leftri rightri


This is PART 26: Centers X(50001) - X(52000)

Introduction and Centers X(1) - X(1000) Centers X(1001) - X(3000) Centers X(3001) - X(5000)
Centers X(5001) - X(7000) Centers X(7001) - X(10000) Centers X(10001) - X(12000)
Centers X(12001) - X(14000) Centers X(14001) - X(16000) Centers X(16001) - X(18000)
Centers X(18001) - X(20000) Centers X(20001) - X(22000) Centers X(22001) - X(24000)
Centers X(24001) - X(26000) Centers X(26001) - X(28000) Centers X(28001) - X(30000)
Centers X(30001) - X(32000) Centers X(32001) - X(34000) Centers X(34001) - X(36000)
Centers X(36001) - X(38000) Centers X(38001) - X(40000) Centers X(40001) - X(42000)
Centers X(42001) - X(44000) Centers X(44001) - X(46000) Centers X(46001) - X(48000)
Centers X(48001) - X(50000) Centers X(50001) - X(52000) Centers X(52001) - X(54000)
Centers X(54001) - X(56000) Centers X(56001) - X(58000) Centers X(58001) - X(60000)
Centers X(60001) - X(62000) Centers X(62001) - X(64000) Centers X(64001) - X(66000)
Centers X(66001) - X(68000) Centers X(68001) - X(70000) Centers X(70001) - X(72000)


X(50001) = X(1)X(2)∩X(513)X(4382)

Barycentrics    3*a^2*b - 2*a*b^2 + 3*a^2*c + 2*a*b*c - 2*b^2*c - 2*a*c^2 - 2*b*c^2 : :

X(50001) = 6 X[2] - 5 X[899], 9 X[2] - 10 X[4871], 9 X[2] - 5 X[19998], 3 X[2] - 5 X[29824], 3 X[899] - 4 X[4871], 3 X[899] - 2 X[19998], 15 X[1149] - 16 X[3636], 2 X[4871] - 3 X[29824], X[19998] - 3 X[29824], 3 X[244] - 2 X[4706]

X(50001) lies on these lines: {1, 2}, {38, 49462}, {244, 4706}, {321, 49491}, {354, 49468}, {513, 4382}, {518, 3994}, {672, 3943}, {726, 17145}, {740, 17449}, {750, 49460}, {756, 4891}, {896, 4702}, {902, 32919}, {1266, 30941}, {2239, 49699}, {2308, 32943}, {3056, 40341}, {3120, 4684}, {3315, 4716}, {3696, 17450}, {3756, 4819}, {3873, 4365}, {4392, 49469}, {4465, 4725}, {4490, 9260}, {4519, 31161}, {4671, 49498}, {4681, 22167}, {4686, 13476}, {4727, 20331}, {4850, 49678}, {4851, 30958}, {4883, 21020}, {4966, 33136}, {17154, 28522}, {23473, 32450}, {31035, 49510}, {32915, 49447}, {46901, 49470}, {46904, 49475}, {46909, 49471}

X(50001) = reflection of X(i) in X(j) for these {i,j}: {899, 29824}, {19998, 4871}
X(50001) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 31136, 30970}, {145, 10453, 30942}, {145, 30942, 42}, {3633, 31137, 3240}, {3635, 3741, 29822}, {4871, 19998, 899}, {17135, 42057, 3720}, {19998, 29824, 4871}, {26015, 49763, 4062}


X(50002) = X(65)X(519)∩X(72)X(899)

Barycentrics    a*(a^4*b^2 + a^3*b^3 - a^2*b^4 - a*b^5 + 2*a^4*b*c - a^3*b^2*c + 3*a^2*b^3*c + 5*a*b^4*c - b^5*c + a^4*c^2 - a^3*b*c^2 - 4*a*b^3*c^2 - 2*b^4*c^2 + a^3*c^3 + 3*a^2*b*c^3 - 4*a*b^2*c^3 - 2*b^3*c^3 - a^2*c^4 + 5*a*b*c^4 - 2*b^2*c^4 - a*c^5 - b*c^5) : :

X(50002) = X[3885] - 3 X[20039], 4 X[4871] - 5 X[5439], X[5904] - 3 X[31855]

X(50002) lies on these lines: {65, 519}, {72, 899}, {392, 4003}, {513, 4707}, {518, 4674}, {726, 22306}, {942, 3702}, {960, 3670}, {1149, 37592}, {3753, 4692}, {3868, 19998}, {3885, 20039}, {4018, 34434}, {4871, 5439}, {5902, 49493}, {5904, 24440}

X(50002) = midpoint of X(3868) and X(19998)
X(50002) = reflection of X(i) in X(j) for these {i,j}: {72, 899}, {29824, 942}


X(50003) = X(58)X(5253)∩X(519)X(3868)

Barycentrics    a*(a^3*b^2 - a*b^4 - 2*a^3*b*c - a^2*b^2*c + 2*a*b^3*c + b^4*c + a^3*c^2 - a^2*b*c^2 - 2*a*b^2*c^2 + 2*a*b*c^3 - a*c^4 + b*c^4) : :

X(50003) lies on these lines: {58, 5253}, {320, 350}, {519, 3868}, {962, 37482}, {3218, 3909}, {3436, 26871}, {3681, 4001}, {3784, 32859}, {3869, 11573}, {3936, 3937}, {4014, 4442}, {4259, 19998}, {4417, 26910}, {7270, 19809}, {7998, 17347}, {8679, 22294}, {46909, 49537}


X(50004) = EULER LINE INTERCEPT OF X(6329)X(44493)

Barycentrics    a^10-3*(b^2+c^2)*a^8+2*(b^4+10*b^2*c^2+c^4)*a^6+(b^2+c^2)*(2*b^4-21*b^2*c^2+2*c^4)*a^4-(b^2-c^2)^2*(3*b^4+b^2*c^2+3*c^4)*a^2+(b^4-c^4)*(b^2-c^2)^3 : :

See Antreas Hatzipolakis and César Lozada, euclid 5102.

X(50004) lies on these lines: {2, 3}, {6329, 44493}, {9707, 11694}, {11444, 20126}, {15361, 46728}

X(50004) = {X(3530), X(10300)}-harmonic conjugate of X(550)


X(50005) = EULER LINE INTERCEPT OF X(5895)X(44755)

Barycentrics    5*a^10-7*(b^2+c^2)*a^8-2*(b^2-3*c^2)*(3*b^2-c^2)*a^6+(b^2+c^2)*(10*b^4-17*b^2*c^2+10*c^4)*a^4+(b^4-13*b^2*c^2+c^4)*(b^2-c^2)^2*a^2-3*(b^4-c^4)*(b^2-c^2)^3 : :

See Antreas Hatzipolakis and César Lozada, euclid 5102.

X(50005) lies on these lines: {2, 3}, {5895, 44755}, {12291, 15305}, {34796, 43835}


X(50006) = EULER LINE INTERCEPT OF X(567)X(40242)

Barycentrics    3*a^10-4*(b^2+c^2)*a^8-2*(2*b^2-c^2)*(b^2-2*c^2)*a^6+(3*b^2-2*c^2)*(2*b^2-3*c^2)*(b^2+c^2)*a^4+(b^4-3*b^2*c^2+c^4)*(b^2-c^2)^2*a^2-2*(b^4-c^4)*(b^2-c^2)^3 : :

X(50006) = X(382)-5*X(12173), 3*X(550)-5*X(6823), 4*X(550)-5*X(7525)

See Antreas Hatzipolakis and César Lozada, euclid 5102.

X(50006) lies on these lines: {2, 3}, {567, 40242}, {11438, 18379}, {13630, 34786}, {14449, 40909}, {18474, 34798}, {20427, 32316}, {37481, 43837}

X(50006) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (546, 16531, 5), (6240, 44263, 1658)


X(50007) = EULER LINE INTERCEPT OF X(567)X(15361)

Barycentrics    7*a^10-15*(b^2+c^2)*a^8+(2*b^4+17*b^2*c^2+2*c^4)*a^6+2*(b^2+c^2)*(7*b^4-9*b^2*c^2+7*c^4)*a^4-(b^2-c^2)^2*(9*b^4+13*b^2*c^2+9*c^4)*a^2+(b^4-c^4)*(b^2-c^2)^3 : :

X(50007) = 2*X(3)+X(7552), 5*X(3)+4*X(34577), X(20)+8*X(7542)

See Antreas Hatzipolakis and César Lozada, euclid 5102.

X(50007) lies on these lines: {2, 3}, {567, 15361}, {3431, 37779}, {6030, 10193}, {7998, 10628}, {9143, 11464}, {10168, 43584}, {11430, 15360}, {15020, 40107}, {15052, 35266}, {17845, 20391}, {41462, 48378}

X(50007) = anticomplement of X(49674)
X(50007) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (2, 376, 3153), (3, 44262, 376), (186, 549, 2), (10989, 44261, 20), (15702, 18420, 2), (35921, 44214, 2)


X(50008) = EULER LINE INTERCEPT OF X(50)X(7737)

Barycentrics    a^10-(b^2+c^2)*a^8-2*(b^4-4*b^2*c^2+c^4)*a^6+2*(b^2+c^2)*(b^4-5*b^2*c^2+c^4)*a^4+(b^4+c^4)*(b^2-c^2)^2*a^2-(b^4-c^4)*(b^2-c^2)^3 : :

X(50008) = 9*X(2)-X(49670), 2*X(4)-3*X(11818), X(4)-3*X(18420), 5*X(4)+3*X(35513), 4*X(140)-3*X(7514)

See Antreas Hatzipolakis and César Lozada, euclid 5102.

X(50008) lies on these lines: {2, 3}, {50, 7737}, {67, 1352}, {68, 13630}, {70, 14861}, {113, 5651}, {125, 37470}, {182, 15118}, {184, 30714}, {265, 18911}, {511, 7706}, {541, 11178}, {542, 8542}, {566, 2549}, {599, 44791}, {1154, 37473}, {1204, 1209}, {1350, 40909}, {1514, 35283}, {1531, 5650}, {1899, 16270}, {2777, 4550}, {3763, 32620}, {3818, 14915}, {4549, 33533}, {5092, 18382}, {5486, 14984}, {5654, 15136}, {5878, 45959}, {5890, 41724}, {5892, 18390}, {6000, 18431}, {6288, 11457}, {6776, 32251}, {7739, 41335}, {8548, 8550}, {8717, 29012}, {9306, 15132}, {9729, 9927}, {9815, 10095}, {10510, 20423}, {10516, 11472}, {10574, 25738}, {10625, 31815}, {11003, 12383}, {11179, 32233}, {11180, 32306}, {11550, 14855}, {12006, 39571}, {12038, 22661}, {12118, 32046}, {12121, 14805}, {12233, 16266}, {12293, 37514}, {12295, 22112}, {12370, 36752}, {12429, 43588}, {13336, 21659}, {13347, 34786}, {13754, 34507}, {14852, 37475}, {15072, 41171}, {15113, 19506}, {15125, 43586}, {15126, 23329}, {16163, 39242}, {16187, 46686}, {17704, 18383}, {18309, 30230}, {18312, 30209}, {18313, 20186}, {18356, 18909}, {18400, 44491}, {18917, 45956}, {18933, 40685}, {19479, 48378}, {20417, 21243}, {20791, 25739}, {26937, 34826}, {32140, 40647}, {35237, 36990}, {35259, 46817}, {35450, 41736}, {39522, 44469}, {43620, 44529}

X(50008) = midpoint of X(i) and X(j) for these {i, j}: {1350, 40909}, {1352, 4846}, {18494, 35243}, {35237, 36990}
X(50008) = reflection of X(i) in X(j) for these (i, j): (4549, 33533), (4550, 24206), (11818, 18420), (31861, 5), (49669, 49671)
X(50008) = complement of X(49669)
X(50008) = anticomplement of X(49671)
X(50008) = intersection, other than A, B, C, of circumconics {{A, B, C, X(23), X(4846)}} and {{A, B, C, X(26), X(14861)}}
X(50008) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (3, 381, 858), (3, 37196, 550), (4, 376, 5189), (5, 549, 5159), (5, 15122, 5094), (5, 47336, 381), (381, 11284, 5), (381, 18325, 4), (549, 47335, 3), (2045, 2046, 6640), (3530, 18377, 6643), (6823, 31833, 26), (7495, 10295, 3), (7528, 37201, 3627), (8703, 44288, 1370), (10996, 14790, 548), (12106, 25338, 4232), (13160, 37118, 1656), (16618, 37458, 26), (16977, 44241, 3), (18572, 44263, 4), (35921, 37978, 3), (37347, 37981, 5)


X(50009) = EULER LINE INTERCEPT OF X(74)X(5449)

Barycentrics    a^10-(b^2+c^2)*a^8-(2*b^4-7*b^2*c^2+2*c^4)*a^6+2*(b^4-3*b^2*c^2+c^4)*(b^2+c^2)*a^4+(b^4-3*b^2*c^2+c^4)*(b^2-c^2)^2*a^2-(b^4-c^4)*(b^2-c^2)^3 : :

X(50009) = 3*X(2)-4*X(10024), 2*X(3)-3*X(7552), 3*X(3)-4*X(34577), 3*X(4)-2*X(31724)

See Antreas Hatzipolakis and César Lozada, euclid 5102.

X(50009) lies on these lines: {2, 3}, {74, 5449}, {76, 13219}, {146, 2888}, {156, 12383}, {265, 13491}, {323, 22660}, {1478, 9538}, {1514, 15052}, {1531, 15644}, {1533, 13419}, {1539, 11591}, {1614, 3047}, {2777, 11440}, {2883, 14516}, {3100, 3585}, {3357, 23293}, {3410, 12162}, {3448, 6241}, {3521, 6102}, {3581, 34798}, {3583, 4296}, {4846, 18912}, {5012, 13403}, {5448, 43574}, {5876, 7728}, {5878, 11442}, {5925, 13203}, {6193, 12364}, {6225, 18387}, {6759, 12278}, {7706, 9781}, {7747, 10313}, {7748, 22240}, {8718, 11750}, {9544, 12118}, {9707, 12319}, {10574, 18390}, {10575, 25739}, {10733, 13198}, {11417, 35821}, {11418, 35820}, {11420, 19107}, {11421, 19106}, {11456, 12293}, {12121, 32171}, {12134, 32111}, {12220, 48901}, {12226, 15800}, {12244, 32138}, {12254, 15089}, {12279, 18381}, {12290, 18474}, {12317, 18356}, {12370, 15032}, {12897, 15033}, {12902, 45731}, {13418, 18550}, {13445, 20299}, {13851, 46850}, {14683, 32139}, {14927, 18382}, {15019, 40240}, {15062, 21243}, {16111, 20191}, {19121, 29012}, {20127, 32210}, {22528, 43584}, {22555, 35602}, {26881, 34785}, {32046, 43818}, {34148, 43831}, {34563, 41586}, {43605, 44665}

X(50009) = reflection of X(i) in X(j) for these (i, j): (20, 7488), (3520, 10024), (12086, 1594), (34148, 43831), (35491, 7542)
X(50009) = anticomplement of X(3520)
X(50009) = anticomplementary conjugate of the anticomplement of X(3521)
X(50009) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (3, 16868, 2), (3, 44279, 4), (4, 20, 3153), (4, 7544, 3839), (4, 18420, 3832), (4, 44440, 20), (5, 31726, 4), (381, 44271, 4), (382, 44263, 4), (546, 16042, 3091), (550, 10125, 3), (3520, 10024, 2), (3529, 18569, 5189), (3627, 37946, 3146), (10254, 11250, 6143), (10565, 49135, 20), (37201, 37444, 20)


leftri

Points in a [[b+c,c+a,a+b], [b-c,c-a,a-b]] coordinate system: X(50010)-X(50030)

rightri

If L1 and L2 are lines that meet in a point P not at infinity, then a [L1, L2]-coordinate system is a bivariate coordinate system having L1 as x-axis, L2 as y-axis, and P as origin. In this section, L1 and L2 are the following lines:

L1 is the line: (b+c) α + (c+a) β (a+)b γ = 0.

L2 is the line (b-c) α + (c-a) β + (a-b) γ = 0 (Nagel line).

The origin is given by (0,0) = X(239) = a^2 - bc : b^2 - ca : c^2 - ab .

Barycentrics u : v : w for a triangle center U = (x, y) in this system are given by

u : v : w = -2(a^2 - bc) - (b-c)x + (2a - b - c) y : : ,

where, as functions of a, b, c, the coordinate x is antisymmetric of degree 1, and y is symmetric of degree 1.

The appearance of {x, y}, k in the following list means that (x, y) = X(k).

{-((2 (a-b) (a-c) (b-c))/(a^2+b^2+c^2)), (2 (a^3+b^3+c^3))/(a^2+b^2+c^2)}, 69
{-(((a-b) (a-c) (b-c))/(a b+a c+b c)), ((a+b) (a+c) (b+c))/(a b+a c+b c)}, 49755
{-(((a-b) (a-c) (b-c) (a+b+c))/(2 a b c)), 1/2 (a+b+c)}, 49759
{-(((a-b) (a-c) (b-c) (a+b+c))/(2 (a+b) (a+c) (b+c))), 1/2 (a+b+c)}, 49760
{0, -2 (a+b+c)}, 20016
{0, -a-b-c}, 49770
{0, 0}, 239
{0, 1/2 (a+b+c)}, 3008
{0, a+b+c}, 3912
{0, (a^2+b^2+c^2)/(a+b+c)}, 49772
{0, ((a+b) (a+c) (b+c))/(a b+a c+b c)}, 30109
{0, 2 (a+b+c)}, 6542
{0, (2 (a^2+b^2+c^2))/(a+b+c)}, 8
{0, (2 (a b+a c+b c))/(a+b+c)}, 1
{((a-b) (a-c) (b-c) (a+b+c))/(2 a b c), 1/2 (a+b+c)}, 43040
{((a-b) (a-c) (b-c))/(a b+a c+b c), a+b+c}, 49780
{((a-b) (a-c) (b-c))/(a b+a c+b c), ((a+b) (a+c) (b+c))/(a b+a c+b c)}, 20924
{(2 (a-b) (a-c) (b-c))/(a^2+b^2+c^2), (2 (a^3+b^3+c^3))/(a^2+b^2+c^2)}, 30225
{(-2*(a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2), (2*a*b*c)/(a^2 + b^2 + c^2)}, 50010
{-(((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)), (a^3 + b^3 + c^3)/(a^2 + b^2 + c^2)}, 50011
{-1/2*((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c), -1/2*((a + b)*(a + c)*(b + c))/(a*b + a*c + b*c)}, 50012
{-1/2*((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2), (a^3 + b^3 + c^3)/(2*(a^2 + b^2 + c^2))}, 50013
{-1/2*((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c), ((a + b)*(a + c)*(b + c))/(2*(a*b + a*c + b*c))}, 50014
{0, (-2*(a^2 + b^2 + c^2))/(a + b + c)}, 50015
{0, (-2*(a*b + a*c + b*c))/(a + b + c)}, 50016
{0, -((a^2 + b^2 + c^2)/(a + b + c))}, 50017
{0, -((a*b + a*c + b*c)/(a + b + c))}, 50018
{0, (-a - b - c)/2}, 50019
{0, -1/2*(a^2 + b^2 + c^2)/(a + b + c)}, 50020
{0, -1/2*(a*b + a*c + b*c)/(a + b + c)}, 50021
{0, (a^2 + b^2 + c^2)/(2*(a + b + c))}, 50022
{0, (a*b + a*c + b*c)/(a + b + c)}, 50023
{0, (2*(a^3 + b^3 + c^3))/(a^2 + b^2 + c^2)}, 50024
{((a - b)*(a - c)*(b - c))/(2*(a*b + a*c + b*c)), ((a + b)*(a + c)*(b + c))/(2*(a*b + a*c + b*c))}, 50025
{((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2), -((a^3 + b^3 + c^3)/(a^2 + b^2 + c^2))}, 50026
{((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2), (a^3 + b^3 + c^3)/(a^2 + b^2 + c^2)}, 50027
{((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2), ((a + b)*(a + c)*(b + c))/(a^2 + b^2 + c^2)}, 50028
{(2*(a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2), (-2*a*b*c)/(a^2 + b^2 + c^2)}, 50029
{(2*(a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2), (-2*(a^3 + b^3 + c^3))/(a^2 + b^2 + c^2)}, 50023


X(50010) = X(63)X(194)∩X(69)X(519)

Barycentrics    a^4 + a*b^3 - a^2*b*c - 2*b^3*c + 2*b^2*c^2 + a*c^3 - 2*b*c^3 : :

X(50010) = 5 X[17286] - 4 X[49782], 5 X[17304] - 2 X[49778]

X(50010) lies on these lines: {1, 20924}, {2, 49781}, {63, 194}, {69, 519}, {75, 24291}, {76, 3502}, {99, 2382}, {192, 24249}, {515, 1266}, {712, 17738}, {1227, 17160}, {3476, 7195}, {3673, 3905}, {3729, 3734}, {3912, 25527}, {3961, 33934}, {4357, 16086}, {4360, 49779}, {4384, 49758}, {5293, 33944}, {6542, 17184}, {10436, 20893}, {17286, 49782}, {17304, 49778}, {17490, 24266}, {18816, 35169}, {20247, 37639}, {20911, 32945}, {20925, 32920}, {20934, 24255}, {28850, 32922}, {28885, 49709}, {32029, 35102}

X(50010) = anticomplement of X(49781)
X(50010) = {X(20893),X(30117)}-harmonic conjugate of X(10436)


X(50011) = X(6)X(142)∩X(37)X(141)

Barycentrics    a^3*b + a^2*b^2 - a*b^3 + b^4 + a^3*c - a*b^2*c - 2*b^3*c + a^2*c^2 - a*b*c^2 + 2*b^2*c^2 - a*c^3 - 2*b*c^3 + c^4 : :

X(50011) = X[193] - 5 X[29590], 3 X[599] - X[49752], 3 X[41140] - X[49783], 5 X[3618] - 7 X[29607], 7 X[3619] - 5 X[17266], 5 X[3620] - X[6542], 4 X[3631] - X[49750], 4 X[3631] + X[49770], X[17310] - 3 X[21356], 3 X[21358] - 2 X[41141], X[32029] - 3 X[37756]

X(50011) lies on these lines: {1, 49776}, {2, 36404}, {6, 142}, {37, 141}, {44, 5845}, {69, 239}, {193, 29590}, {516, 49706}, {518, 1086}, {519, 599}, {524, 31138}, {536, 4437}, {674, 46149}, {990, 1352}, {1266, 9055}, {1386, 17392}, {1575, 9436}, {3094, 46180}, {3618, 27147}, {3619, 17248}, {3620, 3672}, {3631, 49750}, {3663, 49509}, {3668, 43040}, {3751, 6173}, {3763, 5257}, {3834, 25357}, {4260, 24476}, {4319, 12589}, {4327, 12588}, {4356, 49764}, {4398, 49502}, {4648, 16972}, {4684, 4864}, {4688, 49524}, {5224, 27487}, {5249, 37676}, {5847, 49676}, {7174, 32847}, {7289, 27626}, {9004, 20455}, {9025, 35119}, {16517, 17272}, {16605, 21258}, {17119, 49688}, {17170, 39248}, {17234, 49496}, {17310, 21356}, {17325, 49768}, {17395, 49465}, {21358, 41141}, {23980, 35094}, {24199, 49481}, {25023, 25067}, {26015, 27918}, {26543, 49760}, {29331, 48876}, {30379, 34253}, {31139, 47359}, {32029, 37756}

X(50011) = midpoint of X(i) and X(j) for these {i,j}: {69, 239}, {49750, 49770}
X(50011) = reflection of X(i) in X(j) for these {i,j}: {6, 3008}, {3912, 141}
X(50011) = anticomplement of X(49775)
X(50011) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 4000, 16973}, {3755, 49511, 3242}


X(50012) = X(37)X(519)∩X(81)X(239)

Barycentrics    3*a^3*b + 3*a^3*c + 4*a^2*b*c - 3*a*b^2*c - b^3*c - 3*a*b*c^2 - 2*b^2*c^2 - b*c^3 : :

X(50012) = 3 X[239] - X[20924]

X(50012) lies on these lines: {37, 519}, {81, 239}, {213, 3902}, {758, 4969}, {1015, 4771}, {2238, 4975}, {2795, 4716}, {3735, 5839}, {3759, 24254}, {3780, 4692}, {17147, 40891}, {20016, 49753}, {48864, 49459}

X(50012) = midpoint of X(20016) and X(49753)


X(50013) = X(69)X(239)∩X(141)X(519)

Barycentrics    2*a^4 + a^3*b + 3*a^2*b^2 - a*b^3 + b^4 + a^3*c - 2*a^2*b*c - a*b^2*c - 4*b^3*c + 3*a^2*c^2 - a*b*c^2 + 2*b^2*c^2 - a*c^3 - 4*b*c^3 + c^4 : :

X(50013) = X[6] - 3 X[41140], X[69] + 3 X[239], 3 X[599] - X[49750], 3 X[3008] - 2 X[3589], 4 X[3589] - 3 X[49775], 7 X[3619] - 3 X[17310], 5 X[3620] + 3 X[40891], 5 X[3763] - 3 X[3912], X[49688] - 3 X[49772], X[49679] - 3 X[49771], X[6144] - 3 X[49783], 4 X[34573] - 3 X[41141]

X(50013) lies on these lines: {6, 4795}, {69, 239}, {141, 519}, {142, 49684}, {518, 4395}, {599, 49750}, {742, 3008}, {1386, 34824}, {3416, 17290}, {3619, 17310}, {3620, 40891}, {3763, 3912}, {3818, 12610}, {3834, 5846}, {3844, 49766}, {4357, 16521}, {4361, 49688}, {4851, 49679}, {5847, 17067}, {6144, 49783}, {17045, 49768}, {17306, 32847}, {17313, 49681}, {34573, 41141}, {49752, 49770}

X(50013) = midpoint of X(49752) and X(49770)
X(50013) = reflection of X(i) in X(j) for these {i,j}: {49766, 3844}, {49775, 3008}


X(50014) = X(37)X(519)∩X(44)X(517)

Barycentrics    a*(a^2*b - a*b^2 + b^3 + a^2*c + 2*a*b*c - 2*b^2*c - a*c^2 - 2*b*c^2 + c^3) : :

X(50014) = 3 X[41140] + X[41773], 3 X[4688] - 2 X[20893], 5 X[31238] - 2 X[49780]

X(50014) lies on these lines: {2, 49779}, {37, 519}, {42, 21332}, {44, 517}, {239, 257}, {304, 24735}, {518, 21331}, {594, 49781}, {672, 21888}, {742, 49774}, {1015, 16611}, {1086, 35102}, {1100, 30117}, {1108, 21892}, {1212, 20691}, {1475, 21951}, {1575, 43065}, {1914, 5546}, {2082, 4426}, {2087, 49997}, {2170, 2238}, {2176, 4051}, {2275, 29590}, {3008, 6692}, {3061, 3507}, {3125, 45751}, {3691, 3727}, {3739, 16724}, {3749, 16968}, {3752, 41140}, {3780, 17451}, {3912, 5743}, {3959, 21384}, {4688, 20893}, {4695, 20331}, {5291, 5540}, {8682, 30109}, {9260, 21348}, {9460, 16610}, {9623, 36404}, {10027, 20363}, {16086, 17275}, {16583, 17448}, {16589, 49764}, {16829, 25368}, {17310, 44307}, {17755, 35101}, {18904, 45213}, {19623, 31998}, {21373, 49494}, {21857, 29331}, {21868, 25066}, {25432, 49711}, {25614, 49769}, {28606, 40891}, {30116, 36409}, {31238, 49780}, {35069, 35092}, {35957, 40859}

X(50014) = midpoint of X(i) and X(j) for these {i,j}: {239, 49755}, {35957, 40859}
X(50014) = reflection of X(i) in X(j) for these {i,j}: {37, 49758}, {20924, 3739}, {49777, 3008}
X(50014) = complement of X(49779)
X(50014) = X(4615)-Ceva conjugate of X(513)
X(50014) = crosspoint of X(i) and X(j) for these (i,j): {80, 274}, {88, 256}
X(50014) = crosssum of X(i) and X(j) for these (i,j): {36, 213}, {44, 171}, {2087, 4040}
X(50014) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3691, 3727, 21879}, {4875, 41015, 1107}, {16605, 40133, 16604}


X(50015) = X(1)X(2)∩X(75)X(49681)

Barycentrics    3*a^3 + 2*a*b^2 - b^3 - a*b*c - 2*b^2*c + 2*a*c^2 - 2*b*c^2 - c^3 : :

X(50015) = 3 X[1] - 2 X[49764], 9 X[2] - 8 X[49769], 3 X[8] - 4 X[49772], 4 X[10] - 5 X[29590], 3 X[239] - 2 X[49772], 8 X[3008] - 7 X[9780], 3 X[3241] - 4 X[49771], 5 X[3616] - 4 X[3912], 11 X[5550] - 10 X[17266], 11 X[5550] - 8 X[49766], 3 X[6542] - 4 X[49764], 7 X[9780] - 4 X[49762], 5 X[17266] - 4 X[49766], 2 X[17310] - 3 X[38314], 3 X[17310] - 4 X[49768], 13 X[19877] - 14 X[29607], X[20050] + 4 X[49770], 7 X[20057] - 4 X[49763], 3 X[32847] - 4 X[49769], 9 X[38314] - 8 X[49768], 3 X[238] - 2 X[4439], 6 X[238] - 5 X[4473], 4 X[4439] - 5 X[4473], 4 X[1086] - 3 X[4645], 2 X[1086] - 3 X[32922], 4 X[3246] - 3 X[17264]

X(50015) lies on these lines: {1, 2}, {75, 49681}, {190, 28503}, {238, 4439}, {319, 49465}, {320, 28538}, {452, 49757}, {514, 31291}, {518, 25048}, {524, 24841}, {528, 17160}, {536, 49709}, {537, 20072}, {730, 39362}, {740, 21295}, {742, 4644}, {752, 4440}, {894, 49684}, {944, 29331}, {952, 36716}, {1086, 4645}, {1120, 17962}, {1320, 7261}, {1482, 36663}, {1654, 4407}, {2099, 33949}, {3212, 3476}, {3246, 17264}, {3416, 17227}, {3600, 43040}, {3759, 49688}, {3790, 7290}, {3883, 9791}, {3891, 4388}, {3902, 17762}, {4361, 49679}, {4452, 33869}, {4665, 5263}, {4693, 49700}, {4716, 17765}, {4720, 33954}, {4914, 19786}, {4968, 17789}, {4969, 9041}, {5195, 9802}, {5291, 35092}, {5296, 49756}, {5772, 49775}, {5839, 49509}, {6224, 13235}, {6646, 49455}, {7174, 49754}, {8148, 36732}, {9053, 49706}, {12245, 36699}, {16491, 17368}, {16496, 17363}, {17119, 49720}, {17121, 49529}, {17155, 20101}, {17302, 33076}, {17315, 42819}, {17318, 49746}, {17360, 47358}, {17377, 42871}, {17489, 21226}, {17772, 49675}, {17778, 32923}, {20090, 49479}, {20244, 33865}, {20911, 25303}, {24723, 49463}, {24821, 49710}, {26738, 33070}, {28512, 32857}, {28581, 49695}, {28599, 33150}, {31029, 33148}, {31030, 33112}, {31300, 49532}, {32844, 37759}, {32921, 49506}, {33082, 49464}, {36727, 37705}

X(50015) = midpoint of X(145) and X(20016)
X(50015) = reflection of X(i) in X(j) for these {i,j}: {8, 239}, {4645, 32922}, {4693, 49700}, {6542, 1}, {24821, 49710}, {49762, 3008}
X(50015) = anticomplement of X(32847)
X(50015) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3632, 49560}, {1, 17397, 38314}, {1, 48851, 17397}, {8, 3241, 36534}, {8, 38314, 29611}, {238, 4439, 4473}, {33076, 49472, 17302}, {49764, 49772, 3661}


X(50016) = X(1)X(2)∩X(190)X(740)

Barycentrics    a^3 + 3*a^2*b - a*b^2 + 3*a^2*c - a*b*c - 2*b^2*c - a*c^2 - 2*b*c^2 : :

X(50016) = 4 X[1125] - 5 X[29590], 5 X[1698] - 4 X[3912], 8 X[3008] - 7 X[3624], 7 X[3624] - 4 X[49763], X[3632] + 4 X[49770], 3 X[3679] - 2 X[32847], 3 X[3679] - 4 X[49772], 5 X[17266] - 4 X[49767], 2 X[17310] - 3 X[19875], 3 X[17310] - 4 X[49769], 9 X[19875] - 8 X[49769], 3 X[25055] - 4 X[41140], 9 X[25055] - 8 X[49768], 14 X[29607] - 13 X[34595], 3 X[41140] - 2 X[49768], 2 X[190] - 3 X[1757], 3 X[1757] - 4 X[4753], 3 X[238] - 2 X[4702], 3 X[3685] - 4 X[4759], 3 X[4966] - 4 X[40480], 3 X[17297] - 4 X[25351], 2 X[17374] - 3 X[31151]

X(50016) lies on these lines: {1, 2}, {6, 49459}, {9, 49469}, {40, 29331}, {44, 4693}, {75, 49497}, {80, 6543}, {86, 4732}, {190, 740}, {238, 4702}, {274, 4714}, {319, 4085}, {484, 18206}, {518, 4716}, {524, 24715}, {528, 4969}, {536, 24821}, {537, 17160}, {678, 4954}, {742, 3751}, {846, 3896}, {894, 4709}, {984, 17318}, {1001, 49678}, {1018, 39252}, {1051, 32772}, {1054, 24593}, {1145, 39041}, {2223, 48696}, {2796, 20072}, {3242, 49689}, {3339, 43040}, {3685, 4759}, {3696, 4649}, {3755, 33082}, {3759, 32941}, {3791, 3996}, {3875, 49448}, {3886, 16468}, {3931, 49760}, {4007, 16972}, {4026, 42334}, {4042, 17592}, {4046, 32780}, {4360, 49457}, {4361, 49490}, {4378, 9260}, {4407, 17320}, {4409, 5852}, {4414, 24616}, {4416, 4780}, {4555, 4589}, {4597, 35153}, {4647, 17789}, {4660, 17363}, {4663, 49468}, {4692, 17143}, {4706, 18201}, {4737, 17144}, {4738, 39044}, {4743, 24723}, {4767, 21805}, {4781, 16704}, {4783, 17790}, {4819, 35466}, {4868, 40773}, {4966, 40480}, {5119, 21384}, {5220, 49452}, {5223, 49445}, {5235, 21806}, {5263, 49489}, {5288, 37575}, {5525, 18785}, {5541, 24578}, {15481, 49461}, {16476, 37610}, {16477, 49484}, {16484, 17348}, {16669, 49485}, {17117, 49479}, {17119, 31178}, {17121, 49482}, {17151, 49532}, {17175, 33770}, {17277, 49471}, {17297, 25351}, {17299, 33165}, {17335, 49470}, {17362, 33076}, {17374, 31151}, {17378, 24693}, {17596, 32853}, {17769, 49698}, {17772, 32850}, {20924, 32092}, {21027, 37635}, {23407, 25439}, {32857, 34379}, {32860, 32913}, {32921, 49450}, {49453, 49503}

X(50016) = midpoint of X(8) and X(20016)
X(50016) = reflection of X(i) in X(j) for these {i,j}: {1, 239}, {190, 4753}, {4693, 44}, {6542, 10}, {24821, 49712}, {32847, 49772}, {49761, 49766}, {49763, 3008}
X(50016) = anticomplement of X(49764)
X(50016) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3679, 36531}, {1, 16832, 25055}, {1, 19875, 16831}, {1, 31855, 2664}, {8, 4393, 36480}, {8, 26626, 48802}, {8, 29659, 3679}, {8, 49488, 1}, {145, 16825, 1}, {190, 4753, 1757}, {3241, 16816, 24331}, {3241, 24331, 1}, {3244, 16823, 1}, {3696, 4649, 24342}, {3896, 32864, 846}, {4062, 33139, 29862}, {4361, 49680, 49490}, {4393, 36480, 1}, {4709, 49685, 894}, {17162, 19998, 17763}, {17348, 49475, 16484}, {17763, 19998, 5524}, {20011, 32914, 3979}, {32847, 49772, 3679}, {36480, 49488, 4393}


X(50017) = X(1)X(2)∩X(44)X(28503)

Barycentrics    4*a^3 + a^2*b + 2*a*b^2 - b^3 + a^2*c - 2*a*b*c - 3*b^2*c + 2*a*c^2 - 3*b*c^2 - c^3 : :

X(50017) = X[8] - 3 X[239], 2 X[8] - 3 X[49772], 2 X[10] - 3 X[41140], X[145] + 3 X[40891], 3 X[551] - 2 X[49767], 4 X[1125] - 3 X[3912], 5 X[1698] - 6 X[3008], 5 X[1698] - 3 X[32847], 2 X[3244] + 3 X[49770], 2 X[3244] - 3 X[49771], 5 X[3616] - 3 X[17310], 7 X[3622] - 3 X[6542], 7 X[3622] - 6 X[49768], 5 X[3623] + 3 X[20016], 7 X[3624] - 6 X[41141], 15 X[29590] - 11 X[46933], 3 X[41140] - X[49762], 3 X[238] - 2 X[2325], 2 X[320] - 3 X[24231], X[320] - 3 X[32922], 3 X[1279] - X[4727], 3 X[1738] - 4 X[4395], 3 X[3932] - 4 X[6687], 3 X[4716] + X[49708], 4 X[17067] - 3 X[31151]

X(50017) lies on these lines: {1, 2}, {44, 28503}, {75, 49684}, {238, 2325}, {320, 5847}, {518, 4969}, {726, 4480}, {740, 49700}, {742, 49483}, {752, 1266}, {984, 3707}, {1086, 28538}, {1279, 4727}, {1386, 17369}, {1738, 4395}, {2345, 16491}, {3212, 4315}, {3246, 3943}, {3416, 17290}, {3696, 4405}, {3717, 4974}, {3755, 49506}, {3759, 49529}, {3883, 32921}, {3932, 6687}, {3946, 33076}, {3950, 15485}, {4301, 28909}, {4353, 33082}, {4357, 49472}, {4361, 49681}, {4416, 49455}, {4431, 49482}, {4464, 49471}, {4649, 4982}, {4667, 31178}, {4684, 17772}, {4693, 17133}, {4700, 49712}, {4702, 4971}, {4716, 5853}, {4873, 7290}, {4989, 33159}, {5839, 16496}, {7278, 20911}, {9053, 49702}, {16478, 49781}, {17067, 31151}, {17160, 28580}, {17360, 49511}, {17362, 49465}, {17363, 49505}, {17388, 42819}, {24393, 49534}, {28522, 49705}, {29331, 34773}, {30331, 49469}, {49499, 49783}

X(50017) = midpoint of X(i) and X(j) for these {i,j}: {17160, 49709}, {49770, 49771}
X(50017) = reflection of X(i) in X(j) for these {i,j}: {3717, 4974}, {3943, 3246}, {4480, 49710}, {6542, 49768}, {24231, 32922}, {32847, 3008}, {49712, 4700}, {49750, 49511}, {49761, 49764}, {49762, 10}, {49763, 1}, {49772, 239}
X(50017) = anticomplement of X(49766)
X(50017) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 17367, 10}, {16823, 29569, 1125}, {17763, 49987, 5121}, {41140, 49762, 10}


X(50018) = X(1)X(2)∩X(44)X(740)

Barycentrics    2*a^3 + 4*a^2*b - a*b^2 + 4*a^2*c - 2*a*b*c - 3*b^2*c - a*c^2 - 3*b*c^2 : :

X(50018) = X[1] - 3 X[239], X[8] + 3 X[40891], 3 X[10] - 2 X[49766], 2 X[1125] - 3 X[41140], 5 X[1698] - 3 X[17310], 6 X[3008] - 5 X[19862], 5 X[3617] + 3 X[20016], 5 X[3617] - 3 X[32847], 2 X[3626] + 3 X[49770], 2 X[3626] - 3 X[49772], 4 X[3634] - 3 X[3912], 11 X[5550] - 15 X[29590], 3 X[6542] - 7 X[9780], 7 X[9780] - 6 X[49769], 7 X[15808] - 6 X[49768], 15 X[17266] - 17 X[19872], 5 X[19862] - 3 X[49764], 3 X[41140] - X[49763], X[49762] + 3 X[49770], X[49762] - 3 X[49772], 3 X[4716] - X[17160], 3 X[4716] + X[49712], 2 X[3246] - 3 X[4974], 4 X[17067] - 3 X[49676]

X(50018) lies on these lines: {1, 2}, {4, 28909}, {6, 4709}, {44, 740}, {45, 3993}, {75, 49685}, {88, 32919}, {213, 24044}, {274, 49780}, {514, 4784}, {524, 24692}, {536, 4753}, {726, 4716}, {742, 4663}, {752, 4969}, {1100, 4732}, {1107, 4868}, {1757, 28522}, {3246, 4974}, {3579, 29331}, {3686, 16521}, {3696, 16666}, {3743, 49758}, {3745, 4457}, {3759, 49459}, {3875, 49520}, {3923, 16670}, {4058, 16972}, {4072, 16970}, {4085, 17362}, {4361, 49479}, {4407, 17395}, {4439, 4971}, {4660, 5839}, {4672, 49468}, {4693, 4759}, {4700, 28580}, {4852, 49457}, {4887, 34379}, {4923, 38049}, {4970, 32864}, {4991, 5263}, {5221, 43040}, {5750, 16522}, {17067, 49676}, {17348, 49471}, {17349, 49469}, {17374, 25351}, {17595, 32853}, {20924, 28612}, {28503, 49701}, {32921, 49510}, {49449, 49463}, {49450, 49464}, {49453, 49508}, {49455, 49504}, {49503, 49519}

X(50018) = midpoint of X(i) and X(j) for these {i,j}: {17160, 49712}, {20016, 32847}, {49770, 49772}
X(50018) = reflection of X(i) in X(j) for these {i,j}: {4693, 4759}, {6542, 49769}, {17374, 25351}, {49710, 4700}, {49762, 3626}, {49763, 1125}, {49764, 3008}
X(50018) = anticomplement of X(49767)
X(50018) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1698, 29595}, {1, 16815, 1125}, {3696, 49489, 33682}, {3759, 49459, 49482}, {4361, 49497, 49479}, {4716, 49712, 17160}, {16825, 49495, 3244}, {29591, 29633, 3634}, {41140, 49763, 1125}, {49762, 49772, 3626}


X(50019) = X(1)X(2)∩X(44)X(17133)

Barycentrics    6*a^2 + a*b - b^2 + a*c - 6*b*c - c^2 : :

X(50019) = 3 X[2] - 7 X[239], 6 X[2] - 7 X[3008], 9 X[2] - 7 X[3912], 15 X[2] - 7 X[6542], 39 X[2] - 35 X[17266], 11 X[2] - 7 X[17310], 9 X[2] + 7 X[20016], 27 X[2] - 35 X[29590], 45 X[2] - 49 X[29607], X[2] + 7 X[40891], 5 X[2] - 7 X[41140], 8 X[2] - 7 X[41141], 12 X[2] - 7 X[49765], 3 X[2] + 7 X[49770], 3 X[239] - X[3912], 5 X[239] - X[6542], 13 X[239] - 5 X[17266], 11 X[239] - 3 X[17310], 3 X[239] + X[20016], 9 X[239] - 5 X[29590], 15 X[239] - 7 X[29607], X[239] + 3 X[40891], 5 X[239] - 3 X[41140], 8 X[239] - 3 X[41141], 7 X[239] - X[49761], 4 X[239] - X[49765], 3 X[3008] - 2 X[3912], 5 X[3008] - 2 X[6542], 13 X[3008] - 10 X[17266], 11 X[3008] - 6 X[17310], 3 X[3008] + 2 X[20016], 9 X[3008] - 10 X[29590], 15 X[3008] - 14 X[29607], X[3008] + 6 X[40891], 5 X[3008] - 6 X[41140], 4 X[3008] - 3 X[41141], 7 X[3008] - 2 X[49761], X[3008] + 2 X[49770], 5 X[3912] - 3 X[6542], 13 X[3912] - 15 X[17266], 11 X[3912] - 9 X[17310], 3 X[3912] - 5 X[29590], 5 X[3912] - 7 X[29607], X[3912] + 9 X[40891], 5 X[3912] - 9 X[41140], 8 X[3912] - 9 X[41141], 7 X[3912] - 3 X[49761], 4 X[3912] - 3 X[49765], X[3912] + 3 X[49770], 5 X[4668] - 7 X[49772], 13 X[6542] - 25 X[17266], 11 X[6542] - 15 X[17310], 3 X[6542] + 5 X[20016], 9 X[6542] - 25 X[29590], 3 X[6542] - 7 X[29607], X[6542] + 15 X[40891], X[6542] - 3 X[41140], 8 X[6542] - 15 X[41141], 7 X[6542] - 5 X[49761], 4 X[6542] - 5 X[49765], X[6542] + 5 X[49770], 55 X[17266] - 39 X[17310], 15 X[17266] + 13 X[20016], 9 X[17266] - 13 X[29590], 75 X[17266] - 91 X[29607], 5 X[17266] + 39 X[40891], 25 X[17266] - 39 X[41140], 40 X[17266] - 39 X[41141], 35 X[17266] - 13 X[49761], 20 X[17266] - 13 X[49765], 5 X[17266] + 13 X[49770], 9 X[17310] + 11 X[20016], 27 X[17310] - 55 X[29590], 45 X[17310] - 77 X[29607], X[17310] + 11 X[40891], 5 X[17310] - 11 X[41140], 8 X[17310] - 11 X[41141], 21 X[17310] - 11 X[49761], 12 X[17310] - 11 X[49765], 3 X[17310] + 11 X[49770], 3 X[20016] + 5 X[29590], 5 X[20016] + 7 X[29607], X[20016] - 9 X[40891], 5 X[20016] + 9 X[41140], 8 X[20016] + 9 X[41141], 7 X[20016] + 3 X[49761], 4 X[20016] + 3 X[49765], X[20016] - 3 X[49770], 25 X[29590] - 21 X[29607], 5 X[29590] + 27 X[40891], 25 X[29590] - 27 X[41140], 40 X[29590] - 27 X[41141], 35 X[29590] - 9 X[49761], 20 X[29590] - 9 X[49765], 5 X[29590] + 9 X[49770], 7 X[29607] + 45 X[40891], 7 X[29607] - 9 X[41140], 56 X[29607] - 45 X[41141], 49 X[29607] - 15 X[49761], 28 X[29607] - 15 X[49765], 7 X[29607] + 15 X[49770], 5 X[40891] + X[41140], 8 X[40891] + X[41141], 21 X[40891] + X[49761], 12 X[40891] + X[49765], 3 X[40891] - X[49770], 8 X[41140] - 5 X[41141], 21 X[41140] - 5 X[49761], 12 X[41140] - 5 X[49765], 3 X[41140] + 5 X[49770], 21 X[41141] - 8 X[49761], 3 X[41141] - 2 X[49765], 3 X[41141] + 8 X[49770], 4 X[49761] - 7 X[49765], X[49761] + 7 X[49770], X[49765] + 4 X[49770], X[4409] + 7 X[4969]

X(50019) lies on these lines: {1, 2}, {44, 17133}, {75, 4856}, {190, 28313}, {514, 4790}, {516, 4716}, {524, 4887}, {527, 4409}, {536, 4700}, {548, 29331}, {742, 4726}, {1100, 4758}, {1267, 49620}, {1449, 4371}, {2325, 4971}, {3589, 4060}, {3618, 4058}, {3663, 5839}, {3664, 4361}, {3686, 4021}, {3707, 17318}, {3731, 4460}, {3739, 4909}, {3759, 17355}, {3834, 28337}, {3946, 17237}, {4072, 26685}, {4359, 7278}, {4395, 4725}, {4399, 5750}, {4405, 4670}, {4422, 28329}, {4431, 17121}, {4454, 17151}, {4464, 17277}, {4545, 17239}, {4667, 17119}, {4898, 18230}, {4910, 17259}, {4916, 20195}, {4923, 38315}, {5391, 49621}, {6666, 17388}, {8168, 21526}, {16667, 32087}, {17067, 17374}, {17132, 17160}, {17348, 25072}, {17772, 25351}, {20172, 49685}, {27480, 49520}, {27484, 49469}, {28512, 32108}, {32029, 34379}, {38186, 49679}, {43179, 49678}

X(50019) = midpoint of X(i) and X(j) for these {i,j}: {239, 49770}, {3912, 20016}
X(50019) = reflection of X(i) in X(j) for these {i,j}: {3008, 239}, {17374, 17067}, {49765, 3008}
X(50019) = complement of X(49761)
X(50019) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {145, 16833, 29571}, {239, 6542, 41140}, {239, 20016, 3912}, {239, 40891, 49770}, {3008, 49765, 41141}, {3632, 5222, 29594}, {3686, 4852, 4021}, {3912, 41140, 29607}, {3912, 49770, 20016}, {6542, 29607, 3912}, {16816, 29574, 31211}, {17023, 29617, 3626}, {20050, 24599, 29573}, {24603, 29584, 3636}


X(50020) = X(1)X(2)∩X(514)X(4830)

Barycentrics    6*a^3 + 3*a^2*b + 2*a*b^2 - b^3 + 3*a^2*c - 4*a*b*c - 5*b^2*c + 2*a*c^2 - 5*b*c^2 - c^3 : :

X(50020) = X[8] - 5 X[239], 3 X[8] - 5 X[49772], 3 X[239] - X[49772], 9 X[551] - 5 X[49764], 6 X[551] - 5 X[49768], 5 X[3008] - 4 X[3634], 3 X[3008] - 2 X[49769], 7 X[3624] - 5 X[3912], 8 X[3634] - 5 X[49766], 6 X[3634] - 5 X[49769], 5 X[6542] - 13 X[46934], 9 X[19875] - 5 X[32847], 3 X[19875] - 5 X[41140], 25 X[29590] - 17 X[46932], X[32847] - 3 X[41140], 2 X[49764] - 3 X[49768], 3 X[49766] - 4 X[49769], X[4439] - 3 X[4974]

X(50020) lies on these lines: {1, 2}, {514, 4830}, {537, 4700}, {1086, 5847}, {1386, 4665}, {3246, 4971}, {3686, 4407}, {3773, 4989}, {4133, 7290}, {4361, 49684}, {4395, 28538}, {4432, 17133}, {4439, 4974}, {4464, 16484}, {4856, 49479}, {5839, 49505}, {16491, 42696}, {17132, 49710}, {21874, 22036}, {32922, 34379}

X(50020) = midpoint of X(i) and X(j) for these {i,j}: {1, 49770}, {20016, 49763}
X(50020) = reflection of X(i) in X(j) for these {i,j}: {49765, 1125}, {49766, 3008}


X(50021) = X(1)X(2)∩X(190)X(4716)

Barycentrics    4*a^3 + 6*a^2*b - a*b^2 + 6*a^2*c - 4*a*b*c - 5*b^2*c - a*c^2 - 5*b*c^2 : :

X(50021) = X[1] - 5 X[239], 5 X[3008] - 4 X[19878], 6 X[3828] - 5 X[49769], 3 X[4669] - 5 X[49772], 5 X[6542] - 13 X[19877], 8 X[19878] - 5 X[49767], 3 X[19883] - 5 X[41140], 9 X[19883] - 5 X[49764], 5 X[20016] + 11 X[46933], 19 X[22266] - 5 X[49761], X[32847] + 3 X[40891], 3 X[41140] - X[49764], X[190] + 3 X[4716], X[4702] - 3 X[4974]

X(50021) lies on these lines: {1, 2}, {190, 4716}, {726, 4753}, {740, 4759}, {2796, 4700}, {3696, 4991}, {3759, 4709}, {3993, 17335}, {4125, 17144}, {4361, 49685}, {4670, 49489}, {4702, 4974}, {4725, 25351}, {29331, 31663}

X(50021) = midpoint of X(10) and X(49770)
X(50021) = reflection of X(i) in X(j) for these {i,j}: {49765, 3634}, {49767, 3008}


X(50022) = X(1)X(2)∩X(9)X(4780)

Barycentrics    2*a^3 + 5*a^2*b - 2*a*b^2 + b^3 + 5*a^2*c - 4*a*b*c - 3*b^2*c - 2*a*c^2 - 3*b*c^2 + c^3 : :

X(50022) = X[1] - 3 X[41140], X[8] + 3 X[239], X[8] - 3 X[49772], 2 X[1125] - 3 X[3008], 4 X[1125] - 3 X[49768], 5 X[1698] - 3 X[3912], 5 X[3617] + 3 X[40891], 7 X[3622] - 15 X[29590], X[3633] - 3 X[49771], 4 X[3634] - 3 X[41141], 3 X[3679] - X[49762], 3 X[6542] - 11 X[46933], 7 X[9780] - 3 X[17310], 3 X[41141] - 2 X[49767], X[320] - 3 X[1738], 3 X[1757] - X[4480], 3 X[3932] - X[4727], 3 X[4966] - 5 X[31243], 3 X[4974] - X[49700], 3 X[32922] + X[49714]

X(50022) lies on these lines: {1, 2}, {9, 4780}, {44, 28580}, {142, 49497}, {320, 1738}, {514, 4818}, {516, 49710}, {518, 4395}, {527, 4753}, {740, 2325}, {752, 4700}, {1266, 49712}, {1757, 4480}, {3664, 49685}, {3686, 4085}, {3696, 17369}, {3707, 3755}, {3717, 4716}, {3751, 42697}, {3931, 49758}, {3932, 4727}, {3946, 49457}, {4000, 49505}, {4026, 49756}, {4070, 4771}, {4078, 49486}, {4133, 4873}, {4353, 49510}, {4361, 49529}, {4405, 49524}, {4429, 17360}, {4439, 17133}, {4667, 24693}, {4690, 48821}, {4695, 20456}, {4709, 17355}, {4732, 5750}, {4868, 25092}, {4966, 31243}, {4969, 5847}, {4974, 5853}, {4982, 49489}, {4989, 49473}, {6666, 49471}, {6687, 28581}, {15569, 31285}, {16666, 49725}, {17119, 47359}, {17278, 49680}, {17290, 49511}, {17337, 49475}, {17353, 49459}, {19925, 28909}, {20893, 28612}, {24393, 32921}, {25101, 49469}, {32922, 49714}, {40663, 43054}, {49508, 49519}

X(50022) = midpoint of X(i) and X(j) for these {i,j}: {239, 49772}, {1266, 49712}, {3717, 4716}, {32847, 49770}
X(50022) = reflection of X(i) in X(j) for these {i,j}: {49765, 49769}, {49766, 10}, {49767, 3634}, {49768, 3008}
X(50022) = complement of X(49763)
X(50022) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3634, 49767, 41141}


X(50023) = X(1)X(2)∩X(44)X(537)

Barycentrics    2*a^3 + a*b^2 - 2*a*b*c - b^2*c + a*c^2 - b*c^2 : :

X(50023) = X[8] - 5 X[29590], 3 X[551] - X[49764], 3 X[551] - 2 X[49768], 5 X[1698] - 7 X[29607], 5 X[3616] - X[6542], 5 X[3616] - 2 X[49767], 7 X[3622] + X[20016], 7 X[3624] - 5 X[17266], 4 X[3634] - X[49762], 4 X[3636] - X[49763], 4 X[3636] + X[49770], 7 X[15808] - 2 X[49765], X[17310] - 3 X[25055], 5 X[19862] - 2 X[49766], 3 X[19883] - 2 X[41141], 3 X[38314] + X[40891], 3 X[41140] + X[49771], 3 X[41140] - X[49772], X[190] - 3 X[238], X[190] + 3 X[32922], 3 X[238] - 2 X[4759], 2 X[4759] + 3 X[32922], X[4753] - 3 X[4974], 2 X[4395] + X[49700], 3 X[1279] - X[4702], 3 X[3836] - 4 X[40480], X[24715] - 3 X[37756], 3 X[37756] + X[49709], 5 X[27191] - 3 X[31151], 3 X[27487] - 5 X[40328], 3 X[38049] - 2 X[49775]

X(50023) lies on these lines: {1, 2}, {6, 49479}, {9, 49455}, {31, 24165}, {37, 49472}, {40, 36699}, {44, 537}, {56, 43040}, {75, 49482}, {106, 3226}, {142, 49684}, {190, 238}, {192, 15485}, {213, 22011}, {244, 24593}, {274, 17200}, {330, 17105}, {333, 17598}, {354, 3791}, {405, 49757}, {514, 659}, {515, 36716}, {516, 49705}, {518, 4753}, {527, 49710}, {528, 4395}, {536, 3246}, {730, 35119}, {740, 1279}, {742, 1386}, {748, 3891}, {750, 24594}, {752, 1086}, {758, 20358}, {902, 4781}, {946, 36663}, {984, 17335}, {993, 22779}, {1001, 3993}, {1107, 16600}, {1266, 2796}, {1319, 16609}, {1385, 29331}, {1621, 4970}, {1738, 17766}, {2308, 17140}, {3210, 8616}, {3230, 17475}, {3242, 49510}, {3315, 32919}, {3550, 17490}, {3685, 28522}, {3696, 49473}, {3751, 49535}, {3758, 31178}, {3759, 49490}, {3769, 17063}, {3792, 25048}, {3821, 3883}, {3834, 28538}, {3836, 5846}, {3846, 17061}, {3923, 4659}, {3932, 17769}, {3966, 26128}, {4000, 4660}, {4011, 4135}, {4085, 17366}, {4090, 4383}, {4115, 16369}, {4257, 24621}, {4359, 17469}, {4360, 16484}, {4361, 4709}, {4366, 16801}, {4388, 33147}, {4392, 24616}, {4407, 17330}, {4409, 17767}, {4422, 4439}, {4429, 49506}, {4434, 16610}, {4514, 33132}, {4597, 18822}, {4641, 42055}, {4645, 28512}, {4649, 4991}, {4653, 33296}, {4663, 49491}, {4665, 48810}, {4672, 49483}, {4676, 49493}, {4693, 17160}, {4717, 17143}, {4767, 32927}, {4780, 30331}, {4852, 42819}, {4865, 24789}, {4914, 28595}, {4966, 17772}, {5074, 21630}, {5220, 49508}, {5233, 17725}, {5257, 49756}, {5259, 43993}, {5267, 37575}, {5284, 32928}, {5587, 36653}, {5603, 28909}, {5847, 49676}, {5853, 49696}, {5977, 41193}, {6381, 39044}, {6629, 18827}, {7176, 10521}, {8666, 49759}, {8692, 17262}, {9041, 49701}, {9053, 49693}, {9423, 16611}, {10436, 16491}, {12699, 36732}, {14621, 27478}, {15254, 49456}, {15492, 49513}, {15950, 16603}, {16468, 24349}, {16478, 17789}, {16487, 17151}, {16496, 49504}, {16583, 17448}, {16704, 17449}, {16706, 33076}, {16973, 49505}, {16974, 49781}, {17119, 48805}, {17123, 32926}, {17127, 17155}, {17144, 33937}, {17278, 49681}, {17336, 49517}, {17348, 49457}, {17349, 49448}, {17350, 49532}, {17352, 33165}, {17395, 49740}, {17597, 32853}, {17716, 19804}, {17739, 41773}, {17770, 24231}, {18480, 36727}, {18785, 39697}, {19796, 33095}, {20924, 31997}, {21241, 32844}, {24542, 32848}, {24715, 28562}, {24841, 49712}, {25440, 37590}, {25529, 27759}, {26724, 33072}, {27191, 31151}, {27487, 40328}, {28508, 32857}, {31161, 41241}, {32843, 33148}, {32861, 33124}, {32911, 32923}, {32947, 33150}, {33071, 33130}, {33075, 33123}, {34063, 37617}, {34379, 49783}, {35173, 35180}, {38049, 49775}, {41190, 48289}, {42871, 49497}, {47539, 47593}, {49478, 49489}

X(50023) = midpoint of X(i) and X(j) for these {i,j}: {1, 239}, {238, 32922}, {3792, 25048}, {4693, 17160}, {24715, 49709}, {24841, 49712}, {47539, 47593}, {49763, 49770}, {49771, 49772}
X(50023) = reflection of X(i) in X(j) for these {i,j}: {10, 3008}, {190, 4759}, {3912, 1125}, {3932, 31289}, {4432, 3246}, {4439, 4422}, {6542, 49767}, {24692, 1086}, {32847, 49769}, {49764, 49768}
X(50023) = complement of X(32847)
X(50023) = anticomplement of X(49769)
X(50023) = crossdifference of every pair of points on line {649, 2276}
X(50023) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3679, 36534}, {1, 4384, 36480}, {1, 16823, 1125}, {1, 16825, 10}, {1, 16832, 48854}, {1, 24331, 551}, {1, 25055, 29570}, {1, 49488, 3244}, {1, 49997, 3009}, {2, 32847, 49769}, {9, 49455, 49520}, {190, 238, 4759}, {551, 49764, 49768}, {614, 4362, 3840}, {748, 3891, 3971}, {1001, 32921, 3993}, {1386, 24325, 33682}, {1621, 32924, 4970}, {3757, 29821, 6685}, {3759, 49490, 49685}, {4361, 32941, 4709}, {4383, 32920, 4090}, {4384, 16826, 29604}, {4384, 36480, 10}, {4852, 42819, 49471}, {7191, 32914, 3741}, {7292, 17763, 4871}, {15254, 49463, 49456}, {16815, 36531, 3828}, {16816, 36534, 3679}, {16825, 36480, 4384}, {17348, 49465, 49457}, {25055, 29609, 1125}, {32844, 33129, 21241}, {37756, 49709, 24715}, {41140, 49771, 49772}


X(50024) = X(1)X(2)∩X(69)X(514)

Barycentrics    a^4 - a^3*b - a^2*b^2 + 2*a*b^3 - b^4 - a^3*c + a^2*b*c - a^2*c^2 + 2*a*c^3 - c^4 : :

X(50024) = 5 X[3620] - 2 X[49751], 3 X[21356] - X[34342], 3 X[21358] - 2 X[36234]

X(50024) lies on these lines: {1, 2}, {6, 36230}, {69, 514}, {116, 4561}, {141, 24281}, {144, 32106}, {150, 4568}, {190, 544}, {319, 35957}, {346, 32094}, {524, 34362}, {742, 49778}, {952, 4437}, {1016, 17233}, {1043, 4237}, {3620, 49751}, {4361, 6547}, {4766, 4867}, {4851, 36226}, {6631, 17295}, {17347, 32028}, {17362, 45213}, {21356, 34342}, {21358, 36234}, {36205, 41014}

X(50024) = midpoint of X(69) and X(30225)
X(50024) = reflection of X(i) in X(j) for these {i,j}: {6, 36230}, {4482, 4437}, {24281, 141}
X(50024) = isotomic conjugate of the isogonal conjugate of X(46407)
X(50024) = barycentric product X(76)*X(46407)
X(50024) = barycentric quotient X(46407)/X(6)


X(50025) = X(2)X(49753)∩X(81)X(239)

Barycentrics    a^3*b + a^3*c - a*b^2*c + b^3*c - a*b*c^2 - 2*b^2*c^2 + b*c^3 : :

X(50025) lies on these lines: {2, 49753}, {10, 7794}, {39, 1212}, {75, 24254}, {81, 239}, {213, 20880}, {238, 2795}, {291, 1739}, {519, 3696}, {538, 17755}, {742, 20893}, {754, 49711}, {758, 1086}, {760, 1738}, {984, 48840}, {1111, 2238}, {2482, 35119}, {3218, 24617}, {3721, 24790}, {3735, 4000}, {3736, 30117}, {3739, 30109}, {3753, 49772}, {3912, 31993}, {3954, 26978}, {4260, 24476}, {4361, 33936}, {4395, 35101}, {4403, 35102}, {4438, 7801}, {5291, 9317}, {5977, 33891}, {7200, 45751}, {16611, 21138}, {16720, 29433}, {16825, 24293}, {16827, 33940}, {17033, 33933}, {17034, 33943}, {20347, 21839}, {20894, 24330}, {24631, 41140}, {25368, 30106}, {26801, 41805}, {27918, 49997}, {31855, 46894}, {35074, 35092}, {35075, 35094}, {35103, 37756}

X(50025) = midpoint of X(i) and X(j) for these {i,j}: {75, 40859}, {239, 20924}
X(50025) = reflection of X(i) in X(j) for these {i,j}: {30109, 3739}, {36226, 49777}, {49758, 3008}
X(50025) = complement of X(49753)
X(50025) = {X(20894),X(46899)}-harmonic conjugate of X(24330)


X(50026) = X(6)X(519)∩X(69)X(239)

Barycentrics    4*a^4 - a^3*b + 3*a^2*b^2 + a*b^3 - b^4 - a^3*c - 4*a^2*b*c + a*b^2*c - 2*b^3*c + 3*a^2*c^2 + a*b*c^2 - 2*b^2*c^2 + a*c^3 - 2*b*c^3 - c^4 : :

X(50026) = X[69] - 3 X[239], 2 X[141] - 3 X[41140], 3 X[41140] - X[49750], X[193] + 3 X[40891], 2 X[3629] + 3 X[49770], 2 X[3629] - 3 X[49783], 4 X[3589] - 3 X[3912], 6 X[3008] - 5 X[3763], 5 X[3763] - 3 X[49752], 5 X[3618] - 3 X[17310], 3 X[38047] - 2 X[49766], 3 X[38049] - 2 X[49767], 6 X[41141] - 7 X[47355], X[47279] - 3 X[47539], 5 X[47456] - 3 X[47532]

X(50026) lies on these lines: {1, 49756}, {6, 519}, {37, 49771}, {44, 4899}, {69, 239}, {141, 41140}, {145, 36404}, {193, 40891}, {518, 4969}, {524, 36525}, {742, 3629}, {1100, 3589}, {1386, 49763}, {1449, 32847}, {1914, 3977}, {2325, 49696}, {3008, 3763}, {3618, 4916}, {4461, 20016}, {4700, 49713}, {6542, 49775}, {16666, 49524}, {16884, 49768}, {17330, 49465}, {17362, 49772}, {29331, 48906}, {38047, 49766}, {38049, 49767}, {41141, 47355}, {41747, 46180}, {47279, 47539}, {47456, 47532}, {49504, 49509}

X(50026) = midpoint of X(49770) and X(49783)
X(50026) = reflection of X(i) in X(j) for these {i,j}: {6542, 49775}, {49750, 141}, {49752, 3008}, {49762, 49524}, {49763, 1386}
X(50026) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 49690, 17281}, {41140, 49750, 141}


X(50027) = X(1)X(5319)∩X(6)X(519)

Barycentrics    a^3*b + 3*a^2*b^2 - 3*a*b^3 + b^4 + a^3*c - 4*a^2*b*c + a*b^2*c + 3*a^2*c^2 + a*b*c^2 - 2*b^2*c^2 - 3*a*c^3 + c^4 : :

X(50027) = 3 X[34362] - X[49778], 4 X[17229] - 3 X[49773]

X(50027) lies on these lines: {1, 5319}, {6, 519}, {44, 952}, {239, 17740}, {620, 35466}, {899, 4530}, {1015, 24216}, {1145, 6184}, {1572, 24247}, {2087, 26015}, {2170, 33136}, {2243, 21578}, {3008, 24281}, {3061, 37716}, {3663, 3735}, {3912, 5718}, {4967, 49774}, {5224, 49755}, {5724, 49762}, {5725, 49766}, {10027, 17242}, {17229, 49773}, {17245, 49777}, {21796, 40937}, {21857, 29331}

X(50027) = midpoint of X(239) and X(30225)
X(50027) = reflection of X(i) in X(j) for these {i,j}: {3912, 36230}, {24281, 3008}
X(50027) = crossdifference of every pair of points on line {9002, 47373}


X(50028) = X(6)X(519)∩X(81)X(239)

Barycentrics    a*(a^3 - a^2*b + a*b^2 - a^2*c - 3*a*b*c + b^2*c + a*c^2 + b*c^2) : :

X(50028) lies on these lines: {1, 9351}, {6, 519}, {44, 40091}, {81, 239}, {514, 21007}, {712, 32029}, {940, 41140}, {1015, 3684}, {1016, 20669}, {1100, 30117}, {1107, 4653}, {1573, 16503}, {1914, 45751}, {2087, 4511}, {2238, 16784}, {2241, 8616}, {2280, 16975}, {2323, 35092}, {3008, 37674}, {3726, 5540}, {3735, 16973}, {3751, 10800}, {3759, 49779}, {3780, 5299}, {3875, 7798}, {3912, 4383}, {4251, 17448}, {4361, 20893}, {4400, 29742}, {4435, 6550}, {4906, 16583}, {5276, 16971}, {5277, 17474}, {5309, 33141}, {5839, 16086}, {10027, 23660}, {16466, 49763}, {16781, 49768}, {17266, 37687}, {17310, 32911}, {17750, 49772}, {20331, 48696}, {37679, 41141}, {37685, 40891}, {49773, 49775}

X(50028) = reflection of X(i) in X(j) for these {i,j}: {17299, 49782}, {49773, 49775}
X(50028) = crosspoint of X(81) and X(40400)
X(50028) = crosssum of X(i) and X(j) for these (i,j): {37, 16610}, {244, 14408}
X(50028) = crossdifference of every pair of points on line {9002, 22277}


X(50029) = X(1)X(7760)∩X(63)X(194)

Barycentrics    a^4 + 2*a^2*b^2 - a*b^3 - a^2*b*c + 2*a^2*c^2 - 2*b^2*c^2 - a*c^3 : :

X(50029) lies on these lines: {1, 7760}, {6, 24291}, {9, 40859}, {39, 17739}, {63, 194}, {193, 24247}, {257, 7839}, {514, 2484}, {519, 1992}, {538, 17738}, {730, 1757}, {1572, 3729}, {3061, 7754}, {3570, 5529}, {3735, 7798}, {3912, 5712}, {6542, 26223}, {7757, 17596}, {10436, 30109}, {16086, 49754}, {17349, 24249}, {22253, 49518}, {24266, 37683}, {36483, 41232}, {37717, 41624}

X(50029) = reflection of X(6542) in X(49781)


X(50030) = X(1)X(49754)∩X(69)X(239)

Barycentrics    3*a^4 - a^3*b + 2*a^2*b^2 + a*b^3 - b^4 - a^3*c - 3*a^2*b*c + a*b^2*c - b^3*c + 2*a^2*c^2 + a*b*c^2 - 2*b^2*c^2 + a*c^3 - b*c^3 - c^4 : :

X(50030) = 4 X[141] - 5 X[29590], 3 X[1992] - 4 X[49783], 5 X[3618] - 4 X[3912], 8 X[3008] - 7 X[3619], 7 X[3619] - 4 X[49750], X[11008] + 4 X[49770], 3 X[16475] - 2 X[49764], 3 X[17310] - 4 X[49775], 3 X[21356] - 4 X[41140]

X(50030) lies on these lines: {1, 49754}, {2, 49752}, {6, 6542}, {69, 239}, {141, 29590}, {190, 9053}, {193, 742}, {344, 16779}, {518, 25048}, {519, 1992}, {524, 903}, {648, 35158}, {1449, 3618}, {3008, 3619}, {3242, 17346}, {3570, 5211}, {3758, 49688}, {3945, 27487}, {5845, 17160}, {6776, 29331}, {7174, 49771}, {9055, 20072}, {11008, 49770}, {16475, 49764}, {17256, 49465}, {17310, 49775}, {17387, 38186}, {17389, 36404}, {20090, 49481}, {21356, 41140}, {46922, 49524}

X(50030) = midpoint of X(193) and X(20016)
X(50030) = reflection of X(i) in X(j) for these {i,j}: {69, 239}, {6542, 6}, {49750, 3008}
X(50030) = anticomplement of X(49752)
X(50030) = {X(16973),X(17363)}-harmonic conjugate of X(69)


X(50031) = X(3)X(12)∩X(11)X(40)

Barycentrics    a^5 b^2 - a^4 b^3 - 2 a^3 b^4 + 2 a^2 b^5 + a b^6 - b^7 - 6 a^5 b c - 3 a^4 b^2 c + 8 a^3 b^3 c + 2 a^2 b^4 c - 2 a b^5 c + b^6 c + a^5 c^2 - 3 a^4 b c^2 + 4 a^3 b^2 c^2 - 4 a^2 b^3 c^2 - a b^4 c^2 + 3 b^5 c^2 - a^4 c^3 + 8 a^3 b c^3 - 4 a^2 b^2 c^3 + 4 a b^3 c^3 - 3 b^4 c^3 - 2 a^3 c^4 + 2 a^2 b c^4 - a b^2 c^4 - 3 b^3 c^4 + 2 a^2 c^5 - 2 a b c^5 + 3 b^2 c^5 + a c^6 + b c^6 - c^7 : :

See Tran Viet Hung and Francisco Javier García Capitán, euclid 5105.

X(50031) lies on these lines: {1,37364}, {2,5584}, {3,12}, {4,4413}, {5,165}, {10,37374}, {11,40}, {20,1329}, {30,44847}, {36,31799}, {55,6865}, {56,6926}, {119,550}, {210,6245},{376,18242},{411,3035},{442,10164},{495,7987},{496,7991},{515,21031},{516,4187},{517,37722},{631,7680},{908,9943},{958,6890},{962,3816},{1210,7957}, {1376,6253}, {1479,6244}, {1532,31730}, {1698,8727}, {1699,17527}, {1737,31793}, {1836,37560}, {1837,6282}, {2077,10958}, {2829,37403}, {2886,6943}, {3058,10306}, {3085,8273}, {3336,5762}, {3428,5433}, {3452,12688}, {3522,11681}, {3523,25466}, {3576,15888}, {3579,6882}, {3583,31777}, {3584,35202}, {3614,6907}, {3634,8226}, {3654,10943}, {3814,12512},{3817,17575}, {3820,5691}, {3825,5493}, {3826,6828}, {3925,6684}, {4004,4301}, {4193,9778}, {4297,17757}, {4300,37662}, {4679,12705}, {4995,10902}, {4999,6972}, {5056,42356}, {5217,6987}, {5218,15844}, {5221,5758}, {5298,11249}, {5316,21628}, {5326,7688}, {5499,38109}, {5520,36158}, {5536,34753}, {5537,15171}, {5538,37730}, {5660,16143}, {5692,33899}, {5731,12607}, {5763,5902}, {5812,11246}, {5842,6903}, {5918,6260}, {6174,6796}, {6284,6827}, {6361,6963}, {6690,6986}, {6763,13226}, {6833,24953}, {6838,11495}, {6841,11231}, {6842,31663}, {6845,34501}, {6848,31246}, {6894,9342}, {6897,10894}, {6899,11500}, {6916,10895}, {6928,11826}, {6947,11496}, {6952,31260}, {6956,31245}, {6958,7294}, {6967,22753}, {7411,27529}, {7491,24466}, {7580,26364}, {7743,31797}, {7951,16192}, {7956,9589}, {7992,31142}, {8158,10072}, {8726,17718}, {9588,31419}, {9779,13865}, {9841,12678}, {9961,27131}, {10167,21077}, {10175,37447}, {10268,26481}, {10404,37526}, {10588,37108}, {10591,35514}, {10806,34699}, {10860,12679}, {10883,19877}, {10944,37611}, {11227,13407}, {11277,38114}, {11375,30503}, {11471,37432}, {12047,31787}, {12114,34606}, {12565,30827}, {12616,21677}, {12667,31141}, {12680,21075}, {12953,44846}, {14110,40663}, {16117,38752}, {17556,34630}, {18481,37725}, {19754,37078}, {19856,37365}, {21154,26286}, {24390,43174}, {26285,28459}, {26446,37356}, {30384,31798}


leftri

MIYAMOTO-LOZADA CENTERS: X(50032)-X(50040)

rightri

The centers X(50032) - X(50040), except for X(50039), were noted and conjectured by Keita Miyamoto, and confirmed by César Lozada. All the barycentric coordinates and other properties were found by Lozada, who also discovered X(50039).

These centers are associated with circles tangent to the 3 excircles. In particular, X(50037), X(50038), X(50040) involve Hart circles of the excircles. (See Mathworld: Hart's Theorem.)

Here, the notation (O) means a circle with center O. Let (Ea), (Eb), (Ec) denote the excircles, and let (S) be their radical circle. There are 8 lines or circles each of which is tangent to (Ea), (Eb), (Ec) simultaneously. These 8 are:

sidelines AB, BC, CA;
nine-point circle (N);
Apollonius circle (Ap); note that (Ap) is the (S)-inverse of (N);
The three Jenkins circles (Ja), (Jb), (Jc); the A-Jenkins circle (Ja) is the (S)--inverse of BC; and (Jb) and (Jc) are defined cyclically.

Hart's theorem states that generally, other than (Ea), (Eb), (Ec), there are 14 circles in total each of which is tangent to 4 of the 8 simultaneously. Following are the 14 Hart circles of the excircles:

The incircle (I) is tangent to AB, BC, CA, internally tangent to (N).
The Moses hull circle (M) is (internally or externally) tangent to (Ja), (Jb), (Jc), (Ap). (If S lies on (I), then (M) is a line.)
(O1) is tangent to AB and CA, internally tangent to (Jb) and (Jc); the circles (O2) and (O3) are defined cyclically.
(O4) is tangent to BC, internally tangent to (Ap) and (Ja), and externally tangent to (N); the circles (O5) and (O6) are defined cyclically.
(O7) is tangent to BC, internally tangent to (N), and externally tangent to (Jb) and (Jc); the circles (O8) and (O9) are defined cyclically.
(O10) is tangent to AB and CA, and externally tangent to (Ap) and (Ja); the circles (O11) and (O12) are defined cyclically.

Among the 14 Hart circles, the 6 Hart circles (O1), (O2), (O3), (O4), (O5), (O6) are orthogonal to (S), while the 4 Hart circles (M), (O10), (O11), (O12) are the (S)-inverses of the other 4: (I), (O7), (O8), (O9), respectively. Clearly, IM, O7O10, O8O11, O9O12 concur in S = X(10). Also, O1O4, O2O5, O3O6 concur in X(50037).


X(50032) = 1st MIYAMOTO-LOZADA CENTER

Barycentrics    a^2*(b^2+c^2+a*(b+c))*(a^4*(b+c)^2-b*c*(b+c)^2*(b^2+c^2)+a^3*(b+c)*(b^2+b*c+c^2)-a*(b^2-c^2)*(b^3-c^3)-a^2*(b^4+c^4-b*c*(b^2+6*b*c+c^2))) : :

Denote by Ta the point of tangency of (Ea) with (Ap), and likewise for Tb and Tc. Let ω1 be the circle, other than (Ea), (Eb), (Ec), that is internally tangent to (Ap) and also tangent to CA and AB. Define ω2 and ω3 cyclically. Denote by T1 the point of tangency of ω1 with (Ap), and likewise for T2 and T3. Then TaT1, TbT2, TcT3 concur in X(50032).

Let Ab be the intersection of the ray BA and (Ap), and define Bc and Ca cyclically. Let Ba be the intersection of the ray AB and (Ap), and define Cb and Ac cyclically. Let

A1=TbBa∩TcCa;
B1=TcCb∩TaAb;
C1=TaAc∩TbBc;
A2=TbBc∩TcCb;
B2=TcCa∩TaAc;
C2=TaAb∩TbBa;
Then, A1A2, B1B2, C1C2 concur in X(50032), and TaA2, TbB2, TcC2 concur in X(50033).

Construction: X(50032)

X(50032) lies on these lines: {8, 181}, {40, 43}, {1193, 1682}, {5975, 34459}, {10974, 17647}


X(50033) = 2nd MIYAMOTO-LOZADA CENTER

Barycentrics    a^2*(b+c)*(a^4*(b+c)+2*a^2*b*c*(b+c)+2*a^3*(b+c)^2-(b+c)*(b^4+c^4)-2*a*(b^4+c^4+b*c*(b^2-b*c+c^2))) : :

See X(50032). Construction: X(50033)

X(50033) lies on these lines: {3, 6}, {10, 21853}, {19, 2238}, {37, 181}, {758, 38408}, {960, 1213}, {966, 34259}, {1100, 1682}, {3553, 9548}, {3554, 9549}, {5213, 34459}, {9564, 17303}, {9565, 17275}, {10381, 34528}, {10822, 21857}, {10823, 40133}


X(50034) = 3rd MIYAMOTO-LOZADA CENTER

Barycentrics    (b+c)^3*a^4+(b^4+c^4+b*c*(b^2+4*b*c+c^2))*a^3-(b+c)*(b^4+c^4-b*c*(b^2+8*b*c+c^2))*a^2-(b^2-c^2)*(b-c)*(b^3+c^3)*a-(b^2-c^2)^2*(b+c)*b*c : :

Let Fa be the point of tangency of (Ea) with (N), and likewise for Fb and Fc. Let ω1' be the circle internally tangent to (Jb) and (Jc) and externally tangent to (N). Denote by T1' the point of tangency of ω1' with (N). Define ω2', ω3', T2', T3' cyclically.Then FaT1', FbT2', FcT3' concur in X(50034).

In the notation at X(50032), Let Ab' be the (S)-inverse of Ab, and define Bc', Ca', Ac', Ba', Cb' cyclically. Let

A1'=FbBa'∩FcCa', B1'=FcCb'∩FaAb', C1'=FaAc'∩FbBc', A2'=FbBc'∩FcCb', B2'=FcCa'∩FaAc', C2'=FaAb'∩FbBa'.
Then, A1'A2', B1'B2', C1'C2' concur in X(50034), and FaA1', FbB1', FcC1' concur in X(50035), and FaA2', FbB2', FcC2' concur in X(50036).

Construction: X(50034)

X(50034) lies on these lines: {2, 12}, {11, 10459}, {119, 5993}, {495, 21214}, {498, 28383}, {1201, 15888}, {3614, 44411}, {5233, 12607}, {5432, 28348}, {5743, 21031}, {10406, 22299}, {17451, 21025}


X(50035) = 4th MIYAMOTO-LOZADA CENTER

Barycentrics    (b+c)^2*((b+c)*a^8+2*(b^2+c^2)*a^7-(b^4+c^4-2*(b^2-7*b*c+c^2)*b*c)*a^5+(b+c)*(b^4+c^4-3*(b^2+3*b*c+c^2)*b*c)*a^4-2*(b^4+10*b^2*c^2+c^4)*b*c*a^3-2*(b+c)*(b^6+c^6-2*(b^3-c^3)*(b-c)*b*c)*a^2-(b^4-c^4)^2*a-(b^3+c^3)*(b^2-c^2)^2*b*c) : :

See X(50034). Construction: X(50035)

X(50035) lies on these lines: {12, 15281}, {5949, 44411}


X(50036) = 5th MIYAMOTO-LOZADA CENTER

Barycentrics    (b+c)*((b+c)*a^3+(b^2+c^2)*a^2-(b^2-c^2)*(b-c)*a-(b^2-c^2)^2) : :

See X(50034). Construction: X(50036)

X(50036) lies on these lines: {2, 1444}, {4, 36744}, {5, 6}, {9, 46}, {10, 21853}, {11, 1100}, {12, 37}, {19, 431}, {30, 1030}, {44, 3614}, {45, 10592}, {55, 430}, {80, 11069}, {86, 26019}, {115, 119}, {125, 20623}, {140, 5124}, {198, 407}, {223, 5219}, {226, 7363}, {230, 1333}, {284, 6841}, {325, 3770}, {381, 4254}, {391, 5141}, {403, 1172}, {427, 5275}, {478, 3142}, {495, 16777}, {496, 16884}, {572, 6882}, {573, 6842}, {579, 6881}, {584, 8226}, {594, 17757}, {858, 37675}, {860, 10590}, {862, 1486}, {908, 1211}, {966, 2476}, {1146, 17443}, {1449, 7741}, {1478, 2178}, {1500, 21855}, {1532, 4271}, {1592, 31473}, {1609, 3560}, {1656, 5120}, {1824, 22273}, {1834, 2910}, {2171, 21011}, {2193, 37361}, {2220, 7745}, {2238, 2911}, {2262, 17605}, {2278, 6831}, {2294, 21044}, {2303, 37983}, {2305, 15973}, {2323, 15833}, {2345, 11681}, {2475, 27524}, {2886, 17275}, {3013, 8068}, {3091, 37503}, {3247, 37719}, {3554, 8227}, {3686, 25639}, {3723, 15888}, {3814, 5750}, {3815, 5069}, {3822, 5257}, {3925, 21866}, {3936, 28808}, {3948, 20927}, {3949, 21029}, {3958, 21014}, {4016, 21965}, {4053, 21018}, {4187, 4268}, {4261, 5254}, {4263, 39565}, {4280, 37362}, {4675, 21239}, {5019, 7746}, {5080, 38871}, {5110, 37365}, {5115, 37646}, {5133, 5276}, {5153, 37662}, {5179, 14873}, {5251, 17514}, {5421, 34460}, {5475, 16946}, {5746, 6829}, {5800, 36672}, {5802, 6990}, {5839, 11680}, {6506, 40942}, {6871, 27522}, {6907, 37499}, {6913, 8573}, {6914, 8553}, {7173, 16666}, {7679, 41325}, {7752, 34283}, {7958, 40133}, {8286, 39050}, {8287, 18635}, {8680, 27691}, {8727, 37504}, {8728, 37500}, {11063, 31649}, {12607, 17299}, {13911, 44038}, {16307, 30447}, {16732, 41003}, {17206, 25456}, {17330, 17530}, {17362, 24390}, {17454, 37447}, {17669, 26110}, {18990, 21773}, {19542, 19721}, {20146, 33061}, {20236, 44396}, {20337, 29967}, {20616, 21860}, {21024, 34528}, {21033, 21675}, {21287, 26243}, {21677, 21873}, {21698, 23668}, {21858, 21956}, {21863, 40663}, {22369, 46536}, {24512, 47513}, {25505, 26561}, {25508, 33034}, {26601, 27042}, {27039, 31043}, {31018, 41809}, {31845, 38962}, {33329, 47160}, {33854, 37990}, {34119, 40750}, {36659, 36740}, {37049, 42843}, {37401, 37508}, {37673, 47514}, {40635, 44092}

X(50036) = complement of X(1444)
X(50036) = complementary conjugate of the complement of X(1824)
X(50036) = Cevapoint of X(523) and X(651)
X(50036) = crossdifference of every pair of points on line {X(924), X(2605)}
X(50036) = crosssum of X(i) and X(j) for these (i, j): {512, 48383}, {523, 650}
X(50036) = X(2)-Ceva conjugate of-X(37565)
X(50036) = X(i)-complementary conjugate of-X(j) for these (i, j): (4, 3741), (10, 1368)
X(50036) = perspector of the circumconic {{A, B, C, X(925), X(6742)}}
X(50036) = intersection, other than A, B, C, of circumconics {{A, B, C, X(12), X(68)}} and {{A, B, C, X(46), X(6757)}}
X(50036) = barycentric product X(i)*X(j) for these {i, j}: {1, 23555}, {10, 12047}, {86, 21696}, {661, 18740}
X(50036) = trilinear product X(i)*X(j) for these {i, j}: {6, 23555}, {37, 12047}, {81, 21696}, {512, 18740}
X(50036) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (485, 486, 5707), (1213, 1901, 2245), (1213, 5949, 442), (2245, 8818, 1901), (5747, 5816, 6)


X(50037) = 6th MIYAMOTO-LOZADA CENTER

Barycentrics    (b+c)*a^6+(b^2+b*c+c^2)*a^5+2*(b+c)*b*c*a^4-(b+c)^2*b*c*a^3-(b^2-c^2)*(b-c)*(b^2+3*b*c+c^2)*a^2-(b^4-c^4)*(b^2-c^2)*a-(b^2-c^2)^2*(b+c)*b*c : :

The lines O1O4, O2O5, O3O6 concur in X(50037).

Construction: X(50037)

X(50037) lies on these lines: {1, 2051}, {2, 10465}, {4, 9}, {5, 19858}, {8, 9535}, {12, 19542}, {42, 10454}, {43, 5691}, {65, 9553}, {80, 34458}, {165, 15971}, {181, 1837}, {355, 970}, {386, 515}, {517, 3714}, {946, 30116}, {958, 2050}, {986, 29069}, {1220, 23512}, {1478, 5530}, {1682, 5252}, {1685, 49601}, {1686, 49602}, {1695, 3679}, {3029, 9864}, {3031, 12368}, {3032, 12751}, {3057, 9554}, {3091, 19853}, {3436, 3687}, {3831, 12545}, {3840, 43164}, {4260, 5787}, {4276, 6796}, {4297, 6685}, {5247, 13478}, {5790, 9566}, {5794, 9564}, {5799, 37715}, {5881, 9549}, {6736, 36855}, {7987, 29825}, {8185, 9570}, {9534, 10440}, {9567, 18525}, {9568, 37714}, {9571, 15177}, {10406, 10950}, {10407, 11375}, {10434, 26115}, {10449, 29311}, {10526, 39566}, {11236, 36731}, {11500, 19763}, {12435, 17751}, {12610, 13161}, {13178, 34454}, {13211, 34453}, {13532, 34455}, {15232, 46020}, {21363, 31339}, {24982, 37191}, {26446, 35203}

X(50037) = complement of X(10465)
X(50037) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (2051, 44039, 1), (5587, 9548, 10)


X(50038) = 7th MIYAMOTO-LOZADA CENTER

Barycentrics    (b-c)^2*a^2-8*(b+c)*b*c*a-(b^2-c^2)^2 : :

In the notation at X(50034), Let P1 be the point of tangency of (O7) with (N), and define P2 and P3 cyclically. Then T1'P1, T2'P2, T3'P3 concur in X(50038).

Construction: X(50038)

X(50038) lies on these lines: {2, 3304}, {3, 34697}, {4, 34630}, {5, 3654}, {10, 11}, {12, 57}, {21, 6174}, {55, 5129}, {119, 3652}, {120, 31090}, {140, 37725}, {144, 3826}, {210, 8582}, {405, 4995}, {442, 3828}, {443, 31141}, {474, 34606}, {518, 25011}, {519, 17575}, {528, 37162}, {529, 17531}, {936, 10950}, {938, 3711}, {946, 4731}, {958, 6921}, {997, 37734}, {1155, 18250}, {1210, 3983}, {1329, 2476}, {1376, 6872}, {1706, 4679}, {1722, 17602}, {1788, 3715}, {1837, 8580}, {2478, 34612}, {2551, 4413}, {2646, 20103}, {2885, 5743}, {2886, 5154}, {3035, 5260}, {3058, 5084}, {3303, 17559}, {3305, 37828}, {3452, 3698}, {3617, 3816}, {3634, 17757}, {3679, 17527}, {3740, 21677}, {3854, 38092}, {3921, 10916}, {4002, 21616}, {4193, 9710}, {4197, 28610}, {4423, 7080}, {4429, 26046}, {4534, 39244}, {4860, 5815}, {4997, 30543}, {4999, 31235}, {5044, 13601}, {5046, 49732}, {5251, 47742}, {5258, 5298}, {5326, 10955}, {5432, 6857}, {5433, 9708}, {5434, 16408}, {5552, 31259}, {6057, 46937}, {6284, 9709}, {6766, 7958}, {6831, 31399}, {6841, 9956}, {6853, 20400}, {6919, 31140}, {7173, 31419}, {7294, 10956}, {7965, 7989}, {8165, 10895}, {8167, 10528}, {9623, 24954}, {9657, 17580}, {9662, 9679}, {10056, 16853}, {10197, 17590}, {10592, 41859}, {11236, 37462}, {11237, 17582}, {11376, 20196}, {12246, 18242}, {13747, 31157}, {16593, 27025}, {16842, 45701}, {16857, 31452}, {18249, 44848}, {19331, 48833}, {19843, 31246}, {19876, 37719}, {19877, 25466}, {19925, 46916}, {23675, 31197}, {25614, 37661}, {26029, 37164}, {26446, 37406}, {37163, 38757}, {37364, 37714}, {37548, 38471}, {37726, 38099}, {42056, 49609}

X(50038) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (2, 9711, 21031), (2, 21031, 15888), (442, 3828, 34501), (1329, 3925, 3614), (1329, 9780, 3925), (1698, 3820, 12), (2551, 4413, 7354), (3679, 17527, 37722), (3740, 24982, 21677), (8165, 26040, 10895), (11681, 46932, 3826), (24953, 26364, 5326)


X(50039) = 8th MIYAMOTO-LOZADA CENTER

Barycentrics    (a-b) *(a-c)*((b+c)*a^2-(3*b-c)*c*a-(b^2-c^2)*b) *((b+c)*a^2+(b-3*c)*b*a+(b^2-c^2)*c) : :

The points X(10), X(1682) and X(50038) are collinear, and X(50039) is the trilinear pole of their line.

X(50039) lies on these lines: {190, 4560}, {514, 4552}, {518, 41683}, {522, 3952}, {885, 23343}, {908, 1266}, {2397, 46779}, {2401, 2427}, {3257, 21222}, {4033, 4391}, {5548, 13136}, {16704, 39698}, {17906, 17924}

X(50039) = isogonal conjugate of X(21786)
X(50039) = isotomic conjugate of X(21222)
X(50039) = crosspoint of X(i) and X(j) for these (i, j): {2, 3762}, {8, 46393}
X(50039) = X(i)-Dao conjugate of X(j) for these (i, j): (6, 23087), (10, 21894)
X(50039) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 23087}, {58, 21894}
X(50039) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (3, 23087), (37, 21894)
X(50039) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3257)}} and {{A, B, C, X(100), X(46480)}}
X(50039) = trilinear pole of the line {10, 11}
X(50039) = barycentric product X(190)*X(14554)
X(50039) = barycentric quotient X(i)/X(j) for these (i, j): (3, 23087), (37, 21894), (101, 5053), (900, 34590)
X(50039) = trilinear product X(100)*X(14554)
X(50039) = trilinear quotient X(i)/X(j) for these (i, j): (10, 21894), (63, 23087), (100, 5053)


X(50040) = 9th MIYAMOTO-LOZADA CENTER

Barycentrics    (a-b+c)*(a+b-c)*((b+2*c)*a+(b+c)*b)^2*((2*b+c)*a+(b+c)*c)^2 : :

Denote by Q1 the point of tangency of (O10) with (Ja), and define Q2 and Q3 cyclically. Then AQ1, BQ2, CQ3 concur in X(50040).

Construction: X(50040)

X(50040) lies on these lines: {388, 32038}, {959, 3616}, {986, 3671}, {2476, 34258}, {5257, 5837}

X(50040) = X(514)-Dao conjugate of X(3026)
X(50040) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(986)}} and {{A, B, C, X(4), X(261)}}
X(50040) = barycentric product X(959)*X(34258)
X(50040) = barycentric quotient X(i)/X(j) for these (i, j): (941, 958), (959, 940), (1086, 3026)
X(50040) = trilinear product X(i)*X(j) for these {i, j}: {941, 44733}, {959, 31359}
X(50040) = trilinear quotient X(i)/X(j) for these (i, j): (941, 2268), (959, 1468), (1111, 3026)


leftri

Points in a [[a(b-c),b(c-a),c(a-b)], [(b^2-c^2)(a^2-b^2-c^2), (c^2-a^2)(b^2-c^2-a^2), (a^2-b^2)(a^2 - b^2 - c^2)]] coordinate system: X(50041)-X(50073)

rightri

If L1 and L2 are lines that meet in a point P not at infinity, then a [L1, L2]-coordinate system is a bivariate coordinate system having L1 as x-axis, L2 as y-axis, and P as origin. In this section, L1 and L2 are the following lines:

L1 is the line: a(b+c) α + b(c+a) β (a+)b γ = 0.

L2 is the line (b^2-c^2)(a^2-b^2-c^2) α + (c^2-a^2)(b^2-c^2-a^2) β + (a^2-b^2)(a^2 - b^2 - c^2) γ = 0 (Euler line).

The origin is given by (0,0) = X(2) = 1 1 : 1 .

Barycentrics u : v : w for a triangle center U = (x, y) in this system are given by

u : v : w = -(a-b)(a-c)(b-c)(a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+a^2c+2abc) - (ab + ac - 2bc)x - (2a^4-b^4-c^4+2b^2c^2-a^2b^2-a^2c^2) y : : ,

where, as functions of a, b, c, the coordinate x is antisymmetric of degree 4, and y is antisymmetric of degree 2.

The appearance of {x, y}, k in the following list means that (x, y) = X(k).

{-2 (a-b) (a-c) (b-c) (a+b+c), -((2 (a-b) (a-c) (b-c))/(a+b+c))}, 8
{-((a-b) (a-c) (b-c) (a+b+c)), -(((a-b) (a-c) (b-c))/(a+b+c))}, 3679
{-(1/2) (a-b) (a-c) (b-c) (a+b+c), -(((a-b) (a-c) (b-c))/(2 (a+b+c)))}, 10
{0, 0}, 2
{0, ((a-b) (a-c) (b-c))/(a+b+c)}, 16394
{1/2 (a-b) (a-c) (b-c) (a+b+c), ((a-b) (a-c) (b-c))/(2 (a+b+c))}, 551
{(a-b) (a-c) (b-c) (a+b+c), ((a-b) (a-c) (b-c))/(a+b+c)}, 1
{2 (a-b) (a-c) (b-c) (a+b+c), (2 (a-b) (a-c) (b-c))/(a+b+c)}, 3241
{-2*(a - b)*(a - c)*(b - c)*(a + b + c), -(((a - b)*(a - c)*(b - c))/(a + b + c))}, 50041
{-2*(a - b)*(a - c)*(b - c)*(a + b + c), -1/2*((a - b)*(a - c)*(b - c))/(a + b + c)}, 50042
{-2*(a - b)*(a - c)*(b - c)*(a + b + c), 0}, 50043
{-2*(a - b)*(a - c)*(b - c)*(a + b + c), ((a - b)*(a - c)*(b - c))/(a + b + c)}, 50044
{-2*(a - b)*(a - c)*(b - c)*(a + b + c), (2*(a - b)*(a - c)*(b - c))/(a + b + c)}, 50045
{-((a - b)*(a - c)*(b - c)*(a + b + c)), (-2*(a - b)*(a - c)*(b - c))/(a + b + c)}, 50046
{-((a - b)*(a - c)*(b - c)*(a + b + c)), -1/2*((a - b)*(a - c)*(b - c))/(a + b + c)}, 50047
{-((a - b)*(a - c)*(b - c)*(a + b + c)), 0}, 50048
{-((a - b)*(a - c)*(b - c)*(a + b + c)), ((a - b)*(a - c)*(b - c))/(a + b + c)}, 50049
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c)), (-2*(a - b)*(a - c)*(b - c))/(a + b + c)}, 50050
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c)), -(((a - b)*(a - c)*(b - c))/(a + b + c))}, 50051
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c)), 0}, 50052
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c)), ((a - b)*(a - c)*(b - c))/(2*(a + b + c))}, 50053
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c)), ((a - b)*(a - c)*(b - c))/(a + b + c)}, 50054
{0, (-2*(a - b)*(a - c)*(b - c))/(a + b + c)}, 50055
{0, -(((a - b)*(a - c)*(b - c))/(a + b + c))}, 50056
{0, -(((a - b)*(a - c)*(b - c)*(a + b + c))/(a^2 + b^2 + c^2))}, 50057
{0, -1/2*((a - b)*(a - c)*(b - c))/(a + b + c)}, 50058
{0, ((a - b)*(a - c)*(b - c))/(2*(a + b + c))}, 50059
{0, ((a - b)*(a - c)*(b - c)*(a + b + c))/(a^2 + b^2 + c^2)}, 50060
{0, (2*(a - b)*(a - c)*(b - c))/(a + b + c)}, 50061
{((a - b)*(a - c)*(b - c)*(a + b + c))/2, -1/2*((a - b)*(a - c)*(b - c))/(a + b + c)}, 50062
{((a - b)*(a - c)*(b - c)*(a + b + c))/2, 0}, 50063
{((a - b)*(a - c)*(b - c)*(a + b + c))/2, ((a - b)*(a - c)*(b - c))/(a + b + c)}, 50064
{(a - b)*(a - c)*(b - c)*(a + b + c), (-2*(a - b)*(a - c)*(b - c))/(a + b + c)}, 50065
{(a - b)*(a - c)*(b - c)*(a + b + c), -(((a - b)*(a - c)*(b - c))/(a + b + c))}, 50066
{(a - b)*(a - c)*(b - c)*(a + b + c), -1/2*((a - b)*(a - c)*(b - c))/(a + b + c)}, 50067
{(a - b)*(a - c)*(b - c)*(a + b + c), 0}, 50068
{(a - b)*(a - c)*(b - c)*(a + b + c), ((a - b)*(a - c)*(b - c))/(2*(a + b + c))}, 50069
{(a - b)*(a - c)*(b - c)*(a + b + c), (2*(a - b)*(a - c)*(b - c))/(a + b + c)}, 50070
{2*(a - b)*(a - c)*(b - c)*(a + b + c), 0}, 50071
{2*(a - b)*(a - c)*(b - c)*(a + b + c), ((a - b)*(a - c)*(b - c))/(a + b + c)}, 50072
{(2*(a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c), ((a - b)*(a - c)*(b - c))/(a + b + c)}, 50073


X(50041) = X(2)X(3695)∩X(8)X(30)

Barycentrics    a^4 + a^2*b^2 - 2*b^4 - 6*a*b^2*c - 6*b^3*c + a^2*c^2 - 6*a*b*c^2 - 8*b^2*c^2 - 6*b*c^3 - 2*c^4 : :

X(50041) lies on these lines: {2, 3695}, {8, 30}, {75, 44217}, {321, 381}, {345, 15670}, {405, 42033}, {519, 5710}, {536, 984}, {549, 17740}, {3419, 4431}, {3543, 4461}, {3704, 10056}, {3830, 5016}, {3969, 15934}, {4102, 10449}, {4363, 49744}, {4740, 17678}, {4980, 17528}, {5814, 17781}, {6175, 28605}, {7788, 33935}, {15956, 32087}, {17264, 17542}, {17294, 24473}, {17532, 42029}, {17556, 42034}, {19835, 31152}

X(50041) = {X(8),X(49719)}-harmonic conjugate of X(48800)


X(50042) = X(5)X(321)∩X(8)X(30)

Barycentrics    a^2*b^2 - b^4 - 4*a*b^2*c - 4*b^3*c + a^2*c^2 - 4*a*b*c^2 - 6*b^2*c^2 - 4*b*c^3 - c^4 : :
X(50042) = X[145] - 3 X[16394]

X(50042) lies on these lines: {4, 4461}, {5, 321}, {8, 30}, {10, 536}, {75, 3695}, {140, 17740}, {145, 16394}, {192, 4205}, {306, 6147}, {312, 17527}, {345, 6675}, {346, 11108}, {442, 28605}, {495, 3704}, {942, 2321}, {1089, 3820}, {1278, 16062}, {1329, 4066}, {1368, 19835}, {1698, 6057}, {2886, 42031}, {3159, 5743}, {3627, 5016}, {3703, 4647}, {3729, 5814}, {3813, 4717}, {3831, 48644}, {3932, 28612}, {3933, 33935}, {3974, 9709}, {4046, 5904}, {4125, 9711}, {4187, 4671}, {4363, 49743}, {4431, 5295}, {4527, 35633}, {4658, 17388}, {4686, 23537}, {4788, 37164}, {5695, 15171}, {5708, 34255}, {6535, 24443}, {7206, 28611}, {7227, 43531}, {7483, 33168}, {10386, 32929}, {13728, 17147}, {16085, 17143}, {16458, 19825}, {16817, 42033}, {17759, 37148}, {19276, 20009}, {24390, 33089}, {28503, 30145}

X(50042) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 3927, 49718}, {8, 32933, 49716}, {75, 3695, 8728}, {3703, 4647, 31419}


X(50043) = X(2)X(37)∩X(8)X(30)

Barycentrics    a^3 - a^2*b - a*b^2 + b^3 - a^2*c + 2*a*b*c + 5*b^2*c - a*c^2 + 5*b*c^2 + c^3 : :

X(50043) lies on these lines: {2, 37}, {7, 3969}, {8, 30}, {63, 4431}, {306, 4654}, {319, 20078}, {553, 2321}, {3058, 5695}, {3161, 41915}, {3219, 42696}, {3241, 16394}, {3543, 5016}, {3686, 25734}, {3695, 44217}, {3704, 11237}, {3729, 5739}, {4001, 4007}, {4023, 4942}, {4102, 32939}, {4363, 37631}, {4371, 19742}, {4454, 32859}, {4644, 20017}, {4665, 49730}, {5271, 5325}, {5278, 32087}, {5294, 17151}, {5564, 42030}, {7227, 20182}, {7229, 19684}, {7283, 31156}, {10327, 49732}, {10385, 32929}, {16676, 28608}, {17269, 40688}, {18139, 31995}, {19993, 49484}, {20911, 32836}, {24280, 33075}, {26563, 32869}, {29616, 32007}, {29617, 48869}, {30614, 32941}, {32833, 33935}, {32858, 42697}, {33163, 49474}, {33171, 49493}, {35578, 42045}, {37549, 48859}, {41816, 49748}, {42039, 48802}

X(50043) = reflection of X(3241) in X(16394)
X(50043) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4740, 19819}, {2, 42033, 17776}, {75, 42033, 2}, {4664, 19797, 2}, {4686, 32777, 19789}, {4726, 24789, 19826}, {17281, 42051, 2}


X(50044) = X(1)X(536)∩X(8)X(30)

Barycentrics    a^4 - a^2*b^2 + 2*a*b^2*c + 2*b^3*c - a^2*c^2 + 2*a*b*c^2 + 4*b^2*c^2 + 2*b*c^3 : :
X(50044) = 2 X[1] - 3 X[16394]

X(50044) lies on these lines: {1, 536}, {3, 321}, {5, 17740}, {8, 30}, {10, 32934}, {20, 4461}, {21, 28605}, {25, 19835}, {37, 16458}, {46, 3714}, {63, 5295}, {72, 3729}, {75, 405}, {76, 16085}, {190, 9534}, {192, 1010}, {312, 474}, {344, 17529}, {345, 442}, {346, 443}, {377, 3695}, {382, 5016}, {404, 4671}, {596, 17597}, {940, 2901}, {956, 29010}, {958, 4647}, {964, 17147}, {975, 3175}, {993, 42031}, {999, 3702}, {1008, 17759}, {1009, 4441}, {1089, 1376}, {1104, 4686}, {1125, 4387}, {1229, 16410}, {1260, 23661}, {1278, 4195}, {1453, 17151}, {1468, 4365}, {1478, 3704}, {1714, 44416}, {1724, 4361}, {1770, 3416}, {1975, 33935}, {2049, 28606}, {2321, 4292}, {2345, 13728}, {2476, 33168}, {2915, 19845}, {3210, 13740}, {3263, 19309}, {3295, 4968}, {3555, 3886}, {3672, 37037}, {3696, 41229}, {3701, 9709}, {3712, 10198}, {3797, 11321}, {3913, 4692}, {3916, 11679}, {3923, 16466}, {3969, 18541}, {3977, 5791}, {3995, 16454}, {4054, 11374}, {4066, 25440}, {4197, 32849}, {4205, 19822}, {4223, 31130}, {4340, 17314}, {4358, 16408}, {4359, 11108}, {4362, 24850}, {4385, 5687}, {4418, 5711}, {4424, 5793}, {4519, 32636}, {4665, 49728}, {4699, 37035}, {4717, 8666}, {4740, 13735}, {4980, 16418}, {5080, 5827}, {5100, 29028}, {5192, 17495}, {5247, 49474}, {5262, 11354}, {5271, 31445}, {5786, 21375}, {5905, 41014}, {6533, 8167}, {8728, 17776}, {10449, 32939}, {12943, 36974}, {13741, 17490}, {13747, 28808}, {16342, 31025}, {16343, 31993}, {16352, 42715}, {16370, 42029}, {16371, 42034}, {16377, 42720}, {16403, 26227}, {16425, 42713}, {16429, 27802}, {16777, 25526}, {16842, 19804}, {16853, 24589}, {16862, 18743}, {16864, 30829}, {17164, 49492}, {17280, 33833}, {17302, 37036}, {17526, 19789}, {17535, 46938}, {17698, 19785}, {17751, 36279}, {17862, 37244}, {19276, 42044}, {19285, 20336}, {19329, 33931}, {19331, 22034}, {19768, 33940}, {19825, 37314}, {19848, 36011}, {20182, 43531}, {23537, 32777}, {24851, 32778}, {28604, 37039}, {30699, 37176}, {31339, 32936}, {34791, 49485}, {37248, 48380}, {37549, 48863}, {38315, 43993}, {42033, 44217}

X(50044) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 32933, 3927}, {75, 7283, 405}, {4385, 32932, 5687}, {4968, 32929, 3295}


X(50045) = X(2)X(7283)∩X(8)X(30)

Barycentrics    5*a^4 - 4*a^2*b^2 - b^4 + 6*a*b^2*c + 6*b^3*c - 4*a^2*c^2 + 6*a*b*c^2 + 14*b^2*c^2 + 6*b*c^3 - c^4 : :
X(50045) = 4 X[16394] - 3 X[38314]

X(50045) lies on these lines: {2, 7283}, {8, 30}, {75, 31156}, {321, 376}, {345, 6175}, {377, 42033}, {381, 17740}, {536, 3241}, {4217, 42051}, {4363, 49739}, {4454, 49687}, {4461, 15683}, {4968, 10385}, {4980, 11111}, {5016, 15682}, {5434, 5695}, {13735, 19819}, {15677, 28605}, {15956, 31995}, {16393, 42047}, {16394, 38314}, {17776, 44217}, {32836, 41826}

X(50045) = {X(48806),X(49719)}-harmonic conjugate of X(8)


X(50046) = X(8)X(536)∩X(30)X(40)

Barycentrics    3*a^4 - a^3*b - 2*a^2*b^2 - a*b^3 - 3*b^4 - a^3*c - 2*a^2*b*c - 5*a*b^2*c - 4*b^3*c - 2*a^2*c^2 - 5*a*b*c^2 - 2*b^2*c^2 - a*c^3 - 4*b*c^3 - 3*c^4 : :

X(50046) lies on these lines: {2, 1104}, {8, 536}, {10, 16394}, {30, 40}, {377, 4688}, {388, 48849}, {519, 10371}, {950, 29594}, {958, 16403}, {1423, 5252}, {4217, 17359}, {4664, 26117}, {4755, 37314}, {10404, 31178}, {11114, 17281}, {13735, 32777}, {14020, 41313}, {24473, 48834}, {42051, 48813}

X(50046) = reflection of X(16394) in X(10)
X(50046) = {X(3679),X(48807)}-harmonic conjugate of X(34612)


X(50047) = X(10)X(536)∩X(30)X(40)

Barycentrics    2*a^3*b + a^2*b^2 + 2*a*b^3 + 3*b^4 + 2*a^3*c + 4*a^2*b*c + 10*a*b^2*c + 8*b^3*c + a^2*c^2 + 10*a*b*c^2 + 10*b^2*c^2 + 2*a*c^3 + 8*b*c^3 + 3*c^4 : :

X(50047) lies on these lines: {2, 3695}, {8, 16394}, {10, 536}, {30, 40}, {519, 5835}, {579, 594}, {942, 29594}, {3295, 48849}, {4205, 4664}, {4688, 8728}, {4740, 16062}, {5687, 16403}, {16052, 42029}, {20653, 31161}, {32778, 39542}, {37148, 41142}, {42051, 48815}

X(50047) = midpoint of X(8) and X(16394)


X(50048) = X(2)X(37)∩X(30)X(40)

Barycentrics    a^3 + b^3 + 2*a*b*c + 3*b^2*c + 3*b*c^2 + c^3 : :

X(50048) lies on these lines: {2, 37}, {8, 4641}, {10, 32934}, {30, 40}, {63, 594}, {81, 17299}, {306, 4363}, {333, 48628}, {519, 5710}, {527, 8896}, {553, 29594}, {750, 6535}, {940, 2321}, {1089, 5955}, {1211, 3729}, {1836, 32778}, {2218, 16418}, {3219, 17275}, {3305, 17340}, {3416, 4418}, {3661, 32939}, {3681, 46918}, {3696, 33163}, {3751, 4046}, {3773, 3980}, {3782, 4659}, {3923, 3966}, {3943, 5287}, {3969, 4851}, {3977, 5737}, {4001, 4445}, {4361, 5294}, {4383, 17355}, {4421, 16403}, {4643, 32933}, {4665, 5271}, {4675, 32858}, {4795, 42045}, {4863, 33169}, {4873, 17022}, {4886, 17350}, {4967, 19732}, {5241, 30568}, {5249, 17118}, {5256, 17369}, {5268, 6057}, {5278, 28634}, {5564, 37652}, {5712, 7229}, {5739, 17351}, {5750, 20182}, {5880, 15523}, {7283, 48814}, {10385, 48849}, {17116, 18134}, {17119, 26723}, {17163, 33114}, {17228, 26840}, {17276, 32782}, {17284, 40688}, {17314, 37595}, {17332, 25734}, {17333, 41816}, {17344, 20078}, {17389, 33954}, {17718, 33160}, {17723, 32855}, {17781, 49721}, {19723, 48864}, {21020, 33161}, {21085, 32935}, {24342, 33092}, {24549, 29574}, {26065, 42696}, {29010, 33167}, {29649, 48644}, {31141, 39573}, {32780, 49474}, {32783, 49493}, {32860, 38047}, {32945, 49688}, {33171, 49483}, {34255, 37520}, {37650, 41915}, {37653, 48630}

X(50048) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4740, 19796}, {2, 42049, 3666}, {75, 32777, 24789}, {2345, 42049, 2}, {3679, 3929, 49724}, {3679, 48812, 34606}, {4665, 44416, 5271}, {17776, 19825, 3739}, {19797, 42033, 2}, {28605, 32779, 3772}


X(50049) = X(1)X(536)∩X(30)X(40)

Barycentrics    3*a^4 + a^3*b - a^2*b^2 + a*b^3 + a^3*c + 2*a^2*b*c + 5*a*b^2*c + 4*b^3*c - a^2*c^2 + 5*a*b*c^2 + 8*b^2*c^2 + a*c^3 + 4*b*c^3 : :

X(50049) lies on these lines: {1, 536}, {2, 7283}, {30, 40}, {35, 16403}, {72, 49721}, {75, 13735}, {321, 16393}, {405, 4688}, {1008, 41142}, {1010, 4664}, {1724, 16833}, {3175, 19276}, {3338, 31137}, {3761, 16085}, {3811, 31161}, {4195, 4740}, {4234, 42029}, {4292, 29594}, {4294, 48849}, {4755, 16458}, {11112, 17281}, {11354, 42051}, {17274, 33868}, {19290, 35652}, {19797, 48814}, {24473, 48862}, {25526, 29597}, {28605, 37817}, {42033, 48816}

X(50049) = reflection of X(1) in X(16394)


X(50050) = X(8)X(536)∩X(10)X(30)

Barycentrics    2*a^4 - a^3*b - 2*a^2*b^2 - a*b^3 - 2*b^4 - a^3*c - 2*a^2*b*c - 3*a*b^2*c - 2*b^3*c - 2*a^2*c^2 - 3*a*b*c^2 - a*c^3 - 2*b*c^3 - 2*c^4 : :
X(50050) = 5 X[1698] - 3 X[16394]

X(50050) lies on these lines: {1, 48801}, {4, 44417}, {8, 536}, {10, 30}, {37, 7270}, {141, 950}, {377, 3739}, {388, 28015}, {452, 17279}, {516, 5835}, {942, 48835}, {964, 17385}, {1104, 16062}, {1698, 16394}, {1837, 26034}, {2345, 3146}, {2475, 31993}, {2646, 25760}, {3057, 32947}, {3454, 24929}, {3666, 5016}, {3698, 32948}, {3752, 4201}, {3868, 17345}, {3931, 36974}, {3962, 4683}, {4138, 11281}, {4202, 17356}, {4363, 9579}, {4514, 5484}, {4657, 5716}, {4660, 5836}, {4670, 49745}, {4698, 37314}, {5046, 30818}, {5051, 37539}, {5086, 33083}, {5262, 17382}, {5691, 5793}, {5710, 28566}, {5814, 48837}, {6284, 49484}, {6872, 32777}, {7232, 11518}, {10371, 28581}, {10895, 29828}, {11114, 17359}, {12527, 49524}, {12625, 17272}, {15680, 32779}, {15956, 20008}, {16085, 25280}, {16403, 29857}, {16817, 17678}, {16824, 21949}, {17235, 37549}, {17357, 17697}, {17606, 32918}, {17690, 24589}, {17792, 22299}, {18252, 44545}, {19822, 31295}, {30148, 48808}

X(50050) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5016, 17676, 3666}, {7270, 26117, 37}


X(50051) = X(2)X(1104)∩X(10)X(30)

Barycentrics    2*a^4 - 3*a^3*b - 4*a^2*b^2 - 3*a*b^3 - 4*b^4 - 3*a^3*c - 6*a^2*b*c - 9*a*b^2*c - 6*b^3*c - 4*a^2*c^2 - 9*a*b*c^2 - 4*b^2*c^2 - 3*a*c^3 - 6*b*c^3 - 4*c^4 : :
X(50051) = X[16394] - 3 X[19875]

X(50051) lies on these lines: {2, 1104}, {10, 30}, {306, 49739}, {381, 44417}, {536, 984}, {950, 48859}, {2345, 3543}, {3419, 17239}, {3586, 17293}, {3739, 44217}, {4670, 49744}, {4688, 17678}, {4870, 25760}, {5232, 15956}, {5814, 48857}, {5835, 28194}, {6175, 31993}, {11113, 17359}, {15677, 32779}, {16394, 19875}, {26117, 42033}, {31156, 32777}


X(50052) = X(2)X(37)∩X(10)X(30)

Barycentrics    2*a^3 + a^2*b + a*b^2 + 2*b^3 + a^2*c + 4*a*b*c + 4*b^2*c + a*c^2 + 4*b*c^2 + 2*c^3 : :

X(50052) lies on these lines: {2, 37}, {10, 30}, {57, 17293}, {63, 17239}, {81, 17372}, {141, 553}, {226, 7227}, {306, 4670}, {519, 5835}, {940, 17229}, {1211, 17351}, {1999, 4102}, {2321, 6703}, {3017, 5295}, {3058, 49484}, {3578, 4641}, {3679, 5247}, {3687, 17369}, {3696, 32780}, {3773, 4682}, {3844, 3980}, {3929, 17251}, {3969, 37595}, {3982, 7231}, {4363, 4654}, {4428, 48851}, {4519, 29845}, {4663, 21085}, {4665, 40940}, {4706, 29663}, {4884, 19868}, {4886, 16669}, {5235, 43260}, {5294, 17348}, {5743, 17355}, {5814, 48870}, {16832, 28608}, {17022, 17269}, {17118, 25527}, {17237, 32939}, {17275, 26065}, {17286, 37674}, {17345, 32782}, {19732, 28633}, {24177, 34573}, {29615, 41629}, {29667, 49719}, {32783, 49483}, {37652, 42030}, {37683, 48630}

X(50052) = midpoint of X(3679) and X(16394)
X(50052) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17281, 35652}, {2, 19797, 4688}, {2, 42033, 37}, {2, 42051, 17382}, {10, 5325, 49730}, {19808, 42033, 2}, {19822, 32777, 3739}, {19825, 24789, 4739}, {44416, 49730, 5325}


X(50053) = X(2)X(7283)∩X(10)X(30)

Barycentrics    4*a^4 + 3*a^3*b + a^2*b^2 + 3*a*b^3 + b^4 + 3*a^3*c + 6*a^2*b*c + 9*a*b^2*c + 6*b^3*c + a^2*c^2 + 9*a*b*c^2 + 10*b^2*c^2 + 3*a*c^3 + 6*b*c^3 + c^4 : :

X(50053) lies on these lines: {2, 7283}, {10, 30}, {306, 49744}, {376, 2345}, {519, 5710}, {536, 551}, {549, 44417}, {942, 48859}, {965, 17355}, {975, 42032}, {1010, 42033}, {1125, 4387}, {1707, 3679}, {3654, 5793}, {5835, 28204}, {6175, 32779}, {7227, 24929}, {13735, 19797}, {15170, 49484}, {15670, 31993}, {15956, 25590}, {17116, 26728}, {17281, 19276}, {19332, 41313}, {19716, 48863}, {19822, 31156}, {32777, 44217}


X(50054) = X(1)X(536)∩X(10)X(30)

Barycentrics    2*a^4 + a^3*b + a*b^3 + a^3*c + 2*a^2*b*c + 3*a*b^2*c + 2*b^3*c + 3*a*b*c^2 + 4*b^2*c^2 + a*c^3 + 2*b*c^3 : :
X(50054) = X[1] - 3 X[16394]

X(50054) lies on these lines: {1, 536}, {3, 44417}, {8, 4641}, {10, 30}, {20, 2345}, {21, 31993}, {37, 1010}, {40, 5793}, {44, 9534}, {58, 5295}, {65, 4418}, {72, 17351}, {75, 1104}, {141, 4292}, {171, 3714}, {306, 49745}, {319, 20077}, {321, 11115}, {377, 32777}, {404, 30818}, {405, 3739}, {443, 17279}, {515, 5835}, {553, 48859}, {894, 1043}, {942, 48863}, {960, 3923}, {964, 3666}, {975, 19276}, {1008, 1575}, {1009, 21264}, {1125, 48643}, {1220, 4646}, {1453, 4361}, {1468, 3706}, {1724, 17348}, {1909, 16085}, {2475, 32779}, {2901, 37594}, {3555, 49467}, {3683, 31339}, {3696, 5247}, {3744, 4968}, {3752, 13740}, {3758, 20018}, {3772, 37176}, {3812, 3980}, {3916, 10479}, {3967, 5293}, {4005, 32938}, {4201, 17289}, {4223, 30748}, {4252, 11679}, {4304, 7227}, {4313, 7229}, {4340, 4851}, {4358, 19284}, {4359, 11319}, {4652, 37660}, {4657, 37037}, {4688, 13735}, {4689, 26115}, {4690, 49716}, {4698, 16458}, {4719, 25496}, {5178, 33170}, {5192, 16610}, {5217, 16403}, {5262, 42051}, {5436, 25590}, {5737, 31424}, {5743, 12572}, {5782, 37537}, {6682, 8720}, {6872, 19822}, {7222, 11036}, {9565, 42450}, {10404, 33171}, {11109, 25939}, {11112, 17359}, {12618, 20420}, {13725, 17303}, {13727, 44798}, {13728, 17385}, {13741, 16602}, {13742, 17278}, {13745, 19857}, {16454, 44307}, {16583, 24275}, {17355, 30618}, {17357, 33833}, {17384, 37036}, {17526, 24789}, {17539, 31025}, {17609, 32943}, {17697, 19804}, {17698, 23537}, {19808, 26117}, {19827, 37164}, {19879, 24715}, {24537, 25091}, {25526, 28639}, {25917, 32930}, {26011, 37248}, {26051, 33116}, {30148, 48811}, {30942, 32636}, {31238, 37035}, {32771, 37080}, {32929, 37548}, {32941, 34791}, {37095, 42706}, {37402, 38871}, {41813, 49461}

X(50054) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 24850, 4640}, {10, 31730, 44419}, {75, 4195, 1104}, {321, 11115, 37539}, {1010, 7283, 37}, {1220, 32932, 4646}, {44416, 49734, 10}


X(50055) = X(2)X(3)∩X(8)X(536)

Barycentrics    3*a^4 - 2*a^3*b - 4*a^2*b^2 - 2*a*b^3 - 3*b^4 - 2*a^3*c - 4*a^2*b*c - 4*a*b^2*c - 2*b^3*c - 4*a^2*c^2 - 4*a*b*c^2 + 2*b^2*c^2 - 2*a*c^3 - 2*b*c^3 - 3*c^4 : :

X(50055) lies on these lines: {1, 48799}, {2, 3}, {8, 536}, {3058, 48801}, {3454, 47040}, {3488, 17184}, {4026, 12943}, {4664, 7270}, {4968, 48849}, {5229, 26115}, {5739, 48837}, {6284, 48805}, {9598, 17281}, {9852, 24443}, {15956, 17274}, {16705, 32006}, {18391, 32950}, {19784, 48826}, {34606, 48829}, {37549, 49741}

X(50055) = anticomplement of X(16394)
X(50055) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20, 16393}, {2, 6872, 13735}, {2, 11114, 4217}, {2, 13735, 17526}, {377, 26117, 37314}, {5051, 16393, 2}, {6872, 16062, 17526}, {11113, 11359, 2}, {13735, 16062, 2}, {13745, 17528, 2}, {14020, 17679, 2}, {16052, 16370, 2}, {17530, 19279, 2}, {17677, 37038, 2}, {17678, 48814, 2}


X(50056) = X(1)X(48801)∩X(2)X(3)

Barycentrics    a^4 - 2*a^3*b - 3*a^2*b^2 - 2*a*b^3 - 2*b^4 - 2*a^3*c - 4*a^2*b*c - 4*a*b^2*c - 2*b^3*c - 3*a^2*c^2 - 4*a*b*c^2 - 2*a*c^3 - 2*b*c^3 - 2*c^4 : :

X(50056) lies on these lines: {1, 48801}, {2, 3}, {10, 32934}, {387, 49716}, {519, 10371}, {536, 984}, {551, 4138}, {940, 48835}, {956, 32773}, {1211, 48837}, {1478, 4026}, {1714, 49728}, {3058, 48803}, {3419, 4357}, {3454, 19765}, {3586, 17306}, {3940, 26580}, {4252, 25441}, {4383, 48843}, {4653, 30811}, {4972, 9708}, {5434, 48799}, {5739, 48847}, {5774, 33083}, {7776, 16705}, {7784, 25499}, {9654, 26115}, {9668, 24552}, {15934, 17184}, {17202, 48908}, {17274, 24473}, {19723, 48839}, {26034, 37715}, {32950, 36279}, {34606, 48831}, {41816, 48850}

X(50056) = reflection of X(16394) in X(2)
X(50056) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11112, 19290}, {2, 11114, 11354}, {2, 14020, 16857}, {2, 17579, 19276}, {2, 17677, 17532}, {2, 17678, 44217}, {2, 26117, 48814}, {2, 37038, 16370}, {2, 48813, 11112}, {2, 48814, 405}, {2, 49735, 16418}, {377, 4205, 16458}, {442, 13725, 16343}, {5051, 17676, 3}, {16062, 26117, 405}, {16062, 48814, 2}, {37144, 37145, 37320}


X(50057) = X(2)X(3)∩X(536)X(599)

Barycentrics    a^5 + a^4*b - 3*a^3*b^2 - 3*a^2*b^3 - 2*a*b^4 - 2*b^5 + a^4*c - 2*a^3*b*c - 3*a^2*b^2*c - 2*a*b^3*c - 2*b^4*c - 3*a^3*c^2 - 3*a^2*b*c^2 - 3*a^2*c^3 - 2*a*b*c^3 - 2*a*c^4 - 2*b*c^4 - 2*c^5 : :

X(50057) lies on these lines: {2, 3}, {536, 599}, {940, 7761}, {980, 7784}, {1211, 2549}, {2895, 22253}, {3849, 5006}, {4045, 4383}, {5739, 15048}, {16834, 48842}, {24271, 44526}, {29574, 48840}, {31089, 31859}, {41816, 48869}

X(50057) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 8356, 16431}, {2, 35276, 11288}


X(50058) = X(2)X(3)∩X(10)X(536)

Barycentrics    4*a^3*b + 5*a^2*b^2 + 4*a*b^3 + 3*b^4 + 4*a^3*c + 8*a^2*b*c + 8*a*b^2*c + 4*b^3*c + 5*a^2*c^2 + 8*a*b*c^2 + 2*b^2*c^2 + 4*a*c^3 + 4*b*c^3 + 3*c^4 : :

X(50058) lies on these lines: {2, 3}, {10, 536}, {387, 49718}, {495, 4026}, {1211, 48847}, {1330, 46922}, {3695, 4664}, {3925, 19871}, {4688, 23537}, {5722, 17306}, {5743, 48843}, {5814, 16834}, {6703, 48835}, {15170, 48803}, {15171, 48805}, {18990, 48799}, {20083, 49728}, {32784, 37715}

X(50058) = complement of X(16394)
X(50058) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 13735, 17698}, {2, 17676, 16393}, {2, 17677, 37150}, {2, 26117, 13735}, {2, 48813, 19276}, {4205, 16062, 8728}, {5051, 13728, 5}, {16062, 37164, 4205}, {37144, 37145, 49132}


X(50059) = X(2)X(3)∩X(536)X(551)

Barycentrics    4*a^4 + 4*a^3*b + 3*a^2*b^2 + 4*a*b^3 + b^4 + 4*a^3*c + 8*a^2*b*c + 8*a*b^2*c + 4*b^3*c + 3*a^2*c^2 + 8*a*b*c^2 + 6*b^2*c^2 + 4*a*c^3 + 4*b*c^3 + c^4 : :

X(50059) lies on these lines: {2, 3}, {519, 5835}, {536, 551}, {1125, 48643}, {1387, 43135}, {3679, 5269}, {3940, 5749}, {4264, 17330}, {4363, 39544}, {4653, 17398}, {4665, 49683}, {5743, 48866}, {5750, 24929}, {6703, 48863}, {15170, 48805}, {17303, 37817}, {17369, 30115}, {18990, 48801}, {20083, 49734}, {48811, 49736}

X(50059) = midpoint of X(2) and X(16394)
X(50059) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4195, 48814}, {2, 11112, 48815}, {2, 48814, 4205}, {1010, 17698, 8728}, {2049, 37176, 6675}, {11115, 13728, 550}


X(50060) = X(2)X(3)∩X(6)X(536)

Barycentrics    3*a^5 + 3*a^4*b + a^3*b^2 + a^2*b^3 + 3*a^4*c + 2*a^3*b*c + a^2*b^2*c + 2*a*b^3*c + a^3*c^2 + a^2*b*c^2 + 4*a*b^2*c^2 + 4*b^3*c^2 + a^2*c^3 + 2*a*b*c^3 + 4*b^2*c^3 : :

X(50060) lies on these lines: {2, 3}, {6, 536}, {940, 3734}, {1211, 7737}, {1384, 26243}, {1724, 16833}, {4383, 7804}, {5247, 48812}, {5739, 18907}, {15956, 35578}, {17294, 48862}, {19684, 24203}, {19719, 29580}, {19723, 48864}, {19732, 24275}, {22253, 37685}, {29594, 48863}, {42028, 48838}

X(50060) = crossdifference of every pair of points on line {647, 9010}
X(50060) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1003, 16436}, {2, 16046, 3}, {384, 41236, 11343}, {11320, 19281, 405}


X(50061) = X(2)X(3)∩X(8)X(4641)

Barycentrics    5*a^4 + 2*a^3*b + 2*a*b^3 - b^4 + 2*a^3*c + 4*a^2*b*c + 4*a*b^2*c + 2*b^3*c + 4*a*b*c^2 + 6*b^2*c^2 + 2*a*c^3 + 2*b*c^3 - c^4 : :

X(50061) lies on these lines: {2, 3}, {8, 4641}, {193, 4720}, {536, 3241}, {1707, 3679}, {3476, 28968}, {4293, 24552}, {4307, 49492}, {4339, 4968}, {4644, 49687}, {5434, 48805}, {5716, 42049}, {7354, 48801}, {34612, 48832}

X(50061) = reflection of X(2) in X(16394)
X(50061) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6872, 48814}, {2, 16397, 3524}, {2, 48814, 37314}, {2, 48817, 4217}, {377, 4195, 17526}, {1010, 6872, 37314}, {1010, 48814, 2}, {3529, 37037, 17676}, {11112, 11354, 2}, {11113, 19276, 2}, {13735, 48816, 2}, {13745, 19277, 2}, {16370, 37150, 2}


X(50062) = X(10)X(536)∩X(30)X(551)

Barycentrics    5*a^3*b + 7*a^2*b^2 + 5*a*b^3 + 3*b^4 + 5*a^3*c + 10*a^2*b*c + 7*a*b^2*c + 2*b^3*c + 7*a^2*c^2 + 7*a*b*c^2 - 2*b^2*c^2 + 5*a*c^3 + 2*b*c^3 + 3*c^4 : :

X(50062) lies on these lines: {1, 48799}, {2, 7283}, {10, 536}, {30, 551}, {519, 10371}, {942, 49741}, {1125, 16394}, {1330, 29584}, {2901, 29594}, {4205, 4688}, {4656, 48843}, {4664, 16062}, {4740, 37164}, {4755, 8728}, {5248, 16403}, {5722, 17323}, {13735, 19786}, {17320, 17677}, {17528, 41312}, {35652, 48815}, {37148, 41144}, {37150, 41311}

X(50062) = reflection of X(16394) in X(1125)


X(50063) = X(2)X(37)∩X(30)X(551)

Barycentrics    2*a^3 + 3*a^2*b + 3*a*b^2 + 2*b^3 + 3*a^2*c + 4*a*b*c + 3*a*c^2 + 2*c^3 : :
X(50063) = X[16394] - 3 X[25055]

X(50063) lies on these lines: {1, 48801}, {2, 37}, {30, 551}, {57, 17323}, {81, 17345}, {226, 17045}, {553, 49741}, {940, 17235}, {1100, 27184}, {1104, 48814}, {1125, 48643}, {1155, 29847}, {1211, 4852}, {1386, 4425}, {1999, 17237}, {3187, 4690}, {3589, 4656}, {3663, 6703}, {3683, 29636}, {3687, 17395}, {3723, 18134}, {3745, 32776}, {3782, 4670}, {3821, 4682}, {3834, 5287}, {3838, 29644}, {3929, 24441}, {3946, 5743}, {3967, 29633}, {4003, 29845}, {4009, 29663}, {4364, 40940}, {4389, 29841}, {4415, 17023}, {4417, 17396}, {4640, 29645}, {4641, 29833}, {4654, 7175}, {4708, 5271}, {4854, 49484}, {5087, 29650}, {5249, 28639}, {9639, 30143}, {11679, 17325}, {14829, 17324}, {15254, 29654}, {15569, 26128}, {15668, 23681}, {16394, 25055}, {16519, 16834}, {16666, 33066}, {16777, 25527}, {16830, 21949}, {17022, 17290}, {17184, 17376}, {17231, 34064}, {17249, 37683}, {17254, 41629}, {17265, 25430}, {17304, 37674}, {17372, 32782}, {19722, 31164}, {21342, 29837}, {28609, 41239}, {30568, 47355}, {31019, 37869}, {32775, 37593}, {32780, 49523}, {32783, 49462}

X(50063) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3175, 17359}, {2, 3672, 42049}, {2, 19796, 4688}, {17184, 37595, 17376}, {32774, 44307, 17356}


X(50064) = X(1)X(536)∩X(30)X(551)

Barycentrics    6*a^4 + 5*a^3*b + 4*a^2*b^2 + 5*a*b^3 + 5*a^3*c + 10*a^2*b*c + 7*a*b^2*c + 2*b^3*c + 4*a^2*c^2 + 7*a*b*c^2 + 4*b^2*c^2 + 5*a*c^3 + 2*b*c^3 : :

X(50064) lies on these lines: {1, 536}, {2, 1104}, {30, 551}, {37, 13735}, {56, 16403}, {405, 4755}, {519, 5835}, {958, 48854}, {1008, 41144}, {1010, 4688}, {1043, 29584}, {3666, 16393}, {4195, 4664}, {4292, 49741}, {4304, 17045}, {11111, 41312}, {11112, 17382}, {11354, 35652}, {15668, 16485}, {24473, 35637}, {30142, 48826}, {37038, 41311}

X(50064) = midpoint of X(1) and X(16394)


X(50065) = X(1)X(30)∩X(8)X(536)

Barycentrics    a^4 - a^3*b - 2*a^2*b^2 - a*b^3 - b^4 - a^3*c - 2*a^2*b*c - a*b^2*c - 2*a^2*c^2 - a*b*c^2 + 2*b^2*c^2 - a*c^3 - c^4 : :
X(50065) = 4 X[1125] - 3 X[16394]

X(50065) lies on these lines: {1, 30}, {3, 17720}, {4, 3666}, {8, 536}, {10, 32934}, {11, 988}, {12, 17594}, {20, 37539}, {21, 3772}, {37, 377}, {46, 37715}, {55, 13161}, {56, 24210}, {63, 1834}, {65, 17635}, {72, 48837}, {75, 26117}, {78, 4415}, {145, 32859}, {192, 7270}, {226, 19765}, {312, 4201}, {321, 17676}, {355, 4424}, {387, 4641}, {388, 37548}, {405, 23537}, {443, 44307}, {452, 4000}, {499, 37599}, {515, 37614}, {516, 5710}, {740, 10371}, {908, 4255}, {940, 4292}, {950, 3663}, {958, 3914}, {964, 4657}, {968, 25466}, {975, 11112}, {978, 4679}, {986, 1837}, {993, 36250}, {1001, 23536}, {1043, 27184}, {1072, 11496}, {1104, 6872}, {1125, 16394}, {1193, 24703}, {1210, 17595}, {1478, 3931}, {1479, 17721}, {1714, 31445}, {1770, 5711}, {2218, 20834}, {2292, 5794}, {2352, 37425}, {2475, 28606}, {2478, 3752}, {2650, 33098}, {2901, 48835}, {2975, 33134}, {3011, 16403}, {3085, 4689}, {3120, 10448}, {3146, 3672}, {3159, 48836}, {3175, 48813}, {3436, 4646}, {3585, 5725}, {3670, 5722}, {3710, 17262}, {3714, 26034}, {3739, 37314}, {3744, 4294}, {3755, 12527}, {3797, 33832}, {3868, 17276}, {3869, 33100}, {3916, 5292}, {3924, 33145}, {3944, 11375}, {3951, 17334}, {4003, 36574}, {4189, 33133}, {4195, 19786}, {4202, 17279}, {4217, 17382}, {4302, 5266}, {4304, 34937}, {4340, 37595}, {4346, 15956}, {4352, 4872}, {4364, 49734}, {4383, 12572}, {4414, 21935}, {4423, 24178}, {4428, 28027}, {4640, 5230}, {4652, 37646}, {4673, 5484}, {4850, 5046}, {4862, 11518}, {5016, 17147}, {5047, 17278}, {5084, 16610}, {5137, 13323}, {5178, 7226}, {5252, 29010}, {5260, 33131}, {5262, 11114}, {5271, 49728}, {5290, 37553}, {5436, 23681}, {5530, 10895}, {5691, 5724}, {5717, 20182}, {5718, 9612}, {5721, 7330}, {5835, 28530}, {5930, 6180}, {6376, 16085}, {6850, 37528}, {6925, 15852}, {7283, 16062}, {9791, 31359}, {10459, 33094}, {10624, 37542}, {10896, 24239}, {11319, 32774}, {11320, 19834}, {11376, 37617}, {12953, 17599}, {13725, 31993}, {15338, 17602}, {15680, 33155}, {15803, 37634}, {16706, 17697}, {16817, 48814}, {16859, 26724}, {16865, 33129}, {17064, 24953}, {17275, 26064}, {17596, 24914}, {17679, 41313}, {17690, 31035}, {17718, 37573}, {17719, 37574}, {17751, 32950}, {17781, 48842}, {18178, 26892}, {19796, 19851}, {19808, 37164}, {20018, 33066}, {27802, 37241}, {28011, 49736}, {28029, 41230}, {28808, 37339}, {29028, 37588}, {31424, 35466}, {31730, 37540}, {33144, 37080}, {33151, 34772}, {37732, 37822}, {44302, 46483}

X(50065) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 9579, 49745}, {1, 24851, 1836}, {1, 33095, 12701}, {405, 23537, 24789}, {950, 3663, 37549}, {1479, 37592, 17721}, {3120, 10448, 28628}, {3146, 3672, 5716}, {4414, 21935, 26066}, {4854, 7354, 1}, {6872, 19785, 1104}, {7283, 16062, 32777}, {15338, 17602, 37552}


X(50066) = X(1)X(30)∩X(2)X(7283)

Barycentrics    a^4 - 3*a^3*b - 5*a^2*b^2 - 3*a*b^3 - 2*b^4 - 3*a^3*c - 6*a^2*b*c - 3*a*b^2*c - 5*a^2*c^2 - 3*a*b*c^2 + 4*b^2*c^2 - 3*a*c^3 - 2*c^4 : :
X(50066) = 2 X[16394] - 3 X[25055]

X(50066) lies on these lines: {1, 30}, {2, 7283}, {37, 44217}, {63, 3017}, {72, 48842}, {381, 3666}, {536, 984}, {549, 17720}, {988, 3582}, {1423, 5119}, {1714, 5325}, {3175, 11359}, {3419, 17246}, {3534, 37539}, {3543, 3672}, {3584, 17594}, {3663, 5738}, {3772, 15670}, {3931, 11237}, {4664, 17678}, {5271, 49729}, {5710, 28198}, {5716, 15682}, {6175, 28606}, {10056, 13161}, {10072, 24210}, {10452, 17274}, {11113, 17301}, {11238, 37592}, {15315, 45032}, {15677, 33155}, {16062, 42033}, {16394, 25055}, {17781, 48857}, {18541, 37595}, {19785, 31156}, {19796, 48814}, {24473, 49747}, {28204, 37614}

X(50066) = {X(3058),X(48819)}-harmonic conjugate of X(1)


X(50067) = X(1)X(30)∩X(10)X(536)

Barycentrics    2*a^3*b + 3*a^2*b^2 + 2*a*b^3 + b^4 + 2*a^3*c + 4*a^2*b*c + 2*a*b^2*c + 3*a^2*c^2 + 2*a*b*c^2 - 2*b^2*c^2 + 2*a*c^3 + c^4 : :
X(50067) = 5 X[3616] - 3 X[16394]

X(50067) lies on these lines: {1, 30}, {4, 3672}, {5, 3666}, {10, 536}, {21, 33155}, {35, 17602}, {37, 8728}, {72, 48847}, {75, 4205}, {140, 17720}, {141, 2901}, {192, 3695}, {321, 13728}, {350, 37148}, {382, 5716}, {386, 4415}, {387, 3927}, {405, 19785}, {442, 28606}, {495, 3931}, {496, 20256}, {528, 30145}, {550, 37539}, {938, 15956}, {940, 24470}, {942, 3663}, {952, 37614}, {986, 4941}, {988, 15325}, {1125, 48643}, {1278, 37164}, {1330, 4360}, {1479, 17599}, {1565, 4352}, {1612, 37292}, {1770, 3745}, {1834, 17246}, {2049, 17321}, {2886, 36250}, {3159, 48843}, {3175, 48815}, {3187, 49716}, {3295, 28015}, {3616, 16394}, {3743, 25466}, {3744, 10386}, {3752, 17527}, {3755, 34790}, {3772, 6675}, {3875, 5814}, {3914, 31419}, {3946, 12572}, {3995, 4202}, {4000, 11108}, {4021, 5717}, {4187, 4850}, {4292, 37594}, {4340, 18541}, {4356, 21620}, {4357, 5295}, {4387, 19836}, {4389, 10449}, {4424, 5690}, {4643, 49718}, {4656, 5044}, {4658, 17365}, {4719, 21616}, {4868, 12607}, {5047, 33150}, {5051, 17147}, {5248, 17061}, {5262, 11113}, {5530, 10592}, {5706, 5762}, {5710, 28174}, {5711, 24248}, {5719, 19765}, {5799, 29069}, {6051, 23536}, {7283, 17698}, {7483, 33133}, {7961, 36279}, {10071, 37730}, {10593, 24239}, {11246, 37559}, {12433, 37549}, {13407, 37593}, {13725, 30699}, {13740, 17302}, {16085, 18140}, {16403, 26228}, {16817, 19796}, {17045, 43531}, {17320, 37150}, {17526, 19823}, {17590, 26724}, {17595, 34753}, {17674, 31035}, {17781, 48861}, {19270, 37759}, {19767, 33151}, {19789, 37314}, {19851, 48814}, {20009, 48813}, {20083, 44416}, {20328, 26978}, {20831, 41230}, {24068, 49524}, {24390, 33134}, {24403, 37165}, {24850, 29645}, {24929, 34937}, {27184, 41014}, {30148, 49736}, {31445, 40940}, {33152, 37573}, {33833, 41839}, {37424, 37528}, {37582, 39595}

X(50067) = crosssum of X(55) and X(4275)
X(50067) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3782, 6147}, {37, 23537, 8728}, {192, 16062, 3695}, {387, 4419, 3927}, {3931, 13161, 495}, {7283, 19786, 17698}, {24210, 37592, 496}


X(50068) = X(1)X(30)∩X(2)X(37)

Barycentrics    a^3 + 2*a^2*b + 2*a*b^2 + b^3 + 2*a^2*c + 2*a*b*c - b^2*c + 2*a*c^2 - b*c^2 + c^3 : :

X(50068) lies on these lines: {1, 30}, {2, 37}, {6, 17781}, {7, 37595}, {45, 26723}, {63, 17246}, {72, 48857}, {81, 17276}, {226, 4021}, {306, 17318}, {333, 17247}, {376, 37539}, {519, 10371}, {551, 16394}, {553, 940}, {612, 49732}, {968, 17061}, {988, 5298}, {1086, 5287}, {1100, 5905}, {1104, 31156}, {1125, 4387}, {1211, 3875}, {1255, 27186}, {1654, 42030}, {1698, 6057}, {1699, 17726}, {1723, 3929}, {1961, 33149}, {1962, 33143}, {1999, 4389}, {3187, 3578}, {3247, 23681}, {3305, 17366}, {3416, 32776}, {3543, 5716}, {3654, 4424}, {3661, 4102}, {3662, 34064}, {3744, 10385}, {3745, 24248}, {3920, 49719}, {3931, 10056}, {3944, 17600}, {3946, 4383}, {3966, 4425}, {3989, 33128}, {3993, 26128}, {3994, 29663}, {4001, 17255}, {4085, 30615}, {4310, 4883}, {4352, 17078}, {4353, 17597}, {4360, 27184}, {4364, 5271}, {4393, 33066}, {4415, 5256}, {4419, 4641}, {4428, 16403}, {4675, 17019}, {4679, 29821}, {4703, 49477}, {4851, 17184}, {4852, 5739}, {4859, 25430}, {4995, 17594}, {5249, 16777}, {5294, 17262}, {5311, 5880}, {5325, 40940}, {5710, 28194}, {6354, 7190}, {6358, 7264}, {9347, 33102}, {10072, 37592}, {11237, 13161}, {11238, 17599}, {16673, 41867}, {16834, 48848}, {17011, 33151}, {17017, 24703}, {17022, 40688}, {17249, 37653}, {17258, 37652}, {17274, 39773}, {17299, 32782}, {17319, 18134}, {17380, 27064}, {17393, 17778}, {17525, 37817}, {17528, 23604}, {17591, 17728}, {17592, 17718}, {17595, 39595}, {17598, 36482}, {17724, 37553}, {19765, 34937}, {23537, 44217}, {25453, 49456}, {27804, 33122}, {28634, 41809}, {29574, 48840}, {29617, 41816}, {29636, 32936}, {29644, 48643}, {29645, 32934}, {29816, 33094}, {29833, 32933}, {29841, 32939}, {29847, 32845}, {32780, 49445}, {32783, 49452}, {32925, 38047}, {32947, 49681}, {33144, 37593}, {33163, 49523}, {33171, 49462}, {42045, 44302}

X(50068) = reflection of X(16394) in X(551)
X(50068) = crossdifference of every pair of points on line {667, 9404}
X(50068) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 4654, 37631}, {1, 33154, 1836}, {1, 48818, 5434}, {2, 192, 42033}, {2, 4740, 19797}, {2, 19819, 4688}, {2, 42033, 32777}, {2, 42044, 17281}, {37, 19785, 24789}, {192, 19786, 32777}, {226, 4021, 20182}, {554, 1081, 10404}, {3782, 37631, 4654}, {3944, 17600, 17723}, {3946, 4656, 4383}, {3995, 32774, 17279}, {4415, 17395, 5256}, {4425, 32921, 3966}, {5311, 33145, 5880}, {15170, 48820, 1}, {17019, 33146, 4675}, {17321, 30699, 31993}, {17382, 35652, 2}, {17399, 42034, 2}, {17592, 33152, 17718}, {17599, 24210, 17721}, {19786, 42033, 2}, {28606, 33155, 3772}, {32776, 32928, 3416}


X(50069) = X(1)X(30)∩X(536)X(551)

Barycentrics    4*a^4 + 6*a^3*b + 7*a^2*b^2 + 6*a*b^3 + b^4 + 6*a^3*c + 12*a^2*b*c + 6*a*b^2*c + 7*a^2*c^2 + 6*a*b*c^2 - 2*b^2*c^2 + 6*a*c^3 + c^4 : :
X(50069) = X[16394] - 3 X[38314]

X(50069) lies on these lines: {1, 30}, {2, 3695}, {72, 48861}, {376, 3672}, {536, 551}, {547, 17720}, {549, 3666}, {553, 37594}, {2901, 48859}, {3584, 17602}, {3723, 26728}, {3830, 5716}, {4021, 24929}, {4364, 49683}, {5719, 20182}, {5736, 15956}, {6175, 33155}, {8703, 37539}, {10072, 17599}, {15670, 28606}, {16394, 38314}, {16519, 48848}, {17395, 30115}, {17698, 42033}, {17726, 38034}, {19785, 44217}, {30142, 49732}


X(50070) = X(1)X(30)∩X(2)X(1104)

Barycentrics    5*a^4 + 3*a^3*b + 2*a^2*b^2 + 3*a*b^3 - b^4 + 3*a^3*c + 6*a^2*b*c + 3*a*b^2*c + 2*a^2*c^2 + 3*a*b*c^2 + 2*b^2*c^2 + 3*a*c^3 - c^4 : :

X(50070) lies on these lines: {1, 30}, {2, 1104}, {37, 31156}, {72, 48870}, {376, 3666}, {381, 17720}, {519, 5710}, {536, 3241}, {551, 4138}, {553, 37549}, {2298, 17281}, {2352, 14636}, {3017, 3419}, {3175, 48817}, {3488, 37595}, {3576, 17726}, {3584, 5725}, {3654, 5264}, {3672, 15683}, {3679, 5269}, {3772, 6175}, {3945, 15956}, {4195, 42033}, {4217, 35652}, {4304, 20182}, {4339, 10385}, {4870, 26098}, {4995, 37552}, {5252, 17716}, {5266, 10056}, {5807, 17359}, {10072, 17721}, {11194, 16403}, {11346, 41313}, {15670, 37817}, {15677, 28606}, {17016, 49719}, {17301, 17579}, {20009, 42032}, {24789, 44217}, {28194, 37614}, {41312, 49735}

X(50070) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 48827, 3058}, {1, 48828, 37631}


X(50071) = X(2)X(37)∩X(30)X(944)

Barycentrics    a^3 + 3*a^2*b + 3*a*b^2 + b^3 + 3*a^2*c + 2*a*b*c - 3*b^2*c + 3*a*c^2 - 3*b*c^2 + c^3 : :
X(50071) = 2 X[16394] - 3 X[38314]

X(50071) lies on these lines: {2, 37}, {30, 944}, {145, 32859}, {1266, 5287}, {3187, 4419}, {3475, 27804}, {3782, 17318}, {3875, 5739}, {4360, 5905}, {4398, 34064}, {4854, 49453}, {5698, 17150}, {7222, 8025}, {16394, 38314}, {16834, 17781}, {17019, 42697}, {17184, 17314}, {17316, 33146}, {17389, 48838}, {19723, 49742}, {19993, 49463}, {24248, 32928}, {24441, 49724}, {30614, 49455}, {32087, 41809}, {33088, 33154}, {33163, 49445}, {33171, 49452}, {42028, 49722}

X(50071) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17147, 42049}, {2, 42049, 17740}, {192, 19785, 17776}, {3175, 17301, 2}, {4664, 19796, 2}, {17320, 42029, 2}


X(50072) = X(1)X(536)∩X(30)X(944)

Barycentrics    3*a^4 + 4*a^3*b + 5*a^2*b^2 + 4*a*b^3 + 4*a^3*c + 8*a^2*b*c + 2*a*b^2*c - 2*b^3*c + 5*a^2*c^2 + 2*a*b*c^2 - 4*b^2*c^2 + 4*a*c^3 - 2*b*c^3 : :

X(50072) lies on these lines: {1, 536}, {2, 3695}, {30, 944}, {72, 16834}, {192, 13735}, {405, 4664}, {519, 10371}, {1010, 4740}, {3295, 16403}, {4688, 16458}, {4980, 19277}, {10441, 24473}, {11354, 42044}, {16393, 17147}, {16401, 37539}, {16483, 49472}, {17378, 33865}, {19290, 42051}, {19796, 44217}, {24441, 49723}

X(50072) = reflection of X(16394) in X(1)


X(50073) = X(1)X(536)∩X(30)X(48830)

Barycentrics    3*a^4 + 2*a^3*b + 3*a^2*b^2 + 2*a*b^3 + 2*a^3*c + 8*a^2*b*c + 2*a*b^2*c + 2*b^3*c + 3*a^2*c^2 + 2*a*b*c^2 + 2*a*c^3 + 2*b*c^3 : :

X(50073) lies on these lines: {1, 536}, {2, 31402}, {30, 48830}, {218, 597}, {405, 41312}, {4426, 41311}, {4755, 17742}, {11321, 37756}, {15668, 16785}, {16403, 37580}, {16502, 46922}, {24549, 29574}, {26626, 33151}, {28609, 41239}, {29584, 39731}, {35103, 37614}


leftri

Points in a [[b-c,c-a,a-b],[a(b-c),b(c-a),c(a-b)]] coordinate system: X(50074)-X(50133)

rightri

If L1 and L2 are lines that meet in a point P not at infinity, then a [L1, L2]-coordinate system is a bivariate coordinate system having L1 as x-axis, L2 as y-axis, and P as origin. In this section, L1 and L2 are the following lines:

L1 is the line: (b-c) α + (c-a) β (a-b) γ = 0.

L2 is the line a(b-c) α + b(c-a) β c(a-b) γ = 0.

The origin is given by (0,0) = X(2) = 1 1 : 1 .

Barycentrics u : v : w for a triangle center U = (x, y) in this system are given by

u : v : w = -(a-b)(a-c)(b-c) + (-2 a + b + c) x + (a b + a c - 2 b c) y : : ,

where, as functions of a, b, c, the coordinate x is antisymmetric of degree 2, and y is antisymmetric of degree 1.

The appearance of {x, y}, k in the following list means that (x, y) = X(k).

{-((2 (a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2)), -((2 (a-b) (a-c) (b-c))/(a^2+b^2+c^2))}, 69
{-((2 (a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2)), -(((a-b) (a-c) (b-c))/(2 (a^2+b^2+c^2)))}, 17372
{-((2 (a-b) (a-c) (b-c))/(a+b+c)), 0}, 8
{-((2 (a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2)), ((a-b) (a-c) (b-c))/(a^2+b^2+c^2)}, 17299
{-(((a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2)), -((2 (a-b) (a-c) (b-c))/(a^2+b^2+c^2))}, 17274
{-(((a-b) (a-c) (b-c) (a+b+c))/(a b+a c+b c)), -((2 (a-b) (a-c) (b-c))/(a b+a c+b c))}, 17333
{-(((a-b) (a-c) (b-c))/(a+b+c)), -(((a-b) (a-c) (b-c))/(a^2+b^2+c^2))}, 48829
{-(((a-b) (a-c) (b-c))/(a+b+c)), -(((a-b) (a-c) (b-c))/(a b+a c+b c))}, 984
{-(((a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2)), -(((a-b) (a-c) (b-c))/(a^2+b^2+c^2))}, 599
{-(((a-b) (a-c) (b-c) (a+b+c))/(a b+a c+b c)), -(((a-b) (a-c) (b-c))/(a b+a c+b c))}, 17346
{-(((a-b) (a-c) (b-c))/(a+b+c)), 0}, 3679
{-(((a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2)), 0}, 17294
{-(((a-b) (a-c) (b-c) (a+b+c))/(a b+a c+b c)), 0}, 29617
{-(((a-b) (a-c) (b-c))/(a+b+c)), ((a-b) (a-c) (b-c))/(2 (a b+a c+b c))}, 3696
{-(((a-b) (a-c) (b-c))/(a+b+c)), (2 (a-b) (a-c) (b-c))/(a b+a c+b c)}, 49474
{-(((a-b) (a-c) (b-c) (a+b+c))/(2 (a^2+b^2+c^2))), -((2 (a-b) (a-c) (b-c))/(a^2+b^2+c^2))}, 3663
{-(((a-b) (a-c) (b-c))/(2 (a+b+c))), -(((a-b) (a-c) (b-c))/(2 (a^2+b^2+c^2)))}, 48821
{-(((a-b) (a-c) (b-c) (a+b+c))/(2 (a^2+b^2+c^2))), -(((a-b) (a-c) (b-c))/(2 (a^2+b^2+c^2)))}, 141
{-(((a-b) (a-c) (b-c) (a+b+c))/(2 (a b+a c+b c))), -(((a-b) (a-c) (b-c))/(2 (a b+a c+b c)))}, 17330
{-(((a-b) (a-c) (b-c))/(2 (a+b+c))), 0}, 10
{-(((a-b) (a-c) (b-c) (a+b+c))/(2 (a^2+b^2+c^2))), 0}, 29594
{-(((a-b) (a-c) (b-c) (a+b+c))/(2 (a^2+b^2+c^2))), ((a-b) (a-c) (b-c))/(a^2+b^2+c^2)}, 2321
{0, -((2 (a-b) (a-c) (b-c))/(a b+a c+b c))}, 192} {0, -(((a-b) (a-c) (b-c))/(a^2+b^2+c^2))}, 17301
{0, -(((a-b) (a-c) (b-c))/(a b+a c+b c))}, 4664
{0, -(((a-b) (a-c) (b-c) (a+b+c))/(a b c))}, 42044
{0, -(((a-b) (a-c) (b-c))/(2 (a^2+b^2+c^2)))}, 17382
{0, -(((a-b) (a-c) (b-c))/(2 (a b+a c+b c)))}, 37
{0, -(((a-b) (a-c) (b-c) (a+b+c))/(2 a b c))}, 3175
{0, 0}, 2
{0, ((a-b) (a-c) (b-c))/(2 (a^2+b^2+c^2))}, 17359
{0, ((a-b) (a-c) (b-c))/(2 (a b+a c+b c))}, 4688
{0, ((a-b) (a-c) (b-c) (a+b+c))/(2 a b c)}, 42051
{0, ((a-b) (a-c) (b-c))/(a^2+b^2+c^2)}, 17281
{0, ((a-b) (a-c) (b-c))/(a b+a c+b c)}, 75
{0, (2 (a-b) (a-c) (b-c))/(a b+a c+b c)}, 4740
{((a-b) (a-c) (b-c))/(2 (a+b+c)), -(((a-b) (a-c) (b-c))/(a b+a c+b c))}, 3993
{((a-b) (a-c) (b-c))/(2 (a+b+c)), 0}, 551
{((a-b) (a-c) (b-c) (a+b+c))/(2 (a b+a c+b c)), 0}, 29574
{((a-b) (a-c) (b-c))/(2 (a+b+c)), ((a-b) (a-c) (b-c))/(2 (a^2+b^2+c^2))}, 48810
{((a-b) (a-c) (b-c))/(2 (a+b+c)), ((a-b) (a-c) (b-c))/(2 (a b+a c+b c))}, 24325
{((a-b) (a-c) (b-c) (a+b+c))/(2 (a^2+b^2+c^2)), ((a-b) (a-c) (b-c))/(2 (a^2+b^2+c^2))}, 597
{((a-b) (a-c) (b-c) (a+b+c))/(2 (a b+a c+b c)), ((a-b) (a-c) (b-c))/(2 (a b+a c+b c))}, 17392
{((a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2), -((2 (a-b) (a-c) (b-c))/(a^2+b^2+c^2))}, 3875
{((a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2), -(((a-b) (a-c) (b-c))/(2 (a^2+b^2+c^2)))}, 4852
{((a-b) (a-c) (b-c))/(a+b+c), 0}, 1
{((a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2), 0}, 16834
{((a-b) (a-c) (b-c) (a+b+c))/(a b+a c+b c), 0}, 17389
{((a-b) (a-c) (b-c))/(a+b+c), ((a-b) (a-c) (b-c))/(a^2+b^2+c^2)}, 48805
{((a-b) (a-c) (b-c))/(a+b+c), ((a-b) (a-c) (b-c))/(a b+a c+b c)}, 31178
{((a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2), ((a-b) (a-c) (b-c))/(a^2+b^2+c^2)}, 6
{((a-b) (a-c) (b-c) (a+b+c))/(a b+a c+b c), ((a-b) (a-c) (b-c))/(a b+a c+b c)}, 17378
{(2 (a-b) (a-c) (b-c))/(a+b+c), -(((a-b) (a-c) (b-c))/(a b+a c+b c))}, 49470
{(2 (a-b) (a-c) (b-c))/(a+b+c), 0}, 3241
{(2 (a-b) (a-c) (b-c))/(a+b+c), ((a-b) (a-c) (b-c))/(2 (a b+a c+b c))}, 49478
{(2 (a-b) (a-c) (b-c))/(a+b+c), (2 (a-b) (a-c) (b-c))/(a b+a c+b c)}, 24349
{(2 (a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2), (2 (a-b) (a-c) (b-c))/(a^2+b^2+c^2)}, 1992
{(-2*(a - b)*(a - c)*(b - c)*(a + b + c))/(a*b + a*c + b*c), (-2*(a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50074
{(-2*(a - b)*(a - c)*(b - c))/(a + b + c), -(((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c))}, 50075
{(-2*(a - b)*(a - c)*(b - c)*(a + b + c))/(a^2 + b^2 + c^2), -(((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2))}, 50076
{(-2*(a - b)*(a - c)*(b - c)*(a + b + c))/(a*b + a*c + b*c), -(((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c))}, 50077
{(-2*(a - b)*(a - c)*(b - c))/(a + b + c), -1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b*c)}, 50078
{(-2*(a - b)*(a - c)*(b - c)*(a + b + c))/(a^2 + b^2 + c^2), 0}, 50079
{-(((a - b)*(a - c)*(b - c))/(a + b + c)), (-2*(a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50080
{-(((a - b)*(a - c)*(b - c)*(a + b + c))/(a^2 + b^2 + c^2)), -1/2*((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50081
{-(((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b + a*c + b*c)), -1/2*((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50082
{-(((a - b)*(a - c)*(b - c))/(a + b + c)), ((a - b)*(a - c)*(b - c)*(a + b + c))/(2*a*b*c)}, 50083
{-(((a - b)*(a - c)*(b - c)*(a + b + c))/(a^2 + b^2 + c^2)), ((a - b)*(a - c)*(b - c))/(2*(a^2 + b^2 + c^2))}, 50084
{-(((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b + a*c + b*c)), ((a - b)*(a - c)*(b - c))/(2*(a*b + a*c + b*c))}, 50085
{-(((a - b)*(a - c)*(b - c))/(a + b + c)), ((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50086
{-(((a - b)*(a - c)*(b - c)*(a + b + c))/(a^2 + b^2 + c^2)), ((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50087
{-(((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b + a*c + b*c)), ((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50088
{-(((a - b)*(a - c)*(b - c)*(a + b + c))/(a^2 + b^2 + c^2)), (2*(a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50089
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b + a*c + b*c), (-2*(a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50090
{-1/2*((a - b)*(a - c)*(b - c))/(a + b + c), -(((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2))}, 50091
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/(a^2 + b^2 + c^2), -(((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2))}, 50092
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b + a*c + b*c), -(((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c))}, 50093
{-1/2*((a - b)*(a - c)*(b - c))/(a + b + c), -1/2*((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50094
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b + a*c + b*c), 0}, 50095
{-1/2*((a - b)*(a - c)*(b - c))/(a + b + c), ((a - b)*(a - c)*(b - c))/(2*(a*b + a*c + b*c))}, 50096
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/(a^2 + b^2 + c^2), ((a - b)*(a - c)*(b - c))/(2*(a^2 + b^2 + c^2))}, 50097
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b + a*c + b*c), ((a - b)*(a - c)*(b - c))/(2*(a*b + a*c + b*c))}, 50098
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b + a*c + b*c), ((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50099
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/(a^2 + b^2 + c^2), (2*(a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50100
{0, (-2*(a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50101
{0, -(((a - b)*(a - c)*(b - c)*(a + b + c))/(a^3 + b^3 + c^3))}, 50102
{0, -1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/(a^3 + b^3 + c^3)}, 50103
{0, ((a - b)*(a - c)*(b - c)*(a + b + c))/(2*(a^3 + b^3 + c^3))}, 50104
{0, ((a - b)*(a - c)*(b - c)*(a + b + c))/(a^3 + b^3 + c^3)}, 50105
{0, ((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b*c)}, 50106
{0, (2*(a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50107
{((a - b)*(a - c)*(b - c)*(a + b + c))/(2*(a^2 + b^2 + c^2)), (-2*(a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50108
{((a - b)*(a - c)*(b - c)*(a + b + c))/(2*(a^2 + b^2 + c^2)), -(((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2))}, 50109
{((a - b)*(a - c)*(b - c)*(a + b + c))/(2*(a*b + a*c + b*c)), -(((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c))}, 50110
{((a - b)*(a - c)*(b - c))/(2*(a + b + c)), -1/2*((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50111
{((a - b)*(a - c)*(b - c)*(a + b + c))/(2*(a^2 + b^2 + c^2)), -1/2*((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50112
{((a - b)*(a - c)*(b - c)*(a + b + c))/(2*(a*b + a*c + b*c)), -1/2*((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50113
{((a - b)*(a - c)*(b - c)*(a + b + c))/(2*(a^2 + b^2 + c^2)), 0}, 50114
{((a - b)*(a - c)*(b - c)*(a + b + c))/(2*(a^2 + b^2 + c^2)), ((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50115
{((a - b)*(a - c)*(b - c)*(a + b + c))/(2*(a*b + a*c + b*c)), ((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50116
{((a - b)*(a - c)*(b - c))/(2*(a + b + c)), (2*(a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50117
{((a - b)*(a - c)*(b - c)*(a + b + c))/(2*(a^2 + b^2 + c^2)), (2*(a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50118
{((a - b)*(a - c)*(b - c)*(a + b + c))/(2*(a*b + a*c + b*c)), (2*(a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50119
{((a - b)*(a - c)*(b - c)*(a + b + c))/(a^2 + b^2 + c^2), -(((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2))}, 50120
{((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b + a*c + b*c), -(((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c))}, 50121
{((a - b)*(a - c)*(b - c))/(a + b + c), -1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b*c)}, 50122
{((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b + a*c + b*c), -1/2*((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50123
{((a - b)*(a - c)*(b - c)*(a + b + c))/(a^2 + b^2 + c^2), ((a - b)*(a - c)*(b - c))/(2*(a^2 + b^2 + c^2))}, 50124
{((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b + a*c + b*c), ((a - b)*(a - c)*(b - c))/(2*(a*b + a*c + b*c))}, 50125
{((a - b)*(a - c)*(b - c))/(a + b + c), (2*(a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50126
{((a - b)*(a - c)*(b - c)*(a + b + c))/(a^2 + b^2 + c^2), (2*(a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50127
{((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b + a*c + b*c), (2*(a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50128
{(2*(a - b)*(a - c)*(b - c)*(a + b + c))/(a^2 + b^2 + c^2), 0}, 50129
{(2*(a - b)*(a - c)*(b - c))/(a + b + c), ((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50130
{(2*(a - b)*(a - c)*(b - c)*(a + b + c))/(a^2 + b^2 + c^2), ((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50131
{(2*(a - b)*(a - c)*(b - c)*(a + b + c))/(a*b + a*c + b*c), ((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50132
{(2*(a - b)*(a - c)*(b - c)*(a + b + c))/(a*b + a*c + b*c), (2*(a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50133


X(50074) = X(2)X(6)∩X(8)X(752)

Barycentrics    4*a^2 - a*b - 2*b^2 - a*c - b*c - 2*c^2 : :
X(50074) = 3 X[2] - 4 X[17330], 5 X[2] - 4 X[17392], 7 X[2] - 8 X[49731], 9 X[2] - 8 X[49738], 2 X[17330] - 3 X[17346], 5 X[17330] - 3 X[17392], 7 X[17330] - 6 X[49731], 3 X[17330] - 2 X[49738], 3 X[17346] - X[17378], 5 X[17346] - 2 X[17392], 7 X[17346] - 4 X[49731], 9 X[17346] - 4 X[49738], 5 X[17378] - 6 X[17392], 7 X[17378] - 12 X[49731], 3 X[17378] - 4 X[49738], 7 X[17392] - 10 X[49731], 9 X[17392] - 10 X[49738], 9 X[49731] - 7 X[49738], X[192] - 4 X[4416], X[192] + 2 X[17363], X[192] - 3 X[17488], 2 X[4416] + X[17363], 4 X[4416] - 3 X[17488], 2 X[17333] - 3 X[17488], 2 X[17363] + 3 X[17488], X[1278] + 2 X[17347], X[1278] - 4 X[17362], X[17347] + 2 X[17362], 5 X[3617] - 4 X[49725], 8 X[3686] - 5 X[4699], 4 X[3686] - X[17364], 5 X[4699] - 2 X[17364], 4 X[3739] - 3 X[39704], 2 X[3879] - 5 X[17331], 4 X[3879] - 7 X[27268], 10 X[17331] - 7 X[27268], 8 X[4399] - 5 X[4821], 5 X[4687] - 6 X[16590], 8 X[4698] - 9 X[41848], 5 X[4704] - 8 X[17332], 5 X[4704] - 2 X[17377], 4 X[17332] - X[17377], 4 X[4732] - 3 X[24452], 7 X[4772] - 4 X[17365], X[4788] - 4 X[17334]

X(50074) lies on these lines: {2, 6}, {8, 752}, {9, 17310}, {44, 17230}, {75, 4715}, {144, 528}, {145, 49746}, {190, 20055}, {192, 519}, {239, 4741}, {319, 17281}, {320, 16816}, {527, 4740}, {540, 48850}, {545, 1278}, {551, 17248}, {674, 4661}, {754, 48869}, {894, 3679}, {903, 4361}, {1100, 17328}, {1449, 17252}, {1743, 17287}, {3241, 17257}, {3617, 49725}, {3621, 20073}, {3625, 4480}, {3662, 41140}, {3681, 9025}, {3686, 4699}, {3707, 17244}, {3729, 4677}, {3739, 39704}, {3758, 4690}, {3759, 17236}, {3879, 17331}, {3973, 17268}, {4001, 17490}, {4034, 17116}, {4360, 24441}, {4370, 17233}, {4389, 4969}, {4393, 4643}, {4399, 4821}, {4419, 20016}, {4430, 9038}, {4431, 34641}, {4473, 29616}, {4664, 4725}, {4667, 29576}, {4669, 48628}, {4685, 41834}, {4687, 16590}, {4698, 41848}, {4700, 17367}, {4704, 17332}, {4732, 24452}, {4748, 29586}, {4772, 17365}, {4788, 17334}, {4795, 17275}, {4852, 17329}, {4856, 17396}, {4908, 17336}, {4971, 49748}, {5839, 6646}, {7277, 10022}, {7754, 17677}, {7758, 22267}, {11165, 22351}, {15492, 17240}, {16666, 17250}, {16667, 17326}, {16668, 17400}, {16669, 17228}, {16670, 17292}, {16671, 17371}, {16676, 29619}, {16814, 17386}, {16834, 17254}, {16885, 17295}, {17120, 17270}, {17121, 17272}, {17256, 29570}, {17280, 32099}, {17299, 25269}, {17335, 17374}, {17338, 41141}, {17348, 17361}, {17387, 29599}, {18144, 39996}, {20018, 37038}, {24514, 31136}, {28333, 49722}, {28337, 49742}, {28503, 31302}, {28538, 49496}, {31134, 32864}, {31300, 42696}, {37150, 49718}, {48839, 48858}

X(50074) = anticomplement of X(17378)
X(50074) = midpoint of X(17333) and X(17363)
X(50074) = reflection of X(i) in X(j) for these {i,j}: {2, 17346}, {145, 49746}, {192, 17333}, {4740, 29617}, {17333, 4416}, {17378, 17330}, {48858, 48839}
X(50074) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17271, 17238}, {2, 17343, 17271}, {2, 17375, 17313}, {2, 37654, 17349}, {6, 17271, 2}, {6, 17343, 17238}, {44, 17360, 17230}, {69, 17349, 17232}, {69, 37654, 2}, {192, 17488, 17333}, {193, 1654, 17379}, {391, 20080, 17300}, {966, 11008, 20090}, {1743, 17287, 17358}, {3180, 3181, 37683}, {3629, 5224, 37677}, {3686, 17364, 4699}, {3758, 4690, 29593}, {3759, 17344, 17236}, {3879, 17331, 27268}, {4416, 17333, 17488}, {4416, 17363, 192}, {15534, 17251, 46922}, {17121, 17272, 17383}, {17251, 46922, 2}, {17277, 17313, 2}, {17277, 40341, 17375}, {17330, 17378, 2}, {17332, 17377, 4704}, {17335, 17374, 29572}, {17346, 17378, 17330}, {17347, 17362, 1278}, {31303, 37656, 37684}


X(50075) = X(2)X(210)∩X(8)X(536)

Barycentrics    2*a^2*b - 4*a*b^2 + 2*a^2*c - 3*a*b*c - b^2*c - 4*a*c^2 - b*c^2 : :
X(50075) = X[1] + 2 X[49449], 2 X[8] + X[49447], 5 X[8] - 2 X[49468], X[8] + 2 X[49515], 7 X[8] + 2 X[49522], 5 X[49447] + 4 X[49468], X[49447] - 4 X[49515], 7 X[49447] - 4 X[49522], X[49468] + 5 X[49515], 7 X[49468] + 5 X[49522], 7 X[49515] - X[49522], 4 X[10] - X[49499], 2 X[10] + X[49503], X[49499] + 2 X[49503], 5 X[75] - 8 X[4732], X[75] + 2 X[49448], X[75] - 4 X[49457], 2 X[75] + X[49501], 5 X[75] - 2 X[49532], 5 X[3679] - 4 X[4732], 4 X[3679] + X[49501], 5 X[3679] - X[49532], 4 X[4732] + 5 X[49448], 2 X[4732] - 5 X[49457], 16 X[4732] + 5 X[49501], 4 X[4732] - X[49532], X[49448] + 2 X[49457], 4 X[49448] - X[49501], 5 X[49448] + X[49532], 8 X[49457] + X[49501], 10 X[49457] - X[49532], 5 X[49501] + 4 X[49532], 5 X[984] - 2 X[3993], 2 X[984] + X[49450], 4 X[984] - X[49470], X[984] + 2 X[49510], 7 X[984] - X[49678], 5 X[984] + X[49689], 4 X[3993] - 5 X[4664], 4 X[3993] + 5 X[49450], 8 X[3993] - 5 X[49470], X[3993] + 5 X[49510], 14 X[3993] - 5 X[49678], 2 X[3993] + X[49689], X[4664] + 4 X[49510], 7 X[4664] - 2 X[49678], 5 X[4664] + 2 X[49689], 2 X[49450] + X[49470], X[49450] - 4 X[49510], 7 X[49450] + 2 X[49678], 5 X[49450] - 2 X[49689], X[49470] + 8 X[49510], 7 X[49470] - 4 X[49678], 5 X[49470] + 4 X[49689], 14 X[49510] + X[49678], 10 X[49510] - X[49689], 5 X[49678] + 7 X[49689], 4 X[551] - 5 X[4687], 5 X[4687] - 2 X[49490], 5 X[4687] + 4 X[49504], X[49490] + 2 X[49504], X[1278] + 2 X[49513], X[49502] + 2 X[49688], 5 X[1698] - 2 X[49491], 5 X[3617] - 2 X[49483], X[3621] + 2 X[49462], 2 X[3625] + X[49452], 4 X[3626] - X[49493], 2 X[3626] + X[49508], X[49493] + 2 X[49508], X[3632] + 2 X[49456], X[3644] + 4 X[34641], X[3644] + 2 X[49459], X[3644] - 4 X[49520], X[49459] + 2 X[49520], 2 X[3696] + X[31302], 8 X[3828] - 7 X[4751], 7 X[4751] - 4 X[49479], 4 X[3842] - 3 X[25055], 4 X[3842] - X[49498], 3 X[25055] - X[49498], 5 X[4704] - X[20049], 5 X[4704] - 2 X[49475], 4 X[4709] - X[4764], 2 X[4709] + X[49517], X[4764] + 2 X[49517], 4 X[4755] - 3 X[38314], 3 X[38314] - 2 X[49478], 3 X[19875] - 2 X[24325], 3 X[38087] - 2 X[49481], 5 X[40328] - 2 X[49535]

X(50077) lies on these lines: {1, 4753}, {2, 210}, {8, 536}, {10, 17227}, {37, 3241}, {44, 36534}, {75, 537}, {192, 31145}, {312, 4937}, {519, 751}, {527, 49720}, {528, 17333}, {551, 4687}, {726, 4669}, {740, 4677}, {1278, 49513}, {1654, 49502}, {1698, 49491}, {1992, 48856}, {3210, 4113}, {3617, 49483}, {3621, 49462}, {3625, 49452}, {3626, 49493}, {3632, 49456}, {3644, 34641}, {3661, 31349}, {3696, 4740}, {3707, 49771}, {3711, 24627}, {3717, 29594}, {3751, 46922}, {3758, 36480}, {3828, 4751}, {3842, 25055}, {3932, 29577}, {4085, 17249}, {4096, 20942}, {4384, 24841}, {4389, 49772}, {4407, 17250}, {4429, 24393}, {4660, 17329}, {4676, 5220}, {4684, 29600}, {4688, 24349}, {4704, 20049}, {4709, 4764}, {4755, 38314}, {4795, 25384}, {4966, 29582}, {5223, 5263}, {5224, 49529}, {5252, 17950}, {7174, 16834}, {9041, 17330}, {11194, 34247}, {12329, 19326}, {13735, 41229}, {15624, 17549}, {16496, 17277}, {16833, 32922}, {17228, 33165}, {17234, 49505}, {17254, 48829}, {17256, 36479}, {17260, 42871}, {17261, 49460}, {17319, 49680}, {17328, 33076}, {17336, 32941}, {17349, 49465}, {17360, 32847}, {17393, 49497}, {18743, 31137}, {19325, 22769}, {19875, 24325}, {21342, 26038}, {25269, 49485}, {28204, 30273}, {28503, 29617}, {28538, 49496}, {28554, 49474}, {28580, 49748}, {30615, 37653}, {31144, 48851}, {31161, 31330}, {32784, 49697}, {34747, 49471}, {35026, 35167}, {36531, 41847}, {38087, 49481}, {40328, 49535}, {42034, 42054}, {48853, 49536}

X(50075) = midpoint of X(i) and X(j) for these {i,j}: {192, 31145}, {551, 49504}, {3679, 49448}, {4664, 49450}, {4740, 31302}, {31178, 49503}, {34641, 49520}
X(50075) = reflection of X(i) in X(j) for these {i,j}: {75, 3679}, {3241, 37}, {3679, 49457}, {4664, 984}, {4740, 3696}, {4795, 25384}, {20049, 49475}, {24349, 4688}, {31178, 10}, {34747, 49471}, {49459, 34641}, {49470, 4664}, {49478, 4755}, {49479, 3828}, {49490, 551}, {49499, 31178}
X(50075) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 49515, 49447}, {10, 49503, 49499}, {75, 49448, 49501}, {984, 49450, 49470}, {984, 49510, 49450}, {984, 49689, 3993}, {3626, 49508, 49493}, {3751, 48854, 46922}, {4407, 29659, 17250}, {4407, 49701, 29659}, {4709, 49517, 4764}, {4732, 49532, 75}, {4755, 49478, 38314}, {17256, 49714, 36479}, {31137, 42056, 18743}, {36480, 49712, 3758}, {49448, 49457, 75}, {49459, 49520, 3644}


X(50076) = X(2)X(319)∩X(69)X(536)

Barycentrics    3*a^2 + a*b - 3*b^2 + a*c - 2*b*c - 3*c^2 : :
X(50076) = 4 X[69] - X[17276], 2 X[69] + X[17299], 5 X[69] - 2 X[17345], X[69] + 2 X[17372], X[17276] + 2 X[17299], 5 X[17276] - 8 X[17345], X[17276] + 8 X[17372], 5 X[17299] + 4 X[17345], X[17299] - 4 X[17372], X[17345] + 5 X[17372], X[193] - 4 X[17229], 5 X[17281] - 4 X[49726], 5 X[17294] - 2 X[49726], 2 X[2321] + X[40341], 5 X[3620] - 2 X[4852], 2 X[3629] - 5 X[17286], 2 X[3630] + X[3729], 4 X[3631] - X[3875], 4 X[4856] - 7 X[47355], X[6144] - 4 X[17355], 2 X[17351] + X[20080], 2 X[17382] - 3 X[21356]

X(50076) lies on these lines: {2, 319}, {6, 29594}, {8, 4675}, {37, 32099}, {44, 29616}, {45, 49765}, {69, 536}, {141, 16834}, {145, 17237}, {193, 17229}, {320, 4740}, {519, 599}, {524, 17281}, {527, 15533}, {1086, 3632}, {1449, 48635}, {1654, 17386}, {1992, 17359}, {2321, 40341}, {3241, 41311}, {3244, 17325}, {3620, 4852}, {3625, 17119}, {3629, 17286}, {3630, 3729}, {3631, 3875}, {3633, 17395}, {3661, 46922}, {3679, 17392}, {3686, 17311}, {3723, 4916}, {3770, 42034}, {3879, 4445}, {4007, 17365}, {4034, 17245}, {4060, 17118}, {4364, 29605}, {4399, 17298}, {4416, 17309}, {4419, 4727}, {4464, 17323}, {4478, 10436}, {4643, 4664}, {4657, 17287}, {4677, 6173}, {4686, 21296}, {4690, 4755}, {4708, 29585}, {4715, 11160}, {4798, 29593}, {4856, 47355}, {4889, 17321}, {4908, 6172}, {4910, 17302}, {4969, 17284}, {4971, 17274}, {5224, 29580}, {5564, 17375}, {5847, 48805}, {6144, 17355}, {8556, 49554}, {10453, 41144}, {16284, 16732}, {16666, 29611}, {16833, 17278}, {17133, 49747}, {17227, 20016}, {17250, 29588}, {17251, 29574}, {17270, 17390}, {17271, 17389}, {17272, 17388}, {17277, 29582}, {17279, 17295}, {17290, 49770}, {17297, 29617}, {17300, 28634}, {17310, 17346}, {17314, 17344}, {17315, 17343}, {17318, 49761}, {17330, 29573}, {17351, 20080}, {17376, 42696}, {17378, 29615}, {17382, 21356}, {17391, 32025}, {19875, 42334}, {20090, 48630}, {24599, 31243}, {24691, 41142}, {31136, 32852}, {31137, 32861}, {31138, 31145}, {31139, 34641}, {37654, 41310}, {48849, 49478}

X(50076) = midpoint of X(40341) and X(49721)
X(50076) = reflection of X(i) in X(j) for these {i,j}: {6, 29594}, {1992, 17359}, {3875, 49741}, {16834, 141}, {17274, 22165}, {17281, 17294}, {17301, 599}, {49721, 2321}, {49741, 3631}
X(50076) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 17374, 4675}, {69, 17299, 17276}, {69, 17372, 17299}, {319, 4851, 17275}, {319, 17373, 4851}, {3879, 4445, 17303}, {4916, 5232, 3723}, {6542, 17360, 4643}, {17271, 17389, 41312}, {17287, 17377, 4657}, {17295, 17363, 17279}, {17296, 17362, 17278}, {17310, 17346, 41313}


X(50077) = X(2)X(319)∩X(75)X(524)

Barycentrics    4*a^2 - 2*b^2 - 3*b*c - 2*c^2 : :
X(50077) = 5 X[75] - 8 X[4399], 11 X[75] - 8 X[7228], X[75] - 4 X[17362], X[75] + 2 X[17363], 5 X[75] - 2 X[17364], 7 X[75] - 4 X[17365], 5 X[75] - 4 X[49727], 11 X[4399] - 5 X[7228], 2 X[4399] - 5 X[17362], 4 X[4399] + 5 X[17363], 4 X[4399] - X[17364], 14 X[4399] - 5 X[17365], 4 X[4399] - 5 X[29617], 2 X[7228] - 11 X[17362], 4 X[7228] + 11 X[17363], 20 X[7228] - 11 X[17364], 14 X[7228] - 11 X[17365], 4 X[7228] - 11 X[29617], 10 X[7228] - 11 X[49727], 2 X[17362] + X[17363], 10 X[17362] - X[17364], 7 X[17362] - X[17365], 5 X[17362] - X[49727], 5 X[17363] + X[17364], 7 X[17363] + 2 X[17365], 5 X[17363] + 2 X[49727], 7 X[17364] - 10 X[17365], X[17364] - 5 X[29617], 2 X[17365] - 7 X[29617], 5 X[17365] - 7 X[49727], 5 X[29617] - 2 X[49727], X[3644] - 4 X[4416], 8 X[3686] - 5 X[4687], 4 X[3686] - X[17377], 5 X[4687] - 2 X[17377], 5 X[4687] - 4 X[29574], 4 X[3879] - 7 X[4751], 4 X[4688] - 3 X[39704], 8 X[4755] - 9 X[41848], X[4764] + 2 X[17347], 4 X[4889] - 7 X[27268], 5 X[17331] - 2 X[17388], 5 X[17331] - 4 X[49737], 4 X[17390] - 5 X[29622]

X(50077) lies on these lines: {1, 31144}, {2, 319}, {6, 29615}, {8, 1992}, {44, 20055}, {69, 4402}, {75, 524}, {86, 4034}, {145, 17256}, {190, 3632}, {192, 28329}, {193, 5564}, {239, 599}, {320, 11160}, {391, 17315}, {519, 751}, {594, 8584}, {597, 3661}, {749, 4685}, {894, 15534}, {1278, 4912}, {1449, 32025}, {1654, 17393}, {2345, 5032}, {3187, 31143}, {3416, 50030}, {3589, 48640}, {3629, 48628}, {3630, 48627}, {3631, 48637}, {3644, 4416}, {3662, 22165}, {3679, 46922}, {3686, 4687}, {3705, 22329}, {3707, 49761}, {3875, 17329}, {3879, 4751}, {4033, 27424}, {4357, 49543}, {4360, 17328}, {4361, 15533}, {4371, 7321}, {4384, 17387}, {4385, 7812}, {4389, 49770}, {4393, 4690}, {4445, 17121}, {4478, 17368}, {4643, 20016}, {4688, 39704}, {4700, 17354}, {4715, 4740}, {4755, 41848}, {4764, 17132}, {4852, 17249}, {4856, 17381}, {4889, 27268}, {4971, 17333}, {5014, 37857}, {5847, 49720}, {5860, 32802}, {5861, 32801}, {6144, 17116}, {6542, 17335}, {7081, 11163}, {7227, 41149}, {11008, 32087}, {16666, 29593}, {16706, 21356}, {16816, 17374}, {16833, 17297}, {16834, 17271}, {17117, 40341}, {17240, 17349}, {17251, 29584}, {17259, 29620}, {17264, 37654}, {17270, 17400}, {17277, 17386}, {17287, 17370}, {17294, 17342}, {17295, 17341}, {17299, 17336}, {17301, 40891}, {17330, 17389}, {17331, 17388}, {17366, 48638}, {17367, 20582}, {17369, 20583}, {17390, 29622}, {20090, 28634}, {28558, 49474}, {28562, 49459}, {29623, 31285}, {31145, 49698}, {35578, 42696}, {37785, 40713}, {37786, 40714}, {42334, 48809}, {48310, 48635}

X(50077) = midpoint of X(17363) and X(29617)
X(50077) = reflection of X(i) in X(j) for these {i,j}: {75, 29617}, {3644, 49748}, {4664, 17346}, {17364, 49727}, {17377, 29574}, {17388, 49737}, {17389, 17330}, {29574, 3686}, {29617, 17362}, {49727, 4399}, {49748, 4416}
X(50077) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {239, 17360, 17227}, {319, 3759, 17228}, {319, 5839, 3759}, {3686, 17377, 4687}, {4371, 20080, 7321}, {4393, 4690, 17250}, {4399, 17364, 75}, {4445, 17121, 17371}, {4852, 17343, 17249}, {16834, 17271, 17399}, {17348, 17373, 17241}, {17349, 17372, 17240}, {17362, 17363, 75}


X(50078) = X(8)X(536)∩X(72)X(519)

Barycentrics    a^3*b + 2*a^2*b^2 + a*b^3 + a^3*c - 4*a^2*b*c + 5*a*b^2*c - 2*b^3*c + 2*a^2*c^2 + 5*a*b*c^2 - 4*b^2*c^2 + a*c^3 - 2*b*c^3 : :
X(50078) = 4 X[596] - 7 X[4002], 3 X[4731] - 2 X[24165], X[10914] + 2 X[24068], 5 X[25917] - 6 X[42056]

X(50078) lies on these lines: {1, 4009}, {2, 341}, {8, 536}, {10, 4003}, {65, 537}, {72, 519}, {529, 7667}, {551, 25079}, {596, 4002}, {986, 3679}, {3241, 8834}, {3666, 4737}, {3714, 31136}, {3744, 13735}, {3752, 4723}, {3880, 32925}, {3895, 17262}, {3902, 22034}, {3920, 50064}, {3971, 5919}, {4421, 22345}, {4487, 17147}, {4664, 37548}, {4688, 4968}, {4692, 31993}, {4711, 32860}, {4731, 24165}, {4884, 6735}, {4929, 5727}, {5724, 49527}, {9369, 37539}, {9371, 34619}, {10459, 31161}, {10914, 24068}, {11236, 42753}, {17752, 31349}, {23764, 48077}, {25917, 42056}, {28580, 34720}, {30145, 48826}, {31145, 42044}, {33908, 49476}, {34687, 34691}, {37829, 49609}, {42083, 49462}, {48806, 50048}

X(50078) = midpoint of X(31145) and X(42044)
X(50078) = reflection of X(i) in X(j) for these {i,j}: {3241, 35652}, {5919, 3971}, {31165, 42054}, {32860, 4711}, {42051, 3679}
X(50078) = {X(3057),X(49981)}-harmonic conjugate of X(72)


X(50079) = X(1)X(2)∩X(69)X(536)

Barycentrics    3*a^2 + 2*a*b - 3*b^2 + 2*a*c - 4*b*c - 3*c^2 : :
X(50079) = 3 X[2] - 4 X[29594], 7 X[2] - 4 X[49543], 5 X[3616] - 8 X[49560], 5 X[3617] - 2 X[49495], X[3621] + 2 X[49451], 11 X[5550] - 8 X[49477], 7 X[9780] - 4 X[49488], X[16834] - 3 X[17294], 7 X[16834] - 6 X[49543], 3 X[17294] - 2 X[29594], 7 X[17294] - 2 X[49543], X[20050] - 4 X[49458], 7 X[29594] - 3 X[49543], 5 X[69] - 2 X[17276], X[69] + 2 X[17299], 7 X[69] - 4 X[17345], X[69] - 4 X[17372], X[17276] + 5 X[17299], 7 X[17276] - 10 X[17345], X[17276] - 10 X[17372], 7 X[17299] + 2 X[17345], X[17299] + 2 X[17372], X[17345] - 7 X[17372], X[193] - 4 X[2321], 3 X[599] - 2 X[49741], 5 X[3618] - 8 X[17229], 7 X[3619] - 4 X[4852], 5 X[3620] - 2 X[3875], 2 X[3729] + X[20080], 4 X[4133] - X[24280], 4 X[4527] - X[24695], X[11008] - 4 X[17351], 2 X[17301] - 3 X[21356]

X(50079) lies on these lines: {1, 2}, {6, 28337}, {7, 4740}, {69, 536}, {86, 4916}, {192, 32099}, {193, 2321}, {319, 4664}, {329, 39351}, {344, 17309}, {346, 17363}, {391, 17242}, {524, 49721}, {527, 11160}, {537, 41842}, {545, 15533}, {599, 4971}, {966, 17315}, {1043, 16046}, {1268, 28641}, {1278, 21296}, {1909, 42029}, {1992, 4725}, {2345, 17377}, {2784, 9778}, {2809, 4661}, {3208, 3929}, {3618, 17229}, {3619, 4852}, {3620, 3875}, {3672, 17287}, {3729, 20080}, {3879, 4007}, {3913, 21511}, {3928, 4050}, {3945, 48628}, {3948, 25278}, {3969, 26065}, {3975, 20942}, {4000, 17295}, {4052, 38259}, {4060, 10436}, {4072, 25728}, {4133, 24280}, {4371, 17234}, {4399, 17311}, {4402, 17232}, {4419, 17360}, {4421, 4433}, {4445, 17321}, {4452, 17288}, {4460, 17302}, {4461, 17364}, {4464, 17306}, {4478, 16777}, {4527, 24695}, {4643, 4727}, {4648, 5564}, {4688, 4851}, {4755, 17275}, {4869, 17117}, {4889, 17303}, {4910, 17384}, {4969, 17269}, {4980, 34284}, {5232, 17319}, {5839, 17233}, {5881, 7406}, {7229, 20090}, {8666, 21537}, {8715, 21508}, {11008, 17351}, {12513, 21495}, {15534, 49726}, {16884, 48636}, {17133, 17274}, {17240, 37650}, {17264, 37654}, {17268, 37681}, {17300, 32087}, {17301, 21356}, {17374, 42697}, {17375, 31995}, {17755, 49689}, {19738, 26035}, {20533, 31349}, {21281, 42051}, {22165, 28309}, {24524, 42034}, {25298, 28809}, {26104, 48639}, {27480, 28581}, {28333, 40341}, {28605, 33936}, {32850, 39721}, {48821, 49486}

X(50079) = reflection of X(i) in X(j) for these {i,j}: {2, 17294}, {1992, 17281}, {15534, 49726}, {16834, 29594}, {49486, 48821}, {49747, 22165}
X(50079) = anticomplement of X(16834)
X(50079) = X(6016)-anticomplementary conjugate of X(513)
X(50079) = crosssum of X(1015) and X(8657)
X(50079) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3679, 48853}, {2, 145, 29584}, {2, 29577, 29579}, {2, 29583, 29600}, {2, 29584, 26626}, {2, 29585, 29597}, {2, 29616, 29577}, {2, 31145, 29617}, {8, 3241, 48849}, {8, 6542, 17316}, {10, 29597, 2}, {10, 29605, 29585}, {145, 3661, 26626}, {239, 29577, 2}, {239, 29616, 29579}, {319, 17314, 17257}, {3621, 29616, 239}, {3625, 49765, 4384}, {3661, 29584, 2}, {3679, 29574, 2}, {3912, 16833, 2}, {4384, 29600, 2}, {4384, 49765, 29583}, {4445, 17388, 17321}, {4668, 29602, 24603}, {4678, 29624, 29576}, {5222, 20053, 20016}, {5564, 17386, 4648}, {5839, 17233, 26685}, {6542, 20055, 8}, {16815, 29618, 29621}, {16834, 17294, 29594}, {16834, 29594, 2}, {17230, 20016, 5222}, {17299, 17372, 69}, {17309, 17362, 344}, {17310, 29617, 2}, {17389, 29615, 2}, {20050, 29611, 4393}, {29576, 29619, 29624}, {29588, 29593, 3616}


X(50080) = X(1)X(528)∩X(69)X(519)

Barycentrics    a^3 - 4*a^2*b - a*b^2 - 2*b^3 - 4*a^2*c + 2*b^2*c - a*c^2 + 2*b*c^2 - 2*c^3 : :
X(50080) = 2 X[65] + X[15076], X[69] + 2 X[4780], 4 X[3663] - X[16496], X[3875] + 2 X[4660], X[3751] - 4 X[3755], X[3751] + 2 X[24248], 2 X[3755] + X[24248], 2 X[17281] - 3 X[19875], 3 X[19875] - 4 X[48821], 5 X[1698] - 2 X[5695], 5 X[1698] - 4 X[17359], 7 X[3624] - 4 X[49484], X[3632] + 2 X[49453], X[3633] - 4 X[49463], X[3729] - 4 X[4085], 5 X[3763] - 2 X[49485], 4 X[3821] - X[3886], 8 X[3946] - 5 X[16491], X[4655] + 2 X[4743], 2 X[4655] + X[49495], 4 X[4743] - X[49495], 4 X[17382] - 3 X[25055], 3 X[25055] - 2 X[48805], 4 X[17235] - X[49460], 5 X[17304] - 2 X[32941], 2 X[17345] + X[49680], 3 X[38047] - 2 X[49726] a

X(50080) lies on these lines: {1, 528}, {2, 968}, {6, 28534}, {8, 17254}, {30, 1721}, {42, 31164}, {43, 31142}, {65, 15076}, {69, 519}, {75, 48851}, {165, 33135}, {200, 33154}, {516, 16475}, {518, 49747}, {527, 3751}, {536, 984}, {545, 47359}, {740, 17294}, {752, 16834}, {982, 31146}, {988, 45700}, {1040, 3058}, {1213, 3731}, {1266, 36479}, {1698, 5695}, {1711, 3929}, {2783, 5587}, {2999, 33095}, {3158, 33152}, {3241, 4310}, {3416, 4971}, {3624, 49484}, {3632, 49453}, {3633, 49463}, {3666, 31140}, {3672, 48856}, {3729, 4085}, {3749, 19785}, {3750, 23681}, {3763, 49485}, {3821, 3886}, {3870, 33145}, {3931, 17528}, {3946, 16491}, {4000, 47357}, {4312, 4649}, {4357, 48802}, {4419, 49772}, {4429, 17264}, {4442, 29828}, {4512, 33132}, {4645, 17389}, {4646, 11236}, {4654, 42042}, {4655, 4743}, {4659, 29659}, {4677, 28503}, {4693, 17284}, {4702, 17290}, {4709, 17270}, {4725, 49486}, {4850, 10707}, {4854, 5268}, {4859, 15668}, {4862, 49490}, {5231, 17593}, {5256, 33094}, {5263, 17399}, {5266, 34707}, {5429, 29032}, {5902, 44670}, {6174, 17720}, {7232, 49475}, {9580, 29821}, {10389, 33147}, {10436, 48822}, {10712, 26242}, {13161, 34619}, {16831, 24693}, {17151, 33076}, {17156, 32950}, {17235, 49460}, {17272, 49459}, {17296, 49469}, {17297, 49470}, {17298, 49471}, {17304, 32941}, {17320, 48854}, {17345, 49680}, {17346, 24723}, {17396, 38314}, {17591, 24392}, {17889, 37553}, {28297, 49524}, {28530, 38047}, {28609, 42043}, {29327, 36551}, {29573, 31151}, {29658, 35445}, {31162, 48902}, {33068, 39594}, {33128, 35258}, {34606, 50065}, {34612, 50068}, {37756, 49746}, {41312, 49725}, {44663, 48842}, {47358, 49741}, {48812, 48831}

X(50080) = reflection of X(i) in X(j) for these {i,j}: {1, 17301}, {3679, 48829}, {5695, 17359}, {17281, 48821}, {47358, 49741}, {48805, 17382}, {48812, 48831}
X(50080) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3696, 17251, 3679}, {3755, 24248, 3751}, {3914, 17594, 17064}, {4655, 4743, 49495}, {17281, 48821, 19875}, {17320, 49720, 48854}, {17382, 48805, 25055}


X(50081) = X(2)X(319)∩X(69)X(4715)

Barycentrics    2*a^2 + a*b - 4*b^2 + a*c - 2*b*c - 4*c^2 : :
X(50081) = X[69] + 2 X[17229], 2 X[69] + X[17351], 4 X[17229] - X[17351], 5 X[141] - 2 X[3946], 4 X[141] - X[4852], 2 X[141] + X[17372], 8 X[3946] - 5 X[4852], 4 X[3946] + 5 X[17372], 4 X[3946] - 5 X[17382], X[4852] + 2 X[17372], 3 X[599] - X[17274], 5 X[599] - X[49747], X[17274] + 3 X[17294], 5 X[17274] - 3 X[49747], 5 X[17294] + X[49747], X[2321] + 2 X[3631], 2 X[2321] + X[17345], 4 X[3631] - X[17345], X[49484] - 4 X[49560], 2 X[3416] + X[49467], 5 X[3620] - 2 X[17235], 5 X[3620] + X[17299], 2 X[17235] + X[17299], X[3630] + 2 X[17355], X[16834] - 3 X[21358], 5 X[17286] + X[40341], X[17301] - 3 X[21356]

X(50081) lies on these lines: {1, 25503}, {2, 319}, {8, 3834}, {10, 49738}, {37, 17252}, {44, 17230}, {69, 4715}, {75, 31138}, {141, 519}, {142, 4478}, {524, 17359}, {527, 22165}, {536, 599}, {545, 2321}, {551, 17390}, {594, 17376}, {752, 49484}, {903, 4686}, {1654, 16590}, {2345, 4795}, {3241, 4657}, {3416, 49467}, {3620, 17235}, {3625, 4395}, {3626, 34824}, {3630, 17355}, {3632, 17290}, {3661, 4670}, {3663, 28309}, {3664, 10022}, {3679, 3739}, {3686, 41141}, {3696, 31151}, {3706, 31134}, {3723, 17238}, {3879, 17385}, {3912, 4690}, {3936, 27747}, {4000, 31145}, {4007, 4726}, {4034, 17265}, {4043, 39996}, {4058, 7228}, {4060, 7263}, {4361, 4677}, {4364, 49765}, {4370, 4416}, {4389, 4727}, {4393, 48639}, {4399, 21255}, {4405, 4701}, {4479, 18144}, {4643, 29616}, {4648, 28633}, {4681, 17272}, {4688, 17297}, {4698, 17270}, {4708, 17316}, {4718, 17273}, {4739, 17298}, {4755, 17251}, {4869, 28634}, {4908, 17233}, {4910, 20049}, {4969, 29596}, {5847, 48810}, {6542, 17237}, {6687, 29579}, {15492, 17268}, {15668, 19875}, {16666, 17292}, {16668, 17371}, {16669, 17285}, {16671, 17358}, {16706, 40891}, {16814, 17240}, {16816, 31243}, {16834, 21358}, {17133, 49741}, {17227, 20055}, {17279, 32099}, {17286, 40341}, {17301, 21356}, {17312, 31238}, {17325, 29605}, {17326, 46845}, {17327, 25055}, {17336, 17488}, {17346, 29577}, {17356, 17362}, {17357, 17363}, {17375, 39704}, {17377, 17384}, {17379, 48640}, {17387, 29593}, {17389, 41311}, {17395, 49761}, {20050, 26104}, {20530, 31137}, {20582, 28337}, {21264, 31136}, {27776, 31143}, {28297, 41152}, {28503, 49511}, {28581, 48829}, {29575, 31144}, {29600, 49731}, {29619, 39260}

X(50081) = midpoint of X(i) and X(j) for these {i,j}: {69, 17281}, {599, 17294}, {17372, 17382}
X(50081) = reflection of X(i) in X(j) for these {i,j}: {4852, 17382}, {17281, 17229}, {17351, 17281}, {17359, 29594}, {17382, 141}
X(50081) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 17229, 17351}, {141, 17372, 4852}, {319, 17231, 17348}, {2321, 3631, 17345}, {3620, 17299, 17235}, {3661, 17374, 4670}, {3679, 17296, 17313}, {3679, 17313, 3739}, {3879, 48635, 17385}, {4007, 7232, 4726}, {4445, 17296, 3739}, {4445, 17313, 3679}, {4701, 17067, 4405}, {4851, 17239, 28639}, {4908, 17344, 17333}, {17228, 17373, 1100}, {17230, 17360, 44}, {17233, 17333, 4908}, {17238, 17386, 3723}, {17240, 17343, 16814}, {17251, 29573, 4755}, {17270, 17311, 4698}, {17271, 17295, 17310}, {17271, 17310, 37}, {17272, 17309, 4681}, {17287, 17295, 37}, {17287, 17310, 17271}, {17297, 29615, 4688}, {17312, 32025, 31238}, {17346, 29577, 41310}, {17377, 48634, 17384}


X(50082) = X(2)X(319)∩X(8)X(44)

Barycentrics    4*a^2 - a*b - 2*b^2 - a*c - 4*b*c - 2*c^2 : :
X(50082) = X[37] - 4 X[3686], 2 X[37] - 3 X[16590], X[37] + 2 X[17362], 5 X[37] - 2 X[17388], 8 X[3686] - 3 X[16590], 2 X[3686] + X[17362], 10 X[3686] - X[17388], 3 X[16590] - 4 X[17330], 3 X[16590] + 4 X[17362], 15 X[16590] - 4 X[17388], 5 X[17330] - X[17388], 5 X[17362] + X[17388], 5 X[4688] - 4 X[49733], X[17333] - 3 X[17346], X[17333] + 3 X[29617], 5 X[17333] - 3 X[49748], 5 X[17346] - X[49748], 5 X[29617] + X[49748], 2 X[4399] + X[4416], 4 X[4399] - X[4686], 2 X[4416] + X[4686], X[1278] + 3 X[17488], 2 X[3739] + X[17363], 2 X[3879] - 5 X[31238], 5 X[31238] - 4 X[49738], 2 X[4681] - 5 X[17331], 5 X[4687] - 2 X[4889], 4 X[4698] - X[17377], 5 X[4699] - 3 X[39704], X[4718] - 4 X[17332], 2 X[4726] + X[17347], 4 X[4739] - X[17364], 7 X[27268] - 9 X[41848]

X(50082) lies on these lines: {2, 319}, {6, 3679}, {8, 44}, {9, 4677}, {10, 4969}, {37, 519}, {45, 3632}, {69, 31138}, {75, 4715}, {141, 41140}, {193, 4795}, {239, 4690}, {391, 16814}, {524, 4688}, {536, 17333}, {545, 4399}, {551, 1213}, {573, 28204}, {594, 4669}, {599, 16833}, {752, 3696}, {903, 17117}, {966, 3241}, {1266, 4405}, {1278, 17488}, {1333, 4921}, {1386, 42334}, {1449, 19875}, {1654, 4852}, {1766, 34718}, {2238, 31136}, {2321, 4370}, {2325, 4701}, {2345, 16671}, {3214, 5109}, {3244, 39260}, {3247, 34747}, {3578, 42051}, {3625, 3707}, {3626, 4700}, {3629, 4967}, {3630, 24199}, {3633, 16672}, {3634, 4982}, {3656, 5816}, {3739, 17363}, {3828, 4856}, {3834, 16816}, {3875, 24441}, {3879, 31238}, {4007, 16885}, {4060, 17340}, {4285, 10459}, {4361, 17274}, {4364, 49770}, {4371, 17276}, {4377, 25298}, {4384, 17313}, {4393, 4708}, {4445, 17357}, {4478, 17353}, {4545, 17355}, {4664, 28329}, {4668, 16670}, {4681, 17331}, {4685, 21858}, {4687, 4889}, {4698, 17377}, {4699, 39704}, {4718, 17332}, {4726, 17347}, {4739, 17364}, {4740, 4912}, {4745, 5750}, {4755, 17389}, {4816, 4873}, {4898, 16677}, {5257, 46845}, {5288, 19297}, {5564, 17351}, {5847, 49725}, {6144, 25590}, {6173, 15533}, {6687, 17230}, {10914, 21864}, {16521, 50016}, {16522, 36531}, {16668, 17303}, {16723, 29767}, {16834, 17251}, {16884, 25055}, {17121, 17385}, {17133, 49742}, {17229, 17342}, {17235, 17343}, {17256, 20016}, {17270, 17384}, {17277, 17310}, {17278, 32099}, {17287, 17356}, {17294, 41310}, {17334, 28301}, {17335, 20055}, {17337, 41141}, {17359, 29615}, {17379, 28633}, {17395, 50019}, {21866, 34612}, {21872, 34720}, {21873, 31165}, {21949, 31134}, {27268, 41848}, {28337, 29574}, {28503, 49515}, {28580, 49468}, {28581, 49746}, {29584, 31144}, {29601, 31285}, {31137, 37673}, {31139, 40341}, {41816, 50063}

X(50082) = midpoint of X(i) and X(j) for these {i,j}: {17330, 17362}, {17346, 29617}, {17363, 17378}
X(50082) = reflection of X(i) in X(j) for these {i,j}: {37, 17330}, {3879, 49738}, {17330, 3686}, {17378, 3739}, {17389, 4755}, {29574, 49731}
X(50082) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 37654, 17281}, {10, 4969, 16666}, {37, 17330, 16590}, {45, 3632, 4727}, {239, 4690, 17237}, {239, 17271, 17382}, {319, 17348, 17231}, {391, 17299, 16814}, {1654, 40891, 17320}, {3625, 3707, 3943}, {3626, 4700, 17369}, {3686, 17362, 37}, {4399, 4416, 4686}, {4690, 17382, 17271}, {5839, 17275, 1100}, {16816, 17360, 3834}, {16834, 17251, 41311}, {17121, 32025, 17385}, {17271, 17382, 17237}, {17281, 37654, 44}, {17320, 40891, 4852}


X(50083) = X(2)X(3702)∩X(65)X(519)

Barycentrics    (b + c)*(-a^3 - 2*a^2*b - a*b^2 - 2*a^2*c + 6*a*b*c + 2*b^2*c - a*c^2 + 2*b*c^2) : :
X(50083) = 2 X[2901] - 5 X[3698], 4 X[3159] - 7 X[3983], 5 X[3697] - 4 X[4096], 3 X[3921] - 2 X[3971], 5 X[17609] - 8 X[24176], 3 X[19875] - 2 X[35652]

X(50083) lies on these lines: {1, 19290}, {2, 3702}, {8, 32950}, {10, 3175}, {37, 4714}, {65, 519}, {72, 4685}, {517, 32860}, {536, 984}, {551, 37593}, {740, 3753}, {968, 11357}, {995, 4706}, {1089, 21896}, {1214, 34625}, {1278, 4737}, {1402, 16371}, {2901, 3698}, {3159, 3983}, {3241, 3896}, {3303, 19286}, {3579, 27368}, {3697, 4096}, {3714, 3987}, {3902, 17495}, {3914, 16052}, {3921, 3971}, {3967, 31855}, {3992, 22034}, {4047, 37654}, {4052, 21075}, {4234, 32932}, {4361, 5119}, {4365, 4695}, {4642, 5295}, {4646, 4647}, {4686, 4692}, {4711, 28555}, {4717, 30818}, {4868, 31993}, {4975, 16602}, {5835, 48845}, {5902, 28581}, {10371, 48834}, {10691, 41340}, {11113, 28580}, {11239, 19819}, {11346, 32929}, {12514, 19723}, {16351, 17594}, {17156, 36279}, {17530, 49636}, {17609, 24176}, {19875, 35652}, {24390, 49554}, {28612, 37548}, {37589, 39766}, {41015, 48864}, {48812, 50044}, {48831, 50048}, {48832, 50049}

X(50083) = reflection of X(i) in X(j) for these {i,j}: {72, 4685}, {3175, 10}, {3555, 42055}


X(50084) = X(2)X(3723)∩X(8)X(41313)

Barycentrics    2*a^2 + 3*a*b - 4*b^2 + 3*a*c - 6*b*c - 4*c^2 : :
X(50084) = X[4852] - 4 X[17229], X[4852] + 2 X[17299], 2 X[17229] + X[17299], 2 X[597] - 3 X[17359], 4 X[2321] - X[17351], 2 X[2321] + X[17372], X[17351] + 2 X[17372], 5 X[599] - 3 X[17274], X[599] - 3 X[17294], 7 X[599] - 3 X[49747], X[17274] - 5 X[17294], 7 X[17274] - 5 X[49747], 7 X[17294] - X[49747], X[1992] - 3 X[17281], X[3875] - 3 X[21358], 4 X[4535] - X[4663], 3 X[17382] - 4 X[20582], 2 X[20582] - 3 X[29594], 2 X[17235] - 3 X[21356], 5 X[17286] - 3 X[47352], 3 X[19875] - X[49486], 3 X[38087] - X[49495], X[49463] - 4 X[49560]

X(50084) lies on these lines: {2, 3723}, {8, 41313}, {37, 29615}, {44, 20055}, {69, 4912}, {141, 17133}, {321, 20956}, {519, 597}, {524, 2321}, {536, 599}, {594, 28639}, {671, 24076}, {1992, 4725}, {2345, 4889}, {2796, 4527}, {3175, 31143}, {3589, 49543}, {3625, 4422}, {3632, 17269}, {3661, 4727}, {3679, 4755}, {3729, 15533}, {3739, 4007}, {3834, 29616}, {3875, 21358}, {3943, 4690}, {3950, 4478}, {4058, 17390}, {4060, 17243}, {4072, 17332}, {4431, 17376}, {4445, 4681}, {4535, 4663}, {4664, 27495}, {4665, 49765}, {4669, 49731}, {4670, 6542}, {4677, 15485}, {4686, 17295}, {4688, 17310}, {4715, 11160}, {4718, 17287}, {4726, 17296}, {4739, 17311}, {4740, 31138}, {4898, 17327}, {4908, 17346}, {4971, 17382}, {5461, 21081}, {8584, 17355}, {17132, 17345}, {17231, 37756}, {17233, 17338}, {17235, 21356}, {17239, 17314}, {17286, 47352}, {17344, 49748}, {17369, 49761}, {17385, 17388}, {19875, 49486}, {20583, 28337}, {25498, 48636}, {28313, 49741}, {28538, 49484}, {28562, 49485}, {29610, 39260}, {29620, 31238}, {34641, 38210}, {38087, 49495}, {49463, 49560}

X(50084) = midpoint of X(i) and X(j) for these {i,j}: {2, 17299}, {3729, 15533}, {4677, 49460}
X(50084) = reflection of X(i) in X(j) for these {i,j}: {2, 17229}, {4852, 2}, {8584, 17355}, {17345, 22165}, {17382, 29594}, {49543, 3589}
X(50084) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2321, 17372, 17351}, {4007, 17309, 3739}, {17229, 17299, 4852}, {17233, 29617, 41310}, {29617, 41310, 17348}


X(50085) = X(2)X(3723)∩X(8)X(17237)

Barycentrics    4*a^2 + a*b - 2*b^2 + a*c - 8*b*c - 2*c^2 : :
X(50085) = X[37] - 4 X[4399], 3 X[37] - 4 X[49731], 3 X[4399] - X[49731], 3 X[4688] - 2 X[17392], X[4686] + 2 X[17362], 3 X[17333] - 5 X[17346], X[17333] - 5 X[29617], 7 X[17333] - 5 X[49748], X[17346] - 3 X[29617], 7 X[17346] - 3 X[49748], 7 X[29617] - X[49748], 4 X[3686] - X[4718], 2 X[4664] - 3 X[16590], 5 X[4699] - 2 X[4889], 2 X[4726] + X[17363], 4 X[4739] - X[17377], 2 X[17388] - 5 X[31238]

X(50085) lies on these lines: {2, 3723}, {8, 17237}, {37, 4399}, {75, 4725}, {239, 17359}, {519, 3696}, {527, 4686}, {528, 49468}, {536, 17333}, {599, 4677}, {1086, 3625}, {1100, 42696}, {1278, 28322}, {3621, 4675}, {3626, 17395}, {3632, 6173}, {3679, 4716}, {3686, 4718}, {3739, 17389}, {3834, 20055}, {3875, 17251}, {3879, 49733}, {3912, 4405}, {4007, 17357}, {4060, 17366}, {4085, 4669}, {4361, 17231}, {4384, 4727}, {4416, 28297}, {4431, 16669}, {4464, 46845}, {4664, 16590}, {4665, 16666}, {4668, 17325}, {4670, 20016}, {4685, 22289}, {4690, 17160}, {4699, 4889}, {4715, 4740}, {4726, 17363}, {4739, 17377}, {16833, 41310}, {17117, 17297}, {17133, 17330}, {17151, 17344}, {17239, 17399}, {17264, 17348}, {17311, 38093}, {17369, 50019}, {17382, 29615}, {17388, 31238}, {24603, 39260}, {28534, 49474}, {29616, 31243}, {31138, 31145}, {34824, 49761}, {37595, 41821}, {48851, 49486}

X(50085) = midpoint of X(17363) and X(49722)
X(50085) = reflection of X(i) in X(j) for these {i,j}: {3879, 49733}, {4718, 49742}, {17389, 3739}, {49722, 4726}, {49742, 3686}
X(50085) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3632, 17119, 17374}, {4665, 49770, 16666}


X(50086) = X(1)X(4688)∩X(2)X(740)

Barycentrics    2*a^2*b - a*b^2 + 2*a^2*c - 3*a*b*c - 4*b^2*c - a*c^2 - 4*b*c^2 : :
X(50086) = X[1] + 2 X[49468], 5 X[8] - 2 X[49449], 2 X[8] + X[49493], 4 X[8] - X[49503], 5 X[4740] + 2 X[49449], 4 X[4740] + X[49503], 4 X[49449] + 5 X[49493], 8 X[49449] - 5 X[49503], 2 X[49493] + X[49503], 4 X[10] - X[49452], 2 X[37] - 3 X[19875], X[75] + 2 X[4709], 2 X[75] + X[49459], 5 X[75] - 2 X[49479], 4 X[75] - X[49490], 4 X[4709] + X[31178], 4 X[4709] - X[49459], 5 X[4709] + X[49479], 8 X[4709] + X[49490], 5 X[31178] - 4 X[49479], 5 X[49459] + 4 X[49479], 2 X[49459] + X[49490], 8 X[49479] - 5 X[49490], X[192] - 4 X[4732], X[984] - 4 X[3696], 5 X[984] - 2 X[49445], X[984] + 2 X[49474], 7 X[984] - 4 X[49523], 5 X[3679] - X[49445], 7 X[3679] - 2 X[49523], 10 X[3696] - X[49445], 2 X[3696] + X[49474], 7 X[3696] - X[49523], X[49445] + 5 X[49474], 7 X[49445] - 10 X[49523], 7 X[49474] + 2 X[49523], 4 X[551] - 5 X[40328], 5 X[40328] - 2 X[49470], X[1278] + 2 X[49457], 2 X[1278] + X[49517], 4 X[49457] - X[49517], 5 X[1698] - 4 X[4755], 5 X[1698] - 2 X[49462], 4 X[24325] - X[49678], 5 X[3617] - 2 X[49456], X[3621] + 2 X[49491], 2 X[3625] + X[49499], 4 X[3626] - X[49447], X[3632] + 2 X[49483], X[3644] - 6 X[38098], 4 X[3739] - 3 X[25055], 4 X[3739] - X[49469], 3 X[25055] - X[49469], 5 X[4668] - 2 X[49515], 2 X[4686] + X[49448], 5 X[4699] - 3 X[38314], 5 X[4699] - 2 X[49471], 3 X[38314] - 2 X[49471], 4 X[4726] - X[49532], 4 X[4739] - X[49475], 4 X[4746] - X[49508], 7 X[4751] - 6 X[19883], X[4764] + 2 X[49520], 7 X[19876] - 2 X[49461], 2 X[24349] + X[49689]

X(50086) lies on these lines: {1, 4688}, {2, 740}, {8, 537}, {10, 4664}, {37, 19875}, {75, 519}, {76, 4783}, {192, 4732}, {238, 16833}, {518, 4677}, {524, 49531}, {536, 984}, {551, 40328}, {594, 48821}, {726, 4669}, {742, 47359}, {752, 29617}, {982, 31136}, {1278, 28554}, {1698, 4755}, {1738, 29594}, {1757, 49721}, {1921, 4479}, {2667, 48855}, {2796, 17346}, {3241, 24325}, {3617, 49456}, {3621, 49491}, {3625, 49499}, {3626, 49447}, {3632, 49483}, {3644, 38098}, {3654, 29010}, {3706, 17063}, {3739, 25055}, {3758, 50018}, {3828, 3993}, {3836, 29577}, {3875, 48854}, {4046, 17889}, {4061, 33101}, {4085, 48628}, {4361, 48805}, {4363, 50016}, {4384, 4693}, {4395, 29660}, {4431, 33165}, {4432, 16816}, {4457, 32937}, {4659, 49712}, {4660, 5564}, {4665, 29659}, {4668, 49515}, {4685, 42029}, {4686, 49448}, {4699, 38314}, {4706, 29827}, {4716, 16834}, {4726, 49532}, {4739, 49475}, {4745, 28522}, {4746, 49508}, {4751, 19883}, {4764, 49520}, {4780, 4967}, {4923, 24231}, {4971, 49725}, {5247, 50049}, {5295, 24440}, {5902, 44671}, {6542, 24693}, {7201, 11237}, {8298, 47037}, {13634, 24257}, {15485, 49485}, {16393, 27368}, {17116, 49497}, {17117, 32941}, {17160, 36480}, {17225, 49524}, {17230, 25351}, {17271, 49518}, {17294, 31151}, {17318, 36531}, {17320, 48809}, {17333, 28542}, {17360, 24692}, {19876, 49461}, {24248, 42334}, {24342, 49486}, {24349, 31145}, {24357, 28309}, {25124, 48858}, {28605, 31161}, {30271, 34628}, {31317, 40891}, {32087, 48849}, {33076, 42696}, {34641, 49450}, {34747, 49478}, {46922, 49488}

X(50086) = midpoint of X(i) and X(j) for these {i,j}: {8, 4740}, {3679, 49474}, {4688, 49468}, {24349, 31145}, {31178, 49459}
X(50086) = reflection of X(i) in X(j) for these {i,j}: {1, 4688}, {984, 3679}, {3241, 24325}, {3679, 3696}, {3993, 3828}, {4664, 10}, {31178, 75}, {34628, 30271}, {34747, 49478}, {49450, 34641}, {49452, 4664}, {49462, 4755}, {49470, 551}, {49490, 31178}, {49493, 4740}, {49678, 3241}, {49689, 31145}
X(50086) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 49493, 49503}, {75, 4709, 49459}, {75, 49459, 49490}, {1278, 49457, 49517}, {3696, 49474, 984}


X(50087) = X(6)X(519)∩X(8)X(45)

Barycentrics    a^2 + 2*a*b - 2*b^2 + 2*a*c - 4*b*c - 2*c^2 : :
X(50087) = X[6] - 4 X[2321], 11 X[6] - 8 X[4856], X[6] + 2 X[17299], 5 X[6] - 8 X[17355], 11 X[2321] - 2 X[4856], 2 X[2321] + X[17299], 5 X[2321] - 2 X[17355], 4 X[4856] - 11 X[17281], 4 X[4856] + 11 X[17299], 5 X[4856] - 11 X[17355], 5 X[17281] - 4 X[17355], 5 X[17299] + 4 X[17355], 4 X[32941] - X[49679], 2 X[49460] + X[49690], 3 X[599] - 2 X[17274], X[17274] - 3 X[17294], 4 X[17274] - 3 X[49747], 4 X[17294] - X[49747], 4 X[4527] - X[5695], X[3416] + 2 X[4133], X[3729] + 2 X[17372], 2 X[3729] + X[40341], 4 X[17372] - X[40341], 5 X[3763] - 2 X[3875], 5 X[3763] - 8 X[17229], 5 X[3763] - 4 X[17382], X[3875] - 4 X[17229], 4 X[3773] - X[49486], 4 X[4535] - X[49488], 2 X[4852] - 5 X[17286], 4 X[4852] - 7 X[47355], 10 X[17286] - 7 X[47355], X[6144] - 4 X[17351], 2 X[16834] - 3 X[47352], 4 X[17359] - 3 X[47352], 2 X[17301] - 3 X[21358], 3 X[21358] - 4 X[29594], 3 X[21356] - 2 X[49741], 3 X[38315] - 4 X[48810], X[49453] - 4 X[49560]

X(50087) lies on these lines: {1, 4727}, {2, 594}, {6, 519}, {8, 45}, {9, 4677}, {10, 16672}, {37, 3679}, {44, 3632}, {69, 545}, {75, 17309}, {141, 28309}, {145, 17369}, {190, 20055}, {192, 4445}, {219, 36910}, {239, 17269}, {319, 17262}, {344, 4399}, {346, 4370}, {524, 49721}, {527, 15533}, {536, 599}, {551, 4058}, {573, 34718}, {740, 48829}, {752, 4527}, {903, 1278}, {966, 16677}, {1030, 4421}, {1043, 3285}, {1086, 29616}, {1213, 16674}, {1449, 34747}, {1575, 31137}, {1761, 34626}, {1766, 28204}, {1992, 28337}, {2171, 11237}, {2276, 31136}, {2325, 3625}, {2329, 4289}, {2345, 3241}, {3178, 21690}, {3196, 8168}, {3242, 28503}, {3247, 19875}, {3416, 4133}, {3501, 5043}, {3621, 4969}, {3623, 26039}, {3624, 39260}, {3626, 4029}, {3633, 16666}, {3644, 17255}, {3654, 37499}, {3661, 17318}, {3672, 48635}, {3686, 4072}, {3707, 4701}, {3723, 4898}, {3729, 4715}, {3731, 16590}, {3763, 3875}, {3773, 49486}, {3879, 4795}, {3912, 17119}, {3930, 31140}, {3949, 31141}, {3950, 4060}, {3986, 38098}, {4006, 17556}, {4034, 16814}, {4053, 11236}, {4141, 41423}, {4286, 10449}, {4363, 6542}, {4365, 31134}, {4371, 17337}, {4395, 29579}, {4431, 4851}, {4452, 48632}, {4461, 17365}, {4472, 29585}, {4478, 17257}, {4479, 17786}, {4513, 17796}, {4515, 8609}, {4535, 49488}, {4659, 17374}, {4664, 17251}, {4665, 17316}, {4668, 16676}, {4670, 29605}, {4675, 49765}, {4681, 17270}, {4686, 17296}, {4688, 29573}, {4704, 32025}, {4718, 17272}, {4725, 15534}, {4726, 17298}, {4740, 17297}, {4745, 5257}, {4764, 17288}, {4788, 17273}, {4852, 17286}, {4916, 7229}, {5124, 11194}, {5564, 17242}, {5687, 19297}, {5839, 17340}, {5904, 21864}, {6144, 17351}, {7297, 17742}, {10022, 17390}, {11160, 28333}, {11238, 17452}, {15668, 17315}, {16371, 21773}, {16833, 41310}, {16834, 17359}, {17116, 17386}, {17117, 17240}, {17133, 17301}, {17151, 17231}, {17160, 17230}, {17228, 17323}, {17244, 31244}, {17245, 32087}, {17264, 29617}, {17276, 28301}, {17278, 41141}, {17279, 41140}, {17280, 40891}, {17319, 17327}, {17321, 48636}, {17324, 48640}, {17334, 32099}, {17347, 17487}, {17349, 41138}, {17354, 20016}, {17395, 29611}, {17398, 38314}, {17488, 25269}, {17532, 22021}, {17788, 42034}, {18145, 30473}, {21356, 49741}, {21689, 27558}, {21943, 31479}, {22165, 28297}, {25503, 29591}, {27739, 33077}, {29016, 36721}, {29577, 37756}, {29583, 34824}, {29619, 41847}, {31146, 44798}, {31151, 49474}, {36409, 49678}, {38315, 48810}, {49453, 49560}

X(50087) = midpoint of X(17281) and X(17299)
X(50087) = reflection of X(i) in X(j) for these {i,j}: {6, 17281}, {599, 17294}, {1992, 49726}, {3875, 17382}, {16834, 17359}, {17281, 2321}, {17301, 29594}, {17382, 17229}, {49747, 599}
X(50087) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 3943, 45}, {75, 17309, 17311}, {75, 17310, 17313}, {75, 17313, 31139}, {192, 4445, 17253}, {192, 17271, 24441}, {346, 17362, 16885}, {346, 31145, 37654}, {346, 37654, 4370}, {594, 17314, 16777}, {1278, 17295, 7232}, {2321, 17299, 6}, {2345, 17388, 16884}, {3632, 4873, 44}, {3644, 17287, 17255}, {3661, 17318, 17325}, {3729, 17372, 40341}, {3875, 17229, 3763}, {3950, 4060, 17275}, {3950, 17275, 16675}, {4361, 17233, 17267}, {4370, 17362, 37654}, {4370, 37654, 16885}, {4431, 4851, 17118}, {4445, 24441, 17271}, {4664, 29615, 17251}, {4852, 17286, 47355}, {5564, 17242, 17259}, {16834, 17359, 47352}, {17117, 17240, 17265}, {17160, 17230, 17290}, {17271, 24441, 17253}, {17301, 29594, 21358}, {17309, 17313, 17310}, {17310, 17313, 17311}, {17311, 31139, 17313}, {17315, 48628, 15668}, {17319, 48630, 17327}, {31145, 37654, 17362}


X(50088) = X(2)X(594)∩X(75)X(519)

Barycentrics    2*a^2 + a*b - b^2 + a*c - 5*b*c - c^2 : :
X(50088) = 7 X[75] - 4 X[3664], 5 X[75] - 2 X[3879], 4 X[75] - X[17377], 5 X[75] - 3 X[39704], 10 X[3664] - 7 X[3879], 16 X[3664] - 7 X[17377], 8 X[3664] - 7 X[17378], 20 X[3664] - 21 X[39704], 8 X[3879] - 5 X[17377], 4 X[3879] - 5 X[17378], 2 X[3879] - 3 X[39704], 5 X[17377] - 12 X[39704], 5 X[17378] - 6 X[39704], X[192] - 4 X[4399], 2 X[17333] - 3 X[17346], X[17333] - 3 X[29617], 4 X[17333] - 3 X[49748], 4 X[29617] - X[49748], 2 X[1278] + X[17347], X[1278] + 2 X[17362], X[17347] - 4 X[17362], X[3644] - 4 X[3686], 2 X[4416] + X[4764], 2 X[4681] - 3 X[16590], 2 X[4686] + X[17363], 5 X[4699] - 2 X[17388], 5 X[4699] - 4 X[49738], 2 X[4718] - 5 X[17331], 4 X[4726] - X[17364], 8 X[4739] - 5 X[17391], 7 X[4772] - 4 X[17390], X[4788] - 4 X[17332], 5 X[4821] - 2 X[17365], 2 X[17334] - 3 X[17488]

X(50088) lies on these lines: {2, 594}, {6, 40891}, {8, 4389}, {69, 903}, {75, 519}, {86, 3241}, {190, 37654}, {192, 4399}, {239, 17281}, {313, 4479}, {319, 4398}, {320, 3632}, {346, 41138}, {524, 4740}, {536, 17333}, {545, 1278}, {551, 4967}, {740, 49746}, {752, 49474}, {1086, 20055}, {1266, 3625}, {1654, 24441}, {2321, 17342}, {3244, 41847}, {3264, 17144}, {3621, 42697}, {3626, 17250}, {3644, 3686}, {3661, 17382}, {3663, 34641}, {3672, 32025}, {3679, 3875}, {3758, 49770}, {3759, 4431}, {3943, 4405}, {3945, 20049}, {3946, 48630}, {4007, 16706}, {4021, 4745}, {4034, 17258}, {4058, 17371}, {4060, 17228}, {4346, 20052}, {4357, 4669}, {4363, 20016}, {4370, 17349}, {4371, 17277}, {4393, 4665}, {4395, 17230}, {4402, 17283}, {4416, 4764}, {4452, 17273}, {4460, 28626}, {4464, 17394}, {4478, 17236}, {4664, 17133}, {4681, 16590}, {4686, 4715}, {4688, 17389}, {4699, 17388}, {4718, 17331}, {4726, 17364}, {4727, 17244}, {4739, 17391}, {4772, 17390}, {4788, 17332}, {4795, 17116}, {4821, 17365}, {4852, 17381}, {4908, 17348}, {4954, 37670}, {6542, 17119}, {7263, 17373}, {10022, 17379}, {16833, 17264}, {17117, 17234}, {17240, 41141}, {17269, 29590}, {17294, 37756}, {17300, 31139}, {17301, 29615}, {17319, 28634}, {17322, 19875}, {17334, 17488}, {17372, 31138}, {17383, 48636}, {17386, 24199}, {17387, 49761}, {17395, 29593}, {17788, 42029}, {21277, 34700}, {21296, 36588}, {25055, 28653}, {25590, 34747}, {27191, 29616}, {27739, 37759}, {28337, 49727}, {28635, 31248}, {34605, 39765}, {41816, 50071}

X(50088) = reflection of X(i) in X(j) for these {i,j}: {192, 17330}, {17330, 4399}, {17346, 29617}, {17377, 17378}, {17378, 75}, {17388, 49738}, {17389, 4688}, {49722, 4740}, {49748, 17346}
X(50088) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 17160, 4389}, {319, 17151, 4398}, {1266, 3625, 17360}, {1278, 17362, 17347}, {2321, 41140, 17342}, {3679, 3875, 17320}, {3679, 17320, 5224}, {3875, 5564, 5224}, {3879, 39704, 17378}, {3943, 4405, 16816}, {4677, 17151, 17274}, {4677, 17274, 319}, {4852, 48628, 17381}, {5564, 17320, 3679}, {17117, 17299, 17234}, {17342, 41140, 17352}


X(50089) = X(1)X(4527)∩X(2)X(2321)

Barycentrics    a^2 + 3*a*b - 2*b^2 + 3*a*c - 6*b*c - 2*c^2 : :
X(50089) = X[1] - 4 X[4527], 5 X[2] - 4 X[3946], 4 X[2] - 5 X[17286], 4 X[2321] - X[3875], 5 X[2321] - 2 X[3946], 8 X[2321] - 5 X[17286], 5 X[3875] - 8 X[3946], 2 X[3875] - 5 X[17286], 16 X[3946] - 25 X[17286], X[3886] - 4 X[4133], X[3729] + 2 X[17299], 4 X[599] - 3 X[17274], 2 X[599] - 3 X[17294], 5 X[599] - 3 X[49747], 5 X[17274] - 4 X[49747], 5 X[17294] - 2 X[49747], 4 X[597] - 3 X[16834], 2 X[597] - 3 X[17281], 5 X[1698] - 8 X[4535], 2 X[3663] - 3 X[21356], 4 X[3773] - 3 X[19875], 2 X[4688] - 3 X[27474], 2 X[4852] - 3 X[47352], 8 X[17229] - 5 X[17304], 4 X[17229] - 3 X[21358], 5 X[17304] - 6 X[21358], 3 X[17301] - 4 X[20582], 2 X[20583] - 3 X[49726], 3 X[25055] - 2 X[32921]

X(50089) lies on these lines: {1, 4527}, {2, 2321}, {6, 28329}, {9, 29617}, {69, 17132}, {75, 29573}, {86, 4898}, {190, 3632}, {192, 4007}, {239, 4873}, {319, 49748}, {321, 31179}, {344, 4072}, {519, 1992}, {524, 3729}, {527, 11160}, {536, 599}, {594, 41312}, {597, 4971}, {646, 17144}, {671, 43677}, {740, 3679}, {1266, 29616}, {1278, 17296}, {1698, 4535}, {3175, 21810}, {3633, 3758}, {3644, 17272}, {3663, 21356}, {3681, 24394}, {3731, 5564}, {3760, 4033}, {3773, 19875}, {3879, 4461}, {3882, 4050}, {3943, 4384}, {3950, 42696}, {3969, 25527}, {4034, 17261}, {4058, 17321}, {4060, 17257}, {4361, 41310}, {4363, 4727}, {4365, 21829}, {4371, 25101}, {4431, 10436}, {4445, 4718}, {4464, 5749}, {4483, 4921}, {4644, 49761}, {4659, 6542}, {4665, 16831}, {4668, 17256}, {4677, 17346}, {4686, 17298}, {4688, 27474}, {4699, 29620}, {4725, 49721}, {4726, 17311}, {4740, 6173}, {4745, 4780}, {4764, 4862}, {4788, 17287}, {4821, 17312}, {4851, 49727}, {4852, 47352}, {4859, 17240}, {4888, 17386}, {4912, 15533}, {5695, 28538}, {5853, 6172}, {9041, 49451}, {15534, 17351}, {16670, 20016}, {16674, 28633}, {16833, 17264}, {17151, 17233}, {17160, 17284}, {17229, 17304}, {17275, 49737}, {17276, 22165}, {17301, 20582}, {17308, 17318}, {17315, 25590}, {17355, 49543}, {17359, 24277}, {17362, 25728}, {17769, 34747}, {18697, 42029}, {20583, 49726}, {23668, 42041}, {25055, 32921}, {26627, 31011}, {28313, 29594}, {29582, 38093}, {31137, 41142}, {31143, 42044}, {32941, 46922}, {36973, 39351}, {42697, 49765}, {47358, 49446}, {47359, 49495}

X(50089) = reflection of X(i) in X(j) for these {i,j}: {2, 2321}, {3875, 2}, {4780, 4745}, {15533, 17372}, {15534, 17351}, {16834, 17281}, {17274, 17294}, {17276, 22165}, {49446, 47358}, {49495, 47359}, {49543, 17355}
X(50089) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {192, 4007, 17270}, {2321, 3875, 17286}, {4363, 4727, 29605}, {4431, 17314, 10436}, {4686, 17309, 17298}, {4740, 17310, 6173}, {4764, 17295, 4862}, {17151, 17233, 17282}


X(50090) = X(1)X(4480)∩X(2)X(2415)

Barycentrics    2*a^2 - 5*a*b - b^2 - 5*a*c + 4*b*c - c^2 : :
X(50090) = 5 X[37] - 2 X[7228], 3 X[37] - 2 X[49738], 3 X[7228] - 5 X[49738], 5 X[75] - 9 X[41848], 2 X[192] + X[4416], 5 X[192] + X[17363], 5 X[192] + 3 X[17488], 5 X[4416] - 2 X[17363], 5 X[4416] - 6 X[17488], 5 X[17333] - X[17363], 5 X[17333] - 3 X[17488], X[17363] - 3 X[17488], 3 X[4664] - X[17378], 2 X[17378] - 3 X[29574], X[17378] + 3 X[49748], X[29574] + 2 X[49748], X[17330] - 3 X[49742], 2 X[49514] + X[49528], 4 X[49456] - X[49476], X[3644] + 2 X[3686], 2 X[3664] - 5 X[4704], X[3879] - 4 X[4681], X[3879] + 2 X[17334], 2 X[4681] + X[17334], X[3883] + 2 X[49523], X[4686] - 3 X[16590], X[4718] + 2 X[17332], X[4788] + 5 X[17331], 2 X[49447] + X[49466]

X(50090) lies on these lines: {1, 4480}, {2, 2415}, {9, 41140}, {37, 545}, {45, 1266}, {75, 28301}, {141, 4908}, {142, 903}, {144, 3241}, {190, 17023}, {192, 519}, {320, 4029}, {344, 36911}, {527, 4664}, {536, 17330}, {537, 49514}, {551, 894}, {752, 49456}, {984, 28580}, {1654, 4669}, {2321, 17258}, {2325, 4389}, {3244, 20072}, {3589, 36522}, {3644, 3686}, {3662, 41141}, {3664, 4704}, {3672, 25728}, {3679, 4431}, {3707, 17160}, {3717, 48829}, {3828, 17248}, {3875, 37654}, {3879, 4681}, {3883, 28503}, {3912, 4419}, {3946, 17336}, {3950, 6646}, {4021, 17350}, {4058, 17252}, {4060, 17328}, {4072, 17287}, {4078, 31151}, {4098, 17300}, {4357, 17262}, {4370, 17246}, {4398, 6666}, {4440, 29571}, {4454, 16831}, {4473, 31191}, {4488, 38314}, {4659, 24603}, {4686, 16590}, {4688, 28297}, {4718, 17332}, {4741, 49765}, {4745, 48628}, {4755, 28322}, {4788, 17331}, {4795, 16777}, {4887, 17244}, {4896, 29569}, {4898, 20080}, {4912, 17392}, {6172, 16834}, {9957, 41772}, {11239, 45738}, {16675, 31139}, {16676, 42697}, {16696, 17195}, {16706, 41138}, {17133, 17346}, {17243, 31138}, {17254, 29594}, {17276, 17313}, {17787, 18145}, {22002, 22014}, {25255, 25265}, {27754, 33151}, {28313, 29617}, {29007, 41803}, {29597, 35578}, {41310, 49741}, {41311, 49726}, {41312, 49721}, {41313, 49747}, {49447, 49466}

X(50090) = midpoint of X(i) and X(j) for these {i,j}: {192, 17333}, {4664, 49748}, {49447, 49746}
X(50090) = reflection of X(i) in X(j) for these {i,j}: {4416, 17333}, {4688, 49737}, {29574, 4664}, {49466, 49746}, {49727, 4755}
X(50090) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 20073, 4480}, {320, 4029, 29601}, {2325, 4389, 29596}, {3663, 17261, 25101}, {4370, 17246, 17382}, {4370, 17382, 17353}, {4681, 17334, 3879}, {17247, 25269, 17355}, {17262, 24441, 17281}, {17281, 24441, 4357}, {17333, 17363, 17488}


X(50091) = X(2)X(968)∩X(10)X(536)

Barycentrics    5*a^2*b + 2*a*b^2 + 3*b^3 + 5*a^2*c - b^2*c + 2*a*c^2 - b*c^2 + 3*c^3 : :
X(50091) = 2 X[141] + X[4780], X[3755] + 2 X[3821], 2 X[3755] + X[49511], 4 X[3821] - X[49511], X[3663] + 2 X[4085], 2 X[3663] + X[49529], 4 X[4085] - X[49529], X[3625] + 2 X[49463], 2 X[3626] + X[49453], 4 X[3634] - X[5695], 4 X[3844] - X[4133], 2 X[3946] + X[4660], 4 X[3946] - X[49684], 2 X[4660] + X[49684], 4 X[17235] - X[49505], 5 X[19862] - 2 X[49484], 3 X[19883] - 2 X[48810], 3 X[38047] - X[49721], 4 X[34573] - X[49485]

X(50091) lies on these lines: {2, 968}, {10, 536}, {141, 4780}, {142, 214}, {516, 5085}, {518, 49741}, {519, 599}, {537, 3663}, {597, 28534}, {726, 38191}, {740, 29594}, {752, 49630}, {1125, 24693}, {1266, 29659}, {2092, 16052}, {2550, 48854}, {2783, 10175}, {2796, 6034}, {3241, 3662}, {3625, 49463}, {3626, 49453}, {3634, 5695}, {3679, 4357}, {3826, 4755}, {3828, 5257}, {3836, 4356}, {3844, 4133}, {3946, 4660}, {4026, 4688}, {4029, 49769}, {4078, 4429}, {4104, 32776}, {4260, 44663}, {4389, 49772}, {4432, 31191}, {4643, 50022}, {4645, 29584}, {4656, 42056}, {4663, 28333}, {4667, 24692}, {4669, 28503}, {4693, 29596}, {5847, 16834}, {5883, 44670}, {6173, 48830}, {7734, 49736}, {17023, 24715}, {17067, 24331}, {17227, 49763}, {17235, 49505}, {17236, 31145}, {17290, 49768}, {17318, 49766}, {17359, 25354}, {17399, 49720}, {19784, 50049}, {19862, 49484}, {19883, 48810}, {21255, 49471}, {25351, 29571}, {28526, 38047}, {29057, 38146}, {29574, 31151}, {31161, 33145}, {31178, 33149}, {34573, 49485}, {41311, 49725}, {47359, 49747}, {48632, 49475}, {49676, 49691}, {49732, 50063}

X(50091) = midpoint of X(i) and X(j) for these {i,j}: {17301, 48829}, {47359, 49747}
X(50091) = reflection of X(i) in X(j) for these {i,j}: {10, 48821}, {551, 17382}, {17281, 3828}, {48805, 1125}
X(50091) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3663, 4085, 49529}, {3755, 3821, 49511}, {3946, 4660, 49684}, {4026, 4688, 48853}


X(50092) = X(2)X(7)∩X(10)X(537)

Barycentrics    a*b + 3*b^2 + a*c - 2*b*c + 3*c^2 : :
X(50092) = X[69] + 2 X[3946], X[69] + 5 X[17304], 2 X[3946] - 5 X[17304], X[16834] - 5 X[17304], 4 X[141] - X[2321], 2 X[141] + X[3663], 5 X[141] - 2 X[17229], X[141] + 2 X[17235], X[2321] + 2 X[3663], 5 X[2321] - 8 X[17229], X[2321] + 8 X[17235], X[2321] + 4 X[49741], 5 X[3663] + 4 X[17229], X[3663] - 4 X[17235], X[17229] + 5 X[17235], 4 X[17229] - 5 X[29594], 2 X[17229] + 5 X[49741], 4 X[17235] + X[29594], X[29594] + 2 X[49741], X[3416] + 2 X[4353], X[3755] - 4 X[3821], X[3755] + 2 X[49511], 2 X[3821] + X[49511], 2 X[1125] + X[4655], 2 X[3589] + X[17345], 7 X[3619] - X[3729], 5 X[3620] + X[3875], 7 X[3624] - X[24695], 2 X[3631] + X[4852], 4 X[3634] - X[32935], 5 X[3763] + X[17276], 5 X[3763] - 2 X[17355], 5 X[3763] - X[49721], X[17276] + 2 X[17355], 2 X[4085] + X[49505], 2 X[4672] - 5 X[19862], 2 X[22165] + X[49543], 2 X[4856] + X[40341], X[17281] - 3 X[21358], 3 X[21358] + X[49747], X[17294] - 3 X[21356], X[17351] - 4 X[34573]

X(50092) lies on these lines: {2, 7}, {10, 537}, {37, 21255}, {44, 31191}, {69, 3946}, {141, 536}, {190, 29596}, {192, 29577}, {320, 4667}, {392, 2835}, {515, 48799}, {516, 31884}, {518, 48821}, {519, 599}, {524, 17382}, {528, 49630}, {545, 17359}, {551, 752}, {597, 4715}, {942, 50058}, {950, 50055}, {966, 4859}, {1125, 4252}, {1211, 24177}, {1227, 30892}, {1266, 3661}, {1278, 48634}, {1449, 21296}, {1738, 3679}, {2325, 4419}, {2345, 4862}, {2792, 10165}, {3008, 3707}, {3241, 4684}, {3244, 17374}, {3247, 4869}, {3589, 17345}, {3619, 3729}, {3620, 3875}, {3624, 24695}, {3626, 17119}, {3631, 4852}, {3634, 32935}, {3664, 4657}, {3666, 4035}, {3672, 17296}, {3686, 4000}, {3739, 48631}, {3763, 17276}, {3773, 28554}, {3778, 42038}, {3828, 31139}, {3834, 4364}, {3840, 41144}, {3879, 17288}, {3912, 4029}, {3914, 31136}, {3950, 17231}, {3986, 17245}, {4001, 32774}, {4007, 4452}, {4021, 4851}, {4026, 5542}, {4034, 4402}, {4044, 39995}, {4058, 4686}, {4060, 17151}, {4072, 4718}, {4085, 49505}, {4104, 24169}, {4138, 6682}, {4201, 12437}, {4260, 48815}, {4292, 16394}, {4310, 48849}, {4346, 4659}, {4356, 4966}, {4363, 4887}, {4371, 4545}, {4384, 17067}, {4395, 4690}, {4398, 4431}, {4416, 16706}, {4429, 24393}, {4440, 17292}, {4464, 17373}, {4480, 17354}, {4644, 26104}, {4670, 4896}, {4672, 19862}, {4700, 5222}, {4708, 34824}, {4725, 22165}, {4726, 48636}, {4741, 17367}, {4748, 16832}, {4758, 29603}, {4798, 25503}, {4856, 40341}, {4858, 26563}, {4902, 7222}, {4912, 49726}, {4967, 17238}, {4980, 40013}, {4982, 17014}, {5224, 24199}, {5550, 36834}, {5743, 24175}, {5765, 19279}, {5850, 38047}, {5880, 19868}, {7228, 17385}, {7263, 17239}, {7321, 17307}, {16062, 24391}, {16672, 29606}, {16676, 29627}, {16829, 20257}, {16887, 17197}, {17045, 17376}, {17132, 17281}, {17133, 17294}, {17232, 17247}, {17233, 48638}, {17234, 17249}, {17250, 24603}, {17253, 17278}, {17255, 17279}, {17256, 27191}, {17258, 17283}, {17265, 25072}, {17271, 37756}, {17297, 17320}, {17298, 17321}, {17300, 17324}, {17308, 42697}, {17313, 41312}, {17318, 49765}, {17329, 17352}, {17332, 17356}, {17334, 17357}, {17342, 49748}, {17344, 17366}, {17346, 41140}, {17347, 17370}, {17351, 34573}, {17360, 49770}, {17361, 17380}, {17364, 17383}, {17365, 17384}, {17375, 17396}, {17378, 17399}, {17770, 38049}, {18739, 42034}, {19883, 25354}, {20072, 29630}, {21514, 24328}, {24210, 31137}, {24231, 31178}, {24325, 48853}, {24441, 41141}, {24798, 40617}, {25357, 49731}, {26142, 26959}, {26769, 27113}, {26932, 41006}, {28194, 48803}, {28534, 48810}, {30768, 36263}, {31161, 32781}, {37549, 50046}, {41310, 49742}

X(50092) = midpoint of X(i) and X(j) for these {i,j}: {2, 17274}, {69, 16834}, {141, 49741}, {599, 17301}, {3663, 29594}, {17276, 49721}, {17281, 49747}, {47358, 48829}
X(50092) = reflection of X(i) in X(j) for these {i,j}: {2321, 29594}, {3663, 49741}, {16834, 3946}, {17359, 20582}, {29594, 141}, {49721, 17355}, {49741, 17235}
X(50092) = X(37209)-Ceva conjugate of X(514)
X(50092) = barycentric product X(75)*X(4003)
X(50092) = barycentric quotient X(4003)/X(1)
X(50092) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 17306, 5750}, {37, 48632, 21255}, {69, 17304, 3946}, {141, 3663, 2321}, {141, 17235, 3663}, {142, 4357, 5257}, {320, 17023, 4667}, {320, 17305, 17023}, {1086, 17237, 10}, {3008, 4643, 3707}, {3662, 4357, 142}, {3662, 17236, 4357}, {3763, 17276, 17355}, {3821, 49511, 3755}, {3834, 4364, 29571}, {4000, 17272, 3686}, {4346, 29611, 4659}, {4389, 17227, 3912}, {4398, 17228, 4431}, {4407, 25351, 10}, {4419, 17284, 2325}, {4643, 17290, 3008}, {4644, 26104, 29598}, {4657, 7232, 3664}, {4670, 7238, 4896}, {4675, 17325, 1125}, {4686, 48635, 4058}, {4851, 17323, 4021}, {4887, 29604, 4363}, {5224, 48629, 24199}, {6646, 17291, 17353}, {16706, 17273, 4416}, {17231, 17246, 3950}, {17238, 48627, 4967}, {17249, 48637, 17234}, {17257, 17282, 6666}, {17258, 17283, 25101}, {17288, 17302, 3879}, {17297, 17320, 29574}, {17374, 17395, 3244}, {17392, 41311, 551}, {21358, 49747, 17281}, {31138, 41311, 17392}


X(50093) = X(2)X(7)∩X(10)X(190)

Barycentrics    2*a^2 - 3*a*b - b^2 - 3*a*c - c^2 : :
X(50093) = 4 X[37] - X[3879], 2 X[37] + X[4416], X[37] + 2 X[17332], 5 X[37] - 2 X[17390], X[3879] + 2 X[4416], X[3879] + 8 X[17332], 5 X[3879] - 8 X[17390], X[3879] - 8 X[49737], X[4416] - 4 X[17332], 5 X[4416] + 4 X[17390], X[4416] + 4 X[49737], 5 X[17332] + X[17390], 4 X[17332] + X[29574], 4 X[17390] - 5 X[29574], X[17390] - 5 X[49737], X[29574] - 4 X[49737], X[192] + 2 X[3686], X[192] + 5 X[17331], 2 X[3686] - 5 X[17331], 5 X[17331] - X[29617], 2 X[984] + X[3883], 5 X[984] + X[49506], 4 X[984] - X[49527], 7 X[984] - X[49534], 5 X[3883] - 2 X[49506], 2 X[3883] + X[49527], 7 X[3883] + 2 X[49534], 4 X[49506] + 5 X[49527], 7 X[49506] + 5 X[49534], 7 X[49527] - 4 X[49534], 2 X[49516] + X[49521], X[4688] - 3 X[16590], 3 X[16590] - 2 X[49731], 2 X[3664] - 5 X[4687], 2 X[3664] + X[17347], 5 X[4687] + X[17347], 2 X[3739] + X[17334], 2 X[4399] + X[4718], 2 X[4681] + X[17362], 4 X[4698] - X[17365], 5 X[4704] + X[17363], 2 X[7228] - 5 X[31238], X[49466] + 2 X[49515], X[17364] - 7 X[27268], X[17364] - 5 X[29622], 7 X[27268] - 5 X[29622]

X(50093) lies on these lines: {1, 1992}, {2, 7}, {6, 41312}, {10, 190}, {37, 524}, {44, 597}, {45, 599}, {69, 3731}, {72, 13745}, {75, 17132}, {86, 3986}, {141, 16814}, {192, 3686}, {193, 3247}, {198, 16436}, {210, 6007}, {238, 551}, {239, 3707}, {256, 4685}, {261, 37792}, {306, 31143}, {319, 3950}, {320, 29571}, {333, 4656}, {344, 17272}, {346, 17270}, {391, 3875}, {392, 2810}, {516, 49720}, {518, 49740}, {519, 751}, {536, 17330}, {545, 4688}, {645, 6626}, {646, 25280}, {752, 49692}, {846, 4104}, {946, 7609}, {966, 3729}, {1001, 47358}, {1100, 8584}, {1125, 3758}, {1213, 17351}, {1266, 4384}, {1334, 3882}, {1449, 5032}, {1575, 36235}, {1654, 2321}, {1716, 42043}, {1743, 17321}, {1756, 19870}, {2325, 3661}, {2345, 25728}, {2663, 25421}, {3008, 4389}, {3161, 5232}, {3175, 49724}, {3220, 17549}, {3241, 7174}, {3242, 49783}, {3294, 21362}, {3589, 15492}, {3616, 15601}, {3618, 3973}, {3629, 3723}, {3663, 17258}, {3664, 4687}, {3679, 3717}, {3710, 26064}, {3718, 42034}, {3739, 4912}, {3751, 48830}, {3755, 9791}, {3759, 4021}, {3828, 32784}, {3842, 28558}, {3914, 37857}, {3923, 48809}, {3943, 4690}, {3946, 17247}, {3951, 37314}, {4026, 15481}, {4029, 6542}, {4054, 5235}, {4058, 32025}, {4078, 33082}, {4098, 17315}, {4133, 42334}, {4360, 49543}, {4363, 4480}, {4370, 17359}, {4393, 4700}, {4399, 4718}, {4407, 4432}, {4422, 17237}, {4428, 7083}, {4431, 17262}, {4440, 16815}, {4464, 5839}, {4473, 17292}, {4552, 25719}, {4644, 16831}, {4657, 16885}, {4659, 20073}, {4667, 16826}, {4669, 33076}, {4676, 19868}, {4681, 17362}, {4698, 17365}, {4704, 17363}, {4708, 17369}, {4715, 4755}, {4740, 28301}, {4741, 17244}, {4745, 33165}, {4748, 17308}, {4758, 29612}, {4851, 15533}, {4856, 17393}, {4887, 31211}, {5220, 47359}, {5224, 17336}, {5393, 13637}, {5405, 13757}, {5735, 36660}, {5969, 17760}, {6144, 16674}, {6210, 28194}, {7064, 17792}, {7228, 31238}, {7238, 31285}, {7277, 28639}, {7290, 38314}, {8359, 25066}, {9041, 49466}, {10868, 21039}, {11160, 16676}, {11163, 24239}, {11179, 46475}, {11523, 13736}, {12527, 31359}, {14210, 42724}, {15534, 16777}, {15817, 35302}, {15828, 17307}, {16370, 24320}, {16484, 49505}, {16517, 16834}, {16666, 20583}, {16669, 17045}, {16670, 26626}, {16677, 40341}, {16785, 34914}, {16832, 42697}, {16970, 29597}, {17067, 29628}, {17233, 17328}, {17234, 17329}, {17235, 17337}, {17238, 17339}, {17239, 17340}, {17242, 17343}, {17243, 17344}, {17245, 17345}, {17246, 17348}, {17249, 17352}, {17250, 17354}, {17251, 17281}, {17252, 17280}, {17253, 17279}, {17255, 17278}, {17259, 17276}, {17263, 17273}, {17264, 17271}, {17297, 29600}, {17300, 29620}, {17301, 24441}, {17304, 37650}, {17305, 31191}, {17318, 49770}, {17360, 49765}, {17364, 27268}, {17374, 29601}, {17384, 48310}, {17387, 29606}, {19723, 50068}, {19822, 25734}, {22214, 24437}, {24517, 46910}, {24692, 25352}, {24695, 39586}, {25269, 48628}, {27820, 27834}, {28333, 49738}, {28534, 49725}, {28538, 49476}, {29633, 38089}, {32041, 35144}, {41149, 46845}, {41531, 43262}, {41816, 42033}, {44694, 49735}

X(50093) = midpoint of X(i) and X(j) for these {i,j}: {2, 17333}, {75, 49748}, {192, 29617}, {4416, 29574}, {4664, 17346}, {17330, 49742}, {17332, 49737}, {17334, 49727}
X(50093) = reflection of X(i) in X(j) for these {i,j}: {37, 49737}, {3879, 29574}, {4688, 49731}, {17392, 4755}, {29574, 37}, {29617, 3686}, {49727, 3739}
X(50093) = barycentric product X(i)*X(j) for these {i,j}: {75, 4689}, {190, 47784}
X(50093) = barycentric quotient X(i)/X(j) for these {i,j}: {4689, 1}, {47784, 514}
X(50093) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 144, 35578}, {2, 35578, 10436}, {9, 4357, 17353}, {9, 17257, 4357}, {9, 17306, 26685}, {37, 4416, 3879}, {37, 17332, 4416}, {44, 4364, 17023}, {44, 41311, 597}, {45, 599, 41313}, {45, 4643, 3912}, {141, 16814, 25101}, {144, 5296, 10436}, {190, 17256, 10}, {192, 17331, 3686}, {597, 4364, 41311}, {597, 41311, 17023}, {599, 41313, 3912}, {966, 3729, 4967}, {984, 3883, 49527}, {1654, 17261, 2321}, {3161, 5232, 17286}, {4384, 4419, 1266}, {4389, 17335, 3008}, {4422, 17237, 29596}, {4480, 24603, 4363}, {4643, 41313, 599}, {4687, 17347, 3664}, {4688, 16590, 49731}, {5224, 17336, 17355}, {5296, 35578, 2}, {6646, 17260, 142}, {16826, 20072, 4667}, {17247, 17349, 3946}, {17248, 17350, 5750}, {17250, 17354, 29604}, {17258, 17277, 3663}, {17259, 17276, 24199}, {17262, 17275, 4431}, {17263, 17273, 21255}, {17264, 17271, 29594}


X(50094) = X(2)X(38)∩X(10)X(536)

Barycentrics    a^2*b + 4*a*b^2 + a^2*c + 6*a*b*c + b^2*c + 4*a*c^2 + b*c^2 : :
X(50094) = 2 X[1] + X[49449], 5 X[2] - X[24349], 7 X[2] + X[31302], 7 X[2] - 5 X[40328], X[984] + 2 X[3842], 2 X[984] + X[24325], 5 X[984] + X[24349], 3 X[984] + X[31178], 7 X[984] - X[31302], 7 X[984] + 5 X[40328], 4 X[3842] - X[24325], 10 X[3842] - X[24349], 6 X[3842] - X[31178], 14 X[3842] + X[31302], 14 X[3842] - 5 X[40328], 5 X[24325] - 2 X[24349], 3 X[24325] - 2 X[31178], 7 X[24325] + 2 X[31302], 7 X[24325] - 10 X[40328], 3 X[24349] - 5 X[31178], 7 X[24349] + 5 X[31302], 7 X[24349] - 25 X[40328], 7 X[31178] + 3 X[31302], 7 X[31178] - 15 X[40328], X[31302] + 5 X[40328], 2 X[10] + X[49456], 2 X[37] + X[49457], 4 X[37] - X[49471], 7 X[37] - X[49475], 2 X[49457] + X[49471], 7 X[49457] + 2 X[49475], 7 X[49471] - 4 X[49475], X[75] - 3 X[19875], X[192] + 2 X[4732], 4 X[1125] - X[49491], 2 X[1125] + X[49515], X[49491] + 2 X[49515], 5 X[1698] + X[49447], 5 X[3616] + X[49503], 5 X[3617] + X[49452], 7 X[3624] - X[49499], 2 X[3626] + X[49462], 4 X[3634] - X[49483], 2 X[3739] + X[49520], 2 X[4681] + X[4709], 2 X[4681] + 3 X[38098], X[4709] - 3 X[38098], 5 X[4687] - 3 X[25055], 5 X[4687] + X[49448], 3 X[25055] + X[49448], 4 X[4691] - X[49468], 4 X[4698] - 3 X[19883], 4 X[4698] - X[49479], 3 X[19883] - X[49479], 5 X[4699] + X[49517], 5 X[4704] + X[49459], 7 X[4751] - X[49532], 7 X[9780] - X[49493], 2 X[15569] + X[49510], 5 X[19862] + X[49508], 7 X[27268] - 3 X[38314], 7 X[27268] - X[49490], 3 X[38314] - X[49490], 5 X[31238] + X[49513], 3 X[38087] - X[49531]

X(50094) lies on these lines: {1, 4753}, {2, 38}, {9, 48854}, {10, 536}, {37, 519}, {45, 4432}, {75, 3992}, {190, 36531}, {192, 4732}, {381, 29054}, {518, 551}, {528, 49737}, {545, 25384}, {726, 3828}, {740, 3679}, {752, 49692}, {876, 28840}, {1086, 25352}, {1125, 49491}, {1698, 17305}, {1757, 46922}, {2796, 49725}, {3247, 49497}, {3616, 49503}, {3617, 49452}, {3624, 49499}, {3626, 49462}, {3634, 49483}, {3654, 20430}, {3681, 10180}, {3696, 4745}, {3715, 29644}, {3723, 49685}, {3725, 42042}, {3731, 32941}, {3739, 49520}, {3751, 5625}, {3775, 4078}, {3826, 49741}, {3912, 4407}, {3986, 49529}, {3993, 4669}, {4032, 11237}, {4389, 25351}, {4419, 24693}, {4649, 29580}, {4672, 16830}, {4677, 49470}, {4681, 4709}, {4687, 25055}, {4691, 49468}, {4698, 19883}, {4699, 49517}, {4704, 49459}, {4740, 28516}, {4751, 49532}, {4937, 30970}, {4981, 31136}, {5257, 48853}, {5296, 48849}, {5302, 50064}, {6211, 13634}, {7322, 32916}, {9780, 49493}, {15481, 33682}, {15569, 49510}, {16370, 34247}, {16674, 49680}, {16677, 49460}, {16814, 49482}, {16826, 49712}, {16833, 32921}, {17237, 49769}, {17248, 33165}, {17254, 31151}, {17256, 32847}, {17259, 49455}, {17277, 49472}, {17281, 48809}, {17310, 27495}, {17333, 28558}, {17628, 34612}, {18822, 39717}, {19862, 49508}, {19871, 49598}, {24433, 25375}, {24450, 35040}, {25354, 49524}, {27268, 38314}, {27798, 32925}, {28503, 49731}, {28581, 34641}, {29582, 33087}, {29584, 49489}, {29600, 49511}, {31238, 49513}, {32935, 39586}, {35960, 35962}, {38087, 49531}, {40774, 41142}, {47359, 48822}, {48802, 49526}

X(50094) = midpoint of X(i) and X(j) for these {i,j}: {2, 984}, {3654, 20430}, {3679, 4664}, {3993, 4669}, {4677, 49470}, {47359, 49509}, {49725, 49742}
X(50094) = reflection of X(i) in X(j) for these {i,j}: {2, 3842}, {551, 4755}, {3696, 4745}, {4688, 3828}, {24325, 2}
X(50094) = complement of X(31178)
X(50094) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 756, 42056}, {2, 42039, 42055}, {2, 42041, 42054}, {37, 49457, 49471}, {45, 36480, 4432}, {984, 3842, 24325}, {984, 40328, 31302}, {1125, 49515, 49491}


X(50095) = X(1)X(2)∩X(75)X(527)

Barycentrics    2*a^2 - a*b - b^2 - a*c - 4*b*c - c^2 : :
X(50095) = 7 X[2] - 5 X[29622], 2 X[8] + X[49466], 4 X[10] - X[49476], 2 X[17389] - 3 X[29574], X[17389] + 3 X[29617], 7 X[17389] - 15 X[29622], X[29574] + 2 X[29617], 7 X[29574] - 10 X[29622], 7 X[29617] + 5 X[29622], X[37] + 2 X[4399], X[75] + 2 X[3686], 2 X[75] + X[4416], 5 X[75] + X[17347], 3 X[75] - X[49722], 4 X[3686] - X[4416], 10 X[3686] - X[17347], 6 X[3686] + X[49722], 5 X[4416] - 2 X[17347], 3 X[4416] + 2 X[49722], 5 X[17346] - X[17347], 3 X[17346] + X[49722], 3 X[17347] + 5 X[49722], 3 X[4688] - 2 X[49733], 2 X[3696] + X[3883], 3 X[17330] - X[49742], X[1278] + 5 X[17331], 2 X[3664] - 5 X[4699], 2 X[3664] + X[17363], 5 X[4699] + X[17363], 4 X[3739] - X[3879], 2 X[3739] + X[17362], X[3879] + 2 X[17362], X[4686] + 2 X[17332], 4 X[4698] - X[17388], 2 X[4726] + X[17334], 4 X[4739] - X[17365], 7 X[4751] - X[17377], 7 X[4772] - X[17364], 3 X[16590] - 2 X[49737], 2 X[17390] - 5 X[31238]

X(50095) lies on these lines: {1, 2}, {6, 4967}, {9, 4431}, {37, 4399}, {44, 4665}, {63, 5011}, {69, 4034}, {75, 527}, {85, 553}, {99, 333}, {142, 319}, {190, 3707}, {192, 28313}, {193, 25590}, {210, 14839}, {226, 4886}, {241, 25719}, {321, 4115}, {335, 49510}, {344, 4007}, {355, 36731}, {391, 3729}, {516, 27484}, {517, 36728}, {518, 27478}, {524, 4688}, {528, 3696}, {536, 17330}, {538, 42051}, {594, 17348}, {673, 24393}, {728, 42032}, {903, 35177}, {966, 3875}, {1086, 4690}, {1213, 4852}, {1266, 4643}, {1278, 17331}, {1386, 4733}, {1573, 3666}, {1654, 3663}, {2094, 14552}, {2321, 5564}, {2325, 17335}, {2796, 31349}, {3219, 5540}, {3496, 3929}, {3578, 20880}, {3620, 4859}, {3664, 4699}, {3739, 3879}, {3758, 4700}, {3759, 5750}, {3765, 20888}, {3797, 4709}, {3886, 47357}, {3946, 5224}, {3950, 17260}, {3966, 31140}, {3975, 4044}, {3986, 17319}, {3993, 31323}, {3997, 32911}, {4000, 17270}, {4021, 17248}, {4042, 24586}, {4054, 37656}, {4058, 17280}, {4060, 6666}, {4102, 32008}, {4301, 7384}, {4357, 4361}, {4359, 30806}, {4360, 5257}, {4364, 4405}, {4395, 17237}, {4398, 17328}, {4402, 5232}, {4445, 17278}, {4461, 25728}, {4464, 16777}, {4472, 16666}, {4478, 17231}, {4480, 4659}, {4545, 17234}, {4654, 6604}, {4664, 17133}, {4670, 4969}, {4686, 17332}, {4698, 17388}, {4708, 17395}, {4715, 49727}, {4726, 17334}, {4739, 17365}, {4740, 17132}, {4741, 4887}, {4751, 17377}, {4755, 28329}, {4758, 4982}, {4772, 17364}, {4785, 27855}, {4795, 15534}, {4844, 47783}, {4848, 41245}, {4856, 17379}, {4875, 25083}, {4888, 20080}, {4901, 38097}, {4980, 14213}, {5243, 46176}, {5258, 21511}, {5325, 41006}, {5563, 25946}, {5739, 31164}, {5814, 17528}, {5839, 10436}, {5853, 27474}, {5881, 36698}, {6996, 11362}, {7227, 16669}, {7263, 17344}, {7406, 7991}, {7982, 36662}, {8584, 10022}, {8666, 11329}, {8715, 16367}, {12513, 16412}, {12625, 37169}, {14033, 48812}, {14555, 31142}, {15533, 31139}, {16054, 24391}, {16590, 28309}, {16706, 32025}, {17067, 17227}, {17121, 28604}, {17144, 30830}, {17151, 17257}, {17160, 17256}, {17229, 17337}, {17239, 17366}, {17242, 25072}, {17245, 17372}, {17259, 17299}, {17271, 37756}, {17286, 37650}, {17287, 21255}, {17296, 38093}, {17298, 32099}, {17320, 31144}, {17343, 48627}, {17349, 17355}, {17352, 48630}, {17356, 48635}, {17357, 48636}, {17373, 27147}, {17374, 34824}, {17390, 31238}, {17398, 28633}, {17772, 31306}, {17868, 21078}, {18821, 35148}, {19723, 48864}, {19796, 41816}, {19797, 41258}, {20131, 49497}, {20132, 49685}, {20135, 49680}, {20142, 49482}, {20154, 32941}, {20156, 49460}, {20223, 30625}, {20913, 25298}, {20919, 33941}, {21873, 24058}, {22165, 31138}, {24177, 37653}, {24357, 49756}, {24387, 26019}, {25125, 30819}, {27481, 28522}, {27489, 28234}, {27640, 41418}, {28301, 49748}, {28337, 49738}, {28512, 31329}, {28538, 49725}, {30090, 34282}, {30854, 33938}, {32029, 42334}, {32986, 48807}, {33298, 43035}, {35263, 46918}, {37416, 43174}, {40093, 43262}, {50046, 50057}

X(50095) = complement of X(17389)
X(50095) = midpoint of X(i) and X(j) for these {i,j}: {2, 29617}, {75, 17346}, {4399, 49731}, {4740, 17333}, {17362, 17392}
X(50095) = reflection of X(i) in X(j) for these {i,j}: {37, 49731}, {3879, 17392}, {4416, 17346}, {17346, 3686}, {17392, 3739}, {29574, 2}
X(50095) = X(28903)-anticomplementary conjugate of X(513)
X(50095) = X(28868)-complementary conjugate of X(513)
X(50095) = barycentric product X(i)*X(j) for these {i,j}: {75, 15254}, {668, 47811}
X(50095) = barycentric quotient X(i)/X(j) for these {i,j}: {15254, 1}, {47811, 513}
X(50095) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3679, 48802}, {2, 8, 17294}, {2, 3241, 29597}, {2, 6542, 29575}, {2, 16833, 41140}, {2, 17294, 3912}, {2, 17310, 29600}, {2, 29575, 29571}, {2, 29577, 41141}, {2, 29584, 551}, {2, 29615, 29594}, {2, 40891, 29584}, {6, 28634, 4967}, {8, 4384, 3912}, {9, 42696, 4431}, {10, 239, 17023}, {75, 3686, 4416}, {391, 32087, 3729}, {551, 49543, 29584}, {594, 17348, 17353}, {966, 4371, 3875}, {1125, 50019, 4393}, {1654, 17117, 3663}, {2321, 17277, 25101}, {3008, 3626, 3661}, {3008, 3661, 29596}, {3617, 5222, 17308}, {3621, 5308, 29605}, {3625, 16815, 29601}, {3625, 29571, 6542}, {3626, 16816, 29596}, {3632, 16832, 17316}, {3632, 17316, 49761}, {3661, 16816, 3008}, {3679, 16833, 2}, {3739, 17362, 3879}, {3975, 17143, 4044}, {4060, 6666, 17233}, {4361, 17251, 17301}, {4361, 17275, 4357}, {4384, 17294, 2}, {4393, 29576, 1125}, {4402, 5232, 17304}, {4643, 17119, 1266}, {4669, 29594, 29615}, {4678, 24599, 29611}, {4691, 29604, 29593}, {4699, 17363, 3664}, {4701, 31211, 49765}, {4701, 49765, 20055}, {5564, 17277, 2321}, {6542, 16815, 29571}, {6542, 29571, 29601}, {9780, 17014, 29603}, {16815, 29575, 2}, {16826, 20016, 3244}, {17244, 20055, 49765}, {17251, 17301, 4357}, {17275, 17301, 17251}, {17292, 29590, 31191}, {17349, 48628, 17355}, {17367, 29593, 29604}, {24603, 49770, 1}, {29584, 40891, 49543}, {31211, 49765, 17244}, {40713, 40714, 4847}


X(50096) = X(2)X(740)∩X(10)X(536)

Barycentrics    a^2*b - 2*a*b^2 + a^2*c - 6*a*b*c - 5*b^2*c - 2*a*c^2 - 5*b*c^2 : :
X(50096) = 2 X[8] + X[49491], 4 X[10] - X[49456], X[75] + 2 X[4732], 5 X[75] + X[49448], 2 X[75] + X[49457], 11 X[75] + X[49501], 7 X[75] - X[49532], 5 X[3679] - X[49448], 11 X[3679] - X[49501], 7 X[3679] + X[49532], 10 X[4732] - X[49448], 4 X[4732] - X[49457], 22 X[4732] - X[49501], 14 X[4732] + X[49532], 2 X[49448] - 5 X[49457], 11 X[49448] - 5 X[49501], 7 X[49448] + 5 X[49532], 11 X[49457] - 2 X[49501], 7 X[49457] + 2 X[49532], 7 X[49501] + 11 X[49532], 2 X[3696] + X[24325], 5 X[3696] + X[49478], 5 X[4688] - X[49478], 5 X[24325] - 2 X[49478], 2 X[3739] + X[4709], 4 X[3739] - X[49471], 2 X[4709] + X[49471], 2 X[1125] + X[49468], X[3241] - 5 X[4699], 5 X[4699] + X[49459], 5 X[3617] + X[49493], 4 X[3626] - X[49449], 2 X[3626] + X[49483], X[49449] + 2 X[49483], 4 X[3634] - X[49462], 2 X[3842] - 3 X[19875], 2 X[3842] + X[49474], X[4664] - 3 X[19875], 3 X[19875] + X[49474], 5 X[4668] + X[49499], 7 X[4678] - X[49503], 5 X[4687] - 7 X[19876], 4 X[4691] - X[49515], 2 X[4726] + X[49520], 4 X[4739] + X[34641], 4 X[4739] - X[49479], 7 X[4751] - X[49469], 7 X[4772] + X[31145], 7 X[4772] - X[49490], 5 X[4821] + X[49517], 7 X[9780] - X[49452], 2 X[15569] - 3 X[19883], 3 X[25055] - X[49470], 3 X[38314] - 5 X[40328]

X(50096) lies on these lines: {2, 740}, {8, 24693}, {10, 536}, {37, 3828}, {75, 537}, {238, 20160}, {321, 4937}, {518, 3919}, {519, 3696}, {551, 3739}, {599, 49531}, {726, 4745}, {984, 4695}, {1125, 49468}, {1266, 4407}, {2796, 17330}, {3241, 4699}, {3617, 49493}, {3626, 49449}, {3634, 49462}, {3654, 29054}, {3661, 25351}, {3755, 48853}, {3821, 4733}, {3836, 29594}, {3842, 4664}, {3943, 25352}, {3993, 4755}, {4049, 4777}, {4085, 4967}, {4096, 42029}, {4202, 42437}, {4359, 31136}, {4363, 4753}, {4384, 4432}, {4457, 32771}, {4651, 31161}, {4660, 28634}, {4668, 49499}, {4670, 50018}, {4678, 49503}, {4687, 19876}, {4690, 24692}, {4691, 49515}, {4693, 16815}, {4716, 29584}, {4726, 49520}, {4739, 34641}, {4751, 49469}, {4772, 31145}, {4783, 20913}, {4821, 49517}, {4974, 16469}, {4980, 42054}, {5625, 49486}, {5883, 44671}, {9780, 49452}, {15569, 19883}, {16666, 50021}, {16825, 48805}, {17117, 49472}, {17119, 36480}, {17160, 36531}, {17301, 48809}, {17346, 28558}, {17530, 21926}, {19804, 31137}, {21927, 44847}, {24342, 46922}, {24452, 31317}, {24715, 31349}, {25055, 49470}, {25590, 49497}, {28538, 49481}, {29615, 31151}, {32921, 48854}, {32941, 35227}, {33072, 41821}, {34824, 49764}, {35025, 35173}, {38314, 40328}

X(50096) = midpoint of X(i) and X(j) for these {i,j}: {8, 31178}, {75, 3679}, {551, 4709}, {599, 49531}, {984, 4740}, {3241, 49459}, {3696, 4688}, {4664, 49474}, {24715, 31349}, {31145, 49490}, {34641, 49479}
X(50096) = reflection of X(i) in X(j) for these {i,j}: {37, 3828}, {551, 3739}, {3679, 4732}, {3993, 4755}, {4664, 3842}, {24325, 4688}, {49457, 3679}, {49471, 551}, {49491, 31178}
X(50096) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 4732, 49457}, {3626, 49483, 49449}, {3739, 4709, 49471}, {4664, 19875, 3842}, {19875, 49474, 4664}


X(50097) = X(2)X(594)∩X(6)X(28337)

Barycentrics    2*a*b - 3*b^2 + 2*a*c - 4*b*c - 3*c^2 : :
X(50097) = X[141] + 2 X[2321], 5 X[141] - 2 X[3663], X[141] - 4 X[17229], 7 X[141] - 4 X[17235], 5 X[2321] + X[3663], X[2321] + 2 X[17229], 7 X[2321] + 2 X[17235], 4 X[2321] + X[49741], X[3663] - 10 X[17229], 7 X[3663] - 10 X[17235], X[3663] - 5 X[29594], 4 X[3663] - 5 X[49741], 7 X[17229] - X[17235], 8 X[17229] - X[49741], 2 X[17235] - 7 X[29594], 8 X[17235] - 7 X[49741], 4 X[29594] - X[49741], 4 X[3773] - X[49524], 2 X[17294] + X[49726], 2 X[4535] + X[49560], 2 X[3589] - 5 X[17286], 2 X[3589] + X[17299], X[16834] - 5 X[17286], 5 X[17286] + X[17299], X[3629] - 4 X[17355], X[3629] + 2 X[17372], 2 X[17355] + X[17372], X[3630] + 2 X[17351], 2 X[3631] + X[3729], 2 X[3844] + X[4133], X[3875] - 4 X[34573], 3 X[21356] - X[49747]

X(50097) lies on these lines: {2, 594}, {6, 28337}, {8, 4422}, {9, 4478}, {10, 4755}, {37, 48636}, {69, 28333}, {75, 29577}, {141, 536}, {192, 48635}, {319, 17340}, {346, 4445}, {519, 597}, {524, 17281}, {527, 22165}, {537, 4535}, {545, 599}, {740, 48821}, {1086, 4740}, {1213, 17242}, {1278, 48632}, {2325, 4690}, {2345, 17309}, {2901, 50058}, {3008, 4405}, {3589, 16834}, {3629, 17355}, {3630, 17351}, {3631, 3729}, {3644, 48634}, {3661, 3943}, {3679, 3932}, {3703, 31136}, {3739, 4058}, {3844, 4133}, {3875, 34573}, {3912, 4665}, {3950, 17239}, {4007, 4399}, {4029, 4708}, {4060, 17348}, {4072, 4681}, {4363, 29616}, {4370, 17346}, {4395, 17284}, {4431, 7263}, {4461, 7232}, {4472, 17316}, {4643, 4873}, {4659, 7238}, {4669, 30331}, {4670, 49765}, {4677, 33165}, {4686, 48631}, {4720, 30906}, {4725, 8584}, {4726, 21255}, {4727, 17023}, {4733, 19875}, {4764, 48633}, {4798, 29602}, {4851, 7227}, {4966, 31178}, {4969, 17354}, {5564, 17268}, {5846, 48805}, {6172, 36522}, {6535, 31161}, {6542, 17369}, {7228, 17296}, {7231, 17376}, {7277, 17373}, {9055, 27474}, {10022, 17310}, {15569, 48853}, {16666, 49761}, {16672, 25358}, {17119, 29579}, {17133, 17382}, {17160, 29587}, {17228, 17246}, {17240, 17245}, {17247, 48640}, {17251, 49737}, {17264, 17330}, {17265, 32087}, {17271, 49742}, {17274, 28297}, {17280, 17362}, {17287, 17334}, {17289, 17388}, {17292, 17395}, {17295, 17365}, {17297, 49727}, {17301, 20582}, {17303, 29597}, {17313, 49733}, {17315, 17398}, {17318, 29611}, {17342, 29617}, {17786, 27792}, {21085, 42056}, {21356, 49747}, {24044, 24076}, {25350, 31027}, {28329, 48310}, {29573, 49738}, {29618, 41847}, {34641, 49693}

X(50097) = midpoint of X(i) and X(j) for these {i,j}: {69, 49721}, {2321, 29594}, {16834, 17299}, {17281, 17294}
X(50097) = reflection of X(i) in X(j) for these {i,j}: {141, 29594}, {597, 17359}, {16834, 3589}, {17301, 20582}, {29594, 17229}, {49726, 17281}, {49741, 141}
X(50097) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 17269, 4422}, {346, 4445, 17332}, {594, 17233, 17243}, {2321, 17229, 141}, {2345, 17309, 17390}, {3661, 3943, 4364}, {3679, 41313, 49731}, {3912, 4665, 34824}, {4007, 17279, 4399}, {4431, 17231, 7263}, {5564, 17268, 17337}, {17119, 29579, 40480}, {17240, 48628, 17245}, {17242, 48630, 1213}, {17264, 29615, 17330}, {17286, 17299, 3589}, {17293, 17314, 17045}, {17354, 20055, 4969}, {17355, 17372, 3629}


X(50098) = X(2)X(594)∩X(8)X(599)

Barycentrics    2*a^2 - b^2 - 6*b*c - c^2 : :
X(50098) = X[75] + 2 X[4399], 5 X[75] - 2 X[7228], 2 X[75] + X[17362], 5 X[75] + X[17363], 7 X[75] - X[17364], 4 X[75] - X[17365], 5 X[4399] + X[7228], 4 X[4399] - X[17362], 10 X[4399] - X[17363], 14 X[4399] + X[17364], 8 X[4399] + X[17365], 4 X[4399] + X[49727], 4 X[7228] + 5 X[17362], 2 X[7228] + X[17363], 14 X[7228] - 5 X[17364], 8 X[7228] - 5 X[17365], 2 X[7228] + 5 X[29617], 4 X[7228] - 5 X[49727], 5 X[17362] - 2 X[17363], 7 X[17362] + 2 X[17364], 2 X[17362] + X[17365], 7 X[17363] + 5 X[17364], 4 X[17363] + 5 X[17365], X[17363] - 5 X[29617], 2 X[17363] + 5 X[49727], 4 X[17364] - 7 X[17365], X[17364] + 7 X[29617], 2 X[17364] - 7 X[49727], X[17365] + 4 X[29617], 2 X[29617] + X[49727], 5 X[4740] + 3 X[17488], 5 X[17346] - 3 X[17488], X[1278] + 2 X[17332], 2 X[3686] + X[4686], 4 X[3686] - X[17334], 2 X[4686] + X[17334], 4 X[3739] - X[17388], X[3879] - 4 X[4739], X[4416] + 2 X[4726], 5 X[4664] - 9 X[41848], 9 X[41848] - 10 X[49731], 5 X[4699] - 2 X[17390], 7 X[4751] - 5 X[29622], X[4764] + 5 X[17331], 7 X[4772] - X[17377], 5 X[4821] + X[17347]

X(50098) lies on these lines: {2, 594}, {6, 4371}, {7, 15533}, {8, 599}, {10, 17395}, {37, 17133}, {75, 524}, {141, 5564}, {192, 49737}, {239, 597}, {319, 7263}, {519, 3696}, {536, 17330}, {545, 4740}, {591, 32798}, {740, 49740}, {894, 8584}, {1100, 49543}, {1213, 3875}, {1266, 4690}, {1278, 17332}, {1991, 32797}, {1992, 4363}, {2321, 17337}, {2345, 47352}, {3058, 42446}, {3589, 48628}, {3617, 17325}, {3625, 17374}, {3626, 17237}, {3629, 17116}, {3630, 7321}, {3631, 48627}, {3632, 4675}, {3661, 4395}, {3662, 4478}, {3679, 7174}, {3686, 4686}, {3705, 22110}, {3739, 17388}, {3758, 20583}, {3759, 7227}, {3763, 4402}, {3782, 31143}, {3879, 4739}, {3943, 4384}, {4000, 21358}, {4007, 17278}, {4034, 17276}, {4058, 17357}, {4060, 17231}, {4364, 17160}, {4393, 4472}, {4416, 4726}, {4422, 16816}, {4431, 17340}, {4445, 21356}, {4452, 17253}, {4461, 16885}, {4464, 28639}, {4664, 28309}, {4670, 49770}, {4677, 6173}, {4699, 17390}, {4727, 29571}, {4733, 32921}, {4751, 29622}, {4764, 17331}, {4772, 17377}, {4821, 17347}, {4852, 4967}, {4864, 4923}, {5434, 7235}, {5839, 7277}, {5846, 49720}, {6144, 7222}, {6542, 34824}, {6707, 17393}, {7081, 11168}, {7172, 42850}, {7238, 17360}, {8370, 33941}, {10022, 40891}, {11160, 42697}, {16666, 50019}, {16706, 48636}, {16833, 16970}, {17151, 17246}, {17230, 40480}, {17245, 17299}, {17271, 49741}, {17287, 48631}, {17289, 48310}, {17315, 29620}, {17333, 28297}, {17359, 41140}, {17372, 24199}, {17378, 28337}, {17389, 49738}, {19723, 50043}, {28333, 49722}, {29621, 31244}, {31138, 34641}, {31139, 31145}, {31995, 40341}, {34362, 45213}, {34573, 48630}, {37654, 49721}, {37674, 41915}, {48830, 49486}

X(50098) = midpoint of X(i) and X(j) for these {i,j}: {75, 29617}, {1278, 49748}, {4740, 17346}, {17362, 49727}
X(50098) = reflection of X(i) in X(j) for these {i,j}: {192, 49737}, {4664, 49731}, {17362, 29617}, {17365, 49727}, {17378, 49733}, {17388, 29574}, {17389, 49738}, {17392, 4688}, {29574, 3739}, {29617, 4399}, {49727, 75}, {49742, 17330}, {49748, 17332}
X(50098) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 17119, 1086}, {75, 4399, 17362}, {75, 17362, 17365}, {75, 17363, 7228}, {239, 4665, 17369}, {594, 4361, 17366}, {3686, 4686, 17334}, {3875, 28634, 1213}, {4361, 42696, 594}, {4371, 32087, 6}, {4405, 4665, 239}, {4431, 17348, 17340}, {4852, 4967, 17398}, {5564, 17117, 141}, {5564, 37756, 29615}, {5839, 17118, 7277}, {5839, 35578, 15534}, {15534, 17118, 35578}, {15534, 35578, 7277}, {17117, 29615, 37756}, {17151, 17275, 17246}, {29615, 37756, 141}


X(50099) = X(2)X(2321)∩X(75)X(519)

Barycentrics    2*a^2 + a*b - b^2 + a*c - 8*b*c - c^2 : :
X(50099) = 5 X[75] - 2 X[3664], 4 X[75] - X[3879], 7 X[75] - X[17377], 3 X[75] - X[17378], 7 X[75] - 3 X[39704], 8 X[3664] - 5 X[3879], 14 X[3664] - 5 X[17377], 6 X[3664] - 5 X[17378], 14 X[3664] - 15 X[39704], 7 X[3879] - 4 X[17377], 3 X[3879] - 4 X[17378], 7 X[3879] - 12 X[39704], 3 X[17377] - 7 X[17378], X[17377] - 3 X[39704], 7 X[17378] - 9 X[39704], 5 X[17330] - 3 X[49742], 4 X[4399] - X[4416], 2 X[4399] + X[4686], X[4416] + 2 X[4686], X[1278] + 2 X[3686], 4 X[3696] - X[49527], X[3883] + 2 X[49474], 3 X[4688] - 2 X[49738], 3 X[29574] - 4 X[49738], 2 X[4726] + X[17362], X[4718] - 3 X[16590], 4 X[4739] - X[17388], 5 X[4821] + X[17363], X[49466] + 2 X[49468]

X(50099) lies on these lines: {2, 2321}, {7, 31145}, {8, 1266}, {10, 17160}, {37, 28309}, {44, 4405}, {69, 4677}, {75, 519}, {142, 17310}, {307, 41803}, {314, 17195}, {319, 903}, {320, 3625}, {527, 4740}, {536, 17330}, {545, 4399}, {551, 4360}, {594, 17382}, {894, 40891}, {1100, 10022}, {1278, 3686}, {2325, 16816}, {3008, 17342}, {3241, 4464}, {3596, 4479}, {3626, 4389}, {3631, 36525}, {3632, 42697}, {3635, 41847}, {3662, 4060}, {3663, 4669}, {3679, 4357}, {3687, 27739}, {3696, 28503}, {3729, 4371}, {3758, 50019}, {3828, 4021}, {3883, 28580}, {3912, 17119}, {4029, 16815}, {4058, 16706}, {4072, 17263}, {4361, 4431}, {4363, 49770}, {4370, 17348}, {4395, 29596}, {4452, 17270}, {4545, 17343}, {4664, 28313}, {4665, 17023}, {4667, 20016}, {4675, 49761}, {4688, 4971}, {4691, 17250}, {4701, 4887}, {4715, 4726}, {4718, 16590}, {4725, 49727}, {4727, 29601}, {4739, 17388}, {4745, 5224}, {4795, 17118}, {4821, 17363}, {4851, 31139}, {4908, 25101}, {4980, 20234}, {7263, 31138}, {15492, 36522}, {17067, 17230}, {17132, 17346}, {17233, 41141}, {17275, 24441}, {17299, 17313}, {17318, 24603}, {17321, 19875}, {17392, 28329}, {17781, 21273}, {19883, 28653}, {29594, 37756}, {32099, 36588}, {46922, 49543}, {49466, 49468}, {49476, 49725}, {49690, 49750}

X(50099) = midpoint of X(i) and X(j) for these {i,j}: {1278, 17333}, {4740, 29617}
X(50099) = reflection of X(i) in X(j) for these {i,j}: {17333, 3686}, {29574, 4688}, {49476, 49725}
X(50099) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3663, 4669, 17271}, {3875, 32087, 4967}, {4361, 4431, 17353}, {4361, 17281, 41140}, {4399, 4686, 4416}, {4431, 41140, 17281}, {4701, 4887, 17360}, {4727, 34824, 29601}, {5564, 17271, 4669}, {17151, 42696, 4357}, {17281, 41140, 17353}


X(50100) = X(2)X(3950)∩X(141)X(536)

Barycentrics    5*a*b - 3*b^2 + 5*a*c - 10*b*c - 3*c^2 : :
X(50100) = 2 X[141] - 5 X[2321], 8 X[141] - 5 X[3663], 7 X[141] - 10 X[17229], 13 X[141] - 10 X[17235], 4 X[141] - 5 X[29594], 7 X[141] - 5 X[49741], 4 X[2321] - X[3663], 7 X[2321] - 4 X[17229], 13 X[2321] - 4 X[17235], 7 X[2321] - 2 X[49741], 7 X[3663] - 16 X[17229], 13 X[3663] - 16 X[17235], 7 X[3663] - 8 X[49741], 13 X[17229] - 7 X[17235], 8 X[17229] - 7 X[29594], 8 X[17235] - 13 X[29594], 14 X[17235] - 13 X[49741], 7 X[29594] - 4 X[49741], 8 X[4133] + X[4924], 5 X[4133] + X[49536], 5 X[4924] - 8 X[49536], 5 X[3729] + X[20080], X[6144] + 5 X[17299], X[6144] - 5 X[49721], 5 X[17281] - 3 X[47352]

X(50100) lies on these lines: {2, 3950}, {10, 4664}, {75, 4072}, {141, 536}, {190, 3625}, {192, 4058}, {346, 16833}, {519, 1992}, {527, 15533}, {537, 4527}, {551, 32922}, {599, 28301}, {740, 38191}, {1278, 21255}, {3008, 4873}, {3244, 46922}, {3664, 4461}, {3729, 20080}, {3840, 41142}, {3912, 4740}, {3943, 4688}, {3986, 48628}, {3993, 48853}, {4029, 4665}, {4060, 17262}, {4098, 4967}, {4480, 20055}, {4659, 4896}, {4667, 4727}, {4669, 33076}, {4677, 6172}, {4887, 29616}, {4898, 4909}, {4899, 31145}, {4971, 49543}, {6144, 17299}, {16834, 17355}, {17132, 17294}, {17133, 17281}, {17160, 31191}, {17346, 34641}, {17351, 28337}, {17359, 28309}, {17372, 28333}, {22165, 28322}, {24199, 29582}, {25072, 32087}, {28297, 41152}, {28329, 49726}, {28484, 48821}, {28554, 49511}, {31144, 38098}

X(50100) = midpoint of X(17299) and X(49721)
X(50100) = reflection of X(i) in X(j) for these {i,j}: {3663, 29594}, {16834, 17355}, {29594, 2321}, {49741, 17229}
X(50100) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4659, 49765, 4896}, {4898, 7229, 4909}


X(50101) = X(2)X(37)∩X(6)X(545)

Barycentrics    a^2 + 2*a*b + b^2 + 2*a*c - 4*b*c + c^2 : :
X(50101) = 5 X[2] - 4 X[17359], 3 X[2] - 4 X[17382], X[17281] - 3 X[17301], 5 X[17281] - 6 X[17359], 5 X[17301] - 2 X[17359], 3 X[17301] - 2 X[17382], 3 X[17359] - 5 X[17382], X[8] + 2 X[49453], X[69] - 4 X[3663], X[69] + 2 X[3875], 2 X[3663] + X[3875], 2 X[4780] + X[16496], 3 X[38314] - 2 X[48805], X[145] - 4 X[49463], X[193] - 4 X[4852], X[193] + 2 X[17276], 2 X[4852] + X[17276], X[24248] + 2 X[32921], 4 X[1386] - X[24280], 4 X[2321] - 7 X[3619], 2 X[2321] - 5 X[17304], 7 X[3619] - 10 X[17304], 5 X[3616] - 2 X[5695], 5 X[3616] - 4 X[48810], 5 X[3618] - 2 X[3729], 5 X[3618] - 8 X[3946], X[3729] - 4 X[3946], 5 X[3620] - 8 X[17235], 5 X[3620] - 2 X[17299], 4 X[17235] - X[17299], 7 X[3622] - 4 X[49484], 2 X[3755] + X[49446], 2 X[3874] + X[15076], X[3886] - 4 X[4353], 2 X[17294] - 3 X[21356], 4 X[17345] - X[20080], X[24695] - 4 X[49477], 3 X[47352] - 2 X[49726]

X(50101) lies on these lines: {1, 1266}, {2, 37}, {6, 545}, {7, 528}, {8, 4389}, {9, 41140}, {44, 20073}, {45, 4395}, {69, 519}, {86, 16711}, {89, 20092}, {141, 28309}, {144, 3759}, {145, 320}, {190, 5222}, {193, 4715}, {239, 4419}, {314, 16712}, {319, 31145}, {347, 17078}, {348, 11240}, {391, 17258}, {524, 49747}, {527, 1992}, {534, 18655}, {537, 49518}, {551, 4021}, {594, 17323}, {597, 28297}, {599, 4971}, {742, 27480}, {752, 24248}, {966, 17117}, {1086, 17313}, {1100, 4795}, {1386, 24280}, {1441, 11239}, {1444, 11194}, {1654, 4371}, {2321, 3619}, {2783, 5603}, {3161, 17352}, {3212, 34711}, {3244, 4887}, {3247, 24199}, {3262, 3673}, {3264, 18135}, {3596, 18145}, {3616, 5695}, {3617, 17250}, {3618, 3729}, {3620, 17235}, {3621, 17360}, {3622, 41847}, {3635, 4896}, {3662, 17310}, {3679, 4357}, {3755, 49446}, {3758, 4454}, {3834, 29583}, {3873, 44670}, {3874, 15076}, {3879, 4862}, {3886, 4353}, {3943, 17290}, {3945, 4373}, {3950, 17282}, {4025, 23757}, {4029, 17067}, {4217, 5262}, {4310, 49470}, {4329, 34611}, {4352, 17144}, {4361, 17246}, {4363, 17395}, {4364, 17119}, {4370, 17262}, {4393, 4440}, {4399, 17253}, {4402, 17277}, {4431, 17306}, {4460, 17377}, {4464, 34747}, {4470, 17397}, {4480, 16670}, {4648, 17319}, {4659, 17023}, {4665, 17325}, {4669, 17270}, {4675, 29585}, {4677, 17272}, {4689, 26245}, {4725, 11160}, {4734, 25568}, {4741, 20016}, {4768, 25602}, {4851, 31138}, {4858, 28827}, {4869, 17315}, {4873, 29596}, {4912, 5032}, {4916, 17375}, {4941, 24478}, {4945, 37651}, {4967, 19875}, {4970, 33144}, {5224, 32087}, {5232, 5564}, {5552, 23521}, {5749, 17380}, {5839, 6646}, {6172, 49748}, {6173, 29574}, {6604, 22464}, {7190, 36595}, {7222, 17379}, {7228, 16884}, {7229, 17381}, {7232, 17388}, {7263, 16777}, {8822, 28610}, {9436, 31146}, {9776, 34064}, {10022, 17045}, {10444, 28194}, {10521, 34639}, {10528, 17895}, {11112, 50072}, {11235, 41003}, {15533, 28337}, {15534, 28333}, {16475, 28526}, {16672, 34824}, {17116, 17396}, {17133, 17294}, {17139, 33296}, {17150, 42058}, {17220, 41846}, {17224, 17346}, {17227, 29616}, {17254, 29617}, {17255, 17362}, {17261, 37650}, {17273, 32099}, {17292, 26104}, {17305, 29611}, {17309, 48632}, {17311, 48631}, {17324, 48628}, {17335, 24599}, {17336, 37681}, {17345, 20080}, {17350, 17487}, {17361, 20049}, {17390, 36525}, {17861, 45701}, {18600, 30939}, {18697, 48803}, {19276, 50069}, {20043, 33066}, {21433, 26144}, {21606, 27545}, {24654, 32095}, {24695, 49477}, {25055, 25590}, {25101, 36911}, {26039, 29614}, {27191, 29627}, {27549, 49523}, {28313, 29594}, {28530, 38315}, {28555, 38047}, {28562, 33869}, {30479, 50066}, {31134, 33088}, {31151, 33149}, {31164, 42754}, {31178, 48830}, {31302, 49715}, {32922, 49746}, {35578, 46922}, {47352, 49726}, {48806, 48831}, {48856, 49720}

X(50101) = midpoint of X(i) and X(j) for these {i,j}: {3875, 17274}, {48829, 49453}
X(50101) = reflection of X(i) in X(j) for these {i,j}: {2, 17301}, {8, 48829}, {69, 17274}, {599, 49741}, {1992, 16834}, {5695, 48810}, {17274, 3663}, {17281, 17382}, {48806, 48831}, {49721, 597}
X(50101) = anticomplement of X(17281)
X(50101) = isotomic conjugate of the isogonal conjugate of X(16483)
X(50101) = X(13396)-anticomplementary conjugate of X(20295)
X(50101) = crossdifference of every pair of points on line {667, 9032}
X(50101) = barycentric product X(i)*X(j) for these {i,j}: {76, 16483}, {85, 3895}
X(50101) = barycentric quotient X(i)/X(j) for these {i,j}: {3895, 9}, {16483, 6}
X(50101) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1266, 42697}, {2, 346, 17342}, {2, 3672, 17320}, {2, 17320, 17321}, {2, 42044, 42032}, {7, 3241, 17378}, {75, 3672, 17321}, {75, 17320, 2}, {145, 4346, 320}, {192, 4000, 344}, {239, 17333, 37654}, {903, 4360, 17378}, {903, 17378, 7}, {1086, 17318, 17316}, {1278, 17302, 2345}, {2321, 17304, 3619}, {3644, 16706, 346}, {3663, 3875, 69}, {3672, 4452, 75}, {3729, 3946, 3618}, {3943, 17290, 29579}, {3945, 4373, 7321}, {4357, 17151, 42696}, {4360, 4398, 7}, {4360, 17378, 3241}, {4361, 17246, 17257}, {4361, 24441, 17330}, {4363, 17395, 26626}, {4389, 17160, 8}, {4393, 4440, 4644}, {4398, 17378, 903}, {4419, 37654, 17333}, {4454, 17014, 3758}, {4460, 21296, 17377}, {4664, 37756, 2}, {4688, 41312, 2}, {4764, 17289, 4461}, {4852, 17276, 193}, {5564, 17249, 5232}, {7263, 49738, 31139}, {7321, 17393, 3945}, {16706, 17342, 2}, {16777, 31139, 49738}, {17117, 17247, 966}, {17147, 19785, 345}, {17235, 17299, 3620}, {17246, 17330, 24441}, {17262, 17366, 26685}, {17281, 17301, 17382}, {17281, 17382, 2}, {17315, 48629, 4869}, {17319, 48627, 4648}, {17330, 24441, 17257}, {27754, 33129, 2}, {42051, 50068, 2}, {46922, 49722, 35578}


X(50102) = X(1)X(4442)∩X(2)X(37)

Barycentrics    a^3 + a^2*b + a*b^2 + b^3 + a^2*c - 2*b^2*c + a*c^2 - 2*b*c^2 + c^3 : :
X(50102) = X[3891] + 2 X[3914], 2 X[3891] + X[5014], 4 X[3914] - X[5014], X[3187] + 2 X[3782], 2 X[3187] + X[32859], 4 X[3782] - X[32859], 2 X[3791] + X[33098], 4 X[17061] - X[32929], X[32933] - 4 X[40940], 4 X[39544] - X[49687]

X(50102) lies on these lines: {1, 4442}, {2, 37}, {31, 2796}, {226, 31179}, {239, 33151}, {306, 17133}, {519, 3891}, {524, 3187}, {544, 16834}, {551, 24552}, {597, 26223}, {599, 17184}, {726, 33114}, {740, 27476}, {903, 40215}, {1056, 3241}, {1150, 3663}, {1255, 29622}, {1824, 24473}, {1836, 17150}, {1992, 5905}, {1999, 33146}, {3006, 49453}, {3120, 32921}, {3218, 4398}, {3219, 49748}, {3679, 4972}, {3759, 17484}, {3769, 33102}, {3771, 4933}, {3791, 28558}, {3875, 3936}, {3896, 33144}, {3920, 49720}, {3944, 32924}, {3946, 4054}, {3969, 25527}, {3977, 31229}, {4141, 4438}, {4360, 31019}, {4361, 26580}, {4362, 32950}, {4363, 29833}, {4365, 26128}, {4641, 4912}, {4654, 42045}, {4693, 29638}, {4716, 33065}, {4852, 31034}, {4854, 49740}, {4956, 7191}, {4970, 33127}, {5016, 17677}, {5222, 41241}, {5235, 17247}, {5249, 29574}, {5695, 26230}, {6327, 28538}, {7263, 26627}, {7321, 14996}, {13745, 50067}, {16704, 17276}, {17017, 48643}, {17061, 32929}, {17132, 32933}, {17135, 47358}, {17155, 33135}, {17160, 33077}, {17165, 47359}, {17299, 31017}, {17345, 31303}, {17367, 41242}, {17393, 37635}, {17528, 50072}, {17679, 23537}, {17763, 33149}, {17861, 20887}, {17889, 32928}, {18139, 23681}, {19281, 50073}, {20017, 28329}, {21020, 48809}, {21282, 49681}, {21283, 49465}, {24725, 49477}, {25496, 48642}, {26098, 48645}, {27081, 28634}, {27184, 29617}, {27186, 34064}, {27759, 29849}, {28516, 33161}, {28522, 33156}, {28534, 42058}, {28557, 35263}, {28562, 33094}, {29615, 32782}, {29631, 49493}, {29632, 49452}, {29658, 32845}, {29829, 49483}, {29830, 49462}, {29831, 49484}, {29832, 49463}, {31177, 32946}, {32775, 49474}, {32856, 49488}, {32860, 33152}, {32914, 33154}, {32915, 33147}, {32922, 33134}, {32925, 33132}, {32926, 33131}, {33088, 48646}, {33104, 49472}, {33115, 49445}, {33136, 49455}, {33139, 49447}, {33148, 49470}, {37633, 48627}, {37792, 40214}, {37798, 39126}, {39544, 49687}, {49735, 50066}

