2*(a - b)*(a - b - c)*(b - c)*(a + b - c)*x*z + 2*(a - b)*(a - c)*(a + b - c)*(a - b + c)*y*z + (a - b)^2*(a + b - c)^2*z^2 = 0
This curve, a parabola inscribed in ABC, has these properties:
focus: X(109)
directrix: X(1)X(4)
vertex: X(66957)
infinite point: X(522)
perspector: X(664)
The Moses inparabola passes through X(i) for these i: 522, 3676, 4105, 39771, 43924, 57241, 57252, 58858, 58877, 62579, 66287, 66957, 66967, 66968, 66969, and 66975 to 66989.
Let A' be the touchpoint of the parabola and line BC, and define B' and C' cyclically. The appearance of (T, i) in the following list means that the triangle A'B'C', being the cevian triangle of X(664), is perspective to T, and the perspector is X(i):
(ABC, 664)
(anticomplementary, 522)
(tangential, 23865)
(excentral, 514)
(vertex triangle of ABC and intangents triangle, 14100)
(Schroeter (the anticevian triangle of X(523)), 17056) [see X(;8286) and X(17056)]
orthic of anticomplementary, 109)
(inner Conway, 651); see X(11677)
(Soddy, 3676); see X(31528)
(Bevan-antipodal triangle of ABC, 43924); see X(34488)
(Moses-Soddy,1); see X(44311)
(Gemini 17, 4552)
(Gemini 18, 4551)
(Gemini 29, 100)
(Gemini 30, 651)
(Gemini 112, 1813)
(Gemini 113, 109)
(Gemini 114, 4554)
Pairs of perspective triangles involving A'B'C', with perspectors, are indicated here:
(orthologic triangle of A'B'C' and Yff contact triangle, 1)
(orthologic triangle of Yff contact triangle and A'B'C', 40
(orthologic triangle of A'B'C' and Moses-Soddy triangle, 1); see X(44311)
(orthologic triangle of Moses-Soddy triangle and A'B'C', 946); see X(44311))
(orthologic triangle of A'B'C' and the vertex triangle of (ABC and the intangents triangle), 1071)
(paralogic triangle of A'B'C' and the Vijay polar incentral triangle, 1)
(paralogic trtiangle of the Vijay polar triangle and A'B'C', 66993)
X(66975) lies on the Moses inparabola and these lines: {65, 43051}, {109, 805}, {512, 810}, {522, 23655}, {663, 62749}, {664, 886}, {875, 1402}, {1400, 63749}, {1924, 57204}, {39771, 52024}, {40611, 62579}, {43924, 50520}, {47701, 51650}, {53149, 57652}
X(66975) = isogonal conjugate of the isotomic conjugate of X(66928)
X(66975) = X(i)-Ceva conjugate of X(j) for these (i,j): {664, 1400}, {61364, 1356}
X(66975) = X(1356)-cross conjugate of X(61364)
X(66975) = X(i)-isoconjugate of X(j) for these (i,j): {2, 4631}, {8, 4623}, {9, 52612}, {21, 670}, {27, 55207}, {29, 55202}, {60, 6386}, {63, 55233}, {76, 4612}, {78, 55229}, {81, 62534}, {86, 7257}, {99, 314}, {100, 18021}, {110, 40072}, {190, 52379}, {239, 36806}, {261, 668}, {274, 645}, {283, 57968}, {284, 4602}, {305, 52914}, {310, 643}, {312, 4610}, {321, 55196}, {332, 811}, {333, 799}, {345, 55231}, {522, 24037}, {561, 4636}, {646, 1509}, {650, 34537}, {662, 28660}, {693, 6064}, {873, 3699}, {1043, 4625}, {1098, 4572}, {1172, 52608}, {1434, 7258}, {1812, 6331}, {1978, 2185}, {2194, 4609}, {2322, 55205}, {2328, 55213}, {3063, 44168}, {3596, 52935}, {3685, 65285}, {3939, 57992}, {3975, 65258}, {4087, 36066}, {4391, 4590}, {4397, 7340}, {4554, 7058}, {4556, 28659}, {4560, 4601}, {4561, 57779}, {4563, 31623}, {4592, 44130}, {4600, 18155}, {5546, 6385}, {6332, 46254}, {6514, 57973}, {7256, 57785}, {7260, 27958}, {18020, 35518}, {23999, 52616}, {24041, 35519}, {27398, 55211}, {30730, 57949}, {44426, 47389}, {46110, 62719}, {52550, 53332}, {55209, 56440}
X(66975) = X(i)-Dao conjugate of X(j) for these (i,j): {244, 40072}, {478, 52612}, {512, 522}, {1084, 28660}, {1214, 4609}, {3005, 35519}, {3162, 55233}, {5139, 44130}, {8054, 18021}, {10001, 44168}, {15267, 4572}, {17423, 332}, {23301, 25128}, {32664, 4631}, {36908, 55213}, {38978, 4087}, {38986, 314}, {38996, 333}, {40368, 4636}, {40586, 62534}, {40590, 4602}, {40600, 7257}, {40611, 670}, {40617, 57992}, {50497, 18155}, {55053, 52379}, {55060, 310}, {55065, 40363}
X(66975) = crosspoint of X(664) and X(1400)
X(66975) = crosssum of X(i) and X(j) for these (i,j): {333, 663}, {670, 55202}, {7257, 62534}, {28660, 35519}
X(66975) = trilinear pole of line {1084, 1356}
X(66975) = crossdifference of every pair of points on line {333, 3691}
X(66975) = barycentric product X(i)*X(j) for these {i,j}: {6, 66928}, {7, 53581}, {12, 1919}, {25, 55234}, {31, 57185}, {32, 66287}, {37, 51641}, {42, 7180}, {56, 4079}, {57, 50487}, {65, 798}, {73, 2489}, {101, 61052}, {109, 3124}, {181, 649}, {190, 1356}, {213, 4017}, {225, 3049}, {226, 669}, {228, 55208}, {307, 57204}, {349, 9426}, {512, 1400}, {514, 61364}, {604, 4705}, {608, 55230}, {647, 57652}, {653, 65751}, {657, 7143}, {658, 7063}, {661, 1402}, {664, 1084}, {667, 2171}, {688, 18097}, {756, 57181}, {810, 1880}, {872, 3669}, {1042, 3709}, {1254, 3063}, {1334, 7250}, {1365, 32739}, {1395, 55232}, {1397, 4024}, {1410, 55206}, {1412, 58289}, {1415, 2643}, {1427, 63461}, {1441, 1924}, {1500, 43924}, {1813, 2971}, {1918, 7178}, {1974, 57243}, {1980, 6358}, {2205, 4077}, {2206, 55197}, {3121, 4551}, {3122, 4559}, {3248, 21859}, {3249, 65958}, {3676, 7109}, {4103, 61048}, {4117, 4554}, {4524, 62192}, {4572, 9427}, {4620, 23099}, {4625, 52065}, {7147, 8641}, {7234, 65011}, {8754, 32660}, {9247, 66297}, {20975, 32674}, {21823, 29055}, {22260, 52378}, {23216, 46404}, {41280, 52623}, {42068, 65164}, {46153, 51906}, {57234, 66935}, {59174, 62749}
X(66975) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 55233}, {31, 4631}, {42, 62534}, {56, 52612}, {65, 4602}, {73, 52608}, {109, 34537}, {181, 1978}, {213, 7257}, {226, 4609}, {228, 55207}, {512, 28660}, {560, 4612}, {604, 4623}, {608, 55229}, {649, 18021}, {661, 40072}, {664, 44168}, {667, 52379}, {669, 333}, {798, 314}, {872, 646}, {1084, 522}, {1356, 514}, {1395, 55231}, {1397, 4610}, {1400, 670}, {1402, 799}, {1409, 55202}, {1410, 55205}, {1415, 24037}, {1427, 55213}, {1501, 4636}, {1880, 57968}, {1911, 36806}, {1918, 645}, {1919, 261}, {1924, 21}, {1980, 2185}, {2171, 6386}, {2205, 643}, {2206, 55196}, {2489, 44130}, {2971, 46110}, {3049, 332}, {3121, 18155}, {3124, 35519}, {3669, 57992}, {4017, 6385}, {4024, 40363}, {4079, 3596}, {4117, 650}, {4705, 28659}, {7063, 3239}, {7109, 3699}, {7143, 46406}, {7180, 310}, {9426, 284}, {9427, 663}, {18097, 42371}, {23099, 21044}, {23216, 652}, {32660, 47389}, {32739, 6064}, {36417, 52921}, {41280, 4556}, {42068, 3064}, {46390, 4087}, {50487, 312}, {51641, 274}, {52065, 4041}, {52623, 44159}, {53581, 8}, {55208, 57796}, {55230, 57919}, {55234, 305}, {57181, 873}, {57185, 561}, {57204, 29}, {57243, 40050}, {57652, 6331}, {58289, 30713}, {58310, 6514}, {61052, 3261}, {61364, 190}, {65751, 6332}, {66287, 1502}, {66928, 76}, {66935, 7260}
X(66976) lies on the Moses inparabola and these lines: {100, 58877}, {109, 658}, {516, 1456}, {522, 651}, {1262, 52596}, {3939, 7012}, {4105, 4551}, {4163, 46102}, {6745, 50441}, {23703, 62579}, {35338, 57241}, {43924, 62752}, {57252, 61225}
X(66976) = X(46102)-Ceva conjugate of X(40869)
X(66976) = X(i)-isoconjugate of X(j) for these (i,j): {650, 59195}, {3063, 57548}, {36056, 60583}
X(66976) = X(i)-Dao conjugate of X(j) for these (i,j): {516, 522}, {10001, 57548}, {20622, 60583}, {57292, 26932}
X(66976) = crosspoint of X(23973) and X(56786)
X(66976) = trilinear pole of line {1360, 23972}
X(66976) = barycentric product X(i)*X(j) for these {i,j}: {7, 3234}, {59, 58280}, {109, 59206}, {190, 1360}, {651, 24014}, {653, 65745}, {664, 23972}, {1456, 42719}, {1461, 55019}, {1813, 21665}, {2398, 43035}, {4554, 42077}, {4572, 59799}, {23973, 40869}, {24015, 41339}, {42073, 65164}, {50441, 56786}
X(66976) = barycentric quotient X(i)/X(j) for these {i,j}: {109, 59195}, {664, 57548}, {1360, 514}, {1886, 60583}, {2426, 2338}, {3234, 8}, {21665, 46110}, {23972, 522}, {23973, 52156}, {24014, 4391}, {42073, 3064}, {42077, 650}, {43035, 2400}, {55019, 52622}, {58280, 34387}, {59206, 35519}, {59799, 663}, {65745, 6332}
X(66977) lies on the Moses inparabola and these lines: {59, 109}, {100, 57241}, {517, 1457}, {522, 4551}, {663, 2222}, {1735, 11570}, {3676, 4566}, {4105, 46177}, {16586, 39046}, {23703, 66968}, {23706, 53047}, {24027, 57118}, {39771, 61231}, {58858, 61227}
X(66977) = X(664)-Ceva conjugate of X(24029)
X(66977) = X(i)-isoconjugate of X(j) for these (i,j): {104, 43728}, {650, 59196}, {1809, 43933}, {2401, 52663}, {2423, 36795}, {3063, 57550}, {4391, 41933}, {34234, 61238}, {36123, 37628}
X(66977) = X(i)-Dao conjugate of X(j) for these (i,j): {517, 522}, {2804, 23104}, {10001, 57550}, {35014, 24026}, {40613, 43728}, {57293, 7004}
X(66977) = crosspoint of X(664) and X(24029)
X(66977) = crosssum of X(663) and X(61238)
X(66977) = trilinear pole of line {1361, 23980}
X(66977) = crossdifference of every pair of points on line {4530, 61238}
X(66977) = barycentric product X(i)*X(j) for these {i,j}: {57, 15632}, {109, 26611}, {190, 1361}, {517, 24029}, {651, 24028}, {653, 65743}, {664, 23980}, {908, 23981}, {1262, 66969}, {1457, 2397}, {1461, 55016}, {1813, 21664}, {1978, 61057}, {2427, 22464}, {3326, 4619}, {4554, 42078}, {4564, 42757}, {4572, 59800}, {7045, 60339}, {23101, 37136}, {42072, 65164}, {55153, 59151}
X(66977) = barycentric quotient X(i)/X(j) for these {i,j}: {109, 59196}, {664, 57550}, {1361, 514}, {1457, 2401}, {2183, 43728}, {2427, 51565}, {15632, 312}, {21664, 46110}, {23706, 16082}, {23980, 522}, {23981, 34234}, {24028, 4391}, {24029, 18816}, {26611, 35519}, {42072, 3064}, {42078, 650}, {42757, 4858}, {55016, 52622}, {55153, 23104}, {59800, 663}, {60339, 24026}, {61057, 649}, {65743, 6332}, {66969, 23978}
X(66978) lies on the Moses inparabola and these lines: {59, 677}, {100, 4105}, {101, 32735}, {109, 1252}, {241, 518}, {522, 4552}, {528, 43914}, {651, 660}, {663, 4564}, {664, 34085}, {883, 1026}, {1025, 63743}, {1362, 61056}, {1400, 3252}, {2283, 2284}, {3660, 53552}, {3676, 4551}, {4557, 9000}, {16586, 39046}, {25259, 54118}, {36905, 37780}, {57252, 61220}, {58877, 61222}
X(66978) = X(i)-Ceva conjugate of X(j) for these (i,j): {664, 1025}, {4564, 672}
X(66978) = X(i)-isoconjugate of X(j) for these (i,j): {105, 885}, {294, 62635}, {513, 62715}, {522, 51838}, {650, 6185}, {673, 1024}, {884, 2481}, {1027, 14942}, {1462, 28132}, {3063, 57537}, {4391, 41934}, {23696, 36124}, {28071, 43930}, {36796, 43929}, {36802, 43921}
X(66978) = X(i)-Dao conjugate of X(j) for these (i,j): {518, 522}, {10001, 57537}, {17435, 4858}, {39026, 62715}, {39046, 885}
X(66978) = crosspoint of X(664) and X(1025)
X(66978) = crosssum of X(663) and X(1024)
X(66978) = trilinear pole of line {1362, 6184}
X(66978) = barycentric product X(i)*X(j) for these {i,j}: {59, 53583}, {109, 4437}, {190, 1362}, {241, 1026}, {518, 1025}, {651, 4712}, {653, 65744}, {664, 6184}, {672, 883}, {1252, 66967}, {1458, 42720}, {1813, 34337}, {1978, 61055}, {2149, 62430}, {2283, 3912}, {2284, 9436}, {3126, 4564}, {3323, 59149}, {3693, 41353}, {4551, 16728}, {4554, 42079}, {4572, 39686}, {6632, 61056}, {20776, 46404}, {23102, 36146}, {23612, 34085}, {40704, 54325}, {42071, 65164}
X(66978) = barycentric quotient X(i)/X(j) for these {i,j}: {101, 62715}, {109, 6185}, {664, 57537}, {672, 885}, {883, 18031}, {1025, 2481}, {1026, 36796}, {1362, 514}, {1415, 51838}, {1458, 62635}, {2223, 1024}, {2283, 673}, {2284, 14942}, {2340, 28132}, {3126, 4858}, {3323, 23100}, {4437, 35519}, {4712, 4391}, {6184, 522}, {9454, 884}, {16728, 18155}, {20752, 23696}, {20776, 652}, {34337, 46110}, {35505, 21132}, {39686, 663}, {41353, 34018}, {42071, 3064}, {42079, 650}, {52635, 1027}, {53583, 34387}, {54325, 294}, {61055, 649}, {61056, 6545}, {65744, 6332}, {66967, 23989}
X(66979) lies on the Moses inparabola and these lines: {2, 59999}, {10, 14584}, {100, 522}, {109, 765}, {200, 36819}, {214, 519}, {515, 6073}, {516, 38385}, {664, 3676}, {901, 6006}, {927, 58110}, {952, 22102}, {1125, 56421}, {1252, 4521}, {1420, 56642}, {2398, 62579}, {2802, 24201}, {3239, 14589}, {3699, 44724}, {3738, 15632}, {3939, 36037}, {4169, 61210}, {4468, 43986}, {4551, 43924}, {4778, 14513}, {6154, 51442}, {6735, 50368}, {6745, 50441}, {8850, 62739}, {9436, 41801}, {9963, 36590}, {17780, 23703}, {23705, 61231}, {23808, 37630}, {28234, 66843}, {31680, 59587}, {47787, 51357}, {53280, 66518}, {56543, 66967}, {57241, 61222}
X(66979) = midpoint of X(6154) and X(51442)
X(66979) = anticomplement of X(59999)
X(66979) = X(i)-Ceva conjugate of X(j) for these (i,j): {664, 62669}, {4998, 3911}
X(66979) = X(i)-cross conjugate of X(j) for these (i,j): {4543, 4370}, {39771, 1317}
X(66979) = X(i)-isoconjugate of X(j) for these (i,j): {106, 23838}, {513, 1318}, {650, 2226}, {663, 679}, {1022, 2316}, {1320, 23345}, {2170, 4638}, {3063, 54974}, {3271, 4618}, {4391, 41935}, {4895, 59150}, {7252, 30575}, {9456, 60480}, {32665, 60578}
X(66979) = X(i)-Dao conjugate of X(j) for these (i,j): {214, 23838}, {519, 522}, {900, 21132}, {1647, 11}, {4370, 60480}, {10001, 54974}, {35092, 60578}, {39026, 1318}, {52659, 6548}
X(66979) = cevapoint of X(i) and X(j) for these (i,j): {678, 6544}, {1317, 39771}, {4370, 4543}
X(66979) = crosspoint of X(i) and X(j) for these (i,j): {664, 62669}, {3911, 43948}
X(66979) = trilinear pole of line {1317, 4370}
X(66979) = barycentric product X(i)*X(j) for these {i,j}: {7, 53582}, {59, 52627}, {109, 36791}, {190, 1317}, {519, 62669}, {651, 4738}, {653, 65742}, {658, 4152}, {664, 4370}, {678, 4554}, {1016, 39771}, {1017, 4572}, {1275, 4543}, {1319, 24004}, {1813, 65585}, {1978, 61047}, {3264, 61210}, {3911, 17780}, {4358, 23703}, {4551, 16729}, {4625, 21821}, {4998, 6544}, {5435, 66962}, {6632, 14027}, {22371, 46404}, {30731, 62789}, {30939, 61171}, {42070, 65164}
X(66979) = barycentric quotient X(i)/X(j) for these {i,j}: {44, 23838}, {59, 4638}, {101, 1318}, {109, 2226}, {519, 60480}, {651, 679}, {664, 54974}, {678, 650}, {900, 60578}, {1017, 663}, {1023, 1320}, {1317, 514}, {1319, 1022}, {1404, 23345}, {3251, 2170}, {3911, 6548}, {4152, 3239}, {4370, 522}, {4542, 42462}, {4543, 1146}, {4551, 30575}, {4554, 57929}, {4564, 4618}, {4738, 4391}, {6544, 11}, {8028, 1639}, {14027, 6545}, {14442, 7336}, {16729, 18155}, {17780, 4997}, {21805, 61179}, {21821, 4041}, {22371, 652}, {23344, 2316}, {23703, 88}, {30725, 6549}, {33922, 4530}, {35092, 21132}, {36791, 35519}, {36920, 23598}, {39771, 1086}, {40663, 4049}, {42070, 3064}, {52627, 34387}, {53582, 8}, {61047, 649}, {61062, 21143}, {61171, 4674}, {61210, 106}, {62669, 903}, {65585, 46110}, {65742, 6332}, {66962, 6557}
X(66979) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1317, 1319, 39752}, {1319, 60058, 3911}
X(66980) lies on the Moses inparabola and these lines: {109, 2867}, {226, 43673}, {307, 34767}, {522, 16091}, {525, 8611}, {664, 16077}, {850, 4077}, {1214, 57055}, {1231, 35518}, {1441, 17896}, {1813, 17708}, {3676, 6332}, {4025, 57241}, {4131, 52385}, {4750, 22382}, {17932, 65164}, {40152, 53173}, {46396, 57043}, {57106, 66967}, {57233, 60494}, {62565, 62579}
X(66980) = reflection of X(57043) in X(46396)
X(66980) = isotomic conjugate of X(52921)
X(66980) = isotomic conjugate of the polar conjugate of X(57243)
X(66980) = X(i)-Ceva conjugate of X(j) for these (i,j): {664, 307}, {52385, 17216}, {57807, 17879}, {65164, 40152}
X(66980) = X(7068)-cross conjugate of X(26942)
X(66980) = X(i)-isoconjugate of X(j) for these (i,j): {21, 32713}, {25, 52914}, {29, 32676}, {31, 52921}, {41, 52919}, {55, 52920}, {107, 2194}, {112, 1172}, {162, 2299}, {163, 8748}, {250, 18344}, {270, 8750}, {284, 24019}, {644, 36420}, {648, 2204}, {650, 23964}, {663, 24000}, {823, 57657}, {1096, 4636}, {1415, 36421}, {1474, 65201}, {1576, 1896}, {1783, 2189}, {1946, 32230}, {2193, 6529}, {2203, 36797}, {2207, 4612}, {2326, 32674}, {2332, 65232}, {3063, 23582}, {4391, 41937}, {4631, 36417}, {5317, 5546}, {6059, 52935}, {8747, 65375}, {10535, 36068}, {23590, 36054}, {24022, 57241}, {31623, 61206}, {32695, 52949}, {36131, 52956}, {44426, 57655}, {51726, 59041}, {53560, 59153}
