PART 1: | Introduction and Centers X(1) - X(1000) | PART 2: | Centers X(1001) - X(3000) | PART 3: | Centers X(3001) - X(5000) |
PART 4: | Centers X(5001) - X(7000) | PART 5: | Centers X(7001) - X(10000) | PART 6: | Centers X(10001) - X(12000) |
PART 7: | Centers X(12001) - X(14000) | PART 8: | Centers X(14001) - X(16000) | PART 9: | Centers X(16001) - X(18000) |
PART 10: | Centers X(18001) - X(20000) | PART 11: | Centers X(20001) - X(22000) | PART 12: | Centers X(22001) - X(24000) |
PART 13: | Centers X(24001) - X(26000) | PART 14: | Centers X(26001) - X(28000) | PART 15: | Centers X(28001) - X(30000) |
PART 16: | Centers X(30001) - X(32000) | PART 17: | Centers X(32001) - X(34000) | PART 18: | Centers X(34001) - X(36000) |
PART 19: | Centers X(36001) - X(38000) | PART 20: | Centers X(38001) - X(40000) | PART 21: | Centers X(40001) - X(42000) |
PART 22: | Centers X(42001) - X(44000) | PART 23: | Centers X(44001) - X(46000) | PART 24: | Centers X(46001) - X(48000) |
PART 25: | Centers X(48001) - X(50000) | PART 26: | Centers X(50001) - X(52000) | PART 27: | Centers X(52001) - X(54000) |
PART 28: | Centers X(54001) - X(56000) | PART 29: | Centers X(56001) - X(58000) | PART 30: | Centers X(58001) - X(60000) |
PART 31: | Centers X(60001) - X(62000) | PART 32: | Centers X(62001) - X(64000) | PART 33: | Centers X(64001) - X(66000) |
PART 34: | Centers X(66001) - X(68000) | PART 35: | Centers X(68001) - X(70000) | PART 36: | Centers X(70001) - X(72000) |
X(28001) lies on these lines:
X(28002) lies on these lines:
X(28003) lies on these lines:
X(28004) lies on these lines:
X(28005) lies on these lines:
X(28006) lies on these lines:
X(28007) lies on these lines:
X(28008) lies on these lines:
X(28009) lies on these lines:
X(28010) lies on these lines:
Collineation mappings involving Gemini triangle 76: X(28011)-X(28042)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 76, as in centers X(28011)-X(28042). Then
m(X) = bc(a^4-b^2c^2)x - ac(a^2+bc)(c^2+ab)y - ab(a^2+bc)(b^2+ac)z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 15, 2018)
X(28011) lies on these lines: {1, 2}, {3, 12442}, {4, 23675}, {6, 17609}, {31, 3333}, {33, 1883}, {34, 1319}, {38, 31435}, {40, 244}, {56, 1279}, {57, 3915}, {63, 3976}, {65, 1616}, {100, 11512}, {106, 13397}, {169, 16784}, {223, 4322}, {341, 25531}, {354, 1191}, {404, 3749}, {497, 23536}, {595, 3338}, {756, 3646}, {902, 15803}, {942, 16483}, {960, 17597}, {968, 19528}, {982, 5250}, {988, 1621}, {990, 11522}, {1058, 3914}, {1062, 1387}, {1086, 12701}, {1104, 3304}, {1420, 4320}, {1421, 21147}, {1448, 13462}, {1457, 28012}, {1458, 28015}, {1468, 7290}, {1475, 16970}, {1697, 5573}, {2082, 3290}, {2136, 4695}, {2292, 3677}, {3052, 32636}, {3057, 16486}, {3100, 18220}, {3120, 9614}, {3242, 25917}, {3303, 3752}, {3306, 5255}, {3315, 3869}, {3434, 24178}, {3476, 19372}, {3485, 4327}, {3522, 12652}, {3576, 32577}, {3680, 17460}, {3742, 5710}, {3744, 25524}, {3748, 4255}, {3751, 3889}, {3756, 24914}, {3813, 24789}, {3876, 16496}, {3895, 24440}, {3913, 16610}, {3953, 12514}, {4319, 12053}, {4329, 24162}, {4642, 31393}, {4652, 8616}, {5045, 16466}, {5119, 24046}, {5322, 11365}, {5903, 16489}, {6261, 32486}, {7190, 17084}, {8227, 33127}, {9310, 16780}, {9575, 21808}, {10571, 28034}, {10624, 24171}, {11415, 24231}, {12575, 24177}, {13384, 15839}, {16469, 30343}, {17721, 25466}, {17724, 25681}, {23708, 24160}, {24159, 30384}, {28013, 28019}
X(28012) lies on these lines:
X(28013) lies on these lines:
X(28014) lies on these lines: {2, 6}, {56, 1279}, {142, 16502}, {269, 28039}, {1086, 4329}, {1149, 7225}, {1458, 28037}, {3290, 7289}, {4000, 16781}, {4859, 16784}, {5021, 18164}, {5228, 21769}, {6173, 16488}, {6610, 28038}
X(28015) lies on these lines:
X(28016) lies on these lines:
X(28017) lies on these lines: {1, 7225}, {2, 7}, {6, 1122}, {19, 1086}, {40, 4310}, {46, 24231}, {56, 1279}, {65, 3242}, {77, 1429}, {108, 1041}, {141, 30617}, {169, 4859}, {208, 1876}, {269, 604}, {608, 1407}, {614, 1473}, {1404, 1419}, {1420, 4318}, {1467, 28029}, {1565, 20270}, {1763, 24177}, {1766, 4862}, {1883, 1892}, {2082, 4000}, {2097, 2262}, {2170, 18725}, {2171, 4328}, {3210, 8897}, {3333, 4307}, {3500, 7177}, {3554, 3942}, {3665, 4657}, {4319, 21450}, {4626, 6169}, {5228, 24471}, {7146, 7190}, {7175, 16786}, {7185, 17086}, {11716, 13462}, {17742, 21255}, {21370, 23681}, {28012, 28018}
X(28018) lies on these lines:
X(28019) lies on these lines:
X(28020) lies on these lines:
X(28021) lies on these lines:
X(28022) lies on these lines: {1, 15882}, {2, 37}, {56, 1279}, {988, 1001}, {1086, 18589}, {1427, 28039}, {1444, 16726}, {3663, 20227}, {3946, 16583}, {4361, 16605}, {7225, 28082}, {7289, 16781}, {21233, 24172}, {21769, 24471}, {27180, 33146}, {28078, 30617}
X(28023) lies on these lines:
X(28024) lies on these lines:
X(28025) lies on these lines:
X(28026) lies on these lines:
X(28027) lies on these lines: {1, 2}, {3, 23675}, {12, 1279}, {31, 21620}, {55, 23536}, {100, 24178}, {225, 4186}, {226, 3915}, {244, 6684}, {377, 3749}, {595, 13407}, {748, 21075}, {902, 4292}, {946, 33127}, {960, 17724}, {1072, 10267}, {1074, 11508}, {1104, 15888}, {1191, 17718}, {1319, 28036}, {1616, 11375}, {1621, 13161}, {1626, 28037}, {1738, 3871}, {1834, 3748}, {2006, 28040}, {2078, 28029}, {3052, 10404}, {3120, 10624}, {3295, 3914}, {3303, 3772}, {3710, 32920}, {3744, 25466}, {3746, 23537}, {3913, 24789}, {3983, 17337}, {4331, 28015}, {4696, 24542}, {5119, 24159}, {5249, 5255}, {5250, 33144}, {5443, 16489}, {5717, 17469}, {5903, 26728}, {10165, 32577}, {11374, 16483}, {11376, 16486}, {17597, 26066}, {17783, 25681}, {22345, 28353}, {24160, 30384}
X(28028) lies on these lines:
X(28029) lies on these lines: {2, 3}, {8, 24320}, {56, 28016}, {65, 1633}, {105, 23536}, {242, 23661}, {388, 1486}, {390, 8192}, {497, 22654}, {938, 1473}, {950, 3220}, {1284, 28015}, {1420, 4320}, {1423, 3915}, {1467, 28017}, {1697, 2292}, {1829, 3100}, {1834, 5324}, {2078, 28027}, {2204, 10313}, {2828, 13265}, {3295, 13097}, {3303, 24328}, {3486, 3556}, {3562, 26892}, {3871, 20760}, {4293, 11365}, {4294, 9798}, {4296, 11363}, {4302, 8185}, {7354, 20988}, {9538, 11396}, {12672, 19904}, {15338, 20989}, {25916, 31435}, {28018, 28040}
X(28030) lies on these lines:
X(28031) lies on these lines:
X(28032) lies on these lines:
X(28033) lies on these lines:
X(28034) lies on these lines:
X(28035) lies on these lines:
X(28036) lies on these lines:
X(28037) lies on these lines:
X(28038) lies on these lines:
X(28039) lies on these lines: {1, 28037}, {2, 7}, {40, 33144}, {223, 1429}, {269, 28014}, {940, 1122}, {988, 21321}, {1211, 30617}, {1420, 4320}, {1426, 4186}, {1427, 28022}, {1763, 23681}, {3333, 26098}, {3338, 28036}, {3676, 28041}, {3752, 24328}, {3772, 7289}, {3782, 10319}, {4350, 7147}, {5256, 7225}, {5272, 24320}, {7713, 24159}, {8897, 30699}, {10900, 21362}, {24611, 33146}, {26128, 31435}, {28016, 28028}, {28018, 28034}, {28023, 28031}
X(28040) lies on these lines:
X(28041) lies on these lines:
X(28042) lies on these lines:
Collineation mappings involving Gemini triangle 77: X(28043)-X(28073)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 77, as in centers X(28043)-X(28073). Then
m(X) = (b+c-a)^2(a^2+b^2+c^2-2bc)x - 2ac(b+c-a)(a+b-c)y - 2ab(b+c-a)(a-b+c)z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 16, 2018)
X(28043) lies on these lines: {1, 2}, {6, 3059}, {9, 294}, {19, 12329}, {31, 16572}, {33, 210}, {37, 480}, {55, 1212}, {63, 9441}, {100, 24635}, {141, 30620}, {142, 8271}, {144, 1721}, {165, 7291}, {241, 1376}, {516, 5813}, {518, 4327}, {594, 2331}, {756, 23667}, {948, 2263}, {968, 1260}, {990, 5223}, {1096, 7046}, {1254, 1706}, {1829, 7957}, {1962, 25088}, {2191, 6067}, {2293, 3174}, {2324, 4336}, {2345, 4012}, {3100, 5686}, {3198, 5584}, {3212, 9446}, {3242, 21450}, {3553, 4878}, {3711, 6603}, {4051, 19589}, {4081, 17281}, {4326, 5838}, {5744, 18461}, {6180, 15587}, {7221, 24393}, {8192, 8273}, {8545, 24341}, {14942, 30854}, {17158, 32926}, {21218, 25242}, {25878, 30621}, {28050, 28055}, {28054, 28056}
X(28044) lies on these lines: {2, 3}, {9, 1827}, {33, 210}, {55, 1855}, {281, 1863}, {318, 28058}, {1001, 1893}, {1824, 3294}, {2355, 4512}, {7046, 28057}, {28047, 28051}
X(28045) lies on these lines:
X(28046) lies on these lines:
X(28047) lies on these lines:
X(28048) lies on these lines:
X(28049) lies on these lines:
X(28050) lies on these lines:
X(28051) lies on these lines:
X(28052) lies on these lines:
X(28053) lies on these lines:
X(28054) lies on these lines:
X(28055) lies on these lines:
X(28056) lies on these lines:
X(28057) lies on these lines:
X(28058) lies on these lines:
X(28059) lies on these lines:
X(28060) lies on these lines:
X(28061) lies on these lines:
X(28062) lies on these lines:
X(28063) lies on these lines:
X(28064) lies on these lines:
X(28065) lies on these lines:
X(28066) lies on these lines:
X(28067) lies on these lines:
X(28068) lies on these lines:
X(28069) lies on these lines:
X(28070) lies on these lines:
X(28071) lies on these lines:
X(28071) = isogonal conjugate of X(34855)
X(28072) lies on these lines:
X(28073) lies on these lines:
Collineation mappings involving Gemini triangle 78: X(28074)-X(28117)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 78, as in centers X(28074)-X(28117). Then
m(X) = (a+b+c)(a^2+b^2+c^2-2bc)x - (a-b+c)(a^2-b^2-c^2)y + (a+b-c)(a^2-b^2-c^2)z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 17, 2018)
X(28074) lies on these lines: {1, 2}, {4, 244}, {7, 28113}, {11, 1854}, {38, 5084}, {56, 3756}, {57, 28104}, {208, 1877}, {279, 17213}, {377, 17063}, {497, 24443}, {756, 17559}, {944, 32577}, {982, 2478}, {1058, 4642}, {1086, 10896}, {1104, 17728}, {1279, 24914}, {1329, 17597}, {1393, 4331}, {1463, 28078}, {1470, 3145}, {1479, 24046}, {1788, 3915}, {2170, 20273}, {2292, 26105}, {2475, 9335}, {3090, 33127}, {3120, 10591}, {3315, 11681}, {3434, 24174}, {3436, 3976}, {3445, 10944}, {3812, 17721}, {4193, 33144}, {4310, 6919}, {4329, 24173}, {5154, 33148}, {5573, 9581}, {5587, 23675}, {6552, 21041}, {6931, 17719}, {6933, 33130}, {7736, 21808}, {7741, 24159}, {9599, 20271}, {10269, 19548}, {13741, 33163}, {13742, 33119}, {18838, 28075}, {19582, 26139}, {21921, 31405}, {28079, 28097}, {28086, 28098}, {28090, 28091}, {28101, 28106}
X(28075) lies on these lines: {2, 3}, {11, 3556}, {1457, 28082}, {1486, 26481}, {18838, 28074}, {28078, 28088}
X(28076) lies on these lines: {1, 1851}, {2, 3}, {8, 242}, {19, 1334}, {33, 976}, {34, 1458}, {41, 2201}, {92, 7718}, {198, 6284}, {208, 1877}, {228, 4294}, {278, 11363}, {281, 5090}, {387, 5320}, {950, 1863}, {1068, 5146}, {1426, 1878}, {1547, 5895}, {1827, 1829}, {1869, 5338}, {1875, 28109}, {1876, 28079}, {7103, 28108}
X(28077) lies on these lines: {2, 3}, {11, 23843}, {56, 3756}, {100, 19582}, {499, 23850}, {976, 3057}, {1319, 28082}, {1324, 1479}, {1465, 11363}, {1626, 5433}, {1745, 26884}, {2933, 6284}, {3075, 26892}, {3086, 20999}, {3556, 11502}, {3915, 28389}, {4011, 25440}, {5119, 5293}, {28088, 28111}
X(28078) lies on these lines: {2, 6}, {7, 28090}, {1086, 21279}, {1439, 28108}, {1463, 28074}, {1876, 28106}, {2275, 26130}, {5037, 24884}, {16502, 16608}, {16780, 18634}, {16946, 17058}, {28022, 30617}, {28075, 28088}, {28112, 28113}
X(28079) lies on these lines: {2, 7}, {3, 4310}, {6, 7195}, {239, 31598}, {279, 604}, {284, 18600}, {347, 1429}, {608, 1119}, {942, 4307}, {976, 4327}, {1122, 4644}, {1407, 7197}, {1467, 2263}, {1788, 3823}, {1876, 28076}, {2264, 4000}, {2345, 30617}, {3672, 7225}, {4344, 11518}, {6904, 24349}, {15803, 24231}, {28074, 28097}, {28080, 28089}, {28091, 28098}
X(28080) lies on these lines:
X(28081) lies on these lines:
X(28082) lies on these lines: {1, 2}, {3, 244}, {5, 33127}, {6, 21808}, {21, 982}, {31, 942}, {34, 1458}, {35, 24046}, {38, 405}, {41, 3290}, {46, 902}, {55, 17054}, {56, 1626}, {57, 4332}, {58, 18398}, {65, 1279}, {72, 748}, {81, 16478}, {86, 977}, {100, 24174}, {106, 21842}, {226, 28086}, {238, 3868}, {255, 5570}, {278, 28102}, {335, 16916}, {348, 17213}, {354, 1104}, {404, 17063}, {452, 4310}, {515, 23675}, {595, 5902}, {601, 10202}, {602, 24474}, {750, 5266}, {756, 11108}, {940, 16356}, {950, 23536}, {958, 17597}, {964, 4812}, {984, 5047}, {986, 1621}, {993, 3953}, {1001, 2292}, {1010, 19805}, {1015, 22070}, {1042, 28104}, {1046, 17127}, {1062, 22057}, {1086, 6284}, {1106, 3660}, {1215, 5192}, {1254, 1617}, {1319, 28077}, {1329, 17724}, {1330, 33069}, {1385, 19548}, {1388, 1411}, {1420, 7273}, {1421, 10571}, {1442, 17090}, {1457, 28075}, {1459, 21132}, {1467, 2263}, {1475, 16968}, {1479, 3120}, {1497, 13750}, {1616, 2099}, {1724, 3874}, {1739, 8715}, {1914, 20271}, {2098, 16486}, {2170, 7124}, {2218, 26934}, {2241, 3125}, {2268, 20227}, {2280, 16583}, {2476, 33130}, {2478, 33144}, {2647, 3600}, {2650, 15934}, {2975, 3315}, {3052, 5221}, {3271, 23154}, {3295, 4642}, {3333, 16485}, {3337, 4257}, {3465, 10591}, {3601, 5573}, {3670, 4414}, {3677, 5436}, {3691, 16973}, {3701, 32920}, {3722, 5687}, {3726, 4426}, {3744, 3812}, {3748, 4646}, {3756, 5433}, {3836, 5300}, {3871, 17715}, {3873, 5247}, {3876, 17123}, {3913, 4695}, {3987, 25439}, {4000, 26101}, {4124, 20277}, {4188, 9335}, {4193, 17719}, {4252, 4860}, {4300, 18443}, {4304, 24171}, {4314, 24177}, {4322, 21147}, {4336, 18343}, {4339, 9776}, {4385, 32923}, {4392, 16865}, {4530, 22063}, {4652, 18193}, {4694, 8666}, {4855, 11512}, {5015, 25957}, {5044, 17125}, {5046, 33148}, {5051, 26128}, {5057, 26729}, {5178, 26724}, {5208, 27660}, {5264, 5883}, {5276, 16787}, {5310, 24163}, {5398, 6583}, {5711, 17469}, {5722, 21935}, {5814, 33081}, {5904, 20703}, {6147, 24725}, {6682, 16342}, {7225, 28022}, {7226, 16859}, {7283, 17155}, {7290, 11518}, {7741, 24160}, {10912, 17460}, {11009, 16489}, {11319, 17140}, {11396, 21328}, {11680, 24161}, {12047, 26728}, {12609, 33104}, {13740, 32771}, {13741, 32931}, {13742, 33163}, {15171, 33094}, {16061, 24629}, {16062, 33123}, {16502, 17451}, {16600, 16783}, {16969, 20707}, {16974, 24512}, {17394, 20955}, {17697, 24349}, {17721, 28628}, {18650, 24162}, {23404, 23844}, {24549, 26234}, {24851, 33146}
X(28083) lies on these lines: {2, 11}, {33, 20276}, {56, 3756}, {976, 17460}, {1388, 1411}, {1466, 28104}, {1647, 20999}, {3145, 28096}, {5293, 9957}, {8686, 28092}
X(28084) lies on these lines: {2, 3}
X(28085) lies on these lines: {2, 3}
X(28086) lies on these lines: {2, 31}, {226, 28082}, {5046, 33144}, {28074, 28098}
X(28087) lies on these lines: {2, 37}, {7, 28091}, {56, 1874}, {244, 1985}, {1086, 21239}, {1333, 31905}, {1418, 28110}, {1463, 28074}, {3663, 25369}, {16609, 21769}, {16969, 21231}, {17053, 17861}, {18161, 21138}, {21208, 24220}, {21246, 24172}, {28088, 28096}, {28099, 28106}
X(28088) lies on these lines: {2, 39}, {28075, 28078}, {28077, 28111}, {28087, 28096}
X(28089) lies on these lines: {2, 6}, {28079, 28080}
X(28090) lies on these lines: {2, 37}, {7, 28078}, {9, 24172}, {198, 26273}, {244, 30943}, {573, 21208}, {1119, 28100}, {3212, 21769}, {3673, 20227}, {5317, 31905}, {21138, 21785}, {28074, 28091}, {28079, 28080}, {28081, 28112}
X(28091) lies on these lines: {2, 6}, {7, 28087}, {57, 28100}, {150, 17053}, {1874, 28102}, {4000, 4466}, {4446, 20539}, {5277, 25461}, {17205, 32431}, {28023, 30617}, {28074, 28090}, {28079, 28098}
X(28092) lies on these lines: {1, 2}, {244, 3146}, {3756, 5265}, {5274, 17054}, {8165, 17597}, {8686, 28083}, {11851, 26139}
X(28093) lies on these lines: {1, 2}, {7, 28078}, {244, 6999}, {14256, 28108}, {28081, 28113}
X(28094) lies on these lines:
X(28095) lies on these lines:
X(28096) lies on these lines: {1, 2}, {5, 244}, {11, 24443}, {12, 3756}, {38, 4187}, {57, 28098}, {85, 17213}, {355, 32577}, {496, 4642}, {756, 17527}, {846, 26127}, {982, 4193}, {1086, 7173}, {1468, 17728}, {1656, 33127}, {1739, 24387}, {2275, 21044}, {2292, 3816}, {2476, 17063}, {3120, 7741}, {3145, 28083}, {3242, 31246}, {3670, 3825}, {3777, 21132}, {3782, 3847}, {3813, 4695}, {3814, 3953}, {3815, 21808}, {3915, 24914}, {3976, 11681}, {5141, 9335}, {5179, 23649}, {5439, 33105}, {5708, 24725}, {5791, 17125}, {6931, 33144}, {7004, 26476}, {7504, 33130}, {9669, 33094}, {10175, 23675}, {10948, 24028}, {11680, 24174}, {13741, 33119}, {17278, 31240}, {17449, 21077}, {19548, 32612}, {20247, 24240}, {21921, 31466}, {28087, 28088}
X(28097) lies on these lines:
X(28098) lies on these lines:
X(28099) lies on these lines:
X(28100) lies on these lines:
X(28101) lies on these lines:
X(28102) lies on these lines:
X(28103) lies on these lines:
X(28104) lies on these lines:
X(28105) lies on these lines: {2, 3}
X(28106) lies on these lines:
X(28107) lies on these lines:
X(28108) lies on these lines:
X(28109) lies on these lines:
X(28110) lies on these lines:
X(28111) lies on these lines:
X(28112) lies on these lines:
X(28113) lies on these lines:
X(28114) lies on these lines:
X(28115) lies on these lines:
X(28116) lies on these lines:
X(28117) lies on these lines:
Collineation mappings involving Gemini triangle 79: X(28118)-X(28142)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 79, as in centers X(28118)-X(28142). Then
m(X) = (a-b-c)^2(a^2+b^2+c^2-2bc)x + (b+c-a)(a+b-c)(a^2-b^2-c^2)y + (b+c-a)(a-b+c)(a^2-b^2-c^2) : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 17, 2018)
X(28118) lies on these lines: {1, 2}, {9, 23529}, {45, 4081}, {55, 1146}, {210, 28122}, {281, 1253}, {480, 594}, {756, 7046}, {966, 4012}, {1334, 1857}, {1742, 5942}, {3059, 17275}, {3208, 28141}, {3739, 30620}, {3974, 28130}, {4319, 20262}, {4512, 31896}, {4517, 28119}, {4814, 23615}, {21867, 26063}, {27538, 28142}, {28123, 28134}
X(28119) lies on these lines: {2, 3}, {55, 6506}, {4517, 28118}, {28122, 28129}
X(28120) lies on these lines: {2, 3}, {9, 1863}, {33, 28125}, {55, 5514}, {1334, 1857}, {1855, 28133}, {7046, 28131}, {17112, 28123}
X(28121) lies on these lines: {2, 3}, {33, 1951}, {41, 1864}, {55, 1146}, {212, 1212}, {7082, 11429}, {15503, 26890}
X(28122) lies on these lines: {2, 6}, {8, 28130}, {210, 28118}, {497, 1146}, {28052, 30620}, {28119, 28129}
X(28123) lies on these lines: {2, 7}, {210, 28124}, {390, 3119}, {497, 1146}, {1699, 8074}, {4679, 6554}, {5218, 13609}, {5423, 28131}, {14330, 23615}, {17112, 28120}, {28118, 28134}
X(28124) lies on these lines: {1, 2}, {6, 4012}, {55, 4534}, {144, 21084}, {210, 28123}, {329, 28849}, {480, 17314}, {1783, 3195}, {3059, 5839}, {4000, 30620}, {4336, 27508}, {4566, 9533}, {5749, 23529}, {17784, 28850}, {20905, 30619}
X(28125) lies on these lines: {1, 2}, {9, 4336}, {33, 28120}, {48, 21867}, {55, 2170}, {100, 28869}, {210, 4390}, {212, 1212}, {219, 21039}, {220, 3715}, {294, 2344}, {480, 16777}, {651, 24341}, {756, 4574}, {1100, 3059}, {1260, 1962}, {1953, 12329}, {2278, 21889}, {2886, 5723}, {3686, 4149}, {3925, 20277}, {3989, 20588}, {4081, 17369}, {4657, 30620}, {5527, 9778}, {5744, 18473}, {5750, 23529}, {6067, 17366}, {7484, 21328}, {9440, 24554}, {9441, 24635}, {11200, 17784}, {13576, 24268}, {20310, 28050}
X(28126) lies on these lines:
X(28127) lies on these lines:
X(28128) lies on these lines:
X(28129) lies on these lines:
X(28130) lies on these lines:
X(28131) lies on these lines:
X(28132) lies on these lines:
X(28133) lies on these lines:
X(28134) lies on these lines:
X(28135) lies on these lines:
X(28136) lies on these lines:
X(28137) lies on these lines:
X(28138) lies on these lines:
X(28139) lies on these lines:
X(28140) lies on these lines:
X(28141) lies on these lines:
X(28142) lies on these lines:
X(28143) lies on these lines:
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 28647.
X(28144) lies on these lines: {2,3}, {523,23332}, {2452,23291}, {9530,24930}, {11550,16319}
X(28144) = complement of X(37926)
Points on circumcircle and line at infinity: X(28145)-X(28236)
Suppose that X = x : y : z is a point on the line at infinity. All the lines that meet in X are parallel, so that X can be regarded as a direction in the plane of the reference triangle ABC. Let X' be the isogonal conjugate of X, so that X' lies on the circumcircle. Let X'' be the circumcircle-antipode of X', and let X''' be its isogonal conjugate, on the line at infinity. As a direction, X''' is perpendicular to X. In this section, X is given by the form (b - c)(h a + k(b + c)) : : , where h and k are constants. (Clark Kimberling, November 17, 2018)
In the table below, Columns 1 and 2 show h and k.
Column 3. (b - c)(h a + k(b + c)) : : , on infinity line, referenced below as x : y : z
Column 4. (isogonal conjugate of x : y : z) = a^2/x + b^2/y + c^2/z : : on circumcircle, referenced below as u : v : w
Column 5. (antipode of u : v : w) = (a^2+b^2-c^2)(a^2-b^2+c^2)u + 2a^2(a^2-b^2-c^2)v + 2a^2(a^2-b^2-c^2)w : : on circumcircle, referenced below as u1 : v1 : w1
Column 6. (isogonal conjugate of u1 : v1 : w1) = a^2/u1 + b^2/v1 + c^2/w1
For each row, let X be the point in Column 3 and X' the point in Column 6. Let U be any point in the finite plane of ABC. Then the lines UX and UX' are perpendicular.
In the table below, the points in Column 3 are here given names of the form Point Pollux(h,k).
h | k | Column 3 | Column 4 | Column 5 | Column 6 |
---|---|---|---|---|---|
1 | 1 | 514 | 101 | 103 | 516 |
1 | 2 | 4802 | 8652 | 28145 | 28146 |
1 | 3 | 28147 | 28148 | 28149 | 28150 |
1 | 4 | 28151 | 28152 | 28153 | 28154 |
1 | 5 | 28155 | 28156 | 28157 | 28158 |
1 | -1 | 522 | 109 | 102 | 515 |
1 | -2 | 4777 | 4588 | 28159 | 28160 |
1 | -3 | 28161 | 28162 | 28163 | 28164 |
1 | -4 | 28165 | 28166 | 28167 | 28168 |
1 | -5 | 28169 | 28170 | 28171 | 28172 |
2 | 1 | 4977 | 8701 | 28173 | 28174 |
2 | 3 | 28175 | 28176 | 28177 | 28178 |
2 | 5 | 28179 | 28180 | 28181 | 28182 |
2 | -1 | 900 | 901 | 102 | 515 |
2 | -3 | 28183 | 38184 | 28185 | 28186 |
2 | -5 | 28187 | 28188 | 28189 | 28190 |
3 | 1 | 4778 | 8694 | 28193 | 28194 |
3 | 2 | 28195 | 28196 | 28197 | 28198 |
3 | 4 | 28199 | 28200 | 28201 | 28202 |
3 | -1 | 3667 | 1293 | 106 | 519 |
3 | -2 | 4926 | 8697 | 28203 | 28204 |
3 | -4 | 28205 | 28206 | 28207 | 28208 |
4 | 1 | 28209 | 28210 | 28211 | 28212 |
4 | 3 | 28213 | 28214 | 28215 | 28216 |
4 | -1 | 28217 | 28218 | 28219 | 5844 |
4 | - | 28221 | 28222 | 28223 | 28224 |
5 | 1 | 28225 | 28226 | 28227 | 28228 |
3 | 3 | 28229 | 28230 | 28231 | 28232 |
5 | -1 | 6006 | 6014 | 28233 | 28234 |
3 | -3 | 4962 | 8699 | 28235 | 28236 |
X(28145) lies on the circumcircle and these lines:
X(28145) = isogonal conjugate of X(28146)
X(28145) = circumcircle-antipode of X(8652)
X(28145) = Λ(X(40), X(382))
X(28146) lies on these lines: {1, 1657}, {3, 1699}, {4, 2355}, {5, 10164}, {10, 3627}, {11, 5122}, {20, 1385}, {30, 511}, {36, 7743}, {40, 382}, {46, 12953}, {56, 4333}, {57, 9668}, {79, 4330}, {80, 5183}, {140, 10171}, {165, 381}, {355, 3146}, {376, 5886}, {392, 17579}, {546, 6684}, {548, 1125}, {549, 3817}, {550, 946}, {551, 15686}, {910, 5134}, {942, 1770}, {944, 5059}, {962, 3529}, {999, 9580}, {1155, 3583}, {1319, 4316}, {1479, 17728}, {1482, 9589}, {1538, 6905}, {1697, 9655}, {1698, 3843}, {1829, 18560}, {1836, 4302}, {1902, 6240}, {2077, 15017}, {2646, 4324}, {2951, 18443}, {3057, 10483}, {3058, 5049}, {3090, 10248}, {3097, 22728}, {3295, 9579}, {3338, 9670}, {3474, 5722}, {3475, 4294}, {3524, 9779}, {3526, 16192}, {3534, 3576}, {3543, 5657}, {3587, 11372}, {3616, 17538}, {3628, 12571}, {3634, 3850}, {3648, 5178}, {3654, 15682}, {3655, 15683}, {3656, 5731}, {3679, 15684}, {3746, 16118}, {3753, 11114}, {3824, 5248}, {3828, 14893}, {3830, 5587}, {3845, 10175}, {3853, 19925}, {4292, 5045}, {4297, 15178}, {4298, 15172}, {4299, 12701}, {4309, 10404}, {4312, 15934}, {4314, 6147}, {4325, 20323}, {4347, 8144}, {4512, 17528}, {5010, 17605}, {5054, 7988}, {5057, 5440}, {5066, 10172}, {5073, 5691}, {5076, 18492}, {5119, 12943}, {5126, 15326}, {5266, 24851}, {5493, 5690}, {5537, 18524}, {5550, 21735}, {5658, 5812}, {5659, 16113}, {5694, 12688}, {5818, 17578}, {5885, 9943}, {5899, 9590}, {5901, 12103}, {5918, 10202}, {6244, 18491}, {6407, 13888}, {6408, 13942}, {6583, 13369}, {6840, 10225}, {6851, 10525}, {6881, 7965}, {6883, 11495}, {6909, 23961}, {6985, 26285}, {6996, 29607}, {7354, 9957}, {7489, 7688}, {7686, 13145}, {7964, 18406}, {7987, 15696}, {7991, 18525}, {7994, 18528}, {8703, 10165}, {8976, 9582}, {9574, 15484}, {9616, 13665}, {9669, 15803}, {9904, 12902}, {9911, 12085}, {10246, 15681}, {10247, 15685}, {10283, 19710}, {10386, 21620}, {10624, 18990}, {10721, 12778}, {10724, 12515}, {10738, 11219}, {10902, 16117}, {10980, 18530}, {11500, 22792}, {11531, 18526}, {11541, 12245}, {11699, 12121}, {12047, 15338}, {12108, 19878}, {12261, 16111}, {12611, 24466}, {13199, 16128}, {13605, 14677}, {13911, 22644}, {13973, 22615}, {15689, 25055}, {15712, 19862}, {17573, 25522}, {17606, 18514}, {21578, 25405}
X(28146) = isogonal conjugate of X(28145)
X(28147) lies on these lines: {30, 511}, {693, 4086}, {1635, 4458}, {2517, 4404}, {3239, 4841}, {3251, 5592}, {3676, 4608}, {3737, 4449}, {3762, 7650}, {3835, 4824}, {4036, 4823}, {4041, 23800}, {4088, 21297}, {4163, 20294}, {4391, 4815}, {4397, 4801}, {4462, 4985}, {4468, 14779}, {4521, 4893}, {4818, 21104}, {4928, 23770}, {7661, 21102}, {14413, 21180}, {14837, 23752}
X(28147) = isogonal conjugate of X(28148)
X(28147) = crossdifference of every pair of points on line X(6)X(5217)
X(28148) lies on the circumcircle and these lines:
X(28148) = isogonal conjugate of X(28147)
X(28148) = circumcircle-antipode of X(28149)
X(28148) = trilinear pole of line X(6)X(5217)
X(28148) = Ψ(X(6), X(5217))
X(28149) lies on the circumcircle and these lines:
X(28149) = isogonal conjugate of X(28150)
X(28149) = circumcircle-antipode of X(28148)
X(28149) = Λ(X(4), X(165))
X(28150) lies on these lines: {1, 3529}, {3, 3817}, {4, 165}, {5, 12512}, {10, 382}, {20, 946}, {30, 511}, {40, 3146}, {140, 12571}, {226, 4302}, {354, 4292}, {355, 5073}, {376, 1699}, {381, 10164}, {484, 1776}, {546, 3634}, {548, 9955}, {549, 10171}, {550, 1125}, {551, 15681}, {944, 9589}, {950, 1770}, {962, 3623}, {1210, 12953}, {1385, 15704}, {1479, 4333}, {1657, 4297}, {1737, 15228}, {1836, 4304}, {2071, 9625}, {3090, 16192}, {3474, 3586}, {3488, 4312}, {3520, 9591}, {3522, 8227}, {3523, 10248}, {3524, 7988}, {3530, 19878}, {3534, 5886}, {3543, 5587}, {3560, 12511}, {3579, 3627}, {3583, 3911}, {3656, 15685}, {3740, 12572}, {3828, 15687}, {3830, 26446}, {3845, 11231}, {3848, 12436}, {3853, 9956}, {4293, 9580}, {4294, 9579}, {4298, 5049}, {4299, 12053}, {4301, 10247}, {4311, 12701}, {4324, 12047}, {4330, 13407}, {4668, 5691}, {4816, 7991}, {5225, 15803}, {5542, 18541}, {5603, 11001}, {5657, 15682}, {5717, 17592}, {5731, 15683}, {5758, 16127}, {5763, 18243}, {5790, 15684}, {5881, 20052}, {5919, 7354}, {5927, 11826}, {6253, 18908}, {6705, 6851}, {6744, 24470}, {6840, 24042}, {6869, 12608}, {6912, 7688}, {6913, 11495}, {6999, 17266}, {7987, 17538}, {8703, 11230}, {9616, 23249}, {9626, 12087}, {9668, 11019}, {9779, 10304}, {10106, 10483}, {12103, 13624}, {12575, 18990}, {12577, 15172}, {13411, 15338}, {13605, 20127}, {13893, 23253}, {13912, 23251}, {13947, 23263}, {13975, 23261}, {15688, 19883}, {17578, 18492}, {21164, 26333}
X(28150) = isogonal conjugate of X(28149)
X(28151) lies on these lines: {30, 511}, {650, 23758}, {693, 21606}, {2529, 4765}, {4024, 24078}, {4379, 4948}, {4411, 21433}, {4776, 4824}, {4828, 20906}, {7653, 21196}
X(28151) = isogonal conjugate of X(28152)
X(28151) = crossdifference of every pair of points on line X(6)X(5010)
X(28152) lies on the circumcircle and these lines:
X(28152) = isogonal conjugate of X(28151)
X(28152) = circumcircle-antipode of X(28153)
X(28152) = trilinear pole of line X(6)X(5010)
X(28152) = Ψ(X(6), X(5010))
X(28153) lies on the circumcircle and these lines:
X(28153) = isogonal conjugate of X(28154)
X(28153) = circumcircle-antipode of X(28152)
X(28154) lies on these lines: {1, 17800}, {3, 7988}, {4, 11231}, {8, 11541}, {20, 5886}, {30, 511}, {40, 5073}, {165, 3830}, {376, 9779}, {382, 3579}, {546, 10172}, {548, 18483}, {550, 9955}, {946, 15704}, {1125, 12103}, {1385, 1657}, {1698, 5076}, {1699, 3534}, {3146, 5657}, {3528, 10248}, {3529, 5731}, {3530, 12571}, {3543, 26446}, {3576, 15681}, {3583, 5122}, {3627, 9956}, {3634, 3861}, {3654, 15640}, {3817, 8703}, {3845, 10164}, {3851, 16192}, {3853, 6684}, {4297, 10283}, {4302, 17718}, {4316, 5126}, {4333, 12953}, {5045, 6284}, {5059, 18481}, {5603, 15683}, {6985, 26086}, {7743, 15326}, {8227, 15696}, {9589, 11278}, {9625, 18859}, {9778, 15682}, {9812, 11001}, {9957, 10483}, {10171, 12100}, {10175, 15687}, {10246, 15685}, {10431, 18407}
X(28154) = isogonal conjugate of X(28153)
X(28155) lies on these lines: {30, 511}, {693, 4404}, {3239, 4988}, {4025, 4608}, {4086, 4823}, {4397, 4978}, {4791, 4815}, {4841, 4944}, {14779, 25259}
X(28155) = isogonal conjugate of X(28156)
X(28156) lies on the circumcircle and these lines:
X(28156) = isogonal conjugate of X(28155)
X(28156) = circumcircle-antipode of X(28157)
X(28157) lies on the circumcircle and these lines:
X(28157) = isogonal conjugate of X(28158)
X(28157) = circumcircle-antipode of X(28156)
X(28157) = Λ(X(20), X(1125))
X(28158) lies on these lines: {1, 5059}, {3, 10171}, {4, 3634}, {10, 3146}, {20, 1125}, {30, 511}, {40, 4691}, {165, 3543}, {376, 3817}, {382, 19925}, {550, 11230}, {551, 9812}, {946, 1657}, {950, 11246}, {962, 3635}, {1210, 4333}, {1698, 17578}, {1770, 6738}, {3244, 9589}, {3475, 4314}, {3522, 19862}, {3529, 3636}, {3534, 10165}, {3576, 11001}, {3624, 10248}, {3625, 20070}, {3626, 5493}, {3627, 6684}, {3830, 10175}, {3832, 16192}, {3833, 10178}, {3845, 10172}, {3854, 19872}, {4084, 9961}, {4292, 6744}, {4298, 6284}, {4301, 7967}, {4302, 13405}, {4315, 9580}, {4324, 13411}, {4701, 7991}, {4745, 15640}, {4746, 6361}, {5073, 5790}, {5587, 15682}, {5883, 5918}, {5886, 15681}, {6838, 20104}, {6890, 20107}, {7354, 12575}, {7464, 9625}, {7988, 10304}, {8227, 17538}, {9582, 23253}, {9591, 12086}, {9779, 19883}, {9955, 12103}, {10483, 10624}, {10724, 11219}, {11231, 15687}, {12565, 30147}, {12577, 15171}, {12699, 17800}, {12953, 17728}, {13912, 22644}, {13975, 22615}, {15686, 17502}, {15704, 22793}
X(28158) = isogonal conjugate of X(28157)
X(28159) lies on the circumcircle and these lines:
X(28159) = isogonal conjugate of X(28160)
X(28159) = circumcircle-antipode of X(4588)
X(28159) = Λ(X(10), X(550))
X(28160) lies on these lines: {1, 382}, {2, 17502}, {3, 1698}, {4, 1385}, {5, 4297}, {8, 3529}, {10, 550}, {11, 5126}, {20, 355}, {30, 511}, {40, 1657}, {65, 10483}, {80, 1155}, {140, 10172}, {165, 3534}, {214, 5087}, {376, 26446}, {381, 3576}, {392, 11114}, {495, 4304}, {496, 4311}, {546, 1125}, {548, 6684}, {549, 10175}, {551, 15687}, {908, 10609}, {942, 7354}, {944, 3146}, {946, 3627}, {950, 5045}, {962, 11278}, {999, 3586}, {1056, 8236}, {1159, 4312}, {1319, 3583}, {1420, 9669}, {1478, 17718}, {1479, 24928}, {1482, 5073}, {1483, 4301}, {1512, 12619}, {1532, 18857}, {1539, 11720}, {1656, 7987}, {1699, 3830}, {1737, 5122}, {1768, 12747}, {1770, 10950}, {1829, 6240}, {1837, 4299}, {1902, 18560}, {2077, 18524}, {2646, 3585}, {3109, 18653}, {3245, 9897}, {3295, 9613}, {3428, 18519}, {3488, 11038}, {3522, 5818}, {3526, 7989}, {3530, 3634}, {3543, 3655}, {3601, 9654}, {3612, 10895}, {3624, 3851}, {3653, 3839}, {3654, 9778}, {3656, 7967}, {3679, 15681}, {3753, 17579}, {3817, 3845}, {3834, 24261}, {3843, 8227}, {3844, 14810}, {3853, 5901}, {3855, 5550}, {3861, 12571}, {3911, 12019}, {3916, 5086}, {3935, 9963}, {4188, 17619}, {4293, 5722}, {4298, 12433}, {4302, 5252}, {4305, 5229}, {4816, 5881}, {4857, 20323}, {5044, 17647}, {5046, 17614}, {5049, 5434}, {5057, 6224}, {5059, 6361}, {5066, 10171}, {5076, 18493}, {5080, 5440}, {5134, 6603}, {5183, 15228}, {5196, 6740}, {5204, 10826}, {5217, 10827}, {5225, 11373}, {5270, 5441}, {5537, 12331}, {5542, 15935}, {5560, 15079}, {5660, 10742}, {5690, 15704}, {5694, 14110}, {5709, 10864}, {5770, 5787}, {5806, 13373}, {5817, 6987}, {5882, 22791}, {5885, 7686}, {5899, 9625}, {6261, 22792}, {6265, 10728}, {6282, 18528}, {6284, 9957}, {6449, 13893}, {6450, 13947}, {6583, 12675}, {6738, 24470}, {6745, 9945}, {6796, 26086}, {6827, 18516}, {6847, 26487}, {6848, 26492}, {6850, 18517}, {6851, 10526}, {6905, 23961}, {6923, 18407}, {6985, 12114}, {6996, 17266}, {6999, 29590}, {7280, 17606}, {7489, 15931}, {7497, 15942}, {7580, 22758}, {7728, 11699}, {7982, 18526}, {7991, 12645}, {8148, 9589}, {8582, 17563}, {8703, 10164}, {8976, 9615}, {9583, 13665}, {9592, 15484}, {9798, 12085}, {9833, 12779}, {9940, 20420}, {9943, 13145}, {10039, 15338}, {10106, 15171}, {10113, 11709}, {10157, 28459}, {10247, 15684}, {10269, 19541}, {10299, 19877}, {10310, 18518}, {10431, 12115}, {10543, 13407}, {10620, 12407}, {10724, 12737}, {10902, 13743}, {11012, 26321}, {11015, 20060}, {11227, 28452}, {11500, 26285}, {11529, 18541}, {11710, 22515}, {11711, 22505}, {11715, 22938}, {11722, 19160}, {12083, 15177}, {12103, 12512}, {12121, 12368}, {12261, 12295}, {12262, 18381}, {12265, 19163}, {12573, 15008}, {12680, 24474}, {12690, 26015}, {12743, 18839}, {13211, 20127}, {13902, 23253}, {13959, 23263}, {14269, 25055}, {15688, 19875}, {15700, 19876}, {17605, 18513}, {18514, 21842}, {22835, 24042}
X(28160) = isogonal conjugate of X(28159)
X(28161) lies on these lines: {1, 17418}, {30, 511}, {693, 17894}, {1022, 1219}, {1577, 4397}, {1635, 4765}, {1734, 4017}, {2517, 4768}, {3239, 4024}, {3762, 4811}, {3835, 4804}, {4025, 17161}, {4041, 21189}, {4086, 4791}, {4391, 4404}, {4449, 21173}, {4500, 4928}, {4516, 24224}, {4560, 5214}, {4818, 23770}, {4820, 4841}, {4913, 7662}, {6129, 14838}, {7317, 23838}, {7649, 17734}, {7658, 21186}, {21201, 23757}
X(28161) = isogonal conjugate of X(28162)
X(28161) = crossdifference of every pair of points on line X(6)X(5204)
X(28162) lies on the circumcircle and these lines:
X(28162) = isogonal conjugate of X(28161)
X(28162) = circumcircle-antipode of X(28163)
X(28162) = trilinear pole of line X(6)X(5204)
X(28162) = Ψ(X(6), X(5204))
X(28163) lies on the circumcircle and these lines:
X(28163) = isogonal conjugate of X(28164)
X(28163) = circumcircle-antipode of X(28162)
X(28163) = Λ(X(10), X(20))
X(28164) lies on these lines: {1, 3146}, {3, 3634}, {4, 1125}, {5, 17502}, {8, 5059}, {10, 20}, {30, 511}, {40, 3529}, {145, 9589}, {226, 12943}, {354, 950}, {355, 1657}, {376, 3828}, {381, 10165}, {382, 946}, {388, 4314}, {411, 5267}, {497, 4315}, {546, 13624}, {548, 9956}, {549, 10172}, {550, 6684}, {551, 1699}, {631, 18492}, {910, 5199}, {944, 3635}, {958, 12511}, {962, 3244}, {993, 7580}, {997, 1750}, {1131, 13888}, {1132, 13942}, {1210, 4299}, {1323, 4872}, {1385, 3627}, {1420, 5225}, {1478, 4304}, {1479, 4311}, {1490, 22836}, {1698, 3522}, {1737, 4316}, {1742, 30116}, {2071, 9590}, {2951, 9623}, {3008, 6999}, {3091, 7987}, {3241, 16191}, {3474, 5727}, {3476, 4342}, {3486, 3671}, {3488, 5542}, {3520, 9626}, {3523, 7989}, {3534, 26446}, {3579, 15704}, {3583, 21578}, {3585, 6895}, {3586, 4293}, {3600, 21625}, {3601, 3947}, {3616, 17578}, {3622, 10248}, {3624, 3832}, {3625, 7991}, {3632, 20070}, {3654, 15685}, {3655, 15684}, {3679, 9778}, {3681, 6743}, {3740, 18250}, {3751, 14927}, {3753, 5918}, {3754, 9943}, {3822, 8727}, {3830, 5886}, {3833, 11227}, {3839, 7988}, {3845, 11230}, {3853, 9955}, {3874, 12680}, {3878, 12688}, {3884, 9856}, {3911, 15326}, {4015, 9947}, {4067, 12528}, {4084, 15071}, {4190, 8582}, {4292, 5902}, {4294, 9613}, {4305, 9612}, {4313, 5290}, {4324, 10039}, {4333, 10573}, {4701, 5881}, {4745, 5657}, {4746, 11362}, {4880, 13243}, {5049, 12577}, {5073, 5882}, {5080, 6745}, {5122, 12019}, {5251, 7411}, {5274, 13462}, {5281, 5726}, {5441, 13407}, {5450, 6985}, {5586, 18221}, {5603, 15682}, {5790, 15681}, {5794, 18249}, {5818, 17538}, {5883, 10167}, {5903, 9961}, {5919, 6284}, {5927, 10176}, {6245, 6869}, {6256, 6851}, {6700, 6836}, {6833, 20104}, {6834, 20107}, {6840, 15017}, {6868, 12617}, {6912, 15931}, {6951, 18406}, {7406, 29571}, {7424, 18653}, {7671, 12573}, {7982, 11541}, {8185, 11413}, {8703, 11231}, {8983, 23251}, {9583, 23249}, {9591, 12087}, {9655, 21620}, {9708, 11495}, {9779, 25055}, {9780, 16192}, {9940, 16616}, {10430, 18391}, {10439, 10454}, {10722, 21636}, {10723, 11599}, {10724, 21630}, {10727, 15735}, {10728, 12119}, {10730, 11814}, {10733, 13605}, {10884, 30143}, {10902, 21669}, {11192, 12580}, {11194, 24386}, {11195, 12582}, {11203, 12579}, {11211, 12578}, {11217, 12581}, {11222, 12574}, {11223, 12576}, {11709, 12295}, {11720, 13202}, {11827, 18908}, {12053, 12953}, {12082, 15177}, {12103, 18357}, {12244, 12407}, {12520, 30147}, {12558, 25466}, {12650, 22837}, {12767, 20085}, {12779, 17845}, {13464, 22793}, {13607, 22791}, {13971, 23261}, {15680, 24987}, {17539, 25982}, {17690, 25967}, {17706, 24470}, {19645, 20106}, {19877, 21734}, {20067, 26015}
X(28164) = isogonal conjugate of X(28163)
X(28165) lies on these lines: {30, 511}, {650, 4838}, {2516, 6590}, {4024, 4944}, {4820, 4988}, {6129, 8043}
X(28165) = isogonal conjugate of X(28166)
X(28165) = crossdifference of every pair of points on line X(6)X(7280)
X(28166) lies on the circumcircle and these lines:
X(28166) = isogonal conjugate of X(28165)
X(28166) = circumcircle-antipode of X(28167)
X(28166) = trilinear pole of line X(6)X(7280)
X(28166) = Ψ(X(6), X(7280))
X(28167) lies on the circumcircle and these lines:
X(28167) = isogonal conjugate of X(28168)
X(28167) = circumcircle-antipode of X(28166)
X(28168) lies on these lines: {1, 5073}, {3, 7989}, {4, 5550}, {10, 15704}, {20, 5818}, {30, 511}, {40, 17800}, {165, 15681}, {355, 3529}, {376, 11231}, {381, 17502}, {382, 1385}, {546, 10171}, {548, 19925}, {550, 9956}, {942, 10483}, {962, 11541}, {1125, 3853}, {1657, 3579}, {1698, 15696}, {3146, 5603}, {3534, 5587}, {3543, 5886}, {3576, 3830}, {3583, 5126}, {3627, 4297}, {3653, 9779}, {3655, 9812}, {3656, 15640}, {3817, 15687}, {3828, 15691}, {3843, 7987}, {3845, 10165}, {3858, 19862}, {4293, 18527}, {4299, 17728}, {4316, 5122}, {5045, 7354}, {5076, 8227}, {5657, 15683}, {5731, 15682}, {5734, 7967}, {6684, 12103}, {6925, 18407}, {7743, 21578}, {7988, 14269}, {8703, 10175}, {9589, 18526}, {9590, 18859}, {10172, 12100}, {10246, 15684}, {10572, 11246}, {10721, 11699}, {10728, 22935}, {12102, 12571}, {12512, 18357}, {12811, 19878}, {12943, 24929}, {12953, 24928}
X(28168) = isogonal conjugate of X(28167)
X(28169) lies on these lines: {30, 511}, {693, 4768}, {2529, 14351}, {4397, 4815}, {4404, 7650}, {4521, 4838}, {4763, 7662}, {4776, 4804}, {4789, 21180}, {4828, 20907}, {8689, 17494}
X(28169) = isogonal conjugate of X(28170)
X(28170) lies on the circumcircle and these lines:
X(28170) = isogonal conjugate of X(28169)
X(28170) = circumcircle-antipode of X(28171)
X(28171) lies on the circumcircle and these lines:
X(28171) = isogonal conjugate of X(28172)
X(28171) = circumcircle-antipode of X(28170)
X(28172) lies on these lines: {3, 10172}, {4, 3624}, {10, 1657}, {20, 5587}, {30, 511}, {40, 4678}, {165, 11001}, {355, 17800}, {376, 10175}, {382, 4297}, {548, 3634}, {550, 11231}, {551, 15684}, {944, 11541}, {946, 3146}, {950, 10483}, {1125, 3627}, {1698, 17538}, {1699, 15682}, {3522, 18492}, {3529, 5657}, {3534, 10164}, {3543, 3576}, {3817, 3830}, {3828, 15686}, {3843, 19862}, {3845, 10171}, {3850, 19878}, {3853, 12571}, {3911, 4316}, {4292, 17706}, {4304, 12943}, {4311, 12953}, {4312, 14563}, {4314, 9655}, {4315, 9668}, {4333, 4848}, {5073, 13464}, {5493, 18525}, {5660, 10728}, {5790, 15685}, {5882, 20057}, {6705, 6869}, {6999, 29607}, {7354, 17609}, {7464, 9590}, {8227, 17578}, {8983, 22644}, {9615, 23253}, {9624, 10248}, {9626, 12086}, {9812, 15640}, {9956, 12103}, {10283, 22793}, {11230, 15687}, {12511, 18761}, {12512, 15704}, {12699, 13607}, {13971, 22615}, {15681, 26446}, {16173, 21578}
X(28172) = isogonal conjugate of X(28171)
X(28173) lies on the circumcircle and these lines:
X(28173) = isogonal conjugate of X(28174)
X(28173) = circumcircle-antipode of X(8701)
X(28173) = Λ(X(1), X(550))
X(28173) = Λ(X(5), X(40))
X(28174) lies on these lines: {1, 550}, {3, 962}, {4, 3617}, {5, 40}, {7, 6767}, {8, 382}, {10, 546}, {11, 484}, {12, 11010}, {20, 1482}, {26, 9911}, {30, 511}, {36, 1387}, {46, 496}, {55, 5719}, {65, 12433}, {79, 15888}, {100, 5180}, {140, 946}, {145, 3529}, {165, 549}, {354, 15170}, {355, 3627}, {376, 10246}, {381, 5657}, {390, 15934}, {411, 11849}, {495, 1836}, {547, 3817}, {548, 1385}, {551, 17502}, {553, 5049}, {631, 18493}, {632, 8227}, {942, 10624}, {944, 1657}, {999, 3474}, {1056, 18541}, {1058, 5708}, {1125, 3530}, {1145, 5080}, {1146, 5134}, {1155, 15325}, {1159, 3488}, {1319, 24465}, {1320, 20067}, {1483, 7982}, {1484, 5535}, {1537, 6905}, {1565, 5195}, {1572, 15048}, {1702, 19117}, {1703, 19116}, {1737, 5183}, {1770, 3057}, {1788, 9669}, {1829, 13488}, {1902, 6756}, {2077, 11729}, {2093, 5722}, {2098, 4299}, {2099, 4302}, {2448, 23477}, {2449, 23517}, {3035, 11813}, {3058, 5902}, {3146, 12245}, {3241, 15681}, {3245, 3583}, {3295, 3475}, {3428, 6914}, {3522, 10595}, {3528, 3622}, {3534, 5731}, {3576, 3656}, {3587, 5805}, {3624, 14869}, {3628, 6684}, {3649, 3746}, {3654, 3845}, {3655, 15686}, {3679, 15687}, {3748, 11551}, {3820, 24703}, {3828, 11737}, {3843, 5818}, {3850, 9956}, {3851, 9780}, {3853, 11362}, {3857, 7989}, {3861, 19925}, {3877, 11112}, {3881, 26201}, {3884, 26200}, {3911, 7743}, {3927, 5082}, {3940, 17784}, {4292, 9957}, {4297, 10222}, {4300, 5453}, {4316, 12735}, {4318, 18455}, {4324, 11009}, {4330, 10543}, {4338, 10404}, {4511, 9945}, {4816, 5691}, {4973, 21630}, {5010, 15950}, {5011, 17747}, {5045, 12575}, {5048, 21578}, {5055, 9779}, {5057, 17757}, {5066, 10175}, {5073, 12645}, {5079, 19877}, {5128, 9614}, {5131, 5298}, {5250, 8728}, {5432, 18393}, {5445, 7173}, {5538, 6265}, {5541, 16128}, {5550, 15720}, {5658, 5758}, {5659, 16139}, {5687, 11415}, {5697, 7354}, {5698, 9708}, {5709, 10943}, {5720, 7994}, {5734, 15696}, {5759, 6913}, {5763, 6985}, {5771, 8727}, {5812, 10942}, {5874, 12698}, {5875, 12697}, {5882, 11278}, {5887, 7957}, {5903, 6284}, {6197, 15763}, {6240, 12135}, {6244, 6911}, {6449, 13902}, {6450, 13959}, {6713, 10225}, {6840, 10738}, {6909, 22765}, {6924, 10310}, {6996, 29590}, {7373, 9785}, {7491, 25413}, {7526, 8193}, {7575, 9625}, {7580, 10679}, {7973, 9833}, {7978, 12121}, {7984, 20127}, {7988, 15699}, {8666, 13463}, {9441, 15251}, {9620, 18907}, {9624, 16192}, {9668, 18391}, {10109, 10172}, {10165, 12100}, {10483, 10944}, {10573, 12953}, {10593, 24914}, {10724, 19914}, {11024, 16853}, {11224, 19710}, {11373, 15803}, {11495, 20330}, {11522, 15712}, {11529, 15935}, {11544, 13407}, {12085, 12410}, {12512, 13464}, {12571, 12811}, {12647, 12943}, {12672, 20420}, {12705, 26921}, {12732, 17484}, {13375, 16142}, {13912, 13925}, {13975, 13993}, {15177, 18570}, {17044, 17729}, {17504, 25055}, {17563, 19861}, {17682, 26790}, {17800, 18526}, {19907, 24466}
X(28174) = isogonal conjugate of X(28173)
X(28175) lies on these lines: {30, 511}, {676, 21102}, {1022, 1224}, {1635, 2527}, {2977, 3004}, {3837, 4824}, {3960, 8043}, {4122, 23729}, {4608, 18004}, {4841, 4893}, {6545, 28602}, {14315, 17420}, {14413, 21112}
X(28175) = isogonal conjugate of X(28176)
X(28175) = crossdifference of every pair of points on line X(6)X(11738)
X(28176) lies on the circumcircle and these lines:
X(28176) = isogonal conjugate of X(28175)
X(28176) = circumcircle-antipode of X(28177)
X(28176) = trilinear pole of line X(6)X(11738)
X(28176) = Ψ(X(6), X(11738))
X(28177) lies on the circumcircle and these lines:
X(28177) = isogonal conjugate of X(28178)
X(28177) = circumcircle-antipode of X(28176)
X(28177) = Λ(X(5), X(165))
X(28178) lies on these lines: {1, 15704}, {3, 5284}, {5, 165}, {8, 5073}, {10, 3853}, {11, 5131}, {20, 10246}, {30, 511}, {40, 3627}, {140, 3817}, {354, 1770}, {381, 9778}, {382, 5690}, {390, 18541}, {484, 12019}, {546, 3579}, {547, 10164}, {548, 946}, {549, 1699}, {550, 3576}, {551, 15691}, {944, 17800}, {962, 1657}, {1385, 12103}, {1387, 15326}, {1482, 3529}, {1483, 11224}, {1698, 3858}, {1836, 5719}, {3146, 12702}, {3474, 9668}, {3522, 18493}, {3530, 9955}, {3534, 5603}, {3543, 5790}, {3616, 15696}, {3628, 18483}, {3634, 12811}, {3649, 4330}, {3650, 5178}, {3656, 19710}, {3830, 5657}, {3845, 26446}, {3850, 6684}, {3851, 10248}, {3861, 9956}, {4292, 5049}, {4294, 6147}, {4333, 12701}, {5054, 9779}, {5066, 11231}, {5076, 5818}, {5180, 10609}, {5183, 11545}, {5428, 15911}, {5493, 18480}, {5587, 15687}, {5731, 15681}, {5886, 8703}, {5902, 6284}, {5919, 18990}, {6840, 22938}, {7967, 15683}, {7988, 11539}, {8227, 15712}, {9589, 16200}, {9625, 15646}, {9911, 12084}, {10124, 10171}, {10172, 11737}, {10283, 15686}, {10386, 10389}, {11230, 12100}, {12102, 19925}, {14869, 16192}, {15888, 16118}, {18525, 20070}, {18530, 21454}
X(28178) = isogonal conjugate of X(28177)
X(28179) lies on these lines: {30, 511}, {1268, 3004}, {4728, 4824}, {4789, 23770}, {4833, 21343}, {4988, 6544}, {14475, 28602}
X(28179) = isogonal conjugate of X(28180)
X(28180) lies on the circumcircle and these lines:
X(28180) = isogonal conjugate of X(28179)
X(28180) = circumcircle-antipode of X(28181)
X(28181) lies on the circumcircle and these lines:
X(28181) = isogonal conjugate of X(28182)
X(28181) = circumcircle-antipode of X(28180)
X(28182) lies on these lines: {3, 9779}, {5, 19872}, {20, 5901}, {30, 511}, {165, 3845}, {382, 5657}, {496, 4333}, {546, 11231}, {548, 10165}, {549, 7988}, {550, 5886}, {946, 12103}, {962, 17800}, {1387, 4316}, {1482, 5059}, {1483, 9589}, {1657, 5731}, {1699, 8703}, {1770, 12433}, {3146, 5690}, {3526, 10248}, {3530, 18483}, {3534, 9812}, {3576, 15686}, {3579, 3853}, {3627, 5587}, {3628, 12512}, {3634, 3856}, {3817, 12100}, {3830, 9778}, {3850, 10172}, {3861, 6684}, {4302, 5719}, {4312, 15935}, {5057, 9945}, {5066, 10164}, {5073, 6361}, {5603, 15681}, {5790, 15682}, {6284, 18398}, {9579, 10386}, {9956, 12102}, {10171, 11812}, {10175, 14893}, {10246, 11001}, {10283, 12699}, {11038, 18541}, {11541, 20070}, {12571, 16239}, {15171, 17609}, {15326, 16173}, {15687, 26446}, {15690, 17502}, {17538, 18493}
X(28182) = isogonal conjugate of X(28181)
X(28183) lies on these lines: {30, 511}, {656, 14315}, {1635, 4024}, {1639, 4931}, {2490, 4765}, {2527, 6590}, {3004, 17161}, {3700, 4893}, {3837, 4804}, {4036, 4768}, {4500, 17069}, {4528, 4825}, {4560, 25569}, {4820, 14321}, {4928, 21196}, {14421, 24099}, {17420, 24457}, {21121, 23775}
X(28183) = isogonal conjugate of X(28184)
X(28184) lies on the circumcircle and these lines:
X(28184) = isogonal conjugate of X(28183)
X(28184) = circumcircle-antipode of X(28185)
X(28185) lies on the circumcircle and these lines:
X(28185) = isogonal conjugate of X(28186)
X(28185) = circumcircle-antipode of X(28184)
X(28185) = Λ(X(10), X(548))
X(28186) lies on these lines: {1, 3627}, {3, 5260}, {4, 3622}, {5, 3576}, {8, 1657}, {10, 548}, {20, 4678}, {30, 511}, {36, 12019}, {40, 15704}, {80, 5131}, {140, 4297}, {165, 355}, {354, 10572}, {376, 5790}, {381, 5731}, {382, 944}, {411, 26321}, {546, 1385}, {547, 10165}, {549, 5587}, {551, 14893}, {632, 7987}, {946, 3853}, {950, 5049}, {962, 5073}, {1125, 3850}, {1155, 11545}, {1387, 3583}, {1478, 5719}, {1482, 3146}, {1483, 12678}, {1698, 15712}, {1699, 3655}, {3241, 15684}, {3476, 9668}, {3486, 6147}, {3529, 12702}, {3530, 9956}, {3534, 5657}, {3543, 7967}, {3579, 12103}, {3612, 10592}, {3616, 3843}, {3617, 17538}, {3628, 13624}, {3634, 12108}, {3653, 7988}, {3654, 19710}, {3679, 15686}, {3740, 17647}, {3828, 14891}, {3830, 5603}, {3845, 5886}, {3858, 8227}, {3861, 9955}, {4305, 9654}, {4315, 18527}, {4881, 17533}, {5059, 12245}, {5066, 11230}, {5072, 5550}, {5080, 10609}, {5270, 10543}, {5441, 15888}, {5538, 12738}, {5882, 22793}, {5902, 7354}, {5919, 15171}, {6361, 12645}, {6840, 10742}, {6909, 18524}, {7580, 18519}, {8144, 21147}, {8703, 26446}, {9590, 15646}, {9613, 10389}, {9778, 15681}, {9779, 14269}, {9798, 12084}, {9897, 15228}, {9945, 17757}, {9961, 25413}, {10106, 15172}, {10124, 10172}, {10171, 11737}, {10202, 20420}, {10483, 10950}, {10575, 16980}, {10595, 17578}, {10721, 12898}, {10741, 15735}, {10864, 24467}, {11231, 12100}, {11698, 12119}, {11709, 11801}, {12102, 15178}, {12135, 18560}, {12248, 12747}, {12680, 24475}, {12812, 19862}, {13211, 14677}, {13373, 16616}, {13407, 15174}, {14892, 19883}, {15325, 21578}, {15950, 18513}, {23046, 25055}
X(28186) = isogonal conjugate of X(28185)
X(28187) lies on these lines: {30, 511}, {1639, 4024}, {2527, 4838}, {4453, 17161}, {4958, 4988}
X(28187) = isogonal conjugate of X(28188)
X(28188) lies on the circumcircle and these lines:
X(28188) = isogonal conjugate of X(28187)
X(28188) = circumcircle-antipode of X(28189)
X(28189) lies on the circumcircle and these lines:
X(28189) = isogonal conjugate of X(28190)
X(28189) = circumcircle-antipode of X(28188)
X(28190) lies on these lines: {3, 9342}, {5, 7987}, {8, 17800}, {10, 12103}, {20, 5790}, {30, 511}, {145, 11541}, {165, 15686}, {355, 15704}, {382, 5603}, {546, 4297}, {547, 17502}, {548, 10164}, {550, 5691}, {632, 18492}, {944, 5073}, {1125, 3861}, {1385, 3853}, {1483, 16189}, {1657, 5690}, {1699, 3627}, {3146, 7967}, {3475, 9655}, {3529, 18525}, {3530, 19925}, {3543, 10246}, {3576, 3845}, {3616, 5076}, {3624, 3857}, {3817, 14893}, {3830, 5731}, {3850, 10171}, {5059, 12702}, {5066, 10165}, {5080, 9945}, {5587, 8703}, {5657, 15681}, {5818, 15696}, {5886, 15687}, {6840, 22799}, {7354, 12433}, {7988, 23046}, {7989, 14869}, {9613, 10386}, {9812, 15684}, {9955, 12102}, {10172, 11812}, {10175, 12100}, {10483, 11246}, {10572, 24470}, {12019, 15326}, {12690, 20067}, {17578, 18493}, {17609, 18990}
X(28190) = isogonal conjugate of X(28189)
X(28191) lies on these lines: {30, 511}, {4086, 4801}, {4462, 4815}, {4521, 4841}
X(28192) lies on these lines:
X(28193) lies on the circumcircle and these lines:
X(28193) = isogonal conjugate of X(28194)
X(28193) = circumcircle-antipode of X(28192)
X(28194) lies on these lines: {1, 376}, {2, 40}, {3, 551}, {4, 3679}, {5, 3828}, {8, 3543}, {10, 381}, {11, 5183}, {20, 3241}, {30, 511}, {46, 10072}, {65, 3058}, {84, 6766}, {142, 3587}, {145, 15683}, {165, 3524}, {226, 5119}, {355, 3830}, {390, 11529}, {428, 1902}, {484, 3582}, {497, 2093}, {547, 3634}, {548, 15178}, {549, 1125}, {550, 10222}, {631, 11522}, {908, 5180}, {942, 12575}, {944, 11001}, {950, 5903}, {993, 28444}, {999, 4342}, {1056, 4312}, {1058, 3339}, {1155, 5298}, {1158, 3928}, {1210, 11238}, {1385, 8703}, {1387, 5122}, {1479, 4848}, {1480, 3946}, {1482, 3534}, {1483, 19710}, {1519, 15017}, {1537, 6174}, {1572, 7739}, {1616, 24171}, {1621, 7688}, {1651, 12696}, {1697, 4295}, {1698, 5071}, {1699, 3545}, {1702, 19054}, {1703, 19053}, {1737, 3245}, {1770, 5697}, {1788, 9614}, {1836, 11237}, {2077, 13587}, {2094, 10860}, {2098, 4311}, {2099, 4304}, {2136, 16127}, {3057, 4292}, {3086, 5128}, {3090, 9588}, {3146, 5881}, {3244, 8148}, {3295, 3671}, {3333, 9785}, {3340, 4294}, {3428, 16370}, {3488, 14563}, {3522, 5734}, {3523, 9624}, {3576, 9778}, {3584, 11010}, {3616, 15692}, {3617, 18492}, {3624, 15702}, {3625, 15684}, {3626, 15687}, {3635, 11278}, {3636, 13624}, {3651, 3746}, {3817, 5055}, {3839, 5587}, {3845, 4745}, {3878, 28452}, {3881, 13369}, {3884, 16004}, {3895, 5905}, {3902, 4001}, {3929, 12705}, {3982, 11552}, {4293, 7962}, {4298, 9957}, {4302, 25415}, {4324, 11280}, {4421, 6796}, {4512, 17561}, {4665, 18505}, {4677, 5691}, {4691, 14893}, {4857, 6903}, {4870, 4995}, {5048, 15326}, {5054, 5886}, {5057, 6735}, {5059, 20049}, {5066, 9956}, {5082, 12526}, {5195, 9436}, {5248, 28466}, {5258, 21669}, {5325, 12514}, {5450, 11194}, {5537, 6905}, {5542, 6767}, {5550, 15721}, {5655, 12778}, {5698, 9623}, {5708, 21625}, {5709, 6705}, {5731, 16200}, {5735, 6916}, {5758, 6260}, {5790, 14269}, {5812, 11236}, {5836, 12572}, {5860, 12698}, {5861, 12697}, {5884, 24473}, {5901, 12100}, {5919, 11246}, {6054, 9881}, {6055, 12258}, {6172, 11372}, {6175, 24987}, {6244, 16417}, {6261, 6769}, {6738, 15171}, {6744, 15172}, {6851, 24391}, {6869, 12437}, {6985, 8715}, {6999, 17310}, {7811, 12497}, {7957, 12672}, {7967, 11224}, {7970, 12117}, {7987, 10595}, {8074, 17747}, {8158, 12114}, {8169, 9709}, {8724, 21636}, {9441, 13635}, {9569, 19648}, {9580, 18391}, {9582, 13902}, {9856, 20117}, {9860, 12243}, {9909, 9911}, {9943, 12005}, {10031, 12119}, {10124, 19878}, {10171, 11231}, {10246, 15688}, {10247, 15689}, {10267, 12511}, {10283, 17502}, {10310, 16371}, {10445, 17281}, {10707, 14217}, {10914, 12527}, {11011, 15338}, {11012, 17549}, {11111, 12651}, {11112, 14110}, {11207, 12458}, {11208, 12459}, {11230, 11539}, {11235, 12616}, {11239, 12703}, {11240, 12704}, {11415, 21075}, {11496, 16418}, {11599, 11632}, {12150, 12197}, {12152, 22841}, {12153, 22842}, {12248, 12653}, {12515, 21630}, {12577, 24470}, {13199, 13253}, {13605, 20126}, {13846, 13912}, {13847, 13975}, {15228, 21578}, {15678, 16113}, {15694, 18493}, {15698, 16192}, {15700, 15808}, {15908, 17530}, {15941, 18589}, {16189, 17538}, {16483, 24177}, {16616, 18250}, {21163, 22475}, {21168, 24644}, {24466, 25485}
X(28194) = isogonal conjugate of X(28193)
X(28195) lies on these lines: {30, 511}, {650, 2457}, {656, 23738}, {659, 21115}, {693, 18158}, {2605, 4724}, {3733, 4960}, {4024, 4949}, {4057, 4378}, {4394, 4841}, {4408, 7199}, {4411, 20949}, {4782, 7192}, {4790, 4988}, {4813, 4931}, {6129, 21103}, {16507, 21140}
X(28195) = isogonal conjugate of X(28196)
X(28196) lies on the circumcircle and these lines:
X(28196) = isogonal conjugate of X(28195)
X(28196) = circumcircle-antipode of X(28197)
X(28197) lies on the circumcircle and these lines:
X(28197) = isogonal conjugate of X(28198)
X(28197) = circumcircle-antipode of X(28196)
X(28198) lies on these lines: {1, 3534}, {2, 3579}, {3, 9589}, {4, 3654}, {5, 5493}, {8, 15682}, {10, 3845}, {20, 3655}, {30, 511}, {35, 4870}, {40, 381}, {46, 11238}, {165, 5054}, {355, 3543}, {376, 962}, {382, 7991}, {547, 6684}, {548, 13464}, {549, 946}, {550, 4301}, {551, 8703}, {553, 5045}, {573, 16590}, {942, 3058}, {944, 15683}, {1125, 12100}, {1155, 3582}, {1319, 15228}, {1327, 13911}, {1328, 13973}, {1482, 15681}, {1647, 14000}, {1657, 7982}, {1698, 19709}, {1699, 5055}, {1770, 5434}, {1836, 10056}, {1902, 7576}, {2093, 9668}, {2098, 4333}, {3241, 11001}, {3295, 4654}, {3303, 4338}, {3428, 28444}, {3524, 5886}, {3545, 9812}, {3576, 15688}, {3583, 5183}, {3616, 19708}, {3624, 15701}, {3627, 11362}, {3634, 10109}, {3653, 5603}, {3671, 10386}, {3679, 3830}, {3746, 16117}, {3748, 11552}, {3817, 15699}, {3828, 5066}, {3839, 5657}, {3844, 25561}, {3851, 9588}, {4295, 10385}, {4297, 15686}, {4312, 6767}, {4316, 5048}, {4324, 11011}, {4421, 6985}, {4677, 18525}, {4745, 12101}, {4995, 12047}, {5049, 11246}, {5073, 5881}, {5119, 11237}, {5122, 5298}, {5128, 9669}, {5180, 5440}, {5195, 17078}, {5550, 15719}, {5587, 14269}, {5690, 15687}, {5691, 15684}, {5694, 7957}, {5734, 17538}, {5882, 15704}, {5901, 12512}, {6033, 9881}, {6174, 12611}, {6583, 9943}, {7987, 14093}, {8148, 15685}, {8227, 15694}, {9580, 18527}, {9911, 14070}, {10032, 16138}, {10072, 12701}, {10164, 11539}, {10165, 17504}, {10246, 15689}, {10706, 12778}, {10707, 12515}, {11496, 28466}, {11540, 19878}, {11737, 12571}, {12042, 12258}, {12575, 24470}, {14893, 19925}, {15326, 25405}, {15693, 18493}, {15700, 16192}, {15713, 19862}, {24715, 27637}, {26200, 28458}
X(28198) = isogonal conjugate of X(28197)
X(28199) lies on these lines: {30, 511}, {3669, 8043}, {4036, 4801}, {4106, 4608}, {4380, 14779}, {4394, 4988}, {9508, 21115}
X(28199) = isogonal conjugate of X(28200)
X(28200) lies on the circumcircle and these lines:
X(28200) = isogonal conjugate of X(28199)
X(28200) = circumcircle-antipode of X(28201)
X(28201) lies on the circumcircle and these lines:
X(28201) = isogonal conjugate of X(28202)
X(28201) = circumcircle-antipode of X(28201)
X(28202) lies on these lines: {1, 15681}, {2, 22793}, {10, 15687}, {20, 3656}, {30, 511}, {40, 3830}, {165, 5055}, {355, 15682}, {376, 3616}, {381, 1698}, {382, 3679}, {546, 3828}, {547, 18483}, {549, 9955}, {550, 551}, {553, 15171}, {946, 8703}, {962, 3655}, {1385, 3534}, {1482, 15685}, {1657, 9589}, {1699, 5054}, {1770, 3058}, {1902, 18559}, {3241, 3529}, {3474, 18527}, {3524, 9812}, {3543, 3617}, {3545, 9778}, {3576, 15689}, {3582, 5122}, {3623, 15683}, {3624, 15700}, {3627, 5493}, {3634, 11737}, {3817, 11539}, {3839, 26446}, {3845, 9956}, {3851, 19876}, {4292, 15170}, {4297, 19710}, {4301, 15704}, {4316, 25405}, {4333, 24928}, {4668, 12702}, {4816, 18525}, {5066, 6684}, {5073, 7991}, {5298, 7743}, {5550, 15715}, {5886, 10304}, {5901, 15690}, {7982, 17800}, {7987, 15695}, {8227, 15693}, {9779, 15709}, {9860, 12355}, {10109, 12571}, {10164, 15699}, {10172, 14892}, {10175, 23046}, {11522, 15696}, {12100, 12512}, {12101, 19925}, {12103, 13464}, {14093, 18493}, {14269, 19875}, {15640, 20070}, {15686, 22791}, {15688, 17502}, {15701, 16192}, {17504, 19883}
X(28202) = isogonal conjugate of X(28201)
X(28203) lies on the circumcircle and these lines:
X(28203) = isogonal conjugate of X(28204)
X(28203) = circumcircle-antipode of X(8697)
X(28204) lies on these lines: {1, 381}, {2, 355}, {3, 3679}, {4, 1392}, {5, 551}, {8, 376}, {10, 549}, {11, 25405}, {30, 511}, {35, 26321}, {36, 9897}, {40, 3534}, {55, 18519}, {56, 18518}, {80, 1319}, {104, 13587}, {119, 17533}, {140, 3828}, {145, 3543}, {150, 17078}, {165, 15688}, {214, 5123}, {382, 7982}, {388, 18517}, {497, 18516}, {500, 10459}, {546, 13464}, {547, 1125}, {550, 11362}, {553, 18990}, {942, 5434}, {946, 1483}, {950, 15170}, {958, 28466}, {962, 15682}, {999, 5727}, {1056, 15933}, {1317, 12611}, {1386, 5476}, {1388, 10826}, {1478, 18407}, {1482, 3830}, {1538, 10707}, {1644, 19515}, {1657, 7991}, {1698, 15694}, {1699, 10247}, {1737, 5126}, {1829, 7576}, {1837, 10072}, {2077, 12331}, {2646, 3584}, {3058, 9957}, {3146, 20049}, {3244, 15687}, {3295, 18761}, {3340, 9655}, {3476, 5722}, {3488, 8232}, {3524, 5731}, {3526, 19876}, {3545, 5886}, {3560, 4428}, {3576, 5054}, {3583, 5048}, {3585, 11011}, {3616, 5071}, {3617, 15692}, {3621, 6361}, {3624, 15703}, {3625, 15686}, {3627, 4301}, {3632, 12702}, {3633, 8148}, {3634, 10124}, {3635, 14893}, {3636, 11737}, {3652, 15678}, {3746, 13743}, {3812, 26089}, {3814, 11698}, {3817, 10283}, {3824, 30147}, {3829, 10943}, {3839, 5603}, {3843, 11522}, {3851, 9624}, {3860, 12571}, {3911, 11545}, {4297, 4669}, {4316, 5183}, {4330, 5559}, {4421, 12114}, {4511, 12738}, {4654, 9613}, {4668, 14093}, {4691, 14891}, {4701, 15691}, {4745, 6684}, {4930, 28609}, {4995, 10039}, {5010, 18515}, {5045, 10106}, {5055, 5587}, {5066, 5901}, {5073, 9589}, {5076, 16189}, {5122, 21578}, {5176, 5440}, {5252, 10056}, {5441, 26202}, {5450, 26086}, {5493, 15704}, {5534, 12650}, {5655, 11699}, {5657, 10304}, {5694, 14872}, {5777, 11113}, {5836, 13145}, {5885, 12675}, {5887, 11114}, {6054, 9884}, {6246, 22835}, {6261, 11235}, {6264, 12747}, {6265, 10031}, {6583, 7686}, {6735, 10609}, {6740, 7478}, {6797, 18838}, {6841, 15888}, {6985, 12513}, {6996, 17310}, {7962, 9668}, {7987, 15693}, {8227, 19709}, {8724, 9864}, {9780, 15702}, {9798, 14070}, {9834, 11208}, {9835, 11207}, {9845, 19706}, {9856, 26200}, {10164, 17504}, {10165, 11539}, {10175, 15699}, {10225, 12247}, {10267, 16418}, {10269, 16417}, {10284, 12672}, {10525, 12667}, {10543, 22798}, {10698, 23960}, {10902, 28443}, {11001, 12245}, {11112, 26201}, {11194, 11500}, {11274, 19907}, {11366, 18497}, {11367, 18495}, {11491, 17549}, {11499, 16371}, {11632, 13178}, {12119, 13528}, {12512, 15690}, {12515, 12531}, {12619, 18857}, {12688, 23340}, {12751, 22935}, {12943, 18499}, {13211, 20126}, {13463, 18243}, {14831, 16980}, {14848, 16475}, {15071, 25413}, {15623, 19254}, {15670, 24987}, {15677, 22936}, {15862, 19919}, {16370, 22758}, {16496, 18440}, {17530, 26470}, {17532, 18446}, {17577, 21740}, {17606, 21842}, {18421, 18541}, {22799, 24042}, {22937, 28460}
X(28204) = isogonal conjugate of X(28203)
X(28205) lies on these lines: {30, 511}, {650, 4931}, {2516, 4976}, {4024, 4394}, {4106, 17161}, {4120, 4820}, {4765, 14425}, {4773, 6590}, {4790, 4838}, {4841, 4949}
X(28205) = isogonal conjugate of X(28206)
X(28206) lies on the circumcircle and these lines:
X(28206) = isogonal conjugate of X(28205)
X(28206) = circumcircle-antipode of X(28207)
X(28207) lies on the circumcircle and these lines:
X(28207) = isogonal conjugate of X(28208)
X(28207) = circumcircle-antipode of X(28206)
X(28208) lies on these lines: {1, 3830}, {2, 13624}, {3, 19875}, {4, 3655}, {5, 19883}, {8, 11001}, {10, 8703}, {20, 3654}, {30, 511}, {40, 15681}, {80, 5122}, {145, 15640}, {165, 15689}, {355, 376}, {381, 1385}, {382, 10222}, {547, 19925}, {549, 4297}, {551, 3845}, {944, 3543}, {946, 15687}, {1125, 5066}, {1482, 15684}, {1657, 5881}, {1698, 15693}, {1829, 18559}, {3058, 26088}, {3241, 12699}, {3524, 11231}, {3534, 3579}, {3545, 3653}, {3576, 5055}, {3582, 5126}, {3583, 25405}, {3585, 4870}, {3617, 15697}, {3627, 5882}, {3634, 11812}, {3817, 23046}, {3828, 12100}, {3839, 5886}, {3853, 13464}, {4654, 9655}, {4669, 19710}, {4677, 12702}, {4745, 15690}, {5045, 5434}, {5054, 5587}, {5073, 7982}, {5076, 11522}, {5183, 9897}, {5258, 16117}, {5298, 21578}, {5690, 15686}, {5790, 15688}, {5818, 15692}, {5901, 14893}, {6261, 11567}, {6985, 11194}, {7686, 26201}, {7987, 15694}, {7989, 15703}, {7991, 17800}, {9780, 15698}, {9875, 12188}, {9884, 10722}, {9940, 28452}, {10031, 10728}, {10106, 15170}, {10165, 15699}, {10171, 14892}, {10175, 11539}, {10246, 14269}, {10304, 26446}, {10706, 11699}, {10711, 22935}, {10902, 28453}, {11237, 24929}, {11238, 24928}, {11278, 18526}, {11362, 15704}, {11500, 26086}, {11711, 22566}, {12101, 18483}, {12258, 22515}, {12512, 15691}, {13145, 17579}, {13178, 14830}, {15678, 26202}, {15701, 19876}, {16417, 18491}, {16418, 18761}, {17525, 22798}, {18492, 19709}
X(28208) = isogonal conjugate of X(28207)
X(28209) lies on these lines: {30, 511}, {86, 4833}, {659, 20142}, {661, 1213}, {1022, 24857}, {1638, 4724}, {1769, 23738}, {2487, 4932}, {2526, 2977}, {2529, 4521}, {2533, 21714}, {3766, 4828}, {3837, 4776}, {4367, 4491}, {4369, 6707}, {4374, 21606}, {4448, 14475}, {4728, 4806}, {4733, 4761}, {4813, 14321}, {4841, 4979}, {5592, 24099}, {9182, 17930}, {13602, 23838}, {20949, 21433}, {21104, 23728}
X(28209) = isogonal conjugate of X(28206)
X(28210) lies on the circumcircle and these lines:
X(28210) = isogonal conjugate of X(28209)
X(28210) = circumcircle-antipode of X(28211)
X(28211) lies on the circumcircle and these lines:
X(28211) = isogonal conjugate of X(28212)
X(28211) = circumcircle-antipode of X(28210)
X(28212) lies on these lines: {1, 548}, {3, 3622}, {4, 4678}, {5, 962}, {8, 3627}, {10, 3850}, {11, 3245}, {20, 1483}, {30, 511}, {40, 140}, {65, 15172}, {145, 1657}, {165, 3656}, {355, 3853}, {376, 10247}, {382, 12245}, {390, 1159}, {484, 15325}, {546, 5587}, {547, 7988}, {549, 5603}, {550, 1482}, {551, 14891}, {632, 18493}, {944, 15704}, {946, 3628}, {1125, 12108}, {1145, 5057}, {1155, 1387}, {1317, 4316}, {1385, 5493}, {1697, 6147}, {1698, 12812}, {1699, 3654}, {3146, 12645}, {3241, 15686}, {3428, 7508}, {3529, 18526}, {3530, 3579}, {3534, 7967}, {3583, 11545}, {3616, 15712}, {3617, 3843}, {3623, 17538}, {3655, 11224}, {3679, 14893}, {3746, 16137}, {3817, 10109}, {3845, 5790}, {3856, 18483}, {3858, 5818}, {3861, 11362}, {3935, 12732}, {4297, 11278}, {4424, 17726}, {4867, 6154}, {5119, 17718}, {5128, 11373}, {5180, 17757}, {5536, 12515}, {5559, 16118}, {5697, 18990}, {5708, 9785}, {5902, 15170}, {5903, 15171}, {6684, 16239}, {6767, 11038}, {6913, 21168}, {7982, 12103}, {7984, 14677}, {8236, 15934}, {8703, 9778}, {9590, 12105}, {9911, 17714}, {9955, 10172}, {9956, 12811}, {9957, 24470}, {10124, 11230}, {10164, 11812}, {10175, 11737}, {10624, 12433}, {11009, 15338}, {11276, 11281}, {11531, 18481}, {11544, 15888}, {12084, 12410}, {12102, 18480}, {12512, 15178}, {12735, 21578}, {14890, 19883}, {14892, 19875}, {15690, 16200}, {15759, 17502}, {19512, 29607}
X(28212) = isogonal conjugate of X(28211)
X(28213) lies on these lines: {30, 511}, {1635, 4841}, {2490, 4893}, {5592, 9269}, {14588, 17930}, {18014, 21135}, {21106, 21120}
X(28213) = isogonal conjugate of X(28214)
X(28214) lies on the circumcircle and these lines:
X(28214) = isogonal conjugate of X(28213)
X(28214) = circumcircle-antipode of X(28215)
X(28215) lies on the circumcircle and these lines:
X(28215) = isogonal conjugate of X(28216)
X(28215) = circumcircle-antipode of X(28214)
X(28216) lies on these lines: {1, 12103}, {5, 6361}, {10, 3861}, {20, 10247}, {30, 511}, {40, 546}, {140, 165}, {145, 17800}, {354, 15172}, {376, 10283}, {382, 20070}, {547, 1699}, {548, 3576}, {549, 9778}, {550, 962}, {946, 3530}, {1482, 15704}, {1483, 1657}, {1658, 9911}, {1770, 5919}, {3245, 11545}, {3529, 8148}, {3579, 3628}, {3617, 5076}, {3621, 11541}, {3627, 12702}, {3654, 12101}, {3656, 15690}, {3746, 11544}, {3845, 5657}, {3850, 5493}, {3853, 5690}, {3856, 9956}, {3857, 9780}, {4295, 10386}, {4330, 15174}, {5049, 10624}, {5059, 18526}, {5066, 26446}, {5073, 12245}, {5131, 15325}, {5183, 12019}, {5587, 14893}, {5603, 8703}, {5731, 15686}, {5790, 15687}, {5886, 12100}, {5901, 17502}, {5902, 15171}, {6147, 10389}, {7967, 15681}, {9779, 15699}, {9955, 16239}, {10109, 11231}, {10124, 10164}, {10165, 14891}, {10595, 15696}, {11224, 18481}, {11230, 11812}, {11246, 15170}, {12102, 18357}, {12811, 18483}, {15712, 18493}
X(28216) = isogonal conjugate of X(28215)
X(28217) lies on these lines: {21, 3733}, {30, 511}, {79, 23838}, {649, 1639}, {661, 4984}, {2254, 4806}, {2487, 3835}, {2527, 3239}, {3649, 4017}, {3700, 4958}, {3798, 4940}, {4057, 27086}, {4106, 21183}, {4406, 23794}, {4453, 4897}, {4773, 4893}, {4782, 4925}, {4790, 4944}, {4813, 4976}, {4840, 7253}, {4874, 7659}, {4905, 4992}, {5441, 14812}, {6701, 23808}, {10543, 14284}, {13250, 14610}, {14315, 23800}, {21143, 21834}
X(28217) = isogonal conjugate of X(28218)
X(28217) = crossdifference of every pair of points on line X(6)X(7373)
X(28218) lies on the circumcircle and these lines:
X(28218) = isogonal conjugate of X(28217)
X(28218) = circumcircle-antipode of X(28219)
X(28218) = perspector of ABC and the triangle formed by reflecting line X(5)X(8) in the sides of ABC
X(28218) = trilinear pole of line X(6)X(7373)
X(28218) = Ψ(X(6), X(7373))
X(28219) lies on the circumcircle and these lines:
X(28219) = isogonal conjugate of X(5844)
X(28219) = circumcircle-antipode of X(28218)
X(28219) = Λ(X(1), X(140))
X(28219) = Λ(X(5), X(8))
X(28220) lies on these lines: {30, 511}, {4378, 4491}, {4406, 21433}, {4408, 4828}, {4411, 21606}, {4448, 6548}, {4776, 21146}, {4833, 4960}, {23345, 23598}
X(28221) lies on these lines: {30, 511}, {656, 24457}, {1635, 2490}, {4467, 21297}, {4893, 4976}, {4928, 17069}, {4931, 4984}, {4944, 14425}, {6615, 21714}, {9269, 24099}, {13251, 14610}
X(28221) = isogonal conjugate of X(28222)
X(28222) lies on the circumcircle and these lines:
X(28222) = isogonal conjugate of X(28221)
X(28222) = circumcircle-antipode of X(28223)
X(28223) lies on the circumcircle and these lines:
X(28223) = isogonal conjugate of X(28224)
X(28223) = circumcircle-antipode of X(28222)
X(28224) lies on these lines: {1, 546}, {3, 3617}, {4, 1483}, {5, 944}, {8, 550}, {10, 3530}, {20, 12645}, {30, 511}, {36, 11545}, {40, 4816}, {80, 15325}, {104, 18524}, {140, 355}, {145, 382}, {165, 548}, {381, 7967}, {547, 3655}, {549, 5731}, {551, 11737}, {632, 5818}, {946, 3861}, {1056, 15935}, {1317, 3583}, {1319, 12019}, {1385, 3628}, {1388, 10593}, {1482, 3627}, {1484, 1532}, {1657, 12245}, {1658, 9798}, {1699, 14893}, {3146, 8148}, {3241, 15687}, {3244, 22793}, {3529, 3621}, {3614, 24926}, {3622, 3851}, {3654, 15690}, {3656, 12101}, {3754, 26201}, {3817, 3850}, {3843, 10595}, {3845, 5603}, {3853, 5691}, {3856, 9955}, {3858, 18493}, {3859, 18492}, {5049, 10106}, {5066, 5886}, {5131, 9897}, {5176, 10609}, {5270, 16137}, {5554, 17563}, {5657, 8703}, {5902, 10950}, {5919, 10572}, {6102, 16980}, {6147, 9613}, {6224, 17757}, {6735, 9945}, {6767, 8543}, {6882, 11698}, {6905, 12773}, {6909, 12331}, {6914, 18519}, {6924, 18518}, {7508, 22758}, {7526, 8192}, {7555, 15177}, {7966, 18540}, {7988, 14892}, {9778, 15686}, {9779, 23046}, {9780, 14869}, {9956, 16239}, {10109, 11230}, {10124, 10165}, {10164, 14891}, {10222, 12102}, {10902, 12104}, {10944, 15171}, {11041, 18541}, {11224, 12699}, {11231, 11812}, {11491, 26321}, {12006, 23841}, {12100, 26446}, {12108, 13624}, {12135, 13488}, {12702, 15704}, {12811, 15178}, {13375, 17637}, {15174, 15888}, {17266, 19512}, {17800, 20070}
X(28224) = isogonal conjugate of X(28223)
X(28225) lies on these lines: {30, 511}, {1459, 4794}, {3239, 4813}, {4453, 13246}, {4724, 4932}, {4765, 4979}, {4811, 4978}, {4823, 4985}, {4905, 17420}, {4960, 7253}, {6615, 23738}, {7192, 17218}, {14812, 21201}, {23774, 24224}
X(28225) = isogonal conjugate of X(28226)
X(28226) lies on the circumcircle and these lines:
X(28226) = isogonal conjugate of X(28225)
X(28226) = circumcircle-antipode of X(28227)
X(28227) lies on the circumcircle and these lines:
X(28227) = isogonal conjugate of X(28228)
X(28227) = circumcircle-antipode of X(28226)
X(28228) lies on these lines: {1, 3522}, {3, 3636}, {4, 3626}, {7, 9819}, {8, 9589}, {10, 962}, {20, 3244}, {30, 511}, {40, 631}, {57, 4342}, {65, 6744}, {144, 4915}, {165, 551}, {355, 4746}, {376, 16200}, {390, 18421}, {550, 11278}, {553, 5919}, {632, 6684}, {946, 1656}, {997, 7994}, {1482, 15696}, {1697, 3475}, {2093, 11019}, {3057, 4298}, {3146, 3632}, {3295, 12511}, {3339, 9785}, {3340, 4314}, {3474, 4315}, {3523, 15808}, {3576, 19708}, {3579, 13464}, {3622, 16192}, {3625, 5691}, {3635, 4297}, {3654, 10175}, {3656, 10165}, {3678, 9856}, {3679, 9812}, {3817, 3828}, {3843, 4691}, {3858, 5690}, {3869, 6743}, {3878, 7957}, {3881, 9943}, {3884, 12436}, {3892, 10167}, {3911, 5183}, {3918, 5806}, {3956, 10157}, {4134, 15104}, {4292, 5697}, {4304, 25415}, {4345, 13462}, {4678, 10248}, {4701, 12245}, {4745, 5587}, {4848, 12701}, {4973, 17613}, {5049, 10178}, {5059, 20050}, {5119, 13405}, {5180, 6735}, {5199, 17747}, {5731, 11224}, {5734, 7987}, {5758, 10915}, {5836, 18250}, {5882, 8148}, {5886, 15694}, {5903, 6738}, {6736, 11415}, {6767, 11495}, {6769, 22836}, {7580, 25439}, {7673, 12573}, {8158, 8666}, {9779, 19875}, {9802, 12767}, {9955, 12812}, {9957, 12577}, {10246, 14093}, {10247, 15695}, {10283, 15711}, {11010, 13411}, {11219, 21630}, {11522, 19862}, {12053, 17728}, {12527, 14923}, {15172, 17706}, {15714, 17502}
X(28228) = isogonal conjugate of X(28227)
X(28229) lies on these lines: {30, 511}, {4801, 4985}, {5592, 14421}, {20316, 23789}, {23738, 23800}, {24720, 25627}
X(28229) = isogonal conjugate of X(28230)
X(28230) lies on the circumcircle and these lines:
X(28230) = isogonal conjugate of X(28229)
X(28230) = circumcircle-antipode of X(28231)
X(28231) lies on the circumcircle and these lines:
X(28231) = isogonal conjugate of X(28232)
X(28231) = circumcircle-antipode of X(28230)
X(28232) lies on these lines: {1, 4114}, {3, 15808}, {10, 3843}, {20, 13607}, {30, 511}, {40, 3091}, {165, 631}, {354, 10624}, {548, 3636}, {551, 14093}, {632, 3579}, {962, 3522}, {1125, 15712}, {1656, 3817}, {1657, 3244}, {1699, 5071}, {3529, 11531}, {3626, 3627}, {3634, 12812}, {3656, 15695}, {3858, 22793}, {3859, 9956}, {4292, 5919}, {4295, 10389}, {4297, 10247}, {4301, 10246}, {4678, 11362}, {5049, 12575}, {5076, 12702}, {5603, 19708}, {5882, 11224}, {5886, 15693}, {7967, 16191}, {9778, 10165}, {9911, 16195}, {10164, 15694}, {10386, 12563}, {11230, 15713}, {11278, 15704}, {12512, 17502}, {15171, 17706}, {19709, 26446}
X(28232) = isogonal conjugate of X(28231)
X(28233) lies on the circumcircle and these lines:
X(28233) = isogonal conjugate of X(28234)
X(28233) = circumcircle-antipode of X(6014)
X(28234) lies on these lines: {1, 631}, {2, 16200}, {3, 3244}, {4, 3632}, {5, 3626}, {8, 908}, {10, 1482}, {20, 20050}, {30, 511}, {36, 10087}, {40, 145}, {55, 17010}, {63, 12703}, {80, 24297}, {104, 5537}, {140, 3636}, {165, 7967}, {226, 12647}, {355, 3625}, {551, 10247}, {632, 1125}, {944, 3633}, {950, 5697}, {960, 13600}, {962, 3621}, {993, 10679}, {1056, 18421}, {1145, 6745}, {1155, 1317}, {1158, 6762}, {1159, 5542}, {1210, 2098}, {1320, 10265}, {1385, 3635}, {1483, 3579}, {1512, 4867}, {1698, 10595}, {1699, 4677}, {1737, 16173}, {2077, 13278}, {2093, 3476}, {2099, 17718}, {2325, 4752}, {3036, 5087}, {3146, 20054}, {3241, 3576}, {3245, 7972}, {3340, 21620}, {3421, 26333}, {3427, 3680}, {3488, 9819}, {3523, 20057}, {3526, 15808}, {3555, 5884}, {3617, 5734}, {3634, 5901}, {3654, 10164}, {3655, 14093}, {3656, 3817}, {3679, 5071}, {3689, 13996}, {3811, 12640}, {3814, 23513}, {3828, 11230}, {3858, 4701}, {3859, 12571}, {3871, 11012}, {3872, 6974}, {3878, 5795}, {3889, 15016}, {3892, 10202}, {3913, 6796}, {3935, 6326}, {3940, 7682}, {3982, 6951}, {4031, 6955}, {4084, 25413}, {4292, 10944}, {4297, 12702}, {4316, 13199}, {4342, 5722}, {4668, 5818}, {4691, 9956}, {4745, 10171}, {4746, 9955}, {4915, 5817}, {5057, 12531}, {5076, 12645}, {5080, 24042}, {5082, 26332}, {5121, 26727}, {5126, 12735}, {5267, 11849}, {5288, 6906}, {5330, 24982}, {5450, 10306}, {5493, 18481}, {5536, 5541}, {5705, 16204}, {5709, 12437}, {5730, 6736}, {5758, 12625}, {5770, 6705}, {5903, 10106}, {6260, 11523}, {6261, 6765}, {6603, 8074}, {6700, 8256}, {6737, 10914}, {6738, 9957}, {6743, 7686}, {6769, 12629}, {7743, 11545}, {7962, 18391}, {8158, 11500}, {8666, 11248}, {8715, 11249}, {9624, 9780}, {9778, 15697}, {9948, 11519}, {10039, 11009}, {10107, 12436}, {10445, 17299}, {10573, 12053}, {10624, 10950}, {10680, 25440}, {10703, 16870}, {10912, 12616}, {11011, 13411}, {11038, 11526}, {11280, 12047}, {11715, 25416}, {12247, 12653}, {12410, 16195}, {12447, 13374}, {12454, 12459}, {12455, 12458}, {12736, 18839}, {15711, 17502}, {16191, 19875}, {17753, 25719}, {18492, 20052}, {19914, 21630}, {20014, 20070}
X(28234) = isogonal conjugate of X(28233)
X(28235) lies on the circumcircle and these lines:
X(28235) = isogonal conjugate of X(28236)
X(28235) = circumcircle-antipode of X(8699)
X(28236) lies on these lines: {1, 3091}, {3, 3626}, {4, 3244}, {5, 3636}, {8, 165}, {10, 631}, {20, 3632}, {30, 511}, {40, 3625}, {101, 5199}, {145, 4301}, {150, 1323}, {153, 3583}, {354, 6738}, {355, 1125}, {388, 12563}, {392, 15064}, {411, 5288}, {551, 5071}, {632, 1385}, {946, 3635}, {950, 5919}, {962, 3633}, {1012, 25439}, {1149, 5400}, {1482, 5076}, {1483, 3858}, {1519, 21630}, {1699, 3241}, {1706, 9845}, {1709, 3895}, {1737, 9897}, {2136, 10864}, {3090, 15808}, {3146, 11531}, {3476, 5727}, {3486, 10389}, {3586, 4342}, {3617, 7987}, {3621, 7991}, {3622, 7989}, {3623, 11522}, {3627, 11278}, {3654, 15695}, {3655, 3828}, {3671, 9613}, {3679, 5731}, {3681, 6737}, {3740, 5795}, {3754, 12675}, {3811, 12650}, {3832, 20057}, {3859, 9955}, {3878, 14872}, {3881, 7686}, {3884, 5777}, {3918, 9940}, {3935, 5538}, {4298, 5902}, {4304, 12647}, {4311, 10573}, {4315, 18391}, {4511, 5531}, {4669, 5657}, {4677, 15697}, {4678, 9588}, {4691, 6684}, {4701, 11362}, {4745, 15693}, {4746, 5690}, {4853, 12520}, {4856, 10445}, {4915, 5732}, {5049, 6744}, {5059, 20054}, {5126, 11545}, {5131, 9803}, {5176, 6745}, {5252, 13405}, {5267, 11491}, {5493, 12245}, {5534, 22836}, {5660, 10031}, {5697, 12528}, {5768, 21164}, {5787, 12437}, {5818, 19862}, {5839, 10443}, {5884, 10273}, {5886, 19709}, {6224, 6735}, {6244, 8168}, {6245, 10915}, {6261, 22837}, {6681, 20418}, {7406, 29605}, {7743, 12735}, {7972, 21635}, {7993, 20085}, {8666, 11500}, {8715, 12114}, {9798, 16195}, {9948, 12640}, {9956, 19878}, {10157, 10179}, {10176, 18250}, {10202, 12436}, {10222, 18483}, {10572, 12575}, {10595, 18492}, {10724, 26726}, {10742, 24042}, {10914, 12680}, {11231, 15713}, {12019, 25405}, {12812, 15178}, {14923, 15071}, {15674, 24987}, {17355, 24247}, {17857, 30144}, {18242, 24387}, {20053, 20070}
X(28236) = isogonal conjugate of X(28235)
See Tran Quang Hung and Peter Moses, Hyacinthos 28651.
X(28237) = lies on these lines: {2,3}, {195,11671}, {930,24573}, {1263,25044}, {6343,20424}, {10627,20327}, {15345,20414}
X(28237)= reflection of X(i) in X(j) for these {i,j}: {3,10285}, {4,20120}, {20,14142}, {10205,5501}, {10627,20327}, {15345,20414}, {27868,20030}
Collineation mappings involving Gemini triangle 80: X(28238)-X(28290)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 80, as in centers X(28238)-X(28290). Then
m(X) = a(b^2+c^2+ab+ac)x - ac(a+b+c)y - ab(a+b+c)z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 18, 2018)
X(28238) lies on these lines: {2, 3}, {12, 20470}, {36, 27657}, {228, 1210}, {942, 21319}, {958, 5241}, {992, 4268}, {1054, 30362}, {1145, 17751}, {1193, 1319}, {1284, 24443}, {1329, 16678}, {1724, 28289}, {2178, 9596}, {3057, 21321}, {3074, 26884}, {3185, 24914}, {3911, 22345}, {3915, 28364}, {5230, 11510}, {5432, 23383}, {5433, 23361}, {5552, 23853}, {12572, 22060}, {14798, 27628}, {21361, 23154}, {21363, 22076}, {27627, 28239}, {28245, 28282}
X(28239) lies on these lines: {1, 3030}, {2, 11}, {244, 21320}, {978, 1420}, {1054, 15507}, {1193, 20323}, {1284, 16610}, {1357, 21362}, {2254, 28284}, {3756, 4557}, {5400, 7987}, {6692, 20967}, {13738, 28271}, {16057, 33107}, {16409, 26098}, {17125, 30944}, {17277, 30979}, {17460, 22313}, {21894, 28282}, {27627, 28238}
X(28240) lies on these lines:
X(28241) lies on these lines:
X(28242) lies on these lines: {2, 31}, {38, 72}, {63, 978}, {212, 12589}, {672, 992}, {896, 27627}, {2209, 33171}, {2225, 28243}, {2232, 27634}, {2236, 27633}, {2277, 5282}, {2312, 28266}, {3747, 29960}, {4279, 32783}, {5015, 33074}, {5247, 5484}, {7262, 27680}, {26061, 31339}, {27628, 28248}
X(28243) lies on these lines: {2, 32}, {978, 1759}, {992, 2245}, {1193, 3721}, {2225, 28242}, {2233, 27634}, {2237, 27633}, {2243, 27627}, {13738, 28282}, {27642, 27669}
X(28244) lies on these lines: {1, 21857}, {2, 37}, {6, 978}, {9, 9367}, {10, 17053}, {39, 5257}, {44, 583}, {142, 31198}, {238, 2305}, {244, 21033}, {314, 25510}, {594, 3831}, {672, 28269}, {757, 27644}, {910, 28250}, {941, 5550}, {942, 24923}, {966, 2275}, {1015, 3686}, {1086, 21246}, {1100, 1193}, {1107, 1213}, {1108, 16605}, {1125, 2092}, {1574, 2321}, {1766, 19549}, {1841, 3144}, {1953, 21951}, {2178, 4426}, {2238, 2260}, {2245, 28275}, {2269, 28352}, {2298, 17531}, {2309, 22174}, {2325, 21826}, {3670, 21810}, {3723, 21858}, {3726, 3949}, {4016, 6042}, {4283, 5044}, {4708, 16696}, {5277, 16470}, {5750, 21796}, {15586, 28267}, {16571, 24456}, {16669, 27625}, {16726, 17344}, {16777, 20691}, {16814, 28245}, {17248, 24598}, {17275, 17448}, {17299, 21868}, {21214, 21769}, {25107, 30473}, {27637, 27678}, {28252, 28283}
X(28245) lies on these lines: {2, 39}, {978, 16549}, {992, 2245}, {1015, 17751}, {1193, 1575}, {1475, 16606}, {2277, 17369}, {16814, 28244}, {16827, 28285}, {17053, 26094}, {20331, 27627}, {27669, 28264}, {28238, 28282}
X(28246) lies on these lines: {2, 41}, {169, 978}, {444, 2333}, {672, 27622}, {910, 28275}, {992, 2183}, {1193, 16583}, {1400, 28258}, {1958, 16925}, {2225, 28242}, {2246, 27627}, {2268, 6857}, {2280, 31405}, {5230, 9310}, {23623, 24541}, {28247, 28259}
X(28247) lies on these lines: {1, 2}, {31, 27623}, {210, 4022}, {238, 13588}, {672, 992}, {748, 1011}, {851, 28275}, {2234, 3683}, {2238, 2260}, {2239, 28269}, {2274, 19732}, {2308, 27644}, {3691, 23632}, {3725, 3739}, {19742, 23579}, {20923, 32860}, {27628, 28251}, {28246, 28259}, {28267, 28273}
X(28248) lies on these lines: {1, 2}, {31, 11358}, {71, 992}, {171, 27644}, {238, 4203}, {444, 2333}, {748, 16058}, {1334, 21877}, {1376, 1918}, {1400, 2238}, {2234, 4640}, {2239, 16056}, {2274, 5737}, {2318, 20487}, {3725, 31993}, {10448, 16345}, {13588, 27660}, {16583, 22230}, {16605, 22173}, {16610, 22275}, {20923, 22316}, {21080, 27538}, {21796, 21838}, {27628, 28242}, {28250, 28256}
X(28249) lies on these lines: {1, 2092}, {2, 45}, {6, 5253}, {37, 24443}, {44, 583}, {978, 16670}, {1193, 4285}, {2183, 16604}, {2246, 28250}, {2260, 21892}, {4887, 21246}, {8609, 21951}, {9780, 14624}
X(28250) lies on these lines: {2, 11}, {57, 978}, {142, 20967}, {165, 19513}, {238, 16056}, {354, 1193}, {444, 5338}, {672, 992}, {748, 851}, {910, 28244}, {1155, 27622}, {1194, 2277}, {1284, 24789}, {1400, 2348}, {1402, 3008}, {1764, 10824}, {2246, 28249}, {2318, 20358}, {3185, 17278}, {4192, 17123}, {4433, 29966}, {5204, 27649}, {6244, 19549}, {10434, 31183}, {13097, 33149}, {13731, 15931}, {13738, 22654}, {15507, 17889}, {18235, 19804}, {21333, 25091}, {24174, 28109}, {27625, 27657}, {27635, 28289}, {28248, 28256}
X(28251) lies on these lines: {2, 6}, {748, 8731}, {846, 978}, {896, 27627}, {1193, 1962}, {2176, 19822}, {3736, 4204}, {16827, 19810}, {27626, 28260}, {27628, 28247}
X(28252) lies on these lines: {1, 4111}, {2, 6}, {978, 1045}, {1193, 2667}, {1269, 4465}, {1756, 15803}, {2234, 15254}, {2295, 28653}, {2300, 24603}, {2305, 25946}, {3230, 4967}, {3780, 17394}, {4754, 16709}, {8731, 17123}, {10455, 29460}, {16574, 31198}, {17278, 29965}, {27637, 28256}, {28244, 28283}, {28262, 28278}
X(28253) lies on these lines: {1, 2}, {142, 10460}, {238, 7411}, {748, 13615}, {1400, 2348}, {1471, 4383}, {7964, 28272}, {10900, 32912}, {20967, 28351}, {27628, 28274}
X(28254) lies on these lines: {1, 2}, {44, 28283}, {172, 4383}, {238, 21495}, {14349, 27647}, {748, 16367}, {872, 31306}, {992, 2235}, {1400, 27641}, {1931, 27665}, {4708, 5109}, {5153, 25498}, {16752, 20335}, {27626, 27640}
X(28255) lies on these lines: {2, 667}, {444, 18344}, {513, 28256}, {649, 28286}, {669, 30023}, {978, 4063}, {1193, 4083}, {3309, 19513}, {4401, 27675}, {6050, 27674}, {8637, 27677}, {8639, 31286}
X(28256) lies on these lines: {2, 31}, {44, 583}, {388, 1471}, {513, 28255}, {518, 872}, {899, 27628}, {978, 1757}, {1125, 20964}, {1468, 3618}, {2238, 20459}, {3216, 3778}, {3747, 29988}, {3831, 17766}, {4019, 25079}, {4279, 29637}, {7270, 24757}, {13329, 29043}, {15310, 19513}, {17751, 17765}, {27637, 28252}, {28248, 28250}, {28271, 28279}
X(28257) lies on these lines: {1, 2}, {3, 17125}, {31, 16408}, {65, 31197}, {140, 4300}, {171, 17535}, {238, 17531}, {244, 5044}, {404, 17123}, {474, 748}, {750, 16862}, {992, 16669}, {1042, 31231}, {1064, 3526}, {1400, 5043}, {1458, 5433}, {2277, 16675}, {2292, 16610}, {3295, 9350}, {3305, 11512}, {3678, 17449}, {3691, 16604}, {3846, 17674}, {3876, 17063}, {3915, 4413}, {4015, 4694}, {4256, 25542}, {4359, 25079}, {4968, 24003}, {5045, 21805}, {5122, 28258}, {5241, 25914}, {5255, 9342}, {5316, 23536}, {5711, 16864}, {9708, 32577}, {10448, 16842}, {13731, 17502}, {15481, 28288}, {16466, 16863}, {16602, 24443}, {16814, 28244}, {17277, 23579}, {17278, 24954}, {17527, 21935}, {17529, 33105}, {19513, 28267}, {19804, 25591}, {24985, 26010}, {26060, 33106}, {27637, 28252}, {31233, 31359}
X(28258) lies on these lines: {2, 3}, {7, 20805}, {36, 28265}, {57, 978}, {169, 3002}, {240, 17102}, {244, 942}, {284, 5277}, {579, 992}, {896, 27627}, {970, 1730}, {1284, 24161}, {1400, 28246}, {1756, 15803}, {2886, 23383}, {3185, 28628}, {3216, 4260}, {3487, 20760}, {3813, 18613}, {3916, 28287}, {4267, 17056}, {4551, 23841}, {4999, 20470}, {5122, 28257}, {5249, 22345}, {5255, 28353}, {5791, 31339}, {6147, 22458}, {6703, 15509}, {9710, 15621}, {12047, 15507}, {16678, 24953}, {19730, 19764}, {19843, 23853}, {23169, 24470}, {23361, 25466}
X(28259) lies on these lines:
X(28260) lies on these lines:
X(28261) lies on these lines:
X(28262) lies on these lines:
X(28263) lies on these lines:
X(28264) lies on these lines: {2, 3}, {992, 27642}, {2233, 27634}, {3769, 4447}, {16827, 27628}, {20470, 26686}, {23361, 26561}, {23383, 26590}, {27669, 28245}
X(28265) lies on these lines:
X(28266) lies on these lines:
X(28267) lies on these lines:
X(28268) lies on these lines:
X(28269) lies on these lines:
X(28270) lies on these lines:
X(28271) lies on these lines:
X(28272) lies on these lines:
X(28273) lies on these lines:
X(28274) lies on these lines:
X(28275) lies on these lines:
X(28276) lies on these lines:
X(28277) lies on these lines:
X(28278) lies on these lines:
X(28279) lies on these lines:
X(28280) lies on these lines:
X(28281) lies on these lines:
X(28282) lies on these lines:
X(28283) lies on these lines:
X(28284) lies on these lines:
X(28285) lies on these lines:
X(28286) lies on these lines:
X(28287) lies on these lines: {2, 7}, {3, 1958}, {8, 22370}, {20, 6210}, {21, 238}, {27, 2354}, {69, 26130}, {71, 75}, {86, 2260}, {190, 1269}, {191, 32857}, {192, 1334}, {193, 21384}, {239, 2269}, {261, 17209}, {333, 22097}, {377, 31339}, {464, 30479}, {517, 17868}, {573, 4384}, {583, 4670}, {662, 22054}, {674, 16684}, {748, 25494}, {760, 21804}, {941, 5256}, {958, 1469}, {960, 1284}, {978, 27640}, {984, 3868}, {992, 2235}, {1013, 2212}, {1018, 4431}, {1071, 13731}, {1098, 19841}, {1107, 28369}, {1125, 10461}, {1458, 2975}, {1475, 17379}, {1621, 4343}, {1654, 3691}, {1756, 4292}, {2183, 17277}, {2245, 3739}, {2268, 16367}, {2275, 28365}, {2277, 27623}, {2287, 20769}, {2293, 23407}, {2347, 17349}, {3006, 17153}, {3220, 4225}, {3262, 21231}, {3263, 4019}, {3496, 26998}, {3664, 18206}, {3686, 3882}, {3717, 17751}, {3720, 5208}, {3729, 3730}, {3869, 24554}, {3912, 10452}, {3916, 28258}, {3917, 23440}, {4197, 32784}, {4271, 17348}, {4313, 20036}, {4335, 4512}, {4416, 16552}, {4443, 16690}, {4652, 27621}, {5253, 24557}, {5278, 24595}, {5783, 21477}, {6998, 27401}, {7083, 20835}, {7174, 11520}, {10030, 11683}, {10391, 21321}, {12514, 23537}, {12530, 24341}, {13738, 24320}, {15656, 28266}, {15823, 28275}, {17000, 20459}, {17053, 28371}, {17493, 23544}, {17755, 20891}, {18042, 22356}, {20367, 24199}, {20880, 30011}, {20905, 24633}, {20979, 27854}, {21233, 26538}, {21281, 24308}, {22065, 27958}, {25010, 25962}, {25978, 26558}, {27627, 27641}, {28244, 28252}
X(28288) lies on these lines: {2, 38}, {44, 583}, {58, 87}, {238, 27678}, {404, 1582}, {748, 4228}, {986, 17383}, {1001, 27638}, {1125, 3778}, {1193, 1386}, {1393, 17278}, {2292, 4657}, {3123, 3923}, {3216, 20964}, {4265, 4471}, {6763, 21371}, {9025, 23578}, {10527, 24744}, {15481, 28257}, {16604, 20459}, {16706, 24443}, {16709, 17250}, {17164, 27011}, {17279, 22220}, {19582, 26143}, {20966, 29684}, {21330, 29637}, {25591, 26107}
X(28289) lies on these lines: {2, 6}, {46, 978}, {63, 21796}, {216, 30675}, {238, 30944}, {392, 1193}, {1409, 3911}, {1724, 28238}, {2176, 17740}, {3216, 22076}, {3306, 31198}, {13731, 27660}, {26723, 30006}, {27635, 28250}
X(28290) lies on these lines:
Points on circumcircle and line at infinity: X(28145)-X(28236)
Suppose that X = x : y : z is a point on the line at infinity. All the lines that meet in X are parallel, so that X can be regarded as a direction in the plane of the reference triangle ABC. Let X' be the isogonal conjugate of X, so that X' lies on the circumcircle. Let X'' be the circumcircle-antipode of X', and let X''' be its isogonal conjugate, on the line at infinity. As a direction, X''' is perpendicular to X. In this section, X is given by the form h(-2a^2 + b^2 + c^2) + k(-2bc + ab + ac) : : , where h and k are constants, and K is given the name Point Porrima(h,k). See also the preamble just before X(28145). (Clark Kimberling, November 19, 2018)
In the table below, Columns 1 and 2 show h and k.
Column 3. h(-2a^2 + b^2 + c^2) + k(-2bc + ab + ac ) : : , on infinity line, referenced below as x : y : z
Column 4. (isogonal conjugate of x : y : z) = a^2/x + b^2/y + c^2/z : : on circumcircle, referenced below as u : v : w
Column 5. (antipode of u : v : w) = (a^2+b^2-c^2)(a^2-b^2+c^2)u + 2a^2 (a^2-b^2-c^2)v + 2a^2 (a^2-b^2-c^2)w : : on circumcircle, referenced below as u1 : v1 : w1
Column 6. (isogonal conjugate of u1 : v1 : w1) = a^2/u1 + b^2/v1 + c^2/w1
For each row, let X be the point in Column 3 and X' the point in Column 6. Let U be any point in the finite plane of ABC. Then the lines UX and UX' are perpendicular.
h | k | Column 3 | Column 4 | Column 5 | Column 6 |
---|---|---|---|---|---|
1 | 1 | 527 | 2291 | 28291 | 28292 |
1 | 2 | 545 | 2384 | 28293 | 28294 |
1 | 3 | 17132 | 17222 | 28295 | 28296 |
1 | 4 | 28297 | 28298 | 28299 | 28300 |
1 | 5 | 28301 | 28302 | 28303 | 28304 |
1 | -1 | 519 | 106 | 1293 | 3667 |
1 | -2 | 4971 | 8700 | 28305 | 28306 |
1 | -3 | 17133 | 17223 | 28307 | 28308 |
1 | -4 | 28309 | 28310 | 28311 | 28312 |
1 | -5 | 28313 | 28314 | 28315 | 28316 |
2 | 1 | 4715 | 28317 | 28318 | 28319 |
2 | 3 | 4912 | 8696 | 28320 | 28321 |
2 | 5 | 28322 | 28323 | 28324 | 28325 |
2 | -1 | 4725 | 28326 | 28327 | 28328 |
2 | -3 | 28329 | 28330 | 28331 | 28332 |
3 | 2 | 28333 | 28334 | 28335 | 28336 |
3 | -2 | 28337 | 28338 | 28339 | 28340 |
X(28291) lies on the circumcircle and these lines:
X(28291) = isogonal conjugate of X(28292)
X(28291) = circumcircle-antipode of X(2291)
X(28291) = perspector of ABC and the triangle formed by reflecting line X(2)X(7) in the sides of ABC
X(28292) lies on these lines: {1, 3676}, {3, 15599}, {4, 3064}, {8, 4468}, {10, 4521}, {30, 511}, {40, 649}, {581, 23655}, {663, 14837}, {885, 3577}, {944, 23726}, {946, 3835}, {962, 20295}, {1512, 14330}, {4162, 7178}, {4761, 8611}, {4827, 14324}, {5592, 11068}, {6332, 21302}, {6545, 16200}, {11525, 21129}, {20070, 26853}
X(28292) = isogonal conjugate of X(28291)
X(28293) lies on the circumcircle and these lines:
X(28293) = isogonal conjugate of X(28294)
X(28293) = circumcircle-antipode of X(2384)
X(28294) lies on these lines: {1, 4927}, {10, 14425}, {30, 511}, {676, 4049}, {9123, 24809}, {9185, 24810}
X(28294) = isogonal conjugate of X(28293)
X(28295) lies on the circumcircle and these lines:
X(28295) = isogonal conjugate of X(28296)
X(28295) = circumcircle-antipode of X(17222)
X(28296) lies on these lines: {30, 511}, {3424, 4049}, {3429, 5466}
X(28296) = isogonal conjugate of X(28295)
X(28297) lies on these lines: {2, 4398}, {30, 511}, {190, 4395}, {192, 17392}, {320, 4409}, {594, 17254}, {1086, 17264}, {1266, 4422}, {1278, 4399}, {1698, 4364}, {3589, 3729}, {3616, 4363}, {3617, 4419}, {3623, 4454}, {3631, 17276}, {3635, 4796}, {3644, 17365}, {3663, 17359}, {3943, 4440}, {4346, 17269}, {4361, 6172}, {4373, 17265}, {4429, 24441}, {4461, 17255}, {4472, 19862}, {4478, 6646}, {4643, 4668}, {4664, 29622}, {4686, 17332}, {4718, 17390}, {4740, 17330}, {4764, 17362}, {4788, 17388}, {6173, 17243}, {6329, 17351}, {6707, 17116}, {7321, 29575}, {16834, 20583}, {17119, 20073}, {17281, 20582}, {17337, 25269}, {17369, 17399}
X(28297) = isogonal conjugate of X(28298)
X(28298) lies on the circumcircle and these lines:
X(28298) = isogonal conjugate of X(28297)
X(28298) = circumcircle-antipode of X(28299)
X(28299) lies on the circumcircle and these lines:
X(28299) = isogonal conjugate of X(28300)
X(28299) = circumcircle-antipode of X(28298)
X(28300) lies on these lines: {30, 511}
X(28300) = isogonal conjugate of X(28299)
X(28301) lies on these lines: {2, 1266}, {10, 24441}, {30, 511}, {239, 17487}, {551, 4363}, {903, 3912}, {1086, 4908}, {1125, 10022}, {1278, 3686}, {1644, 24407}, {1731, 3929}, {1738, 19875}, {2321, 3620}, {3008, 4370}, {3241, 4454}, {3618, 3729}, {3644, 17378}, {3663, 3763}, {3664, 4718}, {3679, 4419}, {3707, 20073}, {3828, 4364}, {3879, 4788}, {3943, 4887}, {3950, 17313}, {4058, 17255}, {4060, 6646}, {4072, 7232}, {4346, 4873}, {4398, 17342}, {4409, 17374}, {4416, 4764}, {4431, 17271}, {4440, 17310}, {4480, 4700}, {4643, 4669}, {4665, 4745}, {4686, 17330}, {4795, 17318}, {5750, 17320}, {6666, 17262}, {17355, 17382}, {17488, 29617}
X(28301) = isogonal conjugate of X(28302)
X(28302) lies on the circumcircle and these lines:
X(28302) = isogonal conjugate of X(28301)
X(28302) = circumcircle-antipode of X(28303)
X(28303) lies on the circumcircle and these lines:
X(28303) = isogonal conjugate of X(28304)
X(28303) = circumcircle-antipode of X(28302)
X(28304) lies on these lines: {30, 511}, {4401, 9708}
X(28304) = isogonal conjugate of X(28303)
X(28305) lies on the circumcircle and these lines:
X(28305) = isogonal conjugate of X(28306)
X(28305) = circumcircle-antipode of X(8700)
X(28306) lies on these lines: {30, 511}
X(28306) = isogonal conjugate of X(28305)
X(28307) lies on the circumcircle and these lines:
X(28307) = isogonal conjugate of X(28308)
X(28307) = circumcircle-antipode of X(17223)
X(28308) lies on these lines: {30, 511}
X(28308) = isogonal conjugate of X(28307)
X(28309) lies on these lines: {1, 10022}, {2, 3943}, {8, 24441}, {30, 511}, {45, 4405}, {192, 4399}, {239, 4370}, {551, 4472}, {594, 17320}, {903, 6542}, {1086, 17310}, {1266, 4727}, {1278, 17378}, {2321, 17382}, {3241, 4363}, {3589, 3875}, {3631, 17274}, {3644, 17333}, {3679, 4364}, {3828, 25358}, {3932, 19875}, {4072, 17356}, {4360, 7227}, {4361, 18230}, {4422, 4908}, {4431, 17045}, {4452, 17309}, {4454, 20049}, {4478, 17246}, {4643, 4677}, {4659, 4795}, {4686, 17390}, {4708, 4745}, {4718, 17332}, {4740, 17392}, {4764, 17365}, {4788, 17334}, {4852, 6329}, {6707, 17319}, {7263, 17313}, {8028, 27921}, {17151, 17243}, {17301, 20582}, {17342, 17366}, {17487, 20016}
X(28309) = isogonal conjugate of X(28310)
X(28310) lies on the circumcircle and these lines:
X(28310) = isogonal conjugate of X(28309)
X(28310) = circumcircle-antipode of X(28311)
X(28311) lies on the circumcircle and these lines:
X(28311) = isogonal conjugate of X(28312)
X(28311) = circumcircle-antipode of X(28310)
X(28312) lies on these lines: {30, 511}
X(28312) = isogonal conjugate of X(28311)
X(28313) lies on these lines: {2, 3950}, {30, 511}, {1125, 17318}, {1266, 17297}, {1278, 3664}, {2321, 3763}, {3008, 17160}, {3244, 4659}, {3618, 3875}, {3620, 3663}, {3625, 4419}, {3626, 17251}, {3633, 4454}, {3634, 4665}, {3635, 4363}, {3644, 17346}, {3672, 4058}, {3686, 4718}, {3729, 4856}, {3828, 4078}, {3879, 4764}, {3946, 17359}, {4000, 4072}, {4029, 17119}, {4060, 17246}, {4133, 4353}, {4364, 4691}, {4416, 4788}, {4452, 21255}, {4480, 20016}, {4643, 4701}, {4686, 17392}, {4740, 29574}, {4887, 6542}, {4896, 29605}, {4909, 17116}, {4980, 18698}, {6173, 17314}, {17117, 25072}, {17399, 29604}, {24199, 29575}
X(28313) = isogonal conjugate of X(28310)
X(28314) lies on the circumcircle and these lines:
X(28314) = isogonal conjugate of X(28313)
X(28314) = circumcircle-antipode of X(28315)
X(28315) lies on the circumcircle and these lines:
X(28315) = isogonal conjugate of X(28316)
X(28315) = circumcircle-antipode of X(28314)
X(28316) lies on these lines: {10, 14351}, {30, 511}
X(28316) = isogonal conjugate of X(28315)
X(28317) lies on the circumcircle and these lines:
X(28317) = isogonal conjugate of X(4715)
X(28317) = circumcircle-antipode of X(28318)
X(28318) lies on the circumcircle and these lines:
X(28318) = isogonal conjugate of X(28319)
X(28318) = circumcircle-antipode of X(28317)
X(28319) lies on these lines: {30, 511}
X(28319) = isogonal conjugate of X(28318)
X(28320) lies on the circumcircle and these lines:
X(28320) = isogonal conjugate of X(28321)
X(28320) = circumcircle-antipode of X(28319)
X(28321) lies on these lines: {30, 511}
X(28321) = isogonal conjugate of X(28320)
X(28322) lies on these lines: {30, 511}, {190, 6687}, {3618, 17301}, {3620, 17229}, {3622, 4454}, {3624, 4363}, {3644, 4889}, {3729, 3763}, {3834, 4440}, {3912, 4409}, {4419, 4708}, {4643, 4678}, {4659, 17251}, {4681, 17392}, {4686, 17346}, {4718, 17389}, {4726, 17334}, {4796, 20057}, {6172, 17348}, {6173, 17262}, {17239, 17254}, {17258, 28633}, {17294, 17345}, {19876, 24441}
X(28322) = isogonal conjugate of X(28323)
X(28323) lies on the circumcircle and these lines:
X(28323) = isogonal conjugate of X(28322)
X(28323) = circumcircle-antipode of X(28324)
X(28324) lies on the circumcircle and these lines:
X(28324) = isogonal conjugate of X(28316)
X(28324) = circumcircle-antipode of X(28314)
X(28325) lies on these lines: {30, 511}
X(28325) = isogonal conjugate of X(28324)
X(28326) lies on the circumcircle and these lines:
X(28326) = isogonal conjugate of X(4725)
X(28326) = circumcircle-antipode of X(28327)
X(28327) lies on the circumcircle and these lines:
X(28327) = isogonal conjugate of X(28328)
X(28327) = circumcircle-antipode of X(28326)
X(28328) lies on these lines: {10, 4949}, {30, 511}
X(28328) = isogonal conjugate of X(28327)
X(28329) lies on these lines: {2, 3723}, {8, 4708}, {30, 511}, {37, 29617}, {44, 20016}, {75, 4889}, {145, 4670}, {239, 4727}, {594, 4464}, {597, 2321}, {599, 3875}, {1992, 17351}, {2345, 4910}, {3175, 21873}, {3244, 4665}, {3621, 4643}, {3623, 4798}, {3625, 4364}, {3632, 4690}, {3633, 4363}, {3635, 4472}, {3663, 22165}, {3729, 15534}, {3739, 17388}, {3823, 4716}, {3834, 6542}, {3879, 4726}, {3946, 20582}, {4007, 17385}, {4021, 4478}, {4060, 17045}, {4360, 17239}, {4361, 20195}, {4377, 17144}, {4399, 4698}, {4405, 29571}, {4419, 20053}, {4460, 4657}, {4641, 20046}, {4644, 20014}, {4677, 17251}, {4681, 17362}, {4686, 17377}, {4688, 17389}, {4691, 25358}, {4718, 17363}, {4739, 17390}, {4748, 20052}, {4795, 20049}, {4796, 20050}, {4856, 20583}, {4898, 17259}, {5212, 12035}, {11160, 17276}, {15533, 17345}, {16834, 17359}, {17119, 29605}, {17151, 17376}, {17160, 17374}, {17237, 20055}, {17294, 17382}, {17301, 21356}, {17309, 17356}, {17314, 17348}, {20058, 27921}
X(28329) = isogonal conjugate of X(28330)
X(28330) lies on the circumcircle and these lines:
X(28330) = isogonal conjugate of X(28329)
X(28330) = circumcircle-antipode of X(28331)
X(28331) lies on the circumcircle and these lines:
X(28331) = isogonal conjugate of X(28332)
X(28331) = circumcircle-antipode of X(28330)
X(28332) lies on these lines: {30, 511}
X(28332) = isogonal conjugate of X(28331)
X(28333) lies on these lines: {2, 7232}, {30, 511}, {44, 7238}, {144, 17243}, {320, 4422}, {597, 17274}, {1086, 20072}, {1125, 4796}, {1698, 4472}, {3589, 17345}, {3616, 4364}, {3617, 4363}, {3623, 4419}, {3629, 16834}, {3630, 3729}, {3631, 17351}, {3664, 4755}, {3928, 21363}, {4361, 20059}, {4370, 17297}, {4409, 17160}, {4416, 4688}, {4440, 4969}, {4454, 20052}, {4480, 17374}, {4488, 17309}, {4659, 4816}, {4664, 17334}, {4665, 4668}, {4670, 19862}, {4740, 17362}, {4741, 17369}, {6172, 17313}, {6329, 17235}, {6646, 7277}, {7227, 17344}, {7263, 16833}, {8584, 17301}, {10022, 17251}, {17246, 29584}, {17258, 29580}, {17281, 22165}, {17329, 17398}, {17333, 17392}, {17336, 29582}, {17340, 17361}, {17376, 29600}
X(28333) = isogonal conjugate of X(28334)
X(28334) lies on the circumcircle and these lines:
X(28334) = isogonal conjugate of X(28333)
X(28334) = circumcircle-antipode of X(28335)
X(28335) lies on the circumcircle and these lines:
X(28335) = isogonal conjugate of X(28336)
X(28335) = circumcircle-antipode of X(28334)
X(28336) lies on these lines: {30, 511}
X(28336) = isogonal conjugate of X(28335)
X(28337) lies on these lines: {1, 25358}, {2, 4445}, {8, 4472}, {30, 511}, {141, 16834}, {145, 4364}, {319, 17045}, {597, 17294}, {1086, 20016}, {1100, 4478}, {1213, 29580}, {3241, 17251}, {3244, 4690}, {3589, 17372}, {3621, 4363}, {3625, 4670}, {3629, 17299}, {3630, 3875}, {3631, 4852}, {3632, 4665}, {3633, 4643}, {3635, 4708}, {3686, 4755}, {3759, 29577}, {3782, 20046}, {3879, 4399}, {4395, 17374}, {4405, 4675}, {4419, 20014}, {4422, 4969}, {4460, 17255}, {4464, 17344}, {4470, 20052}, {4545, 4909}, {4644, 20053}, {4664, 17332}, {4668, 4798}, {4740, 17365}, {4746, 4758}, {4851, 16833}, {4856, 6329}, {4910, 17272}, {4916, 17259}, {5839, 17243}, {8584, 17281}, {17275, 29597}, {17301, 22165}, {17318, 20050}, {17330, 17389}, {17337, 17386}, {17348, 29600}, {17360, 17395}, {17366, 17373}, {17369, 20055}, {17392, 29617}, {20011, 25349}, {20012, 25350}, {20015, 25355}, {20049, 24441}
X(28337) = isogonal conjugate of X(28338)
X(28338) lies on the circumcircle and these lines:
X(28338) = isogonal conjugate of X(28337)
X(28338) = circumcircle-antipode of X(28339)
X(28339) lies on the circumcircle and these lines:
X(28339) = isogonal conjugate of X(28336)
X(28339) = circumcircle-antipode of X(28334)
X(28340) lies on these lines: {30, 511}
X(28340) = isogonal conjugate of X(28339)
As a point on the Euler line, X(28341) has Shinagawa coefficients {92 R^6-99 R^4 SW-4 SW^3-R^2 (S^2-35 SW^2), -132 R^6+157 R^4 SW-4 S^2 SW+8 SW^3+21 R^2 (S^2-3 SW^2)}.
See Tran Quang Hung and Ercole Suppa, Hyacinthos 28654.
X(28341) lies on this line: {2,3}
As a point on the Euler line, X(28342) has Shinagawa coefficients {(5 R^2 - 2 SW) (32 R^4 - S^2 - 20 R^2 SW + 3 SW^2), -192 R^6 + 212 R^4 SW - 14 S^2 SW + 10 SW^3 + R^2 (51 S^2 - 81 SW^2)}.
See Tran Quang Hung and Ercole Suppa, Hyacinthos 28654.
X(28342) lies on this line: {2,3}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28655.
X(28343) lies on these lines: {6,74}, {127,3589}, {132,1503}, {141,6720}, {518,11722}, {611,13312}, {613,13311}, {1297,5085}, {1384,14649}, {1428,3320}, {1691,13195}, {1974,13166}, {2330,6020}, {2492,6593}, {2794,5480}, {2799,5026}, {3618,13219}, {5039,14676}, {5050,13310}, {8744,18374}, {9019,10317}, {9142,21309}, {9157,17810}, {10749,14561}, {11610,14495}, {12017,13115}, {12145,19124}, {12384,25406}, {13200,14853}, {13221,16475}, {16225,19161}, {19130,19163}
X(28343) = midpoint of X(6) and X(112)
X(28343) = reflection of X(i) in X(j) for these {i,j}: {127,3589}, {141,6720}, {19163,19130}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28655.
X(28344) lies on these lines: {7,104}, {142,5514}, {658,13257}, {971,1543}, {972,21151}, {1360,3323}, {3321,12831}, {4617,15252}, {6366,10427}
X(28344) = midpoint of X(7) and X(934)
X(28344) = reflection of X(5514) in X(142)
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28655.
X(28345) lies on these lines: {2,14154}, {9,48}, {103,21153}, {116,6666}, {118,516}, {142,6710}, {150,18230}, {518,11712}, {528,21090}, {954,11028}, {1001,2809}, {3022,15837}, {3887,6594}, {5375,16586}, {5526,15730}
X(28345) = midpoint of X(9) and X(101)
X(28345) = reflection of X(i) in X(j) for these {i,j}: {116,6666}, {142,6710}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28655.
X(28346) lies on these lines: {2,1282}, {10,98}, {103,10164}, {116,3634}, {118,516}, {120,24685}, {150,1698}, {152,165}, {519,11712}, {544,3828}, {551,10695}, {1125,2809}, {1362,3911}, {2786,9508}, {2801,3035}, {2808,6684}, {2810,6686}, {3033,6685}, {3842,6690}, {4712,24582}, {6541,17927}, {9780,20096}, {10175,10739}, {11028,13405}, {13411,18413}, {14543,21914}
X(28346) = midpoint of X(10) and X(101)
X(28346) = reflection of X(i) in X(j) for these {i,j}: {116,3634}, {1125,6710}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28655.