X(50102) = reflection of X(i) in X(j) for these {i,j}: {33114, 33128}, {33122, 33143}
X(50102) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3995, 41313}, {312, 19830, 33150}, {321, 19785, 32774}, {3120, 32921, 33070}, {3187, 3782, 32859}, {3772, 17147, 33113}, {3891, 3914, 5014}, {4362, 33145, 32950}, {19785, 30699, 321}, {24789, 41313, 2}, {27184, 29617, 31143}, {31993, 41311, 2}


X(50103) = X(1)X(3824)∩X(2)X(37)

Barycentrics    2*a^3 + a^2*b + a*b^2 + 2*b^3 + a^2*c - 2*b^2*c + a*c^2 - 2*b*c^2 + 2*c^3 : :
X(50103) = 2 X[3782] + X[4641], X[3782] + 2 X[40940], X[4641] - 4 X[40940], X[3744] + 2 X[3914], X[3744] - 4 X[17061], X[3914] + 2 X[17061]

X(50103) lies on these lines: {1, 3824}, {2, 37}, {6, 31164}, {31, 28534}, {44, 33151}, {63, 49747}, {210, 33132}, {226, 544}, {278, 38461}, {306, 4971}, {333, 17254}, {354, 33135}, {518, 33128}, {519, 2887}, {527, 3782}, {528, 3744}, {551, 49739}, {553, 34050}, {908, 17366}, {940, 6173}, {1086, 30684}, {1100, 31019}, {1104, 11114}, {1150, 17235}, {1155, 29658}, {1279, 33134}, {1386, 3120}, {1418, 37798}, {1738, 17602}, {1999, 17297}, {2003, 4654}, {2094, 37642}, {3006, 49463}, {3011, 4689}, {3017, 24473}, {3187, 4725}, {3241, 33073}, {3589, 4054}, {3663, 33996}, {3683, 33154}, {3689, 17725}, {3696, 32775}, {3706, 26128}, {3745, 17889}, {3755, 17724}, {3838, 17017}, {3875, 30811}, {3920, 21949}, {3936, 4852}, {3946, 5718}, {3967, 29850}, {3999, 11269}, {4003, 33140}, {4080, 41241}, {4383, 5526}, {4415, 26723}, {4442, 26230}, {4519, 29637}, {4640, 33145}, {4663, 32856}, {4670, 29833}, {4693, 29860}, {4702, 29638}, {4849, 33153}, {4892, 49477}, {5249, 17392}, {5262, 17577}, {5271, 17251}, {5294, 49726}, {5695, 29855}, {6679, 28542}, {6703, 49733}, {7191, 10707}, {7322, 19875}, {9629, 11238}, {10129, 17025}, {11111, 50065}, {11112, 23537}, {13161, 34606}, {13745, 50062}, {16418, 50066}, {16669, 17484}, {16700, 16742}, {16704, 17345}, {17013, 26738}, {17022, 38093}, {17064, 17599}, {17070, 29639}, {17117, 30832}, {17150, 48646}, {17276, 24597}, {17294, 25527}, {17304, 37660}, {17346, 27184}, {17348, 26580}, {17372, 31017}, {17389, 18134}, {17597, 31146}, {17605, 29821}, {19277, 25055}, {20106, 28313}, {20182, 25525}, {21241, 49472}, {21342, 33142}, {24177, 37634}, {24295, 48641}, {25391, 36923}, {28297, 44416}, {28322, 32933}, {28484, 33156}, {28530, 35263}, {28538, 31134}, {28555, 33161}, {28581, 33122}, {28582, 33114}, {29575, 34064}, {29631, 49483}, {29632, 49462}, {29654, 48643}, {29856, 49493}, {29857, 49453}, {29858, 49452}, {33115, 49523}, {33130, 37593}, {33136, 49465}, {33139, 49515}, {33148, 49478}, {33170, 49525}, {33175, 49468}, {37684, 48629}, {39595, 40688}

X(50103) = midpoint of X(33128) and X(33143)
X(50103) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 321, 17359}, {2, 4980, 50052}, {2, 17301, 3666}, {2, 19785, 17301}, {2, 19796, 42051}, {3772, 17301, 2}, {3772, 19785, 3666}, {3782, 40940, 4641}, {3914, 17061, 3744}, {4000, 17720, 16610}, {4442, 26230, 49484}, {16706, 37759, 30818}, {29658, 33149, 1155}, {33129, 33155, 37}, {33132, 33152, 210}, {33133, 33150, 3752}, {33135, 33147, 354}


X(50104) = X(2)X(37)∩X(10)X(3712)

Barycentrics    2*a^3 - a^2*b - a*b^2 + 2*b^3 - a^2*c + 2*b^2*c - a*c^2 + 2*b*c^2 + 2*c^3 : :
X(50104) = 2 X[306] + X[4641], X[306] + 2 X[44416], X[4641] - 4 X[44416], 2 X[3703] + X[3744], X[3782] - 4 X[20106]

X(50104) lies on these lines: {2, 37}, {10, 3712}, {31, 28538}, {38, 4141}, {42, 4933}, {44, 33077}, {55, 3679}, {57, 5525}, {63, 599}, {141, 3977}, {210, 33160}, {306, 524}, {333, 4595}, {354, 33158}, {518, 33156}, {519, 3703}, {544, 29594}, {597, 5294}, {908, 17340}, {940, 16785}, {1150, 17229}, {1155, 29674}, {1214, 34897}, {1279, 33089}, {1386, 32848}, {1992, 26065}, {2321, 35466}, {2796, 2887}, {3006, 49484}, {3187, 28329}, {3218, 17231}, {3219, 31143}, {3306, 17267}, {3683, 32778}, {3689, 33165}, {3695, 37539}, {3696, 33115}, {3706, 4438}, {3729, 30811}, {3745, 33092}, {3748, 33169}, {3749, 4677}, {3782, 17132}, {3844, 4414}, {3912, 37520}, {3929, 10319}, {3936, 17351}, {3967, 29846}, {4001, 22165}, {4003, 29637}, {4030, 4669}, {4062, 4663}, {4376, 4715}, {4427, 48647}, {4519, 33140}, {4640, 15523}, {4690, 4760}, {4693, 29861}, {4702, 33120}, {4849, 33166}, {4912, 32933}, {4914, 8616}, {4956, 29872}, {5233, 17339}, {5241, 25101}, {5249, 49727}, {5256, 47352}, {5291, 17294}, {5302, 20653}, {5325, 49724}, {5695, 29857}, {5718, 17355}, {5846, 35263}, {7283, 17677}, {7801, 25083}, {8299, 31136}, {9909, 20989}, {11111, 50046}, {11237, 48812}, {15492, 37656}, {16704, 17372}, {17133, 40940}, {17240, 37684}, {17261, 30832}, {17284, 17595}, {17285, 24627}, {17286, 37660}, {17299, 24597}, {17345, 31017}, {17528, 50049}, {17594, 19875}, {17599, 25055}, {17605, 27759}, {21342, 33173}, {21949, 29873}, {25697, 36923}, {26223, 31179}, {26230, 49463}, {27184, 49748}, {27739, 31142}, {27757, 41242}, {28204, 28464}, {28484, 33128}, {28534, 31134}, {28555, 33143}, {28581, 33114}, {28582, 33122}, {29574, 37595}, {29631, 49462}, {29632, 49483}, {29641, 49720}, {29855, 49453}, {29856, 49452}, {29858, 49493}, {31164, 49721}, {31445, 49723}, {32775, 49523}, {32780, 37593}, {33136, 49485}, {33139, 49468}, {33148, 49525}, {33163, 47359}, {33170, 49478}, {33171, 47358}, {33175, 49515}, {49735, 50051}

X(50104) = midpoint of X(33156) and X(33161)
X(50104) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17776, 41313}, {2, 28606, 41311}, {2, 41313, 44307}, {2, 42033, 3175}, {10, 3712, 4689}, {306, 44416, 4641}, {345, 32777, 3666}, {17279, 17740, 16610}, {17280, 32851, 30818}, {32779, 32849, 37}, {33157, 33168, 3752}, {33158, 33167, 354}, {33160, 33164, 210}


X(50105) = X(2)X(37)∩X(31)X(519)

Barycentrics    a^3 - a^2*b - a*b^2 + b^3 - a^2*c + 2*b^2*c - a*c^2 + 2*b*c^2 + c^3 : :
X(50105) = 4 X[306] - X[32859], 2 X[306] + X[32933], X[32859] + 2 X[32933], 4 X[3703] - X[5014], 2 X[3703] + X[32929], X[5014] + 2 X[32929], X[3187] - 4 X[44416], 2 X[4641] + X[20017]

X(50105) lies on these lines: {2, 37}, {8, 11111}, {31, 519}, {63, 544}, {81, 17389}, {100, 3790}, {190, 33077}, {306, 527}, {528, 3703}, {726, 33122}, {740, 33114}, {750, 6541}, {846, 3679}, {968, 48851}, {1150, 2321}, {1211, 49742}, {1962, 48822}, {2108, 31137}, {2796, 31134}, {2887, 28542}, {3006, 5695}, {3187, 4971}, {3218, 17233}, {3219, 17346}, {3416, 4427}, {3578, 3929}, {3685, 33089}, {3695, 11112}, {3702, 45700}, {3704, 34606}, {3705, 10707}, {3712, 26227}, {3729, 3936}, {3773, 4414}, {3782, 28297}, {3896, 33163}, {3923, 32848}, {4054, 30834}, {4062, 32935}, {4141, 31136}, {4365, 4438}, {4418, 33092}, {4442, 29857}, {4641, 4725}, {4676, 32842}, {4693, 33120}, {4696, 34619}, {4894, 34649}, {4933, 31161}, {4970, 26061}, {4981, 48802}, {5016, 7283}, {5235, 48628}, {5739, 6172}, {5741, 31142}, {6057, 6174}, {6173, 18139}, {6327, 28534}, {6535, 32916}, {7206, 25440}, {11239, 48806}, {13745, 50047}, {14996, 17315}, {15523, 32934}, {16418, 50041}, {16704, 17299}, {17012, 17354}, {17155, 33158}, {17184, 49747}, {17242, 37633}, {17243, 26627}, {17254, 32782}, {17262, 26580}, {17269, 17595}, {17276, 31017}, {17297, 32858}, {17318, 29833}, {17333, 31143}, {17336, 37656}, {17339, 37680}, {17351, 31034}, {17372, 31303}, {17528, 50044}, {18134, 49722}, {21283, 49485}, {24248, 48647}, {26034, 48648}, {26223, 49726}, {26230, 49453}, {28313, 40940}, {28516, 33143}, {28522, 33128}, {28538, 42058}, {29631, 49452}, {29632, 49493}, {29674, 32845}, {29829, 49462}, {29830, 49483}, {29831, 49463}, {29832, 49484}, {32775, 49445}, {32778, 32936}, {32855, 32930}, {32860, 33164}, {32862, 32932}, {32863, 35596}, {32915, 33167}, {32925, 33160}, {33115, 49474}, {33170, 49470}, {33175, 49447}, {36263, 49560}, {37540, 50000}

X(50105) = reflection of X(i) in X(j) for these {i,j}: {33114, 33161}, {33122, 33156}
X(50105) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17147, 17301}, {2, 17301, 32774}, {2, 50043, 4980}, {306, 32933, 32859}, {321, 345, 33113}, {346, 17740, 4358}, {2321, 3977, 1150}, {3666, 17359, 2}, {3703, 32929, 5014}, {3923, 32848, 33070}, {15523, 32934, 32950}, {17147, 32777, 32774}, {17301, 32777, 2}


X(50106) = X(1)X(39711)∩X(2)X(37)

Barycentrics    a^2*b + a*b^2 + a^2*c - a*b*c - 2*b^2*c + a*c^2 - 2*b*c^2 : :
X(50106) = 5 X[2] - 4 X[35652], 5 X[3175] - 6 X[35652], 4 X[3175] - 3 X[42044], X[3175] - 3 X[42051], 8 X[35652] - 5 X[42044], 2 X[35652] - 5 X[42051], X[42044] - 4 X[42051], 8 X[596] - 5 X[3889], 3 X[3681] - 4 X[4685], 2 X[4685] - 3 X[32860], 3 X[3873] - 4 X[42055], 3 X[17155] - 2 X[42055], 4 X[4096] - 3 X[32925]

X(50106) lies on these lines: {1, 39711}, {2, 37}, {8, 32950}, {38, 49474}, {42, 49493}, {63, 4921}, {81, 3875}, {88, 30567}, {210, 28555}, {239, 11352}, {304, 16711}, {306, 1266}, {314, 18601}, {320, 20017}, {354, 28484}, {519, 3868}, {528, 20243}, {538, 3578}, {553, 17133}, {596, 3889}, {726, 3681}, {740, 3873}, {756, 49445}, {894, 19738}, {903, 39700}, {908, 4052}, {982, 4365}, {1086, 32858}, {1213, 28651}, {1738, 32862}, {1836, 32842}, {2321, 33172}, {2895, 17276}, {2999, 41242}, {3120, 32855}, {3187, 17160}, {3219, 4361}, {3416, 33102}, {3662, 3969}, {3663, 32782}, {3679, 4642}, {3687, 33151}, {3696, 7226}, {3703, 33131}, {3705, 4442}, {3706, 4392}, {3712, 29681}, {3720, 49452}, {3729, 32911}, {3758, 45222}, {3773, 33125}, {3782, 33077}, {3891, 32932}, {3896, 24349}, {3914, 33089}, {3920, 49453}, {3923, 32924}, {3943, 40688}, {3966, 33100}, {3967, 4706}, {3980, 9347}, {3994, 16569}, {4062, 33103}, {4096, 28516}, {4113, 49513}, {4360, 42028}, {4362, 32845}, {4363, 17011}, {4384, 33761}, {4387, 7292}, {4398, 17184}, {4418, 32921}, {4430, 28581}, {4440, 32859}, {4454, 20043}, {4467, 23878}, {4651, 49447}, {4654, 36595}, {4659, 5256}, {4661, 28582}, {4716, 32912}, {4734, 46897}, {4762, 17161}, {4851, 26842}, {4852, 37685}, {4883, 49461}, {4956, 11238}, {4970, 32771}, {5262, 11354}, {5278, 17117}, {5333, 25590}, {5695, 7191}, {5839, 20078}, {5880, 33093}, {6535, 33174}, {6541, 25961}, {7263, 27186}, {7283, 11346}, {8025, 17393}, {9352, 17763}, {10129, 29849}, {11220, 29016}, {11359, 50041}, {11680, 49554}, {15523, 33149}, {16712, 33935}, {16751, 36900}, {16825, 32936}, {17018, 49483}, {17019, 17318}, {17024, 49484}, {17116, 19684}, {17118, 20182}, {17132, 17781}, {17140, 49470}, {17144, 18172}, {17247, 41809}, {17262, 27065}, {17275, 41821}, {17299, 32863}, {17329, 43990}, {17717, 48642}, {17786, 40013}, {17889, 32848}, {18139, 48627}, {18632, 41803}, {18662, 24635}, {19276, 50072}, {19870, 28612}, {20011, 49499}, {20068, 49450}, {20081, 25298}, {20292, 33088}, {20911, 48838}, {23155, 35104}, {24165, 28522}, {24248, 33075}, {24715, 32854}, {26037, 49456}, {26627, 34064}, {27783, 27790}, {28503, 34612}, {28554, 42054}, {28580, 34611}, {29814, 49462}, {29815, 49463}, {30568, 37687}, {31137, 42040}, {31161, 42043}, {32104, 40773}, {32778, 33145}, {32852, 32857}, {32861, 33098}, {32866, 33094}, {32914, 32934}, {32922, 32929}, {32940, 49488}, {32945, 49455}, {33128, 33167}, {33132, 33161}, {33143, 33160}, {33147, 33156}, {37549, 48862}, {37631, 49727}, {37676, 49533}, {41823, 46922}, {48815, 50042}, {48817, 50045}

X(50106) = reflection of X(i) in X(j) for these {i,j}: {2, 42051}, {3681, 32860}, {3873, 17155}, {32915, 24165}, {42044, 2}
X(50106) = anticomplement of X(3175)
X(50106) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {8690, 20295}, {34860, 21287}, {39956, 1330}
X(50106) = barycentric product X(75)*X(17749)
X(50106) = barycentric quotient X(17749)/X(1)
X(50106) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4740, 4980}, {75, 17147, 28606}, {306, 1266, 33146}, {321, 3210, 4850}, {345, 19789, 33129}, {1278, 3210, 321}, {3644, 19804, 3995}, {3666, 4686, 28605}, {3980, 32928, 9347}, {17160, 32939, 3187}, {17301, 50048, 2}, {17320, 19797, 2}, {17740, 30699, 33133}, {29849, 48643, 10129}, {37756, 42033, 2}


X(50107) = X(2)X(37)∩X(8)X(190)

Barycentrics    a^2 - 2*a*b + b^2 - 2*a*c + 4*b*c + c^2 : :
X(50107) = 3 X[2] - 4 X[17359], 5 X[2] - 4 X[17382], 3 X[17281] - X[17301], 3 X[17281] - 2 X[17359], 5 X[17281] - 2 X[17382], 5 X[17301] - 6 X[17382], 5 X[17359] - 3 X[17382], X[8] + 2 X[5695], X[69] - 4 X[2321], X[69] + 2 X[3729], 2 X[2321] + X[3729], X[145] - 4 X[49484], X[193] + 2 X[17299], X[193] - 4 X[17351], X[17299] + 2 X[17351], X[3751] + 2 X[4133], 2 X[3416] + X[24280], 5 X[3616] - 2 X[49453], 5 X[3618] - 2 X[3875], 5 X[3618] - 8 X[17355], X[3875] - 4 X[17355], 7 X[3619] - 4 X[3663], 7 X[3619] - 10 X[17286], 2 X[3663] - 5 X[17286], 5 X[3620] - 8 X[17229], 5 X[3620] - 2 X[17276], 4 X[17229] - X[17276], 7 X[3622] - 4 X[49463], 4 X[3678] - X[15076], 4 X[3773] - X[24248], 2 X[4527] + X[32935], 4 X[4535] - X[4655], 2 X[17274] - 3 X[21356], 3 X[21356] - 4 X[29594], 4 X[17372] - X[20080], 3 X[21358] - 2 X[49741], 3 X[38314] - 4 X[48810], 2 X[49485] + X[49688]

X(50107) lies on these lines: {2, 37}, {6, 4971}, {7, 17233}, {8, 190}, {9, 4431}, {45, 4665}, {69, 527}, {76, 646}, {86, 7229}, {141, 28297}, {144, 319}, {145, 3758}, {189, 4102}, {193, 4725}, {306, 31164}, {313, 30681}, {320, 4454}, {348, 4552}, {391, 5564}, {519, 1992}, {524, 49721}, {534, 17781}, {545, 599}, {594, 17251}, {597, 28309}, {894, 17314}, {903, 39749}, {966, 17261}, {984, 48802}, {1086, 17269}, {1266, 17284}, {1332, 4513}, {1654, 25269}, {1930, 30701}, {2094, 32939}, {2325, 4384}, {2550, 3790}, {2783, 5657}, {3161, 17277}, {3241, 28503}, {3264, 28809}, {3416, 24280}, {3616, 49453}, {3617, 17256}, {3618, 3875}, {3619, 3663}, {3620, 17229}, {3622, 49463}, {3661, 4419}, {3664, 4072}, {3678, 15076}, {3679, 3717}, {3681, 44670}, {3685, 47357}, {3686, 25728}, {3687, 31142}, {3695, 17528}, {3696, 27549}, {3702, 11240}, {3703, 31140}, {3704, 11236}, {3731, 4967}, {3773, 24248}, {3912, 4659}, {3943, 4363}, {3945, 17315}, {3950, 10436}, {3969, 5905}, {3974, 32932}, {3993, 48822}, {4007, 4416}, {4029, 16831}, {4044, 4494}, {4054, 30828}, {4058, 17270}, {4346, 17227}, {4360, 5749}, {4361, 17340}, {4365, 33163}, {4371, 17349}, {4373, 48629}, {4385, 34619}, {4389, 29611}, {4398, 17285}, {4399, 16885}, {4402, 17352}, {4421, 8424}, {4422, 17119}, {4440, 17230}, {4445, 17334}, {4464, 16667}, {4470, 16826}, {4472, 16672}, {4473, 16816}, {4488, 17347}, {4527, 32935}, {4535, 4655}, {4562, 36222}, {4643, 20073}, {4644, 6542}, {4648, 17116}, {4667, 29605}, {4670, 29585}, {4673, 32034}, {4675, 29583}, {4693, 36479}, {4715, 11160}, {4733, 9791}, {4748, 29593}, {4869, 7321}, {4910, 16668}, {4916, 20090}, {5032, 28329}, {5222, 17160}, {5232, 17258}, {5263, 48856}, {5839, 17350}, {6535, 26034}, {6554, 33938}, {6707, 16674}, {7222, 17300}, {7227, 16777}, {7228, 17311}, {7263, 17267}, {7283, 11111}, {10707, 33089}, {11112, 50044}, {11113, 50041}, {15533, 28333}, {15534, 28337}, {16670, 49770}, {16676, 24603}, {16814, 28634}, {16823, 38025}, {16834, 17133}, {17079, 40704}, {17117, 17339}, {17118, 17243}, {17132, 17274}, {17151, 17353}, {17224, 17378}, {17234, 31995}, {17246, 17293}, {17253, 48636}, {17255, 48635}, {17268, 48627}, {17271, 49748}, {17295, 21296}, {17309, 17365}, {17313, 49727}, {17318, 17369}, {17333, 29615}, {17361, 20059}, {17372, 20080}, {17373, 31300}, {17397, 26039}, {17487, 39345}, {17579, 50045}, {17762, 25242}, {17786, 44147}, {18816, 32041}, {19853, 32026}, {20009, 50054}, {20055, 20072}, {20895, 20927}, {21358, 49741}, {22003, 24044}, {24199, 38093}, {26104, 29613}, {28472, 38315}, {28484, 38047}, {29617, 37654}, {29624, 41847}, {30414, 46176}, {31145, 49698}, {32882, 40014}, {32934, 48644}, {33677, 42048}, {34603, 49719}, {36494, 38053}, {36588, 36807}, {36796, 36916}, {38092, 39570}, {38314, 48810}, {48849, 49746}, {49485, 49688}

X(50107) = anticomplement of X(17301)
X(50107) = midpoint of X(3729) and X(17294)
X(50107) = reflection of X(i) in X(j) for these {i,j}: {2, 17281}, {6, 49726}, {69, 17294}, {3241, 48805}, {17274, 29594}, {17294, 2321}, {17301, 17359}, {49747, 141}
X(50107) = X(i)-isoconjugate of X(j) for these (i,j): {604, 34919}, {649, 14074}
X(50107) = X(i)-Dao conjugate of X(j) for these (i, j): (3161, 34919), (5375, 14074), (34522, 4860)
X(50107) = trilinear pole of line {14077, 47787}
X(50107) = barycentric product X(i)*X(j) for these {i,j}: {190, 47787}, {312, 8545}, {346, 1996}, {668, 14077}, {3596, 37541}, {3699, 30181}, {5423, 47386}
X(50107) = barycentric quotient X(i)/X(j) for these {i,j}: {8, 34919}, {100, 14074}, {1996, 279}, {8545, 57}, {14077, 513}, {15346, 4860}, {30181, 3676}, {37541, 56}, {46644, 34056}, {47386, 479}, {47787, 514}
X(50107) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 346, 17264}, {2, 3672, 17399}, {2, 17264, 344}, {8, 6172, 17346}, {9, 4431, 42696}, {75, 312, 37788}, {75, 346, 344}, {75, 17264, 2}, {190, 17346, 6172}, {192, 2345, 17321}, {344, 37788, 1997}, {346, 4461, 75}, {594, 17262, 17257}, {594, 49742, 17251}, {1086, 17269, 29579}, {1278, 17280, 4000}, {2321, 3729, 69}, {3161, 32087, 17277}, {3175, 50048, 2}, {3644, 17289, 3672}, {3663, 17286, 3619}, {3875, 17355, 3618}, {3912, 4659, 42697}, {3943, 4363, 17316}, {4361, 17340, 26685}, {4454, 29616, 320}, {4488, 32099, 17347}, {4659, 4873, 3912}, {4671, 17740, 28808}, {4688, 4908, 41313}, {4688, 41313, 2}, {4764, 16706, 4452}, {5564, 17336, 391}, {7321, 17240, 4869}, {17116, 17242, 4648}, {17117, 17339, 37650}, {17160, 17354, 5222}, {17229, 17276, 3620}, {17233, 49722, 17297}, {17251, 17262, 49742}, {17251, 49742, 17257}, {17258, 48630, 5232}, {17261, 48628, 966}, {17274, 29594, 21356}, {17281, 17301, 17359}, {17289, 17399, 2}, {17297, 49722, 7}, {17299, 17351, 193}, {17301, 17359, 2}, {17318, 17369, 26626}, {17342, 37756, 2}, {42029, 42033, 2}


X(50108) = X(2)X(3950)∩X(69)X(519)

Barycentrics    4*a^2 + 5*a*b + b^2 + 5*a*c - 10*b*c + c^2 : :
X(50108) = 2 X[69] - 5 X[3663], X[69] + 5 X[3875], 3 X[69] - 5 X[17274], X[3663] + 2 X[3875], 3 X[3663] - 2 X[17274], 3 X[3875] + X[17274], 2 X[15534] - 5 X[49543], 7 X[597] - 5 X[49726], 5 X[4852] - 2 X[32455], 5 X[2321] - 8 X[34573], 5 X[17382] - 4 X[34573], 10 X[3946] - 7 X[47355], 5 X[17281] - 7 X[47355], X[4924] + 2 X[49446], 3 X[5032] - 5 X[16834], 5 X[17301] - 3 X[21358], 6 X[21358] - 5 X[29594]

X(50108) lies on these lines: {2, 3950}, {6, 28301}, {10, 17160}, {69, 519}, {75, 551}, {145, 4887}, {192, 41140}, {527, 15534}, {536, 597}, {545, 4852}, {903, 3879}, {1266, 3244}, {2321, 17382}, {3241, 3664}, {3625, 4389}, {3633, 4346}, {3635, 42697}, {3668, 41803}, {3672, 3679}, {3686, 24441}, {3755, 28503}, {3828, 17321}, {3945, 36588}, {3946, 17281}, {3986, 17117}, {4000, 41141}, {4029, 4395}, {4058, 17302}, {4060, 17323}, {4072, 16706}, {4357, 4669}, {4370, 4718}, {4398, 4464}, {4402, 25072}, {4416, 40891}, {4419, 50019}, {4460, 4862}, {4656, 27776}, {4726, 10022}, {4745, 42696}, {4908, 17366}, {4909, 31995}, {4924, 49446}, {5032, 16834}, {5224, 38098}, {8584, 28322}, {17121, 17487}, {17133, 17301}, {17271, 34641}, {17272, 31145}, {17310, 21255}, {17318, 29571}, {17342, 31191}, {17376, 36525}, {17388, 31138}, {19875, 32087}, {20049, 21296}, {25590, 38314}, {28329, 49741}, {28484, 48810}, {28580, 32921}, {29600, 37756}, {36911, 37650}

X(50108) = reflection of X(i) in X(j) for these {i,j}: {2321, 17382}, {17281, 3946}, {29594, 17301}
X(50108) = {X(1266),X(3244)}-harmonic conjugate of X(4896)


X(50109) = X(2)X(2321)∩X(6)X(17132)

Barycentrics    4*a^2 + 3*a*b + b^2 + 3*a*c - 6*b*c + c^2 : :
X(50109) = 7 X[2] - 5 X[17286], X[2321] + 2 X[3875], X[2321] - 4 X[3946], 7 X[2321] - 10 X[17286], X[3875] + 2 X[3946], 7 X[3875] + 5 X[17286], 14 X[3946] - 5 X[17286], X[599] - 3 X[17301], X[3755] + 2 X[32921], 2 X[4353] + X[49486], X[3663] + 2 X[4852], 5 X[3663] - 2 X[17345], 5 X[4852] + X[17345], 2 X[17345] + 5 X[49543], X[1992] - 3 X[16834], 5 X[597] - 3 X[49726], X[3244] + 2 X[4743], X[3886] - 3 X[38314], X[4133] - 3 X[19883], 2 X[4527] - 5 X[19862], X[4740] + 3 X[27480], X[4780] + 2 X[49472], 2 X[4856] + X[17276], 3 X[17382] - 2 X[20582], 4 X[20582] - 3 X[29594], X[5695] - 3 X[38023], X[11160] - 3 X[17274], X[17299] - 3 X[21358], 5 X[17304] - 3 X[21356], 2 X[17355] - 3 X[47352]

X(50109) lies on these lines: {2, 2321}, {6, 17132}, {10, 17395}, {141, 28329}, {142, 4360}, {226, 31179}, {239, 3707}, {354, 24394}, {519, 599}, {524, 3663}, {527, 1992}, {536, 597}, {545, 20583}, {551, 740}, {1086, 3244}, {1100, 49727}, {1125, 17119}, {1266, 4393}, {1449, 4452}, {2325, 5222}, {2482, 15349}, {2796, 49477}, {3008, 4029}, {3241, 5853}, {3625, 17237}, {3626, 17325}, {3635, 4675}, {3662, 4464}, {3672, 3686}, {3759, 49748}, {3886, 38314}, {3943, 31191}, {3950, 17366}, {4000, 29573}, {4021, 4361}, {4035, 19785}, {4058, 17384}, {4060, 17306}, {4072, 17357}, {4085, 4669}, {4098, 17337}, {4133, 19883}, {4356, 49740}, {4357, 29617}, {4389, 49770}, {4395, 29571}, {4405, 4708}, {4419, 4700}, {4431, 17380}, {4460, 17296}, {4483, 42028}, {4527, 19862}, {4545, 5232}, {4643, 50019}, {4644, 4982}, {4659, 17014}, {4664, 41140}, {4725, 49741}, {4740, 27480}, {4780, 17392}, {4856, 15534}, {4889, 48631}, {4910, 7232}, {4912, 8584}, {4971, 17382}, {5695, 38023}, {5749, 32105}, {5750, 17151}, {9041, 49463}, {11160, 17274}, {16475, 28557}, {16672, 31211}, {16676, 24599}, {17023, 17160}, {17067, 17316}, {17197, 33296}, {17227, 49761}, {17235, 22165}, {17254, 40891}, {17281, 28313}, {17290, 49765}, {17299, 21358}, {17302, 29615}, {17304, 21356}, {17320, 31144}, {17348, 49737}, {17355, 47352}, {17359, 28309}, {17388, 21255}, {17393, 24199}, {17765, 31138}, {17769, 34641}, {19796, 41823}, {22110, 49554}, {23668, 42038}, {24257, 28194}, {24473, 44661}, {27191, 29601}, {28522, 38049}, {28538, 49630}, {28562, 49684}, {47359, 49453}

X(50109) = midpoint of X(i) and X(j) for these {i,j}: {2, 3875}, {3663, 49543}, {15534, 17276}, {47358, 49486}, {47359, 49453}
X(50109) = reflection of X(i) in X(j) for these {i,j}: {2, 3946}, {2321, 2}, {4669, 4085}, {15534, 4856}, {22165, 17235}, {29594, 17382}, {47358, 4353}, {49543, 4852}
X(50109) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1266, 4393, 4667}, {3008, 17318, 4029}, {3875, 3946, 2321}, {4021, 4361, 5257}, {4360, 37756, 29574}, {29574, 37756, 142}


X(50110) = X(2)X(2321)∩X(9)X(4464)

Barycentrics    2*a^2 + 5*a*b - b^2 + 5*a*c - 4*b*c - c^2 : :
X(50110) = 5 X[37] - 2 X[4399], 3 X[37] - 2 X[49731], 3 X[4399] - 5 X[49731], 2 X[192] + X[3879], 5 X[192] + X[17364], 5 X[3879] - 2 X[17364], X[17364] - 5 X[17389], X[3883] - 4 X[3993], 3 X[4664] - X[17346], 2 X[49470] + X[49527], 2 X[49462] + X[49476], 2 X[17392] - 3 X[29574], 5 X[17392] - 3 X[49727], 5 X[29574] - 2 X[49727], X[3644] + 2 X[3664], 2 X[3686] - 5 X[4704], X[4416] - 4 X[4681], X[4416] + 2 X[17388], 2 X[4681] + X[17388], X[4718] + 2 X[17390], X[4788] + 5 X[17391], 2 X[4889] + X[17334]

X(50110) lies on these lines: {2, 2321}, {9, 4464}, {37, 4399}, {45, 49770}, {69, 4898}, {75, 28313}, {142, 29575}, {145, 6172}, {190, 3244}, {192, 527}, {239, 4029}, {519, 751}, {528, 49462}, {536, 17392}, {551, 32922}, {597, 4908}, {1086, 29601}, {1100, 49726}, {1266, 6173}, {1992, 49684}, {2325, 4393}, {3175, 22012}, {3241, 3685}, {3625, 17256}, {3635, 3758}, {3644, 3664}, {3663, 17297}, {3686, 4704}, {3707, 20016}, {3886, 48856}, {3912, 17290}, {3943, 17023}, {3950, 4360}, {3986, 5564}, {4021, 17233}, {4058, 17322}, {4060, 17248}, {4072, 17289}, {4098, 17277}, {4357, 17294}, {4364, 4727}, {4389, 49765}, {4416, 4681}, {4419, 29605}, {4431, 16777}, {4440, 29619}, {4472, 39260}, {4643, 49761}, {4659, 29585}, {4667, 29588}, {4669, 31144}, {4686, 49733}, {4688, 28309}, {4718, 17390}, {4788, 17391}, {4851, 49747}, {4852, 25101}, {4856, 17336}, {4873, 26626}, {4887, 17387}, {4889, 17334}, {4910, 16885}, {4986, 42724}, {6542, 17254}, {7227, 46845}, {16672, 24603}, {16673, 42696}, {16674, 28634}, {16834, 16970}, {17067, 29572}, {17132, 17378}, {17160, 29571}, {17251, 17299}, {17320, 29594}, {17330, 28329}, {17335, 50019}, {17355, 17393}, {17365, 28322}, {17395, 29596}, {20009, 34701}, {20583, 36522}, {28522, 36494}, {29600, 37756}, {29602, 42697}, {41140, 41313}, {46922, 49482}

X(50110) = midpoint of X(i) and X(j) for these {i,j}: {192, 17389}, {3644, 49722}, {17388, 49742}
X(50110) = reflection of X(i) in X(j) for these {i,j}: {3879, 17389}, {4416, 49742}, {4686, 49733}, {49722, 3664}, {49742, 4681}
X(50110) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3950, 4360, 17353}, {4681, 17388, 4416}


X(50111) = X(1)X(190)∩X(2)X(740)

Barycentrics    5*a^2*b + 2*a*b^2 + 5*a^2*c + 6*a*b*c - b^2*c + 2*a*c^2 - b*c^2 : :
X(50111) = 5 X[1] + X[49447], 2 X[1] + X[49456], 4 X[1] - X[49491], 7 X[1] - X[49499], 5 X[4664] - X[49447], 4 X[4664] + X[49491], 7 X[4664] + X[49499], 2 X[49447] - 5 X[49456], 4 X[49447] + 5 X[49491], 7 X[49447] + 5 X[49499], 2 X[49456] + X[49491], 7 X[49456] + 2 X[49499], 7 X[49491] - 4 X[49499], 4 X[37] - X[49457], 2 X[37] + X[49471], 5 X[37] + X[49475], X[49457] + 2 X[49471], 5 X[49457] + 4 X[49475], 5 X[49471] - 2 X[49475], X[75] - 3 X[25055], X[192] + 3 X[38314], X[31178] - 3 X[38314], X[3993] + 2 X[15569], 2 X[3993] + X[24325], 4 X[15569] - X[24325], 2 X[1125] + X[49462], 2 X[3244] + X[49449], 5 X[3616] - X[4740], 5 X[3616] + X[49452], 7 X[3622] - X[49493], 5 X[3623] + X[49503], 4 X[3634] - X[49468], 2 X[3635] + X[49515], 4 X[3636] - X[49483], 2 X[3842] + X[49470], 2 X[3739] - 3 X[19883], 2 X[4681] + X[49479], 5 X[4687] - 2 X[4732], 5 X[4687] - 3 X[19875], 5 X[4687] + X[49469], 2 X[4732] - 3 X[19875], 2 X[4732] + X[49469], 3 X[19875] + X[49469], 4 X[4698] - X[4709], 5 X[4704] + X[49490], 5 X[16491] + X[49502], 7 X[27268] - X[49459], 3 X[47352] - X[49531]

X(50111) lies on these lines: {1, 190}, {2, 740}, {10, 4755}, {37, 519}, {42, 42056}, {45, 4753}, {75, 4975}, {192, 28554}, {238, 29584}, {518, 3898}, {536, 551}, {752, 29574}, {984, 3241}, {1125, 4688}, {2321, 48853}, {2796, 17392}, {3244, 49449}, {3247, 32941}, {3616, 4740}, {3622, 49493}, {3623, 49503}, {3634, 49468}, {3635, 49515}, {3636, 49483}, {3655, 20430}, {3656, 29054}, {3679, 3842}, {3685, 29580}, {3696, 3828}, {3723, 49482}, {3731, 49497}, {3739, 19883}, {3836, 4356}, {3923, 5625}, {3995, 31161}, {4029, 4439}, {4096, 42042}, {4098, 49529}, {4364, 49764}, {4370, 36409}, {4407, 49763}, {4653, 19623}, {4669, 28581}, {4681, 49479}, {4687, 4732}, {4693, 16826}, {4698, 4709}, {4704, 49490}, {4759, 16666}, {4937, 46897}, {4974, 16834}, {5308, 24693}, {6682, 31137}, {10176, 44671}, {15485, 17393}, {16484, 17000}, {16491, 49502}, {16672, 36480}, {16674, 49460}, {16677, 49680}, {16777, 48805}, {16814, 49685}, {17237, 49767}, {17243, 48821}, {17244, 25351}, {17281, 48822}, {17318, 24331}, {17378, 28558}, {20049, 49689}, {21806, 31035}, {24715, 29569}, {25384, 28309}, {27268, 49459}, {29575, 31151}, {29577, 32784}, {30273, 31162}, {31145, 49678}, {31323, 40891}, {34747, 49450}, {35166, 35956}, {47352, 49531}, {48856, 49526}, {49676, 49741}

X(50111) = midpoint of X(i) and X(j) for these {i,j}: {1, 4664}, {192, 31178}, {551, 3993}, {984, 3241}, {3655, 20430}, {3679, 49470}, {4688, 49462}, {4740, 49452}, {20049, 49689}, {30273, 31162}, {31145, 49678}, {34747, 49450}
X(50111) = reflection of X(i) in X(j) for these {i,j}: {10, 4755}, {551, 15569}, {3679, 3842}, {3696, 3828}, {4688, 1125}, {24325, 551}, {49456, 4664}
X(50111) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 49456, 49491}, {37, 49471, 49457}, {192, 38314, 31178}, {3993, 15569, 24325}, {4687, 49469, 4732}, {16484, 17319, 49472}


X(50112) = X(2)X(594)∩X(6)X(545)

Barycentrics    4*a^2 + 2*a*b + b^2 + 2*a*c - 4*b*c + c^2 : :
X(50112) = X[141] - 4 X[3946], X[141] + 2 X[4852], 5 X[141] - 2 X[17372], 2 X[3946] + X[4852], 10 X[3946] - X[17372], 5 X[4852] + X[17372], X[17372] - 5 X[17382], 3 X[16834] + X[17274], 2 X[16834] + X[49741], X[17274] - 3 X[17301], 2 X[17274] - 3 X[49741], 2 X[3589] + X[3875], X[3629] + 2 X[3663], X[3630] - 4 X[17235], 2 X[3631] - 5 X[17304], X[3729] - 4 X[6329], X[22165] + 2 X[49543], 2 X[4856] + X[17345], 2 X[17359] - 3 X[48310], X[17276] + 2 X[32455], X[17299] - 4 X[34573], 2 X[32921] + X[49524]

X(50112) lies on these lines: {1, 4395}, {2, 594}, {6, 545}, {7, 36525}, {10, 4405}, {37, 41140}, {75, 10022}, {141, 519}, {145, 17290}, {192, 4370}, {239, 4364}, {524, 16834}, {527, 8584}, {536, 597}, {551, 3739}, {599, 28337}, {740, 48810}, {752, 49477}, {903, 17365}, {1086, 4393}, {1100, 7263}, {1213, 17396}, {1266, 16666}, {1386, 28580}, {1449, 4795}, {1992, 28333}, {3241, 4000}, {3244, 3834}, {3589, 3875}, {3617, 25503}, {3621, 26104}, {3629, 3663}, {3630, 17235}, {3631, 17304}, {3635, 17067}, {3672, 17332}, {3679, 4399}, {3729, 6329}, {3759, 17246}, {3782, 45222}, {3828, 25498}, {3879, 31138}, {3943, 17342}, {4021, 17348}, {4029, 6687}, {4363, 17014}, {4371, 17327}, {4389, 4969}, {4398, 7277}, {4402, 15668}, {4407, 50021}, {4422, 5222}, {4445, 31145}, {4460, 17309}, {4464, 17231}, {4472, 17119}, {4478, 4677}, {4665, 17023}, {4669, 17239}, {4690, 50019}, {4725, 22165}, {4727, 29596}, {4856, 17345}, {4887, 4982}, {4889, 21255}, {4908, 17353}, {4910, 17296}, {5839, 17323}, {5846, 48829}, {6707, 25055}, {7222, 36588}, {7227, 17151}, {12610, 28204}, {16475, 28530}, {16672, 31285}, {16706, 17310}, {16711, 18166}, {16833, 41312}, {16884, 31139}, {17027, 25350}, {17117, 17398}, {17121, 17334}, {17133, 17359}, {17160, 17369}, {17237, 49770}, {17245, 17393}, {17262, 36522}, {17271, 17302}, {17276, 32455}, {17294, 20582}, {17299, 34573}, {17305, 20016}, {17316, 40480}, {17319, 17337}, {17351, 28301}, {17356, 41141}, {17377, 48632}, {17383, 48635}, {17384, 48636}, {17392, 29584}, {17399, 29617}, {19722, 19819}, {19875, 28634}, {20180, 46922}, {20181, 49733}, {27191, 29588}, {28329, 29594}, {28472, 38047}, {28484, 38049}, {28503, 32921}, {29235, 36729}, {29601, 31243}, {39704, 48627}

X(50112) = midpoint of X(i) and X(j) for these {i,j}: {1992, 49747}, {3875, 17281}, {4852, 17382}, {16834, 17301}
X(50112) = reflection of X(i) in X(j) for these {i,j}: {141, 17382}, {17281, 3589}, {17294, 20582}, {17382, 3946}, {49726, 597}, {49741, 17301}
X(50112) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 4395, 34824}, {239, 17320, 17330}, {239, 17395, 4364}, {3241, 4000, 17313}, {3241, 17313, 17390}, {3672, 37654, 24441}, {3946, 4852, 141}, {4360, 17366, 17243}, {5222, 17318, 4422}, {16833, 41312, 49731}, {17119, 26626, 4472}, {17271, 40891, 17362}, {17302, 40891, 17271}, {17320, 17330, 4364}, {17330, 17395, 17320}, {24441, 37654, 17332}, {29584, 37756, 17392}, {49465, 50013, 141}


X(50113) = X(2)X(594)∩X(6)X(644)

Barycentrics    2*a^2 + 4*a*b - b^2 + 4*a*c - 2*b*c - c^2 : :
X(50113) = 5 X[37] - 2 X[3686], 5 X[37] - 3 X[16590], 4 X[37] - X[17362], 2 X[37] + X[17388], 2 X[3686] - 3 X[16590], 4 X[3686] - 5 X[17330], 8 X[3686] - 5 X[17362], 4 X[3686] + 5 X[17388], 6 X[16590] - 5 X[17330], 12 X[16590] - 5 X[17362], 6 X[16590] + 5 X[17388], X[17362] + 2 X[17388], 2 X[192] + X[17365], X[192] + 2 X[17390], X[17365] - 4 X[17390], 3 X[4664] - X[17333], X[17333] + 3 X[17389], 2 X[17333] - 3 X[49742], 2 X[17389] + X[49742], 4 X[29574] - X[49727], X[3644] + 2 X[7228], X[3644] + 5 X[17391], X[3644] + 3 X[39704], 2 X[7228] - 5 X[17391], 2 X[7228] - 3 X[39704], 5 X[17391] - 3 X[39704], 2 X[3664] + X[4718], X[3879] + 2 X[4681], 2 X[3879] + X[17334], 4 X[4681] - X[17334], 2 X[4399] - 5 X[4687], X[4416] + 2 X[4889], 5 X[4704] - 2 X[17332], 5 X[4704] + X[17377], 2 X[17332] + X[17377]

X(50113) lies on these lines: {1, 3943}, {2, 594}, {6, 644}, {8, 16672}, {9, 13602}, {10, 4727}, {37, 519}, {44, 3244}, {45, 145}, {69, 24441}, {75, 28309}, {86, 10022}, {141, 17310}, {190, 29588}, {192, 545}, {320, 29619}, {346, 16884}, {391, 16677}, {524, 4664}, {536, 17392}, {551, 2321}, {597, 17264}, {740, 49725}, {742, 31342}, {752, 3993}, {903, 17300}, {966, 16674}, {1086, 17313}, {1100, 3950}, {1125, 39260}, {1213, 3247}, {1743, 36911}, {1766, 3655}, {1953, 34699}, {2171, 5434}, {2178, 4421}, {2242, 47040}, {2294, 34612}, {2325, 3635}, {2345, 38314}, {2901, 37150}, {3058, 17452}, {3178, 21689}, {3589, 17242}, {3629, 17261}, {3630, 17258}, {3631, 17247}, {3633, 16676}, {3644, 7228}, {3663, 31138}, {3664, 4718}, {3672, 17311}, {3729, 4795}, {3731, 34747}, {3834, 29601}, {3871, 19297}, {3874, 21864}, {3875, 17245}, {3879, 4681}, {3912, 17382}, {3946, 41141}, {3970, 17444}, {3986, 34641}, {4007, 19875}, {4021, 17231}, {4037, 31161}, {4053, 34606}, {4058, 19883}, {4060, 4745}, {4098, 16814}, {4363, 29585}, {4364, 6542}, {4393, 4422}, {4395, 17244}, {4398, 36525}, {4399, 4687}, {4405, 16815}, {4416, 4889}, {4431, 28639}, {4464, 17348}, {4472, 29570}, {4478, 17248}, {4643, 29605}, {4648, 31139}, {4665, 16826}, {4669, 5257}, {4675, 29602}, {4677, 16673}, {4688, 17133}, {4690, 49761}, {4704, 17332}, {4740, 49733}, {4755, 28329}, {4851, 17246}, {4852, 17337}, {4854, 31134}, {4856, 15492}, {4916, 40341}, {4954, 37675}, {5308, 17119}, {5750, 46845}, {5839, 16675}, {5846, 49746}, {6172, 15534}, {6329, 17339}, {6707, 48628}, {7227, 17394}, {7238, 17387}, {7263, 17317}, {7277, 17262}, {8610, 20691}, {11113, 22021}, {13587, 21773}, {16816, 31285}, {16834, 41313}, {16972, 47359}, {17160, 29569}, {17227, 29618}, {17237, 49765}, {17240, 17396}, {17254, 22165}, {17269, 26626}, {17277, 40891}, {17290, 29583}, {17294, 41312}, {17297, 49741}, {17301, 29573}, {17303, 25055}, {17309, 17321}, {17312, 48631}, {17322, 48636}, {17325, 29616}, {17336, 32455}, {17346, 28337}, {17350, 36522}, {17399, 20582}, {17487, 20090}, {18146, 30473}, {20693, 42056}, {21049, 34619}, {21690, 27577}, {21801, 34749}, {21808, 34720}, {21853, 24473}, {21933, 45701}, {25358, 29593}, {27191, 29589}, {27754, 35466}, {28333, 49748}, {28580, 49462}, {29016, 36722}, {29235, 36730}, {29572, 40480}, {29575, 37756}, {29594, 41311}, {29617, 49731}, {35121, 49751}, {37631, 42044}, {46922, 49726}

X(50113) = midpoint of X(i) and X(j) for these {i,j}: {192, 17378}, {4664, 17389}, {17330, 17388}
X(50113) = reflection of X(i) in X(j) for these {i,j}: {75, 49738}, {4740, 49733}, {17330, 37}, {17346, 49737}, {17362, 17330}, {17365, 17378}, {17378, 17390}, {17392, 29574}, {29617, 49731}, {49727, 17392}, {49742, 4664}
X(50113) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3943, 17369}, {37, 17388, 17362}, {45, 145, 4969}, {192, 17390, 17365}, {1100, 3950, 17340}, {2321, 3723, 17398}, {2325, 3635, 16666}, {3244, 4029, 44}, {3247, 4898, 17299}, {3247, 17299, 1213}, {3644, 17391, 7228}, {3672, 17311, 48632}, {3686, 16590, 17330}, {3879, 4681, 17334}, {4360, 17243, 17366}, {4704, 17377, 17332}, {16777, 17314, 594}, {17160, 29569, 34824}, {17240, 17396, 34573}, {17242, 17393, 3589}, {17247, 17386, 3631}, {17264, 29584, 597}, {17309, 17321, 48635}, {17310, 17319, 17320}, {17310, 17320, 141}, {17315, 17319, 141}, {17315, 17320, 17310}, {17316, 17318, 1086}, {17399, 29577, 20582}


X(50114) = X(1)X(2)∩X(6)X(527)

Barycentrics    4*a^2 + a*b + b^2 + a*c - 2*b*c + c^2 : :
X(50114) = 2 X[2] + X[49543], X[10] + 2 X[49477], 2 X[1125] + X[49488], 5 X[3616] + X[49495], 7 X[3622] - X[49451], 4 X[3636] - X[49458], 3 X[16834] + X[17294], 2 X[16834] + X[29594], 2 X[17294] - 3 X[29594], 2 X[17294] + 3 X[49543], 5 X[19862] - 2 X[49560], 2 X[6] + X[3663], X[6] + 2 X[3946], 5 X[6] + X[17276], 3 X[6] + X[49747], X[3663] - 4 X[3946], 5 X[3663] - 2 X[17276], 3 X[3663] - 2 X[49747], 10 X[3946] - X[17276], 6 X[3946] - X[49747], X[17276] - 5 X[17301], 3 X[17276] - 5 X[49747], 3 X[17301] - X[49747], X[69] + 2 X[4856], X[193] + 5 X[17304], 2 X[1386] + X[3755], 3 X[597] - X[49726], X[2321] - 4 X[3589], X[2321] + 2 X[4852], 2 X[3589] + X[4852], 2 X[3242] + X[4924], 5 X[3618] + X[3875], 5 X[3618] - 2 X[17355], X[3875] + 2 X[17355], X[3629] + 2 X[17235], X[3751] + 2 X[4353], X[3821] + 2 X[4991], 2 X[4085] + X[49684], X[4133] - 4 X[24295], X[4780] + 2 X[49482], 4 X[6329] - X[17351], X[17281] - 3 X[47352], X[17299] - 7 X[47355], X[17345] + 2 X[32455], X[17372] - 4 X[34573], 2 X[49464] + X[49536], 3 X[38023] - X[48805], 2 X[49472] + X[49529], 2 X[49489] + X[49511], X[49505] + 2 X[49685]

X(50114) lies on these lines: {1, 2}, {6, 527}, {7, 16667}, {9, 4021}, {44, 17395}, {57, 1323}, {58, 35935}, {69, 4856}, {81, 17205}, {83, 4052}, {141, 4725}, {142, 1100}, {165, 11200}, {193, 17304}, {218, 50068}, {222, 553}, {223, 38009}, {226, 544}, {238, 4356}, {277, 39948}, {279, 39980}, {335, 49535}, {354, 2809}, {491, 49620}, {492, 49621}, {514, 1643}, {515, 36731}, {516, 16475}, {524, 17382}, {528, 1386}, {536, 597}, {673, 4649}, {740, 38049}, {752, 49630}, {940, 24175}, {946, 36728}, {948, 4654}, {1001, 4989}, {1015, 3752}, {1051, 33147}, {1086, 4667}, {1108, 25065}, {1212, 5325}, {1266, 3758}, {1429, 4251}, {1449, 3664}, {1453, 11111}, {1475, 20367}, {1509, 24378}, {1642, 46907}, {1738, 4349}, {1743, 3672}, {1992, 17274}, {2321, 3589}, {2325, 17318}, {2784, 3817}, {2796, 5182}, {3058, 41339}, {3159, 41249}, {3242, 4924}, {3247, 25072}, {3304, 37272}, {3338, 24590}, {3452, 6603}, {3496, 3928}, {3618, 3875}, {3629, 17235}, {3666, 43065}, {3671, 41245}, {3686, 4657}, {3707, 4364}, {3723, 17337}, {3731, 37681}, {3751, 4353}, {3759, 4357}, {3821, 4991}, {3879, 16706}, {3913, 21526}, {3929, 16572}, {3945, 4859}, {3950, 4360}, {3986, 17277}, {3993, 17755}, {4029, 4422}, {4058, 17289}, {4060, 17293}, {4072, 17280}, {4082, 32928}, {4085, 49684}, {4098, 17319}, {4133, 24295}, {4253, 37555}, {4263, 28358}, {4301, 6996}, {4314, 16478}, {4361, 5750}, {4395, 4670}, {4399, 17385}, {4402, 25590}, {4416, 17121}, {4419, 16670}, {4421, 21539}, {4431, 17368}, {4464, 17233}, {4643, 4700}, {4644, 4887}, {4648, 4909}, {4656, 5526}, {4658, 16054}, {4664, 49521}, {4672, 28542}, {4675, 17067}, {4715, 8584}, {4780, 49482}, {4848, 43053}, {4910, 17309}, {4967, 17381}, {4969, 17237}, {4982, 17290}, {5255, 34639}, {5257, 17045}, {5493, 37416}, {5563, 11349}, {5717, 17528}, {5745, 34522}, {5749, 17151}, {5839, 17306}, {5853, 38185}, {5881, 7402}, {6185, 40767}, {6329, 17351}, {6666, 16777}, {7264, 30807}, {7290, 47357}, {7397, 7982}, {8666, 11343}, {8715, 21477}, {9278, 35066}, {9441, 12194}, {10222, 19512}, {11194, 21509}, {12437, 37326}, {12513, 21514}, {15828, 17261}, {16668, 17365}, {16669, 17246}, {16671, 17334}, {16673, 18230}, {16712, 17206}, {16884, 17278}, {16972, 24266}, {17133, 17281}, {17158, 33941}, {17180, 42028}, {17299, 47355}, {17330, 41311}, {17345, 32455}, {17349, 17396}, {17352, 17393}, {17356, 17390}, {17357, 17388}, {17362, 17384}, {17363, 17383}, {17370, 17377}, {17372, 34573}, {17379, 24199}, {17745, 17781}, {17769, 38191}, {19785, 31164}, {19796, 41258}, {19804, 33936}, {20172, 33682}, {20179, 37756}, {20582, 28337}, {20583, 28333}, {20942, 33938}, {20963, 24215}, {21314, 21454}, {24181, 37631}, {25723, 31225}, {26740, 43047}, {27480, 28522}, {27942, 35113}, {28301, 49721}, {28329, 48310}, {28538, 48821}, {29081, 36727}, {30424, 33149}, {30809, 37723}, {31230, 41687}, {32029, 49464}, {35293, 46908}, {37520, 43057}, {37597, 40133}, {37677, 48627}, {38023, 48805}, {40747, 43266}, {41823, 42033}, {48867, 50060}, {49472, 49529}, {49489, 49511}, {49505, 49685}

X(50114) = midpoint of X(i) and X(j) for these {i,j}: {2, 16834}, {6, 17301}, {1992, 17274}, {4852, 17359}, {8584, 49741}, {29594, 49543}
X(50114) = reflection of X(i) in X(j) for these {i,j}: {2321, 17359}, {3663, 17301}, {17301, 3946}, {17359, 3589}, {29594, 2}, {49543, 16834}
X(50114) = complement of X(17294)
X(50114) = X(28899)-complementary conjugate of X(513)
X(50114) = crosssum of X(6) and X(41423)
X(50114) = crossdifference of every pair of points on line {649, 9029}
X(50114) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 43, 41276}, {1, 3008, 29571}, {1, 3679, 48856}, {1, 5222, 3008}, {1, 31183, 5308}, {2, 3241, 29573}, {2, 4393, 17389}, {2, 17389, 3912}, {2, 29573, 41141}, {2, 29574, 29600}, {2, 29584, 29574}, {2, 40891, 29615}, {6, 3946, 3663}, {8, 29598, 29604}, {145, 17284, 49765}, {239, 17023, 10}, {239, 41251, 30133}, {1086, 4667, 4896}, {1086, 16666, 4667}, {1100, 17366, 142}, {1449, 4000, 3664}, {2999, 39595, 45204}, {3244, 31191, 3912}, {3247, 37650, 25072}, {3589, 4852, 2321}, {3616, 24599, 16832}, {3618, 3875, 17355}, {3623, 29627, 29602}, {3636, 31211, 16831}, {3661, 49770, 3625}, {3759, 17380, 4357}, {3759, 17399, 17346}, {3879, 16706, 21255}, {3912, 4393, 3244}, {3912, 17367, 31191}, {4360, 17353, 3950}, {4384, 26626, 1125}, {4393, 17367, 3912}, {5222, 17014, 1}, {5228, 43035, 10481}, {6542, 29630, 29596}, {16816, 17397, 24603}, {17017, 28125, 1}, {17045, 17348, 5257}, {17121, 17302, 4416}, {17266, 29588, 29601}, {17319, 25101, 4098}, {1734X(50114) = 6, 17380, 17399}, {17346, 17399, 4357}, {17367, 17389, 2}, {17397, 24603, 19862}, {20057, 31189, 29621}, {29604, 50019, 8}


X(50115) = X(2)X(7)∩X(10)X(44)

Barycentrics    4*a^2 - a*b + b^2 - a*c + 2*b*c + c^2 : :
X(50115) = 2 X[6] + X[2321], 5 X[6] - 2 X[4856], 5 X[6] + X[17299], X[6] + 2 X[17355], 5 X[2321] + 4 X[4856], 5 X[2321] - 2 X[17299], X[2321] - 4 X[17355], 2 X[4856] + 5 X[17281], 2 X[4856] + X[17299], X[4856] + 5 X[17355], 5 X[17281] - X[17299], X[17299] - 10 X[17355], 2 X[49482] + X[49529], X[10] + 2 X[4672], 2 X[1125] + X[32935], X[193] + 5 X[17286], 3 X[38047] - X[48829], 4 X[3589] - X[3663], 2 X[3589] + X[17351], X[3663] + 2 X[17351], 5 X[1698] + X[24695], 5 X[3618] + X[3729], 5 X[3618] - 2 X[3946], X[3729] + 2 X[3946], X[3629] + 2 X[17229], 4 X[3634] - X[4655], X[3755] + 2 X[3923], X[4133] + 2 X[49489], X[4852] - 4 X[6329], 3 X[48310] - X[49741], X[4924] + 2 X[49467], X[17301] - 3 X[47352], 3 X[47352] + X[49721], X[17276] - 7 X[47355], X[17345] - 4 X[34573], X[17372] + 2 X[32455], 4 X[24295] - X[49511], 2 X[49473] + X[49536]

X(50115) lies on these lines: {1, 2325}, {2, 7}, {6, 519}, {8, 4700}, {10, 44}, {30, 10445}, {37, 537}, {41, 16393}, {45, 1125}, {75, 41140}, {86, 25101}, {141, 4715}, {145, 4873}, {190, 17023}, {193, 17286}, {198, 16371}, {218, 5782}, {281, 1877}, {284, 4234}, {320, 29596}, {346, 1449}, {374, 2835}, {380, 34607}, {515, 48833}, {516, 36721}, {518, 48810}, {522, 1643}, {524, 17359}, {536, 597}, {545, 3589}, {594, 4669}, {726, 13331}, {903, 16706}, {950, 4217}, {965, 19290}, {966, 3973}, {1086, 31191}, {1100, 3950}, {1213, 15492}, {1220, 5837}, {1266, 17367}, {1386, 28503}, {1405, 4848}, {1698, 24695}, {1743, 2345}, {1766, 28194}, {1901, 16052}, {1992, 17294}, {2182, 11112}, {2183, 16549}, {2257, 34625}, {2264, 34612}, {2267, 16788}, {2297, 2324}, {2329, 5053}, {2792, 10175}, {2796, 6034}, {3008, 4363}, {3161, 3247}, {3217, 19336}, {3244, 3943}, {3501, 4266}, {3616, 16676}, {3618, 3729}, {3625, 4969}, {3629, 17229}, {3634, 4655}, {3636, 16672}, {3664, 4795}, {3692, 11239}, {3723, 4098}, {3731, 25055}, {3739, 10022}, {3745, 4082}, {3755, 3923}, {3758, 3912}, {3759, 4431}, {3828, 16885}, {3834, 4896}, {3879, 17120}, {3932, 4349}, {3986, 15828}, {3993, 36409}, {4007, 31145}, {4021, 17262}, {4035, 32777}, {4058, 16671}, {4060, 4677}, {4072, 16668}, {4078, 33682}, {4133, 49489}, {4195, 12437}, {4254, 4421}, {4270, 42043}, {4286, 20108}, {4344, 4901}, {4389, 4480}, {4416, 17271}, {4419, 29598}, {4422, 4670}, {4440, 29630}, {4470, 16832}, {4473, 16826}, {4643, 29604}, {4644, 17284}, {4657, 24441}, {4659, 5222}, {4664, 49528}, {4676, 49746}, {4725, 8584}, {4741, 29613}, {4745, 17275}, {4747, 29627}, {4758, 16831}, {4852, 6329}, {4859, 7222}, {4887, 17290}, {4912, 48310}, {4924, 49467}, {4967, 17349}, {4971, 49543}, {5120, 11194}, {5220, 19868}, {5227, 48803}, {5263, 24393}, {5550, 31722}, {5735, 36682}, {5783, 19276}, {6687, 34824}, {7227, 17348}, {7228, 17356}, {7229, 37681}, {7277, 17231}, {7359, 8582}, {8557, 45700}, {8715, 37503}, {8804, 11113}, {9300, 49554}, {9359, 40790}, {11235, 40963}, {13539, 20262}, {13735, 41239}, {13740, 24391}, {14439, 35263}, {15601, 39581}, {15668, 25072}, {16517, 48854}, {16548, 33950}, {16667, 17314}, {16786, 49466}, {16829, 39252}, {16834, 17133}, {17045, 36522}, {17067, 42697}, {17121, 40891}, {17132, 17301}, {17234, 39704}, {17238, 17488}, {17242, 37677}, {17264, 29574}, {17268, 20090}, {17269, 49765}, {17276, 47355}, {17278, 31139}, {17292, 20072}, {17302, 17487}, {17321, 25728}, {17332, 17385}, {17334, 17384}, {17335, 24603}, {17336, 17381}, {17339, 17379}, {17345, 34573}, {17347, 17371}, {17352, 24199}, {17357, 17365}, {17358, 17364}, {17372, 32455}, {17392, 29600}, {17396, 25269}, {17399, 49748}, {17766, 38191}, {20227, 42053}, {20582, 28333}, {20583, 28337}, {21101, 31161}, {21211, 45313}, {21526, 24328}, {21629, 28854}, {21803, 22343}, {23617, 36910}, {24165, 46907}, {24295, 49511}, {24386, 33121}, {24487, 46898}, {24502, 36406}, {24725, 30768}, {25590, 37650}, {26061, 31134}, {27747, 35466}, {28534, 48821}, {29057, 38118}, {31151, 33159}, {31349, 49521}, {35113, 36220}, {36595, 37800}, {38408, 49636}, {41311, 49742}, {49473, 49536}

X(50115) = midpoint of X(i) and X(j) for these {i,j}: {6, 17281}, {597, 49726}, {1992, 17294}, {17301, 49721}, {17351, 17382}, {47359, 48805}
X(50115) = reflection of X(i) in X(j) for these {i,j}: {2321, 17281}, {3663, 17382}, {17281, 17355}, {17382, 3589}, {29594, 17359}, {49630, 48821}
X(50115) = complement of X(17274)
X(50115) = crossdifference of every pair of points on line {663, 4491}
X(50115) = barycentric product X(i)*X(j) for these {i,j}: {8, 4315}, {190, 47767}
X(50115) = barycentric quotient X(i)/X(j) for these {i,j}: {4315, 7}, {47767, 514}
X(50115) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2325, 4029}, {2, 17333, 4357}, {2, 17350, 17333}, {2, 35578, 6173}, {6, 17299, 4856}, {6, 17355, 2321}, {8, 16670, 4700}, {9, 5749, 5750}, {9, 5750, 5257}, {10, 44, 3707}, {44, 17369, 10}, {894, 17353, 142}, {1100, 17340, 3950}, {1743, 2345, 3686}, {1743, 3679, 37654}, {2345, 37654, 3679}, {3589, 17351, 3663}, {3618, 3729, 3946}, {3664, 41141, 17313}, {3679, 37654, 3686}, {3758, 3912, 4667}, {3758, 17342, 17378}, {3758, 17354, 3912}, {3943, 16666, 3244}, {3986, 15828, 16814}, {4422, 4670, 29571}, {4795, 17279, 17313}, {4795, 17313, 3664}, {5294, 26223, 226}, {10436, 26685, 6666}, {16814, 17398, 3986}, {17120, 17280, 3879}, {17264, 46922, 29574}, {17279, 17313, 41141}, {17333, 17368, 2}, {17342, 17378, 3912}, {17350, 17368, 4357}, {17354, 17378, 17342}, {17357, 17365, 21255}, {17392, 41310, 29600}, {47352, 49721, 17301}, {49569, 49570, 10175}


X(50116) = X(2)X(7)∩X(10)X(320)

Barycentrics    2*a^2 + a*b - b^2 + a*c + 4*b*c - c^2 : :
X(50116) = X[37] + 2 X[7228], X[75] + 2 X[3664], 2 X[75] + X[3879], 5 X[75] + X[17377], X[75] + 3 X[39704], 4 X[3664] - X[3879], 10 X[3664] - X[17377], 2 X[3664] - 3 X[39704], 5 X[3879] - 2 X[17377], X[3879] - 6 X[39704], X[17377] - 5 X[17378], X[17377] - 15 X[39704], X[17378] - 3 X[39704], 3 X[24452] + X[49490], X[29574] + 2 X[49727], X[3883] - 4 X[24325], X[1278] + 5 X[17391], 2 X[3686] - 5 X[4699], 2 X[3686] + X[17364], 5 X[4699] + X[17364], 4 X[3739] - X[4416], 2 X[3739] + X[17365], X[4416] + 2 X[17365], X[4686] + 2 X[17390], 4 X[4698] - X[17334], 2 X[4726] + X[17388], 4 X[4739] - X[17362], 7 X[4751] - X[17347], 7 X[4772] - X[17363], 3 X[16590] - 2 X[17332], 3 X[16590] - 5 X[31238], 2 X[17332] - 5 X[31238], 2 X[17049] + X[49537], 5 X[17331] - 3 X[17488], 2 X[24349] + X[49527], X[49476] + 2 X[49483]

X(50116) lies on these lines: {1, 1266}, {2, 7}, {6, 4795}, {10, 320}, {37, 545}, {44, 34824}, {45, 4480}, {69, 3679}, {75, 519}, {77, 36595}, {86, 99}, {141, 10022}, {190, 29571}, {192, 28301}, {239, 4667}, {269, 17079}, {314, 42057}, {319, 4669}, {354, 6007}, {376, 10444}, {516, 49746}, {518, 49725}, {524, 4688}, {536, 17392}, {537, 49521}, {594, 17376}, {742, 27478}, {752, 3883}, {942, 37150}, {946, 41874}, {971, 36722}, {1086, 4670}, {1100, 7263}, {1125, 4389}, {1213, 17345}, {1278, 17391}, {1441, 41801}, {1442, 41803}, {1992, 16833}, {2321, 17116}, {2325, 17244}, {2345, 17298}, {2810, 3753}, {3008, 3758}, {3241, 3875}, {3244, 17160}, {3263, 31161}, {3616, 4346}, {3618, 4859}, {3626, 17360}, {3634, 17250}, {3668, 17078}, {3672, 38314}, {3686, 4699}, {3707, 16815}, {3729, 4648}, {3739, 4416}, {3812, 17114}, {3828, 5224}, {3834, 17369}, {3912, 4363}, {3943, 29601}, {3946, 17379}, {3950, 17317}, {3977, 27754}, {3986, 17258}, {4021, 4398}, {4029, 29569}, {4034, 20080}, {4054, 37633}, {4058, 17295}, {4059, 34606}, {4060, 17373}, {4292, 37038}, {4349, 32922}, {4370, 17245}, {4384, 4644}, {4395, 16666}, {4419, 16831}, {4431, 4851}, {4440, 16826}, {4452, 30712}, {4454, 5308}, {4464, 17151}, {4470, 17308}, {4472, 7238}, {4473, 29626}, {4643, 24603}, {4659, 17316}, {4664, 17132}, {4665, 17374}, {4677, 42696}, {4686, 17390}, {4698, 17334}, {4700, 16816}, {4726, 17388}, {4739, 17362}, {4740, 17133}, {4741, 29576}, {4745, 17361}, {4747, 5222}, {4751, 17347}, {4754, 30030}, {4755, 4912}, {4758, 17397}, {4772, 17363}, {4785, 21211}, {4798, 17325}, {4862, 17321}, {4869, 7229}, {4873, 29583}, {4908, 7231}, {4909, 17393}, {4911, 17677}, {5121, 26240}, {5263, 5542}, {5564, 34641}, {5735, 36706}, {5736, 19336}, {5805, 36721}, {5880, 48829}, {7227, 17231}, {7232, 17303}, {7277, 17348}, {10385, 10889}, {10401, 11237}, {10446, 28194}, {10455, 17179}, {13727, 43177}, {14548, 31146}, {15668, 17276}, {15936, 20880}, {15956, 50061}, {16394, 24549}, {16412, 24328}, {16590, 17332}, {16676, 20073}, {17045, 36525}, {17049, 49537}, {17067, 17367}, {17117, 20090}, {17119, 49770}, {17139, 17175}, {17227, 29604}, {17234, 17342}, {17235, 17398}, {17246, 28639}, {17261, 17487}, {17263, 41138}, {17264, 29600}, {17270, 21296}, {17272, 19875}, {17273, 28653}, {17288, 28604}, {17289, 21255}, {17297, 29594}, {17322, 19883}, {17331, 17488}, {17335, 31211}, {17336, 25072}, {17375, 48628}, {17381, 48629}, {17384, 48631}, {17385, 48632}, {17387, 49765}, {17532, 41004}, {17579, 18650}, {18821, 35154}, {19796, 42028}, {19868, 43180}, {20179, 37756}, {23812, 24165}, {24342, 49511}, {24349, 49527}, {24391, 26051}, {24541, 24999}, {24693, 49772}, {24697, 39580}, {24723, 30424}, {25377, 27922}, {25557, 48810}, {27191, 31191}, {27747, 37520}, {28333, 49731}, {28503, 49476}, {28534, 49740}, {28634, 40341}, {30090, 34283}, {30941, 31136}, {30962, 31137}, {31145, 32087}, {31317, 49754}, {32025, 38098}, {32093, 32099}, {32836, 48812}, {33869, 48822}, {36232, 41144}, {37631, 39774}, {41310, 49726}, {41311, 49741}, {41312, 49747}, {41313, 49721}, {47359, 47595}, {49535, 49715}, {49688, 49750}

X(50116) = midpoint of X(i) and X(j) for these {i,j}: {75, 17378}, {4664, 49722}, {4740, 17389}, {7228, 49738}, {17330, 17365}, {17392, 49727}
X(50116) = reflection of X(i) in X(j) for these {i,j}: {37, 49738}, {3879, 17378}, {4416, 17330}, {4688, 49733}, {17330, 3739}, {17378, 3664}, {29574, 17392}, {49742, 4755}
X(50116) = complement of X(17333)
X(50116) = crossdifference of every pair of points on line {663, 14407}
X(50116) = barycentric product X(i)*X(j) for these {i,j}: {75, 37520}, {190, 47891}, {27747, 39704}
X(50116) = barycentric quotient X(i)/X(j) for these {i,j}: {27747, 3679}, {37520, 1}, {47891, 514}
X(50116) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 42697, 1266}, {2, 7, 17274}, {2, 17274, 4357}, {2, 17484, 27776}, {7, 10436, 4357}, {10, 4896, 320}, {69, 25590, 4967}, {75, 3664, 3879}, {75, 39704, 17378}, {86, 903, 17320}, {86, 7321, 3663}, {86, 17320, 551}, {142, 894, 17353}, {551, 3663, 17320}, {894, 26806, 142}, {903, 17320, 3663}, {1086, 4670, 17023}, {1125, 4887, 4389}, {3739, 17365, 4416}, {3834, 17369, 29596}, {3945, 31995, 3875}, {4363, 4675, 3912}, {4363, 17313, 17281}, {4389, 41847, 1125}, {4398, 17394, 4021}, {4472, 7238, 17237}, {4648, 7222, 3729}, {4675, 17281, 17313}, {4699, 17364, 3686}, {4795, 31139, 41140}, {4851, 17118, 4431}, {4869, 7229, 17286}, {4888, 25590, 69}, {7321, 17320, 903}, {10436, 17274, 2}, {16815, 20072, 3707}, {17116, 17300, 2321}, {17234, 17342, 41141}, {17245, 17351, 25101}, {17281, 17313, 3912}, {17350, 27147, 6666}, {17355, 41141, 17342}, {17378, 39704, 3664}, {17379, 48627, 3946}


X(50117) = X(1)X(1278)∩X(10)X(75)

Barycentrics    a*b^2 - 2*a*b*c - 3*b^2*c + a*c^2 - 3*b*c^2 : :
X(50117) = X[8] - 5 X[4821], 10 X[4821] - X[49504], 5 X[4821] + X[49532], X[49504] + 2 X[49532], 3 X[10] - 2 X[984], 5 X[10] - 2 X[49447], X[10] + 2 X[49493], 7 X[10] - 2 X[49517], 3 X[75] - X[984], 5 X[75] - X[49447], 7 X[75] - X[49517], 4 X[75] - X[49520], 5 X[984] - 3 X[49447], X[984] + 3 X[49493], 7 X[984] - 3 X[49517], 4 X[984] - 3 X[49520], X[49447] + 5 X[49493], 7 X[49447] - 5 X[49517], 4 X[49447] - 5 X[49520], 7 X[49493] + X[49517], 4 X[49493] + X[49520], 4 X[49517] - 7 X[49520], 4 X[37] - 5 X[19862], X[3625] - 8 X[4726], X[4709] - 4 X[4726], 3 X[4740] + X[24349], 3 X[4740] - X[49474], 9 X[4740] + X[49498], 6 X[4740] + X[49535], 3 X[24349] - X[49498], 3 X[49474] + X[49498], 2 X[49474] + X[49535], 2 X[49498] - 3 X[49535], 3 X[551] - 2 X[3993], 9 X[551] - 8 X[15569], 3 X[551] - 4 X[24325], 3 X[3993] - 4 X[15569], 2 X[15569] - 3 X[24325], 4 X[3696] - 3 X[4669], 3 X[4669] - 2 X[49510], 3 X[4669] + 4 X[49525], X[49510] + 2 X[49525], X[3244] + 4 X[4686], 5 X[3244] - 4 X[49475], 3 X[3244] - 4 X[49478], X[3244] - 4 X[49483], 5 X[4686] + X[49475], 3 X[4686] + X[49478], 2 X[4686] + X[49479], 3 X[49475] - 5 X[49478], 2 X[49475] - 5 X[49479], X[49475] - 5 X[49483], 2 X[49478] - 3 X[49479], X[49478] - 3 X[49483], 5 X[1698] - 7 X[4772], 5 X[3616] - X[4788], 7 X[3624] - 5 X[4704], 4 X[3634] - 5 X[4699], 2 X[3644] - 7 X[15808], 3 X[3679] - X[31302], 3 X[3817] - 2 X[20430], 2 X[3842] - 3 X[4688], 3 X[4688] - X[49523], 2 X[4664] - 3 X[19883], 3 X[4664] - 5 X[40328], 9 X[19883] - 10 X[40328], 8 X[19878] - 7 X[27268], 3 X[31178] - X[49470], 3 X[34641] - 2 X[49450], X[49505] + 2 X[49533], X[49534] - 3 X[49720]

X(50117) lies on these lines: {1, 1278}, {2, 4135}, {8, 4821}, {10, 75}, {11, 48641}, {37, 19862}, {38, 4980}, {142, 6541}, {192, 1125}, {244, 321}, {335, 29594}, {518, 3625}, {519, 4740}, {536, 551}, {537, 3696}, {596, 42027}, {740, 3244}, {894, 49477}, {982, 42029}, {1086, 3773}, {1089, 20892}, {1215, 42051}, {1698, 4772}, {1757, 17117}, {2321, 49676}, {2796, 3883}, {3159, 29974}, {3210, 6685}, {3416, 24692}, {3616, 4788}, {3624, 4704}, {3626, 49448}, {3634, 4699}, {3635, 49469}, {3644, 15808}, {3661, 27494}, {3679, 31302}, {3706, 42055}, {3729, 16825}, {3739, 28555}, {3741, 4392}, {3751, 50018}, {3758, 4991}, {3775, 4665}, {3790, 49769}, {3797, 27478}, {3817, 20430}, {3826, 4439}, {3836, 7263}, {3842, 4688}, {3923, 4659}, {3953, 22167}, {3971, 4359}, {3994, 24589}, {3995, 25501}, {4058, 49509}, {4065, 25124}, {4066, 20891}, {4072, 38054}, {4133, 5542}, {4297, 29010}, {4361, 32935}, {4363, 32921}, {4365, 17140}, {4399, 5852}, {4407, 4733}, {4431, 24231}, {4440, 33082}, {4527, 4966}, {4535, 17231}, {4647, 20899}, {4649, 17160}, {4664, 19883}, {4671, 4871}, {4685, 17165}, {4716, 49685}, {4732, 49515}, {4764, 49452}, {4970, 32771}, {4974, 17351}, {5263, 49464}, {5493, 29054}, {6532, 22016}, {6686, 17490}, {7321, 32846}, {9055, 49511}, {9330, 32925}, {9843, 20171}, {16604, 20688}, {17063, 42034}, {17118, 49453}, {17146, 50001}, {17147, 43223}, {17151, 49488}, {17154, 31136}, {17340, 31289}, {17362, 17771}, {17365, 17772}, {19789, 25453}, {19796, 32780}, {19819, 33163}, {19820, 33132}, {19878, 27268}, {21241, 33089}, {21927, 24387}, {22295, 49981}, {24215, 33935}, {24603, 27481}, {26128, 50048}, {28484, 49471}, {28562, 49506}, {28581, 49491}, {28582, 49457}, {29603, 31347}, {29635, 30699}, {29674, 48627}, {31025, 46901}, {31178, 49470}, {32922, 49482}, {33159, 37756}, {34641, 49450}, {36480, 49446}, {49459, 49499}, {49505, 49533}, {49531, 49536}, {49534, 49720}

X(50117) = midpoint of X(i) and X(j) for these {i,j}: {1, 1278}, {8, 49532}, {75, 49493}, {3696, 49525}, {4686, 49483}, {4764, 49452}, {24349, 49474}, {49459, 49499}
X(50117) = reflection of X(i) in X(j) for these {i,j}: {10, 75}, {192, 1125}, {3244, 49479}, {3625, 4709}, {3993, 24325}, {4065, 25124}, {42027, 596}, {49448, 3626}, {49456, 3739}, {49469, 3635}, {49479, 49483}, {49504, 8}, {49508, 49457}, {49510, 3696}, {49515, 4732}, {49520, 10}, {49523, 3842}, {49535, 24349}, {49536, 49531}
X(50117) = complement of X(49445)
X(50117) = crosspoint of X(75) and X(27494)
X(50117) = crosssum of X(31) and X(21793)
X(50117) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {321, 24165, 3840}, {3696, 49510, 4669}, {3797, 27478, 29571}, {3993, 24325, 551}, {4066, 24176, 46827}, {4133, 5542, 49764}, {4363, 32921, 33682}, {4365, 17140, 42057}, {4431, 24231, 49560}, {4688, 49523, 3842}, {4740, 24349, 49474}, {17155, 28605, 3741}


X(50118) = X(2)X(2415)∩X(10)X(190)

Barycentrics    4*a^2 - 3*a*b + b^2 - 3*a*c + 6*b*c + c^2 : :
X(50118) = 7 X[2] - 5 X[17304], X[3663] + 2 X[3729], 7 X[3663] - 10 X[17304], X[3663] - 4 X[17355], 7 X[3729] + 5 X[17304], X[3729] + 2 X[17355], 5 X[17304] - 14 X[17355], 2 X[3886] + X[4924], X[2321] + 2 X[17351], 5 X[2321] - 2 X[17372], 5 X[17351] + X[17372], X[599] - 3 X[17281], 2 X[599] - 3 X[29594], X[599] + 3 X[49721], X[29594] + 2 X[49721], X[597] - 3 X[49726], 3 X[17359] - 2 X[20582], 2 X[3946] - 3 X[47352], 2 X[4353] - 3 X[25055], 2 X[4856] - 3 X[5032], X[11160] - 3 X[17294], X[17276] - 3 X[21358], 5 X[17286] - 3 X[21356], 3 X[19875] - X[24248], 3 X[19883] - 4 X[24295], 3 X[38023] - X[49453], 3 X[38314] - X[49446]

X(50118) lies on these lines: {2, 2415}, {6, 17133}, {10, 190}, {86, 4098}, {141, 4912}, {142, 17340}, {346, 3664}, {516, 3543}, {519, 1992}, {524, 2321}, {527, 599}, {536, 597}, {545, 17359}, {551, 726}, {894, 3950}, {1266, 17354}, {1743, 4461}, {1766, 3929}, {2325, 4363}, {2482, 22003}, {3008, 4659}, {3244, 3758}, {3661, 4480}, {3707, 4665}, {3717, 49720}, {3773, 28558}, {3817, 33167}, {3828, 28526}, {3879, 4072}, {3912, 4896}, {3943, 4667}, {3946, 47352}, {3973, 32087}, {4021, 5749}, {4029, 4670}, {4058, 4416}, {4061, 32938}, {4082, 4418}, {4141, 29639}, {4353, 25055}, {4357, 49748}, {4370, 4688}, {4419, 29604}, {4431, 17350}, {4440, 29596}, {4454, 4887}, {4470, 16676}, {4488, 17272}, {4644, 4873}, {4660, 4745}, {4669, 17346}, {4740, 41140}, {4747, 29602}, {4755, 10022}, {4758, 16672}, {4856, 5032}, {4908, 17392}, {4956, 33170}, {4967, 17336}, {4971, 20583}, {5257, 7227}, {5695, 47359}, {5750, 17262}, {6173, 41141}, {6666, 17118}, {8584, 28329}, {9041, 49484}, {10445, 50048}, {11160, 17294}, {11163, 49554}, {15534, 17299}, {15828, 17277}, {16670, 50019}, {16834, 28313}, {17229, 22165}, {17254, 17487}, {17264, 29600}, {17276, 21358}, {17280, 21255}, {17286, 21356}, {17301, 28301}, {17308, 20073}, {17342, 49722}, {17353, 37756}, {17369, 41311}, {17382, 28297}, {17760, 49549}, {17764, 38191}, {17766, 34641}, {17781, 31143}, {19875, 24248}, {19883, 24295}, {20258, 22019}, {25244, 25268}, {28322, 49741}, {28516, 38049}, {28557, 38047}, {29674, 30424}, {35043, 36220}, {36522, 49731}, {38023, 49453}, {38314, 49446}, {46922, 49482}

X(50118) = midpoint of X(i) and X(j) for these {i,j}: {2, 3729}, {5695, 47359}, {15534, 17299}, {17281, 49721}
X(50118) = reflection of X(i) in X(j) for these {i,j}: {2, 17355}, {3663, 2}, {4660, 4745}, {22165, 17229}, {29594, 17281}, {49543, 6}, {49630, 10}
X(50118) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {346, 35578, 29573}, {1266, 17354, 31191}, {2325, 4363, 29571}, {3161, 25590, 25072}, {3729, 17355, 3663}, {4454, 17284, 4887}, {4644, 4873, 49765}, {17340, 49727, 41310}, {29573, 35578, 3664}, {41310, 49727, 142}


X(50119) = X(2)X(2415)∩X(7)X(4431)

Barycentrics    2*a^2 - a*b - b^2 - a*c + 8*b*c - c^2 : :
X(50119) = 5 X[75] - 2 X[3686], 4 X[75] - X[4416], 3 X[75] - X[17346], 7 X[75] - X[17347], 8 X[3686] - 5 X[4416], 6 X[3686] - 5 X[17346], 14 X[3686] - 5 X[17347], 2 X[3686] + 5 X[49722], 3 X[4416] - 4 X[17346], 7 X[4416] - 4 X[17347], X[4416] + 4 X[49722], 7 X[17346] - 3 X[17347], X[17346] + 3 X[49722], X[17347] + 7 X[49722], X[49466] - 4 X[49483], 4 X[17392] - 3 X[29574], X[17392] - 3 X[49727], X[29574] - 4 X[49727], 5 X[4688] - 3 X[16590], 3 X[4688] - 2 X[49731], 9 X[16590] - 10 X[49731], X[1278] + 2 X[3664], X[3879] + 2 X[4686], X[3879] - 4 X[7228], X[4686] + 2 X[7228], 2 X[4726] + X[17365], 4 X[4739] - X[17334], 5 X[4821] + X[17364], X[49476] + 2 X[49493], 2 X[49525] + X[49527]

X(50119) lies on these lines: {2, 2415}, {7, 4431}, {8, 30424}, {10, 4440}, {37, 28297}, {75, 527}, {142, 17264}, {344, 38093}, {519, 4740}, {528, 49466}, {536, 17392}, {545, 4688}, {551, 3685}, {553, 39126}, {1086, 17359}, {1100, 7231}, {1266, 4363}, {1278, 3664}, {2094, 11679}, {2321, 7321}, {3241, 4349}, {3620, 4902}, {3626, 4741}, {3661, 4887}, {3668, 40892}, {3679, 4899}, {3687, 31164}, {3739, 28322}, {3875, 7222}, {3879, 4686}, {3883, 28534}, {3912, 4659}, {3950, 26806}, {4058, 17288}, {4060, 17361}, {4072, 17312}, {4346, 17308}, {4357, 17118}, {4384, 4454}, {4398, 5750}, {4419, 24603}, {4461, 17298}, {4644, 49770}, {4664, 28301}, {4667, 17160}, {4675, 29601}, {4677, 11160}, {4725, 4726}, {4739, 17334}, {4821, 17364}, {4896, 6542}, {4912, 17330}, {4967, 17251}, {4980, 20237}, {7263, 17353}, {10022, 41311}, {10436, 28641}, {16832, 20073}, {16834, 35578}, {17067, 17354}, {17133, 17378}, {17781, 20879}, {19875, 27549}, {20582, 36525}, {20880, 20881}, {22019, 30037}, {24248, 48851}, {24325, 28542}, {28580, 31178}, {31139, 41313}, {34641, 49707}, {36588, 39716}, {39707, 48640}, {48856, 49446}, {49476, 49493}, {49525, 49527}

X(50119) = midpoint of X(i) and X(j) for these {i,j}: {75, 49722}, {1278, 17389}
X(50119) = reflection of X(i) in X(j) for these {i,j}: {37, 49733}, {17389, 3664}, {49742, 3739}
X(50119) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1266, 4363, 17023}, {3729, 24199, 25101}, {3729, 31995, 24199}, {4373, 7229, 17304}, {4384, 4454, 4480}, {4659, 42697, 3912}, {4686, 7228, 3879}


X(50120) = X(2)X(594)∩X(6)X(536)

Barycentrics    3*a^2 + 2*a*b + 2*a*c - 4*b*c : :
X(50120) = 5 X[6] - 2 X[3729], X[6] + 2 X[3875], X[6] - 4 X[4852], 7 X[6] - 4 X[17351], X[3729] + 5 X[3875], X[3729] - 10 X[4852], X[3729] - 5 X[16834], 7 X[3729] - 10 X[17351], 4 X[3729] - 5 X[49721], X[3875] + 2 X[4852], 7 X[3875] + 2 X[17351], 4 X[3875] + X[49721], 7 X[4852] - X[17351], 8 X[4852] - X[49721], 7 X[16834] - 2 X[17351], 4 X[16834] - X[49721], 8 X[17351] - 7 X[49721], X[3242] - 4 X[32921], 5 X[3242] - 8 X[49464], X[3242] + 2 X[49486], 5 X[32921] - 2 X[49464], 2 X[32921] + X[49486], 4 X[49464] + 5 X[49486], X[15534] - 4 X[49543], X[49453] + 2 X[49488], 3 X[38315] - 2 X[48805], 4 X[2321] - 7 X[47355], 4 X[3663] - X[40341], 5 X[3763] - 8 X[3946], 5 X[3763] - 2 X[17299], 5 X[3763] - 4 X[29594], 4 X[3946] - X[17299], 2 X[4780] + X[49681], X[5695] - 4 X[49477], X[6144] + 2 X[17276], 5 X[16491] - 2 X[49485], 2 X[17281] - 3 X[47352], 2 X[17294] - 3 X[21358], 4 X[17382] - 3 X[21358], 5 X[17304] - 2 X[17372], 2 X[49455] + X[49680], X[49460] - 4 X[49472], 2 X[49463] + X[49495]

X(50120) lies on these lines: {1, 4688}, {2, 594}, {6, 536}, {8, 17325}, {37, 16833}, {43, 41144}, {45, 239}, {69, 28337}, {75, 16884}, {145, 1086}, {192, 16885}, {193, 28333}, {319, 17323}, {519, 599}, {524, 49747}, {527, 15534}, {537, 49453}, {545, 1992}, {597, 28309}, {740, 38315}, {903, 39720}, {1100, 17118}, {1213, 4371}, {1449, 4686}, {1743, 4718}, {2321, 47355}, {3241, 17392}, {3244, 4675}, {3632, 17237}, {3633, 17374}, {3644, 17121}, {3663, 40341}, {3672, 17253}, {3679, 4716}, {3696, 48854}, {3739, 29597}, {3759, 17262}, {3763, 3946}, {3834, 29605}, {3879, 4910}, {3943, 5222}, {4000, 4460}, {4007, 17384}, {4021, 17275}, {4363, 4393}, {4384, 4755}, {4389, 20016}, {4395, 17316}, {4399, 17321}, {4402, 17245}, {4415, 20043}, {4419, 4969}, {4428, 16684}, {4445, 17302}, {4452, 17365}, {4464, 4851}, {4643, 49770}, {4659, 16666}, {4665, 26626}, {4725, 15533}, {4727, 17284}, {4764, 17120}, {4780, 49681}, {4889, 17298}, {4980, 19722}, {5308, 31244}, {5425, 6173}, {5564, 17327}, {5695, 49477}, {5814, 50062}, {5839, 17246}, {6144, 17276}, {6542, 17290}, {7232, 17377}, {7277, 32105}, {7290, 49461}, {8584, 28297}, {9055, 27480}, {15668, 17117}, {16475, 28484}, {16491, 49485}, {16674, 17259}, {16675, 17348}, {16677, 17277}, {16706, 17309}, {16971, 36871}, {17014, 17369}, {17027, 41142}, {17133, 17281}, {17251, 17320}, {17255, 17363}, {17265, 17315}, {17269, 17367}, {17278, 29600}, {17294, 17382}, {17304, 17372}, {17305, 20055}, {17313, 17389}, {17346, 24441}, {17359, 24277}, {17398, 32087}, {17399, 29615}, {17599, 31136}, {19819, 37631}, {20155, 20181}, {25503, 29593}, {28554, 49489}, {29583, 40480}, {29585, 34824}, {31138, 34747}, {37654, 49742}, {41140, 41313}, {45659, 48303}, {47040, 49683}, {49455, 49680}, {49460, 49472}, {49463, 49495}

X(50120) = midpoint of X(3875) and X(16834)
X(50120) = reflection of X(i) in X(j) for these {i,j}: {6, 16834}, {69, 49741}, {599, 17301}, {15533, 17274}, {16834, 4852}, {17294, 17382}, {17299, 29594}, {29594, 3946}, {49721, 6}
X(50120) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 17395, 17325}, {239, 17318, 45}, {1100, 17151, 17118}, {3672, 17362, 17253}, {3875, 4852, 6}, {3946, 17299, 3763}, {4000, 4460, 17388}, {4000, 17388, 17311}, {4360, 4361, 16777}, {4393, 4740, 46922}, {4393, 17160, 4363}, {4740, 46922, 4363}, {5564, 17396, 17327}, {17117, 17393, 15668}, {17160, 46922, 4740}, {17259, 17319, 16674}, {17294, 17382, 21358}, {17314, 17366, 17267}, {17320, 29617, 17251}, {17389, 37756, 17313}, {32921, 49486, 3242}


X(50121) = X(2)X(594)∩X(145)X(190)

Barycentrics    2*a^2 + 3*a*b - b^2 + 3*a*c - 3*b*c - c^2 : :
X(50121) = 5 X[192] - 2 X[17334], 4 X[192] - X[17347], 2 X[192] + X[17377], X[192] + 2 X[17388], 8 X[17334] - 5 X[17347], 4 X[17334] + 5 X[17377], X[17334] + 5 X[17388], 4 X[17334] - 5 X[49748], X[17347] + 2 X[17377], X[17347] + 8 X[17388], X[17377] - 4 X[17388], 4 X[17388] + X[49748], 4 X[17389] - X[49722], X[1278] - 4 X[17390], X[3644] + 2 X[3879], 4 X[3664] - X[4764], 4 X[3739] - 5 X[29622], 4 X[4399] - 7 X[27268], 4 X[4681] - X[17363], 2 X[4686] - 5 X[17391], 5 X[4704] - 2 X[17362], 5 X[4704] - 4 X[49737], X[4718] + 2 X[4889], 2 X[4718] + X[17364], 4 X[4889] - X[17364], X[4788] + 2 X[17365]

X(50121) lies on these lines: {1, 4527}, {2, 594}, {8, 31144}, {37, 28329}, {45, 20016}, {75, 17133}, {145, 190}, {192, 524}, {239, 41313}, {320, 29605}, {344, 4460}, {519, 751}, {536, 17378}, {553, 42304}, {597, 3943}, {599, 4389}, {740, 36494}, {1266, 17387}, {1278, 17390}, {2321, 17381}, {2796, 49452}, {3241, 28503}, {3244, 3758}, {3247, 5564}, {3629, 25269}, {3632, 17256}, {3644, 3879}, {3661, 4727}, {3663, 17386}, {3664, 4764}, {3672, 17295}, {3723, 48628}, {3739, 29622}, {3759, 3950}, {3834, 29618}, {3875, 4859}, {3891, 37857}, {3946, 17240}, {4007, 17322}, {4021, 17228}, {4029, 17335}, {4363, 29588}, {4364, 20055}, {4395, 29572}, {4398, 4851}, {4399, 27268}, {4419, 11160}, {4431, 17394}, {4665, 29570}, {4675, 29619}, {4681, 17363}, {4685, 21699}, {4686, 17391}, {4704, 17362}, {4718, 4889}, {4725, 17333}, {4740, 17392}, {4788, 17365}, {4852, 17242}, {4910, 17121}, {4956, 33070}, {5224, 17299}, {6631, 34342}, {6646, 15533}, {8584, 17350}, {8860, 37764}, {11163, 29840}, {15534, 17262}, {16834, 17264}, {17117, 29620}, {17119, 29569}, {17151, 17317}, {17160, 17316}, {17227, 49765}, {17229, 17396}, {17230, 17395}, {17246, 17373}, {17247, 17372}, {17280, 47352}, {17281, 29584}, {17294, 17320}, {17301, 17310}, {17302, 17309}, {17305, 29616}, {17358, 48310}, {17360, 49761}, {17382, 29577}, {17399, 29594}, {20017, 31143}, {20046, 33761}, {20162, 40891}, {27191, 29583}, {27789, 41818}, {28337, 49742}, {28538, 49462}, {29612, 39260}, {33954, 50073}, {34747, 49695}, {41629, 42360}, {42028, 50043}

X(50121) = midpoint of X(17377) and X(49748)
X(50121) = reflection of X(i) in X(j) for these {i,j}: {75, 29574}, {1278, 49727}, {4740, 17392}, {17346, 4664}, {17347, 49748}, {17362, 49737}, {17378, 17389}, {29617, 37}, {49722, 17378}, {49727, 17390}, {49748, 192}
X(50121) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {192, 17377, 17347}, {192, 17388, 17377}, {2321, 17393, 17381}, {3875, 4898, 17315}, {3875, 17315, 17234}, {3875, 29573, 37756}, {3943, 4393, 17354}, {3950, 4464, 3759}, {4029, 49770, 17335}, {4360, 17233, 17380}, {4360, 17314, 17233}, {4718, 4889, 17364}, {4852, 17242, 17352}, {6542, 17318, 4389}, {17299, 17319, 5224}, {17299, 41312, 29615}, {17315, 37756, 29573}, {17319, 29615, 41312}, {29573, 37756, 17234}, {29615, 41312, 5224}


X(50122) = X(1)X(536)∩X(72)X(519)

Barycentrics    a^3*b + 2*a^2*b^2 + a*b^3 + a^3*c + 8*a^2*b*c - a*b^2*c - 2*b^3*c + 2*a^2*c^2 - a*b*c^2 - 4*b^2*c^2 + a*c^3 - 2*b*c^3 : :
X(50122) = 2 X[2901] + X[3057], 5 X[3697] - 6 X[42056], X[4018] - 4 X[35633]

X(50122) lies on these lines: {1, 536}, {2, 3702}, {10, 4519}, {72, 519}, {392, 740}, {517, 32915}, {537, 3555}, {551, 4065}, {986, 31137}, {1212, 4099}, {1402, 16400}, {2292, 31136}, {2646, 47040}, {3241, 42044}, {3679, 3714}, {3685, 13735}, {3697, 42056}, {3752, 4975}, {3875, 16483}, {3902, 3995}, {4018, 35633}, {4420, 4954}, {4647, 4688}, {4664, 4673}, {4692, 22034}, {4717, 31993}, {4742, 17147}, {4755, 19871}, {4852, 5315}, {4854, 50062}, {4868, 30818}, {4891, 5902}, {4918, 10916}, {4956, 17577}, {5049, 17155}, {5692, 28581}, {7743, 29849}, {10179, 28484}, {11112, 28580}, {11240, 25083}, {11552, 17376}, {16393, 32929}, {16466, 16834}, {16474, 17351}, {16833, 31435}, {17314, 30305}, {17320, 17762}, {17533, 49636}, {19875, 31327}, {24473, 42057}, {27480, 35274}, {29584, 41813}, {48799, 50065}, {48801, 50066}, {48803, 50068}, {48819, 50071}

X(50122) = midpoint of X(3241) and X(42044)
X(50122) = reflection of X(i) in X(j) for these {i,j}: {3679, 35652}, {5902, 4891}, {17155, 5049}, {24473, 42057}, {42051, 551}
X(50122) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2901, 3159, 49980}, {19871, 27785, 4755}


X(50123) = X(1)X(4727)∩X(44)X(145)

Barycentrics    4*a^2 + 5*a*b - 2*b^2 + 5*a*c - 4*b*c - 2*c^2 : :
X(50123) = 7 X[37] - 4 X[3686], 4 X[37] - 3 X[16590], 3 X[37] - 2 X[17330], 5 X[37] - 2 X[17362], X[37] + 2 X[17388], 16 X[3686] - 21 X[16590], 6 X[3686] - 7 X[17330], 10 X[3686] - 7 X[17362], 2 X[3686] + 7 X[17388], 9 X[16590] - 8 X[17330], 15 X[16590] - 8 X[17362], 3 X[16590] + 8 X[17388], 5 X[17330] - 3 X[17362], X[17330] + 3 X[17388], X[17362] + 5 X[17388], X[192] + 2 X[4889], X[17378] - 3 X[17389], 7 X[17378] - 3 X[49722], 7 X[17389] - X[49722], 2 X[3879] + X[4718], X[1278] - 3 X[39704], 2 X[4681] + X[17377], X[4686] - 4 X[17390], 3 X[4688] - 4 X[49738], 3 X[29574] - 2 X[49738], 2 X[4726] - 5 X[17391]

X(50123) lies on these lines: {1, 4727}, {2, 3723}, {6, 4898}, {9, 34747}, {10, 39260}, {37, 519}, {44, 145}, {45, 3633}, {192, 4715}, {344, 4910}, {346, 16668}, {536, 17378}, {545, 3879}, {551, 594}, {752, 49462}, {903, 17376}, {1100, 3241}, {1213, 4669}, {1278, 39704}, {3244, 3943}, {3247, 4677}, {3555, 21864}, {3632, 16672}, {3635, 17369}, {3679, 16777}, {3828, 4060}, {3875, 17313}, {3950, 4370}, {4007, 25055}, {4029, 4969}, {4034, 16674}, {4360, 17231}, {4364, 49761}, {4393, 17342}, {4395, 29601}, {4431, 10022}, {4460, 17278}, {4464, 17243}, {4664, 4725}, {4670, 29588}, {4681, 17333}, {4686, 17390}, {4688, 4971}, {4708, 20055}, {4726, 17391}, {4755, 29617}, {4851, 31138}, {4916, 17276}, {5257, 34641}, {5839, 20049}, {6542, 17237}, {16814, 37654}, {16834, 41310}, {16885, 36911}, {17119, 29602}, {17121, 41138}, {17133, 17392}, {17151, 31139}, {17160, 29619}, {17235, 17386}, {17271, 17319}, {17274, 17318}, {17275, 31145}, {17294, 41311}, {17303, 38314}, {17309, 17384}, {17344, 24441}, {17348, 40891}, {17359, 29584}, {17365, 28301}, {17366, 41141}, {17395, 49765}, {21863, 24473}, {28313, 49727}, {28503, 49478}, {28538, 49509}, {28580, 49461}, {29583, 31243}, {31332, 32025}, {32455, 36522}, {49468, 49725}

X(50123) = midpoint of X(17333) and X(17377)
X(50123) = reflection of X(i) in X(j) for these {i,j}: {4688, 29574}, {17333, 4681}, {29617, 4755}, {49468, 49725}
X(50123) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3241, 17281, 1100}, {3241, 17314, 17281}, {3244, 3943, 16666}, {4360, 17310, 17382}, {17310, 17382, 17231}, {17318, 29605, 17374}


X(50124) = X(2)X(319)∩X(6)X(536)

Barycentrics    6*a^2 + a*b + a*c - 2*b*c : :
X(50124) = 7 X[6] - X[3729], 5 X[6] + X[3875], 2 X[6] + X[4852], 4 X[6] - X[17351], 5 X[6] - X[49721], 5 X[3729] + 7 X[3875], 2 X[3729] + 7 X[4852], X[3729] + 7 X[16834], 4 X[3729] - 7 X[17351], 5 X[3729] - 7 X[49721], 2 X[3875] - 5 X[4852], X[3875] - 5 X[16834], 4 X[3875] + 5 X[17351], 2 X[4852] + X[17351], 5 X[4852] + 2 X[49721], 4 X[16834] + X[17351], 5 X[16834] + X[49721], 5 X[17351] - 4 X[49721], X[141] + 2 X[4856], X[193] + 2 X[17235], X[1386] - 4 X[4991], 4 X[1386] - X[49467], 5 X[1386] - 2 X[49473], X[1386] + 2 X[49489], 16 X[4991] - X[49467], 10 X[4991] - X[49473], 2 X[4991] + X[49489], 5 X[49467] - 8 X[49473], X[49467] + 8 X[49489], X[49473] + 5 X[49489], 2 X[4663] + X[49463], X[4663] + 2 X[49477], X[49463] - 4 X[49477], X[2321] - 4 X[6329], 4 X[3589] - X[17372], 5 X[3618] - 2 X[17229], X[3629] + 2 X[3946], 2 X[3629] + X[17345], 4 X[3946] - X[17345], X[3663] + 2 X[32455], X[6144] + 5 X[17304], 3 X[16475] - X[48805], 5 X[16491] + X[49680], X[17294] - 3 X[47352], X[49465] + 2 X[49685], X[49484] + 2 X[49488]

X(50124) lies on these lines: {1, 4755}, {2, 319}, {6, 536}, {37, 17121}, {44, 4393}, {75, 16668}, {141, 4856}, {192, 16671}, {193, 17235}, {239, 4670}, {346, 4910}, {519, 597}, {524, 17382}, {527, 8584}, {537, 4663}, {545, 20583}, {551, 4974}, {1279, 3241}, {1449, 3739}, {1743, 4681}, {1992, 4715}, {2321, 6329}, {3008, 4982}, {3244, 4422}, {3589, 17372}, {3618, 17229}, {3629, 3946}, {3633, 17269}, {3663, 28333}, {3686, 25498}, {3723, 17349}, {3758, 4740}, {3834, 5222}, {3879, 17356}, {3941, 4421}, {4000, 32093}, {4360, 16669}, {4361, 16667}, {4364, 4700}, {4395, 4667}, {4464, 17340}, {4641, 45222}, {4643, 17014}, {4665, 50019}, {4686, 17120}, {4690, 4969}, {4698, 16884}, {4708, 26626}, {4727, 17354}, {4796, 42697}, {4889, 17279}, {4912, 5032}, {4971, 49543}, {5625, 19883}, {5847, 48821}, {6144, 17304}, {6687, 17316}, {15492, 17319}, {15534, 17274}, {16475, 28581}, {16477, 49462}, {16491, 49680}, {16670, 17318}, {16696, 25059}, {16814, 17393}, {17027, 41144}, {17133, 49726}, {17260, 46845}, {17277, 29580}, {17281, 28329}, {17294, 47352}, {17344, 17380}, {17346, 41311}, {17352, 29582}, {17357, 17377}, {17362, 17385}, {17363, 17384}, {17366, 17376}, {17367, 17374}, {17369, 49770}, {17387, 31243}, {17389, 41310}, {17390, 29600}, {17392, 41140}, {18194, 42043}, {37654, 41312}, {49465, 49685}, {49484, 49488}

X(50124) = midpoint of X(i) and X(j) for these {i,j}: {6, 16834}, {1992, 17301}, {3629, 49741}, {3875, 49721}, {15534, 17274}
X(50124) = reflection of X(i) in X(j) for these {i,j}: {4852, 16834}, {17345, 49741}, {17359, 597}, {17372, 29594}, {29594, 3589}, {49741, 3946}
X(50124) = crossdifference of every pair of points on line {4834, 9010}
X(50124) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 4852, 17351}, {239, 16666, 4670}, {239, 46922, 4688}, {1100, 3759, 17348}, {1100, 17348, 28639}, {3629, 3946, 17345}, {4663, 49477, 49463}, {4688, 16666, 46922}, {4688, 46922, 4670}, {4969, 17023, 4690}, {4991, 49489, 1386}


X(50125) = X(1)X(599)∩X(2)X(319)

Barycentrics    4*a^2 + 3*a*b - 2*b^2 + 3*a*c - 2*c^2 : :
X(50125) = X[37] + 2 X[3879], 5 X[37] - 2 X[4416], 7 X[37] - 4 X[17332], X[37] - 4 X[17390], 5 X[37] - 4 X[49737], 5 X[3879] + X[4416], 7 X[3879] + 2 X[17332], X[3879] + 2 X[17390], 5 X[3879] + 2 X[49737], 7 X[4416] - 10 X[17332], X[4416] - 10 X[17390], X[4416] - 5 X[29574], X[17332] - 7 X[17390], 2 X[17332] - 7 X[29574], 5 X[17332] - 7 X[49737], 5 X[17390] - X[49737], 5 X[29574] - 2 X[49737], X[75] + 2 X[4889], 5 X[17378] - X[49722], 5 X[17389] + X[49722], 4 X[3664] - X[4686], 2 X[3664] + X[17388], X[4686] + 2 X[17388], 2 X[3739] + X[17377], 2 X[3739] - 5 X[17391], X[17377] + 5 X[17391], 5 X[17391] - X[29617], 2 X[4681] + X[17364], 4 X[4698] - X[17363], 4 X[4698] - 5 X[29622], X[17363] - 5 X[29622], X[4718] + 2 X[17365], X[4740] - 3 X[39704], 4 X[4755] - 3 X[16590], 3 X[16590] - 2 X[17346], 2 X[17362] - 5 X[31238]

X(50125) lies on these lines: {1, 599}, {2, 319}, {6, 29573}, {9, 15534}, {37, 524}, {44, 1992}, {45, 29602}, {69, 3723}, {75, 4889}, {86, 17372}, {142, 49543}, {145, 4675}, {190, 29619}, {192, 4912}, {193, 16814}, {320, 29588}, {344, 5032}, {519, 3696}, {536, 17378}, {551, 4966}, {597, 3912}, {1086, 3244}, {1386, 49752}, {1449, 17311}, {2482, 37589}, {2796, 49462}, {3175, 42045}, {3241, 4645}, {3247, 40341}, {3416, 48830}, {3629, 15492}, {3633, 17119}, {3635, 17395}, {3664, 4686}, {3714, 49564}, {3731, 6144}, {3739, 17377}, {3834, 4393}, {3908, 8539}, {3943, 4667}, {3945, 4916}, {3950, 7277}, {3970, 7202}, {3993, 28558}, {4357, 22165}, {4360, 17376}, {4363, 4727}, {4364, 39260}, {4377, 30939}, {4422, 20583}, {4464, 7263}, {4552, 14564}, {4643, 11160}, {4657, 21356}, {4664, 4715}, {4665, 49761}, {4668, 36834}, {4670, 6542}, {4681, 17364}, {4690, 16826}, {4698, 17363}, {4700, 29606}, {4708, 17360}, {4718, 17132}, {4740, 39704}, {4755, 16590}, {4852, 17300}, {4856, 17337}, {4909, 17398}, {4969, 29571}, {5222, 31243}, {5266, 7801}, {5425, 6173}, {5847, 49740}, {6687, 29572}, {7810, 37592}, {8584, 16669}, {9041, 49476}, {11168, 24239}, {15533, 16777}, {16667, 17267}, {16668, 17279}, {16726, 20691}, {16834, 17313}, {16884, 17296}, {17019, 31143}, {17023, 20582}, {17225, 49528}, {17229, 17379}, {17235, 17375}, {17240, 37677}, {17251, 29597}, {17271, 29580}, {17277, 29620}, {17287, 25498}, {17295, 17385}, {17297, 17382}, {17310, 17359}, {17312, 17356}, {17314, 35578}, {17315, 17351}, {17319, 17345}, {17354, 29618}, {17362, 31238}, {17369, 49765}, {20055, 41847}, {25101, 32455}, {25536, 32004}, {28337, 49738}, {28562, 49471}, {28581, 49720}, {31139, 34747}, {34824, 49770}, {42028, 50052}, {48828, 48862}

X(50125) = midpoint of X(i) and X(j) for these {i,j}: {3879, 29574}, {17364, 49748}, {17377, 29617}, {17378, 17389}, {17388, 49727}
X(50125) = reflection of X(i) in X(j) for these {i,j}: {37, 29574}, {4416, 49737}, {4686, 49727}, {4688, 17392}, {17346, 4755}, {29574, 17390}, {29617, 3739}, {49727, 3664}, {49748, 4681}
X(50125) = crossdifference of every pair of points on line {2515, 4834}
X(50125) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 599, 41311}, {1, 17374, 17237}, {6, 29573, 41310}, {599, 41311, 17237}, {1100, 4851, 17231}, {1449, 17311, 17357}, {1992, 17316, 41313}, {1992, 41313, 44}, {3664, 17388, 4686}, {3879, 17390, 37}, {3945, 4916, 17299}, {4363, 29605, 4727}, {4393, 17387, 3834}, {4755, 17346, 16590}, {16884, 17296, 17384}, {17297, 29584, 17382}, {17310, 46922, 17359}, {17315, 20090, 17351}, {17360, 29570, 4708}, {17373, 17394, 17239}, {17374, 41311, 599}, {17375, 17393, 17235}, {17377, 17391, 3739}, {17379, 17386, 17229}


X(50126) = X(1)X(536)∩X(9)X(80)

Barycentrics    3*a^3 - 2*a^2*b + a*b^2 - 2*a^2*c + 4*b^2*c + a*c^2 + 4*b*c^2 : :
X(50126) = X[1] + 2 X[5695], 5 X[1] - 2 X[49453], 7 X[1] - 4 X[49463], X[1] - 4 X[49484], 5 X[5695] + X[49453], 7 X[5695] + 2 X[49463], X[5695] + 2 X[49484], 5 X[48805] - X[49453], 7 X[48805] - 2 X[49463], 7 X[49453] - 10 X[49463], X[49453] - 10 X[49484], X[49463] - 7 X[49484], X[6] + 2 X[49485], X[3751] + 2 X[3886], X[3751] - 4 X[3923], X[3886] + 2 X[3923], 2 X[3729] + X[16496], X[3729] + 2 X[32941], X[16496] - 4 X[32941], 3 X[16475] - 2 X[16834], 4 X[960] - X[15076], 5 X[1698] - 4 X[48821], 5 X[3618] - 2 X[4780], 2 X[3875] - 5 X[16491], X[3875] - 4 X[49482], 5 X[16491] - 8 X[49482], 2 X[4660] - 5 X[17286], 4 X[4672] - X[49495], 2 X[17301] - 3 X[25055], 3 X[25055] - 4 X[48810], 2 X[17351] + X[49460], 4 X[17359] - 3 X[19875], 3 X[19875] - 2 X[48829], X[24280] + 2 X[49511], X[49446] - 4 X[49473], 2 X[32935] + X[49451]

X(50126) lies on these lines: {1, 536}, {2, 968}, {6, 49485}, {9, 80}, {30, 12717}, {57, 31137}, {63, 31136}, {238, 16833}, {314, 4234}, {321, 3749}, {390, 48849}, {516, 29594}, {518, 49721}, {519, 1992}, {537, 3729}, {545, 47358}, {551, 4021}, {599, 28534}, {740, 16475}, {752, 17294}, {894, 3241}, {960, 15076}, {1001, 4688}, {1376, 33845}, {1402, 16396}, {1449, 49469}, {1698, 48821}, {1699, 33160}, {1707, 3706}, {1743, 49459}, {1757, 4677}, {1966, 4479}, {2783, 3576}, {2796, 17274}, {3058, 50048}, {3246, 17119}, {3618, 4780}, {3702, 16393}, {3870, 31161}, {3875, 16491}, {4312, 33087}, {4384, 4432}, {4387, 5268}, {4442, 29855}, {4519, 37540}, {4644, 49763}, {4645, 29577}, {4650, 35613}, {4660, 17286}, {4664, 5263}, {4672, 49495}, {4716, 16469}, {4717, 37817}, {4779, 39581}, {4873, 32847}, {4954, 41242}, {5692, 44670}, {6284, 50046}, {7174, 36554}, {7290, 49474}, {9580, 32778}, {10472, 16351}, {10477, 44663}, {15171, 50047}, {16395, 16778}, {16484, 25590}, {16670, 50016}, {16676, 36531}, {17118, 42819}, {17264, 49720}, {17284, 24715}, {17301, 24342}, {17350, 31145}, {17351, 49460}, {17359, 19875}, {24280, 49511}, {24392, 33167}, {24473, 35892}, {25728, 49457}, {28484, 38315}, {28530, 49741}, {28554, 49446}, {30568, 42056}, {32935, 49451}, {41313, 49725}, {42697, 49768}, {46922, 49470}, {47359, 49726}, {48803, 48818}, {48851, 49746}

X(50126) = midpoint of X(5695) and X(48805)
X(50126) = reflection of X(i) in X(j) for these {i,j}: {1, 48805}, {3679, 17281}, {17301, 48810}, {47359, 49726}, {48805, 49484}, {48818, 48803}, {48829, 17359}
X(50126) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3729, 32941, 16496}, {3875, 49482, 16491}, {3886, 3923, 3751}, {4363, 4702, 1}, {4664, 5263, 48854}, {5695, 49484, 1}, {17301, 48810, 25055}, {17359, 48829, 19875}


X(50127) = X(1)X(190)∩X(2)X(7)

Barycentrics    3*a^2 - a*b - a*c + 2*b*c : :
X(50127) = X[1] - 4 X[4672], X[1] + 2 X[32935], 2 X[4672] + X[32935], 2 X[6] + X[3729], 4 X[6] - X[3875], 5 X[6] - 2 X[4852], X[6] + 2 X[17351], 2 X[3729] + X[3875], 5 X[3729] + 4 X[4852], X[3729] - 4 X[17351], 5 X[3875] - 8 X[4852], X[3875] + 8 X[17351], X[3875] + 4 X[49721], 4 X[4852] - 5 X[16834], X[4852] + 5 X[17351], 2 X[4852] + 5 X[49721], X[16834] + 4 X[17351], X[16834] + 2 X[49721], 2 X[10] + X[24695], 2 X[69] - 5 X[17286], X[69] - 4 X[17355], 5 X[17286] - 8 X[17355], 5 X[17286] - 4 X[29594], X[193] + 2 X[2321], 2 X[3751] + X[3886], X[3751] + 2 X[3923], X[3886] - 4 X[3923], X[17294] - 4 X[49726], 4 X[1386] - X[49446], 5 X[1698] - 2 X[4655], 4 X[3589] - X[17276], 8 X[3589] - 5 X[17304], 2 X[17276] - 5 X[17304], 5 X[17304] - 4 X[49741], 5 X[3618] - 2 X[3663], 2 X[3629] + X[17299], 2 X[3755] + X[24280], 5 X[3763] - 2 X[17345], 2 X[4663] + X[5695], 4 X[4663] - X[49495], 2 X[5695] + X[49495], 2 X[17382] - 3 X[47352], 3 X[47352] - X[49747], X[6144] + 2 X[17372], 5 X[16491] - 2 X[49455], X[16496] - 4 X[49482], 4 X[17229] - X[40341], 4 X[17235] - 7 X[47355], 3 X[38047] - 2 X[48821], X[49451] - 4 X[49484], 2 X[49485] + X[49680]

X(50127) lies on these lines: {1, 190}, {2, 7}, {6, 536}, {10, 24695}, {31, 31161}, {37, 25728}, {43, 2230}, {44, 4363}, {45, 4670}, {69, 17286}, {72, 16394}, {75, 1743}, {78, 16393}, {86, 3731}, {141, 28333}, {192, 1449}, {193, 2321}, {228, 16395}, {238, 31178}, {239, 4659}, {284, 16046}, {314, 41629}, {320, 17284}, {344, 3664}, {346, 3879}, {391, 4967}, {518, 48805}, {519, 1992}, {524, 17281}, {528, 47359}, {545, 597}, {599, 4715}, {612, 32938}, {614, 32940}, {645, 17103}, {646, 24524}, {651, 9312}, {666, 24411}, {726, 16475}, {752, 1757}, {758, 48826}, {896, 29828}, {940, 30568}, {964, 3951}, {984, 48854}, {999, 33845}, {1014, 38869}, {1016, 35962}, {1045, 42043}, {1100, 17262}, {1215, 1707}, {1220, 12526}, {1260, 16398}, {1266, 4454}, {1278, 17121}, {1386, 49446}, {1473, 16404}, {1698, 4655}, {1699, 33121}, {2319, 39929}, {2325, 4667}, {2345, 4416}, {2663, 42042}, {2792, 5587}, {2999, 32939}, {3008, 42697}, {3097, 24574}, {3161, 3945}, {3220, 19326}, {3241, 3685}, {3247, 17261}, {3501, 3882}, {3589, 17276}, {3618, 3663}, {3629, 17299}, {3661, 20072}, {3672, 4488}, {3717, 4307}, {3739, 16885}, {3755, 24280}, {3759, 17151}, {3763, 17345}, {3765, 4494}, {3883, 48849}, {3912, 4644}, {3943, 29605}, {3973, 17277}, {3984, 11115}, {4007, 17363}, {4029, 29585}, {4034, 48628}, {4054, 24597}, {4098, 4909}, {4195, 11523}, {4312, 4429}, {4339, 32034}, {4344, 49527}, {4360, 16667}, {4361, 16669}, {4364, 29603}, {4370, 4795}, {4389, 29598}, {4419, 4480}, {4422, 4675}, {4431, 5839}, {4440, 17367}, {4470, 24603}, {4473, 17244}, {4552, 25716}, {4641, 11679}, {4643, 17308}, {4648, 25101}, {4657, 17334}, {4663, 5695}, {4681, 16884}, {4686, 16671}, {4697, 5268}, {4713, 41144}, {4718, 16668}, {4722, 17156}, {4725, 15534}, {4741, 17292}, {4747, 5308}, {4748, 26039}, {4756, 9347}, {4759, 24331}, {4851, 7277}, {4855, 16397}, {4859, 7321}, {4862, 16706}, {4873, 6542}, {4887, 31191}, {4888, 17234}, {4901, 49754}, {4902, 48629}, {4912, 17382}, {4971, 8584}, {5032, 17133}, {5223, 5263}, {5256, 32933}, {5269, 32937}, {5440, 16401}, {5735, 36652}, {5782, 23151}, {5814, 50047}, {6144, 17372}, {6381, 41316}, {6651, 36911}, {7085, 16403}, {7222, 24199}, {7227, 17275}, {7228, 17278}, {7232, 17357}, {7290, 24349}, {9620, 35103}, {10022, 49731}, {10477, 11354}, {11319, 11520}, {11518, 17697}, {12717, 28194}, {14621, 31349}, {15492, 17259}, {15601, 16823}, {15668, 16814}, {15828, 25072}, {16371, 23206}, {16396, 20760}, {16399, 20769}, {16417, 23169}, {16469, 32922}, {16477, 49493}, {16491, 49455}, {16496, 49482}, {16549, 21362}, {16570, 32916}, {16571, 36634}, {16666, 17318}, {16673, 17394}, {16675, 28639}, {16676, 16826}, {16829, 21384}, {16832, 17335}, {17026, 24330}, {17116, 17349}, {17118, 17348}, {17229, 40341}, {17235, 47355}, {17242, 20090}, {17253, 17385}, {17255, 17384}, {17258, 17381}, {17264, 17378}, {17267, 17376}, {17268, 17375}, {17269, 17374}, {17272, 17289}, {17273, 17371}, {17279, 17298}, {17280, 17296}, {17285, 17361}, {17288, 17358}, {17293, 17344}, {17297, 17342}, {17300, 17339}, {17303, 17332}, {17307, 17329}, {17313, 41310}, {17319, 25269}, {17320, 49748}, {17331, 28604}, {17768, 38047}, {17787, 34283}, {18065, 44139}, {18787, 43262}, {19322, 24320}, {19875, 24342}, {20073, 26626}, {20583, 28309}, {20942, 32017}, {21477, 24328}, {23891, 36275}, {24441, 41311}, {24578, 36406}, {24725, 29857}, {25734, 28606}, {26076, 27091}, {26227, 36277}, {27813, 27834}, {28313, 49543}, {28534, 48829}, {28554, 32921}, {28582, 38315}, {29578, 36834}, {29826, 36263}, {29855, 32856}, {31136, 32912}, {31137, 32913}, {31165, 35628}, {31995, 37681}, {33163, 41011}, {35258, 46897}, {36807, 39704}, {37756, 49722}, {39694, 39948}, {41312, 49742}, {44663, 48832}, {47358, 48810}, {49451, 49484}, {49485, 49680}

X(50127) = midpoint of X(i) and X(j) for these {i,j}: {6, 49721}, {3729, 16834}
X(50127) = reflection of X(i) in X(j) for these {i,j}: {69, 29594}, {599, 17359}, {3729, 49721}, {3875, 16834}, {16834, 6}, {17274, 2}, {17276, 49741}, {17281, 49726}, {17294, 17281}, {17301, 597}, {29594, 17355}, {47358, 48810}, {49721, 17351}, {49741, 3589}, {49747, 17382}
X(50127) = X(16975)-Dao conjugate of X(30942)
X(50127) = crossdifference of every pair of points on line {663, 3768}
X(50127) = barycentric product X(i)*X(j) for these {i,j}: {75, 37540}, {190, 47761}
X(50127) = barycentric quotient X(i)/X(j) for these {i,j}: {37540, 1}, {47761, 514}
X(50127) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 3729, 3875}, {6, 17351, 3729}, {7, 17353, 17282}, {9, 894, 10436}, {9, 44421, 16574}, {44, 4363, 4384}, {45, 4670, 16831}, {69, 17355, 17286}, {86, 17336, 3731}, {144, 5749, 4357}, {190, 3758, 1}, {190, 46922, 4664}, {192, 17120, 1449}, {320, 17354, 17284}, {391, 7229, 4967}, {894, 17350, 9}, {2325, 4667, 17316}, {2345, 4416, 17270}, {3589, 17276, 17304}, {3751, 3923, 3886}, {3758, 4664, 46922}, {3973, 25590, 17277}, {4370, 17392, 41313}, {4454, 5222, 1266}, {4480, 17023, 4419}, {4643, 17369, 17308}, {4659, 16670, 239}, {4663, 5695, 49495}, {4664, 46922, 1}, {4672, 32935, 1}, {4795, 41313, 17392}, {5294, 5905, 25527}, {6646, 17368, 17306}, {7222, 37650, 24199}, {7277, 17340, 4851}, {7321, 17352, 4859}, {17261, 17379, 3247}, {17264, 17378, 29573}, {17279, 17365, 17298}, {17280, 17364, 17296}, {17289, 17347, 17272}, {17338, 26806, 20195}, {25269, 37677, 17319}, {47352, 49747, 17382}


X(50128) = X(1)X(2796)∩X(2)X(7)

Barycentrics    2*a^2 - b^2 + 3*b*c - c^2 : :
X(50128) = 4 X[37] - 5 X[29622], 5 X[29622] - 2 X[49748], 7 X[75] - 4 X[4399], X[75] - 4 X[7228], 5 X[75] - 2 X[17362], 4 X[75] - X[17363], 2 X[75] + X[17364], X[75] + 2 X[17365], X[4399] - 7 X[7228], 10 X[4399] - 7 X[17362], 16 X[4399] - 7 X[17363], 8 X[4399] + 7 X[17364], 2 X[4399] + 7 X[17365], 8 X[4399] - 7 X[29617], 2 X[4399] - 7 X[49727], 10 X[7228] - X[17362], 16 X[7228] - X[17363], 8 X[7228] + X[17364], 2 X[7228] + X[17365], 8 X[7228] - X[29617], 8 X[17362] - 5 X[17363], 4 X[17362] + 5 X[17364], X[17362] + 5 X[17365], 4 X[17362] - 5 X[29617], X[17362] - 5 X[49727], X[17363] + 2 X[17364], X[17363] + 8 X[17365], X[17363] - 8 X[49727], X[17364] - 4 X[17365], X[17364] + 4 X[49727], 4 X[17365] + X[29617], X[29617] - 4 X[49727], X[192] - 4 X[3664], 2 X[192] - 5 X[17391], 8 X[3664] - 5 X[17391], 5 X[17391] - 4 X[29574], X[4664] - 3 X[39704], 2 X[17392] - 3 X[39704], X[17389] + 2 X[49722], X[1278] + 2 X[3879], X[3644] - 4 X[17390], 4 X[3686] - 7 X[4772], 8 X[3739] - 5 X[17331], 4 X[3739] - X[17347], 5 X[17331] - 2 X[17347], 2 X[4416] - 5 X[4699], 2 X[4686] + X[17377], 5 X[4687] - 2 X[17334], 5 X[4687] - 4 X[49737], 7 X[4751] - 4 X[17332], X[4764] + 2 X[17388]

X(50128) lies on these lines: {1, 2796}, {2, 7}, {6, 7321}, {8, 11160}, {10, 4741}, {37, 4912}, {44, 29628}, {45, 29581}, {69, 7222}, {75, 524}, {86, 17247}, {87, 7189}, {190, 4675}, {192, 3664}, {193, 17117}, {239, 1992}, {319, 15533}, {320, 599}, {335, 545}, {346, 17312}, {350, 34363}, {518, 49720}, {519, 4740}, {536, 17378}, {551, 24231}, {591, 32801}, {594, 7231}, {597, 1086}, {752, 31178}, {903, 4586}, {1100, 4398}, {1213, 17329}, {1266, 4393}, {1278, 3879}, {1654, 25590}, {1836, 29843}, {1991, 32802}, {2321, 17375}, {2325, 29572}, {2345, 17288}, {3227, 44353}, {3241, 4307}, {3589, 48629}, {3620, 7229}, {3623, 15590}, {3631, 48630}, {3644, 17390}, {3663, 17379}, {3673, 8370}, {3679, 4645}, {3686, 4772}, {3705, 7840}, {3729, 4888}, {3739, 17331}, {3759, 7263}, {3782, 29841}, {3834, 17354}, {3873, 6007}, {3875, 20090}, {3912, 4896}, {3943, 17387}, {3945, 17319}, {3946, 37677}, {4000, 17120}, {4054, 37684}, {4141, 29643}, {4310, 38314}, {4346, 4747}, {4361, 15534}, {4364, 29612}, {4371, 11008}, {4384, 20072}, {4389, 4670}, {4395, 20583}, {4416, 4699}, {4419, 16826}, {4431, 17373}, {4454, 17316}, {4461, 32093}, {4470, 29610}, {4472, 17250}, {4480, 29571}, {4643, 29576}, {4648, 17261}, {4659, 6542}, {4665, 17360}, {4676, 25557}, {4686, 17377}, {4687, 17334}, {4688, 4715}, {4697, 29634}, {4751, 17332}, {4764, 17388}, {4796, 16666}, {4862, 17302}, {4869, 17268}, {4887, 17023}, {4902, 17304}, {4911, 7841}, {4967, 17343}, {5032, 17121}, {5224, 17345}, {5263, 47358}, {5308, 20073}, {5564, 40341}, {5764, 16397}, {5860, 32797}, {5861, 32798}, {5880, 47359}, {5969, 33890}, {6625, 34899}, {6645, 7185}, {7032, 7240}, {7198, 25918}, {7227, 17228}, {7232, 17289}, {7238, 17227}, {7812, 33940}, {9041, 49499}, {11329, 24328}, {15668, 17258}, {16670, 29590}, {16706, 47352}, {16823, 24695}, {17232, 17355}, {17233, 17376}, {17234, 17339}, {17235, 17381}, {17237, 29608}, {17241, 17340}, {17245, 17336}, {17246, 17394}, {17249, 17398}, {17253, 28653}, {17255, 17322}, {17262, 17317}, {17264, 17313}, {17272, 28604}, {17273, 17303}, {17280, 17298}, {17281, 17297}, {17287, 21296}, {17320, 49747}, {17330, 28333}, {17335, 34824}, {17342, 49726}, {17349, 24199}, {17358, 21255}, {17359, 31138}, {17370, 48310}, {17371, 48632}, {17399, 49741}, {17743, 24796}, {17768, 49740}, {17951, 19604}, {19883, 26150}, {20080, 32087}, {20892, 34283}, {24248, 48830}, {24325, 28558}, {24330, 31028}, {24342, 48809}, {24411, 39353}, {24692, 29659}, {24693, 49712}, {25760, 31177}, {27447, 43263}, {28534, 49746}, {28538, 49483}, {28562, 49479}, {29641, 32940}, {30424, 49630}, {31143, 32859}, {34573, 48637}, {37608, 49608}, {42028, 50068}, {49738, 49742}

X(50128) = midpoint of X(i) and X(j) for these {i,j}: {17364, 29617}, {17365, 49727}, {17378, 49722}
X(50128) = reflection of X(i) in X(j) for these {i,j}: {75, 49727}, {192, 29574}, {4664, 17392}, {17330, 49733}, {17333, 2}, {17334, 49737}, {17346, 4688}, {17363, 29617}, {17389, 17378}, {29574, 3664}, {29617, 75}, {49727, 7228}, {49742, 49738}, {49748, 37}
X(50128) = barycentric product X(27777)*X(39704)
X(50128) = barycentric quotient X(i)/X(j) for these {i,j}: {10485, 10987}, {27777, 3679}
X(50128) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 35578, 894}, {6, 7321, 48627}, {7, 894, 3662}, {7, 35578, 2}, {9, 26806, 27147}, {69, 7222, 17116}, {69, 17116, 48628}, {75, 17364, 17363}, {75, 17365, 17364}, {86, 17276, 17247}, {142, 17350, 17338}, {190, 4675, 17244}, {192, 3664, 17391}, {193, 31995, 17117}, {320, 4363, 3661}, {894, 3662, 17368}, {894, 17291, 5749}, {903, 46922, 17301}, {1086, 3758, 17367}, {1266, 4667, 4393}, {2345, 17288, 48634}, {3663, 17379, 17396}, {3729, 4888, 17300}, {3729, 17300, 17242}, {3739, 17347, 17331}, {3834, 17354, 29629}, {3943, 17387, 29618}, {4346, 4747, 26626}, {4364, 41847, 29612}, {4389, 4670, 17397}, {4644, 42697, 239}, {4664, 39704, 17392}, {4697, 33103, 29634}, {4795, 17301, 46922}, {6646, 10436, 17248}, {7228, 17365, 75}, {7232, 17289, 48633}, {7238, 17369, 17227}, {7263, 7277, 3759}, {17227, 17369, 29613}, {17234, 17351, 17339}, {17264, 17313, 29582}, {17281, 17297, 29577}, {17313, 49721, 17264}, {26806, 31300, 9}


X(50129) = X(1)X(2)∩X(6)X(4971)

Barycentrics    5*a^2 + 2*a*b - b^2 + 2*a*c - 4*b*c - c^2 : :
X(50129) = 5 X[2] - 4 X[29594], X[2] - 4 X[49543], X[8] - 4 X[49488], X[145] + 2 X[49495], 5 X[3616] - 8 X[49477], 5 X[3623] - 2 X[49451], 11 X[5550] - 8 X[49560], 3 X[16834] - X[17294], 5 X[16834] - 2 X[29594], 5 X[17294] - 6 X[29594], X[17294] - 6 X[49543], 7 X[20057] - 4 X[49458], X[29594] - 5 X[49543], 3 X[6] - 2 X[49726], X[69] - 4 X[4852], 5 X[69] - 8 X[17235], 5 X[4852] - 2 X[17235], 4 X[17235] - 5 X[17301], X[193] + 2 X[3875], 4 X[32029] - X[41842], 5 X[3618] - 2 X[17299], 5 X[3618] - 4 X[17359], 7 X[3619] - 4 X[17372], 5 X[3620] - 8 X[3946], 4 X[3663] - X[20080], X[3729] - 4 X[4856], X[11008] + 2 X[17276], 4 X[17382] - 3 X[21356]

X(50129) lies on these lines: {1, 2}, {6, 4971}, {9, 4464}, {37, 4910}, {69, 4725}, {86, 4371}, {192, 4460}, {193, 527}, {279, 25726}, {319, 17399}, {344, 17388}, {346, 17121}, {391, 17319}, {518, 27480}, {524, 49747}, {528, 32029}, {536, 1992}, {544, 5905}, {545, 15534}, {553, 9312}, {599, 28337}, {952, 36731}, {966, 17393}, {1100, 42696}, {1482, 36728}, {2094, 3210}, {2784, 9812}, {2809, 4430}, {3175, 21874}, {3177, 18662}, {3304, 25946}, {3618, 17299}, {3619, 17372}, {3620, 3946}, {3629, 28297}, {3663, 20080}, {3672, 17254}, {3729, 4856}, {3759, 17264}, {3879, 6173}, {3913, 21495}, {3945, 17117}, {4000, 17297}, {4052, 18845}, {4344, 31317}, {4360, 5839}, {4361, 17392}, {4399, 16884}, {4402, 17300}, {4431, 16667}, {4452, 17364}, {4461, 17120}, {4488, 4788}, {4513, 42032}, {4644, 17160}, {4664, 37654}, {4740, 35578}, {4889, 17278}, {4898, 25101}, {4916, 17234}, {4969, 17318}, {5032, 17133}, {5232, 17396}, {5734, 7384}, {7229, 37677}, {7406, 7982}, {8236, 27484}, {8584, 28309}, {8666, 21508}, {8715, 21537}, {10222, 36662}, {11008, 17276}, {11160, 17274}, {11194, 35276}, {12513, 21511}, {12630, 20533}, {15533, 49741}, {16046, 41629}, {16777, 49731}, {17119, 49733}, {17242, 37681}, {17251, 17321}, {17281, 28329}, {17302, 32099}, {17315, 37650}, {17379, 32087}, {17382, 21356}, {17755, 49678}, {17781, 20111}, {18135, 25298}, {19819, 42045}, {20059, 32105}, {20090, 31995}, {24695, 28542}, {25417, 41821}, {30699, 31164}, {32922, 39721}, {36698, 37727}, {39362, 39363}, {47357, 49470}

X(50129) = reflection of X(i) in X(j) for these {i,j}: {2, 16834}, {69, 17301}, {11160, 17274}, {15533, 49741}, {16834, 49543}, {17299, 17359}, {17301, 4852}, {49721, 8584}
X(50129) = anticomplement of X(17294)
X(50129) = X(28899)-anticomplementary conjugate of X(513)
X(50129) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 145, 17389}, {2, 17389, 17316}, {2, 31145, 29615}, {8, 3241, 48856}, {8, 4393, 26626}, {145, 239, 17316}, {239, 17244, 24599}, {239, 17389, 2}, {239, 29619, 29628}, {3008, 29605, 29583}, {3244, 4384, 29585}, {3244, 50019, 4384}, {3621, 17014, 3661}, {3759, 17314, 26685}, {4360, 5839, 17257}, {4393, 20016, 8}, {5222, 6542, 29579}, {5222, 20050, 6542}, {16816, 29588, 5308}, {16833, 29574, 2}, {20053, 29611, 20055}, {29573, 41140, 2}, {29584, 29617, 2}, {29619, 29621, 17316}, {29619, 29628, 29621}


X(50130) = X(1)X(528)∩X(6)X(519)

Barycentrics    5*a^3 - 2*a^2*b + 4*a*b^2 - b^3 - 2*a^2*c + b^2*c + 4*a*c^2 + b*c^2 - c^3 : :
X(50130) = 2 X[2321] + X[49679], X[17299] - 4 X[32941], X[17299] + 2 X[49681], 4 X[17355] - X[49690], 2 X[32941] + X[49681], X[49460] + 2 X[49684], 4 X[49482] - X[49688], X[145] + 2 X[49484], 2 X[3244] + X[5695], X[3416] - 4 X[49473], 5 X[3623] - 2 X[49463], 4 X[3635] - X[49453], 2 X[17382] - 3 X[38314], 3 X[25055] - 2 X[48821], X[17276] - 4 X[49465]

X(50130) lies on these lines: {1, 528}, {2, 1279}, {6, 519}, {8, 17359}, {33, 428}, {37, 47357}, {145, 3758}, {516, 49747}, {527, 3242}, {529, 48827}, {536, 3241}, {551, 48829}, {752, 47358}, {991, 3655}, {1877, 11237}, {2094, 21342}, {2263, 5434}, {3244, 5695}, {3303, 4185}, {3416, 49473}, {3476, 6610}, {3623, 49463}, {3635, 49453}, {3654, 13329}, {3679, 7290}, {3722, 17723}, {3772, 31140}, {3883, 17251}, {3886, 4971}, {3945, 4373}, {4307, 4864}, {4339, 34610}, {4349, 28580}, {4363, 49771}, {4643, 36534}, {4648, 17382}, {4677, 16469}, {4725, 49467}, {4863, 17469}, {4952, 27064}, {5266, 45700}, {5269, 31146}, {5733, 10222}, {5846, 17294}, {5853, 38185}, {5919, 44670}, {6172, 49515}, {7174, 49742}, {8236, 27475}, {9053, 49726}, {10707, 17720}, {11240, 37539}, {13161, 34706}, {14621, 17389}, {15287, 16417}, {16487, 17337}, {16777, 30331}, {16970, 17330}, {17245, 25055}, {17269, 49762}, {17275, 48802}, {17276, 28534}, {17303, 48851}, {17765, 38047}, {19624, 37610}, {24280, 28322}, {28297, 49446}, {28542, 49455}, {29659, 49708}, {34611, 50068}, {36479, 49699}, {36480, 49700}, {37681, 48630}, {41312, 49746}, {48854, 49740}

X(50130) = reflection of X(i) in X(j) for these {i,j}: {8, 17359}, {3679, 48810}, {17281, 48805}, {17301, 1}, {48829, 551}
X(50130) = crossdifference of every pair of points on line {9002, 22108}
X(50130) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {32941, 49681, 17299}, {36534, 49709, 4643}, {47357, 48856, 37}


X(50131) = X(2)X(319)∩X(6)X(519)

Barycentrics    5*a^2 + a*b - b^2 + a*c - 2*b*c - c^2 : :
X(50131) = 5 X[6] - 2 X[2321], X[6] - 4 X[4856], 4 X[6] - X[17299], 7 X[6] - 4 X[17355], X[2321] - 10 X[4856], 4 X[2321] - 5 X[17281], 8 X[2321] - 5 X[17299], 7 X[2321] - 10 X[17355], 8 X[4856] - X[17281], 16 X[4856] - X[17299], 7 X[4856] - X[17355], 7 X[17281] - 8 X[17355], 7 X[17299] - 16 X[17355], 2 X[49497] + X[49681], X[49680] + 2 X[49684], 4 X[49685] - X[49688], X[193] + 2 X[4852], 2 X[193] + X[17276], 4 X[4852] - X[17276], 3 X[16834] - X[17274], 5 X[16834] - 2 X[49741], 2 X[17274] - 3 X[17301], 5 X[17274] - 6 X[49741], 5 X[17301] - 4 X[49741], X[15534] + 2 X[49543], 2 X[3629] + X[3875], 2 X[4743] - 5 X[49488], X[3416] - 4 X[49489], 5 X[3618] - 2 X[17372], 2 X[3630] - 5 X[17304], 2 X[3663] + X[6144], X[3729] - 4 X[32455], 4 X[3946] - X[40341], 8 X[6329] - 5 X[17286], X[11008] + 2 X[17345], 3 X[16475] - 2 X[48810], 4 X[17235] - X[20080], 2 X[29594] - 3 X[47352]

X(50131) lies on these lines: {1, 4285}, {2, 319}, {6, 519}, {8, 16666}, {9, 13602}, {10, 4982}, {37, 3241}, {44, 145}, {45, 3244}, {69, 17382}, {75, 4795}, {192, 4910}, {193, 4715}, {239, 4675}, {344, 4889}, {346, 16671}, {391, 3723}, {524, 16834}, {527, 15534}, {536, 1992}, {545, 3629}, {551, 3686}, {572, 3654}, {573, 3655}, {583, 3169}, {594, 4677}, {597, 17294}, {752, 4743}, {903, 17364}, {966, 38314}, {1213, 25055}, {1333, 41629}, {1404, 41687}, {1405, 37738}, {1449, 3679}, {1743, 4370}, {2345, 16668}, {3416, 49489}, {3618, 17372}, {3630, 17304}, {3632, 17369}, {3633, 3943}, {3635, 3707}, {3644, 17487}, {3663, 6144}, {3664, 31139}, {3729, 28309}, {3751, 28503}, {3758, 20016}, {3770, 4479}, {3829, 50036}, {3879, 17278}, {3885, 21864}, {3896, 42058}, {3946, 40341}, {3973, 36911}, {4000, 31138}, {4034, 17398}, {4277, 17448}, {4360, 17333}, {4363, 49770}, {4384, 49738}, {4393, 4643}, {4399, 10022}, {4416, 24441}, {4421, 36743}, {4422, 29605}, {4460, 4718}, {4464, 17262}, {4657, 17271}, {4667, 17119}, {4669, 5750}, {4690, 26626}, {4727, 20050}, {4908, 16669}, {4916, 37681}, {4971, 8584}, {5032, 28329}, {5153, 42043}, {5165, 20018}, {5222, 17374}, {5296, 46845}, {5564, 37677}, {5847, 48829}, {6329, 17286}, {6542, 17342}, {6687, 29583}, {7277, 17151}, {8252, 49621}, {8253, 49620}, {11008, 17345}, {11194, 36744}, {12513, 37503}, {15933, 31324}, {16475, 48810}, {16522, 36480}, {16833, 17392}, {17014, 17237}, {17121, 17279}, {17133, 49721}, {17235, 20080}, {17242, 41138}, {17258, 17488}, {17269, 49761}, {17311, 41141}, {17335, 29588}, {17346, 29584}, {17379, 28634}, {17384, 32099}, {17387, 29590}, {17389, 41313}, {17772, 38047}, {20057, 39260}, {20090, 39704}, {20583, 49726}, {21769, 42057}, {21866, 34607}, {24693, 50021}, {28297, 41149}, {28580, 49486}, {29594, 47352}, {29597, 49731}, {29617, 46922}, {29764, 39996}, {36409, 49450}, {41662, 49608}

X(50131) = reflection of X(i) in X(j) for these {i,j}: {69, 17382}, {17281, 6}, {17294, 597}, {17299, 17281}, {17301, 16834}, {49726, 20583}
X(50131) = crossdifference of every pair of points on line {4834, 9002}
X(50131) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {193, 4852, 17276}, {1100, 5839, 17275}, {1449, 17362, 17303}, {3241, 37654, 37}, {3244, 4700, 45}, {3633, 16670, 3943}, {3635, 3707, 16672}, {3879, 41140, 17313}, {4667, 50019, 17119}, {17121, 17377, 17279}, {17313, 41140, 17278}, {17346, 29584, 41312}


X(50132) = X(2)X(319)∩X(75)X(519)

Barycentrics    4*a^2 + 2*a*b - 2*b^2 + 2*a*c - b*c - 2*c^2 : :
X(50132) = 5 X[75] - 8 X[3664], X[75] - 4 X[3879], X[75] + 2 X[17377], 2 X[75] - 3 X[39704], 2 X[3664] - 5 X[3879], 4 X[3664] + 5 X[17377], 4 X[3664] - 5 X[17378], 16 X[3664] - 15 X[39704], 2 X[3879] + X[17377], 8 X[3879] - 3 X[39704], 2 X[4709] - 3 X[24452], 4 X[17377] + 3 X[39704], 4 X[17378] - 3 X[39704], X[192] - 4 X[4889], 3 X[4664] - 2 X[17333], 5 X[4664] - 4 X[49742], X[17333] - 3 X[17389], 5 X[17333] - 6 X[49742], 5 X[17389] - 2 X[49742], X[3644] + 2 X[17364], X[3644] - 4 X[17388], X[17364] + 2 X[17388], 5 X[4687] - 4 X[17330], 5 X[4687] - 2 X[17363], 5 X[4687] - 8 X[17390], 10 X[4687] - 9 X[41848], 8 X[17330] - 9 X[41848], X[17363] - 4 X[17390], 4 X[17363] - 9 X[41848], 16 X[17390] - 9 X[41848], 5 X[4704] - 3 X[17488], 7 X[4751] - 4 X[17362], 7 X[4751] - 10 X[17391], 7 X[4751] - 8 X[49738], 2 X[17362] - 5 X[17391], 5 X[17391] - 4 X[49738], X[4764] - 4 X[17365], 6 X[16590] - 7 X[27268], 5 X[29622] - 4 X[49731]

X(50132) lies on these lines: {1, 17250}, {2, 319}, {6, 17240}, {8, 41847}, {45, 29619}, {69, 3241}, {75, 519}, {86, 3679}, {145, 320}, {190, 29605}, {192, 4715}, {193, 4916}, {239, 17313}, {524, 4664}, {545, 3644}, {551, 5224}, {597, 29577}, {599, 17399}, {752, 49470}, {903, 3875}, {1449, 17295}, {1743, 41138}, {1964, 25573}, {1992, 17264}, {3244, 4389}, {3629, 4370}, {3630, 17247}, {3631, 17396}, {3633, 17160}, {3723, 17343}, {3758, 6542}, {3828, 4909}, {3945, 5564}, {3946, 48637}, {4360, 17274}, {4393, 17227}, {4398, 4464}, {4422, 29618}, {4643, 29588}, {4667, 49761}, {4670, 20055}, {4675, 20016}, {4677, 10436}, {4687, 17330}, {4690, 29570}, {4700, 29601}, {4704, 17488}, {4740, 28329}, {4751, 17362}, {4764, 17365}, {4795, 17299}, {4852, 17375}, {4856, 17352}, {4908, 17350}, {4967, 34641}, {4969, 17244}, {4982, 29596}, {5847, 49746}, {6144, 17261}, {7321, 20049}, {10022, 48628}, {10446, 28204}, {15533, 17254}, {16590, 27268}, {16666, 17230}, {16667, 17285}, {16668, 17358}, {16704, 27754}, {16777, 17328}, {16779, 29573}, {16834, 17297}, {16884, 17287}, {17023, 48639}, {17117, 31139}, {17120, 17309}, {17121, 17311}, {17133, 49722}, {17229, 37677}, {17234, 41140}, {17251, 29580}, {17256, 29585}, {17258, 20080}, {17270, 25055}, {17294, 46922}, {17296, 17370}, {17300, 40891}, {17316, 17335}, {17319, 17329}, {17322, 32099}, {17339, 32455}, {17346, 29574}, {17354, 49765}, {17372, 17379}, {17380, 48638}, {17381, 48640}, {17392, 28337}, {18133, 42057}, {19875, 32025}, {20050, 42697}, {20929, 42029}, {20943, 35633}, {24524, 28660}, {28503, 49499}, {28562, 49518}, {29597, 31144}, {29622, 49731}, {31136, 37632}, {31137, 37678}, {31151, 49488}, {39126, 41801}, {49534, 49711}, {49684, 49750}

X(50132) = midpoint of X(17377) and X(17378)
X(50132) = reflection of X(i) in X(j) for these {i,j}: {75, 17378}, {4664, 17389}, {17330, 17390}, {17346, 29574}, {17362, 49738}, {17363, 17330}, {17378, 3879}, {29617, 17392}
X(50132) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 17360, 17250}, {6, 17310, 17342}, {6, 17386, 17240}, {69, 3241, 17320}, {69, 17393, 17249}, {75, 17378, 39704}, {193, 4916, 17315}, {193, 17315, 17336}, {599, 29584, 17399}, {1100, 17373, 17228}, {1449, 17295, 17371}, {3241, 17320, 17393}, {3759, 4851, 17241}, {3879, 17377, 75}, {4393, 17374, 17227}, {4687, 17330, 41848}, {4852, 17375, 48629}, {16884, 17287, 17400}, {17121, 17311, 17341}, {17310, 17342, 17240}, {17319, 40341, 17329}, {17342, 17386, 17310}, {17362, 17391, 4751}, {17363, 17390, 4687}, {17364, 17388, 3644}, {17372, 17379, 48630}


X(50133) = X(1)X(4741)∩X(2)X(6)

Barycentrics    4*a^2 + a*b - 2*b^2 + a*c + b*c - 2*c^2 : :
X(50133) = 5 X[2] - 4 X[17330], 3 X[2] - 4 X[17392], 9 X[2] - 8 X[49731], 7 X[2] - 8 X[49738], 6 X[17330] - 5 X[17346], 2 X[17330] - 5 X[17378], 3 X[17330] - 5 X[17392], 9 X[17330] - 10 X[49731], 7 X[17330] - 10 X[49738], X[17346] - 3 X[17378], 3 X[17346] - 4 X[49731], 7 X[17346] - 12 X[49738], 3 X[17378] - 2 X[17392], 9 X[17378] - 4 X[49731], 7 X[17378] - 4 X[49738], 3 X[17392] - 2 X[49731], 7 X[17392] - 6 X[49738], 7 X[49731] - 9 X[49738], X[192] - 4 X[3879], X[192] + 2 X[17364], 2 X[3879] + X[17364], 2 X[48841] - 3 X[48858], X[1278] - 4 X[17365], X[1278] + 2 X[17377], 2 X[17365] + X[17377], X[3644] - 4 X[4889], 8 X[3664] - 5 X[4699], 4 X[3664] - X[17363], 5 X[4699] - 2 X[17363], 2 X[4416] - 5 X[17391], 4 X[4416] - 7 X[27268], 10 X[17391] - 7 X[27268], 2 X[4688] - 3 X[39704], 5 X[4704] - 2 X[17347], 5 X[4704] - 8 X[17390], 5 X[4704] - 4 X[49742], X[17347] - 4 X[17390], 7 X[4772] - 4 X[17362], 7 X[4772] - 8 X[49733], X[4788] - 4 X[17388], 5 X[4821] - 8 X[7228]

X(50133) lies on these lines: {1, 4741}, {2, 6}, {9, 29575}, {44, 17387}, {75, 4725}, {145, 528}, {192, 527}, {239, 6173}, {320, 4393}, {519, 4740}, {540, 48841}, {674, 4430}, {752, 3241}, {754, 48838}, {894, 17294}, {903, 39720}, {1100, 17236}, {1278, 4971}, {1449, 17288}, {1743, 17312}, {1943, 4654}, {1999, 31164}, {2309, 25572}, {2325, 29618}, {3644, 4889}, {3661, 4667}, {3664, 4699}, {3707, 29581}, {3723, 17329}, {3758, 17230}, {3759, 17376}, {3873, 9025}, {4352, 7893}, {4360, 49747}, {4363, 20055}, {4416, 17391}, {4419, 29588}, {4473, 29583}, {4643, 29570}, {4644, 6542}, {4658, 37164}, {4661, 9038}, {4664, 4715}, {4670, 17360}, {4675, 16816}, {4688, 39704}, {4690, 41847}, {4700, 29628}, {4704, 17347}, {4748, 29592}, {4772, 17362}, {4788, 17388}, {4821, 7228}, {4851, 17264}, {4888, 17117}, {4896, 49770}, {5839, 26806}, {6172, 17316}, {6360, 20291}, {7277, 17233}, {11111, 20077}, {11112, 20018}, {11165, 22355}, {14023, 22267}, {14976, 28562}, {16666, 17227}, {16667, 17291}, {16668, 17370}, {16669, 17241}, {16670, 17266}, {16671, 17341}, {16676, 29625}, {16884, 17273}, {17120, 17296}, {17121, 17298}, {17256, 29595}, {17274, 29584}, {17302, 21296}, {17314, 31300}, {17315, 25269}, {17328, 28639}, {17333, 29574}, {17335, 29599}, {17344, 17394}, {17345, 17393}, {17351, 17386}, {20016, 42697}, {28333, 49748}, {28337, 49727}, {28534, 49470}, {28604, 32099}, {30939, 31060}, {31145, 49720}, {33082, 48822}, {48850, 48868}

X(50133) = midpoint of X(i) and X(j) for these {i,j}: {17364, 17389}, {17377, 49722}
X(50133) = reflection of X(i) in X(j) for these {i,j}: {2, 17378}, {192, 17389}, {1278, 49722}, {17333, 29574}, {17346, 17392}, {17347, 49742}, {17362, 49733}, {17389, 3879}, {31145, 49720}, {48850, 48868}, {49722, 17365}, {49742, 17390}
X(50133) = anticomplement of X(17346)
X(50133) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17297, 17232}, {2, 17343, 17251}, {2, 17375, 17297}, {6, 17297, 2}, {6, 17375, 17232}, {44, 17387, 29572}, {69, 17379, 17238}, {69, 20090, 17379}, {86, 17251, 2}, {86, 40341, 17343}, {193, 17300, 17349}, {599, 46922, 2}, {1100, 17361, 17236}, {1449, 17288, 17383}, {3664, 17363, 4699}, {3758, 17374, 17230}, {3879, 17364, 192}, {3945, 20080, 1654}, {4416, 17391, 27268}, {4670, 17360, 29593}, {17120, 17296, 17358}, {17346, 17378, 17392}, {17346, 17392, 2}, {17347, 17390, 4704}, {17365, 17377, 1278}


X(50134) = EULER LINE INTERCEPT OF X(10264)X(11451)

Barycentrics    (b^2+c^2)*a^8-2*(b^4+b^2*c^2+c^4)*a^6-13*(b^2+c^2)*b^2*c^2*a^4+(2*b^4+15*b^2*c^2+2*c^4)*(b^2-c^2)^2*a^2-(b^4-c^4)*(b^2-c^2)^3 : :
X(50134) = 3*X(5)-X(37439), 3*X(381)+X(7485)

See Antreas Hatzipolakis and César Lozada, euclid 5123.

X(50134) lies on these lines: {2, 3}, {10264, 11451}, {17814, 22051}

X(50134) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (5, 33332, 5056), (5, 37938, 5071), (3091, 46450, 381), (19709, 37353, 5)


X(50135) = EULER LINE INTERCEPT OF X(113)X(46665)

Barycentrics    (b^2+c^2)*a^8-2*(b^4+b^2*c^2+c^4)*a^6-10*b^2*c^2*(b^2+c^2)*a^4+2*(b^2-c^2)^2*(b^4+6*b^2*c^2+c^4)*a^2-(b^4-c^4)*(b^2-c^2)^3 : :

See Antreas Hatzipolakis and César Lozada, euclid 5123.

X(50135) lies on these lines: {2, 3}, {113, 46665}, {115, 5421}, {3564, 15038}, {3580, 13364}, {5449, 27355}, {5475, 13345}, {5480, 23039}, {5891, 19130}, {9722, 15484}, {10540, 37649}, {11442, 45967}, {11695, 18488}, {14561, 18445}, {14627, 31831}, {14845, 21243}, {15047, 18914}, {15087, 18583}, {16655, 37471}, {23300, 32063}, {39601, 49123}

X(50135) = midpoint of X(i) and X(j) for these {i, j}: {4, 15246}, {7550, 37349}
X(50135) = reflection of X(37990) in X(5)
X(50135) = complement of X(44832)
X(50135) = inverse of X(37924) in: MacBeath inconic, nine-point circle
X(50135) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (5, 427, 5055), (5, 5066, 403), (5, 5133, 2072), (5, 7403, 1656), (5, 11585, 5079), (5, 13371, 5056), (2072, 5133, 5576), (3091, 18531, 381), (3545, 37353, 5), (13413, 14892, 5), (21308, 48411, 468)


X(50136) = EULER LINE INTERCEPT OF X(143)X(19130)

Barycentrics    (b^2+c^2)*a^8-2*(b^4+b^2*c^2+c^4)*a^6-5*(b^2+c^2)*b^2*c^2*a^4+(2*b^4+7*b^2*c^2+2*c^4)*(b^2-c^2)^2*a^2-(b^4-c^4)*(b^2-c^2)^3 : :
X(50136) = X(4)+3*X(14787), 5*X(5)+X(1907), 3*X(5)-X(7399), 3*X(381)+X(7503)

See Antreas Hatzipolakis and César Lozada, euclid 5123.

X(50136) lies on these lines: {2, 3}, {143, 19130}, {155, 22051}, {156, 8254}, {575, 45732}, {3060, 21230}, {3410, 14627}, {3574, 15060}, {3613, 21474}, {3818, 32046}, {5449, 13364}, {5480, 14449}, {5943, 13561}, {10095, 21243}, {10264, 15043}, {10274, 15426}, {10516, 16266}, {10627, 24206}, {11442, 32165}, {11459, 20424}, {11810, 14693}, {13363, 20299}, {13434, 45731}, {14561, 32140}, {14769, 25147}, {18128, 25555}, {18356, 45969}, {18388, 45958}, {18474, 43575}, {18583, 43588}

X(50136) = midpoint of X(5) and X(7403)
X(50136) = inverse of X(13564) in: orthocentroidal circle, Yff hyperbola
X(50136) = inverse of X(37947) in: MacBeath inconic, nine-point circle
X(50136) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (3, 37353, 5), (5, 427, 3628), (5, 3857, 403), (5, 13371, 547), (5, 33332, 2), (5, 37938, 3090), (381, 18377, 546), (5068, 10255, 5), (5072, 7577, 5), (5169, 40916, 427), (12811, 13413, 5)


X(50137) = EULER LINE INTERCEPT OF X(39)X(1879)

Barycentrics    (b^2+c^2)*a^8-2*(b^4+b^2*c^2+c^4)*a^6-6*(b^2+c^2)*b^2*c^2*a^4+2*(b^2-c^2)^2*(b^4+4*b^2*c^2+c^4)*a^2-(b^4-c^4)*(b^2-c^2)^3 : :
X(50137) = 3*X(381)+X(34864)

See Antreas Hatzipolakis and César Lozada, euclid 5123.

X(50137) lies on these lines: {2, 3}, {39, 1879}, {52, 19130}, {141, 37484}, {156, 14389}, {187, 31607}, {195, 31831}, {567, 12134}, {569, 3818}, {1112, 9827}, {1173, 41724}, {1209, 10110}, {1352, 36749}, {1495, 6689}, {1503, 13353}, {3410, 32358}, {3564, 14627}, {3580, 10095}, {3581, 11745}, {3589, 37471}, {5266, 8068}, {5422, 32140}, {5480, 6243}, {6288, 12241}, {6530, 14978}, {9722, 30435}, {9729, 18488}, {10263, 37636}, {10516, 36747}, {10625, 24206}, {11451, 23294}, {12233, 18435}, {12370, 41171}, {13292, 15038}, {13336, 38317}, {13364, 34826}, {13419, 37513}, {14216, 20300}, {14561, 36753}, {14805, 34782}, {15012, 16003}, {15026, 26879}, {15037, 18914}, {15060, 31810}, {16837, 27353}, {18350, 23292}, {18436, 45089}, {18553, 37505}, {20299, 41580}, {23300, 34780}, {25738, 45967}, {32125, 32767}, {34545, 43588}, {34598, 42671}, {34963, 42660}

X(50137) = midpoint of X(4) and X(37126)
X(50137) = reflection of X(14788) in X(5)
X(50137) = inverse of X(5899) in: MacBeath inconic, nine-point circle
X(50137) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (4, 14786, 3), (4, 37353, 5), (5, 427, 1656), (5, 3850, 403), (5, 5133, 5576), (5, 5576, 2072), (5, 7403, 3), (5, 11585, 5055), (5, 13371, 3090), (5, 33332, 3628), (140, 428, 2937), (381, 1656, 1598), (381, 31724, 546), (858, 34939, 3628), (1312, 1313, 5899), (1595, 7405, 3), (3628, 33332, 858), (3850, 23047, 381), (5068, 7577, 5), (5169, 46336, 427), (7403, 7405, 1595), (7404, 7528, 3), (10255, 19709, 5), (15559, 37990, 140), (23335, 37439, 3526)


X(50138) = EULER LINE INTERCEPT OF X(6)X(18356)

Barycentrics    (b^2+c^2)*a^8-2*(b^4+b^2*c^2+c^4)*a^6-3*(b^2+c^2)*b^2*c^2*a^4+(b^2-c^2)^2*(b^2+2*c^2)*(2*b^2+c^2)*a^2-(b^4-c^4)*(b^2-c^2)^3 : :
X(50138) = 3*X(5)+X(1595), 5*X(5)-X(6823), 3*X(381)+X(7526), 9*X(381)-X(12173), 3*X(547)-X(16197)

See Antreas Hatzipolakis and César Lozada, euclid 5123.

X(50138) lies on these lines: {2, 3}, {6, 18356}, {51, 34826}, {125, 15026}, {143, 21243}, {156, 3818}, {184, 8254}, {195, 3410}, {343, 14449}, {399, 11804}, {542, 32136}, {567, 45731}, {569, 34514}, {578, 32423}, {1209, 10263}, {1263, 14769}, {3574, 5876}, {3613, 25043}, {5448, 45958}, {5449, 10095}, {5462, 13561}, {6243, 7730}, {6288, 15033}, {6689, 13419}, {6747, 35719}, {6759, 32351}, {7703, 15024}, {7706, 32138}, {10264, 37481}, {10539, 15806}, {11264, 37505}, {11743, 13565}, {11805, 12281}, {12006, 20299}, {12359, 16881}, {13365, 14076}, {13451, 41587}, {13491, 18488}, {14561, 18952}, {15083, 30531}, {15088, 32743}, {18125, 45016}, {18388, 45959}, {18436, 20424}, {18474, 45970}, {18553, 41597}, {18583, 44494}, {18914, 20303}, {19362, 27552}, {21659, 22804}, {22234, 25328}, {23315, 40685}, {24206, 32142}, {25738, 45969}, {32767, 34146}, {37472, 41171}, {39691, 43843}

X(50138) = midpoint of X(140) and X(16198)
X(50138) = complement of X(7525)
X(50138) = inverse of X(2937) in: orthocentroidal circle, Yff hyperbola
X(50138) = inverse of X(37936) in: MacBeath inconic, nine-point circle
X(50138) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (2, 4, 2937), (5, 427, 140), (5, 3858, 403), (5, 7403, 546), (5, 11585, 547), (5, 13371, 3628), (5, 33332, 3), (5, 37938, 1656), (140, 546, 6756), (1594, 37981, 1595), (1656, 37353, 5), (3545, 10255, 5), (3850, 13413, 5), (3851, 7577, 5), (5133, 5576, 5), (5169, 37353, 5189), (15559, 37347, 550), (39504, 49673, 1594)


X(50139) = EULER LINE INTERCEPT OF X(113)X(11695)

Barycentrics    (b^2+c^2)*a^8-2*(b^4+b^2*c^2+c^4)*a^6+10*(b^2+c^2)*b^2*c^2*a^4+2*(b^2-c^2)^2*(b^4-4*b^2*c^2+c^4)*a^2-(b^4-c^4)*(b^2-c^2)^3 : :

See Antreas Hatzipolakis and César Lozada, euclid 5123.

X(50139) lies on these lines: {2, 3}, {113, 11695}, {155, 45967}, {373, 5448}, {1506, 49123}, {2883, 40280}, {3580, 14128}, {12606, 41599}, {15060, 26879}, {15873, 37484}, {16252, 37471}, {34783, 37648}, {45303, 45622}

X(50139) = inverse of X(35452) in: MacBeath inconic, nine-point circle
X(50139) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (5, 427, 5072), (5, 3628, 403), (5, 11585, 3851), (5, 13371, 3545), (5, 49673, 5133), (1656, 11479, 6640), (7577, 15022, 5)


X(50140) = EULER LINE INTERCEPT OF X(113)X(17853)

Barycentrics    (b^2+c^2)*a^8-2*(b^4+b^2*c^2+c^4)*a^6+5*(b^2+c^2)*b^2*c^2*a^4+(2*b^4-3*b^2*c^2+2*c^4)*(b^2-c^2)^2*a^2-(b^4-c^4)*(b^2-c^2)^3 : :
X(50140) = 3*X(5)+X(1368), 5*X(5)-X(1596), 3*X(5)-X(46030), X(25)-9*X(5055), 3*X(381)+5*X(31255), 3*X(547)-X(6677), 5*X(632)-X(44241)

See Antreas Hatzipolakis and César Lozada, euclid 5123.

X(50140) lies on these lines: {2, 3}, {113, 17853}, {125, 15060}, {155, 32165}, {184, 10272}, {569, 15806}, {1147, 43575}, {1568, 5946}, {1660, 23325}, {3410, 38724}, {4550, 40685}, {5012, 14643}, {5448, 12006}, {5449, 14128}, {5651, 11801}, {5876, 43817}, {6689, 43582}, {9306, 32423}, {10264, 18435}, {12022, 40111}, {13162, 34517}, {13352, 46114}, {13363, 18388}, {14852, 34966}, {14984, 15088}, {15048, 49123}, {17814, 18356}, {18308, 39512}, {18350, 45731}, {19130, 40670}, {20299, 45958}, {20304, 21243}, {20584, 32351}, {30522, 43586}, {43393, 43839}

X(50140) = midpoint of X(i) and X(j) for these {i, j}: {140, 44920}, {1368, 46030}, {12106, 18531}
X(50140) = inverse of X(37950) in: MacBeath inconic, nine-point circle
X(50140) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (2, 18570, 140), (5, 427, 5066), (5, 549, 403), (5, 11585, 546), (5, 13371, 3850), (5, 33332, 3851), (5, 37938, 381), (381, 35452, 4), (1368, 37439, 6677), (1656, 16072, 6644), (3090, 10255, 5), (5055, 7577, 5), (10109, 13413, 5), (31074, 31255, 1368), (39504, 49673, 2072)


X(50141) = EULER LINE INTERCEPT OF X(17814)X(45967)

Barycentrics    (b^2+c^2)*a^8-2*(b^4+b^2*c^2+c^4)*a^6+18*(b^2+c^2)*b^2*c^2*a^4+2*(b^2-c^2)^2*(b^4-8*b^2*c^2+c^4)*a^2-(b^4-c^4)*(b^2-c^2)^3 : :

See Antreas Hatzipolakis and César Lozada, euclid 5123.

X(50141) lies on these lines: {2, 3}, {17814, 45967}

X(50141) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (5, 13371, 3544), (5, 35018, 403), (3541, 16868, 235)


X(50142) = EULER LINE INTERCEPT OF X(15068)X(45969)

Barycentrics    (b^2+c^2)*a^8-2*(b^4+b^2*c^2+c^4)*a^6+11*(b^2+c^2)*b^2*c^2*a^4+(2*b^4-9*b^2*c^2+2*c^4)*(b^2-c^2)^2*a^2-(b^4-c^4)*(b^2-c^2)^3 : :
X(50142) = 5*X(5)+X(30739)

See Antreas Hatzipolakis and César Lozada, euclid 5123.

X(50142) lies on these lines: {2, 3}, {15068, 45969}, {43614, 45731}

X(50142) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (5, 15699, 403), (5, 33332, 5068), (5, 37938, 3545), (547, 44236, 3628), (10255, 15022, 5)


X(50143) = EULER LINE INTERCEPT OF X(39)X(49123)

Barycentrics    (b^2+c^2)*a^8-2*(b^4+b^2*c^2+c^4)*a^6+6*(b^2+c^2)*b^2*c^2*a^4+2*(b^2-c^2)^4*a^2-(b^4-c^4)*(b^2-c^2)^3 : :
X(50143) = 6*X(5)-X(44803)

See Antreas Hatzipolakis and César Lozada, euclid 5123.

X(50143) lies on these lines: {2, 3}, {39, 49123}, {113, 9729}, {155, 32166}, {233, 3003}, {399, 18914}, {567, 9820}, {1503, 43811}, {1568, 5462}, {3047, 10272}, {3580, 11591}, {5449, 32123}, {5475, 40320}, {5651, 9927}, {5654, 36753}, {5876, 26879}, {5892, 43831}, {5907, 43392}, {6146, 18350}, {6689, 12900}, {9306, 44076}, {10516, 44503}, {11064, 37472}, {11441, 18952}, {11745, 15800}, {12161, 45967}, {12241, 22115}, {12606, 41598}, {13198, 13353}, {13321, 31802}, {13565, 15088}, {13567, 18436}, {15056, 26917}, {15058, 26913}, {15068, 18912}, {16657, 37495}, {17814, 25738}, {18911, 32139}, {20299, 36982}, {21659, 43586}, {22660, 37481}, {22802, 37470}, {23039, 41587}, {25739, 43614}, {37649, 41615}, {39503, 46953}, {40111, 43575}, {43573, 43844}, {43588, 43816}, {43821, 44665}, {43845, 45298}

X(50143) = inverse of X(18859) in: MacBeath inconic, nine-point circle
X(50143) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (2, 3520, 140), (5, 140, 403), (5, 427, 3851), (5, 2072, 5576), (5, 7403, 5072), (5, 10224, 5133), (5, 11585, 381), (5, 13371, 3091), (5, 37938, 3850), (5, 49673, 1594), (140, 1885, 3), (1594, 49673, 2072), (3090, 14786, 1656), (5055, 10255, 5), (5056, 7577, 5), (7574, 18369, 6756), (13413, 44904, 5), (16238, 34664, 3)


leftri

Points in a [[2a^2-b^2-c^2,2b^2-c^2-a^2,2c^2-a^2-b^2], [L2 = [(b^2-c^2)(a^2-b^2-c^2), (c^2- a^2)(b^2-c^2-a^2), (a^2- b^2)(a^2-b^2-c^2)]] coordinate system: X(50144)-X(50150)

rightri

If L1 and L2 are lines that meet in a point P not at infinity, then a [L1, L2]-coordinate system is a bivariate coordinate system having L1 as x-axis, L2 as y-axis, and P as origin. In this section, L1 and L2 are the following lines:

L1 is the line: (2a^2-b^2-c^2) α + (c^2- a^2)(b^2-c^2-a^2) β + 2c^2-a^2-b^2 γ = 0.

L2 is the line (b^2-c^2)(a^2-b^2-c^2) α + (c^2- a^2)(b^2-c^2-a^2) β + (a^2- b^2)(a^2-b^2-c^2) γ = 0 (Euler line).

The origin is given by (0,0) = X(2) = 1:1:1 = G : : .

Barycentrics u : v : w for a triangle center U = (x, y) in this system are given by

u : v : w = -2(a^6 - a^4(b^2+c^2) - a^2 (b^4 - 3 b^2 c^2 + c^4) + (b^2 - c^2)(b^4 - c^4)) + 3(b^2-c^2) x - (a^2 (2a^2 - b^2 - c^2) - (b^2 - c^2)^2) y : : ,

where, as functions of a, b, c, the coordinate x is antisymmetric of degree 4, and y is symmetric of degree 2.

The appearance of {x, y}, k in the following list means that (x, y) = X(k).

{-2 (a-b) (a-c) (b-c) (a+b+c), 1/2 (a^2+b^2+c^2)}, 16304
{-((2 (a^2-b^2) (a^2-c^2) (b^2-c^2))/(a^2+b^2+c^2)), 1/2 (a^2+b^2+c^2)}, 16334
{-((a-b) (a-c) (b-c) (a+b+c)), 1/2 (a^2+b^2+c^2)}, 16309} {-(((a^2-b^2) (a^2-c^2) (b^2-c^2))/(a^2+b^2+c^2)), 1/2 (a^2+b^2+c^2), 16321
{-(1/2) (a-b) (a-c) (b-c) (a+b+c), 1/2 (a^2+b^2+c^2)}, 16305
{0, -2 (a^2+b^2+c^2)}, 10989
{0, -a^2-b^2-c^2}, 858
{0, 1/2 (-a^2-b^2-c^2)}, 47097
{0, 0}, 2
{0, 1/2 (a^2+b^2+c^2)}, 468
{0, a^2+b^2+c^2}, 7426
{0, 2 (a^2+b^2+c^2)}, 23
{1/2 (a-b) (a-c) (b-c) (a+b+c), 1/2 (a^2+b^2+c^2)}, 16332
{(a-b) (a-c) (b-c) (a+b+c), 1/2 (a^2+b^2+c^2)}, 16272
{((a^2-b^2) (a^2-c^2) (b^2-c^2))/(a^2+b^2+c^2), 1/2 (a^2+b^2+c^2)}, 16324
{(2 (a^2-b^2) (a^2-c^2) (b^2-c^2))/(a^2+b^2+c^2), 1/2 (a^2+b^2+c^2)}, 16303
{(2 (a^2-b^2) (a^2-c^2) (b^2-c^2))/(a^2+b^2+c^2), 2 (a^2+b^2+c^2)}, 32224
{-2*(a - b)*(a - c)*(b - c)*(a + b + c), 0}, 51045
{(-2*(a^2 - b^2)*(a^2 - c^2)*(b^2 - c^2))/(a^2 + b^2 + c^2), 0}, 51046
{((a^2 - b^2)*(a^2 - c^2)*(b^2 - c^2))/(a^2 + b^2 + c^2), 0}, 51047
{(a - b)*(a - c)*(b - c)*(a + b + c), ((a + b)*(a + c)*(b + c))/(a + b + c)}, 51048
{(2*(a^2 - b^2)*(a^2 - c^2)*(b^2 - c^2))/(a^2 + b^2 + c^2), 0}, 51049
{(2*(a^2 - b^2)*(a^2 - c^2)*(b^2 - c^2))/(a^2 + b^2 + c^2), a^2 + b^2 + c^2}, 51050


X(50144) = X(8)X(30)∩X(325)X(523)

Barycentrics    {-2*(a - b)*(a - c)*(b - c)*(a + b + c), -a^2 - b^2 - c^2}; a^4*b^2 - 2*a^3*b^3 + 2*a*b^5 - b^6 + 2*a^3*b^2*c - 2*b^5*c + a^4*c^2 + 2*a^3*b*c^2 - 2*a^2*b^2*c^2 - 2*a*b^3*c^2 + b^4*c^2 - 2*a^3*c^3 - 2*a*b^2*c^3 + 4*b^3*c^3 + b^2*c^4 + 2*a*c^5 - 2*b*c^5 - c^6 : :
X(50144) = 5 X[3617] - 2 X[47271], 3 X[7426] - 4 X[16305], X[16322] - 3 X[47097], 6 X[16323] - 5 X[37760]

X(50144) lies on these lines: {2, 16272}, {8, 30}, {10, 11809}, {23, 16309}, {325, 523}, {403, 41013}, {956, 37976}, {3580, 6741}, {3617, 47271}, {3681, 4046}, {3935, 5160}, {4081, 5057}, {6742, 11064}, {7426, 16305}, {10149, 34772}, {10989, 31091}, {14985, 46818}, {16322, 30741}, {16323, 37760}, {29855, 47178}, {37963, 47161}

X(50144) = anticomplement of X(16272)
X(50144) = reflection of X(i) in X(j) for these {i,j}: {23, 16309}, {3580, 6741}, {6742, 11064}, {11809, 10}, {46818, 14985}
X(50144) = incircle of anticomplementary triangle inverse of X(44447)


X(50145) = X(2)X(523)∩X(8)X(30)

Barycentrics    a^6 - a^4*b^2 + 3*a^3*b^3 - a^2*b^4 - 3*a*b^5 + b^6 - 3*a^3*b^2*c + 3*b^5*c - a^4*c^2 - 3*a^3*b*c^2 + 3*a^2*b^2*c^2 + 3*a*b^3*c^2 - b^4*c^2 + 3*a^3*c^3 + 3*a*b^2*c^3 - 6*b^3*c^3 - a^2*c^4 - b^2*c^4 - 3*a*c^5 + 3*b*c^5 + c^6 : :
X(50145) = X[8] + 2 X[47272], X[36154] + 2 X[47273], 2 X[13869] - 3 X[38314], 4 X[16305] - 3 X[37907]

X(50145) lies on these lines: {2, 523}, {8, 30}, {519, 47270}, {551, 47274}, {2452, 19738}, {2453, 19723}, {3109, 3241}, {3679, 36154}, {3829, 5520}, {5278, 47285}, {5642, 6742}, {6741, 9140}, {7426, 16309}, {9143, 14985}, {11809, 47496}, {13869, 38314}, {16305, 37907}, {23922, 31143}, {31145, 36171}, {36224, 42045}

X(50145) = midpoint of X(i) and X(j) for these {i,j}: {3679, 47273}, {31145, 36171}
X(50145) = reflection of X(i) in X(j) for these {i,j}: {3241, 3109}, {6742, 5642}, {7426, 16309}, {9140, 6741}, {9143, 14985}, {11809, 47496}, {36154, 3679}, {47274, 551}


X(50146) = X(2)X(523)∩X(30)X(599)

Barycentrics    a^8 + a^4*b^4 - 3*a^2*b^6 + b^8 - 5*a^4*b^2*c^2 + 4*a^2*b^4*c^2 + 3*b^6*c^2 + a^4*c^4 + 4*a^2*b^2*c^4 - 8*b^4*c^4 - 3*a^2*c^6 + 3*b^2*c^6 + c^8 : :
X(50146) = 2 X[141] + X[47285], 4 X[16321] - X[32224], 2 X[11007] - 3 X[21358], 2 X[11007] + X[47284], 3 X[21358] + X[47284], 4 X[20582] + X[47283], 3 X[21356] - X[36163]

X(50146) lies on these lines: {2, 523}, {5, 16279}, {6, 34094}, {30, 599}, {141, 36194}, {183, 7426}, {338, 11632}, {468, 7610}, {524, 1316}, {543, 5181}, {549, 6795}, {597, 2452}, {804, 11006}, {1634, 37991}, {2782, 5648}, {2799, 5465}, {3314, 10989}, {5112, 47556}, {6055, 41359}, {6787, 20403}, {7473, 44134}, {7615, 14120}, {7778, 16312}, {7883, 36187}, {8182, 36180}, {8860, 16324}, {9761, 32461}, {9763, 32460}, {9830, 36882}, {11007, 21358}, {11168, 16320}, {11179, 36177}, {11185, 36196}, {11657, 47597}, {15271, 16316}, {16179, 22492}, {16180, 22491}, {16303, 37637}, {20582, 47283}, {21356, 36163}, {23055, 47239}, {23342, 32833}, {25157, 34316}, {25167, 34315}, {34229, 47171}, {34511, 36157}, {35522, 44155}, {36207, 45331}, {36889, 46869}, {40826, 46296}, {40879, 45662}, {42850, 46992}

X(50146) = midpoint of X(i) and X(j) for these {i,j}: {599, 2453}, {16312, 47097}, {36194, 47285}, {36889, 46869}
X(50146) = reflection of X(i) in X(j) for these {i,j}: {6, 34094}, {2452, 597}, {5112, 47556}, {6795, 549}, {7426, 16321}, {11179, 36177}, {16279, 5}, {32224, 7426}, {36194, 141}
X(50146) = psi-transform of X(9191)


X(50147) = X(2)X(523)∩X(30)X(182)

Barycentrics    2*a^8 - 7*a^4*b^4 + 3*a^2*b^6 + 2*b^8 + 8*a^4*b^2*c^2 - a^2*b^4*c^2 - 3*b^6*c^2 - 7*a^4*c^4 - a^2*b^2*c^4 + 2*b^4*c^4 + 3*a^2*c^6 - 3*b^2*c^6 + 2*c^8 : :
X(50147) = X[1316] - 3 X[47352], 2 X[5159] + X[16333], X[47285] - 7 X[47355]

X(50147) lies on these lines: {2, 523}, {3, 16279}, {6, 36194}, {30, 182}, {376, 35345}, {381, 6795}, {524, 11007}, {543, 15118}, {549, 24975}, {599, 2452}, {804, 5465}, {1316, 47352}, {2492, 5661}, {3111, 20403}, {3329, 10989}, {3589, 34094}, {3815, 16303}, {5158, 37987}, {5159, 9771}, {7426, 7792}, {7610, 47238}, {7668, 11632}, {7790, 36196}, {7827, 36165}, {9158, 46868}, {9479, 11006}, {9832, 46998}, {10168, 36177}, {11168, 16315}, {23878, 33509}, {42286, 46296}, {47285, 47355}

X(50147) = midpoint of X(i) and X(j) for these {i,j}: {3, 16279}, {6, 36194}, {381, 6795}, {599, 2452}, {10989, 32224}, {16303, 47097}
X(50147) = reflection of X(i) in X(j) for these {i,j}: {34094, 3589}, {36177, 10168}


X(50148) = X(1)X(30)∩X(106)X(476)

Barycentrics    (a^2 + a*b + b^2 - c^2)*(a^2 - b^2 + a*c + c^2)*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c - a*b*c + b^2*c - a*c^2 + b*c^2 - c^3) : :
X(50148) = X[1] + 2 X[39751], X[484] + 2 X[31522], 2 X[36195] + X[47274], 4 X[44898] - X[47273]

X(50148) lies on the cubic K086 and these lines: {1, 30}, {2, 6757}, {36, 2687}, {80, 5627}, {106, 476}, {265, 28204}, {381, 41496}, {484, 31522}, {519, 6742}, {523, 24920}, {551, 3615}, {1138, 18593}, {1325, 5563}, {1749, 18285}, {1989, 8609}, {2166, 3582}, {3017, 24443}, {3247, 8818}, {3746, 36001}, {5127, 13486}, {5196, 5557}, {6126, 14158}, {7110, 16307}, {8606, 14799}, {10056, 43682}, {14844, 37701}, {15767, 17404}, {23710, 37979}, {29681, 37907}, {30447, 37719}, {34209, 45926}, {36195, 47274}, {37922, 41345}, {39152, 46078}, {39153, 46074}, {44898, 47273}

X(50148) = isogonal conjugate of X(7343)
X(50148) = X(2166)-Ceva conjugate of X(79)
X(50148) = incircle-inverse of X(11544)
X(50148) = X(484)-cross conjugate of X(19658)
X(50148) = X(i)-isoconjugate of X(j) for these (i,j): {1, 7343}, {35, 3065}, {323, 11075}, {2174, 21739}, {3219, 19302}, {34921, 35057}
X(50148) = X(3)-Dao conjugate of X(7343)
X(50148) = crossdifference of every pair of points on line {9404, 17454}
X(50148) = barycentric product X(i)*X(j) for these {i,j}: {75, 11076}, {79, 17484}, {94, 6126}, {321, 14158}, {484, 30690}, {2160, 17791}, {2166, 40612}, {17483, 19658}, {19297, 20565}
X(50148) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 7343}, {79, 21739}, {484, 3219}, {2160, 3065}, {6126, 323}, {6186, 19302}, {11076, 1}, {14158, 81}, {17484, 319}, {17791, 33939}, {19297, 35}, {21864, 3678}, {30690, 40716}, {42657, 9404}


X(50149) = X(2)X(523)∩X(6)X(30)

Barycentrics    a^8 - 5*a^4*b^4 + 3*a^2*b^6 + b^8 + 7*a^4*b^2*c^2 - 2*a^2*b^4*c^2 - 3*b^6*c^2 - 5*a^4*c^4 - 2*a^2*b^2*c^4 + 4*b^4*c^4 + 3*a^2*c^6 - 3*b^2*c^6 + c^8 : :
X(50149) = 4 X[16303] - X[32224], X[858] + 2 X[16333], X[2453] - 3 X[47352], 2 X[34094] - 3 X[47352], 4 X[3589] - X[47285], 2 X[36177] - 3 X[38064], X[47283] - 6 X[48310]

X(50149) lies on the cubic K909 and these lines: {2, 523}, {3, 45331}, {6, 30}, {263, 8705}, {376, 5467}, {524, 2452}, {597, 1316}, {599, 11007}, {804, 9144}, {858, 11163}, {1551, 9744}, {1989, 49102}, {1992, 36163}, {2453, 34094}, {2793, 5465}, {2794, 15303}, {3014, 6054}, {3018, 6055}, {3106, 34313}, {3107, 34314}, {3589, 47285}, {5201, 15915}, {5309, 21906}, {5640, 9158}, {6128, 9880}, {7426, 16324}, {7610, 16315}, {7622, 40544}, {7735, 46998}, {7806, 37907}, {7812, 36187}, {7827, 38526}, {9513, 14220}, {9832, 22329}, {11168, 47242}, {11184, 47097}, {15271, 47155}, {16319, 47597}, {23055, 47238}, {36177, 38064}, {36180, 37809}, {36185, 37785}, {36186, 37786}, {47283, 48310}

X(50149) = midpoint of X(i) and X(j) for these {i,j}: {1992, 36163}, {2452, 36194}, {6795, 16279}
X(50149) = reflection of X(i) in X(j) for these {i,j}: {599, 11007}, {1316, 597}, {2453, 34094}, {7426, 16324}
X(50149) = psi-transform of X(9185)
X(50149) = crossdifference of every pair of points on line {187, 8675}
X(50149) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2453, 47352, 34094}, {14995, 46127, 2}


X(50150) = X(6)X(30)∩X(351)X(523)

Barycentrics    4*a^8 + 3*a^6*b^2 - 11*a^4*b^4 + 3*a^2*b^6 + b^8 + 3*a^6*c^2 + 16*a^4*b^2*c^2 - 5*a^2*b^4*c^2 - 6*b^6*c^2 - 11*a^4*c^4 - 5*a^2*b^2*c^4 + 10*b^4*c^4 + 3*a^2*c^6 - 6*b^2*c^6 + c^8 : :
X(50150) = 2 X[16303] + X[32224], X[23] + 2 X[16333], 2 X[16321] - 3 X[37907], 2 X[34094] - 3 X[47455]

X(50150) lies on these lines: {2, 16324}, {6, 30}, {23, 16333}, {351, 523}, {468, 7610}, {524, 5112}, {597, 11594}, {1316, 47544}, {1513, 14995}, {1976, 6094}, {2080, 14934}, {3003, 6055}, {3849, 15303}, {5467, 8598}, {6054, 45921}, {11632, 11799}, {16321, 17008}, {34094, 47455}, {37461, 45331}, {42849, 47097}

X(50150) = reflection of X(i) in X(j) for these {i,j}: {2, 16324}, {1316, 47544}
X(50150) = crossdifference of every pair of points on line {574, 8675}


X(50151) = (name pending)

Barycentrics    a^2 (a + b - c) (a - b + c) (-a^2 b^2 + 2 a b^3 - b^4 + a^3 c + a^2 b c - 2 a b^2 c + 2 b^3 c - 2 a^2 c^2 + a b c^2 - b^2 c^2 + a c^3)^2 (a^3 b - 2 a^2 b^2 + a b^3 + a^2 b c + a b^2 c - a^2 c^2 - 2 a b c^2 - b^2 c^2 + 2 a c^3 + 2 b c^3 - c^4)^2 : :

See Tran Viet Hung and Francisco Javier García Capitán, euclid 5113.

X(50151) lies on these lines: { }

X(50151) = isogonal conjugate of X(50152)


X(50152) = (name pending)

Barycentrics    (a - b - c) (a^4 - 2 a^3 b + a^2 b^2 - 2 a^3 c + 2 a^2 b c - a b^2 c - b^3 c + a^2 c^2 - a b c^2 + 2 b^2 c^2 - b c^3)^2 : :

See Tran Viet Hung and Francisco Javier García Capitán, euclid 5113.

X(50152) lies on the inconic with perspector X(4076) and these lines: { }

X(50152) = isogonal conjugate of X(50151)


leftri

Points in a [[a^2 (b^2 - c^2), b^2 (c^2 - a^2), c^2 (a^2 - b^2)], [L2 = [(b^2-c^2)(a^2-b^2-c^2), (c^2- a^2)(b^2-c^2-a^2), (a^2- b^2)(a^2-b^2-c^2)]] coordinate system: X(50144)-X(50150)

rightri

If L1 and L2 are lines that meet in a point P not at infinity, then a [L1, L2]-coordinate system is a bivariate coordinate system having L1 as x-axis, L2 as y-axis, and P as origin. In this section, L1 and L2 are the following lines:

L1 is the line: a^2 (b^2 - c^2) α + b^2 (c^2 - a^2) β + c^2 (a^2 - b^2) γ = 0.

L2 is the line (b^2-c^2)(a^2-b^2-c^2) α + (c^2- a^2)(b^2-c^2-a^2) β + (a^2- b^2)(a^2-b^2-c^2) γ = 0 (Euler line).

The origin is given by (0,0) = X(2) = 1:1:1 = G .

Barycentrics u : v : w for a triangle center U = (x, y) in this system are given by

u : v : w = - (a^2 - b^2)(a^2 - c^2)(b^2 - c^2)(a^2 + b^2 + c^2) + (2 b^2 c^2 - a^2 b^2 - a^2 c^2) x + (b^4 + c^4 - 2a^4 + a^2 b^2 + a^2 c^2 - 2 b^2 c^2) y : : ,

where, as functions of a, b, c, the coordinate x is antisymmetric of degree 4, and y is antisymmetric of degree 4.

The appearance of {x, y}, k in the following list means that (x, y) = X(k).

{-2 (a-b) (a-c) (b-c) (a+b+c), -((2 (a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c))}, 8
{-2 (a-b) (a-c) (b-c) (a+b+c), -((a-b) (a-c) (b-c) (a+b+c))}, 3578
{-((2 (a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c)), -(((a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c))}, 49717
{-((a-b) (a-c) (b-c) (a+b+c)), -(((a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c))}, 3679
{-((a-b) (a-c) (b-c) (a+b+c)), -(1/2) (a-b) (a-c) (b-c) (a+b+c)}, 49724
{-(1/2) (a-b) (a-c) (b-c) (a+b+c), -(((a-b) (a-c) (b-c) (a b+a c+b c))/(2 (a+b+c)))}, 10
{0, -(((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c))}, 49735
{0, -(((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(2 (a+b+c)))}, 13745
{0, 0}, 2
{1/2 (a-b) (a-c) (b-c) (a+b+c), ((a-b) (a-c) (b-c) (a b+a c+b c))/(2 (a+b+c))}, 551
{(a-b) (a-c) (b-c) (a+b+c), 1/2 (a-b) (a-c) (b-c) (a+b+c)}, 37631
{(a-b) (a-c) (b-c) (a+b+c), ((a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c)}, 1
{2 (a-b) (a-c) (b-c) (a+b+c), (a-b) (a-c) (b-c) (a+b+c)}, 42045
{(2 (a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c), ((a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c)}, 49749
{2 (a-b) (a-c) (b-c) (a+b+c), (2 (a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c)}, 3241
{-2*(a - b)*(a - c)*(b - c)*(a + b + c), -1/2*((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c)}, 50153
{-2*(a - b)*(a - c)*(b - c)*(a + b + c), 0}, 50154
{(-2*(a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c), 0}, 50155
{-2*(a - b)*(a - c)*(b - c)*(a + b + c), ((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c)}, 50156
{-(((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c)), -(((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c))}, 50157
{-(((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c)), -1/2*((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c)}, 50158
{-((a - b)*(a - c)*(b - c)*(a + b + c)), 0}, 50159
{-(((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c)), 0}, 50160
{-1/2*((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c), -1/2*((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c)}, 50161
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c)), 0}, 50162
{-1/2*((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c), 0}, 50163
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c)), ((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c)}, 50164
{0, (-2*(a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c)}, 50165
{0, -((a - b)*(a - c)*(b - c)*(a + b + c))}, 50166
{0, -1/2*((a - b)*(a - c)*(b - c)*(a + b + c))}, 50167
{0, ((a - b)*(a - c)*(b - c)*(a + b + c))/2}, 50168
{0, ((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(2*(a + b + c))}, 50169
{0, (a - b)*(a - c)*(b - c)*(a + b + c)}, 50170
{0, ((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c)}, 50171
{0, (2*(a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c)}, 50172
{((a - b)*(a - c)*(b - c)*(a + b + c))/2, 0}, 50173
{((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(2*(a + b + c)), 0}, 50174
{(a - b)*(a - c)*(b - c)*(a + b + c), (-2*(a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c)}, 50175
{(a - b)*(a - c)*(b - c)*(a + b + c), -(((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c))}, 50176
{(a - b)*(a - c)*(b - c)*(a + b + c), -1/2*((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c)}, 50177
{(a - b)*(a - c)*(b - c)*(a + b + c), 0}, 50178
{((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c), 0}, 50179
{((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c), ((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(2*(a + b + c))}, 50180
{(a - b)*(a - c)*(b - c)*(a + b + c), (a - b)*(a - c)*(b - c)*(a + b + c)}, 50181
{(a - b)*(a - c)*(b - c)*(a + b + c), (2*(a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c)}, 50182
{2*(a - b)*(a - c)*(b - c)*(a + b + c), 0}, 50183
{(2*(a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c), 0}, 50184
{(2*(a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c), ((a - b)*(a - c)*(b - c)*(a + b + c))/2}, 50185
{(2*(a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c), (2*(a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c)}, 50186


X(50153) = X(8)X(30)∩X(10)X(538)

Barycentrics    -(a^3*b^3) + a*b^5 + 2*a^4*b*c + a^3*b^2*c + a^2*b^3*c + 3*a*b^4*c + b^5*c + a^3*b*c^2 + 4*a^2*b^2*c^2 + 8*a*b^3*c^2 + 4*b^4*c^2 - a^3*c^3 + a^2*b*c^3 + 8*a*b^2*c^3 + 6*b^3*c^3 + 3*a*b*c^4 + 4*b^2*c^4 + a*c^5 + b*c^5 : :

X(50153) lies on these lines: {8, 30}, {10, 538}, {194, 37148}, {524, 32935}, {726, 15985}, {1655, 4205}, {1909, 3695}, {2049, 22253}, {4385, 15973}, {4658, 24275}, {4754, 49743}, {5739, 36685}, {6057, 37631}, {7754, 33745}, {7798, 43531}, {7839, 13740}, {8728, 34284}, {10449, 48869}, {11108, 27523}, {16062, 20081}, {17527, 28809}, {32847, 49745}, {37159, 47286}


X(50154) = X(2)X(39)∩X(8)X(30)

Barycentrics    a^4*b - a^3*b^2 - a^2*b^3 + a*b^4 + a^4*c + 2*a^3*b*c + 2*a*b^3*c + b^4*c - a^3*c^2 + 6*a*b^2*c^2 + 5*b^3*c^2 - a^2*c^3 + 2*a*b*c^3 + 5*b^2*c^3 + a*c^4 + b*c^4 : :
X(50154) = 2 X[3729] + X[15983]

X(50154) lies on these lines: {2, 39}, {8, 30}, {524, 49721}, {1909, 42033}, {2795, 17163}, {3729, 15983}, {3734, 19742}, {4754, 17316}, {4877, 27604}, {7798, 19717}, {8025, 24275}, {16704, 24271}, {19684, 22253}, {25257, 33941}, {30056, 31995}, {31339, 48818}, {48849, 49735}


X(50155) = X(2)X(39)∩X(8)X(524)

Barycentrics    a^3*b + a*b^3 + a^3*c + 4*a^2*b*c + 4*a*b^2*c + b^3*c + 4*a*b*c^2 + 6*b^2*c^2 + a*c^3 + b*c^3 : :
X(50155) = X[8] + 2 X[4754]

X(50155) lies on these lines: {2, 39}, {8, 524}, {30, 48849}, {75, 17497}, {514, 46895}, {536, 4968}, {1334, 50118}, {1654, 26079}, {1909, 4033}, {3241, 49749}, {3691, 20367}, {3780, 50098}, {4688, 16732}, {7229, 28369}, {7751, 19284}, {7760, 16930}, {7781, 16347}, {7991, 15971}, {8667, 19336}, {8682, 17163}, {13745, 39581}, {15983, 17116}, {15985, 31995}, {16393, 47037}, {17137, 50128}, {17164, 35103}, {17169, 21024}, {17251, 17679}, {21020, 35102}, {26965, 37756}, {28610, 28638}, {42045, 50079}

X(50155) = reflection of X(3241) in X(49749)
X(50155) = {X(26035),X(34284)}-harmonic conjugate of X(26978)


X(50156) = X(1)X(538)∩X(8)X(30)

Barycentrics    a^5*b - a^3*b^3 + a^5*c + 2*a^4*b*c + a*b^4*c + 2*a^2*b^2*c^2 + 5*a*b^3*c^2 + 2*b^4*c^2 - a^3*c^3 + 5*a*b^2*c^3 + 4*b^3*c^3 + a*b*c^4 + 2*b^2*c^4 : :

X(50156) lies on these lines: {1, 538}, {3, 26243}, {8, 30}, {58, 24271}, {76, 1009}, {99, 37023}, {194, 1008}, {325, 37049}, {385, 11104}, {405, 34284}, {443, 27523}, {474, 28809}, {511, 3729}, {524, 5695}, {543, 49723}, {1010, 1655}, {1089, 4447}, {1150, 49129}, {1281, 2782}, {1724, 3734}, {1909, 7283}, {1975, 13723}, {2795, 4647}, {3923, 28369}, {4039, 24850}, {4044, 37609}, {4195, 20081}, {4204, 30599}, {4292, 4987}, {4385, 37425}, {4387, 37631}, {5254, 37025}, {6390, 37047}, {7985, 32515}, {9534, 48869}, {10449, 11355}, {11354, 42025}, {13728, 15048}, {13745, 39581}, {15975, 46108}, {15983, 24280}, {15985, 24248}, {17128, 37027}, {17316, 49743}, {24275, 25526}, {28368, 32930}, {31859, 37053}, {37507, 44140}, {39906, 47521}

X(50156) = midpoint of X(15983) and X(24280)
X(50156) = reflection of X(i) in X(j) for these {i,j}: {24248, 15985}, {28369, 3923}

X(50157) = X(1)X(524)∩X(2)X(32)

Barycentrics    2*a^4 - a^3*b - 2*a^2*b^2 - a*b^3 - b^4 - a^3*c - 4*a^2*b*c - 4*a*b^2*c - b^3*c - 2*a^2*c^2 - 4*a*b*c^2 - 2*b^2*c^2 - a*c^3 - b*c^3 - c^4 : :

X(50157) lies on these lines: {1, 524}, {2, 32}, {10, 4760}, {30, 48851}, {405, 17251}, {538, 49735}, {540, 48822}, {3578, 17389}, {3954, 50093}, {5283, 17346}, {7759, 16342}, {7764, 16347}, {7768, 16927}, {7794, 16931}, {9766, 16351}, {14023, 37314}, {17294, 49724}, {17392, 25499}, {19336, 47101}, {24956, 31090}, {25683, 26244}, {31144, 33954}, {49717, 49729}

X(50157) = reflection of X(49717) in X(49729)


X(50158) = X(2)X(6)∩X(10)X(538)

Barycentrics    4*a^2*b^2 + 3*a*b^3 + 6*a^2*b*c + 9*a*b^2*c + 3*b^3*c + 4*a^2*c^2 + 9*a*b*c^2 + 4*b^2*c^2 + 3*a*c^3 + 3*b*c^3 : :
X(50158) = 3 X[49717] + X[49749], X[4754] - 7 X[9780]

X(50158) lies on these lines: {2, 6}, {10, 538}, {30, 48809}, {754, 49729}, {1698, 24691}, {2227, 21699}, {3720, 25358}, {3741, 4708}, {4364, 4854}, {4472, 24690}, {4643, 33097}, {4690, 43223}, {4713, 4748}, {4754, 9780}, {4981, 9055}, {5969, 5988}, {6626, 13586}, {19856, 49716}, {25350, 26037}, {25381, 28840}, {30821, 31285}

X(50158) = midpoint of X(2) and X(49717)
X(50158) = complement of X(49749)


X(50159) = X(2)X(39)∩X(30)X(40)

Barycentrics    a^4*b + a*b^4 + a^4*c + 2*a^3*b*c + a^2*b^2*c + 2*a*b^3*c + b^4*c + a^2*b*c^2 + 4*a*b^2*c^2 + 3*b^3*c^2 + 2*a*b*c^3 + 3*b^2*c^3 + a*c^4 + b*c^4 : :
X(50159) = X[3729] + 2 X[15985], 4 X[17355] - X[28369]

X(50159) lies on these lines: {2, 39}, {30, 40}, {81, 24275}, {333, 24271}, {524, 17281}, {754, 3578}, {2782, 33167}, {2795, 21020}, {3729, 15985}, {3734, 5278}, {3761, 32777}, {3912, 4754}, {4647, 49760}, {5737, 24296}, {7798, 19684}, {7804, 19742}, {11286, 19723}, {13745, 48851}, {17116, 30056}, {17251, 50057}, {17310, 42045}, {17355, 28369}, {18206, 21024}, {19701, 22253}, {29573, 37631}, {29574, 49749}


X(50160) = X(2)X(39)∩X(10)X(4754)

Barycentrics    a^3*b + a^2*b^2 + a*b^3 + a^3*c + 4*a^2*b*c + 4*a*b^2*c + b^3*c + a^2*c^2 + 4*a*b*c^2 + 4*b^2*c^2 + a*c^3 + b*c^3 : :
X(50160) = X(50160) = 2 X[10] + X[4754]

X(50160) lies on these lines: {2, 39}, {10, 4754}, {30, 48851}, {519, 49749}, {524, 3416}, {543, 1281}, {668, 28604}, {1018, 7227}, {1111, 3739}, {1213, 25468}, {1698, 25350}, {3578, 27790}, {3761, 17303}, {3928, 28608}, {4692, 25384}, {5007, 16930}, {7751, 16454}, {7760, 16926}, {7780, 19284}, {7781, 16342}, {8667, 19290}, {8682, 21020}, {8716, 16351}, {15985, 25590}, {17175, 21024}, {17251, 44217}, {17294, 37631}, {17739, 49724}, {19276, 47037}, {27478, 46902}, {27798, 35102}, {29615, 42045}, {35101, 46895}

X(50160) = midpoint of X(4754) and X(49717)
X(50160) = reflection of X(49717) in X(10)
X(50160) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 26035, 48860}, {2, 34284, 48840}, {2, 48840, 25499}, {2, 48869, 5283}


X(50161) = X(2)X(32)∩X(30)X(48853)

Barycentrics    2*a^4 - 2*a^3*b - 4*a^2*b^2 - 2*a*b^3 - b^4 - 2*a^3*c - 8*a^2*b*c - 8*a*b^2*c - 2*b^3*c - 4*a^2*c^2 - 8*a*b*c^2 - 4*b^2*c^2 - 2*a*c^3 - 2*b*c^3 - c^4 : :

X(50161) lies on these lines: {2, 32}, {30, 48853}, {524, 551}, {538, 13745}, {543, 1281}, {3578, 29580}, {7751, 37314}, {7759, 16343}, {7764, 16342}, {7768, 16929}, {7794, 16927}, {11357, 17251}, {19290, 47101}, {29574, 49724}, {29594, 49730}, {49723, 49749}

X(50161) = midpoint of X(49723) and X(49749)


X(50162) = X(2)X(39)∩X(10)X(30)

Barycentrics    2*a^4*b + a^3*b^2 + a^2*b^3 + 2*a*b^4 + 2*a^4*c + 4*a^3*b*c + 3*a^2*b^2*c + 4*a*b^3*c + 2*b^4*c + a^3*c^2 + 3*a^2*b*c^2 + 6*a*b^2*c^2 + 4*b^3*c^2 + a^2*c^3 + 4*a*b*c^3 + 4*b^2*c^3 + 2*a*c^4 + 2*b*c^4 : :
X(50162) = X[15985] + 2 X[17355]

X(50162) lies on these lines: {2, 39}, {10, 30}, {333, 24275}, {524, 17359}, {553, 21240}, {754, 49724}, {1500, 42033}, {2795, 27798}, {3578, 3661}, {3734, 19732}, {3739, 24208}, {3912, 37631}, {4754, 17284}, {5235, 24271}, {5278, 7804}, {7798, 19701}, {15985, 17355}, {24036, 44417}, {29573, 49749}, {29577, 42045}, {29674, 49744}


X(50163) = X(2)X(39)∩X(10)X(524)

Barycentrics    2*a^3*b + 3*a^2*b^2 + 2*a*b^3 + 2*a^3*c + 8*a^2*b*c + 8*a*b^2*c + 2*b^3*c + 3*a^2*c^2 + 8*a*b*c^2 + 6*b^2*c^2 + 2*a*c^3 + 2*b*c^3 : :
X(50163) = 5 X[1698] + X[4754], 3 X[19875] - X[49717]

X(50163) lies on these lines: {2, 39}, {10, 524}, {30, 48853}, {536, 3743}, {543, 13745}, {1698, 4754}, {2049, 4658}, {3679, 49749}, {3739, 16611}, {5007, 16926}, {5184, 24342}, {7751, 16458}, {7760, 16928}, {7780, 16454}, {7781, 16343}, {8667, 19332}, {8682, 27798}, {15973, 43174}, {17499, 31144}, {17758, 20582}, {19336, 46893}, {19875, 49717}, {20888, 41311}, {24603, 24628}, {35103, 49598}

X(50163) = midpoint of X(3679) and X(49749)


X(50164) = X(1)X(538)∩X(10)X(30)

Barycentrics    2*a^5*b + a^4*b^2 + a^2*b^4 + 2*a^5*c + 4*a^4*b*c + 2*a^3*b^2*c + 2*a^2*b^3*c + 2*a*b^4*c + a^4*c^2 + 2*a^3*b*c^2 + 4*a^2*b^2*c^2 + 6*a*b^3*c^2 + 2*b^4*c^2 + 2*a^2*b*c^3 + 6*a*b^2*c^3 + 4*b^3*c^3 + a^2*c^4 + 2*a*b*c^4 + 2*b^2*c^4 : :

X(50164) lies on these lines: {1, 538}, {10, 30}, {21, 24271}, {39, 1008}, {76, 4195}, {99, 19312}, {187, 11104}, {405, 3734}, {511, 3923}, {516, 15985}, {524, 49484}, {540, 49560}, {543, 13745}, {574, 37053}, {620, 37047}, {625, 37049}, {754, 49716}, {1009, 3934}, {1010, 16589}, {1043, 17499}, {1104, 20888}, {1500, 7283}, {1724, 7804}, {2549, 13725}, {2782, 41193}, {2795, 49598}, {3501, 48883}, {3849, 49723}, {3912, 49745}, {3948, 11115}, {4044, 37539}, {4045, 13728}, {4201, 7847}, {4229, 26244}, {4292, 21240}, {5254, 37044}, {5737, 49130}, {7739, 19766}, {7751, 19761}, {7781, 19758}, {7816, 13723}, {7861, 37025}, {9534, 48864}, {9746, 9840}, {10449, 48817}, {10479, 11355}, {11319, 20913}, {13736, 32815}, {15447, 30818}, {16342, 24296}, {17130, 19768}, {20018, 48869}, {20077, 33297}, {32456, 37023}


X(50165) = X(2)X(3)∩X(145)X(524)

Barycentrics    4*a^4 - a^3*b - 4*a^2*b^2 - a*b^3 - 2*b^4 - a^3*c - 4*a^2*b*c - 4*a*b^2*c - b^3*c - 4*a^2*c^2 - 4*a*b*c^2 + 2*b^2*c^2 - a*c^3 - b*c^3 - 2*c^4 : :
X(50165) = 3 X[2] - 4 X[13745], 2 X[13745] - 3 X[49735], 5 X[3617] - 8 X[49728], X[3621] - 4 X[49716], 7 X[3622] - 4 X[49745], 5 X[20052] - 8 X[49718], 3 X[38314] - 2 X[49744], 11 X[46933] - 8 X[49734]

X(50165) lies on these lines: {1, 17491}, {2, 3}, {8, 49723}, {10, 4781}, {145, 524}, {540, 3241}, {1043, 31143}, {2650, 28558}, {2796, 17164}, {3578, 31145}, {3617, 49728}, {3621, 49716}, {3622, 49745}, {4304, 26580}, {4720, 43990}, {4933, 27558}, {5330, 48907}, {7354, 49740}, {10459, 28562}, {17330, 26770}, {17333, 25237}, {19742, 48837}, {19765, 31179}, {20052, 49718}, {27804, 38456}, {34605, 49746}, {38314, 49744}, {42045, 49739}, {46933, 49734}, {50046, 50105}, {50050, 50104}, {50065, 50102}

X(50165) = reflection of X(i) in X(j) for these {i,j}: {2, 49735}, {8, 49723}, {31145, 3578}, {42045, 49739}
X(50165) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11114, 17537}, {2, 37299, 16397}, {21, 17677, 2}, {405, 17679, 2}, {6872, 17676, 11319}, {11111, 50055, 2}, {11112, 14020, 2}, {11114, 37038, 2}, {11346, 11359, 2}, {15680, 26117, 11115}, {16858, 17678, 2}, {17579, 48814, 2}, {31156, 48813, 2}


X(50166) = X(2)X(3)∩X(500)X(26639)

Barycentrics    2*a^5 + a^4*b - 2*a^3*b^2 - 2*a^2*b^3 - 2*a*b^4 - b^5 + a^4*c - 2*a^3*b*c - 3*a^2*b^2*c - 2*a*b^3*c - 2*b^4*c - 2*a^3*c^2 - 3*a^2*b*c^2 + b^3*c^2 - 2*a^2*c^3 - 2*a*b*c^3 + b^2*c^3 - 2*a*c^4 - 2*b*c^4 - c^5 : :

X(50166) lies on these lines: {2, 3}, {500, 26639}, {524, 49747}, {538, 3578}, {540, 16834}, {754, 29584}, {2549, 5278}, {5741, 24296}, {7737, 19684}, {7761, 18139}, {15048, 19742}, {18907, 19717}, {19732, 44526}, {24271, 41809}, {26626, 49745}, {49723, 50095}

X(50166) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11359, 50060, 2}, {17677, 35935, 2}


X(50167) = X(2)X(3)∩X(239)X(49716)

Barycentrics    2*a^5 - 3*a^3*b^2 - 3*a^2*b^3 - 3*a*b^4 - b^5 - 4*a^3*b*c - 5*a^2*b^2*c - 4*a*b^3*c - 3*b^4*c - 3*a^3*c^2 - 5*a^2*b*c^2 - 2*a*b^2*c^2 - 3*a^2*c^3 - 4*a*b*c^3 - 3*a*c^4 - 3*b*c^4 - c^5 : :

X(50167) lies on these lines: {2, 3}, {239, 49716}, {524, 16834}, {538, 42051}, {540, 50114}, {754, 37631}, {1213, 24271}, {1834, 24632}, {2549, 19732}, {4384, 49728}, {5278, 15048}, {5453, 26639}, {5743, 24296}, {7737, 19701}, {7739, 19723}, {16833, 49723}, {17023, 49745}, {17308, 49734}, {18907, 19684}, {19744, 44526}, {19749, 43618}, {26626, 49743}, {29574, 49739}

X(50167) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 48813, 50057}, {21997, 26601, 1375}


X(50168) = X(2)X(3)∩X(524)X(17281)

Barycentrics    2*a^5 + 4*a^4*b + a^3*b^2 + a^2*b^3 + a*b^4 - b^5 + 4*a^4*c + 4*a^3*b*c + 3*a^2*b^2*c + 4*a*b^3*c + b^4*c + a^3*c^2 + 3*a^2*b*c^2 + 6*a*b^2*c^2 + 4*b^3*c^2 + a^2*c^3 + 4*a*b*c^3 + 4*b^2*c^3 + a*c^4 + b*c^4 - c^5 : :

X(50168) lies on these lines: {2, 3}, {524, 17281}, {538, 3175}, {540, 29594}, {754, 49724}, {1211, 24275}, {2549, 19701}, {3661, 49716}, {3912, 49745}, {4384, 49734}, {5278, 18907}, {7737, 19732}, {7739, 19722}, {15048, 19684}, {15936, 35578}, {17056, 24271}, {17308, 49728}, {17316, 49743}, {19749, 43619}, {25007, 48887}, {29573, 49744}

X(50168) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 48817, 50060}


X(50169) = X(2)X(3)∩X(10)X(540)

Barycentrics    2*a^4 + 2*a^3*b + 3*a^2*b^2 + 2*a*b^3 - b^4 + 2*a^3*c + 8*a^2*b*c + 8*a*b^2*c + 2*b^3*c + 3*a^2*c^2 + 8*a*b*c^2 + 6*b^2*c^2 + 2*a*c^3 + 2*b*c^3 - c^4 : :
X(50169) = X[1] + 2 X[49734], X[13442] - 4 X[15973], 3 X[13745] - 2 X[49735], X[8] + 2 X[49743], 4 X[10] - X[49716], 2 X[10] + X[49745], X[49716] + 2 X[49745], 5 X[1698] - 2 X[49728], 5 X[3617] - 2 X[49718], 3 X[19875] - X[49723], 3 X[19875] - 2 X[49730]

X(50169) lies on these lines: {1, 49734}, {2, 3}, {8, 42045}, {10, 540}, {500, 19860}, {511, 3753}, {519, 37631}, {524, 3416}, {543, 5988}, {551, 49739}, {993, 15447}, {1330, 41816}, {1698, 49728}, {1834, 25526}, {3419, 10436}, {3617, 49718}, {3828, 49729}, {4720, 37635}, {5250, 48915}, {5439, 40649}, {6707, 25468}, {7354, 19858}, {9579, 19859}, {9810, 28294}, {13408, 24987}, {17614, 48894}, {19684, 48847}, {19701, 48837}, {19722, 48857}, {19723, 48870}, {19738, 48861}, {19857, 50050}, {19861, 48903}, {19875, 49723}, {24161, 25055}, {24473, 50116}, {24982, 48887}, {26131, 41014}, {26637, 45923}, {27798, 38456}, {29181, 38052}, {41312, 50066}, {41812, 47033}, {50053, 50104}, {50069, 50102}

X(50169) = midpoint of X(i) and X(j) for these {i,j}: {8, 42045}, {3679, 49744}, {46617, 46704}, {49724, 49745}
X(50169) = reflection of X(i) in X(j) for these {i,j}: {13745, 2}, {42045, 49743}, {49716, 49724}, {49723, 49730}, {49724, 10}, {49729, 3828}, {49739, 551}
X(50169) = complement of X(49735)
X(50169) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 376, 16351}, {2, 377, 11359}, {2, 4217, 16857}, {2, 4234, 15670}, {2, 6175, 16052}, {2, 11359, 13728}, {2, 15677, 17553}, {2, 17679, 48815}, {2, 19336, 549}, {2, 31156, 11357}, {2, 48816, 11112}, {2, 48817, 405}, {2, 50061, 16418}, {10, 49745, 49716}, {377, 2049, 13728}, {381, 19332, 2}, {382, 16456, 37314}, {1010, 26051, 442}, {2049, 11359, 2}, {2475, 14005, 4205}, {14007, 26117, 17514}, {17528, 19277, 2}, {17528, 34609, 17532}, {19875, 49723, 49730}, {37153, 48817, 2}


X(50170) = X(2)X(3)∩X(524)X(49721)

Barycentrics    2*a^5 + 3*a^4*b - b^5 + 3*a^4*c + 2*a^3*b*c + a^2*b^2*c + 2*a*b^3*c + a^2*b*c^2 + 4*a*b^2*c^2 + 3*b^3*c^2 + 2*a*b*c^3 + 3*b^2*c^3 - c^5 : :

X(50170) lies on these lines: {2, 3}, {524, 49721}, {538, 17389}, {540, 17294}, {543, 29580}, {754, 3578}, {2549, 19684}, {3734, 18139}, {3936, 24271}, {5278, 7737}, {7739, 19738}, {15048, 19717}, {15936, 50128}, {17316, 49745}, {18907, 19742}, {19701, 44526}, {24275, 41809}, {26639, 48903}, {29574, 49744}, {29585, 49743}

X(50170) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11354, 50057, 2}


X(50171) = X(2)X(3)∩X(8)X(524)

Barycentrics    2*a^4 + a^3*b + a^2*b^2 + a*b^3 - b^4 + a^3*c + 4*a^2*b*c + 4*a*b^2*c + b^3*c + a^2*c^2 + 4*a*b*c^2 + 4*b^2*c^2 + a*c^3 + b*c^3 - c^4 : :
X(50171) = 4 X[13745] - 3 X[49735], 2 X[15971] + X[48890], X[8] - 4 X[49734], X[8] + 2 X[49745], 2 X[49734] + X[49745], X[145] - 4 X[49743], 5 X[3617] - 2 X[49716], 7 X[4678] - 4 X[49718], 7 X[9780] - 4 X[49728], X[10914] + 2 X[49557], 3 X[19875] - 2 X[49729], 3 X[38314] - 2 X[49739]

X(50171) lies on these lines: {1, 4442}, {2, 3}, {8, 524}, {10, 896}, {145, 49743}, {519, 2650}, {540, 1046}, {542, 46483}, {543, 16830}, {551, 23536}, {1043, 26131}, {1213, 26079}, {1330, 31143}, {2292, 2796}, {3178, 4933}, {3241, 37631}, {3617, 49716}, {3710, 50118}, {3868, 50128}, {3897, 48893}, {4678, 49718}, {4720, 17778}, {5252, 28968}, {5262, 37756}, {5554, 48877}, {5722, 26627}, {6284, 49740}, {9780, 49728}, {10404, 47358}, {10483, 19858}, {10914, 49557}, {15936, 20880}, {15938, 26651}, {15988, 48922}, {16948, 25446}, {17330, 26035}, {17378, 34284}, {18139, 48863}, {19684, 48837}, {19717, 48847}, {19722, 48842}, {19738, 48857}, {19860, 48897}, {19875, 49729}, {21020, 38456}, {21674, 24850}, {25005, 48887}, {25385, 49608}, {26064, 31144}, {26978, 49738}, {34606, 49725}, {38314, 49739}, {41312, 50065}, {50049, 50105}, {50054, 50104}, {50064, 50103}

X(50171) = reflection of X(i) in X(j) for these {i,j}: {3241, 37631}, {3578, 3679}, {42045, 49744}, {49723, 10}, {49735, 2}
X(50171) = anticomplement of X(13745)
X(50171) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 377, 17679}, {2, 2475, 17677}, {2, 11114, 14020}, {2, 16397, 37298}, {2, 17677, 5051}, {2, 17679, 4202}, {2, 48817, 11346}, {377, 964, 4202}, {381, 19290, 2}, {964, 17679, 2}, {1010, 2475, 5051}, {1010, 17677, 2}, {11112, 37150, 2}, {11354, 44217, 2}, {16394, 17528, 2}, {17532, 19276, 2}, {19277, 50056, 2}, {49734, 49745, 8}


X(50172) = X(2)X(3)∩X(8)X(540)

Barycentrics    4*a^4 + a^3*b + a*b^3 - 2*b^4 + a^3*c + 4*a^2*b*c + 4*a*b^2*c + b^3*c + 4*a*b*c^2 + 6*b^2*c^2 + a*c^3 + b*c^3 - 2*c^4 : :
X(50172) = 5 X[2] - 4 X[13745], 6 X[13745] - 5 X[49735], X[145] - 4 X[49745], 5 X[3617] - 4 X[49724], 5 X[3617] - 8 X[49734], 5 X[3623] - 8 X[49743], X[3885] - 4 X[49557], 7 X[4678] - 4 X[49716], 11 X[46933] - 8 X[49728]

X(50172) lies on these lines: {2, 3}, {8, 540}, {145, 42045}, {519, 17164}, {524, 31145}, {543, 5992}, {551, 3120}, {3241, 49744}, {3586, 26627}, {3617, 49724}, {3623, 49743}, {3679, 4418}, {3885, 49557}, {3897, 48926}, {4080, 30115}, {4678, 49716}, {17163, 38456}, {19717, 48837}, {19738, 48842}, {19743, 48847}, {24275, 26079}, {24850, 27690}, {46933, 49728}, {50070, 50102}

X(50172) = reflection of X(i) in X(j) for these {i,j}: {145, 42045}, {3241, 49744}, {42045, 49745}, {49724, 49734}
X(50172) = anticomplement of X(49735)
X(50172) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 48817, 11319}, {377, 48817, 2}, {381, 19336, 2}, {964, 11359, 2}, {4234, 6175, 2}, {11114, 48816, 2}, {11346, 44217, 2}, {11354, 17679, 2}, {15680, 26051, 17588}, {16393, 17532, 2}


X(50173) = X(2)X(39)∩X(30)X(551)

Barycentrics    2*a^4*b + 3*a^3*b^2 + 3*a^2*b^3 + 2*a*b^4 + 2*a^4*c + 4*a^3*b*c + 5*a^2*b^2*c + 4*a*b^3*c + 2*b^4*c + 3*a^3*c^2 + 5*a^2*b*c^2 + 2*a*b^2*c^2 + 3*a^2*c^3 + 4*a*b*c^3 + 2*a*c^4 + 2*b*c^4 : :
X(50173) = 5 X[17304] + X[28369]

X(50173) lies on these lines: {2, 39}, {30, 551}, {524, 17382}, {754, 37631}, {1015, 19786}, {2795, 10180}, {3734, 19701}, {4415, 30106}, {4754, 29598}, {5333, 24271}, {6703, 17205}, {7798, 19732}, {7804, 19684}, {16833, 49717}, {17304, 28369}, {19744, 22253}, {24275, 25507}, {41140, 49724}


X(50174) = X(2)X(39)∩X(524)X(551)

Barycentrics    2*a^3*b + 5*a^2*b^2 + 2*a*b^3 + 2*a^3*c + 8*a^2*b*c + 8*a*b^2*c + 2*b^3*c + 5*a^2*c^2 + 8*a*b*c^2 + 2*b^2*c^2 + 2*a*c^3 + 2*b*c^3 : :
X(50174) = 7 X[3624] - X[4754], 3 X[25055] - X[49749]

X(50174) lies on these lines: {1, 49717}, {2, 39}, {524, 551}, {543, 5988}, {754, 13745}, {1015, 17322}, {3624, 4754}, {3849, 49735}, {4364, 39542}, {4698, 24036}, {5007, 16927}, {6707, 17205}, {7751, 16343}, {7759, 37314}, {7760, 16929}, {7780, 16342}, {7781, 16458}, {8682, 10180}, {8716, 19332}, {18904, 41311}, {25055, 49749}, {49730, 50114}

X(50174) = midpoint of X(1) and X(49717)
X(50174) = {X(2),X(5283)}-harmonic conjugate of X(48860)


X(50175) = X(1)X(30)∩X(4)X(980)

Barycentrics    a^5*b - a^4*b^2 - 2*a^3*b^3 - a^2*b^4 - a*b^5 + a^5*c - 3*a^3*b^2*c - 3*a^2*b^3*c - 2*a*b^4*c - b^5*c - a^4*c^2 - 3*a^3*b*c^2 - 2*a^2*b^2*c^2 + a*b^3*c^2 - 2*a^3*c^3 - 3*a^2*b*c^3 + a*b^2*c^3 + 2*b^3*c^3 - a^2*c^4 - 2*a*b*c^4 - a*c^5 - b*c^5 : :

X(50175) lies on these lines: {1, 30}, {3, 24296}, {4, 980}, {8, 538}, {187, 35915}, {274, 26117}, {377, 2549}, {511, 24248}, {516, 28369}, {524, 49495}, {540, 49488}, {543, 16830}, {940, 49130}, {950, 24214}, {964, 3734}, {986, 48937}, {1010, 24271}, {1834, 18206}, {2223, 13161}, {2292, 2795}, {2475, 40773}, {2794, 46483}, {3146, 4352}, {4045, 4202}, {4384, 49728}, {7270, 25264}, {9534, 48813}, {9840, 37575}, {14005, 24275}, {15048, 16552}, {15447, 17720}, {15971, 44431}, {16823, 49735}, {19318, 24617}, {37522, 49129}, {37555, 48883}


X(50176) = X(1)X(30)∩X(381)X(980)

Barycentrics    a^5*b - 3*a^4*b^2 - 5*a^3*b^3 - 3*a^2*b^4 - 2*a*b^5 + a^5*c - 2*a^4*b*c - 8*a^3*b^2*c - 8*a^2*b^3*c - 5*a*b^4*c - 2*b^5*c - 3*a^4*c^2 - 8*a^3*b*c^2 - 6*a^2*b^2*c^2 + a*b^3*c^2 - 5*a^3*c^3 - 8*a^2*b*c^3 + a*b^2*c^3 + 4*b^3*c^3 - 3*a^2*c^4 - 5*a*b*c^4 - 2*a*c^5 - 2*b*c^5 : :

X(50176) lies on these lines: {1, 30}, {381, 980}, {524, 50080}, {538, 3679}, {540, 16834}, {3017, 18206}, {3543, 4352}, {3578, 32950}, {3663, 15982}, {4384, 49729}, {5283, 44217}, {6175, 40773}, {7739, 16552}, {11355, 48840}, {16833, 49723}, {19871, 48812}


X(50177) = X(1)X(30)∩X(10)X(538)

Barycentrics    2*a^4*b^2 + 3*a^3*b^3 + 2*a^2*b^4 + a*b^5 + 2*a^4*b*c + 5*a^3*b^2*c + 5*a^2*b^3*c + 3*a*b^4*c + b^5*c + 2*a^4*c^2 + 5*a^3*b*c^2 + 4*a^2*b^2*c^2 + 3*a^3*c^3 + 5*a^2*b*c^3 - 2*b^3*c^3 + 2*a^2*c^4 + 3*a*b*c^4 + a*c^5 + b*c^5 : :

X(50177) lies on these lines: {1, 30}, {4, 4352}, {5, 980}, {10, 538}, {76, 37148}, {194, 16062}, {239, 49716}, {274, 4205}, {325, 37159}, {385, 35916}, {442, 40773}, {511, 3663}, {524, 4655}, {540, 49477}, {698, 49519}, {940, 49129}, {942, 24214}, {986, 32515}, {1107, 23537}, {1330, 33296}, {1975, 33745}, {2782, 5988}, {2795, 3743}, {3695, 25264}, {3734, 43531}, {3821, 15985}, {4202, 31036}, {5283, 8728}, {7840, 17677}, {9534, 11359}, {10449, 48838}, {13740, 17128}, {13745, 16823}, {15447, 17602}, {16825, 49728}, {19758, 36477}, {20018, 48813}, {24248, 28369}, {24271, 25526}, {24296, 37522}, {29365, 37548}, {34937, 48893}, {36480, 49734}, {37425, 37590}, {37555, 48882}, {37575, 48930}

X(50177) = midpoint of X(24248) and X(28369)
X(50177) = reflection of X(15985) in X(3821)


X(50178) = X(1)X(30)∩X(2)X(39)

Barycentrics    a^4*b + 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 + a^4*c + 2*a^3*b*c + 3*a^2*b^2*c + 2*a*b^3*c + b^4*c + 2*a^3*c^2 + 3*a^2*b*c^2 - b^3*c^2 + 2*a^2*c^3 + 2*a*b*c^3 - b^2*c^3 + a*c^4 + b*c^4 : :
X(50178) = 2 X[3663] + X[28369], 2 X[15985] - 5 X[17304]

X(50178) lies on these lines: {1, 30}, {2, 39}, {86, 24271}, {213, 17781}, {239, 3578}, {524, 16834}, {536, 18697}, {543, 29580}, {553, 24214}, {754, 29584}, {940, 24296}, {1111, 3666}, {1962, 2795}, {2782, 33152}, {3230, 28368}, {3663, 28369}, {3734, 19684}, {4045, 18139}, {4384, 49730}, {4754, 17023}, {5278, 7798}, {5333, 24275}, {7804, 19717}, {11286, 19722}, {11355, 48855}, {14636, 37575}, {15985, 17304}, {16825, 49729}, {16829, 19796}, {16833, 49724}, {16975, 19785}, {17246, 29382}, {17591, 32515}, {19732, 22253}, {19853, 48806}, {25264, 42033}, {27248, 42032}, {27272, 32026}, {43266, 49749}, {49717, 50095}

X(50178) = crossdifference of every pair of points on line {669, 9404}


X(50179) = X(1)X(524)∩X(2)X(39)

Barycentrics    a^3*b + 3*a^2*b^2 + a*b^3 + a^3*c + 4*a^2*b*c + 4*a*b^2*c + b^3*c + 3*a^2*c^2 + 4*a*b*c^2 + a*c^3 + b*c^3 : :
X(50179) = 4 X[1125] - X[4754]

X(50179) lies on these lines: {1, 524}, {2, 39}, {30, 48854}, {37, 14210}, {213, 50093}, {405, 28619}, {519, 49717}, {536, 4647}, {543, 16830}, {551, 49749}, {597, 16552}, {712, 3989}, {754, 49735}, {764, 28840}, {958, 50073}, {1107, 41311}, {1125, 4465}, {1962, 8682}, {2238, 46913}, {2292, 35103}, {3230, 28369}, {3294, 49737}, {3578, 29584}, {4301, 9840}, {4664, 17762}, {4755, 16601}, {5007, 16931}, {5277, 21937}, {7751, 16342}, {7758, 37314}, {7760, 16927}, {7780, 16347}, {7781, 16454}, {8667, 16351}, {8716, 19290}, {10180, 35102}, {16819, 37756}, {16829, 17320}, {16833, 49730}, {16834, 49724}, {16912, 33955}, {16975, 17321}, {17045, 45751}, {17210, 21024}, {17324, 30056}, {25579, 28609}, {29578, 30566}, {29580, 42045}, {29597, 37631}, {31144, 33296}

X(50179) = reflection of X(49749) in X(551)


X(50180) = X(2)X(6)∩X(538)X(551)

Barycentrics    4*a^3*b + 4*a^2*b^2 + a*b^3 + 4*a^3*c + 10*a^2*b*c + 7*a*b^2*c + b^3*c + 4*a^2*c^2 + 7*a*b*c^2 + 4*b^2*c^2 + a*c^3 + b*c^3 : :
X(50180) = X[49717] + 3 X[49749], 5 X[3616] + X[4754]

X(50180) lies on these lines: {2, 6}, {30, 48822}, {42, 4472}, {43, 4798}, {511, 28600}, {536, 25124}, {538, 551}, {543, 41184}, {3616, 4713}, {3739, 4771}, {4640, 4670}, {4665, 17018}, {4758, 6685}, {4831, 24690}, {16589, 18172}, {17032, 17369}, {28840, 48248}

X(50180) = midpoint of X(2) and X(49749)
X(50180) = complement of X(49717)
X(50180) = {X(4670),X(43223)}-harmonic conjugate of X(25349)


X(50181) = X(1)X(30)∩X(2)X(32)

Barycentrics    2*a^5 + 3*a^4*b + a^3*b^2 + a^2*b^3 - b^5 + 3*a^4*c + 2*a^3*b*c + 2*a^2*b^2*c + 2*a*b^3*c + a^3*c^2 + 2*a^2*b*c^2 + 2*a*b^2*c^2 + b^3*c^2 + a^2*c^3 + 2*a*b*c^3 + b^2*c^3 - c^5 : :

X(50181) lies on these lines: {1, 30}, {2, 32}, {445, 14581}, {524, 17281}, {538, 17389}, {540, 48811}, {940, 36731}, {2895, 24275}, {3578, 3661}, {3954, 17781}, {4045, 19717}, {5712, 24296}, {7761, 19684}, {7804, 18139}, {11287, 19722}, {17308, 49730}, {17778, 24271}

X(50181) = crossdifference of every pair of points on line {3005, 9404}


X(50182) = X(1)X(30)∩X(2)X(40984)

Barycentrics    5*a^5*b + 3*a^4*b^2 + 2*a^3*b^3 + 3*a^2*b^4 - a*b^5 + 5*a^5*c + 8*a^4*b*c + 5*a^3*b^2*c + 5*a^2*b^3*c + 2*a*b^4*c - b^5*c + 3*a^4*c^2 + 5*a^3*b*c^2 + 6*a^2*b^2*c^2 + 5*a*b^3*c^2 + 2*a^3*c^3 + 5*a^2*b*c^3 + 5*a*b^2*c^3 + 2*b^3*c^3 + 3*a^2*c^4 + 2*a*b*c^4 - a*c^5 - b*c^5 : :

X(50182) lies on these lines: {1, 30}, {2, 40984}, {376, 980}, {524, 50130}, {538, 3241}, {754, 49735}, {2223, 14636}, {4352, 15683}, {4720, 24275}, {4754, 49771}, {5283, 31156}, {5337, 13634}, {6740, 11060}, {7865, 25499}, {13745, 48854}, {15677, 40773}, {19853, 48798}, {36480, 49729}


X(50183) = X(2)X(39)∩X(30)X(944)

Barycentrics    a^4*b + 3*a^3*b^2 + 3*a^2*b^3 + a*b^4 + a^4*c + 2*a^3*b*c + 4*a^2*b^2*c + 2*a*b^3*c + b^4*c + 3*a^3*c^2 + 4*a^2*b*c^2 - 2*a*b^2*c^2 - 3*b^3*c^2 + 3*a^2*c^3 + 2*a*b*c^3 - 3*b^2*c^3 + a*c^4 + b*c^4 : :
X(50183) = 4 X[3663] - X[15983]

X(50183) lies on these lines: {2, 39}, {30, 944}, {524, 49747}, {2795, 27804}, {3663, 15983}, {3734, 19717}, {4754, 26626}, {5278, 22253}, {7798, 19742}, {7804, 19743}, {8025, 24271}, {11286, 19738}, {15048, 18139}, {16714, 25660}, {24296, 37639}, {31179, 36731}


X(50184) = X(2)X(39)∩X(30)X(48856)

Barycentrics    a^3*b + 4*a^2*b^2 + a*b^3 + a^3*c + 4*a^2*b*c + 4*a*b^2*c + b^3*c + 4*a^2*c^2 + 4*a*b*c^2 - 2*b^2*c^2 + a*c^3 + b*c^3 : :
X(50184) = 5 X[3616] - 2 X[4754], 3 X[38314] - 2 X[49749]

X(50184) lies on these lines: {2, 39}, {8, 49717}, {30, 48856}, {37, 7200}, {524, 3241}, {543, 5992}, {551, 4368}, {1962, 35102}, {3578, 50129}, {3616, 4713}, {3989, 46180}, {7751, 16347}, {7760, 16931}, {7781, 19284}, {8682, 27804}, {8716, 19336}, {15983, 17247}, {16714, 24944}, {26759, 32026}, {37631, 42050}, {38314, 49749}

X(50184) = reflection of X(8) in X(49717)
X(50184) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 26770, 48860}, {2, 48840, 26978}, {2, 48869, 26035}, {1655, 16705, 27040}, {5283, 48840, 2}, {25499, 48860, 2}


X(50185) = X(2)X(967)∩X(30)X(48830)

Barycentrics    2*a^4 + 6*a^3*b + 3*a^2*b^2 - b^4 + 6*a^3*c + 12*a^2*b*c + 6*a*b^2*c + 3*a^2*c^2 + 6*a*b*c^2 + 6*b^2*c^2 - c^4 : :
X(50185) = X[4754] + 2 X[49743]

X(50185) lies on these lines: {2, 967}, {30, 48830}, {524, 3416}, {538, 3175}, {540, 48853}, {543, 49739}, {754, 49745}, {1509, 14568}, {4754, 49743}, {6625, 14041}, {8356, 37632}, {11361, 17379}, {13468, 37522}, {17103, 35297}, {23812, 35102}, {25579, 28609}, {42045, 50079}


X(50186) = X(2)X(32)∩X(8)X(524)

Barycentrics    4*a^4 + a^3*b + 2*a^2*b^2 + a*b^3 - 2*b^4 + a^3*c + 4*a^2*b*c + 4*a*b^2*c + b^3*c + 2*a^2*c^2 + 4*a*b*c^2 + 2*b^2*c^2 + a*c^3 + b*c^3 - 2*c^4 : :

X(50186) lies on these lines: {2, 32}, {8, 524}, {30, 48856}, {86, 26079}, {540, 48802}, {964, 17251}, {4725, 4968}, {7759, 19284}, {7768, 16930}, {9766, 19336}, {17141, 50128}, {17297, 17686}, {17346, 26035}, {17392, 26978}, {19819, 42045}, {26145, 37675}, {34284, 50133}


X(50187) = X(2)X(3018)∩X(4)X(542)

Barycentrics    4*a^8 - 3*a^6*b^2 - 5*a^4*b^4 + 3*a^2*b^6 + b^8 - 3*a^6*c^2 + 10*a^4*b^2*c^2 - 2*a^2*b^4*c^2 - 9*b^6*c^2 - 5*a^4*c^4 - 2*a^2*b^2*c^4 + 16*b^4*c^4 + 3*a^2*c^6 - 9*b^2*c^6 + c^8 : :
X(50187) = 4 X[3018] - X[35520]

X(50187) lies on these lines: {2, 3018}, {4, 542}, {338, 597}, {351, 523}, {543, 2407}, {599, 19221}, {1990, 44569}, {2452, 11632}, {2482, 14570}, {3014, 41624}, {3260, 40112}, {4558, 8591}, {9512, 14830}, {11054, 41617}, {11078, 18777}, {11092, 18776}, {11163, 14995}, {14999, 17948}, {15912, 34351}, {23055, 47200}

X(50187) = reflection of X(i) in X(j) for these {i,j}: {2, 3018}, {35520, 2}
X(50187) = barycentric product X(316)*X(46338)
X(50187) = barycentric quotient X(46338)/X(67)
X(50187) = {X(648),X(671)}-harmonic conjugate of X(1992)


X(50188) = X(2)X(112)∩X(4)X(74)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^8*b^2 - 2*a^6*b^4 + 2*a^2*b^8 - b^10 + a^8*c^2 + a^4*b^4*c^2 - 2*a^2*b^6*c^2 - 2*a^6*c^4 + a^4*b^2*c^4 + b^6*c^4 - 2*a^2*b^2*c^6 + b^4*c^6 + 2*a^2*c^8 - c^10) : :

X(50188) lies on these lines: {2, 112}, {4, 74}, {53, 338}, {69, 648}, {94, 43678}, {98, 36191}, {186, 47220}, {297, 525}, {340, 15262}, {393, 48540}, {459, 671}, {468, 5191}, {470, 37776}, {471, 37775}, {868, 47202}, {1368, 38553}, {2052, 46105}, {2409, 2794}, {2967, 11007}, {3269, 13567}, {5015, 23541}, {6103, 48453}, {6353, 9862}, {7550, 11587}, {7879, 8743}, {8744, 14165}, {9409, 47252}, {13200, 35278}, {14900, 35282}, {15526, 41678}, {16237, 35520}, {16318, 44216}, {34186, 38689}, {34778, 42854}, {37855, 44569}, {37937, 40079}, {42665, 47216}

X(50188) = polar conjugate of X(2697)
X(50188) = polar conjugate of the isogonal conjugate of X(2781)
X(50188) = X(5641)-Ceva conjugate of X(4)
X(50188) = X(48)-isoconjugate of X(2697)
X(50188) = X(i)-Dao conjugate of X(j) for these (i, j): (1249, 2697), (6103, 542)
X(50188) = cevapoint of X(6103) and X(36201)
X(50188) = crossdifference of every pair of points on line {184, 1636}
X(50188) = X(47216)-lineconjugate of X(42665)
X(50188) = barycentric product X(i)*X(j) for these {i,j}: {264, 2781}, {340, 43090}, {850, 37937}, {5641, 42426}
X(50188) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 2697}, {2781, 3}, {6530, 47110}, {8744, 46340}, {37937, 110}, {40079, 17974}, {42426, 542}, {43090, 265}
X(50188) = {X(297),X(3580)}-harmonic conjugate of X(44146)


X(50189) = X(1)X(9551)∩X(942)X(4868)

Barycentrics    a*(2*(b+c)^2*a^6+2*(b+c)*b*c*a^5-(4*b^2-3*b*c+4*c^2)*(b+c)^2*a^4-(b+c)*(5*b^2-2*b*c+5*c^2)*b*c*a^3+(b^3-c^3)*(b-c)*(2*b^2+3*b*c+2*c^2)*a^2+(b^2-c^2)*(b-c)*(3*b^2+4*b*c+3*c^2)*b*c*a+(b^2-c^2)^2*b^2*c^2) : :

See Kadir Altintas and César Lozada euclid 5126.

X(50189) lies on these lines: {1, 9551}, {942, 4868}, {3588, 19767}, {3666, 5083}


X(50190) = X(1)X(3)∩X(2)X(3881)

Barycentrics    a*((b+c)*a^2+5*b*c*a-(b^2-c^2)*(b-c)) : :
X(50190) = 5*X(1)+2*X(65), X(1)+6*X(354), 3*X(1)+4*X(942), 9*X(1)-2*X(3057), X(1)-8*X(5045), 5*X(1)-12*X(5049), 8*X(1)-X(5697), 4*X(1)+3*X(5902), 6*X(1)+X(5903), 13*X(1)-6*X(5919), 11*X(1)-4*X(9957), 3*X(1)-10*X(17609), 2*X(1)+5*X(18398), 15*X(1)-8*X(31792), 13*X(1)+8*X(31794), X(35)-8*X(16193), 3*X(36)+4*X(18839), X(40)-8*X(13373), X(65)-15*X(354), 3*X(65)-10*X(942), 9*X(65)+5*X(3057), X(65)+20*X(5045), X(65)+6*X(5049), 16*X(65)+5*X(5697), 8*X(65)-15*X(5902), 12*X(65)-5*X(5903), 13*X(65)+15*X(5919), 11*X(65)+10*X(9957), 3*X(65)+4*X(31792), 13*X(65)-20*X(31794)

See Antreas Hatzipolakis and César Lozada euclid 5128.

X(50190) lies on these lines: {1, 3}, {2, 3881}, {7, 5557}, {8, 3892}, {10, 3889}, {12, 15079}, {38, 27785}, {72, 25055}, {79, 497}, {80, 938}, {81, 30148}, {90, 10390}, {140, 37703}, {145, 5883}, {210, 34595}, {226, 37720}, {388, 37702}, {392, 3901}, {474, 42871}, {499, 3475}, {518, 3624}, {551, 3868}, {553, 40270}, {596, 32915}, {631, 15104}, {758, 3622}, {912, 9624}, {960, 3894}, {984, 31318}, {995, 46190}, {1001, 6763}, {1056, 37710}, {1071, 11522}, {1125, 3873}, {1210, 37719}, {1371, 39795}, {1372, 39794}, {1476, 15173}, {1478, 11037}, {1479, 10248}, {1698, 3555}, {1699, 12675}, {1724, 29820}, {2802, 20057}, {3058, 24470}, {3060, 23157}, {3086, 11038}, {3216, 49490}, {3241, 3754}, {3293, 17063}, {3485, 5083}, {3487, 5443}, {3488, 4317}, {3582, 11374}, {3583, 10404}, {3600, 36975}, {3616, 3874}, {3617, 3833}, {3621, 3918}, {3632, 3812}, {3633, 3753}, {3636, 3869}, {3678, 4430}, {3679, 5439}, {3681, 19862}, {3697, 3848}, {3698, 4677}, {3711, 16863}, {3743, 4392}, {3786, 28618}, {3878, 38314}, {3885, 3919}, {3890, 4084}, {3916, 42819}, {3957, 25440}, {3983, 19876}, {4018, 10179}, {4187, 17051}, {4293, 5441}, {4298, 10483}, {4309, 15228}, {4333, 41864}, {4540, 46931}, {4666, 5259}, {4686, 39711}, {4847, 41859}, {4867, 11520}, {4880, 5250}, {5208, 28619}, {5218, 5442}, {5220, 5506}, {5248, 29817}, {5249, 49627}, {5265, 12432}, {5270, 5722}, {5284, 41872}, {5289, 16126}, {5312, 49478}, {5315, 28011}, {5434, 12433}, {5435, 31452}, {5444, 5703}, {5445, 10056}, {5531, 6918}, {5542, 10394}, {5559, 18490}, {5572, 9614}, {5586, 11034}, {5603, 12005}, {5659, 6989}, {5691, 13374}, {5693, 5901}, {5696, 24390}, {5728, 23708}, {5784, 38024}, {5884, 10595}, {6051, 21342}, {6147, 18393}, {6693, 29638}, {6738, 37706}, {6744, 10572}, {6833, 11218}, {7226, 27784}, {7671, 43180}, {7741, 11019}, {7951, 21620}, {7967, 31870}, {7972, 46681}, {7988, 14872}, {8083, 30420}, {8242, 18408}, {8715, 27003}, {9589, 10167}, {9612, 9844}, {9654, 37718}, {9668, 16118}, {9670, 18541}, {10122, 11036}, {10176, 46934}, {10527, 26725}, {10569, 30290}, {10582, 25542}, {10826, 17626}, {11020, 21625}, {11033, 30408}, {11246, 15172}, {11551, 12053}, {11552, 12701}, {11924, 18409}, {12564, 30294}, {12577, 45287}, {12953, 18530}, {13369, 31162}, {14923, 33815}, {14986, 37735}, {15180, 17097}, {15844, 41556}, {15888, 18395}, {16408, 41711}, {16472, 35197}, {16491, 24476}, {16503, 17736}, {16971, 20271}, {17624, 37708}, {18514, 18527}, {19854, 38053}, {19861, 41696}, {20132, 30137}, {21214, 43220}, {23155, 31757}, {24387, 31019}, {24629, 40006}, {25079, 49491}, {25526, 29652}, {30145, 37633}, {30628, 38054}, {30704, 49276}, {32558, 47320}, {33108, 41862}, {38021, 40263}

X(50190) = Cevapoint of X(513) and X(28196)
X(50190) = crosssum of X(513) and X(28195)
X(50190) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(3746)}} and {{A, B, C, X(35), X(3296)}}
X(50190) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (1, 57, 3746), (1, 484, 3303), (1, 942, 5903), (1, 3333, 36), (1, 3336, 3295), (1, 3337, 55), (1, 3338, 35), (1, 5902, 5697), (1, 10980, 46), (1, 11010, 6767), (1, 11518, 5425), (1, 11529, 11009), (1, 18398, 5902), (1, 37587, 2646), (35, 36946, 1), (65, 5049, 1), (354, 5045, 1), (354, 17609, 942), (942, 5903, 5902), (942, 17609, 1), (942, 31792, 65), (3295, 4860, 3336), (3303, 5708, 484), (3304, 15934, 1), (3333, 44841, 1), (3555, 3742, 1698), (4430, 5550, 3678), (4883, 37592, 1), (5425, 30274, 5902), (5439, 34791, 3679), (5903, 18398, 942), (11019, 13407, 7741), (24928, 44840, 1), (26357, 34471, 3601)


X(50191) = X(1)X(3)∩X(7)X(5551)

Barycentrics    a*(3*(b+c)*a^2+14*b*c*a-3*(b^2-c^2)*(b-c)) : :
X(50191) = 7*X(1)+3*X(65), X(1)+9*X(354), 2*X(1)+3*X(942), 13*X(1)-3*X(3057), X(1)-6*X(5045), 4*X(1)-9*X(5049), 11*X(1)+9*X(5902), 17*X(1)+3*X(5903), 19*X(1)-9*X(5919), 8*X(1)-3*X(9957), X(1)-3*X(17609), X(1)+3*X(18398), 11*X(1)-6*X(31792), 3*X(1)+2*X(31794), 2*X(65)-7*X(942), 13*X(65)+7*X(3057), X(65)+14*X(5045), 17*X(65)-7*X(5903), 8*X(65)+7*X(9957), X(65)+7*X(17609), X(65)-7*X(18398), 11*X(65)+14*X(31792), 9*X(65)-14*X(31794)

See Antreas Hatzipolakis and César Lozada euclid 5128.

X(50191) lies on these lines: {1, 3}, {7, 5551}, {72, 46934}, {495, 31399}, {496, 5542}, {518, 19862}, {553, 15172}, {596, 4891}, {950, 28190}, {971, 11025}, {1056, 5558}, {1125, 3988}, {1387, 12563}, {3243, 16408}, {3296, 5556}, {3555, 9780}, {3617, 3889}, {3622, 24473}, {3623, 4004}, {3625, 3812}, {3626, 34791}, {3634, 3742}, {3698, 4816}, {3723, 24047}, {3753, 20050}, {3824, 26015}, {3873, 4539}, {3874, 4525}, {3916, 29817}, {3982, 40273}, {4018, 38314}, {4292, 28182}, {4298, 28172}, {4311, 15935}, {4353, 21848}, {4355, 9668}, {4666, 31445}, {5572, 11544}, {5722, 11037}, {6051, 17449}, {6147, 7743}, {6744, 18990}, {6797, 46681}, {7173, 13407}, {9579, 18530}, {9589, 11034}, {9624, 31821}, {9812, 43733}, {9856, 12005}, {10404, 18527}, {10592, 21620}, {10593, 11019}, {11036, 11373}, {11038, 11374}, {12019, 18240}, {12245, 18490}, {12577, 37730}, {12675, 15009}, {13374, 31673}, {15570, 25440}, {17051, 21077}, {21625, 39542}, {25557, 49627}, {31601, 39795}, {31602, 39794}

X(50191) = midpoint of X(i) and X(j) for these {i, j}: {3623, 4004}, {3889, 5439}, {17609, 18398}
X(50191) = reflection of X(i) in X(j) for these (i, j): (942, 18398), (10441, 11531), (17609, 5045), (31785, 8148)
X(50191) = Cevapoint of X(513) and X(28214)
X(50191) = crosssum of X(513) and X(28213)
X(50191) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (1, 3338, 5217), (1, 4860, 3579), (354, 5045, 942), (354, 17609, 18398), (942, 5045, 5049), (942, 5049, 9957), (3337, 3748, 31663), (3337, 36946, 3748), (3742, 3881, 34790)


X(50192) = X(1)X(3)∩X(2)X(4533)

Barycentrics    a*(3*(b+c)*a^2+10*b*c*a-3*(b^2-c^2)*(b-c)) : :
X(50192) = 5*X(1)+3*X(65), X(1)-9*X(354), X(1)+3*X(942), 11*X(1)-3*X(3057), X(1)-3*X(5045), 5*X(1)-9*X(5049), 19*X(1)-3*X(5697), 7*X(1)+9*X(5902), 13*X(1)+3*X(5903), 17*X(1)-9*X(5919), 7*X(1)-3*X(9957), 7*X(1)-15*X(17609), X(1)+15*X(18398), 5*X(1)-3*X(31792), X(65)+15*X(354), X(65)-5*X(942), 11*X(65)+5*X(3057), X(65)+5*X(5045), X(65)+3*X(5049), 19*X(65)+5*X(5697), 7*X(65)-15*X(5902), 13*X(65)-5*X(5903), 17*X(65)+15*X(5919), 7*X(65)+5*X(9957), 3*X(65)-5*X(31794)

See Antreas Hatzipolakis and César Lozada euclid 5128.

X(50192) lies on these lines: {1, 3}, {2, 4533}, {5, 5542}, {7, 15008}, {30, 6744}, {72, 5550}, {210, 19872}, {226, 10593}, {355, 11037}, {382, 4355}, {518, 3634}, {553, 15171}, {938, 3296}, {950, 28168}, {952, 12577}, {960, 15808}, {971, 12005}, {1125, 4127}, {1210, 10592}, {1483, 14563}, {2771, 18240}, {3241, 4004}, {3243, 9709}, {3487, 11230}, {3555, 3617}, {3583, 5557}, {3614, 13407}, {3616, 24473}, {3621, 3753}, {3622, 4018}, {3625, 5883}, {3626, 3812}, {3633, 3922}, {3635, 10107}, {3636, 44663}, {3649, 7743}, {3678, 3848}, {3697, 4430}, {3701, 17146}, {3742, 3874}, {3824, 10916}, {3833, 4662}, {3868, 46934}, {3873, 3921}, {3880, 33815}, {3892, 5836}, {3894, 25917}, {3927, 10582}, {3962, 25055}, {4005, 34595}, {4084, 10179}, {4292, 28154}, {4297, 15935}, {4298, 12433}, {4654, 9669}, {5083, 12019}, {5223, 16853}, {5225, 18527}, {5229, 5722}, {5290, 38140}, {5551, 5556}, {5558, 7317}, {5571, 12813}, {5572, 13369}, {5714, 5728}, {5791, 38053}, {5806, 12675}, {5886, 11036}, {5901, 12563}, {6051, 17450}, {6147, 9955}, {6245, 20330}, {6738, 28204}, {6908, 38030}, {8083, 8100}, {8715, 15570}, {9655, 37723}, {9947, 10569}, {9956, 21620}, {10122, 11544}, {10580, 12699}, {11033, 12491}, {11038, 11231}, {11551, 37722}, {13405, 34753}, {14520, 15658}, {15172, 28198}, {15841, 31657}, {16137, 44675}, {16408, 41863}, {17051, 21616}, {17626, 31937}, {18217, 48661}, {18530, 41869}, {18732, 25418}, {18990, 28208}, {21169, 39795}, {21625, 22791}, {24046, 49478}, {24171, 48847}, {24176, 28581}, {24325, 39564}, {24470, 28146}, {28174, 40270}, {29229, 39543}, {31768, 31796}, {35633, 42053}, {46827, 49491}

X(50192) = midpoint of X(i) and X(j) for these {i, j}: {1, 31794}, {7, 15008}, {65, 31792}, {942, 5045}, {950, 31776}, {3635, 10107}, {3812, 3881}, {3874, 5044}, {4292, 31795}, {4298, 12433}, {5571, 12813}, {5806, 12675}, {6583, 13373}, {12005, 13374}, {12577, 17706}, {31768, 31796}
X(50192) = Cevapoint of X(513) and X(28176)
X(50192) = crosssum of X(513) and X(28175)
X(50192) = inverse of X(5131) in: de Longchamps ellipse, incircle
X(50192) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (1, 942, 31794), (1, 1159, 11278), (1, 3338, 5204), (1, 4860, 37582), (1, 5128, 3295), (1, 5204, 24929), (1, 5708, 3579), (65, 5049, 31792), (354, 942, 5045), (354, 18398, 942), (942, 5049, 65), (942, 9957, 5902), (2446, 2447, 5131), (3333, 15934, 1385), (3337, 37080, 5122), (3742, 3874, 5044), (3873, 5439, 34790), (5045, 9940, 16216), (5045, 31792, 5049), (5045, 31794, 1), (5128, 44841, 1), (5902, 17609, 9957), (6147, 11019, 9955), (7373, 11529, 10222), (10916, 25557, 3824)


X(50193) = X(1)X(3)∩X(2)X(4004)

Barycentrics    a*(3*(b+c)*a^2-2*b*c*a-3*(b^2-c^2)*(b-c)) : :
X(50193) = X(1)-3*X(65), 7*X(1)-9*X(354), 2*X(1)-3*X(942), 5*X(1)-3*X(3057), 5*X(1)-6*X(5045), 8*X(1)-9*X(5049), 7*X(1)-3*X(5697), 5*X(1)-9*X(5902), X(1)+3*X(5903), 11*X(1)-9*X(5919), 4*X(1)-3*X(9957), 13*X(1)-15*X(17609), 11*X(1)-15*X(18398), 7*X(1)-6*X(31792), X(3)-3*X(10273), 7*X(65)-3*X(354), 5*X(65)-X(3057), 5*X(65)-2*X(5045), 8*X(65)-3*X(5049), 7*X(65)-X(5697), 5*X(65)-3*X(5902), 11*X(65)-3*X(5919), 4*X(65)-X(9957), 13*X(65)-5*X(17609), 11*X(65)-5*X(18398), 7*X(65)-2*X(31792), 3*X(65)-2*X(31794)

See Antreas Hatzipolakis and César Lozada euclid 5128.

X(50193) lies on these lines: {1, 3}, {2, 4004}, {4, 7319}, {5, 4848}, {7, 7317}, {8, 4018}, {10, 3838}, {20, 11041}, {30, 41551}, {44, 21863}, {45, 21853}, {72, 3617}, {79, 41684}, {145, 24473}, {221, 44414}, {226, 5690}, {355, 4295}, {382, 5727}, {392, 5550}, {474, 11682}, {495, 3671}, {496, 4301}, {516, 21848}, {518, 3625}, {519, 4757}, {631, 4323}, {758, 3626}, {912, 37705}, {946, 10593}, {950, 28174}, {952, 4292}, {960, 3634}, {962, 5722}, {971, 7672}, {1000, 11037}, {1042, 5399}, {1156, 16615}, {1210, 7743}, {1478, 41687}, {1483, 4311}, {1698, 3922}, {1706, 3940}, {1737, 7173}, {1770, 10950}, {1788, 5886}, {1836, 10573}, {1837, 22793}, {1845, 1887}, {1858, 46027}, {1864, 31822}, {1876, 41722}, {1902, 15337}, {2262, 16670}, {2800, 6797}, {2802, 34791}, {2841, 42450}, {3085, 3654}, {3086, 3656}, {3474, 18481}, {3485, 26446}, {3488, 20070}, {3555, 14923}, {3577, 7285}, {3586, 48661}, {3614, 9956}, {3621, 3868}, {3649, 10039}, {3679, 3962}, {3689, 41696}, {3698, 5692}, {3740, 3918}, {3742, 3884}, {3753, 3869}, {3812, 3878}, {3824, 24987}, {3827, 4663}, {3874, 3880}, {3876, 4002}, {3877, 5439}, {3899, 19872}, {3901, 4816}, {3911, 5901}, {3913, 12559}, {3927, 9623}, {3935, 35990}, {3947, 38127}, {3988, 4745}, {4067, 4662}, {4127, 4691}, {4293, 37727}, {4297, 37728}, {4298, 28234}, {4299, 37740}, {4302, 37724}, {4312, 5881}, {4314, 14563}, {4317, 37738}, {4338, 12943}, {4640, 30147}, {4654, 34718}, {4887, 24471}, {5176, 14450}, {5225, 12699}, {5330, 27003}, {5435, 10595}, {5556, 43734}, {5587, 31821}, {5657, 11374}, {5691, 48664}, {5693, 9947}, {5694, 41538}, {5704, 6956}, {5728, 30332}, {5777, 14988}, {5790, 9612}, {5806, 6844}, {5837, 8728}, {5844, 10106}, {5855, 17647}, {5883, 15808}, {5887, 6867}, {6001, 31673}, {6147, 31397}, {6284, 28198}, {6684, 37737}, {6738, 15171}, {6744, 15170}, {7354, 28204}, {7971, 19541}, {8232, 38126}, {8256, 21077}, {9579, 18525}, {9589, 9668}, {9613, 12645}, {9657, 37708}, {9669, 31162}, {9708, 12526}, {10404, 12647}, {10483, 28208}, {10572, 28146}, {10624, 12433}, {10827, 38176}, {11035, 39779}, {11230, 24914}, {11231, 11375}, {11246, 31776}, {11545, 19925}, {11551, 15888}, {11552, 36920}, {11570, 39777}, {11571, 17636}, {11573, 45955}, {11684, 18259}, {12575, 17706}, {12701, 18527}, {12953, 37721}, {13375, 34502}, {13405, 16137}, {13463, 49627}, {13464, 15325}, {15829, 16408}, {16118, 37006}, {16126, 48696}, {16232, 38235}, {16676, 21871}, {16948, 18180}, {17070, 40635}, {17220, 23521}, {17605, 18395}, {17606, 18393}, {17634, 40263}, {18397, 40266}, {18492, 30286}, {19843, 34744}, {19860, 31445}, {20271, 36647}, {21578, 37734}, {21740, 40262}, {26364, 34647}, {31601, 39794}, {31602, 39795}, {31870, 45776}, {33597, 48363}, {34040, 36754}, {34753, 44675}

X(50193) = midpoint of X(i) and X(j) for these {i, j}: {8, 4018}, {65, 5903}, {1770, 10950}, {3555, 14923}, {3868, 10914}, {11571, 17636}, {11575, 34583}, {24474, 25413}
X(50193) = reflection of X(i) in X(j) for these (i, j): (1, 31794), (10, 10107), (942, 65), (960, 3754), (3057, 5045), (3869, 5044), (3878, 3812), (3884, 33815), (4067, 4662), (4127, 4691), (5693, 9947), (5697, 31792), (7957, 31797), (9856, 7686), (9957, 942), (10106, 24470), (10624, 12433), (12575, 17706), (12672, 5806), (14110, 31787), (15171, 6738), (31786, 34339), (31788, 35004), (31793, 31788), (31798, 37562), (34790, 5836), (45287, 31776), (45776, 31870)
X(50193) = Cevapoint of X(513) and X(28222)
X(50193) = crosssum of X(513) and X(28221)
X(50193) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(7319)}} and {{A, B, C, X(55), X(7317)}}
X(50193) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (1, 46, 5204), (1, 1155, 13624), (1, 2093, 5128), (1, 5128, 3), (1, 5204, 1385), (1, 31794, 942), (1, 37567, 3579), (1, 37582, 5126), (46, 1385, 5122), (46, 2099, 1385), (56, 25415, 10222), (65, 3057, 5902), (942, 9957, 5049), (1159, 12702, 1), (2093, 3340, 3), (2099, 5204, 1), (3057, 5902, 5045), (3336, 11009, 1319), (3339, 7982, 999), (3340, 5128, 1), (3671, 11362, 495), (3878, 3919, 3812), (3884, 33815, 3742), (3922, 31165, 1698), (5045, 5902, 942), (5173, 34339, 942), (5563, 11280, 5048), (5708, 8148, 1), (6583, 18838, 942), (7991, 11529, 3295), (10247, 37545, 1420), (12645, 18541, 9613), (13601, 35004, 942), (24474, 37544, 942), (31786, 34339, 11227)


X(50194) = X(1)X(3)∩X(4)X(4323)

Barycentrics    a*(2*a^3-3*(b+c)*a^2-2*(b^2-b*c+c^2)*a+3*(b^2-c^2)*(b-c)) : :
X(50194) = 3*X(1)-X(55), 5*X(1)-X(5119), 3*X(1)+X(25415), X(55)+3*X(2099), 5*X(55)-3*X(5119), 2*X(55)-3*X(24929), 3*X(551)-2*X(6690), 5*X(2099)+X(5119), 2*X(2099)+X(24929), 3*X(2099)-X(25415), 3*X(3241)+X(3434), 3*X(3679)-5*X(31245), 3*X(5049)-2*X(11018), 2*X(5119)-5*X(24929), 3*X(5119)+5*X(25415), 3*X(10247)-X(37533), 9*X(10247)-X(44455), 3*X(11224)+X(41338), 3*X(24929)+2*X(25415), 3*X(37533)-X(44455)

See Antreas Hatzipolakis and César Lozada euclid 5128.

X(50194) lies on these lines: {1, 3}, {2, 11041}, {4, 4323}, {7, 7967}, {8, 6856}, {10, 5855}, {42, 34586}, {80, 17605}, {140, 4848}, {145, 3419}, {200, 40587}, {210, 4867}, {214, 3919}, {226, 952}, {355, 3485}, {381, 5727}, {388, 37727}, {392, 5284}, {404, 4004}, {405, 11682}, {495, 519}, {496, 6738}, {497, 3656}, {498, 41687}, {515, 37728}, {528, 5542}, {551, 6690}, {674, 49465}, {938, 6956}, {946, 37730}, {950, 22791}, {954, 11526}, {960, 30147}, {993, 44663}, {1000, 10578}, {1056, 3241}, {1058, 5734}, {1210, 5901}, {1320, 3957}, {1361, 20122}, {1386, 49682}, {1387, 9952}, {1389, 17097}, {1392, 3296}, {1457, 5396}, {1478, 18407}, {1479, 37724}, {1483, 6147}, {1484, 41558}, {1737, 11230}, {1824, 1870}, {1836, 28160}, {1837, 9955}, {1864, 48667}, {2161, 16666}, {2182, 2364}, {2771, 41695}, {2807, 39543}, {2808, 34930}, {2975, 4018}, {3244, 11263}, {3486, 12699}, {3555, 4861}, {3577, 19541}, {3600, 37000}, {3623, 11036}, {3635, 12563}, {3649, 37734}, {3654, 5218}, {3655, 4293}, {3671, 5842}, {3679, 31245}, {3683, 3899}, {3753, 4511}, {3811, 8168}, {3812, 30144}, {3817, 12019}, {3869, 31445}, {3874, 11260}, {3897, 3916}, {3898, 30329}, {3911, 38028}, {3940, 9623}, {3947, 47745}, {3962, 5258}, {4292, 34773}, {4295, 18481}, {4298, 13607}, {4301, 15171}, {4302, 28198}, {4304, 28174}, {4311, 24470}, {4314, 15174}, {4342, 15170}, {4345, 15933}, {4654, 18499}, {4744, 4973}, {4870, 7951}, {4930, 9708}, {5044, 5730}, {5219, 5790}, {5251, 31165}, {5274, 5603}, {5288, 16126}, {5289, 8167}, {5326, 11231}, {5356, 16884}, {5434, 11551}, {5437, 35272}, {5443, 17606}, {5494, 7978}, {5690, 13411}, {5703, 12245}, {5719, 5844}, {5728, 10698}, {5836, 22836}, {5837, 6675}, {5854, 49626}, {5881, 9654}, {5886, 6859}, {6224, 20292}, {6264, 8581}, {6265, 6797}, {6737, 31419}, {7672, 31658}, {7686, 40257}, {8000, 11523}, {9352, 35271}, {9578, 12645}, {9581, 18493}, {9612, 18525}, {9613, 18526}, {9655, 36999}, {9668, 31162}, {9669, 11522}, {9956, 10573}, {10107, 25440}, {10175, 11545}, {10283, 44675}, {10404, 32900}, {10571, 37698}, {10572, 22793}, {10695, 44858}, {10895, 37711}, {10896, 37721}, {10914, 34772}, {10943, 15844}, {10944, 13407}, {10950, 12047}, {11037, 20057}, {11108, 15829}, {11237, 37708}, {11246, 21578}, {11552, 36975}, {12053, 12433}, {12513, 12559}, {12635, 34790}, {12647, 17718}, {12701, 31795}, {12736, 19907}, {12737, 17625}, {12943, 28208}, {13405, 28234}, {14988, 18389}, {15173, 21398}, {15733, 42871}, {16465, 38460}, {16602, 45763}, {18527, 30384}, {22837, 34791}, {24390, 41575}, {30284, 30295}, {30331, 38454}, {34040, 36742}, {34232, 39756}, {34958, 48347}, {36845, 36867}, {37701, 38176}, {48909, 49557}

X(50194) = midpoint of X(i) and X(j) for these {i, j}: {1, 2099}, {55, 25415}, {145, 3419}, {954, 11526}, {1478, 37740}, {3428, 7982}, {8148, 37584}, {37727, 37820}, {37728, 39542}
X(50194) = reflection of X(i) in X(j) for these (i, j): (7680, 13464), (24929, 1), (31397, 5719), (32613, 15178)
X(50194) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(34471)}} and {{A, B, C, X(7), X(10246)}}
X(50194) = barycentric product X(81)*X(38058)
X(50194) = trilinear product X(58)*X(38058)
X(50194) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (1, 65, 1385), (1, 3338, 1388), (1, 3340, 3), (1, 5425, 354), (1, 5902, 1319), (1, 5903, 2646), (1, 7982, 3295), (1, 11009, 3057), (1, 11280, 3746), (1, 11529, 999), (1, 18421, 3576), (1, 25415, 55), (1, 30323, 3303), (65, 37605, 3336), (942, 25405, 999), (999, 11529, 942), (1159, 10246, 57), (2093, 13384, 3), (2646, 5183, 5010), (2646, 5903, 3579), (3340, 13384, 2093), (4861, 34195, 3555), (5010, 5183, 3579), (5045, 33179, 1), (5048, 44840, 1), (5708, 37624, 1420), (5730, 19860, 5044), (5885, 11567, 1385), (6738, 13464, 496), (10247, 15934, 1), (10573, 11375, 9956), (15178, 31794, 56), (17609, 33176, 1), (24926, 37605, 1385)


X(50195) = X(1)X(3)∩X(12)X(1858)

Barycentrics    a*((b+c)*a^5-(b^2+c^2)*a^4-2*(b^3+c^3)*a^3+2*(b^2-3*b*c+c^2)*(b+c)^2*a^2+(b^4-c^4)*(b-c)*a-(b^2-c^2)^2*(b-c)^2) : :
X(50195) = 3*X(354)-X(2099), X(3419)-3*X(3753), X(5119)+3*X(5902), 5*X(18398)-X(25415)

See Antreas Hatzipolakis and César Lozada euclid 5128.

X(50195) lies on these lines: {1, 3}, {4, 12711}, {8, 16465}, {10, 13567}, {12, 1858}, {19, 1905}, {37, 1182}, {72, 3085}, {210, 18397}, {226, 6001}, {227, 581}, {380, 2262}, {388, 1071}, {442, 18251}, {495, 912}, {498, 5044}, {515, 10391}, {518, 8255}, {528, 5572}, {611, 34381}, {758, 13405}, {910, 2301}, {920, 31445}, {938, 3434}, {950, 5842}, {960, 6690}, {971, 1478}, {1056, 17625}, {1064, 1465}, {1210, 2886}, {1254, 4300}, {1455, 37469}, {1479, 5806}, {1706, 2900}, {1737, 3925}, {1785, 1859}, {1824, 7952}, {1829, 41227}, {1864, 5587}, {1876, 4307}, {1898, 10895}, {2264, 5540}, {2292, 45038}, {2294, 3708}, {2298, 36121}, {2550, 3419}, {2771, 12831}, {2807, 3664}, {3059, 3679}, {3086, 5439}, {3157, 17836}, {3189, 10914}, {3476, 39779}, {3485, 12672}, {3487, 12709}, {3488, 37000}, {3586, 14100}, {3698, 10399}, {3742, 44675}, {3754, 6738}, {3827, 47373}, {3869, 5703}, {3947, 31803}, {4292, 9943}, {4293, 10167}, {4299, 31805}, {4340, 35672}, {4870, 17638}, {5177, 12529}, {5261, 12528}, {5290, 15071}, {5530, 10822}, {5657, 41539}, {5719, 14988}, {5722, 37820}, {5725, 11435}, {5836, 8261}, {5855, 34791}, {5883, 11019}, {5884, 21620}, {5887, 10321}, {5927, 10590}, {6253, 10572}, {6744, 33815}, {6913, 30223}, {7951, 10157}, {9578, 14872}, {9612, 12688}, {9613, 12680}, {9614, 9848}, {9654, 40263}, {9803, 17620}, {9856, 12047}, {9947, 10827}, {10039, 21677}, {10106, 12675}, {10393, 11500}, {10396, 42012}, {10398, 42014}, {10523, 31937}, {10595, 17622}, {11020, 17784}, {11038, 18419}, {12053, 13374}, {12432, 43174}, {12616, 15844}, {12953, 31822}, {13369, 18990}, {13754, 49743}, {17658, 34619}, {18249, 45120}, {18413, 40608}, {20612, 24987}, {20617, 31978}, {21147, 36746}, {24473, 34744}, {33597, 45230}

X(50195) = midpoint of X(i) and X(j) for these {i, j}: {8, 16465}, {55, 65}, {18389, 31397}, {37533, 37562}
X(50195) = reflection of X(i) in X(j) for these (i, j): (1, 11018), (960, 6690), (2886, 3812), (5173, 942)
X(50195) = X(1065)-complementary conjugate of-X(1329)
X(50195) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (1, 171, 46974), (1, 1735, 3666), (1, 5570, 12915), (1, 13750, 942), (1, 17700, 8071), (1, 22766, 1385), (12, 1858, 5777), (55, 2099, 37569), (55, 5172, 10902), (55, 5584, 40292), (65, 354, 11529), (65, 3057, 37625), (65, 7957, 5903), (354, 18838, 942), (942, 12915, 5570), (942, 31788, 65), (999, 10202, 3660), (1454, 26357, 37623), (2093, 5902, 65), (3333, 15016, 37566), (3753, 5728, 18391), (5045, 5885, 942), (5045, 16201, 16217), (7686, 12710, 950), (8071, 17700, 37582), (11529, 37569, 2099), (18397, 31434, 210), (31787, 37544, 46)


X(50196) = X(1)X(3)∩X(11)X(5777)

Barycentrics    a*((b+c)*a^5-(b^2+c^2)*a^4-2*(b^3+c^3)*a^3+2*(b^4+c^4-b*c*(b^2-4*b*c+c^2))*a^2+(b^4-c^4)*(b-c)*a-(b^2-c^2)^2*(b-c)^2) : :
X(50196) = 3*X(1)-2*X(20789), X(46)-5*X(18398), X(56)-3*X(354), 3*X(210)-5*X(31246), X(1898)-3*X(11238), X(3436)+3*X(3873), 3*X(3742)-2*X(6691), 5*X(3889)-X(36977), 3*X(5902)+X(30323), 3*X(16215)-X(20789), 3*X(17728)-X(41538)

See Antreas Hatzipolakis and César Lozada euclid 5128.

X(50196) lies on these lines: {1, 3}, {4, 17625}, {11, 5777}, {72, 3086}, {210, 31246}, {226, 7681}, {392, 30478}, {442, 38055}, {496, 912}, {497, 1071}, {499, 5044}, {518, 1210}, {613, 34381}, {614, 7078}, {938, 3436}, {950, 2829}, {960, 44675}, {971, 1479}, {1058, 12711}, {1066, 1465}, {1125, 18240}, {1478, 5806}, {1496, 28082}, {1737, 21031}, {1828, 28076}, {1858, 37722}, {1876, 4310}, {1898, 11238}, {1902, 15500}, {2082, 22153}, {2191, 42019}, {2260, 21801}, {2360, 18178}, {2550, 11023}, {2841, 12016}, {3085, 5439}, {3476, 17624}, {3488, 37002}, {3555, 18391}, {3562, 7191}, {3586, 12680}, {3681, 5704}, {3742, 6691}, {3812, 8256}, {3868, 14986}, {3874, 11019}, {3881, 6738}, {3889, 36977}, {4193, 17615}, {4294, 10167}, {4302, 31805}, {5274, 12528}, {5572, 10122}, {5603, 12709}, {5693, 37704}, {5722, 10629}, {5836, 5854}, {5887, 11373}, {5927, 10591}, {6001, 12053}, {7686, 10106}, {7741, 10157}, {7743, 10948}, {8581, 9612}, {8679, 9969}, {9581, 14872}, {9613, 9850}, {9614, 12688}, {9669, 40263}, {9856, 30384}, {9943, 10624}, {9947, 10826}, {10391, 12005}, {10580, 11415}, {12608, 15845}, {12764, 17660}, {12943, 31822}, {13369, 15171}, {13607, 46681}, {14523, 43916}, {15325, 31837}, {15524, 18732}, {17634, 31162}, {17728, 41538}, {18251, 24390}, {18450, 33557}, {24025, 24167}, {26201, 31795}, {34791, 38455}, {41537, 41708}

X(50196) = midpoint of X(i) and X(j) for these {i, j}: {65, 2098}, {3874, 21616}, {12680, 37001}, {12764, 17660}
X(50196) = reflection of X(i) in X(j) for these (i, j): (1, 16215), (7681, 13374), (8069, 11018), (8256, 3812), (24928, 5045), (32612, 13373)
X(50196) = X(1067)-complementary conjugate of-X(1329)
X(50196) = inverse of X(2077) in: de Longchamps ellipse, incircle
X(50196) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (1, 354, 16193), (1, 982, 17102), (1, 1771, 3744), (1, 3075, 5266), (1, 5570, 942), (1, 22767, 1385), (65, 354, 3333), (72, 17626, 3086), (942, 9957, 34339), (942, 12915, 1), (942, 31788, 18838), (950, 5083, 12675), (2446, 2447, 2077), (3057, 18838, 31788), (3874, 11019, 44547), (5045, 6583, 942), (10948, 39599, 7743), (17642, 37566, 40)


X(50197) = X(7)X(333)∩X(37)X(226)

Barycentrics    (a+b-c) (a-b+c) (b+c) (3 a^2 b+2 a b^2-b^3+3 a^2 c+6 a b c+3 b^2 c+2 a c^2+3 b c^2-c^3) : :

See Antreas Hatzipolakis and Ercole Suppa euclid 5131.

X(50197) lies on these lines: {7,333}, {37,226}, {57,34824}, {145,388}, {518,39793}, {524,4654}, {1503,33097}, {3475,4854}, {3486,41825}, {4059,5249}, {5226,41804}, {5333,7181}, {25466,27184}


X(50198) = X(9)X(46)∩X(19)X(29)

Barycentrics    a (a^4-a^3 b+a b^3-b^4-a^3 c+a^2 b c+3 a b^2 c+b^3 c+3 a b c^2+4 b^2 c^2+a c^3+b c^3-c^4) : :

See Antreas Hatzipolakis and Ercole Suppa euclid 5131.

X(50198) lies on these lines: {1,4273}, {2,1762}, {9,46}, {19,29}, {21,2173}, {37,1247}, {44,1046}, {45,846}, {48,3897}, {57,34824}, {230,8557}, {284,25081}, {405,2939}, {610,2217}, {966,21014}, {1054,4286}, {1086,36540}, {1125,1731}, {1732,3306}, {1953,5330}, {2161,6690}, {2256,10912}, {2287,2294}, {2303,40977}, {2328,11221}, {3294,16548}, {3305,21376}, {3646,18598}, {3751,15990}, {3929,10022}, {4357,40530}, {4418,26040}, {4422,24335}, {4472,36483}, {4700,17706}, {5296,27531}, {6191,37145}, {6192,37144}, {8680,16054}, {8756,24987}, {16670,21373}, {17614,18599}, {24435,25255}, {24683,37169}, {26244,29828}

X(50198) = complement of X(41874)
X(50198) = X(9)-beth conjugate of X(18755)
X(50198) = X(4653)-Dao conjugate of X(5235)
X(50198) = X(3822)-Zayin conjugate of X(1762)
X(50198) = crossdifference of every pair of points on line {2605, 42662}


leftri

Points on the Euler line: X(50199)-X(50208)

rightri

In the plane of a triangle ABC, let

P = point on Nagel line;
D = point not on Nagel line or Euler line;
U = point on Nagel line, other than U and G;
L = line through U parallel to PD;
U′ = L^(Euler line).

For centers X(50199)-X(50208), we take P = X(1) and D = X(6). The appearance of (i,j) in the following list means that if if U = X(i) then U' = X(j): (43,50199), (239,50200), (306,50201), (551, 50202), (946, 50203), (997, 50204), (1125,50205), (1210), 50206), (1698,50207), (1737,50208).


X(50199) = X(2)X(3)∩X(43)X(518)

Barycentrics    a*(a^4*b - a^2*b^3 + a^4*c - a^3*b*c - a^2*b^2*c - a*b^3*c - 2*b^4*c - a^2*b*c^2 + 2*a*b^2*c^2 - a^2*c^3 - a*b*c^3 - 2*b*c^4) : :

X(50199) lies on these lines: {2, 3}, {43, 518}, {55, 3836}, {56, 25453}, {1001, 33109}, {1376, 3763}, {1403, 24169}, {3662, 20760}, {4429, 23853}, {5687, 33171}, {16569, 41229}, {17313, 18185}, {18134, 37502}, {18613, 48829}, {21010, 29654}, {22139, 26657}, {22149, 26840}, {25760, 27639}, {26034, 27628}, {26128, 34247}, {29474, 35612}, {37673, 46838}

X(50199) = reflection of X(405) in X(19267)
X(50199) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4204, 16842}, {2, 16056, 11358}, {2, 35984, 1011}, {2, 37262, 1009}, {2, 37329, 405}, {2, 37467, 16058}, {8728, 16299, 405}, {17522, 35975, 20841}


X(50200) = X(2)X(3)∩X(239)X(335)

Barycentrics    a^5 - a*b^4 - a^3*b*c + a^2*b^2*c - a*b^3*c - b^4*c + a^2*b*c^2 + 2*a*b^2*c^2 + b^3*c^2 - a*b*c^3 + b^2*c^3 - a*c^4 - b*c^4 : :

X(50200) lies on these lines: {2, 3}, {10, 24588}, {41, 30985}, {81, 26978}, {105, 20556}, {190, 20432}, {218, 5905}, {238, 23682}, {239, 335}, {332, 29964}, {333, 20913}, {516, 25903}, {1111, 20602}, {1441, 26998}, {1959, 9317}, {3008, 24630}, {3219, 20880}, {4254, 27267}, {4271, 28980}, {4366, 27272}, {4384, 41229}, {4426, 24789}, {5247, 23536}, {5249, 41239}, {5278, 34284}, {5300, 32858}, {5302, 16815}, {6002, 26017}, {8301, 20486}, {10404, 17367}, {10446, 26657}, {14829, 24587}, {16609, 19555}, {16706, 41258}, {16752, 33854}, {20335, 20769}, {24632, 29433}, {25593, 33864}, {26085, 32782}, {30807, 31638}, {35285, 48932}

X(50200) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 379, 37233}, {2, 384, 16050}, {2, 4209, 11329}, {2, 11320, 33821}, {2, 14953, 21495}, {2, 16910, 33736}, {2, 16920, 11342}, {2, 17680, 37096}, {2, 19237, 16053}, {2, 26003, 26025}, {16054, 17681, 2}, {17682, 37086, 2}


X(50201) = X(2)X(3)∩X(63)X(141)

Barycentrics    2*a^5*b + a^4*b^2 - 2*a^3*b^3 - b^6 + 2*a^5*c + 4*a^4*b*c + 2*a*b^4*c + a^4*c^2 + 2*a*b^3*c^2 + b^4*c^2 - 2*a^3*c^3 + 2*a*b^2*c^3 + 2*a*b*c^4 + b^2*c^4 - c^6 : :

X(50201) lies on these lines: {2, 3}, {7, 17776}, {37, 3782}, {63, 141}, {209, 306}, {583, 46885}, {942, 41507}, {1104, 26723}, {3695, 3868}, {3772, 41508}, {3912, 42706}, {4260, 16465}, {4304, 48843}, {5279, 33157}, {5294, 18650}, {16608, 40161}, {40940, 49480}

X(50201) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 464, 16368}, {2, 3151, 37086}, {2, 14021, 37323}, {2, 27052, 5}, {2, 37312, 7536}, {440, 37326, 2}, {30810, 37266, 2}


X(50202) = X(2)X(3)∩X(518)X(551)

Barycentrics    4*a^4 - 5*a^2*b^2 + b^4 - 12*a^2*b*c - 12*a*b^2*c - 5*a^2*c^2 - 12*a*b*c^2 - 2*b^2*c^2 + c^4 : :
X(50202) = 5 X[2] - X[377], 7 X[2] + X[6872], 3 X[2] + X[31156], X[2] - 5 X[31259], 17 X[2] - X[31295], X[377] + 5 X[405], 7 X[377] + 5 X[6872], 2 X[377] - 5 X[8728], 3 X[377] + 5 X[31156], X[377] - 25 X[31259], 17 X[377] - 5 X[31295], 3 X[377] - 5 X[44217], 7 X[405] - X[6872], 2 X[405] + X[8728], 3 X[405] - X[31156], X[405] + 5 X[31259], 17 X[405] + X[31295], 3 X[405] + X[44217], 3 X[3524] - X[37426], 3 X[5054] + X[37234], 3 X[5054] - X[44284], 3 X[5055] - X[44229], 2 X[6872] + 7 X[8728], 3 X[6872] - 7 X[31156], X[6872] + 35 X[31259], 17 X[6872] + 7 X[31295], 3 X[6872] + 7 X[44217], 3 X[8728] + 2 X[31156], X[8728] - 10 X[31259], 17 X[8728] - 2 X[31295], 3 X[8728] - 2 X[44217], 3 X[11539] - X[44222], X[31156] + 15 X[31259], 17 X[31156] + 3 X[31295], 85 X[31259] - X[31295], 15 X[31259] - X[44217], 3 X[31295] - 17 X[44217], 3 X[38071] - X[44286], 2 X[1125] + X[5302], 7 X[3624] - X[10404], 3 X[25055] + X[41229]

X(50202) lies on these lines: {1, 48861}, {2, 3}, {10, 48859}, {37, 50069}, {45, 39544}, {141, 49729}, {518, 551}, {553, 31445}, {942, 5325}, {1001, 15170}, {1125, 5302}, {1698, 4995}, {1724, 37631}, {3058, 5259}, {3305, 5719}, {3576, 38108}, {3582, 24953}, {3584, 3820}, {3624, 5298}, {3646, 5506}, {3649, 41872}, {3653, 8583}, {3656, 31435}, {3679, 10389}, {3739, 50053}, {3940, 18230}, {4423, 10072}, {4653, 17337}, {5247, 48823}, {5248, 49732}, {5251, 5434}, {5306, 16589}, {5362, 42633}, {5367, 42634}, {5603, 38043}, {6147, 17781}, {6174, 19876}, {6666, 24929}, {8167, 15325}, {10157, 10165}, {10385, 19855}, {10386, 49719}, {11238, 19854}, {15254, 39542}, {16814, 26728}, {16817, 42033}, {17776, 50041}, {19875, 37702}, {19883, 34646}, {24541, 38022}, {24564, 34773}, {24789, 50066}, {31142, 31157}, {34625, 38025}, {34638, 38204}, {48847, 49739}, {48870, 49743}

X(50202) = midpoint of X(i) and X(j) for these {i,j}: {2, 405}, {31156, 44217}, {37234, 44284}
X(50202) = reflection of X(8728) in X(2)
X(50202) = complement of X(44217)
X(50202) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3524, 16408}, {2, 4187, 15699}, {2, 5084, 5055}, {2, 5129, 3545}, {2, 6857, 5054}, {2, 7483, 11539}, {2, 10304, 17582}, {2, 13745, 48815}, {2, 15670, 549}, {2, 15671, 7483}, {2, 15672, 404}, {2, 16858, 11112}, {2, 16861, 11113}, {2, 17558, 3524}, {2, 17561, 3}, {2, 31156, 44217}, {2, 33029, 33219}, {2, 33255, 33035}, {2, 33309, 37150}, {3, 17561, 15673}, {405, 44217, 31156}, {5054, 16853, 2}, {5054, 37234, 44284}, {6175, 11113, 15687}, {6675, 11108, 17527}, {11108, 16845, 6675}, {11112, 15677, 15686}, {15671, 17536, 2}, {15674, 17534, 13747}, {16845, 17554, 11108}, {16865, 17529, 550}, {17552, 17561, 2}, {19526, 37462, 548}


X(50203) = X(2)X(3)∩X(518)X(936)

Barycentrics    a*(a^6 - a^5*b - 2*a^4*b^2 + 2*a^3*b^3 + a^2*b^4 - a*b^5 - a^5*c - 2*a^2*b^3*c + a*b^4*c + 2*b^5*c - 2*a^4*c^2 - 14*a^2*b^2*c^2 - 16*a*b^3*c^2 + 2*a^3*c^3 - 2*a^2*b*c^3 - 16*a*b^2*c^3 - 4*b^3*c^3 + a^2*c^4 + a*b*c^4 - a*c^5 + 2*b*c^5) : :

X(50203) lies on these lines: {2, 3}, {57, 45120}, {78, 5045}, {518, 936}, {580, 25878}, {938, 9709}, {965, 4253}, {1210, 4413}, {1445, 5044}, {1617, 19855}, {3361, 30393}, {3646, 21153}, {3689, 12521}, {5248, 38204}, {7373, 20007}, {10306, 11024}, {11496, 38052}, {12511, 38059}, {12864, 44675}, {31419, 42884}, {34772, 35272}

X(50203) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 404, 16293}, {2, 474, 3149}, {2, 6836, 17527}, {2, 6986, 11108}, {2, 17580, 6864}, {2, 37282, 405}, {2, 37423, 17559}, {3, 6846, 1012}, {3, 16408, 17582}, {404, 17558, 3}, {404, 31259, 20835}, {405, 474, 37270}, {405, 37270, 37426}, {443, 37244, 1012}, {17529, 37249, 19520}, {20835, 31259, 405}


X(50204) = X(2)X(3)∩X(518)X(997)

Barycentrics    a^2*(a^5 - a^4*b - 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 - b^5 - a^4*c + b^4*c - 2*a^3*c^2 - 6*a*b^2*c^2 - 8*b^3*c^2 + 2*a^2*c^3 - 8*b^2*c^3 + a*c^4 + b*c^4 - c^5) : :
X(50204) = 2 X[405] + 3 X[16417], 3 X[16417] - 2 X[37270]

X(50204) lies on these lines: {2, 3}, {36, 7308}, {56, 3715}, {518, 997}, {936, 12875}, {993, 6666}, {1259, 5439}, {1260, 15934}, {1376, 5722}, {1470, 5219}, {1617, 5252}, {1698, 37579}, {1708, 3927}, {1737, 9709}, {3295, 5836}, {3428, 31658}, {3624, 26357}, {3679, 33925}, {3698, 11508}, {3753, 10679}, {4413, 8069}, {4423, 23708}, {4511, 7373}, {5123, 41345}, {5251, 37578}, {5259, 9580}, {5396, 17825}, {5398, 17811}, {5687, 12433}, {5720, 10269}, {5780, 37535}, {5806, 10310}, {5886, 25893}, {7742, 10827}, {8582, 11499}, {8583, 11249}, {10200, 15842}, {10680, 19861}, {10957, 19854}, {11374, 25524}, {12410, 19869}, {16202, 19860}, {16203, 17614}, {25941, 44414}, {31435, 35239}

X(50204) = midpoint of X(405) and X(37270)
X(50204) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6878, 6675}, {2, 6883, 11108}, {2, 6947, 17527}, {2, 37249, 3}, {2, 37313, 37306}, {3, 16411, 16417}, {3, 16853, 16293}, {3, 16857, 13615}, {3, 19250, 5020}, {377, 405, 37234}, {404, 5084, 6985}, {405, 474, 377}, {405, 37282, 3}, {474, 37248, 3}, {631, 37302, 3}, {859, 7484, 3}, {1006, 6854, 1012}, {5047, 37301, 37284}, {6827, 6911, 19541}, {6883, 6911, 6827}, {6913, 37271, 17528}, {11108, 16417, 19541}, {11334, 19265, 11284}, {16370, 37309, 3}, {16410, 37244, 3}, {16422, 28383, 3}, {16453, 37246, 3}, {28466, 37306, 17571}, {37034, 37247, 3}, {37284, 37301, 3}, {37306, 37313, 28466}


X(50205) = X(2)X(3)∩X(518)X(1125)

Barycentrics    2*a^4 - 3*a^2*b^2 + b^4 - 8*a^2*b*c - 8*a*b^2*c - 3*a^2*c^2 - 8*a*b*c^2 - 2*b^2*c^2 + c^4 : :
X(50205) = 9 X[2] - X[377], 3 X[2] + X[405], 15 X[2] + X[6872], 7 X[2] + X[31156], 3 X[2] + 5 X[31259], 33 X[2] - X[31295], 5 X[2] - X[44217], 5 X[5] - X[44286], X[377] + 3 X[405], 5 X[377] + 3 X[6872], X[377] - 3 X[8728], 7 X[377] + 9 X[31156], X[377] + 15 X[31259], 11 X[377] - 3 X[31295], 5 X[377] - 9 X[44217], 5 X[405] - X[6872], 7 X[405] - 3 X[31156], X[405] - 5 X[31259], 11 X[405] + X[31295], 5 X[405] + 3 X[44217], 5 X[631] - X[37426], 5 X[632] - X[44222], 5 X[1656] - X[44229], 7 X[3526] + X[37234], X[6872] + 5 X[8728], 7 X[6872] - 15 X[31156], X[6872] - 25 X[31259], 11 X[6872] + 5 X[31295], X[6872] + 3 X[44217], 7 X[8728] + 3 X[31156], X[8728] + 5 X[31259], 11 X[8728] - X[31295], 5 X[8728] - 3 X[44217], 5 X[15694] - X[44284], 3 X[31156] - 35 X[31259], 33 X[31156] + 7 X[31295], 5 X[31156] + 7 X[44217], 55 X[31259] + X[31295], 25 X[31259] + 3 X[44217], 5 X[31295] - 33 X[44217], 7 X[3624] + X[41229], X[10404] - 13 X[34595], X[5302] + 5 X[19862]

X(50205) lies on these lines: {2, 3}, {8, 15935}, {9, 6147}, {10, 12433}, {11, 25542}, {45, 24159}, {58, 17245}, {84, 38122}, {142, 24470}, {386, 17337}, {496, 4423}, {518, 1125}, {942, 45120}, {946, 31658}, {1001, 15172}, {1213, 4251}, {1490, 38108}, {1698, 5722}, {1724, 49743}, {1730, 48924}, {2550, 10386}, {3295, 19855}, {3333, 3624}, {3361, 5219}, {3452, 4999}, {3487, 18230}, {3584, 50038}, {3616, 3940}, {3634, 6690}, {3646, 5763}, {3695, 16817}, {3712, 28611}, {3820, 10198}, {3824, 12572}, {3826, 5248}, {3925, 5259}, {3968, 32157}, {4253, 17398}, {5022, 5747}, {5030, 24937}, {5241, 25645}, {5250, 28212}, {5251, 18990}, {5273, 5708}, {5278, 49718}, {5284, 24390}, {5305, 16589}, {5432, 9581}, {5506, 26725}, {5599, 26399}, {5600, 26423}, {5692, 16137}, {5745, 34753}, {5806, 6684}, {5844, 19860}, {5883, 18253}, {5901, 31837}, {6284, 41859}, {6594, 12864}, {6688, 34466}, {6691, 19878}, {6705, 10156}, {6714, 39580}, {6769, 26446}, {7330, 31657}, {7789, 36812}, {8167, 26363}, {8257, 28628}, {8583, 37700}, {9711, 10197}, {10165, 38158}, {10176, 11281}, {10593, 31245}, {10943, 25893}, {11544, 41872}, {12511, 42356}, {12609, 15254}, {12684, 21151}, {13405, 20790}, {17277, 41014}, {17776, 50042}, {18139, 49716}, {18249, 31794}, {18482, 31730}, {19874, 24542}, {19875, 37723}, {20195, 31424}, {20418, 38216}, {22791, 31435}, {24789, 50067}, {24936, 37680}, {25072, 34937}, {25878, 36742}, {25917, 37737}, {26105, 31493}, {29571, 37594}, {31494, 34625}, {36750, 37659}, {40273, 40998}

X(50205) = midpoint of X(i) and X(j) for these {i,j}: {405, 8728}, {942, 45120}
X(50205) = complement of X(8728)
X(50205) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 21, 17529}, {2, 405, 8728}, {2, 631, 16863}, {2, 5047, 442}, {2, 6675, 140}, {2, 6857, 16408}, {2, 6910, 16862}, {2, 6921, 16864}, {2, 11108, 5}, {2, 11357, 48815}, {2, 13742, 2049}, {2, 15674, 17531}, {2, 16053, 37326}, {2, 16842, 17527}, {2, 16845, 3}, {2, 16859, 4197}, {2, 16912, 6656}, {2, 16918, 33033}, {2, 17526, 16458}, {2, 17527, 3628}, {2, 17534, 17575}, {2, 17536, 4187}, {2, 17547, 17530}, {2, 17552, 11108}, {2, 17554, 4}, {2, 17558, 17582}, {2, 17559, 1656}, {2, 17570, 2476}, {2, 17588, 17674}, {2, 25875, 47510}, {2, 31259, 405}, {2, 33034, 8361}, {2, 33036, 8362}, {2, 37035, 4205}, {2, 37037, 16456}, {2, 37162, 31254}, {3, 1656, 6864}, {3, 6887, 5}, {4, 17554, 16857}, {5, 549, 6985}, {5, 33335, 8226}, {140, 5066, 11277}, {142, 31445, 24470}, {405, 474, 20835}, {405, 44217, 6872}, {443, 16418, 550}, {452, 17528, 3627}, {631, 37434, 3}, {1001, 31419, 15172}, {1006, 6900, 44238}, {1125, 5044, 5719}, {1125, 6666, 5044}, {1656, 6827, 5}, {3624, 7308, 11374}, {3624, 24953, 15325}, {3634, 6690, 47742}, {3925, 5259, 15171}, {4197, 16859, 11113}, {4423, 19854, 496}, {5055, 6866, 5}, {5084, 17582, 6849}, {6857, 16408, 549}, {6900, 44238, 20420}, {6904, 17561, 17571}, {6904, 17571, 8703}, {6910, 16862, 17564}, {6910, 17564, 12108}, {6913, 6989, 37424}, {15674, 17531, 37298}, {16370, 17563, 33923}, {16370, 37462, 17563}, {16458, 17526, 50059}, {16845, 17582, 17558}, {16860, 17528, 452}, {17547, 31254, 37162}, {17558, 17582, 3}, {24934, 44898, 140}, {31254, 37162, 17530}


X(50206) = X(2)X(3)∩X(518)X(1210)

Barycentrics    a^5*b^2 - a^4*b^3 - 2*a^3*b^4 + 2*a^2*b^5 + a*b^6 - b^7 - a^4*b^2*c - 2*a^3*b^3*c + 2*a*b^5*c + b^6*c + a^5*c^2 - a^4*b*c^2 + 8*a^3*b^2*c^2 + 6*a^2*b^3*c^2 - a*b^4*c^2 + 3*b^5*c^2 - a^4*c^3 - 2*a^3*b*c^3 + 6*a^2*b^2*c^3 - 4*a*b^3*c^3 - 3*b^4*c^3 - 2*a^3*c^4 - a*b^2*c^4 - 3*b^3*c^4 + 2*a^2*c^5 + 2*a*b*c^5 + 3*b^2*c^5 + a*c^6 + b*c^6 - c^7 : :

X(50206) lies on these lines: {2, 3}, {11, 936}, {40, 25973}, {78, 496}, {392, 31419}, {518, 1210}, {938, 17757}, {3452, 45120}, {3660, 3814}, {3697, 3820}, {3816, 13411}, {3825, 6700}, {3925, 12701}, {5439, 21617}, {5713, 17825}, {5742, 46196}, {7680, 8582}, {10523, 41229}, {19727, 19754}, {19802, 19839}, {25893, 48482}

X(50206) = complement of X(37282)
X(50206) = orthocentroidal-circle-inverse of X(16410)
X(50206) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 16410}, {2, 411, 13747}, {2, 4193, 6831}, {2, 6835, 474}, {2, 6919, 6865}, {2, 6991, 442}, {2, 11344, 140}, {442, 4187, 5084}, {474, 37359, 8727}, {2478, 25962, 6907}, {3142, 37439, 5}, {3814, 9843, 15844}, {4193, 6890, 37359}, {6881, 11108, 47510}, {6922, 8728, 37282}, {6990, 17582, 37363}


X(50207) = X(2)X(3)∩X(518)X(1698)

Barycentrics    a^4 - 3*a^2*b^2 + 2*b^4 - 10*a^2*b*c - 10*a*b^2*c - 3*a^2*c^2 - 10*a*b*c^2 - 4*b^2*c^2 + 2*c^4 : :
X(50207) = 9 X[2] + X[377], 6 X[2] - X[405], 21 X[2] - X[6872], 3 X[2] + 2 X[8728], 11 X[2] - X[31156], 39 X[2] + X[31295], 4 X[2] + X[44217], 4 X[5] + X[37426], 4 X[140] + X[44229], 2 X[377] + 3 X[405], 7 X[377] + 3 X[6872], X[377] - 6 X[8728], 11 X[377] + 9 X[31156], X[377] + 3 X[31259], 13 X[377] - 3 X[31295], 4 X[377] - 9 X[44217], 7 X[405] - 2 X[6872], X[405] + 4 X[8728], 11 X[405] - 6 X[31156], 13 X[405] + 2 X[31295], 2 X[405] + 3 X[44217], 4 X[547] + X[44284], 4 X[3530] + X[44286], 4 X[3628] + X[44222], 11 X[5070] - X[37234], X[6872] + 14 X[8728], 11 X[6872] - 21 X[31156], X[6872] - 7 X[31259], 13 X[6872] + 7 X[31295], 4 X[6872] + 21 X[44217], 22 X[8728] + 3 X[31156], 2 X[8728] + X[31259], 26 X[8728] - X[31295], 8 X[8728] - 3 X[44217], 3 X[17532] + 2 X[20835], 3 X[31156] - 11 X[31259], 39 X[31156] + 11 X[31295], 4 X[31156] + 11 X[44217], 13 X[31259] + X[31295], 4 X[31259] + 3 X[44217], 4 X[31295] - 39 X[44217], 2 X[5302] - 17 X[19872]

X(50207) lies on these lines: {2, 3}, {10, 41711}, {72, 41867}, {518, 1698}, {1001, 41859}, {1714, 17245}, {3305, 3824}, {3337, 5437}, {3624, 5440}, {3634, 4860}, {3826, 5687}, {3841, 4423}, {3911, 3947}, {3927, 27186}, {5043, 46196}, {5275, 5346}, {5302, 19872}, {5438, 34595}, {5550, 31493}, {10479, 17265}, {19862, 31245}, {19877, 31479}, {25525, 45120}, {31246, 31253}, {34501, 45701}

X(50207) = reflection of X(405) in X(31259)
X(50207) = complement of X(31259)
X(50207) = orthocentroidal-circle-inverse of X(17590)
X(50207) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 17590}, {2, 5, 16854}, {2, 442, 16842}, {2, 2476, 16853}, {2, 4187, 16856}, {2, 4193, 16855}, {2, 4197, 11108}, {2, 4202, 16844}, {2, 4208, 17552}, {2, 5141, 17546}, {2, 6856, 17575}, {2, 8728, 405}, {2, 17529, 474}, {2, 17535, 3526}, {2, 17582, 7483}, {2, 17674, 19273}, {2, 31254, 1656}, {2, 33026, 17540}, {2, 33833, 16343}, {2, 37436, 16845}, {2, 37462, 6675}, {4, 17590, 17542}, {377, 17566, 37282}, {405, 8728, 44217}, {442, 16842, 17556}, {1698, 20195, 5439}, {4197, 11108, 17532}, {4208, 17552, 11113}, {6675, 37462, 16371}, {7483, 17529, 17582}, {7483, 17582, 474}, {11108, 20835, 405}, {11112, 16845, 19526}, {11113, 17552, 17545}, {16845, 37436, 11112}, {16862, 19521, 474}


X(50208) = X(2)X(3)∩X(518)X(1737)

Barycentrics    a^5*b^2 - a^4*b^3 - 2*a^3*b^4 + 2*a^2*b^5 + a*b^6 - b^7 + 2*a^5*b*c - a^4*b^2*c - 4*a^3*b^3*c + 2*a*b^5*c + b^6*c + a^5*c^2 - a^4*b*c^2 + 4*a^3*b^2*c^2 + 2*a^2*b^3*c^2 - a*b^4*c^2 + 3*b^5*c^2 - a^4*c^3 - 4*a^3*b*c^3 + 2*a^2*b^2*c^3 - 4*a*b^3*c^3 - 3*b^4*c^3 - 2*a^3*c^4 - a*b^2*c^4 - 3*b^3*c^4 + 2*a^2*c^5 + 2*a*b*c^5 + 3*b^2*c^5 + a*c^6 + b*c^6 - c^7 : :
X(50208) = 4 X[8728] + 3 X[17533]

X(50208) lies on these lines: {2, 3}, {11, 5440}, {12, 5439}, {392, 3925}, {518, 1737}, {997, 11376}, {1125, 10957}, {1329, 17437}, {1387, 4511}, {1898, 41540}, {2886, 23708}, {3753, 25973}, {3814, 3911}, {5437, 7951}, {5438, 7741}, {8068, 31263}, {10200, 26481}, {10827, 25466}, {18254, 41552}, {31435, 41859}

X(50208) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6826, 37249}, {2, 6854, 474}, {2, 6881, 442}, {2, 6911, 13747}, {5, 1012, 8226}, {5, 6907, 6968}, {5, 6958, 6831}, {5, 8728, 377}, {5, 25962, 442}, {442, 17533, 1532}, {4187, 17529, 7483}, {6826, 37249, 11112}, {6829, 6879, 5}, {6837, 6991, 5}, {6882, 6905, 37374}


X(50209) = X(125)X(418)∩X(577)X(31364)

Barycentrics    a^2*(-a^2+b^2+c^2)*((b^2+c^2)*a^2-(b^2-c^2)^2)*((b^2+c^2)*a^14-(5*b^4+6*b^2*c^2+5*c^4)*a^12+(b^2+c^2)*(10*b^4+b^2*c^2+10*c^4)*a^10-(10*b^8+10*c^8+(5*b^4+8*b^2*c^2+5*c^4)*b^2*c^2)*a^8-(b^2-c^2)^4*b^4*c^4+(b^2+c^2)*(5*b^8+5*c^8-(11*b^4-14*b^2*c^2+11*c^4)*b^2*c^2)*a^6-2*(b^4-c^4)*(b^2-c^2)^3*a^2*b^2*c^2-(b^2-c^2)^2*(b^8+c^8-5*(b^4+b^2*c^2+c^4)*b^2*c^2)*a^4) : :
X(50209) = (S^4-SB^2*SC^2)*(2*S^4+(4*R^2*(5*R^2+SA-5*SW)-SA^2+3*SW^2)*S^2+(2*R^2*(3*SA+8*R^2-7*SW)-SA^2+SB*SC+2*SW^2)*(SA^2-SB*SC)) : :

See Kadir Altintas and César Lozada euclid 5132.