X(66980) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 52921}, {115, 8748}, {125, 2299}, {223, 52920}, {226, 162}, {525, 522}, {647, 3064}, {1146, 36421}, {1214, 107}, {3160, 52919}, {4858, 1896}, {6503, 4636}, {6505, 52914}, {6587, 14331}, {10001, 23582}, {14401, 14400}, {15526, 29}, {17434, 652}, {23285, 46110}, {26932, 270}, {34591, 1172}, {35071, 284}, {35072, 2326}, {38985, 2194}, {39006, 2189}, {39008, 52956}, {39053, 32230}, {40590, 24019}, {40611, 32713}, {40615, 36419}, {40618, 46103}, {40622, 8747}, {40626, 59482}, {47345, 6529}, {51574, 65201}, {55065, 1857}, {55066, 2204}, {62564, 36797}, {62565, 648}, {62570, 823}, {62573, 333}, {62604, 55233}
X(66980) = crosspoint of X(i) and X(j) for these (i,j): {307, 664}, {3265, 14208}
X(66980) = crosssum of X(i) and X(j) for these (i,j): {663, 2299}, {32676, 32713}
X(66980) = trilinear pole of line {1367, 15526}
X(66980) = crossdifference of every pair of points on line {2299, 57657}
X(66980) = barycentric product X(i)*X(j) for these {i,j}: {12, 30805}, {69, 57243}, {73, 3267}, {85, 57109}, {109, 36793}, {125, 65164}, {190, 1367}, {201, 15413}, {225, 4143}, {226, 3265}, {305, 55234}, {306, 17094}, {307, 525}, {338, 6517}, {339, 1813}, {348, 4064}, {349, 520}, {523, 52565}, {651, 17879}, {656, 1231}, {658, 7068}, {664, 15526}, {850, 40152}, {905, 57807}, {1102, 66297}, {1214, 14208}, {1400, 52617}, {1441, 24018}, {1577, 52385}, {1804, 52623}, {1978, 61058}, {2632, 4554}, {2972, 46404}, {3261, 7066}, {3269, 4572}, {3926, 66287}, {3998, 4077}, {4024, 7055}, {4025, 26942}, {4036, 7183}, {4091, 34388}, {4131, 6358}, {4552, 17216}, {4620, 5489}, {5930, 14638}, {6332, 6356}, {6354, 52616}, {6355, 57245}, {6516, 20902}, {7178, 52396}, {7182, 55232}, {20336, 51664}, {20948, 22341}, {23974, 36127}, {24002, 52387}, {24020, 54240}, {27801, 51640}, {35518, 37755}, {52355, 56382}, {52386, 52621}, {52613, 57809}, {55230, 57918}
X(66980) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 52921}, {7, 52919}, {57, 52920}, {63, 52914}, {65, 24019}, {72, 65201}, {73, 112}, {109, 23964}, {122, 14331}, {125, 3064}, {201, 1783}, {225, 6529}, {226, 107}, {305, 55233}, {306, 36797}, {307, 648}, {326, 4612}, {339, 46110}, {349, 6528}, {394, 4636}, {520, 284}, {521, 2326}, {522, 36421}, {523, 8748}, {525, 29}, {647, 2299}, {651, 24000}, {653, 32230}, {656, 1172}, {664, 23582}, {810, 2204}, {822, 2194}, {905, 270}, {1214, 162}, {1231, 811}, {1367, 514}, {1400, 32713}, {1409, 32676}, {1425, 32674}, {1439, 65232}, {1441, 823}, {1459, 2189}, {1577, 1896}, {1650, 14400}, {1804, 4556}, {1813, 250}, {2197, 8750}, {2632, 650}, {2972, 652}, {3265, 333}, {3267, 44130}, {3269, 663}, {3676, 36419}, {3682, 5546}, {3695, 65160}, {3708, 18344}, {3949, 56183}, {3990, 65375}, {3998, 643}, {4017, 5317}, {4024, 1857}, {4025, 46103}, {4064, 281}, {4079, 6059}, {4091, 60}, {4131, 2185}, {4143, 332}, {4158, 4587}, {4554, 23999}, {5489, 21044}, {5930, 57219}, {6332, 59482}, {6354, 36127}, {6355, 65330}, {6356, 653}, {6517, 249}, {7055, 4610}, {7066, 101}, {7068, 3239}, {7138, 1415}, {7178, 8747}, {7182, 55231}, {7183, 52935}, {7212, 34856}, {8611, 4183}, {9033, 52956}, {9391, 2202}, {14208, 31623}, {14638, 5931}, {15413, 57779}, {15526, 522}, {17094, 27}, {17216, 4560}, {17879, 4391}, {20618, 36118}, {20902, 44426}, {21134, 8735}, {22341, 163}, {23224, 2150}, {23974, 52616}, {24018, 21}, {24459, 14024}, {26942, 1897}, {30805, 261}, {32660, 57655}, {36127, 23590}, {36793, 35519}, {37754, 1946}, {37755, 108}, {39201, 57657}, {40149, 36126}, {40152, 110}, {40843, 59041}, {41077, 51382}, {41393, 61236}, {43924, 36420}, {51368, 7452}, {51640, 1333}, {51664, 28}, {52355, 2322}, {52385, 662}, {52386, 3939}, {52387, 644}, {52396, 645}, {52565, 99}, {52613, 283}, {52616, 7058}, {52617, 28660}, {52938, 34538}, {54240, 24021}, {55230, 607}, {55232, 33}, {55234, 25}, {57057, 6061}, {57109, 9}, {57185, 1096}, {57186, 56375}, {57241, 7054}, {57243, 4}, {57807, 6335}, {57809, 15352}, {57918, 55229}, {59163, 61233}, {61058, 649}, {65164, 18020}, {65233, 5379}, {66287, 393}, {66297, 6520}, {66928, 2207}
X(66981) lies on the Moses inparabola and these lines: {2, 59999}, {100, 62579}, {109, 65637}, {522, 2398}, {528, 5723}, {651, 39771}, {664, 30573}, {3676, 23703}, {3939, 52377}, {21132, 36086}, {23615, 51562}, {35338, 66968}
X(66981) = X(528)-Dao conjugate of X(522)
X(66981) = trilinear pole of line {3322, 35113}
X(66981) = barycentric product X(i)*X(j) for these {i,j}: {190, 3322}, {664, 35113}
X(66981) = barycentric quotient X(i)/X(j) for these {i,j}: {3322, 514}, {35113, 522}
X(66982) lies on the Moses inparabola and these lines: {192, 522}, {663, 1024}, {665, 926}, {1419, 43924}, {2488, 63461}, {3063, 23522}, {3158, 4105}, {3676, 23655}, {3709, 65804}, {8641, 20229}, {39046, 62579}, {52024, 66287}, {53553, 66967}
X(66982) = X(i)-Ceva conjugate of X(j) for these (i,j): {663, 46388}, {664, 672}, {39686, 39014}
X(66982) = X(39014)-cross conjugate of X(39686)
X(66982) = X(i)-isoconjugate of X(j) for these (i,j): {105, 46135}, {294, 65847}, {651, 57537}, {666, 34018}, {673, 34085}, {927, 2481}, {1462, 36803}, {4554, 6185}, {4569, 62715}, {4572, 51838}, {18031, 36146}, {24002, 57536}, {51560, 56783}, {54235, 65301}
X(66982) = X(i)-Dao conjugate of X(j) for these (i,j): {518, 4572}, {926, 522}, {17435, 20567}, {38991, 57537}, {39014, 18031}, {39046, 46135}
X(66982) = crosspoint of X(i) and X(j) for these (i,j): {41, 54325}, {663, 46388}, {664, 672}
X(66982) = crosssum of X(i) and X(j) for these (i,j): {663, 673}, {664, 34085}
X(66982) = trilinear pole of line {15615, 39014}
X(66982) = crossdifference of every pair of points on line {673, 10030}
X(66982) = barycentric product X(i)*X(j) for these {i,j}: {41, 3126}, {190, 15615}, {518, 46388}, {522, 39686}, {650, 42079}, {652, 42071}, {657, 1362}, {663, 6184}, {664, 39014}, {665, 2340}, {672, 926}, {1024, 23612}, {1458, 52614}, {2175, 53583}, {3063, 4712}, {3064, 20776}, {3239, 61055}, {3912, 8638}, {3939, 35505}, {9447, 62430}, {9454, 50333}, {14411, 61480}, {14827, 66967}, {16728, 63461}, {17435, 54325}, {33570, 60673}
X(66982) = barycentric quotient X(i)/X(j) for these {i,j}: {663, 57537}, {672, 46135}, {926, 18031}, {1362, 46406}, {1458, 65847}, {2223, 34085}, {2340, 36803}, {3126, 20567}, {6184, 4572}, {8638, 673}, {9454, 927}, {9455, 36146}, {15615, 514}, {16728, 55213}, {20776, 65164}, {35505, 52621}, {39014, 522}, {39686, 664}, {42071, 46404}, {42079, 4554}, {46388, 2481}, {53583, 41283}, {61055, 658}
X(66983) lies on the Moses inparabola and these lines: {522, 664}, {527, 1323}, {651, 3676}, {3939, 7045}, {4105, 35338}, {9436, 41801}, {10427, 62789}, {23973, 66969}, {41353, 66968}, {43924, 62754}, {56543, 62579}, {62669, 66967}
X(66983) = midpoint of X(664) and X(66533)
X(66983) = X(i)-Ceva conjugate of X(j) for these (i,j): {664, 56543}, {1275, 527}
X(66983) = X(62579)-cross conjugate of X(35110)
X(66983) = X(i)-isoconjugate of X(j) for these (i,j): {1156, 23351}, {2291, 23893}, {3063, 57565}, {4845, 35348}, {18889, 60479}, {34068, 63748}
X(66983) = X(i)-Dao conjugate of X(j) for these (i,j): {527, 522}, {6366, 23615}, {10001, 57565}, {33573, 1146}, {35110, 63748}, {40629, 60579}, {52870, 60479}, {52879, 35348}, {56543, 31640}
X(66983) = cevapoint of X(35110) and X(62579)
X(66983) = crosspoint of X(i) and X(j) for these (i,j): {527, 36956}, {664, 56543}
X(66983) = crosssum of X(663) and X(23351)
X(66983) = trilinear pole of line {3321, 35110}
X(66983) = barycentric product X(i)*X(j) for these {i,j}: {190, 3321}, {527, 56543}, {658, 6068}, {664, 35110}, {1275, 62579}, {1813, 65587}, {4554, 42082}, {4572, 59798}, {23890, 30806}
X(66983) = barycentric quotient X(i)/X(j) for these {i,j}: {527, 63748}, {664, 57565}, {1055, 23351}, {1155, 23893}, {1323, 60479}, {1638, 60579}, {3321, 514}, {3328, 42462}, {6068, 3239}, {6610, 35348}, {23346, 2291}, {23890, 1156}, {35091, 23615}, {35110, 522}, {42082, 650}, {56543, 1121}, {59798, 663}, {62579, 1146}, {65587, 46110}
X(66983) = {X(664),X(1275)}-harmonic conjugate of X(66533)
X(669) lies on the Moses inparabola and these lines: {514, 16236}, {523, 7286}, {663, 66284}, {2099, 57052}, {2804, 4105}, {3676, 28169}, {4017, 28165}, {4449, 66968}, {4774, 4777}, {21118, 66969}, {28147, 58858}, {28151, 53528}, {28161, 49300}, {30181, 36595}, {47123, 62579}, {50482, 55197}, {53585, 57181}
X(66984) = X(664)-Ceva conjugate of X(5219)
X(66984) = X(4825)-cross conjugate of X(53584)
X(66984) = X(i)-isoconjugate of X(j) for these (i,j): {89, 5549}, {101, 30607}, {2320, 4588}, {2364, 4604}, {30608, 34073}
X(66984) = X(i)-Dao conjugate of X(j) for these (i,j): {1015, 30607}, {4777, 522}, {55045, 2320}, {61073, 30608}
X(66984) = crosspoint of X(664) and X(5219)
X(66984) = crosssum of X(663) and X(2364)
X(66984) = crossdifference of every pair of points on line {2364, 4266}
X(66984) = barycentric product X(i)*X(j) for these {i,j}: {7, 53584}, {85, 4825}, {664, 61073}, {2099, 4791}, {3679, 43052}, {4777, 5219}, {4803, 7178}, {4944, 62780}, {23598, 36920}
X(66984) = barycentric quotient X(i)/X(j) for these {i,j}: {513, 30607}, {1405, 4588}, {2099, 4604}, {2177, 5549}, {4775, 2364}, {4777, 30608}, {4803, 645}, {4825, 9}, {4893, 2320}, {4944, 56094}, {5219, 4597}, {43052, 39704}, {53584, 8}, {61073, 522}
X(66985) lies on the Moses inparabola and these lines: {10, 14302}, {100, 66957}, {522, 3717}, {2804, 7661}, {3676, 65868}, {3738, 58858}, {3939, 7012}, {4105, 47800}, {6129, 8058}, {14342, 44729}, {21172, 30201}, {57198, 57241}
X(66985) = reflection of X(14302) in X(10)
X(66985) = X(1415)-complementary conjugate of X(6609)
X(66985) = X(i)-Ceva conjugate of X(j) for these (i,j): {664, 329}, {57245, 57049}
X(66985) = X(13612)-cross conjugate of X(7952)
X(66985) = X(i)-isoconjugate of X(j) for these (i,j): {56, 65362}, {84, 8059}, {109, 1256}, {1413, 13138}, {1415, 66923}, {1422, 36049}, {1436, 37141}, {1440, 32652}, {2208, 53642}, {7129, 65179}, {40117, 55117}
X(66985) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 65362}, {11, 1256}, {281, 65330}, {1146, 66923}, {2968, 46355}, {5514, 1422}, {8058, 522}, {16596, 1440}, {55044, 84}, {55063, 41081}, {55065, 7157}, {61075, 189}
X(66985) = crosspoint of X(329) and X(664)
X(66985) = crosssum of X(663) and X(1436)
X(66985) = trilinear pole of line {3318, 61075}
X(66985) = crossdifference of every pair of points on line {604, 1436}
X(66985) = barycentric product X(i)*X(j) for these {i,j}: {190, 3318}, {322, 14298}, {329, 8058}, {347, 57049}, {664, 61075}, {1103, 4391}, {2324, 17896}, {3239, 55015}, {4397, 40212}, {7080, 14837}, {7952, 57245}, {54239, 55112}, {57101, 64211}
X(66985) = barycentric quotient X(i)/X(j) for these {i,j}: {9, 65362}, {40, 37141}, {198, 8059}, {329, 53642}, {522, 66923}, {650, 1256}, {1103, 651}, {2324, 13138}, {3239, 46355}, {3318, 514}, {4024, 7157}, {6129, 1422}, {7074, 36049}, {7078, 65179}, {7080, 44327}, {7952, 65330}, {8058, 189}, {10397, 1433}, {14298, 84}, {14837, 1440}, {21871, 61229}, {40212, 934}, {40971, 40117}, {54239, 55110}, {55015, 658}, {55116, 65213}, {55212, 52384}, {57049, 280}, {57101, 41081}, {61075, 522}, {64885, 56972}
X(66986) lies on the Moses inparabola and these lines: {522, 17161}, {693, 66287}, {850, 18697}, {3004, 3910}, {3810, 57252}, {4025, 43924}, {4467, 39771}, {17094, 66967}, {18155, 21132}, {23615, 59191}, {35518, 48278}, {54308, 66968}, {59509, 62579}
X(66986) = X(664)-Ceva conjugate of X(4357)
X(66986) = X(i)-isoconjugate of X(j) for these (i,j): {961, 32736}, {2298, 8687}
X(66986) = X(i)-Dao conjugate of X(j) for these (i,j): {1211, 36098}, {2092, 36147}, {3910, 522}, {17197, 2363}, {17419, 2298}, {52087, 8687}, {59509, 6648}
X(66986) = crosspoint of X(664) and X(4357)
X(66986) = barycentric product X(i)*X(j) for these {i,j}: {960, 4509}, {1682, 3261}, {1978, 61051}, {3004, 3687}, {3674, 57158}, {3910, 4357}, {4572, 35506}, {17420, 20911}
X(66986) = barycentric quotient X(i)/X(j) for these {i,j}: {960, 36147}, {1193, 8687}, {1682, 101}, {2269, 32736}, {3004, 64984}, {3666, 36098}, {3687, 8707}, {3910, 1220}, {4357, 6648}, {4509, 31643}, {6042, 21859}, {17420, 2298}, {21124, 60086}, {35506, 663}, {41224, 1919}, {48131, 961}, {61051, 649}, {61412, 52928}
X(66987) lies on the Moses inparabola and these lines: {514, 21446}, {522, 53357}, {663, 57247}, {664, 34085}, {693, 4105}, {3676, 17494}, {4025, 57252}, {4724, 40719}, {4762, 45755}, {21183, 62579}, {24002, 43041}, {30181, 39771}, {31605, 66287}, {47929, 52621}
X(66987) = X(664)-Ceva conjugate of X(40719)
X(66987) = X(i)-isoconjugate of X(j) for these (i,j): {8693, 40779}, {37138, 60673}
X(66987) = X(i)-Dao conjugate of X(j) for these (i,j): {4762, 522}, {61076, 60668}
X(66987) = crosspoint of X(664) and X(40719)
X(66987) = crosssum of X(663) and X(60673)
X(66987) = barycentric product X(i)*X(j) for these {i,j}: {664, 61076}, {4724, 60720}, {4762, 40719}
X(66987) = barycentric quotient X(i)/X(j) for these {i,j}: {1471, 8693}, {4724, 40779}, {4762, 60668}, {5228, 37138}, {40719, 32041}, {45755, 59269}, {61076, 522}, {66513, 60673}
X(66988) lies on the Moses inparabola and these lines: {514, 14294}, {522, 55282}, {523, 56839}, {905, 21102}, {3737, 21106}, {4105, 47704}, {16585, 62579}, {21118, 43924}, {23752, 50354}, {23800, 66287}, {28191, 58877}, {39771, 39772}
X(66988) = X(664)-Ceva conjugate of X(5249)
X(66988) = X(i)-isoconjugate of X(j) for these (i,j): {943, 15439}, {2259, 65217}
X(66988) = X(i)-Dao conjugate of X(j) for these (i,j): {16585, 54952}, {18591, 65217}, {39007, 1794}
X(66988) = crosspoint of X(664) and X(5249)
X(66988) = crosssum of X(663) and X(2259)
X(66988) = barycentric product X(i)*X(j) for these {i,j}: {3261, 37993}, {41214, 46404}
X(66988) = barycentric quotient X(i)/X(j) for these {i,j}: {942, 65217}, {1838, 65334}, {2260, 15439}, {5249, 54952}, {23752, 60188}, {37992, 4605}, {37993, 101}, {41214, 652}, {50354, 2982}, {52306, 1794}
X(66989) lies on the Moses inparabola and these lines: {100, 59828}, {521, 33649}, {522, 3465}, {523, 44827}, {2605, 14838}, {2774, 48391}, {3939, 4570}, {4105, 56808}, {8702, 44824}, {28191, 65659}, {48293, 57198}, {50344, 53249}
X(66989) = X(664)-Ceva conjugate of X(3219)
X(66989) = X(i)-isoconjugate of X(j) for these (i,j): {79, 26700}, {513, 55017}, {2160, 38340}, {6186, 65292}, {6742, 52372}, {13486, 52382}, {35049, 55236}, {64834, 65300}
X(66989) = X(i)-Dao conjugate of X(j) for these (i,j): {35057, 522}, {39026, 55017}, {55042, 79}
X(66989) = crosspoint of X(664) and X(3219)
X(66989) = crosssum of X(663) and X(2160)
X(66989) = crossdifference of every pair of points on line {2160, 2260}
X(66989) = barycentric product X(i)*X(j) for these {i,j}: {35, 57066}, {190, 3024}, {319, 9404}, {644, 7266}, {2477, 52622}, {2605, 42033}, {3219, 35057}, {3239, 7279}, {4420, 14838}, {4467, 52405}, {7265, 35193}, {56440, 57099}
X(66989) = barycentric quotient X(i)/X(j) for these {i,j}: {35, 38340}, {101, 55017}, {2174, 26700}, {2477, 1461}, {2605, 52374}, {3024, 514}, {3219, 65292}, {4420, 15455}, {7144, 4605}, {7266, 24002}, {7279, 658}, {9404, 79}, {35057, 30690}, {35192, 13486}, {52405, 6742}, {52408, 65300}, {55210, 52382}, {57066, 20565}, {57099, 43682}
X(66990) is the point of intersection of the directrix and axis of the Moses inparabola.