X(28347) lies on these lines: {11,2720}, {521,3035}, {522,10271}, {1737,15524}, {2745,21154}, {3660,6001}
X(28347) = midpoint of X(i) and X(j) for these {i,j}: {11,2720}, {1737,15524}
Collineation mappings involving Gemini triangle 81: X(28348)-X(28403)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 81, as in centers X(28348)-X(28403). Then
m(X) = a(b^2+c^2+ab+ac)x + ac(b-c-a)y - ab(c-b-a)z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 19, 2018)
X(28348) lies on these lines: {1, 15654}, {2, 3}, {6, 10457}, {31, 56}, {36, 1044}, {51, 386}, {55, 10448}, {57, 22344}, {58, 184}, {73, 26892}, {99, 30092}, {172, 205}, {198, 2268}, {228, 3601}, {238, 27663}, {244, 28109}, {394, 17209}, {577, 1474}, {942, 23206}, {958, 32917}, {1324, 8185}, {1394, 1410}, {1403, 3924}, {1423, 3220}, {1451, 26889}, {1465, 1828}, {1468, 2187}, {1470, 28364}, {1486, 16872}, {1495, 4257}, {1616, 23404}, {1829, 17102}, {1951, 1973}, {2099, 23844}, {2183, 22072}, {2351, 3437}, {2646, 3185}, {2933, 20989}, {2975, 23853}, {3000, 5204}, {3218, 23085}, {3286, 28365}, {3304, 18613}, {3868, 20805}, {3937, 4306}, {4255, 17810}, {4267, 10458}, {4512, 10882}, {5172, 23843}, {5703, 21319}, {8069, 9798}, {8071, 11365}, {9310, 20471}, {10470, 17194}, {15494, 22768}, {15803, 23205}, {19133, 22769}, {19735, 19757}, {19811, 19840}, {20999, 22654}, {24541, 31394}, {25524, 32772}
X(28349) lies on these lines: {2, 3}, {46, 21214}, {51, 3216}, {65, 244}, {226, 22344}, {238, 27657}, {498, 15654}, {748, 28271}, {1155, 28352}, {2646, 10459}, {4292, 23205}, {5135, 28369}, {5432, 23361}, {5433, 23383}, {5905, 23085}, {11374, 23206}, {13411, 21319}, {15950, 23844}, {17102, 21318}, {26066, 33119}, {28269, 28275}
X(28350) lies on these lines: {2, 6}, {7, 2176}, {77, 16968}, {142, 2300}, {213, 3664}, {238, 7184}, {269, 292}, {390, 1616}, {583, 16726}, {614, 3056}, {991, 9840}, {1009, 18792}, {1086, 16685}, {1191, 4307}, {1201, 1279}, {1376, 25571}, {1456, 28389}, {1458, 28386}, {1471, 28385}, {1716, 7290}, {1740, 8299}, {2269, 3752}, {2275, 27626}, {2295, 10436}, {3008, 20228}, {3230, 3663}, {3290, 24471}, {3672, 16969}, {3780, 3879}, {4000, 21769}, {4503, 5257}, {4909, 16971}, {5222, 21785}, {6610, 28387}, {11112, 16483}, {13329, 19514}, {13724, 28357}, {16693, 21002}, {17183, 26978}, {20978, 28361}, {21059, 28353}, {28356, 28360}, {28366, 28371}, {28367, 28390}, {28384, 28397}
X(28351) lies on these lines: {2, 7}, {40, 7613}, {69, 30036}, {71, 1086}, {219, 7225}, {573, 4859}, {748, 1473}, {1042, 28265}, {1122, 1212}, {1201, 1279}, {1334, 3663}, {1475, 3664}, {1742, 7963}, {2183, 17278}, {2260, 4675}, {2269, 4000}, {2347, 3008}, {2975, 25903}, {3000, 5204}, {3169, 4402}, {3208, 4452}, {3217, 24328}, {3242, 3779}, {3501, 31995}, {3691, 17272}, {3730, 4862}, {3945, 17474}, {4253, 4888}, {6210, 16020}, {7146, 24554}, {8647, 24309}, {9310, 25878}, {16609, 20905}, {17451, 24471}, {20895, 21232}, {20967, 28253}, {21061, 21255}, {21296, 21384}, {21363, 24175}, {22097, 24789}, {22345, 27627}, {28371, 28395}, {30048, 30941}
X(28352) lies on these lines: {1, 2}, {9, 23649}, {31, 25524}, {36, 7419}, {38, 25917}, {44, 2260}, {56, 748}, {72, 17449}, {106, 5258}, {238, 5253}, {244, 960}, {392, 24443}, {404, 902}, {443, 33104}, {474, 3915}, {672, 16604}, {740, 30044}, {750, 1191}, {896, 28385}, {958, 8688}, {1015, 3691}, {1042, 7288}, {1155, 28349}, {1423, 15601}, {1450, 11375}, {1457, 5433}, {1616, 4413}, {1739, 3884}, {1962, 4719}, {2230, 28359}, {2234, 28358}, {2238, 17474}, {2269, 28244}, {2635, 13724}, {2650, 3742}, {2975, 17123}, {3000, 5204}, {3057, 16602}, {3120, 24178}, {3246, 28375}, {3333, 32912}, {3452, 23675}, {3550, 17572}, {3579, 19514}, {3678, 4694}, {3698, 31197}, {3756, 21677}, {3777, 4724}, {3816, 21935}, {3869, 17063}, {3876, 3976}, {3877, 24174}, {3890, 24440}, {3898, 3987}, {3913, 9350}, {3953, 10176}, {4188, 8616}, {4189, 15485}, {4300, 10165}, {4414, 31435}, {4423, 10448}, {4642, 16610}, {4647, 14752}, {4695, 9957}, {4696, 24003}, {4968, 25079}, {5126, 28377}, {5250, 11512}, {5255, 17531}, {5710, 17124}, {6684, 32486}, {9840, 13624}, {11110, 17187}, {11376, 17278}, {11684, 18201}, {15254, 28366}, {15971, 18483}, {16408, 16483}, {17155, 19582}, {17588, 18792}, {24165, 25253}, {24631, 26689}, {25681, 33127}, {25914, 32781}, {27455, 28400}, {28383, 28388}
X(28353) lies on these lines: {2, 11}, {40, 1054}, {65, 244}, {71, 20331}, {88, 28370}, {659, 1769}, {851, 902}, {1086, 23845}, {1283, 9840}, {1284, 3011}, {2218, 6187}, {2246, 2264}, {3057, 25939}, {3271, 4551}, {3550, 16056}, {3722, 10459}, {3757, 18235}, {3915, 27622}, {4192, 8616}, {4433, 30059}, {4571, 24820}, {5255, 28258}, {8240, 24987}, {13097, 33152}, {13405, 20967}, {14936, 18785}, {15253, 23981}, {15507, 17719}, {17724, 21320}, {19133, 28369}, {20359, 25941}, {20999, 22654}, {21059, 28350}, {22344, 23675}, {22345, 28027}
X(28354) lies on these lines: {2, 3}
X(28355) lies on these lines: {2, 3}, {28399, 28401}
X(28356) lies on these lines: {2, 31}, {4, 3915}, {72, 10459}, {256, 7191}, {500, 1064}, {595, 3822}, {614, 6210}, {902, 4192}, {1457, 28386}, {2209, 3434}, {4279, 33109}, {14009, 33106}, {28350, 28360}, {28361, 28393}
X(28357) lies on these lines: {2, 32}, {13724, 28350}, {28367, 28384}, {28392, 28397}
X(28358) lies on these lines: {1, 17792}, {2, 37}, {6, 1423}, {7, 2275}, {39, 3663}, {69, 17448}, {86, 16744}, {142, 17053}, {238, 8424}, {354, 3116}, {518, 24575}, {732, 1107}, {893, 1447}, {940, 19591}, {980, 17304}, {995, 31394}, {1001, 1740}, {1015, 3664}, {1086, 11672}, {1100, 28369}, {1104, 9840}, {1193, 1284}, {1201, 1279}, {1432, 3863}, {1500, 4021}, {1755, 2260}, {1909, 26149}, {2092, 3946}, {2176, 27626}, {2227, 3720}, {2228, 10459}, {2234, 28352}, {2236, 3683}, {2309, 3123}, {3008, 21796}, {3247, 19584}, {3778, 20358}, {3782, 30076}, {3875, 20691}, {4360, 17752}, {4361, 21857}, {4384, 21892}, {5069, 17276}, {8610, 17245}, {9025, 18170}, {9599, 21279}, {10436, 16604}, {15973, 23537}, {15983, 17344}, {16696, 17235}, {16725, 16726}, {16975, 17272}, {17120, 24625}, {20347, 23632}, {20544, 24212}, {21826, 25072}, {23659, 27846}, {24735, 26041}, {25298, 26756}, {28364, 28378}
X(28359) lies on these lines: {2, 39}, {2228, 10459}, {2230, 28352}, {13724, 28350}, {16584, 26563}, {20911, 21327}, {28384, 28390}
X(28360) lies on these lines: {1, 2}, {672, 17053}, {872, 4883}, {902, 4210}, {1458, 28387}, {1464, 28389}, {2209, 27639}, {2274, 4423}, {2309, 5284}, {3052, 20470}, {3725, 3742}, {3915, 4191}, {16059, 16483}, {17474, 21753}, {28350, 28356}, {28368, 28393}
X(28361) lies on these lines: {1, 2}, {748, 22343}, {902, 4191}, {1042, 28389}, {2274, 8167}, {2309, 4423}, {3915, 16059}, {4365, 20892}, {16409, 16483}, {20978, 28350}, {22053, 28362}, {28356, 28393}, {28364, 28375}, {30090, 32915}
X(28362) lies on these lines: {2, 44}, {69, 24735}, {142, 4274}, {238, 4252}, {513, 25537}, {1201, 1279}, {1418, 1423}, {3246, 21214}, {17374, 30059}, {22053, 28361}
X(28363) lies on these lines: {2, 45}, {1201, 1279}
X(28364) lies on these lines: {1, 5943}, {2, 11}, {56, 28376}, {73, 1104}, {238, 3955}, {614, 1284}, {982, 15507}, {1470, 28348}, {2077, 19514}, {3576, 9840}, {3915, 28238}, {5272, 31394}, {5919, 10459}, {8240, 19861}, {8731, 15485}, {11019, 20967}, {13097, 17591}, {16056, 33106}, {17597, 21320}, {22345, 28018}, {28350, 28356}, {28358, 28378}, {28361, 28375}
X(28365) lies on these lines: {1, 20765}, {2, 6}, {3, 18792}, {55, 1740}, {56, 87}, {75, 21769}, {171, 25528}, {192, 16969}, {219, 20258}, {239, 21785}, {386, 19519}, {405, 5145}, {474, 4279}, {748, 22343}, {894, 2176}, {902, 16395}, {918, 24100}, {1001, 1201}, {1376, 2209}, {1575, 22370}, {1914, 1958}, {2275, 28287}, {2300, 10436}, {3230, 3729}, {3286, 28348}, {3736, 19533}, {4110, 10027}, {4361, 20892}, {4363, 16685}, {4384, 20228}, {4513, 17787}, {5228, 30097}, {5706, 15973}, {15485, 16418}, {16343, 17187}, {16345, 18169}, {16394, 16483}, {16502, 24549}, {16678, 16690}, {28382, 28392}, {30092, 30940}
X(28366) lies on these lines: {2, 37}, {56, 87}, {71, 28283}, {141, 8610}, {210, 24575}, {239, 21892}, {244, 30986}, {894, 16604}, {988, 3646}, {1015, 4416}, {1086, 30037}, {1107, 17248}, {1201, 1386}, {1574, 4431}, {1654, 17448}, {1696, 4383}, {1716, 21010}, {1740, 24456}, {2260, 4641}, {2275, 17257}, {3009, 17792}, {4357, 17053}, {4360, 21857}, {4941, 16571}, {7201, 17063}, {11683, 26273}, {15254, 28352}, {16726, 17345}, {16744, 27644}, {16969, 22370}, {17023, 21796}, {17065, 20358}, {17247, 24598}, {17319, 20691}, {17868, 21951}, {19591, 21001}, {20258, 24162}, {21352, 22174}, {21826, 25101}, {24199, 31198}, {24739, 26963}, {25624, 31340}, {27424, 32033}, {28350, 28371}, {28379, 28388}
X(28367) lies on these lines: {2, 39}, {1015, 17137}, {1201, 23493}, {3286, 28348}, {8620, 17760}, {13724, 28392}, {15254, 28352}, {16744, 24512}, {21214, 28400}, {28350, 28390}, {28357, 28384}
X(28368) lies on these lines: {2, 6}, {30, 16483}, {500, 1064}, {511, 614}, {582, 19514}, {1423, 7106}, {2176, 5905}, {2245, 16700}, {2275, 27661}, {2300, 5249}, {3052, 15447}, {3782, 16685}, {4754, 26223}, {5336, 6505}, {5429, 21214}, {8731, 17187}, {19785, 21769}, {20228, 26723}, {26747, 28283}, {28360, 28393}
X(28369) lies on these lines: {1, 256}, {2, 6}, {30, 1480}, {37, 1959}, {42, 2227}, {73, 8766}, {171, 2330}, {182, 19514}, {192, 698}, {213, 4416}, {221, 388}, {390, 29181}, {495, 611}, {500, 5266}, {518, 2650}, {538, 3729}, {542, 6126}, {572, 5337}, {573, 980}, {651, 2298}, {732, 894}, {899, 25144}, {1009, 5145}, {1045, 4433}, {1100, 28358}, {1107, 28287}, {1193, 27455}, {1201, 1386}, {1350, 19765}, {1419, 5269}, {1428, 28385}, {1444, 2305}, {1958, 4386}, {2092, 3882}, {2176, 17257}, {2245, 16696}, {2269, 3666}, {2276, 22370}, {2293, 3744}, {2300, 4357}, {2309, 8299}, {2663, 7077}, {3664, 24237}, {3758, 18040}, {3779, 24308}, {3780, 17363}, {3782, 17220}, {3879, 22008}, {4019, 16720}, {4038, 8540}, {4274, 16574}, {4340, 6776}, {4364, 16685}, {4413, 25571}, {4447, 20964}, {4644, 20348}, {4667, 20258}, {5039, 16783}, {5135, 28349}, {5969, 17319}, {8731, 18169}, {9001, 28374}, {9010, 28373}, {9013, 27469}, {9022, 20896}, {9037, 28377}, {12215, 17103}, {12589, 26098}, {13745, 16483}, {16475, 21214}, {17018, 25304}, {17023, 20228}, {17149, 24514}, {17321, 21769}, {18675, 28379}, {19133, 28353}, {20963, 30038}, {21759, 27436}, {21785, 26626}, {25282, 31087}
X(28370) lies on these lines: {1, 2}, {56, 7419}, {65, 9335}, {88, 28353}, {100, 1616}, {106, 1724}, {238, 32577}, {404, 16483}, {960, 4392}, {962, 32486}, {1191, 5253}, {1420, 28387}, {1457, 5265}, {3246, 28395}, {3304, 32911}, {3315, 12635}, {3445, 4383}, {3752, 3890}, {3899, 24167}, {3915, 4188}, {3952, 17480}, {4551, 6049}, {5126, 28376}, {5221, 28385}, {5255, 17572}, {5303, 8572}, {5573, 11682}, {7290, 28402}, {8616, 17548}, {8715, 16489}, {9369, 26688}, {11376, 33129}, {12053, 33131}, {12702, 19514}, {14923, 16610}, {16969, 17756}, {17539, 18792}, {23675, 31053}, {28386, 28393}
X(28371) lies on these lines: {1, 2}, {902, 19308}, {1334, 24598}, {1959, 3290}, {2106, 17209}, {3915, 11329}, {3960, 4813}, {4755, 5109}, {5255, 25946}, {8616, 21508}, {16412, 16483}, {17053, 28287}, {17474, 32911}, {28350, 28366}, {28351, 28395}, {28388, 28397}
X(28372) lies on these lines: {2, 661}, {513, 25537}, {514, 24622}, {649, 905}, {3907, 25299}, {4077, 30097}, {27453, 27468}, {30049, 30095}
X(28373) lies on these lines: {2, 667}, {513, 28375}, {659, 29274}, {663, 28398}, {669, 28470}, {3309, 9840}, {3669, 28386}, {4083, 10459}, {4367, 28399}, {8639, 30094}, {8643, 25537}, {8678, 28374}, {9010, 28369}
X(28374) lies on these lines: {2, 650}, {351, 29198}, {513, 669}, {514, 647}, {812, 30094}, {905, 28372}, {2525, 23876}, {3265, 3910}, {3669, 16754}, {3709, 4468}, {3804, 6005}, {3960, 4932}, {4017, 4724}, {4040, 8642}, {4380, 16751}, {4391, 27293}, {4782, 31947}, {6372, 8651}, {8641, 23696}, {8678, 28373}, {8760, 9840}, {9001, 28369}, {9015, 15985}, {10459, 14077}, {14838, 29302}, {17414, 29226}, {20317, 27045}, {23791, 29066}
X(28375) lies on these lines: {2, 31}, {377, 3915}, {513, 28373}, {516, 3747}, {518, 2650}, {851, 902}, {1042, 1463}, {1201, 1279}, {1284, 3009}, {1423, 2263}, {2209, 2550}, {2269, 4642}, {2975, 7184}, {3056, 3924}, {3246, 28352}, {4300, 9840}, {4349, 20985}, {5255, 26051}, {5847, 30059}, {28361, 28364}
X(28376) lies on these lines: {2, 3}, {51, 19767}, {56, 28364}, {145, 20760}, {228, 4313}, {388, 23383}, {497, 23361}, {938, 22345}, {941, 4266}, {968, 1697}, {1201, 1419}, {1610, 15494}, {1828, 17080}, {2078, 28377}, {2187, 5247}, {2975, 24320}, {3086, 15654}, {3185, 3486}, {3304, 24328}, {5126, 28370}, {5435, 22344}, {17810, 19765}, {21214, 28388}
X(23277) lies on these lines: {1, 3060}, {2, 36}, {73, 1104}, {513, 28373}, {515, 3724}, {517, 2292}, {855, 902}, {2078, 28376}, {2975, 3846}, {3920, 30366}, {5126, 28352}, {5143, 5176}, {5172, 23843}, {5258, 26064}, {9037, 28369}, {19514, 23961}, {21935, 23361}
X(28378) lies on these lines: {2, 3}, {1455, 28386}, {28358, 28364}
X(28379) lies on these lines: {2, 3}, {1423, 7106}, {18675, 28369}, {28366, 28388}
X(28380) lies on these lines:
X(28381) lies on these lines:
X(28382) lies on these lines:
X(28383) lies on these lines:
X(28384) lies on these lines: {2, 3}, {23361, 26590}, {23383, 26561}, {28350, 28397}, {28357, 28367}, {28359, 28390}
X(28385) lies on these lines:
X(28386) lies on these lines:
X(28387) lies on these lines: {2, 7}, {42, 1284}, {56, 748}, {65, 756}, {71, 4415}, {73, 1104}, {225, 1851}, {321, 4095}, {899, 1403}, {1255, 1432}, {1334, 4656}, {1405, 19735}, {1420, 28370}, {1429, 32911}, {1458, 28360}, {1469, 3720}, {2099, 10459}, {2170, 14557}, {2183, 3772}, {2347, 21361}, {2352, 2635}, {3112, 18097}, {3217, 4383}, {3663, 21363}, {3915, 4186}, {4365, 7235}, {5122, 19514}, {6610, 28350}, {9840, 24929}, {10030, 18152}, {13462, 21214}, {17720, 22097}, {18078, 18135}, {23536, 28270}
X(28388) lies on these lines:
X(28389) lies on these lines:
X(28390) lies on these lines: {2, 32}, {3246, 28352}, {28350, 28367}, {28359, 28384}
X(28391) lies on these lines:
X(28392) lies on these lines:
X(28393) lies on these lines: {1, 373}, {2, 11}, {229, 7419}, {238, 26884}, {244, 15507}, {1066, 1201}, {1284, 7292}, {1745, 13724}, {3315, 21320}, {9840, 13624}, {10459, 17460}, {15447, 20470}, {15485, 30944}, {21319, 29820}, {23383, 27657}, {28356, 28361}, {28360, 28368}, {28370, 28386}, {28392, 28400}, {28396, 28399}
X(28394) lies on these lines: {2, 101}
X(28395) lies on these lines: {2, 37}, {21, 3551}, {22, 20676}, {39, 17247}, {604, 651}, {980, 17324}, {1015, 17364}, {1201, 28397}, {1740, 3123}, {1743, 24625}, {2092, 17396}, {2176, 27678}, {2275, 6646}, {2309, 24456}, {3009, 25279}, {3217, 32911}, {3246, 28370}, {3271, 7189}, {3662, 17053}, {3663, 24598}, {3681, 24575}, {3782, 26746}, {4110, 27044}, {5069, 17258}, {8610, 17234}, {16696, 17249}, {16816, 21892}, {16975, 17252}, {17343, 17448}, {17367, 21796}, {17786, 27095}, {18044, 25534}, {24524, 26756}, {26747, 30078}, {28351, 28371}
X(28396) lies on these lines: {2, 900}, {513, 8643}, {659, 1769}, {2827, 14419}, {3738, 25569}, {4491, 14315}, {6004, 21189}, {6129, 9048}, {28393, 28399}
X(28397) lies on these lines: {2, 39}, {1201, 28395}, {2275, 31004}, {28350, 28384}, {28357, 28392}, {28371, 28388}
X(28398) lies on these lines: {2, 649}, {513, 25537}, {514, 25258}, {663, 28373}, {812, 30061}, {1423, 3676}, {4382, 29302}, {3960, 5029}, {4449, 20983}, {21191, 27193}
X(28399) lies on these lines:
X(28400) lies on these lines:
X(28401) lies on these lines:
X(28402) lies on these lines:
X(28403) lies on these lines:
Collineation mappings involving Gemini triangle 81: X(28404)-X(28441)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 82, as in centers X(28404)-X(28441). Then
m(X) = a^2(a^2-b^2-c^2)(a^2+b^2+c^2)x - b^2(a^2-b^2-c^2)(a^2+b^2-c^2)y - c^2(a^2-b^2-c^2)(a^2-b^2+c^2)a : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 26, 2018)
X(28404) lies on these lines: {1, 2}, {69, 20739}, {857, 9798}, {8192, 30840}, {16607, 21270}, {17073, 20235}, {20074, 21234}, {28405, 28434}, {28407, 28411}, {28408, 28416}, {28414, 28426}, {28420, 28421}, {28439, 28441}
X(28405) lies on these lines: {2, 3}, {68, 287}, {69, 23128}, {76, 14376}, {99, 15075}, {127, 315}, {216, 7834}, {325, 23115}, {577, 626}, {1038, 30103}, {1040, 30104}, {3284, 7759}, {3767, 6389}, {3788, 22401}, {3926, 28437}, {5158, 7829}, {6393, 28419}, {6759, 15595}, {7751, 15526}, {7763, 14961}, {7774, 22120}, {7776, 15905}, {10317, 20065}, {14880, 18437}, {28404, 28434}, {28408, 28415}
X(28406) lies on these lines: {2, 3}, {39, 6389}, {69, 23115}, {127, 32816}, {193, 22120}, {287, 6193}, {339, 6392}, {345, 28409}, {577, 7800}, {3284, 14023}, {3785, 10316}, {3926, 14376}, {3933, 20208}, {6337, 28408}, {7758, 15526}, {7767, 15905}, {7795, 22401}, {14216, 15595}, {15075, 32815}, {20080, 22121}, {28415, 28438}
X(28406) = isotomic conjugate of polar conjugate of X(36851)
X(28407) lies on these lines: {2, 3}, {69, 14965}, {76, 14961}, {127, 7752}, {183, 23115}, {194, 339}, {216, 6683}, {287, 1147}, {385, 22120}, {577, 7815}, {1060, 27020}, {1062, 26959}, {1078, 10316}, {3284, 7780}, {3934, 22401}, {6337, 28417}, {6389, 31401}, {6390, 28441}, {7763, 14376}, {7764, 15526}, {7793, 10317}, {11185, 15075}, {11272, 30258}, {12215, 28408}, {15595, 20299}, {28404, 28411}
X(28408) lies on these lines: {2, 6}, {49, 3548}, {66, 110}, {159, 858}, {441, 9723}, {511, 7505}, {1092, 24206}, {1176, 15812}, {1568, 3098}, {1974, 5972}, {3260, 17907}, {3546, 25406}, {3549, 10519}, {3564, 6640}, {3926, 28436}, {6697, 11442}, {7391, 20987}, {7558, 7999}, {8788, 28412}, {10095, 14853}, {12215, 28407}, {12272, 23327}, {14376, 28710}, {15128, 25320}, {18281, 18440}, {18626, 20915}, {19121, 31267}, {19459, 30771}, {23300, 30744}, {28404, 28416}, {28405, 28415}, {28414, 28418}, {28420, 28422}, {28433, 28441}
X(28409) lies on these lines: {1, 2}, {69, 22131}, {219, 18639}, {304, 28419}, {345, 28406}, {1375, 12410}, {2975, 28769}, {3436, 28736}, {4329, 18596}, {7289, 17170}, {8193, 24580}, {10629, 26678}, {16545, 20061}, {17742, 28739}, {18637, 20110}, {28425, 28435}
X(28410) lies on these lines:
X(28411) lies on these lines:
X(28412) lies on these lines:
X(28413) lies on these lines:
X(28414) lies on these lines:
X(28415) lies on these lines:
X(28416) lies on these lines:
X(28417) lies on these lines:
X(28418) lies on these lines:
X(28419) lies on these lines:
X(28419) = isotomic conjugate of isogonal conjugate of X(23115)
X(28420) lies on these lines:
X(28421) lies on these lines:
X(28422) lies on these lines:
X(28423) lies on these lines:
X(28424) lies on these lines:
X(28425) lies on these lines:
X(28426) lies on these lines:
X(28427) lies on these lines:
X(28428) lies on these lines:
X(28429) lies on these lines:
X(28430) lies on these lines:
X(28431) lies on these lines:
X(28432) lies on these lines:
X(28433) lies on these lines:
X(28434) lies on these lines:
X(28435) lies on these lines:
X(28436) lies on these lines:
X(28437) lies on these lines:
X(28438) lies on these lines:
X(28439) lies on these lines:
X(28439) = isotomic conjugate of polar conjugate of X(36855)
X(28440) lies on these lines:
X(28441) lies on these lines:
X(28442) lies on these lines:
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28443) lies on these lines: {1,22937}, {2,3}, {36,4870}, {79,5204}, {191,1385}, {399,16164}, {517,5426}, {551,22765}, {758,4930}, {993,3655}, {999,5427}, {1125,16159}, {1482,4428}, {2771,3576}, {3579,3922}, {3584,5172}, {3612,17637}, {3647,13465}, {3648,5303}, {3654,11849}, {3656,5248}, {3679,12331}, {3683,13624}, {5096,10168}, {5217,5441}, {5251,18524}, {5453,16948}, {7701,7987}, {10543,10573}, {11263,16150}, {12645,21677}, {15178,16126}, {16118,17605}, {16143,26202}, {18253,18526}, {25055,26286}
X(28443) = midpoint of X(21) and X(21161)
X(28443) = reflection of X(i) in X(j), for these {i, j}: {3,21161}, {5055,15671}, {21161,5428}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28444) lies on these lines: {2,3}, {35,18518}, {55,18519}, {84,24299}, {355,4421}, {498,18542}, {519,10679}, {551,5450}, {958,3654}, {999,11551}, {1001,3653}, {1319,7284}, {1385,1709}, {1470,3582}, {1482,11260}, {1727,2099}, {1836,18493}, {2077,19875}, {3058,10949}, {3085,18545}, {3189,12645}, {3241,12000}, {3295,22759}, {3652,12635}, {3655,4428}, {3656,10680}, {3679,11248}, {3829,11928}, {3873,10247}, {3928,24474}, {4302,18499}, {4640,12702}, {4653,18451}, {4861,8148}, {4870,22766}, {5010,18491}, {5204,9955}, {5217,18480}, {5432,18516}, {6001,10179}, {6284,18544}, {6767,12735}, {7171,13151}, {8069,11237}, {8071,11238}, {10039,18525}, {10056,10058}, {10269,25055}, {12686,24927}, {15171,18543}, {15338,18517}, {15446,26437}, {24467,24473}
X(28444) = midpoint of X(1012) and X(16370)
X(28444) = reflection of X(i) in X(j), for these {i, j}: {3,16370}, {16370,6914}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28445) lies on these lines: {2,3}, {1385,1710}, {2217,3655}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28446) lies on these lines: {2,3}, {1385, 1762}, {11903, 12132}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28447) lies on these lines: {2,3}, {182,15162}, {1385,2100}, {2575,15041}, {14500,20127}, {14810,15163}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28448) lies on these lines: {2,3}, {182,15163}, {1385,2101}, {2574,15041}, {14499,20127}, {14810,15162}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28449) lies on these lines: {2,3}, {1385,2941}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28450) lies on these lines: {2,3}, {1385,2960}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28451) lies on these lines: {2,3}, {527,3653}, {1385,3929}, {3655,5325}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28452) lies on these lines: {2,3}, {11,18407}, {36,18406}, {56,18517}, {57,80}, {142,13151}, {355,529}, {386,13408}, {388,18518}, {495,18524}, {497,18499}, {515,5883}, {517,5891}, {519,24474}, {528,3656}, {542,4260}, {551,24299}, {553,18389}, {942,5434}, {952,3873}, {997,12699}, {1385,6253}, {1389,3241}, {1478,11502}, {1482,3189}, {1699,5840}, {1737,7354}, {2771,11246}, {3058,15950}, {3086,18544}, {3296,18526}, {3476,15934}, {3601,5443}, {3679,5709}, {3878,28194}, {4293,18519}, {4299,18761}, {4511,22791}, {5138,5476}, {5229,18542}, {5442,10483}, {5587,5841}, {5708,18391}, {5755,17330}, {5842,5886}, {6284,9955}, {6796,10197}, {7956,10738}, {7965,24466}, {9940,28208}, {9956,11827}, {10056,11501}, {10072,26475}, {10532,11239}, {10954,11237}, {11227,28160}, {11235,22753}, {11499,26332}, {11826,22793}, {12943,18516}, {14986,18543}, {15171,18493}
X(28452) = midpoint of X(4) and X(17579)
X(28452) = reflection of X(i) in X(j), for these {i, j}: {7491,11113}, {11113,5}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28453)) lies on these lines: {1,13465}, {2,3}, {55,9897}, {191,1482}, {758,10247}, {993,3656}, {1001,18515}, {1385,7701}, {1621,12773}, {1749,2099}, {2771,5426}, {3647,8148}, {3653,5450}, {3655,5248}, {3679,11849}, {4265,11178}, {4421,5790}, {4428,22758}, {4995,10058}, {5204,16118}, {5901,14450}, {6690,10742}, {10543,12647}, {10902,28208}, {12409,25055}, {12702,22937}, {13089,26287}, {13624,16143}, {16132,26202}, {16159,18493}, {19875,26285}
X(28453) = reflection of X(i) in X(j), for these {i, j}: {5054,15672}, {10246,5426}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28454) lies on these lines: {2,3}, {517,11202}, {1385,8141}, {3654,5285}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28455) lies on these lines: {2,3}, {1385,9572}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28456) lies on these lines: {2,3}, {1385,9573}, {10251,12645}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28457) lies on these lines: {2,3}, {1385,10251}, {3656,18453}, {8251,25055}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28458) lies on these lines: {2,3}, {165,5841}, {517,5434}, {519,5884}, {528,3655}, {529,3654}, {553,24474}, {1385,3058}, {1768,3359}, {2077,3584}, {2550,18519}, {2829,26446}, {3474,12702}, {3576,5840}, {3579,7354}, {3820,10742}, {4299,22759}, {4304,13151}, {4316,7688}, {4413,18516}, {4430,5844}, {4995,26285}, {5298,15908}, {5790,14647}, {6284,7743}, {7080,18545}, {10056,11248}, {10072,10269}, {10106,16004}, {10246,15170}, {10247,11038}, {10270,19875}, {10310,11237}, {10385,16202}, {10525,11238}, {10950,13145}, {20292,22791}, {26200,28198}
X(28458) = midpoint of X(i) and X(j), for these {i, j}: {376,17579}, {3058,11826}
X(28458) = reflection of X(i) in X(j), for these {i, j}: {3058,1385}, {11113,549}, {24474,553}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28459) lies on these lines: {2,3}, {165,5840}, {226,13151}, {515,10176}, {517,3058}, {528,3654}, {529,3655}, {553,10202}, {580,3017}, {582,1834}, {912,17781}, {952,3681}, {997,18481}, {1385,5434}, {1482,15170}, {1708,5722}, {1737,3579}, {2550,18499}, {2551,18518}, {3336,16113}, {3428,11238}, {3475,10246}, {3576,5841}, {3582,11012}, {3583,7688}, {3584,10902}, {3586,3587}, {3820,18524}, {3925,18407}, {4302,11502}, {4654,18443}, {5178,5690}, {5298,26286}, {5506,5691}, {5584,10525}, {5758,15933}, {5842,26446}, {6253,9956}, {7354,13624}, {7742,10953}, {8148,15172}, {10056,10267}, {10072,11249}, {10157,28160}, {10268,19875}, {10385,10679}, {10526,11237}, {12702,15171}, {18544,19843}
X(28459) = midpoint of X(i) and X(j), for these {i, j}: {376,11114}, {5434,11827}
X(28459) = reflection of X(i) in X(j), for these {i, j}: {1482,15170}, {5434,1385}, {11112,549}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28460) lies on these lines: {2,3}, {79,4870}, {519,16139}, {758,3655}, {1385,16113}, {2193,3163}, {3579,5441}, {3612,18977}, {3647,18481}, {3652,4297}, {3653,16159}, {3683,26202}, {5427,10072}, {5655,16164}, {8148,10385}, {10543,12702}, {16140,21578}, {18253,18525}, {22937,28204}
X(28460) = midpoint of X(i) and X(j), for these {i, j}: {376,15677}, {3534,13743}, {3651,15678}
X(28460) = reflection of X(i) in X(j), for these {i, j}: {2,5428}, {381,15670}, {3651,8703}, {3830,6841}, {3845,10021}, {5499,12100}, {5655,16164}, {6175,549}, {6841,15673}, {13743,17525}, {15679,5499}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28461) lies on these lines: {2,3}, {104,551}, {191,11531}, {758,16200}, {944,4428}, {999,16133}, {1385,16138}, {1482,19919}, {1621,3655}, {2077,3828}, {2975,3656}, {3241,22758}, {3584,10058}, {3822,10728}, {4861,11278}, {5303,9955}, {5441,10039}, {5450,25055}, {5603,11194}, {10308,16132}, {11281,16116}
X(28461) = midpoint of X(21161) and X(21669)
X(28461) = reflection of X(i) in X(j), for these {i, j}: {3651,21161}, {21161,21}}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28462) lies on these lines: {2,3}, {1385,16309}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28463) lies on these lines: {2,3}, {1385,19919}, {1397,10222}, {5426,16200}, {7987,16138}, {11278,22937}, {11531,16139}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28464) lies on these lines: {2,3}, {1385,21375}, {3052,12702}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28465) lies on these lines: {2,3}, {57,5444}, {119,17009}, {214,5745}, {519,24299}, {551,24474}, {758,10165}, {942,5298}, {997,18253}, {1385,21677}, {1737,10543}, {2771,11227}, {3601,5445}, {3649,22937}, {3655,5791}, {4260,10168}, {4995,24929}, {5427,5432}, {5708,16137}, {5709,25055}, {6174,12619}, {6699,16164}, {10246,24477}, {11231,21155}, {11281,16139}, {15174,18391}
X(28465) = midpoint of X(i) and X(j), for these {i, j}: {2,21161}, {3524,15671}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28681.
X(28466) lies on these lines: {2,3}, {36,4654}, {55,3654}, {56,3653}, {63,13151}, {517,4428}, {519,10267}, {527,10269}, {551,11249}, {582,19765}, {846,7986}, {912,3576}, {958,28204}, {971,17502}, {993,5325}, {997,13624}, {1385,11194}, {1480,8616}, {1708,24929}, {1737,5217}, {3189,5690}, {3241,16202}, {3428,3656}, {3601,10399}, {3679,10902}, {3715,12738}, {3828,6796}, {3873,10246}, {3927,4511}, {3928,18443}, {4995,8069}, {5010,11502}, {5248,28194}, {5260,18518}, {5298,8071}, {5434,7742}, {7330,7987}, {10072,26357}, {10202,21165}, {11012,25055}, {11496,28198}, {11499,19875}, {14831,22076}, {15931,22758}
X(28466) = midpoint of X(3) and X(16418)
X(28466) = reflection of X(3560) in X(16418)
Points on circumcircle and line at infinity: X(28467)-X(28585)
Suppose that X = x : y : z is a point on the line at infinity. All the lines that meet in X are parallel, so that X can be regarded as a direction in the plane of the reference triangle ABC. Let X' be the isogonal conjugate of X, so that X' lies on the circumcircle. Let X'' be the circumcircle-antipode of X', and let X''' be its isogonal conjugate, on the line at infinity. As a direction, X''' is perpendicular to X. In this section, X is given by the form h (- 2 a^3 + b^3 + c^3) + j (a^2 (b + c) + k a ( b^2 + c^2) - ( j + k) (b c^2 + b^2 c) : : , where h, j, k are constants. (Clark Kimberling, November 27, 2018)
In the table below, Columns 1-3 show h, j, k.
Column 4. h (- 2 a^3 + b^3 + c^3) + j (a^2 (b + c) + k a ( b^2 + c^2) - ( j + k) (b c^2 + b^2 c) : : , on infinity line, referenced below as x : y : z
Column 5. (isogonal conjugate of x : y : z) = a^2/x + b^2/y + c^2/z : : on circumcircle, referenced below as u : v : w
Column 6. (antipode of u : v : w) = (a^2+b^2-c^2)(a^2-b^2+c^2)u + 2a^2 (a^2-b^2-c^2)v + 2a^2 (a^2-b^2-c^2)w : : on circumcircle, referenced below as u1 : v1 : w1
Column 7. (isogonal conjugate of u1 : v1 : w1) = a^2/u1 + b^2/v1 + c^2/w1
For each row, let X be the point in Column 4 and X' the point in Column 7. Let U be any point in the finite plane of ABC. Then the lines UX and UX' are perpendicular.
In the table below, certain points in Column 4 are here given names of the form Point Procyon(h,j,k).
h | j | k | Column 4 | Column 5 | Column 6 | Column 7 |
---|---|---|---|---|---|---|
1 | 0 | 0 | 752 | 753 | 28467 | 28468 |
0 | 1 | 0 | 740 | 741 | 6010 | 6002 |
0 | 0 | 2 | 726 | 727 | 284698 | 28470 |
1 | 1 | 0 | 516 | 103 | 101 | 514 |
1 | 0 | 1 | 17768 | 28471 | 28469 | 28473 |
0 | 1 | 1 | 536 | 739 | 28474 | 28475 |
1 | 1 | 1 | 2796 | 2712 | 2705 | 2780 |
1 | -1 | 0 | 5847 | 28476 | 28477 | 28478 |
1 | 0 | -1 | 5846 | 28479 | 28480 | 28481 |
0 | 1 | -1 | 518 | 105 | 1292 | 3309 |
1 | 1 | 1 | 519 | 106 | 1293 | 3667 |
1 | -1 | 1 | 17770 | 28482 | 28483 | 28477 |
1 | 1 | -1 | 17766 | 28485 | 28486 | 28487 |
1 | 2 | 0 | 17764 | 28488 | 28489 | 28490 |
1 | -2 | 0 | 17762 | 28491 | 28492 | 28493 |
2 | 1 | 0 | 28494 | 28495 | 28496 | 28497 |
2 | -1 | 0 | 28498 | 28499 | 28500 | 28501 |
1 | 0 | 2 | 17767 | 28502 | 28500 | 28504 |
1 | 0 | -2 | 17769 | 28505 | 28506 | 28507 |
2 | 0 | 1 | 28508 | 28509 | 28510 | 28511 |
2 | 0 | -1 | 28512 | 28513 | 28514 | 28515 |
0 | 1 | 2 | 28516 | 28517 | 28518 | 28519 |
0 | 1 | -2 | 537 | 2382 | 28520 | 28521 |
0 | 2 | 1 | 28522 | 28523 | 28524 | 28525 |
0 | 2 | -1 | 519 | 106 | 1293 | 3667 |
1 | 1 | 2 | 28526 | 28527 | 28528 | 28529 |
1 | 2 | 1 | 28530 | 28531 | 28532 | 28533 |
2 | 1 | 1 | 28534 | 28535 | 28536 | 28537 |
1 | 1 | -2 | 519 | 106 | 1293 | 3667 |
1 | -2 | 1 | 524 | 111 | 1296 | 1499 |
-2 | 1 | 2 | 28538 | 28539 | 28540 | 28541 |
1 | 2 | 2 | 28542 | 28543 | 28544 | 28545 |
2 | 1 | 2 | 28546 | 28547 | 28548 | 28549 |
2 | 2 | 1 | 28550 | 28551 | 28552 | 28553 |
-1 | 2 | 2 | 28552 | 28543 | 28544 | 28545 |
2 | -1 | 2 | 28558 | 28559 | 28560 | 28561 |
2 | 2 | -1 | 28562 | 28563 | 28564 | 28565 |
2 | 1 | -1 | 28566 | 28567 | 28568 | 28569 |
2 | -1 | 1 | 28570 | 28571 | 28572 | 28573 |
1 | 2 | -2 | 17765 | 28574 | 28575 | 28576 |
1 | -2 | 2 | 17771 | 28577 | 28578 | 28579 |
0 | 1 | -1 | 518 | 105 | 1292 | 3309 |
1 | 0 | -1 | 5846 | 28479 | 28580 | 28581 |
1 | -1 | 0 | 5847 | 28476 | 28477 | 28478 |
0 | -1 | 3 | 28582 | 28583 | 28584 | 28585 |
A few more Points Procyon are given as follows. The appearance of (h; i,j,k) in the following list means that X(h) = Point Procyon(i,j,k):
(28472; -1,2,3), (28484; 0,3,1), (28503; -1,0,3), (28484; 0,3,1), (28581; 0,3,-1), (28554; 0,1,4), (28555; 0,1,3), (28556; 1,2,3), (28580; 1,3,0), (28581; 0,3,-1), (28583; 0,-1,3)
X(28467) lies on the circumcircle and these lines:
X(28467) = isogonal conjugate of X(28468)
X(28467) = circumcircle-antipode of X(753)
X(28468) lies on these lines: {30, 511}, {321, 4462}, {649, 3904}, {1764, 4063}, {2051, 4049}, {2403, 17147}, {3666, 3669}, {3776, 4707}, {3835, 10015}, {3960, 6589}, {4120, 4391}, {4424, 4905}, {4801, 21116}, {4927, 7178}, {14349, 21130}
X(28468) = isogonal conjugate of X(28467)
X(28469) lies on the circumcircle and these lines:
X(28469) = isogonal conjugate of X(28470)
X(28469) = circumcircle-antipode of X(727)
X(28469) = Λ(Monge line of Neuberg circles (X(667)X(17072)))
X(28470) lies on these lines: {2, 8643}, {3, 23867}, {4, 17922}, {8, 4498}, {10, 4401}, {30, 511}, {75, 30183}, {335, 30187}, {649, 21302}, {659, 4147}, {663, 3835}, {667, 17072}, {669, 28373}, {996, 23837}, {1027, 5691}, {1960, 21260}, {3669, 4504}, {3777, 4922}, {4040, 23605}, {4049, 14458}, {4057, 20316}, {4106, 4162}, {4129, 4794}, {4163, 11068}, {4367, 24720}, {4380, 4729}, {4879, 24719}, {8642, 25901}, {13246, 14837}, {14199, 20979}, {18197, 21300}, {21831, 22043}
X(28470) = isogonal conjugate of X(28469)
X(28471) lies on the circumcircle and these lines:
X(28471) = isogonal conjugate of X(17768)
X(28471) = Λ(X(9), X(46))
X(28472) lies on these lines: {1, 7227}, {8, 17246}, {30, 511}, {321, 17726}, {984, 4399}, {1698, 3932}, {2345, 3616}, {3617, 3672}, {3623, 4461}, {3790, 17366}, {3883, 4718}, {4310, 17309}, {4353, 17229}, {4684, 4727}, {6541, 17385}, {11038, 17314}, {17343, 20052}, {17388, 24349}
X(28473) lies on these lines: {1, 7178}, {3, 4367}, {5, 21051}, {30, 511}, {40, 1019}, {663, 10015}, {885, 1389}, {946, 4129}, {1482, 4879}, {3904, 21302}, {4040, 21120}, {4162, 21185}, {4534, 5511}, {4784, 12702}, {4791, 4990}, {4806, 22791}, {4807, 11362}, {4895, 21118}, {5216, 12435}, {14432, 21052}, {15909, 23893}
X(28473) = isogonal conjugate of X(28469)
X(28474) lies on the circumcircle and these lines:
X(28474) = isogonal conjugate of X(28475)
X(28474) = circumcircle-antipode of X(739)
X(28475) is the infinite point of the normal to hyperbola {{A,B,C,X(1),X(2)}} at X(2). (Randy Hutson, January 15, 2019)
X(28475) lies on these lines: {1, 4106}, {2, 30234}, {3, 21005}, {4, 6591}, {8, 4380}, {10, 4394}, {30, 511}, {104, 9081}, {405, 8642}, {667, 14431}, {905, 21301}, {3803, 4391}, {4162, 4170}, {4401, 20317}, {4761, 4790}, {4922, 24719}, {5752, 20983}, {6050, 21051}, {8142, 15599}
X(28475) = isogonal conjugate of X(28474)
X(28476) lies on the circumcircle and these lines:
X(28476) = isogonal conjugate of X(5847)
X(28476) = trilinear pole of line X(6)X(834)
X(28476) = Λ(X(6), X(10))
X(28476) = Ψ(X(6), X(834))
X(28477) lies on the circumcircle and these lines:
X(28477) = isogonal conjugate of X(28478)
X(28477) = circumcircle-antipode of X(28476)
X(28477) = perspector of ABC and the triangle formed by reflecting line X(6)X(10) in the sides of ABC
X(28477) = trilinear pole of line X(6)X(375)
X(28477) = Ψ(X(6), X(375))
X(28478) lies on these lines: {3, 8637}, {30, 511}, {649, 6332}, {905, 3798}, {3569, 30094}, {3669, 4897}, {3835, 14837}, {4063, 11068}, {4106, 7178}, {4170, 21185}, {4382, 23755}, {4468, 4498}, {14321, 20317}
X(28478) = isogonal conjugate of X(28477)
X(28478) = crossdifference of every pair of points on line X(6)X(375)
X(28479) lies on the circumcircle and these lines:
X(28479) = isogonal conjugate of X(5846)
X(28479) = Λ(X(6), X(8))
X(28480) lies on the circumcircle and these lines:
X(28480) = isogonal conjugate of X(28481)
X(28480) = circumcircle-antipode of X(28479)
X(28481) lies on these lines: {30, 511}, {3569, 13251}, {3803, 6332}, {4106, 21185}, {4897, 4905}, {9135, 13250}, {10015, 21301}
X(28481) = isogonal conjugate of X(28480)
X(28482) lies on the circumcircle and these lines:
X(28482) = isogonal conjugate of X(17770)
X(28483) lies on the circumcircle and these lines:
X(28483) = isogonal conjugate of X(28477)
X(28483) = circumcircle-antipode of X(28482)
X(28484) lies on these lines: {1, 4686}, {8, 3644}, {10, 4681}, {30, 511}, {37, 1698}, {43, 22034}, {44, 4716}, {75, 3616}, {141, 4133}, {192, 3617}, {984, 4668}, {1001, 17151}, {1125, 4739}, {1266, 4966}, {1278, 3623}, {1279, 4693}, {1386, 3875}, {1738, 3943}, {2321, 3844}, {2901, 3812}, {3175, 3740}, {3246, 3685}, {3666, 4365}, {3706, 17147}, {3723, 24342}, {3729, 4663}, {3739, 3993}, {3797, 29590}, {3821, 4527}, {3823, 6541}, {3826, 3950}, {3923, 4852}, {4026, 4431}, {4358, 4706}, {4361, 15254}, {4519, 4850}, {4655, 17372}, {4726, 24325}, {4764, 24349}, {4788, 20052}, {4891, 24165}, {4980, 27804}, {5564, 9791}, {5880, 17314}, {15481, 17262}, {17299, 24248}, {25354, 28633}
X(28484) = isogonal conjugate of X(28483)
X(28485) lies on the circumcircle and these lines:
X(28485) = isogonal conjugate of X(17766)
X(28486) lies on the circumcircle and these lines:
X(28486) = isogonal conjugate of X(28487)
X(28486) = circumcircle-antipode of X(28485)
X(28486) = Λ(Monge line of reflected Neuberg circles (X(2530)X(4142)))
X(28487) lies on these lines: {4, 21108}, {30, 511}, {905, 13246}, {2530, 4142}, {3670, 4905}, {3777, 4458}, {4049, 14492}, {4462, 4696}, {20518, 23807}, {21132, 21301}, {21201, 23797}
X(28487) = isogonal conjugate of X(28486)
X(28488) lies on the circumcircle and these lines:
X(28488) = isogonal conjugate of X(17764)
X(28489) lies on the circumcircle and these lines:
X(28489) = isogonal conjugate of X(28490)
X(28489) = circumcircle-antipode of X(28488)
X(28490) lies on these lines: {30, 511}, {4504, 21185}
X(28490) = isogonal conjugate of X(28489)
X(28491) lies on the circumcircle and these lines:
X(28491) = isogonal conjugate of X(17772)
X(28492) lies on the circumcircle and these lines:
X(28492) = isogonal conjugate of X(28493)
X(28492) = circumcircle-antipode of X(28491)
X(28493) lies on these lines: {30, 511}, {4522, 4834}, {4790, 8045}, {4949, 20317}
X(28493) = isogonal conjugate of X(28492)
X(28494) lies on these lines: {10, 15492}, {30, 511}, {238, 25351}, {896, 21282}, {902, 4892}, {1215, 4450}, {1279, 24692}, {3416, 4535}, {3622, 4307}, {3624, 15485}, {3722, 17491}, {3791, 20064}, {3823, 4759}, {4432, 4645}, {4434, 5057}, {4660, 4672}, {4974, 24715}, {9780, 25611}
X(28494) = isogonal conjugate of X(28495)
X(28495) lies on the circumcircle and these lines:
X(28495) = isogonal conjugate of X(28494)
X(28496) lies on the circumcircle and these lines:
X(28496) = isogonal conjugate of X(28497)
X(28496) = circumcircle-antipode of X(28495)
X(28497) lies on these lines: {30, 511}
X(28497) = isogonal conjugate of X(28496)
X(28498) lies on these lines: {1, 17249}, {10, 16669}, {30, 511}, {238, 17266}, {1698, 16468}, {2308, 28595}, {3244, 17246}, {3416, 4672}, {3616, 17300}, {3617, 4307}, {3626, 7227}, {3791, 6327}, {3923, 4535}, {4349, 17245}, {4645, 4974}, {4722, 28599}, {6682, 17726}, {17469, 20290}
X(28498) = isogonal conjugate of X(28499)
X(28499) lies on the circumcircle and these lines:
X(28499) = isogonal conjugate of X(28498)
X(28500) lies on the circumcircle and these lines:
X(28500) = isogonal conjugate of X(28501)
X(28500) = circumcircle-antipode of X(28499)
X(28501) lies on these lines: {30, 511}
X(28501) = isogonal conjugate of X(28500)
X(28502) lies on the circumcircle and these lines:
X(28502) = isogonal conjugate of X(17767)
X(28503) lies on these lines: {1, 3943}, {2, 1390}, {8, 4389}, {10, 4395}, {30, 511}, {145, 5695}, {238, 4370}, {551, 6541}, {903, 4645}, {984, 17330}, {1279, 4908}, {2325, 3246}, {3006, 17070}, {3161, 8692}, {3416, 17274}, {3679, 7174}, {3712, 20045}, {3790, 17342}, {3844, 4353}, {4026, 17320}, {4030, 17147}, {4362, 4884}, {4387, 19993}, {4422, 4439}, {4966, 17310}, {6057, 7191}, {6542, 24841}, {16496, 17299}, {17313, 25557}, {17378, 24349}, {17395, 29659}, {27747, 29639}
X(28504) lies on these lines: {30, 511}
X(28504) = isogonal conjugate of X(28500)
X(28505) lies on the circumcircle and these lines:
X(28505) = isogonal conjugate of X(17769)
X(28506) lies on the circumcircle and these lines:
X(28506) = isogonal conjugate of X(28507)
X(28506) = circumcircle-antipode of X(28505)
X(28507) lies on these lines: {30, 511}
X(28507) = isogonal conjugate of X(28506)
X(28508) lies on these lines: {10, 17331}, {30, 511}, {238, 24692}, {896, 21241}, {902, 17491}, {1125, 3662}, {1742, 22836}, {3244, 17364}, {3626, 4416}, {3629, 4743}, {3634, 17353}, {3636, 3664}, {3836, 4759}, {3923, 17286}, {4312, 16825}, {4473, 4645}, {4660, 24695}, {9965, 29844}, {15492, 17369}
X(28498) = isogonal conjugate of X(28509)
X(28509) lies on the circumcircle and these lines:
X(28509) = isogonal conjugate of X(28508)
X(28510) lies on the circumcircle and these lines:
X(28510) = isogonal conjugate of X(28511)
X(28510) = circumcircle-antipode of X(28509)
X(28511) lies on these lines: {30, 511}
X(28511) = isogonal conjugate of X(28510)
X(28512) lies on these lines: {1, 17236}, {10, 16468}, {30, 511}, {1125, 3883}, {2308, 28599}, {3625, 4431}, {3634, 17337}, {3635, 3879}, {3686, 4691}, {3932, 4759}, {4085, 4991}, {4450, 4970}, {4697, 4914}, {14459, 20095}
X(28512) = isogonal conjugate of X(28513)
X(28513) lies on the circumcircle and these lines:
X(28513) = isogonal conjugate of X(28512)
X(28514) lies on the circumcircle and these lines:
X(28514) = isogonal conjugate of X(28515)
X(28514) = circumcircle-antipode of X(28513)
X(28515) lies on these lines: {30, 511}
X(28515) = isogonal conjugate of X(28514)
X(28516) lies on these lines: {1, 3644}, {10, 4686}, {30, 511}, {37, 19862}, {75, 1089}, {141, 4535}, {190, 4974}, {192, 3616}, {321, 6682}, {984, 1278}, {1086, 6541}, {1125, 4681}, {1215, 17147}, {1266, 3836}, {1738, 4439}, {1757, 17160}, {3097, 4479}, {3175, 24165}, {3623, 4788}, {3634, 4739}, {3663, 3773}, {3729, 4672}, {3752, 4135}, {3775, 4431}, {3797, 17266}, {3840, 22034}, {3932, 25351}, {3989, 4980}, {3993, 4718}, {3994, 17495}, {4398, 29674}, {4505, 24731}, {4668, 4764}, {4716, 4753}, {5557, 25474}, {5625, 17319}, {6057, 24169}, {16825, 17262}, {17755, 29590}, {17759, 17793}
X(28516) = isogonal conjugate of X(28517)
X(28517) lies on the circumcircle and these lines:
X(28517) = isogonal conjugate of X(28516)
X(28518) lies on the circumcircle and these lines:
X(28518) = isogonal conjugate of X(28518)
X(28518) = circumcircle-antipode of X(28517)
X(28519) lies on these lines: {30, 511}
X(28519) = isogonal conjugate of X(28518)
X(28520) lies on the circumcircle and these lines:
X(28520) = isogonal conjugate of X(28521)
X(28520) = circumcircle-antipode of X(2382)
X(28521) lies on these lines: {3, 23866}, {30, 511}, {1960, 25380}, {3716, 6161}, {4444, 28843}, {4504, 4905}, {4730, 4830}, {4794, 25666}, {5400, 16576}, {9810, 24809}, {9811, 24810}
X(28521) = isogonal conjugate of X(28520)
X(28522) lies on these lines: {1, 1278}, {8, 4788}, {10, 192}, {30, 511}, {37, 1574}, {43, 4135}, {75, 1125}, {141, 4527}, {190, 4716}, {238, 17160}, {312, 6686}, {321, 4970}, {551, 4740}, {984, 3626}, {1575, 20688}, {1698, 4704}, {1738, 6541}, {1739, 22220}, {1962, 4980}, {2321, 3821}, {2901, 5883}, {3008, 3797}, {3210, 3840}, {3244, 24349}, {3616, 4821}, {3624, 4772}, {3635, 4764}, {3636, 4686}, {3663, 4133}, {3670, 22167}, {3696, 4691}, {3739, 19878}, {3741, 4365}, {3775, 17246}, {3795, 4479}, {3828, 4664}, {3836, 3943}, {3842, 4681}, {3844, 4535}, {3875, 3923}, {3946, 24295}, {3989, 17163}, {4169, 19957}, {4442, 21241}, {4655, 17299}, {4672, 4852}, {4699, 19862}, {4706, 24003}, {4726, 15569}, {4759, 4974}, {4871, 17495}, {4967, 25354}, {5564, 24697}, {6700, 20171}, {8720, 17733}, {14459, 17484}, {16825, 17151}, {17319, 24342}, {17389, 27494}, {19789, 29642}, {19791, 20106}, {19925, 20430}, {20103, 20173}, {21330, 24167}, {21927, 25639}
X(28522) = isogonal conjugate of X(28523)
X(28523) lies on the circumcircle and these lines:
X(28523) = isogonal conjugate of X(28512)
X(28524) lies on the circumcircle and these lines:
X(28524) = isogonal conjugate of X(28525)
X(28524) = circumcircle-antipode of X(28523)
X(28525) lies on these lines: {30, 511}, {4106, 4504}
X(28525) = isogonal conjugate of X(28524)
X(28526) lies on these lines: {1, 7240}, {10, 2996}, {30, 511}, {45, 3634}, {69, 4133}, {72, 17635}, {190, 1738}, {238, 1266}, {345, 4138}, {988, 1125}, {990, 22836}, {1699, 9742}, {1721, 3811}, {1757, 4480}, {2321, 4655}, {2325, 3836}, {3008, 17738}, {3011, 4427}, {3120, 3977}, {3161, 7613}, {3175, 11246}, {3626, 4660}, {3636, 4353}, {3664, 3993}, {3678, 18252}, {3685, 4440}, {3696, 17334}, {3717, 24715}, {3751, 4780}, {3874, 12723}, {3875, 24695}, {3878, 12721}, {3881, 12722}, {3946, 4672}, {3980, 4656}, {4001, 4365}, {4011, 24177}, {4028, 5905}, {4052, 7612}, {4054, 4414}, {4078, 5880}, {4373, 16020}, {4398, 4676}, {4409, 4702}, {4684, 4693}, {4899, 24821}, {4967, 24697}, {5121, 17777}, {5695, 17276}, {5904, 12530}, {6541, 24692}, {6685, 24259}, {6686, 24260}, {6745, 21093}, {7263, 15254}, {8669, 12512}, {8781, 11599}, {9791, 17116}, {10444, 17733}, {10445, 17748}, {10916, 21629}, {17156, 20078}, {17304, 19862}, {19878, 24295}, {20103, 24283}, {20881, 23690}
X(28526) = isogonal conjugate of X(28527)
X(28527) lies on the circumcircle and these lines:
X(28527) = isogonal conjugate of X(28526)
X(28528) lies on the circumcircle and these lines:
X(28528) = isogonal conjugate of X(28529)
X(28528) = circumcircle-antipode of X(28527)
X(28529) lies on these lines: {30, 511}, {3676, 4504}, {4107, 7658}
X(28529) = isogonal conjugate of X(28528)
X(28530) lies on these lines: {30, 511}, {45, 1213}, {86, 3445}, {141, 5695}, {230, 1281}, {238, 4395}, {325, 5992}, {553, 4891}, {594, 24723}, {596, 15172}, {1001, 7263}, {1086, 3685}, {1266, 1279}, {1284, 4436}, {1376, 13097}, {1654, 4461}, {1738, 4422}, {2325, 3823}, {2475, 4918}, {2550, 17262}, {3058, 17155}, {3120, 3712}, {3434, 4884}, {3589, 3923}, {3624, 4657}, {3629, 24695}, {3631, 4655}, {3696, 17332}, {3704, 24851}, {3755, 17351}, {3883, 4686}, {3886, 17276}, {3932, 24715}, {3943, 4645}, {4026, 7227}, {4046, 4683}, {4054, 4689}, {4307, 17318}, {4312, 4851}, {4344, 15590}, {4356, 4670}, {4361, 5698}, {4418, 4854}, {4427, 4442}, {4663, 4780}, {4672, 6329}, {4676, 17366}, {4693, 4966}, {4702, 24231}, {4733, 24697}, {5263, 17246}, {5880, 17243}, {6651, 29607}, {7613, 17265}, {8421, 24438}, {17385, 25354}
X(28530) = isogonal conjugate of X(28531)
X(28531) lies on the circumcircle and these lines:
X(28531) = isogonal conjugate of X(28530)
X(28532) lies on the circumcircle and these lines:
X(28532) = isogonal conjugate of X(28533)
X(28532) = circumcircle-antipode of X(28531)
X(28533) lies on these lines: {30, 511}
X(28533) = isogonal conjugate of X(28532)
X(28534) lies on these lines: {2, 1155}, {7, 1319}, {9, 484}, {30, 511}, {36, 1001}, {40, 11236}, {44, 24715}, {46, 15297}, {65, 11114}, {142, 5122}, {144, 5176}, {320, 4702}, {390, 5048}, {405, 4338}, {497, 2094}, {551, 5126}, {553, 3660}, {901, 4945}, {903, 14190}, {908, 6174}, {960, 1770}, {962, 11260}, {1012, 5735}, {1086, 3246}, {1386, 17301}, {1709, 3928}, {1878, 1890}, {1889, 19723}, {2077, 11495}, {2078, 4428}, {2550, 5080}, {2951, 5538}, {3058, 10391}, {3218, 10707}, {3245, 3679}, {3416, 24280}, {3629, 4780}, {3654, 6923}, {3685, 17297}, {3689, 17484}, {3696, 17346}, {3742, 11246}, {3748, 17483}, {3811, 28645}, {3814, 3826}, {3829, 8727}, {3834, 4432}, {3844, 3923}, {4031, 17051}, {4295, 11111}, {4333, 5730}, {4421, 5537}, {4645, 17264}, {4660, 17351}, {4663, 24695}, {4689, 24725}, {4693, 17374}, {4759, 6687}, {4859, 8692}, {4863, 20078}, {4870, 8543}, {4930, 15681}, {4973, 7743}, {5078, 16403}, {5263, 17254}, {5440, 15228}, {5493, 12607}, {5535, 11372}, {5542, 25405}, {5570, 5572}, {5695, 17294}, {5759, 13528}, {5784, 17579}, {5805, 22835}, {5903, 11662}, {6068, 6735}, {7262, 21949}, {8545, 11237}, {9589, 12513}, {10431, 28610}, {11240, 12701}, {12514, 17528}, {15569, 17392}, {17564, 21616}, {17615, 17781}, {21578, 25558}, {22765, 28444}, {24344, 24710}
X(28534) = isogonal conjugate of X(28535)
X(28535) lies on the circumcircle and these lines:
X(28535) = isogonal conjugate of X(28534)
X(28536) lies on the circumcircle and these lines:
X(28536) = isogonal conjugate of X(28537)
X(28536) = circumcircle-antipode of X(28535)
X(28537) lies on these lines: {3, 4378}, {30, 511}, {885, 14497}, {953, 9093}, {1482, 4775}, {1565, 3328}
X(28537) = isogonal conjugate of X(28536)
X(28538) lies on these lines: {1, 599}, {2, 1386}, {6, 3679}, {8, 1992}, {10, 597}, {30, 511}, {69, 3241}, {81, 4914}, {141, 551}, {145, 4741}, {355, 20423}, {896, 4141}, {902, 4933}, {1001, 29573}, {1125, 20582}, {1352, 3656}, {3242, 15533}, {3246, 3912}, {3589, 3828}, {3626, 20583}, {3654, 11179}, {3696, 29617}, {3751, 4677}, {3763, 16491}, {3823, 4974}, {3838, 4362}, {3883, 15569}, {4660, 4852}, {4669, 8584}, {4693, 4727}, {4702, 6542}, {5087, 17763}, {5263, 29615}, {5434, 24471}, {5790, 14848}, {5881, 11477}, {7982, 15069}, {7983, 11161}, {7984, 13169}, {8550, 11362}, {9588, 10541}, {9955, 25561}, {11725, 19662}, {16475, 19875}, {16666, 29659}, {20049, 20080}, {21358, 25055}
X(28538) = isogonal conjugate of X(28539)
X(28539) lies on the circumcircle and these lines:
X(28539) = isogonal conjugate of X(28534)
X(28540) lies on the circumcircle and these lines:
X(28540) = isogonal conjugate of X(28541)
X(28540) = circumcircle-antipode of X(28539)
X(28541) lies on these lines: {30, 511}, {21145, 24719}
X(28541) = isogonal conjugate of X(28540)
X(28542) lies on these lines: {2, 17593}, {30, 511}, {1266, 4432}, {2325, 25351}, {3679, 24723}, {3729, 4085}, {3773, 24248}, {3775, 17254}, {3821, 17359}, {3836, 17264}, {3923, 17301}, {3943, 24692}, {3993, 17392}, {4395, 4759}, {4398, 10436}, {4407, 4419}, {4429, 19875}, {4439, 24715}, {4440, 4693}, {4480, 4753}, {4527, 4655}, {4709, 17334}, {5257, 17340}
X(28542) = isogonal conjugate of X(28543)
X(28543) lies on the circumcircle and these lines:
X(28543) = isogonal conjugate of X(28542)
X(28544) lies on the circumcircle and these lines:
X(28544) = isogonal conjugate of X(28545)
X(28544) = circumcircle-antipode of X(28543)
X(28545) lies on these lines: {30, 511}
X(28545) = isogonal conjugate of X(28544)
X(28546) lies on these lines: {30, 511}, {86, 4862}, {1281, 7925}, {1654, 4488}, {3618, 4672}, {3620, 4655}, {3763, 3923}, {4310, 5625}, {4427, 4892}, {5550, 9791}
X(28546) = isogonal conjugate of X(28546)
X(28547) lies on the circumcircle and these lines:
X(28547) = isogonal conjugate of X(28546)
X(28548) lies on the circumcircle and these lines:
X(28548) = isogonal conjugate of X(28549)
X(28548) = circumcircle-antipode of X(28547)
X(28549) lies on these lines: {30, 511}
X(28549) = isogonal conjugate of X(28548)
X(28550) lies on these lines: {10, 17336}, {30, 511}, {1698, 3923}, {1738, 4759}, {3616, 24248}, {3617, 4660}, {3625, 17347}, {3635, 17365}, {3663, 17394}, {3685, 24692}, {3729, 4668}, {3821, 17400}, {4427, 21241}, {4691, 17332}, {8720, 12699}, {17266, 17738}
X(28550) = isogonal conjugate of X(28543)
X(28551) lies on the circumcircle and these lines:
X(28551) = isogonal conjugate of X(28550)
X(28552) lies on the circumcircle and these lines:
X(28552) = isogonal conjugate of X(28553)
X(28552) = circumcircle-antipode of X(28551)
X(28553) lies on these lines: {30, 511}
X(28553) = isogonal conjugate of X(28552)
X(28554) lies on these lines: {2, 3994}, {30, 511}, {37, 19883}, {75, 3992}, {984, 4695}, {1266, 4439}, {3729, 16491}, {3842, 4688}, {4535, 29594}, {4664, 24325}, {4686, 4732}, {4753, 17160}, {4937, 24003}
X(28555) lies on these lines: {1, 4718}, {8, 4764}, {10, 4726}, {30, 511}, {37, 3624}, {75, 3701}, {192, 3622}, {982, 22034}, {984, 3987}, {1266, 3932}, {1278, 3696}, {1386, 3729}, {2999, 4942}, {3175, 3742}, {3210, 3967}, {3644, 20057}, {3663, 3844}, {3773, 17235}, {3790, 4398}, {3823, 4439}, {3834, 6541}, {3842, 4739}, {3848, 24165}, {3875, 4663}, {3943, 24231}, {3950, 25557}, {3952, 4706}, {3994, 16610}, {4003, 4671}, {4009, 17495}, {4078, 7263}, {4361, 15481}, {4387, 4906}, {4392, 4519}, {4662, 24068}, {4681, 15808}, {4688, 19876}, {4693, 4864}, {4716, 24821}, {4980, 27812}, {5220, 17151}, {15254, 17262}
X(28556) lies on these lines: {30, 511}, {3631, 4527}, {3731, 17303}, {3826, 17262}, {3977, 17070}, {4133, 17345}, {4398, 5550}, {4440, 4966}, {4733, 17258}
X(28557) lies on these lines: {1, 7222}, {10, 17262}, {30, 511}, {1125, 7263}, {1266, 3616}, {1278, 3883}, {1698, 1738}, {2321, 24248}, {3617, 3717}, {3623, 4344}, {3663, 5695}, {3729, 3755}, {3875, 24280}, {3923, 3946}, {3950, 5880}, {3977, 4442}, {4133, 4655}, {4312, 17314}, {4349, 17318}, {4356, 4363}, {4387, 24177}, {4402, 15601}, {4431, 24723}, {4440, 4684}, {4452, 7290}, {4657, 17067}, {4676, 4989}, {4693, 24231}, {4700, 4716}, {4887, 4966}, {4967, 9791}, {5698, 17151}, {15590, 15600}, {17246, 19868}
X(28558) lies on these lines: {2, 896}, {30, 511}, {44, 24692}, {86, 2163}, {89, 24710}, {320, 4432}, {597, 3821}, {599, 3923}, {903, 17960}, {1046, 17677}, {1125, 7238}, {1213, 15492}, {1281, 7840}, {1654, 7229}, {1992, 24248}, {3178, 3650}, {3834, 4759}, {4096, 17781}, {4416, 4732}, {4427, 4933}, {4434, 17484}, {4439, 4480}, {4753, 20072}, {4865, 20078}, {5625, 9791}, {5695, 15533}, {5988, 22329}, {6629, 12258}, {7413, 28609}, {8669, 28645}, {11160, 24280}, {19875, 24342}, {19883, 25354}, {20582, 24295}
X(28558) = isogonal conjugate of X(28559)
X(28559) lies on the circumcircle and these lines:
X(28559) = isogonal conjugate of X(28558)
X(28560) lies on the circumcircle and these lines:
X(28560) = isogonal conjugate of X(28561)
X(28560) = circumcircle-antipode of X(28559)
X(28561) lies on these lines: {30, 511}, {4879, 21145}
X(28561) = isogonal conjugate of X(28560)
X(28562) lies on these lines: {1, 24692}, {2, 902}, {10, 598}, {30, 511}, {551, 3821}, {597, 4085}, {1125, 15810}, {3058, 20359}, {3241, 24248}, {3246, 25351}, {3474, 29844}, {3634, 14762}, {3663, 11057}, {3679, 3923}, {3729, 4677}, {3741, 4450}, {3755, 4991}, {3828, 24295}, {3915, 17679}, {3993, 21829}, {4052, 14458}, {4141, 4427}, {4669, 17346}, {4685, 25306}, {4709, 29617}, {4745, 14537}, {4956, 17763}, {5255, 17677}, {8669, 12699}, {9580, 29649}, {17310, 17738}
X(28562) = isogonal conjugate of X(28563)
X(28563) lies on the circumcircle and these lines:
X(28563) = isogonal conjugate of X(28562)
X(28564) lies on the circumcircle and these lines:
X(28564) = isogonal conjugate of X(28565)
X(28564) = circumcircle-antipode of X(28563)
X(28565) lies on these lines: {30, 511}, {262, 4049}, {3777, 21145}, {3835, 21132}, {4468, 17760}, {5466, 30094}
X(28565) = isogonal conjugate of X(28564)
X(28566) lies on these lines: {1, 7232}, {8, 17351}, {30, 511}, {44, 391}, {145, 17276}, {238, 1698}, {320, 3623}, {390, 4851}, {1279, 3616}, {1386, 4660}, {1757, 4668}, {2550, 17348}, {3058, 4891}, {3242, 17345}, {3246, 3836}, {3416, 17229}, {3666, 4450}, {3739, 3883}, {3744, 6327}, {3886, 17372}, {4307, 4670}, {4418, 4914}, {4434, 5087}, {4461, 20052}, {4514, 20101}, {4640, 4865}, {4641, 5014}, {5263, 17239}, {7290, 17356}
X(28566) = isogonal conjugate of X(28567)
X(28567) lies on the circumcircle and these lines:
X(28567) = isogonal conjugate of X(28566)
X(28568) lies on the circumcircle and these lines:
X(28568) = isogonal conjugate of X(28569)
X(28568) = circumcircle-antipode of X(28567)
X(28569) lies on these lines: {30, 511}, {986, 4905}, {3803, 3904}, {4385, 4462}, {9956, 19971}
X(28569) = isogonal conjugate of X(28568)
X(28570) lies on these lines: {1, 17255}, {30, 511}, {44, 966}, {238, 3624}, {320, 1279}, {1001, 17376}, {1100, 24723}, {1386, 4655}, {3246, 15808}, {3416, 17351}, {3629, 3755}, {3685, 17374}, {3723, 9791}, {3744, 20064}, {3745, 4683}, {3836, 6687}, {3844, 4672}, {3883, 17365}, {3923, 17229}, {4307, 4643}, {4312, 4361}, {4349, 4364}, {4429, 16669}, {4641, 6327}, {4660, 4663}, {4676, 17231}, {4678, 20072}, {4682, 4703}, {4851, 5698}, {4852, 24248}, {4864, 20057}, {4974, 24692}, {5263, 17344}, {5695, 17372}, {5880, 17348}, {7232, 7290}, {9746, 9766}, {15601, 17265}, {16469, 17290}, {16475, 17382}, {17299, 24280}, {24342, 28633}
X(28570) = isogonal conjugate of X(28571)
X(28571) lies on the circumcircle and these lines:
X(28571) = isogonal conjugate of X(28570)
X(28572) lies on the circumcircle and these lines:
X(28572) = isogonal conjugate of X(28573)
X(28572) = circumcircle-antipode of X(28571)
X(28573) lies on these lines: {30, 511}, {3669, 3931}
X(28573) = isogonal conjugate of X(28572)
X(28571) lies on the circumcircle and these lines:
X(28571) = isogonal conjugate of X(28570)
X(28575) lies on the circumcircle and these lines:
X(28575) = isogonal conjugate of X(28576)
X(28575) = circumcircle-antipode of X(28574)
X(28576) lies on these lines: {30, 511}, {3953, 4905}, {21185, 28591}
X(28576) = isogonal conjugate of X(28575)
X(28577) lies on the circumcircle and these lines:
X(28577) = isogonal conjugate of X(17771)
X(28578) lies on the circumcircle and these lines:
X(28578) = isogonal conjugate of X(28579)
X(28578) = circumcircle-antipode of X(28577)
X(28579) lies on these lines: {30, 511}
X(28579) = isogonal conjugate of X(28578)
X(28580) lies on these lines: {1, 1266}, {2, 968}, {6, 4780}, {8, 17333}, {10, 45}, {30, 511}, {551, 4356}, {553, 7248}, {903, 24231}, {1086, 4702}, {1125, 17067}, {1731, 12514}, {1836, 4028}, {2177, 4054}, {2321, 4660}, {2550, 4078}, {3008, 4432}, {3011, 4442}, {3241, 4307}, {3246, 4395}, {3416, 4133}, {3679, 3717}, {3686, 4709}, {3696, 17330}, {3751, 24280}, {3755, 3923}, {3828, 17359}, {3869, 15076}, {3886, 17274}, {3912, 4693}, {3932, 4908}, {4061, 4703}, {4085, 17355}, {4429, 17342}, {4645, 17310}, {4672, 4743}, {4689, 27747}, {4779, 16020}, {5263, 17320}, {5880, 17313}, {15953, 24696}, {16484, 24199}, {17195, 18792}, {17271, 24723}, {17748, 18483}, {20470, 23386}, {24693, 29571}
X(28581) lies on these lines: {1, 3696}, {2, 4891}, {6, 3886}, {8, 37}, {10, 4698}, {11, 4819}, {30, 511}, {42, 3706}, {44, 3685}, {55, 17156}, {75, 145}, {141, 3755}, {192, 3621}, {238, 4702}, {239, 1279}, {244, 4706}, {312, 4849}, {321, 20011}, {390, 5839}, {756, 4113}, {960, 22271}, {968, 4042}, {984, 3632}, {1001, 17348}, {1086, 4684}, {1100, 5263}, {1125, 4732}, {1150, 4689}, {1278, 20014}, {1738, 3834}, {1757, 4693}, {1999, 3996}, {2550, 4851}, {2667, 10459}, {2886, 4028}, {3175, 3681}, {3187, 3744}, {3210, 21342}, {3241, 4688}, {3242, 3875}, {3243, 17151}, {3244, 4709}, {3246, 4974}, {3416, 17372}, {3617, 4687}, {3622, 4751}, {3623, 4699}, {3625, 3993}, {3626, 3842}, {3633, 4726}, {3644, 20054}, {3666, 3896}, {3679, 4755}, {3680, 10435}, {3689, 17763}, {3717, 3943}, {3723, 16830}, {3740, 4685}, {3751, 5695}, {3752, 10453}, {3783, 20530}, {3797, 20016}, {3821, 4743}, {3823, 3912}, {3844, 4085}, {3883, 17362}, {3913, 15624}, {3923, 4663}, {3930, 20593}, {3950, 24393}, {3999, 17495}, {4009, 21805}, {4022, 4642}, {4026, 17239}, {4043, 4696}, {4061, 5743}, {4356, 4364}, {4358, 19998}, {4359, 4883}, {4429, 17231}, {4519, 21870}, {4645, 17374}, {4646, 10449}, {4671, 20048}, {4673, 20018}, {4676, 16669}, {4678, 27268}, {4686, 20050}, {4704, 20052}, {4718, 20053}, {4720, 17015}, {4733, 28633}, {4740, 20049}, {4780, 17235}, {4812, 20035}, {4952, 20015}, {4981, 27804}, {5014, 19791}, {5223, 17262}, {5542, 7263}, {5836, 22316}, {5880, 17376}, {7174, 17318}, {8667, 9746}, {10950, 11997}, {12410, 18619}, {12645, 20430}, {15888, 21926}, {16610, 29824}, {16834, 27474}, {17045, 19868}, {17344, 24723}, {17345, 24248}, {18134, 21949}, {20013, 20171}, {20036, 20923}, {20040, 20891}, {20041, 20892}, {20047, 22016}, {20363, 21897}, {27483, 29580}
X(28582) lies on these lines: {1, 4681}, {8, 4686}, {10, 4739}, {30, 511}, {37, 2275}, {75, 3617}, {145, 3644}, {190, 1279}, {192, 3623}, {210, 17155}, {226, 4884}, {238, 24821}, {244, 4009}, {291, 20530}, {312, 21342}, {321, 20068}, {335, 17266}, {596, 5044}, {942, 24068}, {982, 3967}, {984, 1698}, {1086, 3717}, {1266, 4899}, {1278, 20052}, {1463, 4553}, {1575, 17794}, {3159, 5045}, {3175, 3873}, {3210, 4849}, {3242, 3729}, {3416, 17345}, {3589, 4353}, {3666, 17165}, {3685, 4864}, {3696, 4668}, {3740, 24165}, {3742, 3971}, {3751, 4852}, {3790, 17231}, {3834, 3932}, {3883, 17334}, {3891, 4641}, {3943, 4684}, {3952, 16610}, {3977, 17724}, {3994, 17449}, {3995, 4883}, {3999, 4358}, {4011, 4906}, {4052, 24386}, {4078, 25557}, {4310, 17279}, {4361, 5223}, {4363, 7174}, {4664, 24485}, {4683, 4914}, {4698, 19862}, {4706, 21805}, {4756, 7292}, {4862, 4901}, {4952, 17784}, {4981, 27812}, {5087, 21093}, {5220, 17348}, {5542, 17243}, {5695, 16496}, {7227, 19868}, {10453, 22034}, {12782, 25102}, {15481, 16825}, {16602, 27538}, {16814, 16823}, {17278, 27549}, {26718, 28655}, {27481, 29622}
X(28583) lies on the circumcircle and these lines:
X(28583) = isogonal conjugate of X(28482)
X(28583) = circumcircle-antipode of X(28583)
X(28584) lies on the circumcircle and these lines:
X(28584) = isogonal conjugate of X(28585)
X(28584) = circumcircle-antipode of X(28583)
X(28585) lies on these lines: {30, 511}, {3803, 21302}
X(28585) = isogonal conjugate of X(28584)
Centers associated with the Gemini triangles 2-28: X(28586)-X(28661)
These centers were contributed by Randy Hutson, November 27, 2018. The Gemini triangles are introduced in the preamble just before X(24537).
Let A'B'C' be the 2nd circumperp triangle. Let A" be the trilinear pole of line B'C', and define B" and C" cyclically. The lines AA", BB", CC" concur in X(81). A", B", C" are collinear on line X(239)X(514), the trilinear polar of X(86). A"B"C" is also the (degenerate) cross-triangle of ABC and Gemini triangle 2. X(28586) is the centroid of A"B"C".
X(28586) lies on these lines: {2, 16554}, {239, 514}, {2250, 3219}
X(28587) lies on these lines: {1086, 28590}, {8257, 16549}
X(28588) is the perspector of the Gemini triangle 7 and the tangential triangle, wrt the Gemini triangle 7, of the {Gemini 7, Gemini 8}-circumconic.
X(28588) lies on these lines: {277, 14837}, {1734, 7658}
X(28589) is the perspector of the Gemini triangle 8 and the tangential triangle, wrt the Gemini triangle 7, of the {Gemini 7, Gemini 8}-circumconic.
X(28589) lies on these lines: {100, 2736}, {165, 11068}, {497, 3676}, {649, 15487}, {2254, 3667}, {2820, 4025}, {3309, 4897}
X(28590) is the perspector of the Gemini triangle 7 and the tangential triangle, wrt the Gemini triangle 8, of the {Gemini 7, Gemini 8}-circumconic.
X(28590) lies on these lines: {522, 4000}, {905, 918}, {1086, 28587}, {2254, 3667}, {4063, 14837}
X(28591) is the perspector of the Gemini triangle 8 and the tangential triangle, wrt the Gemini triangle 8, of the {Gemini 7, Gemini 8}-circumconic.
X(28591) lies on these lines: {404, 4401}, {1019, 6006}, {3667, 4017}, {7284, 23836}
X(28592) is the perspector of the Gemini triangle 15 and the tangential triangle, wrt the Gemini triangle 15, of the {Gemini 15, Gemini 16}-circumconic.
X(28592) lies on these lines: {2, 28596}, {37, 714}, {292, 4697}, {740, 21814}, {893, 4434}, {6682, 8620}, {16577, 16600}
X(28592) = complement of complement of X(28596)
X(28593) is the perspector of the Gemini triangle 16 and the tangential triangle, wrt the Gemini triangle 15, of the {Gemini 15, Gemini 16}-circumconic.
X(28593) lies on these lines: {2, 28597}, {10, 37}, {714, 3963}, {3728, 4033}, {3741, 17229}, {5301, 10791}, {27800, 28633}
X(28593) = complement of complement of X(28597)
X(28593) = trilinear product X(37)*X(27020)
X(28593) = barycentric product X(10)*X(27020)
X(28594) is the perspector of the Gemini triangle 15 and the tangential triangle, wrt the Gemini triangle 16, of the {Gemini 15, Gemini 16}-circumconic.
X(28594) lies on these lines: {1, 1390}, {2, 28598}, {9, 595}, {10, 37}, {33, 7322}, {38, 16549}, {42, 4006}, {72, 3997}, {101, 5293}, {169, 3731}, {213, 3678}, {612, 17742}, {756, 3294}, {758, 2295}, {762, 2238}, {984, 3730}, {1018, 2292}, {1107, 24036}, {1334, 4456}, {1722, 16673}, {2176, 10176} et al)
X(28594) = complement of complement of X(28598)
X(28594) = trilinear product X(i)*X(j) for these {i,j}: {10, 5280}, {37, 3920}, {42, 17289}, {57, 4538}
X(28594) = barycentric product X(i)*X(j) for these {i,j}: {7, 4538}, {10, 3920}, {37, 17289}, {321, 5280}
X(28595) is the perspector of the Gemini triangle 16 and the tangential triangle, wrt the Gemini triangle 16, of the {Gemini 15, Gemini 16}-circumconic.
X(28595) lies on these lines: {2, 4865}, {10, 12}, {306, 4085}, {740, 3969}, {752, 5294}, {1213, 4071}, {2895, 4753}, {3006, 6682}, {3416, 3791}, {3703, 3821}, {3741, 3844}, {3773, 3914}, {3846, 24003}, {3932, 4425}, {4026, 10180}, {4365, 4535}, {4442, 6535}, {4645, 4697}, {4655, 20078}, {4672, 6327}, {4854, 6541} et al
X(28595) = complement of X(17469)
X(28595) = trilinear product X(i)*X(j) for these {i,j}: {10, 17598}, {37, 17291}
X(28595) = barycentric product X(i)*X(j) for these {i,j}: {10, 17291}, {321, 17598}
X(28596) is the perspector of the Gemini triangle 17 and the tangential triangle, wrt the Gemini triangle 17, of the {Gemini 17, Gemini 18}-circumconic.
X(28596) lies on these lines: {2, 28592}, {192, 714}, {2350, 17147}
X(28596) = anticomplement of anticomplement of X(28592)
X(28597) is the perspector of the Gemini triangle 18 and the tangential triangle, wrt the Gemini triangle 17, of the {Gemini 17, Gemini 18}-circumconic.
X(28597) lies on these lines: {2, 28593}, {8, 192}, {75, 4553}, {350, 4651}, {519, 2309}, {1964, 20044}, {2276, 17135} et al
X(28597) = anticomplement of anticomplement of X(28593)
X(28598) is the perspector of the Gemini triangle 17 and the tangential triangle, wrt the Gemini triangle 18, of the {Gemini 17, Gemini 18}-circumconic.
X(28598) lies on these lines: {1, 4568}, {2, 28594}, {8, 192}, {239, 3294}, {536, 20911}, {2295, 9055} et al
X(29598) = complement of X(29611)
X(28598) = anticomplement of anticomplement of X(28594)
X(28599) is the perspector of the Gemini triangle 18 and the tangential triangle, wrt the Gemini triangle 18, of the {Gemini 17, Gemini 18}-circumconic.
X(28599) lies on these lines: {2, 4434}, {8, 79}, {528, 3969}, {2887, 20045}, {3006, 5745}, {3416, 4863}, {3679, 6539}, {3703, 4427}, {3936, 4030}, {3952, 4388} et al
X(28599) = anticomplement of X(17469)
X(28600) lies on these lines: {1, 1575}, {2, 210}, {37, 291}, {42, 4682}, {43, 4038}, {86, 17792}, {513, 875}, {551, 14839}, {672, 15254}, {760, 5883}, {1001, 17754}, {1386, 24512}, {1390, 3315} et al
X(28600) = complement of X(3789)
X(28601) lies on these lines: {10, 4777}, {513, 10176}, {522, 3828}, {900, 3035}
The side-triangle of ABC and Gemini triangle 19 is degenerate, lying on line X(2786)X(9508), the trilinear polar of X(6542).
X(28602) lies on these lines: {2, 523}, {120, 2977}, {512, 10176}, {513, 3740}, {514, 3828}, {867, 5520}, {900, 1635}, {2605, 3961}, {2786, 9508} et al
X(28602) = tripolar centroid of X(6542)
X(28602) = trilinear product X(i)*X(j) for these {i,j}: {44, 2786}, {519, 9508}, {900, 1757}, {1635, 6542}, {1960, 20947}, {3762, 17735}, {4358, 5029}
X(28602) = barycentric product X(i)*X(j) for these {i,j}: {519, 2786}, {900, 6542}, {1635, 20947}, {1757, 3762}, {3264, 5029}, {4358, 9508}
The side-triangle of ABC and Gemini triangle 20 is degenerate, lying on line X(4770)X(4777), the trilinear polar of X(4671).
X(28603) lies on these lines: {2, 14422}, {10, 900}, {514, 3837}, {891, 4728}, {2787, 4763}, {3679, 4800}, {4770, 4777} et al
X(28603) = tripolar centroid of X(4671)
X(28603) = trilinear product X(i)*X(j) for these {i,j}: {45, 4728}, {513, 4937}, {536, 4893}, {891, 3679}, {899, 4777}, {3230, 4791}, {3768, 4671}, {4775, 6381}
X(28603) = barycentric product X(i)*X(j) for these {i,j}: {514, 4937}, {536, 4777}, {891, 4671}, {899, 4791}, {3679, 4728}, {4893, 6381}
X(28604) lies on these lines: {2, 37}, {8, 4649}, {10, 894}, {69, 4470}, {86, 594}, {144, 5880}, {190, 1213}, {193, 3416}, {239, 4967}, {274, 3963}, {291, 3728}, {319, 4670}, {1100, 5564}, {1125, 4431}, {1224, 4647}, {1698, 3729}, {1761, 3219}, {1766, 7384} et al
X(28604) = anticomplement of X(17322)
X(28604) = {X(2),X(75)}-harmonic conjugate of X(17302)
X(28605) lies on these lines: {1, 4365}, {2, 37}, {7, 6358}, {8, 79}, {63, 4659}, {69, 17483}, {76, 6539}, {92, 144}, {100, 9103}, {145, 3902}, {190, 5278}, {274, 27789}, {306, 4431}, {310, 6382}, {314, 8025}, {329, 14213}, {594, 3782}, {726, 7226}, {894, 3187}, {984, 21020}, {1089, 9780}, {1211, 4665}, {1215, 3240}, {1227, 4440}, {1230, 3596}, {1255, 15668}, {1621, 5695}, {1698, 4066}, {1909, 20055}, {1999, 10447}, {2321, 5249} et al
X(28605) = isogonal conjugate of X(34819)
X(28605) = isotomic conjugate of X(25417)
X(28605) = anticomplement of X(28606)
X(28605) = cevapoint of X(i) and X(j) for these {i,j}: {1698, 4007}, {3927, 16777}
X(28605) = crosssum of X(1977) and X(8637)
X(28605) = trilinear pole of line X(4802)X(4823)
Let A' be the trilinear pole of the tangent to the Apollonius circle where it meets the A-excircle, and define B' and C' cyclically. Triangle A'B'C' is homothetic to ABC at X(37), to the medial triangle at X(3666), and to the anticomplementary triangle at X(28606).
X(28606) lies on these lines: {1, 21}, {2, 37}, {6, 3219}, {7, 464}, {8, 3896}, {9, 5256}, {22, 55}, {33, 7466}, {42, 984}, {43, 756}, {45, 4383}, {57, 1255}, {88, 4606}, {89, 27789}, {92, 18662}, {100, 612}, {145, 14552}, {171, 4414}, {210, 3240}, {222, 1442}, {223, 8545}, {226, 17080}, {227, 5261}, {239, 5278}, {241, 21454}, {244, 2108}, {306, 4357}, {319, 20017}, {329, 7961}, {333, 3187}, {335, 2296}, {354, 4392}, {386, 3876}, {391, 20043}, {394, 2256}, {404, 975}, {405, 5262}, {518, 7226}, {559, 19373}, {581, 12528}, {614, 5284}, {647, 4467}, {750, 1961}, {894, 19684}, {902, 17716}, {908, 4656}, {940, 3218}, {941, 5739}, {942, 13726}, {943, 1062}, {964, 7283}, {976, 20769}, {980, 16826}, {982, 3720}, {988, 5253}, {990, 7411}, {991, 11220}, {1001, 7191}, {1082, 7051}, {1100, 4641}, {1104, 16865}, {1107, 4393}, {1125, 26747}, {1150, 1999}, {1155, 4682}, {1211, 4364} et al
X(28606) = isogonal conjugate of X(2214)
X(28606) = complement of X(28605)
X(28606) = crossdifference of every pair of points on line X(661)X(667)
X(28606) = {X(1),X(63)}-harmonic conjugate of X(81)
X(28606) = {X(37),X(3666)}-harmonic conjugate of X(2)
X(28607) lies on these lines: {6, 36}, {31, 7113}, {32, 9456}, {45, 993}, {81, 89}, {739, 4588}, {2214, 16884}, {2298, 2320}, {2423, 21007} et al
X(28607) = isogonal conjugate of X(4671)
X(28607) = crossdifference of every pair of points on line X(4770)X(4777)
X(28607) = trilinear product X(i)*X(j) for these {i,j}: {6, 2163}, {31, 89}, {56, 2364}, {560, 20569}, {604, 2320}, {649, 4588}, {1919, 4597}, {4604, 9780}
X(28607) = barycentric product X(i)*X(j) for these {i,j}: {1, 2163}, {6, 89}, {36, 20569}, {56, 2320}, {57, 2364}, {513, 4588}, {649, 4604}, {4597, 9780}
X(28608) lies on these lines: {2, 2321}, {10, 3296}, {6553, 19875}
X(28609) lies on these lines: {1, 529}, {2, 7}, {4, 519}, {10, 5714}, {12, 12526}, {30, 1490}, {40, 10786}, {72, 3679}, {78, 9579}, {165, 17768}, {200, 1836}, {306, 4873}, {321, 4007}, {346, 4035}, {381, 5715}, {388, 15829}, {405, 5563}, {442, 19875}, {497, 3243}, {516, 3158}, {518, 1699}, {524, 10888}, {528, 1750}, {535, 18446}, {551, 3487}, {758, 5587}, {946, 5811}, {950, 3241}, {954, 4428}, {960, 5290}, {962, 2136}, {1329, 3339}, {1376, 4312}, {1697, 11239}, {1698, 28645}, {1706, 4295}, {1707, 17719}, {1728, 3582}, {1743, 3772}, {1745, 3191}, {1754, 23693}, {1763, 16548}, {1864, 11238}, {2093, 17757} et al
X(28609) = complement of X(28610)
X(28609) = X(154)-of-2nd-extouch-triangle
X(28610) lies on these lines: {2, 7}, {8, 529}, {20, 519}, {21, 3304}, {27, 4921}, {30, 9799}, {38, 4344}, {46, 5815}, {72, 9858}, {84, 6766}, {88, 20014}, {165, 5850}, {200, 8544}, {210, 10861}, {222, 3160}, {312, 4488}, {333, 7320}, {376, 1071}, {518, 5918}, {528, 10430}, {529, 3474}, {551, 11036}, {758, 5731}, {938, 11113}, {962, 1709}, {1259, 13587}, {1478, 5775}, {1707, 4310}, {1776, 11415} et al
X(28610) = anticomplement of X(28609)
X(28610) = inner-Conway-to-Conway similarity image of X(2)
X(28610) = X(2)-of-A"B"C", as defined at X(18228)
X(28611) lies on these lines: {1, 3996}, {2, 3743}, {8, 3881}, {10, 38}, {46, 4384}, {75, 1089}, {274, 17731}, {321, 3634}, {333, 3336}, {1125, 24589} et al
X(29611) = anticomplement of X(29598)
X(28611) = {X(2),X(28612)}-harmonic conjugate of X(4647)
X(28612) lies on these lines: {1, 3896}, {2, 3743}, {8, 2891}, {10, 75}, {46, 5271}, {58, 3980}, {65, 9552}, {191, 5278}, {274, 4658}, {312, 3634}, {321, 1698}, {551, 4673}, {758, 9534}, {942, 3696}, {1089, 9780}, {1125, 19804}, {1150, 3336}, {1441, 3339}, {1724, 4418}, {1788, 6358} et al
X(28612) = anticomplement of X(27784)
X(28612) = {X(4647),X(28611)}-harmonic conjugate of X(2)
X(28613) lies on the line {1224, 4647}
X(28613) = isogonal conjugate of X(28614)
X(28614) lies on these lines: {31, 18755}, {213, 1333}, {1203, 4272}, {28637, 28649}
X(28614) = isogonal conjugate of X(28613)
X(28614) = barycentric product X(1203)*X(1961)
X(28615) lies on these lines: {6, 595}, {9, 2214}, {31, 872}, {37, 81}, {44, 2298}, {213, 1333}, {292, 4629}, {604, 5035}, {739, 8701}, {1268, 14621}, {28625, 28649} et al
X(28615) = isogonal conjugate of X(4359)
X(28615) = crossdifference of every pair of points on line X(4977)X(4983)
X(28615) = trilinear product X(i)*X(j) for these {i,j}: {6, 1126}, {31, 1255}, {32, 1268}, {42, 1171}, {669, 4632}, {798, 4596}
X(28615) = barycentric product X(i)*X(j) for these {i,j}: {1, 1126}, {6, 1255}, {31, 1268}, {37, 1171}, {692, 4608}, {798, 4632}
Let A21B21C21 and A22B22C22 be the Gemini triangles 21 and 22, resp. Let LA be the line through A21 parallel to BC, and define LB, LC cyclically. Let A'21 = LB∩LC, and define B'21, C'21 cyclically. Triangle A'21B'21C'21 is homothetic to ABC at X(5936). Let MA be the line through A22 parallel to BC, and define MB, MC cyclically. Let A'22 = MB∩MC, and define B'22, C'22 cyclically. Triangle A'22B'22C'22 is homothetic to ABC at X(7). Triangles A'21B'21C'21 and A'22B'22C'22 are homothetic at X(28616).
X(28616) lies on these lines: {7, 10}, {8, 21279}, {75, 329}, {144, 2270}, {150, 4738}, {962, 4647}, {2999, 3672}, {4328, 21060}, {4452, 31018}, {11037, 19866}, {28632, 28644}
X(28616) = X(75)-Ceva conjugate of X(3672)
X(28616) = barycentric product X(3672)*X(34255)
X(28616) = barycentric quotient X(3616)/X(34244)
X(28616) = {X(7),X(5936)}-harmonic conjugate of X(11024)
X(28617) lies on these lines: {2, 1449}, {3624, 4252}
X(28617) = complement of X(30707)
X(28618) lies on these lines: {1, 14007}, {2, 4658}, {21, 36}, {58, 5550}, {81, 19862}, {86, 3624}, {272, 28626}, {314, 6533}, {474, 5132}, {551, 14005}, {1010, 25055}, {4803, 20057}, {5235, 19878}, {5439, 18417} et al
X(28618) = {X(2),X(28620)}-harmonic conjugate of X(28619)
X(28619) lies on these lines: {1, 75}, {2, 4658}, {10, 5333}, {21, 551}, {58, 3616}, {72, 28639}, {81, 1125}, {333, 3624}, {519, 14005}, {1014, 3671}, {1255, 3159}, {1408, 15950}, {1412, 3485}, {1437, 11281}, {1444, 11551}, {1621, 4278} et al
X(28619) = {X(2),X(28620)}-harmonic conjugate of X(28618)
X(28620) lies on these lines: {1, 4720}, {2, 4658}, {21, 25055}, {58, 86}, {81, 3624}, {333, 19862}, {386, 15668}, {519, 14007}, {551, 1010}, {1001, 4278}, {3487, 28641}
X(28620) = {X(28618),X(28619)}-harmonic conjugate of X(2)
X(28621) lies on the line {4658, 10449}
X(28621) = isogonal conjugate of X(28622)
X(28621) = trilinear pole of line X(4840)X(28623)
X(28622) lies on these lines: {6, 2200}, {37, 3678}, {42, 2176}, {1918, 18755}, {3293, 4050}, {28643, 28649}
X(28622) = isogonal conjugate of X(28621)
X(28622) = crossdifference of every pair of points on line X(4840)X(28623)
X(28622) = barycentric product X(10)*X(386)*X(17379)
X(28622) = barycentric product X(42)*X(5224)*X(17379)
X(28623) is the infinite point of the perspectrix of Gemini triangles 23 and 24.
X(28623) lies on these lines: {30, 511}, {338, 23820}, {656, 4391}, {905, 8062}, {1459, 7253}, {1577, 23800}, {1734, 4086}, {1769, 4811}, {2254, 2517}, {3239, 6586}, {3261, 4025}, {3700, 21348}, {4017, 7650}, {4036, 17072}, {4057, 23405}, {4064, 20294}, {4467, 20906}, {4840, 4932}, {4985, 21189}, {6133, 9508}, {15419, 17215}, {20517, 21179}, {22084, 23978}
X(28623) = isogonal conjugate of X(28624)
X(28623) = crossdifference of every pair of points on line X(6)X(2200)
X(28624) lies on the circumcircle and these lines: {99, 1331}, {104, 1468}, {105, 2282}, {107, 8750}, {675, 1246}
X(28624) = isogonal conjugate of X(28623)
X(28624) = trilinear pole of line X(6)X(2200)
X(28624) = Ψ(X(2), X(71))
X(28624) = Ψ(X(4), X(42))
X(28624) = Ψ(X(6), X(2200))
X(28624) = Λ(X(3261), X(4025))
X(28624) = barycentric product of circumcircle intercepts of line X(2)X(71)
X(28625) lies on these lines: {2, 319}, {6, 35}, {37, 3678}, {44, 941}, {80, 1989}, {111, 8652}, {1126, 2174}, {1169, 4273}, {1171, 1333}, {1400, 2594}, {1825, 1880}, {2350, 5153}, {28615, 28649} et al
X(28625) = isogonal conjugate of X(5333)
X(28625) = crossdifference of every pair of points on line X(4716)X(4802)
X(28625) = trilinear product X(42)*X(25417)
X(28625) = barycentric product X(37)*X(25417)
Let A23B23C23 be the Gemini triangle 23. Let LA be the line through A23 parallel to BC, and define LB and LC cyclically. Let A'23 = LB∩LC, and define B'23, C'23 cyclically. Triangle A'23B'23C'23 is homothetic to ABC at X(28626).
X(28626) lies on these lines: {1, 5936}, {2, 1449}, {7, 1125}, {8, 1268}, {27, 5333}, {75, 3616}, {86, 5550}, {272, 28618}, {273, 3160}, {335, 4473}, {673, 15668}, {1014, 4423} et al
X(28626) = isotomic conjugate of X(9780)
Let A'23B'23C'23 be as at X(28626). Let A24B24C24 be the Gemini triangle 24. Let MA be the line through A24 parallel to BC, and define MB and MC cyclically. Let A'24 = MB∩MC, and define B'24 and C'24 cyclically. Triangles A'23B'23C'23 and A'24B'24C'24 are homothetic at X(28627).
X(28627) lies on these lines: {2, 610}, {7, 1125}, {9, 5736}, {21, 10436}, {63, 86}, {307, 6857}, {614, 2309}, {3945, 5273}, {5232, 20106}, {5738, 5745}, {5750, 14021} et al
X(28627) = barycentric product X(3945)*X(5271)
X(28628) lies on these lines: {1, 442}, {2, 65}, {3, 142}, {4, 3838}, {5, 6261}, {7, 15823}, {8, 17718}, {10, 3940}, {21, 1836}, {40, 6690}, {46, 3624}, {56, 5249}, {57, 4999}, {63, 3649}, {78, 3925}, {224, 4666}, {226, 958}, {329, 5302}, {354, 10527}, {355, 3822}, {377, 497}, {405, 12047}, {474, 11507}, {498, 3753}, {499, 5439}, {517, 10198}, {518, 3487}, {529, 5290}, {551, 11235}, {758, 5791}, {936, 3826}, {944, 6984}, {956, 13407}, {988, 1086}, {993, 11263}, {997, 8728}, {1056, 11260} et al
X(28628) = {X(2),X(28629)}-harmonic conjugate of X(3812)
X(28629) lies on these lines: {1, 142}, {2, 65}, {4, 12520}, {7, 958}, {8, 3475}, {9, 3671}, {10, 3487}, {20, 5880}, {21, 3474}, {40, 631}, {46, 6857}, {55, 404}, {56, 9776}, {144, 5302}, {226, 2551}, {329, 3649}, {355, 3824}, {377, 3486}, {388, 5249}, {405, 4295}, {442, 18391}, {452, 1836}, {498, 26725}, {516, 5436}, {517, 6989}, {518, 11036}, {527, 5234}, {938, 2886}, {942, 24477}, {944, 6901}, {946, 6865}, {948, 1042}, {962, 1001}, {1104, 4307}, {1118, 11109}, {1191, 16020}, {1329, 5226}, {1376, 5703}, {1385, 6885} et al
X(28629) = {X(3812),X(28628)}-harmonic conjugate of X(2)
The perspectrix of Gemini triangles 21 and 23 passes through X(4369).
X(28630) lies on these lines: {894, 2292}, {1211, 1909}, {3666, 17103} et al
X(28630) = isogonal conjugate of X(28631)
X(28631) lies on these lines: {21, 37}, {55, 869}, {213, 4281}, {312, 4426}, {960, 1914}
X(28631) = isogonal conjugate of X(28630)
Let A'21B'21C'21 be as at X(28616) and let A'23B'23C'23 be as at X(28626). Triangles A'21B'21C'21 and A'23B'23C'23 are homothetic at X(28632).
X(28632) lies on these lines: {1, 5936}, {3945, 18217}
X(28633) lies on these lines: {2, 3723}, {10, 141}, {75, 4708}, {86, 4725}, {193, 4670}, {239, 1268}, {519, 6707}, {536, 1213}, {594, 4698}, {966, 5936}, {1125, 4399}, {27800, 28593} et al
X(28633) = complement of X(3723)
X(28633) = {X(2),X(28635)}-harmonic conjugate of X(28634)
X(28634) lies on these lines: {1, 4399}, {2, 3723}, {6, 4967}, {7, 4690}, {8, 3739}, {9, 4665}, {10, 3946}, {45, 4431}, {69, 4688}, {75, 1654}, {141, 3679}, {142, 3626}, {145, 28639}, {193, 4795}, {319, 4675}, {320, 4772}, {519, 15668}, {524, 4034}, {536, 966}, {1100, 4798}, {1213, 3875}, {1449, 4472}, {1698, 4405}, {1743, 7227} et al
X(28634) = {X(2),X(28635)}-harmonic conjugate of X(28633)
X(28635) lies on these lines: {2, 3723}, {6, 5936}, {8, 15668}, {10, 4000}, {75, 4748}, {145, 28641}, {966, 3729}, {1654, 7222} et al
X(28635) = {X(28633),X(28634)}-harmonic conjugate of X(2)
X(28636) lies on these lines: (pending)
X(28636) = isogonal conjugate of X(28637)
X(28637) lies on these lines: {1171, 1333}, {2276, 4272}, {28614, 28649}
X(28637) = isogonal conjugate of X(28636)
Let A'21B'21C'21 be as at X(28616) and let A'24B'24C'24 be as at X(28627). Triangles A'21B'21C'21 and A'24B'24C'24 are homothetic at X(28638).
X(28638) lies on these lines: {7, 10}, {1212, 3666}, {3295, 4460}, {3672, 18249}
X(28639) lies on these lines: {1, 3696}, {2, 319}, {6, 4698}, {9, 4755}, {10, 4478}, {37, 86}, {44, 4687}, {69, 4708}, {72, 28619}, {75, 3723}, {141, 1125}, {142, 214}, {144, 4795}, {145, 28634}, {524, 5257}, {536, 10436}, {597, 6666}, {1001, 3941}, {1213, 3879}, {1255, 3175}, {1279, 3616} et al
X(28639) = complement of X(17275)
X(28639) = {X(2),X(28641)}-harmonic conjugate of X(28640)
X(28640) lies on these lines: {1, 4399}, {2, 319}, {3, 142}, {37, 4798}, {86, 4643}, {141, 3624}, {551, 4361}, {1444, 5333} et al
X(28640) = {X(2),X(28641)}-harmonic conjugate of X(28639)
X(28641) lies on these lines: {1, 4371}, {2, 319}, {8, 6707}, {86, 1778}, {141, 5550}, {142, 25055}, {145, 28635}, {346, 4798}, {1125, 4349}, {2345, 16826}, {3487, 28620} et al
X(28641) = {X(28639),X(28640)}-harmonic conjugate of X(2)
X(28642) lies on the line {1962, 3757}
X(28642) = isogonal conjugate of X(28643)
X(28643) lies on these lines: {6, 5364}, {37, 81}, {172, 2194}, {1911, 3725}, {28622, 28649} et al
X(28643) = isogonal conjugate of X(28642)
Let A'22B'22C'22 be as at X(28616) and let A'23B'23C'23 be as at X(28626). Triangles A'22B'22C'22 and A'23B'23C'23 are homothetic at X(28644).
X(28644) lies on these lines: {7, 1125}, {405, 934}, {1212, 5308}, {3160, 5129}
X(28645) lies on these lines: {2, 28646}, {8, 1836}, {10, 11544}, {65, 17484}, {72, 79}, {210, 14450}, {226, 18253}, {329, 3812}, {518, 12699}, {527, 1125}, {529, 3244}, {758, 18480}, {946, 5852}, {960, 5905}, {1698, 28609}, {1898, 5057} et al
X(28645) = complement of X(28646)
X(28645) = {X(2),X(28647)}-harmonic conjugate of X(28646)
X(28646) lies on these lines: {1, 3650}, {2, 28645}, {9, 5586}, {10, 527}, {40, 5852}, {63, 3649}, {65, 20078}, {144, 3812}, {518, 6361}, {519, 15685}, {529, 3632}, {758, 18481}, {960, 9965}, {3419, 16118}, {3616, 3683}, {3624, 3928}, {3636, 11194}, {3648, 3868}, {3901, 5441}, {3913, 5850}, {3951, 11246} et al
X(28646) = complement of X(28647)
X(28646) = anticomplement of X(28645)
X(28646) = {X(2),X(28647)}-harmonic conjugate of X(28645)
X(28647) lies on these lines: {1, 527}, {2, 28645}, {8, 15679}, {144, 5302}, {329, 5221}, {529, 20050}, {960, 20059}, {962, 5852}, {1788, 17484} et al
X(28647) = anticomplement of X(28646)
X(28647) = {X(28645),X(28646)}-harmonic conjugate of X(2)
X(28648) lies on these lines: (pending)
X(28648) = isogonal conjugate of X(28649)
X(28649) lies on these lines: {28614, 28637}, {28615, 28625}, {28622, 28643}
X(28649) = isogonal conjugate of X(28648)
X(28650) lies on these lines: {2, 3723}, {7, 10588}, {10, 30598}, {27, 19827}, {75, 3634}, {86, 1698}, {310, 30596}, {335, 4751}, {673, 17371}, {675, 28196}, {903, 17249}, {1268, 3875}, {3624, 32089}, {3739, 27494}, {3828, 4909}, {4360, 19872}, {4473, 6650}, {4687, 27483}, {4764, 25358}, {5232, 30712}, {5936, 17322}, {9780, 17394}, {14621, 17259}, {17241, 29610}, {17307, 38093}
X(28650) = {X(43),X(81)}-harmonic conjugate of X(37604)
X(28650) = {X(2),X(28652)}-harmonic conjugate of X(28651)
X(28651) lies on these lines: {2, 3723}, {10, 3873}, {4359, 6376}
X(28651) = complement of X(27789)
X(28651) = {X(2),X(28652)}-harmonic conjugate of X(28650)
X(28652) lies on these lines: {2, 3723}, {1268, 3995}
X(28652) = {X(28650),X(28651)}-harmonic conjugate of X(2)
X(28653) lies on these lines: {1, 5564}, {2, 37}, {7, 10588}, {10, 86}, {69, 3844}, {190, 5257}, {274, 313}, {320, 1698}, {594, 6707}, {757, 5247}, {894, 1213}, {966, 3758}, {1125, 4360}, {1444, 5260}, {1654, 4670}, {1826, 14013} et al
X(28653) = {X(2),X(75)}-harmonic conjugate of X(17322)
X(28653) = {X(86),X(1268)}-harmonic conjugate of X(10)
X(28654) lies on these lines: {2, 1240}, {10, 20966}, {42, 4710}, {63, 4494}, {76, 6539}, {199, 835}, {312, 3969}, {313, 321}, {346, 7017}, {429, 3695}, {561, 8024}, {668, 2895}, {1089, 6535}, {1228, 27801}, {1269, 4980}, {1500, 3948}, {1920, 3266}, {2295, 3765} et al
X(28654) = isotomic conjugate of X(593)
X(28654) = barycentric square of X(321)
X(28654) = trilinear product X(i)*X(j) for these {i,j}: {2, 1089}, {8, 6358}, {10, 321}, {12, 312}, {37, 313}, {42, 27801}, {63, 7141}, {75, 594}, {76, 756}, {92, 3695}, {190, 4036}, {201, 7017}, {264, 3949}, {274, 6535}, {310, 762}, {318, 26942}, {341, 6354}, {561, 1500}, {668, 4024}, {872, 1502}, {1240, 21810}, {1928, 7109}, {1969, 3690}, {1978, 4705}, {2171, 3596}, {3969, 6757}, {4079, 6386}, {4359, 6538}, {4647, 6539}, {14624, 18697}
X(28654) = barycentric product X(i)*X(j) for these {i,j}: {10, 313}, {12, 3596}, {37, 27801}, {69, 7141}, {75, 1089}, {76, 594}, {264, 3695}, {310, 6535}, {312, 6358}, {321, 321}, {561, 756}, {668, 4036}, {762, 6385}, {872, 1928}, {1228, 14624}, {1230, 6539}, {1240, 20653}, {1269, 6538}, {1500, 1502}, {1969, 3949}, {1978, 4024}, {3690, 18022}, {4705, 6386}, {7017, 26942}
X(28655) lies on these lines: {2, 2415}, {145, 4654}, {519, 6552}, {551, 8688}, {1279, 3699} et al
X(28655) = complement of X(33113)
X(28656) lies on these lines: {2, 28657}, {5, 10}
X(28657) lies on these lines: {2, 28656}, {3452, 12610}
X(28658) lies on these lines: {2, 44}, {6, 36}, {37, 758}, {42, 2245}, {79, 1989}, {111, 4588}, {172, 5549}, {941, 1100}, {1218, 20569}, {1400, 1464} et al
X(28658) = isogonal conjugate of X(5235)
X(28658) = crossdifference of every pair of points on line X(4693)X(4775)
X(28658) = trilinear product X(i)*X(j) for these {i,j}: {37, 2163}, {42, 89}, {65, 2364}, {512, 4604}, {661, 4588}, {798, 4597}, {1400, 2320}, {1918, 20569}, {4017, 5549}
X(28658) = barycentric product X(i)*X(j) for these {i,j}: {10, 2163}, {37, 89}, {65, 2320}, {213, 20569}, {226, 2364}, {512, 4597}, {523, 4588}, {661, 4604}, {5549, 7178}
X(28659) lies on these lines: {8, 4087}, {75, 1237}, {76, 321}, {78, 7257}, {192, 1921}, {304, 1978}, {312, 28660}, {318, 3718}, {349, 1502}, {668, 3869}, {700, 7242}, {1909, 4485}, {1969, 18022}, {2171, 17786}, {2292, 6376} et al
X(28659) = isotomic conjugate of X(604)
X(28659) = polar conjugate of X(1395)
X(28659) = barycentric square of isotomic conjugate of X(266)
X(28659) = trilinear product X(i)*X(j) for these {i,j}: {2, 3596}, {8, 76}, {9, 561}, {21, 27801}, {55, 1502}, {75, 312}, {78, 1969}, {85, 341}, {92, 3718}, {264, 345}, {281, 305}, {304, 318}, {313, 333}, {314, 321}, {331, 1265}, {349, 1043}, {668, 4391}
X(28659) = barycentric product X(i)*X(j) for these {i,j}: {8, 561}, {9, 1502}, {55, 1928}, {75, 3596}, {76, 312}, {78, 18022}, {264, 3718}, {304, 7017}, {305, 318}, {313, 314}, {333, 27801}, {341, 6063}, {345, 1969}
X(28660) lies on these lines: {2, 39}, {8, 314}, {10, 4476}, {29, 332}, {58, 5209}, {75, 2292}, {81, 3765}, {85, 6385}, {86, 313}, {92, 304}, {99, 1311}, {257, 1921}, {312, 28659}, {325, 3142}, {333, 3691}, {350, 1193}, {668, 17751}, {670, 1121}, {978, 3760}, {1043, 7257}, {1231, 1952}, {1237, 20947}, {1334, 17787} et al
X(28660) = isotomic conjugate of X(1400)
X(28660) = polar conjugate of isogonal conjugate of X(332)
X(28660) = trilinear product X(i)*X(j) for these {i,j}: {2, 314}, {8, 274), {9, 310}, {11, 4601}, {21, 76}, {29, 304}, {55, 6385}, {60, 27801}, {75, 333}, {81, 3596}, {85, 1043}, {86, 312}, {92, 332}, {99, 4391}, {109, 799}, {313, 2185}, {650, 670}, {668, 4560}
X(28660) = barycentric product X(i)*X(j) for these {i,j}: {8, 310}, {9, 6385}, {10, 18021}, {21, 561}, {29, 305}, {75, 314}, {76, 333}, {86, 3596}, {261, 313}, {264, 332}, {274, 312}, {650, 4602}, {664, 670}, {668, 18155}, {799, 4391}, {1043, 6063}, {1978, 4560}, {2185, 27801}, {4601, 4858}
Let A27B27C27 and A28B28C28 be the Gemini triangles 27 and 28, resp. Let LA be the line through A27 parallel to BC, and define LB, LC cyclically. Let A'27 = LB∩LC, and define B'27, C'27 cyclically. Triangle A'27B'27C'27 is homothetic to ABC at X(6557). Let MA be the line through A28 parallel to BC, and define MB and MC cyclically. Let A'28 = MB∩MC, and define B'28 and C'28 cyclically. Triangle A'28B'28C'28 is homothetic to ABC at X(8). Triangles A'27B'27C'27 and A'28B'28C'28 are homothetic at X(28661).
X(28661) lies on these lines: {1, 8055}, {8, 3452}, {37, 2275}, {56, 4488}, {341, 4345}, {1120, 3622} et al
See Francisco Javier García Capitán AdGeom 5028.
X(28662) lies on these lines: {6,110}, {126,3589}, {141,6719}, {182,14688}, {187,1084}, {511,14650}, {518,11721}, {524,5914}, {543,597}, {1296,5085}, {1428,3325}, {1503,5512}, {1576,21309}, {2330,6019}, {2492,2780}, {3618,14360}, {5027,6088}, {5050,11258}, {5166,9019}, {5480,23699}, {6094,11166}, {6096,21448}, {10748,14561}, {14654,14853}, {14666,20423}
X(28662) = midpoint of X(i) and X(j) for these {i,j}: {6,111}, {14666,20423}
X(28662) = reflection of X(i) in X(j) for these {i,j}: {126,3589}, {141,6719}, {14688,182}
X(28662) = complement of X(36883)
X(28662) = radical trace of circles {{X(6),X(13),X(16)}} and {{X(6),X(14),X(15)}}
Collineation mappings involving Gemini triangle 83: X(28663)-X(28693)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 83, as in centers X(28663)-X(28693). Then
m(X) = (b^2 + c^2) (a^2 + b^2 + c^2 - b c) (a^2 + b^2 + c^2 + b c) x - b^2 (a^2 + b^2) (b^2 + c^2) y - c^2 (a^2 + c^2) (b^2 + c^2) z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 27, 2018)
X(28663) lies on these lines: {1, 2}, {28667, 28673}, {28671, 28683}, {28676, 28689}
X(28664) lies on these lines: {2, 3}, {3933, 28677}, {28667, 28672}
X(28665) lies on these lines: {2, 3}, {28675, 28677}
X(28666) lies on these lines: {2, 3}, {39, 14378}, {1235, 28677}, {3933, 28675}, {6292, 22078}
X(28667) lies on these lines: {2, 6}, {6665, 28669}, {8788, 8878}, {28663, 28673}, {28664, 28672}, {28676, 28678}, {28677, 28688}, {28687, 28691}
X(28668) lies on these lines:
X(28669) lies on these lines:
X(28670) lies on these lines:
X(28671) lies on these lines:
X(28672) lies on these lines:
X(28673) lies on these lines:
X(28674) lies on these lines:
X(28675) lies on these lines:
X(28676) lies on these lines:
X(28677) lies on these lines:
X(28678) lies on these lines:
X(28679) lies on these lines:
X(28680) lies on these lines:
X(28681) lies on these lines:
X(28682) lies on these lines:
X(28683) lies on these lines:
X(28684) lies on these lines:
X(28685) lies on these lines:
X(28686) lies on these lines:
X(28687) lies on these lines:
X(28688) lies on these lines:
X(28689) lies on these lines:
X(28690) lies on these lines:
X(28691) lies on these lines:
X(28692) lies on these lines:
X(28693) lies on these lines:
Collineation mappings involving Gemini triangle 84: X(28694)-X(28733)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 84, as in centers X(28694)-X(28733). Then
m(X) = a^2(a^2 - b^2 - c^2) (a^2 + b^2 + c^2) x + (a^2 + c^2) (a^2 + b^2 - c^2) (-a^2 + b^2 + c^2) y + (a^2 + b^2) (a^2 - b^2 + c^2) (-a^2 + b^2 + c^2) z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 27, 2018)
X(28694) lies on these lines: {1, 2}, {219, 20235}, {345, 28722}, {1231, 22131}, {2172, 26260}, {4456, 17134}, {14594, 29464}, {20739, 20806}, {28703, 28711}, {28709, 28712}, {28728, 28731}
X(28695) lies on these lines: {2, 3}, {76, 23115}, {127, 7773}, {155, 287}, {183, 10316}, {216, 7808}, {325, 14376}, {339, 7754}, {577, 3934}, {1975, 14961}, {2548, 6389}, {3284, 7751}, {3734, 22401}, {7759, 15526}, {7776, 20208}, {8743, 30737}, {9723, 28417}, {12215, 28708}, {14965, 20806}, {15075, 32819}, {15595, 18381}, {19810, 22119}, {28710, 28725}
X(28696) lies on these lines: {2, 3}, {32, 6389}, {69, 10316}, {127, 32006}, {287, 11411}, {577, 7795}, {3284, 7758}, {3926, 20806}, {3933, 15905}, {5596, 20993}, {6337, 14961}, {6394, 11610}, {7767, 20208}, {9833, 15595}, {10547, 19119}, {14023, 15526}, {28699, 28700}, {28704, 28726}
X(28697) lies on these lines: {2, 3}, {127, 7750}, {183, 14376}, {216, 6680}, {287, 12359}, {325, 10316}, {577, 3788}, {620, 22401}, {1060, 26686}, {1062, 26629}, {3284, 7764}, {6390, 28728}, {6393, 20806}, {6509, 9243}, {7762, 10317}, {7763, 23115}, {7780, 15526}, {10282, 15595}, {20576, 30258}, {28706, 28726}
X(28698) lies on these lines:
X(28699) lies on these lines:
X(28700) lies on these lines:
X(28701) lies on these lines:
X(28702) lies on these lines:
X(28703) lies on these lines:
X(28704) lies on these lines:
X(28705) lies on these lines:
X(28706) lies on these lines:
X(28706) = isotomic conjugate of X(8882)
X(28707) lies on these lines:
X(28708) lies on these lines:
X(28709) lies on these lines:
X(28710) lies on these lines:
X(28711) lies on these lines:
X(28712) lies on these lines:
X(28713) lies on these lines:
X(28714) lies on these lines:
X(28715) lies on these lines:
X(28716) lies on these lines:
X(28717) lies on these lines:
X(28718) lies on these lines:
X(28719) lies on these lines:
X(28720) lies on these lines:
X(28721) lies on these lines:
X(28722) lies on these lines:
X(28723) lies on these lines:
X(28724) lies on these lines:
X(28725) lies on these lines:
X(28726) lies on these lines:
X(28727) lies on these lines:
X(28728) lies on these lines:
X(28729) lies on these lines:
X(28730) lies on these lines:
X(28731) lies on these lines:
X(28732) lies on these lines:
X(28733) lies on these lines:
Collineation mappings involving Gemini triangle 85: X(28734)-X(28780)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 85, as in centers X(28734)-X(28780). Then
m(X) = a (a^2 - a b - a c 2 b c) x - b^2(a - b + c) y - c^2 (a + b - c) z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 29, 2018)
X(28734) lies on these lines: {1, 2}, {37, 25581}, {56, 30825}, {101, 21285}, {172, 26099}, {344, 28755}, {644, 33298}, {774, 25944}, {883, 28738}, {956, 17675}, {1229, 17073}, {1479, 31058}, {1759, 5074}, {2280, 31284}, {2886, 17683}, {2975, 17671}, {3673, 27006}, {3813, 26007}, {3991, 24784}, {4766, 27249}, {5433, 16593}, {5687, 24582}, {6327, 29473}, {9310, 17046}, {11680, 17682}, {16560, 30883}, {16601, 27187}, {17062, 31240}, {17075, 20927}, {17077, 28420}, {17095, 25082}, {17170, 26258}, {17296, 27507}, {17672, 25524}, {17744, 31080}, {18055, 28747}, {21296, 27547}, {23853, 29980}, {24390, 24596}, {26131, 27276}, {27337, 33141}, {28735, 28752}, {28737, 28743}, {28739, 28762}, {28746, 28754}, {28778, 28780}
X(28735) lies on these lines: {2, 3}, {17077, 28761}, {28734, 28752}, {28738, 28747}
X(28736) lies on these lines: {2, 3}, {2899, 28757}, {3436, 28409}, {18135, 28753}, {18743, 28740}, {18747, 28419}, {27133, 28747}, {28741, 28742}, {28743, 28773}, {28752, 28771}
X(28737) lies on these lines: {2, 3}, {26689, 27091}, {27133, 28749}, {27135, 33298}, {28734, 28743}
X(28738) lies on these lines: {2, 6}, {190, 28420}, {273, 20927}, {312, 17923}, {344, 28757}, {475, 1043}, {604, 30820}, {692, 21280}, {883, 28734}, {5347, 26032}, {7763, 18157}, {15455, 28809}, {17076, 20922}, {17295, 28795}, {17347, 27509}, {19794, 25525}, {28735, 28747}, {28746, 28751}, {28750, 28773}
X(28739) lies on these lines:
X(28740) lies on these lines:
X(28741) lies on these lines:
X(28742) lies on these lines: {1, 2}, {12, 16593}, {37, 20435}, {38, 25073}, {85, 25082}, {100, 17682}, {142, 27514}, {344, 349}, {346, 25521}, {673, 3871}, {1018, 2140}, {1111, 25237}, {1212, 30806}, {1334, 20335}, {1376, 17683}, {1621, 17681}, {1909, 27109}, {2276, 26978}, {2284, 17077}, {3161, 26125}, {3454, 27050}, {3501, 30949}, {3665, 19593}, {3693, 6706}, {3730, 20347}, {3761, 26770}, {3970, 20247}, {3991, 24774}, {4766, 27251}, {5180, 26790}, {5260, 17687}, {5687, 24596}, {5701, 17263}, {6666, 27108}, {7741, 31058}, {9596, 26099}, {11681, 17671}, {16284, 31269}, {16549, 17758}, {16601, 26563}, {16713, 17296}, {17169, 17754}, {17279, 27040}, {17451, 21232}, {17540, 24542}, {17672, 25466}, {17717, 27256}, {18031, 18140}, {18739, 28772}, {21226, 27295}, {21255, 27170}, {21296, 26059}, {25079, 30850}, {25440, 31020}, {25591, 30869}, {25639, 31031}, {25957, 27038}, {26685, 27267}, {27544, 31995}, {28736, 28741}, {28769, 28776}, {28771, 28777}
X(28743) lies on these lines:
X(28744) lies on these lines:
X(28745) lies on these lines:
X(28746) lies on these lines: {2, 31}, {28734, 28754}, {28738, 28751}, {28747, 28750}
X(28747) lies on these lines: {2, 32}, {18055, 28734}, {18135, 28770}, {27133, 28736}, {28735, 28738}, {28746, 28750}
X(28748) lies on these lines: {2, 37}, {190, 17077}, {319, 27108}, {883, 28734}, {1266, 24778}, {1332, 17277}, {1760, 26265}, {2140, 29439}, {3758, 27058}, {4419, 27305}, {4648, 27254}, {4878, 26015}, {6335, 17913}, {6646, 27290}, {16578, 20236}, {16713, 17335}, {17137, 29437}, {17139, 21371}, {17228, 27039}, {17258, 27170}, {18042, 29490}, {18055, 28777}, {18141, 27287}, {24237, 29698}, {28749, 28761}, {28752, 28764}, {28755, 28780}
X(28749) lies on these lines:
X(28750) lies on these lines:
X(28751) lies on these lines: {1, 2}, {17138, 29444}, {25957, 27027}, {28738, 28746}, {28750, 28764}
X(28752) lies on these lines: {2, 11}, {18961, 28995}, {28734, 28735}, {28736, 28771}, {28738, 28746}, {28740, 28763}, {28748, 28764}
X(28753) lies on these lines: {2, 6}, {7, 28420}, {229, 4190}, {281, 20930}, {320, 27509}, {326, 3912}, {344, 348}, {948, 20927}, {1088, 30705}, {1444, 14021}, {1760, 17170}, {2191, 26015}, {3926, 18157}, {8232, 28756}, {10527, 11025}, {18135, 28736}, {18747, 30809}, {20059, 27543}, {28780, 29627}
X(28754) lies on these lines: {2, 6}, {63, 4466}, {229, 2475}, {345, 6349}, {440, 1444}, {451, 1330}, {648, 18687}, {1092, 6853}, {1231, 17095}, {1332, 26942}, {1792, 18641}, {3260, 31623}, {5562, 6952}, {9723, 21482}, {14570, 18667}, {17087, 20922}, {18632, 18721}, {18743, 28780}, {28734, 28746}, {28739, 28765}
X(28755) lies on these lines: {2, 6}, {48, 21276}, {75, 17073}, {150, 18042}, {344, 28734}, {348, 28767}, {662, 2893}, {857, 1444}, {1014, 30839}, {1760, 17181}, {3770, 18740}, {5227, 30782}, {7113, 21236}, {10200, 25539}, {17084, 18714}, {17103, 27276}, {17289, 25068}, {17295, 27526}, {17347, 27547}, {18206, 25651}, {18747, 30808}, {20305, 21277}, {28739, 28763}, {28748, 28780}, {28760, 28761}
X(28756) lies on these lines: {1, 2}, {344, 17095}, {388, 30825}, {3421, 17675}, {3436, 30857}, {4766, 27275}, {7288, 16593}, {8232, 28753}, {8732, 28420}, {27541, 30806}
X(28757) lies on these lines: {1, 2}, {7, 28420}, {12, 30839}, {81, 20808}, {100, 1375}, {344, 28738}, {527, 27543}, {857, 5080}, {1231, 17095}, {1429, 26140}, {2551, 30845}, {2899, 28736}, {2975, 30810}, {3161, 28739}, {3436, 30809}, {3676, 6332}, {3692, 18634}, {3936, 5375}, {4358, 17923}, {5227, 31261}, {5279, 18589}, {5687, 31184}, {6349, 17776}, {7677, 16593}, {11681, 30808}, {17073, 27396}, {17671, 24612}, {19808, 25585}, {21296, 27509}, {26012, 26074}, {28741, 28778}, {28836, 30828}
X(28758) lies on these lines: {2, 661}, {514, 27346}, {649, 27014}, {650, 27345}, {663, 24675}, {3669, 4391}, {3835, 26114}, {4203, 23864}, {4374, 24782}, {4379, 27139}, {4728, 26854}, {4776, 27293}, {7234, 26148}, {14829, 18199}, {17420, 25380}, {18155, 21894}, {20979, 31286}, {21828, 25258}, {23345, 27111}, {23394, 24747}, {27193, 30835}
X(28759) lies on these lines:
X(28760) lies on these lines:
X(28761) lies on these lines: {1, 2}, {35, 31058}, {6691, 17672}, {7294, 16593}, {17077, 28735}, {17681, 31272}, {24390, 24582}, {25440, 31031}, {28748, 28749}, {28755, 28760}
X(28762) lies on these lines: {2, 3}, {28734, 28739}, {28740, 28776}
X(28763) lies on these lines: {2, 3}, {5294, 30103}, {28734, 28746}, {28739, 28755}, {28740, 28752}, {28741, 28750}
X(28764) lies on these lines: {2, 3}, {28748, 28752}, {28750, 28751}
X(28765) lies on these lines: {2, 3}, {344, 28776}, {28739, 28754}
X(28766) lies on these lines: {2, 3}, {28774, 28775}
X(28767) lies on these lines: {2, 3}, {348, 28755}
X(28768) lies on these lines: {2, 3}
X(28769) lies on these lines: {2, 3}, {344, 348}, {2975, 28409}, {24635, 33157}, {28742, 28776}
X(28770) lies on these lines: {2, 3}, {18135, 28747}
X(28771) lies on these lines:
X(28772) lies on these lines:
X(28773) lies on these lines:
X(28774) lies on these lines:
X(28775) lies on these lines:
X(28776) lies on these lines:
X(28777) lies on these lines:
X(28778) lies on these lines:
X(28779) lies on these lines:
X(28780) lies on these lines:
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28686.
X(28781) lies on these lines: {3,2130}, {154,1033}, {2060,14365}
X(28781) = isogonal conjugate of X(14362)See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28686.
X(228782) lies on these lines: {3,2131}, {1436,7037}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28686.
X(28783) lies on these lines: {3,1033}, {6,14092}, {154,577}, {198,1035}, {1032,3964}, {1092,15905}, {1105,20792}, {1598,13855}, {15341,16391}
X(28783) = isogonal conjugate of X(14361)See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28686.
X(28784) lies on these lines: {3,3341}, {6,2188}, {25,1436}, {56,64}
X(28784) = isogonal conjugate of isotomic conjugate of X(34162)
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28686.
X(28785) lies on these lines: {3,2130}, {6,14092}, {25,64}, {56,7037}, {1073,9786}, {1301,1498}, {1436,2155}, {1620,11589}, {2060,14362}, {15394,17928}
X(28785) = isogonal conjugate of X(14365)See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28686.
X(28786) lies on these lines: {3,307}, {4,916}, {6,226}, {64,516}, {66,674}, {71,440}, {73,6356}, {74,1305}, {272,1175}, {349,2893}, {912,1243}, {1246,15467}, {2218,7083}, {2772,11744}, {6817,8814}, {8804,21091}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28686.
X(28787) lies on these lines: {3,6511}, {4,912}, {6,169}, {54,10202}, {64,517}, {65,23604}, {66,518}, {69,20235}, {71,18674}, {72,21015}, {74,13397}, {81,1175}, {520,3657}, {1177,2836}, {1245,2650}, {2771,11744}, {3874,9028}, {3962,10693}, {8673,10099}, {9940,14528} {8804,21091}
X(28787) = orthocenter of extraversion triangle of X(65)
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28686.
X(28788) lies on these lines: {4,5906}, {6,1210}, {64,515}, {66,8679}, {73,18641}, {2779,11744}
Collineation mappings involving Gemini triangle 86: X(28789)-X(28837)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 86, as in centers X(28789)-X(28837). Then
m(X) = a (a - b - c) (a^2 + a b + a c + 2 b c) x + b^2 (b + c - a) (a + b - c) y + c^2 (b + c - a) (a - b + c) z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 30, 2018)
X(28789) lies on these lines: {1, 2}, {9, 27507}, {55, 30826}, {100, 7377}, {572, 21286}, {956, 24583}, {2268, 21244}, {3161, 27547}, {3713, 17327}, {3965, 17385}, {4657, 20895}, {5432, 30847}, {6996, 11681}, {16603, 25940}, {17075, 20930}, {17757, 24612}, {19795, 28774}, {24633, 26446}, {28790, 28806}, {28792, 28798}, {28793, 28796}, {28794, 28817}, {28801, 28810}, {28808, 28811}, {28830, 28836}
X(28790) lies on these lines: {2, 3}, {28789, 28806}, {28793, 28802}
X(28791) lies on these lines: {2, 3}, {281, 26165}, {312, 27540}, {3701, 23600}, {4150, 28420}, {27507, 27508}, {28796, 28797}, {28802, 28828}, {28807, 28809}
X(28792) lies on these lines: {2, 3}, {4417, 28749}, {28789, 28798}
X(28793) lies on these lines: {2, 6}, {55, 27512}, {63, 19795}, {908, 1760}, {3699, 5552}, {3718, 32851}, {4997, 28794}, {5218, 27528}, {5271, 19794}, {17923, 20930}, {27515, 28829}, {28789, 28796}, {28790, 28802}, {28801, 28805}, {28808, 28813}
X(28794) lies on these lines:
X(28795) lies on these lines:
X(28796) lies on these lines:
X(28797) lies on these lines:
X(28798) lies on these lines:
X(28799) lies on these lines:
X(28800) lies on these lines:
X(28801) lies on these lines:
X(28802) lies on these lines:
X(28803) lies on these lines:
X(28804) lies on these lines:
X(28805) lies on these lines:
X(28806) lies on these lines:
X(28807) lies on these lines:
X(28808) lies on these lines: {2, 37}, {8, 11}, {69, 908}, {76, 348}, {78, 2654}, {85, 32834}, {145, 17721}, {190, 5744}, {226, 17298}, {278, 7017}, {304, 32828}, {306, 8797}, {329, 14829}, {333, 6557}, {497, 7081}, {499, 1089}, {631, 7283}, {948, 20917}, {958, 2899}, {1043, 27383}, {1150, 30566}, {1155, 24280}, {1233, 17093}, {1265, 6734}, {1279, 26245}, {1656, 3695}, {2006, 30701}, {2550, 5205}, {3035, 5695}, {3086, 4385}, {3091, 7270}, {3305, 3719}, {3306, 4054}, {3416, 5087}, {3452, 3686}, {3616, 17602}, {3661, 30867}, {3685, 5218}, {3687, 4007}, {3701, 10527}, {3702, 5552}, {3705, 3974}, {3714, 25681}, {3717, 5231}, {3729, 3911}, {3757, 26105}, {3840, 33144}, {3886, 6745}, {3912, 5219}, {3932, 30741}, {4009, 27549}, {4030, 11238}, {4384, 5316}, {4387, 5432}, {4396, 4644}, {4415, 17255}, {4416, 31142}, {4417, 5748}, {4419, 24627}, {4422, 31187}, {4513, 16594}, {4514, 5274}, {4659, 31190}, {4673, 7080}, {4692, 10072}, {4696, 10529}, {4742, 11239}, {4872, 15589}, {4975, 10056}, {5015, 10591}, {5016, 5187}, {5061, 24265}, {5226, 18134}, {5230, 25591}, {5273, 8055}, {5372, 26792}, {5435, 32939}, {5698, 17777}, {5712, 17391}, {5718, 17316}, {5739, 27131}, {5745, 30568}, {5839, 9599}, {6392, 25918}, {6708, 23600}, {7101, 17923}, {7110, 28810}, {7230, 31455}, {10327, 11680}, {10453, 25568}, {11269, 32931}, {11814, 16825}, {13881, 29579}, {16020, 25531}, {16817, 17559}, {17078, 32874}, {17079, 20925}, {17095, 32830}, {17230, 26136}, {17780, 21283}, {20888, 25583}, {21605, 32872}, {24213, 25527}, {24477, 32937}, {26098, 29649}, {28789, 28811}, {28793, 28813}, {28794, 28795}, {28796, 28829}, {28797, 28809}, {28820, 28826}, {29611, 30832}, {29662, 33163}, {31242, 33147}, {31272, 33089}
X(28809) lies on these lines: {2, 39}, {7, 20923}, {8, 210}, {69, 18137}, {75, 5296}, {226, 29966}, {313, 344}, {314, 391}, {321, 32022}, {329, 17137}, {330, 26113}, {332, 27381}, {345, 28827}, {346, 646}, {350, 5222}, {668, 29616}, {857, 4417}, {1211, 17550}, {1229, 3718}, {1334, 30568}, {1909, 5308}, {1975, 11349}, {1992, 30939}, {2325, 4494}, {3008, 3760}, {3161, 17787}, {3618, 18147}, {3619, 18133}, {3691, 11679}, {3761, 29571}, {3765, 4358}, {3770, 4648}, {4011, 4039}, {4044, 4384}, {4194, 31623}, {4253, 29456}, {4383, 17541}, {4387, 4433}, {5337, 17001}, {6376, 29611}, {6381, 17284}, {6542, 26791}, {6557, 27424}, {10327, 20556}, {15455, 28738}, {16050, 26282}, {16367, 26243}, {16832, 20888}, {16919, 24271}, {17257, 20891}, {17263, 30596}, {17294, 25278}, {17778, 26099}, {20336, 20927}, {20917, 29627}, {20942, 24524}, {27378, 27398}, {28791, 28807}, {28797, 28808}, {28802, 28825}, {29960, 30961}, {29988, 30985}, {30090, 31995}, {30833, 30866}
X(28810) lies on these lines: {2, 6}, {312, 28836}, {329, 19795}, {451, 25650}, {908, 21376}, {1265, 5552}, {3876, 26066}, {5218, 27512}, {5432, 27528}, {5748, 16568}, {7110, 28808}, {7359, 27539}, {17182, 25680}, {18206, 24912}, {28789, 28801}, {28794, 28820}
X(28811) lies on these lines: {2, 6}, {908, 1761}, {3704, 5552}, {17185, 25680}, {19795, 27287}, {27529, 28803}, {28789, 28808}, {28794, 28818}, {28815, 28816}, {28822, 28827}
X(28812) lies on these lines: {1, 2}, {497, 30826}, {5218, 30847}, {5687, 7402}, {7377, 17784}, {7397, 17757}, {27507, 27508}
X(28813) lies on these lines: {1, 2}, {21, 30847}, {69, 28780}, {441, 1809}, {908, 7291}, {2082, 30827}, {2325, 27543}, {3161, 27509}, {3434, 7402}, {3436, 7397}, {3685, 27528}, {3713, 3763}, {3965, 17357}, {4193, 30826}, {4521, 6332}, {4996, 21495}, {5080, 6996}, {5328, 28807}, {5748, 5813}, {5838, 27522}, {6557, 27539}, {8055, 27540}, {8192, 19517}, {12513, 31230}, {16706, 20895}, {17757, 19512}, {20237, 33150}, {20808, 32911}, {21296, 28739}, {28793, 28808}, {28796, 28830}
X(28814) lies on these lines:
X(28815) lies on these lines:
X(28816) lies on these lines:
X(28817) lies on these lines:
X(28818) lies on these lines:
X(28819) lies on these lines:
X(28820) lies on these lines: {2, 6}, {55, 3877}, {78, 1936}, {171, 997}, {212, 27391}, {219, 32851}, {222, 33066}, {312, 1944}, {345, 644}, {1407, 17950}, {1737, 32853}, {2178, 3218}, {4435, 28958}, {5211, 12595}, {5707, 9534}, {5730, 20842}, {6911, 9567}, {7252, 28938}, {17347, 22129}, {17595, 21008}, {23151, 31225}, {28916, 28923}, {28917, 28929}, {28928, 28932}, {28952, 28953}, {28956, 28957}
X(28821) lies on these lines:
X(28822) lies on these lines:
X(28823) lies on these lines:
X(28824) lies on these lines:
X(28825) lies on these lines:
X(28826) lies on these lines:
X(28827) lies on these lines:
X(28828) lies on these lines:
X(28829) lies on these lines:
X(28830) lies on these lines:
X(28831) lies on these lines:
X(28832) lies on these lines:
X(28833) lies on these lines:
X(28834) lies on these lines:
X(28835) lies on these lines:
X(28836) lies on these lines:
X(28837) lies on these lines:
Points on circumcircle and line at infinity: X(28838)-X(28915)
Suppose that X = x : y : z is a point on the line at infinity. All the lines that meet in X are parallel, so that X can be regarded as a direction in the plane of the reference triangle ABC. Let X' be the isogonal conjugate of X, so that X' lies on the circumcircle. Let X'' be the circumcircle-antipode of X', and let X''' be its isogonal conjugate, on the line at infinity. As a direction, X''' is perpendicular to X. In this section, X is given by the form (b - c) (h a^2 + j (b^2 + c^2) + k b c + (h - j + k)(a b + a c) : : , where h, j, k are constants. (Clark Kimberling, November 26, 2018)
In the table below, Columns 1-3 show h, j, k.
Column 4. (b - c) (h a^2 + j (b^2 + c^2) + k b c + (h - j + k)(a b + a c) : : , on infinity line, referenced below as x : y : z
Column 5. (isogonal conjugate of x : y : z) = a^2/x + b^2/y + c^2/z : : on circumcircle, referenced below as u : v : w
Column 6. (antipode of u : v : w) = (a^2+b^2-c^2)(a^2-b^2+c^2)u + 2a^2 (a^2-b^2-c^2)v + 2a^2 (a^2-b^2-c^2)w : : on circumcircle, referenced below as u1 : v1 : w1
Column 7. (isogonal conjugate of u1 : v1 : w1) = a^2/u1 + b^2/v1 + c^2/w1
For each row, let X be the point in Column 4 and X' the point in Column 7. Let U be any point in the finite plane of ABC. Then the lines UX and UX' are perpendicular.