X(50209) lies on these lines: {125, 418}, {577, 31364}


X(50210) = REFLECTION OF X(46604) IN X(5)

Barycentrics    a^24-8*(b^2+c^2)*a^22+(29*b^4+46*b^2*c^2+29*c^4)*a^20-2*(b^2+c^2)*(31*b^4+24*b^2*c^2+31*c^4)*a^18+(83*b^8+83*c^8+(133*b^4+153*b^2*c^2+133*c^4)*b^2*c^2)*a^16+(4*b^8+4*c^8+(15*b^4+16*b^2*c^2+15*c^4)*b^2*c^2)*a^12*b^2*c^2-2*(b^2+c^2)*(31*b^8+31*c^8+2*(2*b^4+19*b^2*c^2+2*c^4)*b^2*c^2)*a^14+(b^4-c^4)*(b^2-c^2)*(62*b^8+62*c^8+(11*b^4+67*b^2*c^2+11*c^4)*b^2*c^2)*a^10-(b^2-c^2)^2*(83*b^12+83*c^12-(9*b^8+9*c^8+(7*b^4+8*b^2*c^2+7*c^4)*b^2*c^2)*b^2*c^2)*a^8+2*(b^4-c^4)*(b^2-c^2)*(31*b^12+31*c^12-(83*b^8+83*c^8-(97*b^4-88*b^2*c^2+97*c^4)*b^2*c^2)*b^2*c^2)*a^6-(b^2-c^2)^4*(29*b^12+29*c^12-2*(22*b^8+22*c^8-(5*b^4+11*b^2*c^2+5*c^4)*b^2*c^2)*b^2*c^2)*a^4+(b^6+c^6)*(b^2-c^2)^6*(8*b^4-13*b^2*c^2+8*c^4)*a^2-(b^4-b^2*c^2+c^4)^2*(b^2-c^2)^8 : :

See Kadir Altintas and César Lozada euclid 5132.

X(50210) lies on this line: {5, 46604}

X(50210) = reflection of X(46604) in X(5)


X(50211) = X(17)X(99)∩X(61)X(115)

Barycentrics    2*sqrt(3)*(3*a^6-5*(b^2+c^2)*a^4+(2*b^4-9*b^2*c^2+2*c^4)*a^2+(b^4-c^4)*(b^2-c^2))*S+a^8+4*(b^2+c^2)*a^6-(15*b^4+13*b^2*c^2+15*c^4)*a^4+(b^2+c^2)*(15*b^4-31*b^2*c^2+15*c^4)*a^2-5*(b^2-c^2)^4 : :

See Kadir Altintas and César Lozada euclid 5132.

X(50211) lies on these lines: {13, 38230}, {17, 99}, {61, 115}, {5459, 22511}, {5470, 42062}, {5615, 46054}, {9115, 10611}, {13350, 23005}, {35230, 47861}


X(50212) = X(18)X(99)∩X(62)X(115)

Barycentrics    -2*sqrt(3)*(3*a^6-5*(b^2+c^2)*a^4+(2*b^4-9*b^2*c^2+2*c^4)*a^2+(b^4-c^4)*(b^2-c^2))*S+a^8+4*(b^2+c^2)*a^6-(15*b^4+13*b^2*c^2+15*c^4)*a^4+(b^2+c^2)*(15*b^4-31*b^2*c^2+15*c^4)*a^2-5*(b^2-c^2)^4: :

See Kadir Altintas and César Lozada euclid 5132.

X(50212) lies on these lines: {14, 38230}, {18, 99}, {62, 115}, {5460, 22510}, {5469, 42063}, {5611, 46053}, {9117, 10612}, {13349, 23004}, {35229, 47862}


X(50213) = X(7684)X(32627)∩X(15609)X(37848)

Barycentrics    ((2*a^14-18*(b^2+c^2)*a^12+2*(31*b^4+52*b^2*c^2+31*c^4)*a^10-2*(b^2+c^2)*(55*b^4+36*b^2*c^2+55*c^4)*a^8+2*(55*b^8+55*c^8+(39*b^4+25*b^2*c^2+39*c^4)*b^2*c^2)*a^6-2*(b^2+c^2)*(31*b^8+31*c^8-25*(3*b^4-b^2*c^2+3*c^4)*b^2*c^2)*a^4+2*(b^2-c^2)^2*(9*b^8+9*c^8-(29*b^4+61*b^2*c^2+29*c^4)*b^2*c^2)*a^2+(b^4-c^4)*(b^2-c^2)^3*(-2*b^4+18*b^2*c^2-2*c^4))*S+sqrt(3)*(a^16-6*(b^2+c^2)*a^14+2*(7*b^4+8*b^2*c^2+7*c^4)*a^12-2*(b^2+c^2)*(7*b^4-12*b^2*c^2+7*c^4)*a^10-(79*b^4+89*b^2*c^2+79*c^4)*b^2*c^2*a^8+2*(b^2+c^2)*(7*b^8+7*c^8+(45*b^4-17*b^2*c^2+45*c^4)*b^2*c^2)*a^6-2*(7*b^12+7*c^12+(26*b^8+26*c^8-(31*b^4+13*b^2*c^2+31*c^4)*b^2*c^2)*b^2*c^2)*a^4+(b^4-c^4)*(b^2-c^2)*(6*b^8+6*c^8+(10*b^4-43*b^2*c^2+10*c^4)*b^2*c^2)*a^2-(b^2-c^2)^4*(b^8+c^8+(b^4-8*b^2*c^2+c^4)*b^2*c^2)))*a^2 : :

See Kadir Altintas and César Lozada euclid 5132.

X(50213) lies on these lines: {7684, 32627}, {15609, 37848}


X(50214) = X(7685)X(32628)∩X(15610)X(37850)

Barycentrics    (-(2*a^14-18*(b^2+c^2)*a^12+2*(31*b^4+52*b^2*c^2+31*c^4)*a^10-2*(b^2+c^2)*(55*b^4+36*b^2*c^2+55*c^4)*a^8+2*(55*b^8+55*c^8+(39*b^4+25*b^2*c^2+39*c^4)*b^2*c^2)*a^6-2*(b^2+c^2)*(31*b^8+31*c^8-25*(3*b^4-b^2*c^2+3*c^4)*b^2*c^2)*a^4+2*(b^2-c^2)^2*(9*b^8+9*c^8-(29*b^4+61*b^2*c^2+29*c^4)*b^2*c^2)*a^2+(b^4-c^4)*(b^2-c^2)^3*(-2*b^4+18*b^2*c^2-2*c^4))*S+sqrt(3)*(a^16-6*(b^2+c^2)*a^14+2*(7*b^4+8*b^2*c^2+7*c^4)*a^12-2*(b^2+c^2)*(7*b^4-12*b^2*c^2+7*c^4)*a^10-(79*b^4+89*b^2*c^2+79*c^4)*b^2*c^2*a^8+2*(b^2+c^2)*(7*b^8+7*c^8+(45*b^4-17*b^2*c^2+45*c^4)*b^2*c^2)*a^6-2*(7*b^12+7*c^12+(26*b^8+26*c^8-(31*b^4+13*b^2*c^2+31*c^4)*b^2*c^2)*b^2*c^2)*a^4+(b^4-c^4)*(b^2-c^2)*(6*b^8+6*c^8+(10*b^4-43*b^2*c^2+10*c^4)*b^2*c^2)*a^2-(b^2-c^2)^4*(b^8+c^8+(b^4-8*b^2*c^2+c^4)*b^2*c^2)))*a^2 : :

See Kadir Altintas and César Lozada euclid 5132.

X(50214) lies on these lines: {7685, 32628}, {15610, 37850}


leftri

Points in a [[(b^4 - c^4, c^4 - a^4, a^4 - b^4 ], (b^2-c^2)(a^2-b^2-c^2), (c^2- a^2)(b^2-c^2-a^2), (a^2- b^2)(a^2-b^2-c^2)]] coordinate system: X(50215)-X(50236)

rightri

If L1 and L2 are lines that meet in a point P not at infinity, then a [L1, L2]-coordinate system is a bivariate coordinate system having L1 as x-axis, L2 as y-axis, and P as origin. In this section, L1 and L2 are the following lines:

L1 is the line: (b^4 - c^4) α + (c^4 - a^4) β + (a^4 - b^4) γ = 0.

L2 is the line (b^2-c^2)(a^2-b^2-c^2) α + (c^2- a^2)(b^2-c^2-a^2) β + (a^2- b^2)(a^2-b^2-c^2) γ = 0 (Euler line).

The origin is given by (0,0) = X(2) = 1:1:1 = G .

Barycentrics u : v : w for a triangle center U = (x, y) in this system are given by

u : v : w = -(a^2 - b^2)((a^2 - c^2)(b^2 - c^2)(a^2 + b^2 + c^2) + (-2 a^4 + b^4 + c^4) x + (2 a^4 - a^2 b^2 - a^2 c^2 - (b^2 - c^2)^2 ) y : : ,

where, as functions of a, b, c, the coordinate x is antisymmetric of degree 4, and y is antisymmetric of degree 4.

The appearance of {x, y}, k in the following list means that (x, y) = X(k).

{-2 (a-b) (a-c) (b-c) (a+b+c), (a-b) (a-c) (b-c) (a+b+c)}, 3578
{-((2 (a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c)), ((a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c)}, 49717
{-2 (a-b) (a-c) (b-c) (a+b+c), 2 (a-b) (a-c) (b-c) (a+b+c)}, 50154
{-((2 (a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c)), (2 (a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c)}, 50155
{-(((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c)), 0}, 50157
{-((a-b) (a-c) (b-c) (a+b+c)), 1/2 (a-b) (a-c) (b-c) (a+b+c)}, 49724
{-(((a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c)), ((a-b) (a-c) (b-c) (a b+a c+b c))/(2 (a+b+c))}, 50158
{-((a-b) (a-c) (b-c) (a+b+c)), (a-b) (a-c) (b-c) (a+b+c)}, 50159
{-((a-b) (a-c) (b-c) (a+b+c)), ((a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c)}, 49723
{-(((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c)), ((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c)}, 50160
{-(((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(2 (a+b+c))), 0}, 50161
{-(1/2) (a-b) (a-c) (b-c) (a+b+c), 1/2 (a-b) (a-c) (b-c) (a+b+c)}, 50162
{-(1/2) (a-b) (a-c) (b-c) (a+b+c), ((a-b) (a-c) (b-c) (a b+a c+b c))/(2 (a+b+c))}, 49729
{-(((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(2 (a+b+c))), ((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(2 (a+b+c))}, 50163
{0, -((2 (a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c))}, 50165
{0, -((a-b) (a-c) (b-c) (a+b+c))}, 50166
{0, -(((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c))}, 49735
{0, -(1/2) (a-b) (a-c) (b-c) (a+b+c)}, 50167
{0, -(((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(2 (a+b+c)))}, 13745
{0, 0}, 2
{0, 1/2 (a-b) (a-c) (b-c) (a+b+c)}, 50168
{0, ((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(2 (a+b+c))}, 50169
{0, (a-b) (a-c) (b-c) (a+b+c)}, 50170
{0, ((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c)}, 50171
{0, (2 (a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c)}, 50172
{1/2 (a-b) (a-c) (b-c) (a+b+c), -(1/2) (a-b) (a-c) (b-c) (a+b+c)}, 50173
{((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(2 (a+b+c)), -(((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(2 (a+b+c)))}, 50174
{(a-b) (a-c) (b-c) (a+b+c), -((a-b) (a-c) (b-c) (a+b+c))}, 50178
{(a-b) (a-c) (b-c) (a+b+c), -(((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c))}, 50182
{(a-b) (a-c) (b-c) (a+b+c), -(((a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c))}, 49744
{((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c), -(((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c))}, 50179
{(a-b) (a-c) (b-c) (a+b+c), -(1/2) (a-b) (a-c) (b-c) (a+b+c)}, 37631
{((a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c), -(((a-b) (a-c) (b-c) (a b+a c+b c))/(2 (a+b+c)))}, 50180
{(a-b) (a-c) (b-c) (a+b+c), 0}, 50181
{2 (a-b) (a-c) (b-c) (a+b+c), -2 (a-b) (a-c) (b-c) (a+b+c)}, 50183
{(2 (a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c), -((2 (a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c))}, 50184
{2 (a-b) (a-c) (b-c) (a+b+c), -((a-b) (a-c) (b-c) (a+b+c))}, 42045
{(2 (a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c), -(((a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c))}, 49749
{(2 (a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c), 0}, 50186
{-2*(a - b)*(a - c)*(b - c)*(a + b + c), (2*(a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c)}, 50215
{-((a - b)*(a - c)*(b - c)*(a + b + c)), -1/2*((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c)}, 50216
{-((a - b)*(a - c)*(b - c)*(a + b + c)), 0}, 50217
{-((a - b)*(a - c)*(b - c)*(a + b + c)), 2*(a - b)*(a - c)*(b - c)*(a + b + c)}, 50218
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c)), -1/2*((a - b)*(a - c)*(b - c)*(a + b + c))}, 50219
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c)), -1/2*((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c)}, 50220
{-1/2*((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c), -1/2*((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c)}, 50221
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c)), 0}, 50222
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c)), (a - b)*(a - c)*(b - c)*(a + b + c)}, 50223
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c)), ((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c)}, 50224
{((a - b)*(a - c)*(b - c)*(a + b + c))/2, -1/2*((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c)}, 50225
{((a - b)*(a - c)*(b - c)*(a + b + c))/2, -1/2*((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c)}, 50226
{((a - b)*(a - c)*(b - c)*(a + b + c))/2, 0}, 50227
{((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(2*(a + b + c)), 0}, 50228
{((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(2*(a + b + c)), ((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(2*(a + b + c))}, 50229
{((a - b)*(a - c)*(b - c)*(a + b + c))/2, ((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c)}, 50230
{(a - b)*(a - c)*(b - c)*(a + b + c), -1/2*((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c)}, 50231
{((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c), 0}, 50232
{(a - b)*(a - c)*(b - c)*(a + b + c), ((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c)}, 50233
{2*(a - b)*(a - c)*(b - c)*(a + b + c), (-2*(a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c)}, 50234
{(2*(a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c), -1/2*((a - b)*(a - c)*(b - c)*(a + b + c))}, 50235
{2*(a - b)*(a - c)*(b - c)*(a + b + c), ((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c)}, 50236


X(50215) = X(2)X(58)∩X(8)X(30)

Barycentrics    4*a^4 + 3*a^3*b - 2*a^2*b^2 - 3*a*b^3 - 2*b^4 + 3*a^3*c - 6*a*b^2*c - 3*b^3*c - 2*a^2*c^2 - 6*a*b*c^2 - 2*b^2*c^2 - 3*a*c^3 - 3*b*c^3 - 2*c^4 : :
X(50215) = 3 X[2] - 4 X[49729], 3 X[49723] - 2 X[49729], 3 X[49723] - X[49744], X[8] - 4 X[49716], 5 X[8] - 8 X[49718], 5 X[3578] - 4 X[49718], 5 X[49716] - 2 X[49718], 3 X[3241] - 4 X[49739], 3 X[49735] - 2 X[49739], 5 X[3616] - 4 X[37631], 5 X[3616] - 8 X[49728], 11 X[5550] - 8 X[49743], 7 X[9780] - 8 X[49730], 7 X[9780] - 4 X[49745], 4 X[13745] - 3 X[38314], 3 X[38314] - 2 X[42045]

X(50215) lies on these lines: {2, 58}, {8, 30}, {69, 31156}, {239, 50176}, {333, 6175}, {376, 5739}, {381, 1150}, {511, 7985}, {519, 50165}, {524, 3241}, {542, 15983}, {549, 5741}, {551, 6536}, {599, 11346}, {1043, 15678}, {2287, 31155}, {2895, 15677}, {3017, 16704}, {3187, 50066}, {3543, 14552}, {3616, 37631}, {3647, 27558}, {3679, 4418}, {3936, 15670}, {4061, 34638}, {4234, 31143}, {4416, 45744}, {4420, 48897}, {4641, 50051}, {4643, 50070}, {4683, 39766}, {4921, 17677}, {5251, 20290}, {5278, 44217}, {5550, 49743}, {7809, 34016}, {9780, 49730}, {13745, 38314}, {13857, 27721}, {15672, 25650}, {15936, 21296}, {16351, 31179}, {16861, 17297}, {17346, 17579}, {17525, 41014}, {17676, 48857}, {17679, 19723}, {18139, 50202}, {19742, 48835}, {23942, 39563}, {36534, 50182}, {49717, 50186}, {49724, 50171}

X(50215) = reflection of X(i) in X(j) for these {i,j}: {2, 49723}, {8, 3578}, {3241, 49735}, {3578, 49716}, {37631, 49728}, {42045, 13745}, {49744, 49729}, {49745, 49730}, {50171, 49724}, {50172, 3679}, {50186, 49717}
X(50215) = anticomplement of X(49744)
X(50215) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {13745, 42045, 38314}, {49723, 49744, 49729}, {49729, 49744, 2}


X(50216) = X(10)X(3849)∩X(30)X(40)

Barycentrics    4*a^6 + 8*a^5*b - 5*a^3*b^3 - 6*a^2*b^4 - 7*a*b^5 - 2*b^6 + 8*a^5*c + 2*a^4*b*c - 11*a^3*b^2*c - 11*a^2*b^3*c - 13*a*b^4*c - 7*b^5*c - 11*a^3*b*c^2 - 12*a^2*b^2*c^2 - 8*a*b^3*c^2 - 6*b^4*c^2 - 5*a^3*c^3 - 11*a^2*b*c^3 - 8*a*b^2*c^3 - 2*b^3*c^3 - 6*a^2*c^4 - 13*a*b*c^4 - 6*b^2*c^4 - 7*a*c^5 - 7*b*c^5 - 2*c^6 : :

X(50216) lies on these lines: {10, 3849}, {30, 40}, {385, 17677}, {524, 4655}, {543, 50153}, {754, 50180}, {7812, 37148}, {7840, 35916}, {9939, 16062}, {11359, 42028}, {13745, 16830}, {22329, 37159}, {29584, 50167}


X(50217) = X(2)X(32)∩X(30)X(40)

Barycentrics    2*a^5 + a^4*b - a^3*b^2 - a^2*b^3 - 2*a*b^4 - b^5 + a^4*c - 2*a^3*b*c - 2*a^2*b^2*c - 2*a*b^3*c - 2*b^4*c - a^3*c^2 - 2*a^2*b*c^2 - 2*a*b^2*c^2 - b^3*c^2 - a^2*c^3 - 2*a*b*c^3 - b^2*c^3 - 2*a*c^4 - 2*b*c^4 - c^5 : :
X(50217) = 2 X[49716] + X[50175]

X(50217) lies on these lines: {2, 32}, {30, 40}, {524, 16834}, {538, 3578}, {543, 50154}, {1654, 24271}, {3849, 50162}, {4045, 19742}, {5278, 7761}, {5739, 24296}, {7848, 18139}, {11287, 19723}, {11355, 48839}, {13745, 48854}, {17251, 50060}, {40891, 50183}, {42045, 50173}, {48809, 49729}, {49716, 50175}, {49730, 50168}

X(50217) = midpoint of X(3578) and X(50166)
X(50217) = reflection of X(i) in X(j) for these {i,j}: {42045, 50173}, {50159, 49724}, {50168, 49730}, {50170, 50162}, {50178, 50167}, {50181, 2}, {50182, 13745}


X(50218) = X(2)X(99)∩X(30)X(40)

Barycentrics    2*a^5 + 3*a^4*b - a^3*b^2 - a^2*b^3 - b^5 + 3*a^4*c + 2*a^3*b*c + 2*a*b^3*c - a^3*c^2 + 6*a*b^2*c^2 + 5*b^3*c^2 - a^2*c^3 + 2*a*b*c^3 + 5*b^2*c^3 - c^5 : :
X(50218) = 2 X[49724] - 3 X[50159], X[42045] - 3 X[50170], 2 X[42045] - 3 X[50181]

X(50218) lies on these lines: {2, 99}, {30, 40}, {524, 3729}, {538, 17389}, {540, 50156}, {754, 50154}, {3578, 3849}, {11159, 19723}, {29597, 50168}, {39586, 50169}, {49735, 50164}, {50162, 50166}

X(50218) = reflection of X(i) in X(j) for these {i,j}: {49735, 50164}, {50166, 50162}, {50175, 50169}, {50178, 50168}, {50181, 50170}


X(50219) = X(2)X(187)∩X(10)X(30)

Barycentrics    4*a^5 + 2*a^4*b - 3*a^3*b^2 - 3*a^2*b^3 - 4*a*b^4 - 2*b^5 + 2*a^4*c - 4*a^3*b*c - 5*a^2*b^2*c - 4*a*b^3*c - 4*b^4*c - 3*a^3*c^2 - 5*a^2*b*c^2 - 2*a*b^2*c^2 - 3*a^2*c^3 - 4*a*b*c^3 - 4*a*c^4 - 4*b*c^4 - 2*c^5 : :
X(50219) = 4 X[49730] - 3 X[50162], X[3578] + 3 X[50166], X[37631] - 3 X[50167], 2 X[37631] - 3 X[50173]

X(50219) lies on these lines: {2, 187}, {10, 30}, {524, 3663}, {538, 3578}, {543, 49724}, {599, 4483}, {754, 37631}, {4393, 50178}, {4660, 11645}, {17397, 50181}

X(50219) = reflection of X(i) in X(j) for these {i,j}: {50164, 49729}, {50173, 50167}


X(50220) = X(10)X(30)∩X(405)X(7865)

Barycentrics    4*a^6 + 2*a^5*b - a^4*b^2 - 4*a^3*b^3 - 7*a^2*b^4 - 4*a*b^5 - 2*b^6 + 2*a^5*c - 4*a^4*b*c - 10*a^3*b^2*c - 10*a^2*b^3*c - 10*a*b^4*c - 4*b^5*c - a^4*c^2 - 10*a^3*b*c^2 - 12*a^2*b^2*c^2 - 10*a*b^3*c^2 - 4*b^4*c^2 - 4*a^3*c^3 - 10*a^2*b*c^3 - 10*a*b^2*c^3 - 4*b^3*c^3 - 7*a^2*c^4 - 10*a*b*c^4 - 4*b^2*c^4 - 4*a*c^5 - 4*b*c^5 - 2*c^6 : :
X(50220) = 4 X[49728] - X[50164]

X(50220) lies on these lines: {10, 30}, {405, 7865}, {538, 49723}, {540, 50173}, {754, 13745}, {1008, 14537}, {1009, 40344}, {4195, 11057}, {7809, 19312}, {7880, 13723}, {16816, 50175}, {29646, 49744}, {41140, 50167}, {49716, 50017}

X(50220) = reflection of X(50162) in X(49729)


X(50221) = X(2)X(187)∩X(30)X(48853)

Barycentrics    4*a^4 - 2*a^3*b - 5*a^2*b^2 - 2*a*b^3 - 2*b^4 - 2*a^3*c - 8*a^2*b*c - 8*a*b^2*c - 2*b^3*c - 5*a^2*c^2 - 8*a*b*c^2 - 2*b^2*c^2 - 2*a*c^3 - 2*b*c^3 - 2*c^4 : :

X(50221) lies on these lines: {2, 187}, {30, 48853}, {524, 49465}, {538, 49735}, {754, 13745}, {7775, 16351}, {7843, 16342}, {7849, 16931}, {7873, 16927}, {50160, 50165}

X(50221) = midpoint of X(i) and X(j) for these {i,j}: {49735, 50157}, {50160, 50165}
X(50221) = reflection of X(i) in X(j) for these {i,j}: {50163, 50161}, {50174, 13745}


X(50222) = X(2)X(32)∩X(10)X(30)

Barycentrics    2*a^5 - 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5 - 4*a^3*b*c - 4*a^2*b^2*c - 4*a*b^3*c - 3*b^4*c - 2*a^3*c^2 - 4*a^2*b*c^2 - 4*a*b^2*c^2 - 2*b^3*c^2 - 2*a^2*c^3 - 4*a*b*c^3 - 2*b^2*c^3 - 3*a*c^4 - 3*b*c^4 - c^5 : :

X(50222) lies on these lines: {2, 32}, {10, 30}, {239, 3578}, {524, 17382}, {538, 42051}, {542, 32115}, {543, 50159}, {3849, 50168}, {4045, 5278}, {5737, 36731}, {7761, 19732}, {9546, 17330}, {16830, 50182}, {17023, 37631}, {24275, 26044}, {29633, 49744}, {49476, 49739}

X(50222) = midpoint of X(i) and X(j) for these {i,j}: {3578, 50178}, {49724, 50167}, {50159, 50166}
X(50222) = reflection of X(50162) in X(49730)
X(50222) = complement of X(50181)


X(50223) = X(2)X(99)∩X(10)X(30)

Barycentrics    2*a^5 + 4*a^4*b + a*b^4 - b^5 + 4*a^4*c + 4*a^3*b*c + 2*a^2*b^2*c + 4*a*b^3*c + b^4*c + 2*a^2*b*c^2 + 8*a*b^2*c^2 + 6*b^3*c^2 + 4*a*b*c^3 + 6*b^2*c^3 + a*c^4 + b*c^4 - c^5 : :
X(50223) = 2 X[49730] - 3 X[50162], X[37631] - 3 X[50168], X[3578] - 3 X[50159], X[3578] + 3 X[50170]

X(50223) lies on these lines: {2, 99}, {10, 30}, {524, 2321}, {538, 3175}, {542, 3923}, {754, 3578}, {3849, 49724}, {6542, 50154}, {16826, 50178}, {49744, 50156}

X(50223) = midpoint of X(i) and X(j) for these {i,j}: {49744, 50156}, {50154, 50181}, {50159, 50170}


X(50224) = X(10)X(30)∩X(538)X(13745)

Barycentrics    2*a^6 - 2*a^5*b - 2*a^4*b^2 - 2*a^3*b^3 - 5*a^2*b^4 - 2*a*b^5 - b^6 - 2*a^5*c - 8*a^4*b*c - 8*a^3*b^2*c - 8*a^2*b^3*c - 8*a*b^4*c - 2*b^5*c - 2*a^4*c^2 - 8*a^3*b*c^2 - 12*a^2*b^2*c^2 - 14*a*b^3*c^2 - 5*b^4*c^2 - 2*a^3*c^3 - 8*a^2*b*c^3 - 14*a*b^2*c^3 - 8*b^3*c^3 - 5*a^2*c^4 - 8*a*b*c^4 - 5*b^2*c^4 - 2*a*c^5 - 2*b*c^5 - c^6 : :
X(50224) = 2 X[49728] + X[50164]

X(50224) lies on these lines: {10, 30}, {538, 13745}, {754, 49717}, {1008, 7753}, {3578, 50182}, {4195, 7811}, {5306, 37044}, {5737, 36721}, {7739, 13725}, {7799, 19312}, {11112, 48860}, {13736, 32836}, {16815, 50175}, {16823, 50178}, {29596, 49745}, {29637, 49744}, {37038, 48864}, {49466, 49739}, {49735, 50159}

X(50224) = midpoint of X(i) and X(j) for these {i,j}: {3578, 50182}, {49735, 50159}


X(50225) = X(1)X(538)∩X(30)X(551)

Barycentrics    6*a^5*b + 5*a^4*b^2 + 4*a^3*b^3 + 5*a^2*b^4 + 6*a^5*c + 12*a^4*b*c + 10*a^3*b^2*c + 10*a^2*b^3*c + 6*a*b^4*c + 5*a^4*c^2 + 10*a^3*b*c^2 + 12*a^2*b^2*c^2 + 10*a*b^3*c^2 + 2*b^4*c^2 + 4*a^3*c^3 + 10*a^2*b*c^3 + 10*a*b^2*c^3 + 4*b^3*c^3 + 5*a^2*c^4 + 6*a*b*c^4 + 2*b^2*c^4 : :
X(50225) = 5 X[1] + X[50156], 2 X[1] + X[50164], 2 X[50156] - 5 X[50164], 7 X[3622] - X[50175], 2 X[3635] + X[50153], 4 X[3636] - X[50177], 3 X[38314] - X[50178]

X(50225) lies on these lines: {1, 538}, {2, 40984}, {30, 551}, {519, 50162}, {754, 13745}, {1008, 9466}, {1009, 44562}, {1982, 14581}, {3241, 50159}, {3622, 50175}, {3635, 50153}, {3636, 50177}, {4195, 7757}, {19868, 50158}, {38314, 50178}, {49735, 50181}, {49739, 50168}

X(50225) = midpoint of X(i) and X(j) for these {i,j}: {2, 50182}, {3241, 50159}, {49735, 50181}, {49739, 50168}
X(50225) = reflection of X(50173) in X(551)


X(50226) = X(2)X(58)∩X(30)X(551)

Barycentrics    2*a^4 + 4*a^3*b + 4*a^2*b^2 + a*b^3 - b^4 + 4*a^3*c + 10*a^2*b*c + 7*a*b^2*c + b^3*c + 4*a^2*c^2 + 7*a*b*c^2 + 4*b^2*c^2 + a*c^3 + b*c^3 - c^4 : :
X(50226) = 2 X[49723] - 3 X[49729], X[49723] + 3 X[49744], X[49729] + 2 X[49744], 5 X[10] - 2 X[49718], X[10] + 2 X[49743], X[49718] + 5 X[49743], 2 X[1125] + X[49745], X[3244] + 2 X[49734], X[3578] - 3 X[19875], 5 X[3616] - X[50165], 4 X[3634] - X[49716], 2 X[3812] + X[49557], X[5836] + 2 X[10108], 5 X[19862] - 2 X[49728], 3 X[25055] - X[49735], 3 X[38314] + X[50172]

X(50226) lies on these lines: {1, 4442}, {2, 58}, {10, 524}, {30, 551}, {86, 316}, {500, 30143}, {511, 5883}, {519, 37631}, {542, 15973}, {543, 50177}, {597, 8728}, {599, 2049}, {754, 50180}, {758, 23812}, {1125, 4892}, {1992, 37153}, {2475, 28619}, {2796, 3743}, {2901, 29574}, {3017, 42028}, {3244, 49734}, {3578, 19875}, {3616, 50165}, {3634, 49716}, {3679, 41812}, {3812, 49557}, {3828, 49724}, {4653, 26109}, {4658, 26051}, {5295, 50125}, {5836, 10108}, {6173, 43169}, {6175, 42025}, {7801, 33745}, {7810, 37148}, {7812, 16062}, {10022, 50047}, {13857, 27687}, {14005, 31143}, {14007, 31144}, {15360, 37158}, {16454, 31179}, {17378, 33297}, {17392, 37150}, {17679, 19684}, {17758, 49738}, {19701, 48835}, {19722, 44217}, {19862, 49728}, {23814, 48050}, {25055, 49735}, {26117, 28620}, {29181, 38054}, {29597, 50170}, {31173, 37159}, {38314, 50172}, {48822, 50181}

X(50226) = midpoint of X(i) and X(j) for these {i,j}: {1, 50171}, {2, 49744}, {3679, 42045}, {13745, 49745}, {37631, 50169}, {50170, 50176}
X(50226) = reflection of X(i) in X(j) for these {i,j}: {13745, 1125}, {49724, 3828}, {49729, 2}
X(50226) = complement of X(49723)
X(50226) = {X(25526),X(26131)}-harmonic conjugate of X(3454)


X(50227) = X(2)X(32)∩X(30)X(551)

Barycentrics    2*a^5 + 4*a^4*b + 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 - b^5 + 4*a^4*c + 4*a^3*b*c + 4*a^2*b^2*c + 4*a*b^3*c + b^4*c + 2*a^3*c^2 + 4*a^2*b*c^2 + 4*a*b^2*c^2 + 2*b^3*c^2 + 2*a^2*c^3 + 4*a*b*c^3 + 2*b^2*c^3 + a*c^4 + b*c^4 - c^5 : :
X(50227) = 2 X[49743] + X[50164]

X(50227) lies on these lines: {2, 32}, {30, 551}, {524, 17359}, {538, 3175}, {543, 29580}, {2795, 23812}, {3849, 50167}, {4045, 19684}, {7761, 19701}, {14581, 25986}, {17310, 42045}, {17778, 24275}, {24271, 37635}, {49743, 50164}, {50171, 50182}

X(50227) = midpoint of X(i) and X(j) for these {i,j}: {2, 50181}, {37631, 50168}, {42045, 50159}, {50170, 50178}, {50171, 50182}


X(50228) = X(2)X(32)∩X(10)X(524)

Barycentrics    2*a^4 + 2*a^3*b + 4*a^2*b^2 + 2*a*b^3 - b^4 + 2*a^3*c + 8*a^2*b*c + 8*a*b^2*c + 2*b^3*c + 4*a^2*c^2 + 8*a*b*c^2 + 4*b^2*c^2 + 2*a*c^3 + 2*b*c^3 - c^4 : :
X(50228) = 3 X[2] + X[50186], 2 X[50157] - 3 X[50161], 3 X[50161] + 2 X[50186]

X(50228) lies on these lines: {2, 32}, {10, 524}, {30, 50174}, {538, 50169}, {540, 50158}, {543, 16830}, {1125, 25383}, {2049, 17251}, {3849, 13745}, {7759, 16458}, {7764, 16454}, {7768, 16928}, {7794, 16926}, {9766, 19332}, {16351, 47101}, {19856, 49723}, {37631, 50095}, {49717, 49744}

X(50228) = midpoint of X(i) and X(j) for these {i,j}: {49717, 49744}, {50157, 50186}, {50171, 50179}
X(50228) = reflection of X(50161) in X(2)
X(50228) = complement of X(50157)
X(50228) = {X(2),X(50186)}-harmonic conjugate of X(50157)


X(50229) = X(2)X(187)∩X(30)X(50174)

Barycentrics    4*a^4 + 2*a^3*b + 3*a^2*b^2 + 2*a*b^3 - 2*b^4 + 2*a^3*c + 8*a^2*b*c + 8*a*b^2*c + 2*b^3*c + 3*a^2*c^2 + 8*a*b*c^2 + 6*b^2*c^2 + 2*a*c^3 + 2*b*c^3 - 2*c^4 : : a

X(50229) lies on these lines: {2, 187}, {30, 50174}, {524, 4669}, {538, 50171}, {754, 50163}, {4363, 17730}, {7775, 19290}, {7843, 16454}, {7849, 16930}, {7873, 16926}, {50160, 50186}, {50172, 50179}

X(50229) = midpoint of X(i) and X(j) for these {i,j}: {50160, 50186}, {50172, 50179}
X(50229) = reflection of X(50163) in X(50169)


X(50230) = X(1)X(543)∩X(30)X(551)

Barycentrics    2*a^6 + 10*a^5*b + 6*a^4*b^2 + 2*a^3*b^3 + 3*a^2*b^4 - 2*a*b^5 - b^6 + 10*a^5*c + 16*a^4*b*c + 8*a^3*b^2*c + 8*a^2*b^3*c + 4*a*b^4*c - 2*b^5*c + 6*a^4*c^2 + 8*a^3*b*c^2 + 12*a^2*b^2*c^2 + 14*a*b^3*c^2 + 3*b^4*c^2 + 2*a^3*c^3 + 8*a^2*b*c^3 + 14*a*b^2*c^3 + 8*b^3*c^3 + 3*a^2*c^4 + 4*a*b*c^4 + 3*b^2*c^4 - 2*a*c^5 - 2*b*c^5 - c^6 : :

X(50230) lies on these lines: {1, 543}, {30, 551}, {524, 49484}, {538, 50122}, {754, 49717}, {1008, 7810}, {2482, 11104}, {3849, 13745}, {4195, 7812}, {5461, 37049}, {16823, 50171}, {19758, 34504}, {29584, 50170}, {50095, 50168}

X(50230) = midpoint of X(50170) and X(50182)

X(50231) = X(1)X(30)∩X(2)X(19761)

Barycentrics    2*a^6 + 10*a^5*b + 7*a^4*b^2 + 4*a^3*b^3 + 4*a^2*b^4 - 2*a*b^5 - b^6 + 10*a^5*c + 16*a^4*b*c + 10*a^3*b^2*c + 10*a^2*b^3*c + 4*a*b^4*c - 2*b^5*c + 7*a^4*c^2 + 10*a^3*b*c^2 + 12*a^2*b^2*c^2 + 10*a*b^3*c^2 + b^4*c^2 + 4*a^3*c^3 + 10*a^2*b*c^3 + 10*a*b^2*c^3 + 4*b^3*c^3 + 4*a^2*c^4 + 4*a*b*c^4 + b^2*c^4 - 2*a*c^5 - 2*b*c^5 - c^6 : :
X(50231) = 3 X[38314] - X[50166]

X(50231) lies on these lines: {1, 30}, {2, 19761}, {376, 19758}, {519, 50168}, {524, 48805}, {538, 50122}, {551, 50167}, {754, 13745}, {1008, 37671}, {1009, 9300}, {3241, 50170}, {4195, 7837}, {4307, 15936}, {7865, 13728}, {19868, 49729}, {38314, 50166}, {49763, 50164}

X(50231) = midpoint of X(i) and X(j) for these {i,j}: {3241, 50170}, {50181, 50182}
X(50231) = reflection of X(50167) in X(551)

X(50232) = X(2)X(32)∩X(30)X(48854)

Barycentrics    2*a^4 + a^3*b + 2*a^2*b^2 + a*b^3 - b^4 + a^3*c + 4*a^2*b*c + 4*a*b^2*c + b^3*c + 2*a^2*c^2 + 4*a*b*c^2 + 2*b^2*c^2 + a*c^3 + b*c^3 - c^4 : :
X(50232) = 3 X[50157] - 4 X[50161], X[50157] + 2 X[50186], 2 X[50161] + 3 X[50186]

X(50232) lies on these lines: {2, 32}, {30, 48854}, {86, 25468}, {524, 3416}, {538, 50171}, {540, 48809}, {543, 5992}, {3849, 49735}, {7759, 16454}, {7764, 19284}, {7768, 16926}, {7794, 16930}, {9766, 19290}, {16834, 37631}, {25683, 37675}, {29617, 42045}, {49723, 50158}

X(50232) = midpoint of X(i) and X(j) for these {i,j}: {2, 50186}, {50172, 50184}
X(50232) = reflection of X(i) in X(j) for these {i,j}: {49723, 50158}, {49735, 50174}, {50157, 2}, {50160, 50169}
X(50232) = anticomplement of X(50161)


X(50233) = X(1)X(30)∩X(381)X(19761)

Barycentrics    2*a^6 + 7*a^5*b + 4*a^4*b^2 + a^3*b^3 + a^2*b^4 - 2*a*b^5 - b^6 + 7*a^5*c + 10*a^4*b*c + 4*a^3*b^2*c + 4*a^2*b^3*c + a*b^4*c - 2*b^5*c + 4*a^4*c^2 + 4*a^3*b*c^2 + 6*a^2*b^2*c^2 + 7*a*b^3*c^2 + b^4*c^2 + a^3*c^3 + 4*a^2*b*c^3 + 7*a*b^2*c^3 + 4*b^3*c^3 + a^2*c^4 + a*b*c^4 + b^2*c^4 - 2*a*c^5 - 2*b*c^5 - c^6 : :
X(50233) = 3 X[25055] - 2 X[50167]

X(50233) lies on these lines: {1, 30}, {381, 19761}, {519, 50170}, {524, 50126}, {551, 50166}, {754, 49717}, {1008, 7811}, {1009, 7753}, {3534, 19758}, {3679, 50168}, {7799, 11104}, {25055, 50167}

X(50233) = reflection of X(i) in X(j) for these {i,j}: {3679, 50168}, {49744, 50181}, {50166, 551}, {50176, 37631}


X(50234) = X(2)X(58)∩X(8)X(524)

Barycentrics    4*a^4 + 5*a^3*b + 2*a^2*b^2 - a*b^3 - 2*b^4 + 5*a^3*c + 8*a^2*b*c + 2*a*b^2*c - b^3*c + 2*a^2*c^2 + 2*a*b*c^2 + 2*b^2*c^2 - a*c^3 - b*c^3 - 2*c^4 : :
X(50234) = 5 X[2] - 4 X[49729], 5 X[49723] - 6 X[49729], X[49723] - 3 X[49744], 2 X[49729] - 5 X[49744], 5 X[8] - 8 X[49734], X[8] - 4 X[49745], 2 X[49734] - 5 X[49745], 4 X[49734] - 5 X[50171], 5 X[3616] - 4 X[13745], 5 X[3616] - 8 X[49743], X[3869] - 4 X[49557], 5 X[3890] - 8 X[10108], 11 X[5550] - 8 X[49728], 7 X[9780] - 4 X[49716], 4 X[37631] - 3 X[38314], 3 X[38314] - 2 X[49735]

X(50234) lies on these lines: {1, 17491}, {2, 58}, {3, 31179}, {6, 17679}, {8, 524}, {30, 944}, {81, 17677}, {377, 1992}, {519, 17164}, {542, 15971}, {597, 4202}, {599, 964}, {942, 50003}, {1010, 31143}, {1125, 31029}, {2292, 28558}, {3578, 50169}, {3616, 13745}, {3849, 50175}, {3869, 49557}, {3890, 10108}, {4795, 50046}, {4933, 24850}, {4968, 28538}, {5300, 47359}, {5550, 49728}, {6175, 41629}, {9780, 49716}, {11114, 17139}, {11359, 19738}, {13857, 27686}, {14005, 31144}, {14020, 17392}, {16474, 21282}, {19717, 48835}, {19743, 48843}, {29584, 50176}, {33097, 39766}, {37631, 38314}

X(50234) = reflection of X(i) in X(j) for these {i,j}: {2, 49744}, {8, 50171}, {3241, 42045}, {3578, 50169}, {13745, 49743}, {49735, 37631}, {50165, 1}, {50171, 49745}
X(50234) = anticomplement of X(49723)
X(50234) = {X(37631),X(49735)}-harmonic conjugate of X(38314)


X(50235) = X(1)X(524)∩X(2)X(2271)

Barycentrics    2*a^4 - 6*a^3*b - 5*a^2*b^2 - b^4 - 6*a^3*c - 12*a^2*b*c - 6*a*b^2*c - 5*a^2*c^2 - 6*a*b*c^2 - 2*b^2*c^2 - c^4 : :

X(50235) lies on these lines: {1, 524}, {2, 2271}, {30, 48830}, {538, 49739}, {597, 16783}, {754, 37631}, {3849, 49745}, {3970, 49737}, {5718, 7775}, {6625, 8597}, {7833, 17379}, {8359, 24512}, {8370, 37632}, {8598, 17103}, {19765, 34511}, {20132, 34604}, {26626, 50186}, {29573, 49730}, {29574, 49724}, {34506, 37634}, {50169, 50180}

X(50235) = reflection of X(i) in X(j) for these {i,j}: {49724, 50161}, {50169, 50180}, {50185, 49749}


X(50236) = X(1)X(3849)∩X(30)X(944)

Barycentrics    4*a^6 + 11*a^5*b + 6*a^4*b^2 + a^3*b^3 - 4*a*b^5 - 2*b^6 + 11*a^5*c + 14*a^4*b*c + 4*a^3*b^2*c + 4*a^2*b^3*c - a*b^4*c - 4*b^5*c + 6*a^4*c^2 + 4*a^3*b*c^2 + 6*a^2*b^2*c^2 + 7*a*b^3*c^2 + a^3*c^3 + 4*a^2*b*c^3 + 7*a*b^2*c^3 + 4*b^3*c^3 - a*b*c^4 - 4*a*c^5 - 4*b*c^5 - 2*c^6 : :

X(50236) lies on these lines: {1, 3849}, {30, 944}, {524, 5695}, {754, 49717}, {1008, 9939}, {1009, 7812}, {7840, 11104}, {13745, 50186}, {22329, 37049}, {31179, 49129}, {48822, 50181}


leftri

Points on the Euler line: X(50237)-X(50244)

rightri

As in the preamble just before X(50199), in the plane of a triangle ABC, let

P = point on Nagel line;
D = point not on Nagel line or Euler line;
U = point on Nagel line, other than U and G;
L = line through U parallel to PD;
U′ = L^(Euler line).

For centers X(50237)-X(50244), we take P = X(1) and D = X(6). The appearance of (h,k), n in the following list means that if if U = h*a + k*(b+c) : : , then U' = X(n).

(1,-2), 44217
(1,-1), 377
(1,0), 405
(1,1) ,2
(1,2), 50207
(2,-1), 30
(2,1), 50205
(3,-1), 6872
(3,1), 31259
(4,1), 50202
(5,-3) ,31295
(5,-1), 31156
(1,-3), 50237)
(2,-3), 50238)
(3,-2), 50239
(4,-3), 50240)
(4,-1), 50241
(5,-2), 50242
(6,-1), 50243
(7, -3), 50244


X(50237) = X(2)X(3)∩X(518)X(3617)

Barycentrics    a^4 + 2*a^2*b^2 - 3*b^4 + 10*a^2*b*c + 10*a*b^2*c + 2*a^2*c^2 + 10*a*b*c^2 + 6*b^2*c^2 - 3*c^4 : :
X(50237) = 3 X[2] + 2 X[377], 9 X[2] - 4 X[405], 6 X[2] - X[6872], 3 X[2] - 8 X[8728], 7 X[2] - 2 X[31156], 9 X[2] + X[31295], X[2] + 4 X[44217], 13 X[2] - 8 X[50202], 21 X[2] - 16 X[50205], 3 X[2] - 4 X[50207], X[4] + 4 X[44222], X[20] + 4 X[44229], 3 X[377] + 2 X[405], 4 X[377] + X[6872], X[377] + 4 X[8728], 7 X[377] + 3 X[31156], 6 X[377] - X[31295], X[377] - 6 X[44217], 13 X[377] + 12 X[50202], 7 X[377] + 8 X[50205], X[377] + 2 X[50207], 8 X[405] - 3 X[6872], X[405] - 6 X[8728], 14 X[405] - 9 X[31156], 2 X[405] - 3 X[31259], 4 X[405] + X[31295], X[405] + 9 X[44217], 13 X[405] - 18 X[50202], 7 X[405] - 12 X[50205], X[405] - 3 X[50207], X[2475] + 4 X[44256], 7 X[3090] - 2 X[37234], X[3146] + 4 X[37426], X[3529] + 4 X[44286], X[3543] + 4 X[44284], X[6872] - 16 X[8728], 7 X[6872] - 12 X[31156], X[6872] - 4 X[31259], 3 X[6872] + 2 X[31295], X[6872] + 24 X[44217], 13 X[6872] - 48 X[50202], 7 X[6872] - 32 X[50205], X[6872] - 8 X[50207], 28 X[8728] - 3 X[31156], 4 X[8728] - X[31259], 24 X[8728] + X[31295], 2 X[8728] + 3 X[44217], 13 X[8728] - 3 X[50202], 7 X[8728] - 2 X[50205], 3 X[31156] - 7 X[31259], 18 X[31156] + 7 X[31295], X[31156] + 14 X[44217], 13 X[31156] - 28 X[50202], 3 X[31156] - 8 X[50205], 3 X[31156] - 14 X[50207], 6 X[31259] + X[31295], X[31259] + 6 X[44217], 13 X[31259] - 12 X[50202], 7 X[31259] - 8 X[50205], X[31295] - 36 X[44217], 13 X[31295] + 72 X[50202], 7 X[31295] + 48 X[50205], X[31295] + 12 X[50207], 14 X[36003] - 9 X[36004], 13 X[44217] + 2 X[50202], 21 X[44217] + 4 X[50205], 3 X[44217] + X[50207], 21 X[50202] - 26 X[50205], 6 X[50202] - 13 X[50207], 4 X[50205] - 7 X[50207], 4 X[10404] + 11 X[46933], 7 X[9780] - 2 X[41229], 8 X[5302] - 23 X[46931]

X(50237) lies on these lines: {2, 3}, {8, 27186}, {142, 12649}, {145, 28629}, {518, 3617}, {1788, 5261}, {2550, 10587}, {2886, 10586}, {3085, 26060}, {3218, 9780}, {3436, 3826}, {3621, 40587}, {3634, 4652}, {3841, 10527}, {3925, 12513}, {4413, 10585}, {5178, 38053}, {5249, 11523}, {5250, 28232}, {5258, 20076}, {5302, 8165}, {5550, 31418}, {5716, 26724}, {9342, 10588}, {9578, 30379}, {10528, 25466}, {10529, 33108}, {10590, 19877}, {10599, 11231}, {11236, 34501}, {19860, 28236}, {24645, 24982}, {24987, 38052}, {33130, 36578}, {37723, 38093}

X(50237) = midpoint of X(377) and X(31259)
X(50237) = reflection of X(i) in X(j) for these {i,j}: {31259, 50207}, {50207, 8728}
X(50237) = anticomplement of X(31259)
X(50237) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 377, 6872}, {2, 3146, 16859}, {2, 3522, 15674}, {2, 5177, 5187}, {2, 31295, 405}, {2, 37161, 5046}, {2, 37256, 17558}, {2, 37435, 16865}, {3, 6993, 6870}, {377, 405, 31295}, {377, 8728, 2}, {377, 20835, 37435}, {405, 31295, 6872}, {405, 36003, 4189}, {442, 16408, 6933}, {442, 37462, 2}, {443, 4197, 2}, {631, 31254, 2}, {2476, 17582, 2}, {2478, 17529, 2}, {3090, 17535, 2}, {4202, 37153, 2}, {4208, 37436, 2}, {5177, 5187, 6871}, {6854, 37438, 6838}, {6856, 17531, 2}, {6881, 6897, 6837}, {6901, 6989, 20}, {6931, 16862, 2}, {6933, 16408, 2}, {6933, 37462, 16408}, {8728, 44217, 377}, {17528, 17529, 2478}, {31259, 50207, 2}, {33026, 33840, 2}


X(50238) = X(2)X(3)∩X(518)X(3626)

Barycentrics    2*a^4 + a^2*b^2 - 3*b^4 + 8*a^2*b*c + 8*a*b^2*c + a^2*c^2 + 8*a*b*c^2 + 6*b^2*c^2 - 3*c^4 : :
X(50238) = 3 X[2] + 5 X[377], 9 X[2] - 5 X[405], 21 X[2] - 5 X[6872], 3 X[2] - 5 X[8728], 13 X[2] - 5 X[31156], 33 X[2] - 25 X[31259], 27 X[2] + 5 X[31295], X[2] - 5 X[44217], 7 X[2] - 5 X[50202], 6 X[2] - 5 X[50205], 21 X[2] - 25 X[50207], 3 X[377] + X[405], 7 X[377] + X[6872], 13 X[377] + 3 X[31156], 11 X[377] + 5 X[31259], 9 X[377] - X[31295], X[377] + 3 X[44217], 7 X[377] + 3 X[50202], 2 X[377] + X[50205], 7 X[377] + 5 X[50207], X[382] - 5 X[44229], 7 X[405] - 3 X[6872], X[405] - 3 X[8728], 13 X[405] - 9 X[31156], 11 X[405] - 15 X[31259], 3 X[405] + X[31295], X[405] - 9 X[44217], 7 X[405] - 9 X[50202], 2 X[405] - 3 X[50205], 7 X[405] - 15 X[50207], X[550] - 5 X[44222], X[3529] - 5 X[37426], 13 X[5079] - 5 X[37234], X[6872] - 7 X[8728], 13 X[6872] - 21 X[31156], 11 X[6872] - 35 X[31259], 9 X[6872] + 7 X[31295], X[6872] - 21 X[44217], X[6872] - 3 X[50202], 2 X[6872] - 7 X[50205], X[6872] - 5 X[50207], 13 X[8728] - 3 X[31156], 11 X[8728] - 5 X[31259], 9 X[8728] + X[31295], X[8728] - 3 X[44217], 7 X[8728] - 3 X[50202], 7 X[8728] - 5 X[50207], X[15681] - 5 X[44284], 33 X[31156] - 65 X[31259], 27 X[31156] + 13 X[31295], X[31156] - 13 X[44217], 7 X[31156] - 13 X[50202], 6 X[31156] - 13 X[50205], 21 X[31156] - 65 X[50207], 45 X[31259] + 11 X[31295], 5 X[31259] - 33 X[44217], 35 X[31259] - 33 X[50202], 10 X[31259] - 11 X[50205], 7 X[31259] - 11 X[50207], X[31295] + 27 X[44217], 7 X[31295] + 27 X[50202], 2 X[31295] + 9 X[50205], 7 X[31295] + 45 X[50207], 7 X[44217] - X[50202], 6 X[44217] - X[50205], 21 X[44217] - 5 X[50207], 6 X[50202] - 7 X[50205], 3 X[50202] - 5 X[50207], 7 X[50205] - 10 X[50207]

X(50238) lies on these lines: {2, 3}, {10, 24470}, {142, 12433}, {214, 15808}, {355, 31657}, {518, 3626}, {1125, 31795}, {3339, 9578}, {3632, 11529}, {3636, 40270}, {3753, 24475}, {3822, 47742}, {3824, 5719}, {3925, 5258}, {3982, 15556}, {4413, 10592}, {5250, 28216}, {5692, 11544}, {5790, 11024}, {5817, 48664}, {6147, 11523}, {7354, 41859}, {8583, 38034}, {8715, 25466}, {9654, 26040}, {9655, 19855}, {10175, 34862}, {12436, 34753}, {12513, 31419}, {13369, 18357}, {15174, 41862}, {17757, 26060}, {19860, 28224}, {19925, 31805}, {24467, 38042}, {31494, 34610}, {31673, 38204}

X(50238) = midpoint of X(377) and X(8728)
X(50238) = reflection of X(50205) in X(8728)
X(50238) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3529, 16866}, {2, 17563, 3530}, {2, 17573, 14869}, {377, 44217, 8728}, {443, 5177, 16408}, {443, 17528, 5}, {4197, 11112, 6675}, {5177, 16408, 5}, {5187, 16864, 17527}, {5187, 37462, 16864}, {6675, 11112, 548}, {6856, 16417, 632}, {6872, 50207, 50202}, {8728, 50202, 50207}, {16408, 17528, 5177}, {16418, 37435, 15704}, {16864, 17532, 5187}, {17527, 17532, 3850}, {17532, 37462, 17527}, {17565, 33033, 8359}, {17582, 37161, 381}


X(50239) = X(2)X(3)∩X(518)X(3632)

Barycentrics    3*a^4 - a^2*b^2 - 2*b^4 + 2*a^2*b*c + 2*a*b^2*c - a^2*c^2 + 2*a*b*c^2 + 4*b^2*c^2 - 2*c^4 : :
X(50239) = 3 X[2] - 5 X[377], 6 X[2] - 5 X[405], 9 X[2] - 5 X[6872], 9 X[2] - 10 X[8728], 7 X[2] - 5 X[31156], 27 X[2] - 25 X[31259], 3 X[2] + 5 X[31295], 4 X[2] - 5 X[44217], 11 X[2] - 10 X[50202], 21 X[2] - 20 X[50205], 24 X[2] - 25 X[50207], 3 X[377] - X[6872], 3 X[377] - 2 X[8728], 7 X[377] - 3 X[31156], 9 X[377] - 5 X[31259], 4 X[377] - 3 X[44217], 11 X[377] - 6 X[50202], 7 X[377] - 4 X[50205], 8 X[377] - 5 X[50207], 3 X[405] - 2 X[6872], 3 X[405] - 4 X[8728], 7 X[405] - 6 X[31156], 9 X[405] - 10 X[31259], X[405] + 2 X[31295], 2 X[405] - 3 X[44217], 11 X[405] - 12 X[50202], 7 X[405] - 8 X[50205], 4 X[405] - 5 X[50207], 4 X[546] - 5 X[44229], 4 X[550] - 5 X[37426], 4 X[3530] - 5 X[44222], 7 X[3851] - 5 X[37234], 7 X[6872] - 9 X[31156], 3 X[6872] - 5 X[31259], X[6872] + 3 X[31295], 4 X[6872] - 9 X[44217], 11 X[6872] - 18 X[50202], 7 X[6872] - 12 X[50205], 8 X[6872] - 15 X[50207], 14 X[8728] - 9 X[31156], 6 X[8728] - 5 X[31259], 2 X[8728] + 3 X[31295], 8 X[8728] - 9 X[44217], 11 X[8728] - 9 X[50202], 7 X[8728] - 6 X[50205], 16 X[8728] - 15 X[50207], 27 X[31156] - 35 X[31259], 3 X[31156] + 7 X[31295], 4 X[31156] - 7 X[44217], 11 X[31156] - 14 X[50202], 3 X[31156] - 4 X[50205], 24 X[31156] - 35 X[50207], 5 X[31259] + 9 X[31295], 20 X[31259] - 27 X[44217], 55 X[31259] - 54 X[50202], 35 X[31259] - 36 X[50205], 8 X[31259] - 9 X[50207], 4 X[31295] + 3 X[44217], 11 X[31295] + 6 X[50202], 7 X[31295] + 4 X[50205], 8 X[31295] + 5 X[50207], 4 X[34200] - 5 X[44284], 11 X[44217] - 8 X[50202], 21 X[44217] - 16 X[50205], 6 X[44217] - 5 X[50207], 21 X[50202] - 22 X[50205], 48 X[50202] - 55 X[50207], 32 X[50205] - 35 X[50207], 2 X[3244] - 5 X[10404]

X(50239) lies on these lines: {2, 3}, {8, 9655}, {10, 12943}, {56, 24387}, {72, 9579}, {79, 12635}, {100, 9654}, {149, 7373}, {392, 41869}, {484, 1706}, {518, 3632}, {519, 9657}, {551, 9670}, {938, 12690}, {956, 7354}, {958, 10483}, {1125, 12953}, {1376, 3585}, {1478, 5687}, {1699, 17614}, {1770, 5794}, {1836, 5730}, {2077, 10894}, {2099, 3244}, {2886, 4299}, {2932, 13273}, {3419, 4292}, {3434, 18990}, {3485, 10609}, {3583, 25524}, {3586, 5439}, {3612, 3838}, {3616, 9668}, {3624, 35271}, {3626, 37567}, {3636, 12053}, {3680, 34747}, {3753, 5691}, {3813, 4317}, {3822, 5217}, {3868, 18541}, {3877, 48661}, {3913, 5270}, {4004, 5727}, {4293, 24390}, {4297, 36999}, {4302, 25466}, {4325, 11194}, {4330, 4428}, {4333, 4640}, {4338, 44663}, {4421, 37719}, {4666, 31795}, {4857, 34706}, {5080, 9709}, {5086, 36279}, {5204, 25639}, {5229, 17757}, {5250, 28146}, {5253, 9669}, {5267, 31245}, {5275, 7748}, {5277, 44518}, {5283, 44526}, {5302, 37572}, {5362, 42127}, {5367, 42126}, {5440, 9612}, {5563, 11235}, {5692, 16118}, {5693, 17653}, {5880, 10572}, {6154, 10956}, {6224, 12735}, {7270, 50044}, {7802, 16992}, {8666, 31140}, {8715, 11237}, {9614, 37525}, {9647, 31484}, {9955, 35262}, {10107, 37711}, {10198, 15338}, {10386, 10587}, {10724, 34123}, {10728, 26062}, {10729, 34124}, {10861, 31671}, {10895, 25440}, {10949, 26437}, {11015, 31019}, {11246, 49168}, {11826, 26332}, {12246, 33899}, {12625, 24473}, {12649, 24470}, {15326, 26363}, {16120, 31806}, {17616, 24474}, {17619, 18492}, {18499, 34773}, {19860, 28160}, {19861, 22793}, {19925, 37001}, {26543, 48873}, {31473, 35821}, {37720, 40726}, {43531, 48836}, {48837, 49745}

X(50239) = midpoint of X(377) and X(31295)
X(50239) = reflection of X(i) in X(j) for these {i,j}: {405, 377}, {6872, 8728}
X(50239) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 550, 19535}, {3, 2475, 17532}, {4, 474, 17556}, {4, 6904, 4187}, {4, 6955, 6922}, {4, 11112, 474}, {4, 31775, 37022}, {4, 37435, 11112}, {5, 4190, 16371}, {20, 442, 16370}, {20, 37161, 6857}, {376, 5177, 7483}, {377, 405, 44217}, {377, 6872, 8728}, {405, 44217, 50207}, {443, 3146, 11113}, {443, 11113, 16842}, {452, 17529, 17542}, {546, 17563, 2}, {548, 6910, 19704}, {1657, 17528, 21}, {1836, 17647, 5730}, {2475, 17579, 3}, {2475, 37256, 2476}, {2476, 17579, 37256}, {2476, 37256, 3}, {3522, 6856, 37298}, {3830, 16408, 5046}, {3832, 17567, 17533}, {3843, 16417, 4193}, {3850, 17564, 6931}, {3851, 17573, 2}, {4187, 6904, 474}, {4187, 11112, 6904}, {4188, 17577, 1656}, {4197, 15680, 16418}, {4208, 5059, 11111}, {5073, 11108, 11114}, {5141, 13587, 3526}, {6850, 37468, 7580}, {6857, 37161, 442}, {6872, 8728, 405}, {6921, 6974, 6857}, {7504, 37307, 5054}, {15670, 17576, 19539}, {16418, 17800, 15680}, {17533, 17583, 17567}, {17676, 50171, 2049}, X(50239) = {26051, 37038, 16343}, {26117, 48816, 16458}, {31156, 50205, 405}, {37234, 37282, 405}


X(50240) = X(2)X(3)∩X(518)X(3625)

Barycentrics    4*a^4 - a^2*b^2 - 3*b^4 + 4*a^2*b*c + 4*a*b^2*c - a^2*c^2 + 4*a*b*c^2 + 6*b^2*c^2 - 3*c^4 : :
X(50240) = 3 X[2] - 7 X[377], 9 X[2] - 7 X[405], 15 X[2] - 7 X[6872], 6 X[2] - 7 X[8728], 11 X[2] - 7 X[31156], 39 X[2] - 35 X[31259], 9 X[2] + 7 X[31295], 5 X[2] - 7 X[44217], 8 X[2] - 7 X[50202], 15 X[2] - 14 X[50205], 33 X[2] - 35 X[50207], 3 X[377] - X[405], 5 X[377] - X[6872], 11 X[377] - 3 X[31156], 13 X[377] - 5 X[31259], 3 X[377] + X[31295], 5 X[377] - 3 X[44217], 8 X[377] - 3 X[50202], 5 X[377] - 2 X[50205], 11 X[377] - 5 X[50207], 5 X[405] - 3 X[6872], 2 X[405] - 3 X[8728], 11 X[405] - 9 X[31156], 13 X[405] - 15 X[31259], 5 X[405] - 9 X[44217], 8 X[405] - 9 X[50202], 5 X[405] - 6 X[50205], 11 X[405] - 15 X[50207], 5 X[3627] - 7 X[44286], 5 X[3843] - 7 X[44229], 11 X[5072] - 7 X[37234], 2 X[6872] - 5 X[8728], 11 X[6872] - 15 X[31156], 13 X[6872] - 25 X[31259], 3 X[6872] + 5 X[31295], X[6872] - 3 X[44217], 8 X[6872] - 15 X[50202], 11 X[6872] - 25 X[50207], 11 X[8728] - 6 X[31156], 13 X[8728] - 10 X[31259], 3 X[8728] + 2 X[31295], 5 X[8728] - 6 X[44217], 4 X[8728] - 3 X[50202], 5 X[8728] - 4 X[50205], 11 X[8728] - 10 X[50207], 5 X[14093] - 7 X[44284], 5 X[15712] - 7 X[44222], 5 X[17538] - 7 X[37426], 39 X[31156] - 55 X[31259], 9 X[31156] + 11 X[31295], 5 X[31156] - 11 X[44217], 8 X[31156] - 11 X[50202], 15 X[31156] - 22 X[50205], 3 X[31156] - 5 X[50207], 15 X[31259] + 13 X[31295], 25 X[31259] - 39 X[44217], 40 X[31259] - 39 X[50202], 25 X[31259] - 26 X[50205], 11 X[31259] - 13 X[50207], 5 X[31295] + 9 X[44217], 8 X[31295] + 9 X[50202], 5 X[31295] + 6 X[50205], 11 X[31295] + 15 X[50207], 8 X[44217] - 5 X[50202], 3 X[44217] - 2 X[50205], 33 X[44217] - 25 X[50207], 15 X[50202] - 16 X[50205], 33 X[50202] - 40 X[50207], 22 X[50205] - 25 X[50207], X[3633] - 7 X[10404]

X(50240) lies on these lines: {1, 41865}, {2, 3}, {8, 18541}, {355, 9952}, {495, 8715}, {518, 3625}, {535, 9710}, {2093, 4668}, {2550, 9655}, {3256, 26482}, {3340, 3633}, {3419, 24470}, {3585, 3820}, {3635, 12563}, {3824, 4304}, {3925, 10483}, {4316, 24953}, {4317, 31140}, {4691, 8256}, {4847, 31776}, {5128, 41229}, {5175, 5708}, {5229, 9709}, {5250, 28178}, {5258, 7354}, {5270, 34612}, {5694, 16120}, {5880, 37730}, {7270, 50042}, {9945, 11374}, {10592, 25440}, {10855, 31822}, {10895, 47742}, {11246, 47033}, {11544, 12635}, {12513, 18990}, {14929, 34284}, {17614, 38034}, {17616, 24475}, {17647, 39542}, {19860, 28186}, {19861, 40273}, {26332, 31777}, {26543, 48874}, {31420, 34610}, {31458, 34620}, {48835, 49734}, {48837, 49743}, {48847, 49745}

X(50240) = midpoint of X(405) and X(31295)
X(50240) = reflection of X(i) in X(j) for these {i,j}: {6872, 50205}, {8728, 377}
X(50240) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 11112, 17563}, {5, 17563, 17564}, {20, 17528, 6675}, {377, 6872, 44217}, {377, 31295, 405}, {442, 17579, 550}, {2475, 11112, 5}, {3529, 4208, 16418}, {3851, 19706, 17567}, {4188, 17530, 632}, {4190, 6933, 19537}, {4190, 17532, 140}, {6175, 37256, 7483}, {6871, 16371, 3628}, {6872, 44217, 50205}, {6917, 31775, 8727}, {6933, 19537, 140}, {6951, 37468, 37424}, {7483, 37256, 8703}, {13747, 17577, 5}, {17532, 19537, 6933}, {44217, 50205, 8728}


X(50241) = X(2)X(3)∩X(518)X(3244)

Barycentrics    4*a^4 - 3*a^2*b^2 - b^4 - 4*a^2*b*c - 4*a*b^2*c - 3*a^2*c^2 - 4*a*b*c^2 + 2*b^2*c^2 - c^4 : :
X(50241) = 9 X[2] - 5 X[377], 3 X[2] - 5 X[405], 3 X[2] + 5 X[6872], 6 X[2] - 5 X[8728], X[2] - 5 X[31156], 21 X[2] - 25 X[31259], 21 X[2] - 5 X[31295], 7 X[2] - 5 X[44217], 4 X[2] - 5 X[50202], 9 X[2] - 10 X[50205], 27 X[2] - 25 X[50207], X[377] - 3 X[405], X[377] + 3 X[6872], 2 X[377] - 3 X[8728], X[377] - 9 X[31156], 7 X[377] - 15 X[31259], 7 X[377] - 3 X[31295], 7 X[377] - 9 X[44217], 4 X[377] - 9 X[50202], 3 X[377] - 5 X[50207], X[382] - 5 X[37234], X[405] - 3 X[31156], 7 X[405] - 5 X[31259], 7 X[405] - X[31295], 7 X[405] - 3 X[44217], 4 X[405] - 3 X[50202], 3 X[405] - 2 X[50205], 9 X[405] - 5 X[50207], 7 X[3528] - 5 X[37426], 7 X[3851] - 5 X[44229], 2 X[6872] + X[8728], X[6872] + 3 X[31156], 7 X[6872] + 5 X[31259], 7 X[6872] + X[31295], 7 X[6872] + 3 X[44217], 4 X[6872] + 3 X[50202], 3 X[6872] + 2 X[50205], 9 X[6872] + 5 X[50207], X[8728] - 6 X[31156], 7 X[8728] - 10 X[31259], 7 X[8728] - 2 X[31295], 7 X[8728] - 6 X[44217], 2 X[8728] - 3 X[50202], 3 X[8728] - 4 X[50205], 9 X[8728] - 10 X[50207], 7 X[14869] - 5 X[44222], 7 X[15700] - 5 X[44284], 21 X[31156] - 5 X[31259], 21 X[31156] - X[31295], 7 X[31156] - X[44217], 4 X[31156] - X[50202], 9 X[31156] - 2 X[50205], 27 X[31156] - 5 X[50207], 5 X[31259] - X[31295], 5 X[31259] - 3 X[44217], 20 X[31259] - 21 X[50202], 15 X[31259] - 14 X[50205], 9 X[31259] - 7 X[50207], X[31295] - 3 X[44217], 4 X[31295] - 21 X[50202], 3 X[31295] - 14 X[50205], 9 X[31295] - 35 X[50207], 4 X[44217] - 7 X[50202], 9 X[44217] - 14 X[50205], 27 X[44217] - 35 X[50207], 9 X[50202] - 8 X[50205], 27 X[50202] - 20 X[50207], 6 X[50205] - 5 X[50207], X[3632] - 5 X[41229], 2 X[3626] - 5 X[5302]

X(50241) lies on these lines: {2, 3}, {8, 10386}, {35, 3820}, {63, 12433}, {80, 6154}, {355, 4512}, {392, 34773}, {495, 5248}, {496, 993}, {518, 3244}, {936, 9945}, {944, 5779}, {950, 31445}, {952, 5250}, {956, 15172}, {958, 15171}, {1001, 18990}, {1104, 50067}, {1385, 40998}, {1420, 10404}, {1483, 3877}, {1697, 3632}, {1698, 15338}, {1724, 48847}, {1730, 48915}, {3058, 5258}, {3488, 3927}, {3576, 6259}, {3583, 24953}, {3586, 5791}, {3612, 4679}, {3624, 15326}, {3626, 5302}, {3631, 47038}, {3636, 12577}, {3683, 10572}, {3746, 34606}, {3816, 5267}, {3868, 15935}, {3897, 10283}, {3940, 4313}, {4262, 38930}, {4294, 9708}, {4299, 4423}, {4304, 5044}, {4314, 34790}, {4316, 25542}, {4330, 34612}, {4652, 34753}, {4658, 48846}, {4847, 31795}, {4999, 10593}, {5122, 9843}, {5126, 11813}, {5217, 47742}, {5225, 31493}, {5251, 6284}, {5259, 7354}, {5283, 18907}, {5303, 26127}, {5692, 10543}, {5722, 31424}, {5901, 37826}, {6690, 10592}, {7283, 50042}, {7956, 11012}, {8227, 30264}, {8582, 31663}, {8666, 49736}, {9668, 19843}, {9669, 30478}, {11015, 27065}, {11235, 31458}, {11496, 31799}, {12019, 26066}, {12513, 15170}, {12514, 37730}, {12572, 24929}, {12635, 15174}, {12640, 34641}, {12953, 19854}, {15254, 17647}, {16616, 31730}, {17768, 30143}, {18481, 18540}, {19860, 28174}, {24466, 31423}, {24541, 38034}, {24703, 37737}, {25522, 38761}, {26543, 39884}, {31141, 31452}, {31157, 37720}, {38028, 41012}, {48863, 49728}

X(50241) = midpoint of X(405) and X(6872)
X(50241) = reflection of X(i) in X(j) for these {i,j}: {377, 50205}, {8728, 405}
X(50241) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 550, 17563}, {2, 3528, 17573}, {2, 19535, 3530}, {3, 17527, 17564}, {4, 11106, 16418}, {4, 16418, 6675}, {21, 5046, 7483}, {21, 11113, 5}, {376, 5129, 16408}, {377, 405, 50205}, {377, 50205, 8728}, {382, 16866, 2}, {405, 8728, 50202}, {405, 37426, 50204}, {405, 44217, 31259}, {442, 11114, 3627}, {452, 11111, 3}, {452, 17576, 5084}, {1657, 16857, 443}, {2478, 16370, 140}, {3146, 16845, 17528}, {3522, 17559, 16417}, {3534, 16853, 6904}, {3560, 31789, 8727}, {4187, 4189, 549}, {4187, 17525, 4189}, {4193, 37298, 632}, {4195, 4205, 50059}, {4195, 48814, 4205}, {5046, 7483, 5}, {5047, 15680, 11112}, {5084, 11111, 17576}, {5084, 17576, 3}, {5251, 6284, 31419}, {6868, 6913, 20420}, {6872, 31156, 405}, {6910, 17556, 3628}, {6920, 37468, 5}, {7483, 11113, 5046}, {7489, 7491, 5}, {11112, 15680, 15704}, {11114, 16865, 442}, {11319, 49735, 13728}, {13735, 26117, 17698}, {13736, 48817, 2049}, {13747, 17549, 15712}, {15678, 17536, 37256}, {16859, 17579, 17529}, {17535, 36004, 17583}, {17549, 37162, 13747}, {17698, 26117, 50058}, {31259, 31295, 44217}, {44222, 50206, 8728}


X(50242) = X(2)X(3)∩X(518)X(3633)

Barycentrics    5*a^4 - 3*a^2*b^2 - 2*b^4 - 2*a^2*b*c - 2*a*b^2*c - 3*a^2*c^2 - 2*a*b*c^2 + 4*b^2*c^2 - 2*c^4 : :
X(50242) = 9 X[2] - 7 X[377], 6 X[2] - 7 X[405], 3 X[2] - 7 X[6872], 15 X[2] - 14 X[8728], 5 X[2] - 7 X[31156], 33 X[2] - 35 X[31259], 15 X[2] - 7 X[31295], 8 X[2] - 7 X[44217], 13 X[2] - 14 X[50202], 27 X[2] - 28 X[50205], 36 X[2] - 35 X[50207], 2 X[377] - 3 X[405], X[377] - 3 X[6872], 5 X[377] - 6 X[8728], 5 X[377] - 9 X[31156], 11 X[377] - 15 X[31259], 5 X[377] - 3 X[31295], 8 X[377] - 9 X[44217], 13 X[377] - 18 X[50202], 3 X[377] - 4 X[50205], 4 X[377] - 5 X[50207], 5 X[405] - 4 X[8728], 5 X[405] - 6 X[31156], 11 X[405] - 10 X[31259], 5 X[405] - 2 X[31295], 4 X[405] - 3 X[44217], 13 X[405] - 12 X[50202], 9 X[405] - 8 X[50205], 6 X[405] - 5 X[50207], 8 X[548] - 7 X[37426], 5 X[3843] - 7 X[37234], 8 X[3850] - 7 X[44229], 5 X[6872] - 2 X[8728], 5 X[6872] - 3 X[31156], 11 X[6872] - 5 X[31259], 5 X[6872] - X[31295], 8 X[6872] - 3 X[44217], 13 X[6872] - 6 X[50202], 9 X[6872] - 4 X[50205], 12 X[6872] - 5 X[50207], 2 X[8728] - 3 X[31156], 22 X[8728] - 25 X[31259], 16 X[8728] - 15 X[44217], 13 X[8728] - 15 X[50202], 9 X[8728] - 10 X[50205], 24 X[8728] - 25 X[50207], 8 X[12108] - 7 X[44222], 8 X[14891] - 7 X[44284], 33 X[31156] - 25 X[31259], 3 X[31156] - X[31295], 8 X[31156] - 5 X[44217], 13 X[31156] - 10 X[50202], 27 X[31156] - 20 X[50205], 36 X[31156] - 25 X[50207], 25 X[31259] - 11 X[31295], 40 X[31259] - 33 X[44217], 65 X[31259] - 66 X[50202], 45 X[31259] - 44 X[50205], 12 X[31259] - 11 X[50207], 8 X[31295] - 15 X[44217], 13 X[31295] - 30 X[50202], 9 X[31295] - 20 X[50205], 12 X[31295] - 25 X[50207], 13 X[44217] - 16 X[50202], 27 X[44217] - 32 X[50205], 9 X[44217] - 10 X[50207], 27 X[50202] - 26 X[50205], 72 X[50202] - 65 X[50207], 16 X[50205] - 15 X[50207], 5 X[4668] - 7 X[41229]

X(50242) lies on these lines: {2, 3}, {8, 12732}, {518, 3633}, {529, 4309}, {535, 3303}, {956, 6284}, {993, 12953}, {1001, 10483}, {1376, 4324}, {1388, 4315}, {1621, 9655}, {2098, 3635}, {2975, 9668}, {3255, 15173}, {3586, 3916}, {3812, 4333}, {3913, 4330}, {3940, 11015}, {4297, 12679}, {4302, 5687}, {4316, 25524}, {4317, 49736}, {4428, 5270}, {4666, 31776}, {4668, 11010}, {4857, 11194}, {5119, 32537}, {5248, 12943}, {5250, 28160}, {5267, 10896}, {5362, 42130}, {5367, 42131}, {5441, 12635}, {5563, 34620}, {5985, 38733}, {7373, 20067}, {8666, 9670}, {9656, 10197}, {15172, 20076}, {17619, 35242}, {18480, 35258}, {19860, 28146}, {25522, 35271}, {26333, 30264}, {31473, 42267}, {34739, 37719}, {37730, 44447}

X(50242) = reflection of X(i) in X(j) for these {i,j}: {405, 6872}, {31295, 8728}
X(50242) = crossdifference of every pair of points on line {647, 39521}
X(50242) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17583, 474}, {4, 17576, 7483}, {20, 11113, 474}, {21, 382, 17532}, {376, 4187, 19537}, {377, 405, 50207}, {377, 50207, 44217}, {442, 11111, 19526}, {452, 3529, 11112}, {452, 11112, 16842}, {550, 2478, 16371}, {2476, 15677, 17571}, {3146, 11111, 442}, {3522, 13747, 19705}, {3830, 17571, 2476}, {4193, 37299, 3}, {5073, 16418, 2475}, {6857, 17525, 19539}, {6872, 31295, 31156}, {6938, 31789, 37022}, {7483, 17576, 16370}, {8728, 31156, 405}, {11108, 17800, 17579}, {11114, 15680, 3}, {15681, 16408, 37256}, {17548, 37375, 3526}, {20835, 37234, 405}, {31156, 31295, 8728}, {33032, 33244, 17694}


X(50243) = X(2)X(3)∩X(518)X(3635)

Barycentrics    6*a^4 - 5*a^2*b^2 - b^4 - 8*a^2*b*c - 8*a*b^2*c - 5*a^2*c^2 - 8*a*b*c^2 + 2*b^2*c^2 - c^4 : :
X(50243) = 15 X[2] - 7 X[377], 3 X[2] - 7 X[405], 9 X[2] + 7 X[6872], 9 X[2] - 7 X[8728], X[2] + 7 X[31156], 27 X[2] - 35 X[31259], 39 X[2] - 7 X[31295], 11 X[2] - 7 X[44217], 5 X[2] - 7 X[50202], 6 X[2] - 7 X[50205], 39 X[2] - 35 X[50207], X[377] - 5 X[405], 3 X[377] + 5 X[6872], 3 X[377] - 5 X[8728], X[377] + 15 X[31156], 9 X[377] - 25 X[31259], 13 X[377] - 5 X[31295], 11 X[377] - 15 X[44217], X[377] - 3 X[50202], 2 X[377] - 5 X[50205], 13 X[377] - 25 X[50207], 3 X[405] + X[6872], 3 X[405] - X[8728], X[405] + 3 X[31156], 9 X[405] - 5 X[31259], 13 X[405] - X[31295], 11 X[405] - 3 X[44217], 5 X[405] - 3 X[50202], 13 X[405] - 5 X[50207], X[1657] + 7 X[37234], 11 X[5072] - 7 X[44229], X[6872] - 9 X[31156], 3 X[6872] + 5 X[31259], 13 X[6872] + 3 X[31295], 11 X[6872] + 9 X[44217], 5 X[6872] + 9 X[50202], 2 X[6872] + 3 X[50205], 13 X[6872] + 15 X[50207], X[8728] + 9 X[31156], 3 X[8728] - 5 X[31259], 13 X[8728] - 3 X[31295], 11 X[8728] - 9 X[44217], 5 X[8728] - 9 X[50202], 2 X[8728] - 3 X[50205], 13 X[8728] - 15 X[50207], 11 X[15718] - 7 X[44284], 11 X[21735] - 7 X[37426], 27 X[31156] + 5 X[31259], 39 X[31156] + X[31295], 11 X[31156] + X[44217], 5 X[31156] + X[50202], 6 X[31156] + X[50205], 39 X[31156] + 5 X[50207], 65 X[31259] - 9 X[31295], 55 X[31259] - 27 X[44217], 25 X[31259] - 27 X[50202], 10 X[31259] - 9 X[50205], 13 X[31259] - 9 X[50207], 11 X[31295] - 39 X[44217], 5 X[31295] - 39 X[50202], 2 X[31295] - 13 X[50205], X[31295] - 5 X[50207], 5 X[44217] - 11 X[50202], 6 X[44217] - 11 X[50205], 39 X[44217] - 55 X[50207], 6 X[50202] - 5 X[50205], 39 X[50202] - 25 X[50207], 13 X[50205] - 10 X[50207], X[3625] - 7 X[5302], X[3633] + 7 X[41229]

X(50243) lies on these lines: {2, 3}, {35, 50038}, {518, 3635}, {958, 15172}, {1125, 31776}, {3625, 5302}, {3633, 31393}, {3683, 37730}, {3793, 27269}, {3927, 15935}, {4512, 5690}, {4668, 5727}, {5248, 12607}, {5250, 5844}, {5251, 15171}, {5258, 15170}, {5259, 18990}, {5436, 6147}, {5692, 15174}, {5719, 12572}, {5843, 37615}, {5901, 40998}, {9708, 10386}, {10165, 22792}, {10404, 13462}, {12433, 24391}, {15326, 25542}, {19860, 28212}, {31435, 34773}

X(50243) = midpoint of X(6872) and X(8728)
X(50243) = reflection of X(50205) in X(405)
X(50243) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21, 37162, 37298}, {377, 405, 50202}, {405, 6872, 8728}, {452, 16418, 5}, {5084, 17571, 549}, {6675, 11113, 546}, {11108, 11111, 550}, {11113, 16865, 6675}, {15680, 16861, 17529}, {16370, 17527, 3530}, {16408, 17576, 8703}, {17544, 17579, 17590}


X(50244) = X(2)X(3)∩X(518)X(3644)

Barycentrics    7*a^4 - 4*a^2*b^2 - 3*b^4 - 2*a^2*b*c - 2*a*b^2*c - 4*a^2*c^2 - 2*a*b*c^2 + 6*b^2*c^2 - 3*c^4 : :
X(50244) = 6 X[2] - 5 X[377], 9 X[2] - 10 X[405], 3 X[2] - 5 X[6872], 21 X[2] - 20 X[8728], 4 X[2] - 5 X[31156], 24 X[2] - 25 X[31259], 9 X[2] - 5 X[31295], 11 X[2] - 10 X[44217], 19 X[2] - 20 X[50202], 39 X[2] - 40 X[50205], 51 X[2] - 50 X[50207], 3 X[377] - 4 X[405], 7 X[377] - 8 X[8728], 2 X[377] - 3 X[31156], 4 X[377] - 5 X[31259], 3 X[377] - 2 X[31295], 11 X[377] - 12 X[44217], 19 X[377] - 24 X[50202], 13 X[377] - 16 X[50205], 17 X[377] - 20 X[50207], 2 X[405] - 3 X[6872], 7 X[405] - 6 X[8728], 8 X[405] - 9 X[31156], 16 X[405] - 15 X[31259], 11 X[405] - 9 X[44217], 19 X[405] - 18 X[50202], 13 X[405] - 12 X[50205], 17 X[405] - 15 X[50207], 4 X[546] - 5 X[37234], 11 X[3855] - 10 X[44229], 7 X[6872] - 4 X[8728], 4 X[6872] - 3 X[31156], 8 X[6872] - 5 X[31259], 3 X[6872] - X[31295], 11 X[6872] - 6 X[44217], 19 X[6872] - 12 X[50202], 13 X[6872] - 8 X[50205], 17 X[6872] - 10 X[50207], 16 X[8728] - 21 X[31156], 32 X[8728] - 35 X[31259], 12 X[8728] - 7 X[31295], 22 X[8728] - 21 X[44217], 19 X[8728] - 21 X[50202], 13 X[8728] - 14 X[50205], 34 X[8728] - 35 X[50207], 11 X[15715] - 10 X[44284], 11 X[15720] - 10 X[44222], 6 X[31156] - 5 X[31259], 9 X[31156] - 4 X[31295], 11 X[31156] - 8 X[44217], 19 X[31156] - 16 X[50202], 39 X[31156] - 32 X[50205], 51 X[31156] - 40 X[50207], 15 X[31259] - 8 X[31295], 55 X[31259] - 48 X[44217], 95 X[31259] - 96 X[50202], 65 X[31259] - 64 X[50205], 17 X[31259] - 16 X[50207], 11 X[31295] - 18 X[44217], 19 X[31295] - 36 X[50202], 13 X[31295] - 24 X[50205], 17 X[31295] - 30 X[50207], 19 X[44217] - 22 X[50202], 39 X[44217] - 44 X[50205], 51 X[44217] - 55 X[50207], 39 X[50202] - 38 X[50205], 102 X[50202] - 95 X[50207], 68 X[50205] - 65 X[50207], 4 X[3626] - 5 X[41229]

X(50244) lies on these lines: {2, 3}, {329, 11015}, {518, 3644}, {535, 4309}, {1058, 20067}, {2320, 5556}, {3244, 10624}, {3421, 20066}, {3434, 5258}, {3436, 4302}, {3626, 41229}, {3632, 12526}, {3636, 4311}, {3877, 12688}, {3897, 9812}, {4305, 5057}, {4308, 10404}, {5048, 5180}, {5250, 28164}, {5283, 43618}, {5303, 10591}, {5552, 15338}, {6284, 12513}, {7280, 10584}, {9655, 10587}, {9668, 10529}, {9670, 11240}, {9963, 20007}, {10527, 12953}, {10572, 44447}, {15171, 20076}, {19860, 28150}, {21031, 34626}, {28534, 37724}, {31673, 35258}, {32826, 37670}, {34620, 37722}

X(50244) = reflection of X(i) in X(j) for these {i,j}: {377, 6872}, {31295, 405}
X(50244) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 4189, 6933}, {4, 6914, 6860}, {20, 11114, 2478}, {20, 37267, 36005}, {376, 5046, 6921}, {377, 6872, 31156}, {377, 31156, 31259}, {405, 31295, 377}, {452, 5059, 17579}, {452, 17579, 37462}, {546, 19535, 2}, {1657, 11113, 4190}, {2476, 15678, 17576}, {3543, 17576, 2476}, {3627, 16370, 6871}, {4189, 6933, 6910}, {5084, 11001, 37256}, {6872, 31295, 405}, {6934, 37290, 6957}, {6938, 7491, 6836}, {11111, 33703, 2475}


X(50245) = X(140)X(3366)∩X(1327)X(2041)

Barycentrics    Sin[A] / ((Sqrt[3] + 2)*Cos[A] + 3*Sin[A]) : : (Peter Moses, 9/4/2022)
Barycentrics    1 / ((2 + Sqrt[3])*(-a^2 + b^2 + c^2) + 6*S) : : (Peter Moses, 9/4/2022)
Barycentrics    17 a^4+10 Sqrt[3] a^4+63 a^2 b^2+36 Sqrt[3] a^2 b^2-80 b^4-46 Sqrt[3] b^4+63 a^2 c^2+36 Sqrt[3] a^2 c^2+160 b^2 c^2+92 Sqrt[3] b^2 c^2-80 c^4-46 Sqrt[3] c^4+156 a^2 S+90 Sqrt[3] a^2 S : :
Barycentrics    2 (9 (7+4 Sqrt[3]) S^2+(97+56 Sqrt[3]) SB SC+3 (26+15 Sqrt[3]) S (SB+SC)) : :

See Antreas Hatzipolakis and Ercole Suppa euclid 5142.

X(50245) lies on the Kiepert circumhyperbola and these lines: {13,14814}, {18,42563}, {140,3366}, {397,16966}, {486,42992}, {1327,2041}, {1656,3392}, {2045,5351}, {3391,8960}, {3591,42998}, {6398,10576}, {6433,42177}, {10188,32789}, {10195,42936}, {11480,42237}, {12816,18587}, {12817,18585}, {12819,42245}, {16960,42222}, {36455,43562}, {42095,42238}, {42229,42979}


X(50246) = X(30)X(3391)∩X(381)X(3367)

Barycentrics    Sin[A] / (3*(Sqrt[3] - 2)*Cos[A] - Sin[A]) : : (Peter Moses, 9/4/2022)
Barycentrics    1 / (3*(2 - Sqrt[3])*(-a^2 + b^2 + c^2) + 2*S) : : (Peter Moses, 9/4/2022)
Barycentrics    (239+138 Sqrt[3]) a^4+2 (556+321 Sqrt[3]) (b^2-c^2)^2-a^2 ((1351+780 Sqrt[3]) b^2+(1351+780 Sqrt[3]) c^2+6 (362+209 Sqrt[3]) S) : :
Barycentrics    (1351+780 Sqrt[3]) S^2+9 (97+56 Sqrt[3]) SB SC+3 (362+209 Sqrt[3]) S (SB+SC) : :

See Antreas Hatzipolakis and Ercole Suppa euclid 5142.

X(50246) lies on the Kiepert circumhyperbola and these lines: {2,42198}, {14,32787}, {15,43503}, {16,42639}, {17,15765}, {18,18586}, {30,3391}, {381,3367}, {396,3845}, {485,35731}, {486,16267}, {590,36968}, {1327,36969}, {1328,36468}, {1991,42035}, {2042,10195}, {2043,5352}, {3317,36447}, {3364,36454}, {3366,35822}, {3830,6221}, {6306,40707}, {6561,43476}, {10187,14813}, {11122,33443}, {12816,42284}, {14226,37640}, {14241,36464}, {16809,36448}, {16962,42236}, {22235,42249}, {32788,42506}, {36463,42257}, {36466,36967}, {42133,43567}, {42217,43543}, {42230,42814}, {42237,42586}


leftri

Points in a [[(b^2 - c^2, c^2 - a^2, a^2 - b^2 ], b^2 + c^2, c^2 + a^2, a^2 + b^2]] coordinate system: X(50247)-X(50255)

rightri

If L1 and L2 are lines that meet in a point P not at infinity, then a [L1, L2]-coordinate system is a bivariate coordinate system having L1 as x-axis, L2 as y-axis, and P as origin. In this section, L1 and L2 are the following lines:

L1 is the line: (b^2 - c^2) α + (c^2 - a^2) β + (a^2 - b^2) γ = 0.

L2 is the line (b^2 + c^2) α + (c^2 + a^2) β + (a^2 + b^2) γ = 0.

The origin is given by (0, 0) = X(385) = a^4 - b^2 c^2 : b^4 - c^2 a^2 : c^4 - a^2 b^2.

Barycentrics u : v : w for a triangle center U = (x, y) in this system are given by

u : v : w = 2(a^4 - b^2 c^2) + (-2a^2 + b^2 + c^2) x + (b^2 - c^2) y : : ,

where, as functions of a, b, c, the coordinate x is symmetric of degree 2, and y is antisymmetric of degree 2.

The appearance of {x, y}, k in the following list means that (x, y) = X(k).

{-2 (a b+a c+b c), 0}, 17731
{-((2 a b c)/(a+b+c)), 0}, 19623
{1/2 (-a^2-b^2-c^2), 0}, 15480
{0, 0}, 385
{1/2 (a^2+b^2+c^2), 0}, 230
{a^2+b^2+c^2, 0}, 325
{(a^4+b^4+c^4)/(a^2+b^2+c^2), 0}, 15993
{(2 (a^3+b^3+c^3))/(a+b+c), -((2 (a-b) (a-c) (b-c))/(a+b+c))}, 36223
{2 (a^2+b^2+c^2), 0}, 7779
{2 (a+b+c)^2, 0}, 20536
{(2 (a^4+b^4+c^4))/(a^2+b^2+c^2), 0}, 69
{(2 (a^3+b^3+c^3))/(a+b+c), (2 (a-b) (a-c) (b-c))/(a+b+c)}, 8
{(-2*(a^3 + b^3 + c^3))/(a + b + c), (-2*(a - b)*(a - c)*(b - c))/(a + b + c)}, 50247
{-2*(a^2 + b^2 + c^2), 0}, 50248
{(-2*(a^4 + b^4 + c^4))/(a^2 + b^2 + c^2), 0}, 50249
{-((a^3 + b^3 + c^3)/(a + b + c)), -(((a - b)*(a - c)*(b - c))/(a + b + c))}, 50250
{-a^2 - b^2 - c^2, 0}, 50251
{-(a*b) - a*c - b*c, 0}, 50252
{-((a^4 + b^4 + c^4)/(a^2 + b^2 + c^2)), 0}, 50253
{(a^3 + b^3 + c^3)/(a + b + c), ((a - b)*(a - c)*(b - c))/(a + b + c)}, 50254
{(2*a*b*c)/(a + b + c), (-2*(a - b)*(a - c)*(b - c))/(a + b + c)}, 50255


X(50247) = X(8)X(385)∩X(519)X(1281)

Barycentrics    3*a^5 + a^4*b - a^3*b^2 + a^2*b^3 + a*b^4 - b^5 + a^4*c + a^2*b^2*c - b^4*c - a^3*c^2 + a^2*b*c^2 - 3*a*b^2*c^2 - b^3*c^2 + a^2*c^3 - b^2*c^3 + a*c^4 - b*c^4 - c^5 : :
X(50247) = 8 X[230] - 7 X[9780], 4 X[325] - 5 X[3616], 4 X[551] - 3 X[41136], 11 X[5550] - 10 X[7925], 3 X[7809] - 4 X[11725], 2 X[7840] - 3 X[38314], 2 X[13174] - 3 X[33265], 2 X[13178] - 3 X[19570], 8 X[15480] - X[20053]

X(50247) lies on these lines: {1, 7779}, {8, 385}, {21, 17731}, {230, 9780}, {325, 3616}, {519, 1281}, {524, 3241}, {551, 41136}, {754, 7983}, {846, 17389}, {944, 32515}, {1580, 6542}, {2784, 40236}, {4425, 29584}, {5051, 10026}, {5550, 7925}, {5965, 7970}, {7809, 11725}, {7840, 38314}, {7985, 24695}, {8424, 17377}, {13174, 33265}, {13178, 19570}, {15480, 20053}, {20476, 37311}, {20536, 26117}

X(50247) = reflection of X(i) in X(j) for these {i,j}: {8, 385}, {7779, 1}


X(50248) = X(2)X(6)∩X(20)X(20105)

Barycentrics    3*a^4 + a^2*b^2 - b^4 + a^2*c^2 - 3*b^2*c^2 - c^4 : :
X(50248) = 15 X[2] - 16 X[230], 9 X[2] - 8 X[325], 3 X[2] - 4 X[385], 5 X[2] - 4 X[7840], 21 X[2] - 20 X[7925], 11 X[2] - 12 X[8859], 9 X[2] - 16 X[15480], 17 X[2] - 16 X[22110], 7 X[2] - 8 X[22329], 25 X[2] - 24 X[41133], 7 X[2] - 6 X[41136], 47 X[2] - 48 X[41139], 33 X[2] - 32 X[44377], 63 X[2] - 64 X[44381], 31 X[2] - 32 X[44401], 6 X[230] - 5 X[325], 4 X[230] - 5 X[385], 8 X[230] - 5 X[7779], 4 X[230] - 3 X[7840], 28 X[230] - 25 X[7925], 44 X[230] - 45 X[8859], 3 X[230] - 5 X[15480], 17 X[230] - 15 X[22110], 14 X[230] - 15 X[22329], 10 X[230] - 9 X[41133], 56 X[230] - 45 X[41136], 47 X[230] - 45 X[41139], 8 X[230] - 15 X[44367], 11 X[230] - 10 X[44377], 21 X[230] - 20 X[44381], 31 X[230] - 30 X[44401], 2 X[325] - 3 X[385], 4 X[325] - 3 X[7779], 10 X[325] - 9 X[7840], 14 X[325] - 15 X[7925], 22 X[325] - 27 X[8859], 17 X[325] - 18 X[22110], 7 X[325] - 9 X[22329], 25 X[325] - 27 X[41133], 28 X[325] - 27 X[41136], 47 X[325] - 54 X[41139], 4 X[325] - 9 X[44367], 11 X[325] - 12 X[44377], 7 X[325] - 8 X[44381], 31 X[325] - 36 X[44401], 5 X[385] - 3 X[7840], 7 X[385] - 5 X[7925], 11 X[385] - 9 X[8859], and many others

X(50248) lies on these lines: {2, 6}, {20, 20105}, {23, 47154}, {30, 35369}, {76, 20088}, {147, 5965}, {148, 754}, {194, 14023}, {316, 19570}, {340, 41358}, {511, 5984}, {523, 20063}, {538, 14712}, {690, 31374}, {732, 8782}, {736, 6658}, {1078, 7890}, {1353, 37455}, {2549, 9939}, {2896, 4045}, {3552, 32817}, {3564, 40236}, {3734, 34604}, {3767, 7946}, {3793, 13586}, {3849, 8596}, {3933, 33225}, {4590, 31068}, {4788, 20075}, {5007, 46226}, {5286, 7929}, {5305, 7939}, {5309, 7850}, {5319, 7938}, {5346, 7922}, {5355, 7883}, {5368, 7944}, {5992, 17770}, {5999, 34380}, {6179, 7836}, {6392, 33019}, {6655, 7754}, {6781, 8591}, {7408, 38294}, {7533, 36207}, {7746, 7949}, {7751, 7785}, {7755, 7917}, {7758, 7793}, {7762, 16044}, {7767, 7839}, {7768, 7797}, {7780, 7905}, {7790, 41748}, {7794, 10583}, {7798, 7811}, {7812, 17131}, {7827, 7848}, {7828, 7882}, {7829, 32027}, {7833, 22253}, {7845, 14568}, {7854, 7894}, {7856, 7896}, {7857, 7916}, {7879, 7920}, {7900, 32827}, {7906, 33259}, {7921, 33020}, {7924, 14929}, {8267, 8272}, {9751, 33749}, {9855, 47287}, {10313, 39352}, {10487, 25486}, {10989, 47155}, {11898, 13862}, {14036, 21309}, {14645, 14931}, {14976, 43619}, {15717, 21445}, {16316, 37909}, {16895, 43136}, {17165, 20056}, {19689, 30435}, {20072, 33889}, {35511, 46228}, {36811, 39091}, {40000, 40002}

X(50248) = reflection of X(i) in X(j) for these {i,j}: {2, 44367}, {325, 15480}, {7779, 385}, {20094, 14712}, {40898, 3181}, {40899, 3180}
X(50248) = orthoptic-circle-of-Steiner-circumellipe-inverse of X(32525)
X(50248) = anticomplement of X(7779)
X(50248) = anticomplement of the isogonal conjugate of X(46286)
X(50248) = anticomplement of the isotomic conjugate of X(11606)
X(50248) = isotomic conjugate of the anticomplement of X(39091)
X(50248) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {11606, 6327}, {17957, 1369}, {46286, 8}, {46289, 15588}, {46970, 7192}
X(50248) = X(11606)-Ceva conjugate of X(2)
X(50248) = X(39091)-cross conjugate of X(2)
X(50248) = crosssum of X(3124) and X(5113)
X(50248) = crossdifference of every pair of points on line {512, 5041}
X(50248) = barycentric product X(i)*X(j) for these {i,j}: {1916, 36811}, {11606, 39091}
X(50248) = barycentric quotient X(i)/X(j) for these {i,j}: {36811, 385}, {39091, 7779}
X(50248) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 7766, 2}, {183, 6144, 7837}, {325, 15480, 385}, {325, 22329, 44381}, {325, 44381, 7925}, {385, 7779, 2}, {385, 7840, 230}, {385, 7925, 22329}, {385, 39093, 7766}, {385, 39099, 39089}, {1078, 7890, 13571}, {3629, 37671, 3329}, {5286, 7929, 19690}, {6179, 7855, 7836}, {6189, 6190, 3589}, {7735, 7897, 2}, {7751, 7877, 7785}, {7754, 7893, 6655}, {7760, 7826, 2896}, {7762, 17129, 16044}, {7767, 7839, 33021}, {7768, 7805, 7797}, {7779, 44367, 385}, {14614, 40341, 3314}, {16995, 45962, 2}, {20065, 20081, 6658}, {22329, 41136, 2}, {39365, 39366, 6}, {44361, 44362, 69}


X(50249) = X(2)X(6)∩X(115)X(5207)

Barycentrics    3*a^6 + 2*a^2*b^4 - b^6 - a^2*b^2*c^2 - 2*b^4*c^2 + 2*a^2*c^4 - 2*b^2*c^4 - c^6 : :
X(50249) = 3 X[69] - 4 X[15993], 8 X[230] - 7 X[3619], 4 X[325] - 5 X[3618], 3 X[385] - 2 X[15993], 4 X[597] - 3 X[41136], 3 X[1992] - 2 X[39099], 3 X[7840] - 4 X[44380], 3 X[21356] - 4 X[22329], 4 X[115] - 3 X[5207], 4 X[2030] - 3 X[7799], 3 X[5182] - 2 X[7813], 2 X[11646] - 3 X[19570]

X(50249) lies on these lines: {2, 6}, {115, 5207}, {511, 9862}, {542, 43453}, {575, 7905}, {576, 7877}, {698, 20094}, {736, 7737}, {754, 10754}, {895, 43696}, {1351, 40250}, {2030, 7799}, {3926, 38905}, {5038, 13571}, {5039, 10348}, {5052, 45804}, {5182, 7813}, {5476, 7926}, {5965, 10753}, {5969, 14712}, {6776, 32515}, {7768, 44499}, {8288, 19577}, {9863, 11477}, {9983, 13330}, {9993, 35389}, {11646, 19570}, {14023, 32452}, {32220, 37906}, {34380, 35458}

X(50249) = reflection of X(i) in X(j) for these {i,j}: {69, 385}, {7779, 6}
X(50249) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6189, 6190, 7792}, {39365, 39366, 7766}


X(50250) = X(1)X(524)∩X(8)X(385)

Barycentrics    4*a^5 + 2*a^4*b - a^3*b^2 + a^2*b^3 + a*b^4 - b^5 + 2*a^4*c + a^2*b^2*c - b^4*c - a^3*c^2 + a^2*b*c^2 - 4*a*b^2*c^2 - 2*b^3*c^2 + a^2*c^3 - 2*b^2*c^3 + a*c^4 - b*c^4 - c^5 : :
>X(50250) = X[8] - 3 X[385], 2 X[10] - 3 X[22329], X[145] + 3 X[44367], 6 X[230] - 5 X[1698], 3 X[325] - 4 X[1125], 5 X[3616] - 3 X[7840], 7 X[3622] - 3 X[7779], 7 X[3624] - 6 X[22110], X[3633] + 6 X[15480], 2 X[6390] - 3 X[38221], 9 X[8859] - 7 X[9780], 10 X[19862] - 9 X[41133], 17 X[19872] - 18 X[41139], 13 X[34595] - 12 X[44377], 9 X[41136] - 13 X[46934]

X(50250) lies on these lines: {1, 524}, {8, 385}, {10, 22329}, {145, 44367}, {230, 1698}, {325, 1125}, {523, 48324}, {1580, 3712}, {2329, 18253}, {3616, 7840}, {3622, 7779}, {3624, 22110}, {3633, 15480}, {3793, 5184}, {4938, 8772}, {6390, 38221}, {7718, 38294}, {7845, 11725}, {8859, 9780}, {19862, 41133}, {19872, 41139}, {28558, 49550}, {32515, 34773}, {34595, 44377}, {41136, 46934}

X(50250) = reflection of X(i) in X(j) for these {i,j}: {5184, 3793}, {7845, 11725}


X(50251) = X(2)X(6)∩X(5)X(7877)

Barycentrics    4*a^4 + a^2*b^2 - b^4 + a^2*c^2 - 4*b^2*c^2 - c^4 : :
X(50251) = 9 X[2] - 10 X[230], 6 X[2] - 5 X[325], 3 X[2] - 5 X[385], 9 X[2] - 5 X[7779], 7 X[2] - 5 X[7840], 27 X[2] - 25 X[7925], 13 X[2] - 15 X[8859], 3 X[2] - 10 X[15480], 11 X[2] - 10 X[22110], 4 X[2] - 5 X[22329], 16 X[2] - 15 X[41133], 19 X[2] - 15 X[41136], 29 X[2] - 30 X[41139], X[2] - 5 X[44367], 21 X[2] - 20 X[44377], 39 X[2] - 40 X[44381], 19 X[2] - 20 X[44401], 4 X[230] - 3 X[325], 2 X[230] - 3 X[385], 14 X[230] - 9 X[7840], 6 X[230] - 5 X[7925], 26 X[230] - 27 X[8859], X[230] - 3 X[15480], 11 X[230] - 9 X[22110], 8 X[230] - 9 X[22329], 32 X[230] - 27 X[41133], 38 X[230] - 27 X[41136], 29 X[230] - 27 X[41139], 2 X[230] - 9 X[44367], 7 X[230] - 6 X[44377], 13 X[230] - 12 X[44381], 19 X[230] - 18 X[44401], 3 X[325] - 2 X[7779], 7 X[325] - 6 X[7840], 9 X[325] - 10 X[7925], 13 X[325] - 18 X[8859], X[325] - 4 X[15480], 11 X[325] - 12 X[22110], 2 X[325] - 3 X[22329], 8 X[325] - 9 X[41133], 19 X[325] - 18 X[41136], 29 X[325] - 36 X[41139], X[325] - 6 X[44367], 7 X[325] - 8 X[44377], 13 X[325] - 16 X[44381], 19 X[325] - 24 X[44401], 3 X[385] - X[7779], 7 X[385] - 3 X[7840], 9 X[385] - 5 X[7925], 13 X[385] - 9 X[8859], 11 X[385] - 6 X[22110], 4 X[385] - 3 X[22329], 16 X[385] - 9 X[41133], 19 X[385] - 9 X[41136], 29 X[385] - 18 X[41139], X[385] - 3 X[44367], 7 X[385] - 4 X[44377], 13 X[385] - 8 X[44381], 19 X[385] - 12 X[44401], 4 X[3631] - 5 X[15993], 7 X[7779] - 9 X[7840], 3 X[7779] - 5 X[7925], 13 X[7779] - 27 X[8859], X[7779] - 6 X[15480], 11 X[7779] - 18 X[22110], 4 X[7779] - 9 X[22329], 16 X[7779] - 27 X[41133], 19 X[7779] - 27 X[41136], 29 X[7779] - 54 X[41139], X[7779] - 9 X[44367], 7 X[7779] - 12 X[44377], 13 X[7779] - 24 X[44381], 19 X[7779] - 36 X[44401], 27 X[7840] - 35 X[7925], 13 X[7840] - 21 X[8859], 3 X[7840] - 14 X[15480], 11 X[7840] - 14 X[22110], 4 X[7840] - 7 X[22329], 16 X[7840] - 21 X[41133], 19 X[7840] - 21 X[41136], 29 X[7840] - 42 X[41139], X[7840] - 7 X[44367], 3 X[7840] - 4 X[44377], 39 X[7840] - 56 X[44381], 19 X[7840] - 28 X[44401], 65 X[7925] - 81 X[8859], 5 X[7925] - 18 X[15480], 55 X[7925] - 54 X[22110], and many others

X(50251) lies on these lines: {2, 6}, {5, 7877}, {76, 18907}, {98, 34380}, {99, 3793}, {140, 7905}, {187, 14148}, {194, 33275}, {340, 16318}, {523, 8664}, {538, 6781}, {550, 9821}, {736, 19687}, {754, 47286}, {1285, 32836}, {1353, 22712}, {1384, 32833}, {1513, 5965}, {1975, 33239}, {2549, 7750}, {3053, 32820}, {3530, 12054}, {3564, 43460}, {3851, 39663}, {3926, 46453}, {3933, 6179}, {4969, 33891}, {5008, 6661}, {5254, 7893}, {5305, 7768}, {5319, 7879}, {5346, 7896}, {5355, 6656}, {5368, 7849}, {5475, 7751}, {5477, 5976}, {5939, 14645}, {5984, 29181}, {6194, 8550}, {6704, 34571}, {7745, 17129}, {7755, 7882}, {7758, 21843}, {7760, 7767}, {7761, 41748}, {7780, 7890}, {7790, 14929}, {7798, 8356}, {7807, 7855}, {7809, 43291}, {7811, 15048}, {7813, 35297}, {7838, 32992}, {7845, 33228}, {7850, 33184}, {7894, 8362}, {7903, 33249}, {7904, 9607}, {7917, 8361}, {8352, 32457}, {8364, 32027}, {8370, 17131}, {9753, 11898}, {10299, 21445}, {11646, 36849}, {12007, 37455}, {13186, 33921}, {14907, 22253}, {15687, 34733}, {16315, 47629}, {16316, 37897}, {17328, 29634}, {20065, 32819}, {33706, 48906}, {46517, 47155}

X(50251) = reflection of X(i) in X(j) for these {i,j}: {99, 3793}, {325, 385}, {385, 15480}, {7779, 230}, {47287, 6781}
X(50251) = crossdifference of every pair of points on line {512, 7772}
X(50251) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 5304, 7868}, {69, 14614, 7792}, {183, 193, 41624}, {230, 7779, 325}, {325, 385, 22329}, {385, 7779, 230}, {385, 44367, 15480}, {1992, 15589, 11174}, {3630, 5306, 3314}, {5304, 7868, 7792}, {5346, 7896, 8363}, {5355, 7826, 7848}, {5355, 7848, 6656}, {6144, 8667, 7774}, {6189, 6190, 3618}, {7735, 20080, 7788}, {7754, 14023, 7750}, {7774, 8667, 37688}, {7805, 7826, 6656}, {7805, 7848, 5355}, {7840, 44377, 325}, {7868, 14614, 5304}, {9766, 17008, 37647}


X(50252) = X(2)X(6)∩X(115)X(540)

Barycentrics    2*a^4 + 2*a^3*b - a*b^3 + 2*a^3*c + 2*a^2*b*c - a*b^2*c - b^3*c - a*b*c^2 - 2*b^2*c^2 - a*c^3 - b*c^3 : :

X(50252) lies on these lines: {2, 6}, {55, 17388}, {58, 21024}, {115, 540}, {171, 594}, {187, 519}, {237, 20475}, {523, 649}, {538, 6629}, {896, 4037}, {1100, 6682}, {1761, 16557}, {1914, 32919}, {2160, 2319}, {2329, 18253}, {3550, 17299}, {3684, 4969}, {3769, 49509}, {3943, 17735}, {4386, 17362}, {4434, 20693}, {5247, 21025}, {10453, 21793}, {12513, 37023}, {17303, 37604}, {17366, 24586}, {17448, 37592}, {23897, 49745}, {23905, 49728}

X(50252) = midpoint of X(385) and X(17731)
X(50252) = reflection of X(i) in X(j) for these {i,j}: {325, 44379}, {10026, 230}
X(50252) = crossdifference of every pair of points on line {386, 512}
X(50252) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {333, 40750, 1213}, {4386, 32853, 17362}, {6189, 6190, 17379}, {26244, 41629, 6}, {39022, 39023, 17398}


X(50253) = X(2)X(6)∩X(511)X(10991)

Barycentrics    4*a^6 + a^4*b^2 + 2*a^2*b^4 - b^6 + a^4*c^2 - 2*a^2*b^2*c^2 - 3*b^4*c^2 + 2*a^2*c^4 - 3*b^2*c^4 - c^6 : :
X(50253) = 4 X[6] - 3 X[41146], X[69] - 3 X[385], 2 X[69] - 3 X[15993], 2 X[141] - 3 X[22329], X[193] + 3 X[44367], 6 X[230] - 5 X[3763], 3 X[325] - 4 X[3589], 5 X[3618] - 3 X[7840], 7 X[3619] - 9 X[8859], X[6144] + 6 X[15480], 6 X[22110] - 7 X[47355], 3 X[1691] - 2 X[6390], 3 X[2482] - 4 X[38010], 6 X[46998] - 5 X[47452]

X(50253) lies on these lines: {2, 6}, {511, 10991}, {538, 14928}, {575, 7890}, {736, 35432}, {1503, 43453}, {1691, 6390}, {2030, 7813}, {2482, 38010}, {3793, 5104}, {3818, 35389}, {7826, 44499}, {8550, 12251}, {32515, 41747}, {46998, 47452}

X(50253) = reflection of X(i) in X(j) for these {i,j}: {5104, 3793}, {7779, 44380}, {7813, 2030}, {15993, 385}
X(50253) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 7806, 141}, {6189, 6190, 16989}


X(50254) = X(1)X(230)∩X(8)X(385)

Barycentrics    2*a^4*b + a^3*b^2 - a^2*b^3 - a*b^4 + b^5 + 2*a^4*c - a^2*b^2*c + b^4*c + a^3*c^2 - a^2*b*c^2 - 2*b^3*c^2 - a^2*c^3 - 2*b^2*c^3 - a*c^4 + b*c^4 + c^5 : :
X(50254) = X[944] - 3 X[21445], 2 X[946] - 3 X[39663], 5 X[1698] - 4 X[44377], X[3241] - 3 X[8859], 5 X[3617] - X[7779], 7 X[3624] - 8 X[44381], 4 X[3828] - 3 X[41133], 5 X[4668] + 2 X[15480], 5 X[7925] - 7 X[9780], X[7970] - 3 X[38227], X[7983] - 3 X[14568], X[9884] - 3 X[26613], 6 X[10256] - 7 X[31423], 2 X[11711] - 3 X[35297], 3 X[19875] - 2 X[22110], 3 X[25055] - 4 X[44401], 3 X[38047] - 2 X[44380], 3 X[38220] - 4 X[43291]

X(50254) lies on these lines: {1, 230}, {8, 385}, {10, 325}, {30, 5184}, {238, 1146}, {291, 40663}, {511, 40608}, {518, 15993}, {519, 22329}, {523, 10015}, {524, 3416}, {944, 21445}, {946, 39663}, {952, 11364}, {984, 30358}, {1503, 9860}, {1698, 44377}, {3241, 8859}, {3564, 9864}, {3617, 7779}, {3624, 44381}, {3828, 41133}, {4668, 15480}, {5690, 12782}, {7925, 9780}, {7970, 38227}, {7983, 14568}, {8256, 46032}, {8298, 44669}, {9884, 26613}, {10256, 31423}, {11711, 35297}, {13911, 44394}, {13973, 44392}, {19875, 22110}, {23902, 28369}, {25055, 44401}, {26300, 49347}, {26301, 49348}, {34379, 44369}, {35080, 35110}, {38047, 44380}, {38220, 43291}

X(50254) = midpoint of X(i) and X(j) for these {i,j}: {8, 385}, {5184, 13178}
X(50254) = reflection of X(i) in X(j) for these {i,j}: {1, 230}, {325, 10}
X(50254) = crossdifference of every pair of points on line {2278, 41159}


X(50255) = X(55)X(192)∩X(190)X(1580)

Barycentrics    a^5 + a^4*b - a^2*b^3 + a*b^4 + a^4*c - 2*a^3*b*c + a^2*b^2*c + a*b^3*c - b^4*c + a^2*b*c^2 - 3*a*b^2*c^2 - a^2*c^3 + a*b*c^3 + a*c^4 - b*c^4 : :

X(50255) lies on these lines: {21, 19623}, {55, 192}, {190, 1580}, {230, 2345}, {256, 4360}, {325, 17321}, {523, 4491}, {524, 3241}, {536, 1281}, {846, 3769}, {1284, 32922}, {1999, 17611}, {2667, 3979}, {3875, 8245}, {3905, 8931}, {3923, 4234}, {4425, 17320}, {5051, 44396}, {17731, 35623}, {22329, 50107}, {26117, 44370}


leftri

Points in a [[(b^2 - c^2, c^2 - a^2, a^2 - b^2 ], [(b^4 - c^4, c^4 - a^4, a^4 - b^4 ]] coordinate system: X(50256)-X(50279)

rightri

If L1 and L2 are lines that meet in a point P not at infinity, then a [L1, L2]-coordinate system is a bivariate coordinate system having L1 as x-axis, L2 as y-axis, and P as origin. In this section, L1 and L2 are the following lines:

L1 is the line: (b^2 - c^2) α + (c^2 - a^2) β + (a^2 - b^2) γ = 0.

L2 is the line (b^4 - c^4) α + (c^4 - a^4) β + (a^4 - b^4) γ = 0.

The origin is given by (0, 0) = X(2) = 1 : 1 : 1.

Barycentrics u : v : w for a triangle center U = (x, y) in this system are given by

u : v : w = (a^2 - b^2)(a^2 - c^2)(b^2 - c^2) + (-2a^2 + b^2 + c^2) x + (2a^4 - b^4 - c^4) y : : ,

where, as functions of a, b, c, the coordinate x is antisymmetric of degree 4, and y is antisymmetric of degree 2.

The appearance of {x, y}, k in the following list means that (x, y) = X(k).

{-2 (a-b) (a-c) (b-c) (a+b+c), -((2 (a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2))}, 50183
{-((2 (a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c)), -((2 (a-b) (a-c) (b-c))/(a+b+c))}, 50184
{-((2 (a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c)), (2 (a-b) (a-c) (b-c))/(a+b+c)}, 50234
{-((a-b) (a-c) (b-c) (a+b+c)), -((2 (a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2))}, 50166
{-(((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c)), -((2 (a-b) (a-c) (b-c))/(a+b+c))}, 49735
{-((a-b) (a-c) (b-c) (a+b+c)), -(((a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2))}, 50178
{-(((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c)), -(((a-b) (a-c) (b-c))/(a+b+c))}, 50179
{-((a-b) (a-c) (b-c) (a+b+c)), 0}, 42045
{-(((a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c)), 0}, 49749
{-(((a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c)), ((a-b) (a-c) (b-c))/(a+b+c)}, 49744
{-(1/2) (a-b) (a-c) (b-c) (a+b+c), -(((a-b) (a-c) (b-c))/(a+b+c))}, 50235
{-(1/2) (a-b) (a-c) (b-c) (a+b+c), -(((a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2))}, 50167
{-(((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(2 (a+b+c))), -(((a-b) (a-c) (b-c))/(a+b+c))}, 13745
{-(1/2) (a-b) (a-c) (b-c) (a+b+c), -(((a-b) (a-c) (b-c) (a+b+c))/(2 (a^2+b^2+c^2)))}, 50173
{-(((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(2 (a+b+c))), -(((a-b) (a-c) (b-c))/(2 (a+b+c)))}, 50174
{-(1/2) (a-b) (a-c) (b-c) (a+b+c), 0}, 37631
{-(((a-b) (a-c) (b-c) (a b+a c+b c))/(2 (a+b+c))), 0}, 50180
{-(((a-b) (a-c) (b-c) (a b+a c+b c))/(2 (a+b+c))), ((a-b) (a-c) (b-c))/(2 (a+b+c))}, 50226
{0, -(((a-b) (a-c) (b-c))/(a+b+c))}, 50157
{0, -(((a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2))}, 50217
{0, -(((a-b) (a-c) (b-c))/(2 (a+b+c)))}, 50161
{0, -(((a-b) (a-c) (b-c) (a+b+c))/(2 (a^2+b^2+c^2)))}, 50222
{0, 0}, 2
{0, ((a-b) (a-c) (b-c))/(2 (a+b+c))}, 50228
{0, ((a-b) (a-c) (b-c) (a+b+c))/(2 (a^2+b^2+c^2))}, 50227
{0, ((a-b) (a-c) (b-c))/(a+b+c)}, 50232
{0, ((a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2)}, 50181
{0, (2 (a-b) (a-c) (b-c))/(a+b+c)}, 50186
{((a-b) (a-c) (b-c) (a b+a c+b c))/(2 (a+b+c)), -(((a-b) (a-c) (b-c))/(2 (a+b+c)))}, 49729
{1/2 (a-b) (a-c) (b-c) (a+b+c), 0}, 49724
{((a-b) (a-c) (b-c) (a b+a c+b c))/(2 (a+b+c)), 0}, 50158
{1/2 (a-b) (a-c) (b-c) (a+b+c), ((a-b) (a-c) (b-c) (a+b+c))/(2 (a^2+b^2+c^2))}, 50162
{((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(2 (a+b+c)), ((a-b) (a-c) (b-c))/(2 (a+b+c))}, 50163
{1/2 (a-b) (a-c) (b-c) (a+b+c), ((a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2)}, 50168
{((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(2 (a+b+c)), ((a-b) (a-c) (b-c))/(a+b+c)}, 50169
{((a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c), -(((a-b) (a-c) (b-c))/(a+b+c))}, 49723
{(a-b) (a-c) (b-c) (a+b+c), 0}, 3578
{((a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c), 0}, 49717
{(a-b) (a-c) (b-c) (a+b+c), ((a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2)}, 50159
{((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c), ((a-b) (a-c) (b-c))/(a+b+c)}, 50160
{(a-b) (a-c) (b-c) (a+b+c), (2 (a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2)}, 50170
{((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c), (2 (a-b) (a-c) (b-c))/(a+b+c)}, 50171
{(2 (a-b) (a-c) (b-c) (a b+a c+b c))/(a+b+c), -((2 (a-b) (a-c) (b-c))/(a+b+c))}, 50215
{2 (a-b) (a-c) (b-c) (a+b+c), (2 (a-b) (a-c) (b-c) (a+b+c))/(a^2+b^2+c^2)}, 50154
{(2 (a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a+b+c), (2 (a-b) (a-c) (b-c))/(a+b+c)}, 50155
{-2*(a - b)*(a - c)*(b - c)*(a + b + c), 0}, 50256
{(-2*(a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c), 0}, 50257
{(-2*(a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c), ((a - b)*(a - c)*(b - c))/(a + b + c)}, 50258
{-((a - b)*(a - c)*(b - c)*(a + b + c)), -(((a - b)*(a - c)*(b - c))/(a + b + c))}, 50259
{-(((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c)), -(((a - b)*(a - c)*(b - c))/(a + b + c))}, 50260
{-(((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c)), 0}, 50261
{-(((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c)), ((a - b)*(a - c)*(b - c))/(2*(a + b + c))}, 50262
{-(((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c)), (2*(a - b)*(a - c)*(b - c))/(a + b + c)}, 50263
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c)), -1/2*((a - b)*(a - c)*(b - c))/(a + b + c)}, 50264
{-1/2*((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c), 0}, 50265
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c)), ((a - b)*(a - c)*(b - c))/(2*(a + b + c))}, 50266
{0, (-2*(a - b)*(a - c)*(b - c)*(a + b + c))/(a^2 + b^2 + c^2)}, 50267
{0, -1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b + a*c + b*c)}, 50268
{0, (2*(a - b)*(a - c)*(b - c)*(a + b + c))/(a^2 + b^2 + c^2)}, 50269
{((a - b)*(a - c)*(b - c)*(a + b + c))/2, -1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b + a*c + b*c)}, 50270
{((a - b)*(a - c)*(b - c)*(a + b + c))/2, ((a - b)*(a - c)*(b - c))/(2*(a + b + c))}, 50271
{(a - b)*(a - c)*(b - c)*(a + b + c), -(((a - b)*(a - c)*(b - c))/(a + b + c))}, 50272
{((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c), -1/2*((a - b)*(a - c)*(b - c))/(a + b + c)}, 50273
{((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a + b + c), 0}, 50274
{(a - b)*(a - c)*(b - c)*(a + b + c), ((a - b)*(a - c)*(b - c))/(a + b + c)}, 50275
{(2*(a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c), -(((a - b)*(a - c)*(b - c))/(a + b + c))}, 50276
{2*(a - b)*(a - c)*(b - c)*(a + b + c), 0}, 50277
{(2*(a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a + b + c), 0}, 50278
{2*(a - b)*(a - c)*(b - c)*(a + b + c), (2*(a - b)*(a - c)*(b - c))/(a + b + c)}, 50279


X(50256) = X(2)X(6)∩X(30)X(145)

Barycentrics    4*a^3 + 5*a^2*b - a*b^2 - 2*b^3 + 5*a^2*c + 2*a*b*c - b^2*c - a*c^2 - b*c^2 - 2*c^3 : :
X(50256) = 3 X[2] - 4 X[37631], 5 X[2] - 4 X[49724], 9 X[2] - 8 X[49730], X[3578] - 3 X[42045], 5 X[3578] - 6 X[49724], 3 X[3578] - 4 X[49730], 2 X[37631] - 3 X[42045], 5 X[37631] - 3 X[49724], 3 X[37631] - 2 X[49730], 5 X[42045] - 2 X[49724], 9 X[42045] - 4 X[49730], 9 X[49724] - 10 X[49730], 5 X[3616] - 4 X[49729], 5 X[3617] - 8 X[49743], X[3621] - 4 X[49745], 7 X[3622] - 4 X[49716], 5 X[3623] - 4 X[49739], 5 X[3876] - 8 X[10108], 3 X[50178] - 2 X[50219], 3 X[50154] - 4 X[50223], 3 X[50181] - 2 X[50223], 5 X[20052] - 8 X[49734], 4 X[23812] - 3 X[27812], 3 X[38314] - 2 X[49723], 11 X[46933] - 8 X[49718]

X(50256) lies on these lines: {1, 50215}, {2, 6}, {8, 49744}, {30, 145}, {319, 6539}, {320, 45222}, {511, 4430}, {519, 17164}, {527, 25254}, {540, 3241}, {542, 5992}, {553, 17495}, {754, 50183}, {1999, 4080}, {2403, 6002}, {3187, 4654}, {3616, 49729}, {3617, 49743}, {3621, 49745}, {3622, 49716}, {3623, 49739}, {3876, 10108}, {3879, 3995}, {3969, 7277}, {4202, 48861}, {4393, 50178}, {4644, 20017}, {4649, 20290}, {4697, 4938}, {4725, 4980}, {4754, 20055}, {5434, 20040}, {6542, 50154}, {10032, 31301}, {10385, 20064}, {11319, 48870}, {15677, 20077}, {17147, 17364}, {17162, 33097}, {17230, 50162}, {17248, 30562}, {17389, 25237}, {17770, 27804}, {19998, 49732}, {20011, 49719}, {20052, 49734}, {23812, 27812}, {28840, 47900}, {31029, 40940}, {31064, 32004}, {31145, 50171}, {32025, 43260}, {32859, 50068}, {38314, 49723}, {42044, 50132}, {46933, 49718}

X(50256) = reflection of X(i) in X(j) for these {i,j}: {2, 42045}, {8, 49744}, {3578, 37631}, {31145, 50171}, {50154, 50181}, {50165, 3241}, {50172, 50234}, {50215, 1}
X(50256) = anticomplement of X(3578)
X(50256) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {2160, 2891}, {6186, 41821}, {28615, 3648}
X(50256) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {599, 19738, 2}, {2895, 8025, 27081}, {2895, 20090, 8025}, {3578, 37631, 2}, {3578, 42045, 37631}, {17778, 20086, 16704}, {31143, 42028, 2}, {41816, 42025, 2}


X(50257) = X(2)X(6)∩X(519)X(50155)

Barycentrics    5*a^3*b + 2*a^2*b^2 - a*b^3 + 5*a^3*c + 8*a^2*b*c + 2*a*b^2*c - b^3*c + 2*a^2*c^2 + 2*a*b*c^2 + 2*b^2*c^2 - a*c^3 - b*c^3 : :
X(50257) = 5 X[2] - 4 X[50158], 3 X[2] - 4 X[50180], X[49717] - 3 X[49749], 5 X[49717] - 6 X[50158], 5 X[49749] - 2 X[50158], 3 X[49749] - 2 X[50180], 3 X[50158] - 5 X[50180], X[145] + 2 X[4754], 5 X[3616] - 4 X[50174], 3 X[38314] - 2 X[50179]

X(50257) lies on these lines: {1, 50184}, {2, 6}, {8, 50160}, {42, 4667}, {145, 4754}, {511, 1002}, {519, 50155}, {527, 4343}, {536, 25295}, {538, 3241}, {540, 48830}, {754, 50234}, {1100, 20347}, {1742, 42042}, {3616, 50174}, {4363, 20011}, {4644, 17018}, {4649, 13576}, {4651, 4670}, {4747, 20012}, {16667, 30949}, {17145, 25368}, {17169, 20970}, {17179, 46913}, {17389, 50154}, {24690, 29822}, {29584, 50183}, {38314, 50179}, {49735, 50235}, {49744, 50186}, {50157, 50215}, {50171, 50185}

X(50257) = reflection of X(i) in X(j) for these {i,j}: {2, 49749}, {8, 50160}, {49717, 50180}, {49735, 50235}, {50171, 50185}, {50184, 1}, {50186, 49744}, {50215, 50157}
X(50257) = anticomplement of X(49717)
X(50257) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20090, 40721, 30941}, {49717, 49749, 50180}, {49717, 50180, 2}


X(50258) = X(2)X(1171)∩X(6)X(25468)

Barycentrics    2*a^4 + 5*a^3*b + 2*a^2*b^2 - a*b^3 - b^4 + 5*a^3*c + 8*a^2*b*c + 2*a*b^2*c - b^3*c + 2*a^2*c^2 + 2*a*b*c^2 + 2*b^2*c^2 - a*c^3 - b*c^3 - c^4 : :

X(50258) lies on these lines: {2, 1171}, {6, 25468}, {148, 20090}, {524, 3416}, {538, 17389}, {540, 48822}, {543, 3241}, {754, 50234}, {3578, 50163}, {3892, 15309}, {7277, 21711}, {29597, 37631}, {39586, 49743}, {49495, 49745}, {49717, 50226}, {49723, 50180}, {50161, 50215}

X(50258) = reflection of X(i) in X(j) for these {i,j}: {3578, 50163}, {49717, 50226}, {49723, 50180}, {50157, 49749}, {50160, 50185}, {50179, 37631}, {50215, 50161}, {50232, 49744}


X(50259) = X(1)X(524)∩X(2)X(20970)

Barycentrics    5*a^3*b + 3*a^2*b^2 - a*b^3 + 5*a^3*c + 8*a^2*b*c + 2*a*b^2*c - b^3*c + 3*a^2*c^2 + 2*a*b*c^2 - a*c^3 - b*c^3 : :
X(50259) = 2 X[3244] + X[4754], 3 X[25055] - 2 X[50158], 3 X[38314] - 2 X[50174]

X(50259) lies on these lines: {1, 524}, {2, 20970}, {8, 50163}, {145, 50155}, {213, 29574}, {239, 50228}, {519, 49749}, {538, 3241}, {551, 49717}, {599, 25499}, {754, 29584}, {1992, 5283}, {2650, 35103}, {3244, 4754}, {3578, 29580}, {3679, 50180}, {3849, 50175}, {4297, 48909}, {4393, 50186}, {6161, 28840}, {7775, 31179}, {8584, 16552}, {14712, 20090}, {16834, 37631}, {16971, 28369}, {17389, 50159}, {25055, 50158}, {29597, 49724}, {33954, 46922}, {38314, 50174}, {49488, 50226}, {50215, 50221}

X(50259) = midpoint of X(145) and X(50155)
X(50259) = reflection of X(i) in X(j) for these {i,j}: {8, 50163}, {3578, 50161}, {3679, 50180}, {49717, 551}, {50157, 50235}, {50160, 49749}, {50179, 1}, {50215, 50221}, {50232, 37631}
X(50259) = {X(29584),X(42045)}-harmonic conjugate of X(50178)


X(50260) = X(1)X(524)∩X(2)X(4251)

Barycentrics    2*a^4 - 3*a^3*b - 2*a^2*b^2 - b^4 - 3*a^3*c - 6*a^2*b*c - 3*a*b^2*c - 2*a^2*c^2 - 3*a*b*c^2 - 2*b^2*c^2 - c^4 : :

X(50260) lies on these lines: {1, 524}, {2, 4251}, {540, 48830}, {543, 4754}, {754, 49744}, {3578, 29574}, {3970, 50093}, {7775, 37693}, {7810, 24512}, {7812, 37632}, {9939, 17379}, {14210, 27705}, {16784, 28369}, {29573, 49724}, {29633, 50228}, {29659, 50163}, {36479, 50155}, {37631, 50217}, {49717, 50161}, {49743, 50216}, {50180, 50232}, {50186, 50226}

X(50260) = reflection of X(i) in X(j) for these {i,j}: {1, 50235}, {49717, 50161}, {49723, 50157}, {49744, 49749}, {50186, 50226}, {50232, 50180}


X(50261) = X(2)X(6)∩X(30)X(48856)

Barycentrics    2*a^4 + a^3*b + 3*a^2*b^2 + a*b^3 - b^4 + a^3*c + 4*a^2*b*c + 4*a*b^2*c + b^3*c + 3*a^2*c^2 + 4*a*b*c^2 + a*c^3 + b*c^3 - c^4 : :
X(50261) = 3 X[50171] - 4 X[50229], 2 X[50229] - 3 X[50232], 3 X[38314] - 2 X[50235]

X(50261) lies on these lines: {2, 6}, {30, 48856}, {527, 42039}, {538, 50171}, {540, 48854}, {754, 49735}, {1961, 24712}, {4667, 4722}, {5311, 24694}, {7758, 16454}, {14023, 16342}, {19336, 34511}, {24685, 29688}, {38314, 50235}, {39587, 49745}, {50155, 50169}, {50157, 50174}, {50160, 50228}

X(50261) = midpoint of X(50184) and X(50186)
X(50261) = reflection of X(i) in X(j) for these {i,j}: {3578, 49717}, {49735, 50179}, {50155, 50169}, {50157, 50174}, {50160, 50228}, {50171, 50232}


X(50262) = X(1)X(543)∩X(10)X(524)

Barycentrics    2*a^4 + 6*a^3*b + 4*a^2*b^2 - b^4 + 6*a^3*c + 12*a^2*b*c + 6*a*b^2*c + 4*a^2*c^2 + 6*a*b*c^2 + 4*b^2*c^2 - c^4 : :

X(50262) lies on these lines: {1, 543}, {2, 1171}, {10, 524}, {538, 3175}, {540, 50161}, {594, 31013}, {671, 6625}, {754, 49744}, {2482, 17103}, {3849, 49745}, {5712, 34511}, {6542, 50155}, {7621, 24883}, {7810, 37632}, {7812, 17379}, {7827, 20132}, {8682, 23812}, {16826, 50179}, {19765, 34504}, {23903, 36523}, {24051, 24076}, {29615, 42045}, {34506, 37522}, {50157, 50234}

X(50262) = midpoint of X(i) and X(j) for these {i,j}: {37631, 50185}, {42045, 50160}, {49744, 49749}, {49745, 50235}, {50157, 50234}
X(50262) = reflection of X(i) in X(j) for these {i,j}: {50161, 50180}, {50228, 50226}


X(50263) = X(1)X(3849)∩X(8)X(524)

Barycentrics    4*a^4 + 3*a^3*b + 2*a^2*b^2 - 2*b^4 + 3*a^3*c + 6*a^2*b*c + 3*a*b^2*c + 2*a^2*c^2 + 3*a*b*c^2 + 2*b^2*c^2 - 2*c^4 : :
X(50263) = X[4754] - 4 X[49745], 3 X[25055] - 2 X[50221]

X(50263) lies on these lines: {1, 3849}, {8, 524}, {540, 48809}, {754, 49744}, {3679, 50229}, {6625, 44367}, {7775, 37522}, {7812, 24512}, {7840, 17103}, {8352, 23903}, {9939, 37632}, {19856, 49723}, {24704, 41312}, {25055, 50221}, {34506, 37693}, {37631, 50166}, {49743, 50235}, {50157, 50226}, {50158, 50215}

X(50263) = midpoint of X(50186) and X(50234)
X(50263) = reflection of X(i) in X(j) for these {i,j}: {3679, 50229}, {49717, 50232}, {49723, 50228}, {49749, 49744}, {50157, 50226}, {50215, 50158}, {50235, 49743}


X(50264) = X(1)X(538)∩X(524)X(551)

Barycentrics    6*a^3*b + 5*a^2*b^2 + 6*a^3*c + 12*a^2*b*c + 6*a*b^2*c + 5*a^2*c^2 + 6*a*b*c^2 + 2*b^2*c^2 : :
X(50264) = 5 X[1] + X[4754], X[4754] - 5 X[49749], 3 X[25055] - X[49717], 3 X[38314] - X[50179]

X(50264) lies on these lines: {1, 538}, {2, 20970}, {519, 50163}, {524, 551}, {540, 50221}, {543, 49739}, {754, 37631}, {1125, 50158}, {1509, 13586}, {3241, 50160}, {3736, 19276}, {3849, 49744}, {4340, 47102}, {4909, 15985}, {5969, 41193}, {7757, 17379}, {9466, 37632}, {12150, 20132}, {24512, 44562}, {25055, 49717}, {29574, 50162}, {37522, 46893}, {38314, 50179}, {42045, 50157}, {50114, 50228}, {50226, 50229}

X(50264) = midpoint of X(i) and X(j) for these {i,j}: {1, 49749}, {3241, 50160}, {37631, 50235}, {42045, 50157}, {49739, 50185}
X(50264) = reflection of X(i) in X(j) for these {i,j}: {50158, 1125}, {50163, 50180}, {50174, 551}, {50229, 50226}


X(50265) = X(2)X(6)∩X(30)X(48854)

Barycentrics    2*a^4 + 2*a^3*b + 5*a^2*b^2 + 2*a*b^3 - b^4 + 2*a^3*c + 8*a^2*b*c + 8*a*b^2*c + 2*b^3*c + 5*a^2*c^2 + 8*a*b*c^2 + 2*b^2*c^2 + 2*a*c^3 + 2*b*c^3 - c^4 : :
X(50265) = 3 X[13745] - 2 X[50221], 3 X[50174] - X[50221]

X(50265) lies on these lines: {2, 6}, {30, 48854}, {538, 50169}, {543, 50229}, {551, 50235}, {754, 13745}, {3058, 41312}, {4364, 4799}, {4708, 41002}, {7758, 16458}, {14023, 16343}, {16830, 49745}, {19290, 34511}, {39586, 49743}, {39587, 49734}, {49735, 50186}, {50171, 50184}, {50185, 50226}

X(50265) = midpoint of X(i) and X(j) for these {i,j}: {49735, 50186}, {50171, 50184}, {50179, 50232}
X(50265) = reflection of X(i) in X(j) for these {i,j}: {13745, 50174}, {49724, 50158}, {50169, 50228}, {50185, 50226}, {50235, 551}


X(50266) = X(1)X(3849)∩X(10)X(524)

Barycentrics    4*a^4 + 6*a^3*b + 5*a^2*b^2 - 2*b^4 + 6*a^3*c + 12*a^2*b*c + 6*a*b^2*c + 5*a^2*c^2 + 6*a*b*c^2 + 2*b^2*c^2 - 2*c^4 : :
X(50266) = 3 X[37631] - X[50235]

X(50266) lies on these lines: {1, 3849}, {10, 524}, {519, 50229}, {538, 49744}, {540, 50174}, {543, 49745}, {551, 50221}, {754, 37631}, {940, 7775}, {1509, 7840}, {4340, 34511}, {4393, 50186}, {5718, 34506}, {6625, 11054}, {7883, 20132}, {14762, 29438}, {17103, 39785}, {17397, 50157}, {29617, 42045}, {50179, 50234}

X(50266) = midpoint of X(i) and X(j) for these {i,j}: {42045, 50232}, {50179, 50234}
X(50266) = reflection of X(i) in X(j) for these {i,j}: {50163, 50226}, {50221, 551}


X(50267) = X(2)X(32)∩X(8)X(30)

Barycentrics    4*a^5 + 3*a^4*b - a^3*b^2 - a^2*b^3 - 3*a*b^4 - 2*b^5 + 3*a^4*c - 2*a^3*b*c - 2*a^2*b^2*c - 2*a*b^3*c - 3*b^4*c - a^3*c^2 - 2*a^2*b*c^2 - 2*a*b^2*c^2 - b^3*c^2 - a^2*c^3 - 2*a*b*c^3 - b^2*c^3 - 3*a*c^4 - 3*b*c^4 - 2*c^5 : :
X(50267) = 3 X[2] - 4 X[50222], 5 X[2] - 4 X[50227], X[50181] - 3 X[50217], 5 X[50181] - 6 X[50227], 3 X[50217] - 2 X[50222], 5 X[50217] - 2 X[50227], 5 X[50222] - 3 X[50227], 4 X[50216] - X[50234]

X(50267) lies on these lines: {2, 32}, {8, 30}, {524, 49747}, {1150, 36731}, {3849, 50159}, {4393, 50178}, {7761, 19742}, {14929, 18139}, {24271, 43990}, {26626, 37631}, {29593, 50162}, {42045, 50167}, {48802, 49723}, {48856, 49735}, {49488, 50176}, {49724, 50170}, {49729, 50233}, {50182, 50220}, {50216, 50234}

X(50267) = reflection of X(i) in X(j) for these {i,j}: {2, 50217}, {42045, 50167}, {50154, 3578}, {50170, 49724}, {50178, 50219}, {50181, 50222}, {50182, 50220}, {50183, 50166}, {50233, 49729}
X(50267) = anticomplement of X(50181)
X(50267) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {50181, 50217, 50222}, {50181, 50222, 2}


X(50268) = X(2)X(32)∩X(37)X(524)

Barycentrics    2*a^5 + 2*a^4*b - 2*a^3*b^2 - 2*a^2*b^3 - a*b^4 - b^5 + 2*a^4*c - 4*a^3*b*c - 8*a^2*b^2*c - 4*a*b^3*c - b^4*c - 2*a^3*c^2 - 8*a^2*b*c^2 - 8*a*b^2*c^2 - 2*b^3*c^2 - 2*a^2*c^3 - 4*a*b*c^3 - 2*b^2*c^3 - a*c^4 - b*c^4 - c^5 : :

X(50268) lies on these lines: {2, 32}, {37, 524}, {405, 48839}, {540, 551}, {3578, 17310}, {5259, 49723}, {7759, 16349}, {7768, 19224}, {7794, 19237}, {29580, 42045}, {29594, 49724}, {48853, 50169}, {49735, 50178}, {50155, 50218}, {50160, 50170}, {50173, 50221}

X(50268) = {X(50161),X(50227)}-harmonic conjugate of X(2)


X(50269) = X(2)X(32)∩X(30)X(944)

Barycentrics    4*a^5 + 5*a^4*b + a^3*b^2 + a^2*b^3 - a*b^4 - 2*b^5 + 5*a^4*c + 2*a^3*b*c + 2*a^2*b^2*c + 2*a*b^3*c - b^4*c + a^3*c^2 + 2*a^2*b*c^2 + 2*a*b^2*c^2 + b^3*c^2 + a^2*c^3 + 2*a*b*c^3 + b^2*c^3 - a*c^4 - b*c^4 - 2*c^5 : :
X(50269) = 5 X[2] - 4 X[50222], 3 X[2] - 4 X[50227], 3 X[50181] - X[50217], 5 X[50181] - 2 X[50222], 3 X[50181] - 2 X[50227], 5 X[50217] - 6 X[50222], 3 X[50222] - 5 X[50227], X[50234] + 2 X[50236]

X(50269) lies on these lines: {2, 32}, {30, 944}, {524, 49721}, {540, 50233}, {3578, 50168}, {3849, 50178}, {4045, 19743}, {7761, 19717}, {11287, 19738}, {18139, 18907}, {24275, 43990}, {37631, 50166}, {48830, 49744}, {48849, 50171}, {49735, 50231}, {50165, 50182}

X(50269) = reflection of X(i) in X(j) for these {i,j}: {2, 50181}, {3578, 50168}, {49735, 50231}, {50154, 50170}, {50165, 50182}, {50166, 37631}, {50183, 42045}, {50217, 50227}
X(50269) = anticomplement of X(50217)
X(50269) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {50181, 50217, 50227}, {50217, 50227, 2}


X(50270) = X(2)X(58)∩X(37)X(524)

Barycentrics    2*a^5 + 4*a^4*b - 3*a^2*b^3 - 2*a*b^4 - b^5 + 4*a^4*c + 2*a^3*b*c - 7*a^2*b^2*c - 7*a*b^3*c - 2*b^4*c - 7*a^2*b*c^2 - 10*a*b^2*c^2 - 3*b^3*c^2 - 3*a^2*c^3 - 7*a*b*c^3 - 3*b^2*c^3 - 2*a*c^4 - 2*b*c^4 - c^5 : :

X(50270) lies on these lines: {2, 58}, {30, 50095}, {37, 524}, {316, 333}, {754, 49724}, {3578, 17294}, {3679, 50170}, {3912, 49716}, {16833, 50166}, {16834, 49735}, {17023, 49728}, {19723, 50057}, {24603, 49745}, {29597, 42045}, {37631, 50174}, {41140, 50167}, {41229, 41814}, {48802, 50233}, {49717, 50181}


X(50271) = X(2)X(20970)∩X(10)X(524)

Barycentrics    2*a^3*b - 3*a^2*b^2 - 4*a*b^3 + 2*a^3*c - 4*a^2*b*c - 10*a*b^2*c - 4*b^3*c - 3*a^2*c^2 - 10*a*b*c^2 - 6*b^2*c^2 - 4*a*c^3 - 4*b*c^3 : :
X(50271) = 5 X[3617] - X[50155], 3 X[19875] - X[49749]

X(50271) lies on these lines: {2, 20970}, {8, 50179}, {10, 524}, {316, 1654}, {519, 50158}, {538, 3679}, {540, 50229}, {754, 49724}, {1500, 29615}, {3578, 50232}, {3617, 50155}, {3661, 50157}, {3828, 50180}, {3849, 49723}, {3912, 50235}, {4042, 50073}, {16589, 31144}, {19875, 49749}, {21070, 49737}, {29593, 50186}, {29594, 49730}, {49729, 50221}, {50095, 50173}

X(50271) = midpoint of X(i) and X(j) for these {i,j}: {8, 50179}, {3578, 50232}, {3679, 49717}
X(50271) = reflection of X(i) in X(j) for these {i,j}: {50161, 49730}, {50163, 10}, {50174, 50158}, {50180, 3828}, {50221, 49729}


X(50272) = X(1)X(524)∩X(8)X(3849)

Barycentrics    4*a^4 + 3*a^3*b - a^2*b^2 - 3*a*b^3 - 2*b^4 + 3*a^3*c - 6*a*b^2*c - 3*b^3*c - a^2*c^2 - 6*a*b*c^2 - 4*b^2*c^2 - 3*a*c^3 - 3*b*c^3 - 2*c^4 : :
X(50272) = 3 X[50157] - 2 X[50235]

X(50272) lies on these lines: {1, 524}, {8, 3849}, {538, 50215}, {540, 50160}, {599, 33953}, {754, 3578}, {1150, 7775}, {3241, 50221}, {5741, 34506}, {7840, 34016}, {29593, 50186}, {29610, 50228}, {42045, 50161}, {44367, 46707}, {49724, 50232}, {50163, 50234}

X(50272) = reflection of X(i) in X(j) for these {i,j}: {3241, 50221}, {42045, 50161}, {50179, 49723}, {50232, 49724}, {50234, 50163}


X(50273) = X(2)X(1171)∩X(524)X(551)

Barycentrics    2*a^4 + 2*a^3*b - 4*a^2*b^2 - 4*a*b^3 - b^4 + 2*a^3*c - 4*a^2*b*c - 10*a*b^2*c - 4*b^3*c - 4*a^2*c^2 - 10*a*b*c^2 - 4*b^2*c^2 - 4*a*c^3 - 4*b*c^3 - c^4 : :

X(50273) lies on these lines: {2, 1171}, {99, 1654}, {524, 551}, {538, 42051}, {540, 50158}, {543, 3679}, {594, 24074}, {754, 49717}, {3578, 29584}, {3956, 15309}, {4115, 17332}, {17251, 19276}, {40891, 50184}, {49728, 50221}, {49730, 50163}, {50215, 50232}

X(50273) = midpoint of X(i) and X(j) for these {i,j}: {3578, 50179}, {49717, 49723}, {50215, 50232}
X(50273) = reflection of X(i) in X(j) for these {i,j}: {50161, 49729}, {50163, 49730}, {50221, 49728}, {50228, 50158}


X(50274) = X(2)X(6)∩X(30)X(48849)

Barycentrics    2*a^4 - a^3*b - a^2*b^2 - a*b^3 - b^4 - a^3*c - 4*a^2*b*c - 4*a*b^2*c - b^3*c - a^2*c^2 - 4*a*b*c^2 - 4*b^2*c^2 - a*c^3 - b*c^3 - c^4 : :
X(50274) = 3 X[49735] - 4 X[50221], 3 X[50157] - 2 X[50221]

X(50274) lies on these lines: {2, 6}, {30, 48849}, {538, 49735}, {540, 48851}, {754, 50160}, {3241, 50235}, {4363, 4450}, {7758, 16342}, {13745, 50184}, {14023, 16454}, {24321, 46483}, {39581, 49716}, {50161, 50179}, {50163, 50232}, {50169, 50186}, {50185, 50234}

X(50274) = reflection of X(i) in X(j) for these {i,j}: {3241, 50235}, {42045, 49749}, {49735, 50157}, {50171, 50160}, {50179, 50161}, {50184, 13745}, {50186, 50169}, {50232, 50163}, {50234, 50185}


X(50275) = X(1)X(50158)∩X(8)X(538)

Barycentrics    3*a^3*b - a^2*b^2 - 3*a*b^3 + 3*a^3*c - 6*a*b^2*c - 3*b^3*c - a^2*c^2 - 6*a*b*c^2 - 4*b^2*c^2 - 3*a*c^3 - 3*b*c^3 : :
X(50275) = 4 X[3626] - X[4754], 3 X[19875] - 2 X[50180]

X(50275) lies on these lines: {1, 50158}, {2, 20970}, {8, 538}, {10, 49749}, {519, 49717}, {524, 3416}, {754, 3578}, {1018, 4478}, {3241, 50174}, {3626, 4754}, {3849, 50215}, {13586, 34016}, {17294, 49724}, {17310, 50161}, {19875, 50180}, {29573, 49730}, {29617, 50178}, {31145, 50184}, {42045, 50228}, {50229, 50234}

X(50275) = midpoint of X(31145) and X(50184)
X(50275) = reflection of X(i) in X(j) for these {i,j}: {1, 50158}, {3241, 50174}, {42045, 50228}, {49749, 10}, {50157, 49724}, {50160, 3679}, {50179, 49717}, {50234, 50229}, {50235, 49730}
X(50275) = {X(3578),X(29615)}-harmonic conjugate of X(50159)


X(50276) = X(1)X(524)∩X(2)X(1171)

Barycentrics    2*a^4 + 3*a^3*b - 2*a^2*b^2 - 3*a*b^3 - b^4 + 3*a^3*c - 6*a*b^2*c - 3*b^3*c - 2*a^2*c^2 - 6*a*b*c^2 - 2*b^2*c^2 - 3*a*c^3 - 3*b*c^3 - c^4 : :

X(50276) lies on these lines: {1, 524}, {2, 1171}, {8, 543}, {538, 3578}, {540, 48809}, {754, 50215}, {1931, 31143}, {4416, 21839}, {5739, 34511}, {7621, 25446}, {9939, 17343}, {17739, 49724}, {21816, 50093}, {23942, 36523}, {29576, 50163}, {29615, 50218}, {42045, 50174}, {49718, 50216}, {49729, 49749}, {49730, 50185}, {49744, 50158}, {50228, 50234}

X(50276) = reflection of X(i) in X(j) for these {i,j}: {42045, 50174}, {49744, 50158}, {49749, 49729}, {50157, 49723}, {50160, 49724}, {50185, 49730}, {50232, 49717}, {50234, 50228}, {50235, 49728}


X(50277) = X(2)X(6)∩X(8)X(540)

Barycentrics    4*a^3 + 3*a^2*b - 3*a*b^2 - 2*b^3 + 3*a^2*c - 2*a*b*c - 3*b^2*c - 3*a*c^2 - 3*b*c^2 - 2*c^3 : :
X(50277) = 5 X[2] - 4 X[37631], 3 X[2] - 4 X[49724], 7 X[2] - 8 X[49730], 5 X[3578] - 2 X[37631], 3 X[3578] - X[42045], 3 X[3578] - 2 X[49724], 7 X[3578] - 4 X[49730], 6 X[37631] - 5 X[42045], 3 X[37631] - 5 X[49724], 7 X[37631] - 10 X[49730], 7 X[42045] - 12 X[49730], 7 X[49724] - 6 X[49730], X[145] - 4 X[49716], 3 X[50154] - 2 X[50218], 5 X[3617] - 8 X[49718], 5 X[3617] - 4 X[50169], 5 X[3623] - 8 X[49728], 7 X[4678] - 4 X[49745], 3 X[38314] - 4 X[49729], 11 X[46933] - 8 X[49743]

X(50277) lies on these lines: {2, 6}, {8, 540}, {30, 12245}, {145, 49716}, {511, 4661}, {519, 50165}, {754, 50154}, {894, 6539}, {3241, 49723}, {3617, 49718}, {3623, 49728}, {3679, 50234}, {3995, 4416}, {4001, 17495}, {4080, 33066}, {4419, 20046}, {4678, 49745}, {4683, 17162}, {4715, 4980}, {17147, 17363}, {17163, 17770}, {18253, 27571}, {20290, 32864}, {28840, 48145}, {38314, 49729}, {40891, 50183}, {46933, 49743}, {50077, 50106}

X(50277) = reflection of X(i) in X(j) for these {i,j}: {2, 3578}, {145, 49735}, {3241, 49723}, {42045, 49724}, {49735, 49716}, {50165, 50215}, {50169, 49718}, {50172, 8}, {50183, 50217}, {50234, 3679}
X(50277) = anticomplement of X(42045)
X(50277) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 41816, 27081}, {2, 43990, 41816}, {81, 41816, 2}, {81, 43990, 27081}, {1654, 20086, 8025}, {2895, 16704, 31037}, {3578, 42045, 49724}, {5739, 31303, 37639}, {31143, 41629, 2}, {31144, 42025, 2}, {42045, 49724, 2}


X(50278) = X(2)X(6)∩X(8)X(538)

Barycentrics    3*a^3*b - 2*a^2*b^2 - 3*a*b^3 + 3*a^3*c - 6*a*b^2*c - 3*b^3*c - 2*a^2*c^2 - 6*a*b*c^2 - 2*b^2*c^2 - 3*a*c^3 - 3*b*c^3 : :
X(50278) = 3 X[2] - 4 X[50158], 5 X[2] - 4 X[50180], 3 X[49717] - X[49749], 3 X[49717] - 2 X[50158], 5 X[49717] - 2 X[50180], 5 X[49749] - 6 X[50180], 5 X[50158] - 3 X[50180], 5 X[3617] - 2 X[4754], 3 X[38314] - 4 X[50174]

X(50278) lies on these lines: {2, 6}, {8, 538}, {511, 44431}, {519, 50184}, {540, 48802}, {754, 50215}, {3241, 50179}, {3617, 4754}, {3679, 50155}, {3707, 30821}, {4643, 17135}, {4651, 4690}, {4748, 29814}, {5969, 5992}, {13576, 33082}, {17344, 20347}, {19998, 25349}, {29615, 50154}, {29617, 50183}, {38314, 50174}, {50232, 50234}

X(50278) = reflection of X(i) in X(j) for these {i,j}: {2, 49717}, {3241, 50179}, {49749, 50158}, {50155, 3679}, {50234, 50232}
X(50278) = anticomplement of X(49749)
X(50278) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4690, 24690, 4651}, {49717, 49749, 50158}, {49749, 50158, 2}


X(50279) = X(2)X(20970)∩X(8)X(524)

Barycentrics    7*a^3*b - 5*a*b^3 + 7*a^3*c + 4*a^2*b*c - 8*a*b^2*c - 5*b^3*c - 8*a*b*c^2 - 6*b^2*c^2 - 5*a*c^3 - 5*b*c^3 : :
X(50279) = 5 X[8] - 2 X[4754], 4 X[4754] - 5 X[50155], 5 X[3617] - 4 X[50163], 3 X[38314] - 4 X[50158]

X(50279) lies on these lines: {2, 20970}, {8, 524}, {69, 26079}, {145, 50179}, {519, 50184}, {538, 31145}, {599, 26978}, {754, 50154}, {1992, 26035}, {3241, 49717}, {3578, 50079}, {3617, 50163}, {6542, 50157}, {11160, 34284}, {17137, 29617}, {17316, 50235}, {38314, 50158}

X(50279) = reflection of X(i) in X(j) for these {i,j}: {145, 50179}, {3241, 49717}, {50155, 8}


X(50280) = X(2)X(187)∩X(381)X(576)

Barycentrics    8 a^4+7 a^2 b^2-10 b^4+7 a^2 c^2+16 b^2 c^2-10 c^4 : :
Barycentrics    9 S^2+27 SB SC+9 SB SW+9 SC SW-4 SW^2 : :
X(50280) = 2*X(2)-3*X(7603),5*X(2)-3*X(7771),5*X(7603)-2*X(7771)

See Antreas Hatzipolakis and Ercole Suppa euclid 5144.

X(50280) lies on these lines: {2,187}, {39,8352}, {99,8786}, {115,8584}, {381,576}, {524,43457}, {1975,7775}, {1992,18424}, {2782,3845}, {3363,9466}, {3534,9734}, {5007,33006}, {5008,5461}, {6781,9771}, {7694,15682}, {7745,8355}, {7747,27088}, {7753,37350}, {7757,17503}, {7777,32479}, {7785,11054}, {7801,32823}, {7812,39565}, {7821,8370}, {7843,33013}, {7845,15533}, {11632,14160}, {14046,43528}, {14971,18907}, {22329,39601}, {31652,33192}, {36523,41624}


leftri

Points in a [[b-c,c-a,a-b ], [b^3 - c^3, c^3 - a^3, a^3 - b^3 ]] coordinate system: X(50281)-X(50316)

rightri

If L1 and L2 are lines that meet in a point P not at infinity, then a [L1, L2]-coordinate system is a bivariate coordinate system having L1 as x-axis, L2 as y-axis, and P as origin. In this section, L1 and L2 are the following lines:

L1 is the line: (b-c) α + (c-a) β + (a-b) γ = 0.

L2 is the line (b^3 - c^3) α + (c^3 - a^3) β + (a^3 - b^3) γ = 0.

The origin is given by (0, 0) = X(2) = 1 : 1 : 1.

Barycentrics u : v : w for a triangle center U = (x,y) in this system are given by

u : v : w = (a-b)(a-c)(b-c)(a+b+c) + (-2a + b + c) x + (2 a^3 - b^3 - c^3) y ,

where, as functions of a, b, c, the coordinate x is antisymmetric of degree 3, and y is antisymmetric of degree 3.

The appearance of {x, y}, k in the following list means that (x, y) = X(k).

{-2 (a-b) (a-c) (b-c), 0}, 3241
{-2 (a-b) (a-c) (b-c), (2 (a-b) (a-c) (b-c))/(a b+a c+b c)}, 50133
{-((2 (a-b) (a-c) (b-c) (a b+a c+b c))/(a^2+b^2+c^2)), (2 (a-b) (a-c) (b-c))/(a^2+b^2+c^2)}, 1992
{-((a-b) (a-c) (b-c)), -((2 (a-b) (a-c) (b-c))/(a^2+b^2+c^2))}, 17274
{-(((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a b+a c+b c)), -((2 (a-b) (a-c) (b-c))/(a b+a c+b c))}, 17333
{-(((a-b) (a-c) (b-c) (a b+a c+b c))/(a^2+b^2+c^2)), -((2 (a-b) (a-c) (b-c))/(a^2+b^2+c^2))}, 4660
{-((a-b) (a-c) (b-c)), -(((a-b) (a-c) (b-c))/(a b+a c+b c))}, 49746
{-(((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a b+a c+b c)), -(((a-b) (a-c) (b-c))/(a b+a c+b c))}, 984
{-(((a-b) (a-c) (b-c) (a b+a c+b c))/(a^2+b^2+c^2)), -(((a-b) (a-c) (b-c))/(a^2+b^2+c^2))}, 48829
{-(((a-b) (a-c) (b-c) (a b+a c+b c))/(a^2+b^2+c^2)), -(((a-b) (a-c) (b-c))/(2 (a^2+b^2+c^2)))}, 4085
{-((a-b) (a-c) (b-c)), 0}, 1
{-((a-b) (a-c) (b-c)), ((a-b) (a-c) (b-c))/(a b+a c+b c)}, 17378
{-(((a-b) (a-c) (b-c) (a b+a c+b c))/(a^2+b^2+c^2)), ((a-b) (a-c) (b-c))/(a^2+b^2+c^2)}, 6
{-(1/2) (a-b) (a-c) (b-c), -(((a-b) (a-c) (b-c))/(a^2+b^2+c^2))}, 50092
{-(((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(2 (a b+a c+b c))), -(((a-b) (a-c) (b-c))/(a b+a c+b c))}, 50093
{-(1/2) (a-b) (a-c) (b-c), -(((a-b) (a-c) (b-c))/(2 (a b+a c+b c)))}, 49740
{-(((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(2 (a b+a c+b c))), -(((a-b) (a-c) (b-c))/(2 (a b+a c+b c)))}, 50094
{-(((a-b) (a-c) (b-c) (a b+a c+b c))/(2 (a^2+b^2+c^2))), -(((a-b) (a-c) (b-c))/(2 (a^2+b^2+c^2)))}, 48821
{-(1/2) (a-b) (a-c) (b-c), 0}, 551
{-(1/2) (a-b) (a-c) (b-c), ((a-b) (a-c) (b-c))/(2 (a b+a c+b c))}, 17392
{-(((a-b) (a-c) (b-c) (a b+a c+b c))/(2 (a^2+b^2+c^2))), ((a-b) (a-c) (b-c))/(2 (a^2+b^2+c^2))}, 597
{-(1/2) (a-b) (a-c) (b-c), (2 (a-b) (a-c) (b-c))/(a+b+c)^2}, 4349
{0, 0}, 2
{((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(2 (a b+a c+b c)), -(((a-b) (a-c) (b-c))/(a b+a c+b c))}, 3883
{1/2 (a-b) (a-c) (b-c), -(((a-b) (a-c) (b-c))/(2 (a b+a c+b c)))}, 17330
{((a-b) (a-c) (b-c) (a b+a c+b c))/(2 (a^2+b^2+c^2)), -(((a-b) (a-c) (b-c))/(2 (a^2+b^2+c^2)))}, 141
{1/2 (a-b) (a-c) (b-c), 0}, 10
{1/2 (a-b) (a-c) (b-c), ((a-b) (a-c) (b-c))/(2 (a b+a c+b c))}, 49725
{((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(2 (a b+a c+b c)), ((a-b) (a-c) (b-c))/(2 (a b+a c+b c))}, 24325
{((a-b) (a-c) (b-c) (a b+a c+b c))/(2 (a^2+b^2+c^2)), ((a-b) (a-c) (b-c))/(2 (a^2+b^2+c^2))}, 48810
{1/2 (a-b) (a-c) (b-c), ((a-b) (a-c) (b-c))/(a^2+b^2+c^2)}, 50115
{((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(2 (a b+a c+b c)), ((a-b) (a-c) (b-c))/(a b+a c+b c)}, 50116
{((a-b) (a-c) (b-c) (a b+a c+b c))/(2 (a^2+b^2+c^2)), ((a-b) (a-c) (b-c))/(a^2+b^2+c^2)}, 49482
{(a-b) (a-c) (b-c), -(((a-b) (a-c) (b-c))/(a b+a c+b c))}, 17346
{((a-b) (a-c) (b-c) (a b+a c+b c))/(a^2+b^2+c^2), -(((a-b) (a-c) (b-c))/(a^2+b^2+c^2))}, 599
{(a-b) (a-c) (b-c), 0}, 3679
{(a-b) (a-c) (b-c), ((a-b) (a-c) (b-c))/(a b+a c+b c)}, 49720
{((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a b+a c+b c), ((a-b) (a-c) (b-c))/(a b+a c+b c)}, 31178
{((a-b) (a-c) (b-c) (a b+a c+b c))/(a^2+b^2+c^2), ((a-b) (a-c) (b-c))/(a^2+b^2+c^2)}, 48805
{(a-b) (a-c) (b-c), (2 (a-b) (a-c) (b-c))/(a^2+b^2+c^2)}, 50127
{((a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a b+a c+b c), (2 (a-b) (a-c) (b-c))/(a b+a c+b c)}, 50128
{2 (a-b) (a-c) (b-c), -((2 (a-b) (a-c) (b-c))/(a b+a c+b c))}, 50074
{(2 (a-b) (a-c) (b-c) (a b+a c+b c))/(a^2+b^2+c^2), -((2 (a-b) (a-c) (b-c))/(a^2+b^2+c^2))}, 69
{(2 (a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a b+a c+b c), -(((a-b) (a-c) (b-c))/(a b+a c+b c))}, 49506
{2 (a-b) (a-c) (b-c), 0}, 8
{(2 (a-b) (a-c) (b-c) (a b+a c+b c))/(a^2+b^2+c^2), ((a-b) (a-c) (b-c))/(a^2+b^2+c^2)}, 32941
{(2 (a-b) (a-c) (b-c) (a^2+b^2+c^2))/(a b+a c+b c), (2 (a-b) (a-c) (b-c))/(a b+a c+b c)}, 24349
{-2*(a - b)*(a - c)*(b - c), -(((a - b)*(a - c)*(b - c))/(a + b + c)^2)}, 50281
{(-2*(a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a^2 + b^2 + c^2), 0}, 50282
{(-2*(a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a^2 + b^2 + c^2), ((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50283
{-2*(a - b)*(a - c)*(b - c), (2*(a - b)*(a - c)*(b - c))/(a + b + c)^2}, 50284
{-((a - b)*(a - c)*(b - c)), -(((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2))}, 50285
{-(((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a*b + a*c + b*c)), 0}, 50286
{-(((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a^2 + b^2 + c^2)), 0}, 50287
{-(((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a*b + a*c + b*c)), ((a - b)*(a - c)*(b - c))/(2*(a*b + a*c + b*c))}, 50288
{-(((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a*b + a*c + b*c)), (2*(a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50289
{-1/2*((a - b)*(a - c)*(b - c)), -(((a - b)*(a - c)*(b - c))/(a + b + c)^2)}, 50290
{-1/2*((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a*b + a*c + b*c), 0}, 50291
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c)^3)/(a*b*c), 0}, 50292
{-1/2*((a - b)*(a - c)*(b - c)), ((a - b)*(a - c)*(b - c))/(2*(a + b + c)^2)}, 50293
{-1/2*((a - b)*(a - c)*(b - c)), ((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50294
{0, (-2*(a - b)*(a - c)*(b - c))/(a + b + c)^2}, 50295
{0, -(((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c))}, 50296
{0, -1/2*((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50297
{0, -1/2*((a - b)*(a - c)*(b - c))/(a + b + c)^2}, 50298
{0, ((a - b)*(a - c)*(b - c))/(2*(a*b + a*c + b*c))}, 50299
{0, ((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50300
{0, ((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50301
{0, ((a - b)*(a - c)*(b - c))/(a + b + c)^2}, 50302
{0, (2*(a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50303
{((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(2*(a^2 + b^2 + c^2)), (-2*(a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50304
{((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(2*(a*b + a*c + b*c)), 0}, 50305
{((a - b)*(a - c)*(b - c)*(a + b + c)^3)/(2*a*b*c), 0}, 50306
{((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(2*(a*b + a*c + b*c)), (2*(a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50307
{(a - b)*(a - c)*(b - c), -(((a - b)*(a - c)*(b - c))/(a + b + c)^2)}, 50308
{(a - b)*(a - c)*(b - c), -1/2*((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50309
{((a - b)*(a - c)*(b - c)*(a^2 + b^2 + c^2))/(a*b + a*c + b*c), 0}, 50310
{((a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a^2 + b^2 + c^2), 0}, 50311
{(a - b)*(a - c)*(b - c), ((a - b)*(a - c)*(b - c))/(2*(a + b + c)^2)}, 50312
{(a - b)*(a - c)*(b - c), ((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50313
{(a - b)*(a - c)*(b - c), (2*(a - b)*(a - c)*(b - c))/(a + b + c)^2}, 50314
{(2*(a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a^2 + b^2 + c^2), -1/2*((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50315
{(2*(a - b)*(a - c)*(b - c)*(a*b + a*c + b*c))/(a^2 + b^2 + c^2), 0}, 50316


X(50281) = X(1)X(75)∩X(2)X(4716)

Barycentrics    a^3 + 3*a^2*b + a*b^2 + 3*a^2*c + 2*a*b*c - b^2*c + a*c^2 - b*c^2 : :
X(50281) = 5 X[3623] - X[4307]

X(50281) lies on these lines: {1, 75}, {2, 4716}, {6, 3993}, {9, 49489}, {10, 4060}, {31, 27804}, {37, 49488}, {43, 34064}, {81, 32934}, {145, 17343}, {192, 4649}, {238, 4393}, {386, 25660}, {516, 1482}, {519, 9348}, {551, 50120}, {726, 17318}, {748, 45222}, {752, 3241}, {894, 49452}, {940, 4970}, {968, 3791}, {984, 17319}, {1001, 49477}, {1100, 3923}, {1125, 4361}, {1255, 26037}, {1449, 4672}, {1483, 29207}, {1698, 48630}, {1738, 29574}, {1757, 4664}, {1962, 3187}, {1999, 17592}, {2345, 4527}, {2550, 4743}, {3210, 4038}, {3242, 3244}, {3247, 3842}, {3623, 4307}, {3685, 29584}, {3696, 3723}, {3706, 29644}, {3711, 4946}, {3741, 20182}, {3751, 49456}, {3773, 17314}, {3775, 17321}, {3821, 4851}, {3836, 17316}, {3879, 4655}, {3896, 5311}, {3924, 27705}, {3932, 50113}, {3969, 29647}, {3980, 37595}, {4021, 49511}, {4026, 17388}, {4068, 5248}, {4133, 5750}, {4349, 28580}, {4362, 37593}, {4363, 28522}, {4365, 19684}, {4419, 17771}, {4432, 16475}, {4460, 39581}, {4644, 17767}, {4645, 29588}, {4657, 49560}, {4663, 4681}, {4667, 28526}, {4670, 28484}, {4710, 18147}, {4732, 39586}, {4734, 17122}, {4852, 15569}, {4854, 32946}, {4891, 29668}, {4966, 17395}, {4971, 48822}, {4974, 16834}, {5220, 49685}, {5222, 31289}, {5271, 10180}, {5695, 16884}, {5712, 48643}, {6541, 38047}, {6542, 32784}, {6682, 39594}, {8715, 20990}, {9345, 17495}, {10453, 17600}, {14996, 32845}, {16672, 50018}, {16801, 49715}, {16830, 49459}, {17011, 25496}, {17013, 32944}, {17018, 32920}, {17019, 32860}, {17117, 40328}, {17233, 29633}, {17242, 33159}, {17248, 42334}, {17275, 25354}, {17300, 33149}, {17301, 49676}, {17302, 33087}, {17315, 29674}, {17363, 24697}, {17377, 33082}, {17378, 32857}, {17380, 29637}, {17389, 32846}, {17593, 37684}, {17599, 42057}, {17769, 36479}, {17778, 33154}, {17779, 30829}, {21806, 26227}, {21883, 23543}, {25351, 29602}, {28581, 36480}, {28606, 32853}, {29016, 48900}, {29572, 31252}, {29580, 50086}, {29597, 50096}, {29814, 32924}, {29829, 32848}, {29833, 33156}, {29837, 32855}, {29841, 33160}, {32926, 42042}, {32936, 37685}, {33064, 50068}, {33098, 42045}, {46845, 49468}, {49446, 49491}, {49453, 49479}, {49455, 49478}, {49457, 49495}, {49458, 49475}, {49510, 49680}

X(50281) = midpoint of X(3244) and X(4356)
X(50281) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3875, 24325}, {1, 4360, 32921}, {1, 10436, 5625}, {1, 24342, 17394}, {1, 49469, 5263}, {1, 49470, 32941}, {1, 49474, 86}, {192, 4649, 32935}, {1100, 49462, 3923}, {1999, 17592, 32916}, {3635, 49464, 42871}, {4852, 15569, 16825}, {5695, 16884, 33682}, {16777, 49486, 10}, {17011, 32915, 25496}, {17018, 32928, 32920}, {17393, 49470, 1}


X(50282) = X(1)X(2)∩X(6)X(528)

Barycentrics    a^3 + 5*a^2*b - a*b^2 + b^3 + 5*a^2*c - b^2*c - a*c^2 - b*c^2 + c^3 : :
X(50282) = X[8] + 2 X[49488], 2 X[10] + X[49495], X[145] - 4 X[49477], 4 X[1125] - X[49451], 5 X[3616] - 2 X[49458], X[4677] + 2 X[49543], 7 X[9780] - 4 X[49560], 3 X[19875] - 2 X[29594], X[69] - 4 X[4085], X[69] + 2 X[49497], 2 X[4085] + X[49497], 2 X[141] + X[49680], X[193] + 2 X[4660], X[193] - 4 X[49685], X[4660] + 2 X[49685], X[3751] + 2 X[3755], 2 X[3751] + X[24248], 4 X[3755] - X[24248], 4 X[3589] - X[49460], 5 X[3618] - 2 X[32941], X[3729] + 2 X[4780], X[3875] + 2 X[49529], 4 X[3946] - X[16496], 2 X[4353] + X[4924], 4 X[4663] - X[24695], 2 X[4743] + X[32935], 2 X[4852] + X[49688], X[49486] + 2 X[49524], 5 X[17304] - 2 X[49505], 2 X[17359] - 3 X[38047], 3 X[38087] - X[50087], 3 X[47352] - 2 X[48810], X[49446] + 2 X[49536]

X(50282) lies on these lines: {1, 2}, {6, 528}, {30, 44414}, {69, 4085}, {80, 32631}, {141, 49680}, {193, 4660}, {212, 10385}, {218, 11113}, {238, 47357}, {344, 49471}, {346, 49469}, {350, 4737}, {376, 9441}, {390, 16468}, {518, 17301}, {524, 48829}, {527, 3751}, {529, 48842}, {535, 48837}, {536, 47359}, {537, 49518}, {540, 50267}, {544, 1478}, {597, 48805}, {599, 48821}, {672, 5119}, {740, 50107}, {752, 1992}, {1002, 2809}, {1009, 3913}, {1203, 34719}, {1386, 50130}, {1738, 6173}, {1757, 6172}, {1834, 11236}, {2094, 32913}, {2099, 5723}, {2177, 24597}, {2276, 43065}, {2308, 20075}, {2345, 49459}, {2550, 4649}, {3097, 11200}, {3247, 38097}, {3416, 4725}, {3475, 33132}, {3550, 37666}, {3589, 49460}, {3618, 32941}, {3672, 49448}, {3717, 50110}, {3729, 4780}, {3875, 49529}, {3896, 33163}, {3914, 31164}, {3945, 38092}, {3946, 16496}, {3993, 27549}, {4000, 49490}, {4026, 17251}, {4038, 26040}, {4310, 49498}, {4353, 4924}, {4419, 49712}, {4429, 17297}, {4441, 4692}, {4452, 49532}, {4479, 17158}, {4644, 24715}, {4645, 50133}, {4663, 24695}, {4664, 49692}, {4674, 36887}, {4714, 33936}, {4722, 44447}, {4743, 28542}, {4852, 49688}, {4859, 38024}, {4971, 49486}, {5032, 28562}, {5220, 49742}, {5228, 5434}, {5247, 11111}, {5526, 37657}, {5695, 49726}, {5706, 34746}, {5710, 34720}, {5712, 32865}, {5734, 36692}, {5839, 33076}, {5853, 16475}, {6603, 21904}, {7982, 36670}, {9041, 50112}, {9803, 18473}, {11522, 36694}, {13632, 34718}, {15485, 37681}, {16484, 37650}, {17264, 49470}, {17274, 50091}, {17279, 49475}, {17304, 49505}, {17314, 33165}, {17320, 50075}, {17321, 49457}, {17359, 28581}, {17366, 42871}, {17382, 47358}, {17399, 49450}, {17720, 21870}, {17732, 17745}, {24210, 31142}, {25072, 38101}, {25568, 33135}, {26098, 31140}, {28503, 50120}, {28538, 50131}, {28580, 50127}, {30573, 47828}, {33144, 50103}, {33159, 49678}, {34744, 42050}, {34745, 37509}, {36695, 37714}, {37676, 48847}, {38087, 50087}, {46922, 49720}, {47352, 48810}, {48801, 48845}, {49446, 49536}, {49744, 50186}, {49749, 50169}, {50115, 50126}

X(50282) = midpoint of X(i) and X(j) for these {i,j}: {8, 50129}, {3751, 50080}, {17294, 49495}
X(50282) = reflection of X(i) in X(j) for these {i,j}: {1, 50114}, {599, 48821}, {5695, 49726}, {17274, 50091}, {17294, 10}, {24248, 50080}, {47358, 17382}, {48801, 48845}, {48805, 597}, {50080, 3755}, {50126, 50115}, {50129, 49488}, {50130, 1386}
X(50282) = crossdifference of every pair of points on line {649, 47329}
X(50282) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 8, 48802}, {8, 26626, 36480}, {10, 48822, 2}, {3751, 3755, 24248}, {4085, 49497, 69}, {4660, 49685, 193}, {29659, 50016, 8}


X(50283) = X(1)X(4753)∩X(6)X(519)

Barycentrics    3*a^3 + 5*a^2*b - a*b^2 + 5*a^2*c - b^2*c - a*c^2 - b*c^2 : :
X(50283) = 4 X[6] - X[32941], 3 X[6] - X[48805], 7 X[6] - X[49460], 5 X[6] - 2 X[49482], 2 X[6] + X[49497], 5 X[6] + X[49680], X[6] + 2 X[49685], 2 X[4856] + X[49529], 3 X[32941] - 4 X[48805], 7 X[32941] - 4 X[49460], 5 X[32941] - 8 X[49482], X[32941] + 2 X[49497], 5 X[32941] + 4 X[49680], X[32941] + 8 X[49685], 7 X[48805] - 3 X[49460], 5 X[48805] - 6 X[49482], 2 X[48805] + 3 X[49497], 5 X[48805] + 3 X[49680], X[48805] + 6 X[49685], 5 X[49460] - 14 X[49482], 2 X[49460] + 7 X[49497], 5 X[49460] + 7 X[49680], X[49460] + 14 X[49685], 4 X[49482] + 5 X[49497], 2 X[49482] + X[49680], X[49482] + 5 X[49685], 5 X[49497] - 2 X[49680], X[49497] - 4 X[49685], X[49680] - 10 X[49685], X[193] + 2 X[4085], 4 X[4663] - X[32935], 2 X[4663] + X[49488], X[32935] + 2 X[49488], 2 X[3751] + X[32921], 5 X[3751] + X[49446], X[3751] + 2 X[49489], 5 X[16834] - X[49446], 5 X[32921] - 2 X[49446], X[32921] - 4 X[49489], X[49446] - 10 X[49489], X[3242] - 4 X[4991], 2 X[3629] + X[4660], 2 X[4672] + X[49495], 2 X[4743] + X[24695], 3 X[38047] - X[50076], X[48799] - 3 X[48857]

X(50283) lies on these lines: {1, 4753}, {2, 3775}, {6, 519}, {9, 50111}, {10, 4758}, {86, 19875}, {145, 4439}, {193, 4085}, {238, 3241}, {239, 31178}, {516, 5102}, {518, 50124}, {524, 48821}, {528, 8584}, {536, 4663}, {537, 3751}, {726, 50120}, {740, 50127}, {752, 1992}, {894, 50086}, {984, 29584}, {1449, 48854}, {1698, 17387}, {1743, 49471}, {1757, 4664}, {3187, 31161}, {3242, 4991}, {3629, 4660}, {3655, 37510}, {3679, 46922}, {3686, 48853}, {3736, 18192}, {3758, 50016}, {3773, 50079}, {3842, 29597}, {3875, 28554}, {4363, 50018}, {4393, 49712}, {4407, 26626}, {4421, 37507}, {4432, 16670}, {4655, 50091}, {4667, 24693}, {4669, 33682}, {4672, 49495}, {4677, 5263}, {4716, 4740}, {4722, 32934}, {4743, 24695}, {4929, 16468}, {4946, 37540}, {11194, 37502}, {14621, 40891}, {15534, 48829}, {16666, 36480}, {16671, 49475}, {16786, 49701}, {16833, 24325}, {17119, 50021}, {17120, 49459}, {17121, 49490}, {17259, 19883}, {17277, 25055}, {17330, 48822}, {17349, 38314}, {17360, 36478}, {20160, 29622}, {25496, 31136}, {28558, 50080}, {29577, 33159}, {31151, 50133}, {34379, 50092}, {37654, 48830}, {38047, 50076}, {48799, 48857}, {49486, 49721}

X(50283) = midpoint of X(i) and X(j) for these {i,j}: {3751, 16834}, {15534, 48829}, {47359, 50131}, {49486, 49721}, {49495, 50126}
X(50283) = reflection of X(i) in X(j) for these {i,j}: {4655, 50091}, {16834, 49489}, {32921, 16834}, {50079, 3773}, {50126, 4672}
X(50283) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 49497, 32941}, {6, 49680, 49482}, {6, 49685, 49497}, {3751, 49489, 32921}, {4663, 49488, 32935}, {4667, 50022, 24693}


X(50284) = X(1)X(69)∩X(2)X(3791)

Barycentrics    3*a^3 + 3*a^2*b + a*b^2 - b^3 + 3*a^2*c + 2*a*b*c - b^2*c + a*c^2 - b*c^2 - c^3 : :

X(50284) lies on these lines: {1, 69}, {2, 3791}, {6, 3932}, {7, 32921}, {8, 4649}, {10, 1449}, {81, 33088}, {144, 49456}, {145, 740}, {192, 24695}, {193, 984}, {238, 17316}, {344, 16468}, {346, 4672}, {390, 49471}, {391, 3842}, {516, 944}, {519, 4349}, {726, 4644}, {752, 3241}, {1001, 17390}, {1100, 3416}, {1125, 17296}, {1279, 50125}, {1386, 4851}, {1482, 29207}, {1503, 48909}, {1738, 16834}, {1743, 4078}, {1757, 1992}, {1961, 14555}, {1999, 26098}, {2308, 17776}, {2345, 33682}, {2550, 49488}, {3332, 28850}, {3474, 4970}, {3616, 17238}, {3618, 29674}, {3619, 29646}, {3623, 28498}, {3629, 5220}, {3635, 4356}, {3672, 4655}, {3685, 17389}, {3686, 39586}, {3751, 4899}, {3773, 5749}, {3775, 32099}, {3790, 17120}, {3823, 50124}, {3836, 5222}, {3891, 42045}, {3912, 16475}, {3923, 17314}, {3945, 24325}, {3966, 37595}, {3993, 5698}, {4000, 49477}, {4026, 16884}, {4028, 5269}, {4310, 49472}, {4344, 32941}, {4360, 24248}, {4362, 5712}, {4393, 4645}, {4419, 17770}, {4438, 37666}, {4447, 37502}, {4454, 28516}, {4648, 16825}, {4676, 17315}, {4716, 50129}, {4725, 48802}, {4753, 5686}, {4852, 5880}, {4889, 49484}, {4916, 49482}, {4966, 38315}, {5018, 6604}, {5263, 17377}, {5311, 5739}, {5695, 17388}, {5846, 36479}, {5849, 24316}, {5905, 32928}, {6211, 14912}, {6542, 20145}, {6682, 37655}, {7174, 34379}, {7222, 50117}, {7226, 20086}, {8236, 49700}, {10453, 40718}, {11269, 33070}, {14996, 32842}, {16469, 29573}, {16477, 26685}, {16666, 38047}, {16823, 17391}, {16830, 17363}, {17011, 26034}, {17013, 33086}, {17163, 20046}, {17284, 38049}, {17318, 17768}, {17365, 49453}, {17378, 32922}, {17393, 24723}, {17778, 33144}, {18048, 36574}, {18141, 29821}, {18788, 25406}, {19785, 32949}, {20064, 27804}, {20069, 32937}, {20872, 35707}, {20930, 23689}, {24280, 49452}, {24342, 42696}, {24597, 29643}, {25496, 34255}, {26065, 33092}, {26626, 32784}, {28538, 48830}, {29606, 38059}, {29627, 31289}, {29658, 30828}, {29671, 37642}, {30699, 33097}, {32847, 50030}, {32857, 50101}, {33073, 33137}, {33093, 33163}, {33098, 50071}, {38053, 50023}, {38200, 50022}, {39587, 49457}, {47357, 49705}, {49478, 49681}

X(50284) = midpoint of X(145) and X(4307)
X(50284) = reflection of X(4356) in X(3635)
X(50284) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 33082, 17321}, {145, 20090, 24349}, {33093, 37685, 33163}


X(50285) = X(1)X(320)∩X(2)X(38)

Barycentrics    a^3 + 3*a*b^2 + b^3 + 3*a*c^2 + c^3 : :
X(50285) = 2 X[1] + X[4655], 4 X[1125] - X[32935], X[69] + 2 X[49472], 2 X[141] + X[49455], X[3242] + 2 X[3821], X[3416] + 2 X[49464], 4 X[4353] - X[32921], 2 X[4353] + X[49511], X[32921] + 2 X[49511], 5 X[3616] - 2 X[4672], 7 X[3622] - X[24695], 2 X[3663] + X[32941], 2 X[3773] + X[49446], 4 X[3946] - X[49497], 2 X[3946] + X[49505], X[49497] + 2 X[49505], 2 X[4085] + X[16496], 2 X[4085] - 5 X[17304], X[16496] + 5 X[17304], X[4660] - 4 X[17235], X[4660] + 2 X[49465], 2 X[17235] + X[49465], 2 X[4743] + X[49451], X[17276] + 2 X[49482], X[24248] + 2 X[49473], 3 X[25055] - X[50127], X[49453] + 2 X[49560]

X(50285) lies on these lines: {1, 320}, {2, 38}, {10, 17067}, {45, 1125}, {69, 49472}, {141, 28503}, {190, 29660}, {238, 17333}, {518, 17382}, {519, 599}, {527, 551}, {528, 49741}, {545, 3923}, {553, 1460}, {726, 17281}, {740, 50101}, {896, 29831}, {903, 5263}, {990, 28854}, {1086, 24693}, {1386, 4715}, {1626, 4428}, {2792, 10246}, {2796, 48805}, {2835, 3898}, {3616, 4672}, {3622, 24695}, {3662, 31151}, {3663, 28580}, {3672, 49471}, {3677, 3846}, {3679, 3775}, {3736, 16712}, {3773, 49446}, {3782, 29652}, {3836, 7174}, {3946, 49497}, {4000, 49457}, {4078, 41141}, {4085, 16496}, {4260, 48844}, {4334, 17078}, {4364, 24331}, {4384, 4407}, {4415, 29668}, {4419, 4432}, {4425, 17597}, {4439, 17284}, {4643, 50023}, {4650, 29838}, {4657, 49479}, {4660, 17235}, {4683, 17024}, {4688, 48809}, {4703, 7191}, {4743, 49451}, {4753, 5222}, {4865, 17184}, {4908, 49523}, {4966, 50113}, {4974, 37654}, {5625, 9791}, {5850, 38046}, {6173, 48854}, {7292, 27776}, {9041, 48821}, {10199, 24433}, {12263, 24397}, {14020, 28082}, {15485, 17258}, {16475, 17771}, {16484, 17247}, {16706, 49448}, {16825, 17330}, {17227, 32847}, {17236, 33076}, {17271, 32922}, {17276, 49482}, {17279, 49520}, {17280, 49517}, {17289, 49532}, {17291, 33165}, {17302, 49490}, {17305, 24841}, {17310, 33087}, {17313, 49676}, {17318, 49764}, {17323, 42871}, {17342, 29637}, {17354, 24821}, {17357, 49513}, {17367, 49712}, {17370, 49501}, {17469, 42058}, {17591, 33126}, {17598, 27184}, {17599, 33064}, {17716, 26840}, {17725, 24627}, {17770, 38315}, {21342, 29635}, {24231, 50116}, {24248, 49473}, {24457, 48295}, {24715, 36534}, {24725, 29823}, {25055, 50127}, {25557, 49738}, {26230, 36263}, {27754, 29632}, {28542, 50126}, {28554, 50107}, {28562, 50130}, {29633, 49499}, {29648, 32940}, {29666, 32938}, {29686, 32933}, {29815, 33067}, {29819, 32859}, {29853, 33761}, {31136, 50102}, {31162, 39553}, {33122, 46901}, {33143, 46909}, {41311, 48822}, {42057, 50068}, {48802, 50096}, {49453, 49560}, {49463, 50081}, {49477, 50131}, {49488, 50112}

X(50285) = midpoint of X(i) and X(j) for these {i,j}: {1, 17274}, {3242, 48829}, {17301, 47358}, {48805, 49747}, {49453, 50087}, {49463, 50081}
X(50285) = reflection of X(i) in X(j) for these {i,j}: {3923, 48810}, {4655, 17274}, {32935, 50115}, {48829, 3821}, {49488, 50112}, {50087, 49560}, {50115, 1125}, {50131, 49477}
X(50285) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {38, 26128, 4438}, {1086, 36480, 24693}, {3946, 49505, 49497}, {4353, 49511, 32921}, {16496, 17304, 4085}, {17235, 49465, 4660}, {17305, 24841, 29659}, {26150, 31302, 33159}


X(50286) = X(1)X(2)∩X(37)X(49746)

Barycentrics    2*a^3 + 3*a*b^2 - b^3 + 3*a*b*c + 3*a*c^2 - c^3 : :
X(50286) = X[8] + 2 X[49476], 4 X[551] - 5 X[29622], 5 X[3616] - 2 X[49466], 4 X[3842] - X[49506], X[17363] - 4 X[49457], X[17364] + 2 X[49448], 2 X[17365] + X[49501], 5 X[17391] - 2 X[49490], 2 X[24325] + X[49534], X[24349] + 2 X[49527], 3 X[24452] - X[49493], 3 X[39704] - X[49499]

X(50286) lies on these lines: {1, 2}, {37, 49746}, {45, 49709}, {75, 28503}, {86, 49688}, {192, 28580}, {377, 48838}, {388, 7185}, {516, 50090}, {518, 17378}, {524, 50075}, {528, 4664}, {536, 49720}, {537, 50128}, {538, 50171}, {545, 49447}, {644, 5276}, {664, 5252}, {752, 984}, {903, 5880}, {952, 44430}, {964, 48864}, {1022, 48164}, {2550, 50101}, {3126, 44550}, {3219, 42058}, {3242, 17313}, {3251, 47804}, {3303, 16048}, {3416, 17271}, {3654, 13634}, {3655, 13635}, {3662, 31151}, {3696, 50088}, {3699, 17723}, {3717, 50115}, {3746, 17522}, {3790, 5263}, {3819, 3873}, {3822, 31084}, {3842, 49506}, {3895, 40131}, {3913, 19310}, {3932, 17342}, {4085, 17396}, {4202, 48844}, {4344, 27549}, {4349, 4899}, {4370, 4676}, {4385, 37150}, {4421, 19326}, {4429, 17382}, {4518, 5724}, {4645, 7174}, {4660, 17247}, {4675, 24841}, {4715, 49515}, {4844, 47771}, {4863, 34064}, {4908, 49484}, {4968, 33933}, {5846, 17330}, {5847, 50074}, {5881, 7379}, {5886, 24808}, {7385, 7982}, {7951, 31126}, {9041, 17392}, {9053, 49738}, {9269, 47802}, {11194, 19325}, {12513, 19314}, {14005, 33955}, {14421, 44429}, {15668, 49690}, {16496, 17300}, {17000, 49497}, {17234, 49465}, {17242, 32941}, {17248, 33076}, {17259, 49679}, {17264, 48805}, {17277, 49681}, {17297, 47358}, {17315, 49460}, {17317, 42871}, {17320, 32850}, {17339, 49482}, {17346, 28538}, {17349, 49684}, {17363, 49457}, {17364, 49448}, {17365, 49501}, {17368, 33165}, {17375, 49505}, {17379, 49529}, {17391, 49490}, {17399, 48821}, {17679, 48840}, {19277, 48804}, {21554, 37727}, {21807, 34611}, {22116, 43262}, {24325, 49534}, {24349, 49527}, {24441, 24723}, {24452, 49493}, {27184, 31134}, {28534, 49748}, {28581, 50123}, {30580, 47809}, {31169, 34606}, {33309, 48824}, {36404, 37654}, {36409, 50082}, {39605, 47745}, {39704, 49499}, {41313, 50130}, {46922, 47359}, {48627, 49455}, {49450, 50132}, {49470, 50113}, {49735, 50217}

X(50286) = midpoint of X(i) and X(j) for these {i,j}: {49450, 50132}, {49527, 50116}
X(50286) = reflection of X(i) in X(j) for these {i,j}: {75, 49725}, {3241, 29574}, {17333, 984}, {24349, 50116}, {29617, 3679}, {49470, 50113}, {49746, 37}, {50088, 3696}
X(50286) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10, 17367}, {2, 31145, 48849}, {8, 39587, 16830}, {10, 49762, 8}, {10, 50017, 16816}, {145, 16816, 50017}, {145, 29569, 1}, {3679, 48854, 2}, {3920, 29641, 29634}, {3932, 48810, 17342}, {17320, 32850, 48829}, {29660, 49769, 29629}, {32847, 36480, 3661}


X(50287) = X(1)X(2)∩X(6)X(752)

Barycentrics    a^3 + 3*a^2*b + b^3 + 3*a^2*c + c^3 : :
X(50287) = X[8] + 2 X[49477], 2 X[10] + X[49488], 4 X[1125] - X[49458], 5 X[1698] + X[49495], 5 X[1698] - 2 X[49560], 7 X[3624] - X[49451], 2 X[4745] + X[49543], X[17294] - 3 X[19875], X[49495] + 2 X[49560], X[6] + 2 X[4085], 2 X[6] + X[4660], 4 X[4085] - X[4660], X[69] + 2 X[49685], 2 X[141] + X[49497], X[17281] - 3 X[38047], X[3416] + 2 X[49489], 4 X[3589] - X[32941], 5 X[3618] - 2 X[49482], X[3751] + 2 X[3821], 2 X[3755] + X[3923], 5 X[3763] + X[49680], 2 X[3773] + X[49486], X[3886] - 4 X[24295], 4 X[3946] - X[49455], 2 X[3946] + X[49529], X[49455] + 2 X[49529], 2 X[4353] + X[49536], X[4655] + 2 X[4663], 2 X[4743] + X[5695], X[4780] + 2 X[17355], X[32921] + 2 X[49524], 3 X[38023] - X[50130], 3 X[38087] + X[50120], 3 X[47352] - X[48805], 7 X[47355] - X[49460], 2 X[49472] + X[49688], 2 X[49481] + X[49526]

X(50287) lies on these lines: {1, 2}, {6, 752}, {69, 49685}, {141, 49497}, {238, 49746}, {516, 14853}, {518, 17382}, {524, 48821}, {527, 50091}, {528, 597}, {529, 48845}, {535, 5091}, {537, 17301}, {540, 50217}, {545, 32935}, {726, 50101}, {740, 17281}, {903, 33149}, {984, 17320}, {1009, 8715}, {1022, 47824}, {1643, 29066}, {1738, 50116}, {1757, 17333}, {2276, 4868}, {2308, 42058}, {2345, 4709}, {2550, 33682}, {2784, 5587}, {2796, 50080}, {2809, 5883}, {2901, 21802}, {3251, 47822}, {3339, 7185}, {3416, 49489}, {3589, 32941}, {3618, 49482}, {3654, 13632}, {3655, 13633}, {3672, 49520}, {3696, 36409}, {3751, 3821}, {3755, 3923}, {3758, 24715}, {3759, 33076}, {3763, 49680}, {3773, 49486}, {3826, 49738}, {3836, 17313}, {3844, 50081}, {3886, 24295}, {3896, 26061}, {3932, 50113}, {3946, 49455}, {4000, 49479}, {4026, 17330}, {4301, 36670}, {4310, 49535}, {4353, 49536}, {4360, 33165}, {4385, 4479}, {4389, 49712}, {4407, 17325}, {4429, 4649}, {4439, 17318}, {4643, 4753}, {4644, 24692}, {4655, 4663}, {4657, 49457}, {4658, 33955}, {4670, 24693}, {4675, 25351}, {4693, 17354}, {4716, 50088}, {4722, 32950}, {4732, 17303}, {4734, 33167}, {4743, 5695}, {4780, 17355}, {4795, 5880}, {4908, 49462}, {4970, 33163}, {4972, 31134}, {5220, 24441}, {5247, 37038}, {5657, 10186}, {5853, 38049}, {7174, 49697}, {8299, 25439}, {9269, 48216}, {9345, 24988}, {10791, 32115}, {11355, 48867}, {11522, 36692}, {14421, 47823}, {15621, 19263}, {16469, 49705}, {16475, 17766}, {16484, 17352}, {16670, 49710}, {16706, 49490}, {17271, 32784}, {17279, 49471}, {17280, 49469}, {17289, 49459}, {17302, 49448}, {17342, 33159}, {17357, 49475}, {17399, 50075}, {17592, 33118}, {17765, 38315}, {18481, 19703}, {20456, 24464}, {23888, 48244}, {24203, 37678}, {25539, 49689}, {27754, 33115}, {28503, 32921}, {28538, 50124}, {28542, 49721}, {28612, 33933}, {28854, 36721}, {30580, 47827}, {31161, 50102}, {31178, 37756}, {32846, 50132}, {32948, 37685}, {33082, 50074}, {33114, 46904}, {33128, 46897}, {36693, 37714}, {36722, 48900}, {37150, 48848}, {37676, 48808}, {38023, 50130}, {38087, 50120}, {41312, 50094}, {41313, 50111}, {42054, 50068}, {47352, 48805}, {47355, 49460}, {48832, 48842}, {48833, 48837}, {49472, 49688}, {49481, 49526}, {49749, 50226}

X(50287) = midpoint of X(i) and X(j) for these {i,j}: {6, 48829}, {3416, 50131}, {3679, 16834}, {3751, 17274}, {3755, 50115}, {17301, 47359}, {48831, 48857}, {48832, 48842}, {48833, 48837}, {49486, 50087}, {49524, 50112}, {50080, 50127}
X(50287) = reflection of X(i) in X(j) for these {i,j}: {3923, 50115}, {4660, 48829}, {17274, 3821}, {29594, 3828}, {32921, 50112}, {32941, 48810}, {48808, 48843}, {48810, 3589}, {48829, 4085}, {50081, 3844}, {50087, 3773}, {50131, 49489}
X(50287) = crossdifference of every pair of points on line {649, 9011}
X(50287) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1698, 17244}, {2, 3679, 48809}, {2, 48830, 551}, {6, 4085, 4660}, {10, 3244, 49766}, {10, 50018, 8}, {42, 25453, 3771}, {1698, 49495, 49560}, {3946, 49529, 49455}, {4429, 17378, 31151}, {4649, 31151, 17378}, {5222, 36479, 50023}, {17018, 29850, 29642}, {17023, 49772, 36480}, {36478, 50016, 3661}, {49477, 50018, 49488}


X(50288) = X(1)X(3836)∩X(2)X(49506)

Barycentrics    2*a^3 + 2*a*b^2 - b^3 + 2*a*b*c + 2*a*c^2 - c^3 : :
X(50288) = 5 X[3696] - 3 X[50085], 5 X[984] - 3 X[17333], 3 X[17378] - X[49498], 3 X[17389] - X[49678], X[49474] - 3 X[49720]

X(50288) lies on these lines: {1, 3836}, {2, 49506}, {6, 49693}, {8, 4649}, {10, 1386}, {37, 17766}, {75, 17769}, {142, 3244}, {145, 4716}, {192, 17764}, {516, 49456}, {519, 3696}, {524, 49510}, {528, 3993}, {537, 49527}, {612, 3846}, {740, 49476}, {750, 29832}, {752, 984}, {1001, 49700}, {1086, 49464}, {1738, 49472}, {1961, 4514}, {2550, 32921}, {2796, 49523}, {2887, 3920}, {3416, 3775}, {3626, 4545}, {3632, 5564}, {3664, 49491}, {3717, 4672}, {3744, 29653}, {3745, 29673}, {3751, 49701}, {3773, 5263}, {3791, 25006}, {3826, 50023}, {3842, 3883}, {3874, 9049}, {3878, 20713}, {3912, 49473}, {3923, 4439}, {3932, 49482}, {3961, 33073}, {3989, 4450}, {4030, 43223}, {4078, 4432}, {4307, 32935}, {4349, 49529}, {4360, 4743}, {4407, 33082}, {4416, 28498}, {4434, 29639}, {4438, 5269}, {4655, 7174}, {4663, 49697}, {4667, 49536}, {4682, 29655}, {4753, 24393}, {4851, 49458}, {4970, 34612}, {4972, 29816}, {5014, 5311}, {5205, 17722}, {5297, 32844}, {5847, 49457}, {5852, 49508}, {5853, 49471}, {5880, 49455}, {6541, 49484}, {6679, 17716}, {9041, 49535}, {9053, 49479}, {9347, 33120}, {10327, 25496}, {10459, 30034}, {10944, 30097}, {15254, 49705}, {15481, 49710}, {16484, 49704}, {16825, 49681}, {16830, 33076}, {17024, 25961}, {17122, 29840}, {17300, 49675}, {17334, 28508}, {17364, 49503}, {17378, 49498}, {17389, 49678}, {17602, 21241}, {17763, 21242}, {17767, 49447}, {17768, 49520}, {17770, 49515}, {17771, 49448}, {19701, 29669}, {20020, 32920}, {20090, 49707}, {21026, 26230}, {24349, 49534}, {25957, 29815}, {28337, 34641}, {28503, 50117}, {28542, 49445}, {29569, 49708}, {29606, 43179}, {29844, 37674}, {30818, 49994}, {32772, 33091}, {32783, 48651}, {32926, 33109}, {32927, 33112}, {32928, 33110}, {32945, 33093}, {33087, 36534}, {33152, 48649}, {33682, 49524}, {34379, 49449}, {41011, 42054}, {42819, 49696}, {46897, 49996}, {49465, 49676}, {49467, 49764}, {49474, 49720}, {49489, 49772}

X(50288) = midpoint of X(i) and X(j) for these {i,j}: {3632, 17377}, {17364, 49503}, {24349, 49534}
X(50288) = reflection of X(i) in X(j) for these {i,j}: {3244, 17390}, {3883, 3842}, {17362, 3626}, {49491, 3664}
X(50288) = complement of X(49506)
X(50288) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 32850, 4085}, {10, 49684, 4974}, {612, 4865, 3846}, {3416, 36480, 3775}, {3920, 33072, 2887}, {5263, 32847, 3773}, {17317, 49695, 1}, {17716, 29641, 6679}, {32926, 33109, 48643}


X(50289) = X(1)X(2896)∩X(2)X(3883)

Barycentrics    2*a^3 + a*b^2 - b^3 + a*b*c + a*c^2 - c^3 : :
X(50289) = 4 X[1] - 5 X[17391], 3 X[17389] - 2 X[49470], 2 X[24349] - 3 X[50128], 4 X[984] - 3 X[17333], 5 X[3617] - 4 X[3686], 4 X[3696] - 3 X[29617], 2 X[3696] - 3 X[49720], 4 X[15569] - 3 X[49746], 3 X[17378] - 2 X[49478], 5 X[29622] - 4 X[49740], 2 X[49461] - 3 X[50121], 2 X[49525] - 3 X[49722]

X(50289) lies on these lines: {1, 2896}, {2, 3883}, {4, 41261}, {6, 32850}, {7, 145}, {8, 193}, {10, 16468}, {31, 29641}, {37, 28566}, {55, 33073}, {57, 29840}, {63, 20101}, {75, 5846}, {81, 5014}, {100, 33070}, {171, 3705}, {181, 25306}, {192, 516}, {238, 17338}, {239, 2550}, {320, 3242}, {335, 528}, {390, 17316}, {518, 17364}, {519, 4740}, {524, 49450}, {527, 31302}, {537, 49534}, {551, 26150}, {608, 5174}, {612, 4388}, {750, 32844}, {752, 984}, {902, 29643}, {940, 4514}, {962, 20009}, {1001, 17244}, {1279, 17234}, {1376, 33071}, {1386, 4429}, {1401, 3873}, {1469, 3888}, {1738, 49684}, {1836, 32926}, {1892, 1897}, {1999, 3434}, {2263, 3870}, {2285, 3169}, {2298, 5016}, {2308, 33117}, {2796, 49445}, {2886, 3769}, {2887, 17716}, {3006, 17126}, {3052, 33116}, {3187, 33110}, {3218, 29832}, {3219, 20064}, {3241, 4310}, {3244, 24231}, {3306, 5211}, {3416, 3661}, {3550, 29671}, {3616, 17291}, {3617, 3686}, {3623, 15600}, {3644, 28530}, {3664, 49466}, {3685, 17242}, {3688, 3869}, {3696, 28538}, {3717, 17350}, {3744, 18134}, {3745, 29841}, {3749, 29839}, {3755, 4393}, {3758, 49524}, {3790, 3923}, {3791, 32865}, {3823, 17352}, {3826, 29628}, {3844, 29613}, {3868, 9052}, {3886, 6542}, {3891, 20292}, {3896, 49719}, {3920, 6327}, {3932, 4676}, {3935, 31034}, {3938, 32949}, {3961, 32946}, {3980, 32866}, {3993, 21829}, {4026, 17397}, {4298, 17480}, {4312, 4440}, {4318, 10571}, {4327, 36846}, {4349, 17379}, {4362, 33109}, {4398, 49463}, {4418, 32854}, {4434, 17717}, {4450, 28606}, {4671, 50000}, {4672, 33165}, {4678, 5772}, {4684, 17375}, {4696, 34283}, {4697, 33169}, {4702, 29618}, {4764, 28472}, {4788, 28557}, {4847, 37683}, {4864, 17376}, {4892, 17725}, {4894, 37559}, {4901, 49754}, {5015, 5711}, {5219, 37764}, {5223, 20072}, {5247, 28026}, {5311, 32947}, {5542, 49771}, {5554, 5807}, {5698, 17261}, {5710, 7270}, {5852, 49501}, {5880, 32922}, {5905, 20020}, {6646, 7174}, {7081, 26098}, {7321, 49679}, {8616, 29653}, {9053, 17365}, {9436, 41354}, {10327, 27064}, {10528, 28739}, {12588, 21280}, {12648, 40862}, {12649, 41246}, {13576, 17027}, {14923, 35104}, {14942, 31038}, {14996, 29835}, {15485, 49705}, {15569, 49746}, {15570, 49699}, {16706, 38315}, {16823, 27147}, {16830, 17248}, {17000, 33076}, {17017, 32948}, {17150, 33131}, {17184, 29815}, {17233, 49484}, {17238, 19868}, {17247, 24723}, {17254, 48856}, {17257, 39587}, {17297, 50130}, {17347, 28570}, {17374, 49467}, {17377, 28581}, {17378, 49478}, {17469, 25957}, {17599, 33068}, {17763, 33104}, {17764, 49452}, {17765, 49490}, {17767, 49517}, {17768, 49447}, {17769, 49493}, {17770, 49448}, {17771, 49503}, {17772, 49459}, {20045, 31019}, {20154, 29576}, {21241, 29658}, {21282, 33134}, {24325, 49506}, {24552, 33078}, {24620, 49987}, {24692, 49464}, {24715, 32921}, {24725, 32927}, {25006, 37652}, {25496, 33079}, {25527, 29838}, {25716, 41352}, {25959, 26230}, {26015, 37684}, {26223, 33091}, {26227, 33112}, {26685, 39570}, {26986, 27091}, {28494, 49456}, {28498, 49457}, {28508, 49520}, {28534, 49523}, {28599, 29667}, {29575, 47357}, {29577, 48805}, {29622, 49740}, {29649, 33106}, {29652, 33085}, {29655, 37604}, {29659, 33682}, {29674, 49482}, {29816, 32776}, {29819, 33125}, {31134, 32775}, {31145, 35578}, {32772, 33074}, {32846, 32941}, {32851, 37540}, {32852, 32945}, {32857, 49455}, {32920, 33097}, {32928, 33094}, {32929, 33093}, {32932, 33088}, {32937, 41011}, {33082, 36480}, {33087, 49473}, {33149, 49472}, {36534, 49511}, {37608, 49613}, {42871, 49695}, {49461, 50121}, {49525, 49722}

X(50289) = reflection of X(i) in X(j) for these {i,j}: {145, 3879}, {192, 49476}, {3869, 3688}, {17347, 49515}, {17363, 8}, {29617, 49720}, {31302, 49527}, {49466, 3664}, {49499, 17365}, {49506, 24325}
X(50289) = anticomplement of X(3883)
X(50289) = X(1390)-anticomplementary conjugate of X(3436)
X(50289) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 4645, 3662}, {8, 4307, 894}, {31, 33072, 29641}, {171, 4865, 3705}, {940, 4514, 29843}, {1386, 4429, 17367}, {2887, 17716, 29634}, {3416, 5263, 3661}, {3745, 32773, 29841}, {3920, 6327, 27184}, {3923, 32847, 3790}, {3932, 4676, 17339}, {4312, 49446, 4440}, {5880, 32922, 48627}, {5880, 49681, 32922}, {17300, 49704, 1}


X(50290) = X(1)X(69)∩X(2)X(968)

Barycentrics    (b + c)*(3*a^2 + 2*a*b + b^2 + 2*a*c + c^2) : :
X(50290) = 3 X[551] - X[4349], 5 X[3616] - X[4307]

X(50290) lies on these lines: {1, 69}, {2, 968}, {3, 142}, {8, 17248}, {9, 38194}, {10, 37}, {42, 4104}, {45, 38047}, {86, 24723}, {141, 15569}, {226, 1284}, {238, 17023}, {306, 1962}, {307, 42289}, {344, 1698}, {515, 46475}, {518, 4364}, {519, 9348}, {527, 48822}, {528, 25357}, {536, 48853}, {551, 752}, {579, 12514}, {726, 24357}, {894, 9791}, {960, 4260}, {984, 4899}, {986, 17065}, {1211, 4028}, {1215, 4656}, {1255, 33078}, {1385, 29207}, {1386, 17045}, {1503, 48894}, {1621, 5310}, {1721, 36706}, {1757, 50093}, {1770, 25526}, {1836, 19701}, {2292, 3778}, {2385, 24315}, {2550, 39586}, {2796, 24358}, {2887, 10180}, {3008, 20156}, {3244, 17772}, {3338, 29747}, {3416, 16777}, {3452, 6685}, {3589, 15254}, {3616, 3662}, {3622, 17236}, {3634, 5955}, {3663, 24325}, {3664, 4655}, {3671, 41003}, {3672, 39581}, {3678, 22312}, {3679, 50110}, {3686, 49488}, {3687, 17592}, {3717, 29659}, {3739, 39580}, {3751, 17257}, {3775, 49471}, {3790, 4704}, {3812, 15488}, {3822, 30444}, {3823, 4755}, {3826, 4698}, {3828, 41313}, {3836, 29571}, {3844, 17243}, {3896, 41809}, {3912, 32784}, {3923, 5750}, {3946, 16825}, {3966, 20182}, {3989, 29685}, {4021, 32921}, {4138, 17056}, {4363, 28526}, {4389, 24231}, {4416, 4649}, {4429, 4687}, {4431, 49452}, {4472, 28530}, {4640, 6703}, {4642, 22174}, {4643, 34379}, {4645, 16826}, {4647, 19857}, {4663, 17332}, {4665, 28484}, {4667, 17770}, {4670, 17768}, {4676, 17381}, {4682, 44419}, {4708, 28581}, {4714, 42724}, {4716, 50095}, {4854, 31993}, {4924, 49449}, {4966, 17237}, {4967, 49474}, {4974, 50114}, {5019, 33682}, {5224, 49470}, {5249, 16778}, {5263, 17322}, {5287, 26034}, {5294, 29647}, {5316, 33845}, {5333, 20292}, {5550, 27147}, {5695, 17303}, {5745, 29635}, {5853, 36480}, {6051, 13728}, {6682, 11019}, {6690, 49631}, {7174, 36479}, {7235, 21967}, {7283, 19865}, {7611, 10175}, {8424, 12579}, {8582, 25099}, {10436, 24248}, {11263, 16580}, {11362, 31395}, {15485, 29646}, {15808, 28494}, {16475, 26626}, {16593, 25351}, {16672, 49766}, {16801, 49711}, {16823, 17302}, {17019, 33083}, {17021, 33086}, {17061, 50063}, {17235, 25557}, {17246, 49483}, {17247, 24349}, {17250, 49763}, {17275, 49486}, {17320, 32922}, {17325, 49768}, {17339, 26083}, {17353, 29633}, {17384, 17764}, {19684, 41011}, {19854, 28420}, {19860, 25023}, {19868, 32941}, {23381, 36025}, {24169, 25501}, {24199, 33149}, {25101, 33159}, {25349, 28600}, {25371, 29057}, {25496, 40998}, {25498, 49484}, {26251, 31035}, {26580, 29822}, {27626, 31435}, {28022, 37592}, {28606, 33089}, {29574, 32846}, {29594, 50111}, {29598, 38187}, {29837, 38000}, {30331, 49473}, {31191, 31289}, {32857, 50116}, {32916, 39595}, {33076, 49476}, {33092, 39597}, {49478, 49505}, {49515, 49536}, {49693, 50094}, {49756, 50018}

X(50290) = midpoint of X(i) and X(j) for these {i,j}: {10, 4356}, {7174, 36479}
X(50290) = crossdifference of every pair of points on line {2484, 3733}
X(50290) = barycentric product X(i)*X(j) for these {i,j}: {10, 26626}, {190, 47998}, {321, 16475}, {3695, 31910}
X(50290) = barycentric quotient X(i)/X(j) for these {i,j}: {16475, 81}, {26626, 86}, {47998, 514}
X(50290) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3883, 49684}, {1, 4357, 49511}, {1, 33082, 3879}, {10, 37, 4078}, {10, 3950, 3773}, {10, 3986, 3842}, {10, 3993, 2321}, {10, 4133, 594}, {10, 4780, 3696}, {10, 25354, 5257}, {37, 4026, 10}, {238, 17023, 38049}, {594, 49462, 4133}, {1001, 1486, 5248}, {1001, 4657, 1125}, {1125, 3821, 142}, {1211, 37593, 4028}, {1213, 3696, 10}, {3717, 29659, 38191}, {3755, 5257, 10}, {3842, 4085, 10}, {3931, 4205, 10}, {4425, 43223, 226}, {4649, 24697, 4416}, {31191, 38059, 31289}, {33149, 40328, 24199}, {41311, 49740, 551}


X(50291) = X(1)X(2)∩X(37)X(528)

Barycentrics    2*a^3 + a^2*b + 4*a*b^2 - b^3 + a^2*c + 6*a*b*c + b^2*c + 4*a*c^2 + b*c^2 - c^3 : :
X(50291) = 2 X[10] + X[49476], 4 X[1125] - X[49466], 5 X[29622] - 3 X[38314], 2 X[3664] + X[49448], 4 X[3842] - X[3883], X[3879] + 2 X[49457], 2 X[7228] + X[49513], 2 X[24325] + X[49527], 5 X[40328] + X[49534]

X(50291) lies on these lines: {1, 2}, {37, 528}, {86, 49529}, {241, 5434}, {355, 39605}, {515, 44430}, {518, 17392}, {527, 984}, {536, 49725}, {537, 49521}, {538, 50169}, {547, 15251}, {726, 50119}, {740, 50110}, {752, 49692}, {1001, 50130}, {1266, 24693}, {1323, 7179}, {1390, 10712}, {1449, 38097}, {1573, 43065}, {1738, 17301}, {1757, 4349}, {2550, 50080}, {2796, 50090}, {3242, 38086}, {3263, 4692}, {3416, 17251}, {3664, 49448}, {3672, 38092}, {3696, 4971}, {3746, 4223}, {3753, 14839}, {3842, 3883}, {3879, 49457}, {3913, 19309}, {3925, 50103}, {3932, 17359}, {3997, 5276}, {4029, 4693}, {4078, 5263}, {4104, 33073}, {4301, 7385}, {4307, 6172}, {4421, 19322}, {4429, 17399}, {4645, 17254}, {4648, 16496}, {4649, 24393}, {4656, 33109}, {4664, 28580}, {4667, 49712}, {4688, 28503}, {4714, 26234}, {4737, 30758}, {4755, 49740}, {4780, 17319}, {4844, 47766}, {5011, 5119}, {5257, 33076}, {5283, 11355}, {5316, 17722}, {5750, 33165}, {5846, 49731}, {5847, 17346}, {5880, 49747}, {5882, 21554}, {5988, 13178}, {6173, 7174}, {6998, 11362}, {7228, 49513}, {7322, 26098}, {7390, 7991}, {7407, 37714}, {8273, 21487}, {8666, 19314}, {8715, 19310}, {9041, 49481}, {9300, 40133}, {9441, 13634}, {10175, 24808}, {11113, 14537}, {11194, 19323}, {12513, 19313}, {13161, 17528}, {13745, 50222}, {15485, 25072}, {15668, 49688}, {16475, 38057}, {16491, 37650}, {16857, 48824}, {17000, 49685}, {17133, 50086}, {17245, 49465}, {17259, 49681}, {17277, 49684}, {17297, 49511}, {17300, 49505}, {17313, 47358}, {17320, 50091}, {17330, 28538}, {17378, 50075}, {17781, 42041}, {19701, 30615}, {20715, 31165}, {24199, 49455}, {24210, 31140}, {24325, 49527}, {24441, 24699}, {24452, 28301}, {25101, 49482}, {25439, 26241}, {27785, 34719}, {28297, 49523}, {28313, 49474}, {28534, 49742}, {28542, 49456}, {31151, 50092}, {34379, 50133}, {34720, 37548}, {34746, 37528}, {40328, 49534}, {41310, 48810}, {41311, 48821}, {41312, 48829}, {41313, 48805}, {44217, 48840}, {49447, 49722}, {49483, 49733}, {49744, 50261}, {50096, 50099}, {50176, 50184}

X(50291) = midpoint of X(i) and X(j) for these {i,j}: {8, 17389}, {4664, 49720}, {17378, 50075}, {49447, 49722}, {49476, 50095}
X(50291) = reflection of X(i) in X(j) for these {i,j}: {49483, 49733}, {49740, 4755}, {50093, 50094}, {50095, 10}, {50099, 50096}
X(50291) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 8, 48851}, {2, 39587, 48856}, {2, 48856, 1}, {17244, 36534, 49768}, {30116, 41276, 1}, {32847, 36531, 10}, {36440, 36458, 41140}, {39586, 48851, 2}


X(50292) = X(1)X(2)∩X(37)X(49724)

Barycentrics    2*a^3 + 3*a^2*b - b^3 + 3*a^2*c + 2*a*b*c - 3*b^2*c - 3*b*c^2 - c^3 : :

X(50292) lies on these lines: {1, 2}, {37, 49724}, {63, 17314}, {81, 2321}, {192, 4001}, {312, 17377}, {319, 34064}, {321, 3879}, {333, 17315}, {524, 3175}, {527, 42044}, {540, 2901}, {553, 17133}, {594, 37595}, {599, 50068}, {940, 17299}, {1029, 4052}, {1211, 17372}, {1255, 5257}, {1817, 12437}, {1992, 42032}, {2136, 39592}, {2895, 4656}, {3058, 28538}, {3219, 3950}, {3305, 5839}, {3578, 50093}, {3663, 32863}, {3664, 28605}, {3666, 17388}, {3755, 33078}, {3782, 17374}, {3891, 4684}, {3913, 11350}, {3914, 32846}, {3943, 4641}, {3946, 33172}, {3977, 37683}, {3995, 4416}, {4007, 19822}, {4029, 33761}, {4030, 49475}, {4034, 25430}, {4035, 33133}, {4046, 4682}, {4054, 17778}, {4078, 32864}, {4102, 40438}, {4133, 4418}, {4356, 33083}, {4527, 4697}, {4663, 6057}, {4725, 35652}, {4780, 32948}, {4851, 5249}, {4889, 44417}, {4916, 5712}, {4921, 5325}, {4971, 42051}, {4980, 50116}, {5294, 17233}, {5295, 50169}, {5847, 32915}, {6173, 19819}, {8715, 11340}, {11246, 28484}, {11523, 37185}, {14210, 42715}, {16435, 37727}, {17242, 37652}, {17274, 50071}, {17295, 19786}, {17296, 19785}, {17297, 19796}, {17298, 19789}, {17309, 32777}, {17311, 24789}, {17319, 37653}, {17355, 37685}, {17362, 44307}, {17363, 41839}, {17373, 27184}, {17378, 42029}, {17386, 18134}, {17390, 31993}, {19723, 41313}, {19742, 25101}, {21255, 33150}, {23120, 37672}, {24210, 32852}, {30615, 49680}, {30713, 30939}, {31164, 42047}, {32925, 34379}, {32928, 49511}, {32943, 49684}, {37631, 50125}, {41629, 42033}, {42034, 50132}, {48834, 50066}, {48862, 50070}, {50043, 50089}, {50048, 50087}, {50052, 50084}, {50063, 50081}

X(50292) = reflection of X(i) in X(j) for these {i,j}: {17781, 3175}, {50106, 553}
X(50292) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {145, 34255, 5256}, {1999, 6542, 306}, {3187, 3912, 26723}, {3687, 49761, 20017}, {33088, 39594, 26015}, {40940, 49765, 32858}


X(50293) = X(1)X(75)∩X(2)X(3791)

Barycentrics    2*a^3 + 3*a^2*b + 2*a*b^2 + 3*a^2*c + 4*a*b*c + b^2*c + 2*a*c^2 + b*c^2 : :
X(50293) = 3 X[551] + X[4349], X[3332] + 3 X[10186], 7 X[3622] + X[4307]

X(50293) lies on these lines: {1, 75}, {2, 3791}, {6, 3842}, {8, 43985}, {10, 1100}, {31, 10180}, {37, 4672}, {38, 8025}, {141, 1125}, {145, 31313}, {238, 16826}, {319, 19856}, {335, 4432}, {516, 550}, {537, 24358}, {551, 752}, {726, 4670}, {756, 19717}, {894, 49456}, {940, 6682}, {984, 17379}, {1001, 16679}, {1215, 5311}, {1255, 32930}, {1449, 39586}, {1621, 40592}, {1698, 3759}, {1757, 46922}, {2345, 4535}, {3187, 27798}, {3332, 10186}, {3616, 17300}, {3622, 4307}, {3624, 17307}, {3634, 4991}, {3635, 49467}, {3685, 29580}, {3715, 19739}, {3720, 30982}, {3723, 3993}, {3739, 49477}, {3741, 37595}, {3745, 37869}, {3773, 5750}, {3775, 3879}, {3782, 23812}, {3821, 17045}, {3828, 50124}, {3836, 17023}, {3923, 16777}, {3941, 5248}, {3952, 19741}, {3980, 20182}, {4096, 19722}, {4356, 17764}, {4362, 19701}, {4363, 28516}, {4364, 17770}, {4407, 34379}, {4434, 9347}, {4645, 29586}, {4649, 16830}, {4655, 17321}, {4667, 17771}, {4682, 6685}, {4687, 16468}, {4697, 28606}, {4716, 29584}, {4732, 16884}, {4909, 19868}, {5287, 25496}, {5333, 32914}, {5711, 21769}, {5849, 24317}, {5901, 29207}, {6541, 17369}, {6703, 29671}, {15569, 49482}, {15668, 16825}, {16475, 16831}, {16477, 17260}, {16525, 17750}, {17019, 32772}, {17021, 32944}, {17056, 29645}, {17232, 25539}, {17234, 29646}, {17243, 24295}, {17297, 25055}, {17317, 29637}, {17320, 32857}, {17322, 33082}, {17381, 29674}, {17390, 49560}, {17391, 33087}, {17396, 33149}, {17397, 32784}, {17450, 29823}, {17469, 30562}, {17599, 42053}, {17793, 37632}, {24331, 38315}, {24478, 24923}, {25351, 26626}, {26109, 33130}, {27691, 39897}, {28558, 41312}, {28595, 29647}, {29571, 31289}, {29630, 31252}, {29650, 37674}, {29841, 33111}, {32775, 37635}, {32913, 42028}, {33064, 37631}, {42025, 42055}, {46845, 49462}

X(50293) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 86, 24325}, {1, 5263, 49471}, {1, 10436, 32921}, {1, 17394, 5625}, {1, 24325, 49472}, {1, 24342, 4360}, {1, 43997, 75}, {1, 49474, 17393}, {10, 1100, 49489}, {37, 33682, 4672}, {940, 29644, 6682}, {1386, 28639, 1125}, {3634, 4991, 17348}, {3745, 37869, 43223}, {4649, 16830, 49457}, {5311, 19684, 1215}, {29571, 38049, 31289}


X(50294) = X(1)X(527)∩X(6)X(519)

Barycentrics    8*a^3 + a^2*b + 4*a*b^2 - b^3 + a^2*c + b^2*c + 4*a*c^2 + b*c^2 - c^3 : :
X(50294) = 5 X[1] + X[24695], X[2321] - 4 X[49482], X[2321] + 2 X[49684], 2 X[4856] + X[49460], 2 X[17355] + X[49681], 2 X[49482] + X[49684], X[17301] - 3 X[38315], 4 X[1386] - X[3755], X[3244] + 2 X[4672], 2 X[3635] + X[32935], 4 X[3636] - X[4655], X[17274] - 3 X[38314], 2 X[3946] - 5 X[16491], 5 X[16491] - X[50080], 3 X[38023] - X[48829]

X(50294) lies on these lines: {1, 527}, {2, 3883}, {6, 519}, {9, 48856}, {226, 17469}, {354, 2835}, {516, 17301}, {524, 50224}, {528, 1386}, {537, 3993}, {551, 752}, {553, 2263}, {1100, 30331}, {1456, 5434}, {2094, 3677}, {2550, 4989}, {3241, 3685}, {3244, 4672}, {3246, 29571}, {3332, 31162}, {3452, 17716}, {3635, 32935}, {3636, 4655}, {3663, 28534}, {3679, 16469}, {3686, 48802}, {3707, 36480}, {3758, 49771}, {3886, 50129}, {3945, 17274}, {3946, 16491}, {4029, 4432}, {4307, 6173}, {4315, 6610}, {4339, 34701}, {4353, 49747}, {4646, 34639}, {4648, 16487}, {4684, 50133}, {4971, 49484}, {5263, 50095}, {5695, 28313}, {5733, 13464}, {5750, 48851}, {5846, 17359}, {5853, 16475}, {6172, 7174}, {8692, 25072}, {15287, 40726}, {15601, 39587}, {16020, 38093}, {16370, 21002}, {16468, 24393}, {16970, 48854}, {17023, 49709}, {17133, 50126}, {17245, 19883}, {17251, 19868}, {17264, 49476}, {17354, 49762}, {17382, 49630}, {17766, 38049}, {19875, 37650}, {28297, 49463}, {28503, 50118}, {28538, 29594}, {28542, 49472}, {28562, 50091}, {28580, 50109}, {31140, 40940}, {32922, 50119}, {38023, 48829}, {41140, 49720}

X(50294) = midpoint of X(i) and X(j) for these {i,j}: {6, 50130}, {3241, 50127}, {3886, 50129}
X(50294) = reflection of X(i) in X(j) for these {i,j}: {3755, 50114}, {29594, 48810}, {49630, 17382}, {49747, 4353}, {50080, 3946}, {50092, 551}, {50114, 1386}
X(50294) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {551, 4349, 17392}, {1279, 17392, 551}, {3241, 3685, 50110}, {49482, 49684, 2321}


X(50295) = X(1)X(69)∩X(2)X(31)

Barycentrics    a^3 - a^2*b - a*b^2 - b^3 - a^2*c - 2*a*b*c - b^2*c - a*c^2 - b*c^2 - c^3 : :
X(50295) = 2 X[4643] + X[36479], 5 X[4748] - 2 X[36480]

X(50295) lies on these lines: {1, 69}, {2, 31}, {3, 16872}, {4, 9}, {6, 4026}, {7, 4655}, {8, 192}, {11, 37660}, {21, 7295}, {37, 3416}, {42, 5739}, {43, 14555}, {44, 38047}, {45, 3932}, {55, 1211}, {72, 3779}, {75, 23690}, {141, 1001}, {144, 32935}, {145, 17343}, {193, 4649}, {200, 4104}, {219, 15984}, {306, 968}, {307, 2263}, {319, 49470}, {329, 1215}, {333, 32773}, {344, 29674}, {345, 846}, {346, 3773}, {348, 5018}, {377, 28287}, {388, 1423}, {390, 3775}, {391, 4085}, {405, 7083}, {406, 2212}, {443, 27626}, {474, 28271}, {497, 3741}, {511, 35628}, {518, 4643}, {519, 4356}, {524, 48830}, {527, 48851}, {528, 17251}, {537, 48849}, {594, 5695}, {599, 4966}, {726, 4419}, {756, 10327}, {894, 24695}, {908, 29828}, {958, 1503}, {960, 3781}, {986, 24478}, {992, 37148}, {993, 3220}, {997, 1064}, {1008, 5224}, {1009, 20992}, {1125, 4349}, {1150, 11269}, {1279, 17237}, {1284, 12588}, {1330, 26110}, {1352, 31394}, {1376, 4192}, {1386, 4657}, {1441, 4331}, {1478, 1756}, {1479, 10479}, {1621, 32782}, {1698, 17353}, {1699, 18229}, {1724, 19784}, {1738, 4384}, {1742, 36706}, {1757, 29659}, {1780, 19854}, {1836, 31993}, {1962, 32852}, {2198, 26085}, {2308, 29647}, {2886, 5737}, {2895, 17018}, {3219, 29667}, {3240, 37656}, {3242, 17253}, {3243, 49505}, {3332, 19843}, {3434, 31330}, {3454, 10198}, {3474, 3980}, {3475, 29651}, {3579, 5955}, {3616, 17300}, {3617, 17764}, {3618, 16468}, {3619, 15485}, {3620, 16484}, {3621, 49534}, {3622, 17375}, {3626, 4901}, {3632, 49527}, {3634, 15601}, {3661, 3685}, {3662, 16823}, {3666, 3966}, {3672, 32921}, {3679, 3717}, {3683, 32777}, {3686, 3755}, {3687, 17594}, {3696, 17275}, {3705, 38000}, {3720, 33080}, {3731, 4078}, {3739, 5880}, {3750, 33084}, {3751, 4416}, {3757, 27184}, {3790, 17261}, {3821, 4000}, {3826, 17259}, {3827, 24316}, {3831, 5084}, {3840, 26105}, {3842, 5296}, {3844, 15254}, {3886, 17270}, {3914, 5271}, {3925, 19732}, {3931, 5814}, {3971, 3974}, {3989, 32854}, {3993, 17314}, {3996, 41816}, {4007, 4133}, {4028, 37553}, {4034, 4780}, {4042, 49724}, {4096, 5423}, {4138, 25525}, {4201, 41886}, {4205, 5711}, {4295, 49598}, {4312, 25590}, {4359, 32950}, {4362, 4425}, {4363, 17768}, {4364, 5846}, {4368, 20539}, {4383, 41002}, {4389, 32922}, {4407, 17765}, {4413, 5241}, {4414, 17740}, {4418, 19822}, {4429, 17277}, {4432, 20533}, {4438, 5273}, {4450, 41809}, {4454, 17767}, {4470, 28508}, {4644, 17770}, {4659, 28526}, {4665, 28530}, {4670, 28570}, {4672, 5749}, {4676, 17289}, {4679, 30818}, {4683, 5905}, {4690, 28581}, {4691, 15593}, {4708, 28566}, {4748, 17766}, {4851, 15569}, {4864, 47358}, {4972, 5278}, {4974, 5222}, {4981, 5014}, {5051, 5230}, {5220, 17332}, {5223, 49529}, {5235, 14009}, {5250, 22370}, {5257, 16970}, {5284, 33172}, {5311, 6536}, {5361, 33142}, {5484, 36858}, {5550, 25539}, {5554, 25024}, {5686, 49693}, {5712, 32946}, {5745, 7710}, {5752, 22301}, {5772, 6172}, {5774, 37715}, {5794, 50050}, {5839, 49488}, {6646, 24349}, {6653, 29593}, {7226, 33090}, {7232, 25557}, {7262, 26065}, {7270, 31359}, {7301, 16865}, {8616, 32783}, {8692, 34573}, {9623, 28849}, {9711, 34807}, {9780, 25611}, {10371, 37548}, {10449, 15824}, {10453, 37653}, {10472, 48902}, {10477, 21746}, {10516, 30847}, {11679, 24210}, {13723, 23868}, {13728, 16466}, {14552, 32853}, {15310, 36474}, {15523, 17776}, {16043, 29991}, {16342, 29981}, {16469, 29598}, {16475, 17023}, {16496, 49466}, {16676, 49766}, {16704, 29829}, {16830, 17248}, {16832, 38052}, {16833, 50091}, {17239, 49484}, {17246, 49453}, {17250, 49709}, {17256, 32850}, {17258, 49447}, {17271, 49746}, {17274, 24231}, {17276, 49483}, {17299, 49462}, {17316, 32846}, {17325, 38315}, {17328, 49450}, {17329, 49499}, {17330, 48829}, {17344, 49478}, {17362, 49486}, {17559, 46827}, {17592, 32861}, {17725, 26245}, {17755, 24715}, {18141, 26102}, {18228, 44431}, {18517, 48887}, {19785, 32776}, {19789, 33145}, {19804, 33068}, {19853, 26045}, {20011, 43990}, {20017, 27804}, {20075, 32945}, {20078, 32940}, {21020, 33094}, {22097, 36844}, {22793, 39564}, {24331, 38053}, {24336, 29054}, {24441, 28503}, {24477, 29655}, {24597, 29631}, {24655, 25681}, {24691, 28600}, {24703, 44417}, {25568, 29670}, {26037, 32948}, {26132, 33130}, {26227, 26580}, {26228, 32775}, {26363, 37530}, {27065, 29679}, {28250, 50199}, {28538, 41312}, {28558, 35578}, {28562, 48809}, {28605, 33100}, {28606, 33075}, {29635, 37642}, {29640, 30828}, {29685, 32912}, {29814, 32863}, {29822, 31034}, {29830, 31017}, {29837, 37683}, {30478, 48932}, {30699, 33154}, {30970, 33104}, {31018, 32931}, {31144, 49720}, {31211, 38204}, {31419, 48944}, {32099, 49471}, {32857, 42697}, {32862, 33761}, {35892, 39543}, {36534, 49704}, {38316, 49768}, {40091, 48803}, {42696, 49474}, {48831, 48839}, {49492, 49735}, {49515, 49688}, {49698, 50075}, {49754, 50016}, {50080, 50095}

X(50295) = reflection of X(i) in X(j) for these {i,j}: {3332, 48900}, {4349, 1125}, {48802, 17251}
X(50295) = complement of X(4307)
X(50295) = crossdifference of every pair of points on line {1459, 2484}
X(50295) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 17272, 49511}, {1, 33082, 69}, {2, 4388, 26098}, {2, 33083, 26034}, {7, 39581, 24325}, {8, 9791, 192}, {8, 17257, 984}, {10, 3923, 2345}, {10, 4660, 2550}, {75, 24723, 24248}, {238, 32784, 2}, {333, 32773, 33137}, {748, 32781, 2}, {756, 33074, 10327}, {846, 32778, 345}, {960, 17792, 3781}, {966, 2550, 10}, {984, 24697, 17257}, {984, 33076, 8}, {1215, 4703, 329}, {1621, 32782, 33171}, {2345, 5698, 3923}, {3219, 29667, 33163}, {3617, 27549, 33165}, {3757, 27184, 33144}, {3821, 16825, 4000}, {3844, 15254, 17279}, {3846, 32916, 2}, {3883, 4357, 1}, {4655, 24325, 7}, {4683, 32771, 5905}, {5743, 44419, 1376}, {7262, 32780, 26065}, {7290, 17306, 1125}, {9780, 26685, 33159}, {16468, 29633, 3618}, {16469, 29598, 38049}, {17123, 33174, 2}, {17332, 49524, 5220}, {19822, 44447, 4418}, {24331, 49676, 38053}, {24697, 33076, 984}, {25760, 32917, 2}, {25960, 32918, 2}, {26102, 33085, 18141}, {28606, 33075, 33088}, {29651, 33064, 3475}, {31330, 32947, 3434}, {32776, 32914, 19785}, {32946, 43223, 5712}, {42334, 49459, 8}


X(50296) = X(1)X(524)∩X(2)X(31)

Barycentrics    2*a^3 - a^2*b - a*b^2 - b^3 - a^2*c - 3*a*b*c - b^2*c - a*c^2 - b*c^2 - c^3 : :
X(50296) = X[984] + 2 X[3883], 2 X[984] + X[49506], 5 X[984] - 2 X[49527], 4 X[984] - X[49534], 4 X[3883] - X[49506], 5 X[3883] + X[49527], 8 X[3883] + X[49534], 5 X[49506] + 4 X[49527], 2 X[49506] + X[49534], X[49506] + 4 X[50093], 8 X[49527] - 5 X[49534], X[49527] - 5 X[50093], X[49534] - 8 X[50093], 4 X[3686] - X[49459], 2 X[4416] + X[49490], 2 X[17392] - 3 X[25055], 4 X[17332] - X[49448], 5 X[17331] - 2 X[49457], 2 X[17334] + X[49532], X[17347] + 2 X[49479], 2 X[17362] + X[49469], X[17363] + 2 X[49471], 3 X[19875] - 2 X[49725], 3 X[19875] - 4 X[49731], 3 X[38314] - X[50133], 2 X[49466] + X[49503]

X(50296) lies on these lines: {1, 524}, {2, 31}, {8, 4439}, {9, 80}, {10, 598}, {21, 7301}, {30, 6210}, {37, 28538}, {43, 41002}, {44, 29659}, {45, 32847}, {69, 16484}, {75, 2796}, {141, 15485}, {256, 49735}, {320, 24331}, {333, 33141}, {355, 7609}, {392, 9025}, {516, 40840}, {519, 751}, {527, 31178}, {537, 17333}, {540, 48825}, {542, 31394}, {551, 4357}, {597, 4026}, {599, 1001}, {674, 5692}, {726, 49748}, {740, 27481}, {846, 3966}, {908, 27777}, {968, 32861}, {993, 24436}, {1125, 17227}, {1150, 24217}, {1211, 8616}, {1386, 41311}, {1423, 5434}, {1621, 31143}, {1654, 32941}, {1698, 15601}, {1738, 49630}, {1757, 47359}, {1992, 4649}, {2177, 37656}, {3058, 49724}, {3219, 33169}, {3241, 17257}, {3246, 17237}, {3305, 33079}, {3416, 41313}, {3550, 5743}, {3654, 6211}, {3661, 4432}, {3683, 32778}, {3685, 29615}, {3686, 49459}, {3707, 49772}, {3717, 4669}, {3750, 5739}, {3757, 4703}, {3758, 49710}, {3763, 8692}, {3828, 17353}, {3886, 42334}, {3915, 26064}, {4085, 17349}, {4141, 33089}, {4239, 5363}, {4356, 49543}, {4384, 24715}, {4389, 50023}, {4407, 36534}, {4416, 49490}, {4423, 33085}, {4450, 26037}, {4512, 33160}, {4655, 16823}, {4657, 38023}, {4660, 17277}, {4683, 33103}, {4688, 28534}, {4690, 4702}, {4740, 28542}, {4912, 49483}, {4933, 33077}, {4966, 22165}, {5224, 49482}, {5235, 33104}, {5263, 31144}, {5271, 33095}, {5278, 32865}, {5284, 33080}, {5737, 33106}, {5846, 49737}, {5847, 29574}, {6172, 48849}, {7083, 16418}, {7290, 17392}, {7295, 16370}, {9041, 17332}, {9791, 32921}, {12699, 38330}, {15254, 29674}, {15569, 50125}, {16569, 44419}, {16815, 24693}, {16825, 24723}, {16833, 50080}, {16885, 38087}, {17132, 49493}, {17133, 49452}, {17247, 49472}, {17251, 48805}, {17256, 36480}, {17258, 49455}, {17306, 28640}, {17331, 49457}, {17334, 49532}, {17344, 42819}, {17347, 49479}, {17360, 49764}, {17362, 49469}, {17363, 49471}, {17389, 50111}, {17579, 28287}, {17725, 26580}, {17755, 50096}, {17768, 49727}, {19732, 33109}, {19875, 33159}, {19883, 25539}, {21358, 29637}, {24325, 28558}, {24695, 35578}, {25351, 29628}, {27065, 33074}, {28329, 49462}, {28498, 29622}, {28503, 49742}, {28580, 50086}, {29573, 32846}, {29633, 47352}, {29651, 33066}, {31019, 31177}, {31179, 32843}, {31339, 50171}, {32854, 33761}, {32914, 33154}, {33075, 33092}, {34645, 49729}, {36479, 49712}, {38314, 50133}, {39704, 49711}, {41140, 50091}, {46922, 48822}, {48851, 50127}, {49466, 49503}, {49474, 50098}, {49521, 50088}

X(50296) = midpoint of X(i) and X(j) for these {i,j}: {3241, 50074}, {3883, 50093}, {17346, 49746}, {49470, 50077}
X(50296) = reflection of X(i) in X(j) for these {i,j}: {1, 49740}, {984, 50093}, {3679, 17330}, {17378, 551}, {17389, 50111}, {49474, 50098}, {49720, 10}, {49725, 49731}, {50086, 50095}, {50121, 3993}, {50125, 15569}, {50128, 24325}
X(50296) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 33076, 33165}, {10, 4759, 17354}, {748, 33083, 33174}, {846, 3966, 32855}, {984, 3883, 49506}, {984, 49506, 49534}, {1001, 33082, 33087}, {1992, 48830, 4649}, {3246, 17237, 29660}, {3757, 4703, 33101}, {4407, 49700, 36534}, {5263, 31144, 48809}, {5278, 32947, 32865}, {16825, 24723, 33149}, {17256, 49709, 36480}, {49725, 49731, 19875}


X(50297) = X(2)X(31)∩X(10)X(528)

Barycentrics    2*a^3 - 2*a^2*b - 2*a*b^2 - b^3 - 2*a^2*c - 6*a*b*c - 2*b^2*c - 2*a*c^2 - 2*b*c^2 - c^3 : :
X(50297) = 2 X[3686] + X[49471], 5 X[3616] - X[50133], 2 X[3842] + X[3883], X[17378] - 3 X[25055], 3 X[19875] - X[49720], 5 X[17331] + X[49490], 2 X[17332] + X[49479], 3 X[19883] - 2 X[49738], 3 X[38314] + X[50074]

X(50297) lies on these lines: {1, 4407}, {2, 31}, {6, 48822}, {9, 48851}, {10, 528}, {30, 45305}, {37, 519}, {45, 4439}, {75, 28542}, {391, 49497}, {516, 36728}, {524, 551}, {527, 24325}, {537, 50093}, {674, 10176}, {726, 49742}, {740, 50095}, {966, 32941}, {1001, 3775}, {1125, 17237}, {1213, 49482}, {1654, 16484}, {2796, 4688}, {3246, 4708}, {3616, 50133}, {3679, 3773}, {3707, 4753}, {3715, 29669}, {3739, 28534}, {3797, 50086}, {3828, 24295}, {3842, 3883}, {3892, 9038}, {3986, 49684}, {3993, 4971}, {4085, 17277}, {4134, 9054}, {4364, 50023}, {4384, 50080}, {4425, 50103}, {4643, 24331}, {4655, 6173}, {4660, 17259}, {4669, 4923}, {4670, 49710}, {4690, 49764}, {4703, 31164}, {4725, 15569}, {4755, 28538}, {4759, 17369}, {4974, 50114}, {5224, 15485}, {5235, 10707}, {5241, 6174}, {5296, 48856}, {6172, 32935}, {8692, 17327}, {11114, 31339}, {16370, 23868}, {16815, 24715}, {16823, 17254}, {16825, 17301}, {16832, 24693}, {17250, 29660}, {17260, 33076}, {17272, 17322}, {17289, 19875}, {17297, 33082}, {17331, 49490}, {17332, 49479}, {17333, 31178}, {17335, 29659}, {17389, 17772}, {17767, 49722}, {17768, 49733}, {19732, 31140}, {19883, 21255}, {24692, 34824}, {28297, 50117}, {28503, 49737}, {28554, 50090}, {28558, 50116}, {28580, 50096}, {29575, 32846}, {36479, 49701}, {36480, 49700}, {36531, 49709}, {37654, 48830}, {38314, 50074}, {41002, 43223}, {42057, 49724}, {48805, 48809}, {48853, 50115}, {49462, 50085}, {49730, 49736}

X(50297) = midpoint of X(i) and X(j) for these {i,j}: {1, 17346}, {3679, 49746}, {17330, 49740}, {17333, 31178}, {49462, 50085}
X(50297) = reflection of X(i) in X(j) for these {i,j}: {10, 49731}, {17392, 1125}, {49725, 3828}
X(50297) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 17256, 4407}, {966, 47357, 48802}, {3679, 17264, 3773}, {47357, 48802, 32941}


X(50298) = X(2)X(31)∩X(10)X(37)

Barycentrics    (b + c)*(2*a^2 + 2*a*b + b^2 + 2*a*c + b*c + c^2) : :
X(50298) = 9 X[2] - X[4307], 3 X[10] + X[4356], X[4407] - 4 X[4708], X[4349] - 5 X[19862], X[7174] + 3 X[48851]

X(50298) lies on these lines: {1, 319}, {2, 31}, {5, 516}, {10, 37}, {42, 41809}, {65, 27691}, {86, 33082}, {140, 29207}, {141, 1125}, {142, 39580}, {306, 10180}, {321, 6536}, {405, 23868}, {518, 4407}, {537, 48853}, {551, 4966}, {726, 4364}, {846, 19808}, {894, 24697}, {984, 3778}, {993, 19266}, {1001, 16846}, {1211, 43223}, {1284, 16603}, {1503, 48932}, {1654, 4649}, {1698, 4429}, {1738, 24603}, {1757, 17256}, {3616, 17238}, {3624, 17234}, {3662, 40328}, {3678, 22277}, {3679, 50121}, {3685, 29610}, {3686, 49489}, {3717, 50094}, {3739, 3821}, {3797, 29576}, {3823, 25352}, {3827, 24317}, {3828, 17359}, {3844, 4698}, {3879, 5625}, {3896, 8013}, {3914, 27798}, {3923, 17303}, {3966, 29644}, {3995, 48644}, {4038, 37653}, {4349, 17245}, {4357, 24231}, {4363, 17767}, {4425, 31993}, {4432, 26582}, {4472, 17768}, {4643, 17771}, {4647, 42714}, {4655, 10436}, {4657, 16825}, {4665, 28522}, {4670, 17770}, {4672, 5750}, {4687, 29674}, {4699, 33149}, {4974, 17023}, {4981, 29685}, {5018, 17095}, {5233, 29825}, {5235, 29631}, {5247, 19865}, {5248, 16848}, {5263, 19856}, {5278, 29647}, {5333, 32949}, {5550, 17232}, {5737, 29635}, {5743, 6685}, {5846, 25358}, {6210, 7380}, {6651, 24715}, {7174, 48851}, {8040, 15523}, {8053, 16292}, {9780, 17280}, {9791, 28604}, {12579, 50054}, {13728, 27633}, {14815, 21035}, {15569, 17239}, {16468, 17381}, {16475, 29603}, {16593, 38059}, {16823, 17326}, {16826, 32846}, {16830, 33076}, {16929, 30175}, {17045, 49477}, {17237, 49676}, {17246, 50117}, {17247, 49493}, {17251, 48822}, {17257, 32935}, {17260, 33159}, {17264, 19875}, {17275, 49488}, {17277, 29633}, {17307, 29637}, {17321, 32921}, {17398, 33682}, {17400, 29646}, {17765, 36480}, {19701, 32946}, {19732, 25453}, {19822, 32934}, {19832, 29859}, {19857, 49598}, {19868, 49473}, {21085, 37593}, {21242, 30970}, {24342, 24723}, {26115, 26772}, {27081, 29822}, {29640, 30832}, {29653, 48651}, {29659, 49693}, {29846, 31247}, {30571, 31027}, {31025, 48641}, {32850, 36531}, {36534, 49691}, {40999, 42289}, {48628, 49452}

X(50298) = midpoint of X(17251) and X(48822)
X(50298) = crossdifference of every pair of points on line {3250, 3733}
X(50298) = barycentric product X(i)*X(j) for these {i,j}: {10, 17397}, {850, 28860}, {3695, 31907}, {3952, 28859}
X(50298) = barycentric quotient X(i)/X(j) for these {i,j}: {17397, 86}, {28859, 7192}, {28860, 110}
X(50298) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5224, 3775}, {2, 32784, 3836}, {10, 37, 3773}, {10, 3755, 4732}, {10, 3986, 4078}, {10, 3993, 594}, {10, 4026, 4085}, {10, 4709, 4733}, {10, 5257, 3842}, {10, 25354, 37}, {594, 3993, 4527}, {1213, 4026, 10}, {1386, 25498, 1125}, {3616, 17238, 33087}, {3634, 24295, 17385}, {4425, 31993, 48643}, {15254, 17385, 24295}, {15569, 17239, 49560}, {24723, 28653, 24342}


X(50299) = X(2)X(31)∩X(10)X(524)

Barycentrics    2*a^3 + 2*a^2*b + 2*a*b^2 - b^3 + 2*a^2*c + 6*a*b*c + 2*b^2*c + 2*a*c^2 + 2*b*c^2 - c^3 : :
X(50299) = 2 X[3664] + X[49457], X[3879] + 2 X[4732], X[4709] + 2 X[17390], 2 X[7228] + X[49520], X[17346] - 3 X[19875], 5 X[17391] + X[49459], 3 X[25055] - X[49746], 3 X[39704] + X[50075]

X(50299) lies on these lines: {1, 4743}, {2, 31}, {10, 524}, {37, 2796}, {44, 25352}, {86, 4085}, {142, 214}, {210, 23812}, {319, 3679}, {320, 4407}, {519, 3696}, {527, 50094}, {537, 49521}, {597, 3826}, {599, 3775}, {674, 5883}, {726, 49727}, {740, 27478}, {984, 50128}, {1125, 15810}, {1961, 48643}, {2550, 48830}, {3664, 49457}, {3685, 29620}, {3739, 28538}, {3755, 5625}, {3773, 24342}, {3821, 41311}, {3828, 5750}, {3842, 28558}, {3879, 4732}, {3923, 41313}, {3945, 49497}, {4078, 50118}, {4349, 4974}, {4363, 4439}, {4364, 24692}, {4429, 43997}, {4432, 29571}, {4648, 32941}, {4655, 39586}, {4660, 15668}, {4664, 28542}, {4675, 36480}, {4685, 37631}, {4693, 29569}, {4709, 17390}, {4755, 28534}, {4956, 17021}, {5311, 50102}, {5333, 32948}, {5434, 30097}, {5880, 41312}, {6173, 48854}, {7228, 49520}, {9041, 49479}, {16826, 24715}, {16828, 49723}, {17023, 25351}, {17132, 49456}, {17245, 49482}, {17278, 38023}, {17346, 19875}, {17369, 49769}, {17389, 50086}, {17391, 49459}, {17764, 29622}, {17767, 49748}, {17768, 49737}, {17772, 29617}, {19808, 48651}, {19870, 49744}, {19874, 50234}, {21242, 37633}, {24199, 49472}, {24331, 49700}, {25055, 49746}, {26580, 31177}, {28503, 49733}, {28554, 50119}, {28580, 50111}, {29597, 50080}, {29615, 32846}, {29653, 50104}, {29659, 41847}, {31143, 32949}, {31144, 33082}, {32935, 35578}, {34824, 50023}, {38049, 38204}, {39704, 50075}, {47359, 49693}, {48822, 48829}, {49474, 50121}

X(50299) = midpoint of X(i) and X(j) for these {i,j}: {1, 49720}, {984, 50128}, {3679, 17378}, {3696, 50125}, {17389, 50086}, {17392, 49725}, {49474, 50121}
X(50299) = reflection of X(i) in X(j) for these {i,j}: {551, 49738}, {17330, 3828}, {49740, 1125}, {50093, 3842}
X(50299) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 4667, 4753}, {320, 36531, 4407}, {599, 48809, 3775}


X(50300) = X(2)X(31)∩X(6)X(519)

Barycentrics    3*a^3 + a^2*b + a*b^2 + a^2*c + b^2*c + a*c^2 + b*c^2 : :
X(50300) = X[1] + 2 X[4672], 2 X[1] + X[32935], 4 X[4672] - X[32935], 2 X[6] + X[32941], 5 X[6] + X[49460], X[6] + 2 X[49482], 4 X[6] - X[49497], 7 X[6] - X[49680], 5 X[6] - 2 X[49685], 2 X[17355] + X[49684], 5 X[32941] - 2 X[49460], X[32941] - 4 X[49482], 2 X[32941] + X[49497], 7 X[32941] + 2 X[49680], 5 X[32941] + 4 X[49685], 5 X[48805] - X[49460], 4 X[48805] + X[49497], 7 X[48805] + X[49680], 5 X[48805] + 2 X[49685], X[49460] - 10 X[49482], 4 X[49460] + 5 X[49497], 7 X[49460] + 5 X[49680], X[49460] + 2 X[49685], 8 X[49482] + X[49497], 14 X[49482] + X[49680], 5 X[49482] + X[49685], 7 X[49497] - 4 X[49680], 5 X[49497] - 8 X[49685], 5 X[49680] - 14 X[49685], X[17274] - 3 X[25055], 3 X[38049] - X[50091], 2 X[1386] + X[3923], 4 X[1386] - X[32921], 2 X[3923] + X[32921], 3 X[38315] + X[49721], 3 X[16475] - X[16834], 3 X[16475] + X[50126], 4 X[1125] - X[4655], X[17301] - 3 X[38023], X[3416] - 4 X[24295], 4 X[3589] - X[4660], 5 X[3616] + X[24695], 5 X[3618] - 2 X[4085], X[3729] + 5 X[16491], X[3729] + 2 X[49472], 5 X[16491] - 2 X[49472], X[3751] + 2 X[49473], X[3886] + 2 X[49489], X[4523] + 2 X[12722], 2 X[4663] + X[49458], 4 X[4991] - X[49486], X[5695] + 2 X[49477], 2 X[17351] + X[49455], 3 X[47352] - X[48829], 2 X[49484] + X[49488]

X(50300) lies on these lines: {1, 190}, {2, 31}, {6, 519}, {8, 16477}, {9, 48854}, {44, 36480}, {45, 4759}, {86, 2163}, {239, 50086}, {320, 29660}, {516, 5085}, {524, 48810}, {527, 551}, {528, 597}, {535, 16792}, {536, 1386}, {612, 42056}, {614, 4697}, {726, 38315}, {740, 16475}, {894, 31178}, {960, 50064}, {1125, 4252}, {1150, 21747}, {1193, 16393}, {1449, 49471}, {1707, 6682}, {1743, 49457}, {1757, 50075}, {1836, 29654}, {2267, 16503}, {2308, 24552}, {2792, 5886}, {2796, 17301}, {2835, 5883}, {3008, 24693}, {3052, 6685}, {3241, 4649}, {3246, 4670}, {3286, 19247}, {3304, 19532}, {3416, 24295}, {3589, 4660}, {3616, 24695}, {3618, 4085}, {3654, 37510}, {3679, 5263}, {3683, 29644}, {3685, 29584}, {3729, 16491}, {3736, 4234}, {3745, 4011}, {3751, 49473}, {3886, 49489}, {4349, 29600}, {4363, 50023}, {4393, 4693}, {4415, 29842}, {4421, 37502}, {4450, 29663}, {4479, 30940}, {4523, 12722}, {4640, 29650}, {4641, 29652}, {4643, 49710}, {4663, 49458}, {4667, 49768}, {4683, 29648}, {4688, 16825}, {4702, 16666}, {4753, 16670}, {4755, 15254}, {4865, 5294}, {4892, 29855}, {4974, 16469}, {4991, 49486}, {5057, 29636}, {5248, 16300}, {5695, 49477}, {5749, 48849}, {5750, 48853}, {5847, 29594}, {6210, 13634}, {7083, 19322}, {7290, 24325}, {7295, 19326}, {8692, 15668}, {15601, 39586}, {16370, 20992}, {16394, 16466}, {16476, 16829}, {16484, 17379}, {16668, 49475}, {16786, 36479}, {17017, 32934}, {17024, 32940}, {17025, 32845}, {17120, 49490}, {17121, 49459}, {17277, 19875}, {17290, 24692}, {17330, 48809}, {17335, 36531}, {17351, 49455}, {17354, 32847}, {17359, 28538}, {17367, 24715}, {17368, 33076}, {17382, 28534}, {17469, 26223}, {17716, 27064}, {17766, 38047}, {17768, 49741}, {17772, 50079}, {18169, 42028}, {19251, 20470}, {19290, 27623}, {20172, 41140}, {20179, 49720}, {20292, 29852}, {21242, 24597}, {24703, 29645}, {24723, 29646}, {24725, 26230}, {26128, 41011}, {28503, 49726}, {28542, 50101}, {28562, 47352}, {28580, 50114}, {29057, 38029}, {29577, 32846}, {29634, 33096}, {29659, 49709}, {29666, 33067}, {29684, 32950}, {29686, 32859}, {29815, 32938}, {29819, 32933}, {29823, 36263}, {29826, 36277}, {29831, 32856}, {29834, 33151}, {29838, 33101}, {31137, 32942}, {32943, 37685}, {36534, 49712}, {37654, 48802}, {45223, 48855}, {47358, 49706}, {48803, 48870}, {48822, 49740}, {49484, 49488}, {49560, 50076}

X(50300) = midpoint of X(i) and X(j) for these {i,j}: {1, 50127}, {6, 48805}, {5695, 50120}, {16834, 50126}, {47359, 50130}, {48803, 48870}, {49484, 50124}
X(50300) = reflection of X(i) in X(j) for these {i,j}: {4655, 50092}, {4660, 48821}, {32935, 50127}, {32941, 48805}, {48805, 49482}, {48821, 3589}, {48826, 48866}, {49488, 50124}, {50076, 49560}, {50092, 1125}, {50120, 49477}, {50127, 4672}
X(50300) = crossdifference of every pair of points on line {3250, 3768}
X(50300) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 4672, 32935}, {6, 32941, 49497}, {6, 49460, 49685}, {6, 49482, 32941}, {9, 48854, 50094}, {31, 25496, 32916}, {1386, 3923, 32921}, {2308, 24552, 32853}, {3246, 4670, 24331}, {3729, 16491, 49472}, {4974, 50096, 16833}, {16475, 50126, 16834}, {17469, 26223, 32920}


X(50301) = X(1)X(528)∩X(2)X(31)

Barycentrics    2*a^3 + a^2*b + a*b^2 - b^3 + a^2*c + 3*a*b*c + b^2*c + a*c^2 + b*c^2 - c^3 : :
X(50301) = 4 X[3664] - X[49490], 2 X[3879] + X[49459], 2 X[4709] + X[17377], 3 X[24452] - X[50086], 5 X[1698] - 4 X[49731], 2 X[17330] - 3 X[19875], 2 X[3883] - 5 X[40328], 3 X[25055] - 4 X[49738], 3 X[25055] - 2 X[49740], 4 X[4732] - X[17363], 4 X[7228] - X[49532], X[17364] + 2 X[49457], 2 X[17365] + X[49448], 4 X[17390] - X[49469], 5 X[17391] - 2 X[49471], 4 X[24325] - X[49506], 2 X[24349] + X[49534], 2 X[49476] + X[49493]

X(50301) lies on these lines: {1, 528}, {2, 31}, {7, 48856}, {8, 50133}, {10, 3758}, {30, 1742}, {37, 28534}, {69, 48802}, {75, 519}, {81, 32865}, {86, 4660}, {149, 9345}, {192, 28542}, {239, 24693}, {320, 36480}, {516, 27475}, {524, 3416}, {527, 984}, {535, 30116}, {537, 50128}, {551, 3821}, {612, 31164}, {674, 5902}, {726, 49722}, {740, 17389}, {894, 33165}, {940, 31140}, {1054, 17723}, {1155, 29657}, {1698, 49731}, {1738, 4349}, {1743, 17303}, {1836, 1961}, {2177, 37635}, {2550, 4649}, {2792, 44430}, {2796, 4664}, {2886, 37604}, {3120, 9347}, {3241, 32921}, {3306, 17722}, {3434, 4038}, {3550, 17056}, {3685, 29575}, {3696, 4725}, {3745, 17889}, {3753, 9025}, {3826, 16468}, {3834, 29660}, {3883, 40328}, {3894, 9054}, {3920, 33103}, {3923, 17264}, {3932, 49726}, {3944, 4682}, {3980, 32855}, {4026, 43997}, {4085, 17379}, {4223, 7301}, {4334, 5434}, {4363, 32847}, {4389, 24692}, {4407, 4741}, {4418, 33092}, {4429, 33682}, {4432, 17244}, {4643, 36531}, {4644, 49712}, {4648, 16484}, {4654, 8270}, {4655, 16830}, {4657, 25055}, {4667, 49772}, {4670, 29659}, {4688, 28538}, {4693, 17316}, {4697, 29641}, {4715, 25384}, {4716, 50129}, {4732, 17363}, {4783, 24524}, {4859, 16491}, {4888, 16496}, {4924, 34641}, {4971, 49474}, {5249, 17716}, {5263, 17297}, {5268, 31142}, {5269, 33130}, {5276, 10712}, {5287, 33095}, {5297, 24725}, {5311, 20292}, {5363, 7465}, {5711, 17528}, {5717, 24440}, {5718, 6174}, {5846, 49733}, {5847, 50095}, {6172, 24695}, {6180, 11237}, {7228, 49532}, {7290, 38093}, {7321, 49455}, {9352, 29688}, {9440, 10056}, {10436, 33076}, {10448, 37299}, {10459, 34605}, {10707, 24217}, {12652, 31162}, {14996, 33136}, {15310, 36490}, {15485, 17245}, {16475, 38052}, {16779, 48821}, {17019, 33094}, {17234, 49482}, {17251, 33082}, {17271, 48809}, {17274, 48854}, {17294, 32846}, {17300, 32941}, {17302, 38314}, {17313, 48805}, {17333, 28558}, {17335, 25352}, {17354, 49769}, {17359, 29674}, {17364, 49457}, {17365, 49448}, {17367, 25351}, {17387, 49764}, {17390, 49469}, {17391, 49471}, {17400, 19883}, {17469, 27186}, {17725, 31019}, {17768, 49742}, {17772, 31314}, {19684, 32948}, {19871, 49723}, {20090, 49497}, {21242, 37684}, {24199, 49684}, {24325, 49506}, {24331, 49709}, {24349, 49534}, {24697, 39586}, {26627, 32844}, {28297, 49445}, {28322, 49523}, {28503, 49727}, {28580, 29574}, {28604, 50074}, {29020, 36732}, {29207, 36728}, {29573, 50126}, {29617, 50096}, {29640, 37540}, {29644, 33068}, {29676, 37520}, {29816, 33146}, {29847, 48646}, {31160, 40401}, {32857, 49747}, {32949, 33084}, {33072, 33169}, {33106, 37674}, {34606, 49745}, {34612, 37631}, {35596, 36263}, {37298, 37603}, {37607, 45700}, {42043, 49732}, {48627, 49472}, {49452, 50110}, {49476, 49493}

X(50301) = midpoint of X(i) and X(j) for these {i,j}: {8, 50133}, {17378, 49720}, {49476, 50119}
X(50301) = reflection of X(i) in X(j) for these {i,j}: {1, 17392}, {3679, 49725}, {17333, 50094}, {17346, 10}, {29617, 50096}, {31178, 50116}, {48825, 48868}, {49452, 50110}, {49493, 50119}, {49740, 49738}, {49746, 551}
X(50301) = crossdifference of every pair of points on line {3250, 22108}
X(50301) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5880, 33149}, {551, 3821, 17399}, {612, 33097, 33101}, {750, 33112, 17717}, {940, 33109, 33141}, {3980, 33073, 32855}, {5311, 20292, 33154}, {25352, 49710, 17335}, {33104, 37633, 24217}, {34612, 37631, 42042}, {49738, 49740, 25055}


X(50302) = X(1)X(75)∩X(2)X(31)

Barycentrics    a^3 + a^2*b + a*b^2 + a^2*c + 2*a*b*c + b^2*c + a*c^2 + b*c^2 : :
X(50302) = 3 X[2] + X[4307], 2 X[4670] + X[36480], X[7174] - 3 X[48854], 3 X[551] - X[4356], 2 X[4407] + X[4644]

X(50302) lies on these lines: {1, 75}, {2, 31}, {3, 142}, {5, 29207}, {6, 10}, {8, 4649}, {9, 3842}, {37, 3923}, {42, 19684}, {55, 11358}, {56, 19533}, {57, 6682}, {58, 19858}, {63, 4697}, {69, 3775}, {81, 31330}, {85, 5018}, {87, 1220}, {226, 1460}, {244, 26627}, {306, 19719}, {312, 1961}, {321, 5311}, {354, 29652}, {388, 7175}, {405, 20992}, {498, 41263}, {515, 37474}, {518, 4670}, {519, 4923}, {524, 48809}, {528, 48822}, {537, 7174}, {551, 4356}, {595, 16690}, {612, 1215}, {673, 25351}, {726, 4363}, {730, 5145}, {756, 26223}, {870, 1921}, {873, 18064}, {894, 984}, {940, 3741}, {942, 35632}, {958, 20258}, {964, 2309}, {968, 10180}, {993, 3286}, {1100, 3696}, {1150, 30970}, {1193, 16454}, {1211, 32946}, {1279, 24331}, {1376, 6685}, {1386, 3739}, {1400, 37149}, {1449, 4732}, {1463, 36487}, {1468, 16738}, {1471, 17077}, {1503, 14529}, {1621, 5333}, {1698, 16468}, {1699, 23512}, {1724, 16828}, {1738, 17023}, {1742, 13727}, {1757, 3758}, {1761, 5327}, {1836, 4425}, {1918, 5264}, {1962, 32929}, {2050, 3817}, {2177, 19740}, {2209, 26115}, {2295, 40728}, {2304, 41239}, {2305, 25354}, {2308, 5278}, {2345, 3773}, {2550, 4085}, {2784, 36942}, {2796, 41312}, {2886, 6703}, {2975, 30035}, {3008, 38049}, {3072, 5713}, {3187, 21020}, {3210, 17600}, {3242, 49479}, {3244, 49460}, {3306, 29826}, {3332, 37570}, {3589, 3826}, {3616, 16484}, {3617, 37677}, {3624, 15485}, {3625, 49680}, {3626, 49685}, {3634, 17259}, {3661, 20132}, {3664, 19868}, {3666, 3980}, {3677, 42053}, {3679, 46922}, {3685, 16826}, {3706, 37595}, {3720, 24552}, {3723, 49462}, {3729, 49456}, {3742, 29668}, {3744, 29651}, {3745, 4362}, {3751, 49457}, {3752, 29650}, {3754, 31778}, {3757, 17716}, {3771, 17056}, {3772, 29645}, {3783, 37632}, {3791, 5271}, {3816, 37365}, {3822, 29046}, {3827, 24315}, {3835, 16874}, {3840, 37674}, {3841, 20083}, {3844, 17385}, {3891, 29816}, {3912, 20131}, {3914, 19834}, {3920, 32771}, {3925, 25453}, {3931, 20227}, {3932, 17369}, {3946, 20181}, {3989, 32933}, {3993, 5695}, {3996, 42042}, {4011, 44307}, {4026, 4660}, {4030, 29669}, {4038, 10453}, {4078, 17355}, {4096, 7322}, {4340, 19866}, {4344, 39581}, {4357, 4655}, {4359, 17017}, {4361, 49477}, {4364, 17768}, {4366, 17397}, {4384, 4974}, {4386, 41333}, {4389, 32857}, {4393, 4716}, {4407, 4644}, {4418, 28606}, {4419, 17767}, {4423, 25501}, {4429, 17381}, {4432, 16831}, {4434, 29828}, {4470, 17769}, {4472, 5846}, {4512, 17188}, {4527, 17314}, {4643, 17770}, {4650, 38000}, {4651, 19717}, {4659, 28516}, {4667, 34379}, {4675, 49676}, {4676, 4687}, {4682, 29649}, {4685, 19722}, {4693, 29570}, {4698, 15254}, {4703, 41011}, {4708, 28570}, {4709, 16884}, {4733, 17362}, {4758, 5853}, {4798, 17766}, {4805, 50232}, {4851, 49560}, {4946, 19745}, {4966, 17392}, {4970, 20182}, {4972, 29647}, {4981, 32912}, {5014, 29685}, {5015, 16800}, {5016, 27714}, {5132, 25440}, {5224, 19856}, {5247, 19853}, {5249, 5329}, {5250, 37232}, {5297, 32931}, {5363, 31019}, {5437, 9746}, {5550, 19278}, {5710, 28365}, {5791, 8258}, {5955, 17748}, {5988, 5989}, {6210, 6998}, {6211, 44430}, {6541, 17281}, {6650, 29592}, {6692, 49631}, {7083, 19309}, {7226, 32940}, {7295, 19310}, {7301, 19318}, {7413, 25525}, {8025, 17135}, {8033, 17149}, {8616, 25507}, {8692, 19878}, {9259, 41193}, {9345, 29824}, {9347, 17763}, {9454, 16788}, {9780, 16477}, {10022, 28503}, {10448, 11115}, {10479, 37559}, {11269, 21242}, {11680, 29845}, {12588, 16603}, {13610, 31359}, {14005, 27644}, {14199, 40783}, {14829, 37604}, {14996, 32919}, {15310, 36477}, {15569, 28639}, {15808, 19274}, {16458, 16466}, {16469, 16832}, {16476, 16819}, {16478, 16817}, {16496, 49491}, {16706, 29646}, {16801, 49709}, {16823, 40328}, {16834, 50096}, {16849, 21246}, {16872, 36015}, {16926, 17033}, {17000, 33076}, {17011, 32860}, {17018, 32945}, {17019, 32915}, {17061, 29842}, {17065, 24923}, {17116, 49493}, {17118, 49453}, {17234, 29637}, {17244, 20137}, {17248, 24697}, {17257, 24695}, {17279, 24295}, {17289, 20159}, {17291, 25539}, {17300, 33087}, {17318, 28522}, {17319, 49452}, {17321, 24248}, {17322, 24723}, {17325, 24692}, {17363, 42334}, {17368, 33159}, {17399, 25055}, {17592, 32932}, {17599, 24165}, {17720, 25385}, {17733, 37594}, {17765, 36479}, {17778, 33084}, {17889, 19786}, {18046, 29486}, {18134, 32783}, {18139, 24943}, {19273, 19862}, {19279, 19883}, {19281, 23682}, {19329, 23868}, {19741, 19998}, {19804, 29821}, {19808, 32778}, {19822, 33088}, {19863, 37522}, {20133, 27255}, {20135, 29571}, {20140, 27020}, {20142, 29576}, {20145, 29593}, {20148, 27091}, {20150, 45223}, {20153, 29581}, {20154, 24603}, {20155, 29594}, {20157, 38059}, {20174, 28612}, {20292, 32776}, {21005, 23803}, {23568, 25637}, {23812, 33064}, {24231, 50116}, {24653, 37576}, {24669, 28629}, {24725, 26580}, {24731, 30963}, {24789, 29654}, {25371, 29054}, {26037, 32911}, {26102, 32942}, {26109, 29839}, {26131, 27270}, {26446, 37510}, {26724, 29852}, {27184, 33097}, {27186, 29648}, {28562, 40096}, {28605, 32928}, {28618, 37288}, {28626, 30332}, {28699, 44706}, {28849, 44356}, {29016, 30147}, {29020, 36663}, {29057, 46475}, {29584, 50086}, {29597, 50111}, {29631, 33108}, {29634, 33130}, {29636, 33129}, {29641, 32780}, {29643, 32779}, {29653, 32777}, {29657, 32851}, {29659, 32850}, {29664, 33119}, {29667, 33072}, {29682, 33113}, {29814, 32943}, {29815, 32923}, {29829, 33136}, {29833, 33128}, {29837, 33141}, {29841, 33135}, {29847, 33133}, {29854, 33157}, {30942, 37633}, {31191, 38048}, {32773, 33109}, {32782, 32949}, {32864, 37685}, {33175, 37635}, {36534, 49675}, {36834, 38316}, {37150, 37715}, {37593, 37869}, {38315, 50023}, {39914, 45782}, {46845, 49461}, {47359, 49697}, {48810, 49738}, {49455, 49483}, {49458, 49478}, {49696, 50130}, {50094, 50127}

X(50302) = midpoint of X(10) and X(4349)
X(50302) = crossdifference of every pair of points on line {798, 834}
X(50302) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 75, 32921}, {1, 1740, 3736}, {1, 3886, 49471}, {1, 5263, 32941}, {1, 10436, 24325}, {1, 18792, 2274}, {1, 24342, 75}, {1, 43997, 86}, {1, 49474, 4360}, {2, 171, 32916}, {2, 4645, 32784}, {2, 17126, 32917}, {2, 26098, 3846}, {2, 32772, 25496}, {2, 33107, 25960}, {2, 33112, 25760}, {8, 4649, 49497}, {8, 17379, 4649}, {9, 39586, 3842}, {10, 33682, 6}, {55, 19701, 43223}, {81, 31330, 32853}, {86, 1010, 3736}, {86, 5263, 1}, {171, 238, 5156}, {894, 984, 32935}, {894, 16830, 984}, {1001, 8053, 5248}, {1001, 15668, 1125}, {1100, 3696, 49488}, {1125, 3821, 4657}, {1125, 49482, 1001}, {1386, 3739, 16825}, {1698, 16468, 17277}, {2049, 5711, 10}, {2049, 5765, 5783}, {2886, 6703, 29635}, {3416, 17303, 10}, {3624, 37603, 19270}, {3664, 19868, 49511}, {3745, 31993, 4362}, {3791, 27798, 5271}, {3842, 4672, 9}, {3920, 32771, 32920}, {3980, 29644, 3666}, {4384, 16475, 4974}, {4418, 28606, 32934}, {4429, 17381, 29633}, {4657, 5880, 3821}, {4682, 44417, 29649}, {5625, 49471, 1}, {5695, 16777, 3993}, {17118, 49453, 50117}, {17394, 49470, 1}, {19808, 33073, 32778}, {19856, 33082, 5224}, {27186, 29648, 33123}, {28639, 49484, 15569}, {29597, 50126, 50111}


X(50303) = X(1)X(527)∩X(2)X(31)

Barycentrics    5*a^3 + a^2*b + a*b^2 - b^3 + a^2*c + b^2*c + a*c^2 + b*c^2 - c^3 : :
X(50303) = 2 X[1] + X[24695], X[8] - 4 X[4672], X[69] - 4 X[49482], X[145] + 2 X[32935], X[193] + 2 X[32941], 3 X[16475] - X[50080], 3 X[16475] - 2 X[50114], 5 X[3751] - 2 X[4924], 4 X[1386] - X[24248], 5 X[3616] - 2 X[4655], 5 X[3618] - 2 X[4660], 2 X[3629] + X[49460], 2 X[3663] - 5 X[16491], X[3729] + 2 X[49684], 2 X[17351] + X[49681], 2 X[17382] - 3 X[38023], 3 X[38315] - X[49747], X[24280] + 2 X[32921], 3 X[25055] - 2 X[50092], 4 X[32455] - X[49680], 3 X[47352] - 2 X[48821]

X(50303) lies on these lines: {1, 527}, {2, 31}, {6, 528}, {8, 4672}, {58, 45700}, {69, 49482}, {145, 4693}, {192, 537}, {193, 32941}, {329, 17716}, {332, 4234}, {376, 1064}, {390, 4649}, {516, 16475}, {518, 50130}, {519, 1992}, {524, 48805}, {540, 48803}, {551, 3664}, {553, 34036}, {597, 48829}, {599, 48810}, {740, 50129}, {982, 2094}, {984, 4344}, {1001, 17392}, {1386, 17301}, {1457, 4334}, {1468, 11240}, {1738, 16469}, {1743, 2345}, {1795, 10072}, {1834, 34706}, {1836, 50103}, {2308, 3434}, {2550, 16468}, {2792, 5429}, {2796, 50101}, {2835, 5902}, {3246, 4675}, {3416, 17359}, {3474, 29821}, {3616, 4655}, {3618, 4660}, {3629, 49460}, {3663, 16491}, {3685, 17389}, {3729, 49684}, {3758, 36479}, {3883, 48851}, {3945, 16484}, {4295, 16478}, {4392, 35596}, {4432, 17316}, {4648, 15485}, {4659, 50017}, {4676, 17264}, {4677, 4923}, {4715, 47358}, {4725, 49484}, {4795, 24357}, {4865, 26065}, {4888, 16487}, {4971, 5695}, {5222, 24715}, {5230, 17577}, {5255, 34619}, {5263, 17346}, {5269, 31142}, {5363, 35988}, {5434, 6180}, {5625, 9791}, {5710, 34606}, {5712, 8616}, {5744, 17722}, {5749, 33076}, {5846, 49726}, {5847, 17294}, {5905, 17469}, {6173, 7290}, {6174, 37540}, {7277, 42871}, {7301, 37254}, {8424, 11194}, {8692, 17245}, {9812, 33135}, {9965, 17598}, {10385, 14547}, {10707, 11269}, {11031, 28610}, {11112, 16466}, {12652, 28194}, {14523, 24473}, {15507, 21010}, {16670, 49772}, {16834, 28580}, {17017, 44447}, {17281, 28538}, {17351, 49681}, {17382, 38023}, {17399, 24723}, {17491, 29831}, {17768, 38315}, {19993, 32940}, {20020, 32938}, {20072, 36534}, {21747, 24597}, {24280, 28542}, {24725, 26228}, {25055, 50092}, {26105, 37604}, {28297, 49453}, {28322, 49463}, {28503, 49721}, {28566, 38047}, {29207, 36731}, {29639, 36277}, {31140, 33137}, {31164, 33144}, {31165, 50070}, {31178, 35578}, {32455, 49680}, {32922, 49722}, {33088, 50105}, {33106, 37642}, {33141, 37666}, {33682, 48822}, {34607, 42043}, {34630, 37537}, {34745, 36750}, {34749, 37542}, {36480, 49710}, {37427, 37570}, {37681, 38092}, {42697, 50023}, {46922, 48830}, {47352, 48821}, {48831, 48867}, {48854, 50093}

X(50303) = reflection of X(i) in X(j) for these {i,j}: {599, 48810}, {3416, 17359}, {3679, 50115}, {17274, 551}, {17301, 1386}, {24248, 17301}, {48829, 597}, {48831, 48867}, {50080, 50114}, {50107, 3923}
X(50303) = crossdifference of every pair of points on line {3250, 23650}
X(50303) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3758, 49709, 36479}, {4344, 6172, 48856}, {5263, 17346, 48802}, {6172, 48856, 984}, {16475, 50080, 50114}, {21747, 33104, 24597}, {46922, 49746, 48830}


X(50304) = X(1)X(17236)∩X(2)X(21747)

Barycentrics    2*a^3 - a*b^2 - 2*b^3 - b^2*c - a*c^2 - b*c^2 - 2*c^3 : :
X(50304) = X[4780] - 3 X[49630], 3 X[17274] - X[49455], 5 X[141] - 3 X[48810], 6 X[48810] - 5 X[49482], 3 X[599] - X[32941], 3 X[3416] + X[17276], 3 X[4655] - X[17276], X[3629] - 3 X[48821], 3 X[3821] - 2 X[3946], 4 X[3946] - 3 X[49477], 3 X[3923] - 5 X[17286], 3 X[15533] + X[49680], X[40341] + 3 X[48829], 3 X[48829] - X[49497], X[49485] - 3 X[50081], X[49684] - 3 X[50092]

X(50304) lies on these lines: {1, 17236}, {2, 21747}, {8, 4821}, {9, 49769}, {10, 894}, {42, 20290}, {69, 519}, {75, 24692}, {141, 752}, {171, 30832}, {238, 17283}, {319, 4709}, {320, 33076}, {516, 1352}, {524, 4085}, {528, 3631}, {537, 17345}, {540, 15985}, {551, 17300}, {599, 28562}, {726, 3416}, {740, 17372}, {758, 17792}, {896, 48647}, {902, 31017}, {966, 3828}, {984, 17329}, {1125, 4349}, {1150, 21241}, {1386, 28498}, {2321, 2796}, {2550, 3626}, {2887, 35466}, {2895, 4685}, {3629, 48821}, {3662, 50023}, {3679, 17116}, {3741, 6327}, {3773, 17768}, {3821, 3946}, {3836, 17337}, {3840, 4388}, {3844, 4672}, {3883, 49676}, {3923, 17286}, {3945, 48822}, {3971, 4683}, {3993, 17315}, {4001, 29673}, {4090, 33066}, {4135, 33099}, {4432, 17231}, {4439, 17334}, {4450, 33081}, {4482, 11161}, {4527, 28530}, {4535, 28546}, {4641, 28595}, {4669, 50119}, {4690, 4732}, {4693, 17295}, {4741, 49448}, {4759, 17279}, {4859, 16825}, {4888, 48851}, {4914, 42055}, {4970, 32852}, {5232, 48809}, {5692, 25279}, {5695, 28550}, {5839, 50021}, {5846, 49464}, {5880, 28634}, {6646, 32847}, {6685, 26034}, {9857, 46180}, {10197, 27267}, {15485, 17232}, {15533, 49680}, {16484, 17297}, {17120, 36478}, {17229, 28534}, {17235, 28538}, {17252, 36531}, {17272, 36480}, {17275, 24693}, {17277, 31151}, {17296, 49767}, {17298, 24331}, {17339, 29674}, {17344, 49457}, {17347, 33165}, {17348, 25351}, {17351, 28558}, {17353, 49710}, {17360, 49459}, {17361, 49490}, {17363, 50018}, {17364, 29659}, {17373, 49469}, {17374, 49471}, {17381, 32784}, {17766, 49511}, {17771, 49524}, {19879, 20077}, {20064, 24943}, {20101, 32783}, {21282, 31136}, {21296, 36479}, {24165, 33067}, {24248, 28522}, {24728, 39885}, {26840, 32866}, {28494, 49484}, {28566, 49473}, {29660, 48633}, {30056, 49723}, {32843, 33086}, {32850, 49510}, {32859, 33074}, {32861, 33068}, {32863, 32947}, {32949, 33083}, {33109, 37653}, {40341, 48829}, {44416, 48651}, {49485, 50081}, {49684, 50092}

X(50304) = midpoint of X(i) and X(j) for these {i,j}: {69, 4660}, {3416, 4655}, {24728, 39885}, {40341, 49497}
X(50304) = reflection of X(i) in X(j) for these {i,j}: {4672, 3844}, {49472, 17235}, {49477, 3821}, {49482, 141}, {49685, 4085}
X(50304) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 32857, 50117}, {319, 24715, 4709}, {320, 33076, 49479}, {1150, 31134, 21241}, {2895, 32948, 4685}, {4388, 33085, 3840}, {4645, 33082, 10}, {4683, 33078, 3971}, {6327, 33080, 3741}, {6646, 32847, 49520}, {24723, 32846, 3993}, {26034, 32946, 6685}, {32852, 32950, 4970}, {32863, 32947, 42057}, {32949, 33083, 43223}, {33066, 33079, 4090}, {33067, 33075, 24165}, {40341, 48829, 49497}


X(50305) = X(1)X(2)∩X(11)X(27747)

Barycentrics    2*a^3 - 3*a^2*b - b^3 - 3*a^2*c - 6*a*b*c - 3*b^2*c - 3*b*c^2 - c^3 : :
X(50305) = 2 X[10] + X[49466], 4 X[1125] - X[49476], X[17389] - 3 X[38314], X[3883] + 2 X[24325], 2 X[3686] + X[49490], 4 X[3842] - X[49527], 2 X[4399] + X[49475], X[4416] + 2 X[49479], 3 X[16590] - X[49515], 5 X[40328] + X[49506]

X(50305) lies on these lines: {1, 2}, {11, 27747}, {30, 50268}, {37, 28503}, {75, 28580}, {86, 49684}, {105, 5251}, {142, 31151}, {210, 6688}, {238, 50115}, {392, 14839}, {405, 48864}, {518, 17330}, {527, 31178}, {528, 4688}, {536, 49740}, {537, 50093}, {538, 13745}, {545, 49483}, {594, 42819}, {726, 50090}, {730, 49563}, {740, 50099}, {752, 3883}, {903, 24723}, {966, 16496}, {993, 26241}, {1001, 17281}, {1111, 26234}, {1213, 49465}, {1279, 48810}, {1447, 4315}, {1482, 39605}, {1573, 3290}, {1654, 49505}, {1738, 48829}, {2321, 16484}, {2796, 50119}, {3246, 17369}, {3303, 16849}, {3304, 16852}, {3416, 17313}, {3686, 49490}, {3707, 49712}, {3739, 49725}, {3751, 37654}, {3842, 49527}, {3913, 19313}, {3997, 5315}, {4026, 17382}, {4049, 47797}, {4223, 5258}, {4301, 7379}, {4331, 36595}, {4356, 50108}, {4370, 15254}, {4399, 49475}, {4416, 49479}, {4421, 19323}, {4660, 24199}, {4665, 4702}, {4733, 49467}, {4780, 17117}, {4844, 47757}, {4966, 50081}, {4967, 32941}, {4968, 14020}, {5249, 31134}, {5276, 16474}, {5542, 33082}, {5731, 9746}, {5846, 49738}, {5847, 17378}, {5880, 31139}, {5882, 6998}, {5988, 7983}, {6666, 33165}, {7380, 13464}, {7407, 11522}, {8666, 19310}, {8715, 19314}, {9041, 49731}, {9710, 14019}, {11194, 19322}, {11362, 21554}, {12513, 19309}, {13725, 48838}, {13728, 48844}, {15485, 17355}, {15569, 50113}, {15668, 49681}, {16351, 19758}, {16490, 37675}, {16590, 49515}, {16801, 17000}, {17251, 47358}, {17256, 24841}, {17259, 49688}, {17271, 49511}, {17274, 24231}, {17275, 42871}, {17277, 49529}, {17320, 32922}, {17333, 24349}, {17392, 28538}, {17718, 27739}, {19277, 48824}, {19290, 19761}, {19898, 19942}, {21198, 47800}, {24216, 37660}, {25354, 49464}, {25557, 31138}, {27754, 33089}, {28234, 44430}, {28301, 49493}, {28309, 49462}, {28534, 49727}, {28634, 49460}, {33940, 37038}, {34379, 50074}, {34610, 42048}, {37756, 50091}, {40328, 49506}, {40551, 45664}, {47357, 50126}, {49470, 50088}, {49478, 50082}, {49723, 50274}, {50110, 50111}, {50163, 50225}, {50169, 50227}, {50171, 50233}

X(50305) = midpoint of X(i) and X(j) for these {i,j}: {75, 49746}, {3241, 29617}, {3883, 50116}, {17333, 24349}, {49470, 50088}, {49478, 50082}
X(50305) = reflection of X(i) in X(j) for these {i,j}: {29574, 551}, {49725, 3739}, {50110, 50111}, {50113, 15569}, {50116, 24325}
X(50305) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 8, 49763}, {2, 3241, 48854}, {2, 48849, 3679}, {8, 3616, 29583}, {8, 16815, 10}, {8, 17244, 49766}, {10, 1125, 29596}, {551, 48853, 2}, {1125, 49766, 17244}, {3244, 39580, 16830}, {4384, 36479, 49772}, {24603, 49771, 36480}, {29596, 49466, 49476}


X(50306) = X(1)X(2)∩X(6)X(50048)

Barycentrics    2*a^3 + 3*a^2*b - b^3 + 3*a^2*c - 2*a*b*c - 3*b^2*c - 3*b*c^2 - c^3 : :

X(50306) lies on these lines: {1, 2}, {6, 50048}, {63, 5839}, {524, 42051}, {527, 50106}, {536, 17781}, {1211, 4852}, {1266, 32859}, {1386, 4046}, {1449, 19822}, {1738, 32852}, {1817, 24391}, {2321, 32911}, {2895, 3663}, {3175, 4971}, {3210, 4001}, {3305, 17314}, {3666, 17362}, {3686, 28606}, {3707, 33761}, {3755, 33075}, {3759, 5294}, {3875, 5739}, {3879, 4359}, {3883, 3896}, {3914, 4716}, {3945, 41915}, {3946, 32782}, {3950, 27065}, {3966, 49486}, {3969, 17353}, {3977, 37652}, {4035, 33129}, {4104, 32928}, {4133, 32930}, {4360, 4886}, {4361, 5249}, {4371, 5712}, {4383, 17299}, {4399, 31993}, {4416, 17147}, {4431, 26223}, {4641, 4969}, {4654, 19819}, {4656, 37656}, {4688, 37631}, {4780, 32947}, {4856, 37685}, {4967, 19684}, {4980, 20234}, {4986, 42715}, {5814, 50056}, {5847, 32860}, {5905, 17151}, {6762, 39592}, {8666, 11340}, {10371, 48801}, {11350, 12513}, {12625, 37185}, {17117, 17778}, {17133, 42044}, {17155, 34379}, {17160, 33066}, {17275, 20182}, {17320, 41816}, {17374, 40688}, {17377, 19804}, {17388, 44307}, {17600, 42334}, {17788, 42029}, {19701, 28634}, {19797, 46922}, {23119, 37672}, {24177, 32863}, {28329, 35652}, {28538, 34612}, {31143, 50109}, {32924, 49511}, {32945, 49684}, {41002, 49462}, {41011, 49474}, {42045, 50116}, {48842, 50046}, {48861, 50047}, {48870, 50049}, {49724, 50082}, {50043, 50127}, {50052, 50124}, {50068, 50120}

X(50306) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 20043, 5256}, {239, 306, 26723}, {3210, 17363, 4001}, {3687, 49770, 3187}, {4716, 32861, 3914}, {14459, 32914, 4028}, {41816, 41823, 17320}


X(50307) = X(1)X(7)∩X(2)X(1707)

Barycentrics    2*a^3 + a^2*b - b^3 + a^2*c + 2*a*b*c + b^2*c + b*c^2 - c^3 : :
X(50307) = 2 X[3993] - 3 X[29574], 3 X[354] - 2 X[39543], X[24349] - 3 X[50128], 2 X[50117] - 3 X[50119], X[3883] - 3 X[50116], 2 X[24325] - 3 X[50116], 4 X[3842] - 3 X[50093], 7 X[9780] - 5 X[17331], 2 X[15569] - 3 X[17392], 3 X[17378] - X[49470], 3 X[31178] - X[49506], 3 X[39704] - X[49746], X[49450] - 3 X[49720], X[49461] - 3 X[50125]

X(50307) lies on these lines: {1, 7}, {2, 1707}, {6, 1738}, {8, 17116}, {9, 24695}, {10, 894}, {11, 37520}, {31, 5249}, {35, 41430}, {37, 17768}, {44, 3826}, {46, 573}, {56, 31394}, {57, 6210}, {58, 12609}, {65, 511}, {75, 5847}, {79, 2298}, {81, 3914}, {85, 4008}, {86, 24723}, {98, 109}, {142, 238}, {190, 4078}, {191, 5279}, {192, 28526}, {306, 4418}, {320, 5263}, {329, 5268}, {335, 2796}, {354, 29349}, {498, 28739}, {518, 17365}, {519, 4740}, {524, 3696}, {527, 984}, {528, 49478}, {537, 49527}, {545, 49523}, {553, 982}, {595, 28026}, {608, 1838}, {611, 6180}, {612, 5905}, {613, 5228}, {726, 49476}, {740, 3879}, {750, 908}, {752, 3883}, {756, 17781}, {940, 1836}, {942, 15310}, {946, 37469}, {968, 44447}, {978, 12436}, {986, 5717}, {1001, 4675}, {1086, 1386}, {1111, 23689}, {1125, 3662}, {1155, 5718}, {1158, 5713}, {1210, 41246}, {1266, 32921}, {1279, 25557}, {1284, 37609}, {1400, 1756}, {1430, 30687}, {1441, 1733}, {1471, 30379}, {1698, 3973}, {1719, 3101}, {1737, 5823}, {1743, 38052}, {1777, 12047}, {1785, 1892}, {1837, 48938}, {1876, 13750}, {1908, 16592}, {1957, 30686}, {1961, 4656}, {2308, 26723}, {2321, 32846}, {2385, 18161}, {2550, 3751}, {2646, 48929}, {2876, 24476}, {2887, 4697}, {2956, 9612}, {3008, 16468}, {3011, 17126}, {3057, 29309}, {3058, 4883}, {3218, 29639}, {3306, 5121}, {3338, 28017}, {3416, 4363}, {3452, 17122}, {3474, 5712}, {3475, 3749}, {3487, 37552}, {3550, 13405}, {3616, 17324}, {3634, 17368}, {3649, 29097}, {3666, 11246}, {3679, 35578}, {3685, 17300}, {3687, 3980}, {3717, 32935}, {3739, 28570}, {3744, 29105}, {3745, 3782}, {3755, 4649}, {3757, 20101}, {3758, 4429}, {3784, 10473}, {3790, 49766}, {3821, 14621}, {3828, 26083}, {3836, 4672}, {3838, 37646}, {3842, 28558}, {3844, 17369}, {3886, 49763}, {3896, 42045}, {3911, 17717}, {3912, 3923}, {3920, 17483}, {3925, 4641}, {3931, 49743}, {3932, 17351}, {3944, 37604}, {3946, 33149}, {3977, 29643}, {3982, 17716}, {4000, 16475}, {4001, 31330}, {4003, 17726}, {4026, 4670}, {4028, 17778}, {4031, 17722}, {4032, 29057}, {4035, 33160}, {4038, 33095}, {4054, 17763}, {4104, 33066}, {4114, 17598}, {4133, 6542}, {4252, 28628}, {4357, 4655}, {4415, 4682}, {4424, 49744}, {4640, 17056}, {4648, 5698}, {4650, 5745}, {4654, 5269}, {4663, 7277}, {4671, 49990}, {4676, 17234}, {4684, 32941}, {4690, 4733}, {4715, 49725}, {4718, 28556}, {4780, 20090}, {4795, 48829}, {4847, 32913}, {4849, 49732}, {4851, 5695}, {4854, 37595}, {4859, 16469}, {4860, 17721}, {4966, 17376}, {4989, 17067}, {5045, 29229}, {5057, 37633}, {5222, 7613}, {5255, 21620}, {5257, 24697}, {5264, 13407}, {5266, 6147}, {5272, 9776}, {5273, 16570}, {5294, 25957}, {5297, 17484}, {5311, 33098}, {5327, 18589}, {5710, 10404}, {5711, 13161}, {5719, 37589}, {5725, 36279}, {5750, 32784}, {5846, 7228}, {5850, 49448}, {5852, 49515}, {5853, 49490}, {5902, 29353}, {5903, 29311}, {6173, 7290}, {6646, 16830}, {7191, 26842}, {7321, 32922}, {9347, 33151}, {9778, 41825}, {9780, 17331}, {9791, 16826}, {10039, 28968}, {11019, 33106}, {12512, 37574}, {12527, 20348}, {13411, 37603}, {14996, 33134}, {15254, 17245}, {15320, 18166}, {15569, 17392}, {15601, 20195}, {15936, 50233}, {16056, 20967}, {16466, 24178}, {16476, 17050}, {16706, 38049}, {16823, 26806}, {16824, 20077}, {16825, 24199}, {17011, 33102}, {17019, 33100}, {17064, 37642}, {17127, 27186}, {17132, 49445}, {17257, 39586}, {17291, 19862}, {17316, 24280}, {17355, 29674}, {17378, 28580}, {17388, 28484}, {17390, 28530}, {17491, 26580}, {17595, 17723}, {17605, 37634}, {17718, 37540}, {17764, 49471}, {17765, 49491}, {17766, 49466}, {17767, 49456}, {17771, 49457}, {17889, 40940}, {18193, 21454}, {18391, 48878}, {19684, 32950}, {19857, 41812}, {20059, 39587}, {20138, 49710}, {21255, 29637}, {21282, 29835}, {23578, 27846}, {23659, 24443}, {23812, 43223}, {23958, 29680}, {24177, 29821}, {24295, 29596}, {24309, 37576}, {24393, 49712}, {24470, 37592}, {24541, 26573}, {24703, 37674}, {24988, 41241}, {25006, 32912}, {25959, 30768}, {26015, 33104}, {26102, 40998}, {26728, 49480}, {27003, 33107}, {28079, 36574}, {28194, 48825}, {28198, 48823}, {28503, 49525}, {28538, 49727}, {28542, 50110}, {28557, 49452}, {29632, 35263}, {29681, 30652}, {31138, 48810}, {31151, 33159}, {31178, 49506}, {31317, 50095}, {31397, 40862}, {31730, 37573}, {32772, 33067}, {32850, 49529}, {32939, 33073}, {32940, 33072}, {33131, 37685}, {37593, 37631}, {39542, 48934}, {39704, 49746}, {42697, 50017}, {46922, 50091}, {49450, 49720}, {49461, 50125}, {49482, 49676}

X(50307) = midpoint of X(i) and X(j) for these {i,j}: {8, 17364}, {65, 49537}
X(50307) = reflection of X(i) in X(j) for these {i,j}: {1, 3664}, {3883, 24325}, {4416, 10}, {21746, 942}, {49462, 17390}, {49466, 49479}, {49483, 7228}
X(50307) = crosspoint of X(7) and X(14621)
X(50307) = crosssum of X(55) and X(2276)
X(50307) = barycentric product X(109)*X(28959)
X(50307) = barycentric quotient X(28959)/X(35519)
X(50307) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 7, 24231}, {1, 4312, 24248}, {1, 32857, 3663}, {6, 5880, 1738}, {7, 4307, 1}, {7, 4344, 4310}, {57, 26098, 24239}, {81, 20292, 3914}, {171, 33097, 226}, {320, 5263, 49511}, {481, 482, 3674}, {750, 24725, 908}, {894, 4645, 10}, {940, 1836, 24210}, {1961, 33099, 4656}, {2550, 3751, 49772}, {2550, 4644, 3751}, {3218, 33112, 29639}, {3474, 5712, 17594}, {3663, 4349, 1}, {3663, 30424, 32857}, {3755, 4667, 4649}, {3821, 33682, 17023}, {3836, 4672, 17353}, {3883, 50116, 24325}, {3944, 37604, 39595}, {3980, 32946, 3687}, {4295, 4340, 1}, {4307, 4310, 4344}, {4310, 4344, 1}, {4339, 11036, 1}, {4349, 30424, 3663}, {4418, 32949, 306}, {4649, 24715, 3755}, {4650, 33111, 5745}, {4654, 5269, 33144}, {4860, 17721, 24216}, {17122, 33096, 3452}, {17126, 31019, 3011}, {17376, 49484, 4966}, {17778, 32932, 4028}, {24342, 33082, 10}, {24692, 33682, 3821}, {30425, 30426, 4295}, {32913, 33109, 4847}


X(50308) = X(1)X(319)∩X(6)X(10)

Barycentrics    a^3 - a*b^2 - b^3 - 2*a*b*c - 2*b^2*c - a*c^2 - 2*b*c^2 - c^3 : :
X(50308) = 3 X[10] - X[4349], 5 X[3617] - X[4307]

X(50308) lies on these lines: {1, 319}, {2, 3791}, {6, 10}, {8, 192}, {9, 3773}, {43, 4886}, {45, 6541}, {55, 21085}, {69, 24325}, {75, 4655}, {141, 16825}, {238, 3661}, {239, 32784}, {321, 4703}, {333, 4438}, {346, 4535}, {355, 382}, {518, 4690}, {519, 9348}, {551, 50076}, {594, 3923}, {599, 49676}, {726, 4643}, {752, 1757}, {966, 3842}, {982, 37653}, {1001, 4445}, {1029, 33110}, {1125, 4851}, {1211, 4362}, {1215, 5739}, {1386, 17239}, {1698, 17381}, {1738, 50095}, {1962, 20017}, {2345, 4672}, {2550, 4732}, {2887, 5271}, {2895, 32771}, {3578, 32912}, {3616, 17373}, {3617, 4307}, {3624, 17317}, {3625, 4356}, {3631, 25557}, {3678, 5752}, {3685, 29615}, {3687, 32916}, {3696, 4660}, {3703, 49724}, {3741, 3966}, {3757, 33084}, {3759, 29633}, {3790, 17331}, {3821, 4361}, {3836, 4384}, {3844, 17348}, {3846, 11679}, {3883, 32941}, {3932, 17330}, {3974, 4096}, {3993, 17299}, {4007, 4527}, {4011, 41002}, {4026, 17362}, {4034, 4085}, {4042, 29673}, {4060, 4133}, {4283, 9534}, {4357, 32921}, {4359, 33080}, {4363, 17770}, {4407, 7174}, {4416, 32935}, {4419, 28516}, {4545, 4780}, {4645, 24693}, {4649, 17363}, {4651, 33074}, {4657, 49477}, {4659, 17767}, {4665, 17768}, {4668, 17764}, {4669, 28580}, {4676, 48630}, {4678, 28494}, {4683, 28605}, {4697, 19822}, {4716, 29617}, {4725, 48822}, {4865, 31330}, {4966, 24331}, {4980, 33098}, {4981, 32854}, {4989, 19862}, {5018, 33298}, {5232, 49472}, {5235, 29643}, {5263, 32025}, {5278, 15523}, {5311, 41809}, {5361, 33119}, {5564, 24723}, {5690, 29207}, {5737, 29671}, {5743, 29649}, {5839, 49489}, {5846, 36480}, {5849, 24315}, {5880, 28634}, {6327, 21020}, {6646, 49493}, {12588, 16609}, {15254, 17229}, {15569, 17372}, {16468, 17289}, {16475, 17308}, {16477, 17368}, {16777, 25354}, {16823, 17287}, {17117, 33149}, {17163, 33094}, {17165, 43990}, {17228, 29637}, {17253, 49453}, {17258, 49445}, {17271, 32922}, {17276, 50117}, {17277, 29674}, {17284, 31289}, {17293, 24295}, {17300, 40328}, {17307, 29646}, {17328, 49447}, {17343, 24349}, {17344, 49483}, {17349, 33159}, {19732, 29653}, {19742, 26061}, {19804, 33085}, {19868, 49684}, {24248, 42696}, {24715, 33888}, {24725, 31025}, {26037, 33078}, {26128, 32782}, {28538, 48809}, {28653, 43997}, {29604, 38049}, {29628, 31252}, {29658, 30832}, {29667, 32864}, {29847, 31247}, {30970, 33070}, {31037, 33127}, {31143, 33065}, {31993, 32946}, {32099, 39581}, {32780, 37652}, {32855, 38000}, {32860, 33083}, {32917, 33077}, {32926, 41816}, {32931, 37656}, {33099, 42029}, {33102, 41821}, {48805, 49705}, {49510, 49688}, {49752, 50023}, {49754, 49772}, {50079, 50111}

X(50308) = midpoint of X(3625) and X(4356)
X(50308) = reflection of X(7174) in X(4407)
X(50308) = crossdifference of every pair of points on line {834, 20981}
X(50308) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 17270, 3775}, {8, 1654, 984}, {10, 33682, 17303}, {75, 33082, 4655}, {333, 32778, 4438}, {1001, 4445, 49560}, {3416, 17275, 10}, {4026, 17362, 49488}, {5564, 24723, 49474}, {16823, 17287, 33087}, {31330, 33075, 4865}, {32782, 32914, 26128}, {33076, 42334, 8}


X(50309) = X(10)X(524)∩X(37)X(519)

Barycentrics    2*a^3 + 2*a^2*b - 4*a*b^2 - b^3 + 2*a^2*c - 6*a*b*c - 4*b^2*c - 4*a*c^2 - 4*b*c^2 - c^3 : :
X(50309) = 2 X[3686] + X[49457], 3 X[17330] - X[49740], 3 X[3679] - X[49720], 3 X[17346] + X[49720], 2 X[4399] + X[49520], X[4416] + 2 X[4732], X[4709] + 2 X[17332], X[17378] - 3 X[19875], 5 X[17331] + X[49459]

X(50309) lies on these lines: {2, 3775}, {6, 48809}, {8, 4439}, {10, 524}, {37, 519}, {239, 4407}, {391, 32941}, {527, 50096}, {528, 4669}, {537, 50095}, {551, 4974}, {599, 3836}, {726, 50098}, {740, 50093}, {752, 1757}, {966, 48830}, {984, 29617}, {1213, 49685}, {1654, 4085}, {2796, 3696}, {2887, 31143}, {3626, 28562}, {3707, 4432}, {3773, 6651}, {3826, 22165}, {3828, 17392}, {3842, 29574}, {3846, 4042}, {3993, 49737}, {4364, 50018}, {4399, 49520}, {4416, 4732}, {4677, 49746}, {4685, 49724}, {4709, 17332}, {4743, 24697}, {4745, 49725}, {5883, 9038}, {6541, 50084}, {8584, 33682}, {9041, 49510}, {16825, 47358}, {17133, 49456}, {17224, 50091}, {17256, 50016}, {17270, 17378}, {17275, 47359}, {17331, 49459}, {17333, 28542}, {17374, 25352}, {17395, 50021}, {17771, 50128}, {17772, 50077}, {21085, 50104}, {21242, 37656}, {28554, 50099}, {28604, 50074}, {37654, 48802}, {41310, 49560}, {41312, 49488}, {49474, 49748}

X(50309) = midpoint of X(i) and X(j) for these {i,j}: {984, 29617}, {3679, 17346}, {4677, 49746}, {17333, 50086}, {49474, 49748}
X(50309) = reflection of X(i) in X(j) for these {i,j}: {551, 49731}, {3993, 49737}, {17392, 3828}, {29574, 3842}, {49725, 4745}


X(50310) = X(1)X(2)∩X(75)X(528)

Barycentrics    2*a^3 - 2*a^2*b + a*b^2 - b^3 - 2*a^2*c - 3*a*b*c - 2*b^2*c + a*c^2 - 2*b*c^2 - c^3 : :
X(50310) = X[8] + 2 X[49466], 5 X[3616] - 2 X[49476], 6 X[25055] - 5 X[29622], 2 X[29574] - 3 X[38314], 2 X[3883] + X[24349], 4 X[3842] - X[49534], 5 X[17331] - 2 X[49448], 4 X[17332] - X[49501], X[17363] + 2 X[49490], X[17364] - 4 X[49479], 2 X[24325] + X[49506]

X(50310) lies on these lines: {1, 2}, {75, 528}, {85, 5434}, {86, 49681}, {319, 42871}, {344, 38025}, {428, 5342}, {516, 50119}, {518, 17346}, {527, 3883}, {536, 49746}, {537, 17333}, {538, 49735}, {752, 31178}, {956, 26241}, {1001, 3790}, {1121, 4586}, {1279, 17359}, {1447, 3476}, {1573, 26242}, {1621, 50105}, {1654, 16496}, {2099, 7179}, {2263, 40892}, {3058, 42029}, {3242, 17251}, {3246, 17354}, {3263, 3902}, {3416, 17297}, {3654, 13635}, {3655, 13634}, {3662, 33076}, {3681, 5943}, {3685, 47357}, {3842, 49534}, {3877, 14839}, {3913, 19314}, {4026, 17399}, {4030, 19804}, {4363, 49709}, {4388, 31164}, {4391, 45322}, {4421, 19325}, {4431, 30331}, {4514, 31140}, {4643, 24841}, {4645, 6173}, {4647, 34719}, {4660, 48627}, {4664, 28503}, {4676, 49726}, {4688, 49720}, {4725, 49478}, {4740, 28580}, {4844, 44435}, {4886, 41711}, {4914, 18134}, {4968, 11114}, {4971, 49470}, {4980, 34611}, {5015, 17528}, {5224, 49465}, {5258, 17522}, {5263, 50130}, {5337, 19336}, {5564, 49460}, {5734, 7407}, {5844, 44430}, {5846, 17392}, {5847, 50133}, {5881, 7385}, {6998, 37727}, {7379, 7982}, {7380, 10222}, {9041, 17330}, {9053, 49731}, {9791, 49446}, {10031, 37670}, {11057, 17579}, {11194, 17798}, {11346, 48864}, {12513, 19310}, {15485, 17339}, {15668, 49679}, {16284, 37671}, {16484, 17242}, {16857, 48804}, {17000, 32941}, {17233, 42819}, {17247, 49455}, {17259, 49690}, {17271, 47358}, {17277, 49688}, {17286, 35227}, {17298, 38024}, {17301, 32922}, {17331, 49448}, {17332, 49501}, {17338, 33165}, {17343, 49505}, {17349, 49529}, {17363, 49490}, {17364, 49479}, {17378, 28538}, {17379, 49684}, {17396, 49472}, {17549, 37586}, {17762, 34699}, {24325, 49506}, {24723, 49747}, {26234, 30806}, {27184, 32923}, {27186, 28599}, {28322, 49525}, {28534, 49483}, {28542, 49493}, {28581, 50085}, {30583, 47804}, {31156, 48869}, {32773, 50103}, {37756, 48829}, {42034, 49736}, {49447, 49742}, {50160, 50182}, {50171, 50181}

X(50310) = midpoint of X(49466) and X(50095)
X(50310) = reflection of X(i) in X(j) for these {i,j}: {8, 50095}, {4664, 49740}, {17389, 1}, {49447, 49742}, {49720, 4688}, {49722, 49483}, {50075, 17330}, {50128, 31178}
X(50310) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 48851, 2}, {2, 145, 48856}, {2, 48856, 16830}, {10, 29660, 29613}, {10, 49771, 36534}, {145, 39581, 16830}, {24331, 32847, 17244}, {29659, 50023, 17367}, {39581, 48856, 2}, {47357, 50107, 3685}


X(50311) = X(1)X(2)∩X(38)X(50105)

Barycentrics    a^3 - a^2*b + 2*a*b^2 + b^3 - a^2*c + 2*b^2*c + 2*a*c^2 + 2*b*c^2 + c^3 : :
X(50311) = X[1] + 2 X[49560], 2 X[10] + X[49458], 4 X[1125] - X[49488], 5 X[1698] + X[49451], 5 X[3616] - 2 X[49477], 5 X[3616] - X[50129], 7 X[3624] - X[49495], X[16834] - 3 X[25055], 3 X[38314] + X[50079], X[69] + 2 X[49482], 4 X[141] - X[4660], 2 X[141] + X[32941], X[4660] + 2 X[32941], X[3923] + 2 X[49511], 2 X[2321] + X[49455], X[3242] + 2 X[3773], X[3416] + 2 X[49473], 4 X[3589] - X[49497], 5 X[3618] - 2 X[49685], X[3751] - 4 X[24295], 5 X[3763] - 2 X[4085], 5 X[3763] + X[49460], 2 X[4085] + X[49460], 2 X[3821] + X[3886], 2 X[3844] + X[49467], X[4133] + 2 X[4353], 2 X[4527] + X[49453], X[4655] + 2 X[49484], X[16496] + 5 X[17286], 2 X[17229] + X[49465], 2 X[17235] + X[49485], X[17299] + 2 X[49472], 2 X[17355] + X[49505], 3 X[21358] - X[48829], 3 X[38023] - X[50131], 7 X[47355] - X[49680]

X(50311) lies on these lines: {1, 2}, {38, 50105}, {45, 4407}, {69, 49482}, {141, 528}, {238, 17346}, {346, 49520}, {350, 33934}, {376, 48925}, {516, 10519}, {518, 17359}, {524, 48810}, {527, 3923}, {529, 48859}, {535, 11355}, {537, 17281}, {540, 48811}, {544, 993}, {599, 752}, {726, 50107}, {740, 17301}, {966, 38025}, {984, 17264}, {1001, 3775}, {1009, 8666}, {1386, 4725}, {1654, 15485}, {2239, 37610}, {2321, 49455}, {2345, 49479}, {2784, 3576}, {2796, 17274}, {2809, 3789}, {2887, 31140}, {3242, 3773}, {3246, 4690}, {3416, 49473}, {3589, 49497}, {3618, 49685}, {3654, 13633}, {3655, 13632}, {3673, 4479}, {3685, 17254}, {3706, 26128}, {3751, 24295}, {3763, 4085}, {3814, 30959}, {3821, 3886}, {3834, 24693}, {3844, 49467}, {3996, 33174}, {4000, 4709}, {4133, 4353}, {4234, 17206}, {4310, 50117}, {4334, 40892}, {4389, 4693}, {4432, 4643}, {4439, 17269}, {4441, 4717}, {4527, 49453}, {4653, 30966}, {4655, 28534}, {4657, 49471}, {4702, 17237}, {4732, 17278}, {4800, 23888}, {4863, 28595}, {4966, 17392}, {4971, 32921}, {5049, 28600}, {5195, 30946}, {5224, 16484}, {5263, 17297}, {5695, 28542}, {6173, 49676}, {6541, 7174}, {8616, 37653}, {10707, 25760}, {11522, 36693}, {11813, 30961}, {16371, 17798}, {16496, 17286}, {16706, 49459}, {17227, 24715}, {17228, 33076}, {17229, 49465}, {17235, 49485}, {17239, 42819}, {17279, 49457}, {17280, 49448}, {17285, 33165}, {17289, 49490}, {17293, 42871}, {17299, 49472}, {17302, 49469}, {17342, 50075}, {17354, 49712}, {17355, 49505}, {17384, 49475}, {17399, 49470}, {17772, 38315}, {20347, 33866}, {20582, 48821}, {21242, 30811}, {21356, 28562}, {21358, 48829}, {21747, 31303}, {24217, 30832}, {24231, 50119}, {24552, 32946}, {25539, 49678}, {25557, 49733}, {25590, 38024}, {28503, 50097}, {28538, 50081}, {28580, 50092}, {30583, 47822}, {31017, 33104}, {31151, 49720}, {31164, 33064}, {32782, 32943}, {32935, 49726}, {32942, 33084}, {32945, 33172}, {33156, 46909}, {33159, 49450}, {36692, 37714}, {37756, 50086}, {38023, 50131}, {41312, 50111}, {41313, 50094}, {42055, 50048}, {47355, 49680}, {48801, 48862}, {49717, 49729}

X(50311) = midpoint of X(i) and X(j) for these {i,j}: {1, 17294}, {599, 48805}, {3416, 50130}, {3886, 50080}, {5695, 49747}, {17274, 50126}, {17281, 47358}, {48801, 48862}
X(50311) = reflection of X(i) in X(j) for these {i,j}: {17294, 49560}, {32935, 49726}, {48821, 20582}, {49488, 50114}, {50080, 3821}, {50114, 1125}, {50129, 49477}, {50130, 49473}
X(50311) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2, 48822}, {2, 48802, 10}, {10, 49768, 24331}, {141, 32941, 4660}, {3741, 33171, 3771}, {3763, 49460, 4085}, {10453, 32783, 29635}, {17135, 24943, 25453}, {17230, 36534, 32847}, {24552, 33081, 32946}, {29611, 36479, 10}, {31330, 33173, 29642}


X(50312) = X(1)X(5564)∩X(10)X(37)

Barycentrics    (b + c)*(2*a*b + b^2 + 2*a*c + 3*b*c + c^2) : :
X(50312) = 5 X[10] - X[4356], X[4407] + 2 X[4665], X[4307] + 7 X[4678], X[4349] + 3 X[4669]

X(50312) lies on these lines: {1, 5564}, {2, 4716}, {8, 4649}, {10, 37}, {75, 3775}, {306, 27798}, {313, 4647}, {319, 24342}, {321, 8013}, {516, 3627}, {551, 50085}, {726, 4407}, {752, 1757}, {756, 48644}, {894, 42334}, {984, 48628}, {1125, 4405}, {1211, 48643}, {1698, 17233}, {1738, 50096}, {2887, 20360}, {3617, 17764}, {3626, 3629}, {3634, 17243}, {3661, 3836}, {3678, 20713}, {3686, 4672}, {3739, 49560}, {3821, 17239}, {3826, 48636}, {3828, 50097}, {3923, 17275}, {3925, 48651}, {4007, 39586}, {4046, 43223}, {4307, 4678}, {4349, 4669}, {4360, 19856}, {4363, 17771}, {4364, 28522}, {4365, 41809}, {4384, 31289}, {4399, 49477}, {4431, 49456}, {4437, 25351}, {4643, 17767}, {4651, 6539}, {4655, 17270}, {4684, 4967}, {4688, 49676}, {4690, 17770}, {4699, 33087}, {4708, 28484}, {4745, 28580}, {4899, 49457}, {4974, 50095}, {5224, 49474}, {5271, 6679}, {5750, 49489}, {7235, 16603}, {7270, 13610}, {10479, 24530}, {15569, 28633}, {16825, 28634}, {17238, 33149}, {17248, 49452}, {17251, 28542}, {17271, 32857}, {17303, 49488}, {17348, 24295}, {17362, 33682}, {17377, 43997}, {17748, 39564}, {17769, 36480}, {19797, 32913}, {19822, 32853}, {19868, 49472}, {21027, 48647}, {21085, 31993}, {21954, 22206}, {25526, 40438}, {26580, 48641}, {29587, 31252}, {29593, 32784}, {29615, 32846}, {29674, 48630}, {31330, 33089}, {32025, 33082}, {32917, 46918}, {32921, 42696}, {32924, 41821}, {33099, 41816}

X(50312) = barycentric product X(i)*X(j) for these {i,j}: {10, 29576}, {4033, 48024}
X(50312) = barycentric quotient X(i)/X(j) for these {i,j}: {29576, 86}, {48024, 1019}
X(50312) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 28604, 4649}, {10, 594, 3773}, {10, 2321, 3842}, {10, 3696, 4085}, {10, 3993, 1213}, {10, 4058, 4078}, {10, 4133, 5257}, {10, 4709, 4026}, {594, 4733, 10}, {4026, 4709, 4743}, {4058, 4078, 4535}


X(50313) = X(2)X(38)∩X(6)X(519)

Barycentrics    a^3 + 2*a^2*b - a*b^2 + b^3 + 2*a^2*c + 2*b^2*c - a*c^2 + 2*b*c^2 + c^3 : :
X(50313) = 2 X[2321] + X[49497], X[17299] + 2 X[49685], 4 X[17355] - X[32941], 2 X[17355] + X[49529], X[32941] + 2 X[49529], 2 X[49482] + X[49688], X[8] + 2 X[4672], 4 X[10] - X[4655], 2 X[10] + X[32935], X[4655] + 2 X[32935], X[3923] + 2 X[49524], X[17301] - 3 X[38047], 3 X[38087] - X[48829], 3 X[38087] + X[49721], X[3242] - 4 X[24295], 4 X[3589] - X[49455], 5 X[3617] + X[24695], 5 X[3618] - 2 X[49472], X[3729] + 2 X[4085], X[3751] + 2 X[3773], 2 X[4527] + X[49495], X[4660] + 2 X[17351], X[17274] - 3 X[19875]

X(50313) lies on these lines: {1, 4439}, {2, 38}, {6, 519}, {8, 4672}, {9, 48851}, {10, 527}, {37, 48822}, {42, 50105}, {190, 29659}, {346, 49471}, {516, 38144}, {518, 17359}, {528, 3923}, {545, 48821}, {551, 41313}, {597, 28503}, {726, 17301}, {740, 50107}, {752, 1757}, {894, 33165}, {1654, 7229}, {1738, 50119}, {2345, 48802}, {2792, 5790}, {2796, 38087}, {2887, 31164}, {3242, 24295}, {3589, 49455}, {3617, 24695}, {3618, 49472}, {3654, 48875}, {3661, 49712}, {3683, 29669}, {3729, 4085}, {3751, 3773}, {3758, 32847}, {3775, 5223}, {3790, 4649}, {3821, 49747}, {3826, 49733}, {3828, 31139}, {3836, 6173}, {3846, 31142}, {3932, 17392}, {3967, 29635}, {3994, 29829}, {4026, 49742}, {4234, 5009}, {4370, 49740}, {4389, 24821}, {4407, 17308}, {4422, 24331}, {4429, 49722}, {4432, 36479}, {4527, 49495}, {4657, 49520}, {4660, 17351}, {4663, 4725}, {4667, 49766}, {4675, 49769}, {4685, 50048}, {4697, 10327}, {4703, 29667}, {4865, 26223}, {4884, 29650}, {4902, 5224}, {4908, 36409}, {4971, 49488}, {5294, 32920}, {5749, 48856}, {5772, 6172}, {5905, 28595}, {9041, 48810}, {10707, 33120}, {16475, 17769}, {16484, 17339}, {16706, 49532}, {17132, 50091}, {17156, 48644}, {17254, 32784}, {17269, 49764}, {17279, 49479}, {17280, 49490}, {17289, 49448}, {17297, 29674}, {17302, 49517}, {17350, 33076}, {17369, 36480}, {17371, 49501}, {17381, 25055}, {17384, 49513}, {17399, 29633}, {17577, 36568}, {19584, 24484}, {20172, 50095}, {21629, 28194}, {24725, 31079}, {24841, 29660}, {25351, 42697}, {25378, 30578}, {25453, 50103}, {26251, 36263}, {27064, 33169}, {28554, 50101}, {28580, 50118}, {29057, 38116}, {29637, 49499}, {29670, 44416}, {29673, 31140}, {29679, 32940}, {31151, 50128}, {32846, 50133}, {32921, 50114}, {33086, 35596}, {33161, 46897}, {36224, 44370}, {42033, 42042}, {48830, 50111}, {49489, 50129}

X(50313) = midpoint of X(i) and X(j) for these {i,j}: {3679, 50127}, {3729, 50080}, {3751, 17294}, {17281, 47359}, {48829, 49721}, {49524, 49726}, {49688, 50130}
X(50313) = reflection of X(i) in X(j) for these {i,j}: {3923, 49726}, {17294, 3773}, {32921, 50114}, {49747, 3821}, {50080, 4085}, {50092, 3828}, {50129, 49489}, {50130, 49482}
X(50313) = crossdifference of every pair of points on line {8632, 9002}
X(50313) = barycentric product X(190)*X(48235)
X(50313) = barycentric quotient X(48235)/X(514)
X(50313) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 4363, 24693}, {10, 32935, 4655}, {1215, 33163, 4438}, {1757, 3679, 17346}, {17165, 26061, 26128}, {17355, 49529, 32941}, {24821, 36478, 4389}, {26223, 33162, 4865}, {29667, 32938, 4703}, {38087, 49721, 48829}


X(50314) = X(1)X(75)∩X(4)X(9)

Barycentrics    a^3 + a*b^2 + 2*a*b*c + 2*b^2*c + a*c^2 + 2*b*c^2 : :
X(50314) = X[4659] + 2 X[36480]

X(50314) lies on these lines: {1, 75}, {2, 968}, {3, 10472}, {4, 9}, {5, 5955}, {6, 3696}, {7, 49511}, {8, 193}, {31, 5271}, {37, 5695}, {43, 2258}, {46, 10479}, {55, 31993}, {57, 3741}, {63, 4418}, {65, 10477}, {81, 17156}, {82, 39708}, {100, 29828}, {141, 5880}, {165, 18229}, {171, 11679}, {191, 1760}, {192, 16830}, {200, 1215}, {238, 4384}, {239, 16475}, {261, 11104}, {307, 4331}, {310, 18056}, {312, 5268}, {321, 612}, {329, 4104}, {333, 1707}, {346, 4078}, {355, 29207}, {390, 39581}, {452, 41921}, {517, 35628}, {518, 4363}, {519, 4349}, {527, 48802}, {528, 24358}, {536, 48854}, {594, 3416}, {596, 23051}, {614, 4359}, {673, 4432}, {726, 4659}, {730, 40875}, {752, 1757}, {846, 45048}, {936, 27384}, {940, 3706}, {942, 35892}, {946, 21246}, {958, 50054}, {984, 3729}, {993, 4221}, {1001, 3739}, {1008, 1716}, {1054, 29827}, {1089, 46738}, {1100, 49468}, {1125, 4000}, {1155, 37660}, {1211, 1836}, {1279, 4688}, {1350, 43173}, {1376, 3185}, {1386, 4361}, {1402, 11358}, {1441, 2263}, {1449, 4709}, {1503, 5794}, {1698, 4429}, {1699, 3846}, {1721, 13727}, {1722, 13740}, {1743, 4672}, {1944, 3332}, {2049, 3931}, {2082, 26035}, {2292, 17872}, {2328, 44734}, {2385, 24316}, {2783, 46475}, {2796, 48809}, {2886, 37360}, {2999, 25496}, {3158, 29670}, {3187, 17163}, {3242, 17118}, {3243, 49458}, {3247, 3993}, {3305, 26037}, {3306, 30942}, {3434, 19822}, {3579, 39564}, {3616, 17396}, {3617, 17350}, {3624, 16706}, {3632, 17772}, {3661, 4645}, {3663, 19868}, {3677, 24165}, {3683, 19732}, {3687, 26098}, {3702, 16454}, {3703, 50048}, {3723, 49461}, {3731, 3842}, {3749, 3757}, {3755, 5750}, {3771, 25525}, {3775, 4312}, {3786, 3869}, {3789, 24330}, {3821, 17306}, {3823, 17359}, {3826, 17279}, {3836, 17284}, {3840, 5437}, {3844, 17293}, {3870, 32771}, {3883, 4967}, {3891, 4980}, {3896, 19684}, {3920, 28605}, {3925, 32777}, {3932, 17281}, {3971, 7322}, {4011, 7308}, {4026, 17303}, {4028, 5712}, {4042, 4641}, {4133, 17314}, {4195, 16824}, {4310, 31995}, {4344, 32087}, {4357, 24248}, {4362, 5269}, {4364, 28530}, {4365, 5311}, {4387, 44307}, {4407, 17767}, {4413, 30818}, {4414, 30970}, {4416, 24695}, {4419, 28526}, {4431, 49476}, {4461, 39587}, {4512, 27798}, {4514, 19797}, {4640, 5737}, {4643, 17768}, {4644, 34379}, {4649, 49459}, {4651, 26223}, {4654, 33064}, {4665, 5846}, {4666, 32943}, {4667, 4923}, {4668, 28498}, {4670, 28581}, {4671, 5297}, {4675, 4966}, {4676, 17277}, {4679, 5241}, {4684, 50116}, {4686, 49453}, {4690, 28570}, {4693, 16831}, {4697, 32853}, {4699, 16823}, {4716, 16834}, {4726, 49463}, {4733, 17275}, {4850, 29826}, {4873, 6541}, {4970, 29644}, {4974, 16469}, {4981, 32933}, {5018, 9312}, {5044, 48944}, {5219, 25385}, {5220, 17351}, {5222, 38049}, {5223, 32935}, {5224, 24723}, {5231, 21242}, {5247, 31327}, {5248, 41230}, {5249, 33171}, {5250, 31339}, {5256, 32772}, {5272, 19804}, {5287, 32915}, {5295, 5711}, {5336, 33745}, {5438, 48932}, {5552, 27254}, {5573, 29668}, {5725, 37150}, {5739, 41011}, {5743, 24703}, {5772, 38191}, {5793, 5836}, {5853, 36479}, {5902, 38485}, {5936, 30332}, {5988, 46236}, {6051, 16458}, {6173, 49676}, {6358, 8270}, {6382, 7093}, {6651, 29576}, {7193, 24264}, {7222, 49505}, {7227, 49524}, {7283, 19853}, {7290, 16825}, {8769, 31359}, {9623, 28850}, {9780, 17260}, {9791, 17248}, {10030, 40719}, {10371, 49745}, {10389, 29651}, {11683, 12526}, {13588, 16778}, {15254, 17259}, {15569, 15668}, {16468, 20179}, {16484, 40328}, {16491, 17117}, {16496, 17116}, {16667, 49489}, {16777, 49462}, {16973, 49531}, {17119, 38315}, {17122, 30567}, {17251, 28534}, {17257, 24280}, {17270, 33082}, {17274, 32857}, {17282, 29637}, {17286, 29674}, {17294, 32846}, {17296, 49560}, {17298, 33087}, {17304, 33149}, {17308, 17738}, {17318, 28484}, {17369, 36404}, {17370, 34595}, {17599, 42051}, {17733, 37554}, {17740, 29639}, {17754, 24727}, {17889, 25527}, {19701, 37593}, {19808, 32773}, {19860, 26665}, {19861, 26538}, {19875, 41138}, {20162, 31306}, {20292, 32782}, {20883, 23555}, {21085, 32946}, {21283, 29835}, {22184, 23543}, {23681, 26128}, {24231, 42697}, {24331, 38316}, {24336, 29057}, {24392, 29655}, {24452, 31151}, {24850, 31424}, {25006, 33163}, {25055, 37756}, {26227, 31025}, {26627, 29824}, {27186, 33173}, {29327, 36477}, {29642, 41867}, {29648, 33150}, {29664, 33168}, {29667, 33110}, {29673, 36483}, {29705, 29713}, {29846, 31266}, {29855, 33129}, {29857, 32779}, {30142, 42031}, {31019, 33175}, {31164, 33065}, {31178, 49675}, {31183, 31289}, {31211, 38059}, {32778, 33109}, {32780, 32865}, {32917, 35258}, {32926, 42029}, {33077, 33112}, {33084, 33097}, {33111, 33160}, {37049, 46826}, {37095, 44119}, {37553, 43223}, {38053, 49768}, {42871, 49467}, {47358, 49727}, {49446, 49493}, {49451, 49490}, {49455, 50117}, {49460, 49478}

X(50314) = midpoint of X(i) and X(j) for these {i,j}: {8, 4307}, {4659, 7174}, {4667, 4923}
X(50314) = reflection of X(i) in X(j) for these {i,j}: {4356, 1125}, {7174, 36480}
X(50314) = X(26643)-Ceva conjugate of X(5275)
X(50314) = crossdifference of every pair of points on line {798, 1459}
X(50314) = barycentric product X(i)*X(j) for these {i,j}: {10, 26643}, {75, 5275}, {190, 7662}
X(50314) = barycentric quotient X(i)/X(j) for these {i,j}: {5275, 1}, {7662, 514}, {26643, 86}
X(50314) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 17151, 32921}, {1, 24342, 10436}, {1, 25590, 24325}, {1, 49474, 3875}, {2, 32929, 968}, {2, 32932, 17594}, {8, 894, 3751}, {10, 3923, 9}, {31, 21020, 5271}, {75, 5263, 1}, {86, 49470, 1}, {165, 18229, 32916}, {940, 3706, 39594}, {1100, 49468, 49486}, {2345, 2550, 10}, {3242, 17118, 49483}, {3739, 49484, 1001}, {3741, 3980, 57}, {3775, 4655, 17272}, {3836, 24693, 38052}, {3886, 10436, 1}, {4312, 17272, 4655}, {4359, 24552, 614}, {4418, 31330, 63}, {4429, 17289, 1698}, {4649, 49459, 49495}, {4709, 33682, 49488}, {5835, 49734, 5794}, {16469, 16833, 4974}, {16825, 49482, 7290}, {17284, 38052, 3836}, {17889, 32783, 25527}, {19804, 32942, 5272}, {24165, 29652, 3677}, {24325, 32941, 1}, {26037, 32930, 3305}, {32771, 32945, 3870}, {32772, 32860, 5256}, {32779, 33108, 29857}, {32935, 49457, 5223}, {33112, 46918, 33077}, {33682, 49488, 1449}, {43997, 49469, 1}, {49458, 49479, 3243}


X(50315) = X(1)X(319)∩X(2)X(49497)

Barycentrics    2*a^2*b - 2*a*b^2 - b^3 + 2*a^2*c - 2*b^2*c - 2*a*c^2 - 2*b*c^2 - c^3 : :
X(50315) = 5 X[141] - 3 X[48821], 5 X[4085] - 6 X[48821], 3 X[3773] - 4 X[17229], 2 X[17229] - 3 X[49560], 3 X[599] - X[4660], 3 X[599] + X[49460], X[3663] - 3 X[49511], X[3629] - 3 X[48810], 5 X[3763] - X[49680], X[4780] - 3 X[50092], X[4924] - 3 X[38191], X[16496] + 3 X[17294], X[17299] + 3 X[47358], 3 X[47358] - X[49455], 3 X[29594] - X[49529], X[40341] + 3 X[48805], X[49681] + 3 X[50076]

X(50315) lies on these lines: {1, 319}, {2, 49497}, {8, 3836}, {10, 4966}, {31, 31303}, {37, 4407}, {69, 752}, {141, 519}, {142, 4732}, {145, 32784}, {354, 21085}, {518, 3773}, {524, 49482}, {528, 3631}, {537, 2321}, {551, 1213}, {594, 49479}, {599, 4660}, {726, 4527}, {740, 3663}, {984, 17242}, {1086, 4709}, {1125, 17348}, {1211, 42057}, {1654, 16484}, {2796, 17345}, {2887, 17135}, {2891, 5247}, {2895, 32943}, {3241, 17238}, {3242, 17769}, {3244, 4026}, {3416, 17765}, {3589, 49685}, {3626, 3826}, {3629, 48810}, {3632, 4429}, {3661, 49490}, {3662, 49459}, {3679, 17234}, {3686, 49768}, {3687, 24216}, {3696, 49676}, {3706, 33064}, {3717, 49449}, {3741, 5718}, {3750, 37653}, {3759, 29660}, {3763, 49680}, {3771, 31187}, {3790, 49503}, {3821, 4743}, {3846, 10453}, {3886, 4655}, {3912, 49457}, {3923, 17771}, {3932, 49510}, {3936, 21242}, {3943, 49520}, {3996, 33085}, {4023, 4871}, {4028, 6682}, {4042, 29642}, {4046, 24165}, {4062, 46909}, {4133, 28516}, {4357, 49471}, {4389, 49469}, {4416, 4432}, {4439, 17233}, {4445, 42871}, {4519, 21093}, {4648, 48802}, {4663, 24295}, {4672, 34379}, {4684, 4967}, {4690, 42819}, {4693, 6646}, {4702, 17344}, {4711, 25108}, {4753, 17353}, {4780, 50092}, {4783, 20892}, {4851, 36480}, {4886, 29820}, {4909, 19868}, {4924, 38191}, {5233, 31137}, {5695, 17767}, {5847, 49473}, {6541, 49515}, {6679, 24597}, {10449, 37716}, {15485, 17346}, {15668, 48809}, {16496, 17294}, {16706, 50016}, {16823, 42334}, {17156, 26128}, {17165, 48644}, {17228, 29659}, {17230, 33165}, {17237, 49475}, {17240, 50075}, {17243, 49767}, {17249, 49470}, {17275, 24331}, {17276, 28542}, {17280, 49712}, {17287, 33076}, {17288, 24715}, {17295, 32847}, {17298, 24693}, {17299, 47358}, {17317, 36531}, {17327, 48822}, {17360, 49700}, {17362, 50023}, {17366, 50018}, {17373, 36534}, {17766, 49467}, {17770, 49484}, {20011, 32781}, {20012, 33174}, {21255, 25351}, {21283, 31134}, {22165, 28562}, {24199, 50096}, {29594, 49529}, {29673, 48651}, {29674, 49450}, {30942, 37651}, {31178, 48628}, {31289, 37650}, {32856, 48641}, {32863, 32945}, {32864, 33173}, {32919, 33175}, {33162, 48652}, {40341, 48805}, {48627, 50086}, {49506, 49691}, {49681, 50076}

X(50315) = midpoint of X(i) and X(j) for these {i,j}: {69, 32941}, {2321, 49505}, {3416, 49458}, {3886, 4655}, {4660, 49460}, {17299, 49455}, {17345, 49485}, {17372, 49465}
X(50315) = reflection of X(i) in X(j) for these {i,j}: {3773, 49560}, {4085, 141}, {4663, 24295}, {4743, 3821}, {49489, 1125}, {49685, 3589}
X(50315) = complement of X(49497)
X(50315) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 33087, 3836}, {599, 49460, 4660}, {3706, 33064, 48643}, {3936, 31136, 21242}, {4357, 49763, 49471}, {10453, 33084, 3846}, {17135, 31017, 33136}, {17135, 33081, 2887}, {17233, 49448, 4439}, {17299, 47358, 49455}, {29674, 49450, 49693}, {31017, 33136, 2887}, {32853, 33171, 6679}, {33081, 33136, 31017}


X(50316) = X(1)X(2)∩X(6)X(48810)

Barycentrics    a^3 - 3*a^2*b + 3*a*b^2 + b^3 - 3*a^2*c + 3*b^2*c + 3*a*c^2 + 3*b*c^2 + c^3 : :
X(50316) = X[8] + 2 X[49458], X[8] - 4 X[49560], 2 X[10] + X[49451], 4 X[1125] - X[49495], 5 X[3616] - 2 X[49488], 7 X[3622] - 4 X[49477], 3 X[25055] - 2 X[50114], 3 X[38314] - X[50129], X[49458] + 2 X[49560], X[69] + 2 X[32941], 2 X[141] + X[49460], X[193] - 4 X[49482], 2 X[2321] + X[16496], X[3416] + 2 X[49467], 4 X[3589] - X[49680], 5 X[3618] - 2 X[49497], 7 X[3619] - 4 X[4085], 5 X[3620] - 2 X[4660], X[3729] + 2 X[49505], 2 X[3886] + X[24248], X[3886] + 2 X[49511], X[24248] - 4 X[49511], 2 X[4133] + X[49446], X[24695] - 4 X[49484], 2 X[4780] - 5 X[17304], 4 X[17229] - X[49688], X[17276] + 2 X[49485], 5 X[17286] - 2 X[49529], X[17299] + 2 X[49465], 2 X[17372] + X[49681], 3 X[21358] - 2 X[48821], 3 X[38023] - 2 X[50124]

X(50316) lies on these lines: {1, 2}, {6, 48810}, {11, 27739}, {69, 752}, {141, 48829}, {193, 49482}, {238, 37654}, {344, 49457}, {346, 49448}, {390, 33082}, {391, 15485}, {392, 3789}, {497, 33084}, {518, 17281}, {524, 48805}, {527, 50126}, {528, 599}, {529, 11355}, {536, 47358}, {537, 50107}, {540, 50233}, {544, 47039}, {545, 5695}, {594, 42871}, {740, 50101}, {956, 8299}, {966, 16484}, {1001, 17330}, {1009, 12513}, {1111, 4441}, {1146, 5289}, {1279, 50082}, {1386, 50131}, {2238, 16483}, {2321, 16496}, {2345, 49490}, {2550, 31151}, {2784, 5731}, {2809, 5692}, {3242, 28503}, {3303, 16850}, {3416, 49467}, {3434, 31134}, {3550, 37655}, {3589, 49680}, {3618, 49497}, {3619, 4085}, {3620, 4660}, {3672, 49469}, {3685, 17333}, {3706, 33144}, {3729, 49505}, {3751, 50115}, {3886, 17274}, {4000, 49459}, {4034, 35227}, {4046, 17597}, {4133, 49446}, {4310, 49474}, {4331, 36589}, {4353, 50108}, {4370, 5220}, {4419, 4693}, {4461, 49532}, {4479, 4673}, {4543, 47828}, {4643, 4702}, {4657, 49475}, {4684, 50116}, {4715, 24695}, {4720, 30965}, {4780, 17304}, {4904, 30945}, {4908, 49515}, {4966, 17313}, {5263, 17378}, {5315, 37657}, {5734, 36693}, {5739, 32943}, {5880, 31138}, {5881, 36670}, {8616, 14552}, {9041, 50097}, {11522, 36695}, {12702, 19703}, {13464, 36672}, {13633, 34718}, {13745, 49717}, {16486, 37673}, {16801, 17349}, {17229, 49688}, {17251, 49740}, {17264, 50075}, {17271, 49746}, {17275, 42819}, {17276, 49485}, {17286, 49529}, {17297, 49720}, {17299, 49465}, {17320, 49470}, {17321, 49471}, {17342, 49450}, {17359, 47359}, {17360, 49709}, {17372, 49681}, {17382, 28581}, {17718, 27747}, {17757, 30959}, {17784, 33085}, {19277, 48823}, {20075, 33080}, {21242, 30828}, {21283, 31017}, {21358, 48821}, {24477, 33160}, {25557, 31139}, {27549, 49510}, {28309, 49453}, {28538, 50076}, {30305, 30946}, {30384, 30961}, {32922, 50088}, {33159, 49689}, {34648, 43170}, {36694, 37714}, {38023, 50124}, {38076, 43167}, {42032, 42054}, {48808, 48837}, {48811, 48870}, {48832, 48859}, {48833, 48863}, {49486, 50112}, {49723, 50278}, {50080, 50092}

X(50316) = midpoint of X(i) and X(j) for these {i,j}: {3241, 50079}, {3242, 50087}, {3886, 17274}, {48829, 49460}, {49467, 50081}, {50076, 50130}
X(50316) = reflection of X(i) in X(j) for these {i,j}: {6, 48810}, {3416, 50081}, {3679, 29594}, {3751, 50115}, {16834, 551}, {17274, 49511}, {24248, 17274}, {47359, 17359}, {48829, 141}, {48832, 48859}, {48833, 48863}, {48837, 48808}, {48870, 48811}, {49486, 50112}, {50080, 50092}, {50108, 4353}, {50131, 1386}
X(50316) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3632, 50017}, {2, 3241, 48830}, {8, 3616, 16816}, {8, 29579, 10}, {551, 48809, 2}, {3886, 49511, 24248}, {4966, 49725, 17313}, {17135, 33171, 33137}, {29660, 50016, 5222}, {36480, 49764, 17316}, {49458, 49560, 8}


X(50317) = X(1)X(3)∩X(4)X(500)

Barycentrics    a (a^5 b-2 a^3 b^3+a b^5+a^5 c+a^4 b c-a^3 b^2 c-2 a^2 b^3 c+b^5 c-a^3 b c^2-2 a^2 b^2 c^2-a b^3 c^2-2 a^3 c^3-2 a^2 b c^3-a b^2 c^3-2 b^3 c^3+a c^5+b c^5) : :

See Kadir Altintas and Ercole Suppa euclid 5148.