X(66990) lies on these lines: {1, 4}, {108, 2222}, {109, 522}, {952, 39535}, {1465, 60062}, {2720, 59976}, {2968, 40558}, {3064, 7115}, {3319, 52478}, {3676, 55346}, {10017, 15252}, {15386, 26704}, {18339, 34030}, {21664, 51422}, {23703, 53151}, {36067, 53610}, {48281, 61227}, {51408, 55315}, {61178, 66512}
X(66990) = midpoint of X(1309) and X(1897)
X(66990) = reflection of X(i) in X(j) for these {i,j}: {109, 66957}, {2968, 40558}, {10017, 15252}
X(66990) = polar-circle-inverse of X(35015)
X(66990) = X(i)-isoconjugate of X(j) for these (i,j): {3, 46041}, {521, 953}, {652, 65249}, {906, 60582}, {1795, 37629}, {1946, 46136}, {35011, 35014}, {36054, 65345}, {37628, 61482}
X(66990) = X(i)-Dao conjugate of X(j) for these (i,j): {5190, 60582}, {25640, 37629}, {36103, 46041}, {39053, 46136}, {39535, 522}, {61066, 6332}
X(66990) = barycentric product X(i)*X(j) for these {i,j}: {653, 952}, {1877, 57456}, {1897, 43043}, {2265, 18026}, {35013, 39294}
X(66990) = barycentric quotient X(i)/X(j) for these {i,j}: {19, 46041}, {108, 65249}, {653, 46136}, {952, 6332}, {1877, 50943}, {2265, 521}, {7649, 60582}, {14571, 37629}, {32674, 953}, {36127, 65345}, {43043, 4025}
X(66990) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1870, 45766, 1785}, {7012, 36110, 109}
X(66991) lies on these lines: {75, 39775}, {274, 18645}, {536, 18033}, {646, 1978}, {664, 874}, {668, 56241}, {726, 56930}, {883, 926}, {1423, 40844}, {4562, 4569}, {17787, 56661}, {18026, 57969}, {20906, 52923}, {32038, 46132}
X(66991) = X(664)-Ceva conjugate of X(4554)
X(66991) = X(i)-cross conjugate of X(j) for these (i,j): {4595, 36863}, {43051, 3212}
X(66991) = X(i)-isoconjugate of X(j) for these (i,j): {41, 43931}, {87, 3063}, {513, 57264}, {649, 2053}, {650, 7121}, {663, 2162}, {667, 2319}, {1919, 7155}, {1980, 27424}, {3271, 34071}, {3737, 21759}, {7153, 8641}, {7252, 23493}, {15373, 18344}, {36630, 57114}
X(66991) = X(i)-Dao conjugate of X(j) for these (i,j): {75, 522}, {3160, 43931}, {5375, 2053}, {6377, 2170}, {6631, 2319}, {9296, 7155}, {10001, 87}, {39026, 57264}, {40598, 650}, {40610, 3271}, {55062, 14936}
X(66991) = cevapoint of X(i) and X(j) for these (i,j): {192, 20906}, {514, 24221}, {3212, 43051}, {4083, 20284}
X(66991) = trilinear pole of line {3212, 6376}
X(66991) = barycentric product X(i)*X(j) for these {i,j}: {7, 36863}, {43, 4572}, {85, 4595}, {190, 30545}, {192, 4554}, {226, 36860}, {651, 6382}, {658, 4110}, {664, 6376}, {668, 3212}, {874, 63489}, {1403, 6386}, {1415, 40367}, {1423, 1978}, {1441, 62530}, {3208, 46406}, {3971, 4625}, {4552, 31008}, {4569, 27538}, {4998, 20906}, {6063, 52923}, {22370, 46404}, {31625, 43051}, {41318, 65289}
X(66991) = barycentric quotient X(i)/X(j) for these {i,j}: {7, 43931}, {43, 663}, {100, 2053}, {101, 57264}, {109, 7121}, {190, 2319}, {192, 650}, {651, 2162}, {658, 7153}, {664, 87}, {668, 7155}, {1403, 667}, {1423, 649}, {1813, 15373}, {1978, 27424}, {2176, 3063}, {3208, 657}, {3212, 513}, {3835, 2170}, {3971, 4041}, {4083, 3271}, {4110, 3239}, {4147, 2310}, {4551, 23493}, {4552, 16606}, {4554, 330}, {4559, 21759}, {4564, 34071}, {4572, 6384}, {4595, 9}, {4998, 932}, {6376, 522}, {6382, 4391}, {6516, 23086}, {8026, 4147}, {17217, 18191}, {17752, 3287}, {20691, 3709}, {20760, 1946}, {20906, 11}, {21051, 4516}, {21272, 52195}, {21859, 6378}, {22370, 652}, {23067, 22381}, {25098, 7117}, {27346, 11998}, {27538, 3900}, {27644, 7252}, {30545, 514}, {31008, 4560}, {33296, 3737}, {36860, 333}, {36863, 8}, {37137, 51974}, {41318, 3907}, {41526, 1919}, {43051, 1015}, {46406, 7209}, {52923, 55}, {56181, 21789}, {61034, 2488}, {62530, 21}, {62791, 43924}, {63489, 876}, {65573, 65163}
X(66991) = {X(4552),X(4572)}-harmonic conjugate of X(4554)
Let V = vertex triangle of ABC and the intangents triangle, W = Pelletier triangle, and T = orthologic triangle of V and W. Then X(66992) = perspector of these triangles: cevian of X(664) and T.
X(66992) lies on these lines: {1, 10309}, {2, 10270}, {3, 25893}, {4, 9}, {7, 64669}, {11, 6705}, {20, 19861}, {30, 9856}, {46, 7682}, {55, 6260}, {56, 946}, {57, 64190}, {78, 64078}, {84, 497}, {140, 1538}, {165, 6848}, {200, 5811}, {226, 11496}, {329, 6769}, {390, 6223}, {452, 30503}, {495, 22792}, {496, 34862}, {499, 1699}, {515, 3057}, {517, 12527}, {519, 5693}, {527, 66020}, {553, 13374}, {601, 39595}, {942, 66203}, {944, 12575}, {950, 6001}, {962, 3872}, {971, 15171}, {997, 64076}, {1058, 12246}, {1062, 45275}, {1071, 14100}, {1125, 1519}, {1155, 6831}, {1158, 1210}, {1193, 33810}, {1478, 52860}, {1479, 1709}, {1490, 4294}, {1528, 7412}, {1532, 3683}, {1537, 3649}, {1697, 12667}, {1765, 40963}, {1777, 34050}, {1858, 2800}, {2077, 6700}, {2096, 3333}, {2478, 63985}, {2829, 10106}, {3058, 12680}, {3073, 40940}, {3086, 52027}, {3091, 26062}, {3149, 4679}, {3295, 6259}, {3303, 12678}, {3339, 5804}, {3359, 6893}, {3452, 10310}, {3486, 7971}, {3586, 7995}, {3634, 6941}, {3635, 10698}, {3816, 64128}, {3817, 6833}, {3911, 7681}, {3962, 28234}, {4187, 17613}, {4297, 6938}, {4298, 5603}, {4301, 22837}, {4302, 63988}, {4304, 6261}, {4314, 18446}, {4315, 37002}, {4512, 6908}, {4847, 7330}, {5044, 31777}, {5084, 37560}, {5218, 63966}, {5250, 6925}, {5252, 37001}, {5562, 29353}, {5691, 9898}, {5717, 14749}, {5735, 18219}, {5745, 15908}, {5758, 12651}, {5768, 7992}, {5777, 63146}, {5787, 9668}, {5794, 64725}, {5840, 31937}, {5842, 63998}, {5853, 14872}, {5884, 66214}, {5887, 6737}, {5907, 15310}, {6146, 29043}, {6256, 31397}, {6713, 9955}, {6736, 49163}, {6738, 64021}, {6745, 11248}, {6767, 48664}, {6830, 12571}, {6834, 10164}, {6838, 35258}, {6865, 10860}, {6872, 64150}, {6887, 61029}, {6905, 12512}, {6909, 41012}, {6916, 31435}, {6918, 10863}, {6927, 35242}, {6935, 8227}, {6949, 58441}, {6952, 10171}, {6964, 64112}, {6969, 31423}, {6977, 19862}, {6987, 12565}, {7395, 24309}, {7956, 37582}, {8726, 63971}, {8727, 22793}, {8987, 44623}, {9581, 14647}, {9613, 64322}, {9812, 10527}, {9843, 59333}, {9910, 16541}, {10039, 41698}, {10058, 12047}, {10268, 37421}, {10306, 21075}, {10525, 51755}, {10531, 11019}, {10595, 12577}, {10596, 21625}, {11414, 63968}, {11826, 57284}, {12053, 12114}, {12115, 66202}, {12116, 51783}, {12362, 29291}, {12573, 57282}, {12608, 13411}, {12650, 30305}, {12675, 64162}, {12699, 22758}, {12710, 66227}, {12775, 21635}, {13528, 63990}, {13729, 24982}, {13747, 17618}, {13974, 44624}, {14055, 42448}, {14986, 54052}, {16004, 26446}, {16127, 41561}, {16621, 29207}, {16655, 29046}, {17857, 59687}, {18238, 50196}, {18391, 54156}, {20420, 28146}, {20991, 37413}, {21669, 49177}, {23537, 64013}, {24564, 37163}, {24703, 64074}, {24987, 37437}, {26105, 37526}, {28150, 37468}, {28194, 34606}, {29057, 66224}, {29229, 46847}, {29311, 45186}, {29349, 44870}, {31162, 34610}, {31673, 36999}, {37022, 52148}, {37108, 52653}, {37252, 63438}, {37407, 66515}, {37423, 64696}, {37427, 50836}, {37447, 54190}, {41560, 63967}, {43177, 51724}, {45632, 49627}, {46435, 66199}, {46684, 58405}, {48482, 54408}, {49736, 58567}, {50701, 64005}, {52851, 64291}, {54668, 60164}, {59387, 63133}, {60896, 64675}, {61763, 64148}, {63257, 66204}, {66242, 66247}
X(66992) = midpoint of X(i) and X(j) for these {i,j}: {962, 64002}, {3057, 64000}, {6284, 12688}
X(66992) = reflection of X(i) in X(j) for these {i,j}: {40, 12572}, {944, 12575}, {1071, 63999}, {1770, 64001}, {4292, 946}, {6737, 5887}, {10106, 45776}, {11826, 57284}, {31777, 5044}, {63146, 5777}, {64021, 6738}
X(66992) = crosspoint of X(7) and X(40444)
X(66992) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {55, 12679, 6260}, {946, 5450, 44675}, {1058, 12246, 63430}, {1158, 26333, 1210}, {1479, 1709, 6245}, {1519, 6906, 1125}, {1699, 1770, 64001}, {3359, 6893, 8582}, {4294, 64130, 1490}, {4314, 54227, 18446}, {6938, 63986, 4297}, {7681, 64118, 3911}, {7992, 66682, 5768}, {10306, 37822, 21075}, {10531, 63399, 11019}, {11372, 41869, 4}, {11496, 64119, 226}, {21628, 51118, 4}, {59687, 64117, 17857}
Let T denote the paralogic trtiangle of the Vijay Polar triangle. The X(66993) is the perspector of T and the cevian triangle of X(664).
X(66993) lies on these lines: {10, 6366}, {519, 53285}, {522, 3762}, {928, 11362}, {1145, 3738}, {1146, 35508}, {3900, 59672}, {3904, 6735}, {4147, 4521}, {4848, 53550}, {4922, 11124}, {5882, 52739}, {6736, 50333}, {10015, 31397}, {10915, 23887}, {37628, 38955}, {41006, 52614}, {43174, 53300}, {48286, 49626}
X(66993) = reflection of X(i) in X(j) for these {i,j}: {5882, 52739}, {53300, 43174}
X(66994) lies on these lines: {2, 522}, {165, 514}, {354, 3900}, {513, 5918}, {521, 53555}, {663, 1040}, {918, 14392}, {926, 4750}, {1836, 42762}, {2398, 21105}, {2400, 56331}, {3599, 60581}, {3676, 31527}, {3870, 4025}, {4024, 15584}, {4449, 8270}, {4474, 28118}, {4765, 28132}, {4976, 28143}, {6182, 47886}, {6362, 42438}, {6546, 11124}, {6608, 17069}, {14414, 14432}, {17072, 59926}, {17494, 57252}, {31146, 44551}, {34896, 53525}, {48278, 53046}, {57241, 64455}, {66287, 66520}
X(66994) = reflection of X(i) in X(j) for these {i,j}: {6546, 11124}, {14432, 14414}, {14476, 62579}, {23615, 2}
X(66994) = X(9357)-anticomplementary conjugate of X(33650)
X(66994) = X(40510)-Ceva conjugate of X(1146)
X(66994) = X(692)-isoconjugate of X(65821)
X(66994) = X(i)-Dao conjugate of X(j) for these (i,j): {1086, 65821}, {17044, 522}
X(66994) = crosspoint of X(522) and X(664)
X(66994) = crosssum of X(109) and X(663)
X(66994) = barycentric product X(i)*X(j) for these {i,j}: {8, 23730}, {190, 55370}, {522, 17044}, {4560, 21914}
X(66994) = barycentric quotient X(i)/X(j) for these {i,j}: {514, 65821}, {17044, 664}, {21914, 4552}, {23730, 7}, {55370, 514}
X(66994) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 23615, 14476}, {23615, 62579, 2}
Let A'B'C' = cevian triangle of X(664), so that A' is the touchpoint of the Moses inparabola, MIP, on line BC, etc. Let A'' be the center of the osculating circle to MIP at A', and define B'' and C'' cyclically. Let T be the paralogic triangle of A''B''C'' and the Moses-Soddy triangle. Then X(66995) is the perspector of T and A'B'C'.
X(66995) lies on these lines: {1, 522}, {2, 21201}, {8, 514}, {10, 21132}, {20, 3667}, {72, 513}, {190, 57731}, {224, 6332}, {442, 1577}, {475, 7649}, {499, 21185}, {519, 21105}, {523, 764}, {649, 1759}, {650, 25066}, {663, 30144}, {693, 20880}, {784, 876}, {867, 42753}, {891, 53533}, {900, 6161}, {905, 52541}, {1019, 10461}, {1022, 1219}, {1026, 56881}, {1027, 56220}, {1643, 4976}, {1734, 3810}, {2254, 4707}, {2517, 52356}, {2530, 47712}, {2826, 3762}, {2832, 48408}, {3159, 7265}, {3239, 56937}, {3244, 30573}, {3251, 28221}, {3261, 33933}, {3309, 14110}, {3616, 53361}, {3617, 60480}, {3621, 63252}, {3625, 4543}, {3701, 52627}, {3777, 47716}, {3874, 53555}, {3887, 3904}, {3960, 47695}, {4024, 22011}, {4057, 20833}, {4063, 28487}, {4089, 34896}, {4347, 43924}, {4391, 52353}, {4449, 22837}, {4468, 30625}, {4560, 11115}, {4768, 55126}, {4777, 49483}, {4791, 47808}, {4885, 24774}, {4905, 23877}, {4925, 10015}, {4926, 30580}, {4962, 8834}, {6006, 60905}, {6545, 23814}, {6546, 17780}, {9780, 21198}, {10481, 66967}, {11607, 32028}, {14413, 48286}, {14421, 24099}, {14430, 23745}, {14825, 57015}, {14838, 56778}, {16755, 33955}, {17072, 18395}, {17244, 47790}, {17367, 27486}, {17494, 25244}, {20518, 32092}, {20954, 33943}, {21118, 50337}, {21179, 48246}, {21180, 26078}, {23789, 55282}, {23876, 50356}, {24026, 43974}, {24093, 30583}, {24720, 49300}, {25256, 25259}, {25569, 58376}, {26364, 47794}, {28569, 50499}, {28576, 48111}, {28898, 49522}, {29021, 48410}, {29029, 50328}, {29102, 58374}, {29106, 38348}, {29118, 48086}, {29128, 47968}, {29132, 48023}, {29142, 47679}, {29148, 48077}, {29158, 48122}, {29160, 47973}, {29312, 50341}, {30719, 34039}, {36237, 54230}, {45671, 50347}, {45700, 47123}, {47687, 50171}, {47708, 48066}, {47711, 63812}, {47816, 48400}, {48403, 48556}, {56054, 63748}
X(66995) = reflection of X(i) in X(j) for these {i,j}: {3762, 50333}, {4707, 2254}, {7265, 48278}, {10015, 4925}, {21118, 50337}, {21132, 10}, {47678, 47715}, {47679, 48409}, {47695, 3960}, {47708, 48066}, {47712, 2530}, {47716, 3777}, {49300, 24720}, {55282, 23789}
X(66995) = anticomplement of X(21201)
X(66995) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {3446, 149}, {8047, 21293}
X(66995) = X(i)-complementary conjugate of X(j) for these (i,j): {604, 40468}, {43948, 21252}
X(66995) = X(55380)-cross conjugate of X(24036)
X(66995) = X(1415)-isoconjugate of X(65825)
X(66995) = X(i)-Dao conjugate of X(j) for these (i,j): {1146, 65825}, {24036, 514}
X(66995) = cevapoint of X(23757) and X(40472)
X(66995) = crosspoint of X(190) and X(693)
X(66995) = crosssum of X(649) and X(692)
X(66995) = crossdifference of every pair of points on line {2183, 33882}
X(66995) = barycentric product X(i)*X(j) for these {i,j}: {693, 24036}, {4391, 5083}, {4554, 55380}
X(66995) = barycentric quotient X(i)/X(j) for these {i,j}: {522, 65825}, {5083, 651}, {24036, 100}, {55380, 650}
X(66995) = {X(693),X(20880)}-harmonic conjugate of X(23100)
X(66996) lies on the cubic K532 and these lines: {2, 45986}, {6, 893}, {31, 237}, {56, 2162}, {57, 7249}, {63, 257}, {81, 1429}, {109, 733}, {171, 256}, {335, 3401}, {384, 3495}, {385, 1423}, {604, 7104}, {672, 23617}, {694, 51319}, {739, 29055}, {1402, 1911}, {1462, 59173}, {1707, 18786}, {2076, 41346}, {2245, 40401}, {2305, 20676}, {2329, 11688}, {3212, 30661}, {3402, 57259}, {4603, 41629}, {5364, 7123}, {7018, 14829}, {7050, 21010}, {17493, 37683}, {18825, 65289}, {20332, 37137}, {26243, 28387}, {40763, 62841}, {51329, 51333}, {60082, 60245}
X(66996) = isogonal conjugate of X(17787)
X(66996) = isogonal conjugate of the anticomplement of X(28358)
X(66996) = isogonal conjugate of the isotomic conjugate of X(1432)
X(66996) = X(1431)-Ceva conjugate of X(904)
X(66996) = X(7104)-cross conjugate of X(904)
X(66996) = X(i)-isoconjugate of X(j) for these (i,j): {1, 17787}, {2, 7081}, {8, 894}, {9, 1909}, {10, 27958}, {21, 3963}, {29, 4019}, {55, 1920}, {75, 2329}, {76, 2330}, {86, 4095}, {99, 4140}, {171, 312}, {172, 3596}, {190, 3907}, {200, 7196}, {210, 8033}, {220, 7205}, {261, 21021}, {284, 1237}, {306, 14006}, {314, 2295}, {332, 1840}, {333, 1215}, {341, 7175}, {345, 7009}, {346, 7176}, {385, 4518}, {522, 18047}, {644, 4374}, {645, 2533}, {646, 4367}, {664, 4529}, {668, 3287}, {1016, 4459}, {1043, 4032}, {1580, 66882}, {1926, 51858}, {1966, 4876}, {2319, 41318}, {2321, 17103}, {3239, 6649}, {3685, 30669}, {3699, 4369}, {3718, 7119}, {3790, 40745}, {3955, 7017}, {3975, 18787}, {3978, 7077}, {4039, 36800}, {4061, 65019}, {4069, 16737}, {4076, 7200}, {4102, 4697}, {4107, 36801}, {4391, 4579}, {4434, 4997}, {4447, 36796}, {4451, 6645}, {4477, 4554}, {4582, 4922}, {4598, 30584}, {4601, 40608}, {7033, 56558}, {7058, 7211}, {7122, 28659}, {7155, 17752}, {7187, 56180}, {7234, 62534}, {7257, 57234}, {8706, 28006}, {10799, 44187}, {14603, 18265}, {17212, 30730}, {17741, 43749}, {18155, 61164}, {18235, 30710}, {20964, 28660}, {21803, 52379}, {22061, 44130}, {27424, 51902}, {27831, 43290}, {32937, 39936}, {40790, 52652}
X(66996) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 17787}, {206, 2329}, {223, 1920}, {478, 1909}, {6609, 7196}, {9467, 4876}, {32664, 7081}, {38986, 4140}, {39025, 4529}, {39092, 66882}, {40590, 1237}, {40600, 4095}, {40611, 3963}, {55053, 3907}
X(66996) = cevapoint of X(1423) and X(3503)
X(66996) = crosssum of X(i) and X(j) for these (i,j): {3963, 4019}, {4140, 4459}
X(66996) = crossdifference of every pair of points on line {3907, 30584}
X(66996) = barycentric product X(i)*X(j) for these {i,j}: {1, 1431}, {6, 1432}, {7, 904}, {31, 7249}, {34, 7015}, {56, 256}, {57, 893}, {65, 1178}, {81, 65011}, {85, 7104}, {181, 7303}, {257, 604}, {278, 7116}, {513, 29055}, {649, 37137}, {667, 65289}, {694, 1429}, {1106, 4451}, {1333, 60245}, {1395, 7019}, {1397, 7018}, {1400, 40432}, {1402, 32010}, {1412, 52651}, {1423, 51974}, {1428, 1581}, {1434, 40729}, {1447, 1967}, {1469, 40763}, {1927, 18033}, {3500, 51986}, {3863, 7132}, {3903, 43924}, {4594, 51641}, {4603, 7180}, {7175, 59480}, {7233, 61385}, {9468, 10030}, {22383, 65332}, {27447, 41526}, {27805, 57181}, {36065, 53521}, {40738, 56556}, {43051, 58981}, {53541, 55018}