In the table below, the points in Column 4 are here given names of the form Point Propus(h,j,k).
h | j | k | Column 4 | Column 5 | Column 6 | Column 7 |
---|---|---|---|---|---|---|
1 | 0 | 0 | 513 | 100 | 104 | 5617 |
0 | 1 | 0 | 918 | 919 | 28838ew | 28839 |
0 | 0 | 1 | 514 | 101 | 103 | 516 |
1 | 1 | 0 | 514 | 101 | 103 | 516 |
1 | 0 | 1 | 28840 | 28841 | 28842 | 28843 |
0 | 1 | 1 | 824 | 825 | 28844 | 28845 |
1 | -1 | 0 | 28846 | 28847 | 28848 | 28849 |
1 | 0 | -1 | 812 | 813 | 12032 | 28850 |
0 | 1 | -1 | 28851 | 28852 | 28853 | 28854 |
1 | 1 | 1 | 514 | 101 | 103 | 516 |
-1 | 1 | 1 | 2786 | 2702 | 2700 | 2784 |
1 | -1 | 1 | 28855 | 28856 | 28857 | 28858 |
1 | 1 | -1 | 514 | 101 | 103 | 516 |
2 | 1 | 1 | 28859 | 28860 | 28861 | 28862 |
1 | 2 | 1 | 28863 | 28864 | 28865 | 28866 |
1 | 1 | 2 | 514 | 101 | 103 | 516 |
-2 | 1 | 1 | 28867 | 28868 | 28869 | 28870 |
1 | -2 | 1 | 28871 | 28872 | 28873 | 28874 |
1 | 1 | -2 | 514 | 101 | 103 | 516 |
-1 | 2 | 1 | 27484 | 28875 | 28876 | 28877 |
1 | -1 | 2 | 28878 | 28879 | 28880 | 28881 |
2 | 1 | -1 | 28882 | 28883 | 28884 | 28885 |
2 | -1 | 1 | 28886 | 28887 | 28888 | 28889 |
1 | 2 | -1 | 28890 | 28891 | 28892 | 28893 |
-1 | 1 | 2 | 522 | 109 | 102 | 515 |
1 | 2 | 2 | 28894 | 28895 | 28896 | 28897 |
2 | 1 | 2 | 4977 | 8701 | 28173 | 28174 |
-1 | 2 | 2 | 514 | 101 | 103 | 516 |
-1 | 2 | 2 | 28898 | 28899 | 28900 | 28901 |
2 | -1 | 2 | 28902 | 28903 | 28904 | 28905 |
2 | 2 | -1 | 514 | 101 | 103 | 516 |
-2 | 2 | 1 | 28906 | 28907 | 28908 | 28909 |
1 | -2 | 2 | 28910 | 28911 | 28912 | 28913 |
2 | 1 | -2 | 6084 | 6078 | 28914 | 28915 |
X(28838) lies on the circumcircle and these lines:
X(28838) = isogonal conjugate of X(28839)
X(28838) = circumcircle-antipode of X(919)
X(28839) lies on these lines:
X(28839) = isogonal conjugate of X(28838)
X(28840) lies on these lines: {2, 661}, {30, 511}, {650, 4932}, {693, 4813}, {798, 1019}, {850, 4842}, {1577, 4960}, {3679, 4761}, {4017, 24417}, {4077, 4654}, {4120, 4789}, {4367, 4455}, {4379, 4776}, {4467, 4988}, {4486, 21146}, {4608, 4838}, {4724, 4817}, {4753, 4784}, {4763, 4893}, {4794, 28843}, {4801, 23794}, {4822, 17166}, {4841, 4897}, {4978, 20954}, {4979, 17494}, {5592, 13745}, {14838, 14991}, {15936, 23730}, {20509, 23755}, {20908, 20949}, {24687, 24721}, {24718, 24720}
X(28840) = isogonal conjugate of X(28841)
X(28841) lies on the circumcircle and these lines:
X(28841) = isogonal conjugate of X(28840)
X(28842) lies on the circumcircle and these lines:
X(28842) = isogonal conjugate of X(28843)
X(28842) = circumcircle-antipode of X(28841)
X(28843) lies on these lines:
X(28843) = isogonal conjugate of X(28842)
X(28844) lies on the circumcircle and these lines:
X(28844) = isogonal conjugate of X(28845)
X(28844) = circumcircle-antipode of X(825)
X(28845) lies on these lines: {1, 4056}, {3, 23849}, {4, 1973}, {10, 910}, {30, 511}, {116, 5144}, {1631, 20305}, {1836, 24268}, {2239, 6999}, {2887, 4112}, {3773, 9857}, {3836, 24294}, {4085, 10791}, {4136, 4769}, {4349, 6610}, {5074, 11712}, {5587, 9746}, {5698, 24247}, {5731, 10186}, {5880, 24249}, {17798, 26012}, {24266, 24703}, {24291, 24723}
X(28845) = isogonal conjugate of X(28844)
X(28846) lies on these lines: {30, 511}, {63, 649}, {226, 3676}, {650, 3798}, {661, 4025}, {894, 28960}, {905, 3709}, {1019, 2484}, {1577, 15413}, {1635, 4786}, {2509, 14838}, {3064, 5307}, {3239, 4369}, {4106, 21104}, {4120, 4379}, {4129, 21188}, {4374, 4391}, {4375, 24333}, {4401, 21003}, {4453, 4776}, {4481, 23829}, {4486, 24720}, {4521, 5745}, {4728, 21183}, {4750, 4893}, {4813, 16892}, {4885, 14321}, {4905, 24462}, {4949, 23813}, {5905, 20295}, {6590, 7192}, {7180, 25098}, {7265, 22044}, {7658, 25666}, {14349, 23785}, {14837, 21195}, {20078, 26853}, {25353, 25381}
X(28846) = isogonal conjugate of X(28847)
X(28847) lies on the circumcircle and these lines:
X(28847) = isogonal conjugate of X(28846)
X(28848) lies on the circumcircle and these lines:
X(28848) = isogonal conjugate of X(28849)
X(28848) = circumcircle-antipode of X(28847)
X(28849) lies on these lines: {1, 348}, {6, 21629}, {8, 10025}, {10, 220}, {30, 511}, {40, 3208}, {46, 7131}, {69, 1721}, {165, 29573}, {193, 9801}, {307, 4336}, {329, 28124}, {946, 16825}, {1125, 21258}, {1699, 16833}, {1742, 3879}, {1944, 3332}, {3241, 11200}, {3755, 9620}, {3911, 5091}, {3912, 9441}, {4028, 7580}, {4295, 16091}, {4851, 11495}, {5657, 9746}, {5745, 24264}, {6776, 12717}, {8558, 12514}, {10164, 29600}, {10431, 17156}
X(28849) = isogonal conjugate of X(28842)
X(28850) lies on these lines: {1, 85}, {2, 10186}, {3, 8301}, {4, 1840}, {5, 20531}, {8, 3177}, {10, 1146}, {30, 511}, {40, 21384}, {55, 24268}, {75, 1742}, {80, 14947}, {105, 9317}, {118, 21090}, {145, 20089}, {165, 16833}, {190, 9355}, {239, 9441}, {659, 19903}, {991, 24293}, {1001, 24249}, {1121, 3679}, {1125, 6706}, {1215, 24255}, {1282, 3732}, {1376, 24266}, {1441, 2293}, {1699, 29573}, {1721, 3875}, {1754, 3791}, {1959, 20556}, {2170, 13576}, {2223, 16609}, {2310, 4552}, {2321, 21629}, {2550, 24247}, {2901, 22035}, {2951, 17151}, {3059, 21084}, {3576, 9746}, {3773, 12618}, {3817, 29600}, {3826, 10012}, {3886, 12652}, {3971, 5927}, {4019, 21278}, {4032, 21746}, {4073, 25252}, {4096, 15064}, {4361, 11495}, {4362, 7580}, {4432, 24294}, {4672, 10791}, {4974, 13329}, {5263, 24291}, {5400, 24003}, {5572, 13563}, {5587, 24808}, {5723, 24980}, {6996, 18788}, {8053, 21231}, {8226, 29653}, {8299, 21232}, {8727, 29671}, {10167, 24165}, {10883, 29643}, {11220, 17155}, {13257, 21093}, {13632, 26446}, {16112, 17262}, {17784, 28124}, {19541, 29649}, {21320, 23774}
X(28850) = isogonal conjugate of X(12032)
X(28851) lies on these lines: {30, 511}, {661, 3776}, {693, 4120}, {2403, 25237}, {3261, 3762}, {3676, 25666}, {3835, 4927}, {3960, 6586}, {3970, 4079}, {4049, 17758}, {4369, 4468}, {4453, 4893}, {4462, 23755}, {4500, 4931}, {4522, 21146}, {4707, 21130}, {4773, 4897}, {4776, 6545}, {4818, 4824}, {4928, 21183}, {10015, 21195}, {16552, 21390}, {16601, 21348}, {20880, 20906}, {21222, 21225}
X(28851) = isogonal conjugate of X(28847)
X(28852) lies on the circumcircle and these lines:
X(28852) = isogonal conjugate of X(28851)
X(28853) lies on the circumcircle and these lines:
X(28853) = isogonal conjugate of X(28854)
X(28853) = circumcircle-antipode of X(28852)
X(28854) lies on these lines: {1, 17078}, {2, 9441}, {30, 511}, {1721, 17274}, {1742, 17378}, {3058, 20358}, {4343, 15936}, {11495, 17313}, {12699, 16825}, {18788, 29573}
X(28854) = isogonal conjugate of X(28853)
X(28855) lies on these lines: {30, 511}, {661, 4453}, {1639, 4369}, {3294, 16820}, {3709, 3960}, {3762, 4374}, {3835, 21183}, {4468, 4932}, {4776, 21204}, {4791, 18160}, {4984, 17494}, {21116, 21297}, {22037, 22044}
X(28855) = isogonal conjugate of X(28856)
X(28856) lies on the circumcircle and these lines:
X(28856) = isogonal conjugate of X(28851)
X(28857) lies on the circumcircle and these lines:
X(28857) = isogonal conjugate of X(28858)
X(28857) = circumcircle-antipode of X(28856)
X(28858) lies on these lines: {30, 511}, {1699, 4384}, {5603, 24331}, {9441, 10164}, {9778, 17316}, {25352, 26446}
X(28858) = isogonal conjugate of X(28857)
X(28859) lies on these lines: {30, 511}, {693, 23731}, {1019, 16755}, {3004, 4932}, {3776, 4817}, {4380, 4988}, {4406, 20908}, {4500, 20295}, {4784, 4818}, {4790, 21196}, {14349, 21123}, {25381, 28602}
X(28859) = isogonal conjugate of X(28856)
X(28860) lies on the circumcircle and these lines:
X(28860) = isogonal conjugate of X(28859)
X(28861) lies on the circumcircle and these lines:
X(28861) = isogonal conjugate of X(28862)
X(28861) = circumcircle-antipode of X(28860)
X(28862) lies on these lines: {30, 511}, {40, 7380}, {9778, 10186}
X(28862) = isogonal conjugate of X(28861)
X(28863) lies on these lines: {30, 511}, {1577, 20916}, {1639, 3004}, {2530, 21349}, {3762, 4509}, {3776, 6590}, {3835, 4944}, {3904, 4529}, {4369, 4453}, {4408, 4791}, {4467, 4984}, {4789, 6545}, {4838, 26824}, {4931, 21297}, {4958, 20295}
X(28863) = isogonal conjugate of X(28864)
X(28864) lies on the circumcircle and these lines:
X(28864) = isogonal conjugate of X(28863)
X(28865) lies on the circumcircle and these lines:
X(28865) = isogonal conjugate of X(28866)
X(28865) = circumcircle-antipode of X(28864)
X(28866) lies on these lines: {30, 511}, {1699, 6996}, {6999, 9778}, {10171, 19512}
X(28866) = isogonal conjugate of X(28865)
X(28867) lies on these lines: {30, 511}, {661, 27486}, {1577, 4406}, {1638, 3835}, {3700, 4932}, {3776, 20295}, {3798, 25666}, {4467, 4813}, {4481, 4502}, {4500, 7192}, {4522, 4784}, {4750, 4776}, {4763, 4786}, {4885, 4949}, {4940, 21212}, {4979, 25259}, {23800, 24417}
X(28867) = isogonal conjugate of X(28869)
X(28868) lies on the circumcircle and these lines:
X(28868) = isogonal conjugate of X(28867)
X(28869) lies on the circumcircle and these lines:
X(28869) = isogonal conjugate of X(28870)
X(28869) = circumcircle-antipode of X(28868)
X(28870) lies on these lines: {1, 17095}, {10, 6603}, {30, 511}, {145, 11200}, {1742, 17377}, {3241, 10186}, {5886, 16825}, {6542, 9441}, {7988, 16833}
X(28870) = isogonal conjugate of X(28869)
X(28871) lies on these lines: {30, 511}, {1638, 25666}, {4828, 18160}
X(28871) = isogonal conjugate of X(28872)
X(28872) lies on the circumcircle and these lines:
X(28872) = isogonal conjugate of X(28871)
X(28873) lies on the circumcircle and these lines:
X(28873) = isogonal conjugate of X(28874)
X(28873) = circumcircle-antipode of X(28872)
X(28874) lies on these lines: {30, 511}, {3623, 11200}, {9441, 17266}
X(28874) = isogonal conjugate of X(28873)
X(28875) lies on the circumcircle and these lines:
X(28875) = isogonal conjugate of X(27484)
X(28876) lies on the circumcircle and these lines:
X(28876) = isogonal conjugate of X(28877)
X(28876) = circumcircle-antipode of X(28875)
X(28877) lies on these lines: {30, 511}, {4781, 29616}, {5222, 7384}, {9746, 24808}
X(28877) = isogonal conjugate of X(28876)
X(28878) lies on these lines: {30, 511}, {661, 3676}, {2490, 7653}, {3669, 3709}, {4369, 4521}, {4374, 4462}, {4468, 7192}, {4765, 4897}, {4776, 21183}, {4801, 23819}, {4817, 8689}, {4932, 11068}, {17066, 20317}
X(28878) = isogonal conjugate of X(28879)
X(28879) lies on the circumcircle and these lines:
X(28879) = isogonal conjugate of X(28878)
X(28880) lies on the circumcircle and these lines:
X(28880) = isogonal conjugate of X(28881)
X(28880) = circumcircle-antipode of X(28879)
X(28881) lies on these lines: {30, 511}, {40, 1334}, {946, 17050}, {962, 20244}, {4349, 6767}, {4356, 15934}, {11200, 16200}
X(28881) = isogonal conjugate of X(28880)
X(28882) lies on these lines: {30, 511}, {649, 3776}, {985, 4817}, {1577, 18076}, {1639, 3835}, {4106, 4944}, {4369, 21183}, {4380, 4984}, {4382, 4500}, {4394, 21212}, {4522, 24719}, {4776, 6546}, {4932, 21104}, {4958, 25259}, {11068, 25666}, {14825, 17192}, {21385, 21389}
X(28882) = isogonal conjugate of X(28883)
X(28883) lies on the circumcircle and these lines:
X(28883) = isogonal conjugate of X(28882)
X(28884) lies on the circumcircle and these lines:
X(28884) = isogonal conjugate of X(28886)
X(28884) = circumcircle-antipode of X(28884)
X(28885) lies on these lines: {30, 511}, {31, 5222}, {1699, 2887}, {6327, 29616}, {6679, 10164}, {11246, 20358}
X(28885) = isogonal conjugate of X(28884)
X(28886) lies on these lines: {30, 511}, {3762, 4406}, {3776, 4813}, {4444, 4776}
X(28886) = isogonal conjugate of X(28887)
X(28887) lies on the circumcircle and these lines:
X(28887) = isogonal conjugate of X(28886)
X(28888) lies on the circumcircle and these lines:
X(28888) = isogonal conjugate of X(28889)
X(28888) = circumcircle-antipode of X(28887)
X(28889) lies on these lines: {30, 511}, {750, 5308}, {7988, 16832}, {18788, 29602}
X(28889) = isogonal conjugate of X(28888)
X(28890) lies on these lines: {2, 21115}, {30, 511}, {764, 21349}, {1638, 10196}, {1639, 21204}, {3762, 18150}, {3776, 4468}, {4444, 4518}, {4453, 4763}, {4458, 26275}, {4707, 24125}, {4789, 21116}, {4928, 6545}, {25380, 28602}
X(28890) = isogonal conjugate of X(28891)
X(28891) lies on the circumcircle and these lines:
X(28891) = isogonal conjugate of X(28890)
X(28892) lies on the circumcircle and these lines:
X(28892) = isogonal conjugate of X(28893)
X(28892) = circumcircle-antipode of X(28891)
X(28893) lies on these lines: {30, 511}, {40, 24808}, {8227, 21554}
X(28893) = isogonal conjugate of X(28892)
X(28894) lies on these lines: {30, 511}, {650, 16757}, {693, 20950}, {1491, 21349}, {1577, 4408}, {3004, 4885}, {3700, 4940}, {4024, 4106}, {4380, 17161}, {4382, 4838}, {4391, 18158}, {4394, 21196}, {4411, 20908}, {4467, 4790}, {4468, 4841}, {4500, 23813}, {4776, 4944}, {4820, 20295}
X(28894) = isogonal conjugate of X(28895)
X(28895) lies on the circumcircle and these lines:
X(28895) = isogonal conjugate of X(28894)
X(28896) lies on the circumcircle and these lines:
X(28896) = isogonal conjugate of X(28897)
X(28896) = circumcircle-antipode of X(28895)
X(28897) lies on these lines: {30, 511}, {381, 9746}, {3755, 18907}
X(28897) = isogonal conjugate of X(28896)
X(28898) lies on these lines: {2, 4944}, {30, 511}, {37, 905}, {75, 4391}, {192, 17496}, {650, 4467}, {693, 4820}, {984, 1734}, {1577, 4411}, {1638, 3700}, {2400, 27475}, {3004, 4940}, {3239, 17069}, {3739, 21192}, {3776, 23813}, {4106, 16892}, {4364, 23809}, {4379, 4931}, {4408, 20908}, {4468, 4976}, {4828, 24002}, {4897, 6590}, {7178, 30181}, {8061, 27485}, {18155, 21438}, {20950, 23794}, {27484, 28132}
X(28898) = isogonal conjugate of X(28899)
X(28899) lies on the circumcircle and these lines:
X(28899) = isogonal conjugate of X(28898)
X(28900) lies on the circumcircle and these lines:
X(28900) = isogonal conjugate of X(28901)
X(28900) = circumcircle-antipode of X(28900)
X(28901) lies on these lines: {30, 511}, {944, 11200}, {3655, 10186}, {5587, 16788}, {5790, 9746}
X(28901) = isogonal conjugate of X(28900)
X(28902) lies on these lines: {30, 511}, {661, 1638}, {1019, 22108}, {2527, 4932}, {4406, 4462}, {4521, 7653}, {4813, 21104}, {4897, 27486}, {21131, 23755}
X(28902) = isogonal conjugate of X(28903)
X(28903) lies on the circumcircle and these lines:
X(28903) = isogonal conjugate of X(28902)
X(28904) lies on the circumcircle and these lines:
X(28904) = isogonal conjugate of X(28905)
X(28904) = circumcircle-antipode of X(28903)
X(28905) lies on these lines: {30, 511}, {1482, 11200}
X(28905) = isogonal conjugate of X(28904)
X(28906) lies on these lines: {30, 511}, {693, 4958}, {1639, 4897}, {3835, 4453}, {4369, 4944}, {4374, 4791}, {4786, 10196}, {4932, 25259}
X(28906) = isogonal conjugate of X(28907)
X(28907) lies on the circumcircle and these lines:
X(28907) = isogonal conjugate of X(28906)
X(28908) lies on the circumcircle and these lines:
X(28908) = isogonal conjugate of X(28909)
X(28908) = circumcircle-antipode of X(28907)
X(28909) lies on these lines: {30, 511}, {165, 17310}, {239, 1699}, {3008, 10171}, {3912, 10164}, {6542, 9778}
X(28909) = isogonal conjugate of X(28908)
X(28910) lies on these lines: {30, 511}, {1001, 4378}, {3762, 4411}, {4391, 4828}, {4776, 6548}, {4940, 21104}, {6173, 23598}, {24616, 27484}
X(28910) = isogonal conjugate of X(28911)
X(28911) lies on the circumcircle and these lines:
X(28911) = isogonal conjugate of X(28910)
X(28912) lies on the circumcircle and these lines:
X(28912) = isogonal conjugate of X(28913)
X(28912) = circumcircle-antipode of X(28911)
X(28913) lies on these lines: {30, 511}
X(28913) = isogonal conjugate of X(28912)
X(28914) lies on the circumcircle and these lines:
X(28914) = isogonal conjugate of X(28915)
X(28914) = circumcircle-antipode of X(6078)
X(28915) lies on these lines: {1, 1358}, {3, 105}, {4, 10743}, {5, 120}, {10, 3039}, {20, 20097}, {30, 511}, {40, 5540}, {140, 6714}, {381, 10712}, {382, 10729}, {549, 9746}, {644, 14661}, {659, 19915}, {970, 3034}, {1001, 20328}, {1351, 10760}, {1385, 11716}, {1482, 10699}, {1565, 14942}, {4307, 15934}, {5901, 11730}, {8751, 20740}, {10246, 11200}, {10738, 10773}
X(28915) = isogonal conjugate of X(28914)
Collineation mappings involving Gemini triangle 87: X(28916)-X(28960)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 87, as in centers X(28916)-X(28960). Then
m(X) = a(b+c-a)(a^2+ab+ac+2bc)x + (a+c)^2(a+b-c)(a-b-c)y + (a+b)^2(a-b+c)(a-b-c)z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, December 2, 2018)
X(28916) lies on these lines: {1, 2}, {3, 24633}, {63, 5773}, {72, 24612}, {101, 26265}, {219, 1229}, {312, 644}, {326, 17077}, {333, 28936}, {664, 14829}, {672, 24266}, {1405, 24336}, {1766, 21273}, {1812, 28928}, {1944, 28953}, {1959, 24591}, {2082, 18163}, {2268, 21233}, {3713, 4361}, {3869, 6996}, {3965, 17348}, {5086, 7377}, {5228, 20880}, {5783, 24993}, {7406, 11415}, {10950, 30847}, {16574, 17134}, {16609, 25940}, {28917, 28934}, {28919, 28925}, {28920, 28923}, {28921, 28941}
X(28917) lies on these lines: {2, 3}, {28916, 28934}, {28920, 28929}, {28922, 28955}, {28937, 28954}
X(28918) lies on these lines: {2, 3}, {1944, 27395}, {28923, 28924}, {28935, 28937}
X(28919) lies on these lines: {2, 3}, {28916, 28925}
X(28920) lies on these lines: {2, 6}, {55, 3877}, {78, 1936}, {171, 997}, {212, 27391}, {219, 32851}, {222, 33066}, {312, 1944}, {345, 644}, {1407, 17950}, {1737, 32853}, {2178, 3218}, {4435, 28958}, {5211, 12595}, {5707, 9534}, {5730, 20842}, {6911, 9567}, {7252, 28938}, {17347, 22129}, {17595, 21008}, {23151, 31225}, {28916, 28923}, {28917, 28929}, {28928, 28932}, {28952, 28953}, {28956, 28957}
X(28921) lies on these lines:
X(28922) lies on these lines:
X(28923) lies on these lines:
X(28924) lies on these lines:
X(28925) lies on these lines:
X(28926) lies on these lines:
X(28927) lies on these lines:
X(28928) lies on these lines:
X(28929) lies on these lines:
X(28930) lies on these lines:
X(28931) lies on these lines:
X(28932) lies on these lines:
X(28933) lies on these lines:
X(28934) lies on these lines:
X(28935) lies on these lines:
X(28936) lies on these lines:
X(28937) lies on these lines:
X(28938) lies on these lines:
X(28939) lies on these lines:
X(28940) lies on these lines:
X(28941) lies on these lines:
X(28942) lies on these lines:
X(28943) lies on these lines:
X(28944) lies on these lines:
X(28945) lies on these lines:
X(28946) lies on these lines:
X(28947) lies on these lines:
X(28948) lies on these lines:
X(28949) lies on these lines:
X(28950) lies on these lines:
X(28951) lies on these lines:
X(28952) lies on these lines:
X(28953) lies on these lines:
X(28954) lies on these lines:
X(28955) lies on these lines:
X(28956) lies on these lines:
X(28957) lies on these lines:
X(28958) lies on these lines:
X(28959) lies on these lines:
X(28960) lies on these lines:
Collineation mappings involving Gemini triangle 88: X(28961)-X(29007)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 88, as in centers X(28961)-X(29007). Then
m(X) = a(a^2-ab-ac+2bc)x - (a-c)^2(a-b+c)y + (a+b)^2(a+b-c)z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, December 1, 2018)
X(28961) lies on these lines: {1, 2}, {85, 644}, {169, 21272}, {220, 30806}, {664, 25082}, {673, 3885}, {2284, 28965}, {3208, 9317}, {3890, 17681}, {3909, 29516}, {4513, 20880}, {5080, 27129}, {5176, 17671}, {5836, 17683}, {8545, 25268}, {9310, 21232}, {10826, 31058}, {10914, 24596}, {10944, 16593}, {14923, 17682}, {20895, 25878}, {28962, 28996}, {28966, 28987}, {28972, 28979}, {28978, 28980}, {29001, 29007}
X(28962) lies on these lines: {2, 3}, {28961, 28996}, {28965, 28973}, {28967, 28999}
X(28963) lies on these lines: {2, 3}, {348, 28968}, {25082, 28966}
X(28964) lies on these lines: {2, 3}
X(28965) lies on these lines: {2, 6}, {7, 1332}, {190, 6180}, {219, 320}, {220, 17347}, {222, 33116}, {344, 651}, {643, 1004}, {644, 17079}, {1486, 3888}, {1944, 20930}, {1995, 3909}, {2256, 4389}, {2284, 28961}, {2323, 17298}, {2911, 17364}, {3262, 26651}, {3713, 17295}, {5782, 17285}, {5783, 17228}, {12329, 25279}, {17361, 23151}, {28962, 28973}, {28972, 28976}, {28978, 28982}
X(28966) lies on these lines: {2, 7}, {8, 23693}, {77, 25101}, {344, 651}, {883, 28967}, {3161, 4552}, {3476, 11346}, {4217, 5252}, {4318, 27549}, {4422, 6180}, {5723, 17262}, {10039, 12618}, {22464, 25728}, {25082, 28963}, {28961, 28987}, {28979, 28990}, {28980, 28988}
X(28967) lies on these lines: {1, 2}, {7, 28985}, {348, 644}, {883, 28966}, {1388, 16593}, {1565, 30616}, {4513, 17044}, {10912, 26007}, {10944, 30825}, {28962, 28999}, {28987, 28997}
X(28968) lies on these lines: {2, 7}, {75, 651}, {77, 3729}, {109, 26227}, {190, 28978}, {192, 1442}, {221, 4968}, {222, 321}, {241, 17351}, {312, 17074}, {347, 4454}, {348, 28963}, {948, 7222}, {1210, 5823}, {1214, 32933}, {1215, 9316}, {1419, 4659}, {1441, 4363}, {1458, 3923}, {1471, 4672}, {1892, 11105}, {1943, 28605}, {2003, 3187}, {2261, 5773}, {2284, 28961}, {3945, 31325}, {4318, 4861}, {4440, 17086}, {4565, 27958}, {4676, 7677}, {5723, 7263}, {7269, 17379}, {8270, 17165}, {9364, 32931}, {10167, 27394}, {17075, 22464}, {17080, 32939}, {17095, 17258}, {17134, 29069}, {17164, 21147}, {17336, 31225}, {17347, 33298}, {17625, 24552}, {26942, 32859}, {28982, 29001}
X(28969) lies on these lines: {1, 2}, {348, 28963}, {644, 17095}, {1229, 17043}, {1388, 30825}, {10572, 31058}, {10914, 24582}, {17044, 20880}, {17046, 17439}, {17084, 29007}, {17136, 21073}, {17647, 31031}, {24203, 27006}, {25082, 28978}, {28988, 28999}, {28994, 28997}
X(28970) lies on these lines:
X(28971) lies on these lines:
X(28972) lies on these lines: {2, 31}, {28961, 28979}, {28965, 28976}, {28977, 28999}
X(28973) lies on these lines: {2, 32}, {28962, 28965}
X(28974) lies on these lines: {2, 37}, {9, 3262}, {142, 20881}, {144, 20930}, {190, 1441}, {894, 1332}, {1733, 4078}, {2284, 28961}, {2325, 20236}, {3161, 20927}, {3717, 4710}, {3949, 27492}, {4858, 25101}, {5273, 20928}, {17139, 21871}, {17258, 26563}, {17277, 20895}, {17347, 30806}, {21801, 29967}, {28975, 28986}
X(28975) lies on these lines: {2, 39}, {85, 21580}, {311, 18133}, {350, 4861}, {1232, 18147}, {1235, 11105}, {6381, 10039}, {28962, 28965}, {28974, 28986}, {28995, 28998}
X(28976) lies on these lines:
X(28977) lies on these lines:
X(28978) lies on these lines:
X(28979) lies on these lines:
X(28980) lies on these lines:
X(28981) lies on these lines:
X(28982) lies on these lines:
X(28983) lies on these lines:
X(28984) lies on these lines:
X(28985) lies on these lines:
X(28986) lies on these lines: {1, 2}, {17050, 21013}, {17647, 31020}, {28974, 28975}, {28980, 28985}
X(28987) lies on these lines:
X(28988) lies on these lines:
X(28989) lies on these lines:
X(28990) lies on these lines:
X(28991) lies on these lines:
X(28992) lies on these lines:
X(28993) lies on these lines:
X(28994) lies on these lines:
X(28995) lies on these lines:
X(28996) lies on these lines:
X(28997) lies on these lines:
X(28998) lies on these lines:
X(28999) lies on these lines: {2, 11}, {190, 29002}, {644, 21580}, {4554, 29005}, {28962, 28967}, {28969, 28988}, {28972, 28977}, {28976, 28979}, {28998, 29006}
X(29000) lies on these lines:
X(29001) lies on these lines:
X(29002) lies on these lines:
X(29003) lies on these lines:
X(29004) lies on these lines:
X(29005) lies on these lines:
X(29006) lies on these lines:
X(29007) lies on these lines:
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 28692.
X(29008) lies on these lines: {1,18341}, {11,11700}, {109,16173}, {117,11715}, {942,1387}, {1125,3738}, {2802,6718}, {2817,6713}, {3576,10771}, {5450,11798}
Points on circumcircle and line at infinity: X(29009)-X(29157)
Suppose that X = x : y : z is a point on the line at infinity. All the lines that meet in X are parallel, so that X can be regarded as a direction in the plane of the reference triangle ABC. Let X' be the isogonal conjugate of X, so that X' lies on the circumcircle. Let X'' be the circumcircle-antipode of X', and let X''' be its isogonal conjugate, on the line at infinity. As a direction, X''' is perpendicular to X. (Clark Kimberling, December 3, 2018)
In this section, X is given by the form
(b - c) (h a^3 + i (b^3 + c^3) + j a^2 (b + c) + (i - h) (b c^2 + b^2 c) + k a b c) : : , where h, i, j, k are constants.
In the table below, Columns 1-4 show h, i, j, k.
Column 5. (b - c) (h a^3 + i (b^3 + c^3) + j a^2 (b + c) + (i - h) (b c^2 + b^2 c) + k a b c) : : , on infinity line, referenced below as x : y : z
Column 6. (isogonal conjugate of x : y : z) = a^2/x + b^2/y + c^2/z : : on circumcircle, referenced below as u : v : w
Column 7. (antipode of u : v : w) = (a^2+b^2-c^2)(a^2-b^2+c^2)u + 2a^2 (a^2-b^2-c^2)v + 2a^2 (a^2-b^2-c^2)w : : on circumcircle, referenced below as u1 : v1 : w1
Column 8. (isogonal conjugate of u1 : v1 : w1) = a^2/u1 + b^2/v1 + c^2/w1
For each row, let X be the point in Column 5 and X' the point in Column 8. Let U be any point in the finite plane of ABC. Then the lines UX and UX' are perpendicular.
In the table below, the points in Column 5 are here given names of the form Point Polaris(h,i,j,k).
h | i | j | k | Column 5 | Column 6 | Column 7 | Column 8 |
---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 814 | 815 | 29009 | 29010 |
0 | 2 | 0 | 0 | 826 | 827 | 29011 | 29012 |
0 | 0 | 1 | 0 | 512 | 99 | 98 | 511 |
0 | 0 | 0 | 1 | 514 | 101 | 103 | 516 |
1 | 1 | 0 | 0 | 514 | 101 | 103 | 516 |
1 | 0 | 1 | 0 | 29013 | 29014 | 29015 | 29016 |
1 | 0 | 0 | 1 | 2787 | 2703 | 2699 | 2783 |
0 | 2 | 1 | 0 | 523 | 110 | 74 | 30 |
0 | 2 | 0 | 2 | 29017 | 29018 | 29019 | 29020 |
0 | 0 | 1 | 1 | 513 | 100 | 104 | 517 |
0 | 1 | 1 | 1 | 29021 | 29022 | 29023 | 29024 |
1 | 0 | 2 | 2 | 6002 | 6010 | 741 | 740 |
1 | 1 | 0 | 1 | 514 | 101 | 103 | 516 |
1 | 1 | 1 | 0 | 29025 | 29026 | 29027 | 29028 |
1 | 1 | 1 | 1 | 29029 | 29030 | 29031 | 29032 |
-1 | 1 | 0 | 1 | 522 | 109 | 102 | 515 |
2 | 0 | 0 | -11 | 29033 | 29034 | 29035 | 29036 |
1 | 1 | 0 | -1 | 514 | 101 | 103 | 516 |
0 | -1 | 1 | 0 | 525 | 112 | 1297 | 1503 |
0 | -1 | 0 | 1 | 29037 | 29038 | 29039 | 29040 |
0 | 0 | -1 | 1 | 4083 | 932 | 15323 | 15310 |
0 | -1 | 1 | 1 | 23875 | 29041 | 29042 | 29043 |
0 | 1 | -1 | 1 | 23876 | 290441 | 29045 | 29046 |
0 | 1 | 1 | -1 | 29047 | 29048 | 29049 | 29050 |
-1 | 0 | 1 | 1 | 29051 | 29052 | 29053 | 29054 |
1 | 0 | -1 | 1 | 3907 | 29055 | 29056 | 29057 |
1 | 0 | 1 | -1 | 29058 | 29059 | 29060 | 29061 |
1 | -1 | 0 | 0 | 29062 | 29063 | 29064 | 29065 |
1 | -0 | -1 | 0 | 29066 | 29067 | 29068 | 29069 |
1 | 0 | 0 | -1 | 29070 | 29071 | 29072 | 29073 |
-1 | 1 | 1 | 0 | 29074 | 29075 | 29076 | 29077 |
1 | -1 | 1 | 0 | 29078 | 29079 | 29080 | 29081 |
1 | 1 | -1 | 0 | 29082 | 29083 | 29084 | 29085 |
-1 | 1 | 1 | 1 | 29086 | 29087 | 29088 | 29089 |
1 | -1 | 1 | 1 | 29090 | 29091 | 29092 | 29093 |
1 | 1 | -1 | 1 | 29094 | 29095 | 29096 | 29097 |
1 | 1 | 1 | -1 | 29098 | 29099 | 29100 | 29101 |
1 | 1 | -1 | -1 | 29102 | 29103 | 29104 | 29105 |
1 | -1 | 1 | -1 | 29106 | 29107 | 29108 | 29109 |
1 | -1 | -1 | 1 | 29110 | 29111 | 29112 | 29113 |
2 | 1 | 1 | 1 | 29114 | 29115 | . | . |
1 | 2 | 1 | 1 | 29116 | 29117 | . | . |
1 | 1 | 2 | 1 | 29118 | 29119 | . | . |
1 | 1 | 1 | 2 | 29120 | 29121 | . | . |
2 | 2 | 1 | 1 | 29122 | 29123 | . | . |
2 | 1 | 2 | 1 | 29124 | 29125 | . | . |
2 | 1 | 1 | 2 | 29126 | 29127 | . | . |
1 | 2 | 2 | 1 | 29128 | 29129 | . | . |
1 | 2 | 1 | 2 | 29130 | 29131 | . | . |
1 | 1 | 2 | 2 | 29132 | 29133 | . | . |
1 | 2 | 2 | 2 | 29134 | 29135 | . | . |
2 | 1 | 2 | 2 | 29136 | 29137 | . | . |
2 | 2 | 1 | 2 | 29138 | 29139 | . | . |
2 | 2 | 2 | 1 | 29140 | 29141 | . | . |
0 | 1 | 1 | 2 | 29142 | 29143 | . | . |
0 | 1 | 2 | 1 | 29144 | 29145 | . | . |
0 | 2 | 1 | 1 | 29146 | 29147 | . | . |
1 | 0 | 1 | 2 | 29148 | 29149 | . | . |
1 | 0 | 2 | 1 | 29150 | 29151 | . | . |
2 | 0 | 1 | 1 | 29152 | 29153 | . | . |
1 | 1 | 0 | 2 | 514 | 101 | 103 | 516 |
1 | 2 | 0 | 1 | 29154 | 29155 | . | . |
2 | 1 | 0 | 1 | 29156 | 29157 | . | . |
1 | 1 | 2 | 0 | 29158 | 29159 | . | . |
1 | 2 | 1 | 0 | 29160 | 29161 | . | . |
2 | 1 | 1 | 0 | 29162 | 29163 | . | . |
0 | 2 | 2 | 1 | 29164 | 29164 | . | . |
0 | 2 | 1 | 2 | 29166 | 29167 | . | . |
0 | 1 | 2 | 2 | 29167 | 29169 | . | . |
1 | 0 | 2 | 2 | 29170 | 29171 | . | . |
1 | 2 | 0 | 2 | 29172 | 29173 | . | . |
1 | 2 | 2 | 0 | 29174 | 29175 | . | . |
2 | 0 | 1 | 2 | 29176 | 29177 | . | . |
2 | 0 | 2 | 1 | 29178 | 29179 | . | . |
0 | 1 | 3 | 0 | 3800 | 907 | 29180 | 29181 |
2 | 0 | -1 | 0 | 29182 | 29183 | . | . |
2 | 2 | 0 | 1 | 514 | 101 | 103 | 516 |
2 | 2 | 1 | 0 | 29184 | 29185 | . | . |
-1 | 0 | 1 | 2 | 29186 | 29187 | . | . |
-1 | 0 | 2 | 1 | 29188 | 291689 | . | . |
-1 | 1 | 0 | 2 | 29190 | 291691 | . | . |
-1 | 1 | 2 | 0 | 29192 | 291693 | . | . |
-1 | 2 | 0 | 1 | 29194 | 29195 | . | . |
-1 | 2 | 1 | 0 | 29196 | 29197 | . | . |
0 | -1 | 1 | 2 | 918 | 919 | 28838 | 29199 |
0 | -1 | 2 | 1 | 29200 | 29201 | . | . |
0 | 2 | -1 | 1 | 29202 | 29203 | . | . |
0 | 2 | 1 | -1 | 29204 | 29205 | . | . |
0 | 1 | -1 | 2 | 3910 | 8687 | 29206 | 29207 |
0 | 1 | 2 | -1 | 29208 | 29209 | 29210 | 29211 |
1 | -1 | 0 | 2 | 29212 | 29213 | 29214 | 29215 |
1 | -1 | 2 | 0 | 29216 | 29217 | 29218 | 29219 |
1 | 2 | -1 | 0 | 29220 | 29221 | 29222 | 20223 |
1 | 2 | 0 | -1 | 29224 | 29225 | . | . |
0 | 0 | -1 | 3 | 29226 | 29227 | 29228 | 29229 |
2 | -1 | 0 | 1 | 29230 | 29231 | . | . |
2 | -1 | 1 | 0 | 29232 | 29233 | 29234 | 29235 |
2 | 0 | -1 | 1 | 29236 | 29237 | . | . |
2 | 0 | 1 | -1 | 29239 | 29239 | . | . |
2 | 1 | -1 | 0 | 29240 | 29241 | 29242 | 29243 |
2 | 1 | 0 | -1 | 29244 | 29245 | . | . |
-1 | 0 | 2 | 2 | 29246 | 29247 | . | . |
-1 | 2 | 0 | 2 | 29248 | 29249 | . | . |
-1 | 2 | 2 | 0 | 29250 | 29251 | . | . |
0 | -1 | 2 | 2 | 29252 | 29253 | 29254 | 20255 |
0 | 2 | -1 | 2 | 29256 | 29257 | 29258 | 20259 |
0 | 2 | 2 | -1 | 29260 | 29261 | 29262 | 20263 |
2 | -1 | 0 | 2 | 29264 | 29265 | . | . |
2 | -1 | 2 | 0 | 29266 | 29267 | . | . |
2 | 0 | -1 | 2 | 29268 | 29269 | . | . |
2 | 0 | 2 | -1 | 29270 | 29271 | . | . |
2 | 2 | -1 | 0 | 29272 | 29273 | . | . |
2 | 2 | 0 | -1 | 514 | 101 | 103 | 516 |
2 | 0 | -1 | -1 | 29274 | 29275 | . | . |
2 | -1 | 0 | -1 | 29276 | 29277 | . | . |
2 | -1 | -1 | 0 | 29278 | 29279 | . | . |
0 | 2 | -1 | -1 | 29280 | 29281 | 29282 | 20283 |
0 | -1 | 2 | -1 | 29284 | 29285 | 29286 | 20287 |
0 | -1 | -1 | 2 | 29288 | 29289 | 29290 | 20291 |
-1 | 2 | 0 | -1 | 29292 | 29293 | . | . |
-1 | 2 | -1 | 0 | 29294 | 29295 | 29296 | 29297 |
-1 | 0 | 2 | -1 | 29298 | 29299 | 29300 | 29301 |
-1 | 0 | -1 | 2 | 29302 | 29303 | . | . |
-1 | -1 | 2 | 0 | 29304 | 29305 | 29306 | 20307 |
-1 | -1 | 0 | 2 | 514 | 101 | 103 | 516 |
0 | 0 | 1 | 2 | 6372 | 8708 | 29308 | 29309 |
0 | 0 | 2 | 1 | 6005 | 6013 | 29310 | 29311 |
0 | 1 | 0 | 2 | 29312 | 29313 | 29314 | 29315 |
0 | 1 | 2 | 0 | 7927 | 7953 | 29316 | 29317 |
0 | 2 | 0 | 1 | 29318 | 29319 | 29320 | 29321 |
0 | 2 | 1 | 0 | 7950 | 7954 | 29322 | 29323 |
1 | 0 | 0 | 2 | 29324 | 29325 | 29326 | 29327 |
1 | 0 | 2 | 0 | 29328 | 29329 | 29330 | 29331 |
1 | 2 | 0 | 0 | 29332 | 29333 | 29334 | 29335 |
2 | 1 | 0 | 0 | 29336 | 29337 | 29338 | 29339 |
2 | 0 | 1 | 0 | 29340 | 29341 | 29342 | 29343 |
2 | 0 | 0 | 1 | 29344 | 29345 | 29346 | 29347 |
0 | 0 | -1 | 2 | 891 | 898 | 29348 | 29349 |
0 | 0 | 2 | -1 | 29350 | 20351 | 29352 | 29353 |
0 | -1 | 0 | 2 | 29354 | 29355 | 29356 | 29357 |
0 | -1 | 2 | 0 | 690 | 691 | 842 | 542 |
0 | 2 | 0 | -1 | 29358 | 29359 | 29360 | 29361 |
0 | 2 | -1 | 0 | 3906 | 11636 | 14388 | 11645 |
-1 | 0 | 0 | 2 | 29362 | 29363 | 29364 | 29365 |
-1 | 0 | 2 | 0 | 29366 | 29367 | 29368 | 29369 |
-1 | 2 | 0 | 0 | 29370 | 29371 | 29372 | 29373 |
2 | 0 | 0 | -1 | 29374 | 29375 | 29376 | 29377 |
X(29009) lies on the circumcircle and these lines: {3, 815}, {4, 5509}, {31, 15440}, {100, 26893}, {110, 4215}, {29019, 53291}
X(29009) = reflection of X(i) in X(j) for these {i,j}: {4, 5509}, {815, 3}
X(29009) = isogonal conjugate of X(29010)
X(29009) = circumcircle-antipode of X(815)
X(29009) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(2162)}}, {{A, B, C, X(4), X(31)}}, {{A, B, C, X(54), X(81)}}, {{A, B, C, X(64), X(36614)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(286), X(2148)}}, {{A, B, C, X(947), X(51449)}}, {{A, B, C, X(985), X(3417)}}, {{A, B, C, X(1173), X(57397)}}, {{A, B, C, X(1945), X(17982)}}, {{A, B, C, X(2481), X(36051)}}, {{A, B, C, X(32655), X(37142)}}
X(29010) lies on circumconic {{A, B, C, X(4), X(814)}} and on these lines: {2, 51040}, {3, 75}, {4, 192}, {5, 37}, {10, 24269}, {20, 1278}, {30, 511}, {31, 54165}, {40, 49474}, {48, 24332}, {92, 20760}, {100, 20887}, {119, 51062}, {140, 3739}, {182, 49481}, {228, 14213}, {239, 37510}, {312, 19540}, {321, 4192}, {335, 24833}, {346, 36670}, {355, 984}, {376, 4740}, {381, 4664}, {382, 3644}, {495, 3931}, {546, 4681}, {547, 4755}, {548, 4726}, {549, 4688}, {550, 4686}, {631, 4699}, {632, 31238}, {851, 48380}, {942, 4032}, {944, 24349}, {946, 3993}, {956, 32117}, {1009, 26665}, {1214, 20256}, {1284, 23690}, {1351, 49496}, {1352, 49509}, {1385, 24325}, {1482, 49470}, {1483, 49478}, {1656, 4687}, {1657, 4764}, {1733, 2223}, {1766, 49129}, {1943, 22161}, {1944, 17976}, {2887, 54220}, {2901, 15488}, {3090, 27268}, {3091, 4704}, {3095, 32453}, {3146, 4788}, {3149, 20171}, {3522, 4821}, {3523, 4772}, {3526, 4751}, {3530, 4739}, {3534, 51044}, {3627, 4718}, {3628, 4698}, {3654, 50086}, {3655, 31178}, {3666, 37365}, {3696, 5690}, {3797, 6996}, {3830, 51039}, {3842, 9956}, {3845, 51038}, {4008, 37590}, {4021, 5719}, {4043, 19648}, {4087, 16085}, {4297, 50117}, {4358, 19546}, {4363, 37474}, {4431, 5295}, {4451, 5015}, {4671, 19647}, {4709, 11362}, {4812, 19548}, {5055, 51488}, {5066, 51041}, {5252, 37598}, {5476, 50779}, {5536, 13244}, {5691, 49445}, {5770, 27472}, {5779, 51052}, {5805, 51058}, {5881, 49448}, {5882, 49479}, {5901, 15569}, {6327, 54221}, {6796, 10104}, {7201, 57282}, {7982, 49469}, {8703, 51042}, {9825, 55307}, {9840, 49512}, {10222, 49471}, {11499, 34247}, {11997, 15171}, {12100, 51049}, {12588, 24248}, {12645, 49450}, {12699, 49452}, {13633, 37756}, {15624, 32141}, {15682, 51064}, {15908, 21927}, {15973, 37528}, {16056, 17862}, {16059, 54284}, {16850, 24547}, {17479, 20242}, {17592, 17718}, {18440, 49502}, {18480, 49456}, {18481, 49493}, {18525, 49447}, {18526, 49499}, {18750, 22149}, {19513, 20891}, {19514, 20892}, {19541, 20173}, {19542, 19791}, {19549, 20923}, {19646, 22016}, {20879, 22060}, {21072, 21243}, {21168, 27484}, {21443, 49111}, {22791, 49462}, {24357, 36477}, {24817, 33888}, {27471, 37713}, {27475, 38107}, {28605, 37400}, {30269, 37003}, {32462, 37529}, {33167, 50048}, {34773, 49483}, {37705, 49515}, {37727, 49490}, {39559, 39564}, {46264, 49533}, {47745, 49510}, {50075, 50798}, {50096, 50821}, {50111, 51709}, {50777, 50796}, {51051, 54173}, {51060, 51705}, {51558, 56185}
X(29010) = isogonal conjugate of X(29009)
X(29010) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 814}
X(29010) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 192, 20430}, {5, 51046, 37}, {75, 30273, 3}, {511, 29069, 29369}, {511, 29343, 29016}, {515, 516, 29020}, {516, 29036, 29073}, {516, 29347, 2783}, {740, 29054, 517}, {952, 5762, 3564}, {1503, 29235, 29081}, {1503, 29243, 29085}, {2783, 29036, 29365}, {2783, 29073, 516}, {17479, 20242, 21318}, {28850, 29057, 15310}, {29012, 29061, 29065}, {29012, 29065, 29373}, {29016, 29069, 511}, {29028, 29077, 30}, {29032, 29089, 29024}, {29061, 29339, 29012}, {29065, 29339, 29335}, {29069, 29343, 29331}, {29073, 29347, 29327}, {29081, 29085, 1503}, {29093, 29105, 29043}, {29097, 29109, 29046}, {29101, 29113, 29050}, {29219, 29307, 542}, {29223, 29297, 11645}, {51040, 51043, 51045}
X(29011) lies on the circumcircle and these lines: {2, 44953}, {3, 827}, {4, 14378}, {20, 53949}, {23, 16166}, {30, 1287}, {39, 112}, {98, 9479}, {99, 550}, {107, 427}, {110, 3917}, {305, 689}, {376, 44061}, {476, 5189}, {511, 46970}, {512, 53894}, {691, 18859}, {925, 52397}, {933, 16030}, {935, 13619}, {1141, 7422}, {1289, 6240}, {1302, 7495}, {1304, 21284}, {1350, 33976}, {2071, 11635}, {2076, 2715}, {3098, 43357}, {3430, 28486}, {3651, 26712}, {4220, 26711}, {5188, 30255}, {5966, 7418}, {6998, 26710}, {7413, 26709}, {7425, 26707}, {7433, 26708}, {10423, 37970}, {11636, 14675}, {14979, 50401}, {29072, 53291}, {29316, 53246}, {36166, 53935}
X(29011) = isogonal conjugate of X(29012)
X(29011) = circumcircle-antipode of X(827)
X(29011) = anticomplement of X(44953)
X(29011) = X(i)-isoconjugate-of-X(j) for these {i, j}: {82, 46539}
X(29011) = X(i)-Dao conjugate of X(j) for these {i, j}: {141, 46539}, {44953, 44953}
X(29011) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3520)}}, {{A, B, C, X(3), X(39)}}, {{A, B, C, X(4), X(6636)}}, {{A, B, C, X(6), X(14488)}}, {{A, B, C, X(22), X(6240)}}, {{A, B, C, X(23), X(13619)}}, {{A, B, C, X(24), X(52397)}}, {{A, B, C, X(25), X(550)}}, {{A, B, C, X(30), X(21284)}}, {{A, B, C, X(54), X(14492)}}, {{A, B, C, X(64), X(3425)}}, {{A, B, C, X(67), X(250)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(186), X(5189)}}, {{A, B, C, X(187), X(47618)}}, {{A, B, C, X(249), X(1916)}}, {{A, B, C, X(251), X(6030)}}, {{A, B, C, X(264), X(34436)}}, {{A, B, C, X(378), X(7495)}}, {{A, B, C, X(468), X(18859)}}, {{A, B, C, X(511), X(2076)}}, {{A, B, C, X(512), X(41533)}}, {{A, B, C, X(523), X(34437)}}, {{A, B, C, X(858), X(37970)}}, {{A, B, C, X(1173), X(54890)}}, {{A, B, C, X(1177), X(1494)}}, {{A, B, C, X(1350), X(41413)}}, {{A, B, C, X(1383), X(54845)}}, {{A, B, C, X(1799), X(43689)}}, {{A, B, C, X(2065), X(43702)}}, {{A, B, C, X(3094), X(35422)}}, {{A, B, C, X(3098), X(12212)}}, {{A, B, C, X(3424), X(13452)}}, {{A, B, C, X(3426), X(14495)}}, {{A, B, C, X(3431), X(14484)}}, {{A, B, C, X(3455), X(17980)}}, {{A, B, C, X(3456), X(8725)}}, {{A, B, C, X(3527), X(54582)}}, {{A, B, C, X(3532), X(7607)}}, {{A, B, C, X(5481), X(7608)}}, {{A, B, C, X(5879), X(34427)}}, {{A, B, C, X(8781), X(32901)}}, {{A, B, C, X(8801), X(56072)}}, {{A, B, C, X(9307), X(34207)}}, {{A, B, C, X(9469), X(40077)}}, {{A, B, C, X(11668), X(14489)}}, {{A, B, C, X(11669), X(43713)}}, {{A, B, C, X(12122), X(42288)}}, {{A, B, C, X(13334), X(34873)}}, {{A, B, C, X(13472), X(43951)}}, {{A, B, C, X(14355), X(31127)}}, {{A, B, C, X(14491), X(54706)}}, {{A, B, C, X(14494), X(20421)}}, {{A, B, C, X(15246), X(35482)}}, {{A, B, C, X(15318), X(34439)}}, {{A, B, C, X(16774), X(56306)}}, {{A, B, C, X(22334), X(54917)}}, {{A, B, C, X(34438), X(52441)}}, {{A, B, C, X(34572), X(54717)}}, {{A, B, C, X(38741), X(39644)}}, {{A, B, C, X(39389), X(54920)}}, {{A, B, C, X(40824), X(56362)}}, {{A, B, C, X(41435), X(45857)}}, {{A, B, C, X(53774), X(55009)}}
X(29011) = barycentric quotient X(i)/X(j) for these (i, j): {39, 46539}
X(29012) lies on these lines: {2, 6030}, {3, 2916}, {4, 83}, {5, 5092}, {6, 382}, {20, 1352}, {22, 11550}, {23, 125}, {26, 20299}, {30, 511}, {40, 12783}, {51, 32068}, {55, 12944}, {56, 12954}, {66, 3357}, {67, 11559}, {69, 3529}, {74, 1287}, {98, 8784}, {99, 5207}, {110, 5189}, {112, 51434}, {113, 7574}, {114, 5999}, {115, 1691}, {140, 17712}, {141, 550}, {143, 18128}, {146, 52098}, {147, 9866}, {154, 34609}, {159, 12085}, {184, 7391}, {186, 38727}, {187, 53475}, {193, 49135}, {206, 18569}, {230, 35021}, {262, 54539}, {265, 32305}, {287, 40853}, {316, 12215}, {323, 24981}, {376, 11178}, {381, 5085}, {383, 6774}, {384, 35422}, {389, 7553}, {401, 15595}, {427, 13394}, {428, 5943}, {468, 6723}, {485, 8993}, {486, 13984}, {546, 3589}, {547, 55680}, {548, 18358}, {549, 25561}, {572, 36707}, {575, 3627}, {576, 3146}, {597, 15687}, {599, 15681}, {611, 12943}, {613, 12953}, {620, 5031}, {626, 4048}, {631, 31268}, {632, 55677}, {858, 1495}, {944, 7977}, {946, 12264}, {1080, 6771}, {1147, 45185}, {1204, 31304}, {1209, 13564}, {1350, 1657}, {1351, 5073}, {1353, 55716}, {1370, 9306}, {1386, 22793}, {1428, 3583}, {1469, 10483}, {1478, 10064}, {1479, 10080}, {1506, 5116}, {1513, 6036}, {1514, 47339}, {1531, 32111}, {1539, 6593}, {1556, 35584}, {1562, 34137}, {1568, 14157}, {1570, 41672}, {1587, 19092}, {1588, 19091}, {1656, 53094}, {1658, 6697}, {1692, 53499}, {1699, 38029}, {1843, 6240}, {1853, 9909}, {1885, 44479}, {1899, 7500}, {1992, 55717}, {2030, 53419}, {2070, 15061}, {2076, 6781}, {2080, 10991}, {2330, 3585}, {2456, 32135}, {3060, 11225}, {3070, 49254}, {3071, 49255}, {3090, 55681}, {3091, 55687}, {3094, 7756}, {3095, 32429}, {3153, 15462}, {3292, 46818}, {3313, 12162}, {3448, 15107}, {3522, 40330}, {3523, 55669}, {3524, 55667}, {3525, 55675}, {3526, 42786}, {3528, 3619}, {3530, 34573}, {3534, 31884}, {3543, 11179}, {3545, 55685}, {3574, 52525}, {3575, 12144}, {3580, 37900}, {3581, 16003}, {3628, 55679}, {3629, 44755}, {3630, 55586}, {3631, 55601}, {3654, 51125}, {3767, 41412}, {3796, 5064}, {3819, 7667}, {3830, 5050}, {3832, 55691}, {3839, 38064}, {3843, 12017}, {3844, 31663}, {3845, 38110}, {3850, 55688}, {3851, 47355}, {3853, 13470}, {3855, 55689}, {3858, 55690}, {3860, 51135}, {3861, 55696}, {3917, 52397}, {4045, 40250}, {4121, 33796}, {4220, 31247}, {4299, 12589}, {4302, 12588}, {5026, 5103}, {5039, 7737}, {5054, 55673}, {5055, 55682}, {5056, 55683}, {5059, 5921}, {5066, 50983}, {5070, 55678}, {5072, 55684}, {5076, 53093}, {5093, 15684}, {5097, 8550}, {5102, 51024}, {5111, 5477}, {5133, 22352}, {5159, 15448}, {5160, 46687}, {5169, 15080}, {5171, 6308}, {5181, 12367}, {5188, 44772}, {5251, 9840}, {5318, 36251}, {5321, 36252}, {5448, 14862}, {5449, 15579}, {5475, 50659}, {5523, 51437}, {5562, 16659}, {5576, 32396}, {5596, 5878}, {5611, 23001}, {5615, 23010}, {5621, 5899}, {5622, 52403}, {5642, 10989}, {5643, 7693}, {5651, 16063}, {5654, 6759}, {5661, 52967}, {5691, 9903}, {5820, 47038}, {5870, 6274}, {5871, 6275}, {5892, 13490}, {5907, 16655}, {6033, 47619}, {6034, 35006}, {6039, 47370}, {6040, 47369}, {6055, 38227}, {6108, 53465}, {6109, 53454}, {6144, 55724}, {6146, 13598}, {6256, 49190}, {6284, 13078}, {6288, 47748}, {6296, 9735}, {6297, 9736}, {6313, 9738}, {6317, 9739}, {6329, 15807}, {6403, 34797}, {6680, 51848}, {6689, 33332}, {6698, 32218}, {6699, 7575}, {6721, 56370}, {6756, 9729}, {6800, 31133}, {6998, 31248}, {7286, 46683}, {7354, 18983}, {7387, 14852}, {7394, 43650}, {7401, 13347}, {7418, 14811}, {7426, 45311}, {7464, 16163}, {7488, 32598}, {7503, 52990}, {7512, 32348}, {7519, 18911}, {7528, 37515}, {7540, 9730}, {7605, 37349}, {7684, 20415}, {7685, 20416}, {7687, 11799}, {7689, 52102}, {7703, 52300}, {7709, 34624}, {7710, 9765}, {7712, 31857}, {7728, 19140}, {7750, 14994}, {7753, 13331}, {7762, 41622}, {7813, 47618}, {7823, 32451}, {7829, 42421}, {7838, 32449}, {7890, 41747}, {8584, 51180}, {8593, 40246}, {8597, 18800}, {8598, 19662}, {8627, 39691}, {8703, 21167}, {8717, 50008}, {8721, 9737}, {9140, 37901}, {9467, 38947}, {9698, 12055}, {9820, 50414}, {9822, 31833}, {9825, 17704}, {9833, 13346}, {9834, 12476}, {9835, 12477}, {9838, 12994}, {9839, 12995}, {9863, 9990}, {9967, 18563}, {9969, 11819}, {9970, 10721}, {9973, 18565}, {10109, 50960}, {10112, 34224}, {10113, 20301}, {10116, 10263}, {10117, 37972}, {10128, 10219}, {10154, 23332}, {10182, 18281}, {10193, 18324}, {10249, 18376}, {10282, 23335}, {10295, 12140}, {10296, 13202}, {10301, 37648}, {10304, 55660}, {10313, 13236}, {10328, 21248}, {10510, 56565}, {10540, 51392}, {10575, 19161}, {10620, 54147}, {10722, 12177}, {10733, 11579}, {10752, 41731}, {11001, 50966}, {11064, 46517}, {11180, 15683}, {11202, 44441}, {11206, 44442}, {11245, 21849}, {11250, 35228}, {11257, 32476}, {11381, 12225}, {11416, 25321}, {11442, 20062}, {11477, 39899}, {11500, 12339}, {11540, 51139}, {11541, 55721}, {11560, 40949}, {11574, 12605}, {11676, 35375}, {11735, 51693}, {11745, 15012}, {11898, 49137}, {12007, 22330}, {12022, 34613}, {12041, 32274}, {12042, 38230}, {12083, 18474}, {12084, 15577}, {12086, 41482}, {12100, 50971}, {12101, 50959}, {12102, 51732}, {12103, 55631}, {12105, 20397}, {12107, 20191}, {12110, 12206}, {12111, 15084}, {12112, 15063}, {12113, 12795}, {12114, 12924}, {12115, 13112}, {12116, 13113}, {12118, 52016}, {12121, 12584}, {12134, 15644}, {12156, 14912}, {12173, 44480}, {12176, 35376}, {12220, 15086}, {12250, 20079}, {12283, 40242}, {12289, 33703}, {12290, 15103}, {12294, 18560}, {12295, 18325}, {12359, 14864}, {12362, 16621}, {12383, 43576}, {12585, 34798}, {12902, 16010}, {12974, 21736}, {13329, 36716}, {13349, 41034}, {13350, 41035}, {13354, 52854}, {13355, 36997}, {13383, 32767}, {13414, 14807}, {13415, 14808}, {13442, 48894}, {13519, 48440}, {13619, 30716}, {13630, 32191}, {13748, 49353}, {13749, 49354}, {13851, 47096}, {13857, 47314}, {13878, 36656}, {13931, 36655}, {14070, 23329}, {14118, 32332}, {14216, 31305}, {14269, 47352}, {14271, 39509}, {14356, 53267}, {14449, 45732}, {14458, 22712}, {14492, 33686}, {14641, 43129}, {14683, 23061}, {14791, 46261}, {14855, 38321}, {14869, 51128}, {14880, 39750}, {14881, 44423}, {14893, 46267}, {14957, 36213}, {14981, 35002}, {15030, 16658}, {15059, 37760}, {15069, 17800}, {15072, 52989}, {15082, 35283}, {15116, 25564}, {15118, 32217}, {15122, 48378}, {15573, 15588}, {15606, 31831}, {15640, 51140}, {15685, 50955}, {15686, 54169}, {15688, 21358}, {15689, 55643}, {15690, 51025}, {15691, 55638}, {15696, 55646}, {15698, 51141}, {15701, 50957}, {15704, 43150}, {15712, 55666}, {15717, 55665}, {15720, 55671}, {15759, 50984}, {15761, 20300}, {15800, 19150}, {16111, 49116}, {16187, 46336}, {16195, 40686}, {16264, 39530}, {16534, 51391}, {16625, 18914}, {16654, 34664}, {16776, 38322}, {16792, 46704}, {16982, 32165}, {17538, 55637}, {17578, 55710}, {17741, 48890}, {17834, 34780}, {17845, 39879}, {18374, 18403}, {18378, 43817}, {18383, 23300}, {18388, 31723}, {18390, 18534}, {18405, 52028}, {18438, 18562}, {18572, 46686}, {18859, 19596}, {19121, 50009}, {19127, 44263}, {19136, 44276}, {19145, 23251}, {19146, 23261}, {19149, 22802}, {19154, 44279}, {19160, 28343}, {19571, 40876}, {19710, 50965}, {20021, 46518}, {20304, 25338}, {20417, 32110}, {20582, 34200}, {20850, 26958}, {21163, 37345}, {21356, 55630}, {21735, 55662}, {21969, 45968}, {22104, 47351}, {22264, 47442}, {22538, 57388}, {22615, 44657}, {22644, 44656}, {22676, 44774}, {22681, 32149}, {22682, 51829}, {22799, 51157}, {22870, 47066}, {22915, 47068}, {23236, 37496}, {23293, 37913}, {23583, 51740}, {25158, 41036}, {25168, 41037}, {25184, 41016}, {25188, 41017}, {25192, 41038}, {25196, 41039}, {25330, 37949}, {25559, 41070}, {25560, 41071}, {25739, 37925}, {26543, 57002}, {26881, 31074}, {26883, 37444}, {30714, 37477}, {31152, 35259}, {31703, 42814}, {31704, 42813}, {32062, 52069}, {32064, 34608}, {32113, 32257}, {32190, 40278}, {32225, 47313}, {32250, 56369}, {32269, 37899}, {32340, 34007}, {33019, 39141}, {33699, 50979}, {33923, 55659}, {34117, 52843}, {34513, 44287}, {34659, 41580}, {34774, 51491}, {34786, 44470}, {34799, 40241}, {35018, 51127}, {35266, 47311}, {35377, 39809}, {35431, 39646}, {35439, 54167}, {35456, 38730}, {35458, 38744}, {35480, 39588}, {35756, 43144}, {36173, 53725}, {36253, 37967}, {36709, 43120}, {36711, 43119}, {36712, 43118}, {36714, 43121}, {36757, 36969}, {36758, 36970}, {36761, 36785}, {36883, 38797}, {37456, 37527}, {37488, 39568}, {37511, 41714}, {37649, 52285}, {37897, 47296}, {37928, 41603}, {37936, 38725}, {37945, 50435}, {37950, 38726}, {37953, 38729}, {37958, 38728}, {38010, 43291}, {38071, 48310}, {38072, 38335}, {38664, 43453}, {38735, 39663}, {38736, 54996}, {38789, 52697}, {38790, 51941}, {39590, 53484}, {39870, 51118}, {39875, 44473}, {39876, 44474}, {39887, 44471}, {39888, 44472}, {40341, 49139}, {40685, 44264}, {40825, 44518}, {40885, 41145}, {40889, 41255}, {41106, 51177}, {42108, 44497}, {42109, 44498}, {42125, 43277}, {42128, 43276}, {42164, 44511}, {42165, 44512}, {42271, 44501}, {42272, 44502}, {42785, 55705}, {43130, 52520}, {44210, 45303}, {44245, 55647}, {44258, 51729}, {44271, 51730}, {44283, 51733}, {44286, 51738}, {44288, 51739}, {44438, 54183}, {44456, 49134}, {44475, 48742}, {44476, 48743}, {44569, 47312}, {44654, 49325}, {44655, 49326}, {44903, 55599}, {46333, 55613}, {46817, 47341}, {46849, 52073}, {46853, 55661}, {47308, 47474}, {47309, 47581}, {48454, 48517}, {48455, 48518}, {48466, 48770}, {48467, 48771}, {48468, 49426}, {48469, 49425}, {48482, 49189}, {48874, 55594}, {48886, 49132}, {48929, 49131}, {49105, 52689}, {49106, 52688}, {49133, 55722}, {49138, 55585}, {49140, 55583}, {50652, 51827}, {50687, 55707}, {50688, 51171}, {50689, 55694}, {50691, 55714}, {50692, 55723}, {50693, 55644}, {50961, 54174}, {50967, 55589}, {50991, 55621}, {51156, 51705}, {53771, 56397}
X(29012) = isogonal conjugate of X(29011)
X(29012) = perspector of circumconic {{A, B, C, X(2), X(42396)}}
X(29012) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 826}
X(29012) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4, 44953}
X(29012) = X(i)-complementary conjugate of X(j) for these {i, j}: {1, 44953}
X(29012) = X(i)-cross conjugate of X(j) for these {i, j}: {35584, 826}
X(29012) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(14247)}}, {{A, B, C, X(4), X(826)}}, {{A, B, C, X(83), X(525)}}, {{A, B, C, X(98), X(9479)}}, {{A, B, C, X(265), X(38946)}}, {{A, B, C, X(427), X(1556)}}, {{A, B, C, X(511), X(46970)}}, {{A, B, C, X(512), X(3456)}}, {{A, B, C, X(520), X(1176)}}, {{A, B, C, X(523), X(15321)}}, {{A, B, C, X(526), X(34437)}}, {{A, B, C, X(688), X(1974)}}, {{A, B, C, X(2799), X(11606)}}, {{A, B, C, X(3424), X(32473)}}, {{A, B, C, X(3429), X(28487)}}, {{A, B, C, X(3906), X(32581)}}, {{A, B, C, X(6030), X(14810)}}, {{A, B, C, X(6368), X(17500)}}, {{A, B, C, X(7750), X(12122)}}, {{A, B, C, X(7768), X(8725)}}, {{A, B, C, X(8673), X(43689)}}, {{A, B, C, X(9019), X(52916)}}, {{A, B, C, X(9033), X(18125)}}, {{A, B, C, X(9517), X(11559)}}, {{A, B, C, X(17907), X(23881)}}, {{A, B, C, X(34146), X(43952)}}
X(29012) = barycentric product X(i)*X(j) for these (i, j): {46539, 83}
X(29012) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29011}, {46539, 141}
X(29012) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 3818, 24206}, {3, 48674, 6287}, {3, 48898, 48892}, {3, 48905, 48898}, {3, 6287, 6292}, {4, 12252, 83}, {4, 14927, 46264}, {4, 182, 19130}, {4, 25406, 14561}, {4, 83, 6249}, {5, 44882, 5092}, {5, 49112, 6704}, {6, 382, 48901}, {20, 1352, 3098}, {20, 15062, 35240}, {20, 2896, 12122}, {20, 9873, 32152}, {23, 125, 32223}, {30, 11645, 542}, {30, 14915, 2777}, {30, 3564, 29181}, {30, 44407, 18400}, {30, 542, 19924}, {69, 48873, 52987}, {110, 5189, 51360}, {141, 39884, 18553}, {141, 550, 14810}, {182, 19130, 25555}, {182, 48884, 4}, {381, 10168, 25565}, {381, 5085, 38317}, {382, 11750, 13403}, {382, 3521, 46027}, {382, 52100, 3521}, {511, 11645, 1503}, {511, 29323, 30}, {515, 516, 29073}, {516, 29020, 29315}, {516, 29040, 2783}, {516, 29215, 29327}, {516, 29321, 29020}, {517, 29283, 29043}, {858, 1495, 5972}, {1350, 1657, 48880}, {1350, 18440, 34507}, {1351, 5073, 48910}, {1352, 3098, 40107}, {1352, 48896, 48885}, {1370, 31383, 9306}, {1503, 29181, 3564}, {1503, 29317, 5965}, {1503, 29323, 29317}, {1531, 32111, 38791}, {1657, 18440, 1350}, {1657, 33541, 18442}, {3098, 48896, 20}, {3146, 31670, 48904}, {3146, 6776, 31670}, {3448, 15107, 41586}, {3448, 20063, 15107}, {3521, 52100, 44866}, {3529, 48873, 48879}, {3534, 47353, 50977}, {3627, 48906, 5480}, {3627, 5480, 48895}, {3830, 43273, 5476}, {3830, 5050, 53023}, {5188, 44772, 54195}, {5480, 48906, 575}, {5999, 43460, 114}, {6697, 15578, 25563}, {6776, 31670, 576}, {7519, 18911, 34417}, {7728, 32233, 19140}, {8550, 21850, 5097}, {8550, 51163, 21850}, {8703, 21167, 55657}, {9833, 34938, 13346}, {10733, 11579, 32273}, {11001, 51023, 54173}, {11179, 14853, 39561}, {11645, 29323, 511}, {12362, 16621, 44870}, {14157, 46450, 1568}, {14216, 31305, 46730}, {14561, 25406, 182}, {14561, 46264, 25406}, {14810, 18553, 141}, {14810, 48891, 550}, {14912, 15682, 51538}, {14912, 20423, 15520}, {14912, 51538, 20423}, {15069, 48872, 33878}, {15704, 48876, 48881}, {15704, 48881, 48920}, {16654, 34664, 46847}, {16964, 16965, 7765}, {17800, 33878, 48872}, {18572, 51548, 46686}, {22802, 34776, 19149}, {22803, 49112, 5}, {24206, 48892, 3}, {24206, 48898, 33751}, {24273, 48674, 3818}, {24273, 48905, 8725}, {29010, 29065, 29061}, {29010, 29335, 516}, {29010, 29373, 29065}, {29016, 29297, 29081}, {29024, 29043, 517}, {29024, 29283, 29255}, {29028, 29081, 29016}, {29032, 29093, 740}, {29046, 29050, 15310}, {29057, 29097, 53792}, {29061, 29339, 29010}, {29065, 29335, 29339}, {29069, 29223, 29085}, {29077, 29085, 29069}, {29089, 29105, 29054}, {29097, 29113, 29057}, {29101, 29109, 28850}, {29207, 29291, 29349}, {29211, 29287, 29353}, {29259, 29349, 29207}, {29263, 29353, 29211}, {33703, 39874, 51212}, {33703, 51212, 43621}, {33878, 48662, 15069}, {34224, 45186, 10112}, {35283, 43957, 15082}, {35820, 35821, 7748}, {36201, 44407, 11645}, {38110, 51737, 55695}, {39874, 43621, 37517}, {43150, 48920, 55606}, {43150, 55606, 48876}, {43273, 51167, 50963}, {44883, 51756, 20299}, {47353, 50993, 50954}, {47354, 51134, 50980}, {48879, 52987, 48873}, {48895, 48942, 3627}, {50956, 50975, 51137}, {50975, 51216, 50956}, {51022, 51737, 3845}
X(29013) = isogonal conjugate of X(29014)
X(29013) = perspector of circumconic {{A, B, C, X(2), X(3187)}}
X(29013) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29014}, {163, 56282}, {692, 39700}, {1018, 15376}
X(29013) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29016}
X(29013) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29014}, {115, 56282}, {306, 52609}, {1086, 39700}, {43060, 23800}, {50329, 48269}, {52599, 514}
X(29013) = X(i)-Ceva conjugate of X(j) for these {i, j}: {17925, 514}, {51566, 1}, {52609, 40940}
X(29013) = X(i)-complementary conjugate of X(j) for these {i, j}: {15376, 17761}, {29014, 10}, {39700, 21252}, {56282, 21253}
X(29013) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29014, 8}, {39700, 21293}, {56282, 21294}
X(29013) = X(i)-cross conjugate of X(j) for these {i, j}: {52599, 514}
X(29013) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29016)}}, {{A, B, C, X(84), X(916)}}, {{A, B, C, X(518), X(1724)}}, {{A, B, C, X(519), X(3187)}}, {{A, B, C, X(523), X(50329)}}, {{A, B, C, X(525), X(52599)}}, {{A, B, C, X(536), X(18147)}}, {{A, B, C, X(649), X(838)}}, {{A, B, C, X(674), X(5301)}}, {{A, B, C, X(693), X(23879)}}, {{A, B, C, X(740), X(2901)}}, {{A, B, C, X(834), X(1019)}}, {{A, B, C, X(912), X(13478)}}, {{A, B, C, X(4444), X(23875)}}, {{A, B, C, X(14377), X(34381)}}, {{A, B, C, X(28526), X(43972)}}
X(29013) = barycentric product X(i)*X(j) for these (i, j): {27, 52599}, {1724, 693}, {2901, 7192}, {3187, 514}, {3261, 5301}, {18147, 513}, {42463, 46107}, {50329, 86}
X(29013) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29014}, {514, 39700}, {523, 56282}, {1724, 100}, {2901, 3952}, {3187, 190}, {3733, 15376}, {5301, 101}, {18147, 668}, {42463, 1331}, {50329, 10}, {52599, 306}
X(29013) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29182, 29366}, {512, 29340, 814}, {513, 29238, 29070}, {513, 4083, 838}, {514, 2786, 23875}, {514, 29178, 6002}, {514, 29216, 525}, {514, 29270, 812}, {514, 522, 23879}, {514, 6002, 29148}, {514, 812, 29302}, {522, 29118, 29021}, {523, 29232, 29062}, {525, 900, 29216}, {690, 29336, 29082}, {814, 29328, 512}, {814, 29366, 29182}, {826, 29025, 29160}, {826, 29266, 29078}, {891, 29176, 29324}, {3566, 29240, 29304}, {3800, 29278, 29192}, {3906, 29184, 29332}, {4083, 29152, 2787}, {4367, 48273, 48295}, {4380, 4391, 4063}, {4382, 48144, 4978}, {4560, 20295, 14349}, {4823, 48064, 4369}, {4961, 29344, 29350}, {6005, 29033, 29051}, {7927, 29058, 29074}, {21301, 50343, 1734}, {23876, 29114, 514}, {29017, 29029, 29130}, {29017, 29124, 29029}, {29025, 29078, 826}, {29025, 29266, 29294}, {29029, 29106, 29017}, {29062, 29158, 523}, {29070, 29150, 513}, {29122, 29202, 29154}, {29128, 29194, 29146}, {29132, 29190, 29142}, {29134, 29248, 29166}, {29136, 29312, 29120}, {29138, 29256, 29172}, {29140, 29318, 29116}, {29144, 29276, 29086}, {29150, 29238, 29186}, {29156, 29284, 29094}, {29158, 29232, 29196}, {29162, 29216, 29220}, {29170, 29362, 6372}, {29174, 29370, 7950}, {29182, 29366, 29066}, {29200, 29244, 29102}, {29208, 29230, 29110}, {29344, 29350, 3907}, {48266, 48300, 7265}
X(29014) lies on the circumcircle and these lines: {3, 29015}, {9, 40101}, {40, 917}, {71, 39439}, {98, 56282}, {106, 38868}, {190, 839}, {573, 915}, {644, 53627}, {675, 39700}, {741, 4278}, {759, 4269}, {835, 1018}, {1766, 32706}, {1983, 15440}, {2284, 29303}, {3730, 15344}, {28527, 33771}, {29013, 51566}, {29221, 53290}, {40117, 56742}
X(29014) = reflection of X(i) in X(j) for these {i,j}: {29015, 3}
X(29014) = isogonal conjugate of X(29013)
X(29014) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29013}, {28, 52599}, {81, 50329}, {513, 3187}, {514, 1724}, {649, 18147}, {1019, 2901}, {17924, 42463}
X(29014) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29013}, {5375, 18147}, {39026, 3187}, {40586, 50329}, {40591, 52599}
X(29014) = X(i)-cross conjugate of X(j) for these {i, j}: {4574, 101}, {43925, 2983}, {49553, 15378}
X(29014) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(51566)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(190)}}, {{A, B, C, X(692), X(1018)}}, {{A, B, C, X(1415), X(37218)}}, {{A, B, C, X(1983), X(4269)}}, {{A, B, C, X(4559), X(40519)}}
X(29014) = barycentric product X(i)*X(j) for these (i, j): {101, 39700}, {110, 56282}, {15376, 3952}
X(29014) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29013}, {42, 50329}, {71, 52599}, {100, 18147}, {101, 3187}, {692, 1724}, {4557, 2901}, {15376, 7192}, {32656, 42463}, {32739, 5301}, {39700, 3261}, {56282, 850}
X(29015) lies on the circumcircle and these lines: {1, 1305}, {3, 29014}, {100, 1754}, {101, 580}, {109, 2352}, {934, 4306}, {990, 41906}, {991, 13397}, {2222, 5137}, {36082, 55086}, {41905, 56381}
X(29015) = isogonal conjugate of X(29016)
X(29015) = circumcircle-antipode of X(29014)
X(29015) = X(i)-cross conjugate of X(j) for these {i, j}: {2253, 57}
X(29015) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2194)}}, {{A, B, C, X(3), X(15376)}}, {{A, B, C, X(4), X(30651)}}, {{A, B, C, X(31), X(56144)}}, {{A, B, C, X(36), X(5137)}}, {{A, B, C, X(56), X(1754)}}, {{A, B, C, X(58), X(580)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(292), X(43672)}}, {{A, B, C, X(295), X(514)}}, {{A, B, C, X(991), X(2191)}}, {{A, B, C, X(1462), X(13329)}}, {{A, B, C, X(2149), X(36124)}}
X(29015) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29016}
X(29016) lies on these lines: {1, 1441}, {3, 4361}, {4, 2901}, {5, 17243}, {8, 25252}, {10, 5721}, {30, 511}, {37, 48888}, {40, 5767}, {75, 991}, {92, 3190}, {101, 242}, {145, 3332}, {165, 32860}, {192, 48878}, {239, 13329}, {355, 31395}, {427, 21072}, {573, 30273}, {596, 12675}, {990, 3875}, {1125, 17043}, {1146, 31897}, {1699, 32915}, {1736, 4552}, {1742, 49474}, {1754, 3187}, {1768, 32845}, {1818, 4858}, {1876, 4605}, {2223, 7235}, {2321, 12618}, {3159, 5777}, {3175, 5927}, {3191, 56875}, {3685, 40863}, {3693, 43672}, {3811, 57276}, {3870, 43675}, {3912, 53599}, {3971, 15064}, {3993, 45305}, {4133, 21629}, {4300, 4647}, {4356, 37548}, {4358, 5400}, {4360, 13727}, {4551, 37790}, {4716, 9441}, {4851, 5805}, {5295, 15852}, {5531, 32927}, {5536, 32919}, {5658, 42047}, {5732, 17151}, {5759, 5839}, {5779, 17262}, {6358, 14547}, {7263, 31657}, {7683, 39566}, {9940, 24176}, {10157, 35652}, {10167, 42051}, {11220, 50106}, {14872, 24068}, {15931, 32914}, {16825, 52769}, {16833, 21153}, {17119, 50677}, {17156, 41338}, {17233, 36652}, {17313, 38107}, {17348, 31658}, {17763, 44425}, {17792, 24269}, {20430, 48938}, {21168, 37654}, {22001, 26893}, {24257, 24309}, {29573, 38150}, {30147, 50302}, {36706, 42696}, {36721, 50087}, {36722, 50113}, {38108, 41313}, {43177, 53594}, {48900, 50281}, {49127, 56138}
X(29016) = isogonal conjugate of X(29015)
X(29016) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29013}
X(29016) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(8676)}}, {{A, B, C, X(4), X(29013)}}, {{A, B, C, X(522), X(2997)}}, {{A, B, C, X(3900), X(56146)}}, {{A, B, C, X(15313), X(56144)}}
X(29016) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 29235, 29065}, {511, 29343, 29010}, {516, 1503, 29223}, {516, 2784, 29043}, {516, 29219, 1503}, {542, 29339, 29085}, {740, 28850, 516}, {952, 1503, 29219}, {1146, 51366, 31897}, {3564, 29243, 29307}, {29010, 29331, 511}, {29012, 29081, 29297}, {29028, 29081, 29012}, {29032, 29109, 29020}, {29036, 29311, 29054}, {29061, 29317, 29077}, {29331, 29343, 29069}, {29347, 29353, 29057}
X(29017) lies on these lines: {30, 511}, {659, 48300}, {663, 50340}, {667, 47682}, {693, 3801}, {1491, 21124}, {2530, 49278}, {2533, 47690}, {3004, 48100}, {3700, 48400}, {3776, 48406}, {3777, 16892}, {4010, 47708}, {4024, 21118}, {4040, 49279}, {4063, 47726}, {4088, 4490}, {4122, 4391}, {4142, 4874}, {4435, 48277}, {4498, 48103}, {4522, 21051}, {4705, 48272}, {4707, 47715}, {4761, 47714}, {4801, 48326}, {4809, 47820}, {4983, 49277}, {7178, 48396}, {7265, 48267}, {7650, 15416}, {10015, 48395}, {20517, 52601}, {21121, 50334}, {21146, 47719}, {21260, 50453}, {23282, 50327}, {23738, 47930}, {23755, 47703}, {23770, 48280}, {25259, 48265}, {28374, 50552}, {35519, 46565}, {41800, 48216}, {47677, 53533}, {47691, 48279}, {47695, 48301}, {47701, 48123}, {47709, 48349}, {47712, 48273}, {47727, 48333}, {47793, 48185}, {47794, 48199}, {47795, 48215}, {47796, 48227}, {47797, 47841}, {47809, 47835}, {47822, 57066}, {47836, 48235}, {47837, 48217}, {47839, 48195}, {47840, 48177}, {47872, 47874}, {47886, 47893}, {47887, 47889}, {47913, 48082}, {47921, 48088}, {47929, 48083}, {47944, 48121}, {47957, 48046}, {47960, 48616}, {47961, 48128}, {47965, 48056}, {47966, 48048}, {47967, 48047}, {47968, 48122}, {47972, 48336}, {47990, 48091}, {47998, 48093}, {47999, 48092}, {48030, 48402}, {48087, 48618}, {48090, 48403}, {48099, 49280}, {48120, 55282}, {48144, 50342}, {48219, 48559}, {48290, 48330}, {48299, 48331}, {48351, 49276}, {48393, 49300}
X(29017) = isogonal conjugate of X(29018)
X(29017) = perspector of circumconic {{A, B, C, X(2), X(32778)}}
X(29017) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29018}, {692, 56065}
X(29017) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29020}
X(29017) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29018}, {1086, 56065}
X(29017) = X(i)-Ceva conjugate of X(j) for these {i, j}: {56238, 11}
X(29017) = X(i)-complementary conjugate of X(j) for these {i, j}: {29018, 10}, {56065, 21252}
X(29017) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29018, 8}, {56065, 21293}
X(29017) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29020)}}, {{A, B, C, X(519), X(32778)}}, {{A, B, C, X(693), X(814)}}, {{A, B, C, X(758), X(35623)}}, {{A, B, C, X(3907), X(35519)}}, {{A, B, C, X(8672), X(35352)}}
X(29017) = barycentric product X(i)*X(j) for these (i, j): {1577, 35623}, {32778, 514}
X(29017) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29018}, {514, 56065}, {32778, 190}, {35623, 662}
X(29017) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29166, 29021}, {512, 29256, 23876}, {513, 29202, 525}, {514, 29033, 29336}, {514, 29037, 29324}, {514, 29062, 2787}, {514, 29190, 29070}, {514, 29248, 29276}, {514, 29318, 826}, {514, 29358, 29354}, {514, 814, 29156}, {523, 3910, 4083}, {525, 29142, 513}, {690, 29168, 6005}, {812, 29116, 29025}, {814, 29248, 522}, {826, 29354, 29358}, {891, 7950, 29047}, {2787, 29062, 29230}, {2787, 29194, 29062}, {3906, 6372, 23875}, {3910, 29146, 29208}, {4024, 21118, 48392}, {4083, 29146, 523}, {4142, 8045, 4874}, {4707, 47715, 50352}, {21124, 48278, 1491}, {23876, 29021, 512}, {23876, 29166, 29144}, {23879, 23887, 784}, {29013, 29029, 29124}, {29013, 29130, 29029}, {29021, 29256, 29284}, {29029, 29106, 29013}, {29070, 29154, 514}, {29078, 29120, 6002}, {29086, 29094, 29066}, {29122, 29238, 29162}, {29126, 29232, 29152}, {29132, 29216, 29150}, {29134, 29328, 29118}, {29136, 29266, 29178}, {29138, 29340, 29114}, {29142, 29202, 29200}, {29148, 29294, 29090}, {29154, 29190, 29244}, {29156, 29276, 814}, {29160, 29302, 29098}, {29164, 29350, 7927}, {29186, 29220, 29102}, {29198, 29280, 918}, {29204, 29226, 29288}, {29324, 29370, 29037}, {48299, 50347, 48331}
X(29018) lies on circumconic {{A, B, C, X(74), X(98)}} and on these lines: {3, 29019}, {675, 56065}, {692, 815}, {831, 3888}, {29201, 53282}, {30670, 34069}
X(29018) = reflection of X(i) in X(j) for these {i,j}: {29019, 3}
X(29018) = isogonal conjugate of X(29017)
X(29018) = trilinear pole of line {6, 5329}
X(29018) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29017}, {513, 32778}, {523, 35623}
X(29018) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29017}, {39026, 32778}
X(29018) = X(i)-cross conjugate of X(j) for these {i, j}: {37327, 250}
X(29018) = barycentric product X(i)*X(j) for these (i, j): {101, 56065}
X(29018) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29017}, {101, 32778}, {163, 35623}, {56065, 3261}
X(29019) lies on the circumcircle and these lines: {3, 29018}, {29009, 53291}
X(29019) = isogonal conjugate of X(29020)
X(29019) = circumcircle-antipode of X(29018)
X(29019) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(7019)}}
X(29020) lies on circumconic {{A, B, C, X(4), X(29017)}} and on these lines: {3, 32784}, {4, 17918}, {30, 511}, {238, 36716}, {3579, 39566}, {4389, 18481}, {5267, 24251}, {5710, 12943}, {17369, 18480}, {24309, 48898}, {36663, 50302}, {36732, 50301}
X(29020) = isogonal conjugate of X(29019)
X(29020) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29017}
X(29020) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 15310, 29211}, {30, 29207, 15310}, {511, 29259, 29046}, {515, 516, 29010}, {516, 29036, 29339}, {516, 29040, 29327}, {516, 29065, 2783}, {516, 29321, 29012}, {11645, 29309, 29043}, {29012, 29315, 516}, {29024, 29046, 511}, {29024, 29259, 29287}, {29032, 29109, 29016}, {29089, 29097, 29069}, {29323, 29349, 29050}, {29327, 29373, 29040}
X(29021) lies on these lines: {30, 511}, {661, 48272}, {663, 47682}, {667, 50340}, {693, 47709}, {1577, 47690}, {1734, 21124}, {3004, 48066}, {3762, 47707}, {3776, 23789}, {3801, 50352}, {4040, 47726}, {4063, 48106}, {4088, 47959}, {4122, 48267}, {4129, 4522}, {4369, 20517}, {4391, 47689}, {4401, 50347}, {4449, 47727}, {4462, 47706}, {4468, 48004}, {4490, 4808}, {4791, 48395}, {4794, 48299}, {4801, 47692}, {4822, 49277}, {4823, 48396}, {4905, 16892}, {4978, 47691}, {6590, 21185}, {7265, 48080}, {14349, 47701}, {17072, 50453}, {21192, 50336}, {23795, 48427}, {23796, 48426}, {41800, 48232}, {44435, 48556}, {45745, 46380}, {45746, 48409}, {47679, 47975}, {47699, 50449}, {47700, 47918}, {47702, 48131}, {47703, 55282}, {47717, 47720}, {47771, 47817}, {47793, 48208}, {47794, 47809}, {47795, 47797}, {47796, 48203}, {47798, 47818}, {47799, 48218}, {47807, 48196}, {47808, 47816}, {47814, 48187}, {47815, 48236}, {47819, 48174}, {47820, 48223}, {47836, 48254}, {47837, 48235}, {47838, 48161}, {47839, 48177}, {47840, 48158}, {47916, 48116}, {47924, 48122}, {47929, 48118}, {47936, 48130}, {47938, 48085}, {47942, 48082}, {47943, 48596}, {47948, 48077}, {47958, 48086}, {47961, 48092}, {47966, 48088}, {47970, 48094}, {47977, 48102}, {47983, 48051}, {47987, 48046}, {47989, 48603}, {47995, 48052}, {47997, 48047}, {47998, 48054}, {48003, 48062}, {48006, 48058}, {48012, 48402}, {48039, 48613}, {48055, 48623}, {48075, 50348}, {48185, 48553}, {48211, 48564}, {48219, 48561}, {48227, 48569}, {48252, 48573}, {48273, 48349}, {48290, 48294}, {48336, 49279}, {48367, 49276}, {49280, 50508}, {49300, 50457}
X(29021) = isogonal conjugate of X(29022)
X(29021) = perspector of circumconic {{A, B, C, X(2), X(29667)}}
X(29021) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29024}
X(29021) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29024)}}, {{A, B, C, X(513), X(48025)}}, {{A, B, C, X(519), X(29667)}}, {{A, B, C, X(693), X(830)}}, {{A, B, C, X(4608), X(29047)}}
X(29021) = barycentric product X(i)*X(j) for these (i, j): {29667, 514}, {48025, 75}
X(29021) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29022}, {29667, 190}, {48025, 1}
X(29021) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29166, 29017}, {512, 29256, 29284}, {513, 29146, 826}, {513, 29280, 29252}, {514, 29164, 523}, {514, 29192, 3907}, {514, 29260, 29288}, {514, 522, 830}, {522, 29118, 29013}, {523, 29288, 29260}, {693, 47709, 47712}, {693, 47718, 47715}, {814, 29134, 29029}, {826, 29168, 513}, {826, 29252, 29280}, {1577, 47714, 47690}, {3762, 47710, 47707}, {3800, 3910, 29350}, {4040, 47726, 48300}, {4391, 47689, 47711}, {4801, 47692, 47716}, {4978, 47713, 47691}, {6005, 29318, 525}, {7927, 29312, 4083}, {29017, 29144, 512}, {29017, 29284, 29256}, {29029, 29086, 814}, {29033, 29140, 29162}, {29051, 29116, 514}, {29058, 29136, 29152}, {29062, 29132, 6002}, {29070, 29128, 29025}, {29074, 29120, 2787}, {29086, 29134, 29114}, {29122, 29274, 29336}, {29124, 29276, 29340}, {29126, 29278, 29344}, {29138, 29182, 29156}, {29142, 29164, 29047}, {29144, 29166, 23876}, {29146, 29168, 23875}, {29148, 29196, 29037}, {29150, 29194, 29078}, {29154, 29188, 29082}, {29158, 29190, 812}, {29170, 29370, 29090}, {29172, 29366, 29094}, {29174, 29362, 29098}, {29198, 29204, 29354}, {29246, 29332, 29102}, {29248, 29328, 29106}, {29250, 29324, 29110}, {47691, 47719, 4978}, {47701, 48278, 14349}, {47972, 48300, 4040}, {48161, 57066, 47838}, {48396, 48403, 4823}, {48402, 50333, 48012}
X(29022) lies on the circumcircle and these lines: {3, 29023}, {675, 29634}, {692, 831}, {29048, 35327}
X(29022) = isogonal conjugate of X(29021)
X(29022) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29021}, {2, 48025}, {513, 29667}
X(29022) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29021}, {32664, 48025}, {39026, 29667}
X(29022) = X(i)-cross conjugate of X(j) for these {i, j}: {17599, 59}
X(29022) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29021}, {31, 48025}, {101, 29667}
X(29023) lies on the circumcircle and these lines: {3, 29022}, {29049, 53251}, {53291, 53892}
X(29023) = isogonal conjugate of X(29024)
X(29023) = circumcircle-antipode of X(29022)
X(29024) lies on circumconic {{A, B, C, X(4), X(29021)}} and on these lines: {20, 24309}, {30, 511}, {210, 34666}, {428, 40998}, {1766, 5691}, {3663, 7354}, {4297, 12610}, {4353, 18990}, {5086, 16566}, {9590, 37959}, {10444, 10464}, {10483, 24248}, {10572, 32118}, {12618, 31673}, {17355, 57288}, {36674, 52769}, {41430, 49131}
X(29024) = isogonal conjugate of X(29023)
X(29024) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29021}
X(29024) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 29291, 29263}, {511, 29259, 29287}, {516, 29263, 29291}, {517, 29283, 29255}, {29012, 29255, 29283}, {29020, 29287, 29259}, {29032, 29089, 29010}, {29181, 29207, 29353}, {29255, 29283, 29043}, {29259, 29287, 29046}, {29263, 29291, 29050}, {29311, 29321, 1503}, {29315, 29317, 15310}
X(29025) lies on these lines: {30, 511}, {649, 3801}, {659, 8636}, {663, 48349}, {667, 47712}, {1019, 47725}, {1577, 48405}, {2533, 48106}, {3777, 47652}, {4010, 48300}, {4142, 4782}, {4170, 49279}, {4367, 47691}, {4378, 47716}, {4391, 48103}, {4490, 48408}, {4707, 4834}, {4874, 48403}, {4879, 47728}, {4992, 6332}, {6591, 54249}, {8045, 48090}, {14349, 50351}, {17496, 47688}, {20517, 50512}, {21051, 48062}, {21118, 48101}, {21185, 48248}, {24719, 48278}, {44435, 47893}, {47131, 50517}, {47660, 48392}, {47680, 50352}, {47682, 48273}, {47709, 50340}, {47720, 48323}, {47771, 47872}, {47793, 47885}, {47890, 48400}, {47968, 48410}, {48094, 48265}, {48144, 48326}, {48301, 53558}, {48398, 48406}, {50453, 50504}
X(29025) = isogonal conjugate of X(29026)
X(29025) = perspector of circumconic {{A, B, C, X(2), X(4812)}}
X(29025) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29028}
X(29025) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29028)}}, {{A, B, C, X(518), X(16974)}}, {{A, B, C, X(519), X(25453)}}, {{A, B, C, X(536), X(4812)}}, {{A, B, C, X(832), X(876)}}
X(29025) = barycentric product X(i)*X(j) for these (i, j): {4812, 513}, {16974, 693}, {25453, 514}
X(29025) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29026}, {4812, 668}, {16974, 100}, {25453, 190}
X(29025) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29272, 29304}, {514, 29118, 513}, {514, 29132, 6372}, {514, 29140, 29029}, {514, 29158, 512}, {514, 29304, 29272}, {514, 29350, 29094}, {514, 6005, 29102}, {523, 29162, 814}, {523, 29278, 29250}, {812, 29116, 29017}, {814, 29174, 523}, {814, 29250, 29278}, {826, 29266, 29294}, {3800, 29240, 29366}, {6332, 49295, 4992}, {7927, 29336, 29066}, {7950, 29340, 29062}, {29013, 29160, 826}, {29013, 29294, 29266}, {29029, 29098, 514}, {29033, 29164, 29086}, {29047, 29114, 2787}, {29070, 29128, 29021}, {29098, 29140, 29120}, {29126, 29288, 29324}, {29130, 29302, 29312}, {29134, 29362, 29142}, {29136, 29354, 29148}, {29144, 29244, 29051}, {29146, 29238, 522}, {29150, 29224, 23875}, {29152, 29204, 29037}, {29156, 29208, 3907}, {29158, 29184, 29082}, {29162, 29174, 29074}, {29178, 29358, 29090}, {29260, 29344, 29110}, {29266, 29294, 29078}, {29270, 29318, 29106}, {29328, 29332, 525}
X(29026) lies on the circumcircle and these lines: {3, 29027}, {825, 57217}, {833, 3573}, {29083, 53268}
X(29026) = reflection of X(i) in X(j) for these {i,j}: {29027, 3}
X(29026) = isogonal conjugate of X(29025)
X(29026) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29025}, {513, 25453}, {514, 16974}, {649, 4812}
X(29026) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29025}, {5375, 4812}, {39026, 25453}
X(29026) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29025}, {100, 4812}, {101, 25453}, {692, 16974}
X(29027) lies on the circumcircle and these lines: {3, 29026}, {29084, 53259}
X(29027) = isogonal conjugate of X(29028)
X(29027) = circumcircle-antipode of X(29026)
X(29028) lies on circumconic {{A, B, C, X(4), X(29025)}} and on these lines: {3, 16706}, {4, 17280}, {5, 17357}, {30, 511}, {5100, 50044}, {37588, 50065}, {46550, 48380}
X(29028) = isogonal conjugate of X(29027)
X(29028) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29025}
X(29028) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 29010, 29077}, {511, 516, 29085}, {516, 29311, 29105}, {516, 29353, 29097}, {29012, 29016, 29081}, {29032, 29101, 516}, {29181, 29243, 29369}, {29263, 29347, 29113}, {29317, 29339, 29069}, {29323, 29343, 29065}, {29331, 29335, 1503}
X(29029) lies on these lines: {1, 48349}, {30, 511}, {661, 33299}, {667, 47708}, {764, 47652}, {905, 48192}, {1019, 3801}, {2530, 48159}, {3762, 48103}, {4010, 47682}, {4122, 47726}, {4142, 50512}, {4367, 47712}, {4369, 17048}, {4378, 47691}, {4391, 48236}, {4707, 4784}, {4724, 42662}, {4775, 47728}, {4791, 48405}, {4922, 47727}, {7192, 20247}, {9508, 50453}, {14419, 47797}, {14431, 47809}, {21132, 48101}, {21146, 47680}, {21201, 48248}, {21222, 47688}, {21260, 47806}, {21301, 48169}, {24719, 49278}, {30234, 48211}, {30709, 48208}, {31149, 47808}, {44550, 48174}, {45664, 48219}, {47227, 54249}, {47684, 48080}, {47701, 48288}, {47716, 48323}, {47725, 48320}, {48231, 48400}, {48267, 48300}, {48291, 53558}, {48403, 52601}
X(29029) = isogonal conjugate of X(29030)
X(29029) = perspector of circumconic {{A, B, C, X(2), X(29631)}}
X(29029) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29032}
X(29029) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29032)}}, {{A, B, C, X(519), X(29631)}}, {{A, B, C, X(758), X(985)}}, {{A, B, C, X(876), X(9013)}}, {{A, B, C, X(7192), X(29102)}}
X(29029) = barycentric product X(i)*X(j) for these (i, j): {29631, 514}
X(29029) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29030}, {29631, 190}
X(29029) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 29118, 512}, {514, 29132, 513}, {514, 29140, 29025}, {514, 29158, 4083}, {514, 6005, 29082}, {523, 29126, 2787}, {814, 29134, 29021}, {826, 29136, 6002}, {2787, 29128, 523}, {4010, 47682, 49290}, {6002, 29116, 826}, {7950, 29176, 29037}, {29013, 29017, 29106}, {29013, 29130, 29017}, {29017, 29124, 29013}, {29021, 29114, 814}, {29025, 29120, 514}, {29114, 29134, 29086}, {29116, 29136, 29090}, {29118, 29138, 29094}, {29120, 29140, 29098}, {29122, 29132, 29102}, {29126, 29128, 29110}, {29142, 29162, 29070}, {29144, 29156, 29066}, {29146, 29152, 29062}, {29150, 29154, 525}, {29164, 29344, 29074}, {29166, 29340, 522}, {29168, 29336, 29051}, {29170, 29332, 23875}, {29172, 29328, 23876}, {29174, 29324, 29047}, {29178, 29318, 29078}, {47684, 48080, 49279}
X(29030) lies on the circumcircle and these lines: {3, 29031}, {98, 26446}, {759, 984}, {3573, 9070}, {4557, 29103}, {29095, 53268}
X(29030) = reflection of X(i) in X(j) for these {i,j}: {29031, 3}
X(29030) = isogonal conjugate of X(29029)
X(29030) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29029}, {513, 29631}
X(29030) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29029}, {39026, 29631}
X(29030) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(32042), X(32653)}}, {{A, B, C, X(35169), X(37138)}}
X(29030) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29029}, {101, 29631}
X(29031) lies on the circumcircle and these lines: {3, 29030}, {29096, 53259}, {29104, 53296}
X(29031) = isogonal conjugate of X(29032)
X(29031) = circumcircle-antipode of X(29030)
X(29031) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(3429), X(10623)}}, {{A, B, C, X(11270), X(15618)}}
X(29032) lies on circumconic {{A, B, C, X(4), X(29029)}} and on these lines: {30, 511}, {382, 5695}, {1621, 4220}, {1770, 10544}, {3430, 12699}, {3454, 22793}, {3579, 7683}, {3744, 4854}, {3821, 14810}, {3923, 48901}, {3925, 37360}, {4655, 52987}, {5429, 50080}, {6693, 31663}, {12702, 54136}, {15171, 35650}, {17359, 38140}, {17382, 17502}, {18553, 49560}, {22791, 54180}, {24248, 48873}, {24257, 48898}, {24728, 48880}, {33110, 37456}, {37823, 41869}, {38034, 48810}
X(29032) = isogonal conjugate of X(29031)
X(29032) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29029}
X(29032) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 2783, 29113}, {511, 516, 29097}, {516, 29028, 29101}, {516, 29311, 29085}, {516, 517, 29105}, {740, 29012, 29093}, {29010, 29024, 29089}, {29016, 29020, 29109}
X(29033) lies on these lines: {1, 4382}, {10, 48008}, {30, 511}, {649, 47724}, {659, 4791}, {667, 4823}, {1019, 48579}, {1577, 4401}, {1960, 48090}, {2533, 48011}, {3835, 48284}, {3960, 48089}, {4010, 4794}, {4380, 4761}, {4474, 21385}, {4560, 48066}, {4707, 47722}, {4775, 4810}, {4804, 48324}, {4960, 50526}, {4978, 48343}, {5592, 49288}, {14419, 48184}, {14431, 48226}, {14838, 47802}, {21260, 47829}, {21301, 47825}, {24719, 48288}, {30234, 45320}, {30709, 48240}, {31149, 47827}, {44429, 45671}, {45324, 47803}, {46403, 48321}, {47683, 48023}, {47723, 48106}, {48064, 50352}, {48065, 48267}, {48111, 48264}, {48115, 53536}, {48119, 48320}, {48265, 48623}, {48266, 49276}, {48273, 48294}, {48279, 48287}, {48295, 49289}, {48575, 50337}
X(29033) = isogonal conjugate of X(29034)
X(29033) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29036}
X(29033) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29036)}}, {{A, B, C, X(693), X(29318)}}
X(29033) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29238, 29270}, {512, 29270, 4961}, {513, 29340, 29178}, {514, 29062, 29358}, {514, 522, 29318}, {514, 814, 29344}, {812, 29066, 29350}, {814, 29362, 2787}, {2787, 29070, 29362}, {2787, 29362, 514}, {4380, 47721, 4761}, {4762, 28475, 4160}, {29013, 29051, 6005}, {29021, 29162, 29140}, {29025, 29086, 29164}, {29066, 29350, 4844}, {29074, 29098, 29260}, {29238, 29274, 512}, {29244, 29276, 826}
X(29034) lies on the circumcircle and these lines: {3, 29035}, {692, 29319}, {3908, 29351}
X(29034) = reflection of X(i) in X(j) for these {i,j}: {29035, 3}
X(29034) = isogonal conjugate of X(29033)
X(29034) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(660), X(34073)}}
X(29035) lies on the circumcircle and these lines: {3, 29034}, {29320, 53291}
X(29035) = isogonal conjugate of X(29036)
X(29035) = circumcircle-antipode of X(29034)
X(29036) lies on circumconic {{A, B, C, X(4), X(29033)}} and on these lines: {30, 511}, {75, 41430}, {2223, 24209}, {3757, 10434}, {4021, 37593}, {17318, 48944}
X(29036) = isogonal conjugate of X(29035)
X(29036) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29033}
X(29036) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {515, 516, 29321}, {516, 29010, 29347}, {2783, 29073, 29365}, {2783, 29365, 516}, {28850, 29069, 29353}, {29010, 29365, 2783}, {29016, 29054, 29311}, {29077, 29101, 29263}
X(29037) lies on these lines: {1, 7265}, {10, 21192}, {30, 511}, {99, 51614}, {388, 57243}, {649, 47707}, {663, 25259}, {905, 4522}, {984, 55230}, {1019, 47711}, {1577, 4458}, {2533, 50342}, {4024, 17166}, {4025, 17072}, {4036, 21187}, {4041, 4467}, {4086, 17899}, {4088, 4560}, {4120, 47840}, {4122, 4367}, {4142, 4391}, {4163, 52616}, {4170, 47727}, {4369, 48395}, {4382, 47720}, {4504, 48290}, {4705, 21196}, {4750, 47836}, {4791, 20517}, {4809, 47872}, {4822, 44449}, {6332, 48325}, {16892, 21301}, {17496, 48278}, {18077, 57214}, {21212, 21260}, {23684, 41299}, {31291, 49273}, {35352, 36934}, {44729, 45669}, {45324, 45668}, {45344, 45671}, {45661, 47839}, {45674, 47837}, {45746, 47912}, {47660, 50523}, {47687, 48151}, {47690, 48144}, {47695, 48264}, {47699, 47911}, {47706, 48106}, {47715, 48320}, {47719, 48341}, {47814, 47886}, {47820, 47874}, {47879, 48564}, {47956, 48404}, {48077, 48410}, {48099, 48270}, {48149, 49283}, {48150, 49275}, {48265, 50340}, {48271, 50517}, {48272, 48321}, {48294, 49288}, {48328, 49290}, {49282, 50526}, {52587, 52596}, {56530, 57169}
X(29037) = isogonal conjugate of X(29038)
X(29037) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29040}
X(29037) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(29040)}}, {{A, B, C, X(30), X(1065)}}, {{A, B, C, X(511), X(947)}}, {{A, B, C, X(512), X(23954)}}, {{A, B, C, X(596), X(17770)}}, {{A, B, C, X(740), X(36934)}}, {{A, B, C, X(2392), X(19655)}}
X(29037) = barycentric product X(i)*X(j) for these (i, j): {19655, 52623}, {23954, 274}
X(29037) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29038}, {19655, 4556}, {23954, 37}
X(29037) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29090, 2786}, {514, 29062, 522}, {523, 6002, 29118}, {525, 3907, 2785}, {826, 29264, 2787}, {918, 29278, 29051}, {2787, 29292, 826}, {3906, 29268, 29094}, {4122, 4367, 8045}, {7950, 29176, 29029}, {29017, 29324, 514}, {29058, 29354, 29070}, {29090, 29110, 512}, {29094, 29268, 2789}, {29148, 29196, 29021}, {29152, 29204, 29025}, {29170, 29250, 29144}, {29178, 29260, 29158}, {29232, 29288, 812}, {29236, 29280, 29082}, {29324, 29370, 29017}
X(29038) lies on the circumcircle and these lines: {1, 15168}, {3, 29039}, {74, 1064}, {98, 946}, {104, 5429}, {106, 22744}, {595, 28482}, {2170, 53686}, {5606, 14413}
X(29038) = isogonal conjugate of X(29037)
X(29038) = trilinear pole of line {6, 51947}
X(29038) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29037}, {86, 23954}, {4036, 19655}
X(29038) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29037}, {40600, 23954}
X(29038) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(3903), X(34076)}}, {{A, B, C, X(8750), X(34069)}}
X(29038) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29037}, {213, 23954}
X(29039) lies on the circumcircle and these lines: {3, 29038}, {99, 31730}
X(29039) = isogonal conjugate of X(29040)
X(29039) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(58), X(55037)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1245), X(39130)}}, {{A, B, C, X(2357), X(31730)}}
X(29040) lies on circumconic {{A, B, C, X(4), X(29037)}} and on these lines: {4, 24257}, {10, 8424}, {30, 511}, {1010, 2360}, {1352, 24728}, {1761, 2321}, {1844, 49542}, {1901, 20970}, {2939, 8931}, {2959, 9862}, {3098, 49560}, {3579, 3773}, {3755, 31673}, {3818, 3821}, {3875, 41869}, {3923, 46264}, {3946, 18483}, {4021, 41003}, {4085, 18480}, {4431, 11683}, {4523, 40263}, {4655, 18440}, {4672, 48906}, {4743, 33697}, {5092, 24295}, {5695, 48905}, {5988, 43460}, {8822, 33297}, {9840, 35099}, {12699, 32921}, {17286, 35242}, {18481, 32941}, {20872, 21091}, {21850, 49489}, {22791, 49472}, {24695, 39874}, {31670, 49488}, {34773, 49473}, {48910, 49486}
X(29040) = isogonal conjugate of X(29039)
X(29040) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29037}
X(29040) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {511, 29093, 2784}, {516, 29065, 515}, {542, 29301, 17770}, {1503, 29057, 2792}, {2783, 29012, 516}, {29093, 29113, 511}, {29235, 29291, 28850}, {29327, 29373, 29020}
X(29041) lies on the circumcircle and these lines: {3, 29042}, {103, 580}, {759, 41332}, {1415, 26700}, {1983, 13397}, {5546, 43356}, {29044, 53290}
X(29041) = reflection of X(i) in X(j) for these {i,j}: {29042, 3}
X(29041) = isogonal conjugate of X(23875)
X(29041) = trilinear pole of line {6, 20961}
X(29041) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 23875}, {2, 50350}, {514, 5904}, {1577, 4278}
X(29041) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 23875}, {32664, 50350}, {39026, 32858}
X(29041) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1983), X(41332)}}, {{A, B, C, X(5546), X(34073)}}, {{A, B, C, X(32653), X(32665)}}, {{A, B, C, X(32698), X(36049)}}
X(29041) = barycentric quotient X(i)/X(j) for these (i, j): {6, 23875}, {31, 50350}, {101, 32858}, {692, 5904}, {1576, 4278}
X(29042) lies on the circumcircle and these lines: {3, 29041}, {112, 4278}, {934, 4347}, {991, 15440}
X(29042) = isogonal conjugate of X(29043)
X(29042) = circumcircle-antipode of X(29041)
X(29042) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4347)}}, {{A, B, C, X(3), X(4278)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(991), X(4269)}}, {{A, B, C, X(43974), X(57396)}}
X(29043) lies on circumconic {{A, B, C, X(4), X(23875)}} and on these lines: {30, 511}, {165, 33156}, {242, 50896}, {1352, 24309}, {1618, 3814}, {1699, 33128}, {3220, 21293}, {5248, 26130}, {12432, 49542}, {13329, 28256}, {24253, 25639}, {31897, 51435}, {54668, 54676}
X(29043) = isogonal conjugate of X(29042)
X(29043) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 23875}
X(29043) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 1503, 29046}, {516, 2784, 29016}, {516, 29219, 28850}, {517, 29283, 29012}, {3564, 29291, 29353}, {11645, 29309, 29020}, {29012, 29255, 517}, {29093, 29105, 29010}, {29215, 29307, 29057}, {29255, 29283, 29024}
X(29044) lies on the circumcircle and these lines: {3, 29045}, {100, 1983}, {102, 572}, {103, 37469}, {753, 4257}, {759, 1333}, {761, 32118}, {991, 28844}, {1252, 43361}, {1415, 2222}, {1783, 2766}, {3960, 13396}, {4574, 29115}, {5006, 53970}, {29041, 53290}, {32674, 36076}, {38871, 43659}
X(29044) = reflection of X(i) in X(j) for these {i,j}: {29045, 3}
X(29044) = isogonal conjugate of X(23876)
X(29044) = trilinear pole of line {6, 20962}
X(29044) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 23876}, {513, 33077}, {514, 5692}, {1577, 4276}
X(29044) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 23876}, {39026, 33077}
X(29044) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(32653)}}, {{A, B, C, X(649), X(3960)}}, {{A, B, C, X(1333), X(1415)}}, {{A, B, C, X(1461), X(32702)}}, {{A, B, C, X(1783), X(2298)}}, {{A, B, C, X(4565), X(32641)}}
X(29044) = barycentric quotient X(i)/X(j) for these (i, j): {6, 23876}, {101, 33077}, {692, 5692}, {1576, 4276}
X(29045) lies on the circumcircle and these lines: {3, 29044}, {112, 4276}, {573, 825}, {1350, 39638}, {4256, 26715}
X(29045) = isogonal conjugate of X(29047)
X(29045) = circumcircle-antipode of X(29044)
X(29045) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4276)}}, {{A, B, C, X(58), X(36100)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(573), X(3736)}}
X(29046) lies on these lines: {4, 52413}, {10, 2182}, {30, 511}, {63, 33075}, {226, 1456}, {993, 3220}, {1478, 4307}, {1766, 39885}, {2239, 13329}, {3814, 5150}, {3822, 50302}, {4318, 52392}, {4645, 24630}, {5691, 54421}, {5711, 56906}, {12610, 39870}, {13478, 29635}, {24309, 46264}, {35353, 54842}, {40109, 44425}, {50308, 54288}, {54668, 54768}
X(29046) = isogonal conjugate of X(29045)
X(29046) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 23876}
X(29046) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(23876)}}, {{A, B, C, X(824), X(13478)}}
X(29046) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {511, 29259, 29020}, {515, 2792, 29069}, {516, 1503, 29043}, {516, 29219, 740}, {542, 29315, 517}, {1503, 29207, 516}, {15310, 29012, 29050}, {29020, 29287, 511}, {29097, 29109, 29010}, {29259, 29287, 29024}, {29321, 29353, 30}
X(29047) lies on these lines: {1, 48300}, {30, 511}, {663, 47727}, {667, 48103}, {693, 47706}, {1019, 48106}, {1491, 4808}, {1577, 47691}, {1734, 16892}, {3004, 48012}, {3762, 47708}, {3776, 50337}, {3803, 48095}, {3806, 28374}, {4040, 48094}, {4088, 14349}, {4122, 48273}, {4147, 50453}, {4170, 25259}, {4391, 47692}, {4401, 47890}, {4449, 47682}, {4453, 48573}, {4462, 47709}, {4468, 48058}, {4791, 48403}, {4801, 47689}, {4823, 23770}, {4834, 50342}, {4879, 49279}, {4978, 47690}, {6332, 48348}, {8045, 48295}, {13259, 47705}, {14838, 48062}, {17166, 47693}, {20516, 47965}, {21192, 50501}, {21301, 47688}, {30565, 47838}, {44435, 47816}, {45746, 48407}, {47698, 50449}, {47700, 48131}, {47701, 47959}, {47702, 47918}, {47714, 47719}, {47726, 48282}, {47771, 47818}, {47793, 48203}, {47794, 47797}, {47795, 47809}, {47796, 48208}, {47798, 47817}, {47799, 48196}, {47807, 48218}, {47808, 48556}, {47814, 48174}, {47815, 48223}, {47819, 48187}, {47820, 48236}, {47835, 48224}, {47836, 48241}, {47837, 48227}, {47839, 48185}, {47840, 48171}, {47841, 48188}, {47905, 47916}, {47912, 47924}, {47938, 47947}, {47943, 48586}, {47948, 47958}, {47956, 47961}, {47970, 47972}, {47983, 48612}, {47989, 48601}, {47995, 48613}, {47997, 47998}, {48004, 48006}, {48018, 50348}, {48039, 48052}, {48045, 48046}, {48047, 48054}, {48055, 48065}, {48056, 50507}, {48066, 50333}, {48077, 48086}, {48081, 48082}, {48083, 48351}, {48088, 48099}, {48097, 48331}, {48102, 48111}, {48117, 48367}, {48130, 48150}, {48146, 50523}, {48177, 48553}, {48211, 48561}, {48219, 48564}, {48235, 48569}, {48267, 48349}, {48278, 48335}, {48287, 48290}, {48294, 48299}, {48326, 50352}, {48329, 48615}, {48334, 49278}, {48338, 49276}, {48405, 52601}
X(29047) = isogonal conjugate of X(29048)
X(29047) = perspector of circumconic {{A, B, C, X(2), X(29679)}}
X(29047) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29050}
X(29047) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(9021)}}, {{A, B, C, X(4), X(29050)}}, {{A, B, C, X(513), X(48031)}}, {{A, B, C, X(519), X(29679)}}, {{A, B, C, X(4608), X(29021)}}
X(29047) = barycentric product X(i)*X(j) for these (i, j): {29679, 514}, {48031, 75}
X(29047) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29048}, {29679, 190}, {48031, 1}
X(29047) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 29164, 29142}, {514, 29192, 29051}, {514, 29260, 523}, {523, 29142, 29164}, {693, 47706, 47711}, {826, 4083, 23876}, {891, 7950, 29017}, {918, 3800, 6005}, {1577, 47717, 47691}, {2787, 29025, 29114}, {3762, 47713, 47708}, {4083, 29204, 826}, {4391, 47692, 47712}, {4801, 47689, 47715}, {4802, 8678, 514}, {4978, 47710, 47690}, {7927, 29354, 513}, {23770, 48395, 4823}, {29098, 29110, 814}, {29142, 29164, 29021}, {29146, 29226, 29312}, {29158, 29212, 6002}, {29174, 29324, 29029}, {29184, 29268, 29156}, {29196, 29302, 522}, {29224, 29298, 29082}, {29250, 29362, 29086}, {29350, 29358, 525}, {47690, 47720, 4978}, {47711, 47716, 693}
X(29048) lies on the circumcircle and these lines: {1, 9078}, {3, 29049}, {105, 30148}, {29022, 35327}
X(29048) = reflection of X(i) in X(j) for these {i,j}: {29049, 3}
X(29048) = isogonal conjugate of X(29047)
X(29048) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29047}, {2, 48031}, {513, 29679}
X(29048) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29047}, {32664, 48031}, {39026, 29679}
X(29048) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1026), X(30148)}}
X(29048) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29047}, {31, 48031}, {101, 29679}
X(29049) lies on the circumcircle and these lines: {3, 29048}, {29023, 53251}
X(29049) = isogonal conjugate of X(29050)
X(29049) = circumcircle-antipode of X(29048)
X(29049) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(42467), X(52123)}}
X(29050) lies on circumconic {{A, B, C, X(4), X(29047)}} and on these lines: {4, 24309}, {30, 511}, {990, 41869}, {1766, 16545}, {1770, 32118}, {3663, 6284}, {4353, 15171}, {7667, 40998}, {12610, 51118}, {12618, 31730}, {41430, 49132}
X(29050) = isogonal conjugate of X(29049)
X(29050) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29047}
X(29050) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 29291, 516}, {516, 29263, 30}, {15310, 29012, 29046}, {29101, 29113, 29010}, {29263, 29291, 29024}, {29323, 29349, 29020}
X(29051) lies on these lines: {1, 4978}, {10, 48003}, {30, 511}, {650, 17072}, {659, 2533}, {661, 21301}, {663, 693}, {667, 4369}, {905, 24720}, {1027, 1220}, {1577, 3716}, {1635, 47836}, {1734, 4913}, {1960, 52601}, {2254, 4560}, {2517, 46385}, {2530, 48288}, {2901, 31010}, {3669, 48325}, {3762, 47970}, {3801, 50340}, {3835, 48099}, {3960, 23789}, {4010, 48336}, {4041, 17494}, {4063, 4761}, {4077, 43041}, {4106, 50508}, {4129, 48058}, {4142, 7178}, {4147, 47965}, {4162, 48125}, {4170, 48352}, {4367, 21146}, {4378, 4504}, {4379, 8643}, {4380, 50509}, {4382, 48338}, {4391, 4724}, {4448, 47872}, {4449, 4801}, {4462, 4474}, {4705, 48000}, {4728, 47840}, {4729, 47932}, {4763, 47837}, {4775, 48273}, {4791, 48065}, {4794, 4823}, {4814, 47664}, {4815, 48307}, {4822, 20295}, {4833, 14288}, {4874, 48331}, {4879, 48279}, {4893, 47814}, {4895, 26824}, {4905, 48321}, {4922, 48323}, {4928, 47839}, {4932, 50515}, {4983, 48049}, {5592, 8045}, {6050, 31286}, {6161, 48305}, {6332, 49285}, {7192, 31291}, {7199, 57149}, {7265, 49276}, {7650, 48340}, {7662, 48329}, {8062, 48297}, {14349, 48050}, {14419, 48569}, {14431, 48553}, {14838, 25380}, {16695, 23866}, {17166, 47672}, {17496, 48151}, {17924, 54229}, {21052, 47793}, {21222, 23738}, {21260, 25666}, {24462, 55230}, {24560, 24561}, {24719, 48123}, {25569, 47889}, {25901, 26017}, {30591, 48306}, {31149, 45315}, {36848, 47893}, {43067, 50517}, {45314, 45332}, {45316, 45320}, {45324, 45337}, {45328, 45671}, {45664, 45673}, {46403, 48131}, {47666, 47912}, {47680, 47712}, {47682, 47715}, {47683, 48409}, {47684, 47718}, {47685, 48122}, {47687, 48278}, {47690, 48300}, {47694, 48150}, {47695, 55282}, {47706, 48118}, {47707, 48094}, {47708, 47722}, {47711, 47723}, {47713, 47725}, {47714, 47726}, {47716, 47727}, {47719, 47728}, {47779, 48564}, {47794, 48562}, {47796, 47812}, {47815, 48572}, {47835, 48226}, {47841, 48184}, {47905, 47945}, {47911, 47941}, {47918, 47969}, {47948, 47992}, {47955, 47986}, {47956, 47996}, {47959, 48001}, {47963, 48607}, {47966, 48009}, {48008, 50501}, {48042, 48092}, {48080, 48367}, {48089, 48136}, {48098, 48330}, {48107, 50526}, {48108, 48144}, {48115, 48298}, {48120, 48301}, {48264, 53343}, {48267, 48351}, {48285, 48287}, {48289, 48406}, {48294, 48295}, {48324, 49292}, {48327, 48399}, {48570, 48579}
X(29051) = isogonal conjugate of X(29052)
X(29051) = perspector of circumconic {{A, B, C, X(2), X(3757)}}
X(29051) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29054}
X(29051) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(9052)}}, {{A, B, C, X(4), X(29054)}}, {{A, B, C, X(518), X(1220)}}, {{A, B, C, X(519), X(3757)}}, {{A, B, C, X(527), X(41246)}}, {{A, B, C, X(674), X(19133)}}, {{A, B, C, X(688), X(51641)}}, {{A, B, C, X(693), X(23877)}}, {{A, B, C, X(824), X(17924)}}, {{A, B, C, X(826), X(4077)}}, {{A, B, C, X(1027), X(6371)}}, {{A, B, C, X(4971), X(55954)}}, {{A, B, C, X(6362), X(18155)}}
X(29051) = barycentric product X(i)*X(j) for these (i, j): {3757, 514}, {19133, 3261}, {41239, 693}, {41246, 522}
X(29051) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29052}, {3757, 190}, {19133, 101}, {41239, 100}, {41246, 664}
X(29051) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29070, 812}, {513, 29152, 29170}, {513, 29274, 814}, {514, 28470, 8678}, {514, 29021, 29116}, {514, 29066, 3907}, {514, 29164, 29160}, {514, 29192, 29047}, {514, 522, 23877}, {667, 50352, 4369}, {814, 29170, 29152}, {814, 29246, 513}, {918, 29278, 29037}, {3309, 23882, 522}, {4040, 47724, 1577}, {4379, 8643, 47820}, {4449, 48119, 4801}, {4462, 47974, 47929}, {4474, 47929, 4462}, {4801, 47729, 4449}, {5592, 8045, 48299}, {6005, 29033, 29013}, {6161, 48393, 48305}, {6372, 29182, 2787}, {7192, 31291, 50523}, {14838, 50337, 25380}, {17494, 21302, 4041}, {21052, 47811, 47793}, {21260, 50507, 25666}, {29058, 29252, 29090}, {29066, 29186, 514}, {29070, 29188, 512}, {29086, 29102, 826}, {29144, 29244, 29025}, {29152, 29170, 6002}, {29166, 29272, 29154}, {29168, 29336, 29029}, {29190, 29304, 23876}, {29198, 29236, 29324}, {29200, 29276, 29078}, {29362, 29366, 4083}, {47672, 48322, 17166}, {47948, 50449, 47992}, {48150, 50457, 47694}, {48284, 50337, 14838}, {48299, 48396, 8045}
X(29052) lies on the circumcircle and these lines: {1, 9108}, {3, 29053}, {98, 5293}, {99, 35338}, {105, 1193}, {664, 34083}, {675, 3920}, {689, 7257}, {789, 4561}, {825, 906}, {927, 35333}, {934, 46153}, {1026, 8707}, {1310, 40499}, {2726, 5529}, {53631, 57249}
X(29052) = reflection of X(i) in X(j) for these {i,j}: {29053, 3}
X(29052) = isogonal conjugate of X(29051)
X(29052) = trilinear pole of line {6, 5364}
X(29052) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29051}, {513, 3757}, {514, 41239}, {650, 41246}, {693, 19133}
X(29052) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29051}, {39026, 3757}
X(29052) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(664), X(692)}}, {{A, B, C, X(906), X(4561)}}, {{A, B, C, X(1026), X(1193)}}, {{A, B, C, X(1415), X(37138)}}, {{A, B, C, X(4559), X(36086)}}, {{A, B, C, X(4614), X(40519)}}, {{A, B, C, X(7257), X(35333)}}, {{A, B, C, X(32666), X(35338)}}
X(29052) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29051}, {101, 3757}, {109, 41246}, {692, 41239}, {32739, 19133}
X(29053) lies on the circumcircle and these lines: {3, 29052}, {99, 10461}
X(29053) = isogonal conjugate of X(29054)
X(29053) = circumcircle-antipode of X(29052)
X(29053) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3), X(985)}}, {{A, B, C, X(31), X(84)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(81), X(947)}}, {{A, B, C, X(963), X(2162)}}, {{A, B, C, X(7351), X(51866)}}
X(29054) lies on circumconic {{A, B, C, X(4), X(29051)}} and on these lines: {1, 4032}, {3, 24325}, {4, 984}, {5, 3842}, {20, 24349}, {30, 511}, {37, 946}, {40, 75}, {65, 13569}, {192, 962}, {335, 6999}, {355, 49457}, {376, 31178}, {381, 50094}, {388, 24248}, {611, 24268}, {631, 40328}, {872, 37732}, {944, 49490}, {958, 3923}, {990, 37529}, {1215, 4192}, {1278, 20070}, {1482, 49471}, {1537, 51062}, {1699, 54035}, {3146, 31302}, {3149, 34247}, {3428, 54410}, {3475, 17592}, {3654, 50096}, {3656, 50111}, {3663, 3931}, {3696, 11362}, {3729, 12717}, {3739, 6684}, {3821, 25466}, {3993, 4301}, {4295, 7201}, {4297, 49479}, {4660, 5794}, {4664, 31162}, {4687, 8227}, {4732, 5690}, {4740, 34632}, {4751, 31423}, {4847, 22001}, {4974, 37510}, {5493, 50117}, {5691, 49448}, {5881, 49450}, {5882, 49478}, {6210, 49516}, {6211, 6996}, {6361, 49493}, {6682, 37365}, {6796, 15624}, {7384, 31323}, {7982, 49470}, {7991, 49474}, {9589, 49445}, {9944, 12675}, {10624, 11997}, {11372, 51052}, {11531, 49469}, {12005, 13476}, {12245, 49459}, {12689, 14872}, {12699, 20430}, {13464, 15569}, {16609, 23690}, {17165, 50694}, {18481, 49491}, {18525, 49449}, {19546, 24003}, {19647, 32931}, {20556, 44694}, {22791, 51046}, {24336, 50295}, {25371, 50302}, {27475, 38036}, {30271, 31730}, {31317, 37416}, {31395, 48902}, {31673, 49515}, {32771, 37400}, {38021, 51488}, {41863, 49446}, {41869, 49447}, {46475, 48900}, {49500, 54151}, {49520, 51118}, {50075, 51065}, {50086, 50810}, {50777, 51038}, {50778, 51077}, {50796, 51034}, {50808, 51060}, {50811, 51055}, {50827, 51036}, {50828, 51061}, {50865, 51035}, {50872, 51054}, {51042, 51705}, {51045, 51709}, {51059, 51120}
X(29054) = isogonal conjugate of X(29053)
X(29054) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29051}
X(29054) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {511, 29073, 28850}, {516, 29069, 29057}, {517, 29010, 740}, {5762, 29207, 2792}, {29036, 29311, 29016}, {29061, 29255, 29093}, {29089, 29105, 29012}, {29093, 29255, 28877}, {29365, 29369, 15310}
X(29055) lies on the circumcircle and on these lines: {1, 98}, {3, 29056}, {35, 29300}, {36, 2699}, {56, 741}, {57, 4128}, {73, 15168}, {99, 4594}, {100, 3903}, {102, 7015}, {103, 37575}, {104, 256}, {105, 904}, {106, 1431}, {110, 23997}, {163, 2715}, {257, 1311}, {604, 35105}, {651, 932}, {664, 789}, {675, 7191}, {692, 8685}, {694, 9259}, {699, 41526}, {759, 995}, {805, 55018}, {811, 22456}, {813, 4559}, {825, 1415}, {893, 2291}, {931, 4603}, {1026, 8706}, {1055, 41882}, {1193, 41534}, {1414, 36066}, {1420, 35108}, {1428, 53967}, {1927, 38986}, {1967, 51329}, {2370, 4451}, {2372, 30115}, {2700, 41532}, {2726, 18786}, {2758, 45763}, {3865, 53899}, {4511, 52135}, {4551, 8707}, {4561, 56241}, {4564, 36081}, {4565, 53628}, {4573, 53631}, {7104, 51986}, {7116, 32726}, {7132, 56806}, {9310, 45240}, {10571, 26702}, {16609, 53704}, {29117, 35327}, {29352, 54282}, {35106, 40729}, {40432, 53707}
X(29055) = reflection of X(i) in X(j) for these {i,j}: {29056, 3}
X(29055) = isogonal conjugate of X(3907)
X(29055) = trilinear pole of line {6, 893}
X(29055) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3907}, {2, 3287}, {7, 4477}, {8, 4367}, {9, 4369}, {11, 4579}, {21, 2533}, {55, 4374}, {57, 4529}, {78, 54229}, {81, 4140}, {87, 30584}, {99, 40608}, {100, 4459}, {171, 522}, {172, 4391}, {210, 17212}, {312, 20981}, {314, 7234}, {318, 22093}, {333, 57234}, {513, 7081}, {514, 2329}, {521, 7009}, {643, 53559}, {644, 7200}, {645, 16592}, {650, 894}, {656, 14006}, {657, 7196}, {661, 27958}, {663, 1909}, {693, 2330}, {804, 56154}, {885, 4447}, {1019, 4095}, {1021, 4032}, {1215, 3737}, {1320, 4922}, {1334, 16737}, {1743, 27831}, {1920, 3063}, {2086, 36806}, {2170, 18047}, {2295, 4560}, {2310, 6649}, {2320, 4774}, {2321, 18200}, {3023, 3903}, {3239, 7175}, {3596, 56242}, {3680, 4504}, {3699, 53541}, {3709, 8033}, {3716, 18787}, {3805, 52133}, {3900, 7176}, {3955, 44426}, {3963, 7252}, {4041, 17103}, {4107, 4876}, {4128, 7257}, {4164, 4518}, {4434, 23838}, {4435, 30669}, {4581, 18235}, {4631, 21823}, {6332, 7119}, {6647, 23893}, {7077, 14296}, {7122, 35519}, {7155, 24533}, {7205, 8641}, {14942, 53553}, {18111, 33299}, {18155, 20964}, {21348, 39936}, {22061, 57215}, {23617, 28006}, {45882, 52652}
X(29055) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 3907}, {223, 4374}, {478, 4369}, {5375, 17787}, {5452, 4529}, {8054, 4459}, {10001, 1920}, {16591, 14295}, {32664, 3287}, {36830, 27958}, {38986, 40608}, {39026, 7081}, {40586, 4140}, {40596, 14006}, {40611, 2533}, {55060, 53559}
X(29055) = X(i)-cross conjugate of X(j) for these {i, j}: {798, 57}, {1964, 2149}, {21008, 1262}, {23868, 7115}, {41346, 59}
X(29055) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(163)}}, {{A, B, C, X(56), X(1414)}}, {{A, B, C, X(57), X(4635)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(662), X(18047)}}, {{A, B, C, X(664), X(1415)}}, {{A, B, C, X(692), X(40499)}}, {{A, B, C, X(798), X(4128)}}, {{A, B, C, X(959), X(4566)}}, {{A, B, C, X(1026), X(1201)}}, {{A, B, C, X(1064), X(23706)}}, {{A, B, C, X(3903), X(4594)}}, {{A, B, C, X(4561), X(36059)}}, {{A, B, C, X(23981), X(37617)}}, {{A, B, C, X(32666), X(46177)}}, {{A, B, C, X(34080), X(37138)}}
X(29055) = barycentric product X(i)*X(j) for these (i, j): {1, 37137}, {100, 1432}, {101, 7249}, {109, 257}, {256, 651}, {653, 7015}, {664, 893}, {1014, 56257}, {1178, 4552}, {1284, 37134}, {1400, 4594}, {1402, 7260}, {1414, 52651}, {1415, 7018}, {1431, 190}, {1461, 4451}, {1959, 36065}, {3903, 57}, {4369, 55018}, {4554, 904}, {4572, 7104}, {4603, 65}, {16609, 805}, {18026, 7116}, {21859, 7303}, {27805, 56}, {30670, 7146}, {32010, 4559}, {32674, 7019}, {40432, 4551}, {40729, 4625}, {56241, 604}
X(29055) = barycentric quotient X(i)/X(j) for these (i, j): {6, 3907}, {31, 3287}, {41, 4477}, {42, 4140}, {55, 4529}, {56, 4369}, {57, 4374}, {59, 18047}, {100, 17787}, {101, 7081}, {109, 894}, {110, 27958}, {112, 14006}, {256, 4391}, {257, 35519}, {604, 4367}, {608, 54229}, {649, 4459}, {651, 1909}, {658, 7205}, {664, 1920}, {692, 2329}, {798, 40608}, {805, 36800}, {893, 522}, {904, 650}, {934, 7196}, {1014, 16737}, {1178, 4560}, {1201, 28006}, {1262, 6649}, {1397, 20981}, {1400, 2533}, {1402, 57234}, {1404, 4922}, {1405, 4774}, {1408, 18200}, {1412, 17212}, {1414, 8033}, {1415, 171}, {1428, 4107}, {1429, 14296}, {1431, 514}, {1432, 693}, {1461, 7176}, {2149, 4579}, {2176, 30584}, {3445, 27831}, {3863, 3810}, {3903, 312}, {4451, 52622}, {4551, 3963}, {4552, 1237}, {4557, 4095}, {4559, 1215}, {4565, 17103}, {4594, 28660}, {4603, 314}, {5221, 4842}, {7015, 6332}, {7104, 663}, {7116, 521}, {7180, 53559}, {7249, 3261}, {7260, 40072}, {16609, 14295}, {17938, 2311}, {20981, 3023}, {23067, 4019}, {23346, 6647}, {27805, 3596}, {30670, 52652}, {32660, 3955}, {32674, 7009}, {32739, 2330}, {36065, 1821}, {36075, 4697}, {37137, 75}, {40432, 18155}, {40729, 4041}, {41526, 24533}, {43924, 7200}, {46153, 16720}, {51641, 16592}, {51986, 17072}, {52411, 22093}, {52635, 53553}, {52651, 4086}, {53321, 4032}, {55018, 27805}, {56241, 28659}, {56257, 3701}, {56556, 3805}, {57181, 53541}
X(29056) lies on the circumcircle and these lines: {3, 29055}, {40, 99}, {55, 1355}, {107, 14006}, {108, 171}, {109, 3955}, {110, 2187}, {112, 601}, {293, 36065}, {805, 1808}, {927, 8924}, {1402, 8059}, {2077, 2703}, {2333, 40117}, {2720, 5143}, {3101, 41906}, {6010, 10310}, {11012, 29299}, {26700, 37527}, {37609, 53622}
X(29056) = isogonal conjugate of X(29057)
X(29056) = circumcircle-antipode of X(29055)
X(29056) = inverse of X(24469) in the Bevan circle
X(29056) = X(i)-cross conjugate of X(j) for these {i, j}: {51651, 1}
X(29056) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(37619)}}, {{A, B, C, X(3), X(171)}}, {{A, B, C, X(4), X(55037)}}, {{A, B, C, X(31), X(7350)}}, {{A, B, C, X(35), X(37527)}}, {{A, B, C, X(40), X(1402)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(84), X(1472)}}, {{A, B, C, X(165), X(37609)}}, {{A, B, C, X(517), X(5143)}}, {{A, B, C, X(649), X(7351)}}, {{A, B, C, X(947), X(51476)}}, {{A, B, C, X(1248), X(3345)}}, {{A, B, C, X(2077), X(5061)}}, {{A, B, C, X(2223), X(8924)}}, {{A, B, C, X(2311), X(7095)}}, {{A, B, C, X(14534), X(57422)}}, {{A, B, C, X(29057), X(51651)}}, {{A, B, C, X(30648), X(43702)}}, {{A, B, C, X(40718), X(56139)}}, {{A, B, C, X(42464), X(42467)}}
X(29057) lies on these lines: {1, 51651}, {2, 10853}, {3, 3923}, {4, 240}, {5, 3821}, {6, 24257}, {20, 24280}, {30, 511}, {40, 3729}, {75, 6210}, {84, 309}, {104, 24852}, {140, 24295}, {147, 52135}, {165, 54035}, {182, 4672}, {190, 6211}, {312, 20368}, {355, 4660}, {576, 49489}, {846, 7413}, {902, 39572}, {946, 3663}, {990, 3736}, {1010, 8235}, {1045, 1047}, {1071, 12723}, {1158, 1761}, {1215, 37619}, {1281, 5999}, {1284, 4459}, {1350, 5695}, {1351, 49488}, {1352, 4655}, {1385, 49482}, {1423, 4008}, {1482, 49455}, {1513, 5988}, {1699, 17591}, {1733, 1756}, {1742, 30273}, {1901, 2092}, {2292, 15971}, {2456, 32115}, {2481, 43738}, {3120, 8229}, {3286, 53260}, {3576, 4234}, {3724, 13265}, {3980, 19544}, {4011, 16434}, {4032, 50307}, {4192, 24259}, {4220, 4418}, {4353, 13464}, {4425, 37360}, {4647, 48883}, {4697, 37527}, {5450, 15952}, {5492, 46704}, {5587, 17677}, {5699, 14538}, {5700, 14539}, {5731, 51678}, {5777, 18252}, {5884, 32118}, {5992, 40236}, {6245, 21629}, {6684, 17355}, {6776, 24695}, {6796, 24309}, {6996, 17738}, {6998, 8245}, {6999, 41842}, {7379, 9791}, {7427, 24402}, {7574, 19400}, {7609, 17277}, {7683, 36250}, {7982, 49446}, {7992, 7996}, {8095, 12726}, {8096, 12727}, {8143, 48931}, {8227, 17304}, {9799, 9801}, {9840, 49598}, {9942, 9944}, {9948, 9950}, {9959, 15973}, {9960, 9962}, {10175, 16052}, {10222, 49464}, {10446, 49518}, {10454, 15071}, {11477, 49486}, {11609, 46435}, {12528, 12530}, {12547, 12549}, {12608, 12610}, {12616, 12618}, {12650, 12652}, {12664, 12689}, {12669, 12718}, {12672, 12721}, {12673, 12719}, {12674, 12720}, {12675, 12722}, {12681, 12724}, {12685, 12728}, {12688, 17635}, {13569, 52819}, {15972, 45705}, {17164, 50419}, {17301, 38035}, {17649, 17651}, {18208, 32857}, {19514, 25079}, {19540, 24260}, {19541, 24283}, {19649, 32930}, {20430, 49519}, {24218, 40961}, {24325, 31394}, {24336, 50314}, {25371, 50290}, {31395, 49456}, {33100, 37456}, {38029, 50300}, {38116, 50313}, {38118, 50115}, {38144, 48829}, {38146, 50091}, {38357, 51414}, {40880, 49653}, {46475, 50302}, {46937, 56080}, {48876, 49560}, {49630, 50796}
X(29057) = isogonal conjugate of X(29056)
X(29057) = perspector of circumconic {{A, B, C, X(2), X(55211)}}
X(29057) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 3907}
X(29057) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(3907)}}, {{A, B, C, X(84), X(512)}}, {{A, B, C, X(256), X(521)}}, {{A, B, C, X(309), X(523)}}, {{A, B, C, X(314), X(8058)}}, {{A, B, C, X(514), X(26735)}}, {{A, B, C, X(804), X(1874)}}, {{A, B, C, X(926), X(43738)}}, {{A, B, C, X(2787), X(46435)}}, {{A, B, C, X(6002), X(10309)}}, {{A, B, C, X(8774), X(13478)}}, {{A, B, C, X(16005), X(29150)}}, {{A, B, C, X(29056), X(51651)}}
X(29057) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {84, 35635, 15486}, {511, 2783, 740}, {516, 29069, 29054}, {1503, 17768, 2792}, {1733, 1756, 16609}, {2783, 29301, 511}, {2784, 17770, 3564}, {2792, 29040, 1503}, {3923, 24728, 3}, {8245, 24342, 6998}, {15310, 29010, 28850}, {29012, 53792, 29097}, {29097, 29113, 29012}, {29215, 29307, 29043}, {29243, 29291, 516}, {29327, 29369, 517}, {29347, 29353, 29016}
X(29058) lies on circumconic {{A, B, C, X(4), X(29061)}} and on these lines: {30, 511}, {667, 17989}, {1577, 4809}, {1960, 3700}, {4770, 4976}, {4775, 48266}, {4784, 47723}, {4810, 47727}, {4820, 48327}, {8643, 53584}, {17069, 53571}, {18004, 48284}, {21260, 47882}, {21301, 47894}, {31149, 47886}, {47724, 50342}, {47755, 50352}, {47765, 50507}, {47767, 48395}, {47876, 48005}
X(29058) = isogonal conjugate of X(29059)
X(29058) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29059}
X(29058) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29061}
X(29058) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29232, 29266}, {514, 29062, 29370}, {514, 29230, 29264}, {514, 29370, 826}, {522, 2787, 29312}, {814, 826, 29336}, {6002, 29086, 29168}, {29013, 29074, 7927}, {29021, 29152, 29136}, {29037, 29070, 29354}, {29051, 29090, 29252}, {29066, 29078, 690}, {29192, 29328, 12073}, {29216, 29366, 32478}, {29230, 29276, 514}, {29232, 29278, 512}
X(29059) lies on the circumcircle and these lines: {3, 29060}, {9059, 33948}
X(29059) = isogonal conjugate of X(29058)
X(29059) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(668), X(17929)}}, {{A, B, C, X(4555), X(4565)}}
X(29060) lies on the circumcircle and these lines: {3, 29059}
X(29060) = isogonal conjugate of X(29061)
X(29060) = circumcircle-antipode of X(29059)
X(29061) lies on circumconic {{A, B, C, X(4), X(29058)}} and on these lines: {30, 511}, {5587, 46475}, {17726, 24210}
X(29061) = isogonal conjugate of X(29060)
X(29061) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29058}
X(29061) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {515, 2783, 29315}, {516, 29065, 29373}, {29010, 29012, 29339}, {29010, 29065, 29012}, {29010, 29373, 516}, {29016, 29077, 29317}, {29054, 29093, 29255}, {29069, 29081, 542}, {29219, 29369, 5965}
X(29062) lies on these lines: {30, 511}, {649, 47711}, {663, 7265}, {667, 4122}, {1019, 47690}, {1577, 20517}, {1734, 4467}, {3803, 48271}, {4025, 50337}, {4040, 25259}, {4063, 47707}, {4120, 47838}, {4142, 4791}, {4170, 48266}, {4380, 47706}, {4382, 47716}, {4458, 4823}, {4522, 14838}, {4560, 48272}, {4750, 48573}, {4809, 47875}, {4820, 48286}, {4905, 47687}, {17072, 21192}, {17496, 49278}, {18004, 50507}, {21196, 48012}, {23789, 49285}, {44449, 48081}, {45746, 47948}, {47673, 47905}, {47678, 48142}, {47679, 47912}, {47699, 47947}, {47710, 48106}, {47715, 48144}, {47719, 48320}, {47816, 47886}, {47818, 47874}, {48058, 48270}, {48077, 48409}, {48110, 49283}, {48111, 49275}, {48267, 50340}, {48277, 48407}, {48278, 48321}, {48330, 49290}, {48404, 48613}, {48405, 50512}, {50342, 50352}
X(29062) = isogonal conjugate of X(29063)
X(29062) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29065}
X(29062) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29065)}}, {{A, B, C, X(596), X(5847)}}, {{A, B, C, X(693), X(29190)}}
X(29062) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29074, 29192}, {512, 29078, 29216}, {514, 29037, 29212}, {514, 522, 29190}, {523, 29232, 29013}, {525, 29278, 29066}, {663, 7265, 49288}, {814, 29332, 29336}, {814, 29370, 826}, {826, 29058, 814}, {826, 29336, 29332}, {2787, 29017, 514}, {2787, 29194, 29017}, {3906, 29182, 29082}, {6002, 29021, 29132}, {7927, 29266, 29328}, {7950, 29340, 29025}, {29013, 29196, 523}, {29017, 29230, 2787}, {29066, 29294, 525}, {29074, 29078, 512}, {29086, 29090, 513}, {29106, 29110, 4083}, {29146, 29152, 29029}, {29164, 29178, 29118}, {29166, 29176, 29120}, {29196, 29232, 29158}, {29202, 29236, 29094}, {29204, 29238, 29098}, {29248, 29324, 29312}, {29250, 29328, 7927}, {29264, 29312, 29324}, {29274, 29280, 29102}, {29278, 29294, 29304}
X(29063) lies on the circumcircle and these lines: {3, 29064}, {595, 28476}, {692, 29191}, {789, 43289}, {835, 33952}
X(29063) = reflection of X(i) in X(j) for these {i,j}: {29064, 3}
X(29063) = isogonal conjugate of X(29062)
X(29063) = trilinear pole of line {6, 32664}
X(29063) = X(i)-cross conjugate of X(j) for these {i, j}: {14349, 58}
X(29063) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(34069), X(43289)}}
X(29064) lies on the circumcircle and these lines: {3, 29063}, {835, 6327}
X(29064) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(6327)}}, {{A, B, C, X(74), X(98)}}
X(29064) = isogonal conjugate of X(29065)
X(29064) = circumcircle-antipode of X(29063)
X(29065) lies on these lines: {3, 7087}, {22, 21072}, {30, 511}, {946, 50558}, {950, 4021}, {2172, 2908}, {4431, 57287}, {10454, 10468}
X(29065) = isogonal conjugate of X(29064)
X(29065) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29062}
X(29065) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29062)}}, {{A, B, C, X(834), X(7087)}}
X(29065) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 29235, 29016}, {511, 29081, 29219}, {516, 29040, 29215}, {1503, 29069, 29307}, {2783, 29020, 516}, {29010, 29335, 29339}, {29010, 29373, 29012}, {29012, 29061, 29010}, {29012, 29339, 29335}, {29069, 29297, 1503}, {29077, 29081, 511}, {29089, 29093, 517}, {29109, 29113, 15310}, {29323, 29343, 29028}
X(29066) lies on these lines: {1, 693}, {2, 50764}, {6, 50765}, {8, 17494}, {10, 650}, {30, 511}, {145, 26824}, {386, 25667}, {551, 45320}, {649, 4761}, {659, 4774}, {663, 1577}, {667, 2533}, {905, 50337}, {936, 27417}, {950, 11934}, {996, 1027}, {1043, 57248}, {1125, 4885}, {1491, 48288}, {1643, 50287}, {1698, 31209}, {1734, 4560}, {1960, 4874}, {2254, 48321}, {2517, 3737}, {2605, 50334}, {2901, 4024}, {3241, 47869}, {3244, 48125}, {3251, 48189}, {3616, 26985}, {3617, 26777}, {3632, 47664}, {3634, 31287}, {3669, 23789}, {3679, 31150}, {3700, 49288}, {3716, 4791}, {3762, 4474}, {3825, 15283}, {3828, 44567}, {3837, 48289}, {3904, 47687}, {3924, 27712}, {3960, 24720}, {4010, 4775}, {4036, 48297}, {4040, 4391}, {4049, 48211}, {4086, 46385}, {4107, 17031}, {4122, 49279}, {4129, 48099}, {4147, 48003}, {4170, 48338}, {4367, 48253}, {4378, 4922}, {4385, 21611}, {4397, 50346}, {4411, 24325}, {4449, 4978}, {4462, 47970}, {4482, 54440}, {4504, 48343}, {4705, 48176}, {4801, 48282}, {4804, 4895}, {4807, 50501}, {4815, 48303}, {4823, 48294}, {4879, 48273}, {4905, 17496}, {4985, 48340}, {5248, 8641}, {6702, 10006}, {7178, 20517}, {7650, 48307}, {7662, 48327}, {8142, 12512}, {8583, 26695}, {8643, 47818}, {9780, 27115}, {10015, 50347}, {10479, 24900}, {11019, 30235}, {12609, 23806}, {12647, 43991}, {14349, 21301}, {14413, 47812}, {14419, 47823}, {14430, 47811}, {14431, 47822}, {14838, 17072}, {15280, 24387}, {17425, 28143}, {19853, 26049}, {19860, 26546}, {19862, 31250}, {20083, 25684}, {21051, 48180}, {21052, 47794}, {21212, 44314}, {21901, 52589}, {23791, 28374}, {24987, 26641}, {25259, 49276}, {25569, 47833}, {26363, 28834}, {27648, 31339}, {29739, 50637}, {30115, 30910}, {30234, 47761}, {30591, 48302}, {30709, 47821}, {32915, 48423}, {42455, 48900}, {45316, 45324}, {45671, 47828}, {46403, 48298}, {47123, 48286}, {47358, 50766}, {47680, 47691}, {47682, 47690}, {47683, 47975}, {47684, 47689}, {47692, 47725}, {47694, 48324}, {47695, 49300}, {47711, 48300}, {47912, 50449}, {48080, 48352}, {48089, 48332}, {48098, 48344}, {48108, 48320}, {48120, 48291}, {48221, 48330}, {48265, 48351}, {48267, 48336}, {48279, 48333}, {48290, 48396}, {48299, 48395}, {48301, 48393}, {48305, 48392}, {48306, 50327}, {48322, 50457}, {50302, 55969}
X(29066) = isogonal conjugate of X(29067)
X(29066) = perspector of circumconic {{A, B, C, X(2), X(26227)}}
X(29066) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29069}
X(29066) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(674)}}, {{A, B, C, X(4), X(29069)}}, {{A, B, C, X(517), X(56144)}}, {{A, B, C, X(518), X(996)}}, {{A, B, C, X(519), X(26227)}}, {{A, B, C, X(693), X(23887)}}, {{A, B, C, X(758), X(40718)}}, {{A, B, C, X(998), X(8679)}}, {{A, B, C, X(1027), X(9002)}}, {{A, B, C, X(1220), X(9020)}}, {{A, B, C, X(2389), X(56098)}}, {{A, B, C, X(4608), X(29160)}}, {{A, B, C, X(34377), X(43531)}}
X(29066) = barycentric product X(i)*X(j) for these (i, j): {3261, 47373}, {16788, 693}, {26227, 514}