X(50317) lies on these lines: {1,3}, {2,5396}, {4,500}, {5,581}, {6,6883}, {10,37698}, {30,991}, {37,912}, {42,26446}, {43,11231}, {73,11374}, {81,1006}, {140,386}, {273,1442}, {387,6989}, {394,405}, {498,2594}, {511,6176}, {515,24220}, {580,4658}, {582,6986}, {631,19767}, {632,17749}, {943,3562}, {952,30116}, {975,5788}, {995,38028}, {997,5737}, {1064,3720}, {1150,4511}, {1437,13733}, {1656,37732}, {1724,36750}, {1742,28146}, {1765,3247}, {1834,37438}, {1836,4337}, {3085,5399}, {3110,31848}, {3191,3927}, {3216,3526}, {3560,17814}, {3682,5791}, {3743,5884}, {3794,19260}, {3920,5767}, {3945,6987}, {4257,7508}, {4300,12699}, {4306,6147}, {4340,6868}, {4414,12081}, {4551,31479}, {4648,6826}, {4649,39523}, {4653,6914}, {5055,5400}, {5070,22392}, {5145,32515}, {5262,37151}, {5287,18446}, {5312,31423}, {5492,15071}, {5603,29814}, {5657,17018}, {5693,27785}, {5712,6827}, {5718,6882}, {5720,17022}, {5721,6881}, {5722,14547}, {5732,18506}, {5752,13731}, {5769,30115}, {5887,6051}, {6001,15569}, {6149,15175}, {6505,41930}, {6829,45926}, {6830,45944}, {6840,37635}, {6852,24936}, {6878,24597}, {6905,37633}, {6911,37674}, {6971,37693}, {7100,43682}, {7534,46883}, {8583,16457}, {9306,36011}, {9840,37482}, {9956,37699}, {10393,37696}, {10454,46704}, {10459,37727}, {10571,37737}, {11230,26102}, {13738,18180}, {14828,36027}, {14996,37106}, {16343,19861}, {16418,17194}, {16451,41723}, {16455,22076}, {16458,19860}, {16577,18389}, {17019,18444}, {18178,19763}, {20117,27784}, {24281,29331}, {28459,37631}, {37697,45126}

X(50317) = trilinear quotient X(i)/X(j) for these (i, j): (1,37523,942), (3,45923,1754), (3,45931,37530), (1385,37536,3), (1764,3576,3)


leftri

Points on the Euler line: X(50318)-X(50325)

rightri

In the plane of a triangle ABC, let

P = point on Nagel line;
D = point not on Nagel line or Euler line;
U = point on Nagel line, other than U and G;
L = line through U parallel to PD;
U′ = L^(Euler line).

For centers X(50199)-X(50208), we take P = X(8) and D = X(6). The appearance of (i,j) in the following list means that if if U = X(i) then U' = X(j): (10,50318), (239,50319), (3187,50320), (3241,50321), (3621,50322), (3679,50323), (3811,50324), (4362,50325)


X(50318) = X(2)X(3)∩X(10)X(1386)

Barycentrics    2*a^4 + 4*a^3*b + 5*a^2*b^2 + 4*a*b^3 + b^4 + 4*a^3*c + 8*a^2*b*c + 8*a*b^2*c + 4*b^3*c + 5*a^2*c^2 + 8*a*b*c^2 + 6*b^2*c^2 + 4*a*c^3 + 4*b*c^3 + c^4 : :
X(50318) = 3 X[2] + X[964], 9 X[2] - X[17676], 3 X[964] + X[17676], 3 X[13728] - X[17676]

X(50318) lies on these lines: {2, 3}, {6, 49718}, {10, 1386}, {141, 43531}, {942, 5750}, {1125, 17061}, {1213, 4264}, {1330, 17307}, {1698, 5269}, {2345, 50042}, {2901, 17045}, {3624, 17720}, {3634, 6679}, {3695, 17289}, {3927, 5749}, {4026, 15171}, {4657, 50067}, {5105, 17398}, {5295, 17023}, {5717, 29604}, {5814, 17308}, {9708, 19866}, {10449, 17381}, {15172, 24552}, {16828, 25992}, {17384, 23537}, {19784, 31419}, {19865, 32942}, {19868, 34790}, {20582, 50226}, {24931, 37662}, {25499, 50177}, {26035, 50153}, {39564, 40940}, {48843, 49734}, {48866, 49728}

X(50318) = midpoint of X(964) and X(13728)
X(50318) = complement of X(13728)
X(50318) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 964, 13728}, {2, 2049, 8728}, {2, 5047, 17514}, {2, 13740, 4205}, {2, 13742, 16844}, {2, 14005, 17529}, {2, 16845, 16457}, {2, 16903, 33035}, {2, 17526, 16343}, {2, 17589, 17674}, {2, 17697, 37039}, {2, 17698, 6675}, {2, 37036, 17698}, {2, 37037, 3}, {2, 37176, 19273}, {3, 37037, 50059}, {141, 43531, 49743}, {405, 474, 37250}, {405, 37255, 48930}, {4202, 50169, 50238}, {11319, 13745, 50243}, {11354, 13725, 50241}, {13742, 16844, 50202}


X(50319) = X(2)X(3)∩X(239)X(5846)

Barycentrics    a^3*b^2 + a^2*b^3 + a*b^4 + b^5 - 2*a^3*b*c - a^2*b^2*c - 2*a*b^3*c + b^4*c + a^3*c^2 - a^2*b*c^2 - 2*a*b^2*c^2 + a^2*c^3 - 2*a*b*c^3 + a*c^4 + b*c^4 + c^5 : :

X(50319) lies on these lines: {2, 3}, {239, 5846}, {1086, 20432}, {3661, 26561}, {3836, 23682}, {4766, 28254}, {17397, 26590}, {17757, 27044}, {20913, 21024}, {24222, 29716}, {26558, 29610}, {33172, 34284}

X(50319) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6656, 26601}, {2, 11320, 17540}, {2, 33840, 37096}


X(50320) = X(2)X(3)∩X(141)X(321)

Barycentrics    a^4*b^2 + 2*a^3*b^3 + 2*a^2*b^4 + 2*a*b^5 + b^6 + 2*a^3*b^2*c + 2*a^2*b^3*c + 2*a*b^4*c + 2*b^5*c + a^4*c^2 + 2*a^3*b*c^2 + b^4*c^2 + 2*a^3*c^3 + 2*a^2*b*c^3 + 2*a^2*c^4 + 2*a*b*c^4 + b^2*c^4 + 2*a*c^5 + 2*b*c^5 + c^6 : :

X(50320) lies on these lines: {2, 3}, {141, 321}, {1230, 5254}, {2345, 32933}, {3187, 5014}, {17011, 26561}, {17019, 26590}, {18136, 46738}, {21287, 32911}, {32782, 44147}, {33172, 44140}, {45222, 48847}

X(50320) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 32974, 7381}, {7866, 11350, 2}


X(50321) = X(2)X(3)∩X(6)X(50215)

Barycentrics    a^4 - 3*a^3*b - 5*a^2*b^2 - 3*a*b^3 - 2*b^4 - 3*a^3*c - 6*a^2*b*c - 6*a*b^2*c - 3*b^3*c - 5*a^2*c^2 - 6*a*b*c^2 - 2*b^2*c^2 - 3*a*c^3 - 3*b*c^3 - 2*c^4 : :
X(50321) = X[964] - 4 X[13728], X[964] + 2 X[17676], 2 X[13728] + X[17676]

X(50321) lies on these lines: {2, 3}, {6, 50215}, {8, 48842}, {141, 49739}, {321, 50066}, {540, 19738}, {551, 31134}, {599, 3241}, {1150, 3017}, {2345, 50045}, {3578, 48857}, {3666, 50051}, {3679, 4981}, {4026, 5434}, {4657, 50070}, {4720, 17238}, {4968, 48818}, {5278, 48843}, {7788, 16705}, {7865, 25499}, {11237, 26115}, {17147, 50041}, {17237, 49687}, {17251, 50184}, {19684, 48835}, {19722, 50234}, {32784, 49492}, {42045, 48834}, {48840, 50310}, {48845, 49724}, {48861, 49716}

X(50321) = midpoint of X(2) and X(17676)
X(50321) = reflection of X(i) in X(j) for these {i,j}: {2, 13728}, {964, 2}
X(50321) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11359, 17679}, {2, 48813, 50171}, {2, 49735, 11346}, {2, 50165, 11354}, {13728, 17676, 964}, {13745, 48815, 2}


X(50322) = X(2)X(3)∩X(8)X(20064)

Barycentrics    3*a^4 + a^3*b + a*b^3 - b^4 + a^3*c + 2*a^2*b*c + 2*a*b^2*c + b^3*c + 2*a*b*c^2 + 4*b^2*c^2 + a*c^3 + b*c^3 - c^4 : :
X(50322) = 3 X[2] - 4 X[964], 9 X[2] - 8 X[13728], 3 X[964] - 2 X[13728], 4 X[13728] - 3 X[17676]

X(50322) lies on these lines: {2, 3}, {8, 20064}, {193, 3621}, {1043, 31034}, {4302, 26115}, {4339, 20045}, {4450, 5793}, {5016, 50054}, {5278, 49734}, {5716, 17147}, {7354, 24552}, {7737, 26035}, {9579, 17184}, {9657, 48805}, {14923, 37516}, {17154, 36579}, {17165, 20035}, {19741, 19783}, {20077, 31303}, {24275, 26085}, {28619, 48841}

X(50322) = reflection of X(17676) in X(964)
X(50322) = anticomplement of X(17676)
X(50322) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 37435, 17690}, {4, 11115, 2}, {4, 50061, 11115}, {377, 11319, 2}, {377, 48817, 11319}, {382, 16394, 5051}, {964, 17676, 2}, {2049, 50242, 49735}, {2475, 4195, 2}, {2478, 19284, 2}, {11319, 50172, 377}, {11354, 50239, 4202}, {13725, 50244, 50165}, {16865, 26051, 2}, {16909, 33841, 2}, {16910, 17688, 2}, {16913, 33820, 2}, {17537, 19284, 2478}, {17589, 37314, 2}, {19281, 31015, 2}, {19281, 50170, 31015}, {26643, 31049, 2}, {33703, 37037, 50055}, {48817, 50172, 2}


X(50323) = X(2)X(3)∩X(8)X(48861)

Barycentrics    4*a^4 + 6*a^3*b + 7*a^2*b^2 + 6*a*b^3 + b^4 + 6*a^3*c + 12*a^2*b*c + 12*a*b^2*c + 6*b^3*c + 7*a^2*c^2 + 12*a*b*c^2 + 10*b^2*c^2 + 6*a*c^3 + 6*b*c^3 + c^4 : :
X(50323) = 5 X[2] - X[17676], 2 X[964] + X[13728], 5 X[964] + X[17676], 5 X[13728] - 2 X[17676]

X(50323) lies on these lines: {1, 48859}, {2, 3}, {8, 48861}, {141, 49744}, {321, 50069}, {597, 3679}, {1724, 49730}, {2345, 50041}, {3666, 50053}, {4657, 50066}, {4968, 48820}, {15170, 24552}, {17385, 50051}, {25499, 50176}, {37631, 43531}, {48860, 50291}, {48863, 49739}, {48866, 49729}, {48867, 49724}, {48870, 49716}

X(50323) = midpoint of X(2) and X(964)
X(50323) = reflection of X(13728) in X(2)
X(50323) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11354, 13745}, {2, 17561, 16343}, {2, 50171, 48815}


X(50324) = X(2)X(3)∩X(141)X(500)

Barycentrics    2*a^6*b + a^5*b^2 - 3*a^4*b^3 - 2*a^3*b^4 + a*b^6 + b^7 + 2*a^6*c + 4*a^5*b*c - a^4*b^2*c - 4*a^3*b^3*c - 2*a^2*b^4*c + b^6*c + a^5*c^2 - a^4*b*c^2 - 8*a^3*b^2*c^2 - 6*a^2*b^3*c^2 - a*b^4*c^2 - b^5*c^2 - 3*a^4*c^3 - 4*a^3*b*c^3 - 6*a^2*b^2*c^3 - b^4*c^3 - 2*a^3*c^4 - 2*a^2*b*c^4 - a*b^2*c^4 - b^3*c^4 - b^2*c^5 + a*c^6 + b*c^6 + c^7 : :

X(50324) lies on these lines: {2, 3}, {141, 500}, {582, 3589}, {943, 28780}, {3811, 5396}, {4026, 12699}, {4357, 40263}, {4420, 33075}, {5266, 5718}, {5480, 48882}, {5742, 25066}, {13408, 43531}, {14389, 35193}, {17306, 41854}, {19130, 35203}, {19784, 35239}, {21850, 48928}, {24206, 48893}, {36750, 41610}, {37552, 37693}, {48876, 48907}


X(50325) = X(2)X(3)∩X(12)X(32778)

Barycentrics    a^4*b^2 + a^3*b^3 - a*b^5 - b^6 + 2*a^4*b*c + 3*a^3*b^2*c + 3*a^2*b^3*c + a*b^4*c - b^5*c + a^4*c^2 + 3*a^3*b*c^2 + 8*a^2*b^2*c^2 + 4*a*b^3*c^2 + b^4*c^2 + a^3*c^3 + 3*a^2*b*c^3 + 4*a*b^2*c^3 + 2*b^3*c^3 + a*b*c^4 + b^2*c^4 - a*c^5 - b*c^5 - c^6 : :

X(50325) lies on these lines: {2, 3}, {12, 32778}, {495, 33088}, {1836, 32784}, {1961, 17720}, {2886, 4362}, {2887, 3838}, {3822, 29671}, {4640, 17385}, {25466, 29644}, {25639, 29645}

X(50325) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 37316, 6675}


leftri

Points in a [[b c, c a, a b], [a^2, b^2, c^2]] coordinate system: X(50326)-X(50359)

rightri

If L1 and L2 are lines that meet in a point P not at infinity, then a [L1, L2]-coordinate system is a bivariate coordinate system having L1 as x-axis, L2 as y-axis, and P as origin. In this section, L1 and L2 are the following lines:

L1 is the line: b c α + c a β + a b γ = 0.

L2 is the line a^2 α + b^2 β + c^2 γ = 0.

The origin is given by (0, 0) = X(1491) = a(b-c)(b^2+bc+c^2) : : .

Barycentrics u : v : w for a triangle center U = (x,y) in this system are given by

u : v : w = a(b - c)(b^2 + b c + c^2) - a(b - c) x - (b^2 - c^2) y ,

where, as functions of a, b, c, the coordinate x is antisymmetric of degree 3, and y is antisymmetric of degree 3.

The appearance of {x, y}, k in the following list means that (x, y) = X(k).

{-2 (a^2+b^2+c^2), -2 (a^2+b^2+c^2)}, 47925
{-2 (a b+a c+b c), -2 (a b+a c+b c)}, 47928
{-((2 a b c)/(a+b+c)), -((2 a b c)/(a+b+c))}, 4490
{-2 (a b+a c+b c), -a b-a c-b c}, 47666
{-2 (a b+a c+b c), 1/2 (-a b-a c-b c)}, 47993
{-2 (a b+a c+b c), 0}, 48024
{-2 (a b+a c+b c), 1/2 (a^2+b^2+c^2)}, 48046
{-2 (a^2+b^2+c^2), a b+a c+b c}, 47685
{-2 (a b+a c+b c), a b+a c+b c}, 48080
{-2 (a+b+c)^2, a b+a c+b c}, 48079
{-((2 a b c)/(a+b+c)), a b+a c+b c}, 7650
{-((2 a b c)/(a+b+c)), (2 (a+b) (a+c) (b+c))/(a+b+c)}, 48392
{-((2 (a+b) (a+c) (b+c))/(a+b+c)), (2 a b c)/(a+b+c)}, 48123
{-a b-a c-b c, -2 (a^2+b^2+c^2)}, 47702
{-a b-a c-b c, -2 (a b+a c+b c)}, 47934
{-a b-a c-b c, -2 (a+b+c)^2}, 47669
{-a^2-b^2-c^2, -a^2-b^2-c^2}, 47968
{-a b-a c-b c, -a^2-b^2-c^2}, 47701
{-a b-a c-b c, -a b-a c-b c}, 4824
{-a b-a c-b c, -(a+b+c)^2}, 4988
{-(a+b+c)^2, -a^2-b^2-c^2}, 47944
{-(a+b+c)^2, -a b-a c-b c}, 47945
{-((a b c)/(a+b+c)), -((a b c)/(a+b+c))}, 4705
{-a b-a c-b c, 1/2 (-a^2-b^2-c^2)}, 47998
{-a b-a c-b c, 1/2 (-a b-a c-b c)}, 48002
{-a b-a c-b c, -(1/2) (a+b+c)^2}, 4841
{-(a+b+c)^2, 1/2 (-a^2-b^2-c^2)}, 47988
{-a b-a c-b c, 0}, 661
{-((a b c)/(a+b+c)), 0}, 47842
{-a b-a c-b c, 1/2 (a^2+b^2+c^2)}, 48047
{-a b-a c-b c, 1/2 (a b+a c+b c)}, 4806
{-a b-a c-b c, 1/2 (a+b+c)^2}, 3700
{-((a b c)/(a+b+c)), ((a+b) (a+c) (b+c))/(2 (a+b+c))}, 31946
{-a^2-b^2-c^2, a b+a c+b c}, 46403
{-a b-a c-b c, a^2+b^2+c^2}, 4088
{-a b-a c-b c, a b+a c+b c}, 4010
{-a b-a c-b c, (a+b+c)^2}, 4024
{-(a+b+c)^2, a b+a c+b c}, 20295
{-((a b c)/(a+b+c)), a b+a c+b c}, 30591
{-((a b c)/(a+b+c)), ((a+b) (a+c) (b+c))/(a+b+c)}, 1577
{-(((a+b) (a+c) (b+c))/(a+b+c)), (a b c)/(a+b+c)}, 14349
{-a b-a c-b c, 2 (a^2+b^2+c^2)}, 47700
{-a b-a c-b c, 2 (a b+a c+b c)}, 4804
{-a b-a c-b c, 2 (a+b+c)^2}, 4838
{-(a+b+c)^2, 2 (a b+a c+b c)}, 4810
{-((a b c)/(a+b+c)), (2 a b c)/(a+b+c)}, 48350
{1/2 (-a^2-b^2-c^2), -a^2-b^2-c^2}, 47960
{-(1/2) (a+b+c)^2, -a^2-b^2-c^2}, 47961
{1/2 (-a^2-b^2-c^2), 1/2 (-a^2-b^2-c^2)}, 48007
{1/2 (-a b-a c-b c), 1/2 (-a b-a c-b c)}, 48010
{-(1/2) (a+b+c)^2, 1/2 (-a^2-b^2-c^2)}, 47995
{-((a b c)/(2 (a+b+c))), -((a b c)/(2 (a+b+c)))}, 48012
{1/2 (-a^2-b^2-c^2), 0}, 2526
{1/2 (-a b-a c-b c), 0}, 48030
{-(1/2) (a+b+c)^2, 0}, 48027
{1/2 (-a^2-b^2-c^2), 1/2 (a+b+c)^2}, 49285
{1/2 (-a b-a c-b c), 1/2 (a b+a c+b c)}, 3835
{-(1/2) (a+b+c)^2, 1/2 (a^2+b^2+c^2)}, 48039
{-((a b c)/(2 (a+b+c))), ((a+b) (a+c) (b+c))/(2 (a+b+c))}, 21260
{-(((a+b) (a+c) (b+c))/(2 (a+b+c))), (a b c)/(2 (a+b+c))}, 48059
{1/2 (-a^2-b^2-c^2), a b+a c+b c}, 48089
{1/2 (-a b-a c-b c), a b+a c+b c}, 48090
{-(1/2) (a+b+c)^2, a b+a c+b c}, 4106
{1/2 (-a^2-b^2-c^2), 2 (a b+a c+b c)}, 48125
{0, -a b-a c-b c}, 47975
{0, 1/2 (-a^2-b^2-c^2)}, 3004
{0, 0}, 1491
{0, 1/2 (a b+a c+b c)}, 3837
{0, 1/2 (a+b+c)^2}, 48396
{0, ((a+b) (a+c) (b+c))/(2 (a+b+c))}, 44316
{0, a b+a c+b c}, 693
{0, 2 (a b+a c+b c)}, 48120
{1/2 (a^2+b^2+c^2), -(1/2) (a+b+c)^2}, 45745
{1/2 (a b+a c+b c), 1/2 (-a b-a c-b c)}, 48017
{1/2 (a+b+c)^2, 1/2 (-a^2-b^2-c^2)}, 4025
{1/2 (a^2+b^2+c^2), 0}, 650
{1/2 (a^2+b^2+c^2), 1/2 (a^2+b^2+c^2)}, 48062
{1/2 (a^2+b^2+c^2), 1/2 (a b+a c+b c)}, 4874
{1/2 (a^2+b^2+c^2), 1/2 (a+b+c)^2}, 6590
{1/2 (a b+a c+b c), 1/2 (a b+a c+b c)}, 24720
{1/2 (a+b+c)^2, 1/2 (a^2+b^2+c^2)}, 48069
{(a b c)/(2 (a+b+c)), (a b c)/(2 (a+b+c))}, 48066
{1/2 (a^2+b^2+c^2), a b+a c+b c}, 7662
{1/2 (a^2+b^2+c^2), (a+b+c)^2}, 48397
{1/2 (a b+a c+b c), a b+a c+b c}, 48098
{1/2 (a+b+c)^2, a b+a c+b c}, 43067
{1/2 (a^2+b^2+c^2), (2 a b c)/(a+b+c)}, 6129
{1/2 (a b+a c+b c), 2 (a b+a c+b c)}, 48127
{1/2 (a+b+c)^2, 2 (a b+a c+b c)}, 48134
{a^2+b^2+c^2, -a b-a c-b c}, 17494
{a b+a c+b c, -a^2-b^2-c^2}, 16892
{(a b c)/(a+b+c), -(((a+b) (a+c) (b+c))/(a+b+c))}, 48409
{((a+b) (a+c) (b+c))/(a+b+c), -((a b c)/(a+b+c))}, 1734
{(a+b+c)^2, 1/2 (-a^2-b^2-c^2)}, 4897
{a^2+b^2+c^2, 0}, 659
{a b+a c+b c, 0}, 2254
{(a+b+c)^2, 0}, 4784
{a^2+b^2+c^2, 1/2 (a^2+b^2+c^2)}, 47890
{a^2+b^2+c^2, 1/2 (a b+a c+b c)}, 48248
{a^2+b^2+c^2, a^2+b^2+c^2}, 48103
{a^2+b^2+c^2, a b+a c+b c}, 47694
{a^2+b^2+c^2, (a b c)/(a+b+c)}, 4057
{a b+a c+b c, a b+a c+b c}, 21146
{a b+a c+b c, (a+b+c)^2}, 47703
{(a+b+c)^2, a b+a c+b c}, 7192
{(a+b+c)^2, (a b c)/(a+b+c)}, 4840
{(a b c)/(a+b+c), (a b c)/(a+b+c)}, 2530
{(a^3+b^3+c^3)/(a+b+c), (a b c)/(a+b+c)}, 3737
{((a+b) (a+c) (b+c))/(a+b+c), (a b c)/(a+b+c)}, 23800
{a b+a c+b c, 2 (a b+a c+b c)}, 47672
{(a^3+b^3+c^3)/(a+b+c), (2 a b c)/(a+b+c)}, 2605
{2 (a^2+b^2+c^2), a b+a c+b c}, 47697
{2 (a b+a c+b c), a b+a c+b c}, 48108
{2 (a+b+c)^2, a b+a c+b c}, 48107
{2 (a^2+b^2+c^2), 2 (a^2+b^2+c^2)}, 48140
{2 (a b+a c+b c), 2 (a b+a c+b c)}, 48143
{(2 a b c)/(a+b+c), (2 a b c)/(a+b+c)}, 3777
{-2*(a*b + a*c + b*c), (a + b + c)^2/2}, 50326
{(-2*a*b*c)/(a + b + c), ((a + b)*(a + c)*(b + c))/(a + b + c)}, 50327
{-a^2 - b^2 - c^2, 0}, 50328
{-(a*b) - a*c - b*c, ((a + b)*(a + c)*(b + c))/(a + b + c)}, 50329
{-((a*b*c)/(a + b + c)), (a*b*c)/(a + b + c)}, 50330
{-(((a + b)*(a + c)*(b + c))/(a + b + c)), ((a + b)*(a + c)*(b + c))/(a + b + c)}, 50331
{-(a*b) - a*c - b*c, (2*a*b*c)/(a + b + c)}, 50332
{0, (a^2 + b^2 + c^2)/2}, 50333
{0, ((a + b)*(a + c)*(b + c))/(a + b + c)}, 50334
{(a*b + a*c + b*c)/2, 0}, 50335
{(a + b + c)^2/2, 0}, 50336
{((a + b)*(a + c)*(b + c))/(2*(a + b + c)), ((a + b)*(a + c)*(b + c))/(2*(a + b + c))}, 50337
{a*b + a*c + b*c, (-2*a*b*c)/(a + b + c)}, 50338
{(a + b + c)^2, -2*(a*b + a*c + b*c)}, 50339
{a^2 + b^2 + c^2, -a^2 - b^2 - c^2}, 50340
{a*b + a*c + b*c, -(a*b) - a*c - b*c}, 50341
{(a + b + c)^2, -a^2 - b^2 - c^2}, 50342
{(a + b + c)^2, -(a*b) - a*c - b*c}, 50343
{(a + b + c)^2, -((a*b*c)/(a + b + c))}, 50344
{(a*b*c)/(a + b + c), -((a*b*c)/(a + b + c))}, 50345
{(a^3 + b^3 + c^3)/(a + b + c), -((a*b*c)/(a + b + c))}, 50346
{a^2 + b^2 + c^2, (-a^2 - b^2 - c^2)/2}, 50347
{a*b + a*c + b*c, (-a^2 - b^2 - c^2)/2}, 50348
{(a^3 + b^3 + c^3)/(a + b + c), 0}, 50349
{((a + b)*(a + c)*(b + c))/(a + b + c), 0}, 50350
{(a^3 + b^3 + c^3)/(a + b + c), (a^3 + b^3 + c^3)/(a + b + c)}, 50351
{((a + b)*(a + c)*(b + c))/(a + b + c), ((a + b)*(a + c)*(b + c))/(a + b + c)}, 50352
{a^2 + b^2 + c^2, (2*a*b*c)/(a + b + c)}, 50353
{a*b + a*c + b*c, (2*a*b*c)/(a + b + c)}, 50354
{(2*(a + b)*(a + c)*(b + c))/(a + b + c), (-2*a*b*c)/(a + b + c)}, 50355
{2*(a*b + a*c + b*c), -(a*b) - a*c - b*c}, 50356
{2*(a*b + a*c + b*c), (-a^2 - b^2 - c^2)/2}, 50357
{2*(a^2 + b^2 + c^2), 0}, 50358
{2*(a*b + a*c + b*c), 0}, 50359


X(50326) = X(100)X(190)∩X(513)X(3700)

Barycentrics    (b - c)*(-3*a^2*b + b^3 - 3*a^2*c - 2*a*b*c + 3*b^2*c + 3*b*c^2 + c^3) : :
X(50326) = 2 X[2977] - 3 X[30565], 2 X[649] - 3 X[48231], 2 X[650] - 3 X[48166], 2 X[676] - 3 X[4800], 3 X[4010] - X[48326], 3 X[23770] - 2 X[48326], 3 X[1639] - 2 X[9508], X[2254] - 3 X[4120], 2 X[2254] - 3 X[48182], 3 X[3716] - 2 X[13246], 4 X[3716] - 3 X[26275], 8 X[13246] - 9 X[26275], 4 X[3239] - 3 X[47807], 2 X[3798] - 3 X[47803], 4 X[3835] - 3 X[48178], 2 X[4025] - 3 X[47799], X[4467] - 3 X[47821], 4 X[4885] - 3 X[48245], 3 X[4931] - X[47703], 3 X[4944] - X[7659], 2 X[7659] - 3 X[48249], 3 X[4958] + X[48032], 2 X[17069] - 3 X[47822], 3 X[21297] - X[49301], 2 X[25380] - 3 X[45661], 5 X[26798] - 3 X[48159], X[26853] - 3 X[48250], 3 X[31147] - X[47973], 2 X[47132] - 3 X[48172], 3 X[47769] - X[47975], 3 X[47772] - X[48408], 3 X[47786] - X[48015], 2 X[48015] - 3 X[48163], 3 X[47790] - X[48108], 3 X[47826] - X[48277], 3 X[47832] - X[47971], 3 X[47870] - X[49283], X[48148] - 3 X[48416]

X(50326) lies on these lines: {100, 190}, {513, 3700}, {522, 48000}, {523, 8663}, {525, 48267}, {649, 48231}, {650, 48166}, {676, 4800}, {690, 10015}, {812, 48055}, {824, 47998}, {918, 4010}, {1491, 14321}, {1639, 9508}, {2254, 4120}, {2786, 3716}, {3004, 4806}, {3239, 47807}, {3566, 4391}, {3667, 4522}, {3798, 47803}, {3835, 48178}, {3910, 48265}, {4024, 48021}, {4025, 47799}, {4040, 29232}, {4170, 29288}, {4367, 4990}, {4382, 48078}, {4467, 47821}, {4490, 4843}, {4500, 4778}, {4724, 48266}, {4762, 48040}, {4804, 48082}, {4810, 6084}, {4841, 48028}, {4874, 4897}, {4885, 48245}, {4931, 47703}, {4940, 48007}, {4944, 7659}, {4958, 48032}, {4977, 20295}, {6002, 48299}, {6005, 48395}, {6367, 47994}, {7178, 29200}, {7265, 29142}, {7662, 28846}, {17069, 47822}, {21104, 48090}, {21120, 29284}, {21297, 49301}, {22037, 23887}, {23875, 48403}, {25380, 45661}, {26798, 48159}, {26853, 48250}, {28175, 49273}, {28195, 49294}, {28213, 49298}, {28851, 48394}, {28855, 49292}, {28878, 48134}, {28894, 47983}, {29126, 49279}, {29148, 48290}, {29198, 48280}, {29240, 49276}, {29278, 48336}, {29328, 47890}, {30520, 49295}, {31147, 47973}, {44449, 47694}, {47132, 48172}, {47656, 47941}, {47671, 47904}, {47691, 49272}, {47696, 48079}, {47704, 48112}, {47769, 47975}, {47772, 48408}, {47786, 48015}, {47790, 48108}, {47826, 48277}, {47832, 47971}, {47870, 49283}, {47989, 48049}, {48036, 48268}, {48076, 48142}, {48102, 48114}, {48148, 48416}

X(50326) = midpoint of X(i) and X(j) for these {i,j}: {4024, 48021}, {4382, 48078}, {4724, 48266}, {4804, 48082}, {4810, 48083}, {20295, 49275}, {25259, 48080}, {44449, 47694}, {47656, 47941}, {47665, 47699}, {47671, 47904}, {47691, 49272}, {47696, 48079}, {47704, 48112}, {48036, 48268}, {48076, 48142}, {48102, 48114}
X(50326) = reflection of X(i) in X(j) for these {i,j}: {1491, 14321}, {3004, 4806}, {4367, 4990}, {4841, 48028}, {4897, 4874}, {21104, 48090}, {23770, 4010}, {47989, 48049}, {47998, 48043}, {48007, 4940}, {48047, 48270}, {48163, 47786}, {48182, 4120}, {48249, 4944}, {48290, 49288}, {48396, 3700}, {48400, 48267}
X(50326) = crossdifference of every pair of points on line {1015, 16466}


X(50327) = X(10)X(522)∩X(513)X(1577)

Barycentrics    b*(b - c)*c*(-a^2 + a*b + b^2 + a*c + 2*b*c + c^2) : :
X(50327) = 2 X[905] - 3 X[48207], X[1459] - 3 X[47832], X[4560] - 3 X[48165], 2 X[8043] - 3 X[47794], 2 X[14838] - 3 X[48181], X[20293] + 3 X[48172], X[17496] - 3 X[48209], 2 X[31947] - 3 X[48186], 3 X[48186] - X[48321], 2 X[40086] - 3 X[48184]

X(50327) lies on these lines: {10, 522}, {513, 1577}, {514, 30591}, {523, 4391}, {656, 48264}, {693, 4806}, {784, 47842}, {814, 4057}, {834, 4010}, {900, 2517}, {905, 48207}, {1269, 3261}, {1459, 3720}, {1491, 31946}, {2523, 24961}, {3716, 48297}, {3733, 4874}, {3762, 4802}, {3907, 48302}, {4064, 21118}, {4086, 4777}, {4397, 28183}, {4404, 28165}, {4408, 4509}, {4436, 18740}, {4462, 28175}, {4474, 48303}, {4560, 48165}, {4768, 28205}, {4778, 4823}, {4801, 28213}, {4840, 29170}, {4978, 28195}, {6586, 21960}, {8043, 47794}, {8702, 48339}, {14208, 48029}, {14838, 48181}, {17135, 20293}, {17496, 48209}, {18072, 18133}, {23282, 29017}, {23290, 46110}, {23880, 48168}, {25501, 47831}, {25512, 31947}, {29066, 48306}, {35353, 40013}

X(50327) = midpoint of X(i) and X(j) for these {i,j}: {656, 48264}, {1577, 4985}, {2517, 4811}, {3762, 4815}, {4064, 21118}, {4391, 7650}, {4474, 48303}
X(50327) = reflection of X(i) in X(j) for these {i,j}: {1491, 31946}, {3733, 4874}, {4036, 4791}, {48297, 3716}, {48321, 31947}
X(50327) = X(4500)-Dao conjugate of X(4490)
X(50327) = crossdifference of every pair of points on line {5019, 7113}
X(50327) = barycentric product X(i)*X(j) for these {i,j}: {75, 48277}, {693, 17275}, {4391, 11375}
X(50327) = barycentric quotient X(i)/X(j) for these {i,j}: {11375, 651}, {17275, 100}, {48277, 1}
X(50327) = {X(48186),X(48321)}-harmonic conjugate of X(31947)


X(50328) = X(2)X(48248)∩X(44)X(513)

Barycentrics    a*(b - c)*(a^2 + 2*b^2 + b*c + 2*c^2) : :
X(50328) = 2 X[649] - 3 X[48244], 4 X[650] - 3 X[659], 2 X[650] - 3 X[1491], X[650] - 3 X[2526], 8 X[650] - 9 X[47827], 4 X[650] - 9 X[48160], 7 X[650] - 9 X[48193], 10 X[650] - 9 X[48226], X[659] - 4 X[2526], 2 X[659] - 3 X[47827], X[659] - 3 X[48160], 7 X[659] - 12 X[48193], 5 X[659] - 6 X[48226], 4 X[1491] - 3 X[47827], 2 X[1491] - 3 X[48160], 7 X[1491] - 6 X[48193], 5 X[1491] - 3 X[48226], 3 X[2254] - X[4979], 8 X[2526] - 3 X[47827], 4 X[2526] - 3 X[48160], 7 X[2526] - 3 X[48193], 10 X[2526] - 3 X[48226], 2 X[4724] - 3 X[48162], 2 X[4782] - 3 X[47828], 3 X[4784] - 2 X[4979], X[4784] + 2 X[48020], X[4813] - 3 X[48023], X[4979] + 3 X[48020], 3 X[47810] - X[48032], 7 X[47827] - 8 X[48193], 5 X[47827] - 4 X[48226], 4 X[48030] - 3 X[48162], 7 X[48160] - 4 X[48193], 5 X[48160] - 2 X[48226], 10 X[48193] - 7 X[48226], X[4810] - 4 X[48042], 3 X[4810] - 4 X[49287], 3 X[24719] - 2 X[49287], 3 X[48042] - X[49287], X[26824] - 3 X[46403], X[47654] + 3 X[47687], 2 X[667] - 3 X[47893], 3 X[47893] - 4 X[48066], 2 X[676] - 3 X[48178], 2 X[693] - 3 X[48167], 3 X[2530] - 2 X[3960], 4 X[3960] - 3 X[4367], 4 X[2490] - 3 X[48247], 4 X[3835] - 3 X[4800], 6 X[3837] - 5 X[26985], 4 X[3837] - 3 X[47833], 2 X[3837] - 3 X[48164], 5 X[26985] - 3 X[47694], 10 X[26985] - 9 X[47833], 5 X[26985] - 9 X[48164], 2 X[47694] - 3 X[47833], X[47694] - 3 X[48164], X[4814] + 3 X[48122], 2 X[4369] - 3 X[36848], 2 X[4401] - 3 X[47888], 3 X[4448] - 4 X[25666], 2 X[4791] - 3 X[31149], 3 X[4809] - 4 X[21212], 4 X[4874] - 5 X[30795], 2 X[4874] - 3 X[44429], 4 X[4874] - 3 X[48251], 5 X[30795] - 6 X[44429], 5 X[30795] - 2 X[47697], 5 X[30795] - 3 X[48251], 3 X[44429] - X[47697], 2 X[47697] - 3 X[48251], 3 X[4879] - 2 X[4895], X[4895] - 3 X[48131], 4 X[4885] - 3 X[48234], 3 X[4927] - 2 X[47132], 3 X[4948] - 2 X[17494], X[17494] - 3 X[48157], 3 X[4951] - 2 X[48271], 2 X[7662] - 3 X[48184], 2 X[8689] - 3 X[47778], 3 X[21146] - 2 X[49291], 4 X[21260] - 3 X[47872], 4 X[23815] - 3 X[47889], 4 X[24720] - 3 X[48253], 3 X[25569] - 2 X[48324], 5 X[27013] - 6 X[48229], 7 X[27115] - 6 X[45314], 7 X[27138] - 6 X[48183], X[47664] + 3 X[47685], X[47664] - 3 X[47975], 3 X[31131] - X[47660], 5 X[31209] - 6 X[45323], X[47662] - 3 X[48187], X[47693] - 3 X[48169], X[47695] - 3 X[48159], X[47696] - 3 X[47808], 3 X[47808] - 2 X[48405], 3 X[47812] - X[48153], 3 X[47822] - 2 X[48063], X[47974] - 3 X[48549], 2 X[48008] - 3 X[48225]

X(50328) lies on these lines: {2, 48248}, {44, 513}, {256, 23838}, {512, 48086}, {514, 4774}, {522, 4810}, {523, 2528}, {663, 48100}, {667, 47893}, {676, 48178}, {693, 48167}, {764, 4160}, {814, 48410}, {830, 2530}, {900, 3004}, {1654, 28209}, {1734, 48596}, {2490, 48247}, {3309, 48092}, {3667, 47877}, {3728, 40471}, {3738, 4477}, {3777, 8678}, {3835, 4800}, {3837, 26985}, {3900, 48616}, {4010, 48050}, {4040, 48059}, {4041, 48116}, {4057, 27630}, {4083, 4814}, {4369, 36848}, {4382, 4777}, {4401, 47888}, {4448, 25666}, {4449, 48137}, {4770, 21385}, {4778, 47985}, {4791, 31149}, {4802, 47925}, {4809, 21212}, {4833, 27644}, {4834, 48018}, {4874, 30795}, {4879, 4895}, {4885, 48234}, {4905, 48586}, {4927, 47132}, {4948, 17494}, {4951, 48271}, {4963, 4977}, {4983, 42325}, {6004, 14349}, {6005, 48603}, {6006, 48041}, {6372, 47948}, {7192, 30966}, {7662, 48184}, {8689, 47778}, {9002, 20983}, {9013, 27469}, {11068, 47984}, {17166, 48406}, {18004, 49275}, {21123, 23656}, {21146, 49291}, {21260, 47872}, {21343, 48335}, {23815, 47889}, {24720, 48253}, {25569, 48324}, {27013, 48229}, {27115, 45314}, {27138, 48183}, {27673, 28284}, {28151, 47919}, {28195, 47909}, {28220, 47908}, {28225, 47885}, {28355, 28399}, {28396, 28398}, {28840, 49717}, {29070, 48409}, {29144, 47958}, {29198, 47912}, {29204, 47923}, {29362, 47664}, {29370, 47677}, {31131, 47660}, {31209, 45323}, {47662, 48187}, {47693, 48169}, {47695, 48159}, {47696, 47808}, {47700, 47931}, {47701, 47999}, {47812, 48153}, {47822, 48063}, {47901, 48146}, {47905, 48151}, {47910, 47953}, {47913, 47956}, {47924, 48621}, {47927, 47964}, {47929, 47967}, {47934, 48115}, {47940, 48108}, {47944, 47989}, {47946, 47992}, {47949, 48613}, {47951, 48599}, {47969, 48002}, {47970, 48005}, {47973, 48077}, {47974, 48549}, {48008, 48225}, {48015, 48035}, {48017, 48593}, {48047, 48083}, {48054, 48351}, {48056, 48102}, {48069, 48589}, {48073, 48590}, {48088, 48604}, {48089, 48120}, {48093, 48367}, {48097, 48139}, {48098, 48142}, {48106, 48585}, {48129, 48338}, {48148, 48583}

X(50328) = midpoint of X(i) and X(j) for these {i,j}: {1734, 48596}, {2254, 48020}, {4041, 48116}, {4905, 48586}, {47685, 47975}, {47700, 47931}, {47901, 48146}, {47905, 48151}, {47934, 48115}, {47940, 48108}, {47973, 48077}, {48015, 48035}, {48017, 48593}, {48069, 48589}, {48073, 48590}, {48106, 48585}, {48148, 48583}
X(50328) = reflection of X(i) in X(j) for these {i,j}: {659, 1491}, {663, 48100}, {667, 48066}, {1491, 2526}, {4010, 48050}, {4040, 48059}, {4367, 2530}, {4449, 48137}, {4724, 48030}, {4784, 2254}, {4810, 24719}, {4834, 48018}, {4879, 48131}, {4948, 48157}, {4963, 47945}, {4983, 48052}, {17166, 48406}, {21343, 48335}, {21385, 4770}, {24719, 48042}, {47694, 3837}, {47696, 48405}, {47697, 4874}, {47701, 47999}, {47827, 48160}, {47833, 48164}, {47910, 47953}, {47913, 47956}, {47924, 48621}, {47927, 47964}, {47929, 47967}, {47944, 47989}, {47946, 47992}, {47949, 48613}, {47969, 48002}, {47970, 48005}, {48024, 48027}, {48083, 48047}, {48102, 48056}, {48120, 48089}, {48123, 48092}, {48139, 48097}, {48142, 48098}, {48251, 44429}, {48323, 3777}, {48336, 14349}, {48338, 48129}, {48351, 48054}, {48367, 48093}, {48599, 47951}, {48604, 48088}, {49275, 18004}
X(50328) = anticomplement of X(48248)
X(50328) = X(14492)-Ceva conjugate of X(11)
X(50328) = X(2)-isoconjugate of X(28864)
X(50328) = X(32664)-Dao conjugate of X(28864)
X(50328) = crossdifference of every pair of points on line {1, 5007}
X(50328) = barycentric product X(i)*X(j) for these {i,j}: {1, 28863}, {513, 17292}
X(50328) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 28864}, {17292, 668}, {28863, 75}
X(50328) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {659, 1491, 47827}, {659, 48160, 1491}, {667, 48066, 47893}, {1491, 2526, 48160}, {3837, 47694, 47833}, {4724, 48030, 48162}, {4874, 44429, 30795}, {4874, 47697, 48251}, {30795, 48251, 4874}, {44429, 47697, 4874}, {47694, 48164, 3837}, {47696, 47808, 48405}


X(50329) = X(513)X(1577)∩X(523)X(661)

Barycentrics    (b - c)*(b + c)*(-a^3 - a^2*b - a^2*c + b^2*c + b*c^2) : :
X(50329) = X[14288] + 2 X[48267], X[4064] - 3 X[4120], X[4729] - 4 X[21714], 2 X[9508] - 3 X[48205], 2 X[31947] - 3 X[47839]

X(50329) lies on these lines: {430, 38360}, {512, 4036}, {513, 1577}, {522, 4129}, {523, 661}, {525, 21121}, {656, 900}, {798, 6133}, {810, 48302}, {814, 48297}, {834, 4391}, {2254, 44316}, {2310, 7668}, {2517, 48080}, {2605, 2787}, {2786, 21187}, {3657, 15232}, {3716, 4057}, {3733, 6002}, {3766, 20948}, {3835, 28623}, {4086, 4132}, {4106, 14208}, {4145, 4404}, {4369, 4840}, {4729, 21714}, {4777, 48551}, {4802, 48093}, {4977, 47906}, {6129, 21894}, {7253, 9013}, {7649, 48269}, {8061, 29078}, {8672, 30591}, {8676, 44426}, {9508, 48205}, {15313, 16228}, {17217, 18160}, {17478, 29324}, {20981, 24506}, {24287, 42327}, {24346, 37014}, {26983, 48209}, {27045, 48204}, {28175, 48279}, {31947, 47839}, {40086, 48151}

X(50329) = midpoint of X(i) and X(j) for these {i,j}: {2517, 48080}, {4086, 4170}, {7649, 48269}
X(50329) = reflection of X(i) in X(j) for these {i,j}: {656, 31946}, {2254, 44316}, {3733, 8062}, {4057, 3716}, {4840, 4369}, {23282, 3700}, {47842, 4129}, {48151, 40086}
X(50329) = X(i)-Ceva conjugate of X(j) for these (i,j): {7649, 523}, {48269, 3566}
X(50329) = X(i)-isoconjugate of X(j) for these (i,j): {81, 29014}, {100, 15376}, {163, 39700}
X(50329) = X(i)-Dao conjugate of X(j) for these (i, j): (115, 39700), (306, 4561), (8054, 15376), (40586, 29014)
X(50329) = crosspoint of X(4) and X(3952)
X(50329) = crosssum of X(i) and X(j) for these (i,j): {3, 3733}, {3670, 23800}
X(50329) = crossdifference of every pair of points on line {58, 15376}
X(50329) = barycentric product X(i)*X(j) for these {i,j}: {10, 29013}, {514, 2901}, {523, 3187}, {661, 18147}, {850, 5301}, {1577, 1724}, {14618, 42463}
X(50329) = barycentric quotient X(i)/X(j) for these {i,j}: {42, 29014}, {523, 39700}, {649, 15376}, {1724, 662}, {2901, 190}, {3187, 99}, {5301, 110}, {18147, 799}, {29013, 86}, {42463, 4558}


X(50330) = X(1)X(38469)∩X(36)X(238)

Barycentrics    a*(b - c)*(b + c)*(a*b + b^2 + a*c + c^2) : :
X(50330) = 2 X[3733] - 3 X[14419], 3 X[14419] - 4 X[31947], 2 X[4036] - 3 X[14431], X[4705] + 2 X[48350], 3 X[14431] - 4 X[31946], X[1769] + 2 X[48059], X[4397] - 3 X[47814], 2 X[4874] - 3 X[48186], 2 X[6133] - 3 X[47794], X[7253] - 3 X[47840], 2 X[8062] - 3 X[47839], X[47694] - 3 X[48173], X[47844] - 3 X[48209]

X(50330) lies on these lines: {1, 38469}, {2, 4581}, {36, 238}, {512, 656}, {514, 24459}, {521, 48136}, {522, 1491}, {523, 1577}, {647, 661}, {650, 21389}, {663, 832}, {665, 48022}, {764, 4977}, {784, 7650}, {826, 4064}, {1649, 8034}, {1769, 48059}, {2254, 2499}, {2517, 21260}, {2526, 17115}, {2533, 27711}, {2605, 9013}, {3004, 4509}, {3005, 47701}, {3120, 3259}, {3122, 38363}, {3125, 41179}, {3667, 48066}, {3777, 4778}, {4041, 4139}, {4079, 8061}, {4129, 27576}, {4132, 4730}, {4140, 21099}, {4397, 47814}, {4466, 35094}, {4490, 28147}, {4601, 35147}, {4775, 15313}, {4802, 47725}, {4811, 48410}, {4874, 48186}, {4879, 35057}, {4934, 20975}, {6004, 48340}, {6129, 8678}, {6133, 47794}, {6161, 48306}, {6370, 21121}, {6371, 17420}, {6586, 48025}, {7253, 47840}, {7927, 14429}, {8062, 47839}, {8648, 39480}, {9508, 29487}, {14434, 42758}, {17066, 30765}, {18210, 38982}, {20293, 48298}, {20294, 47708}, {21124, 42661}, {23752, 42768}, {23765, 28229}, {27293, 47694}, {28161, 48012}, {28398, 48023}, {28623, 48267}, {39011, 39015}, {47844, 48209}

X(50330) = midpoint of X(i) and X(j) for these {i,j}: {661, 4017}, {4811, 48410}, {14349, 21189}, {17420, 48131}, {20293, 48298}, {20294, 47708}, {47842, 48350}
X(50330) = reflection of X(i) in X(j) for these {i,j}: {2517, 21260}, {3733, 31947}, {4036, 31946}, {4086, 21051}, {4705, 47842}, {6161, 48306}, {48393, 30591}
X(50330) = complement of X(4581)
X(50330) = X(i)-complementary conjugate of X(j) for these (i,j): {6, 17197}, {31, 3125}, {100, 3831}, {101, 44417}, {109, 3812}, {110, 49598}, {163, 6703}, {692, 5750}, {765, 6371}, {960, 124}, {1193, 11}, {1211, 21253}, {1331, 37613}, {1333, 24195}, {1415, 39595}, {2092, 8287}, {2149, 3910}, {2269, 26932}, {2292, 125}, {2300, 1086}, {3666, 116}, {3725, 115}, {3882, 141}, {4267, 34589}, {4357, 21252}, {17420, 46100}, {20967, 1146}, {22074, 16596}, {22076, 34846}, {22345, 2968}, {24471, 17059}, {40153, 17761}, {40976, 6506}, {42661, 24040}
X(50330) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 3125}, {12, 3120}, {56, 18210}, {513, 6371}, {693, 3910}, {3004, 21124}, {38470, 1}
X(50330) = X(i)-isoconjugate of X(j) for these (i,j): {21, 36098}, {58, 8707}, {81, 36147}, {86, 32736}, {100, 2363}, {101, 14534}, {110, 1220}, {162, 1791}, {163, 30710}, {190, 1169}, {284, 6648}, {333, 8687}, {643, 961}, {648, 2359}, {662, 2298}, {1240, 1576}, {1798, 1897}, {4556, 14624}, {4570, 4581}, {32739, 40827}, {36050, 40452}
X(50330) = X(i)-Dao conjugate of X(j) for these (i, j): (10, 8707), (115, 30710), (124, 40452), (125, 1791), (244, 1220), (960, 100), (1015, 14534), (1084, 2298), (1211, 99), (2092, 645), (3125, 2), (3666, 668), (4858, 1240), (8054, 2363), (17197, 261), (17419, 333), (34467, 1798), (38992, 21), (39015, 81), (40586, 36147), (40590, 6648), (40600, 32736), (40611, 36098), (40619, 40827), (40622, 31643)
X(50330) = crosspoint of X(i) and X(j) for these (i,j): {86, 8052}, {513, 523}, {693, 7178}, {3004, 48131}
X(50330) = crosssum of X(i) and X(j) for these (i,j): {100, 110}, {513, 5262}, {692, 5546}, {32736, 36147}
X(50330) = crossdifference of every pair of points on line {21, 37}
X(50330) = barycentric product X(i)*X(j) for these {i,j}: {1, 21124}, {10, 48131}, {37, 3004}, {42, 4509}, {65, 3910}, {226, 17420}, {274, 42661}, {321, 6371}, {429, 905}, {512, 20911}, {513, 1211}, {514, 2292}, {523, 3666}, {525, 1829}, {649, 18697}, {650, 41003}, {656, 1848}, {661, 4357}, {663, 45196}, {667, 1228}, {693, 2092}, {850, 2300}, {960, 7178}, {1019, 20653}, {1193, 1577}, {2269, 4077}, {2354, 14208}, {2530, 27067}, {3120, 3882}, {3261, 3725}, {3669, 3704}, {3674, 4041}, {3676, 21033}, {3687, 4017}, {3700, 24471}, {3835, 45197}, {4036, 40153}, {4079, 16739}, {4705, 16705}, {7192, 21810}, {14618, 22345}, {15413, 44092}, {17108, 47711}, {17924, 22076}, {20906, 45218}, {21051, 27455}, {22097, 24006}, {24002, 40966}
X(50330) = barycentric quotient X(i)/X(j) for these {i,j}: {37, 8707}, {42, 36147}, {65, 6648}, {213, 32736}, {429, 6335}, {512, 2298}, {513, 14534}, {523, 30710}, {647, 1791}, {649, 2363}, {661, 1220}, {667, 1169}, {693, 40827}, {810, 2359}, {960, 645}, {1193, 662}, {1211, 668}, {1228, 6386}, {1400, 36098}, {1402, 8687}, {1577, 1240}, {1829, 648}, {1848, 811}, {2092, 100}, {2269, 643}, {2292, 190}, {2300, 110}, {2354, 162}, {3004, 274}, {3125, 4581}, {3666, 99}, {3674, 4625}, {3687, 7257}, {3704, 646}, {3725, 101}, {3882, 4600}, {3910, 314}, {3965, 7256}, {4267, 4612}, {4357, 799}, {4509, 310}, {4705, 14624}, {6371, 81}, {6589, 40452}, {7178, 31643}, {7180, 961}, {16705, 4623}, {17420, 333}, {18210, 15420}, {18697, 1978}, {20653, 4033}, {20911, 670}, {20967, 5546}, {21033, 3699}, {21035, 35334}, {21124, 75}, {21810, 3952}, {22076, 1332}, {22097, 4592}, {22345, 4558}, {22383, 1798}, {24471, 4573}, {40966, 644}, {41003, 4554}, {42550, 44765}, {42661, 37}, {44092, 1783}, {45196, 4572}, {45197, 4598}, {45218, 932}, {48131, 86}
X(50330) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3733, 31947, 14419}, {4036, 31946, 14431}, {4079, 8061, 24290}


X(50331) = X(512)X(2517)∩X(513)X(1577)

Barycentrics    (b - c)*(-(a^3*b) - a^2*b^2 - a^3*c - a^2*b*c + b^3*c - a^2*c^2 + 2*b^2*c^2 + b*c^3) : :
X(50331) = 2 X[14288] + X[48267], X[4017] - 3 X[4728], 2 X[9508] - 3 X[48228], 3 X[14431] - 2 X[20316], X[20293] - 3 X[30709]

X(50331) lies on these lines: {512, 2517}, {513, 1577}, {522, 1491}, {523, 4992}, {656, 21260}, {667, 8062}, {693, 8672}, {802, 4486}, {814, 3737}, {832, 7253}, {834, 4036}, {900, 21189}, {1459, 2787}, {1919, 24506}, {2530, 28623}, {3837, 23800}, {4017, 4728}, {4063, 6133}, {4083, 4086}, {4139, 4397}, {4391, 6371}, {4581, 20295}, {4778, 48265}, {4815, 48090}, {4874, 29487}, {5214, 47948}, {6004, 44444}, {6089, 20294}, {8678, 39547}, {9508, 48228}, {14431, 20316}, {20293, 30709}, {21191, 24287}, {27293, 48243}, {28147, 48279}, {29070, 46385}, {29324, 48281}

X(50331) = midpoint of X(i) and X(j) for these {i,j}: {4581, 20295}, {5214, 47948}, {7253, 21301}
X(50331) = reflection of X(i) in X(j) for these {i,j}: {656, 21260}, {667, 8062}, {4063, 6133}, {4815, 48090}, {23800, 3837}
X(50331) = crossdifference of every pair of points on line {172, 4275}
X(50331) = barycentric product X(1577)*X(27660)
X(50331) = barycentric quotient X(27660)/X(662)


X(50332) = X(512)X(656)∩X(513)X(663)

Barycentrics    a*(b - c)*(b + c)*(a^2 + 2*a*b + b^2 + 2*a*c + c^2) : :
X(50332) = X[1769] + 2 X[48123], X[4822] + 2 X[48350], 2 X[4369] - 3 X[48209], X[4397] - 3 X[4776], X[4404] - 3 X[48551], X[4581] - 3 X[47840], 2 X[8062] - 3 X[47840], 2 X[6133] - 3 X[47822], 3 X[21052] - 4 X[31946], 2 X[21187] - 3 X[47797], 5 X[24924] - 6 X[48207], 4 X[25666] - 3 X[48204], 2 X[43927] - 3 X[47813]

X(50332) lies on these lines: {512, 656}, {513, 663}, {514, 4815}, {522, 4170}, {523, 661}, {830, 48307}, {832, 4775}, {834, 17420}, {2517, 3835}, {3250, 48022}, {3942, 4934}, {4041, 4132}, {4057, 8635}, {4086, 4129}, {4139, 4705}, {4160, 48293}, {4369, 48209}, {4397, 4776}, {4404, 48551}, {4502, 48033}, {4581, 8062}, {4778, 48335}, {4784, 28372}, {4802, 47918}, {4826, 8061}, {4879, 38469}, {4977, 48334}, {4983, 8672}, {6005, 23800}, {6133, 47822}, {8678, 48303}, {11934, 42312}, {15313, 48338}, {20315, 48069}, {21052, 31946}, {21102, 48400}, {21187, 47797}, {23752, 48403}, {24924, 48207}, {25666, 48204}, {28147, 47959}, {28155, 47997}, {28161, 48054}, {28623, 48080}, {35057, 48337}, {43927, 47813}, {44444, 48050}, {46385, 48099}, {46393, 47136}, {48281, 48348}, {48302, 48322}, {48332, 48342}

X(50332) = midpoint of X(i) and X(j) for these {i,j}: {4017, 4822}, {42312, 48023}
X(50332) = reflection of X(i) in X(j) for these {i,j}: {1459, 48136}, {2517, 3835}, {4017, 48350}, {4041, 47842}, {4086, 4129}, {4581, 8062}, {21102, 48400}, {23752, 48403}, {44444, 48050}, {46385, 48099}, {48069, 20315}, {48150, 48306}, {48281, 48348}, {48322, 48302}, {48342, 48332}
X(50332) = X(47995)-Ceva conjugate of X(48402)
X(50332) = crossdifference of every pair of points on line {9, 58}
X(50332) = barycentric product X(i)*X(j) for these {i,j}: {1, 48402}, {37, 47995}, {514, 3931}, {523, 5256}, {525, 7713}, {661, 17321}, {905, 39579}, {1577, 16466}, {4017, 14555}, {4077, 4254}, {5250, 7178}
X(50332) = barycentric quotient X(i)/X(j) for these {i,j}: {3931, 190}, {4254, 643}, {5250, 645}, {5256, 99}, {7713, 648}, {14555, 7257}, {16466, 662}, {17321, 799}, {39579, 6335}, {47995, 274}, {48402, 75}
X(50332) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {661, 42664, 8611}, {4581, 47840, 8062}


X(50333) = X(2)X(676)∩X(4)X(9521)

Barycentrics    (a - b - c)*(b - c)*(a*b - b^2 + a*c - c^2) : :
X(50333) = 5 X[2] - 4 X[45318], 5 X[676] - 6 X[45318], 12 X[45318] - 5 X[47695], X[3904] + 2 X[4528], 2 X[659] - 3 X[47884], 4 X[2977] - 3 X[47884], X[693] - 3 X[47808], 5 X[1491] - 3 X[47877], 5 X[3004] - 6 X[47877], 4 X[3837] - 3 X[4927], 2 X[3837] - 3 X[48182], 3 X[4927] - 2 X[23770], X[23770] - 3 X[48182], 3 X[44429] - X[47691], 3 X[44435] - X[47692], X[45746] - 3 X[48175], X[47689] + 3 X[48175], X[47690] - 3 X[48187], X[47975] + 3 X[48187], 3 X[1639] - 2 X[3716], 5 X[631] - 4 X[44819], X[4088] + 2 X[4925], 3 X[1638] - 2 X[4458], 3 X[1638] - 4 X[25380], X[1769] - 3 X[14429], 2 X[1769] - 3 X[25923], 4 X[2490] - 3 X[47804], 4 X[2505] - X[49301], 2 X[4147] - 3 X[44729], X[21120] - 3 X[44729], 4 X[3812] - 3 X[30691], 2 X[4369] - 3 X[48232], X[4467] - 3 X[48242], 3 X[4763] - 2 X[13246], 2 X[4874] - 3 X[47807], 2 X[4885] - 3 X[47806], X[47123] - 3 X[47806], 3 X[4893] - X[47972], X[4895] - 3 X[14432], X[47945] + 3 X[48254], 3 X[48254] - X[49283], 3 X[31131] - X[46403], 3 X[31131] + X[48408], 3 X[6545] - X[47705], 3 X[6546] - X[48032], X[7192] - 3 X[48252], 2 X[7662] - 3 X[47788], X[7662] - 3 X[48200], 3 X[14430] - X[21132], 2 X[17069] - 3 X[47828], X[17494] + 3 X[48169], X[47687] - 3 X[48169], 3 X[19875] - 2 X[44566], 2 X[20517] - 3 X[41800], 3 X[21052] - X[21118], 4 X[25666] - 3 X[48179], 7 X[27115] - 3 X[48239], X[47968] - 3 X[48160], 6 X[30792] - 5 X[30795], 5 X[31209] - 3 X[47798], 4 X[31287] - 3 X[47800], 2 X[34958] - 3 X[47795], 3 X[36848] - X[48326], X[47131] - 3 X[47802], 2 X[47132] - 3 X[47833], X[47652] - 3 X[48164], X[47660] - 3 X[48208], X[47688] - 3 X[48159], X[47693] + 3 X[48157], X[47694] - 3 X[47809], X[47696] - 3 X[48236], X[47697] - 3 X[47771], X[47699] - 3 X[48549], X[47701] - 3 X[47810], X[47704] - 3 X[47812], X[47708] - 3 X[47814], X[47712] - 3 X[47816], X[47716] - 3 X[48556], X[47720] - 3 X[47819], 3 X[48171] - X[49275], 3 X[48231] - 2 X[48248], X[48398] - 3 X[48545]

X(50333) lies on these lines: {2, 676}, {4, 9521}, {8, 3904}, {10, 10015}, {11, 123}, {72, 928}, {75, 23684}, {100, 190}, {120, 20621}, {325, 523}, {337, 876}, {513, 4468}, {514, 2526}, {519, 45341}, {522, 650}, {525, 1734}, {631, 44819}, {649, 48077}, {784, 48395}, {824, 48017}, {885, 6559}, {918, 2254}, {1125, 48286}, {1499, 49277}, {1638, 4458}, {1769, 14429}, {2490, 47804}, {2505, 49301}, {2530, 4808}, {2799, 5988}, {2826, 3762}, {2827, 13227}, {3126, 43042}, {3667, 11067}, {3738, 14740}, {3800, 14349}, {3810, 4147}, {3812, 30691}, {3900, 6332}, {3910, 4041}, {4063, 28481}, {4152, 6068}, {4369, 48232}, {4391, 6362}, {4467, 48242}, {4500, 4928}, {4560, 29278}, {4705, 29142}, {4762, 49285}, {4763, 13246}, {4770, 29312}, {4777, 47784}, {4778, 48095}, {4802, 48007}, {4841, 48010}, {4874, 47807}, {4885, 47123}, {4893, 47972}, {4895, 14432}, {4963, 4977}, {5087, 42763}, {5592, 28521}, {6084, 20344}, {6087, 34188}, {6129, 20315}, {6545, 47705}, {6546, 48032}, {6556, 24128}, {7178, 17072}, {7192, 48252}, {7659, 28846}, {7662, 47788}, {7927, 48059}, {14321, 48080}, {14425, 44433}, {14430, 21132}, {16594, 23757}, {16892, 47700}, {17069, 47828}, {17494, 47687}, {17724, 24353}, {19875, 44566}, {20508, 25128}, {20517, 41800}, {21051, 48400}, {21052, 21118}, {21104, 24720}, {21260, 48403}, {21301, 29162}, {23729, 48050}, {23875, 48018}, {24003, 24025}, {24097, 42020}, {24396, 24415}, {25604, 48228}, {25666, 48179}, {26231, 26275}, {27115, 48239}, {28147, 47960}, {28169, 47880}, {28175, 47968}, {28183, 47827}, {28191, 47919}, {28213, 48140}, {28217, 47885}, {28221, 48226}, {28229, 48132}, {28423, 48243}, {28851, 48073}, {28859, 47985}, {28882, 48042}, {29021, 48012}, {29047, 48066}, {29144, 47998}, {29168, 48005}, {29208, 48100}, {30520, 48015}, {30787, 30790}, {31209, 47798}, {31287, 47800}, {32679, 41014}, {34894, 43728}, {34958, 47795}, {36848, 48326}, {47131, 47802}, {47132, 47833}, {47652, 48164}, {47660, 48208}, {47663, 47685}, {47679, 47714}, {47683, 47723}, {47688, 48159}, {47693, 48157}, {47694, 47809}, {47696, 48236}, {47697, 47771}, {47698, 48108}, {47699, 48549}, {47701, 47810}, {47703, 47934}, {47704, 47812}, {47707, 48410}, {47708, 47814}, {47711, 48409}, {47712, 47816}, {47715, 48407}, {47716, 48556}, {47720, 47819}, {47940, 49282}, {47943, 48146}, {47973, 48118}, {47988, 48027}, {48020, 48101}, {48023, 48106}, {48138, 48585}, {48171, 49275}, {48231, 48248}, {48398, 48545}

X(50333) = midpoint of X(i) and X(j) for these {i,j}: {8, 3904}, {649, 48077}, {1734, 48272}, {2254, 4088}, {2530, 4808}, {4041, 48278}, {4397, 20294}, {6332, 44448}, {16892, 47700}, {17494, 47687}, {45746, 47689}, {46403, 48408}, {47663, 47685}, {47679, 47714}, {47683, 47723}, {47690, 47975}, {47698, 48108}, {47703, 47934}, {47707, 48410}, {47711, 48409}, {47715, 48407}, {47940, 49282}, {47943, 48146}, {47945, 49283}, {47973, 48118}, {48020, 48101}, {48023, 48106}, {48035, 48060}, {48039, 48069}, {48138, 48585}
X(50333) = reflection of X(i) in X(j) for these {i,j}: {8, 4528}, {659, 2977}, {2254, 4925}, {3004, 1491}, {3700, 4522}, {4458, 25380}, {4841, 48010}, {4927, 48182}, {4976, 4913}, {6129, 20315}, {7178, 17072}, {10015, 10}, {21104, 24720}, {21120, 4147}, {23729, 48050}, {23770, 3837}, {25923, 14429}, {26275, 28602}, {42763, 5087}, {43042, 3126}, {44433, 14425}, {47123, 4885}, {47695, 676}, {47788, 48200}, {47890, 48062}, {47988, 48027}, {47998, 48030}, {48046, 48047}, {48055, 48056}, {48080, 14321}, {48274, 48396}, {48286, 1125}, {48400, 21051}, {48402, 48012}, {48403, 21260}
X(50333) = complement of X(47695)
X(50333) = anticomplement of X(676)
X(50333) = isogonal conjugate of X(32735)
X(50333) = isotomic conjugate of X(927)
X(50333) = anticomplement of the isogonal conjugate of X(677)
X(50333) = isotomic conjugate of the anticomplement of X(1566)
X(50333) = isotomic conjugate of the complement of X(14732)
X(50333) = isotomic conjugate of the isogonal conjugate of X(926)
X(50333) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {100, 152}, {103, 149}, {677, 8}, {911, 4440}, {2338, 37781}, {18025, 21293}, {24016, 36845}, {32642, 192}, {32668, 4452}, {35184, 4430}, {36039, 2}, {36101, 150}, {40116, 5905}
X(50333) = X(692)-complementary conjugate of X(39048)
X(50333) = X(i)-Ceva conjugate of X(j) for these (i,j): {668, 4437}, {883, 3912}, {1026, 3932}, {3699, 40609}, {4518, 11}, {4583, 312}, {35574, 345}, {36796, 1146}, {36802, 8}, {36803, 40997}, {42720, 3693}
X(50333) = X(1566)-cross conjugate of X(2)
X(50333) = X(i)-isoconjugate of X(j) for these (i,j): {1, 32735}, {6, 36146}, {7, 32666}, {31, 927}, {32, 34085}, {56, 36086}, {57, 919}, {59, 1027}, {100, 1416}, {101, 1462}, {105, 109}, {108, 36057}, {294, 1461}, {560, 46135}, {604, 666}, {651, 1438}, {653, 32658}, {667, 39293}, {673, 1415}, {884, 7045}, {885, 24027}, {934, 2195}, {1024, 1262}, {1025, 41934}, {1106, 36802}, {1110, 43930}, {1445, 32644}, {1617, 36041}, {1813, 8751}, {1814, 32674}, {4564, 43929}, {4565, 18785}, {5228, 36138}, {5377, 43924}, {6614, 28071}, {32724, 40719}, {32739, 34018}, {34036, 35185}, {34160, 36093}, {36059, 36124}
X(50333) = X(i)-Dao conjugate of X(j) for these (i, j): (1, 36086), (2, 927), (3, 32735), (9, 36146), (11, 105), (241, 23973), (514, 43930), (518, 2283), (522, 885), (656, 23696), (918, 43042), (926, 8638), (1015, 1462), (1146, 673), (2968, 14942), (3126, 513), (3161, 666), (3716, 659), (4925, 2976), (5452, 919), (5519, 1617), (6184, 651), (6374, 46135), (6376, 34085), (6552, 36802), (6615, 1027), (6631, 39293), (6741, 13576), (8054, 1416), (14714, 2195), (17060, 1633), (17115, 884), (17435, 241), (17755, 664), (20620, 36124), (20621, 108), (27918, 1447), (35072, 1814), (35094, 7), (35508, 294), (35509, 1086), (36905, 658), (38980, 57), (38983, 36057), (38989, 56), (38991, 1438), (39012, 5228), (39014, 6), (39046, 109), (39063, 934), (40609, 100), (40619, 34018), (40624, 2481), (40626, 31637), (48315, 6180)
X(50333) = cevapoint of X(i) and X(j) for these (i,j): {2, 14732}, {516, 24980}
X(50333) = crosspoint of X(i) and X(j) for these (i,j): {8, 36802}, {99, 37202}, {100, 26703}, {190, 18025}, {668, 36796}, {883, 3912}, {3263, 42720}, {4583, 40217}
X(50333) = crosssum of X(i) and X(j) for these (i,j): {512, 39690}, {513, 3827}, {884, 1438}
X(50333) = crossdifference of every pair of points on line {32, 56}
X(50333) = barycentric product X(i)*X(j) for these {i,j}: {8, 918}, {11, 42720}, {76, 926}, {241, 4397}, {312, 2254}, {314, 24290}, {333, 4088}, {346, 43042}, {514, 3717}, {518, 4391}, {521, 46108}, {522, 3912}, {561, 46388}, {646, 3675}, {650, 3263}, {665, 3596}, {668, 17435}, {672, 35519}, {693, 3693}, {883, 1146}, {885, 4437}, {1025, 24026}, {1026, 4858}, {1502, 8638}, {1818, 46110}, {1861, 6332}, {1876, 15416}, {2283, 23978}, {2284, 34387}, {2321, 23829}, {2340, 3261}, {3126, 36796}, {3239, 9436}, {3267, 37908}, {3700, 30941}, {3716, 40217}, {3900, 40704}, {3930, 18155}, {3932, 4560}, {4041, 18157}, {4086, 18206}, {4546, 10029}, {4925, 6557}, {5089, 35518}, {25083, 44426}, {35094, 36802}, {36795, 42758}
X(50333) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 36146}, {2, 927}, {6, 32735}, {8, 666}, {9, 36086}, {41, 32666}, {55, 919}, {75, 34085}, {76, 46135}, {190, 39293}, {241, 934}, {346, 36802}, {513, 1462}, {518, 651}, {521, 1814}, {522, 673}, {644, 5377}, {649, 1416}, {650, 105}, {652, 36057}, {657, 2195}, {663, 1438}, {665, 56}, {672, 109}, {693, 34018}, {883, 1275}, {884, 41934}, {885, 6185}, {918, 7}, {926, 6}, {1025, 7045}, {1026, 4564}, {1086, 43930}, {1146, 885}, {1458, 1461}, {1566, 676}, {1818, 1813}, {1861, 653}, {1876, 32714}, {1946, 32658}, {2170, 1027}, {2223, 1415}, {2254, 57}, {2283, 1262}, {2284, 59}, {2310, 1024}, {2340, 101}, {2356, 32674}, {3064, 36124}, {3126, 241}, {3239, 14942}, {3263, 4554}, {3271, 43929}, {3286, 4565}, {3596, 36803}, {3675, 3669}, {3688, 46163}, {3693, 100}, {3700, 13576}, {3716, 6654}, {3717, 190}, {3900, 294}, {3912, 664}, {3930, 4551}, {3932, 4552}, {4041, 18785}, {4081, 28132}, {4088, 226}, {4130, 28071}, {4163, 6559}, {4391, 2481}, {4397, 36796}, {4437, 883}, {4712, 1025}, {4843, 14625}, {4925, 5435}, {5089, 108}, {5236, 36118}, {6184, 2283}, {6332, 31637}, {8638, 32}, {9436, 658}, {14430, 36816}, {14439, 23703}, {14936, 884}, {17435, 513}, {18157, 4625}, {18206, 1414}, {18344, 8751}, {20683, 4559}, {20752, 36059}, {23829, 1434}, {24290, 65}, {25083, 6516}, {28143, 14197}, {30941, 4573}, {33299, 35333}, {34591, 23696}, {34855, 4617}, {35094, 43042}, {35293, 23890}, {35519, 18031}, {36819, 37136}, {37908, 112}, {39014, 8638}, {39063, 23973}, {39749, 41075}, {40141, 35185}, {40704, 4569}, {42341, 6180}, {42720, 4998}, {42758, 1465}, {42771, 3310}, {43042, 279}, {44448, 31638}, {46108, 18026}, {46388, 31}
X(50333) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 47695, 676}, {659, 2977, 47884}, {3837, 23770, 4927}, {4458, 25380, 1638}, {17494, 48169, 47687}, {21120, 44729, 4147}, {23770, 48182, 3837}, {31131, 48408, 46403}, {47123, 47806, 4885}, {47689, 48175, 45746}, {47945, 48254, 49283}, {47975, 48187, 47690}


X(50334) = X(325)X(523)∩X(513)X(1577)

Barycentrics    b*(b - c)*c*(a^2 + a*b + b^2 + a*c + 2*b*c + c^2) : :
X(50334) = 3 X[693] + X[4397], 3 X[2517] - X[4397], 3 X[1577] - X[4985], 2 X[650] - 3 X[48205], X[4560] - 3 X[48246], 4 X[4885] - 3 X[48207], X[6129] - 3 X[45320], 2 X[8043] - 3 X[48228], 2 X[14838] - 3 X[48230], X[17494] - 3 X[48204], 5 X[26985] - 3 X[48209], 2 X[31947] - 3 X[47795], 3 X[47832] - X[48340]

X(50334) lies on these lines: {325, 523}, {513, 1577}, {514, 4036}, {522, 4823}, {650, 24960}, {768, 4444}, {814, 3733}, {834, 2533}, {900, 7650}, {2605, 29066}, {3737, 47724}, {3762, 28195}, {3777, 40086}, {3810, 21111}, {3907, 48283}, {4057, 4874}, {4086, 4802}, {4132, 48273}, {4374, 29078}, {4391, 4977}, {4404, 28151}, {4411, 4509}, {4462, 28213}, {4474, 48342}, {4560, 48246}, {4768, 28165}, {4777, 4815}, {4778, 4791}, {4801, 28175}, {4811, 28217}, {4828, 29370}, {4840, 18155}, {4885, 48207}, {6129, 45320}, {6133, 29362}, {6362, 44426}, {7649, 49285}, {8043, 48228}, {8062, 29051}, {14208, 48027}, {14838, 48230}, {17494, 48204}, {20954, 29328}, {21121, 29017}, {21260, 47842}, {21301, 47844}, {23752, 48278}, {24720, 28623}, {26985, 48209}, {27610, 48103}, {31947, 47795}, {40166, 47136}, {44444, 47694}, {47832, 48340}, {48292, 48295}

X(50334) = midpoint of X(i) and X(j) for these {i,j}: {693, 2517}, {3737, 47724}, {4086, 4978}, {4474, 48342}, {7649, 49285}, {21301, 47844}, {23752, 48278}, {44444, 47694}
X(50334) = reflection of X(i) in X(j) for these {i,j}: {1491, 44316}, {3777, 40086}, {4057, 4874}, {30591, 4823}, {47842, 21260}, {48292, 48295}, {48297, 8062}
X(50334) = polar conjugate of the isogonal conjugate of X(2523)
X(50334) = X(i)-Dao conjugate of X(j) for these (i, j): (48275, 48085), (48404, 48123)
X(50334) = crossdifference of every pair of points on line {32, 2174}
X(50334) = barycentric product X(i)*X(j) for these {i,j}: {75, 48275}, {264, 2523}, {523, 30599}, {693, 17303}, {1577, 25526}, {3261, 5311}, {4391, 10404}, {20565, 30600}
X(50334) = barycentric quotient X(i)/X(j) for these {i,j}: {2523, 3}, {5311, 101}, {10404, 651}, {17303, 100}, {25526, 662}, {30599, 99}, {30600, 35}, {48275, 1}


X(50335) = X(44)X(513)∩X(75)X(693)

Barycentrics    a*(b - c)*(a*b - 2*b^2 + a*c - b*c - 2*c^2) : :
X(50335) = X[649] - 3 X[48244], 2 X[650] - 3 X[48213], X[659] - 3 X[47828], X[661] - 3 X[1491], X[661] + 3 X[2254], 5 X[661] - 9 X[47810], 7 X[661] - 3 X[48021], 5 X[661] - 3 X[48024], 4 X[661] - 3 X[48028], 2 X[661] - 3 X[48030], 5 X[1491] - 3 X[47810], 7 X[1491] - X[48021], 5 X[1491] - X[48024], 4 X[1491] - X[48028], 5 X[2254] + 3 X[47810], 7 X[2254] + X[48021], 5 X[2254] + X[48024], 4 X[2254] + X[48028], 2 X[2254] + X[48030], 3 X[2526] + X[4790], 4 X[4394] - 3 X[4782], 2 X[4394] - 3 X[9508], X[4724] - 3 X[47827], X[4784] + 3 X[48160], 21 X[47810] - 5 X[48021], 3 X[47810] - X[48024], 12 X[47810] - 5 X[48028], 6 X[47810] - 5 X[48030], 5 X[48021] - 7 X[48024], 4 X[48021] - 7 X[48028], 2 X[48021] - 7 X[48030], X[48023] - 3 X[48160], 4 X[48024] - 5 X[48028], 2 X[48024] - 5 X[48030], X[48029] - 3 X[48193], X[48032] - 3 X[48226], X[693] - 3 X[36848], X[47131] - 3 X[47754], 2 X[48018] + X[48100], 4 X[48018] + X[48129], 4 X[48066] - X[48129], 4 X[21212] - 3 X[48212], 4 X[24720] - X[48127], 3 X[24720] - X[48399], 2 X[48017] + X[48098], 4 X[48017] + X[48127], 3 X[48017] + X[48399], 3 X[48098] - 2 X[48399], 3 X[48127] - 4 X[48399], X[663] - 3 X[47893], 2 X[676] - 3 X[48215], 3 X[905] - X[48327], 2 X[48327] - 3 X[48330], 3 X[1734] - X[4730], 2 X[1734] + X[48137], 3 X[1734] + X[48335], 3 X[2530] + X[4730], 3 X[2530] - X[48335], 2 X[4730] + 3 X[48137], 3 X[48137] - 2 X[48335], X[3700] - 3 X[48182], 2 X[3716] - 3 X[48197], X[4010] - 3 X[44429], X[4040] - 3 X[47888], X[4122] - 3 X[47808], X[4369] - 3 X[45328], X[4382] - 3 X[48167], 3 X[4448] - 5 X[31209], X[4467] + 3 X[31131], 2 X[4905] + X[47922], 3 X[4800] - 5 X[30835], 3 X[21146] - X[47675], X[47653] + 3 X[48254], X[47675] + 3 X[47975], 2 X[47675] - 3 X[48135], 2 X[47975] + X[48135], X[4804] - 3 X[48184], X[4824] - 3 X[48175], X[48108] + 3 X[48175], 2 X[48108] + X[48620], 6 X[48175] - X[48620], 2 X[4874] - 3 X[48216], 4 X[25380] - 3 X[48216], 4 X[4885] - 3 X[48202], X[4922] - 3 X[44550], 3 X[4948] - X[47926], X[47964] + 2 X[48073], 4 X[48010] - X[48610], 4 X[48073] + X[48610], X[47967] + 2 X[48075], 4 X[48012] - X[48609], 4 X[48075] + X[48609], X[7192] + 3 X[48157], 2 X[7662] - 3 X[48221], 2 X[8689] - 3 X[45314], 3 X[14419] - X[48324], X[17494] - 3 X[48225], X[23729] - 3 X[48163], X[24719] - 3 X[48164], 5 X[24924] - 3 X[48234], 2 X[25666] - 3 X[45323], 5 X[26985] - 3 X[48189], 3 X[47812] - X[48120], 5 X[30795] - 3 X[47832], 2 X[31286] - 3 X[48229], 3 X[48229] - X[48248], 4 X[31287] - 3 X[45666], 3 X[44435] - X[48349], X[46403] + 3 X[48242], X[47660] - 3 X[48235], X[47677] + 3 X[48187], X[47694] - 3 X[47823], X[47695] - 3 X[48227], X[47701] - 3 X[47877], 3 X[47795] - X[48305], 3 X[47796] - X[48301], 3 X[47806] - X[49286], 3 X[47814] - X[48265], 3 X[47816] - X[48267], 3 X[47819] - X[48279], 3 X[47830] - X[48063], 3 X[47885] - X[48102], X[47946] - 3 X[48549], X[47962] - 3 X[48190], X[47969] - 3 X[48176], 2 X[48000] - 3 X[48191], 2 X[48069] + X[48621], 2 X[48015] + X[48097], X[48142] - 3 X[48253], 3 X[48185] - X[49275], 3 X[48188] - X[49273], 3 X[48200] - X[48271], 3 X[48249] - X[48276], X[48273] - 3 X[48556]

X(50335) lies on these lines: {44, 513}, {75, 693}, {512, 48018}, {514, 4770}, {522, 3837}, {523, 3776}, {663, 47893}, {676, 48215}, {764, 46032}, {824, 25381}, {900, 3835}, {905, 48327}, {1022, 4825}, {1734, 2530}, {2533, 48410}, {3004, 29144}, {3126, 19584}, {3667, 4806}, {3700, 48182}, {3716, 48197}, {3777, 4041}, {3960, 48344}, {4010, 4926}, {4040, 47888}, {4122, 47808}, {4132, 8665}, {4151, 23815}, {4369, 45328}, {4382, 48167}, {4444, 4762}, {4448, 31209}, {4467, 31131}, {4486, 28898}, {4490, 48151}, {4524, 47329}, {4560, 29274}, {4705, 4905}, {4778, 47954}, {4800, 30835}, {4802, 21146}, {4804, 28205}, {4814, 21343}, {4824, 28195}, {4834, 48086}, {4874, 25380}, {4885, 21264}, {4913, 29362}, {4922, 44550}, {4948, 47926}, {4977, 47964}, {6004, 14838}, {6005, 48059}, {6372, 47967}, {7192, 48157}, {7662, 48221}, {8674, 42319}, {8689, 45314}, {8714, 21260}, {9001, 17792}, {14419, 48324}, {16892, 29204}, {17494, 48225}, {19947, 48295}, {21301, 29152}, {23729, 48163}, {24719, 48164}, {24924, 48234}, {25666, 45323}, {26042, 26049}, {26078, 27345}, {26985, 48189}, {27633, 27674}, {28151, 47672}, {28165, 47812}, {28183, 48394}, {28199, 47934}, {28209, 47996}, {28217, 48043}, {28220, 47666}, {28225, 47993}, {29202, 48278}, {29236, 48321}, {29280, 48272}, {29328, 48050}, {30765, 45342}, {30795, 47832}, {31286, 48229}, {31287, 45666}, {39386, 48037}, {43931, 45782}, {44435, 48349}, {46403, 48242}, {47660, 48235}, {47677, 48187}, {47694, 47823}, {47695, 48227}, {47701, 47877}, {47795, 48305}, {47796, 48301}, {47806, 49286}, {47814, 48265}, {47816, 48267}, {47819, 48279}, {47830, 48063}, {47885, 48102}, {47925, 48146}, {47928, 48148}, {47931, 48140}, {47946, 48549}, {47957, 48005}, {47962, 48190}, {47968, 48106}, {47969, 48176}, {47973, 48103}, {47999, 48611}, {48000, 48191}, {48007, 48069}, {48015, 48062}, {48056, 48614}, {48142, 48253}, {48185, 49275}, {48188, 49273}, {48200, 48271}, {48249, 48276}, {48273, 48556}

X(50335) = midpoint of X(i) and X(j) for these {i,j}: {1022, 4825}, {1491, 2254}, {1734, 2530}, {2533, 48410}, {3777, 4041}, {4490, 48151}, {4705, 4905}, {4730, 48335}, {4784, 48023}, {4814, 21343}, {4824, 48108}, {4834, 48086}, {7659, 48027}, {21146, 47975}, {24720, 48017}, {47925, 48146}, {47928, 48148}, {47931, 48140}, {47934, 48143}, {47968, 48106}, {47973, 48103}, {48007, 48069}, {48010, 48073}, {48012, 48075}, {48015, 48062}, {48018, 48066}
X(50335) = reflection of X(i) in X(j) for these {i,j}: {4782, 9508}, {4874, 25380}, {47922, 4705}, {47954, 48002}, {47957, 48005}, {47964, 48010}, {47967, 48012}, {48028, 48030}, {48030, 1491}, {48090, 3837}, {48093, 48059}, {48097, 48062}, {48098, 24720}, {48100, 48066}, {48127, 48098}, {48129, 48100}, {48135, 21146}, {48137, 2530}, {48248, 31286}, {48295, 19947}, {48330, 905}, {48331, 14838}, {48344, 3960}, {48609, 47967}, {48610, 47964}, {48611, 47999}, {48614, 48056}, {48620, 4824}, {48621, 48007}
X(50335) = X(2)-isoconjugate of X(30554)
X(50335) = X(32664)-Dao conjugate of X(30554)
X(50335) = crossdifference of every pair of points on line {1, 2251}
X(50335) = barycentric product X(i)*X(j) for these {i,j}: {1, 30519}, {513, 17230}, {514, 49448}, {656, 31916}, {9461, 20568}
X(50335) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 30554}, {9461, 44}, {17230, 668}, {30519, 75}, {31916, 811}, {49448, 190}
X(50335) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1491, 48024, 47810}, {1734, 48335, 4730}, {2530, 4730, 48335}, {4784, 48160, 48023}, {4874, 25380, 48216}, {48108, 48175, 4824}, {48229, 48248, 31286}


X(50336) = X(3)X(667)∩X(44)X(513)

Barycentrics    a*(b - c)*(a^2 + 2*a*b - b^2 + 2*a*c - c^2) : :
X(50336) = 3 X[667] - X[6161], 2 X[6161] - 3 X[48329], X[661] - 3 X[47828], X[1491] - 3 X[48244], 3 X[1635] - X[4724], 4 X[2516] - 3 X[48226], 2 X[4784] + X[48027], X[4784] + 3 X[48244], X[4813] - 3 X[47810], 3 X[4893] - X[48021], X[7659] + 2 X[9508], 2 X[7659] + X[48029], 4 X[9508] - X[48029], 3 X[47777] - 2 X[48028], 3 X[47827] - X[48024], X[48026] - 3 X[48193], X[48027] - 6 X[48244], X[48028] - 3 X[48213], 2 X[48030] - 3 X[48193], 3 X[48249] - X[48396], X[693] - 3 X[47824], 2 X[4874] - 3 X[47761], X[1577] - 3 X[48573], 2 X[1960] - 3 X[30234], 2 X[4834] + X[48616], 2 X[4522] - 3 X[48200], 2 X[3239] - 3 X[47807], 2 X[3716] - 3 X[47803], 4 X[31286] - 3 X[47803], 2 X[3676] - 3 X[48245], X[23770] - 3 X[48245], X[3700] - 3 X[48232], 2 X[3835] - 3 X[47802], X[3835] - 3 X[48575], 4 X[25380] - 3 X[47802], 2 X[25380] - 3 X[48575], X[4010] - 3 X[47823], 2 X[4885] - 3 X[47823], X[4122] - 3 X[48235], X[4170] - 3 X[47795], 3 X[4379] - X[4804], X[4382] - 3 X[47812], X[4391] - 3 X[47836], 3 X[4453] - X[47691], X[4467] + 3 X[48252], X[47690] - 3 X[48252], 4 X[4521] - 3 X[48166], X[4775] - 3 X[14419], X[47963] - 3 X[48210], 2 X[48000] - 3 X[48210], 3 X[45328] - X[48050], 2 X[4806] - 3 X[47760], X[4806] - 3 X[48229], X[4810] - 3 X[48184], 2 X[23813] - 3 X[48184], X[4824] - 3 X[48225], 6 X[48225] - X[48608], 3 X[4948] - X[47928], X[4983] - 3 X[47888], X[24719] - 3 X[36848], 3 X[6546] - X[48078], X[7192] + 3 X[48242], X[47975] - 3 X[48242], 4 X[7658] - 3 X[47799], X[17166] - 3 X[48570], X[20295] - 3 X[44429], 2 X[20317] - 3 X[47835], 3 X[47835] - X[48265], 4 X[21212] - 3 X[48192], 5 X[24924] - 3 X[47832], X[25259] - 3 X[47809], 2 X[25666] - 3 X[47830], 3 X[47830] - X[48043], X[26853] + 3 X[48164], 5 X[27013] - 3 X[47804], X[47953] - 3 X[48190], 2 X[48010] - 3 X[48190], 3 X[31148] - X[48142], 3 X[31150] - X[47969], 5 X[31209] - 3 X[47821], 5 X[31250] - 6 X[48216], 4 X[31287] - 3 X[47822], X[31290] - 3 X[48549], 4 X[43061] - 3 X[48231], 3 X[44550] - X[48298], 3 X[45313] - X[48063], 3 X[45320] - 2 X[48090], X[47123] - 3 X[47758], X[47666] - 3 X[47825], X[47672] - 3 X[48579], X[47688] - 3 X[48422], X[47689] - 3 X[48254], X[47692] - 3 X[48241], X[47694] - 3 X[47762], X[47696] - 3 X[48567], X[47699] - 3 X[47782], X[47701] - 3 X[47886], 3 X[47771] - X[49275], 3 X[47775] - X[47941], 3 X[47778] - X[48037], 3 X[47783] - X[47979], 3 X[47785] - X[48006], 3 X[47806] - X[48269], 3 X[47837] - X[48267], 3 X[47877] - X[47944], 3 X[47885] - X[48083], 3 X[47893] - X[48123], X[47940] - 3 X[48157], X[47945] - 3 X[48175], X[48107] + 3 X[48175], X[47946] - 3 X[48176], X[47954] - 3 X[48191], X[47974] - 3 X[48240], X[48120] - 3 X[48253], 3 X[48159] - X[49298], 3 X[48171] - X[49272], 3 X[48227] - X[48349], 3 X[48236] - X[49273], X[48273] - 3 X[48569]

X(50336) lies on these lines: {2, 48080}, {3, 667}, {10, 29148}, {44, 513}, {46, 4063}, {65, 876}, {377, 21301}, {442, 21260}, {512, 905}, {514, 4818}, {521, 7234}, {522, 3798}, {523, 4025}, {669, 24562}, {676, 2487}, {690, 49280}, {693, 47824}, {764, 36279}, {812, 24720}, {830, 48018}, {900, 4786}, {918, 48062}, {1019, 1734}, {1159, 14421}, {1577, 48573}, {1960, 30234}, {2517, 18155}, {2530, 4834}, {2533, 23880}, {2646, 4162}, {2785, 7636}, {2786, 4522}, {2976, 28217}, {2977, 4468}, {3004, 47961}, {3239, 47807}, {3251, 37606}, {3566, 6332}, {3667, 3716}, {3676, 23770}, {3700, 48232}, {3733, 8646}, {3777, 8712}, {3803, 6004}, {3835, 25380}, {3837, 4106}, {3887, 7634}, {3900, 4367}, {3960, 29350}, {4010, 4885}, {4040, 6050}, {4041, 48144}, {4088, 47971}, {4122, 28898}, {4170, 47795}, {4185, 18344}, {4190, 31291}, {4259, 9010}, {4378, 4730}, {4379, 4804}, {4380, 46403}, {4382, 47812}, {4391, 47836}, {4401, 42325}, {4449, 4729}, {4453, 47691}, {4458, 47131}, {4467, 47690}, {4498, 48151}, {4507, 6371}, {4521, 48166}, {4705, 48607}, {4750, 4777}, {4761, 48321}, {4762, 21146}, {4763, 6006}, {4775, 14419}, {4778, 47963}, {4785, 45328}, {4802, 16892}, {4806, 47760}, {4810, 23813}, {4811, 30024}, {4824, 48225}, {4926, 48220}, {4932, 48017}, {4944, 48217}, {4948, 47928}, {4977, 47962}, {4983, 47888}, {5880, 6008}, {6002, 17072}, {6003, 15599}, {6005, 14838}, {6372, 47965}, {6546, 48078}, {7192, 47975}, {7465, 26249}, {7483, 31288}, {7650, 18154}, {7658, 47799}, {8639, 22089}, {11068, 48055}, {14018, 17924}, {14837, 48400}, {15309, 47956}, {17166, 48570}, {17494, 48108}, {17528, 31149}, {20295, 44429}, {20317, 26066}, {21051, 29170}, {21188, 48403}, {21189, 29487}, {21192, 29021}, {21212, 48192}, {22092, 45907}, {23789, 29302}, {24601, 37233}, {24666, 42312}, {24924, 47832}, {25259, 47809}, {25299, 25981}, {25511, 48246}, {25537, 25925}, {25666, 47830}, {25901, 37228}, {26248, 47808}, {26853, 48164}, {27013, 47804}, {27527, 48243}, {27622, 28255}, {27929, 28867}, {28147, 49291}, {28161, 49292}, {28195, 47920}, {28199, 47923}, {28209, 48560}, {28225, 48001}, {28319, 30580}, {28373, 47521}, {28628, 47841}, {28840, 47953}, {28846, 48047}, {29198, 47921}, {30519, 48222}, {30520, 48103}, {30792, 47786}, {31148, 48142}, {31150, 47969}, {31209, 47821}, {31250, 48216}, {31287, 47822}, {31290, 48549}, {39386, 48214}, {43061, 48231}, {44550, 48298}, {45313, 48063}, {45320, 48090}, {45674, 48211}, {45746, 49283}, {47123, 47758}, {47663, 49301}, {47666, 47825}, {47672, 48579}, {47676, 48408}, {47677, 47693}, {47688, 48422}, {47689, 48254}, {47692, 48241}, {47694, 47762}, {47696, 48567}, {47699, 47782}, {47701, 47886}, {47703, 48277}, {47771, 49275}, {47775, 47941}, {47778, 48037}, {47783, 47979}, {47785, 48006}, {47806, 48269}, {47837, 48267}, {47877, 47944}, {47885, 48083}, {47890, 48096}, {47893, 48123}, {47909, 48147}, {47912, 48149}, {47914, 47964}, {47915, 47967}, {47926, 48148}, {47930, 48118}, {47931, 48138}, {47932, 48119}, {47934, 48141}, {47935, 48122}, {47940, 48157}, {47943, 48104}, {47945, 48107}, {47946, 48176}, {47948, 48110}, {47950, 47999}, {47951, 48007}, {47952, 48002}, {47954, 48191}, {47955, 48005}, {47960, 48617}, {47966, 48003}, {47968, 48606}, {47974, 48240}, {47976, 48086}, {47982, 48067}, {47985, 48071}, {48008, 48073}, {48011, 48075}, {48013, 48039}, {48016, 48042}, {48056, 48087}, {48059, 48091}, {48066, 48092}, {48074, 48601}, {48095, 48622}, {48097, 48124}, {48098, 48125}, {48100, 48128}, {48120, 48253}, {48145, 48598}, {48159, 49298}, {48171, 49272}, {48227, 48349}, {48236, 49273}, {48271, 48405}, {48273, 48569}, {48603, 48624}, {48605, 48621}

X(50336) = midpoint of X(i) and X(j) for these {i,j}: {649, 2254}, {650, 7659}, {1019, 1734}, {1491, 4784}, {2526, 4790}, {2530, 4834}, {4025, 48069}, {4041, 48144}, {4063, 4905}, {4088, 47971}, {4378, 4730}, {4380, 46403}, {4449, 4729}, {4467, 47690}, {4498, 48151}, {4761, 48321}, {4932, 48017}, {4979, 48023}, {7192, 47975}, {16892, 48106}, {17494, 48108}, {45746, 49283}, {47663, 49301}, {47676, 48408}, {47677, 47693}, {47703, 48277}, {47909, 48147}, {47912, 48149}, {47923, 48146}, {47926, 48148}, {47930, 48118}, {47931, 48138}, {47932, 48119}, {47934, 48141}, {47935, 48122}, {47943, 48104}, {47945, 48107}, {47948, 48110}, {47973, 48101}, {47976, 48086}, {47982, 48067}, {47985, 48071}, {48008, 48073}, {48011, 48075}, {48013, 48039}, {48015, 48060}, {48016, 48042}, {48018, 48064}, {48074, 48601}, {48145, 48598}, {48603, 48624}
X(50336) = reflection of X(i) in X(j) for these {i,j}: {650, 9508}, {659, 4394}, {676, 2487}, {3716, 31286}, {3835, 25380}, {4010, 4885}, {4040, 6050}, {4106, 3837}, {4162, 48330}, {4468, 2977}, {4810, 23813}, {4944, 48217}, {7662, 4369}, {23770, 3676}, {47131, 4458}, {47760, 48229}, {47777, 48213}, {47786, 30792}, {47802, 48575}, {47914, 47964}, {47915, 47967}, {47950, 47999}, {47951, 48007}, {47952, 48002}, {47953, 48010}, {47955, 48005}, {47956, 48012}, {47961, 3004}, {47963, 48000}, {47966, 48003}, {48026, 48030}, {48027, 1491}, {48029, 650}, {48043, 25666}, {48055, 11068}, {48087, 48056}, {48088, 48062}, {48089, 24720}, {48091, 48059}, {48092, 48066}, {48096, 47890}, {48099, 14838}, {48124, 48097}, {48125, 48098}, {48126, 21146}, {48128, 48100}, {48134, 43067}, {48136, 905}, {48211, 45674}, {48265, 20317}, {48271, 48405}, {48329, 667}, {48332, 3960}, {48346, 3669}, {48400, 14837}, {48403, 21188}, {48605, 48621}, {48606, 47968}, {48607, 4705}, {48608, 4824}, {48615, 48103}, {48616, 2530}, {48617, 47960}, {48618, 47965}, {48619, 47962}, {48622, 48095}
X(50336) = complement of X(48080)
X(50336) = X(39981)-complementary conjugate of X(116)
X(50336) = X(i)-isoconjugate of X(j) for these (i,j): {2, 28847}, {100, 39954}, {101, 39721}, {692, 40028}
X(50336) = X(i)-Dao conjugate of X(j) for these (i, j): (1015, 39721), (1086, 40028), (8054, 39954), (32664, 28847)
X(50336) = crosspoint of X(i) and X(j) for these (i,j): {57, 6183}, {100, 1002}
X(50336) = crosssum of X(i) and X(j) for these (i,j): {9, 6182}, {513, 1001}
X(50336) = crossdifference of every pair of points on line {1, 2271}
X(50336) = barycentric product X(i)*X(j) for these {i,j}: {1, 28846}, {81, 48047}, {513, 17316}, {514, 3751}, {649, 30758}, {656, 14013}, {1019, 4078}, {3669, 27549}, {8769, 14291}
X(50336) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 28847}, {513, 39721}, {514, 40028}, {649, 39954}, {3751, 190}, {4078, 4033}, {14013, 811}, {14291, 18156}, {17316, 668}, {27549, 646}, {28846, 75}, {30758, 1978}, {48047, 321}
X(50336) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3716, 31286, 47803}, {3835, 25380, 47802}, {3835, 48575, 25380}, {4010, 47823, 4885}, {4467, 48252, 47690}, {4784, 48244, 1491}, {4810, 48184, 23813}, {7192, 48242, 47975}, {7659, 9508, 48029}, {23770, 48245, 3676}, {47830, 48043, 25666}, {47835, 48265, 20317}, {47953, 48190, 48010}, {47963, 48210, 48000}, {48026, 48193, 48030}, {48107, 48175, 47945}


X(50337) = X(2)X(4040)∩X(10)X(514)

Barycentrics    (b - c)*(a^2*b - a*b^2 + a^2*c + b^2*c - a*c^2 + b*c^2) : :
X(50337) = X[1] - 3 X[47796], X[21302] + 3 X[47796], 3 X[10] - 2 X[4147], X[10] + 2 X[24720], X[2530] - 3 X[36848], X[2533] + 3 X[36848], X[4147] - 3 X[17072], 2 X[4147] + 3 X[23789], X[4147] + 3 X[24720], 2 X[17072] + X[23789], 3 X[3837] - X[4992], 2 X[20517] - 3 X[21181], 3 X[21181] - 4 X[21188], 3 X[551] - 2 X[48294], X[649] - 3 X[48573], X[659] - 3 X[47837], X[661] - 3 X[47816], X[663] - 3 X[47795], 2 X[1125] - 3 X[47795], X[667] - 3 X[47823], X[1019] - 3 X[47824], X[21301] + 3 X[47824], 3 X[1577] - X[48264], 3 X[2254] + X[48264], 5 X[1698] - 3 X[47793], 5 X[1698] - X[47970], 3 X[47793] - X[47970], 4 X[3634] - X[4724], 4 X[3634] - 3 X[47794], X[4724] - 3 X[47794], X[3737] - 3 X[48246], X[3762] - 3 X[21052], X[3762] + 2 X[23796], 3 X[21052] + 2 X[23796], 3 X[21052] + X[48151], X[3803] - 3 X[47761], 6 X[3828] - X[47929], X[4041] + 3 X[47812], X[4978] - 3 X[47812], X[4063] - 3 X[47836], X[46403] + 3 X[47836], X[4807] + 2 X[23815], X[4170] - 3 X[4728], X[4367] - 3 X[48569], X[4761] + 3 X[48556], X[48131] - 3 X[48556], X[4775] - 3 X[47841], 3 X[4776] - X[48081], 2 X[4791] + X[23795], 2 X[4794] - 5 X[19862], X[4794] - 3 X[48218], 5 X[19862] - 6 X[48218], 3 X[21183] + X[44448], 3 X[6545] - X[47716], X[14349] - 3 X[44429], 3 X[14430] + X[23738], 3 X[14431] - X[48265], 4 X[25380] - X[48284], 3 X[19883] - 2 X[45316], 5 X[24924] - 3 X[47818], 5 X[24924] - X[48150], 3 X[47818] - X[48150], 5 X[30795] - 3 X[47839], 5 X[30795] - X[48336], 3 X[47839] - X[48336], 5 X[30835] - 3 X[47838], 5 X[30835] - X[48367], 3 X[47838] - X[48367], 3 X[31148] + X[47905], 5 X[31251] - 3 X[47822], 5 X[31251] - X[48351], 3 X[47822] - X[48351], 2 X[31288] - 3 X[48216], 3 X[48216] - X[48331], X[46385] - 3 X[48228], X[47685] + 3 X[48565], X[47706] + 3 X[48422], 3 X[47802] - X[48099], 3 X[47804] - X[48111], 3 X[47808] - X[48272], 3 X[47814] - X[47959], 3 X[47814] + X[48108], 3 X[47815] - X[47977], 3 X[47817] - X[48032], 3 X[47819] - X[48335], 3 X[47820] - X[48324], 3 X[47833] - X[48305], 3 X[47840] - X[48352], 3 X[47889] - X[48291], 3 X[47893] - X[48288], X[47912] + 3 X[48579], X[48021] - 3 X[48551], X[48065] - 3 X[48196], X[48086] - 3 X[48164], 3 X[48184] - X[48273], 3 X[48186] - X[48340], 3 X[48207] - X[48306], 3 X[48209] - X[48307], 3 X[48230] - X[48297], X[48329] - 3 X[48564]

X(50337) lies on these lines: {1, 21302}, {2, 4040}, {8, 48282}, {10, 514}, {512, 3837}, {513, 3814}, {519, 4449}, {522, 4823}, {551, 48294}, {649, 23791}, {650, 29186}, {659, 47837}, {661, 47816}, {663, 1125}, {667, 47823}, {693, 1734}, {830, 4369}, {891, 48406}, {905, 29066}, {993, 44408}, {1019, 21301}, {1210, 21185}, {1577, 2254}, {1698, 47793}, {1838, 46110}, {2517, 23800}, {3244, 48287}, {3261, 23790}, {3309, 4885}, {3634, 4724}, {3716, 42325}, {3737, 48246}, {3741, 4379}, {3762, 21052}, {3766, 23828}, {3776, 29047}, {3803, 47761}, {3828, 47929}, {3835, 6005}, {3840, 47779}, {3900, 48295}, {3907, 3960}, {4025, 29062}, {4041, 4978}, {4063, 46403}, {4083, 4807}, {4170, 4728}, {4357, 4406}, {4367, 48569}, {4374, 24462}, {4391, 4905}, {4401, 31286}, {4522, 23875}, {4560, 47724}, {4707, 48278}, {4730, 48279}, {4761, 48131}, {4775, 47841}, {4776, 48081}, {4778, 20316}, {4791, 23795}, {4794, 19862}, {4808, 48326}, {4834, 24719}, {4847, 21183}, {4874, 6004}, {4960, 47945}, {4961, 49287}, {4977, 48005}, {5267, 39476}, {6332, 29304}, {6372, 21051}, {6545, 29673}, {6548, 33120}, {6734, 49300}, {7178, 23887}, {7192, 47948}, {9029, 49511}, {9508, 29070}, {10916, 47123}, {14349, 44429}, {14430, 23738}, {14431, 48265}, {14838, 25380}, {15309, 24718}, {16737, 16887}, {16889, 24170}, {16892, 47711}, {17066, 40474}, {17212, 21304}, {17734, 21173}, {17750, 21791}, {18004, 29252}, {19883, 45316}, {19947, 29298}, {21124, 47715}, {21204, 29655}, {22037, 29200}, {23879, 48396}, {24232, 31647}, {24924, 47818}, {25440, 48387}, {25627, 47996}, {25666, 48058}, {26037, 47775}, {28209, 47994}, {28225, 47987}, {28521, 48345}, {28840, 48613}, {29033, 48575}, {29158, 48069}, {29190, 49285}, {29302, 48089}, {29667, 48156}, {29679, 47773}, {30795, 47839}, {30835, 47838}, {31040, 47763}, {31148, 47905}, {31251, 47822}, {31288, 48216}, {31330, 47780}, {34958, 48286}, {36568, 47725}, {37998, 49676}, {46385, 48228}, {46827, 48063}, {47672, 48407}, {47679, 47703}, {47685, 48565}, {47706, 48422}, {47802, 48099}, {47804, 48111}, {47808, 48272}, {47814, 47959}, {47815, 47977}, {47817, 48032}, {47819, 48335}, {47820, 48324}, {47833, 48305}, {47840, 48352}, {47889, 48291}, {47893, 48288}, {47912, 48579}, {48021, 48551}, {48065, 48196}, {48086, 48164}, {48184, 48273}, {48186, 48340}, {48207, 48306}, {48209, 48307}, {48230, 48297}, {48329, 48564}

X(50337) = midpoint of X(i) and X(j) for these {i,j}: {1, 21302}, {8, 48282}, {10, 23789}, {693, 1734}, {1019, 21301}, {1577, 2254}, {2517, 23800}, {2530, 2533}, {3762, 48151}, {4041, 4978}, {4063, 46403}, {4374, 24462}, {4391, 4905}, {4560, 47724}, {4705, 21146}, {4707, 48278}, {4730, 48279}, {4761, 48131}, {4791, 48075}, {4808, 48326}, {4823, 48018}, {4834, 24719}, {4960, 47945}, {7192, 47948}, {16892, 47711}, {17072, 24720}, {21124, 47715}, {47672, 48407}, {47679, 47703}, {47959, 48108}
X(50337) = reflection of X(i) in X(j) for these {i,j}: {10, 17072}, {663, 1125}, {3244, 48287}, {3777, 23814}, {4129, 21260}, {4401, 31286}, {14838, 25380}, {20517, 21188}, {23789, 24720}, {23795, 48075}, {48058, 25666}, {48151, 23796}, {48284, 14838}, {48286, 34958}, {48331, 31288}
X(50337) = complement of X(4040)
X(50337) = X(i)-complementary conjugate of X(j) for these (i,j): {6, 40619}, {100, 40607}, {2350, 1086}, {13476, 11}, {17758, 116}, {39950, 17761}, {40216, 21252}, {43076, 1125}
X(50337) = X(100)-isoconjugate of X(34443)
X(50337) = X(i)-Dao conjugate of X(j) for these (i, j): (38, 4553), (8054, 34443)
X(50337) = crosspoint of X(75) and X(8050)
X(50337) = crosssum of X(31) and X(4057)
X(50337) = crossdifference of every pair of points on line {1914, 2174}
X(50337) = barycentric product X(i)*X(j) for these {i,j}: {10, 26822}, {513, 18040}, {514, 17165}, {693, 16549}, {3261, 20990}, {4025, 17915}, {7192, 21067}, {7199, 21865}, {22164, 46107}
X(50337) = barycentric quotient X(i)/X(j) for these {i,j}: {649, 34443}, {16549, 100}, {17165, 190}, {17915, 1897}, {18040, 668}, {20990, 101}, {21067, 3952}, {21865, 1018}, {22164, 1331}, {26822, 86}, {40585, 4553}
X(50337) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {663, 47795, 1125}, {1698, 47970, 47793}, {2533, 36848, 2530}, {4041, 47812, 4978}, {4761, 48556, 48131}, {20517, 21188, 21181}, {21052, 48151, 3762}, {21301, 47824, 1019}, {21302, 47796, 1}, {24924, 48150, 47818}, {30795, 48336, 47839}, {30835, 48367, 47838}, {31251, 48351, 47822}, {46403, 47836, 4063}, {47814, 48108, 47959}, {48216, 48331, 31288}


X(50338) = X(10)X(4985)∩X(240)X(522)

Barycentrics    a*(b - c)*(a^2*b - b^3 + a^2*c + 2*a*b*c - 3*b^2*c - 3*b*c^2 - c^3) : :
X(50338) = 3 X[656] - 2 X[21189], 4 X[1734] - X[1769], 3 X[1734] - X[21189], 3 X[1769] - 4 X[21189], 3 X[1635] - 2 X[4057], 2 X[3716] - 3 X[48204], 3 X[4728] - 4 X[44316], 2 X[8062] - 3 X[48243], 3 X[14413] - 2 X[48292], 4 X[25380] - 3 X[48209], X[42312] - 3 X[47828]

X(50338) lies on these lines: {10, 4985}, {240, 522}, {513, 4041}, {523, 2254}, {650, 48340}, {659, 23954}, {812, 44444}, {834, 4729}, {900, 17420}, {905, 48303}, {1459, 3900}, {1635, 4057}, {2509, 45755}, {2530, 4139}, {2605, 4895}, {3309, 46385}, {3716, 48204}, {3733, 48322}, {3737, 3887}, {3837, 24382}, {3960, 48293}, {4017, 4777}, {4036, 48264}, {4081, 22084}, {4086, 8714}, {4132, 48131}, {4171, 6586}, {4397, 28623}, {4728, 44316}, {4730, 6371}, {4802, 48151}, {4811, 20316}, {4814, 43924}, {4905, 28147}, {4926, 6615}, {6129, 6608}, {6362, 21102}, {6366, 21103}, {8043, 48306}, {8062, 48243}, {8648, 48391}, {14077, 48342}, {14413, 48292}, {14838, 48307}, {15313, 17418}, {21173, 35057}, {21187, 47695}, {21727, 48021}, {21832, 48033}, {23687, 49285}, {23738, 28175}, {23800, 28161}, {23874, 44448}, {25380, 48209}, {28155, 48075}, {42312, 47828}, {43927, 48153}

X(50338) = midpoint of X(4814) and X(43924)
X(50338) = reflection of X(i) in X(j) for these {i,j}: {656, 1734}, {1769, 656}, {4811, 20316}, {4895, 2605}, {4985, 10}, {7650, 17072}, {23800, 48018}, {47695, 21187}, {48153, 43927}, {48264, 4036}, {48293, 3960}, {48303, 905}, {48306, 8043}, {48307, 14838}, {48322, 3733}, {48340, 650}
X(50338) = X(46660)-Dao conjugate of X(1)
X(50338) = crosspoint of X(75) and X(37212)
X(50338) = crosssum of X(i) and X(j) for these (i,j): {31, 4979}, {656, 3743}
X(50338) = crossdifference of every pair of points on line {48, 1449}
X(50338) = barycentric product X(i)*X(j) for these {i,j}: {514, 34790}, {1577, 17524}, {1887, 6332}, {37212, 46660}
X(50338) = barycentric quotient X(i)/X(j) for these {i,j}: {1887, 653}, {17524, 662}, {34790, 190}, {46660, 4978}


X(50339) = X(512)X(47683)∩X(513)X(4963)

Barycentrics    (b - c)*(-a^3 - 2*a^2*b + 2*a*b^2 - 2*a^2*c + 3*a*b*c + 2*b^2*c + 2*a*c^2 + 2*b*c^2) : :
X(50339) = 3 X[4963] - 2 X[47903], X[47903] - 3 X[47934], 2 X[47914] - 3 X[47928], 5 X[47926] - 3 X[47927], 9 X[659] - 8 X[8689], 3 X[659] - 4 X[48008], 5 X[659] - 4 X[48063], 2 X[8689] - 3 X[48008], 10 X[8689] - 9 X[48063], 3 X[47885] - 2 X[49286], 5 X[48008] - 3 X[48063], 3 X[4784] - 2 X[7192], 4 X[650] - 3 X[4800], 2 X[661] - 3 X[4948], 5 X[661] - 6 X[45676], 5 X[4948] - 4 X[45676], 2 X[693] - 3 X[48244], 3 X[1491] - 2 X[4106], 4 X[4106] - 3 X[4810], 2 X[3835] - 3 X[48225], 2 X[3837] - 3 X[48242], 3 X[4010] - 4 X[25666], 2 X[4010] - 3 X[47827], 3 X[4913] - 2 X[25666], 4 X[4913] - 3 X[47827], 8 X[25666] - 9 X[47827], 3 X[4367] - 2 X[48291], 2 X[4382] - 3 X[48167], 4 X[4394] - 3 X[48234], 2 X[4500] - 3 X[48235], 3 X[4560] - 2 X[48289], 3 X[4879] - 4 X[48289], 4 X[4782] - 3 X[48251], 3 X[4804] - 5 X[24924], 2 X[4804] - 3 X[47833], 6 X[9508] - 5 X[24924], 4 X[9508] - 3 X[47833], 10 X[24924] - 9 X[47833], 2 X[4806] - 3 X[47825], 2 X[4820] - 3 X[4951], 3 X[4824] - 2 X[47991], 2 X[4940] - 3 X[48190], 2 X[24719] - 3 X[48160], 4 X[48017] - 3 X[48160], 3 X[25569] - 2 X[48339], 5 X[26985] - 6 X[48229], 7 X[27115] - 6 X[48183], 3 X[47975] - X[48079], 5 X[30795] - 6 X[47828], 5 X[30795] - 4 X[48090], 3 X[47828] - 2 X[48090], 5 X[30835] - 6 X[48213], 7 X[31207] - 6 X[48202], 4 X[31286] - 3 X[48189], 3 X[36848] - 2 X[49289], 3 X[47776] - 2 X[48248], 3 X[47823] - 2 X[48394], 3 X[47877] - 2 X[49295], 3 X[47893] - 2 X[48273], 2 X[48043] - 3 X[48176], 2 X[48080] - 3 X[48162], 2 X[48120] - 3 X[48253], 2 X[48127] - 3 X[48579]

X(50339) lies on these lines: {512, 47683}, {513, 4963}, {522, 659}, {523, 4467}, {649, 2529}, {650, 4800}, {661, 4948}, {693, 48244}, {900, 17494}, {1491, 4106}, {3835, 48225}, {3837, 48242}, {4010, 4913}, {4151, 4367}, {4382, 48167}, {4394, 48234}, {4500, 48235}, {4560, 4879}, {4724, 4926}, {4730, 4774}, {4782, 28205}, {4802, 47930}, {4804, 9508}, {4806, 47825}, {4814, 29236}, {4820, 4951}, {4824, 47991}, {4932, 28169}, {4940, 48190}, {7659, 48143}, {21196, 48349}, {21343, 48321}, {24719, 48017}, {25569, 48339}, {26078, 26854}, {26277, 48187}, {26985, 48229}, {27115, 48183}, {28151, 48141}, {28165, 48142}, {28183, 47694}, {28217, 47969}, {28396, 30061}, {29144, 48277}, {29150, 48407}, {29328, 47975}, {30795, 47828}, {30835, 48213}, {31207, 48202}, {31286, 48189}, {36848, 49289}, {47776, 48248}, {47823, 48394}, {47877, 49295}, {47893, 48273}, {48043, 48176}, {48080, 48162}, {48120, 48253}, {48127, 48579}

X(50339) = reflection of X(i) in X(j) for these {i,j}: {4010, 4913}, {4774, 4730}, {4804, 9508}, {4810, 1491}, {4879, 4560}, {4963, 47934}, {21343, 48321}, {24719, 48017}, {48143, 7659}, {48349, 21196}
X(50339) = crossdifference of every pair of points on line {2275, 5313}
X(50339) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4010, 4913, 47827}, {4804, 9508, 47833}, {24719, 48017, 48160}, {47828, 48090, 30795}


X(50340) = X(23)X(385)∩X(37)X(650)

Barycentrics    (b - c)*(-a^3 + a^2*b + b^3 + a^2*c + a*b*c + b^2*c + b*c^2 + c^3) : :
X(50340) = 3 X[659] - 2 X[47890], 3 X[44433] - X[47660], 3 X[44433] - 2 X[48248], X[47659] - 3 X[47694], X[47659] - 9 X[48239], X[47661] + 3 X[47695], X[47693] - 3 X[47805], X[47694] - 3 X[48239], 4 X[47890] - 3 X[48103], X[23731] - 3 X[47701], 2 X[23731] - 3 X[47944], 4 X[47960] - 3 X[47968], X[47971] + 3 X[47972], 2 X[3835] - 3 X[48177], 4 X[676] - 3 X[47833], 3 X[47833] - 2 X[48396], X[693] - 3 X[48223], X[20295] - 3 X[48158], 4 X[2487] - 3 X[48249], 2 X[2526] - 3 X[47877], 4 X[3239] - 3 X[4951], 2 X[3700] - 3 X[4800], 2 X[3776] - 3 X[48224], 2 X[3837] - 3 X[47797], X[47687] - 3 X[47797], 2 X[4369] - 3 X[4809], 2 X[4500] - 3 X[48189], 2 X[4522] - 3 X[47822], 3 X[4724] - X[48117], 3 X[48083] - 2 X[48117], 2 X[4806] - 3 X[48161], 2 X[4874] - 3 X[47798], X[47690] - 3 X[47798], 2 X[4885] - 3 X[48211], 2 X[6590] - 3 X[48234], 4 X[17069] - 3 X[48244], 2 X[18004] - 3 X[47821], 4 X[21212] - 3 X[36848], 2 X[24720] - 3 X[48227], 3 X[25569] - 2 X[48290], 5 X[27013] - 3 X[48254], 7 X[27115] - 6 X[28602], 2 X[48062] - 3 X[48226], X[47650] - 3 X[47691], 5 X[30795] - 6 X[47799], 5 X[30835] - 6 X[48195], 7 X[31207] - 6 X[48217], 5 X[31209] - 3 X[48187], 4 X[31286] - 3 X[48235], 4 X[31287] - 3 X[48200], 4 X[34958] - 3 X[47889], X[46403] - 3 X[48203], X[47685] - 3 X[48174], X[47689] - 3 X[47804], 3 X[47804] - 2 X[48405], X[47700] - 3 X[47811], 3 X[47811] - 2 X[48056], 3 X[47702] + X[48145], X[47706] - 3 X[47815], X[47710] - 3 X[47817], X[47714] - 3 X[47818], X[47718] - 3 X[47820], 3 X[47872] - 2 X[48395], 3 X[47887] - 2 X[48098], 3 X[48006] - X[48038], 3 X[48024] - 2 X[48038], 2 X[48047] - 3 X[48162], 2 X[48050] - 3 X[48552], X[48118] - 3 X[48572], 3 X[48184] - 2 X[49285]

X(50340) lies on these lines: {1, 29312}, {23, 385}, {37, 650}, {513, 16892}, {514, 4922}, {522, 1491}, {525, 48336}, {649, 29144}, {663, 29017}, {667, 29021}, {676, 47833}, {690, 48352}, {693, 26234}, {812, 48349}, {814, 47708}, {824, 4375}, {826, 4040}, {891, 47727}, {900, 3004}, {1019, 29168}, {1577, 29086}, {1960, 29166}, {2487, 48249}, {2526, 4926}, {2533, 4142}, {2804, 4477}, {2977, 28187}, {3239, 4951}, {3667, 48007}, {3700, 4800}, {3716, 4122}, {3762, 29110}, {3776, 48224}, {3801, 29051}, {3837, 47687}, {3904, 48289}, {3906, 49276}, {3910, 4879}, {4063, 7927}, {4170, 29106}, {4367, 29142}, {4369, 4809}, {4391, 29074}, {4401, 29164}, {4458, 21146}, {4498, 29208}, {4500, 48189}, {4522, 47822}, {4707, 29188}, {4724, 48083}, {4762, 47131}, {4774, 10015}, {4775, 23876}, {4778, 47925}, {4782, 48106}, {4794, 29318}, {4802, 48132}, {4806, 48161}, {4808, 48003}, {4874, 47690}, {4885, 48211}, {4977, 49302}, {6590, 48234}, {7265, 29194}, {11068, 28169}, {17069, 48244}, {18004, 47821}, {21185, 48392}, {21212, 36848}, {23805, 24180}, {23875, 48351}, {23879, 48305}, {23887, 48288}, {24720, 48227}, {25259, 29370}, {25569, 48290}, {27013, 48254}, {27115, 28602}, {28147, 48140}, {28151, 48095}, {28161, 48062}, {28165, 47885}, {28183, 47827}, {28220, 47919}, {28221, 48160}, {29025, 47709}, {29037, 48265}, {29062, 48267}, {29070, 47712}, {29078, 48080}, {29098, 47713}, {29146, 48300}, {29172, 47728}, {29190, 48273}, {29200, 48367}, {29204, 48094}, {29250, 47707}, {29278, 48400}, {29284, 48338}, {29354, 47970}, {29358, 48065}, {29362, 47650}, {30795, 47799}, {30835, 48195}, {31094, 31131}, {31207, 48217}, {31209, 48187}, {31286, 48235}, {31287, 48200}, {34958, 47889}, {46403, 48203}, {47123, 48120}, {47132, 48274}, {47685, 48174}, {47689, 47804}, {47700, 47811}, {47702, 48145}, {47706, 47815}, {47710, 47817}, {47714, 47818}, {47718, 47820}, {47872, 48395}, {47887, 48098}, {47999, 48020}, {48006, 48024}, {48030, 48077}, {48047, 48162}, {48050, 48552}, {48061, 48604}, {48118, 48572}, {48184, 49285}, {48286, 48291}

X(50340) = reflection of X(i) in X(j) for these {i,j}: {2533, 4142}, {3904, 48289}, {4122, 3716}, {4774, 10015}, {4808, 48003}, {21146, 4458}, {47660, 48248}, {47682, 1960}, {47687, 3837}, {47689, 48405}, {47690, 4874}, {47700, 48056}, {47944, 47701}, {48020, 47999}, {48024, 48006}, {48077, 48030}, {48083, 4724}, {48103, 659}, {48106, 4782}, {48120, 47123}, {48274, 47132}, {48291, 48286}, {48300, 48331}, {48392, 21185}, {48396, 676}, {48585, 48621}, {48604, 48061}, {49279, 4794}
X(50340) = crossdifference of every pair of points on line {36, 39}
X(50340) = barycentric product X(514)*X(33076)
X(50340) = barycentric quotient X(33076)/X(190)
X(50340) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {676, 48396, 47833}, {44433, 47660, 48248}, {47687, 47797, 3837}, {47689, 47804, 48405}, {47690, 47798, 4874}, {47700, 47811, 48056}


X(50341) = X(75)X(693)∩X(512)X(48409)

Barycentrics    (b - c)*(-(a^2*b) + 2*a*b^2 - a^2*c + 2*a*b*c + b^2*c + 2*a*c^2 + b*c^2) : :
X(50341) = 2 X[693] - 3 X[36848], 2 X[47131] - 3 X[48224], 3 X[4824] - 2 X[47666], 5 X[4824] - 2 X[47941], 7 X[4824] - 4 X[47954], 5 X[4824] - 4 X[47964], 5 X[47666] - 3 X[47941], 4 X[47666] - 3 X[47946], 7 X[47666] - 6 X[47954], 5 X[47666] - 6 X[47964], X[47666] - 3 X[47975], 4 X[47941] - 5 X[47946], 7 X[47941] - 10 X[47954], X[47941] - 5 X[47975], 7 X[47946] - 8 X[47954], 5 X[47946] - 8 X[47964], X[47946] - 4 X[47975], 5 X[47954] - 7 X[47964], 2 X[47954] - 7 X[47975], 2 X[47964] - 5 X[47975], 3 X[1491] - 2 X[3835], 4 X[3835] - 3 X[4010], X[3835] - 3 X[48017], X[4010] - 4 X[48017], 3 X[2254] - X[47672], 3 X[21146] - 2 X[47672], 4 X[650] - 3 X[4448], 2 X[650] - 3 X[48225], 3 X[1635] - 2 X[48248], 3 X[1638] - 2 X[47132], 2 X[1960] - 3 X[45671], 2 X[3716] - 3 X[47827], 2 X[4369] - 3 X[48244], 3 X[4800] - 4 X[25666], 2 X[4806] - 3 X[47810], 3 X[4809] - 4 X[17069], X[4810] - 3 X[48160], 2 X[48050] - 3 X[48160], 6 X[4874] - 7 X[31207], 2 X[4874] - 3 X[47828], 7 X[31207] - 9 X[47828], 4 X[4885] - 3 X[48189], 2 X[48030] - 3 X[48175], X[48080] - 3 X[48175], 3 X[4948] - 2 X[48000], 2 X[6590] - 3 X[48235], 2 X[7662] - 3 X[47823], 6 X[9508] - 5 X[27013], 2 X[9508] - 3 X[48242], 5 X[27013] - 3 X[47694], 5 X[27013] - 9 X[48242], X[47694] - 3 X[48242], X[20295] - 3 X[48157], 3 X[21145] - 2 X[49300], 5 X[24924] - 6 X[48229], 4 X[25380] - 3 X[47833], 7 X[27115] - 6 X[45666], 7 X[27138] - 6 X[45342], 3 X[44429] - 2 X[48090], 5 X[30835] - 6 X[45323], 5 X[31209] - 6 X[48213], 4 X[31286] - 3 X[48234], 3 X[44550] - 2 X[48344], 2 X[47123] - 3 X[48227], X[47659] - 3 X[48254], X[47665] - 3 X[48187], 2 X[48028] - 3 X[48549], 2 X[48029] - 3 X[48176], 2 X[48063] - 3 X[48226], 3 X[48167] - 2 X[49289], 3 X[48184] - 2 X[48394], 3 X[48185] - 2 X[49286], 3 X[48188] - 2 X[48271], 3 X[48253] - 2 X[49292]

X(50341) lies on these lines: {75, 693}, {512, 48409}, {513, 4380}, {514, 4730}, {522, 1491}, {523, 2254}, {650, 2276}, {659, 4913}, {661, 900}, {784, 1734}, {824, 24326}, {905, 48301}, {1635, 48248}, {1638, 47132}, {1960, 45671}, {2526, 24719}, {2530, 4151}, {3004, 48349}, {3667, 48010}, {3716, 47827}, {3762, 4770}, {3779, 9001}, {3837, 4804}, {3887, 48288}, {3960, 48291}, {4083, 48410}, {4170, 48059}, {4369, 48244}, {4705, 8714}, {4778, 47928}, {4782, 47697}, {4800, 25666}, {4802, 48108}, {4806, 28221}, {4809, 17069}, {4810, 48050}, {4874, 31207}, {4885, 48189}, {4895, 48289}, {4922, 48321}, {4925, 48396}, {4926, 48030}, {4948, 48000}, {4961, 48603}, {4962, 48043}, {4977, 47934}, {6006, 47996}, {6161, 48284}, {6367, 47715}, {6372, 48407}, {6590, 48235}, {7662, 47823}, {9508, 27013}, {14838, 48305}, {17072, 48392}, {20295, 48157}, {21035, 21727}, {21051, 48264}, {21145, 49300}, {24720, 28161}, {24924, 48229}, {25380, 47833}, {27115, 45666}, {27138, 45342}, {28147, 48073}, {28151, 47675}, {28165, 48098}, {28169, 48399}, {28175, 48148}, {28187, 47812}, {28205, 44429}, {28209, 47917}, {28217, 48002}, {28225, 47910}, {29078, 48077}, {29144, 45746}, {29150, 47948}, {29168, 47679}, {29170, 47912}, {29188, 47683}, {29204, 47677}, {29328, 48023}, {30765, 48182}, {30835, 45323}, {31209, 48213}, {31286, 48234}, {39386, 47993}, {44550, 48344}, {47123, 48227}, {47659, 48254}, {47665, 48187}, {48012, 48267}, {48028, 48549}, {48029, 48176}, {48056, 49275}, {48063, 48226}, {48066, 48273}, {48167, 49289}, {48184, 48394}, {48185, 49286}, {48188, 48271}, {48253, 49292}

X(50341) = reflection of X(i) in X(j) for these {i,j}: {659, 4913}, {1491, 48017}, {2533, 1734}, {3762, 4770}, {4010, 1491}, {4170, 48059}, {4448, 48225}, {4804, 3837}, {4810, 48050}, {4824, 47975}, {4895, 48289}, {4922, 48321}, {6161, 48284}, {21146, 2254}, {24719, 2526}, {47694, 9508}, {47697, 4782}, {47941, 47964}, {47946, 4824}, {48021, 48002}, {48024, 48010}, {48080, 48030}, {48120, 24720}, {48143, 48073}, {48264, 21051}, {48265, 4705}, {48267, 48012}, {48273, 48066}, {48279, 2530}, {48291, 3960}, {48301, 905}, {48305, 14838}, {48349, 3004}, {48392, 17072}, {48396, 4925}, {49275, 48056}
X(50341) = crossdifference of every pair of points on line {172, 2251}
X(50341) = barycentric product X(514)*X(49457)
X(50341) = barycentric quotient X(49457)/X(190)
X(50341) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4810, 48160, 48050}, {47694, 48242, 9508}, {48080, 48175, 48030}


X(50342) = X(1)X(690)∩X(2)X(18004)

Barycentrics    (b - c)*(-a^3 - a^2*b + b^3 - a^2*c - a*b*c + b^2*c + b*c^2 + c^3) : :
X(50342) = X[46403] - 3 X[48571], 3 X[16892] - X[47943], 2 X[47943] - 3 X[47968], 3 X[47944] - 4 X[47961], 3 X[47971] + X[47972], 3 X[4367] - 4 X[39545], 3 X[4367] - 2 X[48290], 3 X[649] - X[48118], 3 X[48103] - 2 X[48118], 3 X[659] - 2 X[48055], 4 X[48055] - 3 X[48083], 4 X[676] - 3 X[4800], 3 X[1019] - X[47726], 3 X[1491] - 2 X[48039], 3 X[4025] - X[48039], 3 X[1635] - 2 X[48056], 6 X[1638] - 5 X[30795], 4 X[2487] - 3 X[47807], 4 X[3676] - 3 X[48184], 2 X[3700] - 3 X[47833], 2 X[3716] - 3 X[4809], 2 X[3835] - 3 X[48227], 2 X[3837] - 3 X[4453], X[4088] - 3 X[4750], 3 X[4750] - 2 X[9508], 4 X[4394] - 3 X[47885], 3 X[47885] - 2 X[48088], 3 X[4448] - 4 X[13246], 2 X[4468] - 3 X[48226], 2 X[4500] - 3 X[48238], 2 X[4522] - 3 X[47823], X[4730] - 3 X[30595], 2 X[4806] - 3 X[47797], X[44449] - 3 X[47797], 2 X[4940] - 3 X[48192], 2 X[14321] - 3 X[47799], 4 X[17069] - 3 X[47827], 3 X[47827] - 2 X[48047], X[20295] - 3 X[48241], 5 X[27013] - 3 X[48171], 3 X[27486] - X[47698], 2 X[48043] - 3 X[48177], X[47690] - 3 X[47755], 5 X[30835] - 6 X[48215], 7 X[31207] - 6 X[48199], 4 X[31286] - 3 X[48185], X[47693] - 3 X[47763], 3 X[47762] - 2 X[48405], 3 X[47782] - 2 X[48002], 3 X[47804] - X[49272], 3 X[47811] - 2 X[48048], 3 X[47811] - X[48112], 3 X[47822] - 2 X[48270], 3 X[47877] - 2 X[48027], 3 X[47878] - 2 X[47964], 3 X[47886] - 2 X[48030], 3 X[47887] - 2 X[48090], 3 X[47887] - X[48266], 3 X[47894] - X[47945], 3 X[47930] + X[48626], 2 X[48046] - 3 X[48162], 2 X[48049] - 3 X[48552], X[48079] - 3 X[48174], 3 X[48234] - 2 X[49286], 3 X[48253] - 2 X[48396]

X(50342) lies on these lines: {1, 690}, {2, 18004}, {38, 2254}, {149, 900}, {388, 18006}, {512, 47727}, {513, 16892}, {522, 21146}, {523, 4467}, {525, 4367}, {649, 48103}, {659, 918}, {663, 29200}, {667, 23875}, {676, 4800}, {693, 29078}, {812, 48326}, {814, 47722}, {826, 1019}, {876, 23829}, {1125, 22037}, {1491, 4025}, {1577, 29090}, {1635, 48056}, {1638, 30795}, {1960, 49276}, {2487, 47807}, {2528, 3733}, {2533, 29037}, {2785, 4922}, {2786, 4010}, {2787, 4707}, {3566, 4879}, {3667, 49295}, {3676, 48184}, {3700, 47833}, {3716, 4809}, {3776, 24719}, {3798, 48062}, {3801, 6002}, {3835, 48227}, {3837, 4453}, {3874, 3887}, {3906, 47682}, {3910, 48323}, {4040, 29252}, {4063, 29354}, {4088, 4750}, {4122, 4369}, {4142, 48265}, {4378, 23876}, {4394, 47885}, {4448, 13246}, {4449, 29284}, {4468, 48226}, {4500, 48238}, {4522, 47823}, {4705, 21192}, {4730, 30595}, {4761, 29110}, {4777, 7659}, {4782, 48094}, {4790, 4802}, {4806, 44449}, {4824, 21196}, {4830, 28890}, {4834, 29047}, {4841, 4963}, {4874, 25259}, {4940, 48192}, {4948, 45669}, {4951, 47758}, {4977, 47653}, {4978, 29106}, {5307, 16230}, {7662, 28898}, {8674, 11670}, {14270, 39578}, {14321, 47799}, {14779, 28175}, {17069, 47827}, {20295, 48241}, {20517, 48267}, {21222, 24097}, {24287, 35352}, {24400, 24442}, {24415, 24447}, {26853, 47688}, {27013, 48171}, {27486, 47698}, {28846, 48024}, {28855, 47946}, {28867, 48224}, {28871, 48001}, {28878, 47910}, {28906, 48043}, {28910, 47963}, {29017, 48144}, {29058, 47724}, {29150, 47712}, {29170, 47708}, {29194, 47715}, {29204, 48106}, {29216, 48273}, {29248, 47719}, {29280, 48300}, {29292, 47711}, {29312, 48320}, {29328, 47691}, {29340, 47680}, {29358, 48064}, {29362, 47676}, {29370, 47690}, {30520, 48622}, {30579, 44010}, {30835, 48215}, {31207, 48199}, {31286, 48185}, {32478, 48337}, {45745, 47928}, {47693, 47763}, {47762, 48405}, {47782, 48002}, {47804, 49272}, {47811, 48048}, {47822, 48270}, {47877, 48027}, {47878, 47964}, {47886, 48030}, {47887, 48090}, {47894, 47945}, {47930, 48626}, {47990, 48019}, {48028, 48076}, {48046, 48162}, {48049, 48552}, {48060, 48140}, {48079, 48174}, {48143, 49296}, {48234, 49286}, {48248, 49275}, {48253, 48396}

X(50342) = midpoint of X(26853) and X(47688)
X(50342) = reflection of X(i) in X(j) for these {i,j}: {876, 23829}, {1491, 4025}, {4010, 4458}, {4088, 9508}, {4122, 4369}, {4705, 21192}, {4784, 4897}, {4810, 23770}, {4824, 21196}, {4948, 45669}, {4951, 47758}, {4963, 4841}, {22037, 1125}, {24097, 21222}, {24719, 3776}, {25259, 4874}, {44449, 4806}, {47928, 45745}, {47937, 48611}, {47968, 16892}, {48019, 47990}, {48047, 17069}, {48062, 3798}, {48076, 48028}, {48083, 659}, {48088, 4394}, {48094, 4782}, {48103, 649}, {48112, 48048}, {48140, 48060}, {48143, 49296}, {48265, 4142}, {48266, 48090}, {48267, 20517}, {48290, 39545}, {49275, 48248}, {49276, 1960}
X(50342) = anticomplement of X(18004)
X(50342) = anticomplement of the isogonal conjugate of X(17940)
X(50342) = anticomplement of the isotomic conjugate of X(17930)
X(50342) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1333, 39368}, {1929, 3448}, {2702, 2895}, {4556, 20538}, {4610, 20560}, {6650, 21294}, {17930, 6327}, {17940, 8}, {17962, 21221}, {35148, 21287}, {37135, 1330}
X(50342) = X(17930)-Ceva conjugate of X(2)
X(50342) = crosspoint of X(i) and X(j) for these (i,j): {99, 335}, {1268, 35148}
X(50342) = crosssum of X(i) and X(j) for these (i,j): {512, 1914}, {2308, 5029}
X(50342) = crossdifference of every pair of points on line {2503, 2653}
X(50342) = barycentric product X(i)*X(j) for these {i,j}: {514, 32846}, {2786, 19936}
X(50342) = barycentric quotient X(i)/X(j) for these {i,j}: {19936, 35148}, {32846, 190}
X(50342) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4088, 4750, 9508}, {4394, 48088, 47885}, {17069, 48047, 47827}, {39545, 48290, 4367}, {44449, 47797, 4806}, {47811, 48112, 48048}, {47887, 48266, 48090}


X(50343) = X(2)X(4010)∩X(100)X(190)

Barycentrics    (b - c)*(-a^3 - 2*a^2*b + a*b^2 - 2*a^2*c + a*b*c + b^2*c + a*c^2 + b*c^2) : :
X(50343) = 3 X[2] - 4 X[9508], 5 X[2] - 4 X[45342], 7 X[2] - 8 X[45691], 5 X[4010] - 6 X[45342], 7 X[4010] - 12 X[45691], 5 X[9508] - 3 X[45342], 7 X[9508] - 6 X[45691], 7 X[45342] - 10 X[45691], 4 X[10] - 3 X[30709], 2 X[659] - 3 X[47776], 4 X[2977] - 3 X[30565], 3 X[4560] - 2 X[48288], 5 X[649] - 3 X[48578], 2 X[47690] - 3 X[48254], 5 X[47694] - 6 X[48578], 4 X[48069] - 3 X[48254], 4 X[650] - 3 X[47821], 3 X[47821] - 2 X[48080], 2 X[661] - 3 X[47825], 4 X[4913] - 3 X[47825], 2 X[693] - 3 X[47824], 2 X[1491] - 3 X[48242], X[20295] - 3 X[48242], 2 X[1577] - 3 X[47836], 3 X[1635] - 2 X[3716], 5 X[3616] - 6 X[14419], 2 X[4724] - 3 X[48240], 4 X[48008] - 3 X[48240], 2 X[3700] - 3 X[47809], 2 X[3835] - 3 X[47828], 4 X[3837] - 3 X[21297], 2 X[3837] - 3 X[48244], 2 X[4810] - 3 X[21297], X[4810] - 3 X[48244], 4 X[4025] - 3 X[48241], 2 X[47691] - 3 X[48241], 2 X[4106] - 3 X[44429], 2 X[4122] - 3 X[48208], 2 X[4170] - 3 X[47840], 4 X[14838] - 3 X[47840], 4 X[4369] - 3 X[47834], 2 X[4804] - 3 X[47834], 3 X[4379] - 2 X[48394], 2 X[4382] - 3 X[48170], 4 X[24720] - 3 X[48170], 4 X[4394] - 3 X[47804], 3 X[4453] - 2 X[23770], 2 X[4458] - 3 X[4750], 3 X[4728] - 4 X[25380], 4 X[4782] - 3 X[47805], 4 X[48017] - 3 X[48157], 2 X[48023] - 3 X[48157], 2 X[4806] - 3 X[47827], 2 X[4823] - 3 X[48573], 4 X[4874] - 5 X[27013], 4 X[4874] - 3 X[48172], 5 X[27013] - 3 X[48172], 3 X[4893] - 2 X[48043], 4 X[4925] - 3 X[31131], 2 X[4940] - 3 X[48193], 3 X[4948] - 2 X[48002], 3 X[47774] - 4 X[48002], 2 X[4992] - 3 X[47893], 2 X[7662] - 3 X[47762], 7 X[9780] - 6 X[14431], 2 X[13246] - 3 X[45679], 2 X[14288] - 3 X[26078], 4 X[17069] - 3 X[47797], 4 X[19947] - 3 X[30592], 2 X[23729] - 3 X[48159], 2 X[24719] - 3 X[48164], 2 X[25259] - 3 X[48171], 4 X[48062] - 3 X[48171], 5 X[26985] - 6 X[47823], 5 X[26985] - 4 X[48090], 3 X[47823] - 2 X[48090], 7 X[27115] - 6 X[47822], 5 X[30795] - 6 X[48229], 5 X[30835] - 6 X[47830], 3 X[48203] - 2 X[48349], 3 X[31148] - 2 X[49292], 3 X[31150] - 2 X[48029], 7 X[31207] - 6 X[47831], 4 X[31286] - 3 X[47832], 3 X[44435] - 2 X[49295], 3 X[44550] - 2 X[48332], 3 X[47759] - 4 X[48030], 2 X[48030] - 3 X[48225], 3 X[47771] - 2 X[49286], 3 X[47772] - 4 X[48056], 3 X[47775] - 2 X[48024], 3 X[47780] - 2 X[48120], 3 X[47781] - 2 X[47983], 3 X[47782] - 2 X[47998], 3 X[47793] - 2 X[48267], 3 X[47796] - 2 X[48273], 3 X[47810] - 2 X[48049], 3 X[47812] - 2 X[49289], 3 X[47826] - 2 X[48037], 3 X[47869] - 4 X[48098], 3 X[47870] - 4 X[48405], 3 X[47892] - 2 X[48055], 2 X[48026] - 3 X[48549], 2 X[48027] - 3 X[48175], X[48079] - 3 X[48175], 2 X[48028] - 3 X[48176], 3 X[48236] - 2 X[48271], 3 X[48252] - 2 X[48396], 2 X[48326] - 3 X[48571], 2 X[48399] - 3 X[48579]

X(50343) lies on these lines: {2, 4010}, {8, 2787}, {10, 30709}, {55, 16158}, {98, 28471}, {100, 190}, {145, 4922}, {149, 13277}, {291, 812}, {512, 4560}, {513, 4380}, {514, 50016}, {522, 649}, {523, 4467}, {650, 47821}, {656, 25299}, {661, 4913}, {669, 7253}, {690, 49274}, {693, 47824}, {784, 4834}, {814, 21302}, {824, 47693}, {875, 4155}, {876, 18009}, {885, 18785}, {891, 21222}, {897, 5466}, {918, 48408}, {1019, 4151}, {1282, 2786}, {1491, 20295}, {1577, 47836}, {1635, 3716}, {1734, 21301}, {1768, 21381}, {2526, 6008}, {2775, 6361}, {3571, 24403}, {3616, 14419}, {3667, 4724}, {3700, 47809}, {3798, 47123}, {3835, 47828}, {3837, 4810}, {3907, 4729}, {4025, 47691}, {4041, 6002}, {4063, 8714}, {4083, 17496}, {4106, 44429}, {4122, 48208}, {4145, 17154}, {4170, 14838}, {4369, 4804}, {4378, 48304}, {4379, 48394}, {4382, 24720}, {4394, 47804}, {4441, 14296}, {4453, 23770}, {4458, 4750}, {4490, 29170}, {4522, 48266}, {4705, 29150}, {4707, 49303}, {4728, 25380}, {4762, 7659}, {4765, 48006}, {4773, 44433}, {4777, 47763}, {4778, 47926}, {4782, 4926}, {4785, 48017}, {4802, 47677}, {4806, 47827}, {4808, 29090}, {4811, 30061}, {4813, 48010}, {4818, 47958}, {4823, 48573}, {4830, 48032}, {4874, 27013}, {4893, 48043}, {4905, 29302}, {4925, 31131}, {4932, 28161}, {4940, 48193}, {4948, 47774}, {4961, 48066}, {4962, 48063}, {4992, 47893}, {5075, 49629}, {6084, 49301}, {6089, 19642}, {7662, 47762}, {8674, 14683}, {9780, 14431}, {13246, 45679}, {14288, 26078}, {15309, 48407}, {16892, 47688}, {17069, 47797}, {19947, 30592}, {21124, 29118}, {21146, 26824}, {21192, 47712}, {21196, 47701}, {21832, 24578}, {23729, 48159}, {24623, 47695}, {24719, 48164}, {25259, 48062}, {26277, 47808}, {26985, 47823}, {27045, 48204}, {27115, 47822}, {27167, 48209}, {27293, 48243}, {27486, 48158}, {28132, 46388}, {28147, 48141}, {28169, 48577}, {28221, 48248}, {28225, 47927}, {28840, 47934}, {28846, 47698}, {28863, 48146}, {28882, 47973}, {29216, 48272}, {29270, 48018}, {29350, 48298}, {30519, 48118}, {30795, 48229}, {30835, 47830}, {31095, 48203}, {31148, 49292}, {31150, 48029}, {31207, 47831}, {31286, 47832}, {35025, 35030}, {35028, 35033}, {39698, 41683}, {44435, 49295}, {44449, 48047}, {44550, 48332}, {45745, 47699}, {47686, 48015}, {47696, 48060}, {47759, 48030}, {47771, 49286}, {47772, 48056}, {47775, 48024}, {47780, 48120}, {47781, 47983}, {47782, 47998}, {47793, 48267}, {47796, 48273}, {47810, 48049}, {47812, 49289}, {47826, 48037}, {47869, 48098}, {47870, 48405}, {47890, 49275}, {47892, 48055}, {47938, 48404}, {47989, 49297}, {47992, 48019}, {48000, 48021}, {48007, 49298}, {48026, 48549}, {48027, 48079}, {48028, 48176}, {48050, 48114}, {48073, 48119}, {48088, 49272}, {48103, 49273}, {48236, 48271}, {48252, 48396}, {48284, 48352}, {48326, 48571}, {48399, 48579}

X(50343) = reflection of X(i) in X(j) for these {i,j}: {8, 4730}, {145, 4922}, {149, 13277}, {661, 4913}, {4010, 9508}, {4170, 14838}, {4382, 24720}, {4724, 48008}, {4804, 4369}, {4810, 3837}, {4813, 48010}, {7192, 4784}, {17166, 1019}, {20295, 1491}, {21297, 48244}, {21301, 1734}, {25259, 48062}, {26824, 21146}, {31290, 4824}, {44433, 4773}, {44449, 48047}, {46403, 2254}, {47123, 3798}, {47686, 48015}, {47688, 16892}, {47690, 48069}, {47691, 4025}, {47693, 48106}, {47694, 649}, {47696, 48060}, {47699, 45745}, {47701, 21196}, {47712, 21192}, {47759, 48225}, {47774, 4948}, {47938, 48404}, {47939, 47953}, {47941, 47962}, {47945, 47975}, {47958, 4818}, {47969, 17494}, {48006, 4765}, {48019, 47992}, {48021, 48000}, {48023, 48017}, {48032, 4830}, {48079, 48027}, {48080, 650}, {48108, 7659}, {48114, 48050}, {48119, 48073}, {48142, 4932}, {48158, 27486}, {48266, 4522}, {48298, 48321}, {48304, 4378}, {48352, 48284}, {49272, 48088}, {49273, 48103}, {49275, 47890}, {49297, 47989}, {49298, 48007}, {49303, 4707}
X(50343) = anticomplement of X(4010)
X(50343) = anticomplement of the isotomic conjugate of X(4589)
X(50343) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {99, 20554}, {110, 17794}, {163, 33888}, {291, 3448}, {292, 21221}, {335, 21294}, {660, 1330}, {662, 20345}, {692, 39367}, {741, 149}, {805, 4388}, {813, 2895}, {1333, 39362}, {1576, 30667}, {1808, 34188}, {1911, 148}, {1922, 21220}, {2196, 39352}, {2311, 37781}, {4562, 21287}, {4584, 69}, {4589, 6327}, {4639, 315}, {14598, 25054}, {17938, 21226}, {18268, 4440}, {18827, 21293}, {34067, 1654}, {36066, 17135}, {37128, 150}, {39276, 25049}
X(50343) = X(4589)-Ceva conjugate of X(2)
X(50343) = X(18268)-isoconjugate of X(40529)
X(50343) = X(35068)-Dao conjugate of X(40529)
X(50343) = crosspoint of X(i) and X(j) for these (i,j): {99, 673}, {190, 18827}, {1268, 4562}, {2363, 36086}
X(50343) = crosssum of X(i) and X(j) for these (i,j): {512, 672}, {513, 20718}, {649, 3747}, {2254, 2292}, {2308, 8632}
X(50343) = crossdifference of every pair of points on line {1015, 1193}
X(50343) = barycentric quotient X(740)/X(40529)
X(50343) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {650, 48080, 47821}, {661, 4913, 47825}, {3837, 4810, 21297}, {4010, 9508, 2}, {4025, 47691, 48241}, {4170, 14838, 47840}, {4369, 4804, 47834}, {4382, 24720, 48170}, {4724, 48008, 48240}, {4810, 48244, 3837}, {20295, 48242, 1491}, {25259, 48062, 48171}, {27013, 48172, 4874}, {47690, 48069, 48254}, {47823, 48090, 26985}, {48017, 48023, 48157}, {48079, 48175, 48027}


X(50344) = X(484)X(513)∩X(512)X(1326)

Barycentrics    a^2*(b - c)*(a + 2*b + c)*(a + b + 2*c) : :
X(50344) = 2 X[2605] - 3 X[3733], 3 X[649] - X[48340], 3 X[4057] - 2 X[48340], 3 X[1019] - X[48293], 2 X[4806] - 3 X[48205], 2 X[31946] - 3 X[47836]

X(50344) lies on these lines: {484, 513}, {512, 1326}, {522, 31010}, {523, 4467}, {649, 4057}, {660, 4436}, {691, 6578}, {834, 43924}, {876, 40438}, {889, 6540}, {900, 4581}, {901, 8701}, {1019, 4132}, {1126, 6371}, {1171, 9178}, {1255, 43928}, {1796, 35365}, {2483, 28615}, {2489, 43925}, {2640, 9282}, {4036, 29150}, {4491, 17990}, {4570, 4629}, {4596, 17929}, {4806, 48205}, {4983, 8043}, {9142, 28471}, {10566, 26853}, {14560, 36069}, {16874, 18105}, {20295, 44316}, {20954, 29328}, {21121, 29118}, {23836, 32635}, {31946, 47836}, {33670, 46611}

X(50344) = midpoint of X(26853) and X(44444)
X(50344) = reflection of X(i) in X(j) for these {i,j}: {4057, 649}, {4840, 4784}, {4983, 8043}, {20295, 44316}
X(50344) = isogonal conjugate of X(4427)
X(50344) = isogonal conjugate of the anticomplement of X(3120)
X(50344) = isogonal conjugate of the complement of X(44006)
X(50344) = isogonal conjugate of the isotomic conjugate of X(4608)
X(50344) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {4629, 18133}, {34594, 2891}
X(50344) = X(i)-Ceva conjugate of X(j) for these (i,j): {4629, 6}, {6540, 1255}, {6578, 1171}, {8701, 1126}
X(50344) = X(i)-cross conjugate of X(j) for these (i,j): {3122, 6}, {4491, 23345}, {17990, 3572}
X(50344) = X(i)-isoconjugate of X(j) for these (i,j): {1, 4427}, {2, 35342}, {57, 30729}, {59, 4985}, {75, 35327}, {81, 4115}, {99, 1962}, {100, 1125}, {101, 4359}, {109, 3702}, {110, 4647}, {162, 41014}, {163, 1230}, {190, 1100}, {312, 36075}, {430, 4592}, {553, 644}, {643, 3649}, {648, 3958}, {651, 3686}, {660, 4974}, {662, 1213}, {664, 3683}, {668, 2308}, {692, 1269}, {765, 4977}, {799, 20970}, {811, 22080}, {901, 4975}, {932, 4970}, {1016, 4979}, {1018, 8025}, {1252, 4978}, {1332, 1839}, {1414, 4046}, {1492, 3775}, {1783, 4001}, {1897, 3916}, {2355, 4561}, {3257, 4969}, {3616, 35339}, {3647, 6742}, {3699, 32636}, {3903, 4697}, {4065, 34594}, {4103, 30581}, {4557, 16709}, {4564, 4976}, {4567, 4988}, {4570, 30591}, {4575, 44143}, {4588, 4717}, {4596, 8040}, {4600, 4983}, {4610, 21816}, {4856, 27834}, {4966, 36086}, {4984, 5376}, {4989, 37223}, {4990, 7045}, {6335, 22054}, {6367, 24041}, {6533, 8701}, {8663, 24037}, {15322, 41818}, {15455, 17454}, {17746, 43190}, {30593, 40521}
X(50344) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 4427), (11, 3702), (115, 1230), (125, 41014), (136, 44143), (206, 35327), (244, 4647), (512, 8663), (513, 4977), (661, 4978), (1015, 4359), (1084, 1213), (1086, 1269), (3005, 6367), (3835, 4992), (5139, 430), (5452, 30729), (6615, 4985), (8054, 1125), (14434, 30592), (17115, 4990), (17423, 22080), (32664, 35342), (34467, 3916), (38979, 4975), (38986, 1962), (38989, 4966), (38991, 3686), (38995, 3775), (38996, 20970), (39006, 4001), (39025, 3683), (40586, 4115), (40608, 4046), (40627, 4988)
X(50344) = cevapoint of X(i) and X(j) for these (i,j): {512, 649}, {513, 4132}, {523, 44316}
X(50344) = crosspoint of X(i) and X(j) for these (i,j): {1126, 8701}, {1171, 6578}, {1255, 6540}, {37212, 40438}
X(50344) = crosssum of X(i) and X(j) for these (i,j): {2, 14779}, {513, 3743}, {514, 6707}, {522, 18253}, {523, 3634}, {1125, 4977}, {1213, 6367}, {1962, 4979}, {3683, 4976}, {3686, 4990}, {4647, 4985}, {4988, 8040}
X(50344) = trilinear pole of line {1015, 3124}
X(50344) = crossdifference of every pair of points on line {1100, 1125}
X(50344) = barycentric product X(i)*X(j) for these {i,j}: {1, 47947}, {6, 4608}, {58, 31010}, {115, 6578}, {244, 37212}, {512, 32014}, {513, 1255}, {514, 1126}, {523, 1171}, {649, 1268}, {661, 40438}, {667, 32018}, {693, 28615}, {1015, 6540}, {1086, 8701}, {1796, 7649}, {3120, 4629}, {3122, 4632}, {3125, 4596}, {3669, 32635}, {3676, 33635}, {3733, 6539}, {4102, 43924}, {23345, 31011}
X(50344) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 4427}, {31, 35342}, {32, 35327}, {42, 4115}, {55, 30729}, {244, 4978}, {512, 1213}, {513, 4359}, {514, 1269}, {523, 1230}, {647, 41014}, {649, 1125}, {650, 3702}, {661, 4647}, {663, 3686}, {665, 4966}, {667, 1100}, {669, 20970}, {798, 1962}, {810, 3958}, {1015, 4977}, {1019, 16709}, {1084, 8663}, {1126, 190}, {1171, 99}, {1255, 668}, {1268, 1978}, {1357, 30724}, {1397, 36075}, {1459, 4001}, {1635, 4975}, {1646, 30592}, {1796, 4561}, {1919, 2308}, {1960, 4969}, {2170, 4985}, {2489, 430}, {2501, 44143}, {2605, 3578}, {3049, 22080}, {3063, 3683}, {3121, 4983}, {3122, 4988}, {3124, 6367}, {3125, 30591}, {3248, 4979}, {3250, 3775}, {3271, 4976}, {3709, 4046}, {3733, 8025}, {4057, 45222}, {4079, 8013}, {4378, 4410}, {4596, 4601}, {4608, 76}, {4629, 4600}, {4893, 4717}, {4979, 6533}, {6377, 4992}, {6539, 27808}, {6540, 31625}, {6578, 4590}, {7180, 3649}, {8632, 4974}, {8643, 4856}, {8656, 4982}, {8701, 1016}, {14936, 4990}, {20979, 4970}, {20981, 4697}, {21758, 4973}, {22383, 3916}, {28615, 100}, {31010, 313}, {32014, 670}, {32018, 6386}, {32635, 646}, {33635, 3699}, {37212, 7035}, {40438, 799}, {43924, 553}, {43925, 31900}, {47947, 75}


X(50345) = X(484)X(513)∩X(522)X(1491)

Barycentrics    a*(b - c)*(a*b^2 + b^3 + 3*b^2*c + a*c^2 + 3*b*c^2 + c^3) : :
X(50345) = X[4811] - 3 X[47814], 2 X[4874] - 3 X[48228], 3 X[26078] - X[47844], X[47694] - 3 X[48243]

X(50345) lies on these lines: {484, 513}, {522, 1491}, {523, 2530}, {650, 8662}, {764, 4802}, {784, 2517}, {832, 17418}, {834, 4730}, {900, 47842}, {2254, 8672}, {3126, 10472}, {3667, 48012}, {3777, 28147}, {3837, 4815}, {4041, 6371}, {4057, 8043}, {4139, 48131}, {4397, 48410}, {4490, 4778}, {4761, 4977}, {4770, 6363}, {4811, 47814}, {4874, 48228}, {4985, 21051}, {6004, 46385}, {6161, 48297}, {7650, 21260}, {8062, 48305}, {21173, 38469}, {23765, 28191}, {26078, 47844}, {28161, 48066}, {28183, 48350}, {29070, 44444}, {30591, 44316}, {34258, 35353}, {47694, 48243}

X(50345) = midpoint of X(4397) and X(48410)
X(50345) = reflection of X(i) in X(j) for these {i,j}: {4057, 8043}, {4815, 3837}, {4985, 21051}, {6161, 48297}, {7650, 21260}, {30591, 44316}, {48305, 8062}
X(50345) = crosspoint of X(693) and X(47915)
X(50345) = crossdifference of every pair of points on line {172, 1100}


X(50346) = X(1)X(523)∩X(484)X(513)

Barycentrics    a*(b - c)*(a^3 - a*b^2 - a*b*c - 3*b^2*c - a*c^2 - 3*b*c^2) : :
X(50346) = 3 X[1] - 4 X[2605], 5 X[1] - 4 X[48292], 3 X[1] - 2 X[48293], 2 X[2605] - 3 X[3737], 5 X[2605] - 3 X[48292], 5 X[3737] - 2 X[48292], 3 X[3737] - X[48293], 6 X[48292] - 5 X[48293], 3 X[17418] - X[43924], 3 X[21173] - 2 X[43924], 3 X[4040] - 2 X[48340], 3 X[46385] - X[48340], X[6615] - 3 X[47811], 5 X[1698] - 6 X[48204], 7 X[3624] - 6 X[48209], 13 X[34595] - 12 X[48207], 2 X[47843] - 3 X[48228]

X(50346) lies on these lines: {1, 523}, {43, 47825}, {484, 513}, {514, 4581}, {522, 3465}, {612, 48208}, {614, 48203}, {650, 1758}, {663, 28161}, {846, 6615}, {1019, 8672}, {1027, 39977}, {1459, 28147}, {1698, 48204}, {1743, 3287}, {1781, 21127}, {2517, 47724}, {2640, 39344}, {2957, 5400}, {2999, 47782}, {3624, 48209}, {3667, 4724}, {3709, 3731}, {3907, 4404}, {4017, 14838}, {4041, 6003}, {4132, 4833}, {4139, 48337}, {4151, 7253}, {4374, 25590}, {4397, 29066}, {4436, 46973}, {4449, 28155}, {4551, 14985}, {4777, 48297}, {4789, 17022}, {4794, 42312}, {4802, 48281}, {4815, 8062}, {4948, 42043}, {4962, 48065}, {5010, 48391}, {5256, 46915}, {5268, 47809}, {5272, 47797}, {5287, 47792}, {6371, 21385}, {7161, 23838}, {7178, 34496}, {7199, 10436}, {7280, 48382}, {7649, 49300}, {7951, 8819}, {9359, 24376}, {10980, 34954}, {13610, 35347}, {16569, 47827}, {17420, 48003}, {21180, 23752}, {21184, 45746}, {23511, 47784}, {25502, 47833}, {26102, 47834}, {28151, 48283}, {28165, 48302}, {28169, 48303}, {28183, 48306}, {28191, 48342}, {28225, 47929}, {28471, 45710}, {34595, 48207}, {47843, 48228}

X(50346) = reflection of X(i) in X(j) for these {i,j}: {1, 3737}, {4017, 14838}, {4040, 46385}, {4815, 8062}, {17420, 48003}, {21173, 17418}, {21189, 650}, {23752, 21180}, {42312, 4794}, {47724, 2517}, {48282, 1459}, {48293, 2605}, {48307, 48297}, {49300, 7649}
X(50346) = excentral-isogonal conjugate of X(33811)
X(50346) = X(46187)-anticomplementary conjugate of X(3448)
X(50346) = X(4551)-Ceva conjugate of X(1)
X(50346) = X(i)-Dao conjugate of X(j) for these (i, j): (4560, 18155), (24224, 18698)
X(50346) = crosspoint of X(i) and X(j) for these (i,j): {100, 40430}, {651, 40438}
X(50346) = crosssum of X(i) and X(j) for these (i,j): {513, 2650}, {523, 3614}, {649, 3725}, {650, 1962}
X(50346) = crossdifference of every pair of points on line {1100, 2245}
X(50346) = barycentric product X(i)*X(j) for these {i,j}: {100, 24224}, {514, 5260}, {4551, 40625}
X(50346) = barycentric quotient X(i)/X(j) for these {i,j}: {5260, 190}, {24224, 693}, {40625, 18155}
X(50346) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2605, 48293, 1}, {3737, 48293, 2605}


X(50347) = X(21)X(884)∩X(23)X(385)

Barycentrics    (a - b - c)*(b - c)*(2*a^2 + a*b + b^2 + a*c + c^2) : :
X(50347) = 3 X[659] - X[48103], X[17494] + 3 X[48239], 3 X[44433] - X[47694], X[47660] - 3 X[47805], X[47693] - 3 X[48250], X[47695] - 3 X[48239], 3 X[47890] - 2 X[48103], 3 X[48240] - X[48408], 3 X[3004] - 2 X[48007], X[47979] - 3 X[48006], 3 X[47988] - 4 X[47990], 2 X[47990] - 3 X[47998], 3 X[1639] - 2 X[4522], 3 X[4040] - X[49276], 2 X[676] - 3 X[47798], X[693] - 3 X[47798], 2 X[1491] - 3 X[47784], 3 X[4724] - X[48078], 3 X[1638] - 2 X[24720], 4 X[2487] - 3 X[47824], 4 X[2490] - 3 X[47809], 3 X[47884] - 2 X[48062], 2 X[2977] - 3 X[48226], 2 X[3835] - 3 X[48179], 2 X[3837] - 3 X[47799], X[4088] - 3 X[47811], X[4122] - 3 X[4448], 3 X[4809] - X[21146], 2 X[21146] - 3 X[47891], 2 X[4874] - 3 X[26275], 4 X[4874] - 3 X[47788], 3 X[26275] - X[48396], 3 X[47788] - 2 X[48396], 2 X[4885] - 3 X[47800], 3 X[47800] - X[49285], 3 X[4893] - X[48077], 2 X[4925] - 3 X[47828], 3 X[4927] - 2 X[48089], X[48089] - 3 X[48211], X[47691] - 3 X[48223], 3 X[6545] - X[48115], 3 X[6546] - X[47700], X[6590] - 3 X[47801], 2 X[14321] - 3 X[47821], 2 X[18004] - 3 X[48166], X[20295] - 3 X[48161], X[24719] - 3 X[48177], 5 X[27013] - 3 X[48252], 7 X[27115] - 3 X[48169], 5 X[31209] - 3 X[47808], 4 X[31286] - 3 X[48232], 4 X[31287] - 3 X[47806], 3 X[44435] - X[47685], X[46403] - 3 X[47797], X[47652] - 3 X[48203], X[47656] - 3 X[48237], X[47686] - 3 X[48174], X[47689] - 3 X[47771], X[47690] - 3 X[47804], 3 X[47701] - X[47902], X[47703] - 3 X[47813], X[47707] - 3 X[47815], X[47711] - 3 X[47817], X[47715] - 3 X[47818], X[47719] - 3 X[47820], 3 X[47756] - 2 X[48050], 3 X[47781] - X[47940], 3 X[47783] - X[48035], 3 X[47876] - 2 X[48010], 3 X[47887] - X[48119], 3 X[48055] - 2 X[48614], X[48094] - 3 X[48572], 3 X[48231] - 2 X[48405], 3 X[48241] - X[49301], X[48275] - 3 X[48578]

X(50347) lies on these lines: {2, 47687}, {21, 884}, {23, 385}, {513, 3004}, {514, 3803}, {522, 650}, {525, 4040}, {649, 47972}, {663, 3910}, {667, 29142}, {676, 693}, {814, 48400}, {824, 48063}, {830, 48402}, {900, 1491}, {918, 4724}, {1499, 48352}, {1577, 4205}, {1638, 24720}, {1960, 29312}, {2254, 17069}, {2487, 47824}, {2490, 47809}, {2496, 4777}, {2517, 25009}, {2526, 3667}, {2826, 48321}, {2915, 14344}, {2977, 28183}, {3566, 48336}, {3704, 4041}, {3743, 4151}, {3798, 7659}, {3800, 4063}, {3835, 48179}, {3837, 47799}, {3907, 21120}, {4017, 23740}, {4088, 47811}, {4122, 4448}, {4142, 7178}, {4369, 13246}, {4391, 29278}, {4394, 48069}, {4401, 29021}, {4458, 21104}, {4477, 42337}, {4762, 47123}, {4778, 47960}, {4782, 29144}, {4794, 23876}, {4809, 21146}, {4811, 35518}, {4874, 26275}, {4885, 47800}, {4893, 48077}, {4925, 47828}, {4927, 48089}, {4962, 48193}, {4977, 47676}, {4978, 34958}, {4988, 48153}, {6006, 47880}, {6084, 47691}, {6366, 47729}, {6545, 48115}, {6546, 47700}, {6590, 47801}, {7662, 48274}, {10015, 29066}, {11068, 28161}, {13745, 21201}, {14321, 47821}, {14349, 28481}, {14425, 48187}, {16892, 48032}, {18004, 48166}, {20295, 48161}, {20517, 29186}, {21124, 48150}, {21130, 28294}, {21185, 23882}, {21192, 42325}, {21385, 47727}, {21611, 23684}, {23770, 29362}, {23875, 48065}, {23887, 48284}, {24719, 48177}, {26732, 48264}, {27013, 48252}, {27115, 48169}, {28147, 48095}, {28179, 48140}, {28187, 47885}, {28191, 48132}, {28209, 47968}, {28221, 47827}, {28229, 47919}, {28423, 48173}, {28851, 48009}, {28867, 48037}, {28886, 47980}, {28902, 47941}, {29017, 48299}, {29070, 48403}, {29086, 48395}, {29162, 47708}, {29232, 48267}, {30520, 48061}, {30725, 48325}, {31209, 47808}, {31286, 48232}, {31287, 47806}, {39386, 47877}, {39545, 48320}, {44435, 47685}, {45746, 47697}, {46403, 47797}, {47132, 48120}, {47652, 48203}, {47656, 48237}, {47663, 47692}, {47686, 48174}, {47689, 47771}, {47690, 47804}, {47701, 47902}, {47702, 48101}, {47703, 47813}, {47707, 47815}, {47711, 47817}, {47715, 47818}, {47719, 47820}, {47756, 48050}, {47781, 47940}, {47783, 48035}, {47876, 48010}, {47887, 48119}, {47923, 48105}, {48029, 48046}, {48055, 48614}, {48094, 48572}, {48231, 48405}, {48241, 49301}, {48275, 48578}

X(50347) = complement of X(47687)
X(50347) = midpoint of X(i) and X(j) for these {i,j}: {649, 47972}, {4025, 48014}, {4988, 48153}, {16892, 48032}, {17494, 47695}, {21124, 48150}, {21385, 47727}, {45746, 47697}, {47663, 47692}, {47676, 47974}, {47702, 48101}, {47923, 48105}
X(50347) = reflection of X(i) in X(j) for these {i,j}: {693, 676}, {2254, 17069}, {3700, 3716}, {4369, 13246}, {4927, 48211}, {4978, 34958}, {7178, 4142}, {7659, 3798}, {21104, 4458}, {30725, 48325}, {47788, 26275}, {47890, 659}, {47891, 4809}, {47988, 47998}, {48046, 48029}, {48069, 4394}, {48120, 47132}, {48187, 14425}, {48274, 7662}, {48290, 1960}, {48299, 48331}, {48320, 39545}, {48396, 4874}, {49285, 4885}
X(50347) = X(109)-isoconjugate of X(1390)
X(50347) = X(11)-Dao conjugate of X(1390)
X(50347) = crossdifference of every pair of points on line {39, 56}
X(50347) = barycentric product X(i)*X(j) for these {i,j}: {333, 47701}, {514, 3883}, {522, 17023}, {650, 26234}, {1386, 4391}, {1890, 6332}, {4026, 4560}, {5244, 7253}, {18155, 21840}, {21764, 35519}, {22390, 46110}, {42030, 47902}
X(50347) = barycentric quotient X(i)/X(j) for these {i,j}: {650, 1390}, {1386, 651}, {1890, 653}, {3883, 190}, {4026, 4552}, {5244, 4566}, {17023, 664}, {21764, 109}, {21840, 4551}, {22390, 1813}, {26234, 4554}, {39251, 23703}, {47701, 226}, {47902, 4654}
X(50347) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {693, 47798, 676}, {4874, 48396, 47788}, {17494, 48239, 47695}, {26275, 48396, 4874}, {47800, 49285, 4885}


X(50348) = X(2)X(49275)∩X(513)X(3004)

Barycentrics    (b - c)*(-(a^2*b) + 2*a*b^2 + b^3 - a^2*c + b^2*c + 2*a*c^2 + b*c^2 + c^3) : :
X(50348) = 3 X[21115] - X[47704], 3 X[47878] - X[47927], 2 X[676] - 3 X[48227], 3 X[1635] - X[48102], 3 X[1638] - 2 X[4874], 2 X[48050] - 3 X[48163], 2 X[2977] - 3 X[47828], 3 X[47828] - X[48094], 2 X[3239] - 3 X[47802], 2 X[3716] - 3 X[47799], 4 X[21212] - 3 X[47799], 2 X[3835] - 3 X[48178], X[4024] - 3 X[47812], X[4122] - 3 X[36848], 2 X[4369] - 3 X[48245], 3 X[4453] - X[47694], 2 X[4522] - 3 X[48182], X[4724] - 3 X[47886], X[4804] - 3 X[6545], 2 X[4806] - 3 X[47756], 3 X[4893] - X[48078], 3 X[4927] - 2 X[48090], 2 X[4990] - 3 X[47841], 3 X[6546] - X[48113], X[7265] - 3 X[48556], 4 X[7658] - 3 X[47803], X[20295] - 3 X[48159], 3 X[21120] - 2 X[24093], X[25259] - 3 X[44429], 4 X[25380] - 3 X[47807], 4 X[25666] - 3 X[48166], 3 X[26275] - 2 X[48063], 5 X[27013] - 3 X[48250], 4 X[31286] - 3 X[48231], 3 X[44435] - X[48080], 3 X[44550] - X[47728], 2 X[47132] - 3 X[47887], X[47660] - 3 X[47824], X[47689] + 3 X[48434], X[47691] - 3 X[48422], X[47692] - 5 X[48433], X[47693] - 3 X[48252], X[47695] - 3 X[48241], X[47696] - 3 X[47762], X[47698] - 3 X[48175], 3 X[47781] - X[47941], 3 X[47782] - X[47969], 3 X[47783] - X[48036], 3 X[47785] - X[48061], 3 X[47809] - X[49273], 3 X[47810] - X[48082], 3 X[47827] - X[48083], 3 X[47877] - X[48024], 3 X[47885] - X[48604], X[48087] - 3 X[48193], X[48103] - 3 X[48244], 3 X[48213] - X[48614], 3 X[48232] - 2 X[48405], 3 X[48242] - X[48408], 3 X[48242] + X[49302], X[48275] - 3 X[48579]

X(50348) lies on these lines: {2, 49275}, {513, 3004}, {514, 4818}, {522, 3776}, {523, 2254}, {525, 2530}, {649, 4841}, {650, 48055}, {659, 17069}, {676, 48227}, {824, 24720}, {900, 24719}, {905, 48299}, {918, 1491}, {1635, 48102}, {1638, 4874}, {1734, 29288}, {2522, 43060}, {2786, 48050}, {2977, 47828}, {3239, 47802}, {3566, 48131}, {3676, 7662}, {3700, 3837}, {3716, 21212}, {3777, 3910}, {3798, 4778}, {3801, 6362}, {3835, 48178}, {3960, 48290}, {4024, 47812}, {4088, 47930}, {4122, 36848}, {4369, 48245}, {4380, 47686}, {4453, 47694}, {4467, 46403}, {4522, 30519}, {4724, 47886}, {4750, 28209}, {4784, 47968}, {4786, 28220}, {4802, 48069}, {4804, 6545}, {4806, 47756}, {4843, 48279}, {4885, 49286}, {4893, 48078}, {4905, 29142}, {4927, 48090}, {4976, 29362}, {4979, 47943}, {4988, 48148}, {4990, 47841}, {6372, 48402}, {6546, 48113}, {7265, 48556}, {7658, 47803}, {7659, 47960}, {8714, 48403}, {9508, 47890}, {11068, 48096}, {17494, 49301}, {19947, 49290}, {20295, 48159}, {21120, 24093}, {21124, 48151}, {23729, 29328}, {23789, 23879}, {23875, 48066}, {25259, 44429}, {25380, 47807}, {25666, 48166}, {26275, 48063}, {27013, 48250}, {28175, 47923}, {28195, 48060}, {28213, 47931}, {28478, 48616}, {28846, 48027}, {28851, 48010}, {28855, 47992}, {28863, 48249}, {28878, 47953}, {29021, 48075}, {29047, 48018}, {29200, 48100}, {29240, 48321}, {29252, 48059}, {29284, 48137}, {30520, 48062}, {31286, 48231}, {34958, 48305}, {44435, 48080}, {44550, 47728}, {45674, 48247}, {45746, 48108}, {47132, 47887}, {47653, 49283}, {47660, 47824}, {47676, 47975}, {47677, 47690}, {47689, 48434}, {47691, 48422}, {47692, 48433}, {47693, 48252}, {47695, 48241}, {47696, 47762}, {47698, 48175}, {47781, 47941}, {47782, 47969}, {47783, 48036}, {47785, 48061}, {47809, 49273}, {47810, 48082}, {47827, 48083}, {47877, 48024}, {47885, 48604}, {47971, 48023}, {48030, 48046}, {48087, 48193}, {48098, 48274}, {48103, 48244}, {48104, 48598}, {48119, 48277}, {48213, 48614}, {48232, 48405}, {48242, 48408}, {48275, 48579}, {48280, 48406}, {48394, 48415}

X(50348) = midpoint of X(i) and X(j) for these {i,j}: {649, 47973}, {2254, 16892}, {4025, 48015}, {4088, 47930}, {4380, 47686}, {4467, 46403}, {4784, 47968}, {4979, 47943}, {4988, 48148}, {7659, 47960}, {17494, 49301}, {21124, 48151}, {45746, 48108}, {47653, 49283}, {47673, 47703}, {47676, 47975}, {47677, 47690}, {47923, 48106}, {47931, 48101}, {47971, 48023}, {47982, 48013}, {48104, 48598}, {48119, 48277}, {48408, 49302}
X(50348) = reflection of X(i) in X(j) for these {i,j}: {659, 17069}, {3700, 3837}, {3716, 21212}, {7662, 3676}, {23770, 3776}, {47890, 9508}, {47988, 47999}, {47989, 48007}, {47998, 3004}, {48046, 48030}, {48047, 1491}, {48055, 650}, {48094, 2977}, {48096, 11068}, {48247, 45674}, {48274, 48098}, {48280, 48406}, {48290, 3960}, {48299, 905}, {48305, 34958}, {48394, 48415}, {48396, 24720}, {49286, 4885}, {49290, 19947}
X(50348) = complement of X(49275)
X(50348) = barycentric product X(514)*X(49511)
X(50348) = barycentric quotient X(49511)/X(190)
X(50348) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3716, 21212, 47799}, {47828, 48094, 2977}, {48242, 49302, 48408}


X(50349) = X(1)X(523)∩X(44)X(513)

Barycentrics    a*(b - c)*(a^3 - a*b^2 - a*b*c - 2*b^2*c - a*c^2 - 2*b*c^2) : :
X(50349) = 2 X[1] - 3 X[2605], X[1] - 3 X[3737], 4 X[1] - 3 X[48292], 5 X[1] - 3 X[48293], 5 X[2605] - 2 X[48293], 4 X[3737] - X[48292], 5 X[3737] - X[48293], 5 X[48292] - 4 X[48293], X[4724] + 3 X[17418], X[4724] - 3 X[46385], 2 X[4794] - 3 X[48297], 4 X[4794] - 3 X[48306], 3 X[2517] - X[47721], 8 X[3634] - 9 X[48205], X[4804] - 3 X[45686], 11 X[5550] - 9 X[48209], 7 X[9780] - 9 X[48204], X[17166] - 3 X[47845], 10 X[19862] - 9 X[48207], 2 X[47843] - 3 X[48230]

X(50349) lies on these lines: {1, 523}, {42, 4948}, {44, 513}, {45, 3709}, {512, 4833}, {514, 21112}, {522, 4794}, {663, 4777}, {900, 4040}, {1459, 4802}, {2517, 47721}, {2613, 37140}, {2617, 14985}, {3240, 47825}, {3614, 8819}, {3634, 48205}, {3733, 8672}, {3738, 48003}, {4017, 31947}, {4041, 8674}, {4145, 4879}, {4449, 28151}, {4705, 9013}, {4789, 17021}, {4804, 45686}, {4824, 27970}, {4926, 48340}, {4977, 10015}, {5204, 48382}, {5217, 48391}, {5297, 47809}, {5550, 48209}, {6006, 48065}, {7199, 41847}, {7292, 47797}, {8062, 30591}, {8675, 44410}, {9001, 47965}, {9780, 48204}, {14288, 29070}, {17012, 47782}, {17013, 46915}, {17166, 47845}, {19862, 48207}, {27773, 47822}, {28147, 48283}, {28161, 48302}, {28165, 48303}, {28169, 48294}, {28175, 48281}, {28179, 48282}, {28183, 48307}, {28195, 43052}, {28199, 48342}, {28205, 42312}, {28209, 47970}, {28220, 47929}, {30950, 47833}, {36283, 36285}, {47843, 48230}

X(50349) = midpoint of X(17418) and X(46385)
X(50349) = reflection of X(i) in X(j) for these {i,j}: {656, 8043}, {2605, 3737}, {4017, 31947}, {30591, 8062}, {48292, 2605}, {48306, 48297}
X(50349) = X(5397)-Ceva conjugate of X(11)
X(50349) = crosssum of X(523) and X(7951)
X(50349) = crossdifference of every pair of points on line {1, 2245}
X(50349) = X(i)-lineconjugate of X(j) for these (i,j): {44, 2245}, {523, 1}
X(50349) = barycentric product X(i)*X(j) for these {i,j}: {514, 5251}, {1577, 9275}
X(50349) = barycentric quotient X(i)/X(j) for these {i,j}: {5251, 190}, {9275, 662}


X(50350) = X(44)X(513)∩X(523)X(1734)

Barycentrics    a*(b - c)*(a^2*b - b^3 + a^2*c + a*b*c - b^2*c - b*c^2 - c^3) : :
X(50350) = 3 X[656] - X[17420], 3 X[2254] + X[17420], 2 X[8043] - 3 X[47828], X[46385] - 3 X[47828], 3 X[2457] - X[21118], 2 X[3716] - 3 X[48181], X[7253] - 3 X[48246], 2 X[8062] - 3 X[48230], 4 X[25380] - 3 X[48230], X[21102] - 3 X[30574], X[39547] - 3 X[48569], 3 X[47824] - X[47844]

X(50350) lies on these lines: {44, 513}, {514, 11795}, {521, 7629}, {522, 4823}, {523, 1734}, {663, 31947}, {832, 3733}, {834, 2530}, {900, 21189}, {905, 2605}, {1459, 8674}, {1769, 4926}, {2457, 21118}, {2523, 7252}, {3309, 48306}, {3716, 48181}, {3798, 48044}, {3887, 48302}, {3900, 48292}, {3960, 35057}, {4017, 4777}, {4025, 48084}, {4036, 17072}, {4041, 4802}, {4057, 6004}, {4449, 8702}, {4778, 48075}, {4905, 4977}, {4962, 24457}, {6370, 20294}, {6586, 24290}, {7253, 48246}, {8062, 25380}, {9209, 48182}, {14315, 28221}, {14838, 48297}, {21102, 30574}, {21186, 23604}, {21252, 22084}, {21262, 24287}, {21727, 47928}, {22091, 34948}, {23189, 48390}, {23687, 23770}, {24462, 29078}, {28195, 48151}, {31946, 48267}, {39547, 48569}, {47824, 47844}

X(50350) = midpoint of X(i) and X(j) for these {i,j}: {656, 2254}, {1734, 23800}
X(50350) = reflection of X(i) in X(j) for these {i,j}: {663, 31947}, {2605, 905}, {4036, 17072}, {8062, 25380}, {30591, 47843}, {46385, 8043}, {48267, 31946}, {48283, 3960}, {48297, 14838}
X(50350) = X(2)-isoconjugate of X(29041)
X(50350) = X(32664)-Dao conjugate of X(29041)
X(50350) = crossdifference of every pair of points on line {1, 584}
X(50350) = barycentric product X(i)*X(j) for these {i,j}: {1, 23875}, {513, 32858}, {514, 5904}, {1577, 4278}
X(50350) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 29041}, {4278, 662}, {5904, 190}, {23875, 75}, {32858, 668}
X(50350) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {649, 8061, 48025}, {8062, 25380, 48230}, {46385, 47828, 8043}


X(50351) = X(1)X(523)∩X(10)X(514)

Barycentrics    (b - c)*(a^3 - a*b^2 + b^3 - a*b*c - a*c^2 + c^3) : :
X(50351) = 2 X[1] - 3 X[30580], 3 X[30583] - 4 X[32212], 3 X[1022] - 4 X[24099], 5 X[1698] - 6 X[28602], 4 X[3634] - 3 X[4049], 3 X[4448] - 2 X[21201], 2 X[4458] - 3 X[14419], 2 X[4791] - 3 X[48185], 3 X[6545] - 4 X[19947], 3 X[6546] - X[21132], 2 X[7178] - 3 X[47837], 3 X[14413] - X[47705], 3 X[25569] - 2 X[48286], 3 X[47839] - 2 X[48403], X[47721] - 3 X[48187], X[47722] - 3 X[47808], 2 X[48400] - 3 X[48553]

X(50351) lies on these lines: {1, 523}, {2, 49303}, {10, 514}, {72, 513}, {512, 3869}, {522, 5592}, {650, 16583}, {659, 23887}, {661, 29029}, {667, 23877}, {690, 49274}, {784, 48300}, {814, 48272}, {826, 4560}, {879, 1175}, {891, 3904}, {900, 49276}, {1019, 6763}, {1022, 1224}, {1027, 29142}, {1643, 45745}, {1698, 28602}, {1734, 29082}, {1960, 47695}, {2254, 29102}, {2785, 4730}, {2787, 4088}, {2826, 12738}, {2977, 10015}, {3251, 28161}, {3309, 37585}, {3634, 4049}, {3762, 48056}, {3801, 14838}, {3837, 47680}, {3906, 4467}, {3907, 4808}, {3960, 48326}, {4041, 29094}, {4367, 8666}, {4374, 33933}, {4448, 21201}, {4458, 14419}, {4608, 5466}, {4707, 9508}, {4777, 49462}, {4789, 17244}, {4791, 48185}, {4804, 49290}, {4874, 49300}, {4948, 50287}, {4983, 29118}, {6332, 48273}, {6545, 19947}, {6546, 21132}, {6550, 6634}, {7178, 24914}, {7192, 34016}, {7199, 33943}, {8043, 21121}, {8045, 48393}, {8578, 17418}, {14349, 29025}, {14413, 47705}, {14421, 28147}, {16892, 29224}, {17367, 47782}, {17494, 29312}, {17496, 29354}, {17739, 47890}, {21124, 29154}, {21301, 29336}, {23879, 38348}, {23894, 23905}, {24114, 47679}, {25569, 48286}, {25681, 47839}, {28840, 50276}, {29070, 48278}, {29098, 48131}, {29110, 47700}, {29120, 47959}, {29122, 48030}, {29126, 48047}, {29128, 47701}, {29132, 48024}, {29138, 48005}, {29140, 48054}, {29158, 48123}, {29184, 48059}, {29328, 49277}, {29362, 49278}, {29569, 47792}, {31290, 46707}, {47684, 47975}, {47721, 48187}, {47722, 47808}, {48299, 48305}, {48400, 48553}

X(50351) = midpoint of X(i) and X(j) for these {i,j}: {3904, 48408}, {47683, 47726}, {47684, 47975}
X(50351) = reflection of X(i) in X(j) for these {i,j}: {3762, 48056}, {3801, 14838}, {4707, 9508}, {4804, 49290}, {6161, 5592}, {10015, 2977}, {21121, 8043}, {47680, 3837}, {47695, 1960}, {47727, 48289}, {48273, 6332}, {48291, 48290}, {48305, 48299}, {48326, 3960}, {48393, 8045}, {49300, 4874}
X(50351) = complement of X(49303)
X(50351) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {765, 3448}, {1016, 21294}, {1101, 17154}, {1110, 148}, {1252, 21221}, {4567, 150}, {4570, 149}, {4600, 21293}, {6632, 21287}, {23990, 21220}, {31615, 2893}
X(50351) = crosssum of X(8661) and X(17455)
X(50351) = crossdifference of every pair of points on line {1914, 2245}
X(50351) = barycentric product X(i)*X(j) for these {i,j}: {514, 33115}, {523, 25536}, {4608, 24956}
X(50351) = barycentric quotient X(i)/X(j) for these {i,j}: {24956, 4427}, {25536, 99}, {33115, 190}


X(50352) = X(10)X(514)∩X(512)X(693)

Barycentrics    (b - c)*(a^2*b + a^2*c + a*b*c + b^2*c + b*c^2) : :
X(50352) = 2 X[10] + X[48143], 3 X[36848] - 2 X[48066], 2 X[650] - 3 X[47837], X[663] - 3 X[4379], 2 X[905] - 3 X[48569], X[48288] - 3 X[48569], 2 X[1960] - 3 X[47820], X[48144] - 3 X[48579], 2 X[3716] - 3 X[47875], 3 X[47875] - X[48351], 3 X[48238] - X[48301], X[4761] + 2 X[48098], X[4367] - 3 X[48253], 3 X[4448] - 2 X[48065], X[4560] - 3 X[47824], 3 X[4728] - X[4822], X[4730] + 2 X[48399], 2 X[4770] + X[47675], 3 X[4776] - 2 X[48053], 3 X[14431] - X[47949], 2 X[4782] - 3 X[48566], X[4879] - 3 X[47889], 3 X[47889] - 2 X[48295], 4 X[4885] - 3 X[47839], 3 X[47839] - 2 X[48099], 2 X[6050] - 3 X[47761], 2 X[9508] - 3 X[48573], 2 X[14838] - 3 X[47823], X[17166] - 3 X[47780], X[21302] + 3 X[47780], X[17494] - 3 X[47836], 3 X[21052] - X[47918], 3 X[21052] + X[48148], 2 X[23815] - 3 X[47812], 3 X[47812] - X[48131], 5 X[24924] - 4 X[31288], 4 X[25380] - 3 X[47888], 4 X[25666] - 5 X[31251], 5 X[26985] - 3 X[47840], X[47721] + 3 X[48570], 3 X[44429] - 2 X[48059], X[47666] - 3 X[47814], 3 X[47814] - 2 X[48005], 3 X[47793] - X[47969], 3 X[47813] - X[48150], 3 X[47815] - X[47974], 3 X[47816] - 2 X[48030], 3 X[47818] - 2 X[48331], 3 X[47822] - 2 X[48058], 3 X[47832] - X[48367], 3 X[47833] - X[48336], 3 X[47835] - 2 X[48003], 2 X[48028] - 3 X[48551], 2 X[48029] - 3 X[48553], 2 X[48100] - 3 X[48556], X[48123] - 3 X[48184]

X(50352) lies on these lines: {1, 29366}, {10, 514}, {512, 693}, {513, 1577}, {522, 30595}, {523, 1734}, {525, 48396}, {649, 29070}, {650, 47837}, {659, 29186}, {661, 21260}, {663, 3720}, {667, 4369}, {784, 2254}, {788, 7199}, {812, 4834}, {814, 1019}, {826, 47690}, {832, 47844}, {891, 4801}, {905, 48288}, {918, 48395}, {1269, 4406}, {1960, 47820}, {2517, 8672}, {2787, 48144}, {3309, 7662}, {3716, 47875}, {3762, 29198}, {3800, 23770}, {3801, 29021}, {3835, 4983}, {3837, 14349}, {3887, 48238}, {3900, 48291}, {3907, 4378}, {4010, 4823}, {4040, 4874}, {4041, 47672}, {4063, 29362}, {4083, 4761}, {4122, 23875}, {4129, 48024}, {4151, 48120}, {4170, 48090}, {4367, 29066}, {4374, 40495}, {4391, 6372}, {4448, 48065}, {4449, 29298}, {4474, 48341}, {4498, 48119}, {4507, 29771}, {4560, 47824}, {4707, 29017}, {4728, 4822}, {4730, 48399}, {4770, 47675}, {4774, 48323}, {4776, 48053}, {4778, 14431}, {4782, 48566}, {4784, 29013}, {4791, 48265}, {4802, 48407}, {4806, 48081}, {4844, 48287}, {4879, 47889}, {4885, 47839}, {4897, 29232}, {4922, 48343}, {4932, 24287}, {4960, 47948}, {4977, 21051}, {6004, 47694}, {6050, 47761}, {6367, 47656}, {6545, 29685}, {6590, 24290}, {7178, 29142}, {7192, 21301}, {7265, 29200}, {7927, 47691}, {7950, 47689}, {8045, 49279}, {8678, 43067}, {8714, 48392}, {9313, 48152}, {9508, 48573}, {14838, 47823}, {15313, 39547}, {17135, 17166}, {17494, 47836}, {20317, 47966}, {21052, 47918}, {21104, 29288}, {21124, 47703}, {21348, 21837}, {23755, 48278}, {23815, 47812}, {24561, 26640}, {24924, 31288}, {25259, 29252}, {25380, 47888}, {25501, 47779}, {25512, 47795}, {25666, 31251}, {26985, 47840}, {28195, 47967}, {28209, 47942}, {28220, 47957}, {28840, 31149}, {29025, 47680}, {29033, 48064}, {29047, 48326}, {29058, 47755}, {29074, 47723}, {29082, 47682}, {29090, 47971}, {29098, 48106}, {29102, 48300}, {29144, 47712}, {29146, 47714}, {29166, 47718}, {29168, 47708}, {29174, 47725}, {29182, 47721}, {29204, 47710}, {29208, 47716}, {29272, 47684}, {29274, 48568}, {29312, 47719}, {29324, 48320}, {29332, 47726}, {29336, 47722}, {29350, 48279}, {29354, 47676}, {44429, 48059}, {47666, 47814}, {47729, 48328}, {47793, 47969}, {47813, 48150}, {47815, 47974}, {47816, 48030}, {47818, 48331}, {47822, 48058}, {47832, 48367}, {47833, 48336}, {47835, 48003}, {47912, 48141}, {47941, 47994}, {47946, 47997}, {48028, 48551}, {48029, 48553}, {48100, 48556}, {48111, 48248}, {48123, 48184}, {48335, 48406}

X(50352) = midpoint of X(i) and X(j) for these {i,j}: {1019, 47724}, {2533, 21146}, {4041, 47672}, {4391, 48108}, {4474, 48341}, {4490, 48143}, {4498, 48119}, {4707, 47715}, {4761, 4978}, {4774, 48323}, {4960, 47948}, {7192, 21301}, {17166, 21302}, {21124, 47703}, {23755, 48278}, {47676, 47707}, {47912, 48141}, {47918, 48148}
X(50352) = reflection of X(i) in X(j) for these {i,j}: {661, 21260}, {667, 4369}, {2530, 24720}, {3777, 23789}, {4010, 4823}, {4040, 4874}, {4170, 48090}, {4490, 10}, {4705, 17072}, {4824, 48012}, {4879, 48295}, {4922, 48343}, {4978, 48098}, {4983, 3835}, {14349, 3837}, {47666, 48005}, {47729, 48328}, {47941, 47994}, {47946, 47997}, {47959, 21051}, {47966, 20317}, {48024, 4129}, {48081, 4806}, {48099, 4885}, {48111, 48248}, {48131, 23815}, {48265, 4791}, {48267, 1577}, {48273, 693}, {48288, 905}, {48305, 7662}, {48335, 48406}, {48351, 3716}, {49279, 8045}
X(50352) = crossdifference of every pair of points on line {584, 1185}
X(50352) = barycentric product X(i)*X(j) for these {i,j}: {514, 32771}, {693, 17750}, {876, 41250}
X(50352) = barycentric quotient X(i)/X(j) for these {i,j}: {17750, 100}, {32771, 190}, {41250, 874}
X(50352) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4879, 47889, 48295}, {4885, 48099, 47839}, {21052, 48148, 47918}, {21302, 47780, 17166}, {47666, 47814, 48005}, {47812, 48131, 23815}, {47875, 48351, 3716}, {48288, 48569, 905}


X(50353) = X(23)X(385)∩X(513)X(663)

Barycentrics    a*(b - c)*(a^3 + a^2*b + a^2*c - a*b*c + b^2*c + b*c^2) : :
X(50353) = 2 X[2605] - 3 X[25569], 2 X[656] - 3 X[28284], 2 X[3837] - 3 X[48209], X[44444] - 3 X[48209], 2 X[4036] - 3 X[47872], X[4397] - 3 X[47804], 2 X[6133] - 3 X[47804], X[4404] - 3 X[47817], 2 X[4491] + X[48323], 3 X[4809] - 2 X[21187], 3 X[8643] - X[17418], 2 X[21051] - 3 X[48165], 2 X[21260] - 3 X[48186], X[21301] - 3 X[48173], 5 X[30795] - 4 X[44316], 5 X[30795] - 6 X[48207], 2 X[44316] - 3 X[48207], 4 X[31288] - 3 X[48228], 2 X[31946] - 3 X[48168], 4 X[31947] - 3 X[47893], X[47136] - 3 X[47801]

X(50353) lies on these lines: {1, 6371}, {23, 385}, {37, 2483}, {512, 48307}, {513, 663}, {521, 48327}, {522, 667}, {649, 21348}, {656, 28284}, {676, 28095}, {798, 4435}, {814, 7650}, {832, 21189}, {834, 4879}, {891, 48293}, {900, 3733}, {1255, 43928}, {1491, 25537}, {1919, 3287}, {1960, 3737}, {2517, 4874}, {2787, 4985}, {2978, 4784}, {3716, 7234}, {3835, 24676}, {3837, 26097}, {4036, 47872}, {4040, 8672}, {4063, 4139}, {4083, 48303}, {4132, 21349}, {4140, 47127}, {4378, 4778}, {4397, 6133}, {4401, 28161}, {4404, 47817}, {4491, 4977}, {4809, 21187}, {4815, 29070}, {6003, 48345}, {6004, 23800}, {6363, 48281}, {8638, 23400}, {8643, 17418}, {8654, 20294}, {9002, 48283}, {9013, 28396}, {16695, 47844}, {17420, 38469}, {20906, 26277}, {21051, 48165}, {21260, 48186}, {21301, 48173}, {21343, 48292}, {22096, 24840}, {25884, 25926}, {26249, 47798}, {28225, 48343}, {28355, 28399}, {30795, 31003}, {31288, 48228}, {31946, 48168}, {31947, 47893}, {32626, 39200}, {39386, 46610}, {39480, 39577}, {42337, 48387}, {46385, 48331}, {47136, 47801}, {48342, 48344}

X(50353) = midpoint of X(i) and X(j) for these {i,j}: {649, 42312}, {4017, 48150}, {17420, 48322}, {21189, 48324}
X(50353) = reflection of X(i) in X(j) for these {i,j}: {659, 4057}, {1459, 48330}, {2517, 4874}, {3737, 1960}, {4397, 6133}, {4879, 48302}, {21343, 48292}, {44444, 3837}, {46385, 48331}, {48281, 48328}, {48336, 48306}, {48342, 48344}
X(50353) = isogonal conjugate of the anticomplement of X(38992)
X(50353) = X(6648)-Ceva conjugate of X(6)
X(50353) = X(100)-isoconjugate of X(45989)
X(50353) = X(8054)-Dao conjugate of X(45989)
X(50353) = crosspoint of X(i) and X(j) for these (i,j): {1, 8707}, {251, 8687}
X(50353) = crosssum of X(i) and X(j) for these (i,j): {1, 6371}, {141, 3910}, {513, 3812}, {521, 37613}, {522, 3831}
X(50353) = crossdifference of every pair of points on line {9, 39}
X(50353) = barycentric product X(i)*X(j) for these {i,j}: {513, 27064}, {514, 5255}, {6648, 38992}
X(50353) = barycentric quotient X(i)/X(j) for these {i,j}: {649, 45989}, {5255, 190}, {27064, 668}, {38992, 3910}
X(50353) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {669, 47694, 659}, {4397, 47804, 6133}, {44316, 48207, 30795}, {44444, 48209, 3837}


X(50354) = X(513)X(663)∩X(514)X(656)

Barycentrics    a*(b - c)*(a^2*b - b^3 + a^2*c + 2*a*b*c + b^2*c + b*c^2 - c^3) : :
X(50354) = 3 X[1769] - 2 X[6615], X[1769] + 2 X[48151], 2 X[2605] - 3 X[14413], 3 X[4017] - X[6615], X[6615] + 3 X[48151], 3 X[2457] - 2 X[10015], 2 X[3716] - 3 X[48209], 3 X[4453] - 2 X[21187], 2 X[6133] - 3 X[47823], 2 X[8062] - 3 X[47796], 4 X[25380] - 3 X[48204], 3 X[31148] - 2 X[43927]

X(50354) lies on these lines: {513, 663}, {514, 656}, {521, 48342}, {522, 4905}, {523, 2254}, {661, 6586}, {693, 28623}, {764, 6371}, {832, 4378}, {834, 48334}, {905, 46385}, {918, 4064}, {1734, 28147}, {2457, 10015}, {2517, 24720}, {2530, 8672}, {3309, 48303}, {3676, 7649}, {3716, 48209}, {3733, 22379}, {3737, 3960}, {3887, 48293}, {4041, 4802}, {4057, 48032}, {4391, 47843}, {4449, 15313}, {4453, 21187}, {4462, 20316}, {4466, 23771}, {4468, 20315}, {4509, 23829}, {4778, 21189}, {4815, 8714}, {4840, 4979}, {4895, 48292}, {4977, 17420}, {6003, 48281}, {6133, 47823}, {7178, 21102}, {8062, 47796}, {8648, 48382}, {11125, 30724}, {14288, 40086}, {15179, 23838}, {20294, 47676}, {20507, 23739}, {21103, 30725}, {21172, 30723}, {23226, 44408}, {24457, 39386}, {25380, 48204}, {28155, 48018}, {28161, 48075}, {30591, 48264}, {31148, 43927}, {35057, 48282}, {38469, 48323}, {42325, 48307}, {47842, 47918}

X(50354) = midpoint of X(i) and X(j) for these {i,j}: {4017, 48151}, {17420, 23738}, {20294, 47676}
X(50354) = reflection of X(i) in X(j) for these {i,j}: {656, 23800}, {1459, 3669}, {1769, 4017}, {2517, 24720}, {3737, 3960}, {4391, 47843}, {4462, 20316}, {4468, 20315}, {4895, 48292}, {4979, 4840}, {7649, 3676}, {11125, 30724}, {14288, 40086}, {21102, 7178}, {21103, 30725}, {21172, 30723}, {46385, 905}, {47918, 47842}, {48032, 4057}, {48264, 30591}, {48340, 6129}
X(50354) = isogonal conjugate of the polar conjugate of X(23595)
X(50354) = X(i)-Ceva conjugate of X(j) for these (i,j): {58, 244}, {3668, 1086}, {36048, 57}
X(50354) = X(i)-isoconjugate of X(j) for these (i,j): {8, 15439}, {100, 943}, {101, 40435}, {190, 2259}, {200, 36048}, {346, 32651}, {644, 2982}, {692, 40422}, {906, 40447}, {1175, 3952}, {1794, 1897}, {4557, 40412}, {4574, 40395}, {4587, 40573}, {35320, 44687}
X(50354) = X(i)-Dao conjugate of X(j) for these (i, j): (442, 3699), (1015, 40435), (1086, 40422), (5190, 40447), (6609, 36048), (8054, 943), (15607, 200), (16585, 668), (16732, 313), (18591, 190), (34467, 1794), (39007, 78), (40937, 4033)
X(50354) = crosspoint of X(i) and X(j) for these (i,j): {57, 36048}, {1019, 3676}
X(50354) = crosssum of X(1018) and X(3939)
X(50354) = crossdifference of every pair of points on line {9, 943}
X(50354) = barycentric product X(i)*X(j) for these {i,j}: {3, 23595}, {81, 23752}, {442, 1019}, {513, 5249}, {514, 942}, {525, 46883}, {693, 2260}, {905, 1838}, {1088, 33525}, {1841, 4025}, {2294, 7192}, {3261, 40956}, {3669, 6734}, {3676, 40937}, {3824, 48074}, {3960, 45926}, {4077, 46882}, {4303, 17924}, {7199, 40952}, {7649, 18607}, {14208, 46890}, {14547, 24002}, {14597, 46107}, {17094, 46884}, {17096, 40967}
X(50354) = barycentric quotient X(i)/X(j) for these {i,j}: {442, 4033}, {513, 40435}, {514, 40422}, {604, 15439}, {649, 943}, {667, 2259}, {942, 190}, {1019, 40412}, {1106, 32651}, {1407, 36048}, {1838, 6335}, {1841, 1897}, {2260, 100}, {2294, 3952}, {4303, 1332}, {5249, 668}, {6734, 646}, {7649, 40447}, {8021, 7259}, {14547, 644}, {14597, 1331}, {18607, 4561}, {22383, 1794}, {23207, 4587}, {23595, 264}, {23752, 321}, {33525, 200}, {40937, 3699}, {40952, 1018}, {40956, 101}, {40967, 30730}, {40978, 4557}, {43923, 40573}, {43924, 2982}, {45926, 36804}, {46882, 643}, {46883, 648}, {46884, 36797}, {46890, 162}


X(50355) = X(8)X(29324)∩X(10)X(48267)

Barycentrics    a*(b - c)*(2*a*b - b^2 + 2*a*c - b*c - c^2) : :
X(50355) = 3 X[1491] - 2 X[14349], 5 X[1491] - 4 X[48059], 3 X[1734] - X[14349], 5 X[1734] - 2 X[48059], 4 X[1734] - X[48123], 5 X[14349] - 6 X[48059], 4 X[14349] - 3 X[48123], 8 X[48059] - 5 X[48123], 5 X[4041] - X[47906], 4 X[4041] - X[47913], 3 X[4041] - X[47918], 5 X[4041] - 2 X[47922], 7 X[4041] - 2 X[48609], 5 X[4490] - 2 X[47906], 3 X[4490] - 2 X[47918], 5 X[4490] - 4 X[47922], 7 X[4490] - 4 X[48609], 4 X[47906] - 5 X[47913], 3 X[47906] - 5 X[47918], 7 X[47906] - 10 X[48609], 3 X[47913] - 4 X[47918], 5 X[47913] - 8 X[47922], 7 X[47913] - 8 X[48609], 5 X[47918] - 6 X[47922], 7 X[47918] - 6 X[48609], 7 X[47922] - 5 X[48609], 3 X[667] - 2 X[48345], 2 X[905] - 3 X[48244], X[4879] - 3 X[48244], 3 X[1635] - 2 X[48331], 3 X[2254] - X[48334], X[3777] + 2 X[4729], 3 X[3777] - 2 X[48334], 3 X[4729] + X[48334], 2 X[3716] - 3 X[47835], 2 X[4040] - 3 X[48226], 2 X[4162] - 3 X[25569], 3 X[4705] - 2 X[47997], 5 X[4705] - 2 X[48594], 4 X[47997] - 3 X[48024], 5 X[47997] - 3 X[48594], 5 X[48024] - 4 X[48594], 2 X[4806] - 3 X[47814], 2 X[4874] - 3 X[47836], 3 X[4951] - 2 X[7265], 2 X[4990] - 3 X[47807], 2 X[4992] - 3 X[44429], 2 X[8045] - 3 X[48235], 3 X[14419] - 2 X[48294], 4 X[25380] - 3 X[47841], 3 X[47810] - 2 X[48093], 3 X[47827] - 2 X[48099], 3 X[47828] - X[48338], 3 X[47893] - 2 X[48136], 2 X[48092] - 3 X[48160], 3 X[48184] - 2 X[48273], 3 X[48234] - 2 X[48305], 2 X[48248] - 3 X[48565], 2 X[48295] - 3 X[48569], X[48339] - 3 X[48573]

X(50355) lies on these lines: {8, 29324}, {10, 48267}, {512, 1491}, {513, 4041}, {514, 4730}, {522, 2533}, {650, 48336}, {659, 3309}, {663, 9508}, {667, 3887}, {690, 48272}, {764, 48075}, {784, 4761}, {814, 21302}, {830, 4834}, {891, 4905}, {900, 4391}, {905, 4879}, {1635, 48331}, {2254, 3777}, {2530, 29350}, {3667, 4147}, {3669, 21343}, {3716, 47835}, {3900, 4367}, {3960, 48333}, {4010, 17072}, {4040, 48226}, {4063, 6004}, {4088, 29200}, {4139, 23800}, {4151, 48120}, {4162, 25569}, {4170, 21260}, {4369, 48301}, {4394, 48329}, {4401, 6161}, {4467, 29074}, {4526, 22222}, {4560, 29366}, {4705, 6005}, {4770, 47959}, {4774, 23880}, {4775, 14838}, {4782, 48150}, {4784, 8678}, {4806, 47814}, {4807, 8714}, {4808, 23875}, {4814, 48144}, {4822, 48030}, {4843, 48396}, {4874, 47836}, {4895, 48330}, {4926, 48264}, {4951, 7265}, {4983, 48012}, {4990, 47807}, {4992, 44429}, {8045, 48235}, {14077, 48323}, {14419, 48294}, {16892, 29208}, {17494, 29246}, {21051, 48080}, {21124, 29144}, {21301, 29328}, {24720, 48279}, {25380, 47841}, {28217, 48401}, {29226, 48151}, {29280, 47700}, {29284, 48278}, {29298, 48321}, {32478, 49277}, {47810, 48093}, {47827, 48099}, {47828, 48338}, {47893, 48136}, {47928, 48407}, {47967, 48021}, {48003, 48351}, {48005, 48081}, {48092, 48160}, {48184, 48273}, {48234, 48305}, {48248, 48565}, {48295, 48569}, {48339, 48573}

X(50355) = midpoint of X(i) and X(j) for these {i,j}: {2254, 4729}, {4814, 48144}
X(50355) = reflection of X(i) in X(j) for these {i,j}: {663, 9508}, {764, 48075}, {1491, 1734}, {2530, 48018}, {3777, 2254}, {4010, 17072}, {4170, 21260}, {4490, 4041}, {4775, 14838}, {4822, 48030}, {4879, 905}, {4895, 48330}, {4983, 48012}, {6161, 4401}, {21343, 3669}, {23765, 4905}, {47906, 47922}, {47913, 4490}, {47928, 48407}, {47959, 4770}, {48021, 47967}, {48024, 4705}, {48080, 21051}, {48081, 48005}, {48123, 1491}, {48150, 4782}, {48265, 4147}, {48267, 10}, {48279, 24720}, {48301, 4369}, {48329, 4394}, {48333, 3960}, {48336, 650}, {48351, 48003}, {48392, 2533}
X(50355) = crosssum of X(513) and X(4640)
X(50355) = crossdifference of every pair of points on line {1449, 5573}
X(50355) = barycentric product X(i)*X(j) for these {i,j}: {1, 48270}, {513, 17242}
X(50355) = barycentric quotient X(i)/X(j) for these {i,j}: {17242, 668}, {48270, 75}
X(50355) = {X(4879),X(48244)}-harmonic conjugate of X(905)


X(50356) = X(1)X(44550)∩X(10)X(1734)

Barycentrics    (b - c)*(-2*a^2*b + 2*a*b^2 - 2*a^2*c + a*b*c + b^2*c + 2*a*c^2 + b*c^2) : :
X(50356) = 2 X[1] - 3 X[44550], 2 X[10] - 3 X[1734], 4 X[10] - 3 X[4391], X[145] - 3 X[17496], 4 X[4824] - 3 X[47666], 5 X[4824] - 3 X[47946], 3 X[4824] - 2 X[47954], 7 X[4824] - 6 X[47964], 2 X[4824] - 3 X[47975], 3 X[47666] - 2 X[47941], 5 X[47666] - 4 X[47946], 9 X[47666] - 8 X[47954], 7 X[47666] - 8 X[47964], 5 X[47941] - 6 X[47946], 3 X[47941] - 4 X[47954], 7 X[47941] - 12 X[47964], X[47941] - 3 X[47975], 9 X[47946] - 10 X[47954], 7 X[47946] - 10 X[47964], 2 X[47946] - 5 X[47975], 7 X[47954] - 9 X[47964], 4 X[47954] - 9 X[47975], 4 X[47964] - 7 X[47975], 3 X[693] - 2 X[4804], 3 X[693] - 4 X[24720], 5 X[693] - 6 X[47812], 5 X[693] - 4 X[48394], 3 X[2254] - X[4804], 3 X[2254] - 2 X[24720], 5 X[2254] - 3 X[47812], 5 X[2254] - 2 X[48394], 3 X[4453] - 2 X[47123], 5 X[4804] - 9 X[47812], 5 X[4804] - 6 X[48394], 10 X[24720] - 9 X[47812], 5 X[24720] - 3 X[48394], 3 X[47812] - 2 X[48394], 3 X[47675] - 4 X[48143], 3 X[48108] - 2 X[48143], 2 X[650] - 3 X[48242], 3 X[661] - 2 X[48037], 2 X[661] - 3 X[48175], 3 X[48017] - X[48037], 4 X[48017] - 3 X[48175], 4 X[48037] - 9 X[48175], 4 X[1491] - 3 X[4776], 3 X[1491] - 2 X[4806], 9 X[4776] - 8 X[4806], 3 X[4776] - 2 X[48080], 4 X[4806] - 3 X[48080], 6 X[905] - 5 X[3616], 3 X[1635] - 2 X[48063], 2 X[3700] - 3 X[47808], 4 X[4925] - 3 X[47808], 4 X[3716] - 5 X[31209], 2 X[3716] - 3 X[47828], 5 X[31209] - 6 X[47828], 2 X[4010] - 3 X[44429], 2 X[4106] - 3 X[48164], 2 X[4122] - 3 X[48187], 4 X[4369] - 3 X[48237], 4 X[4394] - 3 X[47805], 2 X[4724] - 3 X[31150], 4 X[4913] - 3 X[31150], 3 X[21146] - 2 X[48127], 2 X[4794] - 3 X[45671], 2 X[4874] - 3 X[48244], 4 X[4885] - 3 X[48172], 11 X[5550] - 12 X[44561], 4 X[48010] - 3 X[48548], 2 X[48021] - 3 X[48548], 2 X[6590] - 3 X[48252], 2 X[7662] - 3 X[47824], 4 X[9508] - 3 X[47804], 7 X[9780] - 6 X[45664], 4 X[17069] - 3 X[47798], 4 X[23770] - 5 X[48421], 5 X[24924] - 6 X[48575], 4 X[25380] - 3 X[47832], 2 X[48024] - 3 X[48549], 3 X[36848] - 2 X[48090], 2 X[47131] - 3 X[48241], 2 X[47132] - 3 X[48245], 2 X[47691] - 3 X[48422], 2 X[47694] - 3 X[47762], 3 X[47782] - 2 X[48006], 3 X[47809] - 2 X[49286], 3 X[47810] - 2 X[48043], 3 X[47814] - 2 X[48267], 3 X[47819] - 2 X[48273], 3 X[47820] - 2 X[48305], 3 X[47825] - 2 X[48029], 3 X[47892] - 2 X[48061], 2 X[48027] - 3 X[48157], 4 X[48062] - 3 X[48557], 3 X[48557] - 2 X[49275], 3 X[48159] - 2 X[49295], 3 X[48174] - 2 X[48349], 3 X[48208] - 2 X[48271], 4 X[48396] - 3 X[48423], 3 X[48579] - 2 X[49292]

X(50356) lies on these lines: {1, 44550}, {10, 1734}, {145, 3900}, {512, 48410}, {513, 4380}, {514, 4729}, {522, 693}, {523, 47674}, {649, 47697}, {650, 48242}, {656, 4811}, {661, 3667}, {812, 47685}, {824, 47689}, {900, 1491}, {905, 3616}, {1577, 48018}, {1635, 48063}, {2526, 20295}, {2786, 48077}, {3126, 17244}, {3309, 4560}, {3700, 4925}, {3716, 31209}, {3835, 4962}, {3837, 28221}, {3887, 47729}, {3960, 48339}, {4010, 4926}, {4041, 4462}, {4088, 49272}, {4106, 48164}, {4122, 48187}, {4151, 4801}, {4170, 48066}, {4369, 48237}, {4394, 47805}, {4397, 28623}, {4724, 4913}, {4777, 21146}, {4778, 47934}, {4785, 48020}, {4794, 45671}, {4818, 47701}, {4874, 48244}, {4885, 48172}, {4895, 48325}, {4932, 48153}, {4978, 48075}, {5550, 44561}, {6005, 48409}, {6006, 48010}, {6590, 48252}, {7192, 7659}, {7253, 16751}, {7662, 47824}, {9508, 47804}, {9780, 45664}, {14077, 21222}, {16892, 47692}, {17069, 47798}, {17072, 48264}, {21196, 47972}, {21302, 23880}, {23770, 48421}, {23809, 24184}, {23879, 47718}, {24924, 48575}, {25380, 47832}, {28147, 48148}, {28161, 47672}, {28183, 48120}, {28205, 48098}, {28209, 47928}, {28217, 48024}, {28225, 47917}, {28898, 49447}, {29628, 45322}, {30519, 47700}, {30765, 48545}, {36848, 48090}, {39386, 48002}, {44449, 48039}, {47131, 48241}, {47132, 48245}, {47651, 47973}, {47652, 48015}, {47655, 47703}, {47660, 48069}, {47662, 48106}, {47665, 47690}, {47691, 48422}, {47694, 47762}, {47782, 48006}, {47809, 49286}, {47810, 48043}, {47814, 48267}, {47819, 48273}, {47820, 48305}, {47825, 48029}, {47892, 48061}, {47982, 49297}, {47985, 48019}, {48008, 48032}, {48023, 48079}, {48027, 48157}, {48042, 48114}, {48062, 48557}, {48159, 49295}, {48174, 48349}, {48208, 48271}, {48396, 48423}, {48579, 49292}

X(50356) = reflection of X(i) in X(j) for these {i,j}: {661, 48017}, {693, 2254}, {1577, 48018}, {3700, 4925}, {4170, 48066}, {4391, 1734}, {4462, 4041}, {4724, 4913}, {4801, 4905}, {4804, 24720}, {4811, 656}, {4895, 48325}, {4978, 48075}, {7192, 7659}, {20295, 2526}, {24457, 23809}, {44449, 48039}, {47651, 47973}, {47652, 48015}, {47655, 47703}, {47660, 48069}, {47662, 48106}, {47665, 47690}, {47666, 47975}, {47672, 48073}, {47675, 48108}, {47692, 16892}, {47695, 4025}, {47697, 649}, {47701, 4818}, {47729, 48321}, {47939, 47945}, {47941, 4824}, {47972, 21196}, {47974, 17494}, {48014, 4765}, {48019, 47985}, {48021, 48010}, {48032, 48008}, {48079, 48023}, {48080, 1491}, {48114, 48042}, {48153, 4932}, {48264, 17072}, {48339, 3960}, {49272, 4088}, {49275, 48062}, {49297, 47982}
X(50356) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1002, 33650}, {1415, 27484}, {2279, 37781}, {8693, 329}, {32041, 21286}, {32724, 10025}, {36138, 30807}, {37138, 3436}, {42290, 150}
X(50356) = crosspoint of X(75) and X(32041)
X(50356) = crossdifference of every pair of points on line {41, 2242}
X(50356) = barycentric product X(i)*X(j) for these {i,j}: {514, 49450}, {522, 31225}
X(50356) = barycentric quotient X(i)/X(j) for these {i,j}: {31225, 664}, {49450, 190}
X(50356) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {661, 48017, 48175}, {1491, 48080, 4776}, {2254, 4804, 24720}, {3700, 4925, 47808}, {3716, 47828, 31209}, {4724, 4913, 31150}, {4804, 24720, 693}, {4824, 47941, 47666}, {47812, 48394, 693}, {47941, 47975, 4824}, {48010, 48021, 48548}, {48062, 49275, 48557}


X(50357) = X(149)X(900)∩X(513)X(3004)

Barycentrics    (b - c)*(3*a + b + c)*(-(a*b) + b^2 - a*c + c^2) : :
X(50357) = X[47695] - 3 X[48571], 3 X[3004] - 2 X[47998], 3 X[4025] - X[48014], X[47982] - 3 X[48015], 3 X[4905] - X[49278], 3 X[649] - X[48105], 2 X[676] - 3 X[4453], 3 X[2254] - X[4088], 3 X[2254] - 2 X[4925], 3 X[1638] - 2 X[3716], 3 X[1639] - 4 X[25380], 4 X[2487] - 3 X[47804], 4 X[2505] - 3 X[31131], 4 X[2527] - 3 X[48250], 2 X[2976] - 3 X[44433], 2 X[2977] - 3 X[48244], X[48083] - 3 X[48244], 2 X[4010] - 3 X[4927], 3 X[4773] - 2 X[4830], 3 X[4750] - X[48032], 3 X[4786] - X[48068], 2 X[4806] - 3 X[48178], 2 X[4874] - 3 X[48245], 2 X[4990] - 3 X[47796], 2 X[7662] - 3 X[47891], 4 X[9508] - 3 X[47884], 3 X[47884] - 2 X[48055], 2 X[14321] - 3 X[44429], 3 X[16892] - X[47702], 2 X[18004] - 3 X[48182], 4 X[21212] - 3 X[48179], 3 X[27486] - X[47974], 4 X[31287] - 3 X[48546], X[44449] - 3 X[48164], X[47697] - 3 X[47755], 3 X[47756] - 2 X[48043], 3 X[47784] - 2 X[48029], 3 X[47788] - 2 X[49286], 3 X[47808] - X[49272], 3 X[47824] - X[49275], 3 X[47828] - X[48078], 3 X[47876] - 2 X[48001], 3 X[47890] - 2 X[48096], 3 X[47973] - X[48598], 3 X[48249] - 2 X[48405], 3 X[48252] - X[49273]

X(50357) lies on these lines: {149, 900}, {513, 3004}, {514, 7659}, {522, 21104}, {523, 47674}, {525, 4905}, {649, 48105}, {676, 4453}, {824, 48073}, {918, 2254}, {1491, 48046}, {1499, 48335}, {1638, 3716}, {1639, 25380}, {2487, 47804}, {2505, 31131}, {2526, 28846}, {2527, 48250}, {2785, 30725}, {2826, 4707}, {2976, 44433}, {2977, 48083}, {3566, 3777}, {3667, 3776}, {3700, 24720}, {3910, 48151}, {4010, 4927}, {4394, 48061}, {4700, 4706}, {4724, 17069}, {4750, 48032}, {4784, 4977}, {4786, 48068}, {4801, 4843}, {4806, 48178}, {4874, 48245}, {4990, 47796}, {6084, 49301}, {6366, 21222}, {7662, 47891}, {9508, 47884}, {14321, 44429}, {16892, 47702}, {18004, 48182}, {21146, 48274}, {21212, 48179}, {23795, 23887}, {23829, 39775}, {23875, 48075}, {27486, 28209}, {28225, 48404}, {28851, 48017}, {28867, 48042}, {28886, 47985}, {28898, 49285}, {28902, 47945}, {30520, 48069}, {31287, 48546}, {39386, 48239}, {39545, 48324}, {44449, 48164}, {47697, 47755}, {47756, 48043}, {47784, 48029}, {47788, 49286}, {47808, 49272}, {47824, 49275}, {47828, 48078}, {47876, 48001}, {47890, 48096}, {47973, 48598}, {48249, 48405}, {48252, 49273}

X(50357) = reflection of X(i) in X(j) for these {i,j}: {3700, 24720}, {4088, 4925}, {4724, 17069}, {4841, 4818}, {47988, 48007}, {48046, 1491}, {48055, 9508}, {48061, 4394}, {48083, 2977}, {48274, 21146}, {48324, 39545}
X(50357) = X(i)-isoconjugate of X(j) for these (i,j): {105, 8694}, {673, 34074}, {919, 25430}, {1438, 4606}, {2334, 36086}, {4627, 18785}, {4866, 32735}, {5936, 32666}, {34820, 36146}
X(50357) = X(i)-Dao conjugate of X(j) for these (i, j): (6184, 4606), (35094, 5936), (36905, 4624), (38980, 25430), (38989, 2334), (39014, 34820), (39046, 8694)
X(50357) = crossdifference of every pair of points on line {1438, 2334}
X(50357) = barycentric product X(i)*X(j) for these {i,j}: {241, 4811}, {391, 43042}, {514, 4684}, {518, 4801}, {918, 3616}, {2254, 19804}, {3263, 4790}, {3717, 30723}, {3912, 4778}, {3932, 48580}, {4088, 42028}, {4765, 9436}, {4815, 18206}, {4822, 18157}, {4830, 40217}, {4841, 30941}, {5257, 23829}
X(50357) = barycentric quotient X(i)/X(j) for these {i,j}: {391, 36802}, {518, 4606}, {665, 2334}, {672, 8694}, {918, 5936}, {926, 34820}, {1449, 36086}, {2223, 34074}, {2254, 25430}, {3286, 4627}, {3361, 36146}, {3616, 666}, {3675, 47915}, {4684, 190}, {4765, 14942}, {4778, 673}, {4790, 105}, {4801, 2481}, {4811, 36796}, {4822, 18785}, {4827, 28071}, {4830, 6654}, {4841, 13576}, {9436, 4624}, {18206, 4614}, {21454, 927}, {30941, 4633}
X(50357) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2254, 4088, 4925}, {9508, 48055, 47884}, {48083, 48244, 2977}


X(50358) = X(44)X(513)∩X(512)X(48111)

Barycentrics    a*(b - c)*(2*a^2 + b^2 - b*c + c^2) : :
X(50358) = 2 X[650] - 3 X[659], 4 X[650] - 3 X[1491], 5 X[650] - 3 X[2526], 10 X[650] - 9 X[47827], 14 X[650] - 9 X[48160], 11 X[650] - 9 X[48193], 8 X[650] - 9 X[48226], 5 X[659] - 2 X[2526], 5 X[659] - 3 X[47827], 7 X[659] - 3 X[48160], 11 X[659] - 6 X[48193], 4 X[659] - 3 X[48226], 5 X[1491] - 4 X[2526], 5 X[1491] - 6 X[47827], 7 X[1491] - 6 X[48160], 11 X[1491] - 12 X[48193], 2 X[1491] - 3 X[48226], 2 X[2526] - 3 X[47827], 14 X[2526] - 15 X[48160], 11 X[2526] - 15 X[48193], 8 X[2526] - 15 X[48226], 4 X[4394] - 3 X[48244], 3 X[4724] - X[4813], 2 X[4813] - 3 X[48024], X[4979] + 3 X[48032], 3 X[47811] - X[48020], 3 X[47811] - 2 X[48030], 7 X[47827] - 5 X[48160], 11 X[47827] - 10 X[48193], 4 X[47827] - 5 X[48226], X[48023] - 3 X[48572], 2 X[48027] - 3 X[48162], 11 X[48160] - 14 X[48193], 4 X[48160] - 7 X[48226], 8 X[48193] - 11 X[48226], X[47664] + 3 X[47697], 3 X[667] - 2 X[3960], 3 X[3777] - 4 X[3960], 2 X[693] - 3 X[48234], 3 X[48234] - 4 X[48248], 4 X[2490] - 3 X[48182], 4 X[2527] - 3 X[48249], 2 X[3776] - 3 X[4809], 4 X[3803] - X[23765], 2 X[3835] - 3 X[4448], 3 X[4448] - 4 X[8689], 2 X[3837] - 3 X[47804], X[47685] - 3 X[47804], 3 X[4010] - 2 X[49287], 3 X[48063] - X[49287], X[4895] - 3 X[48150], 2 X[4106] - 3 X[4800], 3 X[4498] - X[4814], 6 X[4874] - 5 X[26985], 2 X[4874] - 3 X[47805], 4 X[4874] - 3 X[48184], 5 X[26985] - 3 X[46403], 5 X[26985] - 9 X[47805], 10 X[26985] - 9 X[48184], X[46403] - 3 X[47805], 2 X[46403] - 3 X[48184], 4 X[4885] - 3 X[48167], 4 X[6050] - 3 X[47893], 2 X[7662] - 3 X[48251], 4 X[13246] - 3 X[48227], 2 X[21051] - 3 X[47815], 2 X[21260] - 3 X[47817], 2 X[23815] - 3 X[47818], 3 X[25569] - 2 X[48332], 5 X[26777] - 3 X[48157], X[26824] - 3 X[47694], 2 X[26824] - 3 X[48120], 7 X[27115] - 6 X[45323], 5 X[30795] - 6 X[47803], 5 X[30835] - 6 X[45666], 5 X[31209] - 6 X[45314], 4 X[31286] - 3 X[36848], 4 X[31288] - 3 X[48556], 3 X[44433] - X[47652], X[47651] - 3 X[48223], X[47686] - 3 X[47798], X[47687] - 3 X[48250], 3 X[48250] - 2 X[48405], X[47688] - 3 X[48239], 3 X[47813] - 2 X[48098], 3 X[47813] - X[48115], 3 X[47820] - 2 X[48406], 3 X[47822] - 2 X[48050], 3 X[47833] - 2 X[48089], X[48119] - 3 X[48578], 3 X[48143] - 4 X[49291], 3 X[48189] - 2 X[49289]

X(50358) lies on these lines: {44, 513}, {512, 48111}, {514, 4922}, {522, 48072}, {523, 8664}, {667, 3777}, {693, 48234}, {830, 4490}, {891, 48324}, {900, 4380}, {983, 23838}, {1027, 40746}, {1960, 48335}, {2490, 48182}, {2527, 48249}, {2530, 4401}, {2832, 4378}, {2977, 39386}, {3004, 28209}, {3667, 48062}, {3716, 24719}, {3776, 4809}, {3803, 4367}, {3835, 4448}, {3837, 47685}, {4010, 48063}, {4040, 48123}, {4057, 8654}, {4063, 6004}, {4083, 4895}, {4106, 4800}, {4491, 21005}, {4498, 4814}, {4777, 47932}, {4778, 47968}, {4802, 48153}, {4834, 42325}, {4874, 26985}, {4879, 8712}, {4885, 48167}, {4963, 47963}, {4977, 47676}, {4983, 48065}, {6006, 11068}, {6050, 47893}, {6133, 44444}, {6161, 29350}, {6372, 47977}, {7662, 48251}, {9002, 18183}, {13246, 48227}, {20983, 47330}, {21051, 47815}, {21118, 29244}, {21132, 29156}, {21260, 47817}, {21343, 48327}, {23815, 47818}, {25569, 48332}, {26777, 48157}, {26824, 29362}, {27115, 45323}, {28151, 48132}, {28195, 47933}, {28217, 47885}, {28220, 47960}, {28225, 48007}, {28882, 48349}, {29070, 48392}, {29078, 49275}, {29144, 48101}, {29198, 47936}, {29204, 48130}, {29226, 48322}, {29238, 48264}, {29302, 48305}, {29324, 31291}, {29370, 49273}, {30795, 47803}, {30835, 45666}, {31209, 45314}, {31286, 36848}, {31288, 48556}, {44433, 47652}, {47651, 48223}, {47686, 47798}, {47687, 48250}, {47688, 48239}, {47700, 48097}, {47701, 48599}, {47813, 48098}, {47820, 48406}, {47822, 48050}, {47833, 48089}, {47901, 48621}, {47905, 47967}, {47910, 47969}, {47913, 47970}, {47940, 48002}, {47944, 48006}, {47946, 48009}, {47949, 48623}, {47964, 48583}, {47999, 48585}, {48005, 48586}, {48056, 48077}, {48059, 48596}, {48061, 48083}, {48100, 48116}, {48102, 48604}, {48119, 48578}, {48131, 48331}, {48143, 49291}, {48189, 49289}, {48330, 48334}, {48333, 48345}

X(50358) = reflection of X(i) in X(j) for these {i,j}: {693, 48248}, {1491, 659}, {2254, 4782}, {2530, 4401}, {3777, 667}, {3835, 8689}, {4010, 48063}, {4367, 3803}, {4879, 48329}, {4963, 47963}, {4983, 48065}, {21343, 48327}, {23765, 4367}, {24719, 3716}, {44444, 6133}, {46403, 4874}, {47685, 3837}, {47687, 48405}, {47700, 48097}, {47901, 48621}, {47905, 47967}, {47910, 47969}, {47913, 47970}, {47940, 48002}, {47944, 48006}, {47946, 48009}, {47949, 48623}, {48020, 48030}, {48024, 4724}, {48077, 48056}, {48083, 48061}, {48115, 48098}, {48116, 48100}, {48120, 47694}, {48123, 4040}, {48131, 48331}, {48184, 47805}, {48333, 48345}, {48334, 48330}, {48335, 1960}, {48583, 47964}, {48585, 47999}, {48586, 48005}, {48596, 48059}, {48599, 47701}, {48604, 48102}
X(50358) = X(14458)-Ceva conjugate of X(11)
X(50358) = X(2)-isoconjugate of X(28883)
X(50358) = X(32664)-Dao conjugate of X(28883)
X(50358) = crosssum of X(513) and X(49465)
X(50358) = crossdifference of every pair of points on line {1, 7772}
X(50358) = barycentric product X(i)*X(j) for these {i,j}: {1, 28882}, {81, 48349}, {513, 17367}, {656, 31908}, {693, 5332}, {1019, 4085}, {1022, 49700}, {7192, 46907}
X(50358) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 28883}, {4085, 4033}, {5332, 100}, {17367, 668}, {28882, 75}, {31908, 811}, {46907, 3952}, {48349, 321}, {49700, 24004}
X(50358) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {659, 1491, 48226}, {693, 48248, 48234}, {2526, 47827, 1491}, {3835, 8689, 4448}, {4874, 46403, 48184}, {46403, 47805, 4874}, {47685, 47804, 3837}, {47687, 48250, 48405}, {47811, 48020, 48030}, {47813, 48115, 48098}


X(50359) = X(44)X(513)∩X(142)X(3835)

Barycentrics    a*(b - c)*(2*a*b - b^2 + 2*a*c + b*c - c^2) : :
X(50359) = 2 X[650] - 3 X[48244], 3 X[659] - 4 X[4394], 2 X[661] - 3 X[1491], X[661] - 3 X[2254], 7 X[661] - 9 X[47810], 5 X[661] - 3 X[48021], 4 X[661] - 3 X[48024], 7 X[661] - 6 X[48028], 5 X[661] - 6 X[48030], 7 X[1491] - 6 X[47810], 5 X[1491] - 2 X[48021], 7 X[1491] - 4 X[48028], 5 X[1491] - 4 X[48030], 7 X[2254] - 3 X[47810], 5 X[2254] - X[48021], 4 X[2254] - X[48024], 7 X[2254] - 2 X[48028], 5 X[2254] - 2 X[48030], 2 X[4724] - 3 X[48226], 3 X[4784] - 2 X[4790], X[4790] - 3 X[7659], 4 X[9508] - 3 X[48226], 15 X[47810] - 7 X[48021], 12 X[47810] - 7 X[48024], 3 X[47810] - 2 X[48028], 15 X[47810] - 14 X[48030], 3 X[47827] - 2 X[48029], 4 X[48021] - 5 X[48024], 7 X[48021] - 10 X[48028], 7 X[48024] - 8 X[48028], 5 X[48024] - 8 X[48030], 2 X[48027] - 3 X[48160], 5 X[48028] - 7 X[48030], 2 X[3835] - 3 X[36848], 3 X[3777] - 2 X[48335], 3 X[4905] - X[48335], 3 X[21146] - 2 X[48399], 4 X[48073] - X[48120], 3 X[48073] - X[48399], 3 X[48120] - 4 X[48399], X[47675] - 3 X[48108], 2 X[47675] - 3 X[48143], 2 X[676] - 3 X[48245], 2 X[47132] - 3 X[47891], 3 X[1734] - 2 X[4770], 3 X[4490] - 4 X[4770], 4 X[2487] - 3 X[26275], 4 X[2527] - 3 X[48247], 4 X[48075] - X[48123], 2 X[4806] - 3 X[44429], 3 X[4367] - 2 X[48327], 2 X[4010] - 3 X[48184], 4 X[24720] - 3 X[48184], 2 X[3716] - 3 X[47823], 2 X[4106] - 3 X[48167], 4 X[4369] - 3 X[48234], 3 X[4448] - 4 X[31286], X[47913] - 4 X[48018], X[47910] - 4 X[48017], 2 X[4794] - 3 X[14419], 3 X[4800] - 4 X[4885], 2 X[4874] - 3 X[47824], 3 X[4948] - 2 X[47962], 3 X[4951] - 2 X[25259], 2 X[4992] - 3 X[47819], 2 X[7662] - 3 X[48253], 2 X[8689] - 3 X[45313], 2 X[14321] - 3 X[48182], 2 X[18004] - 3 X[47808], 4 X[21212] - 3 X[48177], 4 X[25380] - 3 X[47822], 2 X[25666] - 3 X[45328], 3 X[31131] - X[44449], 7 X[31207] - 6 X[45666], 5 X[31209] - 6 X[48229], X[31290] - 3 X[48157], 3 X[44550] - 2 X[48289], 3 X[47762] - 2 X[48248], 3 X[47812] - 2 X[48090], 3 X[47877] - 2 X[47998], 3 X[47885] - 2 X[48055], 3 X[47888] - 2 X[48058], 3 X[47893] - 2 X[48099], X[47941] - 3 X[48175], 2 X[48002] - 3 X[48175], 4 X[48015] - X[48599], X[47969] - 3 X[48242], 2 X[47993] - 3 X[48549], 2 X[48000] - 3 X[48225], 2 X[48001] - 3 X[48176], 4 X[48069] - X[48604], 3 X[48187] - X[49272], 3 X[48252] - 2 X[48405], 3 X[48252] - X[49275], 3 X[48254] - X[49273]

X(50359) lies on these lines: {44, 513}, {142, 3835}, {512, 3777}, {514, 4730}, {522, 21146}, {523, 47674}, {667, 39476}, {676, 48245}, {690, 49278}, {693, 900}, {764, 29350}, {905, 48336}, {1019, 6004}, {1734, 4490}, {2344, 35355}, {2487, 26275}, {2527, 48247}, {2530, 6005}, {2976, 4806}, {3309, 4367}, {3667, 4010}, {3669, 4879}, {3716, 47823}, {3733, 8654}, {3776, 48349}, {3837, 28217}, {3887, 4378}, {3900, 48323}, {3960, 4775}, {4041, 29198}, {4083, 23765}, {4106, 48167}, {4170, 23815}, {4369, 48234}, {4444, 4785}, {4448, 31286}, {4486, 28867}, {4560, 29246}, {4705, 47913}, {4729, 23738}, {4776, 8661}, {4777, 47672}, {4778, 4824}, {4794, 14419}, {4800, 4885}, {4802, 48148}, {4804, 4926}, {4810, 48089}, {4822, 48100}, {4833, 16751}, {4874, 47824}, {4895, 48344}, {4925, 48047}, {4940, 30765}, {4948, 47962}, {4951, 25259}, {4962, 48394}, {4977, 47663}, {4983, 48066}, {4992, 47819}, {7662, 48253}, {8053, 16874}, {8689, 45313}, {8714, 48392}, {9002, 22277}, {14321, 48182}, {14838, 48351}, {15599, 41430}, {16892, 29144}, {17072, 48265}, {17496, 29366}, {18004, 47808}, {21212, 48177}, {21301, 29170}, {21302, 29324}, {23789, 48273}, {25380, 47822}, {25666, 45328}, {26049, 26078}, {26144, 27193}, {27674, 28284}, {28165, 48135}, {28195, 47934}, {28205, 48127}, {28209, 47666}, {28220, 47917}, {28225, 47946}, {28851, 49701}, {29078, 47687}, {29188, 48321}, {29200, 48278}, {29204, 47930}, {29252, 48272}, {29328, 46403}, {31131, 44449}, {31207, 45666}, {31209, 48229}, {31290, 48157}, {44550, 48289}, {47762, 48248}, {47812, 48090}, {47877, 47998}, {47885, 48055}, {47888, 48058}, {47893, 48099}, {47902, 48621}, {47904, 47964}, {47906, 47967}, {47925, 47973}, {47938, 47999}, {47941, 48002}, {47942, 48005}, {47944, 48007}, {47949, 48012}, {47968, 48015}, {47969, 48242}, {47993, 48549}, {48000, 48225}, {48001, 48176}, {48056, 48078}, {48059, 48081}, {48062, 48083}, {48069, 48103}, {48097, 48113}, {48106, 48140}, {48187, 49272}, {48252, 48405}, {48254, 49273}

X(50359) = midpoint of X(4729) and X(23738)
X(50359) = reflection of X(i) in X(j) for these {i,j}: {1491, 2254}, {2530, 48075}, {3777, 4905}, {4010, 24720}, {4170, 23815}, {4490, 1734}, {4705, 48018}, {4724, 9508}, {4775, 3960}, {4784, 7659}, {4804, 48098}, {4810, 48089}, {4822, 48100}, {4824, 48017}, {4879, 3669}, {4895, 48344}, {4983, 48066}, {21146, 48073}, {23765, 48151}, {47902, 48621}, {47904, 47964}, {47906, 47967}, {47910, 4824}, {47913, 4705}, {47925, 47973}, {47928, 47975}, {47938, 47999}, {47941, 48002}, {47942, 48005}, {47944, 48007}, {47946, 48010}, {47949, 48012}, {47968, 48015}, {48021, 48030}, {48024, 1491}, {48032, 4782}, {48047, 4925}, {48078, 48056}, {48080, 3837}, {48081, 48059}, {48083, 48062}, {48103, 48069}, {48113, 48097}, {48120, 21146}, {48123, 2530}, {48140, 48106}, {48143, 48108}, {48265, 17072}, {48273, 23789}, {48336, 905}, {48349, 3776}, {48351, 14838}, {48599, 47968}, {48604, 48103}, {49275, 48405}
X(50359) = X(2)-isoconjugate of X(28852)
X(50359) = X(32664)-Dao conjugate of X(28852)
X(50359) = crosssum of X(513) and X(42819)
X(50359) = crossdifference of every pair of points on line {1, 9351}
X(50359) = barycentric product X(i)*X(j) for these {i,j}: {1, 28851}, {513, 17244}, {514, 49490}, {1022, 49701}
X(50359) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 28852}, {17244, 668}, {28851, 75}, {49490, 190}, {49701, 24004}
X(50359) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4010, 24720, 48184}, {4724, 9508, 48226}, {47941, 48175, 48002}, {48252, 49275, 48405}


leftri

Radical traces of circumcircle and other circles: X(50360)-X(50390)

rightri

This preamble and centers X(50360)-X(50390) were contributed by César Eliud Lozada, June 4, 2022.

The appearance of (Ω, n) in the following list means that the radical trace of the circumcircle of ABC and circle Ω is X(n):

(Adams circle, 50360), (anticomplementary circle, 858), (Apollonius circle, 50361), (Bevan circle, 1155), (Brocard circle, 187), (Conway circle, 50362), (Dao-Moses-Telv circle, 50363), (Dou circle, 9720), (Dou circles radical circle, 50364), (1st Droz-Farny circle, 44452), (Ehrmann circle, 6), (Euler-Gergonne-Soddy circle, 50365), (excircles radical circle, 50366), (extangents circle, 50367), (Fuhrmann circle, 50368), (Gallatly circle, 2021), (GEOS circle, 50369), (half-Moses circle, 50370), (hexyl circle, 50371), (Hatzipolakis-Suppa circle, 4), (Hutson-Parry circle, 9179), (incentral circle, 50372), (incircle, 3660), (intangents circle, 50373), (Kenmotu circle, 50374), (Kenmotu-outer, 50375), (1st Lemoine circle, 1691), (2nd Lemoine circle, 1692), (3rd Lemoine circle, 50376), (Lester circle, 50377), (Longuet-Higgins circle, 50378), (Lucas Circles Radical(+1), 187), (Lucas Circles Radical(-1), 187), (Lucas(+1) inner circle, 187), (Lucas(-1) inner , 187), (Mandart circle, 50379), (mixtilinear circle, 50380), (inner-Montesdeoca-Lemoine circle, 187), (outer-Montesdeoca-Lemoine circle, 187), (Moses circle, 2030), (Moses circles radical circle, 35901), (Moses-Longuet-Higgins circle, 3660), (Moses-parry circle, 50381), (inner-Napoleon circle, 32461), (outer-Napoleon circle, 32460), (1st Neuberg circle, 50382), (Neuberg circles radical circle, 32531), (nine-point circle, 468), (orthocentroidal circle, 468), (orthoptic circle of Steiner inellipse, 468), (Parry circle, 9129), (polar circle, 468), (power circles radical circle (ABC obtuse only), 858), (reflection circle, 50383), (Schoute circle, 6), (sine-triple-angle circle , 50384), (Spieker circle, 50385), (Stammler circles radical circle, 3), (1st Steiner circle, 47090), (2nd Steiner circle, 50386), (Stevanovic circle , 46408), (tangential circle, 468), (Taylor circle, 50387), (inner-Vecten circle, 50388), (outer-Vecten circle, 50389), (Yff contact circle , 50390)

Circles in cursive characters can be consulted in the Alphabetical Index of Terms in ETC. All other circles can be viewed in Wolfram's Triangle Circles.