X(66996) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 17787}, {31, 7081}, {32, 2329}, {56, 1909}, {57, 1920}, {65, 1237}, {213, 4095}, {256, 3596}, {257, 28659}, {269, 7205}, {560, 2330}, {604, 894}, {667, 3907}, {694, 66882}, {798, 4140}, {893, 312}, {904, 8}, {1106, 7176}, {1178, 314}, {1333, 27958}, {1356, 21725}, {1395, 7009}, {1397, 171}, {1400, 3963}, {1402, 1215}, {1403, 41318}, {1407, 7196}, {1408, 17103}, {1409, 4019}, {1412, 8033}, {1415, 18047}, {1428, 1966}, {1429, 3978}, {1431, 75}, {1432, 76}, {1447, 1926}, {1919, 3287}, {1927, 7077}, {1967, 4518}, {2203, 14006}, {3063, 4529}, {3248, 4459}, {4603, 62534}, {7015, 3718}, {7018, 40363}, {7104, 9}, {7116, 345}, {7249, 561}, {7303, 18021}, {8640, 30584}, {8789, 51858}, {9468, 4876}, {10030, 14603}, {18786, 4087}, {29055, 668}, {32010, 40072}, {37137, 1978}, {40432, 28660}, {40729, 2321}, {41280, 7122}, {41526, 17752}, {43924, 4374}, {51641, 2533}, {51974, 27424}, {51986, 17786}, {52410, 7175}, {52651, 30713}, {57181, 4369}, {60245, 27801}, {61048, 53541}, {61364, 21803}, {61385, 3685}, {65011, 321}, {65289, 6386}
X(66996) = {X(893),X(1431)}-harmonic conjugate of X(65011)
X(66997) lies on the cubic K532 and these lines: {6, 292}, {32, 51858}, {42, 19557}, {101, 733}, {237, 18265}, {291, 404}, {384, 8865}, {385, 3507}, {694, 51323}, {976, 43534}, {4518, 5293}, {4876, 5276}, {9259, 56806}, {18755, 51973}
X(66997) = X(694)-Ceva conjugate of X(51858)
X(66997) = X(i)-isoconjugate of X(j) for these (i,j): {238, 40038}, {239, 39724}, {350, 7194}, {1447, 43749}, {3766, 65364}
X(66997) = X(i)-Dao conjugate of X(j) for these (i,j): {2329, 3978}, {9470, 40038}
X(66997) = cevapoint of X(3507) and X(8865)
X(66997) = crossdifference of every pair of points on line {812, 27951}
X(66997) = barycentric product X(i)*X(j) for these {i,j}: {292, 3961}, {1911, 17280}, {1922, 33938}, {1967, 17741}, {3494, 51973}, {4876, 41346}, {7077, 56547}, {34249, 41531}, {51858, 56928}
X(66997) = barycentric quotient X(i)/X(j) for these {i,j}: {292, 40038}, {1911, 39724}, {1922, 7194}, {3961, 1921}, {17280, 18891}, {17741, 1926}, {33938, 44169}, {41346, 10030}, {51858, 43749}, {56547, 18033}
X(66998) lies on the cubic K532 and these lines: {6, 51992}, {237, 9468}, {384, 8871}, {385, 694}, {733, 805}, {1911, 41882}, {3124, 36897}, {3493, 14820}, {8789, 9418}, {14604, 18902}, {17938, 56915}, {34238, 61098}
X(66998) = X(9494)-cross conjugate of X(17938)
X(66998) = X(i)-isoconjugate of X(j) for these (i,j): {385, 1926}, {561, 4027}, {850, 46295}, {1502, 51903}, {1580, 14603}, {1928, 51318}, {1933, 18901}, {1966, 3978}, {6645, 64222}, {18891, 27982}, {20948, 46294}
X(66998) = X(i)-Dao conjugate of X(j) for these (i,j): {9467, 3978}, {39092, 14603}, {40368, 4027}, {40369, 51318}
X(66998) = cevapoint of X(694) and X(8871)
X(66998) = crossdifference of every pair of points on line {58255, 58779}
X(66998) = barycentric product X(i)*X(j) for these {i,j}: {32, 41517}, {694, 9468}, {805, 881}, {882, 17938}, {1581, 1927}, {1916, 8789}, {1967, 1967}, {9427, 57558}, {14251, 34238}, {14604, 18896}, {17970, 17980}, {18903, 44160}, {51856, 59480}
X(66998) = barycentric quotient X(i)/X(j) for these {i,j}: {694, 14603}, {881, 14295}, {1501, 4027}, {1916, 18901}, {1917, 51903}, {1927, 1966}, {1967, 1926}, {8789, 385}, {9233, 51318}, {9427, 35078}, {9468, 3978}, {14574, 46294}, {14604, 1691}, {17938, 880}, {18897, 27982}, {18903, 14602}, {41517, 1502}, {51954, 8783}
X(66999) lies on the cubics K532 and K988 and these lines: {172, 52205}, {237, 18265}, {335, 385}, {384, 8868}, {672, 1931}, {694, 1914}, {1400, 51866}, {1755, 2076}, {1911, 1933}, {2248, 9506}, {9454, 64215}
X(66999) = isogonal conjugate of X(18037)
X(66999) = isogonal conjugate of the isotomic conjugate of X(24479)
X(66999) = X(32)-cross conjugate of X(1911)
X(66999) = X(i)-isoconjugate of X(j) for these (i,j): {1, 18037}, {2, 1281}, {75, 19557}, {76, 19561}, {100, 27951}, {238, 17789}, {239, 4645}, {350, 3509}, {385, 52135}, {561, 18038}, {1921, 17798}, {1926, 41882}, {1966, 40873}, {3570, 4458}, {3975, 5018}, {3978, 41532}, {4071, 33295}, {4366, 52085}, {8300, 51859}, {8868, 19581}, {17755, 40724}, {18262, 44169}, {18891, 19554}, {20715, 30940}, {20741, 40717}, {40754, 64223}
X(66999) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 18037}, {206, 19557}, {8054, 27951}, {9467, 40873}, {9470, 17789}, {32664, 1281}, {40368, 18038}
X(66999) = cevapoint of X(3512) and X(8875)
X(66999) = barycentric product X(i)*X(j) for these {i,j}: {1, 30648}, {6, 24479}, {31, 63875}, {32, 63895}, {291, 8852}, {292, 3512}, {694, 41534}, {875, 51614}, {1911, 7261}, {1922, 40845}, {1967, 7061}, {8875, 63893}, {9468, 40846}, {14598, 18036}, {40781, 51866}, {51856, 64231}
X(66999) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 18037}, {31, 1281}, {32, 19557}, {292, 17789}, {560, 19561}, {649, 27951}, {875, 4458}, {1501, 18038}, {1911, 4645}, {1922, 3509}, {1927, 41532}, {1967, 52135}, {3512, 1921}, {7061, 1926}, {7261, 18891}, {7281, 4087}, {8789, 41882}, {8852, 350}, {8875, 18277}, {9468, 40873}, {14598, 17798}, {18036, 44171}, {18893, 18262}, {18897, 19554}, {24479, 76}, {30648, 75}, {40845, 44169}, {40846, 14603}, {41534, 3978}, {52205, 51859}, {63875, 561}, {63895, 1502}
X(67000) lies on the cubic K532 and these lines: {6, 51982}, {384, 694}, {385, 22252}, {689, 711}, {703, 783}, {1911, 63883}, {3051, 14946}, {9287, 9288}, {9431, 59028}, {9468, 19606}, {37894, 47642}
X(67000) = isogonal conjugate of the isotomic conjugate of X(14946)
X(67000) = X(711)-Ceva conjugate of X(51982)
X(67000) = X(i)-isoconjugate of X(j) for these (i,j): {384, 1926}, {385, 1925}, {561, 16985}, {782, 37204}, {1502, 51904}, {1582, 14603}, {1928, 51320}, {1932, 18901}, {1965, 3978}, {1966, 9230}, {4593, 35558}, {16101, 19574}, {18273, 22252}, {35530, 38847}
X(67000) = X(i)-Dao conjugate of X(j) for these (i,j): {626, 35530}, {9467, 9230}, {40368, 16985}, {40369, 51320}, {55050, 35558}
X(67000) = trilinear pole of line {9494, 44164}
X(67000) = barycentric product X(i)*X(j) for these {i,j}: {6, 14946}, {32, 51982}, {688, 783}, {694, 51948}, {695, 9468}, {711, 8265}, {1501, 40847}, {1581, 9236}, {1927, 9285}, {1967, 9288}, {8789, 9229}, {9494, 18828}, {14970, 57503}, {44164, 57937}
X(67000) = barycentric quotient X(i)/X(j) for these {i,j}: {688, 35558}, {695, 14603}, {711, 44165}, {783, 42371}, {1501, 16985}, {1917, 51904}, {1927, 1965}, {1967, 1925}, {8265, 35530}, {8789, 384}, {9229, 18901}, {9233, 51320}, {9236, 1966}, {9288, 1926}, {9468, 9230}, {9494, 782}, {14604, 1915}, {14946, 76}, {40847, 40362}, {44164, 710}, {51948, 3978}, {51982, 1502}, {57503, 732}, {57937, 44163}
X(67000) = {X(694),X(695)}-harmonic conjugate of X(40847)
X(67001) lies on the cubic K532 and these lines: {25, 41882}, {237, 57264}, {256, 9082}, {384, 8872}, {385, 1423}, {904, 34248}, {1911, 9468}, {2076, 34249}, {2162, 7116}, {7121, 15370}, {20471, 34445}
X(67001) = X(i)-isoconjugate of X(j) for these (i,j): {1920, 57505}, {3212, 39936}, {3500, 41318}, {17752, 54128}
X(67001) = cevapoint of X(2319) and X(8872)
X(67001) = barycentric product X(i)*X(j) for these {i,j}: {1967, 14199}, {2319, 51986}, {3501, 51974}, {21348, 58981}, {27447, 51949}
X(67001) = barycentric quotient X(i)/X(j) for these {i,j}: {13588, 27891}, {14199, 1926}, {34247, 41318}, {51949, 17752}, {51986, 30545}, {57264, 39936}
X(67002) lies on the cubic K532 and these lines: {6, 194}, {32, 53148}, {904, 34248}, {3051, 51951}, {3222, 3231}, {9230, 9492}, {9426, 9429}, {15389, 32546}, {15965, 21001}, {32748, 59802}, {33786, 53147}
X(67002) = 1st Johnson-Yff-circle-inverse of X(24235)
X(67002) = X(3229)-cross conjugate of X(32748)
X(67002) = X(i)-isoconjugate of X(j) for these (i,j): {699, 18837}, {1740, 66842}, {3225, 17149}, {6374, 43761}
X(67002) = X(39080)-Dao conjugate of X(6374)
X(67002) = crosssum of X(2) and X(9493)
X(67002) = crossdifference of every pair of points on line {3221, 6374}
X(67002) = barycentric product X(i)*X(j) for these {i,j}: {698, 51951}, {2227, 34248}, {2998, 32748}, {3222, 9429}, {3223, 51907}, {3224, 3229}, {3504, 52460}
X(67002) = barycentric quotient X(i)/X(j) for these {i,j}: {2227, 18837}, {3224, 66842}, {3229, 6374}, {9429, 23301}, {15389, 8858}, {32748, 194}, {51907, 17149}, {51951, 3225}, {52460, 51843}
X(67003) lies on the cubic K532 and these lines: {237, 46228}, {325, 16094}, {384, 3493}, {385, 3505}, {427, 36897}, {694, 19558}, {1031, 9477}, {2076, 3852}, {7779, 36214}, {9468, 44090}, {24973, 34214}, {63873, 63875}
X(67003) = isogonal conjugate of X(19571)
X(67003) = isotomic conjugate of X(8783)
X(67003) = X(32)-cross conjugate of X(694)
X(67003) = X(i)-isoconjugate of X(j) for these (i,j): {1, 19571}, {2, 19572}, {6, 19574}, {31, 8783}, {75, 19576}, {76, 19578}, {385, 19555}, {561, 19575}, {1580, 5207}, {1926, 19558}, {1966, 6660}, {3978, 19559}, {14316, 56982}, {14603, 19560}
X(67003) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 8783}, {3, 19571}, {9, 19574}, {206, 19576}, {9467, 6660}, {32664, 19572}, {39092, 5207}, {40368, 19575}
X(67003) = barycentric product X(i)*X(j) for these {i,j}: {694, 43696}, {1916, 41533}, {14946, 16101}, {41517, 51244}
X(67003) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 19574}, {2, 8783}, {6, 19571}, {31, 19572}, {32, 19576}, {560, 19578}, {694, 5207}, {882, 14316}, {1501, 19575}, {1927, 19559}, {1967, 19555}, {8789, 19558}, {9468, 6660}, {14604, 19556}, {14946, 3505}, {34238, 52081}, {41533, 385}, {43696, 3978}
X(67004) lies on the cubic K532 and these lines: {6, 160}, {32, 57259}, {262, 3098}, {384, 3498}, {733, 17970}, {1691, 46317}, {3329, 65005}, {3402, 51858}, {5017, 51997}, {5039, 14252}, {34417, 61359}, {40425, 41435}, {59249, 60702}
X(67004) = isogonal conjugate of the isotomic conjugate of X(65005)
X(67004) = X(694)-Ceva conjugate of X(57259)
X(67004) = X(i)-isoconjugate of X(j) for these (i,j): {183, 60664}, {3403, 60667}, {42006, 52134}
X(67004) = barycentric product X(i)*X(j) for these {i,j}: {6, 65005}, {262, 12212}, {263, 3329}, {2186, 60686}, {3402, 60683}, {10007, 42288}, {14318, 65271}, {46319, 60707}
X(67004) = barycentric quotient X(i)/X(j) for these {i,j}: {263, 42006}, {3329, 20023}, {3402, 60664}, {12212, 183}, {14318, 23878}, {46319, 60667}, {60686, 3403}, {65005, 76}
X(67005) lies on the cubics K225 and K532 and these lines: {6, 2196}, {384, 3500}, {672, 56012}, {904, 17970}, {932, 20460}, {1911, 34248}, {2176, 57505}, {7121, 63553}, {20667, 27644}, {30667, 54128}, {43748, 53129}
X(67005) = X(i)-isoconjugate of X(j) for these (i,j): {2, 14199}, {2319, 56930}, {7155, 39930}, {17786, 34252}, {27424, 56413}, {32937, 39914}
X(67005) = X(32664)-Dao conjugate of X(14199)
X(67005) = barycentric product X(i)*X(j) for these {i,j}: {291, 57505}, {1403, 43748}, {1423, 51995}, {3500, 51973}
X(67005) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 14199}, {1403, 56930}, {41526, 39930}, {51973, 17786}, {51995, 27424}, {57505, 350}
X(67006) lies on the cubic K532 and these lines: {6, 51988}, {25, 32}, {112, 6660}, {237, 57262}, {297, 385}, {384, 8863}, {1911, 57653}, {1968, 3981}, {8743, 11328}, {9468, 44090}, {11325, 42295}, {15143, 41363}, {15145, 16985}, {15394, 40802}, {37344, 45141}
X(67006) = polar conjugate of the isotomic conjugate of X(56923)
X(67006) = X(694)-Ceva conjugate of X(25)
X(67006) = X(i)-isoconjugate of X(j) for these (i,j): {304, 43721}, {336, 51250}
X(67006) = X(419)-Dao conjugate of X(3978)
X(67006) = barycentric product X(i)*X(j) for these {i,j}: {4, 56923}, {25, 56376}, {232, 8861}, {1843, 8928}
X(67006) = barycentric quotient X(i)/X(j) for these {i,j}: {1974, 43721}, {2211, 51250}, {8861, 57799}, {56376, 305}, {56923, 69}
X(67007) lies on the cubics K280, K553, and K688, and also on these lines: {2, 694}, {6, 805}, {39, 512}, {76, 44168}, {182, 8789}, {194, 46274}, {511, 2086}, {538, 52625}, {574, 9468}, {733, 59236}, {1645, 3231}, {2549, 38947}, {5024, 45146}, {5028, 17970}, {5108, 39292}, {5968, 36821}, {6234, 11171}, {6683, 40507}, {7757, 18829}, {7790, 18896}, {11332, 17938}, {14608, 36881}, {14609, 52067}, {14931, 39087}, {30495, 42061}, {36897, 64625}, {41440, 56978}
X(67007) = isogonal conjugate of X(51510)
X(67007) =
X(67007) = X(6786)-cross conjugate of X(3231)
X(67007) = X(i)-isoconjugate of X(j) for these (i,j): {1, 51510}, {385, 37132}, {729, 1966}, {804, 36133}, {1580, 3228}, {1933, 34087}, {56982, 60028}
X(67007) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 51510}, {9467, 729}, {35073, 3978}, {38998, 385}, {39010, 804}, {39092, 3228}, {52876, 732}, {62611, 2086}
X(67007) = trilinear pole of line {888, 52961}
X(67007) = crossdifference of every pair of points on line {385, 5027}
X(67007) = barycentric product X(i)*X(j) for these {i,j}: {538, 694}, {805, 9148}, {881, 63747}, {882, 23342}, {888, 18829}, {1581, 2234}, {1916, 3231}, {5118, 66267}, {6786, 36897}, {9468, 30736}, {14970, 52961}, {18872, 52756}, {18896, 33875}, {36822, 40810}, {39292, 52625}, {40708, 46522}
X(67007) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 51510}, {538, 3978}, {694, 3228}, {805, 9150}, {881, 63749}, {882, 60028}, {887, 5027}, {888, 804}, {1645, 2086}, {1916, 34087}, {1967, 37132}, {2234, 1966}, {3231, 385}, {5118, 17941}, {6786, 5976}, {9148, 14295}, {9468, 729}, {14251, 52765}, {14609, 60863}, {17938, 32717}, {18829, 886}, {18872, 14608}, {23342, 880}, {30736, 14603}, {33875, 1691}, {36822, 14382}, {46522, 419}, {52700, 52762}, {52894, 4039}, {52961, 732}, {66267, 66278}
X(67007) =
{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {39, 16068, 51511}, {39, 47648, 14251}, {39, 51494, 18872}, {694, 47642, 11654}, {1916, 11654, 694}, {16068, 51494, 52700}, {18872, 47648, 51494}, {18872, 51494, 14251}
X(67008) lies on the cubic K553 and these lines: {2, 98}, {6, 17932}, {76, 249}, {384, 32545}, {685, 35259}, {1003, 2966}, {2715, 2868}, {4048, 57799}, {5108, 57991}, {6531, 11185}, {7807, 41175}, {9308, 20031}, {10311, 30226}, {10684, 44127}, {14001, 34156}, {14033, 35906}, {14913, 15630}, {16925, 58728}, {18906, 57260}, {32973, 53783}, {35275, 43754}, {52081, 52672}
X(67008) = X(1959)-isoconjugate of X(16098)
X(67008) = X(61077)-Dao conjugate of X(2799)
X(67008) = barycentric product X(i)*X(j) for these {i,j}: {98, 56430}, {287, 15014}, {1976, 16084}, {2966, 9035}, {17932, 47206}
X(67008) = barycentric quotient X(i)/X(j) for these {i,j}: {865, 44114}, {1976, 16098}, {2715, 9091}, {2966, 53202}, {9035, 2799}, {15014, 297}, {47206, 16230}, {56430, 325}, {57991, 57739}
X(67009) lies on the cubic K553 and these lines: {2, 523}, {6, 34760}, {76, 53080}, {111, 5939}, {671, 3124}, {892, 5108}, {1003, 50941}, {1641, 53367}, {1648, 47286}, {8370, 14263}, {10630, 14608}, {32525, 64258}, {35279, 52035}, {50437, 65350}
X(67009) = Hutson-Parry-circle-inverse of X(52756) Points related to the 3rd Pavlov triangle: X(67010)-X(67066)
X(67009) = {X(2),X(5466)}-harmonic conjugate of X(52756)
This preamble and centers X(67010)-X(67066) were contributed by Ivan Pavlov on Jan 27, 2025.
Let I be the incenter of ABC and MaMbMc its medial triangle. Let Ta, Tb, Tc be the reflections of Ma, Mb, Mc in AI, BI, CI, resp. Below, we call TaTbTc the 3rd Pavlov triangle of ABC. It has the following A-vertex coordinates: {(b - c)^2, -b^2, -c^2}. Some properties of the 3rd Pavlov triangle include:
- It is perspective to ABC with center X(6)
- It is perspective to the intouch and to the 1st Pavlov-Altintas triangles with center X(513).
- It is perspective to the anti-Aquila and to the 2nd Pavlov triangles with center X(63292).
- It is perspective to the 5th mixtilinear with center X(38496)
- It is orthologic to the 1st Ehrmann triangle with center X(6).
- It is orthologic to the intouch triangle with center X(3244). The reciprocal orthology center is X(67018).