X(29066) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29067}, {16788, 100}, {26227, 190}, {47373, 101}
X(29066) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 47724, 693}, {1, 47729, 48285}, {1, 693, 48295}, {10, 48284, 650}, {145, 26824, 48304}, {145, 48304, 50767}, {512, 29182, 814}, {512, 29340, 29328}, {513, 29236, 2787}, {514, 28470, 830}, {514, 29021, 29130}, {514, 29051, 29186}, {514, 29164, 29116}, {514, 29192, 523}, {514, 522, 23887}, {522, 2785, 23876}, {525, 29278, 29062}, {690, 29058, 29078}, {693, 47721, 47724}, {814, 29328, 29340}, {814, 29366, 512}, {826, 29074, 29196}, {826, 29082, 29220}, {2787, 29188, 513}, {3241, 47869, 50760}, {3309, 23880, 8714}, {3566, 29232, 29216}, {3800, 29162, 29158}, {3900, 23882, 4151}, {3904, 47687, 49278}, {3907, 29051, 514}, {4083, 29274, 29070}, {4560, 21302, 1734}, {4804, 4895, 48339}, {4844, 29033, 29350}, {4922, 21146, 4378}, {6005, 29344, 6002}, {6372, 29268, 29324}, {7927, 29336, 29025}, {7950, 29272, 29332}, {24720, 48325, 3960}, {29033, 29350, 812}, {29062, 29304, 525}, {29070, 29298, 4083}, {29074, 29082, 826}, {29086, 29094, 29017}, {29144, 29156, 29029}, {29182, 29366, 29013}, {29188, 29236, 29148}, {29192, 29240, 29160}, {29200, 29230, 29090}, {29208, 29244, 29098}, {29246, 29324, 6372}, {29250, 29332, 7950}, {29274, 29298, 29302}, {29276, 29284, 29106}, {29278, 29304, 29294}, {46403, 48298, 48335}, {47680, 47727, 47691}, {47682, 47723, 47690}, {47684, 47689, 47726}, {47690, 47728, 47682}, {47691, 47722, 47680}, {48285, 48295, 1}
X(29067) lies on the circumcircle and these lines: {1, 675}, {3, 29068}, {98, 30115}, {104, 991}, {105, 995}, {692, 32682}, {739, 4257}, {759, 3736}, {767, 5263}, {825, 1983}, {831, 40499}, {839, 4561}, {997, 1311}, {1026, 9059}, {1193, 9077}, {2249, 4276}, {2263, 2369}, {2291, 4256}, {2723, 47621}, {2726, 45763}, {9082, 56800}, {29161, 35327}, {30265, 41904}, {33844, 38884}
X(29067) = reflection of X(i) in X(j) for these {i,j}: {29068, 3}
X(29067) = isogonal conjugate of X(29066)
X(29067) = trilinear pole of line {6, 2225}
X(29067) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29066}, {513, 26227}, {514, 16788}, {693, 47373}
X(29067) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29066}, {39026, 26227}
X(29067) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(692)}}, {{A, B, C, X(58), X(651)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(664)}}, {{A, B, C, X(995), X(1026)}}, {{A, B, C, X(1983), X(3736)}}, {{A, B, C, X(4556), X(15376)}}, {{A, B, C, X(4561), X(4575)}}, {{A, B, C, X(32665), X(37138)}}
X(29067) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29066}, {101, 26227}, {692, 16788}, {32739, 47373}
X(29068) lies on the circumcircle and these lines: {3, 29067}, {19, 26704}, {40, 44876}, {100, 573}, {101, 3185}, {109, 572}, {835, 53081}, {929, 5011}, {934, 17074}, {4262, 32722}, {19607, 53083}, {32677, 35183}, {52663, 53702}
X(29068) = isogonal conjugate of X(29069)
X(29068) = circumcircle-antipode of X(29067)
X(29068) = X(i)-cross conjugate of X(j) for these {i, j}: {51657, 1}
X(29068) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(30650)}}, {{A, B, C, X(19), X(573)}}, {{A, B, C, X(31), X(13478)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(284), X(572)}}, {{A, B, C, X(514), X(1945)}}, {{A, B, C, X(893), X(2051)}}, {{A, B, C, X(2149), X(34234)}}, {{A, B, C, X(2164), X(39964)}}, {{A, B, C, X(15393), X(56305)}}, {{A, B, C, X(17963), X(34179)}}, {{A, B, C, X(29069), X(51657)}}
X(29069) lies on these lines: {1, 51657}, {2, 54035}, {3, 4363}, {4, 4419}, {5, 4364}, {10, 24336}, {20, 4454}, {30, 511}, {37, 24220}, {40, 4659}, {63, 321}, {65, 44039}, {75, 573}, {101, 1944}, {140, 4472}, {150, 17950}, {190, 6996}, {192, 10446}, {226, 1465}, {241, 24237}, {343, 21072}, {355, 4643}, {381, 24441}, {497, 7961}, {549, 10022}, {572, 894}, {631, 4470}, {944, 4644}, {946, 24424}, {986, 50037}, {990, 5757}, {991, 30273}, {993, 3923}, {1111, 52896}, {1125, 25371}, {1385, 4670}, {1423, 17861}, {1478, 4424}, {1482, 17318}, {1730, 17862}, {1746, 3219}, {1756, 23690}, {1763, 20223}, {2183, 4858}, {2223, 4459}, {2901, 10441}, {3210, 9535}, {3262, 3882}, {3454, 39566}, {3476, 53020}, {3588, 40564}, {3628, 25358}, {3655, 4795}, {3664, 4032}, {3670, 51558}, {3821, 3822}, {3825, 25369}, {3868, 10454}, {3878, 24705}, {3927, 5786}, {3950, 43172}, {4192, 24330}, {4353, 39544}, {4359, 21363}, {4389, 7377}, {4422, 19512}, {4440, 6999}, {4465, 19546}, {4665, 5690}, {4667, 5882}, {4708, 9956}, {4713, 19540}, {4748, 5818}, {5088, 40862}, {5179, 40880}, {5267, 24700}, {5307, 37790}, {5731, 35578}, {5745, 17355}, {5790, 17251}, {5799, 50067}, {5816, 17257}, {5886, 7611}, {5905, 17147}, {6358, 22097}, {6796, 24315}, {7397, 54389}, {7406, 20073}, {8609, 17197}, {9318, 44425}, {9548, 28612}, {9590, 24347}, {10434, 32771}, {10439, 32915}, {10442, 55998}, {10443, 53594}, {10478, 28606}, {11329, 26659}, {11500, 24328}, {11745, 55307}, {12618, 51755}, {13244, 32919}, {16609, 24209}, {17116, 37508}, {17118, 37499}, {17134, 28968}, {17258, 32431}, {17304, 31266}, {17738, 24630}, {18252, 22325}, {18389, 32118}, {19541, 24352}, {20078, 31303}, {20245, 21078}, {20258, 25078}, {20348, 25252}, {20430, 48902}, {20432, 50424}, {20606, 33937}, {20927, 29497}, {21362, 30807}, {22003, 25083}, {23512, 32939}, {23537, 39591}, {24268, 54282}, {24309, 24326}, {24316, 48482}, {24319, 25639}, {24334, 25440}, {24357, 31394}, {24618, 37787}, {24828, 36654}, {24833, 36716}, {25065, 30097}, {25349, 37365}, {25353, 25368}, {25355, 37364}, {31164, 31179}, {34460, 57039}, {36698, 42697}, {36728, 49742}, {36731, 49747}, {44356, 51775}, {48934, 51046}, {50702, 56318}
X(29069) = isogonal conjugate of X(29068)
X(29069) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29066}
X(29069) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29066)}}, {{A, B, C, X(513), X(13478)}}, {{A, B, C, X(514), X(2995)}}, {{A, B, C, X(522), X(2051)}}, {{A, B, C, X(834), X(53082)}}, {{A, B, C, X(21061), X(40590)}}, {{A, B, C, X(29068), X(51657)}}
X(29069) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {511, 29343, 29331}, {515, 2792, 29046}, {542, 29061, 29081}, {1503, 29065, 29297}, {1503, 5762, 29307}, {3564, 29235, 29219}, {3663, 10445, 12610}, {3729, 10444, 1766}, {19645, 32933, 21375}, {29010, 29331, 29343}, {29010, 29369, 511}, {29012, 29085, 29223}, {29036, 29353, 28850}, {29054, 29057, 516}, {29065, 29307, 1503}, {29073, 29301, 15310}, {29077, 29085, 29012}, {29089, 29097, 29020}, {29311, 29347, 740}, {29317, 29339, 29028}, {29331, 29343, 29016}
X(29070) lies on these lines: {1, 48279}, {30, 511}, {649, 50352}, {650, 21260}, {659, 1577}, {663, 4382}, {667, 693}, {764, 17496}, {905, 19947}, {1019, 21146}, {1635, 47837}, {1734, 35352}, {1960, 49289}, {2530, 4560}, {2533, 4063}, {3777, 48321}, {3801, 47680}, {3803, 7662}, {3835, 50507}, {3837, 14838}, {3960, 48406}, {4010, 4040}, {4041, 47932}, {4057, 30591}, {4106, 48099}, {4170, 4810}, {4367, 4978}, {4369, 50512}, {4378, 4801}, {4380, 4834}, {4391, 56311}, {4401, 4823}, {4455, 18077}, {4705, 17494}, {4724, 48267}, {4728, 47839}, {4730, 21302}, {4804, 48150}, {4806, 48058}, {4808, 48408}, {4815, 50353}, {4822, 48114}, {4824, 47948}, {4885, 6050}, {4922, 48282}, {4983, 20295}, {7234, 29771}, {8043, 44316}, {9508, 50337}, {14288, 50349}, {14349, 24719}, {14419, 47796}, {14431, 47793}, {15584, 48387}, {17072, 23791}, {17166, 26824}, {21003, 48084}, {21051, 48003}, {21297, 47840}, {23738, 53536}, {25901, 26546}, {31149, 31150}, {31209, 31251}, {43067, 50515}, {44429, 47888}, {44444, 50345}, {45314, 45324}, {45320, 48564}, {45671, 47893}, {46385, 50331}, {47650, 47720}, {47663, 47707}, {47672, 50523}, {47683, 48086}, {47685, 48410}, {47694, 48393}, {47711, 48103}, {47712, 50340}, {47729, 48333}, {47776, 47836}, {47794, 48226}, {47795, 48184}, {47804, 47875}, {47811, 48553}, {47812, 48569}, {47816, 47827}, {47818, 47833}, {47890, 48395}, {47904, 48582}, {47905, 47934}, {47906, 47933}, {47911, 47927}, {47912, 47926}, {47946, 47947}, {47949, 47969}, {47955, 47963}, {47956, 47962}, {47970, 48265}, {47993, 48612}, {47994, 48001}, {48000, 48005}, {48002, 48613}, {48032, 48264}, {48049, 48053}, {48050, 48059}, {48080, 48351}, {48090, 48331}, {48115, 48151}, {48119, 48144}, {48125, 50517}, {48131, 48288}, {48141, 50526}, {48148, 48149}, {48162, 48551}, {48196, 48214}, {48198, 48218}, {48253, 48568}, {48278, 50351}, {48280, 48290}, {48289, 48348}, {48291, 48322}, {48295, 48330}, {48299, 49290}, {48301, 48324}, {48392, 50358}, {48403, 50347}, {48409, 50328}
X(29070) = isogonal conjugate of X(29071)
X(29070) = perspector of circumconic {{A, B, C, X(2), X(32914)}}
X(29070) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29073}
X(29070) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29073)}}, {{A, B, C, X(512), X(18108)}}, {{A, B, C, X(519), X(32914)}}, {{A, B, C, X(667), X(688)}}, {{A, B, C, X(693), X(826)}}, {{A, B, C, X(766), X(5371)}}
X(29070) = barycentric product X(i)*X(j) for these (i, j): {32914, 514}, {40495, 5371}
X(29070) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29071}, {5371, 692}, {32914, 190}
X(29070) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29051, 29188}, {513, 23882, 784}, {513, 29238, 29013}, {514, 29033, 814}, {514, 29037, 29354}, {514, 29190, 29017}, {514, 29276, 29292}, {514, 29318, 29332}, {514, 29344, 29324}, {514, 826, 29224}, {522, 826, 29194}, {659, 47872, 47817}, {667, 693, 52601}, {812, 29051, 512}, {814, 29324, 29344}, {891, 29182, 3907}, {905, 23815, 19947}, {905, 48089, 23815}, {918, 29232, 29090}, {1577, 47817, 47872}, {3910, 29240, 29094}, {4063, 47724, 2533}, {4083, 29274, 29066}, {4401, 4823, 4874}, {4560, 46403, 2530}, {4804, 48150, 48305}, {4810, 48336, 4170}, {4885, 6050, 31288}, {6005, 29270, 29328}, {6084, 29278, 29288}, {6372, 29340, 6002}, {17072, 48008, 50504}, {17494, 21301, 4705}, {26824, 31291, 17166}, {29013, 29186, 513}, {29017, 29244, 514}, {29021, 29025, 29128}, {29033, 29362, 2787}, {29058, 29354, 29037}, {29066, 29302, 4083}, {29086, 29098, 523}, {29102, 29106, 525}, {29142, 29162, 29029}, {29152, 29198, 29148}, {29166, 29184, 29116}, {29186, 29238, 29150}, {29190, 29244, 29154}, {29194, 29224, 826}, {29246, 29328, 6005}, {29248, 29332, 29318}, {29252, 29266, 2786}, {29274, 29302, 29298}, {29278, 29288, 29110}, {45671, 48556, 47893}, {47893, 48167, 48556}
X(29071) lies on the circumcircle and these lines: {3, 29072}, {99, 4553}, {668, 689}, {692, 827}, {789, 33948}, {835, 3799}
X(29071) = reflection of X(i) in X(j) for these {i,j}: {29072, 3}
X(29071) = isogonal conjugate of X(29070)
X(29071) = trilinear pole of line {6, 16687}
X(29071) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29070}, {513, 32914}, {3261, 5371}
X(29071) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29070}, {39026, 32914}
X(29071) = X(i)-cross conjugate of X(j) for these {i, j}: {5347, 59}
X(29071) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(660)}}, {{A, B, C, X(668), X(692)}}, {{A, B, C, X(3799), X(33948)}}, {{A, B, C, X(4596), X(40519)}}, {{A, B, C, X(34069), X(41072)}}
X(29071) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29070}, {101, 32914}
X(29072) lies on the circumcircle and these lines: {3, 29071}, {29011, 53291}
X(29072) = isogonal conjugate of X(29073)
X(29072) = circumcircle-antipode of X(29071)
X(29073) lies on circumconic {{A, B, C, X(4), X(29070)}} and on these lines: {3, 16684}, {4, 31395}, {30, 511}, {984, 48938}, {2223, 23690}, {3932, 36654}, {4032, 39543}, {4660, 24269}, {16824, 37399}, {17861, 37590}, {24325, 48929}, {30269, 39552}, {30273, 31394}
X(29073) = isogonal conjugate of X(29072)
X(29073) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29070}
X(29073) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {515, 516, 29012}, {516, 29036, 29010}, {516, 29321, 29335}, {516, 29347, 29327}, {15310, 29069, 29301}, {28850, 29054, 511}, {29010, 29327, 29347}, {29010, 29365, 516}, {29036, 29365, 2783}, {29089, 29101, 30}, {29105, 29109, 1503}, {29207, 29243, 29097}, {29309, 29343, 740}
X(29074) lies on circumconic {{A, B, C, X(4), X(29077)}} and on these lines: {30, 511}, {659, 47707}, {663, 4122}, {667, 47711}, {3777, 47687}, {4024, 48301}, {4367, 47690}, {4378, 47715}, {4391, 50340}, {4467, 50355}, {4775, 7265}, {4874, 48395}, {4951, 57066}, {6332, 48289}, {8045, 48330}, {18004, 48099}, {21831, 23282}, {25259, 48336}, {31291, 47693}, {47695, 48392}, {47706, 48103}, {47719, 48323}, {47723, 50352}, {47727, 48273}, {47798, 47872}, {47808, 47893}, {47972, 48265}, {48271, 48329}, {48272, 48288}, {48294, 49290}, {48406, 49285}
X(29074) = isogonal conjugate of X(29075)
X(29074) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29077}
X(29074) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29062, 29078}, {523, 29162, 29174}, {523, 29278, 814}, {667, 47711, 48405}, {814, 29174, 29162}, {814, 29250, 523}, {826, 29066, 29082}, {2787, 29021, 29120}, {3800, 29232, 29328}, {7927, 29058, 29013}, {29033, 29260, 29098}, {29062, 29192, 512}, {29066, 29196, 826}, {29086, 29110, 514}, {29144, 29230, 6002}, {29162, 29174, 29025}, {29164, 29344, 29029}, {29168, 29264, 29148}, {29188, 29292, 23875}, {29194, 29298, 23876}, {29208, 29276, 812}, {29366, 29370, 525}
X(29075) lies on the circumcircle and these lines: {3, 29076}, {835, 33946}, {28883, 57217}
X(29075) = reflection of X(i) in X(j) for these {i,j}: {29076, 3}
X(29075) = isogonal conjugate of X(29074)
X(29075) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(4556), X(7260)}}
X(29076) lies on the circumcircle and these lines: {3, 29075}
X(29076) = isogonal conjugate of X(29077)
X(29076) = circumcircle-antipode of X(29075)
X(29077) lies on circumconic {{A, B, C, X(4), X(29074)}} and on these lines: {3, 17289}, {4, 17302}, {5, 17384}, {30, 511}, {990, 36685}, {36663, 46475}, {46551, 48380}
X(29077) = isogonal conjugate of X(29076)
X(29077) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29074}
X(29077) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 29010, 29028}, {511, 29065, 29081}, {29012, 29069, 29085}, {29036, 29263, 29101}, {29061, 29317, 29016}, {29089, 29113, 516}, {29181, 29235, 29331}, {29369, 29373, 1503}
X(29078) lies on these lines: {30, 511}, {649, 4122}, {650, 18004}, {659, 25259}, {667, 7265}, {693, 50342}, {1491, 4467}, {1635, 48185}, {1638, 48198}, {1639, 48214}, {1960, 49288}, {2517, 50451}, {3700, 4874}, {3837, 4025}, {4010, 48266}, {4064, 38367}, {4120, 47822}, {4374, 50334}, {4380, 48103}, {4382, 48326}, {4408, 20518}, {4453, 48184}, {4458, 48090}, {4500, 54265}, {4522, 9508}, {4728, 48227}, {4750, 47823}, {4763, 48199}, {4784, 47690}, {4800, 47798}, {4806, 48269}, {4809, 47832}, {4810, 47691}, {4820, 7662}, {4824, 48277}, {4834, 47711}, {4897, 48396}, {4928, 48215}, {4931, 47813}, {4944, 47803}, {4951, 47809}, {4958, 48177}, {4963, 47667}, {4976, 48047}, {4984, 48188}, {8061, 50329}, {16892, 24719}, {17161, 47945}, {21146, 47971}, {21187, 21200}, {21192, 21260}, {21196, 48030}, {21297, 48241}, {22037, 48284}, {23282, 57234}, {24462, 50350}, {26853, 47693}, {27486, 47827}, {30565, 48226}, {31147, 48552}, {44449, 48024}, {44551, 45340}, {45323, 45669}, {45661, 48197}, {45674, 48216}, {45679, 48201}, {45745, 48002}, {47661, 47928}, {47677, 47968}, {47687, 50359}, {47755, 48253}, {47758, 48233}, {47765, 48180}, {47769, 48162}, {47772, 48240}, {47776, 47885}, {47785, 47829}, {47786, 48555}, {47787, 48206}, {47790, 47833}, {47800, 48183}, {47806, 48229}, {47808, 48244}, {47821, 53339}, {47824, 53333}, {47877, 47894}, {47909, 50482}, {47943, 48428}, {47944, 48079}, {47946, 48076}, {47983, 49284}, {47990, 48041}, {47993, 48038}, {48008, 48056}, {48077, 50341}, {48080, 50340}, {48083, 49272}, {48170, 48571}, {48238, 48416}, {48248, 49286}, {48278, 50458}, {48283, 53553}, {48288, 49277}, {48302, 50459}, {48383, 53258}, {48390, 53269}, {48599, 49297}, {49275, 50358}, {50326, 50347}
X(29078) = isogonal conjugate of X(29079)
X(29078) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29081}
X(29078) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29081)}}, {{A, B, C, X(4785), X(7649)}}, {{A, B, C, X(28859), X(43927)}}
X(29078) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29062, 29074}, {513, 28894, 4977}, {513, 4802, 28859}, {522, 2786, 513}, {523, 900, 29328}, {525, 29232, 814}, {525, 814, 29082}, {649, 4122, 48405}, {690, 29058, 29066}, {826, 29266, 29013}, {3566, 29278, 29366}, {6002, 29017, 29120}, {29013, 29294, 826}, {29062, 29216, 512}, {29090, 29106, 514}, {29150, 29194, 29021}, {29170, 29248, 29142}, {29178, 29318, 29029}, {29200, 29276, 29051}, {29230, 29284, 3907}, {29266, 29294, 29025}, {29270, 29358, 29098}, {29328, 29370, 523}, {47776, 48171, 47885}
X(29079) lies on the circumcircle and these lines: {3, 29080}, {1331, 43077}, {20696, 57218}
X(29079) = reflection of X(i) in X(j) for these {i,j}: {29080, 3}
X(29079) = isogonal conjugate of X(29078)
X(29079) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(651), X(17940)}}
X(29080) lies on the circumcircle and these lines: {3, 29079}
X(29080) = isogonal conjugate of X(29081)
X(29080) = circumcircle-antipode of X(29079)
X(29080) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(40746)}}, {{A, B, C, X(74), X(98)}}
X(29081) lies on circumconic {{A, B, C, X(4), X(29078)}} and on these lines: {1, 36663}, {3, 3661}, {4, 4393}, {5, 17023}, {20, 20055}, {30, 511}, {140, 29604}, {239, 36716}, {355, 29659}, {944, 36474}, {17230, 36699}, {17389, 36732}, {36727, 50114}, {46548, 48381}
X(29081) = isogonal conjugate of X(29080)
X(29081) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29078}
X(29081) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 952, 29331}, {511, 29065, 29077}, {515, 2784, 517}, {517, 28146, 28862}, {517, 28897, 28174}, {542, 29061, 29069}, {1503, 29010, 29085}, {1503, 29235, 29010}, {11645, 29343, 516}, {29012, 29016, 29028}, {29016, 29297, 29012}, {29065, 29219, 511}, {29331, 29373, 30}
X(29082) lies on these lines: {30, 511}, {663, 3801}, {667, 4707}, {1577, 49279}, {1734, 50351}, {1960, 20517}, {2533, 48300}, {2977, 55285}, {3777, 3904}, {3837, 6332}, {4142, 5592}, {4147, 48056}, {4162, 47131}, {4367, 8636}, {4449, 23747}, {4458, 48330}, {4462, 48083}, {4468, 48401}, {4774, 47707}, {4775, 47712}, {4809, 8643}, {4823, 49290}, {4874, 7178}, {4879, 47691}, {14432, 47841}, {21052, 48185}, {21120, 48055}, {21121, 48297}, {21301, 49274}, {21343, 47720}, {23765, 49301}, {30574, 47835}, {45340, 45683}, {47676, 48323}, {47680, 48273}, {47682, 50352}, {47708, 48336}, {47716, 48333}, {47725, 48337}, {47885, 53356}, {48267, 49276}, {48301, 55282}, {48305, 49300}, {48338, 48349}, {48346, 49299}, {50453, 50507}
X(29082) = isogonal conjugate of X(29083)
X(29082) = perspector of circumconic {{A, B, C, X(2), X(3771)}}
X(29082) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29085}
X(29082) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29085)}}, {{A, B, C, X(519), X(3771)}}, {{A, B, C, X(7192), X(29120)}}
X(29082) = barycentric product X(i)*X(j) for these (i, j): {3771, 514}
X(29082) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29083}, {3771, 190}
X(29082) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29184, 29158}, {513, 514, 29120}, {514, 2785, 4083}, {514, 29118, 29122}, {514, 29132, 29138}, {514, 29158, 29184}, {514, 29304, 512}, {514, 29350, 29098}, {514, 6005, 29029}, {525, 29240, 814}, {525, 814, 29078}, {690, 29336, 29013}, {826, 29066, 29074}, {2533, 48300, 48405}, {3566, 29162, 29328}, {3906, 29182, 29062}, {4142, 5592, 48331}, {7178, 48299, 4874}, {29066, 29220, 826}, {29094, 29102, 514}, {29154, 29188, 29021}, {29156, 29200, 6002}, {29158, 29184, 29025}, {29172, 29246, 29142}, {29202, 29274, 522}, {29224, 29298, 29047}, {29236, 29280, 29037}, {29244, 29284, 812}, {29332, 29366, 523}
X(29083) lies on the circumcircle and these lines: {3, 29084}, {4557, 29121}, {29026, 53268}
X(29083) = reflection of X(i) in X(j) for these {i,j}: {29084, 3}
X(29083) = isogonal conjugate of X(29082)
X(29083) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29082}, {513, 3771}
X(29083) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29082}, {39026, 3771}
X(29083) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(660), X(32653)}}
X(29083) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29082}, {101, 3771}
X(29084) lies on the circumcircle and these lines: {3, 29083}, {29027, 53259}
X(29084) = isogonal conjugate of X(29085)
X(29084) = circumcircle-antipode of X(29083)
X(29085) lies on circumconic {{A, B, C, X(4), X(29082)}} and on these lines: {3, 3662}, {4, 17350}, {5, 17353}, {9, 36661}, {30, 511}, {894, 36707}, {3073, 5398}, {3927, 5015}, {5255, 57282}, {5266, 6147}, {5759, 36674}, {6210, 26921}, {17236, 36705}, {17333, 36720}, {24827, 53599}
X(29085) = isogonal conjugate of X(29084)
X(29085) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29082}
X(29085) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 5762, 29369}, {511, 516, 29028}, {516, 2792, 15310}, {516, 29307, 511}, {516, 29311, 29032}, {516, 29353, 29101}, {542, 29339, 29016}, {1503, 29010, 29081}, {1503, 29243, 29010}, {29012, 29069, 29077}, {29069, 29223, 29012}, {29097, 29105, 516}, {29335, 29369, 30}
X(29086) lies on circumconic {{A, B, C, X(4), X(29089)}} and on these lines: {30, 511}, {659, 47711}, {663, 49290}, {667, 47690}, {1577, 50340}, {1960, 8045}, {2530, 47687}, {2533, 47723}, {3801, 47724}, {4024, 8632}, {4040, 4122}, {4367, 47715}, {4378, 47719}, {4401, 48405}, {4522, 50507}, {4808, 17494}, {7265, 48336}, {17161, 21303}, {18004, 48058}, {21196, 21261}, {23282, 48306}, {23815, 49285}, {25259, 48351}, {47695, 48393}, {47710, 48103}, {47727, 48279}, {47798, 47875}, {47808, 47888}, {47972, 48267}, {48278, 48288}, {48395, 50347}, {48396, 52601}
X(29086) = isogonal conjugate of X(29087)
X(29086) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29089}
X(29086) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 522, 29106}, {513, 29062, 29090}, {514, 29074, 29110}, {523, 29070, 29098}, {814, 29134, 29114}, {826, 29051, 29102}, {4777, 29274, 29146}, {29017, 29066, 29094}, {29021, 29114, 29134}, {29033, 29164, 29025}, {29058, 29168, 6002}, {29114, 29134, 29029}, {29142, 29278, 2787}, {29144, 29276, 29013}, {29146, 29274, 514}, {29188, 29194, 525}, {29190, 29192, 4083}, {29246, 29370, 23875}, {29248, 29366, 23876}, {29250, 29362, 29047}
X(29087) lies on the circumcircle and these lines: {3, 29088}, {23363, 29107}
X(29087) = reflection of X(i) in X(j) for these {i,j}: {29088, 3}
X(29087) = isogonal conjugate of X(29086)
X(29087) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(4555), X(34076)}}, {{A, B, C, X(4556), X(4562)}}
X(29088) lies on the circumcircle and these lines: {3, 29087}
X(29088) = isogonal conjugate of X(29089)
X(29088) = circumcircle-antipode of X(29087)
X(29089) lies on circumconic {{A, B, C, X(4), X(29086)}} and on these lines: {30, 511}, {572, 18481}
X(29089) = isogonal conjugate of X(29088)
X(29089) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29086}
X(29089) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 29073, 29101}, {511, 515, 29109}, {516, 29077, 29113}, {517, 29065, 29093}, {29010, 29024, 29032}, {29012, 29054, 29105}, {29020, 29069, 29097}
X(29090) lies on these lines: {30, 511}, {667, 25259}, {1019, 4122}, {1577, 50342}, {3239, 31288}, {3700, 52601}, {4025, 21260}, {4120, 47839}, {4367, 7265}, {4467, 4705}, {4750, 47837}, {4784, 47711}, {4808, 50343}, {4810, 47716}, {4834, 47707}, {4897, 48395}, {4944, 48564}, {4983, 44449}, {14419, 57066}, {14838, 18004}, {21051, 21192}, {21196, 48005}, {21831, 53553}, {47836, 53333}, {47840, 53339}, {47971, 50352}, {48064, 48405}, {48266, 48273}, {48270, 50507}, {48271, 50515}, {48330, 49288}
X(29090) = isogonal conjugate of X(29091)
X(29090) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29093}
X(29090) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29093)}}, {{A, B, C, X(511), X(10623)}}
X(29090) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29037, 29110}, {513, 29062, 29086}, {514, 29078, 29106}, {525, 2787, 29094}, {690, 29264, 3907}, {814, 23875, 29102}, {826, 29136, 29116}, {918, 29232, 29070}, {2786, 29037, 512}, {4367, 7265, 49290}, {6002, 29116, 29136}, {29058, 29252, 29051}, {29116, 29136, 29029}, {29148, 29294, 29017}, {29150, 29292, 523}, {29152, 29280, 514}, {29170, 29370, 29021}, {29178, 29358, 29025}, {29200, 29230, 29066}, {29212, 29216, 4083}, {29266, 29354, 812}
X(29091) lies on the circumcircle and these lines: {3, 29092}, {98, 12699}, {103, 31732}
X(29091) = reflection of X(i) in X(j) for these {i,j}: {29092, 3}
X(29091) = isogonal conjugate of X(29090)
X(29092) lies on the circumcircle and these lines: {3, 29091}, {101, 31737}
X(29092) = isogonal conjugate of X(29093)
X(29092) = circumcircle-antipode of X(29091)
X(29093) lies on circumconic {{A, B, C, X(4), X(29090)}} and on these lines: {30, 511}, {382, 49486}, {3818, 24257}, {3821, 18553}, {4852, 22793}, {14810, 49560}, {17229, 31663}, {20190, 24295}, {20970, 53417}, {24728, 34507}, {35099, 48894}, {48901, 49488}
X(29093) = isogonal conjugate of X(29092)
X(29093) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29090}
X(29093) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {511, 29040, 29113}, {516, 29081, 29109}, {517, 29065, 29089}, {740, 29012, 29032}, {1503, 2783, 29097}, {2784, 29040, 511}, {28877, 29054, 29255}, {29010, 29043, 29105}, {29061, 29255, 29054}, {29215, 29219, 15310}
X(29094) lies on these lines: {1, 3801}, {8, 4808}, {30, 511}, {667, 47728}, {905, 7626}, {1577, 49290}, {1960, 4142}, {2530, 3904}, {2533, 47682}, {2605, 21121}, {4041, 50351}, {4367, 4707}, {4391, 49279}, {4449, 42662}, {4458, 48328}, {4774, 47711}, {4775, 47708}, {4879, 47712}, {6332, 21260}, {7178, 48290}, {10015, 48299}, {14431, 57066}, {14432, 47839}, {14837, 31288}, {20517, 48330}, {21118, 48305}, {21124, 48288}, {21343, 47716}, {23752, 39547}, {30574, 47837}, {33136, 48094}, {47680, 48279}, {47691, 48333}, {47836, 53356}, {47840, 53334}, {48265, 49276}, {48282, 48326}, {48291, 55282}, {48301, 49300}, {48337, 48349}
X(29094) = isogonal conjugate of X(29095)
X(29094) = perspector of circumconic {{A, B, C, X(2), X(29846)}}
X(29094) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29097}
X(29094) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29097)}}, {{A, B, C, X(511), X(3417)}}, {{A, B, C, X(519), X(29846)}}, {{A, B, C, X(5559), X(17765)}}
X(29094) = barycentric product X(i)*X(j) for these (i, j): {29846, 514}
X(29094) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29095}, {29846, 190}
X(29094) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29138, 29118}, {514, 2785, 512}, {514, 29082, 29102}, {514, 29118, 29138}, {514, 29158, 29122}, {514, 29304, 513}, {514, 29350, 29025}, {514, 4083, 29098}, {514, 6005, 29120}, {523, 28473, 29298}, {525, 2787, 29090}, {814, 23876, 29106}, {826, 3907, 29110}, {891, 29272, 514}, {2789, 29037, 29268}, {3566, 29126, 29150}, {3906, 29268, 29037}, {3910, 29240, 29070}, {7178, 48290, 52601}, {29017, 29066, 29086}, {29118, 29138, 29029}, {29154, 29298, 523}, {29156, 29284, 29013}, {29172, 29366, 29021}, {29182, 29256, 522}, {29202, 29236, 29062}
X(29095) lies on the circumcircle and these lines: {3, 29096}, {98, 355}, {1385, 53899}, {2708, 54090}, {5563, 28574}, {12030, 51693}, {29030, 53268}
X(29095) = reflection of X(i) in X(j) for these {i,j}: {29096, 3}
X(29095) = isogonal conjugate of X(29094)
X(29095) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29094}, {513, 29846}
X(29095) = X(i)-vertex conjugate of X(j) for these {i, j}: {9999, 29095}
X(29095) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29094}, {39026, 29846}
X(29095) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(668), X(32653)}}
X(29095) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29094}, {101, 29846}
X(29096) lies on the circumcircle and these lines: {3, 29095}, {35, 8685}, {99, 18481}, {109, 7186}, {982, 26700}, {3579, 6012}, {29031, 53259}
X(29096) = isogonal conjugate of X(29097)
X(29096) = circumcircle-antipode of X(29095)
X(29096) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(10623)}}, {{A, B, C, X(35), X(982)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(267), X(7350)}}, {{A, B, C, X(3453), X(10308)}}
X(29097) lies on these lines: {21, 17202}, {30, 511}, {40, 37823}, {58, 12699}, {79, 983}, {191, 6210}, {382, 54136}, {550, 54180}, {573, 16139}, {991, 33858}, {1046, 41869}, {1281, 43460}, {1330, 6361}, {1742, 16132}, {3098, 4655}, {3454, 3579}, {3529, 54181}, {3649, 37539}, {3664, 16137}, {3818, 3923}, {3821, 5092}, {4672, 19130}, {5016, 11684}, {5429, 31162}, {5695, 18440}, {6693, 9955}, {7683, 22793}, {8258, 18483}, {9873, 32117}, {10122, 39543}, {12702, 36974}, {13624, 17235}, {17276, 18481}, {17351, 18480}, {24220, 33592}, {24248, 46264}, {24695, 31670}, {24728, 48898}, {31730, 56949}, {35637, 39551}, {37530, 48902}, {39899, 49486}, {43150, 49560}
X(29097) = isogonal conjugate of X(29096)
X(29097) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29094}
X(29097) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29094)}}, {{A, B, C, X(79), X(3810)}}, {{A, B, C, X(983), X(35057)}}, {{A, B, C, X(6004), X(10308)}}, {{A, B, C, X(16005), X(28576)}}
X(29097) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 17768, 29301}, {511, 516, 29032}, {516, 15310, 29101}, {516, 2792, 511}, {516, 29085, 29105}, {516, 29307, 517}, {516, 29353, 29028}, {1503, 2783, 29093}, {29010, 29046, 29109}, {29012, 29057, 29113}, {29012, 53792, 29057}, {29020, 29069, 29089}, {29207, 29243, 29073}
X(29098) lies on these lines: {30, 511}, {659, 47712}, {667, 47691}, {1019, 48326}, {1577, 48103}, {2530, 47652}, {2533, 47680}, {3801, 4063}, {3803, 47131}, {4040, 48349}, {4129, 48056}, {4367, 47716}, {4378, 47720}, {4458, 50512}, {4560, 47688}, {4705, 48408}, {4782, 20517}, {4808, 21301}, {4810, 7265}, {4823, 48405}, {6545, 48569}, {6546, 48553}, {21260, 48062}, {23770, 52601}, {23815, 48398}, {24719, 48272}, {44435, 47888}, {47650, 47719}, {47651, 48410}, {47660, 48393}, {47663, 47708}, {47682, 48279}, {47705, 50523}, {47713, 50340}, {47728, 48333}, {47771, 47875}, {47794, 47885}, {47890, 48403}, {47944, 50449}, {47968, 48409}, {48094, 48267}, {48101, 55282}, {48106, 50352}, {48130, 48264}, {48131, 50351}, {48140, 48392}, {48146, 50457}, {48273, 48300}, {48305, 53558}
X(29098) = isogonal conjugate of X(29099)
X(29098) = perspector of circumconic {{A, B, C, X(2), X(29850)}}
X(29098) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29101}
r>
X(29098) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29101)}}, {{A, B, C, X(519), X(29850)}}, {{A, B, C, X(6004), X(18108)}}
X(29098) = barycentric product X(i)*X(j) for these (i, j): {29850, 514}
X(29098) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29099}, {29850, 190}
X(29098) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 514, 29102}, {514, 2785, 29272}, {514, 29118, 6372}, {514, 29132, 29198}, {514, 29140, 29120}, {514, 29158, 513}, {514, 29350, 29082}, {514, 4083, 29094}, {523, 29070, 29086}, {812, 826, 29106}, {814, 29047, 29110}, {4063, 47725, 3801}, {29025, 29120, 29140}, {29033, 29260, 29074}, {29120, 29140, 29029}, {29122, 29226, 514}, {29160, 29302, 29017}, {29162, 29288, 2787}, {29174, 29362, 29021}, {29204, 29238, 29062}, {29208, 29244, 29066}, {29270, 29358, 29078}, {48273, 48300, 49290}
X(29099) lies on the circumcircle and these lines: {3, 29100}, {3573, 43348}, {4553, 6012}, {29103, 53268}
X(29099) = reflection of X(i) in X(j) for these {i,j}: {29100, 3}
X(29099) = isogonal conjugate of X(29098)
X(29099) = trilinear pole of line {6, 36559}
X(29099) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29098}, {513, 29850}
X(29099) = X(i)-vertex conjugate of X(j) for these {i, j}: {9999, 29099}
X(29099) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29098}, {39026, 29850}
X(29099) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29098}, {101, 29850}
X(29100) lies on the circumcircle and these lines: {3, 29099}, {29104, 53259}
X(29100) = isogonal conjugate of X(29101)
X(29100) = circumcircle-antipode of X(29099)
X(29101) lies on circumconic {{A, B, C, X(4), X(29098)}} and on these lines: {30, 511}
X(29101) = isogonal conjugate of X(29100)
X(29101) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29098}
X(29101) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 29073, 29089}, {511, 516, 29105}, {516, 15310, 29097}, {516, 29028, 29032}, {516, 29353, 29085}, {28850, 29012, 29109}, {29010, 29050, 29113}, {29036, 29263, 29077}
X(29102) lies on these lines: {1, 48326}, {10, 48056}, {30, 511}, {659, 4707}, {693, 49279}, {764, 3904}, {1960, 4458}, {2254, 50351}, {3762, 48083}, {3801, 4040}, {4010, 47680}, {4122, 47724}, {4378, 47676}, {4448, 21145}, {4453, 14419}, {4474, 48117}, {4730, 48408}, {4761, 48103}, {4775, 47691}, {4808, 21302}, {4879, 47716}, {4895, 47705}, {6161, 47695}, {6332, 23815}, {6545, 14432}, {6546, 30574}, {10015, 48055}, {14413, 21115}, {14431, 30565}, {16892, 48288}, {18006, 43050}, {20517, 48331}, {21104, 48290}, {21146, 47682}, {21188, 31288}, {24719, 49277}, {25259, 47722}, {30592, 30605}, {30709, 47772}, {44314, 53571}, {46403, 49274}, {47684, 48108}, {47704, 48291}, {47708, 48351}, {47712, 48336}, {47720, 48333}, {47725, 48349}, {48089, 49280}, {48090, 49288}, {48298, 49302}, {48299, 52601}, {48300, 50352}, {48305, 55282}, {48332, 49299}, {49303, 53343}
X(29102) = isogonal conjugate of X(29103)
X(29102) = perspector of circumconic {{A, B, C, X(2), X(29632)}}
X(29102) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29105}
X(29102) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29105)}}, {{A, B, C, X(519), X(29632)}}, {{A, B, C, X(7192), X(29029)}}
X(29102) = barycentric product X(i)*X(j) for these (i, j): {29632, 514}
X(29102) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29103}, {29632, 190}
X(29102) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 514, 29098}, {513, 29122, 29132}, {514, 2785, 891}, {514, 29082, 29094}, {514, 29118, 29184}, {514, 29132, 29122}, {514, 29304, 4083}, {514, 6005, 29025}, {525, 29070, 29106}, {693, 49279, 49290}, {814, 23875, 29090}, {826, 29051, 29086}, {918, 29240, 2787}, {3904, 49301, 764}, {4458, 5592, 1960}, {6372, 29272, 514}, {29122, 29132, 29029}, {29186, 29220, 29017}, {29188, 29224, 523}, {29200, 29244, 29013}, {29246, 29332, 29021}, {29252, 29336, 6002}, {29274, 29280, 29062}, {47676, 47728, 4378}, {47680, 49276, 4010}, {47725, 48352, 48349}
X(29103) lies on the circumcircle and these lines: {3, 29104}, {100, 50504}, {4557, 29030}, {29099, 53268}
X(29103) = reflection of X(i) in X(j) for these {i,j}: {29104, 3}
X(29103) = isogonal conjugate of X(29102)
X(29103) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29102}, {513, 29632}
X(29103) = X(i)-vertex conjugate of X(j) for these {i, j}: {9999, 29103}
X(29103) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29102}, {39026, 29632}
X(29103) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29102}, {101, 29632}
X(29104) lies on the circumcircle and these lines: {3, 29103}, {29031, 53296}, {29100, 53259}
X(29104) = isogonal conjugate of X(29105)
X(29104) = circumcircle-antipode of X(29103)
X(29105) lies on circumconic {{A, B, C, X(4), X(29102)}} and on these lines: {30, 511}, {580, 12699}, {1006, 31394}, {1754, 48902}, {1770, 4014}, {3744, 50307}, {9355, 41869}
X(29105) = isogonal conjugate of X(29104)
X(29105) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29102}
X(29105) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {511, 516, 29101}, {516, 2792, 29349}, {516, 29085, 29097}, {516, 29307, 15310}, {516, 29311, 29028}, {516, 517, 29032}, {1503, 29073, 29109}, {5762, 29291, 29301}, {29010, 29043, 29093}, {29012, 29054, 29089}, {29255, 29339, 740}
X(29106) lies on circumconic {{A, B, C, X(4), X(29109)}} and on these lines: {30, 511}, {659, 7265}, {667, 49290}, {2530, 4467}, {3837, 21192}, {4025, 23815}, {4063, 4122}, {4120, 48553}, {4142, 21261}, {4170, 50340}, {4522, 50504}, {4750, 48569}, {4784, 47715}, {4810, 47712}, {4834, 47690}, {4944, 48561}, {4978, 50342}, {8045, 50512}, {8632, 48278}, {18004, 48003}, {20517, 48090}, {21196, 48059}, {27486, 47888}, {44449, 47949}, {47790, 47875}, {48011, 48405}, {48266, 48267}, {48331, 49288}
X(29106) = isogonal conjugate of X(29107)
X(29106) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29109}
X(29106) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 522, 29086}, {514, 29078, 29090}, {525, 29070, 29102}, {812, 826, 29098}, {814, 23876, 29094}, {900, 29142, 29150}, {3910, 29232, 2787}, {4083, 29062, 29110}, {29013, 29017, 29029}, {29013, 29130, 29124}, {29017, 29124, 29130}, {29190, 29216, 513}, {29202, 29238, 514}, {29248, 29328, 29021}, {29266, 29312, 6002}, {29270, 29318, 29025}, {29276, 29284, 29066}
X(29107) lies on the circumcircle and these lines: {3, 29108}, {23363, 29087}
X(29107) = isogonal conjugate of X(29106)
X(29107) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(6540), X(34076)}}
X(29108) lies on the circumcircle and these lines: {3, 29107}
X(29108) = isogonal conjugate of X(29109)
X(29108) = circumcircle-antipode of X(29107)
X(29108) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2051), X(3417)}}
X(29109) lies on circumconic {{A, B, C, X(4), X(29106)}} and on these lines: {30, 511}, {355, 572}, {944, 17321}, {1385, 25498}
X(29109) = isogonal conjugate of X(29108)
X(29109) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29106}
X(29109) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {511, 515, 29089}, {516, 29081, 29093}, {1503, 29073, 29105}, {15310, 29065, 29113}, {28850, 29012, 29101}, {29010, 29046, 29097}, {29016, 29020, 29032}, {29207, 29235, 2783}, {29259, 29343, 516}
X(29110) lies on these lines: {1, 4122}, {30, 511}, {38, 4041}, {667, 47707}, {764, 47687}, {905, 48200}, {1577, 4692}, {2530, 31131}, {3762, 50340}, {4010, 47727}, {4024, 48291}, {4088, 48288}, {4367, 47711}, {4378, 47690}, {4391, 48223}, {4467, 4730}, {4560, 4808}, {4705, 47782}, {4707, 4774}, {4761, 50342}, {4770, 21196}, {4775, 25259}, {4879, 7265}, {4922, 47682}, {4931, 31161}, {6161, 49275}, {8045, 48328}, {14419, 47809}, {14431, 47797}, {14438, 47874}, {14838, 28602}, {17166, 47792}, {21146, 47723}, {21212, 53571}, {21260, 47757}, {21301, 48156}, {23282, 48292}, {30234, 48219}, {30709, 48203}, {31149, 44435}, {44550, 48187}, {45664, 48211}, {47700, 50351}, {47715, 48323}, {47724, 48326}, {47729, 49279}, {47788, 48395}, {48056, 48284}, {48271, 48327}
X(29110) = isogonal conjugate of X(29111)
X(29110) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29113}
X(29110) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29113)}}, {{A, B, C, X(760), X(1390)}}
X(29110) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 4122, 49290}, {512, 29037, 29090}, {514, 29074, 29086}, {523, 29126, 29128}, {814, 29047, 29098}, {826, 3907, 29094}, {2787, 29128, 29126}, {4083, 29062, 29106}, {7927, 29264, 6002}, {29126, 29128, 29029}, {29192, 29212, 513}, {29204, 29236, 514}, {29208, 29230, 29013}, {29250, 29324, 29021}, {29260, 29344, 29025}, {29278, 29288, 29070}, {29292, 29298, 525}
X(29111) lies on the circumcircle and these lines: {3, 29112}, {98, 5886}, {753, 5315}, {761, 1386}
X(29111) = isogonal conjugate of X(29110)
X(29111) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(82), X(1414)}}
X(29112) lies on the circumcircle and these lines: {3, 29111}
X(29112) = isogonal conjugate of X(29113)
X(29112) = circumcircle-antipode of X(29111)
X(29113) lies on circumconic {{A, B, C, X(4), X(29110)}} and on these lines: {30, 511}, {1657, 5695}, {3818, 24728}, {3821, 48889}, {3923, 48898}, {24257, 48901}, {24295, 55674}, {35099, 48939}, {48661, 49453}, {49560, 55606}
X(29113) = isogonal conjugate of X(29112)
X(29113) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29110}
X(29113) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 2783, 29032}, {511, 29040, 29093}, {516, 29077, 29089}, {15310, 29065, 29109}, {29010, 29050, 29101}, {29012, 29057, 29097}, {29263, 29347, 29028}
X(29114) lies on these lines: {30, 511}, {3803, 21201}, {4170, 47728}, {4401, 48400}, {7178, 48064}, {7265, 47684}, {10015, 48011}, {21198, 48559}, {23755, 48110}, {23770, 48343}, {47680, 48144}, {48348, 49295}, {49300, 50523}
X(29114) = isogonal conjugate of X(29115)
X(29114) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4444), X(29220)}}, {{A, B, C, X(17925), X(23876)}}
X(29114) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 2786, 29220}, {514, 28478, 23884}, {514, 29013, 23876}, {514, 29178, 525}, {514, 29270, 3910}, {514, 6002, 23875}, {814, 29134, 29086}, {2787, 29025, 29047}, {28490, 28882, 514}, {29029, 29086, 29134}, {29086, 29134, 29021}, {29122, 29152, 826}, {29124, 29156, 512}, {29136, 29336, 513}, {29138, 29340, 29017}, {29140, 29344, 523}
X(29115) lies on the circumcircle and these lines: {644, 26711}, {1018, 33637}, {4574, 29044}
X(29115) = isogonal conjugate of X(29114)
X(29116) lies on these lines: {1, 47713}, {30, 511}, {663, 47684}, {1577, 47726}, {3716, 47708}, {3801, 4369}, {4449, 47692}, {4462, 48118}, {4474, 47706}, {4822, 49274}, {4913, 21124}, {4978, 47725}, {8045, 48403}, {8643, 48223}, {21052, 48208}, {21118, 47660}, {23738, 49302}, {23755, 49283}, {43041, 45746}, {47680, 47715}, {47682, 47712}, {47688, 48334}, {47714, 47724}, {47717, 48282}, {48050, 48278}, {49292, 55282}, {49303, 50457}
X(29116) = isogonal conjugate of X(29117)
X(29116) = intersection, other than A, B, C, of circumconics {{A, B, C, X(511), X(56343)}}, {{A, B, C, X(3907), X(4608)}}
X(29116) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 28487, 4977}, {514, 29021, 29051}, {514, 29164, 29066}, {514, 523, 3907}, {514, 9237, 28840}, {826, 29136, 29090}, {7950, 29138, 2787}, {29017, 29025, 812}, {29029, 29090, 29136}, {29090, 29136, 6002}, {29122, 29146, 814}, {29128, 29154, 512}, {29130, 29160, 514}, {29134, 29332, 513}, {29140, 29318, 29013}, {29166, 29184, 29070}, {29172, 29174, 4083}, {47684, 47709, 663}
X(29117) lies on the circumcircle and these lines: {98, 1698}, {675, 29874}, {29055, 35327}
X(29117) = isogonal conjugate of X(29116)
X(29118) lies on these lines: {30, 511}, {649, 4142}, {876, 34920}, {1019, 4458}, {3801, 4784}, {4010, 8045}, {4040, 42662}, {4170, 47682}, {4367, 48349}, {4369, 48403}, {4382, 47719}, {4391, 48106}, {4560, 47701}, {4913, 48402}, {4983, 50351}, {5592, 48336}, {7192, 55282}, {7265, 47726}, {10196, 48553}, {13246, 50512}, {17072, 48069}, {17166, 53558}, {20295, 48278}, {20517, 48064}, {21121, 50344}, {21124, 50343}, {21204, 48569}, {23755, 49303}, {24287, 48393}, {32212, 48401}, {47652, 48151}, {47660, 48264}, {47663, 47929}, {47691, 48144}, {47695, 50523}, {47698, 47911}, {47716, 48320}, {47720, 48341}, {47728, 48338}, {47887, 48570}, {47893, 48552}, {47918, 48408}, {47958, 48410}, {48080, 48300}, {48103, 48265}, {48122, 49298}, {49283, 50457}
X(29118) = isogonal conjugate of X(29119)
X(29118) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(518), X(2363)}}, {{A, B, C, X(740), X(34920)}}, {{A, B, C, X(876), X(38469)}}
X(29118) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29138, 29094}, {512, 514, 2785}, {523, 6002, 29037}, {826, 29150, 2786}, {3800, 29126, 3907}, {7927, 29136, 2787}, {29013, 29021, 522}, {29029, 29094, 29138}, {29082, 29122, 514}, {29124, 29144, 814}, {29128, 29150, 826}, {29134, 29328, 29017}, {29164, 29178, 29062}
X(29119) lies on the circumcircle and these lines: {98, 6684}, {105, 2292}, {833, 54440}, {2701, 53268}, {3573, 38470}
X(29119) = isogonal conjugate of X(29118)
X(29119) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(4584), X(8052)}}
X(29120) lies on these lines: {30, 511}, {3801, 48144}, {3904, 48123}, {4367, 47708}, {4378, 47712}, {4391, 48405}, {4449, 48349}, {4462, 48103}, {4806, 6332}, {4874, 48400}, {6588, 54249}, {21052, 48235}, {21111, 43927}, {23765, 47652}, {23780, 47958}, {23781, 48141}, {47682, 48267}, {47691, 48323}, {47728, 48336}, {47959, 50351}, {48062, 48401}, {48122, 53533}, {48265, 48300}, {48326, 48341}
X(29120) = isogonal conjugate of X(29121)
X(29120) = perspector of circumconic {{A, B, C, X(2), X(29635)}}
X(29120) = intersection, other than A, B, C, of circumconics {{A, B, C, X(519), X(29635)}}, {{A, B, C, X(7192), X(29082)}}
X(29120) = barycentric product X(i)*X(j) for these (i, j): {29635, 514}
X(29120) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29121}, {29635, 190}
X(29120) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 514, 29082}, {514, 29118, 4083}, {514, 29132, 512}, {514, 29140, 29098}, {514, 29158, 891}, {514, 6005, 29094}, {2787, 29021, 29074}, {6002, 29017, 29078}, {29029, 29098, 29140}, {29098, 29140, 29025}, {29122, 29198, 514}, {29126, 29142, 814}, {29130, 29148, 826}, {29134, 29324, 523}, {29136, 29312, 29013}, {29166, 29176, 29062}, {29170, 29172, 525}
X(29121) lies on the circumcircle and these lines: {4557, 29083}
X(29121) = isogonal conjugate of X(29120)
X(29121) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29120}, {513, 29635}
X(29121) = X(i)-vertex conjugate of X(j) for these {i, j}: {9999, 29121}
X(29121) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29120}, {39026, 29635}
X(29121) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29120}, {101, 29635}
X(29122) lies on circumconic {{A, B, C, X(519), X(29856)}} and on these lines: {30, 511}, {3762, 48097}, {4010, 47684}, {4378, 47725}, {4922, 47692}, {14419, 48212}, {14431, 48201}, {21145, 47762}, {23745, 48626}, {30709, 48188}, {47680, 48098}, {47682, 48090}, {47686, 53533}, {47691, 48344}, {47708, 48331}, {47712, 48330}, {47728, 48349}, {48030, 50351}
X(29122) = isogonal conjugate of X(29123)
X(29122) = perspector of circumconic {{A, B, C, X(2), X(29856)}}
X(29122) = barycentric product X(i)*X(j) for these (i, j): {29856, 514}
X(29122) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29123}, {29856, 190}
X(29122) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 29025, 4083}, {514, 29098, 29226}, {514, 29118, 29082}, {514, 29120, 29198}, {514, 29132, 29102}, {514, 29140, 512}, {514, 29158, 29094}, {514, 6005, 29272}, {523, 29156, 29236}, {814, 29116, 29146}, {826, 29114, 29152}, {2787, 29160, 29204}, {6002, 29332, 29280}, {29013, 29154, 29202}, {29017, 29162, 29238}, {29021, 29336, 29274}, {29029, 29102, 29132}, {29102, 29132, 513}, {29138, 29184, 514}
X(29123) lies on the circumcircle and these lines:
X(29123) = isogonal conjugate of X(29122)
X(29123) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29122}, {513, 29856}
X(29123) = X(i)-vertex conjugate of X(j) for these {i, j}: {9999, 29123}
X(29123) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29122}, {39026, 29856}
X(29123) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29122}, {101, 29856}
X(29124) lies on these lines: {30, 511}, {4782, 48400}, {23729, 48137}
X(29124) = isogonal conjugate of X(29125)
X(29124) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29114, 29156}, {513, 29162, 29244}, {514, 29150, 29200}, {514, 29328, 29284}, {523, 29152, 29230}, {814, 29118, 29144}, {2787, 29158, 29208}, {29013, 29029, 29017}, {29013, 29130, 29106}, {29021, 29340, 29276}, {29029, 29106, 29130}, {29140, 29178, 826}
X(29125) lies on the circumcircle and these lines:
X(29125) = isogonal conjugate of X(29124)
X(29126) lies on these lines: {30, 511}, {57, 1019}, {649, 10015}, {654, 4063}, {667, 26275}, {905, 47757}, {999, 4367}, {1577, 47788}, {2530, 48163}, {3004, 48321}, {3452, 4129}, {3669, 47227}, {3700, 47682}, {3762, 47890}, {3820, 21051}, {3904, 20295}, {4010, 48290}, {4049, 54553}, {4378, 23770}, {4391, 47771}, {4458, 39545}, {4474, 48106}, {4560, 47782}, {4707, 4897}, {4773, 21130}, {4784, 36279}, {4790, 43052}, {4841, 47683}, {4922, 48349}, {6332, 47786}, {7254, 57079}, {7962, 48337}, {10269, 44811}, {12915, 39541}, {14419, 47799}, {14431, 47807}, {16892, 53536}, {17069, 50453}, {17496, 48156}, {20508, 29487}, {21104, 47680}, {21118, 50523}, {21185, 50517}, {21222, 47652}, {21260, 30792}, {21301, 31131}, {23729, 30725}, {23755, 48149}, {25259, 47684}, {30234, 47800}, {30709, 47809}, {31147, 45341}, {31149, 48182}, {35645, 39548}, {44432, 44561}, {44435, 44550}, {44449, 49274}, {44566, 45313}, {45664, 47766}, {45671, 47784}, {47708, 48223}, {47722, 48108}, {47728, 48080}, {47998, 48288}, {48047, 50351}, {48267, 48299}, {48269, 49280}, {48324, 53523}, {48328, 51788}, {48332, 49295}, {49279, 50326}
X(29126) = isogonal conjugate of X(29127)
X(29126) = intersection, other than A, B, C, of circumconics {{A, B, C, X(57), X(758)}}, {{A, B, C, X(740), X(37715)}}, {{A, B, C, X(1019), X(3738)}}, {{A, B, C, X(3669), X(9001)}}, {{A, B, C, X(3910), X(17925)}}, {{A, B, C, X(4817), X(28468)}}, {{A, B, C, X(6370), X(7178)}}
X(29126) = barycentric product X(i)*X(j) for these (i, j): {37715, 7192}
X(29126) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29127}, {37715, 3952}
X(29126) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 29156, 29240}, {514, 29013, 3910}, {514, 29114, 29162}, {514, 29148, 918}, {514, 29178, 23876}, {514, 4785, 28468}, {514, 6002, 525}, {814, 29120, 29142}, {2787, 29029, 523}, {2787, 29128, 29110}, {3800, 28533, 3907}, {3907, 29118, 3800}, {4367, 48403, 34958}, {23729, 30725, 48335}, {23876, 29178, 900}, {29017, 29152, 29232}, {29021, 29344, 29278}, {29025, 29324, 29288}, {29029, 29110, 29128}, {29094, 29150, 3566}, {29138, 29176, 826}, {47680, 48320, 21104}
X(29127) lies on the circumcircle and these lines: {9, 759}, {98, 5657}, {105, 392}, {644, 9058}, {1018, 2222}, {1145, 19628}, {2752, 41391}, {3939, 26715}, {4574, 8687}, {5546, 36069}
X(29127) = isogonal conjugate of X(29126)
X(29127) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29126}, {1019, 37715}
X(29127) = X(i)-vertex conjugate of X(j) for these {i, j}: {9999, 29127}
X(29127) = intersection, other than A, B, C, of circumconics {{A, B, C, X(9), X(1018)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(190), X(32641)}}, {{A, B, C, X(392), X(2284)}}, {{A, B, C, X(1000), X(3903)}}, {{A, B, C, X(4606), X(5549)}}, {{A, B, C, X(32675), X(40519)}}
X(29127) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29126}, {4557, 37715}
X(29128) lies on these lines: {30, 511}, {667, 47709}, {764, 47688}, {2530, 48156}, {4010, 47726}, {4049, 45332}, {4367, 47713}, {4378, 47692}, {4775, 47684}, {14419, 48203}, {14431, 48208}, {21146, 47725}, {21260, 48200}, {31149, 48187}, {45664, 48222}, {47682, 48349}, {47701, 50351}, {47702, 48288}, {47708, 47771}, {47712, 52601}, {47717, 48323}, {47788, 48403}, {47792, 48393}
X(29128) = isogonal conjugate of X(29129)
X(29128) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29116, 29154}, {513, 29160, 29224}, {514, 29144, 29188}, {514, 7927, 29298}, {523, 29126, 29110}, {826, 29118, 29150}, {6002, 7950, 29292}, {29013, 29146, 29194}, {29021, 29025, 29070}, {29029, 29110, 29126}, {29110, 29126, 2787}, {29134, 29174, 514}, {29140, 29164, 814}
X(29129) lies on the circumcircle and these lines: {98, 11231}
X(29129) = isogonal conjugate of X(29128)
X(29130) lies on these lines: {1, 47709}, {30, 511}, {4040, 47684}, {4391, 47726}, {4449, 47713}, {4474, 47710}, {4801, 47725}, {47680, 47719}, {47682, 47708}, {47692, 48282}, {47712, 48295}, {47718, 47724}, {48081, 49274}
X(29130) = isogonal conjugate of X(29131)
X(29130) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 29154, 29220}, {514, 29021, 29066}, {514, 29116, 29160}, {514, 29142, 29186}, {514, 29164, 3907}, {826, 29120, 29148}, {2787, 29146, 29196}, {6002, 29318, 29294}, {29017, 29029, 29013}, {29017, 29124, 29106}, {29025, 29312, 29302}, {29029, 29106, 29124}, {29134, 29172, 512}, {29138, 29166, 814}
X(29131) lies on the circumcircle and these lines:
X(29131) = isogonal conjugate of X(29130)
X(29132) lies on circumconic {{A, B, C, X(519), X(29829)}} and on these lines: {10, 48069}, {30, 511}, {1019, 20517}, {3762, 48106}, {4142, 48064}, {4378, 48349}, {7192, 49300}, {14419, 48177}, {14431, 48235}, {20295, 49278}, {21181, 47758}, {23795, 48015}, {25259, 47726}, {30709, 48254}, {47676, 47725}, {47680, 48108}, {47682, 48080}, {47683, 47699}, {47684, 49276}, {47691, 48320}, {47701, 48321}, {47702, 53536}, {47712, 48144}, {47716, 48341}, {47728, 48352}, {48006, 48284}, {48024, 50351}, {50336, 50453}
X(29132) = isogonal conjugate of X(29133)
X(29132) = perspector of circumconic {{A, B, C, X(2), X(29829)}}
X(29132) = barycentric product X(i)*X(j) for these (i, j): {29829, 514}
X(29132) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29133}, {29829, 190}
X(29132) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 29122, 29102}, {514, 29118, 29158}, {514, 6005, 29304}, {523, 29148, 29212}, {2787, 29144, 29192}, {6002, 29021, 29062}, {29013, 29142, 29190}, {29017, 29150, 29216}, {29029, 29102, 29122}, {29082, 29138, 514}, {29134, 29170, 826}, {29136, 29168, 814}
X(29133) lies on the circumcircle and these lines: {9070, 54440}
X(29133) = isogonal conjugate of X(29132)
X(29134) lies on these lines: {30, 511}, {4367, 47709}, {4378, 47713}, {4874, 47708}, {23765, 47688}, {47684, 48336}, {47692, 48323}, {47726, 48267}, {48400, 48405}
X(29134) = isogonal conjugate of X(29135)
X(29134) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29130, 29172}, {513, 29116, 29332}, {514, 29128, 29174}, {514, 29144, 29366}, {514, 29168, 29246}, {523, 29120, 29324}, {826, 29132, 29170}, {2787, 29164, 29250}, {6002, 29146, 29370}, {29013, 29166, 29248}, {29017, 29118, 29328}, {29021, 29029, 814}, {29021, 29114, 29086}, {29025, 29142, 29362}, {29029, 29086, 29114}
X(29135) lies on the circumcircle and these lines:
X(29135) = isogonal conjugate of X(29134)
X(29136) lies on these lines: {30, 511}, {1019, 3337}, {48400, 50512}
X(29136) = isogonal conjugate of X(29137)
X(29136) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 29114, 29336}, {514, 29150, 690}, {514, 29170, 29252}, {523, 29176, 29264}, {814, 29132, 29168}, {2787, 29118, 7927}, {6002, 29116, 29090}, {29013, 29120, 29312}, {29017, 29178, 29266}, {29021, 29152, 29058}, {29025, 29148, 29354}, {29029, 29090, 29116}, {29090, 29116, 826}
X(29137) lies on the circumcircle and these lines:
X(29137) = isogonal conjugate of X(29136)
X(29137) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1018), X(7161)}}, {{A, B, C, X(3903), X(13606)}}
X(29138) lies on these lines: {30, 511}, {1960, 47708}, {4922, 47713}, {21145, 48568}, {42662, 47929}, {47684, 48267}, {47712, 48328}, {47725, 48323}, {48005, 50351}, {48347, 48349}
X(29138) = isogonal conjugate of X(29139)
X(29138) = perspector of circumconic {{A, B, C, X(2), X(29863)}}
X(29138) = intersection, other than A, B, C, of circumconics {{A, B, C, X(519), X(29863)}}, {{A, B, C, X(7192), X(29272)}}
X(29138) = barycentric product X(i)*X(j) for these (i, j): {29863, 514}
X(29138) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29139}, {29863, 190}
X(29138) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 514, 29272}, {514, 29025, 891}, {514, 29118, 29094}, {514, 29120, 6372}, {514, 29122, 29184}, {514, 29132, 29082}, {514, 29140, 4083}, {814, 29130, 29166}, {826, 29126, 29176}, {2787, 29116, 7950}, {6002, 29154, 3906}, {29013, 29172, 29256}, {29017, 29114, 29340}, {29021, 29156, 29182}, {29029, 29094, 29118}, {29094, 29118, 512}
X(29139) lies on the circumcircle and these lines: {4557, 29273}
X(29139) = isogonal conjugate of X(29138)
X(29140) lies on circumconic {{A, B, C, X(519), X(29868)}} and on these lines: {30, 511}, {3801, 48064}, {4170, 47684}, {4401, 47708}, {47691, 48343}, {47725, 48144}, {48054, 50351}, {48294, 48349}
X(29140) = isogonal conjugate of X(29141)
X(29140) = perspector of circumconic {{A, B, C, X(2), X(29868)}}
X(29140) = barycentric product X(i)*X(j) for these (i, j): {29868, 514}
X(29140) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29141}, {29868, 190}
X(29140) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 29118, 6005}, {514, 29158, 29350}, {523, 29114, 29344}, {814, 29128, 29164}, {826, 29124, 29178}, {2787, 29174, 29260}, {6002, 29160, 29358}, {29013, 29116, 29318}, {29021, 29162, 29033}, {29025, 29029, 514}, {29025, 29120, 29098}, {29029, 29098, 29120}
X(29141) lies on the circumcircle and these lines:
X(29141) = isogonal conjugate of X(29140)
X(29142) lies on these lines: {30, 511}, {661, 48278}, {663, 47972}, {667, 50347}, {676, 52601}, {693, 47708}, {1027, 50351}, {1491, 48402}, {1577, 47715}, {1638, 48569}, {1639, 48553}, {2254, 21124}, {2522, 45745}, {2530, 3004}, {2533, 10015}, {2977, 48003}, {3700, 48267}, {3716, 8045}, {3762, 47711}, {3801, 21146}, {4024, 48264}, {4040, 47682}, {4088, 47918}, {4122, 48265}, {4142, 4369}, {4367, 50340}, {4391, 47690}, {4462, 47689}, {4468, 47966}, {4498, 48106}, {4705, 50333}, {4724, 48300}, {4801, 47691}, {4905, 50348}, {4978, 23770}, {4990, 49290}, {6332, 48006}, {7178, 50352}, {7265, 50326}, {7662, 21185}, {14349, 47998}, {16892, 48151}, {17166, 47695}, {17420, 55230}, {21108, 21118}, {21125, 23753}, {21301, 47687}, {23732, 47123}, {26275, 47818}, {41800, 47823}, {44435, 47819}, {44566, 45332}, {45746, 48410}, {47679, 48409}, {47692, 47720}, {47701, 48131}, {47702, 48334}, {47713, 47716}, {47726, 47970}, {47727, 48282}, {47766, 48561}, {47771, 47815}, {47784, 47888}, {47788, 47875}, {47793, 47809}, {47794, 47807}, {47795, 47799}, {47796, 47797}, {47798, 47820}, {47800, 48564}, {47808, 47814}, {47816, 48182}, {47817, 48231}, {47821, 57066}, {47835, 48235}, {47836, 48252}, {47837, 48232}, {47839, 48179}, {47840, 48161}, {47841, 48177}, {47906, 48082}, {47912, 48077}, {47929, 48094}, {47936, 48102}, {47938, 48121}, {47943, 48116}, {47949, 48046}, {47956, 48039}, {47958, 48122}, {47959, 48047}, {47961, 48616}, {47965, 48062}, {47983, 48091}, {47989, 48086}, {47995, 48092}, {48069, 50501}, {48081, 49277}, {48088, 48618}, {48178, 48556}, {48249, 48573}, {48273, 48280}, {48274, 48393}, {48279, 48349}, {48305, 53523}, {48351, 49279}, {50337, 50453}
X(29142) = isogonal conjugate of X(29143)
X(29142) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29143}, {51571, 100}
X(29142) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2298, 11}, {20911, 3125}
X(29142) = intersection, other than A, B, C, of circumconics {{A, B, C, X(513), X(48022)}}, {{A, B, C, X(693), X(8678)}}, {{A, B, C, X(2787), X(43974)}}, {{A, B, C, X(4608), X(29288)}}
X(29142) = barycentric product X(i)*X(j) for these (i, j): {4581, 51571}, {48022, 75}
X(29142) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29143}, {48022, 1}, {51571, 53332}
X(29142) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29312, 3910}, {513, 29202, 29200}, {514, 29051, 29240}, {514, 29164, 29047}, {514, 522, 8678}, {514, 523, 29288}, {522, 6002, 29232}, {523, 6362, 784}, {693, 47708, 48403}, {814, 29120, 29126}, {826, 6372, 918}, {1577, 47715, 48396}, {2787, 29086, 29278}, {3762, 47714, 47711}, {4040, 47682, 48299}, {4083, 29144, 3800}, {4391, 47690, 48395}, {4391, 47718, 47690}, {4462, 47689, 47707}, {4801, 47709, 47691}, {4978, 47712, 23770}, {6005, 23876, 3566}, {6332, 48006, 48099}, {6372, 29166, 826}, {21118, 47703, 50457}, {29017, 29200, 29202}, {29021, 29047, 29164}, {29029, 29070, 29162}, {29047, 29164, 523}, {29106, 29150, 900}, {29130, 29186, 514}, {29132, 29190, 29013}, {29134, 29362, 29025}, {29168, 29312, 512}, {29170, 29248, 29078}, {29172, 29246, 29082}, {29200, 29202, 525}, {47708, 47719, 693}, {47959, 48272, 48047}, {48396, 48400, 1577}
X(29143) lies on the circumcircle and these lines: {105, 5262}, {692, 1310}, {831, 3882}, {1618, 2703}, {29289, 35327}
X(29143) = isogonal conjugate of X(29142)
X(29143) = trilinear pole of line {6, 54312}
X(29143) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29142}, {2, 48022}
X(29143) = X(i)-vertex conjugate of X(j) for these {i, j}: {9999, 29143}
X(29143) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29142}, {32664, 48022}
X(29143) = X(i)-cross conjugate of X(j) for these {i, j}: {3666, 59}
X(29143) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1026), X(5262)}}, {{A, B, C, X(32735), X(52935)}}
X(29143) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29142}, {31, 48022}, {53280, 51571}
X(29144) lies on these lines: {2, 48158}, {30, 511}, {649, 50340}, {659, 47972}, {693, 48349}, {1491, 47701}, {1638, 48212}, {1639, 48201}, {2254, 47702}, {2526, 47961}, {2533, 47708}, {3004, 50335}, {3261, 48152}, {3716, 48405}, {3801, 47709}, {4010, 47690}, {4079, 48025}, {4088, 48024}, {4120, 4951}, {4122, 47689}, {4170, 47714}, {4378, 47727}, {4448, 47771}, {4453, 48224}, {4522, 4806}, {4724, 48103}, {4775, 47682}, {4776, 48187}, {4782, 50347}, {4789, 48189}, {4800, 47874}, {4808, 47959}, {4809, 47762}, {4824, 47699}, {4948, 47878}, {4983, 48272}, {9508, 47785}, {16892, 50359}, {18004, 48043}, {20906, 48109}, {21124, 50355}, {21146, 29835}, {21834, 48022}, {23770, 48098}, {24719, 47687}, {26275, 47767}, {28602, 47778}, {30565, 48188}, {31131, 48550}, {36848, 44435}, {39712, 55244}, {43067, 47131}, {44429, 48552}, {44433, 48567}, {45342, 47787}, {45666, 47766}, {45691, 46919}, {45746, 50341}, {47123, 54265}, {47692, 48108}, {47693, 53343}, {47694, 53361}, {47695, 49283}, {47698, 47946}, {47700, 48021}, {47703, 48120}, {47704, 48143}, {47705, 48148}, {47707, 48265}, {47711, 48267}, {47712, 50352}, {47715, 48273}, {47719, 48279}, {47726, 48352}, {47756, 48182}, {47760, 48200}, {47761, 48211}, {47770, 48222}, {47782, 48225}, {47784, 48213}, {47788, 48202}, {47797, 47823}, {47799, 48216}, {47806, 48555}, {47807, 48179}, {47809, 47822}, {47811, 47885}, {47821, 48185}, {47824, 48203}, {47876, 48191}, {47879, 48183}, {47882, 48229}, {47886, 48244}, {47887, 48253}, {47902, 48020}, {47924, 47968}, {47938, 48077}, {47943, 48599}, {47944, 48023}, {47958, 50328}, {47983, 48039}, {47989, 48611}, {47990, 48027}, {47998, 48030}, {48006, 48062}, {48028, 48047}, {48029, 48056}, {48032, 48146}, {48048, 48088}, {48055, 48097}, {48083, 48118}, {48090, 48396}, {48101, 50358}, {48102, 48140}, {48123, 48278}, {48277, 50339}, {48300, 48336}, {49285, 49295}
X(29144) = isogonal conjugate of X(29145)
X(29144) = perspector of circumconic {{A, B, C, X(2), X(29659)}}
X(29144) = intersection, other than A, B, C, of circumconics {{A, B, C, X(519), X(29659)}}, {{A, B, C, X(758), X(40747)}}, {{A, B, C, X(3261), X(28863)}}, {{A, B, C, X(28855), X(48070)}}
X(29144) = barycentric product X(i)*X(j) for these (i, j): {29659, 514}
X(29144) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29145}, {29659, 190}
X(29144) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 48158, 48177}, {2, 48177, 48195}, {2, 48235, 48217}, {2, 48254, 48235}, {512, 29017, 29284}, {512, 29166, 23876}, {513, 28151, 30520}, {513, 29204, 918}, {514, 7927, 29208}, {522, 4785, 900}, {523, 900, 824}, {523, 918, 29204}, {814, 29118, 29124}, {826, 6005, 29200}, {2526, 47961, 47999}, {3800, 29142, 4083}, {6002, 29074, 29230}, {6005, 29164, 826}, {12073, 29312, 29350}, {23876, 29021, 29166}, {23876, 29166, 29017}, {29013, 29086, 29276}, {29025, 29051, 29244}, {29029, 29066, 29156}, {29128, 29188, 514}, {29132, 29192, 2787}, {29170, 29250, 29037}, {47689, 48080, 4122}, {47703, 53558, 48120}, {47797, 47823, 48215}, {47797, 48252, 47823}, {47807, 48179, 48197}, {47809, 48161, 47822}, {47972, 48106, 659}, {47998, 50333, 48030}, {48158, 48254, 2}
X(29145) lies on the circumcircle and these lines: {759, 40773}, {28864, 32739}
X(29145) = isogonal conjugate of X(29144)
X(29146) lies on these lines: {30, 511}, {667, 47726}, {2533, 47689}, {3801, 47690}, {4010, 47709}, {4088, 47967}, {4122, 47708}, {4142, 48405}, {4435, 50482}, {4490, 47700}, {21146, 47718}, {41800, 48217}, {47682, 48330}, {47692, 48279}, {47701, 48093}, {47702, 48123}, {47712, 48090}, {47713, 48273}, {47714, 50352}, {47715, 48098}, {47719, 48326}, {47793, 48188}, {47794, 48201}, {47795, 48212}, {47796, 48224}, {47835, 48208}, {47841, 48203}, {47925, 48116}, {47936, 48604}, {47970, 48614}, {48030, 48272}, {48086, 48621}, {48100, 48278}, {48137, 49278}, {48177, 57066}, {48222, 48559}, {48300, 48331}
X(29146) = isogonal conjugate of X(29147)
X(29146) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29318, 29202}, {513, 826, 29280}, {514, 29074, 29236}, {514, 29086, 29274}, {514, 7950, 29204}, {522, 29025, 29238}, {523, 3910, 29208}, {814, 29116, 29122}, {826, 29168, 23875}, {3910, 29208, 4083}, {4777, 29274, 29086}, {7950, 29166, 514}, {23875, 29021, 29168}, {23875, 29168, 513}, {29017, 29208, 3910}, {29029, 29062, 29152}, {29047, 29312, 29226}, {29128, 29194, 29013}, {29130, 29196, 2787}, {29134, 29370, 6002}, {29164, 29318, 512}, {29172, 29250, 3907}, {29174, 29248, 812}, {48300, 50340, 48331}
X(29147) lies on the circumcircle and these lines:
X(29147) = isogonal conjugate of X(29146)
X(29148) lies on these lines: {1, 48080}, {10, 50336}, {30, 511}, {63, 4063}, {226, 3669}, {649, 3762}, {661, 48321}, {667, 993}, {676, 39545}, {693, 48320}, {764, 24719}, {905, 4129}, {1019, 4391}, {1022, 31164}, {1478, 4905}, {1577, 4379}, {3822, 21260}, {3835, 3960}, {3904, 44449}, {4010, 4378}, {4025, 50453}, {4049, 54768}, {4170, 4449}, {4367, 4800}, {4369, 4791}, {4380, 21385}, {4474, 4761}, {4504, 48294}, {4560, 47775}, {4705, 48225}, {4707, 47971}, {4775, 4922}, {4776, 44550}, {4893, 45671}, {4897, 10015}, {4978, 48341}, {5307, 17924}, {5745, 20317}, {14349, 17496}, {14419, 47822}, {14431, 47823}, {14838, 47778}, {20295, 21222}, {20517, 48400}, {21051, 48229}, {21052, 48573}, {21130, 53333}, {22037, 49280}, {25259, 47682}, {30709, 47824}, {31149, 36848}, {31291, 48111}, {45324, 47779}, {45664, 47761}, {47665, 47681}, {47666, 47683}, {47676, 47680}, {47684, 49272}, {47724, 48108}, {47728, 49276}, {47729, 48352}, {47911, 50449}, {47912, 48409}, {47948, 48410}, {47967, 48191}, {48024, 48288}, {48029, 48284}, {48043, 48325}, {48202, 52601}, {48273, 48323}, {48290, 49288}, {48324, 53343}, {48401, 50504}
X(29148) = isogonal conjugate of X(29149)
X(29148) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(517), X(13478)}}, {{A, B, C, X(1019), X(9002)}}, {{A, B, C, X(4444), X(23876)}}, {{A, B, C, X(17925), X(29302)}}
X(29148) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 29236, 29188}, {514, 23875, 29220}, {514, 2786, 23876}, {514, 29013, 29302}, {514, 29178, 812}, {514, 29216, 3910}, {514, 6002, 29013}, {661, 53536, 48321}, {812, 6002, 29178}, {814, 6372, 29186}, {826, 29120, 29130}, {918, 29126, 514}, {2787, 29188, 29236}, {3904, 44449, 49277}, {4010, 4378, 48295}, {4775, 4922, 48285}, {6372, 29176, 814}, {20295, 21222, 48335}, {29017, 29090, 29294}, {29021, 29037, 29196}, {29132, 29212, 523}, {29136, 29354, 29025}, {29152, 29198, 29070}, {29168, 29264, 29074}, {29170, 29324, 512}, {29188, 29236, 29066}, {48290, 50326, 49288}
X(29149) lies on the circumcircle and these lines: {19, 40101}, {104, 573}, {644, 53685}, {739, 4262}, {741, 4276}, {1018, 9059}, {2726, 5011}, {4574, 29303}
X(29149) = isogonal conjugate of X(29148)
X(29149) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(19), X(34080)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(190), X(32665)}}, {{A, B, C, X(284), X(644)}}, {{A, B, C, X(668), X(994)}}, {{A, B, C, X(1018), X(1415)}}
X(29150) lies on these lines: {21, 667}, {30, 511}, {79, 4905}, {191, 4063}, {442, 21260}, {649, 48267}, {764, 14450}, {1019, 4010}, {1577, 4784}, {1635, 48553}, {2475, 21301}, {2530, 20295}, {3572, 21836}, {3647, 4782}, {3649, 3669}, {3716, 50512}, {3960, 4992}, {4036, 50344}, {4106, 23815}, {4129, 9508}, {4162, 10543}, {4170, 4367}, {4391, 4834}, {4462, 11684}, {4504, 48347}, {4560, 4983}, {4705, 50343}, {4728, 48569}, {4776, 47888}, {4800, 47818}, {4804, 48149}, {4806, 14838}, {4810, 4978}, {4822, 48288}, {4824, 47947}, {4840, 30591}, {4874, 48064}, {4897, 48403}, {4913, 48005}, {4922, 48337}, {4979, 48264}, {5428, 39227}, {6161, 15680}, {6175, 31149}, {6675, 31288}, {7192, 48393}, {11263, 19947}, {14419, 47840}, {14431, 47836}, {17494, 47949}, {17924, 31902}, {18014, 21201}, {18253, 20317}, {21677, 50499}, {26725, 47841}, {31251, 31254}, {34195, 48333}, {35016, 48330}, {47712, 50342}, {47762, 47875}, {47816, 48244}, {47827, 48551}, {47833, 48568}, {47834, 48580}, {47872, 48566}, {47906, 47932}, {47934, 48582}, {47948, 50341}, {47994, 48000}, {48002, 48612}, {48043, 50507}, {48049, 48059}, {48079, 48410}, {48114, 48151}, {48123, 48321}, {48144, 48273}, {48279, 48320}, {48305, 50523}, {48329, 57002}, {48407, 50339}
X(29150) = isogonal conjugate of X(29151)
X(29150) = perspector of circumconic {{A, B, C, X(2), X(25660)}}
X(29150) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(35104)}}, {{A, B, C, X(79), X(740)}}, {{A, B, C, X(511), X(10308)}}, {{A, B, C, X(536), X(25660)}}, {{A, B, C, X(693), X(6367)}}, {{A, B, C, X(16005), X(29057)}}
X(29150) = barycentric product X(i)*X(j) for these (i, j): {25660, 513}, {57514, 86}
X(29150) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29151}, {25660, 668}, {57514, 10}
X(29150) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 2787, 29298}, {512, 29176, 3907}, {513, 29238, 29186}, {514, 522, 6367}, {523, 29090, 29292}, {525, 29029, 29154}, {814, 6005, 29188}, {826, 29118, 29128}, {900, 29142, 29106}, {1019, 4010, 52601}, {2786, 29118, 826}, {3566, 29126, 29094}, {3907, 29176, 2787}, {3907, 6002, 29176}, {6005, 29178, 814}, {23875, 29025, 29224}, {29013, 29186, 29238}, {29021, 29078, 29194}, {29124, 29200, 514}, {29132, 29216, 29017}, {29168, 29266, 522}, {29186, 29238, 29070}
X(29151) lies on the circumcircle and these lines: {35, 741}, {65, 35108}, {98, 3579}, {692, 6578}, {805, 8671}, {2699, 35000}, {28219, 37620}
X(29151) = isogonal conjugate of X(29150)
X(29151) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29150}, {81, 57514}, {649, 25660}
X(29151) = X(i)-vertex conjugate of X(j) for these {i, j}: {9999, 29151}
X(29151) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29150}, {5375, 25660}, {40586, 57514}
X(29151) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(65), X(668)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1415), X(32042)}}, {{A, B, C, X(4559), X(4596)}}
X(29151) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29150}, {42, 57514}, {100, 25660}
X(29152) lies on these lines: {30, 511}, {3777, 53536}, {4010, 48330}, {4367, 48090}, {4382, 48323}, {4391, 4782}, {4449, 4810}, {4560, 48030}, {4774, 50509}, {4791, 50512}, {4800, 8643}, {4992, 48325}, {17494, 47922}, {17496, 24719}, {20295, 48129}, {21301, 50335}, {30709, 47835}, {47814, 48213}, {47820, 48202}, {47911, 47954}, {48008, 48401}, {48093, 48288}, {48098, 48144}, {48100, 48321}, {48267, 48331}, {48273, 48344}, {48392, 50523}
X(29152) = isogonal conjugate of X(29153)
X(29152) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29344, 29236}, {513, 814, 29274}, {514, 29078, 29202}, {514, 29090, 29280}, {514, 29340, 29238}, {812, 29324, 29226}, {814, 29170, 29051}, {826, 29114, 29122}, {2787, 29013, 4083}, {6002, 29051, 29170}, {17496, 24719, 48137}, {29025, 29037, 29204}, {29029, 29062, 29146}, {29051, 29170, 513}, {29058, 29136, 29021}, {29070, 29148, 29198}, {29124, 29230, 523}, {29126, 29232, 29017}, {29176, 29340, 514}, {29178, 29344, 512}
X(29153) lies on the circumcircle and these lines:
X(29153) = isogonal conjugate of X(29152)
X(29153) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(6540), X(34073)}}
X(29154) lies on circumconic {{A, B, C, X(693), X(29336)}} and on these lines: {30, 511}, {667, 47684}, {2533, 47726}, {3801, 47682}, {4774, 47710}, {4775, 47709}, {4879, 47713}, {4983, 49274}, {21124, 50351}, {21343, 47717}, {47203, 48300}, {47692, 48333}, {47708, 49279}, {47725, 48279}, {48393, 49303}, {48403, 49290}
X(29154) = isogonal conjugate of X(29155)
X(29154) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29116, 29128}, {514, 29062, 29156}, {514, 29190, 29244}, {514, 29318, 814}, {514, 29332, 29224}, {514, 29358, 29324}, {514, 522, 29336}, {514, 826, 2787}, {523, 29094, 29298}, {525, 29029, 29150}, {814, 29318, 29194}, {826, 2787, 29292}, {3801, 47682, 52601}, {3906, 29138, 6002}, {29017, 29244, 29190}, {29021, 29082, 29188}, {29122, 29202, 29013}, {29130, 29220, 513}, {29166, 29272, 29051}, {29172, 29332, 514}, {29184, 29256, 812}, {29190, 29244, 29070}
X(29155) lies on the circumcircle and these lines: {98, 9956}, {692, 29337}
X(29155) = isogonal conjugate of X(29154)
X(29156) lies on these lines: {30, 511}, {3904, 24719}, {4010, 47728}, {4122, 47684}, {4367, 47887}, {4378, 47680}, {4474, 48103}, {4774, 48106}, {4782, 10015}, {4922, 47691}, {14419, 48215}, {14430, 47885}, {14431, 48199}, {21132, 50358}, {21146, 47722}, {23770, 48344}, {30709, 48185}, {47685, 53533}, {47729, 48349}, {48090, 48290}, {48330, 48403}, {48331, 48400}, {48388, 53270}
X(29156) = isogonal conjugate of X(29157)
X(29156) = perspector of circumconic {{A, B, C, X(2), X(29658)}}
X(29156) = intersection, other than A, B, C, of circumconics {{A, B, C, X(519), X(29658)}}, {{A, B, C, X(693), X(29172)}}
X(29156) = barycentric product X(i)*X(j) for these (i, j): {29658, 514}
X(29156) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29157}, {29658, 190}
X(29156) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29114, 29124}, {514, 29033, 29312}, {514, 29037, 29332}, {514, 29062, 29154}, {514, 29212, 29224}, {514, 29336, 29244}, {514, 29344, 826}, {514, 522, 29172}, {514, 814, 29017}, {814, 29017, 29276}, {814, 29172, 522}, {826, 29344, 29230}, {2787, 29224, 29212}, {3907, 29025, 29208}, {6002, 29082, 29200}, {29013, 29094, 29284}, {29029, 29066, 29144}, {29122, 29236, 523}, {29126, 29240, 513}, {29138, 29182, 29021}, {29176, 29272, 23875}, {29184, 29268, 29047}
X(29157) lies on the circumcircle and these lines: {692, 29173}, {759, 3786}, {1308, 3888}, {2222, 3799}
X(29157) = isogonal conjugate of X(29156)
X(29157) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(3786), X(3799)}}
X(29158) lies on these lines: {30, 511}, {649, 20517}, {667, 48349}, {1019, 47691}, {1577, 48106}, {3801, 4834}, {4063, 47708}, {4129, 48062}, {4142, 48011}, {4170, 48300}, {4380, 47709}, {4382, 47715}, {4401, 8636}, {4458, 48064}, {4707, 50509}, {4905, 23687}, {20295, 48272}, {21185, 48060}, {23789, 48398}, {47131, 50515}, {47663, 47970}, {47698, 47947}, {47705, 48149}, {47716, 48144}, {47720, 48320}, {47728, 48337}, {47885, 48553}, {47887, 48568}, {47888, 48552}, {47938, 50449}, {47958, 48409}, {47959, 48408}, {48069, 50337}, {48086, 49298}, {48103, 48267}, {48123, 50351}, {48146, 48264}, {48286, 50517}, {50453, 50501}
X(29158) = isogonal conjugate of X(29159)
X(29158) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29184, 29082}, {512, 514, 29304}, {514, 29118, 29132}, {523, 29232, 29196}, {812, 29021, 29190}, {814, 7927, 29192}, {826, 29328, 29216}, {3800, 29162, 29066}, {4170, 48300, 49288}, {6002, 29047, 29212}, {12073, 29336, 29366}, {29013, 29196, 29232}, {29025, 29082, 29184}, {29082, 29184, 514}, {29124, 29208, 2787}, {29164, 29270, 522}, {29174, 29328, 826}, {29178, 29260, 29037}, {29196, 29232, 29062}
X(29159) lies on the circumcircle and these lines: {29305, 53268}, {43348, 54440}
X(29159) = isogonal conjugate of X(29158)
X(29160) lies on circumconic {{A, B, C, X(4608), X(29066)}} and on these lines: {1, 47684}, {30, 511}, {663, 47713}, {693, 47725}, {3762, 48118}, {4040, 47709}, {4049, 48222}, {4449, 47717}, {4707, 48106}, {14419, 48224}, {14431, 48188}, {21181, 47761}, {47652, 49278}, {47660, 49300}, {47680, 47690}, {47682, 47691}, {47688, 48335}, {47689, 47724}, {47693, 49303}, {47712, 48300}, {47722, 47723}, {47727, 47728}, {48062, 50453}, {48349, 49279}
X(29160) = isogonal conjugate of X(29161)
X(29160) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29332, 29220}, {514, 29021, 29186}, {514, 29116, 29130}, {514, 29164, 29051}, {514, 29192, 29240}, {514, 29260, 3907}, {523, 29240, 29192}, {814, 7950, 29196}, {826, 29013, 29294}, {826, 29025, 29013}, {7950, 29184, 814}, {29017, 29098, 29302}, {29122, 29204, 2787}, {29128, 29224, 513}, {29140, 29358, 6002}, {29174, 29332, 512}, {29192, 29240, 29066}, {47684, 47692, 1}
X(29161) lies on the circumcircle and these lines: {675, 29855}, {29067, 35327}
X(29161) = isogonal conjugate of X(29160)
X(29162) lies on these lines: {30, 511}, {649, 2504}, {652, 4498}, {659, 21789}, {667, 676}, {1019, 47680}, {2487, 21188}, {2976, 48111}, {2977, 21051}, {3004, 4560}, {3669, 6591}, {3700, 48300}, {3733, 17925}, {3803, 21185}, {4010, 4990}, {4063, 10015}, {4106, 6332}, {4367, 23770}, {4382, 48280}, {4391, 47890}, {4394, 14837}, {4462, 20298}, {4927, 47796}, {4976, 21124}, {4979, 23755}, {6545, 30724}, {8638, 21005}, {11068, 20317}, {14425, 47794}, {17496, 47652}, {18071, 41299}, {21104, 48144}, {21260, 53573}, {21301, 50333}, {23729, 48131}, {30725, 48334}, {31291, 47695}, {31946, 52599}, {39227, 44819}, {43051, 52595}, {45677, 47795}, {47123, 50517}, {47708, 50347}, {47793, 47884}, {47872, 48231}, {47891, 48570}, {47893, 48178}, {48055, 48265}, {48128, 49294}, {48136, 49295}, {48150, 53523}, {48273, 48290}, {48276, 50457}, {48322, 53558}, {50501, 55285}, {50523, 55282}
X(29162) = isogonal conjugate of X(29163)
X(29162) = perspector of circumconic {{A, B, C, X(2), X(1119)}}
X(29162) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29163}, {100, 2983}, {101, 1257}, {162, 52561}, {644, 951}, {906, 40445}, {4574, 40431}
X(29162) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29163}, {125, 52561}, {440, 190}, {1015, 1257}, {1834, 6558}, {4466, 306}, {5190, 40445}, {8054, 2983}, {38351, 42018}, {40940, 52609}
X(29162) = X(i)-Ceva conjugate of X(j) for these {i, j}: {27, 1086}, {1119, 38351}, {3668, 244}, {14543, 40940}, {15314, 11}
X(29162) = X(i)-complementary conjugate of X(j) for these {i, j}: {951, 4904}, {1257, 116}, {2983, 11}, {29163, 10}, {52561, 34846}
X(29162) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1257, 150}, {2983, 149}, {29163, 8}
X(29162) = X(i)-cross conjugate of X(j) for these {i, j}: {38351, 1119}
X(29162) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(516), X(1842)}}, {{A, B, C, X(517), X(51410)}}, {{A, B, C, X(518), X(961)}}, {{A, B, C, X(519), X(40940)}}, {{A, B, C, X(520), X(3733)}}, {{A, B, C, X(521), X(3669)}}, {{A, B, C, X(525), X(17925)}}, {{A, B, C, X(536), X(17863)}}, {{A, B, C, X(649), X(8676)}}, {{A, B, C, X(740), X(34856)}}, {{A, B, C, X(900), X(14543)}}, {{A, B, C, X(926), X(53290)}}, {{A, B, C, X(950), X(5853)}}, {{A, B, C, X(1019), X(6003)}}, {{A, B, C, X(2264), X(15733)}}, {{A, B, C, X(2388), X(40984)}}, {{A, B, C, X(3900), X(6591)}}, {{A, B, C, X(9028), X(18650)}}, {{A, B, C, X(40977), X(44671)}}
X(29162) = barycentric product X(i)*X(j) for these (i, j): {1086, 14543}, {1104, 693}, {1834, 7192}, {1842, 4025}, {2264, 24002}, {2401, 51410}, {3676, 950}, {17863, 513}, {17925, 440}, {18650, 7649}, {23989, 53290}, {40940, 514}, {40977, 7199}, {40984, 52619}
X(29162) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29163}, {440, 52609}, {513, 1257}, {647, 52561}, {649, 2983}, {950, 3699}, {1104, 100}, {1834, 3952}, {1842, 1897}, {2264, 644}, {7649, 40445}, {14543, 1016}, {17863, 668}, {17925, 40414}, {18650, 4561}, {40940, 190}, {40977, 1018}, {40984, 4557}, {43924, 951}, {43925, 57390}, {44093, 4574}, {51410, 2397}, {53290, 1252}, {57200, 40431}
X(29162) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29336, 29240}, {513, 4083, 8676}, {514, 29114, 29126}, {514, 29178, 23875}, {514, 29216, 29220}, {514, 29270, 23876}, {514, 6002, 918}, {514, 812, 3910}, {523, 814, 29278}, {525, 29013, 900}, {814, 29174, 29074}, {826, 29340, 29232}, {2787, 29098, 29288}, {4010, 48299, 4990}, {29013, 29220, 29216}, {29025, 29074, 29174}, {29029, 29070, 29142}, {29033, 29140, 29021}, {29066, 29158, 3800}, {29074, 29174, 523}, {29082, 29328, 3566}, {29122, 29238, 29017}, {29124, 29244, 513}, {29184, 29340, 826}, {29216, 29220, 525}
X(29163) lies on the circumcircle and these lines: {74, 52561}, {105, 960}, {106, 2983}, {107, 3952}, {108, 644}, {109, 4587}, {112, 4574}, {190, 1305}, {917, 40445}, {927, 53332}, {934, 1332}, {951, 1477}, {1018, 6011}, {2284, 8687}, {2690, 4115}, {2750, 51638}, {7259, 53683}, {9057, 30728}, {39438, 40414}, {39439, 57390}
X(29163) = isogonal conjugate of X(29162)
X(29163) = trilinear pole of line {6, 1260}
X(29163) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29162}, {244, 14543}, {440, 57200}, {513, 40940}, {514, 1104}, {649, 17863}, {905, 1842}, {950, 3669}, {1019, 1834}, {1111, 53290}, {2264, 3676}, {6591, 18650}, {7192, 40977}, {7199, 40984}, {17925, 18673}
X(29163) = X(i)-vertex conjugate of X(j) for these {i, j}: {9999, 29163}
X(29163) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29162}, {5375, 17863}, {39026, 40940}
X(29163) = X(i)-cross conjugate of X(j) for these {i, j}: {71, 1252}, {2328, 765}, {5285, 59}
X(29163) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(190), X(5546)}}, {{A, B, C, X(644), X(1332)}}, {{A, B, C, X(660), X(4566)}}, {{A, B, C, X(668), X(677)}}, {{A, B, C, X(960), X(2284)}}, {{A, B, C, X(3952), X(4574)}}, {{A, B, C, X(4559), X(32736)}}, {{A, B, C, X(27834), X(36049)}}, {{A, B, C, X(46135), X(54458)}}
X(29163) = barycentric product X(i)*X(j) for these (i, j): {100, 1257}, {190, 2983}, {1331, 40445}, {3699, 951}, {40414, 4574}, {52561, 648}, {52609, 57390}
X(29163) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29162}, {100, 17863}, {101, 40940}, {692, 1104}, {951, 3676}, {1252, 14543}, {1257, 693}, {1331, 18650}, {2427, 51410}, {2983, 514}, {3939, 950}, {4557, 1834}, {4574, 440}, {8750, 1842}, {23990, 53290}, {40445, 46107}, {52561, 525}, {57390, 17925}
X(29164) lies on circumconic {{A, B, C, X(4608), X(29260)}} and on these lines: {30, 511}, {663, 47726}, {693, 47713}, {1577, 47689}, {3762, 47706}, {4088, 47997}, {4391, 47710}, {4401, 50340}, {4791, 47708}, {4794, 48300}, {4801, 47717}, {4823, 47690}, {4978, 47692}, {14349, 47702}, {16892, 48075}, {21175, 47123}, {21192, 48069}, {47682, 48294}, {47691, 47715}, {47700, 47959}, {47701, 48054}, {47716, 47719}, {47727, 48287}, {47794, 48208}, {47795, 48203}, {47797, 48218}, {47809, 48196}, {47816, 48187}, {47817, 48236}, {47818, 48223}, {47838, 48158}, {47916, 48596}, {47924, 48086}, {47938, 48602}, {47958, 48603}, {47961, 48052}, {47970, 48118}, {47972, 48065}, {47977, 48130}, {48004, 48088}, {48011, 48106}, {48077, 48601}, {48082, 48591}, {48094, 48623}, {48174, 48556}, {48188, 48553}, {48222, 48561}, {48224, 48569}, {48254, 48573}
X(29164) = isogonal conjugate of X(29165)
X(29164) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29146, 29318}, {513, 7950, 29358}, {514, 523, 29260}, {522, 29158, 29270}, {523, 29142, 29047}, {814, 29128, 29140}, {826, 29144, 6005}, {7927, 29017, 29350}, {29021, 29047, 29142}, {29025, 29086, 29033}, {29029, 29074, 29344}, {29047, 29142, 514}, {29062, 29118, 29178}, {29134, 29250, 2787}, {47701, 48272, 48054}
X(29165) lies on the circumcircle and these lines: {29261, 35327}
X(29165) = isogonal conjugate of X(29164)
X(29166) lies on these lines: {30, 511}, {659, 47726}, {1960, 47682}, {2533, 47714}, {3801, 47715}, {21181, 48233}, {47708, 47790}, {47709, 48273}, {47713, 48279}, {47718, 50352}, {47727, 48296}, {47972, 49279}, {48005, 48272}, {48059, 48278}, {48305, 53361}, {50453, 53571}
X(29166) = isogonal conjugate of X(29167)
X(29166) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29017, 29256}, {513, 29318, 3906}, {514, 29074, 29268}, {514, 29086, 29182}, {514, 29146, 7950}, {522, 29029, 29340}, {523, 29312, 891}, {814, 29130, 29138}, {826, 29142, 6372}, {23876, 29021, 29144}, {23876, 29144, 512}, {29017, 29144, 23876}, {29051, 29154, 29272}, {29062, 29120, 29176}, {29070, 29116, 29184}, {29134, 29248, 29013}, {47682, 50340, 1960}
X(29167) lies on the circumcircle and these lines: {831, 4585}
X(29167) = isogonal conjugate of X(29166)
X(29168) lies on circumconic {{A, B, C, X(519), X(29685)}} and on these lines: {30, 511}, {667, 47972}, {1019, 50340}, {2530, 47701}, {3004, 23828}, {4010, 47715}, {4088, 47949}, {4122, 47714}, {4808, 47918}, {4809, 48568}, {4978, 48349}, {4983, 48278}, {21146, 47712}, {41800, 48249}, {47679, 50341}, {47682, 48336}, {47690, 48267}, {47699, 55182}, {47700, 47906}, {47702, 48151}, {47703, 48393}, {47708, 50352}, {47709, 48108}, {47711, 48265}, {47713, 48326}, {47718, 48080}, {47719, 48273}, {47727, 48323}, {47793, 48254}, {47794, 48235}, {47795, 48177}, {47796, 48158}, {47797, 48569}, {47809, 48553}, {47837, 48252}, {47839, 48161}, {47902, 48116}, {47936, 48146}, {47944, 48086}, {47970, 48103}, {47990, 48052}, {47994, 48047}, {47998, 48059}, {48004, 48056}, {48005, 50333}, {48006, 50507}, {48024, 48272}, {48069, 50504}, {48123, 49278}, {48195, 48218}, {48196, 48217}, {48223, 48570}, {48300, 48351}, {48367, 49279}, {48552, 48556}, {50347, 50512}
X(29168) = isogonal conjugate of X(29169)
X(29168) = perspector of circumconic {{A, B, C, X(2), X(29685)}}
X(29168) = barycentric product X(i)*X(j) for these (i, j): {29685, 514}
X(29168) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29169}, {29685, 190}
X(29168) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29142, 29312}, {513, 29146, 23875}, {513, 826, 29252}, {514, 29144, 7927}, {522, 29150, 29266}, {523, 6372, 29354}, {814, 29132, 29136}, {6002, 29086, 29058}, {6005, 29017, 690}, {23875, 29021, 29146}, {23875, 29146, 826}, {29029, 29051, 29336}, {29074, 29148, 29264}, {29134, 29246, 514}
X(29169) lies on the circumcircle and these lines:
X(29169) = isogonal conjugate of X(29168)
X(29170) lies on these lines: {30, 511}, {649, 48265}, {905, 4806}, {1019, 4874}, {3669, 4992}, {3762, 4834}, {3777, 20295}, {3801, 47971}, {4010, 48144}, {4106, 48406}, {4170, 4378}, {4367, 48080}, {4391, 4784}, {4490, 50343}, {4560, 48024}, {4776, 47893}, {4800, 47820}, {4801, 4810}, {4822, 53536}, {4824, 47911}, {4840, 50327}, {4897, 48400}, {4913, 47967}, {4922, 48338}, {4983, 48321}, {7192, 48392}, {14419, 47838}, {14431, 48573}, {17494, 47913}, {17496, 48123}, {21051, 50336}, {21301, 50359}, {23738, 48114}, {24719, 48151}, {47708, 50342}, {47762, 47872}, {47814, 48244}, {47833, 48570}, {47875, 48568}, {47888, 48551}, {47912, 50341}, {47955, 48002}, {47957, 48000}, {48049, 48100}, {48081, 48288}, {48149, 48264}, {48183, 48564}, {48198, 48569}, {48214, 48553}, {48248, 50515}, {48273, 48320}, {48279, 48341}, {48289, 50508}, {48401, 50501}
X(29170) = isogonal conjugate of X(29171)
X(29170) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29148, 29324}, {513, 29152, 29051}, {513, 814, 29246}, {514, 29150, 29328}, {525, 29120, 29172}, {826, 29132, 29134}, {1019, 48267, 4874}, {2787, 6005, 29366}, {6002, 29051, 29152}, {6372, 29013, 29362}, {23875, 29029, 29332}, {29021, 29090, 29370}, {29037, 29144, 29250}, {29051, 29152, 814}, {29078, 29142, 29248}, {29136, 29252, 514}
X(29171) lies on the circumcircle and these lines:
X(29171) = isogonal conjugate of X(29170)
X(29171) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(32042), X(32665)}}
X(29172) lies on circumconic {{A, B, C, X(693), X(29156)}} and on these lines: {30, 511}, {659, 47684}, {3801, 47887}, {4379, 21145}, {4774, 47689}, {4806, 49280}, {4874, 47682}, {4879, 47709}, {4951, 30709}, {6332, 48555}, {10015, 48405}, {14413, 48224}, {14430, 48188}, {14432, 48177}, {21343, 47692}, {25569, 48223}, {30574, 48235}, {47713, 48333}, {47728, 50340}, {47973, 53533}, {48024, 49274}, {48120, 49303}, {48158, 53334}, {48254, 53356}
X(29172) = isogonal conjugate of X(29173)
X(29172) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29130, 29134}, {514, 29017, 814}, {514, 29154, 29332}, {514, 29190, 29336}, {514, 29312, 29362}, {514, 29318, 2787}, {514, 522, 29156}, {514, 826, 29324}, {525, 29120, 29170}, {814, 29017, 29248}, {2787, 29318, 29370}, {3907, 29146, 29250}, {4083, 29116, 29174}, {23876, 29029, 29328}, {29017, 29156, 522}, {29021, 29094, 29366}, {29082, 29142, 29246}, {29138, 29256, 29013}
X(29173) lies on the circumcircle and these lines: {692, 29157}
X(29173) = isogonal conjugate of X(29172)
X(29174) lies on these lines: {30, 511}, {659, 47709}, {667, 47713}, {3777, 47688}, {3801, 48106}, {4367, 47692}, {4378, 47717}, {4874, 47712}, {4879, 47684}, {47693, 48392}, {47708, 48103}, {47725, 50352}, {47726, 48273}, {47872, 48236}, {47893, 48174}, {48118, 48265}, {48300, 48349}, {48403, 48405}
X(29174) = isogonal conjugate of X(29175)
X(29174) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29160, 29332}, {514, 29128, 29134}, {514, 29144, 29246}, {514, 7927, 29366}, {523, 29162, 29074}, {523, 814, 29250}, {812, 29146, 29248}, {826, 29158, 29328}, {4083, 29116, 29172}, {7950, 29013, 29370}, {29021, 29098, 29362}, {29025, 29074, 29162}, {29029, 29047, 29324}, {29074, 29162, 814}, {29140, 29260, 2787}
X(29175) lies on the circumcircle and these lines: {28864, 57217}
X(29175) = isogonal conjugate of X(29176)
X(29176) lies on these lines: {30, 511}, {1960, 48267}, {2530, 53536}, {4010, 48328}, {4170, 4922}, {4391, 50512}, {4474, 4834}, {4560, 48005}, {4810, 48282}, {14422, 47841}, {28603, 47835}, {30709, 47837}, {48053, 48288}, {48059, 48321}, {48090, 48343}
X(29176) = isogonal conjugate of X(29177)
X(29176) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(740), X(5560)}}, {{A, B, C, X(1392), X(35104)}}
X(29176) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 2787, 29268}, {513, 29344, 29182}, {514, 29078, 29256}, {514, 29090, 3906}, {514, 29152, 29340}, {814, 29148, 6372}, {826, 29126, 29138}, {2787, 29150, 3907}, {2787, 6002, 512}, {3907, 6002, 29150}, {4170, 4922, 48347}, {23875, 29156, 29272}, {29013, 29324, 891}, {29029, 29037, 7950}, {29062, 29120, 29166}, {29136, 29264, 523}
X(29177) lies on the circumcircle and these lines: {98, 12702}, {741, 7280}, {1388, 35108}
X(29177) = isogonal conjugate of X(29176)
X(29177) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1415), X(6540)}}
X(29178) lies on circumconic {{A, B, C, X(17925), X(29270)}} and on these lines: {30, 511}, {649, 4791}, {667, 4800}, {1019, 4379}, {1577, 47762}, {3762, 4380}, {3835, 16751}, {3960, 4106}, {4049, 54735}, {4129, 47778}, {4170, 48294}, {4378, 4810}, {4382, 48320}, {4391, 48011}, {4401, 4448}, {4560, 47759}, {4776, 45671}, {4794, 48080}, {4813, 47683}, {14838, 47760}, {20295, 48321}, {21260, 48229}, {21301, 48018}, {31149, 48244}, {45324, 47761}, {47680, 47971}, {47682, 48266}, {47775, 47997}, {48005, 48191}, {48012, 48225}, {48043, 48284}, {48110, 50457}, {48114, 48335}, {48273, 48343}, {48409, 48601}, {48410, 48603}, {48600, 50449}
X(29178) = isogonal conjugate of X(29179)
X(29178) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29152, 29344}, {512, 29236, 4844}, {513, 29340, 29033}, {514, 29013, 29270}, {812, 6002, 29148}, {814, 29150, 6005}, {826, 29124, 29140}, {900, 29126, 23876}, {2787, 29328, 29350}, {4844, 29344, 29236}, {15309, 23882, 514}, {29013, 29148, 812}, {29025, 29090, 29358}, {29029, 29078, 29318}, {29037, 29158, 29260}, {29062, 29118, 29164}, {29136, 29266, 29017}, {48114, 53536, 48335}
X(29179) lies on the circumcircle and these lines: {644, 53636}, {649, 43361}, {4574, 29271}
X(29179) = isogonal conjugate of X(29178)
X(29179) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(190), X(34073)}}
X(29180) lies on the circumcircle and these lines: {2, 15613}, {3, 907}, {30, 44945}, {99, 3522}, {107, 6995}, {110, 3796}, {112, 1593}, {376, 56607}, {476, 37900}, {691, 37944}, {827, 26224}, {934, 37539}, {935, 37931}, {1297, 53246}, {1304, 37977}, {2696, 47337}, {7418, 43662}, {7422, 45138}
X(29180) = isogonal conjugate of X(29181)
X(29180) = circumcircle-antipode of X(907)
X(29180) = Cundy-Parry Phi transform of X(14259)
X(29180) = inverse of X(15613) in the orthoptic circle of the Steiner Inellipse
X(29180) = anticomplement of X(44955)
X(29180) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29181}, {44955, 44955}
X(29180) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(64)}}, {{A, B, C, X(3), X(251)}}, {{A, B, C, X(4), X(3108)}}, {{A, B, C, X(6), X(53094)}}, {{A, B, C, X(23), X(37931)}}, {{A, B, C, X(25), X(3522)}}, {{A, B, C, X(30), X(37977)}}, {{A, B, C, X(54), X(14458)}}, {{A, B, C, X(55), X(37539)}}, {{A, B, C, X(66), X(41891)}}, {{A, B, C, X(67), X(5621)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(186), X(37900)}}, {{A, B, C, X(262), X(16835)}}, {{A, B, C, X(468), X(37944)}}, {{A, B, C, X(1177), X(34570)}}, {{A, B, C, X(1383), X(43713)}}, {{A, B, C, X(1976), X(5984)}}, {{A, B, C, X(2987), X(11606)}}, {{A, B, C, X(3425), X(11270)}}, {{A, B, C, X(3426), X(14484)}}, {{A, B, C, X(3431), X(14495)}}, {{A, B, C, X(3455), X(10991)}}, {{A, B, C, X(3527), X(54519)}}, {{A, B, C, X(4518), X(15337)}}, {{A, B, C, X(7249), X(15339)}}, {{A, B, C, X(7612), X(13452)}}, {{A, B, C, X(8770), X(43691)}}, {{A, B, C, X(8882), X(34436)}}, {{A, B, C, X(11469), X(40124)}}, {{A, B, C, X(11738), X(14494)}}, {{A, B, C, X(13380), X(18018)}}, {{A, B, C, X(13574), X(34178)}}, {{A, B, C, X(13575), X(57414)}}, {{A, B, C, X(13603), X(14488)}}, {{A, B, C, X(14489), X(54172)}}, {{A, B, C, X(14490), X(54706)}}, {{A, B, C, X(14528), X(39955)}}, {{A, B, C, X(14910), X(34437)}}, {{A, B, C, X(15740), X(40178)}}, {{A, B, C, X(22334), X(39951)}}, {{A, B, C, X(32085), X(41435)}}, {{A, B, C, X(32824), X(40801)}}, {{A, B, C, X(34207), X(34285)}}, {{A, B, C, X(34802), X(44468)}}, {{A, B, C, X(34817), X(52223)}}, {{A, B, C, X(35510), X(41489)}}, {{A, B, C, X(37962), X(47337)}}, {{A, B, C, X(38280), X(43674)}}, {{A, B, C, X(38747), X(39644)}}, {{A, B, C, X(44763), X(54866)}}, {{A, B, C, X(46848), X(54890)}}, {{A, B, C, X(46851), X(54582)}}
X(29181) lies on these lines: {2, 21167}, {3, 3589}, {4, 141}, {5, 3098}, {6, 20}, {7, 5716}, {9, 13442}, {22, 13394}, {23, 11064}, {25, 53415}, {26, 35228}, {30, 511}, {40, 49524}, {51, 7667}, {53, 37200}, {64, 36851}, {66, 41362}, {67, 10733}, {69, 3146}, {74, 25328}, {98, 50774}, {110, 37900}, {113, 33851}, {125, 46517}, {140, 14810}, {146, 2930}, {147, 50771}, {154, 34608}, {159, 2883}, {165, 38047}, {182, 550}, {193, 5059}, {206, 13346}, {230, 2076}, {262, 54773}, {316, 6393}, {323, 20063}, {325, 40236}, {343, 7391}, {373, 43957}, {376, 597}, {381, 20582}, {382, 1352}, {383, 44382}, {388, 10387}, {390, 28369}, {394, 7500}, {411, 4265}, {427, 54374}, {428, 3917}, {446, 41337}, {468, 51360}, {546, 24206}, {547, 55627}, {548, 5092}, {549, 38136}, {573, 49131}, {575, 12103}, {576, 12007}, {599, 3543}, {611, 4302}, {613, 4299}, {631, 51126}, {632, 55637}, {639, 36658}, {640, 36657}, {673, 50424}, {858, 15059}, {940, 50698}, {944, 51147}, {950, 24471}, {962, 3242}, {991, 49132}, {1001, 9840}, {1080, 44383}, {1151, 13910}, {1152, 13972}, {1211, 37456}, {1213, 7379}, {1351, 1657}, {1353, 37517}, {1370, 13567}, {1386, 4297}, {1428, 15326}, {1469, 6284}, {1495, 37899}, {1511, 32271}, {1513, 5103}, {1568, 47093}, {1593, 3867}, {1595, 46728}, {1656, 55629}, {1691, 53505}, {1692, 6781}, {1843, 1885}, {1853, 44442}, {1890, 5784}, {1990, 44704}, {1992, 15683}, {1993, 20062}, {2330, 15338}, {2475, 26543}, {2549, 14532}, {2550, 5793}, {2979, 34603}, {3056, 7354}, {3060, 52397}, {3066, 46336}, {3070, 53491}, {3071, 53492}, {3090, 51128}, {3091, 3763}, {3094, 7745}, {3313, 3575}, {3416, 5691}, {3522, 3618}, {3523, 47355}, {3524, 38072}, {3525, 55641}, {3526, 55639}, {3528, 55676}, {3529, 3629}, {3530, 55653}, {3534, 5050}, {3545, 55618}, {3576, 38035}, {3580, 5189}, {3619, 3832}, {3620, 17578}, {3627, 3818}, {3628, 55631}, {3630, 15069}, {3654, 50951}, {3793, 10991}, {3815, 37182}, {3826, 15973}, {3830, 47354}, {3839, 21358}, {3843, 55604}, {3844, 19925}, {3845, 50960}, {3850, 55612}, {3851, 55616}, {3853, 18358}, {3856, 55609}, {3857, 55611}, {3858, 55608}, {3861, 55601}, {3932, 18788}, {4045, 55167}, {4220, 6703}, {4301, 49465}, {4383, 50699}, {4846, 8546}, {5017, 5254}, {5026, 38738}, {5039, 15048}, {5052, 7756}, {5054, 55643}, {5055, 55624}, {5056, 55622}, {5064, 43653}, {5066, 51131}, {5070, 55632}, {5072, 55620}, {5073, 18440}, {5076, 55595}, {5093, 11179}, {5096, 6909}, {5097, 48891}, {5102, 8584}, {5104, 53419}, {5111, 53499}, {5157, 11424}, {5159, 32223}, {5181, 13202}, {5188, 24256}, {5207, 51374}, {5220, 48936}, {5223, 49716}, {5305, 41413}, {5446, 32191}, {5473, 51159}, {5474, 51160}, {5476, 8703}, {5493, 49529}, {5542, 49743}, {5562, 16621}, {5596, 17845}, {5621, 25320}, {5642, 47312}, {5651, 10301}, {5654, 7387}, {5657, 38144}, {5686, 49724}, {5731, 38315}, {5732, 48897}, {5743, 26118}, {5759, 51144}, {5805, 43169}, {5878, 39879}, {5880, 43173}, {5893, 15585}, {5894, 15583}, {5895, 9924}, {5899, 51425}, {5907, 16656}, {5921, 40341}, {5943, 10691}, {5972, 37897}, {5984, 50251}, {6034, 34473}, {6144, 49140}, {6201, 36703}, {6202, 36701}, {6247, 17834}, {6389, 34815}, {6403, 18560}, {6530, 35474}, {6593, 16163}, {6636, 37649}, {6643, 15873}, {6688, 7734}, {6696, 23300}, {6698, 7687}, {6707, 6998}, {6723, 47629}, {6756, 15644}, {6995, 17811}, {7000, 45473}, {7374, 45472}, {7378, 33522}, {7385, 17245}, {7386, 17810}, {7390, 15668}, {7396, 26958}, {7407, 17327}, {7417, 11053}, {7422, 24975}, {7464, 19457}, {7492, 14389}, {7519, 15066}, {7540, 13340}, {7553, 10625}, {7580, 36740}, {7605, 15246}, {7710, 9766}, {7750, 18906}, {7758, 40268}, {7789, 30270}, {7991, 49688}, {7998, 35283}, {8236, 49739}, {8262, 47339}, {8266, 54003}, {8353, 22486}, {8356, 22676}, {8667, 53015}, {8928, 52979}, {9589, 16496}, {9756, 13468}, {9786, 52398}, {9820, 17714}, {9825, 13348}, {9909, 10192}, {9969, 12362}, {9970, 12121}, {9971, 52069}, {9993, 37450}, {10109, 55621}, {10113, 49116}, {10124, 25565}, {10164, 38146}, {10168, 34200}, {10182, 33591}, {10264, 32273}, {10295, 15472}, {10304, 47352}, {10323, 45089}, {10442, 47595}, {10541, 50693}, {10721, 14982}, {10723, 11646}, {10734, 36883}, {10752, 25329}, {10989, 44569}, {11038, 37631}, {11173, 43619}, {11178, 15687}, {11206, 37672}, {11245, 21969}, {11257, 32449}, {11412, 16655}, {11414, 12233}, {11459, 16654}, {11495, 37425}, {11539, 55640}, {11566, 48378}, {11574, 31829}, {11579, 20127}, {11676, 44380}, {11694, 25566}, {11744, 38885}, {11799, 32218}, {11812, 55645}, {11824, 36714}, {11825, 36709}, {11898, 49136}, {12017, 15696}, {12082, 35707}, {12084, 15578}, {12085, 37488}, {12100, 51139}, {12102, 55597}, {12108, 55647}, {12110, 42421}, {12134, 37484}, {12164, 44762}, {12173, 44790}, {12177, 38730}, {12203, 12212}, {12220, 44439}, {12225, 37473}, {12241, 19161}, {12244, 16010}, {12278, 46442}, {12295, 32274}, {12305, 21736}, {12383, 51941}, {12588, 12943}, {12589, 12953}, {12605, 37511}, {12811, 55617}, {12812, 55623}, {13142, 44829}, {13403, 21851}, {13421, 43588}, {13488, 41579}, {13490, 54042}, {13857, 37904}, {14360, 37751}, {14538, 41035}, {14539, 41034}, {14677, 32305}, {14688, 38805}, {14689, 28343}, {14718, 17949}, {14790, 14852}, {14807, 15163}, {14808, 15162}, {14848, 15689}, {14867, 47609}, {14869, 55644}, {14891, 55663}, {14893, 25561}, {14914, 34777}, {14994, 52854}, {15118, 37853}, {15254, 48939}, {15360, 47314}, {15462, 38723}, {15520, 19710}, {15533, 15640}, {15534, 34796}, {15582, 22660}, {15680, 15988}, {15682, 22165}, {15685, 41149}, {15686, 39561}, {15688, 38064}, {15690, 41153}, {15691, 55706}, {15693, 50963}, {15697, 51134}, {15698, 50969}, {15699, 55630}, {15711, 51137}, {15712, 55655}, {15717, 55656}, {15720, 55648}, {15759, 55664}, {15980, 35383}, {15984, 41325}, {16063, 37648}, {16195, 31267}, {16239, 55636}, {16619, 51391}, {16775, 54050}, {16776, 34664}, {17056, 37443}, {17504, 55660}, {17538, 53093}, {17710, 50649}, {17792, 57288}, {17800, 44456}, {18553, 48943}, {18860, 32459}, {19127, 44239}, {19131, 44249}, {19136, 44241}, {19140, 34153}, {19145, 42260}, {19146, 42261}, {19149, 31305}, {19154, 44242}, {19510, 47449}, {19596, 37945}, {19708, 50968}, {19709, 51129}, {20080, 50692}, {20190, 33751}, {20300, 23335}, {20330, 48933}, {20806, 31304}, {21151, 38143}, {21153, 38145}, {21154, 38147}, {21155, 38148}, {21356, 50687}, {21659, 26926}, {21663, 47091}, {21735, 55671}, {21737, 45440}, {21849, 45298}, {22521, 34615}, {23041, 37497}, {23049, 23328}, {23061, 46818}, {23311, 36656}, {23312, 36655}, {23326, 34622}, {23327, 54992}, {23332, 34609}, {24466, 51157}, {25324, 53246}, {25488, 37283}, {25555, 33923}, {30271, 49481}, {30739, 34417}, {31099, 37638}, {31133, 45303}, {31693, 41036}, {31694, 41037}, {31860, 40132}, {31861, 35254}, {32111, 37946}, {32225, 47311}, {32237, 37910}, {32516, 44423}, {33257, 39141}, {33699, 41152}, {33749, 55715}, {33844, 37374}, {34505, 46034}, {34507, 39884}, {34628, 47356}, {34658, 41580}, {34774, 36989}, {34779, 34785}, {34787, 51491}, {35018, 55625}, {35265, 37901}, {35266, 47313}, {35375, 38230}, {35387, 51848}, {35481, 39588}, {35840, 42266}, {35841, 42267}, {36698, 50677}, {36706, 37499}, {36741, 37022}, {36757, 36967}, {36758, 36968}, {36961, 51010}, {36962, 51013}, {36991, 50995}, {36992, 51016}, {36994, 51018}, {37426, 51738}, {37458, 37480}, {37676, 50694}, {37952, 47453}, {37967, 46817}, {37971, 51392}, {38052, 50169}, {38054, 50226}, {38057, 49730}, {38071, 55613}, {38079, 45759}, {38227, 44401}, {38323, 54334}, {38727, 47090}, {39242, 44261}, {39553, 48899}, {39838, 50567}, {39874, 49138}, {39875, 43407}, {39876, 43408}, {39899, 49137}, {41024, 50855}, {41025, 50858}, {41042, 51202}, {41043, 51205}, {41099, 50966}, {41585, 44438}, {41586, 47095}, {41624, 44434}, {41981, 55688}, {42099, 51206}, {42100, 51207}, {42313, 52281}, {42584, 44497}, {42585, 44498}, {42785, 44682}, {42819, 48894}, {42871, 48909}, {43150, 48942}, {43166, 52524}, {43178, 48916}, {43216, 57287}, {44238, 51729}, {44240, 51730}, {44243, 51731}, {44246, 51733}, {44247, 51734}, {44248, 51736}, {44252, 51740}, {44280, 47455}, {44381, 56370}, {44440, 54347}, {44471, 48743}, {44472, 48742}, {44903, 55717}, {46267, 55680}, {46853, 55672}, {46988, 47557}, {47000, 47561}, {47031, 47544}, {47094, 51403}, {47308, 47571}, {47309, 47468}, {47310, 47556}, {47335, 47581}, {47336, 47569}, {47357, 50422}, {47358, 50865}, {48154, 55634}, {48662, 49134}, {48930, 52769}, {49509, 51063}, {49511, 51118}, {49735, 52653}, {50659, 54993}, {50779, 51042}, {50781, 50862}, {50782, 50863}, {50783, 50864}, {50784, 50866}, {50785, 50867}, {50786, 50868}, {50787, 50869}, {50788, 50870}, {50789, 50871}, {50790, 50872}, {50791, 50873}, {50792, 50874}, {50955, 51025}, {50989, 51216}, {50990, 51167}, {50992, 51027}, {50993, 51029}, {50994, 51164}, {51006, 51705}, {51007, 52836}, {51009, 52837}, {51020, 52838}, {51021, 52839}, {51051, 51065}, {51089, 51120}, {51154, 51709}, {51186, 51213}, {51187, 51214}, {51188, 51215}, {51189, 51217}, {51998, 52403}, {55633, 55856}, {55635, 55859}
X(29181) = isogonal conjugate of X(29180)
X(29181) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 3800}
X(29181) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4, 44955}
X(29181) = X(i)-complementary conjugate of X(j) for these {i, j}: {1, 44955}, {29180, 10}
X(29181) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(14259)}}, {{A, B, C, X(4), X(3800)}}, {{A, B, C, X(69), X(51830)}}, {{A, B, C, X(512), X(22334)}}, {{A, B, C, X(520), X(34817)}}, {{A, B, C, X(523), X(8801)}}, {{A, B, C, X(525), X(15740)}}, {{A, B, C, X(801), X(44882)}}
X(29181) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 31884, 21167}, {2, 51538, 53023}, {3, 31670, 5480}, {3, 48873, 48881}, {3, 5480, 3589}, {4, 10519, 10516}, {4, 11821, 33537}, {4, 48910, 51163}, {5, 48874, 3098}, {6, 48872, 20}, {20, 15740, 16936}, {20, 15741, 15740}, {20, 51212, 6}, {23, 11064, 15448}, {30, 13391, 44665}, {30, 3564, 29012}, {69, 3146, 36990}, {182, 48880, 550}, {193, 5059, 14927}, {376, 14853, 5085}, {376, 54131, 597}, {381, 54169, 20582}, {382, 33878, 1352}, {511, 11645, 5965}, {511, 1503, 524}, {511, 29012, 3564}, {511, 29317, 30}, {511, 29323, 542}, {511, 542, 34380}, {517, 29211, 29291}, {548, 18583, 5092}, {549, 38136, 38317}, {575, 48920, 48892}, {576, 48898, 48906}, {858, 15107, 32269}, {858, 32269, 47296}, {1350, 10516, 10519}, {1350, 33537, 34817}, {1350, 48910, 4}, {1351, 1657, 46264}, {1351, 8550, 32455}, {1352, 43621, 382}, {1370, 33586, 13567}, {3098, 48901, 5}, {3522, 3618, 53094}, {3524, 38072, 48310}, {3529, 6776, 48905}, {3534, 20423, 51737}, {3534, 51737, 50971}, {3620, 17578, 51537}, {3627, 48876, 3818}, {3818, 48904, 3627}, {3830, 54173, 47354}, {3853, 18358, 48889}, {5073, 55584, 18440}, {5085, 54131, 14853}, {5092, 48885, 548}, {5476, 17508, 38110}, {5895, 9924, 41735}, {6776, 11477, 3629}, {8584, 51166, 54132}, {8703, 38110, 17508}, {10516, 10519, 141}, {10752, 32233, 25329}, {11001, 54132, 43273}, {11459, 34613, 16654}, {12085, 37488, 44883}, {13442, 48883, 49728}, {13598, 52520, 9969}, {14912, 54132, 5102}, {15640, 54174, 51023}, {15682, 47353, 51022}, {15682, 50967, 47353}, {15704, 48906, 48898}, {17508, 38110, 50983}, {17834, 34938, 6247}, {19924, 29317, 511}, {20423, 50971, 51138}, {21167, 50965, 31884}, {21167, 51538, 50959}, {22165, 47353, 50958}, {24206, 48895, 546}, {29024, 29353, 29207}, {29028, 29369, 29243}, {29077, 29331, 29235}, {29323, 34380, 1503}, {31305, 37498, 34782}, {31670, 48873, 3}, {31884, 53023, 2}, {34507, 48884, 39884}, {36990, 53097, 69}, {38317, 55649, 549}, {40107, 48889, 18358}, {43273, 54132, 8584}, {47355, 55651, 3523}, {48872, 51212, 44882}, {48879, 48898, 15704}, {48884, 55587, 34507}, {48892, 48920, 12103}, {48895, 55606, 24206}, {48942, 55588, 43150}, {48943, 55590, 18553}, {50959, 50965, 50984}, {50970, 50991, 54173}, {51024, 53023, 51538}
X(29182) lies on these lines: {30, 511}, {693, 48328}, {1577, 1960}, {2533, 48566}, {4063, 4774}, {4367, 47724}, {4382, 48333}, {4791, 48331}, {4810, 48337}, {4823, 48330}, {4922, 4978}, {6161, 48264}, {8643, 47875}, {14422, 47796}, {14838, 53571}, {21051, 48284}, {21301, 48059}, {23815, 48325}, {28603, 47793}, {30709, 48553}, {47721, 48570}, {47729, 48273}, {48090, 48294}, {48098, 48343}, {48279, 48296}, {48322, 48393}, {48324, 48392}
X(29182) = isogonal conjugate of X(29183)
X(29182) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 814, 29340}, {513, 29344, 29176}, {514, 29074, 7950}, {514, 29086, 29166}, {514, 29236, 29268}, {522, 29094, 29256}, {523, 29336, 29184}, {814, 29366, 29013}, {826, 29240, 29272}, {2787, 29051, 6372}, {3907, 29070, 891}, {21301, 48288, 48059}, {29013, 29066, 29366}, {29013, 29366, 512}, {29021, 29156, 29138}, {29062, 29082, 3906}, {29236, 29274, 514}, {29240, 29278, 826}, {47729, 48273, 48347}
X(29183) lies on the circumcircle and these lines:
X(29183) = isogonal conjugate of X(29182)
X(29183) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(4555)}}
X(29184) lies on circumconic {{A, B, C, X(519), X(29867)}} and on these lines: {30, 511}, {1960, 47712}, {3801, 50512}, {4367, 47725}, {4922, 47717}, {21145, 48566}, {47684, 48273}, {47691, 48328}, {47728, 48347}, {48059, 50351}
X(29184) = isogonal conjugate of X(29185)
X(29184) = perspector of circumconic {{A, B, C, X(2), X(29867)}}
X(29184) = barycentric product X(i)*X(j) for these (i, j): {29867, 514}
X(29184) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29185}, {29867, 190}
X(29184) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 514, 29272}, {514, 29029, 6372}, {514, 29098, 891}, {514, 29118, 29102}, {514, 29122, 29138}, {514, 29140, 513}, {514, 29158, 29082}, {523, 29336, 29182}, {812, 29154, 29256}, {814, 29160, 7950}, {826, 29162, 29340}, {29013, 29332, 3906}, {29025, 29082, 29158}, {29047, 29156, 29268}, {29070, 29116, 29166}, {29082, 29158, 512}
X(29185) lies on the circumcircle and these lines: {29273, 53268}
X(29185) = isogonal conjugate of X(29184)
X(29186) lies on these lines: {1, 4801}, {10, 47965}, {30, 511}, {650, 50337}, {659, 50352}, {663, 4978}, {667, 21146}, {693, 4040}, {905, 23789}, {1019, 48108}, {1027, 43531}, {1577, 4724}, {1635, 48573}, {1734, 17494}, {2901, 47678}, {3716, 4823}, {3762, 47929}, {3777, 48288}, {3803, 43067}, {3835, 48058}, {3837, 50507}, {4010, 48351}, {4077, 51652}, {4129, 48029}, {4170, 4382}, {4369, 4401}, {4379, 47818}, {4391, 47724}, {4448, 47875}, {4449, 48285}, {4462, 47721}, {4498, 4761}, {4560, 4905}, {4728, 47838}, {4775, 48279}, {4791, 48623}, {4815, 48340}, {4818, 19992}, {4830, 48011}, {4893, 47816}, {4913, 48018}, {4983, 24719}, {6161, 48301}, {14349, 46403}, {14838, 24720}, {17072, 48003}, {17166, 48324}, {19594, 23724}, {20295, 48081}, {20517, 50347}, {21185, 48014}, {21301, 47959}, {36848, 47888}, {45324, 45673}, {47666, 47948}, {47672, 48150}, {47680, 47708}, {47682, 47719}, {47683, 48410}, {47685, 48086}, {47687, 48272}, {47694, 48111}, {47707, 47723}, {47709, 47725}, {47710, 48118}, {47711, 48094}, {47712, 47972}, {47715, 48300}, {47718, 47726}, {47720, 47727}, {47729, 48282}, {47794, 47811}, {47795, 47812}, {47817, 48572}, {47826, 48551}, {47836, 48240}, {47837, 48226}, {47839, 48184}, {47840, 48170}, {47905, 47917}, {47912, 47927}, {47918, 47933}, {47926, 48407}, {47941, 47947}, {47945, 48586}, {47956, 47963}, {47986, 48612}, {47992, 48601}, {47996, 48613}, {47997, 48001}, {48000, 48012}, {48004, 48009}, {48023, 50449}, {48032, 50457}, {48042, 48052}, {48045, 48049}, {48050, 48054}, {48055, 48395}, {48089, 48099}, {48098, 48331}, {48115, 48131}, {48120, 48305}, {48126, 48329}, {48148, 50523}, {48151, 48321}, {48196, 48562}, {48273, 48336}, {48568, 48579}
X(29186) = isogonal conjugate of X(29187)
X(29186) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(9049)}}, {{A, B, C, X(518), X(16783)}}, {{A, B, C, X(674), X(56328)}}, {{A, B, C, X(834), X(1027)}}, {{A, B, C, X(5850), X(43972)}}
X(29186) = barycentric product X(i)*X(j) for these (i, j): {16783, 693}
X(29186) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29187}, {16783, 100}
X(29186) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29362, 29302}, {513, 23882, 8714}, {513, 29238, 29150}, {514, 28470, 4160}, {514, 29021, 29160}, {514, 29051, 29066}, {514, 29142, 29130}, {514, 29192, 29288}, {522, 23875, 29294}, {663, 48119, 4978}, {663, 4978, 48295}, {814, 6372, 29148}, {3309, 4762, 4151}, {4382, 48367, 4170}, {4391, 47974, 47970}, {21301, 47969, 47959}, {23789, 48284, 905}, {29017, 29102, 29220}, {29070, 29150, 29238}, {29150, 29238, 29013}, {29198, 29274, 2787}, {29246, 29362, 512}, {48098, 48331, 52601}
X(29187) lies on the circumcircle and these lines: {1, 9105}, {105, 386}, {612, 675}, {835, 1026}, {2711, 51619}, {8691, 40499}
X(29187) = isogonal conjugate of X(29186)
X(29187) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29186}, {514, 16783}
X(29187) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(34074)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(37138)}}, {{A, B, C, X(386), X(1026)}}
X(29187) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29186}, {692, 16783}
X(29188) lies on circumconic {{A, B, C, X(519), X(3112)}} and on these lines: {1, 21146}, {8, 47969}, {30, 511}, {659, 4761}, {663, 3720}, {667, 47762}, {693, 4775}, {764, 48298}, {1577, 4800}, {1734, 48225}, {1960, 4369}, {2254, 48288}, {2533, 4040}, {3251, 47780}, {3762, 4774}, {3960, 48289}, {4010, 47724}, {4122, 47723}, {4378, 47729}, {4391, 48351}, {4651, 4705}, {4707, 50340}, {4730, 17494}, {4770, 48000}, {4776, 31149}, {4794, 4874}, {4801, 48333}, {4814, 47926}, {4879, 4978}, {4895, 47672}, {4922, 48320}, {4983, 21301}, {6161, 47694}, {9508, 48284}, {14419, 47824}, {14431, 47821}, {14838, 48229}, {15584, 53285}, {17072, 47778}, {19947, 24720}, {21051, 48058}, {21052, 48553}, {21260, 47760}, {23815, 48136}, {25569, 48253}, {25666, 53571}, {30592, 48170}, {43067, 48327}, {45316, 47779}, {45324, 48183}, {45332, 45666}, {45671, 48244}, {47680, 48349}, {47683, 50341}, {47690, 49279}, {47721, 48080}, {47727, 48326}, {48004, 48401}, {48073, 48325}, {48098, 48295}, {48120, 48339}, {48267, 48367}, {48273, 48338}, {48279, 48337}, {48285, 48344}, {48305, 50457}, {48321, 50359}, {48348, 48406}, {48396, 49290}
X(29188) = isogonal conjugate of X(29189)
X(29188) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29051, 29070}, {513, 29236, 29148}, {514, 29144, 29128}, {514, 29366, 29298}, {523, 29102, 29224}, {525, 29086, 29194}, {663, 50352, 52601}, {814, 6005, 29150}, {4895, 47672, 48291}, {23875, 29074, 29292}, {29021, 29082, 29154}, {29066, 29148, 29236}, {29148, 29236, 2787}, {29246, 29366, 514}, {47723, 49276, 4122}, {47729, 48108, 4378}
X(29189) lies on the circumcircle and these lines: {104, 48929}, {106, 1964}, {689, 55243}
X(29189) = isogonal conjugate of X(29188)
X(29189) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(664), X(40433)}}, {{A, B, C, X(692), X(4597)}}
X(29190) lies on circumconic {{A, B, C, X(693), X(29062)}} and on these lines: {30, 511}, {649, 47715}, {693, 20517}, {1019, 47719}, {1734, 47687}, {4025, 23789}, {4040, 49288}, {4063, 47690}, {4142, 4823}, {4170, 47972}, {4380, 47718}, {4382, 47712}, {4401, 8045}, {4467, 4905}, {4498, 47711}, {4522, 48003}, {4560, 49278}, {4724, 7265}, {6332, 48284}, {17494, 48272}, {21185, 48268}, {21192, 24720}, {21196, 48066}, {21385, 47707}, {25259, 47970}, {44449, 47942}, {45746, 48086}, {47673, 48116}, {47679, 48023}, {47699, 48085}, {47714, 48106}, {47817, 47874}, {47886, 48556}, {47976, 49283}, {47977, 49275}, {48004, 48270}, {48052, 48404}, {48077, 48407}, {48273, 50340}, {48277, 48409}, {48280, 48295}, {48331, 49290}, {49285, 50337}, {49286, 57068}
X(29190) = isogonal conjugate of X(29191)
X(29190) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 29106, 29216}, {514, 29062, 29212}, {514, 522, 29062}, {812, 29021, 29158}, {4083, 29086, 29192}, {23876, 29051, 29304}, {29013, 29142, 29132}, {29017, 29070, 514}, {29017, 29244, 29154}, {29070, 29154, 29244}, {29248, 29362, 826}
X(29191) lies on the circumcircle and these lines: {692, 29063}
X(29191) = isogonal conjugate of X(29190)
X(29192) lies on circumconic {{A, B, C, X(674), X(39973)}} and on these lines: {1, 47690}, {30, 511}, {663, 47711}, {693, 47723}, {1960, 48405}, {2533, 20517}, {3762, 47972}, {4024, 48339}, {4040, 47707}, {4122, 4775}, {4449, 47715}, {6590, 57096}, {7265, 48338}, {7662, 48286}, {8045, 48294}, {14419, 48235}, {14431, 48177}, {25259, 48352}, {30709, 48158}, {31149, 48552}, {47660, 48324}, {47680, 47692}, {47682, 47689}, {47687, 48335}, {47691, 47724}, {47710, 48300}, {47719, 48282}, {47722, 47725}, {47726, 47728}, {48062, 48284}, {48285, 48290}, {48295, 48396}, {48298, 49278}
X(29192) = isogonal conjugate of X(29193)
X(29192) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29062, 29216}, {512, 29074, 29062}, {513, 29110, 29212}, {523, 29240, 29160}, {814, 7927, 29158}, {826, 29366, 29304}, {2787, 29144, 29132}, {3800, 29278, 29013}, {4083, 29086, 29190}, {4844, 29318, 2785}, {12073, 29058, 29328}, {29047, 29051, 514}, {29066, 29160, 29240}, {29250, 29366, 826}, {47689, 47729, 47682}, {47692, 47721, 47680}
X(29193) lies on the circumcircle and these lines: {675, 29831}
X(29193) = isogonal conjugate of X(29192)
X(29194) lies on these lines: {30, 511}, {4784, 47714}, {4810, 47713}, {4834, 47689}, {4951, 47794}, {7265, 50340}, {47715, 50342}
X(29194) = isogonal conjugate of X(29195)
X(29194) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 29062, 29230}, {514, 29370, 29292}, {522, 826, 29070}, {525, 29086, 29188}, {814, 29318, 29154}, {826, 29070, 29224}, {23876, 29074, 29298}, {29013, 29146, 29128}, {29017, 29062, 2787}, {29017, 29230, 514}, {29021, 29078, 29150}
X(29195) lies on the circumcircle and these lines:
X(29195) = isogonal conjugate of X(29194)
X(29196) lies on these lines: {30, 511}, {649, 47710}, {1019, 47689}, {4063, 47706}, {4382, 47717}, {4951, 47839}, {6129, 57160}, {20517, 48395}, {22037, 50508}, {47653, 48586}, {47714, 48144}, {47718, 48320}, {48111, 49273}
X(29196) = isogonal conjugate of X(29197)
X(29196) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29370, 29294}, {522, 29047, 29302}, {523, 29232, 29158}, {814, 7950, 29160}, {826, 29066, 29220}, {826, 29074, 29066}, {2787, 29146, 29130}, {29021, 29037, 29148}, {29062, 29158, 29232}, {29158, 29232, 29013}, {29250, 29370, 512}
X(29197) lies on the circumcircle and these lines:
X(29197) = isogonal conjugate of X(29196)
X(29198) lies on these lines: {1, 48351}, {30, 511}, {351, 28374}, {650, 48618}, {659, 47929}, {661, 3777}, {663, 48323}, {667, 23394}, {693, 48265}, {764, 14349}, {876, 47915}, {905, 47966}, {1019, 4782}, {1491, 47918}, {1577, 48098}, {1960, 48065}, {2254, 4490}, {2526, 48607}, {2530, 47959}, {2533, 4462}, {3250, 23751}, {3669, 48029}, {3762, 50352}, {3766, 43067}, {3801, 47676}, {3835, 48406}, {3960, 48004}, {4010, 4801}, {4040, 4378}, {4041, 50359}, {4122, 47719}, {4129, 23815}, {4147, 48073}, {4367, 4724}, {4379, 47872}, {4391, 21146}, {4408, 52619}, {4448, 47820}, {4449, 48336}, {4498, 4784}, {4705, 4905}, {4770, 48018}, {4775, 48282}, {4790, 21832}, {4794, 48328}, {4824, 22320}, {4834, 21385}, {4879, 48367}, {4893, 47893}, {4978, 48090}, {4983, 47942}, {4992, 48043}, {6332, 48040}, {7192, 16737}, {9508, 47965}, {14404, 47666}, {14433, 38238}, {17072, 48401}, {17496, 47969}, {20507, 49296}, {20949, 23807}, {20980, 21791}, {21051, 24720}, {21104, 48400}, {21260, 23789}, {21343, 48338}, {22319, 50489}, {23765, 47906}, {25142, 47996}, {30724, 47799}, {36848, 47814}, {45666, 48564}, {47663, 50502}, {47672, 48392}, {47675, 50497}, {47708, 48326}, {47720, 48349}, {47793, 47823}, {47794, 48216}, {47795, 48197}, {47796, 47822}, {47815, 48570}, {47821, 47841}, {47824, 47835}, {47832, 47889}, {47875, 48221}, {47888, 48194}, {47911, 48122}, {47912, 50328}, {47921, 50336}, {47936, 50358}, {47954, 50449}, {47955, 48092}, {47987, 48053}, {47994, 48054}, {47997, 48059}, {48005, 48066}, {48021, 48123}, {48080, 48279}, {48083, 48300}, {48101, 50505}, {48120, 48264}, {48127, 48393}, {48141, 50516}, {48143, 50457}, {48280, 50326}, {48297, 53315}, {48301, 53343}, {48333, 48352}, {48346, 50508}
X(29198) = isogonal conjugate of X(29199)
X(29198) = perspector of circumconic {{A, B, C, X(2), X(4699)}}
X(29198) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29199}, {100, 39972}, {692, 56212}
X(29198) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29199}, {1015, 39738}, {1086, 56212}, {8054, 39972}
X(29198) = X(i)-Ceva conjugate of X(j) for these {i, j}: {17038, 244}, {39740, 1015}
X(29198) = X(i)-complementary conjugate of X(j) for these {i, j}: {29199, 10}, {39738, 116}, {39972, 11}, {56212, 21252}