X(50360) = RADICAL TRACE {CIRCUMCIRCLE, ADAMS CIRCLE}

Barycentrics    a*((b^2+c^2)*a^5-4*(b^3+c^3)*a^4+(6*b^4+6*c^4-(b^2+4*b*c+c^2)*b*c)*a^3-(b^2-c^2)*(b-c)*(4*b^2+b*c+4*c^2)*a^2+(b^2+c^2)*(b^2-b*c+c^2)*(b-c)^2*a+(b^2-c^2)*(b-c)^3*b*c)*(a-b+c)*(a+b-c) : :

X(50360) lies on these lines: {1, 3}, {2389, 30379}

X(50360) = inverse of X(45227) in: de Longchamps ellipse, incircle
X(50360) = X(37912)-of-intouch triangle
X(50360) = {X(2446), X(2447)}-harmonic conjugate of X(45227)


X(50361) = RADICAL TRACE {CIRCUMCIRCLE, APOLLONIUS CIRCLE}

Barycentrics    a^2*((b^2+4*b*c+c^2)*a^3+(b+c)*(b^2+c^2)*a^2-(b^4+c^4+2*(b^2+c^2)*b*c)*a-(b+c)*(b^4+c^4)) : :

X(50361) lies on these lines: {3, 6}, {230, 517}, {392, 37047}, {512, 650}, {612, 40966}, {625, 5241}, {692, 32758}, {3230, 3291}, {5277, 22076}, {7745, 34466}, {7746, 15488}, {21843, 37521}

X(50361) = midpoint of X(187) and X(5164)
X(50361) = perspector of the circumconic {{A, B, C, X(110), X(941)}}
X(50361) = inverse of X(4263) in: Brocard inellipse, Moses circle
X(50361) = inverse of X(36744) in circumcircle
X(50361) = crossdifference of every pair of points on line {X(523), X(940)}
X(50361) = X(6)-daleth conjugate of-X(4263)
X(50361) = X(6)-Hirst inverse of-X(36744)
X(50361) = X(512)-vertex conjugate of-X(36744)
X(50361) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (187, 1692, 5006), (1379, 1380, 36744), (2028, 2029, 4263)


X(50362) = RADICAL TRACE {CIRCUMCIRCLE, CONWAY CIRCLE}

Barycentrics    a*((b^2+c^2)*a^3-(b^2+c^2)*(b^2-b*c+c^2)*a-(b^2-c^2)*(b-c)*b*c) : :
X(50362) = X(100)-3*X(33852) = 2*X(1155)-3*X(34583)

X(50362) lies on these lines: {1, 3}, {2, 38472}, {11, 511}, {51, 3816}, {100, 33852}, {181, 37634}, {238, 18191}, {320, 350}, {343, 23304}, {404, 22300}, {499, 5752}, {518, 17763}, {674, 26015}, {692, 37449}, {740, 38484}, {858, 21252}, {908, 8679}, {970, 5433}, {1125, 18180}, {1193, 18178}, {1216, 26470}, {1329, 16980}, {1355, 3326}, {1401, 3782}, {1469, 17720}, {1479, 37482}, {1836, 3784}, {1985, 5087}, {2050, 17617}, {2225, 5701}, {2392, 11813}, {2594, 19513}, {2807, 37374}, {2886, 3917}, {2975, 22299}, {2979, 11680}, {3006, 4553}, {3025, 3027}, {3056, 17721}, {3218, 20718}, {3706, 35626}, {3720, 18165}, {3742, 37869}, {3792, 33140}, {3794, 32942}, {3819, 3925}, {3826, 5650}, {3911, 29311}, {3937, 17768}, {4259, 11269}, {4999, 22076}, {5176, 17751}, {5211, 25048}, {5253, 41723}, {5579, 47007}, {7186, 33106}, {7354, 15488}, {7681, 45186}, {7998, 33108}, {11573, 12047}, {13391, 48933}, {14829, 22275}, {15571, 15635}, {15608, 31842}, {15644, 15908}, {16699, 22065}, {19546, 45885}, {20605, 35326}, {21807, 24434}, {21865, 33170}, {22325, 32918}, {23155, 31053}, {23638, 37663}, {24387, 31737}, {24703, 26892}, {29828, 30800}, {35628, 37660}, {40663, 45955}, {41012, 42450}

X(50362) = midpoint of X(i) and X(j) for these {i, j}: {36, 38474}, {18330, 35459}
X(50362) = reflection of X(484) in X(35059)
X(50362) = anticomplement of X(38472)
X(50362) = perspector of the circumconic {{A, B, C, X(274), X(651)}}
X(50362) = inverse of X(1764) in Conway circle
X(50362) = inverse of X(3666) in: de Longchamps ellipse, incircle
X(50362) = inverse of X(16678) in circumcircle
X(50362) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(18155)}} and {{A, B, C, X(55), X(7253)}}
X(50362) = Cevapoint of X(513) and X(2703)
X(50362) = crosssum of X(513) and X(2787)
X(50362) = X(513)-vertex conjugate of-X(16678)
X(50362) = reflection of X(i) in the line X(j)X(k) for these (i, j, k): (11, 512, 4369), (36, 11813, 23789)
X(50362) = X(41202)-of-intouch triangle
X(50362) = X(47153)-of-2nd Conway triangle
X(50362) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (940, 5078, 5061), (1381, 1382, 16678), (2446, 2447, 3666), (14829, 35614, 22275), (35645, 37521, 55)


X(50363) = RADICAL TRACE {CIRCUMCIRCLE, DAO-MOSES-TELV CIRCLE}

Barycentrics    a^2*(a^16-3*(b^2+c^2)*a^14+2*(b^4+5*b^2*c^2+c^4)*a^12+(b^2+c^2)*(b^4-10*b^2*c^2+c^4)*a^10-3*(4*b^4-11*b^2*c^2+4*c^4)*b^2*c^2*a^8-(b^2+c^2)*(b^8+c^8-b^2*c^2*(17*b^4-33*b^2*c^2+17*c^4))*a^6-(b^2-c^2)^2*(2*b^8+2*c^8-b^2*c^2*(5*b^4-27*b^2*c^2+5*c^4))*a^4+3*(b^4-c^4)*(b^2-c^2)*(b^4+c^4+b*c*(b^2-b*c-c^2))*(b^4+c^4-b*c*(b^2+b*c-c^2))*a^2-(b^2-c^2)^4*(b^4+4*b^2*c^2+c^4)*(b^4-b^2*c^2+c^4)) : :

X(50363) lies on these lines: {3, 1637}, {25, 1989}, {125, 15538}, {2492, 35901}, {11063, 47327}, {44467, 46942}

X(50363) = isogonal conjugate of the antigonal conjugate of X(44769)
X(50363) = inverse of X(3) in Dao-Moses-Telv circle
X(50363) = inverse of X(1637) in circumcircle
X(50363) = reflection of X(3) in the line X(6644)X(34218)
X(50363) = inverse of X(35901) in Moses-Parry circle


X(50364) = RADICAL TRACE {CIRCUMCIRCLE, DOU CIRCLES RADICAL CIRCLE}

Barycentrics    a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^12-4*(b^2+c^2)*a^10+(7*b^4+11*b^2*c^2+7*c^4)*a^8-(b^2+c^2)*(8*b^4+3*b^2*c^2+8*c^4)*a^6+(7*b^8+7*c^8+(b^4+12*b^2*c^2+c^4)*b^2*c^2)*a^4-(b^2+c^2)*(4*b^8+4*c^8-(7*b^4-10*b^2*c^2+7*c^4)*b^2*c^2)*a^2+(b^8+c^8+2*(b^4-b^2*c^2+c^4)*b^2*c^2)*(b^2-c^2)^2) : :

X(50364) lies on these lines: {3, 2501}, {25, 53}, {112, 12824}, {378, 6792}

X(50364) = isogonal conjugate of the antigonal conjugate of X(4558)
X(50364) = circumperp conjugate of the anticomplement of X(39533)
X(50364) = inverse of X(3) in radical circle of Dou circles
X(50364) = reflection of X(3) in the line X(6644)X(37813)
X(50364) = inverse of X(2501) in circumcircle


X(50365) = RADICAL TRACE {CIRCUMCIRCLE, EULER-GERGONNE-SODDY CIRCLE}

Barycentrics    a^11+(b+c)*a^10-3*(b^2+c^2)*a^9-(b+c)*(b^2+c^2)*a^8+9*b^2*c^2*a^7-(2*b-c)*(b-2*c)*(b+c)*b*c*a^6+2*(2*b^2-c^2)*(b^2-2*c^2)*(b^2+c^2)*a^5+2*(b^3+c^3)*(b-c)^2*b*c*a^4-(b^2-c^2)^2*(b^4+5*b^2*c^2+c^4)*a^3-(b^2-c^2)*(b-c)^3*(b^4+c^4+b*c*(2*b^2+b*c+2*c^2))*a^2-(b^4-c^4)*(b^2-c^2)^3*a+(b^4-c^4)^2*(b^2-c^2)*(b-c) : :

X(50365) lies on these lines: {2, 3}, {347, 523}

X(50365) = crossdifference of every pair of points on line {X(647), X(8554)}


X(50366) = RADICAL TRACE {CIRCUMCIRCLE, EXCIRCLES RADICAL CIRCLE}

Barycentrics    (2*a^5-(b+c)*a^4-2*(b-c)^2*a^3+2*(b^2-c^2)*(b-c)*a^2-2*(b-c)^2*b*c*a-(b^4-c^4)*(b-c))*(-a+b+c) : :

X(50366) lies on these lines: {3, 10}, {35, 46878}, {78, 27379}, {124, 516}, {171, 45206}, {226, 14455}, {243, 281}, {406, 498}, {522, 650}, {929, 5179}, {1155, 26932}, {1465, 25968}, {1861, 44425}, {2222, 26703}, {3011, 4858}, {3452, 4011}, {3579, 20306}, {3911, 26013}, {4640, 41883}, {5552, 10538}, {6051, 13411}, {6181, 46835}, {6690, 6708}, {6718, 34050}, {23528, 27380}, {28826, 32929}, {28923, 29830}, {36002, 45281}

X(50366) = midpoint of X(929) and X(5179)
X(50366) = reflection of X(34050) in X(6718)
X(50366) = complement of the antigonal conjugate of X(5179)
X(50366) = isogonal conjugate of the antigonal conjugate of X(8048)
X(50366) = perspector of the circumconic {{A, B, C, X(8), X(44765)}}
X(50366) = center of the circumconic {{A, B, C, X(929), X(5179)}}
X(50366) = inverse of X(197) in circumcircle
X(50366) = inverse of X(5745) in Spieker circle
X(50366) = Cevapoint of X(522) and X(929)
X(50366) = crossdifference of every pair of points on line {X(56), X(6589)}
X(50366) = crosssum of X(522) and X(928)
X(50366) = X(929)-Ceva conjugate of-X(522)
X(50366) = X(55)-complementary conjugate of-X(20623)
X(50366) = center of circle {{X(101), X(929), X(5179)}}
X(50366) = X(197)-vertex conjugate of-X(522)


X(50367) = RADICAL TRACE {CIRCUMCIRCLE, EXTANGENTS CIRCLE}

Barycentrics    a*(2*a^14+(b+c)*a^13-6*(b^2+c^2)*a^12-(b+c)*(5*b^2+b*c+5*c^2)*a^11+(3*b^4+3*c^4-4*b*c*(b-c)^2)*a^10+2*(b+c)*(4*b^4+4*c^4+b*c*(b^2+4*b*c+c^2))*a^9+(7*b^6+7*c^6+2*b*c*(b^2+b*c+c^2)*(5*b^2-3*b*c+5*c^2))*a^8-2*(b^6+c^6)*(b+c)*a^7-2*(4*b^6+4*c^6-(5*b^4+5*c^4-8*b*c*(b^2-b*c+c^2))*b*c)*(b+c)^2*a^6-(b+c)*(7*b^8+7*c^8+2*b*c*(b^3-b*c^2+c^3)*(b^3-b^2*c+c^3))*a^5-2*(b^2-c^2)^2*(b^4+c^4+b*c*(b^2+4*b*c+c^2))*b*c*a^4+(b^2-c^2)^2*(b+c)*(7*b^6+7*c^6+b*c*(b^2+4*b*c+c^2)*(b^2-b*c+c^2))*a^3+(b^4-c^4)*(b^2-c^2)*(b+c)^2*(3*b^4+3*c^4-4*b*c*(b^2-b*c+c^2))*a^2-2*(b^6-c^6)*(b^2-c^2)^3*(b+c)*a-(b^2-c^2)^4*(b^3-c^3)^2) : :

X(50367) lies on these lines: {3, 3101}


X(50368) = RADICAL TRACE {CIRCUMCIRCLE, FUHRMANN CIRCLE}

Barycentrics    (b+c)*a^6-(b^2+c^2)*a^5-(b^2-c^2)*(b-c)*a^4+(2*b^2+3*b*c+2*c^2)*(b-c)^2*a^3-(b^2-c^2)*(b-c)*(b^2+3*b*c+c^2)*a^2-(b^2-c^2)*(b-c)*(b^3+c^3)*a+(b^3+c^3)*(b^2-c^2)^2 : :
X(50368) = 5*X(1698)-X(3465)

X(50368) lies on these lines: {2, 45272}, {3, 10}, {8, 34030}, {109, 5081}, {117, 517}, {124, 6001}, {240, 522}, {929, 29306}, {1698, 3465}, {1706, 36568}, {1788, 44696}, {3583, 24410}, {6699, 40558}, {6718, 46974}, {6734, 23528}, {7683, 44545}, {8582, 16870}, {10538, 38945}, {12053, 36576}, {18339, 45766}, {18340, 25005}, {20306, 33899}, {23541, 45269}, {24982, 24984}

X(50368) = midpoint of X(i) and X(j) for these {i, j}: {109, 5081}, {10538, 38945}, {18339, 45766}
X(50368) = reflection of X(46974) in X(6718)
X(50368) = complement of X(45272)
X(50368) = perspector of the circumconic {{A, B, C, X(92), X(44765)}}
X(50368) = inverse of X(23843) in circumcircle
X(50368) = Cevapoint of X(522) and X(2765)
X(50368) = crossdifference of every pair of points on line {X(48), X(6589)}
X(50368) = crosssum of X(522) and X(2849)
X(50368) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {4, 18339, 45766}, {109, 1309, 5081}, {10538, 38945, 45272}
X(50368) = X(21268)-of-Wasat triangle
X(50368) = X(5962)-of-4th Euler triangle
X(50368) = X(522)-vertex conjugate of-X(23843)


X(50369) = RADICAL TRACE {CIRCUMCIRCLE, GEOS CIRCLE}

Barycentrics    (-a^2+b^2+c^2)*((b^2-4*b*c+c^2)*a^8-2*(b+c)*(b^2-3*b*c+c^2)*a^7+(b^4+c^4+b*c*(3*b-c)*(b-3*c))*a^6-3*(b^2-c^2)*(b-c)*b*c*a^5-(b^2-c^2)^2*(b^2-4*b*c+c^2)*a^4+2*(b^2-c^2)*(b-c)*(b^4+c^4-b*c*(b+c)^2)*a^3-(b^2-c^2)^2*(b-c)^2*(b^2+5*b*c+c^2)*a^2+3*(b^2-c^2)^3*(b-c)*b*c*a-2*(b^2-c^2)^2*(b-c)^2*b^2*c^2) : :

X(50369) lies on these lines: {2, 92}, {3, 4885}


X(50370) = RADICAL TRACE {CIRCUMCIRCLE, HALF-MOSES CIRCLE}

Barycentrics    a^2*(13*(b^2+c^2)*a^4-2*(4*b^4+3*b^2*c^2+4*c^4)*a^2+(b^2+c^2)*(3*b^4-8*b^2*c^2+3*c^4)) : :
X(50370) = 3*X(39)+5*X(187) = X(39)-5*X(2021) = X(187)+3*X(2021) = 3*X(2024)+X(5104)

X(50370) lies on these lines: {3, 6}, {538, 32459}, {625, 15491}, {3793, 41672}, {3849, 8358}, {5140, 33885}, {5148, 9331}, {5194, 9336}, {7757, 46453}, {9741, 11055}, {11257, 37689}, {14069, 39266}, {18907, 44562}, {33191, 34229}

X(50370) = X(50370)-of-circumsymmedial triangle
X(50370) = crossdifference of every pair of points on line {X(523), X(8556)}


X(50371) = RADICAL TRACE {CIRCUMCIRCLE, HEXYL CIRCLE}

Barycentrics    a*(2*a^6-3*(b+c)*a^5-(3*b-c)*(b-3*c)*a^4+2*(b+c)*(3*b^2-4*b*c+3*c^2)*a^3-8*(b^2-b*c+c^2)*b*c*a^2-(b^2-c^2)*(b-c)*(3*b^2-2*b*c+3*c^2)*a+(b^2-c^2)^2*(b-c)^2) : :
X(50371) = 3*X(36)-X(5536) = 3*X(36)-5*X(7987) = X(40)-3*X(2077) = 2*X(40)-3*X(13528) = 3*X(165)-X(3245) = 3*X(484)-7*X(16192) = X(1155)+2*X(35459) = 3*X(1319)-4*X(1385) = 2*X(1482)-3*X(5048) = X(1482)+3*X(35000) = X(3218)-3*X(38693) = 3*X(3576)-2*X(5126) = 3*X(3814)-2*X(19925) = 2*X(3911)-3*X(21154) = X(5048)+2*X(35000) = 6*X(5123)-5*X(5818) = 3*X(5183)-8*X(31663) = X(5536)+3*X(5538) = X(5536)-5*X(7987) = 3*X(5538)+5*X(7987)

X(50371) lies on these lines: {1, 3}, {4, 5087}, {8, 6966}, {20, 5057}, {72, 5450}, {78, 12114}, {101, 2182}, {102, 1308}, {104, 518}, {210, 22758}, {214, 516}, {224, 12671}, {376, 28534}, {377, 22835}, {404, 7686}, {515, 5440}, {535, 4297}, {840, 30237}, {908, 2829}, {934, 2745}, {944, 32049}, {946, 11112}, {952, 3689}, {953, 1292}, {960, 6906}, {971, 6326}, {997, 1012}, {1004, 22753}, {1071, 22836}, {1125, 15908}, {1158, 5730}, {1295, 3100}, {1389, 10107}, {1455, 22350}, {1456, 34586}, {1512, 3035}, {1753, 11363}, {1768, 4867}, {1836, 6948}, {1837, 6891}, {1878, 37194}, {2717, 28291}, {2743, 28233}, {2800, 17613}, {3218, 38693}, {3486, 6926}, {3560, 25917}, {3652, 44782}, {3683, 6914}, {3812, 6940}, {3814, 6700}, {3838, 6951}, {3911, 21154}, {3916, 31806}, {3935, 38669}, {3962, 24467}, {4190, 24558}, {4299, 5812}, {4305, 6865}, {4511, 6001}, {4640, 6950}, {4679, 6930}, {4855, 11500}, {4870, 28458}, {4881, 36003}, {5080, 6836}, {5086, 6972}, {5123, 5794}, {5176, 6890}, {5253, 13374}, {5603, 5880}, {5660, 10742}, {5691, 31160}, {5693, 34862}, {5761, 10404}, {5901, 31777}, {6261, 37022}, {6681, 9843}, {6684, 37298}, {6705, 6737}, {6736, 12616}, {6850, 11375}, {6893, 24954}, {6897, 28628}, {6915, 16616}, {6922, 10572}, {6923, 17605}, {6938, 24703}, {6958, 17606}, {6961, 24914}, {6977, 26066}, {7483, 8582}, {7701, 31821}, {8227, 17528}, {9521, 42763}, {9943, 21740}, {11260, 12245}, {11496, 19861}, {11715, 25416}, {11813, 37468}, {12047, 31775}, {12672, 30144}, {12675, 34772}, {12680, 37700}, {12688, 45770}, {13369, 37733}, {14414, 45884}, {15015, 44425}, {16132, 31805}, {17768, 38759}, {18242, 27385}, {20418, 26015}, {34474, 48363}, {34526, 38902}, {35514, 42819}, {41389, 48695}

X(50371) = midpoint of X(i) and X(j) for these {i, j}: {1, 5537}, {3, 35459}, {20, 5057}, {36, 5538}, {1768, 4867}, {2717, 47621}, {3935, 38669}, {4511, 6909}, {10609, 37374}
X(50371) = reflection of X(i) in X(j) for these (i, j): (4, 5087), (1155, 3), (1512, 3035), (5535, 5122), (13528, 2077), (14872, 17615), (22765, 18857), (26015, 20418), (37725, 6745)
X(50371) = isogonal conjugate of the antigonal conjugate of X(3427)
X(50371) = circumperp conjugate of X(55)
X(50371) = Gibert-Burek-Moses concurrent circles image of X(2093)
X(50371) = inverse of X(3428) in circumcircle
X(50371) = inverse of X(6282) in hexyl circle
X(50371) = intersection, other than A, B, C, of circumconics {{A, B, C, X(55), X(2745)}} and {{A, B, C, X(57), X(2716)}}
X(50371) = X(21)-beth conjugate of-X(3660)
X(50371) = X(513)-vertex conjugate of-X(3428)
X(50371) = (2nd circumperp)-isotomic conjugate-of-X(28291)
X(50371) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {103, 2717, 47621}, {1768, 4867, 34464}, {3935, 38669, 38682}
X(50371) = X(468)-of-hexyl triangle
X(50371) = X(858)-of-2nd circumperp triangle
X(50371) = X(1155)-of-ABC-X3 reflections triangle
X(50371) = X(5087)-of-anti-Euler triangle
X(50371) = X(5537)-of-anti-Aquila triangle
X(50371) = X(10295)-of-1st circumperp triangle
X(50371) = X(10297)-of-excentral triangle
X(50371) = X(18839)-of-2nd circumperp tangential triangle
X(50371) = X(35459)-of-anti-X3-ABC reflections triangle
X(50371) = X(37928)-of-incircle-circles triangle
X(50371) = X(45171)-of-intouch triangle
X(50371) = X(47309)-of-excenters-reflections triangle
X(50371) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (1, 36, 3660), (1, 40293, 37566), (3, 37606, 3576), (78, 12114, 14872), (1155, 2646, 1319), (1155, 5048, 65), (1381, 1382, 3428), (1385, 1482, 20323), (1385, 33596, 37080), (2077, 5537, 10310), (2077, 35459, 14110), (3576, 6282, 3428), (3576, 37569, 999), (5536, 7987, 36), (5538, 7987, 5536), (5603, 6955, 5880), (7957, 37605, 11249), (7987, 37571, 1385), (10269, 37533, 354), (10306, 35000, 5537), (13624, 31793, 11012), (15178, 31798, 11014), (21740, 37403, 9943), (24474, 32612, 32636), (24929, 37606, 2646), (26290, 26291, 1617), (26365, 26366, 10246), (37562, 46920, 11011), (38013, 38014, 1319)


X(50372) = RADICAL TRACE {CIRCUMCIRCLE, INCENTRAL CIRCLE}

Barycentrics    a*(2*a^8+5*(b+c)*a^7+(3*b^2+14*b*c+3*c^2)*a^6-(b+c)*(b^2-8*b*c+c^2)*a^5-(3*b^4+3*c^4+2*b*c*(3*b^2-2*b*c+3*c^2))*a^4-(b+c)*(5*b^4+5*c^4+b*c*(4*b^2-7*b*c+4*c^2))*a^3-(3*b^6+3*c^6+2*b*c*(2*b^4-3*b^2*c^2+2*c^4))*a^2+(b^2-c^2)^2*(b+c)*(b^2+4*b*c+c^2)*a+(b^2-c^2)^2*(b+c)^4) : :

X(50372) lies on these lines: {3, 2941}, {661, 2605}


X(50373) = RADICAL TRACE {CIRCUMCIRCLE, INTANGENTS CIRCLE}

Barycentrics    a*(2*a^11-3*(b+c)*a^10-(b-c)^2*a^9+(b+c)*(b^2+5*b*c+c^2)*a^8-(3*b^2+4*b*c+3*c^2)*b*c*a^7+2*(b+c)*(2*b^4+2*c^4-(2*b^2+b*c+2*c^2)*b*c)*a^6-(2*b^2-c^2)*(b^2-2*c^2)*(b+c)^2*a^5-(b^2-c^2)*(b-c)*(3*b^2+5*b*c+3*c^2)*b*c*a^4-(b^2-c^2)^2*(2*b^4+2*c^4-(5*b^2+4*b*c+5*c^2)*b*c)*a^3-(b^8-c^8)*(b-c)*a^2+3*(b^2-c^2)^2*(b-c)^2*(b^2+b*c+c^2)^2*a-(b^2-c^2)^3*(b-c)*(b^2+b*c+c^2)^2)*(a-b+c)*(a+b-c) : :

X(50373) lies on these lines: {3, 3100}, {73, 663}


X(50374) = RADICAL TRACE {CIRCUMCIRCLE, KENMOTU CIRCLE}

Barycentrics    a^2*(2*(2*a^2-b^2-c^2)*S+2*a^4-(b^2+c^2)*a^2+(b^2-c^2)^2) : :

X(50374) lies on these lines: {3, 6}, {590, 32432}, {639, 7749}, {3767, 26441}, {7388, 31481}, {11294, 31411}, {13663, 31173}, {32435, 32491}, {32436, 44647}

X(50374) = reflection of X(50375) in X(32)
X(50374) = isogonal conjugate of the isotomic conjugate of X(44392)
X(50374) = barycentric product X(6)*X(44392)
X(50374) = trilinear product X(31)*X(44392)
X(50374) = perspector of the circumconic {{A, B, C, X(110), X(8577)}}
X(50374) = inverse of X(5062) in: Brocard inellipse, Moses circle
X(50374) = inverse of X(12968) in circumcircle
X(50374) = crossdifference of every pair of points on line {X(492), X(523)}
X(50374) = crosssum of X(6) and X(44391)
X(50374) = X(6)-daleth conjugate of-X(5062)
X(50374) = X(6)-Hirst inverse of-X(12968)
X(50374) = X(512)-vertex conjugate of-X(12968)
X(50374) = X(2459)-of-1st Kenmotu-centers triangle
X(50374) = X(50374)-of-circumsymmedial triangle
X(50374) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (6, 45578, 1505), (32, 1504, 5062), (187, 1570, 6566), (187, 1692, 50375), (371, 41410, 5017), (1379, 1380, 12968), (1691, 2021, 50375), (1691, 2460, 187), (1692, 6566, 5062), (2028, 2029, 5062), (2032, 5162, 50375), (2460, 6424, 1692), (5052, 10631, 50375), (6424, 12963, 32)


X(50375) = RADICAL TRACE {CIRCUMCIRCLE, OUTER-KENMOTU CIRCLE}

Barycentrics    a^2*(-2*(2*a^2-b^2-c^2)*S+2*a^4-(b^2+c^2)*a^2+(b^2-c^2)^2) : :

X(50375) lies on these lines: {3, 6}, {615, 32435}, {640, 7749}, {3767, 8982}, {8996, 44527}, {13783, 31173}, {32432, 32490}, {32433, 44648}

X(50375) = reflection of X(50374) in X(32)
X(50375) = isogonal conjugate of the isotomic conjugate of X(44394)
X(50375) = barycentric product X(6)*X(44394)
X(50375) = trilinear product X(31)*X(44394)
X(50375) = perspector of the circumconic {{A, B, C, X(110), X(8576)}}
X(50375) = inverse of X(5058) in: Brocard inellipse, Moses circle
X(50375) = inverse of X(12963) in circumcircle
X(50375) = crossdifference of every pair of points on line {X(491), X(523)}
X(50375) = crosssum of X(6) and X(44390)
X(50375) = X(6)-daleth conjugate of-X(5058)
X(50375) = X(6)-Hirst inverse of-X(12963)
X(50375) = X(512)-vertex conjugate of-X(12963)
X(50375) = X(2460)-of-2nd Kenmotu-centers triangle
X(50375) = X(50375)-of-circumsymmedial triangle
X(50375) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (6, 45579, 1504), (32, 1505, 5058), (187, 1570, 6567), (187, 1692, 50374), (372, 41411, 5017), (1379, 1380, 12963), (1505, 9675, 35841), (1691, 2021, 50374), (1691, 2459, 187), (1692, 6567, 5058), (2028, 2029, 5058), (2032, 5162, 50374), (2459, 6423, 1692), (5052, 10631, 50374), (6423, 12968, 32), (9675, 39764, 5058)


X(50376) = RADICAL TRACE {CIRCUMCIRCLE, 3rd LEMOINE CIRCLE}

Barycentrics    4*a^18+67*(b^2+c^2)*a^16+2*(67*b^4+583*b^2*c^2+67*c^4)*a^14+2*(b^2+c^2)*(2*b^4+1581*b^2*c^2+2*c^4)*a^12-2*(71*b^8+71*c^8-(1033*b^4+3060*b^2*c^2+1033*c^4)*b^2*c^2)*a^10-5*(b^2+c^2)*(10*b^8+10*c^8+(96*b^4+61*b^2*c^2+96*c^4)*b^2*c^2)*a^8+2*(13*b^12+13*c^12-(14*b^8+14*c^8+(1508*b^4+2557*b^2*c^2+1508*c^4)*b^2*c^2)*b^2*c^2)*a^6-(b^2+c^2)*(20*b^12+20*c^12-(516*b^8+516*c^8+(573*b^4-4138*b^2*c^2+573*c^4)*b^2*c^2)*b^2*c^2)*a^4-2*(b^4-c^4)^2*(11*b^8+11*c^8+(2*b^4-99*b^2*c^2+2*c^4)*b^2*c^2)*a^2-(b^4-4*b^2*c^2+c^4)*(b^2-c^2)^2*(b^2+c^2)^5 : :

X(50376) lies on these lines: {3, 8145}


X(50377) = RADICAL TRACE {CIRCUMCIRCLE, LESTER CIRCLE}

Barycentrics    a^2*(a^16-6*(b^2+c^2)*a^14+(14*b^4+31*b^2*c^2+14*c^4)*a^12-7*(b^2+c^2)*(2*b^4+7*b^2*c^2+2*c^4)*a^10+3*(23*b^4+31*b^2*c^2+23*c^4)*b^2*c^2*a^8+2*(b^2+c^2)*(7*b^8+7*c^8-32*(b^4+c^4)*b^2*c^2)*a^6-(14*b^12+14*c^12-(27*b^8+27*c^8+(21*b^4+25*b^2*c^2+21*c^4)*b^2*c^2)*b^2*c^2)*a^4+3*(b^2+c^2)*(2*b^12+2*c^12-(5*b^8+5*c^8-3*(b^4-b^2*c^2+c^4)*b^2*c^2)*b^2*c^2)*a^2-(b^2-c^2)^4*(b^8+c^8+(3*b^4+b^2*c^2+3*c^4)*b^2*c^2))*(a^2+c*a+c^2-b^2)*(a^2-c*a+c^2-b^2)*(a^2+b*a+b^2-c^2)*(a^2-b*a+b^2-c^2) : :

X(50377) lies on these lines: {3, 1116}, {231, 1989}

X(50377) = isogonal conjugate of the antigonal conjugate of X(10411)
X(50377) = reflection of X(3) in the line X(186)X(8754)
X(50377) = inverse of X(15475) in circumcircle


X(50378) = RADICAL TRACE {CIRCUMCIRCLE, LONGUET-HIGGINS CIRCLE}

Barycentrics    a*(a^5+2*(b+c)*a^4+2*b*c*a^3-2*(b^3+c^3)*a^2-(b^4+c^4+c*b*(3*b^2-5*b*c+3*c^2))*a-(b^2-c^2)*(b-c)*c*b) : :

X(50378) lies on these lines: {3, 962}, {81, 501}, {100, 4966}, {244, 1326}, {659, 3004}, {4860, 17013}, {5536, 16586}

X(50378) = isogonal conjugate of the antigonal conjugate of X(13476)
X(50378) = reflection of X(3) in the line X(4977)X(39210)
X(50378) = inverse of X(1621) in circumcircle


X(50379) = RADICAL TRACE {CIRCUMCIRCLE, MANDART CIRCLE}

Barycentrics    a*((b+c)*a^9+(b^2-4*b*c+c^2)*a^8-4*(b^2-c^2)*(b-c)*a^7-4*(b^2-b*c+c^2)*(b-c)^2*a^6+2*(b^2-c^2)*(b-c)*(3*b^2-2*b*c+3*c^2)*a^5+6*(b-c)^2*(b^2+c^2)^2*a^4-4*(b^2-c^2)*(b-c)*(b^4+4*b^2*c^2+c^4)*a^3-4*(b^6+c^6+(b^4+c^4+b*c*(b-c)^2)*b*c)*(b-c)^2*a^2+(b^2-c^2)*(b-c)*(b^6+c^6+(2*b^4+2*c^4+b*c*(7*b^2-4*b*c+7*c^2))*b*c)*a+(b^4-c^4)*(b^2-c^2)^3)*(-a+b+c) : :

X(50379) lies on these lines: {3, 960}, {405, 15524}, {521, 3239}, {5087, 44993}, {11375, 37744}

X(50379) = perspector of the circumconic {{A, B, C, X(280), X(46640)}}
X(50379) = crossdifference of every pair of points on line {X(221), X(6588)}


X(50380) = RADICAL TRACE {CIRCUMCIRCLE, MIXTILINEAR CIRCLE}

Barycentrics    a^2*(a^8-(b+c)*a^7-3*(2*b^2-3*b*c+2*c^2)*a^6+(b+c)*(12*b^2-13*b*c+12*c^2)*a^5-3*(b^2+12*b*c+c^2)*(b^2-b*c+c^2)*a^4-(b+c)*(9*b^4+9*c^4-2*b*c*(24*b^2-29*b*c+24*c^2))*a^3+(8*b^6+8*c^6-(15*b^4+15*c^4+2*b*c*(b^2-b*c+c^2))*b*c)*a^2-(b^2-c^2)*(b-c)*(2*b^4+2*c^4-b*c*(b^2-6*b*c+c^2))*a-(b^2-c^2)^2*(b-c)^2*b*c) : :

X(50380) lies on these lines: {3, 8147}


X(50381) = RADICAL TRACE {CIRCUMCIRCLE, MOSES-PARRY CIRCLE}

Barycentrics    a^2*(a^14-3*(b^2+c^2)*a^12-(b^4-16*b^2*c^2+c^4)*a^10+(b^2+c^2)*(5*b^4-18*b^2*c^2+5*c^4)*a^8-(b^8+c^8+b^2*c^2*(12*b^4-35*b^2*c^2+12*c^4))*a^6-(b^2+c^2)*(b^8+c^8-b^2*c^2*(14*b^4-27*b^2*c^2+14*c^4))*a^4+(b^8+c^8-2*b^2*c^2*(b^4+6*b^2*c^2+c^4))*(b^2-c^2)^2*a^2+(b^4-c^4)*(b^2-c^2)*(-b^8-c^8+2*b^2*c^2*(b^4+c^4))) : :
X(50381) = X(1296)-3*X(38699) = X(1297)-3*X(38698) = X(10749)-3*X(38796) = X(10766)-3*X(36696) = 2*X(34841)-3*X(38804)

X(50381) lies on these lines: {3, 2492}, {25, 111}, {126, 6720}, {127, 6719}, {132, 23699}, {1296, 38699}, {1297, 38698}, {2781, 28662}, {2794, 5512}, {2854, 28343}, {9129, 9517}, {10749, 38796}, {10766, 36696}, {15560, 18876}, {16317, 36168}, {16318, 46619}, {33962, 38608}, {34841, 38804}

X(50381) = midpoint of X(111) and X(112)
X(50381) = reflection of X(i) in X(j) for these (i, j): (126, 6720), (127, 6719)
X(50381) = isogonal conjugate of the antigonal conjugate of X(17708)
X(50381) = inverse of X(3) in Moses-Parry circle
X(50381) = inverse of X(2492) in circumcircle
X(50381) = reflection of X(3) in the line X(6644)X(14649)
X(50381) = crossdifference of every pair of points on line {X(14417), X(41359)}


X(50382) = RADICAL TRACE {CIRCUMCIRCLE, 1st NEUBERG CIRCLE}

Barycentrics    a^2*(2*b^2*c^2*a^16-(b^2+c^2)*(2*b^4+b^2*c^2+2*c^4)*a^14+(3*b^4-2*b^2*c^2+3*c^4)*b^2*c^2*a^12+(b^2+c^2)*(2*b^4+3*b^2*c^2+2*c^4)*b^2*c^2*a^10+(3*b^8+3*c^8-b^2*c^2*(b^4-10*b^2*c^2+c^4))*b^2*c^2*a^8+(b^2+c^2)*(b^8+c^8-2*(b^4+c^4)*b^2*c^2)*(2*b^4+b^2*c^2+2*c^4)*a^6+(4*b^12+4*c^12-(4*b^8+4*c^8+b^2*c^2*(b^4+14*b^2*c^2+c^4))*b^2*c^2)*b^2*c^2*a^4-(b^2+c^2)*(2*b^12+2*c^12-(5*b^8+5*c^8-8*b^2*c^2*(b^4-b^2*c^2+c^4))*b^2*c^2)*b^2*c^2*a^2-(b^8+c^8-5*(b^4+c^4)*b^2*c^2)*(b^4+c^4)*b^4*c^4) : :

X(50382) lies on these lines: {3, 736}, {669, 7467}


X(50383) = RADICAL TRACE {CIRCUMCIRCLE, REFLECTION CIRCLE}

Barycentrics    a^2*((b^2+c^2)*a^14-(7*b^4+6*b^2*c^2+7*c^4)*a^12+3*(b^2+c^2)*(7*b^4-2*b^2*c^2+7*c^4)*a^10-(35*b^8+35*c^8+b^2*c^2*(13*b^4+12*b^2*c^2+13*c^4))*a^8+(b^2+c^2)*(35*b^8+35*c^8-b^2*c^2*(46*b^4-49*b^2*c^2+46*c^4))*a^6-(b^2-c^2)^2*(21*b^8+21*c^8+2*b^2*c^2*(6*b^4+7*b^2*c^2+6*c^4))*a^4+(b^4-c^4)*(b^2-c^2)*(7*b^8+7*c^8-b^2*c^2*(14*b^4-15*b^2*c^2+14*c^4))*a^2-(b^4+b^2*c^2+c^4)*(b^2-c^2)^6) : :

X(50383) lies on the cubic K418 and these lines: {3, 54}, {1510, 12077}, {6746, 32409}, {12233, 16337}, {12359, 16336}, {19552, 25738}, {32744, 43588}

X(50383) = perspector of the circumconic {{A, B, C, X(3459), X(18315)}}
X(50383) = crossdifference of every pair of points on line {X(195), X(12077)}
X(50383) = X(i)-line conjugate of-X(j) for these (i, j): (3, 195), (54, 195), (97, 195)


X(50384) = RADICAL TRACE {CIRCUMCIRCLE, SINE TRIPLE-ANGLE CIRCLE}

Barycentrics    a^2*(2*a^14-6*(b^2+c^2)*a^12+(5*b^4+14*b^2*c^2+5*c^4)*a^10-9*(b^2+c^2)*b^2*c^2*a^8-4*(b^4-3*b^2*c^2+c^4)*b^2*c^2*a^6-2*(b^4-c^4)*(b^2-c^2)*(b^4-3*b^2*c^2+c^4)*a^4+(b^4-c^4)^2*(b^2-c^2)^2*a^2-(b^4-c^4)*(b^2-c^2)^3*b^2*c^2)*(-a^2+b^2+c^2) : :

X(50384) lies on these lines: {3, 49}

X(50384) = crossdifference of every pair of points on line {X(2501), X(8571)}


X(50385) = RADICAL TRACE {CIRCUMCIRCLE, SPIEKER CIRCLE}

Barycentrics    10*a^6-9*(b+c)*a^5-(5*b-c)*(b-5*c)*a^4+2*(b+c)*(7*b^2-16*b*c+7*c^2)*a^3-8*(b^2+3*b*c+c^2)*(b-c)^2*a^2-(b^2-c^2)*(b-c)*(5*b^2-6*b*c+5*c^2)*a+(3*b^2-2*b*c+3*c^2)*(b^2-c^2)^2 : :

X(50385) lies on these lines: {3, 10}, {522, 2490}, {3731, 5218}, {7288, 8056}

X(50385) = crossdifference of every pair of points on line {X(6589), X(8572)}


X(50386) = RADICAL TRACE {CIRCUMCIRCLE, 2nd STEINER CIRCLE}

Barycentrics    a^2*(a^16-4*(b^2+c^2)*a^14+3*(b^2+2*c^2)*(2*b^2+c^2)*a^12-(4*b^2+c^2)*(b^2+4*c^2)*(b^2+c^2)*a^10+11*(b^4+3*b^2*c^2+c^4)*b^2*c^2*a^8+(b^2+c^2)*(4*b^8+4*c^8-b^2*c^2*(7*b^4+12*b^2*c^2+7*c^4))*a^6-(6*b^12+6*c^12-(6*b^8+6*c^8-b^2*c^2*(3*b^4-19*b^2*c^2+3*c^4))*b^2*c^2)*a^4+(b^2+c^2)*(2*b^6-2*c^6-b^2*c^2*(2*b^2-3*c^2))*(2*b^6-2*c^6-b^2*c^2*(3*b^2-2*c^2))*a^2-(b^6-c^6)*(b^2-c^2)*(b^4+c^4)*(b^4-b^2*c^2+c^4)) : :

X(50386) lies on these lines: {3, 8151}, {23, 325}

X(50386) = inverse of X(11123) in circumcircle
X(50386) = X(468)-of-Steiner triangle


X(50387) = RADICAL TRACE {CIRCUMCIRCLE, TAYLOR CIRCLE}

Barycentrics    a^2*((b^2+c^2)*a^6-(3*b^4-4*b^2*c^2+3*c^4)*a^4+3*(b^4-c^4)*(b^2-c^2)*a^2-(b^4+c^4)*(b^2-c^2)^2) : :
X(50387) = X(187)+3*X(15544)

X(50387) lies on these lines: {3, 6}, {51, 7737}, {113, 36472}, {115, 6000}, {185, 3767}, {230, 13754}, {232, 47421}, {373, 31415}, {460, 512}, {625, 37648}, {974, 15341}, {1299, 2715}, {1506, 11695}, {2713, 41368}, {3054, 10170}, {3124, 3331}, {3291, 45938}, {3815, 5892}, {3917, 21843}, {5254, 40647}, {5286, 10574}, {5305, 13630}, {5462, 7745}, {5475, 5943}, {5477, 8681}, {5663, 43291}, {5890, 7735}, {5891, 37637}, {5907, 7746}, {5946, 18907}, {6688, 7603}, {6759, 44527}, {7736, 15045}, {7747, 10110}, {7748, 46850}, {7749, 11793}, {7755, 13382}, {10575, 44518}, {12162, 13881}, {14855, 44526}, {15028, 31404}, {15030, 43620}, {15072, 43448}, {16310, 25711}, {18424, 46847}, {32125, 35605}, {39565, 44870}

X(50387) = isogonal conjugate of the antigonal conjugate of X(6504)
X(50387) = polar conjugate of the isotomic conjugate of X(47195)
X(50387) = barycentric product X(4)*X(47195)
X(50387) = trilinear product X(19)*X(47195)
X(50387) = perspector of the circumconic {{A, B, C, X(110), X(393)}}
X(50387) = inverse of X(800) in: Brocard inellipse, Moses circle
X(50387) = inverse of X(1609) in circumcircle
X(50387) = Cevapoint of X(512) and X(2713)
X(50387) = crossdifference of every pair of points on line {X(394), X(523)}
X(50387) = crosssum of X(i) and X(j) for these (i, j): {6, 44389}, {512, 2797}
X(50387) = X(6)-daleth conjugate of-X(800)
X(50387) = X(6)-Hirst inverse of-X(1609)
X(50387) = X(512)-vertex conjugate of-X(1609)
X(50387) = X(8074)-of-orthic triangle
X(50387) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (1379, 1380, 1609), (2028, 2029, 800)


X(50388) = RADICAL TRACE {CIRCUMCIRCLE, INNER-VECTEN CIRCLE}

Barycentrics    -2*(2*a^8-5*(b^2+c^2)*a^6+(3*b^4+2*b^2*c^2+3*c^4)*a^4-(b^4-c^4)*(b^2-c^2)*a^2+(b^4+4*b^2*c^2+c^4)*(b^2-c^2)^2)*S+2*a^10-3*(b^2+c^2)*a^8-4*b^2*c^2*a^6+4*(b^2+c^2)*b^2*c^2*a^4+2*(b^6-c^6)*(b^2-c^2)*a^2-(b^4-c^4)*(b^2-c^2)*(b^4-4*b^2*c^2+c^4) : :

X(50388) lies on the cubic K038 and these lines: {3, 640}, {6563, 14326}

X(50388) = inverse of X(44199) in circumcircle


X(50389) = RADICAL TRACE {CIRCUMCIRCLE, OUTER-VECTEN CIRCLE}

Barycentrics    2*(2*a^8-5*(b^2+c^2)*a^6+(3*b^4+2*b^2*c^2+3*c^4)*a^4-(b^4-c^4)*(b^2-c^2)*a^2+(b^4+4*b^2*c^2+c^4)*(b^2-c^2)^2)*S+2*a^10-3*(b^2+c^2)*a^8-4*b^2*c^2*a^6+4*(b^2+c^2)*b^2*c^2*a^4+2*(b^6-c^6)*(b^2-c^2)*a^2-(b^4-c^4)*(b^2-c^2)*(b^4-4*b^2*c^2+c^4) : :

X(50389) lies on the cubic K038 and these lines: {3, 639}, {6563, 14325}

X(50389) = inverse of X(44196) in circumcircle


X(50390) = RADICAL TRACE {CIRCUMCIRCLE, YFF CONTACT CIRCLE}

Barycentrics    2*a^12-6*(b+c)*a^11+(5*b^2+16*b*c+5*c^2)*a^10+(b+c)*(b^2-10*b*c+c^2)*a^9-(b^2+c^2)*(b^2+13*b*c+c^2)*a^8-(b+c)*(5*b^4+5*c^4-22*b*c*(b^2+c^2))*a^7+(4*b^6+4*c^6+(7*b^4+7*c^4-b*c*(43*b^2-6*b*c+43*c^2))*b*c)*a^6+(b+c)*(6*b^6+6*c^6-b*c*(36*b^2-5*b*c+36*c^2)*(b-c)^2)*a^5-(11*b^8+11*c^8-(26*b^6+26*c^6-(10*b^4+10*c^4+b*c*(31*b^2-48*b*c+31*c^2))*b*c)*b*c)*a^4+(b^2-c^2)*(b-c)*(5*b^6+5*c^6-b^2*c^2*(7*b^2-16*b*c+7*c^2))*a^3+(b^8+c^8-(3*b^4+3*c^4+4*b*c*(b^2-b*c+c^2))*(b^2-b*c+c^2)*b*c)*(b-c)^2*a^2-(b^3+c^3)*(b-c)^4*(b^4+c^4+3*b*c*(b^2+c^2))*a+(b^2-c^2)^2*(b-c)^2*b*c*(b^2-b*c+c^2)^2 : :

X(50390) lies on these lines: {3, 5592}, {2183, 3006}


X(50391) = X(2)X(3)∩X(1724)X(49734)

Barycentrics    4*a^4 + 2*a^3*b + a^2*b^2 + 2*a*b^3 - b^4 + 2*a^3*c + 4*a^2*b*c + 4*a*b^2*c + 2*b^3*c + a^2*c^2 + 4*a*b*c^2 + 6*b^2*c^2 + 2*a*c^3 + 2*b*c^3 - c^4 : :
X(50391) = 3 X[2] - 5 X[964], 6 X[2] - 5 X[13728], 9 X[2] - 5 X[17676], 9 X[2] - 10 X[50318], 7 X[2] - 5 X[50321], 3 X[2] + 5 X[50322], 4 X[2] - 5 X[50323], 3 X[964] - X[17676], 3 X[964] - 2 X[50318], 7 X[964] - 3 X[50321], 4 X[964] - 3 X[50323], 3 X[13728] - 2 X[17676], 3 X[13728] - 4 X[50318], 7 X[13728] - 6 X[50321], X[13728] + 2 X[50322], 2 X[13728] - 3 X[50323], 7 X[17676] - 9 X[50321], X[17676] + 3 X[50322], 4 X[17676] - 9 X[50323], 14 X[50318] - 9 X[50321], 2 X[50318] + 3 X[50322], 8 X[50318] - 9 X[50323], 3 X[50321] + 7 X[50322], 4 X[50321] - 7 X[50323], 4 X[50322] + 3 X[50323]

X(50391) lies on these lines: {2, 3}, {1724, 49734}, {3629, 3632}, {5716, 50044}, {9657, 48803}, {18907, 26035}, {18990, 24552}, {28619, 48846}, {48863, 49745}

X(50391) = midpoint of X(964) and X(50322)
X(50391) = reflection of X(i) in X(j) for these {i,j}: {13728, 964}, {17676, 50318}
X(50391) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {964, 13728, 50323}, {964, 17676, 50318}, {2049, 6872, 13745}, {3146, 37037, 50056}, {3627, 50059, 5051}, {4202, 50172, 50240}, {11319, 50171, 8728}, {17676, 50318, 13728}, {17697, 48816, 17529}, {19281, 50168, 30810}


X(50392) = X(658)X(14543)∩X(4573)X(4626)

Barycentrics    (a-b) (a-c) (a+b-c)^3 (a-b+c)^3 (a^2-2 a b+b^2-2 a c-2 b c-3 c^2) (a^2-2 a b-3 b^2-2 a c-2 b c+c^2) : :

See Ercole Suppa, euclid 5164.

X(50392) lies on these lines: {658,14543}, {4573,4626}

X(50392) = X(i)-isoconjugate of X(j) for these (i,j): (657,3601), (3063,20007), (3601,657), (4130,4252), (4252,4130), (5273,8641)
X(50392) = X(i)-reciprocal conjugate of X(j) for these {i,j}: {658,5273}, {664,20007}, {934,3601}, {4626,3945}, {5665,3900}
X(50392) = barycentric product X(i)*X(j) for these (i,j): (4569,5665), (4626,43533)
X(50392) = barycentric quotient X(i)/X(j) for these {i,j}: {658,5273}, {664,20007}, {934,3601}, {4626,3945}, {5665,3900}
X(50392) = trilinear product X(i)*X(j) for these (i,j): (658,5665), (4617,43533)
X(50392) = trilinear quotient X(i)/X(j) for these (i,j): (658,3601), (4554,20007), (4569,5273), (4617,4252), (5665,657)
X(50392) = trilinear pole of the line: {7, 950}


X(50393) = X(2)X(3)∩X(518)X(3619)

Barycentrics    a^4 - 4*a^2*b^2 + 3*b^4 - 14*a^2*b*c - 14*a*b^2*c - 4*a^2*c^2 - 14*a*b*c^2 - 6*b^2*c^2 + 3*c^4 : :
X(50393) = 6 X[2] + X[377], 9 X[2] - 2 X[405], 15 X[2] - X[6872], 3 X[2] + 4 X[8728], 8 X[2] - X[31156], 12 X[2] - 5 X[31259], 27 X[2] + X[31295], 5 X[2] + 2 X[44217], 11 X[2] - 4 X[50202], 15 X[2] - 8 X[50205], 3 X[2] - 10 X[50207], 9 X[2] + 5 X[50237], 27 X[2] + 8 X[50238], 33 X[2] + 2 X[50239], 45 X[2] + 4 X[50240], 39 X[2] - 4 X[50241], 51 X[2] - 2 X[50242], 57 X[2] - 8 X[50243], 36 X[2] - X[50244], 5 X[3] + 2 X[44286], 3 X[377] + 4 X[405], 5 X[377] + 2 X[6872], X[377] - 8 X[8728], 4 X[377] + 3 X[31156], 2 X[377] + 5 X[31259], 9 X[377] - 2 X[31295], 5 X[377] - 12 X[44217], 11 X[377] + 24 X[50202], 5 X[377] + 16 X[50205], X[377] + 20 X[50207], 3 X[377] - 10 X[50237], 9 X[377] - 16 X[50238], 11 X[377] - 4 X[50239], 15 X[377] - 8 X[50240], 13 X[377] + 8 X[50241], 17 X[377] + 4 X[50242], 19 X[377] + 16 X[50243], 6 X[377] + X[50244], 10 X[405] - 3 X[6872], X[405] + 6 X[8728], 16 X[405] - 9 X[31156], 8 X[405] - 15 X[31259], 6 X[405] + X[31295], 5 X[405] + 9 X[44217], 11 X[405] - 18 X[50202], 5 X[405] - 12 X[50205], X[405] - 15 X[50207], 2 X[405] + 5 X[50237], 3 X[405] + 4 X[50238], 11 X[405] + 3 X[50239], 5 X[405] + 2 X[50240], 13 X[405] - 6 X[50241], 17 X[405] - 3 X[50242], 19 X[405] - 12 X[50243], 8 X[405] - X[50244], 5 X[631] + 2 X[44229], 5 X[1656] + 2 X[44222], 5 X[3091] + 2 X[37426], 8 X[3628] - X[37234], 5 X[5071] + 2 X[44284], X[6872] + 20 X[8728], 8 X[6872] - 15 X[31156], 4 X[6872] - 25 X[31259], 9 X[6872] + 5 X[31295], X[6872] + 6 X[44217], 11 X[6872] - 60 X[50202], X[6872] - 8 X[50205], X[6872] - 50 X[50207], 3 X[6872] + 25 X[50237], 9 X[6872] + 40 X[50238], 11 X[6872] + 10 X[50239], 3 X[6872] + 4 X[50240], 13 X[6872] - 20 X[50241], 17 X[6872] - 10 X[50242], 19 X[6872] - 40 X[50243], 12 X[6872] - 5 X[50244], 32 X[8728] + 3 X[31156], 16 X[8728] + 5 X[31259], 36 X[8728] - X[31295], 10 X[8728] - 3 X[44217], 11 X[8728] + 3 X[50202], 5 X[8728] + 2 X[50205], 2 X[8728] + 5 X[50207], 12 X[8728] - 5 X[50237], 9 X[8728] - 2 X[50238], 22 X[8728] - X[50239], 15 X[8728] - X[50240], 13 X[8728] + X[50241], 34 X[8728] + X[50242], 19 X[8728] + 2 X[50243], and many others

X(50393) lies on these lines: {2, 3}, {518, 3619}, {3193, 25878}, {3306, 3634}, {3434, 41859}, {3824, 31018}, {3871, 40333}, {4855, 19862}, {5435, 10404}, {5714, 35595}, {6734, 20195}, {8164, 46932}, {10584, 34595}, {11523, 41867}, {12620, 26015}, {26131, 37650}

X(50393) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 377, 31259}, {2, 2475, 17552}, {2, 3091, 17534}, {2, 4197, 2478}, {2, 4208, 5047}, {2, 5177, 17536}, {2, 5187, 16853}, {2, 6871, 16842}, {2, 6872, 50205}, {2, 6919, 17546}, {2, 8728, 377}, {2, 17582, 6921}, {2, 37436, 21}, {2, 37462, 6910}, {2, 50237, 405}, {140, 6877, 6860}, {377, 405, 50244}, {377, 31259, 31156}, {405, 8728, 50237}, {405, 44217, 50240}, {405, 50237, 377}, {405, 50238, 31295}, {405, 50240, 6872}, {405, 50244, 31156}, {442, 16853, 5187}, {4197, 17536, 5177}, {4208, 20835, 377}, {5177, 17536, 2478}, {6872, 44217, 377}, {6991, 37407, 10431}, {8728, 37270, 37436}, {8728, 50205, 44217}, {8728, 50207, 2}, {31259, 50244, 405}, {31295, 50237, 50238}, {31295, 50238, 377}, {44217, 50205, 6872}, {50205, 50240, 405}


X(50394) = X(2)X(3)∩X(518)X(3634)

Barycentrics    2*a^4 - 5*a^2*b^2 + 3*b^4 - 16*a^2*b*c - 16*a*b^2*c - 5*a^2*c^2 - 16*a*b*c^2 - 6*b^2*c^2 + 3*c^4 : :
X(50394) = 15 X[2] + X[377], 9 X[2] - X[405], 33 X[2] - X[6872], 3 X[2] + X[8728], 17 X[2] - X[31156], 21 X[2] - 5 X[31259], 63 X[2] + X[31295], 7 X[2] + X[44217], 5 X[2] - X[50202], 3 X[2] + 5 X[50207], 27 X[2] + 5 X[50237], 9 X[2] + X[50238], 39 X[2] + X[50239], 27 X[2] + X[50240], 21 X[2] - X[50241], 57 X[2] - X[50242], 15 X[2] - X[50243], 81 X[2] - X[50244], 3 X[377] + 5 X[405], 11 X[377] + 5 X[6872], X[377] - 5 X[8728], 17 X[377] + 15 X[31156], 7 X[377] + 25 X[31259], 21 X[377] - 5 X[31295], 7 X[377] - 15 X[44217], X[377] + 3 X[50202], X[377] + 5 X[50205], X[377] - 25 X[50207], 9 X[377] - 25 X[50237], 3 X[377] - 5 X[50238], 13 X[377] - 5 X[50239], 9 X[377] - 5 X[50240], 7 X[377] + 5 X[50241], 19 X[377] + 5 X[50242], 27 X[377] + 5 X[50244], 11 X[405] - 3 X[6872], X[405] + 3 X[8728], 17 X[405] - 9 X[31156], 7 X[405] - 15 X[31259], 7 X[405] + X[31295], 7 X[405] + 9 X[44217], 5 X[405] - 9 X[50202], X[405] - 3 X[50205], X[405] + 15 X[50207], 3 X[405] + 5 X[50237], 13 X[405] + 3 X[50239], 3 X[405] + X[50240], 7 X[405] - 3 X[50241], 19 X[405] - 3 X[50242], 5 X[405] - 3 X[50243], 9 X[405] - X[50244], 7 X[3090] + X[37426], 7 X[3526] + X[44229], X[6872] + 11 X[8728], 17 X[6872] - 33 X[31156], 7 X[6872] - 55 X[31259], 21 X[6872] + 11 X[31295], 7 X[6872] + 33 X[44217], 5 X[6872] - 33 X[50202], X[6872] - 11 X[50205], X[6872] + 55 X[50207], 9 X[6872] + 55 X[50237], 3 X[6872] + 11 X[50238], 13 X[6872] + 11 X[50239], 9 X[6872] + 11 X[50240], 7 X[6872] - 11 X[50241], 19 X[6872] - 11 X[50242], 5 X[6872] - 11 X[50243], 27 X[6872] - 11 X[50244], 17 X[8728] + 3 X[31156], 7 X[8728] + 5 X[31259], 21 X[8728] - X[31295], 7 X[8728] - 3 X[44217], 5 X[8728] + 3 X[50202], X[8728] - 5 X[50207], 9 X[8728] - 5 X[50237], 3 X[8728] - X[50238], 13 X[8728] - X[50239], 9 X[8728] - X[50240], 7 X[8728] + X[50241], 19 X[8728] + X[50242], 5 X[8728] + X[50243], 27 X[8728] + X[50244], 7 X[14869] + X[44286], 7 X[15703] + X[44284], 21 X[31156] - 85 X[31259], 63 X[31156] + 17 X[31295], 7 X[31156] + 17 X[44217], 5 X[31156] - 17 X[50202], 3 X[31156] - 17 X[50205], 3 X[31156] + 85 X[50207], and many others

X(50394) lies on these lines: {2, 3}, {518, 3634}, {3579, 38204}, {3646, 38034}, {3824, 6666}, {3826, 8715}, {3925, 15172}, {5534, 38042}, {5709, 38171}, {5791, 20195}, {5812, 38113}, {6147, 41867}, {6260, 38318}, {6668, 6692}, {10404, 31231}, {15171, 41859}, {18139, 49718}, {19872, 41229}, {22793, 38059}, {31420, 38025}, {31446, 38093}

X(50394) = midpoint of X(i) and X(j) for these {i,j}: {377, 50243}, {405, 50238}, {8728, 50205}
X(50394) = complement of X(50205)
X(50394) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4197, 17590}, {2, 6856, 16855}, {2, 6933, 16856}, {2, 8728, 50205}, {2, 16863, 632}, {2, 17529, 6675}, {2, 31254, 17575}, {2, 50207, 8728}, {5, 549, 6851}, {140, 547, 37356}, {377, 50202, 50243}, {405, 8728, 50238}, {405, 31295, 50241}, {405, 44217, 31295}, {405, 50237, 50240}, {632, 6911, 140}, {1656, 6908, 5}, {4208, 16857, 3627}, {6933, 16856, 17527}, {8728, 50202, 377}, {8728, 50240, 50237}, {8728, 50241, 44217}, {17536, 36003, 405}, {31259, 31295, 405}, {31259, 44217, 50241}, {50205, 50238, 405}, {50205, 50243, 50202}, {50237, 50240, 50238}


X(50395) = X(2)X(3)∩X(518)X(3828)

Barycentrics    2*a^4 - 7*a^2*b^2 + 5*b^4 - 24*a^2*b*c - 24*a*b^2*c - 7*a^2*c^2 - 24*a*b*c^2 - 10*b^2*c^2 + 5*c^4 : :
X(50395) = 7 X[2] + X[377], 5 X[2] - X[405], 17 X[2] - X[6872], 9 X[2] - X[31156], 13 X[2] - 5 X[31259], 31 X[2] + X[31295], 3 X[2] + X[44217], X[2] - 5 X[50207], 11 X[2] + 5 X[50237], 4 X[2] + X[50238], 19 X[2] + X[50239], 13 X[2] + X[50240], 11 X[2] - X[50241], 29 X[2] - X[50242], 8 X[2] - X[50243], 41 X[2] - X[50244], 5 X[377] + 7 X[405], 17 X[377] + 7 X[6872], X[377] - 7 X[8728], 9 X[377] + 7 X[31156], 13 X[377] + 35 X[31259], 31 X[377] - 7 X[31295], 3 X[377] - 7 X[44217], 3 X[377] + 7 X[50202], 2 X[377] + 7 X[50205], X[377] + 35 X[50207], 11 X[377] - 35 X[50237], 4 X[377] - 7 X[50238], 19 X[377] - 7 X[50239], 13 X[377] - 7 X[50240], 11 X[377] + 7 X[50241], 29 X[377] + 7 X[50242], 8 X[377] + 7 X[50243], 41 X[377] + 7 X[50244], 17 X[405] - 5 X[6872], X[405] + 5 X[8728], 9 X[405] - 5 X[31156], 13 X[405] - 25 X[31259], 31 X[405] + 5 X[31295], 3 X[405] + 5 X[44217], 3 X[405] - 5 X[50202], 2 X[405] - 5 X[50205], X[405] - 25 X[50207], 11 X[405] + 25 X[50237], 4 X[405] + 5 X[50238], 19 X[405] + 5 X[50239], 13 X[405] + 5 X[50240], 11 X[405] - 5 X[50241], 29 X[405] - 5 X[50242], 8 X[405] - 5 X[50243], 41 X[405] - 5 X[50244], 3 X[3545] + X[37426], 3 X[5054] + X[44229], 3 X[5055] + X[44284], X[6872] + 17 X[8728], and many others

X(50395) lies on these lines: {2, 3}, {518, 3828}, {3017, 17245}, {3058, 41859}, {3634, 34753}, {3925, 15170}, {4973, 5302}, {5325, 24470}, {5550, 18530}, {8583, 38022}, {10156, 10172}, {10171, 33575}, {11544, 41862}, {18527, 19862}, {24789, 50069}, {26446, 38036}

X(50395) = midpoint of X(i) and X(j) for these {i,j}: {2, 8728}, {44217, 50202}
X(50395) = reflection of X(50205) in X(2)
X(50395) = complement of X(50202)
X(50395) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3545, 16853}, {2, 16408, 11539}, {2, 17582, 5054}, {2, 37436, 17561}, {2, 44217, 50202}, {8728, 50202, 44217}, {8728, 50205, 50238}, {8728, 50241, 50237}, {50205, 50238, 50243}


X(50396) = X(2)X(3)∩X(518)X(3919)

Barycentrics    4*a^4 + a^2*b^2 - 5*b^4 + 12*a^2*b*c + 12*a*b^2*c + a^2*c^2 + 12*a*b*c^2 + 10*b^2*c^2 - 5*c^4 : :
X(50396) = X[2] + 3 X[377], 5 X[2] - 3 X[405], 11 X[2] - 3 X[6872], 2 X[2] - 3 X[8728], 7 X[2] - 3 X[31156], 19 X[2] - 15 X[31259], 13 X[2] + 3 X[31295], X[2] - 3 X[44217], 4 X[2] - 3 X[50202], 7 X[2] - 6 X[50205], 13 X[2] - 15 X[50207], 7 X[2] - 15 X[50237], X[2] - 6 X[50238], 7 X[2] + 3 X[50239], 4 X[2] + 3 X[50240], 8 X[2] - 3 X[50241], 17 X[2] - 3 X[50242], 13 X[2] - 6 X[50243], 23 X[2] - 3 X[50244], 5 X[377] + X[405], 11 X[377] + X[6872], 2 X[377] + X[8728], 7 X[377] + X[31156], 19 X[377] + 5 X[31259], 13 X[377] - X[31295], 4 X[377] + X[50202], 7 X[377] + 2 X[50205], 13 X[377] + 5 X[50207], 7 X[377] + 5 X[50237], X[377] + 2 X[50238], 7 X[377] - X[50239], 4 X[377] - X[50240], 8 X[377] + X[50241], 17 X[377] + X[50242], 13 X[377] + 2 X[50243], 23 X[377] + X[50244], 11 X[405] - 5 X[6872], 2 X[405] - 5 X[8728], 7 X[405] - 5 X[31156], 19 X[405] - 25 X[31259], 13 X[405] + 5 X[31295], X[405] - 5 X[44217], 4 X[405] - 5 X[50202], 7 X[405] - 10 X[50205], 13 X[405] - 25 X[50207], 7 X[405] - 25 X[50237], X[405] - 10 X[50238], 7 X[405] + 5 X[50239], 4 X[405] + 5 X[50240], 8 X[405] - 5 X[50241], 17 X[405] - 5 X[50242], 13 X[405] - 10 X[50243], 23 X[405] - 5 X[50244], X[3534] - 3 X[44284], X[3830] - 3 X[44229], and many others

X(50396) lies on these lines: {2, 3}, {495, 49732}, {518, 3919}, {3679, 5586}, {3828, 5302}, {5288, 5434}, {9945, 25525}, {10543, 41862}, {11024, 38074}, {12751, 38202}, {15935, 27186}, {17614, 38022}, {23536, 48820}, {23537, 50069}, {37631, 48847}, {48835, 49730}, {48845, 50226}, {48857, 49743}, {48861, 49744}

X(50396) = midpoint of X(i) and X(j) for these {i,j}: {377, 44217}, {3679, 10404}, {31156, 50239}, {50202, 50240}
X(50396) = reflection of X(i) in X(j) for these {i,j}: {5302, 3828}, {8728, 44217}, {31156, 50205}, {44217, 50238}, {50202, 8728}, {50241, 50202}
X(50396) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3534, 15673}, {2, 11001, 16418}, {2, 11112, 8703}, {2, 15679, 11113}, {2, 16371, 11812}, {2, 17532, 5066}, {2, 17579, 17525}, {2, 37299, 15675}, {377, 8728, 50240}, {377, 50237, 50239}, {377, 50238, 8728}, {8728, 50240, 50241}, {11113, 15679, 33699}, {17525, 17579, 19710}, {17561, 37435, 15681}, {17679, 50169, 48815}, {31295, 50207, 50243}, {50205, 50237, 8728}, {50237, 50239, 50205}


X(50397) = X(2)X(3)∩X(518)X(4677)

Barycentrics    5*a^4 - a^2*b^2 - 4*b^4 + 6*a^2*b*c + 6*a*b^2*c - a^2*c^2 + 6*a*b*c^2 + 8*b^2*c^2 - 4*c^4 : :
X(50397) = X[2] - 3 X[377], 4 X[2] - 3 X[405], 7 X[2] - 3 X[6872], 5 X[2] - 6 X[8728], 5 X[2] - 3 X[31156], 17 X[2] - 15 X[31259], 5 X[2] + 3 X[31295], 2 X[2] - 3 X[44217], 7 X[2] - 6 X[50202], 13 X[2] - 12 X[50205], 14 X[2] - 15 X[50207], 11 X[2] - 15 X[50237], 7 X[2] - 12 X[50238], 2 X[2] + 3 X[50239], X[2] + 6 X[50240], 11 X[2] - 6 X[50241], 10 X[2] - 3 X[50242], 19 X[2] - 12 X[50243], 13 X[2] - 3 X[50244], 4 X[377] - X[405], 7 X[377] - X[6872], 5 X[377] - 2 X[8728], 5 X[377] - X[31156], 17 X[377] - 5 X[31259], 5 X[377] + X[31295], 7 X[377] - 2 X[50202], 13 X[377] - 4 X[50205], 14 X[377] - 5 X[50207], 11 X[377] - 5 X[50237], 7 X[377] - 4 X[50238], 2 X[377] + X[50239], X[377] + 2 X[50240], 11 X[377] - 2 X[50241], 10 X[377] - X[50242], 19 X[377] - 4 X[50243], 13 X[377] - X[50244], 7 X[405] - 4 X[6872], 5 X[405] - 8 X[8728], 5 X[405] - 4 X[31156], 17 X[405] - 20 X[31259], 5 X[405] + 4 X[31295], 7 X[405] - 8 X[50202], 13 X[405] - 16 X[50205], 7 X[405] - 10 X[50207], 11 X[405] - 20 X[50237], 7 X[405] - 16 X[50238], X[405] + 2 X[50239], X[405] + 8 X[50240], 11 X[405] - 8 X[50241], 5 X[405] - 2 X[50242], 19 X[405] - 16 X[50243], 13 X[405] - 4 X[50244], 2 X[3534] - 3 X[37426], 2 X[3845] - 3 X[44229], 5 X[6872] - 14 X[8728], 5 X[6872] - 7 X[31156], 17 X[6872] - 35 X[31259], 5 X[6872] + 7 X[31295], 2 X[6872] - 7 X[44217], 13 X[6872] - 28 X[50205], 2 X[6872] - 5 X[50207], 11 X[6872] - 35 X[50237], X[6872] - 4 X[50238], 2 X[6872] + 7 X[50239], X[6872] + 14 X[50240], 11 X[6872] - 14 X[50241], 10 X[6872] - 7 X[50242], 19 X[6872] - 28 X[50243], 13 X[6872] - 7 X[50244], 2 X[8703] - 3 X[44284], 34 X[8728] - 25 X[31259], 2 X[8728] + X[31295], 4 X[8728] - 5 X[44217], 7 X[8728] - 5 X[50202], 13 X[8728] - 10 X[50205], 28 X[8728] - 25 X[50207], 22 X[8728] - 25 X[50237], 7 X[8728] - 10 X[50238], 4 X[8728] + 5 X[50239], X[8728] + 5 X[50240], 11 X[8728] - 5 X[50241], 4 X[8728] - X[50242], 19 X[8728] - 10 X[50243], 26 X[8728] - 5 X[50244], 2 X[12100] - 3 X[44222], 2 X[15673] - 3 X[44256], 5 X[19709] - 3 X[37234], 17 X[31156] - 25 X[31259], 2 X[31156] - 5 X[44217], and many others

X(50397) lies on these lines: {2, 3}, {518, 4677}, {519, 10404}, {553, 3419}, {1478, 49732}, {3695, 50045}, {4968, 48800}, {5250, 28202}, {5275, 11648}, {5300, 48804}, {5302, 19875}, {5687, 11237}, {7270, 50041}, {9776, 12690}, {11057, 16992}, {17000, 19569}, {17614, 38021}, {19701, 48836}, {19860, 28208}, {23536, 48824}, {23537, 50070}, {25055, 34706}, {31159, 40726}, {37631, 48837}, {48842, 49744}, {48857, 49745}

X(50397) = midpoint of X(i) and X(j) for these {i,j}: {31156, 31295}, {44217, 50239}
X(50397) = reflection of X(i) in X(j) for these {i,j}: {405, 44217}, {6872, 50202}, {31156, 8728}, {44217, 377}, {50202, 50238}, {50242, 31156}
X(50397) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3534, 16370}, {2, 3845, 17556}, {2, 11001, 17525}, {2, 13587, 15701}, {2, 15678, 16418}, {2, 15679, 3830}, {2, 15682, 11113}, {2, 17577, 19709}, {2, 17579, 3534}, {2, 19708, 37298}, {2, 41106, 17533}, {377, 6872, 50238}, {377, 31295, 8728}, {377, 50239, 405}, {377, 50240, 50239}, {1657, 4197, 19526}, {3534, 17528, 2}, {4208, 15683, 17561}, {6872, 50207, 405}, {6872, 50238, 50207}, {8728, 31295, 50242}, {8728, 50242, 405}, {10109, 17564, 2}, {11112, 17532, 16371}, {15685, 16418, 15678}, {16417, 19709, 2}, {16418, 37285, 16370}, {17528, 17579, 16370}, {17679, 50172, 11354}, {50239, 50242, 31295}


X(50398) = X(2)X(3)∩X(518)X(3622)

Barycentrics    5*a^4 - 6*a^2*b^2 + b^4 - 14*a^2*b*c - 14*a*b^2*c - 6*a^2*c^2 - 14*a*b*c^2 - 2*b^2*c^2 + c^4 : :
X(50398) = 9 X[2] - 2 X[377], 3 X[2] + 4 X[405], 6 X[2] + X[6872], 15 X[2] - 8 X[8728], 5 X[2] + 2 X[31156], 3 X[2] - 10 X[31259], 15 X[2] - X[31295], 11 X[2] - 4 X[44217], X[2] - 8 X[50202], 9 X[2] - 16 X[50205], 27 X[2] - 20 X[50207], 12 X[2] - 5 X[50237], 51 X[2] - 16 X[50238], 39 X[2] - 4 X[50239], 57 X[2] - 8 X[50240], 27 X[2] + 8 X[50241], 45 X[2] + 4 X[50242], 33 X[2] + 16 X[50243], 33 X[2] + 2 X[50244], X[377] + 6 X[405], 4 X[377] + 3 X[6872], 5 X[377] - 12 X[8728], 5 X[377] + 9 X[31156], X[377] - 15 X[31259], 10 X[377] - 3 X[31295], 11 X[377] - 18 X[44217], X[377] - 36 X[50202], X[377] - 8 X[50205], 3 X[377] - 10 X[50207], 8 X[377] - 15 X[50237], 17 X[377] - 24 X[50238], 13 X[377] - 6 X[50239], 19 X[377] - 12 X[50240], 3 X[377] + 4 X[50241], 5 X[377] + 2 X[50242], 11 X[377] + 24 X[50243], 11 X[377] + 3 X[50244], 8 X[405] - X[6872], 5 X[405] + 2 X[8728], 10 X[405] - 3 X[31156], 2 X[405] + 5 X[31259], 20 X[405] + X[31295], 11 X[405] + 3 X[44217], X[405] + 6 X[50202], 3 X[405] + 4 X[50205], 9 X[405] + 5 X[50207], 16 X[405] + 5 X[50237], 17 X[405] + 4 X[50238], 13 X[405] + X[50239], 19 X[405] + 2 X[50240], and many others

X(50398) lies on these lines: {2, 3}, {518, 3622}, {1125, 31018}, {3616, 27065}, {3935, 12521}, {4423, 10586}, {5251, 20076}, {5260, 10587}, {5265, 10404}, {5281, 46932}, {5284, 10529}, {5302, 46934}, {5550, 31053}, {5703, 35595}, {18230, 34772}, {19855, 20075}, {19861, 38059}, {20066, 40333}

X(50398) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 405, 6872}, {2, 5129, 5187}, {2, 6872, 50237}, {2, 15676, 3523}, {2, 15680, 37436}, {2, 16865, 4190}, {2, 17544, 452}, {2, 31295, 8728}, {21, 17552, 2}, {377, 31156, 50242}, {377, 31259, 50205}, {377, 50205, 2}, {377, 50242, 31295}, {405, 8728, 31156}, {405, 31259, 2}, {405, 44217, 50243}, {405, 50202, 31259}, {405, 50204, 21}, {405, 50205, 377}, {405, 50207, 50241}, {631, 17534, 2}, {5047, 16845, 2}, {6832, 6992, 6870}, {6857, 17536, 2}, {6910, 16842, 2}, {6921, 16853, 2}, {8728, 31156, 31295}, {8728, 50242, 377}, {15670, 16853, 6921}, {16418, 17590, 37462}, {17526, 37035, 2}, {17546, 17567, 2}, {17590, 37462, 2}, {31156, 31295, 6872}, {36003, 50203, 17572}, {44217, 50243, 50244}, {50205, 50241, 50207}, {50207, 50241, 377}


X(50399) = X(2)X(3)∩X(518)X(938)

Barycentrics    a^7 - a^6*b - a^5*b^2 + a^4*b^3 - a^3*b^4 + a^2*b^5 + a*b^6 - b^7 - a^6*c - 4*a^5*b*c - a^4*b^2*c + 4*a^3*b^3*c + a^2*b^4*c + b^6*c - a^5*c^2 - a^4*b*c^2 + 18*a^3*b^2*c^2 + 14*a^2*b^3*c^2 - a*b^4*c^2 + 3*b^5*c^2 + a^4*c^3 + 4*a^3*b*c^3 + 14*a^2*b^2*c^3 - 3*b^4*c^3 - a^3*c^4 + a^2*b*c^4 - a*b^2*c^4 - 3*b^3*c^4 + a^2*c^5 + 3*b^2*c^5 + a*c^6 + b*c^6 - c^7 : :

X(50399) lies on these lines: {2, 3}, {497, 25917}, {518, 938}, {1058, 20007}, {1210, 18250}, {1445, 12572}, {3434, 31435}, {3436, 21620}, {3646, 48482}, {4321, 5290}, {5302, 5704}, {5703, 25681}, {6735, 7160}, {12649, 34790}, {18228, 45120}, {26127, 27383}

X(50399) = anticomplement of X(50203)
X(50399) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 452, 6986}, {2, 2478, 6836}, {2, 6872, 37282}, {2, 6894, 443}, {2, 6919, 6828}, {2, 20846, 6921}, {4, 5084, 5129}, {4, 8728, 377}, {4, 37108, 6925}, {405, 50206, 2}, {3149, 17527, 2}, {4187, 16293, 2}, {5046, 37161, 4}, {6864, 17559, 2}, {14022, 19520, 6837}


X(50400) = X(2)X(3)∩X(518)X(1999)

Barycentrics    a^6 + a^5*b - a^2*b^4 - a*b^5 + a^5*c + a^4*b*c - 2*a^3*b^2*c - 2*a^2*b^3*c - a*b^4*c - b^5*c - 2*a^3*b*c^2 - 4*a^2*b^2*c^2 - 2*a^2*b*c^3 + 2*b^3*c^3 - a^2*c^4 - a*b*c^4 - a*c^5 - b*c^5 : :

X(50400) lies on these lines: {2, 3}, {63, 20171}, {238, 3914}, {518, 1999}, {572, 17182}, {1089, 11679}, {1746, 17185}, {2278, 31631}, {5135, 24703}, {5271, 17755}, {5745, 21065}, {5928, 27184}, {27064, 41260}

X(50400) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 7560, 11329}, {1889, 16353, 377}


X(50401) = X(2)X(3)∩X(74)X(512)

Barycentrics    a^2*(a^14*b^2 - 4*a^12*b^4 + 5*a^10*b^6 - 5*a^6*b^10 + 4*a^4*b^12 - a^2*b^14 + a^14*c^2 + a^10*b^4*c^2 - 7*a^8*b^6*c^2 + 3*a^6*b^8*c^2 + 2*a^4*b^10*c^2 + 3*a^2*b^12*c^2 - 3*b^14*c^2 - 4*a^12*c^4 + a^10*b^2*c^4 + 6*a^8*b^4*c^4 + 3*a^6*b^6*c^4 - 3*a^4*b^8*c^4 - 12*a^2*b^10*c^4 + 9*b^12*c^4 + 5*a^10*c^6 - 7*a^8*b^2*c^6 + 3*a^6*b^4*c^6 - 6*a^4*b^6*c^6 + 10*a^2*b^8*c^6 - 9*b^10*c^6 + 3*a^6*b^2*c^8 - 3*a^4*b^4*c^8 + 10*a^2*b^6*c^8 + 6*b^8*c^8 - 5*a^6*c^10 + 2*a^4*b^2*c^10 - 12*a^2*b^4*c^10 - 9*b^6*c^10 + 4*a^4*c^12 + 3*a^2*b^2*c^12 + 9*b^4*c^12 - a^2*c^14 - 3*b^2*c^14) : :
X(50401) = 3 X[186] - 2 X[237], 5 X[37952] - 4 X[44221], 3 X[38704] - 2 X[47079]

X(50401 )lies on these lines: {2, 3}, {74, 512}, {98, 477}, {111, 841}, {1294, 40118}, {1297, 32710}, {1300, 2697}, {2493, 47414}, {2693, 3563}, {2770, 43660}, {6000, 47213}, {9181, 43576}, {14979, 29011}, {34175, 40079}, {38704, 47079}, {39201, 47003}, {44468, 47427}

X(50401) = reflection of X(i) in X(j) for these {i,j}: {4, 36189}, {7464, 47620}, {7468, 3}
X(50401) = circumcircle-inverse of X(7422)
X(50401) = orthoptic-circle-of-Steiner-inellipse-inverse of X(3134)
X(50401) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 186, 37937}, {1113, 1114, 7422}, {5000, 5001, 7480}, {5002, 5003, 40049}, {5004, 5005, 7471}, {7418, 46585, 7422}, {36164, 36166, 7422}, {40894, 40895, 7482}, {42789, 42790, 7473}


X(50402) = X(2)X(3)∩X(105)X(477)

Barycentrics    a*(a^13*b - a^12*b^2 - 3*a^11*b^3 + 3*a^10*b^4 + 2*a^9*b^5 - 2*a^8*b^6 + 2*a^7*b^7 - 2*a^6*b^8 - 3*a^5*b^9 + 3*a^4*b^10 + a^3*b^11 - a^2*b^12 + a^13*c - 2*a^9*b^4*c - 2*a^7*b^6*c + 3*a^5*b^8*c + 2*a^3*b^10*c - 2*a*b^12*c - a^12*c^2 + 3*a^9*b^3*c^2 - a^8*b^4*c^2 - 2*a^7*b^5*c^2 + 4*a^6*b^6*c^2 - 2*a^5*b^7*c^2 - a^4*b^8*c^2 - 2*a^3*b^9*c^2 + 3*a*b^11*c^2 - b^12*c^2 - 3*a^11*c^3 + 3*a^9*b^2*c^3 + a^7*b^4*c^3 + a^5*b^6*c^3 - 6*a^3*b^8*c^3 + 4*a*b^10*c^3 + 3*a^10*c^4 - 2*a^9*b*c^4 - a^8*b^2*c^4 + a^7*b^3*c^4 - 2*a^6*b^4*c^4 + a^5*b^5*c^4 - 2*a^4*b^6*c^4 + 7*a^3*b^7*c^4 - a^2*b^8*c^4 - 7*a*b^9*c^4 + 3*b^10*c^4 + 2*a^9*c^5 - 2*a^7*b^2*c^5 + a^5*b^4*c^5 - 2*a^3*b^6*c^5 - 3*a*b^8*c^5 - 2*a^8*c^6 - 2*a^7*b*c^6 + 4*a^6*b^2*c^6 + a^5*b^3*c^6 - 2*a^4*b^4*c^6 - 2*a^3*b^5*c^6 + 4*a^2*b^6*c^6 + 5*a*b^7*c^6 - 2*b^8*c^6 + 2*a^7*c^7 - 2*a^5*b^2*c^7 + 7*a^3*b^4*c^7 + 5*a*b^6*c^7 - 2*a^6*c^8 + 3*a^5*b*c^8 - a^4*b^2*c^8 - 6*a^3*b^3*c^8 - a^2*b^4*c^8 - 3*a*b^5*c^8 - 2*b^6*c^8 - 3*a^5*c^9 - 2*a^3*b^2*c^9 - 7*a*b^4*c^9 + 3*a^4*c^10 + 2*a^3*b*c^10 + 4*a*b^3*c^10 + 3*b^4*c^10 + a^3*c^11 + 3*a*b^2*c^11 - a^2*c^12 - 2*a*b*c^12 - b^2*c^12) :
: Barycentrics    a*((b+c)*a^13-(b^2+c^2)*a^12-3*(b^3+c^3)*a^11+3*(b^4+c^4)*a^10+(b+c)*(2*b^4+2*c^4-b*c*(4*b^2-7*b*c+4*c^2))*a^9-(b^2+c^2)*(2*b^4-b^2*c^2+2*c^4)*a^8+(b+c)*(2*b^6+2*c^6-(4*b^4+4*c^4-b*c*(2*b^2-b*c+2*c^2))*b*c)*a^7-2*(b^8+c^8-b^2*c^2*(2*b^4-b^2*c^2+2*c^4))*a^6-(b^3+c^3)*(b-c)^2*(3*b^4+3*c^4+b*c*(3*b^2+5*b*c+3*c^2))*a^5+(b^4-c^4)*(b^2-c^2)*(3*b^4+2*b^2*c^2+3*c^4)*a^4+(b^2-c^2)*(b-c)*(b^8+c^8+(b^2+c^2)*(3*b^4+3*c^4+b*c*(2*b-c)*(b-2*c))*b*c)*a^3-(b^8+c^8+2*b^2*c^2*(b^2+c^2)^2)*(b^2-c^2)^2*a^2-(b^3-c^3)*b*c*(b^2-c^2)^3*(2*b^2-3*b*c+2*c^2)*a-(b^4-c^4)*(b^2-c^2)^3*b^2*c^2) : :

X(50402) lies on these lines: {2, 3}, {74, 2752}, {98, 2687}, {104, 842}, {105, 477}, {841, 9061}, {915, 2697}, {1295, 40118}, {2693, 15344}, {2694, 3563}, {26703, 32710}

X(50402) = reflection of X(i) in X(j) for these {i,j}: {4, 37986}, {7475, 3}
X(50402) = circumcircle-inverse of X(7425)
X(50402) = orthoptic-circle-of-Steiner-inellipe-inverse of X(3139)
X(50402) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 186, 37965}, {1113, 1114, 7425}, {5000, 5001, 37966}, {5004, 5005, 7477}, {7418, 14127, 7425}, {7422, 7427, 7425}, {7423, 7429, 7425}, {36166, 46618, 7425}, {42789, 42790, 7476}, {46585, 46586, 7425}


X(50403) = X(2)X(3)∩X(109)X(476)

Barycentrics    (a - b)*(a + b)*(a - c)*(a + c)*(2*a^8 - a^7*b - 2*a^6*b^2 + a^5*b^3 - a^4*b^4 + a^3*b^5 - a*b^7 + b^8 - a^7*c + 2*a^6*b*c - a^4*b^3*c - a^2*b^5*c + a*b^6*c - 2*a^6*c^2 + 4*a^4*b^2*c^2 - a^3*b^3*c^2 + 3*a*b^5*c^2 - 4*b^6*c^2 + a^5*c^3 - a^4*b*c^3 - a^3*b^2*c^3 + 2*a^2*b^3*c^3 - 3*a*b^4*c^3 - a^4*c^4 - 3*a*b^3*c^4 + 6*b^4*c^4 + a^3*c^5 - a^2*b*c^5 + 3*a*b^2*c^5 + a*b*c^6 - 4*b^2*c^6 - a*c^7 + c^8) : :

X(50403) lies on these lines: {2, 3}, {109, 476}, {110, 522}, {523, 14544}, {691, 9056}, {1291, 26709}, {1304, 41906}, {3233, 7253}, {10420, 26704}

X(50403) = circumcircle-inverse of X(7450)
X(50403) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1113, 1114, 7450}, {7471, 7477, 7479}


X(50404) = X(2)X(3)∩X(7)X(109)

Barycentrics    2*a^6 - a^5*b + 2*a^3*b^3 - 2*a^2*b^4 - a*b^5 - a^5*c + a^3*b^2*c + a^2*b^3*c - b^5*c + a^3*b*c^2 + 2*a^2*b^2*c^2 + a*b^3*c^2 + 2*a^3*c^3 + a^2*b*c^3 + a*b^2*c^3 + 2*b^3*c^3 - 2*a^2*c^4 - a*c^5 - b*c^5 : :

X(50404) lies on these lines: {2, 3}, {7, 109}, {63, 17165}, {100, 27514}, {103, 9056}, {595, 4295}, {1071, 39572}, {3011, 4292}, {3060, 19742}, {3796, 19684}, {3868, 20045}, {4304, 29639}, {5012, 19717}, {5208, 37639}, {5249, 26230}, {5273, 33166}, {5278, 33586}, {8822, 37670}, {9085, 41906}, {9965, 26245}, {10444, 35258}, {14544, 18161}, {15080, 19740}, {16992, 42697}, {20347, 26236}, {24553, 35260}, {25000, 32269}, {29828, 31424}

X(50404) = anticomplement of X(37330)
X(50404) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 23, 36007}, {468, 37050, 2}, {4224, 7413, 2}, {5004, 5005, 7420}, {7465, 7474, 2}, {21554, 33849, 2}


X(50405) = X(308)X(393)∩X(10002)X(10548)

Barycentrics    (3*(b^2+c^2)*a^4-2*(3*b^4+4*b^2*c^2+3*c^4)*a^2+(b^2+c^2)*(3*b^4-2*b^2*c^2+3*c^4))*(a^2+c^2)*(a^2-b^2+c^2)^2*(a^2+b^2)*(a^2+b^2-c^2)^2 : :
Barycentrics    SB^2 SC^2 (SB+SW) (SC+SW) (S^2 (-3 SA-SW)+2 SA^2 SW) : :

See Antreas Hatzipolakis and Ercole Suppa, euclid 5167.

X(50405) lies on these lines: {308,393}, {10002,10548}


X(50406) = X(264)X(9465)∩X(308)X(393)

Barycentrics    (a^2+b^2) (a^2+b^2-c^2) (a^2+c^2) (a^2-b^2+c^2) (a^4 b^2-b^6+a^4 c^2-4 a^2 b^2 c^2+5 b^4 c^2+5 b^2 c^4-c^6) : :
Barycentrics    SB SC (SB+SW) (SC+SW) (4 S^2 (3 R^2-SW)-SA (3 SA-SW) SW) : :

See Antreas Hatzipolakis and Ercole Suppa, euclid 5167.

X(50406) lies on these lines: {2,21459}, {69,10549}, {83,40138}, {193,10550}, {264,9465}, {308,393}, {1249,18092}, {9308,17500}, {16890,32000}, {32085,43981}


X(50407) = X(2)X(3)∩X(10)X(48870)

Barycentrics    5*a^4 + 6*a^3*b + 8*a^2*b^2 + 6*a*b^3 - b^4 + 6*a^3*c + 18*a^2*b*c + 18*a*b^2*c + 6*b^3*c + 8*a^2*c^2 + 18*a*b*c^2 + 14*b^2*c^2 + 6*a*c^3 + 6*b*c^3 - c^4 : :
X(50407) = 4 X[2049] - X[13725]

X(50407) lies on thesse lines: {2, 3}, {10, 48870}, {69, 49744}, {345, 50053}, {1992, 3679}, {17303, 50051}, {17321, 50066}, {19701, 49739}, {19766, 48842}, {28606, 50045}, {30699, 50069}, {31993, 50070}, {43531, 48857}, {48869, 50291}

X(50407) = reflection of X(i) in X(j) for these {i,j}: {2, 2049}, {13725, 2}
X(50407) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4195, 17561}, {2, 10304, 19270}, {2, 50171, 48813}, {964, 37153, 13742}, {16903, 33251, 2}, {19277, 37150, 2}, {44217, 50323, 2}, {50169, 50323, 44217}


X(50408) = X(2)X(3)∩X(8)X(193)

Barycentrics    3*a^4 + 2*a^3*b + 2*a^2*b^2 + 2*a*b^3 - b^4 + 2*a^3*c + 6*a^2*b*c + 6*a*b^2*c + 2*b^3*c + 2*a^2*c^2 + 6*a*b*c^2 + 6*b^2*c^2 + 2*a*c^3 + 2*b*c^3 - c^4 : :
X(50408) = 3 X[2] - 4 X[2049]

X(50408) lies on thesse lines: {1, 30699}, {2, 3}, {6, 49734}, {8, 193}, {10, 1707}, {69, 49745}, {75, 5716}, {145, 3902}, {314, 3945}, {321, 20009}, {345, 50054}, {388, 5263}, {391, 4274}, {950, 10436}, {1043, 5712}, {1220, 2550}, {2292, 24280}, {2345, 7270}, {2899, 5268}, {3600, 10475}, {3616, 23536}, {3617, 5300}, {3622, 33155}, {3757, 4339}, {4299, 19863}, {4300, 19860}, {4340, 10449}, {4357, 9579}, {5016, 19822}, {5250, 12717}, {5266, 26245}, {5698, 31359}, {5731, 35635}, {5836, 37516}, {5921, 46483}, {9710, 48832}, {10454, 10455}, {11160, 50234}, {11518, 50116}, {14534, 37666}, {14552, 20077}, {17140, 36579}, {17303, 50050}, {17321, 50065}, {19684, 19783}, {19766, 43531}, {20880, 44735}, {25242, 31087}, {28620, 48841}, {32815, 50175}, {34258, 45784}, {37549, 42697}

X(50408) = reflection of X(13725) in X(2049)
X(50408) = anticomplement of X(13725)
{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3146, 26117}, {2, 3522, 19278}, {2, 4190, 37339}, {2, 6872, 13736}, {2, 31295, 17676}, {2, 33244, 17689}, {2, 37435, 4201}, {2, 50322, 6872}, {4, 1010, 2}, {377, 964, 2}, {377, 37314, 17680}, {382, 19277, 4205}, {405, 37153, 2}, {405, 37425, 37175}, {405, 50169, 37153}, {405, 50391, 48817}, {442, 16394, 37176}, {442, 37176, 2}, {443, 13740, 2}, {964, 17686, 17697}, {964, 50171, 377}, {2049, 13725, 2}, {2475, 6872, 6994}, {2478, 16454, 2}, {4195, 26051, 2}, {4197, 17526, 2}, {5192, 37462, 2}, {8728, 11354, 13742}, {8728, 13742, 2}, {11103, 37155, 4194}, {11114, 14005, 37314}, {13728, 50239, 48813}, {13740, 48816, 443}, {13741, 17582, 2}, {14005, 37314, 2}, {16062, 37037, 2}, {17676, 50172, 31295}, {17688, 33028, 2}, {24570, 47510, 2}, {25519, 37154, 2}, {33026, 33821, 2}, {37153, 48817, 405}, {43531, 48837, 19766}, {48817, 50169, 2}, {50169, 50391, 405}, {50240, 50318, 11359}


X(50409) = X(2)X(3)∩X(10)X(48847)

Barycentrics    4*a^3*b + 7*a^2*b^2 + 4*a*b^3 + b^4 + 4*a^3*c + 12*a^2*b*c + 12*a*b^2*c + 4*b^3*c + 7*a^2*c^2 + 12*a*b*c^2 + 6*b^2*c^2 + 4*a*c^3 + 4*b*c^3 + c^4 : :
X(50409) = 3 X[2] + X[13725]

X(50409) lies on these lines: {2, 3}, {10, 48847}, {58, 17398}, {141, 1125}, {386, 1213}, {496, 19863}, {1353, 25898}, {1698, 37715}, {3295, 19866}, {3624, 37554}, {3634, 48843}, {3666, 19857}, {3828, 48845}, {3846, 19862}, {4026, 19858}, {4260, 5044}, {4357, 6147}, {5224, 41014}, {5263, 10386}, {5550, 18139}, {5750, 31445}, {8040, 14815}, {10436, 24470}, {11246, 41812}, {17325, 24159}, {17392, 28620}, {17717, 34595}, {19684, 49716}, {19701, 49743}, {19856, 37573}, {25512, 37609}, {28606, 50042}, {31993, 50067}, {43531, 49728}, {48861, 49730}

X(50409) = midpoint of X(2049) and X(13725)
X(50409) = complement of X(2049)
X(50409) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 405, 50318}, {2, 443, 16456}, {2, 3552, 16899}, {2, 4201, 14007}, {2, 4205, 5}, {2, 11110, 17698}, {2, 13725, 2049}, {2, 13728, 8728}, {2, 16343, 6675}, {2, 16844, 50205}, {2, 16904, 7770}, {2, 19273, 140}, {2, 26117, 19280}, {2, 37039, 4205}, {3, 16846, 16848}, {405, 19266, 48930}, {964, 13745, 50241}, {4026, 19858, 31419}, {7824, 16902, 2}, {8728, 13728, 48815}, {11354, 13736, 50243}, {11359, 37153, 50238}, {17676, 50169, 50240}, {19280, 26117, 37150}, {26117, 37150, 3627}


X(50410) = X(2)X(3)∩X(551)X(599)

Barycentrics    a^4 - 6*a^3*b - 11*a^2*b^2 - 6*a*b^3 - 2*b^4 - 6*a^3*c - 18*a^2*b*c - 18*a*b^2*c - 6*b^3*c - 11*a^2*c^2 - 18*a*b*c^2 - 8*b^2*c^2 - 6*a*c^3 - 6*b*c^3 - 2*c^4 : :
X(50410) = X[2049] + 2 X[13725]

X(50410) lies on these lines: {2, 3}, {6, 49729}, {10, 48842}, {551, 599}, {3017, 5737}, {3679, 17592}, {3940, 17248}, {4653, 17327}, {10385, 19866}, {11238, 19863}, {17251, 50174}, {17303, 50053}, {17321, 50069}, {19684, 50215}, {19701, 49744}, {19722, 49723}, {19744, 48843}, {19766, 48861}, {19783, 49718}, {25498, 37817}, {28606, 50041}, {31993, 50066}, {48857, 49730}, {48870, 49728}

X(50410) = midpoint of X(2) and X(13725)
X(50410) = reflection of X(2049) in X(2)
X(50410) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 13745, 11354}, {2, 17561, 17698}, {2, 19270, 5054}, {2, 31156, 50323}, {2, 33187, 16903}, {2, 37038, 19277}, {2, 50321, 44217}, {13745, 50323, 31156}, {31156, 50323, 11354}, {44217, 50321, 11359}


X(50411) = X(2)X(3)∩X(239)X(1738)

Barycentrics    a^5 - a^3*b^2 - a^2*b^3 - 2*a*b^4 - b^5 + a^3*b*c + 2*a^2*b^2*c + a*b^3*c - 2*b^4*c - a^3*c^2 + 2*a^2*b*c^2 + 4*a*b^2*c^2 + b^3*c^2 - a^2*c^3 + a*b*c^3 + b^2*c^3 - 2*a*c^4 - 2*b*c^4 - c^5 : :

X(50411) lies on these lines: {2, 3}, {239, 1738}, {1654, 34283}, {1999, 23536}, {4440, 20432}, {6002, 25008}, {20533, 27272}, {20880, 26840}, {23537, 41251}, {24726, 41874}, {26035, 26044}, {26048, 26073}, {34284, 37653}

X(50411) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {379, 33840, 2}, {6656, 16054, 2}, {17670, 37086, 2}, {24610, 33841, 2}, {33833, 41236, 2}, {37096, 37233, 2}, {50200, 50319, 2}


X(50412) = X(2)X(3)∩X(31)X(306)

Barycentrics    a^6 + 3*a^5*b + 2*a^4*b^2 + a^2*b^4 + a*b^5 + 3*a^5*c + 4*a^4*b*c + a^3*b^2*c + a^2*b^3*c + 2*a*b^4*c + b^5*c + 2*a^4*c^2 + a^3*b*c^2 + 3*a*b^3*c^2 + 2*b^4*c^2 + a^2*b*c^3 + 3*a*b^2*c^3 + 2*b^3*c^3 + a^2*c^4 + 2*a*b*c^4 + 2*b^2*c^4 + a*c^5 + b*c^5 : :

X(50412) lies on these lines: {2, 3}, {6, 345}, {31, 306}, {321, 5336}, {894, 19684}, {1724, 3687}, {2268, 5294}, {2298, 17776}, {3187, 49492}, {3782, 17321}, {5278, 32779}, {11679, 37817}, {19757, 26626}, {27064, 27396}

X(50412) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3151, 33736}, {13740, 37265, 2}, {17526, 37419, 2}, {19542, 49128, 19645}


X(50413) = 75TH HATZIPOLAKIS-MOSES-EULER POINT

Barycentrics    16*a^18 - 58*a^16*b^2 + 67*a^14*b^4 - 10*a^12*b^6 - 21*a^10*b^8 + 6*a^8*b^10 - 31*a^6*b^12 + 58*a^4*b^14 - 31*a^2*b^16 + 4*b^18 - 58*a^16*c^2 + 196*a^14*b^2*c^2 - 180*a^12*b^4*c^2 - 31*a^10*b^6*c^2 + 83*a^8*b^8*c^2 + 26*a^6*b^10*c^2 - 90*a^4*b^12*c^2 + 73*a^2*b^14*c^2 - 19*b^16*c^2 + 67*a^14*c^4 - 180*a^12*b^2*c^4 + 192*a^10*b^4*c^4 - 29*a^8*b^6*c^4 - 95*a^6*b^8*c^4 - 6*a^4*b^10*c^4 + 19*b^14*c^4 - 10*a^12*c^6 - 31*a^10*b^2*c^6 - 29*a^8*b^4*c^6 + 150*a^6*b^6*c^6 + 34*a^4*b^8*c^6 - 121*a^2*b^10*c^6 + 17*b^12*c^6 - 21*a^10*c^8 + 83*a^8*b^2*c^8 - 95*a^6*b^4*c^8 + 34*a^4*b^6*c^8 + 158*a^2*b^8*c^8 - 21*b^10*c^8 + 6*a^8*c^10 + 26*a^6*b^2*c^10 - 6*a^4*b^4*c^10 - 121*a^2*b^6*c^10 - 21*b^8*c^10 - 31*a^6*c^12 - 90*a^4*b^2*c^12 + 17*b^6*c^12 + 58*a^4*c^14 + 73*a^2*b^2*c^14 + 19*b^4*c^14 - 31*a^2*c^16 - 19*b^2*c^16 + 4*c^18 : :

See Antreas Hatzipolakis and Peter Moses, euclid 5170.

X(50413) lies on this line: {2, 3}


X(50414) = ISOGONAL CONJUGATE OF X(14863)

Barycentrics    a^2*(4*a^8 - 11*a^6*b^2 + 9*a^4*b^4 - a^2*b^6 - b^8 - 11*a^6*c^2 + 4*a^4*b^2*c^2 + a^2*b^4*c^2 + 6*b^6*c^2 + 9*a^4*c^4 + a^2*b^2*c^4 - 10*b^4*c^4 - a^2*c^6 + 6*b^2*c^6 - c^8) : :
X(50414) = 11 X[3] - 3 X[64], X[3] - 9 X[154], 5 X[3] + 3 X[1498], 7 X[3] - 3 X[3357], X[3] + 3 X[6759], 23 X[3] - 15 X[8567], X[3] - 3 X[10282], 17 X[3] - 9 X[10606], 5 X[3] - 9 X[11202], 13 X[3] - 9 X[11204], 13 X[3] + 3 X[12315], 19 X[3] - 3 X[13093], X[3] + 15 X[14530], 7 X[3] - 15 X[17821], 7 X[3] + 9 X[32063], 25 X[3] - 9 X[35450], X[64] - 33 X[154], 5 X[64] + 11 X[1498], 7 X[64] - 11 X[3357], X[64] + 11 X[6759], 23 X[64] - 55 X[8567], X[64] - 11 X[10282], 17 X[64] - 33 X[10606], 5 X[64] - 33 X[11202], 13 X[64] - 33 X[11204], 13 X[64] + 11 X[12315], 19 X[64] - 11 X[13093], X[64] + 55 X[14530], 7 X[64] - 55 X[17821], 7 X[64] + 33 X[32063], 25 X[64] - 33 X[35450], 15 X[154] + X[1498], 21 X[154] - X[3357], 3 X[154] + X[6759], 69 X[154] - 5 X[8567], 3 X[154] - X[10282], 17 X[154] - X[10606], 5 X[154] - X[11202], 13 X[154] - X[11204], 39 X[154] + X[12315], 57 X[154] - X[13093], 3 X[154] + 5 X[14530], 21 X[154] - 5 X[17821], 7 X[154] + X[32063], 25 X[154] - X[35450], 7 X[1498] + 5 X[3357], X[1498] - 5 X[6759], 23 X[1498] + 25 X[8567], X[1498] + 5 X[10282], 17 X[1498] + 15 X[10606], X[1498] + 3 X[11202], 13 X[1498] + 15 X[11204], 13 X[1498] - 5 X[12315], 19 X[1498] + 5 X[13093], X[1498] - 25 X[14530], 7 X[1498] + 25 X[17821], 7 X[1498] - 15 X[32063], 5 X[1498] + 3 X[35450], X[3357] + 7 X[6759], 23 X[3357] - 35 X[8567], X[3357] - 7 X[10282], 17 X[3357] - 21 X[10606], 5 X[3357] - 21 X[11202], 13 X[3357] - 21 X[11204], 13 X[3357] + 7 X[12315], 19 X[3357] - 7 X[13093], X[3357] + 35 X[14530], X[3357] - 5 X[17821], X[3357] + 3 X[32063], 25 X[3357] - 21 X[35450], 23 X[6759] + 5 X[8567], 17 X[6759] + 3 X[10606], 5 X[6759] + 3 X[11202], 13 X[6759] + 3 X[11204], 13 X[6759] - X[12315], 19 X[6759] + X[13093], X[6759] - 5 X[14530], 7 X[6759] + 5 X[17821], 7 X[6759] - 3 X[32063], 25 X[6759] + 3 X[35450], 5 X[8567] - 23 X[10282], 85 X[8567] - 69 X[10606], 25 X[8567] - 69 X[11202], 65 X[8567] - 69 X[11204], 65 X[8567] + 23 X[12315], 95 X[8567] - 23 X[13093], X[8567] + 23 X[14530], 7 X[8567] - 23 X[17821], 35 X[8567] + 69 X[32063], 125 X[8567] - 69 X[35450], 17 X[10282] - 3 X[10606], 5 X[10282] - 3 X[11202], 13 X[10282] - 3 X[11204], 13 X[10282] + X[12315], 19 X[10282] - X[13093], X[10282] + 5 X[14530], 7 X[10282] - 5 X[17821], 7 X[10282] + 3 X[32063], 25 X[10282] - 3 X[35450], 5 X[10606] - 17 X[11202], 13 X[10606] - 17 X[11204], 39 X[10606] + 17 X[12315], 57 X[10606] - 17 X[13093], 3 X[10606] + 85 X[14530], 21 X[10606] - 85 X[17821], 7 X[10606] + 17 X[32063], 25 X[10606] - 17 X[35450], 13 X[11202] - 5 X[11204], 39 X[11202] + 5 X[12315], 57 X[11202] - 5 X[13093], 3 X[11202] + 25 X[14530], 21 X[11202] - 25 X[17821], 7 X[11202] + 5 X[32063], 5 X[11202] - X[35450], 3 X[11204] + X[12315], 57 X[11204] - 13 X[13093], 3 X[11204] + 65 X[14530], 21 X[11204] - 65 X[17821], 7 X[11204] + 13 X[32063], 25 X[11204] - 13 X[35450], 19 X[12315] + 13 X[13093], X[12315] - 65 X[14530], 7 X[12315] + 65 X[17821], 7 X[12315] - 39 X[32063], 25 X[12315] + 39 X[35450], X[13093] + 95 X[14530], 7 X[13093] - 95 X[17821], 7 X[13093] + 57 X[32063], 25 X[13093] - 57 X[35450], 7 X[14530] + X[17821], 35 X[14530] - 3 X[32063], 125 X[14530] + 3 X[35450], 5 X[17821] + 3 X[32063], 125 X[17821] - 21 X[35450], 25 X[32063] + 7 X[35450], X[15801] - 9 X[32379], 3 X[26] + X[15083], 3 X[156] + X[17714], 3 X[156] - X[41597], 3 X[159] + X[576], 3 X[206] - X[575], 3 X[206] + X[15581], X[546] - 3 X[16252], 3 X[549] + X[44762], 5 X[632] - 9 X[10192], 5 X[632] - 3 X[20299], 3 X[10192] - X[20299], 4 X[3628] - 3 X[32767], 3 X[1660] + X[7530], 2 X[12103] - 3 X[32903], 3 X[2883] + X[15704], 7 X[3090] + 9 X[11206], 7 X[3090] - 3 X[18381], 3 X[11206] + X[18381], 5 X[3091] + 3 X[9833], 5 X[3091] - 3 X[18383], X[3146] + 3 X[34785], 11 X[3525] - 3 X[14216], 11 X[3525] - 27 X[35260], X[14216] - 9 X[35260], X[3529] + 3 X[22802], X[3627] + 3 X[34782], 7 X[3857] - 3 X[41362], 5 X[5076] + 3 X[17845], 13 X[5079] - 9 X[23325], X[5609] + 3 X[15647], 3 X[5878] + 5 X[17538], X[6247] - 3 X[10182], 3 X[6247] - 7 X[14869], 9 X[10182] - 7 X[14869], 3 X[41725] + X[45187], 3 X[9924] + 5 X[11482], 3 X[9934] + 5 X[15034], X[9968] + 3 X[15577], X[10222] + 3 X[40660], 13 X[10303] - 9 X[23329], 13 X[10303] + 3 X[34781], 3 X[23329] + X[34781], 4 X[12108] - 3 X[25563], 8 X[12108] - 9 X[46265], 2 X[25563] - 3 X[46265], 3 X[13289] + X[14094], 3 X[13293] - 7 X[15020], X[15105] - 5 X[46853], 9 X[19153] - 5 X[22234], 3 X[23042] + X[39879], 3 X[31166] + X[34507], 3 X[32743] - 5 X[38795]

See Antreas Hatzipolakis and Peter Moses, euclid 5173.

X(50414) lies on these lines: {2, 14864}, {3, 64}, {4, 36809}, {5, 45185}, {22, 15606}, {23, 15801}, {24, 13382}, {26, 15083}, {30, 14862}, {49, 13598}, {51, 11423}, {52, 32237}, {54, 26863}, {61, 30402}, {62, 30403}, {110, 15644}, {140, 23060}, {156, 511}, {159, 576}, {184, 10110}, {185, 26882}, {186, 43806}, {206, 575}, {389, 1495}, {428, 12242}, {542, 13383}, {546, 8254}, {549, 44762}, {578, 5198}, {632, 10192}, {1092, 33524}, {1173, 13366}, {1199, 44106}, {1493, 5446}, {1503, 3628}, {1511, 14641}, {1531, 41482}, {1660, 7530}, {1971, 5007}, {2393, 22330}, {2777, 12103}, {2883, 15704}, {3090, 11206}, {3091, 9833}, {3146, 34785}, {3292, 12088}, {3525, 14216}, {3529, 22802}, {3627, 34782}, {3746, 10535}, {3857, 41362}, {5076, 17845}, {5079, 23325}, {5092, 13154}, {5237, 10675}, {5238, 10676}, {5562, 26881}, {5563, 26888}, {5609, 10628}, {5878, 17538}, {5943, 15047}, {6247, 10182}, {6419, 10533}, {6420, 10534}, {6427, 17819}, {6428, 17820}, {6453, 12970}, {6454, 12964}, {6519, 19088}, {6522, 19087}, {7517, 34986}, {7556, 41725}, {7592, 44082}, {7712, 11444}, {9544, 45186}, {9705, 37925}, {9707, 11430}, {9781, 13472}, {9820, 29012}, {9924, 11482}, {9934, 15034}, {9968, 15577}, {10095, 15516}, {10096, 45732}, {10112, 37971}, {10222, 40660}, {10303, 23329}, {10984, 35264}, {11264, 25338}, {11381, 11464}, {11403, 19357}, {11422, 34750}, {11426, 44731}, {11432, 41424}, {11456, 35479}, {11645, 13371}, {11820, 41427}, {12105, 41589}, {12106, 15012}, {12107, 13754}, {12108, 25563}, {12111, 41398}, {12112, 16835}, {13289, 14094}, {13293, 15020}, {13367, 13474}, {13488, 15152}, {14915, 32171}, {15105, 46853}, {15311, 44245}, {15448, 18914}, {15580, 41593}, {16625, 37440}, {16836, 35265}, {16982, 44668}, {17704, 43586}, {18128, 44232}, {18378, 21849}, {18475, 44870}, {19153, 22234}, {22352, 43598}, {23042, 39879}, {23411, 25555}, {31166, 34507}, {32445, 35007}, {32743, 38795}, {35259, 37515}, {37514, 40284}, {37946, 43579}, {43602, 47486}

X(50414) = midpoint of X(i) and X(j) for these {i,j}: {5, 45185}, {575, 15581}, {6759, 10282}, {9833, 18383}, {15580, 41593}, {17714, 41597}
X(50414) = isogonal conjugate of X(14863)
X(50414) = complement of X(14864)
X(50414) = X(3)-Dao conjugate of X(14863)
X(50414) = barycentric quotient X(6)/X(14863)
X(50414) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {154, 6759, 10282}, {154, 14530, 6759}, {156, 17714, 41597}, {184, 10594, 37505}, {206, 15581, 575}, {1495, 1614, 389}, {3357, 6759, 32063}, {6759, 11202, 1498}, {9707, 26883, 11430}, {10594, 37505, 10110}, {13367, 14157, 13474}, {17821, 32063, 3357}


X(50415) = X(2)X(3)∩X(511)X(3679)

Barycentrics    a^6*b + a^5*b^2 + a^4*b^3 + a^3*b^4 - 2*a^2*b^5 - 2*a*b^6 + a^6*c - 4*a^5*b*c + 2*a^4*b^2*c + 5*a^3*b^3*c - a^2*b^4*c - a*b^5*c - 2*b^6*c + a^5*c^2 + 2*a^4*b*c^2 + 2*a^3*b^2*c^2 + 5*a^2*b^3*c^2 + 2*a*b^4*c^2 - 2*b^5*c^2 + a^4*c^3 + 5*a^3*b*c^3 + 5*a^2*b^2*c^3 + 2*a*b^3*c^3 + 4*b^4*c^3 + a^3*c^4 - a^2*b*c^4 + 2*a*b^2*c^4 + 4*b^3*c^4 - 2*a^2*c^5 - a*b*c^5 - 2*b^2*c^5 - 2*a*c^6 - 2*b*c^6 : :
X(50415) = 4 X[549] - 3 X[14636], 3 X[5054] - 2 X[48930], X[9840] + 2 X[15971], X[9840] - 4 X[15973], X[15971] + 2 X[15973], X[37425] + 2 X[46704], 4 X[10] - X[48936], 2 X[355] + X[48921], 5 X[1698] - 2 X[48939], 2 X[18480] + X[48916], X[18525] + 2 X[48927], 3 X[19875] - X[48883], 3 X[25055] - 2 X[48894], 3 X[38066] - X[48928], 3 X[38074] - X[48877]

X(50415) lies on these lines: {2, 3}, {10, 48936}, {355, 48921}, {500, 10459}, {511, 3679}, {519, 48909}, {542, 6126}, {1201, 48903}, {1698, 48939}, {3419, 30035}, {3582, 28385}, {3654, 48917}, {3656, 48931}, {9668, 44843}, {9955, 28352}, {11237, 49745}, {18480, 48916}, {18493, 28370}, {18525, 48927}, {19782, 48862}, {19875, 48883}, {21214, 38021}, {25055, 48894}, {28194, 48899}, {28198, 48915}, {28208, 48926}, {38066, 48928}, {38074, 48877}

X(50415) = midpoint of X(2) and X(15971)
X(50415) = reflection of X(i) in X(j) for these {i,j}: {2, 15973}, {3656, 48931}, {9840, 2}, {48917, 3654}
X(50415) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {15971, 15973, 9840}


X(50416) = X(2)X(3)∩X(511)X(1698)

Barycentrics    a^6*b + a^5*b^2 - 3*a^4*b^3 - 3*a^3*b^4 + 2*a^2*b^5 + 2*a*b^6 + a^6*c + 4*a^5*b*c - 2*a^4*b^2*c - 7*a^3*b^3*c - a^2*b^4*c + 3*a*b^5*c + 2*b^6*c + a^5*c^2 - 2*a^4*b*c^2 - 6*a^3*b^2*c^2 - 7*a^2*b^3*c^2 - 2*a*b^4*c^2 + 2*b^5*c^2 - 3*a^4*c^3 - 7*a^3*b*c^3 - 7*a^2*b^2*c^3 - 6*a*b^3*c^3 - 4*b^4*c^3 - 3*a^3*c^4 - a^2*b*c^4 - 2*a*b^2*c^4 - 4*b^3*c^4 + 2*a^2*c^5 + 3*a*b*c^5 + 2*b^2*c^5 + 2*a*c^6 + 2*b*c^6 : :
X(50416) = 6 X[2] - X[9840], 9 X[2] + X[15971], 3 X[2] + 2 X[15973], 4 X[5] + X[37425], 8 X[140] - 3 X[14636], 4 X[140] + X[46704], 7 X[3526] - 2 X[48930], 3 X[9840] + 2 X[15971], X[9840] + 4 X[15973], 3 X[14636] + 2 X[46704], X[15971] - 6 X[15973], 4 X[10] + X[48909], X[500] + 4 X[9956], 3 X[1699] + 2 X[48919], 7 X[3624] - 2 X[48894], 16 X[3634] - X[48936], 2 X[5453] + 3 X[5790], 3 X[5587] + 2 X[48893], 4 X[6684] + X[48899], 4 X[9955] + X[48915], 6 X[10175] - X[48937], 6 X[11230] - X[48903], 6 X[11231] - X[48882], 17 X[19872] - 2 X[48939], 4 X[24206] + X[48922], 6 X[26446] - X[48917], 3 X[26446] + 2 X[48931], X[48917] + 4 X[48931], 7 X[31423] - 2 X[35203], 4 X[48887] + X[48921]

X(50416) lies on these lines: {2, 3}, {10, 48909}, {500, 9956}, {511, 1698}, {1699, 48919}, {3624, 48894}, {3634, 48936}, {4754, 24318}, {5453, 5790}, {5587, 48893}, {5965, 28369}, {6684, 48899}, {9955, 48915}, {10175, 48937}, {10895, 15447}, {11230, 48903}, {11231, 48882}, {19872, 48939}, {24206, 48922}, {26446, 48917}, {31423, 35203}, {31479, 49743}, {48887, 48921}

X(50416) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15973, 9840}, {140, 46704, 14636}, {26446, 48931, 48917}


X(50417) = X(2)X(3)∩X(511)X(9780)

Barycentrics    a^6*b + a^5*b^2 - 4*a^4*b^3 - 4*a^3*b^4 + 3*a^2*b^5 + 3*a*b^6 + a^6*c + 6*a^5*b*c - 3*a^4*b^2*c - 10*a^3*b^3*c - a^2*b^4*c + 4*a*b^5*c + 3*b^6*c + a^5*c^2 - 3*a^4*b*c^2 - 8*a^3*b^2*c^2 - 10*a^2*b^3*c^2 - 3*a*b^4*c^2 + 3*b^5*c^2 - 4*a^4*c^3 - 10*a^3*b*c^3 - 10*a^2*b^2*c^3 - 8*a*b^3*c^3 - 6*b^4*c^3 - 4*a^3*c^4 - a^2*b*c^4 - 3*a*b^2*c^4 - 6*b^3*c^4 + 3*a^2*c^5 + 4*a*b*c^5 + 3*b^2*c^5 + 3*a*c^6 + 3*b*c^6 : :
X(50417) = 9 X[2] - 2 X[9840], 6 X[2] + X[15971], 3 X[2] + 4 X[15973], 5 X[631] + 2 X[46704], 5 X[3091] + 2 X[37425], 11 X[3525] - 4 X[48930], 4 X[9840] + 3 X[15971], X[9840] + 6 X[15973], 13 X[10303] - 6 X[14636], X[15971] - 8 X[15973], 2 X[500] + 5 X[5818], 5 X[3617] + 2 X[48909], 8 X[3634] - X[48883], 11 X[5550] - 4 X[48894], 6 X[5587] + X[48923], 3 X[5657] + 4 X[48931], 3 X[9812] + 4 X[48919], 8 X[9956] - X[48877], 6 X[10175] + X[48897], 6 X[26446] + X[48941], 6 X[38042] + X[48907], 5 X[40330] + 2 X[48922], 23 X[46931] - 2 X[48936]

X(50417) lies on these lines: {2, 3}, {500, 5818}, {511, 9780}, {3617, 48909}, {3634, 48883}, {5229, 15447}, {5550, 48894}, {5587, 48923}, {5657, 48931}, {8164, 49743}, {9812, 48919}, {9956, 48877}, {10175, 48897}, {10588, 49745}, {26446, 48941}, {38042, 48907}, {40330, 48922}, {46931, 48936}

X(50417) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15973, 15971}


X(50418) = X(2)X(3)∩X(511)X(1125)

Barycentrics    2*a^6*b + 2*a^5*b^2 - 3*a^4*b^3 - 3*a^3*b^4 + a^2*b^5 + a*b^6 + 2*a^6*c + 2*a^5*b*c - a^4*b^2*c - 5*a^3*b^3*c - 2*a^2*b^4*c + 3*a*b^5*c + b^6*c + 2*a^5*c^2 - a^4*b*c^2 - 6*a^3*b^2*c^2 - 5*a^2*b^3*c^2 - a*b^4*c^2 + b^5*c^2 - 3*a^4*c^3 - 5*a^3*b*c^3 - 5*a^2*b^2*c^3 - 6*a*b^3*c^3 - 2*b^4*c^3 - 3*a^3*c^4 - 2*a^2*b*c^4 - a*b^2*c^4 - 2*b^3*c^4 + a^2*c^5 + 3*a*b*c^5 + b^2*c^5 + a*c^6 + b*c^6 : :
X(50418) = 3 X[2] + X[9840], 9 X[2] - X[15971], X[4] + 3 X[14636], 5 X[631] - X[37425], 5 X[1656] - X[46704], 3 X[9840] + X[15971], X[15971] - 3 X[15973], 3 X[3576] + X[48937], 5 X[3616] - X[48909], 7 X[3624] + X[48883], X[5453] - 3 X[38028], 11 X[5550] + X[48936], 3 X[5603] + X[48917], 3 X[5886] + X[48882], 5 X[8227] - X[48899], 3 X[10164] - X[48919], 3 X[10165] - X[48893], 3 X[11230] - X[48931], 5 X[19862] + X[48939], 3 X[26446] + X[48903]

X(50418) lies on these lines: {2, 3}, {10, 48894}, {511, 1125}, {613, 28369}, {946, 25354}, {988, 50177}, {1385, 48887}, {1423, 6147}, {1503, 48932}, {3035, 49734}, {3564, 15985}, {3576, 48937}, {3616, 48909}, {3624, 48883}, {3846, 4999}, {5432, 37574}, {5433, 17717}, {5453, 21214}, {5550, 48936}, {5603, 48917}, {5690, 37529}, {5844, 10459}, {5886, 10476}, {5901, 35631}, {8227, 48899}, {8981, 39385}, {9959, 49598}, {10164, 48919}, {10165, 48893}, {11230, 48931}, {15325, 37607}, {16828, 37619}, {19858, 31394}, {19862, 48939}, {20258, 31445}, {22791, 48924}, {24470, 30097}, {26446, 48903}, {28365, 36742}, {28389, 37737}, {32515, 37592}, {37573, 37715}

X(50418) = midpoint of X(i) and X(j) for these {i,j}: {5, 48930}, {10, 48894}, {946, 35203}, {1385, 48887}, {9840, 15973}, {9959, 49598}, {22791, 48924}
X(50418) = complement of X(15973)
X(50418) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 9840, 15973}, {5, 549, 19543}, {6998, 11110, 3}


X(50419) = X(2)X(3)∩X(145)X(511)

Barycentrics    3*a^6*b + 3*a^5*b^2 - 2*a^4*b^3 - 2*a^3*b^4 - a^2*b^5 - a*b^6 + 3*a^6*c - 2*a^5*b*c + a^4*b^2*c - 3*a^2*b^4*c + 2*a*b^5*c - b^6*c + 3*a^5*c^2 + a^4*b*c^2 - 4*a^3*b^2*c^2 + a*b^4*c^2 - b^5*c^2 - 2*a^4*c^3 - 4*a*b^3*c^3 + 2*b^4*c^3 - 2*a^3*c^4 - 3*a^2*b*c^4 + a*b^2*c^4 + 2*b^3*c^4 - a^2*c^5 + 2*a*b*c^5 - b^2*c^5 - a*c^6 - b*c^6 : :
X(50419) = 3 X[2] - 4 X[9840], 9 X[2] - 8 X[15973], 5 X[3091] - 4 X[46704], 5 X[3522] - 4 X[37425], 7 X[3523] - 8 X[48930], 3 X[9840] - 2 X[15973], 2 X[13442] - 3 X[49735], 12 X[14636] - 11 X[15717], 3 X[15971] - 4 X[15973], 5 X[3617] - 8 X[48939], X[3621] - 4 X[48936], 7 X[3622] - 8 X[48894], 5 X[3623] - 4 X[48909], 3 X[5731] - 2 X[48897], 3 X[7967] - 2 X[48907], 5 X[10595] - 4 X[48933]

X(50419) lies on these lines: {2, 3}, {8, 48883}, {40, 4427}, {145, 511}, {390, 28369}, {516, 10459}, {573, 26770}, {944, 20041}, {962, 33100}, {1201, 4297}, {1503, 15983}, {3600, 49745}, {3617, 48939}, {3621, 48936}, {3622, 48894}, {3623, 48909}, {3924, 24728}, {4294, 37610}, {5731, 48897}, {6284, 28386}, {7967, 48907}, {9812, 10465}, {10595, 48933}, {12245, 48928}, {15326, 28385}, {17164, 29057}, {20067, 38568}, {20076, 46483}, {20892, 30271}, {48903, 48941}

X(50419) = reflection of X(i) in X(j) for these {i,j}: {8, 48883}, {12245, 48928}, {15971, 9840}, {48941, 48903}
X(50419) = anticomplement of X(15971)
X(50419) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 376, 19543}, {9840, 15971, 2}


X(50420) = X(2)X(3)∩X(511)X(3616)

Barycentrics    3*a^6*b + 3*a^5*b^2 - 4*a^4*b^3 - 4*a^3*b^4 + a^2*b^5 + a*b^6 + 3*a^6*c + 2*a^5*b*c - a^4*b^2*c - 6*a^3*b^3*c - 3*a^2*b^4*c + 4*a*b^5*c + b^6*c + 3*a^5*c^2 - a^4*b*c^2 - 8*a^3*b^2*c^2 - 6*a^2*b^3*c^2 - a*b^4*c^2 + b^5*c^2 - 4*a^4*c^3 - 6*a^3*b*c^3 - 6*a^2*b^2*c^3 - 8*a*b^3*c^3 - 2*b^4*c^3 - 4*a^3*c^4 - 3*a^2*b*c^4 - a*b^2*c^4 - 2*b^3*c^4 + a^2*c^5 + 4*a*b*c^5 + b^2*c^5 + a*c^6 + b*c^6 : :
X(50420) = 3 X[2] + 2 X[9840], 6 X[2] - X[15971], 9 X[2] - 4 X[15973], X[4] + 4 X[48930], X[20] - 6 X[14636], 7 X[3090] - 2 X[46704], 7 X[3523] - 2 X[37425], 4 X[9840] + X[15971], 3 X[9840] + 2 X[15973], 3 X[15971] - 8 X[15973], X[8] + 4 X[48894], X[944] + 4 X[48887], X[962] + 4 X[35203], 4 X[1125] + X[48883], 4 X[1385] + X[48877], 6 X[3576] - X[48923], 7 X[3622] - 2 X[48909], 11 X[5550] + 4 X[48939], 3 X[5603] + 2 X[48882], 3 X[5657] + 2 X[48903], 3 X[5731] + 2 X[48937], 6 X[5886] - X[48941], 4 X[5901] + X[48928], 4 X[9959] + X[17164], 6 X[10165] - X[48897], 3 X[11203] + 2 X[49598], X[46483] + 4 X[49728], 6 X[38028] - X[48907], 13 X[46934] + 2 X[48936]

X(50420) lies on these lines: {2, 3}, {8, 48894}, {511, 3616}, {944, 48887}, {946, 6536}, {962, 35203}, {1125, 48883}, {1385, 48877}, {3576, 48923}, {3622, 48909}, {5550, 48939}, {5603, 48882}, {5657, 48903}, {5731, 48937}, {5886, 48941}, {5901, 48928}, {5965, 15983}, {7288, 49745}, {9959, 17164}, {10165, 48897}, {10459, 28234}, {10470, 48888}, {11203, 49598}, {19874, 37619}, {30478, 46483}, {31458, 49729}, {38028, 48907}, {46934, 48936}

X(50420) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 9840, 15971}


X(50421) = X(2)X(3)∩X(511)X(551)

Barycentrics    4*a^6*b + 4*a^5*b^2 - 5*a^4*b^3 - 5*a^3*b^4 + a^2*b^5 + a*b^6 + 4*a^6*c + 2*a^5*b*c - a^4*b^2*c - 7*a^3*b^3*c - 4*a^2*b^4*c + 5*a*b^5*c + b^6*c + 4*a^5*c^2 - a^4*b*c^2 - 10*a^3*b^2*c^2 - 7*a^2*b^3*c^2 - a*b^4*c^2 + b^5*c^2 - 5*a^4*c^3 - 7*a^3*b*c^3 - 7*a^2*b^2*c^3 - 10*a*b^3*c^3 - 2*b^4*c^3 - 5*a^3*c^4 - 4*a^2*b*c^4 - a*b^2*c^4 - 2*b^3*c^4 + a^2*c^5 + 5*a*b*c^5 + b^2*c^5 + a*c^6 + b*c^6 : :
X(50421) = 5 X[2] - X[15971], X[376] - 3 X[14636], 3 X[3524] - X[37425], 3 X[5055] - X[46704], 5 X[9840] + X[15971], 2 X[9840] + X[15973], 2 X[15971] - 5 X[15973], X[500] - 3 X[3653], 2 X[1125] + X[48939], 5 X[3616] + X[48936], 3 X[25055] + X[48883], 3 X[38021] - X[48899], 3 X[38022] - X[48933], 3 X[38064] - X[48922], 3 X[38314] - X[48909]

X(50421) lies on these lines: {2, 3}, {500, 3653}, {511, 551}, {519, 48894}, {542, 15985}, {1125, 48939}, {1201, 5453}, {3616, 48936}, {3654, 48903}, {3656, 48882}, {3750, 49739}, {5298, 49745}, {5719, 28387}, {19870, 37619}, {25055, 48883}, {28194, 35203}, {28204, 48887}, {28352, 48927}, {38021, 48899}, {38022, 48933}, {38064, 48922}, {38314, 48909}

X(50421) = midpoint of X(i) and X(j) for these {i,j}: {2, 9840}, {3654, 48903}, {3656, 48882}
X(50421) = reflection of X(15973) in X(2)
X(50421) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {}


X(50422) = X(2)X(3)∩X(511)X(3241)

Barycentrics    5*a^6*b + 5*a^5*b^2 - 4*a^4*b^3 - 4*a^3*b^4 - a^2*b^5 - a*b^6 + 5*a^6*c - 2*a^5*b*c + a^4*b^2*c - 2*a^3*b^3*c - 5*a^2*b^4*c + 4*a*b^5*c - b^6*c + 5*a^5*c^2 + a^4*b*c^2 - 8*a^3*b^2*c^2 - 2*a^2*b^3*c^2 + a*b^4*c^2 - b^5*c^2 - 4*a^4*c^3 - 2*a^3*b*c^3 - 2*a^2*b^2*c^3 - 8*a*b^3*c^3 + 2*b^4*c^3 - 4*a^3*c^4 - 5*a^2*b*c^4 + a*b^2*c^4 + 2*b^3*c^4 - a^2*c^5 + 4*a*b*c^5 - b^2*c^5 - a*c^6 - b*c^6 : :
X(50422) = 5 X[2] - 4 X[15973], 3 X[3524] - 4 X[48930], 3 X[3545] - 2 X[46704], 4 X[9840] - X[15971], 5 X[9840] - 2 X[15973], 3 X[10304] - 2 X[37425], 6 X[14636] - 5 X[15692], 5 X[15971] - 8 X[15973], X[8] - 4 X[48939], X[145] + 2 X[48936], 3 X[38074] - 4 X[48887], 3 X[38314] - 4 X[48894]

X(50422) lies on these lines: {2, 3}, {8, 48939}, {145, 48936}, {511, 3241}, {519, 48883}, {542, 15983}, {1201, 48897}, {3058, 28386}, {3656, 48941}, {4293, 44843}, {4304, 28387}, {10459, 28194}, {28204, 48877}, {28369, 49739}, {28370, 48916}, {29181, 47357}, {34610, 46483}, {38074, 48887}, {38314, 48894}

X(50422) = reflection of X(i) in X(j) for these {i,j}: {2, 9840}, {15971, 2}, {48941, 3656}
X(50422) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {}


X(50423) = X(2)X(3)∩X(42)X(511)

Barycentrics    a^2*(a^5*b^2 + a^4*b^3 - a^3*b^4 - a^2*b^5 + 2*a^5*b*c + a^4*b^2*c - a^2*b^4*c - 2*a*b^5*c + a^5*c^2 + a^4*b*c^2 - 2*a^2*b^3*c^2 - 2*a*b^4*c^2 + a^4*c^3 - 2*a^2*b^2*c^3 - 2*a*b^3*c^3 - 2*b^4*c^3 - a^3*c^4 - a^2*b*c^4 - 2*a*b^2*c^4 - 2*b^3*c^4 - a^2*c^5 - 2*a*b*c^5) : :

X(50423) lies on these lines: {2, 3}, {42, 511}, {43, 48883}, {55, 28369}, {524, 15621}, {899, 48939}, {1503, 23359}, {1742, 10434}, {3240, 48936}, {3720, 48894}, {4300, 48893}, {4307, 23853}, {10459, 48919}, {15447, 16678}, {15985, 44419}, {17018, 48909}, {23361, 49734}

X(50423) = midpoint of X(37331) and X(37425)
X(50423) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5004, 5005, 19312}, {9840, 37425, 15971}


X(50424) = X(2)X(3)∩X(239)X(511)

Barycentrics    a^7*b + a^6*b^2 - a^3*b^5 - a^2*b^6 + a^7*c + a^4*b^3*c - a^2*b^5*c - a*b^6*c + a^6*c^2 - b^6*c^2 + a^4*b*c^3 + a*b^4*c^3 + a*b^3*c^4 + 2*b^4*c^4 - a^3*c^5 - a^2*b*c^5 - a^2*c^6 - a*b*c^6 - b^2*c^6 : :
X(50424) = 3 X[13635] - 2 X[15977]

X(50424) lies on these lines: {2, 3}, {7, 28369}, {63, 3765}, {239, 511}, {515, 30059}, {516, 3747}, {517, 40886}, {649, 4391}, {673, 29181}, {1423, 18655}, {1503, 4645}, {1764, 20913}, {4384, 48883}, {4393, 48909}, {5249, 49612}, {5279, 17787}, {6650, 24833}, {12545, 23536}, {13478, 24587}, {16815, 48939}, {16816, 48936}, {16826, 48894}, {18650, 30097}, {20432, 29069}, {41245, 49745}

X(50424) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 15970, 48890}


X(50425) = X(2)X(3)∩X(387)X(511)

Barycentrics    a^7 + 3*a^6*b + a^5*b^2 - a^4*b^3 - a^3*b^4 - 3*a^2*b^5 - a*b^6 + b^7 + 3*a^6*c - 2*a^5*b*c + a^4*b^2*c - 3*a^2*b^4*c + 2*a*b^5*c - b^6*c + a^5*c^2 + a^4*b*c^2 - 6*a^3*b^2*c^2 - 2*a^2*b^3*c^2 + a*b^4*c^2 - 3*b^5*c^2 - a^4*c^3 - 2*a^2*b^2*c^3 - 4*a*b^3*c^3 + 3*b^4*c^3 - a^3*c^4 - 3*a^2*b*c^4 + a*b^2*c^4 + 3*b^3*c^4 - 3*a^2*c^5 + 2*a*b*c^5 - 3*b^2*c^5 - a*c^6 - b*c^6 + c^7 : :

X(50425) lies on these lines: {2, 3}, {10, 24728}, {40, 1423}, {387, 511}, {573, 5286}, {944, 5015}, {1072, 28388}, {1201, 37611}, {1330, 6776}, {1350, 1834}, {1714, 48883}, {2551, 24320}, {3085, 37619}, {3421, 42461}, {3428, 28386}, {3430, 48837}, {3587, 28387}, {4340, 37527}, {4385, 5657}, {5254, 37499}, {5691, 19879}, {5706, 28369}, {5767, 15983}, {5786, 15985}, {7080, 20760}, {7952, 37613}, {8193, 10629}, {10449, 10519}, {12607, 24328}, {15852, 28358}, {17132, 43174}, {37508, 43448}, {37823, 46264}

X(50425) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 631, 13740}, {6827, 6850, 34938}, {9840, 19514, 28383}


X(50426) = X(2)X(3)∩X(511)X(1714)

Barycentrics    a^7 + a^6*b - a^5*b^2 + a^4*b^3 + a^3*b^4 - 3*a^2*b^5 - a*b^6 + b^7 + a^6*c - 2*a^5*b*c + a^4*b^2*c + 2*a^3*b^3*c - a^2*b^4*c - b^6*c - a^5*c^2 + a^4*b*c^2 - 2*a^3*b^2*c^2 + a*b^4*c^2 - 3*b^5*c^2 + a^4*c^3 + 2*a^3*b*c^3 + 3*b^4*c^3 + a^3*c^4 - a^2*b*c^4 + a*b^2*c^4 + 3*b^3*c^4 - 3*a^2*c^5 - 3*b^2*c^5 - a*c^6 - b*c^6 + c^7 : : X(50426) lies on these lines: {2, 3}, {40, 17889}, {46, 1423}, {65, 33144}, {387, 48909}, {511, 1714}, {602, 28356}, {1329, 24320}, {1834, 19782}, {2646, 17721}, {3178, 24257}, {3980, 6684}, {5292, 37521}, {5300, 39572}, {5552, 20760}, {10198, 37619}, {17757, 42461}, {22766, 28385}, {26066, 46844}, {28370, 35459}

X(50426) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5000, 5001, 28099}


X(50427) = X(2)X(3)∩X(551)X(48842)

Barycentrics    a^4 + 2*a^3*b + 5*a^2*b^2 + 2*a*b^3 - 2*b^4 + 2*a^3*c + 14*a^2*b*c + 14*a*b^2*c + 2*b^3*c + 5*a^2*c^2 + 14*a*b*c^2 + 8*b^2*c^2 + 2*a*c^3 + 2*b*c^3 - 2*c^4 : :

X(50427) lies on these lines: {2, 3}, {6, 50226}, {10, 599}, {551, 48842}, {1992, 49743}, {3295, 49720}, {3927, 50128}, {5278, 50234}, {5295, 29573}, {5711, 50299}, {11160, 49718}, {11237, 19870}, {17251, 50163}, {19723, 49744}, {19732, 49723}, {19744, 48835}, {23537, 41312}, {43531, 47352}, {48834, 49730}

X(50427) = reflection of X(11357) in X(2)
X(50427) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 377, 13745}, {2, 11359, 50410}, {2, 13745, 16844}, {2, 44217, 11359}, {2, 48816, 16418}, {2, 48817, 50202}, {2, 50169, 11354}, {2, 50171, 405}, {8728, 37153, 2049}


X(50428) = X(2)X(3)∩X(551)X(48837)

Barycentrics    3*a^4 + 2*a^3*b + 4*a^2*b^2 + 2*a*b^3 - 3*b^4 + 2*a^3*c + 14*a^2*b*c + 14*a*b^2*c + 2*b^3*c + 4*a^2*c^2 + 14*a*b*c^2 + 10*b^2*c^2 + 2*a*c^3 + 2*b*c^3 - 3*c^4 : :

X(50428) lies on these lines: {2, 3}, {10, 48834}, {69, 3679}, {387, 42028}, {551, 48837}, {1478, 19870}, {1992, 49744}, {3828, 48835}, {4340, 41629}, {5800, 49725}, {14548, 17180}, {19723, 49745}, {19766, 48845}, {48838, 50291}, {48857, 50226}, {48862, 49734}

X(50428) = anticomplement of X(11357)
X(50428) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 377, 48813}, {2, 11354, 13742}, {2, 48813, 13725}, {2, 50169, 50407}, {2, 50171, 48817}, {2, 50172, 31156}, {2, 50408, 11354}, {377, 37153, 13725}, {442, 19290, 2}, {2049, 48815, 2}, {8728, 11354, 2}, {8728, 50408, 13742}, {16052, 19332, 2}, {17528, 19332, 16052}, {37153, 48813, 2}, {44217, 50169, 2}


X(50429) = X(2)X(3)∩X(8)X(11160)

Barycentrics    7*a^4 + 2*a^3*b + 2*a^2*b^2 + 2*a*b^3 - 5*b^4 + 2*a^3*c + 14*a^2*b*c + 14*a*b^2*c + 2*b^3*c + 2*a^2*c^2 + 14*a*b*c^2 + 14*b^2*c^2 + 2*a*c^3 + 2*b*c^3 - 5*c^4 : :
X(50429) = 5 X[2] - 4 X[11357]

X(50429) lies on these lines: {2, 3}, {8, 11160}, {193, 50234}, {388, 49720}, {599, 49734}, {1992, 49745}, {4968, 31145}, {5716, 37756}, {9579, 50093}, {23536, 38314}, {48837, 50226}

X(50429) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 31295, 50165}, {2, 50165, 13736}, {2, 50171, 50408}, {377, 50171, 2}, {11359, 50407, 2}, {13745, 37153, 2}, {44217, 48817, 2}, {48813, 50169, 2}, {50169, 50397, 48813}


X(50430) = X(1)X(1992)∩X(2)X(3)

Barycentrics    5*a^4 - 2*a^3*b - 8*a^2*b^2 - 2*a*b^3 - b^4 - 2*a^3*c - 14*a^2*b*c - 14*a*b^2*c - 2*b^3*c - 8*a^2*c^2 - 14*a*b*c^2 - 2*b^2*c^2 - 2*a*c^3 - 2*b*c^3 - c^4 : :

X(50430) lies on these lines: {1, 1992}, {2, 3}, {69, 49723}, {551, 48870}, {597, 19766}, {599, 49728}, {958, 49740}, {1104, 41312}, {4294, 49720}, {4653, 14555}, {5247, 48830}, {5283, 37654}, {5302, 47359}, {7609, 31435}, {7737, 50230}, {11160, 49716}, {11179, 48894}, {19723, 49739}, {48862, 49730}, {48869, 50305}

X(50430) = reflection of X(2) in X(11357)
X(50430) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6872, 50171}, {2, 13736, 13745}, {2, 13745, 13725}, {2, 31156, 48817}, {2, 48817, 50407}, {2, 49735, 48813}, {2, 50165, 377}, {2, 50171, 37153}, {405, 13725, 13742}, {405, 13736, 13725}, {405, 13745, 2}, {11359, 50202, 2}, {16844, 50241, 50408}, {16865, 37314, 37176}


X(50431) = X(2)X(3)∩X(8)X(17116)

Barycentrics    5*a^4 + 2*a^3*b + 2*a^2*b^2 + 2*a*b^3 - 3*b^4 + 2*a^3*c + 10*a^2*b*c + 10*a*b^2*c + 2*b^3*c + 2*a^2*c^2 + 10*a*b*c^2 + 10*b^2*c^2 + 2*a*c^3 + 2*b*c^3 - 3*c^4 : :
X(50431) = 9 X[2] - 8 X[16844], 3 X[2] - 4 X[37153], 3 X[13736] - 4 X[16844], 2 X[16844] - 3 X[37153]

X(50431) lies on these lines: {2, 3}, {8, 17116}, {10, 16570}, {69, 49734}, {193, 49745}, {3621, 4968}, {3622, 23536}, {3623, 30589}, {4678, 5300}, {9579, 17257}, {11851, 42697}, {12625, 50116}, {19783, 48837}, {20008, 20880}, {20019, 20090}, {34282, 34284}, {37683, 43533}

X(50431) = reflection of X(13736) in X(37153)
X(50431) = anticomplement of X(13736)
X(50431) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 26051, 2}, {377, 50171, 50408}, {377, 50408, 2}, {2049, 50240, 48813}, {4195, 4208, 2}, {6871, 19284, 2}, {11319, 50237, 2}, {13736, 37153, 2}, {17697, 37436, 2}, {44217, 50391, 13742}, {50169, 50239, 13725}


X(50432) = X(2)X(3)∩X(141)X(3634)

Barycentrics    4*a^3*b + 9*a^2*b^2 + 4*a*b^3 - b^4 + 4*a^3*c + 20*a^2*b*c + 20*a*b^2*c + 4*b^3*c + 9*a^2*c^2 + 20*a*b*c^2 + 10*b^2*c^2 + 4*a*c^3 + 4*b*c^3 - c^4 : :
X(50432) = 9 X[2] - X[13736], 3 X[2] + X[37153], X[13736] - 3 X[16844], X[13736] + 3 X[37153]

X(50432) lies on these lines: {2, 3}, {141, 3634}, {495, 16828}, {496, 25512}, {1125, 48847}, {1698, 33084}, {3824, 5257}, {6707, 20083}, {15888, 19871}, {18139, 19877}, {19732, 49743}, {19878, 48843}, {29571, 39564}

X(50432) = midpoint of X(16844) and X(37153)
X(50432) = complement of X(16844)
X(50432) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 443, 16457}, {2, 2049, 50205}, {2, 4197, 17514}, {2, 8728, 50409}, {2, 14007, 17698}, {2, 16458, 6675}, {2, 37153, 16844}, {4197, 17514, 50058}, {8728, 17527, 47514}, {8728, 50409, 48815}, {11357, 50408, 50243}


X(50433) = ISOGONAL CONJUGATE OF X(14165)

Barycentrics    a^2*(a^2 - b^2 - c^2)^2*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2) : :
Barycentrics    Sin[A]^2/(3 - Tan[A]^2) : :

X(50433) lies on these lines: {6, 13}, {49, 41335}, {94, 275}, {184, 5158}, {216, 5961}, {287, 328}, {323, 1494}, {394, 15526}, {476, 26717}, {577, 3269}, {1141, 6570}, {2088, 14910}, {2393, 14560}, {3003, 19627}, {3284, 11079}, {5422, 18883}, {5663, 39176}, {6344, 40402}, {8749, 15395}, {9033, 14582}, {11004, 39358}, {11081, 41893}, {11086, 41892}, {14254, 27359}, {15032, 18316}, {15851, 31676}, {18400, 38943}, {18558, 32320}, {23128, 39170}

X(50433) = isogonal conjugate of X(14165)
X(50433) = isogonal conjugate of the polar conjugate of X(265)
X(50433) = X(94)-Ceva conjugate of X(5961)
X(50433) = X(i)-isoconjugate of X(j) for these (i,j): {1, 14165}, {19, 340}, {92, 186}, {107, 32679}, {158, 323}, {162, 44427}, {526, 823}, {811, 47230}, {1096, 7799}, {1748, 5962}, {1969, 34397}, {2052, 6149}, {2088, 23999}, {2190, 14918}, {2290, 8795}, {2624, 6528}, {3268, 24019}, {6198, 17923}, {6521, 22115}, {8552, 36126}, {8747, 42701}, {11062, 40440}, {14590, 24006}, {14920, 36119}, {16080, 35201}
X(50433) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 14165), (5, 14918), (6, 340), (125, 44427), (130, 2081), (1147, 323), (1511, 14920), (2972, 41078), (6503, 7799), (14993, 2052), (15295, 393), (17423, 47230), (22391, 186), (35071, 3268), (38985, 32679), (38999, 5664), (39170, 46106), (46093, 8552)
X(50433) = cevapoint of X(i) and X(j) for these (i,j): {216, 3284}, {1636, 3269}
X(50433) = crosspoint of X(5504) and X(14919)
X(50433) = crosssum of X(i) and X(j) for these (i,j): {403, 1990}, {2081, 16186}, {35235, 47230}
X(50433) = trilinear pole of line {418, 34983}
X(50433) = crossdifference of every pair of points on line {526, 1986}
X(50433) = barycentric product X(i)*X(j) for these {i,j}: {3, 265}, {68, 5961}, {94, 577}, {110, 43083}, {184, 328}, {255, 2166}, {343, 11077}, {394, 1989}, {418, 46138}, {476, 520}, {525, 32662}, {656, 36061}, {822, 32680}, {1092, 6344}, {1141, 5562}, {1636, 39290}, {1650, 15395}, {1807, 7100}, {3265, 14560}, {3269, 39295}, {3431, 18478}, {3926, 11060}, {3964, 18384}, {4558, 14582}, {5504, 39170}, {11064, 11079}, {12028, 13754}, {14356, 17974}, {14585, 20573}, {14592, 32661}, {18557, 32640}, {18558, 44769}, {18817, 23606}, {23968, 35911}, {24018, 32678}, {31676, 34483}, {32320, 46456}, {35139, 39201}, {36296, 40710}, {36297, 40709}
X(50433) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 340}, {6, 14165}, {94, 18027}, {184, 186}, {216, 14918}, {217, 11062}, {265, 264}, {328, 18022}, {394, 7799}, {418, 1154}, {476, 6528}, {520, 3268}, {577, 323}, {647, 44427}, {822, 32679}, {1141, 8795}, {1636, 5664}, {1989, 2052}, {2351, 5962}, {3049, 47230}, {3284, 14920}, {3990, 42701}, {5562, 1273}, {5961, 317}, {8606, 5081}, {11060, 393}, {11077, 275}, {11079, 16080}, {14560, 107}, {14575, 34397}, {14582, 14618}, {14585, 50}, {14595, 6344}, {15395, 42308}, {17434, 41078}, {18384, 1093}, {18478, 44135}, {18479, 381}, {18558, 41079}, {19627, 36423}, {20975, 35235}, {23606, 22115}, {32320, 8552}, {32661, 14590}, {32662, 648}, {32678, 823}, {34980, 16186}, {36061, 811}, {36296, 471}, {36297, 470}, {39170, 44138}, {39201, 526}, {42293, 2081}, {43083, 850}


X(50434) = ANTICOMPLEMENT OF X(1514)

Barycentrics    4*a^10 - 5*a^8*b^2 - 8*a^6*b^4 + 14*a^4*b^6 - 4*a^2*b^8 - b^10 - 5*a^8*c^2 + 30*a^6*b^2*c^2 - 18*a^4*b^4*c^2 - 10*a^2*b^6*c^2 + 3*b^8*c^2 - 8*a^6*c^4 - 18*a^4*b^2*c^4 + 28*a^2*b^4*c^4 - 2*b^6*c^4 + 14*a^4*c^6 - 10*a^2*b^2*c^6 - 2*b^4*c^6 - 4*a^2*c^8 + 3*b^2*c^8 - c^10 : :
X(50434) = 3 X[3] - 2 X[46817], 3 X[32111] - 4 X[46817], X[146] - 3 X[2071], 3 X[2071] - 2 X[11064], 3 X[376] - X[12112], 3 X[403] - 4 X[6699], 2 X[468] - 3 X[15055], 4 X[10564] - 3 X[40112], 3 X[858] - 2 X[1531], 2 X[1495] - 3 X[44280], 4 X[37853] - 3 X[44280], 2 X[1533] - 3 X[7426], 2 X[1539] - 3 X[2072], 5 X[3522] - 3 X[35265], 3 X[5622] - 2 X[47571], 2 X[16163] - 3 X[16386], 3 X[16386] - X[46818], 2 X[10272] - 3 X[34152], 3 X[10304] - 2 X[35266], 3 X[14644] - 2 X[47309], 3 X[15041] - X[18325], 5 X[15059] - 4 X[37984], 3 X[15061] - 2 X[47336], 4 X[15448] - 5 X[37952], 3 X[21663] - 2 X[32223], 4 X[32223] - 3 X[47096], 3 X[38701] - 2 X[47148], 3 X[38788] - 2 X[47335]

X(50434) lies on these lines: {2, 1514}, {3, 32111}, {20, 64}, {30, 74}, {146, 2071}, {323, 17838}, {376, 12112}, {378, 4846}, {403, 6699}, {468, 15055}, {511, 10990}, {541, 10564}, {548, 18350}, {550, 11459}, {858, 1531}, {1495, 37853}, {1499, 3268}, {1515, 4240}, {1533, 7426}, {1539, 2072}, {1559, 47109}, {1657, 32140}, {3146, 18931}, {3184, 44436}, {3522, 35265}, {3529, 12293}, {3543, 37643}, {3564, 15054}, {3589, 7527}, {3818, 26156}, {5622, 47571}, {5925, 37444}, {6000, 12825}, {6696, 50009}, {6800, 35485}, {7464, 12244}, {7706, 35484}, {7728, 15122}, {8703, 26881}, {10192, 35493}, {10272, 34152}, {10295, 12292}, {10297, 10721}, {10304, 35266}, {10546, 44273}, {10575, 35491}, {10605, 37644}, {10606, 37638}, {11413, 20427}, {11440, 44683}, {11441, 12250}, {11442, 35450}, {11598, 32125}, {11799, 12041}, {12103, 41482}, {12290, 44240}, {12317, 44665}, {12358, 44246}, {12379, 14982}, {12412, 18859}, {13292, 43806}, {13339, 13623}, {13488, 43601}, {14644, 47309}, {15041, 18325}, {15059, 37984}, {15061, 47336}, {15062, 31829}, {15072, 46444}, {15080, 44285}, {15305, 44241}, {15448, 37952}, {15559, 43577}, {16252, 35497}, {18323, 34584}, {21663, 32223}, {34005, 46850}, {34224, 34350}, {34622, 39899}, {34801, 44831}, {35492, 39242}, {36164, 47324}, {37077, 37648}, {37636, 44458}, {38701, 47148}, {38788, 47335}, {39434, 46968}

X(50434) = midpoint of X(7464) and X(12244)
X(50434) = reflection of X(i) in X(j) for these {i,j}: {20, 20725}, {146, 11064}, {1495, 37853}, {3580, 74}, {7728, 15122}, {10295, 16111}, {10721, 10297}, {11799, 12041}, {32111, 3}, {32125, 11598}, {46818, 16163}, {47096, 21663}, {47323, 46632}, {47324, 36164}
X(50434) = anticomplement of X(1514)
X(50434) = cevapoint of X(2935) and X(35237)
X(50434) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 64, 14516}, {146, 2071, 11064}, {378, 4846, 14389}, {1495, 37853, 44280}, {12250, 30552, 11441}, {16386, 46818, 16163}, {34778, 48905, 69}


X(50435) = REFLECTION OF X(110) IN X(403)

Barycentrics    a^10 - 2*a^8*b^2 + a^6*b^4 - a^4*b^6 + 2*a^2*b^8 - b^10 - 2*a^8*c^2 + 5*a^6*b^2*c^2 - a^4*b^4*c^2 - 5*a^2*b^6*c^2 + 3*b^8*c^2 + a^6*c^4 - a^4*b^2*c^4 + 6*a^2*b^4*c^4 - 2*b^6*c^4 - a^4*c^6 - 5*a^2*b^2*c^6 - 2*b^4*c^6 + 2*a^2*c^8 + 3*b^2*c^8 - c^10 : :
X(50435) = 2 X[4] + X[41724], 2 X[3580] + X[10733], 3 X[9140] - X[13445], X[323] - 4 X[7687], 2 X[1495] - 3 X[46451], 2 X[1531] + X[37779], 2 X[2072] - 3 X[14644], 3 X[14644] - X[43574], 5 X[3091] - 2 X[3292], 7 X[3832] - 8 X[44872], 8 X[5159] - 11 X[15025], X[5921] + 2 X[32127], 4 X[6699] - 3 X[37948], X[7464] - 4 X[36253], 4 X[10257] - 5 X[15059], X[10296] + 2 X[41586], 4 X[10297] - 7 X[15044], 4 X[10297] - X[23061], 7 X[15044] - X[23061], 2 X[10564] - 5 X[15081], 4 X[11801] - X[37477], X[12383] - 3 X[37943], X[14094] - 4 X[47336], 2 X[14156] - 3 X[23515], 3 X[14643] - 2 X[40111], 3 X[14643] - 4 X[46031], 5 X[15027] - 2 X[37950], 3 X[15035] - 4 X[44452], 5 X[15051] - 8 X[47296], 3 X[15055] - 2 X[16386], 3 X[15061] - 2 X[34152], 2 X[16163] - 3 X[37941], 3 X[37941] - 4 X[44673], X[18859] - 3 X[38724], X[23236] - 4 X[44961], 4 X[32223] - 3 X[37940], 4 X[37968] - 3 X[38723]

X(50435) lies on these lines: {2, 11430}, {3, 26913}, {4, 52}, {5, 15033}, {15, 44713}, {16, 44714}, {20, 21663}, {22, 18396}, {23, 18400}, {24, 9938}, {26, 12289}, {30, 74}, {49, 13406}, {54, 10024}, {110, 403}, {113, 539}, {125, 2071}, {140, 43821}, {155, 35488}, {185, 50009}, {186, 17702}, {193, 3818}, {235, 14516}, {323, 1568}, {378, 14852}, {381, 1993}, {389, 34007}, {399, 46449}, {511, 3153}, {520, 16229}, {542, 37784}, {546, 6288}, {567, 46029}, {568, 44263}, {1147, 16868}, {1154, 7723}, {1209, 35500}, {1351, 18386}, {1370, 18918}, {1495, 46451}, {1503, 47096}, {1531, 37779}, {1594, 15136}, {1614, 15761}, {1885, 15062}, {1899, 15072}, {1994, 18388}, {2070, 12902}, {2072, 14644}, {2888, 5907}, {2931, 37970}, {2979, 18531}, {3091, 3292}, {3146, 18381}, {3410, 15030}, {3448, 6000}, {3519, 31834}, {3520, 5449}, {3541, 15123}, {3543, 11550}, {3545, 37645}, {3564, 10151}, {3830, 34514}, {3832, 44872}, {3843, 12160}, {3845, 41628}, {5012, 12022}, {5133, 16657}, {5159, 15025}, {5640, 18420}, {5663, 31726}, {5921, 32127}, {6030, 16618}, {6193, 18504}, {6240, 41587}, {6241, 25738}, {6243, 18377}, {6640, 11704}, {6699, 37948}, {6759, 34799}, {6761, 46106}, {6815, 15028}, {7464, 36253}, {7488, 21659}, {7505, 11449}, {7527, 21243}, {7547, 36747}, {7552, 18475}, {7574, 13391}, {7577, 13352}, {7691, 12605}, {7728, 44283}, {7951, 9637}, {9729, 43816}, {9820, 35487}, {9936, 45014}, {10055, 11446}, {10071, 19367}, {10112, 43831}, {10149, 12903}, {10201, 11464}, {10224, 37495}, {10257, 15059}, {10263, 18379}, {10295, 15133}, {10296, 41586}, {10297, 15044}, {10539, 44958}, {10540, 11563}, {10564, 15081}, {10574, 18912}, {10689, 34334}, {11250, 43608}, {11412, 18404}, {11440, 12359}, {11441, 12429}, {11454, 35481}, {11455, 44276}, {11457, 12279}, {11468, 34350}, {11572, 13598}, {11591, 43865}, {11649, 32273}, {11750, 12088}, {11799, 14157}, {11801, 37477}, {12038, 14940}, {12084, 23294}, {12086, 20299}, {12121, 15646}, {12163, 35490}, {12241, 13160}, {12272, 18385}, {12290, 31725}, {12310, 37954}, {12324, 15077}, {12383, 37943}, {12897, 14865}, {13142, 23047}, {13353, 43575}, {13403, 14118}, {13470, 13564}, {13567, 15053}, {13619, 32110}, {14094, 47336}, {14130, 34826}, {14156, 23515}, {14449, 15800}, {14568, 34211}, {14643, 40111}, {14982, 41720}, {15027, 37950}, {15035, 44452}, {15043, 39571}, {15045, 50008}, {15051, 47296}, {15054, 15311}, {15055, 16386}, {15061, 34152}, {15066, 16072}, {15078, 26958}, {16000, 45788}, {16013, 46939}, {16163, 37941}, {16196, 22808}, {18350, 44235}, {18356, 18439}, {18383, 45186}, {18394, 18569}, {18405, 33586}, {18430, 44288}, {18440, 40318}, {18859, 38724}, {18911, 20791}, {22466, 23308}, {22804, 44056}, {23236, 44961}, {23325, 31074}, {26879, 43601}, {29012, 37945}, {30510, 34104}, {30744, 37497}, {31101, 37480}, {31180, 37483}, {31830, 38848}, {32223, 37940}, {34153, 44234}, {34484, 45286}, {34664, 37636}, {34783, 44279}, {34864, 43835}, {35480, 37489}, {35491, 44158}, {37925, 44407}, {37968, 38723}, {38397, 49669}, {40647, 43808}, {43588, 43602}, {44280, 44569}, {44862, 45308}

X(50435) = midpoint of X(2070) and X(12902)
X(50435) = reflection of X(i) in X(j) for these {i,j}: {20, 21663}, {110, 403}, {323, 1568}, {1568, 7687}, {2071, 125}, {3153, 13851}, {7728, 44283}, {10540, 11563}, {12121, 15646}, {13619, 32110}, {14157, 11799}, {16163, 44673}, {18403, 10113}, {22115, 5}, {25739, 265}, {34153, 44234}, {37477, 37938}, {37938, 11801}, {40111, 46031}, {43574, 2072}, {44280, 44569}
X(50435) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {158, 146}, {1096, 39358}, {2159, 46717}, {2349, 6527}, {8749, 6360}, {15459, 7192}, {16080, 4329}, {24000, 14611}, {32695, 4560}, {36119, 20}, {42308, 21295}
X(50435) = crosspoint of X(i) and X(j) for these (i,j): {801, 1494}, {6528, 39295}
X(50435) = crosssum of X(i) and X(j) for these (i,j): {800, 1495}, {2088, 39201}, {9409, 47421}
X(50435) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 68, 12111}, {4, 11442, 15305}, {24, 12293, 12278}, {26, 12289, 41482}, {378, 14852, 23293}, {1899, 44440, 15072}, {3060, 18392, 4}, {7505, 12118, 11449}, {10024, 12370, 54}, {10263, 18379, 31724}, {12022, 15760, 5012}, {12241, 13160, 13434}, {12359, 18560, 11440}, {12429, 37197, 11441}, {13567, 38323, 15053}, {14644, 43574, 2072}, {15044, 23061, 10297}, {15761, 44076, 1614}, {16163, 44673, 37941}, {18356, 18439, 43895}, {18356, 44271, 18439}, {31725, 32140, 12290}, {40111, 46031, 14643}


X(50436) = EULER LINE INTERCEPT OF X(147)X(38661)

Barycentrics    a^12 - 3 a^8 b^4 + 2 a^6 b^6 + 2 a^6 b^4 c^2 - a^4 b^6 c^2 - 2 a^2 b^8 c^2 + b^10 c^2 - 3 a^8 c^4 + 2 a^6 b^2 c^4 - a^4 b^4 c^4 + 2 a^2 b^6 c^4 - b^8 c^4 + 2 a^6 c^6 - a^4 b^2 c^6 + 2 a^2 b^4 c^6 - 2 a^2 b^2 c^8 - b^4 c^8 + b^2 c^10 : :

See Tran Quang Hung and Francisco Javier García Capitán, euclid 5178.

X(50436) lies on these lines: {2,3}, {147,38661}, {385,2420}, {2407,12215}, {4048,40879}, {5149,5649}, {5664,8290}


X(50437) = EULER LINE INTERCEPT OF X(6)X(877)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^8 - a^6*b^2 - a^6*c^2 - a^4*b^2*c^2 + 2*a^2*b^4*c^2 - b^6*c^2 + 2*a^2*b^2*c^4 - b^2*c^6) : :

See Tran Quang Hung and Peter Moses, euclid 5181.

X(50437) lies on the cubic K553 and these lines: {2, 3}, {6, 877}, {76, 249}, {99, 6531}, {112, 39931}, {648, 5182}, {1691, 44132}, {2967, 10352}, {3269, 31636}, {4048, 44144}, {5108, 18020}, {7754, 34211}, {32697, 47736}, {34359, 36794}, {34473, 45031}, {35912, 39646}


X(50438) = X(10)X(37)∩X(516)X(5318)

Barycentrics    (3*a^2+(b-c)^2+2*sqrt(3)*S)*(b+c) : :

See César Lozada, euclid 5180.

X(50438) lies on these lines: {10, 37}, {516, 5318}, {11488, 37830}


X(50439) = X(10)X(37)∩X(516)X(5321)

Barycentrics    (3*a^2+(b-c)^2-2*sqrt(3)*S)*(b+c) : :

See César Lozada, euclid 5180.

X(50439) lies on these lines: {10, 37}, {516, 5321}, {11489, 37833}


X(50440) = X(11)X(1211)∩X(114)X(325)

Barycentrics    a*(b+c)*(a^2-b*c)*((b^2+c^2)*a^2-b^4-c^4) : :

See César Lozada, euclid 5180.

X(50440) lies on these lines: {1, 16613}, {8, 3903}, {10, 4531}, {11, 1211}, {72, 4109}, {75, 30546}, {114, 325}, {115, 14839}, {210, 3773}, {238, 1914}, {291, 16592}, {440, 2968}, {442, 4904}, {518, 10026}, {620, 3110}, {644, 37014}, {661, 4712}, {674, 44396}, {740, 3027}, {760, 5164}, {960, 1146}, {1282, 21383}, {2886, 8286}, {3056, 27688}, {3688, 46826}, {3742, 3756}, {3779, 27556}, {3932, 20723}, {4010, 4155}, {4087, 40717}, {4417, 10477}, {4553, 8287}, {20337, 20358}, {20590, 20865}, {25304, 27704}, {35078, 50254}

X(50440) = midpoint of X(8) and X(3903)
X(50440) = reflection of X(i) in X(j) for these (i, j): (3110, 620), (40608, 10)
X(50440) = complement of the isogonal conjugate of X(1284)
X(50440) = complementary conjugate of the complement of X(1284)
X(50440) = crossdifference of every pair of points on the line {X(876), X(1910)}
X(50440) = crosssum of X(874) and X(22373)
X(50440) = X(8)-beth conjugate of-X(40608)
X(50440) = X(8)-Ceva conjugate of-X(740)
X(50440) = X(i)-complementary conjugate of-X(j) for these (i, j): (56, 740), (65, 3836), (226, 20541), (238, 960), (239, 21246)
X(50440) = X(325)-Dao conjugate of X(8033)
X(50440) = X(i)-isoconjugate-of-X(j) for these {i, j}: {98, 741}, {875, 36036}, {876, 36084}
X(50440) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (237, 18268), (325, 40017), (511, 37128), (740, 1821), (862, 6531)
X(50440) = perspector of the circumconic {{A, B, C, X(1959), X(2396)}}
X(50440) = center of the circumconic {{A, B, C, X(8), X(3903)}}
X(50440) = barycentric product X(i)*X(j) for these {i, j}: {8, 16591}, {325, 2238}, {511, 3948}, {740, 1959}, {862, 6393}, {874, 3569}
X(50440) = barycentric quotient X(i)/X(j) for these (i, j): (237, 18268), (325, 40017), (511, 37128), (740, 1821), (862, 6531), (874, 43187)
X(50440) = trilinear product X(i)*X(j) for these {i, j}: {9, 16591}, {237, 35544}, {325, 3747}, {350, 5360}, {511, 740}, {1284, 44694}
X(50440) = trilinear quotient X(i)/X(j) for these (i, j): (325, 18827), (511, 741), (740, 98), (874, 36036), (1755, 18268)
X(50440) = {X(17793), X(45162)}-harmonic conjugate of X(46842)


X(50441) = X(2)X(11)∩X(8)X(348)

Barycentrics    ((b+c)*a-b^2-c^2)*(2*a^3-(b+c)*a^2-(b^2-c^2)*(b-c)) : :
X(50441) = 5*X(1698)-4*X(40483), 5*X(3617)-X(39351), 7*X(9780)-5*X(31640)

See César Lozada, euclid 5180.

X(50441) lies on these lines: {1, 4904}, {2, 11}, {8, 348}, {10, 1146}, {40, 2883}, {77, 30620}, {118, 516}, {197, 7580}, {198, 11677}, {200, 223}, {291, 24396}, {307, 3059}, {325, 32850}, {347, 4012}, {480, 28739}, {518, 1362}, {519, 35094}, {545, 24411}, {676, 24014}, {918, 2254}, {958, 36706}, {972, 35514}, {984, 24449}, {1086, 36219}, {1145, 3126}, {1214, 2968}, {1282, 5845}, {1329, 36652}, {1375, 40910}, {1458, 39066}, {1565, 2809}, {1575, 8608}, {1698, 40483}, {1818, 4966}, {1834, 16613}, {1861, 3693}, {1944, 38454}, {2293, 25964}, {2310, 21914}, {3030, 38992}, {3174, 18634}, {3617, 39351}, {3717, 40883}, {3752, 3755}, {3846, 20103}, {3870, 6505}, {3935, 40612}, {3939, 36949}, {4081, 4552}, {4085, 40533}, {4357, 15587}, {4364, 24341}, {4417, 43290}, {4706, 8758}, {4733, 6741}, {5400, 5743}, {5438, 25914}, {5819, 44431}, {5836, 40608}, {5842, 36027}, {5852, 40868}, {5880, 40719}, {6067, 17077}, {6603, 28849}, {8226, 44411}, {8256, 9311}, {8286, 13405}, {9504, 17755}, {9780, 31640}, {10025, 17768}, {10186, 34522}, {11495, 27509}, {14100, 25019}, {15624, 23305}, {15726, 40880}, {19868, 20540}, {20935, 31627}, {24248, 24352}, {25355, 49524}, {26006, 41339}, {26932, 35338}, {29207, 41327}, {31038, 49470}, {36845, 49486}, {39035, 44669}, {39050, 46393}, {39959, 49688}

X(50441) = midpoint of X(8) and X(664)
X(50441) = reflection of X(i) in X(j) for these (i, j): (1, 17044), (1146, 10)
X(50441) = complement of X(14942)
X(50441) = complementary conjugate of the complement of X(1458)
X(50441) = crossdifference of every pair of points on line {X(665), X(911)}
X(50441) = crosssum of X(926) and X(44408)
X(50441) = X(8)-beth conjugate of-X(1146)
X(50441) = X(i)-Ceva conjugate of-X(j) for these (i, j): (2, 40869), (8, 518), (664, 918)
X(50441) = X(i)-complementary conjugate of-X(j) for these (i, j): (6, 34852), (7, 20544), (31, 40869), (56, 518), (57, 20335)
X(50441) = X(i)-daleth conjugate of-X(j) for these (i, j): (2, 16593), (516, 17747)
X(50441) = X(i)-Dao conjugate of X(j) for these (i, j): (9, 9503), (241, 7), (676, 11)
X(50441) = X(i)-Hirst inverse of-X(j) for these (i, j): {2, 20533}, {516, 40869}
X(50441) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 9503}, {103, 105}, {673, 911}, {677, 1027}
X(50441) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1, 9503), (241, 43736), (516, 673), (518, 36101), (665, 2424)
X(50441) = perspector of the circumconic {{A, B, C, X(666), X(2398)}}
X(50441) = center of the circumconic {{A, B, C, X(8), X(664)}}
X(50441) = inverse of X(16593) in Steiner inellipse
X(50441) = inverse of X(20533) in Steiner circumellipse
X(50441) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(34337)}} and {{A, B, C, X(11), X(1566)}}
X(50441) = barycentric product X(i)*X(j) for these {i, j}: {8, 39063}, {75, 9502}, {516, 3912}, {518, 30807}, {672, 35517}, {676, 42720}
X(50441) = barycentric quotient X(i)/X(j) for these (i, j): (1, 9503), (241, 43736), (516, 673), (518, 36101), (665, 2424), (672, 103)
X(50441) = trilinear product X(i)*X(j) for these {i, j}: {2, 9502}, {9, 39063}, {241, 40869}, {516, 518}, {665, 42719}, {672, 30807}
X(50441) = trilinear quotient X(i)/X(j) for these (i, j): (2, 9503), (516, 105), (518, 103), (672, 911), (676, 1027), (910, 1438)


X(50442) = X(8)X(908)∩X(189)X(226)

Barycentrics    (a^3-(b+3*c)*a^2-(b-c)^2*a+(b^2-c^2)*(b-3*c))*(a^3-(3*b+c)*a^2-(b-c)^2*a+(b^2-c^2)*(3*b-c)) : :

See César Lozada, euclid 5180.

X(50442) lies on these lines: {2, 20223}, {7, 34234}, {8, 908}, {29, 5703}, {92, 5226}, {189, 226}, {312, 3262}, {329, 333}, {344, 4997}, {2399, 3239}, {2994, 31053}, {4518, 30741}, {4945, 36596}, {5328, 26591}, {5603, 36921}, {5744, 30608}, {5942, 21739}, {6557, 30852}, {7020, 41013}, {9776, 40420}, {17316, 17947}, {18228, 40435}, {27287, 46880}, {33077, 46873}

X(50442) = isotomic conjugate of X(5744)
X(50442) = polar conjugate of X(34231)
X(50442) = crosspoint of X(i) and X(j) for these (i, j): {2, 5219}, {7, 5603}, {75, 31397}, {273, 7682}
X(50442) = X(i)-cross conjugate of-X(j) for these (i, j): (1000, 36588), (1512, 18815)
X(50442) = X(i)-Dao conjugate of X(j) for these (i, j): (9, 3576), (281, 37410)
X(50442) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 3576}, {48, 34231}
X(50442) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1, 3576), (4, 34231)
X(50442) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(36100)}} and {{A, B, C, X(2), X(8)}}
X(50442) = trilinear pole of the line {522, 10015}
X(50442) = barycentric product X(i)*X(j) for these {i, j}: {75, 3577}, {903, 36925}, {1268, 44730}
X(50442) = barycentric quotient X(i)/X(j) for these (i, j): (1, 3576), (4, 34231)
X(50442) = trilinear product X(i)*X(j) for these {i, j}: {2, 3577}, {88, 36925}, {1255, 44730}
X(50442) = trilinear quotient X(i)/X(j) for these (i, j): (2, 3576), (92, 34231)


X(50443) = X(1)X(5)∩X(40)X(499)

Barycentrics    (a-b-c) (a^3-3 a (b-c)^2-2 (b-c)^2 (b+c)) : :
X(50443) = (r-2 R) X(1) + 4r X(5)

See Angel Montesdeoca, euclid 5183 and HG060622

X(50443) lies on these lines: {1,5}, {2,1697}, {3,7743}, {4,1420}, {7,7285}, {8,18220}, {9,10527}, {10,7962}, {36,4333}, {40,499}, {46,3582}, {55,3624}, {56,1699}, {57,946}, {65,11522}, {78,24392}, {84,1519}, {104,7704}, {142,10384}, {145,30852}, {149,4855}, {165,5433}, {200,3813}, {226,11037}, {318,4939}, {381,9613}, {382,5126}, {388,3817}, {390,5550}, {392,5705}, {442,15845}, {443,497}, {498,31393}, {515,10591}, {516,7288}, {551,3486}, {590,31432}, {614,33178}, {631,10624}, {908,6762}, {936,24390}, {942,18493}, {950,3616}, {960,5231}, {962,3911}, {995,2654}, {997,24387}, {999,9612}, {1058,10389}, {1111,47444}, {1155,9589}, {1210,3340}, {1319,5691}, {1320,7705}, {1329,4853}, {1385,3586}, {1467,8727}, {1479,3576}, {1532,12650}, {1656,9957}, {1698,3057}, {1702,9661}, {1737,6978}, {1788,4301}, {1836,3361}, {1858,18398}, {1864,5045}, {2078,3149}, {2093,22791}, {2098,3679}, {2136,5552}, {2170,23058}, {2646,11238}, {2886,8583}, {3085,37556}, {3090,31397}, {3091,10106}, {3158,27385}, {3295,11230}, {3304,5290}, {3333,4654}, {3338,18393}, {3339,17728}, {3359,26492}, {3434,5438}, {3452,26129}, {3475,21625}, {3476,19925}, {3485,11019}, {3487,44841}, {3583,37618}, {3600,9779}, {3612,4857}, {3617,4345}, {3622,31266}, {3632,5048}, {3634,4342}, {3646,19854}, {3649,10980}, {3660,12688}, {3680,6735}, {3742,12711}, {3746,11502}, {3812,31249}, {3829,5794}, {3832,4308}, {3872,4193}, {3895,27529}, {3928,11415}, {3953,24430}, {4187,9623}, {4293,18483}, {4294,10165}, {4297,5225}, {4312,32636}, {4313,46934}, {4315,5229}, {4321,42356}, {4511,12625}, {4512,4999}, {4666,10393}, {4679,5234}, {4848,5704}, {4862,24798}, {4915,21031}, {4997,44720}, {5044,17642}, {5070,31436}, {5082,6700}, {5083,12528}, {5087,12513}, {5119,31423}, {5122,48661}, {5123,10912}, {5154,38460}, {5175,24558}, {5193,12114}, {5217,38031}, {5218,12575}, {5249,10586}, {5251,10966}, {5259,26357}, {5265,9812}, {5432,34595}, {5434,30308}, {5436,24541}, {5450,16174}, {5563,22760}, {5570,5693}, {5573,28018}, {5795,6919}, {5836,17622}, {5853,27383}, {5904,18839}, {6284,7987}, {6667,13463}, {6684,30305}, {6734,15829}, {6763,7082}, {6982,10572}, {7080,21627}, {7308,19843}, {7354,13462}, {7701,33593}, {7702,34789}, {7966,10786}, {7991,24914}, {8256,34640}, {8580,24954}, {9336,11998}, {9668,13624}, {9670,37600}, {9856,37566}, {10085,41690}, {10157,16215}, {10171,10588}, {10385,19883}, {10388,31419}, {10392,11038}, {10395,11523}, {10398,20330}, {10573,16200}, {10582,28628}, {10584,24982}, {10707,34701}, {10889,17322}, {10895,20323}, {10965,48696}, {11035,17604}, {11224,41687}, {11510,44425}, {11531,40663}, {11680,19861}, {11681,36846}, {11997,40328}, {12541,27525}, {12589,16475}, {12629,17757}, {12699,15325}, {12953,37605}, {13253,20118}, {13274,15015}, {13464,18391}, {13888,19038}, {13942,19037}, {14923,15558}, {15171,30282}, {15299,38036}, {15717,30332}, {16004,35242}, {16189,30286}, {16485,40950}, {17064,21214}, {17282,26093}, {18240,31803}, {18395,30323}, {18492,45287}, {18525,25405}, {18991,44624}, {18992,44623}, {19003,19030}, {19004,19029}, {21075,34625}, {21616,31142}, {22753,37583}, {24174,45269}, {24179,41010}, {25440,32557}, {26363,31435}, {28082,45272}, {28151,44448}, {28194,41348}, {30478,40998}, {31401,31426}, {31433,31455}, {31479,31792}, {31795,37606}, {32558,35262}, {34716,37375}, {38150,42884}


X(50444) = X(1)X(5)∩X(165)X(499)

Barycentrics    (a-b-c) (a^3-5 a (b-c)^2-4 (b-c)^2 (b+c)) : :
X(50444) = (r-4 R) X(1) + 8r X(5)

See Angel Montesdeoca, euclid 5183 and HG060622

X(50444) lies on these lines: {1,5}, {2,12575}, {4,13462}, {40,7743}, {46,45035}, {55,16863}, {84,22835}, {140,31508}, {165,499}, {390,19862}, {497,3624}, {519,5828}, {936,24387}, {942,38021}, {946,3339}, {950,25055}, {1000,31399}, {1125,4208}, {1158,16174}, {1210,11522}, {1329,4915}, {1420,10896}, {1479,6916}, {1482,30286}, {1519,7992}, {1538,10864}, {1656,31393}, {1698,9819}, {1699,3086}, {1737,11531}, {2098,4668}, {3057,19875}, {3062,10305}, {3333,9955}, {3337,30223}, {3452,4866}, {3576,9669}, {3582,15803}, {3586,30389}, {3600,12571}, {3601,11238}, {3617,8275}, {3626,4345}, {3634,9785}, {3646,31493}, {3680,5123}, {3813,4882}, {3814,12629}, {3817,5290}, {3825,9623}, {3828,4862}, {3832,4315}, {3911,9589}, {4193,4853}, {4298,9779}, {4301,5704}, {4314,5550}, {4321,7678}, {4342,9780}, {4847,26129}, {4855,10707}, {4857,30282}, {4900,6736}, {5045,17604}, {5055,31792}, {5087,6762}, {5154,36846}, {5223,21616}, {5226,21625}, {5231,41012}, {5234,10527}, {5281,19878}, {5433,9580}, {5438,11235}, {5691,10591}, {5734,16236}, {5833,26363}, {6260,9851}, {6847,24644}, {7962,17606}, {7991,30384}, {8580,24390}, {8583,11680}, {9583,35803}, {9588,30305}, {9612,10072}, {9671,37605}, {10039,30315}, {10043,16207}, {10270,26492}, {10394,38024}, {10572,30392}, {10573,16189}, {10980,12047}, {11019,11036}, {11519,17757}, {11529,18493}, {12127,12607}, {12528,18240}, {12701,31231}, {13407,30343}, {15079,30323}, {15325,41869}, {18492,24928}, {19003,44623}, {19004,44624}, {22760,37587}, {23681,28018}, {24392,25681}, {25079,46872}, {30294,31788}, {30337,31434}, {34628,37618}, {37828,45310}


X(50445) = X(1)X(15476)∩X(1100)X(8287)

Barycentrics    a*(a^2-b^2-b*c-c^2)*(2*a^5+3*(b+c)*a^4+(b^2+4*b*c+c^2)*a^3-(2*b-c)*(b-2*c)*(b+c)*a^2-3*(b^2-c^2)^2*a-(b^2-c^2)*(b-c)*(b^2+3*b*c+c^2)) : :

See Kadir Altintas and César Lozada, euclid 5184.

X(50445) lies on these lines: {1, 15476}, {1100, 8287}, {1963, 40214}, {3982, 6610}, {5045, 5144}, {8044, 25417}

X(50445) = midpoint of X(1) and X(15476)


X(50446) = X(24)X(50209)∩X(11387)X(43976)

Barycentrics    ((b^2+c^2)^2*a^12-2*(b^2+c^2)*(2*b^4+b^2*c^2+2*c^4)*a^10+3*(2*b^8+2*c^8+(b^2+c^2)^2*b^2*c^2)*a^8-(b^4-c^4)*(b^2-c^2)*(4*b^4-3*b^2*c^2+4*c^4)*a^6+(b^6-c^6)*(b^2-c^2)*(b^4-8*b^2*c^2+c^4)*a^4+3*(b^4-c^4)*(b^2-c^2)^3*b^2*c^2*a^2+2*(b^2-c^2)^4*b^4*c^4)*(a^2-b^2+c^2)*(a^2+b^2-c^2) : :

See Kadir Altintas and César Lozada, euclid 5184.

X(50446) lies on these lines: {24, 50209}, {11387, 43976}, {31364, 42400}


X(50447) = X(3)X(6)∩X(3526)X(30465)

Barycentrics    (-8*S^3*(3*a^2-5*b^2-5*c^2)+(3*a^8-8*(b^2+c^2)*a^6+2*(3*b^4+b^2*c^2+3*c^4)*a^4+10*(b^2+c^2)*b^2*c^2*a^2-(b^4+6*b^2*c^2+c^4)*(b^2-c^2)^2)*sqrt(3))*a^2 : :

See Kadir Altintas and César Lozada, euclid 5184.

X(50447) lies on these lines: {3, 6}, {3526, 30465}, {11555, 16960}


X(50448) = X(3)X(6)∩X(3526)X(30468)

Barycentrics    (8*S^3*(3*a^2-5*b^2-5*c^2)+(3*a^8-8*(b^2+c^2)*a^6+2*(3*b^4+b^2*c^2+3*c^4)*a^4+10*(b^2+c^2)*b^2*c^2*a^2-(b^4+6*b^2*c^2+c^4)*(b^2-c^2)^2)*sqrt(3))*a^2 : :

See Kadir Altintas and César Lozada, euclid 5184.

X(50448) lies on these lines: {3, 6}, {3526, 30468}, {11556, 16961}


leftri

Points in a [[b c, c a, a b], [a^3, b^3, c^3]] coordinate system: X(50449)-X(50459)

rightri

If L1 and L2 are lines that meet in a point P not at infinity, then a [L1, L2]-coordinate system is a bivariate coordinate system having L1 as x-axis, L2 as y-axis, and P as origin. In this section, L1 and L2 are the following lines:

L1 is the line: b c α + c a β + a b γ = 0.

L2 is the line a^3 α + b^3 β + c^3 γ = 0.

The origin is given by (0, 0) = X(8061) = a(b^4 - c^4) : : .

Barycentrics u : v : w for a triangle center U = (x,y) in this system are given by

u : v : w = a(b^4 - c^4) - a(b - c) x - (b^3 - c^3) y ,

where, as functions of a, b, c, the coordinate x is symmetric of degree 3, and y is symmetric of degree 2.

The appearance of {x, y}, k in the following list means that (x, y) = X(k).

{-(a+b+c)^3, -((a b c)/(a+b+c))}, 47947
{-((a+b+c) (a b+a c+b c)), -((a b c)/(a+b+c))}, 47959
{-((a+b) (a+c) (b+c)), 0}, 661
{-(1/2) (a+b) (a+c) (b+c), ((a+b) (a+c) (b+c))/(2 (a+b+c))}, 4129
{0, 0}, 8061
{0, ((a+b) (a+c) (b+c))/(a+b+c)}, 1577
{1/2 (a^3+b^3+c^3), 1/2 (a b+a c+b c)}, 8060
{1/2 (a^3+b^3+c^3), (a b c)/(2 (a+b+c))}, 14838
{a b c, -a^2-b^2-c^2}, 16892
{(a+b+c) (a^2+b^2+c^2), -((a b c)/(a+b+c))}, 4063
{a b c, a b+a c+b c}, 693
{a b c, (a+b+c)^2}, 4024
{-2*(a + b)*(a + c)*(b + c), -(((a + b)*(a + c)*(b + c))/(a + b + c))}, 50449
{-2*a*b*c, a*b + a*c + b*c}, 50450
{-(a*b*c), a*b + a*c + b*c}, 50451
{-((a + b)*(a + c)*(b + c)), a*b + a*c + b*c}, 50452
{-1/2*(a*b*c), -1/2*(a^3 + b^3 + c^3)/(a + b + c)}, 50453
{a*b*c, 0}, 50454
{(a + b + c)*(a^2 + b^2 + c^2), 0}, 50455
{a^3 + b^3 + c^3, (a*b*c)/(a + b + c)}, 50456
{(a + b)*(a + c)*(b + c), (2*(a + b)*(a + c)*(b + c))/(a + b + c)}, 50457
{a^3 + b^3 + c^3, (2*a*b*c)/(a + b + c)}, 50458
{(a^4 + b^4 + c^4)/(a + b + c), (2*a*b*c)/(a + b + c)}, 50459


X(50449) = X(512)X(4824)∩X(514)X(661)

Barycentrics    (b - c)*(b + c)*(2*a^2 + 2*a*b + 2*a*c + b*c) : :
X(50449) = 3 X[661] - 2 X[4129], 4 X[661] - 3 X[48551], 3 X[1577] - 4 X[4129], 2 X[1577] - 3 X[48551], X[3762] - 4 X[47996], 8 X[4129] - 9 X[48551], X[4391] - 3 X[48548], 3 X[4776] - 2 X[4823], 2 X[47997] - 3 X[48548], 2 X[1019] - 3 X[45671], X[4761] - 4 X[48002], 2 X[7192] - 3 X[48568], 4 X[14838] - 3 X[48568]

X(50449) lies on these lines: {512, 4824}, {514, 661}, {523, 4170}, {525, 4841}, {656, 4778}, {798, 1019}, {810, 4040}, {2530, 4977}, {3124, 7208}, {4151, 4822}, {4367, 4963}, {4369, 4960}, {4705, 4761}, {7192, 14838}

X(50449) = midpoint of X(i) and X(j) for these {i,j}: {4367, 4963}, {4822, 47934}, {47917, 48131}
X(50449) = reflection of X(i) in X(j) for these {i,j}: {693, 48054}, {1577, 661}, {3762, 47959}, {4170, 4983}, {4391, 47997}, {4705, 48002}, {4761, 4705}, {4960, 4369}, {4978, 14349}, {7192, 14838}, {47679, 4841}, {47959, 47996}, {48407, 4824}
X(50449) = X(28148)-complementary conjugate of X(3739)
X(50449) = X(i)-isoconjugate of X(j) for these (i,j): {6, 43356}, {110, 39983}, {163, 39708}
X(50449) = X(i)-Dao conjugate of X(j) for these (i, j): (9, 43356), (115, 39708), (244, 39983)
X(50449) = crosssum of X(i) and X(j) for these (i,j): {48, 46382}, {3720, 46385}
X(50449) = crossdifference of every pair of points on line {31, 2667}
X(50449) = barycentric product X(i)*X(j) for these {i,j}: {10, 48107}, {321, 48064}, {523, 17394}, {1577, 37685}, {14208, 17562}
X(50449) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 43356}, {523, 39708}, {661, 39983}, {17394, 99}, {17562, 162}, {37685, 662}, {48064, 81}, {48107, 86}
X(50449) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {661, 1577, 48551}, {4391, 48548, 47997}, {7192, 14838, 48568}


X(50450) = X(75)X(4391)∩X(320)X(350)

Barycentrics    b*(b - c)*c*(-2*a^2 + a*b + b^2 + a*c + b*c + c^2) : :

X(50450) lies on these lines: {75, 4391}, {319, 3900}, {320, 350}, {824, 3762}, {1577, 4406}, {1734, 5224}, {2786, 4791}, {3261, 4985}, {4357, 8714}

X(50450) = X(29213)-anticomplementary conjugate of X(2)
X(50450) = X(47787)-Dao conjugate of X(14077)
X(50450) = cevapoint of X(29212) and X(47787)
X(50450) = barycentric product X(i)*X(j) for these {i,j}: {75, 27486}, {693, 17346}, {4262, 40495}
X(50450) = barycentric quotient X(i)/X(j) for these {i,j}: {4262, 692}, {17346, 100}, {27486, 1}
X(50450) = {X(4811),X(15413)}-harmonic conjugate of X(20954)


X(50451) = X(75)X(4036)∩X(320)X(350)

Barycentrics    b*(b - c)*c*(-a^2 + a*b + b^2 + a*c + b*c + c^2) : :

X(50451) lies on these lines: {75, 4036}, {192, 4140}, {319, 8702}, {320, 350}, {522, 4357}, {656, 4467}, {824, 4391}, {1269, 3261}, {1577, 2786}, {3766, 4509}

X(50451) = X(29038)-anticomplementary conjugate of X(2)
X(50451) = X(i)-Ceva conjugate of X(j) for these (i,j): {1577, 693}, {4374, 20906}
X(50451) = X(i)-isoconjugate of X(j) for these (i,j): {100, 18757}, {101, 2248}, {112, 15377}, {692, 13610}, {6625, 32739}, {34069, 40777}
X(50451) = X(i)-Dao conjugate of X(j) for these (i, j): (86, 662), (1015, 2248), (1086, 13610), (6627, 1), (8054, 18757), (21196, 4705), (34591, 15377), (40619, 6625)
X(50451) = crosspoint of X(i) and X(j) for these (i,j): {75, 4623}, {668, 40033}
X(50451) = crossdifference of every pair of points on line {213, 7122}
X(50451) = barycentric product X(i)*X(j) for these {i,j}: {75, 21196}, {514, 17762}, {693, 1654}, {846, 3261}, {850, 38814}, {1577, 6626}, {2905, 14208}, {4213, 15413}, {4391, 17084}, {4623, 6627}, {7192, 27569}, {7199, 21085}, {14844, 18160}, {18155, 27691}, {18755, 40495}
X(50451) = barycentric quotient X(i)/X(j) for these {i,j}: {513, 2248}, {514, 13610}, {649, 18757}, {656, 15377}, {693, 6625}, {824, 40777}, {846, 101}, {1654, 100}, {2905, 162}, {4213, 1783}, {6626, 662}, {6627, 4705}, {7199, 40164}, {17084, 651}, {17762, 190}, {18755, 692}, {21085, 1018}, {21196, 1}, {21879, 4557}, {22139, 906}, {24381, 2295}, {27569, 3952}, {27691, 4551}, {27954, 4579}, {38814, 110}, {39921, 37135}, {40722, 1492}, {40751, 825}
X(50451) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 18158, 4036}, {693, 4811, 23794}, {4509, 4985, 3766}, {7199, 30591, 693}, {7650, 15413, 693}, {20954, 48084, 693}


X(50452) = X(103)X(9073)∩X(320)X(350)

Barycentrics    (b - c)*(-(a^3*b) - a^2*b^2 - a^3*c - 2*a^2*b*c + b^3*c - a^2*c^2 + b^2*c^2 + b*c^3) : :

X(50452) lies on these lines: {103, 9073}, {320, 350}, {649, 4486}, {661, 824}, {1491, 4467}, {2786, 3835}, {3004, 4806}, {3837, 4897}, {4406, 14288}

X(50452) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {693, 48080, 20295}, {693, 48107, 21146}, {43067, 48090, 693}


X(50453) = X(10)X(523)∩X(241)X(514)

Barycentrics    (b - c)*(b + c)*(a*b + b^2 + a*c - b*c + c^2) : :
X(50453) = X[4841] + 3 X[7178], X[4841] - 3 X[48402], X[43052] + 3 X[47880], 3 X[4129] - 2 X[14321], 3 X[4129] - X[22037], 3 X[1577] - X[4024], X[4024] + 3 X[21124], X[4122] - 3 X[14431]

X(50453) lies on these lines: {10, 523}, {241, 514}, {525, 4129}, {661, 4707}, {690, 4806}, {824, 4791}, {830, 4142}, {850, 1577}, {3800, 4807}, {3801, 4705}, {4122, 14431}, {4160, 4458}

X(50453) = midpoint of X(i) and X(j) for these {i,j}: {661, 4707}, {1577, 21124}, {3004, 10015}, {3801, 4705}, {7178, 48402}
X(50453) = reflection of X(i) in X(j) for these {i,j}: {3960, 21212}, {22037, 14321}
X(50453) = X(9070)-complementary conjugate of X(141)
X(50453) = X(i)-Ceva conjugate of X(j) for these (i,j): {39706, 1086}, {44435, 48350}
X(50453) = X(i)-isoconjugate of X(j) for these (i,j): {110, 40401}, {163, 996}, {1333, 9059}, {3285, 36091}
X(50453) = X(i)-Dao conjugate of X(j) for these (i, j): (37, 9059), (115, 996), (244, 40401), (47766, 47845)
X(50453) = crossdifference of every pair of points on line {55, 2206}
X(50453) = barycentric product X(i)*X(j) for these {i,j}: {10, 44435}, {75, 48350}, {313, 9002}, {321, 48335}, {514, 26580}, {523, 4389}, {661, 33934}, {693, 4424}, {850, 995}, {1577, 4850}, {3877, 4077}, {4024, 16712}, {4080, 23888}, {5233, 7178}, {21130, 30588}
X(50453) = barycentric quotient X(i)/X(j) for these {i,j}: {10, 9059}, {523, 996}, {661, 40401}, {995, 110}, {3877, 643}, {4266, 5546}, {4389, 99}, {4424, 100}, {4674, 36091}, {4850, 662}, {5233, 645}, {9002, 58}, {16712, 4610}, {21042, 4767}, {21130, 5235}, {23206, 4575}, {23888, 16704}, {26580, 190}, {33934, 799}, {44435, 86}, {48335, 81}, {48350, 1}
X(50453) = {X(4129),X(22037)}-harmonic conjugate of X(14321)


X(50454) = X(44)X(513)∩X(321)X(693)

Barycentrics    a*(b - c)*(-b^3 + a*b*c - b^2*c - b*c^2 - c^3) : :

X(50454) lies on these lines: {44, 513}, {321, 693}, {905, 5029}, {2530, 3250}, {2786, 3835}, {3700, 3837}, {4750, 4776}, {6004, 8632}

X(50454) = crossdifference of every pair of points on line {1, 2210}
X(50454) = barycentric product X(i)*X(j) for these {i,j}: {513, 29674}, {514, 49509}, {650, 36482}, {661, 30965}
X(50454) = barycentric quotient X(i)/X(j) for these {i,j}: {29674, 668}, {30965, 799}, {36482, 4554}, {49509, 190}
X(50454) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {656, 48033, 20979}, {661, 2254, 649}, {661, 48019, 48024}, {2530, 24290, 3250}, {48026, 48030, 661}, {48031, 50350, 798}


X(50455) = X(44)X(513)∩X(802)X(10566)

Barycentrics    a^2*(b - c)*(a^2 + a*b + b^2 + a*c + c^2) : :

X(50455) lies on these lines: {44, 513}, {802, 10566}, {824, 4063}, {834, 8632}, {1919, 6371}, {3250, 4057}, {4491, 4502}, {4817, 7199}, {4832, 8659}

X(50455) = isogonal conjugate of the isotomic conjugate of X(47958)
X(50455) = X(i)-Ceva conjugate of X(j) for these (i,j): {28506, 55}, {33952, 17017}
X(50455) = crosspoint of X(17017) and X(33952)
X(50455) = crosssum of X(649) and X(29816)
X(50455) = crossdifference of every pair of points on line {1, 3773}
X(50455) = barycentric product X(i)*X(j) for these {i,j}: {6, 47958}, {513, 17017}, {649, 4657}, {667, 33945}, {1015, 33952}, {3966, 43924}
X(50455) = barycentric quotient X(i)/X(j) for these {i,j}: {4657, 1978}, {17017, 668}, {33945, 6386}, {33952, 31625}, {47958, 76}
X(50455) = {X(649),X(20979)}-harmonic conjugate of X(2483)


X(50456) = X(36)X(238)∩X(99)X(101)

Barycentrics    a*(a + b)*(b - c)*(a + c)*(a^2 - b*c) : :

X(50456) lies on these lines: {36, 238}, {99, 101}, {105, 741}, {171, 5040}, {514, 1919}, {659, 8300}, {812, 4366}, {824, 4560}, {1429, 7212}, {1577, 8060}, {3776, 4817}, {8061, 14838}

X(50456) = reflection of X(i) in X(j) for these {i,j}: {1577, 8060}, {8061, 14838}
X(50456) = X(i)-Ceva conjugate of X(j) for these (i,j): {4584, 81}, {4596, 8298}, {34594, 18205}
X(50456) = X(i)-cross conjugate of X(j) for these (i,j): {27918, 1429}, {40623, 1}
X(50456) = X(i)-isoconjugate of X(j) for these (i,j): {10, 813}, {37, 660}, {42, 4562}, {101, 43534}, {213, 4583}, {291, 1018}, {292, 3952}, {321, 34067}, {335, 4557}, {661, 5378}, {741, 4103}, {756, 4584}, {762, 36066}, {805, 21021}, {872, 4639}, {1252, 35352}, {1400, 36801}, {1500, 4589}, {1911, 4033}, {1922, 27808}, {3721, 8684}, {3774, 41072}, {3862, 4613}, {3954, 36081}, {4518, 4559}, {4551, 4876}, {4552, 7077}, {21803, 37134}, {21818, 41209}, {37128, 40521}
X(50456) = X(i)-Dao conjugate of X(j) for these (i, j): (661, 35352), (665, 4088), (1015, 43534), (3837, 21053), (6626, 4583), (6651, 4033), (8299, 4103), (19557, 3952), (35119, 321), (36830, 5378), (38978, 762), (39028, 27808), (39029, 1018), (40582, 36801), (40589, 660), (40592, 4562), (40620, 334), (40623, 10)
X(50456) = cevapoint of X(659) and X(8632)
X(50456) = crosspoint of X(81) and X(4584)
X(50456) = crosssum of X(i) and X(j) for these (i,j): {37, 21832}, {512, 21830}, {523, 20486}, {661, 3930}, {4024, 20659}, {4088, 15523}
X(50456) = crossdifference of every pair of points on line {37, 3122}
X(50456) = barycentric product X(i)*X(j) for these {i,j}: {21, 43041}, {58, 3766}, {81, 812}, {86, 659}, {99, 27846}, {238, 7192}, {239, 1019}, {274, 8632}, {286, 22384}, {350, 3733}, {513, 33295}, {649, 30940}, {662, 27918}, {693, 5009}, {741, 27855}, {757, 4010}, {804, 7303}, {873, 4455}, {905, 31905}, {1014, 3716}, {1178, 14296}, {1414, 4124}, {1428, 18155}, {1429, 4560}, {1434, 4435}, {1447, 3737}, {1509, 21832}, {1914, 7199}, {2185, 7212}, {2201, 15419}, {3570, 16726}, {3573, 17205}, {3684, 17096}, {3685, 7203}, {3808, 40415}, {4107, 40432}, {4131, 34856}, {4155, 6628}, {4164, 32010}, {4375, 37128}, {4584, 35119}, {4610, 39786}, {7252, 10030}, {17212, 18786}, {17217, 34252}, {17493, 18200}, {17925, 20769}, {18197, 39914}, {23597, 40773}
X(50456) = barycentric quotient X(i)/X(j) for these {i,j}: {21, 36801}, {58, 660}, {81, 4562}, {86, 4583}, {110, 5378}, {238, 3952}, {239, 4033}, {244, 35352}, {350, 27808}, {513, 43534}, {593, 4584}, {659, 10}, {757, 4589}, {812, 321}, {1019, 335}, {1333, 813}, {1428, 4551}, {1429, 4552}, {1509, 4639}, {1914, 1018}, {2206, 34067}, {2210, 4557}, {2238, 4103}, {3684, 30730}, {3716, 3701}, {3733, 291}, {3737, 4518}, {3747, 40521}, {3766, 313}, {3808, 2887}, {4010, 1089}, {4107, 3963}, {4124, 4086}, {4155, 6535}, {4164, 1215}, {4375, 3948}, {4435, 2321}, {4448, 3992}, {4455, 756}, {4508, 4377}, {4800, 4125}, {4810, 4066}, {5009, 100}, {5027, 21803}, {7192, 334}, {7199, 18895}, {7203, 7233}, {7212, 6358}, {7252, 4876}, {7303, 18829}, {8632, 37}, {14296, 1237}, {16695, 41531}, {16726, 4444}, {18197, 40848}, {18200, 30669}, {21832, 594}, {22384, 72}, {27846, 523}, {27855, 35544}, {27918, 1577}, {30665, 3773}, {30940, 1978}, {31905, 6335}, {33295, 668}, {38348, 6541}, {38367, 21830}, {38813, 8684}, {38989, 4088}, {39786, 4024}, {43041, 1441}, {46387, 3954}, {46390, 762}
X(50456) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1019, 3737, 4481}, {4164, 4455, 238}


X(50457) = X(512)X(4804)∩X(514)X(661)

Barycentrics    (b - c)*(b + c)*(a^2 + a*b + a*c + 2*b*c) : :
X(50457) = 3 X[661] - 4 X[4129], 5 X[661] - 6 X[48551], 3 X[1577] - 2 X[4129], 5 X[1577] - 3 X[48551], 10 X[4129] - 9 X[48551], 3 X[4728] - 4 X[4823], 3 X[4728] - 2 X[14349], 3 X[4789] - 2 X[8045], 4 X[4791] - X[47917], 5 X[7178] - 4 X[7657], 8 X[7657] - 5 X[21124], 2 X[905] - 3 X[4379], 2 X[4490] - 3 X[14430], 2 X[4707] + X[4838], 3 X[4931] - 2 X[7265]

X(50457) lies on these lines: {338, 3942}, {512, 4804}, {514, 661}, {523, 656}, {525, 4024}, {663, 7662}, {784, 2254}, {798, 4498}, {810, 4449}, {905, 4379}, {4010, 4822}, {4077, 7216}, {4151, 4729}, {4369, 4560}, {4490, 4802}, {4707, 4838}, {4931, 7265}, {5214, 6003}, {6002, 7192}

X(50457) = midpoint of X(i) and X(j) for these {i,j}: {4024, 23755}, {4462, 47675}, {4707, 47678}
X(50457) = reflection of X(i) in X(j) for these {i,j}: {661, 1577}, {663, 7662}, {2254, 50352}, {4041, 2533}, {4560, 4369}, {4729, 4761}, {4801, 48399}, {4804, 48393}, {4822, 4010}, {4838, 47678}, {14349, 4823}, {21124, 7178}, {47917, 47959}, {47918, 4391}, {47959, 4791}, {48131, 693}, {48149, 7192}, {48300, 6590}, {48334, 4978}
X(50457) = X(i)-complementary conjugate of X(j) for these (i,j): {28162, 3739}, {31503, 116}
X(50457) = X(43067)-Ceva conjugate of X(8672)
X(50457) = X(i)-isoconjugate of X(j) for these (i,j): {6, 931}, {21, 32693}, {101, 5331}, {110, 941}, {112, 34259}, {163, 31359}, {662, 2258}, {692, 37870}, {959, 5546}, {1576, 34258}, {2194, 32038}, {14574, 40828}
X(50457) = X(i)-Dao conjugate of X(j) for these (i, j): (9, 931), (115, 31359), (244, 941), (1015, 5331), (1084, 2258), (1086, 37870), (1214, 32038), (4858, 34258), (17417, 21), (34261, 643), (34591, 34259), (40611, 32693), (40622, 44733)
X(50457) = crosssum of X(i) and X(j) for these (i,j): {3737, 10458}, {4258, 21789}
X(50457) = crossdifference of every pair of points on line {31, 284}
X(50457) = barycentric product X(i)*X(j) for these {i,j}: {10, 43067}, {75, 8672}, {226, 23880}, {321, 48144}, {514, 31993}, {523, 10436}, {525, 5307}, {561, 8639}, {661, 34284}, {850, 1468}, {940, 1577}, {958, 4077}, {1441, 17418}, {1867, 4025}, {3676, 3714}, {4185, 14208}, {5019, 20948}, {7178, 11679}
X(50457) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 931}, {226, 32038}, {512, 2258}, {513, 5331}, {514, 37870}, {523, 31359}, {656, 34259}, {661, 941}, {940, 662}, {958, 643}, {1400, 32693}, {1468, 110}, {1577, 34258}, {1867, 1897}, {2268, 5546}, {3713, 7259}, {3714, 3699}, {4017, 959}, {4185, 162}, {5019, 163}, {5307, 648}, {7178, 44733}, {8639, 31}, {8672, 1}, {10436, 99}, {11679, 645}, {17418, 21}, {20948, 40828}, {23880, 333}, {31993, 190}, {34284, 799}, {43067, 86}, {48144, 81}
X(50457) = {X(4823),X(14349)}-harmonic conjugate of X(4728)


X(50458) = X(513)X(663)∩X(514)X(8632)

Barycentrics    a*(b - c)*(a^4 + a^3*b + a^3*c - a*b^2*c + b^3*c - a*b*c^2 + b*c^3) : :

X(50458) lies on these lines: {513, 663}, {514, 8632}, {824, 4560}, {905, 5029}, {918, 1919}, {1019, 3250}, {2786, 6332}, {4107, 4391}, {4435, 4498}

X(50458) = crossdifference of every pair of points on line {9, 3778}
X(50458) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {663, 48144, 48131}, {48329, 48330, 663}


X(50459) = X(1)X(824)∩X(513)X(663)

Barycentrics    a^2*(b - c)*(a^3 - b^3 - b^2*c - b*c^2 - c^3) : :

X(50459) lies on these lines: {1, 824}, {512, 1919}, {513, 663}, {650, 3745}, {810, 8061}, {1402, 8641}, {1980, 3005}, {8632, 9313}

X(50459) = X(668)-isoconjugate of X(3415)
X(50459) = crosspoint of X(1) and X(825)
X(50459) = crosssum of X(i) and X(j) for these (i,j): {1, 824}, {522, 17023}
X(50459) = crossdifference of every pair of points on line {9, 1760}
X(50459) = barycentric product X(i)*X(j) for these {i,j}: {512, 24632}, {513, 5282}, {514, 37586}, {649, 3416}, {652, 1892}, {21123, 26270}
X(50459) = barycentric quotient X(i)/X(j) for these {i,j}: {1892, 46404}, {1919, 3415}, {3416, 1978}, {5282, 668}, {24632, 670}, {37586, 190}


X(50460) = X(115)X(125)∩X(275)X(23286)

Barycentrics    (b^2-c^2)(a^14 b^2-4 a^12 b^4+4 a^10 b^6+4 a^8 b^8-11 a^6 b^10+8 a^4 b^12-2 a^2 b^14+a^14 c^2-2 a^12 b^2 c^2+3 a^10 b^4 c^2-11 a^8 b^6 c^2+19 a^6 b^8 c^2-12 a^4 b^10 c^2+a^2 b^12 c^2+b^14 c^2-4 a^12 c^4+3 a^10 b^2 c^4+8 a^8 b^4 c^4-8 a^6 b^6 c^4-4 a^4 b^8 c^4+9 a^2 b^10 c^4-4 b^12 c^4+4 a^10 c^6-11 a^8 b^2 c^6-8 a^6 b^4 c^6+16 a^4 b^6 c^6-8 a^2 b^8 c^6+7 b^10 c^6+4 a^8 c^8+19 a^6 b^2 c^8-4 a^4 b^4 c^8-8 a^2 b^6 c^8-8 b^8 c^8-11 a^6 c^10-12 a^4 b^2 c^10+9 a^2 b^4 c^10+7 b^6 c^10+8 a^4 c^12+a^2 b^2 c^12-4 b^4 c^12-2 a^2 c^14+b^2 c^14) : :
Barycentrics    (SB-SC) (2 S^4-(4 R^2-SW)^2 (9 SA^2-6 SA SW-SW^2)-3 S^2 (32 R^4+12 R^2 SA-SA^2-20 R^2 SW-2 SA SW+3 SW^2)) : :

See Tran Quang Hung and Ercole Suppa, euclid 5188.

X(50460) lies on these lines: {115,125}, {275,23286}, {2052,23290}

X(50460) = X(3269)-Hirst inverse of X(42731)


X(50461) = X(265)-CEVA CONJUGATE OF X(3)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - 3*a^4*c^2 - a^2*b^2*c^2 + b^4*c^2 + 3*a^2*c^4 + b^2*c^4 - c^6) : :
X(50461) = X(50461) = X[3] - 4 X[3292], 5 X[3] - 4 X[21663], 5 X[3292] - X[21663], X[12164] + 2 X[15136], 2 X[21663] - 5 X[22115], 2 X[323] + X[399], 5 X[323] + X[12112], 4 X[323] - X[37496], 5 X[399] - 2 X[12112], 2 X[399] + X[37496], 4 X[12112] + 5 X[37496], 2 X[125] - 5 X[40113], 2 X[186] - 3 X[32609], X[32608] - 3 X[32609], X[32608] - 4 X[40111], 3 X[32609] - 4 X[40111], 4 X[15091] - X[43704], 3 X[381] - 2 X[50435], 4 X[1495] - 3 X[37956], 4 X[1511] - 3 X[37955], 2 X[1511] - 3 X[43572], 5 X[1656] - 2 X[41724], 4 X[2072] - 3 X[38724], 4 X[10272] - X[37779], 4 X[10272] - 3 X[37943], X[37779] - 3 X[37943], 2 X[3581] - 3 X[37922], 2 X[5609] + X[23061], 4 X[5609] - X[37924], 2 X[23061] + X[37924], 2 X[13445] - 3 X[18859], X[13445] - 3 X[43574], X[12308] + 2 X[37477], 4 X[7575] - 7 X[15039], 2 X[10510] + X[32254], 5 X[38794] - 4 X[44673], X[12317] - 3 X[44450], 4 X[13392] - 3 X[16532], 2 X[14094] + X[35001], 4 X[14156] - 3 X[15061], 5 X[15040] - 4 X[15646], 3 X[15041] - 4 X[34152], 9 X[15046] - 8 X[46031], 5 X[20125] - 3 X[46451], 2 X[31726] - 3 X[38789], 3 X[35265] - 2 X[37936]

X(50461) lies on the cubic K1278 and these lines: {2, 15037}, {3, 49}, {5, 195}, {6, 5055}, {30, 146}, {51, 21308}, {52, 12316}, {54, 11591}, {68, 10255}, {110, 1154}, {115, 45769}, {125, 40113}, {140, 43845}, {143, 15801}, {154, 37494}, {156, 2937}, {186, 32608}, {265, 539}, {381, 1993}, {382, 11441}, {403, 19504}, {511, 5899}, {520, 34983}, {524, 45016}, {547, 34545}, {549, 15032}, {550, 43605}, {567, 5891}, {568, 9306}, {1157, 15770}, {1173, 18874}, {1199, 3628}, {1351, 9971}, {1353, 45967}, {1493, 13434}, {1495, 37956}, {1498, 17800}, {1511, 37955}, {1614, 6101}, {1656, 5422}, {1657, 32139}, {1807, 23071}, {1986, 37917}, {1995, 13321}, {2071, 10620}, {2072, 3564}, {2914, 10272}, {2930, 11649}, {3043, 37970}, {3060, 7545}, {3153, 32423}, {3193, 37230}, {3289, 22121}, {3410, 39504}, {3448, 37938}, {3470, 15766}, {3526, 7592}, {3534, 11456}, {3545, 11004}, {3581, 37922}, {3819, 13339}, {3830, 18451}, {3843, 36747}, {3845, 15052}, {3851, 17814}, {4653, 28453}, {4658, 36750}, {5012, 15067}, {5054, 15066}, {5070, 17825}, {5073, 37498}, {5093, 9027}, {5097, 14845}, {5462, 22462}, {5504, 11559}, {5576, 31831}, {5609, 13391}, {5612, 5616}, {5648, 19140}, {5654, 10254}, {5663, 13445}, {5876, 14130}, {5889, 45735}, {5907, 37472}, {5944, 7691}, {5965, 14643}, {6000, 12308}, {6102, 15053}, {6193, 18404}, {6243, 10539}, {6640, 11411}, {6759, 37484}, {7100, 23070}, {7488, 12307}, {7502, 9544}, {7506, 12160}, {7575, 15039}, {7579, 15069}, {7666, 17506}, {8614, 13465}, {8681, 18449}, {9706, 10610}, {9716, 49671}, {9936, 25738}, {10095, 41578}, {10112, 43821}, {10170, 13366}, {10201, 45794}, {10217, 10661}, {10218, 10662}, {10264, 46114}, {10282, 17824}, {10510, 19377}, {10564, 17838}, {10601, 15703}, {10625, 47748}, {11064, 12364}, {11427, 14787}, {11440, 35498}, {11444, 32046}, {11793, 13353}, {11898, 19139}, {12046, 46084}, {12086, 33541}, {12118, 18562}, {12162, 37495}, {12227, 38794}, {12301, 47750}, {12310, 45780}, {12317, 44450}, {12370, 43835}, {12902, 18403}, {13150, 13512}, {13292, 50143}, {13346, 18439}, {13352, 18435}, {13392, 16532}, {13619, 34153}, {14094, 35001}, {14118, 31834}, {14156, 15061}, {14269, 44413}, {14449, 34484}, {14516, 31724}, {14683, 46450}, {14831, 43586}, {15018, 15699}, {15033, 15060}, {15040, 15646}, {15041, 34152}, {15046, 46031}, {15106, 40112}, {15123, 19458}, {15137, 18400}, {15246, 44324}, {15316, 21400}, {15533, 44493}, {15681, 37483}, {15694, 17811}, {15781, 44715}, {15800, 45286}, {15806, 21230}, {16661, 33542}, {18364, 43394}, {18917, 37669}, {20125, 46451}, {20806, 39899}, {23292, 48411}, {24981, 44407}, {31626, 46025}, {31726, 38789}, {32063, 44457}, {32136, 43651}, {32165, 43816}, {34380, 37971}, {34782, 48669}, {35265, 37936}, {36752, 46219}, {38896, 43965}, {44282, 44555}

X(50461) = midpoint of X(i) and X(j) for these {i,j}: {12308, 35452}, {14157, 23061}, {14683, 46450}
X(50461) = reflection of X(i) in X(j) for these {i,j}: {3, 22115}, {186, 40111}, {265, 1568}, {2070, 110}, {3448, 37938}, {5899, 10540}, {10264, 46114}, {10620, 2071}, {12902, 18403}, {13619, 34153}, {14157, 5609}, {18859, 43574}, {22115, 3292}, {32608, 186}, {35452, 37477}, {37924, 14157}, {37955, 43572}, {39562, 22151}, {44555, 44282}
X(50461) = isotomic conjugate of the polar conjugate of X(11063)
X(50461) = isogonal conjugate of the polar conjugate of X(37779)
X(50461) = X(i)-Ceva conjugate of X(j) for these (i,j): {265, 3}, {1568, 15781}, {10272, 15766}, {37779, 11063}, {46751, 40604}
X(50461) = X(i)-isoconjugate of X(j) for these (i,j): {19, 13582}, {92, 14579}, {158, 43704}, {1263, 2190}, {1291, 24006}, {3471, 36119}
X(50461) = X(i)-Dao conjugate of X(j) for these (i, j): (5, 1263), (6, 13582), (323, 340), (1147, 43704), (1511, 3471), (8562, 2970), (10413, 44427), (16336, 14106), (22391, 14579)
X(50461) = cevapoint of X(195) and X(399)
X(50461) = crosssum of X(8754) and X(47230)
X(50461) = crossdifference of every pair of points on line {2501, 6748}
X(50461) = barycentric product X(i)*X(j) for these {i,j}: {3, 37779}, {63, 1749}, {69, 11063}, {265, 40604}, {343, 1157}, {394, 37943}, {525, 47053}, {3284, 46751}, {3470, 11064}, {4558, 45147}, {4563, 6140}, {5612, 40710}, {5616, 40709}, {10272, 14919}, {18695, 19306}, {32662, 45790}
X(50461) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 13582}, {184, 14579}, {216, 1263}, {577, 43704}, {1157, 275}, {1749, 92}, {2914, 14165}, {3284, 3471}, {3470, 16080}, {5612, 471}, {5616, 470}, {6140, 2501}, {8562, 44427}, {9380, 38539}, {10272, 46106}, {10413, 2970}, {11063, 4}, {19306, 2190}, {32661, 1291}, {36296, 46072}, {36297, 46076}, {37779, 264}, {37943, 2052}, {38542, 9381}, {40604, 340}, {45147, 14618}, {47053, 648}, {50433, 15392}
X(50461) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15087, 15037}, {3, 3167, 9703}, {3, 34783, 43807}, {5, 195, 14627}, {5, 1994, 15038}, {49, 5562, 3}, {52, 18350, 13621}, {54, 11591, 34864}, {143, 43598, 18369}, {155, 394, 18445}, {156, 11412, 2937}, {184, 23039, 3}, {186, 40111, 32609}, {195, 15038, 1994}, {323, 399, 37496}, {394, 18445, 3}, {1092, 15083, 34783}, {1092, 34783, 3}, {1147, 18436, 3}, {1199, 3628, 15047}, {1493, 14128, 13434}, {1614, 6101, 13564}, {1993, 15068, 381}, {1994, 15038, 14627}, {3289, 22146, 22121}, {5562, 41597, 49}, {5609, 23061, 37924}, {5612, 5616, 11063}, {5876, 34148, 14130}, {5891, 34986, 567}, {6243, 10539, 18378}, {7691, 9705, 5944}, {11064, 12364, 19456}, {11441, 16266, 382}, {12316, 13621, 52}, {14516, 31724, 48675}, {15801, 43598, 143}, {17814, 36749, 3851}, {32608, 32609, 186}


X(50462) = X(265)-CEVA CONJUGATE OF X(7100)

Barycentrics    a*(a^2 - b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 + a*c + c^2)*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c - a*b*c + b^2*c - a*c^2 + b*c^2 - c^3) : :

X(50462) lies on the cubic K1278 and these lines: {3, 7100}, {5, 79}, {30, 3464}, {484, 31522}, {517, 26700}, {579, 2160}, {582, 6149}, {1325, 13486}, {1725, 5221}, {3615, 27003}, {5127, 37582}, {5535, 29374}, {5902, 7073}, {11076, 14158}, {14844, 39542}, {36058, 36061}

X(50462) = isotomic conjugate of the polar conjugate of X(11076)
X(50462) = X(265)-Ceva conjugate of X(7100)
X(50462) = X(i)-isoconjugate of X(j) for these (i,j): {4, 7343}, {3065, 6198}, {14975, 40716}
X(50462) = X(i)-Dao conjugate of X(j) for these (i, j): (3218, 340), (36033, 7343)
X(50462) = cevapoint of X(3336) and X(3464)
X(50462) = barycentric product X(i)*X(j) for these {i,j}: {63, 50148}, {69, 11076}, {265, 40612}, {306, 14158}, {7100, 17484}, {23071, 30690}, {40709, 46075}, {40710, 46071}
X(50462) = barycentric quotient X(i)/X(j) for these {i,j}: {48, 7343}, {7100, 21739}, {11076, 4}, {14158, 27}, {19297, 6198}, {23071, 3219}, {40612, 340}, {46071, 471}, {46075, 470}, {50148, 92}
X(50462) = {X(46071),X(46075)}-harmonic conjugate of X(11076)


X(50463) = X(3)X(15958)∩X(5)X(49)

Barycentrics    a^2*(a^2 - b^2 - c^2)^2*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - 2*a^2*c^2 - b^2*c^2 + c^4) : :

X(50463) lies on the cubic K1278 and these lines: {3, 15958}, {5, 49}, {30, 3484}, {94, 37127}, {97, 46091}, {216, 5961}, {264, 18831}, {436, 6344}, {933, 5663}, {1154, 18401}, {1511, 18315}, {5562, 19210}, {6662, 34148}, {7100, 36059}, {8798, 41597}, {13599, 32046}, {14586, 22146}, {15781, 44715}, {22115, 34900}, {25044, 34783}, {31504, 46092}

X(50463) = isotomic conjugate of the polar conjugate of X(11077)
X(50463) = X(1636)-cross conjugate of X(18315)
X(50463) = X(i)-isoconjugate of X(j) for these (i,j): {19, 14918}, {92, 11062}, {158, 1154}, {340, 2181}, {823, 2081}, {1096, 1273}, {1953, 14165}, {2052, 2290}, {6149, 13450}, {24019, 41078}
X(50463) = X(i)-Dao conjugate of X(j) for these (i, j): (6, 14918), (1147, 1154), (6503, 1273), (14993, 13450), (15295, 14569), (22391, 11062), (35071, 41078)
X(50463) = cevapoint of X(54) and X(3484)
X(50463) = trilinear pole of line {577, 17434}
X(50463) = barycentric product X(i)*X(j) for these {i,j}: {69, 11077}, {94, 19210}, {95, 50433}, {97, 265}, {328, 14533}, {394, 1141}, {577, 46138}, {14560, 15414}, {14592, 15958}, {18315, 43083}, {35139, 46088}
X(50463) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 14918}, {54, 14165}, {97, 340}, {184, 11062}, {265, 324}, {394, 1273}, {520, 41078}, {577, 1154}, {1141, 2052}, {1989, 13450}, {5961, 467}, {11060, 14569}, {11077, 4}, {14533, 186}, {14582, 23290}, {15958, 14590}, {19210, 323}, {23286, 44427}, {32662, 35360}, {36296, 6116}, {36297, 6117}, {39201, 2081}, {43083, 18314}, {46088, 526}, {46138, 18027}, {46966, 16813}, {50433, 5}


X(50464) = X(5)X(34298)∩X(30)X(74)

Barycentrics    a^2*(a^2 - b^2 - c^2)^2*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^4 - 2*a^2*b^2 + b^4 + a^2*c^2 + b^2*c^2 - 2*c^4)*(a^4 + a^2*b^2 - 2*b^4 - 2*a^2*c^2 + b^2*c^2 + c^4) : :

X(50464) lies on the cubic K1278 and these lines: {5, 34298}, {30, 74}, {49, 3470}, {186, 46788}, {250, 5663}, {525, 12028}, {1154, 44769}, {1511, 40384}, {2693, 12041}, {3284, 11079}, {4550, 11074}, {5961, 11589}, {6000, 14560}, {7514, 35910}, {10421, 30522}, {14254, 38937}, {14264, 18445}, {14919, 22115}, {15311, 43090}, {15781, 44715}, {16077, 43752}, {18848, 32138}, {31621, 33533}, {35908, 39522}, {39170, 39174}

X(50464) = isotomic conjugate of the polar conjugate of X(11079)
X(50464) = X(i)-cross conjugate of X(j) for these (i,j): {577, 14919}, {2972, 43083}, {17434, 44769}
X(50464) = X(i)-Dao conjugate of X(j) for these (i, j): (6, 14920), (1147, 1511), (6503, 6148), (22391, 39176), (35071, 5664), (36033, 35201), (36896, 14165), (39170, 34334), (39174, 1986)
X(50464) = cevapoint of X(i) and X(j) for these (i,j): {3, 44715}, {74, 38933}
X(50464) = trilinear pole of line {1636, 50433}
X(50464) = X(i)-isoconjugate of X(j) for these (i,j): {4, 35201}, {19, 14920}, {92, 39176}, {158, 1511}, {186, 1784}, {1096, 6148}, {2173, 14165}, {3258, 24000}, {5664, 24019}, {24001, 47230}
X(50464) = barycentric product X(i)*X(j) for these {i,j}: {69, 11079}, {265, 14919}, {328, 18877}, {394, 5627}, {520, 39290}, {1494, 50433}, {3926, 40355}, {15395, 15526}, {32662, 34767}, {39377, 40710}, {39378, 40709}, {43083, 44769}
X(50464) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 14920}, {48, 35201}, {74, 14165}, {184, 39176}, {265, 46106}, {394, 6148}, {520, 5664}, {577, 1511}, {3269, 3258}, {5627, 2052}, {11079, 4}, {14380, 44427}, {14919, 340}, {15395, 23582}, {18479, 18487}, {18877, 186}, {32662, 4240}, {34980, 47414}, {36061, 24001}, {36296, 6111}, {36297, 6110}, {39290, 6528}, {39377, 471}, {39378, 470}, {40355, 393}, {43083, 41079}, {44715, 14918}, {50433, 30}
X(50464) = {X(39377),X(39378)}-harmonic conjugate of X(11079)


X(50465) = X(3)X(36296)∩X(5)X(13)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(Sqrt[3]*(a^2 - b^2 - c^2) + 2*S)*(Sqrt[3]*(a^2 + b^2 - c^2) + 2*S)*(Sqrt[3]*(a^2 - b^2 + c^2) + 2*S) : :
Barycentrics    Cos[A]*Cos[A + Pi/6]*Sec[A - Pi/6]*Sin[A] : :
X(50465) = X[38943] - 3 X[41889]

X(50465) lies on the cubics K908 and K1278 and these lines: {3, 36296}, {5, 13}, {16, 1511}, {30, 5668}, {61, 6102}, {265, 10218}, {450, 36306}, {471, 11078}, {511, 5995}, {3284, 11079}, {3292, 38414}, {3457, 11486}, {5504, 39380}, {5663, 5669}, {10217, 11064}, {11142, 22238}, {14368, 17403}, {36211, 40667}, {36839, 46789}, {38413, 47482}

X(50465) = isotomic conjugate of the polar conjugate of X(11081)
X(50465) = isogonal conjugate of the polar conjugate of X(11078)
X(50465) = X(i)-Ceva conjugate of X(j) for these (i,j): {11078, 11081}, {39377, 3}
X(50465) = X(i)-isoconjugate of X(j) for these (i,j): {19, 11092}, {92, 11086}, {162, 23284}, {470, 2154}, {1094, 6344}
X(50465) = X(i)-Dao conjugate of X(j) for these (i, j): (6, 11092), (16, 11094), (125, 23284), (11126, 340), (22391, 11086), (40581, 470)
X(50465) = cevapoint of X(62) and X(5668)
X(50465) = crosssum of X(463) and X(1990)
X(50465) = barycentric product X(i)*X(j) for these {i,j}: {3, 11078}, {13, 44719}, {16, 40709}, {69, 11081}, {265, 11130}, {299, 36296}, {300, 46113}, {323, 10217}, {532, 47481}, {4558, 23283}, {6104, 40712}, {6148, 39380}, {8552, 36839}, {23871, 38414}, {36208, 40710}, {36211, 44718}, {39377, 41888}
X(50465) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 11092}, {16, 470}, {184, 11086}, {647, 23284}, {3457, 8738}, {5995, 36309}, {6104, 473}, {10217, 94}, {11078, 264}, {11080, 6344}, {11081, 4}, {11083, 46926}, {11130, 340}, {11134, 10633}, {16186, 43961}, {22115, 11131}, {23283, 14618}, {32585, 11600}, {32662, 36840}, {34395, 8739}, {36208, 471}, {36296, 14}, {36297, 36210}, {36839, 46456}, {38414, 23896}, {39377, 36311}, {39380, 5627}, {40581, 11094}, {40709, 301}, {44712, 33529}, {44719, 298}, {46112, 36209}, {46113, 15}, {47481, 11117}, {50433, 10218}
X(50465) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {13, 62, 11083}, {16, 36208, 11081}, {16, 40581, 48366}


X(50466) = X(3)X(36297)∩X(5)X(14)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(Sqrt[3]*(a^2 - b^2 - c^2) - 2*S)*(Sqrt[3]*(a^2 + b^2 - c^2) - 2*S)*(Sqrt[3]*(a^2 - b^2 + c^2) - 2*S) : :
Barycentrics    Cos[A]*Cos[A - Pi/6]*Sec[A + Pi/6]*Sin[A] : :

X(50466) lies on the cubics K908 and K1278 and these lines: {3, 36297}, {5, 14}, {15, 1511}, {30, 5669}, {62, 6102}, {265, 10217}, {450, 36309}, {470, 11092}, {511, 5994}, {3284, 11079}, {3292, 38413}, {3458, 11485}, {5504, 39381}, {5663, 5668}, {10218, 11064}, {11141, 22236}, {14369, 17402}, {36210, 40668}, {36840, 46789}, {38414, 47481}

X(50466) = isotomic conjugate of the polar conjugate of X(11086)
X(50466) = isogonal conjugate of the polar conjugate of X(11092)
X(50466) = X(i)-Ceva conjugate of X(j) for these (i,j): {11092, 11086}, {39378, 3}
X(50466) = X(i)-isoconjugate of X(j) for these (i,j): {19, 11078}, {92, 11081}, {162, 23283}, {471, 2153}, {1095, 6344}
X(50466) = X(i)-Dao conjugate of X(j) for these (i, j): (6, 11078), (15, 11093), (125, 23283), (11127, 340), (22391, 11081), (40580, 471)
X(50466) = cevapoint of X(61) and X(5669)
X(50466) = crosssum of X(462) and X(1990)
X(50466) = barycentric product X(i)*X(j) for these {i,j}: {3, 11092}, {14, 44718}, {15, 40710}, {69, 11086}, {265, 11131}, {298, 36297}, {301, 46112}, {323, 10218}, {533, 47482}, {4558, 23284}, {6105, 40711}, {6148, 39381}, {8552, 36840}, {23870, 38413}, {36209, 40709}, {36210, 44719}, {39378, 41887}
X(50466) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 11078}, {15, 471}, {184, 11081}, {647, 23283}, {3458, 8737}, {5994, 36306}, {6105, 472}, {10218, 94}, {11085, 6344}, {11086, 4}, {11088, 46925}, {11092, 264}, {11131, 340}, {11137, 10632}, {16186, 43962}, {22115, 11130}, {23284, 14618}, {32586, 11601}, {32662, 36839}, {34394, 8740}, {36209, 470}, {36296, 36211}, {36297, 13}, {36840, 46456}, {38413, 23895}, {39378, 36308}, {39381, 5627}, {40580, 11093}, {40710, 300}, {44711, 33530}, {44718, 299}, {46112, 16}, {46113, 36208}, {47482, 11118}, {50433, 10217}
X(50466) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {14, 61, 11088}, {15, 36209, 11086}, {15, 40580, 48365}


X(50467) = X(5)X(1117)∩X(30)X(2132)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^4 - 2*a^2*b^2 + b^4 + a^2*c^2 + b^2*c^2 - 2*c^4)*(a^4 + a^2*b^2 - 2*b^4 - 2*a^2*c^2 + b^2*c^2 + c^4)*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 - 4*a^6*c^2 + a^4*b^2*c^2 + a^2*b^4*c^2 + 2*b^6*c^2 + 6*a^4*c^4 + a^2*b^2*c^4 - 6*b^4*c^4 - 4*a^2*c^6 + 2*b^2*c^6 + c^8) : :

X(50467) lies on the cubic K1278 and these lines: {5, 1117}, {30, 2132}, {265, 14919}, {399, 15773}, {5158, 10217}, {5609, 15395}, {14254, 39290}, {14264, 40355}, {14385, 14805}, {15790, 40391}, {40384, 47055}

X(50467) = isotomic conjugate of the polar conjugate of X(11074)
X(50467) = X(14919)-Ceva conjugate of X(11079)
X(50467) = X(i)-isoconjugate of X(j) for these (i,j): {1138, 35201}, {19223, 24000}
X(50467) = X(i)-Dao conjugate of X(j) for these (i, j): (1989, 46106), (14919, 340)
X(50467) = cevapoint of X(2132) and X(3470)
X(50467) = crosspoint of X(265) and X(14993)
X(50467) = barycentric product X(i)*X(j) for these {i,j}: {69, 11074}, {1272, 11079}, {14919, 14993}
X(50467) = barycentric quotient X(i)/X(j) for these {i,j}: {399, 14920}, {3269, 19223}, {11074, 4}, {11079, 1138}, {14993, 46106}, {19303, 35201}, {50433, 20123}


X(50468) = X(13)X(15)∩X(61)X(143)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(Sqrt[3]*a^2 + Sqrt[3]*b^2 - Sqrt[3]*c^2 + 2*S)*(Sqrt[3]*a^2 - Sqrt[3]*b^2 + Sqrt[3]*c^2 + 2*S)*(a^2 - b^2 - c^2 - 2*Sqrt[3]*S) : :
Barycentrics    Cos[A]*Sec[A - Pi/6]*Sin[A]*Sin[A + Pi/6] : :

X(50468) lies on the cubic K1278 and these lines: {3, 36296}, {5, 8837}, {13, 15}, {61, 143}, {216, 5961}, {265, 10663}, {343, 465}, {473, 8838}, {549, 41889}, {3457, 11485}, {5944, 8839}, {5995, 13350}, {8604, 42619}, {10645, 36208}, {11082, 27361}, {11142, 22236}, {16021, 16463}, {38414, 47481}

X(50468) = isotomic conjugate of the polar conjugate of X(11083)
X(50468) = isogonal conjugate of the polar conjugate of X(8838)
X(50468) = X(8838)-Ceva conjugate of X(11083)
X(50468) = X(i)-isoconjugate of X(j) for these (i,j): {92, 8603}, {93, 35198}, {2962, 10633}
X(50468) = X(i)-Dao conjugate of X(j) for these (i, j): (10640, 470), (11130, 340), (22391, 8603)
X(50468) = cevapoint of X(15) and X(8837)
X(50468) = barycentric product X(i)*X(j) for these {i,j}: {3, 8838}, {61, 40709}, {69, 11083}, {265, 11126}, {302, 36296}, {328, 11135}, {6104, 40710}, {6671, 47481}, {10217, 11146}, {11082, 44180}, {11581, 44718}, {23872, 38414}
X(50468) = barycentric quotient X(i)/X(j) for these {i,j}: {49, 11127}, {61, 470}, {184, 8603}, {2965, 10633}, {3457, 8741}, {6104, 471}, {8604, 562}, {8838, 264}, {10632, 14165}, {11082, 93}, {11083, 4}, {11126, 340}, {11135, 186}, {16463, 8737}, {36296, 17}, {36297, 11600}, {38414, 32036}, {40709, 34389}, {44180, 11133}, {46112, 37848}
X(50468) = {X(61),X(6104)}-harmonic conjugate of X(11083)


X(50469) = X(14)X(16)∩X(62)X(143)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(Sqrt[3]*a^2 + Sqrt[3]*b^2 - Sqrt[3]*c^2 - 2*S)*(Sqrt[3]*a^2 - Sqrt[3]*b^2 + Sqrt[3]*c^2 - 2*S)*(a^2 - b^2 - c^2 + 2*Sqrt[3]*S) : :
Barycentrics    Cos[A]*Sec[A + Pi/6]*Sin[A]*Sin[A - Pi/6] : :

X(50469) lies on the cubic K1278 and these lines: {3, 36297}, {5, 8839}, {14, 16}, {62, 143}, {216, 5961}, {265, 10664}, {343, 466}, {472, 8836}, {3458, 11486}, {5944, 8837}, {5994, 13349}, {10646, 36209}, {11087, 27361}, {11141, 22238}, {16022, 16464}, {38413, 47482}

X(50469) = isotomic conjugate of the polar conjugate of X(11088)
X(50469) = isogonal conjugate of the polar conjugate of X(8836)
X(50469) = X(8836)-Ceva conjugate of X(11088)
X(50469) = X(i)-isoconjugate of X(j) for these (i,j): {92, 8604}, {93, 35199}, {2962, 10632}
X(50469) = X(i)-Dao conjugate of X(j) for these (i, j): (10639, 471), (11131, 340), (22391, 8604)
X(50469) = cevapoint of X(16) and X(8839)
X(50469) = barycentric product X(i)*X(j) for these {i,j}: {3, 8836}, {62, 40710}, {69, 11088}, {265, 11127}, {303, 36297}, {328, 11136}, {6105, 40709}, {6672, 47482}, {10218, 11145}, {11087, 44180}, {11582, 44719}, {23873, 38413}
X(50469) = barycentric quotient X(i)/X(j) for these {i,j}: {49, 11126}, {62, 471}, {184, 8604}, {2965, 10632}, {3458, 8742}, {6105, 470}, {8603, 562}, {8836, 264}, {10633, 14165}, {11087, 93}, {11088, 4}, {11127, 340}, {11136, 186}, {16464, 8738}, {36296, 11601}, {36297, 18}, {38413, 32037}, {40710, 34390}, {44180, 11132}, {46113, 37850}
X(50469) = {X(62),X(6105)}-harmonic conjugate of X(11088)


X(50470) = REFLECTION OF X(3) IN X(13448)

Barycentrics    3*a^16-11*(b^2+c^2)*a^14+(15*b^4+28*b^2*c^2+15*c^4)*a^12-12*(b^4+b^2*c^2+c^4)*(b^2+c^2)*a^10+(10*b^8+10*c^8+(4*b^4+15*b^2*c^2+4*c^4)*b^2*c^2)*a^8-(b^6+c^6)*(3*b^4-b^2*c^2+3*c^4)*a^6-3*(b^2-c^2)^2*(3*b^8+3*c^8-2*(b^4+c^4)*b^2*c^2)*a^4+2*(b^4-c^4)*(b^2-c^2)^3*(5*b^4-4*b^2*c^2+5*c^4)*a^2-(b^2-c^2)^6*(3*b^4+2*b^2*c^2+3*c^4) : :
Barycentrics    S^4+(3*R^2*(9*R^2-4*SW)-9*SB*SC+SW^2)*S^2+3*(9*R^2-5*SW)*(3*R^2-SW)*SB*SC : :
X(50470) = X(382)+2*X(39235)

See César Lozada, euclid 5193.

X(50470) lies on this line: {2, 3}

X(50470) = reflection of X(3) in X(13448)


X(50471) = X(4)X(195)∩X(157)X(381)

Barycentrics    (a^8-2*(b^2+c^2)*a^6+b^2*c^2*a^4+(b^2+c^2)*(2*b^4-3*b^2*c^2+2*c^4)*a^2-(b^4+c^4)*(b^2-c^2)^2)*(a^8-2*(b^2+c^2)*a^6+(2*b^4-b^2*c^2+2*c^4)*a^4-2*(b^4-c^4)*(b^2-c^2)*a^2+(b^2-c^2)^4) : :
X(50471) = 3*X(381)-2*X(15367), 5*X(1656)-4*X(15366)

See César Lozada, euclid 5193.

X(50471) lies on the 2nd Steiner circle and these lines: {3, 14769}, {4, 195}, {5, 14652}, {128, 5099}, {157, 381}, {1553, 31726}, {1656, 15366}, {6592, 46450}, {8146, 14130}, {12091, 18403}, {13505, 34514}, {13512, 31723}, {13556, 22823}, {14674, 31976}, {14877, 14978}, {21731, 25149}, {23319, 45735}, {34418, 39504}

X(50471) = reflection of X(i) in X(j) for these (i, j): (3, 14769), (14652, 5)
X(50471) = X(99)-Ceva conjugate of-X(24978)


X(50472) = X(30)X(925)∩X(265)X(924)

Barycentrics    a^22-5*(b^2+c^2)*a^20+3*(3*b^4+8*b^2*c^2+3*c^4)*a^18-(b^2+c^2)*(5*b^4+38*b^2*c^2+5*c^4)*a^16-(6*b^8+6*c^8-(32*b^4+77*b^2*c^2+32*c^4)*b^2*c^2)*a^14+(b^2+c^2)*(14*b^8+14*c^8-(22*b^4+35*b^2*c^2+22*c^4)*b^2*c^2)*a^12-(14*b^12+14*c^12-(9*b^8+9*c^8-2*(b^4-29*b^2*c^2+c^4)*b^2*c^2)*b^2*c^2)*a^10+(b^2+c^2)*(6*b^12+6*c^12-b^2*c^2*(5*b^4-4*b^2*c^2+3*c^4)*(3*b^4-4*b^2*c^2+5*c^4))*a^8+(5*b^12+5*c^12-6*(2*b^8+2*c^8-b^2*c^2*(2*b^4-3*b^2*c^2+2*c^4))*b^2*c^2)*(b^2-c^2)^2*a^6-(b^4-c^4)*(b^2-c^2)^3*(9*b^8+9*c^8-b^2*c^2*(16*b^4-21*b^2*c^2+16*c^4))*a^4+(b^2-c^2)^6*(5*b^4+8*b^2*c^2+5*c^4)*(b^4-b^2*c^2+c^4)*a^2-(b^4+b^2*c^2+c^4)*(b^2-c^2)^8*(b^2+c^2) : :
X(50472) = 3*X(381)-2*X(42424)

See César Lozada, euclid 5193.

X(50472) lies on the circumcircles of triangles Ehrmann-side and Johnson and on these lines: {3, 16221}, {4, 16978}, {5, 10420}, {30, 925}, {265, 924}, {381, 42424}, {382, 38580}, {403, 13557}, {523, 13556}, {1304, 43995}, {2070, 23181}, {6033, 11799}, {7728, 13417}, {10745, 36184}, {14980, 31724}, {18403, 21268}, {31723, 38953}

X(50472) = reflection of X(i) in X(j) for these (i, j): (3, 16221), (10420, 5), (13557, 403), (18403, 21268)


X(50473) = X(30)X(137)∩X(136)X(14106)

Barycentrics    (2*a^8-4*(b^2+c^2)*a^6+3*(b^4+c^4)*a^4-2*(b^4-c^4)*(b^2-c^2)*a^2+(b^2-c^2)^4)*((b^4+c^4)*a^16-3*(b^2+c^2)*(2*b^4-b^2*c^2+2*c^4)*a^14+(14*b^8+14*c^8+b^2*c^2*(11*b^4+10*b^2*c^2+11*c^4))*a^12-2*(b^2+c^2)*(7*b^8+7*c^8+b^2*c^2*(b^4+7*b^2*c^2+c^4))*a^10+(20*b^8+20*c^8+b^2*c^2*(7*b^4+12*b^2*c^2+7*c^4))*b^2*c^2*a^8+(b^2+c^2)*(14*b^12+14*c^12-(49*b^8+49*c^8-b^2*c^2*(65*b^4-69*b^2*c^2+65*c^4))*b^2*c^2)*a^6-(b^2-c^2)^2*(14*b^12+14*c^12-(15*b^8+15*c^8-(b^4+b^2*c^2+c^4)*b^2*c^2)*b^2*c^2)*a^4+(b^4-c^4)*(b^2-c^2)^3*(6*b^8+6*c^8-b^2*c^2*(8*b^4-11*b^2*c^2+8*c^4))*a^2-(b^4+c^4)^2*(b^2-c^2)^6) : :

See César Lozada, euclid 5193.

X(50473) lies on these lines: {30, 137}, {136, 14106}


X(50474) = X(5663)X(6150)∩X(25044)X(43966)

Barycentrics    a^2*(a^32-10*(b^2+c^2)*a^30+(45*b^4+83*b^2*c^2+45*c^4)*a^28-5*(b^2+c^2)*(24*b^4+37*b^2*c^2+24*c^4)*a^26+(209*b^8+209*c^8+(653*b^4+894*b^2*c^2+653*c^4)*b^2*c^2)*a^24-2*(b^2+c^2)*(121*b^8+121*c^8+(331*b^4+410*b^2*c^2+331*c^4)*b^2*c^2)*a^22+(165*b^12+165*c^12+(859*b^8+859*c^8+2*(762*b^4+905*b^2*c^2+762*c^4)*b^2*c^2)*b^2*c^2)*a^20-(b^2+c^2)*(613*b^8+613*c^8+(377*b^4+894*b^2*c^2+377*c^4)*b^2*c^2)*b^2*c^2*a^18-(165*b^16+165*c^16-(423*b^12+423*c^12+(345*b^8+345*c^8+b^2*c^2*(488*b^4+543*b^2*c^2+488*c^4))*b^2*c^2)*b^2*c^2)*a^16+2*(b^2+c^2)*(121*b^16+121*c^16-(310*b^12+310*c^12-(355*b^8+355*c^8-b^2*c^2*(394*b^4-339*b^2*c^2+394*c^4))*b^2*c^2)*b^2*c^2)*a^14-(209*b^20+209*c^20-(361*b^16+361*c^16-(297*b^12+297*c^12-(59*b^8+59*c^8+b^2*c^2*(20*b^4-3*b^2*c^2+20*c^4))*b^2*c^2)*b^2*c^2)*b^2*c^2)*a^12+(b^2+c^2)*(120*b^20+120*c^20-(395*b^16+395*c^16-(740*b^12+740*c^12-(940*b^8+940*c^8-b^2*c^2*(975*b^4-973*b^2*c^2+975*c^4))*b^2*c^2)*b^2*c^2)*b^2*c^2)*a^10-(b^2-c^2)^2*(45*b^20+45*c^20-(65*b^16+65*c^16-(135*b^12+135*c^12-(21*b^8+21*c^8-4*b^2*c^2*(7*b^4+2*b^2*c^2+7*c^4))*b^2*c^2)*b^2*c^2)*b^2*c^2)*a^8+(b^4-c^4)*(b^2-c^2)^3*(10*b^16+10*c^16-(38*b^12+38*c^12-(106*b^8+106*c^8-b^2*c^2*(74*b^4-107*b^2*c^2+74*c^4))*b^2*c^2)*b^2*c^2)*a^6-(b^2-c^2)^6*(b^16+c^16-(19*b^12+19*c^12-(15*b^8+15*c^8+b^2*c^2*(20*b^4+17*b^2*c^2+20*c^4))*b^2*c^2)*b^2*c^2)*a^4-(b^4+b^2*c^2+c^4)*(b^2-c^2)^8*(b^2+c^2)*(7*b^4-12*b^2*c^2+7*c^4)*b^2*c^2*a^2+(b^6+c^6)*(b^2+c^2)*b^2*c^2*(b^2-c^2)^10) : :

See César Lozada, euclid 5193.

X(50474) lies on the Yiu circle and these lines: {5663, 6150}, {25044, 43966}


X(50475) = X(136)X(35591)∩X(137)X(523)

Barycentrics    (b^2-c^2)^2*((b^2+c^2)*a^2-(b^2-c^2)^2)*((b^2+c^2)*a^14-(5*b^4+7*b^2*c^2+5*c^4)*a^12+3*(b^2+c^2)*(3*b^4+2*b^2*c^2+3*c^4)*a^10-(5*b^8+5*c^8+2*b^2*c^2*(7*b^4+6*b^2*c^2+7*c^4))*a^8-(b^2+c^2)*(5*b^8+5*c^8-b^2*c^2*(16*b^4-15*b^2*c^2+16*c^4))*a^6+(9*b^12+9*c^12-(15*b^8+15*c^8-b^2*c^2*(7*b^4+b^2*c^2+7*c^4))*b^2*c^2)*a^4-(b^4-c^4)*(b^2-c^2)*(5*b^8+5*c^8-b^2*c^2*(8*b^4-11*b^2*c^2+8*c^4))*a^2+(b^4+c^4)^2*(b^2-c^2)^4) : :

See César Lozada, euclid 5193.

X(50475) lies on these lines: {136, 35591}, {137, 523}, {1154, 32215}, {10096, 16337}, {24306, 32423}


X(50476) = X(5)X(399)∩X(30)X(143)

Barycentrics    2*a^10 - 7*a^8*b^2 + 10*a^6*b^4 - 8*a^4*b^6 + 4*a^2*b^8 - b^10 - 7*a^8*c^2 + 2*a^6*b^2*c^2 + 11*a^4*b^4*c^2 - 9*a^2*b^6*c^2 + 3*b^8*c^2 + 10*a^6*c^4 + 11*a^4*b^2*c^4 + 10*a^2*b^4*c^4 - 2*b^6*c^4 - 8*a^4*c^6 - 9*a^2*b^2*c^6 - 2*b^4*c^6 + 4*a^2*c^8 + 3*b^2*c^8 - c^10 : :
X(50476) = X[3] + 3 X[45969], 3 X[389] + X[13470], X[13403] + 3 X[13630], X[13403] - 9 X[43573], X[13403] - 3 X[43575], 5 X[13403] + 3 X[43577], X[13630] + 3 X[43573], 5 X[13630] - X[43577], 3 X[43573] - X[43575], 15 X[43573] + X[43577], 5 X[43575] + X[43577], X[140] + 3 X[11245], 3 X[140] + X[32358], 3 X[11245] - X[32165], 9 X[11245] - X[32358], 3 X[32165] - X[32358], 5 X[632] + 3 X[45968], X[3627] - 9 X[45967], 3 X[3628] - X[31831], X[3628] - 3 X[45298], X[31831] + 3 X[43588], X[31831] - 9 X[45298], X[43588] + 3 X[45298], 3 X[5892] + X[11264], 3 X[5943] - 2 X[23409], 3 X[5943] + X[45732], 2 X[23409] + X[45732], 3 X[9730] + X[45970], X[10095] - 3 X[32068], X[18128] + 3 X[32068], X[10116] + 3 X[13363], X[10627] + 3 X[11225], X[12289] + 15 X[37481], X[12289] + 3 X[45971], 5 X[37481] - X[45971], 7 X[15043] + X[45731]

See Antreas Hatzipolakis, César Lozada and Peter Moses, euclid 5194 and euclid 5195.

X(50476) lies on these lines: {3, 43838}, {5, 399}, {30, 143}, {49, 13392}, {54, 140}, {125, 8254}, {265, 43600}, {542, 32205}, {546, 25739}, {547, 43836}, {548, 3581}, {550, 43818}, {567, 43608}, {575, 13561}, {632, 45968}, {1154, 44862}, {1199, 22051}, {1493, 46114}, {1514, 3861}, {1899, 50138}, {2918, 12107}, {3521, 3853}, {3530, 13292}, {3564, 16239}, {3580, 34004}, {3627, 43835}, {3628, 15806}, {3850, 18914}, {5012, 34577}, {5422, 50136}, {5462, 13163}, {5501, 8902}, {5690, 43830}, {5892, 11264}, {5898, 36966}, {5943, 23409}, {7583, 43867}, {7584, 43868}, {7592, 49673}, {7728, 43612}, {9730, 45970}, {10020, 43810}, {10095, 18128}, {10116, 13363}, {10125, 32046}, {10224, 18952}, {10264, 13434}, {10627, 11225}, {11433, 17714}, {11441, 50142}, {11802, 13358}, {11803, 34564}, {12006, 32423}, {12121, 43603}, {12289, 37481}, {13142, 44245}, {13567, 18282}, {14683, 22462}, {15012, 30522}, {15043, 45731}, {15108, 44756}, {15172, 43819}, {15557, 42400}, {16982, 17712}, {18912, 46029}, {20127, 43611}, {33332, 34545}, {34153, 43597}, {36753, 39504}, {43866, 48154}

X(50476) = midpoint of X(i) and X(j) for these {i, j}: {140, 32165}, {3530, 13292}, {3628, 43588}, {3850, 18914}, {8254, 27552}, {10095, 18128}, {13142, 44245}, {13630, 43575}, {16982, 17712}
X(50476) = reflection of X(13163) in X(5462)
X(50476) = crosspoint of X(95) and X(11538)
X(50476) = crosssum of X(51) and X(15109)
X(50476) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (125, 36153, 8254), (140, 11245, 32165), (1199, 37938, 22051), (3448, 15047, 5), (13630, 43573, 43575), (15037, 43808, 5), (15806, 43817, 3628), (18128, 32068, 10095), (43588, 45298, 3628), (43816, 43845, 5)


X(50477) = X(61)X(302)∩X(8259)X(15609)

Barycentrics    (2*sqrt(3)*S-a^2+b^2+c^2)*(-2*(6*a^10+5*(b^2+c^2)*a^8-4*(9*b^4+28*b^2*c^2+9*c^4)*a^6+(b^2+c^2)*(10*b^4-119*b^2*c^2+10*c^4)*a^4+(2*b^8+2*c^8+b^2*c^2*(7*b^4-36*b^2*c^2+7*c^4))*a^2+(b^4-c^4)*(b^2-c^2)^3)*sqrt(3)*S+6*a^12-51*(b^2+c^2)*a^10+(53*b^4+2*b^2*c^2+53*c^4)*a^8+(b^2+c^2)*(28*b^4+361*b^2*c^2+28*c^4)*a^6-2*(7*b^4-23*b^2*c^2+7*c^4)*(3*b^4+11*b^2*c^2+3*c^4)*a^4+7*(b^4-c^4)*(b^2-c^2)*(b^4-5*b^2*c^2+c^4)*a^2-(b^4+4*b^2*c^2+c^4)*(b^2-c^2)^4) : :

See Antreas Hatzipolakis and César Lozada, euclid 5194.

X(50477) lies on these lines: {61, 302}, {8259, 15609}


X(50478) = X(62)X(303)∩X(8260)X(15610)

Barycentrics    (-2*sqrt(3)*S-a^2+b^2+c^2)*(2*(6*a^10+5*(b^2+c^2)*a^8-4*(9*b^4+28*b^2*c^2+9*c^4)*a^6+(b^2+c^2)*(10*b^4-119*b^2*c^2+10*c^4)*a^4+(2*b^8+2*c^8+b^2*c^2*(7*b^4-36*b^2*c^2+7*c^4))*a^2+(b^4-c^4)*(b^2-c^2)^3)*sqrt(3)*S+6*a^12-51*(b^2+c^2)*a^10+(53*b^4+2*b^2*c^2+53*c^4)*a^8+(b^2+c^2)*(28*b^4+361*b^2*c^2+28*c^4)*a^6-2*(7*b^4-23*b^2*c^2+7*c^4)*(3*b^4+11*b^2*c^2+3*c^4)*a^4+7*(b^4-c^4)*(b^2-c^2)*(b^4-5*b^2*c^2+c^4)*a^2-(b^4+4*b^2*c^2+c^4)*(b^2-c^2)^4) : :

See Antreas Hatzipolakis and César Lozada, euclid 5194.

X(50478) lies on these lines: {62, 303}, {8260, 15610}


X(50479) = X(5)X(51)∩X(137)X(5501)

Barycentrics    (a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*(2*a^18 - 13*a^16*b^2 + 36*a^14*b^4 - 54*a^12*b^6 + 44*a^10*b^8 - 12*a^8*b^10 - 12*a^6*b^12 + 14*a^4*b^14 - 6*a^2*b^16 + b^18 - 13*a^16*c^2 + 52*a^14*b^2*c^2 - 72*a^12*b^4*c^2 + 24*a^10*b^6*c^2 + 32*a^8*b^8*c^2 - 20*a^6*b^10*c^2 - 20*a^4*b^12*c^2 + 24*a^2*b^14*c^2 - 7*b^16*c^2 + 36*a^14*c^4 - 72*a^12*b^2*c^4 + 26*a^10*b^4*c^4 + 7*a^8*b^6*c^4 + 30*a^6*b^8*c^4 - 21*a^4*b^10*c^4 - 26*a^2*b^12*c^4 + 20*b^14*c^4 - 54*a^12*c^6 + 24*a^10*b^2*c^6 + 7*a^8*b^4*c^6 + 4*a^6*b^6*c^6 + 27*a^4*b^8*c^6 - 16*a^2*b^10*c^6 - 28*b^12*c^6 + 44*a^10*c^8 + 32*a^8*b^2*c^8 + 30*a^6*b^4*c^8 + 27*a^4*b^6*c^8 + 48*a^2*b^8*c^8 + 14*b^10*c^8 - 12*a^8*c^10 - 20*a^6*b^2*c^10 - 21*a^4*b^4*c^10 - 16*a^2*b^6*c^10 + 14*b^8*c^10 - 12*a^6*c^12 - 20*a^4*b^2*c^12 - 26*a^2*b^4*c^12 - 28*b^6*c^12 + 14*a^4*c^14 + 24*a^2*b^2*c^14 + 20*b^4*c^14 - 6*a^2*c^16 - 7*b^2*c^16 + c^18) : :
Barycentrics    (S^2+SB*SC)*(8*R^6-(9*SA+SW)*R^4+2*(4*SA-3*SW)*SW*R^2-2*(SA-SW)*SW^2+(26*R^2+2*SA-10*SW)*S^2) : :

See Antreas Hatzipolakis, César Lozada and Peter Moses, euclid 5194 and euclid 5195.

X(50479) lies on these lines: {5, 51}, {54, 47065}, {137, 5501}, {434, 11576}, {10285, 10610}, {13856, 19268}, {27196, 33545}

X(50479) = midpoint of X(8254) and X(14051)
X(50479) = crosssum of X(54) and X(15345)


X(50480) = ISOGONAL CONJUGATE OF X(2935)

Barycentrics    (a^14 + a^12*b^2 - 9*a^10*b^4 + 7*a^8*b^6 + 7*a^6*b^8 - 9*a^4*b^10 + a^2*b^12 + b^14 - 3*a^12*c^2 + 9*a^10*b^2*c^2 + 15*a^8*b^4*c^2 - 42*a^6*b^6*c^2 + 15*a^4*b^8*c^2 + 9*a^2*b^10*c^2 - 3*b^12*c^2 + a^10*c^4 - 27*a^8*b^2*c^4 + 26*a^6*b^4*c^4 + 26*a^4*b^6*c^4 - 27*a^2*b^8*c^4 + b^10*c^4 + 5*a^8*c^6 + 14*a^6*b^2*c^6 - 46*a^4*b^4*c^6 + 14*a^2*b^6*c^6 + 5*b^8*c^6 - 5*a^6*c^8 + 15*a^4*b^2*c^8 + 15*a^2*b^4*c^8 - 5*b^6*c^8 - a^4*c^10 - 15*a^2*b^2*c^10 - b^4*c^10 + 3*a^2*c^12 + 3*b^2*c^12 - c^14)*(a^14 - 3*a^12*b^2 + a^10*b^4 + 5*a^8*b^6 - 5*a^6*b^8 - a^4*b^10 + 3*a^2*b^12 - b^14 + a^12*c^2 + 9*a^10*b^2*c^2 - 27*a^8*b^4*c^2 + 14*a^6*b^6*c^2 + 15*a^4*b^8*c^2 - 15*a^2*b^10*c^2 + 3*b^12*c^2 - 9*a^10*c^4 + 15*a^8*b^2*c^4 + 26*a^6*b^4*c^4 - 46*a^4*b^6*c^4 + 15*a^2*b^8*c^4 - b^10*c^4 + 7*a^8*c^6 - 42*a^6*b^2*c^6 + 26*a^4*b^4*c^6 + 14*a^2*b^6*c^6 - 5*b^8*c^6 + 7*a^6*c^8 + 15*a^4*b^2*c^8 - 27*a^2*b^4*c^8 + 5*b^6*c^8 - 9*a^4*c^10 + 9*a^2*b^2*c^10 + b^4*c^10 + a^2*c^12 - 3*b^2*c^12 + c^14) : :

X(50480) lies on the cubics K528 and K1279, the curve Q066, and these lines: {2, 38937}, {20, 14911}, {30, 15262}, {146, 2071}, {34170, 46106}

X(50480) = isogonal conjugate of X(2935)
X(50480) = cyclocevian conjugate of X(2986)
X(50480) = isotomic conjugate of the anticomplement of X(8749)
X(50480) = X(i)-cross conjugate of X(j) for these (i,j): {5897, 3346}, {8749, 2}, {11744, 4}, {34178, 1138}
X(50480) = cevapoint of X(i) and X(j) for these (i,j): {3, 17838}, {512, 39008}, {523, 16177}
X(50480) = trilinear pole of line {9033, 46425}
X(50480) = barycentric quotient X(6)/X(2935)


leftri

Points in a [[b c, c a, a b], [b^2 c^2, c^2 a^2, a^2 b^2]] coordinate system: X(50481)-X(50526)

rightri

If L1 and L2 are lines that meet in a point P not at infinity, then a [L1, L2]-coordinate system is a bivariate coordinate system having L1 as x-axis, L2 as y-axis, and P as origin. In this section, L1 and L2 are the following lines:

L1 is the line: b c α + c a β + a b γ = 0.

L2 is the line b^2 c^2 α + c^2 a^2 β + a^2 b^2 γ = 0.

The origin is given by (0, 0) = X(649) = a^2 (b - c) : : .

Barycentrics u : v : w for a triangle center U = (x,y) in this system are given by

u : v : w = -a^3 b c (b-c) - a(b-c) x + a^2(b^2-c^2) y ,

where, as functions of a, b, c, the coordinate x is symmetric of degree 4, and y is symmetric of degree 2.

The appearance of {x, y}, k in the following list means that (x, y) = X(k).

{-2 a b c (a+b+c), -((2 a b c)/(a+b+c))}, 47912
{-2 (a b+a c+b c) (a^2+b^2+c^2), -2 (a^2+b^2+c^2)}, 47923
{-2 (a b+a c+b c)^2, -2 (a b+a c+b c)}, 47926
{-2 a b c (a+b+c), -a b-a c-b c}, 20983
{-2 a b c (a+b+c), 0}, 4813
{-a b c (a+b+c), -((2 a b c)/(a+b+c))}, 4041
{-a b c (a+b+c), -((a b c)/(a+b+c))}, 4705
{-((a+b) (a+c) (b+c) (a+b+c)), -(a+b+c)^2}, 48277
{-(a+b+c)^2 (a b+a c+b c), -(a+b+c)^2}, 4988
{-((a b+a c+b c) (a^2+b^2+c^2)), -a^2-b^2-c^2}, 16892
{-(a b+a c+b c)^2, -a b-a c-b c}, 17494
{-a b c (a+b+c), -((a b c)/(2 (a+b+c)))}, 48005
{-a b c (a+b+c), 0}, 661
{-a b c (a+b+c), (a b c)/(2 (a+b+c))}, 48053
{-a b c (a+b+c), (a b c)/(a+b+c)}, 4983
{-a b c (a+b+c), (2 a b c)/(a+b+c)}, 4822
{-(1/2) a b c (a+b+c), 1/2 (-a b-a c-b c)}, 4507
{-(1/2) (a+b) (a+c) (b+c) (a+b+c), -(1/2) (a+b+c)^2}, 4976
{-(1/2) (a+b+c)^2 (a b+a c+b c), -(1/2) (a+b+c)^2}, 45745
{-(1/2) (a b+a c+b c) (a^2+b^2+c^2), 1/2 (-a^2-b^2-c^2)}, 4025
{-(1/2) (a b+a c+b c)^2, 1/2 (-a b-a c-b c)}, 48008
{-(1/2) a b c (a+b+c), 0}, 650
{-(1/2) a b c (a+b+c), (a b c)/(a+b+c)}, 48099
{0, -((a b c)/(a+b+c))}, 4834
{0, 0}, 649
{0, a b+a c+b c}, 2978
{0, (a b c)/(a+b+c)}, 667
{0, (2 a b c)/(a+b+c)}, 663
{1/2 a b c (a+b+c), 0}, 4790
{1/2 (a+b) (a+c) (b+c) (a+b+c), 1/2 (a+b+c)^2}, 48276
{1/2 (a+b+c)^2 (a b+a c+b c), 1/2 (a+b+c)^2}, 49293
{1/2 (a b+a c+b c) (a^2+b^2+c^2), 1/2 (a^2+b^2+c^2)}, 48060
{1/2 (a b+a c+b c)^2, 1/2 (a b+a c+b c)}, 4932
{a b c (a+b+c), 0}, 4979
{(a+b) (a+c) (b+c) (a+b+c), (a+b+c)^2}, 48275
{(a b+a c+b c) (a^2+b^2+c^2), a^2+b^2+c^2}, 48101
{(a b+a c+b c)^2, a b+a c+b c}, 7192
{2 (a b+a c+b c) (a^2+b^2+c^2), 2 (a^2+b^2+c^2)}, 48138
{2 (a b+a c+b c)^2, 2 (a b+a c+b c)}, 48141
{-2*a*b*c*(a + b + c), -2*(a*b + a*c + b*c)}, 50481
{-2*(a + b)*(a + c)*(b + c)*(a + b + c), -2*(a + b + c)^2}, 50482
{-(a*b*c*(a + b + c)), -2*(a*b + a*c + b*c)}, 50483
{-((a + b + c)^2*(a*b + a*c + b*c)), -2*(a*b + a*c + b*c)}, 50484
{-(a*b + a*c + b*c)^2, -2*(a*b + a*c + b*c)}, 50485
{-(a*b*c*(a + b + c)), -a^2 - b^2 - c^2}, 50486
{-(a*b*c*(a + b + c)), -(a*b) - a*c - b*c}, 50487
{-(a*b*c*(a + b + c)), -(((a + b)*(a + c)*(b + c))/(a + b + c))}, 50488
{-((a + b + c)^2*(a*b + a*c + b*c)), -(a*b) - a*c - b*c}, 50489
{-(a*b*c*(a + b + c)), (-a^2 - b^2 - c^2)/2}, 50490
{-(a*b*c*(a + b + c)), (-(a*b) - a*c - b*c)/2}, 50491
{-(a*b*c*(a + b + c)), -1/2*(a + b + c)^2}, 50492
{-(a*b*c*(a + b + c)), -1/2*((a + b)*(a + c)*(b + c))/(a + b + c)}, 50493
{-(a*b*c*(a + b + c)), (a^2 + b^2 + c^2)/2}, 50494
{-(a*b*c*(a + b + c)), (a + b + c)^2/2}, 50495
{-(a*b*c*(a + b + c)), a^2 + b^2 + c^2}, 50496
{-(a*b*c*(a + b + c)), a*b + a*c + b*c}, 50497
{-(a*b*c*(a + b + c)), (a + b + c)^2}, 50498
{-1/2*(a*b*c*(a + b + c)), (-2*a*b*c)/(a + b + c)}, 50499
{-1/2*(a*b*c*(a + b + c)), -(a*b) - a*c - b*c}, 50500
{-1/2*(a*b*c*(a + b + c)), -((a*b*c)/(a + b + c))}, 50501
{-1/2*((a + b + c)^2*(a*b + a*c + b*c)), -(a*b) - a*c - b*c}, 50502
{-1/2*(a*b*c*(a + b + c)), (-a^2 - b^2 - c^2)/2}, 50503
{-1/2*(a*b*c*(a + b + c)), -1/2*(a*b*c)/(a + b + c)}, 50504
{-1/2*((a*b + a*c + b*c)*(a^2 + b^2 + c^2)), 0}, 50505
{-1/2*(a*b*c*(a + b + c)), (a^2 + b^2 + c^2)/2}, 50506
{-1/2*(a*b*c*(a + b + c)), (a*b*c)/(2*(a + b + c))}, 50507
{-1/2*(a*b*c*(a + b + c)), (2*a*b*c)/(a + b + c)}, 50508
{0, (-2*a*b*c)/(a + b + c)}, 50509
{0, (a*b + a*c + b*c)/2}, 50510
{0, (a + b + c)^2/2}, 50511
{0, (a*b*c)/(2*(a + b + c))}, 50512
{(a*b*c*(a + b + c))/2, (a^2 + b^2 + c^2)/2}, 50513
{(a*b*c*(a + b + c))/2, (a*b + a*c + b*c)/2}, 50514
{(a*b*c*(a + b + c))/2, (a*b*c)/(a + b + c)}, 50515
{(a*b + a*c + b*c)^2/2, a*b + a*c + b*c}, 50516
{(a*b*c*(a + b + c))/2, (2*a*b*c)/(a + b + c)}, 50517
{((a + b)*(a + c)*(b + c)*(a + b + c))/2, 2*(a*b + a*c + b*c)}, 50518
{((a + b + c)^2*(a*b + a*c + b*c))/2, 2*(a*b + a*c + b*c)}, 50519
{(a*b + a*c + b*c)^2, -(a*b) - a*c - b*c}, 50520
{a*b*c*(a + b + c), a*b + a*c + b*c}, 50521
{(a + b + c)^2*(a*b + a*c + b*c), (a + b + c)^2}, 50522
{a*b*c*(a + b + c), (2*a*b*c)/(a + b + c)}, 50523
{(a*b + a*c + b*c)^2, 2*(a*b + a*c + b*c)}, 50524
{2*a*b*c*(a + b + c), 0}, 50525
{2*a*b*c*(a + b + c), (2*a*b*c)/(a + b + c)}, 50526


X(50481) = X(1)X(27673)∩X(42)X(649)

Barycentrics    a^3*(b - c)*(2*b^2 + 3*b*c + 2*c^2) : :
X(50481) = 7 X[20295] - 9 X[44008], 3 X[649] - 4 X[4507], 7 X[649] - 6 X[8027], 14 X[4507] - 9 X[8027], 2 X[2978] - 3 X[4893]

X(50481) lies on these lines: {1, 27673}, {8, 20295}, {42, 649}, {512, 4813}, {513, 4963}, {798, 8655}, {834, 48023}, {1734, 27469}, {2978, 4893}, {3063, 8635}, {3779, 9002}, {3835, 31330}, {4083, 4382}, {4807, 23803}, {4979, 9010}, {5216, 48012}, {6005, 31290}, {9040, 47971}, {10459, 28398}, {20012, 26853}, {25637, 30835}, {26037, 30023}, {26822, 48573}

X(50481) = reflection of X(i) in X(j) for these {i,j}: {4813, 20983}, {5216, 48012}
X(50481) = isogonal conjugate of the isotomic conjugate of X(48012)
X(50481) = crosssum of X(i) and X(j) for these (i,j): {1, 27673}, {514, 32776}
X(50481) = crossdifference of every pair of points on line {239, 20893}
X(50481) = barycentric product X(i)*X(j) for these {i,j}: {6, 48012}, {31, 47665}, {37, 5216}, {667, 48630}
X(50481) = barycentric quotient X(i)/X(j) for these {i,j}: {5216, 274}, {47665, 561}, {48012, 76}, {48630, 6386}


X(50482) = X(513)X(47669)∩X(523)X(649)

Barycentrics    (b - c)*(-a^2 + 2*a*b + 2*b^2 + 2*a*c + 4*b*c + 2*c^2) : :
X(50482) = 5 X[4813] - 4 X[49284], 5 X[4988] - 2 X[49284], 11 X[649] - 12 X[4773], 3 X[649] - 4 X[4976], 3 X[649] - 2 X[48275], 5 X[649] - 4 X[48276], 9 X[4773] - 11 X[4976], 18 X[4773] - 11 X[48275], 15 X[4773] - 11 X[48276], 6 X[4773] - 11 X[48277], 5 X[4976] - 3 X[48276], 2 X[4976] - 3 X[48277], 5 X[48275] - 6 X[48276], X[48275] - 3 X[48277], 2 X[48276] - 5 X[48277], 4 X[650] - 3 X[47873], 2 X[4838] - 3 X[47873], 3 X[661] - 2 X[4820], 4 X[47657] - X[47907], 4 X[47661] - X[48117], 3 X[1635] - 2 X[48397], 4 X[3239] - 3 X[4024], 8 X[3239] - 9 X[4893], 2 X[3239] - 3 X[45745], 2 X[4024] - 3 X[4893], 3 X[4893] - 4 X[45745], 2 X[3700] - 3 X[47878], 2 X[3835] - 3 X[46915], 3 X[4379] - 4 X[21196], 3 X[4379] - 2 X[47656], 4 X[4500] - 5 X[30835], 2 X[4500] - 3 X[47782], 5 X[30835] - 6 X[47782], 6 X[4789] - 7 X[31207], 4 X[4841] - 3 X[48544], 2 X[48266] - 3 X[48544], 6 X[4928] - 5 X[48424], 3 X[4984] - 2 X[49293], 4 X[25666] - 3 X[48423], 3 X[30565] - 2 X[48430], 2 X[31010] - 3 X[47794], 3 X[31147] - 4 X[48404], 4 X[31286] - 3 X[47792], 6 X[47757] - 5 X[48418], 3 X[47886] - 2 X[48274], 3 X[47894] - 2 X[48399]

X(50482) lies on these lines: {513, 47669}, {514, 14779}, {522, 4813}, {523, 649}, {650, 4838}, {661, 4777}, {663, 6367}, {812, 47657}, {824, 47661}, {1635, 48397}, {2786, 47667}, {3239, 4024}, {3700, 28187}, {3835, 46915}, {4025, 47671}, {4369, 47655}, {4379, 20522}, {4382, 45746}, {4435, 29146}, {4467, 48141}, {4468, 48429}, {4500, 30835}, {4608, 4932}, {4762, 47673}, {4789, 31207}, {4790, 28151}, {4802, 4979}, {4839, 29248}, {4841, 28183}, {4926, 48019}, {4928, 48424}, {4984, 28155}, {5029, 9131}, {6590, 28169}, {17422, 49300}, {20909, 29771}, {25666, 48423}, {28205, 48026}, {28840, 47668}, {28863, 47664}, {28882, 47654}, {28890, 48435}, {28894, 47932}, {28898, 47917}, {29078, 47909}, {30565, 48430}, {31010, 47794}, {31147, 48404}, {31286, 47792}, {43067, 47670}, {47659, 48008}, {47665, 48000}, {47757, 48418}, {47886, 48274}, {47894, 48399}, {47920, 48112}

X(50482) = reflection of X(i) in X(j) for these {i,j}: {649, 48277}, {4024, 45745}, {4382, 45746}, {4608, 4932}, {4813, 4988}, {4838, 650}, {47655, 4369}, {47656, 21196}, {47659, 48008}, {47665, 48000}, {47670, 43067}, {47671, 4025}, {47908, 47667}, {47923, 47673}, {47926, 47661}, {48112, 47920}, {48117, 47926}, {48138, 47932}, {48141, 4467}, {48266, 4841}, {48275, 4976}, {48429, 4468}
X(50482) = crossdifference of every pair of points on line {386, 7280}
X(50482) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {650, 4838, 47873}, {4024, 45745, 4893}, {4500, 47782, 30835}, {4841, 48266, 48544}, {4976, 48275, 649}, {21196, 47656, 4379}, {48275, 48277, 4976}


X(50483) = X(512)X(661)∩X(513)X(4963)

Barycentrics    a^2*(b - c)*(b + c)*(2*a*b + 2*a*c + b*c) : :
X(50483) = 5 X[661] - 6 X[14404], 3 X[1635] - 2 X[2978], 3 X[1635] - 4 X[4507], 3 X[21052] - 4 X[22320]

X(50483) lies on these lines: {244, 7063}, {512, 661}, {513, 4963}, {693, 4761}, {788, 4979}, {834, 2254}, {1635, 2978}, {3804, 4832}, {3835, 4807}, {4083, 47672}, {4086, 48080}, {4132, 4804}, {4155, 4838}, {4826, 46390}, {5216, 16751}, {6005, 47666}, {8635, 21007}, {9400, 48114}, {20983, 48019}, {21052, 22320}

X(50483) = reflection of X(i) in X(j) for these {i,j}: {2978, 4507}, {48019, 20983}
X(50483) = isogonal conjugate of the isotomic conjugate of X(48407)
X(50483) = X(47915)-Ceva conjugate of X(3709)
X(50483) = X(i)-isoconjugate of X(j) for these (i,j): {86, 6013}, {99, 10013}
X(50483) = X(i)-Dao conjugate of X(j) for these (i, j): (38986, 10013), (40600, 6013)
X(50483) = crosspoint of X(2334) and X(4557)
X(50483) = crosssum of X(i) and X(j) for these (i,j): {1019, 10458}, {3616, 7192}, {3720, 48144}
X(50483) = crossdifference of every pair of points on line {81, 4384}
X(50483) = barycentric product X(i)*X(j) for these {i,j}: {6, 48407}, {37, 6005}, {42, 47666}, {321, 8655}, {512, 4687}, {661, 17018}, {3700, 16878}, {4024, 39673}
X(50483) = barycentric quotient X(i)/X(j) for these {i,j}: {213, 6013}, {798, 10013}, {4079, 46772}, {4687, 670}, {6005, 274}, {8639, 17110}, {8655, 81}, {16878, 4573}, {17018, 799}, {39673, 4610}, {47666, 310}, {48407, 76}
X(50483) = {X(2978),X(4507)}-harmonic conjugate of X(1635)


X(50484) = X(1)X(27647)∩X(649)X(4041)

Barycentrics    a*(b - c)*(b + c)*(a^3 + a*b^2 + 2*a*b*c + b^2*c + a*c^2 + b*c^2) : :

X(50484) lies on these lines: {1, 27647}, {8, 4160}, {42, 661}, {512, 4988}, {513, 4963}, {649, 4041}, {650, 8655}, {669, 4705}, {798, 21727}, {830, 17494}, {2512, 21828}, {3779, 9013}, {4086, 47694}, {4369, 31330}, {4807, 4932}, {10459, 28372}, {17166, 25299}, {20012, 31290}, {23506, 48030}, {24924, 30970}, {26115, 27045}, {27648, 48012}

X(50484) = crosssum of X(1) and X(27647)
X(50484) = crossdifference of every pair of points on line {5256, 18206}


X(50485) = X(513)X(4963)∩X(649)X(4083)

Barycentrics    a*(b - c)*(a^2*b^2 + 3*a^2*b*c + a^2*c^2 - b^2*c^2) : :
X(50485) = 5 X[649] - 4 X[43931], 3 X[14404] - 2 X[48049], 6 X[14426] - 5 X[26798], 4 X[25142] - 3 X[31147]

X(50485) lies on these lines: {512, 17494}, {513, 4963}, {649, 4083}, {659, 4093}, {661, 9400}, {669, 4063}, {693, 4507}, {788, 4380}, {890, 18197}, {891, 7192}, {2978, 29350}, {4139, 47694}, {4155, 47660}, {4782, 8655}, {4785, 20983}, {4807, 23791}, {6371, 50343}, {6373, 26853}, {14404, 48049}, {14426, 26798}, {25142, 31147}, {26854, 47836}, {29226, 48141}, {30665, 48101}

X(50485) = reflection of X(i) in X(j) for these {i,j}: {693, 4507}, {2978, 48008}
X(50485) = {X(4782),X(23506)}-harmonic conjugate of X(8655)


X(50486) = X(31)X(649)∩X(512)X(661)

Barycentrics    a^2*(b - c)*(b + c)*(a^2 + b^2 - b*c + c^2) : :

X(50486) lies on these lines: {31, 649}, {512, 661}, {513, 16892}, {669, 21828}, {834, 4724}, {891, 48130}, {3005, 4455}, {3056, 9002}, {3804, 7180}, {3835, 25760}, {3869, 4468}, {4083, 48094}, {4088, 4132}, {4139, 47700}, {4170, 14208}, {4388, 20295}, {6005, 47995}, {6371, 48032}, {6372, 47916}, {7234, 8034}, {8655, 43060}, {8672, 47702}, {21125, 47652}, {27730, 50298}, {28005, 32944}

X(50486) = isogonal conjugate of the isotomic conjugate of X(47712)
X(50486) = X(46149)-Ceva conjugate of X(27846)
X(50486) = X(190)-isoconjugate of X(40398)
X(50486) = X(21249)-Dao conjugate of X(668)
X(50486) = crosssum of X(i) and X(j) for these (i,j): {100, 4568}, {514, 33123}
X(50486) = crossdifference of every pair of points on line {81, 3912}
X(50486) = barycentric product X(i)*X(j) for these {i,j}: {6, 47712}, {31, 27712}, {42, 47652}, {251, 21125}, {512, 16706}, {513, 16600}, {523, 5299}, {649, 4972}, {661, 7191}, {798, 33940}, {2501, 7293}, {3122, 33951}, {4017, 33950}, {4079, 33955}, {4514, 7180}, {10566, 20969}, {17192, 18105}, {17456, 18108}, {17924, 23203}
X(50486) = barycentric quotient X(i)/X(j) for these {i,j}: {667, 40398}, {4972, 1978}, {5299, 99}, {7191, 799}, {7293, 4563}, {16600, 668}, {16706, 670}, {20969, 4568}, {21125, 8024}, {23203, 1332}, {27712, 561}, {33940, 4602}, {33950, 7257}, {47652, 310}, {47712, 76}
X(50486) = {X(8034),X(8664)}-harmonic conjugate of X(7234)


X(50487) = X(6)X(16874)∩X(42)X(649)

Barycentrics    a^3*(b - c)*(b + c)^2 : :
X(50487) = 8 X[3835] - 9 X[14434], 4 X[649] - 3 X[8027], 8 X[4507] - 3 X[8027], 2 X[661] - 3 X[14404], 3 X[4776] - 4 X[25142], 9 X[14474] - 10 X[27013]

X(50487) lies on these lines: {6, 16874}, {8, 30203}, {10, 3835}, {42, 649}, {43, 29487}, {100, 805}, {209, 9313}, {512, 661}, {513, 4380}, {650, 2978}, {667, 18266}, {668, 886}, {669, 798}, {692, 32729}, {693, 2533}, {810, 8639}, {834, 1491}, {838, 4834}, {881, 21814}, {891, 47672}, {1980, 3063}, {2254, 6371}, {3124, 7063}, {3214, 9433}, {3293, 29807}, {3805, 4467}, {4010, 4036}, {4024, 4155}, {4079, 8663}, {4139, 4804}, {4391, 22324}, {4397, 48080}, {4649, 18200}, {4651, 9400}, {4685, 4785}, {4776, 25142}, {4790, 9010}, {4879, 25537}, {4897, 9040}, {4979, 6373}, {5040, 7252}, {6005, 47996}, {6006, 22312}, {6372, 47917}, {8013, 21720}, {8672, 47934}, {9002, 22277}, {9286, 24534}, {9508, 16751}, {14474, 27013}, {14838, 39548}, {15630, 21833}, {15632, 22280}, {17217, 25299}, {20711, 21834}, {21005, 21007}, {21820, 23610}, {22279, 36848}, {22305, 40603}, {24921, 29647}, {26115, 27345}, {27674, 48136}, {29226, 47675}, {30665, 47660}, {31286, 43223}, {40516, 42455}

X(50487) = reflection of X(i) in X(j) for these {i,j}: {649, 4507}, {2533, 22320}, {2978, 650}, {39548, 14838}
X(50487) = isogonal conjugate of X(4623)
X(50487) = isogonal conjugate of the isotomic conjugate of X(4705)
X(50487) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {18298, 21293}, {40737, 149}, {40770, 4440}, {40778, 39345}
X(50487) = X(i)-Ceva conjugate of X(j) for these (i,j): {10, 21835}, {42, 3121}, {65, 21823}, {100, 21814}, {181, 3124}, {512, 4079}, {668, 37}, {692, 213}, {1500, 1084}, {1824, 21833}, {3952, 21820}, {4553, 21802}, {21859, 21815}, {40504, 3125}, {40516, 4516}, {40521, 1500}
X(50487) = X(i)-cross conjugate of X(j) for these (i,j): {1084, 1500}, {7063, 7109}
X(50487) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 4623), (10, 670), (11, 18021), (37, 4602), (115, 6385), (244, 310), (512, 513), (523, 40495), (1084, 274), (3005, 693), (3121, 16748), (3124, 16703), (4075, 6386), (5139, 286), (5375, 34537), (5452, 4631), (6741, 40072), (8054, 873), (9296, 44168), (15267, 4569), (17423, 1444), (32664, 4610), (38978, 350), (38982, 40075), (38986, 86), (38988, 16741), (38996, 81), (39010, 30938), (39025, 261), (39026, 24037), (40586, 799), (40600, 99), (40603, 4609), (40607, 668), (40608, 314), (40611, 4625), (40627, 7199)
X(50487) = cevapoint of X(512) and X(9402)
X(50487) = crosspoint of X(i) and X(j) for these (i,j): {37, 668}, {100, 18098}, {213, 692}, {512, 798}, {1500, 40521}
X(50487) = crosssum of X(i) and X(j) for these (i,j): {2, 17166}, {6, 16692}, {75, 18158}, {81, 667}, {99, 799}, {274, 693}, {513, 16696}, {514, 4425}, {1019, 18169}, {1444, 15413}, {2530, 18182}, {3733, 18166}, {4107, 4368}, {7192, 16705}, {7199, 16709}
X(50487) = crossdifference of every pair of points on line {81, 239}
X(50487) = X(i)-isoconjugate of X(j) for these (i,j): {1, 4623}, {2, 4610}, {21, 4625}, {27, 4563}, {57, 4631}, {58, 670}, {60, 4572}, {76, 4556}, {81, 799}, {85, 4612}, {86, 99}, {100, 873}, {109, 18021}, {110, 310}, {163, 6385}, {190, 1509}, {249, 3261}, {261, 664}, {274, 662}, {286, 4592}, {314, 1414}, {333, 4573}, {350, 36066}, {513, 24037}, {514, 4590}, {522, 7340}, {552, 3699}, {593, 1978}, {645, 1434}, {648, 17206}, {649, 34537}, {658, 7058}, {668, 757}, {689, 17187}, {693, 24041}, {763, 4033}, {811, 1444}, {849, 6386}, {892, 6629}, {905, 46254}, {1014, 7257}, {1019, 4601}, {1043, 4616}, {1098, 4569}, {1101, 40495}, {1269, 6578}, {1333, 4602}, {1429, 36806}, {1790, 6331}, {1919, 44168}, {2185, 4554}, {2206, 4609}, {2287, 4635}, {3120, 31614}, {3676, 6064}, {3952, 6628}, {4025, 18020}, {4107, 39292}, {4131, 23999}, {4558, 44129}, {4560, 4620}, {4565, 28660}, {4567, 7199}, {4577, 16887}, {4584, 30940}, {4589, 33295}, {4593, 16696}, {4594, 17103}, {4596, 16709}, {4598, 7304}, {4599, 16703}, {4600, 7192}, {4603, 8033}, {4615, 16704}, {4622, 30939}, {4632, 8025}, {4633, 42028}, {4636, 6063}, {5209, 17929}, {6540, 30593}, {7054, 46406}, {7649, 47389}, {16741, 36085}, {17200, 35137}, {17209, 43187}, {17731, 17930}, {20924, 37140}, {23582, 30805}, {30938, 36133}, {36069, 40075}
X(50487) = barycentric product X(i)*X(j) for these {i,j}: {1, 4079}, {6, 4705}, {10, 798}, {12, 3063}, {31, 4024}, {32, 4036}, {37, 512}, {42, 661}, {65, 3709}, {72, 2489}, {100, 3124}, {101, 2643}, {110, 21833}, {115, 692}, {163, 21043}, {181, 650}, {210, 7180}, {213, 523}, {228, 2501}, {291, 46390}, {292, 4155}, {313, 1924}, {321, 669}, {513, 1500}, {514, 872}, {594, 667}, {646, 1356}, {647, 1824}, {649, 756}, {656, 2333}, {657, 1254}, {663, 2171}, {668, 1084}, {693, 7109}, {762, 3733}, {810, 1826}, {850, 2205}, {875, 4037}, {906, 8754}, {1015, 40521}, {1018, 3122}, {1042, 4171}, {1089, 1919}, {1109, 32739}, {1110, 21131}, {1255, 8663}, {1332, 2971}, {1334, 4017}, {1400, 4041}, {1402, 3700}, {1415, 4092}, {1427, 4524}, {1577, 1918}, {1783, 20975}, {1946, 8736}, {1973, 4064}, {1978, 4117}, {1980, 28654}, {2084, 18082}, {2161, 42666}, {2197, 18344}, {2200, 24006}, {2281, 48395}, {2298, 42661}, {2350, 21727}, {2395, 5360}, {2533, 40729}, {2610, 6187}, {2623, 21807}, {3005, 18098}, {3049, 41013}, {3121, 3952}, {3125, 4557}, {3248, 4103}, {3271, 21859}, {3669, 7064}, {3690, 6591}, {3708, 8750}, {3903, 21823}, {3954, 18105}, {4083, 6378}, {4105, 7147}, {4130, 7143}, {4515, 7250}, {4516, 4559}, {4554, 7063}, {4567, 22260}, {4601, 23099}, {4674, 14407}, {4770, 28658}, {5380, 21906}, {6354, 8641}, {6367, 28615}, {6386, 9427}, {7140, 22383}, {7148, 20979}, {9178, 21839}, {9278, 17990}, {9426, 27801}, {15320, 21837}, {15630, 42717}, {18001, 20693}, {18070, 41267}, {21046, 32676}, {21051, 21759}, {21056, 34248}, {21353, 42653}, {21816, 50344}, {21828, 34857}, {21834, 23493}, {28625, 48005}, {35352, 41333}
X(50487) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 4623}, {10, 4602}, {31, 4610}, {37, 670}, {42, 799}, {55, 4631}, {100, 34537}, {101, 24037}, {115, 40495}, {181, 4554}, {213, 99}, {228, 4563}, {321, 4609}, {351, 16741}, {512, 274}, {523, 6385}, {560, 4556}, {594, 6386}, {649, 873}, {650, 18021}, {661, 310}, {667, 1509}, {668, 44168}, {669, 81}, {688, 16696}, {692, 4590}, {756, 1978}, {762, 27808}, {798, 86}, {810, 17206}, {872, 190}, {888, 30938}, {906, 47389}, {1042, 4635}, {1084, 513}, {1254, 46406}, {1334, 7257}, {1356, 3669}, {1400, 4625}, {1402, 4573}, {1415, 7340}, {1500, 668}, {1824, 6331}, {1918, 662}, {1919, 757}, {1922, 36066}, {1924, 58}, {1980, 593}, {2084, 16887}, {2086, 14296}, {2171, 4572}, {2175, 4612}, {2200, 4592}, {2205, 110}, {2333, 811}, {2489, 286}, {2610, 40075}, {2643, 3261}, {2971, 17924}, {3005, 16703}, {3049, 1444}, {3063, 261}, {3121, 7192}, {3122, 7199}, {3124, 693}, {3700, 40072}, {3709, 314}, {4024, 561}, {4036, 1502}, {4041, 28660}, {4064, 40364}, {4079, 75}, {4117, 649}, {4128, 16737}, {4155, 1921}, {4455, 30940}, {4557, 4601}, {4705, 76}, {5360, 2396}, {6378, 18830}, {7063, 650}, {7064, 646}, {7077, 36806}, {7109, 100}, {7143, 36838}, {7234, 8033}, {8034, 16727}, {8640, 7304}, {8641, 7058}, {8663, 4359}, {8664, 16707}, {8750, 46254}, {9402, 34021}, {9426, 1333}, {9427, 667}, {9447, 4636}, {14407, 30939}, {18082, 37204}, {18098, 689}, {20975, 15413}, {21043, 20948}, {21056, 18837}, {21727, 18152}, {21755, 17212}, {21814, 4576}, {21815, 3888}, {21823, 4374}, {21833, 850}, {21835, 17217}, {21837, 33297}, {22260, 16732}, {23099, 3125}, {23216, 22383}, {23610, 3121}, {32739, 24041}, {40521, 31625}, {40729, 4594}, {42068, 6591}, {42661, 20911}, {42666, 20924}, {46390, 350}
X(50487) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {42, 649, 7234}, {661, 21727, 4705}, {3063, 8646, 1980}


X(50488) = X(512)X(661)∩X(649)X(838)

Barycentrics    a^3*(b - c)*(b + c)*(a*b + b^2 + a*c + b*c + c^2) : :
X(50488) = 3 X[14404] - 2 X[48005]

X(50488) lies on these lines: {512, 661}, {513, 48409}, {649, 838}, {656, 2530}, {667, 788}, {834, 14349}, {891, 50457}, {1577, 4083}, {4086, 4132}, {4129, 4147}, {4507, 4834}, {4761, 22320}, {4905, 9002}, {4992, 31946}, {6005, 48010}, {6372, 47904}, {17478, 48333}, {26983, 47836}, {27045, 47840}

X(50488) = reflection of X(i) in X(j) for these {i,j}: {4761, 22320}, {4834, 4507}
X(50488) = isogonal conjugate of the isotomic conjugate of X(47842)
X(50488) = X(i)-Ceva conjugate of X(j) for these (i,j): {834, 42664}, {28625, 3121}
X(50488) = X(i)-isoconjugate of X(j) for these (i,j): {81, 37218}, {86, 835}, {99, 43531}, {799, 2214}, {4600, 43927}
X(50488) = X(i)-Dao conjugate of X(j) for these (i, j): (38986, 43531), (38996, 2214), (39016, 274), (40586, 37218), (40600, 835), (41849, 4602)
X(50488) = crosspoint of X(941) and X(3952)
X(50488) = crosssum of X(i) and X(j) for these (i,j): {2, 47844}, {835, 37218}, {940, 3733}, {2478, 4560}, {3670, 14349}
X(50488) = crossdifference of every pair of points on line {75, 81}
X(50488) = barycentric product X(i)*X(j) for these {i,j}: {1, 42664}, {6, 47842}, {31, 23879}, {37, 834}, {42, 14349}, {213, 45746}, {321, 8637}, {386, 661}, {469, 810}, {512, 28606}, {656, 44103}, {669, 33935}, {798, 5224}, {1333, 23282}, {1919, 42714}, {3121, 33948}, {3876, 7180}
X(50488) = barycentric quotient X(i)/X(j) for these {i,j}: {42, 37218}, {213, 835}, {386, 799}, {669, 2214}, {798, 43531}, {834, 274}, {3121, 43927}, {5224, 4602}, {8637, 81}, {14349, 310}, {23282, 27801}, {23879, 561}, {28606, 670}, {33935, 4609}, {42664, 75}, {44103, 811}, {45746, 6385}, {47842, 76}
X(50488) = {X(798),X(810)}-harmonic conjugate of X(667)


X(50489) = X(512)X(4988)∩X(649)X(4705)

Barycentrics    a*(b - c)*(b + c)*(a^3 + a^2*b + a*b^2 + a^2*c + 3*a*b*c + b^2*c + a*c^2 + b*c^2) : :

X(50489) lies on these lines: {10, 4932}, {42, 4813}, {512, 4988}, {513, 4380}, {649, 4705}, {661, 669}, {2533, 7192}, {2978, 8678}, {4010, 27575}, {4024, 9279}, {4088, 8672}, {4367, 27647}, {4474, 48141}, {4781, 40501}, {4979, 21727}, {6372, 48101}, {21146, 27610}, {22319, 29198}, {23506, 48093}, {27648, 48030}, {28374, 48027}

X(50489) = X(32042)-Ceva conjugate of X(37)
X(50489) = X(48005)-Dao conjugate of X(4802)
X(50489) = crosssum of X(4840) and X(18166)
X(50489) = crossdifference of every pair of points on line {17011, 20963}


X(50490) = X(512)X(661)∩X(513)X(3004)

Barycentrics    a^2*(b - c)*(b + c)*(a^2 + b^2 - 2*b*c + c^2) : :
X(50490) = 2 X[4524] - 3 X[14404]

X(50490) lies on these lines: {512, 661}, {513, 3004}, {647, 4455}, {650, 9313}, {669, 1402}, {834, 48029}, {876, 25537}, {891, 48094}, {926, 20983}, {2488, 6363}, {2499, 2978}, {3005, 3709}, {3310, 8640}, {3804, 7234}, {4010, 14208}, {4083, 4468}, {4088, 4139}, {4108, 26983}, {4132, 48047}, {5996, 27045}, {6372, 47958}, {8651, 21828}, {8672, 47701}, {17115, 21107}

X(50490) = reflection of X(2978) in X(2499)
X(50490) = isogonal conjugate of the isotomic conjugate of X(48403)
X(50490) = X(i)-Ceva conjugate of X(j) for these (i,j): {1427, 3121}, {2333, 3122}
X(50490) = X(i)-isoconjugate of X(j) for these (i,j): {190, 40403}, {643, 8817}, {645, 7131}, {662, 30701}, {670, 7084}, {799, 7123}, {1037, 7257}, {1043, 8269}, {1332, 40411}, {1790, 42384}, {4567, 48070}, {7259, 30705}
X(50490) = X(i)-Dao conjugate of X(j) for these (i, j): (1084, 30701), (6554, 670), (15487, 799), (17463, 33932), (18589, 668), (38996, 7123), (40627, 48070)
X(50490) = crosspoint of X(512) and X(7250)
X(50490) = crosssum of X(i) and X(j) for these (i,j): {99, 7256}, {100, 4561}
X(50490) = crossdifference of every pair of points on line {81, 7123}
X(50490) = barycentric product X(i)*X(j) for these {i,j}: {6, 48403}, {25, 21107}, {42, 48398}, {497, 7180}, {512, 4000}, {513, 16583}, {514, 40934}, {523, 16502}, {614, 661}, {647, 1851}, {649, 3914}, {650, 40961}, {693, 21750}, {798, 3673}, {1427, 17115}, {1473, 2501}, {1633, 3125}, {2082, 4017}, {2489, 17170}, {3122, 3732}, {3669, 40965}, {3709, 7195}, {4025, 8020}, {4041, 28017}, {4319, 7216}, {6554, 7250}, {6591, 17441}, {7083, 7178}, {7192, 21813}, {7649, 23620}, {17924, 22363}, {21015, 43925}
X(50490) = barycentric quotient X(i)/X(j) for these {i,j}: {512, 30701}, {614, 799}, {667, 40403}, {669, 7123}, {1473, 4563}, {1633, 4601}, {1824, 42384}, {1851, 6331}, {1924, 7084}, {2082, 7257}, {3122, 48070}, {3673, 4602}, {3914, 1978}, {4000, 670}, {4319, 7258}, {5324, 4631}, {7083, 645}, {7180, 8817}, {7250, 30705}, {8020, 1897}, {16502, 99}, {16583, 668}, {21107, 305}, {21750, 100}, {21813, 3952}, {22363, 1332}, {23620, 4561}, {28017, 4625}, {30706, 7256}, {40934, 190}, {40961, 4554}, {40965, 646}, {48398, 310}, {48403, 76}
X(50490) = {X(669),X(8034)}-harmonic conjugate of X(7180)


X(50491) = X(512)X(661)∩X(649)X(6373)

Barycentrics    a^2*(b - c)*(b + c)*(a*b + a*c - b*c) : :
X(50491) = X[661] - 3 X[14404], X[2978] - 3 X[4893], 2 X[3835] - 3 X[14426], 3 X[14426] - 4 X[25142], 2 X[43931] - 3 X[45313]

X(50491) lies on these lines: {1, 25537}, {6, 23570}, {8, 26148}, {10, 23301}, {42, 669}, {43, 18197}, {181, 7180}, {512, 661}, {513, 4507}, {647, 17990}, {649, 6373}, {650, 788}, {667, 23655}, {693, 891}, {798, 3221}, {834, 48030}, {1491, 6371}, {2254, 6363}, {2978, 4893}, {3063, 8633}, {3240, 36270}, {3700, 4155}, {3709, 4093}, {3805, 21196}, {3835, 4083}, {4010, 4086}, {4132, 4806}, {4394, 9010}, {4651, 44445}, {4685, 25423}, {4824, 8672}, {6085, 50359}, {6372, 47666}, {8640, 20979}, {9002, 50335}, {9009, 22277}, {9040, 17069}, {9400, 48049}, {14321, 22276}, {17072, 23818}, {19998, 31299}, {21260, 25627}, {22183, 22226}, {22191, 22222}, {24534, 45902}, {24674, 47835}, {24747, 26102}, {25473, 29633}, {25686, 32783}, {29226, 48399}, {30700, 50452}, {31003, 31330}, {43223, 44451}, {43931, 45313}

X(50491) = midpoint of X(649) and X(20983)
X(50491) = reflection of X(3835) in X(25142)
X(50491) = isogonal conjugate of the isotomic conjugate of X(21051)
X(50491) = X(42328)-complementary conjugate of X(116)
X(50491) = X(i)-Ceva conjugate of X(j) for these (i,j): {43, 6377}, {749, 1015}, {798, 512}, {3952, 3971}, {4033, 1500}, {4083, 21834}, {6376, 40610}, {20691, 21835}
X(50491) = X(i)-cross conjugate of X(j) for these (i,j): {21834, 512}, {21835, 20691}
X(50491) = crosspoint of X(i) and X(j) for these (i,j): {6, 3903}, {42, 3952}, {4033, 6376}, {4083, 20979}
X(50491) = crosssum of X(i) and X(j) for these (i,j): {2, 4367}, {81, 16695}, {86, 3733}, {932, 4598}, {1019, 18192}, {4560, 37373}, {7192, 33947}, {27455, 43931}
X(50491) = crossdifference of every pair of points on line {81, 330}
X(50491) = X(i)-isoconjugate of X(j) for these (i,j): {58, 18830}, {81, 4598}, {86, 932}, {87, 99}, {110, 6384}, {163, 6383}, {274, 34071}, {330, 662}, {645, 7153}, {670, 7121}, {799, 2162}, {811, 23086}, {1019, 5383}, {1414, 7155}, {2053, 4625}, {2319, 4573}, {4565, 27424}, {4584, 39914}, {4589, 34252}, {4600, 43931}, {4610, 16606}, {4623, 23493}, {5546, 7209}, {6331, 15373}, {27644, 32039}
X(50491) = X(i)-Dao conjugate of X(j) for these (i, j): (10, 18830), (75, 4602), (115, 6383), (244, 6384), (798, 1019), (1084, 330), (3835, 7192), (4083, 17217), (6377, 310), (17423, 23086), (21051, 4374), (38986, 87), (38996, 2162), (40586, 4598), (40598, 670), (40600, 932), (40608, 7155), (40610, 274)
X(50491) = barycentric product X(i)*X(j) for these {i,j}: {1, 21834}, {6, 21051}, {10, 20979}, {37, 4083}, {42, 3835}, {43, 661}, {181, 27527}, {192, 512}, {210, 43051}, {213, 20906}, {321, 8640}, {513, 20691}, {523, 2176}, {594, 16695}, {649, 3971}, {668, 21835}, {669, 6382}, {756, 18197}, {798, 6376}, {1018, 3123}, {1400, 4147}, {1403, 3700}, {1423, 4041}, {1438, 21959}, {1500, 17217}, {1577, 2209}, {1824, 25098}, {1826, 22090}, {2501, 20760}, {3121, 36863}, {3122, 4595}, {3208, 4017}, {3212, 3709}, {3690, 17921}, {3952, 6377}, {4024, 38832}, {4033, 38986}, {4079, 33296}, {4086, 41526}, {4455, 40848}, {4557, 21138}, {4674, 14408}, {4705, 27644}, {7140, 23092}, {7180, 27538}, {9426, 40367}, {16606, 25142}, {16742, 40521}, {18107, 21035}, {21762, 27808}, {21832, 41531}, {23493, 23886}
X(50491) = barycentric quotient X(i)/X(j) for these {i,j}: {37, 18830}, {42, 4598}, {43, 799}, {192, 670}, {213, 932}, {512, 330}, {523, 6383}, {661, 6384}, {669, 2162}, {798, 87}, {1403, 4573}, {1423, 4625}, {1918, 34071}, {1924, 7121}, {2176, 99}, {2209, 662}, {3049, 23086}, {3121, 43931}, {3123, 7199}, {3208, 7257}, {3709, 7155}, {3835, 310}, {3971, 1978}, {4017, 7209}, {4041, 27424}, {4079, 42027}, {4083, 274}, {4147, 28660}, {4455, 39914}, {4557, 5383}, {4729, 27496}, {6376, 4602}, {6377, 7192}, {6382, 4609}, {8640, 81}, {14408, 30939}, {16695, 1509}, {18197, 873}, {20691, 668}, {20760, 4563}, {20906, 6385}, {20979, 86}, {21051, 76}, {21762, 3733}, {21834, 75}, {21835, 513}, {22090, 17206}, {22386, 7254}, {23493, 32039}, {24533, 8033}, {25142, 31008}, {27527, 18021}, {27644, 4623}, {38832, 4610}, {38986, 1019}, {40610, 17217}, {41526, 1414}, {41531, 4639}
X(50491) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {43, 18197, 24533}, {3835, 25142, 14426}


X(50492) = X(512)X(661)∩X(649)X(854)

Barycentrics    a^2*(b - c)*(b + c)*(a^2 + 2*a*b + b^2 + 2*a*c + c^2) : :

X(50492) lies on these lines: {512, 661}, {513, 4841}, {647, 798}, {649, 854}, {650, 834}, {891, 48275}, {3239, 29350}, {3700, 4132}, {3709, 42664}, {4024, 4139}, {4083, 6590}, {4790, 9002}, {4979, 6363}, {4988, 8672}, {7178, 8712}, {14298, 47136}, {17217, 24622}, {21099, 21719}, {47130, 48269}, {47995, 48402}

X(50492) = isogonal conjugate of the isotomic conjugate of X(48402)
X(50492) = crossdifference of every pair of points on line {8, 81}
X(50492) = barycentric product X(i)*X(j) for these {i,j}: {1, 50332}, {6, 48402}, {42, 47995}, {512, 17321}, {513, 3931}, {523, 16466}, {656, 7713}, {661, 5256}, {1459, 39579}, {4017, 5250}, {4254, 7178}, {7180, 14555}
X(50492) = barycentric quotient X(i)/X(j) for these {i,j}: {3931, 668}, {4254, 645}, {5250, 7257}, {5256, 799}, {7713, 811}, {16466, 99}, {17321, 670}, {47995, 310}, {48402, 76}, {50332, 75}
X(50492) = {X(4832),X(7180)}-harmonic conjugate of X(649)


X(50493) = X(512)X(661)∩X(650)X(838)

Barycentrics    a^2*(b - c)*(b + c)*(a^2*b + a*b^2 + a^2*c - b^2*c + a*c^2 - b*c^2) : :
X(50493) = X[4705] - 3 X[14404]

X(50493) lies on these lines: {39, 21763}, {386, 16695}, {512, 661}, {650, 838}, {656, 6363}, {667, 20456}, {669, 20865}, {798, 6373}, {810, 1960}, {834, 48054}, {891, 1577}, {970, 6002}, {1924, 20970}, {2084, 46390}, {3111, 24504}, {3124, 42655}, {4083, 4129}, {4139, 50329}, {6050, 9010}, {6371, 47842}, {6372, 47946}, {8637, 20861}, {8711, 20969}, {9002, 48066}, {17478, 48296}, {21260, 25142}, {22076, 30583}, {26983, 47837}, {27045, 47839}

X(50493) = midpoint of X(667) and X(20983)
X(50493) = reflection of X(21260) in X(25142)
X(50493) = isogonal conjugate of the isotomic conjugate of X(31946)
X(50493) = X(i)-Ceva conjugate of X(j) for these (i,j): {667, 512}, {20983, 3221}
X(50493) = X(i)-isoconjugate of X(j) for these (i,j): {99, 39748}, {110, 40010}, {662, 35058}, {799, 39964}
X(50493) = X(i)-Dao conjugate of X(j) for these (i, j): (244, 40010), (321, 6386), (1084, 35058), (31946, 7192), (38986, 39748), (38996, 39964)
X(50493) = crosspoint of X(6) and X(3952)
X(50493) = crosssum of X(i) and X(j) for these (i,j): {2, 3733}, {4193, 4560}
X(50493) = crossdifference of every pair of points on line {81, 4360}
X(50493) = barycentric product X(i)*X(j) for these {i,j}: {6, 31946}, {58, 21720}, {512, 17147}, {513, 21858}, {523, 16685}, {649, 3159}, {661, 3216}, {667, 40603}, {669, 40034}, {798, 18133}, {2501, 22458}
X(50493) = barycentric quotient X(i)/X(j) for these {i,j}: {512, 35058}, {661, 40010}, {669, 39964}, {798, 39748}, {3159, 1978}, {3216, 799}, {4079, 42471}, {16685, 99}, {17147, 670}, {18133, 4602}, {21720, 313}, {21858, 668}, {22458, 4563}, {31946, 76}, {40034, 4609}, {40603, 6386}


X(50494) = X(512)X(661)∩X(647)X(7234)

Barycentrics    a^2*(b - c)*(b + c)*(a^2 + b^2 + 2*b*c + c^2) : :

X(50494) lies on these lines: {42, 42664}, {512, 661}, {513, 4468}, {647, 7234}, {669, 3709}, {834, 48027}, {891, 47958}, {926, 2978}, {2483, 21005}, {2484, 8646}, {2489, 4079}, {2533, 14208}, {3005, 7180}, {3250, 23655}, {3804, 4455}, {4083, 47995}, {4088, 8672}, {4108, 27045}, {4132, 47998}, {4139, 47701}, {4374, 25299}, {5996, 26983}, {6363, 48020}, {6371, 20983}, {6372, 48094}, {6590, 8678}, {8034, 8665}, {9313, 48026}

X(50494) = isogonal conjugate of the isotomic conjugate of X(48395)
X(50494) = X(i)-isoconjugate of X(j) for these (i,j): {81, 37215}, {86, 1310}, {670, 1472}, {799, 2221}, {1036, 4625}, {1245, 4623}, {1414, 30479}, {2339, 4573}, {17206, 36099}
X(50494) = X(i)-Dao conjugate of X(j) for these (i, j): (5515, 310), (8678, 47844), (38996, 2221), (40181, 799), (40586, 37215), (40600, 1310), (40608, 30479)
X(50494) = crosspoint of X(2484) and X(8678)
X(50494) = crosssum of X(1310) and X(37215)
X(50494) = crossdifference of every pair of points on line {81, 2221}
X(50494) = barycentric product X(i)*X(j) for these {i,j}: {6, 48395}, {10, 2484}, {37, 8678}, {42, 6590}, {213, 2517}, {321, 8646}, {388, 3709}, {512, 2345}, {612, 661}, {647, 7102}, {798, 4385}, {1010, 4079}, {1460, 3700}, {1500, 47844}, {1824, 2522}, {2285, 4041}, {2303, 4705}, {2333, 23874}, {2501, 7085}, {3900, 8898}, {3974, 7180}, {4024, 44119}, {4130, 10376}, {4171, 4320}, {4524, 7365}
X(50494) = barycentric quotient X(i)/X(j) for these {i,j}: {42, 37215}, {213, 1310}, {612, 799}, {669, 2221}, {1460, 4573}, {1924, 1472}, {2285, 4625}, {2303, 4623}, {2345, 670}, {2484, 86}, {2517, 6385}, {3709, 30479}, {4320, 4635}, {4385, 4602}, {6590, 310}, {7085, 4563}, {7102, 6331}, {8646, 81}, {8678, 274}, {8898, 4569}, {10376, 36838}, {44119, 4610}, {48395, 76}


X(50495) = X(512)X(661)∩X(649)X(3709)

Barycentrics    a^2*(b - c)*(b + c)*(a^2 + 2*a*b + b^2 + 2*a*c + 4*b*c + c^2) : :

X(50495) lies on these lines: {512, 661}, {513, 3700}, {523, 24089}, {647, 4079}, {649, 3709}, {834, 48026}, {3239, 6005}, {4024, 8672}, {4132, 4841}, {4139, 4988}, {4468, 20296}, {4813, 6371}, {6363, 48019}, {6372, 48275}, {7180, 42664}, {17159, 24622}

X(50495) = crosssum of X(4560) and X(37265)
X(50495) = crossdifference of every pair of points on line {81, 3616}
X(50495) = barycentric product X(661)*X(5287)
X(50495) = barycentric quotient X(5287)/X(799)


X(50496) = X(512)X(661)∩X(649)X(21003)

Barycentrics    a^2*(b - c)*(b + c)*(a^2 + b^2 + b*c + c^2) : :

X(50496) lies on these lines: {512, 661}, {513, 4088}, {649, 21003}, {830, 47660}, {834, 48023}, {891, 47916}, {2483, 8635}, {3005, 7234}, {3709, 3804}, {4079, 18105}, {4083, 47958}, {4132, 47701}, {4139, 47702}, {4455, 8664}, {4468, 6005}, {4707, 21125}, {4761, 14208}, {4813, 9313}, {6371, 48020}, {6372, 48130}, {6586, 8655}, {8672, 47700}, {8678, 48275}, {29350, 47995}

X(50496) = isogonal conjugate of the isotomic conjugate of X(47711)
X(50496) = X(86)-isoconjugate of X(831)
X(50496) = X(40600)-Dao conjugate of X(831)
X(50496) = crosspoint of X(830) and X(2483)
X(50496) = crosssum of X(i) and X(j) for these (i,j): {514, 32772}, {6536, 21124}
X(50496) = crossdifference of every pair of points on line {81, 5299}
X(50496) = barycentric product X(i)*X(j) for these {i,j}: {6, 47711}, {10, 2483}, {37, 830}, {42, 47660}, {321, 8635}, {512, 17289}, {513, 28594}, {523, 5280}, {661, 3920}, {798, 33941}, {2501, 5314}, {3669, 4538}, {3709, 7247}
X(50496) = barycentric quotient X(i)/X(j) for these {i,j}: {213, 831}, {830, 274}, {2483, 86}, {3920, 799}, {4538, 646}, {5280, 99}, {5314, 4563}, {8635, 81}, {17289, 670}, {28594, 668}, {33941, 4602}, {47660, 310}, {47711, 76}
X(50496) = {X(3005),X(7234)}-harmonic conjugate of X(21828)


X(50497) = X(512)X(661)∩X(649)X(4455)

Barycentrics    a^2*(b - c)*(b + c)*(a*b + a*c + 2*b*c) : :
X(50497) = 4 X[661] - 3 X[14404], 2 X[4507] - 3 X[4893], 2 X[4979] - 3 X[8027]

X(50497) lies on these lines: {320, 350}, {512, 661}, {649, 4455}, {788, 4813}, {834, 48024}, {891, 47917}, {2254, 2499}, {2488, 6615}, {3005, 4079}, {3120, 38989}, {3121, 38978}, {3122, 39011}, {3805, 44449}, {3808, 49297}, {3835, 6005}, {4040, 29807}, {4083, 47666}, {4132, 4824}, {4139, 47934}, {4155, 4988}, {4507, 4893}, {4784, 25537}, {4804, 8672}, {4806, 23301}, {4979, 8027}, {5040, 16874}, {6371, 48021}, {6372, 47672}, {6373, 48019}, {8034, 8663}, {9400, 17494}, {9508, 24948}, {15309, 39548}, {20983, 48026}, {23655, 48338}, {26049, 47821}, {27193, 47824}, {27674, 50336}, {27854, 48049}, {29198, 47675}, {29350, 47996}

X(50497) = reflection of X(20983) in X(48026)
X(50497) = complement of the isogonal conjugate of X(4436)
X(50497) = isogonal conjugate of the isotomic conjugate of X(48393)
X(50497) = medial-isogonal conjugate of X(2486)
X(50497) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {9401, 149}, {9403, 148}
X(50497) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 2486}, {6, 17205}, {31, 3121}, {101, 4698}, {110, 10180}, {662, 36812}, {692, 25092}, {765, 6372}, {1252, 48000}, {2667, 115}, {3691, 26932}, {3706, 124}, {3720, 11}, {3739, 116}, {4059, 17059}, {4436, 10}, {4891, 5510}, {16589, 8287}, {18089, 44312}, {18166, 17761}, {20888, 21252}, {20963, 1086}, {21020, 125}, {21753, 16592}, {21820, 6627}, {22060, 2968}, {22369, 16573}, {39793, 8286}, {48264, 46100}
X(50497) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 3121}, {513, 6372}, {1500, 3122}, {13476, 3125}, {34585, 1015}
X(50497) = X(i)-isoconjugate of X(j) for these (i,j): {86, 8708}, {99, 40433}, {100, 40439}, {190, 40408}, {662, 32009}
X(50497) = X(i)-Dao conjugate of X(j) for these (i, j): (1084, 32009), (2486, 17143), (3121, 2), (3739, 668), (8054, 40439), (16589, 670), (38986, 40433), (40600, 8708)
X(50497) = crosspoint of X(512) and X(513)
X(50497) = crosssum of X(i) and X(j) for these (i,j): {99, 100}, {667, 1206}
X(50497) = crossdifference of every pair of points on line {81, 213}
X(50497) = barycentric product X(i)*X(j) for these {i,j}: {6, 48393}, {37, 6372}, {42, 47672}, {512, 3739}, {513, 16589}, {514, 2667}, {523, 20963}, {649, 21020}, {650, 39793}, {656, 40975}, {661, 3720}, {693, 21753}, {798, 20888}, {1019, 21699}, {1400, 48264}, {2501, 22060}, {3005, 18089}, {3125, 4436}, {3669, 4111}, {3691, 4017}, {3706, 7180}, {3709, 4059}, {4079, 17175}, {4705, 18166}, {7192, 21820}, {17924, 22369}
X(50497) = barycentric quotient X(i)/X(j) for these {i,j}: {213, 8708}, {512, 32009}, {649, 40439}, {667, 40408}, {798, 40433}, {2667, 190}, {3691, 7257}, {3720, 799}, {3739, 670}, {4111, 646}, {4436, 4601}, {6372, 274}, {16589, 668}, {18089, 689}, {18166, 4623}, {20888, 4602}, {20963, 99}, {21020, 1978}, {21699, 4033}, {21753, 100}, {21820, 3952}, {22060, 4563}, {22369, 1332}, {39793, 4554}, {40975, 811}, {47672, 310}, {48264, 28660}, {48393, 76}
X(50497) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4010, 21146, 30591}, {48080, 48108, 4811}


X(50498) = X(512)X(661)∩X(649)X(4057)

Barycentrics    a^2*(b - c)*(b + c)*(a^2 + 2*a*b + b^2 + 2*a*c + 3*b*c + c^2) : :

X(50498) lies on these lines: {37, 4790}, {321, 48079}, {512, 661}, {513, 4024}, {514, 24089}, {649, 4057}, {834, 4813}, {875, 2978}, {1245, 10097}, {4064, 48106}, {4132, 4988}, {4139, 47669}, {4526, 4979}, {4826, 21828}, {4838, 8672}, {4932, 22043}, {4940, 31993}, {6005, 6590}, {6371, 48019}, {7234, 8663}, {7265, 47660}, {15309, 47678}, {22044, 49293}, {24083, 31286}, {24084, 47789}

X(50498) = isogonal conjugate of the isotomic conjugate of X(47678)
X(50498) = X(8694)-Ceva conjugate of X(42)
X(50498) = X(86)-isoconjugate of X(15322)
X(50498) = X(40600)-Dao conjugate of X(15322)
X(50498) = crosspoint of X(101) and X(28625)
X(50498) = crosssum of X(i) and X(j) for these (i,j): {21, 4765}, {514, 5333}, {8025, 48580}
X(50498) = crossdifference of every pair of points on line {81, 1125}
X(50498) = barycentric product X(i)*X(j) for these {i,j}: {6, 47678}, {37, 15309}, {512, 28653}, {661, 17019}
X(50498) = barycentric quotient X(i)/X(j) for these {i,j}: {213, 15322}, {15309, 274}, {17019, 799}, {28653, 670}, {47678, 76}


X(50499) = X(512)X(650)∩X(649)X(3900)

Barycentrics    a*(b - c)*(a^2 + 4*a*b - b^2 + 4*a*c - 2*b*c - c^2) : :
X(50499) = 3 X[4063] - X[48111], 5 X[667] - 3 X[3251], 6 X[3251] - 5 X[4162], 3 X[3669] - 2 X[48346], X[48346] - 3 X[50336], 3 X[650] - 2 X[48099], 3 X[4041] - X[47912], 3 X[4498] - X[47936], 3 X[47921] - 2 X[48618], 3 X[649] - X[48322], 3 X[4729] + X[48322], 3 X[905] - 2 X[48348], 3 X[1635] - X[48338], 3 X[1734] - X[48086], 3 X[2526] - 2 X[48086], 2 X[3716] - 3 X[48559], 2 X[4730] + X[4790], 2 X[4885] - 3 X[47836], 2 X[4940] - 3 X[47814], 2 X[4983] - 3 X[47777], 2 X[4990] - 3 X[47766], 2 X[4992] - 3 X[47802], 3 X[47965] - 2 X[48004], 2 X[14349] - 3 X[48193], 3 X[30234] - 2 X[48294], 5 X[31250] - 6 X[47837], 4 X[31287] - 3 X[47840], 3 X[45320] - 2 X[48273], X[48304] - 3 X[48570], X[48339] - 3 X[48566]

X(50499) lies on these lines: {19, 18344}, {40, 3309}, {55, 667}, {65, 876}, {512, 650}, {513, 4041}, {514, 7659}, {649, 3900}, {663, 4394}, {798, 4130}, {905, 29350}, {926, 17410}, {1019, 14077}, {1491, 48128}, {1635, 48338}, {1734, 2526}, {2093, 4905}, {2254, 8712}, {2484, 4827}, {2550, 6008}, {3566, 48062}, {3667, 4163}, {3716, 48559}, {3779, 9010}, {3803, 3887}, {3910, 48069}, {3925, 21260}, {4106, 17072}, {4132, 6129}, {4380, 21302}, {4705, 48026}, {4730, 4790}, {4761, 23882}, {4770, 47956}, {4775, 6050}, {4782, 37568}, {4807, 29013}, {4820, 48395}, {4843, 6590}, {4885, 47836}, {4940, 47814}, {4983, 47777}, {4990, 47766}, {4992, 47802}, {5263, 27419}, {5592, 28579}, {6005, 47965}, {6182, 21389}, {9508, 48136}, {10902, 39227}, {14349, 48193}, {17784, 31291}, {20317, 48080}, {21677, 29150}, {23880, 50343}, {28478, 50333}, {28898, 47707}, {29200, 48088}, {30234, 48294}, {31250, 47837}, {31287, 47840}, {37080, 48330}, {45320, 48273}, {48012, 48091}, {48125, 50352}, {48304, 48570}, {48339, 48566}, {48616, 50335}

X(50499) = midpoint of X(i) and X(j) for these {i,j}: {649, 4729}, {4380, 21302}, {4730, 4834}
X(50499) = reflection of X(i) in X(j) for these {i,j}: {663, 4394}, {2526, 1734}, {3669, 50336}, {3803, 48011}, {4106, 17072}, {4162, 667}, {4775, 6050}, {4790, 4834}, {4820, 48395}, {47915, 4490}, {47956, 4770}, {48026, 4705}, {48080, 20317}, {48091, 48012}, {48125, 50352}, {48128, 1491}, {48136, 9508}, {48329, 4782}, {48616, 50335}
X(50499) = crossdifference of every pair of points on line {940, 1449}


X(50500) = X(512)X(650)∩X(513)X(4380)

Barycentrics    a^2*(b - c)*(2*a*b^2 + 5*a*b*c + b^2*c + 2*a*c^2 + b*c^2) : :

X(50500) lies on these lines: {512, 650}, {513, 4380}, {788, 4790}, {834, 50336}, {891, 48133}, {2978, 4394}, {3063, 16874}, {4083, 43067}, {4106, 9400}, {4132, 7662}, {4155, 48397}, {4369, 29350}, {4834, 7234}, {4979, 9010}, {6005, 48000}, {6371, 7659}, {6372, 47920}, {8646, 21007}, {9040, 48013}, {25511, 47836}, {27166, 47761}, {30665, 49281}