- The three triangles - intouch, 1st Pavlov-Altintas, and 3rd Pavlov - share the same side-triangle, which is degenerate. It's vertices lie on the OI line.
On the other hand, the inverse of the 3rd Pavlov triangle is perspective to ABC with center X(56179). It is also orthologic to the intouch triangle with center X(78) and the reciprocal orthology center is X(12053).
X(67010) lies on these lines: {3914, 10572}, {33133, 53510}
X(67010) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 67033}
X(67010) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 67033}
X(67010) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(33133)}}, {{A, B, C, X(278), X(2994)}}, {{A, B, C, X(321), X(1851)}}, {{A, B, C, X(19785), X(26665)}}, {{A, B, C, X(21907), X(54119)}}, {{A, B, C, X(30690), X(40574)}}
X(67011) lies on these lines: {1, 1361}, {4, 65}, {12, 20306}, {31, 56}, {34, 42448}, {55, 63435}, {109, 58742}, {181, 11190}, {208, 1425}, {960, 25876}, {1400, 21767}, {1405, 56911}, {1454, 27622}, {1469, 3827}, {1854, 2099}, {3256, 3357}, {3340, 6000}, {3485, 26091}, {5433, 58459}, {5884, 59816}, {5886, 56412}, {5903, 56825}, {7066, 12526}, {7335, 34043}, {7352, 14988}, {9840, 24806}, {10076, 37541}, {10535, 26437}, {11011, 11189}, {13730, 34040}, {14882, 34935}, {18838, 28074}, {19365, 64020}, {35014, 38501}, {39791, 66693}, {45122, 56885}
X(67011) = reflection of X(i) in X(j) for these {i,j}: {6285, 1854}
X(67011) = isogonal conjugate of X(56099)
X(67011) = perspector of circumconic {{A, B, C, X(1461), X(54240)}}
X(67011) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 56099}, {51565, 64784}
X(67011) = pole of line {6129, 8677} with respect to the incircle
X(67011) = pole of line {1043, 56099} with respect to the Stammler hyperbola
X(67011) = pole of line {8677, 21189} with respect to the Suppa-Cucoanes circle
X(67011) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(603)}}, {{A, B, C, X(31), X(1857)}}, {{A, B, C, X(56), X(158)}}, {{A, B, C, X(221), X(47372)}}, {{A, B, C, X(1106), X(1118)}}, {{A, B, C, X(1457), X(59830)}}, {{A, B, C, X(40149), X(52373)}}
X(67011) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {65, 12688, 1887}, {221, 3556, 26888}, {1361, 30493, 1}
X(67012) lies on circumconic {{A, B, C, X(56140), X(56354)}} and on these lines: {1, 10601}, {3, 41682}, {6, 3991}, {10, 25878}, {222, 8715}, {513, 12912}, {518, 1062}, {519, 7078}, {521, 3157}, {528, 8757}, {1191, 38496}, {1203, 67013}, {1331, 11508}, {2802, 34040}, {3244, 16466}, {3271, 45061}, {3295, 45729}, {3555, 61397}, {3562, 34619}, {3746, 55400}, {3811, 46974}, {3881, 52424}, {3931, 12594}, {4383, 49627}, {5710, 49626}, {5711, 63309}, {7074, 62858}, {12607, 60691}, {16502, 67027}, {22129, 59316}, {23072, 52804}, {34791, 36754}, {41344, 45701}
X(67012) = pole of line {26358, 45061} with respect to the Feuerbach hyperbola
X(67013) lies on these lines: {1, 210}, {46, 41682}, {678, 1468}, {1046, 5119}, {1054, 3338}, {1203, 67012}, {3244, 4011}, {3293, 11512}, {3340, 53537}, {3632, 24342}, {3679, 28608}, {3746, 47300}, {3751, 9049}, {3870, 63292}, {6765, 16474}, {7373, 21870}, {8583, 16490}, {10914, 64165}, {16236, 66693}, {16466, 67015}, {50575, 62819}, {50587, 62832}, {64163, 67026}
X(67013) = reflection of X(i) in X(j) for these {i,j}: {1, 2334}
X(67013) = pole of line {1697, 31318} with respect to the Feuerbach hyperbola
X(67013) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 4866, 31318}
X(67014) lies on these lines: {513, 3433}, {905, 918}, {1459, 2254}, {1618, 35185}, {2402, 4000}, {3669, 57230}, {15419, 16751}, {15420, 44550}, {21133, 65103}, {67028, 67030}
X(67014) = trilinear pole of line {3675, 3937}
X(67014) = perspector of circumconic {{A, B, C, X(13577), X(44178)}}
X(67014) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 57250}, {6, 67060}, {9, 40576}, {100, 169}, {101, 3434}, {110, 21073}, {190, 1486}, {644, 34036}, {662, 21867}, {664, 5452}, {692, 20927}, {1018, 4228}, {1110, 26546}, {1252, 21185}, {1331, 17905}, {1897, 22131}, {3699, 56913}, {3939, 37800}, {4564, 11934}, {8750, 28420}, {14268, 65208}, {36147, 41581}
X(67014) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 67060}, {244, 21073}, {478, 40576}, {514, 26546}, {661, 21185}, {1015, 3434}, {1084, 21867}, {1086, 20927}, {5521, 17905}, {8054, 169}, {26932, 28420}, {32664, 57250}, {34467, 22131}, {39015, 41581}, {39025, 5452}, {40617, 37800}, {55053, 1486}
X(67014) = X(i)-cross conjugate of X(j) for these {i, j}: {3063, 513}
X(67014) = pole of line {44178, 53996} with respect to the MacBeath circumconic
X(67014) = pole of line {55, 20275} with respect to the Steiner inellipse
X(67014) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(3693)}}, {{A, B, C, X(105), X(44355)}}, {{A, B, C, X(241), X(3446)}}, {{A, B, C, X(279), X(41933)}}, {{A, B, C, X(513), X(651)}}, {{A, B, C, X(514), X(15313)}}, {{A, B, C, X(649), X(2509)}}, {{A, B, C, X(650), X(2402)}}, {{A, B, C, X(905), X(1459)}}, {{A, B, C, X(3433), X(64240)}}, {{A, B, C, X(3737), X(37626)}}, {{A, B, C, X(6586), X(6591)}}, {{A, B, C, X(30705), X(38269)}}
X(67015) lies on these lines: {6, 55337}, {55, 41682}, {221, 15313}, {1191, 3244}, {1616, 36846}, {3303, 12594}, {5710, 63341}, {9370, 53534}, {16466, 67013}, {16486, 22837}, {16781, 67027}, {64174, 67026}
X(67016) lies on these lines: {1, 1417}, {3, 1149}, {40, 15952}, {56, 67018}, {513, 8715}, {517, 62825}, {901, 3885}, {3246, 3579}, {10306, 63434}, {12114, 67032}, {25439, 64525}, {32475, 47371}, {32612, 53790}
X(67016) = midpoint of X(i) and X(j) for these {i,j}: {1, 67017}
X(67017) lies on these lines: {1, 1417}, {3, 15663}, {40, 19550}, {44, 1766}, {57, 67018}, {517, 36846}, {1709, 67032}, {3895, 64531}, {8283, 12912}, {16389, 49163}, {53790, 55310}, {56885, 63130}, {63137, 64527}
X(67017) = reflection of X(i) in X(j) for these {i,j}: {1, 67016}
X(67017) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3885, 1}
X(67018) lies on these lines: {11, 67032}, {56, 67016}, {57, 67017}, {496, 517}, {513, 3244}, {999, 16945}, {3057, 63997}, {3663, 9957}, {3878, 49693}, {4907, 7982}, {4941, 66650}, {5697, 37716}, {7962, 11573}, {10106, 64530}, {10914, 67021}, {21664, 23340}, {24928, 53790}
X(67018) = X(i)-Dao conjugate of X(j) for these {i, j}: {10914, 8}
X(67019) lies on these lines: {3, 1724}, {46, 64531}, {65, 33656}, {224, 56885}, {375, 17647}, {442, 64529}, {517, 40647}, {2646, 64533}, {5482, 37356}, {6831, 64528}, {6836, 37536}, {6899, 37482}, {12609, 64541}, {14831, 37428}, {15310, 40296}, {26066, 64542}, {34461, 35979}
X(67019) = reflection of X(i) in X(j) for these {i,j}: {64534, 33656}
X(67020) lies on these lines: {3749, 64741}, {26653, 26677}
X(67020) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 67035}
X(67020) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 67035}
X(67020) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(26653)}}, {{A, B, C, X(9), X(4000)}}, {{A, B, C, X(28), X(26677)}}, {{A, B, C, X(57), X(983)}}, {{A, B, C, X(269), X(651)}}, {{A, B, C, X(278), X(36101)}}, {{A, B, C, X(279), X(55989)}}, {{A, B, C, X(9442), X(64741)}}
X(67021) lies on circumconic {{A, B, C, X(1851), X(10914)}} and on these lines: {1, 1878}, {354, 513}, {392, 16052}, {429, 946}, {497, 1851}, {517, 17556}, {1699, 5064}, {1828, 12053}, {1829, 9614}, {3744, 52242}, {3827, 11238}, {3937, 17626}, {10707, 41717}, {10914, 67018}, {11235, 41581}, {17604, 22321}, {17625, 38389}, {24386, 61662}, {24392, 61669}, {37366, 61086}
X(67022) lies on circumconic {{A, B, C, X(1067), X(51616)}} and on these lines: {1, 4}, {6, 64163}, {10, 25968}, {57, 36986}, {212, 11362}, {255, 24391}, {380, 56912}, {519, 7078}, {580, 4848}, {938, 27402}, {1103, 3189}, {1104, 1210}, {1394, 5768}, {1427, 4311}, {1433, 52571}, {1451, 1771}, {1453, 18391}, {1735, 31730}, {1777, 9948}, {1837, 51375}, {2840, 59812}, {3086, 16485}, {3244, 45131}, {4304, 15852}, {5719, 61519}, {5787, 53592}, {5795, 54305}, {6738, 62805}, {10165, 54346}, {11019, 33305}, {12016, 64045}, {12433, 65702}, {12437, 22350}, {12527, 66235}, {13411, 58403}, {14986, 27530}, {22654, 55362}, {31789, 64708}, {37591, 63438}, {41682, 50196}, {57287, 66610}, {64324, 66693}
X(67022) = pole of line {65, 51375} with respect to the Feuerbach hyperbola
X(67022) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3586, 7952}
X(67023) lies on these lines: {65, 13756}, {517, 4973}, {901, 5903}, {2800, 31841}, {3025, 13752}, {3259, 3754}, {3874, 53799}, {3878, 22102}, {12006, 35004}, {13145, 38617}, {34339, 66843}, {38512, 56691}, {64021, 66850}
X(67023) = midpoint of X(i) and X(j) for these {i,j}: {901, 5903}, {38512, 56691}, {64021, 66850}
X(67023) = reflection of X(i) in X(j) for these {i,j}: {3025, 13752}, {3259, 3754}, {3878, 22102}, {38617, 13145}, {66843, 34339}
X(67024) lies on these lines: {1, 75}, {6, 3985}, {519, 4111}, {524, 42057}, {982, 20170}, {1213, 3741}, {1654, 10453}, {1962, 16738}, {1999, 20142}, {3723, 64869}, {3791, 16690}, {4062, 29985}, {4434, 64169}, {4649, 63800}, {4697, 18166}, {5839, 60675}, {6707, 43223}, {10180, 27164}, {10449, 42334}, {10476, 63402}, {17142, 62867}, {17178, 27804}, {17379, 32915}, {17768, 41682}, {20090, 20091}, {20164, 24631}, {22316, 28639}, {25354, 50608}, {25508, 27798}, {26045, 30571}, {27145, 46904}, {27623, 49488}, {29767, 59624}, {33135, 41876}, {40773, 58400}
X(67024) = pole of line {21334, 25124} with respect to the Feuerbach hyperbola
X(67024) = pole of line {4357, 36812} with respect to the dual conic of Yff parabola
X(67024) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 314, 25124}, {2667, 30939, 51575}
X(67025) lies on these lines: {1, 87}, {6, 4090}, {141, 3816}, {519, 4110}, {3210, 36646}, {3248, 21080}, {3771, 24669}, {3879, 52151}, {3950, 67027}, {3971, 22343}, {4368, 20978}, {6685, 17381}, {17375, 32946}, {18194, 59565}, {18793, 28279}, {20363, 23433}, {28365, 50023}, {29655, 50611}
X(67025) = pole of line {20359, 59716} with respect to the Feuerbach hyperbola
X(67025) = pole of line {20906, 31286} with respect to the Steiner inellipse
X(67025) = pole of line {3662, 16604} with respect to the dual conic of Yff parabola
X(67025) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 7155, 59716}
X(67026) lies on these lines: {1, 7}, {6, 11019}, {10, 25878}, {142, 30621}, {354, 14524}, {497, 1419}, {519, 4012}, {948, 65452}, {1253, 10164}, {1456, 12053}, {2270, 54385}, {2323, 41573}, {4644, 18216}, {4648, 13405}, {4667, 5572}, {4847, 37659}, {5228, 15841}, {6180, 63973}, {6610, 51783}, {9440, 29571}, {9580, 33633}, {9950, 40862}, {10580, 62997}, {12915, 34371}, {14986, 16469}, {16215, 41682}, {17625, 58906}, {17728, 38293}, {26015, 63088}, {26651, 66225}, {41339, 60992}, {44858, 50903}, {62183, 63999}, {62852, 66683}, {64163, 67013}, {64174, 67015}
X(67026) = pole of line {514, 28589} with respect to the incircle
X(67026) = pole of line {7, 51418} with respect to the dual conic of Yff parabola
X(67027) lies on these lines: {1, 39}, {9, 63526}, {37, 3271}, {646, 17314}, {3009, 20862}, {3252, 20356}, {3912, 20333}, {3950, 67025}, {4526, 17465}, {4681, 4796}, {16502, 67012}, {16781, 67015}, {17316, 20345}, {17464, 48032}, {29585, 31061}, {49771, 62370}
X(67027) = pole of line {659, 4712} with respect to the Hofstadter ellipse
X(67027) = pole of line {20335, 40533} with respect to the dual conic of Yff parabola
X(67028) lies on these lines: {513, 4000}, {651, 3063}, {918, 4462}, {2254, 3667}, {2403, 9311}, {4648, 59972}, {4885, 56323}, {6008, 16754}, {14727, 53213}, {25576, 25666}, {27498, 62638}, {30719, 48334}, {33133, 47762}, {48307, 53996}, {67014, 67030}
X(67028) = trilinear pole of line {3675, 3756}
X(67028) = perspector of circumconic {{A, B, C, X(9311), X(32023)}}
X(67028) = X(i)-isoconjugate-of-X(j) for these {i, j}: {100, 9310}, {101, 1376}, {109, 4513}, {163, 3967}, {644, 9316}, {663, 61415}, {664, 16283}, {692, 3729}, {765, 20980}, {919, 56714}, {1110, 4885}, {1252, 4449}, {3939, 6180}, {4014, 59149}, {6168, 52927}, {7084, 28999}, {20907, 23990}, {32666, 40883}
X(67028) = X(i)-Dao conjugate of X(j) for these {i, j}: {11, 4513}, {115, 3967}, {513, 20980}, {514, 4885}, {661, 4449}, {1015, 1376}, {1086, 3729}, {3835, 57177}, {4988, 21052}, {6554, 28999}, {8054, 9310}, {35094, 40883}, {38980, 56714}, {39025, 16283}, {40615, 9312}, {40617, 6180}, {45252, 644}, {53167, 4942}
X(67028) = X(i)-Ceva conjugate of X(j) for these {i, j}: {30610, 9311}
X(67028) = X(i)-cross conjugate of X(j) for these {i, j}: {3777, 693}, {43042, 62635}, {48400, 7192}
X(67028) = pole of line {11019, 52563} with respect to the incircle
X(67028) = pole of line {3967, 4513} with respect to the polar circle
X(67028) = pole of line {497, 41794} with respect to the Steiner circumellipse
X(67028) = pole of line {3663, 3816} with respect to the Steiner inellipse
X(67028) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(5121)}}, {{A, B, C, X(7), X(3263)}}, {{A, B, C, X(27), X(8229)}}, {{A, B, C, X(513), X(651)}}, {{A, B, C, X(514), X(2403)}}, {{A, B, C, X(522), X(58817)}}, {{A, B, C, X(523), X(6008)}}, {{A, B, C, X(693), X(3835)}}, {{A, B, C, X(1019), X(16754)}}, {{A, B, C, X(2400), X(3676)}}, {{A, B, C, X(3261), X(44429)}}, {{A, B, C, X(3669), X(4391)}}, {{A, B, C, X(3798), X(7192)}}, {{A, B, C, X(4817), X(13246)}}, {{A, B, C, X(6548), X(44432)}}, {{A, B, C, X(7153), X(62914)}}, {{A, B, C, X(7199), X(48080)}}, {{A, B, C, X(7649), X(17096)}}, {{A, B, C, X(10566), X(44433)}}, {{A, B, C, X(17197), X(44426)}}, {{A, B, C, X(20440), X(28395)}}, {{A, B, C, X(21195), X(59941)}}, {{A, B, C, X(23836), X(48070)}}, {{A, B, C, X(25666), X(48415)}}, {{A, B, C, X(26665), X(33891)}}, {{A, B, C, X(26721), X(28590)}}, {{A, B, C, X(30804), X(43042)}}, {{A, B, C, X(36956), X(62789)}}, {{A, B, C, X(41439), X(57792)}}, {{A, B, C, X(45674), X(52620)}}, {{A, B, C, X(48074), X(59753)}}
X(67029) lies on these lines: {946, 990}, {41785, 55905}
X(67029) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(344)}}, {{A, B, C, X(57), X(55905)}}, {{A, B, C, X(277), X(596)}}, {{A, B, C, X(278), X(946)}}, {{A, B, C, X(279), X(990)}}, {{A, B, C, X(348), X(1019)}}, {{A, B, C, X(7040), X(62635)}}, {{A, B, C, X(8747), X(23062)}}, {{A, B, C, X(15474), X(24159)}}, {{A, B, C, X(17147), X(19785)}}, {{A, B, C, X(24002), X(39267)}}, {{A, B, C, X(24790), X(38053)}}
X(67030) lies on these lines: {3433, 9309}, {67014, 67028}
X(67030) = X(i)-isoconjugate-of-X(j) for these {i, j}: {169, 1376}, {1486, 3729}, {3434, 9310}, {4513, 34036}, {4885, 57250}, {5452, 9312}, {20980, 67060}
X(67030) = intersection, other than A, B, C, of circumconics {{A, B, C, X(59), X(4000)}}, {{A, B, C, X(840), X(30705)}}, {{A, B, C, X(3433), X(64240)}}
X(67031) lies on these lines: {3485, 4327}, {41785, 56460}
X(67031) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(344)}}, {{A, B, C, X(2), X(17107)}}, {{A, B, C, X(57), X(56460)}}, {{A, B, C, X(277), X(34860)}}, {{A, B, C, X(278), X(1434)}}, {{A, B, C, X(279), X(4327)}}, {{A, B, C, X(348), X(7153)}}, {{A, B, C, X(20615), X(30705)}}, {{A, B, C, X(43531), X(58817)}}, {{A, B, C, X(56155), X(64240)}}
X(67032) lies on these lines: {5, 10}, {8, 64537}, {11, 67018}, {1149, 1482}, {1709, 67017}, {2841, 32537}, {3626, 64532}, {3753, 25881}, {5657, 26094}, {5903, 33103}, {8148, 28352}, {10914, 63147}, {12114, 67016}, {12672, 38384}, {12702, 36263}, {18480, 53790}, {19847, 26446}, {19925, 64530}, {23340, 28018}, {28236, 64531}, {37712, 64527}, {38155, 64541}
X(67032) = reflection of X(i) in X(j) for these {i,j}: {64530, 19925}, {64532, 3626}
X(67033) lies on these lines: {1, 6693}, {46, 78}, {58, 1792}, {72, 1324}, {200, 36974}, {511, 67045}, {997, 11512}, {1054, 67036}, {1330, 4420}, {3701, 56812}, {3870, 63292}, {5293, 24342}, {6737, 52121}, {7683, 37569}, {37531, 54136}
X(67033) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 67010}
X(67033) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 67010}