X(29198) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {692, 41912}, {29199, 8}, {39738, 150}, {39972, 149}, {56212, 21293}
X(29198) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(43931)}}, {{A, B, C, X(514), X(48399)}}, {{A, B, C, X(519), X(26102)}}, {{A, B, C, X(536), X(1218)}}, {{A, B, C, X(726), X(39711)}}, {{A, B, C, X(812), X(47915)}}, {{A, B, C, X(876), X(4778)}}, {{A, B, C, X(3669), X(28840)}}, {{A, B, C, X(4083), X(7192)}}, {{A, B, C, X(4785), X(47947)}}
X(29198) = barycentric product X(i)*X(j) for these (i, j): {1, 48399}, {4699, 513}, {26102, 514}
X(29198) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29199}, {513, 39738}, {514, 56212}, {649, 39972}, {4699, 668}, {26102, 190}, {48399, 75}
X(29198) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29226, 4083}, {512, 514, 29226}, {513, 28199, 4132}, {513, 29226, 512}, {514, 29120, 29122}, {514, 29132, 29098}, {514, 6005, 891}, {514, 784, 4802}, {661, 23738, 3777}, {661, 47913, 47957}, {663, 48323, 48344}, {764, 14349, 48137}, {918, 29017, 29280}, {1491, 47918, 47967}, {2530, 47959, 48030}, {2787, 29186, 29274}, {3777, 47913, 661}, {3960, 48004, 50507}, {4040, 4378, 48330}, {4462, 48108, 2533}, {4705, 4905, 50335}, {4724, 48341, 4367}, {4778, 8672, 513}, {4978, 48267, 48090}, {4983, 48335, 48129}, {6002, 29362, 29238}, {14349, 47949, 48028}, {23738, 47913, 48100}, {23765, 47906, 48093}, {23765, 48024, 48131}, {23875, 29312, 29202}, {29021, 29354, 29204}, {29051, 29324, 29236}, {29070, 29148, 29152}, {47794, 48569, 48216}, {47795, 48553, 48197}, {47906, 48131, 48024}, {47918, 48151, 1491}, {47922, 50335, 4705}, {47929, 48144, 659}, {47936, 50523, 50358}, {47942, 48335, 4983}, {47970, 48320, 667}, {48021, 48334, 48123}, {48028, 48137, 14349}, {48030, 48609, 47959}, {48065, 48343, 1960}
X(29199) lies on these lines: {99, 52923}, {105, 39738}, {106, 39972}, {644, 28841}, {675, 56212}, {739, 1185}, {932, 4557}, {3573, 8694}, {28226, 54440}, {29227, 53268}, {35342, 43077}
X(29199) = isogonal conjugate of X(29198)
X(29199) = trilinear pole of line {6, 3750}
X(29199) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29198}, {6, 48399}, {513, 26102}, {649, 4699}
X(29199) = X(i)-vertex conjugate of X(j) for these {i, j}: {9999, 29199}
X(29199) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29198}, {9, 48399}, {5375, 4699}, {39026, 26102}
X(29199) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(3903), X(37138)}}, {{A, B, C, X(4557), X(52923)}}, {{A, B, C, X(4584), X(4606)}}
X(29199) = barycentric product X(i)*X(j) for these (i, j): {100, 39738}, {101, 56212}, {190, 39972}
X(29199) = barycentric quotient X(i)/X(j) for these (i, j): {1, 48399}, {6, 29198}, {100, 4699}, {101, 26102}, {39738, 693}, {39972, 514}, {56212, 3261}
X(29200) lies on these lines: {30, 511}, {663, 50342}, {667, 49276}, {1019, 49279}, {2530, 49277}, {2533, 25259}, {3004, 48093}, {3776, 4992}, {3801, 48080}, {4088, 50355}, {4367, 47971}, {4453, 47841}, {4490, 48082}, {4498, 48083}, {4707, 48267}, {4784, 48300}, {4897, 48299}, {7178, 50326}, {7265, 50352}, {16892, 48123}, {17072, 18004}, {21051, 48270}, {21124, 48024}, {21192, 50507}, {22037, 50337}, {23755, 48392}, {30565, 47835}, {41800, 48197}, {47676, 48279}, {47823, 57066}, {47836, 48185}, {47837, 48199}, {47838, 48195}, {47839, 48215}, {47840, 48227}, {47965, 48048}, {47967, 48046}, {47968, 48121}, {47999, 48091}, {48028, 48402}, {48056, 50501}, {48088, 50499}, {48100, 50348}, {48103, 50509}, {48217, 48573}, {48278, 50359}, {48367, 50340}, {49288, 52601}, {50350, 55230}
X(29200) = isogonal conjugate of X(29201)
X(29200) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 29202, 29142}, {514, 29150, 29124}, {514, 690, 29284}, {525, 29142, 29202}, {690, 29252, 514}, {826, 6005, 29144}, {918, 3566, 4083}, {6002, 29082, 29156}, {29013, 29102, 29244}, {29051, 29078, 29276}, {29066, 29090, 29230}, {29142, 29202, 29017}, {29354, 32478, 29350}
X(29201) lies on the circumcircle and these lines: {29018, 53282}
X(29201) = isogonal conjugate of X(29200)
X(29202) lies on these lines: {30, 511}, {2528, 28374}, {3801, 48090}, {4498, 48097}, {4782, 48300}, {4834, 47726}, {4951, 21052}, {16892, 48137}, {20517, 49290}, {21124, 48030}, {23765, 47930}, {47835, 48201}, {47841, 48212}, {48082, 48609}, {48093, 49277}, {48121, 48611}, {48197, 57066}, {48278, 50335}, {48331, 49279}
X(29202) = isogonal conjugate of X(29203)
X(29202) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29318, 29146}, {514, 29078, 29152}, {514, 29106, 29238}, {514, 3906, 29280}, {522, 29082, 29274}, {525, 29142, 29200}, {826, 23876, 4083}, {826, 4083, 29204}, {3906, 29256, 514}, {23875, 29312, 29198}, {29013, 29154, 29122}, {29017, 29200, 29142}, {29062, 29094, 29236}, {29142, 29200, 513}
X(29203) lies on the circumcircle and these lines:
X(29203) = isogonal conjugate of X(29202)
X(29204) lies on these lines: {2, 48188}, {30, 511}, {659, 48097}, {693, 33931}, {1491, 47700}, {1638, 48217}, {1639, 48195}, {2533, 47706}, {3801, 47707}, {4010, 47692}, {4088, 48030}, {4122, 47691}, {4378, 47726}, {4448, 48223}, {4453, 48235}, {4458, 48405}, {4724, 48614}, {4728, 4951}, {4782, 48103}, {4809, 47771}, {4922, 47684}, {4944, 45342}, {16892, 50335}, {20906, 48084}, {21130, 30583}, {21146, 47689}, {21834, 48031}, {24719, 47688}, {25259, 48349}, {28602, 47882}, {30565, 48177}, {36848, 48187}, {45666, 47770}, {47131, 48271}, {47677, 50341}, {47682, 48344}, {47690, 48098}, {47698, 47964}, {47699, 47954}, {47701, 48028}, {47702, 48024}, {47703, 48135}, {47704, 48127}, {47705, 48120}, {47709, 48265}, {47710, 50352}, {47713, 48267}, {47717, 48273}, {47727, 49279}, {47754, 48200}, {47761, 48222}, {47772, 48158}, {47782, 48191}, {47785, 48062}, {47797, 48185}, {47799, 48199}, {47807, 48215}, {47809, 48216}, {47822, 48171}, {47823, 48208}, {47870, 48189}, {47874, 48202}, {47886, 48213}, {47887, 48221}, {47894, 48225}, {47923, 50328}, {47924, 48611}, {47925, 48020}, {47930, 50359}, {47968, 48077}, {47972, 48083}, {47999, 48039}, {48006, 48048}, {48023, 48621}, {48032, 48604}, {48094, 50340}, {48100, 48272}, {48106, 50342}, {48130, 50358}, {48137, 48278}, {48254, 48571}, {48300, 48330}, {49273, 53361}
X(29204) = isogonal conjugate of X(29205)
X(29204) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 48188, 48201}, {2, 48224, 48212}, {512, 29358, 29280}, {514, 29074, 29274}, {514, 29110, 29236}, {514, 7950, 29146}, {523, 824, 4777}, {523, 918, 29144}, {659, 48118, 48097}, {826, 29047, 4083}, {826, 4083, 29202}, {2787, 29160, 29122}, {4777, 30520, 513}, {4777, 4802, 4762}, {29017, 29288, 29226}, {29021, 29354, 29198}, {29025, 29037, 29152}, {29062, 29098, 29238}, {29260, 29358, 512}, {47690, 48326, 48098}, {47770, 48211, 45666}, {47797, 48185, 48197}, {47809, 48227, 48216}, {48171, 48203, 47822}, {48187, 48422, 36848}, {48188, 48224, 2}, {48208, 48241, 47823}
X(29205) lies on the circumcircle and these lines: {28883, 32739}
X(29205) = isogonal conjugate of X(29204)
X(29206) lies on the circumcircle and these lines: {3, 8687}, {40, 831}, {108, 3666}, {109, 22097}, {112, 4267}, {345, 8707}, {1350, 39635}, {2720, 5078}, {10310, 28480}, {19608, 26704}
X(29206) = isogonal conjugate of X(29207)
X(29206) = circumcircle-antipode of X(8687)
X(29206) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3), X(345)}}, {{A, B, C, X(59), X(11609)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(517), X(5078)}}, {{A, B, C, X(573), X(3449)}}, {{A, B, C, X(3415), X(42467)}}, {{A, B, C, X(56098), X(56305)}}
X(29207) lies on these lines: {1, 10401}, {3, 16872}, {4, 608}, {5, 50302}, {11, 5061}, {30, 511}, {31, 19542}, {40, 5814}, {100, 51407}, {109, 51414}, {140, 50298}, {197, 41883}, {222, 36844}, {355, 50314}, {572, 4026}, {946, 4349}, {1329, 24265}, {1385, 50290}, {1386, 12610}, {1482, 50284}, {1483, 50281}, {1565, 5018}, {1742, 49131}, {1746, 3925}, {1766, 3416}, {1891, 12711}, {2050, 26098}, {2263, 41004}, {2886, 13478}, {3332, 48944}, {3703, 21375}, {3836, 19512}, {4300, 13442}, {4356, 5882}, {4388, 23512}, {4645, 6996}, {4999, 24251}, {5587, 37150}, {5658, 44431}, {5690, 50308}, {5707, 48482}, {5731, 37038}, {5776, 50861}, {5810, 11500}, {5901, 50293}, {5928, 8270}, {6210, 49132}, {6284, 10454}, {6327, 19645}, {6357, 45917}, {12545, 31774}, {12699, 35635}, {12717, 39885}, {15486, 48900}, {16435, 26034}, {20064, 50697}, {21363, 41002}, {24309, 44882}, {36728, 50301}, {36731, 50303}, {37365, 40718}, {41327, 50441}, {44039, 57288}
X(29207) = isogonal conjugate of X(29206)
X(29207) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 3910}
X(29207) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(3910)}}, {{A, B, C, X(84), X(830)}}, {{A, B, C, X(521), X(2298)}}, {{A, B, C, X(608), X(6371)}}, {{A, B, C, X(10309), X(28481)}}
X(29207) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 29046, 1503}, {516, 5847, 517}, {517, 29287, 3564}, {2783, 29109, 29235}, {2792, 29054, 5762}, {15310, 29020, 30}, {29012, 29349, 29291}, {29024, 29353, 29181}, {29073, 29097, 29243}, {29259, 29349, 29012}
X(29208) lies on circumconic {{A, B, C, X(4), X(29211)}} and on these lines: {30, 511}, {663, 48103}, {667, 47727}, {2533, 47691}, {3801, 47692}, {4010, 47707}, {4088, 48123}, {4122, 47706}, {4367, 48106}, {4391, 48349}, {4435, 48275}, {4490, 47701}, {4498, 50340}, {4522, 4992}, {4761, 47717}, {4808, 14349}, {4809, 48565}, {4879, 48300}, {16892, 50355}, {21146, 47720}, {21302, 47688}, {30724, 48249}, {41800, 48212}, {44448, 48007}, {47660, 48301}, {47682, 48333}, {47690, 48279}, {47711, 48273}, {47716, 50352}, {47793, 48177}, {47794, 48195}, {47795, 48217}, {47796, 48235}, {47797, 47835}, {47809, 47841}, {47814, 48552}, {47836, 48227}, {47837, 48215}, {47839, 48199}, {47840, 48185}, {47890, 48331}, {47912, 47944}, {47956, 47990}, {47967, 47998}, {48047, 48093}, {48056, 48099}, {48083, 48367}, {48088, 50508}, {48090, 48395}, {48094, 48336}, {48095, 48329}, {48100, 50333}, {48118, 48338}, {48146, 48322}, {48188, 57066}, {48211, 48559}, {48337, 49279}, {48392, 53558}, {50342, 50509}
X(29208) = isogonal conjugate of X(29209)
X(29208) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29211}
X(29208) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 7927, 29144}, {523, 3910, 29146}, {812, 29074, 29276}, {826, 29350, 29284}, {2787, 29158, 29124}, {3800, 29288, 513}, {3907, 29025, 29156}, {3910, 29146, 29017}, {4083, 29146, 3910}, {12073, 29354, 6005}, {29013, 29110, 29230}, {29066, 29098, 29244}, {29260, 29350, 826}
X(29209) lies on the circumcircle and these lines: {3, 29210}
X(29209) = isogonal conjugate of X(29208)
X(29209) = trilinear pole of line {6, 7186}
X(29210) lies on the circumcircle and these lines: {3, 29209}
X(29210) = isogonal conjugate of X(29211)
X(29210) = circumcircle-antipode of X(29209)
X(29211) lies on these lines: {30, 511}, {24309, 48901}, {32857, 37549}
X(29211) = isogonal conjugate of X(29210)
X(29211) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29208}
X(29211) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 15310, 29020}, {29012, 29353, 29287}, {29181, 29291, 517}, {29263, 29353, 29012}
X(29212) lies on these lines: {1, 25259}, {10, 4025}, {30, 511}, {1019, 47707}, {1125, 3239}, {1577, 47887}, {3159, 57169}, {3555, 50518}, {3634, 7658}, {3700, 48295}, {3828, 44551}, {3960, 4522}, {4088, 48321}, {4122, 4378}, {4129, 48555}, {4147, 21192}, {4385, 57244}, {4391, 20517}, {4449, 7265}, {4458, 4791}, {4468, 48284}, {4474, 4707}, {4761, 47971}, {4922, 49279}, {8045, 48343}, {14419, 48185}, {14431, 48227}, {17496, 48272}, {21222, 49278}, {30234, 47770}, {30709, 48241}, {34619, 45290}, {36480, 53583}, {47676, 47724}, {47683, 47698}, {47690, 48320}, {47700, 53536}, {47711, 48144}, {47715, 48341}, {47723, 48108}, {47727, 48080}, {47729, 49272}, {47873, 54253}, {48298, 49277}, {48324, 49275}, {48344, 49290}
X(29212) = isogonal conjugate of X(29213)
X(29212) = perspector of circumconic {{A, B, C, X(2), X(37213)}}
X(29212) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29215}
X(29212) = X(i)-Ceva conjugate of X(j) for these {i, j}: {50450, 47787}
X(29212) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29215)}}, {{A, B, C, X(527), X(596)}}
X(29212) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 25259, 49288}, {513, 29110, 29192}, {514, 29037, 29062}, {514, 29062, 29190}, {523, 29148, 29132}, {2787, 29224, 29156}, {3907, 23875, 29304}, {4083, 29090, 29216}, {6002, 29047, 29158}, {29156, 29224, 514}, {29264, 29354, 814}
X(29213) lies on the circumcircle and these lines: {3, 29214}, {595, 2291}
X(29213) = isogonal conjugate of X(29212)
X(29213) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(58), X(8750)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1126), X(1461)}}, {{A, B, C, X(23346), X(41487)}}
X(29214) lies on the circumcircle and these lines: {3, 29213}
X(29214) = isogonal conjugate of X(29215)
X(29214) = circumcircle-antipode of X(29213)
X(29215) lies on circumconic {{A, B, C, X(4), X(29212)}} and on these lines: {30, 511}, {1699, 29821}, {4021, 41007}
X(29215) = isogonal conjugate of X(29214)
X(29215) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29212}
X(29215) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 29040, 29065}, {15310, 29093, 29219}, {29012, 29327, 516}, {29043, 29057, 29307}
X(29216) lies on these lines: {30, 511}, {649, 7265}, {667, 49288}, {1577, 48266}, {3835, 21192}, {4010, 20517}, {4049, 54744}, {4063, 25259}, {4120, 47794}, {4122, 4834}, {4129, 48269}, {4467, 14349}, {4560, 49277}, {4750, 47795}, {4813, 47679}, {4818, 48052}, {4960, 47656}, {4978, 47971}, {6590, 57068}, {8045, 48064}, {18004, 50504}, {21196, 48054}, {44449, 47959}, {45661, 48196}, {45674, 48218}, {45746, 48085}, {47660, 47976}, {47673, 48597}, {47711, 50509}, {47793, 53339}, {47796, 53333}, {47874, 48566}, {48003, 48270}, {48051, 48404}, {48272, 50343}, {48273, 50342}, {48277, 50449}
X(29216) = isogonal conjugate of X(29217)
X(29216) = perspector of circumconic {{A, B, C, X(2), X(20017)}}
X(29216) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29217}, {906, 36613}
X(29216) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29219}
X(29216) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29217}, {5190, 36613}
X(29216) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29219)}}, {{A, B, C, X(519), X(20017)}}
X(29216) = barycentric product X(i)*X(j) for these (i, j): {20017, 514}
X(29216) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29217}, {7649, 36613}, {20017, 190}
X(29216) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29062, 29192}, {512, 29078, 29062}, {513, 29106, 29190}, {525, 29162, 29220}, {525, 900, 29013}, {690, 29266, 814}, {690, 814, 29304}, {826, 29328, 29158}, {3566, 29232, 29066}, {4083, 29090, 29212}, {23883, 28493, 514}, {29013, 29220, 29162}, {29017, 29150, 29132}, {29058, 32478, 29366}
X(29217) lies on the circumcircle and these lines: {3, 29218}, {103, 37482}, {917, 36613}
X(29217) = reflection of X(i) in X(j) for these {i,j}: {29218, 3}
X(29217) = isogonal conjugate of X(29216)
X(29217) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29216}, {513, 20017}
X(29217) = X(i)-vertex conjugate of X(j) for these {i, j}: {9999, 29217}
X(29217) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29216}, {39026, 20017}
X(29217) = barycentric product X(i)*X(j) for these (i, j): {1331, 36613}
X(29217) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29216}, {101, 20017}, {36613, 46107}
X(29218) lies on the circumcircle and these lines: {3, 29217}, {101, 5752}
X(29218) = isogonal conjugate of X(29219)
X(29218) = circumcircle-antipode of X(29217)
X(29218) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(58), X(92)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1126), X(57405)}}
X(29219) lies on these lines: {1, 21270}, {3, 4445}, {4, 36613}, {8, 20074}, {10, 48}, {30, 511}, {101, 31897}, {184, 21072}, {551, 31163}, {1125, 20305}, {5721, 19925}, {17362, 49132}, {19862, 31265}, {21028, 23201}, {51118, 52862}, {54668, 54775}
X(29219) = isogonal conjugate of X(29218)
X(29219) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29216}
X(29219) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29216)}}, {{A, B, C, X(514), X(36613)}}
X(29219) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {511, 29081, 29065}, {542, 29010, 29307}, {952, 1503, 29016}, {1503, 29016, 516}, {3564, 29235, 29069}, {5965, 29061, 29369}, {15310, 29093, 29215}
X(29220) lies on these lines: {30, 511}, {1019, 47684}, {3801, 49279}, {4707, 48300}, {14349, 49274}, {20517, 48299}, {21145, 47875}, {21181, 48564}, {47692, 48337}, {47708, 49276}, {47709, 48352}, {47713, 48338}, {48403, 49288}
X(29220) = isogonal conjugate of X(29221)
X(29220) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29223}
X(29220) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29223)}}, {{A, B, C, X(4444), X(29114)}}
X(29220) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29332, 29160}, {513, 29154, 29130}, {514, 23875, 29148}, {514, 23876, 29302}, {514, 2786, 29114}, {514, 29216, 29162}, {525, 29162, 29216}, {814, 3906, 29294}, {826, 29066, 29196}, {826, 29082, 29066}, {3906, 29272, 814}, {29017, 29102, 29186}, {29162, 29216, 29013}
X(29221) lies on the circumcircle and these lines: {3, 29222}, {29014, 53290}
X(29221) = isogonal conjugate of X(29220)
X(29222) lies on the circumcircle and these lines: {3, 29221}
X(29222) = isogonal conjugate of X(29223)
X(29222) = circumcircle-antipode of X(29221)
X(29223) lies on circumconic {{A, B, C, X(4), X(29220)}} and on these lines: {30, 511}, {5721, 51118}, {5767, 41869}
X(29223) = isogonal conjugate of X(29222)
X(29223) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29220}
X(29223) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 1503, 29016}, {11645, 29010, 29297}, {29012, 29085, 29069}
X(29224) lies on these lines: {30, 511}, {693, 33939}, {764, 49302}, {3776, 19947}, {4010, 47725}, {4122, 47680}, {4378, 47684}, {4707, 48103}, {4775, 47692}, {4879, 47717}, {14419, 48241}, {14431, 48171}, {16892, 50351}, {21125, 48094}, {21146, 47726}, {23770, 49290}, {35352, 48188}, {47682, 48326}, {47688, 49274}, {47691, 49279}, {47705, 48291}, {47709, 48351}, {47713, 48336}, {47887, 48300}, {48056, 50453}, {48349, 49276}, {49273, 49303}
X(29224) = isogonal conjugate of X(29225)
X(29224) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 29160, 29128}, {514, 29037, 29336}, {514, 29062, 29244}, {514, 29212, 29156}, {514, 29318, 29362}, {514, 29332, 29154}, {514, 29358, 814}, {514, 826, 29070}, {523, 29102, 29188}, {814, 29358, 29292}, {826, 29070, 29194}, {23875, 29025, 29150}, {29047, 29082, 29298}, {29156, 29212, 2787}
X(29225) lies on the circumcircle and these lines:
X(29225) = isogonal conjugate of X(29224)
X(29226) lies on these lines: {1, 48331}, {10, 23815}, {30, 511}, {649, 48323}, {650, 40464}, {659, 4449}, {661, 14470}, {663, 21343}, {665, 2516}, {667, 21385}, {693, 14404}, {764, 1734}, {876, 56174}, {905, 24174}, {1015, 24196}, {1491, 48137}, {1960, 48287}, {2254, 23765}, {2533, 4801}, {3669, 9508}, {3762, 48273}, {3766, 23813}, {3768, 57050}, {3777, 4041}, {3801, 47720}, {3835, 48401}, {3837, 4147}, {3960, 50504}, {4010, 4462}, {4040, 48333}, {4063, 4378}, {4367, 4498}, {4391, 19582}, {4394, 21832}, {4401, 48328}, {4490, 48030}, {4504, 4830}, {4507, 49291}, {4705, 48100}, {4724, 4879}, {4729, 23738}, {4730, 4905}, {4770, 48066}, {4775, 47970}, {4784, 48341}, {4794, 48347}, {4808, 49278}, {4822, 47913}, {4834, 48320}, {4885, 25127}, {4895, 47936}, {4983, 47957}, {6161, 47977}, {6332, 48056}, {14349, 47967}, {14407, 21348}, {17072, 48406}, {17414, 28374}, {17494, 50516}, {20906, 53368}, {20936, 44720}, {20983, 26824}, {21052, 48184}, {21120, 23770}, {22319, 57232}, {25636, 26854}, {43931, 48008}, {44729, 48182}, {45314, 45667}, {47653, 50502}, {47664, 50521}, {47675, 50487}, {47793, 47841}, {47796, 47835}, {47872, 48202}, {47889, 48221}, {47893, 48213}, {47918, 48028}, {47921, 48136}, {47923, 50505}, {47926, 50524}, {47929, 48336}, {47959, 48093}, {47965, 48332}, {48024, 48609}, {48097, 48300}, {48111, 50767}, {48127, 50457}, {48128, 48607}, {48141, 50485}, {48151, 50355}, {48281, 53390}, {48283, 53315}, {48294, 48296}, {48301, 48304}, {48322, 50358}, {48337, 48351}, {48343, 50512}, {48348, 50507}, {48399, 50491}, {48618, 50508}, {52660, 55261}
X(29226) = isogonal conjugate of X(29227)
X(29226) = perspector of circumconic {{A, B, C, X(2), X(1278)}}
X(29226) = center of circumconic {{A, B, C, X(29226), X(43931)}}
X(29226) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29227}, {100, 36598}, {101, 38247}, {190, 36614}, {651, 36630}, {692, 40027}
X(29226) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29229}
X(29226) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29227}, {192, 36863}, {1015, 38247}, {1086, 40027}, {8054, 36598}, {38991, 36630}, {55053, 36614}
X(29226) = X(i)-Ceva conjugate of X(j) for these {i, j}: {668, 40598}, {36863, 75}, {43931, 513}
X(29226) = X(i)-complementary conjugate of X(j) for these {i, j}: {101, 40598}, {29227, 10}, {36598, 11}, {36614, 1086}, {36630, 26932}, {38247, 116}, {40027, 21252}
X(29226) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29227, 8}, {36598, 149}, {36614, 4440}, {36630, 37781}, {38247, 150}, {40027, 21293}
X(29226) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29229)}}, {{A, B, C, X(330), X(40598)}}, {{A, B, C, X(518), X(16969)}}, {{A, B, C, X(519), X(16569)}}, {{A, B, C, X(536), X(1278)}}, {{A, B, C, X(726), X(20943)}}, {{A, B, C, X(740), X(21868)}}, {{A, B, C, X(876), X(3667)}}, {{A, B, C, X(888), X(22227)}}, {{A, B, C, X(912), X(22149)}}, {{A, B, C, X(3669), X(4785)}}, {{A, B, C, X(3880), X(4903)}}, {{A, B, C, X(4050), X(5853)}}, {{A, B, C, X(4394), X(4964)}}, {{A, B, C, X(6164), X(25574)}}, {{A, B, C, X(6373), X(9267)}}, {{A, B, C, X(9297), X(23560)}}
X(29226) = barycentric product X(i)*X(j) for these (i, j): {1019, 4135}, {1278, 513}, {3669, 4903}, {3676, 4050}, {16569, 514}, {16969, 693}, {17090, 650}, {17924, 22149}, {20943, 649}, {21868, 7192}, {22227, 670}, {23560, 6386}, {40598, 43931}, {57114, 6382}
X(29226) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29227}, {513, 38247}, {514, 40027}, {649, 36598}, {663, 36630}, {667, 36614}, {1278, 668}, {4050, 3699}, {4135, 4033}, {4903, 646}, {16569, 190}, {16969, 100}, {17090, 4554}, {20943, 1978}, {21868, 3952}, {22149, 1332}, {22227, 512}, {23560, 667}, {40598, 36863}, {57114, 2162}
X(29226) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 514, 29198}, {514, 29098, 29122}, {514, 29350, 6372}, {514, 891, 4083}, {659, 4449, 48330}, {667, 48282, 48344}, {812, 29324, 29152}, {1491, 48334, 48137}, {2533, 4801, 48098}, {2787, 29302, 29238}, {3777, 4041, 50335}, {3808, 54271, 513}, {3907, 29362, 29274}, {4083, 29198, 512}, {4367, 4498, 4782}, {4391, 48279, 48090}, {4490, 48131, 48030}, {4705, 48335, 48100}, {4729, 23738, 50359}, {21385, 48282, 667}, {21832, 54249, 4394}, {23876, 29354, 29280}, {29017, 29288, 29204}, {29047, 29312, 29146}, {47793, 47841, 48197}, {47796, 47835, 48216}, {47918, 48123, 48028}, {47922, 48129, 661}
X(29227) lies on the circumcircle and these lines: {3, 29228}, {105, 7766}, {106, 36598}, {644, 43077}, {675, 40027}, {727, 3915}, {739, 1613}, {741, 16948}, {813, 57192}, {1293, 3573}, {2291, 36630}, {6163, 25575}, {8709, 9266}, {29199, 53268}
X(29227) = isogonal conjugate of X(29226)
X(29227) = trilinear pole of line {6, 3550}
X(29227) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29226}, {513, 16569}, {514, 16969}, {663, 17090}, {667, 20943}, {799, 22227}, {1019, 21868}, {1978, 23560}, {3669, 4050}, {3733, 4135}, {4903, 43924}, {6376, 57114}, {7649, 22149}
X(29227) = X(i)-vertex conjugate of X(j) for these {i, j}: {9999, 29227}
X(29227) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29226}, {5375, 1278}, {6631, 20943}, {38996, 22227}, {39026, 16569}
X(29227) = X(i)-cross conjugate of X(j) for these {i, j}: {36635, 1252}, {36647, 1016}, {52923, 100}
X(29227) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(644), X(37135)}}, {{A, B, C, X(660), X(53647)}}, {{A, B, C, X(3573), X(16948)}}, {{A, B, C, X(4584), X(27834)}}, {{A, B, C, X(4607), X(32039)}}
X(29227) = barycentric product X(i)*X(j) for these (i, j): {100, 38247}, {101, 40027}, {190, 36598}, {36614, 668}, {36630, 664}
X(29227) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29226}, {100, 1278}, {101, 16569}, {190, 20943}, {644, 4903}, {651, 17090}, {669, 22227}, {692, 16969}, {906, 22149}, {1018, 4135}, {1980, 23560}, {3939, 4050}, {4557, 21868}, {36598, 514}, {36614, 513}, {36630, 522}, {38247, 693}, {40027, 3261}, {52923, 40598}
X(29228) lies on the circumcircle and these lines: {3, 29227}, {100, 22149}
X(29228) = isogonal conjugate of X(29229)
X(29228) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(22149)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(7350), X(10308)}}
X(29229) lies on circumconic {{A, B, C, X(4), X(29226)}} and on these lines: {3, 15485}, {30, 511}, {573, 15492}, {991, 15178}, {1385, 1742}, {3579, 6210}, {5045, 50307}, {5482, 48902}, {9956, 45305}, {9957, 49537}, {10222, 48908}, {13624, 31394}, {14131, 24220}, {15082, 40998}, {17508, 24309}, {18046, 22793}, {18480, 29705}, {18483, 53002}, {19543, 31663}, {21746, 31794}, {24837, 32857}, {35631, 48661}, {37521, 50865}, {39543, 50192}
X(29229) = isogonal conjugate of X(29228)
X(29229) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29226}
X(29229) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 15310, 517}, {516, 29349, 15310}, {516, 29353, 29309}
X(29230) lies on these lines: {30, 511}, {3700, 48330}, {4879, 48266}
X(29230) = isogonal conjugate of X(29231)
X(29230) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 29058, 29276}, {514, 29062, 29194}, {523, 29152, 29124}, {826, 29344, 29156}, {2787, 29062, 29017}, {2787, 29194, 514}, {3907, 29078, 29284}, {6002, 29074, 29144}, {29013, 29110, 29208}, {29066, 29090, 29200}
X(29231) lies on the circumcircle and these lines:
X(29231) = isogonal conjugate of X(29230)
X(29232) lies on circumconic {{A, B, C, X(4), X(29235)}} and on these lines: {30, 511}, {649, 48395}, {663, 48266}, {667, 3700}, {1019, 48396}, {1960, 4990}, {3239, 6050}, {3803, 49286}, {4024, 50523}, {4040, 50326}, {4378, 48280}, {4380, 47707}, {4467, 21301}, {4705, 4976}, {4820, 50517}, {4897, 50352}, {6590, 50515}, {7265, 48299}, {14321, 50507}, {17069, 21260}, {17989, 57157}, {27486, 47814}, {31149, 45669}, {34958, 48090}, {45745, 47956}, {47703, 48149}, {47787, 48564}, {47790, 47820}, {47912, 48277}, {48099, 48269}, {48267, 50347}, {48275, 50526}, {52326, 57131}
X(29232) = isogonal conjugate of X(29233)
X(29232) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29235}
X(29232) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29058, 29278}, {512, 29266, 900}, {522, 6002, 29142}, {525, 814, 29240}, {812, 29037, 29288}, {814, 29078, 525}, {826, 29340, 29162}, {2787, 29106, 3910}, {29013, 29062, 523}, {29013, 29196, 29158}, {29017, 29152, 29126}, {29058, 29266, 512}, {29062, 29158, 29196}, {29066, 29216, 3566}, {29070, 29090, 918}, {29074, 29328, 3800}, {29236, 29284, 28473}
X(29233) lies on the circumcircle and these lines: {3, 29234}, {4592, 34594}
X(29233) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(668), X(4565)}}
X(29233) = isogonal conjugate of X(29232)
X(29234) lies on the circumcircle and these lines: {3, 29233}
X(29234) = isogonal conjugate of X(29235)
X(29234) = circumcircle-antipode of X(29233)
X(29234) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(40148)}}, {{A, B, C, X(4), X(593)}}, {{A, B, C, X(74), X(98)}}
X(29235) lies on circumconic {{A, B, C, X(4), X(29232)}} and on these lines: {3, 594}, {4, 4360}, {5, 17045}, {30, 511}, {355, 4026}, {944, 5263}, {4361, 36674}, {4366, 24828}, {5396, 50558}, {5881, 33076}, {6653, 24813}, {6676, 21072}, {11238, 17726}, {16777, 36659}, {17233, 36697}, {17362, 48875}, {17380, 36651}, {17390, 48934}, {24248, 39891}, {36729, 50112}, {36730, 50113}
X(29235) = isogonal conjugate of X(29234)
X(29235) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29232}
X(29235) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1503, 29010, 29243}, {2783, 29109, 29207}, {28850, 29040, 29291}, {29010, 29081, 1503}, {29016, 29065, 30}, {29069, 29219, 3564}, {29077, 29331, 29181}
X(29236) lies on circumconic {{A, B, C, X(758), X(16606)}} and on these lines: {1, 48090}, {30, 511}, {649, 4774}, {659, 4474}, {663, 4800}, {693, 4922}, {1577, 48202}, {1960, 4791}, {2533, 47762}, {3835, 48289}, {3837, 48325}, {4010, 47729}, {4122, 47728}, {4367, 4379}, {4378, 47724}, {4382, 21343}, {4391, 4448}, {4560, 48225}, {4705, 48191}, {4814, 50339}, {4823, 48328}, {8643, 47872}, {14413, 48184}, {14419, 48216}, {14430, 48226}, {14431, 48197}, {17072, 48229}, {17149, 57110}, {21051, 47778}, {21146, 47721}, {21301, 48100}, {24719, 48298}, {25569, 47832}, {30709, 47822}, {36848, 44550}, {45316, 48183}, {45332, 47761}, {45664, 45666}, {45671, 48213}, {47722, 48326}, {47759, 48093}, {47775, 47967}, {48030, 48288}, {48240, 53364}, {48321, 50335}, {48322, 48392}, {50359, 53536}
X(29236) = isogonal conjugate of X(29237)
X(29236) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29344, 29152}, {514, 29074, 29146}, {514, 29110, 29204}, {514, 29182, 29274}, {523, 29156, 29122}, {693, 4922, 48344}, {814, 3907, 4083}, {814, 4083, 29238}, {2787, 29066, 513}, {2787, 29188, 29148}, {4378, 47724, 48098}, {4844, 29178, 512}, {4844, 29344, 29178}, {28473, 29232, 29284}, {29037, 29082, 29280}, {29051, 29324, 29198}, {29062, 29094, 29202}, {29066, 29148, 29188}, {29182, 29268, 514}
X(29237) lies on the circumcircle and these lines: {104, 48908}, {759, 27644}, {932, 4585}, {9093, 16997}
X(29237) = isogonal conjugate of X(29236)
X(29237) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(4555), X(34073)}}, {{A, B, C, X(4585), X(27644)}}
X(29238) lies on these lines: {30, 511}, {663, 4810}, {667, 48090}, {1019, 48098}, {1577, 4782}, {2533, 4380}, {4010, 48331}, {4367, 4382}, {4490, 47932}, {4560, 24719}, {4823, 50512}, {4834, 47724}, {4992, 49287}, {17494, 47967}, {20295, 48093}, {21051, 48008}, {21297, 47841}, {23765, 53536}, {31291, 48301}, {47776, 47835}, {47816, 48213}, {47818, 48202}, {47910, 48582}, {47947, 47954}, {48114, 48123}, {48120, 50523}, {48129, 48288}, {48137, 48321}, {48143, 48149}, {48264, 50358}, {48273, 48330}, {48279, 48344}, {50515, 54265}
X(29238) = isogonal conjugate of X(29239)
X(29238) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29033, 29274}, {514, 29078, 29280}, {514, 29106, 29202}, {514, 29340, 29152}, {522, 29025, 29146}, {812, 814, 4083}, {814, 4083, 29236}, {2787, 29302, 29226}, {4560, 24719, 48100}, {6002, 29362, 29198}, {29013, 29070, 513}, {29013, 29186, 29150}, {29017, 29162, 29122}, {29033, 29270, 512}, {29062, 29098, 29204}, {29070, 29150, 29186}
X(29239) lies on the circumcircle and these lines:
X(29239) = isogonal conjugate of X(29238)
X(29240) lies on these lines: {1, 23770}, {8, 48408}, {10, 2977}, {30, 511}, {659, 10015}, {663, 48403}, {667, 7178}, {676, 1960}, {693, 47722}, {764, 30725}, {1027, 1411}, {1577, 48299}, {1635, 30574}, {1638, 14419}, {1639, 14431}, {2170, 2969}, {3004, 48288}, {3700, 49279}, {3716, 5592}, {3762, 48055}, {3776, 48325}, {3904, 46403}, {4040, 48400}, {4378, 21104}, {4427, 21272}, {4474, 48094}, {4728, 14432}, {4774, 48103}, {4809, 21145}, {4895, 53558}, {4922, 48326}, {4927, 30580}, {6050, 14837}, {6161, 53523}, {6545, 14413}, {6546, 14430}, {8638, 20839}, {8651, 23723}, {9131, 24809}, {9979, 24810}, {15253, 43041}, {20504, 53552}, {21118, 48150}, {21132, 48032}, {21185, 48329}, {21222, 49301}, {21297, 53334}, {21385, 53400}, {23755, 50523}, {25380, 44314}, {30565, 30709}, {34958, 48330}, {44566, 45314}, {45341, 48167}, {47123, 48327}, {47652, 48298}, {47682, 47724}, {47684, 47690}, {47691, 47729}, {47695, 49303}, {47723, 47726}, {47725, 47727}, {47776, 53356}, {48284, 50453}, {48300, 48395}, {48321, 50348}, {48322, 55282}, {48324, 49300}, {48332, 48398}, {49276, 50326}, {50333, 50351}, {50504, 55285}, {53404, 53409}, {53571, 53573}
X(29240) = isogonal conjugate of X(29241)
X(29240) = isotomic conjugate of X(54979)
X(29240) = perspector of circumconic {{A, B, C, X(2), X(3011)}}
X(29240) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29241}, {31, 54979}, {765, 35365}, {1332, 9085}, {15397, 42723}
X(29240) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29243}
X(29240) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 54979}, {3, 29241}, {513, 35365}, {5513, 190}
X(29240) = X(i)-Ceva conjugate of X(j) for these {i, j}: {675, 1086}, {54979, 2}
X(29240) = X(i)-complementary conjugate of X(j) for these {i, j}: {29241, 10}, {54979, 2887}
X(29240) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29241, 8}, {54979, 6327}
X(29240) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29243)}}, {{A, B, C, X(56), X(34372)}}, {{A, B, C, X(514), X(2969)}}, {{A, B, C, X(518), X(1411)}}, {{A, B, C, X(519), X(3011)}}, {{A, B, C, X(521), X(2170)}}, {{A, B, C, X(522), X(8735)}}, {{A, B, C, X(525), X(2504)}}, {{A, B, C, X(1027), X(3738)}}, {{A, B, C, X(2786), X(4237)}}, {{A, B, C, X(3564), X(51607)}}, {{A, B, C, X(5845), X(53133)}}
X(29240) = barycentric product X(i)*X(j) for these (i, j): {2501, 51607}, {2504, 4}, {3011, 514}, {3120, 4237}, {7649, 9028}, {53133, 676}
X(29240) = barycentric quotient X(i)/X(j) for these (i, j): {2, 54979}, {6, 29241}, {1015, 35365}, {2504, 69}, {3011, 190}, {4237, 4600}, {9028, 4561}, {51607, 4563}
X(29240) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 47680, 23770}, {512, 29336, 29162}, {513, 29156, 29126}, {514, 28470, 23877}, {514, 29051, 29142}, {514, 29192, 29160}, {514, 3907, 29288}, {525, 814, 29232}, {690, 29340, 900}, {693, 47728, 48290}, {814, 29082, 525}, {826, 29182, 29278}, {2787, 29102, 918}, {6084, 6366, 891}, {29013, 29304, 3566}, {29025, 29366, 3800}, {29066, 29160, 29192}, {29070, 29094, 3910}, {29160, 29192, 523}, {29182, 29272, 826}, {47682, 47724, 48396}, {47684, 47721, 47690}, {47722, 47728, 693}
X(29241) lies on the circumcircle and these lines: {3, 29242}, {98, 16086}, {99, 54979}, {100, 50501}, {105, 4511}, {108, 4564}, {109, 44717}, {111, 56808}, {112, 4570}, {190, 44876}, {306, 53947}, {675, 3006}, {901, 35365}, {1026, 2222}, {1305, 4561}, {2726, 6790}
X(29241) = reflection of X(i) in X(j) for these {i,j}: {29242, 3}
X(29241) = isogonal conjugate of X(29240)
X(29241) = trilinear pole of line {6, 1331}
X(29241) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29240}, {19, 2504}, {513, 3011}, {3125, 4237}, {6591, 9028}
X(29241) = X(i)-vertex conjugate of X(j) for these {i, j}: {9999, 29241}
X(29241) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29240}, {6, 2504}, {39026, 3011}
X(29241) = X(i)-cross conjugate of X(j) for these {i, j}: {674, 1252}
X(29241) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(660), X(32641)}}, {{A, B, C, X(668), X(5546)}}, {{A, B, C, X(677), X(4555)}}, {{A, B, C, X(1026), X(4511)}}, {{A, B, C, X(4564), X(4570)}}, {{A, B, C, X(4607), X(41206)}}, {{A, B, C, X(5549), X(37223)}}, {{A, B, C, X(44184), X(46135)}}, {{A, B, C, X(50333), X(53285)}}, {{A, B, C, X(50344), X(50501)}}
X(29241) = barycentric product X(i)*X(j) for these (i, j): {1016, 35365}, {4561, 9085}, {54979, 6}
X(29241) = barycentric quotient X(i)/X(j) for these (i, j): {3, 2504}, {6, 29240}, {101, 3011}, {677, 53133}, {1331, 9028}, {4558, 51607}, {4570, 4237}, {9085, 7649}, {35365, 1086}, {54979, 76}
X(29242) lies on the circumcircle and these lines: {3, 29241}, {99, 51607}, {649, 9085}, {675, 24813}, {1708, 2222}, {3218, 13397}
X(29242) = isogonal conjugate of X(29243)
X(29242) = circumcircle-antipode of X(29241)
X(29242) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(649)}}, {{A, B, C, X(4), X(1252)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(902), X(3426)}}, {{A, B, C, X(1708), X(3218)}}, {{A, B, C, X(2226), X(3431)}}, {{A, B, C, X(3418), X(9315)}}, {{A, B, C, X(3425), X(41934)}}, {{A, B, C, X(3427), X(39741)}}
X(29243) lies on these lines: {3, 1086}, {4, 190}, {5, 4422}, {20, 4440}, {30, 511}, {40, 24715}, {45, 36526}, {55, 3782}, {56, 24837}, {140, 40480}, {335, 30273}, {376, 903}, {381, 4370}, {382, 24844}, {485, 24842}, {486, 24843}, {631, 27191}, {673, 5759}, {944, 24841}, {946, 4432}, {990, 37533}, {1331, 2969}, {1352, 4437}, {1478, 24845}, {1479, 24846}, {1482, 53534}, {1587, 24819}, {1588, 24818}, {1657, 4409}, {1721, 37569}, {1766, 2161}, {2886, 3923}, {3091, 4473}, {3419, 3729}, {3428, 20992}, {3434, 24280}, {3543, 17487}, {3545, 41138}, {3575, 24814}, {3663, 24929}, {3821, 6690}, {3845, 36522}, {4297, 53601}, {4363, 36474}, {4364, 36477}, {4389, 36489}, {5119, 24222}, {5173, 12722}, {5691, 24821}, {5709, 16560}, {5805, 16593}, {5870, 24832}, {5871, 24831}, {6284, 24840}, {6684, 25351}, {6776, 32029}, {7354, 24816}, {7384, 27949}, {7680, 30448}, {8703, 36525}, {9729, 55307}, {9834, 24823}, {9835, 24824}, {9838, 24838}, {9839, 24839}, {9873, 24825}, {10444, 39552}, {10724, 36237}, {10993, 57021}, {11249, 53302}, {11500, 24820}, {12110, 24815}, {12113, 24830}, {12114, 24826}, {12115, 24847}, {12116, 24848}, {12717, 21375}, {16099, 30266}, {17044, 24279}, {17305, 36484}, {17354, 36473}, {17365, 48908}, {17369, 36530}, {17677, 54997}, {17738, 19542}, {19515, 43055}, {19645, 41842}, {19782, 55109}, {24309, 32613}, {26611, 52242}, {36490, 49742}, {36551, 49726}
X(29243) = isogonal conjugate of X(29242)
X(29243) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29240}
X(29243) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29240)}}, {{A, B, C, X(190), X(9028)}}, {{A, B, C, X(2161), X(15313)}}, {{A, B, C, X(3738), X(39943)}}, {{A, B, C, X(6370), X(41508)}}
X(29243) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 24833, 1086}, {4, 190, 24828}, {4, 24817, 190}, {20, 4440, 24813}, {516, 29057, 29291}, {516, 29069, 30}, {517, 15310, 674}, {542, 29343, 952}, {1503, 29010, 29235}, {2834, 5856, 2810}, {29010, 29085, 1503}, {29016, 29307, 3564}, {29028, 29369, 29181}, {29073, 29097, 29207}
X(29244) lies on circumconic {{A, B, C, X(693), X(29332)}} and on these lines: {30, 511}, {667, 47680}, {2533, 47722}, {4782, 7178}, {4922, 47720}, {21052, 47885}, {21118, 50358}, {23729, 48129}, {23770, 48330}, {47728, 48279}, {48090, 48299}, {48331, 48403}
X(29244) = isogonal conjugate of X(29245)
X(29244) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 29162, 29124}, {514, 29033, 826}, {514, 29062, 29224}, {514, 29190, 29154}, {514, 29336, 29156}, {514, 29344, 29354}, {514, 522, 29332}, {812, 29082, 29284}, {826, 29033, 29276}, {29013, 29102, 29200}, {29025, 29051, 29144}, {29066, 29098, 29208}, {29070, 29154, 29190}, {29154, 29190, 29017}
X(29245) lies on the circumcircle and these lines: {692, 29333}, {2702, 4587}, {3799, 6011}
X(29245) = isogonal conjugate of X(29244)
X(29246) lies on circumconic {{A, B, C, X(519), X(29651)}} and on these lines: {30, 511}, {659, 48565}, {663, 21146}, {667, 48568}, {693, 48336}, {1577, 48351}, {2533, 4724}, {3669, 48289}, {3801, 47972}, {3837, 48099}, {4010, 48367}, {4040, 4874}, {4147, 48009}, {4367, 48108}, {4369, 48331}, {4462, 4774}, {4490, 21302}, {4560, 50359}, {4775, 4978}, {4794, 52601}, {4801, 4879}, {4822, 24719}, {4905, 48288}, {4922, 48341}, {4992, 48089}, {8643, 48579}, {17166, 48143}, {17494, 50355}, {21051, 48029}, {21260, 48058}, {21301, 48024}, {23765, 48298}, {31149, 48551}, {43067, 48329}, {45332, 45673}, {46403, 48123}, {47672, 48301}, {47707, 48083}, {47715, 49279}, {47724, 48267}, {47729, 48323}, {47811, 47835}, {47812, 47841}, {47814, 48162}, {47820, 48253}, {47836, 48226}, {47837, 48214}, {47839, 48198}, {47840, 48184}, {47912, 47946}, {47956, 47993}, {47966, 48401}, {47967, 48001}, {48050, 48093}, {48119, 48279}, {48136, 48406}, {48148, 48322}, {48233, 48564}, {48273, 48352}, {48392, 53343}, {50337, 50507}
X(29246) = isogonal conjugate of X(29247)
X(29246) = perspector of circumconic {{A, B, C, X(2), X(29651)}}
X(29246) = barycentric product X(i)*X(j) for these (i, j): {29651, 514}
X(29246) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29247}, {29651, 190}
X(29246) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29186, 29362}, {513, 29051, 814}, {513, 29274, 6002}, {513, 814, 29170}, {514, 29144, 29174}, {514, 29168, 29134}, {514, 29188, 29366}, {6002, 29051, 29274}, {6005, 29070, 29328}, {6372, 29066, 29324}, {21302, 47969, 4490}, {23875, 29086, 29370}, {29021, 29102, 29332}, {29082, 29142, 29172}, {48089, 50508, 4992}
X(29247) lies on the circumcircle and these lines:
X(29247) = isogonal conjugate of X(29246)
X(29248) lies on circumconic {{A, B, C, X(693), X(29276)}} and on these lines: {30, 511}, {4784, 47718}, {4810, 47709}, {4834, 47714}, {4839, 50482}, {4951, 47793}, {47719, 50342}
X(29248) = isogonal conjugate of X(29249)
X(29248) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 29062, 29264}, {514, 29194, 29370}, {514, 29276, 814}, {514, 522, 29276}, {812, 29146, 29174}, {814, 29017, 29172}, {826, 29190, 29362}, {23876, 29086, 29366}, {29013, 29166, 29134}, {29017, 29276, 514}, {29021, 29106, 29328}, {29062, 29312, 29324}, {29070, 29318, 29332}, {29078, 29142, 29170}
X(29249) lies on the circumcircle and these lines: {692, 29277}
X(29249) = isogonal conjugate of X(29248)
X(29250) lies on these lines: {30, 511}, {659, 47706}, {667, 47710}, {4367, 47689}, {4378, 47714}, {4874, 47711}, {4951, 47840}, {47707, 50340}, {47718, 48323}, {47872, 48223}, {47893, 48187}
X(29250) = isogonal conjugate of X(29251)
X(29250) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29196, 29370}, {523, 29278, 29025}, {523, 814, 29174}, {826, 29192, 29366}, {2787, 29164, 29134}, {3907, 29146, 29172}, {7927, 29062, 29328}, {7950, 29066, 29332}, {29021, 29110, 29324}, {29025, 29074, 29278}, {29025, 29278, 814}, {29037, 29144, 29170}, {29047, 29086, 29362}
X(29251) lies on the circumcircle and these lines:
X(29251) = isogonal conjugate of X(29250)
X(29252) lies on circumconic {{A, B, C, X(4), X(29255)}} and on these lines: {30, 511}, {667, 47971}, {3004, 48053}, {3777, 49277}, {4025, 50507}, {4040, 50342}, {4041, 48112}, {4063, 48083}, {4170, 48326}, {4367, 49276}, {4453, 47839}, {4468, 50504}, {4705, 48082}, {4707, 48265}, {4822, 47930}, {4834, 48094}, {4897, 50512}, {4983, 16892}, {7265, 21146}, {18004, 50337}, {21124, 47949}, {21260, 48270}, {22037, 23789}, {25259, 50352}, {30565, 47837}, {41800, 48166}, {47676, 48273}, {47679, 47946}, {47772, 47836}, {47838, 48227}, {47840, 48571}, {47931, 48597}, {47935, 48113}, {47968, 48085}, {47994, 48402}, {47999, 48051}, {48003, 48048}, {48005, 48046}, {48059, 50348}, {48087, 50501}, {48117, 50509}, {48144, 49279}, {48185, 48573}, {48272, 50359}, {48569, 57066}
X(29252) = isogonal conjugate of X(29253)
X(29252) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29255}
X(29252) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 918, 29354}, {513, 29280, 29021}, {513, 826, 29168}, {514, 29170, 29136}, {514, 29200, 690}, {525, 6372, 29312}, {2786, 29070, 29266}, {6002, 29102, 29336}, {23875, 29021, 29280}, {29021, 29280, 826}, {29051, 29090, 29058}
X(29253) lies on the circumcircle and these lines: {3, 29254}
X(29253) = isogonal conjugate of X(29252)
X(29253) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(4596), X(4628)}}
X(29254) lies on the circumcircle and these lines: {3, 29253}
X(29254) = isogonal conjugate of X(29255)
X(29254) = circumcircle-antipode of X(29253)
X(29255) lies on circumconic {{A, B, C, X(4), X(29252)}} and on these lines: {30, 511}, {24309, 40107}, {32431, 56534}
X(29255) = isogonal conjugate of X(29254)
X(29255) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29252}
X(29255) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {517, 29283, 29024}, {740, 29105, 29339}, {1503, 29309, 29315}, {28877, 29054, 29093}, {29024, 29043, 29283}, {29024, 29283, 29012}, {29054, 29093, 29061}, {29307, 29327, 53792}
X(29256) lies on circumconic {{A, B, C, X(4), X(29259)}} and on these lines: {30, 511}, {4142, 49290}, {4770, 48272}, {21124, 48059}, {47682, 50512}, {48053, 49277}, {49280, 50507}
X(29256) = isogonal conjugate of X(29257)
X(29256) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29259}
X(29256) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29017, 29166}, {514, 29078, 29176}, {514, 29106, 29340}, {514, 29202, 3906}, {522, 29094, 29182}, {525, 29312, 6372}, {812, 29154, 29184}, {826, 3910, 891}, {4083, 29318, 7950}, {23876, 29017, 512}, {23876, 29021, 29284}, {29013, 29172, 29138}, {29017, 29284, 29021}
X(29257) lies on the circumcircle and these lines: {3, 29258}
X(29257) = isogonal conjugate of X(29256)
X(29258) lies on the circumcircle and these lines: {3, 29257}
X(29258) = isogonal conjugate of X(29259)
X(29258) = circumcircle-antipode of X(29257)
X(29259) lies on circumconic {{A, B, C, X(4), X(29256)}} and on these lines: {30, 511}
X(29259) = isogonal conjugate of X(29258)
X(29259) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29256}
X(29259) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 29109, 29343}, {1503, 29315, 29309}, {15310, 29321, 29323}, {29012, 29207, 29349}, {29020, 29046, 511}, {29020, 29287, 29024}, {29024, 29046, 29287}
X(29260) lies on these lines: {30, 511}, {693, 47710}, {1577, 47692}, {3762, 47709}, {4040, 48118}, {4088, 48054}, {4391, 47713}, {4401, 48103}, {4449, 47726}, {4791, 47707}, {4801, 47714}, {4808, 48012}, {4823, 47691}, {4978, 47689}, {14349, 47700}, {16892, 48018}, {21175, 47136}, {47682, 48287}, {47690, 47716}, {47701, 47997}, {47702, 47959}, {47715, 47720}, {47727, 48294}, {47794, 48203}, {47795, 48208}, {47797, 48196}, {47809, 48218}, {47816, 48174}, {47817, 48223}, {47818, 48236}, {47837, 48224}, {47838, 48171}, {47839, 48188}, {47916, 48586}, {47924, 47948}, {47938, 48600}, {47958, 48601}, {47961, 48613}, {47972, 48623}, {48058, 48088}, {48064, 48106}, {48065, 48094}, {48077, 48603}, {48082, 48594}, {48111, 48130}, {48187, 48556}, {48222, 48564}, {48241, 48573}
X(29260) = isogonal conjugate of X(29261)
X(29260) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29263}
X(29260) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29263)}}, {{A, B, C, X(4608), X(29164)}}
X(29260) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29204, 29358}, {514, 523, 29164}, {523, 29288, 29021}, {826, 29208, 29350}, {2787, 29174, 29140}, {4083, 7950, 29318}, {29021, 29047, 29288}, {29021, 29288, 514}, {29025, 29110, 29344}, {29037, 29158, 29178}, {29074, 29098, 29033}, {47727, 48300, 48294}
X(29261) lies on the circumcircle and these lines: {3, 29262}, {29165, 35327}
X(29261) = isogonal conjugate of X(29260)
X(29262) lies on the circumcircle and these lines: {3, 29261}
X(29262) = isogonal conjugate of X(29263)
X(29262) = circumcircle-antipode of X(29261)
X(29263) lies on circumconic {{A, B, C, X(4), X(29260)}} and on these lines: {20, 19836}, {30, 511}, {382, 24309}, {4353, 6284}, {40998, 52397}
X(29263) = isogonal conjugate of X(29262)
X(29263) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29260}
X(29263) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 29291, 29024}, {15310, 29323, 29321}, {29012, 29211, 29353}, {29024, 29050, 29291}, {29024, 29291, 516}, {29028, 29113, 29347}, {29077, 29101, 29036}
X(29264) lies on these lines: {30, 511}, {3700, 48328}, {4504, 49290}, {4922, 7265}, {24178, 41800}, {48266, 48333}, {56311, 57066}
X(29264) = isogonal conjugate of X(29265)
X(29264) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 29037, 29292}, {514, 29062, 29248}, {514, 29230, 29058}, {523, 29176, 29136}, {814, 29212, 29354}, {2786, 29298, 32478}, {2787, 29037, 826}, {2787, 29292, 514}, {3907, 29090, 690}, {6002, 29110, 7927}, {29062, 29324, 29312}, {29074, 29148, 29168}
X(29265) lies on the circumcircle and these lines: {98, 22791}
X(29265) = isogonal conjugate of X(29264)
X(29266) lies on these lines: {30, 511}, {667, 48266}, {3700, 50512}, {4820, 50515}, {4976, 48005}, {48269, 50507}
X(29266) = isogonal conjugate of X(29267)
X(29266) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29232, 29058}, {522, 29150, 29168}, {525, 29340, 29336}, {812, 29090, 29354}, {814, 29216, 690}, {900, 29232, 512}, {2786, 29070, 29252}, {6002, 29106, 29312}, {29013, 29078, 826}, {29013, 29294, 29025}, {29017, 29178, 29136}, {29025, 29078, 29294}, {29062, 29328, 7927}
X(29267) lies on the circumcircle and these lines:
X(29267) = isogonal conjugate of X(29266)
X(29267) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(4565), X(6540)}}
X(29268) lies on these lines: {30, 511}, {667, 4474}, {905, 53571}, {1019, 4774}, {1577, 4922}, {1960, 4391}, {2533, 48568}, {4010, 48347}, {4129, 48289}, {4504, 52601}, {4560, 4770}, {4791, 48330}, {4823, 48344}, {14419, 21052}, {14422, 47795}, {21260, 48325}, {28603, 47794}, {30580, 57066}, {30709, 47839}, {47724, 48323}, {47729, 48267}, {48005, 48288}, {48090, 48287}, {48273, 48296}, {48284, 48401}, {48565, 50512}
X(29268) = isogonal conjugate of X(29269)
X(29268) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(740), X(43731)}}, {{A, B, C, X(2783), X(23959)}}
X(29268) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 2787, 29176}, {514, 29074, 29166}, {514, 29110, 7950}, {514, 29236, 29182}, {1577, 4922, 48328}, {2787, 29298, 6002}, {2787, 3907, 512}, {2789, 29037, 29094}, {3907, 6002, 29298}, {4083, 29344, 29340}, {29037, 29094, 3906}, {29047, 29156, 29184}, {29066, 29324, 6372}
X(29269) lies on the circumcircle and these lines: {98, 1482}, {2699, 23961}, {28203, 37620}
X(29269) = isogonal conjugate of X(29268)
X(29269) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1415), X(4555)}}
X(29270) lies on circumconic {{A, B, C, X(17925), X(29178)}} and on these lines: {30, 511}, {649, 4823}, {667, 4810}, {693, 48064}, {1019, 4382}, {1577, 4380}, {1635, 48196}, {3835, 24948}, {4010, 4401}, {4049, 54929}, {4063, 4791}, {4106, 14838}, {4129, 48008}, {4170, 4794}, {4728, 48218}, {4773, 41800}, {4960, 50525}, {7192, 48074}, {14349, 48114}, {17494, 47997}, {20295, 48054}, {21297, 47795}, {24719, 48066}, {26853, 48624}, {30094, 49287}, {31150, 48551}, {31290, 48587}, {31291, 48339}, {46403, 48075}, {47666, 48600}, {47672, 48110}, {47678, 49282}, {47683, 48121}, {47724, 50509}, {47776, 47794}, {47869, 48580}, {47917, 48584}, {47926, 47947}, {47932, 47959}, {47962, 48612}, {47969, 48591}, {47975, 48601}, {47976, 50457}, {48018, 50343}, {48065, 48080}, {48079, 48602}, {48090, 50512}, {48279, 48343}, {48409, 48603}
X(29270) = isogonal conjugate of X(29271)
X(29270) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29238, 29033}, {514, 29013, 29178}, {522, 29158, 29164}, {812, 6002, 29302}, {1577, 4380, 48011}, {4083, 29340, 29344}, {4961, 29033, 512}, {23876, 29162, 514}, {29013, 29302, 6002}, {29025, 29106, 29318}, {29070, 29328, 6005}, {29078, 29098, 29358}, {48079, 50449, 48602}
X(29271) lies on the circumcircle and these lines: {644, 53635}, {4574, 29179}
X(29271) = isogonal conjugate of X(29270)
X(29272) lies on these lines: {30, 511}, {1960, 3801}, {4378, 8636}, {4707, 50512}, {4879, 47725}, {21145, 47818}, {47684, 50352}, {47691, 48347}, {47716, 48296}, {47728, 48328}, {48305, 49303}
X(29272) = isogonal conjugate of X(29273)
X(29272) = perspector of circumconic {{A, B, C, X(2), X(29865)}}
X(29272) = intersection, other than A, B, C, of circumconics {{A, B, C, X(519), X(29865)}}, {{A, B, C, X(7192), X(29138)}}
X(29272) = barycentric product X(i)*X(j) for these (i, j): {29865, 514}
X(29272) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29273}, {29865, 190}
X(29272) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 514, 29184}, {513, 514, 29138}, {514, 2785, 29098}, {514, 29094, 891}, {514, 29102, 6372}, {514, 29304, 29025}, {514, 6005, 29122}, {525, 29336, 29340}, {814, 29220, 3906}, {826, 29240, 29182}, {23875, 29156, 29176}, {29025, 29082, 29304}, {29025, 29304, 512}, {29051, 29154, 29166}, {29066, 29332, 7950}
X(29273) lies on the circumcircle and these lines: {4557, 29139}, {29185, 53268}
X(29273) = isogonal conjugate of X(29272)
X(29273) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 29865}
X(29274) lies on these lines: {30, 511}, {650, 21053}, {659, 28373}, {663, 48090}, {667, 47724}, {693, 48330}, {1577, 48331}, {1960, 4823}, {2533, 4782}, {3801, 47722}, {4367, 48098}, {4382, 4879}, {4498, 4774}, {4560, 50335}, {4801, 4922}, {4810, 48338}, {4978, 48344}, {8643, 47833}, {17166, 48127}, {21052, 48226}, {21260, 48284}, {21301, 48030}, {23765, 48115}, {24719, 48129}, {46403, 48137}, {47707, 48097}, {47729, 48279}, {47814, 48194}, {47820, 48221}, {47912, 47964}, {47969, 48609}, {48100, 48288}, {48119, 48323}, {48120, 48322}, {48150, 48392}, {48324, 48393}, {48325, 48406}, {48568, 50352}, {50517, 54265}
X(29274) = isogonal conjugate of X(29275)
X(29274) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29033, 29238}, {513, 814, 29152}, {514, 29074, 29204}, {514, 29086, 29146}, {514, 29182, 29236}, {522, 29082, 29202}, {814, 29246, 6002}, {2787, 29186, 29198}, {3907, 29362, 29226}, {6002, 29051, 29246}, {6002, 29246, 513}, {29021, 29336, 29122}, {29062, 29102, 29280}, {29066, 29070, 4083}, {29066, 29302, 29298}, {29070, 29298, 29302}, {29086, 29146, 4777}
X(29275) lies on the circumcircle and these lines:
X(29275) = isogonal conjugate of X(29272)
X(29276) lies on circumconic {{A, B, C, X(693), X(29248)}} and on these lines: {30, 511}, {3700, 48331}, {4782, 48395}, {4820, 48329}, {4834, 47723}, {48266, 48336}, {48280, 48344}
X(29276) = isogonal conjugate of X(29277)
X(29276) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 29058, 29230}, {514, 29062, 29292}, {514, 29248, 29017}, {514, 522, 29248}, {812, 29074, 29208}, {814, 29017, 29156}, {826, 29033, 29244}, {29013, 29086, 29144}, {29021, 29340, 29124}, {29051, 29078, 29200}, {29066, 29106, 29284}, {29070, 29292, 514}
X(29277) lies on the circumcircle and these lines: {692, 29249}
X(29277) = isogonal conjugate of X(29276)
X(29278) lies on these lines: {30, 511}, {663, 3700}, {667, 48395}, {676, 1577}, {1019, 47723}, {2490, 6050}, {2527, 50512}, {3004, 21301}, {3669, 49285}, {4024, 48322}, {4041, 4528}, {4122, 48299}, {4162, 4820}, {4163, 4765}, {4367, 48396}, {4391, 50347}, {4449, 48280}, {4467, 21302}, {4474, 21120}, {4477, 21005}, {4560, 50333}, {4823, 34958}, {4841, 47912}, {6590, 50517}, {8643, 47874}, {14321, 48099}, {14838, 53573}, {17069, 17072}, {17166, 48274}, {17496, 47687}, {17989, 53286}, {26275, 47872}, {30724, 47812}, {31291, 47660}, {45318, 45324}, {47707, 47890}, {47784, 47814}, {47788, 47820}, {47893, 48182}, {48264, 53523}, {48266, 48338}, {48269, 50508}, {48276, 50523}, {48329, 49286}, {48336, 50326}, {48400, 50340}, {53285, 57159}
X(29278) = isogonal conjugate of X(29279)
X(29278) = perspector of circumconic {{A, B, C, X(2), X(5750)}}
X(29278) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1220, 1146}
X(29278) = intersection, other than A, B, C, of circumconics {{A, B, C, X(513), X(50523)}}, {{A, B, C, X(514), X(48276)}}, {{A, B, C, X(516), X(4298)}}, {{A, B, C, X(517), X(3745)}}, {{A, B, C, X(518), X(4968)}}, {{A, B, C, X(527), X(5750)}}, {{A, B, C, X(663), X(834)}}, {{A, B, C, X(3700), X(23879)}}, {{A, B, C, X(4041), X(4132)}}, {{A, B, C, X(4391), X(28894)}}, {{A, B, C, X(6591), X(8712)}}
X(29278) = barycentric product X(i)*X(j) for these (i, j): {312, 50523}, {522, 5750}, {3239, 4298}, {3745, 4391}, {4968, 650}, {48276, 8}
X(29278) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29279}, {3745, 651}, {4298, 658}, {4968, 4554}, {5750, 664}, {48276, 7}, {50523, 57}
X(29278) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29058, 29232}, {512, 29232, 900}, {522, 23880, 6362}, {522, 3900, 4843}, {522, 3907, 3910}, {523, 814, 29162}, {663, 3700, 4990}, {814, 29250, 29025}, {826, 29182, 29240}, {2787, 29086, 29142}, {3900, 54271, 8676}, {3907, 3910, 6366}, {29013, 29192, 3800}, {29021, 29344, 29126}, {29025, 29074, 29250}, {29025, 29250, 523}, {29037, 29051, 918}, {29062, 29066, 525}, {29062, 29304, 29294}, {29066, 29294, 29304}, {29070, 29110, 29288}, {29070, 29288, 6084}, {29078, 29366, 3566}, {54017, 54019, 28894}
X(29279) lies on the circumcircle and these lines: {103, 4300}, {664, 835}, {1332, 6574}, {1414, 34594}, {1415, 28895}, {6016, 36074}, {8707, 53332}
X(29279) = isogonal conjugate of X(29278)
X(29279) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29278}, {8, 50523}, {9, 48276}, {522, 3745}, {650, 5750}, {663, 4968}, {3900, 4298}
X(29279) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29278}, {478, 48276}
X(29279) = X(i)-cross conjugate of X(j) for these {i, j}: {1193, 1262}
X(29279) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(677)}}, {{A, B, C, X(664), X(4565)}}, {{A, B, C, X(4300), X(23973)}}, {{A, B, C, X(4559), X(32735)}}, {{A, B, C, X(17929), X(53332)}}
X(29279) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29278}, {56, 48276}, {109, 5750}, {604, 50523}, {651, 4968}, {1415, 3745}, {1461, 4298}
X(29280) lies on circumconic {{A, B, C, X(4), X(29283)}} and on these lines: {30, 511}, {3777, 21350}, {3801, 25259}, {4063, 48097}, {7265, 48090}, {16892, 48100}, {21124, 47967}, {41800, 48199}, {47679, 47964}, {47700, 50355}, {47835, 48171}, {47836, 48188}, {47837, 48201}, {47839, 48212}, {47840, 48224}, {47841, 48241}, {47913, 48112}, {47935, 48140}, {47957, 48082}, {48085, 48611}, {48129, 49277}, {48227, 57066}, {48265, 49272}, {48272, 50335}, {48300, 50342}, {48330, 49279}, {48597, 48599}
X(29280) = isogonal conjugate of X(29281)
X(29280) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29283}
X(29280) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29358, 29204}, {513, 826, 29146}, {514, 29078, 29238}, {514, 29090, 29152}, {514, 3906, 29202}, {525, 29288, 29284}, {826, 29252, 29021}, {918, 29017, 29198}, {6002, 29332, 29122}, {23875, 29021, 29252}, {23876, 29354, 29226}, {29021, 29252, 513}, {29037, 29082, 29236}, {29062, 29102, 29274}, {29284, 29288, 4083}
X(29281) lies on the circumcircle and these lines: {3, 29282}
X(29281) = isogonal conjugate of X(29280)
X(29282) lies on the circumcircle and these lines: {3, 29281}
X(29282) = isogonal conjugate of X(29283)
X(29282) = circumcircle-antipode of X(29281)
X(29283) lies on circumconic {{A, B, C, X(4), X(29280)}} and on these lines: {30, 511}
X(29283) = isogonal conjugate of X(29282)
X(29283) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29280}
X(29283) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1503, 29291, 29287}, {29012, 29043, 517}, {29012, 29255, 29024}, {29024, 29043, 29255}, {29287, 29291, 15310}
X(29284) lies on circumconic {{A, B, C, X(4), X(29287)}} and on these lines: {30, 511}, {3004, 48129}, {4063, 49279}, {4147, 18004}, {4449, 50342}, {4705, 49277}, {4707, 48273}, {4730, 48272}, {4782, 48299}, {4834, 47682}, {6332, 9508}, {7178, 48090}, {21120, 50326}, {21124, 48123}, {23755, 48120}, {45683, 45691}, {47835, 48199}, {47836, 48217}, {47840, 48195}, {47841, 48215}, {47921, 48048}, {47922, 48046}, {47971, 48323}, {47999, 48128}, {48093, 48402}, {48098, 48280}, {48137, 50348}, {48270, 48401}, {48278, 50355}, {48338, 50340}, {49280, 50501}
X(29284) = isogonal conjugate of X(29285)
X(29284) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29287}
X(29284) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29017, 29144}, {512, 29256, 29021}, {514, 29328, 29124}, {514, 690, 29200}, {525, 29288, 29280}, {812, 29082, 29244}, {826, 29350, 29208}, {3566, 3910, 513}, {3907, 29078, 29230}, {4083, 29280, 29288}, {23876, 29021, 29256}, {28473, 29232, 29236}, {29013, 29094, 29156}, {29021, 29256, 29017}, {29066, 29106, 29276}, {29312, 32478, 6005}, {47835, 57066, 48199}
X(29285) lies on the circumcircle and these lines: {3, 29286}
X(29285) = isogonal conjugate of X(29284)
X(29285) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(32674), X(37135)}}
X(29286) lies on the circumcircle and these lines: {3, 29285}
X(29286) = isogonal conjugate of X(29287)
X(29286) = circumcircle-antipode of X(29285)
X(29286) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(893), X(3417)}}
X(29287) lies on circumconic {{A, B, C, X(4), X(29284)}} and on these lines: {3, 33082}, {5, 33682}, {30, 511}, {355, 894}, {944, 6646}, {1385, 4357}, {3655, 17254}, {5707, 45630}, {5711, 8757}, {5750, 9956}, {5810, 26487}
X(29287) = isogonal conjugate of X(29286)
X(29287) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29284}
X(29287) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {511, 29259, 29024}, {515, 17770, 29369}, {1503, 29291, 29283}, {3564, 29207, 517}, {5965, 29315, 29311}, {15310, 29283, 29291}, {29012, 29353, 29211}, {29024, 29046, 29259}, {29024, 29259, 29020}
X(29288) lies on these lines: {1, 48299}, {30, 511}, {663, 48094}, {667, 47890}, {693, 47707}, {905, 48062}, {1027, 48305}, {1577, 23770}, {1638, 47837}, {1639, 47839}, {1734, 50348}, {2490, 31288}, {2530, 4808}, {2533, 13259}, {2977, 14838}, {3004, 4705}, {3700, 48273}, {3762, 47712}, {3776, 17072}, {3801, 10015}, {4025, 50501}, {4040, 47727}, {4041, 16892}, {4088, 48131}, {4122, 48279}, {4162, 48124}, {4170, 50326}, {4367, 48103}, {4391, 47691}, {4449, 48118}, {4453, 47836}, {4462, 47692}, {4468, 48099}, {4490, 48402}, {4560, 48408}, {4729, 47930}, {4801, 47690}, {4822, 48082}, {4834, 4897}, {4874, 34958}, {4978, 47711}, {4983, 48046}, {4992, 18004}, {6050, 11068}, {6332, 48332}, {14349, 48047}, {17069, 50504}, {17166, 47660}, {20504, 21124}, {21104, 50352}, {21108, 21119}, {21185, 47131}, {21301, 47652}, {21302, 49302}, {26275, 47817}, {30565, 47840}, {30724, 48232}, {41800, 47835}, {44435, 47814}, {44448, 48015}, {47682, 48282}, {47689, 47719}, {47700, 48278}, {47701, 47918}, {47704, 50457}, {47705, 55282}, {47710, 47715}, {47766, 48564}, {47771, 47820}, {47793, 47797}, {47794, 47799}, {47795, 47807}, {47796, 47809}, {47798, 47815}, {47800, 48561}, {47808, 47819}, {47816, 48178}, {47818, 48231}, {47838, 48166}, {47841, 48185}, {47905, 47943}, {47911, 47938}, {47912, 47958}, {47929, 47972}, {47948, 47989}, {47955, 47983}, {47956, 47995}, {47959, 47998}, {47961, 48607}, {47966, 48006}, {47971, 50509}, {48039, 48092}, {48060, 50515}, {48077, 48122}, {48078, 48367}, {48083, 48336}, {48087, 50508}, {48088, 48136}, {48095, 50517}, {48096, 48329}, {48097, 48330}, {48101, 50523}, {48102, 48150}, {48104, 50526}, {48106, 48144}, {48117, 48338}, {48130, 48322}, {48171, 57066}, {48179, 48553}, {48182, 48556}, {48245, 48573}, {48264, 53558}, {48265, 48349}, {48272, 48335}, {48333, 49279}, {48337, 49276}
X(29288) = isogonal conjugate of X(29289)
X(29288) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29291}
X(29288) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(34378)}}, {{A, B, C, X(4), X(29291)}}, {{A, B, C, X(513), X(48033)}}, {{A, B, C, X(4608), X(29142)}}
X(29288) = barycentric product X(i)*X(j) for these (i, j): {48033, 75}
X(29288) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29289}, {48033, 1}
X(29288) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29354, 918}, {513, 29208, 3800}, {514, 29192, 29186}, {514, 29260, 29021}, {514, 3907, 29240}, {514, 523, 29142}, {514, 830, 4977}, {693, 47707, 48395}, {812, 29037, 29232}, {826, 891, 3910}, {1577, 47716, 23770}, {2787, 29098, 29162}, {3762, 47712, 48400}, {3762, 47717, 47712}, {4083, 29280, 29284}, {4391, 47691, 48403}, {4449, 48118, 48300}, {4449, 48300, 48290}, {4462, 47692, 47708}, {4801, 47706, 47690}, {4978, 47711, 48396}, {6084, 29278, 29070}, {23875, 29350, 3566}, {29021, 29047, 29260}, {29021, 29260, 523}, {29025, 29324, 29126}, {29070, 29110, 29278}, {29204, 29226, 29017}, {29280, 29284, 525}, {30724, 48232, 48569}, {47700, 48334, 48278}, {47707, 47720, 693}, {47835, 48227, 41800}
X(29289) lies on the circumcircle and these lines: {3, 29290}, {692, 52778}, {29143, 35327}
X(29289) = reflection of X(i) in X(j) for these {i,j}: {29290, 3}
X(29289) = isogonal conjugate of X(29288)
X(29289) = trilinear pole of line {6, 37577}
X(29289) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29288}, {2, 48033}
X(29289) = X(i)-vertex conjugate of X(j) for these {i, j}: {9999, 29289}
X(29289) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29288}, {32664, 48033}
X(29289) = X(i)-cross conjugate of X(j) for these {i, j}: {3744, 59}
X(29289) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1414), X(4628)}}, {{A, B, C, X(32666), X(32736)}}
X(29289) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29288}, {31, 48033}
X(29290) lies on the circumcircle and these lines: {3, 29289}
X(29290) = isogonal conjugate of X(29291)
X(29290) = circumcircle-antipode of X(29289)
X(29290) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(10623), X(56139)}}
X(29291) lies on circumconic {{A, B, C, X(4), X(29288)}} and on these lines: {3, 25914}, {4, 4429}, {5, 24309}, {30, 511}, {40, 33165}, {990, 12699}, {1486, 25365}, {1721, 33149}, {1766, 17340}, {1770, 12723}, {3579, 12618}, {3663, 15171}, {3826, 36661}, {4026, 36707}, {4292, 12722}, {4319, 24701}, {4353, 15172}, {4660, 57288}, {6211, 24828}, {6284, 24248}, {7354, 37542}, {10691, 40998}, {11495, 36674}, {11677, 24320}, {12610, 22793}, {21629, 31730}, {25968, 46549}, {31394, 49131}, {31777, 31832}, {36720, 49725}
X(29291) = isogonal conjugate of X(29290)
X(29291) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29288}
X(29291) = X(i)-complementary conjugate of X(j) for these {i, j}: {29290, 10}
X(29291) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29290, 8}
X(29291) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 29057, 29243}, {516, 29263, 29024}, {517, 29211, 29181}, {15310, 29283, 29287}, {28850, 29040, 29235}, {29012, 29349, 29207}, {29024, 29050, 29263}, {29024, 29263, 30}, {29043, 29353, 3564}, {29105, 29301, 5762}, {29283, 29287, 1503}
X(29292) lies on these lines: {30, 511}, {4122, 52601}, {4467, 4808}, {4784, 47710}, {4810, 47717}, {4834, 47706}, {4951, 47795}, {47711, 50342}, {48351, 49272}
X(29292) = isogonal conjugate of X(29293)
X(29292) = X(i)-complementary conjugate of X(j) for these {i, j}: {29293, 10}
X(29292) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29293, 8}
X(29292) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 29037, 29264}, {514, 29062, 29276}, {514, 29264, 2787}, {514, 29276, 29070}, {514, 29370, 29194}, {523, 29090, 29150}, {525, 29110, 29298}, {814, 29358, 29224}, {826, 2787, 29154}, {826, 29264, 514}, {6002, 7950, 29128}, {23875, 29074, 29188}
X(29293) lies on the circumcircle and these lines: {98, 9955}
X(29293) = isogonal conjugate of X(29292)
X(29294) lies on circumconic {{A, B, C, X(4), X(29297)}} and on these lines: {30, 511}, {3700, 20517}, {4467, 48272}, {4522, 21192}, {4951, 47837}, {7662, 57068}, {22037, 48099}, {47677, 48086}, {47693, 47976}, {47710, 50509}, {47712, 48266}, {47715, 47971}, {47970, 49272}
X(29294) = isogonal conjugate of X(29295)
X(29294) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29297}
X(29294) = X(i)-complementary conjugate of X(j) for these {i, j}: {29295, 10}
X(29294) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29295, 8}
X(29294) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29370, 29196}, {522, 23875, 29186}, {525, 29278, 29304}, {814, 3906, 29220}, {826, 29013, 29160}, {826, 29266, 29025}, {6002, 29318, 29130}, {29017, 29090, 29148}, {29025, 29078, 29266}, {29025, 29266, 29013}, {29062, 29304, 29278}, {29278, 29304, 29066}
X(29295) lies on the circumcircle and these lines: {3, 29296}
X(29295) = isogonal conjugate of X(29294)
X(29296) lies on the circumcircle and these lines: {3, 29295}
X(29296) = isogonal conjugate of X(29297)
X(29296) = circumcircle-antipode of X(29295)
X(29297) lies on circumconic {{A, B, C, X(4), X(29294)}} and on these lines: {30, 511}
X(29297) = isogonal conjugate of X(29296)
X(29297) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29294}
X(29297) = X(i)-complementary conjugate of X(j) for these {i, j}: {29296, 10}
X(29297) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29296, 8}
X(29297) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1503, 29065, 29069}, {11645, 29010, 29223}, {29012, 29081, 29016}
X(29298) lies on these lines: {1, 2533}, {8, 4705}, {30, 511}, {145, 17166}, {551, 45332}, {663, 10459}, {667, 16158}, {693, 48333}, {1019, 4922}, {1577, 4774}, {2530, 21302}, {3244, 54265}, {3632, 4824}, {3691, 57176}, {3762, 48336}, {3801, 47727}, {3837, 48348}, {3912, 42319}, {4010, 48337}, {4041, 48288}, {4147, 50507}, {4367, 4761}, {4369, 48328}, {4391, 4775}, {4449, 50352}, {4462, 48351}, {4474, 48267}, {4560, 4730}, {4807, 9508}, {4874, 48294}, {4895, 48305}, {4978, 21343}, {5690, 44824}, {14413, 48569}, {14419, 47836}, {14430, 48553}, {14431, 47840}, {14838, 48289}, {16737, 25303}, {19947, 50337}, {21052, 47839}, {21146, 48282}, {21260, 48136}, {23815, 48332}, {24920, 31947}, {25569, 47818}, {34641, 45676}, {47707, 49279}, {47724, 48279}, {48058, 48401}, {48248, 48345}, {48265, 48352}, {48285, 48330}, {48291, 50457}, {48321, 50355}, {48339, 48392}, {48395, 49290}
X(29298) = isogonal conjugate of X(29299)
X(29298) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29301}
X(29298) = X(i)-complementary conjugate of X(j) for these {i, j}: {29299, 10}
X(29298) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29299, 8}
X(29298) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29301)}}, {{A, B, C, X(511), X(1389)}}, {{A, B, C, X(740), X(5559)}}, {{A, B, C, X(1168), X(2392)}}, {{A, B, C, X(2346), X(6007)}}, {{A, B, C, X(6630), X(8682)}}
X(29298) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2533, 52601}, {512, 2787, 29150}, {512, 29268, 6002}, {512, 3907, 2787}, {514, 29366, 29188}, {514, 4844, 29366}, {514, 7927, 29128}, {523, 28473, 29094}, {523, 29094, 29154}, {525, 29110, 29292}, {3907, 6002, 29268}, {4083, 29274, 29302}, {4474, 48338, 48267}, {4774, 4879, 1577}, {21302, 48298, 2530}, {23876, 29074, 29194}, {29047, 29082, 29224}, {29066, 29302, 29274}, {29264, 32478, 2786}, {29274, 29302, 29070}
X(29299) lies on the circumcircle and these lines: {3, 29300}, {74, 37620}, {98, 1385}, {214, 2372}, {354, 6015}, {741, 5563}, {759, 37617}, {2375, 9259}, {2699, 22765}, {11012, 29056}, {28471, 37575}
X(29299) = reflection of X(i) in X(j) for these {i,j}: {29300, 3}
X(29299) = isogonal conjugate of X(29298)
X(29299) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(56), X(52935)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1415), X(4597)}}, {{A, B, C, X(4559), X(4622)}}
X(29299) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29298}
X(29300) lies on these lines: {3, 29299}, {35, 29055}, {99, 3579}, {110, 37619}, {171, 26700}, {2703, 35000}, {5143, 34921}, {5606, 37527}
X(29300) = isogonal conjugate of X(29301)
X(29300) = circumcircle-antipode of X(29299)
X(29300) = intersection, other than A, B, C, of circumconics {{A, B, C, X(35), X(171)}}, {{A, B, C, X(65), X(37619)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(267), X(7351)}}, {{A, B, C, X(484), X(5143)}}, {{A, B, C, X(1402), X(3579)}}, {{A, B, C, X(5061), X(35000)}}, {{A, B, C, X(14882), X(37527)}}
X(29301) lies on these lines: {30, 511}, {79, 256}, {182, 24728}, {191, 6211}, {314, 10308}, {576, 24257}, {1045, 1048}, {1756, 4459}, {3098, 3923}, {3579, 17351}, {3647, 51575}, {3648, 56318}, {3649, 24231}, {3650, 4480}, {3818, 4655}, {3821, 19130}, {4647, 48936}, {4672, 5092}, {4696, 11684}, {4887, 11544}, {5695, 33878}, {8143, 48933}, {9955, 17235}, {11203, 53034}, {12699, 17276}, {16006, 39774}, {17182, 17628}, {24248, 31670}, {24695, 46264}, {37517, 49488}, {37619, 46897}, {44456, 49486}, {46895, 48883}, {48939, 49598}, {49489, 55716}
X(29301) = isogonal conjugate of X(29300)
X(29301) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29298}
X(29301) = X(i)-complementary conjugate of X(j) for these {i, j}: {29300, 10}
X(29301) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29300, 8}
X(29301) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29298)}}, {{A, B, C, X(79), X(3907)}}, {{A, B, C, X(256), X(35057)}}, {{A, B, C, X(512), X(10308)}}, {{A, B, C, X(6002), X(16005)}}
X(29301) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 17768, 29097}, {511, 29057, 2783}, {5762, 29291, 29105}, {15310, 29069, 29073}, {17770, 29040, 542}, {29317, 53792, 516}
X(29302) lies on these lines: {30, 511}, {649, 4978}, {659, 48273}, {667, 48279}, {693, 4063}, {1019, 4380}, {1125, 6050}, {1577, 4382}, {1635, 47795}, {1734, 46403}, {3776, 21192}, {3835, 48003}, {3837, 50504}, {4106, 4129}, {4170, 4724}, {4369, 48011}, {4379, 48566}, {4391, 21385}, {4401, 4830}, {4560, 48335}, {4705, 24719}, {4728, 47794}, {4763, 48218}, {4773, 30724}, {4782, 52601}, {4810, 48267}, {4823, 49289}, {4834, 21146}, {4905, 50343}, {4913, 48066}, {4927, 41800}, {4928, 48196}, {4960, 47675}, {4992, 50507}, {7192, 47976}, {7265, 48094}, {9508, 23815}, {14349, 17494}, {14838, 28374}, {20295, 47959}, {20517, 23770}, {21297, 47793}, {23729, 48402}, {23789, 50336}, {26853, 48110}, {30592, 47841}, {31147, 48551}, {31290, 48595}, {31291, 48304}, {43991, 57184}, {47666, 48085}, {47672, 47935}, {47679, 47958}, {47715, 48106}, {47776, 47796}, {47811, 47838}, {47812, 48573}, {47817, 47832}, {47828, 48556}, {47836, 48170}, {47837, 48184}, {47839, 48226}, {47840, 48240}, {47892, 57066}, {47917, 48597}, {47918, 48114}, {47926, 48121}, {47932, 48131}, {47947, 48079}, {47962, 48091}, {47969, 48081}, {47970, 48080}, {47975, 48086}, {47977, 53343}, {47991, 48602}, {47996, 48051}, {47997, 48049}, {48000, 48054}, {48001, 48045}, {48004, 48043}, {48010, 48052}, {48012, 48050}, {48023, 48407}, {48041, 48612}, {48089, 50337}, {48119, 50509}, {48122, 48409}, {48136, 48284}, {48150, 48339}, {48271, 57068}, {48272, 48408}, {48285, 48333}, {48305, 50358}, {48321, 48334}
X(29302) = isogonal conjugate of X(29303)
X(29302) = X(i)-complementary conjugate of X(j) for these {i, j}: {29303, 10}
X(29302) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29303, 8}
X(29302) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3669), X(4132)}}, {{A, B, C, X(4817), X(15309)}}, {{A, B, C, X(17925), X(29148)}}
X(29302) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29362, 29186}, {514, 23876, 29220}, {514, 29013, 29148}, {514, 29216, 918}, {514, 29270, 6002}, {514, 4785, 15309}, {514, 812, 29013}, {522, 29047, 29196}, {525, 6084, 514}, {667, 48279, 48295}, {812, 6002, 29270}, {4083, 29274, 29298}, {4106, 47965, 4129}, {4380, 4801, 1019}, {4382, 4498, 1577}, {29017, 29098, 29160}, {29025, 29312, 29130}, {29070, 29298, 29274}, {29226, 29238, 2787}, {29274, 29298, 29066}, {47926, 48121, 50449}, {48089, 50501, 50337}
X(29303) lies on the circumcircle and these lines: {105, 1724}, {644, 34594}, {917, 1753}, {1018, 46961}, {2284, 29014}, {4574, 29149}
X(29303) = isogonal conjugate of X(29302)
X(29303) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(37205)}}, {{A, B, C, X(1018), X(34074)}}, {{A, B, C, X(1724), X(2284)}}
X(29304) lies on circumconic {{A, B, C, X(4), X(29307)}} and on these lines: {30, 511}, {663, 4707}, {1019, 47728}, {1125, 21188}, {1577, 49288}, {2457, 48186}, {2533, 49279}, {3776, 48348}, {3801, 4775}, {3904, 4905}, {4142, 4794}, {4162, 48286}, {4391, 49276}, {4401, 5592}, {4458, 48294}, {4761, 48300}, {4807, 48062}, {6332, 50337}, {14432, 47795}, {20504, 49458}, {21301, 49277}, {21302, 48272}, {30574, 47794}, {39585, 57224}, {47676, 48282}, {47691, 48337}, {47708, 48352}, {47712, 48338}, {47793, 53356}, {47796, 53334}, {48099, 50453}, {48326, 48333}, {48339, 55282}, {50351, 50355}
X(29304) = isogonal conjugate of X(29305)
X(29304) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29307}
X(29304) = X(i)-complementary conjugate of X(j) for these {i, j}: {29305, 10}
X(29304) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29305, 8}
X(29304) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29272, 29025}, {512, 514, 29158}, {514, 6005, 29132}, {525, 29278, 29294}, {663, 4707, 20517}, {690, 814, 29216}, {826, 29366, 29192}, {3566, 29240, 29013}, {3907, 23875, 29212}, {21302, 49274, 48272}, {23876, 29051, 29190}, {23884, 42325, 3810}, {29025, 29082, 29272}, {29025, 29272, 514}, {29066, 29294, 29278}, {29278, 29294, 29062}, {29336, 32478, 29328}
X(29305) lies on the circumcircle and these lines: {3, 29306}, {4653, 39439}, {29159, 53268}
X(29305) = isogonal conjugate of X(29304)
X(29306) lies on the circumcircle and these lines: {3, 29305}, {100, 1726}, {101, 23843}, {929, 50368}
X(29306) = isogonal conjugate of X(29307)
X(29306) = circumcircle-antipode of X(29305)
X(29306) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1726), X(7096)}}
X(29307) lies on these lines: {3, 7232}, {10, 24332}, {30, 511}, {212, 40677}, {573, 1759}, {946, 5398}, {1944, 41327}, {3664, 3665}, {4416, 5016}, {4655, 24309}, {5264, 13407}, {5757, 24220}, {11442, 21072}, {17365, 49131}, {24248, 39900}
X(29307) = isogonal conjugate of X(29306)
X(29307) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29304}
X(29307) = X(i)-complementary conjugate of X(j) for these {i, j}: {29306, 10}
X(29307) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29306, 8}
X(29307) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29304)}}, {{A, B, C, X(513), X(7094)}}, {{A, B, C, X(514), X(54457)}}
X(29307) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 17770, 29353}, {542, 29010, 29219}, {1503, 29069, 29065}, {1503, 5762, 29069}, {3564, 29243, 29016}, {5965, 29339, 29331}, {15310, 29105, 516}, {29043, 29057, 29215}, {29255, 53792, 29327}
X(29308) lies on the circumcircle and these lines: {3, 8708}, {98, 53296}, {100, 22060}, {101, 5267}, {109, 3750}, {24813, 29310}, {29348, 53259}
X(29308) = isogonal conjugate of X(29309)
X(29308) = circumcircle-antipode of X(8708)
X(29308) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3750)}}, {{A, B, C, X(3), X(22060)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(89), X(5267)}}, {{A, B, C, X(15446), X(40419)}}
X(29309) lies on circumconic {{A, B, C, X(4), X(6372)}} and on these lines: {1, 48929}, {3, 23374}, {8, 48938}, {30, 511}, {40, 13731}, {45, 573}, {65, 39543}, {181, 33095}, {376, 39550}, {392, 51671}, {946, 15489}, {962, 41828}, {970, 12699}, {986, 50620}, {991, 1482}, {1385, 41430}, {1742, 7982}, {1766, 36404}, {3057, 50307}, {3474, 35645}, {3664, 9957}, {3690, 33110}, {3750, 39793}, {3885, 17364}, {4416, 10914}, {5011, 51436}, {5057, 51377}, {5690, 48888}, {5752, 48661}, {5903, 21746}, {6210, 7991}, {6361, 10441}, {6688, 40998}, {8148, 48908}, {9778, 37521}, {10446, 42697}, {11362, 45305}, {12109, 15171}, {12245, 48878}, {12435, 39551}, {14810, 24309}, {18493, 31244}, {20070, 31785}, {22791, 24220}, {24474, 50658}, {31730, 35631}, {33109, 40966}, {34466, 40273}, {37536, 53002}, {38389, 56878}
X(29309) = isogonal conjugate of X(29308)
X(29309) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 6372}
X(29309) = X(i)-complementary conjugate of X(j) for these {i, j}: {29308, 10}
X(29309) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29308, 8}
X(29309) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 517, 45955}, {40, 31394, 48886}, {511, 516, 29349}, {516, 29311, 15310}, {516, 29353, 29229}, {517, 15310, 29311}, {517, 28212, 53790}, {528, 20718, 9052}, {740, 29073, 29343}, {1503, 29315, 29259}, {15310, 29311, 511}, {29020, 29043, 11645}, {29255, 29315, 1503}
X(29310) lies on these lines: {1, 32693}, {3, 6013}, {56, 3026}, {100, 10434}, {101, 958}, {103, 53260}, {105, 13245}, {108, 5307}, {109, 940}, {110, 24550}, {333, 931}, {573, 56093}, {929, 51637}, {1001, 28162}, {1292, 12511}, {3731, 8693}, {24813, 29308}, {29352, 53259}, {53302, 53892}
X(29310) = circumcircle-antipode of X(6013)
X(29310) = isogonal conjugate of X(29311)
X(29310) = trilinear pole of line {6, 17418}
X(29310) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(333)}}, {{A, B, C, X(3), X(16878)}}, {{A, B, C, X(4), X(39734)}}, {{A, B, C, X(10), X(24550)}}, {{A, B, C, X(56), X(10434)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(84), X(56144)}}, {{A, B, C, X(86), X(43739)}}, {{A, B, C, X(572), X(57399)}}, {{A, B, C, X(1001), X(3062)}}, {{A, B, C, X(1411), X(13244)}}, {{A, B, C, X(1476), X(40419)}}, {{A, B, C, X(2051), X(30571)}}, {{A, B, C, X(7350), X(39958)}}, {{A, B, C, X(10013), X(10435)}}, {{A, B, C, X(39954), X(42467)}}, {{A, B, C, X(51476), X(52133)}}
X(29310) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29311}
X(29311) lies on these lines: {1, 573}, {2, 10439}, {3, 4497}, {4, 56087}, {8, 10435}, {10, 3781}, {30, 511}, {40, 991}, {42, 1764}, {43, 35621}, {51, 40998}, {65, 3664}, {165, 1002}, {181, 21334}, {200, 12555}, {355, 48902}, {386, 10476}, {392, 51679}, {551, 39550}, {572, 4649}, {908, 56878}, {944, 48918}, {946, 5752}, {960, 31779}, {962, 48878}, {970, 1125}, {995, 9549}, {1350, 24309}, {1385, 48886}, {1458, 20367}, {1463, 4887}, {1469, 3663}, {1482, 31394}, {1730, 25941}, {1737, 38474}, {1738, 3792}, {1742, 7991}, {1746, 32864}, {1766, 3751}, {2051, 3741}, {3057, 21746}, {3244, 39551}, {3579, 48929}, {3687, 35614}, {3720, 21363}, {3755, 4259}, {3789, 3817}, {3869, 4416}, {3911, 50362}, {4061, 17617}, {4297, 50646}, {4301, 45305}, {4646, 50596}, {4847, 26893}, {5267, 24253}, {5690, 48934}, {5709, 50656}, {5745, 22276}, {5795, 22299}, {5836, 31781}, {5903, 50307}, {6210, 7174}, {6603, 51436}, {6684, 37536}, {6738, 29957}, {6744, 12109}, {6745, 51377}, {7235, 24209}, {9535, 10453}, {9957, 39543}, {10164, 37521}, {10434, 17018}, {10443, 35892}, {10444, 49495}, {10445, 10477}, {10449, 50037}, {10459, 11521}, {10465, 20018}, {10478, 31330}, {10882, 19767}, {11019, 35645}, {11362, 31778}, {12432, 37613}, {12527, 16980}, {12610, 49511}, {12699, 48938}, {12702, 48908}, {13478, 32853}, {15488, 19925}, {15556, 41600}, {17182, 24996}, {18250, 23841}, {18258, 31784}, {18480, 48940}, {20788, 43223}, {21081, 39566}, {21375, 32912}, {22300, 57284}, {24987, 41723}, {31730, 37482}, {31782, 57288}, {31793, 50658}, {32915, 54035}, {34458, 38484}, {38485, 49763}, {53594, 54338}
X(29311) = isogonal conjugate of X(29310)
X(29311) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 6005}
X(29311) = X(i)-complementary conjugate of X(j) for these {i, j}: {29310, 10}
X(29311) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29310, 8}
X(29311) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(23880)}}, {{A, B, C, X(4), X(6005)}}, {{A, B, C, X(512), X(31356)}}, {{A, B, C, X(513), X(10435)}}, {{A, B, C, X(514), X(959)}}, {{A, B, C, X(521), X(56087)}}, {{A, B, C, X(522), X(941)}}, {{A, B, C, X(1002), X(28161)}}, {{A, B, C, X(1400), X(8672)}}, {{A, B, C, X(4762), X(39980)}}
X(29311) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {40, 991, 41430}, {181, 21334, 39595}, {511, 29309, 15310}, {511, 516, 29353}, {517, 15310, 29309}, {517, 45955, 519}, {740, 29069, 29347}, {1503, 29024, 29321}, {5965, 29315, 29287}, {8679, 20718, 527}, {15310, 29309, 516}, {29016, 29054, 29036}
X(29312) lies on these lines: {1, 50340}, {30, 511}, {659, 47682}, {693, 18015}, {764, 16892}, {1491, 49278}, {1960, 48290}, {2530, 21124}, {2533, 47715}, {3716, 49290}, {3762, 4122}, {3801, 4978}, {3837, 50453}, {3904, 48288}, {3954, 4024}, {4142, 52601}, {4391, 18003}, {4490, 48272}, {4705, 48278}, {4707, 21146}, {4724, 49279}, {4770, 50333}, {4774, 47723}, {4775, 47972}, {6332, 50507}, {7265, 48265}, {10015, 48396}, {17141, 17161}, {17494, 50351}, {19947, 21212}, {20963, 22383}, {21118, 48393}, {21120, 48395}, {21343, 47727}, {21385, 47726}, {23764, 48428}, {26824, 49303}, {47695, 48291}, {47708, 48273}, {47712, 48279}, {47719, 50352}, {47870, 53359}, {47969, 49274}, {48024, 49277}, {48029, 49280}, {48059, 48402}, {48120, 49300}, {48280, 48403}, {48320, 50342}, {48553, 57066}
X(29312) = isogonal conjugate of X(29313)
X(29312) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29315}
X(29312) = X(i)-complementary conjugate of X(j) for these {i, j}: {29313, 10}
X(29312) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29313, 8}
X(29312) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29315)}}, {{A, B, C, X(512), X(18015)}}, {{A, B, C, X(693), X(2787)}}
X(29312) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29142, 29168}, {513, 23876, 690}, {514, 29017, 826}, {514, 29033, 29156}, {514, 29062, 29324}, {514, 29070, 29336}, {514, 29190, 814}, {514, 522, 2787}, {514, 826, 29354}, {522, 2787, 29058}, {525, 6372, 29252}, {891, 29166, 523}, {3910, 29142, 512}, {4083, 29021, 7927}, {6002, 29106, 29266}, {6005, 29284, 32478}, {6372, 29256, 525}, {21385, 47726, 48103}, {23887, 23888, 33904}, {29013, 29120, 29136}, {29062, 29324, 29264}, {29130, 29302, 29025}, {29144, 29350, 12073}, {29146, 29226, 29047}, {29172, 29362, 514}, {29198, 29202, 23875}, {29248, 29324, 29062}, {48290, 50347, 1960}
X(29313) lies on the circumcircle and these lines: {3, 29314}, {99, 17944}, {692, 2703}, {929, 14546}, {4026, 13194}
X(29313) = reflection of X(i) in X(j) for these {i,j}: {29314, 3}
X(29313) = isogonal conjugate of X(29312)
X(29313) = trilinear pole of line {6, 5078}
X(29313) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(692), X(17944)}}, {{A, B, C, X(1415), X(17939)}}, {{A, B, C, X(4556), X(52376)}}, {{A, B, C, X(4559), X(27808)}}, {{A, B, C, X(6335), X(32009)}}, {{A, B, C, X(32719), X(34069)}}
X(29313) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29312}
X(29314) lies on the circumcircle and these lines: {3, 29313}, {2699, 53291}
X(29314) = isogonal conjugate of X(29315)
X(29314) = circumcircle-antipode of X(29313)
X(29315) lies on circumconic {{A, B, C, X(4), X(29312)}} and on these lines: {30, 511}, {3745, 24210}, {4192, 44425}, {4450, 32932}, {24309, 48892}, {29837, 37527}
X(29315) = isogonal conjugate of X(29314)
X(29315) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29312}
X(29315) = X(i)-complementary conjugate of X(j) for these {i, j}: {29314, 10}
X(29315) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29314, 8}
X(29315) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {515, 2783, 29061}, {515, 516, 2783}, {516, 29020, 29012}, {516, 29065, 29327}, {516, 29073, 29339}, {517, 29046, 542}, {1503, 29309, 29255}, {15310, 29024, 29317}, {29259, 29309, 1503}, {29287, 29311, 5965}
X(29316) lies on the circumcircle and on these lines: {2, 45165}, {3, 7953}, {4, 14381}, {30, 45155}, {99, 548}, {107, 428}, {110, 3819}, {112, 5007}, {476, 20063}, {691, 35452}, {827, 34864}, {935, 35489}, {1304, 37920}, {7422, 13597}, {12055, 26714}, {29011, 53246}
X(29316) = reflection of X(i) in X(j) for these {i,j}: {4, 46665}, {7953, 3}
X(29316) = isogonal conjugate of X(29317)
X(29316) = anticomplement of X(45165)
X(29316) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29317}, {45165, 45165}
X(29316) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(11736)}}, {{A, B, C, X(3), X(428)}}, {{A, B, C, X(4), X(14250)}}, {{A, B, C, X(6), X(55674)}}, {{A, B, C, X(23), X(35489)}}, {{A, B, C, X(25), X(548)}}, {{A, B, C, X(30), X(37920)}}, {{A, B, C, X(64), X(262)}}, {{A, B, C, X(67), X(46426)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(182), X(12055)}}, {{A, B, C, X(186), X(20063)}}, {{A, B, C, X(249), X(11606)}}, {{A, B, C, X(250), X(34437)}}, {{A, B, C, X(251), X(54857)}}, {{A, B, C, X(305), X(45788)}}, {{A, B, C, X(427), X(34864)}}, {{A, B, C, X(468), X(35452)}}, {{A, B, C, X(1173), X(54477)}}, {{A, B, C, X(3108), X(54890)}}, {{A, B, C, X(3424), X(11270)}}, {{A, B, C, X(3425), X(3532)}}, {{A, B, C, X(3426), X(14488)}}, {{A, B, C, X(3527), X(54917)}}, {{A, B, C, X(5481), X(14492)}}, {{A, B, C, X(5900), X(46427)}}, {{A, B, C, X(6636), X(15620)}}, {{A, B, C, X(7607), X(14489)}}, {{A, B, C, X(11738), X(14484)}}, {{A, B, C, X(13472), X(54519)}}, {{A, B, C, X(14486), X(43713)}}, {{A, B, C, X(14692), X(17980)}}, {{A, B, C, X(20421), X(54845)}}, {{A, B, C, X(22334), X(54582)}}, {{A, B, C, X(34572), X(54852)}}, {{A, B, C, X(38742), X(39644)}}, {{A, B, C, X(40801), X(43691)}}, {{A, B, C, X(41435), X(57408)}}, {{A, B, C, X(46423), X(52192)}}, {{A, B, C, X(46848), X(54717)}}
X(29317) lies on these lines: {2, 50964}, {3, 7889}, {4, 3096}, {5, 14810}, {6, 1657}, {20, 182}, {23, 5972}, {26, 10182}, {30, 511}, {51, 52397}, {66, 34786}, {69, 33703}, {74, 32273}, {110, 20063}, {113, 37924}, {114, 39091}, {115, 2076}, {125, 5189}, {140, 55653}, {141, 3627}, {143, 17712}, {159, 22802}, {184, 20062}, {186, 48375}, {193, 49140}, {316, 51371}, {376, 10168}, {381, 31884}, {382, 1350}, {428, 3819}, {546, 55631}, {547, 55645}, {548, 3589}, {549, 25565}, {550, 5092}, {575, 15704}, {576, 3529}, {597, 15686}, {599, 15684}, {620, 5103}, {631, 55655}, {632, 55650}, {858, 6723}, {1351, 17800}, {1352, 3146}, {1353, 34798}, {1428, 4316}, {1495, 37900}, {1513, 6721}, {1533, 37946}, {1539, 33851}, {1568, 37925}, {1570, 53499}, {1656, 55646}, {1691, 6781}, {1692, 53505}, {1843, 18560}, {1974, 35471}, {2070, 38793}, {2330, 4324}, {2549, 5039}, {2916, 47748}, {2930, 38790}, {3056, 10483}, {3090, 55644}, {3091, 55637}, {3094, 7747}, {3242, 48661}, {3522, 55672}, {3523, 55658}, {3524, 55660}, {3525, 55652}, {3526, 55651}, {3528, 55669}, {3530, 55659}, {3534, 5085}, {3543, 10519}, {3545, 55640}, {3581, 20417}, {3618, 17538}, {3620, 50691}, {3628, 55647}, {3629, 55719}, {3763, 3843}, {3830, 10516}, {3832, 55633}, {3839, 55630}, {3845, 50965}, {3850, 34573}, {3851, 42786}, {3853, 55612}, {3855, 55635}, {3858, 55634}, {3861, 55625}, {3917, 34603}, {4899, 49716}, {5017, 7748}, {5050, 15681}, {5054, 55654}, {5055, 55643}, {5056, 55642}, {5059, 6776}, {5066, 55638}, {5070, 55648}, {5072, 55641}, {5073, 33878}, {5076, 55614}, {5093, 15685}, {5097, 33749}, {5111, 41672}, {5207, 50567}, {5254, 41413}, {5259, 9840}, {5477, 15514}, {5562, 16658}, {5642, 37901}, {5651, 7519}, {5895, 39879}, {5899, 14643}, {5907, 16654}, {5921, 50692}, {5943, 7667}, {5999, 6036}, {6034, 38742}, {6039, 57338}, {6040, 57339}, {6211, 48883}, {6240, 12294}, {6288, 15321}, {6329, 55704}, {6459, 42833}, {6460, 42832}, {6660, 35282}, {6688, 10691}, {6756, 13348}, {6793, 10313}, {7391, 21243}, {7464, 37853}, {7470, 35422}, {7500, 9306}, {7533, 41462}, {7553, 15644}, {7574, 7687}, {7575, 48378}, {7576, 36987}, {7690, 21736}, {7693, 44300}, {7706, 33532}, {7728, 12584}, {7734, 10219}, {7753, 22728}, {7764, 40278}, {7765, 12212}, {7802, 18906}, {7830, 24256}, {7839, 41623}, {8550, 55716}, {8597, 19662}, {8703, 38136}, {9301, 10991}, {9655, 10387}, {9751, 14492}, {9778, 38116}, {9971, 18564}, {10109, 50984}, {10110, 44862}, {10295, 15473}, {10304, 55667}, {10323, 52990}, {10625, 13419}, {10989, 45311}, {11001, 20423}, {11064, 32237}, {11179, 15520}, {11225, 21969}, {11477, 49137}, {11541, 55583}, {11592, 13163}, {11676, 38736}, {11745, 17704}, {11812, 51165}, {11898, 49133}, {12007, 55715}, {12022, 44829}, {12024, 13142}, {12041, 20301}, {12083, 18388}, {12085, 23049}, {12087, 43831}, {12100, 50959}, {12101, 51026}, {12102, 55617}, {12103, 18583}, {12108, 51127}, {12121, 19140}, {12122, 37336}, {12176, 38749}, {12215, 51396}, {12295, 49116}, {12383, 52098}, {12605, 52520}, {12900, 25338}, {13346, 31305}, {13403, 19161}, {13442, 48939}, {13598, 16657}, {13619, 19128}, {13857, 32267}, {14130, 32600}, {14156, 37936}, {14269, 55624}, {14449, 18128}, {14644, 46450}, {14677, 25328}, {14790, 23325}, {14848, 55703}, {14865, 46026}, {14893, 20582}, {14927, 49138}, {14981, 47618}, {14994, 32819}, {15030, 34613}, {15069, 49134}, {15113, 41674}, {15131, 37972}, {15140, 25556}, {15448, 37910}, {15559, 32348}, {15595, 40853}, {15640, 50967}, {15682, 50994}, {15687, 25561}, {15688, 38072}, {15689, 47352}, {15690, 50983}, {15691, 46267}, {15693, 50968}, {15695, 50963}, {15696, 53094}, {15712, 51126}, {15717, 55662}, {15720, 55656}, {15759, 50972}, {16063, 34417}, {16111, 35001}, {16163, 32271}, {16266, 45185}, {17578, 40330}, {17714, 35228}, {18358, 55601}, {18381, 34778}, {18382, 20299}, {18438, 18565}, {18440, 49136}, {18553, 48876}, {18563, 37511}, {19124, 35481}, {19149, 34785}, {19708, 51137}, {19710, 51181}, {20127, 32305}, {20300, 25563}, {20427, 36851}, {21358, 38335}, {21735, 55665}, {21849, 32068}, {22051, 23060}, {22676, 55008}, {22796, 41024}, {22797, 41025}, {23061, 24981}, {24231, 49745}, {26869, 33586}, {30714, 37496}, {31723, 54374}, {31726, 47450}, {31827, 47609}, {32191, 40240}, {32217, 32300}, {32225, 47314}, {32257, 41583}, {32269, 46517}, {32396, 34002}, {33699, 47354}, {33750, 38064}, {33923, 55668}, {34200, 55664}, {34608, 35260}, {34726, 37497}, {34779, 36989}, {34938, 46730}, {35452, 38788}, {35456, 39838}, {35458, 38730}, {35474, 39569}, {36213, 46518}, {36755, 41035}, {36756, 41034}, {37485, 47527}, {37512, 53484}, {37923, 38794}, {37945, 51403}, {37949, 38789}, {37967, 51391}, {38734, 52994}, {38738, 47619}, {39588, 44493}, {39809, 52993}, {39874, 55723}, {39875, 42414}, {39876, 42413}, {39884, 43150}, {39899, 55722}, {40341, 48662}, {41099, 51029}, {41145, 44651}, {42785, 55676}, {43407, 44473}, {43408, 44474}, {44245, 55679}, {44246, 47455}, {44456, 49139}, {44903, 55713}, {45759, 48310}, {46333, 55707}, {46853, 55666}, {47095, 47582}, {47296, 47315}, {47308, 47581}, {47309, 47569}, {47353, 51189}, {48886, 49131}, {48929, 49132}, {49135, 55585}, {50687, 55613}, {50688, 55611}, {50689, 55628}, {50693, 55681}, {50971, 55700}, {51537, 55600}, {51732, 55696}, {52992, 54996}, {54036, 55038}, {54132, 55717}, {54170, 55589}
X(29317) = isogonal conjugate of X(29316)
X(29317) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 7927}
X(29317) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4, 45165}
X(29317) = X(i)-complementary conjugate of X(j) for these {i, j}: {1, 45165}, {29316, 10}
X(29317) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29316, 8}
X(29317) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(14250)}}, {{A, B, C, X(4), X(7927)}}, {{A, B, C, X(265), X(39989)}}, {{A, B, C, X(520), X(41435)}}, {{A, B, C, X(523), X(54890)}}, {{A, B, C, X(525), X(10159)}}
X(29317) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 48872, 48880}, {3, 48880, 48885}, {3, 48901, 19130}, {3, 48910, 48901}, {3, 53023, 38317}, {4, 3098, 24206}, {4, 43621, 48904}, {4, 48873, 3098}, {5, 48881, 14810}, {5, 51163, 48895}, {6, 1657, 48898}, {20, 182, 48892}, {20, 31670, 182}, {23, 51360, 5972}, {30, 13391, 44407}, {30, 1503, 29323}, {141, 3627, 48889}, {141, 48874, 55606}, {182, 48879, 20}, {376, 14561, 17508}, {376, 51538, 14561}, {382, 1350, 3818}, {511, 11645, 3564}, {511, 1503, 5965}, {511, 29181, 19924}, {511, 29323, 1503}, {516, 29301, 53792}, {548, 3589, 55674}, {858, 32223, 6723}, {1350, 3818, 40107}, {1351, 17800, 48905}, {1352, 3146, 48884}, {1503, 29323, 29012}, {1503, 5965, 542}, {3098, 48904, 4}, {3529, 46264, 48896}, {3529, 51212, 46264}, {3534, 51024, 5476}, {3830, 55610, 10516}, {5073, 33878, 36990}, {5092, 48920, 550}, {5092, 5480, 25555}, {5480, 48920, 33751}, {10516, 55610, 50977}, {11064, 37899, 32237}, {11178, 55603, 10519}, {13857, 47313, 32267}, {14810, 48895, 5}, {15310, 29024, 29315}, {15687, 54169, 25561}, {15704, 21850, 44882}, {15704, 44882, 48891}, {19130, 48885, 3}, {19924, 29012, 511}, {20423, 25406, 39561}, {25555, 33751, 5092}, {29016, 29077, 29061}, {29028, 29069, 29339}, {33750, 38064, 55685}, {38317, 48901, 53023}, {44666, 44667, 2794}, {46264, 51212, 576}, {48884, 52987, 1352}, {48889, 48943, 3627}, {48942, 55594, 18553}, {50964, 50969, 51141}, {50965, 51133, 50981}, {50969, 51213, 50964}, {50976, 51024, 51173}
X(29318) lies on these lines: {30, 511}, {649, 47726}, {3801, 4823}, {4024, 49300}, {4122, 4791}, {4170, 47709}, {4382, 47725}, {4401, 48300}, {4522, 50453}, {4707, 47690}, {4761, 47689}, {4794, 49279}, {4951, 14431}, {7265, 47708}, {8045, 20517}, {14430, 21130}, {16892, 49278}, {21124, 48012}, {21181, 47779}, {21199, 48217}, {21201, 49286}, {21385, 48118}, {22037, 48043}, {28374, 50554}, {47681, 48142}, {47701, 49277}, {47972, 49276}, {48066, 48278}
X(29318) = isogonal conjugate of X(29319)
X(29318) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29321}
X(29318) = X(i)-complementary conjugate of X(j) for these {i, j}: {29319, 10}
X(29318) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29319, 8}
X(29318) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29321)}}, {{A, B, C, X(693), X(29033)}}
X(29318) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29146, 29164}, {514, 29062, 29344}, {514, 522, 29033}, {514, 826, 29358}, {523, 23876, 29350}, {525, 29021, 6005}, {2785, 29192, 4844}, {2787, 29172, 514}, {3906, 29166, 513}, {4083, 7950, 29260}, {7950, 29256, 4083}, {21124, 48272, 48012}, {29013, 29116, 29140}, {29025, 29106, 29270}, {29029, 29078, 29178}, {29130, 29294, 6002}, {29146, 29202, 512}, {29154, 29194, 814}, {29172, 29370, 2787}, {29248, 29332, 29070}, {49279, 50340, 4794}
X(29319) lies on the circumcircle and these lines: {3, 29320}, {692, 29034}
X(29319) = isogonal conjugate of X(29318)
X(29320) lies on the circumcircle and these lines: {3, 29319}, {29035, 53291}
X(29320) = isogonal conjugate of X(29321)
X(29320) = circumcircle-antipode of X(29319)
X(29321) lies on circumconic {{A, B, C, X(4), X(29318)}} and on these lines: {30, 511}, {24309, 48905}, {32783, 37400}
X(29321) = isogonal conjugate of X(29320)
X(29321) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29318}
X(29321) = X(i)-complementary conjugate of X(j) for these {i, j}: {29320, 10}
X(29321) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29320, 8}
X(29321) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 29046, 29353}, {515, 516, 29036}, {516, 29065, 29347}, {1503, 29024, 29311}, {15310, 29323, 29263}, {29012, 29020, 516}, {29259, 29323, 15310}
X(29322) lies on these lines: {3, 7954}, {99, 15696}, {107, 5064}, {110, 55655}, {112, 7772}
X(29322) = circumcircle-antipode of X(7954)
X(29322) = isogonal conjugate of X(29323)
X(29322) = X(i)-vertex conjugate of X(j) for these {i, j}: {9999, 29322}
X(29322) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(35475)}}, {{A, B, C, X(3), X(5064)}}, {{A, B, C, X(6), X(55655)}}, {{A, B, C, X(25), X(15696)}}, {{A, B, C, X(54), X(54890)}}, {{A, B, C, X(64), X(14495)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(262), X(11270)}}, {{A, B, C, X(1173), X(54717)}}, {{A, B, C, X(1494), X(34437)}}, {{A, B, C, X(1916), X(32901)}}, {{A, B, C, X(3425), X(43719)}}, {{A, B, C, X(3431), X(14488)}}, {{A, B, C, X(3532), X(7608)}}, {{A, B, C, X(13452), X(14458)}}, {{A, B, C, X(13472), X(54582)}}, {{A, B, C, X(14484), X(20421)}}, {{A, B, C, X(14489), X(44763)}}, {{A, B, C, X(16835), X(54477)}}, {{A, B, C, X(34572), X(46848)}}, {{A, B, C, X(39955), X(54917)}}, {{A, B, C, X(40801), X(54644)}}, {{A, B, C, X(43691), X(54608)}}
X(29323) lies on these lines: {2, 54917}, {3, 48884}, {4, 5092}, {5, 48892}, {6, 5073}, {20, 3818}, {23, 15059}, {30, 511}, {69, 49138}, {125, 37900}, {140, 33751}, {141, 15704}, {182, 382}, {376, 25561}, {381, 17508}, {428, 6688}, {546, 55679}, {548, 55659}, {549, 55664}, {550, 21167}, {575, 3146}, {576, 48910}, {597, 35404}, {599, 55603}, {631, 55666}, {858, 32237}, {1350, 17800}, {1351, 49134}, {1352, 3529}, {1495, 5189}, {1656, 55672}, {1657, 3098}, {1843, 34797}, {1974, 35490}, {2916, 14130}, {3091, 55677}, {3357, 34775}, {3522, 55661}, {3523, 42786}, {3526, 55669}, {3534, 10516}, {3543, 14561}, {3589, 3853}, {3618, 55698}, {3627, 19130}, {3763, 15696}, {3819, 52397}, {3830, 5085}, {3839, 33750}, {3843, 53094}, {3845, 55680}, {3851, 55676}, {3858, 51126}, {4048, 7842}, {5031, 32456}, {5050, 15684}, {5054, 55667}, {5055, 55673}, {5059, 34507}, {5066, 50971}, {5070, 55671}, {5072, 55675}, {5076, 55687}, {5093, 51024}, {5097, 14912}, {5102, 35400}, {5116, 39590}, {5207, 51397}, {5476, 15682}, {5480, 50664}, {5907, 16658}, {5943, 34603}, {5972, 46517}, {6194, 14458}, {6699, 47342}, {6723, 37897}, {6756, 17704}, {6776, 43621}, {6781, 53475}, {7387, 23325}, {7512, 32600}, {7540, 16836}, {7553, 9729}, {7667, 35283}, {7802, 14994}, {7823, 41622}, {8550, 55715}, {8703, 51022}, {9967, 18562}, {9969, 14641}, {10168, 15687}, {10182, 23335}, {10263, 11232}, {10519, 15683}, {10721, 19140}, {10733, 32305}, {11001, 50977}, {11064, 47095}, {11178, 15681}, {11179, 51538}, {11482, 35407}, {11541, 51212}, {11550, 20062}, {11572, 12087}, {11574, 18563}, {11695, 17712}, {11812, 50960}, {11898, 55585}, {12022, 13598}, {12101, 50983}, {12103, 55647}, {12173, 44491}, {12295, 20301}, {12811, 51127}, {13331, 14537}, {13348, 13419}, {13851, 37945}, {13857, 35265}, {14269, 55682}, {14644, 37925}, {14893, 25565}, {15069, 55587}, {15448, 47315}, {15516, 48906}, {15520, 54131}, {15578, 17714}, {15640, 20423}, {15685, 47353}, {15686, 55645}, {15688, 55660}, {15689, 55654}, {15691, 20582}, {15701, 50976}, {15711, 51134}, {15720, 55665}, {16654, 44870}, {16657, 44829}, {17538, 51537}, {17578, 55690}, {18358, 55636}, {18383, 44883}, {18405, 39568}, {18440, 48872}, {18565, 37511}, {18583, 55704}, {19124, 35480}, {19708, 50956}, {19709, 51137}, {19710, 47354}, {21358, 55643}, {21850, 22330}, {22802, 36989}, {25555, 55696}, {31133, 35268}, {32223, 37899}, {32267, 47311}, {32903, 35228}, {33699, 38136}, {33878, 49139}, {33923, 34573}, {34128, 37936}, {35260, 44442}, {37517, 49133}, {37853, 47340}, {37910, 47296}, {38010, 53419}, {38072, 55697}, {38227, 40236}, {38335, 55685}, {38790, 52098}, {39561, 43273}, {39874, 40242}, {39884, 40107}, {39899, 55720}, {40341, 55583}, {41106, 51217}, {41412, 44518}, {42271, 44481}, {42272, 44482}, {42785, 50690}, {43129, 52520}, {43130, 52071}, {43893, 44872}, {44682, 51128}, {44903, 54169}, {45311, 47312}, {47090, 48375}, {47352, 55693}, {47355, 55681}, {48662, 53097}, {48874, 55597}, {48876, 55601}, {49140, 55588}, {50691, 55702}, {50692, 55719}, {50955, 55591}, {54173, 55599}
X(29323) = isogonal conjugate of X(29322)
X(29323) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 7950}
X(29323) = X(i)-complementary conjugate of X(j) for these {i, j}: {29322, 10}
X(29323) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29322, 8}
X(29323) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(7950)}}, {{A, B, C, X(520), X(56072)}}, {{A, B, C, X(523), X(54917)}}, {{A, B, C, X(525), X(43527)}}
X(29323) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 48884, 48889}, {3, 48896, 48891}, {4, 48898, 5092}, {5, 48892, 55674}, {6, 5073, 48904}, {20, 3818, 14810}, {30, 1503, 29317}, {140, 33751, 55668}, {141, 15704, 48885}, {141, 48885, 55631}, {182, 382, 48895}, {511, 29012, 11645}, {550, 24206, 55653}, {1350, 17800, 48879}, {1352, 3529, 48880}, {1352, 48880, 55606}, {1503, 29181, 34380}, {1503, 29317, 511}, {1503, 34380, 542}, {1657, 3098, 48920}, {1657, 36990, 3098}, {3098, 36990, 18553}, {3146, 46264, 48901}, {3146, 48901, 48943}, {3534, 10516, 55649}, {3627, 44882, 19130}, {3763, 15696, 55655}, {5092, 48942, 4}, {6776, 49135, 43621}, {14561, 55695, 46267}, {14927, 33703, 31670}, {15310, 29321, 29259}, {18440, 48872, 52987}, {18440, 49137, 48872}, {19130, 44882, 20190}, {29012, 29317, 1503}, {29020, 29050, 29349}, {29028, 29065, 29343}, {29263, 29321, 15310}, {34507, 48873, 55594}, {40107, 48881, 55612}
X(29324) lies on these lines: {1, 48267}, {8, 50355}, {30, 511}, {650, 48401}, {659, 4462}, {663, 4922}, {667, 3762}, {693, 48323}, {905, 21051}, {1491, 17496}, {1577, 4378}, {2533, 4474}, {3669, 3837}, {3716, 4504}, {3733, 6133}, {3777, 21222}, {3960, 21260}, {4010, 4449}, {4041, 53536}, {4063, 53403}, {4106, 48346}, {4147, 9508}, {4148, 4394}, {4170, 48333}, {4367, 4391}, {4382, 23780}, {4448, 8643}, {4490, 4560}, {4705, 48321}, {4791, 48343}, {4806, 48136}, {4879, 48080}, {4992, 48332}, {6332, 18004}, {14413, 47841}, {14419, 47794}, {14430, 47835}, {14431, 47795}, {15232, 35352}, {17166, 48392}, {17478, 48283}, {21052, 47823}, {21117, 23781}, {21146, 48341}, {21302, 50359}, {23765, 46403}, {24099, 30719}, {24533, 35518}, {24719, 48334}, {25127, 27854}, {30234, 48561}, {30709, 47796}, {31149, 48556}, {31291, 50358}, {44408, 53257}, {44550, 45323}, {45342, 45667}, {45664, 48564}, {47729, 48336}, {47793, 48214}, {47915, 47993}, {47922, 48000}, {47959, 48288}, {48001, 48609}, {48002, 48607}, {48049, 48129}, {48050, 48137}, {48099, 48289}, {48123, 48298}, {48248, 50517}, {48264, 48301}, {48273, 48282}, {48281, 50331}, {48320, 50352}, {48387, 53270}
X(29324) = isogonal conjugate of X(29325)
X(29324) = perspector of circumconic {{A, B, C, X(2), X(29649)}}
X(29324) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29327}
X(29324) = X(i)-complementary conjugate of X(j) for these {i, j}: {29325, 10}
X(29324) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29325, 8}
X(29324) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29327)}}, {{A, B, C, X(519), X(29649)}}, {{A, B, C, X(740), X(15232)}}
X(29324) = barycentric product X(i)*X(j) for these (i, j): {29649, 514}
X(29324) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29325}, {29649, 190}
X(29324) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29148, 29170}, {513, 3907, 29366}, {514, 29037, 29017}, {514, 29062, 29312}, {514, 29212, 826}, {514, 29344, 29070}, {514, 29358, 29154}, {514, 814, 29362}, {514, 826, 29172}, {523, 29120, 29134}, {891, 29176, 29013}, {2787, 29070, 29344}, {3716, 4504, 48330}, {4083, 6002, 29328}, {4367, 4391, 4874}, {4367, 47872, 47820}, {4391, 47820, 47872}, {4474, 48144, 2533}, {4791, 48343, 52601}, {4922, 48265, 663}, {6372, 29066, 29246}, {6372, 29268, 29066}, {21222, 21301, 3777}, {29017, 29037, 29370}, {29021, 29110, 29250}, {29029, 29047, 29174}, {29062, 29312, 29248}, {29070, 29344, 814}, {29126, 29288, 29025}, {29152, 29226, 812}, {29198, 29236, 29051}, {29264, 29312, 29062}, {44550, 47814, 47893}, {47814, 47893, 45323}
X(29325) lies on the circumcircle and these lines: {3, 29326}, {99, 4499}, {109, 46597}, {411, 15323}, {741, 4225}, {789, 21272}, {3799, 8706}, {7420, 29330}, {7424, 53920}, {9082, 35996}, {14987, 49128}
X(29325) = reflection of X(i) in X(j) for these {i,j}: {29326, 3}
X(29325) = isogonal conjugate of X(29324)
X(29325) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29324}, {513, 29649}
X(29325) = X(i)-vertex conjugate of X(j) for these {i, j}: {9999, 29325}
X(29325) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29324}, {39026, 29649}
X(29325) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(29), X(46597)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(660), X(34080)}}, {{A, B, C, X(668), X(32665)}}, {{A, B, C, X(1415), X(3903)}}, {{A, B, C, X(3799), X(21272)}}, {{A, B, C, X(17940), X(32674)}}
X(29325) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29324}, {101, 29649}
X(29326) lies on the circumcircle and these lines: {3, 29325}, {100, 26892}, {932, 6906}, {6010, 7421}, {7416, 29329}, {33637, 49127}
X(29326) = isogonal conjugate of X(29327)
X(29326) = circumcircle-antipode of X(29325)
X(29326) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(13588), X(37117)}}
X(29327) lies on circumconic {{A, B, C, X(4), X(29324)}} and on these lines: {3, 3685}, {5, 1738}, {30, 511}, {986, 5722}, {1266, 22791}, {3717, 5690}, {7171, 10476}, {7193, 24410}, {12589, 24248}, {12717, 49129}, {17628, 24996}, {19276, 35272}, {32929, 49127}, {36477, 50314}, {36551, 50080}, {48908, 49470}
X(29327) = isogonal conjugate of X(29326)
X(29327) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29324}
X(29327) = X(i)-complementary conjugate of X(j) for these {i, j}: {29326, 10}
X(29327) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29326, 8}
X(29327) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 29010, 29365}, {516, 29040, 29020}, {516, 29065, 29315}, {516, 29215, 29012}, {516, 29347, 29073}, {517, 29057, 29369}, {740, 15310, 29331}, {2783, 29073, 29347}, {29020, 29040, 29373}, {29073, 29347, 29010}, {29255, 53792, 29307}
X(29328) lies on these lines: {30, 511}, {71, 20979}, {649, 4010}, {650, 4806}, {659, 4380}, {661, 48176}, {667, 4170}, {693, 4784}, {798, 6133}, {905, 4992}, {1019, 48273}, {1491, 20295}, {1577, 4834}, {1635, 47822}, {1839, 7649}, {2254, 24719}, {2293, 42312}, {2517, 23794}, {2533, 50509}, {2977, 14321}, {3572, 17458}, {3700, 48405}, {3716, 4782}, {3835, 9508}, {3837, 4106}, {4025, 49295}, {4057, 8053}, {4063, 48267}, {4120, 48185}, {4122, 48106}, {4129, 50504}, {4369, 48090}, {4382, 21146}, {4448, 35270}, {4498, 48265}, {4560, 48123}, {4728, 47823}, {4750, 48227}, {4763, 48197}, {4773, 48179}, {4776, 47827}, {4790, 7662}, {4800, 47804}, {4804, 4979}, {4813, 4824}, {4818, 47999}, {4840, 7199}, {4897, 23770}, {4913, 48030}, {4927, 48245}, {4928, 48216}, {4932, 48394}, {4944, 48219}, {4948, 48549}, {4951, 48208}, {4958, 48188}, {4963, 47939}, {4976, 47998}, {4984, 48177}, {7192, 48120}, {7659, 48089}, {15419, 17217}, {17494, 48024}, {18004, 48062}, {20291, 20294}, {20954, 50334}, {21051, 50501}, {21191, 34830}, {21297, 47824}, {21301, 50355}, {23729, 50348}, {24720, 49287}, {25259, 48103}, {26824, 48143}, {26853, 47694}, {28602, 47786}, {30565, 47885}, {31147, 45323}, {31148, 48238}, {31150, 48162}, {31290, 47928}, {42289, 43924}, {44429, 48244}, {44449, 48408}, {45313, 45342}, {45315, 48194}, {45320, 48233}, {45339, 45691}, {45661, 48199}, {45666, 48547}, {45674, 48215}, {45679, 48195}, {45745, 47983}, {45746, 47944}, {46403, 50359}, {47653, 48599}, {47663, 48083}, {47664, 47941}, {47673, 47902}, {47691, 50342}, {47759, 47825}, {47760, 47829}, {47761, 48206}, {47762, 47833}, {47763, 47834}, {47776, 47821}, {47777, 48210}, {47785, 48555}, {47802, 48229}, {47803, 48183}, {47810, 48225}, {47813, 48189}, {47872, 48565}, {47875, 48566}, {47877, 48550}, {47884, 48166}, {47886, 48552}, {47889, 48570}, {47890, 50326}, {47926, 47946}, {47932, 48021}, {47934, 48019}, {47935, 48264}, {47938, 48277}, {47962, 47993}, {47964, 47991}, {47968, 49298}, {47971, 48326}, {47975, 48079}, {47990, 48404}, {48000, 48028}, {48002, 48026}, {48007, 49294}, {48008, 48043}, {48010, 48041}, {48023, 50341}, {48050, 50335}, {48056, 48270}, {48060, 49286}, {48064, 52601}, {48098, 49289}, {48127, 49291}, {48140, 49273}, {48142, 50525}, {48144, 48279}, {48171, 53339}, {48172, 48234}, {48241, 53333}, {48301, 50523}, {48303, 54251}, {49277, 50351}, {50328, 50356}, {50358, 53343}
X(29328) = isogonal conjugate of X(29329)
X(29328) = perspector of circumconic {{A, B, C, X(2), X(17982)}}
X(29328) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29331}
X(29328) = X(i)-complementary conjugate of X(j) for these {i, j}: {29329, 10}
X(29328) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29329, 8}
X(29328) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29331)}}, {{A, B, C, X(519), X(49488)}}, {{A, B, C, X(525), X(18014)}}, {{A, B, C, X(740), X(15320)}}, {{A, B, C, X(788), X(50344)}}, {{A, B, C, X(2786), X(7649)}}, {{A, B, C, X(28542), X(39704)}}, {{A, B, C, X(28840), X(43927)}}
X(29328) = barycentric product X(i)*X(j) for these (i, j): {49488, 514}
X(29328) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29329}, {49488, 190}
X(29328) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29340, 29066}, {512, 814, 29366}, {513, 4132, 788}, {513, 4762, 4977}, {513, 4802, 28840}, {513, 812, 29362}, {513, 9400, 834}, {514, 29150, 29170}, {522, 4785, 513}, {523, 29078, 29370}, {523, 900, 29078}, {525, 29025, 29332}, {649, 4010, 4874}, {826, 29158, 29174}, {1635, 47822, 48214}, {2254, 48114, 24719}, {3566, 29162, 29082}, {3800, 29232, 29074}, {4083, 6002, 29324}, {4728, 47823, 48198}, {4784, 4810, 693}, {4913, 48049, 48030}, {4932, 48394, 54265}, {6005, 29070, 29246}, {6005, 29270, 29070}, {7927, 29062, 29250}, {7927, 29266, 29062}, {12073, 29058, 29192}, {20295, 50343, 1491}, {21297, 47824, 48184}, {23876, 29029, 29172}, {29013, 29066, 29340}, {29017, 29118, 29134}, {29021, 29106, 29248}, {29066, 29340, 814}, {29124, 29284, 514}, {29158, 29216, 826}, {29178, 29350, 2787}, {29336, 32478, 29304}, {47776, 47821, 48226}, {48106, 48266, 4122}
X(29329) lies on the circumcircle and these lines: {3, 29330}, {101, 46597}, {112, 17943}, {739, 10987}, {741, 4184}, {789, 4427}, {1331, 2702}, {1796, 53688}, {2177, 28543}, {5196, 53920}, {7411, 15323}, {7416, 29326}, {7465, 9082}
X(29329) = reflection of X(i) in X(j) for these {i,j}: {29330, 3}
X(29329) = isogonal conjugate of X(29328)
X(29329) = trilinear pole of line {6, 17976}
X(29329) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29328}, {513, 49488}
X(29329) = X(i)-vertex conjugate of X(j) for these {i, j}: {9999, 29329}
X(29329) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29328}, {39026, 49488}
X(29329) = intersection, other than A, B, C, of circumconics {{A, B, C, X(27), X(4598)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(32042)}}, {{A, B, C, X(1331), X(1796)}}, {{A, B, C, X(1492), X(40519)}}, {{A, B, C, X(8049), X(8050)}}, {{A, B, C, X(34071), X(37135)}}
X(29329) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29328}, {101, 49488}
X(29330) lies on the circumcircle and these lines: {3, 29329}, {110, 36015}, {932, 1006}, {2690, 51693}, {6010, 7430}, {7420, 29325}
X(29330) = isogonal conjugate of X(29331)
X(29330) = circumcircle-antipode of X(29329)
X(29330) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3), X(17962)}}, {{A, B, C, X(4), X(292)}}, {{A, B, C, X(54), X(1438)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(295), X(17982)}}, {{A, B, C, X(13588), X(36009)}}
X(29331) lies on these lines: {1, 36477}, {3, 239}, {4, 6542}, {5, 3912}, {8, 36474}, {20, 20016}, {30, 511}, {40, 50016}, {75, 48908}, {140, 3008}, {242, 17976}, {320, 24833}, {355, 32847}, {376, 40891}, {381, 17310}, {546, 49765}, {547, 41141}, {548, 50019}, {549, 41140}, {550, 49770}, {631, 29590}, {942, 43040}, {944, 50015}, {946, 49764}, {1352, 49752}, {1353, 49783}, {1385, 50023}, {1483, 49771}, {1656, 17266}, {3187, 49127}, {3507, 37699}, {3526, 29607}, {3560, 40863}, {3579, 50018}, {3627, 49761}, {3661, 36530}, {3943, 24828}, {4393, 36489}, {5440, 51381}, {5690, 49772}, {5777, 49757}, {5790, 44430}, {5901, 49768}, {6776, 50030}, {6913, 40872}, {9840, 40886}, {9955, 49767}, {9956, 49769}, {15973, 30059}, {16086, 30225}, {16377, 26639}, {16826, 36527}, {17160, 24813}, {17230, 36473}, {17294, 36551}, {17316, 36526}, {17374, 24827}, {17389, 36490}, {18357, 49766}, {18583, 49775}, {20072, 24817}, {20430, 48878}, {20432, 48907}, {20930, 49779}, {21857, 50014}, {22791, 49763}, {24281, 30117}, {26446, 54474}, {30273, 48875}, {31663, 50021}, {31837, 49759}, {32431, 49778}, {34773, 50017}, {37165, 48381}, {37528, 49760}, {37705, 49762}, {47332, 47532}, {47333, 47539}, {48876, 50011}, {48906, 50026}
X(29331) = isogonal conjugate of X(29330)
X(29331) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29328}
X(29331) = X(i)-complementary conjugate of X(j) for these {i, j}: {29330, 10}
X(29331) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29330, 8}
X(29331) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29328)}}, {{A, B, C, X(1243), X(4083)}}
X(29331) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 29081, 29373}, {30, 952, 29081}, {511, 29010, 29369}, {511, 29343, 29069}, {517, 28850, 29365}, {740, 15310, 29327}, {1503, 29028, 29335}, {5965, 29339, 29307}, {29016, 29069, 29343}, {29069, 29343, 29010}, {29181, 29235, 29077}
X(29332) lies on these lines: {30, 511}, {3801, 4874}, {4367, 47684}, {4774, 47706}, {4775, 47713}, {4879, 47692}, {4992, 49280}, {6133, 21121}, {7178, 48405}, {21052, 48188}, {23765, 49302}, {47709, 48336}, {47712, 49279}, {47717, 48333}, {47725, 48273}, {47726, 50352}, {48088, 48401}, {48123, 49274}, {48392, 49303}
X(29332) = isogonal conjugate of X(29333)
X(29332) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29335}
X(29332) = X(i)-complementary conjugate of X(j) for these {i, j}: {29333, 10}
X(29332) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29333, 8}
X(29332) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29335)}}, {{A, B, C, X(693), X(29244)}}
X(29332) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29160, 29174}, {513, 29116, 29134}, {514, 29017, 29362}, {514, 29037, 29156}, {514, 29062, 29336}, {514, 29154, 29172}, {514, 29318, 29070}, {514, 29358, 2787}, {514, 522, 29244}, {523, 29082, 29366}, {525, 29025, 29328}, {814, 826, 29370}, {826, 29336, 29062}, {3801, 48300, 4874}, {3906, 29184, 29013}, {7950, 29066, 29250}, {7950, 29272, 29066}, {23875, 29029, 29170}, {29021, 29102, 29246}, {29062, 29336, 814}, {29070, 29318, 29248}, {29122, 29280, 6002}, {29154, 29224, 514}, {29160, 29220, 512}
X(29333) lies on the circumcircle and these lines: {3, 29334}, {692, 29245}
X(29333) = isogonal conjugate of X(29332)
X(29334) lies on the circumcircle and these lines: {3, 29333}
X(29334) = isogonal conjugate of X(29335)
X(29334) = circumcircle-antipode of X(29333)
X(29335) lies on circumconic {{A, B, C, X(4), X(29332)}} and on these lines: {3, 17291}, {30, 511}, {36661, 38108}
X(29335) = isogonal conjugate of X(29334)
X(29335) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29332}
X(29335) = X(i)-complementary conjugate of X(j) for these {i, j}: {29334, 10}
X(29335) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29334, 8}
X(29335) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 29085, 29369}, {516, 29020, 29365}, {516, 29065, 29339}, {516, 29321, 29073}, {1503, 29028, 29331}, {29010, 29012, 29373}, {29012, 29339, 29065}, {29065, 29339, 29010}
X(29336) lies on these lines: {30, 511}, {1960, 48403}, {4367, 47680}, {4922, 47716}, {7178, 50512}, {21301, 50351}, {23770, 48328}, {31291, 49303}, {47722, 50352}, {47728, 48273}
X(29336) = isogonal conjugate of X(29337)
X(29336) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29339}
X(29336) = X(i)-complementary conjugate of X(j) for these {i, j}: {29337, 10}
X(29336) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29337, 8}
X(29336) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29339)}}, {{A, B, C, X(667), X(2878)}}, {{A, B, C, X(693), X(29154)}}
X(29336) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 29114, 29136}, {514, 2787, 29354}, {514, 29033, 29017}, {514, 29037, 29224}, {514, 29062, 29332}, {514, 29070, 29312}, {514, 29190, 29172}, {514, 522, 29154}, {525, 29340, 29266}, {814, 29332, 29062}, {814, 826, 29058}, {6002, 29102, 29252}, {29013, 29082, 690}, {29025, 29066, 7927}, {29029, 29051, 29168}, {29062, 29332, 826}, {29122, 29274, 29021}, {29156, 29244, 514}, {29158, 29366, 12073}, {29162, 29240, 512}, {29182, 29184, 523}, {29272, 29340, 525}, {29304, 29328, 32478}