X(50500) = reflection of X(i) in X(j) for these {i,j}: {650, 4507}, {2978, 4394}
X(50500) = crossdifference of every pair of points on line {940, 4384}


X(50501) = X(484)X(513)∩X(512)X(650)

Barycentrics    a*(b - c)*(a^2 + 2*a*b - b^2 + 2*a*c - 2*b*c - c^2) : :
X(50501) = 2 X[4834] + X[47956], X[663] - 3 X[1635], 3 X[1635] + X[4729], 3 X[1635] - 2 X[6050], X[4729] + 2 X[6050], 2 X[4394] + X[4730], 4 X[4394] - X[48327], 2 X[4730] + X[48327], X[693] - 3 X[47836], 4 X[9508] - X[48332], 4 X[2516] - X[4775], 2 X[3716] - 3 X[48561], X[3777] - 3 X[48244], X[4010] - 3 X[47835], X[4170] - 3 X[47794], 3 X[4453] - X[47720], 2 X[4770] + X[4790], X[4801] - 3 X[47824], X[4822] - 3 X[4893], 2 X[4885] - 3 X[47837], 3 X[47837] - X[48273], X[4895] - 3 X[8643], X[4959] - 5 X[8656], X[4978] - 3 X[48573], 3 X[14419] - X[48333], X[17166] - 3 X[47762], X[20295] - 3 X[47814], X[21302] + 3 X[47776], 5 X[27013] - 3 X[47820], 3 X[30234] - 2 X[48330], 5 X[31209] - 3 X[47840], 4 X[31286] - 3 X[48564], 4 X[31287] - 3 X[47839], X[47694] - 3 X[48565], X[47718] - 3 X[48254], X[47719] - 3 X[48252], 3 X[47777] - 2 X[48053], 3 X[47793] - X[48080], 3 X[47810] - X[48121], 3 X[47811] - X[48367], 3 X[47818] - X[48339], 3 X[47823] - X[48279], 3 X[47827] - X[48123], 3 X[47828] - X[48131], 2 X[48059] - 3 X[48193], X[48128] - 3 X[48193], X[48129] - 3 X[48213], 3 X[48226] - X[48336], 3 X[48232] - X[48280], 3 X[48242] - X[48410]

X(50501) lies on these lines: {10, 29013}, {100, 29241}, {484, 513}, {512, 650}, {514, 4818}, {522, 48395}, {525, 48062}, {649, 4041}, {659, 3309}, {663, 1635}, {667, 3900}, {693, 47836}, {812, 17072}, {830, 48011}, {891, 3669}, {905, 4083}, {1491, 48092}, {1960, 4162}, {2254, 4498}, {2490, 4990}, {2509, 9313}, {2516, 4775}, {2530, 8712}, {2533, 23882}, {2832, 48075}, {2977, 3566}, {3716, 48561}, {3777, 48244}, {3803, 4782}, {3887, 4401}, {3960, 48346}, {4010, 47835}, {4025, 29288}, {4091, 9373}, {4106, 21260}, {4139, 6129}, {4147, 6002}, {4151, 7662}, {4155, 21348}, {4160, 48064}, {4170, 47794}, {4367, 14077}, {4380, 21301}, {4391, 50343}, {4453, 47720}, {4467, 47707}, {4490, 4784}, {4762, 50352}, {4770, 4790}, {4801, 47824}, {4807, 29066}, {4814, 48322}, {4822, 4893}, {4885, 47837}, {4895, 8643}, {4905, 21385}, {4959, 8656}, {4978, 48573}, {4979, 47912}, {6005, 48003}, {6367, 48397}, {6372, 7659}, {6588, 42666}, {14419, 48333}, {14837, 48403}, {14838, 29350}, {15309, 48607}, {17166, 47762}, {20295, 47814}, {20317, 48267}, {20517, 47131}, {21051, 29328}, {21124, 48106}, {21188, 23770}, {21192, 29047}, {21302, 47776}, {23875, 48088}, {27013, 47820}, {29051, 48008}, {29142, 48069}, {29158, 50453}, {29170, 48401}, {29200, 48056}, {29252, 48087}, {29284, 49280}, {29302, 48089}, {30202, 34948}, {30234, 48330}, {31209, 47840}, {31286, 48564}, {31287, 47839}, {47694, 48565}, {47718, 48254}, {47719, 48252}, {47777, 48053}, {47793, 48080}, {47810, 48121}, {47811, 48367}, {47818, 48339}, {47823, 48279}, {47827, 48123}, {47828, 48131}, {47935, 48023}, {48005, 48026}, {48012, 48027}, {48030, 48091}, {48059, 48128}, {48066, 48616}, {48129, 48213}, {48226, 48336}, {48232, 48280}, {48242, 48410}, {48392, 50339}

X(50501) = midpoint of X(i) and X(j) for these {i,j}: {649, 4041}, {659, 50355}, {663, 4729}, {667, 4730}, {1734, 4063}, {2254, 4498}, {4380, 21301}, {4391, 50343}, {4467, 47707}, {4490, 4784}, {4705, 4834}, {4814, 48322}, {4905, 21385}, {4979, 47912}, {7659, 47921}, {21124, 48106}, {47935, 48023}, {47948, 47976}, {48392, 50339}
X(50501) = reflection of X(i) in X(j) for these {i,j}: {663, 6050}, {667, 4394}, {905, 9508}, {3803, 4782}, {4106, 21260}, {4162, 1960}, {4990, 2490}, {23770, 21188}, {47131, 20517}, {47955, 47967}, {47956, 4705}, {47966, 47965}, {48026, 48005}, {48027, 48012}, {48029, 48003}, {48089, 50337}, {48091, 48030}, {48092, 1491}, {48099, 650}, {48128, 48059}, {48136, 14838}, {48267, 20317}, {48273, 4885}, {48327, 667}, {48329, 4401}, {48332, 905}, {48346, 3960}, {48403, 14837}, {48616, 48066}
X(50501) = X(20315)-Dao conjugate of X(693)
X(50501) = crosspoint of X(i) and X(j) for these (i,j): {19, 100}, {3451, 36082}
X(50501) = crosssum of X(i) and X(j) for these (i,j): {63, 513}, {514, 21616}
X(50501) = crossdifference of every pair of points on line {940, 1100}
X(50501) = barycentric product X(i)*X(j) for these {i,j}: {1, 48269}, {19, 20315}, {101, 17888}, {513, 17314}, {523, 1778}, {649, 46937}, {650, 1788}, {693, 14974}, {2501, 14868}
X(50501) = barycentric quotient X(i)/X(j) for these {i,j}: {1778, 99}, {1788, 4554}, {14868, 4563}, {14974, 100}, {17314, 668}, {17888, 3261}, {20315, 304}, {46937, 1978}, {48269, 75}
X(50501) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {663, 1635, 6050}, {1635, 4729, 663}, {4394, 4730, 48327}, {47837, 48273, 4885}, {48128, 48193, 48059}


X(50502) = X(512)X(45745)∩X(649)X(4041)

Barycentrics    a*(b - c)*(a^3*b + a*b^3 + a^3*c - a^2*b*c + 3*a*b^2*c + b^3*c + 3*a*b*c^2 + 2*b^2*c^2 + a*c^3 + b*c^3) : :

X(50502) lies on these lines: {512, 45745}, {513, 4380}, {649, 4041}, {650, 669}, {693, 25299}, {830, 48008}, {1491, 28374}, {2512, 6589}, {2978, 3900}, {4083, 45746}, {4160, 4932}, {4397, 30061}, {4449, 28372}, {4705, 8640}, {4841, 9313}, {6050, 8655}, {26854, 44429}, {27293, 47814}, {27647, 48136}, {29198, 47663}, {29226, 47653}

X(50502) = crossdifference of every pair of points on line {980, 5256}


X(50503) = X(31)X(649)∩X(512)X(650)

Barycentrics    a^2*(b - c)*(a^2*b + b^3 + a^2*c + a*b*c + c^3) : :

X(50503) lies on these lines: {31, 649}, {512, 650}, {513, 3004}, {659, 834}, {663, 21005}, {667, 43060}, {669, 6589}, {830, 48404}, {891, 48095}, {2488, 6371}, {3005, 6586}, {3310, 3804}, {3776, 20517}, {3835, 3846}, {3878, 11068}, {4083, 47890}, {4132, 48062}, {4367, 23768}, {4841, 8678}, {6372, 47960}, {6608, 9437}, {8655, 21828}, {9002, 18183}, {9029, 20983}, {26148, 35519}, {28423, 47840}, {35518, 48080}

X(50503) = isogonal conjugate of the isotomic conjugate of X(47708)
X(50503) = crosssum of X(514) and X(26128)
X(50503) = crossdifference of every pair of points on line {940, 3912}
X(50503) = barycentric product X(i)*X(j) for these {i,j}: {6, 47708}, {649, 32773}
X(50503) = barycentric quotient X(i)/X(j) for these {i,j}: {32773, 1978}, {47708, 76}


X(50504) = X(512)X(650)∩X(649)X(4705)

Barycentrics    a*(b - c)*(a^2 + a*b - b^2 + a*c - 2*b*c - c^2) : :
X(50504) = 3 X[650] - X[48099], 3 X[48003] - X[48004], 3 X[48011] + X[48601], 3 X[48012] - X[48601], 3 X[649] + X[47912], 3 X[4705] - X[47912], 3 X[659] - X[48111], 3 X[1734] + X[48111], X[667] - 3 X[1635], 5 X[667] + 3 X[4825], 3 X[667] - X[48322], 3 X[1635] + X[4041], 5 X[1635] + X[4825], 9 X[1635] - X[48322], 5 X[4041] - 3 X[4825], 3 X[4041] + X[48322], 9 X[4825] + 5 X[48322], X[693] - 3 X[47837], 3 X[905] - X[48346], 3 X[1491] - X[48086], 3 X[4063] + X[48086], X[1577] - 3 X[47835], X[1960] - 4 X[2516], 3 X[2254] + X[47936], X[2530] - 3 X[47828], X[4498] + 3 X[47828], 3 X[3251] - X[4959], X[4010] - 3 X[47794], X[4040] - 3 X[48226], 3 X[48226] + X[50355], 3 X[14838] - X[48348], X[4170] - 3 X[47822], X[4380] + 3 X[47814], 2 X[4394] + X[4770], X[4449] - 3 X[14419], 3 X[4728] - 5 X[31251], 3 X[4763] - 2 X[31288], X[4801] - 3 X[48569], X[4804] - 3 X[47875], X[4814] + 3 X[8643], 3 X[4893] - X[4983], X[4905] - 3 X[48244], X[4978] - 3 X[47823], X[4990] - 3 X[14425], X[4992] - 3 X[47829], 3 X[47965] - X[48618], X[48618] + 3 X[50336], X[7265] - 3 X[48185], X[14349] - 3 X[47827], X[17166] - 5 X[27013], X[17494] + 3 X[47836], 3 X[47836] - X[50352], X[21146] - 3 X[48573], X[21301] + 3 X[47776], X[23770] - 3 X[41800], X[24719] - 3 X[47816], 7 X[27115] - 3 X[47840], 3 X[27486] + X[47707], 5 X[31209] - 3 X[47839], X[47715] - 3 X[48235], X[47716] - 3 X[48227], X[47717] - 3 X[48224], 3 X[47793] - X[48267], 3 X[47793] + X[50343], 3 X[47795] - X[48279], 3 X[47804] - X[48305], 3 X[47810] + X[47935], 3 X[47811] - X[48351], 3 X[47815] + X[50356], 3 X[47818] - X[48301], 3 X[47820] - X[48291], 3 X[47872] + X[50339], 3 X[47888] - X[48131], 3 X[47893] - X[48335], X[47975] + 3 X[48565], X[48080] - 3 X[48553], X[48081] - 3 X[48162], X[48092] - 3 X[48193], X[48093] - 3 X[48194], X[48100] - 3 X[48213], 3 X[48160] - X[48596], 3 X[48176] - X[50449], 3 X[48204] - X[50331], 3 X[48225] - X[48409], 3 X[48229] - X[48406], X[48407] + 3 X[48566]

X(50594) lies on these lines: {2, 48273}, {10, 814}, {100, 29103}, {512, 650}, {513, 47987}, {514, 9508}, {522, 6133}, {523, 20517}, {525, 2977}, {649, 4705}, {659, 1734}, {661, 4834}, {663, 4730}, {667, 1635}, {693, 47837}, {784, 4913}, {812, 21260}, {826, 48062}, {830, 4782}, {834, 8043}, {891, 905}, {1019, 4490}, {1491, 4063}, {1577, 47835}, {1960, 2516}, {2254, 47936}, {2490, 4843}, {2530, 4498}, {2787, 4147}, {3251, 4959}, {3777, 21385}, {3837, 29302}, {3887, 48331}, {3960, 29226}, {4010, 47794}, {4025, 29354}, {4040, 48226}, {4083, 14838}, {4129, 29328}, {4151, 4874}, {4155, 6586}, {4170, 47822}, {4380, 47814}, {4394, 4770}, {4449, 14419}, {4468, 29252}, {4522, 29106}, {4524, 33969}, {4728, 31251}, {4729, 4775}, {4763, 31288}, {4784, 47959}, {4790, 47956}, {4801, 48569}, {4804, 47875}, {4807, 29366}, {4814, 8643}, {4893, 4983}, {4905, 48244}, {4960, 47928}, {4976, 48395}, {4978, 47823}, {4990, 14425}, {4992, 47829}, {6139, 18344}, {6367, 6590}, {6372, 47965}, {7265, 48185}, {7659, 47966}, {14077, 48328}, {14349, 47827}, {15309, 47967}, {17069, 29288}, {17072, 23791}, {17166, 27013}, {17494, 47836}, {18004, 29216}, {21051, 29013}, {21146, 48573}, {21301, 47776}, {23770, 41800}, {23815, 25380}, {23875, 48056}, {23879, 48405}, {24719, 47816}, {27115, 47840}, {27486, 47707}, {29025, 50453}, {29148, 48401}, {29168, 48069}, {29362, 50337}, {31209, 47839}, {47715, 48235}, {47716, 48227}, {47717, 48224}, {47793, 48267}, {47795, 48279}, {47804, 48305}, {47810, 47935}, {47811, 48351}, {47815, 50356}, {47818, 48301}, {47820, 48291}, {47872, 50339}, {47888, 48131}, {47893, 48335}, {47970, 50359}, {47975, 48565}, {48080, 48553}, {48081, 48162}, {48092, 48193}, {48093, 48194}, {48100, 48213}, {48160, 48596}, {48176, 50449}, {48204, 50331}, {48225, 48409}, {48229, 48406}, {48407, 48566}

X(50504) = midpoint of X(i) and X(j) for these {i,j}: {649, 4705}, {659, 1734}, {661, 4834}, {663, 4730}, {667, 4041}, {1019, 4490}, {1491, 4063}, {2530, 4498}, {3777, 21385}, {4040, 50355}, {4729, 4775}, {4784, 47959}, {4790, 47956}, {4807, 48284}, {4960, 47928}, {4976, 48395}, {7659, 47966}, {17072, 48008}, {17494, 50352}, {47965, 50336}, {47970, 50359}, {48011, 48012}, {48267, 50343}
X(50504) = reflection of X(i) in X(j) for these {i,j}: {1960, 6050}, {6050, 2516}, {23815, 25380}
X(50504) = complement of X(48273)
X(50504) = crosssum of X(513) and X(4641)
X(50504) = crossdifference of every pair of points on line {940, 4850}
X(50504) = barycentric product X(i)*X(j) for these {i,j}: {1, 48266}, {513, 17299}, {650, 24914}
X(50504) = barycentric quotient X(i)/X(j) for these {i,j}: {17299, 668}, {24914, 4554}, {48266, 75}
X(50504) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1635, 4041, 667}, {4498, 47828, 2530}, {17494, 47836, 50352}, {47793, 50343, 48267}, {48226, 50355, 4040}


X(50505) = X(44)X(513)∩X(512)X(4025)

Barycentrics    a*(b - c)*(a^3*b + a*b^3 + a^3*c - a^2*b*c + a*b^2*c + b^3*c + a*b*c^2 + a*c^3 + b*c^3) : :

X(50505) lies on these lines: {44, 513}, {512, 4025}, {663, 28372}, {669, 905}, {830, 4932}, {834, 50348}, {1019, 8646}, {1734, 18197}, {2530, 8640}, {2978, 3309}, {3004, 9313}, {3005, 25098}, {3716, 30023}, {3798, 6005}, {4083, 16892}, {4391, 25299}, {4455, 27674}, {6371, 48015}, {6372, 48060}, {7192, 8678}, {8672, 48069}, {17494, 48410}, {20907, 47128}, {26854, 47819}, {27167, 48564}, {27293, 44429}, {27647, 48099}, {29198, 48101}, {29226, 47923}

X(50505) = crossdifference of every pair of points on line {1, 21750}
X(50505) = barycentric product X(513)*X(27248)
X(50505) = barycentric quotient X(27248)/X(668)
X(50505) = {X(2530),X(8640)}-harmonic conjugate of X(28374)


X(50506) = X(512)X(650)∩X(649)X(21003)

Barycentrics    a^2*(b - c)*(a^2*b + b^3 + a^2*c - a*b*c + 2*b^2*c + 2*b*c^2 + c^3) : :

X(50506) lies on these lines: {512, 650}, {513, 4468}, {514, 22284}, {649, 21003}, {661, 9313}, {669, 6586}, {834, 1491}, {891, 47960}, {2483, 8646}, {2484, 16874}, {2526, 4524}, {3004, 4083}, {3005, 6589}, {3261, 25299}, {4105, 9437}, {4477, 8676}, {6005, 11068}, {6372, 48095}, {7234, 43060}, {8678, 48276}, {9002, 20983}, {21123, 23655}, {28423, 47836}

X(50506) = isogonal conjugate of the isotomic conjugate of X(47707)
X(50506) = crosssum of X(514) and X(25496)
X(50506) = crossdifference of every pair of points on line {940, 16502}
X(50506) = barycentric product X(6)*X(47707)
X(50506) = barycentric quotient X(47707)/X(76)


X(50507) = X(512)X(650)∩X(649)X(4983)

Barycentrics    a*(b - c)*(a^2 - a*b - b^2 - a*c - 2*b*c - c^2) : :
X(50507) = 5 X[663] - 3 X[3251], X[663] + 3 X[4893], 3 X[3251] + 5 X[4705], X[3251] + 5 X[4893], X[4705] - 3 X[4893], 2 X[6050] + X[48053], X[693] - 3 X[47839], X[1577] - 3 X[47822], 3 X[1635] + X[4822], 3 X[1635] - X[4834], 3 X[1639] - X[48395], X[1734] - 3 X[47827], 3 X[47827] + X[48336], X[2254] - 3 X[47888], 3 X[47888] + X[48351], X[2533] - 3 X[47794], 7 X[3624] - X[48143], X[4010] - 3 X[47838], X[4063] - 3 X[48226], X[48123] + 3 X[48226], X[4367] + 3 X[48162], X[47959] - 3 X[48162], X[4391] - 3 X[48553], X[48288] + 3 X[48553], X[4560] + 3 X[47821], 3 X[47821] - X[48267], X[4761] - 3 X[47835], X[4905] - 3 X[47893], X[4978] - 3 X[47841], 3 X[8643] + X[47912], 3 X[14419] + X[47949], 3 X[14419] - X[48144], 3 X[47826] - X[47949], 3 X[47826] + X[48144], X[17072] - 3 X[47778], X[17166] + 3 X[47775], X[17494] + 3 X[47840], 3 X[47840] - X[48273], 2 X[19947] + X[48009], X[21051] - 3 X[48180], X[21146] - 3 X[47795], 7 X[27115] - 3 X[47836], 3 X[30234] + X[47955], 5 X[31209] - 3 X[47837], X[43067] - 3 X[48564], X[47666] + 3 X[47820], X[47710] - 3 X[48188], X[47711] - 3 X[48185], X[47712] - 3 X[48177], 3 X[47777] - X[47956], 3 X[47796] + X[47969], 3 X[47810] + X[48150], 3 X[47811] + X[48131], 3 X[47818] + X[50449], 3 X[47819] + X[47974], 3 X[47828] + X[48367], 3 X[47832] - X[48393], 3 X[47875] - X[50457], X[47941] + 3 X[48570], X[48108] - 3 X[48569], X[48122] + 3 X[48572], 3 X[48176] + X[48301], 3 X[48176] - X[48407], 3 X[48179] - X[48403]

X(50507) lies on these lines: {1, 4490}, {2, 50352}, {10, 29366}, {42, 663}, {512, 650}, {513, 4401}, {514, 1125}, {649, 4983}, {659, 14349}, {661, 667}, {693, 47839}, {764, 47929}, {784, 3716}, {814, 4129}, {830, 48030}, {832, 47842}, {891, 47965}, {905, 6372}, {1019, 48024}, {1491, 3216}, {1577, 47822}, {1635, 4822}, {1639, 48395}, {1734, 47827}, {1946, 2520}, {1960, 8678}, {2254, 47888}, {2530, 4724}, {2533, 16828}, {2832, 48137}, {2977, 3800}, {3624, 48143}, {3669, 47966}, {3777, 47970}, {3803, 48027}, {3835, 29070}, {3837, 29186}, {3887, 48194}, {3900, 4770}, {3960, 29198}, {4010, 47838}, {4025, 29252}, {4041, 4775}, {4063, 48123}, {4083, 48003}, {4147, 29298}, {4160, 47967}, {4367, 47959}, {4369, 31288}, {4378, 47918}, {4391, 48288}, {4455, 8637}, {4468, 29354}, {4522, 29086}, {4560, 47821}, {4730, 48338}, {4761, 47835}, {4782, 48093}, {4784, 48081}, {4794, 48012}, {4806, 29013}, {4905, 47893}, {4978, 47841}, {4992, 29302}, {6005, 9508}, {6332, 29312}, {6367, 45745}, {6546, 29686}, {6589, 42653}, {7927, 48062}, {8053, 48387}, {8643, 47912}, {14077, 48347}, {14321, 29232}, {14419, 47826}, {15309, 48028}, {17072, 29188}, {17166, 47775}, {17494, 47840}, {18004, 29062}, {19947, 48009}, {21003, 48031}, {21051, 29066}, {21124, 49279}, {21146, 47795}, {21192, 29200}, {21260, 25666}, {27115, 47836}, {27647, 28255}, {29047, 48056}, {29058, 47765}, {29082, 50453}, {29090, 48270}, {29150, 48043}, {29168, 48006}, {29226, 48348}, {29246, 50337}, {29256, 49280}, {29266, 48269}, {30234, 47955}, {31209, 47837}, {39798, 40464}, {42325, 50335}, {43067, 48564}, {46385, 50330}, {47666, 47820}, {47683, 48392}, {47708, 50351}, {47710, 48188}, {47711, 48185}, {47712, 48177}, {47777, 47956}, {47796, 47969}, {47810, 48150}, {47811, 48131}, {47818, 50449}, {47819, 47974}, {47828, 48367}, {47832, 48393}, {47875, 50457}, {47913, 48320}, {47921, 48332}, {47922, 48344}, {47941, 48570}, {47975, 48305}, {48086, 50358}, {48108, 48569}, {48111, 50328}, {48122, 48572}, {48176, 48301}, {48179, 48403}, {48265, 48321}, {48272, 50340}, {48289, 48401}, {48299, 48402}, {48340, 50345}, {48352, 50355}

X(50507) = midpoint of X(i) and X(j) for these {i,j}: {1, 4490}, {649, 4983}, {650, 48099}, {659, 14349}, {661, 667}, {663, 4705}, {764, 47929}, {905, 48029}, {1019, 48024}, {1491, 4040}, {1734, 48336}, {1960, 48005}, {2254, 48351}, {2530, 4724}, {3669, 47966}, {3777, 47970}, {3803, 48027}, {3960, 48004}, {4041, 4775}, {4063, 48123}, {4129, 48284}, {4367, 47959}, {4378, 47918}, {4391, 48288}, {4401, 48054}, {4560, 48267}, {4730, 48338}, {4782, 48093}, {4784, 48081}, {4794, 48012}, {4822, 4834}, {14419, 47826}, {14838, 48058}, {17494, 48273}, {21003, 48031}, {21124, 49279}, {46385, 50330}, {47683, 48392}, {47708, 50351}, {47842, 48297}, {47913, 48320}, {47921, 48332}, {47922, 48344}, {47949, 48144}, {47965, 48136}, {47967, 48330}, {47975, 48305}, {48030, 48331}, {48045, 48064}, {48065, 48066}, {48086, 50358}, {48111, 50328}, {48265, 48321}, {48272, 50340}, {48289, 48401}, {48299, 48402}, {48301, 48407}, {48340, 50345}, {48352, 50355}
X(50507) = reflection of X(i) in X(j) for these {i,j}: {4369, 31288}, {21260, 25666}
X(50507) = complement of X(50352)
X(50507) = isogonal conjugate of the isotomic conjugate of X(50327)
X(50507) = crossdifference of every pair of points on line {940, 3218}
X(50507) = barycentric product X(i)*X(j) for these {i,j}: {1, 48277}, {6, 50327}, {513, 17275}, {650, 11375}
X(50507) = barycentric quotient X(i)/X(j) for these {i,j}: {11375, 4554}, {17275, 668}, {48277, 75}, {50327, 76}
X(50507) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {663, 4893, 4705}, {1635, 4822, 4834}, {4367, 48162, 47959}, {4560, 47821, 48267}, {14419, 47949, 48144}, {17494, 47840, 48273}, {47826, 48144, 47949}, {47827, 48336, 1734}, {47888, 48351, 2254}, {48123, 48226, 4063}, {48176, 48301, 48407}, {48288, 48553, 4391}


X(50508) = X(512)X(650)∩X(513)X(663)

Barycentrics    a*(b - c)*(a^2 - 4*a*b - b^2 - 4*a*c - 2*b*c - c^2) : :
X(50508) = X[48128] + 2 X[48336], 2 X[1734] - 3 X[48193], X[2526] + 2 X[48352], 5 X[3616] - 3 X[48570], X[4162] + 2 X[4983], 2 X[4775] + X[48026], 5 X[4705] - 3 X[4825], 2 X[4705] - 3 X[47777], 2 X[4825] - 5 X[47777], X[4729] - 3 X[4893], X[4761] - 3 X[47838], 3 X[4776] - X[21302], 2 X[4879] + X[47915], 2 X[4885] - 3 X[47840], 3 X[4944] - 2 X[48395], X[4979] - 3 X[8643], 2 X[14837] - 3 X[48179], 2 X[17072] - 3 X[47760], 2 X[20317] - 3 X[47821], 3 X[30234] - 2 X[48064], 5 X[31250] - 6 X[47839], 4 X[31287] - 3 X[47836], 3 X[45320] - 2 X[50352], X[47914] + 2 X[48291]

X(50508) lies on these lines: {1, 48081}, {512, 650}, {513, 663}, {661, 3900}, {667, 4790}, {830, 48091}, {891, 47966}, {905, 6005}, {1734, 48193}, {2526, 3309}, {3064, 44705}, {3616, 48570}, {3803, 4794}, {3887, 48054}, {3907, 48043}, {3910, 48006}, {4079, 4130}, {4083, 47921}, {4106, 29051}, {4160, 47955}, {4162, 4775}, {4170, 23882}, {4449, 48021}, {4705, 4825}, {4724, 8712}, {4729, 4893}, {4761, 47838}, {4776, 21302}, {4806, 29366}, {4813, 48322}, {4834, 6050}, {4843, 45745}, {4879, 47915}, {4885, 47840}, {4895, 47912}, {4940, 21301}, {4944, 48395}, {4979, 8643}, {4990, 6590}, {4992, 29246}, {6004, 48092}, {6372, 48332}, {7655, 50330}, {14077, 47959}, {14837, 48179}, {15309, 48294}, {17072, 47760}, {20317, 47821}, {21343, 47913}, {22037, 29196}, {23880, 48080}, {28470, 48049}, {28478, 50347}, {29021, 49280}, {29170, 48289}, {29198, 48346}, {29208, 48088}, {29226, 48618}, {29278, 48269}, {29288, 48087}, {29350, 47965}, {30234, 48064}, {30235, 44410}, {31250, 47839}, {31287, 47836}, {31291, 48079}, {43052, 48400}, {45320, 50352}, {47709, 49274}, {47914, 48291}, {47942, 48282}, {47949, 48333}, {47956, 48053}, {48027, 48093}, {48028, 48607}, {48085, 48324}, {48125, 48273}, {48287, 48594}, {48339, 50449}

X(50508) = midpoint of X(i) and X(j) for these {i,j}: {1, 48081}, {661, 48338}, {663, 4822}, {4162, 48026}, {4449, 48021}, {4775, 4983}, {4813, 48322}, {4879, 48024}, {4895, 47912}, {14349, 48352}, {21343, 47913}, {31291, 48079}, {47709, 49274}, {47942, 48282}, {47949, 48333}, {47959, 48337}, {48085, 48324}, {48121, 48150}, {48123, 48336}, {48131, 48367}, {48287, 48594}, {48339, 50449}
X(50508) = reflection of X(i) in X(j) for these {i,j}: {650, 48099}, {2526, 14349}, {3669, 48136}, {3803, 4794}, {4162, 4775}, {4790, 667}, {4834, 6050}, {6590, 4990}, {7655, 50330}, {7659, 905}, {21301, 4940}, {43052, 48400}, {47915, 48024}, {47921, 48029}, {47955, 48045}, {47956, 48053}, {47965, 48058}, {48026, 4983}, {48027, 48093}, {48089, 4992}, {48125, 48273}, {48128, 48123}, {48607, 48028}, {48616, 48129}
X(50508) = crossdifference of every pair of points on line {9, 940}
X(50508) = barycentric product X(i)*X(j) for these {i,j}: {513, 5296}, {514, 37553}
X(50508) = barycentric quotient X(i)/X(j) for these {i,j}: {5296, 668}, {37553, 190}


X(50509) = X(187)X(237)∩X(513)X(4041)

Barycentrics    a^2*(b - c)*(a + 3*b + 3*c) : :
X(50509) = 3 X[649] - 2 X[667], 7 X[649] - 4 X[1960], 5 X[649] - 2 X[4775], 5 X[649] - 3 X[8643], 8 X[649] - 5 X[8656], 3 X[649] - X[48338], 3 X[663] - 4 X[667], 7 X[663] - 8 X[1960], 5 X[663] - 4 X[4775], X[663] - 4 X[4834], 5 X[663] - 6 X[8643], 4 X[663] - 5 X[8656], 3 X[663] - 2 X[48338], 7 X[667] - 6 X[1960], 5 X[667] - 3 X[4775], X[667] - 3 X[4834], 10 X[667] - 9 X[8643], 16 X[667] - 15 X[8656], 10 X[1960] - 7 X[4775], 2 X[1960] - 7 X[4834], 20 X[1960] - 21 X[8643], 32 X[1960] - 35 X[8656], 12 X[1960] - 7 X[48338], X[4775] - 5 X[4834], 2 X[4775] - 3 X[8643], 16 X[4775] - 25 X[8656], 6 X[4775] - 5 X[48338], 10 X[4834] - 3 X[8643], 16 X[4834] - 5 X[8656], 6 X[4834] - X[48338], 24 X[8643] - 25 X[8656], 9 X[8643] - 5 X[48338], 15 X[8656] - 8 X[48338], X[43924] - 4 X[50344], 3 X[1019] - 2 X[48343], 3 X[4449] - 4 X[48343], 3 X[1635] - 2 X[48099], 2 X[3716] - 3 X[48565], 2 X[3835] - 3 X[47836], 3 X[4784] - X[48323], 3 X[48144] - 2 X[48323], 2 X[4170] - 3 X[47832], 3 X[4379] - 2 X[48273], X[4814] + 2 X[4979], 2 X[4806] - 3 X[47835], 3 X[4893] - 2 X[4983], 2 X[4978] - 3 X[48579], 2 X[4990] - 3 X[47767], 2 X[4992] - 3 X[47823], 2 X[14349] - 3 X[47828], 4 X[21260] - 3 X[31147], 5 X[30835] - 6 X[47837], 7 X[31207] - 6 X[47839], 4 X[31286] - 3 X[47840], 3 X[47793] - 2 X[48043], 3 X[47810] - 2 X[48091], 3 X[47814] - 2 X[48049], 3 X[47826] - 4 X[48003], 3 X[47826] - 2 X[48081], 3 X[47827] - 2 X[48093], 3 X[47893] - 2 X[48129], 4 X[48005] - 3 X[48544], 2 X[48100] - 3 X[48244], 2 X[48295] - 3 X[48568], X[48304] - 3 X[48580], 2 X[48305] - 3 X[48578], 2 X[48351] - 3 X[48572]

X(50509) lies on these lines: {1, 48064}, {187, 237}, {513, 4041}, {514, 50016}, {525, 48106}, {650, 4822}, {657, 4832}, {659, 48367}, {830, 47976}, {834, 43924}, {891, 48341}, {1019, 4449}, {1491, 48121}, {1635, 48099}, {1734, 48023}, {2254, 48122}, {2484, 9313}, {2533, 29328}, {2786, 47707}, {3566, 48300}, {3716, 48565}, {3835, 47836}, {3900, 4790}, {4040, 48011}, {4063, 4724}, {4083, 4784}, {4105, 8676}, {4151, 48142}, {4160, 48110}, {4163, 6006}, {4170, 47832}, {4379, 48273}, {4380, 29051}, {4382, 50352}, {4401, 48352}, {4474, 6002}, {4705, 4813}, {4707, 29158}, {4729, 4814}, {4761, 29013}, {4774, 29152}, {4782, 48336}, {4785, 21301}, {4806, 47835}, {4843, 48276}, {4893, 4983}, {4932, 17166}, {4959, 48322}, {4978, 48579}, {4990, 47767}, {4992, 47823}, {7659, 8712}, {9508, 48123}, {14349, 47828}, {17072, 20295}, {21260, 31147}, {21302, 26853}, {23875, 48118}, {28470, 48016}, {28478, 48069}, {29200, 48103}, {29208, 50342}, {29216, 47711}, {29252, 48117}, {29270, 47724}, {29288, 47971}, {29294, 47710}, {29302, 48119}, {30835, 47837}, {31207, 47839}, {31286, 47840}, {32478, 49279}, {47793, 48043}, {47810, 48091}, {47814, 48049}, {47826, 48003}, {47827, 48093}, {47893, 48129}, {47909, 48407}, {47938, 48402}, {47956, 48019}, {47965, 48021}, {48005, 48544}, {48012, 48085}, {48018, 48086}, {48027, 48597}, {48100, 48244}, {48131, 50336}, {48266, 48395}, {48295, 48568}, {48304, 48580}, {48305, 48578}, {48351, 48572}, {48595, 48613}

X(50509) = midpoint of X(i) and X(j) for these {i,j}: {4729, 4979}, {21302, 26853}
X(50509) = reflection of X(i) in X(j) for these {i,j}: {1, 48064}, {649, 4834}, {663, 649}, {4040, 48011}, {4382, 50352}, {4449, 1019}, {4724, 4063}, {4813, 4705}, {4814, 4729}, {4822, 650}, {4959, 48322}, {17166, 4932}, {20295, 17072}, {47906, 47921}, {47909, 48407}, {47911, 4490}, {47912, 4041}, {47929, 4498}, {47938, 48402}, {48019, 47956}, {48021, 47965}, {48023, 1734}, {48081, 48003}, {48085, 48012}, {48086, 48018}, {48121, 1491}, {48122, 2254}, {48123, 9508}, {48131, 50336}, {48144, 4784}, {48151, 7659}, {48266, 48395}, {48278, 48069}, {48336, 4782}, {48338, 667}, {48352, 4401}, {48367, 659}, {48582, 48607}, {48595, 48613}, {48597, 48027}
X(50509) = isogonal conjugate of the isotomic conjugate of X(28147)
X(50509) = X(28148)-Ceva conjugate of X(6)
X(50509) = X(i)-isoconjugate of X(j) for these (i,j): {75, 28148}, {100, 28626}, {190, 39948}, {651, 30711}
X(50509) = X(i)-Dao conjugate of X(j) for these (i, j): (206, 28148), (8054, 28626), (38991, 30711)
X(50509) = crosspoint of X(6) and X(28148)
X(50509) = crosssum of X(i) and X(j) for these (i,j): {1, 48064}, {2, 28147}, {514, 3624}, {522, 5273}
X(50509) = crossdifference of every pair of points on line {2, 1449}
X(50509) = barycentric product X(i)*X(j) for these {i,j}: {1, 48026}, {6, 28147}, {512, 25507}, {513, 3247}, {649, 9780}, {650, 3339}, {667, 42029}, {3947, 7252}, {3951, 6591}
X(50509) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 28148}, {649, 28626}, {663, 30711}, {667, 39948}, {3247, 668}, {3339, 4554}, {9780, 1978}, {25507, 670}, {28147, 76}, {42029, 6386}, {48026, 75}
X(50509) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {649, 48338, 667}, {667, 48338, 663}, {4775, 8643, 663}, {48003, 48081, 47826}


X(50510) = X(187)X(237)∩X(513)X(3716)

Barycentrics    a^2*(b - c)*(a*b^2 + b^2*c + a*c^2 + b*c^2) : :
X(50510) = 3 X[4893] - X[20983], X[4979] - 3 X[8027], 3 X[14426] - 4 X[25666], 2 X[25142] - 3 X[47778]

X(50510) lies on these lines: {187, 237}, {513, 3716}, {650, 788}, {659, 3737}, {661, 6373}, {834, 4782}, {891, 17494}, {926, 4477}, {2497, 21123}, {2530, 28372}, {3063, 23575}, {3709, 46386}, {3766, 6372}, {4063, 39548}, {4083, 48008}, {4155, 4976}, {4394, 4507}, {4724, 6363}, {4893, 20983}, {4979, 8027}, {14426, 25666}, {16874, 21786}, {21196, 30665}, {21260, 30023}, {22383, 23570}, {23506, 48294}, {25142, 47778}, {25636, 47794}, {27293, 47839}, {27453, 30060}, {27647, 48059}, {32009, 43928}

X(50510) = midpoint of X(i) and X(j) for these {i,j}: {649, 2978}, {4063, 39548}
X(50510) = reflection of X(i) in X(j) for these {i,j}: {4507, 4394}, {4932, 43931}
X(50510) = X(787)-complementary conjugate of X(2)
X(50510) = X(i)-Ceva conjugate of X(j) for these (i,j): {86, 1015}, {904, 3271}, {23493, 3248}, {38832, 23470}
X(50510) = X(i)-isoconjugate of X(j) for these (i,j): {100, 40418}, {101, 1221}, {190, 1258}, {1018, 40409}
X(50510) = X(i)-Dao conjugate of X(j) for these (i, j): (1015, 1221), (3122, 10), (3741, 3952), (8054, 40418), (21838, 1978)
X(50510) = crosspoint of X(649) and X(7192)
X(50510) = crosssum of X(i) and X(j) for these (i,j): {100, 18047}, {190, 4557}, {514, 6685}, {523, 27042}, {3952, 4595}
X(50510) = crossdifference of every pair of points on line {2, 1258}
X(50510) = barycentric product X(i)*X(j) for these {i,j}: {86, 40627}, {512, 16738}, {513, 1107}, {514, 2309}, {649, 3741}, {661, 18169}, {663, 30097}, {667, 20891}, {693, 1197}, {1019, 3728}, {3733, 21024}, {3737, 45208}, {4560, 39780}, {7192, 21838}, {7649, 22065}, {17924, 22389}, {18091, 21123}
X(50510) = barycentric quotient X(i)/X(j) for these {i,j}: {513, 1221}, {649, 40418}, {667, 1258}, {1107, 668}, {1197, 100}, {2309, 190}, {3728, 4033}, {3733, 40409}, {3741, 1978}, {16738, 670}, {18169, 799}, {20891, 6386}, {21024, 27808}, {21700, 4103}, {21838, 3952}, {22065, 4561}, {22389, 1332}, {23212, 4574}, {23473, 33946}, {30097, 4572}, {39780, 4552}, {40627, 10}, {45216, 4595}
X(50510) = {X(649),X(663)}-harmonic conjugate of X(8640)


X(50511) = X(187)X(237)∩X(513)X(3700)

Barycentrics    a^2*(b - c)*(a^2*b + 2*a*b^2 + b^3 + a^2*c + 2*a*b*c + 3*b^2*c + 2*a*c^2 + 3*b*c^2 + c^3) : :

X(50511) lies on these lines: {187, 237}, {513, 3700}, {650, 834}, {661, 6371}, {891, 4988}, {1021, 5216}, {2483, 7252}, {2484, 22383}, {3835, 30864}, {4083, 45745}, {4132, 4976}, {4139, 48277}, {4526, 4979}, {4765, 29350}, {4790, 21348}, {4813, 6363}, {6085, 48019}, {6332, 48060}, {8672, 48275}, {9002, 48026}, {20952, 21437}, {25084, 27673}, {25258, 26853}

X(50511) = crossdifference of every pair of points on line {2, 5711}
X(50511) = {X(649),X(3250)}-harmonic conjugate of X(647)


X(50512) = X(187)X(237)∩X(513)X(4401)

Barycentrics    a^2*(b - c)*(2*a + b + c) : :
X(50512) = 3 X[649] + X[663], 2 X[649] + X[1960], 5 X[649] + X[4775], 3 X[649] - X[4834], 5 X[649] + 3 X[8643], 7 X[649] + 5 X[8656], 7 X[649] + X[48338], X[663] - 3 X[667], 2 X[663] - 3 X[1960], 5 X[663] - 3 X[4775], 5 X[663] - 9 X[8643], 7 X[663] - 15 X[8656], 7 X[663] - 3 X[48338], 5 X[667] - X[4775], 3 X[667] + X[4834], 5 X[667] - 3 X[8643], 7 X[667] - 5 X[8656], 7 X[667] - X[48338], 5 X[1960] - 2 X[4775], 3 X[1960] + 2 X[4834], 5 X[1960] - 6 X[8643], 7 X[1960] - 10 X[8656], 7 X[1960] - 2 X[48338], 3 X[4775] + 5 X[4834], X[4775] - 3 X[8643], 7 X[4775] - 25 X[8656], 7 X[4775] - 5 X[48338], 5 X[4834] + 9 X[8643], 7 X[4834] + 15 X[8656], 7 X[4834] + 3 X[48338], 21 X[8643] - 25 X[8656], 21 X[8643] - 5 X[48338], 5 X[8656] - X[48338], 3 X[4401] - X[48065], 4 X[6050] - X[48053], 3 X[14838] - X[48052], 2 X[48052] - 3 X[48059], 3 X[48064] + X[48065], 3 X[650] - X[47956], 2 X[47956] - 3 X[48005], 3 X[659] - X[47970], 3 X[1019] + X[47970], 3 X[4063] + X[48282], 3 X[4367] - X[48282], 3 X[905] - X[48616], 3 X[1491] - X[48586], 3 X[1635] - X[4705], 3 X[2530] - X[48116], X[2533] - 3 X[48566], X[4010] - 3 X[47818], 3 X[48011] + X[48287], 4 X[48011] + X[48296], 2 X[48011] + X[48328], 4 X[48287] - 3 X[48296], 2 X[48287] - 3 X[48328], X[4106] - 3 X[48564], X[4380] + 3 X[47820], 3 X[47820] - X[48273], 4 X[4394] - X[4770], 3 X[4809] - X[47712], 3 X[14419] - X[48131], X[17072] - 3 X[45313], X[17166] + 3 X[47776], X[20295] - 3 X[47839], X[21146] - 3 X[48568], X[21301] - 5 X[27013], X[21301] - 3 X[47837], 5 X[27013] - 3 X[47837], X[24719] - 3 X[47795], 3 X[25569] - X[48337], X[26853] + 3 X[47840], 3 X[47767] - X[48395], 3 X[30234] - X[48136], 7 X[31207] - 5 X[31251], X[31291] + 3 X[47836], X[46403] - 3 X[48569], 3 X[47762] - X[50352], 3 X[47804] - X[48267], 3 X[47811] - X[47949], 3 X[47811] + X[48149], 3 X[47813] - X[48393], 3 X[47817] - X[48265], 3 X[47827] - X[47948], 3 X[47888] - X[48023], 3 X[47893] - X[48086], X[47947] - 3 X[48162], X[47959] - 3 X[48226], X[47969] + 3 X[48580]

X(50512) lies on these lines: {58, 18001}, {187, 237}, {249, 17940}, {513, 4401}, {514, 4782}, {650, 47956}, {659, 1019}, {690, 48299}, {798, 6373}, {830, 9508}, {891, 4063}, {905, 48616}, {926, 48387}, {1125, 4992}, {1491, 48586}, {1577, 29340}, {1635, 4705}, {1919, 4832}, {2483, 17990}, {2527, 29278}, {2530, 48116}, {2533, 29182}, {3700, 29266}, {3716, 29150}, {3733, 5009}, {3801, 29184}, {3803, 6004}, {3835, 31288}, {3906, 48300}, {4010, 47818}, {4040, 4784}, {4083, 48011}, {4106, 48564}, {4142, 29029}, {4369, 29070}, {4378, 4498}, {4380, 47820}, {4391, 29176}, {4394, 4770}, {4458, 29098}, {4707, 29272}, {4730, 48322}, {4790, 48099}, {4791, 29152}, {4809, 47712}, {4823, 29238}, {4874, 29013}, {4897, 29252}, {4905, 50358}, {4973, 4974}, {4976, 6367}, {4979, 4983}, {6005, 48331}, {7178, 29336}, {8045, 29106}, {8714, 48248}, {13246, 29118}, {14419, 48131}, {15309, 47994}, {17072, 45313}, {17166, 47776}, {20295, 47839}, {20517, 29025}, {21146, 48568}, {21260, 25126}, {21301, 27013}, {21385, 48323}, {24626, 29770}, {24719, 47795}, {25537, 29807}, {25569, 48337}, {26853, 47840}, {27673, 28255}, {29058, 47767}, {29062, 48405}, {29136, 48400}, {29168, 50347}, {29226, 48343}, {29256, 47682}, {29268, 48565}, {29270, 48090}, {29350, 48330}, {29354, 47890}, {30234, 48136}, {30724, 32636}, {31207, 31251}, {31291, 47836}, {46403, 48569}, {47762, 50352}, {47804, 48267}, {47811, 47949}, {47813, 48393}, {47817, 48265}, {47827, 47948}, {47888, 48023}, {47893, 48086}, {47947, 48162}, {47959, 48226}, {47969, 48580}, {47976, 48123}, {48024, 48110}, {48111, 50359}, {48305, 50343}, {48306, 50344}, {48324, 50355}

X(50512) = midpoint of X(i) and X(j) for these {i,j}: {649, 667}, {659, 1019}, {663, 4834}, {2483, 21003}, {3803, 50336}, {4040, 4784}, {4063, 4367}, {4378, 4498}, {4380, 48273}, {4401, 48064}, {4730, 48322}, {4790, 48099}, {4905, 50358}, {4979, 4983}, {21385, 48323}, {47949, 48149}, {47976, 48123}, {48024, 48110}, {48045, 48074}, {48111, 50359}, {48305, 50343}, {48306, 50344}, {48324, 50355}
X(50512) = reflection of X(i) in X(j) for these {i,j}: {1960, 667}, {3835, 31288}, {4992, 1125}, {21260, 31286}, {48005, 650}, {48059, 14838}, {48296, 48328}, {48347, 48330}
X(50512) = isogonal conjugate of X(6540)
X(50512) = isogonal conjugate of the anticomplement of X(35076)
X(50512) = isogonal conjugate of the complement of X(39348)
X(50512) = isogonal conjugate of the isotomic conjugate of X(4977)
X(50512) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 6540), (206, 8701), (513, 4608), (1015, 32018), (1084, 6539), (1125, 27808), (1213, 1978), (3120, 313), (3647, 668), (8054, 1268), (16726, 310), (32664, 37212), (35076, 76), (38991, 4102), (39025, 32635), (40589, 4632), (40627, 31010)
X(50512) = crosspoint of X(i) and X(j) for these (i,j): {6, 8701}, {649, 3733}, {1100, 4427}, {2308, 35327}, {32636, 36075}
X(50512) = crosssum of X(i) and X(j) for these (i,j): {2, 4977}, {10, 31010}, {190, 3952}, {513, 44307}, {514, 3634}, {523, 41809}, {1255, 50344}, {1268, 4608}, {6367, 6537}
X(50512) = crossdifference of every pair of points on line {2, 594}
X(50512) = X(i)-Ceva conjugate of X(j) for these (i,j): {42, 3248}, {58, 1015}, {4427, 1100}, {6186, 3271}, {8701, 6}, {35327, 2308}, {35342, 20970}
X(50512) = X(i)-isoconjugate of X(j) for these (i,j): {1, 6540}, {2, 37212}, {10, 4596}, {37, 4632}, {75, 8701}, {100, 1268}, {101, 32018}, {190, 1255}, {321, 4629}, {651, 4102}, {662, 6539}, {664, 32635}, {668, 1126}, {765, 4608}, {1016, 47947}, {1018, 32014}, {1089, 6578}, {1171, 4033}, {1796, 6335}, {1978, 28615}, {3257, 31011}, {3952, 40438}, {4554, 33635}, {4567, 31010}, {5380, 31013}, {7035, 50344}, {37211, 43260}
X(50512) = barycentric product X(i)*X(j) for these {i,j}: {1, 4979}, {6, 4977}, {11, 36075}, {31, 4978}, {55, 30724}, {56, 4976}, {58, 4988}, {71, 46542}, {81, 4983}, {106, 4984}, {244, 35342}, {430, 7254}, {512, 8025}, {513, 1100}, {514, 2308}, {553, 663}, {593, 6367}, {604, 4985}, {647, 31900}, {649, 1125}, {650, 32636}, {667, 4359}, {739, 30592}, {798, 16709}, {905, 2355}, {1015, 4427}, {1019, 1962}, {1086, 35327}, {1213, 3733}, {1269, 1919}, {1333, 30591}, {1357, 30729}, {1407, 4990}, {1459, 1839}, {1509, 8663}, {2162, 4992}, {3572, 4974}, {3649, 7252}, {3669, 3683}, {3686, 43924}, {3916, 6591}, {4079, 30593}, {4705, 30581}, {4966, 43929}, {4969, 23345}, {7192, 20970}, {7649, 22054}, {8701, 35076}, {17924, 23201}, {17925, 22080}, {41014, 43925}
X(50512) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 6540}, {31, 37212}, {32, 8701}, {58, 4632}, {512, 6539}, {513, 32018}, {553, 4572}, {649, 1268}, {663, 4102}, {667, 1255}, {1015, 4608}, {1100, 668}, {1125, 1978}, {1213, 27808}, {1333, 4596}, {1919, 1126}, {1960, 31011}, {1962, 4033}, {1977, 50344}, {1980, 28615}, {2206, 4629}, {2308, 190}, {2355, 6335}, {3063, 32635}, {3122, 31010}, {3248, 47947}, {3683, 646}, {3733, 32014}, {4079, 6538}, {4359, 6386}, {4427, 31625}, {4834, 43260}, {4974, 27853}, {4976, 3596}, {4977, 76}, {4978, 561}, {4979, 75}, {4983, 321}, {4984, 3264}, {4985, 28659}, {4988, 313}, {4992, 6382}, {6367, 28654}, {8025, 670}, {8663, 594}, {16709, 4602}, {20970, 3952}, {22054, 4561}, {23201, 1332}, {30581, 4623}, {30591, 27801}, {30592, 35543}, {30724, 6063}, {31900, 6331}, {32636, 4554}, {35327, 1016}, {35342, 7035}, {36075, 4998}, {46542, 44129}
X(50512) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {649, 663, 4834}, {667, 4775, 8643}, {667, 4834, 663}, {4380, 47820, 48273}, {21301, 27013, 47837}, {47811, 48149, 47949}


X(50513) = X(31)X(649)∩X(513)X(4468)

Barycentrics    a^2*(b - c)*(a^2*b + b^3 + a^2*c - 3*a*b*c + c^3) : :

X(50513) lies on these lines: {31, 649}, {512, 4162}, {513, 4468}, {834, 4784}, {890, 6589}, {3835, 3836}, {3874, 29350}, {4083, 4897}, {4524, 6085}, {6371, 7659}, {8640, 43060}, {9002, 22277}, {21143, 23655}

X(50513) = isogonal conjugate of the isotomic conjugate of X(47720)
X(50513) = crossdifference of every pair of points on line {3912, 4383}
X(50513) = barycentric product X(6)*X(47720)
X(50513) = barycentric quotient X(47720)/X(76)


X(50514) = X(1)X(9433)∩X(42)X(649)

Barycentrics    a^3*(b - c)*(b^2 - b*c + c^2) : :
X(50514) = X[649] - 3 X[8027], X[4507] - 6 X[8027], 3 X[1635] - X[20983], 3 X[4763] - 2 X[25142], 2 X[31286] - 3 X[38238], 3 X[14426] - 4 X[31287], 9 X[14474] - 7 X[31207], 5 X[27013] - 9 X[43928]

X(50514) lies on these lines: {1, 9433}, {31, 8654}, {42, 649}, {512, 4162}, {513, 3716}, {650, 6373}, {665, 1912}, {1635, 20983}, {1980, 21758}, {2978, 4979}, {3020, 3025}, {3635, 29350}, {3733, 23092}, {3776, 3808}, {3912, 6004}, {3937, 38989}, {4083, 4504}, {4394, 9010}, {4524, 9032}, {4763, 25142}, {6363, 43051}, {6686, 31286}, {8633, 21003}, {9400, 48016}, {14426, 31287}, {14474, 31207}, {18200, 40763}, {20340, 29717}, {21005, 21786}, {26102, 29738}, {27013, 43928}, {39548, 47976}, {47330, 50335}

X(50514) = midpoint of X(i) and X(j) for these {i,j}: {2978, 4979}, {39548, 47976}
X(50514) = reflection of X(i) in X(j) for these {i,j}: {4369, 43931}, {4507, 649}
X(50514) = isogonal conjugate of the isotomic conjugate of X(3777)
X(50514) = X(i)-Ceva conjugate of X(j) for these (i,j): {7, 1015}, {3888, 2275}, {7121, 3248}, {7192, 3776}
X(50514) = X(i)-Dao conjugate of X(j) for these (i, j): (1086, 7034), (2887, 3952), (3271, 8), (8054, 7033), (19602, 4505), (32664, 4621), (41771, 6386)
X(50514) = crosspoint of X(2275) and X(3888)
X(50514) = crosssum of X(i) and X(j) for these (i,j): {3699, 4595}, {4033, 4557}
X(50514) = crossdifference of every pair of points on line {239, 312}
X(50514) = X(i)-isoconjugate of X(j) for these (i,j): {2, 4621}, {100, 7033}, {190, 17743}, {350, 8684}, {646, 7132}, {668, 983}, {692, 7034}, {1018, 38810}, {3113, 3799}, {3407, 3807}, {3596, 8685}, {3773, 33514}, {3952, 40415}, {4610, 43265}, {27808, 38813}
X(50514) = barycentric product X(i)*X(j) for these {i,j}: {6, 3777}, {31, 3776}, {292, 3808}, {513, 2275}, {514, 7032}, {604, 3810}, {649, 982}, {650, 7248}, {663, 41777}, {667, 3662}, {798, 33947}, {810, 31917}, {875, 33891}, {1015, 3888}, {1019, 3778}, {1333, 3801}, {1919, 33930}, {3056, 3669}, {3061, 43924}, {3063, 7185}, {3116, 4817}, {3248, 33946}, {3676, 20665}, {3721, 3733}, {3784, 6591}, {3794, 7180}, {3863, 4367}, {3865, 20981}, {4531, 17096}, {7192, 16584}, {7199, 40935}, {7203, 20684}, {20284, 43931}
X(50514) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 4621}, {514, 7034}, {649, 7033}, {667, 17743}, {982, 1978}, {1919, 983}, {1922, 8684}, {2275, 668}, {3056, 646}, {3094, 4505}, {3116, 3807}, {3117, 3799}, {3662, 6386}, {3721, 27808}, {3733, 38810}, {3776, 561}, {3777, 76}, {3778, 4033}, {3801, 27801}, {3808, 1921}, {3810, 28659}, {3888, 31625}, {4531, 30730}, {4817, 46281}, {7032, 190}, {7248, 4554}, {9006, 3774}, {16584, 3952}, {20284, 36863}, {20665, 3699}, {21751, 4557}, {21815, 40521}, {22364, 4574}, {33947, 4602}, {40935, 1018}, {41777, 4572}


X(50515) = X(36)X(238)∩X(649)X(4041)

Barycentrics    a*(b - c)*(3*a^2 + 2*a*b + b^2 + 2*a*c + 2*b*c + c^2) : :
X(50515) = 3 X[667] - X[4983], 3 X[905] - 2 X[48100], 3 X[1019] - X[4905], 2 X[4983] - 3 X[48099], 3 X[30234] - X[48091], 3 X[48092] - 4 X[48100], X[4162] + 3 X[4790], 2 X[4162] - 3 X[48327], 2 X[4790] + X[48327], 3 X[649] - X[4041], 3 X[650] - 2 X[48005], 3 X[47956] - 4 X[48005], 3 X[659] - X[47913], 2 X[47913] - 3 X[47966], X[48018] - 3 X[48064], 2 X[48018] - 3 X[50336], 3 X[1635] - X[47912], 2 X[3835] - 3 X[48564], 2 X[4129] - 3 X[47803], 3 X[4401] - X[47987], 2 X[47987] - 3 X[48029], 3 X[4782] - X[47922], 2 X[47922] - 3 X[47965], X[4822] - 3 X[8643], 2 X[4940] - 3 X[47839], X[4959] - 3 X[48322], X[20295] - 3 X[47820], 2 X[21260] - 3 X[47761], X[21301] - 3 X[47762], X[23738] - 3 X[48144], 5 X[27013] - 3 X[47814], 4 X[31288] - 3 X[47760], X[31291] + 3 X[47763], X[46403] - 3 X[48570], X[47707] - 3 X[48567], 3 X[47811] - X[47911], 3 X[47826] - X[48582], 3 X[47828] - X[47905], 3 X[47840] - X[48079], X[47906] - 3 X[48572], X[48108] - 3 X[48580], X[48264] - 3 X[48578]

X(50515) lies on these lines: {1, 47976}, {36, 238}, {512, 4162}, {514, 4830}, {649, 4041}, {650, 47956}, {659, 47913}, {661, 6050}, {663, 4979}, {830, 48018}, {1635, 47912}, {2504, 48574}, {2533, 28475}, {3309, 4784}, {3835, 48564}, {3900, 4834}, {3960, 48616}, {4129, 47803}, {4160, 48011}, {4367, 48332}, {4378, 8712}, {4380, 17166}, {4394, 4705}, {4401, 15309}, {4449, 47935}, {4724, 48149}, {4782, 47922}, {4794, 48074}, {4820, 29266}, {4822, 8643}, {4932, 29051}, {4940, 47839}, {4959, 48322}, {4990, 28217}, {6004, 7659}, {6005, 48329}, {6008, 48273}, {6590, 29232}, {7662, 29013}, {14838, 48027}, {20295, 47820}, {21260, 47761}, {21301, 47762}, {23738, 48144}, {27013, 47814}, {28478, 48290}, {28591, 39386}, {29070, 43067}, {29090, 48271}, {29158, 47131}, {29170, 48248}, {29288, 48060}, {29354, 48095}, {31288, 47760}, {31291, 47763}, {34958, 49295}, {46403, 48570}, {47707, 48567}, {47811, 47911}, {47826, 48582}, {47828, 47905}, {47840, 48079}, {47906, 48572}, {48003, 48607}, {48108, 48580}, {48264, 48578}, {48294, 48624}, {48343, 48346}

X(50515) = midpoint of X(i) and X(j) for these {i,j}: {1, 47976}, {663, 4979}, {4040, 48110}, {4380, 17166}, {4449, 47935}, {4724, 48149}, {4794, 48074}, {48294, 48624}
X(50515) = reflection of X(i) in X(j) for these {i,j}: {661, 6050}, {4705, 4394}, {47956, 650}, {47965, 4782}, {47966, 659}, {48027, 14838}, {48029, 4401}, {48092, 905}, {48099, 667}, {48332, 4367}, {48346, 48343}, {48607, 48003}, {48616, 3960}, {49295, 34958}, {50336, 48064}
X(50515) = crosssum of X(i) and X(j) for these (i,j): {1, 47976}, {513, 5287}
X(50515) = crossdifference of every pair of points on line {37, 3305}
X(50515) = barycentric product X(1)*X(49293)
X(50515) = barycentric quotient X(49293)/X(75)


X(50516) = X(320)X(350)∩X(649)X(4083)

Barycentrics    a*(b - c)*(a^2*b^2 + a^2*c^2 - b^2*c^2) : :
X(50516) = X[4380] - 3 X[8027], 2 X[4394] - 3 X[38238], 3 X[14404] - 5 X[31209]

X(50516) lies on these lines: {1, 8640}, {2, 20983}, {38, 21350}, {81, 1980}, {320, 350}, {512, 4932}, {649, 4083}, {650, 24534}, {659, 1459}, {667, 18173}, {669, 48330}, {788, 4369}, {891, 48008}, {940, 21005}, {1491, 28372}, {3221, 21191}, {3741, 23803}, {3805, 6590}, {3808, 48398}, {3835, 6373}, {3999, 4782}, {4025, 30665}, {4164, 22383}, {4380, 8027}, {4394, 38238}, {4411, 35560}, {4790, 9400}, {4885, 9010}, {6363, 48063}, {9002, 48248}, {14404, 31209}, {17494, 29226}, {18180, 30234}, {20979, 24666}, {21051, 30023}, {21348, 46386}, {21392, 32913}, {23503, 23572}, {23655, 24533}, {23791, 23815}, {24768, 28398}, {25126, 25627}, {25299, 25301}, {27045, 48197}, {27167, 48216}, {27293, 47841}, {27453, 30095}, {27647, 48030}, {28475, 37536}, {29198, 48141}, {38247, 43928}

X(50516) = midpoint of X(2978) and X(7192)
X(50516) = reflection of X(i) in X(j) for these {i,j}: {649, 43931}, {20983, 25142}
X(50516) = complement of X(20983)
X(50516) = anticomplement of X(25142)
X(50516) = isogonal conjugate of the isotomic conjugate of X(23807)
X(50516) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {32039, 69}, {34071, 21219}
X(50516) = X(i)-Ceva conjugate of X(j) for these (i,j): {667, 513}, {18197, 649}
X(50516) = X(i)-cross conjugate of X(j) for these (i,j): {3221, 23572}, {23807, 513}
X(50516) = X(i)-isoconjugate of X(j) for these (i,j): {42, 3222}, {100, 3223}, {101, 2998}, {190, 3224}, {668, 34248}, {692, 18832}, {1897, 3504}, {4628, 42551}, {8750, 43714}, {32739, 40162}
X(50516) = X(i)-Dao conjugate of X(j) for these (i, j): (76, 6386), (1015, 2998), (1086, 18832), (8054, 3223), (21191, 4083), (26932, 43714), (32746, 668), (34467, 3504), (40592, 3222), (40619, 40162)
X(50516) = crosspoint of X(i) and X(j) for these (i,j): {1, 18830}, {86, 32039}
X(50516) = crosssum of X(i) and X(j) for these (i,j): {1, 8640}, {649, 23457}, {667, 23538}
X(50516) = crossdifference of every pair of points on line {43, 213}
X(50516) = barycentric product X(i)*X(j) for these {i,j}: {1, 21191}, {6, 23807}, {57, 25128}, {58, 20910}, {75, 23572}, {81, 23301}, {194, 513}, {274, 3221}, {286, 2524}, {310, 23503}, {514, 1740}, {522, 1424}, {649, 17149}, {650, 17082}, {662, 21144}, {667, 6374}, {693, 1613}, {757, 21056}, {905, 3186}, {1019, 21080}, {1919, 18837}, {3676, 7075}, {3733, 22028}, {6385, 9491}, {7192, 21877}, {11325, 15413}, {13476, 27168}, {14296, 47642}, {17924, 20794}, {38834, 48084}
X(50516) = barycentric quotient X(i)/X(j) for these {i,j}: {81, 3222}, {194, 668}, {513, 2998}, {514, 18832}, {649, 3223}, {667, 3224}, {693, 40162}, {905, 43714}, {1424, 664}, {1613, 100}, {1740, 190}, {1919, 34248}, {2524, 72}, {2530, 42551}, {3186, 6335}, {3221, 37}, {4164, 39927}, {6374, 6386}, {7075, 3699}, {9491, 213}, {11325, 1783}, {17082, 4554}, {17149, 1978}, {20794, 1332}, {20910, 313}, {21056, 1089}, {21080, 4033}, {21144, 1577}, {21191, 75}, {21877, 3952}, {22028, 27808}, {22383, 3504}, {23301, 321}, {23503, 42}, {23572, 1}, {23807, 76}, {25128, 312}, {27168, 17143}
X(50516) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 8640, 23506}, {2, 20983, 25142}, {20979, 24666, 25537}, {21191, 25128, 23301}, {24674, 24755, 2}


X(50517) = X(513)X(663)∩X(649)X(3900)

Barycentrics    a*(b - c)*(3*a^2 + b^2 + 2*b*c + c^2) : :
X(50517) = X[8] - 3 X[48565], X[4790] + 2 X[48327], 3 X[663] - X[4822], 3 X[3669] - 2 X[3777], X[3777] - 3 X[4367], 3 X[6129] - 2 X[48350], 3 X[14413] - X[48122], 3 X[25569] - X[48123], 3 X[48128] - 4 X[48129], X[48128] - 4 X[48330], 2 X[48129] - 3 X[48136], X[48129] - 3 X[48330], 3 X[649] - X[4729], X[4729] + 3 X[48322], 3 X[650] - 2 X[4705], 3 X[650] - 4 X[6050], 3 X[667] - X[4705], 3 X[667] - 2 X[6050], X[661] - 3 X[8643], 3 X[905] - 2 X[48066], 3 X[2526] - 4 X[48066], X[7659] + 2 X[48324], 2 X[1577] - 3 X[48220], 4 X[1960] - X[48026], 3 X[1960] - X[48053], 3 X[48026] - 4 X[48053], 2 X[48053] - 3 X[48099], 3 X[4040] - X[47942], 2 X[4147] - 3 X[48559], X[4462] - 3 X[47805], 3 X[4794] - X[48594], 2 X[4885] - 3 X[47820], X[21301] - 3 X[47820], 2 X[4940] - 3 X[47840], 5 X[8656] - X[47912], 2 X[14838] - 3 X[30234], 4 X[14838] - 3 X[48193], 2 X[17072] - 3 X[47761], 2 X[20317] - 3 X[47804], 2 X[21051] - 3 X[47803], 4 X[21260] - 5 X[31250], 2 X[21260] - 3 X[48564], 5 X[31250] - 6 X[48564], X[21302] - 3 X[47762], 4 X[31287] - 3 X[47814], 3 X[47777] - 2 X[47956], 3 X[47881] - 2 X[48395], 3 X[47915] - 4 X[47957], X[47915] - 4 X[48331], 2 X[47957] - 3 X[48029], X[47957] - 3 X[48331], 3 X[48563] - 2 X[50352]

X(50517) lies on these lines: {8, 48565}, {512, 4162}, {513, 663}, {514, 3803}, {649, 3900}, {650, 667}, {659, 47921}, {661, 8643}, {693, 31291}, {798, 4827}, {814, 7662}, {830, 905}, {832, 7655}, {1019, 3309}, {1577, 28475}, {1946, 23865}, {1960, 48026}, {2484, 4130}, {2522, 8635}, {3804, 49293}, {3887, 48064}, {4040, 47942}, {4041, 4394}, {4063, 14077}, {4147, 48559}, {4160, 4401}, {4163, 43061}, {4369, 28470}, {4449, 8712}, {4462, 47805}, {4762, 17166}, {4794, 15309}, {4820, 29232}, {4885, 21301}, {4940, 47840}, {4979, 48338}, {4990, 48269}, {6005, 48345}, {6182, 17410}, {6590, 29278}, {8642, 21789}, {8656, 47912}, {8713, 43042}, {14838, 30234}, {17072, 47761}, {17496, 47697}, {20317, 47804}, {21051, 47803}, {21185, 29126}, {21260, 31250}, {21302, 47762}, {23880, 47694}, {25901, 25925}, {28585, 48568}, {29025, 47131}, {29037, 48271}, {29051, 43067}, {29070, 48125}, {29158, 48286}, {29162, 47123}, {29288, 48095}, {29324, 48248}, {29354, 48124}, {31287, 47814}, {39227, 39577}, {47777, 47956}, {47881, 48395}, {47915, 47957}, {47955, 48058}, {47976, 48337}, {48032, 48341}, {48110, 48352}, {48111, 48320}, {48323, 50358}, {48328, 48332}, {48344, 48346}, {48563, 50352}

X(50517) = midpoint of X(i) and X(j) for these {i,j}: {649, 48322}, {693, 31291}, {1019, 48324}, {4162, 4790}, {4979, 48338}, {17496, 47697}, {47976, 48337}, {48032, 48341}, {48110, 48352}, {48111, 48320}, {48144, 48150}, {48149, 48367}, {48323, 50358}
X(50517) = reflection of X(i) in X(j) for these {i,j}: {650, 667}, {2526, 905}, {3669, 4367}, {4041, 4394}, {4162, 48327}, {4163, 43061}, {4705, 6050}, {7659, 1019}, {21301, 4885}, {47915, 48029}, {47921, 659}, {47955, 48058}, {47965, 4401}, {48026, 48099}, {48029, 48331}, {48099, 1960}, {48128, 48136}, {48136, 48330}, {48193, 30234}, {48269, 4990}, {48332, 48328}, {48346, 48344}
X(50517) = crosssum of X(i) and X(j) for these (i,j): {513, 37674}, {521, 10319}
X(50517) = crossdifference of every pair of points on line {9, 2999}
X(50517) = barycentric product X(i)*X(j) for these {i,j}: {513, 5749}, {514, 5269}, {650, 3600}, {3669, 7172}
X(50517) = barycentric quotient X(i)/X(j) for these {i,j}: {3600, 4554}, {5269, 190}, {5749, 668}, {7172, 646}
X(50517) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {667, 4705, 6050}, {4705, 6050, 650}, {21260, 48564, 31250}, {21301, 47820, 4885}


X(50518) = X(512)X(48276)∩X(650)X(663)

Barycentrics    a*(a - b - c)*(b - c)*(a^2*b - a*b^2 + a^2*c - b^2*c - a*c^2 - b*c^2) : :
X(50518) = 3 X[210] - 4 X[3239], 3 X[354] - 2 X[4025], 3 X[1639] - 2 X[4524]

X(50518) lies on these lines: {72, 49288}, {210, 3239}, {354, 4025}, {512, 48276}, {513, 4382}, {518, 25259}, {521, 4985}, {650, 663}, {652, 3683}, {693, 44319}, {926, 3700}, {1639, 4524}, {1836, 46400}, {2488, 4976}, {2499, 4841}, {3309, 43067}, {3555, 29212}, {3706, 35519}, {3716, 35057}, {3887, 4369}, {4083, 48095}, {4132, 48106}, {4171, 46388}, {4394, 8655}, {6589, 37593}, {7662, 15313}, {9029, 48269}, {9443, 48087}, {14077, 47962}, {18154, 21302}, {21894, 23655}, {42325, 49291}

X(50518) = reflection of X(i) in X(j) for these {i,j}: {72, 49288}, {4841, 2499}, {4976, 2488}, {44319, 693}
X(50518) = X(2350)-complementary conjugate of X(40618)
X(50518) = X(18155)-Ceva conjugate of X(650)
X(50518) = X(i)-isoconjugate of X(j) for these (i,j): {7, 6577}, {109, 8049}, {651, 39797}, {664, 34444}, {1414, 40504}, {1415, 39735}, {4565, 40515}, {4573, 40147}
X(50518) = X(i)-Dao conjugate of X(j) for these (i, j): (11, 8049), (42, 4551), (1146, 39735), (38991, 39797), (39025, 34444), (40608, 40504), (40624, 40005)
X(50518) = crosspoint of X(314) and X(644)
X(50518) = crosssum of X(1402) and X(3669)
X(50518) = crossdifference of every pair of points on line {57, 39797}
X(50518) = barycentric product X(i)*X(j) for these {i,j}: {9, 8714}, {521, 17911}, {522, 16552}, {650, 17135}, {663, 18137}, {3737, 21070}, {3900, 17077}, {4041, 29767}, {4391, 8053}, {4560, 22271}, {18155, 40586}, {22126, 44426}
X(50518) = barycentric quotient X(i)/X(j) for these {i,j}: {41, 6577}, {522, 39735}, {650, 8049}, {663, 39797}, {3063, 34444}, {3709, 40504}, {4041, 40515}, {4391, 40005}, {8053, 651}, {8714, 85}, {16552, 664}, {17077, 4569}, {17135, 4554}, {17911, 18026}, {18137, 4572}, {22126, 6516}, {22271, 4552}, {29767, 4625}, {40586, 4551}


X(50519) = X(42)X(650)∩X(649)X(3900)

Barycentrics    a*(b - c)*(a^3*b - 2*a^2*b^2 + a*b^3 + a^3*c - a^2*b*c + a*b^2*c + b^3*c - 2*a^2*c^2 + a*b*c^2 + 2*b^2*c^2 + a*c^3 + b*c^3) : :
X(50519) = 3 X[3873] - X[47677], 2 X[4524] - 3 X[47766]

X(50519) lies on these lines: {1, 28374}, {8, 30061}, {42, 650}, {145, 14077}, {512, 49293}, {513, 4382}, {518, 48271}, {521, 47694}, {649, 3900}, {669, 48327}, {693, 10453}, {926, 6590}, {1021, 8642}, {2488, 45745}, {2978, 8678}, {3056, 9001}, {3309, 7192}, {3700, 9029}, {3873, 47677}, {3887, 4932}, {4083, 48101}, {4391, 25301}, {4500, 37998}, {4524, 47766}, {4782, 8702}, {4885, 30942}, {9443, 48094}, {18197, 48324}, {23791, 48295}

X(50519) = reflection of X(45745) in X(2488)
X(50519) = crosssum of X(1) and X(28374)
X(50519) = crossdifference of every pair of points on line {2999, 20367}


X(50520) = X(513)X(4380)∩X(649)X(2664)

Barycentrics    a*(b - c)*(2*a*b + a*c + b*c)*(a*b + 2*a*c + b*c) : :
X(50520) = 3 X[2978] - 4 X[43931], 2 X[2978] - 3 X[47763], 8 X[43931] - 9 X[47763], 4 X[4507] - 3 X[47775], 2 X[39548] - 3 X[48580]

X(50520) lies on these lines: {512, 7192}, {513, 4380}, {649, 2664}, {659, 50344}, {660, 4427}, {669, 2106}, {875, 40439}, {876, 8663}, {901, 8708}, {2978, 43931}, {3572, 4979}, {4155, 4608}, {4507, 47775}, {4822, 27647}, {7659, 28374}, {8655, 48064}, {9361, 39337}, {9400, 26824}, {15148, 43925}, {15630, 43920}, {23345, 40433}, {27045, 47836}, {27167, 47840}, {27648, 50336}, {29350, 48141}, {32009, 43928}, {39548, 48580}, {40408, 43926}, {43927, 47694}

X(50520) = isogonal conjugate of X(4436)
X(50520) = isogonal conjugate of the anticomplement of X(2486)
X(50520) = isotomic conjugate of the anticomplement of X(3121)
X(50520) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {8708, 1654}, {32009, 21221}, {40408, 4440}, {40433, 148}, {40439, 149}
X(50520) = X(8708)-Ceva conjugate of X(40433)
X(50520) = X(i)-cross conjugate of X(j) for these (i,j): {3121, 2}, {16726, 1}, {47776, 43928}
X(50520) = cevapoint of X(i) and X(j) for these (i,j): {512, 513}, {514, 42327}, {523, 21260}
X(50520) = crosspoint of X(8708) and X(40433)
X(50520) = crosssum of X(i) and X(j) for these (i,j): {3720, 6372}, {21020, 48264}
X(50520) = trilinear pole of line {1015, 1084}
X(50520) = crossdifference of every pair of points on line {3691, 3720}
X(50520) = X(i)-isoconjugate of X(j) for these (i,j): {1, 4436}, {59, 48264}, {99, 2667}, {100, 3720}, {101, 3739}, {109, 3706}, {110, 21020}, {190, 20963}, {643, 39793}, {651, 3691}, {662, 16589}, {692, 20888}, {765, 6372}, {799, 21753}, {811, 22369}, {1018, 18166}, {1252, 47672}, {1293, 4891}, {1332, 40975}, {1414, 4111}, {1897, 22060}, {3939, 4059}, {4557, 17175}, {4570, 48393}, {4610, 21820}, {18089, 46148}
X(50520) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 4436), (11, 3706), (244, 21020), (513, 6372), (661, 47672), (1015, 3739), (1084, 16589), (1086, 20888), (6615, 48264), (8054, 3720), (17423, 22369), (34467, 22060), (38986, 2667), (38991, 3691), (38996, 21753), (40608, 4111), (40617, 4059), (40620, 16748), (50330, 48393)
X(50520) = barycentric product X(i)*X(j) for these {i,j}: {513, 32009}, {514, 40433}, {523, 40408}, {661, 40439}, {1086, 8708}
X(50520) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 4436}, {244, 47672}, {512, 16589}, {513, 3739}, {514, 20888}, {649, 3720}, {650, 3706}, {661, 21020}, {663, 3691}, {667, 20963}, {669, 21753}, {798, 2667}, {1015, 6372}, {1019, 17175}, {2170, 48264}, {3049, 22369}, {3125, 48393}, {3669, 4059}, {3709, 4111}, {3733, 18166}, {4040, 29773}, {4079, 21699}, {4367, 4754}, {4394, 4891}, {7180, 39793}, {7192, 16748}, {8708, 1016}, {18108, 18089}, {22383, 22060}, {32009, 668}, {40408, 99}, {40433, 190}, {40439, 799}


X(50521) = X(42)X(649)∩X(320)X(350)

Barycentrics    a^3*(b - c)*(b^2 + c^2) : :
X(50521) = 3 X[649] - 2 X[4507], 2 X[649] - 3 X[8027], 4 X[4507] - 9 X[8027], 4 X[650] - 3 X[14404], 3 X[14404] - 2 X[20983], 9 X[14434] - 10 X[30835], 9 X[14474] - 8 X[31286], 4 X[25142] - 5 X[31209], 5 X[27013] - 6 X[38238], 4 X[43931] - 3 X[47762]

X(50521) lies on these lines: {1, 29545}, {42, 649}, {81, 18108}, {320, 350}, {512, 4895}, {650, 9010}, {661, 6373}, {667, 838}, {688, 3005}, {891, 47932}, {1912, 3250}, {2488, 6363}, {2499, 6085}, {2512, 9009}, {3244, 29350}, {3805, 47660}, {3808, 47652}, {3835, 3840}, {4083, 4380}, {4374, 35560}, {4467, 30665}, {4785, 42057}, {5040, 21005}, {6005, 48071}, {6372, 48147}, {7252, 21003}, {8034, 23751}, {8635, 21758}, {9002, 18183}, {9040, 47890}, {9400, 26853}, {14434, 30835}, {14474, 31286}, {23656, 45882}, {24666, 28398}, {25128, 30094}, {25142, 31209}, {26102, 29426}, {27013, 38238}, {29226, 47664}, {43931, 47762}, {47330, 50328}

X(50521) = reflection of X(20983) in X(650)
X(50521) = isogonal conjugate of the isotomic conjugate of X(2530)
X(50521) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {3495, 37781}, {39746, 150}, {43687, 3448}
X(50521) = X(i)-Ceva conjugate of X(j) for these (i,j): {81, 3121}, {513, 2530}, {4553, 39}, {13476, 1015}, {18830, 16720}, {46148, 21814}
X(50521) = X(2084)-cross conjugate of X(21123)
X(50521) = cevapoint of X(688) and X(2084)
X(50521) = crosspoint of X(i) and X(j) for these (i,j): {39, 4553}, {513, 667}, {1415, 1431}, {17187, 46148}
X(50521) = crosssum of X(i) and X(j) for these (i,j): {1, 29545}, {75, 18072}, {83, 18108}, {100, 668}, {514, 24169}, {693, 33940}, {4039, 4375}, {4391, 7081}, {4580, 18709}, {8640, 17752}, {10566, 18082}
X(50521) = crossdifference of every pair of points on line {83, 213}
X(50521) = X(i)-isoconjugate of X(j) for these (i,j): {10, 4577}, {37, 4593}, {42, 689}, {76, 4628}, {82, 668}, {83, 190}, {99, 18082}, {100, 3112}, {101, 308}, {213, 37204}, {251, 1978}, {306, 42396}, {313, 827}, {321, 4599}, {350, 36081}, {645, 18097}, {692, 18833}, {799, 18098}, {1016, 10566}, {1331, 46104}, {1799, 1897}, {1918, 42371}, {4039, 41209}, {4561, 32085}, {4567, 18070}, {4594, 18099}, {5383, 18107}, {6335, 34055}, {6386, 46289}, {7035, 18108}, {16894, 33515}, {27801, 34072}, {32739, 40016}
X(50521) = X(i)-Dao conjugate of X(j) for these (i, j): (39, 6386), (141, 668), (798, 18107), (1015, 308), (1086, 18833), (3124, 321), (5521, 46104), (6626, 37204), (8054, 3112), (15449, 27801), (21123, 18081), (34021, 42371), (34452, 100), (34467, 1799), (38986, 18082), (38996, 18098), (40585, 1978), (40589, 4593), (40592, 689), (40619, 40016), (40627, 18070)
X(50521) = barycentric product X(i)*X(j) for these {i,j}: {1, 21123}, {6, 2530}, {31, 16892}, {32, 48084}, {38, 649}, {39, 513}, {48, 21108}, {58, 8061}, {81, 3005}, {86, 2084}, {141, 667}, {244, 46148}, {274, 688}, {291, 46387}, {427, 22383}, {512, 16696}, {514, 1964}, {604, 48278}, {650, 1401}, {661, 17187}, {665, 46149}, {669, 16703}, {693, 3051}, {798, 16887}, {810, 17171}, {826, 1333}, {905, 1843}, {1015, 4553}, {1019, 21035}, {1459, 17442}, {1634, 3125}, {1635, 46150}, {1919, 1930}, {1923, 3261}, {1980, 8024}, {2087, 46162}, {2170, 46153}, {2203, 2525}, {3049, 16747}, {3063, 3665}, {3121, 4576}, {3248, 4568}, {3669, 3688}, {3675, 46163}, {3676, 40972}, {3733, 3954}, {3917, 6591}, {4020, 7649}, {6385, 9494}, {7117, 46152}, {7192, 21814}, {7199, 41267}, {8041, 18108}, {14399, 46147}, {14419, 46154}, {15413, 27369}, {17924, 20775}, {18210, 35325}, {19606, 23807}, {21760, 35367}, {21828, 46160}, {21832, 46159}, {23224, 27376}, {33299, 43924}, {40495, 41331}
X(50521) = barycentric quotient X(i)/X(j) for these {i,j}: {38, 1978}, {39, 668}, {58, 4593}, {81, 689}, {86, 37204}, {141, 6386}, {274, 42371}, {513, 308}, {514, 18833}, {560, 4628}, {649, 3112}, {667, 83}, {669, 18098}, {688, 37}, {693, 40016}, {798, 18082}, {826, 27801}, {1333, 4577}, {1401, 4554}, {1634, 4601}, {1843, 6335}, {1919, 82}, {1922, 36081}, {1923, 101}, {1964, 190}, {1977, 18108}, {1980, 251}, {2084, 10}, {2203, 42396}, {2206, 4599}, {2530, 76}, {2531, 3954}, {3005, 321}, {3051, 100}, {3122, 18070}, {3248, 10566}, {3688, 646}, {3954, 27808}, {4020, 4561}, {4553, 31625}, {6591, 46104}, {8061, 313}, {9494, 213}, {16696, 670}, {16703, 4609}, {16887, 4602}, {16892, 561}, {17187, 799}, {20775, 1332}, {21035, 4033}, {21108, 1969}, {21123, 75}, {21814, 3952}, {22383, 1799}, {27369, 1783}, {38986, 18107}, {40972, 3699}, {41267, 1018}, {41272, 5380}, {41331, 692}, {46148, 7035}, {46149, 36803}, {46159, 4639}, {46387, 350}, {48084, 1502}, {48278, 28659}
X(50521) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {650, 20983, 14404}, {667, 22383, 1980}


X(50522) = X(239)X(514)∩X(513)X(4024)

Barycentrics    (b - c)*(2*a^2 + 2*a*b + b^2 + 2*a*c + 2*b*c + c^2) : :
X(50522) = 5 X[649] - 4 X[4765], 17 X[649] - 16 X[14351], 10 X[649] - 9 X[14435], 3 X[649] - 2 X[45745], 5 X[649] - 6 X[48576], 2 X[4025] - 3 X[48577], 3 X[4750] - 4 X[4932], 3 X[4750] - 2 X[45746], 8 X[4765] - 5 X[4988], 17 X[4765] - 20 X[14351], 8 X[4765] - 9 X[14435], 6 X[4765] - 5 X[45745], 2 X[4765] - 3 X[48576], 2 X[4765] - 5 X[49293], 17 X[4988] - 32 X[14351], 5 X[4988] - 9 X[14435], 3 X[4988] - 4 X[45745], 5 X[4988] - 12 X[48576], X[4988] - 4 X[49293], 3 X[7192] - X[47653], 5 X[7192] - 3 X[48571], 24 X[14351] - 17 X[45745], 40 X[14351] - 51 X[48576], 8 X[14351] - 17 X[49293], 27 X[14435] - 20 X[45745], 3 X[14435] - 4 X[48576], 9 X[14435] - 20 X[49293], 3 X[16892] - 2 X[47653], 5 X[16892] - 6 X[48571], 2 X[21196] - 3 X[47763], 5 X[45745] - 9 X[48576], X[45745] - 3 X[49293], 5 X[47653] - 9 X[48571], 2 X[47663] - 3 X[48101], X[47663] - 3 X[49282], 3 X[48576] - 5 X[49293], 5 X[4024] - 4 X[4820], 3 X[4024] - 2 X[48266], 3 X[4024] - 4 X[48397], 6 X[4820] - 5 X[48266], 2 X[4820] - 5 X[48275], 3 X[4820] - 5 X[48397], X[48266] - 3 X[48275], 3 X[48275] - 2 X[48397], 3 X[650] - 4 X[2529], 5 X[661] - 6 X[1639], 3 X[1639] - 5 X[48276], 3 X[47812] - 2 X[47989], 3 X[1635] - 2 X[4841], 4 X[2527] - 3 X[47876], 2 X[3004] - 3 X[31148], 4 X[3239] - 3 X[48544], 2 X[3835] - 3 X[47791], 4 X[4106] - 5 X[48418], 2 X[47937] - 5 X[48418], 3 X[4120] - 2 X[4813], 3 X[4120] - 4 X[6590], 3 X[4379] - 2 X[47995], 4 X[4394] - 3 X[47878], 3 X[6546] - 2 X[47666], 3 X[4728] - 2 X[47988], 3 X[4789] - 2 X[48049], 4 X[4790] - 3 X[4984], 3 X[4984] - 2 X[48277], 3 X[6545] - 4 X[43067], 3 X[6545] - 2 X[47958], 4 X[7653] - 3 X[47880], 2 X[20295] - 3 X[48416], 3 X[21116] - 2 X[47652], 3 X[21116] - 4 X[49291], 3 X[47874] - 2 X[48026], 3 X[47873] - 2 X[48269], 3 X[30565] - 2 X[47991], 5 X[30835] - 6 X[47789], 3 X[31147] - 2 X[47981], 7 X[31207] - 6 X[47783], 4 X[31286] - 3 X[47781], 3 X[47762] - 2 X[48404], 3 X[47769] - 2 X[47984], 3 X[47771] - 2 X[47996], 6 X[47780] - 5 X[48414], 3 X[47790] - 2 X[48041], 3 X[47808] - 2 X[47985], 3 X[47809] - 2 X[47992], 3 X[47813] - 2 X[47998], 3 X[47832] - 2 X[47983], 3 X[47833] - 2 X[47990], 3 X[47885] - 2 X[47964], 3 X[47887] - 2 X[47961], 4 X[47950] - 7 X[48412], 4 X[47960] - 5 X[48425], 2 X[47999] - 3 X[48253], 2 X[48000] - 3 X[48567], 2 X[48001] - 3 X[48250], 2 X[48006] - 3 X[48578], 2 X[48007] - 3 X[48579]

X(5022) lies on these lines: {239, 514}, {513, 4024}, {523, 4979}, {650, 2457}, {661, 1639}, {693, 23731}, {812, 47671}, {824, 48107}, {900, 4838}, {918, 48147}, {1635, 4841}, {2527, 47876}, {2533, 21720}, {2786, 47659}, {3004, 31148}, {3239, 48544}, {3700, 28209}, {3835, 47791}, {4106, 47937}, {4120, 4778}, {4379, 47995}, {4394, 47878}, {4406, 20909}, {4444, 6546}, {4468, 47908}, {4500, 48079}, {4608, 26853}, {4728, 47988}, {4762, 48104}, {4785, 47656}, {4789, 48049}, {4790, 4802}, {4893, 28229}, {4897, 47673}, {4963, 48056}, {4976, 28175}, {6084, 48145}, {6545, 41850}, {6589, 21103}, {7653, 47880}, {7662, 47938}, {13401, 42462}, {17422, 21102}, {20295, 48416}, {21053, 50352}, {21104, 47916}, {21108, 43925}, {21116, 47652}, {23729, 47900}, {23770, 47902}, {28220, 47874}, {28225, 47873}, {28840, 47660}, {28851, 47662}, {28855, 49273}, {28867, 47665}, {28878, 48117}, {28882, 47675}, {28886, 49272}, {28894, 47971}, {28898, 48438}, {28902, 48112}, {30565, 47991}, {30835, 47789}, {31147, 47981}, {31207, 47783}, {31286, 47781}, {47762, 48404}, {47769, 47984}, {47771, 47996}, {47780, 48414}, {47790, 48041}, {47808, 47985}, {47809, 47992}, {47813, 47998}, {47832, 47983}, {47833, 47990}, {47885, 47964}, {47887, 47961}, {47890, 47917}, {47903, 48046}, {47907, 48398}, {47909, 48062}, {47939, 48270}, {47950, 48412}, {47960, 48425}, {47999, 48253}, {48000, 48567}, {48001, 48250}, {48006, 48578}, {48007, 48579}, {48076, 48271}, {48094, 49281}, {48108, 50454}, {48114, 48274}, {48399, 49298}, {48583, 50333}, {49289, 49297}

X(50522) = midpoint of X(4608) and X(26853)
X(50522) = reflection of X(i) in X(j) for these {i,j}: {649, 49293}, {661, 48276}, {4024, 48275}, {4813, 6590}, {4963, 48056}, {4988, 649}, {16892, 7192}, {23731, 693}, {45746, 4932}, {47652, 49291}, {47667, 48008}, {47669, 4976}, {47673, 4897}, {47900, 23729}, {47902, 23770}, {47903, 48046}, {47904, 48055}, {47907, 48398}, {47908, 4468}, {47909, 48062}, {47916, 21104}, {47917, 47890}, {47923, 49296}, {47926, 48060}, {47937, 4106}, {47938, 7662}, {47939, 48270}, {47943, 21146}, {47958, 43067}, {48019, 3700}, {48076, 48271}, {48079, 4500}, {48082, 47660}, {48094, 49281}, {48101, 49282}, {48114, 48274}, {48266, 48397}, {48277, 4790}, {48428, 47971}, {48429, 47659}, {48583, 50333}, {49297, 49289}, {49298, 48399}
X(50522) = X(17398)-Dao conjugate of X(33948)
X(50522) = crosspoint of X(514) and X(43927)
X(50522) = crossdifference of every pair of points on line {42, 595}
X(50522) = barycentric product X(514)*X(17398)
X(50522) = barycentric quotient X(17398)/X(190)
X(50522) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {649, 4765, 14435}, {4765, 48576, 649}, {4790, 48277, 4984}, {4813, 6590, 4120}, {4932, 45746, 4750}, {43067, 47958, 6545}, {47652, 49291, 21116}, {48266, 48275, 48397}, {48266, 48397, 4024}


X(50523) = X(513)X(663)∩X(649)X(4041)

Barycentrics    a*(b - c)*(2*a^2 + a*b + b^2 + a*c + 2*b*c + c^2) : :
X(50523) = 2 X[10] - 3 X[48566], X[4895] + 2 X[4979], 4 X[4367] - 3 X[14413], 3 X[14413] - 2 X[48131], 4 X[48330] - X[48597], 2 X[1577] - 3 X[47813], 3 X[1635] - 2 X[4705], 4 X[1960] - X[48019], 4 X[3803] - X[47906], 2 X[3835] - 3 X[47820], 2 X[4129] - 3 X[47818], 2 X[4147] - 3 X[48565], 4 X[4401] - 3 X[47811], 3 X[47811] - 2 X[47959], X[4813] - 3 X[8643], 3 X[8643] - 2 X[48099], 3 X[4893] - 4 X[6050], 3 X[4893] - 2 X[47956], 5 X[8656] - 2 X[48026], 3 X[14392] - 4 X[48387], 3 X[14419] - 2 X[48059], 4 X[14838] - 3 X[47810], 3 X[47810] - 2 X[47948], 2 X[17072] - 3 X[47762], 4 X[21260] - 5 X[24924], X[21302] - 3 X[47763], 3 X[23057] - 2 X[48337], 2 X[24720] - 3 X[48570], 5 X[30835] - 6 X[48564], 3 X[31148] - 2 X[50352], 4 X[31286] - 3 X[47814], 4 X[39545] - X[47943], 3 X[47796] - 2 X[48050], 3 X[47819] - 2 X[48042], 3 X[47826] - 2 X[47955], 3 X[47840] - 2 X[48049], 2 X[47966] - 3 X[48572], 2 X[47967] - 3 X[48226], 4 X[48331] - X[48582], 3 X[48568] - 2 X[50337]

X(50523) lies on these lines: {10, 48566}, {512, 4895}, {513, 663}, {514, 50017}, {522, 47718}, {649, 4041}, {650, 47912}, {659, 47918}, {661, 667}, {784, 48153}, {812, 17166}, {814, 50457}, {830, 1019}, {905, 48023}, {1491, 47905}, {1577, 47813}, {1635, 4705}, {1734, 48064}, {1960, 4983}, {2530, 48020}, {3803, 4724}, {3835, 47820}, {3900, 4790}, {3960, 48086}, {4024, 29232}, {4040, 15309}, {4063, 4160}, {4083, 47935}, {4129, 47818}, {4147, 48565}, {4369, 21301}, {4378, 48334}, {4401, 47811}, {4490, 4782}, {4504, 48298}, {4729, 4834}, {4794, 48081}, {4804, 29013}, {4813, 8643}, {4893, 6050}, {4932, 28470}, {6002, 47694}, {6005, 48110}, {6372, 48032}, {7192, 29051}, {8656, 48026}, {14392, 48387}, {14419, 48059}, {14838, 47810}, {17072, 47762}, {21003, 48022}, {21118, 29126}, {21260, 24924}, {21302, 47763}, {23057, 48337}, {23738, 48320}, {23755, 29240}, {23882, 48142}, {24561, 25008}, {24720, 48570}, {25900, 25901}, {28372, 28373}, {28882, 47720}, {29037, 47660}, {29047, 48146}, {29070, 47672}, {29098, 47705}, {29114, 49300}, {29118, 47695}, {29150, 48305}, {29152, 48392}, {29186, 48148}, {29198, 47936}, {29238, 48120}, {29278, 48276}, {29288, 48101}, {29328, 48301}, {29340, 48393}, {29350, 47976}, {29354, 48130}, {30835, 48564}, {31148, 50352}, {31286, 47814}, {39545, 47943}, {47796, 48050}, {47819, 48042}, {47826, 47955}, {47840, 48049}, {47911, 48029}, {47942, 48065}, {47947, 48058}, {47966, 48572}, {47967, 48226}, {48024, 48331}, {48045, 48584}, {48066, 48586}, {48114, 48273}, {48248, 48265}, {48284, 50449}, {48327, 48338}, {48335, 48343}, {48345, 48352}, {48568, 50337}

X(50523) = midpoint of X(i) and X(j) for these {i,j}: {4979, 48322}, {7192, 31291}, {48110, 48324}, {48149, 48150}
X(50523) = reflection of X(i) in X(j) for these {i,j}: {661, 667}, {1734, 48064}, {2254, 1019}, {4041, 649}, {4490, 4782}, {4724, 3803}, {4729, 4834}, {4813, 48099}, {4822, 663}, {4895, 48322}, {4983, 1960}, {21301, 4369}, {23738, 48320}, {47905, 1491}, {47906, 4724}, {47911, 48029}, {47912, 650}, {47918, 659}, {47936, 50358}, {47942, 48065}, {47947, 48058}, {47948, 14838}, {47956, 6050}, {47959, 4401}, {48019, 4983}, {48020, 2530}, {48021, 4040}, {48022, 21003}, {48023, 905}, {48024, 48331}, {48081, 4794}, {48086, 3960}, {48114, 48273}, {48116, 3777}, {48121, 48136}, {48122, 3669}, {48123, 48330}, {48131, 4367}, {48151, 48144}, {48264, 47694}, {48265, 48248}, {48298, 4504}, {48334, 4378}, {48335, 48343}, {48338, 48327}, {48352, 48345}, {48367, 48329}, {48582, 48024}, {48584, 48045}, {48586, 48066}, {48597, 48123}, {50449, 48284}
X(50523) = X(961)-Ceva conjugate of X(2170)
X(50523) = X(8)-isoconjugate of X(29279)
X(50523) = crosssum of X(100) and X(3882)
X(50523) = crossdifference of every pair of points on line {9, 5256}
X(50523) = barycentric product X(i)*X(j) for these {i,j}: {1, 48276}, {57, 29278}, {513, 5750}, {514, 3745}, {649, 4968}, {650, 4298}
X(50523) = barycentric quotient X(i)/X(j) for these {i,j}: {604, 29279}, {3745, 190}, {4298, 4554}, {4968, 1978}, {5750, 668}, {29278, 312}, {48276, 75}
X(50523) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4367, 48131, 14413}, {4401, 47959, 47811}, {4813, 8643, 48099}, {6050, 47956, 4893}, {14838, 47948, 47810}


X(50524) = X(1)X(669)∩X(649)X(4083)

Barycentrics    a*(b - c)*(a^2*b^2 + a^2*b*c + a^2*c^2 - b^2*c^2) : :
X(50524) = 3 X[649] - 4 X[43931], 2 X[4507] - 3 X[47762], 3 X[14404] - 4 X[25666], 6 X[14426] - 7 X[27138], 4 X[25142] - 5 X[30835]

X(50524) lies on these lines: {1, 669}, {8, 25299}, {42, 24533}, {239, 24626}, {512, 7192}, {513, 4382}, {514, 2978}, {649, 4083}, {659, 2605}, {693, 788}, {838, 48273}, {875, 3873}, {891, 17494}, {1193, 28286}, {3221, 17217}, {3661, 21726}, {3700, 9040}, {3720, 25537}, {3741, 31003}, {3805, 4024}, {3835, 20983}, {4041, 28372}, {4106, 9010}, {4132, 4784}, {4139, 50343}, {4145, 50339}, {4147, 30023}, {4155, 4467}, {4374, 9402}, {4507, 47762}, {4705, 27647}, {4932, 29350}, {4979, 9400}, {6371, 39547}, {6373, 20295}, {7180, 10473}, {8640, 48333}, {8655, 48330}, {9286, 14296}, {10453, 26148}, {14404, 25666}, {14426, 27138}, {16874, 18199}, {16892, 30665}, {17135, 44445}, {17458, 20598}, {21301, 25301}, {21763, 21836}, {23301, 31330}, {23570, 37685}, {24747, 30950}, {24943, 25686}, {25126, 26037}, {25128, 30968}, {25142, 30835}, {25473, 29647}, {25636, 47841}, {26815, 27016}, {27045, 47839}, {27167, 47837}, {28374, 48332}, {29226, 47926}

X(50524) = reflection of X(20983) in X(3835)
X(50524) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {87, 148}, {110, 41840}, {330, 21221}, {662, 21219}, {932, 1654}, {2162, 21220}, {4556, 36857}, {4565, 36858}, {4573, 20537}, {4596, 36856}, {4598, 2895}, {4610, 17149}, {4625, 20350}, {6383, 21294}, {6384, 3448}, {7121, 25054}, {18830, 1330}, {34071, 1655}, {36066, 2227}
X(50524) = X(18196)-Ceva conjugate of X(21763)
X(50524) = X(21836)-cross conjugate of X(42327)
X(50524) = X(101)-isoconjugate of X(42328)
X(50524) = X(i)-Dao conjugate of X(j) for these (i, j): (1015, 42328), (42327, 512)
X(50524) = crosspoint of X(i) and X(j) for these (i,j): {1, 670}, {18830, 32009}
X(50524) = crosssum of X(i) and X(j) for these (i,j): {1, 669}, {512, 22199}, {647, 23420}, {649, 23427}, {663, 23441}, {667, 23417}, {3005, 23445}, {8640, 20963}
X(50524) = crossdifference of every pair of points on line {43, 2229}
X(50524) = barycentric product X(i)*X(j) for these {i,j}: {1, 42327}, {10, 18196}, {38, 18106}, {75, 21763}, {86, 21836}, {92, 22387}, {512, 34022}, {513, 25264}
X(50524) = barycentric quotient X(i)/X(j) for these {i,j}: {513, 42328}, {18106, 3112}, {18196, 86}, {21763, 1}, {21836, 10}, {22387, 63}, {25264, 668}, {34022, 670}, {42327, 75}
X(50524) = {X(1),X(18197)}-harmonic conjugate of X(669)


X(50525) = X(44)X(513)∩X(512)X(4959)

Barycentrics    a*(b - c)*(3*a + 2*b + 2*c) : :
X(50525) = 5 X[649] - 4 X[650], 3 X[649] - 2 X[661], 7 X[649] - 6 X[1635], 19 X[649] - 16 X[2516], 9 X[649] - 8 X[4394], 3 X[649] - 4 X[4790], 4 X[649] - 3 X[4893], 17 X[649] - 12 X[47777], 5 X[649] - 2 X[48019], 7 X[649] - 4 X[48026], 5 X[649] - 3 X[48544], 6 X[650] - 5 X[661], 14 X[650] - 15 X[1635], 19 X[650] - 20 X[2516], 9 X[650] - 10 X[4394], 3 X[650] - 5 X[4790], 8 X[650] - 5 X[4813], 16 X[650] - 15 X[4893], 2 X[650] - 5 X[4979], 17 X[650] - 15 X[47777], 7 X[650] - 5 X[48026], 4 X[650] - 3 X[48544], 7 X[661] - 9 X[1635], 19 X[661] - 24 X[2516], 3 X[661] - 4 X[4394], 4 X[661] - 3 X[4813], 8 X[661] - 9 X[4893], X[661] - 3 X[4979], 17 X[661] - 18 X[47777], 5 X[661] - 3 X[48019], 7 X[661] - 6 X[48026], 10 X[661] - 9 X[48544], 57 X[1635] - 56 X[2516], 27 X[1635] - 28 X[4394], 9 X[1635] - 14 X[4790], 12 X[1635] - 7 X[4813], 8 X[1635] - 7 X[4893], 3 X[1635] - 7 X[4979], 17 X[1635] - 14 X[47777], 15 X[1635] - 7 X[48019], 3 X[1635] - 2 X[48026], 10 X[1635] - 7 X[48544], 18 X[2516] - 19 X[4394], 12 X[2516] - 19 X[4790], 32 X[2516] - 19 X[4813], 64 X[2516] - 57 X[4893], 8 X[2516] - 19 X[4979], 68 X[2516] - 57 X[47777], and many others

X(50525) lies on these lines: {2, 48041}, {44, 513}, {512, 4959}, {514, 14779}, {693, 48577}, {812, 47675}, {900, 48275}, {905, 48597}, {918, 48104}, {1019, 48074}, {2529, 4944}, {2786, 49282}, {3004, 47937}, {3239, 48576}, {3667, 4024}, {3700, 39386}, {3776, 49297}, {3798, 47981}, {3835, 47763}, {4025, 23731}, {4063, 47911}, {4106, 31148}, {4120, 49284}, {4369, 31147}, {4379, 4932}, {4380, 28840}, {4382, 4785}, {4467, 28859}, {4498, 15309}, {4750, 47995}, {4762, 48147}, {4770, 4834}, {4776, 31207}, {4778, 4988}, {4822, 8643}, {4830, 47941}, {4838, 4926}, {4897, 47958}, {4940, 24924}, {4949, 47881}, {4960, 29270}, {4976, 28209}, {4977, 48277}, {4984, 28225}, {5029, 9811}, {6006, 6590}, {6008, 47672}, {6545, 49294}, {6546, 48038}, {8632, 48122}, {11068, 48034}, {14350, 47766}, {14838, 48595}, {16892, 47907}, {17494, 47908}, {21212, 48543}, {24719, 48579}, {26798, 47779}, {28195, 47669}, {28217, 47873}, {28846, 48067}, {28855, 47663}, {28867, 47660}, {28906, 49273}, {29328, 48142}, {30520, 48145}, {30835, 47762}, {31150, 47991}, {31286, 47759}, {31290, 48008}, {43061, 47764}, {43067, 48114}, {47774, 48588}, {47775, 47984}, {47776, 47996}, {47780, 49287}, {47805, 48037}, {47886, 47988}, {47890, 48076}, {47900, 47960}, {47903, 47962}, {47923, 47971}, {47924, 50342}, {47939, 48000}, {47947, 48011}, {47965, 48582}, {47985, 48242}, {47986, 48240}, {48003, 48584}, {48060, 48082}, {48064, 48085}, {48080, 48578}, {48095, 48112}, {48110, 48144}, {48149, 48341}, {48270, 48567}, {48327, 48338}, {48585, 50357}

X(50525) = reflection of X(i) in X(j) for these {i,j}: {649, 4979}, {661, 4790}, {1019, 48074}, {4024, 49293}, {4063, 48624}, {4382, 7192}, {4498, 47976}, {4813, 649}, {7192, 48071}, {16892, 48013}, {17494, 48016}, {20295, 4932}, {23731, 4025}, {31290, 48008}, {47900, 47960}, {47903, 47962}, {47907, 16892}, {47908, 17494}, {47911, 4063}, {47912, 4834}, {47923, 47971}, {47924, 50342}, {47926, 4380}, {47937, 3004}, {47939, 48000}, {47941, 4830}, {47947, 48011}, {47958, 4897}, {47981, 3798}, {48019, 650}, {48020, 7659}, {48023, 4784}, {48034, 11068}, {48076, 47890}, {48079, 4369}, {48082, 48060}, {48085, 48064}, {48101, 48067}, {48112, 48095}, {48114, 43067}, {48117, 48101}, {48121, 1019}, {48138, 48104}, {48141, 48107}, {48144, 48110}, {48266, 48276}, {48341, 48149}, {48582, 47965}, {48584, 48003}, {48585, 50357}, {48592, 31286}, {48595, 14838}, {48597, 905}, {49297, 3776}
X(50525) = anticomplement of X(48041)
X(50525) = X(i)-Ceva conjugate of X(j) for these (i,j): {39948, 244}, {39983, 1015}
X(50525) = X(48053)-cross conjugate of X(28195)
X(50525) = X(i)-isoconjugate of X(j) for these (i,j): {2, 28196}, {100, 27789}, {101, 28650}, {765, 48587}
X(50525) = X(i)-Dao conjugate of X(j) for these (i, j): (513, 48587), (1015, 28650), (8054, 27789), (32664, 28196)
X(50525) = crosssum of X(i) and X(j) for these (i,j): {513, 46845}, {27789, 48587}
X(50525) = crossdifference of every pair of points on line {1, 4134}
X(50525) = barycentric product X(i)*X(j) for these {i,j}: {1, 28195}, {81, 47669}, {86, 48053}, {513, 3624}, {514, 16884}, {656, 31901}, {661, 42025}, {3669, 4034}, {3733, 42031}, {14838, 43261}
X(50525) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 28196}, {513, 28650}, {649, 27789}, {1015, 48587}, {3624, 668}, {4034, 646}, {16884, 190}, {28195, 75}, {31901, 811}, {42025, 799}, {42031, 27808}, {43261, 15455}, {47669, 321}, {48053, 10}
X(50525) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {649, 4813, 4893}, {649, 48544, 650}, {650, 48019, 48544}, {661, 4790, 649}, {661, 4979, 4790}, {4369, 48079, 31147}, {4932, 20295, 4379}, {31286, 48592, 47759}, {47762, 48049, 30835}, {48019, 48544, 4813}, {48266, 48276, 47873}


X(50526) = X(513)X(663)∩X(649)X(4705)

Barycentrics    a*(b - c)*(3*a^2 + 3*a*b + 2*b^2 + 3*a*c + 4*b*c + 2*c^2) : :
X(50526) = 3 X[663] - 2 X[4822], 4 X[3777] - 3 X[48122], 2 X[3777] - 3 X[48144], 3 X[4367] - 2 X[48129], 3 X[14413] - 2 X[48128], 3 X[48121] - 4 X[48129], 3 X[649] - 2 X[4705], 4 X[4705] - 3 X[47912], 3 X[659] - 2 X[47957], 3 X[47911] - 4 X[47957], 3 X[661] - 4 X[6050], 3 X[667] - 2 X[48053], 3 X[4813] - 4 X[48053], 3 X[1019] - 2 X[48066], 3 X[48023] - 4 X[48066], 3 X[1635] - 2 X[47956], 3 X[4040] - 2 X[48594], 4 X[4401] - 3 X[47826], 3 X[47826] - 2 X[47947], 3 X[4724] - 2 X[47942], 4 X[4729] - 3 X[4814], X[4729] - 3 X[4979], X[4814] - 4 X[4979], 3 X[4825] - 5 X[4834], 2 X[4983] - 3 X[8643], 5 X[8656] - 2 X[48019], 5 X[8656] - 4 X[48099], 2 X[17072] - 3 X[47763], 2 X[24720] - 3 X[48580], 3 X[47811] - 2 X[47955], 3 X[47820] - 2 X[48049], 3 X[47828] - 2 X[47948], 3 X[47828] - 4 X[48064], 3 X[47840] - 2 X[48041], 2 X[47949] - 3 X[48572], 2 X[48050] - 3 X[48570], 2 X[48267] - 3 X[48578], 3 X[48577] - 2 X[50352]

X(50526) lies on these lines: {512, 4959}, {513, 663}, {649, 4705}, {659, 47911}, {661, 6050}, {667, 4813}, {830, 48110}, {1019, 48023}, {1635, 47956}, {3667, 47719}, {3803, 48021}, {4040, 48594}, {4041, 4790}, {4160, 47976}, {4401, 47826}, {4724, 15309}, {4729, 4814}, {4785, 17166}, {4825, 4834}, {4932, 21301}, {4960, 29033}, {4983, 8643}, {8656, 48019}, {17072, 47763}, {24720, 48580}, {28470, 48071}, {29013, 48142}, {29037, 49282}, {29051, 48107}, {29070, 48141}, {29232, 48275}, {29288, 48104}, {29354, 48138}, {47811, 47955}, {47820, 48049}, {47828, 47948}, {47840, 48041}, {47905, 50336}, {47949, 48572}, {48029, 48582}, {48050, 48570}, {48058, 48584}, {48267, 48578}, {48577, 50352}

X(50526) = reflection of X(i) in X(j) for these {i,j}: {4041, 4790}, {4813, 667}, {21301, 4932}, {47905, 50336}, {47911, 659}, {47912, 649}, {47947, 4401}, {47948, 48064}, {48019, 48099}, {48021, 3803}, {48023, 1019}, {48121, 4367}, {48122, 48144}, {48582, 48029}, {48584, 48058}, {48597, 48136}
X(50526) = crossdifference of every pair of points on line {9, 17011}
X(50526) = barycentric product X(650)*X(4355)
X(50526) = barycentric quotient X(4355)/X(4554)
X(50526) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4401, 47947, 47826}, {47948, 48064, 47828}


X(50527) = X(1)X(7)∩X(74)X(484)

Barycentrics    a*(a^6 - a^5*b - a^4*b^2 + 2*a^3*b^3 - a^2*b^4 - a*b^5 + b^6 - a^5*c - 3*a^4*b*c - 2*a^3*b^2*c + 2*a^2*b^3*c + 3*a*b^4*c + b^5*c - a^4*c^2 - 2*a^3*b*c^2 + 4*a^2*b^2*c^2 - 2*a*b^3*c^2 - b^4*c^2 + 2*a^3*c^3 + 2*a^2*b*c^3 - 2*a*b^2*c^3 - 2*b^3*c^3 - a^2*c^4 + 3*a*b*c^4 - b^2*c^4 - a*c^5 + b*c^5 + c^6) : :

X(50527) lies on the cubic K1279 and these lines: {1, 7}, {30, 1411}, {47, 9961}, {74, 484}, {1717, 37558}, {1772, 36002}, {2647, 16118}

X(50527) = {X(1042),X(4354)}-harmonic conjugate of X(1)


X(50528) = X(1)X(30)∩X(40)X(64)

Barycentrics    a*(a^6 - 2*a^5*b - a^4*b^2 + 4*a^3*b^3 - a^2*b^4 - 2*a*b^5 + b^6 - 2*a^5*c - 4*a^4*b*c - 2*a^3*b^2*c + 2*a^2*b^3*c + 4*a*b^4*c + 2*b^5*c - a^4*c^2 - 2*a^3*b*c^2 + 6*a^2*b^2*c^2 - 2*a*b^3*c^2 - b^4*c^2 + 4*a^3*c^3 + 2*a^2*b*c^3 - 2*a*b^2*c^3 - 4*b^3*c^3 - a^2*c^4 + 4*a*b*c^4 - b^2*c^4 - 2*a*c^5 + 2*b*c^5 + c^6) : :
X(50528) = 3 X[16132] - 2 X[33857], 3 X[31162] - 4 X[39542], 4 X[4640] - 5 X[35242], 2 X[1012] - 3 X[3576], 3 X[5587] - 4 X[6907], 4 X[6914] - 5 X[7987], 5 X[6974] - 6 X[10165], 5 X[8227] - 4 X[8727], 4 X[13624] - 3 X[28444], 6 X[17532] - 5 X[18492]

X(50528) lies on the cubic K1279 and these lines: {1, 30}, {3, 1709}, {4, 12520}, {9, 7688}, {20, 224}, {36, 7171}, {40, 64}, {46, 1858}, {65, 37411}, {78, 31730}, {84, 11012}, {102, 36984}, {165, 5720}, {376, 997}, {411, 1158}, {515, 3434}, {516, 18446}, {517, 41711}, {550, 45770}, {610, 2935}, {758, 2900}, {912, 41338}, {936, 4640}, {946, 4666}, {958, 41871}, {960, 37426}, {962, 3957}, {971, 3428}, {990, 1064}, {999, 14100}, {1001, 1012}, {1071, 12704}, {1470, 45633}, {1479, 34489}, {1699, 18443}, {1728, 1898}, {1745, 12940}, {1750, 3925}, {1766, 30269}, {1770, 6869}, {2077, 10860}, {2771, 37584}, {2951, 6282}, {3149, 9943}, {3333, 10391}, {3338, 13369}, {3359, 44425}, {3465, 8270}, {3529, 21740}, {3587, 5692}, {3651, 12514}, {3679, 18528}, {3715, 5584}, {3811, 6361}, {3869, 33557}, {3870, 28194}, {3935, 34632}, {3962, 12702}, {4295, 10393}, {4297, 6938}, {4300, 5311}, {4512, 37286}, {4880, 5709}, {4915, 5881}, {5250, 35989}, {5251, 18540}, {5534, 7991}, {5691, 6923}, {5787, 15908}, {5886, 7965}, {6259, 11827}, {6765, 44663}, {6836, 12608}, {6838, 12616}, {6851, 12047}, {6889, 12617}, {6899, 21616}, {6914, 7987}, {6924, 16209}, {6974, 10165}, {7701, 31424}, {7995, 10268}, {8227, 8726}, {8583, 16370}, {9122, 12262}, {9612, 10953}, {9812, 18444}, {9841, 37561}, {10085, 11249}, {10167, 22753}, {10382, 11529}, {10582, 38021}, {10826, 37406}, {10902, 12705}, {11014, 12650}, {12511, 31803}, {12671, 18237}, {12679, 31789}, {12680, 22770}, {13624, 28444}, {15681, 35459}, {16117, 40266}, {17532, 18492}, {19860, 31673}, {20835, 31435}, {22793, 37615}, {24703, 37428}, {24806, 36985}, {28146, 37533}, {28160, 36999}, {28534, 34626}, {28628, 37447}, {35239, 40263}, {37022, 37837}, {37356, 37692}

X(50528) = midpoint of X(1) and X(41860)
X(50528) = reflection of X(i) in X(j) for these {i,j}: {40, 7580}, {1709, 3}, {5691, 6923}, {6938, 4297}, {10431, 946}, {37569, 18446}, {41869, 1836}, {44447, 31730}
X(50528) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 16143, 41854}, {40, 1490, 17857}, {411, 9961, 1158}, {997, 43178, 376}, {1490, 12565, 40}, {1750, 30503, 5587}, {5692, 41853, 3587}, {16132, 41869, 1}, {35239, 40263, 41229}


X(50529) = X(20)X(254)∩X(30)X(50)

Barycentrics    a^2*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 2*a^4*c^2 + 2*a^2*b^2*c^2 - 2*b^4*c^2 + a^2*c^4 + b^2*c^4)*(a^6 - 2*a^4*b^2 + a^2*b^4 - a^4*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 - a^2*c^4 - 2*b^2*c^4 + c^6)*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 - 4*a^6*c^2 + 4*b^6*c^2 + 6*a^4*c^4 - 10*b^4*c^4 - 4*a^2*c^6 + 4*b^2*c^6 + c^8) : :

X(50529) lies on the cubic K1279 and these lines: {20, 254}, {30, 50}, {64, 155}, {74, 35465}, {7464, 10420}, {39986, 47195}

X(50529) = barycentric product X(2986)*X(18451)
X(50529) = barycentric quotient X(18451)/X(3580)


X(50530) = X(1)X(378)∩X(40)X(64)

Barycentrics    a*(a^9 + a^8*b - 2*a^7*b^2 - 2*a^6*b^3 + 2*a^3*b^6 + 2*a^2*b^7 - a*b^8 - b^9 + a^8*c - 3*a^7*b*c + 2*a^6*b^2*c + 3*a^5*b^3*c - 6*a^4*b^4*c + 3*a^3*b^5*c + 2*a^2*b^6*c - 3*a*b^7*c + b^8*c - 2*a^7*c^2 + 2*a^6*b*c^2 + 6*a^5*b^2*c^2 + 2*a^4*b^3*c^2 - 2*a^3*b^4*c^2 - 6*a^2*b^5*c^2 - 2*a*b^6*c^2 + 2*b^7*c^2 - 2*a^6*c^3 + 3*a^5*b*c^3 + 2*a^4*b^2*c^3 - 6*a^3*b^3*c^3 + 2*a^2*b^4*c^3 + 3*a*b^5*c^3 - 2*b^6*c^3 - 6*a^4*b*c^4 - 2*a^3*b^2*c^4 + 2*a^2*b^3*c^4 + 6*a*b^4*c^4 + 3*a^3*b*c^5 - 6*a^2*b^2*c^5 + 3*a*b^3*c^5 + 2*a^3*c^6 + 2*a^2*b*c^6 - 2*a*b^2*c^6 - 2*b^3*c^6 + 2*a^2*c^7 - 3*a*b*c^7 + 2*b^2*c^7 - a*c^8 + b*c^8 - c^9) : :

X(50530) lies on the cubic K1279 and these lines: {1, 378}, {9, 15941}, {30, 16548}, {40, 64}, {74, 484}, {223, 5119}, {610, 3587}, {1745, 11010}, {2939, 2940}, {2941, 31730}, {3468, 37563}, {5715, 11471}, {10605, 18397}

X(50530) = excentral isogonal conjugate of X(1718)
X(50530) = {X(40),X(16389)}-harmonic conjugate of X(1490)


X(50531) = ISOGONAL CONJUGATE OF X(50434)

Barycentrics    a^2*(a^10 - 3*a^8*b^2 + 2*a^6*b^4 + 2*a^4*b^6 - 3*a^2*b^8 + b^10 + 4*a^8*c^2 + 10*a^6*b^2*c^2 - 28*a^4*b^4*c^2 + 10*a^2*b^6*c^2 + 4*b^8*c^2 - 14*a^6*c^4 + 18*a^4*b^2*c^4 + 18*a^2*b^4*c^4 - 14*b^6*c^4 + 8*a^4*c^6 - 30*a^2*b^2*c^6 + 8*b^4*c^6 + 5*a^2*c^8 + 5*b^2*c^8 - 4*c^10)*(a^10 + 4*a^8*b^2 - 14*a^6*b^4 + 8*a^4*b^6 + 5*a^2*b^8 - 4*b^10 - 3*a^8*c^2 + 10*a^6*b^2*c^2 + 18*a^4*b^4*c^2 - 30*a^2*b^6*c^2 + 5*b^8*c^2 + 2*a^6*c^4 - 28*a^4*b^2*c^4 + 18*a^2*b^4*c^4 + 8*b^6*c^4 + 2*a^4*c^6 + 10*a^2*b^2*c^6 - 14*b^4*c^6 - 3*a^2*c^8 + 4*b^2*c^8 + c^10) : :

X(50531) lies on the cubic K1279 and these lines: {20, 6148}, {154, 1511}, {3172, 39176}, {4354, 40933}

X(50531) = isogonal conjugate of X(50434)
X(50531) = isogonal conjugate of the anticomplement of X(1514)
X(50531) = crosssum of X(2935) and X(35237)
X(50531) = barycentric quotient X(6)/X(50434)


X(50532) = EULER LINE INTERCEPT OF X(122)X(2040)

Barycentrics    (b - c)^2*(b + c)^2*(-a^2 + b^2 + c^2)*(-2*a^2 + b^2 + c^2 - Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4])*(a^4 - 6*a^2*b^2 + 5*b^4 - 6*a^2*c^2 - 2*b^2*c^2 + 5*c^4 - 4*(a^2 - b^2 - c^2)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4])*(4*a^4 - a^2*b^2 + b^4 - a^2*c^2 - 4*b^2*c^2 + c^4 + (5*a^2 - b^2 - c^2)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4]) : :
Barycentrics    (a^2 - b^2 - c^2) (2 a^6 - a^4 b^2 - b^6 - a^4 c^2 + b^4 c^2 + b^2 c^4 - c^6 + 2 a^4 T - 2 b^4 T + 4 b^2 c^2 T - 2 c^4 T) : : where T = a^4 + b^4 + c^4 - a^2 b^2 - a^2 c^2 - b^2 c^2

See Tran Quang Hung, Francisco Javier García Capitán and Peter Moses, euclid 5202 and euclid 5204.

X(50532) lies on these lines: {2, 3}, {122, 2040}, {1379, 47296}, {3284, 39023}, {3557, 13567}, {6190, 40996}, {14631, 23292}, {15526, 39022}

X(50532) = X(i)-complementary conjugate of X(j) for these (i,j): {48, 3414}, {656, 2039}, {810, 39023}, {1379, 8062}, {3414, 20305}, {5639, 226}, {6190, 21259}
X(50532) = X(i)-Ceva conjugate of X(j) for these (i,j): {253, 3414}, {6190, 525}


leftri

Points in an orthogonal [[b-c, c-a, a-b], [2 a^2 - 3a (b+c) - b^2 - c^2 + 6 b c, 2 b^2 - 3 b (c+a) - c^2 - a^2 + 6 c a , 2c^2 - 3 c (a+b) - a^2 - b^2 + 6 a b]] coordinate system: X(50533)-X(50536)

rightri

The origin is given by (0, 0) = X(2) = 1 : 1 : 1 : : .

Barycentrics u : v : w for a triangle center U = (x,y) in this system are given by

u : v : w = -2(a^3 + b^3 + c^3 + 9 a b c - 2 a^2 b - 2 a b^2 - 2 b^2 c - 2 b c^2 - 2 c^2 a - 2 c a^2) + (-2 a + b + c) x + 3(b - c)(3 a - b - c) y : : ,

where, as functions of a, b, c, the coordinate x is symmetric of degree 4, and y is symmetric of degree 4.

The appearance of {x, y}, k in the following list means that (x, y) = X(k).

{-a^2-b^2-c^2, 0}, 5121
{0, 0}, 2}
{2 (a^2+b^2+c^2), 0}, 5205}
{-2*(a^2 + b^2 + c^2), 0}, X(50533)
{-a^2 - b^2 - c^2, -(((a - b)*(a - c)*(b - c)*(a + b + c))/((a + b)*(a + c)*(b + c)))}, X(50534)
{(a^2 + b^2 + c^2)/2, 0}, X(50535)
{2*(a^2 + b^2 + c^2), ((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, X(50536)


X(50533) = X(1)X(2)∩X(11)X(37756)

Barycentrics    a^3 + a^2*b + 4*a*b^2 - 2*b^3 + a^2*c - 9*a*b*c + b^2*c + 4*a*c^2 + b*c^2 - 2*c^3 : :
X(50533) = X(50533) = 4 X[5121] - X[5205], 2 X[5121] + X[5211], X[5205] + 2 X[5211]

X(50533) lies on these lines: {1, 2}, {11, 37756}, {126, 5516}, {244, 31177}, {524, 3756}, {903, 19634}, {1054, 28562}, {1366, 1447}, {2726, 4588}, {3667, 4750}, {3737, 45673}, {4370, 39059}, {4679, 49748}, {4715, 26273}, {4956, 17495}, {5233, 47358}, {9053, 12035}, {16067, 19796}, {17132, 17777}, {17721, 49720}, {17722, 50299}, {18201, 28558}, {24627, 50296}, {25531, 41310}, {25533, 37792}, {26240, 39704}, {43055, 49709}

X(50533) = midpoint of X(2) and X(5211)
X(50533) = reflection of X(i) in X(j) for these {i,j}: {2, 5121}, {5205, 2}
X(50533) = orthoptic-circle-of-Steiner-inellipse-inverse of X(551)
X(50533) = orthoptic-circle-of-Steiner-circumellipe inverse of X(3241)}
X(50533) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5121, 5211, 5205}


X(50534) = X(21)X(45763)∩X(210)X(846)

Barycentrics    a*(a^3*b^2 - 2*a^2*b^3 - 2*a*b^4 + b^5 - 4*a^3*b*c + a^2*b^2*c + 2*a*b^3*c + b^4*c + a^3*c^2 + a^2*b*c^2 + 2*a*b^2*c^2 - b^3*c^2 - 2*a^2*c^3 + 2*a*b*c^3 - b^2*c^3 - 2*a*c^4 + b*c^4 + c^5) : :

X(50534) lies on these lines: {21, 45763}, {210, 846}, {381, 24174}, {519, 2292}, {1385, 3073}, {2254, 3667}, {9978, 47625}, {23848, 24436}, {35623, 38473}


X(50535) = X(1)X(2)∩X(124)X(3836)

Barycentrics    2*a^3 - 3*a^2*b - 2*a*b^2 + b^3 - 3*a^2*c + 12*a*b*c - 3*b^2*c - 2*a*c^2 - 3*b*c^2 + c^3 : :
X(50535) = 3 X[2] + X[5205], 9 X[2] - X[5211], 3 X[5121] - X[5211], 3 X[5205] + X[5211]

X(50535) lies on these lines: {1, 2}, {124, 3836}, {142, 30754}, {516, 1293}, {1054, 28526}, {1155, 16594}, {1738, 37758}, {2718, 9104}, {2885, 11260}, {3041, 40538}, {3452, 4655}, {3667, 3716}, {3699, 24216}, {3823, 6667}, {3911, 24003}, {4009, 43055}, {4138, 30827}, {4358, 17888}, {5057, 30855}, {17132, 26273}, {21242, 46916}

X(50535) = midpoint of X(i) and X(j) for these {i,j}: {3699, 24216}, {5121, 5205}
X(50535) = complement of X(5121)
X(50535) = Spieker-circle-inverse of X(20103)
X(50535) = orthoptic-circle-of-the-Steiner-inellipse-inverse of X(8)
X(50535) = orthoptic-circle-of-the-Steiner-circumellipse-inverse of X(3621)
X(50535) = psi-transform of X(24280)
X(50535) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5205, 5121}, {2, 37762, 3011}, {4871, 6745, 49768}


X(50536) = X(6)X(519)∩X(187)X(4370)

Barycentrics    2*a^5 - 2*a^4*b - a^3*b^2 + 2*a^2*b^3 - a*b^4 - 2*a^4*c + 12*a^3*b*c - 8*a^2*b^2*c + 3*a*b^3*c - b^4*c - a^3*c^2 - 8*a^2*b*c^2 + 8*a*b^2*c^2 - 3*b^3*c^2 + 2*a^2*c^3 + 3*a*b*c^3 - 3*b^2*c^3 - a*c^4 - b*c^4 : :

X(50536) lies on the cubic K1275 and these lines: {6, 519}, {187, 4370}, {649, 3239}, {2325, 7113}

X(50536) = crossdifference of every pair of points on line {1201, 9002}


X(50537) = (name pending)

Barycentrics    a^14 b^6 - a^10 b^10 - a^16 b^2 c^2 - a^12 b^6 c^2 - 2 a^10 b^8 c^2 - 4 a^8 b^10 c^2 + 2 a^6 b^12 c^2 + a^12 b^4 c^4 + 5 a^10 b^6 c^4 - a^8 b^8 c^4 + 3 a^6 b^10 c^4 + 2 a^4 b^12 c^4 + a^2 b^14 c^4 + a^14 c^6 - a^12 b^2 c^6 + 5 a^10 b^4 c^6 - a^8 b^6 c^6 - 3 a^4 b^10 c^6 - 2 a^2 b^12 c^6 - 2 a^10 b^2 c^8 - a^8 b^4 c^8 - a^4 b^8 c^8 + a^2 b^10 c^8 - b^12 c^8 - a^10 c^10 - 4 a^8 b^2 c^10 + 3 a^6 b^4 c^10 - 3 a^4 b^6 c^10 + a^2 b^8 c^10 + 2 b^10 c^10 + 2 a^6 b^2 c^12 + 2 a^4 b^4 c^12 - 2 a^2 b^6 c^12 - b^8 c^12 + a^2 b^4 c^14 : :

See Tran Quang Hung and Francisco Javier García Capitán, euclid 5203.

X(50537) lies on this line: {511, 7470}


leftri

Points in a [[a^4, b^4, c^4], [b^2 c^2, c^2 a^2, a^2 b^2]] coordinate system: X(50538)-X(50556)

rightri

The origin is given by (0, 0) = X(50549) = a^2 (b^6 - c^6) : : .

Barycentrics u : v : w for a triangle center U = (x,y) in this system are given by

a^2 (b^6 - c^6) + (b^4 - c^4) x + a^2 (b^2 - c^2) y : : ,

where, as functions of a, b, c, the coordinate x is symmetric of degree 4, and y is symmetric of degree 4.

The appearance of {x, y}, k in the following list means that (x, y) = X(k).

{-a b c (a+b+c), (a b+a c+b c)^2}, 24290
{1/2 (-a^4-b^4-c^4), 0}, 47126
{1/2 (-a^4-b^4-c^4), 1/2 (a^2+b^2+c^2)^2}, 33294
{0, 1/2 (a^4+b^4+c^4)}, 647
{0, a^4+b^4+c^4}, 5027
{0, (a^2+b^2+c^2)^2}, 14318
{1/2 (a^4+b^4+c^4), 0}, 6333
{-2*a*b*c*(a + b + c), -(a*b + a*c + b*c)^2}, 50538
{-(a*b*c*(a + b + c)), (a^4 + b^4 + c^4)/2}, 50539
{-(a*b*c*(a + b + c)), (a + b + c)*(a^3 + b^3 + c^3)}, 50540
{-((a + b + c)^2*(a*b + a*c + b*c)), (a*b + a*c + b*c)^2}, 50541
{-a^4 - b^4 - c^4, (a^2 + b^2 + c^2)^2}, 50542
{(-a^4 - b^4 - c^4)/2, -(a^2 + b^2 + c^2)^2}, 50543
{-1/2*(a*b*c*(a + b + c)), ((a + b + c)*(a^3 + b^3 + c^3))/2}, 50544
{-1/2*(a^2 + b^2 + c^2)^2, (a^4 + b^4 + c^4)/2}, 50545
{-1/2*(a^2 + b^2 + c^2)^2, (a^2 + b^2 + c^2)^2/2}, 50546
{(-a^4 - b^4 - c^4)/2, a^4 + b^4 + c^4}, 50547
{(-a^4 - b^4 - c^4)/2, (a^2 + b^2 + c^2)^2}, 50548
{0, 0}, 50549
{0, (a^2 + b^2 + c^2)^2/2}, 50550
{(a^4 + b^4 + c^4)/2, (-a^4 - b^4 - c^4)/2}, 50551
{(a^4 + b^4 + c^4)/2, a^4 + b^4 + c^4}, 50552
{(a^2 + b^2 + c^2)^2/2, (a^4 + b^4 + c^4)/2}, 50553
{(a^2 + b^2 + c^2)^2, (a^4 + b^4 + c^4)/2}, 50554
{a*b*c*(a + b + c), (a*b + a*c + b*c)^2}, 50555
{(a*b + a*c + b*c)^2, (a + b + c)*(a^3 + b^3 + c^3)}, 50556
{(a*b + a*c + b*c)^2, 2*a*b*c*(a + b + c)}, 50557


X(50538) = X(325)X(523)∩X(351)X(650)

Barycentrics    a*(b - c)*(b + c)^2*(a*b + a*c + 2*b*c) : :
X(50538) = 2 X[693] - 3 X[9148], 4 X[2512] - 3 X[3005], 3 X[351] - 4 X[650], 3 X[9147] - 5 X[26777], 6 X[11176] - 7 X[27115], 3 X[21020] - X[47672], 5 X[26985] - 6 X[45689]

X(50538) lies on these lines: {325, 523}, {351, 650}, {512, 4813}, {649, 9279}, {661, 4155}, {690, 48082}, {740, 48000}, {804, 17494}, {876, 4608}, {888, 50521}, {2530, 47671}, {2978, 9402}, {3777, 47674}, {4024, 4705}, {4490, 25259}, {4770, 42666}, {4988, 8034}, {9147, 26777}, {11176, 27115}, {21020, 47672}, {21349, 47658}, {23768, 47668}, {25258, 47825}, {26985, 45689}, {47703, 50345}

X(50538) = reflection of X(i) in X(j) for these {i,j}: {8663, 661}, {42661, 4705}, {42666, 4770}
X(50538) = X(i)-Ceva conjugate of X(j) for these (i,j): {321, 3124}, {523, 48393}, {762, 2643}, {4436, 16589}
X(50538) = X(i)-isoconjugate of X(j) for these (i,j): {110, 40439}, {662, 40408}, {757, 8708}, {4556, 32009}, {24041, 50520}
X(50538) = X(i)-Dao conjugate of X(j) for these (i, j): (244, 40439), (1084, 40408), (3005, 50520), (3121, 81), (3739, 99), (16589, 4623), (40607, 8708)
X(50538) = crosspoint of X(i) and X(j) for these (i,j): {523, 4705}, {4436, 16589}
X(50538) = crosssum of X(40408) and X(50520)
X(50538) = crossdifference of every pair of points on line {32, 593}
X(50538) = barycentric product X(i)*X(j) for these {i,j}: {37, 48393}, {115, 4436}, {321, 50497}, {514, 21699}, {523, 16589}, {594, 6372}, {661, 21020}, {693, 21820}, {756, 47672}, {850, 21753}, {1577, 2667}, {2171, 48264}, {3700, 39793}, {3720, 4024}, {3739, 4705}, {4036, 20963}, {4064, 40975}, {4079, 20888}, {4111, 7178}, {14618, 22369}
X(50538) = barycentric quotient X(i)/X(j) for these {i,j}: {512, 40408}, {661, 40439}, {1500, 8708}, {2667, 662}, {3124, 50520}, {3706, 4631}, {3720, 4610}, {3739, 4623}, {4079, 40433}, {4111, 645}, {4436, 4590}, {4705, 32009}, {6372, 1509}, {16589, 99}, {21020, 799}, {21699, 190}, {21753, 110}, {21820, 100}, {22369, 4558}, {39793, 4573}, {47672, 873}, {48393, 274}, {50497, 81}


X(50539) = X(512)X(661)∩X(525)X(650)

Barycentrics    a*(b - c)*(b + c)*(a^5 - a*b^4 - 2*a*b^3*c - 2*b^4*c - 2*a*b^2*c^2 - 2*b^3*c^2 - 2*a*b*c^3 - 2*b^2*c^3 - a*c^4 - 2*b*c^4) : :

X(50539) lies on these lines: {512, 661}, {523, 2509}, {525, 650}, {647, 826}, {665, 48300}, {2484, 8672}, {3709, 4064}, {8045, 16612}

X(50539) = crossdifference of every pair of points on line {22, 81}


X(50540) = X(512)X(661)∩X(523)X(4107)

Barycentrics    a*(b - c)*(b + c)*(a^2 - b*c)*(a^3 + a^2*b + b^3 + a^2*c + a*b*c + b^2*c + b*c^2 + c^3) : :
X(50540) = 3 X[1635] - 2 X[5113]

X(50540) lies on these lines: {239, 7927}, {512, 661}, {523, 4107}, {690, 47892}, {826, 4467}, {1635, 5113}, {4155, 4435}, {4477, 14318}

X(50540) = crosssum of X(1019) and X(17799)
X(50540) = barycentric product X(21832)*X(32780)
X(50540) = barycentric quotient X(32780)/X(4639)


X(50541) = X(512)X(4988)∩X(525)X(661)

Barycentrics    (b - c)*(b + c)*(-(a^2*b) + 2*a*b^2 + b^3 - a^2*c + b^2*c + 2*a*c^2 + b*c^2 + c^3) : :

X(50541) lies on these lines: {512, 4988}, {525, 661}, {826, 4024}, {3250, 16892}, {3309, 48277}, {3566, 4841}, {3700, 3801}, {3800, 47669}, {3906, 4120}, {4064, 8061}, {28481, 48019}, {47708, 48269}, {48278, 50454}

X(50541) = reflection of X(4024) in X(24290)
X(50541) = barycentric product X(i)*X(j) for these {i,j}: {10, 50348}, {523, 49511}
X(50541) = barycentric quotient X(i)/X(j) for these {i,j}: {49511, 99}, {50348, 86}


X(50542) = X(6)X(33907)∩X(148)X(690)

Barycentrics    (b - c)*(b + c)*(-a^6 - a^4*b^2 + b^6 - a^4*c^2 - a^2*b^2*c^2 + b^4*c^2 + b^2*c^4 + c^6) : :
X(50542) = 2 X[5113] - 3 X[14420], 2 X[6333] - 3 X[9208]

X(50542) lies on these lines: {6, 33907}, {148, 690}, {826, 14318}, {2799, 3506}, {3569, 20859}, {3804, 7950}, {5113, 14420}, {6333, 9208}, {9479, 14316}, {24256, 24284}

X(50542) = X(46970)-anticomplementary conjugate of X(21289)
X(50542) = crosspoint of X(1916) and X(4577)
X(50542) = crosssum of X(i) and X(j) for these (i,j): {1691, 3005}, {5007, 5113}
X(50542) = crossdifference of every pair of points on line {11205, 14153}


X(50543) = X(83)X(5466)∩X(512)X(33294)

Barycentrics    (b - c)*(b + c)*(2*a^4 + 3*a^2*b^2 + b^4 + 3*a^2*c^2 + c^4) : :
X(50543) = 9 X[5466] - 10 X[12075], 2 X[33294] - 3 X[47126], 5 X[3005] - 3 X[11123], 3 X[9134] - 2 X[47128]

X(50543) lies on these lines: {83, 5466}, {512, 33294}, {523, 2525}, {804, 3806}, {826, 44445}, {850, 7927}, {2799, 8665}, {3005, 11123}, {3800, 9134}


X(50544) = X(512)X(650)∩X(523)X(2487)

Barycentrics    a*(b - c)*(b + c)*(a^3 + a^2*b - a*b^2 + a^2*c - b^2*c - a*c^2 - b*c^2) : :
X(50544) = X[669] - 3 X[1635], 3 X[4728] - 5 X[31279], 3 X[4763] - 2 X[44451], X[44445] + 3 X[47776]

X(50544) lies on these lines: {512, 650}, {523, 2487}, {647, 4155}, {669, 1635}, {812, 23301}, {1960, 50518}, {3221, 50514}, {3700, 17990}, {4041, 7234}, {4151, 31286}, {4728, 31279}, {4763, 44451}, {6089, 12075}, {8672, 50336}, {16751, 50524}, {18154, 47837}, {25511, 48273}, {27527, 50343}, {44445, 47776}

X(50544) = midpoint of X(4041) and X(8639)
X(50544) = crossdifference of every pair of points on line {940, 11329}
X(50544) = barycentric product X(661)*X(32853)
X(50544) = barycentric quotient X(32853)/X(799)
X(50544) = {X(650),X(50501)}-harmonic conjugate of X(4507)


X(50545) = X(23)X(385)∩X(512)X(3806)

Barycentrics    (b - c)*(b + c)*(-a^4 + 2*a^2*b^2 + b^4 + 2*a^2*c^2 + 2*b^2*c^2 + c^4) : :
X(50545) = X[2528] - 3 X[17414], 2 X[3265] - 3 X[17414]

X(50545) lies on these lines: {23, 385}, {351, 14316}, {512, 3806}, {525, 3005}, {647, 826}, {2525, 3906}, {2528, 3265}, {3566, 8665}, {3800, 8664}, {3804, 7927}, {4122, 27731}, {7950, 8651}, {8029, 41927}, {23878, 47126}

X(50545) = reflection of X(2528) in X(3265)
X(50545) = crosssum of X(512) and X(5359)
X(50545) = crossdifference of every pair of points on line {22, 39}
X(50545) = barycentric product X(523)*X(7800)
X(50545) = barycentric quotient X(7800)/X(99)
X(50545) = {X(2528),X(17414)}-harmonic conjugate of X(3265)


X(50546) = X(512)X(3806)∩X(523)X(14318)

Barycentrics    (b - c)*(b + c)*(-a^6 - a^4*b^2 + 3*a^2*b^4 + b^6 - a^4*c^2 + 4*a^2*b^2*c^2 + 3*b^4*c^2 + 3*a^2*c^4 + 3*b^2*c^4 + c^6) : :
X(50546) = X[2528] - 3 X[9210]

X(50546) lies on these lines: {512, 3806}, {523, 14318}, {525, 4486}, {826, 33294}, {1637, 3906}, {2528, 9210}, {9208, 14316}

X(50546) = crossdifference of every pair of points on line {1915, 6800}


X(50547) = X(441)X(525)∩X(512)X(33294)

Barycentrics    (b - c)*(b + c)*(-a^2 + b^2 + c^2)*(2*a^4 + a^2*b^2 + b^4 + a^2*c^2 + c^4) : :

X(50547) lies on these lines: {441, 525}, {512, 33294}, {690, 5996}, {826, 5027}, {879, 1176}, {2799, 3288}, {3050, 23881}, {3906, 45687}, {9030, 47138}, {12077, 14316}

X(50547) = reflection of X(i) in X(j) for these {i,j}: {2525, 24284}, {6333, 647}, {12077, 14316}
X(50547) = crossdifference of every pair of points on line {25, 20859}
X(50547) = barycentric product X(525)*X(7792)
X(50547) = barycentric quotient X(7792)/X(648)


X(50548) = X(512)X(33294)∩X(523)X(3804)

Barycentrics    (b - c)*(b + c)*(-2*a^4 - a^2*b^2 + b^4 - a^2*c^2 + c^4) : :
X(50548) = 5 X[850] - 9 X[8599], 3 X[1637] - 2 X[23301], 4 X[2501] - 3 X[9134], X[3005] - 3 X[14420], 2 X[6563] - 3 X[45687], 4 X[8651] - 3 X[45687], 3 X[9147] - X[41298], 3 X[9979] - 2 X[12075], 3 X[9979] - X[44445], 3 X[14417] - 4 X[44451], 5 X[31279] - 6 X[44564]

X(50548) lies on these lines: {512, 33294}, {523, 3804}, {525, 47128}, {669, 2799}, {690, 850}, {804, 12077}, {826, 14318}, {924, 16230}, {1637, 23301}, {2501, 3566}, {2525, 9479}, {3005, 14420}, {6563, 8651}, {8704, 41300}, {9147, 41298}, {9979, 12075}, {14417, 44451}, {18105, 23881}, {31279, 44564}

X(50548) = reflection of X(i) in X(j) for these {i,j}: {6563, 8651}, {44445, 12075}, {47126, 33294}
X(50548) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {3565, 21289}, {4599, 19583}, {38252, 39346}
X(50548) = crosspoint of X(i) and X(j) for these (i,j): {4, 4577}, {10159, 35136}
X(50548) = crosssum of X(i) and X(j) for these (i,j): {3, 3005}, {5007, 8651}
X(50548) = crossdifference of every pair of points on line {3167, 9605}
X(50548) = barycentric product X(523)*X(7762)
X(50548) = barycentric quotient X(7762)/X(99)
X(50548) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6563, 8651, 45687}, {9979, 44445, 12075}


X(50549) = X(141)X(523)∩X(187)X(237)

Barycentrics    a^2*(b - c)*(b + c)*(b^2 - b*c + c^2)*(b^2 + b*c + c^2) : :
X(50549) = X[669] - 3 X[9210], X[3288] - 3 X[17414], 2 X[5113] - 3 X[9210], 3 X[9208] - X[14318]

X(50549) lies on these lines: {141, 523}, {187, 237}, {525, 4486}, {690, 5996}, {808, 4580}, {826, 850}, {2492, 9012}, {2514, 3221}, {3906, 9148}, {7950, 46562}, {9044, 9171}, {12073, 45687}

X(50549) = midpoint of X(i) and X(j) for these {i,j}: {3005, 3569}, {6333, 47126}
X(50549) = reflection of X(i) in X(j) for these {i,j}: {669, 5113}, {5027, 647}
X(50549) = isogonal conjugate of X(33514)
X(50549) = isotomic conjugate of the isogonal conjugate of X(17415)
X(50549) = X(i)-Ceva conjugate of X(j) for these (i,j): {327, 115}, {47643, 20975}
X(50549) = X(i)-isoconjugate of X(j) for these (i,j): {1, 33514}, {110, 3113}, {163, 3114}, {560, 9063}, {662, 3407}, {789, 38813}, {799, 18898}, {811, 43722}, {825, 38810}, {1492, 40415}, {1576, 46281}, {1933, 41073}, {4599, 14617}, {4613, 7305}, {5384, 7255}, {8840, 36084}
X(50549) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 33514), (115, 3114), (244, 3113), (1084, 3407), (2887, 1492), (3124, 14617), (4858, 46281), (6374, 9063), (6784, 182), (10335, 670), (16584, 37133), (17423, 43722), (19602, 99), (38987, 8840), (38995, 40415), (38996, 18898)
X(50549) = crosspoint of X(825) and X(38831)
X(50549) = crosssum of X(i) and X(j) for these (i,j): {523, 7792}, {824, 6679}, {4586, 34069}, {9006, 40377}
X(50549) = crossdifference of every pair of points on line {2, 1501}
X(50549) = barycentric product X(i)*X(j) for these {i,j}: {76, 17415}, {512, 3314}, {523, 3094}, {647, 5117}, {656, 46507}, {788, 20234}, {824, 3778}, {850, 3117}, {882, 9865}, {1491, 3721}, {1502, 9006}, {1577, 3116}, {2275, 4122}, {2276, 3801}, {2887, 3250}, {4475, 7239}, {4481, 7237}, {14295, 42061}, {18899, 44173}, {21751, 30870}, {23285, 43977}
X(50549) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 33514}, {76, 9063}, {512, 3407}, {523, 3114}, {661, 3113}, {669, 18898}, {1491, 38810}, {1577, 46281}, {1916, 41073}, {2887, 37133}, {3005, 14617}, {3049, 43722}, {3094, 99}, {3116, 662}, {3117, 110}, {3250, 40415}, {3314, 670}, {3569, 8840}, {3721, 789}, {3778, 4586}, {5117, 6331}, {9006, 32}, {9865, 880}, {16584, 1492}, {17415, 6}, {18899, 1576}, {20234, 46132}, {21751, 34069}, {40935, 825}, {42061, 805}, {43977, 827}, {46386, 38813}, {46507, 811}
X(50549) = {X(669),X(9210)}-harmonic conjugate of X(5113)


X(50550) = X(110)X(12833)∩X(187)X(237)

Barycentrics    a^2*(b - c)*(b + c)*(a^4 + 2*a^2*b^2 - b^4 + 2*a^2*c^2 - c^4) : :
X(50550) = 3 X[351] - X[3288], X[3005] - 3 X[9210], X[3288] + 3 X[11186], 3 X[9208] + X[14318], X[5652] - 3 X[15724]

X(50550) lies on these lines: {110, 12833}, {187, 237}, {206, 924}, {688, 2485}, {690, 30474}, {826, 33294}, {882, 1843}, {1499, 11176}, {2492, 9009}, {3566, 24284}, {3818, 11182}, {3906, 14420}, {4550, 21905}, {5652, 15724}, {9023, 46001}, {9030, 22105}, {20987, 21006}, {25423, 45336}

X(50550) = midpoint of X(i) and X(j) for these {i,j}: {351, 11186}, {669, 3569}
X(50550) = reflection of X(i) in X(j) for these {i,j}: {647, 5113}, {5027, 8651}, {24284, 44451}
X(50550) = X(42359)-complementary conjugate of X(21253)
X(50550) = crosspoint of X(110) and X(263)
X(50550) = crosssum of X(183) and X(523)
X(50550) = crossdifference of every pair of points on line {2, 12215}
X(50550) = barycentric product X(i)*X(j) for these {i,j}: {512, 7774}, {523, 5017}
X(50550) = barycentric quotient X(i)/X(j) for these {i,j}: {5017, 99}, {7774, 670}


X(50551) = X(512)X(6333)∩X(525)X(4486)

Barycentrics    (b - c)*(b + c)*(-a^6 + a^4*b^2 - 3*a^2*b^4 + b^6 + a^4*c^2 - 2*a^2*b^2*c^2 + b^4*c^2 - 3*a^2*c^4 + b^2*c^4 + c^6) : :
X(50551) = 3 X[1640] - 5 X[31279], 2 X[2501] - 3 X[11182]

X(50551) lies on these lines: {512, 6333}, {525, 4486}, {550, 1499}, {647, 690}, {669, 46546}, {1640, 31279}, {2501, 11182}, {3566, 5027}, {3906, 47126}

X(50551) = crossdifference of every pair of points on line {1915, 1995}


X(50552) = X(325)X(523)∩X(512)X(2525)

Barycentrics    (b - c)*(b + c)*(a^4 + b^4 + 2*b^2*c^2 + c^4) : :
X(50552) = 2 X[23301] - 3 X[30474], 3 X[11123] - 2 X[47122], X[8665] - 3 X[14424], X[3806] - 3 X[14417], 2 X[12075] - 3 X[31174], 2 X[41300] - 3 X[45687]

X(50552) lies on these lines: {325, 523}, {512, 2525}, {525, 669}, {647, 826}, {690, 3804}, {2395, 11123}, {2799, 47128}, {3566, 8664}, {3800, 8665}, {3801, 27731}, {3806, 7950}, {3906, 8651}, {5489, 40689}, {8642, 49279}, {8654, 48299}, {12075, 31174}, {28374, 29017}, {30476, 47126}, {41300, 45687}

X(50552) = midpoint of X(669) and X(2528)
X(50552) = reflection of X(i) in X(j) for these {i,j}: {3005, 3265}, {47126, 30476}
X(50552) = X(6572)-complementary conjugate of X(21235)
X(50552) = X(i)-Ceva conjugate of X(j) for these (i,j): {6572, 141}, {40831, 3124}
X(50552) = crosspoint of X(99) and X(31360)
X(50552) = crossdifference of every pair of points on line {22, 32}
X(50552) = barycentric product X(523)*X(7795)
X(50552) = barycentric quotient X(7795)/X(99)


X(50553) = X(2)X(12075)∩X(230)X(231)

Barycentrics    (b - c)*(b + c)*(2*a^4 - a^2*b^2 + b^4 - a^2*c^2 + c^4) : :
X(50553) = 2 X[647] - 3 X[45687], 3 X[1637] - 4 X[44451], 8 X[6587] - 9 X[9189], 3 X[45687] - X[47126], 3 X[9131] - X[31296], X[3005] - 3 X[11123], 3 X[3268] - X[44445], 3 X[9134] - 4 X[30476], 3 X[14417] - 2 X[23301]

X(50553) lies on these lines: {2, 12075}, {230, 231}, {512, 6333}, {525, 6562}, {669, 2799}, {804, 2525}, {826, 5027}, {1632, 9514}, {1799, 41298}, {2896, 12073}, {3005, 11123}, {3268, 44445}, {8651, 33294}, {8664, 32473}, {9134, 30476}, {9168, 30785}, {14417, 23301}, {21006, 23881}, {31299, 32478}

X(50553) = reflection of X(i) in X(j) for these {i,j}: {16230, 46953}, {33294, 8651}, {47126, 647}
X(50553) = anticomplement of X(12075)
X(50553) = X(40405)-anticomplementary conjugate of X(21294)
X(50553) = crossdifference of every pair of points on line {3, 20859}
X(50553) = barycentric product X(523)*X(7807)
X(50553) = barycentric quotient X(7807)/X(99)
X(50553) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {14325, 14326, 647}, {45687, 47126, 647}


X(50554) = X(512)X(2528)∩X(523)X(2525)

Barycentrics    (b - c)*(b + c)*(a^4 + a^2*b^2 + 2*b^4 + a^2*c^2 + 4*b^2*c^2 + 2*c^4) : :
X(50554) = 3 X[31174] - 2 X[47126]

X(50554) lies on these lines: {512, 2528}, {523, 2525}, {525, 3804}, {647, 826}, {669, 3906}, {3005, 7950}, {3265, 3806}, {28374, 29318}, {31174, 47126}

X(50554) = reflection of X(3806) in X(3265)
X(50554) = crossdifference of every pair of points on line {22, 30435}


X(50555) = X(1)X(7252)∩X(512)X(4895)

Barycentrics    a*(b - c)*(b + c)*(a^3*b^2 - a*b^4 + 2*a^3*b*c + 2*a^2*b^2*c + a*b^3*c + b^4*c + a^3*c^2 + 2*a^2*b*c^2 + b^3*c^2 + a*b*c^3 + b^2*c^3 - a*c^4 + b*c^4) : :

X(50555) lies on these lines: {1, 7252}, {512, 4895}, {525, 4978}, {661, 3954}, {826, 4024}, {3569, 7927}

X(50555) = crossdifference of every pair of points on line {5135, 7465}


X(50556) = X(512)X(7192)∩X(513)X(4509)

Barycentrics    (b - c)*(a^4 + a*b^3 - a^2*b*c + a*b^2*c + b^3*c + a*b*c^2 + a*c^3 + b*c^3) : :

X(50556) lies on these lines: {512, 7192}, {513, 4509}, {514, 4435}, {523, 3875}, {525, 1019}, {661, 24285}, {667, 4025}, {693, 6004}, {826, 4467}, {832, 15413}, {3004, 4040}, {3309, 43067}, {4367, 23829}, {4369, 24290}, {7199, 39547}, {7950, 17161}, {8632, 16892}, {8659, 17494}, {23785, 50353}, {24286, 48288}, {24601, 25259}, {26248, 47837}, {47995, 48351}

X(50556) = reflection of X(i) in X(j) for these {i,j}: {661, 24285}, {17494, 8659}, {24290, 4369}, {48288, 24286}
X(50556) = X(30555)-anticomplementary conjugate of X(1654)


X(50557) = X(325)X(523)∩X(512)X(7192)

Barycentrics    b*c*(b - c)*(b + c)*(2*a^2 + 2*a*b + 2*a*c + b*c) : :
X(50557) = 3 X[9979] - 4 X[47124], 5 X[26985] - 4 X[30476]

X(50557) lies on these lines: {325, 523}, {512, 7192}, {514, 42664}, {525, 4801}, {647, 17494}, {1577, 4988}, {2611, 23989}, {4025, 4151}, {4077, 30572}, {4108, 26248}, {4132, 43067}, {4139, 47780}, {4374, 17161}, {4391, 47667}, {4467, 7199}, {4762, 36900}, {4789, 25667}, {4815, 14208}, {4978, 16892}, {7650, 47699}, {8672, 20295}, {9979, 47124}, {17894, 28169}, {18154, 47782}, {20950, 47654}, {20952, 47658}, {23878, 47869}, {24622, 46915}, {26824, 31296}, {26985, 30476}, {29771, 47660}

X(50557) = midpoint of X(26824) and X(31296)
X(50557) = reflection of X(i) in X(j) for these {i,j}: {850, 693}, {17494, 647}
X(50557) = isotomic conjugate of X(43356)
X(50557) = isotomic conjugate of the anticomplement of X(38967)
X(50557) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {2215, 148}, {36077, 5905}, {36080, 1654}
X(50557) = X(38967)-cross conjugate of X(2)
X(50557) = X(i)-isoconjugate of X(j) for these (i,j): {31, 43356}, {163, 39983}, {1576, 39708}
X(50557) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 43356), (115, 39983), (4858, 39708)
X(50557) = crossdifference of every pair of points on line {32, 21753}
X(50557) = barycentric product X(i)*X(j) for these {i,j}: {75, 50449}, {313, 48064}, {321, 48107}, {850, 37685}, {1577, 17394}, {3267, 17562}
X(50557) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 43356}, {523, 39983}, {1577, 39708}, {17394, 662}, {17562, 112}, {37685, 110}, {48064, 58}, {48107, 81}, {50449, 1}
X(50557) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {693, 47655, 35519}, {693, 47657, 3261}


X(50558) = X(1)X(30)∩X(37)X(582)

Barycentrics    a*(a^6+(b+c)*a^5-(b^2+c^2)*a^4-(b+c)*(2*b^2+b*c+2*c^2)*a^3-(b^4+c^4+2*(b+c)^2*b*c)*a^2+(b^2-c^2)*(b-c)*(b^2+3*b*c+c^2)*a+(b^2-c^2)^2*(b+c)^2) : :

See Kadir Altintas and César Lozada, euclid 5219.

X(50558) lies on these lines: {1, 30}, {3, 16777}, {31, 8143}, {37, 582}, {47, 45065}, {220, 36754}, {273, 6198}, {942, 18477}, {946, 29065}, {1100, 40263}, {3187, 48887}, {3579, 5311}, {3811, 4971}, {5396, 29235}, {5398, 31445}, {5752, 16519}, {6985, 20182}, {9955, 17017}, {13369, 37595}, {17045, 50324}, {29016, 48900}, {46475, 48882}

X(50558) = {X(1), X(4654)}-harmonic conjugate of X(7100)


X(50559) = X(7)-DAO CONJUGATE OF X(4)

Barycentrics    (a + b - c)*(a - b + c)*(a^2 - b^2 - c^2)*(3*a^2 - 2*a*b - b^2 - 2*a*c + 2*b*c - c^2) : :

X(50559) lies on these lines: {7, 2886}, {63, 348}, {85, 4359}, {144, 9533}, {219, 30682}, {329, 658}, {345, 7055}, {479, 28610}, {527, 47386}, {664, 9778}, {1088, 9965}, {1260, 6516}, {1996, 5905}, {2094, 17079}, {2898, 17768}, {3218, 17093}, {3784, 10167}, {5698, 31526}, {20078, 37780}, {35312, 44447}

X(50559) = isotomic conjugate of the polar conjugate of X(3160)
X(50559) = X(69)-Ceva conjugate of X(348)
X(50559) = X(i)-isoconjugate of X(j) for these (i,j): {25, 19605}, {33, 11051}, {607, 3062}, {2212, 10405}
X(50559) = X(i)-Dao conjugate of X(j) for these (i, j): (7, 4), (6505, 19605), (13609, 3064)
X(50559) = barycentric product X(i)*X(j) for these {i,j}: {63, 31627}, {69, 3160}, {77, 16284}, {144, 348}, {165, 7182}, {304, 1419}, {345, 9533}, {3718, 17106}, {6063, 22117}
X(50559) = barycentric quotient X(i)/X(j) for these {i,j}: {63, 19605}, {77, 3062}, {144, 281}, {165, 33}, {222, 11051}, {348, 10405}, {1419, 19}, {3160, 4}, {3207, 607}, {7056, 36620}, {7182, 44186}, {7658, 3064}, {9533, 278}, {16284, 318}, {17106, 34}, {22117, 55}, {31627, 92}
X(50559) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63, 7056, 348}, {144, 9533, 31627}


X(50560) = X(7)-DAO CONJUGATE OF X(6)

Barycentrics    b^2*(-a + b - c)*(a + b - c)*c^2*(-3*a^2 + 2*a*b + b^2 + 2*a*c - 2*b*c + c^2) : :

X(50560) lies on these lines: {7, 17049}, {69, 4569}, {75, 1088}, {85, 24199}, {346, 4554}, {518, 47393}, {3596, 4572}, {3662, 17435}, {3729, 40864}, {3912, 40593}, {6007, 31604}

X(50560) = isotomic conjugate of the isogonal conjugate of X(3160)
X(50560) = X(76)-Ceva conjugate of X(6063)
X(50560) = X(i)-isoconjugate of X(j) for these (i,j): {32, 19605}, {41, 11051}, {2175, 3062}, {9447, 10405}, {9448, 44186}
X(50560) = X(i)-Dao conjugate of X(j) for these (i, j): (7, 6), (144, 38293), (3160, 11051), (4130, 35508), (6376, 19605), (7658, 3022), (13609, 663), (40133, 1200), (40593, 3062)
X(50560) = cevapoint of X(16284) and X(31627)
X(50560) = barycentric product X(i)*X(j) for these {i,j}: {75, 31627}, {76, 3160}, {85, 16284}, {144, 6063}, {165, 20567}, {561, 1419}, {3207, 41283}, {3596, 9533}, {4572, 7658}, {17106, 28659}
X(50560) = barycentric quotient X(i)/X(j) for these {i,j}: {7, 11051}, {75, 19605}, {85, 3062}, {144, 55}, {165, 41}, {1419, 31}, {3160, 6}, {3207, 2175}, {6063, 10405}, {7658, 663}, {9533, 56}, {13609, 3022}, {16284, 9}, {17106, 604}, {20567, 44186}, {21060, 1334}, {31627, 1}, {43182, 1200}
X(50560) = {X(346),X(34019)}-harmonic conjugate of X(4554)


X(50561) = X(7)-DAO CONJUGATE OF X(9)

Barycentrics    b*(-a + b - c)^2*(a + b - c)^2*c*(-3*a^2 + 2*a*b + b^2 + 2*a*c - 2*b*c + c^2) : :

X(50561) lies on the cubic K970 and these lines: {2, 17113}, {6, 41351}, {7, 354}, {9, 658}, {75, 4569}, {77, 4626}, {85, 10004}, {144, 9533}, {347, 30682}, {3160, 45228}, {4000, 41356}, {8732, 37757}, {9311, 41777}, {14189, 38285}, {16706, 30705}, {17158, 41789}, {20059, 37780}, {25722, 35312}, {30854, 39063}, {42311, 45834}

X(50561) = isotomic conjugate of the isogonal conjugate of X(17106)
X(50561) = X(85)-Ceva conjugate of X(1088)
X(50561) = X(i)-cross conjugate of X(j) for these (i,j): {3160, 31627}, {43182, 144}
X(50561) = X(i)-isoconjugate of X(j) for these (i,j): {41, 19605}, {220, 11051}, {1253, 3062}, {10405, 14827}
X(50561) = X(i)-Dao conjugate of X(j) for these (i, j): (7, 9), (3160, 19605), (7658, 24010), (13609, 3900), (17113, 3062)
X(50561) = cevapoint of X(i) and X(j) for these (i,j): {7, 17113}, {3160, 9533}
X(50561) = crosspoint of X(i) and X(j) for these (i,j): {85, 31627}, {4569, 24011}
X(50561) = crosssum of X(8641) and X(24012)
X(50561) = barycentric product X(i)*X(j) for these {i,j}: {7, 31627}, {75, 9533}, {76, 17106}, {85, 3160}, {144, 1088}, {279, 16284}, {1419, 6063}, {4569, 7658}, {13609, 24011}
X(50561) = barycentric quotient X(i)/X(j) for these {i,j}: {7, 19605}, {144, 200}, {165, 220}, {269, 11051}, {279, 3062}, {1088, 10405}, {1419, 55}, {3160, 9}, {3207, 1253}, {7658, 3900}, {9533, 1}, {13609, 24010}, {16284, 346}, {17106, 6}, {21060, 4515}, {22117, 1802}, {23062, 36620}, {31627, 8}
X(50561) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 23062, 1088}, {7, 31526, 14100}, {23062, 47374, 7}


X(50562) = X(7)-DAO CONJUGATE OF X(21)

Barycentrics    b*(-a + b - c)^2*(a + b - c)^2*c*(b + c)*(-3*a^2 + 2*a*b + b^2 + 2*a*c - 2*b*c + c^2) : :

X(50562) lies on these lines: {7, 10167}, {144, 9533}, {210, 4566}, {226, 857}, {658, 3219}, {1088, 10004}, {1750, 34059}, {1920, 46406}, {5905, 7056}, {10394, 31526}, {14256, 18228}, {31527, 36991}

X(50562) = X(1441)-Ceva conjugate of X(1446)
X(50562) = X(i)-isoconjugate of X(j) for these (i,j): {2194, 19605}, {2328, 11051}
X(50562) = X(i)-Dao conjugate of X(j) for these (i, j): (7, 21), (1214, 19605), (13609, 1021), (36908, 11051)
X(50562) = barycentric product X(i)*X(j) for these {i,j}: {144, 1446}, {226, 31627}, {313, 17106}, {321, 9533}, {349, 1419}, {1088, 21060}, {1441, 3160}, {3668, 16284}
X(50562) = barycentric quotient X(i)/X(j) for these {i,j}: {144, 2287}, {165, 2328}, {226, 19605}, {1419, 284}, {1427, 11051}, {1446, 10405}, {3160, 21}, {3668, 3062}, {7658, 1021}, {9533, 81}, {16284, 1043}, {17106, 58}, {21060, 200}, {21872, 220}, {31627, 333}


X(50563) = X(7)-DAO CONJUGATE OF X(27)

Barycentrics    (a + b - c)*(a - b + c)*(b + c)*(a^2 - b^2 - c^2)*(3*a^2 - 2*a*b - b^2 - 2*a*c + 2*b*c - c^2) : :

X(50563) lies on these lines: {7, 11523}, {72, 307}, {144, 1419}, {226, 21029}, {329, 34059}, {348, 3951}, {527, 3188}, {1231, 4101}, {1441, 3671}, {2475, 25719}, {3146, 25718}, {4566, 21075}, {5905, 9312}, {6872, 25716}, {7176, 41572}, {16865, 25723}, {31821, 41007}

X(50563) = X(306)-Ceva conjugate of X(307)
X(50563) = X(i)-isoconjugate of X(j) for these (i,j): {1172, 11051}, {1474, 19605}, {2204, 10405}, {2299, 3062}
X(50563) = X(i)-Dao conjugate of X(j) for these (i, j): (7, 27), (226, 3062)
X(50563) = barycentric product X(i)*X(j) for these {i,j}: {72, 31627}, {144, 307}, {165, 1231}, {306, 3160}, {348, 21060}, {349, 22117}, {1214, 16284}, {1419, 20336}, {3710, 9533}, {7182, 21872}
X(50563) = barycentric quotient X(i)/X(j) for these {i,j}: {72, 19605}, {73, 11051}, {144, 29}, {165, 1172}, {307, 10405}, {1214, 3062}, {1231, 44186}, {1419, 28}, {3160, 27}, {3207, 2299}, {16284, 31623}, {17106, 1396}, {21060, 281}, {21872, 33}, {22117, 284}, {31627, 286}


X(50564) = X(1084)-DAO CONJUGATE OF X(33962)

Barycentrics    (b^2 - c^2)*(a^8 - 7*a^6*b^2 + 20*a^4*b^4 - 7*a^2*b^6 + b^8 + a^6*c^2 - 10*a^4*b^2*c^2 - 10*a^2*b^4*c^2 + b^6*c^2 - a^4*c^4 + 14*a^2*b^2*c^4 - b^4*c^4 - a^2*c^6 - b^2*c^6)*(-a^8 - a^6*b^2 + a^4*b^4 + a^2*b^6 + 7*a^6*c^2 + 10*a^4*b^2*c^2 - 14*a^2*b^4*c^2 + b^6*c^2 - 20*a^4*c^4 + 10*a^2*b^2*c^4 + b^4*c^4 + 7*a^2*c^6 - b^2*c^6 - c^8) : :

X(50564) lies on the circumconic {{A,B,C,X(2),X(6)}} and these lines: {6, 9125}, {111, 1499}, {647, 34898}, {690, 21448}, {6791, 9178}

X(50564) = X(662)-isoconjugate of X(33962)
X(50564) = X(i)-Dao conjugate of X(j) for these (i, j): (1084, 33962), (1648, 6077)
X(50564) = barycentric product X(523)*X(6093)
X(50564) = barycentric quotient X(i)/X(j) for these {i,j}: {512, 33962}, {1649, 6077}, {6093, 99}


X(50565) = X(111)X(1499)∩X(524)X(5914)

Barycentrics    4*a^12 - 16*a^10*b^2 + 7*a^8*b^4 + 37*a^6*b^6 + 5*a^4*b^8 - 5*a^2*b^10 - 16*a^10*c^2 + 74*a^8*b^2*c^2 - 93*a^6*b^4*c^2 - 157*a^4*b^6*c^2 + 59*a^2*b^8*c^2 - 3*b^10*c^2 + 7*a^8*c^4 - 93*a^6*b^2*c^4 + 372*a^4*b^4*c^4 - 62*a^2*b^6*c^4 + 37*a^6*c^6 - 157*a^4*b^2*c^6 - 62*a^2*b^4*c^6 + 6*b^6*c^6 + 5*a^4*c^8 + 59*a^2*b^2*c^8 - 5*a^2*c^10 - 3*b^2*c^10 : :

X(50565) lies on these lines: {111, 1499}, {524, 5914}, {542, 14858}, {1640, 45294}, {5108, 21448}, {5912, 9209}, {5913, 5915}, {9486, 47077}


X(50566) = X(2)X(6)∩X(111)X(1499)

Barycentrics    2*a^12 - 8*a^10*b^2 + 11*a^8*b^4 + 17*a^6*b^6 - 5*a^4*b^8 - a^2*b^10 - 8*a^10*c^2 + 22*a^8*b^2*c^2 - 45*a^6*b^4*c^2 - 71*a^4*b^6*c^2 + 37*a^2*b^8*c^2 - 3*b^10*c^2 + 11*a^8*c^4 - 45*a^6*b^2*c^4 + 186*a^4*b^4*c^4 - 40*a^2*b^6*c^4 + 17*a^6*c^6 - 71*a^4*b^2*c^6 - 40*a^2*b^4*c^6 + 6*b^6*c^6 - 5*a^4*c^8 + 37*a^2*b^2*c^8 - a^2*c^10 - 3*b^2*c^10 : :

X(50566) lies on these lines: {2, 6}, {111, 1499}, {542, 31654}, {843, 9084}, {6791, 34806}, {9146, 14515}

X(50566) = midpoint of X(9146) and X(14515)
X(50566) = reflection of X(i) in X(j) for these {i,j}: {6792, 14858}, {34806, 6791}


X(50567) = X(2)X(5503)∩X(69)X(74)

Barycentrics    (2*a^2 - b^2 - c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :
X(50567) = 2 X[69] + X[14928], 5 X[69] + X[45018], 5 X[99] - X[45018], 5 X[14928] - 2 X[45018], X[98] - 3 X[10519], X[325] - 3 X[6393], X[148] - 5 X[3620], 2 X[182] - 3 X[38748], 3 X[2482] - 2 X[5026], 3 X[2482] - X[5477], 5 X[2482] - 2 X[8787], 5 X[5026] - 3 X[8787], 4 X[5026] - 3 X[18800], 5 X[5477] - 6 X[8787], 2 X[5477] - 3 X[18800], 4 X[8787] - 5 X[18800], X[193] - 3 X[5182], 3 X[5182] - 2 X[41672], 3 X[599] - X[11646], 2 X[576] - 5 X[38751], 2 X[597] - 3 X[9167], X[671] - 3 X[21356], 2 X[19662] - 3 X[21356], X[1351] - 3 X[15561], X[10992] + 2 X[34507], X[1992] - 3 X[41134], 2 X[2030] - 3 X[35297], 4 X[3589] - 5 X[31274], 7 X[3619] - 5 X[14061], 5 X[3763] - 3 X[6034], 5 X[3763] - 4 X[6722], 3 X[6034] - 4 X[6722], 3 X[5050] - 5 X[38750], 2 X[5461] - 3 X[21358], 2 X[5480] - 3 X[36519], 4 X[6721] - 3 X[14561], X[6776] - 3 X[21166], 3 X[7799] - X[39099], X[15300] + 2 X[22165], X[11477] - 4 X[20399], 3 X[14639] - 5 X[40330], 3 X[14971] - 4 X[20582], X[15533] + 2 X[36521], 3 X[23514] - 4 X[24206], 4 X[22247] - 3 X[47352], 3 X[31884] - 2 X[38747], 4 X[35022] + X[40341]

X(50567) lies on these lines: {2, 5503}, {6, 620}, {69, 74}, {76, 22677}, {98, 10519}, {110, 38940}, {114, 325}, {115, 141}, {125, 4576}, {126, 1648}, {147, 10513}, {148, 3620}, {182, 38748}, {183, 6055}, {187, 524}, {193, 5182}, {316, 19924}, {538, 15993}, {543, 599}, {576, 7763}, {597, 9167}, {621, 41060}, {622, 41061}, {626, 44453}, {670, 44155}, {671, 19662}, {690, 5181}, {732, 1569}, {754, 5104}, {1007, 20423}, {1176, 3044}, {1350, 2794}, {1351, 15561}, {1352, 10008}, {1503, 38738}, {1916, 16986}, {1975, 10992}, {1992, 41134}, {2030, 35297}, {2782, 14994}, {2786, 4437}, {2799, 3569}, {2854, 15357}, {2936, 22241}, {2979, 4121}, {3094, 4045}, {3266, 41586}, {3564, 33813}, {3589, 22848}, {3618, 33231}, {3619, 14061}, {3763, 6034}, {3818, 39809}, {3926, 5171}, {3933, 5188}, {4027, 50248}, {4563, 5972}, {4904, 24199}, {5017, 5149}, {5039, 10352}, {5050, 38750}, {5099, 47557}, {5107, 44380}, {5108, 10418}, {5157, 39834}, {5186, 41584}, {5207, 29317}, {5461, 21358}, {5468, 5642}, {5480, 36519}, {5590, 13653}, {5591, 13773}, {5847, 11711}, {5860, 13760}, {5861, 13640}, {5939, 37671}, {5965, 12215}, {5971, 15360}, {6033, 33878}, {6036, 34229}, {6054, 37668}, {6388, 32525}, {6721, 8781}, {6776, 21166}, {7665, 35279}, {7764, 13330}, {7767, 10991}, {7769, 25555}, {7776, 38745}, {7777, 22486}, {7788, 35705}, {7794, 46283}, {7799, 39099}, {7807, 44499}, {8591, 11161}, {8593, 11160}, {9140, 14360}, {9766, 11173}, {9830, 15300}, {9880, 11178}, {10330, 24981}, {10542, 32954}, {11180, 12117}, {11477, 20399}, {12828, 34336}, {12829, 15480}, {14356, 39374}, {14639, 40330}, {14971, 20582}, {15452, 39873}, {15483, 34511}, {15533, 36521}, {16989, 36849}, {18358, 22515}, {18440, 38730}, {18553, 32819}, {18906, 23514}, {19905, 32836}, {20398, 32828}, {20774, 32001}, {22247, 47352}, {23235, 32830}, {29181, 39838}, {30786, 45311}, {31128, 45291}, {31670, 32827}, {31884, 38747}, {35022, 40341}, {37485, 39857}

X(50567) = midpoint of X(i) and X(j) for these {i,j}: {69, 99}, {6033, 33878}, {8591, 11161}, {8593, 11160}, {11180, 12117}, {18440, 38730}
X(50567) = reflection of X(i) in X(j) for these {i,j}: {6, 620}, {115, 141}, {193, 41672}, {671, 19662}, {5099, 47557}, {5107, 44380}, {5477, 5026}, {9880, 11178}, {14928, 99}, {18800, 2482}, {22515, 18358}, {38749, 3098}, {39809, 3818}, {46264, 38736}
X(50567) = isotomic conjugate of X(9154)
X(50567) = complement of X(10754)
X(50567) = isotomic conjugate of the isogonal conjugate of X(9155)
X(50567) = X(36892)-Ceva conjugate of X(511)
X(50567) = X(i)-isoconjugate of X(j) for these (i,j): {31, 9154}, {98, 923}, {111, 1910}, {248, 36128}, {293, 8753}, {897, 1976}, {1821, 32740}, {2395, 36142}, {2422, 36085}, {2715, 23894}, {6531, 36060}, {9178, 36084}, {10097, 36104}, {14601, 46277}, {14908, 36120}, {19626, 46273}
X(50567) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 9154), (132, 8753), (524, 5967), (1560, 6531), (2482, 98), (3291, 36874), (5976, 671), (6593, 1976), (11672, 111), (21905, 15630), (23992, 2395), (35088, 5466), (38987, 9178), (38988, 2422), (39000, 10097), (39039, 36128), (39040, 897), (40601, 32740), (41172, 8430), (46094, 14908), (50440, 5547)
X(50567) = crossdifference of every pair of points on line {1976, 2422}
X(50567) = barycentric product X(i)*X(j) for these {i,j}: {76, 9155}, {126, 36892}, {297, 6390}, {325, 524}, {468, 6393}, {511, 3266}, {690, 2396}, {877, 14417}, {896, 46238}, {1959, 14210}, {2421, 35522}, {2799, 5468}, {3292, 44132}, {4230, 45807}, {4235, 6333}, {5967, 32458}, {5968, 36792}, {7813, 20022}, {16702, 42703}, {36212, 44146}
X(50567) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 9154}, {126, 36874}, {187, 1976}, {232, 8753}, {237, 32740}, {240, 36128}, {297, 17983}, {325, 671}, {351, 2422}, {468, 6531}, {511, 111}, {524, 98}, {684, 10097}, {690, 2395}, {896, 1910}, {1755, 923}, {1959, 897}, {2396, 892}, {2421, 691}, {2482, 5967}, {2799, 5466}, {3266, 290}, {3289, 14908}, {3292, 248}, {3569, 9178}, {3712, 15628}, {4235, 685}, {5026, 40820}, {5467, 2715}, {5468, 2966}, {5642, 35906}, {5967, 41932}, {5968, 10630}, {6333, 14977}, {6390, 287}, {6393, 30786}, {6786, 14609}, {7813, 20021}, {9155, 6}, {9418, 19626}, {14210, 1821}, {14417, 879}, {14567, 14601}, {14966, 32729}, {18872, 34238}, {21906, 15630}, {23200, 14600}, {23889, 36084}, {23997, 36142}, {24039, 36036}, {33752, 10561}, {35522, 43665}, {35910, 9139}, {36212, 895}, {36790, 5968}, {36823, 10422}, {36892, 44182}, {41167, 8430}, {42717, 5380}, {43034, 7316}, {44132, 46111}, {44146, 16081}, {45662, 34369}, {45672, 36822}, {46238, 46277}
X(50567) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {193, 5182, 41672}, {671, 21356, 19662}, {1648, 45672, 126}, {2482, 5477, 5026}, {3763, 6034, 6722}, {5026, 5477, 18800}, {5468, 7664, 5642}, {5976, 32458, 114}, {14501, 14502, 325}


X(50568) = MIDPOINT OF X(49784) AND X(49785)

Barycentrics    2*b^2*c^2 + (3*Sqrt[5] - 7)*a^2*(a^2 - b^2 - c^2) + (Sqrt[5] - 3)*(b^4 + c^4) : :

X(50568) lies the Kiepert circumhyperbola of the Brocard triangle, the cubic K551, and these lines: {99, 7746}, {1352, 49784}

X(50568) = midpoint of X(49784) and X(49785)


X(50569) = (name pending)

Barycentrics    2*b^2*c^2 - (3*Sqrt[5] + 7)*a^2*(a^2 - b^2 - c^2) - (Sqrt[5] + 3)*(b^4 + c^4) : :

X(50569) lies the Kiepert circumhyperbola of the Brocard triangle, the cubic K551, and this line: {99, 7746}


X(50570) = MIDPOINT OF X(22113) AND X(22114)

Barycentrics    a^4 - a^2*b^2 + 3*b^4 - a^2*c^2 - 9*b^2*c^2 + 3*c^4 : :
X(50570) = 3 X[2] - 4 X[12815], 5 X[2] - 6 X[38223], 3 X[2] + 2 X[43676], 10 X[12815] - 9 X[38223], 2 X[12815] + X[43676], 9 X[38223] + 5 X[43676], 5 X[3091] - 6 X[38228], 5 X[631] - 6 X[38226], 5 X[1656] - 6 X[38231], 5 X[3616] - 6 X[38222], 5 X[3618] - 6 X[38232], X[33626] + 2 X[36368], X[33627] + 2 X[36366]

X(50570) lies on the Kiepert circumhyperbola of the Brocard triangle and these lines: {2, 7765}, {3, 148}, {4, 19569}, {5, 13571}, {17, 628}, {18, 627}, {76, 35005}, {115, 2896}, {193, 576}, {194, 3090}, {385, 546}, {532, 41122}, {533, 41121}, {599, 5025}, {629, 42673}, {630, 42672}, {631, 38226}, {632, 7783}, {633, 16630}, {634, 16631}, {671, 33260}, {1656, 38231}, {1698, 3729}, {2996, 10303}, {3094, 3619}, {3146, 7793}, {3180, 33465}, {3181, 33464}, {3529, 17008}, {3544, 7774}, {3589, 7797}, {3616, 38222}, {3618, 38232}, {3627, 14712}, {3628, 47286}, {3630, 15514}, {3767, 10000}, {3851, 7837}, {3857, 7762}, {5007, 14568}, {5072, 7754}, {5079, 7777}, {5286, 33261}, {5309, 33020}, {5461, 7909}, {5485, 32976}, {5487, 40706}, {5488, 40707}, {5982, 33382}, {5983, 33383}, {6392, 15022}, {6655, 41135}, {6658, 18546}, {7610, 33275}, {7615, 10807}, {7620, 33244}, {7749, 20094}, {7751, 32993}, {7758, 33011}, {7760, 33024}, {7779, 39565}, {7794, 9166}, {7796, 18362}, {7836, 13881}, {7843, 44367}, {7887, 40727}, {7905, 39601}, {7907, 34505}, {7938, 10008}, {7946, 33006}, {8363, 46226}, {8584, 33013}, {8591, 11149}, {8667, 14062}, {8859, 19687}, {9939, 32996}, {11177, 40279}, {11303, 49898}, {11304, 49897}, {11305, 49942}, {11306, 49941}, {11361, 22331}, {13468, 33256}, {14042, 22329}, {14045, 37671}, {14869, 17006}, {15031, 20088}, {16042, 19577}, {17128, 43291}, {17244, 31266}, {20081, 43620}, {22844, 33412}, {22845, 33413}, {22847, 44030}, {22861, 22914}, {22869, 22907}, {22893, 44032}, {23055, 33254}, {31652, 32457}, {32480, 33012}, {32836, 33277}, {32885, 33258}, {33283, 46951}, {33626, 36368}, {33627, 36366}, {38734, 39652}

X(50570) = midpoint of X(22113) and X(22114)
X(50570) = reflection of X(i) in X(j) for these {i,j}: {627, 18}, {628, 17}
X(50570) = {X(5),X(19570)}-harmonic conjugate of X(13571)


X(50571) = MIDPOINT OF X(49786) AND X(49787)

Barycentrics    25*a^4 - 25*a^2*b^2 + 10*b^4 - 25*a^2*c^2 - 4*b^2*c^2 + 10*c^4 : :
X(50571) = 5 X[2] - X[41895], 5 X[11147] + X[41895], X[32837] + 5 X[33216]

X(50571) lies on the Kiepert circumhyperbola of the Brocard triangle and these lines: {2, 11147}, {3, 9167}, {6, 12040}, {76, 7610}, {230, 9741}, {524, 10008}, {543, 13881}, {549, 1352}, {599, 620}, {2482, 37637}, {2896, 33274}, {3053, 9770}, {3094, 7622}, {3642, 13706}, {3643, 13704}, {3815, 18842}, {5054, 7697}, {5077, 22247}, {5210, 22110}, {5215, 11165}, {6228, 13700}, {6229, 13820}, {7619, 11286}, {7868, 10807}, {7907, 34505}, {9166, 33233}, {9740, 32841}, {9766, 26613}, {9771, 32839}, {11149, 35955}, {11159, 18584}, {11184, 35297}, {11301, 42672}, {11302, 42673}, {11742, 31275}, {13769, 13833}, {14971, 44518}, {15533, 21843}, {15597, 32885}, {15693, 15810}, {18311, 45681}, {31274, 44541}, {33224, 48310}, {33692, 37671}, {38748, 40248}

X(50571) = midpoint of X(i) and X(j) for these {i,j}: {2, 11147}, {49786, 49787}
X(50571) = {X(7622),X(11288)}-harmonic conjugate of X(47352)


X(50572) = X(3)X(69)∩X(99)X(32001)

Barycentrics    (a^2 - b^2 - c^2)*(a^6 - 5*a^4*b^2 + 7*a^2*b^4 - 3*b^6 - 5*a^4*c^2 - 6*a^2*b^2*c^2 + 3*b^4*c^2 + 7*a^2*c^4 + 3*b^2*c^4 - 3*c^6) : :

X(50572) lies on these lines: {3, 69}, {99, 32001}, {253, 32831}, {264, 1007}, {317, 8979}, {325, 6527}, {1272, 39118}, {4558, 11008}, {4847, 42696}, {6389, 37669}, {7763, 32000}, {8797, 20563}, {8968, 13430}, {10607, 20080}, {13441, 32805}, {14615, 32818}, {16774, 43705}, {20477, 32006}, {40405, 40819}

X(50572) = isotomic conjugate of the isogonal conjugate of X(12164)
X(50572) = X(253)-Ceva conjugate of X(69)
X(50572) = X(1973)-isoconjugate of X(43670)
X(50572) = X(i)-Dao conjugate of X(j) for these (i, j): (6337, 43670), (37669, 20)
X(50572) = crosspoint of X(44326) and X(47389)
X(50572) = barycentric product X(i)*X(j) for these {i,j}: {76, 12164}, {3926, 6622}, {32605, 34403}
X(50572) = barycentric quotient X(i)/X(j) for these {i,j}: {69, 43670}, {6622, 393}, {12164, 6}, {32605, 1249}
X(50572) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 40697, 6337}, {3926, 41005, 69}


X(50573) = X(2)X(7)∩X(5)X(11662)

Barycentrics    (a + b - c)*(a - b + c)*(4*a^3 - 7*a^2*b + 2*a*b^2 + b^3 - 7*a^2*c + 6*a*b*c - b^2*c + 2*a*c^2 - b*c^2 + c^3) : :
X(50573) = 2 X[7] - 3 X[30379], X[7] - 3 X[37787], 4 X[3911] - 3 X[30379], 2 X[3911] - 3 X[37787], X[80] - 3 X[41700]

X(50573) lies on these lines: {2, 7}, {5, 11662}, {44, 5723}, {80, 516}, {390, 28234}, {518, 1317}, {519, 12730}, {528, 36920}, {651, 1323}, {971, 12691}, {1155, 5851}, {2801, 21578}, {3035, 44785}, {3257, 43762}, {3973, 37800}, {4304, 10394}, {4315, 5692}, {4867, 14151}, {5220, 5252}, {5251, 8543}, {5720, 8544}, {5722, 5729}, {5727, 30332}, {5728, 15935}, {5850, 7677}, {5856, 26015}, {6326, 18450}, {7671, 18412}, {7675, 21168}, {7951, 30312}, {15254, 15950}, {15297, 41012}, {15726, 33519}, {28534, 40663}, {30295, 44425}, {34919, 35258}, {37701, 43180}

X(50573) = midpoint of X(144) and X(3218)
X(50573) = reflection of X(i) in X(j) for these {i,j}: {7, 3911}, {908, 9}, {30379, 37787}, {44785, 3035}
X(50573) = barycentric quotient X(18801)/X(26015)
X(50573) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 3911, 30379}, {7, 37787, 3911}, {9, 41563, 41572}, {9, 41572, 21617}, {908, 30379, 21617}, {3218, 37787, 1445}, {6172, 12848, 8545}


X(50574) = X(1)X(523)∩X(11)X(7137)

Barycentrics    (b^2-c^2) (a^5-a^2 ((a+b-c) c^2+b^2 (a-b+c))-b^5-c^5+b^2 c^2 (a+b+c)) : :
X(50574) = (2r+R) X(12)-2(r+R) X(9276)

See Angel Montesdeoca, euclid 5222 and HG310521

X(50574) lies on these lines: {1,523}, {11,7137}, {12,2614}, {229,4367}, {245,1109}, {514,12071}, {522,12579}, {1365,12064}, {2292,4041}, {2613,14985}, {4086,4647}, {4467,6626}, {9293,23938}, {23879,27929}, {35347,41501}, {37140,39138}


leftri

Points in a [[b-c, c-a, a-b], [b^2 c^2 (b^2 - c^2), c^2 a^2 (c^2 - a^2), a^2 b^2 (a^2 - b^2)]] coordinate system: X(50575)-X(50638)

rightri

The origin is given by (0, 0) = X(386) = a^2 (b^2 + c^2 + a b + a c + b c) : : .

Barycentrics u : v : w for a triangle center U = (x,y) in this system are given by

U = a^2 (a-b)(a-c)(b-c)(b^2 + c^2 + a b + a c + b c) + (-2 a + b + c) x + a^2 (a^2 b^2 + a^2 c^2 - b^4 - c^4) y : : ,

where, as functions of a, b, c, the coordinate x is antisymmetric of degree 6, and y is antisymmetric of degree 1.

The appearance of {x, y}, k in the following list means that (x, y) = X(k).

{-((a-b) (a+b) (a-c) (b-c) (a+c) (b+c)), 0}, 20018
{-((a-b) (a-c) (b-c) (a^3+b^3+c^3)), ((a-b) (a-c) (b-c) (a+b+c))/(a b c)}, 3868
{-a (a-b) b (a-c) (b-c) c, (2 (a-b) (a-c) (b-c))/(a^2+b^2+c^2)}, 3751
{0, -(((a-b) (a-c) (b-c))/(2 (a b+a c+b c)))}, 4263
{0, 0}, 386
{0, ((a-b) (a-c) (b-c))/(a^2+b^2+c^2)}, 6
{1/2 (a-b) (a-c) (b-c) (a+b+c) (a b+a c+b c), -(((a-b) (a-c) (b-c))/(a^2+b^2+c^2))}, 49511
{1/2 (a-b) (a+b) (a-c) (b-c) (a+c) (b+c), -(((a-b) (a-c) (b-c))/(2 (a^2+b^2+c^2)))}, 141
{1/2 a (a-b) b (a-c) (b-c) c, ((a-b) (a-c) (b-c))/(2 (a^2+b^2+c^2))}, 1386
{(a-b) (a+b) (a-c) (b-c) (a+c) (b+c), -((2 (a-b) (a-c) (b-c))/(a^2+b^2+c^2))}, 69
{a (a-b) b (a-c) (b-c) c, 0}, 1
{(a-b) (a+b) (a-c) (b-c) (a+c) (b+c), 0}, 10449
{(a-b) (a+b) (a-c) (b-c) (a+c) (b+c), ((a-b) (a-c) (b-c))/(a b+a c+b c)}, 34282
{2 a (a-b) b (a-c) (b-c) c, -(((a-b) (a-c) (b-c))/(a^2+b^2+c^2))}, 3242
{-2*a*(a - b)*b*(a - c)*(b - c)*c, 0}, 50575
{-(a*(a - b)*b*(a - c)*(b - c)*c), (-2*(a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50576
{-((a - b)*(a + b)*(a - c)*(b - c)*(a + c)*(b + c)), (-2*(a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50577
{-(a*(a - b)*b*(a - c)*(b - c)*c), -(((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b*c))}, 50578
{-((a - b)*(a + b)*(a - c)*(b - c)*(a + c)*(b + c)), -(((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b*c))}, 50579
{-(a*(a - b)*b*(a - c)*(b - c)*c), -1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b*c)}, 50580
{-(a*(a - b)*b*(a - c)*(b - c)*c), 0}, 50581
{-((a - b)*(a - c)*(b - c)*(a^3 + b^3 + c^3)), 0}, 50582
{-(a*(a - b)*b*(a - c)*(b - c)*c), ((a - b)*(a - c)*(b - c)*(a + b + c))/(2*a*b*c)}, 50583
{-(a*(a - b)*b*(a - c)*(b - c)*c), ((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50584
{-(a*(a - b)*b*(a - c)*(b - c)*c), ((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b*c)}, 50585
{-((a - b)*(a + b)*(a - c)*(b - c)*(a + c)*(b + c)), ((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b*c)}, 50586
{-1/2*(a*(a - b)*b*(a - c)*(b - c)*c), 0}, 50587
{-1/2*((a - b)*(a + b)*(a - c)*(b - c)*(a + c)*(b + c)), , 50588
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c)*(a^2 + b^2 + c^2)), 0}, 50589
{-1/2*((a - b)*(a - c)*(b - c)*(a + b + c)*(a*b + a*c + b*c)), 0}, 50590
{0, -(((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2))}, 50591
{0, -(((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c))}, 50592
{0, -(((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b*c))}, 50593
{0, -1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b*c)}, 50594
{0, ((a - b)*(a - c)*(b - c))/(2*(a^2 + b^2 + c^2))}, 50595
{0, ((a - b)*(a - c)*(b - c))/(2*(a*b + a*c + b*c))}, 50596
{0, ((a - b)*(a - c)*(b - c)*(a + b + c))/(2*a*b*c)}, 50597
{0, ((a - b)*(a - c)*(b - c))/(a + b + c)^2}, 50598
{0, ((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b*c)}, 50599
{0, (2*(a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50600
{((a - b)*(a + b)*(a - c)*(b - c)*(a + c)*(b + c))/2, -1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b*c)}, 50601
{((a - b)*(a - c)*(b - c)*(a + b + c)^3)/2, -1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b*c)}, 50602
{((a - b)*(a - c)*(b - c)*(a + b + c)*(a*b + a*c + b*c))/2, -1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b*c)}, 50603
{(a*(a - b)*b*(a - c)*(b - c)*c)/2, 0}, 50604
{((a - b)*(a + b)*(a - c)*(b - c)*(a + c)*(b + c))/2, 0}, 50605
{((a - b)*(a - c)*(b - c)*(a + b + c)^3)/2, 0}, 50606
{((a - b)*(a - c)*(b - c)*(a + b + c)*(a^2 + b^2 + c^2))/2, 0}, 50607
{((a - b)*(a - c)*(b - c)*(a + b + c)*(a*b + a*c + b*c))/2, 0}, 50608
{((a - b)*(a + b)*(a - c)*(b - c)*(a + c)*(b + c))/2, ((a - b)*(a - c)*(b - c))/(2*(a^2 + b^2 + c^2))}, 50609
{((a - b)*(a + b)*(a - c)*(b - c)*(a + c)*(b + c))/2, ((a - b)*(a - c)*(b - c)*(a + b + c))/(2*a*b*c)}, 50610
{((a - b)*(a - c)*(b - c)*(a + b + c)*(a*b + a*c + b*c))/2, ((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50611
{a*(a - b)*b*(a - c)*(b - c)*c, (-2*(a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50612
{a*(a - b)*b*(a - c)*(b - c)*c, (-2*(a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50613
{a*(a - b)*b*(a - c)*(b - c)*c, (-2*(a - b)*(a - c)*(b - c))/(a + b + c)^2}, 50614
{a*(a - b)*b*(a - c)*(b - c)*c, -(((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2))}, 50615
{a*(a - b)*b*(a - c)*(b - c)*c, -(((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c))}, 50616
{a*(a - b)*b*(a - c)*(b - c)*c, -(((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b*c))}, 50617
{a*(a - b)*b*(a - c)*(b - c)*c, -(((a - b)*(a - c)*(b - c)*(a + b + c))/((a + b)*(a + c)*(b + c)))}, 50618
{(a - b)*(a + b)*(a - c)*(b - c)*(a + c)*(b + c), -(((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b*c))}, 50619
{a*(a - b)*b*(a - c)*(b - c)*c, -1/2*((a - b)*(a - c)*(b - c))/(a*b + a*c + b*c)}, 50620
{a*(a - b)*b*(a - c)*(b - c)*c, -1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b*c)}, 50621
{a*(a - b)*b*(a - c)*(b - c)*c, -1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/((a + b)*(a + c)*(b + c))}, 50622
{(a - b)*(a + b)*(a - c)*(b - c)*(a + c)*(b + c), -1/2*((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b*c)}, 50623
{(a - b)*(a - c)*(b - c)*(a^3 + b^3 + c^3), 0}, 50624
{(a - b)*(a - c)*(b - c)*(a + b + c)*(a*b + a*c + b*c), 0}, 50625
{a*(a - b)*b*(a - c)*(b - c)*c, ((a - b)*(a - c)*(b - c)*(a + b + c))/(2*a*b*c)}, 50626
{a*(a - b)*b*(a - c)*(b - c)*c, ((a - b)*(a - c)*(b - c)*(a + b + c))/(2*(a + b)*(a + c)*(b + c))}, 50627
{(a - b)*(a + b)*(a - c)*(b - c)*(a + c)*(b + c), ((a - b)*(a - c)*(b - c)*(a + b + c))/(2*a*b*c)}, 50628
{a*(a - b)*b*(a - c)*(b - c)*c, ((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50629
{a*(a - b)*b*(a - c)*(b - c)*c, ((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b*c)}, 50630
{a*(a - b)*b*(a - c)*(b - c)*c, ((a - b)*(a - c)*(b - c)*(a + b + c))/((a + b)*(a + c)*(b + c))}, 50631
{(a - b)*(a + b)*(a - c)*(b - c)*(a + c)*(b + c), ((a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50632
{(a - b)*(a + b)*(a - c)*(b - c)*(a + c)*(b + c), ((a - b)*(a - c)*(b - c)*(a + b + c))/(a*b*c)}, 50633
{(a - b)*(a + b)*(a - c)*(b - c)*(a + c)*(b + c), ((a - b)*(a - c)*(b - c)*(a + b + c))/((a + b)*(a + c)*(b + c))}, 50634
{a*(a - b)*b*(a - c)*(b - c)*c, (2*(a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50635
{(a - b)*(a + b)*(a - c)*(b - c)*(a + c)*(b + c), (2*(a - b)*(a - c)*(b - c))/(a^2 + b^2 + c^2)}, 50636
{2*a*(a - b)*b*(a - c)*(b - c)*c, 0}, 50637
{2*(a - b)*(a + b)*(a - c)*(b - c)*(a + c)*(b + c), 0}, 50638


X(50575) = X(1)X(2)∩X(45)X(4263)

Barycentrics    a*(a^2*b + a*b^2 + a^2*c + 5*a*b*c - 2*b^2*c + a*c^2 - 2*b*c^2) : :
X(50575) = 2 X[1] - 3 X[386], 5 X[1] - 9 X[42043], 5 X[386] - 6 X[42043], 5 X[3617] - 3 X[10449], X[3621] + 3 X[20018], 11 X[5550] - 12 X[20108]

X(50575) lies on these lines: {1, 2}, {45, 4263}, {58, 3913}, {72, 17461}, {500, 34718}, {511, 12702}, {872, 49678}, {956, 33771}, {991, 11362}, {996, 1043}, {1126, 5710}, {1191, 22141}, {1357, 5221}, {1468, 48696}, {1739, 3889}, {2177, 5258}, {2334, 4658}, {2901, 4737}, {3691, 9331}, {3730, 3780}, {3736, 49680}, {3754, 49490}, {3871, 16948}, {3873, 3987}, {3875, 44147}, {3881, 24440}, {3892, 24174}, {3997, 4050}, {4002, 4883}, {4253, 20691}, {4256, 12513}, {4257, 8715}, {4270, 17299}, {4285, 50087}, {4695, 18398}, {4849, 9957}, {5045, 21896}, {5145, 49497}, {5247, 25439}, {5400, 5734}, {5711, 8168}, {11010, 32912}, {24046, 34791}, {28234, 37699}, {31187, 31480}, {33136, 37719}, {37529, 47745}, {37530, 38665}, {37567, 39796}, {39742, 49498}

X(50575) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3214, 17749}, {1, 3216, 28370}, {145, 3293, 995}, {3240, 20050, 1}, {3241, 28370, 1}


X(50576) = X(40)X(511)∩X(69)X(519)

Barycentrics    a*(a^3*b - 2*a^2*b^2 + 3*a*b^3 + a^3*c + a^2*b*c + a*b^2*c - b^3*c - 2*a^2*c^2 + a*b*c^2 + 3*a*c^3 - b*c^3) : :
X(50576) = 2 X[6] - 3 X[42043], 4 X[386] - 3 X[16475]

X(50576) lies on these lines: {1, 17792}, {6, 3550}, {9, 3507}, {40, 511}, {42, 25304}, {43, 3056}, {69, 519}, {141, 33141}, {238, 10387}, {386, 16475}, {614, 25279}, {1716, 3688}, {2177, 15988}, {3679, 15985}, {3749, 22370}, {4263, 6184}, {4787, 21371}, {5847, 20018}, {24471, 49490}, {25144, 25502}, {26543, 32865}, {28369, 42042}


X(50577) = X(2)X(4263)∩X(20)X(185)

Barycentrics    a^3*b^2 + a^2*b^3 + 6*a^3*b*c + a^2*b^2*c - 2*a*b^3*c + a^3*c^2 + a^2*b*c^2 - a*b^2*c^2 - b^3*c^2 + a^2*c^3 - 2*a*b*c^3 - b^2*c^3 : :
X(50577) = 3 X[2] - 4 X[4263]

X(50577) lies on these lines: {2, 4263}, {20, 185}, {145, 21746}, {192, 519}, {385, 19544}, {386, 17379}, {573, 37683}, {1654, 10449}, {3210, 17364}, {3664, 17490}, {4357, 20168}, {4643, 20170}, {10453, 23659}, {17000, 19313}, {17331, 41839}, {20090, 24621}, {36744, 44352}

X(50577) = reflection of X(34282) in X(4263)
X(50577) = anticomplement of X(34282)
X(50577) = {X(4263),X(34282)}-harmonic conjugate of X(2)


X(50578) = X(1)X(51)∩X(36)X(386)

Barycentrics    a^2*(a^3*b^2 + a^2*b^3 - a*b^4 - b^5 - a*b^3*c - b^4*c + a^3*c^2 - 3*a*b^2*c^2 + b^3*c^2 + a^2*c^3 - a*b*c^3 + b^2*c^3 - a*c^4 - b*c^4 - c^5) : :

X(50578) lies on these lines: {1, 51}, {10, 25279}, {36, 386}, {40, 511}, {519, 3869}, {978, 23638}, {986, 8679}, {2979, 3214}, {3616, 20962}, {3917, 6048}, {4646, 9037}, {5255, 37516}, {5687, 7186}, {11573, 24440}, {18178, 37716}, {23155, 24443}, {23157, 24046}, {49557, 50301}

X(50578) = crossdifference of every pair of points on line {46383, 48277}


X(50579) = X(20)X(185)∩X(81)X(386)

Barycentrics    a*(a^4*b^2 + a^3*b^3 - a^2*b^4 - a*b^5 - 2*a^3*b^2*c - 2*a^2*b^3*c + a^4*c^2 - 2*a^3*b*c^2 - 3*a^2*b^2*c^2 + a*b^3*c^2 + b^4*c^2 + a^3*c^3 - 2*a^2*b*c^3 + a*b^2*c^3 + 2*b^3*c^3 - a^2*c^4 + b^2*c^4 - a*c^5) : :

X(50579) lies on these lines: {1, 22172}, {20, 185}, {72, 17363}, {81, 386}, {145, 3060}, {192, 29958}, {519, 3869}, {959, 3227}, {960, 17346}, {970, 37683}, {1043, 37516}, {2478, 3948}, {3210, 23154}, {3882, 37030}, {3884, 48839}, {4417, 18178}, {9534, 30054}, {9957, 48814}, {22076, 37652}, {30022, 34282}, {31034, 41723}, {34283, 35104}, {42450, 49470}, {48816, 49557}


X(50580) = X(40)X(511)∩X(56)X(181)

Barycentrics    a^2*(a^3*b^2 + a^2*b^3 - a*b^4 - b^5 - a^2*b^2*c - 2*a*b^3*c - b^4*c + a^3*c^2 - a^2*b*c^2 - 6*a*b^2*c^2 + 2*b^3*c^2 + a^2*c^3 - 2*a*b*c^3 + 2*b^2*c^3 - a*c^4 - b*c^4 - c^5) : :

X(50580) lies on these lines: {1, 5943}, {40, 511}, {42, 16980}, {56, 181}, {72, 519}, {474, 3030}, {956, 1682}, {986, 2810}, {2183, 4263}, {2276, 23630}, {2551, 10449}, {3056, 6765}, {3214, 3917}, {3271, 3295}, {3421, 10480}, {3688, 34790}, {3811, 10544}, {3819, 6048}, {3913, 37516}, {4385, 35104}, {4642, 23154}, {4646, 8679}, {12109, 49490}, {12607, 18178}, {14872, 40965}, {15803, 42043}, {16473, 20959}, {21075, 21334}, {29958, 37598}, {40966, 41229}


X(50581) = X(1)X(2)∩X(40)X(511)

Barycentrics    a*(a^2*b + a*b^2 + a^2*c + 3*a*b*c - b^2*c + a*c^2 - b*c^2) : :
X(50581) = X[1] - 3 X[42043], 2 X[386] - 3 X[42043], 7 X[3624] - 8 X[20108]

X(50581) lies on these lines: {1, 2}, {5, 33141}, {6, 979}, {9, 1500}, {21, 2177}, {31, 3871}, {37, 4662}, {40, 511}, {46, 32913}, {55, 5247}, {58, 3550}, {72, 37598}, {76, 3875}, {87, 1126}, {100, 1468}, {171, 5687}, {210, 37548}, {213, 3208}, {238, 3295}, {244, 3889}, {269, 5933}, {341, 872}, {354, 24174}, {355, 37529}, {405, 3750}, {442, 32865}, {500, 3654}, {517, 37699}, {518, 986}, {581, 11362}, {595, 2209}, {740, 4385}, {846, 41229}, {940, 2334}, {941, 3731}, {942, 24440}, {958, 37573}, {960, 4849}, {964, 32945}, {982, 3555}, {984, 1716}, {988, 6762}, {991, 43174}, {993, 33771}, {1043, 4281}, {1044, 2093}, {1047, 2947}, {1054, 3338}, {1064, 12245}, {1100, 21868}, {1203, 37610}, {1220, 3996}, {1254, 7672}, {1282, 1773}, {1330, 4660}, {1334, 37657}, {1376, 37607}, {1449, 17750}, {1453, 3749}, {1466, 9363}, {1475, 17756}, {1479, 36855}, {1697, 20683}, {1724, 3746}, {1738, 21620}, {1739, 18398}, {1740, 4649}, {1743, 2269}, {1745, 5903}, {1757, 12514}, {1834, 12607}, {2099, 37694}, {2176, 21904}, {2271, 2329}, {2276, 3780}, {2292, 3681}, {2321, 4270}, {2476, 33136}, {2551, 4878}, {2594, 24806}, {2663, 50314}, {2901, 22016}, {3057, 21870}, {3072, 44414}, {3073, 10679}, {3158, 5429}, {3247, 16589}, {3294, 9331}, {3303, 4383}, {3339, 4334}, {3340, 4551}, {3579, 4650}, {3689, 37539}, {3695, 33165}, {3697, 6051}, {3701, 32915}, {3702, 32931}, {3704, 49524}, {3714, 28581}, {3723, 25614}, {3725, 44720}, {3728, 3743}, {3729, 17499}, {3736, 49497}, {3737, 4770}, {3744, 16478}, {3752, 3976}, {3755, 13161}, {3795, 37590}, {3812, 21896}, {3813, 37662}, {3868, 4642}, {3873, 24443}, {3874, 49498}, {3876, 21805}, {3881, 24046}, {3896, 4696}, {3915, 32911}, {3916, 17601}, {3927, 49712}, {3944, 21077}, {3956, 27784}, {3983, 44307}, {3987, 5902}, {4050, 20970}, {4085, 16062}, {4187, 24217}, {4251, 7220}, {4252, 4421}, {4255, 12513}, {4256, 8666}, {4267, 15621}, {4272, 17299}, {4285, 17281}, {4322, 5435}, {4335, 5223}, {4339, 10460}, {4343, 5686}, {4360, 6376}, {4424, 5904}, {4641, 37568}, {4658, 18792}, {4663, 24696}, {4851, 20255}, {4852, 25102}, {4859, 17758}, {4865, 5100}, {4868, 49448}, {4968, 32860}, {5045, 17063}, {5082, 26098}, {5109, 50131}, {5119, 26893}, {5145, 49685}, {5192, 32943}, {5261, 42289}, {5264, 17977}, {5295, 49459}, {5400, 11522}, {5453, 5690}, {5814, 33076}, {6361, 24695}, {7718, 40976}, {7772, 50028}, {7982, 15488}, {9350, 17531}, {9355, 12705}, {9364, 34046}, {9709, 17122}, {9710, 17056}, {9798, 37576}, {10381, 11523}, {10436, 34282}, {10476, 45955}, {11010, 49500}, {11108, 16484}, {12699, 33096}, {13407, 17889}, {13740, 32941}, {16466, 37588}, {16474, 37522}, {16610, 17609}, {17054, 42871}, {17144, 37678}, {17151, 20888}, {17296, 21240}, {17298, 24190}, {17314, 21071}, {17319, 27269}, {17388, 21025}, {17717, 24390}, {17718, 24161}, {17754, 20963}, {18194, 49489}, {20162, 26687}, {21075, 24210}, {21746, 23841}, {23447, 24528}, {23853, 35206}, {24068, 49445}, {24214, 36854}, {24524, 33296}, {25294, 32925}, {25440, 37608}, {31327, 31993}, {31419, 33111}, {34612, 49745}, {37523, 40663}, {37549, 41711}, {37555, 37676}, {37663, 37722}, {39972, 43531}, {48812, 50164}, {48825, 49732}, {49743, 50301}

X(50581) = midpoint of X(8) and X(20018)
X(50581) = reflection of X(i) in X(j) for these {i,j}: {1, 386}, {986, 4646}, {10449, 10}
X(50581) = X(i)-Ceva conjugate of X(j) for these (i,j): {940, 3731}, {2334, 1}
X(50581) = X(513)-isoconjugate of X(43350)
X(50581) = X(39026)-Dao conjugate of X(43350)
X(50581) = crosspoint of X(4606) and X(7035)
X(50581) = crosssum of X(3248) and X(4790)
X(50581) = barycentric product X(1)*X(41839)
X(50581) = barycentric quotient X(i)/X(j) for these {i,j}: {101, 43350}, {41839, 75}
X(50581) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 43, 978}, {1, 200, 5293}, {1, 1698, 26102}, {1, 3216, 21214}, {1, 3293, 43}, {1, 5529, 19861}, {1, 6048, 2}, {1, 16569, 1125}, {1, 31855, 1698}, {1, 42043, 386}, {2, 3214, 6048}, {6, 3913, 5255}, {6, 20691, 3501}, {8, 42, 1}, {8, 19767, 10459}, {8, 26115, 31330}, {40, 3751, 1046}, {42, 10459, 19767}, {42, 45216, 41268}, {43, 21214, 3216}, {58, 8715, 3550}, {100, 1468, 37603}, {145, 1193, 1}, {145, 3240, 1193}, {976, 17016, 1}, {993, 33771, 37574}, {995, 3244, 1}, {1149, 3623, 1}, {1201, 3241, 1}, {1724, 3746, 8616}, {1834, 12607, 37716}, {2276, 3780, 21384}, {2594, 41687, 24806}, {3216, 21214, 978}, {3632, 5312, 1}, {3633, 5313, 1}, {3752, 34791, 3976}, {3931, 34790, 984}, {3935, 17016, 976}, {3938, 5262, 1}, {3957, 28082, 1}, {4255, 12513, 37617}, {10459, 19767, 1}, {15955, 22836, 1}, {21896, 49478, 3812}, {24440, 49490, 942}, {26115, 31330, 1698}, {30107, 40006, 17284}, {34772, 49487, 1}


X(50582) = X(1)X(2)∩X(7)X(11851)

Barycentrics    2*a^4 + a^2*b^2 + 2*a*b^3 - b^4 + a^2*b*c - b^3*c + a^2*c^2 + 2*a*c^3 - b*c^3 - c^4 : :

X(50582) lies on these lines: {1, 2}, {7, 11851}, {65, 50289}, {75, 49734}, {192, 950}, {257, 17363}, {377, 48627}, {452, 17261}, {511, 3868}, {894, 5716}, {1697, 49704}, {1837, 32926}, {1897, 5090}, {2893, 3875}, {3212, 3879}, {3550, 49609}, {3662, 7270}, {3710, 17339}, {3891, 5086}, {3905, 7179}, {3913, 41346}, {4389, 50050}, {4440, 9579}, {4514, 37614}, {5016, 27184}, {5135, 49681}, {5175, 30699}, {5434, 34860}, {5691, 49446}, {5794, 32922}, {5795, 49527}, {7772, 49778}, {10106, 17480}, {11518, 17300}, {11520, 17778}, {12527, 31302}, {12635, 33071}, {12642, 28386}, {16496, 43749}, {17116, 50408}, {17242, 17743}, {17247, 26117}, {20911, 34282}, {24391, 37683}, {24524, 44153}, {31995, 50431}, {33070, 34195}, {49745, 50128}

X(50582) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10, 29634}, {145, 12649, 1999}, {145, 29840, 1}, {3244, 49613, 1}, {3710, 17697, 17339}, {7270, 37549, 3662}


X(50583) = X(55)X(386)∩X(65)X(519)

Barycentrics    a^2*(a^3*b^2 + a^2*b^3 - a*b^4 - b^5 + 3*a^2*b^2*c + 2*a*b^3*c - b^4*c + a^3*c^2 + 3*a^2*b*c^2 + 6*a*b^2*c^2 - 2*b^3*c^2 + a^2*c^3 + 2*a*b*c^3 - 2*b^2*c^3 - a*c^4 - b*c^4 - c^5) : :

X(50583) lies on these lines: {1, 3819}, {10, 21746}, {40, 511}, {51, 3214}, {55, 386}, {65, 519}, {71, 4263}, {181, 5687}, {209, 37568}, {674, 4646}, {986, 9052}, {1469, 6765}, {2177, 22076}, {2550, 10449}, {3216, 28353}, {3293, 23638}, {3688, 3931}, {3780, 23630}, {3812, 49725}, {3913, 4259}, {3976, 40649}, {4260, 5255}, {4385, 6007}, {4660, 10381}, {4849, 42450}, {5082, 10473}, {5943, 6048}, {8715, 10974}, {9710, 18165}, {12109, 24440}, {12514, 20683}, {17784, 20018}, {37567, 39796}


X(50584) = X(40)X(511)∩X(75)X(519)

Barycentrics    a*(2*a^2*b^2 - a*b^3 + 2*a^2*b*c + a*b^2*c + 2*a^2*c^2 + a*b*c^2 - b^2*c^2 - a*c^3) : :
X(50584 = 2 X[4263] - 3 X[42043]

X(50584) lies on these lines: {1, 28350}, {40, 511}, {43, 5943}, {75, 519}, {238, 386}, {978, 39543}, {1002, 25570}, {1743, 2276}, {2293, 16476}, {3240, 23659}, {3809, 22167}, {4307, 20018}, {4650, 41430}, {17331, 21805}, {17349, 23634}, {22277, 24696}, {24220, 33141}

X(50584 = {X(1045),X(3779)}-harmonic conjugate of X(12782)


X(50585) = X(31)X(35)∩X(40)X(511)

Barycentrics    a^2*(a^3*b^2 + a^2*b^3 - a*b^4 - b^5 + 2*a^2*b^2*c + a*b^3*c - b^4*c + a^3*c^2 + 2*a^2*b*c^2 + 3*a*b^2*c^2 - b^3*c^2 + a^2*c^3 + a*b*c^3 - b^2*c^3 - a*c^4 - b*c^4 - c^5) : :

X(50585) lies on these lines: {1, 3917}, {31, 35}, {40, 511}, {51, 6048}, {519, 3868}, {674, 986}, {942, 50301}, {3060, 3214}, {3178, 25308}, {3295, 3792}, {3550, 10974}, {3874, 50289}, {4259, 5255}, {4645, 10449}, {4646, 9047}, {5300, 47033}, {8715, 41329}, {9780, 20961}, {11573, 49490}, {17748, 25306}, {18180, 32865}, {20018, 20101}, {33141, 37536}


X(50586) = X(20)X(185)∩X(21)X(386)

Barycentrics    a*(a^4*b^2 + a^3*b^3 - a^2*b^4 - a*b^5 + 4*a^3*b^2*c + 2*a^2*b^3*c - 2*a*b^4*c + a^4*c^2 + 4*a^3*b*c^2 + 3*a^2*b^2*c^2 - a*b^3*c^2 - b^4*c^2 + a^3*c^3 + 2*a^2*b*c^3 - a*b^2*c^3 - 2*b^3*c^3 - a^2*c^4 - 2*a*b*c^4 - b^2*c^4 - a*c^5) : :

X(50586) lies on these lines: {1, 28375}, {7, 17143}, {20, 185}, {21, 386}, {72, 17333}, {145, 2979}, {377, 5208}, {387, 3794}, {519, 3868}, {942, 48816}, {1043, 4259}, {3555, 50289}, {3786, 13725}, {3881, 48868}, {4195, 4260}, {4201, 10477}, {5692, 12579}, {10461, 37467}, {12109, 17490}, {16980, 20012}, {17378, 34791}, {22836, 30362}, {26051, 35612}, {31424, 42043}, {35998, 40571}


X(50587) = X(1)X(2)∩X(6)X(8715)

Barycentrics    a*(b + c)*(2*a^2 + 2*a*b + 2*a*c - b*c) : :
X(50587) = X[1] - 3 X[386], X[1] - 9 X[42043], X[386] - 3 X[42043], 5 X[3617] + 3 X[20018], 7 X[9780] - 3 X[10449], 5 X[19862] - 6 X[20108]

X(50587) lies on these lines: {1, 2}, {6, 8715}, {35, 16948}, {37, 4015}, {44, 4263}, {71, 16670}, {72, 4868}, {171, 1126}, {209, 37568}, {210, 3743}, {227, 12432}, {404, 16474}, {474, 2334}, {511, 3579}, {516, 37699}, {581, 43174}, {740, 4066}, {758, 4646}, {872, 3993}, {942, 22278}, {1089, 3896}, {1100, 1574}, {1203, 3871}, {1215, 42031}, {1500, 21904}, {1724, 2177}, {1918, 16477}, {2163, 37307}, {2292, 4134}, {2321, 4272}, {2594, 4848}, {2650, 3919}, {2901, 4125}, {3159, 4090}, {3454, 4085}, {3647, 4689}, {3671, 4551}, {3678, 3931}, {3697, 37593}, {3699, 41813}, {3736, 49685}, {3740, 27784}, {3746, 32911}, {3752, 3881}, {3755, 21077}, {3873, 24167}, {3879, 24170}, {3918, 21896}, {3934, 4852}, {3971, 4065}, {3997, 20691}, {4006, 21840}, {4067, 4424}, {4084, 4642}, {4255, 8666}, {4270, 17355}, {4285, 50115}, {4301, 37732}, {4356, 4878}, {4647, 46897}, {4705, 4794}, {4856, 5105}, {4970, 24068}, {5220, 22312}, {5247, 33771}, {5396, 11362}, {6043, 15792}, {6538, 21803}, {6684, 37698}, {6701, 21949}, {6796, 44414}, {7173, 39583}, {7373, 8688}, {10176, 37548}, {10593, 44411}, {12607, 48847}, {16466, 25439}, {16666, 21858}, {18398, 24168}, {19925, 37529}, {22300, 50193}, {23638, 31757}, {24046, 49490}, {24176, 49479}, {24387, 37662}, {24440, 33815}, {24597, 31452}, {31730, 48916}, {32141, 39523}, {33136, 37693}, {34282, 41847}, {35468, 36277}, {37582, 41682}, {37619, 48936}, {37651, 37720}, {49732, 49743}

X(50587) = X(25417)-Ceva conjugate of X(37)
X(50587) = X(58)-isoconjugate of X(39711)
X(50587) = X(10)-Dao conjugate of X(39711)
X(50587) = barycentric product X(i)*X(j) for these {i,j}: {37, 17393}, {100, 48551}, {1018, 48079}, {3952, 48011}
X(50587) = barycentric quotient X(i)/X(j) for these {i,j}: {37, 39711}, {17393, 274}, {48011, 7192}, {48079, 7199}, {48551, 693}
X(50587) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 43, 17749}, {1, 899, 19862}, {1, 3214, 10}, {1, 3216, 28352}, {1, 3293, 3214}, {1, 17749, 1125}, {1, 27627, 15808}, {1, 28352, 551}, {42, 3214, 1}, {42, 3293, 10}, {2650, 3987, 3919}, {3755, 21077, 36250}, {3931, 4849, 3678}, {20691, 20970, 3997}


X(50588) = X(1)X(2)∩X(511)X(550)

Barycentrics    4*a^3*b + 3*a^2*b^2 - a*b^3 + 4*a^3*c + 4*a^2*b*c - a*b^2*c - b^3*c + 3*a^2*c^2 - a*b*c^2 - 2*b^2*c^2 - a*c^3 - b*c^3 : :
X(50588) = 3 X[2] - 5 X[386], 9 X[2] - 5 X[10449], 3 X[2] + 5 X[20018], 9 X[2] - 10 X[20108], 3 X[386] - X[10449], 3 X[386] - 2 X[20108], X[10449] + 3 X[20018], 3 X[20018] + 2 X[20108]

X(50588) lies on these lines: {1, 2}, {511, 550}, {579, 4856}, {1043, 48866}, {1330, 48836}, {3454, 48847}, {3988, 49456}, {4065, 5692}, {4067, 4970}, {4286, 50131}, {4464, 18147}, {5132, 8666}, {5156, 49685}, {9569, 10454}, {16287, 25439}, {16709, 34282}, {18137, 49678}, {19526, 19750}, {19543, 28234}, {35999, 48696}, {41014, 48843}

X(50588) = midpoint of X(386) and X(20018)
X(50588) = reflection of X(10449) in X(20108)
X(50588) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {386, 10449, 20108}


X(50589) = X(1)X(2)∩X(3)X(49681)

Barycentrics    2*a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3 - b^4 + 3*a^3*c + a*b^2*c - 2*b^3*c + 3*a^2*c^2 + a*b*c^2 - 2*b^2*c^2 + a*c^3 - 2*b*c^3 - c^4 : :

X(50589) lies on these lines: {1, 2}, {3, 49681}, {58, 49684}, {596, 50307}, {3430, 5882}, {3678, 49527}, {3710, 5315}, {3879, 3881}, {3891, 12047}, {3914, 43993}, {4255, 49679}, {4865, 23537}, {4914, 13728}, {5846, 37592}, {12609, 32922}, {12699, 49453}, {13407, 33070}, {15172, 49462}, {21077, 33071}, {21616, 32926}, {41014, 49465}

X(50589) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 32866, 10}


X(50590) = X(1)X(2)∩X(3)X(49497)

Barycentrics    (b + c)*(-4*a^3 - 3*a^2*b + a*b^2 - 3*a^2*c + a*b*c + b^2*c + a*c^2 + b*c^2) : :
X(50590) = X[8] + 3 X[20018], 3 X[386] - 2 X[1125], 5 X[1698] - 3 X[10449], 5 X[1698] - 9 X[42043], X[10449] - 3 X[42043]

X(50590) lies on these lines: {1, 2}, {3, 49497}, {58, 49685}, {511, 31728}, {596, 49535}, {2321, 20970}, {2901, 4090}, {3169, 4253}, {3678, 3993}, {3707, 4263}, {4065, 4134}, {4085, 41014}, {4255, 49680}, {4663, 24850}, {4727, 28622}, {4753, 31445}, {4970, 5904}, {5044, 49471}, {5266, 49489}, {5882, 15489}, {8715, 19762}, {20691, 23447}, {21071, 21904}, {21080, 49452}, {22278, 34791}, {22316, 49483}, {37529, 45305}

X(50590) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3216, 28360}, {1, 4685, 10}, {42, 20012, 4685}, {43, 35633, 46827}


X(50591) = X(1)X(17792)∩X(3)X(6)

Barycentrics    a^2*(a^3*b + a*b^3 + 2*b^4 + a^3*c + a^2*b*c + a*b^2*c + b^3*c + a*b*c^2 + 2*b^2*c^2 + a*c^3 + b*c^3 + 2*c^4) : :
X(50591) = X[3751] - 3 X[42043], 8 X[20108] - 7 X[47355]

X(50591) lies on these lines: {1, 17792}, {3, 6}, {42, 1403}, {55, 22418}, {56, 3778}, {69, 4201}, {141, 1834}, {142, 17054}, {387, 10519}, {518, 986}, {519, 599}, {694, 39967}, {936, 21892}, {940, 37099}, {960, 1716}, {984, 3507}, {990, 9620}, {1104, 27626}, {1191, 10387}, {1193, 3056}, {1352, 48837}, {1738, 5794}, {1818, 2277}, {2176, 3781}, {2273, 3220}, {3192, 12294}, {3662, 7270}, {3751, 3928}, {3905, 4357}, {4191, 20966}, {5480, 37662}, {5732, 9593}, {7191, 25308}, {7481, 8705}, {9534, 15985}, {16969, 37819}, {17065, 25524}, {17597, 33073}, {18906, 37678}, {19765, 40432}, {19767, 28369}, {20108, 47355}, {25354, 50410}, {30940, 34282}, {37467, 37676}, {48847, 48876}, {49529, 49609}

X(50591) = midpoint of X(69) and X(20018)
X(50591) = reflection of X(i) in X(j) for these {i,j}: {6, 386}, {10449, 141}
X(50591) = {X(6),X(31884)}-harmonic conjugate of X(4252)


X(50592) = X(1)X(22172)∩X(3)X(6)

Barycentrics    a^2*(a*b^3 + b^4 + 2*a^2*b*c + 3*a*b^2*c + b^3*c + 3*a*b*c^2 + b^2*c^2 + a*c^3 + b*c^3 + c^4) : :

X(50592) lies on these lines: {1, 22172}, {3, 6}, {42, 3060}, {256, 49488}, {519, 751}, {726, 34283}, {986, 17770}, {1654, 10449}, {1707, 42043}, {1757, 12514}, {3664, 24046}, {3670, 17364}, {3764, 4649}, {4443, 49489}, {4476, 37657}, {4646, 15310}, {4850, 50003}, {5224, 30939}, {5739, 35623}, {15955, 31394}, {17381, 20108}, {20966, 37685}, {37662, 48934}, {48837, 48878}

X(50592) = reflection of X(386) in X(4263)
X(50592) = {X(4277),X(37516)}-harmonic conjugate of X(3736)


X(50593) = X(1)X(3060)∩X(3)X(6)

Barycentrics    a^2*(a^3*b^2 + a^2*b^3 - a*b^4 - b^5 - a*b^3*c - b^4*c + a^3*c^2 - a*b^2*c^2 + a^2*c^3 - a*b*c^3 - a*c^4 - b*c^4 - c^5) : :

X(50593) lies on these lines: {1, 3060}, {3, 6}, {10, 25308}, {43, 31737}, {143, 50317}, {519, 3869}, {960, 48839}, {982, 23156}, {986, 2392}, {1698, 20962}, {1993, 17104}, {2895, 5046}, {2979, 3216}, {3678, 17346}, {3884, 48814}, {3917, 17749}, {3953, 23155}, {3976, 23157}, {4193, 17182}, {5400, 11444}, {5890, 48897}, {7186, 25440}, {9037, 37592}, {9957, 48841}, {11010, 49500}, {11412, 37732}, {11573, 24046}, {15680, 20018}, {17566, 20108}, {21849, 48855}, {31034, 35637}, {48868, 49557}

X(50593) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5752, 37516, 58}


X(50594) = X(1)X(51)∩X(3)X(6)

Barycentrics    a^2*(a^3*b^2 + a^2*b^3 - a*b^4 - b^5 - a^2*b^2*c - 2*a*b^3*c - b^4*c + a^3*c^2 - a^2*b*c^2 - 2*a*b^2*c^2 + a^2*c^3 - 2*a*b*c^3 - a*c^4 - b*c^4 - c^5) : :

X(50594) lies on these lines: {1, 51}, {3, 6}, {5, 18178}, {9, 4158}, {10, 23638}, {35, 26890}, {60, 1994}, {72, 519}, {209, 37568}, {993, 1682}, {1211, 4187}, {1397, 39582}, {1401, 23156}, {1724, 22076}, {1829, 37226}, {2347, 3682}, {2478, 3948}, {2915, 44085}, {3056, 3811}, {3060, 19767}, {3216, 3917}, {3271, 5248}, {3670, 23154}, {3678, 3688}, {3743, 15049}, {3752, 11573}, {3819, 17749}, {3890, 14020}, {3909, 4202}, {3931, 42450}, {4424, 42448}, {4719, 9037}, {5044, 17330}, {5119, 26893}, {5453, 5946}, {5462, 50317}, {5562, 18163}, {5718, 18180}, {5810, 6929}, {5836, 37150}, {6872, 20018}, {7483, 18191}, {8679, 37592}, {10108, 17392}, {10393, 11436}, {10478, 19754}, {10544, 22836}, {13747, 20108}, {14531, 22392}, {14855, 48916}, {17104, 34986}, {19366, 45126}, {21334, 21616}, {21746, 31757}, {23841, 30116}, {31792, 48846}, {34466, 37646}, {37536, 37662}

X(50594) = crossdifference of every pair of points on line {523, 46383}
X(50594) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 5752, 10974}, {581, 4266, 19763}


X(50595) = X(3)X(6)∩X(519)X(597)

Barycentrics    a^2*(2*a^3*b + 3*a^2*b^2 + 2*a*b^3 + b^4 + 2*a^3*c + 2*a^2*b*c + 2*a*b^2*c + 2*b^3*c + 3*a^2*c^2 + 2*a*b*c^2 + 4*b^2*c^2 + 2*a*c^3 + 2*b*c^3 + c^4) : :
X(50595) = 5 X[3618] - X[10449]

X(50595) lies on these lines: {3, 6}, {141, 20108}, {387, 14561}, {519, 597}, {1203, 2330}, {1469, 5313}, {1834, 19130}, {2108, 42043}, {3056, 5312}, {3216, 28369}, {3618, 10449}, {5292, 38317}, {5476, 48857}, {5480, 48847}, {7804, 24267}, {10477, 19246}, {11175, 39961}, {14994, 37678}, {17499, 41622}, {24206, 37662}, {37594, 41656}, {48837, 48901}

X(50595) = midpoint of X(6) and X(386)
X(50595) = reflection of X(141) in X(20108)
X(50595) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 2271, 5039}, {39, 4279, 48886}


X(50596) = X(1)X(28350)∩X(3)X(6)

Barycentrics    a^2*(3*a^2*b^2 + 2*a*b^3 - b^4 + 4*a^2*b*c + 6*a*b^2*c + 2*b^3*c + 3*a^2*c^2 + 6*a*b*c^2 + 2*b^2*c^2 + 2*a*c^3 + 2*b*c^3 - c^4) : :

X(50596) lies on these lines: {1, 28350}, {3, 6}, {42, 3917}, {274, 3945}, {291, 39980}, {519, 3696}, {995, 39543}, {1193, 21746}, {1206, 23653}, {1500, 3781}, {1834, 24220}, {3522, 45784}, {4646, 29311}, {4648, 10449}, {11112, 50307}, {17337, 20108}, {37662, 48888}, {48837, 48902}, {48847, 48934}

X(50596) = midpoint of X(20018) and X(34282)
X(50596) = reflection of X(4263) in X(386)
X(50596) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3736, 4260, 39}


X(50597) = X(3)X(6)∩X(65)X(519)

Barycentrics    a^2*(a^3*b^2 + a^2*b^3 - a*b^4 - b^5 + 3*a^2*b^2*c + 2*a*b^3*c - b^4*c + a^3*c^2 + 3*a^2*b*c^2 + 2*a*b^2*c^2 + a^2*c^3 + 2*a*b*c^3 - a*c^4 - b*c^4 - c^5) : :

X(50597) lies on these lines: {1, 3917}, {3, 6}, {46, 32913}, {51, 3216}, {60, 6636}, {65, 519}, {181, 25440}, {209, 3916}, {377, 5208}, {674, 37592}, {993, 10822}, {1125, 21746}, {1437, 5347}, {1469, 3811}, {1780, 16064}, {1834, 37536}, {2194, 20833}, {2646, 49480}, {2979, 19767}, {3293, 16980}, {3792, 37573}, {4190, 20018}, {4719, 9047}, {5045, 17392}, {5292, 37521}, {5447, 50317}, {5482, 37646}, {5784, 22011}, {5891, 48903}, {5943, 17749}, {7483, 20108}, {8728, 18165}, {10381, 48835}, {10441, 48837}, {12109, 24046}, {12609, 49676}, {15556, 30493}, {17733, 39780}, {18178, 48847}, {20961, 27627}, {36987, 48897}, {37522, 40952}, {37732, 45186}

X(50597) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 4259, 10974}, {4256, 41329, 970}, {12109, 40649, 24046}


X(50598) = X(1)X(20765)∩X(3)X(6)

Barycentrics    a^2*(a^3*b + 4*a^2*b^2 + 3*a*b^3 + a^3*c + 5*a^2*b*c + 7*a*b^2*c + 3*b^3*c + 4*a^2*c^2 + 7*a*b*c^2 + 4*b^2*c^2 + 3*a*c^3 + 3*b*c^3) : :

X(50598) lies on these lines: {1, 20765}, {3, 6}, {69, 37148}, {81, 11358}, {86, 2049}, {171, 42043}, {238, 16418}, {332, 33745}, {387, 15973}, {405, 27644}, {519, 4923}, {940, 18792}, {992, 16846}, {999, 2274}, {1010, 17379}, {1193, 28383}, {1203, 36635}, {1613, 40734}, {1740, 4649}, {2309, 16466}, {3167, 22130}, {9909, 44118}, {10458, 16345}, {11108, 27623}, {13588, 37685}, {16395, 17126}, {17000, 19311}, {17259, 20108}, {17277, 19273}, {17349, 19270}, {19276, 46922}, {19533, 19767}, {19757, 27660}, {23092, 23654}

X(50598) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 3736, 3}, {6, 4255, 4279}, {1740, 4649, 5711}


X(50599) = X(1)X(2979)∩X(3)X(6)

Barycentrics    a^2*(a^3*b^2 + a^2*b^3 - a*b^4 - b^5 + 2*a^2*b^2*c + a*b^3*c - b^4*c + a^3*c^2 + 2*a^2*b*c^2 + a*b^2*c^2 + a^2*c^3 + a*b*c^3 - a*c^4 - b*c^4 - c^5) : :

X(50599) lies on these lines: {1, 2979}, {3, 6}, {22, 17104}, {51, 17749}, {320, 34282}, {519, 3868}, {942, 48868}, {978, 31757}, {994, 17647}, {2475, 10449}, {2476, 33172}, {3060, 3216}, {3624, 20961}, {3754, 48816}, {3792, 5248}, {3794, 20083}, {3878, 37038}, {3881, 17378}, {5044, 16590}, {9047, 37592}, {10627, 50317}, {17676, 18417}, {20018, 20086}, {23039, 48903}, {23157, 49490}, {31738, 37529}, {37521, 45939}, {37567, 39796}

X(50599) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4259, 37482, 58}


X(50600) = X(1)X(22214)∩X(3)X(6)

Barycentrics    a^2*(a^3*b + 3*a^2*b^2 + a*b^3 - b^4 + a^3*c + a^2*b*c + a*b^2*c + b^3*c + 3*a^2*c^2 + a*b*c^2 + 2*b^2*c^2 + a*c^3 + b*c^3 - c^4) : :
X(50600) = 5 X[3618] - 4 X[20108]

X(50600) lies on these lines: {1, 22214}, {3, 6}, {193, 10449}, {519, 1992}, {595, 611}, {995, 1469}, {1724, 15988}, {1834, 21850}, {3017, 20423}, {3192, 6403}, {3242, 4930}, {3293, 25304}, {3618, 20108}, {5292, 14853}, {6210, 15953}, {10479, 15983}, {14561, 45939}, {18583, 37646}, {24046, 24471}, {25898, 43531}, {37662, 48876}

X(50600) = midpoint of X(193) and X(10449)
X(50600) = reflection of X(386) in X(6)
X(50600) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 4252, 5050}, {6, 33863, 5034}


X(50601) = X(5)X(141)∩X(10)X(51)

Barycentrics    a*(a^4*b^2 + a^3*b^3 - a^2*b^4 - a*b^5 + a^3*b^2*c - a^2*b^3*c - 2*a*b^4*c + a^4*c^2 + a^3*b*c^2 - a*b^3*c^2 - b^4*c^2 + a^3*c^3 - a^2*b*c^3 - a*b^2*c^3 - 2*b^3*c^3 - a^2*c^4 - 2*a*b*c^4 - b^2*c^4 - a*c^5) : :

X(50601) lies on these lines: {5, 141}, {10, 51}, {21, 386}, {44, 4263}, {72, 519}, {80, 5016}, {2895, 5046}, {3060, 10479}, {3688, 4075}, {3754, 37150}, {3794, 45939}, {3831, 31737}, {4015, 17330}, {4271, 8715}, {5752, 48863}, {7483, 20108}, {8240, 22836}, {10974, 48866}, {13724, 30144}, {13740, 41329}


X(50602) = X(37)X(386)∩X(72)X(519)

Barycentrics    a*(b + c)*(a^4*b + a^3*b^2 - a^2*b^3 - a*b^4 + a^4*c + 3*a^3*b*c + 2*a^2*b^2*c - a*b^3*c - b^4*c + a^3*c^2 + 2*a^2*b*c^2 - 2*a*b^2*c^2 - 3*b^3*c^2 - a^2*c^3 - a*b*c^3 - 3*b^2*c^3 - a*c^4 - b*c^4) : :
X(50602) = 3 X[386] - 4 X[5044], X[3868] - 3 X[10449]

X(50602) lies on these lines: {37, 386}, {65, 42031}, {72, 519}, {210, 3743}, {321, 3868}, {511, 22036}, {2321, 10974}, {3678, 3993}, {3713, 27802}, {3881, 49479}, {3931, 14973}, {3995, 20018}, {5295, 5836}, {5439, 31993}, {5752, 17299}, {5784, 22011}, {10108, 50125}, {21061, 31424}


X(50603) = X(72)X(519)∩X(238)X(386)

Barycentrics    a*(a^4*b^2 + a^3*b^3 - a^2*b^4 - a*b^5 + a^3*b^2*c - a^2*b^3*c - 2*a*b^4*c + a^4*c^2 + a^3*b*c^2 + 2*a^2*b^2*c^2 - 2*a*b^3*c^2 - b^4*c^2 + a^3*c^3 - a^2*b*c^3 - 2*a*b^2*c^3 - 2*b^3*c^3 - a^2*c^4 - 2*a*b*c^4 - b^2*c^4 - a*c^5) : :

X(50603) lies on these lines: {1, 28356}, {8, 20962}, {10, 5943}, {72, 519}, {238, 386}, {511, 946}, {1125, 21746}, {1479, 4388}, {2887, 25639}, {3056, 17733}, {3678, 3883}, {4857, 18417}, {5044, 50297}, {5752, 32941}, {10974, 49482}, {18180, 21242}, {26098, 35632}


X(50604) = X(1)X(2)∩X(6)X(8666)

Barycentrics    a*(2*a^2*b + 2*a*b^2 + 2*a^2*c + b^2*c + 2*a*c^2 + b*c^2) : :
X(50604) = 5 X[1] + 3 X[42043], 5 X[386] - 3 X[42043], 5 X[3616] - X[10449], 7 X[3622] + X[20018]

X(50604) lies on these lines: {1, 2}, {6, 8666}, {21, 5315}, {31, 5267}, {38, 4067}, {39, 3997}, {58, 37617}, {65, 26740}, {73, 4315}, {81, 5563}, {106, 931}, {214, 37539}, {392, 3743}, {501, 2363}, {511, 1385}, {517, 4719}, {758, 37592}, {872, 49510}, {941, 41418}, {942, 34434}, {946, 36250}, {993, 16466}, {999, 23361}, {1064, 4297}, {1100, 4263}, {1191, 5248}, {1203, 2975}, {1449, 2183}, {1450, 37558}, {1457, 3671}, {1491, 48294}, {1834, 24387}, {2176, 25092}, {2274, 33682}, {2321, 5153}, {2646, 49480}, {2650, 3953}, {2802, 4646}, {3057, 4868}, {3264, 17393}, {3585, 33107}, {3663, 17139}, {3666, 3878}, {3670, 4084}, {3677, 12559}, {3736, 49482}, {3745, 17614}, {3752, 3754}, {3755, 49600}, {3813, 48847}, {3825, 37715}, {3884, 3931}, {3898, 37548}, {3901, 4392}, {3919, 24443}, {3946, 13464}, {3988, 49515}, {4003, 4018}, {4255, 8715}, {4256, 5255}, {4270, 4856}, {4298, 10571}, {4850, 5903}, {5105, 17355}, {5109, 50115}, {5253, 37559}, {5258, 32911}, {5396, 5882}, {5443, 33133}, {5710, 25440}, {5730, 17599}, {5902, 24167}, {6176, 15178}, {7280, 17126}, {8692, 16866}, {9619, 16972}, {11263, 23536}, {13370, 17074}, {13607, 37698}, {16483, 19765}, {17061, 37737}, {17152, 25599}, {17351, 32450}, {17394, 34282}, {17448, 20970}, {17609, 43220}, {21620, 34586}, {22045, 34587}, {24046, 33815}, {25405, 38472}, {25439, 37542}, {28236, 37699}, {33071, 36974}, {33771, 37588}, {37573, 40091}, {37620, 48917}

X(50604) = midpoint of X(1) and X(386)
X(50604) = reflection of X(10) in X(20108)
X(50604) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 42, 3244}, {1, 78, 30145}, {1, 614, 30143}, {1, 978, 30116}, {1, 995, 1125}, {1, 997, 30142}, {1, 1193, 10}, {1, 1201, 551}, {1, 3216, 10459}, {1, 5262, 49682}, {1, 5312, 145}, {1, 5313, 8}, {1, 34772, 49686}, {978, 30116, 3634}, {1193, 10459, 3216}, {3216, 10459, 10}


X(50605) = X(1)X(2)∩X(5)X(141)

Barycentrics    a^2*b^2 + a*b^3 + a*b^2*c + b^3*c + a^2*c^2 + a*b*c^2 + 2*b^2*c^2 + a*c^3 + b*c^3 : :
X(50605) = 3 X[2] + X[10449], 9 X[2] - X[20018], 3 X[386] - X[20018], 3 X[10449] + X[20018], X[10449] + 2 X[20108], X[20018] - 6 X[20108]

X(50605) lies on these lines: {1, 2}, {3, 48863}, {4, 48835}, {5, 141}, {35, 32918}, {36, 35999}, {38, 1089}, {39, 21024}, {55, 16302}, {58, 13740}, {72, 30818}, {75, 24046}, {76, 16887}, {79, 33067}, {121, 9711}, {140, 6176}, {191, 32930}, {312, 3159}, {321, 3670}, {333, 13741}, {405, 37660}, {515, 19543}, {549, 48859}, {579, 17355}, {594, 1574}, {595, 32942}, {596, 982}, {726, 4066}, {940, 43531}, {942, 44417}, {946, 31778}, {958, 16286}, {964, 10457}, {966, 17559}, {984, 4075}, {993, 16287}, {996, 12513}, {999, 5793}, {1043, 4256}, {1078, 33954}, {1150, 1724}, {1191, 5774}, {1203, 32944}, {1211, 4187}, {1213, 4263}, {1215, 3874}, {1376, 16414}, {1393, 6358}, {1479, 26034}, {1573, 21025}, {1834, 48843}, {2049, 37674}, {2051, 10441}, {2140, 21240}, {2276, 21070}, {2321, 4261}, {2476, 33172}, {2887, 25639}, {2901, 3666}, {3336, 4418}, {3452, 34831}, {3579, 49484}, {3663, 44140}, {3701, 46909}, {3702, 4424}, {3714, 37592}, {3734, 49129}, {3739, 39564}, {3746, 32943}, {3752, 5295}, {3814, 50362}, {3821, 36250}, {3824, 3834}, {3825, 3846}, {3836, 3841}, {3923, 16574}, {3936, 37693}, {3953, 4968}, {4015, 49457}, {4065, 32915}, {4193, 17182}, {4195, 4257}, {4201, 48836}, {4203, 4278}, {4234, 48865}, {4251, 26244}, {4252, 11354}, {4267, 19243}, {4286, 17281}, {4357, 18147}, {4363, 5708}, {4429, 29484}, {4438, 16301}, {4647, 24443}, {4653, 19270}, {4660, 29492}, {4721, 24690}, {4857, 32947}, {4894, 33074}, {5132, 8715}, {5156, 49482}, {5165, 50115}, {5204, 16400}, {5224, 30939}, {5235, 17536}, {5241, 17575}, {5248, 32916}, {5259, 32917}, {5263, 29437}, {5264, 24552}, {5267, 16452}, {5439, 31993}, {5692, 25591}, {5737, 11108}, {5743, 17527}, {5745, 16290}, {5786, 19517}, {5791, 17279}, {5883, 49598}, {5904, 32931}, {5955, 15571}, {6245, 12618}, {6532, 17063}, {6693, 17698}, {6703, 50318}, {7283, 24627}, {7504, 30831}, {7741, 25760}, {7761, 36685}, {7800, 36674}, {7865, 36729}, {8258, 24295}, {9708, 16291}, {10176, 25079}, {10408, 10473}, {10476, 50037}, {11263, 25385}, {12571, 45305}, {12572, 14058}, {13478, 37415}, {15171, 44419}, {15488, 37365}, {16453, 25440}, {16552, 27040}, {16607, 17046}, {16842, 19732}, {16853, 17259}, {17143, 29454}, {17205, 34284}, {17289, 29453}, {17595, 50044}, {17686, 29473}, {17758, 30945}, {18046, 32784}, {18099, 29568}, {18140, 30966}, {18398, 32771}, {18792, 27145}, {18840, 36682}, {19646, 48937}, {19792, 23537}, {21020, 28611}, {21067, 49509}, {21071, 25092}, {21077, 49511}, {21208, 33945}, {24165, 24167}, {24174, 28612}, {24275, 33863}, {24430, 44040}, {24718, 45324}, {24900, 48284}, {25526, 37633}, {25961, 41859}, {26064, 37162}, {26819, 39748}, {32772, 37559}, {32861, 41822}, {33159, 41681}, {33297, 37678}, {33953, 37670}, {36974, 37717}, {37582, 50054}, {37620, 44039}, {37662, 41014}, {47694, 50337}

X(50605) = midpoint of X(i) and X(j) for these {i,j}: {386, 10449}, {3714, 37592}, {10476, 50037}
X(50605) = reflection of X(386) in X(20108)
X(50605) = complement of X(386)
X(50605) = anticomplement of X(20108)
X(50605) = complement of the isogonal conjugate of X(43531)
X(50605) = X(i)-complementary conjugate of X(j) for these (i,j): {513, 5515}, {667, 39016}, {835, 513}, {2214, 2}, {2217, 34281}, {37218, 3835}, {43531, 10}, {43927, 11}
X(50605) = crossdifference of every pair of points on line {649, 3050}
X(50605) = barycentric product X(10)*X(27163)
X(50605) = barycentric quotient X(27163)/X(86)
X(50605) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1698, 26115}, {2, 8, 3216}, {2, 386, 20108}, {2, 5292, 20083}, {2, 9534, 17749}, {2, 10449, 386}, {2, 10479, 10}, {5, 141, 3454}, {10, 3840, 1125}, {10, 46827, 3634}, {10, 49993, 1698}, {38, 1089, 24068}, {58, 13740, 48866}, {75, 24046, 24176}, {1150, 5192, 1724}, {1698, 31330, 10}, {3741, 3831, 10}, {13740, 14829, 58}, {17135, 26030, 3293}, {17698, 37646, 6693}, {17748, 49560, 21081}, {21240, 21264, 2140}, {26102, 31855, 995}, {26115, 29824, 1}, {27020, 31027, 40006}, {29827, 30942, 3840}, {30942, 31330, 29824}, {30957, 31339, 3624}


X(50606) = X(1)X(2)∩X(3)X(17299)

Barycentrics    2*a^4 + 3*a^3*b + a^2*b^2 - a*b^3 - b^4 + 3*a^3*c + 4*a^2*b*c - 3*a*b^2*c - 4*b^3*c + a^2*c^2 - 3*a*b*c^2 - 6*b^2*c^2 - a*c^3 - 4*b*c^3 - c^4 : :

X(50606) lies on these lines: {1, 2}, {3, 17299}, {58, 2321}, {511, 22036}, {594, 37594}, {1770, 4365}, {3159, 4416}, {3175, 49716}, {3723, 50409}, {3943, 31445}, {4007, 37554}, {4035, 24160}, {4102, 50053}, {4104, 41814}, {4252, 50087}, {4371, 17582}, {4527, 24850}, {4686, 24470}, {5044, 17362}, {5295, 49734}, {6147, 17374}, {11110, 17315}, {12047, 32852}, {12609, 32846}, {12699, 47353}, {17229, 17698}, {17296, 24159}, {17372, 21245}, {21616, 32861}, {42031, 50307}


X(50607) = X(1)X(2)∩X(3)X(49688)

Barycentrics    2*a^4 - a^3*b - a^2*b^2 + a*b^3 - b^4 - a^3*c - 4*a^2*b*c + a*b^2*c - 2*b^3*c - a^2*c^2 + a*b*c^2 - 2*b^2*c^2 + a*c^3 - 2*b*c^3 - c^4 : :

X(50607) lies on these lines: {1, 2}, {3, 49688}, {58, 49529}, {72, 4030}, {405, 30615}, {908, 4894}, {1770, 17165}, {2271, 17299}, {2321, 4251}, {3430, 11362}, {3678, 3883}, {3710, 3746}, {3717, 5248}, {3967, 15171}, {4255, 49690}, {4514, 21616}, {4533, 41002}, {4696, 10572}, {5014, 12047}, {5015, 21077}, {5266, 49524}, {5300, 13407}, {7772, 50026}, {9053, 37592}, {12609, 32850}, {23537, 32920}, {23850, 37577}


X(50608) = X(1)X(2)∩X(3)X(23379)

Barycentrics    a^2*b^2 + a*b^3 - 2*a^2*b*c + 2*a*b^2*c + b^3*c + a^2*c^2 + 2*a*b*c^2 + 2*b^2*c^2 + a*c^3 + b*c^3 : :
X(50608) = 5 X[3616] - X[20018], 7 X[3624] - 3 X[42043], 5 X[19862] - 4 X[20108]

X(50608) lies on these lines: {1, 2}, {3, 23379}, {4, 43164}, {21, 32943}, {38, 3702}, {39, 2321}, {58, 49482}, {75, 3976}, {141, 3813}, {210, 25079}, {314, 3663}, {354, 49598}, {404, 32945}, {442, 21242}, {496, 3846}, {511, 946}, {516, 10476}, {594, 16604}, {596, 42027}, {740, 37592}, {962, 35621}, {986, 4673}, {988, 3886}, {1043, 37617}, {1058, 50295}, {1107, 21071}, {1150, 3915}, {1211, 37722}, {1215, 3555}, {1330, 33106}, {1468, 24552}, {1764, 5493}, {2140, 21255}, {2292, 46909}, {2887, 24390}, {3159, 22016}, {3295, 32916}, {3303, 37660}, {3333, 50314}, {3338, 3980}, {3454, 24387}, {3671, 10473}, {3678, 49510}, {3681, 25591}, {3686, 21769}, {3697, 24003}, {3750, 19270}, {3775, 21257}, {3817, 39550}, {3836, 31419}, {3871, 32918}, {3878, 14058}, {3881, 49479}, {3889, 32771}, {3902, 4642}, {3923, 44421}, {3931, 6682}, {3950, 25092}, {3953, 4647}, {4011, 41229}, {4135, 24068}, {4202, 33136}, {4252, 48805}, {4253, 17355}, {4255, 49460}, {4263, 5257}, {4297, 37425}, {4301, 10441}, {4315, 10475}, {4342, 10480}, {4357, 34282}, {4432, 31445}, {4441, 24214}, {4655, 12699}, {4719, 28581}, {5044, 49457}, {5045, 24325}, {5100, 33079}, {5247, 32942}, {5255, 14829}, {5263, 37607}, {5266, 49473}, {5289, 34831}, {5542, 35620}, {5837, 34589}, {8666, 19762}, {10371, 17721}, {10465, 28164}, {10471, 17205}, {10477, 49505}, {11110, 16484}, {11362, 15489}, {12047, 33064}, {12053, 21334}, {12545, 31964}, {12609, 49676}, {13407, 25385}, {15825, 30331}, {16062, 33141}, {16466, 32853}, {17050, 30945}, {17393, 41849}, {17448, 21024}, {17474, 26035}, {17600, 41813}, {17609, 31993}, {19804, 31327}, {20257, 21240}, {20888, 24215}, {20911, 24172}, {21020, 46190}, {21628, 43159}, {21629, 35635}, {21630, 38484}, {22167, 23414}, {23853, 25440}, {24161, 33124}, {24850, 49484}, {27318, 48628}, {32865, 33833}, {33939, 49521}, {34791, 44417}, {34860, 42029}, {35626, 49600}, {41014, 50315}, {49728, 49736}

X(50608) = midpoint of X(i) and X(j) for these {i,j}: {1, 10449}, {986, 4673}
X(50608) = reflection of X(386) in X(1125)
X(50608) = X(i)-complementary conjugate of X(j) for these (i,j): {513, 38961}, {43350, 513}
X(50608) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3632, 20037}, {1, 3741, 10}, {1, 10453, 35633}, {1, 19863, 43223}, {2, 8, 6048}, {8, 3831, 10}, {8, 26094, 899}, {8, 30942, 3831}, {10, 3840, 46827}, {10, 49627, 29655}, {596, 42031, 50117}, {1201, 31136, 8}, {3953, 4647, 24165}, {19863, 43223, 19862}, {26801, 31027, 29960}


X(50609) = X(5)X(141)∩X(6)X(10449)

Barycentrics    2*a^4*b^2 + a^3*b^3 + a*b^5 + a^3*b^2*c + a^2*b^3*c + a*b^4*c + b^5*c + 2*a^4*c^2 + a^3*b*c^2 + 4*a^2*b^2*c^2 + 2*a*b^3*c^2 + 2*b^4*c^2 + a^3*c^3 + a^2*b*c^3 + 2*a*b^2*c^3 + 2*b^3*c^3 + a*b*c^4 + 2*b^2*c^4 + a*c^5 + b*c^5 : :
X(50609) = 5 X[3618] - X[20018]

X(50609) lies on these lines: {5, 141}, {6, 10449}, {182, 48863}, {386, 3589}, {519, 597}, {1104, 17353}, {1469, 30942}, {3416, 37717}, {3507, 33159}, {3618, 20018}, {3741, 20545}, {3831, 17792}, {4136, 5750}, {5743, 50440}, {10479, 15985}, {25144, 46827}, {48835, 48901}

X(50609) = midpoint of X(6) and X(10449)
X(50609) = reflection of X(386) in X(3589)


X(50610) = X(5)X(141)∩X(65)X(519)

Barycentrics    a*(a^4*b^2 + a^3*b^3 - a^2*b^4 - a*b^5 + a^3*b^2*c + a^2*b^3*c + a^4*c^2 + a^3*b*c^2 + a*b^3*c^2 + b^4*c^2 + a^3*c^3 + a^2*b*c^3 + a*b^2*c^3 + 2*b^3*c^3 - a^2*c^4 + b^2*c^4 - a*c^5) : :

X(50610) lies on these lines: {5, 141}, {10, 3917}, {65, 519}, {81, 386}, {1215, 23156}, {2475, 10449}, {2594, 25440}, {2979, 10479}, {3741, 31737}, {3840, 31757}, {3909, 37693}, {10441, 48835}, {13747, 20108}, {14829, 41329}, {15049, 25079}, {18178, 48843}, {30034, 30172}, {37482, 48863}


X(50611) = X(6)X(519)∩X(69)X(33106)

Barycentrics    3*a^3*b^2 - 2*a^2*b^3 + a*b^4 - 2*a^3*b*c + a^2*b^2*c + b^4*c + 3*a^3*c^2 + a^2*b*c^2 + 2*a*b^2*c^2 + b^3*c^2 - 2*a^2*c^3 + b^2*c^3 + a*c^4 + b*c^4 : :
X(50611) = 2 X[386] - 3 X[38049], 5 X[3618] - 3 X[42043], 3 X[16475] - X[20018]

X(50611) lies on these lines: {6, 519}, {69, 33106}, {141, 3829}, {386, 38049}, {511, 946}, {3056, 3741}, {3507, 17353}, {3618, 42043}, {3840, 17792}, {5847, 10449}, {10387, 32916}, {15983, 31136}, {15988, 32943}, {16475, 20018}, {21242, 26543}, {25304, 30942}, {28369, 42057}


X(50612) = X(1)X(256)∩X(69)X(519)

Barycentrics    a*(a^4*b - a^3*b^2 + a^2*b^3 + 3*a*b^4 + a^4*c - a^3*b*c + 2*a^2*b^2*c - a*b^3*c + b^4*c - a^3*c^2 + 2*a^2*b*c^2 + 2*a*b^2*c^2 + b^3*c^2 + a^2*c^3 - a*b*c^3 + b^2*c^3 + 3*a*c^4 + b*c^4) : :

X(50612) lies on these lines: {1, 256}, {6, 11194}, {69, 519}, {141, 37716}, {386, 988}, {388, 24231}, {518, 986}, {982, 1465}, {1350, 5255}, {3094, 3501}, {3098, 3550}, {3242, 10912}, {3507, 49448}, {3749, 22097}, {5587, 24230}, {10449, 13161}, {12588, 37708}, {24248, 39898}, {31670, 33106}, {37676, 42043}, {45989, 45990}

X(50612) = reflection of X(i) in X(j) for these {i,j}: {3751, 386}, {10449, 49511}


X(50613) = X(1)X(256)∩X(192)X(519)

Barycentrics    a*(a^2*b^2 - 2*a*b^3 - 2*a^2*b*c + a^2*c^2 - b^2*c^2 - 2*a*c^3) : :
X(50613) = 4 X[4263] - 3 X[42043]

X(50613) lies on these lines: {1, 256}, {9, 3507}, {10, 7155}, {43, 23659}, {87, 3778}, {192, 519}, {350, 17272}, {386, 2309}, {573, 3550}, {751, 872}, {894, 4787}, {982, 49537}, {986, 15310}, {1740, 3764}, {1742, 17596}, {1743, 2276}, {1757, 12514}, {3122, 24661}, {3551, 3663}, {3679, 17787}, {3731, 4876}, {3944, 45305}, {4443, 18194}, {5255, 48875}, {10446, 33106}, {10449, 21299}, {16571, 24478}, {17065, 25528}, {17331, 33889}, {17379, 23633}, {17591, 29353}, {24598, 36646}, {25304, 40790}, {37617, 48908}, {39742, 50128}

X(50613) = crossdifference of every pair of points on line {3287, 48323}
X(50613) = {X(256),X(3056)}-harmonic conjugate of X(1)


X(50614) = X(1)X(256)∩X(9)X(386)

Barycentrics    a*(a^4*b + a^3*b^2 + 3*a^2*b^3 + 3*a*b^4 + a^4*c + 3*a^3*b*c + 4*a^2*b^2*c + 3*a*b^3*c + b^4*c + a^3*c^2 + 4*a^2*b*c^2 + 4*a*b^2*c^2 + 3*b^3*c^2 + 3*a^2*c^3 + 3*a*b*c^3 + 3*b^2*c^3 + 3*a*c^4 + b*c^4) : :

X(50614) lies on these lines: {1, 256}, {4, 3663}, {9, 386}, {238, 16418}, {519, 4356}, {936, 21796}, {971, 37592}, {984, 1716}, {1008, 3729}, {1864, 3666}, {3677, 4654}, {3731, 16850}, {3997, 5756}, {4263, 16517}, {4353, 45305}, {4357, 10449}, {6211, 17594}, {16290, 27626}, {17247, 26117}, {17257, 20018}, {28606, 44694}, {32784, 37715}, {37474, 37617}

X(50614) = {X(1),X(256)}-harmonic conjugate of X(6210)


X(50615) = X(1)X(256)∩X(386)X(518)

Barycentrics    a*(a^4*b + a^2*b^3 + 2*a*b^4 + a^4*c - a^3*b*c + 2*a^2*b^2*c - a*b^3*c + b^4*c + 2*a^2*b*c^2 + 2*a*b^2*c^2 + b^3*c^2 + a^2*c^3 - a*b*c^3 + b^2*c^3 + 2*a*c^4 + b*c^4) : :
X(50615) = 4 X[20108] - 3 X[38047]

X(50615) lies on these lines: {1, 256}, {6, 8666}, {182, 37617}, {355, 24212}, {386, 518}, {519, 599}, {3098, 5255}, {3550, 14810}, {3677, 4551}, {4263, 16973}, {5252, 37549}, {5725, 21620}, {17597, 17723}, {20108, 38047}, {24206, 37716}, {33106, 48901}, {33895, 49465}


X(50616) = X(1)X(256)∩X(238)X(386)

Barycentrics    a*(a^2*b^3 + a*b^4 + 2*a^3*b*c + a^2*b^2*c + 2*a*b^3*c + a^2*b*c^2 + a*b^2*c^2 + b^3*c^2 + a^2*c^3 + 2*a*b*c^3 + b^2*c^3 + a*c^4) : :

X(50616) lies on these lines: {1, 256}, {8, 23659}, {9, 1500}, {238, 386}, {516, 986}, {519, 751}, {553, 982}, {573, 5255}, {950, 37598}, {983, 3746}, {988, 1742}, {991, 37617}, {1125, 41886}, {1386, 4443}, {3550, 48886}, {3664, 3976}, {3764, 5263}, {3923, 12782}, {4283, 50300}, {4357, 34282}, {4676, 21035}, {8616, 40984}, {10449, 15824}, {10877, 37539}, {13161, 45305}, {15310, 37592}, {16475, 24575}, {17065, 24923}, {17591, 29349}, {18046, 32784}, {24478, 50314}, {29712, 33165}, {33106, 48902}, {37716, 48888}


X(50617) = X(1)X(256)∩X(31)X(35)

Barycentrics    a^2*(a^3*b^2 + a^2*b^3 - a*b^4 - b^5 - a*b^3*c - b^4*c + a^3*c^2 + a*b^2*c^2 - b^3*c^2 + a^2*c^3 - a*b*c^3 - b^2*c^3 - a*c^4 - b*c^4 - c^5) : :

X(50617) lies on these lines: {1, 256}, {10, 25306}, {31, 35}, {56, 7186}, {80, 5016}, {519, 3869}, {960, 50296}, {970, 3550}, {984, 42450}, {995, 31737}, {1191, 3792}, {1201, 2979}, {1479, 4388}, {1682, 37574}, {3060, 10459}, {3617, 20962}, {3917, 21214}, {3976, 11573}, {4294, 20018}, {5119, 26893}, {5255, 5752}, {7741, 25760}, {7998, 28352}, {8616, 22076}, {10441, 33106}, {10822, 16468}, {18178, 33141}, {28370, 33884}, {29958, 49448}, {30116, 31757}, {31778, 37717}, {33104, 41723}, {37482, 37617}, {48825, 49557}

X(50617) = crossdifference of every pair of points on line {3287, 48275}
X(50617) = {X(1),X(6210)}-harmonic conjugate of X(30362)


X(50618) = X(1)X(256)∩X(21)X(386)

Barycentrics    a*(a^3*b^3 + 2*a^2*b^4 + a*b^5 + 2*a^4*b*c + 2*a^3*b^2*c + 3*a^2*b^3*c + 3*a*b^4*c + 2*a^3*b*c^2 + 4*a^2*b^2*c^2 + 3*a*b^3*c^2 + b^4*c^2 + a^3*c^3 + 3*a^2*b*c^3 + 3*a*b^2*c^3 + 2*b^3*c^3 + 2*a^2*c^4 + 3*a*b*c^4 + b^2*c^4 + a*c^5) : :

X(50618) lies on these lines: {1, 256}, {21, 386}, {30, 986}, {500, 37617}, {519, 2292}, {846, 41229}, {982, 49745}, {984, 49728}, {988, 48897}, {3293, 18235}, {3550, 35203}, {3670, 4292}, {3931, 17611}, {3953, 49744}, {3976, 49743}, {4220, 37522}, {4263, 16552}, {4424, 10572}, {5255, 48882}, {7283, 17741}, {8229, 37693}, {9959, 37548}, {10449, 26117}, {10950, 24430}, {11115, 20966}, {12782, 50164}, {17596, 37425}, {24174, 50169}, {24440, 49734}, {24443, 50171}, {33106, 48899}, {37599, 48926}, {37716, 48887}, {37717, 46704}, {41813, 50255}


X(50619) = X(4)X(69)∩X(21)X(386)

Barycentrics    a*(a^4*b^2 + a^3*b^3 - a^2*b^4 - a*b^5 + 2*a^3*b^2*c - 2*a*b^4*c + a^4*c^2 + 2*a^3*b*c^2 + a^2*b^2*c^2 - a*b^3*c^2 - b^4*c^2 + a^3*c^3 - a*b^2*c^3 - 2*b^3*c^3 - a^2*c^4 - 2*a*b*c^4 - b^2*c^4 - a*c^5) : :

X(50619) lies on these lines: {1, 28356}, {4, 69}, {8, 3060}, {21, 386}, {51, 9534}, {519, 3869}, {674, 4385}, {960, 48814}, {1043, 5752}, {1479, 35614}, {1757, 12514}, {1812, 4222}, {2476, 33172}, {3678, 48839}, {3714, 9047}, {3794, 5292}, {3884, 48841}, {4195, 10974}, {4259, 13740}, {4680, 5086}, {6872, 20018}, {7283, 26893}, {9052, 34283}, {11111, 34259}, {12047, 33064}, {14829, 37482}, {16574, 48897}, {17346, 34790}, {17378, 49557}, {20961, 31339}, {21849, 48850}, {22836, 30366}, {41329, 48863}


X(50620) = X(1)X(256)∩X(37)X(519)

Barycentrics    a*(a^3*b^2 + 2*a^2*b^3 + a*b^4 + 4*a^3*b*c + 2*a^2*b^2*c + 4*a*b^3*c + a^3*c^2 + 2*a^2*b*c^2 + 2*a*b^2*c^2 + 2*b^3*c^2 + 2*a^2*c^3 + 4*a*b*c^3 + 2*b^2*c^3 + a*c^4) : :

X(50620) lies on these lines: {1, 256}, {37, 519}, {39, 49482}, {386, 1001}, {516, 37592}, {551, 28358}, {986, 29309}, {2092, 32941}, {3058, 3666}, {4261, 48805}, {4277, 49460}, {5255, 48886}, {5263, 24530}, {17321, 34282}, {21796, 36480}, {33106, 48940}, {37599, 41430}, {37617, 48929}


X(50621) = X(1)X(256)∩X(55)X(386)

Barycentrics    a^2*(a - b - c)*(a^2*b^2 + 2*a*b^3 + b^4 + a^2*c^2 + 2*b^2*c^2 + 2*a*c^3 + c^4) : :

X(50621) lies on these lines: {1, 256}, {8, 23638}, {38, 42448}, {51, 10459}, {55, 386}, {60, 41432}, {72, 519}, {181, 5710}, {213, 2269}, {390, 20018}, {497, 10449}, {958, 3271}, {959, 4344}, {960, 3688}, {970, 5255}, {982, 17114}, {1125, 20359}, {1191, 10387}, {1201, 3917}, {1203, 2330}, {1208, 4300}, {1364, 10966}, {1573, 20594}, {1697, 20683}, {2646, 49480}, {3430, 41346}, {3550, 15489}, {3671, 20358}, {3813, 18178}, {3819, 21214}, {3915, 22076}, {3954, 17452}, {4298, 49537}, {4314, 49705}, {4673, 35104}, {5250, 40966}, {5263, 9565}, {5432, 20108}, {5650, 28352}, {7998, 28370}, {10108, 48823}, {12053, 21334}, {12513, 37516}, {12688, 12721}, {15488, 33106}, {16975, 23630}, {20684, 23544}, {37555, 46850}, {39789, 42397}

X(50621) = crosspoint of X(8) and X(1036)
X(50621) = crosssum of X(56) and X(388)
X(50621) = crossdifference of every pair of points on line {3287, 48276}
X(50621) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3056, 10544}, {1, 48883, 28386}


X(50622) = X(1)X(256)∩X(386)X(405)

Barycentrics    a*(a^4*b^2 + 3*a^3*b^3 + 3*a^2*b^4 + a*b^5 + 4*a^4*b*c + 5*a^3*b^2*c + 6*a^2*b^3*c + 5*a*b^4*c + a^4*c^2 + 5*a^3*b*c^2 + 8*a^2*b^2*c^2 + 6*a*b^3*c^2 + 2*b^4*c^2 + 3*a^3*c^3 + 6*a^2*b*c^3 + 6*a*b^2*c^3 + 4*b^3*c^3 + 3*a^2*c^4 + 5*a*b*c^4 + 2*b^2*c^4 + a*c^5) : :

X(50622) lies on these lines: {1, 256}, {20, 980}, {21, 40984}, {30, 37592}, {39, 4195}, {386, 405}, {391, 941}, {519, 3743}, {950, 3666}, {988, 37425}, {1043, 2092}, {3752, 49734}, {3764, 9565}, {3883, 49728}, {3931, 37730}, {4298, 49745}, {4339, 50182}, {5255, 35203}, {5266, 48930}, {10449, 13725}, {11106, 14930}, {14636, 37552}, {15973, 24239}, {15981, 37573}, {17596, 48919}, {37617, 48893}

X(50622) = crosssum of X(940) and X(28369)
X(50622) = {X(1),X(48883)}-harmonic conjugate of X(28369)


X(50623) = X(4)X(69)∩X(8)X(51)

Barycentrics    a*(a^4*b^2 + a^3*b^3 - a^2*b^4 - a*b^5 + 3*a^3*b^2*c - 3*a*b^4*c + a^4*c^2 + 3*a^3*b*c^2 + 2*a^2*b^2*c^2 - 2*a*b^3*c^2 - 2*b^4*c^2 + a^3*c^3 - 2*a*b^2*c^3 - 4*b^3*c^3 - a^2*c^4 - 3*a*b*c^4 - 2*b^2*c^4 - a*c^5) : :

X(50623) lies on these lines: {4, 69}, {8, 51}, {9, 1500}, {10, 21746}, {72, 519}, {75, 12109}, {78, 13724}, {386, 405}, {452, 20018}, {674, 3714}, {942, 37150}, {964, 40952}, {970, 1043}, {986, 6007}, {1724, 40984}, {3876, 14020}, {3883, 34790}, {3913, 4271}, {4192, 10461}, {4260, 13740}, {4274, 5255}, {4385, 9052}, {4662, 17330}, {4673, 45955}, {5943, 9534}, {6284, 22275}, {9564, 37573}, {10544, 17733}, {10974, 48863}, {16574, 37425}, {16980, 17135}, {19646, 29472}

X(50623) = {X(4),X(10477)}-harmonic conjugate of X(10381)


X(50624) = X(1)X(2)∩X(341)X(37730)

Barycentrics    2*a^4 - 2*a^3*b - a^2*b^2 + 2*a*b^3 - b^4 - 2*a^3*c - a^2*b*c - b^3*c - a^2*c^2 + 2*a*c^3 - b*c^3 - c^4 : :

X(50624) lies on these lines: {1, 2}, {341, 37730}, {511, 48935}, {944, 25406}, {1222, 37727}, {1265, 3488}, {1330, 11523}, {2099, 5100}, {4273, 17299}, {4385, 44669}, {4514, 5730}, {4645, 12559}, {4680, 41696}, {4737, 10950}, {4867, 4894}, {5015, 12635}, {5084, 44722}, {5135, 49688}, {5300, 34195}, {10572, 32937}, {11015, 32933}, {12433, 18743}, {17336, 50241}, {17647, 24349}, {17679, 26729}, {18990, 49499}, {24524, 44150}, {30615, 37724}, {36926, 37721}, {37080, 42378}


X(50625) = X(1)X(2)∩X(3)X(49460)

Barycentrics    a^3*b - a*b^3 + a^3*c + 3*a^2*b*c - 2*a*b^2*c - b^3*c - 2*a*b*c^2 - 2*b^2*c^2 - a*c^3 - b*c^3 : :
X(50625) = X[8] - 3 X[10449], 3 X[386] - 4 X[1125], 7 X[3622] - 3 X[20018], 12 X[20108] - 13 X[34595], 4 X[20108] - 3 X[42043], 13 X[34595] - 9 X[42043]

X(50625) lies on these lines: {1, 2}, {3, 49460}, {39, 17299}, {58, 32941}, {75, 3881}, {320, 34282}, {354, 28612}, {511, 12699}, {595, 32853}, {596, 39742}, {758, 4673}, {964, 16474}, {1043, 4278}, {1126, 25496}, {1150, 3746}, {1724, 32943}, {2140, 17296}, {2321, 4253}, {2891, 4388}, {3058, 49716}, {3159, 49448}, {3454, 33141}, {3555, 3706}, {3678, 49450}, {3686, 40270}, {3696, 5045}, {3702, 5904}, {3813, 41014}, {3873, 4647}, {3875, 16887}, {3876, 4975}, {3894, 17164}, {3902, 5903}, {3953, 32860}, {3966, 41814}, {3976, 49459}, {3996, 25440}, {4015, 18743}, {4101, 30384}, {4134, 19582}, {4359, 50190}, {4417, 24387}, {4684, 12609}, {4702, 31445}, {4793, 33815}, {4966, 31419}, {4981, 27785}, {5100, 40012}, {5264, 32919}, {5266, 49467}, {5288, 49492}, {5295, 34791}, {5741, 37720}, {6763, 32929}, {8715, 14829}, {10404, 39793}, {12513, 19762}, {15170, 49718}, {17144, 33297}, {17314, 25092}, {21070, 21384}, {24349, 42031}, {28581, 37592}, {28634, 36812}, {30941, 32104}, {31162, 48877}, {32945, 37522}, {45955, 50037}

X(50625) = X(39711)-anticomplementary conjugate of X(1330)
X(50625) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 29824, 1698}


X(50626) = X(1)X(256)∩X(56)X(181)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a*b^2 + b^3 + 3*b^2*c + a*c^2 + 3*b*c^2 + c^3) : :

X(50626) lies on these lines: {1, 256}, {7, 17143}, {51, 1201}, {56, 181}, {58, 41346}, {65, 519}, {73, 10475}, {145, 46716}, {213, 23630}, {373, 28352}, {388, 10449}, {551, 28389}, {956, 10822}, {959, 3227}, {960, 50093}, {970, 37617}, {978, 23841}, {986, 45955}, {1191, 3271}, {1193, 16980}, {1203, 19369}, {1357, 5221}, {1400, 4263}, {1460, 34046}, {1463, 3671}, {1573, 45208}, {2175, 22654}, {2300, 40969}, {3028, 47018}, {3216, 28385}, {3339, 7248}, {3361, 42043}, {3600, 20018}, {3779, 6762}, {3879, 24471}, {3881, 35650}, {3892, 49564}, {3917, 10459}, {3976, 12109}, {4014, 4295}, {4259, 12513}, {4673, 6007}, {5045, 48823}, {5433, 20108}, {5484, 35614}, {5640, 28370}, {5691, 12126}, {5943, 21214}, {7066, 22759}, {8666, 10974}, {10404, 39793}, {12680, 12723}, {13161, 35631}, {18732, 30493}, {20970, 41526}, {24440, 40649}, {28037, 37543}

X(50626) = X(7)-Ceva conjugate of X(21471)
X(50626) = crosssum of X(55) and X(391)
X(50626) = crossdifference of every pair of points on line {3287, 4976}
X(50626) = barycentric product X(i)*X(j) for these {i,j}: {651, 50345}, {2334, 21471}
X(50626) = barycentric quotient X(50345)/X(4391)
X(50626) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {65, 1401, 17114}, {1193, 16980, 23638}


X(50627) = X(1)X(256)∩X(386)X(474)

Barycentrics    a*(3*a^4*b^2 + 5*a^3*b^3 + a^2*b^4 - a*b^5 + 4*a^4*b*c + 7*a^3*b^2*c + 6*a^2*b^3*c + 3*a*b^4*c + 3*a^4*c^2 + 7*a^3*b*c^2 + 8*a^2*b^2*c^2 + 6*a*b^3*c^2 + 2*b^4*c^2 + 5*a^3*c^3 + 6*a^2*b*c^3 + 6*a*b^2*c^3 + 4*b^3*c^3 + a^2*c^4 + 3*a*b*c^4 + 2*b^2*c^4 - a*c^5) : :

X(50627) lies on these lines: {1, 256}, {274, 3945}, {386, 474}, {519, 37631}, {962, 50175}, {988, 48917}, {2274, 9565}, {5255, 48893}, {5266, 5453}, {5399, 5711}, {5712, 10449}, {9575, 15984}, {10106, 49745}, {15936, 41805}, {19860, 28368}, {20108, 37634}, {35203, 37617}, {37539, 43034}, {37599, 48924}


X(50628) = X(4)X(69)∩X(65)X(519)

Barycentrics    a*(a^4*b^2 + a^3*b^3 - a^2*b^4 - a*b^5 - a^3*b^2*c + a*b^4*c + a^4*c^2 - a^3*b*c^2 - 2*a^2*b^2*c^2 + 2*a*b^3*c^2 + 2*b^4*c^2 + a^3*c^3 + 2*a*b^2*c^3 + 4*b^3*c^3 - a^2*c^4 + a*b*c^4 + 2*b^2*c^4 - a*c^5) : :

X(50628) lies on these lines: {4, 69}, {8, 3917}, {65, 519}, {141, 18178}, {312, 29958}, {321, 23154}, {386, 474}, {942, 3879}, {946, 35626}, {970, 14829}, {986, 35104}, {1150, 22076}, {1211, 4187}, {1722, 28350}, {2810, 4385}, {3680, 45989}, {3702, 42448}, {3714, 8679}, {3812, 17392}, {3819, 9534}, {3831, 23638}, {3872, 47521}, {3882, 13731}, {5295, 11573}, {5883, 49564}, {6904, 20018}, {9565, 37607}, {10371, 41822}, {10822, 32853}, {12053, 21334}, {16574, 48917}, {16980, 17751}, {21746, 35633}, {32863, 41723}, {37150, 49557}, {37536, 41014}

X(50628) = {X(69),X(10441)}-harmonic conjugate of X(10381)


X(50629) = X(1)X(256)∩X(6)X(519)

Barycentrics    a*(a^4*b + 2*a^3*b^2 + a^2*b^3 + a^4*c - a^3*b*c + 2*a^2*b^2*c - a*b^3*c + b^4*c + 2*a^3*c^2 + 2*a^2*b*c^2 + 2*a*b^2*c^2 + b^3*c^2 + a^2*c^3 - a*b*c^3 + b^2*c^3 + b*c^4) : :

X(50629) lies on these lines: {1, 256}, {6, 519}, {182, 5255}, {386, 1386}, {611, 37542}, {613, 5710}, {940, 24216}, {995, 17792}, {1428, 5264}, {2329, 5039}, {2330, 37610}, {3098, 37617}, {3550, 5092}, {3729, 41622}, {3818, 33106}, {4263, 16972}, {15989, 49740}, {19130, 37716}, {20228, 36479}, {28365, 50305}, {37552, 38029}, {48827, 48922}

X(50629) = reflection of X(386) in X(1386)
X(50629) = crossdifference of every pair of points on line {3287, 9002}


X(50630) = X(1)X(256)∩X(36)X(386)

Barycentrics    a^2*(a^3*b^2 + a^2*b^3 - a*b^4 - b^5 + 2*a^2*b^2*c + a*b^3*c - b^4*c + a^3*c^2 + 2*a^2*b*c^2 - a*b^2*c^2 + b^3*c^2 + a^2*c^3 + a*b*c^3 + b^2*c^3 - a*c^4 - b*c^4 - c^5) : :

X(50630) lies on these lines: {1, 256}, {36, 386}, {43, 16980}, {46, 32913}, {51, 21214}, {181, 37608}, {519, 3868}, {942, 48825}, {958, 3792}, {1201, 3060}, {1408, 5363}, {1478, 10449}, {1743, 23630}, {2650, 23155}, {2979, 10459}, {3622, 20961}, {3877, 12579}, {3944, 35631}, {4293, 20018}, {5255, 37482}, {5640, 28352}, {5710, 7186}, {5752, 37617}, {8666, 41329}, {11002, 28370}, {11009, 49454}, {12047, 33064}, {15803, 42043}, {16569, 23841}, {25306, 49613}, {37536, 37716}

X(50630) = crossdifference of every pair of points on line {3287, 48277}
X(50630) = {X(28386),X(48909)}-harmonic conjugate of X(1)


X(50631) = X(1)X(256)∩X(81)X(386)

Barycentrics    a*(2*a^4*b^2 + 3*a^3*b^3 - a*b^5 + 2*a^4*b*c + 4*a^3*b^2*c + 3*a^2*b^3*c + a*b^4*c + 2*a^4*c^2 + 4*a^3*b*c^2 + 4*a^2*b^2*c^2 + 3*a*b^3*c^2 + b^4*c^2 + 3*a^3*c^3 + 3*a^2*b*c^3 + 3*a*b^2*c^3 + 2*b^3*c^3 + a*b*c^4 + b^2*c^4 - a*c^5) : :

X(50631) lies on these lines: {1, 256}, {81, 386}, {171, 2594}, {500, 5255}, {519, 2650}, {1724, 15988}, {3061, 15989}, {3550, 48893}, {3936, 37693}, {4340, 20018}, {10449, 17778}, {10471, 34282}, {10944, 49745}, {17596, 48917}, {18169, 22076}, {33106, 48937}, {37617, 48882}, {37716, 48931}, {45287, 46483}

X(50631) = {X(28369),X(48909)}-harmonic conjugate of X(1)


X(50632) = X(4)X(69)∩X(6)X(519)

Barycentrics    a^5*b - a^4*b^2 + a^2*b^4 - a*b^5 + a^5*c + a^4*b*c - a*b^4*c - b^5*c - a^4*c^2 - 2*a^2*b^2*c^2 - 2*a*b^3*c^2 - 2*b^4*c^2 - 2*a*b^2*c^3 - 2*b^3*c^3 + a^2*c^4 - a*b*c^4 - 2*b^2*c^4 - a*c^5 - b*c^5 : :
X(50632) = X[69] - 3 X[10449], 3 X[386] - 4 X[3589]

X(50632) lies on these lines: {4, 69}, {6, 519}, {141, 16052}, {182, 1043}, {386, 3589}, {405, 25101}, {983, 1724}, {1011, 3977}, {3098, 14829}, {3729, 11355}, {4052, 49505}, {4417, 19130}, {5480, 41014}, {5774, 10387}, {11346, 17339}, {11357, 25072}, {19723, 30615}

X(50632) = crossdifference of every pair of points on line {3049, 9002}


X(50633) = X(4)X(69)∩X(81)X(386)

Barycentrics    a*(a^4*b^2 + a^3*b^3 - a^2*b^4 - a*b^5 + a^4*c^2 - a^2*b^2*c^2 + a*b^3*c^2 + b^4*c^2 + a^3*c^3 + a*b^2*c^3 + 2*b^3*c^3 - a^2*c^4 + b^2*c^4 - a*c^5) : :

X(50633) lies on these lines: {4, 69}, {8, 2979}, {10, 25279}, {75, 11573}, {81, 386}, {222, 19845}, {270, 394}, {519, 3868}, {942, 17378}, {1043, 37482}, {1320, 15315}, {2476, 3909}, {3057, 37038}, {3714, 9037}, {3754, 48868}, {3917, 9534}, {4190, 20018}, {4193, 17182}, {4385, 8679}, {4417, 37536}, {4968, 23155}, {5187, 31026}, {5752, 14829}, {5836, 48816}, {7283, 26892}, {7535, 28965}, {10916, 25306}, {10974, 37683}, {13740, 37516}, {16062, 18178}, {17391, 43220}, {18134, 18180}, {25253, 30438}


X(50634) = X(4)X(69)∩X(30)X(4673)

Barycentrics    b*c*(-2*a^5 - 3*a^4*b + 3*a^2*b^3 + 2*a*b^4 - 3*a^4*c - 2*a^3*b*c + 6*a^2*b^2*c + 6*a*b^3*c + b^4*c + 6*a^2*b*c^2 + 8*a*b^2*c^2 + 3*b^3*c^2 + 3*a^2*c^3 + 6*a*b*c^3 + 3*b^2*c^3 + 2*a*c^4 + b*c^4) : :

X(50634) lies on these lines: {4, 69}, {30, 4673}, {75, 49743}, {312, 49716}, {341, 49718}, {386, 16454}, {500, 1043}, {519, 2650}, {524, 4385}, {3578, 3701}, {3886, 48897}, {3902, 45287}, {4205, 30939}, {4417, 48931}, {5295, 49557}, {14829, 48882}, {17144, 50177}, {28612, 50226}, {41014, 48933}, {46937, 49724}


X(50635) = X(1)X(256)∩X(6)X(979)

Barycentrics    a*(a^4*b + 3*a^3*b^2 + a^2*b^3 - a*b^4 + a^4*c - a^3*b*c + 2*a^2*b^2*c - a*b^3*c + b^4*c + 3*a^3*c^2 + 2*a^2*b*c^2 + 2*a*b^2*c^2 + b^3*c^2 + a^2*c^3 - a*b*c^3 + b^2*c^3 - a*c^4 + b*c^4) : :
X(50635) = 2 X[386] - 3 X[16475]

X(50635) lies on these lines: {1, 256}, {6, 979}, {171, 613}, {182, 3550}, {386, 16475}, {519, 1992}, {611, 37588}, {978, 17792}, {1193, 25304}, {1350, 37617}, {1352, 33106}, {1428, 37603}, {2108, 42043}, {3416, 37717}, {3507, 16468}, {3729, 32451}, {3749, 14547}, {3915, 15988}, {3976, 24471}, {4339, 20018}, {5480, 37716}, {5847, 10449}, {10387, 37573}, {16496, 29698}


X(50636) = X(4)X(69)∩X(6)X(1043)

Barycentrics    (a - b - c)*(a^4*b - a^3*b^2 - a^2*b^3 + a*b^4 + a^4*c + 3*a^3*b*c + 2*a^2*b^2*c + a*b^3*c + b^4*c - a^3*c^2 + 2*a^2*b*c^2 + 2*a*b^2*c^2 + b^3*c^2 - a^2*c^3 + a*b*c^3 + b^2*c^3 + a*c^4 + b*c^4) : :
X(50636) = 4 X[386] - 5 X[3618]

X(50636) lies on these lines: {4, 69}, {6, 1043}, {8, 3056}, {9, 1265}, {304, 5728}, {312, 1864}, {332, 33745}, {341, 18247}, {345, 14547}, {386, 3618}, {518, 4673}, {519, 1992}, {894, 5716}, {1350, 14829}, {1469, 10453}, {3486, 3685}, {3786, 14555}, {3944, 49511}, {3974, 7077}, {4417, 5480}, {5739, 26096}, {7008, 44189}, {17135, 20557}, {17751, 25304}, {17789, 24349}, {21850, 41014}, {24282, 32118}, {24342, 50407}

X(50636) = reflection of X(i) in X(j) for these {i,j}: {69, 10449}, {20018, 6}


X(50637) = X(1)X(2)∩X(106)X(474)

Barycentrics    a*(a^2*b + a*b^2 + a^2*c - 3*a*b*c + 2*b^2*c + a*c^2 + 2*b*c^2) : :
X(50637) = 7 X[1] - 3 X[42043], 7 X[386] - 6 X[42043], 5 X[3616] - 4 X[20108], 5 X[3623] - X[20018]

X(50637) lies on these lines: {1, 2}, {21, 16499}, {31, 5288}, {37, 31792}, {38, 5697}, {58, 12513}, {106, 474}, {511, 1482}, {581, 37727}, {595, 956}, {596, 17480}, {872, 49689}, {944, 48897}, {958, 40091}, {984, 3884}, {986, 2802}, {991, 5882}, {993, 37588}, {996, 1222}, {1120, 43531}, {1320, 15315}, {1457, 37709}, {1483, 5453}, {1573, 16969}, {1616, 9708}, {2476, 24222}, {2975, 37610}, {3057, 17461}, {3303, 4653}, {3445, 16408}, {3476, 4306}, {3670, 14923}, {3722, 37571}, {3730, 16975}, {3736, 49460}, {3754, 3976}, {3880, 37592}, {3885, 4424}, {3913, 4256}, {3915, 5258}, {3918, 17063}, {3999, 4004}, {4051, 16600}, {4127, 49503}, {4253, 17448}, {4257, 5255}, {4263, 16777}, {4360, 34282}, {4390, 5299}, {4414, 37563}, {4482, 7770}, {4595, 7786}, {5044, 45219}, {5105, 17299}, {5109, 50087}, {5145, 32941}, {5266, 11260}, {5270, 33104}, {5275, 9327}, {5818, 32486}, {5836, 24046}, {7174, 29740}, {8715, 37617}, {10571, 10944}, {11009, 49454}, {11108, 16486}, {11533, 13541}, {13161, 49600}, {13744, 38504}, {16496, 29698}, {17054, 40587}, {17715, 35016}, {21342, 50193}, {24387, 37716}, {29066, 29739}, {31514, 38496}, {33895, 49465}

X(50637) = midpoint of X(145) and X(10449)
X(50637) = reflection of X(386) in X(1)
X(50637) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 8, 995}, {1, 1698, 1149}, {1, 3632, 1193}, {1, 3633, 42}, {1, 3679, 1201}, {1, 3961, 30144}, {1, 19861, 47622}, {1, 49494, 5262}, {8, 3241, 20041}, {956, 37542, 595}, {1201, 3679, 17749}, {1222, 13740, 996}, {5255, 8666, 4257}


X(50638) = X(1)X(2)∩X(382)X(511)

Barycentrics    3*a^3*b + a^2*b^2 - 2*a*b^3 + 3*a^3*c + 3*a^2*b*c - 2*a*b^2*c - 2*b^3*c + a^2*c^2 - 2*a*b*c^2 - 4*b^2*c^2 - 2*a*c^3 - 2*b*c^3 : :
X(50638) = 6 X[2] - 5 X[386], 3 X[2] - 5 X[10449], 9 X[2] - 5 X[20018], 21 X[2] - 20 X[20108], 3 X[386] - 2 X[20018], 7 X[386] - 8 X[20108], 3 X[10449] - X[20018], 7 X[10449] - 4 X[20108], 7 X[20018] - 12 X[20108]

X(50638) lies on these lines: {1, 2}, {382, 511}, {579, 17299}, {1043, 4257}, {3754, 49459}, {3901, 4365}, {4720, 37522}, {5156, 49460}, {5165, 50087}, {5288, 16452}, {7855, 36707}, {12433, 17362}, {16451, 48696}, {31794, 49468}, {48839, 49718}, {48841, 49728}, {48868, 49734}

X(50638) = reflection of X(386) in X(10449)


X(50639) = X(2)X(5503)∩X(99)X(524)

Barycentrics    a^6 - 6*a^4*b^2 + 9*a^2*b^4 - 2*b^6 - 6*a^4*c^2 + 3*a^2*b^2*c^2 - 3*b^4*c^2 + 9*a^2*c^4 - 3*b^2*c^4 - 2*c^6 : :
X(50639) = X[10754] - 4 X[50567], 2 X[6] - 3 X[41134], 2 X[1992] - 3 X[5182], 4 X[2482] - 3 X[5182], 2 X[115] - 3 X[21356], 4 X[141] - 3 X[9166], 5 X[3618] - 6 X[9167], 7 X[3619] - 6 X[14971], 5 X[3620] - 4 X[19662], 5 X[3620] - 3 X[41135], 4 X[19662] - 3 X[41135], 2 X[5107] - 3 X[41137], 3 X[6034] - 4 X[20582], 2 X[6055] - 3 X[10519], 3 X[6393] - 2 X[22110], 3 X[7799] - 2 X[41146], 4 X[11178] - 3 X[14639], 2 X[11179] - 3 X[21166], 5 X[14061] - 6 X[21358], 2 X[14928] + X[20080], 2 X[20423] - 3 X[23234], 2 X[40341] + X[45018]

X(50639) lies on these lines: {2, 5503}, {6, 41134}, {20, 542}, {32, 1992}, {69, 543}, {76, 338}, {99, 524}, {115, 21356}, {141, 9166}, {193, 18800}, {325, 9877}, {511, 6054}, {597, 7807}, {1641, 4563}, {2799, 39905}, {3618, 9167}, {3619, 14971}, {3620, 19662}, {4576, 10717}, {5026, 15534}, {5107, 41137}, {5181, 9144}, {5461, 14064}, {5477, 36521}, {5648, 15342}, {5976, 11163}, {6034, 7944}, {6055, 10519}, {6390, 16508}, {6393, 22110}, {7608, 15850}, {7799, 41146}, {7929, 8596}, {7983, 47358}, {8366, 10542}, {8724, 10753}, {8787, 33235}, {9169, 45672}, {9830, 11057}, {9884, 28538}, {10554, 35356}, {10722, 19924}, {10723, 47353}, {11006, 48953}, {11054, 15993}, {11178, 14639}, {11179, 21166}, {11180, 23698}, {11632, 48876}, {11646, 22165}, {14061, 21358}, {14916, 35279}, {14928, 20080}, {15300, 47102}, {19911, 39099}, {20423, 23234}, {22247, 31401}, {23055, 46236}, {25562, 31670}, {40341, 45018}

X(50639) = midpoint of X(8591) and X(11160)
X(50639) = reflection of X(i) in X(j) for these {i,j}: {2, 50567}, {193, 18800}, {671, 599}, {1992, 2482}, {5477, 36521}, {7983, 47358}, {8593, 99}, {9144, 5181}, {10723, 47353}, {10753, 8724}, {10754, 2}, {11054, 15993}, {11161, 69}, {11632, 48876}, {11646, 22165}, {15342, 5648}, {15534, 5026}, {22486, 5976}, {31670, 25562}, {39099, 39785}
X(50639) = crossdifference of every pair of points on line {9135, 9171}
X(50639) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1992, 2482, 5182}, {3620, 41135, 19662}


X(50640) = X(2)X(694)∩X(99)X(511)

Barycentrics    2*a^6*b^4 - 3*a^4*b^6 + a^2*b^8 + 3*a^6*b^2*c^2 - 3*a^4*b^4*c^2 - a^2*b^6*c^2 + 2*a^6*c^4 - 3*a^4*b^2*c^4 + 3*a^2*b^4*c^4 + b^6*c^4 - 3*a^4*c^6 - a^2*b^2*c^6 + b^4*c^6 + a^2*c^8 : :
X(50640) = 3 X[6034] - 4 X[10007], 2 X[5052] - 3 X[5182], 2 X[13354] - 3 X[21166]

X(50640) lies on these lines: {2, 694}, {6, 39652}, {20, 22679}, {39, 10754}, {69, 2782}, {76, 22677}, {99, 511}, {325, 9772}, {524, 11152}, {542, 11057}, {698, 15993}, {1350, 5989}, {1569, 14645}, {1975, 44453}, {2076, 19120}, {2482, 22486}, {3095, 6337}, {3098, 5152}, {3552, 5026}, {4027, 5017}, {5052, 5182}, {5104, 8289}, {6393, 15980}, {6655, 11646}, {7863, 32452}, {9607, 32476}, {9830, 33264}, {13354, 21166}, {14994, 19905}, {19911, 41137}, {35705, 40236}

X(50640) = reflection of X(i) in X(j) for these {i,j}: {76, 50567}, {1916, 3094}, {10754, 39}, {13330, 5026}, {18906, 5976}, {22486, 2482}, {32451, 1569}, {43532, 22677}
X(50640) = {X(25332),X(36790)}-harmonic conjugate of X(40708)


X(50641) = X(2)X(98)∩X(99)X(1503)

Barycentrics    3*a^10 - 4*a^8*b^2 + 6*a^6*b^4 - 6*a^4*b^6 + 3*a^2*b^8 - 2*b^10 - 4*a^8*c^2 + 3*a^6*b^2*c^2 - 3*a^4*b^4*c^2 + a^2*b^6*c^2 + 3*b^8*c^2 + 6*a^6*c^4 - 3*a^4*b^2*c^4 - b^6*c^4 - 6*a^4*c^6 + a^2*b^2*c^6 - b^4*c^6 + 3*a^2*c^8 + 3*b^2*c^8 - 2*c^10 : :
X(50641) = 4 X[114] - 3 X[5182], 3 X[5182] - 2 X[6776], 4 X[6036] - 5 X[40330], 3 X[6054] - 2 X[12177], 3 X[8593] - 4 X[12177], 2 X[11179] - 3 X[23234], 3 X[23234] - 4 X[25562], 4 X[141] - 3 X[34473], 4 X[620] - 3 X[25406], 5 X[3618] - 6 X[36519], 7 X[3619] - 6 X[38737], 4 X[3818] - 3 X[14639], 3 X[9166] - 4 X[47354], 6 X[10516] - 5 X[14061], 3 X[10519] - 2 X[38749], 3 X[15561] - 2 X[48906], 4 X[18358] - 3 X[38224], 3 X[21166] - 2 X[46264], 3 X[38704] - 4 X[47557], 3 X[38743] - X[39899], 3 X[41134] - 2 X[43273]

X(50641) lies on these lines: {2, 98}, {4, 10754}, {20, 50567}, {69, 2794}, {76, 15069}, {99, 1503}, {141, 34473}, {325, 22664}, {511, 10722}, {620, 25406}, {671, 47353}, {690, 41737}, {1350, 11057}, {1351, 22505}, {2782, 18440}, {2784, 3663}, {3023, 39891}, {3027, 39892}, {3564, 6033}, {3618, 36519}, {3619, 38737}, {3767, 5477}, {3818, 14639}, {5152, 45018}, {5254, 11646}, {5969, 10723}, {6321, 39884}, {6337, 14981}, {7795, 10991}, {7828, 8550}, {8716, 9830}, {9166, 47354}, {9863, 34507}, {9873, 23235}, {10516, 14061}, {10519, 38749}, {11645, 12117}, {11898, 38744}, {12184, 39873}, {12185, 39897}, {13188, 48662}, {14645, 39838}, {14927, 38738}, {14982, 15342}, {15561, 48906}, {15581, 33802}, {18358, 38224}, {18768, 36997}, {20774, 43976}, {21166, 46264}, {22573, 41042}, {22574, 41043}, {32451, 38383}, {32469, 32476}, {33340, 39887}, {33341, 39888}, {38704, 47557}, {38741, 48876}, {38743, 39899}, {39803, 39879}, {41134, 43273}

X(50641) = midpoint of X(i) and X(j) for these {i,j}: {147, 5921}, {11898, 38744}, {13188, 48662}
X(50641) = reflection of X(i) in X(j) for these {i,j}: {20, 50567}, {98, 1352}, {671, 47353}, {1351, 22505}, {5477, 38745}, {6321, 39884}, {6776, 114}, {8593, 6054}, {10723, 36990}, {10753, 6033}, {10754, 4}, {11161, 11180}, {11179, 25562}, {14927, 38738}, {15342, 14982}, {32451, 38383}, {38664, 11646}, {38741, 48876}
X(50641) = reflection of X(41737) in the Fermat line
X(50641) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {114, 6776, 5182}, {11179, 25562, 23234}


X(50642) = X(6)X(8057)∩X(125)X(14117)

Barycentrics    (b^2 - c^2)*(-7*a^6 + a^4*b^2 + 3*a^2*b^4 + 3*b^6 + a^4*c^2 + 2*a^2*b^2*c^2 - 3*b^4*c^2 + 3*a^2*c^4 - 3*b^2*c^4 + 3*c^6) : :
X(50642) = X[6] + 3 X[47125], 3 X[2501] + X[3288], 7 X[3619] - 3 X[4143]

X(50642) lies on these lines: {6, 8057}, {125, 14117}, {419, 2501}, {523, 47454}, {525, 3239}, {1499, 1514}, {3619, 4143}

X(50642) = X(32676)-complementary conjugate of X(7710)
X(50642) = crossdifference of every pair of points on line {154, 3917}
X(50642) = barycentric product X(523)*X(14927)
X(50642) = barycentric quotient X(14927)/X(99)


X(50643) = X(2)X(6002)∩X(98)X(2384)

Barycentrics    (b - c)*(-3*a^5 - 2*a^3*b^2 - 4*a^2*b^3 + a*b^4 - 7*a^3*b*c + 3*a^2*b^2*c - a*b^3*c + b^4*c - 2*a^3*c^2 + 3*a^2*b*c^2 - 4*a*b^2*c^2 + 3*b^3*c^2 - 4*a^2*c^3 - a*b*c^3 + 3*b^2*c^3 + a*c^4 + b*c^4) : :

X(50643) lies on these lines: {2, 6002}, {98, 2384}, {111, 44873}, {649, 3239}, {4729, 7172}, {4893, 28470}, {6998, 28312}, {17496, 44435}, {28468, 47773}, {28478, 47771}, {28490, 48156}


X(50644) = X(6)X(38359)∩X(74)X(5915)

Barycentrics    (b^2 - c^2)*(-7*a^6 + 13*a^4*b^2 - 9*a^2*b^4 + 3*b^6 + 13*a^4*c^2 + 2*a^2*b^2*c^2 - 3*b^4*c^2 - 9*a^2*c^4 - 3*b^2*c^4 + 3*c^6) : :
X(50644) = 4 X[3288] - 3 X[47122]

X(50644) lies on these lines: {6, 38359}, {74, 5915}, {323, 401}, {523, 47281}, {647, 14471}, {690, 9209}, {2501, 3566}, {2519, 6753}

X(50644) = crosssum of X(8651) and X(39764)
X(50644) = crossdifference of every pair of points on line {51, 3167}


leftri

Intersection of radical axes involving apollonian circles: X(50645)-X(50686)

rightri

This preamble and centers X(50645)-X(50686) were contributed by César Eliud Lozada, June 13, 2022.

Let ABC be a triangle. Let A', A" be the points at which the A-internal and the A-external angle bisectors cut BC. The circle with diameter A'A" is called the A-apollonian circle of ABC, and the B- and the C- apollonian circles are built similarly.

Let Ω be any other circle and let ra, rb, rc be the radical axes of Ω and the A-, B- and C- apollonian circles of ABC, respectively. Then ra, rb, rc concur in a point on the Brocard axis of ABC.