X(67034) lies on the Kiepert hyperbola and on these lines: {10, 31247}, {83, 5741}, {141, 60615}, {226, 30831}, {321, 30832}, {1211, 24624}, {3936, 14534}, {4049, 8045}, {4417, 60082}, {5233, 62923}, {5235, 66634}, {5737, 60247}, {5743, 57721}, {6539, 37759}, {13478, 32782}, {18841, 63090}, {24946, 60077}, {25645, 43531}, {29846, 40718}, {30588, 41878}, {30811, 57722}, {31143, 54553}, {31266, 60116}, {33172, 60085}, {41809, 60235}, {56226, 63344}
X(67034) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 63292}
X(67034) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 63292}
X(67034) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(75), X(33133)}}, {{A, B, C, X(81), X(30832)}}, {{A, B, C, X(86), X(31247)}}, {{A, B, C, X(141), X(5741)}}, {{A, B, C, X(312), X(6740)}}, {{A, B, C, X(333), X(30831)}}, {{A, B, C, X(1211), X(3936)}}, {{A, B, C, X(1255), X(40430)}}, {{A, B, C, X(1821), X(56058)}}, {{A, B, C, X(3619), X(63090)}}, {{A, B, C, X(3661), X(29846)}}, {{A, B, C, X(4358), X(8045)}}, {{A, B, C, X(4359), X(37759)}}, {{A, B, C, X(4384), X(29873)}}, {{A, B, C, X(4417), X(32782)}}, {{A, B, C, X(5233), X(33172)}}, {{A, B, C, X(5235), X(41878)}}, {{A, B, C, X(5278), X(30811)}}, {{A, B, C, X(5737), X(30834)}}, {{A, B, C, X(5743), X(18139)}}, {{A, B, C, X(6632), X(27805)}}, {{A, B, C, X(17056), X(41809)}}, {{A, B, C, X(17283), X(37687)}}, {{A, B, C, X(25645), X(56810)}}, {{A, B, C, X(33157), X(42709)}}
X(67035) lies on these lines: {2, 67064}, {7, 56179}, {8, 1738}, {69, 67060}, {78, 516}, {200, 4862}, {346, 522}, {3912, 67063}, {4488, 10025}, {5552, 44694}, {6745, 59579}, {17257, 67039}, {18228, 67040}, {27509, 65198}, {28795, 52157}
X(67035) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 67020}
X(67035) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 67020}
X(67036) lies on circumconic {{A, B, C, X(945), X(56145)}} and on these lines: {1, 4723}, {8, 32486}, {78, 517}, {522, 25253}, {997, 3953}, {1054, 67033}, {1149, 59685}, {3242, 3445}, {3869, 67064}, {4011, 22836}, {4511, 9369}, {19860, 67040}
X(67036) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {56179, 67037, 19861}
X(67037) lies on these lines: {1, 42020}, {78, 2098}, {997, 11512}, {2885, 19860}, {2899, 4511}, {3242, 3445}, {3811, 10700}, {3870, 38496}, {9026, 67045}, {15829, 67064}, {44722, 56630}, {53790, 63986}
X(67037) = reflection of X(i) in X(j) for these {i,j}: {56113, 1}
X(67037) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {19861, 67036, 56179}
X(67038) lies on these lines: {7, 65958}, {75, 765}, {190, 3261}, {307, 57989}, {522, 51560}, {655, 799}, {664, 889}, {668, 4397}, {670, 53644}, {811, 57072}, {813, 64865}, {874, 883}, {1016, 1275}, {1447, 3263}, {1978, 65164}, {2283, 53366}, {2397, 15418}, {3257, 20949}, {3729, 20567}, {4374, 39185}, {4552, 4625}, {4554, 4582}, {4564, 4601}, {4590, 52379}, {4600, 7012}, {6163, 20906}, {6615, 53208}, {6632, 21609}, {10030, 31625}, {17933, 17935}, {18026, 54979}, {18160, 36804}, {21272, 56323}, {23794, 36237}, {24029, 27853}, {31615, 33764}, {31633, 52421}, {33933, 57731}, {39126, 57950}, {41314, 56543}, {65229, 65237}
X(67038) = isotomic conjugate of X(2170)
X(67038) = trilinear pole of line {664, 668}
X(67038) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 3271}, {8, 1977}, {9, 3248}, {11, 32}, {21, 3121}, {25, 7117}, {31, 2170}, {41, 244}, {55, 1015}, {56, 14936}, {60, 3124}, {110, 63462}, {184, 8735}, {213, 18191}, {219, 42067}, {220, 1357}, {261, 1084}, {279, 61050}, {281, 22096}, {284, 3122}, {346, 61048}, {393, 61054}, {512, 7252}, {513, 3063}, {522, 1919}, {560, 4858}, {604, 2310}, {607, 3937}, {608, 3270}, {644, 8027}, {649, 663}, {650, 667}, {657, 43924}, {665, 884}, {669, 4560}, {738, 24012}, {798, 3737}, {875, 4435}, {926, 43929}, {1019, 63461}, {1021, 51641}, {1027, 46388}, {1086, 2175}, {1106, 3119}, {1111, 9447}, {1118, 39687}, {1146, 1397}, {1253, 53538}, {1333, 4516}, {1356, 7058}, {1358, 14827}, {1364, 2207}, {1395, 34591}, {1407, 3022}, {1408, 36197}, {1501, 34387}, {1509, 7063}, {1576, 55195}, {1918, 17197}, {1922, 4124}, {1924, 18155}, {1946, 6591}, {1973, 7004}, {1974, 26932}, {1980, 4391}, {2053, 6377}, {2150, 2643}, {2189, 20975}, {2194, 3125}, {2203, 53560}, {2204, 18210}, {2206, 21044}, {2212, 3942}, {2319, 38986}, {2350, 38365}, {2423, 53549}, {2489, 23189}, {2491, 60568}, {2969, 52425}, {2971, 65568}, {3051, 18101}, {3120, 57657}, {3123, 57264}, {3249, 3699}, {3669, 8641}, {3709, 3733}, {3900, 57181}, {3939, 21143}, {4041, 57129}, {4081, 52410}, {4117, 52379}, {4459, 7104}, {4526, 23349}, {4542, 41935}, {5532, 23979}, {5546, 8034}, {5548, 8661}, {6185, 15615}, {7023, 35508}, {7054, 61052}, {7155, 21762}, {7180, 21789}, {7336, 23990}, {7337, 35072}, {7366, 24010}, {8638, 62635}, {9427, 18021}, {9448, 23989}, {9459, 60578}, {14935, 16502}, {16947, 52335}, {17435, 64216}, {18265, 27918}, {18344, 22383}, {20228, 40528}, {21132, 32739}, {23099, 55196}, {23978, 41280}, {26856, 61364}, {27846, 51858}, {32719, 52338}, {32728, 52334}, {42069, 52411}, {43923, 65102}, {43932, 57180}, {46103, 65751}, {55208, 57134}, {59480, 61053}, {60482, 65802}, {60541, 60541}, {60804, 62269}
X(67038) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 14936}, {2, 2170}, {9, 3271}, {37, 4516}, {223, 1015}, {244, 63462}, {478, 3248}, {1214, 3125}, {1577, 64445}, {3160, 244}, {3161, 2310}, {4858, 55195}, {4998, 1053}, {5375, 663}, {6337, 7004}, {6374, 4858}, {6376, 11}, {6505, 7117}, {6552, 3119}, {6626, 18191}, {6631, 650}, {9296, 522}, {9428, 18155}, {10001, 513}, {16587, 40608}, {16591, 39786}, {17113, 53538}, {17755, 17435}, {24771, 3022}, {31998, 3737}, {34021, 17197}, {36905, 3675}, {39026, 3063}, {39028, 4124}, {39053, 6591}, {39054, 7252}, {39060, 7649}, {40590, 3122}, {40593, 1086}, {40603, 21044}, {40611, 3121}, {40615, 764}, {40617, 21143}, {40619, 21132}, {40624, 42462}, {52659, 2087}, {56325, 2643}, {59577, 36197}, {59608, 53540}, {62564, 53560}, {62565, 18210}, {62570, 3120}, {62571, 4530}, {62584, 34591}, {62585, 1146}, {62602, 2969}, {62604, 17880}, {62605, 8735}, {62647, 3270}
X(67038) = X(i)-Ceva conjugate of X(j) for these {i, j}: {55194, 799}
X(67038) = X(i)-cross conjugate of X(j) for these {i, j}: {7, 4625}, {57, 664}, {75, 4572}, {76, 799}, {85, 4554}, {304, 1978}, {312, 668}, {345, 7257}, {728, 3699}, {1016, 7035}, {1423, 651}, {3403, 37133}, {3501, 100}, {3503, 37137}, {3508, 660}, {3719, 4561}, {3729, 190}, {3912, 51560}, {4032, 4552}, {10030, 34085}, {17755, 883}, {17787, 65229}, {17789, 4583}, {18052, 4593}, {18134, 811}, {18138, 4602}, {20881, 75}, {20917, 789}, {21232, 2}, {21609, 46406}, {28039, 36118}, {30567, 53647}, {32939, 99}, {39126, 4569}, {51612, 55202}
X(67038) = pole of line {654, 2170} with respect to the Wallace hyperbola
X(67038) = pole of line {651, 3570} with respect to the dual conic of Moses-Feuerbach circumconic
X(67038) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(5205)}}, {{A, B, C, X(7), X(1447)}}, {{A, B, C, X(8), X(40872)}}, {{A, B, C, X(9), X(3729)}}, {{A, B, C, X(41), X(3501)}}, {{A, B, C, X(57), X(43924)}}, {{A, B, C, X(75), X(3261)}}, {{A, B, C, X(76), X(20924)}}, {{A, B, C, X(85), X(24002)}}, {{A, B, C, X(190), X(765)}}, {{A, B, C, X(192), X(14199)}}, {{A, B, C, X(239), X(9295)}}, {{A, B, C, X(304), X(28659)}}, {{A, B, C, X(312), X(4397)}}, {{A, B, C, X(335), X(1821)}}, {{A, B, C, X(522), X(3912)}}, {{A, B, C, X(604), X(1423)}}, {{A, B, C, X(655), X(4564)}}, {{A, B, C, X(799), X(4590)}}, {{A, B, C, X(889), X(4601)}}, {{A, B, C, X(894), X(39745)}}, {{A, B, C, X(903), X(37130)}}, {{A, B, C, X(1016), X(4076)}}, {{A, B, C, X(1275), X(4620)}}, {{A, B, C, X(1280), X(60014)}}, {{A, B, C, X(1580), X(64865)}}, {{A, B, C, X(2170), X(21232)}}, {{A, B, C, X(2171), X(4032)}}, {{A, B, C, X(2185), X(32939)}}, {{A, B, C, X(2995), X(40025)}}, {{A, B, C, X(3112), X(56129)}}, {{A, B, C, X(3911), X(60058)}}, {{A, B, C, X(4017), X(16609)}}, {{A, B, C, X(4384), X(4659)}}, {{A, B, C, X(4581), X(52209)}}, {{A, B, C, X(4600), X(54979)}}, {{A, B, C, X(4858), X(20881)}}, {{A, B, C, X(6604), X(39455)}}, {{A, B, C, X(7199), X(35175)}}, {{A, B, C, X(9282), X(25576)}}, {{A, B, C, X(10566), X(46972)}}, {{A, B, C, X(15742), X(63906)}}, {{A, B, C, X(18031), X(18816)}}, {{A, B, C, X(18134), X(57072)}}, {{A, B, C, X(18811), X(57792)}}, {{A, B, C, X(20948), X(35550)}}, {{A, B, C, X(23062), X(39126)}}, {{A, B, C, X(24004), X(42722)}}, {{A, B, C, X(26239), X(39704)}}, {{A, B, C, X(30941), X(53210)}}, {{A, B, C, X(35167), X(56322)}}, {{A, B, C, X(36588), X(55946)}}, {{A, B, C, X(39749), X(52652)}}
X(67039) lies on these lines: {2, 2191}, {37, 67060}, {192, 28058}, {480, 20171}, {522, 17261}, {1654, 4104}, {3699, 26671}, {3757, 67066}, {3935, 27108}, {4578, 26665}, {5205, 17232}, {17257, 67035}, {26699, 65198}, {38000, 67064}
X(67040) lies on these lines: {1, 42020}, {2, 2191}, {9, 67064}, {78, 1329}, {312, 67059}, {522, 30568}, {614, 3699}, {1722, 44722}, {3870, 37663}, {5272, 59684}, {6555, 7292}, {17111, 30852}, {18228, 67035}, {18743, 67060}, {19860, 67036}, {26688, 65198}, {28011, 44720}, {46937, 67061}
X(67041) lies on these lines: {2, 9841}, {3, 10}, {4, 6692}, {20, 3911}, {40, 21627}, {57, 962}, {84, 3452}, {140, 31805}, {142, 6847}, {165, 5082}, {226, 6890}, {404, 63998}, {443, 7989}, {496, 516}, {527, 63399}, {631, 5732}, {942, 64703}, {946, 37534}, {950, 6909}, {971, 6700}, {997, 9948}, {1125, 9856}, {1210, 37022}, {1479, 15803}, {1750, 17567}, {2802, 13226}, {3086, 10860}, {3522, 5175}, {3601, 63987}, {3825, 8727}, {4031, 55109}, {4188, 64707}, {4292, 37374}, {4301, 5708}, {4863, 44846}, {4999, 10178}, {5044, 61556}, {5218, 64679}, {5325, 61122}, {5433, 5918}, {5437, 37434}, {5438, 9799}, {5731, 37709}, {5744, 37551}, {5753, 9569}, {5768, 12437}, {5770, 11362}, {5837, 14647}, {5853, 10310}, {5901, 9940}, {6223, 30827}, {6260, 6891}, {6282, 12245}, {6675, 43181}, {6691, 15726}, {6745, 12680}, {6832, 58433}, {6833, 58463}, {6848, 58808}, {6857, 10857}, {6865, 52027}, {6885, 31673}, {6892, 10165}, {6899, 63438}, {6935, 8726}, {6961, 41854}, {6966, 10884}, {7288, 12565}, {7956, 22793}, {8728, 67046}, {8729, 67055}, {8731, 67053}, {8732, 67049}, {8734, 67054}, {9776, 67043}, {9845, 34619}, {9858, 20103}, {10085, 21075}, {10167, 13411}, {10202, 13464}, {10624, 17613}, {10855, 67042}, {10856, 67044}, {10858, 67052}, {10943, 16004}, {11018, 67051}, {11019, 64074}, {11220, 27385}, {11263, 64830}, {11374, 43177}, {11518, 67047}, {12019, 38759}, {12116, 35514}, {12442, 37623}, {12512, 31777}, {12527, 50031}, {12572, 34862}, {12684, 59687}, {12688, 17612}, {13405, 58567}, {13607, 33596}, {15717, 54357}, {16408, 63970}, {17603, 64704}, {19706, 34648}, {19862, 38122}, {21628, 25524}, {25522, 64130}, {25681, 54227}, {28164, 58405}, {28194, 37532}, {30276, 67057}, {30277, 67056}, {31231, 37421}, {31822, 61535}, {33899, 64659}, {35242, 43161}, {35612, 67050}, {37726, 46684}, {43175, 64951}, {50828, 51717}, {59326, 63146}, {59572, 63981}, {60895, 60945}, {61284, 64323}
X(67041) = midpoint of X(i) and X(j) for these {i,j}: {1210, 37022}, {10085, 21075}, {12053, 63985}, {63984, 67048}
X(67041) = complement of X(67048)
X(67041) = pole of line {9850, 64042} with respect to the Feuerbach hyperbola
X(67041) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63984, 67048}, {3, 6245, 57284}, {3, 64705, 64706}, {3, 6705, 5745}, {6847, 37526, 142}, {6891, 7171, 6260}
X(67042) lies on these lines: {8, 12059}, {10, 5927}, {21, 3062}, {515, 9856}, {758, 12679}, {1071, 11019}, {1479, 30290}, {1898, 10392}, {2802, 13227}, {3825, 10863}, {3884, 64000}, {3885, 5691}, {4853, 12125}, {5806, 10241}, {7995, 15064}, {8580, 63985}, {8581, 12053}, {8582, 67046}, {9947, 61510}, {9948, 10265}, {10855, 67041}, {10860, 25440}, {10862, 67044}, {10864, 63986}, {10865, 67049}, {10866, 63987}, {10867, 67052}, {11035, 64703}, {11491, 12705}, {11519, 67047}, {11678, 63130}, {11859, 67054}, {11860, 67055}, {12432, 63962}, {17604, 64704}, {18227, 63990}, {30288, 67057}, {30289, 67056}, {35613, 67050}
X(67042) = midpoint of X(i) and X(j) for these {i,j}: {12059, 67043}, {12688, 67048}
X(67042) = reflection of X(i) in X(j) for these {i,j}: {67051, 63989}
X(67042) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3062, 63988, 63984}, {5927, 12688, 9949}, {8583, 63984, 63983}, {12446, 31871, 5927}
X(67043) lies on these lines: {2, 12705}, {4, 5554}, {7, 738}, {8, 12059}, {20, 37611}, {40, 31018}, {78, 516}, {84, 10529}, {144, 67065}, {145, 515}, {149, 9799}, {329, 20070}, {377, 9856}, {497, 9961}, {938, 1479}, {946, 10586}, {1058, 11220}, {1071, 10431}, {1490, 20075}, {1519, 6890}, {1538, 6931}, {1709, 10527}, {2802, 9809}, {3359, 6953}, {3434, 12688}, {3436, 12679}, {3485, 60925}, {3522, 35262}, {3616, 63971}, {3825, 9779}, {3870, 54227}, {3871, 5658}, {3876, 35514}, {3889, 36996}, {3935, 5758}, {4190, 63992}, {5068, 11024}, {5811, 59417}, {5840, 9963}, {5942, 23528}, {6001, 12649}, {6260, 10528}, {6261, 64078}, {6361, 11499}, {6734, 7995}, {6765, 9589}, {6870, 21628}, {6872, 64150}, {6921, 17613}, {6925, 12672}, {6957, 31788}, {6974, 63266}, {7992, 26015}, {9580, 64707}, {9776, 67041}, {9778, 25440}, {9780, 67046}, {9785, 63987}, {9789, 67052}, {9791, 67053}, {9795, 67054}, {10085, 11240}, {10309, 38460}, {10446, 67044}, {10453, 67050}, {10530, 12686}, {10580, 67051}, {10596, 13369}, {10860, 41012}, {11037, 64703}, {11224, 41690}, {11522, 60896}, {11891, 67055}, {12246, 54391}, {12648, 12667}, {12701, 15726}, {18228, 63990}, {18518, 28174}, {20066, 54051}, {30305, 65134}, {34791, 41706}, {36845, 54228}, {44447, 64077}, {51118, 64163}, {54199, 64047}
X(67043) = reflection of X(i) in X(j) for these {i,j}: {20, 63986}, {144, 67065}, {145, 67047}, {3436, 12679}, {6361, 11499}, {9961, 64704}, {12059, 67042}, {12116, 12699}, {20070, 63130}, {63130, 67048}, {63984, 12053}, {63985, 63989}
X(67043) = anticomplement of X(63985)
X(67043) = X(i)-Dao conjugate of X(j) for these {i, j}: {63985, 63985}
X(67043) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {2123, 3436}, {34546, 69}
X(67043) = pole of line {7271, 63583} with respect to the dual conic of Yff parabola
X(67043) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {515, 67047, 145}, {962, 63962, 5905}, {9800, 9812, 6895}, {63985, 63989, 2}
X(67044) lies on these lines: {1, 4}, {392, 5786}, {1709, 15486}, {1746, 31435}, {1763, 20220}, {1764, 63985}, {1766, 3702}, {2050, 37548}, {2802, 13244}, {3825, 10886}, {3872, 44039}, {4673, 23512}, {5250, 13478}, {5840, 35638}, {10085, 29057}, {10434, 25440}, {10439, 12544}, {10444, 10450}, {10446, 67043}, {10470, 16454}, {10473, 64704}, {10856, 67041}, {10862, 67042}, {10882, 63983}, {10887, 67046}, {10889, 67049}, {10891, 67052}, {10892, 67053}, {11021, 67051}, {11499, 19547}, {11521, 67047}, {11679, 24633}, {11895, 67054}, {11896, 67055}, {12435, 39594}, {12547, 35649}, {12688, 17617}, {12701, 29207}, {16124, 39553}, {18229, 63990}, {19860, 64566}, {19861, 64748}, {29069, 62874}, {35631, 39549}, {42057, 43159}, {54035, 57279}
X(67044) = pole of line {522, 3717} with respect to the Conway circle
X(67044) = pole of line {65, 17617} with respect to the Feuerbach hyperbola
X(67044) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {12544, 39584, 10439}
X(67045) lies on circumconic {{A, B, C, X(30676), X(57022)}} and on these lines: {1, 6}, {69, 33864}, {78, 8679}, {141, 30742}, {193, 31080}, {326, 4557}, {511, 67033}, {674, 56179}, {908, 12586}, {1760, 4579}, {3589, 17728}, {3811, 37516}, {4149, 21362}, {5820, 21077}, {5844, 49688}, {9026, 67037}, {12329, 43216}, {21075, 64875}, {41687, 49524}
X(67045) = reflection of X(i) in X(j) for these {i,j}: {41687, 49524}