X(29337) lies on the circumcircle and these lines: {3, 29338}, {668, 2864}, {692, 29155}, {1305, 33948}, {3699, 26709}, {3799, 33637}
X(29337) = isogonal conjugate of X(29336)
X(29337) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(5546), X(6540)}}
X(29338) lies on the circumcircle and these lines: {3, 29337}, {24813, 26708}
X(29338) = isogonal conjugate of X(29339)
X(29338) = circumcircle-antipode of X(29337)
X(29339) lies on circumconic {{A, B, C, X(4), X(29336)}} and on these lines: {30, 511}, {17704, 55307}
X(29339) = isogonal conjugate of X(29338)
X(29339) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29336}
X(29339) = X(i)-complementary conjugate of X(j) for these {i, j}: {29338, 10}
X(29339) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29338, 8}
X(29339) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 29036, 29020}, {516, 29065, 29335}, {516, 29073, 29315}, {740, 29105, 29255}, {29010, 29012, 29061}, {29010, 29335, 29065}, {29016, 29085, 542}, {29028, 29069, 29317}, {29065, 29335, 29012}, {29307, 29331, 5965}
X(29340) lies on these lines: {1, 4810}, {30, 511}, {667, 47832}, {668, 4427}, {764, 53536}, {1015, 3120}, {1019, 48253}, {1577, 50512}, {1635, 14431}, {1960, 4010}, {3227, 53372}, {4129, 48180}, {4378, 4382}, {4560, 48059}, {4728, 14419}, {4782, 4791}, {4784, 47724}, {4806, 48284}, {4823, 48221}, {4922, 48296}, {4984, 30574}, {9263, 44006}, {9508, 53571}, {14413, 30592}, {14422, 21297}, {20295, 48288}, {21260, 47830}, {21301, 48242}, {24719, 48321}, {28603, 30709}, {31149, 47828}, {31291, 48305}, {47680, 50342}, {48005, 48176}, {48266, 49279}, {48273, 48328}, {48325, 49287}, {48393, 50523}
X(29340) = isogonal conjugate of X(29341)
X(29340) = perspector of circumconic {{A, B, C, X(2), X(43927)}}
X(29340) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29343}
X(29340) = X(i)-complementary conjugate of X(j) for these {i, j}: {29341, 10}
X(29340) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29341, 8}
X(29340) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29343)}}, {{A, B, C, X(513), X(32042)}}, {{A, B, C, X(519), X(50756)}}, {{A, B, C, X(668), X(4802)}}, {{A, B, C, X(834), X(1015)}}, {{A, B, C, X(3120), X(23879)}}, {{A, B, C, X(3227), X(4725)}}
X(29340) = barycentric product X(i)*X(j) for these (i, j): {50756, 514}
X(29340) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29341}, {50756, 190}
X(29340) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 814, 29182}, {514, 29078, 3906}, {514, 29106, 29256}, {514, 29152, 29176}, {522, 29029, 29166}, {525, 29336, 29272}, {812, 2787, 891}, {814, 29328, 29066}, {826, 29162, 29184}, {900, 29240, 690}, {4083, 29344, 29268}, {6002, 29070, 6372}, {29013, 29066, 29328}, {29017, 29114, 29138}, {29025, 29062, 7950}, {29033, 29178, 513}, {29066, 29328, 512}, {29124, 29276, 29021}, {29152, 29238, 514}, {29162, 29232, 826}, {29266, 29336, 525}, {29270, 29344, 4083}
X(29341) lies on the circumcircle and these lines: {3, 29342}, {99, 4840}, {100, 4834}, {667, 8652}, {835, 1016}, {3230, 28326}, {9266, 53635}
X(29341) = reflection of X(i) in X(j) for these {i,j}: {29342, 3}
X(29341) = isogonal conjugate of X(29340)
X(29341) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(6540)}}, {{A, B, C, X(667), X(4834)}}, {{A, B, C, X(1016), X(4570)}}, {{A, B, C, X(5380), X(34075)}}
X(29342) lies on the circumcircle and these lines: {3, 29341}
X(29342) = isogonal conjugate of X(29343)
X(29342) = circumcircle-antipode of X(29341)
X(29343) lies on circumconic {{A, B, C, X(4), X(29340)}} and on these lines: {3, 17119}, {30, 511}, {75, 48929}, {192, 48938}, {3943, 36654}, {17724, 37593}, {30273, 48886}, {45926, 56232}, {48888, 51046}
X(29343) = isogonal conjugate of X(29342)
X(29343) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29340}
X(29343) = X(i)-complementary conjugate of X(j) for these {i, j}: {29342, 10}
X(29343) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29342, 8}
X(29343) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 29081, 11645}, {516, 29109, 29259}, {740, 29073, 29309}, {952, 29243, 542}, {2783, 28850, 29349}, {29010, 29016, 511}, {29010, 29331, 29069}, {29016, 29069, 29331}, {29028, 29065, 29323}
X(29344) lies on circumconic {{A, B, C, X(4), X(29347)}} and on these lines: {30, 511}, {667, 4791}, {693, 48343}, {1577, 47820}, {2533, 48064}, {4010, 48294}, {4063, 4474}, {4106, 48348}, {4170, 47729}, {4367, 4823}, {4382, 48282}, {4391, 4401}, {4504, 48295}, {4560, 48012}, {4774, 4834}, {4794, 48267}, {4810, 48333}, {4905, 53536}, {4922, 48273}, {7265, 47728}, {14419, 48218}, {14431, 48196}, {21301, 48066}, {30709, 47794}, {31149, 47893}, {39476, 53270}, {44550, 48556}, {45324, 48564}, {45671, 47814}, {47683, 47912}, {47724, 48144}, {48054, 48288}, {48065, 48265}, {48090, 48328}, {48264, 48324}, {48386, 53257}
X(29344) = isogonal conjugate of X(29345)
X(29344) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29347}
X(29344) = X(i)-complementary conjugate of X(j) for these {i, j}: {29345, 10}
X(29344) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29345, 8}
X(29344) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29152, 29178}, {514, 29037, 29358}, {514, 29062, 29318}, {514, 814, 29033}, {523, 29114, 29140}, {814, 29324, 29070}, {2787, 29070, 29324}, {3907, 29013, 29350}, {4083, 29340, 29270}, {4922, 48273, 48287}, {6002, 29066, 6005}, {21301, 48321, 48066}, {23880, 28475, 830}, {29013, 29350, 4961}, {29025, 29110, 29260}, {29029, 29074, 29164}, {29070, 29324, 514}, {29126, 29278, 29021}, {29152, 29236, 512}, {29156, 29230, 826}, {29176, 29182, 513}, {29178, 29236, 4844}, {29268, 29340, 4083}
X(29345) lies on the circumcircle and these lines: {3, 29346}, {100, 7287}
X(29345) = reflection of X(i) in X(j) for these {i,j}: {29346, 3}
X(29345) = isogonal conjugate of X(29344)
X(29345) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(668), X(34073)}}
X(29346) lies on the circumcircle and these lines: {3, 29345}
X(29346) = isogonal conjugate of X(29347)
X(29346) = circumcircle-antipode of X(29345)
X(29346) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(10435), X(34819)}}
X(29347) lies on circumconic {{A, B, C, X(4), X(29344)}} and on these lines: {3, 42031}, {30, 511}, {573, 49474}, {1284, 24209}, {1746, 32936}, {1764, 4365}, {2051, 4970}, {3218, 13244}, {3993, 24220}, {4021, 15950}, {4717, 37620}, {5530, 7951}, {10434, 28605}, {10440, 32860}, {10447, 10882}, {13478, 32934}, {17355, 24269}, {30273, 41430}, {36250, 39566}
X(29347) = isogonal conjugate of X(29346)
X(29347) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29344}
X(29347) = X(i)-complementary conjugate of X(j) for these {i, j}: {29346, 10}
X(29347) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29346, 8}
X(29347) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 29010, 29036}, {516, 29065, 29321}, {740, 29069, 29311}, {2783, 29010, 516}, {2783, 29073, 29327}, {29010, 29327, 29073}, {29016, 29057, 29353}, {29028, 29113, 29263}, {32860, 54035, 10440}
X(29348) lies on the circumcircle and these lines: {3, 898}, {40, 28520}, {105, 44429}, {106, 48294}, {107, 52890}, {517, 39443}, {739, 22383}, {919, 17756}, {1308, 25439}, {1309, 45145}, {3263, 9067}, {6551, 33814}, {11495, 53891}, {15599, 24813}, {29308, 53259}
X(29348) = circumcircle-antipode of X(898)
X(29348) = isogonal conjugate of X(29349)
X(29348) = X(i)-vertex conjugate of X(j) for these {i, j}: {9999, 29348}
X(29348) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3), X(22383)}}, {{A, B, C, X(4), X(8047)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(84), X(9357)}}, {{A, B, C, X(262), X(3263)}}, {{A, B, C, X(3062), X(7350)}}, {{A, B, C, X(3446), X(15742)}}, {{A, B, C, X(3577), X(56150)}}, {{A, B, C, X(13478), X(26745)}}, {{A, B, C, X(14497), X(56144)}}, {{A, B, C, X(15175), X(40419)}}
X(29349) lies on these lines: {1, 4014}, {3, 16686}, {4, 6335}, {5, 53002}, {8, 4499}, {11, 34583}, {30, 511}, {40, 9355}, {100, 38389}, {104, 39443}, {149, 3937}, {165, 2108}, {182, 52902}, {354, 39543}, {573, 12034}, {668, 36216}, {991, 10246}, {1015, 24289}, {1742, 3576}, {3035, 38390}, {3146, 31785}, {3227, 34343}, {3271, 24715}, {3664, 5049}, {3681, 4450}, {3740, 44419}, {3756, 52827}, {3784, 9580}, {3817, 37365}, {3939, 36280}, {4300, 48894}, {5092, 24309}, {5482, 40273}, {5902, 21746}, {5919, 49537}, {7611, 54474}, {8757, 12912}, {9812, 37521}, {10175, 45305}, {10202, 50658}, {10247, 34230}, {10439, 39551}, {10446, 39550}, {10993, 31847}, {13466, 34363}, {15488, 41869}, {15489, 31730}, {15507, 35338}, {17591, 50616}, {23832, 45885}, {24220, 38034}, {27076, 36232}, {33814, 34461}, {35281, 52242}, {37482, 48661}, {38042, 48888}, {44013, 55317}, {46171, 46174}, {48918, 50694}
X(29349) = isogonal conjugate of X(29348)
X(29349) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 891}
X(29349) = X(i)-complementary conjugate of X(j) for these {i, j}: {29348, 10}
X(29349) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29348, 8}
X(29349) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(891)}}, {{A, B, C, X(84), X(28521)}}, {{A, B, C, X(517), X(39443)}}, {{A, B, C, X(521), X(36798)}}, {{A, B, C, X(536), X(6335)}}, {{A, B, C, X(33917), X(42067)}}
X(29349) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {511, 516, 29309}, {513, 528, 2810}, {516, 15310, 511}, {516, 2792, 29105}, {517, 15310, 29353}, {1742, 31394, 48929}, {2783, 28850, 29343}, {2801, 9519, 517}, {15310, 29229, 516}, {28521, 28850, 952}, {29012, 29207, 29259}, {29020, 29050, 29323}, {29207, 29291, 29012}
X(29350) lies on these lines: {1, 649}, {8, 20295}, {10, 3835}, {30, 511}, {40, 15599}, {65, 3676}, {145, 26853}, {386, 29487}, {551, 14474}, {659, 4775}, {660, 6633}, {663, 4063}, {665, 30234}, {667, 4879}, {693, 4761}, {764, 50359}, {876, 14421}, {905, 48348}, {957, 35348}, {960, 4521}, {984, 14437}, {1002, 1022}, {1019, 4449}, {1125, 4507}, {1491, 4730}, {1635, 3250}, {1698, 30835}, {1734, 4729}, {1960, 4782}, {2254, 48335}, {2530, 48018}, {2533, 4823}, {2978, 48008}, {3239, 50492}, {3244, 48016}, {3295, 23865}, {3616, 27013}, {3617, 26798}, {3624, 31207}, {3679, 14433}, {3762, 48080}, {3777, 48075}, {3783, 4893}, {3803, 4162}, {3828, 45339}, {3868, 48013}, {3869, 4468}, {3874, 50513}, {3878, 11068}, {3899, 6546}, {3919, 21204}, {3960, 48332}, {4010, 4791}, {4040, 4498}, {4041, 14349}, {4088, 49277}, {4129, 4147}, {4170, 4391}, {4367, 4834}, {4369, 48295}, {4375, 36480}, {4378, 4784}, {4380, 47729}, {4382, 47724}, {4490, 4983}, {4560, 5216}, {4647, 20909}, {4658, 18200}, {4705, 48054}, {4707, 47691}, {4724, 21385}, {4763, 45658}, {4765, 50511}, {4770, 48030}, {4774, 4810}, {4807, 17072}, {4814, 48023}, {4822, 47959}, {4832, 21348}, {4895, 48324}, {4905, 48334}, {4932, 50524}, {4979, 50767}, {4992, 21260}, {5692, 47765}, {5902, 47758}, {5903, 48398}, {5904, 49284}, {6161, 50358}, {7192, 48304}, {7265, 47707}, {7287, 21272}, {8027, 51071}, {8583, 25955}, {9780, 27138}, {14838, 48136}, {16830, 26277}, {17217, 20907}, {19853, 27293}, {20983, 48041}, {21056, 24087}, {21143, 49490}, {21197, 24176}, {21199, 48212}, {21211, 49479}, {23655, 29807}, {24349, 53376}, {27773, 30970}, {30592, 48184}, {31148, 50760}, {31165, 45670}, {33815, 44315}, {38238, 51103}, {42312, 57155}, {43930, 52510}, {47682, 48106}, {47694, 48339}, {47793, 47838}, {47794, 47840}, {47795, 47836}, {47796, 48573}, {47818, 48565}, {47820, 48566}, {47835, 47839}, {47837, 47841}, {47912, 48085}, {47913, 48591}, {47918, 47987}, {47921, 48004}, {47922, 47994}, {47935, 48322}, {47948, 48121}, {47949, 48594}, {47956, 48051}, {47965, 48058}, {47967, 48053}, {47970, 48367}, {47976, 50523}, {47995, 50496}, {47996, 50497}, {48003, 48099}, {48005, 48093}, {48052, 48128}, {48059, 48129}, {48065, 48336}, {48091, 48613}, {48094, 49276}, {48103, 49279}, {48141, 50520}, {48144, 48282}, {48279, 50352}, {48296, 48344}, {48298, 48321}, {48330, 48347}, {48351, 48623}, {48405, 49290}, {48607, 48612}, {49300, 53558}, {53581, 57050}
X(29350) = isogonal conjugate of X(29351)
X(29350) = crossdifference of every pair of points on line X(6)X(750)
X(29350) = perspector of circumconic {{A, B, C, X(2), X(751)}}
X(29350) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29351}, {6, 37209}, {100, 55919}, {109, 56077}, {110, 56125}, {651, 56116}, {662, 56158}
X(29350) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29353}
X(29350) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29351}, {9, 37209}, {11, 56077}, {244, 56125}, {1015, 36871}, {1084, 56158}, {8054, 55919}, {38991, 56116}
X(29350) = X(i)-complementary conjugate of X(j) for these {i, j}: {29351, 10}, {36871, 116}, {37209, 141}, {55919, 11}, {56077, 124}, {56116, 26932}, {56125, 125}, {56158, 8287}
X(29350) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29351, 8}, {36871, 150}, {37209, 69}, {55919, 149}, {56077, 33650}, {56116, 37781}, {56125, 3448}, {56158, 21221}
X(29350) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(536)}}, {{A, B, C, X(4), X(29353)}}, {{A, B, C, X(10), X(714)}}, {{A, B, C, X(65), X(44671)}}, {{A, B, C, X(80), X(9024)}}, {{A, B, C, X(291), X(33908)}}, {{A, B, C, X(513), X(23892)}}, {{A, B, C, X(514), X(4776)}}, {{A, B, C, X(518), X(994)}}, {{A, B, C, X(519), X(1002)}}, {{A, B, C, X(527), X(957)}}, {{A, B, C, X(538), X(30571)}}, {{A, B, C, X(649), X(891)}}, {{A, B, C, X(726), X(42285)}}, {{A, B, C, X(740), X(53114)}}, {{A, B, C, X(876), X(4777)}}, {{A, B, C, X(1019), X(6008)}}, {{A, B, C, X(1022), X(4762)}}, {{A, B, C, X(3249), X(33917)}}
X(29350) = barycentric product X(i)*X(j) for these (i, j): {1, 4776}, {3240, 514}, {4664, 513}, {54981, 693}
X(29350) = barycentric quotient X(i)/X(j) for these (i, j): {1, 37209}, {6, 29351}, {512, 56158}, {513, 36871}, {649, 55919}, {650, 56077}, {661, 56125}, {663, 56116}, {3240, 190}, {4664, 668}, {4776, 75}, {54981, 100}
X(29350) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 514, 6005}, {512, 891, 513}, {513, 14077, 4160}, {513, 4083, 891}, {513, 4139, 28161}, {514, 29158, 29140}, {523, 23876, 29318}, {525, 29047, 29358}, {659, 4775, 4794}, {663, 4063, 4401}, {667, 4879, 48294}, {788, 9400, 4785}, {812, 29066, 29033}, {826, 29208, 29260}, {834, 4132, 522}, {1019, 4449, 48343}, {1734, 48131, 48066}, {2533, 48273, 4823}, {2787, 29328, 29178}, {3566, 29288, 23875}, {3800, 3910, 29021}, {3803, 4162, 48345}, {3907, 29013, 29344}, {4041, 14349, 48012}, {4063, 48337, 663}, {4367, 4834, 48064}, {4449, 50509, 1019}, {4490, 4983, 47997}, {4498, 48338, 4040}, {4705, 48123, 48054}, {4729, 48131, 1734}, {4784, 21343, 4378}, {4822, 47959, 48045}, {4844, 29033, 29066}, {4961, 29344, 29013}, {7927, 29017, 29164}, {12073, 29312, 29144}, {21385, 48352, 4724}, {29025, 29094, 514}, {29208, 29284, 826}, {29354, 32478, 29200}, {47835, 47839, 48196}, {47918, 48081, 47987}, {47965, 50508, 48058}, {48011, 48294, 667}, {48064, 48287, 4367}, {48136, 50501, 14838}, {48298, 50343, 48321}, {48347, 50512, 48330}
X(29351) lies on the circumcircle and on these lines: {1, 739}, {3, 29352}, {36, 9081}, {58, 715}, {100, 4482}, {101, 23343}, {104, 56077}, {105, 993}, {106, 1001}, {111, 5251}, {190, 898}, {727, 10800}, {729, 4649}, {741, 4653}, {759, 56125}, {813, 4752}, {840, 45765}, {901, 54440}, {956, 2291}, {1018, 6016}, {1023, 8693}, {2382, 51923}, {2726, 5144}, {3573, 4588}, {3908, 29034}, {5258, 28334}, {5259, 28338}, {6013, 53268}
X(29351) = reflection of X(i) in X(j) for these {i,j}: {29352, 3}
X(29351) = isogonal conjugate of X(29350)
X(29351) = trilinear pole of line {6, 750}
X(29351) = Ψ(X(1), X(536))
X(29351) = Ψ(X(6), X(750))
X(29351) = trilinear product of circumcircle intercepts of line X(1)X(536)
X(29351) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29350}, {6, 4776}, {513, 3240}, {649, 4664}
X(29351) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29350}, {9, 4776}, {5375, 4664}, {39026, 3240}
X(29351) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(190)}}, {{A, B, C, X(21), X(3939)}}, {{A, B, C, X(56), X(40519)}}, {{A, B, C, X(58), X(4623)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(596), X(4572)}}, {{A, B, C, X(660), X(4597)}}, {{A, B, C, X(961), X(38828)}}, {{A, B, C, X(1001), X(1023)}}, {{A, B, C, X(1492), X(4622)}}, {{A, B, C, X(3257), X(4482)}}, {{A, B, C, X(3573), X(4653)}}, {{A, B, C, X(3903), X(32042)}}, {{A, B, C, X(4584), X(4604)}}, {{A, B, C, X(32039), X(52612)}}, {{A, B, C, X(45765), X(52985)}}, {{A, B, C, X(56221), X(56257)}}
X(29351) = barycentric product X(i)*X(j) for these (i, j): {1, 37209}, {100, 36871}, {190, 55919}, {56077, 651}, {56116, 664}, {56125, 662}, {56158, 99}
X(29351) = barycentric quotient X(i)/X(j) for these (i, j): {1, 4776}, {6, 29350}, {100, 4664}, {101, 3240}, {692, 54981}, {36871, 693}, {37209, 75}, {55919, 514}, {56077, 4391}, {56116, 522}, {56125, 1577}, {56158, 523}
X(29352) lies on the circumcircle and these lines: {3, 29351}, {40, 28474}, {100, 3729}, {101, 1376}, {109, 6180}, {110, 35983}, {165, 6016}, {919, 44425}, {1293, 11495}, {2291, 53284}, {8693, 56010}, {15599, 24813}, {29055, 54282}, {29310, 53259}
X(29352) = circumcircle-antipode of X(29351)
X(29352) = isogonal conjugate of X(29353)
X(29352) = trilinear pole of line {6, 4449}
X(29352) = X(i)-cross conjugate of X(j) for these {i, j}: {52896, 1}
X(29352) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(37540)}}, {{A, B, C, X(4), X(35983)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(87), X(673)}}, {{A, B, C, X(996), X(1065)}}, {{A, B, C, X(1261), X(2346)}}, {{A, B, C, X(9357), X(43747)}}, {{A, B, C, X(29353), X(52896)}}, {{A, B, C, X(51476), X(56358)}}
X(29353) lies on these lines: {1, 52896}, {3, 4471}, {4, 56077}, {6, 24309}, {30, 511}, {43, 165}, {354, 1122}, {651, 40910}, {946, 37482}, {970, 12512}, {991, 995}, {1203, 37328}, {1266, 25048}, {1633, 2323}, {1699, 31137}, {2183, 35338}, {2262, 17668}, {2325, 4553}, {2340, 21362}, {3000, 20367}, {3008, 3271}, {3056, 3663}, {3146, 12435}, {3270, 45275}, {3681, 4416}, {3729, 25304}, {3730, 24708}, {3755, 37516}, {3781, 51090}, {3784, 11019}, {3817, 3840}, {3888, 3912}, {3911, 34583}, {3917, 40998}, {3942, 57022}, {4014, 4887}, {4300, 48883}, {4430, 17364}, {4459, 24209}, {4480, 4499}, {4847, 26892}, {4890, 4909}, {5049, 39543}, {5091, 8540}, {5360, 22003}, {5752, 31730}, {5902, 50307}, {6510, 11712}, {6737, 42448}, {6743, 29958}, {7186, 24210}, {9355, 18788}, {9812, 10439}, {10164, 24494}, {10175, 48888}, {10246, 31394}, {10247, 24405}, {10441, 51118}, {11227, 40649}, {17355, 17792}, {17502, 48929}, {17591, 50613}, {18483, 37536}, {19335, 49992}, {23633, 53541}, {24225, 43040}, {25101, 25279}, {25308, 56078}, {31673, 31778}, {35645, 51783}, {38034, 48934}, {39550, 39551}, {42450, 57284}
X(29353) = isogonal conjugate of X(29352)
X(29353) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29350}
X(29353) = X(i)-complementary conjugate of X(j) for these {i, j}: {29352, 10}
X(29353) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29352, 8}
X(29353) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29350)}}, {{A, B, C, X(84), X(28475)}}, {{A, B, C, X(513), X(9315)}}, {{A, B, C, X(514), X(9309)}}, {{A, B, C, X(672), X(42341)}}, {{A, B, C, X(3062), X(6008)}}, {{A, B, C, X(3900), X(40505)}}, {{A, B, C, X(29352), X(52896)}}
X(29353) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 29046, 29321}, {511, 29349, 517}, {511, 516, 29311}, {513, 674, 527}, {516, 17770, 29307}, {517, 15310, 29349}, {573, 1742, 41430}, {3564, 29291, 29043}, {4014, 20358, 4887}, {6007, 9025, 519}, {10439, 45829, 9812}, {15733, 34371, 2809}, {21746, 49537, 3664}, {28850, 29069, 29036}, {29012, 29211, 29263}, {29016, 29057, 29347}, {29028, 29097, 516}, {29181, 29207, 29024}, {29211, 29287, 29012}
X(29354) lies on these lines: {30, 511}, {663, 48117}, {667, 48094}, {764, 48278}, {905, 48088}, {1019, 48103}, {1577, 48326}, {2254, 4808}, {2530, 4088}, {3004, 48005}, {3762, 3801}, {3776, 21260}, {3777, 48272}, {3803, 48096}, {4010, 47716}, {4025, 50504}, {4040, 48083}, {4041, 47930}, {4063, 50342}, {4122, 4978}, {4378, 48300}, {4449, 49279}, {4453, 47837}, {4468, 50507}, {4522, 23815}, {4705, 16892}, {4809, 47817}, {4822, 48112}, {4834, 47971}, {4879, 49276}, {4983, 48082}, {7265, 48279}, {14838, 48056}, {17166, 49273}, {17496, 50351}, {17990, 23785}, {21104, 48395}, {21146, 47711}, {21301, 49302}, {23765, 49278}, {25259, 47720}, {30565, 47839}, {47676, 47707}, {47682, 48323}, {47691, 48267}, {47700, 48151}, {47701, 47949}, {47702, 47906}, {47704, 48393}, {47705, 48264}, {47706, 48108}, {47712, 48265}, {47717, 48349}, {47727, 48336}, {47770, 48564}, {47772, 47840}, {47793, 48241}, {47794, 48227}, {47795, 48185}, {47796, 48171}, {47797, 48553}, {47809, 48569}, {47814, 48422}, {47820, 48557}, {47836, 48571}, {47875, 47887}, {47890, 50512}, {47902, 48582}, {47905, 47931}, {47911, 47924}, {47912, 47923}, {47944, 47947}, {47948, 47968}, {47955, 47961}, {47956, 47960}, {47970, 50340}, {47990, 48612}, {47994, 47998}, {47999, 48613}, {48046, 48053}, {48047, 48059}, {48048, 48058}, {48078, 48351}, {48087, 48099}, {48095, 50515}, {48113, 48150}, {48118, 48144}, {48124, 50517}, {48130, 50523}, {48138, 50526}, {48146, 48149}, {48196, 48215}, {48199, 48218}, {48236, 48570}, {48299, 48328}, {48305, 49275}, {48331, 48614}, {48346, 49280}, {48401, 50453}, {48551, 48552}
X(29354) = isogonal conjugate of X(29355)
X(29354) = perspector of circumconic {{A, B, C, X(2), X(29687)}}
X(29354) = X(i)-complementary conjugate of X(j) for these {i, j}: {29355, 10}
X(29354) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29355, 8}
X(29354) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(519), X(29687)}}, {{A, B, C, X(4132), X(35352)}}
X(29354) = barycentric product X(i)*X(j) for these (i, j): {29687, 514}
X(29354) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29355}, {29687, 190}
X(29354) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 918, 29252}, {513, 29047, 7927}, {514, 2787, 29336}, {514, 29037, 29070}, {514, 29062, 29362}, {514, 29212, 814}, {514, 29344, 29244}, {514, 29358, 29017}, {514, 826, 29312}, {523, 6372, 29168}, {812, 29090, 29266}, {814, 29212, 29264}, {918, 29288, 512}, {4083, 23875, 690}, {6005, 29208, 12073}, {29017, 29358, 826}, {29025, 29148, 29136}, {29037, 29070, 29058}, {29198, 29204, 29021}, {29200, 29350, 32478}, {29226, 29280, 23876}, {47676, 47707, 50352}
X(29355) lies on the circumcircle and these lines: {3, 29356}
X(29355) = reflection of X(i) in X(j) for these {i,j}: {29356, 3}
X(29355) = isogonal conjugate of X(29354)
X(29355) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(4628), X(52935)}}
X(29356) lies on the circumcircle and these lines: {3, 29355}
X(29356) = reflection of X(i) in X(j) for these {i,j}: {29355, 3}
X(29356) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 29357}
X(29357) lies on these lines: {44, 513}
X(29357) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 29356}
X(29358) lies on these lines: {30, 511}, {1734, 47700}, {3801, 4791}, {4063, 48118}, {4088, 48012}, {4122, 4823}, {4170, 47692}, {4707, 47707}, {4761, 47706}, {4905, 47930}, {7265, 47691}, {16892, 48066}, {21192, 48062}, {25259, 47712}, {47676, 47715}, {47677, 48409}, {47679, 47698}, {47682, 48343}, {47701, 48045}, {47702, 48081}, {47709, 49272}, {47713, 48080}, {47714, 48108}, {47726, 48144}, {47794, 48171}, {47795, 48241}, {47817, 48557}, {47837, 48188}, {47838, 48203}, {47839, 48224}, {47902, 48595}, {47923, 48086}, {47924, 48085}, {47931, 48596}, {47942, 48112}, {47944, 48602}, {47960, 48052}, {47961, 48051}, {47968, 48603}, {47970, 48117}, {47976, 48146}, {47977, 48113}, {47987, 48082}, {48003, 48088}, {48004, 48087}, {48011, 48103}, {48064, 50342}, {48065, 50340}, {48083, 48623}, {48185, 48196}, {48208, 48573}, {48218, 48227}, {48236, 48566}, {48294, 49279}, {48348, 49280}, {48394, 57068}, {48422, 48556}
X(29358) = isogonal conjugate of X(29359)
X(29358) = X(i)-complementary conjugate of X(j) for these {i, j}: {29359, 10}
X(29358) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29359, 8}
X(29358) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29204, 29260}, {513, 7950, 29164}, {514, 29037, 29344}, {514, 29062, 29033}, {514, 826, 29318}, {523, 23875, 6005}, {525, 29047, 29350}, {826, 29354, 29017}, {2787, 29332, 514}, {6002, 29160, 29140}, {16892, 48272, 48066}, {29025, 29090, 29178}, {29078, 29098, 29270}, {29204, 29280, 512}, {29224, 29292, 814}
X(29359) lies on the circumcircle and these lines: {3, 29360}
X(29359) = reflection of X(i) in X(j) for these {i,j}: {29360, 3}
X(29359) = isogonal conjugate of X(29358)
X(29360) lies on the circumcircle and these lines: {3, 29359}
X(29360) = isogonal conjugate of X(29361)
X(29360) = circumcircle-antipode of X(29359)
X(29360) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 29361}
X(29361) lies on these lines: {44, 513}
X(29361) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 29360}
X(29362) lies on these lines: {2, 48170}, {30, 511}, {649, 21146}, {650, 3837}, {659, 693}, {661, 24719}, {663, 48279}, {667, 4978}, {764, 48321}, {905, 48406}, {1491, 17494}, {1635, 47812}, {1960, 48295}, {2254, 47932}, {2533, 4498}, {3261, 27855}, {3700, 48055}, {3716, 48090}, {3733, 7199}, {3777, 4560}, {4010, 4382}, {4024, 48102}, {4040, 48273}, {4057, 53271}, {4063, 50352}, {4106, 4806}, {4122, 48094}, {4140, 36856}, {4170, 48351}, {4367, 4801}, {4369, 4782}, {4380, 4784}, {4401, 52601}, {4448, 47832}, {4455, 30591}, {4467, 49301}, {4468, 18004}, {4490, 21301}, {4522, 48056}, {4728, 47811}, {4763, 48216}, {4774, 47721}, {4776, 48162}, {4789, 48250}, {4804, 48032}, {4809, 47887}, {4810, 47974}, {4813, 47927}, {4824, 47926}, {4838, 48626}, {4841, 47989}, {4913, 50335}, {4927, 47799}, {4928, 48197}, {4948, 48160}, {4951, 48171}, {4976, 50348}, {4979, 48148}, {4988, 47943}, {4992, 48099}, {6133, 50334}, {6161, 48339}, {6545, 48227}, {6546, 48185}, {7192, 48143}, {7212, 43924}, {7662, 48125}, {9508, 24720}, {10196, 48199}, {14838, 23815}, {17496, 23765}, {18072, 18133}, {20293, 25292}, {20295, 47969}, {20316, 25121}, {21051, 47965}, {21204, 48215}, {21260, 48003}, {21297, 47821}, {21343, 47729}, {21385, 47724}, {23729, 47998}, {23770, 50347}, {25009, 25926}, {25259, 48083}, {26824, 47694}, {28399, 30061}, {28602, 47806}, {30795, 31209}, {31147, 47826}, {31150, 44429}, {31290, 47910}, {35352, 57099}, {36848, 47828}, {39798, 40086}, {43067, 48126}, {44567, 45340}, {45314, 45320}, {45342, 45673}, {45666, 47831}, {45745, 48007}, {45746, 47686}, {47650, 47691}, {47653, 47925}, {47656, 47696}, {47663, 47690}, {47664, 47685}, {47669, 47901}, {47673, 47931}, {47676, 50342}, {47687, 48408}, {47693, 48140}, {47699, 47944}, {47703, 48101}, {47760, 48180}, {47761, 48233}, {47762, 48253}, {47776, 47824}, {47782, 47877}, {47784, 48178}, {47788, 48231}, {47797, 47871}, {47805, 47834}, {47807, 47884}, {47809, 47885}, {47810, 48176}, {47813, 48238}, {47815, 47872}, {47817, 47875}, {47819, 47893}, {47820, 47889}, {47888, 48556}, {47890, 48396}, {47904, 48019}, {47920, 47953}, {47921, 48401}, {47928, 47945}, {47929, 48265}, {47933, 48021}, {47934, 48020}, {47936, 48264}, {47941, 48079}, {47952, 48619}, {47954, 47991}, {47962, 48002}, {47963, 47993}, {47964, 47992}, {47970, 48267}, {47972, 48349}, {47973, 48277}, {47983, 49294}, {47986, 48041}, {47999, 48404}, {48000, 48030}, {48001, 48028}, {48006, 49295}, {48009, 48043}, {48010, 48042}, {48040, 48269}, {48048, 48270}, {48061, 48268}, {48062, 49285}, {48063, 48394}, {48078, 48266}, {48096, 48271}, {48111, 48305}, {48127, 49292}, {48135, 49291}, {48150, 48301}, {48193, 48210}, {48237, 48251}, {48280, 48299}, {48285, 48296}, {48288, 48335}, {48289, 48332}, {48291, 48324}, {48342, 54251}, {48399, 54265}, {48604, 49273}, {49278, 50351}, {50337, 50504}, {50339, 50356}, {50343, 50359}
X(29362) = isogonal conjugate of X(29363)
X(29362) = perspector of circumconic {{A, B, C, X(2), X(16825)}}
X(29362) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29365}
X(29362) = X(i)-complementary conjugate of X(j) for these {i, j}: {29363, 10}
X(29362) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29363, 8}
X(29362) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29365)}}, {{A, B, C, X(518), X(39798)}}, {{A, B, C, X(519), X(16825)}}, {{A, B, C, X(527), X(36538)}}, {{A, B, C, X(788), X(3733)}}, {{A, B, C, X(824), X(7199)}}, {{A, B, C, X(918), X(40086)}}, {{A, B, C, X(3805), X(17212)}}
X(29362) = barycentric product X(i)*X(j) for these (i, j): {16825, 514}, {36538, 522}
X(29362) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29363}, {16825, 190}, {36538, 664}
X(29362) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 48170, 48184}, {2, 48184, 48198}, {2, 48226, 48214}, {2, 48240, 48226}, {512, 29186, 29246}, {513, 28195, 28840}, {513, 4762, 523}, {513, 812, 29328}, {514, 29017, 29332}, {514, 29033, 2787}, {514, 29062, 29354}, {514, 29190, 826}, {514, 29312, 29172}, {514, 29318, 29224}, {514, 814, 29324}, {649, 48119, 21146}, {650, 47802, 47829}, {650, 48089, 3837}, {659, 47833, 47804}, {693, 47804, 47833}, {826, 29190, 29248}, {1635, 47812, 47823}, {2787, 29033, 814}, {2787, 29070, 29033}, {3716, 49289, 48090}, {3837, 47829, 47802}, {4083, 29051, 29366}, {4106, 48029, 4806}, {4369, 4830, 4782}, {4380, 48108, 4784}, {4382, 4724, 4010}, {4728, 47811, 47822}, {4778, 4785, 513}, {4782, 48098, 4369}, {4813, 47927, 47946}, {4928, 48562, 48197}, {4948, 48160, 48175}, {6372, 29013, 29170}, {17494, 46403, 1491}, {17494, 48164, 47825}, {20295, 47969, 48024}, {24720, 48008, 9508}, {26824, 47694, 48120}, {29021, 29098, 29174}, {29025, 29142, 29134}, {29047, 29086, 29250}, {29186, 29302, 512}, {29198, 29238, 6002}, {29226, 29274, 3907}, {31150, 44429, 47827}, {31150, 48167, 45323}, {45314, 48206, 47803}, {45320, 47803, 48206}, {45746, 47686, 47968}, {46403, 47825, 48164}, {47663, 47690, 48103}, {47664, 47685, 47975}, {47685, 47975, 50328}, {47699, 49298, 47944}, {47782, 48159, 47877}, {47804, 47833, 4874}, {47805, 47834, 48234}, {47805, 47869, 47834}, {47809, 47892, 47885}, {47827, 48167, 44429}, {47832, 48572, 4448}, {47890, 48396, 48405}, {47926, 48023, 4824}, {47932, 48115, 2254}, {47933, 48114, 48021}, {47962, 48027, 48002}, {47963, 48026, 47993}, {48000, 48050, 48030}, {48001, 48049, 48028}, {48009, 49287, 48043}, {48061, 48268, 49286}, {48120, 50358, 47694}, {48170, 48240, 2}
X(29363) lies on the circumcircle and these lines: {3, 29364}, {99, 3799}, {105, 32911}, {789, 3952}
X(29363) = reflection of X(i) in X(j) for these {i,j}: {29364, 3}
X(29363) = isogonal conjugate of X(29362)
X(29363) = trilinear pole of line {6, 3774}
X(29363) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 29362}, {513, 16825}, {650, 36538}
X(29363) = X(i)-vertex conjugate of X(j) for these {i, j}: {9999, 29363}
X(29363) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 29362}, {39026, 16825}
X(29363) = X(i)-cross conjugate of X(j) for these {i, j}: {37576, 59}
X(29363) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(660), X(692)}}, {{A, B, C, X(1897), X(55997)}}, {{A, B, C, X(3799), X(3952)}}, {{A, B, C, X(3903), X(34074)}}
X(29363) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29362}, {101, 16825}, {109, 36538}
X(29364) lies on the circumcircle and these lines: {3, 29363}
X(29364) = isogonal conjugate of X(29365)
X(29364) = circumcircle-antipode of X(29363)
X(29365) lies on circumconic {{A, B, C, X(4), X(29362)}} and on these lines: {3, 16823}, {5, 39605}, {30, 511}, {40, 49129}, {381, 44430}, {1699, 36729}, {4881, 16383}, {5587, 36551}, {5790, 36721}, {5886, 54474}, {7611, 51045}, {12699, 36685}, {12702, 49130}, {29575, 36731}, {37548, 50177}, {40091, 49777}
X(29365) = isogonal conjugate of X(29364)
X(29365) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29362}
X(29365) = X(i)-complementary conjugate of X(j) for these {i, j}: {29364, 10}
X(29365) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29364, 8}
X(29365) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 29010, 29327}, {516, 29020, 29335}, {516, 29036, 2783}, {517, 28850, 29331}, {2783, 29036, 29010}, {2783, 29073, 29036}, {15310, 29054, 29369}
X(29366) lies on these lines: {1, 50352}, {8, 4490}, {10, 50507}, {30, 511}, {145, 48143}, {663, 2533}, {667, 4761}, {693, 4879}, {905, 48289}, {1491, 21302}, {1577, 4775}, {1734, 48288}, {3762, 48351}, {3777, 48298}, {3837, 48136}, {4010, 48338}, {4162, 7662}, {4367, 47729}, {4369, 48330}, {4391, 4774}, {4449, 21146}, {4474, 48265}, {4560, 50355}, {4801, 21343}, {4806, 50508}, {4807, 48284}, {4895, 48301}, {4922, 48144}, {4978, 48333}, {6133, 48297}, {8630, 23865}, {14419, 48573}, {14431, 47838}, {17478, 48302}, {17496, 50359}, {19870, 47794}, {21051, 48099}, {21052, 47822}, {21301, 48123}, {23057, 48238}, {23815, 48348}, {25569, 47820}, {45314, 48559}, {45316, 45332}, {47711, 49279}, {47724, 48273}, {47835, 48214}, {47841, 48198}, {47922, 48001}, {47993, 48607}, {48029, 48401}, {48050, 48129}, {48108, 48323}, {48248, 48329}, {48267, 48352}, {48285, 48328}, {48294, 52601}, {48295, 48347}, {48299, 48405}, {48332, 48406}, {48339, 48393}
X(29366) = isogonal conjugate of X(29367)
X(29366) = perspector of circumconic {{A, B, C, X(2), X(29670)}}
X(29366) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29369}
X(29366) = X(i)-complementary conjugate of X(j) for these {i, j}: {29367, 10}
X(29366) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29367, 8}
X(29366) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29369)}}, {{A, B, C, X(519), X(29670)}}
X(29366) = barycentric product X(i)*X(j) for these (i, j): {29670, 514}
X(29366) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29367}, {29670, 190}
X(29366) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29182, 29013}, {512, 814, 29328}, {513, 3907, 29324}, {514, 29144, 29134}, {514, 29188, 29246}, {514, 4844, 29298}, {514, 7927, 29174}, {523, 29082, 29332}, {525, 29074, 29370}, {663, 2533, 4874}, {826, 29192, 29250}, {2787, 6005, 29170}, {3566, 29278, 29078}, {3800, 29240, 29025}, {4083, 29051, 29362}, {4474, 48367, 48265}, {4895, 50457, 48301}, {12073, 29336, 29158}, {23876, 29086, 29248}, {29013, 29066, 29182}, {29013, 29182, 814}, {29021, 29094, 29172}, {29058, 32478, 29216}, {29188, 29298, 514}, {29192, 29304, 826}
X(29367) lies on the circumcircle and these lines: {3, 29368}, {789, 17136}
X(29367) = reflection of X(i) in X(j) for these {i,j}: {29368, 3}
X(29367) = isogonal conjugate of X(29366)
X(29367) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(4597)}}, {{A, B, C, X(664), X(5331)}}
X(29367) = barycentric quotient X(i)/X(j) for these (i, j): {6, 29366}, {101, 29670}
X(29368) lies on the circumcircle and these lines: {3, 29367}
X(29368) = isogonal conjugate of X(29369)
X(29368) = circumcircle-antipode of X(29367)
X(29368) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(893)}}, {{A, B, C, X(74), X(98)}}
X(29369) lies on circumconic {{A, B, C, X(4), X(29366)}} and on these lines: {3, 894}, {4, 6646}, {5, 4357}, {7, 36674}, {20, 31300}, {30, 511}, {37, 48934}, {75, 48875}, {140, 5750}, {355, 33082}, {381, 17254}, {986, 5725}, {1385, 33682}, {1656, 17326}, {3927, 4385}, {4654, 17591}, {5805, 36661}, {6147, 24231}, {6211, 26921}, {7009, 22161}, {7330, 10476}, {10444, 49129}, {10446, 20430}, {17236, 36651}, {17257, 36659}, {17274, 36729}, {17333, 36730}, {17350, 36697}, {30273, 48908}, {37521, 54035}
X(29369) = isogonal conjugate of X(29368)
X(29369) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29366}
X(29369) = X(i)-complementary conjugate of X(j) for these {i, j}: {29368, 10}
X(29369) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29368, 8}
X(29369) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 29085, 29335}, {30, 5762, 29085}, {511, 29010, 29331}, {511, 29069, 29010}, {515, 17770, 29287}, {517, 29057, 29327}, {1503, 29077, 29373}, {5965, 29061, 29219}, {15310, 29054, 29365}, {29181, 29243, 29028}
X(29370) lies on these lines: {2, 4951}, {30, 511}, {659, 48557}, {1491, 47894}, {1635, 48188}, {3837, 47754}, {4120, 48177}, {4122, 4809}, {4522, 47882}, {4728, 48224}, {4750, 48235}, {4763, 48201}, {4784, 47689}, {4800, 48223}, {4810, 47692}, {4820, 47131}, {4828, 50334}, {4830, 48097}, {4834, 47710}, {4928, 48212}, {4931, 48189}, {4944, 48183}, {6544, 48185}, {6548, 48184}, {14475, 48198}, {18004, 47765}, {25259, 50340}, {28602, 47785}, {31992, 48171}, {44009, 48240}, {45314, 47770}, {45323, 47886}, {45661, 48195}, {45674, 48217}, {45684, 48199}, {46901, 47828}, {47677, 50328}, {47690, 47755}, {47767, 48405}, {47832, 53584}, {47870, 48234}, {47876, 48047}, {47891, 48396}, {48158, 53339}, {48167, 48422}, {48180, 52593}, {48187, 48244}, {48200, 48229}, {48248, 48271}, {48253, 52620}, {48254, 53333}, {48266, 48349}, {48289, 49280}, {49273, 50358}
X(29370) = isogonal conjugate of X(29371)
X(29370) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29373}
X(29370) = X(i)-complementary conjugate of X(j) for these {i, j}: {29371, 10}
X(29370) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29371, 8}
X(29370) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(29373)}}, {{A, B, C, X(75), X(752)}}, {{A, B, C, X(742), X(27494)}}
X(29370) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 29196, 29250}, {514, 29058, 814}, {514, 29062, 29058}, {514, 29194, 29248}, {522, 30519, 513}, {523, 29078, 29328}, {525, 29074, 29366}, {814, 826, 29332}, {2787, 29318, 29172}, {4122, 4809, 47874}, {4777, 28898, 900}, {4809, 47874, 4874}, {6002, 29146, 29134}, {7950, 29013, 29174}, {23875, 29086, 29246}, {29017, 29037, 29324}, {29021, 29090, 29170}, {29194, 29292, 514}, {29196, 29294, 512}
X(29371) lies on the circumcircle and these lines: {3, 29372}, {31, 753}, {743, 21793}, {13396, 14422}
X(29371) = reflection of X(i) in X(j) for these {i,j}: {29372, 3}
X(29371) = isogonal conjugate of X(29370)
X(29371) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(31), X(34069)}}, {{A, B, C, X(74), X(98)}}
X(29372) lies on the circumcircle and these lines: {3, 29371}, {28467, 30269}
X(29372) = isogonal conjugate of X(29373)
X(29372) = circumcircle-antipode of X(29371)
X(29373) lies on circumconic {{A, B, C, X(4), X(29370)}} and on these lines: {3, 17292}, {30, 511}, {5587, 36477}, {5731, 36474}, {5886, 36663}
X(29373) = isogonal conjugate of X(29372)
X(29373) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 29370}
X(29373) = X(i)-complementary conjugate of X(j) for these {i, j}: {29372, 10}
X(29373) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {29372, 8}
X(29373) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 29081, 29331}, {516, 29065, 29061}, {1503, 29077, 29369}, {28160, 28901, 952}, {29010, 29012, 29335}, {29012, 29061, 516}, {29012, 29065, 29010}, {29020, 29040, 29327}
See Randy Hutson, Hyacinthos 28698.
X(29374) lies on these lines: {484,1785}, {516,5080}, {517,1456}, {522,1768}, {910,5537}, {1325,5538}, {5536,22464} et al
X(29374) = isogonal conjugate of X(1768)Collineation mappings involving Gemini triangle 89: X(29375)-X(29432)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 89, as in centers X(28375)-X(29432). Then
m(X) = (b + c) (a^2 + b c) x + b(c - a) y - c (b - a) z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, December 6, 2018)
X(29375) lies on these lines: {1, 2}, {213, 25107}, {874, 29396}, {1018, 18140}, {2295, 27076}, {4075, 25248}, {4103, 17141}, {4482, 5253}, {4986, 17048}, {5264, 26687}, {6376, 16549}, {20605, 29380}, {21208, 28598}, {21385, 29428}, {24491, 29514}, {29376, 29394}, {29378, 29384}, {29379, 29382}, {29389, 29422}, {29398, 29408}, {29414, 29506}, {29423, 29425}, {29516, 29525}, {29522, 29531}
X(29376) lies on these lines: {2, 3}, {3732, 18738}, {18140, 29379}, {29375, 29394}, {29381, 29421}, {29397, 29420}, {29400, 30830}
X(29377) lies on these lines: {2, 3}, {29379, 29532}, {29381, 29506}, {29382, 29383}, {29395, 29397}, {29400, 29539}, {29425, 29538}
X(29378) lies on these lines: {2, 3}, {14829, 29381}, {29375, 29384}, {29421, 29525}, {29524, 29526}
X(29379) lies on these lines: {2, 6}, {75, 29511}, {76, 29400}, {190, 18133}, {3264, 28402}, {3882, 18046}, {18140, 29376}, {29375, 29382}, {29377, 29532}, {29390, 29394}, {29396, 29401}, {29397, 29419}, {29415, 29425}
X(29380) lies on these lines: {2, 7}, {169, 29400}, {344, 3882}, {1759, 29406}, {2183, 25101}, {16482, 20990}, {16885, 18206}, {17234, 21362}, {17335, 21061}, {17336, 20367}, {20372, 29381}, {20605, 29375}, {29398, 29410}, {29399, 29408}, {29401, 29507}, {29423, 29541}, {29511, 29542}
X(29381) lies on these lines: {1, 2}, {9, 29536}, {75, 29405}, {76, 1018}, {213, 25102}, {304, 29389}, {668, 16552}, {1078, 18047}, {1334, 6381}, {1909, 16549}, {1930, 4095}, {1966, 29423}, {2975, 4482}, {3208, 3760}, {3294, 6376}, {3403, 29382}, {3405, 29533}, {3501, 3761}, {4063, 29513}, {4595, 17143}, {11010, 17738}, {14829, 29378}, {16564, 29519}, {16574, 18040}, {17739, 17744}, {17786, 21061}, {20367, 20917}, {20372, 29380}, {21021, 24254}, {24068, 25248}, {24080, 25270}, {24222, 26561}, {29376, 29421}, {29377, 29506}, {29394, 29408}, {29407, 29418}, {29429, 29507}, {29497, 29515}, {29500, 29508}, {29537, 29539}
X(29382) lies on these lines: {2, 7}, {75, 3882}, {190, 18143}, {320, 21061}, {513, 16684}, {1266, 2269}, {1357, 30979}, {1756, 24325}, {2183, 24199}, {3294, 17258}, {3403, 29381}, {3782, 17185}, {4271, 7263}, {4659, 22370}, {6147, 10461}, {7321, 20367}, {12559, 16496}, {16552, 17347}, {17277, 21362}, {17336, 29541}, {17365, 18206}, {19804, 21361}, {20881, 21231}, {29375, 29379}, {29377, 29383}, {29389, 29408}, {29401, 29423}
X(29383) lies on these lines: {1, 2}, {213, 24656}, {274, 1018}, {596, 25248}, {1909, 3294}, {2295, 17175}, {3208, 32092}, {4482, 5260}, {16549, 31997}, {17152, 17758}, {21385, 29546}, {24222, 26558}, {29377, 29382}, {29388, 30940}, {29396, 29397}, {29405, 29419}, {29408, 29421}, {29414, 29418}, {29429, 29509}, {29516, 29526}
X(29384) lies on these lines:
X(29385) lies on these lines:
X(29386) lies on these lines:
X(29387) lies on these lines: {2, 32}, {18140, 29376}, {29389, 29432}, {29397, 29415}, {29420, 29425}
X(29388) lies on these lines:
X(29389) lies on these lines:
X(29390) lies on these lines: {1, 2}, {1018, 31008}, {16549, 17149}, {18058, 29423}, {29379, 29394}, {29389, 29409}, {29398, 29421}, {29500, 29551}
X(29391) lies on these lines: {1, 2}, {1918, 29478}, {6384, 16549}, {29394, 29405}, {29421, 29432}
X(29392) lies on these lines: {2, 44}, {190, 18073}, {1423, 18040}, {3768, 29402}, {10030, 29510}, {29375, 29379}
X(29393) lies on these lines: {2, 45}, {17258, 24170}, {29375, 29379}
X(29394) lies on these lines: {2, 11}, {29375, 29376}, {29379, 29390}, {29381, 29408}, {29388, 29409}, {29391, 29405}, {29400, 29524}, {29522, 29528}
X(29395) lies on these lines: {2, 6}, {9, 29423}, {190, 573}, {313, 2183}, {1730, 27792}, {3882, 18137}, {3948, 4271}, {4150, 20262}, {4266, 18147}, {4277, 4360}, {4557, 21278}, {20372, 29380}, {29377, 29397}, {29385, 29532}, {29413, 29420}, {29425, 29534}, {29500, 29502}, {29503, 29536}, {29523, 29544}, {29541, 29542}
X(29396) lies on these lines: {2, 37}, {9, 18040}, {45, 18073}, {190, 18143}, {313, 25101}, {874, 29375}, {1269, 2325}, {1441, 21591}, {3264, 6666}, {3731, 18044}, {3770, 4473}, {3963, 4422}, {4033, 17277}, {6646, 18150}, {16709, 17369}, {17243, 30939}, {17273, 30866}, {17335, 17786}, {17336, 20917}, {17340, 20913}, {20372, 29380}, {29379, 29401}, {29383, 29397}, {29410, 29418}, {29506, 29517}
X(29397) lies on these lines: {2, 39}, {6, 29542}, {668, 16552}, {1212, 27801}, {1237, 24036}, {5263, 29423}, {29376, 29420}, {29377, 29395}, {29379, 29419}, {29383, 29396}, {29387, 29415}, {29523, 29534}
X(29398) lies on these lines: {2, 6}, {4095, 29511}, {29375, 29408}, {29380, 29410}, {29390, 29421}
X(29399) lies on these lines: {2, 6}, {190, 29388}, {874, 29375}, {24594, 27794}, {29380, 29408}, {29405, 29406}
X(28400) lies on these lines: {1, 2}, {56, 4482}, {76, 29379}, {169, 29380}, {579, 30473}, {595, 26687}, {668, 4253}, {1018, 18135}, {2176, 27076}, {3212, 4568}, {3501, 6381}, {3730, 6376}, {17750, 25102}, {20247, 30730}, {29376, 30830}, {29377, 29539}, {29394, 29524}, {29425, 29547}, {29506, 29516}, {29515, 29531}, {29542, 29550}
X(28401) lies on these lines: {1, 2}, {190, 18073}, {18071, 21385}, {16549, 20917}, {29379, 29396}, {29380, 29507}, {29382, 29423}, {29418, 29425}
X(28402) lies on these lines: {2, 661}, {514, 6589}, {689, 799}, {812, 18071}, {3762, 29404}, {3768, 29392}, {3907, 16695}, {4763, 16751}, {7199, 29428}
X(28403) lies on these lines: {2, 667}, {1698, 18107}
X(28404) lies on these lines: {2, 650}, {812, 29426}, {3762, 29402}, {1635, 18155}, {3261, 11068}, {4057, 6133}, {4391, 4394}, {20950, 24622}, {29504, 29546}
X(28405) lies on these lines: {2, 31}, {75, 29381}, {29375, 29379}, {29383, 29419}, {29391, 29394}, {29399, 29406}
X(28406) lies on these lines: {1, 2}, {1759, 29380}, {16549, 17336}, {17175, 27076}, {18140, 29388}, {29399, 29405}
X(28407) lies on these lines: {2, 3}, {20605, 29375}, {29381, 29418}, {29420, 29501}, {29421, 29528}, {29425, 29507}, {29506, 29524}
X(28408) lies on these lines: {2, 3}, {29375, 29398}, {29380, 29399}, {29381, 29394}, {29382, 29389}, {29383, 29421}
X(28409) lies on these lines:
X(28410) lies on these lines:
X(28411) lies on these lines:
X(28412) lies on these lines:
X(28413) lies on these lines:
X(28414) lies on these lines:
X(28415) lies on these lines:
X(28416) lies on these lines:
X(28417) lies on these lines:
X(28418) lies on these lines:
X(28419) lies on these lines:
X(28420) lies on these lines:
X(28421) lies on these lines:
X(28422) lies on these lines:
X(28423) lies on these lines:
X(28424) lies on these lines: {2, 900}, {190, 29421}
X(28425) lies on these lines: {2, 39}, {45, 29542}, {668, 2176}, {3294, 6376}, {17489, 27808}, {25994, 27801}, {29375, 29423}, {29377, 29538}, {29379, 29415}, {29387, 29420}, {29395, 29534}, {29400, 29547}, {29401, 29418}, {29407, 29507}, {29501, 29523}
X(28426) lies on these lines: {2, 649}, {748, 18108}, {812, 29404}, {21385, 29512}, {3669, 14349}, {3768, 29392}, {4728, 18197}, {7660, 24782}, {23803, 27193}
X(28427) lies on these lines: {2, 650}, {75, 21212}, {4554, 29421}, {29428, 29430}
X(28428) lies on these lines: {2, 659}, {190, 29421}, {3768, 29392}, {7199, 29402}, {21385, 29375}
X(28429) lies on these lines: {2, 7}, {37, 3882}, {86, 21362}, {190, 29388}, {1756, 3842}, {4033, 29714}, {7277, 17207}, {16549, 17336}, {16676, 22370}, {17256, 21061}, {17258, 20367}, {17277, 29504}, {17332, 18206}, {18082, 24517}, {18164, 20072}, {22279, 23343}, {29375, 29423}, {29379, 29396}, {29381, 29507}, {29383, 29509}
X(28430) lies on these lines: {2, 896}, {3768, 29392}, {29375, 29398}
X(28431) lies on these lines: {2, 38}, {9, 29514}, {1966, 29381}, {29375, 29379}, {29383, 29396}
X(28432) lies on these lines: {2, 31}, {29375, 29398}, {29379, 29390}, {29387, 29389}, {29391, 29421}
Collineation mappings involving Gemini triangle 90: X(29433)-X(29494)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 90, as in centers X(28433)-X(29494). Then
m(X) = (b + c) (a^2 + b c) x - b (a + c)^2 y - c (a + b)^2 z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, December 7, 2018)
X(29433) lies on these lines: {1, 2}, {9, 3760}, {44, 4721}, {58, 17686}, {75, 16549}, {76, 16552}, {83, 33295}, {191, 17738}, {213, 21264}, {333, 17681}, {350, 3294}, {668, 29447}, {672, 20888}, {673, 29467}, {740, 25073}, {1018, 17143}, {1089, 17755}, {1724, 7770}, {1759, 1760}, {2140, 17137}, {2238, 3934}, {2350, 16748}, {3501, 32104}, {3691, 6381}, {3730, 4441}, {3761, 21384}, {4095, 4986}, {4257, 16919}, {4551, 28771}, {4766, 25639}, {5264, 20172}, {5295, 16301}, {5540, 17739}, {10447, 27626}, {14829, 17682}, {16684, 22289}, {16783, 16992}, {16842, 20156}, {16887, 26978}, {16971, 24656}, {17141, 22011}, {17152, 17761}, {17175, 24512}, {17210, 25499}, {17277, 18046}, {17349, 31276}, {17754, 32092}, {17758, 30941}, {18058, 18148}, {18143, 29767}, {18206, 20913}, {21802, 25368}, {24727, 25458}, {29434, 29452}, {29437, 29439}, {29441, 29468}
X(29434) lies on these lines: {2, 3}, {673, 3216}, {29433, 29452}, {29437, 29445}, {29438, 29480}, {29454, 29479}
X(29435) lies on these lines: {2, 3}, {29439, 29440}, {29441, 29471}, {29445, 29482}, {29452, 29468}, {29453, 29454}
X(29436) lies on these lines: {1, 2}, {29439, 29452}, {29474, 29480}
X(29437) lies on these lines: {2, 6}, {100, 23374}, {190, 16574}, {673, 29483}, {1043, 16453}, {1918, 3840}, {3871, 5132}, {4043, 20367}, {4598, 29480}, {4649, 20108}, {10449, 16414}, {16690, 30957}, {17137, 28748}, {17751, 20470}, {18046, 29456}, {29433, 29439}, {29434, 29445}, {29444, 29448}, {29449, 29478}, {29454, 29476}, {29467, 29486}
X(29438) lies on these lines: {1, 2}, {58, 17541}, {183, 16783}, {213, 20530}, {350, 16549}, {1089, 24631}, {1475, 6381}, {1930, 17048}, {1966, 29484}, {3294, 30963}, {3336, 17738}, {3508, 25660}, {3760, 17754}, {3780, 27076}, {3825, 4766}, {3934, 24512}, {4045, 23903}, {4253, 18135}, {4257, 16920}, {4568, 20247}, {4754, 9466}, {5712, 32957}, {16552, 18140}, {16574, 18046}, {16854, 20156}, {16887, 26100}, {16971, 25102}, {17192, 24241}, {17489, 21208}, {17681, 29473}, {17682, 29452}, {18144, 18164}, {29434, 29480}, {29454, 29491}, {29461, 29474}, {29492, 29558}, {29552, 29563}, {29555, 29564}
X(29439) lies on these lines: {2, 7}, {597, 17207}, {2140, 28748}, {3882, 17234}, {16549, 17341}, {17263, 20367}, {17337, 18206}, {18046, 29483}, {29433, 29437}, {29435, 29440}, {29436, 29452}, {29456, 29484}
X(29440) lies on these lines: {1, 2}, {874, 29446}, {3934, 17175}, {16549, 30963}, {16856, 20156}, {16971, 25107}, {17682, 29480}, {18046, 29454}, {18140, 29491}, {21208, 25263}, {24491, 29492}, {29435, 29439}, {29459, 29476}, {29466, 29474}
X(29441) lies on these lines: {2, 11}, {190, 29485}, {668, 29482}, {4369, 21383}, {4554, 25667}, {25577, 29487}, {29433, 29468}, {29435, 29471}
X(29442) lies on these lines: {2, 3}
X(29443) lies on these lines: {2, 3}, {18154, 29489}
X(29444) lies on these lines: {2, 31}, {14829, 17682}, {17138, 28751}, {29437, 29448}, {29449, 29480}
X(29445) lies on these lines: {2, 32}, {668, 29471}, {29434, 29437}, {29435, 29482}, {29454, 29467}, {29479, 29486}
X(29446) lies on these lines: {2, 37}, {874, 29440}, {1269, 6666}, {1654, 18150}, {3589, 16709}, {4384, 18040}, {16815, 18073}, {16832, 18044}, {17245, 30939}, {17259, 18133}, {17266, 20174}, {17277, 18143}, {17337, 20913}, {18739, 19732}, {29433, 29437}, {29447, 29460}, {29452, 29462}, {29559, 29561}, {30866, 32025}
X(29447) lies on these lines: {2, 39}, {668, 29433}, {3216, 29484}, {3842, 6533}, {17143, 17761}, {18040, 29742}, {18094, 26959}, {20917, 29561}, {29434, 29437}, {29446, 29460}, {29467, 29476}
X(29448) lies on these lines: {1, 2}, {14829, 29480}, {29437, 29444}
X(29449) lies on these lines: {1, 2}, {29437, 29478}, {29444, 29480}, {29452, 29459}
X(29450) lies on these lines: {2, 44}, {18137, 29552}, {29433, 29437}, {29456, 29483}, {29457, 29489}
X(29451) lies on these lines:
X(29452) lies on these lines:
X(29453) lies on these lines: {2, 6}, {190, 579}, {192, 4286}, {313, 2260}, {583, 3948}, {1210, 4150}, {3216, 3759}, {4043, 16549}, {4261, 4360}, {16574, 18046}, {16679, 21278}, {16685, 27166}, {17034, 24530}, {18044, 18148}, {18133, 18206}, {18137, 29456}, {20367, 29764}, {20985, 21238}, {29435, 29454}, {29465, 29479}, {29483, 29552}, {29484, 29561}, {29486, 29568}
X(29454) lies on these lines: {2, 39}, {350, 24170}, {668, 3216}, {1909, 20108}, {3752, 27801}, {4398, 18147}, {18046, 29440}, {29434, 29479}, {29435, 29453}, {29437, 29476}, {29438, 29491}, {29445, 29467}, {29567, 29568}
X(29455) lies on these lines: {1, 2}, {6, 3934}, {58, 7770}, {76, 4253}, {183, 4251}, {350, 3730}, {384, 4257}, {579, 29562}, {672, 3760}, {1078, 4262}, {1475, 3761}, {1574, 4361}, {1724, 17541}, {1834, 8362}, {1975, 5030}, {2271, 15271}, {4000, 24170}, {4252, 11286}, {4256, 11285}, {4383, 30819}, {4441, 16549}, {4482, 12513}, {4766, 7741}, {6381, 21384}, {7377, 7683}, {7786, 33296}, {7815, 18755}, {14829, 17681}, {16552, 18135}, {16853, 20156}, {17499, 31276}, {17750, 21264}, {17754, 20888}, {17758, 30962}, {17761, 21281}, {18143, 29763}, {20970, 31239}, {24587, 29473}, {26963, 27312}, {29471, 29480}, {29484, 29552}
X(29456) lies on these lines: {1, 2}, {9, 25660}, {57, 3760}, {75, 29559}, {312, 16549}, {350, 20367}, {673, 29459}, {6002, 6996}, {1577, 29487}, {1724, 11353}, {3751, 25688}, {3770, 18164}, {3875, 24530}, {3882, 30939}, {3948, 18206}, {4253, 28809}, {5209, 18752}, {5437, 25458}, {10452, 21246}, {14210, 16609}, {14829, 18140}, {16552, 30830}, {16574, 18147}, {17738, 20369}, {18046, 29437}, {18133, 29746}, {18137, 29453}, {18148, 29472}, {21384, 25661}, {25447, 25456}, {29439, 29484}, {29450, 29483}, {29474, 29486}
X(29457) lies on these lines: {2, 661}, {812, 18154}, {4763, 24900}, {29450, 29488}
X(29458) lies on these lines: {2, 667}, {512, 24626}, {1019, 29469}, {29770, 30968}
X(29459) lies on these lines: {2, 31}, {673, 29456}, {1019, 29469}, {5021, 6629}, {17277, 29460}, {20470, 30109}, {29433, 29437}, {29440, 29476}, {29449, 29452}, {29471, 29478}
X(29460) lies on these lines: {1, 2}, {9, 25457}, {474, 20156}, {1213, 17210}, {1724, 33035}, {2238, 17175}, {3760, 25661}, {3761, 25458}, {3875, 24944}, {5257, 25599}, {5506, 17738}, {6533, 17755}, {9312, 24915}, {9336, 24519}, {10455, 28252}, {17260, 23822}, {17277, 29459}, {17304, 24919}, {17682, 29469}, {21385, 29489}, {23897, 25683}, {24384, 24956}, {24530, 24945}, {29446, 29447}
X(29461) lies on these lines:
X(29462) lies on these lines:
X(29463) lies on these lines:
X(29464) lies on these lines:
X(29465) lies on these lines:
X(29466) lies on these lines:
X(29467) lies on these lines:
X(29468) lies on these lines:
X(29469) lies on these lines:
X(29470) lies on these lines:
X(29471) lies on these lines:
X(29472) lies on these lines:
X(29473) lies on these lines:
X(29474) lies on these lines: {2, 7}, {1730, 3882}, {1764, 17234}, {3053, 5337}, {3216, 3894}, {4283, 18193}, {8728, 10461}, {14829, 17682}, {17300, 18163}, {18046, 23512}, {20367, 33116}, {29436, 29480}, {29438, 29461}, {29440, 29466}, {29456, 29486}
X(29475) lies on these lines: {2, 66}
X(29476) lies on these lines: {2, 32}, {29437, 29454}, {29440, 29459}, {29447, 29467}
X(29477) lies on these lines: {2, 85}, {3, 18738}, {63, 21579}, {7763, 21596}, {8680, 25105}, {16574, 18046}, {16699, 26960}, {17206, 21581}, {17277, 29464}, {18140, 29472}, {18142, 32832}, {18742, 21483}
X(29478) lies on these lines: {2, 87}, {1918, 29391}, {18058, 18148}, {29437, 29449}, {29459, 29471}
X(29479) lies on these lines: {2, 99}, {83, 26978}, {101, 30997}, {274, 17681}, {668, 673}, {3096, 16910}, {3732, 20568}, {5540, 18159}, {7822, 16906}, {9317, 18061}, {17283, 17678}, {17682, 18140}, {17761, 18047}, {24287, 29481}, {29434, 29454}, {29445, 29486}, {29447, 29467}, {29453, 29465}, {29461, 29556}, {29480, 29491}, {29483, 29490}
X(29480) lies on these lines:
X(29481) lies on these lines:
X(29482) lies on these lines:
X(29483) lies on these lines: {2, 45}, {673, 29437}, {812, 29491}, {3216, 24841}, {17277, 18143}, {18046, 29439}, {29450, 29456}, {29453, 29552}, {29479, 29490}, {29480, 29485}
X(29484) lies on these lines: {2, 37}, {6, 18143}, {69, 18150}, {76, 17352}, {239, 18040}, {313, 3008}, {314, 17283}, {333, 18739}, {673, 29437}, {872, 30982}, {1269, 17353}, {1966, 29438}, {3216, 29447}, {3589, 20913}, {3759, 20917}, {3948, 17337}, {3963, 17366}, {4033, 4361}, {4383, 27792}, {4384, 18044}, {5278, 18136}, {5826, 20930}, {7377, 18744}, {15624, 26238}, {16552, 29757}, {16709, 17381}, {16816, 18073}, {16833, 18065}, {17143, 17285}, {17144, 17240}, {17234, 30939}, {17277, 18133}, {17292, 20174}, {17295, 30866}, {17349, 18144}, {18058, 18148}, {29439, 29456}, {29453, 29561}, {29455, 29552}, {29470, 29557}
X(29485) lies on these lines: {2, 900}, {190, 29441}, {29480, 29483}
X(29486) lies on these lines: {2, 39}, {350, 2140}, {1698, 18044}, {3293, 18040}, {3760, 17282}, {4429, 10479}, {6048, 18065}, {6384, 29557}, {18058, 18148}, {29437, 29467}, {29445, 29479}, {29453, 29568}, {29456, 29474}, {29461, 29558}, {29556, 29567}, {29772, 29784}
X(29487) lies on these lines:
X(29488) lies on these lines:
X(29489) lies on these lines:
X(29490) lies on these lines:
X(29491) lies on these lines:
X(29492) lies on these lines: {2, 7}, {6, 21496}, {71, 29596}, {141, 3882}, {284, 21516}, {386, 16496}, {573, 3619}, {1018, 17285}, {3294, 17263}, {3589, 18206}, {3620, 4266}, {3763, 5036}, {5156, 15485}, {16549, 17371}, {16552, 17352}, {16706, 21061}, {17273, 21362}, {17277, 18143}, {17289, 20367}, {18046, 29437}, {18058, 18148}, {18150, 29509}, {24491, 29440}, {29438, 29558}
X(29493) lies on these lines:
X(29494) lies on these lines:
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 28708.
X(29495) lies on this line: {5,195}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 28708.
X(X29496) lies on these lines: {2,3}, {511,14140}, {5663,16337}, {13391,16336}
Collineation mappings involving Gemini triangle 91: X(29497)-X(29551)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 91, as in centers X(28497)-X(29551). Then
m(X) = (a^2 b + a^2 c - 2 a b c + b^2 c + b c^2) x -b (a^2 + c^2) y - c (a^2 + b^2) z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, December 8, 2018)
X(29497) lies on these lines: {2, 7}, {69, 21362}, {71, 25728}, {109, 26264}, {190, 573}, {192, 4266}, {238, 8666}, {345, 21361}, {346, 3882}, {984, 3878}, {2183, 3729}, {2325, 22370}, {2347, 3875}, {3717, 6210}, {3730, 6376}, {4033, 29711}, {4073, 14740}, {4271, 17262}, {4552, 20248}, {7428, 24320}, {11068, 29545}, {20927, 29069}, {21271, 25268}, {22097, 30568}, {29381, 29515}, {29508, 29518}, {29509, 29516}
X(29498) lies on these lines: {2, 3}
X(29499) lies on these lines: {2, 3}
X(29500) lies on these lines: {2, 31}, {29381, 29508}, {29390, 29551}, {29395, 29502}, {29423, 29533}, {29503, 29539}
X(29501) lies on these lines:
X(29502) lies on these lines:
X(29503) lies on these lines:
X(29504) lies on these lines:
X(29505) lies on these lines:
X(29506) lies on these lines:
X(29507) lies on these lines:
X(29508) lies on these lines: {2, 6}, {63, 29537}, {190, 28654}, {312, 3882}, {1330, 17757}, {3770, 32939}, {4418, 21684}, {17739, 29511}, {22020, 33066}, {29381, 29500}, {29497, 29518}, {29502, 29539}
X(29509) lies on these lines: {2, 6}, {9, 18040}, {75, 3882}, {190, 3770}, {319, 22008}, {495, 1330}, {1227, 21233}, {1269, 2269}, {1284, 10944}, {1966, 29381}, {3909, 26227}, {4271, 20913}, {17185, 27792}, {17336, 29538}, {18150, 29492}, {29383, 29429}, {29388, 29511}, {29497, 29516}, {29520, 29535}
X(29510) lies on these lines: {1, 2}, {10030, 29392}, {29528, 29539}
X(29511) lies on these lines: {1, 2}, {9, 29395}, {71, 25728}, {75, 29379}, {313, 3729}, {668, 18206}, {1018, 3948}, {3765, 16549}, {3875, 21858}, {3882, 17790}, {3987, 19791}, {4063, 4380}, {4095, 29398}, {4391, 21368}, {16574, 30473}, {17739, 29508}, {18086, 29534}, {29380, 29542}, {29388, 29509}, {29504, 29541}, {29531, 29544}
X(29512) lies on these lines: {2, 661}, {29504, 29549}, {3005, 3842}, {4129, 21261}, {29401, 29426}, {21383, 29421}, {21894, 31286}
X(29513) lies on these lines:
X(29514) lies on these lines:
X(29515) lies on these lines:
X(29516) lies on these lines:
X(29517) lies on these lines:
X(29518) lies on these lines:
X(29519) lies on these lines:
X(29520) lies on these lines:
X(295212) lies on these lines:
X(29522) lies on these lines:
X(29523) lies on these lines:
X(29524) lies on these lines:
X(29525) lies on these lines:
X(29526) lies on these lines:
X(29527) lies on these lines:
X(29528) lies on these lines:
X(29529) lies on these lines:
X(29530) lies on these lines:
X(29531) lies on these lines:
X(29532) lies on these lines:
X(29533) lies on these lines:
X(29534) lies on these lines: {2, 32}, {17277, 29415}, {18086, 29511}, {24491, 29375}, {29395, 29425}, {29397, 29523}
X(29535) lies on these lines:
X(29536) lies on these lines:
X(29537) lies on these lines:
X(29538) lies on these lines:
X(29539) lies on these lines:
X(29540) lies on these lines:
X(29541) lies on these lines:
X(29542) lies on these lines:
X(29543) lies on these lines:
X(29544) lies on these lines:
X(29545) lies on these lines: {2, 649}, {31, 18108}, {513, 3510}, {798, 29404}, {812, 18071}, {983, 23838}, {3960, 8632}, {4040, 8630}, {20602, 21368}, {4391, 29511}, {11068, 29497}, {23803, 26114}, {29543, 29548}
X(29546) lies on these lines:
X(29547) lies on these lines:
X(29548) lies on these lines:
X(29549) lies on these lines:
X(29550) lies on these lines:
X(29551) lies on these lines:
Collineation mappings involving Gemini triangle 92: X(29552)-X(29568)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 92, as in centers X(28552)-X(29568). Then
m(X) = (a^2 b + a^2 c + 2 a b c + b^2 c + b c^2) x - b (a^2 + c^2) y - c (a^2 + b^2) z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, December 8, 2018)
X(29552) lies on these lines: {2, 7}, {344, 20367}, {386, 3881}, {573, 17234}, {760, 20275}, {940, 16946}, {1730, 18141}, {2183, 17298}, {2245, 17265}, {3730, 17263}, {3882, 4869}, {4253, 17352}, {4266, 17300}, {4271, 17313}, {5255, 16484}, {10461, 17582}, {17753, 28778}, {18137, 29450}, {18150, 29507}, {29438, 29563}, {29453, 29483}, {29455, 29484}, {29559, 29564}
X(29553) lies on these lines: {2, 3}
X(29554) lies on these lines: {2, 3}
X(29555) lies on these lines: {2, 31}, {2248, 24273}, {29438, 29564}
X(29556) lies on these lines: {2, 32}, {18140, 29466}, {29435, 29453}, {29461, 29479}, {29486, 29567}
X(29557) lies on these lines: {1, 2}, {6384, 29486}, {16552, 31008}, {21753, 30955}, {29470, 29484}
X(29558) lies on these lines: {2, 6}, {57, 1269}, {573, 30939}, {579, 18137}, {1788, 15571}, {4429, 5292}, {4446, 17763}, {4966, 5433}, {16574, 18147}, {21035, 29649}, {29438, 29492}, {29455, 29484}, {29461, 29486}
X(29559) lies on these lines: {2, 6}, {75, 29456}, {190, 25660}, {1966, 29438}, {4360, 17053}, {17738, 18046}, {24491, 29440}, {24897, 33296}, {24923, 32922}, {29446, 29561}, {29552, 29564}
X(29560) lies on these lines: {1, 2}, {17546, 20156}
X(29561) lies on these lines: {1, 2}, {9, 18046}, {57, 18097}, {17681, 24632}, {17738, 29562}, {18143, 18164}, {20917, 29447}, {29446, 29559}, {29453, 29484}
X(29562) lies on these lines: {2, 31}, {57, 29470}, {75, 16549}, {579, 29455}, {4283, 12782}, {4657, 17750}, {16574, 18046}, {17283, 29473}, {17738, 29561}, {24491, 29440}
X(29563) lies on these lines:
X(29564) lies on these lines:
X(29565) lies on these lines:
X(29566) lies on these lines:
X(29567) lies on these lines: {2, 3}, {29454, 29568}, {29486, 29556}
X(29568) lies on these lines:
Points Capella(h,j,k): X(29569)-X(29630)
Definition: Point Capella(h,j,k) = f(h,j,k,a,b,c) : f(h,j,k,b,c,a) : f(h,j,k,c,a,b) (barycentrics), where
f(h,j,k,a,b,c) = h a^2 + j (b^2 + c^2) + k b c + (h - j + k)(a b + a c),
where h, j, k are real numbers, not all zero. These points lie on the line X(1)X(2). (Clark Kimberling, December 8, 2018)
X(29569) lies on these lines: {1, 2}, {7, 4704}, {9, 17391}, {37, 320}, {45, 17378}, {69, 27268}, {81, 16047}, {86, 17243}, {142, 17319}, {190, 17392}, {192, 4648}, {241, 32007}, {312, 26109}, {319, 4698}, {344, 17379}, {894, 2325}, {966, 17373}, {1100, 6687}, {1213, 17295}, {1255, 18139}, {1334, 3218}, {1449, 17338}, {1621, 4447}, {1643, 27115}, {1654, 4687}, {1655, 21220}, {1909, 4358}, {3208, 3306}, {3247, 3662}, {3664, 4480}, {3707, 3879}, {3723, 16706}, {3731, 17364}, {3739, 4727}, {3758, 4473}, {3765, 18743}, {3834, 17320}, {3873, 4517}, {3875, 27147}, {3945, 17350}, {3950, 17116}, {3986, 17252}, {3995, 25257}, {4357, 17312}, {4360, 4395}, {4361, 31244}, {4364, 17297}, {4389, 16672}, {4405, 17388}, {4440, 4664}, {4643, 17387}, {4657, 17241}, {4670, 17264}, {4681, 7321}, {4699, 17314}, {4751, 17299}, {4755, 17256}, {4788, 31995}, {4869, 17236}, {4873, 10436}, {4969, 17277}, {4982, 6666}, {4997, 5718}, {5219, 25716}, {5224, 17311}, {5257, 17287}, {5263, 20137}, {5296, 17343}, {5564, 31238}, {5625, 33159}, {5750, 17268}, {5880, 6650}, {6999, 12699}, {7232, 16674}, {7377, 18493}, {7384, 18480}, {15668, 17233}, {16673, 17247}, {16675, 17347}, {16676, 17333}, {16704, 32013}, {16777, 17234}, {16884, 17352}, {17045, 17283}, {17056, 23947}, {17103, 31059}, {17120, 25101}, {17178, 26082}, {17200, 26860}, {17229, 28653}, {17231, 17322}, {17232, 17321}, {17240, 17303}, {17248, 17296}, {17257, 17375}, {17259, 17377}, {17265, 17380}, {17267, 17381}, {17275, 17386}, {17278, 17393}, {17279, 17394}, {17282, 17396}, {17285, 17398}, {17289, 28639}, {17324, 21255}, {17395, 27191}, {17483, 22002}, {17723, 26139}, {17755, 31314}, {18040, 25660}, {19740, 26035}, {20345, 30963}, {21226, 31061}, {21802, 32863}, {22011, 24049}, {24524, 30829}, {24656, 30818}, {25256, 30589}, {25417, 32019}, {26070, 27754}, {26110, 27261}, {26769, 26816}, {26978, 33155}, {27811, 33086}
X(29570) lies on these lines: {1, 2}, {6, 27268}, {9, 31313}, {37, 3758}, {55, 19308}, {75, 3723}, {81, 2176}, {86, 192}, {142, 17396}, {190, 16672}, {193, 16972}, {194, 3995}, {226, 25723}, {238, 20145}, {274, 27789}, {321, 31997}, {330, 1255}, {335, 4432}, {495, 26019}, {894, 3247}, {940, 16969}, {944, 7384}, {984, 5625}, {999, 16367}, {1001, 19237}, {1100, 4687}, {1213, 17377}, {1258, 19734}, {1278, 10436}, {1442, 26125}, {1449, 17260}, {1500, 24598}, {1621, 21010}, {1909, 31060}, {2223, 21508}, {2309, 24661}, {3210, 32095}, {3230, 14996}, {3295, 11329}, {3664, 17247}, {3672, 26806}, {3731, 17120}, {3739, 17393}, {3747, 17126}, {3759, 4698}, {3765, 25303}, {3834, 17399}, {3871, 25946}, {3875, 4772}, {3879, 17248}, {3945, 6646}, {3946, 27147}, {3976, 17695}, {3986, 17331}, {4357, 17375}, {4359, 17144}, {4360, 4699}, {4364, 4741}, {4366, 20131}, {4389, 7238}, {4416, 4909}, {4465, 30667}, {4648, 17302}, {4649, 20158}, {4657, 17232}, {4664, 4670}, {4667, 17333}, {4671, 19740}, {4675, 17320}, {4708, 17360}, {4740, 17318}, {4747, 20073}, {4751, 4852}, {4755, 16666}, {4760, 20538}, {4788, 17116}, {4821, 25590}, {4851, 17238}, {5224, 17373}, {5257, 17363}, {5266, 22267}, {5276, 16524}, {5283, 19717}, {5333, 33296}, {5603, 6999}, {5750, 17242}, {5901, 7377}, {6645, 11320}, {6651, 24821}, {6707, 17388}, {6767, 16412}, {6996, 10246}, {8025, 18171}, {14621, 16484}, {14997, 16971}, {16466, 19224}, {16515, 24512}, {16552, 19743}, {16673, 17261}, {16884, 17277}, {16974, 17778}, {17045, 17234}, {17127, 20985}, {17147, 24621}, {17228, 25498}, {17231, 17400}, {17233, 17398}, {17236, 17300}, {17237, 17387}, {17239, 17386}, {17240, 17385}, {17241, 17384}, {17243, 17358}, {17245, 17380}, {17249, 17376}, {17250, 17374}, {17257, 20090}, {17295, 17327}, {17296, 17326}, {17297, 17325}, {17298, 17324}, {17299, 28640}, {17303, 17315}, {17305, 17313}, {17306, 17312}, {17307, 17311}, {17314, 28604}, {17490, 20182}, {17753, 26842}, {18206, 26860}, {18827, 31059}, {19701, 24670}, {19742, 25417}, {20135, 20162}, {20137, 20172}, {20150, 20170}, {21384, 27065}, {23682, 33134}, {24441, 31332}, {24654, 26109}, {24841, 27949}, {25130, 31993}, {25535, 27095}, {27078, 27291}, {27480, 32941}, {28654, 30022}, {31056, 31179}
X(29571) lies on these lines: {1, 2}, {6, 6666}, {7, 3731}, {9, 3664}, {35, 11349}, {37, 142}, {44, 4667}, {45, 527}, {57, 3730}, {58, 16053}, {75, 3950}, {76, 18743}, {81, 17745}, {86, 645}, {116, 16603}, {141, 4698}, {144, 4888}, {192, 4098}, {218, 940}, {220, 5745}, {226, 241}, {238, 4349}, {269, 8232}, {277, 25430}, {279, 5226}, {312, 20888}, {321, 24081}, {344, 10436}, {346, 25590}, {354, 20683}, {379, 4304}, {524, 3707}, {536, 4029}, {594, 31238}, {597, 6687}, {673, 16484}, {857, 1076}, {894, 4473}, {908, 24635}, {948, 1323}, {966, 17296}, {980, 25092}, {984, 5542}, {1001, 21514}, {1010, 19815}, {1100, 17337}, {1212, 3452}, {1213, 17231}, {1229, 18698}, {1255, 26724}, {1266, 4664}, {1334, 20367}, {1385, 19512}, {1449, 4909}, {1453, 17552}, {1500, 3752}, {1575, 31198}, {1642, 24318}, {1654, 17312}, {1738, 4356}, {1743, 3945}, {2321, 3739}, {2325, 4363}, {3160, 30838}, {3247, 4000}, {3332, 21153}, {3475, 7322}, {3501, 5437}, {3576, 7397}, {3589, 28639}, {3662, 27268}, {3666, 24175}, {3668, 21617}, {3672, 4859}, {3686, 4851}, {3723, 17366}, {3755, 3826}, {3761, 28809}, {3797, 27478}, {3816, 20544}, {3817, 7377}, {3834, 4364}, {3842, 4407}, {3879, 17277}, {3911, 5228}, {3943, 4688}, {3946, 16777}, {3947, 17671}, {3948, 27793}, {3963, 29982}, {3977, 26627}, {3986, 4357}, {4035, 5743}, {4044, 4358}, {4054, 31030}, {4058, 4751}, {4060, 17309}, {4072, 4431}, {4078, 4439}, {4082, 32771}, {4133, 27474}, {4292, 14021}, {4297, 6996}, {4314, 17682}, {4328, 8732}, {4405, 28329}, {4416, 17260}, {4419, 4887}, {4422, 4670}, {4472, 17359}, {4510, 4997}, {4643, 17313}, {4653, 16054}, {4656, 5249}, {4657, 17265}, {4681, 7263}, {4798, 5750}, {4869, 5296}, {4924, 24393}, {5119, 24590}, {5199, 28827}, {5224, 17241}, {5236, 17916}, {5248, 11343}, {5267, 16367}, {5283, 24215}, {5316, 5718}, {5439, 25073}, {5444, 31222}, {5712, 7308}, {5717, 11108}, {6381, 20917}, {6603, 31201}, {6707, 17385}, {7277, 15492}, {7402, 8227}, {7406, 28164}, {7960, 31142}, {7988, 11200}, {8273, 16435}, {9436, 31225}, {9441, 10164}, {10443, 10446}, {10445, 24220}, {11230, 15251}, {12047, 31318}, {12609, 27784}, {12782, 17063}, {13881, 30825}, {15488, 31793}, {15828, 17350}, {16412, 25440}, {16602, 20691}, {16672, 17067}, {16675, 17276}, {16814, 17365}, {17045, 17356}, {17119, 17133}, {17232, 17248}, {17256, 17297}, {17257, 17298}, {17261, 26806}, {17267, 17303}, {17268, 28604}, {17275, 17311}, {17282, 17321}, {17283, 17322}, {17285, 28653}, {17320, 27191}, {17330, 17374}, {17331, 17375}, {17332, 17376}, {17335, 17378}, {17338, 17379}, {17341, 17381}, {17346, 17387}, {17348, 17390}, {17349, 17391}, {17352, 17394}, {17357, 17398}, {17499, 26109}, {17672, 23536}, {20582, 25358}, {21070, 31993}, {21483, 27802}, {21526, 25524}, {21810, 24050}, {24177, 28606}, {24213, 25521}, {24604, 30282}, {24693, 28580}, {25354, 31336}, {26580, 31029}, {27269, 27340}, {28301, 31139}, {30566, 30588}, {30837, 30853}, {30839, 30848}, {30845, 30852}
X(29571) = complement of X(4384)
X(29571) = anticomplement of X(31211)
X(29572) lies on these lines: {1, 2}, {7, 25269}, {9, 17312}, {37, 17227}, {44, 17387}, {45, 4741}, {86, 17267}, {141, 27268}, {142, 1278}, {190, 17313}, {192, 1086}, {344, 4473}, {346, 26806}, {379, 9963}, {1100, 17341}, {2321, 4772}, {3161, 31300}, {3247, 17291}, {3501, 27003}, {3662, 4704}, {3664, 17339}, {3723, 17370}, {3731, 17288}, {3739, 17240}, {3797, 27475}, {3834, 4664}, {3879, 17338}, {3936, 31056}, {3943, 4740}, {3950, 4788}, {4078, 31302}, {4110, 30044}, {4358, 20917}, {4360, 17265}, {4407, 33087}, {4422, 17378}, {4430, 20683}, {4439, 24349}, {4648, 17280}, {4665, 4699}, {4670, 17342}, {4671, 20913}, {4675, 17264}, {4687, 4708}, {4698, 17228}, {4751, 17229}, {4755, 17250}, {4798, 17289}, {4821, 24199}, {4851, 17263}, {4869, 6646}, {5718, 30861}, {6666, 17363}, {10436, 17268}, {15668, 17285}, {16589, 31037}, {16672, 17305}, {16673, 17324}, {16675, 17273}, {16676, 17254}, {16777, 17283}, {16814, 17361}, {16885, 31333}, {17117, 20195}, {17247, 21255}, {17259, 17295}, {17260, 17296}, {17261, 17298}, {17277, 17311}, {17278, 17315}, {17279, 17317}, {17282, 17319}, {17318, 27191}, {17331, 25072}, {17335, 17374}, {17336, 17376}, {17337, 17377}, {17348, 17386}, {17352, 17390}, {17353, 17391}, {17354, 17392}, {17356, 17393}, {17357, 17394}, {17364, 25101}, {17371, 28639}, {17786, 29982}, {18139, 33151}, {20089, 31053}, {20090, 26685}, {24593, 27754}, {27267, 28778}, {31006, 31036}, {31029, 31035}
X(29573) lies on these lines: {1, 2}, {7, 3950}, {9, 524}, {35, 16436}, {36, 16431}, {37, 599}, {44, 15534}, {45, 15533}, {55, 21509}, {56, 21539}, {57, 1018}, {63, 5525}, {69, 3731}, {86, 17240}, {141, 3247}, {142, 17133}, {165, 28849}, {190, 17387}, {192, 4862}, {193, 3973}, {226, 5485}, {241, 3991}, {312, 3761}, {344, 1743}, {346, 3664}, {391, 25072}, {536, 6173}, {597, 1449}, {668, 14759}, {740, 27475}, {750, 4933}, {940, 16785}, {988, 8359}, {1001, 28538}, {1100, 17267}, {1111, 20173}, {1211, 25430}, {1699, 28850}, {2321, 4648}, {2325, 4644}, {2796, 4312}, {3175, 3970}, {3208, 20367}, {3243, 4929}, {3303, 21514}, {3304, 21526}, {3663, 4869}, {3666, 9331}, {3672, 21255}, {3674, 4052}, {3723, 3763}, {3729, 4888}, {3739, 4007}, {3746, 11343}, {3751, 4437}, {3760, 20917}, {3799, 3873}, {3834, 17318}, {3875, 4859}, {3929, 17742}, {3943, 4659}, {3945, 17355}, {3986, 5232}, {4029, 4419}, {4034, 17259}, {4072, 4461}, {4078, 5223}, {4357, 16673}, {4358, 31179}, {4360, 17241}, {4361, 20195}, {4363, 4873}, {4383, 16784}, {4416, 11160}, {4422, 8584}, {4445, 4698}, {4454, 4896}, {4488, 32093}, {4643, 16676}, {4657, 20582}, {4664, 17274}, {4670, 17269}, {4681, 7232}, {4687, 17270}, {4704, 17288}, {4725, 16503}, {4727, 17119}, {4755, 17251}, {4758, 26039}, {4852, 17265}, {4876, 7245}, {4891, 24392}, {4912, 17262}, {4924, 10005}, {4966, 7174}, {5032, 26685}, {5266, 33237}, {5563, 21477}, {5839, 6666}, {5882, 7397}, {6144, 15492}, {6999, 9589}, {7377, 11522}, {7402, 13464}, {7621, 25525}, {8715, 11349}, {10436, 17233}, {11523, 30810}, {13161, 33190}, {15668, 17229}, {15829, 30847}, {16667, 17353}, {16672, 17237}, {16675, 17344}, {16777, 17231}, {16783, 19723}, {16884, 17357}, {17224, 17281}, {17232, 17304}, {17245, 17299}, {17260, 17373}, {17261, 17375}, {17263, 17377}, {17264, 17378}, {17268, 17379}, {17277, 17386}, {17278, 17388}, {17280, 17391}, {17283, 17393}, {17285, 17394}, {17287, 27268}, {17293, 28639}, {17339, 20090}, {17364, 25728}, {17778, 30568}, {17885, 20171}, {18065, 18147}, {18139, 23681}, {18156, 20942}, {18788, 28854}, {24048, 27565}
X(29574) lies on these lines: {1, 2}, {6, 25101}, {9, 1992}, {37, 524}, {44, 8584}, {45, 15534}, {55, 16436}, {56, 16431}, {69, 3247}, {75, 17133}, {81, 644}, {86, 2321}, {141, 3723}, {142, 4360}, {171, 9881}, {190, 4029}, {192, 3664}, {193, 3731}, {226, 664}, {256, 22214}, {319, 5257}, {321, 14210}, {335, 2796}, {344, 1449}, {354, 14839}, {527, 4664}, {536, 17392}, {538, 3175}, {553, 7146}, {594, 28639}, {597, 1100}, {599, 4357}, {740, 27478}, {894, 3950}, {908, 31179}, {948, 25716}, {966, 4916}, {988, 33215}, {999, 21539}, {1213, 17372}, {1255, 31013}, {1266, 4675}, {1334, 18206}, {1386, 4437}, {1654, 3986}, {1743, 5032}, {1909, 4044}, {1930, 4980}, {1959, 3970}, {2325, 3758}, {2329, 5325}, {3219, 5525}, {3295, 21509}, {3303, 11343}, {3304, 21477}, {3572, 4785}, {3629, 16814}, {3662, 4021}, {3663, 17300}, {3666, 15810}, {3672, 17298}, {3674, 4654}, {3685, 4349}, {3686, 4687}, {3729, 3945}, {3739, 17388}, {3746, 21511}, {3759, 6666}, {3773, 5625}, {3834, 17395}, {3875, 4648}, {3883, 15569}, {3913, 16412}, {3943, 4670}, {3946, 17234}, {3977, 14996}, {3995, 22035}, {4052, 6625}, {4058, 28604}, {4078, 4649}, {4098, 17261}, {4102, 32014}, {4133, 24342}, {4301, 6999}, {4356, 4645}, {4361, 4464}, {4364, 17374}, {4389, 17387}, {4399, 31238}, {4422, 16666}, {4431, 10436}, {4440, 4896}, {4480, 4644}, {4643, 15533}, {4656, 17778}, {4657, 17311}, {4658, 16050}, {4665, 4727}, {4681, 4912}, {4688, 4971}, {4689, 24628}, {4698, 4889}, {4700, 17335}, {4704, 17364}, {4725, 4755}, {4740, 28313}, {4852, 17245}, {4856, 17349}, {4869, 17304}, {4876, 18827}, {4883, 24631}, {4890, 17792}, {4898, 25590}, {4909, 17242}, {4956, 33112}, {4967, 15668}, {5134, 31164}, {5148, 20359}, {5204, 21497}, {5217, 21498}, {5224, 17386}, {5266, 8369}, {5542, 20533}, {5563, 21495}, {5750, 17233}, {5853, 27475}, {5882, 6996}, {6144, 16677}, {7377, 13464}, {7841, 13161}, {8162, 21521}, {8666, 16367}, {8715, 11329}, {9041, 17755}, {11160, 16673}, {11520, 14021}, {12437, 16054}, {13639, 30413}, {13759, 30412}, {14555, 25430}, {15492, 32455}, {15570, 16593}, {16667, 26685}, {16669, 20583}, {16713, 25589}, {16784, 32911}, {16884, 17279}, {17045, 17231}, {17229, 17398}, {17232, 17396}, {17240, 17381}, {17241, 17380}, {17246, 17376}, {17247, 17375}, {17248, 17373}, {17295, 17322}, {17296, 17321}, {17297, 17320}, {17301, 17313}, {17302, 17312}, {17303, 17309}, {17363, 27268}, {17769, 31306}, {17770, 31308}, {20131, 32941}, {24524, 30830}, {25102, 30819}, {27495, 31350}
X(29575) lies on these lines: {1, 2}, {37, 17254}, {45, 17387}, {86, 17268}, {192, 6173}, {226, 17089}, {344, 17120}, {354, 3799}, {527, 17261}, {894, 17243}, {1018, 27003}, {3247, 17232}, {3723, 17283}, {3731, 17375}, {3945, 17339}, {3950, 26806}, {4029, 4440}, {4473, 4667}, {4648, 17116}, {4664, 17313}, {4687, 17251}, {4698, 17295}, {4704, 17298}, {4725, 17277}, {4741, 16676}, {4751, 17309}, {4755, 17271}, {4851, 17260}, {4869, 17247}, {4888, 25269}, {4971, 17117}, {5074, 31053}, {6172, 17364}, {7321, 28297}, {15570, 32108}, {15668, 17240}, {16669, 31333}, {16672, 17227}, {16673, 17236}, {16674, 17249}, {16675, 17361}, {16677, 17329}, {16777, 17241}, {16884, 17341}, {17121, 17263}, {17231, 17326}, {17234, 17301}, {17252, 17296}, {17259, 17386}, {17265, 17393}, {17267, 17394}, {17285, 28639}, {17314, 27147}, {20090, 25101}, {24199, 28313}
X(29576) lies on these lines: {1, 2}, {6, 28653}, {7, 17252}, {9, 28604}, {37, 28633}, {40, 7384}, {63, 26044}, {75, 1213}, {76, 4359}, {86, 17275}, {92, 26023}, {141, 4751}, {142, 17238}, {192, 4967}, {274, 3765}, {319, 15668}, {320, 17251}, {321, 21816}, {391, 17120}, {594, 4687}, {756, 12782}, {894, 966}, {958, 11329}, {993, 19308}, {1086, 17250}, {1107, 24598}, {1211, 20255}, {1268, 14621}, {1376, 16367}, {1654, 10436}, {1759, 3219}, {1931, 5235}, {2321, 27268}, {2345, 17260}, {2886, 26019}, {2975, 25946}, {3210, 27269}, {3305, 3501}, {3419, 16053}, {3662, 3739}, {3663, 4772}, {3664, 17343}, {3686, 4758}, {3728, 17065}, {3730, 27065}, {3752, 25614}, {3758, 4472}, {3759, 17398}, {3764, 24450}, {3790, 3842}, {3826, 20486}, {3986, 4431}, {4000, 17326}, {4044, 28605}, {4085, 27474}, {4357, 4699}, {4360, 28634}, {4361, 17322}, {4363, 17256}, {4377, 27482}, {4389, 4688}, {4395, 17399}, {4398, 4739}, {4399, 17393}, {4407, 31178}, {4445, 17317}, {4454, 17116}, {4478, 17386}, {4643, 31144}, {4648, 17287}, {4664, 4665}, {4670, 17346}, {4675, 17271}, {4690, 17378}, {4698, 17233}, {4748, 17254}, {4791, 27486}, {4851, 32025}, {4886, 19701}, {5130, 14013}, {5232, 17288}, {5260, 21511}, {5296, 5936}, {5333, 33297}, {5564, 16777}, {5587, 6999}, {5750, 17349}, {5791, 16054}, {5814, 14007}, {6376, 18136}, {6381, 31348}, {6646, 25590}, {6666, 17358}, {6707, 17362}, {6996, 26446}, {7179, 16609}, {7227, 17336}, {7263, 17249}, {7321, 17253}, {7377, 9956}, {8591, 26070}, {9278, 25383}, {9708, 16412}, {10009, 18891}, {11681, 24633}, {13466, 24183}, {14433, 25381}, {16381, 27941}, {16480, 32772}, {16589, 28606}, {16706, 17327}, {17117, 17321}, {17118, 17258}, {17119, 17320}, {17184, 24190}, {17228, 17245}, {17234, 17239}, {17236, 24199}, {17259, 17289}, {17263, 17293}, {17270, 17300}, {17272, 26806}, {17278, 17307}, {17279, 32089}, {17295, 32101}, {17319, 28635}, {17328, 17365}, {17335, 17369}, {17337, 17371}, {17348, 17381}, {17352, 17385}, {17360, 17392}, {17366, 17400}, {17377, 28639}, {17380, 25498}, {17395, 25358}, {17750, 32911}, {17755, 25351}, {18089, 29568}, {18147, 20174}, {19281, 19732}, {19744, 33116}, {20138, 33076}, {20156, 32850}, {20262, 26059}, {20333, 30997}, {20544, 33108}, {20888, 31060}, {21240, 32782}, {21719, 25594}, {21879, 31993}, {24586, 32780}, {24631, 33174}, {24715, 27949}, {27081, 31019}, {27095, 27154}, {27812, 33134}
X(29577) lies on these lines: {1, 2}, {69, 17268}, {141, 4664}, {312, 18159}, {319, 17267}, {320, 17269}, {334, 4479}, {344, 17287}, {346, 17288}, {524, 17342}, {536, 3662}, {537, 3790}, {594, 17241}, {599, 17264}, {1278, 21255}, {2321, 4740}, {2325, 4741}, {2345, 17312}, {3589, 17386}, {3619, 17319}, {3620, 17261}, {3631, 17336}, {3759, 28337}, {3763, 17315}, {3773, 31178}, {3829, 20486}, {3879, 17358}, {3943, 17227}, {3948, 20942}, {3950, 17236}, {4058, 4772}, {4072, 4788}, {4370, 22165}, {4422, 17360}, {4437, 31349}, {4440, 4873}, {4445, 17263}, {4688, 17229}, {4755, 5224}, {4851, 17285}, {4869, 17116}, {4921, 33297}, {4937, 33065}, {5564, 17265}, {5741, 13466}, {16706, 17309}, {17228, 17243}, {17254, 21356}, {17279, 17295}, {17280, 17296}, {17281, 17297}, {17283, 17299}, {17286, 17300}, {17289, 17311}, {17291, 17314}, {17293, 17317}, {17320, 21358}, {17340, 17361}, {17341, 17362}, {17343, 25101}, {17352, 17372}, {17353, 17373}, {17354, 17374}, {17355, 17375}, {17357, 17377}, {17359, 17378}, {17369, 17387}, {17370, 17388}, {17371, 17390}, {17399, 20582}, {24090, 27586}
X(29578) lies on these lines: {1, 2}, {37, 17116}, {44, 86}, {45, 894}, {75, 16672}, {88, 32009}, {142, 17324}, {190, 4755}, {238, 20137}, {274, 4358}, {344, 26039}, {672, 25427}, {966, 17391}, {1001, 20152}, {1213, 16522}, {1268, 17229}, {1278, 16673}, {2223, 5284}, {3218, 3294}, {3247, 4699}, {3614, 26019}, {3618, 28641}, {3619, 16972}, {3644, 16674}, {3729, 31312}, {3739, 17160}, {3747, 17122}, {3848, 20358}, {3936, 6537}, {3945, 17331}, {3986, 4896}, {4346, 17247}, {4360, 31238}, {4423, 23407}, {4472, 17264}, {4648, 17248}, {4649, 20138}, {4671, 32092}, {4675, 17254}, {4704, 25590}, {4708, 17297}, {4751, 16777}, {4766, 19935}, {4776, 19947}, {4798, 17354}, {4887, 26806}, {5204, 16367}, {5217, 11329}, {5219, 7176}, {5220, 27475}, {5224, 17312}, {5257, 17252}, {5296, 17364}, {5302, 30812}, {5333, 27064}, {6651, 31336}, {6707, 17289}, {6996, 13624}, {6999, 18483}, {7384, 31673}, {8167, 21010}, {10436, 16676}, {14621, 20135}, {14996, 30563}, {14997, 30561}, {16047, 25526}, {16476, 17125}, {16477, 20132}, {16521, 17263}, {16552, 19740}, {16666, 17277}, {16670, 17379}, {16700, 25507}, {17067, 17302}, {17121, 17259}, {17123, 20985}, {17143, 24589}, {17234, 17326}, {17239, 31248}, {17241, 17327}, {17243, 28653}, {17245, 17291}, {17250, 17313}, {17251, 17387}, {17256, 17392}, {17265, 17400}, {17268, 17303}, {17283, 25498}, {17321, 27147}, {17341, 30598}, {17374, 31144}, {17381, 28640}, {17383, 20195}, {18206, 27065}, {20157, 20172}, {23650, 24673}, {24044, 31025}, {24621, 32107}, {24790, 33155}, {25264, 31035}, {25499, 27006}, {26975, 27037}, {30829, 31997}
X(29579) lies on these lines: {1, 2}, {7, 17232}, {9, 3620}, {37, 3619}, {44, 69}, {45, 141}, {55, 21516}, {56, 21540}, {76, 30866}, {88, 17740}, {142, 17286}, {144, 17288}, {193, 16670}, {304, 4358}, {312, 26132}, {319, 17341}, {320, 17342}, {345, 17595}, {346, 3662}, {391, 17287}, {594, 17265}, {599, 4422}, {894, 4869}, {908, 30694}, {966, 17228}, {999, 21519}, {1086, 17269}, {1229, 17895}, {1266, 4873}, {1443, 28739}, {1654, 18230}, {1743, 20080}, {1930, 4671}, {1959, 5748}, {1992, 17374}, {2321, 17067}, {2325, 17274}, {2345, 17234}, {3061, 3119}, {3161, 6646}, {3218, 17742}, {3246, 3416}, {3295, 21496}, {3589, 17311}, {3618, 4851}, {3631, 16885}, {3672, 17242}, {3729, 4887}, {3763, 16672}, {3790, 4310}, {3834, 17281}, {3936, 27040}, {3943, 17290}, {3945, 17312}, {3950, 17304}, {3970, 31025}, {3974, 33124}, {4000, 17160}, {4339, 16898}, {4357, 16676}, {4364, 21358}, {4419, 17227}, {4431, 4859}, {4445, 17337}, {4473, 4741}, {4643, 21356}, {4644, 17297}, {4648, 17241}, {4675, 17359}, {4876, 30998}, {4896, 17298}, {4967, 20195}, {5204, 21495}, {5217, 21511}, {5220, 16593}, {5226, 7146}, {5232, 17260}, {5280, 14996}, {5296, 17238}, {5299, 14997}, {5744, 26070}, {5749, 17300}, {5839, 17295}, {6350, 18639}, {6666, 17270}, {7155, 27470}, {7229, 26806}, {7232, 17340}, {7406, 31673}, {7952, 11331}, {9812, 18788}, {11008, 16669}, {13881, 28808}, {15650, 30810}, {16050, 16948}, {16594, 27739}, {16706, 17240}, {16786, 17349}, {17170, 31017}, {17229, 17278}, {17245, 17293}, {17272, 25101}, {17299, 17356}, {17309, 17366}, {17313, 17369}, {17315, 17370}, {17317, 17371}, {17320, 26104}, {17325, 20582}, {17350, 21296}, {17464, 30791}, {17601, 33158}, {17776, 33172}, {18073, 18137}, {18141, 32777}, {18156, 30829}, {18743, 20955}, {20171, 23521}, {20331, 30945}, {20486, 30959}, {20533, 30332}, {25261, 31035}, {25601, 27170}, {26035, 31006}, {26065, 33157}, {27305, 27514}, {27475, 31347}, {30578, 30991}, {30818, 30828}
X(29580) lies on these lines: {1, 2}, {37, 17120}, {81, 3230}, {86, 536}, {274, 4980}, {335, 15569}, {537, 5625}, {726, 31308}, {894, 4664}, {1100, 4755}, {1213, 28337}, {1255, 3227}, {1449, 27268}, {1992, 16972}, {3247, 17261}, {3303, 11329}, {3304, 16367}, {3746, 19308}, {3758, 16672}, {3879, 17252}, {3945, 17247}, {3948, 25303}, {4021, 26806}, {4360, 4688}, {4428, 21010}, {4648, 17396}, {4654, 7176}, {4657, 17312}, {4687, 16884}, {4715, 31332}, {4725, 31144}, {4740, 10436}, {4851, 17326}, {4889, 32025}, {4909, 20090}, {5266, 21937}, {5283, 19738}, {5564, 6707}, {5882, 7384}, {6996, 15178}, {6999, 13464}, {8025, 31059}, {14621, 20155}, {15485, 20145}, {15668, 17117}, {15888, 26019}, {16484, 20132}, {16526, 24512}, {16673, 17350}, {16674, 17336}, {16971, 32911}, {17045, 17291}, {17102, 22359}, {17254, 17378}, {17258, 28333}, {17268, 17381}, {17287, 17322}, {17288, 17321}, {17295, 25498}, {17300, 17324}, {17311, 17400}, {17313, 17399}, {17315, 17398}, {17320, 17392}, {17325, 17387}, {17327, 17386}, {17388, 28653}, {19684, 24275}, {24621, 32095}, {27483, 28581}, {31335, 31342}
X(29581) lies on these lines: {1, 2}, {37, 4398}, {86, 17338}, {142, 17247}, {344, 4470}, {966, 17312}, {1213, 17241}, {3662, 4364}, {3730, 27003}, {3731, 26806}, {3739, 17242}, {3948, 30829}, {3950, 4772}, {3986, 17236}, {4029, 4740}, {4098, 4788}, {4389, 4755}, {4440, 16676}, {4454, 17261}, {4472, 17342}, {4648, 17260}, {4675, 17333}, {4698, 17234}, {4704, 24199}, {4751, 17243}, {4758, 17353}, {4869, 17252}, {5257, 17232}, {5296, 17288}, {6666, 17379}, {6707, 17371}, {7308, 26109}, {7321, 16675}, {10436, 17339}, {15668, 17263}, {16589, 26690}, {17120, 18230}, {17233, 31238}, {17256, 17313}, {17259, 17317}, {17265, 17322}, {17267, 28653}, {17277, 17391}, {17278, 17396}, {17300, 17331}, {17302, 20195}, {17318, 31244}, {17330, 17387}, {17335, 17392}, {17337, 17394}, {17341, 17398}, {17350, 25072}, {17352, 28639}, {17499, 26688}, {17758, 31053}, {18743, 20913}, {27475, 31323}
X(29582) lies on these lines: {1, 2}, {142, 4740}, {344, 17312}, {536, 17234}, {3662, 4664}, {3790, 31178}, {4072, 4821}, {4422, 17387}, {4648, 17268}, {4688, 17233}, {4704, 21255}, {4755, 17231}, {4851, 17338}, {4869, 17261}, {6666, 17373}, {13466, 27130}, {16593, 31349}, {17232, 17247}, {17240, 17245}, {17263, 17311}, {17264, 17313}, {17265, 17315}, {17267, 17317}, {17279, 17391}, {17283, 17396}, {17296, 17331}, {17297, 17333}, {17300, 17339}, {17336, 28333}, {17337, 17386}, {17341, 17390}, {17342, 17392}, {17343, 25072}, {17375, 25101}, {20917, 20942}, {24050, 27586}
X(29583) lies on these lines: {1, 2}, {7, 17242}, {9, 20080}, {37, 3620}, {44, 193}, {45, 69}, {86, 26039}, {89, 30701}, {141, 16672}, {144, 17375}, {192, 4346}, {304, 4671}, {320, 20073}, {346, 17300}, {391, 17373}, {966, 17295}, {999, 21540}, {1992, 4422}, {2345, 17240}, {3161, 17364}, {3295, 21516}, {3618, 17267}, {3619, 16777}, {3631, 16675}, {3672, 17232}, {3729, 4896}, {3759, 4916}, {3797, 30340}, {3875, 17067}, {3879, 16670}, {3943, 17313}, {3945, 17280}, {3950, 4887}, {4000, 17241}, {4029, 17274}, {4358, 18156}, {4364, 21356}, {4373, 4788}, {4419, 17297}, {4461, 26806}, {4644, 17264}, {4648, 17233}, {5204, 21537}, {5217, 21508}, {5219, 25719}, {5232, 27268}, {5296, 17287}, {5749, 17268}, {5839, 17263}, {6767, 21496}, {7373, 21519}, {11008, 16885}, {11160, 17374}, {14997, 16502}, {16047, 16704}, {16666, 17279}, {16676, 17257}, {17160, 17234}, {17170, 17484}, {17231, 17321}, {17245, 17309}, {17260, 32099}, {17261, 21296}, {17265, 17388}, {17269, 17392}, {17363, 18230}, {17595, 18141}, {17895, 20171}, {18073, 18147}, {18139, 30699}, {20059, 25269}, {20331, 30962}, {25280, 30829}, {27147, 32087}, {31300, 32093}
X(29584) lies on these lines: {1, 2}, {6, 4664}, {37, 17121}, {69, 17324}, {75, 16884}, {81, 99}, {85, 25726}, {86, 4688}, {190, 16666}, {192, 1449}, {193, 17247}, {319, 17045}, {320, 17395}, {524, 17254}, {536, 894}, {537, 4366}, {553, 7176}, {597, 17264}, {599, 17399}, {673, 15570}, {726, 31314}, {760, 3873}, {870, 4479}, {1051, 3971}, {1386, 6651}, {1743, 4704}, {1992, 16973}, {2238, 16526}, {2667, 18170}, {3219, 14751}, {3226, 25426}, {3230, 32911}, {3247, 17349}, {3303, 16367}, {3304, 11329}, {3589, 17268}, {3618, 17242}, {3619, 4916}, {3629, 17258}, {3663, 20090}, {3672, 17364}, {3723, 4755}, {3758, 17318}, {3759, 16777}, {3763, 17386}, {3875, 4740}, {3879, 17288}, {3946, 17300}, {3995, 4115}, {4000, 17391}, {4021, 6646}, {4029, 4473}, {4361, 17394}, {4399, 28653}, {4421, 21010}, {4428, 23407}, {4440, 4667}, {4445, 17400}, {4464, 5750}, {4657, 17287}, {4670, 17160}, {4681, 16668}, {4725, 17271}, {4767, 32045}, {4851, 17291}, {4889, 17295}, {4909, 24199}, {4910, 17303}, {4969, 17256}, {4980, 17143}, {5032, 6172}, {5258, 19237}, {5563, 19308}, {5564, 17398}, {5710, 16399}, {5734, 7406}, {5839, 17248}, {5882, 6999}, {6144, 17329}, {6996, 10222}, {7384, 13464}, {9328, 18206}, {14621, 20162}, {15485, 20158}, {15534, 24441}, {15569, 31323}, {16475, 27481}, {16484, 20142}, {16590, 31332}, {16667, 17350}, {16672, 17335}, {16706, 17312}, {16975, 28606}, {17144, 19722}, {17246, 28333}, {17252, 17321}, {17289, 17388}, {17290, 17387}, {17296, 17383}, {17297, 17382}, {17299, 17381}, {17301, 17378}, {17304, 17375}, {17305, 17374}, {17306, 17373}, {17307, 17372}, {17309, 17371}, {17311, 17370}, {17314, 17368}, {17317, 17366}, {17322, 17362}, {17323, 17361}, {17325, 17360}, {17445, 20141}, {18140, 25298}, {20155, 20172}, {20913, 25303}, {20963, 23566}, {24268, 31164}, {24621, 31999}, {25264, 28596}, {25498, 32025}, {28581, 31306}, {31161, 32928}, {31178, 32921}
X(29585) lies on these lines: {1, 2}, {7, 17319}, {37, 193}, {44, 5032}, {45, 1992}, {55, 21508}, {56, 21537}, {69, 4364}, {75, 31342}, {86, 4470}, {144, 1959}, {192, 3945}, {226, 25716}, {304, 28605}, {312, 25303}, {319, 4916}, {321, 18156}, {335, 4307}, {344, 1100}, {346, 17379}, {391, 27268}, {524, 16672}, {944, 7406}, {966, 17377}, {999, 21495}, {1255, 5739}, {1449, 26685}, {2321, 4758}, {2345, 17315}, {3161, 17120}, {3247, 3879}, {3295, 21511}, {3618, 16884}, {3619, 17045}, {3620, 3723}, {3629, 16675}, {3644, 7222}, {3672, 17300}, {3871, 11329}, {3950, 4909}, {3993, 24280}, {4000, 17317}, {4021, 17298}, {4098, 25728}, {4339, 32981}, {4360, 4648}, {4371, 4751}, {4402, 27147}, {4416, 16673}, {4419, 17378}, {4431, 4898}, {4452, 26806}, {4460, 17117}, {4643, 11160}, {4644, 4664}, {4649, 27549}, {4687, 5839}, {4748, 17360}, {4788, 27494}, {4869, 17302}, {4889, 17275}, {5232, 17373}, {5266, 32973}, {5296, 17363}, {5686, 20142}, {5687, 25946}, {5749, 17242}, {6767, 11343}, {6994, 7718}, {6996, 7967}, {7146, 21454}, {7373, 21477}, {7377, 10595}, {11008, 16674}, {11038, 20533}, {11340, 12410}, {13161, 32982}, {15668, 17388}, {16667, 25101}, {16781, 32911}, {17121, 18230}, {17170, 17483}, {17247, 21296}, {17248, 32099}, {17299, 28639}, {17309, 17398}, {17312, 17396}, {17313, 17395}, {17318, 17392}, {17320, 17387}, {17322, 17386}, {17325, 21356}, {17760, 20105}, {18141, 20182}, {19717, 26770}, {20111, 24635}, {25417, 30701}, {28641, 28653}
X(29586) lies on these lines: {1, 2}, {37, 4473}, {75, 4798}, {81, 6626}, {86, 1086}, {142, 31334}, {319, 25498}, {593, 763}, {673, 20137}, {984, 31314}, {1100, 1654}, {1266, 4758}, {1268, 4399}, {1385, 6999}, {1429, 17084}, {1449, 17248}, {1475, 3219}, {1621, 17798}, {2112, 16503}, {2275, 28606}, {2896, 30562}, {2975, 19237}, {3247, 17368}, {3589, 32029}, {3618, 27268}, {3664, 17324}, {3723, 17289}, {3765, 30963}, {3797, 15569}, {3879, 17326}, {3945, 17236}, {4021, 17116}, {4357, 20090}, {4359, 17762}, {4360, 4665}, {4364, 20072}, {4370, 31332}, {4402, 28626}, {4407, 4649}, {4440, 4670}, {4470, 4740}, {4472, 17160}, {4644, 6646}, {4648, 17383}, {4657, 17227}, {4667, 17254}, {4675, 17399}, {4704, 5749}, {4751, 28640}, {4788, 7229}, {4851, 17400}, {4852, 28653}, {4969, 25358}, {5195, 17729}, {5224, 16884}, {5253, 19308}, {5257, 17121}, {5750, 17319}, {5886, 7384}, {5901, 6996}, {6629, 26860}, {7377, 10246}, {10436, 17396}, {11320, 19684}, {14953, 26839}, {15668, 17380}, {16666, 17256}, {16667, 17331}, {16672, 17354}, {16673, 17339}, {16706, 28639}, {16752, 33150}, {16777, 17280}, {17081, 21454}, {17169, 17190}, {17247, 31300}, {17303, 17393}, {17305, 17392}, {17306, 17391}, {17307, 17390}, {17315, 17385}, {17317, 17384}, {17325, 17378}, {17327, 17377}, {17375, 31313}, {17484, 19741}, {17953, 27922}, {19740, 31030}, {19786, 24663}, {22343, 25421}, {26110, 26971}, {31062, 33107}
X(29587) lies on these lines: {1, 2}, {69, 17358}, {141, 190}, {192, 3619}, {319, 17357}, {320, 17359}, {344, 4748}, {346, 17236}, {594, 17283}, {599, 17354}, {1654, 17228}, {2321, 17291}, {2325, 17254}, {2345, 17232}, {3589, 17295}, {3618, 17373}, {3620, 17350}, {3662, 4659}, {3763, 17233}, {3844, 4702}, {3943, 17305}, {3950, 17324}, {4080, 10302}, {4357, 17268}, {4389, 17269}, {4422, 17271}, {4440, 17227}, {4445, 17352}, {4473, 4643}, {4657, 17240}, {4665, 27191}, {4670, 17231}, {4741, 21356}, {4753, 33159}, {4759, 33082}, {4781, 33086}, {4851, 17371}, {5224, 17267}, {5564, 17356}, {5748, 20535}, {5749, 17375}, {5750, 17312}, {6292, 33168}, {14433, 27138}, {16706, 17229}, {17116, 21255}, {17234, 17293}, {17237, 17264}, {17239, 17263}, {17241, 17303}, {17242, 17306}, {17243, 17307}, {17252, 25101}, {17270, 17338}, {17272, 17339}, {17275, 17341}, {17287, 17353}, {17288, 17355}, {17296, 17368}, {17297, 17369}, {17299, 17370}, {17309, 17380}, {17311, 17381}, {17314, 17383}, {17315, 17384}, {17317, 17385}, {17337, 32025}, {17343, 26685}, {17743, 26634}, {20913, 30866}, {24593, 32779}, {26082, 27073}, {26791, 26793}, {26797, 26857}
X(29588) lies on these lines: {1, 2}, {6, 4473}, {86, 4665}, {192, 4644}, {193, 4704}, {226, 25726}, {319, 3723}, {321, 25303}, {952, 7384}, {984, 31308}, {1086, 4360}, {1100, 17280}, {1278, 3945}, {1449, 17242}, {1482, 6999}, {1483, 6996}, {1654, 16777}, {1931, 32004}, {3247, 17363}, {3672, 17375}, {3797, 31314}, {3871, 19308}, {3875, 17391}, {3879, 6646}, {3946, 17312}, {3950, 17120}, {3995, 21226}, {4021, 17288}, {4431, 4909}, {4439, 4649}, {4440, 17318}, {4464, 17117}, {4657, 17386}, {4664, 20072}, {4725, 17256}, {4798, 17299}, {4851, 17227}, {4852, 17317}, {4916, 17321}, {5564, 28639}, {5839, 27268}, {7377, 10247}, {9041, 27949}, {9263, 31036}, {15569, 27495}, {16666, 17264}, {16667, 17339}, {16672, 17346}, {16673, 17331}, {16884, 17233}, {17045, 17295}, {17152, 32863}, {17160, 17392}, {17296, 17396}, {17297, 17395}, {17301, 17387}, {17309, 17381}, {17311, 17380}, {17314, 17379}, {17320, 17374}, {17322, 17372}, {17762, 28605}, {17778, 20349}, {18139, 24366}, {19741, 31011}, {19743, 26770}, {20086, 20109}, {20101, 27804}, {20244, 26842}, {31029, 33155}, {31062, 33153}
X(29589) lies on these lines: {1, 2}, {190, 17243}, {344, 20090}, {1654, 17311}, {3629, 31333}, {4440, 17313}, {4473, 17378}, {4659, 17242}, {4670, 17280}, {4704, 4869}, {4748, 27268}, {4851, 17335}, {6646, 17312}, {17234, 17318}, {17240, 28604}, {17241, 17302}, {17387, 20072}, {22011, 24075}
X(29590) lies on these lines: {1, 2}, {6, 26806}, {44, 4440}, {88, 17953}, {142, 17121}, {190, 4395}, {238, 17764}, {319, 17356}, {391, 17236}, {514, 26777}, {524, 27191}, {536, 4473}, {631, 29331}, {673, 6650}, {742, 3618}, {966, 17383}, {1086, 20072}, {1278, 4402}, {1449, 27147}, {1475, 27003}, {1654, 16706}, {1743, 31300}, {1931, 24378}, {2238, 30997}, {3161, 4788}, {3589, 28604}, {3686, 17291}, {3707, 17254}, {3759, 17278}, {3770, 29756}, {3797, 28484}, {3875, 17338}, {3946, 17260}, {4000, 6646}, {4359, 17789}, {4360, 17337}, {4361, 17280}, {4364, 17277}, {4398, 16885}, {4399, 17285}, {4422, 17160}, {4452, 25269}, {4454, 17350}, {4645, 4974}, {4704, 18230}, {4716, 31289}, {4725, 31243}, {4772, 5749}, {4852, 17263}, {4859, 17364}, {4969, 17297}, {5564, 17357}, {5839, 17232}, {6653, 32096}, {6666, 17319}, {6687, 17264}, {6996, 28174}, {6999, 28160}, {7321, 16669}, {16704, 16752}, {17117, 17353}, {17119, 17354}, {17120, 24199}, {17151, 17339}, {17256, 17382}, {17259, 17380}, {17265, 17377}, {17275, 17370}, {17282, 17363}, {17283, 17362}, {17290, 17346}, {17299, 17341}, {17301, 17335}, {17304, 17331}, {17305, 17330}, {17371, 28634}, {17391, 20195}, {17495, 25257}, {17755, 28516}, {17772, 31252}, {17778, 26724}, {19742, 26840}, {21299, 24753}, {24597, 24620}, {25378, 33128}, {25716, 31231}, {26110, 27154}, {26149, 27192}, {26799, 26850}, {27109, 33168}
X(29590) = anticomplement of X(17266)
X(29591) lies on these lines: {1, 2}, {44, 1654}, {45, 5224}, {69, 26039}, {75, 18073}, {141, 26806}, {319, 16666}, {594, 17160}, {966, 17358}, {1213, 17285}, {1268, 17245}, {2246, 7261}, {2321, 17326}, {2345, 6646}, {2896, 30564}, {3579, 6999}, {3589, 32025}, {3619, 4699}, {3954, 31025}, {4007, 17396}, {4346, 17236}, {4358, 17762}, {4422, 31144}, {4431, 17324}, {4440, 17237}, {4445, 17381}, {4470, 21356}, {4472, 17297}, {4473, 17256}, {4665, 17305}, {4671, 18135}, {4708, 17264}, {4798, 17387}, {4887, 17116}, {4896, 17288}, {4967, 17067}, {5232, 17350}, {5235, 16047}, {5257, 17268}, {5564, 17384}, {5749, 17343}, {5750, 17287}, {6537, 6627}, {6539, 10159}, {6626, 31059}, {6650, 26582}, {6996, 18357}, {7227, 17273}, {7377, 12702}, {15254, 20533}, {16670, 17270}, {16672, 17233}, {16676, 17248}, {17228, 17300}, {17229, 17322}, {17231, 28653}, {17250, 17281}, {17251, 17354}, {17252, 17355}, {17271, 17369}, {17272, 31300}, {17275, 17371}, {17295, 17398}, {17299, 17400}, {17315, 25498}, {17370, 28634}, {20331, 30966}, {20582, 27191}, {25107, 30818}, {26044, 33157}, {26045, 27032}, {26070, 32779}, {26082, 27136}, {26100, 33155}
X(29592) lies on these lines: {1, 2}, {75, 28640}, {86, 1931}, {192, 4470}, {673, 20153}, {894, 4758}, {1268, 17388}, {1385, 7384}, {1449, 31334}, {1475, 27065}, {1621, 19308}, {1654, 17394}, {2309, 25420}, {2895, 30562}, {3723, 28653}, {3986, 17120}, {4360, 6707}, {4664, 4798}, {4698, 27495}, {4704, 27494}, {5284, 19237}, {5886, 6999}, {6653, 25351}, {10022, 31332}, {15668, 17302}, {16752, 33155}, {16777, 28604}, {17169, 17483}, {17237, 17300}, {17248, 20090}, {17271, 25358}, {17280, 17398}, {17303, 30598}, {17317, 25498}, {17321, 26806}, {17362, 31248}, {24652, 26109}, {26790, 31016}, {31238, 31342}, {31314, 31323}
X(29593) lies on these lines: {1, 2}, {6, 32025}, {45, 31144}, {55, 19237}, {69, 4470}, {75, 4377}, {76, 6539}, {86, 4445}, {141, 4699}, {190, 17251}, {192, 594}, {319, 17303}, {321, 6376}, {335, 25351}, {536, 17250}, {894, 17270}, {966, 17280}, {1211, 23897}, {1213, 17233}, {1268, 15668}, {1278, 4357}, {1376, 19308}, {1574, 24598}, {1654, 2345}, {1959, 19584}, {1992, 26039}, {2321, 4704}, {3212, 16603}, {3219, 3501}, {3620, 26806}, {3662, 4772}, {3663, 4821}, {3666, 21868}, {3686, 17368}, {3729, 17252}, {3739, 17228}, {3758, 4690}, {3759, 17385}, {3765, 25280}, {3775, 24349}, {3820, 26019}, {3875, 17326}, {3879, 4758}, {3948, 4671}, {3995, 27269}, {4007, 17319}, {4034, 17121}, {4080, 13466}, {4083, 31040}, {4085, 27480}, {4359, 20917}, {4360, 17327}, {4361, 17307}, {4363, 4741}, {4389, 4665}, {4399, 17380}, {4429, 4733}, {4431, 4788}, {4454, 5232}, {4472, 17378}, {4478, 17377}, {4657, 5564}, {4659, 17254}, {4664, 4708}, {4670, 17360}, {4686, 17249}, {4687, 17229}, {4688, 17227}, {4698, 17240}, {4747, 11160}, {4751, 17231}, {4851, 28653}, {4852, 17400}, {5241, 30861}, {5257, 17242}, {5657, 6999}, {5690, 7377}, {5750, 17363}, {5790, 6996}, {5818, 7384}, {7226, 12782}, {7227, 17347}, {7229, 31300}, {8025, 33297}, {9708, 16367}, {9709, 11329}, {10436, 17287}, {16706, 28634}, {16738, 26042}, {17116, 17272}, {17117, 17306}, {17118, 17273}, {17119, 17305}, {17151, 17324}, {17160, 17325}, {17217, 21055}, {17241, 31238}, {17256, 17281}, {17257, 25269}, {17259, 17285}, {17260, 17286}, {17275, 17289}, {17277, 17293}, {17288, 25590}, {17299, 17322}, {17311, 32089}, {17328, 17351}, {17330, 17354}, {17331, 17355}, {17335, 17359}, {17346, 17369}, {17348, 17371}, {17362, 17381}, {17372, 17394}, {17386, 28639}, {17393, 25498}, {17776, 26044}, {18044, 20174}, {19825, 26840}, {20090, 32099}, {20158, 26083}, {20255, 33172}, {20486, 33108}, {20532, 31061}, {20691, 28606}, {21257, 25624}, {21358, 27191}, {25102, 31993}, {25125, 30818}, {25958, 31052}, {25959, 27812}, {26790, 31042}, {27474, 31323}, {30991, 31030}
X(29593) = anticomplement of X(17397)
X(29594) lies on these lines: {1, 2}, {69, 17286}, {75, 4058}, {76, 4052}, {141, 536}, {142, 594}, {192, 4072}, {210, 2809}, {312, 6381}, {319, 17285}, {321, 1111}, {344, 17270}, {346, 17272}, {524, 17359}, {527, 599}, {537, 3773}, {553, 30617}, {597, 4725}, {726, 27474}, {966, 25072}, {1146, 3452}, {1266, 17227}, {1654, 17268}, {1743, 32099}, {2325, 4643}, {2345, 3664}, {2784, 10164}, {3175, 21070}, {3501, 3928}, {3589, 17372}, {3618, 4856}, {3619, 3875}, {3620, 3729}, {3631, 17351}, {3662, 4431}, {3686, 4445}, {3694, 25065}, {3707, 4422}, {3730, 3929}, {3731, 5232}, {3755, 3844}, {3763, 3946}, {3775, 4078}, {3821, 4133}, {3829, 20544}, {3834, 4665}, {3879, 17289}, {3913, 21514}, {3943, 17237}, {3950, 4357}, {3986, 5224}, {4000, 4007}, {4021, 17306}, {4029, 4364}, {4054, 31017}, {4060, 4361}, {4098, 17238}, {4102, 19796}, {4301, 7377}, {4349, 32846}, {4356, 32784}, {4363, 4896}, {4399, 17356}, {4416, 17280}, {4419, 4873}, {4421, 21509}, {4461, 4862}, {4464, 17380}, {4478, 17348}, {4480, 4741}, {4535, 28554}, {4654, 7195}, {4656, 32782}, {4657, 17309}, {4659, 4887}, {4667, 17369}, {4715, 22165}, {4727, 17395}, {4748, 16676}, {4755, 5257}, {4851, 5750}, {4859, 32087}, {4869, 25590}, {4888, 7229}, {4904, 24175}, {4967, 17234}, {4971, 17382}, {4980, 20913}, {5179, 31142}, {5493, 6999}, {5542, 31178}, {5564, 17283}, {5837, 30847}, {5881, 7397}, {6376, 20942}, {6666, 17267}, {7227, 17376}, {7291, 17744}, {7402, 7982}, {8666, 21477}, {8715, 11343}, {11194, 21539}, {12513, 21526}, {15828, 17339}, {16046, 24632}, {16593, 24393}, {17067, 17119}, {17132, 17274}, {17133, 17301}, {17205, 30965}, {17232, 24199}, {17263, 32025}, {17264, 17271}, {17265, 28634}, {17303, 17311}, {17307, 17315}, {17312, 28604}, {17340, 17344}, {17342, 17346}, {17354, 17360}, {17357, 17362}, {17358, 17363}, {17368, 17373}, {17371, 17377}, {17381, 17386}, {17384, 17388}, {17385, 17390}, {20533, 33082}, {20888, 20917}, {21060, 33084}, {24090, 27569}, {24177, 33172}, {30331, 33076}, {31037, 31057}, {31161, 33081}
X(29595) lies on these lines: {1, 2}, {37, 24063}, {44, 4687}, {45, 86}, {89, 32009}, {192, 15668}, {194, 31035}, {213, 14996}, {274, 4671}, {344, 28641}, {894, 16676}, {966, 16522}, {1001, 20137}, {1213, 17373}, {1268, 17309}, {1278, 3247}, {1443, 26125}, {1449, 31313}, {3620, 16972}, {3723, 4751}, {3758, 4755}, {3986, 17364}, {3995, 24621}, {4346, 26806}, {4358, 31997}, {4366, 20135}, {4445, 31248}, {4648, 17236}, {4698, 16666}, {4699, 16777}, {4704, 10436}, {4708, 17387}, {4741, 17392}, {4772, 17319}, {4788, 25590}, {4798, 17264}, {4821, 31312}, {4887, 17247}, {5217, 19308}, {5257, 17343}, {5283, 19740}, {5284, 21010}, {5296, 20090}, {5333, 32107}, {6707, 17233}, {10180, 17601}, {10592, 26019}, {14408, 24673}, {14997, 20963}, {15254, 27475}, {15650, 16053}, {16477, 20145}, {16552, 19741}, {16670, 17260}, {16673, 17116}, {16704, 30563}, {17067, 27147}, {17144, 24589}, {17232, 17322}, {17238, 17317}, {17241, 25498}, {17245, 17383}, {17248, 17375}, {17280, 26039}, {17289, 28640}, {17358, 17398}, {17385, 30598}, {17393, 31238}, {19229, 20132}, {19701, 31036}, {20146, 27078}, {20153, 20172}, {20157, 20162}, {24620, 32095}, {25130, 30818}, {31139, 31332}
X(29596) lies on these lines:{1, 2}, {9, 3619}, {35, 21516}, {36, 21540}, {44, 141}, {45, 3763}, {55, 21496}, {56, 21519}, {69, 16670}, {71, 29492}, {75, 17067}, {88, 24170}, {142, 17283}, {226, 10159}, {304, 30829}, {313, 18073}, {344, 16676}, {346, 17304}, {527, 17227}, {594, 17356}, {597, 17374}, {894, 4896}, {1086, 17359}, {1155, 24250}, {1229, 23521}, {1266, 17281}, {1443, 28780}, {1574, 16610}, {1743, 3620}, {1785, 11331}, {1909, 30866}, {1930, 4358}, {2321, 16706}, {2325, 4389}, {2345, 17282}, {3218, 17744}, {3246, 3844}, {3303, 21535}, {3304, 21543}, {3306, 17742}, {3452, 30853}, {3589, 3879}, {3618, 17296}, {3630, 16671}, {3631, 16669}, {3662, 4887}, {3663, 17280}, {3664, 17232}, {3674, 5219}, {3686, 17228}, {3707, 17271}, {3729, 4346}, {3790, 4353}, {3817, 18788}, {3834, 17369}, {3911, 33298}, {3934, 17760}, {3943, 17382}, {3946, 17233}, {3950, 17268}, {3986, 17326}, {3999, 24631}, {4000, 4431}, {4021, 17242}, {4029, 17320}, {4058, 17117}, {4422, 17237}, {4464, 17309}, {4473, 17254}, {4480, 17274}, {4643, 21358}, {4657, 16672}, {4667, 17297}, {4700, 17360}, {4856, 17373}, {4967, 17278}, {5204, 21477}, {5217, 11343}, {5224, 6666}, {5257, 17263}, {5294, 33172}, {5302, 30847}, {5316, 30832}, {5328, 27541}, {5723, 25719}, {5749, 17298}, {5750, 17234}, {6687, 17330}, {6996, 31673}, {7377, 18483}, {10436, 26039}, {15254, 16593}, {16786, 17277}, {16948, 24632}, {17192, 26580}, {17229, 17366}, {17235, 17340}, {17236, 17339}, {17238, 17338}, {17239, 17337}, {17240, 17380}, {17241, 17381}, {17243, 17384}, {17245, 17385}, {17248, 25072}, {17264, 17305}, {17265, 17303}, {17269, 17301}, {17272, 26685}, {17595, 32777}, {17601, 33174}, {17895, 20236}, {18357, 19512}, {19589, 24386}, {21746, 25144}, {22048, 31993}, {24627, 26070}, {28827, 30827}, {31268, 32851}
X(29596) = complement of X(17367)
X(29597) lies on these lines: {1, 2}, {6, 4755}, {9, 17394}, {37, 25728}, {86, 3247}, {148, 15903}, {193, 3986}, {524, 16972}, {536, 10436}, {594, 28640}, {597, 16973}, {894, 16673}, {940, 3230}, {948, 25723}, {1001, 20155}, {1449, 4687}, {1743, 27268}, {2223, 4428}, {3227, 25430}, {3303, 16412}, {3723, 3875}, {3731, 17379}, {3746, 11329}, {3751, 5625}, {3758, 16676}, {3929, 18206}, {3943, 4798}, {4007, 28653}, {4029, 4758}, {4383, 16971}, {4480, 4747}, {4648, 17304}, {4653, 16046}, {4654, 17078}, {4670, 16672}, {4698, 16884}, {4699, 31312}, {4740, 17319}, {4859, 17396}, {4888, 17247}, {4980, 32092}, {5283, 19722}, {5563, 16367}, {6173, 17320}, {6707, 17299}, {6999, 11522}, {7377, 9624}, {8715, 25946}, {11523, 16053}, {15485, 20132}, {16050, 28619}, {16484, 20131}, {16552, 19738}, {16667, 17260}, {16674, 17351}, {17045, 17282}, {17270, 17390}, {17272, 17391}, {17274, 17392}, {17275, 28337}, {17286, 17398}, {17296, 17322}, {17298, 17321}, {17306, 17317}, {17311, 25498}, {17314, 28641}, {17380, 20195}, {19684, 30568}, {25303, 30830}, {26223, 30562}
X(29598) lies on these lines: {1, 2}, {6, 4503}, {9, 3589}, {35, 21477}, {36, 11343}, {44, 17325}, {55, 21526}, {56, 21514}, {57, 1759}, {65, 31230}, {69, 16667}, {86, 16779}, {141, 1449}, {142, 610}, {190, 17399}, {226, 18841}, {333, 17210}, {344, 16673}, {346, 4021}, {515, 7402}, {597, 4643}, {599, 16666}, {673, 25351}, {894, 4862}, {940, 5299}, {946, 7397}, {988, 7819}, {999, 21529}, {1100, 3763}, {1375, 5437}, {1429, 5219}, {1453, 13728}, {1486, 31521}, {1699, 6996}, {1743, 3618}, {1930, 19804}, {2329, 30827}, {2345, 3946}, {3247, 17045}, {3295, 21542}, {3305, 17744}, {3619, 3879}, {3662, 4888}, {3663, 4454}, {3666, 25066}, {3672, 17355}, {3674, 5435}, {3707, 4748}, {3723, 17267}, {3729, 17302}, {3731, 17321}, {3746, 21519}, {3758, 17274}, {3759, 17270}, {3821, 4312}, {3834, 16786}, {3875, 17289}, {3945, 21255}, {3973, 17257}, {3986, 18230}, {4000, 4470}, {4007, 4852}, {4026, 7290}, {4034, 17239}, {4054, 19823}, {4083, 31208}, {4251, 25940}, {4328, 28739}, {4360, 17286}, {4361, 17385}, {4363, 17382}, {4383, 5280}, {4422, 16676}, {4644, 26104}, {4649, 25539}, {4659, 17301}, {4670, 6173}, {4708, 25503}, {4747, 4896}, {4795, 7238}, {4856, 32099}, {4859, 10436}, {4873, 17318}, {4898, 17233}, {5010, 21495}, {5204, 21509}, {5217, 21539}, {5233, 19832}, {5290, 17681}, {5337, 7031}, {5436, 30810}, {5563, 21496}, {5691, 7377}, {5792, 25525}, {5886, 19512}, {7146, 31231}, {7190, 28780}, {7280, 21511}, {7308, 17742}, {8056, 27820}, {12436, 24604}, {13161, 16045}, {15668, 16503}, {15803, 24609}, {16054, 25526}, {16475, 32784}, {16491, 33076}, {16669, 17253}, {16777, 17357}, {16780, 17056}, {16783, 19701}, {16884, 17231}, {17120, 17236}, {17121, 17238}, {17247, 25728}, {17259, 25498}, {17265, 28639}, {17277, 17400}, {17278, 17398}, {17280, 17396}, {17281, 17395}, {17283, 17394}, {17285, 17393}, {17291, 17298}, {17303, 17366}, {17319, 17358}, {17320, 17354}, {17322, 17352}, {17323, 17351}, {17324, 17350}, {17326, 17349}, {17327, 17348}, {17374, 21358}, {17591, 24631}, {17745, 23151}, {17754, 20367}, {17760, 31326}, {19557, 25383}, {21384, 25499}, {23681, 32774}, {24914, 31221}, {25378, 32944}
X(29599) lies on these lines: {1, 2}, {142, 4704}, {192, 7263}, {1278, 27147}, {3730, 23958}, {3948, 27794}, {3950, 4821}, {4364, 17234}, {4454, 25269}, {4470, 17280}, {4648, 17350}, {4687, 17232}, {4698, 17238}, {4699, 17243}, {4741, 17313}, {4755, 17227}, {4758, 17368}, {4772, 17242}, {4788, 24199}, {6666, 17391}, {9335, 12782}, {15668, 17358}, {16672, 27191}, {17240, 31238}, {17259, 17373}, {17260, 17375}, {17263, 17379}, {17265, 17383}, {17312, 17343}, {17317, 17349}, {17319, 20195}, {17341, 28639}, {17346, 31285}, {17364, 25072}, {17399, 31243}, {18230, 20090}, {18743, 31060}, {25257, 31035}
X(29600) lies on these lines: {1, 2}, {37, 21255}, {69, 25072}, {75, 4072}, {76, 20942}, {141, 3986}, {142, 536}, {190, 4896}, {226, 1358}, {344, 3664}, {527, 17313}, {537, 4078}, {726, 27475}, {1086, 4029}, {2321, 4688}, {2325, 4675}, {3161, 4888}, {3618, 4909}, {3663, 4098}, {3686, 17311}, {3707, 17374}, {3730, 3928}, {3731, 4869}, {3739, 4058}, {3817, 28850}, {3836, 4356}, {3879, 17263}, {3946, 17265}, {4021, 17282}, {4052, 17758}, {4082, 31161}, {4357, 17241}, {4402, 4898}, {4416, 17312}, {4422, 4667}, {4431, 27147}, {4648, 17355}, {4656, 18139}, {4690, 31285}, {4740, 17242}, {4851, 6666}, {4967, 17240}, {5257, 17231}, {5325, 30618}, {5750, 17267}, {5882, 19512}, {6173, 17132}, {6381, 18743}, {10164, 28849}, {14061, 15903}, {15828, 17300}, {17067, 17318}, {17224, 17359}, {17314, 20195}, {17317, 17353}, {17348, 28337}, {17376, 28333}, {17395, 31243}, {24050, 27565}
X(29601) lies on these lines: {1, 2}, {9, 11008}, {37, 3631}, {44, 3629}, {45, 4416}, {55, 21510}, {56, 21532}, {69, 16676}, {89, 3977}, {142, 17160}, {192, 4887}, {304, 20569}, {320, 4029}, {344, 16670}, {527, 17387}, {1266, 17313}, {2321, 17317}, {2325, 17378}, {3620, 16673}, {3663, 17312}, {3664, 17242}, {3686, 17386}, {3946, 17241}, {3950, 4896}, {3982, 7146}, {3986, 17287}, {4021, 17232}, {4060, 4751}, {4072, 17116}, {4098, 6646}, {4346, 17298}, {4357, 16672}, {4422, 20583}, {4431, 4648}, {4437, 4663}, {4464, 17278}, {4667, 17264}, {4856, 17338}, {4889, 17337}, {4909, 17368}, {4967, 17309}, {5204, 21524}, {5217, 21518}, {5257, 17295}, {5750, 17240}, {6329, 16666}, {6666, 17377}, {17067, 17234}, {17286, 26039}, {17314, 24199}, {17319, 21255}, {17355, 17391}, {17363, 25072}, {20533, 30424}, {22034, 22048}
X(29602) lies on these lines: {1, 2}, {9, 3629}, {35, 21518}, {36, 21524}, {69, 16673}, {75, 4898}, {144, 4098}, {192, 4888}, {304, 32018}, {344, 16667}, {524, 16676}, {980, 9331}, {1449, 6329}, {2321, 4470}, {2345, 4758}, {3247, 3631}, {3664, 4454}, {3686, 4916}, {3723, 17306}, {3729, 17391}, {3731, 3879}, {3746, 21510}, {3875, 17317}, {3945, 3950}, {3986, 32099}, {3993, 4312}, {4007, 15668}, {4021, 4869}, {4029, 4644}, {4034, 4698}, {4072, 7229}, {4360, 4859}, {4437, 16475}, {4648, 17151}, {4659, 17392}, {4670, 4873}, {4852, 20195}, {4856, 18230}, {4862, 17300}, {4889, 17259}, {4909, 5749}, {4955, 7146}, {4967, 31312}, {5266, 33242}, {5563, 21532}, {6173, 17318}, {7397, 13607}, {9327, 25940}, {10436, 17315}, {11349, 25439}, {16670, 20583}, {16672, 17374}, {16674, 17344}, {16777, 17237}, {16783, 19750}, {17270, 17386}, {17274, 17387}, {17282, 17393}, {17286, 17394}, {17298, 17319}, {17304, 17312}, {17309, 28639}, {17314, 25590}, {18788, 28889}, {20090, 25728}
X(29603) lies on these lines: {1, 2}, {6, 4708}, {9, 17322}, {57, 17095}, {63, 24583}, {81, 17210}, {86, 17227}, {142, 24609}, {597, 25358}, {673, 17370}, {958, 21986}, {980, 16604}, {984, 31306}, {1001, 21477}, {1086, 4657}, {1100, 17270}, {1266, 4470}, {1449, 5224}, {1654, 16667}, {1743, 17248}, {1960, 30865}, {2223, 21977}, {3247, 17289}, {3576, 7377}, {3618, 5257}, {3723, 17293}, {3729, 5750}, {3731, 4473}, {3751, 4407}, {3763, 28639}, {3797, 31319}, {3817, 7406}, {3875, 4665}, {3986, 26685}, {4007, 17393}, {4357, 4644}, {4359, 25585}, {4423, 17798}, {4472, 17301}, {4659, 17320}, {4670, 17274}, {4687, 17755}, {4859, 17383}, {4862, 17324}, {4888, 17236}, {5248, 21495}, {5259, 16367}, {5337, 15668}, {5749, 25728}, {6173, 17305}, {6707, 17278}, {6996, 8227}, {6999, 7987}, {7384, 7988}, {11343, 25524}, {15569, 27474}, {15950, 31221}, {16054, 25500}, {16666, 17251}, {16670, 17256}, {16672, 17359}, {16673, 17280}, {16676, 17354}, {16777, 17286}, {16783, 20769}, {16884, 17239}, {17151, 17396}, {17237, 25503}, {17245, 28640}, {17272, 17326}, {17296, 17307}, {17302, 25590}, {17380, 28653}, {19701, 25527}, {19740, 31029}, {19812, 25525}, {20131, 25539}, {24581, 24590}, {24612, 30852}, {24630, 31266}, {27147, 31312}
X(29604) lies on these lines: {1, 2}, {9, 4748}, {40, 7402}, {140, 29081}, {141, 3664}, {142, 3763}, {169, 7308}, {190, 4357}, {226, 10521}, {241, 25068}, {319, 4856}, {321, 7264}, {333, 17200}, {344, 3986}, {516, 7377}, {527, 17237}, {594, 3946}, {597, 4690}, {599, 4667}, {712, 3934}, {958, 21526}, {993, 21477}, {1213, 6666}, {1266, 17305}, {1319, 31221}, {1376, 21514}, {1574, 3752}, {1743, 5232}, {2321, 4021}, {2325, 4364}, {2345, 3663}, {3452, 30826}, {3589, 3686}, {3618, 17270}, {3619, 10436}, {3666, 28594}, {3707, 17251}, {3739, 9055}, {3775, 4753}, {3834, 4472}, {3875, 4058}, {3879, 17228}, {3911, 16603}, {3950, 17286}, {3993, 27474}, {4026, 4702}, {4029, 17269}, {4060, 4852}, {4363, 4887}, {4389, 17132}, {4413, 5144}, {4416, 17238}, {4422, 4708}, {4431, 17302}, {4470, 6173}, {4480, 17254}, {4665, 17382}, {4675, 21358}, {4688, 17067}, {4725, 4982}, {4755, 25358}, {4758, 17392}, {4759, 24295}, {4798, 17313}, {4851, 4909}, {4862, 7229}, {4896, 26039}, {4967, 16706}, {5074, 5316}, {5199, 30854}, {5224, 17335}, {5252, 31230}, {5257, 17279}, {5267, 21495}, {5587, 7397}, {5745, 6292}, {5749, 17272}, {6692, 17062}, {6996, 19925}, {6999, 12512}, {7227, 17235}, {9708, 21542}, {9709, 21529}, {9956, 19512}, {11343, 25440}, {12527, 17672}, {16600, 25086}, {16607, 30810}, {16667, 32099}, {16788, 25940}, {17045, 17229}, {17133, 17395}, {17231, 17398}, {17233, 17400}, {17243, 25498}, {17248, 17358}, {17250, 17354}, {17280, 17326}, {17281, 17325}, {17283, 28653}, {17285, 17322}, {17291, 24199}, {17399, 28313}, {19808, 24170}, {19822, 24177}, {20602, 27065}, {22011, 24774}, {30818, 30819}, {30832, 30837}, {30839, 30849}
X(29604) = complement of X(17023)
X(29605) lies on these lines: {1, 2}, {6, 4889}, {9, 17315}, {45, 4725}, {86, 4007}, {192, 4898}, {193, 3950}, {319, 3247}, {594, 4798}, {984, 31342}, {1086, 3875}, {1100, 17286}, {1278, 4888}, {1449, 17233}, {1654, 16673}, {1743, 4473}, {1992, 2325}, {3208, 18206}, {3620, 4021}, {3723, 4445}, {3729, 3879}, {3731, 17363}, {3751, 4439}, {3758, 4873}, {3945, 4431}, {4000, 4464}, {4034, 4687}, {4058, 4909}, {4360, 17227}, {4363, 4727}, {4460, 4869}, {4494, 30939}, {4659, 17378}, {4665, 10436}, {4675, 4971}, {4690, 16672}, {4708, 16777}, {4852, 17282}, {4856, 26685}, {4859, 17312}, {4862, 17375}, {4886, 25430}, {4896, 28313}, {4910, 17366}, {5288, 16367}, {6173, 17160}, {6999, 11531}, {7377, 16200}, {7406, 28236}, {16666, 17269}, {16667, 17280}, {16670, 17264}, {16676, 17346}, {16884, 17229}, {17119, 28329}, {17151, 17300}, {17272, 17319}, {17274, 17318}, {17295, 17306}, {17391, 25590}, {20086, 25734}, {21511, 25439}
X(29606) lies on these lines: {1, 2}, {7, 4098}, {142, 17318}, {190, 3664}, {2325, 17392}, {3247, 21255}, {3879, 17335}, {3950, 4648}, {3986, 4748}, {3993, 27475}, {4021, 17234}, {4029, 4675}, {4060, 31238}, {4072, 25590}, {4664, 4887}, {4670, 17243}, {4725, 31285}, {4758, 17359}, {4856, 6666}, {4869, 16673}, {4909, 17353}, {5257, 17311}, {13607, 19512}, {17391, 25101}, {22011, 22034}
X(29607) lies on these lines: {1, 2}, {44, 27191}, {142, 17120}, {190, 6687}, {238, 25351}, {514, 27115}, {742, 4751}, {894, 17278}, {1266, 4473}, {1279, 32096}, {3526, 29331}, {3618, 27147}, {3685, 31289}, {3759, 17265}, {4000, 17261}, {4361, 17268}, {4364, 16706}, {4395, 17264}, {4440, 17067}, {4454, 26685}, {4470, 17368}, {4681, 31333}, {4859, 17350}, {4974, 31252}, {6651, 28530}, {6666, 17302}, {6996, 28146}, {6999, 28172}, {17116, 17353}, {17117, 17279}, {17119, 17342}, {17121, 17234}, {17125, 25378}, {17237, 17252}, {17247, 18230}, {17254, 17290}, {17259, 17326}, {17263, 17319}, {17282, 17288}, {17283, 17287}, {17297, 31243}, {17379, 20195}, {19512, 28212}, {19804, 20432}, {25298, 30866}, {26724, 27064}, {27487, 31238}, {30566, 33129}, {31187, 31233}, {31190, 31228}, {31201, 31227}
X(29608) lies on these lines: {1, 2}, {44, 5224}, {45, 17248}, {594, 17396}, {894, 26039}, {1213, 17338}, {1268, 17278}, {1574, 4850}, {1654, 16670}, {2345, 17247}, {3579, 7377}, {3662, 17303}, {3763, 27147}, {4346, 17116}, {4472, 17227}, {4657, 17160}, {4665, 17399}, {4699, 17067}, {4708, 17354}, {4798, 17297}, {4887, 17236}, {4967, 17383}, {5232, 17120}, {5257, 17358}, {5260, 21540}, {5749, 17252}, {5750, 17238}, {6707, 17241}, {7227, 17249}, {16666, 17239}, {16672, 17242}, {16676, 17280}, {17228, 17391}, {17233, 25498}, {17250, 17333}, {17306, 28604}, {17320, 25503}, {17595, 19808}, {17762, 30829}
X(29609) lies on these lines: {1, 2}, {36, 19237}, {75, 31319}, {86, 17237}, {894, 4364}, {1213, 17121}, {1268, 4852}, {3619, 28641}, {4357, 4758}, {4366, 25351}, {4389, 4798}, {4423, 16367}, {4454, 17247}, {4470, 17116}, {4472, 17320}, {4670, 17254}, {4687, 31317}, {4698, 31306}, {4704, 31347}, {5284, 21495}, {5750, 17261}, {6707, 16706}, {6996, 11230}, {6999, 10165}, {8025, 17210}, {10436, 17324}, {14621, 15668}, {16666, 31144}, {17045, 17117}, {17120, 17248}, {17227, 25503}, {17234, 28640}, {17252, 17379}, {17256, 25358}, {17260, 17381}, {17268, 17385}, {17287, 17327}, {17303, 17319}, {17307, 17312}, {17348, 31248}, {17370, 20172}, {19281, 19812}, {24580, 27183}, {24581, 27000}, {24632, 28618}, {27268, 27481}, {27483, 31238}, {31333, 31350}