If X, Y, Z are the powers of Ω with respect to A, B, C, respectively, then Q(Ω), the point of intersection of ra, rb, rc, is:

Q(Ω) = a^2*(-a^2*b^2*c^2+(a^2-b^2)*Y*b^2+(a^2-c^2)*Z*c^2) : b^2*(-a^2*b^2*c^2+(b^2-c^2)*c^2*Z+(b^2-a^2)*X*a^2) : c^2*(-a^2*b^2*c^2+(c^2-a^2)*X*a^2+(-b^2+c^2)*Y*b^2)

If Ω is a circle with center O* = x0:y0:z0 and radius ρ, then

Q(O*, ρ) = a^2*(b^2*((-(b^2+c^2)*a^2+c^4+b^4)*ρ^2-a^2*c^2*(-a^2+b^2+c^2))*y0^2+c^2*((-(b^2+c^2)*a^2+c^4+b^4)*ρ^2-a^2*b^2*(-a^2+b^2+c^2))*z0^2+a^2*((-(b^2+c^2)*a^2+c^4+b^4)*ρ^2-b^2*c^2*(-a^2+b^2+c^2))*x0^2-2*b*c*(((b^2+c^2)*a^2-b^4-c^4)*ρ^2+a^2*b^2*c^2)*y0*z0+a*c*((-2*(b^2+c^2)*a^2+2*b^4+2*c^4)*ρ^2+b^2*(a^4-(2*b^2+c^2)*a^2+(b^2-c^2)*b^2))*z0*x0+a*b*((-2*(b^2+c^2)*a^2+2*b^4+2*c^4)*ρ^2+c^2*(a^4-(b^2+2*c^2)*a^2-(b^2-c^2)*c^2))*x0*y0) : :

Here, if we make ρ = 0, we can name Q(O*, ρ=0) = Q(O*) as the apollonian image of O*, to be considered later.

In the following list, (Ω, n) indicates that Q(Ω) = X(n):

(anti-Artzt circle, 50672), (anticomplementary circle, 50645), (Artzt circle, 50673), (Bevan circle, 579), (2nd Brocard circle, 3094), (1st Brocard circle, 574), (circumcircle, 6), ((circumcircle, incircle)-inverter, 14520), (Conway circle, 50646), (Dao-Moses-Telv circle, 3), (Dao-symmedial circle, 39), (Dou circle, 50647), (Dou circles radical circle, 3), (1st Droz-Farny circle, 50648), (2nd Droz-Farny circle, 50649), (Ehrmann circle, 6), (1st Evans circle, 573), (2nd Evans circle, 573), (excircles radical circle, 50650), (Fuhrmann circle, 50651), (Gallatly circle, 50652), (GEOS circle, 50653), (half-Moses circle, 50654), (hexyl circle, 50656), (Hatzipolakis-Suppa circle, 50655), (Hung circle, 50674), (Hutson-Parry circle, 574), (incentral circle, 50657), (incircle, 50658), (incircle of anticomplementary triangle, 50686), (incircle-of-orthic triangle, 50675), (Johnson triangle circumcircle, 50676), (Kenmotu circle, 371), (outer-Kenmotu, 372), (1st Lemoine circle, 50659), (2nd Lemoine (or cosine) circle, 5050), (Lester circle, 50660), (Longuet-Higgins circle, 50661), (2nd Lozada circle, 50679), (3rd Lozada circle, 50680), (4th Lozada circle, 50681), (5th Lozada circle, 5050), (6th Lozada circle, 50682), (7th Lozada circle, 50683), (8th Lozada circle, 50684), (9th Lozada circle, 50685), (10th Lozada circle, 371), (11th Lozada circle, 372), (Lucas(+1) circles radical circle, 6221), (Lucas(-1) circles radical circle, 6398), (Lucas(+1) inner, 6468), (Lucas(-1) inner, 6469), (mixtilinear incircles radical circle, 50677), (inner Montesdeoca-Lemoine circle, 50662), (outer Montesdeoca-Lemoine circle, 50663), (Moses circle, 50664), (Moses-Parry circle, 3), (inner-Napoleon circle, 3106), (outer-Napoleon circle, 3107), (Neuberg circles radical circle, 50665), (Nguyen-Moses circle, 11477), (nine-point circle, 570), (orthocentroidal circle, 566), (orthoptic circle of Steiner inellipse, 39), (orthosymmedial circle, 50678), (polar circle, 216), (power circles radical circle, 50666), (reflection circle, 50667), (Stammler circle, 37517), (1st Steiner circle, 50668), (2nd Steiner circle, 50669), (Stevanovic circle, 3), (symmedial circle, 50670), (tangential circle, 571), (Taylor circle, 50671), (Yff contact circle, 573)

Definition of these central circles can be found in the Alphabetical Index of Terms in ETC or in Wolfram's Triangle Circles.


X(50645) = {APOLLONIAN CIRCLES, ANTICOMPLEMENTARY CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*((b^4+b^2*c^2+c^4)*a^2-b^6-c^6) : :
X(50645) = 3*X(30258)-4*X(50676)

X(50645) lies on these lines: {2, 20819}, {3, 6}, {4, 28728}, {66, 36214}, {69, 23635}, {160, 9019}, {193, 20975}, {206, 6660}, {264, 305}, {311, 37988}, {393, 2967}, {418, 40681}, {1176, 46546}, {1370, 3164}, {1634, 9973}, {1843, 36212}, {1916, 8264}, {1993, 40947}, {2393, 20794}, {2450, 39113}, {2971, 32827}, {2979, 22062}, {3060, 22087}, {3148, 20806}, {3167, 33582}, {3964, 12167}, {3981, 8265}, {6033, 13556}, {7499, 7792}, {7667, 41624}, {7778, 14767}, {7795, 42442}, {7796, 40035}, {9407, 19122}, {9766, 34609}, {9969, 11328}, {12220, 20775}, {12836, 18170}, {13409, 40680}, {14575, 37183}, {14790, 32428}, {16043, 22424}, {16327, 46517}, {21213, 44089}, {21531, 41760}, {23335, 45279}, {23646, 35892}, {24318, 29673}, {25332, 40697}, {26870, 42441}, {27369, 28710}, {31099, 40896}, {31360, 42313}, {31952, 34146}, {37466, 42406}, {44376, 45838}

X(50645) = midpoint of X(3164) and X(44443)
X(50645) = barycentric product X(i)*X(j) for these {i, j}: {343, 19197}, {1502, 33728}
X(50645) = trilinear product X(561)*X(33728)
X(50645) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (6, 3001, 50666), (570, 3313, 3), (3095, 50666, 6), (13351, 41328, 11171)


X(50646) = {APOLLONIAN CIRCLES, CONWAY CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*((b^3+c^3)*a^3+(b^2+b*c+c^2)*b*c*a^2-(b+c)*(b^4+c^4-b*c*(b^2-b*c+c^2))*a-b*c*(b^4+c^4)) : :

X(50646) lies on these lines: {3, 6}, {76, 24523}, {516, 10441}, {517, 49475}, {940, 21746}, {980, 3056}, {1742, 1764}, {3271, 27623}, {3664, 3784}, {3817, 3840}, {3819, 16345}, {3888, 29981}, {4297, 29311}, {4416, 26892}, {5650, 16355}, {10436, 22412}, {10446, 20788}, {15310, 22793}, {31394, 50317}

X(50646) = reflection of X(i) in X(j) for these (i, j): (5752, 48886), (48902, 37536)


X(50647) = {APOLLONIAN CIRCLES, DOU CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(a^4-2*(b^2+c^2)*a^2+b^4+c^4)*((b^2+c^2)*a^6-(3*b^4-2*b^2*c^2+3*c^4)*a^4+3*(b^4-c^4)*(b^2-c^2)*a^2-(b^2-c^2)^4) : :

X(50647) lies on these lines: {3, 6}, {4, 47731}, {1299, 8882}, {1843, 6754}, {1879, 12162}, {2165, 13754}, {9722, 12359}, {39111, 47328}, {40939, 47421}

X(50647) = barycentric product X(24)*X(12359)
X(50647) = trilinear product X(47)*X(9722)
X(50647) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(12359)}} and {{A, B, C, X(6), X(9722)}}
X(50647) = X(281)-of-orthic triangle, when ABC is acute
X(50647) = {X(12239), X(12240)}-harmonic conjugate of X(52)


X(50648) = {APOLLONIAN CIRCLES, 1st DROZ-FARNY CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*((b^2+c^2)*a^8-4*(b^4+b^2*c^2+c^4)*a^6+2*(b^2+c^2)*(3*b^4-b^2*c^2+3*c^4)*a^4-2*(2*b^8+2*c^8-b^2*c^2*(b^4+c^4))*a^2+(b^4-c^4)*(b^2-c^2)^3) : :

X(50648) lies on these lines: {3, 6}, {5, 34981}, {49, 7669}, {54, 14060}, {264, 7769}, {1594, 39530}, {7558, 7828}, {13371, 23333}, {13561, 15345}, {14160, 33842}, {14570, 37121}, {15122, 16333}, {15850, 34834}, {23635, 41714}, {34507, 36212}, {37335, 43811}, {37444, 42329}

X(50648) = {X(14630), X(14631)}-harmonic conjugate of X(36753)


X(50649) = {APOLLONIAN CIRCLES, 2nd DROZ-FARNY CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*((b^2+c^2)*a^8-2*(b^2+c^2)^2*a^6+6*(b^2+c^2)*b^2*c^2*a^4+2*(b^2-c^2)^2*(b^4+c^4)*a^2-(b^8-c^8)*(b^2-c^2)) : :
X(50649) = 3*X(6)-2*X(389) = 5*X(6)-2*X(21851) = 3*X(6)-X(37473) = 3*X(6)-4*X(44495) = 4*X(389)-3*X(19161) = 5*X(389)-3*X(21851) = 2*X(389)+3*X(44439) = 3*X(568)-5*X(11482) = 4*X(575)-3*X(9730) = 3*X(1350)-4*X(13348) = 3*X(1351)-X(6243) = 3*X(3313)-2*X(10625) = 9*X(5085)-8*X(17704) = X(6243)+3*X(18438) = 3*X(9967)-X(10625) = 7*X(10541)-6*X(16836) = 3*X(11574)-2*X(13348) = 5*X(19161)-4*X(21851) = 3*X(19161)-2*X(37473) = X(19161)+2*X(44439) = 3*X(19161)-8*X(44495)

X(50649) lies on these lines: {3, 6}, {4, 2393}, {5, 5181}, {24, 19136}, {25, 34787}, {30, 15074}, {49, 45016}, {51, 468}, {54, 1177}, {69, 6816}, {74, 43812}, {141, 23308}, {143, 34351}, {184, 11470}, {185, 1205}, {193, 41716}, {206, 9707}, {235, 1843}, {373, 11746}, {381, 43130}, {427, 41603}, {524, 5562}, {542, 12162}, {597, 40929}, {599, 11793}, {895, 7527}, {1181, 9914}, {1216, 39571}, {1352, 9927}, {1495, 15582}, {1503, 1885}, {1593, 8549}, {1974, 15577}, {1992, 5889}, {2854, 15030}, {2904, 45110}, {2979, 11433}, {3060, 7493}, {3091, 11188}, {3516, 10249}, {3520, 5622}, {3541, 23327}, {3542, 6403}, {3564, 5876}, {3567, 35486}, {3618, 15028}, {3819, 26958}, {3917, 13567}, {5012, 37929}, {5133, 27365}, {5446, 20423}, {5489, 8675}, {5650, 47296}, {5890, 35485}, {5891, 18390}, {5907, 8681}, {6241, 6776}, {6288, 18553}, {6291, 45862}, {6406, 45863}, {7503, 41614}, {7507, 23049}, {7526, 8548}, {7998, 37643}, {8537, 15033}, {8540, 19365}, {8541, 11424}, {8584, 14831}, {9019, 12233}, {9027, 11459}, {9920, 19596}, {9925, 15068}, {9968, 11456}, {9970, 32245}, {9971, 10110}, {10182, 47455}, {10192, 44079}, {10263, 16618}, {10282, 18374}, {10516, 14913}, {10558, 19330}, {10752, 15032}, {10982, 45015}, {11179, 40647}, {11180, 15058}, {11412, 11821}, {11429, 19369}, {11649, 11799}, {11695, 47352}, {12038, 15462}, {12111, 15531}, {12220, 37201}, {12298, 14233}, {12299, 14230}, {12309, 17814}, {12584, 38851}, {12593, 38676}, {13142, 31807}, {13248, 15472}, {13367, 44102}, {13417, 44109}, {13754, 32284}, {14094, 16510}, {14118, 37784}, {14130, 39562}, {14641, 46264}, {14912, 22829}, {15026, 16238}, {15118, 37118}, {15274, 34854}, {15303, 25711}, {15581, 26883}, {15873, 41585}, {16227, 47460}, {17040, 43695}, {17710, 29181}, {18350, 43829}, {18475, 45171}, {18560, 36201}, {18925, 41719}, {19118, 23041}, {19128, 45172}, {19130, 41714}, {19149, 19459}, {19153, 19357}, {21969, 44210}, {22151, 34148}, {22467, 43815}, {24206, 50143}, {25406, 30552}, {31725, 48901}, {32142, 48876}, {32205, 38079}, {32260, 32274}, {32411, 44214}, {34469, 34778}, {34622, 43273}, {34786, 36990}, {34986, 41615}, {37072, 46057}, {37648, 41673}, {41729, 46444}, {43586, 43811}, {43604, 43810}, {44870, 47353}

X(50649) = midpoint of X(i) and X(j) for these {i, j}: {4, 15073}, {6, 44439}, {193, 41716}, {1351, 18438}, {6467, 12294}
X(50649) = reflection of X(i) in X(j) for these (i, j): (3, 44479), (52, 576), (185, 8550), (389, 44495), (1350, 11574), (1843, 5480), (3313, 9967), (6403, 9969), (6776, 32366), (14831, 8584), (15069, 5907), (19161, 6), (32260, 32274), (37473, 389), (37511, 182), (41714, 19130)
X(50649) = intersection, other than A, B, C, of circumconics {{A, B, C, X(32), X(14457)}} and {{A, B, C, X(54), X(14961)}}
X(50649) = X(5698)-of-orthic triangle, when ABC is acute
X(50649) = X(13200)-of-1st orthosymmedial triangle
X(50649) = X(15073)-of-Euler triangle
X(50649) = X(34787)-of-anti-Ara triangle
X(50649) = X(43130)-of-anti-Ehrmann-mid triangle
X(50649) = X(44479)-of-X3-ABC reflections triangle
X(50649) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (3, 1351, 44492), (6, 37473, 389), (184, 11470, 34117), (185, 40673, 8550), (389, 13348, 1192), (389, 37473, 19161), (389, 44479, 35371), (389, 44495, 6), (576, 578, 6), (1351, 36749, 576), (1593, 10602, 8549), (6243, 11426, 389), (6403, 14853, 9969), (8538, 13352, 44469), (15644, 46363, 9786)


X(50650) = {APOLLONIAN CIRCLES, EXCIRCLES RADICAL CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*((b^2+c^2)*a^4-2*(b+c)*b*c*a^3-2*(b^4+b^2*c^2+c^4)*a^2+2*(b^3+c^3)*b*c*a+(b^4-c^4)*(b^2-c^2)) : :

X(50650) lies on these lines: {1, 22071}, {3, 6}, {5, 46838}, {36, 2197}, {37, 140}, {952, 21858}, {1400, 13006}, {1470, 22132}, {1575, 37365}, {1765, 3216}, {1766, 2277}, {2077, 16470}, {2260, 22059}, {2286, 40293}, {2303, 6940}, {2815, 22092}, {3666, 3911}, {4868, 37528}, {5301, 26285}, {6700, 17355}, {6996, 24530}, {10446, 24598}, {12610, 27633}, {14792, 22056}, {17053, 24046}, {19542, 37663}

X(50650) = {X(216), X(579)}-harmonic conjugate of X(3002)


X(50651) = {APOLLONIAN CIRCLES, FUHRMANN CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*((b^3+c^3)*a^4-b^2*c^2*a^3-2*(b+c)*(b^4+c^4-b*c*(b^2-b*c+c^2))*a^2+(b^2-c^2)*(b-c)*(b^4+c^4+b*c*(b^2+b*c+c^2))) : :

X(50651) lies on these lines: {3, 6}, {184, 23860}, {1736, 33149}, {3772, 22069}


X(50652) = {APOLLONIAN CIRCLES, GALLATLY CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(3*(b^2+c^2)*a^6-(3*b^4+4*b^2*c^2+3*c^4)*a^4-(b^2+c^2)*(b^4+12*b^2*c^2+c^4)*a^2+(b^4-2*b^2*c^2-c^4)*(b^4+2*b^2*c^2-c^4)) : :
X(50652) = X(3)+3*X(13331) = X(6)+3*X(11171) = 3*X(39)+X(13354) = 3*X(182)-X(13354) = 3*X(575)+X(43147) = X(3094)+3*X(5050) = X(3095)+3*X(5085) = X(3098)-3*X(21163) = X(5052)-3*X(39561) = X(5092)-4*X(50654) = X(5188)-3*X(17508) = 5*X(12017)+3*X(32447) = 3*X(21163)+X(35439)

X(50652) lies on these lines: {3, 6}, {114, 9478}, {140, 732}, {141, 40108}, {193, 22677}, {262, 46264}, {538, 10168}, {542, 44562}, {1352, 7786}, {1503, 11272}, {2782, 3589}, {3564, 10007}, {3618, 7709}, {3818, 9744}, {6248, 7803}, {6661, 46267}, {6683, 24206}, {7697, 47355}, {7757, 38064}, {7763, 14994}, {7976, 38116}, {8152, 46850}, {11257, 14561}, {12782, 38029}, {13108, 40332}, {14853, 32522}, {14881, 44882}, {15819, 17008}, {18583, 32516}, {22486, 33266}, {22682, 48884}, {24256, 32448}, {25561, 42849}, {32449, 49111}

X(50652) = midpoint of X(i) and X(j) for these {i, j}: {39, 182}, {3098, 35439}, {5092, 44423}, {6248, 32429}, {14881, 44882}, {18583, 32516}, {24256, 32448}, {32449, 49111}
X(50652) = reflection of X(i) in X(j) for these (i, j): (24206, 6683), (44500, 15516)
X(50652) = inverse of X(2022) in half-Moses circle
X(50652) = X(50652)-of-circumsymmedial triangle
X(50652) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (182, 576, 35429), (182, 3098, 35423), (575, 5092, 39750), (2011, 2012, 574), (2021, 11171, 13334), (8160, 8161, 37479), (12020, 12021, 35431), (21163, 35439, 3098), (32429, 38317, 6248), (32448, 38110, 24256), (39498, 39750, 5092)


X(50653) = {APOLLONIAN CIRCLES, GEOS CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*((b^2+b*c+c^2)*a^4+(b+c)*b*c*a^3-(2*b^4+2*c^4+b*c*(b^2-4*b*c+c^2))*a^2-(b^2+c^2)*(b+c)*b*c*a+(b^4-c^4)*(b^2-c^2)) : :

X(50653) lies on these lines: {3, 6}, {218, 2197}, {1596, 1865}, {1723, 40590}, {1766, 8608}, {1880, 17905}, {6554, 40937}, {8776, 22134}

X(50653) = {X(40590), X(43046)}-harmonic conjugate of X(1723)


X(50654) = {APOLLONIAN CIRCLES, HALF-MOSES CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(13*(b^2+c^2)*a^6-(11*b^4+12*b^2*c^2+11*c^4)*a^4-(b^2+c^2)*(5*b^4+46*b^2*c^2+5*c^4)*a^2+3*b^8+3*c^8-2*b^2*c^2*(b^4+13*b^2*c^2+c^4)) : :
X(50654) = X(6)+3*X(13334) = 3*X(39)+5*X(12017) = 5*X(5092)+3*X(44423) = X(5092)+3*X(50652) = 3*X(6683)-X(18358) = 15*X(7786)+X(39874) = 9*X(21163)-X(33878) = X(44423)-5*X(50652)

X(50654) lies on these lines: {3, 6}, {6683, 18358}, {7786, 39874}, {37667, 41622}, {44562, 48906}

X(50654) = X(50654)-of-circumsymmedial triangle
X(50654) = {X(575), X(5092)}-harmonic conjugate of X(41412)


X(50655) = {APOLLONIAN CIRCLES, HATZIPOLAKIS-SUPPA CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(2*(b^2+c^2)*a^8-(2*b^4+3*b^2*c^2+2*c^4)*a^6-6*(b^4-c^4)*(b^2-c^2)*a^4+(10*b^4+9*b^2*c^2+10*c^4)*(b^2-c^2)^2*a^2-2*(b^4-c^4)*(b^2-c^2)*(2*b^4-b^2*c^2+2*c^4)) : :

X(50655) lies on these lines: {3, 6}, {13481, 35908}


X(50656) = {APOLLONIAN CIRCLES, HEXYL CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*((b+c)*a^6-(2*b^2+b*c+2*c^2)*a^5-(b^3+c^3)*a^4+2*(2*b^4+2*c^4+b*c*(b+c)^2)*a^3-(b^4-c^4)*(b-c)*a^2-(2*b^6+2*c^6+(b^4+c^4+2*b*c*(b^2-b*c+c^2))*b*c)*a+(b^2-c^2)*(b-c)^2*(b^3-c^3)) : :

X(50656) lies on these lines: {3, 6}, {19, 1818}, {516, 6261}, {1742, 6282}, {3587, 41430}, {3601, 6210}, {3781, 15830}, {5709, 29311}, {6045, 16455}, {6245, 17748}, {6824, 48888}, {6826, 24220}, {6847, 48878}, {6989, 20083}, {8727, 48938}, {16056, 37521}, {20420, 48902}, {24929, 31394}, {31395, 41276}, {37281, 48934}

X(50656) = {X(3), X(48908)}-harmonic conjugate of X(50658)


X(50657) = {APOLLONIAN CIRCLES, INCENTRAL CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(b+c)*(a^2-b^2-b*c-c^2)*(a^3+(b+c)*a^2-(b^2-3*b*c+c^2)*a-(b^2-c^2)*(b-c)) : :

X(50657) lies on these lines: {1, 8818}, {3, 6}, {37, 3013}, {661, 17438}, {1442, 8287}, {2174, 20982}, {2594, 21741}, {20277, 20279}, {37701, 50036}

X(50657) = barycentric product X(i)*X(j) for these {i, j}: {35, 11263}, {758, 47054}
X(50657) = perspector of the circumconic {{A, B, C, X(110), X(47054)}}
X(50657) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(21794)}} and {{A, B, C, X(35), X(15792)}}
X(50657) = crossdifference of every pair of points on line {X(523), X(1749)}


X(50658) = {APOLLONIAN CIRCLES, INCIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*((b^2+c^2)*a^4-2*(b^2-c^2)*(b-c)*a^3-2*(b^2+b*c+c^2)*b*c*a^2+2*(b^4-c^4)*(b-c)*a-(b^4+c^4)*(b-c)^2) : :

X(50658) lies on these lines: {1, 46850}, {3, 6}, {7, 22440}, {37, 2808}, {51, 37262}, {57, 1742}, {142, 45305}, {241, 29957}, {443, 48878}, {516, 942}, {1362, 9440}, {1442, 3270}, {2174, 38599}, {2807, 11700}, {3664, 11018}, {3819, 8731}, {5446, 48927}, {5453, 40647}, {5907, 33536}, {5943, 16056}, {6000, 50317}, {6210, 8726}, {6826, 48938}, {6851, 48902}, {7411, 40952}, {7675, 45963}, {8727, 24220}, {8728, 48888}, {9940, 15310}, {10202, 29349}, {10446, 14548}, {10477, 36706}, {11227, 29353}, {12109, 15852}, {13476, 38454}, {13598, 48897}, {17049, 28850}, {17065, 32462}, {17603, 49537}, {18443, 31394}, {24474, 29309}, {29311, 31793}

X(50658) = midpoint of X(1742) and X(21746)
X(50658) = (Ascella)-isogonal conjugate-of-X(5745)
X(50658) = X(264)-of-Ascella triangle, when ABC is acute
X(50658) = X(50645)-of-inverse-in-incircle triangle, when ABC is acute
X(50658) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (3, 5751, 4260), (3, 48908, 50656)


X(50659) = {APOLLONIAN CIRCLES, 1st LEMOINE CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(a^4-2*(b^2+c^2)*a^2-b^4-4*b^2*c^2-c^4) : :
X(50659) = X(3)-4*X(39498) = X(6)+2*X(574) = 3*X(5050)-4*X(39515)

X(50659) lies on these lines: {2, 12215}, {3, 6}, {22, 20965}, {25, 10329}, {69, 7824}, {110, 15302}, {114, 10516}, {115, 38317}, {141, 7763}, {183, 732}, {193, 33004}, {232, 19124}, {263, 41275}, {353, 35265}, {378, 2211}, {384, 3618}, {394, 14153}, {543, 5149}, {597, 1003}, {599, 30532}, {613, 31448}, {694, 37344}, {698, 31859}, {1078, 32451}, {1180, 42295}, {1194, 43650}, {1352, 31401}, {1428, 2276}, {1503, 3815}, {1506, 3818}, {1597, 33874}, {1613, 7484}, {1915, 3796}, {1971, 23041}, {1975, 24256}, {1992, 33273}, {1993, 8041}, {2023, 5026}, {2056, 17811}, {2275, 2330}, {2422, 39495}, {2548, 46264}, {2549, 14561}, {3051, 7485}, {3060, 38862}, {3231, 40916}, {3291, 22112}, {3499, 31521}, {3589, 4048}, {3763, 3788}, {3981, 10601}, {5103, 7841}, {5152, 5182}, {5207, 7777}, {5309, 10168}, {5359, 11205}, {5422, 20859}, {5475, 29012}, {5999, 7736}, {6329, 33235}, {6593, 38661}, {6688, 34481}, {6704, 7834}, {6776, 31400}, {7496, 9463}, {7514, 18371}, {7735, 37455}, {7739, 38064}, {7745, 44882}, {7747, 48898}, {7748, 19130}, {7751, 41622}, {7754, 8177}, {7756, 48901}, {7783, 18906}, {7784, 35701}, {7786, 38907}, {7815, 14994}, {7875, 8290}, {9467, 18872}, {9574, 16475}, {9609, 37123}, {9620, 38029}, {11284, 20998}, {11676, 14853}, {12588, 31497}, {14688, 34241}, {15048, 38110}, {15069, 31492}, {16419, 21001}, {18440, 31467}, {18898, 39951}, {20806, 22416}, {23660, 37576}, {24206, 31455}, {28343, 38663}, {28662, 38662}, {31396, 39870}, {31406, 48906}, {31428, 39885}, {31457, 40107}, {31463, 45511}, {32217, 37903}, {32291, 48787}, {32292, 48786}, {32305, 46301}, {37283, 46337}, {39590, 48884}, {41517, 45146}, {44519, 48910}

X(50659) = midpoint of X(574) and X(5034)
X(50659) = reflection of X(i) in X(j) for these (i, j): (6, 5034), (35378, 1692), (35429, 182)
X(50659) = isogonal conjugate of the isotomic conjugate of X(16990)
X(50659) = barycentric product X(6)*X(16990)
X(50659) = trilinear product X(31)*X(16990)
X(50659) = inverse of X(5017) in 1st Brocard circle
X(50659) = inverse of X(46305) in 2nd Brocard circle
X(50659) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(5017)}} and {{A, B, C, X(6), X(16990)}}
X(50659) = Cevapoint of X(6) and X(11175)
X(50659) = crossdifference of every pair of points on line {X(523), X(50550)}
X(50659) = crosssum of X(6) and X(11174)
X(50659) = X(50659)-of-circumsymmedial triangle
X(50659) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (3, 6, 5017), (6, 5013, 3094), (6, 5085, 1691), (6, 5116, 3), (6, 15514, 5093), (6, 15815, 1350), (6, 44453, 1351), (39, 182, 6), (187, 42852, 6), (574, 39498, 5116), (575, 5028, 6), (1570, 39561, 6), (1670, 12050, 6), (1671, 12051, 6), (1691, 13331, 6), (2011, 2012, 11171), (3053, 34873, 3), (3094, 5038, 6), (3094, 12055, 5013), (5038, 12055, 3094), (5039, 17508, 187), (5052, 37512, 3098), (5085, 47619, 3), (6421, 19145, 6), (6422, 19146, 6), (8177, 32449, 7754), (9605, 40825, 6), (9737, 13354, 1350), (12962, 12969, 5041), (17508, 42852, 5039), (39764, 44499, 6)


X(50660) = {APOLLONIAN CIRCLES, LESTER CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(a^6-3*(b^2+c^2)*a^4+(3*b^4+5*b^2*c^2+3*c^4)*a^2-(b^4-c^4)*(b^2-c^2)) : :

X(50660) lies on these lines: {2, 13582}, {3, 6}, {23, 3815}, {24, 31492}, {44, 14792}, {45, 14793}, {53, 14865}, {186, 6749}, {230, 7496}, {231, 7765}, {393, 35475}, {395, 11146}, {396, 11145}, {597, 35296}, {632, 9722}, {1506, 7545}, {1599, 13847}, {1600, 13846}, {1658, 31450}, {1990, 3520}, {1995, 9609}, {2549, 49671}, {2937, 9698}, {3055, 16042}, {3087, 44879}, {3131, 8015}, {3132, 8014}, {3148, 19596}, {3292, 9604}, {3518, 6748}, {3589, 44180}, {3628, 44537}, {3763, 9723}, {4996, 17369}, {5254, 7550}, {5306, 15246}, {5475, 37924}, {5702, 23040}, {6636, 9300}, {6794, 14354}, {7279, 17366}, {7464, 47275}, {7492, 7736}, {7512, 9606}, {7555, 31406}, {7556, 31400}, {7669, 37457}, {7738, 46262}, {7748, 9220}, {7753, 30537}, {9607, 37126}, {9700, 31467}, {10311, 37920}, {11284, 44524}, {12106, 31401}, {13472, 22101}, {17330, 37293}, {31457, 43809}, {31861, 44526}, {34437, 43718}, {35473, 40138}, {37637, 40916}, {37950, 47322}, {38862, 38872}, {41476, 41478}

X(50660) = complement of the isotomic conjugate of X(45972)
X(50660) = inverse of X(11063) in 1st Brocard circle
X(50660) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(11063)}} and {{A, B, C, X(4), X(15037)}}
X(50660) = Cevapoint of X(6) and X(30537)
X(50660) = crossdifference of every pair of points on line {X(523), X(6140)}
X(50660) = crosssum of X(6) and X(15018)
X(50660) = X(2)-Ceva conjugate of-X(45973)
X(50660) = X(31)-complementary conjugate of-X(45973)
X(50660) = (medial)-isotomic conjugate-of-X(45973)
X(50660) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (3, 6, 11063), (6, 3053, 33886), (32, 13337, 6), (39, 50, 6), (371, 372, 15037), (566, 5063, 6), (570, 3284, 41335), (574, 5063, 566), (577, 13351, 6), (2965, 5421, 6), (3284, 31652, 570), (3284, 41335, 6), (5421, 22052, 2965), (11063, 15109, 3), (22236, 22238, 36752), (31489, 44522, 1995)


X(50661) = {APOLLONIAN CIRCLES, LONGUET-HIGGINS CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*((b^2+c^2)*a^4+2*(b+c)*b*c*a^3-(b^4-b^2*c^2+c^4)*a^2-2*(b^3+c^3)*b*c*a-b^2*c^2*(b^2+c^2)) : :

X(50661) lies on these lines: {3, 6}, {87, 27626}, {261, 8033}, {610, 39252}, {993, 49479}, {2175, 23853}, {2663, 3601}, {4224, 16998}, {6857, 26110}, {8731, 37632}, {11328, 16574}, {17065, 23863}, {18169, 35612}, {18206, 20794}


X(50662) = {APOLLONIAN CIRCLES, INNER MONTESDEOCA-LEMOINE CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(2*a^2-b^2-c^2-2*sqrt(SW^2+S^2)) : :

X(50662) lies on these lines: {3, 6}, {1495, 41379}, {44109, 46770}

X(50662) = inverse of X(187) in inner Montesdeoca-Lemoine circle
X(50662) = inverse of X(8161) in Schoute circle
X(50662) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(8161)}} and {{A, B, C, X(111), X(50663)}}
X(50662) = X(50662)-of-circumsymmedial triangle
X(50662) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (6, 187, 50663), (15, 16, 8161), (39, 5092, 50663), (1342, 38720, 12021), (5008, 41413, 50663)


X(50663) = {APOLLONIAN CIRCLES, OUTER MONTESDEOCA-LEMOINE CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(2*a^2-b^2-c^2+2*sqrt(SW^2+S^2)) : :

X(50663) lies on these lines: {3, 6}, {1495, 41378}, {44109, 46771}

X(50663) = inverse of X(187) in outer Montesdeoca-Lemoine circle
X(50663) = inverse of X(8160) in Schoute circle
X(50663) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(8160)}} and {{A, B, C, X(111), X(50662)}}
X(50663) = X(50663)-of-circumsymmedial triangle
X(50663) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (6, 187, 50662), (15, 16, 8160), (39, 5092, 50662), (1343, 38721, 12020), (5008, 41413, 50662)


X(50664) = {APOLLONIAN CIRCLES, MOSES CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(4*a^4-5*(b^2+c^2)*a^2+b^4-8*b^2*c^2+c^4) : :
X(50664) = 3*X(3)+5*X(6) = X(3)-5*X(182) = X(3)+5*X(575) = 7*X(3)+5*X(576) = 13*X(3)-5*X(1350) = 11*X(3)+5*X(1351) = 9*X(3)-5*X(3098) = X(3)+15*X(5050) = 7*X(3)-15*X(5085) = 3*X(3)-5*X(5092) = 17*X(3)+15*X(5093) = 5*X(3)+3*X(5102) = 19*X(3)+5*X(11477) = 7*X(3)-5*X(14810) = 2*X(3)+5*X(15516) = 13*X(3)+15*X(15520) = 11*X(3)-15*X(17508) = 2*X(3)-5*X(20190) = 4*X(3)+5*X(22330) = 3*X(3)+X(37517) = X(3)+3*X(39561)

X(50664) lies on these lines: {2, 43150}, {3, 6}, {4, 42785}, {30, 6329}, {51, 15080}, {69, 15702}, {74, 34155}, {140, 3631}, {141, 10168}, {159, 10250}, {184, 6688}, {193, 15708}, {323, 3819}, {373, 10546}, {524, 11812}, {542, 547}, {549, 3629}, {597, 3845}, {631, 7905}, {1176, 13446}, {1199, 19150}, {1216, 36153}, {1352, 5067}, {1353, 3630}, {1386, 11278}, {1495, 5012}, {1503, 3850}, {1511, 5892}, {1843, 47485}, {1992, 15719}, {1994, 41462}, {2979, 44111}, {3055, 6036}, {3292, 15082}, {3431, 15045}, {3533, 3619}, {3543, 5476}, {3545, 3618}, {3564, 16239}, {3620, 33748}, {3763, 15723}, {3832, 11572}, {3853, 13470}, {3917, 11004}, {3934, 13196}, {3973, 46475}, {5054, 40341}, {5056, 6776}, {5059, 14853}, {5422, 34417}, {5480, 29323}, {5622, 19140}, {5640, 5645}, {5643, 35265}, {5650, 11422}, {5651, 12045}, {5907, 15032}, {5946, 17710}, {6000, 41593}, {6248, 10359}, {6636, 34565}, {6676, 32068}, {6771, 6782}, {6774, 6783}, {7499, 11225}, {8541, 44878}, {8546, 12039}, {8549, 23042}, {8550, 24206}, {8562, 8675}, {8584, 19711}, {9027, 32154}, {9306, 10219}, {9716, 33879}, {9969, 37936}, {9976, 10821}, {9977, 13367}, {10249, 34779}, {10601, 26864}, {11001, 31670}, {11178, 39899}, {11202, 34777}, {11451, 44110}, {11456, 44870}, {11464, 41714}, {11695, 32046}, {11738, 43697}, {12006, 44668}, {12042, 44562}, {12099, 40291}, {12100, 20583}, {12112, 46847}, {12834, 44106}, {13363, 41579}, {13434, 46850}, {13596, 44102}, {14355, 15630}, {14848, 48910}, {15061, 41731}, {15066, 34986}, {15107, 21849}, {15301, 32448}, {15686, 21850}, {15690, 19924}, {15988, 36006}, {16200, 16491}, {16496, 38029}, {18440, 25561}, {19128, 34484}, {20299, 41729}, {20415, 42146}, {20416, 42143}, {20423, 48880}, {20425, 43030}, {20426, 43031}, {21747, 37619}, {23327, 34776}, {25406, 33703}, {32414, 42849}, {32450, 44224}, {32455, 41983}, {33751, 41981}, {34567, 41435}, {35228, 39125}, {35500, 43596}, {37527, 37680}, {38155, 39870}, {38335, 43273}, {43130, 43815}, {45298, 47296}, {47281, 47569}, {48904, 49133}, {48905, 48943}

X(50664) = midpoint of X(i) and X(j) for these {i, j}: {3, 5097}, {6, 5092}, {140, 12007}, {182, 575}, {576, 14810}, {1353, 40107}, {6776, 18553}, {8546, 12039}, {8550, 24206}, {12100, 20583}, {13354, 44423}, {15516, 20190}, {19130, 48906}, {20299, 41729}, {21850, 48892}, {31670, 48891}, {35228, 39125}, {46264, 48895}, {48905, 48943}
X(50664) = reflection of X(i) in X(j) for these (i, j): (15516, 575), (20190, 182), (22330, 15516)
X(50664) = complement of X(43150)
X(50664) = inverse of X(37512) in Schoute circle
X(50664) = inverse of X(37517) in 1st Brocard circle
X(50664) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(37517)}} and {{A, B, C, X(39), X(14483)}}
X(50664) = crossdifference of every pair of points on line {X(523), X(47445)}
X(50664) = X(5097)-of-anti-X3-ABC reflections triangle
X(50664) = X(50664)-of-circumsymmedial triangle
X(50664) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (3, 6, 37517), (3, 39561, 5097), (6, 182, 5092), (6, 5033, 41413), (6, 5085, 33878), (6, 12017, 3098), (6, 33878, 576), (6, 37517, 5097), (15, 16, 37512), (182, 576, 5085), (182, 3098, 12017), (182, 5050, 575), (182, 17508, 10541), (182, 22234, 17508), (182, 39561, 3), (575, 5092, 6), (575, 5097, 39561), (575, 20190, 22330), (576, 5085, 14810), (1351, 10541, 17508), (3098, 12017, 5092), (5012, 15018, 1495), (5033, 41413, 38010), (5092, 39750, 38010), (5092, 43147, 8589), (13336, 37505, 13348), (13353, 15037, 37513), (15037, 37513, 389), (17508, 22234, 1351), (22352, 44107, 15107), (37517, 39561, 6), (39899, 47355, 11178), (45410, 45551, 43120)


X(50665) = {APOLLONIAN CIRCLES, NEUBERG CIRCLES RADICAL CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*((b^2-c^2)^2*a^6-(b^4-c^4)*(b^2-c^2)*a^4+5*b^4*c^4*a^2-b^4*c^4*(b^2+c^2)) : :

X(50665) lies on these lines: {3, 6}, {193, 32518}, {262, 8921}, {880, 10104}, {7777, 32531}, {11059, 23216}, {20794, 21444}


X(50666) = {APOLLONIAN CIRCLES, POWERS CIRCLES RADICAL CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(b^4-b^2*c^2+c^4)*(-a^2+b^2+c^2) : :

The radical circle of the power-circles is also called the De Longchamps circle.

X(50666) lies on these lines: {2, 3186}, {3, 6}, {5, 43976}, {22, 44089}, {53, 15980}, {69, 20819}, {141, 19602}, {160, 17710}, {206, 19576}, {237, 12220}, {264, 21531}, {325, 1368}, {339, 44166}, {1176, 43722}, {1249, 2967}, {1843, 11328}, {1916, 2998}, {1974, 6660}, {2165, 38224}, {2790, 6033}, {2971, 16041}, {2972, 16051}, {3148, 26206}, {3164, 37190}, {3784, 22064}, {3785, 22424}, {3867, 44230}, {3964, 10602}, {3981, 40377}, {5159, 16313}, {6389, 39080}, {6467, 20794}, {6676, 7792}, {6776, 44716}, {7386, 7774}, {7467, 22240}, {7494, 16989}, {7778, 20208}, {8681, 22152}, {9971, 35222}, {10349, 28723}, {10691, 41624}, {11585, 14059}, {12167, 37344}, {12294, 31952}, {12836, 18194}, {14575, 22151}, {14603, 40073}, {15561, 42406}, {16098, 42407}, {18374, 33801}, {18589, 20254}, {19121, 46546}, {20775, 22087}, {20806, 40947}, {20821, 22169}, {23333, 44388}, {30172, 35552}, {34828, 44380}, {37452, 45921}, {38739, 46262}

X(50666) = midpoint of X(9307) and X(14615)
X(50666) = reflection of X(i) in X(j) for these (i, j): (30262, 3), (43976, 5)
X(50666) = complement of X(3186)
X(50666) = isogonal conjugate of the polar conjugate of X(5025)
X(50666) = isotomic conjugate of the polar conjugate of X(3981)
X(50666) = complementary conjugate of the complement of X(3504)
X(50666) = barycentric product X(i)*X(j) for these {i, j}: {3, 5025}, {69, 3981}, {1176, 40379}
X(50666) = trilinear product X(i)*X(j) for these {i, j}: {48, 5025}, {63, 3981}
X(50666) = inverse of X(37893) in 1st Brocard circle
X(50666) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(37893)}} and {{A, B, C, X(3), X(5025)}}
X(50666) = Cevapoint of X(525) and X(4609)
X(50666) = crosssum of X(i) and X(j) for these (i, j): {520, 44451}, {525, 9426}
X(50666) = X(48)-complementary conjugate of-X(6374)
X(50666) = X(30262)-of-ABC-X3 reflections triangle
X(50666) = X(43976)-of-Johnson triangle
X(50666) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (3, 6, 37893), (6, 3001, 50645), (6, 50645, 3095), (216, 11574, 3), (17710, 34990, 160), (20819, 20975, 69), (20821, 22169, 22370)


X(50667) = {APOLLONIAN CIRCLES, REFLECTION CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*((b^2+c^2)*a^10-5*(b^4+b^2*c^2+c^4)*a^8+2*(b^2+c^2)*(5*b^4-2*b^2*c^2+5*c^4)*a^6-(10*b^8+10*c^8-b^2*c^2*(3*b^4-b^2*c^2+3*c^4))*a^4+(b^4-c^4)*(b^2-c^2)*(5*b^4-4*b^2*c^2+5*c^4)*a^2-(b^4+c^4)*(b^2-c^2)^4) : :

X(50667) lies on these lines: {3, 6}, {1154, 2963}, {5889, 18353}, {16336, 34520}

X(50667) = {X(371), X(372)}-harmonic conjugate of X(15787)


X(50668) = {APOLLONIAN CIRCLES, 1st STEINER CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*((b^2+c^2)*a^8-2*(2*b^4+3*b^2*c^2+2*c^4)*a^6+2*(b^2+c^2)*(3*b^4+4*b^2*c^2+3*c^4)*a^4-2*(2*b^8+2*c^8+b^2*c^2*(3*b^4-2*b^2*c^2+3*c^4))*a^2+(b^4-c^4)*(b^2-c^2)^3) : :
X(50668) = 9*X(570)-8*X(30259)

X(50668) lies on these lines: {3, 6}, {160, 45186}, {311, 32830}, {428, 21668}, {1907, 13051}, {3613, 27356}, {5480, 36212}, {39506, 50135}


X(50669) = {APOLLONIAN CIRCLES, 2nd STEINER CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(a^6-(b^2+c^2)*a^4+(b^4+b^2*c^2+c^4)*a^2-(b^2+c^2)*(b^4+c^4)) : :

X(50669) lies on these lines: {3, 6}, {22, 7778}, {69, 7669}, {99, 44166}, {141, 37183}, {157, 599}, {160, 2916}, {308, 34885}, {325, 6636}, {376, 41761}, {548, 45921}, {1576, 20819}, {3148, 3763}, {3447, 36163}, {4558, 17710}, {5152, 33769}, {5938, 7801}, {7467, 44521}, {7782, 40073}, {7792, 15246}, {7818, 11641}, {7832, 33717}, {7835, 37898}, {7881, 33802}, {7934, 37902}, {10519, 37813}, {14907, 42407}, {19121, 34990}, {19596, 33801}, {34573, 37335}, {40341, 40947}

X(50669) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (3, 37485, 8553), (160, 46546, 2916), (3001, 37893, 6), (5157, 9737, 13351)


X(50670) = {APOLLONIAN CIRCLES, SYMMEDIAL CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(2*a^6-(b^2+c^2)*a^4-(3*b^4+4*b^2*c^2+3*c^4)*a^2+(b^2+c^2)*(b^4-5*b^2*c^2+c^4)) : :

X(50670) lies on these lines: {3, 6}, {83, 14950}, {316, 8272}, {3589, 15449}, {9482, 22352}


X(50671) = {APOLLONIAN CIRCLES, TAYLOR CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*((b^2+c^2)*a^10-5*(b^4+c^4)*a^8+2*(b^2+c^2)*(5*b^4-8*b^2*c^2+5*c^4)*a^6-2*(5*b^8+5*c^8-6*(b^4+b^2*c^2+c^4)*b^2*c^2)*a^4+(b^4-c^4)*(b^2-c^2)*(5*b^4-6*b^2*c^2+5*c^4)*a^2-(b^4+c^4)*(b^2-c^2)^4) : :

X(50671) lies on these lines: {3, 6}, {53, 40647}, {233, 11695}, {393, 10574}, {3087, 15043}, {5462, 6748}, {6000, 36412}, {9826, 32438}, {15053, 41758}, {15466, 32002}, {40641, 44084}


X(50672) = {APOLLONIAN CIRCLES, ANTI-ARTZT CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(2*(b^2+c^2)*a^6-(2*b^4+11*b^2*c^2+2*c^4)*a^4+3*(b^2+c^2)*b^2*c^2*a^2-4*b^4*c^4) : :

X(50672) lies on these lines: {3, 6}, {110, 1003}, {3231, 12525}, {5108, 6232}, {5468, 35925}, {5651, 11286}, {11003, 13586}


X(50673) = {APOLLONIAN CIRCLES, ARTZT CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(2*(b^2+c^2)*a^8-(8*b^4+5*b^2*c^2+8*c^4)*a^6+2*(b^2+c^2)*(5*b^4+2*b^2*c^2+5*c^4)*a^4-(4*b^8+4*c^8-b^2*c^2*(b^2+c^2)^2)*a^2-4*(b^4-c^4)*(b^2-c^2)*b^2*c^2) : :

X(50673) lies on these lines: {3, 6}, {111, 13860}, {381, 5106}, {3231, 35934}, {6232, 11676}


X(50674) = {APOLLONIAN CIRCLES, HUNG CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(3*(b+c)*a^6-(3*b^2+2*b*c+3*c^2)*a^5-3*(b+c)*(2*b^2-b*c+2*c^2)*a^4+2*(3*b^4+3*c^4+b*c*(b^2+3*b*c+c^2))*a^3+3*(b+c)*(b^4+c^4)*a^2-(3*b^6+3*c^6+b^2*c^2*(3*b^2-4*b*c+3*c^2))*a-3*(b^4-c^4)*(b-c)*b*c) : :

X(50674) lies on these lines: {3, 6}, {6876, 11495}


X(50675) = {APOLLONIAN CIRCLES, INCIRCLE-OF-ORTHIC TRIANGLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(-a^2+b^2+c^2)*((b^2+c^2)*a^8+2*b^2*c^2*a^6-2*(b^2+c^2)*(b^4-5*b^2*c^2+c^4)*a^4-10*(b^2-c^2)^2*b^2*c^2*a^2+(b^8-c^8)*(b^2-c^2)) : :

X(50675) lies on these lines: {3, 6}, {51, 40680}, {264, 6524}, {3164, 6995}, {5943, 6389}, {9822, 41005}, {10110, 42353}, {14767, 46737}, {26870, 45186}, {34608, 47383}, {34854, 45198}, {40981, 46832}


X(50676) = {APOLLONIAN CIRCLES, JOHNSON TRIANGLE CIRCUMCIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*((b^4+b^2*c^2+c^4)*a^6-(b^2+c^2)*(3*b^4-2*b^2*c^2+3*c^4)*a^4+(3*b^8+3*c^8-2*b^2*c^2*(b^4+c^4))*a^2-(b^6+c^6)*(b^2-c^2)^2) : :
X(50676) = 3*X(30258)+X(50645)

X(50676) lies on these lines: {2, 22353}, {3, 6}, {131, 18388}, {160, 11649}, {264, 328}, {3153, 3164}, {3818, 23635}, {7547, 39530}, {7777, 16188}, {10224, 18121}, {14575, 34218}, {18122, 46029}, {18377, 18380}, {22515, 44263}, {34507, 44716}

X(50676) = complement of the circumtangential-isogonal conjugate of X(184)


X(50677) = {APOLLONIAN CIRCLES, MIXTILINEAR INCIRCLES RADICAL CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(a^4-4*(b+c)*a^3+2*(b-c)^2*a^2+4*(b+c)*(b^2+c^2)*a-(3*b^2+2*b*c+3*c^2)*(b-c)^2) : :

X(50677) lies on these lines: {1, 1418}, {3, 6}, {4, 17245}, {20, 4648}, {21, 25878}, {37, 5732}, {40, 49478}, {44, 21153}, {45, 971}, {55, 1407}, {56, 2293}, {141, 36706}, {154, 16064}, {220, 1818}, {241, 7675}, {269, 3601}, {376, 3332}, {516, 4675}, {548, 5733}, {603, 1253}, {631, 17337}, {940, 7411}, {968, 5918}, {990, 16777}, {1001, 1742}, {1005, 25934}, {1086, 21151}, {1191, 4300}, {1279, 3576}, {1427, 10383}, {1434, 3522}, {1456, 37600}, {1471, 5204}, {1615, 16588}, {1721, 15569}, {1834, 37108}, {2263, 2646}, {3052, 15931}, {3207, 3220}, {3445, 30389}, {3523, 37650}, {3752, 10857}, {3755, 43151}, {4189, 37659}, {4191, 17810}, {4210, 33586}, {5646, 16373}, {5759, 17365}, {6610, 30282}, {7290, 7987}, {7431, 46890}, {7580, 37674}, {8572, 15287}, {8726, 15852}, {10178, 17594}, {10387, 37575}, {10516, 36474}, {12618, 17267}, {12652, 42819}, {13633, 38072}, {13727, 15668}, {15688, 45942}, {15717, 37681}, {15750, 44100}, {16466, 35202}, {16885, 31658}, {17119, 29016}, {17194, 37270}, {17259, 48878}, {17265, 36652}, {17276, 43177}, {17334, 36996}, {17811, 20835}, {17825, 37309}, {19541, 37682}, {28014, 37328}, {29181, 36698}, {34046, 37601}, {35986, 37633}, {36674, 48910}, {36990, 49131}, {38692, 44858}, {48872, 49132}

X(50677) = crossdifference of every pair of points on line {X(523), X(14282)}
X(50677) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (3, 500, 36745), (3, 991, 6), (3, 1350, 37499), (3, 33878, 48886), (3, 37474, 5085), (3, 37501, 4252), (55, 22053, 1407), (1151, 1152, 4258), (4300, 8273, 1191), (8726, 15852, 17054)


X(50678) = {APOLLONIAN CIRCLES, ORTHOSYMMEDIAL CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*((b^2+c^2)*a^6-2*(b^4-b^2*c^2+c^4)*a^4+(b^2+c^2)*(b^4-5*b^2*c^2+c^4)*a^2+(b^2-c^2)^2*b^2*c^2) : :

X(50678) lies on these lines: {2, 1625}, {3, 6}, {5, 3331}, {140, 217}, {184, 35324}, {232, 5892}, {401, 15018}, {458, 46106}, {549, 3289}, {1656, 32445}, {2207, 15805}, {2211, 38110}, {3054, 45938}, {3767, 48262}, {3851, 38297}, {5012, 32661}, {5054, 40805}, {5056, 41367}, {5422, 35941}, {7749, 45935}, {8744, 37124}, {9419, 40108}, {10986, 15080}, {11360, 40951}, {11451, 33885}, {13630, 22416}, {14535, 17825}, {14845, 33842}, {14855, 33843}, {15045, 22240}, {15066, 37067}, {18907, 20965}, {34573, 34850}, {42459, 47301}


X(50679) = {APOLLONIAN CIRCLES, 2nd LOZADA CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*((b^2+c^2)*a^10-(5*b^4-4*b^2*c^2+5*c^4)*a^8+2*(b^2+c^2)*(5*b^4-13*b^2*c^2+5*c^4)*a^6-2*(5*b^8+5*c^8-2*(5*b^4+8*b^2*c^2+5*c^4)*b^2*c^2)*a^4+(b^4-c^4)*(b^2-c^2)*(5*b^4-8*b^2*c^2+5*c^4)*a^2-(b^2-c^2)^4*(b^4+c^4)) : :

X(50679) lies on these lines: {3, 6}, {5892, 6128}, {20791, 34288}


X(50680) = {APOLLONIAN CIRCLES, 3rd LOZADA CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(4*(2*a^2-b^2-c^2)*S+a^4-6*(b^2+c^2)*a^2+5*b^4-2*b^2*c^2+5*c^4) : :

X(50680) lies on these lines: {3, 6}, {487, 26362}, {3595, 32488}, {6459, 23334}, {8946, 11473}, {12222, 13639}, {12257, 43408}, {13934, 45523}, {32492, 42268}, {35265, 41419}, {49019, 49103}, {49039, 49220}

X(50680) = X(50680)-of-circumsymmedial triangle
X(50680) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (3, 371, 8375), (187, 11477, 50681), (371, 9732, 6424), (371, 12313, 6422), (1351, 6221, 2460), (3364, 3389, 43118), (9737, 44656, 372), (9738, 44509, 3)


X(50681) = {APOLLONIAN CIRCLES, 4th LOZADA CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(-4*(2*a^2-b^2-c^2)*S+a^4-6*(b^2+c^2)*a^2+5*b^4-2*b^2*c^2+5*c^4) : :

X(50681) lies on these lines: {3, 6}, {488, 26361}, {3593, 32489}, {6460, 23334}, {8948, 11474}, {12221, 13759}, {12256, 43407}, {13882, 45522}, {32495, 42269}, {49018, 49104}, {49038, 49221}

X(50681) = X(50681)-of-circumsymmedial triangle
X(50681) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (3, 372, 8376), (187, 11477, 50680), (372, 9733, 6423), (372, 12314, 6421), (1351, 6398, 2459), (3365, 3390, 43119), (9737, 44657, 371), (9739, 44510, 3)


X(50682) = {APOLLONIAN CIRCLES, 6th LOZADA CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(2*sqrt(3)*(2*a^2-b^2-c^2)*S+3*a^4-7*(b^2+c^2)*a^2+4*c^4-6*b^2*c^2+4*b^4) : :

X(50682) lies on these lines: {3, 6}, {9117, 38317}, {10516, 22997}, {16962, 22490}, {38136, 43451}

X(50682) = X(50682)-of-circumsymmedial triangle
X(50682) = {X(187), X(15520)}-harmonic conjugate of X(50683)


X(50683) = {APOLLONIAN CIRCLES, 7th LOZADA CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(-2*sqrt(3)*(2*a^2-b^2-c^2)*S+3*a^4-7*(b^2+c^2)*a^2-6*b^2*c^2+4*c^4+4*b^4) : :

X(50683) lies on these lines: {3, 6}, {9115, 38317}, {10516, 22998}, {16963, 22489}, {38136, 43452}

X(50683) = X(50683)-of-circumsymmedial triangle
X(50683) = {X(187), X(15520)}-harmonic conjugate of X(50682)


X(50684) = {APOLLONIAN CIRCLES, 8th LOZADA CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(3*a^8-6*(b^2+c^2)*a^6+2*(3*b^4-b^2*c^2+3*c^4)*a^4-2*((b^2-c^2)^2-4*b^2*c^2)*(b^2+c^2)*a^2-b^8-c^8-6*(b^4-b^2*c^2+c^4)*b^2*c^2) : :
X(50684) = 2*X(5033)-5*X(12017) = 3*X(5050)-2*X(39764)

X(50684) lies on these lines: {3, 6}, {114, 9756}, {141, 10256}, {193, 21445}, {2065, 14253}, {3564, 7763}, {3589, 37348}, {3818, 36519}, {6776, 32829}, {7631, 35364}, {7694, 15980}, {7803, 38110}, {9744, 48906}, {9754, 37451}, {10352, 13860}, {21850, 39656}, {37334, 39141}, {45554, 48743}, {45555, 48742}

X(50684) = X(50684)-of-circumsymmedial triangle
X(50684) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (3, 182, 35429), (3, 1351, 35383), (39, 182, 5050), (182, 5092, 35423), (182, 9737, 1692), (1692, 9737, 1351), (5092, 13355, 3)


X(50685) = {APOLLONIAN CIRCLES, 9th LOZADA CIRCLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*(a^8-2*(4*b^4+9*b^2*c^2+4*c^4)*a^4+8*(b^6+c^6)*a^2-((b^2-c^2)^2-4*b^2*c^2)*(b^4+c^4)) : :
X(50685) = 3*X(3)-4*X(35424) = 4*X(32)-3*X(5050) = 3*X(1351)-4*X(35389) = 3*X(5017)-2*X(35424) = 4*X(5028)-5*X(11482) = 3*X(5093)-4*X(35431) = 5*X(12017)-4*X(13355) = 5*X(12017)-8*X(41413)

X(50685) lies on these lines: {3, 6}, {69, 35930}, {193, 11676}, {2882, 18534}, {3564, 20065}, {3852, 39879}, {6321, 48910}, {7770, 48876}, {9753, 37688}, {11285, 18583}, {13860, 17008}, {14984, 38661}

X(50685) = reflection of X(i) in X(j) for these (i, j): (3, 5017), (13355, 41413)
X(50685) = X(5017)-of-X3-ABC reflections triangle
X(50685) = X(50685)-of-circumsymmedial triangle
X(50685) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (3098, 35423, 3), (5052, 5171, 35429)


X(50686) = {APOLLONIAN CIRCLES, INCIRCLE OF ANTICOMPLEMENTARY TRIANGLE} RADICAL AXES INTERSECTION

Barycentrics    a^2*((b^2+c^2)*a^4-2*(b+c)*b*c*a^3-(b^4-b^2*c^2+c^4)*a^2+2*(b^3+c^3)*b*c*a-b^2*c^2*(b^2+c^2)) : :

X(50686) lies on these lines: {3, 6}, {2175, 23857}, {3570, 49127}, {3882, 20794}, {4220, 16997}, {6010, 30487}, {10446, 19522}, {23355, 39225}


X(50687) = X(2)X(3)∩X(6)X(43507)

Barycentrics    13*a^4 - 2*a^2*b^2 - 11*b^4 - 2*a^2*c^2 + 22*b^2*c^2 - 11*c^4 : :
X(50687) = 11 X[2] - 8 X[3], X[2] - 4 X[4], 13 X[2] - 16 X[5], 5 X[2] - 2 X[20], 35 X[2] - 32 X[140], 7 X[2] - 4 X[376], 5 X[2] - 8 X[381], 7 X[2] + 8 X[382], 17 X[2] - 32 X[546], 29 X[2] - 32 X[547], 53 X[2] - 32 X[548], 19 X[2] - 16 X[549], 31 X[2] - 16 X[550], 23 X[2] - 20 X[631], 83 X[2] - 80 X[632], 37 X[2] - 40 X[1656], 29 X[2] - 8 X[1657], 25 X[2] - 28 X[3090], 7 X[2] - 10 X[3091], 2 X[2] + X[3146], 8 X[2] - 5 X[3522], 17 X[2] - 14 X[3523], 5 X[2] - 4 X[3524], 47 X[2] - 44 X[3525], 59 X[2] - 56 X[3526], 43 X[2] - 28 X[3528], 19 X[2] - 4 X[3529], 79 X[2] - 64 X[3530], 71 X[2] - 68 X[3533], 17 X[2] - 8 X[3534], X[2] + 2 X[3543], 53 X[2] - 68 X[3544], 3 X[2] - 4 X[3545], 5 X[2] + 16 X[3627], 61 X[2] - 64 X[3628], X[2] + 8 X[3830], 4 X[2] - 7 X[3832], 19 X[2] - 40 X[3843], 7 X[2] - 16 X[3845], 43 X[2] - 64 X[3850], 41 X[2] - 56 X[3851], X[2] + 32 X[3853], 11 X[2] - 17 X[3854], 29 X[2] - 44 X[3855], 77 X[2] - 128 X[3856], 73 X[2] - 112 X[3857], 47 X[2] - 80 X[3858], 37 X[2] - 64 X[3860], 25 X[2] - 64 X[3861], 9 X[2] - 8 X[5054], 7 X[2] - 8 X[5055], 19 X[2] - 22 X[5056], 7 X[2] - X[5059], 23 X[2] - 32 X[5066], 49 X[2] - 52 X[5067], 10 X[2] - 13 X[5068], 85 X[2] - 88 X[5070], 17 X[2] - 20 X[5071], 67 X[2] - 88 X[5072], 25 X[2] + 8 X[5073], X[2] - 40 X[5076], 89 X[2] - 104 X[5079], 31 X[2] - 34 X[7486], 25 X[2] - 16 X[8703], 55 X[2] - 64 X[10109], 67 X[2] - 64 X[10124], 67 X[2] - 52 X[10299], 29 X[2] - 26 X[10303], 13 X[2] - 4 X[11001], 17 X[2] - 16 X[11539], 35 X[2] + 4 X[11541], 49 X[2] - 64 X[11737], 73 X[2] - 64 X[11812], 41 X[2] - 32 X[12100], 5 X[2] - 32 X[12101], 7 X[2] - 64 X[12102], 71 X[2] - 32 X[12103], 95 X[2] - 128 X[12811], 61 X[2] - 40 X[14093], 3 X[2] - 8 X[14269], 71 X[2] - 64 X[14890], 85 X[2] - 64 X[14891], 25 X[2] - 32 X[14892], 11 X[2] - 32 X[14893], 16 X[2] - 19 X[15022], 7 X[2] + 2 X[15640], 23 X[2] - 8 X[15681], 5 X[2] + 4 X[15682], 4 X[2] - X[15683], 13 X[2] + 8 X[15684], 35 X[2] - 8 X[15685], 37 X[2] - 16 X[15686], X[2] - 16 X[15687], 13 X[2] - 8 X[15688], 15 X[2] - 8 X[15689], 59 X[2] - 32 X[15690], 65 X[2] - 32 X[15691], and many others

X(50687) lies on these lines: {2, 3}, {6, 43507}, {8, 34648}, {13, 42104}, {14, 42105}, {61, 49825}, {62, 49824}, {68, 46851}, {145, 31162}, {147, 8596}, {165, 38076}, {315, 32869}, {316, 10513}, {390, 11237}, {395, 42141}, {396, 42140}, {485, 43257}, {486, 43256}, {519, 9812}, {538, 23334}, {597, 14927}, {598, 43951}, {671, 5984}, {754, 7620}, {962, 31145}, {1131, 32787}, {1132, 32788}, {1327, 35821}, {1328, 35820}, {1503, 5032}, {1698, 34638}, {1699, 38314}, {1992, 36990}, {2794, 41135}, {2979, 46847}, {3058, 5229}, {3060, 32062}, {3068, 42575}, {3069, 42574}, {3241, 5691}, {3424, 41895}, {3586, 15933}, {3590, 42577}, {3591, 42576}, {3592, 43376}, {3594, 43377}, {3600, 11238}, {3616, 34628}, {3617, 34632}, {3620, 47354}, {3621, 12699}, {3622, 18483}, {3623, 3656}, {3655, 33697}, {3679, 20070}, {3785, 32893}, {4297, 30308}, {4669, 9589}, {4678, 18480}, {4846, 14487}, {5175, 17781}, {5225, 5434}, {5261, 10385}, {5274, 12943}, {5286, 14537}, {5334, 36969}, {5335, 36970}, {5343, 42161}, {5344, 42160}, {5355, 14075}, {5365, 16965}, {5366, 16964}, {5556, 6738}, {5603, 28208}, {5657, 28202}, {5731, 38021}, {5921, 48901}, {6000, 11002}, {6033, 35369}, {6053, 9143}, {6054, 20094}, {6425, 41952}, {6426, 41951}, {6435, 23249}, {6436, 23259}, {6494, 7583}, {6495, 7584}, {6498, 7581}, {6499, 7582}, {7585, 42284}, {7586, 42283}, {7694, 32480}, {7737, 39563}, {7739, 14930}, {7750, 32872}, {7768, 32892}, {7773, 32841}, {7799, 32827}, {7809, 32815}, {7811, 32834}, {7917, 32830}, {7999, 46852}, {8591, 10723}, {8972, 42263}, {9140, 13202}, {9541, 42604}, {9542, 18538}, {9543, 35786}, {9545, 13482}, {9778, 19875}, {9779, 25055}, {9880, 10722}, {10056, 18513}, {10072, 18514}, {10152, 46808}, {10653, 42133}, {10654, 42134}, {10706, 12295}, {10710, 20096}, {10711, 20095}, {10714, 38956}, {11004, 44413}, {11057, 32828}, {11160, 47353}, {11179, 48884}, {11180, 20080}, {11185, 32874}, {11239, 41698}, {11381, 21849}, {11439, 13598}, {11451, 13570}, {11480, 43873}, {11481, 43874}, {11542, 43482}, {11543, 43481}, {11645, 14853}, {12111, 21969}, {12112, 39522}, {12243, 22515}, {12278, 32605}, {12512, 19876}, {12528, 31822}, {12816, 40693}, {12817, 40694}, {12820, 42635}, {12821, 42636}, {13172, 22566}, {13445, 34417}, {13474, 14831}, {13754, 16981}, {13846, 42271}, {13847, 42272}, {13941, 42264}, {14235, 48476}, {14239, 48477}, {14458, 38259}, {14492, 18845}, {14848, 33748}, {14907, 32885}, {15031, 32870}, {15072, 16226}, {15431, 32269}, {15811, 43605}, {16001, 36318}, {16002, 36320}, {16241, 42112}, {16242, 42113}, {16267, 19107}, {16268, 19106}, {16621, 34799}, {16644, 42108}, {16645, 42109}, {16962, 42085}, {16963, 42086}, {17013, 18506}, {17503, 47586}, {18492, 46933}, {18525, 20014}, {19053, 23261}, {19054, 23251}, {20049, 22793}, {20059, 31672}, {20423, 48895}, {20582, 48872}, {21356, 29181}, {22235, 42147}, {22237, 42148}, {22615, 23253}, {22644, 23263}, {25406, 38072}, {25561, 48873}, {25565, 48896}, {28198, 38074}, {31412, 41945}, {31730, 46932}, {32819, 32840}, {32822, 32879}, {32826, 32833}, {32837, 48913}, {35242, 46930}, {35510, 36889}, {35770, 43515}, {35771, 43516}, {35787, 43407}, {36413, 36430}, {36836, 42775}, {36843, 42776}, {36967, 42106}, {36968, 42103}, {37640, 42094}, {37641, 42093}, {37749, 44987}, {38077, 38693}, {38084, 38754}, {40330, 48904}, {41100, 42159}, {41101, 42162}, {41107, 42481}, {41108, 42480}, {41119, 43475}, {41120, 43476}, {41121, 42150}, {41122, 42151}, {41943, 42921}, {41944, 42920}, {41946, 42561}, {41957, 43799}, {41958, 43800}, {41979, 42725}, {41980, 42726}, {42095, 43100}, {42098, 43107}, {42099, 42911}, {42100, 42910}, {42101, 42155}, {42102, 42154}, {42107, 42625}, {42110, 42626}, {42111, 42528}, {42114, 42529}, {42119, 43364}, {42120, 43365}, {42125, 43242}, {42126, 42982}, {42127, 42983}, {42128, 43243}, {42135, 43543}, {42136, 42974}, {42137, 42975}, {42138, 43542}, {42139, 42943}, {42142, 42942}, {42149, 46334}, {42152, 46335}, {42163, 43769}, {42164, 43773}, {42165, 43774}, {42166, 43770}, {42215, 42540}, {42216, 42539}, {42262, 43209}, {42265, 43210}, {42266, 42602}, {42267, 42603}, {42270, 42414}, {42273, 42413}, {42429, 42918}, {42430, 42919}, {42431, 42510}, {42432, 42511}, {42494, 43194}, {42495, 43193}, {42514, 43239}, {42515, 43238}, {42537, 42638}, {42538, 42637}, {42627, 43493}, {42628, 43494}, {42629, 43782}, {42630, 43781}, {42633, 42803}, {42634, 42804}, {42727, 46473}, {42728, 46476}, {42785, 46264}, {42813, 49874}, {42814, 49873}, {42904, 43020}, {42905, 43021}, {43016, 43311}, {43017, 43310}, {43032, 43233}, {43033, 43232}, {43338, 43888}, {43339, 43887}, {43572, 46261}, {43632, 49907}, {43633, 49908}, {47102, 47617}

X(50687) = midpoint of X(i) and X(j) for these {i,j}: {382, 5055}, {3524, 15682}, {3543, 3839}, {3830, 38335}, {11001, 35409}, {11539, 35404}, {15684, 15688}, {33699, 38071}
X(50687) = reflection of X(i) in X(j) for these {i,j}: {2, 3839}, {3, 38071}, {4, 38335}, {20, 3524}, {165, 38076}, {376, 5055}, {550, 47599}, {3524, 381}, {3534, 11539}, {3545, 14269}, {3839, 4}, {5054, 23046}, {5055, 3845}, {5731, 38021}, {8703, 14892}, {9778, 19875}, {10304, 3545}, {11001, 15688}, {11539, 546}, {12103, 14890}, {14892, 3861}, {15072, 16226}, {15681, 45759}, {15688, 5}, {15689, 15699}, {15691, 41984}, {15699, 41987}, {15704, 41982}, {25406, 38072}, {35409, 15684}, {38071, 14893}, {38314, 1699}, {38320, 428}, {38335, 15687}, {38693, 38077}, {38754, 38084}, {41982, 11737}, {45759, 5066}, {46333, 3}, {49135, 35409}
X(50687) = anticomplement of X(10304)
X(50687) = orthoptic-circle-of-Steiner-circumellipse-inverse of X(37904)
X(50687) = anticomplement of the isogonal conjugate of X(14490)
X(50687) = X(14490)-anticomplementary conjugate of X(8)
X(50687) = crosspoint of X(43540) and X(43541)
X(50687) = crosssum of X(11480) and X(11481)
X(50687) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 376, 15717}, {2, 381, 5068}, {2, 3146, 15683}, {2, 3543, 3146}, {2, 5059, 376}, {2, 15683, 3522}, {2, 17578, 3543}, {2, 19686, 33201}, {2, 21734, 549}, {3, 381, 10109}, {3, 3830, 35434}, {3, 14893, 41099}, {3, 35434, 33699}, {4, 376, 3845}, {4, 382, 3091}, {4, 3090, 3861}, {4, 3146, 3832}, {4, 3529, 3843}, {4, 3543, 2}, {4, 3545, 14269}, {4, 3627, 20}, {4, 3830, 3543}, {4, 15682, 381}, {4, 17578, 3146}, {4, 33703, 546}, {4, 35480, 6623}, {4, 41099, 14893}, {4, 44438, 7378}, {4, 44440, 37349}, {5, 11001, 15692}, {5, 15684, 11001}, {5, 15688, 15709}, {5, 15691, 15701}, {5, 15692, 2}, {5, 15759, 15723}, {5, 49137, 21735}, {13, 43400, 42104}, {14, 43399, 42105}, {20, 381, 2}, {20, 3091, 140}, {20, 3543, 15682}, {20, 10304, 15689}, {20, 11541, 5059}, {20, 15721, 8703}, {20, 46935, 3}, {20, 49135, 49137}, {140, 382, 11541}, {140, 3524, 15708}, {140, 3627, 382}, {140, 3845, 381}, {140, 11541, 20}, {140, 12101, 41988}, {140, 15685, 376}, {140, 15691, 15759}, {140, 41986, 15699}, {140, 41988, 3845}, {376, 382, 15640}, {376, 3091, 2}, {376, 3845, 3091}, {376, 5055, 15708}, {376, 5067, 15693}, {376, 11541, 15685}, {376, 15640, 5059}, {376, 15682, 11541}, {376, 15685, 20}, {376, 15723, 15692}, {376, 17504, 10304}, {381, 382, 15685}, {381, 3534, 5070}, {381, 3627, 15682}, {381, 3830, 3627}, {381, 5073, 8703}, {381, 8703, 3090}, {381, 12101, 4}, {381, 12811, 41106}, {381, 14269, 41987}, {381, 14891, 5071}, {381, 15682, 20}, {381, 15684, 15691}, {381, 15685, 140}, {381, 15689, 15699}, {381, 15699, 3545}, {381, 15701, 5}, {381, 35403, 41988}, {381, 41990, 3855}, {381, 49137, 15701}, {382, 3091, 5059}, {382, 3845, 376}, {382, 5059, 3146}, {382, 12102, 4}, {382, 14269, 17504}, {382, 15693, 35400}, {382, 35402, 3830}, {382, 35403, 3845}, {382, 46853, 33703}, {452, 6175, 2}, {546, 3534, 5071}, {546, 33703, 3523}, {546, 35404, 3534}, {546, 41981, 5}, {547, 1657, 19708}, {547, 10303, 2}, {547, 19708, 10303}, {548, 15703, 15719}, {549, 3529, 15697}, {549, 3843, 41106}, {549, 5056, 2}, {549, 15697, 21734}, {549, 41106, 5056}, {549, 45762, 381}, {550, 19709, 15702}, {550, 45760, 3}, {550, 47599, 15706}, {1656, 15686, 15698}, {1657, 3855, 10303}, {2043, 2044, 3525}, {3090, 5073, 20}, {3090, 8703, 15721}, {3090, 15721, 2}, {3091, 3543, 15640}, {3091, 3856, 3854}, {3091, 5059, 15717}, {3091, 15640, 376}, {3091, 15708, 5055}, {3146, 3832, 3522}, {3146, 3839, 15705}, {3146, 5068, 20}, {3146, 15717, 5059}, {3522, 3832, 15022}, {3523, 5071, 2}, {3524, 3545, 15699}, {3524, 15689, 10304}, {3524, 15709, 15701}, {3524, 15710, 14891}, {3526, 15690, 15715}, {3528, 3850, 46936}, {3529, 3843, 5056}, {3529, 5056, 21734}, {3529, 41106, 549}, {3529, 45757, 10304}, {3534, 5070, 14891}, {3534, 5071, 3523}, {3534, 11539, 15710}, {3534, 35404, 33703}, {3534, 46853, 376}, {3543, 3830, 17578}, {3543, 3845, 5059}, {3543, 15640, 382}, {3543, 15692, 15684}, {3544, 15719, 15703}, {3545, 10304, 2}, {3545, 11001, 41983}, {3545, 14269, 3839}, {3627, 3861, 5073}, {3627, 12101, 381}, {3627, 15682, 3543}, {3627, 15687, 12101}, {3627, 41988, 15685}, {3627, 44903, 33699}, {3830, 5076, 15687}, {3830, 12101, 15682}, {3830, 12102, 376}, {3830, 15687, 4}, {3830, 35401, 5076}, {3830, 35403, 382}, {3832, 15683, 2}, {3839, 10304, 3545}, {3839, 15640, 15708}, {3839, 15708, 3091}, {3839, 49135, 15709}, {3845, 3853, 35402}, {3845, 12102, 35403}, {3845, 15640, 2}, {3845, 15687, 12102}, {3845, 15704, 11737}, {3845, 35400, 5067}, {3845, 35403, 4}, {3845, 35404, 46853}, {3850, 19710, 15694}, {3850, 49136, 3528}, {3853, 5076, 4}, {3853, 15687, 3830}, {3854, 46935, 5068}, {3855, 19708, 547}, {3856, 14893, 3845}, {3858, 17800, 3525}, {3860, 15686, 1656}, {3861, 5073, 3090}, {3861, 8703, 381}, {3861, 15682, 15721}, {5054, 5055, 41985}, {5054, 14269, 23046}, {5054, 23046, 3545}, {5054, 35418, 15705}, {5055, 15708, 2}, {5055, 15759, 15709}, {5056, 15697, 549}, {5066, 15681, 631}, {5066, 18586, 36454}, {5066, 18587, 36436}, {5066, 35407, 376}, {5067, 41982, 15708}, {5068, 15682, 15683}, {5070, 33703, 20}, {5070, 49137, 41981}, {5071, 15710, 11539}, {5071, 33703, 3534}, {5072, 15695, 10124}, {5129, 44217, 2}, {5177, 31156, 2}, {6658, 32980, 33205}, {6661, 33180, 2}, {6871, 15677, 2}, {6995, 31133, 2}, {7398, 31152, 2}, {7486, 15702, 2}, {7527, 18534, 37913}, {7530, 13596, 10298}, {7924, 32971, 2}, {8370, 33210, 2}, {8597, 33016, 33272}, {9818, 37945, 7492}, {9880, 10722, 11177}, {10109, 44903, 3}, {10109, 47598, 15699}, {10124, 15695, 10299}, {10304, 15708, 17504}, {11001, 15684, 49135}, {11001, 15691, 20}, {11001, 15709, 15688}, {11001, 21735, 15691}, {11348, 44216, 2}, {11539, 15710, 3523}, {11737, 15693, 5067}, {11737, 15704, 15693}, {11737, 35400, 376}, {12102, 41988, 12101}, {14044, 33280, 32972}, {14063, 19686, 2}, {14066, 33279, 32971}, {14269, 15689, 381}, {14269, 47598, 41099}, {14784, 14785, 46853}, {14893, 15682, 46935}, {14893, 33699, 3}, {14893, 44903, 381}, {15640, 15717, 15683}, {15681, 15716, 44245}, {15682, 15685, 15640}, {15682, 15691, 49135}, {15682, 41987, 10304}, {15682, 41988, 3091}, {15684, 15701, 49137}, {15687, 35402, 376}, {15688, 15709, 15692}, {15688, 41984, 3524}, {15689, 15699, 3524}, {15689, 41983, 21735}, {15689, 41987, 3545}, {15691, 15701, 21735}, {15691, 49137, 11001}, {15692, 49135, 11001}, {15693, 15704, 376}, {15693, 35400, 15704}, {15694, 19710, 3528}, {15694, 46936, 2}, {15694, 49136, 19710}, {15697, 41106, 2}, {15698, 49138, 15686}, {15699, 17504, 140}, {15699, 41986, 5055}, {15699, 41987, 381}, {15701, 15723, 140}, {15701, 21735, 15692}, {15701, 41984, 15709}, {15701, 49137, 15691}, {15702, 19709, 7486}, {15706, 19709, 47599}, {15706, 44580, 3524}, {15706, 47599, 15702}, {15707, 44682, 3524}, {15709, 21735, 3524}, {15709, 35409, 11001}, {15759, 41983, 17504}, {16044, 33263, 2}, {17504, 41985, 5054}, {21735, 49137, 20}, {22615, 43503, 35822}, {22644, 43504, 35823}, {32966, 33266, 2}, {32972, 33246, 2}, {32979, 33019, 33025}, {33006, 35927, 2}, {33016, 33272, 2}, {33198, 33223, 2}, {33199, 33224, 2}, {35822, 43503, 23253}, {35823, 43504, 23263}, {36436, 36454, 15681}, {36445, 36463, 5}, {37640, 42094, 43540}, {37640, 42940, 43466}, {37641, 42093, 43541}, {37641, 42941, 43465}, {41099, 44903, 46935}, {41990, 44682, 547}, {42093, 42941, 37641}, {42094, 42940, 37640}, {43465, 43478, 43541}, {43465, 43541, 37641}, {43466, 43477, 43540}, {43466, 43540, 37640}, {43477, 43540, 42094}, {43478, 43541, 42093}, {43507, 43508, 6}, {45758, 47478, 15699}, {46333, 47598, 10304}


X(50688) = X(2)X(3)∩X(6)X(43405)

Barycentrics    11*a^4 - 2*a^2*b^2 - 9*b^4 - 2*a^2*c^2 + 18*b^2*c^2 - 9*c^4 : :
X(50688) = 27 X[2] - 20 X[3], 3 X[2] - 10 X[4], 33 X[2] - 40 X[5], 12 X[2] - 5 X[20], 87 X[2] - 80 X[140], 17 X[2] - 10 X[376], 13 X[2] - 20 X[381], 3 X[2] + 4 X[382], 9 X[2] - 16 X[546], 73 X[2] - 80 X[547], 129 X[2] - 80 X[548], 47 X[2] - 40 X[549], 15 X[2] - 8 X[550], 57 X[2] - 50 X[631], 93 X[2] - 100 X[1656], 69 X[2] - 20 X[1657], 9 X[2] - 10 X[3090], 18 X[2] - 25 X[3091], 9 X[2] + 5 X[3146], 39 X[2] - 25 X[3522], 6 X[2] - 5 X[3523], 37 X[2] - 30 X[3524], 21 X[2] - 20 X[3526], 9 X[2] - 2 X[3529], 39 X[2] - 32 X[3530], 41 X[2] - 20 X[3534], 2 X[2] + 5 X[3543], 27 X[2] - 34 X[3544], 23 X[2] - 30 X[3545], 9 X[2] + 40 X[3627], X[2] + 20 X[3830], 3 X[2] - 5 X[3832], 8 X[2] - 15 X[3839], 51 X[2] - 100 X[3843], 19 X[2] - 40 X[3845], 3 X[2] - 4 X[3851], 3 X[2] - 80 X[3853], 57 X[2] - 85 X[3854], 15 X[2] - 22 X[3855], 27 X[2] - 40 X[3857], 97 X[2] - 160 X[3860], 69 X[2] - 160 X[3861], 67 X[2] - 60 X[5054], 53 X[2] - 60 X[5055], 48 X[2] - 55 X[5056], 33 X[2] - 5 X[5059], 59 X[2] - 80 X[5066], 51 X[2] - 65 X[5068], 43 X[2] - 50 X[5071], 57 X[2] + 20 X[5073], 9 X[2] - 100 X[5076], 45 X[2] - 52 X[5079], 78 X[2] - 85 X[7486], 61 X[2] - 40 X[8703], 33 X[2] - 26 X[10299], 72 X[2] - 65 X[10303], 22 X[2] - 15 X[10304], 31 X[2] - 10 X[11001], 81 X[2] + 10 X[11541], 25 X[2] - 32 X[11737], 101 X[2] - 80 X[12100], 17 X[2] - 80 X[12101], 27 X[2] - 160 X[12102], 171 X[2] - 80 X[12103], 5 X[2] - 12 X[14269], 9 X[2] - 8 X[14869], 31 X[2] - 80 X[14893], 81 X[2] - 95 X[15022], 16 X[2] + 5 X[15640], 11 X[2] - 4 X[15681], 11 X[2] + 10 X[15682], 19 X[2] - 5 X[15683], 29 X[2] + 20 X[15684], 83 X[2] - 20 X[15685], 89 X[2] - 40 X[15686], X[2] - 8 X[15687], 19 X[2] - 12 X[15688], 109 X[2] - 60 X[15689], 143 X[2] - 80 X[15690], 157 X[2] - 80 X[15691], 32 X[2] - 25 X[15692], 46 X[2] - 25 X[15697], 13 X[2] - 10 X[15698], 5 X[2] - 4 X[15700], 23 X[2] - 20 X[15701], 11 X[2] - 10 X[15702], 19 X[2] - 20 X[15703], 117 X[2] - 40 X[15704], 59 X[2] - 45 X[15705], 43 X[2] - 36 X[15707], 52 X[2] - 45 X[15708], 97 X[2] - 90 X[15709], 25 X[2] - 18 X[15710], 29 X[2] - 22 X[15715], 69 X[2] - 55 X[15717], and many others

X(50688) lies on these lines: {2, 3}, {6, 43405}, {13, 43018}, {14, 43019}, {15, 43364}, {16, 43365}, {61, 42104}, {62, 42105}, {64, 18296}, {68, 46848}, {79, 18221}, {145, 22793}, {193, 48901}, {390, 3585}, {393, 36431}, {397, 42478}, {398, 42479}, {485, 43883}, {486, 43884}, {515, 10248}, {590, 10147}, {615, 10148}, {962, 3632}, {1131, 6561}, {1132, 6560}, {1327, 43376}, {1328, 43377}, {1539, 14683}, {1587, 43507}, {1588, 43508}, {1699, 3636}, {1899, 34563}, {2093, 7319}, {2777, 15044}, {2979, 40247}, {3060, 13474}, {3087, 15860}, {3244, 5691}, {3303, 5229}, {3304, 5225}, {3411, 49873}, {3412, 49874}, {3583, 3600}, {3586, 11036}, {3592, 42284}, {3594, 42283}, {3622, 28160}, {3626, 7991}, {3629, 36990}, {3746, 5261}, {3868, 31822}, {3951, 5175}, {3982, 11518}, {4031, 9579}, {4293, 18514}, {4294, 18513}, {4301, 34747}, {4678, 28174}, {5007, 43448}, {5237, 42103}, {5238, 42106}, {5265, 10483}, {5274, 5563}, {5304, 7747}, {5334, 42161}, {5335, 42160}, {5343, 16965}, {5344, 16964}, {5349, 37641}, {5350, 37640}, {5351, 42113}, {5352, 42112}, {5365, 10653}, {5366, 10654}, {5395, 14488}, {5446, 11455}, {5480, 33748}, {5556, 11529}, {5603, 33697}, {5656, 34786}, {5889, 32062}, {5921, 11008}, {5984, 22515}, {6154, 10724}, {6225, 18405}, {6241, 11002}, {6419, 22615}, {6420, 22644}, {6425, 31412}, {6426, 42272}, {6427, 23267}, {6428, 23273}, {6447, 13886}, {6448, 13939}, {6453, 8972}, {6454, 13941}, {6486, 43337}, {6487, 43336}, {6488, 42265}, {6489, 42262}, {6496, 43788}, {6497, 43787}, {6519, 18538}, {6522, 18762}, {6564, 43512}, {6565, 43511}, {6776, 22330}, {7585, 23253}, {7586, 23263}, {7620, 14023}, {7687, 15021}, {7748, 37665}, {7758, 23334}, {7982, 9812}, {7989, 28158}, {8960, 43257}, {8976, 9543}, {9541, 35786}, {9542, 42258}, {9545, 26883}, {9589, 34648}, {9656, 10385}, {9778, 18492}, {9780, 28150}, {9781, 14915}, {9961, 16616}, {10110, 12279}, {10113, 38626}, {10152, 35711}, {10519, 48904}, {10625, 16261}, {10721, 36253}, {10722, 38734}, {10723, 38745}, {10725, 38769}, {10726, 38781}, {10733, 24981}, {10734, 38801}, {11004, 32139}, {11185, 32868}, {11381, 16625}, {11412, 46849}, {11439, 45186}, {11444, 46847}, {11469, 18387}, {11482, 39874}, {12112, 36749}, {12244, 15027}, {12250, 18383}, {12295, 14094}, {12690, 20008}, {12699, 20054}, {12820, 22235}, {12821, 22237}, {12943, 14986}, {13202, 15054}, {13452, 17505}, {13598, 15305}, {13665, 43560}, {13785, 43561}, {14241, 31487}, {14516, 16656}, {14561, 48942}, {14639, 35021}, {14641, 15024}, {14853, 22234}, {15012, 15072}, {15029, 16163}, {15034, 46686}, {15045, 44863}, {15052, 37498}, {15077, 15741}, {15801, 32340}, {15808, 28164}, {16658, 34799}, {16772, 42775}, {16773, 42776}, {16835, 32533}, {17852, 42259}, {18480, 20070}, {18843, 43951}, {19106, 42159}, {19107, 42162}, {20080, 39884}, {20094, 22505}, {20095, 22799}, {20096, 38630}, {22236, 42102}, {22238, 42101}, {22682, 32522}, {22938, 38631}, {23235, 39809}, {31404, 31652}, {31663, 46931}, {32826, 37668}, {33698, 43537}, {34632, 37714}, {35007, 37689}, {35812, 43523}, {35813, 43524}, {36836, 42108}, {36843, 42109}, {36969, 42613}, {36970, 42612}, {37667, 50570}, {37832, 42932}, {37835, 42933}, {38140, 46932}, {38664, 39838}, {38686, 38956}, {40330, 43621}, {40693, 43540}, {40694, 43541}, {41112, 41973}, {41113, 41974}, {41244, 41914}, {42090, 42581}, {42091, 42580}, {42093, 42165}, {42094, 42164}, {42096, 42598}, {42097, 42599}, {42099, 43869}, {42100, 43870}, {42119, 42166}, {42120, 42163}, {42136, 43473}, {42137, 43474}, {42150, 42939}, {42151, 42938}, {42153, 43401}, {42156, 43402}, {42157, 43403}, {42158, 43404}, {42215, 43520}, {42216, 43519}, {42263, 43879}, {42264, 43880}, {42488, 42798}, {42489, 42797}, {42494, 42942}, {42495, 42943}, {42584, 43464}, {42585, 43463}, {42781, 43771}, {42782, 43772}, {42803, 43556}, {42804, 43557}, {42815, 42888}, {42816, 42889}, {42896, 42967}, {42897, 42966}, {42900, 43251}, {42901, 43250}, {42908, 42990}, {42909, 42991}, {42920, 43633}, {42921, 43632}, {42962, 43630}, {42963, 43631}, {42988, 43482}, {42989, 43481}, {43566, 43570}, {43567, 43571}, {43605, 44413}

X(50688) = midpoint of X(i) and X(j) for these {i,j}: {382, 3851}, {15682, 15702}
X(50688) = reflection of X(i) in X(j) for these {i,j}: {3, 3857}, {20, 3523}, {3523, 3832}, {3528, 3851}, {3832, 4}, {14869, 546}, {15698, 381}, {15703, 3845}, {44904, 3861}
X(50688) = anticomplement of X(3528)
X(50688) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 382, 49135}, {2, 546, 3091}, {2, 3146, 3529}, {2, 3522, 3530}, {2, 3528, 3523}, {2, 3832, 3851}, {2, 15681, 10304}, {2, 15683, 15688}, {2, 17504, 15721}, {2, 49135, 20}, {3, 381, 12812}, {3, 546, 3544}, {3, 3091, 46936}, {3, 3146, 49140}, {3, 3544, 2}, {3, 3857, 3090}, {3, 5076, 12102}, {3, 12102, 4}, {3, 12812, 3525}, {3, 26863, 14002}, {3, 35419, 49134}, {3, 46936, 10303}, {3, 49140, 20}, {4, 20, 3839}, {4, 376, 3843}, {4, 382, 2}, {4, 631, 3845}, {4, 3146, 3091}, {4, 3529, 546}, {4, 3543, 20}, {4, 3545, 3861}, {4, 3627, 3146}, {4, 3830, 17578}, {4, 3855, 14269}, {4, 5073, 3854}, {4, 10431, 13729}, {4, 13488, 7409}, {4, 15682, 5}, {4, 17578, 3543}, {4, 33699, 15717}, {4, 33703, 381}, {4, 35409, 3859}, {4, 35480, 3089}, {4, 35490, 3088}, {4, 49138, 41099}, {5, 5059, 10304}, {5, 10299, 2}, {5, 11540, 1656}, {5, 15681, 10299}, {5, 15682, 5059}, {5, 38335, 4}, {5, 49136, 17538}, {20, 3091, 10303}, {20, 3839, 5056}, {20, 5056, 15692}, {20, 15708, 3522}, {20, 46936, 3}, {140, 15684, 49138}, {376, 3843, 5068}, {376, 38071, 2}, {381, 382, 49139}, {381, 3522, 7486}, {381, 15704, 3525}, {381, 33703, 3522}, {381, 49139, 3530}, {382, 546, 3529}, {382, 3529, 3146}, {382, 3530, 33703}, {382, 14269, 550}, {382, 15687, 4}, {382, 15688, 5073}, {546, 550, 5079}, {546, 3529, 2}, {546, 3627, 382}, {546, 3628, 38071}, {546, 5079, 3855}, {546, 12103, 35018}, {546, 14869, 3851}, {546, 49136, 10299}, {546, 49139, 3525}, {550, 3855, 2}, {550, 14269, 3855}, {550, 15700, 3528}, {631, 3845, 3854}, {631, 5073, 15683}, {631, 35018, 2}, {632, 3627, 33699}, {1131, 6561, 42522}, {1132, 6560, 42523}, {1656, 11001, 21734}, {1656, 21734, 15721}, {1657, 3545, 15717}, {1657, 3861, 3545}, {1657, 15697, 20}, {1657, 15717, 15697}, {1657, 35403, 3861}, {2043, 2044, 15709}, {2045, 42281, 35732}, {2046, 42280, 42282}, {3090, 3528, 14869}, {3090, 3529, 3528}, {3090, 3832, 3091}, {3090, 14869, 2}, {3090, 15698, 3525}, {3091, 3146, 20}, {3091, 3523, 3090}, {3091, 3543, 3146}, {3091, 10303, 5056}, {3091, 15697, 632}, {3091, 15704, 15708}, {3091, 49140, 3}, {3146, 3529, 49135}, {3146, 3627, 3543}, {3146, 3854, 12103}, {3146, 5059, 49136}, {3146, 17578, 3627}, {3522, 7486, 15708}, {3525, 15704, 3522}, {3525, 15708, 10303}, {3525, 33703, 15704}, {3528, 3851, 2}, {3528, 15702, 10299}, {3529, 3544, 3}, {3529, 10299, 17538}, {3529, 17538, 15681}, {3530, 15713, 15720}, {3530, 35018, 47598}, {3533, 15696, 15705}, {3533, 35416, 3146}, {3534, 3858, 5067}, {3543, 3839, 15640}, {3543, 10304, 15682}, {3543, 49135, 382}, {3545, 15717, 46935}, {3545, 34200, 2}, {3627, 3853, 5076}, {3627, 5076, 4}, {3627, 12101, 49137}, {3627, 12102, 3}, {3627, 15687, 546}, {3627, 38335, 17538}, {3628, 49137, 376}, {3830, 3853, 4}, {3830, 5076, 3627}, {3832, 5059, 15702}, {3839, 10303, 3091}, {3839, 15640, 15692}, {3843, 12101, 4}, {3843, 15720, 38071}, {3843, 49137, 3628}, {3845, 5073, 631}, {3845, 12103, 5072}, {3845, 47598, 381}, {3850, 17800, 3524}, {3850, 35404, 17800}, {3851, 14869, 3090}, {3854, 5072, 3091}, {3854, 15683, 631}, {3859, 15686, 46219}, {3861, 33699, 1657}, {3861, 35403, 4}, {5056, 15640, 20}, {5059, 10304, 20}, {5066, 15696, 3533}, {5068, 15713, 7486}, {5071, 15707, 2}, {5072, 5073, 12103}, {5072, 12103, 631}, {5076, 17578, 3091}, {5076, 49136, 38335}, {5079, 14269, 546}, {7409, 34603, 10565}, {7486, 33703, 20}, {11113, 37161, 17554}, {11361, 32982, 33198}, {11737, 15710, 2}, {12812, 15704, 3}, {14041, 32981, 33199}, {14042, 33279, 2}, {14044, 33007, 32980}, {14062, 33280, 2}, {14066, 33017, 32979}, {14784, 14785, 33923}, {14891, 15703, 15702}, {14893, 44245, 41991}, {15156, 15157, 37945}, {15682, 17538, 49136}, {15682, 49136, 3146}, {15683, 35434, 3543}, {15687, 17578, 49135}, {15687, 34200, 35403}, {15687, 38071, 12101}, {15688, 35018, 631}, {15690, 33703, 5059}, {15690, 47598, 14891}, {15697, 46935, 15717}, {15701, 15717, 3523}, {15704, 49139, 3529}, {15721, 15722, 15708}, {17538, 49136, 5059}, {18586, 18587, 35404}, {19696, 33006, 439}, {23253, 35821, 7585}, {23263, 35820, 7586}, {32971, 33019, 33210}, {32979, 33017, 33202}, {32980, 33007, 33203}, {32993, 33193, 32989}, {33002, 40246, 33209}, {33018, 33192, 32990}, {33699, 35403, 3545}, {35732, 42282, 3522}, {36436, 36454, 44903}, {41099, 49138, 140}, {41991, 44245, 1656}, {42104, 42134, 43466}, {42105, 42133, 43465}, {42133, 43465, 42983}, {42134, 43466, 42982}, {42153, 43401, 43769}, {42156, 43402, 43770}, {42268, 43407, 13941}, {42269, 43408, 8972}, {42280, 42281, 1657}, {43405, 43406, 6}, {47752, 47753, 37939}


X(50689) = X(2)X(3)∩X(6)X(18296)

Barycentrics    7*a^4 + 2*a^2*b^2 - 9*b^4 + 2*a^2*c^2 + 18*b^2*c^2 - 9*c^4 : :
X(50689) = 27 X[2] - 16 X[3], 3 X[2] + 8 X[4], 21 X[2] - 32 X[5], 15 X[2] - 4 X[20], 75 X[2] - 64 X[140], 19 X[2] - 8 X[376], 5 X[2] - 16 X[381], 39 X[2] + 16 X[382], 9 X[2] - 64 X[546], 53 X[2] - 64 X[547], 141 X[2] - 64 X[548], 43 X[2] - 32 X[549], 87 X[2] - 32 X[550], 51 X[2] - 40 X[631], 69 X[2] - 80 X[1656], 93 X[2] - 16 X[1657], 45 X[2] - 56 X[3090], 9 X[2] - 20 X[3091], 9 X[2] + 2 X[3146], 21 X[2] - 10 X[3522], 39 X[2] - 28 X[3523], 35 X[2] - 24 X[3524], 9 X[2] - 8 X[3525], 111 X[2] - 56 X[3528], 63 X[2] - 8 X[3529], 49 X[2] - 16 X[3534], 7 X[2] + 4 X[3543], 81 X[2] - 136 X[3544], 13 X[2] - 24 X[3545], 45 X[2] + 32 X[3627], 17 X[2] + 16 X[3830], 3 X[2] - 14 X[3832], X[2] - 12 X[3839], 3 X[2] - 80 X[3843], X[2] + 32 X[3845], 51 X[2] - 128 X[3850], 57 X[2] - 112 X[3851], 57 X[2] + 64 X[3853], 6 X[2] - 17 X[3854], 3 X[2] - 8 X[3855], 69 X[2] - 256 X[3856], 81 X[2] - 224 X[3857], 39 X[2] - 160 X[3858], 29 X[2] - 128 X[3860], 15 X[2] + 128 X[3861], 59 X[2] - 48 X[5054], 37 X[2] - 48 X[5055], 3 X[2] - 4 X[5056], 12 X[2] - X[5059], 31 X[2] - 64 X[5066], 93 X[2] - 104 X[5067], 15 X[2] - 26 X[5068], 15 X[2] - 16 X[5070], 29 X[2] - 40 X[5071], 9 X[2] - 16 X[5072], 105 X[2] + 16 X[5073], 63 X[2] + 80 X[5076], 57 X[2] - 68 X[7486], 65 X[2] - 32 X[8703], 95 X[2] - 128 X[10109], 63 X[2] - 52 X[10303], 23 X[2] - 12 X[10304], 41 X[2] - 8 X[11001], 107 X[2] - 96 X[11539], 135 X[2] + 8 X[11541], 73 X[2] - 128 X[11737], 97 X[2] - 64 X[12100], 35 X[2] + 64 X[12101], 81 X[2] + 128 X[12102], 207 X[2] - 64 X[12103], 157 X[2] - 80 X[14093], 7 X[2] + 48 X[14269], 13 X[2] + 64 X[14893], 27 X[2] - 38 X[15022], 29 X[2] + 4 X[15640], 71 X[2] - 16 X[15681], 25 X[2] + 8 X[15682], 13 X[2] - 2 X[15683], 61 X[2] + 16 X[15684], 115 X[2] - 16 X[15685], 109 X[2] - 32 X[15686], 23 X[2] + 32 X[15687], 103 X[2] - 48 X[15688], 125 X[2] - 48 X[15689], 163 X[2] - 64 X[15690], 185 X[2] - 64 X[15691], 31 X[2] - 20 X[15692], 113 X[2] - 80 X[15693], 91 X[2] - 80 X[15694], 179 X[2] - 80 X[15695], 201 X[2] - 80 X[15696], 53 X[2] - 20 X[15697], 89 X[2] - 56 X[15698], 85 X[2] - 96 X[15699], and many others

X(50689) lies on these lines: {2, 3}, {6, 18296}, {10, 10248}, {13, 5343}, {14, 5344}, {51, 11439}, {52, 16261}, {61, 42106}, {62, 42103}, {69, 32894}, {145, 1699}, {146, 36253}, {147, 38734}, {148, 38745}, {149, 38757}, {150, 38769}, {151, 38781}, {165, 46931}, {185, 13570}, {194, 22682}, {316, 32834}, {325, 32879}, {355, 20052}, {390, 10895}, {393, 15860}, {395, 42776}, {396, 42775}, {397, 43540}, {398, 43541}, {516, 46933}, {575, 42785}, {576, 5921}, {590, 9543}, {615, 17852}, {946, 3623}, {962, 4678}, {1131, 3071}, {1132, 3070}, {1173, 32533}, {1498, 34545}, {1539, 15027}, {1587, 35787}, {1588, 35786}, {2777, 15025}, {2996, 43951}, {3060, 44870}, {3068, 42578}, {3069, 42579}, {3085, 18514}, {3086, 18513}, {3303, 5225}, {3304, 5229}, {3316, 9542}, {3339, 5556}, {3340, 7319}, {3411, 49875}, {3412, 49876}, {3424, 18845}, {3448, 15044}, {3531, 14843}, {3567, 16194}, {3585, 14986}, {3590, 31454}, {3592, 31412}, {3594, 42284}, {3600, 10896}, {3616, 12571}, {3617, 7991}, {3621, 7982}, {3622, 5691}, {3746, 10590}, {3785, 15031}, {3817, 30389}, {3984, 5175}, {4301, 31145}, {4846, 46848}, {4857, 31410}, {5237, 42105}, {5238, 42104}, {5254, 14930}, {5265, 12943}, {5281, 12953}, {5286, 39590}, {5334, 42162}, {5335, 42159}, {5349, 22235}, {5350, 22237}, {5351, 42111}, {5352, 42114}, {5365, 40693}, {5366, 40694}, {5422, 15811}, {5462, 11455}, {5550, 28164}, {5563, 10591}, {5587, 20070}, {5640, 11381}, {5656, 18383}, {5881, 20049}, {5890, 46849}, {5893, 32064}, {5943, 12279}, {5984, 14639}, {6053, 14683}, {6223, 26842}, {6248, 44434}, {6337, 32895}, {6361, 38140}, {6411, 43406}, {6412, 43405}, {6419, 23259}, {6420, 23249}, {6425, 8972}, {6426, 13941}, {6427, 23273}, {6428, 23267}, {6429, 43383}, {6430, 43382}, {6447, 18538}, {6448, 18762}, {6453, 22615}, {6454, 22644}, {6459, 43508}, {6460, 43507}, {6488, 42263}, {6489, 42264}, {6519, 42225}, {6522, 42226}, {6564, 23263}, {6565, 23253}, {6748, 36413}, {6776, 22234}, {7585, 23261}, {7586, 23251}, {7620, 7758}, {7687, 15054}, {7693, 9815}, {7768, 32874}, {7772, 43448}, {7782, 32871}, {7850, 32868}, {7860, 46951}, {7917, 11185}, {7965, 11681}, {7989, 9778}, {8252, 42414}, {8253, 42413}, {8596, 14981}, {8976, 42604}, {9544, 11424}, {9545, 46261}, {9581, 21454}, {9588, 38076}, {9716, 32605}, {9842, 27131}, {9968, 20079}, {10110, 15305}, {10113, 38632}, {10147, 42258}, {10148, 42259}, {10513, 32882}, {10519, 48895}, {10541, 14927}, {10574, 32062}, {10586, 41698}, {10721, 20397}, {10722, 20398}, {10723, 20399}, {10724, 20400}, {10725, 20401}, {10982, 43605}, {10984, 46865}, {11002, 12111}, {11003, 26883}, {11004, 11441}, {11236, 12632}, {11425, 35265}, {11440, 34417}, {11451, 46850}, {11465, 14855}, {11477, 20080}, {11482, 39884}, {11485, 43778}, {11486, 43777}, {11488, 42164}, {11489, 42165}, {11522, 34648}, {12112, 36753}, {12248, 38141}, {12250, 23325}, {12251, 22681}, {12290, 44871}, {12295, 15034}, {12323, 32814}, {12324, 23324}, {12699, 38176}, {12816, 42993}, {12817, 42992}, {13202, 15021}, {13472, 17505}, {13474, 15043}, {13598, 15056}, {13665, 23275}, {13785, 23269}, {13951, 42605}, {14023, 23334}, {14094, 46686}, {14360, 38801}, {14484, 38259}, {14853, 22330}, {14907, 32870}, {14915, 15024}, {15020, 36518}, {15030, 16981}, {15052, 36747}, {15058, 46852}, {15431, 37643}, {16644, 43770}, {16645, 43769}, {16657, 34799}, {16808, 42160}, {16809, 42161}, {16960, 42964}, {16961, 42965}, {16962, 42908}, {16963, 42909}, {16964, 43403}, {16965, 43404}, {16982, 18436}, {18424, 35007}, {18480, 20014}, {19053, 43377}, {19054, 43376}, {20054, 37712}, {20065, 50570}, {20218, 42854}, {21628, 25005}, {22236, 42101}, {22238, 42102}, {22331, 37689}, {22334, 31371}, {22505, 38627}, {22515, 38628}, {22799, 38631}, {22938, 38629}, {23235, 35369}, {26216, 33842}, {26330, 45863}, {26331, 45862}, {30531, 48675}, {31404, 43457}, {31415, 31652}, {32785, 42271}, {32786, 42272}, {32815, 32841}, {32816, 32840}, {32826, 32831}, {32827, 32830}, {32880, 37668}, {35812, 43257}, {35813, 43256}, {36836, 42110}, {36843, 42107}, {36969, 42920}, {36970, 42921}, {37640, 43773}, {37641, 43774}, {37665, 44518}, {38136, 39874}, {40247, 45186}, {42087, 42472}, {42088, 42473}, {42093, 42166}, {42094, 42163}, {42096, 43869}, {42097, 43870}, {42119, 42598}, {42120, 42599}, {42135, 42983}, {42136, 43243}, {42137, 43242}, {42138, 42982}, {42144, 43463}, {42145, 43464}, {42147, 42494}, {42148, 42495}, {42154, 43478}, {42155, 43477}, {42262, 43511}, {42265, 43512}, {42274, 43407}, {42277, 43408}, {42433, 42593}, {42434, 42592}, {42496, 42803}, {42497, 42804}, {42694, 42779}, {42695, 42780}, {42813, 42999}, {42814, 42998}, {42900, 43005}, {42901, 43004}, {42910, 43633}, {42911, 43632}, {42924, 43543}, {42925, 43542}, {42942, 43479}, {42943, 43480}, {42962, 42986}, {42963, 42987}, {42972, 49825}, {42973, 49824}, {43201, 43229}, {43202, 43228}, {43238, 43402}, {43239, 43401}, {43248, 43400}, {43249, 43399}, {43250, 44015}, {43251, 44016}, {46730, 48912}

X(50689) = midpoint of X(i) and X(j) for these {i,j}: {4, 3855}, {3830, 15723}
X(50689) = reflection of X(i) in X(j) for these {i,j}: {20, 21735}, {3525, 5072}, {5056, 3855}, {5072, 41991}, {15717, 5056}, {15720, 5}, {21735, 5070}, {41991, 546}
X(50689) = anticomplement of X(15717)
X(50689) = orthocentroidal circle inverse of X(17578)
X(50689) = orthoptic-circle-of-Steiner-circumellipse-inverse of X(37910)
X(50689) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 17578}, {2, 3832, 3854}, {2, 5059, 21734}, {2, 17578, 5059}, {3, 381, 12811}, {3, 3091, 15022}, {3, 3544, 46936}, {3, 3627, 11541}, {3, 3857, 3544}, {3, 11541, 20}, {3, 12811, 3090}, {3, 15022, 2}, {4, 5, 3543}, {4, 376, 3853}, {4, 381, 20}, {4, 546, 3091}, {4, 631, 3830}, {4, 3090, 3627}, {4, 3091, 3146}, {4, 3529, 5076}, {4, 3545, 382}, {4, 3832, 2}, {4, 3839, 3832}, {4, 3843, 3839}, {4, 3850, 49135}, {4, 3854, 5059}, {4, 3856, 10304}, {4, 3857, 49140}, {4, 3858, 3523}, {4, 6849, 37437}, {4, 6893, 37433}, {4, 6957, 6895}, {4, 7394, 34007}, {4, 7528, 50009}, {4, 7559, 37104}, {4, 23046, 7486}, {4, 23047, 7378}, {4, 33703, 15687}, {4, 35488, 7487}, {4, 37197, 6995}, {4, 41099, 5}, {4, 41106, 33703}, {5, 550, 47598}, {5, 3522, 2}, {5, 3524, 46935}, {5, 3529, 10303}, {5, 3534, 3533}, {5, 3543, 3522}, {5, 3627, 44245}, {5, 5073, 3524}, {5, 5076, 3529}, {5, 11812, 1656}, {5, 12101, 5073}, {5, 14269, 4}, {5, 44903, 140}, {20, 381, 5068}, {20, 3091, 3090}, {20, 3523, 8703}, {20, 3524, 3522}, {20, 3543, 5073}, {20, 3627, 3146}, {20, 5056, 15721}, {20, 5068, 2}, {20, 5070, 15717}, {20, 15721, 21735}, {20, 46935, 3524}, {140, 3627, 49137}, {140, 15682, 20}, {140, 45762, 3861}, {376, 3851, 7486}, {381, 3090, 3091}, {381, 3627, 3090}, {381, 3830, 15699}, {381, 3861, 4}, {381, 5055, 41990}, {381, 5073, 5}, {381, 8703, 3545}, {381, 12101, 3524}, {381, 14269, 12101}, {381, 14892, 41106}, {381, 15685, 14892}, {381, 35403, 14891}, {381, 38335, 15701}, {382, 3523, 15683}, {382, 3545, 3523}, {382, 3628, 17538}, {382, 3858, 3545}, {382, 5056, 35418}, {382, 14893, 4}, {439, 32963, 2}, {546, 3091, 3832}, {546, 3627, 381}, {546, 3628, 3858}, {546, 3861, 3627}, {546, 12102, 3857}, {546, 12103, 3856}, {546, 14269, 3529}, {546, 14893, 3628}, {547, 17800, 10299}, {631, 3830, 49135}, {631, 15706, 3523}, {632, 3853, 49136}, {632, 49136, 376}, {1656, 3856, 41106}, {1656, 15685, 44682}, {1656, 15687, 33703}, {1656, 33703, 10304}, {1657, 5066, 5067}, {1657, 5067, 15692}, {1995, 11403, 12086}, {2476, 11106, 2}, {2478, 37161, 2}, {2676, 3832, 2675}, {3070, 43560, 42540}, {3071, 43561, 42539}, {3090, 3091, 5068}, {3090, 3525, 5070}, {3090, 3529, 3524}, {3090, 3627, 20}, {3090, 11541, 3}, {3090, 21735, 3525}, {3090, 44245, 10303}, {3091, 3146, 2}, {3091, 3543, 10303}, {3091, 3839, 546}, {3091, 5056, 5072}, {3091, 5076, 3522}, {3091, 10303, 5}, {3091, 46936, 3544}, {3091, 49140, 46936}, {3146, 3522, 3529}, {3146, 3832, 3091}, {3146, 15022, 3}, {3522, 5068, 46935}, {3523, 15715, 15717}, {3524, 3529, 44245}, {3524, 5073, 20}, {3524, 12101, 3543}, {3524, 15682, 44903}, {3524, 41099, 381}, {3525, 3855, 5072}, {3525, 5072, 5056}, {3525, 15720, 10303}, {3525, 17538, 15715}, {3525, 41991, 3091}, {3529, 3543, 3146}, {3529, 5076, 3543}, {3529, 10303, 3522}, {3529, 44245, 20}, {3541, 21451, 2}, {3543, 3839, 41099}, {3543, 10303, 3529}, {3543, 15694, 15683}, {3543, 46935, 20}, {3544, 3857, 3091}, {3544, 12102, 49140}, {3544, 46936, 15022}, {3545, 15683, 2}, {3545, 17538, 3628}, {3627, 5072, 21735}, {3627, 12101, 5076}, {3627, 12811, 3}, {3627, 15699, 15704}, {3627, 41990, 12108}, {3627, 44245, 5073}, {3627, 49137, 15682}, {3628, 15704, 15706}, {3628, 17538, 3523}, {3830, 3850, 631}, {3830, 5079, 15704}, {3832, 5068, 381}, {3832, 15717, 3855}, {3839, 3861, 5068}, {3843, 3845, 4}, {3845, 41987, 381}, {3850, 3853, 19711}, {3850, 3861, 41988}, {3850, 15704, 5079}, {3850, 34200, 5}, {3851, 3853, 376}, {3851, 49136, 632}, {3853, 23046, 3851}, {3854, 17578, 2}, {3855, 5072, 3091}, {3855, 15721, 5068}, {3855, 35401, 3523}, {3856, 15687, 1656}, {3857, 12102, 3}, {3857, 49140, 15022}, {3858, 14893, 382}, {3858, 17538, 3091}, {3860, 38335, 5071}, {5047, 13615, 16865}, {5056, 15717, 2}, {5056, 15721, 5070}, {5070, 15716, 140}, {5070, 21735, 15721}, {5071, 15640, 15705}, {5071, 15705, 2}, {5071, 38335, 15640}, {5072, 15723, 5079}, {5072, 41991, 3855}, {5073, 5076, 3627}, {5073, 44245, 3529}, {5073, 46935, 3522}, {5076, 10303, 3146}, {5076, 41099, 3091}, {5079, 15699, 3090}, {5079, 15704, 631}, {5141, 17576, 2}, {5154, 37267, 2}, {5187, 37435, 2}, {5691, 9779, 3622}, {6459, 43508, 43520}, {6459, 43879, 43883}, {6460, 43507, 43519}, {6460, 43880, 43884}, {6655, 32991, 2}, {6912, 36002, 20846}, {7394, 7409, 2}, {7530, 35500, 38435}, {7989, 9778, 46932}, {8703, 15694, 3524}, {9812, 19925, 3617}, {10109, 23046, 381}, {10299, 17800, 15697}, {11286, 33292, 33182}, {11361, 32972, 33201}, {12101, 44245, 3627}, {12102, 46936, 3146}, {13615, 36002, 35986}, {14035, 32980, 2}, {14041, 32971, 33200}, {14042, 33006, 32973}, {14062, 33016, 32974}, {14063, 32979, 2}, {14068, 32993, 2}, {14269, 41099, 3543}, {14782, 14783, 19709}, {14784, 14785, 15712}, {14892, 15687, 15685}, {14892, 44682, 1656}, {15044, 38791, 3448}, {15687, 41106, 10304}, {15691, 41990, 5055}, {15696, 35018, 15702}, {15699, 41988, 3830}, {15703, 49133, 46853}, {15721, 21735, 15717}, {15723, 35416, 15704}, {16044, 32982, 2}, {16194, 44863, 3567}, {16865, 17572, 37248}, {16924, 33025, 2}, {18586, 18587, 15686}, {19687, 32984, 33203}, {19696, 32998, 35287}, {21565, 21568, 11350}, {32961, 33205, 2}, {32962, 33023, 2}, {32966, 32981, 2}, {32971, 33200, 2}, {32972, 33201, 2}, {32983, 33229, 33202}, {32995, 33019, 2}, {32996, 33018, 2}, {32997, 33024, 2}, {33011, 33244, 2}, {33013, 33279, 32990}, {33030, 33050, 2}, {33051, 33056, 2}, {33699, 35018, 15696}, {33703, 41106, 1656}, {33703, 44682, 20}, {35403, 38071, 11001}, {35732, 42282, 3523}, {36436, 36454, 15700}, {42101, 42142, 43466}, {42101, 43466, 43474}, {42102, 42139, 43465}, {42102, 43465, 43473}, {42103, 43226, 42134}, {42106, 43227, 42133}, {42280, 42281, 1656}, {43364, 43365, 6}, {43771, 43772, 6}, {44903, 49137, 3529}, {46853, 49133, 46333}, {46936, 49140, 3}


X(50690) = X(2)X(3)∩X(6)X(43519)

Barycentrics    19*a^4 - 6*a^2*b^2 - 13*b^4 - 6*a^2*c^2 + 26*b^2*c^2 - 13*c^4 : :
X(50690) = 39 X[2] - 32 X[3], 9 X[2] - 16 X[4], 57 X[2] - 64 X[5], 15 X[2] - 8 X[20], 23 X[2] - 16 X[376], 25 X[2] - 32 X[381], 3 X[2] + 32 X[382], 93 X[2] - 128 X[546], 71 X[2] - 64 X[549], 99 X[2] - 64 X[550], 87 X[2] - 80 X[631], 81 X[2] - 32 X[1657], 15 X[2] - 16 X[3090], 33 X[2] - 40 X[3091], 3 X[2] + 4 X[3146], 27 X[2] - 20 X[3522], 9 X[2] - 8 X[3523], 55 X[2] - 48 X[3524], 33 X[2] - 32 X[3526], 21 X[2] - 16 X[3528], 51 X[2] - 16 X[3529], 53 X[2] - 32 X[3534], X[2] - 8 X[3543], 41 X[2] - 48 X[3545], 15 X[2] - 64 X[3627], 11 X[2] - 32 X[3830], 3 X[2] - 4 X[3832], 17 X[2] - 24 X[3839], 43 X[2] - 64 X[3845], 27 X[2] - 32 X[3851], 51 X[2] - 128 X[3853], 27 X[2] - 34 X[3854], 51 X[2] - 64 X[3857], 103 X[2] - 96 X[5054], 89 X[2] - 96 X[5055], 81 X[2] - 88 X[5056], 9 X[2] - 2 X[5059], 45 X[2] - 52 X[5068], 73 X[2] - 80 X[5071], 45 X[2] + 32 X[5073], 69 X[2] - 160 X[5076], 85 X[2] - 64 X[8703], 31 X[2] - 24 X[10304], 37 X[2] - 16 X[11001], 75 X[2] + 16 X[11541], 65 X[2] - 128 X[12101], 61 X[2] - 96 X[14269], 69 X[2] - 64 X[14869], 79 X[2] - 128 X[14893], 69 X[2] - 76 X[15022], 13 X[2] + 8 X[15640], 67 X[2] - 32 X[15681], 5 X[2] + 16 X[15682], 11 X[2] - 4 X[15683], 17 X[2] + 32 X[15684], 95 X[2] - 32 X[15685], 113 X[2] - 64 X[15686], 29 X[2] - 64 X[15687], 131 X[2] - 96 X[15688], 145 X[2] - 96 X[15689], 47 X[2] - 40 X[15692], 61 X[2] - 40 X[15697], 19 X[2] - 16 X[15698], 37 X[2] - 32 X[15700], 35 X[2] - 32 X[15701], 17 X[2] - 16 X[15702], 31 X[2] - 32 X[15703], 141 X[2] - 64 X[15704], 43 X[2] - 36 X[15705], 79 X[2] - 72 X[15708], 51 X[2] - 44 X[15717], 95 X[2] - 88 X[15721], 129 X[2] - 80 X[17538], 3 X[2] - 10 X[17578], 123 X[2] - 32 X[17800], 101 X[2] - 80 X[19708], 127 X[2] - 64 X[19710], 73 X[2] - 64 X[19711], 33 X[2] - 26 X[21734], X[2] - 64 X[33699], 33 X[2] + 16 X[33703], 101 X[2] + 32 X[35400], 83 X[2] - 160 X[35403], 13 X[2] + 64 X[35404], 71 X[2] + 48 X[35409], 97 X[2] - 20 X[35414], 41 X[2] - 160 X[35434], 47 X[2] - 96 X[38335], 59 X[2] - 80 X[41099], 13 X[2] - 16 X[41106], 75 X[2] - 64 X[44682], 155 X[2] - 64 X[44903], 85 X[2] - 128 X[45762], and mnay others

X(50690) lies on these lines: {2, 3}, {6, 43519}, {99, 32881}, {315, 32880}, {316, 32840}, {323, 15811}, {371, 43432}, {372, 43433}, {397, 43466}, {398, 43465}, {485, 6478}, {486, 6479}, {516, 4678}, {962, 20014}, {1131, 42263}, {1132, 42264}, {1151, 3590}, {1152, 3591}, {1204, 48912}, {1498, 11004}, {3068, 43560}, {3069, 43561}, {3070, 6441}, {3071, 6442}, {3592, 43411}, {3594, 43412}, {3617, 5493}, {3621, 5691}, {3622, 10248}, {3623, 9812}, {5334, 42901}, {5335, 42900}, {5339, 42141}, {5340, 42140}, {5343, 42104}, {5344, 42105}, {5349, 22237}, {5350, 22235}, {5365, 42086}, {5366, 42085}, {5890, 12002}, {5921, 48884}, {5984, 39809}, {6361, 38176}, {6439, 8972}, {6440, 13941}, {6447, 14241}, {6448, 14226}, {6453, 43503}, {6454, 43504}, {6459, 43507}, {6460, 43508}, {6476, 42275}, {6477, 42276}, {7320, 9580}, {7585, 42271}, {7586, 42272}, {7768, 32826}, {7860, 32830}, {7917, 32815}, {8960, 43408}, {9543, 31412}, {9589, 31145}, {9780, 28158}, {10513, 32819}, {10723, 35369}, {11002, 12279}, {12512, 46931}, {13202, 14683}, {13421, 18439}, {13598, 16981}, {15105, 18405}, {16960, 43781}, {16961, 43782}, {16964, 44018}, {16965, 44017}, {18553, 43621}, {19106, 42999}, {19107, 42998}, {20052, 41869}, {20070, 31673}, {20080, 36990}, {20094, 39838}, {22236, 43540}, {22238, 43541}, {23251, 43376}, {23261, 43377}, {29323, 42785}, {32824, 32879}, {33884, 44870}, {34507, 48943}, {36836, 43877}, {36843, 43878}, {38259, 47586}, {40693, 42909}, {40694, 42908}, {41100, 43425}, {41101, 43424}, {41973, 42161}, {41974, 42160}, {42087, 42494}, {42088, 42495}, {42099, 42979}, {42100, 42978}, {42108, 43473}, {42109, 43474}, {42133, 42158}, {42134, 42157}, {42136, 43777}, {42137, 43778}, {42139, 43480}, {42142, 43479}, {42225, 42522}, {42226, 42523}, {42283, 43511}, {42284, 43512}, {42510, 43427}, {42511, 43426}, {42892, 43403}, {42893, 43404}, {42924, 42983}, {42925, 42982}, {42942, 43477}, {42943, 43478}, {43016, 43022}, {43017, 43023}, {43193, 43553}, {43194, 43552}, {43209, 43410}, {43210, 43409}, {43413, 43879}, {43414, 43880}, {43624, 46476}, {43625, 46473}

X(50690) = midpoint of X(3146) and X(3832)
X(50690) = reflection of X(i) in X(j) for these {i,j}: {20, 3090}, {3523, 4}, {3622, 10248}, {3857, 3853}, {8703, 45762}, {11001, 15700}
X(50690) = orthoptic-circle-of-Steiner-circumellipse-inverse of X(47316)
X(50690) = crosspoint of X(43556) and X(43557)
X(50690) = crosssum of X(36836) and X(36843)
X(50690) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 382, 35404}, {3, 47599, 631}, {4, 20, 5068}, {4, 376, 3850}, {4, 550, 3091}, {4, 1656, 3839}, {4, 1657, 5056}, {4, 3146, 5059}, {4, 3522, 3854}, {4, 3523, 3832}, {4, 3529, 1656}, {4, 3533, 546}, {4, 5059, 2}, {4, 5073, 20}, {4, 10299, 3858}, {4, 11541, 21735}, {4, 15682, 5073}, {4, 21735, 381}, {4, 33703, 550}, {4, 49135, 3522}, {4, 49138, 3533}, {5, 35384, 3529}, {20, 140, 3522}, {20, 3091, 3524}, {20, 3543, 3627}, {20, 15682, 3146}, {20, 46935, 21735}, {20, 49137, 15683}, {20, 49140, 15685}, {140, 3851, 3090}, {381, 11541, 20}, {381, 21735, 46935}, {381, 44682, 3090}, {381, 46935, 5068}, {382, 3543, 3146}, {382, 3627, 15682}, {382, 35416, 3845}, {546, 49138, 10304}, {548, 41099, 46936}, {550, 3830, 4}, {1656, 3853, 4}, {1657, 3858, 10299}, {1657, 5056, 3522}, {3090, 3524, 3526}, {3090, 3528, 15701}, {3091, 15683, 21734}, {3091, 21734, 2}, {3091, 33703, 15683}, {3146, 3522, 49135}, {3146, 3543, 17578}, {3146, 3830, 21734}, {3146, 15683, 33703}, {3146, 15705, 49134}, {3146, 17578, 2}, {3522, 3854, 2}, {3522, 5068, 140}, {3522, 49135, 5059}, {3524, 3861, 3091}, {3524, 33703, 49137}, {3524, 49137, 20}, {3526, 12108, 15702}, {3529, 3839, 15717}, {3529, 3853, 3839}, {3529, 8703, 20}, {3544, 15696, 15708}, {3627, 3861, 3830}, {3627, 5073, 4}, {3627, 8703, 3853}, {3627, 15682, 20}, {3830, 33703, 3091}, {3830, 49137, 3861}, {3832, 3851, 3854}, {3839, 3857, 3832}, {3843, 11001, 10303}, {3845, 17538, 7486}, {3845, 49134, 17538}, {3850, 5076, 4}, {3850, 49139, 376}, {3853, 15684, 3529}, {3854, 5059, 3522}, {3855, 15704, 15692}, {3858, 10299, 5056}, {3861, 15759, 12811}, {3861, 33703, 20}, {3861, 44245, 41986}, {3861, 49137, 3524}, {5056, 49135, 1657}, {5059, 17578, 4}, {5068, 5073, 5059}, {5070, 5073, 49139}, {5073, 15685, 49133}, {5076, 49139, 3850}, {5349, 42120, 22237}, {5350, 42119, 22235}, {7486, 17538, 15705}, {11737, 35404, 15684}, {12101, 15682, 15640}, {12102, 17800, 3545}, {12108, 15684, 33703}, {12811, 15689, 631}, {14093, 33703, 49140}, {14869, 44682, 44580}, {14893, 15696, 3544}, {15022, 15717, 47598}, {15640, 23046, 15683}, {15684, 15707, 35384}, {15687, 49136, 631}, {15698, 15702, 15707}, {15704, 38335, 3855}, {15721, 49140, 20}, {17800, 35434, 12102}, {36445, 36463, 45757}, {41992, 49136, 3529}, {42104, 42431, 5343}, {42105, 42432, 5344}, {43473, 43496, 43556}, {43474, 43495, 43557}, {43519, 43520, 6}


X(50691) = X(2)X(3)∩X(8)X(28232)

Barycentrics    17*a^4 - 6*a^2*b^2 - 11*b^4 - 6*a^2*c^2 + 22*b^2*c^2 - 11*c^4 : :
X(50691) = 33 X[2] - 28 X[3], 9 X[2] - 14 X[4], 51 X[2] - 56 X[5], 12 X[2] - 7 X[20], 19 X[2] - 14 X[376], 23 X[2] - 28 X[381], 3 X[2] - 28 X[382], 87 X[2] - 112 X[546], 21 X[2] - 16 X[548], 61 X[2] - 56 X[549], 81 X[2] - 56 X[550], 15 X[2] - 14 X[631], 57 X[2] - 56 X[632], 27 X[2] - 28 X[1656], 9 X[2] - 4 X[1657], 93 X[2] - 98 X[3090], 6 X[2] - 7 X[3091], 3 X[2] + 7 X[3146], 9 X[2] - 7 X[3522], 54 X[2] - 49 X[3523], 47 X[2] - 42 X[3524], 123 X[2] - 98 X[3528], 39 X[2] - 14 X[3529], 43 X[2] - 28 X[3534], 2 X[2] - 7 X[3543], 37 X[2] - 42 X[3545], 3 X[2] - 8 X[3627], 13 X[2] - 28 X[3830], 39 X[2] - 49 X[3832], 16 X[2] - 21 X[3839], 3 X[2] - 4 X[3843], 41 X[2] - 56 X[3845], 27 X[2] - 32 X[3850], 57 X[2] - 112 X[3853], 99 X[2] - 119 X[3854], 45 X[2] - 56 X[3858], 93 X[2] - 112 X[3859], 89 X[2] - 84 X[5054], 79 X[2] - 84 X[5055], 72 X[2] - 77 X[5056], 27 X[2] - 7 X[5059], 97 X[2] - 112 X[5066], 81 X[2] - 91 X[5068], 13 X[2] - 14 X[5071], 39 X[2] - 44 X[5072], 27 X[2] + 28 X[5073], 15 X[2] - 28 X[5076], 71 X[2] - 56 X[8703], 96 X[2] - 91 X[10303], 26 X[2] - 21 X[10304], 29 X[2] - 14 X[11001], 51 X[2] + 14 X[11541], 67 X[2] - 112 X[12101], 69 X[2] - 64 X[12108], 15 X[2] - 16 X[12812], 5 X[2] - 4 X[14093], 59 X[2] - 84 X[14269], 101 X[2] - 96 X[14890], 37 X[2] - 32 X[14891], 43 X[2] - 48 X[14892], 11 X[2] - 16 X[14893], 8 X[2] + 7 X[15640], 53 X[2] - 28 X[15681], X[2] + 14 X[15682], 17 X[2] - 7 X[15683], X[2] + 4 X[15684], 73 X[2] - 28 X[15685], 13 X[2] - 8 X[15686], 31 X[2] - 56 X[15687], 109 X[2] - 84 X[15688], 17 X[2] - 12 X[15689], 8 X[2] - 7 X[15692], 31 X[2] - 28 X[15693], 29 X[2] - 28 X[15694], 37 X[2] - 28 X[15695], 39 X[2] - 28 X[15696], 10 X[2] - 7 X[15697], 113 X[2] - 98 X[15698], 103 X[2] - 98 X[15702], 111 X[2] - 56 X[15704], 73 X[2] - 63 X[15705], 41 X[2] - 36 X[15706], 68 X[2] - 63 X[15708], 65 X[2] - 56 X[15711], 9 X[2] - 8 X[15712], 59 X[2] - 56 X[15713], 67 X[2] - 56 X[15714], 87 X[2] - 77 X[15717], 49 X[2] - 44 X[15718], 82 X[2] - 77 X[15721], 3 X[2] - 7 X[17578], 93 X[2] - 28 X[17800], 17 X[2] - 14 X[19708], 25 X[2] - 28 X[19709], and many others

X(50691) lies on these lines: {2, 3}, {8, 28232}, {17, 42112}, {18, 42113}, {193, 48943}, {315, 32877}, {316, 32824}, {371, 43376}, {372, 43377}, {390, 5270}, {397, 42140}, {398, 42141}, {516, 4668}, {962, 3633}, {1131, 42542}, {1132, 42541}, {1151, 43409}, {1152, 43410}, {1587, 6435}, {1588, 6436}, {3590, 6564}, {3591, 6565}, {3600, 4857}, {3616, 28172}, {3617, 28146}, {3620, 29317}, {3621, 48661}, {3623, 28186}, {3625, 5691}, {3630, 36990}, {4114, 9579}, {4691, 5493}, {5237, 42513}, {5238, 42512}, {5274, 10483}, {5286, 14075}, {5318, 43243}, {5321, 43242}, {5334, 42431}, {5335, 42432}, {5339, 42109}, {5340, 42108}, {5343, 42086}, {5344, 42085}, {5346, 43448}, {5349, 42097}, {5350, 42096}, {5365, 42104}, {5366, 42105}, {5818, 28154}, {5882, 9812}, {5921, 48910}, {5965, 48904}, {6409, 43786}, {6410, 43785}, {6437, 42570}, {6438, 42571}, {6459, 43411}, {6460, 43412}, {7320, 9613}, {7581, 43519}, {7582, 43520}, {7585, 22644}, {7586, 22615}, {7748, 34571}, {7755, 43618}, {7781, 23334}, {7860, 32815}, {8960, 23253}, {8972, 42266}, {9542, 31412}, {9692, 43879}, {10575, 11002}, {10595, 28190}, {11220, 31822}, {11480, 42775}, {11481, 42776}, {11522, 28164}, {11542, 43473}, {11543, 43474}, {12250, 14864}, {12279, 13382}, {12512, 22266}, {13886, 43560}, {13939, 43561}, {13941, 42267}, {14927, 33748}, {14929, 32882}, {15105, 32064}, {16960, 22235}, {16961, 22237}, {16981, 34783}, {17852, 41951}, {19106, 41973}, {19107, 41974}, {20052, 28212}, {20053, 28234}, {22236, 43422}, {22238, 43423}, {23249, 42522}, {23259, 42523}, {23263, 42276}, {23269, 42225}, {23275, 42226}, {32826, 32878}, {32875, 37668}, {34507, 43621}, {35369, 38744}, {35812, 43503}, {35813, 43504}, {35814, 43571}, {35815, 43570}, {40693, 43424}, {40694, 43425}, {41969, 42578}, {41970, 42579}, {42021, 46851}, {42099, 42921}, {42100, 42920}, {42101, 42495}, {42102, 42494}, {42103, 43870}, {42106, 43869}, {42144, 42988}, {42145, 42989}, {42147, 42516}, {42148, 42517}, {42283, 42414}, {42284, 42413}, {42433, 43400}, {42434, 43399}, {42435, 42992}, {42436, 42993}, {42472, 42949}, {42473, 42948}, {42561, 43414}, {42629, 43776}, {42630, 43775}, {42910, 42958}, {42911, 42959}, {42990, 49827}, {42991, 49826}, {43238, 43873}, {43239, 43874}, {43364, 43471}, {43365, 43472}, {43426, 43540}, {43427, 43541}

X(50691) = midpoint of X(i) and X(j) for these {i,j}: {1656, 5073}, {3146, 17578}, {15640, 15692}, {15696, 35407}, {17538, 33703}
X(50691) = reflection of X(i) in X(j) for these {i,j}: {20, 3091}, {631, 5076}, {632, 3853}, {1657, 15712}, {3091, 17578}, {3522, 4}, {3529, 15696}, {3843, 3627}, {5071, 3830}, {11001, 15694}, {15683, 19708}, {15693, 15687}, {15704, 48154}, {15714, 12101}, {17538, 3843}, {19708, 35403}, {35414, 11001}, {35434, 33699}, {41099, 35434}
X(50691) = anticomplement of X(17538)
X(50691) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3146, 33703}, {2, 3522, 15712}, {2, 3832, 5072}, {2, 3843, 3091}, {2, 15683, 15689}, {2, 15686, 10304}, {2, 15706, 15721}, {2, 21735, 3523}, {2, 33703, 49140}, {2, 49140, 20}, {3, 4, 3854}, {3, 382, 33699}, {3, 3854, 46935}, {4, 20, 5056}, {4, 140, 3832}, {4, 376, 3851}, {4, 550, 5068}, {4, 631, 3858}, {4, 1657, 2}, {4, 3146, 49135}, {4, 3522, 3091}, {4, 3529, 140}, {4, 5056, 3839}, {4, 5059, 3523}, {4, 5073, 5059}, {4, 10299, 381}, {4, 21735, 3850}, {4, 33703, 1657}, {4, 49135, 20}, {4, 49138, 10299}, {5, 11541, 15683}, {20, 3091, 15692}, {20, 3146, 15640}, {20, 3839, 10303}, {20, 46936, 10304}, {140, 3830, 4}, {140, 49133, 3529}, {376, 23046, 2}, {382, 3146, 3543}, {382, 15682, 3146}, {382, 15684, 3627}, {546, 11001, 15717}, {546, 44580, 5}, {546, 49134, 11001}, {548, 3627, 38335}, {550, 5068, 3523}, {631, 12812, 2}, {631, 17538, 14093}, {632, 46853, 19711}, {1593, 37945, 38435}, {1656, 3522, 3523}, {1656, 3843, 3850}, {1657, 3627, 4}, {1657, 3843, 15712}, {1657, 3850, 21735}, {1657, 15712, 17538}, {2043, 2044, 15719}, {3091, 3523, 1656}, {3091, 3543, 17578}, {3091, 15697, 631}, {3091, 49140, 17538}, {3146, 3543, 20}, {3146, 3627, 49140}, {3146, 5059, 5073}, {3522, 17578, 4}, {3522, 41099, 46935}, {3523, 5059, 20}, {3523, 49135, 5059}, {3528, 3845, 15022}, {3528, 15022, 15721}, {3529, 3830, 3832}, {3529, 3832, 10304}, {3529, 5071, 15696}, {3529, 10304, 20}, {3534, 12102, 3855}, {3543, 10304, 3830}, {3543, 15640, 3839}, {3543, 49135, 4}, {3545, 14891, 2}, {3545, 15704, 21734}, {3627, 5073, 21735}, {3627, 12812, 5076}, {3627, 15684, 33703}, {3627, 23046, 3853}, {3627, 33703, 2}, {3830, 35407, 15696}, {3830, 49133, 140}, {3832, 5071, 3091}, {3832, 10304, 46936}, {3843, 14093, 12812}, {3843, 17538, 2}, {3845, 49137, 3528}, {3850, 15712, 1656}, {3850, 21735, 2}, {3850, 33703, 5059}, {3851, 3853, 4}, {3853, 35411, 3544}, {3853, 49136, 376}, {3856, 44903, 3}, {3858, 5076, 4}, {3858, 15712, 12812}, {3859, 15693, 3090}, {3861, 15681, 3525}, {5059, 5068, 550}, {5059, 5073, 49135}, {5071, 41099, 38071}, {5072, 49133, 1657}, {5076, 14093, 3843}, {8597, 33280, 32982}, {10109, 14893, 23046}, {12103, 14269, 5067}, {12812, 14093, 631}, {14066, 33271, 2}, {14784, 14785, 44245}, {14813, 14814, 15688}, {14893, 46333, 2}, {15684, 33699, 46333}, {15684, 33703, 3146}, {15686, 15696, 17538}, {15687, 17800, 3090}, {15689, 49139, 1657}, {15696, 46936, 15692}, {15704, 48154, 15695}, {15708, 19708, 15692}, {15712, 17538, 3522}, {15714, 41989, 3526}, {15721, 49137, 20}, {17538, 41099, 45760}, {17578, 35407, 10304}, {17578, 35414, 546}, {19711, 49136, 49138}, {23253, 42275, 43512}, {23263, 42276, 43511}, {35502, 44454, 12087}, {42104, 42158, 5365}, {42105, 42157, 5366}, {42133, 42151, 22237}, {42134, 42150, 22235}, {42278, 42279, 15685}


X(50692) = X(2)X(3)∩X(8)X(28158)

Barycentrics    21*a^4 - 10*a^2*b^2 - 11*b^4 - 10*a^2*c^2 + 22*b^2*c^2 - 11*c^4 : :
X(50692) = 33 X[2] - 32 X[3], 15 X[2] - 16 X[4], 63 X[2] - 64 X[5], 9 X[2] - 8 X[20], 17 X[2] - 16 X[376], 31 X[2] - 32 X[381], 27 X[2] - 32 X[382], 65 X[2] - 64 X[549], 69 X[2] - 64 X[550], 81 X[2] - 80 X[631], 39 X[2] - 32 X[1657], 39 X[2] - 40 X[3091], 3 X[2] - 4 X[3146], 21 X[2] - 20 X[3522], 57 X[2] - 56 X[3523], 49 X[2] - 48 X[3524], 21 X[2] - 16 X[3529], 35 X[2] - 32 X[3534], 7 X[2] - 8 X[3543], 47 X[2] - 48 X[3545], 57 X[2] - 64 X[3627], 29 X[2] - 32 X[3830], 27 X[2] - 28 X[3832], 23 X[2] - 24 X[3839], 61 X[2] - 64 X[3845], 33 X[2] - 34 X[3854], 97 X[2] - 96 X[5054], 95 X[2] - 96 X[5055], 87 X[2] - 88 X[5056], 51 X[2] - 52 X[5068], 79 X[2] - 80 X[5071], 21 X[2] - 32 X[5073], 67 X[2] - 64 X[8703], 25 X[2] - 24 X[10304], 19 X[2] - 16 X[11001], 3 X[2] - 16 X[11541], 91 X[2] - 96 X[14269], 75 X[2] - 76 X[15022], 5 X[2] - 8 X[15640], 37 X[2] - 32 X[15681], 13 X[2] - 16 X[15682], 5 X[2] - 4 X[15683], 25 X[2] - 32 X[15684], 41 X[2] - 32 X[15685], 71 X[2] - 64 X[15686], 59 X[2] - 64 X[15687], 101 X[2] - 96 X[15688], 103 X[2] - 96 X[15689], and many others

X(50692) lies on these lines: {2, 3}, {8, 28158}, {145, 9589}, {185, 16981}, {316, 32841}, {390, 9657}, {395, 43557}, {396, 43556}, {485, 9692}, {515, 20014}, {516, 3621}, {962, 28172}, {1131, 9543}, {1132, 43338}, {1151, 43507}, {1152, 43508}, {2794, 35369}, {3411, 5343}, {3412, 5344}, {3600, 9670}, {3620, 48872}, {3623, 4301}, {4302, 31410}, {4325, 14986}, {4678, 5691}, {5334, 43633}, {5335, 43632}, {5365, 36968}, {5366, 36967}, {5734, 13607}, {5881, 20052}, {5921, 29317}, {6221, 43340}, {6398, 43341}, {6425, 43376}, {6426, 43377}, {6429, 42570}, {6430, 42571}, {6435, 42275}, {6436, 42276}, {6488, 43409}, {6489, 43410}, {6498, 42215}, {6499, 42216}, {7585, 42272}, {7586, 42271}, {7737, 34571}, {7765, 14075}, {7782, 32873}, {7796, 32879}, {7802, 32894}, {7850, 32830}, {8960, 43526}, {8972, 43560}, {9541, 42540}, {9607, 14930}, {9681, 23249}, {9778, 37714}, {10147, 41952}, {10148, 41951}, {10248, 46934}, {11002, 46850}, {11431, 13403}, {11439, 33884}, {11488, 43473}, {11489, 43474}, {12007, 48910}, {12245, 28182}, {12324, 37779}, {12512, 46932}, {13941, 43561}, {14907, 32872}, {15305, 15606}, {15752, 47296}, {16192, 46930}, {16644, 43552}, {16645, 43553}, {16964, 42113}, {16965, 42112}, {20054, 28228}, {20080, 29181}, {21454, 37723}, {22235, 42942}, {22237, 42943}, {23241, 34549}, {23253, 35812}, {23259, 35814}, {23263, 35813}, {23269, 31487}, {28168, 37727}, {31414, 42258}, {31670, 33749}, {32815, 32880}, {32816, 32881}, {35265, 45248}, {37640, 43496}, {37641, 43495}, {40330, 48879}, {42085, 42934}, {42086, 42935}, {42093, 42685}, {42094, 42684}, {42096, 43465}, {42097, 43466}, {42101, 43870}, {42102, 43869}, {42104, 42433}, {42105, 42434}, {42108, 43193}, {42109, 43194}, {42126, 43242}, {42127, 43243}, {42130, 42982}, {42131, 42983}, {42140, 42148}, {42141, 42147}, {42149, 42429}, {42152, 42430}, {42157, 42965}, {42158, 42964}, {42164, 43769}, {42165, 43770}, {42259, 43382}, {42494, 42626}, {42495, 42625}, {42539, 43431}, {42586, 49812}, {42587, 49813}, {42815, 43634}, {42816, 43635}, {42888, 42987}, {42889, 42986}, {42920, 43545}, {42921, 43544}, {43302, 43636}, {43303, 43637}, {43601, 48912}

X(50692) = reflection of X(i) in X(j) for these {i,j}: {4, 49136}, {20, 33703}, {3146, 49135}, {3529, 5073}, {3845, 35408}, {5059, 3146}, {11541, 49133}, {15682, 35400}, {15683, 15640}, {33703, 49134}, {49135, 11541}, {49138, 382}, {49139, 3627}, {49140, 4}
X(50692) = anticomplement of X(5059)
X(50692) = orthoptic-circle-of-Steiner-circumellipse-inverse of X(37911)
X(50692) = anticomplement of the isogonal conjugate of X(43691)
X(50692) = X(43691)-anticomplementary conjugate of X(8)
X(50692) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 3854, 2}, {3, 33699, 4}, {3, 41099, 46935}, {4, 20, 15717}, {4, 376, 3628}, {4, 548, 7486}, {4, 549, 3091}, {4, 3090, 23046}, {4, 3529, 3534}, {4, 3534, 10303}, {4, 5072, 3839}, {4, 7486, 3832}, {4, 10304, 15022}, {4, 15640, 3146}, {4, 15698, 5072}, {4, 15704, 10304}, {4, 15709, 3857}, {4, 17538, 15709}, {4, 17800, 20}, {4, 46333, 3}, {4, 49136, 15640}, {4, 49140, 15683}, {5, 20, 3522}, {5, 3529, 20}, {5, 3853, 14269}, {5, 12101, 3843}, {5, 15694, 5067}, {5, 46853, 11812}, {20, 382, 3832}, {20, 3091, 3528}, {20, 3146, 17578}, {20, 3523, 15696}, {20, 3543, 5}, {20, 3832, 21734}, {20, 7486, 548}, {20, 17578, 2}, {20, 17800, 15683}, {20, 33703, 3146}, {20, 49135, 33703}, {20, 49140, 17800}, {382, 548, 4}, {382, 1657, 5070}, {382, 3832, 17578}, {382, 5070, 3853}, {382, 17800, 548}, {382, 49138, 20}, {546, 35421, 140}, {548, 3628, 44682}, {548, 7486, 15717}, {548, 15717, 21734}, {549, 3533, 10303}, {549, 3860, 5055}, {550, 5072, 15698}, {550, 10109, 3}, {1657, 3528, 20}, {1657, 3853, 3528}, {1657, 14269, 44245}, {1657, 14892, 17538}, {1657, 15682, 3091}, {1657, 35434, 3}, {2041, 2042, 15682}, {2043, 2044, 15715}, {3091, 5056, 14892}, {3146, 3522, 3543}, {3146, 3832, 382}, {3146, 5059, 2}, {3146, 15683, 4}, {3146, 49138, 21734}, {3522, 5068, 15720}, {3526, 10304, 15717}, {3526, 17800, 15704}, {3528, 3853, 3091}, {3528, 15682, 3853}, {3529, 3543, 3522}, {3529, 5073, 3543}, {3529, 15682, 3533}, {3533, 14269, 3091}, {3534, 5055, 34200}, {3534, 10303, 3522}, {3534, 14269, 549}, {3534, 33699, 41099}, {3534, 44903, 46333}, {3534, 49136, 5073}, {3543, 5073, 3146}, {3543, 10303, 4}, {3544, 33923, 15721}, {3627, 5055, 4}, {3627, 11001, 3523}, {3627, 15696, 3855}, {3627, 49139, 11001}, {3830, 3857, 4}, {3830, 17538, 5056}, {3830, 35381, 3845}, {3832, 15717, 7486}, {3832, 21734, 2}, {3839, 3859, 3832}, {3843, 15696, 15713}, {3843, 15720, 5}, {3845, 21735, 46936}, {3853, 35400, 33703}, {3853, 44245, 5}, {3855, 11001, 15696}, {3855, 15696, 3523}, {3856, 17800, 46333}, {3856, 47598, 5}, {3857, 15709, 5056}, {5059, 17578, 20}, {5073, 44245, 15682}, {5073, 49137, 12101}, {7486, 49138, 15683}, {7585, 42272, 43519}, {7586, 42271, 43520}, {10303, 46935, 47598}, {10303, 49140, 3529}, {10304, 15640, 15684}, {11001, 15682, 3860}, {11001, 15696, 20}, {11541, 33703, 49134}, {12086, 39568, 37913}, {14269, 15682, 3543}, {14269, 35400, 35384}, {14269, 44245, 3533}, {14784, 14785, 15686}, {15022, 15717, 3526}, {15640, 49135, 49136}, {15640, 49140, 4}, {15683, 15717, 20}, {15683, 49140, 5059}, {15684, 15704, 4}, {15684, 17800, 3526}, {15706, 44904, 3525}, {17578, 21734, 3832}, {17800, 49134, 49136}, {33699, 44903, 47598}, {33703, 49134, 49135}, {33703, 49138, 382}, {33923, 38335, 3544}, {34200, 49139, 3529}, {36445, 36463, 41985}, {37899, 44442, 30769}, {42271, 42414, 7586}, {42272, 42413, 7585}, {44903, 47598, 3534}, {49135, 49140, 15640}, {49136, 49140, 3146}


X(50693) = X(2)X(3)∩X(6)X(42574)

Barycentrics    13*a^4 - 10*a^2*b^2 - 3*b^4 - 10*a^2*c^2 + 6*b^2*c^2 - 3*c^4 : :
X(50693) = 9 X[2] - 16 X[3], 15 X[2] - 8 X[4], 39 X[2] - 32 X[5], 3 X[2] + 4 X[20], 57 X[2] - 64 X[140], X[2] - 8 X[376], 23 X[2] - 16 X[381], 51 X[2] - 16 X[382], 99 X[2] - 64 X[546], 71 X[2] - 64 X[547], 15 X[2] - 64 X[548], 25 X[2] - 32 X[549], 3 X[2] + 32 X[550], 33 X[2] - 40 X[631], 87 X[2] - 80 X[1656], 33 X[2] + 16 X[1657], 9 X[2] - 8 X[3090], 27 X[2] - 20 X[3091], 9 X[2] - 2 X[3146], 3 X[2] - 10 X[3522], 3 X[2] - 4 X[3523], 17 X[2] - 24 X[3524], 81 X[2] - 88 X[3525], 15 X[2] - 16 X[3526], 3 X[2] - 8 X[3528], 27 X[2] + 8 X[3529], 93 X[2] - 128 X[3530], 5 X[2] + 16 X[3534], 11 X[2] - 4 X[3543], 31 X[2] - 24 X[3545], 81 X[2] - 32 X[3627], 37 X[2] - 16 X[3830], 19 X[2] - 12 X[3839], 129 X[2] - 80 X[3843], 53 X[2] - 32 X[3845], 21 X[2] - 16 X[3851], 141 X[2] - 64 X[3853], 24 X[2] - 17 X[3854], 123 X[2] - 88 X[3855], 45 X[2] - 32 X[3857], 41 X[2] - 48 X[5054], 55 X[2] - 48 X[5055], 51 X[2] - 44 X[5056], 6 X[2] + X[5059], 85 X[2] - 64 X[5066], 33 X[2] - 26 X[5068], 47 X[2] - 40 X[5071], 93 X[2] - 16 X[5073], 171 X[2] - 80 X[5076], 75 X[2] - 68 X[7486], 11 X[2] - 32 X[8703], 69 X[2] - 104 X[10299], 45 X[2] - 52 X[10303], 5 X[2] - 12 X[10304], 13 X[2] + 8 X[11001], 89 X[2] - 96 X[11539], 99 X[2] - 8 X[11541], 43 X[2] - 64 X[12100], 127 X[2] - 64 X[12101], 27 X[2] + 64 X[12103], 31 X[2] - 80 X[14093], 83 X[2] - 48 X[14269], 27 X[2] - 32 X[14869], 79 X[2] - 128 X[14891], 113 X[2] - 64 X[14893], 45 X[2] - 38 X[15022], 25 X[2] - 4 X[15640], 19 X[2] + 16 X[15681], 29 X[2] - 8 X[15682], 5 X[2] + 2 X[15683], 65 X[2] - 16 X[15684], 47 X[2] + 16 X[15685], 17 X[2] + 32 X[15686], 67 X[2] - 32 X[15687], 13 X[2] - 48 X[15688], X[2] + 48 X[15689], X[2] - 64 X[15690], 13 X[2] + 64 X[15691], 13 X[2] - 20 X[15692], 59 X[2] - 80 X[15693], 73 X[2] - 80 X[15694], 17 X[2] - 80 X[15695], 3 X[2] - 80 X[15696], X[2] + 20 X[15697], 5 X[2] - 8 X[15698], 103 X[2] - 96 X[15699], 11 X[2] - 16 X[15700], 13 X[2] - 16 X[15701], 7 X[2] - 8 X[15702], 17 X[2] - 16 X[15703], 45 X[2] + 32 X[15704], 11 X[2] - 18 X[15705], 95 X[2] - 144 X[15706], 29 X[2] - 36 X[15708], and many others

X(50693) lies on these lines: {2, 3}, {6, 42574}, {8, 12512}, {15, 43300}, {16, 43301}, {40, 3621}, {61, 42091}, {62, 42090}, {69, 43691}, {98, 35369}, {99, 32840}, {100, 44846}, {144, 3984}, {145, 4297}, {146, 15034}, {147, 38736}, {148, 38747}, {149, 38759}, {150, 38771}, {151, 38783}, {165, 3617}, {193, 44882}, {194, 22676}, {315, 32841}, {316, 32835}, {325, 32881}, {389, 16981}, {390, 3304}, {394, 16936}, {395, 43770}, {396, 43769}, {489, 32814}, {515, 4678}, {516, 3622}, {569, 43576}, {575, 48873}, {576, 48885}, {590, 42414}, {615, 42413}, {944, 20014}, {962, 26842}, {1038, 9539}, {1078, 32872}, {1131, 41954}, {1132, 41953}, {1151, 43883}, {1152, 43884}, {1278, 30271}, {1350, 20080}, {1420, 30332}, {1587, 6453}, {1588, 6454}, {1614, 8717}, {1620, 37643}, {1975, 32880}, {2777, 15020}, {2951, 19861}, {2975, 11495}, {2979, 45187}, {3060, 15012}, {3085, 4316}, {3086, 4324}, {3098, 5921}, {3164, 47381}, {3184, 38686}, {3218, 9841}, {3219, 37551}, {3241, 5493}, {3303, 3600}, {3448, 15021}, {3592, 6460}, {3594, 6459}, {3618, 48872}, {3620, 14927}, {3623, 5731}, {3624, 10248}, {3746, 4293}, {3819, 11439}, {3868, 31805}, {3869, 5918}, {3917, 12279}, {3926, 7850}, {3928, 12536}, {3951, 20007}, {4294, 5563}, {4302, 14986}, {4313, 11518}, {4430, 7957}, {4661, 12680}, {4788, 30273}, {5023, 37689}, {5188, 20081}, {5204, 5274}, {5206, 43448}, {5217, 5261}, {5237, 5334}, {5238, 5335}, {5265, 6284}, {5281, 7354}, {5286, 35007}, {5304, 22331}, {5318, 43869}, {5321, 43870}, {5343, 43632}, {5344, 43633}, {5351, 42085}, {5352, 42086}, {5447, 12290}, {5537, 20067}, {5609, 12244}, {5640, 17704}, {5656, 50414}, {5691, 46933}, {5732, 20059}, {5882, 34632}, {5889, 36987}, {5894, 11206}, {5895, 35260}, {5972, 15023}, {5984, 23235}, {6030, 34563}, {6200, 43336}, {6221, 43787}, {6223, 26792}, {6282, 20214}, {6361, 10222}, {6396, 43337}, {6398, 43788}, {6409, 8972}, {6410, 13941}, {6411, 31412}, {6412, 42561}, {6419, 9541}, {6420, 42260}, {6425, 7585}, {6426, 7586}, {6447, 42216}, {6448, 42215}, {6449, 23267}, {6450, 23273}, {6455, 13886}, {6456, 13939}, {6488, 31454}, {6560, 35815}, {6561, 35814}, {6776, 48892}, {7583, 9542}, {7712, 11449}, {7735, 44519}, {7737, 31652}, {7750, 10513}, {7771, 32826}, {7782, 32831}, {7811, 32824}, {7860, 32837}, {7929, 8721}, {7987, 9812}, {7998, 11381}, {7999, 14915}, {8142, 17494}, {8236, 10390}, {8567, 32064}, {8591, 10991}, {8960, 43342}, {9143, 10990}, {9540, 42267}, {9589, 34638}, {9729, 11002}, {9780, 16192}, {9833, 32903}, {9862, 14692}, {10164, 46932}, {10442, 30712}, {10519, 41482}, {10541, 29181}, {10543, 18221}, {10574, 16625}, {10645, 42161}, {10646, 42160}, {10721, 38795}, {10722, 38751}, {10723, 38740}, {10727, 38775}, {10728, 38763}, {10732, 38787}, {10733, 38729}, {10992, 11177}, {11003, 13346}, {11004, 37498}, {11220, 31793}, {11257, 20105}, {11412, 14855}, {11459, 14641}, {11468, 41398}, {11469, 40911}, {11477, 12007}, {11480, 43465}, {11481, 43466}, {11482, 33748}, {11485, 43242}, {11486, 43243}, {11488, 42165}, {11489, 42164}, {11542, 42689}, {11543, 42688}, {11821, 35240}, {12111, 13348}, {12289, 17712}, {12383, 38788}, {12437, 28610}, {12632, 34610}, {12651, 29817}, {12699, 31666}, {13172, 38742}, {13199, 38754}, {13202, 15029}, {13452, 34483}, {13472, 13623}, {13846, 43376}, {13847, 43377}, {13935, 42266}, {14023, 34504}, {14094, 16111}, {14360, 38803}, {14537, 31407}, {14561, 48920}, {14654, 38798}, {14683, 15054}, {14689, 38689}, {14853, 20190}, {14907, 32830}, {14912, 48874}, {14996, 37501}, {15018, 46945}, {15025, 38727}, {15072, 15644}, {15077, 43713}, {15305, 40247}, {15513, 43619}, {15515, 31404}, {15589, 32882}, {16772, 22235}, {16773, 22237}, {16964, 42796}, {16965, 42795}, {16982, 37481}, {17852, 32788}, {18220, 37605}, {18481, 20052}, {18909, 37779}, {18945, 21663}, {19925, 46931}, {20057, 28228}, {20066, 43161}, {20085, 46684}, {20094, 38664}, {20095, 24466}, {20096, 38668}, {20097, 38684}, {20098, 38685}, {20099, 38688}, {20218, 40897}, {20725, 35265}, {20791, 45186}, {22236, 42120}, {22238, 42119}, {22332, 37665}, {23236, 38626}, {23269, 35255}, {23275, 35256}, {28172, 31423}, {30652, 37570}, {31414, 41963}, {31670, 33750}, {32522, 44434}, {32523, 48673}, {32785, 42272}, {32786, 42271}, {34469, 39874}, {34628, 43174}, {36836, 42088}, {36843, 42087}, {36967, 42934}, {36968, 42935}, {37515, 46865}, {37537, 37685}, {37640, 43193}, {37641, 43194}, {38665, 38761}, {38666, 38773}, {38667, 38785}, {38675, 38805}, {38807, 44987}, {40693, 42529}, {40694, 42528}, {41971, 42150}, {41972, 42151}, {42096, 42599}, {42097, 42598}, {42099, 42159}, {42100, 42162}, {42104, 42580}, {42105, 42581}, {42108, 43365}, {42109, 43364}, {42111, 43468}, {42112, 42954}, {42113, 42955}, {42114, 43467}, {42115, 42983}, {42116, 42982}, {42121, 42690}, {42124, 42691}, {42136, 43464}, {42137, 43463}, {42139, 43299}, {42140, 42163}, {42141, 42166}, {42142, 43298}, {42147, 42625}, {42148, 42626}, {42153, 43480}, {42156, 43479}, {42262, 43508}, {42265, 43507}, {42429, 42488}, {42430, 42489}, {42431, 43403}, {42432, 43404}, {42480, 42511}, {42481, 42510}, {42490, 42494}, {42491, 42495}, {42631, 42991}, {42632, 42990}, {42694, 42937}, {42695, 42936}, {42779, 42891}, {42780, 42890}, {42793, 49906}, {42794, 49905}, {42813, 43544}, {42814, 43545}, {42932, 43542}, {42933, 43543}, {42942, 43495}, {42943, 43496}, {42948, 43478}, {42949, 43477}, {43252, 49947}, {43256, 43526}, {43257, 43525}

X(50693) = midpoint of X(i) and X(j) for these {i,j}: {20, 3523}, {3857, 15704}
X(50693) = reflection of X(i) in X(j) for these {i,j}: {4, 3526}, {381, 19711}, {3090, 3}, {3523, 3528}, {3543, 41106}, {3832, 3523}, {3851, 44682}, {5066, 45761}, {9780, 16192}, {10248, 3624}, {15700, 8703}, {41106, 15700}, {45762, 11812}
X(50693) = anticomplement of X(3832)
X(50693) = orthoptic-circle-of-Steiner-circumellipse-inverse of X(47315)
X(50693) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20, 5059}, {2, 3522, 21734}, {2, 5059, 17578}, {2, 17578, 3854}, {3, 4, 10303}, {3, 20, 3146}, {3, 381, 12108}, {3, 382, 632}, {3, 546, 631}, {3, 550, 17538}, {3, 632, 3524}, {3, 1657, 546}, {3, 3090, 3523}, {3, 3146, 2}, {3, 3529, 3091}, {3, 3534, 15704}, {3, 3627, 3525}, {3, 5072, 549}, {3, 5076, 140}, {3, 10303, 15717}, {3, 11403, 40916}, {3, 11541, 46936}, {3, 12082, 44802}, {3, 12103, 3529}, {3, 12108, 10299}, {3, 15681, 5076}, {3, 15696, 44245}, {3, 15704, 4}, {3, 16661, 7492}, {3, 17538, 20}, {3, 17800, 5072}, {3, 33524, 23}, {3, 33532, 12088}, {3, 35407, 5070}, {3, 36002, 17572}, {3, 44245, 376}, {3, 49136, 3628}, {3, 49137, 5}, {3, 49140, 15022}, {4, 20, 15683}, {4, 376, 548}, {4, 548, 10304}, {4, 549, 7486}, {4, 631, 5055}, {4, 3090, 3857}, {4, 3528, 15698}, {4, 3529, 49136}, {4, 3534, 20}, {4, 3628, 3091}, {4, 10303, 15022}, {4, 10304, 15717}, {4, 15698, 3526}, {4, 15704, 49140}, {4, 15709, 5}, {4, 15717, 2}, {4, 17800, 15640}, {4, 33703, 33699}, {4, 46333, 17800}, {4, 49140, 3146}, {5, 550, 15691}, {5, 1657, 35409}, {5, 11001, 49135}, {5, 15684, 4}, {5, 15688, 21735}, {5, 21735, 15692}, {5, 41981, 15688}, {5, 41984, 1656}, {15, 43300, 43302}, {16, 43301, 43303}, {20, 376, 3522}, {20, 548, 15717}, {20, 3091, 3529}, {20, 3522, 2}, {20, 3528, 3832}, {20, 3543, 1657}, {20, 7411, 37435}, {20, 7486, 17800}, {20, 8703, 5068}, {20, 10303, 49140}, {20, 10304, 4}, {20, 15692, 49135}, {20, 15697, 550}, {20, 21734, 17578}, {20, 46219, 35414}, {20, 49135, 11001}, {20, 49140, 15704}, {140, 5076, 3544}, {140, 15681, 33703}, {140, 15722, 631}, {140, 33703, 3839}, {376, 550, 20}, {376, 3524, 15695}, {376, 3534, 10304}, {376, 11001, 15688}, {376, 15689, 15697}, {376, 15691, 15692}, {376, 17538, 3}, {381, 46853, 10299}, {382, 3524, 5056}, {382, 5066, 4}, {382, 15695, 33923}, {382, 33923, 3524}, {439, 6655, 2}, {546, 631, 46936}, {546, 1657, 11541}, {546, 8703, 3}, {546, 11541, 3543}, {546, 46936, 5068}, {548, 550, 3534}, {548, 3526, 3528}, {548, 3534, 4}, {548, 5066, 33923}, {548, 10304, 3522}, {548, 12103, 3628}, {548, 15684, 21735}, {548, 15704, 3}, {548, 17538, 49140}, {549, 3534, 46333}, {549, 17800, 4}, {549, 44904, 3526}, {549, 46333, 15640}, {550, 15690, 15696}, {550, 15696, 376}, {550, 44245, 3}, {631, 1657, 3543}, {631, 3543, 5068}, {631, 5068, 2}, {631, 11541, 546}, {631, 15700, 3523}, {632, 33923, 3}, {1003, 33226, 33202}, {1131, 42264, 43519}, {1132, 42263, 43520}, {1657, 8703, 631}, {1657, 46936, 3146}, {3090, 3528, 3}, {3091, 3529, 3146}, {3091, 3628, 15022}, {3091, 3839, 41991}, {3091, 10303, 3628}, {3146, 3522, 3}, {3146, 15022, 4}, {3146, 15683, 49140}, {3146, 15705, 46936}, {3146, 15717, 15022}, {3522, 15683, 15717}, {3522, 15717, 10304}, {3523, 3832, 2}, {3523, 15698, 15717}, {3524, 15698, 45761}, {3525, 3529, 3627}, {3525, 3627, 3091}, {3526, 3857, 3090}, {3526, 15698, 3523}, {3528, 3529, 14869}, {3528, 46333, 44904}, {3529, 12103, 20}, {3529, 17538, 12103}, {3529, 49136, 49140}, {3530, 5073, 3545}, {3530, 19710, 5073}, {3534, 10304, 15683}, {3534, 15688, 15684}, {3534, 15695, 5066}, {3534, 15706, 15681}, {3534, 15759, 11001}, {3543, 8703, 15705}, {3543, 11541, 3146}, {3543, 15705, 2}, {3543, 46936, 546}, {3544, 5076, 3839}, {3544, 15706, 10303}, {3544, 33703, 5076}, {3544, 41991, 3091}, {3552, 33023, 2}, {3552, 33207, 33023}, {3628, 12103, 15704}, {3628, 14869, 3526}, {3628, 15704, 49136}, {3628, 49136, 4}, {3830, 15710, 15721}, {3830, 15712, 5067}, {3832, 5068, 41106}, {3832, 15717, 3526}, {3839, 10304, 15706}, {3843, 12100, 3533}, {3850, 44903, 49134}, {3851, 44682, 15702}, {3853, 15720, 5071}, {3853, 45759, 15720}, {3855, 5054, 46935}, {3857, 14869, 3628}, {3857, 15698, 10303}, {3857, 44904, 5072}, {4189, 37435, 2}, {4190, 17576, 2}, {4190, 37299, 17576}, {4297, 9778, 145}, {5055, 10304, 15705}, {5055, 15704, 11541}, {5055, 35435, 33699}, {5055, 41983, 15709}, {5059, 21734, 2}, {5067, 15710, 15712}, {5067, 15712, 15721}, {5068, 15705, 631}, {5072, 7486, 15022}, {5072, 46333, 49140}, {5073, 14093, 3530}, {5731, 20070, 3623}, {5731, 31730, 20070}, {6455, 42226, 13886}, {6456, 42225, 13939}, {6655, 33208, 439}, {6872, 36004, 37267}, {6872, 37267, 2}, {6904, 11106, 2}, {7408, 15246, 2}, {7411, 37022, 4189}, {7486, 15640, 4}, {7585, 42638, 9543}, {7791, 33201, 2}, {7791, 33268, 35927}, {7791, 35927, 33201}, {7807, 33247, 33210}, {7833, 32973, 33025}, {7833, 33254, 32973}, {7987, 9812, 46934}, {8356, 33239, 33198}, {8357, 33191, 33182}, {8703, 15722, 19708}, {8703, 35409, 15692}, {10299, 49138, 381}, {10303, 10304, 3}, {10303, 15022, 2}, {10303, 15704, 3146}, {10303, 49140, 4}, {10304, 15640, 549}, {10304, 15683, 2}, {10304, 15692, 15759}, {10304, 15704, 15022}, {10304, 49140, 10303}, {11001, 15688, 15692}, {11001, 15709, 15684}, {11001, 21735, 5}, {11001, 41983, 3543}, {11413, 37198, 6636}, {11414, 22467, 37913}, {12103, 41991, 15681}, {12108, 46853, 3}, {12111, 13348, 33884}, {13586, 32974, 33205}, {13586, 33253, 32974}, {13587, 50244, 6919}, {14068, 33022, 2}, {14093, 19710, 3545}, {14782, 14783, 15703}, {14813, 14814, 49133}, {14927, 31884, 3620}, {15022, 15683, 3146}, {15022, 15717, 10303}, {15515, 43618, 31404}, {15640, 46333, 15683}, {15681, 15706, 33699}, {15681, 19708, 3839}, {15682, 34200, 15708}, {15683, 15717, 4}, {15684, 15688, 15759}, {15684, 15759, 15709}, {15685, 15720, 3853}, {15685, 45759, 5071}, {15686, 15695, 3524}, {15686, 33923, 382}, {15686, 35418, 2}, {15688, 15691, 11001}, {15688, 15709, 10304}, {15688, 49137, 3}, {15689, 15690, 376}, {15689, 15696, 550}, {15691, 21735, 20}, {15691, 41981, 5}, {15692, 49135, 5}, {15693, 49134, 3850}, {15694, 49133, 3861}, {15696, 15697, 3522}, {15700, 15701, 41983}, {15701, 15759, 15698}, {15701, 49135, 3832}, {15702, 44682, 3523}, {15704, 49136, 3529}, {15704, 49140, 15683}, {15709, 15759, 15692}, {15759, 41981, 548}, {16925, 33200, 2}, {16925, 33267, 33272}, {16925, 33272, 33200}, {17548, 31295, 2}, {17576, 37435, 37228}, {19708, 33703, 140}, {21735, 35409, 631}, {26617, 26618, 14039}, {31670, 33751, 33750}, {32964, 32982, 2}, {32964, 33264, 32982}, {32965, 32981, 2}, {32965, 33265, 32981}, {32973, 33025, 2}, {32974, 33205, 2}, {32979, 33004, 2}, {32980, 33259, 2}, {32985, 33234, 33180}, {32986, 33235, 33181}, {32991, 33012, 2}, {32997, 33014, 2}, {33004, 33193, 32979}, {33007, 33275, 32990}, {33008, 33257, 32971}, {33017, 33276, 32989}, {33051, 33062, 2}, {33192, 33259, 32980}, {33207, 33252, 3552}, {33208, 33243, 6655}, {33238, 35297, 33199}, {33244, 33260, 2}, {33250, 35955, 16043}, {33273, 33280, 32987}, {33274, 33279, 32988}, {35404, 46332, 15707}, {35471, 35485, 3088}, {35732, 42282, 3543}, {36445, 36463, 41983}, {41981, 49135, 3522}, {42258, 42637, 7586}, {42259, 42638, 7585}, {42280, 42281, 38335}, {42490, 42941, 42494}, {42491, 42940, 42495}, {42574, 42575, 6}, {43382, 43383, 6}


X(50694) = X(2)X(3)∩X(42)X(516)

Barycentrics    3*a^5*b - 2*a^3*b^3 - a*b^5 + 3*a^5*c + 2*a^4*b*c - a^3*b^2*c - a^2*b^3*c - 2*a*b^4*c - b^5*c - a^3*b*c^2 - 2*a^2*b^2*c^2 + 3*a*b^3*c^2 - 2*a^3*c^3 - a^2*b*c^3 + 3*a*b^2*c^3 + 2*b^3*c^3 - 2*a*b*c^4 - a*c^5 - b*c^5 : :
X(50694) = 3 X[2] - 4 X[4192], 9 X[2] - 8 X[37365], 5 X[3522] - 4 X[37331], 3 X[4192] - 2 X[37365]

X(50694) lies on these lines: {2, 3}, {33, 17134}, {40, 4651}, {42, 516}, {165, 26037}, {390, 5712}, {515, 17135}, {517, 20011}, {573, 9778}, {581, 962}, {966, 42316}, {2356, 18659}, {3198, 30807}, {3720, 4297}, {3741, 28164}, {3995, 30273}, {4359, 30271}, {4450, 5739}, {4685, 5493}, {5080, 27517}, {5691, 31330}, {5731, 29814}, {5752, 6361}, {6685, 28158}, {8025, 37474}, {9589, 42042}, {9812, 10478}, {10382, 18655}, {10441, 48923}, {10444, 20347}, {10453, 10454}, {12717, 32929}, {14547, 17220}, {17165, 29054}, {20012, 20070}, {20075, 31034}, {29181, 37676}, {29349, 48918}, {29822, 41869}

X(50694) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 37400, 2}, {20, 3146, 50419}, {1817, 14004, 36007}, {6818, 37262, 2}, {7580, 49130, 19645}


X(50695) = X(2)X(3)∩X(78)X(516)

Barycentrics    3*a^7 - 3*a^6*b - 5*a^5*b^2 + 5*a^4*b^3 + a^3*b^4 - a^2*b^5 + a*b^6 - b^7 - 3*a^6*c - 4*a^5*b*c - a^4*b^2*c + 3*a^2*b^4*c + 4*a*b^5*c + b^6*c - 5*a^5*c^2 - a^4*b*c^2 + 6*a^3*b^2*c^2 - 2*a^2*b^3*c^2 - a*b^4*c^2 + 3*b^5*c^2 + 5*a^4*c^3 - 2*a^2*b^2*c^3 - 8*a*b^3*c^3 - 3*b^4*c^3 + a^3*c^4 + 3*a^2*b*c^4 - a*b^2*c^4 - 3*b^3*c^4 - a^2*c^5 + 4*a*b*c^5 + 3*b^2*c^5 + a*c^6 + b*c^6 - c^7 : :
X(50695) = 3 X[2] - 4 X[3149], 9 X[2] - 8 X[6922], 5 X[3091] - 4 X[6928], 3 X[3149] - 2 X[6922], 5 X[3522] - 4 X[37022], 7 X[3523] - 8 X[6924], 13 X[5068] - 12 X[17556], 3 X[6836] - 4 X[6922], 11 X[15717] - 12 X[16371]

X(50695) lies on these lines: {2, 3}, {7, 10393}, {8, 41338}, {78, 516}, {165, 12617}, {354, 3486}, {390, 3485}, {515, 12649}, {517, 20013}, {938, 3338}, {944, 3889}, {962, 6261}, {1210, 4299}, {1434, 5738}, {1445, 10392}, {1490, 5905}, {1858, 3474}, {1898, 15726}, {1902, 20243}, {3218, 9799}, {3332, 19767}, {3434, 6253}, {3601, 21617}, {3616, 43161}, {3869, 7957}, {3876, 5759}, {4294, 5703}, {4302, 13411}, {5552, 44425}, {5558, 15933}, {5691, 6734}, {5698, 15587}, {5887, 6361}, {6700, 28158}, {7987, 38150}, {9778, 9800}, {9960, 9965}, {10528, 11500}, {10586, 22753}, {11471, 24611}, {12528, 20078}, {12608, 41869}, {12688, 44447}, {12699, 33597}, {12943, 15844}, {13373, 18481}, {21628, 35258}, {28160, 37002}

X(50695) = reflection of X(i) in X(j) for these {i,j}: {20, 6934}, {6836, 3149}
X(50695) = anticomplement of X(6836)
X(50695) = orthocentroidal-circle-inverse of X(6870)}
X(50695) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 6870}, {2, 3146, 6895}, {3, 4, 6837}, {3, 5, 6878}, {3, 6835, 2}, {3, 37387, 4228}, {3, 37447, 6974}, {4, 20, 6872}, {4, 376, 3560}, {4, 411, 2}, {4, 631, 6841}, {4, 2476, 3832}, {4, 3529, 7491}, {4, 6825, 3091}, {4, 6838, 6871}, {4, 6853, 6866}, {4, 6857, 10883}, {4, 6867, 3839}, {4, 6869, 20}, {4, 6876, 6824}, {4, 6985, 6838}, {4, 6988, 6828}, {4, 31384, 3089}, {20, 3091, 6987}, {20, 6904, 3522}, {376, 6864, 6986}, {377, 11344, 2}, {382, 37406, 4}, {411, 6828, 6988}, {474, 50399, 2}, {631, 6991, 2}, {1006, 6849, 6886}, {1006, 6886, 50398}, {1657, 6918, 37428}, {2478, 37229, 2}, {3149, 6836, 2}, {3149, 37022, 37282}, {3529, 6948, 20}, {3651, 6826, 37112}, {5059, 37256, 20}, {5125, 27379, 2}, {6824, 6876, 3523}, {6826, 37112, 50237}, {6828, 6988, 2}, {6831, 6962, 2}, {6840, 6848, 5187}, {6851, 6905, 6890}, {6853, 6866, 5056}, {6864, 6986, 2}, {6865, 6915, 2}, {6868, 6988, 37423}, {6889, 44229, 6993}, {6925, 37468, 31295}, {6927, 6943, 2}, {7580, 20420, 377}, {37411, 37468, 6925}


X(50696) = X(2)X(3)∩X(33)X(347)

Barycentrics    3*a^6 - 6*a^5*b + a^4*b^2 + 4*a^3*b^3 - 3*a^2*b^4 + 2*a*b^5 - b^6 - 6*a^5*c - 2*a^4*b*c + 6*a*b^4*c + 2*b^5*c + a^4*c^2 + 6*a^2*b^2*c^2 - 8*a*b^3*c^2 + b^4*c^2 + 4*a^3*c^3 - 8*a*b^2*c^3 - 4*b^3*c^3 - 3*a^2*c^4 + 6*a*b*c^4 + b^2*c^4 + 2*a*c^5 + 2*b*c^5 - c^6 : :
X(50696) = 3 X[2] - 4 X[19541], 9 X[2] - 8 X[37364], 3 X[20] - 4 X[6948], 5 X[3091] - 4 X[6827], 7 X[3523] - 8 X[6911], 9 X[3839] - 8 X[6929], 11 X[15717] - 12 X[16417], 3 X[19541] - 2 X[37364], 2 X[9580] - 3 X[9812], 3 X[2094] - 2 X[30304]

X(50696) lies on these lines: {2, 3}, {7, 10382}, {9, 9778}, {33, 347}, {40, 9800}, {55, 8232}, {57, 5809}, {63, 36991}, {72, 20070}, {200, 329}, {226, 390}, {342, 44695}, {515, 15239}, {517, 20015}, {950, 3600}, {962, 1490}, {971, 9965}, {1699, 43161}, {1864, 3474}, {1998, 6223}, {2094, 30304}, {2900, 7674}, {3488, 5049}, {3586, 4293}, {3935, 5758}, {3957, 18446}, {4294, 9612}, {4297, 10582}, {4533, 5777}, {4666, 5731}, {4847, 5175}, {4872, 17093}, {5311, 11200}, {5658, 20075}, {5728, 11220}, {5732, 9776}, {5735, 41561}, {5759, 5927}, {5762, 20214}, {6260, 41869}, {7964, 38057}, {8580, 12572}, {9779, 25525}, {9801, 32932}, {9961, 44547}, {11201, 28125}, {11495, 26040}, {11523, 12632}, {12511, 19855}, {13257, 20095}, {14552, 48878}, {15931, 38037}, {18481, 31822}, {20103, 28158}, {28146, 37822}

X(50696) = reflection of X(i) in X(j) for these {i,j}: {329, 1750}, {10430, 57}
X(50696) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3146, 10431}, {4, 20, 452}, {4, 376, 6913}, {4, 442, 3832}, {4, 3529, 31789}, {4, 3651, 6846}, {4, 6843, 3839}, {4, 6908, 3091}, {4, 7580, 2}, {4, 37411, 37421}, {4, 37421, 5177}, {20, 3091, 37423}, {20, 3839, 6992}, {20, 17580, 3522}, {1864, 3474, 12848}, {3651, 6846, 3523}, {4190, 5059, 20}, {5084, 37271, 2}, {6835, 33557, 37108}, {6835, 37108, 37436}, {7580, 13615, 7411}, {7580, 19541, 35990}, {10431, 36002, 2}


X(50697) = X(2)X(3)∩X(306)X(516)

Barycentrics    a^6 + 3*a^5*b + a^4*b^2 - 2*a^3*b^3 - a^2*b^4 - a*b^5 - b^6 + 3*a^5*c + 2*a^4*b*c - a^3*b^2*c - a^2*b^3*c - 2*a*b^4*c - b^5*c + a^4*c^2 - a^3*b*c^2 + 3*a*b^3*c^2 + b^4*c^2 - 2*a^3*c^3 - a^2*b*c^3 + 3*a*b^2*c^3 + 2*b^3*c^3 - a^2*c^4 - 2*a*b*c^4 + b^2*c^4 - a*c^5 - b*c^5 - c^6 : :
X(50697) = 3 X[2] - 4 X[19542]

X(50697) lies on these lines: {2, 3}, {144, 5739}, {306, 516}, {329, 45744}, {515, 3187}, {517, 20017}, {573, 3219}, {581, 17011}, {952, 20046}, {966, 44416}, {990, 5256}, {1848, 17134}, {1999, 10454}, {3672, 3782}, {5271, 5691}, {5738, 21454}, {5751, 11220}, {5752, 12528}, {5905, 17147}, {7282, 17080}, {9778, 33083}, {9812, 33112}, {10319, 20291}, {10444, 17184}, {10445, 26223}, {10464, 17185}, {10478, 31019}, {20064, 29207}, {20106, 28158}, {21270, 24310}, {28164, 40940}, {30807, 42699}, {37499, 41809}, {41820, 44736}

X(50697) = reflection of X(19645) in X(19542)
X(50697) = anticomplement of X(19645)
X(50697) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3151, 31015}, {4, 37419, 2}, {379, 440, 2}, {469, 1817, 2}, {857, 11347, 2}, {2476, 37265, 2}, {3146, 6999, 31015}, {5125, 27404, 2}, {19542, 19645, 2}


X(50698) = X(2)X(3)∩X(516)X(612)

Barycentrics    3*a^6 + a^4*b^2 - 3*a^2*b^4 - b^6 + 2*a^4*b*c - 2*a^3*b^2*c - 2*a^2*b^3*c + 2*a*b^4*c + a^4*c^2 - 2*a^3*b*c^2 + 2*a^2*b^2*c^2 - 2*a*b^3*c^2 + b^4*c^2 - 2*a^2*b*c^3 - 2*a*b^2*c^3 - 3*a^2*c^4 + 2*a*b*c^4 + b^2*c^4 - c^6 : :
X(50698) = 3 X[2] - 4 X[19544]

X(50698) lies on these lines: {2, 3}, {8, 1763}, {33, 4329}, {40, 3710}, {57, 5807}, {145, 17441}, {154, 26668}, {165, 12618}, {197, 11677}, {321, 3198}, {390, 3744}, {391, 39690}, {516, 612}, {517, 20020}, {614, 4297}, {910, 2345}, {940, 29181}, {944, 19993}, {962, 3920}, {1211, 36990}, {1427, 3600}, {1503, 5739}, {1766, 3161}, {1824, 20061}, {2000, 36850}, {2220, 5304}, {2895, 5921}, {3598, 17863}, {4299, 24239}, {4383, 44882}, {5069, 37665}, {5285, 28739}, {5731, 7191}, {10382, 18650}, {14555, 14927}, {15589, 44140}, {20076, 29840}, {20110, 26893}, {21287, 37668}, {25406, 32911}, {31670, 37527}, {37521, 48873}, {37674, 48872}

X(50698) = reflection of X(26118) in X(19544)
X(50698) = anticomplement of X(26118)
X(50698) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3146, 37456}, {4, 4220, 2}, {25, 26052, 2}, {1370, 35996, 2}, {2478, 37099, 2}, {5000, 5001, 7521}, {5004, 5005, 13730}, {6997, 7465, 2}, {7386, 33849, 2}, {7392, 37261, 2}, {7580, 49132, 37419}, {19544, 26118, 2}


X(50699) = X(2)X(3)∩X(516)X(614)

Barycentrics    3*a^6 + a^4*b^2 - 3*a^2*b^4 - b^6 - 2*a^4*b*c + 2*a^3*b^2*c + 2*a^2*b^3*c - 2*a*b^4*c + a^4*c^2 + 2*a^3*b*c^2 - 6*a^2*b^2*c^2 + 2*a*b^3*c^2 + b^4*c^2 + 2*a^2*b*c^3 + 2*a*b^2*c^3 - 3*a^2*c^4 - 2*a*b*c^4 + b^2*c^4 - c^6 : :
X(50699) = 3 X[2] - 4 X[16434]

X(50699) lies on these lines: {2, 3}, {8, 21370}, {81, 25406}, {390, 3666}, {515, 10327}, {516, 614}, {517, 19993}, {612, 4297}, {940, 44882}, {944, 20020}, {962, 7191}, {1040, 4329}, {1211, 31884}, {1333, 5304}, {1350, 5739}, {1766, 40184}, {3220, 27540}, {3424, 40013}, {3600, 7365}, {3757, 10465}, {3920, 5731}, {4261, 37665}, {4302, 24239}, {4383, 29181}, {4696, 7172}, {5014, 17740}, {5921, 32863}, {9812, 12610}, {10383, 18650}, {14927, 18141}, {15589, 44147}, {18788, 33088}, {20075, 29840}, {36844, 37577}, {37521, 46264}, {37679, 48872}, {41011, 43173}

X(50699) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 26118, 2}, {4, 19649, 2}, {20, 452, 50419}, {1370, 37449, 2}, {4224, 7386, 2}, {4228, 46336, 2}, {5002, 5003, 27505}, {5004, 5005, 37034}


X(50700) = X(2)X(3)∩X(516)X(936)

Barycentrics    3*a^7 - 3*a^6*b - 5*a^5*b^2 + 5*a^4*b^3 + a^3*b^4 - a^2*b^5 + a*b^6 - b^7 - 3*a^6*c - 2*a^5*b*c - a^4*b^2*c - 4*a^3*b^3*c + 3*a^2*b^4*c + 6*a*b^5*c + b^6*c - 5*a^5*c^2 - a^4*b*c^2 + 6*a^3*b^2*c^2 - 2*a^2*b^3*c^2 - a*b^4*c^2 + 3*b^5*c^2 + 5*a^4*c^3 - 4*a^3*b*c^3 - 2*a^2*b^2*c^3 - 12*a*b^3*c^3 - 3*b^4*c^3 + a^3*c^4 + 3*a^2*b*c^4 - a*b^2*c^4 - 3*b^3*c^4 - a^2*c^5 + 6*a*b*c^5 + 3*b^2*c^5 + a*c^6 + b*c^6 - c^7 : :
X(50700) = 3 X[2] - 4 X[6918], X[20] - 4 X[6885], 5 X[3091] - 4 X[6893]

X(50700) lies on these lines: {2, 3}, {7, 1490}, {57, 9799}, {78, 962}, {84, 1445}, {144, 5777}, {165, 21628}, {386, 3332}, {390, 946}, {497, 6253}, {515, 938}, {516, 936}, {517, 20007}, {580, 37681}, {581, 3945}, {944, 5045}, {952, 20008}, {1071, 21454}, {1125, 38150}, {1210, 3361}, {1537, 20095}, {1699, 4294}, {1750, 4292}, {3085, 44425}, {3474, 12688}, {3487, 5805}, {3488, 5806}, {3811, 7674}, {4308, 12650}, {5044, 5759}, {5217, 7965}, {5225, 36999}, {5226, 5715}, {5229, 15844}, {5248, 38037}, {5256, 9121}, {5261, 26332}, {5274, 48482}, {5281, 6796}, {5435, 6245}, {5584, 26040}, {5603, 33597}, {5704, 31673}, {5705, 19925}, {5720, 5758}, {5732, 12436}, {5763, 31671}, {5817, 31445}, {5882, 15933}, {5932, 7177}, {6326, 16134}, {6361, 9856}, {7982, 12632}, {8166, 9669}, {9776, 10884}, {9778, 12705}, {9812, 27383}, {9843, 28164}, {9960, 44547}, {9965, 12528}, {10051, 45287}, {10394, 12671}, {10445, 27382}, {10857, 18219}, {11024, 30503}, {11036, 18446}, {11372, 31730}, {12512, 21153}, {12664, 12848}, {12672, 20070}, {14986, 22753}, {15811, 37537}, {18221, 31870}, {18482, 40262}, {21279, 38859}, {24470, 36996}, {31363, 40395}, {31419, 38149}, {31672, 34862}, {35250, 38140}, {37530, 37666}

X(50700) = reflection of X(i) in X(j) for these {i,j}: {376, 19706}, {6865, 6918}
X(50700) = anticomplement of X(6865)
X(50700) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20, 37423}, {2, 3146, 6836}, {2, 3522, 6986}, {2, 3832, 6828}, {2, 6894, 3091}, {2, 37267, 37282}, {3, 4, 37434}, {3, 5, 16845}, {3, 6846, 17558}, {3, 6849, 6846}, {3, 6864, 2}, {3, 6918, 50203}, {4, 631, 8727}, {4, 1532, 3832}, {4, 3149, 2}, {4, 6834, 6844}, {4, 6848, 3091}, {4, 6880, 6845}, {4, 6905, 6847}, {4, 6927, 6831}, {4, 6935, 37447}, {4, 37468, 3146}, {5, 6869, 6987}, {5, 6987, 5129}, {5, 6988, 2}, {20, 3091, 452}, {20, 5056, 6992}, {20, 5129, 6987}, {20, 17580, 3}, {377, 36002, 37421}, {411, 6835, 2}, {411, 6915, 37229}, {443, 7580, 37108}, {443, 16293, 2}, {1750, 4292, 6223}, {3091, 3523, 6884}, {3091, 17558, 6846}, {3146, 4190, 20}, {3149, 6831, 6927}, {3651, 6854, 37407}, {3832, 5141, 3091}, {6825, 44229, 6843}, {6826, 6908, 4208}, {6826, 6985, 6908}, {6828, 6962, 2}, {6831, 6927, 2}, {6834, 6844, 5056}, {6836, 6915, 2}, {6838, 6839, 5177}, {6840, 6953, 6919}, {6846, 6849, 3091}, {6847, 6905, 3523}, {6851, 6911, 6926}, {6865, 6918, 2}, {6869, 6987, 20}, {7580, 19521, 3}, {14004, 25876, 37054}, {17567, 50206, 2}, {19541, 20420, 4}, {37281, 37411, 6916}


X(50701) = X(2)X(3)∩X(516)X(997)

Barycentrics    3*a^7 - 3*a^6*b - 5*a^5*b^2 + 5*a^4*b^3 + a^3*b^4 - a^2*b^5 + a*b^6 - b^7 - 3*a^6*c + 2*a^5*b*c - a^4*b^2*c - 4*a^3*b^3*c + 3*a^2*b^4*c + 2*a*b^5*c + b^6*c - 5*a^5*c^2 - a^4*b*c^2 + 6*a^3*b^2*c^2 - 2*a^2*b^3*c^2 - a*b^4*c^2 + 3*b^5*c^2 + 5*a^4*c^3 - 4*a^3*b*c^3 - 2*a^2*b^2*c^3 - 4*a*b^3*c^3 - 3*b^4*c^3 + a^3*c^4 + 3*a^2*b*c^4 - a*b^2*c^4 - 3*b^3*c^4 - a^2*c^5 + 2*a*b*c^5 + 3*b^2*c^5 + a*c^6 + b*c^6 - c^7 : :
X(50701) = 3 X[2] - 4 X[6911], 5 X[631] - 6 X[16417], 5 X[631] - 4 X[37364], 5 X[3091] - 4 X[6929], 3 X[16417] - 2 X[37364]

X(50701) lies on these lines: {2, 3}, {7, 18446}, {8, 5709}, {11, 36999}, {40, 5837}, {56, 6253}, {57, 515}, {65, 9942}, {78, 5758}, {84, 1708}, {104, 8732}, {142, 3576}, {145, 24474}, {278, 46974}, {329, 5720}, {347, 1060}, {355, 37623}, {387, 37530}, {388, 11500}, {390, 5603}, {391, 5755}, {497, 5842}, {516, 997}, {517, 17784}, {579, 5822}, {581, 4340}, {610, 10445}, {912, 9965}, {942, 944}, {946, 3601}, {950, 5804}, {952, 2095}, {962, 4511}, {971, 2096}, {1064, 4307}, {1071, 37544}, {1119, 38554}, {1155, 14647}, {1465, 34231}, {1466, 7354}, {1467, 4311}, {1478, 44425}, {1490, 4292}, {1498, 37537}, {1512, 5744}, {1519, 9812}, {1537, 9945}, {1699, 4302}, {1737, 4299}, {2550, 3428}, {2551, 11827}, {3085, 6796}, {3086, 37583}, {3358, 5825}, {3474, 6001}, {3485, 37837}, {3486, 7686}, {3487, 33597}, {3488, 11018}, {3586, 7682}, {3587, 9778}, {3622, 24299}, {3940, 5762}, {4260, 6776}, {4295, 6261}, {4297, 8726}, {4304, 10383}, {4309, 11522}, {5082, 22770}, {5138, 14853}, {5218, 7680}, {5225, 7681}, {5229, 18242}, {5261, 10786}, {5265, 10785}, {5273, 21165}, {5397, 45100}, {5587, 5745}, {5715, 13411}, {5721, 37642}, {5731, 9776}, {5770, 20067}, {5771, 5790}, {5787, 37002}, {5791, 5818}, {5841, 18491}, {5881, 24391}, {5882, 11518}, {5908, 43213}, {6224, 9946}, {6260, 9579}, {6361, 12672}, {6705, 31673}, {7080, 11499}, {7171, 10430}, {7713, 36986}, {7956, 9668}, {7967, 15934}, {7982, 12437}, {8729, 9837}, {9709, 31799}, {9940, 18481}, {9956, 35250}, {10165, 41867}, {10532, 11491}, {10588, 10894}, {10698, 20095}, {10806, 45977}, {11012, 19843}, {11023, 34489}, {11374, 40262}, {11407, 34628}, {12116, 14986}, {12248, 13226}, {12512, 21628}, {12671, 44547}, {12691, 41563}, {12705, 31730}, {18493, 38033}, {18517, 26286}, {20066, 33596}, {20070, 37585}, {20075, 37533}, {20076, 37532}, {21164, 28164}, {28146, 35249}, {34610, 34746}, {34617, 38665}, {34739, 38757}, {37584, 48363}

X(50701) = reflection of X(i) in X(j) for these {i,j}: {4, 19541}, {20, 6948}, {329, 5720}, {497, 22753}, {3586, 7682}, {5768, 57}, {6827, 6911}, {9580, 946}, {9668, 7956}, {10430, 7171}
X(50701) = anticomplement of X(6827)
X(50701) = orthocentroidal-circle-inverse of X(6844)
X(50701) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 6844}, {2, 20, 6987}, {2, 3146, 6840}, {2, 3522, 37106}, {2, 6839, 6843}, {3, 4, 6847}, {3, 5, 6857}, {3, 443, 37407}, {3, 6826, 2}, {3, 6841, 6892}, {3, 6869, 20}, {3, 6885, 6904}, {3, 6989, 3523}, {3, 7497, 4224}, {3, 8727, 6935}, {3, 8728, 631}, {3, 20420, 4}, {3, 28452, 6826}, {3, 37281, 443}, {3, 44229, 6824}, {4, 376, 1012}, {4, 631, 6831}, {4, 3149, 6848}, {4, 6834, 3091}, {4, 6880, 6830}, {4, 6905, 2}, {4, 6906, 37434}, {4, 6927, 5}, {4, 6934, 20}, {4, 6935, 8727}, {4, 6941, 3832}, {4, 6942, 6833}, {4, 6968, 3839}, {4, 6969, 381}, {4, 6977, 6845}, {5, 6868, 452}, {5, 6954, 2}, {20, 452, 6868}, {20, 3091, 6872}, {20, 6904, 3}, {20, 17580, 37423}, {21, 6835, 6846}, {140, 6858, 2}, {376, 6854, 1006}, {377, 411, 6908}, {404, 6836, 6926}, {443, 37306, 2}, {631, 6829, 2}, {1006, 6854, 2}, {2043, 2044, 11111}, {2478, 6915, 6964}, {3090, 6936, 5129}, {3146, 37256, 20}, {3149, 37468, 4}, {3522, 37434, 6906}, {3523, 6993, 2}, {3523, 37436, 6989}, {3528, 6878, 21161}, {3651, 6897, 37108}, {4188, 6895, 6890}, {4189, 6894, 6837}, {4297, 12436, 8726}, {5603, 37000, 390}, {5691, 15803, 6245}, {5731, 9776, 18443}, {5805, 24929, 5603}, {6796, 26332, 3085}, {6824, 44229, 3091}, {6825, 6917, 5177}, {6827, 6911, 2}, {6830, 6880, 2}, {6830, 6905, 6880}, {6832, 6875, 17558}, {6833, 6942, 3523}, {6850, 6985, 37421}, {6863, 37230, 6867}, {6869, 6885, 3}, {6875, 6900, 6832}, {6876, 6901, 6889}, {6880, 6938, 6992}, {6881, 8727, 6830}, {6882, 6970, 2}, {6889, 6901, 4208}, {6909, 35977, 3}, {6916, 7580, 37427}, {6918, 31789, 5084}, {6928, 6944, 6919}, {6928, 37251, 6944}, {6935, 8727, 6847}, {6946, 6947, 2}, {7580, 11112, 6916}, {10883, 17549, 6974}, {14784, 14785, 31789}, {16417, 37364, 631}, {17579, 36002, 6925}, {17580, 37423, 631}, {37421, 37435, 6850}


X(50702) = X(2)X(3)∩X(516)X(1193)

Barycentrics    3*a^6*b + 3*a^5*b^2 - 2*a^4*b^3 - 2*a^3*b^4 - a^2*b^5 - a*b^6 + 3*a^6*c + 2*a^5*b*c + a^4*b^2*c - 3*a^2*b^4*c - 2*a*b^5*c - b^6*c + 3*a^5*c^2 + a^4*b*c^2 - 4*a^3*b^2*c^2 + a*b^4*c^2 - b^5*c^2 - 2*a^4*c^3 + 4*a*b^3*c^3 + 2*b^4*c^3 - 2*a^3*c^4 - 3*a^2*b*c^4 + a*b^2*c^4 + 2*b^3*c^4 - a^2*c^5 - 2*a*b*c^5 - b^2*c^5 - a*c^6 - b*c^6 : :
X(50702) = 3 X[2] - 4 X[19513]

X(50702) lies on theselines: {2, 3}, {8, 1764}, {42, 12545}, {78, 10444}, {145, 10441}, {165, 31339}, {390, 19765}, {515, 17751}, {516, 1193}, {517, 20040}, {940, 3600}, {944, 37536}, {959, 3474}, {1038, 17134}, {1150, 5786}, {1754, 34281}, {2944, 4418}, {3616, 10470}, {3831, 28164}, {4293, 37522}, {5396, 48941}, {5482, 18481}, {8142, 27674}, {10437, 17183}, {10446, 19767}, {10476, 17135}, {13329, 27660}, {15338, 21321}, {15509, 27410}, {19734, 37501}, {20036, 20070}, {20051, 45955}, {20076, 37639}, {26030, 50037}, {26251, 39573}

X(50702) = reflection of X(4) in X(19648)
X(50702) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 20, 50419}, {10470, 24220, 3616}


X(50703) = X(30)X(80)∩X(140)X(47307)

Barycentrics    (a^3-(b-c)*a^2-(b^2-b*c+c^2)*a+(b+c)*(b^2-c^2))*(a+b-c)*(a^3+(b-c)*a^2-(b^2-b*c+c^2)*a-(b+c)*(b^2-c^2))*(a-b+c)*(b+c)*(2*a^7-(b+c)*a^6-2*(3*b^2-2*b*c+3*c^2)*a^5+(b+c)*(3*b^2-2*b*c+3*c^2)*a^4+2*(3*b^4+3*c^4-(b^2+b*c+c^2)*b*c)*a^3-(b+c)*(3*b^4+3*c^4-(4*b^2-5*b*c+4*c^2)*b*c)*a^2-2*(b+c)*(b^2-c^2)*(b^3-c^3)*a+(b^2-c^2)^3*(b-c)) : :

See Kadir Altintas and César Lozada, euclid 5233.

X(50703) lies on the quartic Q161 and these lines: {30, 80}, {140, 47307}, {21739, 48698}

X(50703) = midpoint of X(3065) and X(14452)


X(50704) = X(30)X(5685)∩X(140)X(3467)

Barycentrics    (a^3-(b-c)*a^2-(b^2+b*c+c^2)*a+(b+c)*(b^2-c^2))*(a+b-c)*(a^3+(b-c)*a^2-(b^2+b*c+c^2)*a-(b+c)*(b^2-c^2))*(a-b+c)*(b+c)*(2*a^7+(b+c)*a^6-2*(3*b^2-2*b*c+3*c^2)*a^5-(b+c)*(3*b^2-2*b*c+3*c^2)*a^4+2*(3*b^4+3*c^4-(b^2+b*c+c^2)*b*c)*a^3+(b+c)*(3*b^4+3*c^4-(4*b^2-5*b*c+4*c^2)*b*c)*a^2-2*(b+c)*(b^2-c^2)*(b^3-c^3)*a-(b^2-c^2)^3*(b-c)) : :

See Kadir Altintas and César Lozada, euclid 5233.

X(50704) lies on the quartic Q161 and these lines: {30, 5685}, {140, 3467}

X(50704) = midpoint of X(5685) and X(19658)


X(50705) = X(30)X(1807)∩X(140)X(3460)

Barycentrics    (b+c)*(2*a^7-(b+c)*a^6-3*(b^2+c^2)*a^5+3*(b^3+c^3)*a^4-2*(b-c)^2*b*c*a^3-(b^2-c^2)*(b-c)*(3*b^2+2*b*c+3*c^2)*a^2+(b^2-c^2)^2*(b+c)^2*a+(b^3+c^3)*(b^2-c^2)^2)*(a-b+c)*(a+b-c) : :

See Kadir Altintas and César Lozada, euclid 5233.

X(50705) lies on the quartic Q161 and these lines: {4, 1389}, {30, 1807}, {140, 3460}

X(50705) = midpoint of X(3465) and X(34300)


X(50706) = X(2)X(3)∩X(512)X(3268)

Barycentrics    2*a^8 - 2*a^6*b^2 + 3*a^4*b^4 - 2*a^2*b^6 - b^8 - 2*a^6*c^2 + 2*a^4*b^2*c^2 - a^2*b^4*c^2 + b^6*c^2 + 3*a^4*c^4 - a^2*b^2*c^4 - 2*a^2*c^6 + b^2*c^6 - c^8 : :

X(50706) lies on these lines: {2, 3}, {512, 3268}, {2387, 2979}, {2393, 6148}


X(50707) = X(2)X(3)∩X(51)X(2387)

Barycentrics    2*a^8 + a^6*b^2 - 3*a^4*b^4 + a^2*b^6 - b^8 + a^6*c^2 + 2*a^4*b^2*c^2 - a^2*b^4*c^2 + 4*b^6*c^2 - 3*a^4*c^4 - a^2*b^2*c^4 - 6*b^4*c^4 + a^2*c^6 + 4*b^2*c^6 - c^8::
X(50707) = X[237] + 2 X[460]

X(50707 lies on these lines: {2, 3}, {51, 2387}, {115, 1495}, {184, 5309}, {230, 5191}, {512, 1637}, {1976, 1989}, {2393, 6128}, {3580, 6033}

X(50707) = crossdifference of every pair of points on line {647, 15066}
X(50707) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {25, 21177, 237}, {419, 2450, 44887}, {1316, 1513, 47526}


X(50708) = ISOGONAL CONJUGATE OF X(33643)

Barycentrics    2*a^10-7*(b^2+c^2)*a^8+10*(b^4+b^2*c^2+c^4)*a^6-(b^2+c^2)*(8*b^4-7*b^2*c^2+8*c^4)*a^4+(4*b^4+3*b^2*c^2+4*c^4)*(b^2-c^2)^2*a^2-(b^4-c^4)*(b^2-c^2)^3 : :

See Antreas Hatzipolakis and César Lozada, euclid 5237.

X(50708) lies on the cubics K439, K467 and these lines: {2, 21357}, {3, 12325}, {4, 12175}, {5, 195}, {12, 35197}, {30, 511}, {49, 34577}, {52, 13368}, {54, 140}, {68, 10224}, {110, 10096}, {125, 46114}, {128, 24147}, {137, 31674}, {143, 6153}, {155, 13406}, {193, 11818}, {265, 43965}, {323, 33565}, {382, 13422}, {399, 43893}, {403, 2914}, {546, 6288}, {548, 7691}, {549, 45968}, {550, 12254}, {562, 14106}, {858, 15137}, {930, 6343}, {1141, 14140}, {1147, 10125}, {1157, 14072}, {1209, 1493}, {1216, 11264}, {1263, 19552}, {1511, 14049}, {1568, 11801}, {1658, 6193}, {1853, 16266}, {1993, 39504}, {2070, 5898}, {2072, 11804}, {2917, 12107}, {3530, 10610}, {3574, 3850}, {3575, 6242}, {3580, 11597}, {3627, 48675}, {3819, 11232}, {3853, 15800}, {3861, 13142}, {5159, 15124}, {5498, 12359}, {5562, 45970}, {5690, 9905}, {5876, 43581}, {5889, 45971}, {5899, 14683}, {5972, 47117}, {6101, 15532}, {6146, 21660}, {6150, 6592}, {6152, 6756}, {6243, 13423}, {6286, 15171}, {6515, 12106}, {6689, 15605}, {7356, 18990}, {7502, 45794}, {7514, 11898}, {7575, 25714}, {7583, 12965}, {7584, 12971}, {7730, 41628}, {9833, 17846}, {9920, 11206}, {9935, 32359}, {9936, 17824}, {10020, 47360}, {10095, 23409}, {10112, 11591}, {10115, 16881}, {10116, 10627}, {10124, 45298}, {10126, 14143}, {10192, 10274}, {10205, 35720}, {10212, 44158}, {10264, 43574}, {10272, 11702}, {10285, 25043}, {10289, 13856}, {10297, 25740}, {10619, 18914}, {10677, 11542}, {10678, 11543}, {11017, 40240}, {11225, 13363}, {11250, 11411}, {11412, 45731}, {11558, 43580}, {11563, 46440}, {11577, 32377}, {11600, 46076}, {11601, 46072}, {11808, 44056}, {12010, 41597}, {12026, 16336}, {12105, 41596}, {12108, 20585}, {12118, 15332}, {12134, 14449}, {12164, 44279}, {12242, 13565}, {12280, 14516}, {12291, 34224}, {12300, 13488}, {12317, 35452}, {12362, 12606}, {12370, 31834}, {12383, 32608}, {12421, 15136}, {12429, 18377}, {12605, 22815}, {12811, 20584}, {13079, 15172}, {13383, 41615}, {13419, 13421}, {13469, 15425}, {13490, 41713}, {14156, 40685}, {15069, 39522}, {15334, 18016}, {15350, 32226}, {15392, 34308}, {15557, 35719}, {15644, 45732}, {15699, 45967}, {15957, 23338}, {16532, 32609}, {18403, 36853}, {18583, 19150}, {19468, 31804}, {19940, 31879}, {23410, 41578}, {32166, 34421}, {32338, 44076}, {36749, 50136}, {37947, 46818}, {41586, 44264}, {44324, 44325}

X(50708) = isogonal conjugate of X(33643)
X(50708) = circumnormal-isogonal conjugate of X(33639)
X(50708) = Cevapoint of X(i) and X(j) for these (i, j): {3, 39431}, {140, 1263}
X(50708) = crosssum of X(140) and X(1157)
X(50708) = X(1263)-Ceva conjugate of-X(140)
X(50708) = X(3)-vertex conjugate of-X(13152)


X(50709) = X(4)X(1620)∩X(30)X(511)

Barycentrics    14*a^10-19*(b^2+c^2)*a^8-4*(5*b^4-16*b^2*c^2+5*c^4)*a^6+34*(b^4-c^4)*(b^2-c^2)*a^4-2*(b^2-c^2)^2*(b^4+18*b^2*c^2+c^4)*a^2-7*(b^4-c^4)*(b^2-c^2)^3 : :

See Antreas Hatzipolakis and César Lozada, euclid 5237.

X(50709) lies on these lines: {4, 1620}, {20, 5893}, {30, 511}, {64, 49135}, {74, 15153}, {154, 15683}, {382, 6696}, {546, 10193}, {1498, 49138}, {1514, 13619}, {1597, 15578}, {1853, 3146}, {2883, 3529}, {2935, 37925}, {3060, 40928}, {3153, 20725}, {3543, 23332}, {3627, 23329}, {3830, 23328}, {5059, 5895}, {5073, 6247}, {5878, 49137}, {5925, 33703}, {6240, 16656}, {8567, 17578}, {9781, 18560}, {9833, 49139}, {10117, 37944}, {10182, 15690}, {10606, 15682}, {11202, 19710}, {11204, 15687}, {12102, 25563}, {13202, 37931}, {13293, 37936}, {13473, 47296}, {14216, 49134}, {15105, 49133}, {15704, 16252}, {16621, 34797}, {17800, 34782}, {17845, 49140}, {18376, 35404}, {20427, 49136}, {22049, 42452}, {23315, 47096}, {23325, 33699}, {30517, 47030}, {33702, 35515}, {33923, 46265}, {38794, 44246}, {38795, 47308}, {40196, 48905}

X(50709) = isogonal conjugate of X(50710)


X(50710) = ISOGONAL CONJUGATE OF X(50709)

Barycentrics    a^2*(7*a^10-(21*b^2-2*c^2)*a^8+2*(7*b^4+16*b^2*c^2-17*c^4)*a^6+2*(b^2-c^2)*(7*b^4-27*b^2*c^2-10*c^4)*a^4-(b^2-c^2)*(21*b^6+19*c^6-(11*b^2+45*c^2)*b^2*c^2)*a^2+(7*b^4+23*b^2*c^2+14*c^4)*(b^2-c^2)^3)*(7*a^10+(2*b^2-21*c^2)*a^8-2*(17*b^4-16*b^2*c^2-7*c^4)*a^6+2*(b^2-c^2)*(10*b^4+27*b^2*c^2-7*c^4)*a^4+(b^2-c^2)*(19*b^6+21*c^6-(45*b^2+11*c^2)*b^2*c^2)*a^2-(14*b^4+23*b^2*c^2+7*c^4)*(b^2-c^2)^3) : :

See Antreas Hatzipolakis and César Lozada, euclid 5237.

X(50710) lies on the circumcircle and these lines: {107, 17578}, {110, 8567}

X(50710) = isogonal conjugate of X(50709)
X(50710) = intersection, other than A, B, C, of circumcircle and circumconic {{A, B, C, X(3), X(17578)}}


X(50711) = X(30)X(511)∩X(110)X(115)

Barycentrics    2*a^10-4*(b^2+c^2)*a^8+3*(b^2+c^2)^2*a^6-(b^2+c^2)^3*a^4+(b^8+c^8-3*(b^2-c^2)^2*b^2*c^2)*a^2-(b^4-c^4)*(b^2-c^2)^3 : :

See Antreas Hatzipolakis and César Lozada, euclid 5237.

X(50711) lies on these lines: {13, 37753}, {14, 37752}, {30, 511}, {67, 50567}, {74, 38738}, {98, 12383}, {99, 3448}, {110, 115}, {114, 265}, {125, 620}, {146, 10723}, {147, 48982}, {148, 14683}, {399, 6321}, {671, 9143}, {895, 5477}, {1511, 6036}, {2482, 9140}, {2502, 42344}, {2930, 11646}, {2931, 39854}, {2948, 13178}, {3580, 47326}, {5026, 25328}, {5182, 25320}, {5461, 5642}, {5465, 36523}, {5609, 38734}, {5655, 9880}, {5972, 6722}, {6033, 12902}, {6055, 14849}, {6721, 20304}, {7728, 39809}, {7756, 38523}, {8980, 10819}, {9862, 48951}, {9864, 12407}, {10264, 33813}, {10620, 38730}, {10733, 39838}, {10754, 11061}, {10820, 13967}, {11005, 14981}, {11006, 15300}, {11557, 39806}, {11623, 30714}, {11711, 13605}, {11720, 11725}, {11724, 12261}, {11800, 39835}, {12041, 38736}, {12042, 34153}, {12121, 38749}, {12302, 39860}, {12308, 38733}, {12310, 39857}, {12317, 13172}, {12412, 39828}, {13188, 15545}, {14643, 23514}, {14644, 36519}, {15027, 38751}, {15034, 38740}, {15035, 38737}, {15040, 38739}, {15041, 38731}, {15059, 31274}, {15061, 38748}, {15100, 39807}, {15102, 39808}, {15561, 38724}, {16163, 38747}, {16278, 24981}, {18331, 23235}, {18332, 23236}, {20399, 33512}, {22247, 45311}, {32609, 38224}, {35834, 49370}, {35835, 49369}, {36739, 36955}

X(50711) = isogonal conjugate of X(50712)


X(50712) = ISOGONAL CONJUGATE OF X(50711)

Barycentrics    a^2*(a^10-(3*b^2+c^2)*a^8+(2*b^2+c^2)*(b^2+c^2)*a^6+(2*b^6-3*c^6-3*(2*b^2-c^2)*b^2*c^2)*a^4-(3*b^8-4*c^8-3*(b^2-c^2)*(b^2+2*c^2)*b^2*c^2)*a^2+(b^2-c^2)*(b^8+2*c^8+(b^2-2*c^2)*b^2*c^4))*(a^10-(b^2+3*c^2)*a^8+(b^2+2*c^2)*(b^2+c^2)*a^6-(3*b^6-2*c^6-3*(b^2-2*c^2)*b^2*c^2)*a^4+(4*b^8-3*c^8-3*(b^2-c^2)*(2*b^2+c^2)*b^2*c^2)*a^2-(b^2-c^2)*(2*b^8+c^8-(2*b^2-c^2)*b^4*c^2)) : :

See Antreas Hatzipolakis and César Lozada, euclid 5237.

X(50712) lies on the circumcircle and these lines: {107, 17578}, {110, 8567}lies on the circumcircle and these lines: {476, 5099}, {691, 35936}, {2709, 38613}, {5461, 14734}, {10425, 14729}, {45773, 50386}

X(50712) = isogonal conjugate of X(50711)
X(50712) = intersection, other than A, B, C, of circumcircle and circumconic {{A, B, C, X(186), X(2065)}}


X(50713) = X(2)X(3)∩X(518)X(4004)

Barycentrics    3*a^4 + a^2*b^2 - 4*b^4 + 10*a^2*b*c + 10*a*b^2*c + a^2*c^2 + 10*a*b*c^2 + 8*b^2*c^2 - 4*c^4 : :
X(50713) = 3 X[2] + 7 X[377], 12 X[2] - 7 X[405], 27 X[2] - 7 X[6872], 9 X[2] - 14 X[8728], 17 X[2] - 7 X[31156], 9 X[2] - 7 X[31259], 33 X[2] + 7 X[31295], 2 X[2] - 7 X[44217], 19 X[2] - 14 X[50202], 33 X[2] - 28 X[50205], 6 X[2] - 7 X[50207], 3 X[2] - 7 X[50237], 3 X[2] - 28 X[50238], 18 X[2] + 7 X[50239], 3 X[2] + 2 X[50240], 39 X[2] - 14 X[50241], 6 X[2] - X[50242], 9 X[2] - 4 X[50243], 57 X[2] - 7 X[50244], 39 X[2] - 49 X[50393], 51 X[2] - 56 X[50394], 23 X[2] - 28 X[50395], X[2] + 14 X[50396], 8 X[2] + 7 X[50397], 69 X[2] - 49 X[50398], 4 X[377] + X[405], 9 X[377] + X[6872], 3 X[377] + 2 X[8728], 17 X[377] + 3 X[31156], 3 X[377] + X[31259], 11 X[377] - X[31295], 2 X[377] + 3 X[44217], 19 X[377] + 6 X[50202], 11 X[377] + 4 X[50205], 2 X[377] + X[50207], X[377] + 4 X[50238], 6 X[377] - X[50239], 7 X[377] - 2 X[50240], 13 X[377] + 2 X[50241], 14 X[377] + X[50242], 21 X[377] + 4 X[50243], 19 X[377] + X[50244], 13 X[377] + 7 X[50393], 17 X[377] + 8 X[50394], 23 X[377] + 12 X[50395], X[377] - 6 X[50396], 8 X[377] - 3 X[50397], 23 X[377] + 7 X[50398], 9 X[405] - 4 X[6872], and many others

X(50713) lies on these lines: {2, 3}, {518, 4004}, {3633, 5425}, {3828, 9656}, {4114, 4691}, {9654, 26060}, {9671, 19883}, {11041, 20053}

X(50713) = midpoint of X(377) and X(50237)
X(50713) = reflection of X(i) in X(j) for these {i,j}: {405, 50207}, {31259, 8728}, {50207, 50237}
X(50713) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 377, 50240}, {2, 1657, 19538}, {2, 50240, 50242}, {2, 50242, 405}, {377, 405, 50397}, {377, 8728, 50239}, {377, 44217, 405}, {377, 50238, 44217}, {442, 17583, 2}, {443, 17532, 16862}, {443, 37161, 4187}, {4187, 37161, 17532}, {8728, 31259, 50207}, {8728, 50239, 405}, {8728, 50240, 50243}, {8728, 50243, 2}, {15674, 15696, 16370}, {31259, 50237, 8728}, {44217, 50207, 50237}, {44217, 50239, 8728}, {50238, 50396, 377}


X(50714) = X(2)X(3)∩X(518)X(4539)

Barycentrics    5*a^4 - 7*a^2*b^2 + 2*b^4 - 18*a^2*b*c - 18*a*b^2*c - 7*a^2*c^2 - 18*a*b*c^2 - 4*b^2*c^2 + 2*c^4 : :
X(50714) = 7 X[2] - X[377], 2 X[2] + X[405], 11 X[2] + X[6872], 5 X[2] - 2 X[8728], 5 X[2] + X[31156], X[2] + 5 X[31259], 25 X[2] - X[31295], 4 X[2] - X[44217], X[2] + 2 X[50202], X[2] - 4 X[50205], 8 X[2] - 5 X[50207], 17 X[2] - 5 X[50237], 19 X[2] - 4 X[50238], 16 X[2] - X[50239], 23 X[2] - 2 X[50240], 13 X[2] + 2 X[50241], 20 X[2] + X[50242], 17 X[2] + 4 X[50243], 29 X[2] + X[50244], 13 X[2] - 7 X[50393], 11 X[2] - 8 X[50394], 7 X[2] - 4 X[50395], 11 X[2] - 2 X[50396], 10 X[2] - X[50397], 5 X[2] + 7 X[50398], 4 X[140] - X[44284], 2 X[377] + 7 X[405], 11 X[377] + 7 X[6872], 5 X[377] - 14 X[8728], 5 X[377] + 7 X[31156], X[377] + 35 X[31259], 25 X[377] - 7 X[31295], 4 X[377] - 7 X[44217], X[377] + 14 X[50202], X[377] - 28 X[50205], 8 X[377] - 35 X[50207], 17 X[377] - 35 X[50237], 19 X[377] - 28 X[50238], 16 X[377] - 7 X[50239], 23 X[377] - 14 X[50240], 13 X[377] + 14 X[50241], 20 X[377] + 7 X[50242], 17 X[377] + 28 X[50243], 29 X[377] + 7 X[50244], 13 X[377] - 49 X[50393], 11 X[377] - 56 X[50394], X[377] - 4 X[50395], 11 X[377] - 14 X[50396], 10 X[377] - 7 X[50397], and many others

X(50714) lies on these lines: {2, 3}, {518, 4539}, {1125, 3715}, {3158, 19875}, {3582, 8167}, {3624, 5302}, {3655, 24564}, {10404, 19862}, {16817, 50041}, {24473, 45120}

X(50714) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 376, 17529}, {2, 377, 50395}, {2, 405, 44217}, {2, 549, 16862}, {2, 5047, 381}, {2, 11346, 50427}, {2, 13742, 50323}, {2, 15670, 474}, {2, 15671, 5054}, {2, 16845, 15670}, {2, 16857, 17532}, {2, 16859, 6175}, {2, 16861, 17528}, {2, 17542, 17556}, {2, 31156, 8728}, {2, 31259, 50202}, {2, 44217, 50207}, {2, 50202, 405}, {2, 50398, 31156}, {405, 8728, 50242}, {405, 16862, 37426}, {405, 50207, 50239}, {405, 50397, 31156}, {442, 17554, 17545}, {8728, 31156, 50397}, {8728, 50397, 44217}, {8728, 50398, 405}, {15670, 17590, 2}, {15694, 16855, 2}, {16845, 17590, 474}, {31156, 50397, 50242}, {31259, 50205, 405}, {44217, 50242, 50397}, {50202, 50205, 2}


X(50715) = X(2)X(3)∩X(518)X(614)

Barycentrics    a*(a^5 - a*b^4 - 4*a^3*b*c - 4*b^4*c + 6*a*b^2*c^2 - a*c^4 - 4*b*c^4) : :

X(50715) lies on these lines: {2, 3}, {55, 3823}, {518, 614}, {958, 23675}, {1473, 17282}, {3953, 5272}, {4423, 4698}, {7083, 25957}, {11365, 19846}, {18139, 37492}, {29641, 37502}, {29850, 37580}

X(50715) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 405, 16353}, {2, 1370, 14019}, {2, 4228, 474}, {2, 5047, 37060}, {2, 16048, 25}, {2, 16067, 31255}, {2, 25494, 7484}, {405, 50199, 20835}


X(50716) = X(2)X(3)∩X(518)X(976)

Barycentrics    a*(a^6 - a^4*b^2 + a^3*b^3 - a*b^5 - 2*a^4*b*c - 2*a^3*b^2*c - a^2*b^3*c - 2*a*b^4*c - b^5*c - a^4*c^2 - 2*a^3*b*c^2 - 4*a^2*b^2*c^2 - 5*a*b^3*c^2 - 2*b^4*c^2 + a^3*c^3 - a^2*b*c^3 - 5*a*b^2*c^3 - 2*b^3*c^3 - 2*a*b*c^4 - 2*b^2*c^4 - a*c^5 - b*c^5) : :

X(50716) lies on these lines: {2, 3}, {78, 5138}, {518, 976}, {2218, 3739}, {3666, 28082}, {3980, 5248}, {5259, 17889}, {5293, 36504}, {10404, 36503}

X(50716) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 405, 37329}, {3, 37065, 37255}, {21, 16451, 13723}


X(50717) = X(2)X(3)∩X(518)X(872)

Barycentrics    a*(a^5*b + a^4*b^2 - a^3*b^3 - a^2*b^4 + a^5*c - 2*a^3*b^2*c - 3*a^2*b^3*c - 3*a*b^4*c - b^5*c + a^4*c^2 - 2*a^3*b*c^2 - 2*a^2*b^2*c^2 - a*b^3*c^2 - 2*b^4*c^2 - a^3*c^3 - 3*a^2*b*c^3 - a*b^2*c^3 - 2*b^3*c^3 - a^2*c^4 - 3*a*b*c^4 - 2*b^2*c^4 - b*c^5) : :

X(50717) lies on these lines: {2, 3}, {10, 27628}, {56, 3589}, {518, 872}, {978, 41229}, {992, 5069}, {5259, 33109}, {5302, 27627}, {18235, 24443}, {27634, 28252}, {28250, 31339}, {29492, 46877}

X(50717) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 13738, 37255}, {2, 27655, 474}, {405, 16299, 37329}, {405, 50199, 377}, {405, 50203, 16353}, {11319, 35984, 37425}, {16062, 19238, 13724}, {16299, 19267, 405}, {19260, 33833, 47521}


X(50718) = X(4)X(187)∩X(5)X(5523)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4*b^2 - 3*a^2*b^4 + 2*b^6 + a^4*c^2 + a^2*b^2*c^2 - 2*b^4*c^2 - 3*a^2*c^4 - 2*b^2*c^4 + 2*c^6) : :

X(50718) lies on the Moses-Parry circle, the cubic K936, and these lines: {4, 187}, {5, 5523}, {6, 7699}, {53, 403}, {111, 5094}, {112, 381}, {115, 7577}, {232, 39601}, {264, 8430}, {378, 2079}, {427, 5913}, {458, 8429}, {1157, 8882}, {1235, 32966}, {1249, 3545}, {1346, 8106}, {1347, 8105}, {1560, 5169}, {1594, 49123}, {1995, 8428}, {2165, 3087}, {3054, 10295}, {3091, 41370}, {3569, 7703}, {3851, 8743}, {5066, 16318}, {5068, 41361}, {5889, 8571}, {6032, 44467}, {6103, 43457}, {6143, 7748}, {6240, 42391}, {7547, 10312}, {7749, 34797}, {9166, 36794}, {9756, 10735}, {10254, 22240}, {10311, 18362}, {13509, 23325}, {14585, 18394}, {18392, 32661}, {18472, 18572}, {19709, 45141}, {21397, 31861}, {27371, 44958}, {27376, 35487}, {35480, 37637}, {39157, 40103}

X(50718) = nine-point-circle-inverse of X(5523)
X(50718) = orthocentroidal-circle-inverse of X(112)
X(50718) = polar-circle-inverse of X(187)
X(50718) = polar conjugate of the isotomic conjugate of X(38397)
X(50718) = barycentric product X(4)*X(38397)
X(50718) = barycentric quotient X(38397)/X(69)
X(50718) = {X(7547),X(13881)}-harmonic conjugate of X(10312)


X(50719) = X(6)X(13)∩X(98)X(486)

Barycentrics    2*a^6 - 2*a^4*b^2 + a^2*b^4 - b^6 - 2*a^4*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6 - 2*(b^2 - c^2)^2*S : :
X(50719) = 3 X[35823] - X[35825], X[13926] + 2 X[22501], 2 X[8997] - 3 X[13873], 3 X[591] - X[49367], 3 X[49311] + X[49367], 3 X[14651] - X[33431]

X(50719) lies on the circumcircle of the outer Vecten triangle and these lines: {2, 33343}, {4, 32495}, {5, 6230}, {6, 13}, {15, 48722}, {16, 48724}, {30, 44392}, {98, 486}, {99, 492}, {114, 371}, {147, 1588}, {148, 22601}, {325, 32419}, {372, 2794}, {485, 6568}, {543, 591}, {590, 13670}, {615, 12042}, {620, 6200}, {671, 1328}, {1124, 12184}, {1132, 32498}, {1151, 15561}, {1152, 38741}, {1327, 19058}, {1335, 12185}, {1504, 45542}, {2088, 48736}, {2459, 48726}, {2460, 37459}, {2782, 3071}, {3069, 9862}, {3070, 22505}, {3103, 38383}, {3311, 38743}, {3312, 38744}, {3845, 49214}, {5420, 34473}, {5860, 33432}, {6036, 10577}, {6054, 13653}, {6302, 32553}, {6303, 32552}, {6319, 22484}, {6321, 23261}, {6396, 13989}, {6409, 38750}, {6410, 38742}, {6419, 38745}, {6423, 48660}, {6424, 44534}, {6453, 20399}, {6560, 10722}, {6569, 43571}, {6721, 8414}, {7584, 49213}, {8252, 38739}, {8980, 10576}, {9660, 15452}, {9677, 39805}, {9733, 12601}, {9741, 49097}, {9864, 35775}, {10053, 44622}, {10069, 44624}, {10723, 22615}, {10991, 13967}, {11177, 38424}, {11724, 35763}, {11725, 45398}, {12221, 33340}, {12305, 38738}, {12829, 49221}, {13178, 45426}, {13640, 42277}, {13847, 14830}, {13874, 45420}, {13968, 49363}, {14061, 42274}, {14639, 42268}, {14651, 33431}, {14981, 35878}, {15357, 35826}, {21166, 42260}, {22502, 42269}, {22515, 42283}, {22566, 32787}, {25559, 35759}, {25560, 42236}, {32421, 47286}, {32459, 44390}, {32492, 35684}, {33342, 33457}, {33813, 42258}, {34127, 42583}, {35610, 45444}, {35753, 41061}, {35768, 45460}, {35777, 39828}, {35787, 45440}, {35801, 45490}, {35803, 45492}, {35808, 45458}, {35820, 39838}, {35835, 49369}, {35850, 41060}, {38224, 42262}, {38730, 42263}, {39857, 45428}, {41020, 42231}, {41021, 42233}, {42215, 49266}, {46053, 48725}, {46054, 48723}

X(50719) = midpoint of X(i) and X(j) for these {i,j}: {4, 33430}, {486, 22501}, {591, 49311}, {5860, 33432}, {12221, 33340}, {13748, 49309}, {22484, 22562}, {22601, 22603}, {33342, 33457}, {33440, 33442}, {35821, 35879}, {49305, 49307}
X(50719) = reflection of X(i) in X(j) for these {i,j}: {6230, 5}, {13926, 486}, {49213, 7584}
X(50719) = orthocentroidal-circle-inverse of X(6564)
X(50719) = crossdifference of every pair of points on line {526, 49268}
X(50719) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 45438, 6564}, {3071, 49355, 3102}, {6565, 35824, 115}, {6565, 39893, 6564}, {8980, 36519, 10576}, {10722, 19108, 6560}, {13989, 38749, 6396}, {31862, 31863, 6564}


X(50720) = X(6)X(13)∩X(98)X(485)

Barycentrics    2*a^6 - 2*a^4*b^2 + a^2*b^4 - b^6 - 2*a^4*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6 + 2*(b^2 - c^2)^2*S : :
X(50720) = 3 X[35822] - X[35824], X[13873] + 2 X[22502], 3 X[13926] - 2 X[13989], 3 X[1991] - X[49368], 3 X[49312] + X[49368], 3 X[14651] - X[33430]

X(50720) lies on the circumcircle of the inner Vecten triangle and these lines: {2, 33342}, {4, 32492}, {5, 6231}, {6, 13}, {15, 48723}, {16, 48725}, {30, 44394}, {98, 485}, {99, 491}, {114, 372}, {147, 1587}, {148, 22630}, {325, 32421}, {371, 2794}, {486, 6569}, {543, 1991}, {590, 12042}, {615, 13790}, {620, 6396}, {671, 1327}, {1124, 12185}, {1131, 32499}, {1151, 38741}, {1152, 15561}, {1328, 19057}, {1335, 12184}, {1505, 45543}, {2088, 48737}, {2459, 37459}, {2460, 48727}, {2782, 3070}, {3068, 9862}, {3071, 22505}, {3102, 38383}, {3311, 38744}, {3312, 38743}, {3845, 49215}, {5418, 34473}, {5861, 33433}, {6036, 10576}, {6054, 13773}, {6200, 8997}, {6306, 32553}, {6307, 32552}, {6320, 22485}, {6321, 23251}, {6409, 38742}, {6410, 38750}, {6420, 38745}, {6423, 44534}, {6424, 48659}, {6454, 20399}, {6561, 10722}, {6568, 43570}, {6721, 8406}, {7583, 49212}, {8253, 38739}, {8960, 8980}, {9732, 12602}, {9741, 49096}, {9864, 35774}, {10053, 31472}, {10069, 44623}, {10577, 13967}, {10723, 22644}, {11177, 38423}, {11724, 35762}, {11725, 45399}, {12222, 33341}, {12306, 38738}, {12829, 49220}, {13178, 45427}, {13760, 42274}, {13846, 14830}, {13908, 49362}, {13927, 45421}, {14061, 42277}, {14639, 42269}, {14651, 31412}, {14981, 35879}, {15357, 35827}, {21166, 42261}, {22501, 42268}, {22515, 42284}, {22566, 32788}, {25559, 42237}, {25560, 42238}, {31411, 43449}, {32419, 47286}, {32459, 44391}, {32495, 35685}, {33343, 33456}, {33813, 42259}, {34127, 42582}, {35611, 45445}, {35754, 41061}, {35769, 45461}, {35776, 39828}, {35786, 45441}, {35800, 45491}, {35802, 45493}, {35809, 45459}, {35821, 39838}, {35834, 49370}, {35851, 41060}, {38224, 42265}, {38730, 42264}, {39857, 45429}, {41020, 42232}, {41021, 42234}, {42216, 49267}, {46053, 48724}, {46054, 48722}

X(50720) = midpoint of X(i) and X(j) for these {i,j}: {4, 33431}, {485, 22502}, {1991, 49312}, {5861, 33433}, {12222, 33341}, {13749, 49310}, {22485, 22563}, {22630, 22632}, {33343, 33456}, {33441, 33443}, {35820, 35878}, {49306, 49308}
X(50720) = reflection of X(i) in X(j) for these {i,j}: {6231, 5}, {13873, 485}, {49212, 7583}
X(50720) = orthocentroidal-circle-inverse of X(6565)
X(50720) = crossdifference of every pair of points on line {526, 49269}
X(50720) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 45439, 6565}, {3070, 49356, 3103}, {6564, 35825, 115}, {6564, 39894, 6565}, {8997, 38749, 6200}, {10722, 19109, 6561}, {13967, 36519, 10577}, {31862, 31863, 6565}


X(50721) = X(6)X(13)∩X(98)X(1132)

Barycentrics    2*a^6 - 2*a^4*b^2 + a^2*b^4 - b^6 - 2*a^4*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6 - 4*(b^2 - c^2)^2*S : :
X(50721) = 3 X[486] - X[13989], X[6230] - 3 X[23514], X[6320] + 3 X[33432], 3 X[14639] + X[33430]

X(50721) lies on these lines: {4, 6568}, {6, 13}, {98, 1132}, {99, 26619}, {114, 13653}, {486, 9739}, {615, 38736}, {620, 18762}, {625, 32419}, {671, 14226}, {1328, 13968}, {1588, 6230}, {2794, 14233}, {3069, 39809}, {3071, 6036}, {6055, 13773}, {6320, 33432}, {6321, 12314}, {6423, 22819}, {6721, 13873}, {6722, 42215}, {7584, 45862}, {8277, 39831}, {8997, 42274}, {9862, 13790}, {9880, 19108}, {10723, 13939}, {13670, 14061}, {13926, 35021}, {13943, 39812}, {13951, 38738}, {13967, 23261}, {14639, 33430}, {16001, 42246}, {16002, 42247}, {23259, 38749}, {23275, 34473}, {32421, 32457}, {35874, 42264}, {38730, 45385}, {38735, 49212}, {42573, 49214}

X(50721) = midpoint of X(i) and X(j) for these {i,j}: {1328, 13968}, {13967, 23261}
X(50721) = orthocentroidal-circle-inverse of X(13665)
X(50721) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6565, 35823, 5475}, {31862, 31863, 13665}


X(50722) = X(6)X(13)∩X(98)X(1131)

Barycentrics    2*a^6 - 2*a^4*b^2 + a^2*b^4 - b^6 - 2*a^4*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6 + 4*(b^2 - c^2)^2*S : :
X(50722) = 3 X[485] - X[8997], X[6231] - 3 X[23514], X[6319] + 3 X[33433], 3 X[14639] + X[33431]

X(50722) lies on these lines: {4, 6569}, {6, 13}, {98, 1131}, {99, 26620}, {114, 13773}, {485, 8997}, {590, 38736}, {620, 18538}, {625, 32421}, {671, 14241}, {1327, 13908}, {1587, 6231}, {2794, 14230}, {3068, 39809}, {3070, 6036}, {6055, 13653}, {6319, 33433}, {6321, 12313}, {6424, 22820}, {6721, 13926}, {6722, 42216}, {7583, 45863}, {8276, 39831}, {8976, 36762}, {8980, 23251}, {9862, 13670}, {9880, 19109}, {10723, 13886}, {13790, 14061}, {13873, 35021}, {13889, 39812}, {13989, 42277}, {14639, 33431}, {16001, 42248}, {16002, 42249}, {19055, 31414}, {23249, 38749}, {23269, 34473}, {32419, 32457}, {35873, 42263}, {38730, 45384}, {38735, 49213}, {42572, 49215}

X(50722) = midpoint of X(i) and X(j) for these {i,j}: {1327, 13908}, {8980, 23251}
X(50722) = orthocentroidal-circle-inverse of X(13785)
X(50722) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6564, 35822, 5475}, {31862, 31863, 13785}


X(50723) = X(6)X(13)∩X(98)X(3316)

Barycentrics    2*a^6 - 2*a^4*b^2 + a^2*b^4 - b^6 - 2*a^4*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6 + (b^2 - c^2)^2*S : :
X(50723) = 3 X[5861] - X[6319], X[6319] + 3 X[9882], 2 X[6231] - 3 X[36519]

X(50723) lies on these lines: {6, 13}, {98, 3316}, {99, 1271}, {114, 6215}, {147, 13773}, {543, 5861}, {615, 48779}, {620, 5591}, {671, 43566}, {1161, 22810}, {2482, 13821}, {2782, 5875}, {2794, 5871}, {5589, 13178}, {5595, 39857}, {6036, 26341}, {6230, 6281}, {6231, 10514}, {6279, 22502}, {6321, 11916}, {7813, 32421}, {8974, 11177}, {8997, 10991}, {10517, 21166}, {11370, 11725}, {11623, 33430}, {11824, 38738}, {13760, 13949}, {13933, 49213}, {35246, 38736}, {38737, 45552}, {38740, 45550}

X(50723) = midpoint of X(i) and X(j) for these {i,j}: {5861, 9882}, {5871, 6227}, {6270, 6271}
X(50723) = reflection of X(i) in X(j) for these {i,j}: {14981, 6230}, {33430, 11623}
X(50723) = crossdifference of every pair of points on line {526, 19110}


X(50724) = X(6)X(13)∩X(98)X(3317)

Barycentrics    2*a^6 - 2*a^4*b^2 + a^2*b^4 - b^6 - 2*a^4*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6 - (b^2 - c^2)^2*S : :
X(50724) = 3 X[5860] - X[6320], X[6320] + 3 X[9883], 2 X[6230] - 3 X[36519]

X(50724) lies on these lines: {6, 13}, {98, 3317}, {99, 1270}, {114, 6214}, {147, 13653}, {543, 5860}, {590, 48778}, {620, 5590}, {671, 43567}, {1160, 22809}, {2482, 13701}, {2782, 5874}, {2794, 5870}, {5588, 13178}, {5594, 39857}, {6036, 26348}, {6230, 10515}, {6231, 6278}, {6280, 22501}, {6321, 11917}, {7813, 32419}, {8975, 13640}, {10518, 21166}, {10991, 13989}, {11177, 13773}, {11371, 11725}, {11623, 33431}, {11825, 38738}, {13879, 49212}, {23251, 37839}, {35247, 38736}, {38737, 45553}, {38740, 45551}

X(50724) = midpoint of X(i) and X(j) for these {i,j}: {5860, 9883}, {5870, 6226}, {6268, 6269}
X(50724) = reflection of X(i) in X(j) for these {i,j}: {14981, 6231}, {33431, 11623}
X(50724) = crossdifference of every pair of points on line {526, 19111}


X(50725) = X(2)X(3)∩X(7)X(12625)

Barycentrics    9*a^4 - 2*a^2*b^2 - 7*b^4 + 8*a^2*b*c + 8*a*b^2*c - 2*a^2*c^2 + 8*a*b*c^2 + 14*b^2*c^2 - 7*c^4 : :
X(50725) = 3 X[2] - 4 X[4208], 9 X[2] - 8 X[16845], 21 X[2] - 16 X[16866], 3 X[4208] - 2 X[16845], 7 X[4208] - 4 X[16866], 3 X[11106] - 4 X[16845], 7 X[11106] - 8 X[16866], 7 X[16845] - 6 X[16866], 5 X[3623] - 8 X[41870]

X(50725) lies on these lines: {2, 3}, {7, 12625}, {8, 4312}, {144, 9579}, {145, 3671}, {388, 12632}, {2550, 8170}, {3600, 3813}, {3617, 12527}, {3621, 17483}, {3623, 41870}, {4018, 20052}, {4373, 50582}, {4452, 7247}, {4461, 7270}, {4654, 12536}, {4678, 20078}, {4900, 20054}, {5175, 21454}, {5229, 21031}, {5232, 49734}, {5691, 43182}, {5836, 12125}, {8583, 10248}, {11024, 31673}, {38149, 40267}

X(50725) = reflection of X(11106) in X(4208)
X(50725) = anticomplement of X(11106)
X(50725) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 31295, 5059}, {2, 37256, 21734}, {2, 50692, 6872}, {20, 37161, 2}, {377, 3146, 2}, {377, 11114, 37436}, {404, 5068, 2}, {442, 8727, 4193}, {2475, 37435, 2}, {2476, 15717, 2}, {3522, 5177, 2}, {3529, 17528, 17558}, {3832, 6904, 2}, {4208, 11106, 2}, {5177, 17579, 3522}, {6871, 37267, 2}, {16915, 33200, 2}, {17565, 32979, 2}, {32980, 33062, 2}, {32982, 33058, 2}, {33023, 33030, 2}, {33201, 33841, 2}


X(50726) = X(2)X(3)∩X(9)X(3824)

Barycentrics    a^4 - 3*a^2*b^2 + 2*b^4 - 8*a^2*b*c - 8*a*b^2*c - 3*a^2*c^2 - 8*a*b*c^2 - 4*b^2*c^2 + 2*c^4 : :
X(50726) = 3 X[2] + X[4208], 9 X[2] - X[11106], 6 X[2] - X[16866], 3 X[4208] + X[11106], 2 X[4208] + X[16866], X[11106] - 3 X[16845], 2 X[11106] - 3 X[16866], 5 X[1698] + X[41870]

X(50726) lies on these lines: {2, 3}, {9, 3824}, {10, 15934}, {55, 41859}, {142, 3634}, {191, 41862}, {210, 942}, {277, 26100}, {495, 19855}, {999, 19854}, {1001, 3841}, {1125, 12437}, {1159, 28629}, {3059, 16216}, {3295, 3925}, {3358, 38318}, {3454, 17259}, {3579, 31671}, {3587, 3646}, {3601, 34595}, {3624, 24929}, {3626, 36867}, {3763, 4260}, {3826, 6600}, {3828, 24391}, {3927, 5249}, {4423, 9669}, {5044, 25525}, {5122, 31263}, {5138, 47355}, {5219, 37544}, {5251, 9655}, {5259, 9668}, {5273, 24470}, {5292, 17245}, {5534, 5790}, {5705, 20195}, {5707, 25878}, {5709, 11231}, {5714, 18230}, {5715, 31658}, {5745, 37545}, {5787, 10175}, {5789, 9940}, {5805, 6684}, {6173, 31446}, {6245, 10172}, {6260, 38108}, {6767, 31419}, {7373, 19843}, {7778, 36812}, {7879, 16994}, {7988, 37551}, {8167, 25639}, {8227, 31793}, {8583, 37533}, {8818, 37500}, {9708, 25466}, {9945, 31272}, {9956, 18443}, {10306, 38121}, {10896, 25542}, {11230, 37531}, {11495, 12558}, {11518, 19875}, {11928, 25893}, {12436, 31253}, {12513, 31494}, {12620, 49627}, {12645, 19860}, {13151, 18525}, {15668, 20083}, {15937, 48887}, {17234, 25446}, {17265, 50605}, {17284, 39564}, {17811, 45931}, {18483, 38059}, {18493, 37585}, {18541, 31445}, {19812, 19852}, {19872, 31246}, {24541, 35272}, {24880, 37674}, {31420, 47357}, {36499, 40328}, {37682, 45939}, {38031, 48482}

X(50726) = midpoint of X(4208) and X(16845)
X(50726) = reflection of X(16866) in X(16845)
X(50726) = complement of X(16845)
X(50726) = orthocentroidal circle inverse of X(50205)
X(50726) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 50205}, {2, 5, 16853}, {2, 442, 11108}, {2, 443, 6675}, {2, 2476, 16842}, {2, 2478, 17590}, {2, 4187, 16855}, {2, 4193, 16854}, {2, 4197, 405}, {2, 4202, 16343}, {2, 4208, 16845}, {2, 5141, 17534}, {2, 5154, 17546}, {2, 5177, 17552}, {2, 6175, 50714}, {2, 6856, 17527}, {2, 6933, 17575}, {2, 8728, 3}, {2, 13728, 16457}, {2, 14019, 19319}, {2, 16062, 16844}, {2, 16408, 3526}, {2, 16911, 33217}, {2, 17529, 16408}, {2, 17582, 140}, {2, 25962, 37224}, {2, 33026, 7819}, {2, 33035, 32954}, {2, 33180, 33027}, {2, 33833, 19273}, {2, 37153, 17698}, {2, 37436, 6857}, {2, 37462, 7483}, {2, 47516, 37244}, {2, 50393, 17529}, {3, 5055, 6841}, {3, 5070, 6861}, {4, 50205, 16857}, {5, 140, 6865}, {5, 6989, 3}, {5, 37411, 381}, {5, 50394, 2}, {140, 6826, 3}, {142, 3634, 5791}, {142, 5791, 5708}, {377, 16418, 1657}, {405, 474, 37301}, {405, 1004, 37292}, {405, 4197, 17528}, {405, 17528, 382}, {442, 1004, 17528}, {442, 11108, 381}, {442, 17590, 2478}, {443, 6675, 3}, {443, 6857, 37267}, {443, 17559, 6851}, {549, 6869, 3}, {631, 20420, 3}, {1698, 41867, 942}, {2478, 17590, 11108}, {3090, 37407, 8727}, {3826, 10198, 9709}, {6675, 8728, 443}, {6856, 17527, 5055}, {6910, 17573, 15693}, {7483, 16417, 15720}, {7483, 37462, 16417}, {8727, 37407, 3}, {11108, 16408, 16410}, {11108, 37271, 3}, {11108, 37292, 405}, {11111, 50240, 17800}, {11112, 17571, 15696}, {11113, 31259, 16860}, {14782, 14783, 37423}, {16056, 16290, 3}, {17561, 50396, 15681}, {17698, 37153, 19277}, {19526, 50713, 17579}, {19538, 50397, 15680}, {37267, 37436, 443}


X(50727) = X(2)X(3)∩X(10)X(41870)

Barycentrics    a^4 - 8*a^2*b^2 + 7*b^4 - 24*a^2*b*c - 24*a*b^2*c - 8*a^2*c^2 - 24*a*b*c^2 - 14*b^2*c^2 + 7*c^4 : :
X(50727) = 5 X[2] - X[11106], 7 X[2] - 2 X[16866], 5 X[4208] + X[11106], 2 X[4208] + X[16845], 7 X[4208] + 2 X[16866], 2 X[11106] - 5 X[16845], 7 X[11106] - 10 X[16866], 7 X[16845] - 4 X[16866], 2 X[10] + X[41870]

X(50727) lies on these lines: {2, 3}, {10, 41870}, {551, 24392}, {553, 1698}, {1058, 3841}, {2346, 38092}, {3017, 4648}, {3475, 3679}, {3584, 26040}, {3681, 3921}, {3826, 8164}, {3828, 5850}, {5178, 38314}, {5550, 18527}, {10056, 41859}, {10175, 21151}, {11237, 19855}, {13407, 19875}, {18530, 46934}, {19883, 34701}, {26446, 38172}, {32635, 46932}

X(50727) = midpoint of X(2) and X(4208)
X(50727) = reflection of X(16845) in X(2)
X(50727) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 377, 17561}, {2, 442, 3545}, {2, 443, 3524}, {2, 452, 50714}, {2, 474, 15709}, {2, 3543, 50202}, {2, 3545, 17559}, {2, 3839, 11108}, {2, 4190, 15671}, {2, 10304, 6675}, {2, 17580, 5054}, {2, 33039, 33220}, {2, 33278, 16912}, {2, 44217, 376}, {2, 50687, 17554}, {377, 17561, 11001}, {381, 50395, 2}, {15699, 16863, 2}, {17525, 37435, 46333}, {17528, 50202, 3543}


X(50728) = EULER LINE INTERCEPT OF X(1147)X(34292)

Barycentrics    a^2*((b^2+c^2)*a^12-(5*b^4+7*b^2*c^2+5*c^4)*a^10+(b^2+c^2)*(10*b^4+3*b^2*c^2+10*c^4)*a^8-2*(5*b^8+5*c^8+3*(b^4+b^2*c^2+c^4)*b^2*c^2)*a^6+(b^2+c^2)*(5*b^8+5*c^8-(10*b^4-9*b^2*c^2+10*c^4)*b^2*c^2)*a^4-(b^4-c^4)*(b^2-c^2)^3*b^2*c^2-(b^2-c^2)^2*(b^8+c^8-3*(b^4+b^2*c^2+c^4)*b^2*c^2)*a^2) : :

Barycentrics    (SB+SC)*((2*SA-R^2)*S^2+(2*SW^2-(SA+8*SW)*R^2+6*R^4)*SA) : :

See Kadir Altintas and César Lozada, euclid 5245.

X(50728) lies on these lines: {2, 3}, {1147, 34292}


X(50729) = X(2)X(11166)∩X(51)X(17430)

Barycentrics    (a^2-2 (b^2+c^2)) (20 a^4+a^2 (b^2+c^2)-(b^2+c^2)^2) : :
X(50729) = X(31961) + X(31962)

See Angel Montesdeoca, euclid 5247 and HG120622.

X(50729) lies on these lines: {2,11166}, {51,17430}, {184,15534}, {353,47075}, {524,47074}, {597,10183}, {3906,11123}, {31961,31962}

X(50729) = midpoint of the orthocenters of these triangles: 4th Brocard and circumsymmedial


X(50730) = X(2)X(47859)∩X(3)X(47591)

Barycentrics    20 a^10-19 a^8 (b^2+c^2)+a^6 (-145 b^4+122 b^2 c^2-145 c^4) +a^4 (149 b^6-153 b^4 c^2-153 b^2 c^4+149 c^6)+a^2 (17 b^8-100 b^6 c^2+198 b^4 c^4-100 b^2 c^6+17 c^8) -2 (b^2-c^2)^2 (11 b^6-21 b^4 c^2-21 b^2 c^4+11 c^6) : :
X(50730) = X(2) - 2 X(47589)

See Angel Montesdeoca, euclid 5247 and HG120622.

X(50730) lies on these lines: {2,47589}, {3,47591}, {4,47590}, {30,31748}, {381,13378}, {3091,47592}, {3543,5032}, {14269,46673}

X(50730) = reflection of X(2) in X(47589)


X(50731) = X(3)X(115)∩X(76)X(47389)

Barycentrics    (a^2-b c) (a^2+b c) (a^6+b^6-3 a^4 c^2-a^2 b^2 c^2-3 b^4 c^2+3 a^2 c^4+3 b^2 c^4-c^6) (a^6-3 a^4 b^2+3 a^2 b^4-b^6-a^2 b^2 c^2+3 b^4 c^2-3 b^2 c^4+c^6) : :
Barycentrics    (SA^2+SA SB-SB^2+SA SC-SB SC-SC^2) (SC^2 SW+S^2 (-4 SC+SW)) (4 S^2 SB+SW (SB SC+SC^2+SA SW-SW^2)) : :

See Antreas Hatzipolakis and Ercole Suppa, euclid 5249.

X(50731) lies on these lines: {3,115}, {76,47389}

X(50731) = X(1581)-isoconjugate of X(35296)
X(50731) = X(i)-reciprocal conjugate of X(j) for these {i,j}: {1691,35296}, {5027,6132}
X(50731) = barycentric product X(804)*X(44768)
X(50731) = barycentric quotient X(i)/X(j) for these {i,j}: {1691,35296}, {5027,6132}
X(50731) = trilinear quotient X(1580)/X(35296)
X(50731) = intersection, other than A, B, C, of circumconics {A, B, C, X(2), X(44534)} and {A, B, C, X(3), X(419)}


X(50732) = X(3)X(114)∩X(1316)X(15391)

Barycentrics    (a^2-b c) (a^2+b c) (a^6+b^6-a^4 c^2-a^2 b^2 c^2-b^4 c^2+a^2 c^4+b^2 c^4-c^6) (a^6-a^4 b^2+a^2 b^4-b^6-a^2 b^2 c^2+b^4 c^2-b^2 c^4+c^6) : :
Barycentrics    (SA^2+SA SB-SB^2+SA SC-SB SC-SC^2) (SC (SC-2 SW) SW+S^2 (2 SC+SW)) (-2 S^2 SB+SW (SB SC+SC^2+SB SW-SC SW)) : :

See Antreas Hatzipolakis and Ercole Suppa, euclid 5249.

X(50732) lies on these lines: {3,114}, {1316,15391}, {14265,41760}

X(50732) = X(1581)-isoconjugate of X(37183)
X(50732) = barycentric product X(i)*X(j) for these (i,j): (804,44767), (3978,39644)
X(50732) = trilinear product X(1966)*X(39644)
X(50732) = trilinear quotient X(1580)/X(37183)
X(50732) = intersection, other than A, B, C, of circumconics {A, B, C, X(3), X(419)} and {A, B, C, X(4), X(6033)}


X(50733) = X(3)X(119)∩X(1459)X(3924)

Barycentrics    (2 a-b-c) (a^6-a^4 b^2-a^2 b^4+b^6-a^5 c+3 a^4 b c+3 a b^4 c-b^5 c-2 a^4 c^2-2 a^3 b c^2+2 a^2 b^2 c^2-2 a b^3 c^2-2 b^4 c^2+2 a^3 c^3-2 a^2 b c^3-2 a b^2 c^3+2 b^3 c^3+a^2 c^4+2 a b c^4+b^2 c^4-a c^5-b c^5) (a^6-a^5 b-2 a^4 b^2+2 a^3 b^3+a^2 b^4-a b^5+3 a^4 b c-2 a^3 b^2 c-2 a^2 b^3 c+2 a b^4 c-b^5 c-a^4 c^2+2 a^2 b^2 c^2-2 a b^3 c^2+b^4 c^2-2 a b^2 c^3+2 b^3 c^3-a^2 c^4+3 a b c^4-2 b^2 c^4-b c^5+c^6) : :

See Antreas Hatzipolakis and Ercole Suppa, euclid 5249.

X(50733) lies on these lines: {3,119}, {1459,3924}

X(50733) = intersection, other than A, B, C, of circumconics {A, B, C, X(3), X(953)} and {A, B, C, X(4), X(10742)}


X(50734) = (name pending)

Barycentrics    a^2 (a-b-c) (a b-b^2+a c-c^2) (a^7+a^5 b^2-2 a^4 b^3-2 a^3 b^4+a^2 b^5+b^7-a^6 c+a^4 b^2 c+a^2 b^4 c-b^6 c-a^5 c^2+a^4 b c^2+3 a^3 b^2 c^2+3 a^2 b^3 c^2+a b^4 c^2-b^5 c^2-2 a^3 b c^3-6 a^2 b^2 c^3-2 a b^3 c^3+a^3 c^4+b^3 c^4+a^2 c^5+2 a b c^5+b^2 c^5-a c^6-b c^6) (a^7-a^6 b-a^5 b^2+a^3 b^4+a^2 b^5-a b^6+a^4 b^2 c-2 a^3 b^3 c+2 a b^5 c-b^6 c+a^5 c^2+a^4 b c^2+3 a^3 b^2 c^2-6 a^2 b^3 c^2+b^5 c^2-2 a^4 c^3+3 a^2 b^2 c^3-2 a b^3 c^3+b^4 c^3-2 a^3 c^4+a^2 b c^4+a b^2 c^4+a^2 c^5-b^2 c^5-b c^6+c^7) : :

See Antreas Hatzipolakis and Ercole Suppa, euclid 5249.

X(50734) lies on this line: {3,118}

X(50734) = intersection, other than A, B, C, of circumconics {A, B, C, X(3), X(1946)} and {A, B, C, X(4), X(10741)}


X(50735) = X(2)X(3)∩X(7)X(193)

Barycentrics    3*a^5 + a^4*b - 3*a*b^4 - b^5 + a^4*c + 2*a^3*b*c + 6*a^2*b^2*c + 2*a*b^3*c - 3*b^4*c + 6*a^2*b*c^2 + 10*a*b^2*c^2 + 4*b^3*c^2 + 2*a*b*c^3 + 4*b^2*c^3 - 3*a*c^4 - 3*b*c^4 - c^5 : :
X(50735) = 3 X[2] - 4 X[37075]

X(50735) lies on these lines: {2, 3}, {7, 193}, {63, 3691}, {966, 8822}, {4292, 4384}, {4304, 16831}, {4307, 23682}, {4313, 16826}, {4393, 11036}, {4454, 20432}, {5249, 26626}, {5273, 29576}, {9965, 20880}, {11520, 50129}, {12536, 17389}, {14552, 34284}, {17014, 33150}, {17257, 18655}, {19719, 19752}, {19791, 20009}, {20913, 37655}, {24588, 41785}, {24603, 31424}

X(50735) = reflection of X(37169) in X(37075)
X(50735) = anticomplement of X(37169)
X(50735) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 31295, 31015}, {4, 16054, 2}, {377, 379, 2}, {377, 4198, 50408}, {377, 48890, 50431}, {442, 24609, 2}, {443, 37086, 2}, {2476, 24580, 2}, {5177, 24604, 2}, {6175, 24608, 2}, {6933, 24581, 2}, {16412, 36662, 2}, {37075, 37169, 2}


X(50736) = X(2)X(3)∩X(8)X(31164)

Barycentrics    5*a^4 + 2*a^2*b^2 - 7*b^4 + 8*a^2*b*c + 8*a*b^2*c + 2*a^2*c^2 + 8*a*b*c^2 + 14*b^2*c^2 - 7*c^4 : :
X(50736) = X[20] - 4 X[6908], 5 X[3091] - 2 X[37434], 11 X[5056] - 8 X[6824]

X(50736) lies on these lines: {2, 3}, {8, 31164}, {10, 6172}, {388, 31140}, {390, 34649}, {519, 5290}, {535, 19843}, {938, 6173}, {1330, 43533}, {1770, 18231}, {2094, 6734}, {2550, 11236}, {2886, 34610}, {3241, 21620}, {3600, 31418}, {3679, 4295}, {3822, 5281}, {4305, 25055}, {4312, 5775}, {4333, 19876}, {4745, 4866}, {5175, 11036}, {5229, 34606}, {5261, 34619}, {5265, 25639}, {5703, 34701}, {5714, 20007}, {5716, 50103}, {5806, 38073}, {6147, 20008}, {6174, 10588}, {6744, 38024}, {7613, 37717}, {8165, 31160}, {9947, 38074}, {10248, 31435}, {11024, 19925}, {11037, 31146}, {11237, 34720}, {12520, 34648}, {13161, 48856}, {17706, 41865}, {25466, 34706}, {28609, 45039}, {30478, 34620}, {38202, 38757}

X(50736) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3146, 11111}, {2, 3522, 37298}, {2, 3832, 17556}, {2, 11111, 17558}, {2, 13587, 15721}, {2, 15683, 16370}, {2, 17528, 4208}, {2, 17577, 3091}, {2, 17579, 10304}, {2, 31295, 37299}, {2, 37161, 17528}, {2, 50687, 11113}, {4, 4208, 5129}, {4, 17528, 2}, {4, 37161, 4208}, {377, 3091, 17580}, {377, 17577, 2}, {442, 3146, 17558}, {442, 11111, 2}, {443, 17556, 2}, {2475, 5177, 20}, {2476, 37435, 3523}, {3090, 17564, 2}, {3545, 37430, 6847}, {3843, 50238, 17559}, {5071, 16417, 2}, {6856, 37298, 2}, {6856, 50239, 3522}, {6871, 6904, 5056}, {16857, 50727, 2}, {17532, 50397, 17530}, {25466, 34706, 47357}, {37108, 37428, 10304}, {41099, 50396, 2}


X(50737) = X(2)X(3)∩X(144)X(3679)

Barycentrics    13*a^4 - 2*a^2*b^2 - 11*b^4 + 8*a^2*b*c + 8*a*b^2*c - 2*a^2*c^2 + 8*a*b*c^2 + 22*b^2*c^2 - 11*c^4 : :
X(50737) = 5 X[3522] - 8 X[6908], 7 X[3832] - 4 X[37434], 16 X[6824] - 19 X[15022]

X(50737) lies on these lines: {2, 3}, {144, 3679}, {388, 34699}, {2550, 34739}, {3419, 20059}, {3600, 11235}, {4293, 31159}, {5229, 34612}, {5261, 34607}, {5281, 34626}, {5556, 6737}, {5905, 31145}, {9579, 28610}, {20007, 28609}, {31473, 43508}, {34625, 34637}, {34648, 36991}

X(50737) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 36004, 15717}, {2, 50689, 37375}, {4, 50240, 17580}, {20, 17532, 2}, {2475, 3146, 37161}, {3146, 37161, 11106}, {3839, 11112, 2}, {6871, 36004, 2}, {6904, 37375, 2}, {15692, 17530, 2}, {33031, 33272, 2}


X(50738) = X(2)X(3)∩X(144)X(4304)

Barycentrics    19*a^4 - 14*a^2*b^2 - 5*b^4 - 8*a^2*b*c - 8*a*b^2*c - 14*a^2*c^2 - 8*a*b*c^2 + 10*b^2*c^2 - 5*c^4 : :
X(50738) = X[3146] - 4 X[37434], 13 X[5068] - 16 X[6824], 8 X[6908] - 11 X[15717]

X(50738) lies on these lines: {2, 3}, {8, 34639}, {144, 4304}, {390, 34610}, {527, 4313}, {3241, 4314}, {3600, 34620}, {4294, 5288}, {4298, 38314}, {5281, 11236}, {6172, 20007}, {6174, 8165}, {10385, 34749}, {30282, 46873}, {30478, 34706}, {34625, 34649}

X(50738) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11111, 11106}, {2, 17578, 17577}, {2, 37299, 3522}, {2, 50725, 17528}, {20, 11111, 2}, {21, 5059, 37161}, {3091, 37298, 2}, {3523, 17556, 2}, {3529, 17558, 50725}, {3543, 16370, 2}, {6172, 34701, 20007}, {6872, 37299, 2}, {10304, 11113, 2}, {15680, 17576, 3146}, {15721, 17533, 2}, {17528, 17558, 2}, {17538, 50241, 17580}, {33032, 35287, 2}, {34620, 47357, 3600}


X(50739) = X(2)X(3)∩X(144)X(5719)

Barycentrics    7*a^4 - 8*a^2*b^2 + b^4 - 8*a^2*b*c - 8*a*b^2*c - 8*a^2*c^2 - 8*a*b*c^2 - 2*b^2*c^2 + c^4 : :
X(50739) = 2 X[3] + X[37434], X[4] - 4 X[6824], 5 X[631] - 2 X[6908], X[3487] + 2 X[31424], X[4313] + 2 X[5791]

X(50739) lies on these lines: {2, 3}, {10, 34701}, {55, 34720}, {144, 5719}, {527, 3487}, {528, 19843}, {535, 10198}, {551, 3333}, {553, 3361}, {958, 34619}, {966, 4262}, {993, 1056}, {1058, 5248}, {1125, 5698}, {1621, 11240}, {2094, 3616}, {3085, 34606}, {3486, 3679}, {3488, 5745}, {3646, 9841}, {3653, 5887}, {3869, 5045}, {4251, 37654}, {4252, 17392}, {4256, 37650}, {4257, 4648}, {4258, 17330}, {4294, 24953}, {4313, 5791}, {4428, 34625}, {4512, 5603}, {4653, 37642}, {4677, 31436}, {4995, 22760}, {4999, 47743}, {5010, 26040}, {5044, 10394}, {5057, 5550}, {5217, 19855}, {5218, 5251}, {5250, 10595}, {5259, 7288}, {5265, 8543}, {5266, 48856}, {5273, 24929}, {5275, 46453}, {5281, 9708}, {5292, 48841}, {5703, 6172}, {6690, 8164}, {10165, 21151}, {10167, 33574}, {10199, 26105}, {10385, 34719}, {10572, 19875}, {10588, 31160}, {11024, 31663}, {12436, 38093}, {12437, 31446}, {13411, 31142}, {15254, 34919}, {16020, 37599}, {16992, 32817}, {18231, 37730}, {19883, 28617}, {25466, 34620}, {26543, 39874}, {28534, 28628}, {31418, 34706}, {31419, 34707}, {31473, 43510}, {37552, 50291}, {37573, 50282}

X(50739) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20, 17528}, {2, 21, 11111}, {2, 452, 17556}, {2, 3523, 17564}, {2, 6872, 17577}, {2, 11111, 4}, {2, 11113, 3545}, {2, 15692, 16417}, {2, 15697, 50396}, {2, 16370, 376}, {2, 17525, 15682}, {2, 17556, 3090}, {2, 17577, 6856}, {2, 33032, 32984}, {2, 37298, 631}, {2, 37299, 377}, {3, 16845, 17582}, {3, 17558, 16845}, {3, 17560, 17562}, {3, 50205, 17580}, {21, 6857, 4}, {140, 16866, 5129}, {405, 631, 17559}, {405, 37298, 2}, {442, 17576, 3529}, {443, 4189, 3528}, {452, 7483, 3090}, {549, 16857, 2}, {3560, 6988, 4}, {5084, 6910, 3525}, {5248, 30478, 1058}, {5248, 45700, 47357}, {6675, 17528, 2}, {6675, 17571, 20}, {6855, 6868, 4}, {6856, 6872, 4}, {6857, 11111, 2}, {6904, 19535, 21735}, {6910, 16865, 5084}, {6954, 7489, 6939}, {7483, 17556, 2}, {7483, 19526, 452}, {11108, 17564, 2}, {15670, 16370, 2}, {15671, 17579, 2}, {15674, 37299, 2}, {15717, 17554, 16408}, {16417, 50202, 2}, {16912, 32964, 33043}, {16914, 33055, 32968}, {30478, 47357, 45700}, {45700, 47357, 1058}


X(50740) = X(2)X(3)∩X(10)X(1159)

Barycentrics    a^4 - 5*a^2*b^2 + 4*b^4 - 8*a^2*b*c - 8*a*b^2*c - 5*a^2*c^2 - 8*a*b*c^2 - 8*b^2*c^2 + 4*c^4 : :
X(50740) = 2 X[5] + X[6908], 5 X[1656] - 2 X[6824], 7 X[3090] - X[37434]

X(50740) lies on these lines: {2, 3}, {10, 1159}, {46, 19876}, {65, 19875}, {519, 28628}, {527, 5791}, {528, 10198}, {551, 5794}, {999, 31245}, {1698, 31142}, {2886, 6767}, {3295, 31140}, {3454, 17251}, {3624, 37606}, {3634, 5880}, {3679, 41696}, {3822, 9708}, {3824, 5705}, {3828, 12609}, {3841, 9709}, {3925, 31479}, {3927, 31164}, {3940, 31266}, {4259, 21358}, {4428, 34649}, {5248, 34706}, {5292, 17392}, {5550, 10609}, {5714, 6172}, {5745, 18541}, {5784, 38093}, {7373, 25466}, {8148, 24987}, {8583, 35459}, {9654, 19854}, {9655, 24953}, {9940, 38065}, {10056, 34720}, {10172, 38108}, {10592, 19855}, {11231, 38052}, {14110, 38021}, {15934, 25525}, {17346, 25446}, {17647, 19883}, {25542, 34879}, {26543, 44456}, {30147, 34700}, {31418, 47357}, {31419, 34619}, {31473, 45385}, {34339, 38083}, {34595, 37600}, {37541, 41859}, {38024, 50192}

X(50740) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 377, 37298}, {2, 381, 16857}, {2, 442, 17528}, {2, 443, 17564}, {2, 2476, 17556}, {2, 5177, 11111}, {2, 6175, 16370}, {2, 11111, 6675}, {2, 16417, 15694}, {2, 17528, 3}, {2, 17532, 16418}, {2, 17556, 11108}, {2, 17564, 3526}, {2, 17577, 405}, {2, 17678, 19279}, {2, 37375, 17542}, {2, 44217, 16417}, {2, 50396, 15693}, {5, 50394, 17559}, {5, 50726, 16853}, {381, 5054, 28459}, {1656, 8728, 16863}, {2475, 17571, 17800}, {2476, 11108, 3851}, {3545, 6889, 37428}, {3824, 5705, 5708}, {4193, 50207, 16855}, {5177, 6675, 382}, {6856, 8728, 1656}, {11108, 37240, 3}, {15765, 18585, 6987}, {16418, 17532, 3830}, {17528, 37224, 3830}, {17577, 31254, 2}, {25466, 31493, 7373}, {37224, 37240, 37284}


X(50741) = X(2)X(3)∩X(10)X(5714)

Barycentrics    a^4 + 4*a^2*b^2 - 5*b^4 + 8*a^2*b*c + 8*a*b^2*c + 4*a^2*c^2 + 8*a*b*c^2 + 10*b^2*c^2 - 5*c^4 : :
X(50741) = X[4] + 2 X[6908], 4 X[5] - X[37434], 7 X[3090] - 4 X[6824]

X(50741) lies on these lines: {2, 3}, {9, 3828}, {10, 5714}, {72, 5828}, {226, 3679}, {274, 32823}, {388, 5288}, {497, 31159}, {519, 3487}, {527, 5833}, {529, 19843}, {551, 3488}, {938, 3824}, {943, 4421}, {950, 25055}, {1056, 2886}, {1058, 11235}, {1698, 3474}, {2550, 3822}, {2551, 3841}, {3085, 34612}, {3241, 3419}, {3296, 10916}, {3421, 33108}, {3600, 31493}, {3616, 18527}, {3622, 18530}, {3646, 12571}, {3654, 5758}, {3820, 40333}, {3838, 34647}, {3913, 31420}, {3925, 10590}, {4293, 31157}, {4669, 11523}, {5082, 11239}, {5175, 38314}, {5229, 19854}, {5261, 31419}, {5292, 48868}, {5436, 19883}, {5587, 5658}, {5715, 28194}, {5746, 17330}, {5811, 9956}, {5817, 10175}, {6690, 34626}, {6701, 49168}, {7680, 35514}, {7951, 26040}, {8232, 38092}, {9612, 19875}, {9780, 20292}, {10197, 34607}, {10202, 10861}, {10477, 21356}, {10895, 19855}, {11237, 34689}, {18446, 34627}, {18528, 19860}, {21168, 26446}, {25639, 47743}, {31140, 34699}, {34610, 34637}, {41014, 43533}

X(50741) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3543, 16418}, {2, 5177, 17532}, {2, 6871, 37375}, {2, 11112, 3524}, {2, 11114, 17561}, {2, 15640, 15673}, {2, 16371, 15702}, {2, 17530, 5071}, {2, 17532, 4}, {2, 33031, 14033}, {2, 36004, 6910}, {2, 37375, 5084}, {2, 50397, 19708}, {4, 3525, 6936}, {4, 5067, 6920}, {5, 4208, 17582}, {377, 6856, 631}, {442, 5177, 4}, {442, 17532, 2}, {443, 2476, 3090}, {546, 50726, 5129}, {1656, 50238, 17580}, {2475, 6857, 3529}, {2550, 3822, 8164}, {3090, 6951, 6935}, {3091, 8728, 17559}, {4197, 6871, 5084}, {4197, 37375, 2}, {5084, 6871, 3855}, {6843, 6907, 4}, {6867, 37438, 6865}, {6874, 6897, 6956}, {6881, 6939, 3090}, {6881, 6982, 6939}, {6937, 6984, 4}, {7483, 37435, 3528}, {16417, 17528, 50396}, {17530, 44217, 2}, {17565, 33052, 32978}, {25466, 31418, 1058}


X(50742) = X(2)X(3)∩X(7)X(551)

Barycentrics    11*a^4 - 10*a^2*b^2 - b^4 - 8*a^2*b*c - 8*a*b^2*c - 10*a^2*c^2 - 8*a*b*c^2 + 2*b^2*c^2 - c^4 : :
X(50742) = X[20] + 2 X[37434], 5 X[3091] - 8 X[6824], 7 X[3523] - 4 X[6908], X[4313] + 2 X[31424]

X(50742) lies on these lines: {1, 28610}, {2, 3}, {7, 551}, {55, 34689}, {63, 3241}, {144, 24929}, {390, 993}, {392, 11220}, {497, 31157}, {519, 4313}, {958, 34607}, {1056, 34740}, {2550, 34626}, {3600, 5248}, {3617, 11015}, {3672, 37817}, {3679, 4304}, {3868, 31792}, {3928, 15933}, {3945, 4653}, {4252, 48846}, {4292, 25055}, {4428, 34610}, {4512, 5731}, {4640, 34744}, {4677, 12536}, {4745, 31446}, {5044, 9859}, {5218, 31141}, {5258, 12632}, {5261, 10197}, {5265, 5267}, {5281, 45701}, {5325, 34701}, {5698, 34647}, {5703, 28609}, {6172, 7675}, {6690, 34739}, {10385, 34699}, {10391, 31165}, {10461, 48858}, {10572, 18231}, {11020, 24473}, {11024, 12512}, {11036, 38314}, {11194, 47357}, {11235, 30478}, {14986, 34742}, {18228, 30282}, {19723, 19752}, {20007, 31445}

X(50742) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3146, 17532}, {2, 11114, 3839}, {2, 15678, 15640}, {2, 17549, 15692}, {2, 36004, 6904}, {2, 37375, 5056}, {3, 11106, 5129}, {3, 50243, 17559}, {20, 21, 17558}, {20, 10303, 37163}, {20, 17558, 4208}, {21, 17576, 20}, {21, 20835, 37106}, {376, 16418, 2}, {405, 3522, 17580}, {452, 4189, 3523}, {548, 16866, 17582}, {3524, 37429, 37108}, {3529, 6675, 37161}, {5084, 19535, 15717}, {5177, 15680, 49135}, {6856, 50242, 17578}, {6857, 17532, 2}, {6904, 16865, 17554}, {6910, 37375, 2}, {11001, 15673, 2}, {11111, 16370, 2}, {11112, 17561, 2}, {16370, 17525, 11111}, {16865, 36004, 2}, {17549, 31156, 2}


X(50743) = X(1)X(2)∩X(523)X(2525)

Barycentrics    2*a^3 - a^2*b + 4*a*b^2 - 3*b^3 - a^2*c - b^2*c + 4*a*c^2 - b*c^2 - 3*c^3 : :
X(50743) = 3 X[2] - 5 X[3006], 6 X[2] - 5 X[3011], 9 X[2] - 5 X[20045], 3 X[3006] - X[20045], 3 X[3011] - 2 X[20045]

X(50743) lies on these lines: {1, 2}, {523, 2525}, {3703, 49484}, {3717, 32844}, {3914, 49453}, {3977, 17766}, {4133, 21283}, {4865, 32935}, {4899, 32843}, {5288, 7465}, {5853, 32848}, {8229, 28234}, {17718, 49690}, {21282, 28526}, {25760, 49527}, {31034, 49536}, {33070, 49529}, {33114, 49684}, {37449, 48696}

X(50743) = reflection of X(3011) in X(3006)
X(50743) = crossdifference of every pair of points on line {649, 30435}
X(50743) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {26015, 32847, 49990}, {32842, 49772, 49986}


X(50744) = X(1)X(2)∩X(523)X(4468)

Barycentrics    2*a^3 - 5*a^2*b + 2*a*b^2 + b^3 - 5*a^2*c + b^2*c + 2*a*c^2 + b*c^2 + c^3 : :
X(50744) = 4 X[3712] - 3 X[3977], 3 X[3722] + X[4938], 5 X[31280] - 3 X[33136]

X(50744) lies on these lines: {1, 2}, {55, 4001}, {100, 4684}, {329, 4779}, {516, 17491}, {518, 3712}, {523, 4468}, {902, 34379}, {2177, 49511}, {2280, 3707}, {2325, 3930}, {3243, 17740}, {3295, 4101}, {3689, 4966}, {3696, 37703}, {3722, 4938}, {3750, 24697}, {3751, 35263}, {3755, 33122}, {3886, 4054}, {3936, 5853}, {3996, 5249}, {4023, 42819}, {4035, 5014}, {4414, 49505}, {4427, 5850}, {4780, 33143}, {4899, 32849}, {5718, 49467}, {5739, 10389}, {17602, 49475}, {17718, 49460}, {17724, 28581}, {17725, 49678}, {28580, 32856}, {31280, 33136}, {33156, 49529}, {33161, 49536}

X(50744) = crossdifference of every pair of points on line {649, 5021}
X(50744) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3912, 3935, 49991}


X(50745) = X(1)X(2)∩X(523)X(21185)

Barycentrics    2*a^4 + a^3*b - a^2*b^2 + a*b^3 + b^4 + a^3*c - 6*a^2*b*c + a*b^2*c - a^2*c^2 + a*b*c^2 - 2*b^2*c^2 + a*c^3 + c^4 : :

X(50745) lies on these lines: {1, 2}, {226, 37610}, {484, 24231}, {495, 3744}, {515, 24222}, {517, 17724}, {523, 21185}, {908, 40091}, {988, 31452}, {1279, 17757}, {1478, 3749}, {1626, 8069}, {1738, 48696}, {1785, 5146}, {3746, 13161}, {3748, 37715}, {3871, 23537}, {3911, 4694}, {3914, 25439}, {3915, 21077}, {3921, 17337}, {3953, 6684}, {4186, 45061}, {4723, 24542}, {4995, 37599}, {5049, 37634}, {5119, 33144}, {5255, 13407}, {5264, 21620}, {5266, 15888}, {5434, 37589}, {5886, 17783}, {6767, 17720}, {7743, 37691}, {8715, 23536}, {11374, 37542}, {12047, 37588}, {17597, 26446}, {17715, 37716}, {17719, 30384}, {17721, 31479}, {23675, 25440}

X(50745) = crossdifference of every pair of points on line {649, 36743}
X(50745) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3584, 24239}, {10, 1125, 25967}


X(50746) = X(37)X(519)∩X(523)X(661)

Barycentrics    (b + c)^2*(-4*a^3 - a^2*b + 3*a*b^2 - a^2*c - 2*a*b*c + b^2*c + 3*a*c^2 + b*c^2) : :

X(50746) lies on these lines: {37, 519}, {321, 17775}, {523, 661}, {536, 22047}, {3834, 24062}, {4115, 4908}, {4370, 21839}, {4681, 24090}, {4686, 24050}, {16672, 17162}, {16777, 39766}, {17374, 22003}, {22021, 40085}, {22034, 24066}


X(50747) = X(72)X(519)∩X(523)X(661)

Barycentrics    b*c*(b + c)^2*(a^3*b - a*b^3 + a^3*c + b^3*c - 2*b^2*c^2 - a*c^3 + b*c^3) : :

X(50747) lies on these lines: {12, 1089}, {37, 3011}, {72, 519}, {190, 2651}, {321, 2886}, {523, 661}, {958, 39766}, {1155, 22003}, {1621, 3995}, {1834, 2292}, {3035, 42701}, {3925, 42708}, {3932, 27692}, {4358, 25652}, {4387, 12635}, {5220, 17162}, {5791, 50068}, {7235, 21676}


X(50748) = X(1)X(2)∩X(523)X(3716)

Barycentrics    2*a^3 - 3*a^2*b + a*b^2 + b^3 - 3*a^2*c + a*c^2 + c^3 : :

X(50748) lies on these lines: {1, 2}, {55, 4655}, {100, 49676}, {523, 3716}, {527, 4760}, {528, 4892}, {537, 3712}, {740, 17724}, {902, 17770}, {2177, 3821}, {2784, 39572}, {2796, 32856}, {3475, 3980}, {3685, 21093}, {3689, 3836}, {3722, 3936}, {3748, 3846}, {3749, 32946}, {3750, 4425}, {3996, 33130}, {4011, 25568}, {4417, 17715}, {4428, 4703}, {4434, 4966}, {4438, 41711}, {4743, 50103}, {5718, 49473}, {5853, 21241}, {6541, 32927}, {11813, 14513}, {17602, 49471}, {17718, 25385}, {17725, 49470}, {17782, 32950}, {21242, 49467}, {21805, 24542}, {24169, 33124}, {24295, 46897}, {24325, 37703}, {32843, 49705}, {32844, 49696}, {32851, 49675}, {33115, 49697}, {48641, 49485}

X(50748) = midpoint of X(i) and X(j) for these {i,j}: {3722, 3936}, {4062, 20045}
X(50748) = crossdifference of every pair of points on line {649, 33863}
X(50748) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {42, 29656, 29654}, {2177, 33122, 3821}, {3750, 33126, 4425}, {3771, 3870, 29673}, {3935, 29632, 10}, {3957, 29846, 29655}, {3961, 29839, 29653}, {6745, 49768, 4871}, {17018, 29848, 29645}, {17718, 32941, 25385}


X(50749) = X(1)X(2)∩X(523)X(21179)

Barycentrics    2*a^4 + a^3*b - a^2*b^2 + a*b^3 + b^4 + a^3*c - 4*a^2*b*c - a^2*c^2 - 2*b^2*c^2 + a*c^3 + c^4 : :

X(50749) lies on these lines: {1, 2}, {484, 33148}, {495, 49480}, {523, 21179}, {595, 33096}, {758, 17724}, {1279, 3814}, {1283, 37919}, {1459, 50337}, {3744, 3822}, {3746, 36250}, {3772, 25439}, {3892, 37646}, {3919, 26728}, {3992, 24542}, {4868, 17061}, {4906, 11231}, {5255, 11263}, {6684, 24167}, {11813, 17719}, {16483, 17783}, {24160, 37588}, {33127, 37610}, {33129, 48696}

X(50749) = crossdifference of every pair of points on line {649, 5124}
X(50749) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {17719, 40091, 11813}


X(50750) = X(1)X(2)∩X(523)X(50507)

Barycentrics    2*a^4 - a^3*b - 2*a^2*b^2 + 2*a*b^3 + b^4 - a^3*c - 4*a^2*b*c + b^3*c - 2*a^2*c^2 + 2*a*c^3 + b*c^3 + c^4 : :

X(50750) lies on these lines: {1, 2}, {35, 33067}, {523, 50507}, {3454, 37080}, {3694, 39798}, {4065, 34937}, {4256, 33124}, {4653, 33126}, {4703, 5248}, {5010, 33069}, {17718, 48863}, {26725, 32945}, {32943, 37701}, {47373, 49511}


X(50751) = X(75)X(519)∩X(325)X(523)

Barycentrics    b*c*(-2*a^2*b + 2*b^3 - 2*a^2*c + 2*a*b*c - b^2*c - b*c^2 + 2*c^3) : :

X(50751) lies on these lines: {75, 519}, {313, 45095}, {321, 17775}, {325, 523}, {527, 20956}, {536, 20912}, {1227, 30806}, {1269, 1441}, {2325, 21591}, {3943, 21417}, {4358, 4957}, {21428, 30588}, {21601, 30608}, {24209, 30939}

X(50751) = X(32)-isoconjugate of X(43757)
X(50751) = X(6376)-Dao conjugate of X(43757)
X(50751) = barycentric product X(1978)*X(14315)
X(50751) = barycentric quotient X(i)/X(j) for these {i,j}: {75, 43757}, {4358, 36818}, {14315, 649}
X(50751) = {X(3262),X(35550)}-harmonic conjugate of X(3264)


X(50752) = X(1)X(2)∩X(523)X(4885)

Barycentrics    2*a^3 - a^2*b - 2*a*b^2 + 3*b^3 - a^2*c - b^2*c - 2*a*c^2 - b*c^2 + 3*c^3 : :
X(50752) = 3 X[2] + X[3006], 9 X[2] - X[20045], 3 X[3006] + X[20045], 3 X[3011] - X[20045], 5 X[31280] - X[32856]

X(50752) lies on these lines: {1, 2}, {63, 4138}, {120, 50366}, {226, 4438}, {345, 17064}, {516, 8229}, {523, 4885}, {527, 4892}, {536, 17070}, {620, 44908}, {908, 33115}, {1368, 34851}, {1738, 32851}, {2886, 49484}, {2887, 5745}, {3035, 3823}, {3120, 3977}, {3263, 24209}, {3416, 31187}, {3712, 28580}, {3717, 17719}, {3751, 30828}, {3772, 49453}, {3817, 4011}, {3819, 25137}, {3836, 3911}, {3838, 44416}, {3914, 33113}, {3936, 34379}, {4009, 37691}, {4035, 32853}, {4054, 33161}, {4078, 17720}, {4422, 5087}, {4703, 5325}, {5249, 33119}, {5267, 7465}, {5294, 33105}, {5750, 37661}, {5847, 35466}, {5943, 25135}, {6796, 16434}, {12572, 37330}, {15082, 25108}, {17353, 17717}, {17355, 25385}, {17718, 49529}, {17723, 38049}, {17725, 49527}, {17783, 30615}, {17785, 33124}, {20544, 37370}, {24210, 33116}, {25639, 37315}, {28236, 39572}, {30811, 49511}, {30834, 33114}, {31204, 33075}, {31229, 33070}, {31245, 32777}, {31266, 33163}, {31280, 32856}, {33073, 41806}, {33104, 35263}, {33121, 41878}, {39559, 49598}

X(50752) = midpoint of X(i) and X(j) for these {i,j}: {3006, 3011}, {3120, 3977}
X(50752) = complement of X(3011)
X(50752) = orthoptic-circle-of-Steiner-inellipse-inverse of X(6790)
X(50752) = X(i)-complementary conjugate of X(j) for these (i,j): {9085, 226}, {29241, 513}, {35365, 11}
X(50752) = crossdifference of every pair of points on line {649, 3053}
X(50752) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3006, 3011}, {2, 29639, 1125}, {2, 29826, 19862}, {2, 29857, 10}, {2, 30741, 1}, {2, 30751, 3741}, {2, 30752, 3840}, {2, 30762, 8}, {2, 30763, 3912}, {2, 30768, 3634}, {26015, 29632, 49768}, {29657, 29856, 17023}, {29862, 33140, 3912}


X(50753) = X(1)X(2)∩X(523)X(3239)

Barycentrics    2*a^3 - 5*a^2*b + 3*b^3 - 5*a^2*c + b^2*c + b*c^2 + 3*c^3 : :
X(50753) = 3 X[4933] + X[32856]

X(50753) lies on these lines: {1, 2}, {55, 4035}, {226, 5695}, {516, 3936}, {523, 3239}, {527, 3712}, {2321, 17718}, {3755, 30811}, {3886, 30828}, {3911, 4966}, {3977, 5850}, {4021, 32775}, {4023, 6666}, {4082, 25568}, {4101, 18249}, {4353, 33122}, {4417, 40998}, {4684, 32851}, {4706, 17067}, {4887, 32845}, {4892, 28580}, {4933, 17132}, {5218, 17296}, {5542, 17740}, {17355, 33156}, {17776, 21060}, {31034, 35263}, {33849, 45765}

X(50753) = midpoint of X(3011) and X(4062)
X(50753) = crossdifference of every pair of points on line {649, 4252}
X(50753) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3771, 4028, 40940}, {30741, 49451, 4847}


X(50754) = X(1)X(2)∩X(523)X(2527)

Barycentrics    6*a^3 + a^2*b + b^3 + a^2*c - 5*b^2*c - 5*b*c^2 + c^3 : :
X(50754) = 3 X[3011] - X[4062]

X(50754) lies on these lines: {1, 2}, {197, 23391}, {516, 4442}, {523, 2527}, {527, 4831}, {896, 17132}, {1150, 4353}, {3686, 17602}, {3712, 17133}, {3962, 40962}, {4021, 32917}, {4535, 6679}, {4892, 5847}, {4989, 30818}, {5850, 16704}, {17070, 28538}

X(50754) = crossdifference of every pair of points on line {649, 4255}
X(50754) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {239, 37764, 5212}, {5212, 37764, 6745}


X(50755) = X(1)X(2)∩X(523)X(2487)

Barycentrics    2*a^3 + a^2*b - a*b^2 + b^3 + a^2*c - 2*b^2*c - a*c^2 - 2*b*c^2 + c^3 : :
X(50755) = 3 X[2] + X[17162], X[8] + 3 X[39766], X[3712] - 3 X[35466], 3 X[3120] - X[17491], 3 X[16704] + X[17491], 3 X[3936] - X[4938], 3 X[3936] - 5 X[31280], X[4938] - 5 X[31280]

X(50755) lies on these lines: {1, 2}, {6, 25385}, {11, 4974}, {81, 23812}, {116, 31655}, {149, 49705}, {226, 19369}, {230, 4771}, {238, 643}, {320, 17731}, {333, 4425}, {523, 2487}, {524, 4892}, {740, 3712}, {896, 2796}, {897, 18201}, {1086, 35087}, {1150, 3821}, {1386, 21242}, {1757, 21093}, {2325, 4037}, {2651, 5057}, {2784, 8229}, {2886, 3791}, {3120, 16704}, {3218, 20369}, {3291, 16611}, {3706, 6679}, {3759, 17717}, {3769, 32865}, {3772, 32853}, {3911, 7235}, {3923, 24597}, {3936, 4938}, {3944, 37652}, {3977, 28522}, {3980, 37642}, {4119, 4727}, {4527, 50104}, {4641, 48643}, {4647, 8258}, {4683, 4921}, {4689, 4743}, {4716, 32851}, {4831, 28558}, {4969, 10026}, {4970, 5745}, {4987, 50252}, {5235, 25354}, {5361, 32776}, {5372, 33125}, {5718, 49489}, {5847, 21241}, {6541, 33115}, {6703, 27798}, {6758, 17495}, {7683, 35099}, {8542, 34830}, {11814, 37680}, {14829, 24169}, {17064, 32946}, {17351, 48641}, {17602, 49457}, {17718, 49497}, {17725, 49450}, {17728, 24371}, {17766, 33136}, {17889, 37683}, {30832, 42334}, {31187, 49486}, {31229, 33156}, {31730, 46623}, {32864, 33133}, {32919, 33129}, {32927, 49697}, {33097, 41629}, {33160, 41806}, {36263, 50102}

X(50755) = midpoint of X(i) and X(j) for these {i,j}: {896, 4442}, {3120, 16704}, {4062, 17162}
X(50755) = reflection of X(4892) in X(17070)
X(50755) = complement of X(4062)
X(50755) = X(i)-complementary conjugate of X(j) for these (i,j): {28, 5181}, {58, 16597}, {81, 126}, {111, 1211}, {286, 34517}, {513, 5099}, {667, 23992}, {671, 21245}, {691, 513}, {892, 21260}, {895, 21530}, {897, 3454}, {923, 1213}, {1333, 2482}, {5380, 31946}, {7316, 442}, {8753, 50036}, {14908, 18591}, {32729, 650}, {32740, 16589}, {36060, 440}, {36085, 3835}, {36142, 514}, {43926, 11}
X(50755) = X(892)-Ceva conjugate of X(514)
X(50755) = crossdifference of every pair of points on line {649, 18755}
X(50755) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17162, 4062}, {8, 25459, 1698}, {10, 17763, 49994}, {333, 33135, 4425}, {1150, 33128, 3821}, {1757, 37759, 21093}, {1999, 33138, 29653}, {3187, 24892, 29671}, {3741, 40940, 29654}, {3772, 32853, 33064}, {4362, 33137, 29673}, {4938, 31280, 3936}, {6745, 50022, 49988}, {14829, 33132, 24169}, {17763, 33139, 10}, {18201, 37756, 24200}, {24883, 27368, 10}, {29833, 30970, 1125}, {32914, 33142, 29655}, {32919, 33129, 49676}


X(50756) = X(1)X(2)∩X(523)X(649)

Barycentrics    2*a^3 + a^2*b + a^2*c - 2*b^2*c - 2*b*c^2 : :

X(50756) lies on these lines: {1, 2}, {31, 4365}, {38, 49463}, {44, 3994}, {69, 33143}, {100, 4716}, {319, 32775}, {321, 2308}, {333, 3989}, {523, 649}, {524, 32856}, {536, 896}, {545, 4831}, {660, 43758}, {726, 16704}, {740, 902}, {750, 4361}, {752, 4442}, {1150, 32921}, {2177, 49486}, {2895, 33152}, {3120, 5847}, {3416, 33128}, {3706, 17469}, {3712, 4971}, {3722, 28581}, {3745, 21020}, {3759, 32931}, {3769, 32860}, {3772, 32852}, {3875, 4414}, {3891, 32853}, {3923, 21747}, {3936, 17772}, {3969, 6679}, {3971, 19742}, {4133, 35263}, {4358, 4974}, {4360, 32917}, {4427, 28522}, {4650, 50106}, {4655, 50102}, {4663, 31161}, {4671, 16468}, {4697, 4980}, {4725, 4938}, {4852, 46904}, {4933, 28329}, {5294, 6535}, {5372, 17591}, {5846, 33136}, {7262, 42044}, {14829, 32924}, {16477, 41242}, {17061, 33081}, {17126, 49474}, {17155, 37683}, {17160, 32845}, {17299, 33156}, {17362, 17602}, {17363, 33065}, {17449, 32919}, {19785, 33080}, {19796, 33067}, {20475, 21522}, {21282, 28512}, {24165, 37639}, {24597, 33161}, {28508, 44006}, {30699, 33098}, {31025, 33682}, {32843, 37759}, {32846, 33129}, {32848, 35466}, {32861, 33133}, {32863, 33147}, {32864, 32926}, {32925, 37652}, {32940, 41629}, {33075, 33135}, {33078, 33132}, {33082, 33155}, {33085, 33150}, {36263, 49453}, {41011, 48642}, {46897, 49489}, {46909, 49472}

X(50756) = midpoint of X(17162) and X(20045)
X(50756) = reflection of X(i) in X(j) for these {i,j}: {4062, 3011}, {32848, 35466}
X(50756) = X(513)-isoconjugate of X(29341)
X(50756) = X(39026)-Dao conjugate of X(29341)
X(50756) = crossdifference of every pair of points on line {386, 649}
X(50756) = X(i)-lineconjugate of X(j) for these (i,j): {1, 386}, {523, 649}
X(50756) = barycentric product X(190)*X(29340)
X(50756) = barycentric quotient X(i)/X(j) for these {i,j}: {101, 29341}, {29340, 514}
X(50756) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {239, 17763, 899}, {321, 3791, 2308}, {333, 32928, 3989}, {1150, 32921, 46901}, {1999, 32914, 3720}, {3187, 4362, 42}, {3187, 26227, 49488}, {3741, 17150, 29819}, {3935, 50016, 49983}, {4362, 49488, 26227}, {6745, 50019, 49986}, {11679, 17017, 31241}, {15523, 40940, 29867}, {26227, 49488, 42}, {32919, 32922, 17449}


X(50757) = X(1)X(2)∩X(523)X(8043)

Barycentrics    2*a^4 + a^3*b - a^2*b^2 + a*b^3 + b^4 + a^3*c - 2*a*b^2*c - a^2*c^2 - 2*a*b*c^2 - 2*b^2*c^2 + a*c^3 + c^4 : :
X(50757) = 3 X[2] + X[39766], 7 X[3624] - X[4062], 11 X[5550] + X[17162]

X(50757) lies on these lines: {1, 2}, {11, 30447}, {21, 36250}, {30, 17070}, {36, 759}, {58, 11263}, {79, 16948}, {81, 26725}, {230, 16611}, {238, 5127}, {515, 45926}, {523, 8043}, {540, 4892}, {754, 25383}, {758, 35466}, {993, 3772}, {1086, 4973}, {1104, 25639}, {1203, 46441}, {1324, 20470}, {1834, 35016}, {2392, 18191}, {2886, 49480}, {3028, 35063}, {3246, 7743}, {3743, 6675}, {3817, 45924}, {3833, 37634}, {3841, 37539}, {3911, 24168}, {4037, 24956}, {4256, 33132}, {4257, 17889}, {4653, 33135}, {4854, 15670}, {4868, 6690}, {4974, 44396}, {4975, 24542}, {4999, 16579}, {5010, 33131}, {5247, 24160}, {5248, 16430}, {5251, 33133}, {5267, 17512}, {5298, 39751}, {5745, 33996}, {5883, 37646}, {5886, 45923}, {6149, 33593}, {6629, 24187}, {6681, 16610}, {6693, 49598}, {6701, 49745}, {7267, 25468}, {8143, 10021}, {11116, 24178}, {13605, 37791}, {16429, 24789}, {17064, 37817}, {17127, 18393}, {17647, 41501}, {17737, 21090}, {19623, 49676}, {21173, 23789}, {21630, 40091}, {21949, 37589}, {25385, 48866}, {32911, 37701}, {35193, 41012}, {37662, 38062}, {37756, 41134}

X(50757) = X(i)-complementary conjugate of X(j) for these (i,j): {58, 31845}, {759, 3454}, {849, 214}, {1408, 6739}, {1411, 34829}, {2206, 35069}, {24624, 21245}, {32671, 514}, {34079, 1211}, {36069, 513}, {37140, 3835}
X(50757) = crosspoint of X(86) and X(21907)
X(50757) = crosssum of X(42) and X(17796)
X(50757) = crossdifference of every pair of points on line {649, 1030}
X(50757) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3624, 24936}, {1, 24880, 10}, {1, 24902, 21674}, {58, 24161, 11263}, {21674, 24902, 3634}, {25645, 27368, 21081}, {30115, 33138, 10}


X(50758) = X(1)X(2)∩X(523)X(4025)

Barycentrics    2*a^3 + 3*a^2*b - 2*a*b^2 + b^3 + 3*a^2*c - 3*b^2*c - 2*a*c^2 - 3*b*c^2 + c^3 : :

X(50758) lies on these lines: {1, 2}, {516, 16704}, {523, 4025}, {527, 4442}, {740, 3977}, {896, 28580}, {1150, 3755}, {1738, 32919}, {2321, 33114}, {3120, 34379}, {3706, 5294}, {3751, 4054}, {3879, 33108}, {3886, 24597}, {3896, 5745}, {3914, 4001}, {3946, 46909}, {3999, 4395}, {4133, 33161}, {4414, 4780}, {4416, 33134}, {4431, 33170}, {4684, 33129}, {4831, 28534}, {5196, 6629}, {5847, 33136}, {17718, 49680}, {17725, 49689}, {19742, 40998}, {21242, 49489}, {24210, 32864}, {25385, 49685}, {28581, 35466}, {33128, 49511}, {33143, 49505}

X(50758) = midpoint of X(3006) and X(17162)
X(50758) = crossdifference of every pair of points on line {649, 2271}
X(50758) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {239, 26015, 49987}, {3886, 24597, 35263}, {3914, 32853, 4001}, {17156, 33137, 306}, {17763, 49772, 49991}


X(50759) = X(1)X(2)∩X(523)X(905)

Barycentrics    2*a^4 + a^3*b - a^2*b^2 + a*b^3 + b^4 + a^3*c + 2*a^2*b*c - 3*a*b^2*c - a^2*c^2 - 3*a*b*c^2 - 2*b^2*c^2 + a*c^3 + c^4 : :

X(50759) lies on these lines: {1, 2}, {36, 1738}, {212, 12053}, {238, 30384}, {517, 35466}, {523, 905}, {529, 17070}, {946, 1724}, {956, 3772}, {993, 3914}, {999, 24789}, {1104, 24390}, {1108, 39798}, {1468, 12609}, {1478, 17064}, {1733, 23580}, {1739, 3911}, {2217, 23604}, {2933, 7742}, {2975, 23537}, {3434, 37817}, {3753, 37646}, {3873, 26728}, {3915, 49600}, {3931, 24953}, {3987, 6684}, {4383, 5886}, {4424, 5745}, {4641, 39542}, {4646, 7483}, {4742, 24542}, {4875, 5305}, {5179, 17737}, {5247, 12047}, {5251, 24210}, {5258, 13161}, {5429, 33109}, {5563, 24178}, {5725, 31245}, {5791, 37614}, {6675, 37548}, {8053, 40292}, {8666, 23536}, {9708, 17720}, {11112, 21949}, {11230, 37663}, {11551, 32913}, {13407, 24161}, {15325, 16610}, {16474, 26725}, {16485, 24392}, {16968, 21073}, {21241, 38456}, {31157, 37599}, {31419, 37539}, {33132, 37617}, {34612, 37589}, {34937, 40967}

X(50759) = midpoint of X(3006) and X(39766)
X(50759) = crossdifference of every pair of points on line {649, 36744}
X(50759) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3008, 44675, 49997}, {15955, 24880, 24987}, {24892, 49487, 10}


X(50760) = X(1)X(4762)∩X(519)X(693)

Barycentrics    (b - c)*(2*a^3 - 3*a^2*b + a*b^2 - 3*a^2*c + 7*a*b*c + 2*b^2*c + a*c^2 + 2*b*c^2) : :
X(50760) = 2 X[48295] + X[48304], 2 X[650] - 3 X[25055], 3 X[1734] - 4 X[45328], 2 X[3244] + X[47721], 4 X[4885] - 3 X[19875], X[17494] - 3 X[38314], 6 X[19883] - 5 X[31209], X[26824] + 2 X[48285], X[48120] + 2 X[48296], 2 X[48291] + X[48335]

X(50760) lies on these lines: {1, 4762}, {2, 48295}, {519, 693}, {523, 45341}, {551, 31150}, {650, 25055}, {891, 48234}, {1734, 45328}, {3241, 29066}, {3244, 47721}, {3679, 14077}, {4151, 44550}, {4160, 31147}, {4411, 50086}, {4777, 14421}, {4885, 19875}, {5692, 9443}, {8760, 31162}, {9015, 47356}, {9397, 31159}, {17494, 38314}, {19883, 31209}, {26824, 48285}, {28147, 45686}, {29350, 31148}, {30583, 48202}, {31161, 48423}, {45667, 45671}, {48120, 48296}, {48291, 48335}

X(50760) = midpoint of X(i) and X(j) for these {i,j}: {2, 48304}, {3241, 47869}
X(50760) = reflection of X(i) in X(j) for these {i,j}: {2, 48295}, {3679, 45320}, {30583, 48202}, {31150, 551}, {45671, 45667}, {50086, 4411}


X(50761) = X(1)X(17494)∩X(519)X(693)

Barycentrics    (b - c)*(2*a^3 - 3*a^2*b + a*b^2 - 3*a^2*c + 6*a*b*c + b^2*c + a*c^2 + b*c^2) : :
X(50761) = 3 X[1] - X[17494], 2 X[17494] - 3 X[48284], X[17494] + 3 X[48304], X[48284] + 2 X[48304], 3 X[10] - 4 X[4885], 2 X[4885] - 3 X[48295], 3 X[551] - 2 X[650], 6 X[1125] - 5 X[31209], 3 X[3241] + X[26824], 3 X[3244] + 2 X[48125], 3 X[3679] - 5 X[26985], 3 X[4449] - X[48321], 3 X[4828] - X[49459], X[21222] - 3 X[48282], 3 X[14421] - X[50341], 9 X[19883] - 8 X[31287], 9 X[25055] - 7 X[27115], 5 X[26777] - 9 X[38314]

X(50761) lies on these lines: {1, 17494}, {10, 4885}, {145, 47724}, {514, 4775}, {519, 693}, {523, 48296}, {551, 650}, {891, 48248}, {1125, 31209}, {3241, 26824}, {3244, 29066}, {3635, 47729}, {3679, 26985}, {3900, 23789}, {4151, 4449}, {4160, 48049}, {4301, 8760}, {4342, 11934}, {4411, 4709}, {4669, 45320}, {4717, 21438}, {4762, 48285}, {4777, 49479}, {4828, 49459}, {4844, 48399}, {4932, 29350}, {8714, 21222}, {9001, 49505}, {9015, 49684}, {10197, 28834}, {14421, 50341}, {19883, 31287}, {25055, 27115}, {26777, 38314}, {34587, 47874}

X(50761) = midpoint of X(i) and X(j) for these {i,j}: {1, 48304}, {145, 47724}, {21343, 48291}
X(50761) = reflection of X(i) in X(j) for these {i,j}: {10, 48295}, {4669, 45320}, {4709, 4411}, {47729, 3635}, {48284, 1}


X(50762) = X(2)X(824)∩X(536)X(693)

Barycentrics    (b - c)*(a^4*b - a^2*b^3 + a^4*c - 2*a^3*b*c + a^2*b^2*c + 6*a*b^3*c + a^2*b*c^2 + 4*a*b^2*c^2 + b^3*c^2 - a^2*c^3 + 6*a*b*c^3 + b^2*c^3) : :

X(50762) lies on these lines: {2, 824}, {321, 45320}, {536, 693}, {3666, 31150}, {17147, 47869}, {23876, 48571}

X(50762) = midpoint of X(17147) and X(47869)
X(50762) = reflection of X(i) in X(j) for these {i,j}: {321, 45320}, {31150, 3666}


X(50763) = X(2)X(4777)∩X(536)X(693)

Barycentrics    (b - c)*(a^3*b - a^2*b^2 + a^3*c - 4*a^2*b*c + 6*a*b^2*c - a^2*c^2 + 6*a*b*c^2 + b^2*c^2) : :
X(50763) = 5 X[4687] - 4 X[44567], X[47721] + 2 X[49462]

X(50763) lies on these lines: {2, 4777}, {37, 31150}, {75, 45320}, {192, 47869}, {536, 693}, {4411, 4740}, {4664, 4762}, {4687, 44567}, {14077, 50075}, {31178, 48295}, {47721, 49462}

X(50763) = midpoint of X(192) and X(47869)
X(50763) = reflection of X(i) in X(j) for these {i,j}: {75, 45320}, {4740, 4411}, {31150, 37}, {31178, 48295}


X(50764) = X(1)X(45320)∩X(519)X(693)

Barycentrics    (b - c)*(-2*a^3 + 3*a^2*b - a*b^2 + 3*a^2*c - a*b*c + 4*b^2*c - a*c^2 + 4*b*c^2) : :
X(50764) = 2 X[10] + X[47721], 2 X[650] - 3 X[19875], 5 X[1698] - 4 X[44567], 2 X[4774] + X[48335], 4 X[4885] - 3 X[25055], 5 X[26985] - 3 X[38314], 5 X[26985] - 2 X[48285], 3 X[38314] - 2 X[48285], 6 X[38098] - X[47664]

X(50764) lies on these lines: {1, 45320}, {2, 29066}, {8, 47869}, {10, 31150}, {514, 31131}, {519, 693}, {551, 47729}, {650, 19875}, {663, 45324}, {667, 45332}, {1698, 44567}, {3241, 48295}, {3251, 48202}, {3679, 4762}, {3828, 48284}, {4040, 45664}, {4049, 48223}, {4411, 31178}, {4677, 14077}, {4728, 4844}, {4761, 4785}, {4774, 48167}, {4775, 45342}, {4777, 50086}, {4885, 25055}, {9015, 47359}, {14349, 31149}, {17072, 45671}, {26985, 38314}, {28294, 47788}, {31145, 48304}, {38098, 47664}, {44550, 50337}, {44553, 47687}, {44566, 50347}, {45323, 48288}, {45328, 48321}, {45340, 48289}, {45660, 46385}, {47683, 48190}, {48234, 48324}

X(50764) = midpoint of X(i) and X(j) for these {i,j}: {8, 47869}, {3679, 47724}, {4774, 48167}, {31145, 48304}, {31150, 47721}, {44553, 47687}
X(50764) = reflection of X(i) in X(j) for these {i,j}: {1, 45320}, {663, 45324}, {667, 45332}, {3241, 48295}, {3251, 48202}, {4040, 45664}, {4775, 45342}, {14349, 31149}, {31150, 10}, {31178, 4411}, {44550, 50337}, {45671, 17072}, {46385, 45660}, {47683, 48190}, {47729, 551}, {48223, 4049}, {48284, 3828}, {48288, 45323}, {48289, 45340}, {48321, 45328}, {48324, 48234}, {48335, 48167}, {50347, 44566}


X(50765) = X(6)X(20966)∩X(518)X(693)

Barycentrics    (b - c)*(a^4*b - 2*a^3*b^2 + a^2*b^3 + a^4*c - a^3*b*c + 3*a^2*b^2*c + b^4*c - 2*a^3*c^2 + 3*a^2*b*c^2 + b^3*c^2 + a^2*c^3 + b^2*c^3 + b*c^4) : :
X(50765) = 2 X[650] - 3 X[38047], 2 X[4663] + X[47721], 3 X[38315] - 2 X[48285]

X(50765) lies on these lines: {6, 29066}, {518, 693}, {650, 38047}, {1386, 47729}, {1577, 9029}, {2533, 9010}, {3242, 48295}, {3416, 9001}, {3751, 9015}, {4663, 47721}, {4761, 9002}, {4762, 47359}, {4777, 49531}, {9040, 50352}, {14077, 49688}, {38315, 48285}, {45320, 47358}

X(50765) = midpoint of X(3751) and X(47724)
X(50765) = reflection of X(i) in X(j) for these {i,j}: {3242, 48295}, {47358, 45320}, {47729, 1386}


X(50766) = X(2)X(9015)∩X(524)X(693)

Barycentrics    (b - c)*(-2*a^4 + 2*a^3*b + a^2*b^2 - a*b^3 + 2*a^3*c + a^2*b*c - a*b^2*c + 4*b^3*c + a^2*c^2 - a*b*c^2 - a*c^3 + 4*b*c^3) : :
X(50766) = 2 X[650] - 3 X[21358], 5 X[3763] - 4 X[44567], 4 X[4885] - 3 X[47352], X[17494] - 3 X[21356]

X(50766) lies on these lines: {2, 9015}, {6, 45320}, {69, 47869}, {141, 31150}, {524, 693}, {599, 4762}, {650, 21358}, {3763, 44567}, {4885, 47352}, {8760, 47353}, {9001, 15533}, {17494, 21356}, {29066, 47358}, {47356, 48295}

X(50766) = midpoint of X(69) and X(47869)
X(50766) = reflection of X(i) in X(j) for these {i,j}: {6, 45320}, {31150, 141}, {47356, 48295}


X(50767) = X(1)X(650)∩X(519)X(693)

Barycentrics    a*(b - c)*(2*a^2 - 3*a*b + b^2 - 3*a*c + 5*b*c + c^2) : :
X(50767) = 3 X[1] - 2 X[650], 3 X[8] - 5 X[26985], 5 X[26985] - 6 X[48295], 3 X[145] + X[26824], X[26824] - 3 X[48304], 6 X[551] - 5 X[31209], 3 X[48324] - 2 X[50358], 3 X[1734] - 4 X[3960], 3 X[1734] - 2 X[4814], 2 X[3960] - 3 X[4449], 3 X[4449] - X[4814], 3 X[3241] - X[17494], 3 X[3241] - 2 X[48285], 6 X[3244] - X[47664], X[47664] - 3 X[47729], 3 X[3679] - 4 X[4885], 2 X[4794] - 3 X[23057], 3 X[14421] - 2 X[50335], 9 X[19875] - 10 X[31250], 3 X[21343] - X[50328], 3 X[48335] - 2 X[50328], 9 X[25055] - 8 X[31287], 7 X[27115] - 9 X[38314], 3 X[34747] + 2 X[48125]

X(50767) lies on these lines: {1, 650}, {8, 26985}, {145, 26824}, {514, 4895}, {519, 693}, {551, 31209}, {891, 48324}, {1491, 48296}, {1734, 3960}, {1938, 5697}, {3241, 17494}, {3244, 47664}, {3633, 47724}, {3635, 48284}, {3679, 4885}, {3900, 4905}, {4041, 48287}, {4160, 4813}, {4162, 47970}, {4411, 49459}, {4490, 48347}, {4677, 45320}, {4729, 48343}, {4730, 48344}, {4777, 49490}, {4794, 23057}, {4825, 9269}, {4844, 47672}, {4879, 47959}, {4959, 42325}, {4979, 29350}, {5903, 9366}, {6182, 25415}, {6366, 49300}, {7951, 15280}, {7962, 11934}, {7982, 8760}, {8702, 23800}, {9001, 16496}, {9015, 49681}, {9373, 30323}, {9397, 11009}, {10056, 28834}, {14349, 48333}, {14421, 50335}, {16474, 22383}, {17460, 48557}, {19875, 31250}, {21189, 48293}, {21343, 48335}, {21385, 48327}, {24948, 48855}, {25055, 31287}, {27115, 38314}, {29226, 48111}, {34747, 48125}, {47942, 48338}, {48081, 48337}

X(50767) = midpoint of X(i) and X(j) for these {i,j}: {145, 48304}, {3633, 47724}
X(50767) = reflection of X(i) in X(j) for these {i,j}: {8, 48295}, {1491, 48296}, {1734, 4449}, {4041, 48287}, {4490, 48347}, {4677, 45320}, {4729, 48343}, {4730, 48344}, {4814, 3960}, {4825, 9269}, {4905, 48282}, {14349, 48333}, {17494, 48285}, {21189, 48293}, {21385, 48327}, {47729, 3244}, {47942, 48338}, {47959, 4879}, {47970, 4162}, {48081, 48337}, {48284, 3635}, {48335, 21343}, {49459, 4411}
X(50767) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3241, 17494, 48285}, {3960, 4814, 1734}, {4449, 4814, 3960}


X(50768) = X(38)X(17230)∩X(17250)X(17450)

Barycentrics    2*a^2*b - 11*a*b^2 - 4*b^3 + 2*a^2*c + 2*a*b*c - 6*b^2*c - 11*a*c^2 - 6*b*c^2 - 4*c^3 : :

X(50768) lies on these lines: {38, 17230}, {17250, 17450}


X(50769) = X(3)X(6)∩X(22156)X(40214)

Barycentrics    a^2*(a^7-4*(b^2+b*c+c^2)*a^5-(b+c)*(b^2+4*b*c+c^2)*a^4+(5*b^4+5*c^4+(4*b^2+3*b*c+4*c^2)*b*c)*a^3+(b+2*c)*(2*b+c)*(b+c)*(b^2+c^2)*a^2-(2*b^6+2*c^6-(5*b^2+8*b*c+5*c^2)*b^2*c^2)*a-(b+c)^2*(b^2-c^2)*(b^3-c^3)) : :

See Ercole Suppa and César Lozada, euclid 5254.