X(67046) lies on these lines: {1, 6945}, {2, 63983}, {4, 2077}, {5, 515}, {10, 1532}, {11, 63987}, {12, 3817}, {35, 13729}, {36, 6979}, {65, 21635}, {118, 5518}, {119, 946}, {153, 5563}, {226, 10958}, {355, 22837}, {381, 4421}, {390, 1479}, {404, 41698}, {442, 38204}, {495, 64703}, {496, 28236}, {498, 6957}, {516, 1329}, {517, 58657}, {519, 7681}, {535, 37821}, {546, 5840}, {993, 6834}, {1210, 2801}, {1478, 6953}, {1512, 3878}, {1538, 5836}, {1698, 6932}, {1699, 11681}, {1737, 31803}, {2476, 7989}, {3057, 17618}, {3244, 37725}, {3545, 12116}, {3560, 58404}, {3576, 6975}, {3585, 6915}, {3614, 8226}, {3634, 6907}, {3679, 67047}, {3754, 12608}, {3812, 64813}, {3820, 43174}, {3826, 64699}, {3841, 6842}, {3851, 18518}, {3854, 41858}, {4187, 4297}, {4193, 5691}, {4197, 63984}, {4301, 17757}, {5046, 44425}, {5051, 67053}, {5066, 61512}, {5084, 52769}, {5123, 9856}, {5142, 39531}, {5248, 6893}, {5251, 6960}, {5400, 21935}, {5450, 6681}, {5587, 6941}, {5660, 34772}, {5927, 17606}, {6049, 7741}, {6256, 6944}, {6260, 65998}, {6583, 58613}, {6684, 37406}, {6702, 12616}, {6734, 12059}, {6796, 6929}, {6830, 18492}, {6882, 31673}, {6894, 52850}, {6911, 45631}, {6922, 28164}, {6937, 54447}, {6939, 10198}, {6965, 10902}, {6969, 26363}, {6972, 31263}, {6973, 48482}, {6980, 61261}, {6991, 61264}, {7679, 67049}, {7680, 12571}, {7682, 21077}, {7956, 12607}, {8068, 38161}, {8088, 67054}, {8230, 67052}, {8382, 67055}, {8582, 67042}, {8715, 26333}, {8728, 67041}, {9780, 67043}, {10106, 26476}, {10172, 37438}, {10200, 12667}, {10222, 11698}, {10265, 40263}, {10479, 67050}, {10531, 25439}, {10711, 45977}, {10887, 67044}, {10942, 13464}, {11680, 37714}, {12621, 18483}, {12688, 17619}, {13463, 63644}, {13747, 64000}, {15888, 65991}, {15931, 37162}, {16371, 37001}, {17530, 38076}, {17533, 34648}, {18990, 38757}, {20117, 54288}, {21669, 64008}, {24390, 38155}, {24982, 66019}, {26066, 60911}, {26470, 50796}, {30313, 67057}, {30314, 67056}, {31246, 37022}, {31937, 64763}, {37256, 52851}, {37424, 58441}, {38052, 67065}, {39692, 45287}, {44847, 50808}, {49169, 66217}, {54318, 63966}, {57285, 59687}
X(67046) = midpoint of X(i) and X(j) for these {i,j}: {4, 25440}, {10, 63989}
X(67046) = reflection of X(i) in X(j) for these {i,j}: {3825, 5}
X(67046) = complement of X(63983)
X(67046) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {4, 25440, 56885}, {10, 51889, 63989}
X(67046) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 59572, 64076}, {5, 18242, 1125}, {5, 18480, 63963}, {5, 25466, 10171}, {5, 515, 3825}, {5, 63964, 3822}, {5450, 6959, 6681}, {5587, 6941, 25639}, {6702, 31871, 12616}, {6842, 10175, 3841}, {6959, 18516, 5450}, {9842, 10175, 12617}
X(67047) lies on circumconic {{A, B, C, X(945), X(45818)}} and on these lines: {1, 1106}, {8, 63989}, {20, 7962}, {40, 4188}, {78, 517}, {84, 38460}, {145, 515}, {516, 30318}, {518, 67065}, {938, 3340}, {946, 5187}, {1071, 1482}, {1320, 12650}, {1479, 4301}, {1490, 3885}, {1709, 22837}, {2098, 64704}, {2800, 62874}, {2802, 5531}, {3057, 64150}, {3306, 37562}, {3679, 67046}, {3825, 11522}, {3872, 12672}, {3890, 30503}, {3895, 6261}, {3984, 12245}, {4853, 12059}, {4855, 49163}, {4861, 12705}, {4917, 37700}, {5048, 64074}, {5330, 6282}, {5534, 51786}, {5720, 63142}, {5734, 11529}, {5882, 64078}, {5887, 63135}, {6001, 36846}, {6260, 12648}, {6769, 62826}, {6848, 51433}, {7991, 25440}, {7992, 38669}, {9589, 64896}, {9851, 11224}, {9946, 10698}, {9957, 10884}, {10222, 62815}, {10306, 56387}, {10394, 11526}, {10586, 13464}, {10724, 12653}, {10912, 12688}, {11249, 63144}, {11518, 67041}, {11519, 67042}, {11521, 67044}, {11523, 67048}, {11532, 67052}, {11533, 67053}, {11535, 67055}, {11899, 67054}, {12528, 12629}, {12655, 64003}, {12679, 38455}, {12703, 40257}, {14923, 63992}, {15558, 34489}, {15803, 64189}, {15829, 59417}, {16200, 62861}, {16207, 64137}, {16209, 51714}, {17624, 64897}, {18444, 37556}, {18446, 23340}, {19860, 45776}, {28194, 64079}, {30319, 67057}, {30320, 67056}, {37437, 37709}, {54156, 54391}, {61146, 62829}, {62832, 64021}
X(67047) = midpoint of X(i) and X(j) for these {i,j}: {145, 67043}, {11531, 63988}
X(67047) = reflection of X(i) in X(j) for these {i,j}: {8, 63989}, {20, 63987}, {1479, 4301}, {7991, 25440}, {63130, 63986}, {63985, 1}, {67049, 43166}
X(67047) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {145, 67043, 515}, {517, 63986, 63130}, {7971, 7982, 145}, {11531, 63988, 2802}
X(67048) lies on these lines: {1, 4}, {2, 9841}, {3, 5316}, {5, 11227}, {9, 37421}, {10, 5927}, {12, 21628}, {20, 3452}, {30, 61551}, {40, 5811}, {46, 61014}, {57, 6223}, {65, 54227}, {72, 59687}, {84, 3911}, {142, 3091}, {329, 20070}, {405, 63983}, {412, 20263}, {442, 38204}, {452, 35262}, {480, 516}, {546, 55108}, {908, 3146}, {942, 41561}, {962, 2136}, {971, 1210}, {1071, 7682}, {1125, 10863}, {1329, 15726}, {1532, 6245}, {1698, 3062}, {1709, 6684}, {1737, 9948}, {1788, 7992}, {1864, 64704}, {2478, 64706}, {2551, 12565}, {2802, 13257}, {3085, 11372}, {3086, 10864}, {3543, 34701}, {3825, 8226}, {3831, 59688}, {3832, 5249}, {3854, 27186}, {3947, 63973}, {4187, 64705}, {4199, 67053}, {4208, 10429}, {4292, 6259}, {4297, 11113}, {4298, 12678}, {4304, 64804}, {4656, 15852}, {4848, 6001}, {5046, 64707}, {5059, 27131}, {5084, 5732}, {5198, 51687}, {5219, 37434}, {5221, 41706}, {5439, 43177}, {5530, 64134}, {5584, 18250}, {5657, 7995}, {5690, 5777}, {5704, 33576}, {5728, 15841}, {5745, 6838}, {5795, 64150}, {5812, 12693}, {6244, 11499}, {6253, 21077}, {6666, 37112}, {6692, 6953}, {6700, 37022}, {6705, 6834}, {6745, 64074}, {6825, 18540}, {6837, 58463}, {6847, 63966}, {6893, 41854}, {6907, 9956}, {6908, 31423}, {6919, 10430}, {6920, 10165}, {6925, 57284}, {6926, 58808}, {6927, 52027}, {6937, 10175}, {6939, 8726}, {6944, 7171}, {6957, 10884}, {6964, 37526}, {6985, 63438}, {7308, 37108}, {7580, 12512}, {7593, 67055}, {7686, 18243}, {7957, 21060}, {7982, 66258}, {7989, 50741}, {8080, 67054}, {8232, 67049}, {8233, 67052}, {8582, 9943}, {8727, 64813}, {9579, 50700}, {9581, 9799}, {9812, 56936}, {9843, 10167}, {9844, 11019}, {9856, 31397}, {9961, 24982}, {10085, 64124}, {10157, 37424}, {10307, 38271}, {10477, 67050}, {10609, 21635}, {10857, 17559}, {11023, 60993}, {11523, 67047}, {12059, 64171}, {12246, 15803}, {12527, 64077}, {12528, 24391}, {12571, 51706}, {12651, 25568}, {12705, 64148}, {14249, 52982}, {14557, 40953}, {15811, 34048}, {16112, 26066}, {17527, 31805}, {17532, 19925}, {17578, 31053}, {17613, 59675}, {18228, 37551}, {19542, 45204}, {20420, 22792}, {21168, 63469}, {21616, 28164}, {26105, 64679}, {28150, 52860}, {30324, 67057}, {30325, 67056}, {31018, 63141}, {31019, 50689}, {31730, 44425}, {31789, 64659}, {33557, 63413}, {34789, 38665}, {36002, 64002}, {37406, 51755}, {37427, 61122}, {38123, 61264}, {38462, 39130}, {38471, 39591}, {50696, 64083}, {54928, 60634}, {60972, 63971}
X(67048) = midpoint of X(i) and X(j) for these {i,j}: {63130, 67043}
X(67048) = reflection of X(i) in X(j) for these {i,j}: {10085, 64124}, {12688, 67042}, {37022, 6700}, {63984, 67041}, {63985, 63990}
X(67048) = complement of X(63984)
X(67048) = anticomplement of X(67041)
X(67048) = X(i)-Dao conjugate of X(j) for these {i, j}: {67041, 67041}
X(67048) = pole of line {65, 17650} with respect to the Feuerbach hyperbola
X(67048) = pole of line {1901, 40133} with respect to the Kiepert hyperbola
X(67048) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63984, 67041}, {4, 1490, 950}, {4, 5658, 1}, {4, 5714, 1699}, {4, 6260, 226}, {84, 6848, 3911}, {6259, 19541, 4292}, {37411, 37822, 64004}
X(67049) lies on these lines: {1, 16133}, {7, 738}, {9, 3617}, {40, 60947}, {46, 516}, {63, 149}, {145, 60965}, {390, 515}, {946, 60925}, {954, 63271}, {962, 41572}, {971, 30318}, {1001, 35262}, {1156, 2802}, {1159, 5728}, {1697, 29007}, {1709, 51783}, {2310, 12652}, {2346, 62180}, {2951, 7677}, {3057, 16112}, {3485, 63265}, {3825, 7678}, {4318, 4907}, {4326, 8543}, {5119, 38155}, {5250, 5794}, {5274, 10860}, {5572, 64704}, {5698, 60949}, {5732, 53055}, {5759, 12847}, {5825, 59417}, {5853, 60966}, {6762, 60957}, {7671, 12560}, {7675, 63986}, {7676, 25440}, {7679, 67046}, {7982, 40269}, {8232, 67048}, {8236, 60937}, {8237, 67052}, {8238, 67053}, {8388, 67054}, {8389, 67055}, {8544, 42884}, {8732, 67041}, {9778, 62776}, {9785, 60934}, {9812, 66239}, {10394, 11526}, {10865, 67042}, {10889, 67044}, {11025, 67051}, {11038, 64703}, {12059, 34784}, {12630, 56551}, {12687, 60926}, {12688, 17620}, {12699, 62836}, {12701, 17768}, {14151, 64697}, {17668, 19861}, {18230, 63990}, {20119, 51768}, {21617, 63989}, {30379, 64696}, {30384, 60896}, {35445, 61156}, {35617, 67050}, {36973, 66252}, {36976, 51090}, {37563, 54370}, {50443, 60988}, {50865, 62839}, {52653, 60958}, {60933, 62832}, {60942, 63135}, {60994, 63144}
X(67049) = reflection of X(i) in X(j) for these {i,j}: {7, 12053}, {2951, 63983}, {8544, 42884}, {34784, 12059}, {63130, 9}, {64704, 5572}, {67047, 43166}, {67065, 11372}
X(67049) = pole of line {7271, 37800} with respect to the dual conic of Yff parabola
X(67049) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {390, 11372, 8545}, {515, 11372, 67065}, {1156, 7673, 5223}, {4326, 24644, 8543}, {10394, 43166, 11526}
X(67050) lies on these lines: {1, 1106}, {10, 17617}, {515, 10441}, {1479, 10446}, {1764, 25440}, {2802, 12435}, {3741, 63989}, {3825, 10478}, {5208, 63984}, {10439, 12544}, {10442, 35637}, {10453, 67043}, {10473, 12053}, {10476, 63986}, {10477, 67048}, {10479, 67046}, {10480, 63987}, {11679, 12059}, {12547, 39594}, {12688, 35626}, {21334, 64704}, {35612, 67041}, {35613, 67042}, {35614, 63130}, {35617, 67049}, {35620, 64703}, {35621, 54209}, {35622, 67052}, {35623, 67053}, {35625, 67054}, {35627, 67055}, {35628, 63990}, {35635, 38484}
X(67050) = pole of line {14838, 17420} with respect to the Conway circle
X(67051) lies on these lines: {1, 1106}, {2, 12059}, {7, 79}, {10, 17625}, {11, 31871}, {12, 3833}, {56, 758}, {57, 3811}, {65, 1317}, {191, 7677}, {221, 30148}, {226, 3825}, {354, 3671}, {388, 5883}, {515, 942}, {516, 50196}, {518, 63990}, {546, 58587}, {551, 12709}, {603, 49480}, {604, 1759}, {912, 58573}, {946, 15528}, {982, 4306}, {993, 34489}, {999, 5884}, {1014, 35637}, {1042, 3953}, {1056, 15016}, {1066, 24025}, {1071, 11019}, {1125, 3660}, {1210, 2801}, {1319, 3884}, {1389, 7091}, {1401, 35650}, {1407, 4347}, {1420, 3878}, {1458, 3670}, {1465, 24167}, {1467, 62858}, {2594, 26740}, {2800, 24928}, {3086, 31803}, {3293, 53531}, {3333, 45977}, {3337, 10090}, {3338, 18389}, {3339, 3873}, {3340, 3892}, {3361, 3868}, {3600, 5902}, {3635, 13601}, {3649, 13751}, {3678, 3911}, {3753, 9850}, {3754, 10106}, {3812, 51782}, {3869, 13462}, {3889, 18421}, {3898, 63208}, {3918, 5252}, {3947, 5439}, {4015, 24914}, {4084, 64106}, {4292, 5570}, {4308, 5903}, {4311, 64045}, {4314, 10167}, {4321, 30329}, {4322, 4424}, {4511, 13370}, {4757, 64721}, {4973, 37583}, {5045, 64703}, {5193, 51714}, {5265, 5692}, {5435, 5904}, {5493, 17642}, {5563, 11570}, {5708, 11499}, {5728, 15841}, {5840, 6583}, {5901, 58570}, {6001, 58576}, {6147, 58566}, {6701, 26481}, {6744, 10391}, {6836, 60924}, {7191, 34043}, {7288, 10176}, {8083, 67055}, {9940, 13405}, {9943, 12575}, {9961, 51785}, {10202, 21620}, {10222, 46681}, {10580, 67043}, {10980, 62864}, {11018, 67041}, {11020, 63984}, {11021, 67044}, {11025, 67049}, {11030, 67052}, {11031, 67053}, {11033, 67054}, {11220, 66682}, {11575, 58637}, {11680, 16120}, {12433, 26201}, {12446, 24390}, {12511, 54408}, {12563, 16193}, {12577, 50195}, {12665, 65388}, {12672, 66627}, {12688, 17626}, {12736, 45287}, {13369, 63999}, {13373, 64110}, {14986, 15071}, {15325, 20117}, {15556, 32636}, {16600, 52635}, {16842, 60909}, {18467, 21842}, {25079, 66485}, {25542, 29007}, {25639, 64115}, {30330, 67065}, {30346, 67057}, {30347, 67056}, {31794, 61292}, {34339, 66230}, {41859, 60988}, {47743, 61705}, {51118, 63995}, {51774, 58679}, {61022, 66009}, {61762, 64021}
X(67051) = midpoint of X(i) and X(j) for these {i,j}: {65, 63987}, {1071, 63989}, {3874, 25440}, {4311, 64045}, {12053, 64704}, {50196, 64132}
X(67051) = reflection of X(i) in X(j) for these {i,j}: {3825, 58565}, {64124, 58573}, {64703, 5045}, {67042, 63989}
X(67051) = complement of X(12059)
X(67051) = pole of line {14838, 17420} with respect to the incircle
X(67051) = pole of line {4298, 20323} with respect to the Feuerbach hyperbola
X(67051) = pole of line {6354, 62779} with respect to the dual conic of Yff parabola
X(67051) = pole of line {5298, 17549} with respect to the dual conic of Moses-Feuerbach circumconic
X(67051) = intersection, other than A, B, C, of circumconics {{A, B, C, X(79), X(8605)}}, {{A, B, C, X(1476), X(39697)}}
X(67051) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57, 3874, 12432}, {65, 5083, 3881}, {65, 63987, 2802}, {354, 12711, 21625}, {912, 58573, 64124}, {942, 12005, 62852}, {942, 12675, 6738}, {942, 18990, 31870}, {942, 63994, 4298}, {4308, 18419, 5903}, {5439, 8581, 3947}, {10122, 18398, 20116}, {12005, 40249, 12675}, {50196, 64132, 516}
X(67052) lies on these lines: {515, 7596}, {2802, 13262}, {3825, 8228}, {7133, 67057}, {8224, 25440}, {8225, 63983}, {8230, 67046}, {8231, 63985}, {8233, 67048}, {8234, 63986}, {8237, 67049}, {8239, 63987}, {8243, 12053}, {8244, 63988}, {8246, 67053}, {8248, 67054}, {9789, 67043}, {10858, 67041}, {10867, 67042}, {10885, 63984}, {10891, 67044}, {11030, 67051}, {11042, 64703}, {11211, 12566}, {11532, 67047}, {11687, 63130}, {11996, 67055}, {12610, 40690}, {12688, 17627}, {17610, 64704}, {18234, 63990}, {35622, 67050}
X(67053) lies on these lines: {3, 4011}, {21, 3062}, {515, 9840}, {846, 63985}, {855, 4297}, {1284, 12053}, {1479, 30362}, {2802, 13265}, {3724, 50419}, {3825, 8229}, {4199, 67048}, {4220, 25440}, {4425, 63989}, {5051, 67046}, {8235, 63986}, {8238, 67049}, {8240, 63987}, {8246, 67052}, {8250, 67054}, {8425, 67055}, {8731, 67041}, {9791, 67043}, {10892, 67044}, {11031, 67051}, {11043, 64703}, {11203, 12567}, {11533, 67047}, {11688, 63130}, {12059, 44694}, {12688, 17628}, {13738, 24728}, {17611, 64704}, {18235, 63990}, {30360, 67057}, {30361, 67056}, {35623, 67050}, {46877, 53402}
X(67054) lies on these lines: {174, 12053}, {258, 63985}, {515, 8092}, {1479, 30420}, {2802, 8104}, {3825, 8086}, {7028, 63990}, {7588, 63983}, {8076, 25440}, {8080, 67048}, {8082, 63986}, {8088, 67046}, {8090, 63988}, {8125, 63130}, {8129, 13073}, {8242, 63987}, {8248, 67052}, {8250, 67053}, {8351, 64703}, {8388, 67049}, {8734, 67041}, {9795, 67043}, {10501, 64704}, {11033, 67051}, {11217, 12569}, {11859, 67042}, {11889, 63984}, {11895, 67044}, {11899, 67047}, {12688, 17630}, {21623, 63989}, {30418, 67057}, {30419, 67056}, {35625, 67050}
X(67054) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {174, 12053, 67055}
X(67055) lies on these lines: {173, 63985}, {174, 12053}, {236, 63990}, {515, 8351}, {1479, 30408}, {2802, 13267}, {3825, 8379}, {7587, 63983}, {7589, 25440}, {7590, 63986}, {7593, 67048}, {8083, 67051}, {8092, 64703}, {8126, 63130}, {8130, 13074}, {8382, 67046}, {8389, 67049}, {8423, 63988}, {8425, 67053}, {8729, 67041}, {10502, 64704}, {11195, 12570}, {11535, 67047}, {11860, 67042}, {11890, 63984}, {11891, 67043}, {11896, 67044}, {11924, 63987}, {11996, 67052}, {12688, 17631}, {21624, 63989}, {30406, 67057}, {30407, 67056}, {35627, 67050}
X(67055) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {174, 12053, 67054}
X(67056) lies on these lines: {7, 738}, {515, 52805}, {1479, 30426}, {3825, 30307}, {6204, 63985}, {25440, 30297}, {30277, 67041}, {30289, 67042}, {30314, 67046}, {30320, 67047}, {30325, 67048}, {30334, 63987}, {30342, 64703}, {30347, 67051}, {30355, 63988}, {30361, 67053}, {30376, 64704}, {30381, 63989}, {30386, 63983}, {30401, 63986}, {30407, 67055}, {30413, 63990}, {30419, 67054}
X(67056) = reflection of X(i) in X(j) for these {i,j}: {67057, 12053}
X(67057) lies on these lines: {7, 738}, {515, 52808}, {1479, 30425}, {3825, 30306}, {6203, 63985}, {7133, 67052}, {25440, 30296}, {30276, 67041}, {30288, 67042}, {30313, 67046}, {30319, 67047}, {30324, 67048}, {30333, 63987}, {30341, 64703}, {30346, 67051}, {30354, 63988}, {30360, 67053}, {30375, 64704}, {30380, 63989}, {30385, 63983}, {30400, 63986}, {30406, 67055}, {30412, 63990}, {30418, 67054}
X(67057) = reflection of X(i) in X(j) for these {i,j}: {67056, 12053}
X(67058) lies on these lines: {55, 53580}, {100, 1293}, {474, 65482}, {514, 22091}, {522, 659}, {1021, 1635}, {1282, 20375}, {2832, 25440}, {4763, 53308}, {4830, 53257}, {5687, 28521}, {9001, 9508}