X(29610) lies on these lines: {1, 2}, {35, 19237}, {44, 31144}, {75, 17323}, {86, 17239}, {141, 28653}, {190, 4708}, {319, 17398}, {320, 4472}, {321, 18140}, {335, 1268}, {594, 17319}, {748, 12194}, {857, 30436}, {894, 4643}, {966, 17368}, {1100, 32025}, {1213, 4422}, {1447, 16603}, {1654, 5750}, {2228, 24450}, {2345, 17248}, {3219, 16549}, {3305, 3496}, {3619, 27147}, {3740, 20715}, {3758, 17251}, {3760, 28605}, {3763, 4751}, {3797, 3842}, {3943, 25358}, {3995, 24044}, {4063, 31040}, {4357, 4440}, {4360, 25498}, {4361, 17400}, {4363, 17250}, {4413, 11329}, {4445, 17394}, {4657, 17117}, {4665, 17320}, {4670, 17271}, {4687, 17268}, {4688, 17305}, {4698, 17285}, {4699, 17306}, {4747, 5232}, {4748, 17333}, {4772, 17304}, {4796, 17344}, {4798, 17378}, {4967, 17302}, {5011, 31014}, {5176, 24583}, {5257, 17280}, {5260, 21495}, {5294, 26044}, {5296, 17339}, {5461, 30566}, {5564, 17045}, {5687, 21986}, {5737, 19827}, {5749, 17331}, {6537, 27064}, {6666, 20533}, {6684, 6999}, {6707, 17317}, {6996, 9956}, {7227, 17258}, {7377, 26446}, {7384, 10175}, {9342, 25946}, {10436, 17238}, {15668, 17228}, {17118, 17249}, {17119, 17399}, {17121, 17275}, {17236, 25590}, {17256, 17369}, {17259, 17371}, {17270, 17379}, {17277, 17385}, {17283, 31238}, {17286, 27268}, {17295, 28639}, {17380, 28634}, {17384, 28633}, {17386, 30598}, {18046, 20174}, {19281, 26687}, {21372, 27065}, {24325, 27495}, {24342, 24692}, {24693, 32784}, {25538, 27095}, {27081, 31041}, {30823, 30832}, {30824, 30867}, {31025, 31026}, {31302, 31347}
X(29611) lies on these lines: {1, 2}, {6, 32099}, {7, 141}, {9, 5232}, {45, 4748}, {69, 3758}, {75, 3619}, {100, 11343}, {144, 17272}, {192, 27474}, {193, 17287}, {257, 6557}, {312, 18135}, {319, 3618}, {320, 21356}, {321, 3673}, {329, 32782}, {344, 5224}, {346, 4357}, {355, 7397}, {391, 17270}, {517, 7402}, {518, 5772}, {594, 3763}, {599, 4644}, {651, 5782}, {857, 1211}, {894, 3620}, {948, 31994}, {956, 21526}, {962, 7377}, {966, 5838}, {980, 17756}, {1086, 21358}, {1213, 17267}, {1376, 11349}, {1388, 31221}, {1429, 4390}, {1654, 17358}, {1706, 24590}, {1992, 17360}, {2082, 7308}, {2321, 3672}, {2329, 25940}, {2550, 3844}, {2899, 17550}, {2975, 21477}, {3161, 17238}, {3210, 28598}, {3212, 5226}, {3416, 4344}, {3452, 23058}, {3454, 31043}, {3589, 4445}, {3662, 31995}, {3663, 4461}, {3666, 4515}, {3739, 5936}, {3943, 17325}, {3945, 5750}, {3946, 4007}, {3991, 28606}, {4058, 17151}, {4346, 4659}, {4364, 17269}, {4371, 17366}, {4385, 32956}, {4402, 16706}, {4419, 17237}, {4422, 17251}, {4431, 4452}, {4432, 20533}, {4437, 24841}, {4454, 17274}, {4460, 17299}, {4470, 4675}, {4472, 17313}, {4473, 31722}, {4488, 6646}, {4643, 6172}, {4648, 17231}, {4657, 17229}, {4665, 17290}, {4670, 26039}, {4693, 32784}, {4760, 7261}, {4772, 27478}, {4851, 17385}, {4869, 10436}, {4916, 16884}, {4967, 17282}, {5015, 16045}, {5044, 30809}, {5090, 7490}, {5228, 32003}, {5235, 16053}, {5273, 14021}, {5284, 21986}, {5294, 14552}, {5303, 16431}, {5328, 30818}, {5564, 17370}, {5687, 21514}, {5744, 32779}, {5790, 19512}, {6376, 28809}, {6706, 31993}, {6999, 9778}, {7146, 33299}, {9776, 19822}, {9779, 25760}, {10944, 31230}, {11115, 24632}, {11677, 15435}, {17045, 17309}, {17120, 20080}, {17169, 30965}, {17232, 28604}, {17233, 17307}, {17240, 17322}, {17241, 28653}, {17242, 17326}, {17243, 17327}, {17248, 17268}, {17250, 17264}, {17252, 17339}, {17253, 17340}, {17254, 20073}, {17256, 17342}, {17271, 17354}, {17275, 17357}, {17295, 17381}, {17301, 26104}, {17311, 17398}, {17315, 17400}, {17352, 32025}, {17356, 28634}, {18141, 19808}, {21061, 27624}, {21255, 25590}, {24344, 33086}, {24635, 25066}, {28626, 28639}, {28808, 30832}
X(29611) =
complement of X(17014)
X(29612) lies on these lines: {1, 2}, {37, 24077}, {69, 28641}, {75, 6707}, {86, 4643}, {190, 4798}, {335, 4422}, {1001, 11329}, {1213, 17363}, {1268, 17299}, {1621, 25946}, {1931, 5333}, {2140, 31016}, {3219, 17736}, {3247, 28604}, {3576, 7384}, {3662, 15668}, {3739, 17396}, {3945, 17252}, {3948, 31997}, {3986, 17350}, {4021, 4772}, {4253, 27065}, {4440, 6651}, {4472, 4664}, {4648, 17326}, {4657, 27147}, {4670, 17333}, {4698, 17338}, {4708, 17378}, {4747, 17257}, {4751, 17045}, {4755, 17354}, {4796, 17347}, {4850, 31198}, {5224, 17374}, {5248, 19308}, {5257, 17331}, {5284, 21511}, {5296, 17120}, {5750, 17339}, {6999, 8227}, {7377, 11230}, {11349, 27183}, {16050, 25507}, {16367, 25524}, {16478, 16900}, {16481, 24602}, {16706, 20181}, {16777, 28653}, {16844, 19719}, {17073, 25950}, {17234, 25498}, {17242, 17303}, {17245, 17400}, {17250, 17392}, {17275, 31248}, {17304, 31312}, {17317, 17327}, {17370, 26582}, {17380, 31238}, {19224, 25496}, {20195, 20533}, {20913, 30963}, {24325, 27481}, {24696, 25422}, {25466, 26019}, {27131, 31039}, {31329, 31351}
X(29613) lies on these lines: {1, 2}, {141, 3758}, {320, 21358}, {344, 17326}, {346, 17324}, {594, 17370}, {597, 17360}, {894, 3619}, {956, 21527}, {1213, 17341}, {2321, 17383}, {2345, 17291}, {3589, 17228}, {3618, 17287}, {3620, 17120}, {3662, 3763}, {3773, 25539}, {3943, 17399}, {4357, 17339}, {4364, 17342}, {4389, 17359}, {4422, 17250}, {4432, 32784}, {4657, 17242}, {4687, 25358}, {5224, 17338}, {5687, 21520}, {5749, 17288}, {5750, 17232}, {7238, 17227}, {7377, 22793}, {16706, 17119}, {17045, 17240}, {17229, 17380}, {17231, 17381}, {17233, 17384}, {17234, 17385}, {17236, 17355}, {17237, 17333}, {17238, 17331}, {17239, 17352}, {17241, 17398}, {17243, 17400}, {17247, 17280}, {17248, 17279}, {17249, 17340}, {17252, 26685}, {17263, 17327}, {17264, 17325}, {17265, 28653}, {17267, 17322}, {17268, 17321}, {17269, 17320}, {17281, 17305}, {17282, 28604}, {17283, 17303}, {17286, 17302}, {17736, 27003}
X(29614) lies on these lines: {1, 2}, {6, 17250}, {83, 18109}, {86, 3834}, {335, 31306}, {597, 17256}, {750, 12194}, {894, 4389}, {1100, 17287}, {1107, 24625}, {1266, 5750}, {1449, 17238}, {1621, 21540}, {1654, 4700}, {2345, 17396}, {3247, 17358}, {3306, 3496}, {3589, 17260}, {3618, 17248}, {3619, 17391}, {3662, 26104}, {3723, 17285}, {3742, 20715}, {3758, 17254}, {3759, 17327}, {3763, 17312}, {3911, 17084}, {3943, 17045}, {3946, 28604}, {4029, 17280}, {4209, 19885}, {4357, 17120}, {4360, 17385}, {4363, 17399}, {4670, 17305}, {5224, 17121}, {5253, 21516}, {5718, 19832}, {5749, 17247}, {6996, 9955}, {7377, 18481}, {10436, 17383}, {15668, 17370}, {16666, 17271}, {16667, 17343}, {16672, 17342}, {16704, 17210}, {16706, 17398}, {16777, 17268}, {16884, 17228}, {17117, 17303}, {17261, 17321}, {17277, 25498}, {17283, 28639}, {17288, 17306}, {17293, 17393}, {17320, 17369}, {17366, 28653}, {17387, 21358}, {17495, 25263}, {19884, 27000}, {21997, 25526}, {24627, 27187}
X(29615) lies on these lines: {1, 2}, {37, 31144}, {69, 7222}, {75, 599}, {86, 17372}, {141, 5564}, {190, 4690}, {192, 4007}, {210, 3799}, {257, 3175}, {319, 524}, {320, 4665}, {321, 668}, {333, 4595}, {335, 3696}, {346, 17331}, {391, 17339}, {536, 17254}, {597, 17121}, {740, 27495}, {754, 3578}, {760, 3681}, {956, 16431}, {966, 17242}, {1018, 3219}, {1213, 17315}, {1268, 28639}, {1278, 17272}, {1654, 2321}, {1992, 2345}, {2796, 6653}, {3212, 4654}, {3619, 4371}, {3620, 32087}, {3631, 7321}, {3644, 17253}, {3662, 21356}, {3686, 17280}, {3707, 4473}, {3729, 17343}, {3739, 17295}, {3746, 19237}, {3758, 15534}, {3759, 17293}, {3761, 28605}, {3773, 6651}, {3875, 17238}, {3879, 28604}, {3943, 17256}, {3948, 25280}, {3995, 17497}, {4034, 17286}, {4058, 4416}, {4060, 4357}, {4133, 9791}, {4360, 17239}, {4361, 17228}, {4363, 15533}, {4385, 7841}, {4399, 16706}, {4431, 6646}, {4482, 4803}, {4527, 24697}, {4659, 4741}, {4664, 17251}, {4686, 17273}, {4687, 17309}, {4688, 17297}, {4699, 17296}, {4708, 4727}, {4740, 17274}, {4751, 17311}, {4764, 17255}, {4772, 17298}, {4821, 4862}, {4852, 17307}, {4912, 17344}, {4933, 32917}, {4967, 17300}, {4971, 17320}, {4980, 20911}, {5015, 8370}, {5032, 5749}, {5224, 17299}, {5232, 17247}, {5263, 28538}, {5295, 17677}, {5687, 16436}, {5839, 17368}, {6539, 31013}, {6999, 11362}, {7229, 20080}, {7245, 18827}, {8584, 17369}, {9041, 26582}, {9881, 32932}, {10436, 17373}, {11160, 17364}, {15668, 17386}, {17118, 17361}, {17119, 17227}, {17151, 17236}, {17160, 17237}, {17229, 17268}, {17233, 17260}, {17234, 28634}, {17240, 17259}, {17248, 17314}, {17250, 17318}, {17262, 17328}, {17264, 17330}, {17269, 17335}, {17281, 17346}, {17285, 17348}, {17303, 17377}, {17322, 17388}, {17327, 17393}, {17375, 25590}, {17390, 28653}, {17743, 19723}, {18040, 20174}, {20432, 20955}, {20533, 24393}, {21031, 26019}, {24709, 32045}
X(29616) lies on these lines: {1, 2}, {7, 2321}, {9, 32099}, {37, 4748}, {57, 32003}, {63, 728}, {69, 144}, {75, 4869}, {85, 321}, {141, 3672}, {142, 4007}, {192, 3620}, {193, 17280}, {226, 31994}, {241, 4515}, {312, 10405}, {319, 344}, {320, 4454}, {322, 1229}, {329, 2391}, {335, 1278}, {390, 3416}, {524, 17269}, {527, 4873}, {536, 4346}, {594, 4648}, {599, 3943}, {644, 23151}, {668, 28809}, {952, 7397}, {966, 4445}, {1043, 14953}, {1100, 4916}, {1121, 30566}, {1317, 31230}, {1482, 7402}, {1978, 20023}, {1992, 17354}, {2325, 6172}, {2345, 3945}, {2968, 25932}, {3161, 4416}, {3618, 17285}, {3619, 4360}, {3631, 17262}, {3662, 4452}, {3664, 7229}, {3686, 18230}, {3693, 24635}, {3695, 14021}, {3696, 27475}, {3714, 5261}, {3729, 20059}, {3763, 17388}, {3797, 31302}, {3871, 11343}, {3879, 5749}, {3930, 7146}, {3932, 5686}, {3936, 31043}, {3940, 30809}, {3946, 4460}, {3950, 17272}, {3965, 26669}, {3969, 6604}, {3975, 25278}, {4000, 17231}, {4021, 4898}, {4034, 6666}, {4035, 5226}, {4046, 26040}, {4058, 25590}, {4080, 5485}, {4101, 27129}, {4208, 5295}, {4307, 32846}, {4310, 33087}, {4358, 30854}, {4371, 17278}, {4389, 21356}, {4399, 17265}, {4402, 17282}, {4417, 31014}, {4431, 17298}, {4441, 20917}, {4470, 17392}, {4478, 17259}, {4555, 30225}, {4644, 17281}, {4665, 17313}, {4671, 30806}, {4720, 16054}, {4727, 17301}, {4741, 20073}, {4747, 17378}, {4781, 28877}, {4966, 11038}, {4971, 17290}, {5129, 5814}, {5278, 30711}, {5296, 17270}, {5372, 31039}, {5564, 17241}, {5687, 11349}, {5739, 31049}, {5839, 17279}, {6327, 28885}, {6999, 20070}, {7222, 17376}, {7291, 17742}, {7490, 12135}, {9965, 32863}, {10005, 27484}, {11160, 20072}, {11342, 19742}, {12645, 19512}, {14552, 17776}, {14829, 31016}, {16050, 16704}, {17151, 21255}, {17228, 17315}, {17232, 26582}, {17242, 17257}, {17264, 17360}, {17267, 17362}, {17268, 17363}, {17289, 17386}, {17293, 17390}, {17350, 20080}, {17375, 32093}, {17395, 21358}, {17740, 24593}, {17784, 33078}, {18600, 30965}, {18743, 25280}, {20173, 26563}, {20337, 23942}, {20880, 28605}, {22008, 26125}, {24349, 27474}, {24616, 32849}, {26601, 31037}, {27108, 28778}, {28635, 31238}, {31032, 31058}
X(29616) = anticomplement of X(5222)
X(29617) lies on these lines: {1, 2}, {6, 5564}, {7, 11160}, {37, 28329}, {63, 8591}, {69, 4371}, {75, 524}, {76, 25298}, {86, 28634}, {142, 17373}, {192, 3686}, {193, 17116}, {319, 599}, {320, 15533}, {321, 598}, {335, 9041}, {348, 25726}, {391, 17261}, {527, 4740}, {528, 31349}, {536, 17333}, {538, 3578}, {553, 3212}, {591, 32802}, {594, 597}, {730, 32860}, {740, 27481}, {894, 1992}, {956, 16436}, {966, 17319}, {1086, 4405}, {1213, 17393}, {1266, 4741}, {1278, 4416}, {1449, 28604}, {1573, 22184}, {1654, 3875}, {1931, 4921}, {1991, 32801}, {2321, 17339}, {2345, 17121}, {3175, 21879}, {3219, 7349}, {3416, 32029}, {3620, 4402}, {3644, 17332}, {3663, 17343}, {3664, 4772}, {3672, 17252}, {3681, 14839}, {3696, 28538}, {3739, 17377}, {3758, 4665}, {3765, 17143}, {3790, 4366}, {3813, 26019}, {3879, 4699}, {3886, 6651}, {3913, 16367}, {3943, 17335}, {3946, 4545}, {3948, 17144}, {4000, 17287}, {4007, 17280}, {4060, 17353}, {4102, 17743}, {4360, 17248}, {4363, 15534}, {4385, 8370}, {4389, 4690}, {4395, 17227}, {4398, 17344}, {4431, 17350}, {4433, 23407}, {4437, 32096}, {4445, 16706}, {4457, 24631}, {4464, 5257}, {4473, 4873}, {4478, 17228}, {4643, 17160}, {4657, 32025}, {4659, 20072}, {4664, 4971}, {4686, 4912}, {4687, 17388}, {4688, 4725}, {4709, 28562}, {4751, 17390}, {4764, 17334}, {4851, 27147}, {4852, 5224}, {4889, 31238}, {4967, 17379}, {5015, 7841}, {5032, 17120}, {5232, 17324}, {5687, 16431}, {5814, 17677}, {5853, 27484}, {5854, 27489}, {5860, 32798}, {5861, 32797}, {5881, 6999}, {6646, 17151}, {7179, 7840}, {7222, 11008}, {7227, 20583}, {7263, 17361}, {7384, 7982}, {8666, 19308}, {11329, 12513}, {16481, 32943}, {16884, 28653}, {17147, 17497}, {17229, 17352}, {17233, 17338}, {17234, 17372}, {17239, 17380}, {17240, 17337}, {17242, 17277}, {17245, 17386}, {17246, 17328}, {17250, 17395}, {17251, 17320}, {17256, 17318}, {17259, 17315}, {17260, 17314}, {17263, 17309}, {17270, 17302}, {17271, 17301}, {17278, 17295}, {17288, 32099}, {17375, 24199}, {17392, 28337}, {17448, 24598}, {17488, 28301}, {17765, 27474}, {17769, 27495}, {20080, 31995}, {20090, 25590}, {20142, 32941}, {20913, 24524}, {21873, 24077}, {26582, 32108}, {27184, 31143}
X(29618) lies on these lines: {1, 2}, {190, 4851}, {335, 3644}, {3629, 4437}, {3662, 17311}, {3879, 17339}, {3943, 17387}, {3950, 17375}, {4029, 4741}, {4659, 17300}, {4670, 17233}, {4748, 17287}, {4796, 17378}, {4889, 17352}, {4916, 17121}, {17231, 17396}, {17240, 17368}, {17241, 17388}, {17243, 17335}, {17247, 17296}, {17248, 17295}, {17299, 27147}, {17309, 17317}, {17312, 17314}, {17331, 17373}, {17333, 17374}, {17338, 17377}
X(29619) lies on these lines: {1, 2}, {335, 31342}, {894, 3943}, {1100, 17268}, {1266, 17300}, {1278, 4898}, {3247, 17252}, {3723, 17295}, {3834, 4360}, {3879, 4029}, {3950, 20090}, {4389, 4851}, {4788, 4888}, {4889, 17277}, {4916, 17363}, {16672, 17360}, {16673, 17343}, {16674, 17328}, {16777, 17250}, {16884, 17240}, {17116, 17314}, {17117, 17317}, {17120, 17242}, {17121, 17243}, {17228, 25503}, {17254, 17374}, {17260, 17377}, {17291, 17311}, {17296, 17324}, {17309, 17394}, {17318, 17387}, {17364, 20073}, {17396, 26104}, {25264, 31061}
X(29620) lies on these lines: {1, 2}, {524, 17260}, {597, 17263}, {599, 4687}, {1992, 17391}, {3742, 3799}, {4648, 17261}, {4698, 17287}, {4755, 17297}, {5032, 18230}, {11160, 17331}, {15533, 17387}, {15534, 17335}, {15668, 17268}, {17132, 26806}, {17234, 17324}, {17241, 17326}, {17245, 17319}, {17248, 21356}, {17254, 17313}, {17256, 22165}, {17288, 27268}, {17322, 20582}, {20090, 25072}
X(29621) lies on these lines: {1, 2}, {37, 4869}, {142, 4452}, {144, 17300}, {192, 4373}, {329, 25729}, {344, 3758}, {346, 4363}, {391, 4851}, {894, 30712}, {966, 17311}, {3161, 3664}, {3620, 27268}, {3672, 17234}, {3731, 21296}, {3879, 18230}, {3950, 31995}, {3993, 7613}, {4029, 6173}, {4059, 25237}, {4098, 4862}, {4307, 4432}, {4346, 4664}, {4402, 20195}, {4419, 7238}, {4454, 4675}, {4461, 17242}, {4470, 17269}, {4488, 4888}, {4552, 30275}, {4687, 5232}, {4747, 17392}, {4748, 4755}, {4772, 27474}, {4821, 27478}, {4916, 17348}, {5226, 9312}, {5296, 17296}, {7198, 21454}, {7967, 19512}, {8165, 30812}, {9965, 14021}, {11038, 16593}, {16053, 16704}, {16673, 21255}, {17119, 17245}, {17241, 17321}, {17257, 17312}, {17261, 20059}, {17385, 28641}, {17391, 26685}
X(29622) lies on these lines: {1, 2}, {37, 4912}, {86, 17339}, {524, 4687}, {597, 17338}, {599, 17248}, {1992, 17260}, {3986, 17375}, {4648, 17247}, {4664, 28297}, {4698, 17363}, {4699, 17133}, {4704, 17132}, {4755, 17378}, {4851, 31144}, {5296, 11160}, {6205, 27003}, {6707, 17240}, {7321, 16674}, {7621, 33133}, {8584, 17335}, {15533, 17256}, {15668, 17242}, {16673, 26806}, {16777, 27147}, {17241, 20582}, {17245, 17396}, {17285, 28640}, {17312, 21356}, {17322, 21358}, {17333, 17392}, {17364, 27268}, {17368, 28639}, {17387, 22165}, {17768, 27475}, {20153, 32941}, {25430, 26109}, {27481, 28582}, {28329, 31238}, {28566, 31319}
X(29623) lies on these lines: {1, 2}, {3758, 17243}, {4363, 17242}, {4664, 7238}, {4851, 17331}, {17119, 17315}, {17228, 25358}, {17241, 17396}, {17247, 17312}, {17248, 17311}, {17333, 17387}, {17338, 17390}, {22017, 24049}
X(29624) lies on these lines: {1, 2}, {7, 3247}, {37, 144}, {57, 5543}, {81, 220}, {86, 346}, {190, 4747}, {193, 27268}, {226, 3160}, {241, 21454}, {277, 27789}, {279, 1255}, {335, 4704}, {344, 17394}, {390, 15569}, {391, 4687}, {948, 26738}, {966, 17390}, {1002, 4517}, {1086, 3672}, {1442, 8232}, {1449, 18230}, {1743, 4909}, {2345, 4798}, {3295, 11349}, {3598, 7146}, {3618, 4437}, {3664, 16673}, {3713, 24557}, {3723, 4000}, {3871, 16412}, {3879, 5296}, {3943, 4470}, {3950, 7229}, {3995, 25242}, {4007, 5936}, {4346, 4675}, {4359, 17158}, {4371, 31238}, {4373, 26806}, {4419, 16672}, {4452, 17319}, {4454, 4664}, {4461, 10436}, {4473, 17379}, {4665, 15668}, {4667, 6172}, {4681, 7222}, {4682, 5281}, {4698, 5839}, {4708, 4851}, {4748, 17374}, {4869, 17227}, {4898, 31312}, {4916, 17275}, {5219, 31721}, {5228, 31016}, {5257, 32099}, {5712, 31049}, {5719, 30809}, {5901, 7402}, {6646, 32093}, {6707, 17309}, {7269, 8732}, {7277, 16677}, {7397, 10246}, {8025, 16050}, {9776, 20244}, {11036, 14021}, {11200, 33112}, {11319, 19719}, {11342, 19717}, {14996, 31039}, {16518, 24512}, {16572, 27065}, {16667, 25072}, {16674, 17365}, {17056, 23903}, {17152, 18141}, {17229, 28640}, {17257, 17391}, {17269, 26039}, {17303, 28641}, {18228, 25430}, {18743, 25303}, {19684, 26770}, {24590, 31393}, {24604, 24929}, {26059, 26818}
X(29625) lies on these lines: {1, 2}, {190, 4796}, {335, 4681}, {1086, 17317}, {3247, 17288}, {3723, 17291}, {4098, 31300}, {4437, 6329}, {4473, 17120}, {4644, 17261}, {4665, 17315}, {4708, 17287}, {4772, 4898}, {4798, 17233}, {4851, 17252}, {16668, 31333}, {16672, 17254}, {16673, 17375}, {16674, 17361}, {16777, 17227}, {17260, 17390}, {17268, 17394}, {17311, 17326}
X(29626) lies on these lines: {1, 2}, {37, 27191}, {142, 4440}, {192, 20195}, {344, 17116}, {894, 4422}, {3177, 30852}, {3685, 24693}, {3739, 17268}, {3834, 17254}, {4643, 17234}, {4648, 17120}, {4687, 17265}, {4698, 17283}, {4704, 4859}, {4747, 26685}, {4751, 17267}, {4755, 17305}, {4869, 17331}, {6646, 25072}, {6666, 17300}, {15668, 17341}, {17117, 17243}, {17121, 17317}, {17232, 17252}, {17241, 17259}, {17256, 31285}, {17269, 31244}, {17277, 17312}, {17278, 17319}, {17282, 17324}, {17285, 31238}, {17313, 17335}, {17351, 31333}, {17364, 18230}, {24594, 27754}, {25101, 26806}, {27776, 31029}, {30823, 30867}, {30824, 30829}
X(29627) lies on these lines: {1, 2}, {7, 190}, {9, 4869}, {57, 32098}, {69, 17241}, {85, 5226}, {141, 4748}, {142, 346}, {144, 17298}, {193, 17312}, {226, 8055}, {241, 25082}, {312, 20880}, {320, 6172}, {329, 18139}, {333, 17201}, {377, 19815}, {391, 6666}, {644, 5228}, {728, 5437}, {944, 19512}, {966, 17231}, {1441, 20946}, {1621, 21514}, {1992, 17387}, {1997, 17084}, {2321, 20195}, {2325, 4454}, {2345, 17245}, {2550, 4702}, {3243, 10005}, {3475, 5423}, {3485, 28661}, {3618, 17317}, {3619, 4687}, {3620, 17260}, {3672, 17282}, {3717, 11038}, {3731, 21255}, {3834, 4419}, {3945, 17353}, {3950, 4452}, {4000, 17243}, {4078, 4310}, {4323, 8834}, {4371, 17309}, {4402, 17278}, {4422, 4644}, {4460, 17315}, {4461, 24199}, {4470, 17359}, {4648, 4670}, {4684, 5686}, {4751, 5936}, {5253, 21526}, {5273, 18141}, {5328, 30806}, {5435, 6604}, {5731, 7397}, {5744, 14154}, {5748, 30809}, {5839, 17311}, {7155, 27431}, {7222, 17340}, {7229, 17280}, {7377, 9779}, {8236, 32850}, {9776, 17776}, {14829, 32008}, {17056, 27040}, {17232, 17257}, {17233, 32087}, {17251, 31285}, {17256, 21356}, {17268, 27147}, {17272, 25072}, {17277, 32099}, {17283, 17321}, {17300, 26685}, {17301, 31243}, {17347, 31333}, {17740, 24594}, {18134, 18228}, {20059, 25728}, {20917, 28809}, {24349, 27475}, {25263, 26132}, {26149, 27291}, {28753, 28780}, {30808, 30834}, {30830, 30866}, {30838, 30852}, {30861, 30869}
X(29627) = complement of X(24599)
X(29627) = anticomplement of X(31183)
X(29628) lies on these lines: {1, 2}, {6, 27147}, {9, 4440}, {75, 4422}, {142, 17349}, {192, 6666}, {238, 24693}, {319, 17265}, {344, 17117}, {391, 17288}, {594, 17341}, {966, 17291}, {1086, 17333}, {1213, 17370}, {1278, 25101}, {1654, 17282}, {1743, 26806}, {2140, 31053}, {2325, 4740}, {3177, 27318}, {3589, 4751}, {3662, 4643}, {3686, 17232}, {3707, 4741}, {3739, 17352}, {3759, 17245}, {3834, 17346}, {3946, 27268}, {3973, 31300}, {4000, 17247}, {4253, 21373}, {4361, 17242}, {4395, 4664}, {4398, 16814}, {4399, 17240}, {4473, 4659}, {4648, 17121}, {4665, 17342}, {4687, 17366}, {4688, 6687}, {4690, 31243}, {4698, 17380}, {4699, 17353}, {4704, 25072}, {4747, 17120}, {4772, 17355}, {4796, 16669}, {4859, 6646}, {4875, 16604}, {4967, 17358}, {4969, 17387}, {5224, 17356}, {5233, 30823}, {5257, 17383}, {5296, 17324}, {5564, 17267}, {5723, 31225}, {5748, 20111}, {5839, 17312}, {6173, 20072}, {7263, 17336}, {7321, 16885}, {9312, 31231}, {12690, 30810}, {14433, 31286}, {16593, 32096}, {16610, 24598}, {16706, 17248}, {17000, 24591}, {17063, 20456}, {17116, 26685}, {17119, 17264}, {17125, 24709}, {17227, 17330}, {17234, 17348}, {17241, 17362}, {17256, 17290}, {17261, 18230}, {17275, 17283}, {17285, 28634}, {17300, 20195}, {17343, 21255}, {17350, 24199}, {17381, 31238}, {17395, 31285}, {26724, 27184}
X(29629) lies on these lines: {1, 2}, {141, 17328}, {142, 17358}, {190, 3662}, {344, 17247}, {597, 17387}, {1086, 17342}, {3589, 17241}, {3618, 17312}, {3619, 4748}, {3763, 17248}, {3765, 30866}, {3834, 17354}, {4000, 17268}, {4078, 26150}, {4422, 17227}, {4429, 4702}, {4473, 17274}, {4659, 17280}, {4670, 17234}, {4740, 17067}, {4753, 33087}, {4767, 33122}, {4869, 17120}, {6666, 17238}, {6687, 17346}, {16706, 17242}, {17228, 17337}, {17231, 17352}, {17232, 17353}, {17233, 17356}, {17236, 25101}, {17240, 17366}, {17243, 17370}, {17245, 17371}, {17250, 20582}, {17252, 18230}, {17256, 21358}, {17264, 17290}, {17265, 17289}, {17278, 17285}, {17281, 27191}, {17288, 26685}, {17350, 21255}, {17359, 31243}, {20195, 28604}, {24594, 32779}, {27130, 27132}
X(29630) lies on these lines: {1, 2}, {6, 17227}, {9, 17324}, {37, 31333}, {44, 17254}, {45, 17399}, {86, 17356}, {141, 17121}, {190, 17382}, {320, 597}, {344, 17396}, {894, 1086}, {956, 21520}, {1100, 17283}, {1447, 7875}, {1449, 17232}, {1743, 17236}, {3212, 31231}, {3618, 3662}, {3619, 17363}, {3672, 17339}, {3751, 26150}, {3758, 17290}, {3759, 3763}, {3875, 17358}, {3946, 17280}, {4000, 17116}, {4360, 17268}, {4361, 17371}, {4422, 17320}, {4439, 33159}, {4473, 17261}, {4657, 17260}, {4665, 17117}, {4670, 27191}, {4708, 17277}, {4741, 16670}, {4798, 17278}, {4852, 17285}, {4969, 20582}, {5241, 19832}, {5687, 21527}, {6704, 17741}, {6996, 22793}, {16666, 17297}, {16667, 17375}, {16669, 17273}, {16777, 17341}, {16884, 17241}, {16885, 17249}, {17045, 17263}, {17160, 17359}, {17247, 26685}, {17252, 17306}, {17259, 17400}, {17264, 17395}, {17265, 17394}, {17267, 17393}, {17279, 17319}, {17282, 17379}, {17301, 17354}, {17304, 17350}, {17307, 17348}, {17318, 17342}, {17321, 17338}, {17322, 17337}, {17323, 17336}, {17325, 17335}, {17360, 21358}, {18107, 24601}, {20090, 21255}, {21372, 27003}, {27002, 27006}, {27011, 27078}, {27064, 32774}, {31202, 31233}
Points Castor(h,j,k,p,q): X(29631)-X(29690)
Definition: Point Castor(h,j,k,p,q,a,b,c) = f(h,j,k,p,q,a,b,c) : f(h,j,k,p,q,b,c,a) : f(h,j,k,p,q,c,a,b) (barycentrics), where
f(h,j,k,p,q,a,b,c) = h (a^3 + b^3 + c^3) + j (a^2 b + b^2 c + c^2 a + a^2 c + b^2 a + c^2 b) + k (a b c) + a (p (a^2 + b^2 + c^2) + q (b c + c a + a b)),
where h, j, k, p, q are real numbers, not all zero. These points lie on the line X(1)X(2). (Clark Kimberling, December 9, 2018)
X(29631) lies on these lines: {1, 2}, {6, 25760}, {11, 2330}, {31, 32773}, {35, 6693}, {37, 33115}, {38, 19786}, {57, 33125}, {63, 32776}, {75, 33128}, {81, 2887}, {100, 4085}, {141, 32919}, {171, 4972}, {172, 2240}, {192, 33161}, {244, 16706}, {312, 26061}, {321, 32780}, {354, 33123}, {518, 32775}, {726, 33155}, {740, 32779}, {750, 4429}, {756, 33118}, {894, 3120}, {896, 24723}, {940, 25957}, {982, 32774}, {984, 33114}, {1150, 32784}, {1211, 32864}, {1215, 33133}, {1220, 21935}, {1386, 32844}, {1468, 16062}, {1492, 14009}, {1621, 6679}, {1757, 26580}, {1962, 33116}, {2293, 27542}, {2308, 4388}, {2886, 32772}, {3218, 3821}, {3219, 4425}, {3583, 11330}, {3618, 16793}, {3666, 33119}, {3703, 32928}, {3745, 33072}, {3751, 33065}, {3758, 24725}, {3769, 33074}, {3772, 32771}, {3782, 32940}, {3791, 33075}, {3841, 25526}, {3846, 32911}, {3873, 26128}, {3891, 33169}, {3896, 33160}, {3914, 4418}, {3923, 33134}, {3925, 6703}, {3936, 4649}, {3944, 26223}, {3971, 33166}, {3980, 33131}, {3993, 32849}, {3995, 33164}, {4003, 17382}, {4026, 32917}, {4038, 18139}, {4358, 33159}, {4359, 33132}, {4360, 32848}, {4383, 25960}, {4415, 32938}, {4438, 28606}, {4514, 17469}, {4519, 17359}, {4641, 4683}, {4650, 32950}, {4660, 17126}, {4670, 24712}, {4672, 5057}, {4679, 25378}, {4697, 20292}, {4722, 33066}, {4854, 32936}, {4860, 17290}, {4970, 33168}, {5014, 17716}, {5051, 5247}, {5137, 30981}, {5263, 33136}, {5294, 24210}, {9345, 17234}, {11680, 25496}, {14829, 32781}, {14996, 25959}, {16484, 24542}, {16548, 17754}, {16704, 33082}, {17061, 32923}, {17125, 17352}, {17140, 33147}, {17147, 33167}, {17155, 19785}, {17165, 33152}, {17184, 32913}, {17592, 33113}, {17602, 32927}, {17720, 32931}, {18134, 31237}, {19684, 33111}, {19808, 21020}, {21241, 33112}, {21257, 27320}, {24165, 33150}, {24169, 27003}, {24325, 33129}, {24349, 33143}, {24512, 30969}, {24552, 33141}, {25527, 33069}, {25958, 32946}, {27184, 32912}, {28595, 33078}, {28650, 31034}, {32777, 32915}, {32782, 32853}, {32921, 33089}, {32925, 33163}, {32926, 33162}, {32933, 33154}, {32935, 33151}, {32939, 33145}
X(29632) lies on these lines: {1, 2}, {5, 30980}, {9, 33065}, {21, 30984}, {31, 18134}, {37, 32775}, {38, 33116}, {55, 25957}, {63, 33069}, {69, 16793}, {75, 33156}, {81, 6679}, {100, 3836}, {141, 16792}, {149, 21241}, {171, 18139}, {190, 32856}, {192, 33143}, {226, 32930}, {229, 13588}, {238, 3936}, {244, 32851}, {312, 33127}, {320, 896}, {321, 33130}, {333, 33081}, {345, 17155}, {354, 33119}, {518, 33115}, {726, 32849}, {740, 33129}, {748, 4417}, {750, 17234}, {756, 33126}, {846, 17184}, {851, 8299}, {902, 4645}, {968, 25527}, {982, 33113}, {984, 33122}, {1001, 25760}, {1086, 3712}, {1150, 33087}, {1155, 3834}, {1215, 33157}, {1279, 32844}, {1376, 25961}, {1621, 2887}, {1914, 2240}, {1962, 19786}, {2177, 4429}, {2308, 17778}, {2886, 32943}, {3120, 3685}, {3219, 33064}, {3454, 5259}, {3475, 33163}, {3585, 11330}, {3662, 4414}, {3666, 33123}, {3683, 4683}, {3689, 3823}, {3702, 24161}, {3703, 32923}, {3722, 21026}, {3744, 33072}, {3750, 4972}, {3772, 32915}, {3775, 5235}, {3782, 32936}, {3814, 14513}, {3846, 5284}, {3873, 4438}, {3891, 33092}, {3896, 33132}, {3923, 31019}, {3925, 32945}, {3932, 17724}, {3971, 33153}, {3977, 24231}, {3980, 27186}, {3993, 33155}, {3994, 17264}, {3995, 33152}, {4011, 31053}, {4023, 17337}, {4358, 17719}, {4359, 33160}, {4413, 17265}, {4418, 5249}, {4423, 25960}, {4427, 32857}, {4432, 4892}, {4442, 4693}, {4465, 16597}, {4521, 4893}, {4640, 33067}, {4660, 25959}, {4676, 24725}, {4760, 24699}, {4966, 32919}, {4970, 33150}, {5014, 17715}, {5087, 24709}, {5233, 17125}, {5278, 33084}, {5718, 32944}, {5741, 17123}, {6327, 8616}, {6690, 32918}, {7262, 32859}, {11374, 25591}, {16468, 31034}, {17056, 32772}, {17061, 32928}, {17127, 32946}, {17140, 33167}, {17147, 33147}, {17165, 33164}, {17243, 17602}, {17279, 17718}, {17469, 33073}, {17491, 31029}, {17592, 32774}, {17594, 33125}, {17717, 30834}, {17776, 32925}, {17889, 32929}, {20337, 33329}, {24165, 33168}, {24325, 32779}, {24349, 33161}, {24552, 33111}, {24602, 26629}, {24789, 32860}, {24988, 31252}, {26128, 28606}, {31017, 33082}, {31237, 32773}, {32771, 32777}, {32848, 32922}, {32862, 32920}, {32916, 33172}, {32933, 33103}, {32934, 33146}, {32941, 33108}, {32942, 33105}
X(29633) lies on these lines: {1, 2}, {6, 32784}, {12, 1429}, {35, 1009}, {36, 19890}, {37, 33159}, {44, 24697}, {46, 3496}, {58, 2239}, {69, 28650}, {81, 32781}, {83, 16889}, {86, 3836}, {141, 4649}, {191, 672}, {192, 26083}, {238, 3589}, {291, 3670}, {350, 1089}, {442, 19557}, {451, 2356}, {518, 17384}, {594, 4716}, {597, 16477}, {726, 17302}, {740, 17289}, {846, 5294}, {894, 3821}, {940, 33174}, {942, 20715}, {984, 4657}, {1100, 3844}, {1215, 19786}, {1329, 2329}, {1386, 33076}, {1575, 25068}, {1580, 5051}, {1738, 5750}, {1757, 4357}, {1788, 19930}, {1930, 28611}, {1962, 33157}, {1973, 5142}, {2238, 5280}, {2308, 33083}, {3061, 26066}, {3579, 13632}, {3618, 16468}, {3666, 32780}, {3685, 24295}, {3696, 17385}, {3703, 17600}, {3745, 33079}, {3746, 8299}, {3751, 17306}, {3754, 19894}, {3758, 4655}, {3763, 33087}, {3773, 4360}, {3775, 17307}, {3790, 17396}, {3826, 16503}, {3842, 17322}, {3923, 17368}, {3932, 17045}, {3989, 33166}, {3993, 17280}, {4085, 5263}, {4363, 33149}, {4389, 32935}, {4425, 27064}, {4429, 17381}, {4658, 30965}, {4663, 17237}, {4670, 24699}, {4672, 24723}, {4697, 33068}, {4972, 32772}, {5220, 17325}, {5247, 13728}, {5251, 16850}, {5264, 12194}, {5299, 24512}, {5439, 28600}, {5445, 19931}, {5625, 17317}, {5749, 24248}, {5903, 19927}, {6210, 14561}, {6536, 27065}, {6541, 17319}, {6682, 33121}, {6684, 18788}, {6703, 17122}, {7146, 24914}, {7951, 16788}, {8193, 16058}, {8258, 17799}, {9278, 19936}, {13407, 20335}, {13624, 13633}, {15569, 17357}, {15988, 25010}, {16706, 24325}, {16786, 31151}, {17120, 17770}, {17245, 31252}, {17260, 25354}, {17273, 17771}, {17380, 32921}, {17383, 24349}, {17592, 32777}, {17599, 33169}, {19684, 25957}, {19717, 32949}, {19743, 20290}, {19950, 19977}, {19997, 27918}, {20182, 33092}, {20269, 24174}, {25496, 32773}, {26061, 28606}, {26223, 32776}, {28595, 33073}, {31264, 33133}, {31993, 33132}, {32771, 32774}
X(29634) lies on these lines: {1, 2}, {6, 33126}, {31, 4683}, {55, 19786}, {75, 17061}, {81, 33122}, {86, 7179}, {100, 32774}, {141, 3769}, {165, 17304}, {171, 3662}, {183, 17322}, {312, 17602}, {325, 17394}, {385, 17248}, {675, 29022}, {750, 33123}, {846, 17247}, {894, 33144}, {902, 32776}, {940, 33124}, {968, 1281}, {984, 6679}, {1196, 21827}, {1215, 17368}, {1376, 16706}, {1386, 4417}, {1447, 17321}, {1469, 3794}, {1478, 26096}, {1621, 4220}, {1707, 6646}, {2308, 33065}, {2887, 17716}, {3052, 24723}, {3242, 33121}, {3314, 17391}, {3550, 3821}, {3618, 25568}, {3740, 17352}, {3744, 32773}, {3745, 18134}, {3772, 5263}, {3790, 32777}, {3791, 17363}, {3891, 32779}, {3923, 33152}, {3946, 4734}, {3966, 30832}, {3967, 17354}, {3971, 17339}, {3980, 33147}, {4026, 19812}, {4104, 17349}, {4195, 13161}, {4199, 23407}, {4296, 27532}, {4307, 26132}, {4385, 17698}, {4389, 4640}, {4415, 4676}, {4418, 33143}, {4425, 8616}, {4434, 33174}, {4512, 9791}, {4518, 17724}, {4645, 5269}, {4672, 33101}, {4682, 17234}, {4687, 7792}, {4697, 33103}, {5133, 15666}, {5248, 30362}, {5253, 19649}, {5266, 16062}, {5294, 32937}, {5296, 5304}, {6676, 20254}, {7262, 17333}, {7766, 17331}, {7868, 17317}, {7875, 17338}, {9347, 18139}, {14458, 30588}, {14614, 17256}, {16989, 17260}, {16990, 17326}, {17126, 17184}, {17127, 26580}, {17242, 33158}, {17302, 17594}, {17353, 27538}, {17364, 33064}, {17396, 17592}, {17469, 25760}, {17599, 32851}, {17719, 25496}, {17720, 32942}, {19785, 32932}, {24552, 33133}, {26061, 32927}, {26223, 33153}, {30811, 33073}, {30831, 33070}, {31237, 33072}, {32772, 33127}, {32780, 32920}, {32921, 33160}, {32928, 33156}, {32929, 33155}, {32941, 33135}, {32945, 33128}
X(29635) lies on these lines: {1, 2}, {6, 3846}, {11, 5150}, {37, 4438}, {57, 3821}, {63, 4425}, {75, 33135}, {81, 25760}, {86, 33111}, {171, 4660}, {192, 33167}, {244, 32774}, {312, 32780}, {345, 3993}, {354, 26128}, {750, 4972}, {756, 33114}, {894, 3944}, {940, 2887}, {982, 19786}, {984, 33121}, {993, 4199}, {1001, 6679}, {1211, 32853}, {1215, 17720}, {1376, 4085}, {1468, 5051}, {1766, 17754}, {1836, 4697}, {1962, 33113}, {2276, 25078}, {2886, 6703}, {3218, 32776}, {3306, 24169}, {3589, 3816}, {3664, 4138}, {3718, 30963}, {3745, 4865}, {3758, 33096}, {3769, 33076}, {3772, 24325}, {3791, 3966}, {3838, 4670}, {3848, 17356}, {3873, 32775}, {3914, 3980}, {3923, 24210}, {3971, 33163}, {3995, 33161}, {4011, 5294}, {4026, 32916}, {4038, 18134}, {4358, 26061}, {4359, 33128}, {4360, 32855}, {4415, 32935}, {4417, 4649}, {4418, 33134}, {4429, 17122}, {4514, 17716}, {4641, 4703}, {4650, 24723}, {4657, 6682}, {4672, 24703}, {4854, 32934}, {4970, 17740}, {5248, 6693}, {5263, 33141}, {5269, 17766}, {8167, 31289}, {8258, 12514}, {9284, 23543}, {9345, 18139}, {9347, 33072}, {10436, 17064}, {10601, 26010}, {11680, 32772}, {12579, 31424}, {12609, 21621}, {13478, 29046}, {14829, 32784}, {14996, 25958}, {16706, 17063}, {17073, 20254}, {17126, 32947}, {17140, 33143}, {17155, 33155}, {17302, 17591}, {17304, 18193}, {17592, 32851}, {17602, 32920}, {18743, 33159}, {19540, 22753}, {19684, 33105}, {19701, 31245}, {19755, 25639}, {19785, 24165}, {19804, 33132}, {21949, 24693}, {24217, 32942}, {24349, 33152}, {24512, 30953}, {25960, 32911}, {26105, 26939}, {26580, 32912}, {27003, 33125}, {27184, 32913}, {28606, 33119}, {30832, 33084}, {32771, 33133}, {32779, 32915}, {32782, 32919}, {32925, 33170}, {32926, 33169}, {32928, 33089}, {32939, 33154}, {32940, 33151}
X(29636) lies on these lines: {1, 2}, {6, 32775}, {31, 19786}, {81, 26128}, {171, 32774}, {750, 16706}, {894, 33143}, {896, 4389}, {940, 33123}, {1155, 17382}, {1386, 25760}, {2308, 27184}, {3589, 17602}, {3712, 17395}, {3745, 25957}, {3758, 32856}, {3769, 32781}, {3772, 32772}, {3791, 32782}, {3821, 17126}, {3836, 9347}, {3891, 32780}, {3923, 33155}, {3980, 33150}, {3994, 17354}, {4360, 33156}, {4414, 17302}, {4418, 19785}, {4425, 17127}, {4649, 33122}, {4657, 32917}, {4671, 24295}, {4672, 33151}, {4682, 25961}, {4697, 33146}, {4972, 17716}, {5051, 16478}, {5137, 16792}, {5263, 33128}, {5269, 32948}, {5294, 32925}, {6679, 28606}, {9465, 16600}, {16468, 26580}, {16475, 32843}, {17061, 32771}, {17301, 32845}, {17469, 32773}, {17599, 33119}, {17600, 33113}, {17720, 32944}, {19684, 33130}, {19823, 24248}, {24552, 33135}, {25496, 33133}, {25527, 32949}, {26061, 32926}, {26223, 33152}, {31237, 33073}, {32777, 32928}, {32779, 32921}
X(29637) lies on these lines: {1, 2}, {6, 33087}, {31, 33085}, {35, 6292}, {36, 1009}, {38, 33157}, {55, 33174}, {58, 30965}, {69, 16468}, {141, 238}, {142, 24342}, {192, 26150}, {244, 32779}, {291, 3953}, {304, 30963}, {312, 26128}, {319, 4974}, {320, 4672}, {321, 33123}, {345, 17591}, {350, 1930}, {354, 32780}, {518, 17357}, {524, 16477}, {595, 2239}, {672, 6763}, {726, 17280}, {740, 16706}, {748, 32782}, {894, 24295}, {902, 33086}, {946, 18788}, {966, 16779}, {982, 32777}, {984, 17279}, {1001, 3763}, {1008, 30953}, {1211, 17123}, {1213, 16503}, {1215, 33124}, {1229, 23689}, {1279, 3844}, {1386, 17231}, {1429, 5433}, {1458, 28780}, {1621, 32781}, {1757, 17353}, {2238, 5299}, {2308, 32863}, {2329, 4999}, {2887, 32942}, {3061, 25681}, {3242, 33165}, {3338, 17742}, {3579, 13633}, {3589, 4649}, {3618, 28650}, {3619, 15485}, {3662, 3923}, {3666, 33158}, {3685, 3821}, {3696, 17356}, {3703, 17598}, {3706, 33132}, {3712, 17593}, {3744, 33079}, {3752, 33160}, {3773, 17285}, {3775, 17277}, {3813, 19589}, {3825, 30993}, {3826, 31252}, {3836, 5263}, {3842, 17263}, {3864, 12263}, {3873, 26061}, {3936, 32944}, {3944, 25527}, {3969, 32924}, {3993, 17302}, {4011, 27184}, {4022, 4283}, {4026, 16484}, {4279, 28256}, {4334, 28739}, {4358, 32775}, {4365, 33150}, {4368, 17192}, {4383, 33084}, {4387, 33154}, {4392, 33161}, {4423, 16846}, {4429, 32941}, {4432, 24723}, {4514, 28595}, {4527, 17160}, {4655, 4676}, {4657, 25539}, {4671, 33143}, {4679, 24701}, {4716, 17366}, {4850, 33156}, {4972, 32943}, {5259, 16850}, {5280, 24512}, {5294, 32913}, {5506, 16550}, {5695, 17290}, {6541, 17268}, {6679, 14829}, {6682, 33116}, {7146, 11375}, {7515, 18639}, {7741, 30959}, {8193, 16059}, {8616, 26034}, {10069, 25532}, {10483, 11355}, {11680, 31237}, {11814, 30867}, {12047, 20335}, {12410, 16409}, {13624, 13632}, {15254, 17237}, {15569, 17384}, {16475, 17296}, {16786, 17330}, {17127, 33080}, {17184, 32930}, {17200, 30941}, {17233, 32921}, {17288, 17770}, {17289, 24325}, {17295, 17772}, {17326, 25354}, {17354, 32935}, {17355, 24231}, {17358, 24349}, {17369, 25557}, {17449, 33170}, {17469, 33078}, {17597, 33169}, {17599, 33092}, {17717, 30811}, {17719, 30818}, {17793, 21336}, {18134, 25496}, {18139, 32772}, {18208, 30982}, {21020, 26724}, {21264, 24161}, {21330, 28288}, {24169, 32932}, {24542, 32917}, {24552, 25957}, {25531, 30832}, {25959, 33104}, {26223, 33069}, {27064, 33064}, {31017, 32843}, {32774, 32915}, {32911, 33081}, {32929, 33125}, {32931, 33122}
X(29638) lies on these lines: {1, 2}, {31, 320}, {55, 17290}, {210, 6687}, {238, 33065}, {748, 33126}, {902, 3662}, {984, 24542}, {1001, 20999}, {1279, 25760}, {1621, 26128}, {2177, 16706}, {2325, 32925}, {3052, 33067}, {3242, 33115}, {3685, 33143}, {3689, 17356}, {3722, 4429}, {3744, 25957}, {3749, 32948}, {3750, 32774}, {3772, 32943}, {3873, 6679}, {3891, 33158}, {3923, 33148}, {4011, 30578}, {4046, 4405}, {4070, 26242}, {4358, 17725}, {4395, 32860}, {4432, 33151}, {4514, 31237}, {4676, 32856}, {4972, 17715}, {7290, 32843}, {8616, 17184}, {15485, 26580}, {16796, 32917}, {17061, 32915}, {17127, 33064}, {17279, 32927}, {17352, 21805}, {17354, 31161}, {17360, 33081}, {17364, 21747}, {17369, 32771}, {17380, 21806}, {17469, 18134}, {17597, 33119}, {17598, 33113}, {17716, 18139}, {17718, 32944}, {17722, 30834}, {17724, 32931}, {17766, 25959}, {17770, 30653}, {23812, 30589}, {24552, 33130}, {24789, 32945}, {25527, 32947}, {25961, 31243}, {30811, 32844}, {32777, 32923}, {32920, 33157}, {32922, 33156}, {32929, 33147}, {32930, 33144}, {32941, 33129}, {32942, 33127}
X(29639) lies on these lines: {1, 2}, {5, 1072}, {6, 17723}, {11, 37}, {25, 23361}, {31, 5745}, {36, 7465}, {38, 226}, {45, 4679}, {63, 24695}, {86, 4563}, {142, 244}, {225, 427}, {228, 21321}, {238, 17722}, {240, 30687}, {325, 24348}, {333, 33071}, {354, 17056}, {377, 988}, {442, 23536}, {496, 6051}, {497, 968}, {516, 4414}, {518, 5718}, {527, 24725}, {528, 4689}, {726, 4054}, {740, 21242}, {750, 1471}, {756, 3452}, {846, 33106}, {858, 11809}, {908, 984}, {946, 2292}, {950, 10448}, {956, 5725}, {980, 23682}, {982, 5249}, {1001, 17721}, {1068, 8889}, {1070, 1368}, {1086, 4003}, {1104, 24953}, {1107, 9284}, {1150, 5847}, {1386, 17726}, {1390, 2006}, {1468, 5717}, {1738, 4850}, {1962, 24386}, {1985, 5283}, {2082, 31405}, {2177, 5853}, {2223, 30944}, {2321, 32848}, {2323, 5276}, {2476, 13161}, {2650, 24391}, {2886, 3666}, {2887, 6682}, {2968, 23529}, {3012, 16051}, {3120, 3663}, {3218, 33112}, {3219, 33107}, {3242, 17718}, {3264, 4485}, {3434, 17594}, {3670, 12609}, {3677, 25525}, {3717, 32931}, {3742, 25137}, {3743, 24387}, {3744, 6690}, {3752, 3925}, {3755, 33136}, {3756, 17245}, {3772, 17599}, {3782, 3838}, {3815, 8609}, {3817, 3989}, {3821, 21241}, {3826, 16610}, {3879, 32919}, {3883, 32844}, {3923, 3977}, {3931, 24390}, {3932, 30818}, {3943, 4519}, {3946, 33128}, {3966, 5737}, {3999, 25557}, {4001, 32946}, {4035, 33081}, {4078, 4358}, {4104, 4981}, {4124, 21332}, {4138, 17184}, {4197, 24178}, {4220, 5322}, {4224, 5310}, {4300, 6245}, {4307, 5744}, {4343, 24389}, {4353, 33143}, {4357, 25760}, {4392, 24231}, {4415, 17605}, {4416, 32843}, {4438, 5294}, {4447, 30979}, {4645, 24627}, {4653, 7474}, {4675, 4860}, {4865, 32916}, {5015, 19270}, {5094, 23710}, {5219, 7174}, {5263, 32851}, {5266, 7483}, {5542, 17449}, {5710, 26066}, {5712, 24477}, {5713, 12704}, {5716, 30478}, {5791, 16466}, {5880, 17595}, {5988, 25094}, {6636, 14794}, {6666, 17125}, {6692, 17124}, {7179, 22464}, {7226, 31053}, {7322, 30827}, {7736, 8557}, {8758, 30739}, {10129, 33151}, {10267, 16434}, {10473, 26893}, {10902, 19649}, {11249, 19544}, {11680, 24210}, {12595, 17728}, {14022, 16601}, {14829, 33073}, {16475, 24597}, {16887, 30984}, {17064, 19785}, {17261, 17777}, {17263, 25531}, {17353, 32944}, {17355, 33161}, {17447, 18210}, {17591, 17889}, {17592, 33141}, {17593, 24715}, {17596, 33109}, {17598, 33130}, {17600, 33135}, {17781, 33096}, {21073, 25092}, {21333, 21807}, {21805, 24393}, {23675, 25466}, {23677, 24186}, {24552, 33113}, {25068, 31406}, {26725, 26728}, {27747, 28503}, {30767, 30784}, {30770, 30780}, {30776, 30782}, {30778, 30783}, {30834, 33122}, {31264, 33162}, {31266, 33144}, {32772, 33119}, {32918, 33072}, {32942, 33116}
X(29640) lies on these lines: {1, 2}, {11, 16484}, {35, 851}, {36, 30944}, {37, 17719}, {55, 33109}, {142, 1054}, {171, 6690}, {225, 4213}, {226, 846}, {238, 5718}, {392, 30986}, {902, 33112}, {968, 3944}, {984, 17718}, {1001, 17717}, {1086, 17593}, {1215, 33116}, {1279, 17722}, {1478, 30943}, {1621, 33105}, {1936, 5432}, {1962, 33133}, {1985, 7951}, {2006, 30571}, {2177, 33108}, {2323, 24512}, {2886, 3750}, {3035, 17245}, {3585, 14956}, {3666, 33130}, {3683, 33096}, {3685, 25385}, {3743, 24160}, {3772, 17592}, {3822, 4653}, {3838, 33095}, {3931, 24161}, {3936, 32917}, {3989, 33153}, {4192, 10902}, {4210, 14794}, {4331, 5226}, {4414, 31019}, {4424, 26725}, {4519, 27747}, {4640, 33097}, {4689, 24715}, {4892, 24723}, {5247, 6675}, {5249, 17596}, {5737, 33084}, {5745, 32913}, {5880, 17601}, {6682, 33124}, {8616, 26098}, {10267, 19540}, {10590, 30971}, {16059, 26357}, {17061, 17600}, {17261, 21093}, {17263, 24003}, {17594, 17889}, {18134, 32916}, {18139, 32918}, {18201, 25557}, {24325, 32851}, {24542, 32944}, {24597, 28650}, {24725, 26738}, {25760, 30834}, {28606, 33127}, {30811, 32784}, {31245, 33141}, {31264, 33157}, {31993, 33160}, {32771, 33113}
X(29641) lies on these lines: {1, 2}, {6, 33073}, {9, 4071}, {11, 18743}, {12, 341}, {21, 5300}, {25, 5174}, {31, 33072}, {33, 27542}, {37, 32773}, {38, 3662}, {51, 25306}, {55, 25494}, {63, 4645}, {75, 3703}, {81, 33114}, {92, 427}, {100, 4224}, {141, 25134}, {171, 4438}, {181, 7672}, {190, 1836}, {192, 3914}, {194, 23682}, {210, 4417}, {226, 3717}, {238, 4865}, {244, 25961}, {305, 561}, {312, 2886}, {318, 25985}, {319, 4042}, {321, 3790}, {322, 325}, {329, 27549}, {333, 3416}, {334, 17149}, {344, 497}, {345, 2550}, {354, 17234}, {355, 7413}, {388, 9369}, {405, 5015}, {442, 4385}, {495, 4737}, {511, 25308}, {518, 18134}, {536, 21949}, {537, 33103}, {726, 17889}, {740, 32865}, {748, 17338}, {750, 33119}, {752, 7262}, {756, 25760}, {846, 4660}, {894, 33163}, {908, 27538}, {940, 33121}, {946, 19582}, {958, 7270}, {982, 3836}, {984, 2887}, {1001, 4514}, {1086, 4884}, {1150, 33078}, {1215, 33111}, {1265, 3485}, {1376, 32851}, {1478, 26032}, {1621, 5014}, {1699, 17777}, {1707, 20101}, {1738, 3210}, {1757, 32946}, {1997, 10589}, {2092, 26242}, {2273, 5276}, {2276, 20483}, {2476, 3701}, {2897, 26260}, {2899, 3091}, {3100, 27521}, {3120, 32925}, {3136, 3948}, {3161, 9812}, {3219, 6327}, {3242, 33124}, {3290, 21857}, {3294, 22009}, {3295, 5100}, {3434, 3685}, {3436, 26052}, {3666, 4429}, {3677, 17282}, {3681, 3936}, {3690, 3869}, {3695, 31419}, {3704, 9710}, {3706, 17233}, {3740, 5233}, {3751, 17778}, {3752, 3823}, {3772, 32926}, {3779, 5208}, {3816, 30829}, {3826, 19804}, {3834, 21342}, {3838, 3967}, {3868, 10822}, {3873, 4260}, {3888, 26892}, {3891, 33129}, {3917, 25279}, {3923, 33109}, {3944, 3971}, {3952, 31053}, {3966, 17277}, {3980, 33167}, {3989, 17247}, {3992, 7951}, {3995, 33134}, {4009, 17605}, {4011, 33106}, {4035, 24393}, {4078, 24210}, {4085, 17592}, {4197, 4968}, {4307, 26065}, {4318, 28776}, {4358, 11680}, {4359, 33089}, {4383, 33071}, {4387, 17264}, {4414, 32948}, {4418, 33161}, {4423, 17263}, {4664, 4854}, {4680, 5251}, {4683, 17333}, {4892, 33101}, {4894, 5259}, {4901, 25525}, {4972, 28606}, {4981, 32782}, {5016, 5260}, {5220, 33066}, {5226, 5423}, {5249, 24349}, {5263, 32777}, {5278, 33075}, {5310, 17522}, {5687, 25514}, {5880, 32939}, {6350, 7386}, {6376, 20486}, {6679, 17716}, {6682, 33174}, {7174, 25527}, {7226, 17184}, {7385, 9548}, {8055, 9779}, {8616, 17766}, {8715, 25495}, {8817, 9446}, {14680, 20344}, {15487, 20606}, {16706, 17599}, {16991, 17248}, {16998, 17363}, {17140, 27186}, {17147, 33131}, {17165, 31019}, {17177, 18157}, {17242, 32915}, {17279, 32942}, {17339, 32930}, {17364, 32912}, {17368, 26061}, {17480, 23675}, {17591, 24169}, {17715, 17765}, {17718, 30615}, {17794, 30985}, {18141, 24477}, {19544, 26264}, {20292, 32933}, {20544, 30830}, {21055, 24577}, {21404, 30545}, {24003, 27130}, {24325, 33169}, {24552, 33157}, {24715, 32934}, {24725, 32938}, {24789, 32922}, {25255, 31087}, {25496, 33159}, {25568, 30828}, {25583, 32818}, {25958, 26580}, {26098, 27064}, {26223, 33112}, {28595, 32784}, {30811, 33126}, {31237, 32775}, {32771, 33162}, {32846, 32853}, {32848, 32860}, {32849, 32929}, {32911, 33070}, {32916, 33079}, {32917, 33074}, {32920, 33130}, {32921, 33132}, {32927, 33127}, {32928, 33128}, {32931, 33105}, {32935, 33097}, {32936, 33094}, {32941, 33158}, {32945, 33156}
X(29642) lies on these lines: {1, 2}, {9, 33064}, {31, 18139}, {37, 26128}, {55, 3836}, {75, 33158}, {100, 25961}, {142, 3980}, {171, 17234}, {190, 33103}, {192, 33147}, {226, 4011}, {238, 18134}, {244, 33113}, {312, 33130}, {320, 7262}, {333, 33087}, {344, 3971}, {345, 24165}, {354, 4438}, {497, 21241}, {726, 17776}, {740, 24789}, {748, 3936}, {756, 33122}, {846, 3662}, {940, 6679}, {968, 3821}, {982, 33116}, {984, 33124}, {1001, 2887}, {1086, 32934}, {1215, 17279}, {1279, 4865}, {1376, 17265}, {1458, 28776}, {1621, 4660}, {1707, 17298}, {1836, 4432}, {1962, 32774}, {2273, 24512}, {3219, 33069}, {3454, 4204}, {3683, 4655}, {3685, 17889}, {3750, 4429}, {3769, 17241}, {3775, 19732}, {3791, 4851}, {3834, 4640}, {3846, 4423}, {3873, 33115}, {3923, 5249}, {3925, 32941}, {3932, 32920}, {3993, 19785}, {3995, 33143}, {4000, 4970}, {4104, 6666}, {4199, 30953}, {4358, 33127}, {4359, 33156}, {4368, 30985}, {4383, 31289}, {4388, 15485}, {4417, 17123}, {4418, 27186}, {4425, 25527}, {4645, 8616}, {4657, 10180}, {4675, 4697}, {4676, 33097}, {4702, 21949}, {4703, 15254}, {4892, 24703}, {4966, 32853}, {5014, 21026}, {5278, 33081}, {5284, 25760}, {5741, 17125}, {6676, 18639}, {8299, 16056}, {11374, 25079}, {11814, 30852}, {16468, 17778}, {16484, 32773}, {16706, 17592}, {17056, 25496}, {17061, 17243}, {17063, 32851}, {17127, 32949}, {17140, 33161}, {17155, 32849}, {17232, 33085}, {17263, 33126}, {17277, 33084}, {17282, 17594}, {17283, 33174}, {17715, 32850}, {17719, 18743}, {18214, 25523}, {18589, 20335}, {19789, 28522}, {19803, 24161}, {19804, 33160}, {21093, 30568}, {24259, 30949}, {24325, 32777}, {24349, 33164}, {25385, 25525}, {25959, 32947}, {25960, 30831}, {26724, 32860}, {27065, 33065}, {28606, 33123}, {31019, 32930}, {32771, 33157}, {32862, 32923}, {32915, 33129}, {32917, 33172}, {32922, 33092}, {32925, 33148}, {32936, 33146}, {32942, 33111}, {32943, 33108}
X(29643) lies on these lines: {1, 2}, {6, 33115}, {9, 32843}, {11, 17243}, {31, 33073}, {37, 25760}, {38, 18134}, {45, 4144}, {55, 33072}, {63, 32949}, {75, 32848}, {81, 4438}, {171, 33113}, {190, 24725}, {192, 3120}, {226, 32925}, {238, 33070}, {244, 4446}, {291, 31006}, {312, 33105}, {321, 33092}, {333, 32852}, {334, 30964}, {345, 4418}, {726, 31019}, {740, 33108}, {748, 33071}, {750, 32851}, {752, 27754}, {756, 4417}, {846, 6327}, {894, 33161}, {908, 4078}, {940, 33119}, {968, 32947}, {982, 18139}, {984, 3936}, {1001, 32844}, {1150, 32846}, {1215, 32862}, {1621, 4865}, {1757, 31034}, {1836, 32936}, {1962, 32773}, {2177, 32850}, {2276, 30969}, {2886, 32915}, {2887, 28606}, {3175, 3838}, {3219, 32946}, {3416, 32917}, {3666, 25957}, {3685, 33104}, {3703, 17056}, {3750, 5014}, {3752, 25961}, {3772, 32928}, {3821, 25959}, {3834, 4003}, {3836, 4850}, {3891, 33130}, {3896, 32865}, {3923, 32849}, {3925, 32860}, {3932, 5718}, {3944, 3995}, {3971, 31053}, {3980, 33168}, {3989, 27184}, {3993, 21241}, {4011, 33107}, {4336, 27542}, {4358, 17717}, {4359, 32855}, {4360, 33128}, {4414, 4645}, {4425, 25958}, {4429, 21026}, {4439, 26738}, {4447, 30944}, {4518, 31120}, {4649, 33114}, {4653, 4680}, {4671, 6541}, {4851, 32919}, {4860, 17313}, {4892, 33151}, {4970, 33131}, {4972, 17592}, {4981, 33084}, {5249, 17155}, {5263, 33156}, {5278, 32861}, {5712, 33163}, {5880, 32845}, {6682, 33172}, {7226, 33064}, {7270, 10448}, {9345, 17317}, {10883, 28850}, {17125, 17263}, {17147, 17889}, {17279, 17723}, {17593, 31151}, {17594, 32948}, {17599, 33123}, {17600, 32774}, {17718, 32927}, {17719, 30834}, {17776, 26098}, {17778, 32912}, {19684, 32780}, {19786, 31237}, {20292, 32934}, {20961, 25306}, {24165, 27186}, {24325, 33089}, {24552, 33158}, {24723, 31134}, {24789, 32924}, {25496, 33157}, {26223, 33164}, {30811, 32775}, {32772, 32777}, {32916, 33078}, {32921, 33129}, {32926, 33127}, {32929, 33109}, {32933, 33097}
X(29644) lies on these lines: {1, 2}, {7, 23812}, {37, 4011}, {38, 19684}, {75, 17600}, {86, 982}, {740, 20182}, {870, 31008}, {940, 6682}, {1001, 10180}, {1100, 32853}, {1107, 23543}, {1962, 24552}, {2886, 17045}, {2887, 4657}, {3210, 24342}, {3666, 3980}, {3742, 25523}, {3745, 32916}, {3791, 5737}, {3842, 4383}, {3846, 17723}, {3923, 28606}, {3989, 26223}, {4026, 4865}, {4038, 17394}, {4357, 32946}, {4361, 27798}, {4364, 4703}, {4389, 33097}, {4425, 17321}, {4653, 14012}, {4687, 17123}, {4722, 19738}, {4974, 19732}, {5224, 32861}, {5263, 17592}, {5712, 33064}, {7032, 18169}, {9347, 32918}, {10436, 24165}, {11110, 16478}, {17056, 26128}, {17140, 19740}, {17247, 33099}, {17289, 33092}, {17302, 17889}, {17320, 33154}, {17322, 33071}, {17368, 33164}, {17379, 32913}, {17380, 33132}, {17381, 32780}, {17599, 19701}, {17776, 24295}, {18398, 28619}, {19717, 32912}, {19786, 33111}, {19808, 32855}, {31993, 32921}, {32776, 33112}, {32784, 33073}
X(29645) lies on these lines: {1, 2}, {31, 4425}, {37, 6679}, {81, 32775}, {86, 24241}, {171, 3821}, {226, 1397}, {312, 24295}, {750, 24169}, {894, 33152}, {940, 26128}, {1196, 16600}, {1211, 3791}, {1215, 17602}, {1386, 3846}, {2308, 26580}, {2796, 33154}, {2887, 3745}, {3758, 33101}, {3769, 19812}, {3782, 4697}, {3836, 4682}, {3971, 5294}, {3980, 19785}, {4038, 33124}, {4135, 17355}, {4138, 4349}, {4360, 33160}, {4389, 4650}, {4415, 4672}, {4418, 33155}, {4649, 33126}, {4657, 32916}, {4660, 5269}, {4974, 5743}, {5197, 5249}, {5263, 33135}, {6541, 32777}, {6690, 17045}, {6703, 17061}, {9284, 23533}, {9347, 25957}, {14996, 33069}, {16706, 17122}, {17126, 32776}, {17302, 17596}, {17600, 32851}, {17716, 17766}, {17720, 25496}, {17770, 27184}, {19271, 23536}, {19684, 33127}, {19813, 28612}, {21093, 26223}, {23812, 31019}, {25385, 32772}, {30832, 32861}, {32779, 32928}, {32780, 32926}
X(29646) lies on these lines: {1, 2}, {36, 13723}, {86, 5009}, {141, 25539}, {192, 24295}, {238, 4657}, {474, 8301}, {584, 16503}, {631, 18788}, {726, 17368}, {740, 17380}, {984, 3589}, {1001, 5096}, {1010, 24378}, {1100, 33087}, {1386, 17384}, {1429, 11375}, {1757, 3618}, {1930, 6533}, {2329, 25681}, {3061, 4999}, {3338, 3509}, {3745, 33174}, {3759, 3775}, {3763, 32846}, {3773, 17371}, {3821, 17383}, {3836, 17370}, {3842, 17352}, {3846, 19812}, {3864, 7786}, {3923, 17302}, {3944, 19786}, {3993, 17396}, {4000, 24342}, {4253, 5282}, {4357, 16468}, {4389, 4672}, {4643, 16477}, {4655, 17305}, {4676, 17399}, {4687, 31289}, {4974, 5224}, {4991, 17363}, {5037, 16779}, {5433, 7146}, {5506, 17744}, {6541, 17358}, {6703, 17063}, {13728, 16478}, {16475, 17306}, {16476, 25499}, {17228, 17772}, {17236, 17770}, {17289, 32921}, {17304, 32857}, {17325, 24697}, {17379, 26150}, {17381, 24325}, {17382, 33149}, {17599, 32780}, {17600, 32777}, {17889, 19271}, {19269, 24161}, {19329, 25524}, {19684, 33123}, {19717, 33069}, {20182, 33158}
X(29647) lies on these lines: {1, 2}, {9, 6536}, {31, 4026}, {37, 26061}, {38, 4657}, {81, 32784}, {86, 25957}, {354, 17384}, {427, 1973}, {748, 3589}, {750, 6703}, {894, 32776}, {940, 32781}, {1100, 32852}, {1468, 13728}, {1839, 4196}, {1860, 17904}, {1962, 32777}, {2214, 24512}, {2345, 4365}, {2887, 19684}, {2895, 28650}, {2908, 3136}, {3703, 17045}, {3706, 17385}, {3745, 33074}, {3758, 4683}, {3914, 5750}, {3925, 17398}, {3989, 17321}, {4038, 33172}, {4042, 17327}, {4357, 32912}, {4363, 33145}, {4389, 32940}, {4423, 12329}, {4425, 26223}, {4643, 4722}, {4649, 32782}, {4670, 4799}, {4697, 32950}, {4854, 17369}, {5224, 32864}, {5347, 16343}, {5886, 30272}, {9347, 33079}, {14996, 33085}, {17056, 31237}, {17155, 17302}, {17289, 32915}, {17303, 21020}, {17322, 33118}, {17368, 32930}, {17379, 32949}, {17380, 32924}, {17381, 32772}, {17592, 32779}, {17600, 33089}, {17720, 31264}, {19717, 32946}, {19786, 32771}, {19808, 32860}, {19812, 32775}, {19832, 33126}, {20182, 32848}, {24169, 26627}, {24325, 32774}, {24342, 33131}, {28606, 32780}, {31993, 33128}
X(29648) lies on these lines: {1, 2}, {22, 1001}, {37, 1180}, {1386, 32782}, {1621, 4657}, {2895, 16475}, {3589, 3681}, {3744, 17384}, {3745, 33172}, {3763, 33078}, {3891, 17289}, {3896, 17380}, {4104, 14997}, {4220, 5886}, {4357, 17127}, {5133, 25466}, {5248, 6636}, {5259, 5322}, {5263, 32774}, {5269, 33086}, {5294, 7226}, {5347, 15668}, {6536, 15485}, {6997, 26105}, {7174, 33166}, {7465, 28628}, {7485, 25524}, {8024, 31997}, {17165, 17368}, {17302, 32929}, {17304, 33102}, {17305, 32950}, {17306, 33083}, {17396, 27804}, {17469, 32784}, {17599, 32779}, {17600, 33156}, {17716, 25539}, {17723, 30831}, {17725, 31264}, {19684, 33124}, {19786, 24552}, {23407, 25499}, {24295, 32925}, {25496, 31053}, {25527, 33112}, {26128, 31019}, {27131, 32944}, {27186, 33123}, {30598, 30758}
X(29649) lies on these lines: {1, 2}, {11, 4865}, {31, 4011}, {37, 32916}, {55, 4434}, {57, 726}, {63, 3971}, {69, 24241}, {75, 17122}, {81, 32931}, {100, 32915}, {171, 312}, {190, 4650}, {192, 17596}, {210, 32853}, {238, 3769}, {244, 3891}, {295, 2801}, {320, 33101}, {321, 750}, {329, 17770}, {345, 6541}, {350, 24260}, {354, 32920}, {497, 17766}, {730, 24266}, {740, 1376}, {752, 24703}, {756, 1150}, {908, 32946}, {940, 1215}, {982, 32926}, {984, 14829}, {985, 32017}, {1054, 3210}, {1155, 3175}, {1397, 5150}, {1403, 23067}, {1468, 3701}, {1707, 30568}, {1757, 27538}, {1766, 3509}, {1864, 20359}, {1997, 11814}, {2796, 3474}, {2887, 17720}, {2901, 25440}, {3052, 4432}, {3218, 32925}, {3306, 24165}, {3416, 3846}, {3452, 5847}, {3550, 3685}, {3662, 33152}, {3681, 32919}, {3718, 20947}, {3729, 4135}, {3745, 25496}, {3751, 4090}, {3752, 32921}, {3772, 3836}, {3790, 33167}, {3791, 4383}, {3816, 5846}, {3842, 5737}, {3873, 32927}, {3875, 24173}, {3932, 4438}, {3944, 4645}, {3950, 10164}, {3952, 32912}, {3967, 32935}, {3993, 17594}, {3994, 32933}, {3995, 4414}, {4009, 4641}, {4052, 30424}, {4078, 5745}, {4096, 5220}, {4192, 4447}, {4359, 17124}, {4396, 24333}, {4415, 4655}, {4417, 32846}, {4418, 4671}, {4425, 26034}, {4429, 33135}, {4514, 24217}, {4660, 24210}, {4676, 20942}, {4850, 32928}, {4851, 20305}, {4903, 17350}, {5233, 32861}, {5361, 9330}, {5741, 32852}, {5905, 21093}, {6679, 17279}, {6690, 17243}, {8720, 15803}, {9347, 32772}, {9352, 32845}, {9580, 28562}, {11680, 33072}, {13741, 16478}, {15571, 15621}, {16466, 25079}, {16570, 25728}, {17063, 32922}, {17123, 30829}, {17126, 32930}, {17155, 27003}, {17224, 25355}, {17233, 33160}, {17234, 33130}, {17602, 26128}, {17716, 32942}, {17717, 33073}, {17719, 18134}, {17725, 33124}, {17777, 20101}, {17862, 25938}, {18139, 33127}, {18141, 33144}, {19541, 28850}, {19684, 31264}, {19785, 24169}, {19786, 33174}, {20173, 24283}, {20372, 20665}, {21035, 29558}, {21077, 21621}, {25760, 33078}, {25957, 33133}, {25960, 33075}, {25961, 33129}, {26098, 28808}, {26580, 33080}, {27131, 32843}, {27184, 33085}, {28606, 32918}, {31053, 32949}, {32773, 33079}, {32775, 33172}, {32776, 33086}, {32850, 33141}, {32851, 33092}, {32862, 33119}, {32863, 33065}, {32913, 32937}, {32948, 33134}, {33067, 33151}, {33068, 33154}, {33069, 33153}, {33087, 33126}, {33121, 33165}, {33125, 33155}
X(29650) lies on these lines: {1, 2}, {6, 6682}, {86, 17063}, {244, 19684}, {312, 17600}, {345, 24295}, {894, 17591}, {1215, 17599}, {1386, 32916}, {2887, 17723}, {3589, 4438}, {3666, 3923}, {3816, 17045}, {3821, 26098}, {3838, 17382}, {3846, 4657}, {3848, 28639}, {3891, 31264}, {3944, 17302}, {3980, 4850}, {4011, 28606}, {4090, 7174}, {4389, 33096}, {4423, 10180}, {4697, 17595}, {4860, 19722}, {4865, 17726}, {4974, 5737}, {5718, 26128}, {12610, 24728}, {16478, 19270}, {16706, 33111}, {17289, 32855}, {17368, 33167}, {17380, 33135}, {17490, 24342}, {17592, 32942}, {17717, 19786}, {17722, 32773}, {18192, 23524}, {19785, 25385}, {32774, 33105}, {32776, 33107}, {32781, 33070}, {32784, 33071}, {33073, 33174}, {33112, 33125}
X(29651) lies on these lines: {1, 2}, {37, 32920}, {55, 3980}, {75, 3750}, {86, 17716}, {312, 16484}, {354, 32916}, {497, 25385}, {726, 968}, {846, 24349}, {894, 8616}, {1001, 1215}, {1279, 25496}, {1486, 8424}, {1621, 3923}, {1962, 3891}, {2177, 4359}, {3052, 4697}, {3305, 4090}, {3475, 33064}, {3683, 32935}, {3748, 31993}, {3749, 10436}, {3769, 4038}, {3846, 17718}, {3873, 32917}, {3883, 32946}, {3976, 19270}, {4026, 26128}, {4085, 24789}, {4307, 23812}, {4363, 4428}, {4414, 17140}, {4425, 33144}, {4514, 33111}, {4660, 5249}, {4753, 19723}, {4865, 17056}, {5263, 17715}, {5284, 32931}, {6682, 17597}, {8167, 24003}, {15485, 27064}, {17234, 33079}, {17469, 19684}, {17592, 32922}, {17594, 24165}, {18134, 33076}, {18139, 33074}, {21241, 25525}, {24542, 26061}, {24723, 33103}, {27186, 32948}, {28606, 32923}, {31019, 32947}, {31178, 32939}, {32773, 33130}, {32776, 33148}, {32784, 33124}, {33069, 33083}, {33116, 33169}
X(29652) lies on these lines: {1, 2}, {38, 3923}, {55, 6682}, {75, 7244}, {141, 4865}, {149, 32776}, {497, 4425}, {518, 25496}, {740, 17599}, {748, 4981}, {982, 3980}, {984, 4011}, {1001, 20760}, {1010, 3976}, {1150, 17469}, {1215, 3242}, {1386, 32853}, {2550, 24169}, {2886, 26128}, {3434, 3821}, {3550, 24627}, {3662, 33109}, {3666, 32941}, {3677, 24165}, {3681, 32944}, {3706, 32921}, {3739, 4906}, {3744, 32916}, {3763, 28595}, {3772, 21242}, {3775, 3966}, {3842, 4423}, {3846, 17721}, {3873, 32772}, {3886, 4970}, {3971, 7174}, {4042, 4974}, {4085, 4863}, {4119, 17303}, {4364, 24694}, {4389, 33095}, {4392, 4418}, {4417, 17722}, {4514, 32784}, {4850, 32945}, {5014, 32781}, {5248, 22345}, {7226, 32930}, {11680, 32775}, {14829, 17716}, {16706, 32865}, {17145, 19717}, {17184, 33104}, {17289, 33169}, {17448, 23543}, {17591, 32932}, {17597, 24325}, {17717, 33126}, {17766, 26034}, {18056, 21443}, {19786, 33141}, {20834, 22654}, {21241, 25527}, {24295, 33163}, {24333, 25368}, {24362, 24643}, {25385, 33144}, {26098, 33064}, {27184, 33106}, {28606, 32943}, {32774, 33136}, {32782, 32844}, {32850, 33174}, {33065, 33107}, {33069, 33112}, {33070, 33081}, {33071, 33084}, {33072, 33172}, {33073, 33087}, {33105, 33122}, {33108, 33123}, {33110, 33125}, {33111, 33124}
X(29653) lies on these lines: {1, 2}, {9, 32946}, {37, 744}, {38, 18139}, {45, 4703}, {58, 16065}, {71, 3509}, {75, 33092}, {81, 33115}, {86, 32780}, {142, 24165}, {171, 33116}, {190, 33097}, {192, 17889}, {226, 3971}, {238, 33073}, {312, 25385}, {313, 1920}, {321, 6541}, {333, 32846}, {334, 31008}, {344, 4011}, {345, 3980}, {594, 27798}, {726, 5249}, {740, 3925}, {748, 33070}, {750, 33113}, {752, 3683}, {756, 3936}, {758, 3690}, {846, 4645}, {894, 23812}, {940, 4438}, {968, 4660}, {982, 17234}, {984, 18134}, {1001, 4865}, {1211, 3842}, {1215, 3932}, {1621, 17766}, {1738, 4970}, {1757, 17778}, {1962, 4972}, {2796, 20292}, {2886, 17243}, {2901, 3841}, {3120, 3995}, {3159, 11263}, {3219, 17770}, {3666, 3836}, {3685, 33109}, {3703, 24325}, {3742, 22279}, {3745, 6679}, {3748, 17765}, {3750, 32850}, {3773, 31993}, {3821, 25957}, {3879, 33295}, {3914, 3993}, {3923, 17776}, {3969, 21020}, {3989, 17184}, {4026, 10180}, {4035, 4104}, {4038, 17317}, {4046, 4732}, {4054, 4135}, {4109, 16589}, {4129, 8034}, {4138, 4656}, {4336, 27521}, {4358, 33105}, {4359, 32848}, {4360, 33132}, {4415, 4892}, {4418, 32849}, {4429, 17592}, {4434, 6690}, {4447, 8731}, {4514, 16484}, {4553, 18165}, {4649, 33118}, {4664, 33154}, {4850, 25961}, {4851, 32853}, {4884, 25557}, {4981, 33081}, {5263, 33158}, {5278, 32852}, {5284, 32844}, {5880, 32934}, {6535, 31025}, {7226, 33069}, {8226, 28850}, {8889, 21016}, {16592, 21902}, {16706, 17600}, {17122, 32851}, {17123, 17263}, {17155, 27186}, {17163, 21027}, {17261, 33099}, {17277, 32861}, {17279, 25496}, {17283, 21038}, {17300, 32913}, {17469, 24542}, {17717, 18743}, {17722, 18082}, {18203, 20590}, {18904, 21827}, {18905, 21838}, {19684, 26061}, {19804, 32855}, {20531, 21098}, {20924, 20934}, {21241, 24210}, {21242, 22289}, {21680, 30745}, {21722, 30795}, {21726, 31279}, {21911, 26031}, {24295, 32772}, {24789, 32921}, {25959, 32776}, {26724, 32924}, {27065, 32843}, {31019, 32925}, {31151, 33068}, {32771, 32862}, {32915, 33108}, {32917, 33078}, {32926, 33130}, {32928, 33129}, {32930, 33112}
X(29653) = complement of X(32914)
X(29654) lies on these lines: {1, 2}, {6, 26128}, {31, 3821}, {81, 33123}, {82, 171}, {141, 3791}, {206, 17068}, {226, 1428}, {238, 4425}, {321, 24295}, {696, 8265}, {726, 5294}, {846, 17302}, {894, 33147}, {1086, 4697}, {1194, 16600}, {1211, 4974}, {1215, 3589}, {1386, 2887}, {1707, 17304}, {1962, 24542}, {2260, 3509}, {2308, 17184}, {2796, 33145}, {3618, 33144}, {3666, 6679}, {3670, 8258}, {3723, 4119}, {3744, 4085}, {3745, 3836}, {3758, 33103}, {3759, 33084}, {3769, 17370}, {3772, 25385}, {3782, 4672}, {3891, 26061}, {3923, 19785}, {3946, 4970}, {3971, 17353}, {3980, 4000}, {4357, 33295}, {4360, 33158}, {4389, 7262}, {4418, 33150}, {4429, 17716}, {4432, 4854}, {4438, 17599}, {4640, 17382}, {4649, 33124}, {4653, 16065}, {4676, 33154}, {4682, 17356}, {4972, 17469}, {5249, 23812}, {5263, 33132}, {5846, 28595}, {6541, 32928}, {6676, 17048}, {7664, 21208}, {9347, 25961}, {10180, 17045}, {14012, 23537}, {16062, 16478}, {16468, 27184}, {16475, 25527}, {16477, 33066}, {16757, 23786}, {17126, 33125}, {17127, 32776}, {17291, 33085}, {17301, 32934}, {17380, 17592}, {17598, 33121}, {17600, 33116}, {18905, 23533}, {21093, 27064}, {24552, 33128}, {26223, 33143}, {31237, 33070}, {32772, 33129}, {32775, 32911}, {32777, 32921}, {32779, 32924}, {32780, 32922}, {32926, 33159}, {32930, 33155}, {32942, 33135}, {32944, 33133}
X(29654) = complement of X(15523)
X(29655) lies on these lines: {1, 2}, {11, 1215}, {38, 4425}, {57, 4660}, {75, 24241}, {81, 32844}, {142, 20541}, {149, 4418}, {171, 4514}, {238, 33121}, {244, 4972}, {312, 24217}, {354, 2887}, {497, 3923}, {518, 3846}, {537, 4415}, {553, 24692}, {595, 8258}, {726, 24210}, {748, 33114}, {750, 5014}, {894, 33106}, {940, 4865}, {982, 3821}, {993, 20834}, {1001, 4438}, {1015, 18905}, {1279, 6679}, {1621, 33119}, {2796, 32939}, {2886, 20256}, {3120, 17140}, {3218, 32947}, {3315, 33123}, {3434, 3980}, {3452, 4090}, {3454, 3881}, {3681, 25960}, {3685, 33167}, {3703, 6541}, {3742, 3836}, {3750, 32851}, {3752, 4085}, {3816, 11814}, {3823, 3848}, {3873, 25760}, {3914, 24165}, {3944, 24349}, {3966, 32853}, {3976, 16062}, {4011, 33163}, {4026, 6682}, {4030, 4434}, {4038, 33073}, {4071, 24512}, {4109, 20963}, {4138, 5542}, {4358, 33162}, {4359, 33136}, {4363, 11235}, {4388, 17770}, {4392, 32776}, {4429, 17063}, {4430, 33065}, {4649, 33071}, {5057, 32940}, {5249, 21241}, {5267, 16064}, {5284, 33115}, {6545, 23789}, {9284, 22199}, {11680, 25385}, {11813, 22000}, {14829, 33076}, {15171, 24850}, {16484, 33116}, {17122, 32850}, {17123, 33118}, {17145, 31037}, {17155, 33134}, {17165, 21093}, {17184, 17449}, {17450, 18139}, {17597, 26128}, {17598, 19786}, {17720, 32920}, {17721, 25496}, {18201, 33068}, {18743, 33165}, {18835, 20888}, {19804, 32865}, {21242, 31993}, {21795, 24036}, {23812, 33112}, {24295, 32780}, {24318, 24326}, {24357, 25353}, {24631, 26590}, {24703, 32935}, {25958, 33069}, {27003, 32948}, {32779, 32943}, {32915, 33089}, {32919, 33075}, {32922, 33135}, {32923, 33133}, {32930, 33170}
X(29656) lies on these lines: {1, 2}, {31, 17770}, {55, 3821}, {100, 24169}, {171, 33124}, {238, 33126}, {312, 17725}, {518, 6679}, {527, 4797}, {740, 17061}, {756, 24542}, {902, 17184}, {1215, 17724}, {1279, 3846}, {1283, 1621}, {1962, 20896}, {2177, 32774}, {2796, 3782}, {2887, 3744}, {3052, 4655}, {3242, 4438}, {3550, 3662}, {3685, 33152}, {3722, 4972}, {3740, 31289}, {3749, 4660}, {3750, 19786}, {3769, 33087}, {3772, 32941}, {3874, 8258}, {3881, 6693}, {3891, 33156}, {3923, 33144}, {3936, 17469}, {3996, 33132}, {4030, 28595}, {4090, 17353}, {4096, 4422}, {4415, 4432}, {4418, 33148}, {4421, 17290}, {4676, 33101}, {4865, 30811}, {5014, 31237}, {5248, 12579}, {5263, 33130}, {6541, 32926}, {6682, 6690}, {8616, 27184}, {9028, 25353}, {17126, 33069}, {17127, 33065}, {17355, 21101}, {17598, 32851}, {17715, 32773}, {17716, 18134}, {17718, 25496}, {17719, 32942}, {21093, 32930}, {24552, 25385}, {30831, 32844}, {32777, 32920}, {32779, 32923}, {32922, 33160}, {32927, 33157}, {32929, 33143}, {32932, 33147}, {32943, 33133}, {32945, 33129}
X(29657) lies on these lines: {1, 2}, {37, 5087}, {192, 25385}, {238, 17723}, {573, 5536}, {846, 5698}, {968, 33106}, {982, 17056}, {984, 5718}, {1001, 17722}, {1962, 11680}, {2886, 17592}, {3485, 11533}, {3666, 17889}, {3772, 17600}, {3838, 33154}, {3842, 5233}, {3944, 10129}, {3989, 31053}, {4276, 33325}, {4389, 4892}, {4414, 33112}, {4675, 18201}, {5249, 17591}, {5283, 9284}, {5712, 32913}, {5737, 32861}, {5880, 17593}, {6675, 16478}, {6682, 18134}, {6690, 17716}, {7988, 16673}, {9280, 23903}, {10974, 18398}, {11249, 19516}, {15569, 24217}, {16484, 17721}, {17070, 17395}, {17594, 33109}, {17599, 33130}, {17740, 24342}, {19684, 33119}, {20182, 31245}, {25496, 33116}, {25525, 33147}, {26738, 32856}, {30834, 32775}, {31264, 32862}, {31266, 33152}, {31993, 32855}, {32772, 33113}, {32916, 33073}, {32917, 33070}
X(29658) lies on these lines: {1, 2}, {5, 16478}, {6, 17719}, {31, 3944}, {55, 33135}, {57, 33147}, {63, 33152}, {79, 1777}, {81, 33127}, {100, 33128}, {171, 3772}, {238, 4679}, {312, 6679}, {518, 17725}, {597, 27777}, {750, 33129}, {896, 33151}, {902, 33134}, {908, 16468}, {940, 33130}, {982, 17061}, {983, 3254}, {984, 17602}, {985, 2006}, {1054, 4000}, {1150, 32775}, {1155, 33149}, {1279, 24217}, {1376, 33132}, {1386, 17717}, {1478, 5429}, {1707, 33099}, {1757, 24597}, {1781, 21381}, {2308, 31053}, {2886, 17716}, {2887, 3769}, {3035, 17366}, {3052, 33095}, {3072, 12699}, {3120, 17126}, {3218, 33143}, {3509, 8557}, {3550, 3914}, {3744, 33141}, {3745, 33111}, {3782, 4650}, {3791, 4417}, {3891, 33119}, {4414, 33155}, {4415, 7262}, {4429, 4434}, {4438, 32926}, {4640, 33154}, {4641, 33101}, {4649, 17718}, {4974, 5233}, {5061, 5197}, {5219, 12588}, {5269, 17064}, {5711, 24161}, {6377, 17053}, {6690, 17592}, {8300, 26282}, {8616, 24210}, {10267, 19516}, {11680, 17469}, {14829, 26128}, {16704, 33065}, {17122, 24789}, {17124, 26724}, {17301, 17593}, {17350, 21093}, {17352, 24003}, {17596, 19785}, {19786, 32916}, {21098, 23927}, {25527, 33085}, {30811, 32846}, {30829, 31289}, {30831, 32852}, {31229, 33115}, {31237, 33078}, {32774, 32918}, {32851, 32921}, {32853, 33126}, {32912, 33153}, {32913, 33144}, {32919, 33122}, {32920, 33121}, {32927, 33114}, {32928, 33113}
X(29659) lies on these lines: {1, 2}, {6, 33076}, {37, 33165}, {55, 32780}, {75, 4085}, {76, 4692}, {80, 2344}, {81, 33074}, {291, 24464}, {354, 33174}, {355, 29081}, {495, 20486}, {518, 17237}, {528, 17369}, {537, 4389}, {712, 4424}, {752, 3758}, {846, 33163}, {894, 4660}, {940, 33079}, {968, 33164}, {984, 4026}, {1001, 33159}, {1086, 31178}, {1145, 19584}, {1215, 3944}, {1429, 5252}, {1478, 9903}, {1580, 27917}, {1621, 26061}, {1930, 4714}, {1962, 32862}, {2177, 32779}, {2550, 4470}, {3416, 4649}, {3501, 5119}, {3666, 33169}, {3696, 25384}, {3703, 17592}, {3750, 32777}, {3751, 33082}, {3790, 3993}, {3821, 24349}, {3844, 33087}, {3873, 32781}, {3883, 16468}, {3925, 20256}, {3992, 30830}, {4030, 17716}, {4363, 24715}, {4407, 17250}, {4414, 33170}, {4419, 24821}, {4425, 32937}, {4429, 24325}, {4431, 4780}, {4432, 17354}, {4439, 4664}, {4444, 4761}, {4454, 24248}, {4514, 25496}, {4675, 31151}, {4693, 17281}, {4702, 17359}, {4737, 6376}, {4753, 17346}, {4972, 17889}, {5014, 32772}, {5220, 24697}, {5294, 8616}, {5299, 17750}, {5657, 18788}, {5692, 20683}, {5750, 16779}, {5847, 28650}, {6381, 24427}, {7951, 20544}, {8193, 20834}, {10022, 24452}, {11680, 31264}, {15485, 17353}, {16484, 17279}, {16496, 17306}, {16503, 17303}, {16666, 28538}, {17140, 33125}, {17165, 32776}, {17192, 24190}, {17289, 32941}, {17305, 24841}, {17395, 28503}, {17594, 33167}, {18134, 28595}, {19684, 33072}, {19717, 28599}, {19786, 32920}, {19890, 22116}, {24217, 30818}, {24295, 26083}, {24723, 32935}, {25378, 30566}, {26034, 32913}, {26223, 32947}, {28606, 33162}, {31161, 33151}, {31993, 32865}, {32774, 32923}, {32912, 33083}, {32916, 33121}, {32917, 33114}, {32940, 32950}
X(29660) lies on these lines: {1, 2}, {238, 4643}, {537, 17354}, {752, 17227}, {984, 4422}, {1001, 4265}, {1279, 32784}, {1386, 17374}, {1930, 4975}, {3242, 33159}, {3246, 17237}, {3662, 24692}, {3677, 33167}, {3744, 33174}, {3763, 33076}, {3821, 26150}, {3923, 4440}, {3944, 26128}, {3976, 17698}, {4026, 25539}, {4085, 17370}, {4253, 17744}, {4357, 15485}, {4389, 4432}, {4407, 17335}, {4439, 17342}, {4657, 16484}, {4660, 17291}, {4684, 28650}, {4693, 17301}, {4702, 17382}, {4759, 17333}, {5257, 16779}, {5263, 24693}, {5603, 18788}, {7146, 15950}, {7290, 33082}, {8692, 17253}, {16491, 17296}, {16604, 25068}, {16706, 32941}, {17290, 24715}, {17357, 33165}, {17369, 31178}, {17469, 33172}, {17597, 32780}, {17598, 32777}, {17599, 33158}, {17717, 30823}, {17719, 30824}, {17722, 30811}, {17725, 30818}, {17889, 24552}, {24295, 24349}, {24709, 32775}, {25496, 33124}, {25527, 33106}, {32774, 32943}, {32944, 33122}
X(29661) lies on these lines: {1, 2}, {31, 17056}, {37, 33127}, {748, 5718}, {750, 6690}, {756, 17718}, {846, 31019}, {968, 3120}, {1001, 33105}, {1253, 5432}, {1254, 11375}, {1468, 6675}, {1621, 33104}, {1962, 3772}, {2177, 3925}, {2308, 5712}, {3247, 17737}, {3683, 24725}, {3750, 33108}, {3846, 30834}, {3989, 33144}, {4026, 31237}, {4414, 5249}, {5235, 33084}, {5284, 17717}, {5737, 33081}, {6679, 19684}, {8616, 33112}, {10448, 25466}, {11680, 16484}, {15485, 33107}, {17234, 32918}, {17279, 31264}, {17592, 33129}, {17596, 27186}, {18134, 32917}, {18139, 32916}, {19763, 28267}, {24160, 27785}, {24325, 33113}, {24542, 25496}, {26738, 33096}, {28606, 33130}, {31993, 33156}, {32771, 33116}
X(29662) lies on these lines: {1, 2}, {5, 1468}, {6, 13898}, {11, 31}, {38, 17720}, {56, 21935}, {57, 3120}, {58, 7741}, {81, 17717}, {100, 33141}, {149, 3550}, {171, 11680}, {230, 2280}, {244, 3772}, {312, 33119}, {333, 25960}, {354, 33127}, {496, 3915}, {497, 902}, {748, 3816}, {750, 2886}, {896, 24703}, {908, 32912}, {940, 33105}, {982, 33133}, {1054, 33131}, {1150, 3846}, {1155, 33094}, {1376, 33136}, {1475, 3767}, {1621, 24217}, {1724, 3825}, {1757, 27131}, {1834, 5433}, {2163, 18513}, {2177, 5432}, {2308, 10589}, {2650, 11375}, {3052, 11238}, {3218, 3944}, {3306, 17064}, {3583, 4257}, {3751, 30852}, {3752, 33128}, {3769, 32844}, {3873, 17719}, {3911, 3914}, {3925, 17124}, {4191, 5172}, {4192, 26286}, {4193, 5247}, {4252, 10896}, {4358, 4438}, {4365, 17740}, {4379, 21118}, {4392, 33152}, {4414, 24210}, {4417, 32919}, {4423, 31187}, {4434, 5014}, {4641, 5087}, {4642, 24914}, {4650, 5057}, {4671, 33167}, {4850, 33135}, {4995, 17782}, {4999, 10448}, {5233, 32864}, {5264, 24387}, {5286, 23649}, {5372, 33082}, {5741, 32853}, {7746, 20963}, {9345, 17056}, {9352, 24715}, {9599, 21764}, {10129, 33097}, {10584, 24597}, {11814, 26688}, {14829, 25760}, {17063, 33129}, {17122, 33108}, {17126, 33106}, {17449, 33144}, {17469, 17721}, {17591, 33155}, {17595, 33145}, {17596, 33134}, {17605, 24725}, {17737, 17754}, {17889, 27003}, {18201, 33146}, {18398, 24160}, {18743, 33115}, {19540, 22765}, {21257, 27303}, {23958, 32857}, {24627, 32776}, {25958, 33085}, {26061, 30818}, {28808, 33163}, {30831, 33087}, {31053, 32913}, {31272, 32911}, {32773, 32918}, {32851, 32915}, {32931, 33121}
X(29663) lies on these lines: {1, 2}, {6, 32781}, {31, 3589}, {81, 33174}, {86, 25961}, {210, 17384}, {748, 4026}, {756, 4657}, {894, 33125}, {1215, 32774}, {1386, 33074}, {1962, 17279}, {2280, 17398}, {2308, 3618}, {3210, 26083}, {3305, 6536}, {3666, 26061}, {3715, 17325}, {3758, 33067}, {3763, 33081}, {3772, 31264}, {3821, 26223}, {3836, 19684}, {3844, 32852}, {3875, 6535}, {4085, 24552}, {4389, 32938}, {4414, 5294}, {4418, 17368}, {4429, 32772}, {4649, 33172}, {4672, 32950}, {4850, 32780}, {4972, 25496}, {5718, 31237}, {6057, 17395}, {6682, 33114}, {6703, 17124}, {16468, 33083}, {16706, 32771}, {17289, 32860}, {17291, 33069}, {17302, 32925}, {17303, 21840}, {17354, 32936}, {17370, 33123}, {17380, 32928}, {17383, 32937}, {17456, 20271}, {17591, 33170}, {17592, 33157}, {17599, 33162}, {17600, 32862}, {19786, 32931}, {24295, 32929}, {27064, 32776}, {28595, 33070}, {28606, 33159}, {28650, 32863}, {32773, 32944}, {32784, 32911}
X(29664) lies on these lines: {1, 2}, {9, 33107}, {37, 11680}, {38, 31019}, {63, 33112}, {149, 968}, {226, 7226}, {333, 33070}, {748, 17722}, {756, 17717}, {846, 33104}, {982, 27186}, {984, 31053}, {1150, 33073}, {1962, 33141}, {2886, 4854}, {3219, 26098}, {3452, 9330}, {3666, 21949}, {3681, 5718}, {3838, 33151}, {3842, 25960}, {3873, 17056}, {3925, 4850}, {3944, 3989}, {3966, 5235}, {4357, 25958}, {4392, 5249}, {4414, 33109}, {4415, 10129}, {4417, 4981}, {4438, 32772}, {4865, 32917}, {5015, 16342}, {5178, 19765}, {5263, 33113}, {5278, 33071}, {5284, 17721}, {5300, 19270}, {5361, 5847}, {5737, 33075}, {5745, 17126}, {6682, 25957}, {7174, 31266}, {7322, 30852}, {17064, 33155}, {17592, 33136}, {17594, 33110}, {17599, 33129}, {17600, 33128}, {17723, 32911}, {19684, 33121}, {21020, 32855}, {21026, 33174}, {21241, 32776}, {21242, 32915}, {24387, 27785}, {24552, 33116}, {25385, 32925}, {25496, 33115}, {25525, 33148}, {30834, 33126}, {31245, 33133}, {31264, 33165}, {31993, 33089}, {32916, 33072}
X(29665) lies on these lines: {1, 2}, {6, 17783}, {22, 5172}, {31, 17719}, {38, 17725}, {55, 33133}, {57, 33148}, {63, 33153}, {81, 17718}, {100, 3772}, {149, 3749}, {165, 33102}, {171, 31019}, {226, 17126}, {230, 26242}, {238, 27131}, {675, 8685}, {750, 27186}, {896, 33101}, {902, 3944}, {908, 17127}, {1086, 9352}, {1104, 11681}, {1150, 33126}, {1155, 33146}, {1376, 33129}, {1463, 26910}, {1621, 17720}, {1707, 17484}, {2177, 33135}, {2476, 5266}, {2979, 20359}, {3052, 5057}, {3120, 3550}, {3218, 33144}, {3315, 17728}, {3416, 30831}, {3722, 33141}, {3744, 11680}, {3769, 3936}, {3873, 17724}, {3891, 32851}, {4188, 23536}, {4189, 13161}, {4220, 32613}, {4339, 6871}, {4413, 26724}, {4414, 33152}, {4434, 25957}, {4438, 32927}, {4640, 33151}, {4650, 32856}, {4850, 5432}, {5218, 19785}, {5219, 33107}, {5221, 26729}, {5264, 24160}, {5269, 31266}, {5305, 25082}, {5310, 14795}, {5322, 14804}, {5573, 31224}, {5716, 10585}, {5745, 7226}, {6679, 32931}, {6690, 17602}, {7290, 30852}, {9342, 17278}, {9347, 17056}, {14829, 33122}, {16434, 22765}, {17008, 26279}, {17064, 33110}, {17469, 17717}, {17572, 24178}, {17594, 33155}, {17596, 33143}, {17601, 33145}, {17716, 33105}, {17871, 18359}, {18743, 24542}, {19649, 26286}, {23958, 24231}, {24597, 25568}, {25527, 33086}, {26128, 32918}, {30811, 33078}, {30834, 33073}, {31229, 33118}, {31237, 33079}, {32775, 32916}, {32920, 33119}, {32926, 33113}
X(29666) lies on these lines: {1, 2}, {22, 25524}, {1001, 7485}, {1180, 16604}, {1370, 26105}, {1386, 33172}, {3589, 3873}, {3677, 33170}, {3763, 33075}, {3816, 5133}, {4228, 5333}, {4392, 5294}, {4657, 5284}, {4972, 17370}, {4981, 17352}, {5248, 15246}, {5886, 19649}, {6327, 17291}, {7226, 17353}, {7290, 33083}, {8024, 30963}, {16475, 32863}, {16706, 24552}, {17140, 17368}, {17155, 24295}, {17184, 26150}, {17290, 20292}, {17304, 33100}, {17357, 32862}, {17396, 31077}, {17398, 26242}, {17469, 33174}, {17598, 26061}, {17599, 33157}, {17722, 31237}, {18493, 21487}, {25496, 31019}, {25527, 33107}, {26128, 31053}, {27131, 32775}, {27186, 32772}, {32774, 32942}
X(29667) lies on these lines: {1, 2}, {6, 33075}, {9, 33166}, {22, 958}, {25, 9708}, {31, 32780}, {37, 32862}, {38, 32784}, {55, 32779}, {57, 33086}, {63, 33083}, {75, 4972}, {81, 3416}, {120, 28651}, {141, 3873}, {171, 33074}, {226, 25958}, {238, 26061}, {244, 33174}, {251, 4426}, {318, 24989}, {321, 32773}, {329, 5772}, {333, 33114}, {354, 3844}, {355, 4220}, {427, 31419}, {518, 32782}, {726, 32776}, {748, 33159}, {750, 33079}, {756, 33165}, {846, 33161}, {858, 9710}, {894, 6327}, {940, 33078}, {960, 26911}, {964, 5015}, {968, 32849}, {982, 32781}, {984, 33162}, {993, 6636}, {1001, 33157}, {1010, 5300}, {1107, 1180}, {1150, 33121}, {1194, 1573}, {1211, 3681}, {1213, 26242}, {1215, 25760}, {1220, 5016}, {1230, 4385}, {1370, 2550}, {1376, 7485}, {1386, 4914}, {1621, 32777}, {1627, 4386}, {1861, 7378}, {1962, 33092}, {2177, 33160}, {2345, 3434}, {2551, 6997}, {2886, 5133}, {2887, 31019}, {2895, 3751}, {2979, 17792}, {3218, 26034}, {3219, 33163}, {3662, 17140}, {3666, 33089}, {3703, 4026}, {3729, 33100}, {3750, 33156}, {3763, 17597}, {3773, 32915}, {3790, 3995}, {3821, 17155}, {3846, 27131}, {3883, 5294}, {3891, 19786}, {3914, 28605}, {3923, 32947}, {3966, 32911}, {3980, 32948}, {4085, 32860}, {4224, 5791}, {4228, 5235}, {4357, 7226}, {4359, 4429}, {4363, 4799}, {4388, 26223}, {4414, 33167}, {4418, 4660}, {4425, 32925}, {4438, 32917}, {4463, 31993}, {4514, 17289}, {4649, 32852}, {4655, 32940}, {4671, 24210}, {4683, 32935}, {4703, 32938}, {4865, 32772}, {4883, 17231}, {4967, 31130}, {4968, 16062}, {4981, 5224}, {5014, 5263}, {5086, 5793}, {5249, 25959}, {5251, 5310}, {5258, 5322}, {5276, 17275}, {5278, 33118}, {5284, 17279}, {5347, 5737}, {5657, 26118}, {5790, 19544}, {5794, 7465}, {5835, 14923}, {6703, 9347}, {7484, 9709}, {7539, 31493}, {7672, 26942}, {8878, 21289}, {9812, 12618}, {15246, 25440}, {17163, 31087}, {17165, 27184}, {17184, 24349}, {17303, 20483}, {17364, 20290}, {17592, 32848}, {17594, 33168}, {17717, 31264}, {17718, 30831}, {19649, 26446}, {19684, 33073}, {19732, 26241}, {19808, 32850}, {20556, 26035}, {20932, 30758}, {21020, 32865}, {24165, 33125}, {24325, 25957}, {24723, 32933}, {25496, 32844}, {25527, 33148}, {26128, 32923}, {26580, 32937}, {28633, 30748}, {30615, 31247}, {31134, 33097}, {31161, 33101}, {31237, 33130}, {32774, 32922}, {32775, 32920}, {32912, 33082}, {32913, 33080}, {32916, 33119}, {32939, 32950}
X(29668) lies on these lines: {1, 2}, {11, 26128}, {38, 4011}, {149, 33125}, {244, 3980}, {312, 17598}, {354, 25496}, {497, 3821}, {726, 3677}, {982, 3923}, {1001, 6682}, {1215, 17597}, {1279, 32916}, {2887, 17721}, {3315, 32771}, {3434, 24169}, {3662, 33106}, {3685, 17591}, {3752, 32941}, {3794, 17188}, {3842, 8167}, {3873, 32944}, {3929, 4759}, {3976, 13740}, {4003, 32934}, {4090, 16496}, {4364, 25362}, {4392, 32930}, {4514, 33174}, {4697, 4860}, {4850, 32943}, {4981, 17125}, {5263, 17063}, {6703, 17051}, {8616, 24627}, {11235, 17290}, {11680, 33123}, {16706, 33141}, {17321, 24241}, {17449, 26223}, {17450, 19684}, {17717, 33124}, {17722, 18134}, {19786, 24217}, {21242, 24789}, {21342, 32935}, {30818, 32920}, {32844, 33172}, {33069, 33107}, {33071, 33087}
X(29669) lies on these lines: {1, 2}, {1215, 24703}, {3842, 30615}, {4026, 32920}, {4457, 28634}, {4660, 20292}, {17289, 17715}, {17769, 20182}, {31178, 33068}, {32946, 33076}
X(29670) lies on these lines: {1, 2}, {9, 4090}, {45, 4096}, {55, 1215}, {100, 3980}, {226, 4660}, {312, 3750}, {321, 2177}, {333, 18174}, {518, 32916}, {726, 17594}, {846, 32937}, {894, 3550}, {902, 26223}, {940, 4434}, {968, 3971}, {1376, 24325}, {1621, 4011}, {2887, 17718}, {3052, 4672}, {3242, 6682}, {3434, 25385}, {3666, 32920}, {3681, 32917}, {3689, 31993}, {3711, 19732}, {3722, 24552}, {3744, 25496}, {3748, 30818}, {3769, 4649}, {3772, 4085}, {3821, 33144}, {3873, 32918}, {3936, 33074}, {3974, 6541}, {4030, 4865}, {4363, 4421}, {4414, 17165}, {4417, 33076}, {4423, 24003}, {4428, 4432}, {4429, 33130}, {4438, 6690}, {4450, 24725}, {4514, 17717}, {4640, 32935}, {4654, 24692}, {4689, 32934}, {4696, 10448}, {4850, 32923}, {4863, 21242}, {4972, 33127}, {5014, 33105}, {5278, 21805}, {8616, 27064}, {9052, 9564}, {9350, 24589}, {11238, 30824}, {11814, 26105}, {14949, 21219}, {16484, 18743}, {17592, 32926}, {17596, 24349}, {17601, 32939}, {17715, 32942}, {17719, 32773}, {17724, 26128}, {17725, 19786}, {17766, 26098}, {18134, 33079}, {21241, 31266}, {24309, 24326}, {24723, 33101}, {26034, 33064}, {28595, 30811}, {28606, 32927}, {31019, 32948}, {31053, 32947}, {31161, 32933}, {32776, 33153}, {32781, 33122}, {32784, 33126}, {32850, 33111}, {32851, 33169}, {32856, 32950}, {33065, 33083}, {33068, 33103}, {33069, 33086}, {33113, 33162}, {33116, 33165}, {33124, 33174}, {33125, 33148}
X(29671) lies on these lines: {1, 2}, {6, 4438}, {31, 33070}, {37, 3846}, {38, 3936}, {39, 18905}, {55, 4865}, {63, 17770}, {75, 32855}, {81, 33119}, {100, 33072}, {141, 6682}, {171, 32851}, {190, 33096}, {192, 3944}, {226, 726}, {238, 33071}, {244, 18139}, {312, 6541}, {321, 25385}, {325, 24241}, {333, 32861}, {345, 3923}, {536, 3838}, {537, 4884}, {573, 3509}, {740, 2886}, {742, 25353}, {752, 4640}, {756, 5741}, {846, 4388}, {894, 33167}, {908, 3971}, {982, 18134}, {984, 4417}, {1150, 32852}, {1215, 3703}, {1386, 6679}, {1621, 32844}, {1836, 2796}, {2177, 5014}, {2276, 4071}, {2887, 3666}, {2901, 25639}, {3120, 17147}, {3159, 22000}, {3175, 17605}, {3210, 17889}, {3218, 32949}, {3219, 32843}, {3416, 32916}, {3452, 4078}, {3596, 4485}, {3662, 17591}, {3663, 4138}, {3685, 33106}, {3706, 21242}, {3717, 4090}, {3750, 4514}, {3752, 3836}, {3772, 32921}, {3782, 4892}, {3816, 17243}, {3817, 3950}, {3842, 5743}, {3874, 10974}, {3875, 17064}, {3891, 30834}, {3896, 33136}, {3914, 4970}, {3967, 4439}, {3980, 17740}, {3989, 26580}, {3993, 24210}, {4011, 17776}, {4109, 5283}, {4153, 25092}, {4292, 8720}, {4360, 33135}, {4392, 33069}, {4414, 6327}, {4418, 33112}, {4425, 25760}, {4434, 5432}, {4645, 17596}, {4649, 33121}, {4660, 17594}, {4850, 24169}, {4851, 25523}, {5016, 10448}, {5057, 32936}, {5138, 5745}, {5249, 24165}, {5263, 33160}, {5846, 6690}, {7226, 33065}, {8727, 28850}, {9284, 21838}, {11680, 32915}, {11814, 18743}, {14829, 32846}, {17056, 24325}, {17063, 17234}, {17155, 31019}, {17298, 18193}, {17592, 32773}, {17593, 33068}, {17598, 33124}, {17599, 26128}, {17600, 19786}, {17718, 32920}, {17719, 32926}, {17722, 32942}, {17723, 24295}, {17778, 32913}, {18589, 20254}, {20292, 32845}, {20531, 23304}, {21093, 31053}, {21099, 24577}, {22020, 22027}, {24162, 24221}, {24552, 33156}, {24627, 33085}, {24725, 32933}, {25958, 32776}, {25959, 33125}, {26223, 33161}, {27064, 33164}, {30828, 33144}, {30831, 32775}, {31034, 32912}, {31134, 32950}, {31237, 32774}, {32771, 33089}, {32772, 32779}, {32849, 32930}, {32860, 33108}, {32862, 32931}, {32911, 33115}, {32917, 33075}, {32918, 33078}, {32922, 33130}, {32924, 33129}, {32928, 33133}, {32929, 33104}, {32932, 33109}, {32939, 33097}, {32944, 33157}
X(29671) = complement of X(4362)
X(29672) lies on these lines: {1, 2}, {38, 24542}, {55, 24169}, {210, 31289}, {238, 33064}, {354, 6679}, {748, 33122}, {1001, 1626}, {1279, 2887}, {1621, 3821}, {2796, 33146}, {3315, 33119}, {3662, 8616}, {3685, 33147}, {3744, 3836}, {3748, 4085}, {3749, 17282}, {3750, 16706}, {3782, 4432}, {3791, 4966}, {3891, 6541}, {4011, 21093}, {4428, 17290}, {4429, 17715}, {4438, 17597}, {4676, 33103}, {4693, 19796}, {4697, 25557}, {4759, 17781}, {4987, 21793}, {5248, 16064}, {5284, 32775}, {7290, 32946}, {8258, 18398}, {15485, 27184}, {16484, 19786}, {17123, 33126}, {17127, 17770}, {17234, 17716}, {17279, 32920}, {17283, 33079}, {17469, 18139}, {17598, 33116}, {17725, 18743}, {17766, 25957}, {23853, 24653}, {24295, 32771}, {24789, 32941}, {25385, 32942}, {26724, 32945}, {32922, 33158}, {32923, 33157}, {32930, 33148}, {32943, 33129}
X(29672) = complement of X(33117)
X(29673) lies on these lines: {1, 2}, {6, 4071}, {31, 5014}, {37, 4119}, {38, 3821}, {55, 4438}, {63, 4660}, {75, 32865}, {81, 33072}, {100, 33119}, {141, 28595}, {149, 32930}, {171, 32850}, {190, 33095}, {210, 3846}, {213, 22009}, {226, 21241}, {238, 4514}, {305, 24211}, {312, 33141}, {321, 33136}, {333, 33076}, {354, 3836}, {496, 25079}, {497, 4011}, {516, 21375}, {518, 2887}, {527, 4799}, {537, 3782}, {726, 3914}, {740, 3703}, {752, 4641}, {894, 33109}, {896, 4450}, {908, 4090}, {958, 20834}, {982, 4429}, {983, 17353}, {984, 4425}, {993, 16064}, {1150, 33074}, {1215, 2886}, {1468, 5300}, {1621, 33115}, {1724, 4894}, {1738, 24165}, {1757, 4388}, {1836, 32935}, {2177, 33113}, {2273, 3686}, {2550, 3980}, {2796, 32933}, {3058, 4432}, {3120, 17165}, {3175, 4439}, {3218, 32948}, {3219, 32947}, {3242, 26128}, {3263, 24241}, {3416, 32853}, {3434, 3923}, {3666, 4085}, {3681, 25760}, {3685, 33164}, {3690, 3878}, {3706, 3773}, {3717, 3971}, {3742, 3823}, {3744, 6679}, {3750, 33116}, {3751, 32946}, {3755, 4970}, {3772, 32920}, {3780, 16886}, {3791, 5846}, {3816, 24003}, {3873, 25957}, {3891, 33128}, {3896, 32848}, {3925, 24325}, {3944, 21093}, {3996, 33160}, {4096, 4126}, {4104, 24393}, {4147, 10196}, {4363, 24694}, {4392, 33125}, {4418, 21381}, {4430, 25959}, {4645, 32913}, {4649, 33073}, {4661, 25958}, {4696, 21935}, {4703, 5220}, {4863, 32777}, {4906, 17356}, {5015, 5247}, {5057, 32938}, {5100, 5255}, {5263, 32780}, {5264, 8258}, {5741, 21805}, {6327, 17770}, {6541, 32862}, {7226, 32776}, {9022, 25368}, {9028, 24333}, {9053, 17061}, {9055, 25345}, {11680, 32931}, {13576, 24259}, {14829, 33079}, {16496, 25527}, {16704, 28599}, {16706, 17598}, {17072, 21204}, {17155, 33131}, {17720, 30615}, {17755, 26590}, {17889, 24349}, {18139, 21026}, {18743, 24217}, {18905, 22199}, {20292, 32940}, {20483, 24512}, {20542, 27942}, {20896, 21020}, {23687, 23786}, {24295, 24552}, {24326, 25353}, {24631, 26582}, {24715, 32939}, {26223, 33104}, {27064, 33106}, {31134, 32859}, {31237, 33122}, {32771, 33108}, {32779, 32945}, {32844, 32911}, {32860, 33089}, {32864, 33075}, {32919, 33078}, {32922, 33132}, {32923, 33129}, {32925, 33134}, {32926, 33135}, {32927, 33133}, {32929, 33161}, {32932, 33167}, {32942, 33159}, {32943, 33157}
X(29674) lies on these lines: {1, 2}, {4, 18788}, {5, 20486}, {6, 32846}, {9, 33082}, {12, 7146}, {31, 33078}, {35, 13723}, {37, 3844}, {38, 32862}, {45, 24697}, {46, 3501}, {55, 33079}, {57, 33167}, {63, 33085}, {69, 1757}, {75, 3773}, {76, 334}, {81, 26061}, {100, 33156}, {141, 984}, {171, 32777}, {190, 4655}, {191, 3730}, {192, 3821}, {210, 33084}, {238, 3416}, {244, 33089}, {291, 30945}, {304, 6376}, {312, 2887}, {320, 32935}, {321, 17889}, {345, 17596}, {346, 24248}, {354, 33169}, {442, 19584}, {518, 17231}, {536, 33149}, {594, 3826}, {599, 5220}, {726, 3662}, {740, 4429}, {748, 33075}, {750, 32779}, {752, 4676}, {756, 32782}, {846, 17776}, {940, 32780}, {982, 3703}, {985, 5264}, {986, 3695}, {1001, 17267}, {1009, 4447}, {1054, 17740}, {1146, 1329}, {1150, 33115}, {1215, 18134}, {1229, 23690}, {1330, 17799}, {1352, 6211}, {1376, 19329}, {1386, 17357}, {1429, 24914}, {1479, 20539}, {1621, 33074}, {1738, 2321}, {1742, 12618}, {1929, 30701}, {1959, 11681}, {1978, 30632}, {2329, 26066}, {2345, 24342}, {2786, 21959}, {3120, 4671}, {3175, 33154}, {3210, 24169}, {3218, 33161}, {3219, 33080}, {3314, 4518}, {3454, 3948}, {3620, 27549}, {3666, 33092}, {3670, 12782}, {3674, 3947}, {3681, 33081}, {3685, 4660}, {3686, 16779}, {3696, 3823}, {3704, 24440}, {3706, 32865}, {3712, 17601}, {3729, 32857}, {3751, 17296}, {3752, 32855}, {3759, 17772}, {3769, 6679}, {3775, 17228}, {3782, 6057}, {3842, 5224}, {3846, 18743}, {3873, 33162}, {3879, 28650}, {3883, 15485}, {3891, 33123}, {3923, 4645}, {3936, 32931}, {3952, 31017}, {3966, 17123}, {3967, 33101}, {3969, 32860}, {3971, 27184}, {3974, 33144}, {3981, 22171}, {3993, 17242}, {3994, 33151}, {3995, 32776}, {4011, 4388}, {4026, 17243}, {4030, 17715}, {4078, 4357}, {4085, 17240}, {4125, 21140}, {4358, 25760}, {4359, 25961}, {4364, 17225}, {4365, 33131}, {4369, 21962}, {4383, 32861}, {4385, 18208}, {4387, 33095}, {4398, 28516}, {4413, 21920}, {4414, 32849}, {4438, 14829}, {4439, 17227}, {4461, 7613}, {4535, 25351}, {4649, 4851}, {4663, 17374}, {4672, 17354}, {4710, 17786}, {4716, 17299}, {4791, 21132}, {4850, 32848}, {4865, 32942}, {4876, 16886}, {4901, 16496}, {4904, 20255}, {4972, 32915}, {4974, 17352}, {5014, 32943}, {5018, 28739}, {5057, 31134}, {5142, 17442}, {5197, 17977}, {5233, 24003}, {5263, 17285}, {5280, 17750}, {5525, 18343}, {5687, 8301}, {5695, 17269}, {5800, 21916}, {5847, 16468}, {5880, 17281}, {5904, 20683}, {6327, 32930}, {6382, 30631}, {6535, 28605}, {7741, 20544}, {7794, 22116}, {7951, 21057}, {9857, 24294}, {11814, 30861}, {12587, 16560}, {15481, 17344}, {16503, 17275}, {16706, 32921}, {17147, 33125}, {17165, 33069}, {17184, 32925}, {17232, 24349}, {17234, 24325}, {17264, 24723}, {17278, 31252}, {17283, 32922}, {17289, 20159}, {17340, 17768}, {17341, 31289}, {17350, 17770}, {17358, 24295}, {17361, 17771}, {17379, 26083}, {17717, 30818}, {17719, 30811}, {18139, 32771}, {20256, 20487}, {20488, 23901}, {20494, 30998}, {20661, 21682}, {21026, 33108}, {21255, 24231}, {21911, 26040}, {24206, 31395}, {24552, 33072}, {25354, 27268}, {25496, 33073}, {25527, 33152}, {25557, 31178}, {26128, 32926}, {26223, 32949}, {26582, 27474}, {27064, 32946}, {28595, 32773}, {28606, 32781}, {31237, 33133}, {32774, 32928}, {32850, 32941}, {32852, 32911}, {32853, 33118}, {32859, 32938}, {32863, 32912}, {32913, 33163}, {32916, 33116}, {32918, 33113}, {32919, 33114}, {32920, 33124}, {32927, 33122}, {32929, 32948}, {32933, 33067}, {32934, 33068}, {32936, 32950}, {32937, 33064}, {32944, 33070}, {33295, 33297}
X(29675) lies on these lines: 1, 2}, {37, 17725}, {55, 17889}, {171, 4675}, {226, 8616}, {238, 17718}, {846, 4419}, {902, 31019}, {908, 15485}, {968, 33152}, {982, 6690}, {984, 17724}, {1001, 17719}, {1054, 5218}, {1086, 17601}, {1215, 17354}, {1279, 17717}, {1621, 3944}, {1754, 11218}, {2177, 33129}, {2886, 17715}, {3052, 33097}, {3295, 24161}, {3475, 32913}, {3550, 5249}, {3683, 33101}, {3722, 33108}, {3744, 33111}, {3748, 33141}, {3749, 25525}, {3750, 3772}, {3769, 17387}, {3976, 7483}, {4414, 33148}, {4423, 17783}, {4428, 33095}, {4434, 17234}, {4512, 33099}, {4640, 33103}, {4667, 25353}, {4689, 33149}, {4690, 33084}, {4741, 33064}, {5432, 17063}, {10389, 17064}, {16484, 17720}, {16588, 21827}, {17056, 17716}, {17061, 17395}, {17256, 33126}, {17269, 33158}, {17305, 26128}, {17594, 33147}, {24542, 32931}, {30811, 33076}, {30834, 32844}, {31266, 33106}, {32916, 33124}, {32917, 33122}, {32920, 33116}, {32923, 33113}
X(29676) lies on these lines: {1, 2}, {6, 17722}, {9, 9599}, {11, 984}, {37, 24217}, {38, 3944}, {57, 33109}, {63, 33106}, {75, 21242}, {80, 16499}, {142, 24216}, {149, 4414}, {238, 17721}, {244, 33108}, {312, 4439}, {354, 33111}, {442, 3976}, {497, 846}, {518, 17717}, {528, 17601}, {982, 1086}, {986, 24390}, {1000, 13541}, {1054, 2550}, {1150, 32844}, {1699, 33099}, {2887, 17227}, {3120, 4392}, {3218, 33104}, {3242, 17719}, {3434, 17596}, {3662, 21241}, {3666, 33141}, {3677, 17064}, {3706, 32855}, {3752, 32865}, {3756, 3826}, {3772, 17598}, {3829, 4415}, {3838, 21342}, {3846, 4407}, {3873, 26738}, {3914, 17591}, {3925, 17063}, {4003, 33149}, {4011, 4473}, {4051, 21965}, {4335, 24389}, {4437, 30869}, {4438, 32942}, {4514, 32916}, {4644, 24333}, {4649, 17723}, {4660, 24627}, {4674, 24223}, {4850, 33136}, {4865, 14829}, {4981, 25960}, {5014, 32918}, {5219, 16496}, {5745, 8616}, {5880, 18201}, {6382, 20900}, {6682, 17774}, {6690, 17715}, {9041, 27777}, {9284, 16975}, {10129, 32856}, {11235, 33095}, {17051, 17245}, {17057, 24222}, {17122, 17728}, {17140, 31030}, {17449, 31019}, {17461, 21630}, {17594, 24392}, {17595, 24715}, {17597, 31245}, {17599, 33135}, {17605, 33101}, {20834, 26357}, {21093, 31302}, {24161, 31493}, {24174, 31419}, {24210, 24386}, {24349, 25385}, {24552, 33119}, {25496, 33121}, {30818, 33165}, {31029, 33069}, {32851, 32941}, {32853, 33071}, {32912, 33107}, {32919, 33070}, {32943, 33113}, {32944, 33114}
X(29677) lies on these lines: {1, 2}, {11, 31237}, {38, 17279}, {141, 748}, {238, 33080}, {244, 32777}, {312, 33123}, {344, 3989}, {354, 17357}, {982, 33157}, {1001, 32781}, {1211, 17125}, {1279, 33074}, {1621, 33174}, {1631, 4191}, {3315, 33169}, {3662, 32930}, {3685, 33125}, {3706, 17356}, {3752, 33156}, {3763, 4423}, {3836, 24552}, {3873, 33159}, {4000, 4365}, {4011, 17184}, {4358, 26128}, {4383, 33081}, {4387, 17290}, {4392, 33164}, {4429, 32943}, {4432, 32950}, {4671, 33147}, {4676, 33067}, {4683, 17227}, {4850, 33158}, {5263, 25961}, {5278, 31289}, {5284, 32784}, {6536, 17306}, {8616, 33086}, {15485, 33083}, {16468, 32863}, {16706, 32915}, {17063, 32779}, {17123, 32782}, {17127, 33085}, {17155, 17280}, {17231, 32852}, {17232, 32949}, {17233, 32924}, {17234, 32772}, {17267, 17599}, {17278, 21020}, {17283, 25957}, {17291, 32776}, {17352, 32864}, {17353, 32912}, {17354, 32940}, {17449, 33163}, {17591, 32849}, {17597, 33162}, {17598, 32862}, {18134, 32944}, {18139, 25496}, {18743, 32775}, {21330, 28269}, {24169, 32929}, {24542, 32916}, {25531, 25960}, {25959, 33106}, {27064, 33069}, {30818, 33127}, {32911, 33087}, {32931, 33124}
X(29678) lies on these lines: {1, 2}, {12, 10448}, {31, 5718}, {38, 17718}, {55, 33104}, {100, 33111}, {212, 750}, {226, 4414}, {528, 17782}, {846, 31053}, {902, 26098}, {968, 5219}, {1011, 5172}, {1054, 27186}, {1215, 33113}, {1468, 7483}, {1621, 17717}, {1962, 17720}, {2177, 2886}, {2292, 11374}, {2650, 26066}, {2887, 30834}, {3035, 17124}, {3120, 17594}, {3475, 17449}, {3550, 33112}, {3666, 33127}, {3750, 11680}, {3826, 9350}, {3838, 4689}, {3936, 32916}, {4192, 32613}, {4417, 32917}, {4640, 24725}, {4642, 28628}, {4653, 7951}, {4850, 33130}, {4892, 32950}, {4893, 21118}, {5745, 32912}, {6682, 33122}, {8616, 33107}, {10129, 33095}, {17450, 17728}, {17469, 17723}, {17591, 33148}, {17592, 33133}, {17593, 33146}, {17596, 31019}, {17601, 20292}, {17719, 28606}, {17768, 17775}, {18134, 32918}, {19765, 21935}, {24552, 31281}, {24627, 33069}, {25385, 32929}, {26034, 30828}, {26738, 33097}, {30811, 32781}, {30831, 32784}, {31245, 33136}, {31264, 32777}, {32771, 32851}, {32931, 33116}
X(29679) lies on these lines: {1, 2}, {6, 33078}, {9, 33083}, {22, 1376}, {25, 9709}, {31, 33079}, {38, 33165}, {55, 33157}, {57, 33170}, {63, 33086}, {100, 9078}, {141, 3681}, {171, 26061}, {190, 32950}, {210, 3844}, {226, 25959}, {238, 33074}, {244, 33169}, {251, 4386}, {312, 4972}, {321, 4429}, {355, 19649}, {427, 3820}, {518, 33172}, {594, 26242}, {726, 33125}, {748, 33076}, {750, 32780}, {756, 32784}, {858, 9711}, {894, 17007}, {908, 25958}, {958, 7485}, {982, 33162}, {984, 32781}, {993, 15246}, {1150, 33118}, {1180, 1575}, {1194, 1574}, {1213, 25632}, {1215, 25957}, {1329, 5133}, {1370, 2551}, {1621, 17279}, {1627, 4426}, {1738, 28605}, {1757, 33080}, {1861, 5338}, {2177, 33158}, {2550, 6997}, {2887, 31053}, {3060, 17792}, {3218, 33163}, {3219, 26032}, {3263, 5224}, {3305, 20344}, {3416, 32911}, {3662, 17165}, {3666, 32862}, {3701, 16062}, {3703, 4850}, {3717, 7226}, {3729, 33102}, {3740, 7703}, {3744, 17357}, {3751, 32863}, {3752, 33089}, {3773, 32860}, {3790, 17147}, {3821, 32925}, {3823, 31993}, {3836, 27186}, {3846, 31084}, {3891, 16706}, {3896, 17233}, {3914, 4671}, {3923, 32948}, {3932, 28606}, {3952, 27184}, {3967, 33151}, {3971, 32776}, {3974, 19785}, {3994, 33154}, {3996, 17285}, {4011, 32947}, {4085, 32915}, {4090, 33065}, {4202, 4385}, {4220, 26446}, {4357, 31130}, {4358, 32773}, {4383, 33075}, {4414, 33164}, {4438, 32918}, {4450, 4676}, {4645, 26223}, {4655, 32938}, {4660, 32930}, {4865, 32944}, {5014, 32942}, {5015, 5192}, {5235, 5324}, {5276, 17303}, {5294, 17126}, {5300, 13740}, {5772, 9776}, {5790, 16434}, {5818, 26118}, {6327, 27064}, {6376, 8024}, {6636, 25440}, {7378, 8165}, {7465, 26066}, {7484, 9708}, {8270, 28780}, {8891, 27076}, {9778, 12618}, {11680, 30818}, {14829, 33114}, {15985, 25279}, {17127, 17353}, {17155, 24169}, {17184, 32937}, {17239, 30748}, {17242, 27804}, {17248, 31087}, {17280, 32929}, {17293, 26241}, {17594, 32849}, {17596, 33161}, {17719, 31237}, {18525, 21487}, {19804, 24988}, {19822, 26040}, {21026, 31264}, {21805, 33084}, {24003, 25960}, {24325, 25961}, {24552, 32850}, {25496, 33072}, {25527, 33153}, {25760, 27131}, {26128, 32927}, {26580, 27538}, {31073, 32916}, {31090, 31337}, {31134, 33096}, {31161, 33103}, {32774, 32926}, {32912, 33085}, {32920, 33123}, {32933, 33068}, {32935, 33067}
X(29680) lies on these lines: {1, 2}, {11, 28606}, {31, 17722}, {38, 17717}, {57, 33112}, {63, 33107}, {81, 17723}, {142, 9335}, {149, 17594}, {226, 4392}, {244, 27186}, {908, 7226}, {982, 31019}, {984, 27131}, {988, 2475}, {1150, 33071}, {1621, 17721}, {1699, 33100}, {1962, 24217}, {2886, 4850}, {3120, 17591}, {3218, 26098}, {3338, 26131}, {3666, 11680}, {3677, 31266}, {3752, 33108}, {3782, 10129}, {3829, 4854}, {3838, 4003}, {3873, 5718}, {3919, 24223}, {4220, 26286}, {4255, 5178}, {4414, 33106}, {4438, 32944}, {4865, 32918}, {4981, 5233}, {5141, 13161}, {5172, 7485}, {5219, 33153}, {5372, 5847}, {5745, 17127}, {6327, 24627}, {6682, 25760}, {7174, 30852}, {14829, 33070}, {17064, 33150}, {17155, 25385}, {17593, 33094}, {17595, 20292}, {17596, 33104}, {17598, 33127}, {17599, 33133}, {17605, 33151}, {18193, 26842}, {19544, 22765}, {19649, 32613}, {21241, 33125}, {21242, 32860}, {24552, 32851}, {25496, 33119}, {30818, 32862}, {30834, 33124}, {31245, 33129}, {31264, 33169}, {32844, 32916}, {32942, 33113}
X(29681) lies on these lines: {1, 2}, {9, 33153}, {25, 5146}, {31, 31019}, {55, 33129}, {63, 33148}, {100, 24789}, {149, 17064}, {171, 27186}, {226, 17127}, {238, 31053}, {312, 24542}, {333, 33122}, {748, 17719}, {756, 17725}, {846, 33143}, {896, 33103}, {902, 17889}, {968, 33155}, {1001, 33133}, {1150, 33124}, {1279, 11680}, {1376, 26724}, {1621, 3772}, {1707, 17483}, {2177, 33132}, {3052, 20292}, {3058, 17070}, {3120, 8616}, {3219, 33144}, {3246, 17605}, {3475, 24597}, {3681, 17724}, {3683, 33151}, {3722, 32865}, {3744, 33108}, {3749, 33110}, {3750, 33128}, {3769, 18139}, {3883, 25958}, {3891, 33116}, {3911, 9335}, {3915, 24161}, {3966, 30831}, {4188, 24178}, {4189, 23536}, {4197, 5266}, {4392, 5745}, {4414, 33147}, {4434, 25961}, {4438, 32923}, {4512, 33100}, {4640, 33146}, {4850, 6690}, {5249, 17126}, {5278, 33126}, {5284, 17720}, {5310, 14799}, {6679, 32771}, {7262, 32856}, {7290, 31266}, {7998, 20359}, {10404, 16948}, {13161, 16865}, {15253, 17080}, {17061, 28606}, {17469, 33111}, {17594, 33150}, {17597, 31187}, {17715, 33136}, {17718, 32911}, {18191, 23155}, {23681, 33102}, {25525, 33112}, {25527, 33083}, {26128, 32917}, {30811, 33075}, {30834, 33071}, {31229, 33121}, {31237, 33076}, {32916, 33123}, {32920, 33115}, {32922, 33113}
X(29682) lies on these lines: {1, 2}, {37, 17605}, {38, 17056}, {86, 33119}, {226, 3989}, {748, 17723}, {756, 5718}, {846, 33112}, {968, 9580}, {1962, 2886}, {3120, 28606}, {3474, 4414}, {3842, 5741}, {3932, 31264}, {3995, 25385}, {4438, 19684}, {4657, 31237}, {4687, 25960}, {5235, 32861}, {5284, 17722}, {5712, 32912}, {5737, 32852}, {6051, 7743}, {6535, 33092}, {6536, 25760}, {6682, 18139}, {16777, 31245}, {17591, 27186}, {17592, 33108}, {17600, 33129}, {20182, 33128}, {21027, 32860}, {24342, 33168}, {25431, 31262}, {25525, 33143}, {26738, 33101}, {31993, 32848}, {32772, 33116}, {32917, 33073}
X(29683) lies on these lines: {1, 2}, {11, 17469}, {31, 17720}, {38, 17602}, {57, 33143}, {81, 17719}, {100, 33135}, {171, 3120}, {199, 5172}, {230, 21840}, {244, 17061}, {354, 22321}, {750, 3772}, {896, 4415}, {902, 24210}, {908, 2308}, {940, 33127}, {1054, 33150}, {1089, 6693}, {1155, 33145}, {1376, 33128}, {1962, 6690}, {3218, 33152}, {3550, 33134}, {3745, 33105}, {3769, 25760}, {3791, 5741}, {3873, 17725}, {3944, 17126}, {3989, 5745}, {4193, 16478}, {4358, 6679}, {4434, 4972}, {4650, 33151}, {5080, 5429}, {5269, 33104}, {6535, 32779}, {6536, 32917}, {9340, 17768}, {9347, 33111}, {9352, 33149}, {11680, 17716}, {14829, 32775}, {16468, 27131}, {16475, 30852}, {17122, 33129}, {17124, 24789}, {17596, 33155}, {18087, 29480}, {19786, 32918}, {27003, 33147}, {30831, 32846}, {32851, 32928}, {32913, 33153}, {32919, 33126}, {32926, 33119}, {32927, 33121}
X(29684) lies on these lines: {1, 2}, {38, 3589}, {597, 4722}, {748, 4657}, {1386, 32781}, {3120, 25496}, {3618, 32912}, {3763, 32852}, {3946, 4365}, {3989, 17353}, {4683, 17305}, {6535, 32921}, {16475, 33080}, {16706, 32772}, {17061, 31264}, {17147, 24295}, {17155, 17368}, {17289, 32924}, {17291, 32949}, {17302, 32930}, {17304, 33098}, {17366, 21020}, {17370, 25957}, {17380, 32915}, {17382, 33145}, {17383, 32776}, {17398, 21840}, {17599, 26061}, {17600, 33157}, {17723, 31237}, {19786, 32944}, {19812, 25960}, {20966, 28288}, {25539, 32782}, {26150, 33069}
X(29685) lies on these lines: {1, 2}, {11, 31264}, {37, 33162}, {38, 4026}, {81, 33076}, {86, 33072}, {354, 32781}, {756, 4126}, {846, 33170}, {894, 32947}, {940, 33074}, {968, 33161}, {984, 6536}, {1001, 26061}, {1100, 4914}, {1230, 4692}, {1621, 32780}, {1962, 3703}, {2308, 3883}, {3058, 17369}, {3120, 32771}, {3750, 32779}, {3821, 17140}, {3844, 4883}, {3873, 32784}, {4030, 6703}, {4038, 33078}, {4085, 4359}, {4363, 33094}, {4415, 31161}, {4425, 17165}, {4450, 4697}, {4514, 32772}, {4649, 33075}, {4863, 17303}, {4865, 19684}, {4972, 24325}, {5284, 33159}, {5743, 21805}, {6535, 32915}, {8025, 28599}, {10436, 20553}, {16484, 33157}, {17289, 32943}, {17398, 20483}, {17592, 33089}, {18139, 28595}, {19786, 32923}, {19808, 32945}, {21027, 32865}, {23928, 24326}, {24342, 33110}, {24349, 32776}, {24723, 32940}, {28606, 33169}, {31178, 33146}, {31993, 33136}, {32913, 33083}, {32917, 33121}
X(29686) lies on these lines: {1, 2}, {141, 17469}, {1001, 6536}, {1386, 33081}, {2916, 8053}, {3120, 24552}, {3242, 26061}, {3744, 32781}, {3748, 17384}, {3763, 33074}, {3891, 6535}, {3930, 17398}, {4001, 21747}, {5263, 33123}, {6703, 17450}, {10385, 26104}, {16706, 32945}, {17165, 24295}, {17289, 32923}, {17291, 32948}, {17598, 32779}, {17599, 33156}, {17715, 25539}, {17716, 33172}, {17722, 30831}, {17724, 31264}, {19786, 32943}, {21027, 24789}, {25496, 33122}, {25527, 33104}, {26150, 33125}, {32772, 33124}, {32774, 32941}, {32775, 32942}, {32944, 33126}
X(29687) lies on these lines: {1, 2}, {9, 33080}, {31, 17279}, {37, 32781}, {38, 3932}, {55, 17267}, {57, 33161}, {75, 6535}, {81, 33159}, {100, 33158}, {141, 756}, {171, 33157}, {190, 33067}, {192, 33125}, {199, 20871}, {210, 17231}, {238, 33078}, {244, 3703}, {312, 3120}, {320, 32938}, {321, 3836}, {334, 18152}, {344, 26034}, {354, 33162}, {599, 3715}, {748, 3416}, {750, 32777}, {846, 33086}, {940, 26061}, {982, 32862}, {984, 33172}, {1001, 33074}, {1054, 33168}, {1086, 6057}, {1215, 18139}, {1269, 21415}, {1376, 33156}, {1621, 33079}, {1738, 4365}, {1757, 32863}, {1930, 20703}, {1962, 17243}, {1978, 30631}, {2308, 17353}, {2886, 21026}, {2887, 4358}, {3175, 33145}, {3218, 33164}, {3219, 33085}, {3662, 32925}, {3681, 33087}, {3685, 32948}, {3695, 24443}, {3706, 3823}, {3745, 17357}, {3752, 32848}, {3773, 4359}, {3782, 3994}, {3790, 17155}, {3821, 3995}, {3826, 21020}, {3873, 33165}, {3944, 25959}, {3952, 33064}, {3966, 17125}, {3967, 32856}, {3969, 24988}, {3971, 17184}, {3989, 4078}, {4011, 6327}, {4082, 21255}, {4165, 21950}, {4383, 32852}, {4387, 33094}, {4413, 21911}, {4414, 17776}, {4418, 17280}, {4425, 31035}, {4429, 32915}, {4432, 4450}, {4519, 21949}, {4645, 32930}, {4671, 17889}, {4687, 8040}, {4750, 21959}, {4850, 33092}, {5284, 33076}, {5741, 24003}, {6536, 32784}, {6541, 17147}, {11246, 17340}, {14829, 33115}, {16706, 32928}, {17056, 31264}, {17063, 33089}, {17122, 32779}, {17123, 33075}, {17232, 32937}, {17233, 32860}, {17234, 32771}, {17264, 32936}, {17268, 32932}, {17283, 32926}, {17596, 32849}, {17720, 31237}, {17792, 20961}, {18133, 18138}, {18134, 32931}, {18141, 33163}, {18743, 25760}, {20292, 31151}, {20859, 22171}, {21726, 25126}, {21931, 26040}, {21962, 24924}, {24703, 31134}, {25960, 30829}, {25970, 26591}, {26724, 31252}, {27003, 33167}, {27064, 32949}, {27065, 33082}, {27538, 33065}, {28606, 33174}, {30818, 33105}, {32846, 32911}, {32850, 32943}, {32913, 33166}, {32918, 33116}, {32919, 33118}, {32927, 33124}, {32942, 33072}, {32944, 33073}
X(29688) lies on these lines: {1, 2}, {11, 1962}, {31, 17723}, {38, 5718}, {244, 17056}, {846, 33107}, {908, 3989}, {1100, 21014}, {1255, 31272}, {1621, 17722}, {2308, 5745}, {3120, 3666}, {3703, 31264}, {3724, 21321}, {3846, 6536}, {3891, 31281}, {3896, 21242}, {3936, 6682}, {4414, 26098}, {4850, 33111}, {4884, 31161}, {6155, 31488}, {6535, 32848}, {6690, 17469}, {9345, 17728}, {10129, 33154}, {11680, 17592}, {17147, 25385}, {17591, 31019}, {17593, 20292}, {17594, 33104}, {17596, 33112}, {17599, 33127}, {17600, 33133}, {17717, 28606}, {19516, 22765}, {24627, 32949}, {25496, 33113}, {26128, 30834}, {26738, 33103}, {31245, 33128}, {31266, 33143}, {32772, 32851}, {32916, 33070}, {32917, 33071}, {32918, 33073}, {32944, 33116}
X(29689) lies on these lines: {1, 2}, {244, 6690}, {748, 17718}, {756, 17724}, {846, 33148}, {902, 5249}, {968, 33143}, {1001, 33127}, {1215, 24542}, {1279, 33105}, {1621, 3120}, {1962, 17061}, {2177, 24789}, {3475, 32912}, {3550, 27186}, {3683, 32856}, {3722, 3925}, {3748, 33136}, {3750, 33129}, {4030, 21026}, {4428, 33094}, {4512, 33098}, {5284, 17719}, {5745, 17449}, {6535, 33158}, {6536, 32775}, {8167, 17783}, {8616, 31019}, {11218, 13329}, {15485, 31053}, {16484, 33133}, {17056, 17469}, {17201, 24211}, {17715, 33108}, {21027, 32945}, {25525, 33104}, {32917, 33124}, {32923, 33116}
X(29690) lies on these lines: {1, 2}, {11, 756}, {38, 2886}, {45, 11238}, {63, 33104}, {149, 846}, {201, 10957}, {244, 3925}, {321, 21242}, {333, 32844}, {518, 33105}, {678, 4995}, {748, 17721}, {762, 1506}, {902, 5745}, {968, 24392}, {982, 33108}, {984, 11680}, {1107, 21029}, {1150, 4865}, {1573, 21044}, {1757, 33107}, {2177, 4863}, {2292, 24390}, {2530, 6545}, {3218, 33109}, {3219, 33106}, {3242, 31245}, {3434, 4414}, {3666, 33136}, {3681, 17717}, {3703, 6535}, {3706, 32848}, {3722, 6690}, {3838, 32856}, {3841, 3953}, {3846, 4981}, {3873, 33111}, {3915, 5791}, {3944, 7226}, {3954, 31488}, {3976, 4197}, {3989, 24210}, {4003, 21949}, {4096, 30566}, {4359, 21027}, {4392, 17889}, {4438, 24552}, {4514, 32917}, {4850, 32865}, {4972, 6682}, {5014, 32916}, {5249, 17449}, {5263, 33119}, {5659, 13329}, {10129, 33101}, {14829, 33072}, {16496, 31266}, {17064, 33143}, {17124, 17728}, {17165, 25385}, {17184, 21241}, {17591, 33131}, {17596, 33110}, {17598, 33129}, {17599, 33128}, {17722, 32911}, {24443, 31419}, {24627, 32948}, {25496, 33114}, {26098, 32912}, {28606, 33141}, {31140, 33094}, {31466, 33299}, {32772, 33121}, {32850, 32918}, {32851, 32945}, {32853, 33070}, {32864, 33071}, {32913, 33112}, {32919, 33073}, {32941, 33113}, {32942, 33115}, {32943, 33116}, {32944, 33118}
Collineation mappings involving Gemini triangle 93: X(29691)-X(29741)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 93, as in centers X(28691)-X(29741). Then
m(X) = (a^2 b + a^2 c - 2 a b c + b^2 c + b c^2) x - b (a - c)^2) y - c (a - b)^2 z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, December 9, 2018)
X(29691) lies on these lines: {1, 2}, {404, 4482}, {668, 16549}, {874, 29712}, {1018, 6376}, {3230, 25107}, {4253, 25278}, {4595, 18140}, {11285, 16499}, {16552, 25280}, {17670, 24222}, {29694, 29700}, {29695, 29698}, {29696, 29721}, {29703, 29722}, {29736, 29740}
X(29692) lies on these lines: {2, 3}, {20605, 29720}, {29695, 29704}, {29697, 29732}, {29713, 29731}
X(29693) lies on these lines: {2, 3}, {29698, 29699}, {29704, 29735}, {29711, 29713}
X(29694) lies on these lines: {2, 3}, {16969, 17753}, {17742, 29712}, {29691, 29700}, {29706, 29735}
X(29695) lies on these lines: {2, 6}, {190, 30473}, {3882, 18133}, {21362, 29423}, {29691, 29698}, {29692, 29704}, {29703, 29707}, {29712, 29716}, {29729, 29736}
X(29696) lies on these lines: {2, 7}, {344, 21362}, {573, 17336}, {984, 3884}, {2183, 25728}, {3161, 3882}, {3730, 29714}, {4069, 25304}, {4266, 17261}, {17092, 25731}, {29691, 29721}, {29697, 29711}
X(29697) lies on these lines: {1, 2}, {3, 4482}, {76, 4595}, {573, 17786}, {668, 3730}, {996, 16061}, {3208, 6381}, {4253, 24524}, {4437, 5690}, {16552, 25278}, {16969, 27076}, {21067, 24282}, {24190, 27295}, {29692, 29732}, {29696, 29711}
X(29698) lies on these lines: {2, 7}, {71, 4480}, {75, 21362}, {190, 18040}, {545, 4271}, {1266, 2347}, {1756, 32935}, {3729, 3770}, {4069, 25279}, {4795, 17207}, {17336, 18150}, {17347, 21061}, {21361, 32939}, {24237, 28748}, {29691, 29695}, {29693, 29699}
X(29699) lies on these lines: {1, 2}, {21, 4482}, {274, 4595}, {668, 3294}, {1018, 1909}, {1966, 29705}, {3208, 3761}, {3230, 25102}, {3508, 29740}, {4050, 32104}, {4095, 14210}, {5525, 17739}, {6656, 24222}, {16552, 24524}, {17175, 24656}, {20448, 29719}, {29693, 29698}, {29712, 29713}, {29722, 29732}
X(29700) lies on these lines: {2, 11}, {29691, 29694}
X(29701) lies on these lines: {2, 3}
X(29702) lies on these lines: {2, 3}
X(29703) lies on these lines: {2, 31}, {29691, 29722}, {29695, 29707}, {29708, 29732}
X(29704) lies on these lines: {2, 32}, {29692, 29695}, {29693, 29735}, {29713, 29729}, {29731, 29736}
X(29705) lies on these lines: {2, 37}, {86, 646}, {190, 29714}, {573, 17336}, {894, 4033}, {1966, 29699}, {2321, 30939}, {3264, 17355}, {3729, 18133}, {3758, 4110}, {3963, 7227}, {4363, 18040}, {4659, 18044}, {5105, 17393}, {7321, 18150}, {17116, 18143}, {18170, 24487}, {18480, 29229}, {29691, 29695}, {29706, 29720}
X(29706) lies on these lines: {2, 39}, {1018, 6376}, {29692, 29695}, {29694, 29735}, {29705, 29720}, {29729, 29731}
X(29707) lies on these lines: {1, 2}, {4482, 13588}, {4595, 31008}, {29695, 29703}
X(29708) lies on these lines: {1, 2}, {1018, 17149}, {4203, 4482}, {29703, 29732}
X(29709) lies on these lines: {2, 44}, {75, 29711}, {190, 29716}, {29691, 29695}, {29717, 29738}
X(29710) lies on these lines: {2, 45}, {16710, 25269}, {29691, 29695}
X(29711) lies on these lines: {2, 6}, {9, 29716}, {75, 29709}, {2347, 18044}, {4033, 29497}, {4266, 18133}, {29693, 29713}, {29696, 29697}, {29727, 29731}
X(29712) lies on these lines: {2, 37}, {9, 4033}, {190, 18040}, {313, 2325}, {646, 17277}, {874, 29691}, {3264, 25101}, {3729, 18143}, {3963, 17340}, {4110, 17335}, {15492, 25298}, {17242, 30939}, {17261, 18133}, {17276, 18150}, {17336, 17786}, {17742, 29694}, {18144, 25269}, {24517, 31337}, {29695, 29716}, {29696, 29697}, {29699, 29713}
X(29713) lies on these lines: {2, 39}, {646, 17346}, {668, 3730}, {29692, 29731}, {29693, 29711}, {29699, 29712}, {29704, 29729}
X(29714) lies on these lines: {2, 6}, {190, 29705}, {874, 29691}, {3730, 29696}, {4033, 29429}, {21362, 29388}, {29719, 29720}
X(29715) lies on these lines: {1, 2}, {3212, 30730}, {4188, 4482}, {4253, 25296}, {4595, 18135}
X(29716) lies on these lines: {1, 2}, {9, 29711}, {190, 29709}, {4391, 21385}, {4482, 21495}, {29695, 29712}
X(29717) lies on these lines: {2, 661}, {3290, 3776}, {3762, 6002}, {3768, 20954}
X(29718) lies on these lines: {2, 667}, {4063, 29720}, {29737, 29738}
X(29719) lies on these lines: {2, 31}, {20448, 29699}, {29691, 29695}, {29714, 29720}
X(29720) lies on these lines: {1, 2}, {3230, 25109}, {4063, 29718}, {4482, 17531}, {4754, 13466}, {17175, 25102}, {20605, 29692}, {29705, 29706}, {29714, 29719}
X(29721) lies on these lines: {2, 3}, {29691, 29696}
X(29722) lies on these lines: {2, 3}, {3730, 29696}, {29691, 29703}, {29699, 29732}
X(29723) lies on these lines:
X(29724) lies on these lines:
X(29725) lies on these lines:
X(29726) lies on these lines:
X(29727) lies on these lines:
X(29728) lies on these lines:
X(29729) lies on these lines:
X(29730) lies on these lines:
X(29731) lies on these lines:
X(29732) lies on these lines:
X(29733) lies on these lines:
X(29734) lies on these lines:
X(29735) lies on these lines:
X(29736) lies on these lines:
X(29737) lies on these lines:
X(29738) lies on these lines:
X(29739) lies on these lines:
X(29740) lies on these lines:
X(29741) lies on these lines:
Collineation mappings involving Gemini triangle 94: X(29742)-X(29813)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 94, as in centers X(29742)-X(29813). Then
m(X) = (a^2 b + a^2 c + 2 a b c + b^2 c + b c^2) x - b (a + c)^2 y - c (a + b^2) z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, December 10, 2018)
X(29742) lies on these lines: {1, 2}, {350, 16552}, {673, 29473}, {1018, 17144}, {1475, 20888}, {2140, 30941}, {3760, 21384}, {3780, 3934}, {3946, 25599}, {4253, 4441}, {4647, 24631}, {4657, 17210}, {4766, 24387}, {6763, 17738}, {16549, 17143}, {17137, 17761}, {17754, 32104}, {18040, 29447}, {19821, 29743}, {20963, 21264}, {21070, 27109}, {24629, 28612}, {29745, 29751}, {29746, 29749}, {29747, 29774}, {29754, 29766}, {29764, 29767}, {29794, 29802}, {29795, 29797}
X(29743) lies on these lines: {2, 3}, {6, 17753}, {75, 16552}, {673, 1724}, {3555, 19791}, {4043, 17742}, {19803, 29758}, {19821, 29742}, {29746, 29755}, {29748, 29797}, {29765, 29796}
X(29744) lies on these lines: {2, 3}, {29749, 29750}, {29751, 29787}, {29755, 29800}, {29762, 29783}, {29763, 29765}
X(29745) lies on these lines: {2, 3}, {29742, 29751}, {29757, 29800}
X(29746) lies on these lines: {2, 6}, {320, 24220}, {980, 4360}, {2274, 3293}, {3729, 4043}, {6384, 29754}, {8053, 29824}, {16574, 30939}, {18133, 29456}, {18137, 18206}, {19821, 29790}, {20174, 27003}, {29742, 29749}, {29743, 29755}, {29759, 29794}, {29764, 29769}, {29765, 29792}, {29773, 31997}, {29782, 29805}, {29801, 29802}
X(29747) lies on these lines: {2, 7}, {40, 4684}, {69, 20367}, {71, 17298}, {116, 18747}, {320, 573}, {583, 17290}, {986, 3874}, {1333, 18166}, {1716, 18193}, {2092, 17595}, {2245, 7232}, {2260, 17304}, {3619, 16549}, {3730, 17234}, {3869, 17092}, {3882, 21296}, {4000, 18206}, {4253, 16706}, {4257, 5248}, {4266, 17364}, {4270, 4850}, {10476, 31730}, {14377, 14964}, {16712, 17380}, {17065, 18201}, {18164, 26626}, {29742, 29774}, {29748, 29763}, {29766, 29777}
X(29748) lies on these lines: {1, 2}, {350, 4253}, {1475, 3760}, {2140, 30962}, {3761, 17474}, {4270, 25505}, {4360, 7786}, {4647, 24629}, {11285, 20162}, {17499, 30998}, {21208, 21216}, {29743, 29797}, {29747, 29763}, {29762, 29775}, {29765, 29811}, {29774, 29790}, {29802, 29813}
X(29749) lies on these lines: {2, 7}, {1018, 17241}, {3882, 17298}, {16549, 17283}, {17234, 20367}, {17278, 18206}, {17367, 18164}, {29742, 29746}, {29744, 29750}, {29764, 29801}, {29769, 29802}
X(29750) lies on these lines: {1, 2}, {1966, 29756}, {3337, 17738}, {6381, 17474}, {14210, 17048}, {16552, 30963}, {17175, 21264}, {18166, 23660}, {20530, 20963}, {27195, 33296}, {29744, 29749}, {29764, 29765}, {29772, 29792}, {29775, 29784}, {29781, 29790}, {29783, 29791}, {29811, 32020}
X(29751) lies on these lines: {2, 11}, {29742, 29745}, {29744, 29787}
X(29752) lies on these lines: {2, 3}
X(29753) lies on these lines: {2, 3}
X(29754) lies on these lines: {2, 31}, {6384, 29746}, {8033, 29767}, {29473, 32942}, {29742, 29766}, {29759, 29797}
X(29755) lies on these lines: {2, 32}, {10471, 29767}, {29743, 29746}, {29744, 29800}, {29765, 29782}, {29796, 29805}
X(29756) lies on these lines: {2, 37}, {142, 30939}, {239, 18143}, {314, 27191}, {319, 18150}, {673, 24632}, {1269, 3008}, {1966, 29750}, {3293, 32922}, {3770, 29590}, {3963, 4395}, {4033, 17117}, {4361, 18040}, {4384, 18133}, {5271, 18739}, {16709, 17023}, {16816, 18144}, {17143, 17283}, {17144, 17241}, {17291, 20174}, {17366, 20913}, {18166, 20179}, {25539, 28612}, {29742, 29746}, {29757, 29773}, {29762, 29776}
X(29757) lies on these lines: {1, 18143}, {2, 39}, {141, 17143}, {313, 24790}, {350, 17758}, {1930, 4043}, {4384, 18136}, {6384, 29759}, {16552, 29484}, {17144, 18150}, {17175, 18046}, {18044, 32092}, {29743, 29746}, {29745, 29800}, {29756, 29773}, {29782, 29792}
X(29758) lies on these lines:
X(29759) lies on these lines:
X(29760) lies on these lines:
X(29761) lies on these lines:
X(29762) lies on these lines:
X(29763) lies on these lines:
X(29764) lies on these lines: {1, 18143}, {2, 37}, {76, 17380}, {239, 18133}, {313, 3946}, {314, 17305}, {1269, 17023}, {1999, 18739}, {2140, 17234}, {2667, 30982}, {3187, 18136}, {3293, 32921}, {3662, 30939}, {3673, 20444}, {3875, 4033}, {3948, 17366}, {3963, 17395}, {4360, 18040}, {4393, 18144}, {4851, 18150}, {5256, 27792}, {14621, 18166}, {16709, 17397}, {17045, 20913}, {17143, 17307}, {17144, 17228}, {17326, 20174}, {17393, 20917}, {17786, 18073}, {20367, 29453}, {21858, 27095}, {29742, 29767}, {29746, 29769}, {29747, 29748}, {29749, 29801}, {29750, 29765}, {29777, 29790}
X(29765) lies on these lines:
X(29766) lies on these lines:
X(29767) lies on these lines:
X(29768) lies on these lines:
X(29769) lies on these lines:
X(29770) lies on these lines:
X(29771) lies on these lines:
X(29772) lies on these lines:
X(29773) lies on these lines: {1, 2}, {9, 20174}, {75, 16552}, {213, 17348}, {274, 20448}, {333, 20367}, {391, 17753}, {1724, 20172}, {3294, 4043}, {3686, 17050}, {3691, 20888}, {3739, 17175}, {3996, 17687}, {4359, 18206}, {4361, 5283}, {4647, 17755}, {17117, 25264}, {17160, 32026}, {17366, 25499}, {18089, 21020}, {21384, 32092}, {24631, 28611}, {29746, 31997}, {29756, 29757}
X(29774) lies on these lines:
X(29775) lies on these lines:
X(29776) lies on these lines:
X(29777) lies on these lines:
X(29778) lies on these lines:
X(29779) lies on these lines:
X(29780) lies on these lines:
X(29781) lies on these lines:
X(29782) lies on these lines:
X(29783) lies on these lines:
X(29784) lies on these lines:
X(29785) lies on these lines:
X(29786) lies on these lines:
X(29787) lies on these lines:
X(29788) lies on these lines:
X(29789) lies on these lines:
X(29790) lies on these lines:
X(29791) lies on these lines:
X(29792) lies on these lines:
X(29793) lies on these lines:
X(29794) lies on these lines:
X(29795) lies on these lines:
X(29796) lies on these lines:
X(29797) lies on these lines:
X(29798) lies on these lines:
X(29799) lies on these lines:
X(29800) lies on these lines:
X(29801) lies on these lines:
X(29802) lies on these lines:
X(29803) lies on these lines:
X(29804) lies on these lines:
X(29805) lies on these lines:
X(29806) lies on these lines:
X(29807) lies on these lines:
X(29808) lies on these lines:
X(29809) lies on these lines:
X(29810) lies on these lines:
X(29811) lies on these lines:
X(29812) lies on these lines:
X(29813) lies on these lines:
Points Castor are defined in the preamble just before X(29631).