X(67058) = perspector of circumconic {{A, B, C, X(5382), X(17743)}}
X(67058) = pole of line {1376, 4011} with respect to the circumcircle
X(67058) = pole of line {4879, 62837} with respect to the Kiepert parabola
X(67058) = pole of line {17350, 25268} with respect to the Steiner circumellipse
X(67058) = pole of line {17353, 25097} with respect to the Steiner inellipse
X(67058) = pole of line {57, 3835} with respect to the Yff parabola
X(67059) lies on these lines: {1, 20905}, {2, 23529}, {7, 28124}, {8, 1738}, {9, 522}, {10, 67061}, {63, 21084}, {75, 28043}, {78, 740}, {192, 28058}, {200, 17151}, {239, 65953}, {312, 67040}, {480, 536}, {497, 62543}, {936, 20321}, {1086, 30620}, {1698, 25584}, {1721, 30807}, {2340, 3875}, {2398, 26651}, {2968, 29857}, {3059, 4361}, {3950, 6745}, {4000, 4012}, {4078, 5552}, {4081, 17279}, {4336, 27384}, {4357, 28118}, {4452, 28057}, {4847, 24779}, {4851, 61035}, {4907, 65957}, {5942, 59688}, {6180, 59573}, {7081, 26274}, {7360, 23688}, {9312, 41355}, {9441, 45738}, {10436, 28125}, {11679, 67064}, {17284, 63594}, {17348, 42014}, {17594, 25255}, {21442, 63131}, {52346, 54418}, {62398, 63598}
X(67059) = complement of X(67063)
X(67059) = perspector of circumconic {{A, B, C, X(14942), X(28999)}}
X(67059) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1037, 9309}, {7131, 9315}, {9439, 56359}
X(67059) = X(i)-Dao conjugate of X(j) for these {i, j}: {1376, 1}, {4000, 65952}, {59619, 32023}
X(67059) = X(i)-Ceva conjugate of X(j) for these {i, j}: {75, 3729}, {53647, 48398}
X(67059) = pole of line {10025, 48398} with respect to the Steiner circumellipse
X(67059) = pole of line {3729, 25019} with respect to the dual conic of Yff parabola
X(67059) = intersection, other than A, B, C, of circumconics {{A, B, C, X(522), X(3729)}}, {{A, B, C, X(657), X(4319)}}, {{A, B, C, X(1024), X(21450)}}, {{A, B, C, X(28132), X(62543)}}, {{A, B, C, X(56145), X(64438)}}
X(67059) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 67060, 56179}
X(67060) lies on these lines: {8, 37771}, {37, 67039}, {69, 67035}, {75, 28043}, {100, 13397}, {190, 522}, {341, 67061}, {344, 67063}, {664, 54987}, {668, 53643}, {1332, 2398}, {1376, 23772}, {1633, 53358}, {1897, 3699}, {2397, 4578}, {3888, 9001}, {4561, 31624}, {14594, 43290}, {14829, 67064}, {14942, 18151}, {18743, 67040}, {20937, 32926}, {21867, 41582}, {32922, 49698}, {40576, 55133}
X(67060) = isotomic conjugate of X(26721)
X(67060) = trilinear pole of line {169, 3434}
X(67060) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 67014}, {31, 26721}, {513, 3433}, {649, 44178}, {667, 13577}, {1919, 57773}, {3063, 64240}, {3669, 40141}, {3675, 35185}, {3937, 26706}, {20980, 67030}
X(67060) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 26721}, {9, 67014}, {55, 663}, {5375, 44178}, {5511, 244}, {6631, 13577}, {9296, 57773}, {10001, 64240}, {21185, 23761}, {39026, 3433}
X(67060) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4572, 190}
X(67060) = X(i)-cross conjugate of X(j) for these {i, j}: {21185, 3434}
X(67060) = pole of line {244, 5521} with respect to the polar circle
X(67060) = pole of line {1332, 30626} with respect to the Steiner circumellipse
X(67060) = pole of line {3912, 5905} with respect to the Yff parabola
X(67060) = pole of line {2911, 5839} with respect to the Hutson-Moses hyperbola
X(67060) = pole of line {23829, 26721} with respect to the Wallace hyperbola
X(67060) = pole of line {1088, 28753} with respect to the dual conic of Feuerbach hyperbola
X(67060) = pole of line {100, 190} with respect to the dual conic of Privalov conic
X(67060) = pole of line {3732, 61160} with respect to the dual conic of Hofstadter ellipse
X(67060) = pole of line {3006, 57750} with respect to the dual conic of Moses-Feuerbach circumconic
X(67060) = intersection, other than A, B, C, of circumconics {{A, B, C, X(190), X(20927)}}, {{A, B, C, X(522), X(55133)}}, {{A, B, C, X(666), X(6335)}}, {{A, B, C, X(1897), X(13397)}}, {{A, B, C, X(3939), X(56179)}}, {{A, B, C, X(28420), X(42719)}}, {{A, B, C, X(36802), X(54987)}}
X(67060) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2398, 65198, 1332}, {56179, 67059, 75}
X(67061) lies on these lines: {8, 1785}, {10, 67059}, {40, 522}, {341, 67060}, {519, 1479}, {2901, 6765}, {3681, 62757}, {3811, 17584}, {3870, 45131}, {4385, 8747}, {5687, 64930}, {17151, 57810}, {35448, 64933}, {46937, 67040}
X(67062) lies on these lines: {20, 200}, {35, 10884}, {78, 6001}, {165, 997}, {1864, 64074}, {2057, 6223}, {3811, 30304}, {3870, 6909}, {3872, 14647}, {4666, 6966}, {6769, 36845}, {6838, 20103}, {6890, 11019}, {6972, 31249}, {6974, 19860}, {8544, 66759}, {12565, 50808}, {16371, 63986}, {17613, 18446}, {19861, 37560}, {37541, 66226}
X(67063) lies on these lines: {2, 23529}, {7, 522}, {8, 1736}, {145, 3685}, {190, 30619}, {344, 67060}, {346, 56179}, {740, 12649}, {1897, 26228}, {2310, 5942}, {2398, 26685}, {3729, 66225}, {3870, 3950}, {3912, 67035}, {3920, 31325}, {4012, 26669}, {4078, 10528}, {4953, 6180}, {17151, 26015}, {17314, 30628}, {20082, 64741}, {21084, 31018}, {25252, 36845}, {26001, 63594}, {28124, 61012}, {39351, 63600}, {60926, 64858}
X(67063) = anticomplement of X(67059)
X(67063) = pole of line {9436, 11068} with respect to the Steiner circumellipse
X(67064) lies on these lines: {2, 67035}, {8, 1739}, {9, 67040}, {38, 67066}, {46, 78}, {57, 56179}, {200, 1054}, {312, 522}, {1040, 65190}, {1261, 62814}, {3869, 67036}, {4090, 6745}, {4511, 37610}, {5205, 62811}, {11679, 67059}, {14829, 67060}, {15829, 67037}, {30615, 53525}, {38000, 67039}
X(67065) lies on these lines: {1, 66213}, {7, 63989}, {9, 37421}, {21, 3062}, {63, 64130}, {84, 5265}, {100, 1750}, {144, 67043}, {390, 515}, {516, 3436}, {518, 67047}, {958, 12688}, {962, 60965}, {971, 24928}, {1156, 56273}, {1158, 60947}, {1479, 63973}, {1709, 3305}, {2951, 25440}, {3306, 60896}, {3895, 5691}, {5731, 60964}, {6260, 60925}, {7672, 54135}, {7675, 66020}, {7971, 40269}, {10384, 63987}, {10396, 54228}, {12053, 60937}, {12679, 17768}, {12705, 29007}, {17620, 18239}, {30330, 67051}, {32911, 53087}, {38052, 67046}, {41572, 63962}, {54227, 62836}, {60910, 64704}, {63266, 64156}, {63998, 64078}
X(67065) = midpoint of X(i) and X(j) for these {i,j}: {144, 67043}, {3062, 63988}
X(67065) = reflection of X(i) in X(j) for these {i,j}: {7, 63989}, {1479, 63973}, {2951, 25440}, {63985, 9}, {67049, 11372}
X(67065) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {515, 11372, 67049}
X(67066) lies on these lines: {1, 4723}, {2, 38191}, {10, 56522}, {11, 4952}, {38, 67064}, {42, 56253}, {86, 612}, {200, 17151}, {522, 3158}, {614, 3699}, {726, 64135}, {1997, 49989}, {3244, 63090}, {3632, 5741}, {3681, 3794}, {3722, 30568}, {3744, 59597}, {3749, 3952}, {3757, 67039}, {3811, 17584}, {4090, 62834}, {4767, 62806}, {4901, 29846}, {5121, 30614}, {5205, 62850}, {5573, 9458}, {6327, 62668}, {8580, 32923}, {8669, 63135}, {9041, 17728}, {10389, 64178}, {17155, 46917}, {20937, 32926}, {29857, 30615}, {32914, 62218}, {32915, 66469}, {33144, 49991}, {35258, 42054}, {39594, 62236}, {41313, 63287}, {49454, 51284}, {49536, 63078}, {50078, 56177}, {50915, 51093}, {53661, 59692}, {59517, 62856}, {62845, 63108}
See David Nguyen, Antonio Roberto Martínez Fernández and Peter Moses, euclid 7768.
X(67067) lies on these lines: {2, 36987}, {3, 6688}, {4, 51}, {5, 3819}, {6, 3531}, {20, 11451}, {23, 66737}, {25, 11202}, {30, 5892}, {52, 3843}, {54, 26863}, {74, 14487}, {113, 43129}, {130, 133}, {140, 12046}, {143, 3861}, {154, 578}, {182, 18534}, {186, 44106}, {265, 58536}, {373, 376}, {378, 34417}, {381, 511}, {382, 9729}, {399, 55715}, {428, 16657}, {546, 1154}, {547, 15082}, {548, 18874}, {549, 63632}, {568, 14269}, {576, 18451}, {631, 27355}, {970, 37234}, {1216, 3850}, {1350, 58764}, {1495, 15033}, {1498, 3527}, {1503, 51745}, {1593, 11204}, {1595, 15873}, {1596, 2393}, {1597, 10606}, {1656, 13348}, {1657, 17704}, {1843, 6623}, {1906, 45089}, {1907, 20299}, {2390, 7686}, {2777, 12099}, {2781, 7687}, {2979, 3091}, {3060, 3839}, {3066, 21312}, {3070, 62247}, {3071, 62248}, {3090, 54041}, {3146, 20791}, {3357, 11403}, {3543, 5640}, {3545, 3917}, {3574, 11817}, {3627, 5462}, {3628, 54044}, {3830, 9730}, {3832, 5562}, {3845, 13754}, {3851, 10625}, {3853, 10095}, {3854, 11444}, {3855, 15606}, {3856, 11591}, {3857, 6101}, {3858, 10263}, {3859, 14128}, {5020, 37480}, {5054, 10219}, {5056, 44299}, {5059, 15028}, {5064, 23325}, {5066, 10170}, {5068, 64050}, {5071, 5650}, {5072, 54047}, {5076, 10575}, {5092, 12083}, {5097, 18445}, {5198, 6759}, {5644, 37514}, {5663, 13451}, {5876, 46852}, {5889, 50689}, {5899, 37513}, {5946, 14915}, {5972, 44233}, {6033, 58538}, {6102, 46849}, {6146, 40240}, {6243, 61970}, {6288, 18555}, {6321, 58537}, {6689, 64472}, {6756, 13403}, {7529, 13346}, {7545, 51393}, {7576, 61744}, {7706, 44276}, {7998, 61936}, {7999, 61945}, {8681, 20423}, {9019, 50959}, {9306, 44413}, {9786, 35450}, {9822, 18537}, {10151, 47328}, {10182, 62978}, {10282, 10594}, {10539, 63665}, {10540, 55039}, {10574, 50688}, {10627, 12811}, {10653, 66476}, {10654, 66475}, {10738, 58543}, {10739, 58542}, {10741, 58540}, {10742, 58539}, {10747, 58541}, {11002, 14831}, {11189, 65128}, {11241, 35764}, {11242, 35765}, {11245, 16654}, {11412, 40247}, {11432, 15811}, {11456, 15004}, {11459, 21969}, {11465, 17538}, {11479, 46728}, {11563, 44325}, {11574, 15760}, {11576, 13433}, {11592, 61894}, {11649, 47332}, {11745, 13488}, {11746, 17855}, {11799, 44479}, {11800, 46686}, {12006, 14641}, {12045, 15694}, {12082, 43650}, {12102, 13630}, {12103, 32205}, {12109, 40263}, {12111, 61982}, {12112, 14483}, {12162, 16625}, {12237, 22596}, {12238, 22625}, {12241, 13419}, {12242, 16252}, {12295, 41671}, {12675, 58574}, {12699, 23841}, {12897, 31830}, {13202, 58498}, {13321, 61993}, {13339, 37949}, {13340, 19709}, {13366, 14157}, {13367, 34484}, {13376, 31726}, {13446, 18403}, {13473, 16227}, {13490, 17702}, {13491, 62006}, {13595, 51394}, {13596, 21663}, {13743, 15489}, {14531, 15058}, {14635, 44924}, {14853, 23048}, {14865, 38848}, {14913, 21850}, {15003, 58531}, {15024, 33703}, {15026, 62036}, {15032, 22233}, {15038, 15516}, {15043, 17578}, {15045, 15682}, {15060, 23046}, {15067, 38071}, {15072, 16226}, {15087, 22330}, {15465, 20417}, {15559, 32767}, {15684, 40280}, {16261, 61980}, {16616, 42450}, {16656, 18914}, {16881, 32137}, {16981, 61972}, {17853, 46430}, {18323, 58481}, {18386, 65654}, {18396, 62976}, {18405, 41580}, {18418, 41714}, {18436, 61975}, {18439, 61991}, {18440, 58555}, {18474, 48889}, {18475, 32237}, {18525, 58535}, {18531, 48901}, {18536, 48910}, {20190, 37924}, {21308, 37477}, {21649, 54037}, {21841, 58434}, {22334, 61137}, {22352, 37925}, {22791, 56885}, {23292, 61606}, {23324, 34146}, {23329, 61506}, {23515, 44321}, {24474, 44865}, {26883, 64026}, {28186, 64663}, {29181, 40670}, {31671, 58534}, {31672, 58472}, {31673, 58469}, {31723, 48895}, {31860, 55572}, {31861, 64095}, {32142, 61940}, {32223, 52262}, {32340, 58489}, {32392, 63728}, {32411, 66604}, {33879, 61912}, {33884, 61944}, {34093, 62501}, {34783, 61990}, {34785, 37122}, {34986, 39522}, {35018, 63414}, {35501, 37487}, {35502, 64027}, {36969, 61698}, {36970, 61697}, {37349, 50435}, {37481, 62008}, {37484, 61953}, {37515, 39568}, {37517, 58891}, {37649, 47093}, {37944, 43584}, {37971, 58447}, {37984, 47446}, {39242, 51519}, {39809, 58503}, {39838, 58502}, {40284, 49138}, {42147, 61641}, {42148, 61642}, {43273, 64692}, {43726, 45088}, {43831, 44803}, {43844, 55038}, {44084, 66725}, {44673, 64474}, {44889, 52546}, {45956, 62001}, {46267, 47455}, {50387, 62203}, {50664, 56918}, {50690, 52093}, {50811, 64661}, {51118, 58487}, {51491, 58492}, {52836, 58508}, {54006, 55653}, {54132, 61667}, {55286, 62156}, {57584, 58551}, {58504, 64186}, {58646, 63976}, {61136, 62011}, {61743, 62961}, {61895, 62184}, {61954, 62188}, {62004, 64030}, {62028, 66606}, {62030, 66753}, {63318, 63453}, {63659, 63714}, {63672, 66754}, {64024, 64851}
X(67067) = midpoint of X(i) and X(j) for these {i,j}: {4, 51}, {52, 18435}, {185, 11455}, {382, 14855}, {428, 16657}, {568, 16194}, {2979, 45186}, {3060, 15030}, {3543, 64100}, {3819, 13598}, {3830, 9730}, {5562, 62187}, {5890, 32062}, {5946, 15687}, {7576, 61744}, {11245, 16654}, {11459, 21969}, {13451, 14893}, {13473, 16227}, {14831, 15305}, {16226, 50687}, {18405, 41580}, {21649, 54037}, {21849, 46847}, {29959, 54131}, {54132, 61667}
X(67067) = reflection of X(i) in X(j) for these {i,j}: {3, 6688}, {51, 10110}, {381, 13570}, {389, 51}, {2979, 11793}, {3819, 5}, {5892, 13364}, {9730, 58470}, {10170, 5066}, {12675, 58574}, {14855, 9729}, {15644, 3819}, {16836, 5943}, {18435, 44870}, {45979, 63737}, {46847, 3845}, {54044, 3628}, {55166, 373}, {63976, 58646}, {66758, 9730}
X(67067) = complement of X(36987)
X(67067) = crosspoint of X(4) and X(14483)
X(67067) = crosssum of X(3) and X(549)
X(67067) = pole of line {53, 15048} with respect to the Kiepert circumhyperbola
X(67067) = pole of line {4, 14483} with respect to the Jerabek circumhyperbola
X(67067) = pole of line {6750, 15559} with respect to the ABCHN
X(67067) = pole of line {1092, 9706} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(67067) = pole of line {1885, 13419} with respect to the Feuerbach circumhyperbola of the orthic triangle
X(67067) = pole of line {3964, 7771} with respect to the Kiepert circumhyperbola of the anticomplementary triangle
X(67067) = pole of line {31174, 52585} with respect to the Steiner inellipse
X(67067) = pole of line {647, 53255} with respect to the Orthic inconic
X(67067) = pole of line {7386, 22052} with respect to the Pythagorean conic (see K1231)
X(67067) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 14845, 6688}, {4, 389, 13474}, {4, 3567, 11381}, {4, 5890, 32062}, {4, 9781, 185}, {4, 10110, 389}, {4, 14249, 8887}, {4, 52661, 42400}, {5, 13598, 15644}, {51, 32062, 5890}, {52, 3843, 44870}, {185, 9781, 65093}, {185, 65093, 389}, {546, 5446, 5907}, {546, 14449, 45958}, {568, 14269, 16194}, {1498, 52518, 3527}, {1596, 5480, 18388}, {1597, 17810, 11438}, {1906, 45089, 61749}, {3060, 3839, 15030}, {3091, 45186, 11793}, {3543, 5640, 64100}, {3567, 11381, 13382}, {3567, 13382, 389}, {3627, 5462, 46850}, {3830, 58470, 66758}, {3832, 62187, 66756}, {3853, 10095, 40647}, {5198, 10982, 6759}, {5876, 61976, 46852}, {5892, 13364, 5943}, {6102, 61988, 46849}, {6759, 10982, 37505}, {10110, 65093, 9781}, {10594, 11424, 10282}, {11002, 15305, 14831}, {11002, 61985, 15305}, {12006, 62026, 14641}, {12112, 14483, 44107}, {15033, 52294, 1495}, {39522, 46261, 34986}, {62187, 66756, 5562}
PART 1: | Introduction and Centers X(1) - X(1000) | PART 2: | Centers X(1001) - X(3000) | PART 3: | Centers X(3001) - X(5000) |
PART 4: | Centers X(5001) - X(7000) | PART 5: | Centers X(7001) - X(10000) | PART 6: | Centers X(10001) - X(12000) |
PART 7: | Centers X(12001) - X(14000) | PART 8: | Centers X(14001) - X(16000) | PART 9: | Centers X(16001) - X(18000) |
PART 10: | Centers X(18001) - X(20000) | PART 11: | Centers X(20001) - X(22000) | PART 12: | Centers X(22001) - X(24000) |
PART 13: | Centers X(24001) - X(26000) | PART 14: | Centers X(26001) - X(28000) | PART 15: | Centers X(28001) - X(30000) |
PART 16: | Centers X(30001) - X(32000) | PART 17: | Centers X(32001) - X(34000) | PART 18: | Centers X(34001) - X(36000) |
PART 19: | Centers X(36001) - X(38000) | PART 20: | Centers X(38001) - X(40000) | PART 21: | Centers X(40001) - X(42000) |
PART 22: | Centers X(42001) - X(44000) | PART 23: | Centers X(44001) - X(46000) | PART 24: | Centers X(46001) - X(48000) |
PART 25: | Centers X(48001) - X(50000) | PART 26: | Centers X(50001) - X(52000) | PART 27: | Centers X(52001) - X(54000) |
PART 28: | Centers X(54001) - X(56000) | PART 29: | Centers X(56001) - X(58000) | PART 30: | Centers X(58001) - X(60000) |
PART 31: | Centers X(60001) - X(62000) | PART 32: | Centers X(62001) - X(64000) | PART 33: | Centers X(64001) - X(66000) |
PART 34: | Centers X(66001) - X(68000) | PART 35: | Centers X(68001) - X(70000) | PART 36: | Centers X(70001) - X(72000) |