X(29814) lies on these lines: {1, 2}, {6, 5284}, {7, 33100}, {31, 4038}, {33, 30284}, {37, 3873}, {55, 4210}, {56, 4184}, {81, 1001}, {86, 4441}, {89, 4650}, {142, 33131}, {171, 9345}, {192, 17140}, {222, 8543}, {244, 17592}, {291, 27789}, {344, 33166}, {350, 17394}, {354, 4392}, {496, 3136}, {497, 33112}, {672, 3247}, {748, 4649}, {750, 3750}, {756, 4661}, {940, 1621}, {968, 3218}, {982, 1962}, {984, 4430}, {991, 9812}, {999, 1011}, {1002, 1255}, {1056, 6818}, {1058, 6817}, {1464, 3485}, {1468, 16865}, {1479, 26131}, {1870, 4207}, {2177, 17122}, {2238, 16884}, {2276, 3723}, {2308, 15485}, {2350, 3730}, {2356, 7378}, {2667, 4699}, {2975, 19714}, {2979, 21746}, {3210, 27804}, {3243, 25430}, {3295, 4191}, {3315, 8299}, {3434, 4648}, {3475, 33153}, {3678, 31318}, {3681, 9330}, {3742, 4850}, {3743, 18398}, {3744, 9347}, {3748, 4682}, {3751, 27065}, {3868, 6051}, {3874, 27785}, {3896, 19804}, {3914, 27186}, {3945, 20347}, {3993, 17155}, {3995, 24349}, {4026, 33172}, {4085, 25961}, {4192, 10246}, {4196, 6198}, {4366, 16954}, {4414, 23958}, {4423, 32911}, {4425, 33069}, {4514, 17317}, {4671, 32771}, {4675, 20292}, {4687, 4981}, {4689, 9352}, {4704, 17146}, {4851, 33075}, {4854, 25557}, {4891, 31993}, {4966, 32782}, {4972, 17234}, {5247, 16859}, {5249, 33134}, {5253, 19765}, {5274, 14547}, {5361, 32919}, {5372, 32917}, {5453, 18493}, {5712, 33107}, {5904, 27784}, {6327, 17300}, {6645, 16955}, {6767, 16059}, {7109, 16969}, {7373, 16058}, {8025, 10458}, {8162, 16057}, {8616, 30652}, {8731, 15934}, {10473, 25058}, {10571, 18624}, {11322, 19715}, {11451, 23638}, {11680, 17056}, {14008, 15950}, {14997, 17123}, {15178, 19647}, {16777, 17597}, {17045, 30945}, {17145, 27268}, {17243, 32862}, {17321, 30941}, {17375, 20290}, {17391, 31004}, {17594, 27003}, {17602, 30959}, {17605, 26738}, {17724, 30993}, {17776, 33170}, {17794, 19717}, {18134, 25958}, {18139, 25959}, {18141, 33086}, {18169, 26860}, {19684, 32942}, {21223, 31999}, {23655, 27138}, {24210, 31019}, {24217, 33105}, {24248, 26842}, {24325, 28605}, {24666, 27013}, {25417, 30571}, {26627, 32932}, {31035, 32937}
X(29815) lies on these lines: {1, 2}, {6, 4661}, {22, 3295}, {23, 3303}, {25, 6767}, {31, 7226}, {33, 7408}, {34, 7409}, {37, 5332}, {38, 4650}, {55, 6636}, {56, 15246}, {63, 30652}, {81, 3242}, {86, 31130}, {100, 17599}, {105, 27789}, {171, 4392}, {192, 8267}, {210, 14997}, {251, 2241}, {354, 9347}, {388, 7391}, {390, 7500}, {428, 15172}, {495, 5133}, {497, 7394}, {611, 1994}, {748, 9330}, {750, 17598}, {984, 17127}, {999, 7485}, {1056, 1370}, {1058, 6997}, {1180, 1500}, {1386, 3681}, {1390, 25417}, {1482, 4220}, {1627, 2242}, {1870, 7378}, {1962, 17715}, {2177, 17600}, {2550, 33150}, {3218, 5269}, {3219, 7174}, {3263, 17394}, {3304, 7496}, {3315, 31073}, {3410, 12588}, {3434, 33155}, {3554, 14930}, {3598, 7269}, {3672, 20075}, {3677, 27003}, {3722, 17592}, {3723, 26242}, {3744, 28606}, {3745, 3873}, {3746, 5322}, {3769, 5372}, {3891, 5263}, {3989, 8616}, {4003, 9352}, {4189, 5266}, {4294, 20062}, {4307, 17483}, {4309, 20063}, {4310, 26842}, {4339, 15680}, {4344, 5905}, {4366, 16932}, {4389, 4450}, {4671, 24552}, {4865, 25958}, {5014, 19786}, {5169, 15888}, {5276, 16777}, {5716, 20060}, {5846, 32782}, {6198, 6995}, {6645, 16949}, {6646, 20064}, {7050, 22129}, {7290, 27065}, {7373, 7484}, {7386, 18447}, {7494, 18455}, {7571, 31479}, {7967, 26118}, {8270, 21454}, {9335, 17122}, {9464, 25303}, {9577, 30331}, {10246, 19649}, {10247, 19544}, {11680, 17602}, {17056, 31084}, {17061, 33108}, {17379, 31087}, {17393, 26234}, {17724, 31126}, {17725, 33105}, {17766, 32776}, {18056, 30637}, {19785, 33110}, {23655, 31094}, {25496, 32927}, {25959, 26128}, {26098, 33153}, {31088, 31999}, {32772, 32920}, {32774, 32850}, {32921, 32945}, {32928, 32941}, {33070, 33126}, {33073, 33122}, {33104, 33152}, {33109, 33143}, {33112, 33144}
X(29816) lies on these lines: {1, 2}, {31, 3989}, {37, 17469}, {38, 3745}, {86, 32923}, {100, 17600}, {244, 4682}, {597, 4126}, {750, 17599}, {756, 1386}, {902, 17716}, {910, 1953}, {940, 17449}, {982, 9347}, {984, 2308}, {1255, 16484}, {1914, 16777}, {1962, 3744}, {2177, 20182}, {3219, 21747}, {3305, 16491}, {3578, 4407}, {3791, 4981}, {3883, 6536}, {4030, 17045}, {4307, 33098}, {4360, 32945}, {4365, 5263}, {4414, 5269}, {4657, 33074}, {4661, 28650}, {7174, 32912}, {9345, 17597}, {17302, 32948}, {17602, 33105}, {19684, 32920}, {19786, 33072}, {32772, 32926}, {32775, 33073}, {33109, 33155}, {33112, 33152}
X(29817) lies on these lines: {1, 2}, {9, 4430}, {21, 5045}, {38, 16484}, {55, 9352}, {81, 1279}, {100, 3742}, {142, 33110}, {149, 5249}, {171, 17450}, {210, 15570}, {238, 4722}, {244, 3750}, {354, 1621}, {405, 3889}, {497, 30284}, {516, 26842}, {518, 5284}, {750, 17715}, {846, 17449}, {968, 4392}, {999, 20835}, {1001, 3219}, {1005, 24928}, {1255, 1280}, {1385, 7411}, {1836, 18450}, {1870, 14004}, {1962, 16598}, {2177, 17063}, {2895, 4684}, {2975, 17609}, {3058, 20292}, {3091, 18528}, {3243, 3305}, {3306, 10389}, {3315, 3666}, {3333, 4189}, {3361, 17548}, {3434, 27186}, {3475, 31053}, {3555, 5047}, {3681, 4423}, {3685, 17140}, {3689, 3848}, {3693, 3723}, {3697, 17534}, {3722, 17122}, {3838, 10707}, {3871, 5439}, {3877, 15934}, {3881, 5259}, {3883, 32863}, {3892, 5251}, {3897, 7373}, {3898, 5425}, {3996, 24589}, {4038, 17469}, {4298, 15680}, {4343, 26806}, {4428, 4860}, {4432, 32940}, {4512, 30350}, {4514, 18139}, {4653, 4694}, {4881, 24929}, {4966, 33075}, {5014, 17234}, {5046, 21620}, {5056, 5534}, {5173, 7677}, {5180, 11551}, {5234, 17544}, {5432, 17051}, {5483, 5625}, {5531, 10171}, {5542, 17483}, {5603, 10431}, {5701, 14746}, {5901, 8226}, {5905, 11038}, {6603, 6605}, {6769, 15717}, {6872, 11037}, {7269, 9436}, {7322, 15600}, {7580, 10246}, {8236, 9776}, {8543, 17625}, {8726, 20070}, {8727, 10283}, {9345, 17716}, {10129, 11238}, {10883, 21740}, {10980, 23958}, {11716, 27950}, {15485, 32912}, {17194, 26860}, {17261, 20068}, {17532, 18530}, {17577, 18527}, {17597, 28606}, {19684, 20173}, {21077, 26127}, {24210, 33148}, {24217, 33127}, {24231, 33100}, {24325, 32943}, {24542, 33121}, {26105, 27131}
X(29818) lies on these lines: {1, 2}, {31, 17449}, {38, 1279}, {149, 33147}, {171, 3315}, {244, 3744}, {354, 17469}, {497, 33143}, {595, 4880}, {748, 3242}, {896, 21342}, {902, 982}, {999, 20841}, {1001, 3989}, {1100, 2348}, {1621, 17598}, {2308, 3873}, {3058, 33145}, {3677, 4414}, {3722, 3752}, {3726, 21764}, {3745, 17450}, {3889, 16478}, {3953, 4973}, {4310, 33098}, {4365, 32922}, {4392, 8616}, {4430, 16468}, {4514, 33123}, {4850, 17715}, {7226, 15485}, {7290, 32912}, {16974, 17474}, {17721, 33127}, {20323, 20325}, {21747, 32913}, {24841, 32938}, {32844, 33124}, {32923, 32942}, {33106, 33148}
X(29819) lies on these lines: {1, 2}, {31, 17599}, {38, 1386}, {63, 16491}, {81, 17449}, {238, 3989}, {244, 3745}, {902, 3666}, {1100, 3726}, {1279, 1962}, {1621, 17600}, {2174, 2280}, {3058, 17395}, {3315, 4038}, {3589, 33162}, {3723, 3930}, {3748, 21806}, {3891, 25496}, {4360, 32943}, {4365, 24552}, {4430, 28650}, {4850, 17716}, {4865, 32774}, {4883, 9507}, {4906, 17450}, {4914, 17384}, {4974, 4981}, {5263, 32924}, {5846, 32781}, {7226, 16468}, {9347, 17063}, {16475, 32912}, {16706, 33072}, {16971, 21750}, {17061, 17726}, {17126, 17591}, {17301, 33094}, {17302, 32947}, {17441, 17609}, {17722, 33133}, {17723, 33127}, {19785, 33104}, {19786, 32844}, {23533, 23632}, {26098, 33143}, {26128, 33070}, {32772, 32922}, {32775, 33071}, {32926, 32944}, {32928, 32942}, {33073, 33123}, {33106, 33155}, {33107, 33152}, {33109, 33150}, {33112, 33147}
X(29820) lies on these lines: {1, 2}, {9, 3726}, {11, 33130}, {36, 16064}, {37, 4906}, {38, 3315}, {55, 1054}, {56, 20834}, {57, 8616}, {63, 15485}, {81, 17450}, {86, 7194}, {87, 2191}, {142, 33109}, {171, 1279}, {238, 354}, {244, 1621}, {405, 3976}, {496, 24161}, {497, 17889}, {518, 17123}, {663, 21204}, {748, 1757}, {846, 982}, {902, 27003}, {968, 17591}, {984, 4423}, {1046, 18398}, {1086, 33095}, {1376, 17715}, {1386, 4038}, {1420, 2647}, {1707, 10980}, {1743, 30350}, {3058, 24715}, {3073, 13373}, {3219, 17449}, {3242, 8167}, {3290, 16503}, {3295, 24174}, {3303, 24440}, {3306, 3550}, {3465, 23708}, {3666, 16484}, {3681, 17125}, {3683, 3999}, {3685, 24165}, {3740, 4864}, {3744, 17122}, {3748, 16610}, {3749, 5437}, {3750, 3752}, {3756, 6690}, {3772, 24217}, {3816, 17719}, {3836, 4514}, {3846, 33124}, {3883, 33085}, {3953, 5259}, {3966, 33087}, {4011, 24349}, {4040, 6545}, {4332, 5265}, {4358, 32923}, {4359, 32943}, {4421, 9324}, {4428, 17601}, {4432, 32939}, {4449, 10196}, {4512, 18193}, {4640, 18201}, {4649, 4883}, {4650, 4860}, {4679, 33101}, {4694, 5251}, {4849, 15570}, {4865, 17234}, {4966, 32861}, {5014, 25961}, {5045, 5247}, {5143, 18613}, {5249, 33106}, {5255, 5439}, {5573, 17594}, {5745, 24216}, {7264, 16750}, {7308, 16496}, {9277, 10013}, {9440, 12915}, {10857, 12652}, {11014, 19515}, {15254, 21342}, {15569, 17600}, {16784, 21750}, {17056, 17722}, {17140, 32930}, {17185, 18173}, {17194, 18646}, {17278, 32865}, {17279, 33169}, {17283, 28595}, {17721, 33111}, {18139, 32844}, {18743, 32920}, {19804, 32941}, {20328, 24795}, {21319, 28393}, {24175, 30331}, {24210, 33147}, {24231, 33099}, {24325, 32942}, {24342, 24552}, {24419, 24492}, {24542, 33119}, {24589, 32945}, {24703, 33103}, {24789, 33141}, {25557, 33097}, {25960, 33122}, {26105, 33144}, {26724, 33136}, {27186, 33104}, {31289, 33118}
X(29821) lies on these lines: {1, 2}, {3, 16478}, {6, 982}, {11, 7073}, {31, 4850}, {36, 199}, {37, 17123}, {38, 1757}, {57, 985}, {58, 4973}, {60, 3337}, {63, 16468}, {75, 25496}, {81, 244}, {86, 9277}, {100, 17469}, {109, 26740}, {141, 32861}, {171, 1054}, {192, 4011}, {223, 4334}, {226, 33147}, {238, 846}, {261, 1178}, {292, 23533}, {312, 32921}, {321, 32924}, {333, 4974}, {354, 1051}, {405, 19737}, {518, 17598}, {726, 27064}, {740, 32942}, {748, 28606}, {752, 33068}, {893, 6377}, {894, 24165}, {908, 33152}, {940, 17063}, {960, 11533}, {968, 15485}, {980, 16476}, {984, 3715}, {986, 16466}, {988, 1453}, {1001, 17592}, {1010, 19813}, {1019, 8034}, {1046, 1203}, {1086, 33097}, {1100, 3684}, {1104, 4719}, {1111, 16750}, {1126, 3881}, {1215, 32922}, {1279, 3750}, {1376, 17716}, {1385, 19516}, {1449, 5573}, {1471, 17080}, {1699, 29215}, {1707, 16469}, {1738, 33109}, {1743, 5282}, {1763, 3338}, {1836, 33149}, {1962, 5284}, {2271, 16787}, {2275, 23543}, {2308, 3218}, {2886, 17366}, {2887, 16706}, {3052, 17601}, {3120, 33107}, {3210, 3923}, {3416, 33174}, {3589, 32780}, {3662, 32946}, {3663, 33099}, {3677, 3751}, {3685, 4970}, {3703, 33159}, {3706, 4716}, {3736, 17477}, {3745, 16610}, {3755, 20539}, {3759, 32853}, {3772, 17717}, {3775, 4886}, {3782, 33096}, {3791, 14829}, {3821, 4388}, {3836, 33073}, {3846, 19786}, {3891, 32931}, {3896, 32943}, {3914, 33106}, {3925, 17726}, {3936, 33123}, {3944, 19785}, {3946, 24210}, {3966, 32784}, {3980, 17490}, {3989, 27065}, {4000, 17889}, {4003, 4641}, {4085, 4514}, {4336, 5274}, {4349, 24175}, {4358, 32928}, {4359, 24342}, {4360, 20947}, {4389, 4703}, {4392, 32912}, {4414, 17127}, {4417, 26128}, {4418, 17495}, {4423, 20182}, {4424, 5315}, {4425, 17302}, {4429, 4865}, {4640, 17593}, {4645, 24169}, {4650, 17595}, {4663, 21342}, {4672, 32939}, {4676, 32934}, {4682, 16602}, {4694, 16474}, {4972, 32844}, {4989, 5745}, {5057, 33145}, {5269, 16491}, {5294, 33167}, {5299, 21750}, {5710, 24440}, {5711, 24174}, {5717, 24178}, {5718, 33130}, {5741, 32775}, {5846, 33079}, {5847, 33085}, {6327, 33125}, {6533, 25526}, {6679, 32851}, {7226, 14997}, {7271, 10136}, {7290, 8616}, {8054, 17187}, {8167, 16777}, {9335, 14996}, {9347, 17124}, {10980, 16667}, {11680, 33128}, {16059, 21010}, {16972, 17754}, {17061, 17719}, {17147, 32930}, {17155, 26223}, {17184, 32843}, {17279, 33092}, {17301, 24703}, {17353, 33164}, {17721, 33141}, {17723, 24789}, {17770, 26840}, {18203, 18208}, {18788, 19649}, {20934, 24255}, {23812, 26806}, {24552, 32860}, {24725, 33146}, {24821, 32938}, {25760, 32774}, {25885, 26635}, {25957, 33070}, {26061, 33089}, {31034, 33069}, {31053, 33143}, {32777, 32855}, {32781, 33075}, {32848, 33157}, {32852, 33172}, {33104, 33131}, {33105, 33129}
X(29822) lies on these lines: {1, 2}, {31, 19717}, {37, 3121}, {55, 11322}, {86, 100}, {171, 8025}, {321, 27804}, {354, 22325}, {740, 21806}, {756, 10180}, {894, 4427}, {902, 19741}, {968, 26223}, {1215, 1962}, {1468, 16347}, {1500, 2229}, {1918, 17126}, {2177, 19740}, {2230, 26976}, {2276, 24487}, {2296, 8049}, {2308, 19743}, {2333, 4232}, {3052, 19722}, {3295, 16405}, {3589, 24542}, {3618, 22277}, {3666, 17140}, {3696, 27812}, {3750, 32772}, {3842, 21805}, {3873, 22275}, {3890, 22299}, {3891, 20182}, {3896, 17163}, {3931, 17164}, {3936, 4026}, {4038, 32918}, {4054, 4356}, {4080, 4613}, {4192, 22791}, {4358, 15569}, {4359, 4706}, {4389, 20347}, {4392, 17146}, {4434, 5625}, {4448, 4824}, {4649, 16704}, {4657, 33122}, {4670, 4689}, {4687, 22271}, {4699, 22316}, {4704, 21080}, {4733, 4819}, {4972, 17056}, {5247, 17588}, {5603, 19647}, {5712, 6327}, {5901, 19546}, {7074, 19716}, {8050, 25284}, {9330, 27268}, {9347, 17394}, {9708, 16355}, {9791, 17484}, {13576, 30588}, {14474, 27013}, {16484, 32944}, {17045, 17724}, {17147, 17592}, {17165, 28606}, {17169, 25599}, {17245, 24988}, {17300, 33086}, {17302, 33148}, {17491, 24723}, {17495, 24325}, {17600, 32923}, {17759, 25382}, {17778, 20290}, {18230, 22312}, {19747, 21000}, {21282, 33112}, {21727, 27115}, {21820, 21902}, {22295, 31233}, {25421, 26799}, {28599, 33073}, {31017, 32784}, {31035, 32931}
X(29823) lies on these lines: {1, 2}, {38, 4672}, {86, 3315}, {149, 17302}, {354, 8025}, {894, 17154}, {1386, 16704}, {3821, 21282}, {3873, 19717}, {3936, 17726}, {3952, 32944}, {3995, 32942}, {4649, 17145}, {4781, 17593}, {5263, 17495}, {5695, 17147}, {5901, 8229}, {6682, 17469}, {7779, 24348}, {16063, 31071}, {16484, 27811}, {17140, 17598}, {17163, 32924}, {17165, 25496}, {17597, 19684}, {17600, 27804}, {17722, 32775}, {17723, 33122}, {20068, 26223}, {25959, 26150}, {26234, 30939}, {28599, 32781}, {31017, 33070}, {31025, 32922}, {31037, 33071}, {31087, 31088}, {31097, 31124}, {31100, 31109}, {31106, 31121}, {31108, 31122}
X(29824) lies on these lines: {1, 2}, {11, 3936}, {38, 3995}, {56, 11322}, {57, 32929}, {81, 32942}, {100, 20470}, {149, 4645}, {171, 32943}, {192, 4022}, {238, 16704}, {244, 740}, {304, 20247}, {312, 3873}, {320, 350}, {321, 354}, {333, 5284}, {346, 2260}, {377, 19818}, {497, 6327}, {517, 4742}, {518, 3952}, {524, 4465}, {536, 3999}, {537, 3994}, {672, 2325}, {693, 20295}, {726, 17154}, {730, 31061}, {742, 24403}, {748, 19742}, {750, 32941}, {758, 4975}, {851, 10609}, {896, 4432}, {908, 4684}, {940, 24552}, {942, 3702}, {944, 19647}, {952, 19546}, {956, 16373}, {982, 17147}, {984, 31035}, {999, 16405}, {1001, 1150}, {1015, 2229}, {1043, 5253}, {1045, 27017}, {1086, 4442}, {1089, 3881}, {1155, 4702}, {1430, 14954}, {1468, 11319}, {1475, 21071}, {1575, 4727}, {1621, 14829}, {1962, 6682}, {2238, 4969}, {2309, 17178}, {2550, 21283}, {2663, 27078}, {2886, 18139}, {2901, 3953}, {2978, 7662}, {3058, 4450}, {3175, 21342}, {3218, 3685}, {3306, 3886}, {3315, 32922}, {3434, 18141}, {3555, 3701}, {3662, 33134}, {3666, 4891}, {3681, 18743}, {3696, 24589}, {3706, 3742}, {3712, 8299}, {3714, 17609}, {3722, 4434}, {3739, 27812}, {3750, 32918}, {3752, 3896}, {3753, 3902}, {3775, 27081}, {3816, 5741}, {3833, 4714}, {3836, 33136}, {3846, 31037}, {3868, 25253}, {3889, 4385}, {3891, 17597}, {3892, 4692}, {3943, 20331}, {3944, 33069}, {4011, 32912}, {4038, 8025}, {4042, 8167}, {4043, 13476}, {4054, 5542}, {4080, 32856}, {4184, 5303}, {4365, 24165}, {4387, 32933}, {4388, 20290}, {4423, 5278}, {4430, 32937}, {4441, 30962}, {4514, 28599}, {4649, 32944}, {4661, 27538}, {4671, 17146}, {4693, 18201}, {4766, 31058}, {4851, 17721}, {4860, 5695}, {4873, 17754}, {4892, 31029}, {4938, 17793}, {4968, 5045}, {4997, 30993}, {5739, 26105}, {6384, 8049}, {7196, 32007}, {7270, 19801}, {8050, 32844}, {8053, 29746}, {8620, 20363}, {9335, 17490}, {10452, 17183}, {10458, 27163}, {10707, 17297}, {11680, 18134}, {15569, 27811}, {16484, 32917}, {16610, 28581}, {17063, 32860}, {17122, 32945}, {17123, 32864}, {17137, 30964}, {17169, 20888}, {17184, 24210}, {17232, 25959}, {17233, 33089}, {17234, 33108}, {17279, 33114}, {17280, 33170}, {17290, 30945}, {17300, 33112}, {17313, 30958}, {17314, 17756}, {17315, 28597}, {17360, 30963}, {17369, 24512}, {17373, 25292}, {17375, 21299}, {17390, 17726}, {17450, 24325}, {17484, 17777}, {17598, 32928}, {17720, 33122}, {17776, 24477}, {17778, 33107}, {17794, 30578}, {18169, 26819}, {18526, 19540}, {19717, 25496}, {20068, 32925}, {20891, 25295}, {20923, 25277}, {20963, 27040}, {21257, 26756}, {21805, 24003}, {24217, 25760}, {24241, 31117}, {24629, 27474}, {24685, 26280}, {24703, 32859}, {25301, 27138}, {25957, 33141}, {25960, 33084}, {25961, 32865}, {26840, 33100}, {27003, 32932}, {32773, 33172}, {32913, 32930}, {32947, 33085}, {32949, 33106}, {33067, 33095}, {33119, 33158}, {33121, 33157}, {33123, 33135}, {33124, 33133}
X(29824) = complement of X(19998)
X(29824) = anticomplement of X(899)
X(29825) lies on these lines: {1, 2}, {35, 16405}, {140, 9548}, {165, 2051}, {181, 31231}, {750, 4279}, {970, 31423}, {1054, 10436}, {1150, 28650}, {1284, 5219}, {1695, 6684}, {1699, 19647}, {2245, 17754}, {3035, 17398}, {3361, 10408}, {3550, 32772}, {3731, 10469}, {3761, 30964}, {3994, 28606}, {4003, 31178}, {4026, 17717}, {4363, 17593}, {4389, 24406}, {4657, 17719}, {4687, 17038}, {4706, 31993}, {5010, 11322}, {5087, 5143}, {5217, 16396}, {5247, 19273}, {5259, 16373}, {5333, 17124}, {5712, 33085}, {5718, 32784}, {6536, 27131}, {8227, 19546}, {8616, 25496}, {9535, 10164}, {9549, 26446}, {9567, 11231}, {9579, 10407}, {9955, 19540}, {10180, 18743}, {11358, 19760}, {15485, 32944}, {16468, 32917}, {17056, 33174}, {17122, 19701}, {17247, 21093}, {17381, 24678}, {17591, 32771}, {17723, 33076}, {19684, 32918}, {20335, 26104}, {20943, 31008}
X(29826) lies on these lines: {1, 2}, {9, 32944}, {11, 4657}, {57, 32772}, {63, 4672}, {141, 17723}, {244, 10436}, {964, 988}, {968, 32942}, {1038, 26126}, {1150, 16475}, {1449, 32919}, {1699, 32776}, {3120, 17304}, {3416, 17726}, {3666, 5695}, {3677, 32771}, {3742, 19701}, {3756, 17398}, {3989, 30568}, {4003, 4363}, {4026, 17721}, {4364, 4679}, {4519, 17318}, {4670, 4860}, {4687, 25531}, {5204, 16403}, {5217, 16404}, {5219, 32775}, {5269, 32918}, {6703, 17728}, {7174, 32931}, {7290, 32917}, {7302, 19326}, {8227, 8229}, {11512, 16454}, {17064, 32774}, {17247, 17777}, {17272, 32843}, {17274, 24725}, {17286, 32848}, {17306, 25760}, {17594, 24552}, {17722, 32784}, {25525, 33123}, {25527, 33105}, {26128, 31266}, {30738, 30739}, {30757, 30778}
X(29827) lies on these lines: {1, 2}, {11, 32784}, {36, 16405}, {141, 17717}, {256, 17306}, {312, 6682}, {321, 17591}, {984, 4009}, {1009, 30979}, {1150, 16468}, {1469, 5219}, {2276, 4873}, {2308, 5372}, {2886, 33174}, {3306, 24342}, {3416, 17722}, {3550, 24552}, {3662, 25385}, {3666, 4519}, {3760, 30964}, {3763, 17792}, {3775, 5233}, {3842, 30829}, {3873, 31264}, {3923, 24627}, {3999, 31178}, {4026, 24217}, {4203, 5303}, {4363, 18201}, {4413, 16421}, {4429, 21242}, {4492, 17290}, {4679, 24697}, {4892, 17227}, {4997, 17793}, {5087, 17237}, {5204, 16396}, {5224, 24757}, {5235, 17125}, {5251, 16373}, {5587, 19546}, {5691, 19647}, {5695, 17593}, {5718, 33087}, {5737, 17123}, {7280, 11322}, {7988, 24220}, {8229, 8931}, {8240, 9581}, {8616, 32916}, {11680, 32781}, {14829, 25496}, {15485, 32917}, {16355, 25542}, {17038, 20923}, {17063, 31993}, {17289, 24736}, {17307, 31270}, {17369, 17754}, {17721, 33076}, {17723, 32846}, {18192, 27163}, {18480, 19540}, {18493, 31778}, {21358, 27759}, {25528, 27145}, {26034, 33106}, {26098, 33085}, {28650, 32919}, {33080, 33107}, {33086, 33104}, {33105, 33172}
X(29828) lies on these lines: {1, 2}, {9, 2225}, {31, 31264}, {45, 4009}, {57, 32771}, {63, 1215}, {141, 17718}, {165, 4418}, {210, 5737}, {226, 26034}, {228, 1376}, {312, 968}, {321, 17594}, {750, 10436}, {988, 4968}, {1001, 30818}, {1150, 3751}, {1155, 4363}, {1699, 32947}, {1707, 26223}, {1799, 18099}, {2177, 3886}, {2223, 16405}, {2345, 5218}, {2646, 5793}, {2887, 31266}, {2899, 13736}, {3158, 32945}, {3306, 24325}, {3416, 5718}, {3677, 32923}, {3701, 16342}, {3712, 17281}, {3714, 19765}, {3729, 4414}, {3739, 4413}, {3740, 19732}, {3749, 24552}, {3786, 5235}, {3844, 30811}, {3846, 30852}, {3928, 32940}, {3929, 32938}, {4023, 17275}, {4026, 17720}, {4042, 4849}, {4054, 24248}, {4220, 6796}, {4385, 19270}, {4512, 32930}, {4654, 33067}, {4655, 31164}, {4657, 17602}, {4659, 32845}, {4660, 25385}, {4682, 19701}, {4683, 28609}, {4689, 5695}, {4706, 17119}, {4972, 17064}, {5087, 30824}, {5204, 16404}, {5217, 16403}, {5219, 25760}, {5269, 32772}, {5370, 19326}, {5587, 8229}, {5745, 33163}, {5846, 17723}, {6682, 32920}, {6690, 32777}, {7174, 32927}, {7290, 32944}, {7465, 25440}, {9564, 26893}, {10389, 32943}, {11499, 19544}, {17140, 18193}, {17272, 33065}, {17274, 32856}, {17286, 33156}, {17304, 33143}, {17306, 32775}, {17717, 33076}, {17719, 32784}, {17874, 20928}, {18201, 31178}, {19310, 26264}, {23681, 33125}, {24349, 24627}, {25525, 25957}, {25527, 32781}, {25591, 31435}, {25960, 30827}, {31019, 33086}, {31053, 33083}, {31778, 31837}, {33074, 33105}, {33079, 33111}, {33130, 33174}
X(29829) lies on these lines: {1, 2}, {37, 33114}, {81, 6327}, {86, 33108}, {192, 33170}, {345, 27804}, {354, 32774}, {750, 4085}, {894, 33134}, {940, 4972}, {1100, 33070}, {1150, 4026}, {1468, 17676}, {1479, 11330}, {1738, 26627}, {1962, 4438}, {2240, 2242}, {2886, 19684}, {3618, 16792}, {3745, 5014}, {3751, 26580}, {3758, 5057}, {3836, 9345}, {3873, 19786}, {3977, 4356}, {3993, 33161}, {3995, 33163}, {3999, 17382}, {4038, 25957}, {4307, 21282}, {4310, 17146}, {4360, 33089}, {4363, 4442}, {4392, 17302}, {4425, 32912}, {4644, 17491}, {4645, 14996}, {4649, 25760}, {4658, 30984}, {4697, 33094}, {4703, 4722}, {4854, 32933}, {5196, 17103}, {5263, 21283}, {9347, 32850}, {17140, 19785}, {17163, 19822}, {17300, 25959}, {17379, 33112}, {17592, 33119}, {17778, 25958}, {19717, 26098}, {20064, 32947}, {24210, 26223}, {24217, 32944}, {24325, 33128}, {24349, 33155}, {28606, 33121}, {28650, 32843}, {31303, 33082}, {32771, 33135}, {32772, 33141}, {32776, 32913}, {32780, 32915}, {32784, 32919}, {32928, 33169}, {32940, 33154}
X(29830) lies on these lines: {1, 2}, {6, 24542}, {7, 4427}, {11, 30834}, {37, 33122}, {55, 18139}, {69, 16792}, {100, 17234}, {192, 33148}, {193, 16793}, {238, 31034}, {344, 3952}, {345, 17140}, {354, 33113}, {390, 21282}, {846, 33069}, {968, 17184}, {1001, 3936}, {1150, 4966}, {1279, 33070}, {1478, 11330}, {1621, 6327}, {1962, 26128}, {2177, 3836}, {2240, 2241}, {3475, 17165}, {3487, 25253}, {3683, 32859}, {3685, 31019}, {3712, 25557}, {3748, 5014}, {3750, 25957}, {3834, 4689}, {3873, 33116}, {3896, 24789}, {3977, 5542}, {3993, 33143}, {3995, 33144}, {4358, 17718}, {4417, 5284}, {4423, 5741}, {4428, 4450}, {4432, 24725}, {4551, 28741}, {4653, 30984}, {5249, 32929}, {5698, 17491}, {7474, 21285}, {7951, 30980}, {8299, 11322}, {8616, 20064}, {9346, 24956}, {9347, 17317}, {11038, 17146}, {15485, 32843}, {16484, 25760}, {17056, 24552}, {17126, 17300}, {17127, 17778}, {17232, 33086}, {17243, 17724}, {17265, 24988}, {17321, 27811}, {17592, 33123}, {17715, 33072}, {17791, 30963}, {19785, 27804}, {21283, 33108}, {24325, 33156}, {24349, 32849}, {27186, 32932}, {28606, 33124}, {32771, 33158}, {32915, 33130}, {32917, 33087}, {32923, 33092}, {32936, 33103}, {32943, 33111}
X(29831) lies on these lines: {1, 2}, {23, 16332}, {81, 16790}, {193, 16798}, {390, 19823}, {675, 29193}, {940, 16794}, {1386, 31034}, {3475, 19717}, {3744, 32774}, {6327, 17469}, {6646, 30653}, {7290, 26580}, {8229, 10246}, {14996, 16796}, {14997, 16797}, {16792, 17379}, {17061, 24552}, {17184, 20064}, {17716, 33123}, {17725, 32944}, {17726, 30834}, {20068, 26065}, {21283, 33128}, {26150, 33086}, {26840, 30652}
X(29832) lies on these lines: {1, 2}, {7, 17154}, {38, 4655}, {63, 20064}, {149, 192}, {193, 16799}, {497, 3995}, {518, 31034}, {537, 24725}, {726, 33104}, {740, 21283}, {858, 13869}, {982, 33072}, {984, 32844}, {1150, 5846}, {1370, 20222}, {1386, 33114}, {1421, 28741}, {1482, 8229}, {2177, 17765}, {2550, 17495}, {2886, 3891}, {3210, 33110}, {3242, 3936}, {3315, 17234}, {3434, 17147}, {3475, 30614}, {3666, 5014}, {3681, 33071}, {3703, 24552}, {3744, 33113}, {3873, 4259}, {3896, 4863}, {3966, 4981}, {4277, 26242}, {4339, 17539}, {4358, 17721}, {4383, 16794}, {4388, 7226}, {4392, 4645}, {4414, 17766}, {4430, 17778}, {4438, 17469}, {4442, 31140}, {4514, 28606}, {4850, 32850}, {4884, 32933}, {4972, 17599}, {5015, 17676}, {5169, 31120}, {5263, 33089}, {5718, 9053}, {5847, 31303}, {5905, 20068}, {6682, 33074}, {7174, 26580}, {7774, 31080}, {9041, 31179}, {11330, 31036}, {11680, 32926}, {14996, 16797}, {14997, 16796}, {16790, 32911}, {16792, 17349}, {17155, 33109}, {17165, 26098}, {17484, 31302}, {17591, 32948}, {17597, 18139}, {17598, 25957}, {17716, 33119}, {17717, 32927}, {17722, 32931}, {17724, 30834}, {17769, 21242}, {21241, 33143}, {21282, 24248}, {24349, 33112}, {25496, 33162}, {26034, 28599}, {31084, 31100}, {31088, 31118}, {31099, 31121}, {31115, 31130}, {32772, 33169}, {32848, 32941}, {32855, 32945}, {32862, 32942}, {32865, 32924}, {32920, 33105}, {32921, 33136}, {32922, 33108}, {32923, 33111}, {32925, 33106}, {32928, 33141}, {32937, 33107}, {32943, 33092}, {32944, 33165}
X(29833) lies on these lines: {1, 2}, {6, 26580}, {7, 19823}, {55, 21488}, {81, 320}, {86, 30606}, {226, 1404}, {319, 19832}, {321, 17369}, {354, 4463}, {894, 33155}, {940, 17290}, {1100, 3936}, {1150, 4657}, {1172, 17923}, {1211, 4969}, {1385, 5797}, {1449, 31034}, {1761, 2260}, {1909, 19801}, {1962, 6679}, {2308, 4425}, {2325, 3995}, {3007, 3101}, {3589, 4358}, {3662, 14996}, {3664, 26860}, {3686, 27081}, {3707, 19742}, {3745, 4972}, {3752, 26747}, {3758, 33151}, {3772, 19684}, {3879, 31017}, {3946, 17495}, {3969, 4727}, {3977, 4021}, {4000, 26627}, {4038, 33123}, {4070, 21840}, {4353, 17154}, {4357, 16704}, {4359, 4395}, {4360, 32779}, {4429, 9347}, {4649, 32775}, {4671, 17368}, {4697, 33145}, {4850, 17380}, {4886, 31247}, {4982, 31037}, {5057, 5137}, {5235, 17322}, {5249, 8025}, {5303, 27174}, {5750, 31025}, {5767, 5886}, {5880, 19834}, {7321, 19829}, {12699, 19645}, {15569, 24542}, {16884, 30811}, {17120, 17484}, {17272, 31303}, {17319, 32849}, {17321, 24597}, {17353, 31035}, {17360, 19812}, {17366, 24589}, {17379, 31019}, {17600, 33119}, {17720, 26222}, {19787, 30599}, {19824, 31995}, {20182, 33113}, {27064, 30578}, {28650, 33065}, {32772, 33135}, {32780, 32928}
X(29834) lies on these lines: {1, 2}, {31, 4389}, {902, 17302}, {1266, 4418}, {1386, 32775}, {1962, 21254}, {2177, 17380}, {2308, 20072}, {3589, 32927}, {3745, 3834}, {3943, 32928}, {4080, 33152}, {5269, 33125}, {6646, 21747}, {16475, 33065}, {17061, 32772}, {17122, 24183}, {17469, 19786}, {17602, 32944}, {17716, 32774}, {25529, 33105}, {25557, 26884}, {26034, 26104}, {26128, 32949}, {30588, 33130}, {30991, 32946}
X(29835) lies on these lines: {1, 2}, {81, 4514}, {149, 894}, {244, 4085}, {354, 4972}, {497, 26223}, {518, 26580}, {940, 5014}, {1001, 33114}, {1621, 33121}, {2550, 26627}, {3315, 16706}, {3555, 5051}, {3663, 17154}, {3685, 33170}, {3717, 31035}, {3750, 33119}, {3755, 17495}, {3821, 17449}, {3836, 17450}, {3873, 17184}, {3883, 16704}, {3889, 16062}, {3914, 17140}, {4038, 33072}, {4144, 16666}, {4202, 5045}, {4314, 17539}, {4349, 26860}, {4430, 27184}, {4649, 32844}, {4684, 31017}, {4883, 18139}, {5284, 33118}, {16484, 33115}, {17146, 24231}, {17165, 24210}, {17597, 32774}, {24217, 32931}, {24241, 31115}, {24325, 33136}, {24349, 33134}, {26105, 26688}, {27542, 30284}, {32771, 33141}, {32780, 32943}, {32913, 32947}, {32915, 33169}, {32919, 33076}, {32923, 33135}, {32940, 33095}
X(29836) lies on these lines: {1, 2}, {1279, 32775}, {3722, 16706}, {3744, 32948}, {3749, 33125}, {7290, 33065}, {17061, 32943}, {17469, 32949}, {17715, 32774}, {17724, 32944}, {26128, 32947}, {32843, 33122}
X(29837) lies on these lines: {1, 2}, {37, 33121}, {63, 9791}, {81, 4388}, {86, 2886}, {310, 18835}, {354, 19786}, {894, 24210}, {940, 4645}, {982, 17302}, {1100, 33071}, {1468, 26117}, {1621, 8731}, {1654, 32853}, {1824, 4212}, {1962, 33119}, {2298, 24512}, {2663, 27296}, {2887, 4038}, {2975, 4199}, {3618, 26105}, {3706, 19808}, {3742, 16706}, {3745, 4514}, {3758, 24703}, {3794, 21746}, {3846, 4649}, {3993, 33167}, {3995, 33170}, {4026, 14829}, {4085, 17122}, {4213, 5130}, {4425, 6646}, {4440, 33154}, {4648, 20541}, {4682, 32850}, {4697, 33095}, {4703, 20072}, {4854, 32939}, {4883, 33124}, {5014, 9347}, {5253, 16056}, {5263, 6703}, {6327, 14996}, {6349, 20254}, {6679, 16484}, {8025, 33112}, {8167, 17352}, {9345, 25957}, {10980, 17304}, {11680, 19684}, {15569, 33116}, {17124, 26073}, {17140, 33155}, {17280, 32780}, {17321, 24477}, {17379, 26098}, {17450, 33123}, {17777, 26223}, {17778, 25760}, {17889, 26806}, {19717, 33107}, {20090, 32946}, {20101, 32947}, {23655, 28833}, {24217, 25496}, {24325, 33135}, {26109, 33111}, {26627, 33131}, {26840, 32776}, {27804, 33168}, {31035, 33166}, {31300, 33099}
X(29838) lies on these lines: {1, 2}, {31, 6646}, {55, 17302}, {147, 30562}, {388, 26096}, {1284, 1621}, {1386, 33126}, {3052, 4389}, {3475, 17379}, {3662, 5269}, {3744, 19786}, {3745, 17300}, {3974, 17358}, {4201, 5266}, {4344, 26132}, {4388, 17469}, {4419, 4797}, {4512, 17247}, {4645, 17716}, {4648, 24657}, {5263, 17061}, {5749, 21101}, {5992, 33148}, {6057, 17280}, {7322, 17338}, {7494, 20254}, {8616, 9791}, {16989, 27268}, {17126, 26840}, {17184, 20101}, {17323, 21000}, {17602, 32942}, {17725, 25496}, {17778, 33122}, {19823, 20075}, {26065, 31302}, {26109, 26141}
X(29839) lies on these lines: {1, 2}, {31, 17778}, {37, 33126}, {55, 4645}, {69, 19133}, {92, 4213}, {100, 16056}, {165, 17298}, {171, 17300}, {192, 33144}, {226, 3685}, {312, 17718}, {320, 4640}, {322, 30963}, {344, 25568}, {345, 3475}, {346, 21101}, {350, 1441}, {354, 32851}, {497, 30828}, {518, 33116}, {740, 33130}, {846, 6646}, {902, 20101}, {968, 9791}, {1001, 4417}, {1043, 25466}, {1215, 17280}, {1279, 33071}, {1330, 5248}, {1376, 17234}, {1621, 3936}, {1654, 33084}, {1707, 17364}, {1962, 32775}, {2177, 25957}, {2887, 3750}, {2975, 8731}, {3449, 30941}, {3662, 17594}, {3666, 33124}, {3683, 33066}, {3692, 17754}, {3712, 32939}, {3722, 33072}, {3740, 17263}, {3744, 33073}, {3748, 4514}, {3769, 4851}, {3838, 4702}, {3846, 16484}, {3873, 33113}, {3883, 4035}, {3886, 25525}, {3896, 33129}, {3925, 3996}, {3967, 17264}, {3980, 26806}, {3993, 33152}, {3995, 33153}, {4000, 4734}, {4104, 17260}, {4203, 8299}, {4212, 5174}, {4360, 17061}, {4414, 26840}, {4423, 5233}, {4427, 17483}, {4432, 33096}, {4440, 32934}, {4644, 4797}, {4649, 6679}, {4673, 28628}, {4682, 17317}, {4684, 5745}, {4689, 33068}, {4865, 17715}, {4869, 5281}, {4884, 24841}, {4892, 33095}, {4966, 6690}, {4970, 33147}, {5218, 18141}, {5249, 32932}, {5263, 17056}, {5284, 5741}, {5484, 10448}, {5718, 32942}, {6043, 25536}, {6350, 20254}, {7262, 20072}, {7283, 13407}, {8616, 32946}, {11358, 31006}, {11680, 30834}, {17084, 18156}, {17127, 31034}, {17140, 33168}, {17147, 33148}, {17165, 32849}, {17302, 17592}, {17724, 32926}, {17776, 32937}, {17777, 31053}, {18152, 18835}, {21060, 25101}, {21299, 27267}, {24325, 33160}, {24542, 32911}, {25961, 26073}, {27804, 33155}, {28606, 33122}, {30811, 32773}, {31017, 33083}, {31019, 32929}, {32771, 33156}, {32848, 32923}, {32856, 32936}, {32915, 33127}, {32916, 33087}, {32917, 33081}, {32920, 33092}, {32941, 33111}, {32943, 33105}
X(29840) lies on these lines: {1, 2}, {7, 20537}, {11, 32926}, {38, 256}, {75, 30660}, {147, 149}, {183, 17377}, {190, 4884}, {192, 497}, {244, 33072}, {312, 17721}, {320, 21342}, {325, 4360}, {329, 31302}, {354, 17300}, {388, 17480}, {427, 1897}, {518, 33071}, {537, 33096}, {726, 33106}, {982, 4645}, {1215, 17722}, {1279, 33116}, {1281, 32913}, {1386, 33121}, {1401, 3888}, {1447, 3879}, {1469, 3873}, {1621, 18235}, {1654, 3966}, {1836, 4440}, {2550, 17490}, {2886, 32922}, {2887, 17598}, {2975, 8240}, {3210, 3434}, {3218, 20101}, {3242, 4417}, {3314, 17302}, {3315, 18139}, {3329, 3703}, {3555, 7385}, {3662, 3677}, {3666, 4514}, {3744, 32851}, {3752, 32850}, {3815, 17388}, {3871, 19649}, {3875, 7179}, {3891, 11680}, {3905, 17084}, {3943, 9300}, {3952, 26791}, {4000, 20541}, {4003, 33068}, {4080, 14492}, {4201, 5015}, {4389, 7788}, {4392, 6327}, {4430, 31034}, {4660, 17591}, {4850, 5014}, {4854, 7840}, {4891, 17315}, {5016, 5484}, {5846, 14829}, {6682, 33076}, {7386, 20254}, {7736, 17314}, {7837, 20072}, {7868, 17380}, {8024, 18835}, {9352, 30577}, {9538, 27532}, {9766, 17318}, {11174, 17233}, {16990, 17373}, {17140, 33112}, {17149, 20345}, {17154, 17483}, {17155, 33104}, {17165, 33107}, {17362, 26244}, {17449, 32949}, {17469, 33119}, {17484, 20068}, {17495, 33110}, {17596, 17766}, {17597, 18134}, {17717, 32920}, {17777, 32925}, {18743, 26139}, {21241, 33147}, {21282, 33102}, {24165, 33109}, {24349, 26098}, {24552, 33089}, {24757, 33118}, {25248, 26790}, {25496, 33169}, {28599, 33086}, {32848, 32943}, {32855, 32941}, {32921, 33141}, {32923, 33105}, {32924, 33136}, {32944, 33162}
X(29841) lies on these lines: {1, 2}, {57, 17302}, {63, 17247}, {75, 6703}, {81, 17202}, {86, 3772}, {141, 19812}, {226, 17379}, {312, 17368}, {329, 17120}, {333, 17248}, {345, 17319}, {594, 19827}, {940, 3662}, {1100, 4417}, {1211, 17363}, {1707, 9791}, {2064, 4812}, {2277, 25059}, {2893, 25525}, {3589, 18743}, {3666, 17396}, {3745, 32773}, {3752, 17380}, {3758, 4415}, {3759, 5743}, {3769, 4026}, {3790, 32780}, {3945, 26132}, {3946, 17490}, {3963, 19806}, {4038, 26128}, {4429, 4682}, {4641, 17333}, {4656, 17350}, {4657, 14829}, {4675, 24726}, {4697, 33154}, {4972, 9347}, {5294, 17339}, {5737, 17322}, {7263, 19830}, {7269, 28774}, {7522, 19719}, {7536, 20254}, {8025, 17167}, {9345, 33123}, {14552, 17252}, {14555, 17121}, {14996, 17184}, {16777, 33116}, {17056, 17394}, {17116, 30699}, {17242, 32777}, {17261, 26065}, {17291, 18141}, {17300, 25527}, {17391, 18134}, {18164, 29788}, {19684, 33133}, {19717, 31053}, {19803, 20913}, {20182, 32851}, {23681, 26806}, {24789, 27147}, {26627, 33150}
X(29842) lies on these lines: {1, 2}, {3550, 17302}, {3618, 4090}, {3745, 26128}, {3821, 5269}, {4660, 17716}, {9347, 33123}, {17602, 25496}, {19812, 33076}, {32775, 32946}
X(29843) lies on these lines: {1, 2}, {38, 17247}, {354, 3662}, {497, 894}, {940, 4514}, {1001, 33121}, {1215, 24217}, {3315, 32774}, {3333, 4201}, {3677, 17302}, {3703, 17242}, {3742, 4429}, {3755, 17490}, {3790, 33169}, {3873, 27184}, {3889, 5051}, {3925, 27147}, {3966, 17363}, {4038, 4865}, {4085, 17063}, {4388, 17364}, {4389, 21342}, {4423, 17338}, {4430, 26580}, {4438, 16484}, {4656, 31302}, {4664, 4884}, {4860, 33068}, {4883, 18134}, {4891, 17233}, {5045, 16062}, {5155, 14004}, {5208, 17202}, {5284, 33114}, {9345, 33072}, {10436, 24392}, {11038, 26132}, {11354, 18530}, {17140, 33134}, {17339, 33163}, {17368, 32942}, {17391, 33073}, {17396, 17599}, {17449, 32776}, {17450, 25957}, {17597, 19786}, {21795, 26690}, {24210, 24349}, {24325, 33141}, {25568, 30867}, {26627, 33110}
X(29844) lies on these lines: {1, 2}, {11, 32920}, {57, 17766}, {149, 17155}, {244, 5014}, {354, 4865}, {497, 726}, {537, 24703}, {982, 4514}, {1215, 17721}, {1279, 4438}, {1376, 17765}, {1463, 17625}, {2796, 9580}, {2887, 17597}, {3058, 32934}, {3242, 3846}, {3315, 25957}, {3434, 24165}, {3474, 28562}, {3677, 3821}, {3816, 9053}, {3873, 32844}, {3875, 24241}, {3953, 4894}, {3976, 5015}, {4136, 16781}, {4294, 8720}, {4392, 32947}, {4430, 32843}, {4434, 17728}, {4655, 21342}, {4680, 4694}, {5100, 24174}, {6327, 17449}, {9599, 21101}, {9965, 28508}, {11680, 32923}, {17063, 32850}, {17140, 33104}, {17154, 33098}, {17598, 32773}, {17715, 32851}, {24003, 30615}, {24217, 32926}, {24349, 33106}, {24841, 33101}, {32922, 33141}, {32942, 33169}, {32943, 33089}
X(29845) lies on these lines: {1, 2}, {6, 25960}, {11, 6703}, {37, 33119}, {57, 32776}, {81, 3846}, {86, 33105}, {171, 4450}, {244, 19786}, {354, 32775}, {750, 32773}, {756, 33121}, {940, 25760}, {1211, 32919}, {1962, 32851}, {3218, 4425}, {3306, 33125}, {3742, 33123}, {3745, 32844}, {3775, 31247}, {3794, 20961}, {3816, 26890}, {3821, 27003}, {3936, 4038}, {3971, 33170}, {3980, 33134}, {3993, 33168}, {3995, 33167}, {4026, 32918}, {4358, 32780}, {4359, 33135}, {4415, 32940}, {4418, 24210}, {4429, 17124}, {4649, 5741}, {4657, 17728}, {4670, 17605}, {4682, 33072}, {4697, 5057}, {4854, 32845}, {4865, 9347}, {4972, 17122}, {5259, 6693}, {5284, 6679}, {5743, 32864}, {5750, 17737}, {9345, 18134}, {14996, 32946}, {15668, 31245}, {16706, 17872}, {17063, 32774}, {17140, 33152}, {17234, 31237}, {17450, 33124}, {17602, 32923}, {17717, 19684}, {17720, 32771}, {17889, 26627}, {18743, 26061}, {19804, 33128}, {24165, 33155}, {24217, 24552}, {24325, 33133}, {24589, 33132}, {24703, 25378}, {25526, 25639}, {26580, 32913}, {30832, 33081}, {31035, 33164}
X(29846) lies on these lines: {1, 2}, {11, 32943}, {31, 4417}, {35, 3454}, {38, 32851}, {55, 25760}, {57, 33069}, {63, 33065}, {75, 33127}, {100, 2887}, {141, 2330}, {171, 3936}, {210, 33115}, {226, 4418}, {238, 5741}, {244, 33124}, {312, 17871}, {321, 17719}, {345, 32925}, {518, 33119}, {726, 33153}, {740, 33133}, {748, 5233}, {750, 18134}, {756, 33116}, {846, 26580}, {896, 33066}, {902, 4388}, {908, 32930}, {982, 33122}, {984, 33113}, {1001, 25960}, {1043, 21935}, {1150, 33084}, {1155, 33067}, {1211, 6690}, {1215, 32779}, {1376, 25957}, {1621, 3846}, {1740, 27252}, {2177, 32773}, {2321, 17737}, {2886, 32945}, {3120, 32932}, {3210, 33143}, {3218, 33064}, {3550, 6327}, {3666, 32775}, {3681, 4438}, {3703, 32927}, {3712, 4415}, {3722, 4514}, {3744, 32844}, {3752, 33123}, {3769, 32852}, {3772, 32860}, {3782, 32845}, {3838, 30823}, {3891, 17725}, {3896, 33135}, {3909, 7186}, {3923, 31053}, {3944, 32929}, {3952, 33164}, {3971, 32849}, {3980, 31019}, {3996, 33136}, {4011, 27131}, {4042, 31187}, {4090, 33166}, {4358, 33158}, {4359, 33130}, {4413, 25961}, {4414, 27184}, {4427, 33099}, {4429, 31237}, {4434, 33078}, {4640, 4683}, {4647, 24160}, {4650, 32859}, {4660, 25958}, {4850, 26128}, {4892, 20292}, {4970, 33155}, {5218, 26034}, {5263, 33105}, {5718, 32772}, {6679, 32911}, {11680, 32941}, {13588, 30984}, {14829, 33081}, {17061, 32924}, {17122, 18139}, {17123, 24542}, {17124, 17234}, {17126, 32946}, {17147, 33152}, {17155, 17740}, {17165, 33167}, {17184, 17596}, {17289, 31264}, {17469, 33071}, {17495, 33147}, {17594, 32776}, {17601, 32950}, {17602, 32928}, {17716, 33070}, {17717, 24552}, {17718, 32771}, {17720, 32915}, {17724, 32923}, {18235, 21319}, {18524, 19540}, {21241, 33110}, {21805, 33118}, {24165, 33148}, {24653, 27641}, {25527, 33125}, {25568, 33163}, {30834, 33111}, {31017, 33085}, {31037, 33082}, {32777, 32931}, {32782, 32916}, {32848, 32926}, {32856, 32939}, {32920, 33089}, {32933, 33101}, {32934, 33151}, {32937, 33161}
X(29847) lies on these lines: {1, 2}, {81, 33065}, {86, 33127}, {171, 32776}, {750, 19786}, {940, 32775}, {1386, 25960}, {2887, 9347}, {3745, 25760}, {3980, 33155}, {4038, 33122}, {4425, 17126}, {4446, 24911}, {4657, 32918}, {4682, 25957}, {4697, 33151}, {5269, 32947}, {5432, 17045}, {6703, 17602}, {9345, 33124}, {14996, 33064}, {16706, 17124}, {17122, 32774}, {17381, 31264}, {17719, 19684}, {17720, 32772}, {19812, 32781}, {26627, 33147}, {30832, 32852}
X(29848) lies on these lines: {1, 2}, {31, 33065}, {55, 32775}, {100, 26128}, {171, 33069}, {321, 17725}, {750, 33124}, {902, 27184}, {1279, 25960}, {1376, 33123}, {2177, 19786}, {3052, 4683}, {3242, 33119}, {3550, 17184}, {3681, 6679}, {3722, 32773}, {3744, 25760}, {3749, 32947}, {3769, 33081}, {3772, 32945}, {3891, 33160}, {3923, 33153}, {3936, 17716}, {3980, 33148}, {3996, 33128}, {4417, 17469}, {4418, 33144}, {4434, 33172}, {4865, 30831}, {5263, 33127}, {5269, 32949}, {8616, 26580}, {17061, 32860}, {17126, 33064}, {17602, 32915}, {17718, 32772}, {17719, 24552}, {17720, 32943}, {17724, 32771}, {17766, 25958}, {17770, 30652}, {25527, 32948}, {30811, 33072}, {31237, 32850}, {32777, 32927}, {32779, 32920}, {32926, 33156}, {32929, 33152}, {32932, 33143}, {32941, 33133}
X(29849) lies on these lines: {1, 2}, {6, 33119}, {11, 32915}, {31, 32851}, {37, 25960}, {38, 4417}, {55, 32844}, {57, 32949}, {63, 32843}, {75, 33105}, {100, 4865}, {171, 33070}, {226, 17155}, {238, 33113}, {244, 18134}, {312, 32848}, {321, 17717}, {345, 32930}, {536, 17605}, {726, 31053}, {740, 11680}, {748, 33116}, {750, 33073}, {756, 5233}, {908, 32925}, {982, 3936}, {984, 5741}, {1150, 32861}, {1215, 33089}, {1376, 33072}, {1836, 32845}, {2177, 4514}, {2886, 32860}, {2887, 4850}, {2901, 7741}, {3120, 3210}, {3175, 5087}, {3218, 32946}, {3416, 32918}, {3666, 25760}, {3695, 25591}, {3703, 32931}, {3752, 25957}, {3772, 32924}, {3821, 25958}, {3846, 28606}, {3891, 17719}, {3896, 33141}, {3923, 33107}, {3944, 17147}, {3966, 32917}, {3971, 27131}, {3980, 33112}, {4011, 32849}, {4071, 17756}, {4256, 4680}, {4358, 33092}, {4359, 33111}, {4361, 31245}, {4383, 33115}, {4388, 4414}, {4392, 33064}, {4418, 17740}, {4438, 32911}, {4450, 17601}, {4706, 21949}, {4851, 17728}, {4892, 33146}, {4970, 33134}, {5057, 32934}, {5432, 5846}, {5718, 32771}, {5839, 21014}, {6327, 17596}, {6682, 32782}, {9766, 24712}, {10589, 17314}, {14829, 32852}, {16610, 25961}, {16706, 31237}, {17063, 18139}, {17184, 17591}, {17495, 17889}, {17593, 32950}, {17594, 32947}, {17595, 33067}, {17598, 33122}, {17599, 32775}, {17718, 32923}, {17720, 32928}, {17721, 32943}, {17722, 24552}, {17723, 32772}, {21241, 33131}, {24165, 31019}, {24169, 25959}, {24478, 29981}, {24627, 33080}, {24703, 32936}, {24725, 32939}, {25385, 28605}, {25496, 32779}, {26128, 30831}, {26223, 33167}, {27064, 33161}, {30811, 33123}, {30834, 33130}, {31034, 32913}, {31134, 33068}, {32777, 32944}, {32916, 33075}, {32921, 33133}, {32922, 33127}, {32929, 33106}, {32932, 33104}, {32933, 33096}, {32942, 33156}
X(29850) lies on these lines: {1, 2}, {6, 25957}, {9, 32776}, {31, 4429}, {38, 16706}, {44, 4683}, {63, 33125}, {75, 26061}, {81, 3836}, {100, 6679}, {141, 32864}, {190, 33145}, {210, 32775}, {238, 4972}, {244, 33121}, {312, 33128}, {320, 4722}, {321, 33132}, {333, 32781}, {354, 17356}, {518, 33123}, {672, 1761}, {726, 33150}, {740, 33157}, {748, 17352}, {756, 19786}, {896, 33068}, {940, 25961}, {982, 33114}, {984, 32774}, {1086, 32940}, {1150, 33174}, {1215, 33129}, {1386, 33072}, {1621, 4085}, {1738, 4418}, {1757, 17184}, {1834, 25992}, {1890, 4196}, {2308, 4645}, {2886, 32944}, {2887, 32843}, {3120, 27064}, {3210, 33161}, {3218, 24169}, {3219, 3821}, {3589, 3925}, {3662, 32912}, {3666, 33115}, {3681, 26128}, {3703, 17366}, {3706, 17357}, {3745, 3823}, {3750, 24542}, {3751, 33069}, {3752, 33119}, {3759, 32852}, {3763, 4042}, {3772, 32931}, {3782, 32938}, {3791, 33078}, {3891, 33165}, {3896, 33158}, {3914, 17353}, {3923, 33131}, {3932, 32928}, {3952, 33152}, {3969, 4716}, {3971, 33155}, {3989, 17302}, {4000, 17155}, {4011, 33134}, {4038, 31252}, {4090, 33153}, {4202, 5247}, {4358, 33135}, {4359, 32780}, {4365, 17280}, {4383, 25760}, {4417, 31237}, {4422, 4854}, {4425, 27065}, {4438, 4850}, {4641, 33067}, {4649, 18139}, {4660, 17127}, {4672, 20292}, {4676, 33094}, {4697, 25351}, {4970, 32849}, {4974, 28595}, {5278, 32784}, {5284, 31289}, {5300, 16478}, {6327, 16468}, {6536, 17260}, {7262, 32950}, {14997, 25958}, {16547, 17754}, {16704, 33085}, {17061, 32927}, {17122, 24988}, {17147, 33164}, {17165, 33147}, {17279, 32915}, {17289, 21020}, {17350, 33098}, {17469, 32850}, {17495, 33167}, {17889, 26223}, {19742, 33082}, {19785, 32925}, {20101, 21747}, {21026, 33073}, {21241, 33107}, {21805, 33126}, {23292, 25973}, {24165, 33170}, {24325, 26724}, {24552, 32865}, {24789, 32771}, {25496, 33108}, {25527, 33065}, {25959, 32946}, {32777, 32860}, {32853, 33172}, {32862, 32921}, {32922, 33162}, {32933, 33149}, {32935, 33146}, {32937, 33143}, {32942, 33136}
X(29851) lies on these lines: {1, 2}, {9, 33069}, {31, 17234}, {37, 33123}, {55, 17265}, {142, 4418}, {171, 24542}, {238, 18139}, {244, 33116}, {344, 32925}, {354, 33115}, {740, 26724}, {748, 18134}, {756, 17263}, {968, 17282}, {1001, 25957}, {1086, 32936}, {1279, 33072}, {1621, 3836}, {1962, 16706}, {2308, 17300}, {2887, 5284}, {3136, 30980}, {3305, 33065}, {3454, 25542}, {3683, 3834}, {3742, 33119}, {3748, 3823}, {3750, 31252}, {3826, 32945}, {3923, 27186}, {3925, 32943}, {3932, 32923}, {3936, 17123}, {3971, 33148}, {3993, 33150}, {3995, 33147}, {4011, 31019}, {4358, 33130}, {4359, 33158}, {4417, 17125}, {4422, 32938}, {4423, 25760}, {4432, 20292}, {4450, 31151}, {4514, 21026}, {4683, 15254}, {4966, 32864}, {4972, 16484}, {5249, 32930}, {5278, 33087}, {6327, 15485}, {6535, 17268}, {8040, 17326}, {8167, 25960}, {17056, 32944}, {17063, 33113}, {17140, 33164}, {17155, 17776}, {17232, 33080}, {17243, 32928}, {17277, 33081}, {17278, 32860}, {17279, 32771}, {17283, 32781}, {17450, 33121}, {17605, 24709}, {18743, 33127}, {19804, 33156}, {24165, 32849}, {24325, 33157}, {24589, 33160}, {24789, 32915}, {25557, 32940}, {27065, 33064}, {31035, 33152}, {31289, 32911}
X(29852) lies on these lines: {1, 2}, {6, 33069}, {31, 16706}, {238, 32774}, {748, 19786}, {756, 17352}, {1180, 16600}, {1386, 25957}, {1962, 17380}, {2308, 3662}, {3589, 32771}, {3683, 17382}, {3745, 17356}, {3759, 33081}, {3772, 32944}, {3791, 33172}, {3821, 17127}, {3891, 33159}, {3923, 33150}, {4000, 4418}, {4011, 33155}, {4202, 16478}, {4383, 32775}, {4429, 17469}, {4672, 33146}, {4676, 33145}, {4850, 6679}, {4974, 32782}, {5294, 17155}, {6535, 17358}, {7290, 32947}, {16468, 17184}, {16475, 32949}, {16477, 32859}, {17061, 32931}, {17126, 24169}, {17279, 32928}, {17290, 33067}, {17291, 33080}, {17301, 32936}, {17353, 32925}, {17366, 32860}, {17370, 32781}, {17592, 24542}, {17598, 33114}, {17599, 33115}, {19785, 32930}, {24295, 28605}, {24552, 33132}, {24789, 32772}, {25496, 33129}, {25527, 32843}, {26061, 32922}, {26128, 32911}, {26223, 33147}, {27064, 33143}, {31237, 33071}, {32777, 32924}, {32921, 33157}, {32942, 33128}
X(29853) lies on these lines: {1, 2}, {238, 32859}, {748, 33065}, {982, 24542}, {1001, 16064}, {1279, 25957}, {1621, 33125}, {3315, 4438}, {3681, 31289}, {3744, 25961}, {3748, 17356}, {4011, 33148}, {4423, 32775}, {4432, 33146}, {5284, 26128}, {7290, 32949}, {15485, 17184}, {16484, 32774}, {17123, 33122}, {17125, 33126}, {17234, 17469}, {17278, 32945}, {17279, 32923}, {17282, 32948}, {17283, 33074}, {17597, 33115}, {24789, 32943}, {26724, 32941}
X(29854) lies on these lines: {1, 2}, {9, 32949}, {37, 25957}, {38, 17234}, {45, 4683}, {86, 26061}, {142, 17155}, {344, 32930}, {726, 27186}, {748, 17263}, {750, 33116}, {756, 18134}, {758, 26911}, {940, 33115}, {968, 32948}, {984, 18139}, {1001, 33072}, {1962, 4429}, {3305, 32843}, {3662, 3989}, {3666, 25961}, {3703, 17245}, {3826, 32860}, {3836, 28606}, {3842, 32782}, {3925, 17243}, {3932, 32771}, {3944, 31035}, {3971, 31019}, {3980, 32849}, {3993, 33131}, {3995, 17889}, {4011, 33112}, {4038, 33114}, {4042, 17311}, {4078, 5249}, {4358, 33111}, {4359, 33092}, {4365, 17242}, {4418, 17776}, {4423, 32844}, {4425, 25959}, {4648, 33163}, {4664, 33145}, {4675, 32940}, {4722, 17378}, {4851, 32864}, {4865, 5284}, {4981, 33087}, {5014, 16484}, {5278, 32846}, {5880, 32936}, {6536, 27268}, {6541, 28605}, {6679, 9347}, {9345, 33121}, {9352, 27754}, {16777, 20483}, {17056, 32931}, {17122, 33113}, {17123, 33070}, {17124, 32851}, {17125, 33071}, {17233, 21020}, {17261, 33098}, {17265, 17599}, {17277, 32852}, {17278, 32924}, {17279, 32772}, {17300, 32912}, {17317, 33118}, {17600, 31252}, {17716, 24542}, {18743, 33105}, {19684, 33159}, {19804, 32848}, {20947, 30596}, {20961, 25308}, {21026, 32773}, {24325, 32862}, {24589, 32855}, {24789, 32928}, {26627, 33167}, {26724, 32921}, {27065, 32946}, {31151, 32950}
X(29855) lies on these lines: {1, 2}, {9, 32775}, {31, 25527}, {57, 33123}, {63, 6679}, {86, 16793}, {141, 16798}, {165, 33125}, {675, 29161}, {750, 17282}, {896, 17274}, {940, 16791}, {968, 19786}, {1155, 17290}, {1386, 30811}, {1707, 17184}, {1743, 33065}, {3338, 6693}, {3576, 8229}, {3589, 16799}, {3677, 33119}, {3712, 17301}, {3729, 33143}, {3749, 4972}, {3751, 33122}, {3875, 33156}, {3886, 33128}, {3936, 16475}, {4413, 17356}, {4414, 17304}, {4418, 23681}, {4512, 32776}, {4672, 31164}, {5137, 30742}, {5219, 32944}, {5248, 7465}, {5269, 25957}, {5294, 33144}, {5322, 25494}, {7174, 33115}, {7290, 25760}, {7474, 25526}, {11031, 25916}, {13161, 17526}, {15668, 16792}, {16469, 32843}, {16491, 33070}, {16496, 33114}, {17061, 32777}, {17064, 24552}, {17279, 17602}, {17306, 32917}, {17469, 31237}, {17594, 32774}, {17725, 33159}, {24627, 26150}, {25496, 31266}, {25525, 32772}
X(29856) lies on these lines: {1, 2}, {81, 31237}, {609, 2240}, {2308, 25958}, {3550, 4972}, {3589, 16793}, {3758, 4892}, {3769, 28595}, {3772, 32780}, {3936, 28650}, {3944, 5294}, {4438, 19786}, {4649, 30811}, {6679, 8616}, {9347, 21026}, {11330, 18514}, {16468, 25760}, {17061, 33169}, {17070, 17369}, {17290, 18201}, {17368, 25385}, {17591, 32774}, {17602, 33165}, {17720, 33159}, {19785, 33167}, {19827, 27798}, {24597, 33082}, {25527, 32913}, {26061, 33133}, {26065, 33099}, {26128, 33121}, {26738, 31280}, {31229, 32917}, {32775, 33114}, {32777, 33135}, {32779, 33128}, {33143, 33170}, {33152, 33163}, {33155, 33161}
X(29857) lies on these lines: {1, 2}, {9, 124}, {11, 17279}, {38, 25527}, {40, 8229}, {57, 25957}, {63, 2887}, {75, 17888}, {120, 30739}, {125, 27688}, {141, 16799}, {165, 32948}, {226, 33163}, {244, 17282}, {321, 17064}, {325, 24345}, {345, 3914}, {518, 30811}, {750, 21026}, {896, 31134}, {968, 32773}, {988, 4202}, {993, 7465}, {1215, 31266}, {1699, 32930}, {1707, 6327}, {1738, 17740}, {1743, 32843}, {1985, 20544}, {2886, 32777}, {3007, 30740}, {3120, 3729}, {3218, 25959}, {3219, 25958}, {3305, 3846}, {3306, 3836}, {3403, 30632}, {3589, 16798}, {3677, 33123}, {3681, 30831}, {3703, 3772}, {3749, 5014}, {3751, 3936}, {3794, 25308}, {3823, 4413}, {3834, 4860}, {3875, 32848}, {3886, 33136}, {3923, 21241}, {3928, 33067}, {3929, 4683}, {3932, 17720}, {3944, 33164}, {3977, 24248}, {4003, 17290}, {4138, 5905}, {4319, 27542}, {4383, 16791}, {4417, 33118}, {4422, 4679}, {4429, 32851}, {4512, 32947}, {4519, 17269}, {4654, 32940}, {4865, 6679}, {4892, 31164}, {4901, 32927}, {4972, 17594}, {5094, 30738}, {5219, 32931}, {5223, 33065}, {5269, 33072}, {5294, 26098}, {5310, 25494}, {5437, 25961}, {5745, 26034}, {5847, 24597}, {6796, 19649}, {7174, 32775}, {7290, 32844}, {7308, 25960}, {7778, 30742}, {8227, 25591}, {11499, 16434}, {11512, 17674}, {11680, 33157}, {15985, 25613}, {16475, 33070}, {16496, 33122}, {16792, 17259}, {16793, 17277}, {16886, 16968}, {17155, 23681}, {17296, 32919}, {17339, 17777}, {17341, 25531}, {17717, 33159}, {17719, 33165}, {17754, 30969}, {17776, 24210}, {17889, 33167}, {18134, 33121}, {18206, 30984}, {24209, 31130}, {24392, 32943}, {25525, 32771}, {25734, 33099}, {26061, 33105}, {28595, 32916}, {28609, 32938}, {30743, 30773}, {30746, 30759}, {30750, 30788}, {30758, 30761}, {30791, 30793}, {31019, 33170}, {31053, 33166}, {31161, 31280}, {32779, 33108}, {32780, 33111}, {32849, 33134}, {32855, 33132}, {32862, 33133}, {32865, 33160}, {33089, 33129}, {33092, 33135}, {33127, 33162}, {33130, 33169}, {33131, 33168}, {33141, 33158}
X(29858) lies on these lines: {1, 2}, {141, 16793}, {238, 30811}, {345, 33147}, {748, 30831}, {846, 25527}, {902, 25959}, {1054, 17282}, {1621, 31237}, {2240, 7031}, {2887, 8616}, {3550, 25957}, {3712, 33149}, {3763, 16792}, {3772, 33158}, {3932, 17725}, {3936, 16468}, {4358, 23689}, {4413, 31252}, {4438, 33124}, {4676, 4892}, {5233, 31289}, {6679, 18134}, {6690, 33174}, {10129, 31280}, {10180, 19812}, {11330, 18513}, {15485, 24542}, {17061, 33092}, {17279, 17719}, {17290, 17593}, {17339, 21093}, {17341, 24003}, {17591, 33113}, {17718, 33159}, {17724, 33165}, {17776, 33152}, {17785, 32942}, {24789, 33160}, {26128, 33116}, {26132, 33099}, {30834, 32944}, {31229, 32919}, {32777, 33130}, {32849, 33143}, {33115, 33122}, {33127, 33157}, {33129, 33156}, {33144, 33164}, {33148, 33161}
X(29859) lies on these lines: {1, 2}, {846, 6679}, {1054, 16706}, {1428, 5219}, {1757, 32775}, {3589, 17719}, {4974, 30832}, {5294, 33152}, {9332, 17376}, {17061, 32780}, {17382, 17593}, {17596, 32774}, {17602, 33159}, {24342, 33129}, {26128, 32913}
X(29860) lies on these lines: {1, 2}, {171, 3834}, {846, 4389}, {1001, 1283}, {1266, 33147}, {1757, 33122}, {3943, 17061}, {4080, 32930}, {4434, 17283}, {5259, 23850}, {6679, 32913}, {8616, 25527}, {17127, 30991}, {17279, 17725}, {17290, 17601}, {17596, 33123}, {17724, 33159}, {20072, 33064}, {24542, 32775}, {25529, 32942}, {30588, 32772}
X(29861) lies on these lines: {1, 2}, {11, 33159}, {320, 2887}, {846, 4438}, {894, 21241}, {982, 4484}, {1054, 4429}, {1757, 25760}, {2161, 2886}, {2325, 24210}, {3120, 33170}, {3589, 17722}, {3703, 33135}, {3742, 31243}, {3772, 33169}, {3844, 16797}, {3846, 33118}, {3873, 31237}, {3914, 33167}, {3944, 33163}, {4085, 32851}, {4363, 25383}, {4395, 33132}, {4480, 33099}, {4514, 6679}, {4680, 5429}, {4969, 32861}, {4972, 17596}, {5294, 33106}, {6687, 17123}, {11680, 26061}, {14829, 28595}, {17279, 24217}, {17289, 21242}, {17360, 32853}, {17720, 33165}, {21381, 24342}, {24821, 33151}, {25958, 32912}, {30578, 33166}, {30608, 32916}, {32777, 33141}, {32779, 33136}, {33089, 33128}, {33133, 33162}, {33134, 33161}
X(29862) lies on these lines: {1, 2}, {100, 21026}, {190, 4892}, {226, 33164}, {345, 17889}, {756, 30831}, {846, 2887}, {984, 30811}, {1054, 3836}, {1155, 31151}, {1757, 3936}, {2108, 30969}, {2245, 3509}, {2886, 33158}, {3120, 32849}, {3685, 21241}, {3695, 24161}, {3703, 33130}, {3712, 24715}, {3772, 33092}, {3834, 18201}, {3842, 30832}, {3925, 33160}, {3932, 17719}, {3943, 17070}, {3944, 17776}, {3977, 32857}, {3994, 31280}, {4009, 30823}, {4138, 33099}, {4358, 23690}, {4414, 25959}, {4438, 18134}, {5087, 27759}, {5249, 33167}, {5718, 33159}, {5745, 33085}, {6679, 33073}, {6690, 33079}, {8229, 18788}, {16610, 31252}, {17056, 32780}, {17279, 17717}, {17280, 25385}, {17596, 25957}, {17718, 33165}, {17785, 32926}, {18139, 33119}, {20437, 20947}, {20488, 21098}, {24342, 32779}, {24542, 32844}, {24789, 32855}, {24821, 32856}, {28606, 31237}, {30834, 32931}, {31019, 33161}, {32777, 33111}, {32848, 33129}, {32862, 33127}, {33105, 33157}, {33108, 33156}
X(29863) lies on these lines: {1, 2}, {902, 32773}, {940, 31237}, {2308, 25760}, {3989, 4438}, {4365, 32779}, {4388, 21747}, {4649, 30831}, {4682, 21026}, {17449, 26128}, {17602, 33162}, {17720, 26061}, {19786, 33119}, {30832, 32864}, {32775, 33121}, {32780, 33133}, {33152, 33170}, {33155, 33167}
X(29864) lies on these lines: {1, 2}, {81, 25958}, {89, 33067}, {940, 25959}, {2887, 14996}, {3821, 23958}, {4038, 31237}, {4042, 31247}, {4392, 19786}, {4430, 32775}, {4450, 17126}, {4671, 32780}, {5372, 32784}, {6703, 33108}, {7226, 33121}, {9330, 33118}, {9335, 16706}, {14997, 25960}, {28605, 33135}, {30652, 32947}
X(29865) lies on these lines: {1, 2}, {31, 30811}, {55, 31237}, {238, 30831}, {345, 33143}, {902, 2887}, {2308, 3936}, {3052, 31134}, {3550, 25959}, {3712, 33145}, {3772, 4365}, {3838, 31280}, {3846, 24542}, {3989, 32775}, {4414, 25527}, {4438, 33122}, {5263, 17785}, {6690, 32781}, {8616, 25958}, {9342, 31252}, {17061, 32848}, {17449, 33119}, {17718, 26061}, {17719, 33157}, {17724, 33162}, {17725, 32862}, {21747, 32946}, {22343, 27252}, {25496, 30834}, {26128, 33113}, {26132, 33098}, {31229, 32853}, {32777, 33127}, {32779, 33130}, {32849, 33152}, {32851, 33123}, {33115, 33126}, {33129, 33160}, {33133, 33158}, {33144, 33161}, {33147, 33168}, {33148, 33167}, {33153, 33164}
X(29866) lies on these lines: {1, 2}, {55, 25959}, {345, 33148}, {1001, 30831}, {1621, 25958}, {3475, 33170}, {3712, 33146}, {3750, 31237}, {3834, 9352}, {3936, 17127}, {4392, 33113}, {4417, 24542}, {4430, 4438}, {4661, 33115}, {4671, 33127}, {4683, 30991}, {5361, 33081}, {5372, 33087}, {6690, 33172}, {7226, 33116}, {9342, 17265}, {9350, 31252}, {17126, 18134}, {17267, 17783}, {17718, 33157}, {17724, 32862}, {17776, 33153}, {26132, 33100}, {28605, 33130}, {30652, 32949}, {30653, 32946}, {30828, 33107}, {30834, 32942}, {32849, 33144}
X(29867) lies on these lines: {1, 2}, {6, 31237}, {902, 4972}, {2308, 2887}, {3120, 5294}, {3589, 33105}, {3745, 21026}, {3772, 26061}, {3989, 19786}, {4365, 32777}, {4438, 32774}, {6327, 21747}, {16468, 25958}, {16706, 33119}, {17061, 33162}, {17352, 25960}, {17449, 33121}, {19785, 33161}, {24597, 33080}, {24888, 25445}, {25527, 32912}, {26065, 33098}, {26128, 33114}, {31229, 32916}, {32775, 33118}, {32779, 33132}, {32780, 33129}, {33133, 33159}, {33135, 33157}, {33143, 33163}, {33147, 33170}, {33150, 33167}, {33152, 33166}, {33155, 33164}
X(29868) lies on these lines: {1, 2}, {6, 25958}, {81, 25959}, {3589, 11680}, {3618, 33107}, {3846, 14997}, {4392, 32774}, {4430, 26128}, {4649, 31237}, {4660, 30652}, {4661, 32775}, {4671, 26061}, {4972, 17126}, {4981, 19812}, {5294, 33134}, {5361, 32784}, {5372, 32781}, {7226, 19786}, {14996, 25957}, {17127, 32773}, {19785, 33170}, {23958, 33125}, {24597, 33083}, {26065, 33100}, {28605, 32780}, {30653, 32947}, {33155, 33163}
X(29869) lies on these lines: {1, 2}, {748, 30811}, {902, 25957}, {1001, 31237}, {2308, 18134}, {2887, 24542}, {3744, 21026}, {3763, 19133}, {3989, 26128}, {4365, 33129}, {4438, 17449}, {5741, 31289}, {6679, 18139}, {8616, 25959}, {15485, 25958}, {17123, 30831}, {17124, 17265}, {17279, 33127}, {17283, 32918}, {17357, 31264}, {17605, 31280}, {17776, 33143}, {21747, 32949}, {24789, 33156}, {26724, 33160}, {32849, 33147}, {33115, 33124}, {33116, 33123}, {33130, 33157}, {33148, 33164}
X(29870) lies on these lines: {1, 2}, {344, 33153}, {1001, 25958}, {1621, 25959}, {3475, 33166}, {4392, 33116}, {4423, 30831}, {4430, 33115}, {4671, 33130}, {4703, 30991}, {5284, 30811}, {5361, 33087}, {6679, 14996}, {7226, 33124}, {9330, 33126}, {9335, 32851}, {16484, 31237}, {17126, 18139}, {17127, 18134}, {17715, 21026}, {17776, 33148}, {28605, 33158}, {30653, 32949}
X(29871) lies on these lines: {1, 2}, {2194, 5333}, {3218, 6679}, {3219, 26128}, {5294, 33148}, {6057, 17061}, {7290, 25958}, {17003, 26279}, {17127, 25527}, {17353, 33153}, {19786, 24542}, {27065, 32775}
X(29872) lies on these lines: {1, 2}, {11, 33157}, {57, 25959}, {63, 25958}, {226, 33170}, {345, 33134}, {518, 30831}, {908, 33166}, {982, 31237}, {2194, 5235}, {2886, 32779}, {2887, 3218}, {3120, 33167}, {3219, 4438}, {3263, 30761}, {3703, 33133}, {3772, 33089}, {3823, 9342}, {3846, 27065}, {3873, 30811}, {3914, 33168}, {3936, 33121}, {3944, 33161}, {3977, 33100}, {4138, 17483}, {4392, 25527}, {4417, 33114}, {4418, 21241}, {4650, 31134}, {4892, 32940}, {4972, 32851}, {4981, 30832}, {5294, 33107}, {5741, 33118}, {5745, 33083}, {6679, 32844}, {9335, 17282}, {11680, 32777}, {14008, 20544}, {16991, 26279}, {17064, 28605}, {17122, 21026}, {17717, 26061}, {17719, 33162}, {17720, 32862}, {17740, 33131}, {24210, 32849}, {25957, 27003}, {28595, 32918}, {30744, 30755}, {30746, 30800}, {30748, 30784}, {30756, 31236}, {31053, 33163}, {32773, 33113}, {32780, 33105}, {32848, 33135}, {32855, 33128}, {33127, 33169}, {33136, 33160}, {33141, 33156}
X(29873) lies on these lines: {1, 2}, {9, 25958}, {63, 25959}, {171, 21026}, {210, 30831}, {226, 33166}, {345, 33131}, {427, 5146}, {984, 31237}, {1738, 33168}, {2886, 33157}, {2887, 3219}, {3120, 33164}, {3218, 4438}, {3681, 30811}, {3703, 33129}, {3717, 33153}, {3769, 31229}, {3772, 32862}, {3836, 27003}, {3914, 32849}, {3925, 32779}, {3932, 33133}, {3936, 33118}, {3977, 33102}, {4138, 17484}, {4387, 4956}, {4429, 33113}, {4514, 24542}, {4671, 17064}, {4892, 32938}, {4972, 33116}, {5249, 33170}, {5294, 33112}, {5745, 33086}, {6057, 17070}, {6679, 33072}, {7226, 25527}, {7262, 31134}, {11680, 17279}, {16434, 18524}, {17353, 33107}, {17776, 33134}, {17889, 33161}, {18134, 33114}, {18139, 33121}, {21241, 32930}, {24789, 33089}, {25760, 27065}, {26061, 33111}, {28595, 32917}, {30744, 30756}, {30755, 31236}, {30760, 30789}, {30767, 30801}, {31019, 33163}, {32777, 33108}, {32848, 33132}, {32865, 33156}, {33092, 33128}, {33105, 33159}, {33127, 33165}, {33130, 33162}, {33136, 33158}
X(29874) lies on these lines: {1, 2}, {110, 5333}, {675, 29117}, {1386, 30831}, {3218, 26128}, {3219, 6679}, {5269, 25959}, {5294, 33153}, {9342, 17356}, {9352, 17290}, {17061, 32779}, {17126, 25527}, {17602, 33157}, {17716, 31237}, {17725, 26061}, {27003, 33123}
Collineation mappings involving Gemini triangle 95: X(29875)-X(29894)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 95, as in centers X(29875)-X(29894). Then
m(X) = b c (a^2 - 2 b c)(4 a^2 - b c) x + 2 a c (a^2 - 2 b c)(c^2 - 2 a b) y + 2 a b (a^2 - 2 b c)(c^2 - 2 a b) z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, December 11, 2018)
X(29875) lies on these lines: {2, 3}, {4483, 29878}
X(29876) lies on these lines: {2, 3}, {29879, 29880}
X(29877) lies on these lines: {2, 3}
X(29878) lies on these lines: {2, 6}, {4361, 29879}, {4483, 29875}
X(29879) lies on these lines:
X(29880) lies on these lines:
X(29881) lies on these lines:
X(29882) lies on these lines:
X(29883) lies on these lines:
X(29884) lies on these lines:
X(29885) lies on these lines:
X(29886) lies on these lines:
X(29887) lies on these lines:
X(29888) lies on these lines:
X(29889) lies on these lines:
X(29890) lies on these lines:
X(29891) lies on these lines:
X(29892) lies on these lines:
X(29893) lies on these lines:
X(29894) lies on these lines:
Collineation mappings involving Gemini triangle 96: X(29895)-X(29917)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 96, as in centers X(29895)-X(29917). Then
m(X) = b c (4 a^2 - b c) (a^2 + 2 b c) (a^2 + 2 b c) x -2 a c(a^2 + 2 b c) (c^2 + 2 a b) y - 2 a b (a^2 + 2 b c)( b^2 + 2 a c) z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, December 12, 2018)
X(29895) lies on these lines: {1, 2}, {3761, 29907}, {4363, 29899}, {29904, 29912}
X(29896) lies on these lines: {2, 3}, {29899, 29905}
X(29897) lies on these lines:
X(29898) lies on these lines:
X(29899) lies on these lines:
X(29900) lies on these lines:
X(29901) lies on these lines:
X(29902) lies on these lines:
X(29903) lies on these lines:
X(29904) lies on these lines:
X(29905) lies on these lines:
X(29906) lies on these lines:
X(29907) lies on these lines:
X(29908) lies on these lines:
X(29909) lies on these lines:
X(29910) lies on these lines:
X(29911) lies on these lines:
X(29912) lies on these lines:
X(29913) lies on these lines:
X(29914) lies on these lines:
X(29915) lies on these lines:
X(29916) lies on these lines:
X(29917) lies on these lines:
Collineation mappings involving Gemini triangle 97: X(29918)-X(29935)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 97, as in centers X(29918)-X(29935). Then
m(X) = (b + c) (b^2 + c^2 - a^2 - b c) x - b (a + b) (b + c) y - c (a + c) (b + c) z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, December 12, 2018)
X(29918) lies on these lines:
X(29919) lies on these lines:
X(29920) lies on these lines:
X(29921) lies on these lines:
X(29922) lies on these lines:
X(29923) lies on these lines:
X(29924) lies on these lines:
X(29925) lies on these lines:
X(29926) lies on these lines:
X(29927) lies on these lines:
X(29928) lies on these lines:
X(29929) lies on these lines:
X(29930) lies on these lines:
X(29931) lies on these lines:
X(29932) lies on these lines:
X(29933) lies on these lines:
X(29934) lies on these lines:
X(29935) lies on these lines:
Collineation mappings involving Gemini triangle 98: X(29936)-X(29956)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 98, as in centers X(29936)-X(29956). Then
m(X) = (b^2 + b c + c^2) (a^4 + a^2 b^2 + a^2 c^2 + b^2 c^2 - a^2 b c) x + a c (a^2 + a b + b^2) (b^2 + b c + c^2) y + a b (a^2 + a c + c^2) (b^2 + b c + c^2) z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, December 12, 2018)
X(29936) lies on these lines:
X(29937) lies on these lines:
X(29938) lies on these lines:
X(29939) lies on these lines:
X(29940) lies on these lines:
X(29941) lies on these lines:
X(29942) lies on these lines:
X(29943) lies on these lines:
X(29944) lies on these lines:
X(29945) lies on these lines:
X(29946) lies on these lines:
X(29947) lies on these lines:
X(29948) lies on these lines:
X(29949) lies on these lines:
X(29950) lies on these lines:
X(29951) lies on these lines:
X(29952) lies on these lines:
X(29953) lies on these lines:
X(29954) lies on these lines:
X(29955) lies on these lines:
X(29956) lies on these lines:
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28716.
X(29957) lies on these lines: {1, 3688}, {7, 2808}, {77, 14520}, {511, 5728}, {674, 5572}, {916, 942}, {938, 5933}, {2389, 15587}, {2810, 18412}, {3211, 9306}, {3819, 11018}, {3917, 11020}, {4253, 20793}, {6738, 29311}, {7146, 21746}, {8680, 13563}, {9440, 20683}, {13754, 15939}, {17092, 22440}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28716.
X(29958) lies on these lines: {1, 2810}, {2, 23154}, {51, 3868}, {63, 970}, {65, 23841}, {72, 511}, {78, 26892}, {181, 1046}, {185, 2808}, {329, 10441}, {355, 2818}, {375, 3812}, {386, 20805}, {389, 912}, {404, 3937}, {517, 12527}, {581, 20760}, {651, 1425}, {936, 3784}, {942, 5943}, {960, 8679}, {978, 1401}, {986, 23638}, {1331, 3145}, {1463, 24178}, {1757, 10822}, {1762, 7066}, {2390, 5836}, {2392, 3678}, {2842, 3754}, {3061, 23630}, {3157, 9306}, {3219, 22076}, {3732, 17499}, {3819, 5044}, {3869, 16980}, {3874, 15049}, {3876, 3917}, {3916, 15489}, {3927, 5752}, {3951, 26893}, {4339, 9309}, {4415, 18178}, {5396, 22458}, {5439, 6688}, {5462, 24475}, {5777, 5907}, {5904, 9052}, {6743, 29353}, {7078, 24320}, {7248, 11512}, {9021, 9969}, {9822, 24476}, {10110, 24474}, {10167, 17704}, {10176, 23156}, {10202, 11695}, {13369, 16836}, {13731, 21361}, {17114, 24174}, {17572, 26910}, {17768, 22300}
X(29958) = midpoint of X(i) and X(j) for these {i,j}: {185, 12528}, {3869, 16980}See Antreas Hatzipolakis and César Lozada, Hyacinthos 28716.
X(29959) lies on these lines: {2, 2393}, {5, 5181}, {6, 1196}, {39, 1634}, {49, 575}, {51, 524}, {67, 3521}, {69, 3060}, {110, 12039}, {141, 427}, {159, 3796}, {338, 6248}, {373, 597}, {381, 511}, {384, 1632}, {389, 15069}, {542, 9730}, {895, 16042}, {1205, 6698}, {1235, 27373}, {1350, 1597}, {1352, 7706}, {1495, 19127}, {1568, 5480}, {1992, 5640}, {1995, 8542}, {2072, 9967}, {2386, 11286}, {2781, 15030}, {2882, 8370}, {2979, 21356}, {3003, 11328}, {3090, 15073}, {3564, 5946}, {3589, 6467}, {3618, 12272}, {3619, 12220}, {3628, 15074}, {3763, 9973}, {3818, 16194}, {3819, 21358}, {5085, 11202}, {5092, 12367}, {5169, 19510}, {5421, 20794}, {5476, 14845}, {5650, 8705}, {5651, 8541}, {5890, 11180}, {5892, 11179}, {6697, 26156}, {6776, 15045}, {7669, 13335}, {8547, 22112}, {10110, 11477}, {10151, 12294}, {10602, 11284}, {10984, 15581}, {11002, 11160}, {11451, 15531}, {11645, 14855}, {11898, 13321}, {12093, 17430}, {14810, 18859}, {15060, 18358}, {15533, 21849}, {16072, 23049}, {19126, 20987}, {21513, 22143}, {21969, 22165}, {22087, 23635}
X(29959) = midpoint of X(i) and X(j) for these {i,j}: {2, 11188}, {69, 3060}, {599, 9971}, {1843, 3917}, {5890, 11180}, {5943, 14913}Collineation mappings involving Gemini triangle 99: X(29960)-X(30026)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 99, as in centers X(29960)-X(30026). Then
m(X) = (a b^2 + a c^2 + b^2 c + b c^2) x - b (b c + c a + a b) y - c (b c + c a + a b) z : :
and m(X) is on the Euler line. (Clark Kimberling, December 13, 2018)
X(29960) lies on these lines: {1, 2}, {3, 24586}, {6, 24549}, {36, 29473}, {39, 21240}, {69, 21384}, {72, 17755}, {75, 17050}, {76, 20335}, {141, 1107}, {142, 274}, {171, 16061}, {194, 3662}, {213, 17353}, {304, 1921}, {325, 17046}, {330, 17232}, {350, 21071}, {404, 24602}, {672, 17137}, {673, 1043}, {942, 24631}, {992, 16782}, {1334, 17152}, {1457, 28777}, {1475, 30941}, {1575, 20255}, {1655, 31004}, {1930, 17760}, {1959, 29972}, {2140, 20888}, {2176, 17279}, {2227, 23414}, {2275, 30945}, {2321, 17143}, {2887, 6656}, {3263, 33299}, {3294, 25101}, {3501, 21281}, {3663, 25264}, {3703, 20358}, {3729, 17753}, {3747, 28242}, {3759, 16787}, {3836, 17670}, {3879, 20963}, {4006, 4986}, {4357, 5283}, {4416, 16552}, {4431, 32104}, {4602, 18031}, {5299, 27644}, {5847, 16476}, {7283, 17738}, {14210, 29982}, {14621, 17688}, {16502, 27623}, {16706, 33296}, {16969, 17267}, {16992, 25500}, {17060, 28278}, {17144, 17233}, {17184, 31036}, {17187, 27185}, {17231, 17448}, {17234, 31997}, {17451, 20911}, {17550, 25760}, {17742, 21371}, {17761, 21070}, {18206, 28274}, {18669, 29996}, {20235, 29975}, {20347, 26770}, {21024, 21264}, {21238, 25114}, {21255, 24215}, {21405, 25002}, {21808, 26234}, {23493, 26986}, {23682, 25957}, {24199, 32092}, {24443, 26562}, {27000, 32932}, {27523, 30946}, {27680, 33087}, {28809, 30961}, {29961, 29980}, {29963, 29969}, {29965, 29992}, {30013, 30016}, {30037, 30054}
X(29961) lies on these lines: {2, 3}, {5074, 29991}, {14963, 29964}, {17864, 20891}, {20305, 22065}, {20923, 20926}, {21270, 22127}, {29960, 29980}, {29966, 30016}, {29983, 30015}
X(29962) lies on these lines: {2, 3}, {4329, 17920}, {5179, 29967}, {5283, 7179}, {20235, 20891}, {20914, 20923}, {22065, 30983}, {29969, 30005}, {29973, 30018}, {29980, 30001}, {29981, 29983}
X(29963) lies on these lines: {2, 3}, {20891, 21403}, {20923, 21579}, {29960, 29969}, {29974, 30018}
X(29964) lies on these lines: {2, 6}, {39, 3662}, {320, 583}, {1009, 4645}, {1740, 25957}, {1930, 17760}, {2209, 3771}, {2309, 2887}, {2997, 4876}, {3703, 17142}, {3736, 4202}, {4279, 25645}, {4450, 8053}, {5110, 21997}, {5153, 16706}, {6327, 20992}, {7232, 27638}, {7769, 24922}, {8299, 17138}, {14963, 29961}, {16690, 24542}, {18151, 20444}, {20255, 27102}, {20486, 21278}, {21246, 29982}, {27661, 32859}, {29972, 29976}, {29975, 30005}, {29977, 30012}, {29983, 30010}, {30000, 30022}, {30013, 30014}
X(29965) lies on these lines: {2, 7}, {3, 27401}, {72, 27422}, {75, 21801}, {322, 20923}, {1284, 25681}, {1329, 1469}, {1458, 3436}, {1958, 6996}, {2287, 24591}, {2664, 24230}, {2999, 17182}, {3008, 27640}, {3661, 21030}, {3739, 21853}, {3912, 21074}, {4345, 20036}, {4384, 24220}, {11415, 28270}, {17278, 28252}, {19649, 27388}, {20769, 27381}, {20891, 20895}, {21616, 24248}, {22020, 30567}, {23682, 25571}, {29960, 29992}, {29966, 29981}, {29984, 29995}, {29985, 29993}
X(29966) lies on these lines: {1, 2}, {3, 24602}, {7, 27523}, {9, 17137}, {21, 24586}, {69, 3691}, {75, 21808}, {76, 30949}, {85, 6385}, {226, 28809}, {304, 17451}, {344, 1334}, {750, 16061}, {986, 26562}, {993, 29473}, {1107, 30945}, {1400, 6604}, {1475, 30962}, {1655, 3662}, {1740, 27169}, {1909, 17234}, {1914, 27632}, {2140, 3760}, {2170, 18156}, {2276, 20255}, {2295, 17279}, {2887, 17550}, {3685, 27000}, {3761, 17758}, {3765, 18139}, {3780, 4851}, {3868, 17755}, {3948, 30985}, {3975, 18134}, {4433, 28250}, {4441, 17050}, {4675, 4754}, {4766, 17671}, {5276, 24549}, {5283, 21240}, {5342, 31909}, {5439, 24629}, {6656, 25957}, {10436, 26035}, {10448, 16060}, {17241, 24524}, {17282, 26978}, {17670, 25961}, {17754, 27109}, {18055, 20947}, {18135, 20335}, {18141, 28272}, {18169, 27185}, {18743, 20707}, {20245, 30625}, {20703, 32925}, {20880, 20891}, {20905, 21422}, {21070, 32104}, {21384, 30941}, {24190, 25264}, {24806, 28777}, {25960, 33034}, {27269, 31004}, {29961, 30016}, {29965, 29981}, {29980, 29993}, {29983, 30026}, {30758, 33299}, {30830, 30961}, {32917, 33036}
X(29967) lies on these lines: {2, 7}, {10, 3786}, {12, 26543}, {69, 26063}, {71, 17139}, {286, 334}, {306, 314}, {321, 29984}, {379, 1958}, {572, 24630}, {946, 3685}, {978, 24159}, {1045, 3914}, {1086, 27633}, {1441, 1959}, {1740, 23682}, {1757, 21077}, {1760, 24315}, {1930, 17760}, {1953, 3262}, {2140, 24199}, {2171, 26665}, {2293, 20556}, {2911, 27623}, {3294, 25589}, {3572, 21191}, {3596, 30059}, {3751, 5230}, {3765, 30052}, {3831, 7951}, {3879, 17197}, {3912, 21069}, {3923, 12047}, {4223, 27401}, {4358, 30029}, {4436, 15320}, {4645, 7379}, {4699, 17050}, {5179, 29962}, {5251, 25526}, {5341, 24324}, {6383, 30022}, {6734, 10477}, {10446, 22370}, {10473, 24997}, {11681, 26540}, {12609, 24342}, {12610, 17738}, {16571, 17889}, {16580, 24358}, {17117, 20257}, {17153, 26237}, {17189, 27644}, {17220, 27514}, {17304, 25599}, {17789, 20923}, {17792, 20486}, {17868, 20895}, {18134, 19806}, {18161, 20930}, {20544, 21746}, {21078, 27478}, {21384, 27317}, {21406, 23581}, {21801, 28974}, {25514, 27388}, {27385, 27622}, {27436, 30077}, {29975, 29993}, {29980, 29987}, {29982, 30019}
X(29968) lies on these lines: {1, 2}, {21, 24602}, {37, 20255}, {75, 21071}, {76, 142}, {183, 25500}, {226, 30830}, {341, 27475}, {344, 3501}, {350, 17050}, {405, 24586}, {942, 17755}, {1655, 24214}, {2292, 26562}, {2309, 27169}, {3263, 21808}, {3662, 27269}, {3663, 24190}, {3664, 17499}, {3686, 33297}, {3691, 30941}, {3730, 21371}, {3739, 21024}, {3836, 6656}, {3846, 33034}, {3879, 27623}, {3916, 24628}, {3948, 5249}, {4022, 21700}, {4078, 12782}, {4357, 16589}, {4431, 21070}, {5179, 29962}, {5251, 29473}, {5275, 24549}, {5439, 24631}, {6376, 17234}, {6381, 17758}, {16061, 17122}, {17231, 25614}, {17243, 20691}, {17245, 21025}, {17265, 24667}, {17353, 17750}, {17550, 25957}, {18135, 30949}, {18140, 20335}, {20888, 20891}, {20911, 21921}, {21384, 30962}, {24170, 25092}, {27186, 31060}, {29990, 30010}, {29993, 30002}, {29999, 30007}, {30001, 30008}, {32916, 33036}
X(29968) = complement of X(16827)
X(29969) lies on these lines: {2, 11}, {4728, 30020}, {20891, 21404}, {20923, 21580}, {29960, 29963}, {29962, 30005}
X(29970) lies on these lines: {2, 3}, {20891, 21407}, {20923, 21583}
X(29971) lies on these lines: {2, 3}, {3261, 30025}, {20891, 21408}, {20923, 21584}
X(29972) lies on these lines: {2, 31}, {626, 1197}, {1185, 24995}, {1959, 29960}, {20627, 20891}, {20641, 20923}, {29964, 29976}, {29973, 29975}, {29977, 30016}
X(29973) lies on these lines: {2, 32}, {14963, 29961}, {20891, 21409}, {20923, 21585}, {29962, 30018}, {29972, 29975}, {29983, 30000}, {30015, 30022}
X(29974) lies on these lines: {2, 39}, {313, 16604}, {1125, 3963}, {2140, 29979}, {3840, 22028}, {14963, 29961}, {16827, 17475}, {18050, 20923}, {20891, 21412}, {21257, 23414}, {23447, 26963}, {23652, 28279}, {27166, 28654}, {29963, 30018}, {30000, 30010}
X(29975) lies on these lines: {2, 41}, {20235, 29960}, {20891, 21414}, {20923, 21589}, {23640, 26530}, {29964, 30005}, {29967, 29993}, {29972, 29973}, {29976, 29994}
X(29976) lies on these lines: {1, 2}, {1011, 24586}, {13588, 24602}, {18138, 20923}, {18152, 20335}, {20255, 21877}, {20891, 21415}, {21240, 21838}, {29964, 29972}, {29975, 29994}, {29984, 30016}
X(29977) lies on these lines: {1, 2}, {4203, 24602}, {6383, 20335}, {16058, 24586}, {20891, 21416}, {29964, 30012}, {29972, 30016}, {29980, 29990}
X(29978) lies on these lines: {2, 44}, {661, 21191}, {1930, 17760}, {3662, 7786}, {20923, 21591}, {29988, 30019}
X(29979) lies on these lines: {2, 45}, {75, 29985}, {313, 30034}, {1930, 17760}, {2140, 29974}, {3662, 3934}, {3963, 24220}, {11680, 24351}, {20923, 21592}
X(29980) lies on these lines: {2, 11}, {857, 24586}, {20890, 20891}, {20922, 20923}, {21334, 26526}, {23853, 28734}, {29960, 29961}, {29962, 30001}, {29964, 29972}, {29966, 29993}, {29967, 29987}, {29977, 29990}
X(29981) lies on these lines: {2, 6}, {3, 4645}, {55, 17138}, {71, 33113}, {284, 24587}, {914, 30007}, {980, 3662}, {1441, 7146}, {1740, 30969}, {1764, 22370}, {2309, 30953}, {3006, 3779}, {3661, 10472}, {3834, 27633}, {3912, 21069}, {4388, 16343}, {19810, 32858}, {20923, 20930}, {24478, 29849}, {24678, 33073}, {29962, 29983}, {29965, 29966}, {29998, 30015}
X(29982) lies on these lines: {2, 37}, {42, 25106}, {76, 27147}, {142, 3948}, {244, 21080}, {313, 17245}, {314, 16815}, {668, 17312}, {740, 27627}, {1107, 27145}, {3264, 17243}, {3596, 17244}, {3662, 30830}, {3701, 24325}, {3728, 3840}, {3765, 4648}, {3766, 30020}, {3834, 18133}, {3902, 4732}, {3963, 29571}, {3975, 17300}, {4709, 4975}, {4851, 25298}, {4871, 21330}, {5439, 24349}, {6376, 17232}, {6381, 17758}, {9311, 29986}, {14206, 29995}, {14210, 29960}, {17063, 17157}, {17121, 20228}, {17241, 30473}, {17265, 18044}, {17291, 18140}, {17348, 30939}, {17786, 29572}, {18157, 26563}, {18698, 21418}, {21246, 29964}, {21371, 25728}, {25124, 30950}, {27636, 32915}, {29965, 29966}, {29967, 30019}
X(29983) lies on these lines: {2, 39}, {10, 20891}, {99, 27656}, {141, 6376}, {350, 16827}, {1921, 1925}, {3264, 20691}, {3786, 10449}, {3912, 22020}, {3963, 27255}, {4358, 21071}, {6381, 17758}, {17034, 27644}, {18137, 21024}, {18143, 20943}, {18147, 27623}, {29961, 30015}, {29962, 29981}, {29964, 30010}, {29966, 30026}, {29973, 30000}
X(29984) lies on these lines: {2, 6}, {321, 29967}, {1959, 29960}, {3454, 18169}, {3969, 19810}, {4359, 17050}, {4388, 8731}, {5051, 10458}, {19806, 32858}, {20886, 20891}, {20923, 20929}, {27659, 32859}, {29965, 29995}, {29976, 30016}
X(29985) lies on these lines: {2, 6}, {75, 29979}, {238, 28273}, {1740, 25760}, {2092, 17202}, {2309, 3846}, {3454, 18792}, {3662, 27641}, {3736, 5051}, {4858, 18697}, {6693, 16468}, {14210, 29960}, {20923, 20932}, {21078, 27478}, {29965, 29993}, {29990, 29991}, {29997, 30011}
X(29986) lies on these lines: {1, 2}, {7, 26770}, {344, 17152}, {346, 20244}, {1043, 24596}, {4188, 24602}, {4189, 24586}, {6656, 25959}, {9311, 29982}, {17232, 21226}, {17241, 25303}, {17550, 25958}, {17756, 20255}, {18230, 22008}, {20109, 26685}, {20347, 27523}, {20448, 20923}, {20891, 21432}, {27000, 32929}, {30005, 30016}
X(29987) lies on these lines:
X(29988) lies on these lines:
X(29989) lies on these lines:
X(29990) lies on these lines: {2, 31}, {6, 24995}, {325, 20459}, {626, 23660}, {1930, 17760}, {2309, 6656}, {4279, 30104}, {29989, 30003}, {20643, 20923}, {29968, 30010}, {29977, 29980}, {29985, 29991}, {30005, 30012}
X(29991) lies on these lines: {1, 2}, {39, 4357}, {72, 24631}, {141, 16604}, {238, 16061}, {274, 20335}, {474, 24586}, {1211, 23447}, {2140, 24199}, {2887, 17670}, {3662, 27318}, {3846, 6656}, {3868, 24629}, {4253, 4416}, {4359, 30004}, {4766, 17672}, {5044, 17755}, {5074, 29961}, {9454, 17277}, {10009, 20923}, {11285, 32916}, {17200, 27644}, {17531, 24602}, {17550, 25960}, {20530, 21024}, {20891, 21412}, {21071, 30963}, {22011, 30028}, {24214, 31004}, {26234, 33299}, {29985, 29990}, {29993, 30003}
X(29992) lies on these lines: {2, 3}, {281, 18659}, {29960, 29965}, {29966, 30007}
X(29993) lies on these lines: {2, 3}, {1959, 29960}, {3002, 17181}, {29965, 29985}, {29966, 29980}, {29967, 29975}, {29968, 30002}, {29991, 30003}
X(29994) lies on these lines: {2, 3}, {20890, 20891}, {29975, 29976}
X(29995) lies on these lines: {2, 3}, {14206, 29982}, {29965, 29984}
X(29996) lies on these lines: {2, 3}, {18669, 29960}
X(29997) lies on these lines: {2, 3}, {29985, 30011}
X(29998) lies on these lines: {2, 3}, {29981, 30015}
X(29999) lies on these lines: {2, 3}, {1150, 30016}, {5736, 26101}, {10441, 26531}, {29965, 29966}, {29968, 30007}
X(30000) lies on these lines: {2, 3}, {3831, 30002}, {29964, 30022}, {29973, 29983}, {29974, 30010}
PART 1: | Introduction and Centers X(1) - X(1000) | PART 2: | Centers X(1001) - X(3000) | PART 3: | Centers X(3001) - X(5000) |
PART 4: | Centers X(5001) - X(7000) | PART 5: | Centers X(7001) - X(10000) | PART 6: | Centers X(10001) - X(12000) |
PART 7: | Centers X(12001) - X(14000) | PART 8: | Centers X(14001) - X(16000) | PART 9: | Centers X(16001) - X(18000) |
PART 10: | Centers X(18001) - X(20000) | PART 11: | Centers X(20001) - X(22000) | PART 12: | Centers X(22001) - X(24000) |
PART 13: | Centers X(24001) - X(26000) | PART 14: | Centers X(26001) - X(28000) | PART 15: | Centers X(28001) - X(30000) |
PART 16: | Centers X(30001) - X(32000) | PART 17: | Centers X(32001) - X(34000) | PART 18: | Centers X(34001) - X(36000) |
PART 19: | Centers X(36001) - X(38000) | PART 20: | Centers X(38001) - X(40000) | PART 21: | Centers X(40001) - X(42000) |
PART 22: | Centers X(42001) - X(44000) | PART 23: | Centers X(44001) - X(46000) | PART 24: | Centers X(46001) - X(48000) |
PART 25: | Centers X(48001) - X(50000) | PART 26: | Centers X(50001) - X(52000) | PART 27: | Centers X(52001) - X(54000) |
PART 28: | Centers X(54001) - X(56000) | PART 29: | Centers X(56001) - X(58000) | PART 30: | Centers X(58001) - X(60000) |
PART 31: | Centers X(60001) - X(62000) | PART 32: | Centers X(62001) - X(64000) | PART 33: | Centers X(64001) - X(66000) |
PART 34: | Centers X(66001) - X(68000) | PART 35: | Centers X(68001) - X(70000) | PART 36: | Centers X(70001) - X(72000) |