X(50769) lies on these lines: {3, 6}, {22156, 40214}, {28482, 39633}


X(50770) = X(3)X(8612)∩X(3481)X(34576)

Barycentrics    -(-a^2+b^2+c^2)*((b^4+3*b^2*c^2+c^4)*a^28-(b^2+c^2)*(11*b^4+16*b^2*c^2+11*c^4)*a^26+2*(27*b^8+27*c^8+(51*b^4+67*b^2*c^2+51*c^4)*b^2*c^2)*a^24-(b^2+c^2)*(155*b^8+155*c^8+(51*b^4+218*b^2*c^2+51*c^4)*b^2*c^2)*a^22+(285*b^12+285*c^12+(233*b^8+233*c^8+35*(6*b^4+7*b^2*c^2+6*c^4)*b^2*c^2)*b^2*c^2)*a^20-3*(b^2+c^2)*(114*b^12+114*c^12-(63*b^8+63*c^8-2*(23*b^4-25*b^2*c^2+23*c^4)*b^2*c^2)*b^2*c^2)*a^18+(252*b^12+252*c^12+(636*b^8+636*c^8+(797*b^4+833*b^2*c^2+797*c^4)*b^2*c^2)*b^2*c^2)*(b^2-c^2)^2*a^16-2*(b^4-c^4)*(b^2-c^2)*(39*b^12+39*c^12+(177*b^8+177*c^8+(63*b^4+170*b^2*c^2+63*c^4)*b^2*c^2)*b^2*c^2)*a^14-(b^2-c^2)^2*(45*b^16+45*c^16-(315*b^12+315*c^12+(184*b^8+184*c^8+(127*b^4+118*b^2*c^2+127*c^4)*b^2*c^2)*b^2*c^2)*b^2*c^2)*a^12+(b^4-c^4)*(b^2-c^2)^3*(65*b^12+65*c^12-3*(46*b^8+46*c^8-(5*b^4-52*b^2*c^2+5*c^4)*b^2*c^2)*b^2*c^2)*a^10-2*(b^2-c^2)^4*(17*b^16+17*c^16-(7*b^12+7*c^12-2*(13*b^8+13*c^8+2*(5*b^4+4*b^2*c^2+5*c^4)*b^2*c^2)*b^2*c^2)*b^2*c^2)*a^8+(b^2-c^2)^6*(b^2+c^2)*(9*b^12+9*c^12+(15*b^8+15*c^8+(29*b^4+6*b^2*c^2+29*c^4)*b^2*c^2)*b^2*c^2)*a^6-(b^2-c^2)^8*(b^12+c^12+(9*b^8+9*c^8+(4*b^4-5*b^2*c^2+4*c^4)*b^2*c^2)*b^2*c^2)*a^4+(-4*b^2*c^2+(b^2-c^2)^2)*(b^2-c^2)^10*(b^2+c^2)*b^2*c^2*a^2+(b^4-3*b^2*c^2+c^4)*(b^2-c^2)^10*b^4*c^4)*a^2 : :

See Ercole Suppa and César Lozada, euclid 5254.

X(50770) lies on these lines: {3, 8612}, {3481, 34576}


leftri

Points in a [[b^2 - c^2, c^2 - a^2, a^2 - b^2[, [a^2 - b^2 - c^2, b^2 - c^2 - a^2, c^2 - a^2 - b^2)]] coordinate system: X(50771)-X(50776)

rightri

The origin is given by (0, 0) = X(230) = 2 a^4 + b^4 + c^4 - a^2 b^2 - a^2 c^2 - 2 b^2 c^2 : : .

Barycentrics u : v : w for a triangle center U = (x,y) in this system are given by

U = 2 a^4 + b^4 + c^4 - a^2 b^2 - a^2 c^2 - 2 b^2 c^2 + (2 a^2 - b^2 - c^2) x + 2(b^2 - c^2) y : : ,

where, as functions of a, b, c, the coordinate x is antisymmetric of degree 2, and y is antisymmetric of degree 2.

The appearance of {x, y}, k in the following list means that (x, y) = X(k).

{-((a^3+b^3+c^3)/(a+b+c)), -(((a-b) (a-c) (b-c))/(2 (a+b+c)))}, 24348
{-a^2-b^2-c^2, 0}, 325
{-(a+b+c)^2, 0}, 10026
{-((a^3+b^3+c^3)/(a+b+c)), ((a-b) (a-c) (b-c))/(2 (a+b+c))}, 10
{1/2 (-a^2-b^2-c^2), 0}, 44377
{0, 0}, 230
{a^2+b^2+c^2, 0}, 385
{a b+a c+b c, 0}, 44379
{(a+b+c)^2, 0}, 50252
{(a b c)/(a+b+c), 0}, 44378
{2 (a^2+b^2+c^2), 0}, 15480
{-2*(a^2 + b^2 + c^2), 0}, 50771
{(-2*(a^3 + b^3 + c^3))/(a + b + c), ((a - b)*(a - c)*(b - c))/(a + b + c)}, 50772
{-((a^3 + b^3 + c^3)/(a + b + c)), 0}, 50773
{(a^2 + b^2 + c^2)/2, 0}, 50774
{(a^3 + b^3 + c^3)/(a + b + c), -1/2*((a - b)*(a - c)*(b - c))/(a + b + c)}, 50775
{(2*(a^3 + b^3 + c^3))/(a + b + c), -(((a - b)*(a - c)*(b - c))/(a + b + c))}, 50776


X(50771) = X(2)X(6)∩X(523)X(2525)

Barycentrics    2*a^4 + 3*a^2*b^2 - 3*b^4 + 3*a^2*c^2 - 2*b^2*c^2 - 3*c^4 : :
X(50771) = 6 X[2] - 5 X[230], 3 X[2] - 5 X[325], 9 X[2] - 5 X[385], 3 X[2] + 5 X[7779], X[2] - 5 X[7840], 21 X[2] - 25 X[7925], 19 X[2] - 15 X[8859], 12 X[2] - 5 X[15480], 4 X[2] - 5 X[22110], 7 X[2] - 5 X[22329], 13 X[2] - 15 X[41133], 7 X[2] - 15 X[41136], 16 X[2] - 15 X[41139], 13 X[2] - 5 X[44367], 9 X[2] - 10 X[44377], 21 X[2] - 20 X[44381], 11 X[2] - 10 X[44401], 21 X[2] - 5 X[50248], 3 X[230] - 2 X[385], X[230] + 2 X[7779], X[230] - 6 X[7840], 7 X[230] - 10 X[7925], 19 X[230] - 18 X[8859], 2 X[230] - 3 X[22110], 7 X[230] - 6 X[22329], 13 X[230] - 18 X[41133], 7 X[230] - 18 X[41136], 8 X[230] - 9 X[41139], 13 X[230] - 6 X[44367], 3 X[230] - 4 X[44377], 7 X[230] - 8 X[44381], 11 X[230] - 12 X[44401], 7 X[230] - 2 X[50248], 5 X[230] - 2 X[50251], 3 X[325] - X[385], X[325] - 3 X[7840], 7 X[325] - 5 X[7925], 19 X[325] - 9 X[8859], 4 X[325] - X[15480], 4 X[325] - 3 X[22110], 7 X[325] - 3 X[22329], 13 X[325] - 9 X[41133], 7 X[325] - 9 X[41136], 16 X[325] - 9 X[41139], 13 X[325] - 3 X[44367], 3 X[325] - 2 X[44377], 7 X[325] - 4 X[44381], 11 X[325] - 6 X[44401], 7 X[325] - X[50248], and many others

X(50771) lies on these lines: {2, 6}, {5, 7855}, {30, 7813}, {114, 34380}, {140, 7826}, {147, 29181}, {315, 31859}, {523, 2525}, {546, 6248}, {550, 30270}, {574, 14929}, {620, 3793}, {736, 8357}, {754, 6390}, {1975, 33280}, {3053, 32818}, {3529, 15428}, {3544, 39663}, {3705, 17365}, {3734, 3933}, {3849, 14148}, {3926, 33239}, {3972, 7762}, {5008, 8368}, {5023, 32831}, {5026, 12830}, {5041, 8364}, {5254, 7758}, {5305, 7821}, {5346, 33186}, {5355, 8360}, {5965, 35021}, {6656, 7905}, {6781, 39785}, {7179, 17362}, {7227, 30179}, {7238, 33891}, {7750, 7906}, {7764, 7767}, {7784, 9607}, {7798, 33184}, {7799, 32459}, {7800, 9606}, {7801, 18907}, {7805, 8361}, {7807, 7871}, {7809, 47286}, {7818, 15048}, {7819, 7838}, {7820, 41750}, {7823, 32820}, {7848, 8359}, {7850, 8356}, {7854, 31406}, {7894, 8363}, {7896, 8362}, {7900, 32819}, {7908, 8369}, {7926, 8370}, {7939, 13571}, {10256, 14869}, {12007, 37450}, {13881, 32823}, {14711, 43457}, {16316, 47312}, {16320, 37897}, {17246, 29840}, {17344, 24239}, {17768, 49544}, {18358, 44422}, {20065, 32821}, {32457, 37350}, {32827, 34505}, {37900, 47245}, {47242, 47629}

X(50771) = midpoint of X(i) and X(j) for these {i,j}: {325, 7779}, {7813, 7845}
X(50771) = reflection of X(i) in X(j) for these {i,j}: {230, 325}, {385, 44377}, {3793, 620}, {15480, 230}
X(50771) = complement of X(50251)
X(50771) = crossdifference of every pair of points on line {512, 30435}
X(50771) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 9766, 3815}, {141, 7774, 9300}, {193, 7778, 5306}, {230, 325, 22110}, {325, 385, 44377}, {325, 22329, 7925}, {325, 50248, 44381}, {325, 50251, 2}, {385, 44377, 230}, {1007, 8667, 3054}, {1007, 20080, 8667}, {3314, 41624, 3589}, {3933, 7759, 7745}, {6189, 6190, 3620}, {7736, 10513, 599}, {7758, 7776, 5254}, {7759, 7916, 3933}, {7762, 7796, 7789}, {7764, 7882, 7767}, {7774, 7788, 141}, {7779, 7840, 325}, {7779, 41136, 50248}, {7792, 7837, 32455}, {7796, 7949, 7762}, {7821, 7890, 5305}, {7837, 7897, 7792}, {7838, 7895, 7819}, {7855, 7903, 5}, {7871, 7877, 7807}, {7905, 7917, 6656}, {7906, 7946, 7750}, {7925, 22329, 44381}, {7925, 41136, 325}, {7925, 50248, 22329}, {9770, 15533, 11168}, {9770, 15589, 31489}, {11163, 16990, 15491}, {15480, 22110, 230}, {15491, 22165, 16990}, {15533, 31489, 15589}, {15589, 31489, 11168}, {22329, 44381, 230}, {39022, 39023, 3763}, {41136, 50248, 7925}, {44384, 44385, 44380}


X(50772) = X(8)X(325)∩X(10)X(230)

Barycentrics    2*a^5 - 2*a^4*b - a^3*b^2 + 3*a^2*b^3 + a*b^4 - 3*b^5 - 2*a^4*c + 3*a^2*b^2*c - 3*b^4*c - a^3*c^2 + 3*a^2*b*c^2 - 2*a*b^2*c^2 + 2*b^3*c^2 + 3*a^2*c^3 + 2*b^2*c^3 + a*c^4 - 3*b*c^4 - 3*c^5 : :
X(50772) = X[145] - 5 X[7925], X[385] - 5 X[3617], 3 X[3679] - X[50254], 2 X[1385] - 3 X[10256], 5 X[1698] - 4 X[44381], X[3241] - 3 X[41133], 4 X[3828] - 3 X[41139], 7 X[4678] + X[7779], 8 X[4691] - X[15480], 5 X[5818] - 3 X[39663], X[7983] - 3 X[33228], 3 X[19875] - 2 X[44401], 3 X[22329] - X[50247]

X(50772) lies on these lines: {1, 44377}, {8, 325}, {10, 230}, {145, 7925}, {385, 3617}, {519, 22110}, {523, 4528}, {524, 3416}, {1385, 10256}, {1503, 9864}, {1698, 44381}, {3241, 41133}, {3828, 41139}, {4678, 7779}, {4691, 15480}, {4769, 5690}, {5818, 39663}, {5846, 44380}, {7983, 33228}, {19875, 44401}, {22329, 50247}, {44392, 45444}, {44394, 45445}

X(50772) = midpoint of X(8) and X(325)
X(50772) = reflection of X(i) in X(j) for these {i,j}: {1, 44377}, {230, 10}


X(50773) = X(2)X(6)∩X(10)X(523)

Barycentrics    (b + c)*(2*a^4 - 3*a^2*b^2 + a*b^3 + 2*b^4 + 2*a^2*b*c - a*b^2*c - b^3*c - 3*a^2*c^2 - a*b*c^2 + a*c^3 - b*c^3 + 2*c^4) : :
X(50773) = X[10026] - 3 X[44396], 5 X[1698] - X[24345], 7 X[9780] + X[36223]

X(50773) lies on these lines: {2, 6}, {10, 523}, {115, 545}, {190, 31057}, {1698, 24345}, {3109, 49728}, {4205, 6788}, {4422, 8287}, {5949, 7228}, {6537, 23991}, {6626, 14588}, {7238, 20337}, {9024, 50440}, {9780, 36223}, {17058, 40480}, {17332, 46826}, {17768, 20546}, {23897, 31644}, {23992, 35121}, {25469, 26081}, {36154, 49734}, {44419, 47403}

X(50773) = midpoint of X(10) and X(24348)
X(50773) = crosssum of X(6) and X(5170)
X(50773) = crossdifference of every pair of points on line {512, 3285}
X(50773) = {X(39022),X(39023)}-harmonic conjugate of X(3936)


X(50774) = X(2)X(6)∩X(523)X(8651)

Barycentrics    6*a^4 - a^2*b^2 + b^4 - a^2*c^2 - 6*b^2*c^2 + c^4 : :
X(50774) = 3 X[2] - 5 X[230], 9 X[2] - 5 X[325], 3 X[2] + 5 X[385], 21 X[2] - 5 X[7779], 13 X[2] - 5 X[7840], 33 X[2] - 25 X[7925], 7 X[2] - 15 X[8859], 9 X[2] + 5 X[15480], 7 X[2] - 5 X[22110], X[2] - 5 X[22329], 19 X[2] - 15 X[41133], 31 X[2] - 15 X[41136], 13 X[2] - 15 X[41139], 11 X[2] + 5 X[44367], 6 X[2] - 5 X[44377], 9 X[2] - 10 X[44381], 4 X[2] - 5 X[44401], 27 X[2] + 5 X[50248], 3 X[2] + X[50251], 3 X[230] - X[325], 7 X[230] - X[7779], 13 X[230] - 3 X[7840], 11 X[230] - 5 X[7925], 7 X[230] - 9 X[8859], 3 X[230] + X[15480], 7 X[230] - 3 X[22110], X[230] - 3 X[22329], 19 X[230] - 9 X[41133], 31 X[230] - 9 X[41136], 13 X[230] - 9 X[41139], 11 X[230] + 3 X[44367], 3 X[230] - 2 X[44381], 4 X[230] - 3 X[44401], 9 X[230] + X[50248], 5 X[230] + X[50251], X[325] + 3 X[385], 7 X[325] - 3 X[7779], 13 X[325] - 9 X[7840], 11 X[325] - 15 X[7925], 7 X[325] - 27 X[8859], 7 X[325] - 9 X[22110], X[325] - 9 X[22329], 19 X[325] - 27 X[41133], 31 X[325] - 27 X[41136], 13 X[325] - 27 X[41139], 11 X[325] + 9 X[44367], 2 X[325] - 3 X[44377], 4 X[325] - 9 X[44401], 3 X[325] + X[50248], 5 X[325] + 3 X[50251], and many others

X(50774) lies on these lines: {2, 6}, {30, 32457}, {98, 29181}, {115, 3793}, {140, 7805}, {511, 35021}, {523, 8651}, {538, 32459}, {549, 7798}, {550, 5171}, {736, 19697}, {754, 43291}, {1447, 4395}, {2980, 27364}, {3053, 32815}, {3528, 21445}, {3530, 13334}, {3628, 7838}, {3632, 50254}, {3855, 39663}, {4045, 5305}, {5023, 6392}, {5254, 14907}, {5346, 8362}, {5355, 8359}, {5965, 10011}, {6036, 34380}, {6179, 7745}, {7081, 7227}, {7751, 7789}, {7755, 7767}, {7793, 33275}, {7826, 8361}, {7844, 14929}, {7848, 8360}, {7877, 33249}, {7896, 33186}, {8369, 17131}, {9752, 15069}, {9769, 25328}, {11054, 47287}, {12007, 37451}, {13881, 32827}, {16315, 46517}, {16316, 46998}, {20850, 33582}, {21843, 22253}, {22712, 32449}, {37900, 47242}, {47155, 47312}, {47238, 47629}

X(50774) = midpoint of X(i) and X(j) for these {i,j}: {115, 3793}, {230, 385}, {325, 15480}
X(50774) = reflection of X(i) in X(j) for these {i,j}: {325, 44381}, {44377, 230}
X(50774) = crossdifference of every pair of points on line {512, 5013}
X(50774) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 385, 50251}, {6, 34229, 15491}, {6, 37667, 13468}, {183, 5306, 3589}, {230, 325, 44381}, {230, 15480, 325}, {230, 44377, 44401}, {325, 385, 15480}, {325, 44381, 44377}, {385, 7925, 44367}, {385, 8859, 7779}, {385, 22329, 230}, {3815, 14614, 32455}, {5304, 15271, 597}, {7735, 8667, 141}, {7766, 37688, 9300}, {13468, 15491, 34229}, {14614, 17008, 3815}, {15534, 23055, 9771}, {17004, 41624, 3055}, {39022, 39023, 3618}


X(50775) = X(1)X(257)∩X(10)X(230)

Barycentrics    2*a^5 + a^4*b - a^3*b^2 + a*b^4 + a^4*c - a^3*c^2 - 2*a*b^2*c^2 - b^3*c^2 - b^2*c^3 + a*c^4 : :
X(50775) = 3 X[2] + X[50247], X[40] - 3 X[21445], X[99] - 3 X[38221], X[316] - 3 X[38220], 2 X[1125] + X[50250], 3 X[22329] - X[50254], 5 X[3616] - X[7779], 7 X[3622] + X[50248], 7 X[3624] - 5 X[7925], 4 X[3636] + X[50251], X[3679] - 3 X[8859], 3 X[37792] + X[50255], X[7840] - 3 X[25055], X[9864] - 3 X[38227], X[9881] - 3 X[26613], X[13174] - 3 X[13586], X[13178] - 3 X[14568], 3 X[16475] - X[39099], 5 X[19862] - 4 X[44377], 3 X[19883] - 2 X[22110], 2 X[19925] - 3 X[39663], 3 X[38049] - 2 X[44380], 3 X[38314] + X[44367]

X(50775) lies on these lines: {1, 257}, {2, 50247}, {10, 230}, {30, 11599}, {40, 21445}, {99, 38221}, {316, 38220}, {325, 1125}, {511, 11710}, {519, 22329}, {523, 1960}, {524, 551}, {538, 11711}, {736, 12263}, {740, 41193}, {754, 11725}, {1385, 32515}, {1513, 2784}, {2796, 8598}, {3564, 21636}, {3616, 7779}, {3622, 50248}, {3624, 7925}, {3636, 50251}, {3679, 8859}, {3849, 12258}, {3923, 4234}, {3993, 24929}, {4039, 8772}, {4205, 10026}, {5184, 7983}, {5847, 15993}, {5965, 11724}, {6675, 44379}, {6998, 49488}, {7840, 25055}, {8983, 44394}, {9864, 38227}, {9881, 26613}, {11110, 17731}, {13174, 13586}, {13178, 14568}, {13971, 44392}, {15903, 17770}, {16475, 39099}, {19862, 44377}, {19883, 22110}, {19925, 39663}, {38049, 44380}, {38314, 44367}

X(50775) = midpoint of X(i) and X(j) for these {i,j}: {1, 385}, {325, 50250}, {5184, 7983}
X(50775) = reflection of X(i) in X(j) for these {i,j}: {10, 230}, {325, 1125}
X(50775) = crossdifference of every pair of points on line {4286, 45882}


X(50776) = X(1)X(524)∩X(10)X(230)

Barycentrics    6*a^5 + 2*a^4*b - 3*a^3*b^2 + a^2*b^3 + 3*a*b^4 - b^5 + 2*a^4*c + a^2*b^2*c - b^4*c - 3*a^3*c^2 + a^2*b*c^2 - 6*a*b^2*c^2 - 2*b^3*c^2 + a^2*c^3 - 2*b^2*c^3 + 3*a*c^4 - b*c^4 - c^5 : :
X(50776) = X[8] - 3 X[22329], 2 X[10] - 3 X[230], X[145] + 3 X[385], 3 X[325] - 5 X[3616], 5 X[3616] + 3 X[50247], 4 X[1125] - 3 X[22110], 5 X[1698] - 6 X[44401], 5 X[3617] - 9 X[8859], 7 X[3622] - 3 X[7840], 5 X[3623] + 3 X[44367], 7 X[3624] - 6 X[44377], X[3632] - 3 X[50254], 8 X[3634] - 9 X[41139], 4 X[3635] + 3 X[15480], 11 X[5550] - 9 X[41133], 7 X[20057] + 3 X[50251], 2 X[32459] - 3 X[38221]

X(50776) lies on these lines: {1, 524}, {8, 22329}, {10, 230}, {145, 385}, {325, 3616}, {518, 5148}, {523, 48327}, {1125, 22110}, {1698, 44401}, {1959, 4831}, {3242, 50253}, {3617, 8859}, {3622, 7840}, {3623, 44367}, {3624, 44377}, {3632, 50254}, {3634, 41139}, {3635, 15480}, {4062, 8772}, {5550, 41133}, {5698, 50255}, {20057, 50251}, {32459, 38221}

X(50776) = midpoint of X(i) and X(j) for these {i,j}: {1, 50250}, {325, 50247}, {3242, 50253}


X(50777) = X(10)X(536)∩X(37)X(537)

Barycentrics    2*a^2*b + 5*a*b^2 + 2*a^2*c + 6*a*b*c - b^2*c + 5*a*c^2 - b*c^2 : :
X(50777) = X(50777) = 2 X[1] + X[49508], X[10] + 2 X[49456], 3 X[10] - 2 X[50096], 3 X[49456] + X[50096], 3 X[50094] - X[50096], 4 X[37] - X[49479], 5 X[37] + X[49513], 2 X[37] + X[49520], 5 X[551] + 2 X[49513], 5 X[49479] + 4 X[49513], X[49479] + 2 X[49520], 2 X[49513] - 5 X[49520], 2 X[192] + X[4709], 2 X[984] + X[3993], 7 X[984] - X[49450], 5 X[984] + X[49470], 4 X[984] - X[49510], 11 X[984] + X[49678], 13 X[984] - X[49689], 3 X[984] - X[50075], 7 X[3993] + 2 X[49450], 5 X[3993] - 2 X[49470], 2 X[3993] + X[49510], 11 X[3993] - 2 X[49678], 13 X[3993] + 2 X[49689], 3 X[3993] + 2 X[50075], 7 X[4664] + X[49450], 5 X[4664] - X[49470], 4 X[4664] + X[49510], 11 X[4664] - X[49678], 13 X[4664] + X[49689], 3 X[4664] + X[50075], 5 X[49450] + 7 X[49470], 4 X[49450] - 7 X[49510], 11 X[49450] + 7 X[49678], 13 X[49450] - 7 X[49689], 3 X[49450] - 7 X[50075], 4 X[49470] + 5 X[49510], 11 X[49470] - 5 X[49678], 13 X[49470] + 5 X[49689], 3 X[49470] + 5 X[50075], 11 X[49510] + 4 X[49678], 13 X[49510] - 4 X[49689], 3 X[49510] - 4 X[50075], 13 X[49678] + 11 X[49689], 3 X[49678] + 11 X[50075], 3 X[49689] - 13 X[50075], 2 X[1125] + X[49447], X[3241] - 5 X[4704], 5 X[4704] + X[49448], X[3244] + 2 X[49515], X[3625] + 2 X[49462], 2 X[3626] + X[49452], 4 X[3634] - X[49493], 2 X[3635] + X[49503], 4 X[3636] - X[49499], 2 X[3696] - 3 X[38098], 2 X[3842] + X[49523], 4 X[3842] - X[50117], 2 X[49523] + X[50117], 4 X[4681] + X[34641], 2 X[4681] + X[49457], 5 X[4687] + X[49517], 5 X[4699] - 7 X[19876], X[4718] + 2 X[4732], X[4740] - 3 X[19875], 3 X[19875] + X[49445], 4 X[4755] - 3 X[19883], 3 X[19883] - 2 X[24325], 4 X[15569] - X[49535], 5 X[19862] - 2 X[49483], X[24349] - 3 X[25055], 7 X[27268] - X[49532], X[31302] + 3 X[38314], 3 X[38089] - 2 X[49481], 2 X[49471] + X[49504]

X(50777) lies on these lines: {1, 4759}, {2, 726}, {10, 536}, {37, 537}, {45, 50023}, {75, 3828}, {192, 3679}, {518, 3898}, {519, 751}, {545, 50299}, {740, 4669}, {752, 49742}, {1125, 17354}, {1266, 25352}, {1757, 29584}, {2796, 50090}, {3241, 4704}, {3244, 49515}, {3625, 49462}, {3626, 49452}, {3634, 49493}, {3635, 49503}, {3636, 49499}, {3666, 42056}, {3696, 38098}, {3731, 49455}, {3775, 50097}, {3836, 49741}, {3842, 4688}, {3923, 48854}, {3943, 4407}, {3995, 31136}, {4029, 49764}, {4078, 50092}, {4090, 28606}, {4098, 49505}, {4356, 49697}, {4389, 49769}, {4419, 24692}, {4681, 34641}, {4685, 42041}, {4687, 49517}, {4699, 19876}, {4718, 4732}, {4740, 19875}, {4745, 28522}, {4755, 19883}, {4971, 50309}, {5220, 50283}, {6541, 29594}, {15481, 50124}, {15569, 49535}, {16676, 24331}, {16814, 49472}, {16826, 24821}, {17023, 31349}, {17132, 49519}, {17258, 50304}, {17261, 49482}, {17318, 50018}, {17319, 49685}, {17320, 49521}, {18145, 21443}, {19862, 49483}, {20430, 28194}, {22220, 42038}, {24349, 25055}, {25354, 48853}, {27268, 49532}, {28503, 49737}, {28542, 49725}, {28562, 50286}, {29600, 49676}, {31137, 41839}, {31145, 49469}, {31161, 43223}, {31302, 38314}, {33682, 50127}, {35126, 36217}, {36480, 50126}, {38089, 49481}, {41312, 50313}, {41313, 50285}, {42039, 42057}, {48809, 50107}, {49471, 49504}, {49692, 50114}, {49721, 50302}, {49748, 50301}

X(50777) = midpoint of X(i) and X(j) for these {i,j}: {192, 3679}, {551, 49520}, {984, 4664}, {3241, 49448}, {4688, 49523}, {4740, 49445}, {31145, 49469}, {31178, 49447}, {49456, 50094}, {49748, 50301}, {50090, 50291}
X(50777) = reflection of X(i) in X(j) for these {i,j}: {10, 50094}, {75, 3828}, {551, 37}, {3993, 4664}, {4688, 3842}, {4709, 3679}, {24325, 4755}, {31178, 1125}, {34641, 49457}, {49479, 551}, {50086, 4745}, {50117, 4688}, {50297, 49737}
X(50777) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 49520, 49479}, {984, 3993, 49510}, {3842, 49523, 50117}, {4364, 4439, 10}, {4755, 24325, 19883}, {19875, 49445, 4740}


X(50778) = X(1)X(4688)∩X(37)X(519)

Barycentrics    11*a^2*b - a*b^2 + 11*a^2*c + 6*a*b*c - 4*b^2*c - a*c^2 - 4*b*c^2 : :
X(50778) = 4 X[1] - X[49468], 3 X[1] - X[50086], 3 X[4688] - 2 X[50086], 3 X[49468] - 4 X[50086], 7 X[37] - 4 X[49457], X[37] - 4 X[49471], X[37] + 2 X[49475], 5 X[37] - 4 X[50094], 3 X[37] - 4 X[50111], X[49457] - 7 X[49471], 2 X[49457] + 7 X[49475], 5 X[49457] - 7 X[50094], 3 X[49457] - 7 X[50111], 2 X[49471] + X[49475], 5 X[49471] - X[50094], 3 X[49471] - X[50111], 5 X[49475] + 2 X[50094], 3 X[49475] + 2 X[50111], 3 X[50094] - 5 X[50111], 2 X[145] + X[49515], 5 X[3241] - X[24349], 4 X[3241] + X[49461], 8 X[3241] - X[49525], 4 X[24349] + 5 X[49461], X[24349] + 5 X[49470], 2 X[24349] - 5 X[49478], 8 X[24349] - 5 X[49525], X[49461] - 4 X[49470], X[49461] + 2 X[49478], 2 X[49461] + X[49525], 2 X[49470] + X[49478], 8 X[49470] + X[49525], 4 X[49478] - X[49525], 2 X[3244] + X[49462], 8 X[3244] + X[49522], 4 X[49462] - X[49522], 5 X[3623] - X[4740], 4 X[3635] - X[49483], 2 X[15569] + X[49678], 2 X[3739] - 3 X[38314], X[4686] + 2 X[49469], X[4718] + 2 X[49490], 2 X[4732] - 3 X[19883], 6 X[25055] - 5 X[31238], 3 X[25055] - X[49459], 5 X[31238] - 2 X[49459]

X(50778) lies on these lines: {1, 4688}, {2, 4891}, {8, 4755}, {37, 519}, {145, 4664}, {518, 3899}, {528, 50125}, {536, 3241}, {537, 3244}, {551, 3696}, {984, 34747}, {1100, 48805}, {1279, 16834}, {2805, 10031}, {3623, 4740}, {3635, 49483}, {3655, 30271}, {3679, 15569}, {3723, 48854}, {3739, 38314}, {3823, 29582}, {3842, 34641}, {3883, 28337}, {4684, 49741}, {4686, 31178}, {4702, 16666}, {4718, 49490}, {4725, 49746}, {4727, 36479}, {4732, 19883}, {4898, 49690}, {4908, 47359}, {4966, 50091}, {5919, 44671}, {9041, 50110}, {15492, 49497}, {16669, 50283}, {16814, 49680}, {17231, 48821}, {17237, 49763}, {17299, 48849}, {20049, 49450}, {20430, 34748}, {22034, 31161}, {25055, 31238}, {28329, 50310}, {30273, 34631}, {31136, 37593}, {31138, 50080}, {36480, 39260}, {41310, 50282}, {41311, 50316}, {46922, 49484}, {47357, 50131}, {50085, 50305}

X(50778) = midpoint of X(i) and X(j) for these {i,j}: {145, 4664}, {984, 34747}, {3241, 49470}, {3679, 49678}, {20049, 49450}, {20430, 34748}, {30273, 34631}, {31178, 49469}
X(50778) = reflection of X(i) in X(j) for these {i,j}: {8, 4755}, {3679, 15569}, {3696, 551}, {4686, 31178}, {4688, 1}, {30271, 3655}, {34641, 3842}, {49468, 4688}, {49478, 3241}, {49515, 4664}, {50082, 49740}, {50085, 50305}
X(50778) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {49461, 49478, 49525}, {49470, 49478, 49461}, {49471, 49475, 37}


X(50779) = X(2)X(742)∩X(37)X(524)

Barycentrics    5*a^3*b + 2*a*b^3 + 5*a^3*c + 2*a^2*b*c + 2*a*b^2*c - b^3*c + 2*a*b*c^2 + 2*a*c^3 - b*c^3 : :
X(50779) = 5 X[6] + X[49502], 5 X[4664] - X[49502], X[75] - 3 X[47352], 5 X[3618] - X[4740], 2 X[3739] - 3 X[48310], 5 X[4687] - 3 X[21358], 5 X[4704] + 3 X[5032], 3 X[21356] - 7 X[27268], X[31178] - 3 X[38023], 3 X[38047] - X[50086]

X(50779) lies on these lines: {2, 742}, {6, 4664}, {37, 524}, {75, 47352}, {141, 3986}, {518, 3898}, {536, 597}, {537, 1386}, {599, 29575}, {984, 47356}, {1992, 49509}, {3589, 4688}, {3618, 4740}, {3739, 48310}, {3970, 50259}, {3997, 35103}, {4133, 49524}, {4687, 21358}, {4704, 5032}, {5476, 29010}, {9055, 36522}, {11179, 20430}, {16834, 36404}, {16972, 50127}, {21356, 27268}, {28538, 50094}, {31178, 38023}, {38047, 50086}, {41311, 49516}

X(50779) = midpoint of X(i) and X(j) for these {i,j}: {6, 4664}, {599, 49496}, {984, 47356}, {1992, 49509}, {11179, 20430}
X(50779) = reflection of X(i) in X(j) for these {i,j}: {141, 4755}, {4688, 3589}, {49481, 597}


X(50780) = X(141)X(45313)∩X(524)X(649)

Barycentrics    (b - c)*(-8*a^4 + 2*a^3*b - 5*a^2*b^2 - a*b^3 + 2*a^3*c - 2*a^2*b*c - a*b^2*c + b^3*c - 5*a^2*c^2 - a*b*c^2 - a*c^3 + b*c^3) : :
X(50780) = 2 X[3835] - 3 X[48310], X[20295] - 3 X[47352], 3 X[21358] - 5 X[27013], 3 X[47762] - X[50766]

X(50780) lies on these lines: {141, 45313}, {524, 649}, {597, 4785}, {3589, 31147}, {3835, 48310}, {8584, 9002}, {20295, 47352}, {21358, 27013}, {47762, 50766}

X(50780) = reflection of X(i) in X(j) for these {i,j}: {141, 45313}, {31147, 3589}


X(50781) = X(10)X(524)∩X(519)X(599)

Barycentrics    4*a^3 + a^2*b - 2*a*b^2 - 5*b^3 + a^2*c - 5*b^2*c - 2*a*c^2 - 5*b*c^2 - 5*c^3 : :
X(50781) = X[1] - 3 X[21356], 5 X[2] - 3 X[16475], 4 X[2] - 3 X[38049], 4 X[16475] - 5 X[38049], 2 X[6] - 3 X[38089], 4 X[3828] - 3 X[38089], 5 X[10] - 2 X[4663], 2 X[69] + X[49529], 4 X[141] - X[49684], 2 X[182] - 3 X[38068], X[4669] + 2 X[22165], 5 X[599] - X[3242], 3 X[599] - X[47358], X[3242] + 5 X[3416], 3 X[3242] - 5 X[47358], 2 X[3242] - 5 X[49511], 3 X[3416] + X[47358], 2 X[3416] + X[49511], 2 X[47358] - 3 X[49511], 2 X[576] - 5 X[31399], 2 X[1125] - 3 X[21358], 3 X[21358] - X[47356], 2 X[1386] - 3 X[19883], 3 X[19883] - 4 X[20582], X[1992] - 3 X[19875], X[2321] + 2 X[50304], X[3241] - 5 X[3620], 5 X[3618] - 7 X[19876], 4 X[3631] + X[34641], 4 X[3631] - X[49505], 4 X[3634] - 3 X[47352], 5 X[3763] - 3 X[38023], 2 X[4745] + X[15533], 4 X[4745] - 3 X[38191], 2 X[15533] + 3 X[38191], 3 X[38191] - 2 X[47359], X[4780] + 2 X[17372], 3 X[5032] - 7 X[9780], 2 X[5476] - 3 X[10175], 2 X[5480] - 3 X[38076], X[5882] - 4 X[40107], X[11362] + 2 X[34507], X[11898] + 3 X[38066], X[15069] + 2 X[43174], X[15534] - 3 X[38047], 2 X[18583] - 3 X[38083], 2 X[20423] - 3 X[38146], 3 X[38021] - 5 X[40330], 3 X[38087] + X[40341], 3 X[38098] - 2 X[49524]

X(50781) lies on these lines: {1, 21356}, {2, 5847}, {6, 3828}, {10, 524}, {40, 11180}, {69, 3679}, {141, 551}, {182, 38068}, {306, 4933}, {376, 39885}, {516, 47353}, {518, 3919}, {519, 599}, {528, 50081}, {542, 38430}, {549, 39870}, {553, 12588}, {576, 31399}, {597, 3844}, {740, 49630}, {752, 29594}, {946, 11178}, {1125, 21358}, {1352, 28194}, {1386, 19883}, {1738, 29617}, {1992, 19875}, {2321, 2796}, {2836, 4134}, {3241, 3620}, {3618, 19876}, {3626, 24693}, {3631, 9041}, {3634, 47352}, {3707, 49769}, {3751, 11160}, {3763, 38023}, {3773, 28558}, {3912, 50296}, {4026, 50125}, {4054, 31177}, {4078, 33082}, {4104, 31143}, {4133, 50084}, {4429, 50077}, {4643, 49766}, {4645, 29615}, {4655, 17132}, {4725, 48821}, {4745, 15533}, {4780, 17372}, {5032, 9780}, {5476, 10175}, {5480, 38076}, {5882, 40107}, {6684, 11179}, {9053, 41152}, {9143, 32261}, {9881, 11161}, {11362, 34507}, {11645, 31730}, {11898, 38066}, {12258, 19662}, {13178, 50639}, {15069, 43174}, {15534, 38047}, {16496, 31145}, {17227, 50017}, {17271, 50291}, {17290, 50020}, {17294, 28580}, {17297, 50305}, {17360, 49772}, {17392, 48853}, {17772, 49543}, {18583, 38083}, {19924, 31673}, {20423, 38146}, {24248, 50089}, {28202, 39884}, {28204, 48876}, {28534, 50097}, {28542, 50100}, {28562, 49560}, {29573, 50295}, {29574, 32846}, {29600, 50297}, {31151, 50095}, {38021, 40330}, {38087, 40341}, {38098, 49524}, {50079, 50080}

X(50781) = midpoint of X(i) and X(j) for these {i,j}: {40, 11180}, {69, 3679}, {376, 39885}, {599, 3416}, {3751, 11160}, {9143, 32261}, {9881, 11161}, {13178, 50639}, {15533, 47359}, {16496, 31145}, {24248, 50089}, {34641, 49505}, {48829, 50076}, {50079, 50080}
X(50781) = reflection of X(i) in X(j) for these {i,j}: {6, 3828}, {551, 141}, {597, 3844}, {946, 11178}, {1386, 20582}, {4133, 50084}, {11179, 6684}, {12258, 19662}, {39870, 549}, {47356, 1125}, {47359, 4745}, {49511, 599}, {49529, 3679}, {49684, 551}, {50109, 3821}, {50118, 3773}
X(50781) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 3828, 38089}, {1386, 20582, 19883}, {4745, 47359, 38191}, {21358, 47356, 1125}


X(50782) = X(519)X(599)∩X(524)X(3617)

Barycentrics    13*a^3 + a^2*b - 2*a*b^2 - 14*b^3 + a^2*c - 14*b^2*c - 2*a*c^2 - 14*b*c^2 - 14*c^3 : :
X(50782) = 7 X[599] - 2 X[3242], X[599] + 4 X[3416], 9 X[599] - 4 X[47358], 13 X[599] - 8 X[49511], X[3242] + 14 X[3416], 9 X[3242] - 14 X[47358], 13 X[3242] - 28 X[49511], 9 X[3416] + X[47358], 13 X[3416] + 2 X[49511], 13 X[47358] - 18 X[49511], 4 X[1698] - 3 X[47352], 2 X[3616] - 3 X[21358], X[3623] - 3 X[21356], 4 X[3631] + X[31145], 4 X[3679] + X[40341], 7 X[3763] - 4 X[16491], X[6144] - 6 X[38087]

X(50782) lies on these lines: {519, 599}, {524, 3617}, {1698, 47352}, {3616, 21358}, {3623, 21356}, {3631, 31145}, {3679, 40341}, {3763, 16491}, {6144, 38087}, {19862, 47356}, {28174, 47353}, {28202, 36990}

X(50782) = reflection of X(47356) in X(19862)


X(50783) = X(8)X(524)∩X(519)X(599)

Barycentrics    5*a^3 - a^2*b + 2*a*b^2 - 4*b^3 - a^2*c - 4*b^2*c + 2*a*c^2 - 4*b*c^2 - 4*c^3 : :
X(50783) = 2 X[1] - 3 X[21358], 4 X[2] - 3 X[38315], 2 X[6] - 3 X[38087], 4 X[3679] - 3 X[38087], 4 X[10] - 3 X[47352], 3 X[47352] - 2 X[47356], 2 X[69] + X[49690], 4 X[141] - X[49679], X[145] - 3 X[21356], 2 X[182] - 3 X[38066], 2 X[4677] + X[15533], 3 X[599] - 2 X[47358], 5 X[599] - 4 X[49511], X[3242] - 4 X[3416], 3 X[3242] - 4 X[47358], 5 X[3242] - 8 X[49511], 3 X[3416] - X[47358], 5 X[3416] - 2 X[49511], 5 X[47358] - 6 X[49511], 4 X[551] - 5 X[3763], 5 X[3763] - 2 X[49681], 2 X[1386] - 3 X[19875], 5 X[3620] - X[20049], 2 X[3656] - 3 X[10516], 4 X[3828] - 3 X[38023], 8 X[3828] - 7 X[47355], 6 X[38023] - 7 X[47355], 3 X[38023] - 2 X[49684], 7 X[47355] - 4 X[49684], 4 X[3844] - 3 X[25055], 2 X[4663] - 5 X[4668], 4 X[4669] - X[15534], 7 X[4678] - 3 X[5032], 4 X[4745] - 3 X[38047], 2 X[5476] - 3 X[5790], 2 X[5480] - 3 X[38074], X[6144] - 4 X[49529], 7 X[9780] - 6 X[48310], 5 X[16491] - 7 X[19876], 2 X[18583] - 3 X[38081], 2 X[20423] - 3 X[38144], 4 X[20582] - 3 X[38314], 4 X[34641] + X[40341], X[40341] + 2 X[49688]

X(50783) lies on these lines: {1, 21358}, {2, 5846}, {6, 3679}, {8, 524}, {10, 47352}, {45, 32847}, {55, 4933}, {69, 903}, {141, 3241}, {145, 17305}, {182, 38066}, {517, 47353}, {518, 4677}, {519, 599}, {528, 50087}, {540, 48804}, {542, 34718}, {551, 3763}, {742, 50075}, {752, 49721}, {1350, 28204}, {1386, 19875}, {1482, 11178}, {1992, 49524}, {2550, 50098}, {3052, 50104}, {3620, 20049}, {3625, 24692}, {3654, 43273}, {3656, 10516}, {3828, 38023}, {3844, 25055}, {3883, 41313}, {3886, 50084}, {4643, 49762}, {4663, 4668}, {4669, 5847}, {4678, 5032}, {4745, 38047}, {4914, 37674}, {5476, 5790}, {5480, 38074}, {5642, 32298}, {5690, 11179}, {5695, 28562}, {5969, 34673}, {6144, 49529}, {9053, 22165}, {9780, 48310}, {11180, 12245}, {11645, 12702}, {14077, 50766}, {14621, 29615}, {16491, 19876}, {16777, 33076}, {17251, 50286}, {17269, 49709}, {17290, 50015}, {17294, 49706}, {17313, 50310}, {17392, 48849}, {18525, 19924}, {18583, 38081}, {19596, 37546}, {20423, 38144}, {20582, 38314}, {28194, 36990}, {28503, 49747}, {29594, 50130}, {29617, 32850}, {34641, 40341}, {34747, 49465}, {41146, 50772}, {41312, 49476}, {48809, 50288}

X(50783) = midpoint of X(i) and X(j) for these {i,j}: {69, 31145}, {11180, 12245}
X(50783) = reflection of X(i) in X(j) for these {i,j}: {6, 3679}, {599, 3416}, {1482, 11178}, {1992, 49524}, {3241, 141}, {3242, 599}, {3886, 50084}, {11179, 5690}, {15534, 47359}, {32298, 5642}, {34747, 49465}, {41146, 50772}, {43273, 3654}, {47356, 10}, {47359, 4669}, {49679, 3241}, {49681, 551}, {49684, 3828}, {49688, 34641}, {49690, 31145}, {50120, 48829}, {50130, 29594}
X(50783) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 3679, 38087}, {10, 47356, 47352}, {3828, 38023, 47355}, {3828, 49684, 38023}


X(50784) = X(519)X(599)∩X(524)X(1698)

Barycentrics    7*a^3 + 4*a^2*b - 8*a*b^2 - 11*b^3 + 4*a^2*c - 11*b^2*c - 8*a*c^2 - 11*b*c^2 - 11*c^3 : :
X(50784) = 8 X[141] - 3 X[38023], 11 X[599] - X[3242], 4 X[599] + X[3416], 6 X[599] - X[47358], 7 X[599] - 2 X[49511], 4 X[3242] + 11 X[3416], 6 X[3242] - 11 X[47358], 7 X[3242] - 22 X[49511], 3 X[3416] + 2 X[47358], 7 X[3416] + 8 X[49511], 7 X[47358] - 12 X[49511], X[3616] - 3 X[21356], 6 X[21356] - X[47356], 2 X[3629] - 7 X[19876], 4 X[3631] + X[3679], 4 X[3828] + X[40341], 4 X[3844] + X[11160], X[6144] - 6 X[38089], 2 X[15533] + 3 X[38047], 2 X[19862] - 3 X[21358], 4 X[22165] + X[47359], 4 X[31253] - 3 X[47352]

X(50784) lies on these lines: {141, 38023}, {519, 599}, {524, 1698}, {1352, 28202}, {3616, 17387}, {3620, 28538}, {3629, 19876}, {3631, 3679}, {3828, 40341}, {3844, 11160}, {4933, 33080}, {6144, 38089}, {15533, 38047}, {19862, 21358}, {22165, 47359}, {28150, 47353}, {31253, 47352}

X(50784) = reflection of X(47356) in X(3616)


X(50785) = X(519)X(599)∩X(524)X(9780)

Barycentrics    11*a^3 + 5*a^2*b - 10*a*b^2 - 16*b^3 + 5*a^2*c - 16*b^2*c - 10*a*c^2 - 16*b*c^2 - 16*c^3 : :
X(50785) = 4 X[69] + 3 X[38087], 8 X[599] - X[3242], 5 X[599] + 2 X[3416], 9 X[599] - 2 X[47358], 11 X[599] - 4 X[49511], 5 X[3242] + 16 X[3416], 9 X[3242] - 16 X[47358], 11 X[3242] - 32 X[49511], 9 X[3416] + 5 X[47358], 11 X[3416] + 10 X[49511], 11 X[47358] - 18 X[49511], X[3622] - 3 X[21356], 2 X[3624] - 3 X[21358], 8 X[3828] - X[6144]

X(50785) lies on these lines: {6, 19876}, {69, 38087}, {519, 599}, {524, 9780}, {3622, 21356}, {3624, 21358}, {3828, 6144}, {15808, 47356}, {28146, 47353}

X(50785) = reflection of X(i) in X(j) for these {i,j}: {6, 19876}, {47356, 15808}


X(50786) = X(519)X(599)∩X(524)X(3626)

Barycentrics    14*a^3 - a^2*b + 2*a*b^2 - 13*b^3 - a^2*c - 13*b^2*c + 2*a*c^2 - 13*b*c^2 - 13*c^3 : :
X(50786) = X[193] - 5 X[3679], 13 X[599] - 5 X[3242], X[599] - 5 X[3416], 9 X[599] - 5 X[47358], 7 X[599] - 5 X[49511], X[3242] - 13 X[3416], 9 X[3242] - 13 X[47358], 7 X[3242] - 13 X[49511], 9 X[3416] - X[47358], 7 X[3416] - X[49511], 7 X[47358] - 9 X[49511], 5 X[551] - 7 X[3619], X[1992] - 3 X[38098], X[3244] - 3 X[21356], 4 X[3589] - 5 X[3828], 5 X[3620] - X[34747], 2 X[3636] - 3 X[21358], 5 X[4745] - 2 X[8584], X[15534] - 3 X[38191]

X(50786) lies on these lines: {69, 34641}, {193, 3679}, {519, 599}, {524, 3626}, {551, 3619}, {1992, 38098}, {3244, 21356}, {3589, 3828}, {3620, 34747}, {3634, 47356}, {3636, 21358}, {4669, 34379}, {4745, 5847}, {11160, 49536}, {15534, 38191}, {28194, 39884}, {28228, 47353}, {31145, 49505}, {49766, 50296}

X(50786) = midpoint of X(i) and X(j) for these {i,j}: {69, 34641}, {11160, 49536}, {31145, 49505}
X(50786) = reflection of X(47356) in X(3634)


X(50787) = X(519)X(599)∩X(524)X(1125)

Barycentrics    2*a^3 + 5*a^2*b - 10*a*b^2 - 7*b^3 + 5*a^2*c - 7*b^2*c - 10*a*c^2 - 7*b*c^2 - 7*c^3 : :
X(50787) = X[10] - 3 X[21356], 7 X[69] + 5 X[16491], 7 X[551] - 5 X[16491], 7 X[599] + X[3242], 5 X[599] - X[3416], 3 X[599] + X[47358], 5 X[3242] + 7 X[3416], 3 X[3242] - 7 X[47358], X[3242] - 7 X[49511], 3 X[3416] + 5 X[47358], X[3416] + 5 X[49511], X[47358] - 3 X[49511], X[1992] - 3 X[19883], 5 X[3620] - X[3679], 5 X[3620] + X[49505], 7 X[3624] - 3 X[5032], 2 X[3634] - 3 X[21358], 3 X[3653] + X[11898], 5 X[3763] - 3 X[38089], 2 X[4663] - 5 X[31253], 2 X[5476] - 3 X[10171], X[11160] + 3 X[25055], X[15534] - 3 X[38049], 5 X[15692] - X[39878], 4 X[19878] - 3 X[47352], 3 X[38023] + X[40341], 3 X[38076] - 5 X[40330], 3 X[38315] - 4 X[41150], 4 X[40107] - X[43174]

X(50787) lies on these lines: {2, 34379}, {10, 21356}, {69, 551}, {141, 3828}, {518, 3968}, {519, 599}, {524, 1125}, {1992, 19883}, {2796, 50567}, {3241, 17324}, {3620, 3679}, {3624, 5032}, {3631, 28538}, {3634, 21358}, {3636, 47356}, {3653, 11898}, {3763, 38089}, {4297, 11180}, {4663, 31253}, {4933, 33081}, {5476, 10171}, {5846, 41152}, {5847, 22165}, {11160, 25055}, {11178, 19925}, {11599, 50639}, {15534, 38049}, {15692, 39878}, {16496, 34641}, {17132, 49560}, {17227, 50022}, {17360, 50020}, {19878, 47352}, {24231, 29615}, {27487, 50075}, {28164, 47353}, {28194, 48876}, {33087, 50093}, {38023, 40341}, {38076, 40330}, {38315, 41150}, {40107, 43174}, {49768, 50296}

X(50787) = midpoint of X(i) and X(j) for these {i,j}: {69, 551}, {599, 49511}, {3679, 49505}, {4297, 11180}, {11599, 50639}, {16496, 34641}
X(50787) = reflection of X(i) in X(j) for these {i,j}: {3828, 141}, {19925, 11178}, {47356, 3636}


X(50788) = X(519)X(599)∩X(524)X(3634)

Barycentrics    10*a^3 + 7*a^2*b - 14*a*b^2 - 17*b^3 + 7*a^2*c - 17*b^2*c - 14*a*c^2 - 17*b*c^2 - 17*c^3 : :
X(50788) = 17 X[599] - X[3242], 7 X[599] + X[3416], 9 X[599] - X[47358], 5 X[599] - X[49511], 7 X[3242] + 17 X[3416], 9 X[3242] - 17 X[47358], 5 X[3242] - 17 X[49511], 9 X[3416] + 7 X[47358], 5 X[3416] + 7 X[49511], 5 X[47358] - 9 X[49511], X[551] - 5 X[3620], X[1125] - 3 X[21356], X[11898] + 3 X[38068], 7 X[19876] + X[20080], 2 X[19878] - 3 X[21358], 3 X[38089] + X[40341]

X(50788) lies on these lines: {69, 3828}, {518, 41152}, {519, 599}, {524, 3634}, {551, 3620}, {1125, 21356}, {11178, 12571}, {11180, 12512}, {11898, 38068}, {19876, 20080}, {19878, 21358}, {22165, 34379}, {28158, 47353}, {38089, 40341}

X(50788) = midpoint of X(i) and X(j) for these {i,j}: {69, 3828}, {11180, 12512}
X(50788) = reflection of X(12571) in X(11178)


X(50789) = X(519)X(599)∩X(524)X(3632)

Barycentrics    11*a^3 - 4*a^2*b + 8*a*b^2 - 7*b^3 - 4*a^2*c - 7*b^2*c + 8*a*c^2 - 7*b*c^2 - 7*c^3 : :
X(50789) = X[193] - 5 X[31145], 2 X[193] - 5 X[49688], 7 X[599] - 5 X[3242], 4 X[599] - 5 X[3416], 6 X[599] - 5 X[47358], 11 X[599] - 10 X[49511], 4 X[3242] - 7 X[3416], 6 X[3242] - 7 X[47358], 11 X[3242] - 14 X[49511], 3 X[3416] - 2 X[47358], 11 X[3416] - 8 X[49511], 11 X[47358] - 12 X[49511], 5 X[3241] - 7 X[3619], 2 X[3244] - 3 X[21358], 4 X[3589] - 5 X[3679], 28 X[3589] - 25 X[16491], 16 X[3589] - 15 X[38023], 8 X[3589] - 5 X[49681], 7 X[3679] - 5 X[16491], 4 X[3679] - 3 X[38023], 20 X[16491] - 21 X[38023], 10 X[16491] - 7 X[49681], 3 X[38023] - 2 X[49681], 4 X[3626] - 3 X[47352], 2 X[4663] - 5 X[20052], 4 X[4669] - 3 X[38047], 5 X[4677] - 2 X[8584], 4 X[8584] - 5 X[47359], 4 X[4745] - 3 X[38315], 15 X[16475] - 16 X[41153], X[20050] - 3 X[21356], 3 X[38087] - 2 X[49684]

X(50789) lies on these lines: {6, 34641}, {8, 47356}, {141, 34747}, {193, 28538}, {519, 599}, {524, 3632}, {551, 49679}, {3241, 3619}, {3244, 21358}, {3589, 3679}, {3626, 47352}, {3630, 9041}, {4663, 20052}, {4669, 38047}, {4677, 5846}, {4745, 38315}, {4933, 32854}, {16475, 41153}, {20049, 49465}, {20050, 21356}, {28204, 48873}, {28234, 47353}, {38087, 49684}, {41313, 49506}

X(50789) = reflection of X(i) in X(j) for these {i,j}: {6, 34641}, {20049, 49465}, {34747, 141}, {47356, 8}, {47359, 4677}, {49679, 551}, {49681, 3679}, {49688, 31145}
X(50789) = {X(3679),X(49681)}-harmonic conjugate of X(38023)


X(50790) = X(145)X(524)∩X(519)X(599)

Barycentrics    7*a^3 - 5*a^2*b + 10*a*b^2 - 2*b^3 - 5*a^2*c - 2*b^2*c + 10*a*c^2 - 2*b*c^2 - 2*c^3 : :
X(50790) = 4 X[1] - 3 X[47352], 2 X[8] - 3 X[21358], 5 X[599] - 4 X[3416], 3 X[599] - 4 X[47358], 7 X[599] - 8 X[49511], 5 X[3242] - 2 X[3416], 3 X[3242] - 2 X[47358], 7 X[3242] - 4 X[49511], 3 X[3416] - 5 X[47358], 7 X[3416] - 10 X[49511], 7 X[47358] - 6 X[49511], 4 X[551] - 3 X[38087], 8 X[551] - 7 X[47355], 6 X[38087] - 7 X[47355], 3 X[38087] - 2 X[49688], 7 X[47355] - 4 X[49688], X[3621] - 3 X[21356], 7 X[3622] - 6 X[48310], 4 X[3679] - 5 X[3763], 5 X[3763] - 8 X[49465], 5 X[3763] - 2 X[49690], 4 X[49465] - X[49690], 2 X[5476] - 3 X[10247], X[6144] - 4 X[49681], 4 X[10168] - 5 X[37624], 4 X[16496] - X[40341], 2 X[16496] + X[49679], 4 X[34747] + X[40341], X[40341] + 2 X[49679], 3 X[38023] - 2 X[49529], 3 X[38314] - 2 X[49524], 3 X[38315] - 2 X[47359]

X(50790) lies on these lines: {1, 41310}, {2, 9053}, {6, 644}, {8, 21358}, {45, 49771}, {69, 20049}, {141, 31145}, {145, 524}, {518, 3899}, {519, 599}, {542, 34748}, {551, 38087}, {952, 47353}, {1483, 11179}, {3243, 50125}, {3244, 47356}, {3621, 21356}, {3622, 48310}, {3679, 3763}, {3938, 4933}, {4864, 29573}, {5476, 10247}, {5846, 15533}, {5969, 34685}, {6144, 49681}, {8148, 19924}, {10168, 37624}, {11178, 12645}, {11645, 18526}, {16496, 28538}, {16973, 50123}, {28194, 48872}, {28204, 36990}, {28329, 49451}, {30614, 37674}, {38023, 49529}, {38314, 49524}, {38315, 47359}, {41312, 49466}, {41313, 49527}, {47595, 50108}, {49467, 50089}, {49704, 49748}, {49721, 50130}

X(50790) = midpoint of X(i) and X(j) for these {i,j}: {69, 20049}, {16496, 34747}
X(50790) = reflection of X(i) in X(j) for these {i,j}: {6, 3241}, {599, 3242}, {3679, 49465}, {11179, 1483}, {12645, 11178}, {31145, 141}, {47356, 3244}, {49679, 34747}, {49688, 551}, {49690, 3679}, {49721, 50130}, {50089, 49467}
X(50790) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {551, 38087, 47355}, {551, 49688, 38087}, {16496, 49679, 40341}, {49465, 49690, 3763}


X(50791) = X(519)X(599)∩X(524)X(3616)

Barycentrics    a^3 + 7*a^2*b - 14*a*b^2 - 8*b^3 + 7*a^2*c - 8*b^2*c - 14*a*c^2 - 8*b*c^2 - 8*c^3 : :
X(50791) = 8 X[141] - 3 X[38087], 4 X[599] + X[3242], 7 X[599] - 2 X[3416], 3 X[599] + 2 X[47358], X[599] + 4 X[49511], 7 X[3242] + 8 X[3416], 3 X[3242] - 8 X[47358], X[3242] - 16 X[49511], 3 X[3416] + 7 X[47358], X[3416] + 14 X[49511], X[47358] - 6 X[49511], 4 X[551] + X[40341], 2 X[1698] - 3 X[21358], X[3241] + 4 X[3631], X[3617] - 3 X[21356], X[6144] - 6 X[38023], 2 X[15533] + 3 X[38315], 4 X[19862] - 3 X[47352]

X(50791) lies on these lines: {141, 38087}, {519, 599}, {524, 3616}, {551, 40341}, {1350, 28202}, {1698, 21358}, {3241, 3631}, {3617, 21356}, {3620, 9041}, {6144, 38023}, {15533, 38315}, {19862, 47352}, {27474, 28582}, {28160, 47353}


X(50792) = X(519)X(599)∩X(524)X(3624)

Barycentrics    5*a^3 + 8*a^2*b - 16*a*b^2 - 13*b^3 + 8*a^2*c - 13*b^2*c - 16*a*c^2 - 13*b*c^2 - 13*c^3 : :
X(50792) = 4 X[69] + 3 X[38023], 13 X[599] + X[3242], 8 X[599] - X[3416], 6 X[599] + X[47358], 5 X[599] + 2 X[49511], 8 X[3242] + 13 X[3416], 6 X[3242] - 13 X[47358], 5 X[3242] - 26 X[49511], 3 X[3416] + 4 X[47358], 5 X[3416] + 16 X[49511], 5 X[47358] - 12 X[49511], X[9780] - 3 X[21356]

X(50792) lies on these lines: {69, 38023}, {141, 19876}, {519, 599}, {524, 3624}, {3622, 47356}, {9780, 21356}, {28172, 47353}

X(50792) = reflection of X(i) in X(j) for these {i,j}: {19876, 141}, {47356, 3622}


X(50793) = X(2)X(3)∩X(518)X(4731)

Barycentrics    a^4 + 4*a^2*b^2 - 5*b^4 + 18*a^2*b*c + 18*a*b^2*c + 4*a^2*c^2 + 18*a*b*c^2 + 10*b^2*c^2 - 5*c^4 : :
X(50793) = 2 X[2] + X[377], 5 X[2] - 2 X[405], 7 X[2] - X[6872], X[2] - 4 X[8728], 4 X[2] - X[31156], 8 X[2] - 5 X[31259], 11 X[2] + X[31295], X[2] + 2 X[44217], 7 X[2] - 4 X[50202], 11 X[2] - 8 X[50205], 7 X[2] - 10 X[50207], X[2] + 5 X[50237], 7 X[2] + 8 X[50238], 13 X[2] + 2 X[50239], 17 X[2] + 4 X[50240], 19 X[2] - 4 X[50241], 23 X[2] - 2 X[50242], 29 X[2] - 8 X[50243], 16 X[2] - X[50244], 4 X[2] - 7 X[50393], 13 X[2] - 16 X[50394], 5 X[2] - 8 X[50395], 5 X[2] + 4 X[50396], 7 X[2] + 2 X[50397], 13 X[2] - 7 X[50398], 11 X[2] + 10 X[50713], X[4] + 2 X[44284], X[376] + 2 X[44229], 5 X[377] + 4 X[405], 7 X[377] + 2 X[6872], X[377] + 8 X[8728], 2 X[377] + X[31156], 4 X[377] + 5 X[31259], 11 X[377] - 2 X[31295], X[377] - 4 X[44217], 7 X[377] + 8 X[50202], 11 X[377] + 16 X[50205], 7 X[377] + 20 X[50207], X[377] - 10 X[50237], 7 X[377] - 16 X[50238], 13 X[377] - 4 X[50239], 17 X[377] - 8 X[50240], 19 X[377] + 8 X[50241], 23 X[377] + 4 X[50242], 29 X[377] + 16 X[50243], 8 X[377] + X[50244], 2 X[377] + 7 X[50393], 13 X[377] + 32 X[50394], 5 X[377] + 16 X[50395], 5 X[377] - 8 X[50396], 7 X[377] - 4 X[50397], 13 X[377] + 14 X[50398], and many others

X(50793) lies on these lines: {2, 3}, {518, 4731}, {3826, 11237}, {3828, 41229}, {3841, 10072}, {5288, 41859}, {5302, 19877}, {9780, 10404}, {24564, 31162}, {26723, 48828}

X(50793) = anticomplement of X(50714)
X(50793) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 377, 31156}, {2, 3543, 5047}, {2, 4190, 15670}, {2, 4208, 6175}, {2, 6175, 2478}, {2, 6872, 50202}, {2, 10304, 15671}, {2, 15677, 16845}, {2, 17572, 15702}, {2, 31156, 31259}, {2, 44217, 377}, {2, 50237, 44217}, {2, 50429, 11346}, {377, 8728, 50393}, {377, 31259, 50244}, {377, 50393, 31259}, {381, 17529, 2}, {405, 44217, 50396}, {405, 50395, 2}, {443, 50727, 2}, {547, 16862, 2}, {4197, 37436, 37462}, {4208, 44256, 377}, {6872, 50238, 377}, {8728, 44217, 2}, {8728, 44222, 17529}, {8728, 50237, 377}, {8728, 50238, 50207}, {8728, 50396, 50395}, {15670, 50726, 2}, {31156, 50393, 2}, {31295, 50713, 377}, {36445, 36463, 6851}, {44217, 50207, 50397}, {44217, 50397, 50238}, {50202, 50207, 2}, {50202, 50238, 50397}, {50202, 50397, 6872}, {50205, 50713, 31295}, {50207, 50238, 6872}, {50207, 50397, 50202}, {50239, 50394, 50398}, {50395, 50396, 405}


X(50794) = X(2)X(3)∩X(518)X(3922)

Barycentrics    3*a^4 + 2*a^2*b^2 - 5*b^4 + 14*a^2*b*c + 14*a*b^2*c + 2*a^2*c^2 + 14*a*b*c^2 + 10*b^2*c^2 - 5*c^4 : :
X(50794) = 3 X[2] + 4 X[377], 15 X[2] - 8 X[405], 9 X[2] - 2 X[6872], 9 X[2] - 16 X[8728], 11 X[2] - 4 X[31156], 27 X[2] - 20 X[31259], 6 X[2] + X[31295], X[2] - 8 X[44217], 23 X[2] - 16 X[50202], 39 X[2] - 32 X[50205], 33 X[2] - 40 X[50207], 3 X[2] - 10 X[50237], 3 X[2] + 32 X[50238], 27 X[2] + 8 X[50239], 33 X[2] + 16 X[50240], 51 X[2] - 16 X[50241], 57 X[2] - 8 X[50242], 81 X[2] - 32 X[50243], 39 X[2] - 4 X[50244], 3 X[2] - 4 X[50393], 57 X[2] - 64 X[50394], 25 X[2] - 32 X[50395], 5 X[2] + 16 X[50396], 13 X[2] + 8 X[50397], 9 X[2] + 40 X[50713], 31 X[2] - 24 X[50714], X[20] - 8 X[44222], 5 X[377] + 2 X[405], 6 X[377] + X[6872], 3 X[377] + 4 X[8728], 11 X[377] + 3 X[31156], 9 X[377] + 5 X[31259], 8 X[377] - X[31295], X[377] + 6 X[44217], 23 X[377] + 12 X[50202], 13 X[377] + 8 X[50205], 11 X[377] + 10 X[50207], 2 X[377] + 5 X[50237], X[377] - 8 X[50238], 9 X[377] - 2 X[50239], 11 X[377] - 4 X[50240], 17 X[377] + 4 X[50241], 19 X[377] + 2 X[50242], 27 X[377] + 8 X[50243], 13 X[377] + X[50244], 19 X[377] + 16 X[50394], 25 X[377] + 24 X[50395], 5 X[377] - 12 X[50396]and many others

X(50794) lies on these lines: {2, 3}, {518, 3922}, {3617, 26842}, {3925, 20076}, {5249, 20013}, {5554, 38052}, {10586, 24387}, {20060, 40333}, {31420, 38314}, {41229, 46933}

X(50794) = midpoint of X(377) and X(50393)
X(50794) = reflection of X(50398) in X(50393)
X(50794) = anticomplement of X(50398)
X(50794) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 377, 31295}, {2, 50693, 15676}, {377, 8728, 6872}, {377, 31156, 50240}, {377, 31259, 50239}, {377, 44217, 50237}, {377, 50237, 2}, {377, 50244, 50397}, {405, 50396, 377}, {443, 50741, 17531}, {2475, 37436, 2}, {4190, 4197, 2}, {5187, 17582, 2}, {6175, 17582, 5187}, {6871, 37462, 2}, {6872, 8728, 2}, {6872, 50237, 8728}, {6886, 6951, 3146}, {8728, 50238, 50713}, {8728, 50239, 31259}, {8728, 50713, 377}, {17528, 37462, 6871}, {31259, 50239, 6872}, {44217, 50238, 377}, {44217, 50713, 8728}, {50205, 50397, 50244}, {50207, 50240, 31156}, {50393, 50398, 2}


X(50795) = X(2)X(3)∩X(518)X(3624)

Barycentrics    3*a^4 - 5*a^2*b^2 + 2*b^4 - 14*a^2*b*c - 14*a*b^2*c - 5*a^2*c^2 - 14*a*b*c^2 - 4*b^2*c^2 + 2*c^4 : :
X(50795) = 15 X[2] - X[377], 6 X[2] + X[405], 27 X[2] + X[6872], 9 X[2] - 2 X[8728], 13 X[2] + X[31156], 9 X[2] + 5 X[31259], 57 X[2] - X[31295], 8 X[2] - X[44217], 5 X[2] + 2 X[50202], 3 X[2] + 4 X[50205], 12 X[2] - 5 X[50207], 33 X[2] - 5 X[50237], 39 X[2] - 4 X[50238], 36 X[2] - X[50239], 51 X[2] - 2 X[50240], 33 X[2] + 2 X[50241], 48 X[2] + X[50242], 45 X[2] + 4 X[50243], 69 X[2] + X[50244], 15 X[2] - 8 X[50394], 11 X[2] - 4 X[50395], 23 X[2] - 2 X[50396], 22 X[2] - X[50397], 3 X[2] + X[50398], 54 X[2] - 5 X[50713], 4 X[2] + 3 X[50714], 8 X[140] - X[37426], 2 X[377] + 5 X[405], 9 X[377] + 5 X[6872], 3 X[377] - 10 X[8728], 13 X[377] + 15 X[31156], 3 X[377] + 25 X[31259], 19 X[377] - 5 X[31295], 8 X[377] - 15 X[44217], X[377] + 6 X[50202], X[377] + 20 X[50205], 4 X[377] - 25 X[50207], 11 X[377] - 25 X[50237], 13 X[377] - 20 X[50238], 12 X[377] - 5 X[50239], 17 X[377] - 10 X[50240], 11 X[377] + 10 X[50241], 16 X[377] + 5 X[50242], 3 X[377] + 4 X[50243], 23 X[377] + 5 X[50244], X[377] - 5 X[50393], X[377] - 8 X[50394], 11 X[377] - 60 X[50395], 23 X[377] - 30 X[50396], 22 X[377] - 15 X[50397], and many others

X(50795) lies on these lines: {2, 3}, {518, 3624}, {3916, 20195}, {4423, 24387}, {5302, 30827}, {5316, 19878}, {5439, 45120}, {10198, 50038}, {19862, 21060}, {31494, 38314}, {34595, 41229}

X(50795) = midpoint of X(50393) and X(50398)
X(50795) = reflection of X(405) in X(50398)
X(50795) = complement of X(50393)
X(50795) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 377, 50394}, {2, 405, 50207}, {2, 5047, 50726}, {2, 6675, 16862}, {2, 7483, 16864}, {2, 16845, 17529}, {2, 17534, 1656}, {2, 17552, 442}, {2, 17590, 16842}, {2, 31259, 8728}, {2, 50205, 405}, {2, 50398, 50393}, {2, 50714, 44217}, {377, 50202, 405}, {405, 8728, 50239}, {405, 16862, 37270}, {405, 44217, 50242}, {405, 50205, 50714}, {405, 50207, 44217}, {405, 50397, 50241}, {405, 50713, 6872}, {442, 17552, 17542}, {2476, 6857, 37284}, {5047, 50726, 17532}, {6872, 8728, 50713}, {6872, 50713, 50239}, {8728, 31259, 405}, {8728, 50202, 50243}, {8728, 50205, 31259}, {8728, 50239, 44217}, {8728, 50243, 377}, {11108, 37282, 405}, {11108, 50740, 37162}, {15670, 17582, 19537}, {16845, 17529, 16370}, {50202, 50394, 377}, {50205, 50394, 50202}, {50207, 50239, 8728}, {50207, 50714, 405}, {50237, 50241, 50397}, {50241, 50395, 50237}, {50243, 50394, 8728}


X(50796) = X(2)X(515)∩X(5)X(551)

Barycentrics    4*a^4 - 3*a^3*b + a^2*b^2 + 3*a*b^3 - 5*b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c + a^2*c^2 - 3*a*b*c^2 + 10*b^2*c^2 + 3*a*c^3 - 5*c^4 : :
X(50796) = X[1] - 3 X[3545], 3 X[3545] + X[34627], 5 X[2] - 3 X[3576], X[2] - 3 X[5587], 7 X[2] - 3 X[5731], 4 X[2] - 3 X[10165], 5 X[2] - 6 X[10172], 2 X[2] - 3 X[10175], X[3576] - 5 X[5587], 7 X[3576] - 5 X[5731], 4 X[3576] - 5 X[10165], 2 X[3576] - 5 X[10175], 7 X[5587] - X[5731], 4 X[5587] - X[10165], 5 X[5587] - 2 X[10172], 4 X[5731] - 7 X[10165], 5 X[5731] - 14 X[10172], 2 X[5731] - 7 X[10175], 5 X[10165] - 8 X[10172], 4 X[10172] - 5 X[10175], 2 X[3] - 5 X[31399], 2 X[3] - 3 X[38068], 4 X[3828] - 5 X[31399], 4 X[3828] - 3 X[38068], 5 X[31399] - 3 X[38068], 5 X[4] + X[7991], 7 X[4] - X[9589], 2 X[4] + X[11362], X[4] + 5 X[37714], X[4] + 3 X[38074], 5 X[3679] - X[7991], 7 X[3679] + X[9589], X[3679] - 5 X[37714], X[3679] - 3 X[38074], 7 X[7991] + 5 X[9589], 2 X[7991] - 5 X[11362], X[7991] - 25 X[37714], X[7991] - 15 X[38074], 2 X[9589] + 7 X[11362], X[9589] + 35 X[37714], X[9589] + 21 X[38074], X[11362] - 10 X[37714], X[11362] - 6 X[38074], 5 X[37714] - 3 X[38074], 4 X[5] - X[5882], 5 X[5] - 2 X[15178], 5 X[5] - 3 X[38022], 2 X[5] - 3 X[38076], 5 X[551] - 4 X[15178], and many others

X(50796) lies on these lines: {1, 3545}, {2, 515}, {3, 3828}, {4, 3679}, {5, 551}, {8, 3839}, {10, 30}, {35, 28461}, {40, 3543}, {80, 226}, {140, 38083}, {165, 11001}, {182, 38089}, {355, 381}, {376, 5691}, {382, 38066}, {516, 3654}, {517, 3845}, {518, 47354}, {528, 6246}, {535, 28452}, {546, 4301}, {547, 1385}, {549, 4297}, {553, 1478}, {597, 39870}, {631, 19876}, {671, 9864}, {730, 44422}, {944, 5071}, {950, 10056}, {952, 3817}, {993, 18491}, {1125, 3655}, {1210, 5434}, {1327, 35774}, {1328, 35775}, {1490, 50741}, {1656, 3653}, {1698, 3524}, {1699, 4677}, {1837, 11237}, {1992, 39885}, {2043, 36440}, {2044, 36458}, {2321, 32431}, {2771, 3919}, {2784, 11632}, {2796, 6321}, {2800, 5927}, {3058, 31397}, {3091, 3241}, {3244, 9955}, {3488, 5726}, {3525, 30315}, {3529, 9588}, {3534, 26446}, {3582, 45287}, {3584, 10572}, {3585, 4848}, {3586, 10385}, {3617, 34632}, {3625, 22791}, {3626, 12699}, {3627, 5493}, {3632, 34631}, {3634, 5054}, {3635, 18493}, {3636, 18526}, {3751, 11180}, {3754, 40263}, {3814, 15842}, {3818, 49529}, {3832, 7982}, {3850, 10222}, {3851, 37727}, {3854, 5734}, {3855, 11522}, {3860, 5844}, {3947, 37730}, {4015, 37585}, {4052, 38309}, {4304, 4995}, {4311, 5298}, {4428, 6913}, {4654, 18391}, {4691, 12702}, {4701, 8148}, {4870, 10950}, {5067, 30389}, {5068, 9624}, {5080, 17781}, {5086, 21075}, {5248, 18518}, {5251, 21161}, {5252, 11238}, {5261, 15933}, {5270, 6900}, {5290, 17706}, {5450, 16371}, {5461, 11710}, {5476, 38146}, {5480, 28538}, {5603, 30308}, {5657, 15682}, {5690, 15687}, {5727, 10590}, {5777, 44663}, {5837, 18517}, {5847, 20423}, {5886, 19709}, {5901, 11737}, {6054, 13178}, {6256, 9948}, {6260, 7700}, {6713, 38104}, {6735, 49719}, {6738, 9654}, {6796, 16370}, {6841, 12437}, {6918, 40726}, {6990, 37719}, {7377, 41140}, {7384, 17310}, {7686, 9947}, {7967, 7988}, {7987, 15702}, {8185, 44837}, {8226, 37725}, {8227, 13607}, {8703, 10164}, {8715, 37234}, {9140, 12368}, {9143, 12407}, {9616, 43257}, {9623, 18529}, {9778, 15640}, {9779, 16200}, {9780, 10304}, {10072, 10106}, {10109, 11230}, {10171, 10246}, {10445, 17330}, {10516, 47358}, {10591, 37709}, {10706, 13211}, {10707, 10863}, {10709, 13532}, {10718, 12784}, {10902, 16858}, {11019, 12019}, {11112, 12616}, {11113, 34746}, {11178, 49511}, {11231, 12100}, {11274, 11729}, {11499, 28444}, {11500, 16418}, {11518, 31410}, {11530, 31420}, {11539, 13624}, {11709, 45311}, {11715, 45310}, {11812, 17502}, {12053, 37710}, {12101, 28174}, {12103, 31447}, {12114, 16417}, {12512, 15681}, {12608, 17577}, {13912, 41945}, {13975, 41946}, {14831, 31760}, {14872, 24473}, {14893, 22793}, {15686, 31663}, {15690, 28190}, {15692, 31423}, {15699, 19862}, {15705, 46932}, {15708, 19877}, {15808, 47478}, {15843, 25639}, {16174, 17618}, {16239, 31666}, {16616, 34790}, {16980, 31751}, {17525, 38058}, {17604, 39779}, {18358, 49505}, {18524, 28453}, {18761, 25440}, {19130, 49684}, {19710, 28168}, {20117, 31165}, {21031, 37447}, {21636, 22566}, {22266, 41983}, {23841, 31728}, {24042, 37820}, {24391, 44229}, {28146, 33699}, {29057, 49630}, {29594, 36728}, {31425, 50693}, {31657, 38094}, {31658, 38101}, {31659, 38105}, {31871, 37562}, {35242, 46933}, {35403, 48661}, {35822, 49602}, {35823, 49601}, {36006, 37561}, {36946, 37702}, {36990, 38087}, {36991, 38092}, {37298, 40260}, {38047, 43273}, {38065, 43176}, {38072, 47356}, {38075, 47357}, {38144, 47353}, {45715, 48778}, {45716, 48779}, {48852, 50037}, {48903, 50587}, {48937, 50415}

(50796) = midpoint of X(i) and X(j) for these {i,j}: {1, 34627}, {4, 3679}, {8, 31162}, {10, 34648}, {40, 3543}, {80, 10711}, {355, 381}, {376, 5691}, {671, 9864}, {1992, 39885}, {3241, 5881}, {3632, 34631}, {3654, 3830}, {3655, 18525}, {3751, 11180}, {4301, 34641}, {5603, 37712}, {5690, 15687}, {6054, 13178}, {7982, 31145}, {9140, 12368}, {9143, 12407}, {10706, 13211}, {10707, 12751}, {10709, 13532}, {10718, 12784}, {11112, 34697}, {11113, 34746}, {12699, 34718}, {14872, 24473}, {34632, 41869}, {34640, 34717}, {34647, 34700}, {47353, 47359}, {48937, 50415}
(50796) = reflection of X(i) in X(j) for these {i,j}: {3, 3828}, {376, 6684}, {381, 19925}, {549, 9956}, {551, 5}, {946, 381}, {1385, 547}, {3241, 13464}, {3576, 10172}, {3654, 4745}, {3655, 1125}, {3817, 38140}, {4297, 549}, {5882, 551}, {5901, 11737}, {10164, 38042}, {10165, 10175}, {10175, 5587}, {10246, 10171}, {11274, 11729}, {11362, 3679}, {11709, 45311}, {11710, 5461}, {11715, 45310}, {14831, 31760}, {15681, 12512}, {15686, 31663}, {21636, 22566}, {22793, 14893}, {24473, 31870}, {31162, 18483}, {31165, 20117}, {31673, 34648}, {34638, 3579}, {34648, 18480}, {34718, 3626}, {34748, 3635}, {38127, 5790}, {38155, 38138}, {39870, 597}, {49511, 11178}
(50796) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 3828, 38068}, {4, 38074, 3679}, {8, 3839, 31162}, {8, 18492, 18483}, {10, 18480, 31673}, {10, 31673, 31730}, {355, 946, 47745}, {355, 19925, 946}, {376, 5818, 19875}, {376, 19875, 6684}, {547, 1385, 19883}, {551, 38076, 5}, {944, 5071, 25055}, {1482, 12571, 946}, {1698, 34628, 3524}, {3091, 3241, 38021}, {3091, 5881, 13464}, {3241, 38021, 13464}, {3545, 34627, 1}, {3617, 50687, 34632}, {3654, 4745, 38127}, {3654, 5790, 4745}, {3655, 5055, 1125}, {3679, 37714, 38074}, {3830, 5790, 3654}, {3839, 31162, 18483}, {5055, 18525, 3655}, {5603, 41106, 30308}, {5691, 5818, 6684}, {5691, 19875, 376}, {5881, 38021, 3241}, {7989, 25055, 5071}, {9955, 37705, 3244}, {14269, 34718, 12699}, {15178, 38022, 551}, {18357, 18480, 10}, {18492, 31162, 3839}, {31399, 38068, 3828}, {34632, 50687, 41869}, {38144, 47353, 47359}


X(50797) = X(2)X(28224)∩X(355)X(381)

Barycentrics    13*a^4 - 12*a^3*b + a^2*b^2 + 12*a*b^3 - 14*b^4 - 12*a^3*c + 24*a^2*b*c - 12*a*b^2*c + a^2*c^2 - 12*a*b*c^2 + 28*b^2*c^2 + 12*a*c^3 - 14*c^4 : :
X(50797) = X[2] - 6 X[38138], X[3] - 6 X[38074], 2 X[8] + 3 X[14269], 8 X[10] - 3 X[15688], X[20] - 6 X[38081], X[145] - 6 X[38071], 12 X[165] - 7 X[3534], 2 X[165] - 7 X[5790], X[3534] - 6 X[5790], 4 X[355] + X[381], 13 X[355] + 2 X[946], 14 X[355] + X[1482], 9 X[355] + X[3656], 37 X[355] + 8 X[12571], 16 X[355] - X[12645], 11 X[355] + 4 X[19925], 17 X[355] - 2 X[47745], 13 X[381] - 8 X[946], 7 X[381] - 2 X[1482], 9 X[381] - 4 X[3656], 37 X[381] - 32 X[12571], 4 X[381] + X[12645], 11 X[381] - 16 X[19925], 17 X[381] + 8 X[47745], 28 X[946] - 13 X[1482], 18 X[946] - 13 X[3656], 37 X[946] - 52 X[12571], 32 X[946] + 13 X[12645], 11 X[946] - 26 X[19925], 17 X[946] + 13 X[47745], 9 X[1482] - 14 X[3656], 37 X[1482] - 112 X[12571], 8 X[1482] + 7 X[12645], 11 X[1482] - 56 X[19925], 17 X[1482] + 28 X[47745], 37 X[3656] - 72 X[12571], 16 X[3656] + 9 X[12645], 11 X[3656] - 36 X[19925], 17 X[3656] + 18 X[47745], 128 X[12571] + 37 X[12645], 22 X[12571] - 37 X[19925], 68 X[12571] + 37 X[47745], 11 X[12645] + 64 X[19925], 17 X[12645] - 32 X[47745], 34 X[19925] + 11 X[47745], X[382] + 4 X[3679], and many others

X(50797) lies on these lines: {2, 28224}, {3, 38074}, {8, 14269}, {10, 15688}, {20, 38081}, {30, 3617}, {145, 38071}, {165, 3534}, {355, 381}, {382, 3679}, {515, 15693}, {546, 31145}, {551, 5079}, {944, 15703}, {952, 19709}, {1656, 28204}, {1657, 38066}, {1698, 5054}, {3241, 3851}, {3545, 3623}, {3616, 5055}, {3622, 47478}, {3654, 28150}, {3655, 19862}, {3828, 15720}, {3830, 28174}, {3839, 8148}, {3855, 20049}, {4668, 18480}, {4816, 31162}, {5066, 10247}, {5071, 37624}, {5072, 5881}, {5076, 28194}, {5657, 15685}, {5690, 15684}, {5818, 15694}, {5844, 41099}, {7967, 10109}, {9780, 15707}, {9956, 15723}, {11001, 38112}, {12245, 14893}, {12702, 34648}, {14093, 28208}, {15695, 28186}, {15700, 19875}, {15701, 38042}, {15706, 18481}, {17504, 46933}, {18518, 28443}, {23046, 34631}, {28158, 35384}, {28198, 35434}, {37727, 38076}, {38099, 38753}

X(50797) = midpoint of X(i) and X(j) for these {i,j}: {3616, 34627}, {4816, 31162}
X(50797) = reflection of X(i) in X(j) for these {i,j}: {3655, 19862}, {15694, 5818}, {34718, 4668}, {34748, 3623}, {37624, 5071}
X(50797) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3545, 37705, 34748}, {5055, 34627, 18526}, {18357, 34627, 5055}, {18480, 34718, 38335}


X(50798) = X(8)X(30)∩X(355)X(381)

Barycentrics    5*a^4 - 6*a^3*b - a^2*b^2 + 6*a*b^3 - 4*b^4 - 6*a^3*c + 12*a^2*b*c - 6*a*b^2*c - a^2*c^2 - 6*a*b*c^2 + 8*b^2*c^2 + 6*a*c^3 - 4*c^4 : :
X(50798) = 2 X[1] - 3 X[5055], 3 X[5055] - X[34748], 2 X[2] - 3 X[5790], 5 X[2] - 3 X[7967], 4 X[2] - 3 X[10246], 7 X[2] - 6 X[38028], 5 X[2] - 6 X[38042], 5 X[5790] - 2 X[7967], 7 X[5790] - 4 X[38028], 5 X[5790] - 4 X[38042], 4 X[7967] - 5 X[10246], 7 X[7967] - 10 X[38028], 7 X[10246] - 8 X[38028], 5 X[10246] - 8 X[38042], 5 X[38028] - 7 X[38042], X[3] + 2 X[5881], 11 X[3] - 14 X[9588], 23 X[3] - 26 X[31425], 17 X[3] - 20 X[31447], 2 X[3] - 3 X[38066], 11 X[3679] - 7 X[9588], 23 X[3679] - 13 X[31425], 17 X[3679] - 10 X[31447], 4 X[3679] - 3 X[38066], 11 X[5881] + 7 X[9588], 23 X[5881] + 13 X[31425], 17 X[5881] + 10 X[31447], 4 X[5881] + 3 X[38066], 28 X[9588] - 33 X[38066], 52 X[31425] - 69 X[38066], 40 X[31447] - 51 X[38066], 2 X[5] - 3 X[38074], X[3241] - 3 X[38074], 7 X[8] - X[6361], 4 X[8] - X[12702], 2 X[8] + X[18525], 5 X[8] - X[34632], X[8] + 2 X[37705], 4 X[6361] - 7 X[12702], 2 X[6361] + 7 X[18525], X[6361] + 7 X[34627], 5 X[6361] - 7 X[34632], 2 X[6361] - 7 X[34718], X[6361] + 14 X[37705], X[12702] + 2 X[18525], X[12702] + 4 X[34627], 5 X[12702] - 4 X[34632], X[12702] + 8 X[37705], and many others

X(50798) lies on these lines: {1, 5055}, {2, 952}, {3, 3679}, {4, 31145}, {5, 3241}, {8, 30}, {10, 3655}, {40, 15681}, {55, 9897}, {80, 11238}, {100, 18515}, {119, 3829}, {140, 38081}, {145, 3545}, {165, 15695}, {182, 38087}, {200, 35459}, {355, 381}, {376, 5690}, {382, 28194}, {515, 3534}, {517, 3830}, {528, 5779}, {547, 1483}, {549, 944}, {551, 1656}, {956, 18524}, {958, 28443}, {962, 15687}, {999, 37708}, {1159, 4654}, {1351, 28538}, {1352, 9041}, {1376, 12773}, {1385, 15694}, {1657, 11362}, {2072, 47593}, {2095, 28452}, {3058, 12647}, {3090, 38022}, {3091, 20049}, {3242, 11178}, {3295, 37711}, {3434, 10742}, {3476, 11545}, {3524, 3617}, {3526, 3653}, {3543, 12245}, {3576, 15701}, {3579, 4668}, {3582, 37707}, {3584, 37706}, {3616, 15699}, {3621, 3839}, {3624, 32900}, {3625, 12699}, {3626, 15688}, {3632, 8148}, {3633, 9955}, {3818, 49690}, {3843, 7982}, {3845, 5844}, {3850, 5734}, {3851, 10222}, {3871, 28461}, {3893, 31937}, {3913, 13743}, {3940, 5176}, {4297, 14093}, {4421, 12331}, {4428, 7489}, {4678, 10304}, {4691, 15706}, {4701, 31673}, {4745, 15693}, {4746, 31730}, {4816, 41869}, {4870, 10827}, {4915, 18528}, {5066, 5603}, {5070, 15178}, {5071, 5901}, {5072, 13464}, {5073, 7991}, {5252, 15934}, {5434, 5708}, {5476, 38144}, {5493, 49137}, {5534, 50740}, {5550, 47599}, {5559, 9670}, {5563, 43731}, {5587, 10247}, {5642, 12898}, {5657, 8703}, {5687, 26321}, {5691, 15684}, {5727, 6767}, {5731, 12100}, {5816, 50113}, {5846, 20423}, {5886, 38155}, {5899, 37546}, {6684, 15700}, {6713, 38099}, {6914, 38665}, {6980, 37725}, {7373, 37709}, {7377, 40891}, {7970, 22566}, {7987, 15718}, {7989, 33179}, {8185, 37956}, {8197, 45380}, {8200, 11208}, {8204, 45379}, {8207, 11207}, {9053, 47354}, {9655, 41687}, {9778, 19710}, {9780, 11539}, {9812, 12101}, {9864, 48657}, {9947, 23340}, {9956, 15703}, {10056, 10950}, {10072, 10944}, {10109, 10283}, {10164, 15716}, {10589, 12735}, {10711, 12531}, {10914, 40266}, {10942, 17530}, {10943, 17533}, {11001, 28186}, {11112, 34698}, {11113, 34745}, {11179, 49524}, {11194, 11499}, {11237, 37710}, {11278, 18492}, {11680, 11698}, {11849, 28444}, {12438, 20128}, {12513, 37251}, {12751, 31140}, {13587, 32153}, {13607, 19883}, {13624, 15707}, {13632, 48802}, {13846, 35788}, {13847, 35789}, {14848, 47356}, {14872, 25413}, {14986, 43734}, {15640, 28178}, {15682, 28174}, {15685, 28160}, {15696, 43174}, {15709, 46933}, {15720, 38068}, {16200, 30308}, {16202, 16857}, {16417, 37535}, {16418, 37621}, {17549, 32141}, {17781, 18499}, {18323, 47490}, {18440, 49688}, {18519, 35000}, {19130, 49679}, {19540, 31136}, {19876, 46219}, {19877, 47598}, {19914, 34612}, {20050, 38071}, {20052, 50687}, {20053, 23046}, {20057, 47478}, {21677, 28460}, {22793, 35403}, {28212, 33699}, {29010, 50075}, {29617, 36731}, {31479, 37740}, {31657, 38092}, {31658, 38097}, {31659, 38100}, {32537, 37234}, {34689, 34746}, {34697, 34720}, {35822, 35843}, {35823, 35842}, {36279, 41684}, {36728, 50079}, {37545, 45287}, {38034, 41106}, {38067, 43175}, {39899, 49529}, {40726, 45976}, {44265, 47488}, {48903, 50575}, {48907, 50415}

X(50798) = midpoint of X(i) and X(j) for these {i,j}: {4, 31145}, {8, 34627}, {381, 12645}, {3543, 12245}, {3621, 34631}, {3625, 34648}, {3632, 31162}, {3679, 5881}, {10711, 12531}, {18525, 34718}, {34689, 34746}, {34697, 34720}, {34700, 34717}
X(50798) = reflection of X(i) in X(j) for these {i,j}: {3, 3679}, {376, 5690}, {381, 355}, {944, 549}, {962, 15687}, {1482, 381}, {1483, 547}, {3241, 5}, {3242, 11178}, {3534, 3654}, {3576, 38176}, {3654, 4669}, {3655, 10}, {4930, 11236}, {5603, 38138}, {5731, 38112}, {5882, 3828}, {5886, 38155}, {7967, 38042}, {7970, 22566}, {8148, 31162}, {10246, 5790}, {10247, 5587}, {11179, 49524}, {12699, 34648}, {12702, 34718}, {12898, 5642}, {15681, 40}, {15684, 5691}, {16200, 38140}, {18525, 34627}, {18526, 3655}, {20128, 12438}, {28460, 21677}, {31162, 18480}, {34627, 37705}, {34628, 3579}, {34631, 22791}, {34698, 11112}, {34718, 8}, {34745, 11113}, {34747, 10222}, {34748, 1}, {37727, 551}, {44265, 47488}, {48657, 9864}, {48661, 3543}, {48667, 10711}, {48907, 50415}
X(50798) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 3679, 38066}, {8, 18525, 12702}, {8, 37705, 18525}, {10, 3655, 5054}, {145, 18357, 18493}, {355, 12645, 1482}, {355, 47745, 12645}, {547, 1483, 38314}, {1385, 19875, 15694}, {3241, 38074, 5}, {3579, 34628, 15689}, {3621, 3839, 34631}, {3632, 18480, 8148}, {3653, 3828, 3526}, {3828, 5882, 3653}, {3839, 34631, 22791}, {5054, 18526, 3655}, {5055, 34748, 1}, {5818, 38314, 547}, {8148, 14269, 31162}, {9956, 25055, 15703}, {10222, 37714, 3851}, {12699, 34648, 38335}, {15703, 37624, 25055}, {18480, 31162, 14269}, {34747, 37714, 38021}, {34747, 38021, 10222}


X(50799) = X(1)X(38071)∩X(355)X(381)

Barycentrics    7*a^4 - 3*a^3*b + 4*a^2*b^2 + 3*a*b^3 - 11*b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c + 4*a^2*c^2 - 3*a*b*c^2 + 22*b^2*c^2 + 3*a*c^3 - 11*c^4 : :
X(50799) = X[1] - 6 X[38071], 11 X[2] - 6 X[17502], X[2] - 6 X[38140], X[17502] - 11 X[38140], X[3] - 6 X[38076], 8 X[5] - 3 X[3653], 22 X[5] - 7 X[30389], 33 X[3653] - 28 X[30389], 2 X[10] + 3 X[14269], X[20] - 6 X[38083], X[1698] + 5 X[18492], 11 X[1698] - 5 X[35242], 11 X[18492] + X[35242], X[40] + 4 X[14893], 3 X[165] + 2 X[33699], X[355] + 4 X[381], 7 X[355] + 8 X[946], 11 X[355] + 4 X[1482], 3 X[355] + 2 X[3656], 13 X[355] + 32 X[12571], 19 X[355] - 4 X[12645], X[355] - 16 X[19925], 23 X[355] - 8 X[47745], 7 X[381] - 2 X[946], 11 X[381] - X[1482], 6 X[381] - X[3656], 13 X[381] - 8 X[12571], 19 X[381] + X[12645], X[381] + 4 X[19925], 23 X[381] + 2 X[47745], 22 X[946] - 7 X[1482], 12 X[946] - 7 X[3656], 13 X[946] - 28 X[12571], 38 X[946] + 7 X[12645], X[946] + 14 X[19925], 23 X[946] + 7 X[47745], 6 X[1482] - 11 X[3656], 13 X[1482] - 88 X[12571], 19 X[1482] + 11 X[12645], X[1482] + 44 X[19925], 23 X[1482] + 22 X[47745], 13 X[3656] - 48 X[12571], 19 X[3656] + 6 X[12645], X[3656] + 24 X[19925], 23 X[3656] + 12 X[47745], 152 X[12571] + 13 X[12645], 2 X[12571] + 13 X[19925], and many others

X(50799) lies on these lines: {1, 38071}, {2, 17502}, {3, 38076}, {4, 28202}, {5, 3653}, {10, 14269}, {20, 38083}, {30, 1698}, {40, 14893}, {165, 33699}, {355, 381}, {382, 3828}, {515, 19709}, {517, 41099}, {546, 3679}, {547, 5691}, {549, 7989}, {550, 19876}, {551, 3851}, {952, 30308}, {1657, 38068}, {1699, 3860}, {3091, 28204}, {3241, 3855}, {3534, 10175}, {3543, 9956}, {3545, 3616}, {3576, 10109}, {3579, 50687}, {3617, 3839}, {3623, 9955}, {3624, 47478}, {3634, 15688}, {3654, 3845}, {3830, 26446}, {3832, 38074}, {3843, 28194}, {3850, 37727}, {3854, 10222}, {3856, 7982}, {3857, 5881}, {3858, 37714}, {3859, 11522}, {4297, 15703}, {4654, 12019}, {4668, 18357}, {4677, 38138}, {4816, 22791}, {5054, 31253}, {5055, 18481}, {5066, 5886}, {5071, 28208}, {5076, 31399}, {5818, 28198}, {6684, 15684}, {7991, 38081}, {9588, 12102}, {10164, 15685}, {10172, 15701}, {10283, 41990}, {10304, 33697}, {11001, 11231}, {11698, 41858}, {11737, 25055}, {12101, 38042}, {12737, 38077}, {12811, 38022}, {14892, 34773}, {15686, 31423}, {15687, 19875}, {15693, 28164}, {15695, 28172}, {15699, 34628}, {15704, 30315}, {15713, 28190}, {16192, 44903}, {18483, 34718}, {19708, 28168}, {37733, 38078}, {38104, 38753}

X(50799) = midpoint of X(i) and X(j) for these {i,j}: {3623, 34627}, {4668, 31162}, {19862, 34648}
X(50799) = reflection of X(3655) in X(3616)
X(50799) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3545, 18480, 3655}, {3845, 5587, 3654}, {5055, 34648, 18481}, {18357, 23046, 31162}


X(50800) = X(1)X(28186)∩X(355)X(381)

Barycentrics    11*a^4 - 6*a^3*b + 5*a^2*b^2 + 6*a*b^3 - 16*b^4 - 6*a^3*c + 12*a^2*b*c - 6*a*b^2*c + 5*a^2*c^2 - 6*a*b*c^2 + 32*b^2*c^2 + 6*a*c^3 - 16*c^4 : :
X(50800) = 13 X[3] - 34 X[30315], 5 X[3] - 12 X[38083], 13 X[19876] - 17 X[30315], 5 X[19876] - 6 X[38083], 85 X[30315] - 78 X[38083], 4 X[4] + 3 X[38066], X[8] + 6 X[23046], 4 X[10] + 3 X[38335], 2 X[40] + 5 X[35403], 2 X[355] + 5 X[381], 11 X[355] + 10 X[946], 16 X[355] + 5 X[1482], 9 X[355] + 5 X[3656], 23 X[355] + 40 X[12571], 26 X[355] - 5 X[12645], X[355] + 20 X[19925], 31 X[355] - 10 X[47745], 11 X[381] - 4 X[946], 8 X[381] - X[1482], 9 X[381] - 2 X[3656], 23 X[381] - 16 X[12571], 13 X[381] + X[12645], X[381] - 8 X[19925], 31 X[381] + 4 X[47745], 32 X[946] - 11 X[1482], 18 X[946] - 11 X[3656], 23 X[946] - 44 X[12571], 52 X[946] + 11 X[12645], X[946] - 22 X[19925], 31 X[946] + 11 X[47745], 9 X[1482] - 16 X[3656], 23 X[1482] - 128 X[12571], 13 X[1482] + 8 X[12645], X[1482] - 64 X[19925], 31 X[1482] + 32 X[47745], 23 X[3656] - 72 X[12571], 26 X[3656] + 9 X[12645], X[3656] - 36 X[19925], 31 X[3656] + 18 X[47745], 208 X[12571] + 23 X[12645], 2 X[12571] - 23 X[19925], 124 X[12571] + 23 X[47745], X[12645] + 104 X[19925], 31 X[12645] - 52 X[47745], 62 X[19925] + X[47745], 4 X[546] + 3 X[38074], and many others

X(50800) lies on these lines: {2, 28186}, {3, 19876}, {4, 38066}, {8, 23046}, {10, 38335}, {30, 9780}, {40, 35403}, {355, 381}, {546, 38074}, {551, 5072}, {944, 11737}, {952, 41106}, {1656, 38076}, {1657, 3828}, {1698, 15689}, {3241, 3850}, {3534, 10164}, {3545, 3622}, {3616, 14892}, {3624, 5055}, {3634, 15706}, {3653, 5079}, {3654, 28232}, {3655, 15808}, {3679, 3843}, {3715, 12702}, {3830, 5587}, {3839, 4678}, {3845, 5790}, {3851, 9624}, {3860, 38138}, {3861, 38081}, {4297, 15723}, {5054, 34648}, {5066, 10283}, {5068, 38022}, {5657, 12101}, {5691, 15694}, {5818, 15687}, {7988, 10246}, {7989, 15703}, {9955, 34748}, {9956, 15681}, {10175, 15693}, {10247, 30308}, {11231, 15695}, {14893, 48661}, {15682, 38042}, {15684, 19875}, {15688, 31673}, {15696, 38068}, {15698, 28190}, {15701, 28160}, {18491, 28453}, {18493, 20057}, {19877, 45759}, {31399, 49136}, {38087, 48889}, {46333, 46932}

X(50800) = midpoint of X(20057) and X(34627)
X(50800) = reflection of X(i) in X(j) for these {i,j}: {3, 19876}, {3655, 15808}, {15703, 7989}, {34718, 4678}
X(50800) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3839, 18357, 34718}, {34627, 38071, 18493}


X(50801) = X(2)X(28236)∩X(355)X(381)

Barycentrics    14*a^4 - 15*a^3*b - a^2*b^2 + 15*a*b^3 - 13*b^4 - 15*a^3*c + 30*a^2*b*c - 15*a*b^2*c - a^2*c^2 - 15*a*b*c^2 + 26*b^2*c^2 + 15*a*c^3 - 13*c^4 : :
X(50801) = 13 X[2] - 9 X[30392], X[2] + 3 X[37712], X[2] - 3 X[38155], 3 X[30392] + 13 X[37712], 3 X[30392] - 13 X[38155], 5 X[8] + 3 X[50687], 5 X[34648] - 3 X[50687], 5 X[10] - 3 X[3524], 3 X[3524] + 5 X[34627], X[20] - 5 X[3679], 2 X[20] - 5 X[43174], 4 X[140] - 5 X[3828], 5 X[355] - X[381], 7 X[355] - X[946], 13 X[355] - X[1482], 9 X[355] - X[3656], 11 X[355] - 2 X[12571], 11 X[355] + X[12645], 4 X[355] - X[19925], 5 X[355] + X[47745], 7 X[381] - 5 X[946], 13 X[381] - 5 X[1482], 9 X[381] - 5 X[3656], 11 X[381] - 10 X[12571], 11 X[381] + 5 X[12645], 4 X[381] - 5 X[19925], 13 X[946] - 7 X[1482], 9 X[946] - 7 X[3656], 11 X[946] - 14 X[12571], 11 X[946] + 7 X[12645], 4 X[946] - 7 X[19925], 5 X[946] + 7 X[47745], 9 X[1482] - 13 X[3656], 11 X[1482] - 26 X[12571], 11 X[1482] + 13 X[12645], 4 X[1482] - 13 X[19925], 5 X[1482] + 13 X[47745], 11 X[3656] - 18 X[12571], 11 X[3656] + 9 X[12645], 4 X[3656] - 9 X[19925], 5 X[3656] + 9 X[47745], 2 X[12571] + X[12645], 8 X[12571] - 11 X[19925], 10 X[12571] + 11 X[47745], 4 X[12645] + 11 X[19925], 5 X[12645] - 11 X[47745], 5 X[19925] + 4 X[47745], and many others

X(50801) lies on these lines: {2, 28236}, {4, 34641}, {8, 34648}, {10, 3524}, {20, 3679}, {30, 3626}, {140, 3828}, {355, 381}, {376, 38098}, {515, 4745}, {516, 4669}, {517, 12101}, {547, 13607}, {551, 3090}, {952, 10109}, {1125, 15699}, {3091, 34747}, {3241, 5068}, {3244, 3545}, {3534, 38127}, {3617, 34628}, {3625, 31162}, {3627, 28194}, {3632, 3839}, {3634, 3655}, {3635, 14892}, {3636, 5055}, {3653, 31399}, {3654, 15685}, {3830, 28228}, {3845, 28234}, {4301, 31145}, {4668, 34632}, {4691, 15689}, {4701, 18480}, {4746, 31673}, {5070, 5882}, {5073, 11362}, {5493, 11541}, {5690, 44903}, {5790, 15701}, {5818, 19883}, {6684, 14891}, {7991, 50690}, {11180, 49536}, {11237, 12563}, {11278, 23046}, {11522, 20049}, {11540, 31662}, {11737, 33179}, {12512, 15691}, {12811, 13464}, {15716, 26446}, {15721, 19875}, {16200, 41106}, {18483, 41987}, {18492, 34631}, {18526, 19878}, {28224, 44580}, {28232, 33699}, {31253, 41984}, {38081, 44682}, {38140, 41990}, {38191, 43273}, {40273, 45762}

X(50801) = midpoint of X(i) and X(j) for these {i,j}: {4, 34641}, {8, 34648}, {10, 34627}, {381, 47745}, {551, 5881}, {3625, 31162}, {4301, 31145}, {11180, 49536}, {31673, 34718}, {37712, 38155}
X(50801) = reflection of X(i) in X(j) for these {i,j}: {3655, 3634}, {13607, 547}, {33179, 11737}, {34718, 4746}, {43174, 3679}
X(50801) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3241, 37714, 38076}, {5881, 38074, 551}


X(50802) = X(2)X(165)∩X(355)X(381)

Barycentrics    2*a^3 + a^2*b + 4*a*b^2 - 7*b^3 + a^2*c - 8*a*b*c + 7*b^2*c + 4*a*c^2 + 7*b*c^2 - 7*c^3 : :
X(50802) = X[1] + 3 X[3839], 3 X[3839] - X[34648], 7 X[2] - 3 X[165], X[2] + 3 X[1699], X[2] - 3 X[3817], 5 X[2] - 9 X[7988], 11 X[2] - 3 X[9778], X[2] - 9 X[9779], 5 X[2] + 3 X[9812], 5 X[2] - 3 X[10164], 2 X[2] - 3 X[10171], X[2] - 5 X[30308], X[165] + 7 X[1699], X[165] - 7 X[3817], 5 X[165] - 21 X[7988], 11 X[165] - 7 X[9778], X[165] - 21 X[9779], 5 X[165] + 7 X[9812], 5 X[165] - 7 X[10164], 2 X[165] - 7 X[10171], 3 X[165] - 35 X[30308], 5 X[1699] + 3 X[7988], 11 X[1699] + X[9778], X[1699] + 3 X[9779], 5 X[1699] - X[9812], 5 X[1699] + X[10164], 2 X[1699] + X[10171], 3 X[1699] + 5 X[30308], 5 X[3817] - 3 X[7988], 11 X[3817] - X[9778], X[3817] - 3 X[9779], 5 X[3817] + X[9812], 5 X[3817] - X[10164], 3 X[3817] - 5 X[30308], 33 X[7988] - 5 X[9778], X[7988] - 5 X[9779], 3 X[7988] + X[9812], 3 X[7988] - X[10164], 6 X[7988] - 5 X[10171], 9 X[7988] - 25 X[30308], X[9778] - 33 X[9779], 5 X[9778] + 11 X[9812], 5 X[9778] - 11 X[10164], 2 X[9778] - 11 X[10171], 3 X[9778] - 55 X[30308], 15 X[9779] + X[9812], 15 X[9779] - X[10164], 6 X[9779] - X[10171], 9 X[9779] - 5 X[30308], 2 X[9812] + 5 X[10171], and many others

X(50802) lies on these lines: {1, 3839}, {2, 165}, {4, 551}, {5, 3828}, {10, 3545}, {11, 553}, {30, 1125}, {40, 5071}, {114, 2796}, {140, 28202}, {226, 11238}, {355, 381}, {376, 8227}, {382, 3653}, {497, 43179}, {515, 3845}, {517, 3956}, {527, 3829}, {535, 22835}, {546, 13464}, {547, 6684}, {549, 12512}, {671, 21636}, {726, 44422}, {950, 4870}, {952, 3860}, {962, 19875}, {1385, 15687}, {1537, 38077}, {1538, 49736}, {1656, 38068}, {1698, 34632}, {2784, 12258}, {3058, 13405}, {3090, 5493}, {3091, 3679}, {3241, 3832}, {3244, 18492}, {3524, 19862}, {3534, 10165}, {3543, 4297}, {3576, 15682}, {3579, 15699}, {3582, 4292}, {3584, 10624}, {3616, 34628}, {3624, 10304}, {3625, 34631}, {3626, 22791}, {3627, 38022}, {3634, 5055}, {3635, 18480}, {3636, 3655}, {3646, 50727}, {3654, 10175}, {3671, 10591}, {3830, 5886}, {3843, 5882}, {3851, 11362}, {3854, 31145}, {3855, 7982}, {3858, 10222}, {3861, 15178}, {3884, 16616}, {3944, 4353}, {3947, 9614}, {4052, 14484}, {4298, 10072}, {4342, 10590}, {4428, 19541}, {4654, 11019}, {4669, 5587}, {4677, 38155}, {4691, 34718}, {4701, 18357}, {4746, 8148}, {4856, 32431}, {5054, 19878}, {5056, 9589}, {5057, 10032}, {5068, 7991}, {5072, 31399}, {5087, 20103}, {5219, 10385}, {5226, 30331}, {5267, 28461}, {5274, 5542}, {5325, 24703}, {5584, 19536}, {5603, 28236}, {5691, 38314}, {5714, 21625}, {5715, 45700}, {5734, 34747}, {5806, 44663}, {5818, 38098}, {5847, 47354}, {5850, 24386}, {5901, 14893}, {6054, 11599}, {6175, 41012}, {6738, 10896}, {6744, 9669}, {6745, 49719}, {7377, 41141}, {7384, 41140}, {7681, 12558}, {7704, 34637}, {7987, 10248}, {8703, 11230}, {9588, 15022}, {9612, 12577}, {9770, 17132}, {9956, 11737}, {10056, 12575}, {10109, 10172}, {10124, 31663}, {10151, 47593}, {10246, 41150}, {10478, 42057}, {10706, 13605}, {10707, 21635}, {10711, 21630}, {10863, 31140}, {11231, 28232}, {11237, 12053}, {11372, 38073}, {11680, 17781}, {11812, 28178}, {12047, 12563}, {12100, 28146}, {12101, 28160}, {13374, 31871}, {13912, 42602}, {13975, 42603}, {15690, 28154}, {15703, 48661}, {15708, 34595}, {15709, 35242}, {15721, 16192}, {15759, 28182}, {16189, 20049}, {17502, 19710}, {17578, 30389}, {17604, 30329}, {17618, 34612}, {18249, 25639}, {18481, 38335}, {20423, 34379}, {24473, 31803}, {25935, 31048}, {28172, 33699}, {28234, 38140}, {36990, 38023}, {36991, 38024}, {38035, 47353}, {38049, 43273}, {38146, 47359}, {38176, 41990}, {48764, 48778}, {48765, 48779}

X(50802) = midpoint of X(i) and X(j) for these {i,j}: {1, 34648}, {4, 551}, {10, 31162}, {381, 946}, {547, 40273}, {549, 22793}, {671, 21636}, {1385, 15687}, {1699, 3817}, {3244, 34627}, {3543, 4297}, {3625, 34631}, {3655, 31673}, {3679, 4301}, {5901, 14893}, {6054, 11599}, {7982, 34641}, {9812, 10164}, {10706, 13605}, {10707, 21635}, {10711, 21630}, {24473, 31803}, {34638, 41869}
X(50802) = reflection of X(i) in X(j) for these {i,j}: {381, 12571}, {3655, 3636}, {3828, 5}, {6684, 547}, {9956, 11737}, {10171, 3817}, {12512, 549}, {19925, 381}, {31663, 10124}, {34718, 4691}, {43174, 3828}
X(50802) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3839, 34648}, {2, 9779, 30308}, {2, 30308, 3817}, {4, 38021, 551}, {376, 8227, 19883}, {946, 12571, 19925}, {1699, 7988, 9812}, {1699, 9779, 3817}, {1699, 30308, 2}, {3091, 3679, 38076}, {3524, 41869, 34638}, {3543, 25055, 4297}, {3545, 31162, 10}, {3616, 50687, 34628}, {3654, 19709, 10175}, {3655, 14269, 31673}, {3817, 10164, 7988}, {4301, 38076, 3679}, {7982, 38074, 34641}, {7988, 9812, 10164}, {9955, 18483, 1125}, {14269, 18493, 3655}, {18493, 31673, 3636}, {19862, 34638, 3524}


X(50803) = X(2)X(28164)∩X(355)X(381)

Barycentrics    10*a^4 - 3*a^3*b + 7*a^2*b^2 + 3*a*b^3 - 17*b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c + 7*a^2*c^2 - 3*a*b*c^2 + 34*b^2*c^2 + 3*a*c^3 - 17*c^4 : :
X(50803) = X[4] + 3 X[38076], X[3828] - 3 X[38076], 17 X[5] - 5 X[31666], X[10] + 3 X[3839], 5 X[10] - X[34632], 15 X[3839] + X[34632], X[355] + 7 X[381], 5 X[355] + 7 X[946], 17 X[355] + 7 X[1482], 9 X[355] + 7 X[3656], 2 X[355] + 7 X[12571], 31 X[355] - 7 X[12645], X[355] - 7 X[19925], 19 X[355] - 7 X[47745], 5 X[381] - X[946], 17 X[381] - X[1482], 9 X[381] - X[3656], 31 X[381] + X[12645], 19 X[381] + X[47745], 17 X[946] - 5 X[1482], 9 X[946] - 5 X[3656], 2 X[946] - 5 X[12571], 31 X[946] + 5 X[12645], X[946] + 5 X[19925], 19 X[946] + 5 X[47745], 9 X[1482] - 17 X[3656], 2 X[1482] - 17 X[12571], 31 X[1482] + 17 X[12645], X[1482] + 17 X[19925], 19 X[1482] + 17 X[47745], 2 X[3656] - 9 X[12571], 31 X[3656] + 9 X[12645], X[3656] + 9 X[19925], 19 X[3656] + 9 X[47745], 31 X[12571] + 2 X[12645], X[12571] + 2 X[19925], 19 X[12571] + 2 X[47745], X[12645] - 31 X[19925], 19 X[12645] - 31 X[47745], 19 X[19925] - X[47745], X[382] + 3 X[38068], 5 X[3845] + 3 X[38042], X[3845] + 3 X[38140], X[38042] - 5 X[38140], X[551] - 5 X[3091], X[962] + 3 X[38098], X[1125] - 3 X[3545], X[1125] + 5 X[18492]and many others

X(50803) lies on these lines: {2, 28164}, {4, 3828}, {5, 31666}, {10, 3839}, {30, 3634}, {355, 381}, {382, 38068}, {515, 5066}, {516, 3845}, {517, 3860}, {546, 28194}, {551, 3091}, {962, 38098}, {1125, 3545}, {1698, 34638}, {1699, 4669}, {3146, 19876}, {3241, 3854}, {3524, 31253}, {3543, 7989}, {3626, 31162}, {3627, 38083}, {3635, 34627}, {3636, 18480}, {3653, 5072}, {3679, 3832}, {3817, 7967}, {3830, 10175}, {3843, 43174}, {3850, 28204}, {3855, 38021}, {3857, 13464}, {3861, 28202}, {4297, 5071}, {4301, 38074}, {4691, 18483}, {4745, 5587}, {4746, 18357}, {5055, 19878}, {5493, 50689}, {5691, 19883}, {5886, 41150}, {6684, 15687}, {6744, 10895}, {7384, 41141}, {8703, 10172}, {9956, 14893}, {10109, 28160}, {10164, 15682}, {10171, 19709}, {11231, 33699}, {11539, 33697}, {11737, 28208}, {11812, 28168}, {12100, 28172}, {12101, 28150}, {13624, 47478}, {15705, 19872}, {19862, 34628}, {30315, 50688}, {31730, 38335}, {34379, 47354}, {34641, 37714}, {36990, 38089}, {36991, 38094}, {38146, 47353}

X(50803) = midpoint of X(i) and X(j) for these {i,j}: {4, 3828}, {381, 19925}, {1125, 34648}, {3543, 12512}, {3626, 31162}, {3635, 34627}, {6684, 15687}, {9956, 14893}
X(50803) = reflection of X(12571) in X(381)
X(50803) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 38076, 3828}, {1698, 50687, 34638}, {3545, 18492, 34648}, {3545, 34648, 1125}


X(50804) = X(1)X(15699)∩X(355)X(381)

Barycentrics    11*a^4 - 15*a^3*b - 4*a^2*b^2 + 15*a*b^3 - 7*b^4 - 15*a^3*c + 30*a^2*b*c - 15*a*b^2*c - 4*a^2*c^2 - 15*a*b*c^2 + 14*b^2*c^2 + 15*a*c^3 - 7*c^4 : :
X(50804) = 5 X[1] - 6 X[15699], 5 X[2] - 6 X[38176], 5 X[8] - 3 X[3524], 7 X[8] - 4 X[13624], 6 X[3524] - 5 X[3655], 21 X[3524] - 20 X[13624], 7 X[3655] - 8 X[13624], X[20] - 5 X[31145], 5 X[40] - 4 X[15691], 16 X[140] - 15 X[3653], 4 X[140] - 5 X[3679], 8 X[140] - 5 X[37727], 3 X[3653] - 4 X[3679], 3 X[3653] - 2 X[37727], 6 X[165] - 7 X[3654], 3 X[165] - 7 X[4677], 15 X[165] - 14 X[8703], 5 X[3654] - 4 X[8703], 5 X[4677] - 2 X[8703], 5 X[355] - 4 X[381], 11 X[355] - 8 X[946], 7 X[355] - 4 X[1482], 3 X[355] - 2 X[3656], 41 X[355] - 32 X[12571], X[355] - 4 X[12645], 19 X[355] - 16 X[19925], 5 X[355] - 8 X[47745], 11 X[381] - 10 X[946], 7 X[381] - 5 X[1482], 6 X[381] - 5 X[3656], 41 X[381] - 40 X[12571], X[381] - 5 X[12645], 19 X[381] - 20 X[19925], 14 X[946] - 11 X[1482], 12 X[946] - 11 X[3656], 41 X[946] - 44 X[12571], 2 X[946] - 11 X[12645], 19 X[946] - 22 X[19925], 5 X[946] - 11 X[47745], 6 X[1482] - 7 X[3656], 41 X[1482] - 56 X[12571], X[1482] - 7 X[12645], 19 X[1482] - 28 X[19925], 5 X[1482] - 14 X[47745], 41 X[3656] - 48 X[12571], X[3656] - 6 X[12645], 19 X[3656] - 24 X[19925]and many others

X(50804) lies on these lines: {1, 15699}, {2, 38176}, {3, 34641}, {5, 34747}, {8, 3524}, {10, 34748}, {20, 28204}, {30, 3632}, {40, 15691}, {140, 3653}, {165, 952}, {355, 381}, {515, 15685}, {517, 15682}, {551, 5070}, {1385, 15721}, {1483, 19875}, {1698, 41984}, {2136, 3652}, {3090, 3241}, {3244, 5055}, {3534, 28236}, {3545, 20050}, {3576, 44580}, {3579, 20052}, {3621, 12699}, {3625, 15689}, {3626, 5054}, {3627, 5881}, {3633, 14892}, {3830, 28234}, {3839, 11278}, {3845, 37712}, {3861, 7982}, {4669, 15701}, {4678, 32900}, {4701, 18526}, {4745, 10246}, {4816, 34773}, {5066, 16200}, {5068, 10222}, {5071, 33179}, {5073, 28194}, {5690, 14891}, {5844, 12101}, {5882, 38066}, {5886, 10109}, {8148, 34648}, {9955, 20014}, {11531, 15687}, {11541, 28202}, {12245, 28208}, {12811, 38021}, {13607, 15694}, {15693, 38127}, {15713, 30392}, {18480, 20053}, {19709, 38155}, {22791, 41987}, {25439, 28453}, {30308, 38138}, {31162, 37705}, {32214, 44847}, {38083, 46935}, {44265, 47534}

X(50804) = midpoint of X(i) and X(j) for these {i,j}: {3621, 34627}, {20053, 34631}
X(50804) = reflection of X(i) in X(j) for these {i,j}: {3, 34641}, {381, 47745}, {3654, 4677}, {3655, 8}, {8148, 34648}, {11531, 15687}, {12699, 34627}, {18481, 34718}, {20049, 10222}, {31162, 37705}, {34631, 18480}, {34718, 3625}, {34747, 5}, {34748, 10}, {37727, 3679}, {44265, 47534}
X(50804) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3679, 37727, 3653}, {13607, 38098, 15694}, {20049, 38074, 10222}


X(50805) = X(30)X(145)∩X(355)X(381)

Barycentrics    7*a^4 - 12*a^3*b - 5*a^2*b^2 + 12*a*b^3 - 2*b^4 - 12*a^3*c + 24*a^2*b*c - 12*a*b^2*c - 5*a^2*c^2 - 12*a*b*c^2 + 4*b^2*c^2 + 12*a*c^3 - 2*c^4 : :
X(50805) = 4 X[1] - 3 X[5054], 3 X[5054] - 2 X[34718], 2 X[2] - 3 X[10247], 5 X[2] - 6 X[10283], 7 X[2] - 6 X[38112], 5 X[10247] - 4 X[10283], 7 X[10247] - 4 X[38112], 7 X[10283] - 5 X[38112], 2 X[8] - 3 X[5055], 2 X[145] + X[8148], 4 X[145] - X[18526], 2 X[8148] + X[18526], X[18526] + 4 X[34631], 2 X[34631] + X[34748], 4 X[40] - 5 X[14093], 4 X[355] - 5 X[381], 7 X[355] - 10 X[946], 2 X[355] - 5 X[1482], 3 X[355] - 5 X[3656], 31 X[355] - 40 X[12571], 8 X[355] - 5 X[12645], 17 X[355] - 20 X[19925], 13 X[355] - 10 X[47745], 7 X[381] - 8 X[946], 3 X[381] - 4 X[3656], 31 X[381] - 32 X[12571], 17 X[381] - 16 X[19925], 13 X[381] - 8 X[47745], 4 X[946] - 7 X[1482], 6 X[946] - 7 X[3656], 31 X[946] - 28 X[12571], 16 X[946] - 7 X[12645], 17 X[946] - 14 X[19925], 13 X[946] - 7 X[47745], 3 X[1482] - 2 X[3656], 31 X[1482] - 16 X[12571], 4 X[1482] - X[12645], 17 X[1482] - 8 X[19925], 13 X[1482] - 4 X[47745], 31 X[3656] - 24 X[12571], 8 X[3656] - 3 X[12645], 17 X[3656] - 12 X[19925], 13 X[3656] - 6 X[47745], 64 X[12571] - 31 X[12645], 34 X[12571] - 31 X[19925], 52 X[12571] - 31 X[47745], and many others

X(50805) lies on these lines: {1, 5054}, {2, 5844}, {3, 3241}, {4, 20049}, {5, 31145}, {8, 5055}, {30, 145}, {40, 14093}, {355, 381}, {376, 1483}, {382, 7982}, {517, 3534}, {547, 10595}, {549, 12245}, {551, 3526}, {944, 15681}, {952, 3830}, {956, 28453}, {962, 15684}, {1000, 28465}, {1351, 9041}, {1385, 15700}, {1656, 3679}, {1657, 28194}, {3090, 38081}, {3244, 3655}, {3295, 28443}, {3524, 3623}, {3545, 3621}, {3576, 15716}, {3617, 15699}, {3622, 11539}, {3632, 18493}, {3633, 11278}, {3635, 15706}, {3653, 11362}, {3654, 10164}, {3839, 20014}, {3851, 5734}, {4301, 5076}, {4421, 22765}, {4669, 5886}, {4677, 5790}, {5070, 38022}, {5072, 16189}, {5079, 13464}, {5559, 31480}, {5603, 19709}, {5657, 15701}, {5690, 15694}, {5691, 35434}, {5697, 17637}, {5731, 15695}, {5882, 15696}, {5901, 15703}, {7967, 8703}, {7970, 48657}, {9053, 20423}, {9589, 49133}, {9655, 11280}, {10385, 37728}, {11001, 28212}, {11009, 11237}, {11194, 11849}, {11207, 11876}, {11208, 11875}, {11531, 28198}, {11898, 28538}, {12000, 16418}, {12001, 16417}, {12626, 20128}, {12653, 18499}, {12773, 25416}, {13846, 35810}, {13847, 35811}, {14269, 20050}, {15682, 28224}, {15685, 28174}, {15686, 20070}, {15689, 34632}, {15707, 20057}, {15723, 25055}, {16191, 30308}, {17612, 19706}, {18323, 47536}, {18357, 20053}, {18440, 49679}, {18543, 41575}, {20054, 38071}, {23960, 31160}, {24473, 25413}, {26726, 41711}, {28202, 49137}, {28208, 48661}, {28456, 37547}, {34698, 34749}, {34699, 34745}, {35381, 41150}, {37958, 47491}, {38138, 41106}, {39899, 49681}, {41985, 46931}, {44265, 47493}, {46933, 47599}, {46934, 47598}

X(50805) = midpoint of X(i) and X(j) for these {i,j}: {4, 20049}, {145, 34631}, {3633, 31162}, {7982, 34747}, {8148, 34748}, {20050, 34627}, {34710, 34743}
X(50805) = reflection of X(i) in X(j) for these {i,j}: {3, 3241}, {376, 1483}, {381, 1482}, {3655, 3244}, {3679, 10222}, {5790, 16200}, {8148, 34631}, {12245, 549}, {12645, 381}, {12702, 3655}, {15681, 944}, {15684, 962}, {18525, 31162}, {18526, 34748}, {20070, 15686}, {20128, 12626}, {25413, 24473}, {31145, 5}, {31160, 23960}, {31162, 11278}, {34627, 22791}, {34632, 34773}, {34641, 13464}, {34698, 34749}, {34718, 1}, {34745, 34699}, {34748, 145}, {44265, 47493}, {48657, 7970}
X(50805) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 34718, 5054}, {145, 8148, 18526}, {551, 38066, 3526}, {3633, 11278, 18525}, {3654, 10246, 15693}, {3655, 12702, 15688}, {3679, 9624, 38083}, {5690, 38314, 15694}, {18525, 31162, 38335}, {22791, 34627, 14269}, {34632, 34773, 15689}


X(50806) = X(1)X(14269)∩X(355)X(381)

Barycentrics    a^4 + 6*a^3*b + 7*a^2*b^2 - 6*a*b^3 - 8*b^4 + 6*a^3*c - 12*a^2*b*c + 6*a*b^2*c + 7*a^2*c^2 + 6*a*b*c^2 + 16*b^2*c^2 - 6*a*c^3 - 8*c^4 : :
X(50806) = 2 X[1] + 3 X[14269], X[2] - 6 X[38034], X[3] - 6 X[38021], 8 X[5] - 3 X[38066], X[8] - 6 X[38071], X[20] - 6 X[38022], 2 X[3616] - 5 X[18493], 2 X[40] - 7 X[15703], 2 X[355] - 7 X[381], X[355] + 14 X[946], 8 X[355] + 7 X[1482], 3 X[355] + 7 X[3656], 11 X[355] - 56 X[12571], 22 X[355] - 7 X[12645], 13 X[355] - 28 X[19925], 29 X[355] - 14 X[47745], X[381] + 4 X[946], 4 X[381] + X[1482], 3 X[381] + 2 X[3656], 11 X[381] - 16 X[12571], 11 X[381] - X[12645], 13 X[381] - 8 X[19925], 29 X[381] - 4 X[47745], 16 X[946] - X[1482], 6 X[946] - X[3656], 11 X[946] + 4 X[12571], 44 X[946] + X[12645], 13 X[946] + 2 X[19925], 29 X[946] + X[47745], 3 X[1482] - 8 X[3656], 11 X[1482] + 64 X[12571], 11 X[1482] + 4 X[12645], 13 X[1482] + 32 X[19925], 29 X[1482] + 16 X[47745], 11 X[3656] + 24 X[12571], 22 X[3656] + 3 X[12645], 13 X[3656] + 12 X[19925], 29 X[3656] + 6 X[47745], 16 X[12571] - X[12645], 26 X[12571] - 11 X[19925], 116 X[12571] - 11 X[47745], 13 X[12645] - 88 X[19925], 29 X[12645] - 44 X[47745], 58 X[19925] - 13 X[47745], X[376] + 4 X[40273], X[382] + 4 X[551], 4 X[546] + X[3241]and many others

X(50806) lies on these lines: {1, 14269}, {2, 28174}, {3, 28202}, {5, 38066}, {8, 38071}, {20, 38022}, {30, 3616}, {40, 15703}, {355, 381}, {376, 40273}, {382, 551}, {516, 15693}, {517, 19709}, {546, 3241}, {547, 962}, {549, 48661}, {944, 14893}, {952, 41099}, {1125, 15688}, {1385, 15684}, {1656, 28194}, {1657, 3653}, {1698, 5055}, {1699, 3830}, {3534, 5886}, {3543, 5901}, {3545, 3617}, {3576, 15685}, {3582, 37545}, {3623, 3839}, {3624, 15707}, {3654, 3817}, {3655, 18483}, {3679, 3851}, {3828, 5079}, {3843, 11522}, {3845, 5603}, {3850, 38074}, {3855, 31145}, {3858, 5734}, {4301, 5072}, {4654, 7743}, {4668, 8148}, {4677, 38140}, {5054, 12699}, {5066, 5790}, {5073, 9624}, {5550, 17504}, {5657, 10109}, {5731, 33699}, {6361, 11539}, {7991, 38083}, {8227, 15694}, {8703, 9812}, {9589, 46219}, {9778, 11812}, {9780, 47478}, {10248, 35404}, {10283, 12101}, {11001, 38028}, {11230, 15701}, {11238, 15934}, {12811, 38081}, {15681, 22793}, {15687, 38314}, {15689, 41869}, {15695, 28146}, {15697, 28182}, {15699, 34632}, {15700, 19883}, {15706, 31730}, {15713, 28216}, {18357, 20052}, {18480, 34748}, {18526, 34648}, {19708, 28178}, {19914, 38077}, {23046, 34627}, {28208, 35403}, {28465, 31671}, {29622, 36731}, {30389, 49134}, {34773, 50687}, {35272, 50397}, {38026, 38753}

X(50806) = midpoint of X(i) and X(j) for these {i,j}: {1698, 31162}, {20052, 34631}, {35403, 37624}
X(50806) = reflection of X(i) in X(j) for these {i,j}: {15694, 8227}, {19709, 30308}, {34718, 3617}
X(50806) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3545, 22791, 34718}, {3655, 18483, 38335}, {5055, 31162, 12702}, {9955, 31162, 5055}, {22793, 25055, 15681}


X(50807) = X(2)X(28146)∩X(355)X(381)

Barycentrics    5*a^4 + 3*a^3*b + 8*a^2*b^2 - 3*a*b^3 - 13*b^4 + 3*a^3*c - 6*a^2*b*c + 3*a*b^2*c + 8*a^2*c^2 + 3*a*b*c^2 + 26*b^2*c^2 - 3*a*c^3 - 13*c^4 : :
X(50807) = X[1] + 6 X[23046], 4 X[4] + 3 X[3653], X[40] - 8 X[11737], X[355] - 8 X[381], 5 X[355] + 16 X[946], 13 X[355] + 8 X[1482], 3 X[355] + 4 X[3656], X[355] - 64 X[12571], 29 X[355] - 8 X[12645], 11 X[355] - 32 X[19925], 37 X[355] - 16 X[47745], 5 X[381] + 2 X[946], 13 X[381] + X[1482], 6 X[381] + X[3656], X[381] - 8 X[12571], 29 X[381] - X[12645], 11 X[381] - 4 X[19925], 37 X[381] - 2 X[47745], 26 X[946] - 5 X[1482], 12 X[946] - 5 X[3656], X[946] + 20 X[12571], 58 X[946] + 5 X[12645], 11 X[946] + 10 X[19925], 37 X[946] + 5 X[47745], 6 X[1482] - 13 X[3656], X[1482] + 104 X[12571], 29 X[1482] + 13 X[12645], 11 X[1482] + 52 X[19925], 37 X[1482] + 26 X[47745], X[3656] + 48 X[12571], 29 X[3656] + 6 X[12645], 11 X[3656] + 24 X[19925], 37 X[3656] + 12 X[47745], 232 X[12571] - X[12645], 22 X[12571] - X[19925], 148 X[12571] - X[47745], 11 X[12645] - 116 X[19925], 37 X[12645] - 58 X[47745], 74 X[19925] - 11 X[47745], 4 X[546] + 3 X[38021], 2 X[551] + 5 X[3843], 4 X[1125] + 3 X[38335], 5 X[1698] - 12 X[14892], 6 X[1699] + X[3654], 3 X[1699] + 4 X[5066], 5 X[1699] + 2 X[38042], and many others

X(50807) lies on these lines: {1, 23046}, {2, 28146}, {4, 3653}, {5, 19876}, {30, 3624}, {40, 11737}, {355, 381}, {517, 41106}, {546, 38021}, {551, 3843}, {1125, 38335}, {1698, 14892}, {1699, 3654}, {3090, 28202}, {3545, 9780}, {3576, 12101}, {3622, 3655}, {3679, 3850}, {3817, 3830}, {3828, 5072}, {3832, 28204}, {3845, 5886}, {3851, 28194}, {3854, 38074}, {3856, 11522}, {3858, 37727}, {3859, 7982}, {3860, 38034}, {3861, 38022}, {4297, 35403}, {5055, 18483}, {5068, 38083}, {5071, 22793}, {5079, 38068}, {5881, 41991}, {7967, 9779}, {7987, 35404}, {7988, 8703}, {8227, 15687}, {10171, 15693}, {10248, 15702}, {11230, 15682}, {12512, 15723}, {14269, 15808}, {14893, 25055}, {15640, 17502}, {15684, 19883}, {15689, 19862}, {15698, 28154}, {15699, 41869}, {15701, 28150}, {15706, 19878}, {18480, 20057}, {18493, 34648}, {19709, 26446}, {19872, 45757}, {19875, 40273}, {31162, 38071}, {34595, 45759}, {34773, 41987}, {35242, 47599}, {38023, 48889}

X(50807) = midpoint of X(10248) and X(15702)
X(50807) = reflection of X(i) in X(j) for these {i,j}: {3655, 3622}, {19876, 5}
X(50807) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1699, 5066, 3654}, {3839, 9955, 3655}, {3845, 30308, 5886}


X(50808) = X(2)X(165)∩X(40)X(376)

Barycentrics    8*a^3 - 5*a^2*b - 2*a*b^2 - b^3 - 5*a^2*c + 4*a*b*c + b^2*c - 2*a*c^2 + b*c^2 - c^3 : :
X(50808) = X[1] - 3 X[10304], 3 X[10304] + X[34632], X[2] - 3 X[165], 5 X[2] - 3 X[1699], 4 X[2] - 3 X[3817], 11 X[2] - 9 X[7988], X[2] + 3 X[9778], 13 X[2] - 9 X[9779], 7 X[2] - 3 X[9812], 2 X[2] - 3 X[10164], 7 X[2] - 6 X[10171], 7 X[2] - 5 X[30308], 5 X[165] - X[1699], 4 X[165] - X[3817], 11 X[165] - 3 X[7988], 13 X[165] - 3 X[9779], 7 X[165] - X[9812], 7 X[165] - 2 X[10171], 21 X[165] - 5 X[30308], 4 X[1699] - 5 X[3817], 11 X[1699] - 15 X[7988], X[1699] + 5 X[9778], 13 X[1699] - 15 X[9779], 7 X[1699] - 5 X[9812], 2 X[1699] - 5 X[10164], 7 X[1699] - 10 X[10171], 21 X[1699] - 25 X[30308], 11 X[3817] - 12 X[7988], X[3817] + 4 X[9778], 13 X[3817] - 12 X[9779], 7 X[3817] - 4 X[9812], 7 X[3817] - 8 X[10171], 21 X[3817] - 20 X[30308], 3 X[7988] + 11 X[9778], 13 X[7988] - 11 X[9779], 21 X[7988] - 11 X[9812], 6 X[7988] - 11 X[10164], 21 X[7988] - 22 X[10171], 63 X[7988] - 55 X[30308], 13 X[9778] + 3 X[9779], 7 X[9778] + X[9812], 2 X[9778] + X[10164], 7 X[9778] + 2 X[10171], 21 X[9778] + 5 X[30308], 21 X[9779] - 13 X[9812], 6 X[9779] - 13 X[10164], 21 X[9779] - 26 X[10171], 63 X[9779] - 65 X[30308], and many others

X(50808) lies on these lines: {1, 10304}, {2, 165}, {3, 551}, {4, 3828}, {5, 28202}, {7, 31508}, {8, 34628}, {10, 30}, {20, 3679}, {35, 3671}, {36, 4342}, {40, 376}, {46, 4314}, {55, 553}, {57, 10385}, {98, 1293}, {100, 10032}, {171, 4356}, {200, 43178}, {226, 4995}, {306, 4781}, {355, 15681}, {381, 6684}, {484, 4304}, {515, 3534}, {517, 3892}, {527, 4421}, {528, 13226}, {535, 13528}, {537, 30271}, {546, 31447}, {547, 22793}, {548, 5882}, {549, 946}, {550, 11362}, {631, 38021}, {726, 33706}, {901, 2688}, {902, 24177}, {952, 15690}, {962, 15692}, {966, 41456}, {991, 42042}, {1125, 3524}, {1155, 3058}, {1210, 37572}, {1385, 34200}, {1482, 14093}, {1657, 38066}, {1698, 3839}, {1742, 42043}, {1764, 42057}, {1770, 3584}, {2094, 7994}, {2100, 15159}, {2101, 15158}, {2482, 21636}, {2771, 4525}, {2784, 9881}, {2801, 5918}, {2938, 50118}, {2951, 6172}, {3090, 31425}, {3091, 19876}, {3098, 49505}, {3146, 9588}, {3158, 5850}, {3241, 3522}, {3244, 3655}, {3339, 15933}, {3474, 4654}, {3486, 41348}, {3509, 3950}, {3523, 9589}, {3528, 7982}, {3529, 38074}, {3543, 19875}, {3545, 3634}, {3550, 3663}, {3576, 19708}, {3578, 4061}, {3616, 15705}, {3624, 15708}, {3625, 15689}, {3626, 34627}, {3627, 31399}, {3635, 34631}, {3636, 15710}, {3748, 4031}, {3753, 17525}, {3830, 26446}, {3845, 10175}, {3911, 11238}, {3919, 44255}, {3929, 10860}, {3986, 37508}, {4082, 4427}, {4084, 37585}, {4114, 37703}, {4229, 41629}, {4292, 10056}, {4311, 11010}, {4312, 5281}, {4315, 5119}, {4349, 17594}, {4420, 16143}, {4677, 15697}, {4689, 37631}, {4691, 46333}, {4745, 5657}, {4785, 15599}, {4847, 49719}, {4848, 15338}, {5054, 12699}, {5055, 18483}, {5059, 37714}, {5066, 11231}, {5071, 12571}, {5128, 6738}, {5267, 35239}, {5298, 12053}, {5434, 37568}, {5476, 38118}, {5480, 38089}, {5537, 7411}, {5584, 16370}, {5587, 15682}, {5603, 15698}, {5690, 15686}, {5691, 15683}, {5698, 20103}, {5732, 28610}, {5759, 28609}, {5790, 15685}, {5805, 38094}, {5847, 43273}, {5881, 17538}, {5886, 15693}, {5901, 14891}, {6055, 11599}, {6173, 43151}, {6174, 21635}, {6745, 44447}, {7688, 21161}, {7753, 31396}, {7957, 24473}, {7964, 17613}, {7987, 20070}, {8227, 15702}, {8591, 9860}, {8616, 24175}, {8715, 37426}, {9143, 9904}, {9300, 31443}, {9441, 12194}, {9591, 37940}, {9616, 19054}, {9624, 10299}, {9740, 17132}, {9774, 28562}, {9780, 50687}, {9955, 11539}, {9956, 15687}, {10072, 10624}, {10124, 40273}, {10165, 12100}, {10172, 19709}, {10222, 33923}, {10310, 12511}, {10440, 15310}, {10443, 50115}, {10578, 43180}, {10710, 28346}, {10980, 43179}, {11112, 34618}, {11113, 34630}, {11160, 39878}, {11177, 13174}, {11220, 15104}, {11230, 11812}, {11278, 41982}, {11522, 15717}, {12101, 28182}, {12575, 15803}, {13624, 45759}, {13912, 35822}, {13975, 35823}, {14537, 31398}, {15064, 15726}, {15170, 21625}, {15178, 46853}, {15691, 47745}, {15694, 48661}, {15695, 28234}, {15707, 18493}, {15709, 19878}, {15711, 38028}, {15712, 38022}, {15713, 38034}, {15759, 17502}, {15808, 17504}, {16174, 38069}, {16226, 31757}, {17533, 50031}, {18788, 29574}, {19710, 28160}, {19722, 37078}, {21734, 30389}, {22266, 23046}, {28154, 33699}, {28168, 38112}, {28190, 38176}, {28538, 44882}, {28854, 29600}, {30315, 50689}, {31145, 50693}, {31793, 44663}, {31884, 47358}, {35578, 43173}, {35986, 41561}, {36698, 41141}, {37062, 48867}, {37416, 41140}, {37427, 45701}, {37540, 50068}, {37545, 40270}, {37619, 41430}, {38087, 48872}, {41338, 43175}, {41945, 49227}, {41946, 49226}, {42053, 43162}, {43172, 50116}, {48881, 49529}, {48897, 50587}, {48917, 50590}

X(50808) = midpoint of X(i) and X(j) for these {i,j}: {1, 34632}, {8, 34628}, {10, 34638}, {20, 3679}, {40, 376}, {165, 9778}, {355, 15681}, {551, 5493}, {2094, 7994}, {2100, 15159}, {2101, 15158}, {2951, 6172}, {3241, 7991}, {3534, 3654}, {3655, 12702}, {3928, 34607}, {5690, 15686}, {5691, 15683}, {6361, 31162}, {7957, 24473}, {8591, 9860}, {9143, 9904}, {11112, 34618}, {11113, 34630}, {11160, 39878}, {11177, 13174}, {11220, 15104}, {18481, 34718}, {34639, 34646}, {34701, 34744}, {34711, 34716}
X(50808) = reflection of X(i) in X(j) for these {i,j}: {4, 3828}, {376, 12512}, {381, 6684}, {549, 31663}, {551, 3}, {946, 549}, {1385, 34200}, {3244, 3655}, {3543, 19925}, {3625, 34718}, {3679, 43174}, {3817, 10164}, {4297, 376}, {4301, 551}, {4669, 3654}, {5901, 14891}, {6173, 43151}, {9812, 10171}, {10164, 165}, {10710, 28346}, {11599, 6055}, {15687, 9956}, {21635, 6174}, {21636, 2482}, {22793, 547}, {31162, 1125}, {34627, 3626}, {34631, 3635}, {34638, 31730}, {34641, 11362}, {34648, 10}, {38155, 5657}, {40273, 10124}
X(50808) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 9812, 30308}, {2, 30308, 10171}, {3, 5493, 4301}, {4, 3828, 38076}, {40, 12512, 4297}, {549, 946, 19883}, {962, 15692, 25055}, {3474, 13405, 30424}, {3474, 35445, 13405}, {3524, 6361, 31162}, {3524, 31162, 1125}, {3543, 19875, 19925}, {3579, 31730, 10}, {3653, 13464, 551}, {4640, 49732, 5325}, {5325, 49732, 10}, {6361, 35242, 1125}, {10304, 34632, 1}, {12702, 15688, 3655}, {15689, 34718, 18481}, {16192, 25055, 15692}, {31162, 35242, 3524}


X(50809) = X(30)X(3617)∩X(40)X(376)

Barycentrics    17*a^4 + 12*a^3*b - 16*a^2*b^2 - 12*a*b^3 - b^4 + 12*a^3*c - 24*a^2*b*c + 12*a*b^2*c - 16*a^2*c^2 + 12*a*b*c^2 + 2*b^2*c^2 - 12*a*c^3 - c^4 : :
X(50809) = 4 X[1] - 9 X[15710], 17 X[2] - 12 X[38034], 4 X[40] + X[376], 14 X[40] + X[944], 13 X[40] + 2 X[4297], 16 X[40] - X[12245], 11 X[40] + 4 X[12512], 7 X[376] - 2 X[944], 13 X[376] - 8 X[4297], 4 X[376] + X[12245], 11 X[376] - 16 X[12512], 13 X[944] - 28 X[4297], 8 X[944] + 7 X[12245], 11 X[944] - 56 X[12512], 32 X[4297] + 13 X[12245], 11 X[4297] - 26 X[12512], 11 X[12245] + 64 X[12512], X[145] - 6 X[15688], 12 X[165] - 7 X[15698], 4 X[549] + X[20070], 4 X[550] + X[31145], 8 X[551] - 13 X[10299], 7 X[631] - 4 X[11522], 2 X[962] - 7 X[15702], 4 X[1698] - 3 X[3545], 2 X[1698] + X[6361], 7 X[1698] - 4 X[18483], 3 X[3545] + 2 X[6361], 21 X[3545] - 16 X[18483], 7 X[6361] + 8 X[18483], 7 X[3090] + 8 X[5493], X[3146] - 6 X[38066], 2 X[3241] - 7 X[3528], 3 X[3524] - 8 X[3579], 3 X[3524] - 2 X[3616], 9 X[3524] - 4 X[3656], 3 X[3524] + 2 X[34632], 4 X[3579] - X[3616], 6 X[3579] - X[3656], 4 X[3579] + X[34632], 3 X[3616] - 2 X[3656], 2 X[3656] + 3 X[34632], X[3529] + 4 X[3679], 17 X[3533] - 12 X[38021], 7 X[3622] - 12 X[17504], X[3623] - 3 X[10304], X[3623] + 2 X[12702], and many others

X(50809) lies on these lines: {1, 15710}, {2, 28174}, {4, 28202}, {30, 3617}, {40, 376}, {145, 15688}, {165, 15698}, {484, 10385}, {516, 41099}, {517, 19708}, {549, 20070}, {550, 31145}, {551, 10299}, {631, 11522}, {952, 15697}, {962, 15702}, {1698, 3545}, {3090, 5493}, {3146, 38066}, {3241, 3528}, {3524, 3579}, {3529, 3679}, {3533, 38021}, {3534, 28224}, {3622, 17504}, {3623, 10304}, {3654, 9778}, {3828, 3855}, {4668, 31730}, {4816, 34628}, {5071, 28198}, {5073, 38081}, {5603, 15719}, {5657, 15682}, {5690, 15683}, {5790, 15640}, {5844, 15695}, {7967, 8703}, {7991, 21735}, {8148, 45759}, {8193, 37948}, {9589, 38068}, {9952, 13199}, {10247, 15759}, {10283, 15716}, {10595, 15692}, {12645, 15691}, {14269, 46933}, {15693, 28212}, {15707, 46934}, {15708, 22791}, {15709, 19862}, {15714, 37624}, {15715, 31663}, {17538, 28204}, {19709, 28216}, {20052, 34718}, {26446, 41106}, {28232, 30308}, {31673, 35409}, {33703, 38074}, {38071, 46932}, {46930, 47478}

X(50809) = midpoint of X(i) and X(j) for these {i,j}: {3616, 34632}, {4816, 34628}
X(50809) = reflection of X(i) in X(j) for these {i,j}: {10595, 15692}, {20052, 34718}, {31162, 19862}, {34627, 4668}, {34631, 3623}, {37624, 15714}
X(50809) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3579, 34632, 3524}, {3654, 9778, 11001}, {10304, 12702, 34631}, {31663, 38314, 15715}, {31730, 34627, 46333}


X(50810) = X(8)X(30)∩X(40)X(376)

Barycentrics    a^4 + 6*a^3*b - 2*a^2*b^2 - 6*a*b^3 + b^4 + 6*a^3*c - 12*a^2*b*c + 6*a*b^2*c - 2*a^2*c^2 + 6*a*b*c^2 - 2*b^2*c^2 - 6*a*c^3 + c^4 : :
X(50810) = 2 X[1] - 3 X[3524], 3 X[3524] - X[34631], 4 X[2] - 3 X[5603], 2 X[2] - 3 X[5657], 7 X[2] - 6 X[5886], 13 X[2] - 12 X[11230], 11 X[2] - 12 X[11231], 5 X[2] - 6 X[26446], 3 X[3654] - X[3656], 8 X[3654] - 3 X[5603], 4 X[3654] - 3 X[5657], 7 X[3654] - 3 X[5886], 13 X[3654] - 6 X[11230], 11 X[3654] - 6 X[11231], 5 X[3654] - 3 X[26446], 8 X[3656] - 9 X[5603], 4 X[3656] - 9 X[5657], 7 X[3656] - 9 X[5886], 13 X[3656] - 18 X[11230], 11 X[3656] - 18 X[11231], 5 X[3656] - 9 X[26446], 7 X[5603] - 8 X[5886], 13 X[5603] - 16 X[11230], 11 X[5603] - 16 X[11231], 5 X[5603] - 8 X[26446], 7 X[5657] - 4 X[5886], 13 X[5657] - 8 X[11230], 11 X[5657] - 8 X[11231], 5 X[5657] - 4 X[26446], 13 X[5886] - 14 X[11230], 11 X[5886] - 14 X[11231], 5 X[5886] - 7 X[26446], 11 X[11230] - 13 X[11231], 10 X[11230] - 13 X[26446], 10 X[11231] - 11 X[26446], X[4] + 2 X[7991], 5 X[4] - 2 X[9589], X[4] - 4 X[11362], 7 X[4] - 10 X[37714], 2 X[4] - 3 X[38074], 5 X[3679] - X[9589], 7 X[3679] - 5 X[37714], 4 X[3679] - 3 X[38074], 5 X[7991] + X[9589], X[7991] + 2 X[11362], 7 X[7991] + 5 X[37714], 4 X[7991] + 3 X[38074], and many others

X(50810) lies on these lines: {1, 3524}, {2, 392}, {3, 3241}, {4, 3679}, {5, 38066}, {8, 30}, {10, 3545}, {20, 28204}, {40, 376}, {55, 5427}, {57, 1000}, {104, 6244}, {140, 5734}, {145, 3579}, {165, 7967}, {186, 37546}, {329, 1145}, {355, 3543}, {381, 962}, {484, 3476}, {515, 4677}, {516, 4669}, {527, 12115}, {528, 5759}, {529, 37430}, {546, 38081}, {549, 1482}, {551, 631}, {553, 1056}, {599, 39898}, {938, 15170}, {946, 5071}, {952, 3534}, {958, 28461}, {1006, 4428}, {1058, 4848}, {1064, 42043}, {1071, 31797}, {1125, 15709}, {1159, 10578}, {1327, 35788}, {1328, 35789}, {1350, 9041}, {1385, 15692}, {1480, 32911}, {1483, 34200}, {1512, 31142}, {1621, 44455}, {1699, 38127}, {1708, 3488}, {1766, 37654}, {1788, 5697}, {2096, 28610}, {2098, 5298}, {2099, 4995}, {2183, 36916}, {2482, 7970}, {2771, 4661}, {2800, 5658}, {2802, 24477}, {2975, 35448}, {3058, 18391}, {3090, 3828}, {3146, 28202}, {3244, 15710}, {3245, 3474}, {3295, 15933}, {3416, 11180}, {3421, 17781}, {3428, 4421}, {3485, 3584}, {3486, 11010}, {3487, 5903}, {3522, 20049}, {3523, 3653}, {3525, 9588}, {3526, 38022}, {3528, 5882}, {3529, 5493}, {3533, 9624}, {3544, 31399}, {3576, 15698}, {3587, 3895}, {3616, 5054}, {3617, 3839}, {3621, 18481}, {3622, 11278}, {3623, 13624}, {3625, 34638}, {3626, 34648}, {3632, 31730}, {3651, 3913}, {3830, 28174}, {3845, 5790}, {3855, 38076}, {3871, 35239}, {3889, 40296}, {3919, 38053}, {4221, 41629}, {4293, 5183}, {4294, 41687}, {4295, 11237}, {4311, 41348}, {4317, 5559}, {4345, 15325}, {4654, 31397}, {4668, 31673}, {4678, 18480}, {4691, 18492}, {4745, 5587}, {5055, 9780}, {5056, 38083}, {5066, 38112}, {5067, 11522}, {5218, 25415}, {5273, 40587}, {5281, 50194}, {5303, 35251}, {5325, 9623}, {5434, 37567}, {5476, 38116}, {5480, 38087}, {5537, 6950}, {5550, 11539}, {5642, 7978}, {5714, 10039}, {5731, 5844}, {5758, 17532}, {5805, 38092}, {5846, 43273}, {5901, 15694}, {6055, 7983}, {6174, 10698}, {6684, 10595}, {6769, 50739}, {6776, 28538}, {6876, 8715}, {6940, 40726}, {6986, 37622}, {6990, 9710}, {7288, 30323}, {7397, 41140}, {7580, 38665}, {7681, 44847}, {7688, 25439}, {7987, 15715}, {8158, 16417}, {8193, 44837}, {9143, 12778}, {9779, 19709}, {9955, 46933}, {10164, 15719}, {10165, 11224}, {10175, 30308}, {10246, 12100}, {10247, 15693}, {10248, 14893}, {10283, 11812}, {10306, 16370}, {10310, 11194}, {10444, 50099}, {10519, 47358}, {10679, 28466}, {11111, 49163}, {11112, 34617}, {11113, 34629}, {11207, 11823}, {11208, 11822}, {11238, 30305}, {11239, 37562}, {11248, 17549}, {11249, 13587}, {11826, 34717}, {11827, 34700}, {12101, 38138}, {12246, 34630}, {12513, 37403}, {12536, 44238}, {12645, 15681}, {12703, 47357}, {13607, 16192}, {13634, 48856}, {14110, 34625}, {14269, 18357}, {14839, 33706}, {14923, 37585}, {15178, 15717}, {15640, 28146}, {15677, 16139}, {15683, 28208}, {15685, 28186}, {15687, 48661}, {15688, 20050}, {15689, 18526}, {15699, 18493}, {15700, 37624}, {15701, 38028}, {16236, 31508}, {16371, 22770}, {17310, 36698}, {17504, 20057}, {17561, 19860}, {19053, 35775}, {19054, 35774}, {19065, 35610}, {19066, 35611}, {19705, 34474}, {19710, 28224}, {19883, 31423}, {19925, 38098}, {20066, 35250}, {20067, 35249}, {24473, 31788}, {28150, 37712}, {28216, 33699}, {28458, 34605}, {28459, 34611}, {28647, 49178}, {29054, 50086}, {30147, 31669}, {31798, 37427}, {34618, 34720}, {34619, 44663}, {37416, 40891}, {37499, 50113}, {37939, 49553}, {41338, 48363}, {48881, 49690}, {48882, 50422}, {48897, 50575}, {48941, 50415}

X(50810) = midpoint of X(i) and X(j) for these {i,j}: {8, 34632}, {20, 31145}, {376, 12245}, {3543, 20070}, {3625, 34638}, {3632, 34628}, {3679, 7991}, {5493, 34641}, {6361, 34627}, {12645, 15681}, {12702, 34718}, {34618, 34720}, {34630, 34689}, {34711, 34744}
X(50810) = reflection of X(i) in X(j) for these {i,j}: {2, 3654}, {4, 3679}, {8, 34718}, {145, 3655}, {376, 40}, {381, 5690}, {551, 43174}, {944, 376}, {962, 381}, {1482, 549}, {1483, 34200}, {1699, 38127}, {3241, 3}, {3543, 355}, {3655, 3579}, {3679, 11362}, {4301, 3828}, {5603, 5657}, {5881, 34641}, {6361, 34632}, {7967, 165}, {7970, 2482}, {7978, 5642}, {7982, 551}, {7983, 6055}, {9143, 12778}, {9812, 5790}, {10698, 6174}, {10711, 1145}, {11180, 3416}, {11224, 10165}, {15677, 16139}, {16200, 10164}, {20049, 37727}, {20050, 34748}, {24473, 31788}, {31162, 10}, {34605, 28458}, {34611, 28459}, {34617, 11112}, {34627, 8}, {34628, 31730}, {34629, 11113}, {34631, 1}, {34632, 12702}, {34648, 3626}, {34747, 5882}, {34748, 34773}, {39898, 599}, {41869, 34648}, {48661, 15687}, {48941, 50415}, {50422, 48882}
X(50810) = anticomplement of X(3656)
X(50810) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3654, 5657}, {4, 3679, 38074}, {8, 12702, 6361}, {10, 31162, 3545}, {40, 12245, 944}, {145, 10304, 3655}, {549, 1482, 38314}, {946, 19875, 5071}, {962, 5690, 5818}, {3245, 12647, 3474}, {3524, 34631, 1}, {3579, 3655, 10304}, {3828, 4301, 38021}, {3828, 38021, 3090}, {5493, 5881, 3529}, {6684, 11531, 10595}, {6684, 25055, 15702}, {7982, 43174, 631}, {7991, 11362, 4}, {9588, 13464, 3525}, {10595, 15702, 25055}, {15688, 34748, 34773}, {28610, 37429, 2096}, {34632, 34718, 34627}


X(50811) = X(1)X(30)∩X(40)X(376)

Barycentrics    7*a^4 - 3*a^3*b - 5*a^2*b^2 + 3*a*b^3 - 2*b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c - 5*a^2*c^2 - 3*a*b*c^2 + 4*b^2*c^2 + 3*a*c^3 - 2*c^4 : :
X(50811) = 3 X[1] - 2 X[3656], 5 X[1] - 2 X[12699], X[1] + 2 X[18481], 7 X[1] - 4 X[22791], X[1] - 4 X[34773], 4 X[1] - X[41869], 3 X[3655] - X[3656], 5 X[3655] - X[12699], 7 X[3655] - 2 X[22791], 4 X[3655] - X[31162], 2 X[3655] + X[34628], 8 X[3655] - X[41869], 5 X[3656] - 3 X[12699], X[3656] + 3 X[18481], 7 X[3656] - 6 X[22791], 4 X[3656] - 3 X[31162], 2 X[3656] + 3 X[34628], X[3656] - 6 X[34773], 8 X[3656] - 3 X[41869], X[12699] + 5 X[18481], 7 X[12699] - 10 X[22791], 4 X[12699] - 5 X[31162], 2 X[12699] + 5 X[34628], X[12699] - 10 X[34773], 8 X[12699] - 5 X[41869], 5 X[16132] - 2 X[49178], 7 X[18481] + 2 X[22791], 4 X[18481] + X[31162], X[18481] + 2 X[34773], 8 X[18481] + X[41869], 8 X[22791] - 7 X[31162], 4 X[22791] + 7 X[34628], X[22791] - 7 X[34773], 16 X[22791] - 7 X[41869], X[31162] + 2 X[34628], X[31162] - 8 X[34773], X[34628] + 4 X[34773], 4 X[34628] + X[41869], 16 X[34773] - X[41869], 2 X[2] - 3 X[3576], 4 X[2] - 3 X[5587], X[2] - 3 X[5731], 5 X[2] - 6 X[10165], 13 X[2] - 12 X[10172], 7 X[2] - 6 X[10175], 5 X[3576] - 4 X[10165], 13 X[3576] - 8 X[10172], 7 X[3576] - 4 X[10175], and many others

X(50811) lies on these lines: {1, 30}, {2, 515}, {3, 3679}, {4, 551}, {5, 3653}, {8, 10304}, {10, 3524}, {20, 3241}, {35, 22759}, {36, 5727}, {40, 376}, {57, 21578}, {63, 6224}, {80, 31231}, {98, 28560}, {140, 19876}, {145, 31730}, {165, 952}, {191, 28460}, {200, 10609}, {214, 10711}, {355, 549}, {381, 1385}, {382, 11522}, {516, 7967}, {517, 3534}, {518, 43273}, {527, 43161}, {528, 5732}, {529, 37428}, {535, 18446}, {537, 30273}, {542, 33535}, {546, 38022}, {547, 7989}, {550, 7991}, {553, 4293}, {599, 39885}, {631, 3828}, {632, 30315}, {671, 11710}, {730, 33706}, {946, 3543}, {956, 7688}, {962, 13607}, {993, 21161}, {1012, 4428}, {1071, 34620}, {1125, 3545}, {1158, 37299}, {1319, 3586}, {1350, 28538}, {1388, 9614}, {1420, 10072}, {1478, 13384}, {1482, 15681}, {1483, 11531}, {1490, 11113}, {1503, 47358}, {1657, 9589}, {1698, 5054}, {1699, 3830}, {1702, 41945}, {1703, 41946}, {1837, 5298}, {1992, 39870}, {2043, 36444}, {2044, 36462}, {2077, 4421}, {2093, 15326}, {2320, 31266}, {2482, 9864}, {2646, 9613}, {2771, 3899}, {2779, 23155}, {2796, 13172}, {2800, 10031}, {3090, 38076}, {3146, 13464}, {3149, 40726}, {3244, 6361}, {3304, 37411}, {3333, 3486}, {3339, 37739}, {3340, 4299}, {3361, 37730}, {3428, 30283}, {3476, 4304}, {3488, 4315}, {3522, 11362}, {3523, 38068}, {3526, 31666}, {3528, 34641}, {3529, 4301}, {3579, 3632}, {3582, 9581}, {3584, 3612}, {3600, 15933}, {3601, 10056}, {3616, 3839}, {3617, 15705}, {3622, 18483}, {3624, 5055}, {3626, 15710}, {3633, 4880}, {3634, 15709}, {3635, 46333}, {3651, 8666}, {3751, 11179}, {3817, 41099}, {3845, 5886}, {3869, 10032}, {3872, 49719}, {3877, 15678}, {3897, 6175}, {4034, 37508}, {4192, 31137}, {4302, 7962}, {4305, 10106}, {4312, 50194}, {4316, 25415}, {4317, 6869}, {4324, 30323}, {4333, 11009}, {4512, 17525}, {4668, 45759}, {4669, 5657}, {4745, 10164}, {4870, 9612}, {4995, 5252}, {5010, 37708}, {5059, 5734}, {5066, 7988}, {5071, 19883}, {5119, 7171}, {5219, 37525}, {5248, 28461}, {5250, 7701}, {5251, 18519}, {5259, 18761}, {5288, 35239}, {5450, 17549}, {5476, 38029}, {5480, 38023}, {5493, 17538}, {5563, 6985}, {5603, 15682}, {5642, 12368}, {5690, 16192}, {5693, 12680}, {5722, 13462}, {5790, 15693}, {5805, 38024}, {5818, 15702}, {5844, 15690}, {5901, 15687}, {5903, 13369}, {6054, 11711}, {6055, 13178}, {6174, 12751}, {6261, 11114}, {6326, 28459}, {6453, 31440}, {6684, 15692}, {6769, 34618}, {6796, 13587}, {7280, 37711}, {7397, 41141}, {7411, 38669}, {7415, 41629}, {7580, 31146}, {7753, 9619}, {7966, 10860}, {7972, 38761}, {8148, 32900}, {8235, 49735}, {8715, 37403}, {8726, 34746}, {9041, 44882}, {9140, 11709}, {9300, 9592}, {9582, 49232}, {9583, 32787}, {9615, 49601}, {9623, 49732}, {9625, 9909}, {9626, 14070}, {9668, 25405}, {9778, 15697}, {9780, 15708}, {9799, 50742}, {9812, 15640}, {9850, 9957}, {9860, 14830}, {9875, 11632}, {9880, 38220}, {9897, 38602}, {9904, 12898}, {9943, 34626}, {9955, 14269}, {9956, 15694}, {10247, 15685}, {10267, 28444}, {10269, 44425}, {10283, 28190}, {10303, 31399}, {10386, 30337}, {10444, 17378}, {10465, 48858}, {10698, 11274}, {10706, 11720}, {10707, 11715}, {10708, 11714}, {10709, 11700}, {10710, 11712}, {10716, 11713}, {10718, 12265}, {10726, 47115}, {10827, 37616}, {10864, 11111}, {10884, 17579}, {10902, 12114}, {10950, 15803}, {11012, 11194}, {11014, 12520}, {11015, 36846}, {11112, 12650}, {11171, 22650}, {11180, 49511}, {11224, 19710}, {11227, 19706}, {11230, 19709}, {11231, 15701}, {11236, 33597}, {11372, 43175}, {11500, 16371}, {11525, 17784}, {11539, 18357}, {11812, 38042}, {12100, 26446}, {12101, 38034}, {12248, 33337}, {12513, 37426}, {12645, 14093}, {12647, 35445}, {12675, 24473}, {13151, 41867}, {13253, 38753}, {13634, 48851}, {14110, 34740}, {14563, 21454}, {15338, 37738}, {15626, 19254}, {15684, 22793}, {15699, 34595}, {15704, 16189}, {15711, 38112}, {15712, 38081}, {15713, 38138}, {15715, 38098}, {15716, 38176}, {15719, 38155}, {15931, 22758}, {15935, 30350}, {16191, 28216}, {16475, 20423}, {16491, 31670}, {16496, 46264}, {17310, 37416}, {17504, 37705}, {17533, 18242}, {17556, 37837}, {17857, 34606}, {18421, 37728}, {18443, 28452}, {18493, 33697}, {20049, 50693}, {20076, 41863}, {21842, 50443}, {24608, 25935}, {24728, 28562}, {26321, 28443}, {26364, 45036}, {30503, 34612}, {31136, 37400}, {31156, 31435}, {31434, 37600}, {31662, 38140}, {31805, 34707}, {33179, 48661}, {34557, 35734}, {34625, 37427}, {34630, 34699}, {34690, 37531}, {35238, 48696}, {35243, 37546}, {35404, 40273}, {36698, 41140}, {37062, 48862}, {37356, 37719}, {37364, 37725}, {37406, 37720}, {37499, 50082}, {39874, 49505}, {47321, 47333}, {48881, 49681}, {48893, 50415}, {48905, 49465}, {48923, 50422}, {48937, 50421}

X(50811) = midpoint of X(i) and X(j) for these {i,j}: {1, 34628}, {20, 3241}, {145, 34632}, {376, 944}, {962, 15683}, {1482, 15681}, {1483, 15686}, {3244, 34638}, {3655, 18481}, {6361, 34631}, {7991, 34747}, {12680, 31165}, {12702, 34748}, {18526, 34718}, {34618, 34749}, {34630, 34699}, {34701, 34716}, {48923, 50422}
X(50811) = reflection of X(i) in X(j) for these {i,j}: {1, 3655}, {4, 551}, {40, 376}, {191, 28460}, {355, 549}, {376, 4297}, {381, 1385}, {671, 11710}, {1699, 10246}, {1992, 39870}, {3241, 5882}, {3543, 946}, {3576, 5731}, {3632, 34718}, {3633, 34748}, {3654, 8703}, {3655, 34773}, {3679, 3}, {3751, 11179}, {4677, 3654}, {5587, 3576}, {5690, 34200}, {5691, 381}, {5693, 31165}, {5790, 17502}, {5881, 3679}, {6054, 11711}, {6361, 34638}, {7701, 15677}, {7982, 3241}, {9140, 11709}, {9860, 14830}, {9864, 2482}, {9875, 11632}, {10698, 11274}, {10706, 11720}, {10707, 11715}, {10708, 11714}, {10709, 11700}, {10710, 11712}, {10711, 214}, {10716, 11713}, {10718, 12265}, {11180, 49511}, {11372, 47357}, {12368, 5642}, {12407, 9140}, {12751, 6174}, {13178, 6055}, {15684, 22793}, {15687, 5901}, {16200, 7967}, {22650, 11171}, {24473, 12675}, {31142, 37611}, {31145, 11362}, {31162, 1}, {31165, 31786}, {34627, 10}, {34628, 18481}, {34631, 3244}, {34632, 31730}, {34641, 43174}, {34648, 1125}, {34718, 3579}, {34747, 37727}, {35404, 40273}, {37625, 24473}, {37712, 26446}, {38140, 31662}, {39885, 599}, {41869, 31162}, {47321, 47333}, {47357, 43175}, {48937, 50421}, {50415, 48893}
X(50811) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5441, 41864}, {4, 551, 38021}, {20, 5882, 7982}, {165, 4677, 3654}, {355, 549, 19875}, {355, 7987, 31423}, {381, 1385, 25055}, {381, 25055, 8227}, {382, 15178, 11522}, {549, 19875, 31423}, {550, 37727, 7991}, {551, 38021, 9624}, {631, 38074, 3828}, {944, 4297, 40}, {1125, 34648, 3545}, {1319, 3586, 37704}, {1385, 5691, 8227}, {1657, 10222, 9589}, {3476, 4304, 31393}, {3486, 4311, 3333}, {3524, 34627, 10}, {3543, 38314, 946}, {3545, 34648, 18492}, {3579, 18526, 3632}, {3654, 8703, 165}, {3655, 34628, 31162}, {3679, 9588, 38066}, {3845, 5886, 30308}, {5691, 25055, 381}, {7966, 10860, 12703}, {7987, 19875, 549}, {12245, 12512, 40}, {12680, 31786, 5693}, {13624, 18525, 1698}, {15326, 37740, 2093}, {15688, 18526, 34718}, {15688, 34718, 3579}, {15689, 34748, 12702}, {18481, 34773, 1}, {19883, 19925, 5071}


X(50812) = X(1)X(15688)∩X(40)X(376)

Barycentrics    23*a^4 + 3*a^3*b - 19*a^2*b^2 - 3*a*b^3 - 4*b^4 + 3*a^3*c - 6*a^2*b*c + 3*a*b^2*c - 19*a^2*c^2 + 3*a*b*c^2 + 8*b^2*c^2 - 3*a*c^3 - 4*c^4 : :
X(50812) = X[1] - 6 X[15688], 8 X[3] - 3 X[38021], 8 X[1698] - 5 X[18492], 2 X[1698] - 5 X[35242], X[18492] - 4 X[35242], X[40] + 4 X[376], 11 X[40] + 4 X[944], 7 X[40] + 8 X[4297], 19 X[40] - 4 X[12245], X[40] - 16 X[12512], 11 X[376] - X[944], 7 X[376] - 2 X[4297], 19 X[376] + X[12245], X[376] + 4 X[12512], 7 X[944] - 22 X[4297], 19 X[944] + 11 X[12245], X[944] + 44 X[12512], 38 X[4297] + 7 X[12245], X[4297] + 14 X[12512], X[12245] - 76 X[12512], 3 X[165] + 2 X[3534], 7 X[165] - 2 X[5790], 7 X[3534] + 3 X[5790], X[355] + 4 X[15691], 2 X[381] - 7 X[16192], 2 X[382] - 7 X[19876], 16 X[548] - X[7982], 4 X[550] + X[3679], 2 X[551] - 7 X[3528], 4 X[1125] - 9 X[15710], 3 X[1699] - 8 X[12100], X[3146] - 6 X[38068], 7 X[3522] - X[5734], 3 X[3524] - 2 X[19862], 3 X[3524] + 2 X[34638], 6 X[3524] - X[41869], 4 X[19862] - X[41869], 4 X[34638] + X[41869], X[3529] + 4 X[3828], 2 X[3529] + 13 X[31425], 8 X[3828] - 13 X[31425], 2 X[3543] - 7 X[31423], 3 X[3545] - 4 X[31253], 9 X[3576] - 4 X[3656], 3 X[3576] - 8 X[8703], 13 X[3576] - 8 X[10283], X[3656] - 6 X[8703], 13 X[3656] - 18 X[10283], and many others

X(50812) lies on these lines: {1, 15688}, {2, 28150}, {3, 28202}, {30, 1698}, {40, 376}, {78, 10032}, {165, 3534}, {355, 15691}, {381, 16192}, {382, 19876}, {515, 15697}, {516, 19708}, {517, 15695}, {548, 7982}, {550, 3679}, {551, 3528}, {1125, 15710}, {1699, 12100}, {3146, 38068}, {3522, 5734}, {3524, 19862}, {3529, 3828}, {3543, 31423}, {3545, 31253}, {3576, 3656}, {3579, 4668}, {3616, 10304}, {3623, 34632}, {3624, 17504}, {3653, 9589}, {3654, 15690}, {3817, 15719}, {4816, 18481}, {5073, 38083}, {5587, 11001}, {5691, 15686}, {5881, 50693}, {5886, 15759}, {6684, 15683}, {7987, 14093}, {7988, 15701}, {7989, 15684}, {8227, 15692}, {9588, 12103}, {9624, 21735}, {9778, 16200}, {9955, 15706}, {10164, 15682}, {10175, 15640}, {11230, 15716}, {11522, 46853}, {12699, 45759}, {15673, 38052}, {15681, 19875}, {15693, 28146}, {15696, 28204}, {15700, 22793}, {15707, 34595}, {15708, 18483}, {15711, 28178}, {15713, 28182}, {15715, 19883}, {19709, 28154}, {19710, 26446}, {19872, 38071}, {22791, 41982}, {25055, 34200}, {28158, 41099}, {30315, 49136}, {33703, 38076}, {34648, 46333}, {37727, 41981}, {38028, 46332}

X(50812) = midpoint of X(i) and X(j) for these {i,j}: {3623, 34632}, {4668, 34628}, {19862, 34638}
X(50812) = reflection of X(i) in X(j) for these {i,j}: {7987, 14093}, {8227, 15692}, {30308, 15693}, {31162, 3616}
X(50812) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3524, 34638, 41869}, {3579, 15689, 34628}, {10304, 31730, 31162}, {15681, 31663, 19875}


X(50813) = X(2)X(28146)∩X(40)X(376)

Barycentrics    31*a^4 + 6*a^3*b - 26*a^2*b^2 - 6*a*b^3 - 5*b^4 + 6*a^3*c - 12*a^2*b*c + 6*a*b^2*c - 26*a^2*c^2 + 6*a*b*c^2 + 10*b^2*c^2 - 6*a*c^3 - 5*c^4 : :
X(50813) = 13 X[3] - 6 X[38022], 5 X[4] - 12 X[38068], 5 X[19876] - 6 X[38068], X[8] + 6 X[15689], 4 X[10] + 3 X[46333], 4 X[20] + 3 X[38074], 2 X[40] + 5 X[376], 16 X[40] + 5 X[944], 11 X[40] + 10 X[4297], 26 X[40] - 5 X[12245], X[40] + 20 X[12512], 8 X[376] - X[944], 11 X[376] - 4 X[4297], 13 X[376] + X[12245], X[376] - 8 X[12512], 11 X[944] - 32 X[4297], 13 X[944] + 8 X[12245], X[944] - 64 X[12512], 52 X[4297] + 11 X[12245], X[4297] - 22 X[12512], X[12245] + 104 X[12512], 6 X[165] + X[11001], 8 X[548] - X[3241], 4 X[551] - 11 X[21735], 4 X[946] - 11 X[15715], X[962] - 8 X[34200], 25 X[3522] - 4 X[10222], 3 X[3524] - 2 X[3624], 3 X[3524] + 4 X[31730], X[3624] + 2 X[31730], 5 X[3528] - 2 X[30389], 4 X[3534] + 3 X[5657], X[3543] - 8 X[31663], 3 X[3545] + 4 X[34638], 3 X[3545] - 10 X[35242], 2 X[34638] + 5 X[35242], 4 X[3579] - X[4678], 8 X[3579] - X[34627], 5 X[3616] - 12 X[45759], 3 X[3622] - 2 X[3656], 2 X[3622] + X[6361], X[3622] - 3 X[10304], 5 X[3622] - 8 X[13624], 4 X[3656] + 3 X[6361], 2 X[3656] - 9 X[10304], 5 X[3656] - 12 X[13624], X[6361] + 6 X[10304], 5 X[6361] + 16 X[13624], 15 X[10304] - 8 X[13624], 5 X[3623] - 33 X[35418], 6 X[3653] - 13 X[21734], 2 X[3654] + 5 X[15697], 2 X[3679] + 5 X[17538], 8 X[3828] - X[33703], 11 X[5550] - 18 X[15706], 3 X[5603] - 10 X[19708], 3 X[5731] - 10 X[15695], 5 X[5818] + 2 X[15683], X[8148] - 15 X[15688], 2 X[8148] - 5 X[20057], 2 X[8148] + 5 X[34632], 6 X[15688] - X[20057], 6 X[15688] + X[34632], 4 X[8703] + 3 X[9778], 10 X[8703] - 3 X[10246], 5 X[9778] + 2 X[10246], 9 X[9779] - 16 X[11812], 3 X[9812] - 10 X[15693], 12 X[10164] - 5 X[41099], 13 X[10299] - 6 X[38021], 4 X[12103] + 3 X[38066], 2 X[12699] - 9 X[15705], 10 X[14093] - 3 X[38314], 8 X[14891] - X[48661], 9 X[15709] - 2 X[41869], 9 X[15710] - 4 X[15808], 9 X[15710] - 2 X[31162], 11 X[15718] - 4 X[40273], 11 X[15721] - 4 X[22793], 5 X[17578] - 12 X[38083], 13 X[19877] - 6 X[38335], 13 X[31425] - 6 X[38076], 20 X[31447] + X[49140]

X(50813) lies on these lines: {2, 28146}, {3, 38022}, {4, 19876}, {8, 15689}, {10, 46333}, {20, 38074}, {30, 9780}, {40, 376}, {165, 11001}, {516, 15698}, {548, 3241}, {551, 21735}, {946, 15715}, {962, 34200}, {3522, 10222}, {3523, 28202}, {3524, 3624}, {3528, 28194}, {3534, 5657}, {3543, 31663}, {3545, 34638}, {3579, 4678}, {3616, 45759}, {3622, 3656}, {3623, 35418}, {3653, 21734}, {3654, 15697}, {3679, 17538}, {3828, 33703}, {5550, 15706}, {5603, 19708}, {5731, 15695}, {5818, 15683}, {7718, 35489}, {8148, 15688}, {8703, 9778}, {9779, 11812}, {9812, 15693}, {10164, 41099}, {10248, 15703}, {10299, 38021}, {12103, 38066}, {12699, 15705}, {14093, 38314}, {14891, 48661}, {15701, 28178}, {15702, 16192}, {15709, 41869}, {15710, 15808}, {15718, 40273}, {15721, 22793}, {17578, 38083}, {19877, 38335}, {28150, 41106}, {28204, 50693}, {31425, 38076}, {31447, 49140}

X(50813) = midpoint of X(20057) and X(34632)
X(50813) = reflection of X(i) in X(j) for these {i,j}: {4, 19876}, {10248, 15703}, {15702, 16192}, {31162, 15808}, {34627, 4678}
X(50813) = {X(34638),X(35242)}-harmonic conjugate of X(3545)


X(50814) = X(1)X(15705)∩X(40)X(376)

Barycentrics    10*a^4 + 15*a^3*b - 11*a^2*b^2 - 15*a*b^3 + b^4 + 15*a^3*c - 30*a^2*b*c + 15*a*b^2*c - 11*a^2*c^2 + 15*a*b*c^2 - 2*b^2*c^2 - 15*a*c^3 + c^4 : :
X(50814) = 5 X[1] - 9 X[15705], 4 X[5] - 5 X[3828], 13 X[5] - 15 X[38083], 2 X[5] - 5 X[43174], 13 X[3828] - 12 X[38083], 6 X[38083] - 13 X[43174], 5 X[10] - 3 X[3839], 3 X[3839] + 5 X[34632], 5 X[40] - X[376], 13 X[40] - X[944], 7 X[40] - X[4297], 11 X[40] + X[12245], 4 X[40] - X[12512], 13 X[376] - 5 X[944], 7 X[376] - 5 X[4297], 11 X[376] + 5 X[12245], 4 X[376] - 5 X[12512], 7 X[944] - 13 X[4297], 11 X[944] + 13 X[12245], 4 X[944] - 13 X[12512], 11 X[4297] + 7 X[12245], 4 X[4297] - 7 X[12512], 4 X[12245] + 11 X[12512], 5 X[3654] - X[3830], 7 X[3654] - 3 X[5790], 5 X[3654] - 3 X[38127], 2 X[3830] - 5 X[4745], 7 X[3830] - 15 X[5790], X[3830] - 3 X[38127], 7 X[4745] - 6 X[5790], 5 X[4745] - 6 X[38127], 5 X[5790] - 7 X[38127], 5 X[551] - 7 X[3523], 7 X[551] - 5 X[5734], 49 X[3523] - 25 X[5734], 7 X[3523] + 5 X[7991], 5 X[5734] + 7 X[7991], 5 X[946] - 7 X[15703], 3 X[1125] - 2 X[3656], 5 X[1125] - 6 X[5054], X[1125] + 2 X[12702], 5 X[3656] - 9 X[5054], X[3656] + 3 X[12702], 3 X[5054] + 5 X[12702], X[1657] + 5 X[11362], X[3146] - 5 X[3679], X[3146] + 5 X[5493], 5 X[3241] - 13 X[21734], X[3244] - 3 X[10304], 5 X[3522] - X[34747], 3 X[3524] - 2 X[3636], 11 X[3525] - 5 X[4301], X[3543] - 3 X[38098], 4 X[3579] - X[3635], 5 X[3579] - 3 X[45759], 5 X[3635] - 12 X[45759], 5 X[3633] - 33 X[35418], 17 X[3854] - 5 X[9589], 5 X[4669] - 3 X[37712], X[4677] + 3 X[9778], 2 X[4691] + X[6361], X[4701] + 2 X[31730], 15 X[5657] - 7 X[41106], 5 X[5690] - X[35404], 5 X[6684] - 4 X[10124], 35 X[9588] - 23 X[46936], 5 X[9955] - 6 X[45757], 15 X[10165] - 17 X[15722], X[11278] - 3 X[17504], X[11531] - 5 X[15692], 8 X[12108] - 5 X[13464], 2 X[12571] - 3 X[19875], 2 X[12571] + X[20070], 3 X[19875] + X[20070], 4 X[14893] - 5 X[19925], X[15682] - 3 X[38155], 7 X[15698] - 3 X[16200], 9 X[15708] - 7 X[15808], 25 X[31253] - 24 X[47599], 5 X[31447] - 3 X[38022], X[33699] - 3 X[38176], X[34631] - 5 X[35242], 15 X[38068] - 13 X[46219]

X(50814) lies on these lines: {1, 15705}, {2, 28228}, {5, 3828}, {8, 34638}, {10, 3839}, {20, 34641}, {30, 3626}, {40, 376}, {515, 19710}, {516, 3654}, {517, 12100}, {551, 3523}, {553, 5183}, {946, 15703}, {1125, 3656}, {1657, 11362}, {3146, 3679}, {3241, 21734}, {3244, 10304}, {3245, 13405}, {3522, 34747}, {3524, 3636}, {3525, 4301}, {3534, 28236}, {3543, 38098}, {3579, 3635}, {3625, 34628}, {3633, 35418}, {3634, 31162}, {3845, 28232}, {3854, 9589}, {3860, 28174}, {4669, 28164}, {4677, 9778}, {4691, 6361}, {4701, 31730}, {4746, 34627}, {5657, 41106}, {5690, 35404}, {6684, 10124}, {8703, 28234}, {9588, 46936}, {9955, 45757}, {10032, 12527}, {10165, 15722}, {10171, 28212}, {11278, 17504}, {11531, 15692}, {12103, 28204}, {12108, 13464}, {12571, 19875}, {13607, 34200}, {14891, 33179}, {14893, 19925}, {15681, 47745}, {15682, 38155}, {15698, 16200}, {15708, 15808}, {31253, 47599}, {31447, 38022}, {31797, 44663}, {33699, 38176}, {34631, 35242}, {37568, 41547}, {38068, 46219}

X(50814) = midpoint of X(i) and X(j) for these {i,j}: {8, 34638}, {10, 34632}, {20, 34641}, {551, 7991}, {3625, 34628}, {3679, 5493}, {6361, 34648}, {15681, 47745}, {31730, 34718}, {34639, 34744}, {34646, 34711}
X(50814) = reflection of X(i) in X(j) for these {i,j}: {3828, 43174}, {4701, 34718}, {4745, 3654}, {13607, 34200}, {31162, 3634}, {33179, 14891}, {34627, 4746}, {34648, 4691}
X(50814) = {X(3654),X(3830)}-harmonic conjugate of X(38127)


X(50815) = X(20)X(551)∩X(40)X(376)

Barycentrics    22*a^4 - 3*a^3*b - 17*a^2*b^2 + 3*a*b^3 - 5*b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c - 17*a^2*c^2 - 3*a*b*c^2 + 10*b^2*c^2 + 3*a*c^3 - 5*c^4 : :
X(50815) = 11 X[3] - 5 X[31399], 5 X[3] - 3 X[38068], 11 X[3828] - 10 X[31399], 5 X[3828] - 6 X[38068], 25 X[31399] - 33 X[38068], X[10] - 3 X[10304], 3 X[10304] + X[34628], 7 X[20] + 5 X[11522], 5 X[20] + 7 X[30389], 7 X[551] - 5 X[11522], 5 X[551] - 7 X[30389], 25 X[11522] - 49 X[30389], 11 X[1125] - 8 X[9955], 5 X[1125] - 8 X[13624], 7 X[1125] - 4 X[18483], 5 X[9955] - 11 X[13624], 14 X[9955] - 11 X[18483], 14 X[13624] - 5 X[18483], X[40] - 5 X[376], 7 X[40] + 5 X[944], X[40] + 5 X[4297], 17 X[40] - 5 X[12245], 2 X[40] - 5 X[12512], 7 X[376] + X[944], 17 X[376] - X[12245], X[944] - 7 X[4297], 17 X[944] + 7 X[12245], 2 X[944] + 7 X[12512], 17 X[4297] + X[12245], 2 X[4297] + X[12512], 2 X[12245] - 17 X[12512], 3 X[165] - X[4669], X[355] - 5 X[14093], X[4745] - 4 X[8703], 11 X[4745] - 12 X[38112], 13 X[4745] - 12 X[38176], 11 X[8703] - 3 X[38112], 13 X[8703] - 3 X[38176], 13 X[38112] - 11 X[38176], 3 X[3534] + X[3656], 5 X[3534] + 3 X[10246], 5 X[3656] - 9 X[10246], 4 X[548] - X[43174], 5 X[550] + X[10222], 5 X[631] - 3 X[38076], X[1657] + 3 X[3653], 5 X[1698] - 9 X[15705], and many others

X(50815) lies on these lines: {1, 34638}, {2, 28164}, {3, 3828}, {10, 10304}, {20, 551}, {30, 1125}, {40, 376}, {165, 4669}, {355, 14093}, {515, 4745}, {516, 3534}, {517, 15690}, {548, 28204}, {549, 19925}, {550, 10222}, {553, 15326}, {631, 38076}, {946, 15681}, {1385, 15686}, {1657, 3653}, {1698, 15705}, {2796, 38738}, {3241, 5493}, {3244, 34632}, {3522, 3679}, {3524, 3634}, {3529, 38021}, {3543, 7987}, {3545, 19878}, {3576, 11001}, {3579, 4701}, {3624, 50687}, {3626, 15688}, {3635, 3655}, {3636, 31162}, {3654, 15695}, {3817, 15682}, {3830, 10165}, {3839, 19862}, {3845, 10171}, {4301, 17538}, {4315, 10385}, {4668, 35418}, {4691, 34627}, {5054, 31253}, {5066, 28168}, {5587, 15698}, {5603, 41150}, {5691, 15692}, {5731, 11224}, {5882, 15696}, {5886, 15685}, {6684, 28208}, {7989, 15721}, {9583, 43256}, {9952, 38759}, {9956, 14891}, {10164, 19708}, {10172, 11812}, {10175, 15693}, {11194, 12511}, {11230, 33699}, {11231, 15711}, {12100, 28160}, {12103, 13464}, {15640, 30308}, {15678, 40998}, {15683, 25055}, {15691, 28198}, {15699, 33697}, {15709, 18492}, {15712, 38083}, {15713, 38140}, {15715, 31423}, {15717, 19876}, {15759, 28186}, {16138, 28460}, {16858, 35202}, {17504, 18480}, {19710, 28150}, {21735, 38074}, {22793, 44903}, {28182, 31662}, {28534, 43181}, {31447, 38081}, {31666, 38022}, {31805, 44663}, {34379, 43273}, {37062, 48865}, {37416, 41141}, {38023, 48872}, {41869, 46333}

X(50815) = midpoint of X(i) and X(j) for these {i,j}: {1, 34638}, {10, 34628}, {20, 551}, {376, 4297}, {946, 15681}, {1385, 15686}, {3241, 5493}, {3244, 34632}, {3655, 31730}, {22793, 44903}, {34639, 34716}, {34646, 34701}
X(50815) = reflection of X(i) in X(j) for these {i,j}: {3543, 12571}, {3635, 3655}, {3828, 3}, {6684, 34200}, {9956, 14891}, {10171, 17502}, {12512, 376}, {19925, 549}, {31162, 3636}, {34627, 4691}, {34648, 3634}
X(50815) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3524, 34648, 3634}, {3543, 7987, 19883}, {3543, 19883, 12571}, {3655, 15689, 31730}, {10304, 34628, 10}


X(50816) = X(2)X(28158)∩X(40)X(376)

Barycentrics    38*a^4 + 3*a^3*b - 31*a^2*b^2 - 3*a*b^3 - 7*b^4 + 3*a^3*c - 6*a^2*b*c + 3*a*b^2*c - 31*a^2*c^2 + 3*a*b*c^2 + 14*b^2*c^2 - 3*a*c^3 - 7*c^4 : :
X(50816) = X[40] + 7 X[376], 17 X[40] + 7 X[944], 5 X[40] + 7 X[4297], 31 X[40] - 7 X[12245], X[40] - 7 X[12512], 17 X[376] - X[944], 5 X[376] - X[4297], 31 X[376] + X[12245], 5 X[944] - 17 X[4297], 31 X[944] + 17 X[12245], X[944] + 17 X[12512], 31 X[4297] + 5 X[12245], X[4297] + 5 X[12512], X[12245] - 31 X[12512], 3 X[165] - X[4745], 3 X[165] + 5 X[15697], X[4745] + 5 X[15697], 7 X[8703] - 3 X[17502], 11 X[8703] - 3 X[38028], 11 X[17502] - 7 X[38028], 7 X[548] - X[15178], 13 X[550] + 3 X[38081], X[551] - 5 X[3522], 5 X[551] - X[9589], 25 X[3522] - X[9589], X[946] - 5 X[14093], X[1125] - 3 X[10304], 3 X[10304] + X[34638], X[1657] + 3 X[38068], 3 X[3524] - 2 X[19878], X[3529] + 3 X[38076], 5 X[3534] + 3 X[26446], 3 X[3576] - 2 X[41150], 4 X[3579] - X[4746], 3 X[3636] - 2 X[3656], X[3636] - 6 X[15688], X[3636] + 2 X[31730], X[3656] - 9 X[15688], X[3656] + 3 X[31730], 3 X[15688] + X[31730], X[3679] + 7 X[50693], 3 X[3817] - 7 X[15698], 3 X[3839] - 5 X[31253], X[4691] + 6 X[15689], 5 X[4691] - 2 X[18525], 15 X[15689] + X[18525], X[5059] + 7 X[19876], 7 X[5493] + 5 X[16189], 3 X[10164] + X[11001], 3 X[10171] - 5 X[15693], 3 X[10172] - X[33699], 3 X[10175] + X[15685], 3 X[10247] - 35 X[15695], X[15683] + 7 X[16192], 5 X[15696] + X[43174], 9 X[15705] - 5 X[19862], 9 X[15710] - X[41869], 5 X[15714] - X[22793], 3 X[17504] - X[18483], 11 X[21735] - 3 X[38021], 5 X[34200] - X[40273], X[34648] - 5 X[35242], 3 X[38089] + X[48872]

X(50816) lies on these lines: {2, 28158}, {20, 3828}, {30, 3634}, {40, 376}, {165, 4745}, {515, 15690}, {516, 8703}, {548, 15178}, {549, 12571}, {550, 38081}, {551, 3522}, {946, 14093}, {1125, 10304}, {1657, 38068}, {2796, 38747}, {3524, 19878}, {3529, 38076}, {3534, 26446}, {3576, 41150}, {3579, 4746}, {3626, 34628}, {3635, 34632}, {3636, 3656}, {3679, 50693}, {3817, 15698}, {3839, 31253}, {4691, 15689}, {5059, 19876}, {5493, 16189}, {6684, 15686}, {10164, 11001}, {10171, 15693}, {10172, 33699}, {10175, 15685}, {10247, 15695}, {11812, 28154}, {12100, 28150}, {15681, 19925}, {15683, 16192}, {15691, 31663}, {15696, 43174}, {15705, 19862}, {15710, 41869}, {15714, 22793}, {15759, 28146}, {17504, 18483}, {21735, 38021}, {28178, 46332}, {28202, 33923}, {28204, 44245}, {34200, 40273}, {34648, 35242}, {38089, 48872}

X(50816) = midpoint of X(i) and X(j) for these {i,j}: {20, 3828}, {376, 12512}, {1125, 34638}, {3626, 34628}, {3635, 34632}, {6684, 15686}, {15681, 19925}, {15691, 31663}
X(50816) = reflection of X(12571) in X(549)
X(50816) = {X(10304),X(34638)}-harmonic conjugate of X(1125)


X(50817) = X(1)X(5054)∩X(40)X(376)

Barycentrics    5*a^4 - 15*a^3*b - a^2*b^2 + 15*a*b^3 - 4*b^4 - 15*a^3*c + 30*a^2*b*c - 15*a*b^2*c - a^2*c^2 - 15*a*b*c^2 + 8*b^2*c^2 + 15*a*c^3 - 4*c^4 : :
X(50817) = 5 X[1] - 6 X[5054], 3 X[5054] - 5 X[34718], 4 X[2] - 3 X[16200], 5 X[2] - 6 X[38127], 5 X[16200] - 8 X[38127], 6 X[5] - 5 X[3656], 4 X[5] - 5 X[3679], 8 X[5] - 5 X[7982], 28 X[5] - 25 X[11522], 16 X[5] - 15 X[38021], 13 X[5] - 15 X[38081], 2 X[3656] - 3 X[3679], 4 X[3656] - 3 X[7982], 14 X[3656] - 15 X[11522], 8 X[3656] - 9 X[38021], 13 X[3656] - 18 X[38081], 7 X[3679] - 5 X[11522], 4 X[3679] - 3 X[38021], 13 X[3679] - 12 X[38081], 7 X[7982] - 10 X[11522], 2 X[7982] - 3 X[38021], 13 X[7982] - 24 X[38081], 20 X[11522] - 21 X[38021], 65 X[11522] - 84 X[38081], 13 X[38021] - 16 X[38081], 5 X[8] - 3 X[3839], 7 X[8] - 4 X[18483], 8 X[8] - 5 X[18492], 21 X[3839] - 20 X[18483], 24 X[3839] - 25 X[18492], 6 X[3839] - 5 X[31162], 32 X[18483] - 35 X[18492], 8 X[18483] - 7 X[31162], 5 X[18492] - 4 X[31162], 5 X[40] - 4 X[376], 7 X[40] - 4 X[944], 11 X[40] - 8 X[4297], X[40] - 4 X[12245], 19 X[40] - 16 X[12512], 7 X[376] - 5 X[944], 11 X[376] - 10 X[4297], X[376] - 5 X[12245], 19 X[376] - 20 X[12512], 11 X[944] - 14 X[4297], X[944] - 7 X[12245], 19 X[944] - 28 X[12512], and many others

X(50817) lies on these lines: {1, 5054}, {2, 16200}, {3, 34747}, {4, 34641}, {5, 3656}, {8, 3839}, {10, 34631}, {30, 3632}, {40, 376}, {145, 15705}, {355, 14893}, {381, 11531}, {517, 3830}, {551, 3525}, {952, 19710}, {1385, 15718}, {1482, 15703}, {1657, 7991}, {1698, 47599}, {1699, 3860}, {1749, 5119}, {3146, 5881}, {3241, 3523}, {3244, 3524}, {3543, 47745}, {3545, 3626}, {3576, 3654}, {3579, 34748}, {3621, 34632}, {3625, 34627}, {3633, 3655}, {3636, 15709}, {3653, 9588}, {3828, 9624}, {3929, 12703}, {4301, 38074}, {4654, 12647}, {4668, 8148}, {4669, 5587}, {4701, 34648}, {4745, 5603}, {4816, 12699}, {5055, 11278}, {5071, 38098}, {5559, 11518}, {5690, 10124}, {5691, 35404}, {5790, 30308}, {5882, 20049}, {10222, 38066}, {10246, 15722}, {10304, 20050}, {11001, 28236}, {11230, 16191}, {11238, 36920}, {12645, 28198}, {12702, 34628}, {13464, 46936}, {13607, 15692}, {14923, 31938}, {15640, 28232}, {15682, 28228}, {15693, 30392}, {15694, 33179}, {15708, 20057}, {16189, 19876}, {19709, 38176}, {20052, 31673}, {20053, 31730}, {21161, 25439}, {28202, 49134}, {31423, 38314}, {33923, 37727}, {38155, 41099}

X(50817) = midpoint of X(3621) and X(34632)
X(50817) = reflection of X(i) in X(j) for these {i,j}: {1, 34718}, {4, 34641}, {3241, 11362}, {3543, 47745}, {3633, 3655}, {5881, 31145}, {7982, 3679}, {11531, 381}, {20049, 5882}, {31162, 8}, {34627, 3625}, {34628, 12702}, {34631, 10}, {34648, 4701}, {34747, 3}, {34748, 3579}, {41869, 34627}
X(50817) = {X(3679),X(7982)}-harmonic conjugate of X(38021)


X(50818) = X(30)X(145)∩X(40)X(376)

Barycentrics    13*a^4 - 12*a^3*b - 8*a^2*b^2 + 12*a*b^3 - 5*b^4 - 12*a^3*c + 24*a^2*b*c - 12*a*b^2*c - 8*a^2*c^2 - 12*a*b*c^2 + 10*b^2*c^2 + 12*a*c^3 - 5*c^4 : :
X(50818) = 4 X[1] - 3 X[3545], 3 X[3545] - 2 X[34627], 7 X[2] - 6 X[5790], 2 X[2] - 3 X[7967], 5 X[2] - 6 X[10246], 11 X[2] - 12 X[38028], 13 X[2] - 12 X[38042], 4 X[5790] - 7 X[7967], 5 X[5790] - 7 X[10246], 11 X[5790] - 14 X[38028], 13 X[5790] - 14 X[38042], 5 X[7967] - 4 X[10246], 11 X[7967] - 8 X[38028], 13 X[7967] - 8 X[38042], 11 X[10246] - 10 X[38028], 13 X[10246] - 10 X[38042], 13 X[38028] - 11 X[38042], 3 X[4] - 4 X[3656], 7 X[4] - 10 X[5734], 5 X[4] - 8 X[10222], X[4] - 4 X[37727], 3 X[3241] - 2 X[3656], 7 X[3241] - 5 X[5734], 5 X[3241] - 4 X[10222], 14 X[3656] - 15 X[5734], 5 X[3656] - 6 X[10222], X[3656] - 3 X[37727], 25 X[5734] - 28 X[10222], 5 X[5734] - 14 X[37727], 2 X[10222] - 5 X[37727], 2 X[8] - 3 X[3524], 5 X[8] - 8 X[13624], 3 X[3524] - 4 X[3655], 15 X[3524] - 16 X[13624], 5 X[3655] - 4 X[13624], 8 X[10] - 9 X[15709], 5 X[145] - 2 X[8148], X[145] + 2 X[18526], X[8148] + 5 X[18526], 4 X[8148] - 5 X[34631], X[8148] - 5 X[34748], 4 X[18526] + X[34631], X[34631] - 4 X[34748], 4 X[40] - 5 X[376], 2 X[40] - 5 X[944], 7 X[40] - 10 X[4297], 8 X[40] - 5 X[12245], 17 X[40] - 20 X[12512], 7 X[376] - 8 X[4297], 17 X[376] - 16 X[12512], 7 X[944] - 4 X[4297], 4 X[944] - X[12245], 17 X[944] - 8 X[12512], 16 X[4297] - 7 X[12245], 17 X[4297] - 14 X[12512], 17 X[12245] - 32 X[12512], 4 X[355] - 5 X[5071], 2 X[355] - 3 X[38314], 5 X[5071] - 6 X[38314], 4 X[381] - 5 X[10595], 8 X[1483] - 5 X[10595], 12 X[11224] - 5 X[15682], 4 X[547] - 5 X[37624], 8 X[551] - 7 X[3090], 4 X[551] - 3 X[38074], 7 X[3090] - 4 X[5881], 7 X[3090] - 6 X[38074], 2 X[5881] - 3 X[38074], 5 X[631] - 4 X[3679], 5 X[631] - 8 X[5882], 25 X[631] - 28 X[30389], 25 X[631] - 24 X[38068], 5 X[3679] - 7 X[30389], 5 X[3679] - 6 X[38068], 10 X[5882] - 7 X[30389], 5 X[5882] - 3 X[38068], 7 X[30389] - 6 X[38068], 8 X[1385] - 7 X[15702], 7 X[3523] - 6 X[38066], 11 X[3525] - 12 X[3653], 7 X[3526] - 6 X[38081], X[3529] + 4 X[34747], 17 X[3533] - 16 X[3828], 3 X[3576] - 2 X[4669], 12 X[3576] - 11 X[15719], 8 X[4669] - 11 X[15719], 4 X[3579] - X[20053], 5 X[3616] - 8 X[32900], 5 X[3617] - 6 X[5054], X[3621] - 3 X[10304], and many others

X(50818) lies on these lines: {1, 3545}, {2, 952}, {3, 31145}, {4, 1392}, {8, 3524}, {10, 15709}, {20, 20049}, {30, 145}, {40, 376}, {104, 4421}, {355, 5071}, {381, 1483}, {497, 7972}, {499, 43734}, {515, 11224}, {517, 11001}, {528, 36996}, {547, 37624}, {549, 12645}, {551, 3090}, {553, 11041}, {631, 3679}, {956, 21161}, {962, 28208}, {1000, 3065}, {1056, 37740}, {1058, 37738}, {1317, 10711}, {1327, 35810}, {1328, 35811}, {1385, 15702}, {1482, 3543}, {3242, 11180}, {3244, 31162}, {3295, 28461}, {3523, 38066}, {3525, 3653}, {3526, 38081}, {3529, 28194}, {3533, 3828}, {3534, 5844}, {3576, 4669}, {3579, 20053}, {3616, 32900}, {3617, 5054}, {3621, 10304}, {3622, 5055}, {3623, 3839}, {3632, 15710}, {3633, 6361}, {3635, 34648}, {3654, 5731}, {3830, 28224}, {3845, 10247}, {3855, 38021}, {3929, 7966}, {4677, 5657}, {4678, 15708}, {5056, 38022}, {5067, 15178}, {5274, 12735}, {5603, 28236}, {5690, 15692}, {5818, 13607}, {6776, 9041}, {6873, 15888}, {6876, 12513}, {6896, 37724}, {6950, 38669}, {7397, 17310}, {7982, 33703}, {8164, 37708}, {8192, 44837}, {9053, 43273}, {9143, 12898}, {9624, 38076}, {9798, 37939}, {9897, 10589}, {10056, 37707}, {10072, 37706}, {10283, 19709}, {10299, 34641}, {10785, 34717}, {10786, 34700}, {11194, 11491}, {11207, 11844}, {11208, 11843}, {11237, 37734}, {11274, 12751}, {11362, 21735}, {11539, 46933}, {12248, 20075}, {12702, 20014}, {15640, 28186}, {15677, 19919}, {15681, 20070}, {15685, 28212}, {15688, 20054}, {15699, 46934}, {15701, 38112}, {15705, 20052}, {15933, 37739}, {16202, 16858}, {16203, 36006}, {18480, 20057}, {18481, 20050}, {19875, 47745}, {22791, 50687}, {28202, 49138}, {31423, 38098}, {34617, 34749}, {34629, 34699}, {36698, 40891}, {37711, 47743}, {37907, 47476}, {46931, 47598}

X(50818) = midpoint of X(i) and X(j) for these {i,j}: {20, 20049}, {3633, 34628}, {18526, 34748}, {20050, 34632}
X(50818) = reflection of X(i) in X(j) for these {i,j}: {4, 3241}, {8, 3655}, {145, 34748}, {376, 944}, {381, 1483}, {3241, 37727}, {3543, 1482}, {3621, 34718}, {3679, 5882}, {5881, 551}, {6361, 34628}, {9143, 12898}, {10711, 1317}, {11180, 3242}, {12245, 376}, {12645, 549}, {12751, 11274}, {20070, 15681}, {31145, 3}, {31162, 3244}, {34617, 34749}, {34627, 1}, {34629, 34699}, {34631, 145}, {34632, 18481}, {34648, 3635}, {34718, 34773}
X(50818) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 34627, 3545}, {8, 3655, 3524}, {355, 38314, 5071}, {551, 5881, 38074}, {551, 38074, 3090}, {3621, 10304, 34718}, {3654, 5731, 19708}, {3679, 30389, 38068}, {6361, 34628, 46333}, {34718, 34773, 10304}


X(50819) = X(30)X(3616)∩X(40)X(376)

Barycentrics    29*a^4 - 6*a^3*b - 22*a^2*b^2 + 6*a*b^3 - 7*b^4 - 6*a^3*c + 12*a^2*b*c - 6*a*b^2*c - 22*a^2*c^2 - 6*a*b*c^2 + 14*b^2*c^2 + 6*a*c^3 - 7*c^4 : :
X(50819) = 7 X[2] - 12 X[17502], 17 X[2] - 12 X[38140], 17 X[17502] - 7 X[38140], 8 X[3] - 3 X[38074], X[8] - 6 X[15688], 4 X[10] - 9 X[15710], 3 X[20] + 2 X[3656], 7 X[20] + 8 X[15178], 7 X[3656] - 12 X[15178], 13 X[3616] - 10 X[18493], 2 X[40] - 7 X[376], 8 X[40] + 7 X[944], X[40] + 14 X[4297], 22 X[40] - 7 X[12245], 13 X[40] - 28 X[12512], 4 X[376] + X[944], X[376] + 4 X[4297], 11 X[376] - X[12245], 13 X[376] - 8 X[12512], X[944] - 16 X[4297], 11 X[944] + 4 X[12245], 13 X[944] + 32 X[12512], 44 X[4297] + X[12245], 13 X[4297] + 2 X[12512], 13 X[12245] - 88 X[12512], 4 X[550] + X[3241], 4 X[551] + X[3529], X[962] + 4 X[15686], 4 X[1385] + X[15683], X[1482] + 4 X[15691], 2 X[1698] - 3 X[3524], 3 X[3524] + 2 X[34628], X[3146] - 6 X[3653], 7 X[3528] - 2 X[3679], 17 X[3533] - 12 X[38076], 2 X[3534] + 3 X[5731], 7 X[3534] + 3 X[10247], 7 X[5731] - 2 X[10247], 3 X[3545] - 4 X[19862], 6 X[3576] - X[15682], 4 X[3579] - X[20052], X[3617] - 3 X[10304], X[3617] + 2 X[18481], 3 X[10304] + 2 X[18481], 6 X[10304] - X[34627], 4 X[18481] + X[34627], 2 X[3623] + X[6361], 7 X[3623] - 4 X[11278], and many others

X(50819) lies on these lines: {2, 17502}, {3, 38074}, {8, 15688}, {10, 15710}, {20, 3656}, {30, 3616}, {40, 376}, {515, 19708}, {517, 15697}, {550, 3241}, {551, 3529}, {952, 15695}, {962, 15686}, {1385, 15683}, {1482, 15691}, {1698, 3524}, {3146, 3653}, {3522, 28204}, {3528, 3679}, {3533, 38076}, {3534, 5731}, {3545, 19862}, {3576, 15682}, {3579, 20052}, {3617, 10304}, {3623, 3655}, {3828, 10299}, {3839, 13624}, {5071, 7987}, {5073, 38022}, {5550, 14269}, {5587, 15719}, {5603, 11001}, {5657, 8703}, {5691, 15702}, {5790, 15759}, {5818, 15692}, {5886, 15640}, {9778, 15690}, {9779, 33699}, {9780, 17504}, {9812, 15685}, {10165, 41106}, {10246, 19710}, {10385, 21578}, {15681, 38314}, {15689, 34632}, {15693, 28186}, {15706, 18357}, {15707, 19877}, {15708, 18480}, {15709, 31253}, {15715, 19875}, {15716, 38042}, {16189, 17538}, {17578, 31666}, {18525, 45759}, {19709, 28190}, {28164, 41099}, {28172, 30308}, {30389, 49138}, {31162, 46333}, {31730, 34631}, {33703, 38021}, {33923, 38066}, {37705, 41982}, {38112, 46332}

X(50819) = midpoint of X(1698) and X(34628)
X(50819) = reflection of X(i) in X(j) for these {i,j}: {3623, 3655}, {5071, 7987}, {5818, 15692}, {34627, 3617}, {34648, 31253}
X(50819) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10304, 18481, 34627}, {15689, 34773, 34632}


X(50820) = X(30)X(3624)∩X(40)X(376)

Barycentrics    37*a^4 - 3*a^3*b - 29*a^2*b^2 + 3*a*b^3 - 8*b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c - 29*a^2*c^2 - 3*a*b*c^2 + 16*b^2*c^2 + 3*a*c^3 - 8*c^4 : :
X(50820) = X[1] + 6 X[15689], 38 X[3] - 17 X[30315], 13 X[3] - 6 X[38083], 19 X[19876] - 17 X[30315], 13 X[19876] - 12 X[38083], 4 X[20] + 3 X[38021], X[40] - 8 X[376], 13 X[40] + 8 X[944], 5 X[40] + 16 X[4297], 29 X[40] - 8 X[12245], 11 X[40] - 32 X[12512], 13 X[376] + X[944], 5 X[376] + 2 X[4297], 29 X[376] - X[12245], 11 X[376] - 4 X[12512], 5 X[944] - 26 X[4297], 29 X[944] + 13 X[12245], 11 X[944] + 52 X[12512], 58 X[4297] + 5 X[12245], 11 X[4297] + 10 X[12512], 11 X[12245] - 116 X[12512], 3 X[165] - 10 X[15695], 8 X[548] - X[3679], 6 X[550] + X[3656], 20 X[550] + X[9589], 10 X[3656] - 3 X[9589], 2 X[551] + 5 X[17538], 4 X[1125] + 3 X[46333], 5 X[1698] - 12 X[45759], 3 X[1699] + 4 X[19710], 12 X[3524] - 5 X[18492], 4 X[3534] + 3 X[3576], 5 X[3617] - 33 X[35418], 3 X[3653] + 4 X[12103], 4 X[3828] - 11 X[21735], 3 X[5587] - 10 X[19708], X[5691] - 8 X[34200], X[7982] + 20 X[15696], 5 X[7987] + 2 X[15681], 5 X[8227] + 2 X[15683], 10 X[8703] - 3 X[26446], 17 X[8703] - 3 X[38138], 17 X[26446] - 10 X[38138], X[9780] - 3 X[10304], 13 X[10299] - 6 X[38076], 10 X[14093] - 3 X[19875], X[15685] + 6 X[17502], 2 X[15685] + 5 X[30308], 12 X[17502] - 5 X[30308], 4 X[15686] + 3 X[25055], 5 X[15686] + 2 X[40273], 15 X[25055] - 8 X[40273], 15 X[15688] - X[18525], 6 X[15688] + X[34628], 12 X[15688] - 5 X[35242], 2 X[18525] + 5 X[34628], 4 X[18525] - 25 X[35242], 2 X[34628] + 5 X[35242], 32 X[15690] + 3 X[16200], 9 X[15705] - 2 X[31673], 9 X[15707] - 2 X[33697], 9 X[15710] - 2 X[34648], 11 X[15715] - 4 X[19925], 4 X[15808] - X[41869], 17 X[19872] - 24 X[41983], X[20057] + 2 X[31730], 13 X[21734] - 6 X[38068], 13 X[31425] - 6 X[38074], 13 X[34595] - 6 X[38335]

X(50820) lies on these lines: {1, 15689}, {2, 28172}, {3, 19876}, {20, 38021}, {30, 3624}, {40, 376}, {165, 15695}, {548, 3679}, {550, 3656}, {551, 17538}, {1125, 46333}, {1698, 45759}, {1699, 19710}, {3524, 18492}, {3534, 3576}, {3617, 35418}, {3622, 31162}, {3646, 15677}, {3653, 12103}, {3828, 21735}, {5587, 19708}, {5691, 34200}, {7713, 35489}, {7982, 15696}, {7987, 15681}, {7989, 15700}, {8227, 15683}, {8703, 26446}, {9617, 32787}, {9780, 10304}, {10299, 38076}, {14093, 19875}, {15685, 17502}, {15686, 25055}, {15688, 18525}, {15690, 16200}, {15697, 28232}, {15698, 28164}, {15701, 28168}, {15705, 31673}, {15707, 33697}, {15710, 34648}, {15715, 19925}, {15808, 41869}, {16192, 28208}, {19872, 41983}, {20057, 31730}, {21734, 38068}, {28194, 50693}, {28202, 30389}, {31425, 38074}, {34595, 38335}

X(50820) = reflection of X(i) in X(j) for these {i,j}: {7989, 15700}, {19876, 3}, {31162, 3622}
X(50820) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {15685, 17502, 30308}, {15688, 34628, 35242}


X(50821) = X(10)X(30)∩X(40)X(381)

Barycentrics    2*a^4 + 3*a^3*b - 4*a^2*b^2 - 3*a*b^3 + 2*b^4 + 3*a^3*c - 6*a^2*b*c + 3*a*b^2*c - 4*a^2*c^2 + 3*a*b*c^2 - 4*b^2*c^2 - 3*a*c^3 + 2*c^4 : :
X(50821) = X[1] - 3 X[5054], 3 X[5054] + X[34718], 7 X[2] - 3 X[5603], X[2] + 3 X[5657], 5 X[2] - 3 X[5886], 4 X[2] - 3 X[11230], 2 X[2] - 3 X[11231], X[2] - 3 X[26446], 3 X[3654] + X[3656], 7 X[3654] + 3 X[5603], X[3654] - 3 X[5657], 5 X[3654] + 3 X[5886], 4 X[3654] + 3 X[11230], 2 X[3654] + 3 X[11231], X[3654] + 3 X[26446], 7 X[3656] - 9 X[5603], X[3656] + 9 X[5657], 5 X[3656] - 9 X[5886], 4 X[3656] - 9 X[11230], 2 X[3656] - 9 X[11231], X[3656] - 9 X[26446], X[5603] + 7 X[5657], 5 X[5603] - 7 X[5886], 4 X[5603] - 7 X[11230], 2 X[5603] - 7 X[11231], X[5603] - 7 X[26446], 5 X[5657] + X[5886], 4 X[5657] + X[11230], 2 X[5657] + X[11231], 4 X[5886] - 5 X[11230], 2 X[5886] - 5 X[11231], X[5886] - 5 X[26446], X[11230] - 4 X[26446], 5 X[3] + X[5881], X[3] - 7 X[9588], 7 X[3] - 13 X[31425], 2 X[3] - 5 X[31447], X[3] + 3 X[38066], 5 X[3679] - X[5881], X[3679] + 7 X[9588], 7 X[3679] + 13 X[31425], 2 X[3679] + 5 X[31447], X[3679] - 3 X[38066], X[5881] + 35 X[9588], 7 X[5881] + 65 X[31425], 2 X[5881] + 25 X[31447], X[5881] - 15 X[38066], 49 X[9588] - 13 X[31425], 14 X[9588] - 5 X[31447], and many others

X(50821) lies on these lines: {1, 5054}, {2, 392}, {3, 3679}, {4, 28202}, {5, 3828}, {8, 3524}, {10, 30}, {20, 38074}, {35, 28443}, {40, 381}, {46, 11237}, {65, 3584}, {72, 13145}, {100, 21161}, {140, 551}, {145, 15708}, {165, 3534}, {182, 28538}, {210, 2771}, {355, 376}, {495, 553}, {498, 50193}, {500, 3214}, {515, 4745}, {516, 3845}, {519, 549}, {528, 12619}, {535, 10225}, {546, 5493}, {547, 946}, {550, 38081}, {572, 50082}, {631, 3241}, {632, 13464}, {942, 10056}, {944, 15692}, {952, 4669}, {962, 5071}, {993, 15813}, {1125, 11278}, {1210, 15170}, {1350, 38087}, {1386, 10168}, {1480, 37679}, {1482, 15694}, {1656, 7991}, {1657, 37714}, {1698, 5055}, {1699, 19709}, {1737, 3058}, {1788, 5045}, {2093, 31479}, {2550, 18407}, {3017, 4646}, {3057, 3582}, {3085, 31794}, {3219, 10711}, {3245, 17605}, {3359, 3929}, {3416, 11179}, {3452, 12611}, {3523, 31145}, {3526, 7982}, {3530, 5882}, {3533, 5734}, {3543, 5818}, {3545, 9780}, {3564, 50781}, {3576, 4677}, {3616, 15709}, {3617, 10304}, {3624, 8148}, {3625, 41983}, {3626, 17504}, {3628, 4301}, {3632, 15707}, {3634, 15699}, {3689, 13151}, {3698, 37585}, {3817, 10109}, {3830, 5587}, {3839, 6361}, {3844, 11178}, {3851, 9589}, {3860, 28216}, {3968, 44257}, {3983, 40263}, {4297, 34200}, {4304, 11545}, {4420, 33858}, {4421, 28466}, {4423, 44455}, {4428, 6883}, {4654, 31434}, {4662, 13369}, {4668, 15706}, {4678, 15705}, {4691, 37705}, {4870, 5903}, {4995, 24929}, {5044, 37828}, {5066, 10175}, {5070, 11522}, {5072, 30315}, {5085, 50783}, {5119, 11238}, {5122, 5252}, {5126, 12647}, {5128, 9654}, {5183, 7951}, {5251, 28453}, {5260, 28461}, {5298, 24928}, {5432, 50194}, {5434, 10039}, {5453, 50587}, {5476, 38167}, {5537, 7489}, {5642, 11699}, {5691, 15681}, {5694, 31788}, {5722, 10385}, {5726, 18541}, {5731, 15698}, {5732, 38097}, {5759, 38092}, {5812, 50741}, {5837, 47742}, {5844, 10165}, {5885, 24473}, {5901, 10124}, {6174, 22935}, {6175, 16139}, {6427, 31440}, {7688, 18524}, {7967, 15719}, {7987, 12645}, {8227, 15703}, {8983, 43211}, {9140, 12778}, {9300, 31398}, {9578, 31776}, {9591, 37956}, {9624, 46219}, {9626, 34006}, {9708, 35238}, {9709, 35239}, {9710, 37356}, {9711, 37406}, {9778, 15682}, {9812, 41106}, {9860, 48657}, {9864, 14830}, {9881, 11632}, {9940, 34619}, {9947, 37427}, {9957, 10072}, {10172, 28228}, {10199, 10284}, {10245, 34712}, {10246, 15701}, {10257, 47593}, {10306, 16857}, {10310, 28444}, {10916, 32157}, {11001, 28168}, {11010, 17606}, {11024, 50727}, {11171, 22697}, {11194, 32612}, {11236, 26921}, {11239, 13373}, {11248, 16418}, {11249, 16417}, {11518, 31480}, {11530, 31494}, {11531, 15723}, {11698, 15481}, {11724, 22247}, {11737, 40273}, {12101, 28178}, {12245, 15702}, {12261, 45311}, {12331, 15931}, {12512, 15686}, {12607, 44222}, {13846, 35774}, {13847, 35775}, {13971, 43212}, {13973, 31439}, {14093, 16192}, {14269, 41869}, {14891, 47745}, {15687, 19925}, {15688, 18525}, {15690, 28186}, {15711, 28236}, {15713, 28234}, {15720, 34747}, {15759, 28224}, {15764, 34557}, {15765, 36458}, {15908, 44847}, {16004, 18250}, {16174, 38084}, {16370, 26285}, {16371, 26286}, {17549, 26086}, {17757, 17781}, {18236, 31937}, {18395, 37568}, {18483, 38071}, {18492, 38335}, {18583, 38089}, {18585, 36440}, {19710, 28164}, {19862, 47598}, {20423, 38047}, {21031, 37401}, {21077, 49107}, {22266, 45757}, {22332, 31444}, {22792, 40256}, {24466, 38099}, {26487, 34744}, {26492, 34711}, {28150, 33699}, {28458, 34606}, {28459, 34612}, {28460, 47033}, {29010, 50096}, {30264, 38100}, {31165, 37562}, {31394, 41310}, {31395, 41311}, {31758, 31840}, {31837, 35004}, {34339, 45701}, {34634, 43934}, {34790, 40296}, {35597, 37291}, {35822, 49227}, {35823, 49226}, {36920, 37525}, {37600, 41684}, {37619, 50104}, {38064, 47356}, {38067, 47357}, {38116, 47359}, {41945, 49602}, {41946, 49601}, {42042, 50317}, {48882, 50415}

X(50821) = midpoint of X(i) and X(j) for these {i,j}: {1, 34718}, {2, 3654}, {3, 3679}, {8, 3655}, {40, 381}, {165, 5790}, {355, 376}, {549, 5690}, {551, 11362}, {3416, 11179}, {3632, 34748}, {3828, 43174}, {5657, 26446}, {5691, 15681}, {5882, 34641}, {6175, 16139}, {9140, 12778}, {9860, 48657}, {9864, 14830}, {9881, 11632}, {10164, 38127}, {10711, 12515}, {11171, 22697}, {12699, 34632}, {12702, 31162}, {18481, 34627}, {18525, 34628}, {28458, 34606}, {28459, 34612}, {28460, 47033}, {31145, 37727}, {31165, 37562}, {31673, 34638}, {31730, 34648}, {48882, 50415}
X(50821) = reflection of X(i) in X(j) for these {i,j}: {5, 3828}, {376, 31663}, {381, 9956}, {549, 6684}, {551, 140}, {946, 547}, {1385, 549}, {1386, 10168}, {3241, 15178}, {3655, 13624}, {4297, 34200}, {5901, 10124}, {7967, 31662}, {10222, 551}, {11178, 3844}, {11230, 11231}, {11231, 26446}, {11699, 5642}, {11724, 22247}, {12261, 45311}, {15686, 12512}, {15687, 19925}, {17502, 10164}, {22793, 381}, {22935, 6174}, {24473, 5885}, {31162, 9955}, {31840, 31758}, {33697, 34648}, {34648, 18357}, {34748, 32900}, {38034, 10172}, {38140, 38042}, {38176, 38112}, {40273, 11737}
X(50821) = complement of X(3656)
X(50821) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5657, 3654}, {3, 38066, 3679}, {5, 3828, 38083}, {8, 3524, 3655}, {10, 3579, 18480}, {10, 31730, 18357}, {40, 7989, 48661}, {40, 9956, 22793}, {40, 19875, 381}, {140, 11362, 10222}, {381, 19875, 9956}, {551, 38068, 140}, {631, 3241, 3653}, {1482, 15694, 25055}, {1698, 12702, 9955}, {1698, 31162, 5055}, {3241, 3653, 15178}, {3524, 3655, 13624}, {3530, 5882, 31666}, {3545, 34632, 12699}, {3579, 33697, 31730}, {3617, 10304, 34627}, {3654, 26446, 2}, {4421, 28466, 32613}, {5054, 34718, 1}, {5055, 12702, 31162}, {5055, 31162, 9955}, {5493, 31399, 546}, {5690, 6684, 1385}, {5901, 10124, 19883}, {7991, 19876, 38021}, {9780, 34632, 3545}, {10304, 34627, 18481}, {11362, 38068, 551}, {12245, 15702, 38314}, {15688, 18525, 34628}, {15709, 34631, 3616}, {18357, 31730, 33697}, {18357, 33697, 18480}, {19876, 38021, 1656}, {25055, 31423, 15694}, {34628, 35242, 15688}


X(50822) = X(30)X(3617)∩X(519)X(549)

Barycentrics    4*a^4 + 24*a^3*b - 17*a^2*b^2 - 24*a*b^3 + 13*b^4 + 24*a^3*c - 48*a^2*b*c + 24*a*b^2*c - 17*a^2*c^2 + 24*a*b*c^2 - 26*b^2*c^2 - 24*a*c^3 + 13*c^4 : :
X(50822) = X[5] - 6 X[38066], 2 X[8] + 3 X[17504], 8 X[10] - 3 X[38071], 4 X[40] + X[35404], 4 X[355] + X[44903], 13 X[549] - 8 X[1385], 7 X[549] - 2 X[1483], X[549] + 4 X[5690], 11 X[549] - 16 X[6684], 41 X[549] - 16 X[13607], 28 X[1385] - 13 X[1483], 2 X[1385] + 13 X[5690], 11 X[1385] - 26 X[6684], 41 X[1385] - 26 X[13607], X[1483] + 14 X[5690], 11 X[1483] - 56 X[6684], 41 X[1483] - 56 X[13607], 11 X[5690] + 4 X[6684], 41 X[5690] + 4 X[13607], 41 X[6684] - 11 X[13607], X[550] + 4 X[3679], 13 X[632] - 4 X[16189], 3 X[1698] - X[3656], 4 X[1698] - 3 X[15699], 4 X[3656] - 9 X[15699], 2 X[3241] - 7 X[14869], 3 X[3524] + X[20052], 4 X[3530] + X[31145], 2 X[3616] - 3 X[11539], 3 X[11539] + 2 X[34718], X[3621] + 9 X[15707], X[3623] - 3 X[5054], 7 X[3627] + 8 X[5493], X[3627] - 6 X[38081], 4 X[5493] + 21 X[38081], 4 X[3654] + X[3845], 7 X[3654] + 3 X[5587], 2 X[3654] + 3 X[38112], 7 X[3845] - 12 X[5587], X[3845] - 6 X[38112], 2 X[5587] - 7 X[38112], 4 X[4668] + 3 X[45759], 7 X[4678] + 3 X[15688], 8 X[4745] - 3 X[38138], 6 X[5657] - X[8703], 6 X[5790] - X[33699], 3 X[7967] - 8 X[44580], X[8148] - 6 X[47599], 4 X[10124] + X[12245], 3 X[10247] - 8 X[11540], X[12645] + 4 X[14891], 2 X[12702] + 3 X[23046], 11 X[15720] - X[20049], X[19710] + 24 X[38127], X[34631] - 6 X[47598], X[34748] - 6 X[41983], 11 X[46933] - 6 X[47478]

X(50822) lies on these lines: {5, 38066}, {8, 17504}, {10, 38071}, {30, 3617}, {40, 35404}, {355, 44903}, {519, 549}, {550, 3679}, {632, 16189}, {952, 15711}, {1698, 3656}, {3241, 14869}, {3524, 20052}, {3530, 31145}, {3564, 50782}, {3616, 11539}, {3621, 15707}, {3623, 5054}, {3627, 5493}, {3654, 3845}, {3655, 4816}, {3858, 28194}, {4668, 45759}, {4678, 15688}, {4745, 28150}, {5657, 8703}, {5790, 33699}, {5844, 15713}, {7967, 44580}, {8148, 47599}, {10124, 12245}, {10247, 11540}, {12645, 14891}, {12702, 23046}, {15720, 20049}, {19710, 28160}, {28204, 46853}, {34631, 47598}, {34748, 41983}, {46933, 47478}

X(50822) = midpoint of X(i) and X(j) for these {i,j}: {3616, 34718}, {3655, 4816}
X(50822) = {X(3654),X(38112)}-harmonic conjugate of X(3845)


X(50823) = X(8)X(30)∩X(519)X(549)

Barycentrics    4*a^4 - 12*a^3*b + a^2*b^2 + 12*a*b^3 - 5*b^4 - 12*a^3*c + 24*a^2*b*c - 12*a*b^2*c + a^2*c^2 - 12*a*b*c^2 + 10*b^2*c^2 + 12*a*c^3 - 5*c^4 : :
X(50823) = 2 X[1] - 3 X[11539], 5 X[2] - 3 X[10247], 4 X[2] - 3 X[10283], 2 X[2] - 3 X[38112], 4 X[10247] - 5 X[10283], 2 X[10247] - 5 X[38112], 3 X[5] - 2 X[3656], 5 X[5] - 2 X[7982], 13 X[5] - 10 X[11522], 7 X[5] - 6 X[38021], 2 X[5] - 3 X[38081], X[3656] - 3 X[3679], 5 X[3656] - 3 X[7982], 13 X[3656] - 15 X[11522], 7 X[3656] - 9 X[38021], 4 X[3656] - 9 X[38081], 5 X[3679] - X[7982], 13 X[3679] - 5 X[11522], 7 X[3679] - 3 X[38021], 4 X[3679] - 3 X[38081], 13 X[7982] - 25 X[11522], 7 X[7982] - 15 X[38021], 4 X[7982] - 15 X[38081], 35 X[11522] - 39 X[38021], 20 X[11522] - 39 X[38081], 4 X[38021] - 7 X[38081], 11 X[8] + X[6361], 5 X[8] + X[12702], 7 X[8] - X[18525], 5 X[8] - X[34627], 7 X[8] + X[34632], 4 X[8] - X[37705], 5 X[6361] - 11 X[12702], 7 X[6361] + 11 X[18525], 5 X[6361] + 11 X[34627], 7 X[6361] - 11 X[34632], X[6361] - 11 X[34718], 4 X[6361] + 11 X[37705], 7 X[12702] + 5 X[18525], 7 X[12702] - 5 X[34632], X[12702] - 5 X[34718], 4 X[12702] + 5 X[37705], 5 X[18525] - 7 X[34627], X[18525] + 7 X[34718], 4 X[18525] - 7 X[37705], 7 X[34627] + 5 X[34632], X[34627] + 5 X[34718], and many others

X(50823) lies on these lines: {1, 11539}, {2, 5844}, {3, 31145}, {5, 3656}, {8, 30}, {10, 15699}, {40, 15686}, {55, 28463}, {140, 3241}, {145, 5054}, {165, 952}, {355, 15687}, {376, 12645}, {381, 12245}, {515, 19710}, {517, 3845}, {519, 549}, {546, 38074}, {547, 1482}, {550, 11362}, {551, 632}, {631, 20049}, {944, 34200}, {962, 14893}, {1353, 28538}, {3058, 41684}, {3524, 3621}, {3534, 28224}, {3545, 4678}, {3564, 50783}, {3576, 19711}, {3579, 4701}, {3616, 47598}, {3617, 5055}, {3623, 15709}, {3625, 34773}, {3626, 22791}, {3627, 28194}, {3632, 3655}, {3653, 14869}, {3748, 15935}, {3828, 10222}, {3830, 28212}, {3857, 4301}, {3871, 28443}, {3913, 5428}, {4668, 18357}, {4691, 11278}, {4745, 10171}, {4746, 18480}, {4816, 18481}, {4860, 12647}, {4995, 37728}, {5066, 5790}, {5453, 50575}, {5476, 38165}, {5550, 41984}, {5603, 10109}, {5657, 12100}, {5731, 15759}, {5734, 35018}, {5818, 11737}, {5881, 15704}, {5882, 44682}, {5886, 16191}, {5901, 19875}, {7967, 15693}, {9041, 48876}, {9780, 47599}, {9956, 38098}, {10124, 38314}, {10246, 11812}, {10248, 41988}, {10304, 18526}, {10573, 15170}, {10595, 15703}, {11238, 11545}, {12000, 17542}, {13243, 37429}, {13464, 38083}, {15178, 38068}, {15682, 28216}, {15684, 20070}, {15702, 37624}, {15707, 20054}, {15708, 20014}, {15712, 37727}, {15713, 26446}, {18493, 47478}, {18583, 38087}, {19877, 41985}, {19883, 33179}, {19914, 28459}, {20053, 41983}, {28174, 33699}, {28178, 37712}, {28198, 35404}, {28208, 44903}, {34667, 43934}, {35842, 41946}, {35843, 41945}, {37546, 37936}, {37950, 47490}, {38028, 38127}, {38034, 38176}, {43174, 46853}, {43211, 44635}, {43212, 44636}, {44266, 47488}

X(50823) = midpoint of X(i) and X(j) for these {i,j}: {3, 31145}, {8, 34718}, {376, 12645}, {381, 12245}, {3621, 34748}, {3632, 3655}, {3654, 4677}, {11362, 34641}, {12702, 34627}, {15684, 20070}, {18525, 34632}
X(50823) = reflection of X(i) in X(j) for these {i,j}: {5, 3679}, {549, 5690}, {944, 34200}, {962, 14893}, {1482, 547}, {1483, 549}, {3241, 140}, {8703, 3654}, {10222, 3828}, {10283, 38112}, {15686, 40}, {15687, 355}, {31162, 18357}, {38028, 38127}, {38034, 38176}, {44266, 47488}
X(50823) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 3679, 38081}, {3241, 38066, 140}, {3524, 3621, 34748}, {3617, 34631, 5055}, {3828, 10222, 38022}, {18357, 31162, 23046}


X(50824) = X(1)X(30)∩X(519)X(549)

Barycentrics    8*a^4 - 6*a^3*b - 7*a^2*b^2 + 6*a*b^3 - b^4 - 6*a^3*c + 12*a^2*b*c - 6*a*b^2*c - 7*a^2*c^2 - 6*a*b*c^2 + 2*b^2*c^2 + 6*a*c^3 - c^4 : :
X(50824) = 3 X[1] - X[3656], 7 X[1] - X[12699], 5 X[1] + X[18481], 4 X[1] - X[22791], 5 X[1] - X[31162], 7 X[1] + X[34628], 2 X[1] + X[34773], 13 X[1] - X[41869], 3 X[3655] + X[3656], 7 X[3655] + X[12699], 5 X[3655] - X[18481], 4 X[3655] + X[22791], 5 X[3655] + X[31162], 7 X[3655] - X[34628], 13 X[3655] + X[41869], 7 X[3656] - 3 X[12699], 5 X[3656] + 3 X[18481], 4 X[3656] - 3 X[22791], 5 X[3656] - 3 X[31162], 7 X[3656] + 3 X[34628], 2 X[3656] + 3 X[34773], 13 X[3656] - 3 X[41869], 5 X[12699] + 7 X[18481], 4 X[12699] - 7 X[22791], 5 X[12699] - 7 X[31162], 2 X[12699] + 7 X[34773], 13 X[12699] - 7 X[41869], 4 X[18481] + 5 X[22791], 7 X[18481] - 5 X[34628], 2 X[18481] - 5 X[34773], 13 X[18481] + 5 X[41869], 5 X[22791] - 4 X[31162], 7 X[22791] + 4 X[34628], X[22791] + 2 X[34773], 13 X[22791] - 4 X[41869], 7 X[31162] + 5 X[34628], 2 X[31162] + 5 X[34773], 13 X[31162] - 5 X[41869], 2 X[34628] - 7 X[34773], 13 X[34628] + 7 X[41869], 13 X[34773] + 2 X[41869], 5 X[2] - 3 X[5790], X[2] + 3 X[7967], X[2] - 3 X[10246], 2 X[2] - 3 X[38028], 4 X[2] - 3 X[38042], X[5790] + 5 X[7967], X[5790] - 5 X[10246], many others

X(50824) lies on these lines: {1, 30}, {2, 952}, {3, 3241}, {5, 551}, {8, 5054}, {10, 11539}, {40, 34200}, {55, 10074}, {140, 3653}, {145, 3524}, {165, 15759}, {182, 9041}, {355, 547}, {376, 1482}, {381, 944}, {497, 22938}, {515, 3845}, {516, 19710}, {517, 3892}, {519, 549}, {528, 31657}, {546, 38021}, {548, 7982}, {550, 10222}, {553, 50194}, {572, 50113}, {631, 31145}, {632, 3828}, {946, 15687}, {962, 15681}, {993, 28463}, {1125, 15699}, {1317, 4995}, {1319, 37728}, {1387, 11238}, {1388, 10072}, {1484, 3829}, {1621, 12773}, {1656, 38074}, {1657, 5734}, {1698, 47598}, {1699, 12101}, {2771, 3898}, {2886, 33337}, {2975, 28443}, {3242, 11179}, {3244, 13624}, {3476, 5719}, {3523, 20049}, {3530, 30389}, {3534, 5731}, {3543, 10595}, {3545, 3622}, {3564, 47358}, {3576, 3654}, {3579, 3635}, {3582, 10950}, {3584, 10944}, {3616, 5055}, {3617, 15709}, {3621, 15708}, {3623, 10304}, {3624, 47599}, {3627, 13464}, {3628, 5881}, {3633, 41983}, {3636, 18480}, {3813, 5499}, {3816, 11698}, {3830, 5603}, {3839, 18493}, {3850, 9624}, {3853, 11522}, {3860, 30308}, {3873, 44255}, {3877, 17525}, {3897, 15670}, {3957, 35459}, {4297, 15686}, {4301, 15704}, {4421, 10269}, {4428, 6914}, {4668, 14890}, {4669, 10165}, {4677, 11812}, {4745, 11231}, {4870, 45287}, {4930, 34610}, {5066, 5886}, {5085, 50790}, {5250, 19919}, {5298, 21842}, {5330, 15677}, {5428, 8666}, {5432, 7972}, {5476, 38040}, {5587, 10109}, {5657, 15693}, {5691, 14893}, {5763, 46920}, {5818, 15703}, {6049, 7373}, {6361, 15689}, {6924, 40726}, {7489, 38669}, {7508, 34486}, {7970, 14830}, {7987, 14891}, {7991, 33923}, {8148, 15688}, {8227, 11737}, {9140, 12898}, {9778, 15695}, {9884, 11632}, {9955, 23046}, {9956, 19883}, {10056, 34471}, {10124, 19875}, {10164, 19711}, {10168, 49524}, {10245, 34730}, {10248, 35434}, {10267, 11194}, {10609, 49719}, {10704, 14666}, {11001, 28178}, {11114, 34698}, {11171, 22713}, {11207, 45621}, {11208, 45620}, {11230, 28236}, {11237, 37737}, {11274, 11715}, {11362, 15712}, {11724, 22566}, {12115, 22799}, {12245, 15692}, {12645, 15694}, {12737, 34612}, {13369, 31792}, {13587, 37535}, {13911, 43211}, {13973, 43212}, {14869, 34641}, {15325, 37740}, {15682, 28190}, {15683, 48661}, {15685, 28182}, {15690, 16200}, {15707, 20050}, {15711, 17502}, {15714, 31663}, {15845, 25405}, {16189, 44245}, {16202, 16370}, {16203, 16371}, {16239, 19876}, {17549, 37621}, {17564, 24927}, {17579, 34745}, {18444, 37429}, {18583, 38023}, {19907, 49736}, {20423, 38315}, {22793, 35404}, {24475, 44663}, {26321, 28461}, {26487, 34700}, {26492, 34717}, {28160, 33699}, {28460, 34195}, {28538, 48876}, {29580, 36728}, {31666, 43174}, {32787, 35763}, {32788, 35762}, {34352, 37298}, {34551, 36440}, {34552, 36458}, {34595, 41985}, {34606, 37733}, {34656, 43934}, {35018, 37714}, {35641, 41946}, {35642, 41945}, {37950, 47491}, {38029, 47359}, {38140, 41150}, {44266, 47495}, {48906, 49465}, {48907, 50422}

X(50824) = midpoint of X(i) and X(j) for these {i,j}: {1, 3655}, {3, 3241}, {8, 34748}, {145, 34718}, {376, 1482}, {381, 944}, {549, 1483}, {551, 5882}, {962, 15681}, {3242, 11179}, {3679, 37727}, {4930, 34610}, {5731, 10247}, {7967, 10246}, {7970, 14830}, {8148, 34632}, {9140, 12898}, {9884, 11632}, {10704, 14666}, {11114, 34698}, {11171, 22713}, {11274, 11715}, {12699, 34628}, {12702, 34631}, {15683, 48661}, {17579, 34745}, {18481, 31162}, {18526, 34627}, {28460, 34195}, {48907, 50422}
X(50824) = reflection of X(i) in X(j) for these {i,j}: {5, 551}, {40, 34200}, {355, 547}, {381, 5901}, {549, 1385}, {551, 15178}, {3543, 40273}, {3654, 12100}, {3679, 140}, {5690, 549}, {5691, 14893}, {10164, 31662}, {15686, 4297}, {15687, 946}, {22566, 11724}, {34627, 18357}, {34648, 9955}, {34773, 3655}, {35404, 22793}, {38028, 10246}, {38034, 10283}, {38042, 38028}, {38112, 10165}, {38138, 11230}, {44266, 47495}, {49524, 10168}
X(50824) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 34773, 22791}, {5, 551, 38022}, {145, 3524, 34718}, {355, 25055, 547}, {381, 37624, 38314}, {381, 38314, 5901}, {631, 31145, 38066}, {632, 38081, 3828}, {944, 37624, 5901}, {944, 38314, 381}, {1385, 1483, 5690}, {1385, 13607, 1483}, {3576, 3654, 12100}, {3616, 18526, 18357}, {3616, 34627, 5055}, {3623, 10304, 34631}, {3653, 3679, 140}, {3653, 37727, 3679}, {5054, 34748, 8}, {5055, 18526, 34627}, {5055, 34627, 18357}, {5882, 15178, 5}, {8148, 15688, 34632}, {9955, 34648, 23046}, {10304, 34631, 12702}, {31666, 43174, 44682}


X(50825) = X(30)X(1698)∩X(519)X(549)

Barycentrics    16*a^4 + 6*a^3*b - 23*a^2*b^2 - 6*a*b^3 + 7*b^4 + 6*a^3*c - 12*a^2*b*c + 6*a*b^2*c - 23*a^2*c^2 + 6*a*b*c^2 - 14*b^2*c^2 - 6*a*c^3 + 7*c^4 : :
X(50825) = 8 X[2] - 3 X[38034], 7 X[3] + 3 X[38074], X[5] - 6 X[38068], X[8] + 9 X[15707], 2 X[10] + 3 X[17504], 17 X[1698] - 5 X[18492], 7 X[1698] + 5 X[35242], 7 X[18492] + 17 X[35242], X[40] + 4 X[10124], 6 X[140] - X[3656], 14 X[140] + X[7991], 22 X[140] - 7 X[9624], 8 X[140] - 3 X[38022], 7 X[3656] + 3 X[7991], 11 X[3656] - 21 X[9624], 4 X[3656] - 9 X[38022], 11 X[7991] + 49 X[9624], 4 X[7991] + 21 X[38022], 28 X[9624] - 33 X[38022], 3 X[165] + 2 X[5066], X[355] + 4 X[14891], 7 X[549] - 2 X[1385], 11 X[549] - X[1483], 4 X[549] + X[5690], X[549] + 4 X[6684], 29 X[549] - 4 X[13607], 22 X[1385] - 7 X[1483], 8 X[1385] + 7 X[5690], X[1385] + 14 X[6684], 29 X[1385] - 14 X[13607], 4 X[1483] + 11 X[5690], X[1483] + 44 X[6684], 29 X[1483] - 44 X[13607], X[5690] - 16 X[6684], 29 X[5690] + 16 X[13607], 29 X[6684] + X[13607], 2 X[546] - 7 X[19876], 2 X[546] + 13 X[31425], 7 X[19876] + 13 X[31425], 2 X[547] - 7 X[31423], X[550] + 4 X[3828], 2 X[551] - 7 X[14869], X[632] + 2 X[31447], X[944] - 11 X[15718], X[962] - 11 X[15723], X[1482] - 11 X[15721], X[3241] - 11 X[15720], 7 X[3523] + 3 X[38066], and many others

X(50825) lies on these lines: {2, 28174}, {3, 38074}, {5, 28202}, {8, 15707}, {10, 17504}, {30, 1698}, {40, 10124}, {140, 3656}, {165, 5066}, {355, 14891}, {515, 15711}, {517, 15713}, {519, 549}, {546, 19876}, {547, 31423}, {550, 3828}, {551, 14869}, {632, 28194}, {944, 15718}, {952, 15693}, {962, 15723}, {1482, 15721}, {3241, 15720}, {3523, 38066}, {3524, 3617}, {3530, 3679}, {3564, 50784}, {3576, 44580}, {3579, 15699}, {3616, 5054}, {3623, 15708}, {3627, 38083}, {3634, 38071}, {3653, 9588}, {3654, 11812}, {3655, 4668}, {3845, 11231}, {4745, 17502}, {5085, 50782}, {5587, 15690}, {5657, 15701}, {5790, 15698}, {5818, 14093}, {5886, 11540}, {5901, 15702}, {8703, 10164}, {9780, 15688}, {9956, 15686}, {10032, 27529}, {10175, 33699}, {10304, 18357}, {11522, 45760}, {11539, 19862}, {12100, 26446}, {12512, 35404}, {12699, 47599}, {12702, 15709}, {14269, 19877}, {14892, 41869}, {15687, 31663}, {15691, 16192}, {15695, 28190}, {15703, 40273}, {15705, 18525}, {15706, 34627}, {15710, 46933}, {15712, 28204}, {15714, 28208}, {16239, 38021}, {19708, 28186}, {19709, 28178}, {19711, 38112}, {19875, 34200}, {19925, 44903}, {23046, 31730}, {28182, 41099}, {28216, 30308}, {28466, 33814}, {31162, 47598}, {38081, 44682}

X(50825) = midpoint of X(i) and X(j) for these {i,j}: {3623, 34718}, {3655, 4668}, {5818, 14093}
X(50825) = {X(3654),X(11812)}-harmonic conjugate of X(38028)


X(50826) = X(30)X(9780)∩X(519)X(549)

Barycentrics    20*a^4 + 12*a^3*b - 31*a^2*b^2 - 12*a*b^3 + 11*b^4 + 12*a^3*c - 24*a^2*b*c + 12*a*b^2*c - 31*a^2*c^2 + 12*a*b*c^2 - 22*b^2*c^2 - 12*a*c^3 + 11*c^4 : :
X(50826) = 4 X[3] + 3 X[38081], X[8] + 6 X[41983], 4 X[10] + 3 X[45759], 26 X[140] - 5 X[5734], 6 X[165] + X[33699], 2 X[355] + 5 X[15714], 11 X[549] - 4 X[1385], 8 X[549] - X[1483], 5 X[549] + 2 X[5690], X[549] - 8 X[6684], 43 X[549] - 8 X[13607], 32 X[1385] - 11 X[1483], 10 X[1385] + 11 X[5690], X[1385] - 22 X[6684], 43 X[1385] - 22 X[13607], 5 X[1483] + 16 X[5690], X[1483] - 64 X[6684], 43 X[1483] - 64 X[13607], X[5690] + 20 X[6684], 43 X[5690] + 20 X[13607], 43 X[6684] - X[13607], 25 X[632] - 4 X[4301], 5 X[632] - 12 X[38068], X[4301] - 15 X[38068], 10 X[1698] - 3 X[23046], X[3241] - 8 X[12108], 3 X[3524] + X[4678], 15 X[3524] - X[18526], 5 X[4678] + X[18526], 4 X[3530] + 3 X[38066], 4 X[3579] + 3 X[38071], 5 X[3616] - 12 X[14890], 5 X[3617] + 9 X[15706], X[3622] - 3 X[5054], 5 X[3622] - X[34631], 15 X[5054] - X[34631], 3 X[3624] - X[3656], 2 X[3624] - 3 X[11539], 2 X[3656] - 9 X[11539], X[3627] - 8 X[3828], X[3627] + 20 X[31447], 2 X[3828] + 5 X[31447], 4 X[3654] + 3 X[10283], 11 X[3654] + 3 X[11224], 2 X[3654] + 5 X[15713], 11 X[10283] - 4 X[11224], 3 X[10283] - 10 X[15713], 6 X[11224] - 55 X[15713], 2 X[3679] + 5 X[15712], 5 X[3845] - 12 X[10175], 5 X[3858] - 12 X[38083], 4 X[3860] + 3 X[9778], 3 X[5657] + 4 X[11812], 3 X[5731] - 10 X[12100], 2 X[5731] + 5 X[38112], 4 X[12100] + 3 X[38112], 3 X[5790] + 4 X[15759], 5 X[5818] + 2 X[15691], X[6361] + 6 X[47478], 3 X[7967] - 17 X[15722], X[8703] + 6 X[26446], 4 X[8703] + 3 X[38138], 8 X[26446] - X[38138], 2 X[9588] + X[14869], 8 X[9955] - 15 X[15699], 8 X[9956] - X[35404], 12 X[10164] - 5 X[15711], X[12702] + 6 X[47598], 6 X[14892] - 13 X[19877], X[15686] + 6 X[19875], 3 X[15689] + 11 X[46933], 6 X[17504] + X[37705], 5 X[18493] - 12 X[41984], X[19710] + 6 X[38042], 8 X[31663] - X[44903], 4 X[33923] + 3 X[38074], X[34632] + 6 X[47599], 3 X[38022] + 4 X[43174], 3 X[38335] - 17 X[46932]

X(50826) lies on these lines: {2, 28212}, {3, 38081}, {5, 19876}, {8, 41983}, {10, 45759}, {30, 9780}, {140, 5734}, {165, 33699}, {355, 15714}, {519, 549}, {632, 4301}, {952, 19711}, {1698, 23046}, {3241, 12108}, {3524, 4678}, {3530, 38066}, {3564, 50785}, {3579, 38071}, {3616, 14890}, {3617, 15706}, {3622, 5054}, {3624, 3656}, {3627, 3828}, {3654, 10283}, {3679, 15712}, {3845, 10175}, {3857, 28202}, {3858, 38083}, {3860, 9778}, {4995, 15935}, {5657, 11812}, {5731, 12100}, {5790, 15759}, {5818, 15691}, {5844, 15701}, {6361, 47478}, {7967, 15722}, {8703, 26446}, {9588, 14869}, {9955, 15699}, {9956, 35404}, {10164, 15711}, {11231, 28232}, {12702, 47598}, {14892, 19877}, {15686, 19875}, {15689, 46933}, {15698, 28224}, {17504, 37705}, {18493, 41984}, {19710, 28172}, {20057, 34718}, {26062, 50395}, {28204, 44682}, {31663, 44903}, {33923, 38074}, {34632, 47599}, {38022, 43174}, {38335, 46932}

X(50826) = midpoint of X(20057) and X(34718)
X(50826) = reflection of X(5) in X(19876)
X(50826) = {X(3654),X(15713)}-harmonic conjugate of X(10283)


X(50827) = X(30)X(3626)∩X(519)X(549)

Barycentrics    2*a^4 - 15*a^3*b + 5*a^2*b^2 + 15*a*b^3 - 7*b^4 - 15*a^3*c + 30*a^2*b*c - 15*a*b^2*c + 5*a^2*c^2 - 15*a*b*c^2 + 14*b^2*c^2 + 15*a*c^3 - 7*c^4 : :
X(50827) = 5 X[1] - 9 X[15709], 7 X[2] - 3 X[16200], X[2] - 3 X[38127], X[16200] - 7 X[38127], X[4] - 5 X[3679], 7 X[4] + 5 X[7991], 17 X[4] - 5 X[9589], X[4] + 5 X[11362], 13 X[4] - 25 X[37714], 7 X[4] - 15 X[38074], 7 X[3679] + X[7991], 17 X[3679] - X[9589], 13 X[3679] - 5 X[37714], 7 X[3679] - 3 X[38074], 17 X[7991] + 7 X[9589], X[7991] - 7 X[11362], 13 X[7991] + 35 X[37714], X[7991] + 3 X[38074], X[9589] + 17 X[11362], 13 X[9589] - 85 X[37714], 7 X[9589] - 51 X[38074], 13 X[11362] + 5 X[37714], 7 X[11362] + 3 X[38074], 35 X[37714] - 39 X[38074], 5 X[8] + 3 X[10304], 7 X[8] + 5 X[35242], 21 X[10304] - 25 X[35242], 3 X[10] - X[3656], 5 X[10] - 3 X[5055], 7 X[10] - X[8148], 11 X[10] - 5 X[18493], 5 X[3656] - 9 X[5055], 7 X[3656] - 3 X[8148], 11 X[3656] - 15 X[18493], X[3656] + 3 X[34718], 21 X[5055] - 5 X[8148], 33 X[5055] - 25 X[18493], 3 X[5055] + 5 X[34718], 11 X[8148] - 35 X[18493], X[8148] + 7 X[34718], 5 X[18493] + 11 X[34718], 5 X[40] - X[15683], 5 X[355] - X[15684], X[381] - 3 X[38098], X[3534] - 5 X[3654], X[3534] + 5 X[4669], 5 X[4745] - 2 X[5066], 7 X[549] - 5 X[1385], and many others

X(50827) lies on these lines: {1, 15709}, {2, 16200}, {3, 34641}, {4, 3679}, {8, 10304}, {10, 3656}, {30, 3626}, {40, 15683}, {355, 15684}, {376, 47745}, {381, 38098}, {515, 3534}, {516, 33699}, {517, 3956}, {519, 549}, {548, 28204}, {551, 3526}, {631, 34747}, {952, 15759}, {1125, 47598}, {1698, 34631}, {3241, 10303}, {3244, 5054}, {3524, 3632}, {3564, 50786}, {3579, 4746}, {3617, 31162}, {3625, 3655}, {3628, 3828}, {3635, 14890}, {3636, 11539}, {3830, 28232}, {3845, 28228}, {3857, 38081}, {4301, 5072}, {4668, 31730}, {4677, 5657}, {4678, 31673}, {4691, 18483}, {4995, 36920}, {5071, 11531}, {5085, 50789}, {5176, 10032}, {5493, 49136}, {5844, 11540}, {5881, 50693}, {5882, 15717}, {7486, 7982}, {8703, 28236}, {10124, 33179}, {10172, 38112}, {11001, 37712}, {11278, 15699}, {12007, 28538}, {12245, 19875}, {12702, 34648}, {15022, 31399}, {15640, 28150}, {15708, 20050}, {18525, 34638}, {20423, 38191}, {21161, 48696}, {31662, 44580}

X(50827) = midpoint of X(i) and X(j) for these {i,j}: {3, 34641}, {10, 34718}, {376, 47745}, {3625, 3655}, {3654, 4669}, {3679, 11362}, {5882, 31145}, {12702, 34648}, {18525, 34638}, {31673, 34632}, {31730, 34627}
X(50827) = reflection of X(i) in X(j) for these {i,j}: {10172, 38112}, {13464, 3828}, {13607, 549}, {33179, 10124}
X(50827) = {X(3679),X(7991)}-harmonic conjugate of X(38074)


X(50828) = X(2)X(515)∩X(519)X(549)

Barycentrics    10*a^4 - 3*a^3*b - 11*a^2*b^2 + 3*a*b^3 + b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c - 11*a^2*c^2 - 3*a*b*c^2 - 2*b^2*c^2 + 3*a*c^3 + c^4 : :
X(50828) = X[1] + 3 X[3524], 5 X[1] - X[34631], 15 X[3524] + X[34631], X[2] + 3 X[3576], 7 X[2] - 3 X[5587], 5 X[2] + 3 X[5731], X[2] - 3 X[10165], 4 X[2] - 3 X[10172], 5 X[2] - 3 X[10175], 7 X[3576] + X[5587], 5 X[3576] - X[5731], 4 X[3576] + X[10172], 5 X[3576] + X[10175], 5 X[5587] + 7 X[5731], X[5587] - 7 X[10165], 4 X[5587] - 7 X[10172], 5 X[5587] - 7 X[10175], X[5731] + 5 X[10165], 4 X[5731] + 5 X[10172], 4 X[10165] - X[10172], 5 X[10165] - X[10175], 5 X[10172] - 4 X[10175], X[3] + 3 X[3653], 3 X[3] + X[3656], 5 X[3] + X[4301], 7 X[3] - X[5493], 2 X[3] + X[13464], X[551] - 3 X[3653], 3 X[551] - X[3656], 5 X[551] - X[4301], 7 X[551] + X[5493], 9 X[3653] - X[3656], 15 X[3653] - X[4301], 21 X[3653] + X[5493], 6 X[3653] - X[13464], 5 X[3656] - 3 X[4301], 7 X[3656] + 3 X[5493], 2 X[3656] - 3 X[13464], 7 X[4301] + 5 X[5493], 2 X[4301] - 5 X[13464], 2 X[5493] + 7 X[13464], X[5] + 5 X[31666], X[8] - 9 X[15708], X[10] - 3 X[5054], 5 X[10] + X[18526], X[3655] + 3 X[5054], 5 X[3655] - X[18526], 15 X[5054] + X[18526], X[20] + 3 X[38021], 5 X[1125] - 2 X[9955], X[1125] + 2 X[13624], 4 X[1125] - X[18483], and many others

X(50828) lies on these lines: {1, 3524}, {2, 515}, {3, 551}, {5, 31666}, {8, 15708}, {10, 3655}, {20, 38021}, {21, 16005}, {30, 1125}, {36, 553}, {40, 15692}, {140, 3828}, {165, 15698}, {214, 5745}, {355, 15694}, {376, 946}, {381, 4297}, {516, 8703}, {517, 12100}, {519, 549}, {527, 10269}, {534, 28454}, {535, 18857}, {547, 19925}, {548, 28202}, {550, 38022}, {599, 39870}, {631, 3679}, {632, 38083}, {943, 13370}, {944, 15702}, {950, 3582}, {952, 4745}, {997, 5325}, {1319, 4995}, {1350, 38023}, {1482, 15700}, {1656, 38076}, {1698, 15709}, {1699, 11001}, {2482, 11710}, {2646, 5298}, {2771, 11694}, {2796, 33813}, {2800, 11227}, {3058, 37600}, {3241, 3523}, {3244, 15707}, {3522, 9624}, {3525, 19876}, {3528, 11522}, {3530, 15178}, {3533, 37714}, {3534, 5886}, {3543, 8227}, {3545, 3624}, {3564, 50787}, {3579, 3636}, {3584, 10106}, {3601, 40270}, {3612, 10072}, {3616, 10304}, {3622, 15705}, {3625, 34748}, {3634, 11539}, {3635, 41983}, {3654, 10164}, {3817, 3830}, {3839, 5550}, {3845, 11230}, {3860, 28190}, {3884, 40296}, {3911, 37525}, {4292, 4870}, {4304, 11238}, {4311, 11237}, {4669, 15701}, {4677, 7967}, {4701, 32900}, {5055, 18481}, {5066, 10171}, {5071, 5691}, {5085, 47358}, {5126, 13405}, {5259, 28461}, {5265, 15933}, {5267, 28443}, {5303, 10032}, {5434, 13411}, {5435, 14563}, {5444, 21578}, {5450, 16418}, {5603, 19708}, {5642, 11709}, {5657, 15719}, {5732, 38025}, {5759, 38024}, {5844, 44580}, {5881, 10303}, {5884, 31165}, {5901, 12512}, {6001, 33574}, {6055, 11711}, {6174, 11715}, {6261, 50739}, {6361, 15710}, {6796, 16417}, {7982, 15717}, {7988, 41099}, {7991, 10299}, {8583, 17561}, {8726, 40257}, {9583, 19053}, {9588, 34747}, {9589, 21735}, {9779, 15640}, {9812, 15697}, {9940, 44663}, {9956, 10124}, {10056, 37618}, {10109, 28186}, {10222, 15712}, {10245, 34642}, {10283, 15711}, {10385, 30282}, {10595, 15715}, {10902, 13587}, {11019, 37606}, {11111, 12608}, {11179, 49511}, {11231, 15713}, {11263, 28460}, {11540, 28224}, {12017, 49505}, {12101, 28168}, {12114, 16857}, {12117, 38220}, {12571, 15687}, {12699, 15688}, {12702, 15706}, {14830, 21636}, {14831, 31738}, {14891, 31663}, {15670, 17614}, {15671, 24564}, {15672, 16132}, {15677, 41012}, {15682, 30308}, {15686, 22793}, {15689, 18493}, {15690, 28146}, {15691, 40273}, {15699, 18480}, {15718, 37624}, {15720, 34641}, {15721, 31423}, {15759, 28174}, {17525, 34123}, {17549, 37561}, {18357, 31253}, {19706, 38122}, {19710, 28158}, {19843, 45036}, {20423, 38049}, {22791, 45759}, {23046, 33697}, {24387, 44222}, {24466, 38026}, {24473, 31806}, {28216, 46332}, {28352, 48897}, {28463, 38602}, {30264, 38027}, {37526, 40256}, {38093, 43161}, {38118, 47359}, {41869, 46934}, {43211, 49618}, {43212, 49619}, {48893, 50421}

X(50828) = midpoint of X(i) and X(j) for these {i,j}: {3, 551}, {10, 3655}, {376, 946}, {381, 4297}, {549, 1385}, {599, 39870}, {2482, 11710}, {3241, 11362}, {3244, 34718}, {3576, 10165}, {3625, 34748}, {3679, 5882}, {5642, 11709}, {5731, 10175}, {5884, 31165}, {5901, 34200}, {6055, 11711}, {6174, 11715}, {7967, 38127}, {10164, 10246}, {11179, 49511}, {11263, 28460}, {12699, 34638}, {14830, 21636}, {14831, 31738}, {15686, 22793}, {15691, 40273}, {17502, 38028}, {18481, 34648}, {24473, 31806}, {31162, 31730}, {31673, 34628}, {34641, 37727}, {48893, 50421}
X(50828) = reflection of X(i) in X(j) for these {i,j}: {3828, 140}, {6684, 549}, {9956, 10124}, {12512, 34200}, {13464, 551}, {15687, 12571}, {19925, 547}, {31663, 14891}
X(50828) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 3653, 551}, {376, 25055, 946}, {631, 3679, 38068}, {631, 30389, 5882}, {944, 15702, 19875}, {1385, 6684, 13607}, {3525, 38074, 19876}, {3530, 15178, 43174}, {3545, 34628, 31673}, {3616, 10304, 31162}, {3622, 15705, 34632}, {3624, 34628, 3545}, {3654, 15693, 10164}, {3655, 5054, 10}, {4297, 19883, 381}, {5055, 18481, 34648}, {5882, 38068, 3679}, {7987, 25055, 376}, {10246, 15693, 3654}, {10304, 31162, 31730}, {12699, 15688, 34638}, {15692, 38314, 40}, {15705, 34632, 35242}, {15709, 34627, 1698}, {19862, 34648, 5055}, {19876, 38074, 31399}, {37727, 38066, 34641}


X(50829) = X(2)X(165)∩X(519)X(549)

Barycentrics    14*a^3 - 11*a^2*b - 8*a*b^2 + 5*b^3 - 11*a^2*c + 16*a*b*c - 5*b^2*c - 8*a*c^2 - 5*b*c^2 + 5*c^3 : :
X(50829) = X[1] - 9 X[15708], 5 X[2] + 3 X[165], 11 X[2] - 3 X[1699], 7 X[2] - 3 X[3817], 17 X[2] - 9 X[7988], 13 X[2] + 3 X[9778], 25 X[2] - 9 X[9779], 19 X[2] - 3 X[9812], X[2] + 3 X[10164], 5 X[2] - 3 X[10171], 13 X[2] - 5 X[30308], 11 X[165] + 5 X[1699], 7 X[165] + 5 X[3817], 17 X[165] + 15 X[7988], 13 X[165] - 5 X[9778], 5 X[165] + 3 X[9779], 19 X[165] + 5 X[9812], X[165] - 5 X[10164], 39 X[165] + 25 X[30308], 7 X[1699] - 11 X[3817], 17 X[1699] - 33 X[7988], 13 X[1699] + 11 X[9778], 25 X[1699] - 33 X[9779], 19 X[1699] - 11 X[9812], X[1699] + 11 X[10164], 5 X[1699] - 11 X[10171], 39 X[1699] - 55 X[30308], 17 X[3817] - 21 X[7988], 13 X[3817] + 7 X[9778], 25 X[3817] - 21 X[9779], 19 X[3817] - 7 X[9812], X[3817] + 7 X[10164], 5 X[3817] - 7 X[10171], 39 X[3817] - 35 X[30308], 39 X[7988] + 17 X[9778], 25 X[7988] - 17 X[9779], 57 X[7988] - 17 X[9812], 3 X[7988] + 17 X[10164], 15 X[7988] - 17 X[10171], 117 X[7988] - 85 X[30308], 25 X[9778] + 39 X[9779], 19 X[9778] + 13 X[9812], X[9778] - 13 X[10164], 5 X[9778] + 13 X[10171], 3 X[9778] + 5 X[30308], 57 X[9779] - 25 X[9812], 3 X[9779] + 25 X[10164], and many others

X(50829) lies on these lines: {1, 15708}, {2, 165}, {3, 3828}, {10, 3524}, {20, 19876}, {30, 3634}, {40, 15702}, {140, 28194}, {355, 15700}, {376, 19925}, {381, 12512}, {515, 12100}, {517, 11812}, {519, 549}, {547, 12571}, {550, 38083}, {551, 631}, {553, 5432}, {908, 10032}, {944, 38098}, {946, 15694}, {952, 44580}, {991, 36634}, {1125, 3656}, {1155, 41546}, {1350, 38089}, {1698, 10304}, {2796, 6036}, {3241, 9588}, {3523, 3679}, {3525, 5493}, {3530, 28204}, {3534, 10175}, {3543, 16192}, {3545, 34638}, {3564, 50788}, {3576, 4669}, {3579, 11539}, {3582, 12575}, {3584, 4298}, {3624, 34632}, {3626, 3655}, {3628, 28202}, {3635, 34718}, {3653, 11362}, {3654, 10165}, {3748, 3911}, {3845, 10172}, {3860, 28154}, {4297, 15692}, {4301, 10303}, {4691, 13624}, {4745, 15693}, {4860, 13405}, {5055, 31253}, {5066, 28150}, {5085, 50781}, {5218, 44841}, {5281, 43179}, {5325, 20103}, {5587, 19708}, {5732, 38101}, {5759, 38094}, {5818, 15715}, {5882, 38066}, {7610, 17132}, {7989, 15683}, {8703, 11231}, {9780, 15705}, {9955, 47598}, {9956, 34200}, {10056, 12577}, {10109, 28146}, {10124, 28198}, {10299, 38074}, {10385, 31231}, {11540, 28174}, {13464, 14869}, {14891, 28208}, {15672, 25011}, {15688, 31673}, {15690, 28172}, {15699, 18483}, {15706, 18481}, {15709, 19862}, {15711, 38042}, {15713, 28228}, {15721, 25055}, {15722, 38127}, {15759, 28160}, {16112, 43151}, {16226, 31737}, {17502, 19711}, {18480, 45759}, {19710, 38140}, {24466, 38104}, {28190, 46332}, {30264, 38105}, {30315, 50693}, {30389, 31145}, {31188, 31508}, {31439, 43212}, {38028, 41150}

X(50829) = midpoint of X(i) and X(j) for these {i,j}: {3, 3828}, {165, 10171}, {376, 19925}, {381, 12512}, {547, 31663}, {549, 6684}, {551, 43174}, {3626, 3655}, {3635, 34718}, {9956, 34200}
X(50829) = reflection of X(12571) in X(547)
X(50829) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 9778, 30308}, {3, 38068, 3828}, {20, 19876, 38076}, {40, 15702, 19883}, {1698, 10304, 34648}, {3525, 31425, 5493}, {3545, 35242, 34638}, {3654, 15701, 10165}, {9780, 15705, 34628}, {14869, 31447, 13464}, {15692, 19875, 4297}, {15709, 31162, 19862}


X(50830) = X(30)X(3632)∩X(519)X(549)

Barycentrics    16*a^4 - 30*a^3*b - 5*a^2*b^2 + 30*a*b^3 - 11*b^4 - 30*a^3*c + 60*a^2*b*c - 30*a*b^2*c - 5*a^2*c^2 - 30*a*b*c^2 + 22*b^2*c^2 + 30*a*c^3 - 11*c^4 : :
X(50830) = 5 X[1] - 6 X[47598], X[4] - 5 X[31145], 5 X[8] - 3 X[5055], 5 X[145] - 9 X[15709], 11 X[549] - 10 X[1385], 7 X[549] - 5 X[1483], 4 X[549] - 5 X[5690], 19 X[549] - 20 X[6684], 5 X[549] - 4 X[13607], 14 X[1385] - 11 X[1483], 8 X[1385] - 11 X[5690], 19 X[1385] - 22 X[6684], 25 X[1385] - 22 X[13607], 4 X[1483] - 7 X[5690], 19 X[1483] - 28 X[6684], 25 X[1483] - 28 X[13607], 19 X[5690] - 16 X[6684], 25 X[5690] - 16 X[13607], 25 X[6684] - 19 X[13607], 13 X[3534] - 15 X[9778], 5 X[3241] - 7 X[3526], 2 X[3244] - 3 X[11539], 3 X[3524] + X[20054], 5 X[3621] + 3 X[10304], 2 X[3621] + X[34773], 3 X[10304] - 5 X[34718], 6 X[10304] - 5 X[34773], 4 X[3625] - X[22791], 10 X[3625] - 3 X[23046], 5 X[22791] - 6 X[23046], 4 X[3626] - 3 X[15699], 4 X[3628] - 5 X[3679], 16 X[3628] - 15 X[38022], 4 X[3679] - 3 X[38022], 5 X[3633] - 12 X[14890], 5 X[3654] - 4 X[15759], X[3656] - 3 X[4677], 5 X[3656] - 6 X[5066], 7 X[3656] - 9 X[5587], 11 X[3656] - 9 X[11224], 13 X[3656] - 15 X[30308], 8 X[3656] - 9 X[38034], 5 X[4677] - 2 X[5066], 7 X[4677] - 3 X[5587], 11 X[4677] - 3 X[11224], 13 X[4677] - 5 X[30308], 8 X[4677] - 3 X[38034], 14 X[5066] - 15 X[5587], 22 X[5066] - 15 X[11224], 26 X[5066] - 25 X[30308], 16 X[5066] - 15 X[38034], 11 X[5587] - 7 X[11224], 39 X[5587] - 35 X[30308], 8 X[5587] - 7 X[38034], 39 X[11224] - 55 X[30308], 8 X[11224] - 11 X[38034], 40 X[30308] - 39 X[38034], 8 X[3856] - 5 X[7982], 4 X[4669] - 3 X[38042], 4 X[4745] - 3 X[10283], 3 X[5054] - X[20050], 10 X[5493] - 7 X[15704], 4 X[10109] - 3 X[16200], 2 X[10222] - 3 X[38081], 13 X[10303] - 5 X[20049], 13 X[10303] - 15 X[38066], X[20049] - 3 X[38066], 2 X[11278] - 3 X[38071], 16 X[11540] - 15 X[38028], 2 X[12101] - 3 X[37712], 5 X[12245] - X[15683], 5 X[12645] - X[15684], 5 X[12702] - 3 X[46333], 9 X[15706] + 5 X[20053], 9 X[15706] - 5 X[34748], 5 X[15713] - 6 X[38127], 2 X[18357] - 5 X[20052], 5 X[20052] - X[34631], 2 X[33179] - 3 X[38098]

X(50830) lies on these lines: {1, 47598}, {4, 31145}, {5, 34641}, {8, 5055}, {30, 3632}, {140, 34747}, {145, 15709}, {517, 33699}, {519, 549}, {952, 3534}, {3241, 3526}, {3244, 11539}, {3524, 20054}, {3564, 50789}, {3621, 10304}, {3625, 22791}, {3626, 15699}, {3628, 3679}, {3633, 14890}, {3654, 15759}, {3656, 4677}, {3845, 28234}, {3856, 7982}, {4669, 38042}, {4745, 10283}, {5054, 20050}, {5493, 15704}, {10109, 16200}, {10222, 38081}, {10303, 20049}, {11278, 38071}, {11531, 14893}, {11540, 38028}, {12101, 37712}, {12245, 15683}, {12645, 15684}, {12702, 46333}, {15640, 28174}, {15687, 47745}, {15706, 20053}, {15713, 38127}, {18357, 20052}, {19710, 28236}, {25439, 28463}, {33179, 38098}, {44266, 47534}

X(50830) = midpoint of X(i) and X(j) for these {i,j}: {3621, 34718}, {20053, 34748}
X(50830) = reflection of X(i) in X(j) for these {i,j}: {5, 34641}, {11531, 14893}, {15687, 47745}, {34631, 18357}, {34747, 140}, {34773, 34718}, {44266, 47534}


X(50831) = X(30)X(145)∩X(519)X(549)

Barycentrics    20*a^4 - 24*a^3*b - 13*a^2*b^2 + 24*a*b^3 - 7*b^4 - 24*a^3*c + 48*a^2*b*c - 24*a*b^2*c - 13*a^2*c^2 - 24*a*b*c^2 + 14*b^2*c^2 + 24*a*c^3 - 7*c^4 : :
X(50831) = 4 X[1] - 3 X[15699], 7 X[5] - 6 X[38074], 7 X[3241] - 3 X[38074], 2 X[8] - 3 X[11539], 7 X[145] - X[8148], 5 X[145] + X[18526], 5 X[145] - X[34631], 5 X[8148] + 7 X[18526], 5 X[8148] - 7 X[34631], X[8148] + 7 X[34748], X[18526] - 5 X[34748], X[34631] + 5 X[34748], 7 X[549] - 8 X[1385], 5 X[549] - 4 X[5690], 17 X[549] - 16 X[6684], 11 X[549] - 16 X[13607], 4 X[1385] - 7 X[1483], 10 X[1385] - 7 X[5690], 17 X[1385] - 14 X[6684], 11 X[1385] - 14 X[13607], 5 X[1483] - 2 X[5690], 17 X[1483] - 8 X[6684], 11 X[1483] - 8 X[13607], 17 X[5690] - 20 X[6684], 11 X[5690] - 20 X[13607], 11 X[6684] - 17 X[13607], 7 X[550] - 4 X[7991], X[550] + 4 X[34747], X[550] - 4 X[37727], X[7991] + 7 X[34747], X[7991] - 7 X[37727], 4 X[551] - 3 X[38081], 5 X[632] - 4 X[3679], 9 X[1699] - 11 X[3656], 12 X[1699] - 11 X[3845], 7 X[1699] - 11 X[16200], 4 X[3656] - 3 X[3845], 7 X[3656] - 9 X[16200], 7 X[3845] - 12 X[16200], 13 X[1482] - 7 X[10248], 14 X[10248] - 13 X[15687], 5 X[3244] - 2 X[9955], 4 X[3244] - X[37705], 8 X[3244] - 3 X[38071], 8 X[9955] - 5 X[37705], 16 X[9955] - 15 X[38071], 2 X[37705] - 3 X[38071], 3 X[3524] + X[20014], 5 X[3617] - 6 X[47598], X[3621] - 3 X[5054], 7 X[3622] - 6 X[47599], 5 X[3623] - 3 X[5055], 5 X[3627] - 8 X[4301], 7 X[3633] + 5 X[35242], 4 X[3633] + 3 X[45759], 7 X[3655] - 5 X[35242], 4 X[3655] - 3 X[45759], 20 X[35242] - 21 X[45759], 4 X[3654] - 5 X[15711], 7 X[3857] - 4 X[5881], 5 X[3858] - 8 X[10222], 2 X[4669] - 3 X[38028], 2 X[4677] - 3 X[38112], 2 X[5066] - 3 X[10247], 6 X[5657] - 7 X[19711], 6 X[5731] - 5 X[8703], 8 X[5882] - 5 X[46853], 3 X[7967] - 2 X[12100], 4 X[10124] - 5 X[37624], 4 X[10175] - 5 X[10283], 6 X[10246] - 5 X[15713], 5 X[10595] - 4 X[11737], 7 X[14869] - 6 X[38066], 9 X[15709] - 5 X[20052], 3 X[17504] + 2 X[20050], 3 X[17504] - 2 X[34718], 3 X[23046] - 2 X[34627], 3 X[37938] - 4 X[47593], X[37950] + 2 X[47536], 12 X[41984] - 11 X[46933], 12 X[41985] - 13 X[46934]

X(50831) lies on these lines: {1, 15699}, {3, 20049}, {5, 3241}, {8, 11539}, {30, 145}, {140, 31145}, {517, 19710}, {519, 549}, {547, 12645}, {550, 7991}, {551, 38081}, {632, 3679}, {944, 15686}, {952, 1699}, {956, 28463}, {1353, 9041}, {1482, 10248}, {3244, 9955}, {3524, 20014}, {3564, 50790}, {3617, 47598}, {3621, 5054}, {3622, 47599}, {3623, 5055}, {3627, 4301}, {3633, 3655}, {3654, 15711}, {3857, 5881}, {3858, 10222}, {4669, 38028}, {4677, 38112}, {5066, 10247}, {5657, 19711}, {5731, 5844}, {5882, 46853}, {7967, 12100}, {10124, 37624}, {10175, 10283}, {10246, 15713}, {10595, 11737}, {12245, 34200}, {14869, 38066}, {15178, 34641}, {15709, 20052}, {17504, 20050}, {23046, 34627}, {28224, 33699}, {37938, 47593}, {37950, 47536}, {41984, 46933}, {41985, 46934}, {44266, 47493}

X(50831) = midpoint of X(i) and X(j) for these {i,j}: {3, 20049}, {145, 34748}, {3633, 3655}, {18526, 34631}, {20050, 34718}, {34747, 37727}
X(50831) = reflection of X(i) in X(j) for these {i,j}: {5, 3241}, {549, 1483}, {12245, 34200}, {12645, 547}, {15686, 944}, {15687, 1482}, {31145, 140}, {34641, 15178}, {44266, 47493}


X(50832) = X(30)X(3616)∩X(519)X(549)

Barycentrics    28*a^4 - 12*a^3*b - 29*a^2*b^2 + 12*a*b^3 + b^4 - 12*a^3*c + 24*a^2*b*c - 12*a*b^2*c - 29*a^2*c^2 - 12*a*b*c^2 - 2*b^2*c^2 + 12*a*c^3 + c^4 : :
X(50832) = 2 X[1] + 3 X[17504], 8 X[2] - 3 X[38138], X[5] - 6 X[3653], X[5] + 14 X[30389], 3 X[3653] + 7 X[30389], 11 X[3616] - 5 X[18493], 8 X[140] - 3 X[38081], X[145] + 9 X[15707], X[549] + 4 X[1385], 4 X[549] + X[1483], 7 X[549] - 2 X[5690], 13 X[549] - 8 X[6684], 17 X[549] + 8 X[13607], 16 X[1385] - X[1483], 14 X[1385] + X[5690], 13 X[1385] + 2 X[6684], 17 X[1385] - 2 X[13607], 7 X[1483] + 8 X[5690], 13 X[1483] + 32 X[6684], 17 X[1483] - 32 X[13607], 13 X[5690] - 28 X[6684], 17 X[5690] + 28 X[13607], 17 X[6684] + 13 X[13607], X[550] + 4 X[551], 7 X[632] - 4 X[31399], X[944] + 4 X[10124], 4 X[946] + X[44903], 8 X[1125] - 3 X[38071], X[1482] + 4 X[14891], 2 X[1698] - 3 X[11539], 4 X[1698] - X[37705], 2 X[3655] + 3 X[11539], 4 X[3655] + X[37705], 6 X[11539] - X[37705], X[3241] + 4 X[3530], 3 X[3524] + X[3623], 9 X[3576] + X[3656], 6 X[3576] - X[8703], 4 X[3576] + X[10283], 2 X[3656] + 3 X[8703], 4 X[3656] - 9 X[10283], 2 X[8703] + 3 X[10283], X[3617] - 3 X[5054], 7 X[3622] + 3 X[15688], X[3627] - 6 X[38022], 2 X[3654] - 7 X[19711], X[3654] + 9 X[30392], 7 X[19711] + 18 X[30392], 2 X[3679] - 7 X[14869], and many others

X(50832) lies on these lines: {1, 17504}, {2, 28224}, {5, 3653}, {30, 3616}, {140, 38081}, {145, 15707}, {517, 15711}, {519, 549}, {550, 551}, {632, 28204}, {944, 10124}, {946, 44903}, {952, 15713}, {1125, 38071}, {1482, 14891}, {1698, 3655}, {3241, 3530}, {3524, 3623}, {3564, 50791}, {3576, 3656}, {3617, 5054}, {3622, 15688}, {3627, 38022}, {3654, 19711}, {3679, 14869}, {3817, 3845}, {4297, 35404}, {5066, 5731}, {5550, 47478}, {5603, 15690}, {5657, 44580}, {5790, 11540}, {5844, 15693}, {5886, 33699}, {5901, 15686}, {6361, 41982}, {7967, 15701}, {7987, 15714}, {7988, 41990}, {8148, 15705}, {9778, 46332}, {10246, 12100}, {10247, 15698}, {10595, 14093}, {11812, 38112}, {12108, 38066}, {12245, 15718}, {12645, 15721}, {13624, 45759}, {14269, 46934}, {15178, 44682}, {15646, 47593}, {15687, 25055}, {15692, 37624}, {15695, 28216}, {15699, 19862}, {15706, 34631}, {15708, 20052}, {15709, 18526}, {15720, 31145}, {15935, 37525}, {16239, 38074}, {18481, 23046}, {18525, 47599}, {19708, 28212}, {19710, 28150}, {28190, 30308}, {28194, 31666}, {34200, 38314}, {34627, 47598}, {34718, 41983}

X(50832) = midpoint of X(i) and X(j) for these {i,j}: {1698, 3655}, {10595, 14093}, {15692, 37624}, {20052, 34748}
X(50832) = reflection of X(15714) in X(7987)
X(50832) = {X(3655),X(11539)}-harmonic conjugate of X(37705)


X(50833) = X(30)X(3624)∩X(519)X(549)

Barycentrics    32*a^4 - 6*a^3*b - 37*a^2*b^2 + 6*a*b^3 + 5*b^4 - 6*a^3*c + 12*a^2*b*c - 6*a*b^2*c - 37*a^2*c^2 - 6*a*b*c^2 - 10*b^2*c^2 + 6*a*c^3 + 5*c^4 : :
X(50833) = X[1] + 6 X[41983], 4 X[3] + 3 X[38022], 26 X[140] - 5 X[37714], 13 X[19876] - 5 X[37714], 9 X[165] + 5 X[3656], 3 X[165] - 10 X[12100], 2 X[165] + 5 X[38028], X[3656] + 6 X[12100], 2 X[3656] - 9 X[38028], 4 X[12100] + 3 X[38028], 5 X[549] + 2 X[1385], 13 X[549] + X[1483], 8 X[549] - X[5690], 11 X[549] - 4 X[6684], 31 X[549] + 4 X[13607], 26 X[1385] - 5 X[1483], 16 X[1385] + 5 X[5690], 11 X[1385] + 10 X[6684], 31 X[1385] - 10 X[13607], 8 X[1483] + 13 X[5690], 11 X[1483] + 52 X[6684], 31 X[1483] - 52 X[13607], 11 X[5690] - 32 X[6684], 31 X[5690] + 32 X[13607], 31 X[6684] + 11 X[13607], 2 X[547] + 5 X[7987], 2 X[551] + 5 X[15712], 2 X[946] + 5 X[15714], 4 X[1125] + 3 X[45759], 5 X[1698] - 12 X[14890], 3 X[3524] + X[3622], 15 X[3524] - X[12702], 5 X[3622] + X[12702], 4 X[3530] + 3 X[3653], 20 X[3530] + X[7982], 15 X[3653] - X[7982], 5 X[3534] + 9 X[9779], 3 X[3576] + 4 X[11812], 5 X[3616] + 9 X[15706], X[3654] - 8 X[44580], X[3679] - 8 X[12108], 2 X[3828] + 5 X[31666], 5 X[3845] - 12 X[10171], X[3845] + 6 X[17502], 2 X[10171] + 5 X[17502], X[4669] + 6 X[31662], X[4678] - 9 X[15708], 3 X[5054] - X[9780], 15 X[5054] - X[34627], 6 X[5054] + X[34773], 5 X[9780] - X[34627], 2 X[9780] + X[34773], 2 X[34627] + 5 X[34773], 11 X[5550] + 3 X[15689], 3 X[5603] + 11 X[15716], 3 X[5657] - 17 X[15722], 3 X[5886] + 4 X[15759], 2 X[5901] + 5 X[15692], 5 X[8227] + 2 X[15691], X[8703] + 6 X[10165], 4 X[8703] + 3 X[38034], 8 X[10165] - X[38034], 3 X[10246] + 11 X[15719], 3 X[10247] + 25 X[15693], 6 X[11230] + X[19710], 3 X[11539] + 4 X[13624], 5 X[14093] + 2 X[40273], 4 X[14891] + 3 X[25055], 6 X[14892] - 13 X[34595], X[15686] + 6 X[19883], 9 X[15707] + X[20057], 9 X[15709] - 2 X[18357], 9 X[15710] + 5 X[18493], 10 X[15713] - 3 X[38042], 11 X[15718] + 3 X[38314], 2 X[15808] + 3 X[17504], 4 X[15808] - X[22791], 6 X[17504] + X[22791], X[18481] + 6 X[47598], 10 X[19862] - 3 X[23046], 17 X[19872] - 24 X[45758], 4 X[33923] + 3 X[38021], X[34628] + 6 X[47599]

X(50833) lies on these lines: {1, 41983}, {2, 28186}, {3, 38022}, {30, 3624}, {140, 19876}, {165, 3656}, {517, 19711}, {519, 549}, {547, 7987}, {551, 15712}, {946, 15714}, {952, 15701}, {1125, 45759}, {1698, 14890}, {3524, 3622}, {3530, 3653}, {3534, 9779}, {3564, 50792}, {3576, 11812}, {3616, 15706}, {3654, 44580}, {3679, 12108}, {3828, 31666}, {3845, 10171}, {4669, 31662}, {4678, 15708}, {5054, 9780}, {5550, 15689}, {5603, 15716}, {5657, 15722}, {5886, 15759}, {5901, 15692}, {8227, 15691}, {8703, 10165}, {10246, 15719}, {10247, 15693}, {11230, 19710}, {11539, 13624}, {14093, 40273}, {14869, 28204}, {14891, 25055}, {14892, 34595}, {15686, 19883}, {15698, 28174}, {15707, 20057}, {15709, 18357}, {15710, 18493}, {15711, 28232}, {15713, 38042}, {15718, 38314}, {15808, 17504}, {18481, 47598}, {19862, 23046}, {19872, 45758}, {28194, 44682}, {33923, 38021}, {34628, 47599}, {35271, 50396}

X(50833) = reflection of X(19876) in X(140)


X(50834) = X(9)X(551)∩X(390)X(519)

Barycentrics    8*a^3 + 7*a^2*b - 14*a*b^2 - b^3 + 7*a^2*c - 12*a*b*c + b^2*c - 14*a*c^2 + b*c^2 - c^3 : :
X(50834) = 4 X[2] - 3 X[38054], 2 X[7] - 3 X[38094], 4 X[3828] - 3 X[38094], 5 X[9] - 3 X[38025], 5 X[551] - 6 X[38025], X[10] - 4 X[5220], 7 X[10] - 4 X[5880], 5 X[10] - 2 X[30424], 7 X[5220] - X[5880], 10 X[5220] - X[30424], 10 X[5880] - 7 X[30424], 2 X[142] - 3 X[38101], X[390] + 5 X[5223], X[390] - 5 X[6172], 17 X[390] - 5 X[12630], 17 X[5223] + X[12630], 17 X[6172] - X[12630], 2 X[2550] - 3 X[38098], 3 X[3524] - 2 X[43176], X[3625] + 2 X[5698], 2 X[4701] + X[30332], 2 X[4745] - 3 X[5686], 4 X[4745] - 3 X[38201], X[5542] - 4 X[15481], 2 X[5542] - 3 X[19883], 8 X[15481] - 3 X[19883], 2 X[5805] - 3 X[38076], 5 X[18230] - 3 X[38024], 8 X[19878] - 5 X[30340], 2 X[31657] - 3 X[38068], 3 X[38093] - 2 X[43180]

X(50834) lies on these lines: {2, 5850}, {7, 3828}, {9, 551}, {10, 527}, {142, 38101}, {144, 3679}, {390, 519}, {516, 4669}, {518, 3898}, {528, 34641}, {1757, 50114}, {2550, 38098}, {2801, 4134}, {3062, 34632}, {3244, 47357}, {3524, 43176}, {3625, 5698}, {4356, 49742}, {4701, 30332}, {4745, 5686}, {5432, 21060}, {5542, 15325}, {5729, 21625}, {5779, 28194}, {5785, 28610}, {5805, 38076}, {5845, 50781}, {5852, 38204}, {10589, 31142}, {11019, 41700}, {15558, 31165}, {15828, 49505}, {17768, 38210}, {18230, 38024}, {19878, 30340}, {24393, 28534}, {31657, 38068}, {34639, 34790}, {38093, 43180}, {49515, 50294}

X(50834) = midpoint of X(i) and X(j) for these {i,j}: {144, 3679}, {3062, 34632}, {5223, 6172}
X(50834) = reflection of X(i) in X(j) for these {i,j}: {7, 3828}, {551, 9}, {3244, 47357}, {38201, 5686}
X(50834) = {X(7),X(3828)}-harmonic conjugate of X(38094)


X(50835) = X(2)X(210)∩X(390)X(519)

Barycentrics    a^3 + 11*a^2*b - 13*a*b^2 + b^3 + 11*a^2*c - 6*a*b*c - b^2*c - 13*a*c^2 - b*c^2 + c^3 : :
X(50835) = 2 X[2] - 3 X[5686], 4 X[2] - 3 X[11038], 7 X[2] - 6 X[38053], 5 X[2] - 6 X[38057], 7 X[5686] - 4 X[38053], 5 X[5686] - 4 X[38057], 7 X[11038] - 8 X[38053], 5 X[11038] - 8 X[38057], 5 X[38053] - 7 X[38057], 2 X[7] - 3 X[38092], 4 X[3679] - 3 X[38092], 8 X[10] - 5 X[30340], 2 X[142] - 3 X[38097], X[145] - 4 X[5220], X[390] - 4 X[5223], 5 X[390] - 2 X[12630], 10 X[5223] - X[12630], 5 X[6172] - X[12630], 4 X[551] - 5 X[18230], 2 X[3243] - 3 X[38314], X[3621] + 2 X[5698], 5 X[3623] - 8 X[15254], 2 X[3632] + X[30332], 2 X[3656] - 3 X[5817], 4 X[3828] - 3 X[38024], 5 X[4668] - 2 X[30424], 7 X[4678] - 4 X[5880], 4 X[4745] - 3 X[38052], 5 X[5071] - 4 X[20330], 2 X[5542] - 3 X[19875], 2 X[5805] - 3 X[38074], 4 X[6173] - 5 X[40333], 8 X[24393] - 5 X[40333], 7 X[9780] - 6 X[38093], 8 X[25557] - 11 X[46933], 5 X[30308] - 6 X[38158], 2 X[31657] - 3 X[38066], 2 X[34784] + X[40269], 3 X[38025] - 2 X[42871]

X(50835) lies on these lines: {2, 210}, {7, 3679}, {8, 527}, {9, 3241}, {10, 30340}, {142, 38097}, {144, 528}, {145, 5220}, {200, 18450}, {390, 519}, {391, 50310}, {480, 11194}, {516, 4677}, {551, 18230}, {2346, 16418}, {3059, 34744}, {3189, 50738}, {3243, 38314}, {3421, 45043}, {3621, 5698}, {3623, 15254}, {3632, 30332}, {3656, 5817}, {3672, 49448}, {3751, 48856}, {3828, 38024}, {3940, 14151}, {3945, 50291}, {3951, 12632}, {4346, 49772}, {4452, 49501}, {4543, 6006}, {4668, 30424}, {4669, 5850}, {4678, 5880}, {4745, 38052}, {4882, 8544}, {4899, 17294}, {5071, 20330}, {5232, 49529}, {5265, 30318}, {5274, 31142}, {5542, 19875}, {5759, 28204}, {5805, 38074}, {5819, 50082}, {5845, 50783}, {6173, 24393}, {6600, 17549}, {7426, 47508}, {9041, 37654}, {9780, 38093}, {12125, 34711}, {16496, 37681}, {17297, 39570}, {18228, 31146}, {18254, 34625}, {20007, 34610}, {20070, 34720}, {24599, 24841}, {25557, 46933}, {28194, 36991}, {30308, 38158}, {30331, 34747}, {31657, 38066}, {34718, 35514}, {34784, 40269}, {36479, 49713}, {36922, 50573}, {38025, 42871}, {41325, 50087}, {48802, 49510}, {48851, 49536}, {49449, 50313}, {49450, 50107}, {49504, 50311}, {49712, 50303}

X(50835) = midpoint of X(144) and X(31145)
X(50835) = reflection of X(i) in X(j) for these {i,j}: {7, 3679}, {145, 47357}, {390, 6172}, {3241, 9}, {6172, 5223}, {6173, 24393}, {7426, 47508}, {11038, 5686}, {34747, 30331}, {35514, 34718}, {47357, 5220}
X(50835) = {X(7),X(3679)}-harmonic conjugate of X(38092)


X(50836) = X(9)X(80)∩X(390)X(519)

Barycentrics    7*a^3 - 4*a^2*b - a*b^2 - 2*b^3 - 4*a^2*c - 6*a*b*c + 2*b^2*c - a*c^2 + 2*b*c^2 - 2*c^3 : :
X(50836) = X[1] + 2 X[5698], 4 X[2] - 3 X[38052], 5 X[2] - 6 X[38059], 7 X[2] - 6 X[38204], 5 X[30308] - 6 X[38037], 5 X[38052] - 8 X[38059], 7 X[38052] - 8 X[38204], 7 X[38059] - 5 X[38204], 2 X[7] - 3 X[38024], 4 X[551] - 3 X[38024], 5 X[9] - 3 X[38097], 5 X[3679] - 6 X[38097], 2 X[10] + X[30332], 2 X[5735] - 5 X[11522], 4 X[1001] - X[4312], 4 X[1001] - 3 X[25055], X[4312] - 3 X[25055], 2 X[6173] - 3 X[25055], 2 X[142] - 3 X[38025], X[144] + 2 X[30331], 2 X[390] + X[5223], 7 X[390] - X[12630], 7 X[5223] + 2 X[12630], 7 X[6172] + X[12630], 4 X[960] - X[5696], 5 X[1698] - 8 X[15254], 2 X[2550] - 3 X[19875], X[3062] + 2 X[43161], 5 X[3616] - 2 X[30424], 7 X[3622] - 4 X[43180], 7 X[3624] - 4 X[5880], 7 X[3624] - 6 X[38093], 2 X[5880] - 3 X[38093], X[3632] - 4 X[5220], 8 X[3636] - 5 X[30340], 3 X[3653] - 2 X[31657], 4 X[3828] - 5 X[18230], 4 X[3828] - 3 X[38092], 5 X[18230] - 3 X[38092], 2 X[3878] + X[10394], 2 X[4669] - 3 X[5686], 2 X[5542] - 3 X[38314], 2 X[5805] - 3 X[38021], 8 X[6666] - 7 X[19876], 5 X[15692] - 4 X[43151], 7 X[30389] - 4 X[43177]

X(50836) lies on these lines: {1, 527}, {2, 165}, {7, 551}, {9, 80}, {10, 30332}, {21, 5735}, {30, 11372}, {36, 1001}, {55, 31142}, {63, 31146}, {142, 18393}, {144, 3241}, {238, 50080}, {376, 2951}, {390, 519}, {392, 15726}, {405, 9589}, {452, 7991}, {484, 8257}, {518, 3899}, {535, 8545}, {752, 29573}, {758, 7671}, {946, 50739}, {954, 4428}, {960, 5696}, {1279, 49747}, {1519, 3524}, {1617, 4654}, {1621, 31164}, {1697, 34606}, {1698, 15254}, {1743, 50282}, {2094, 10980}, {2478, 9588}, {2550, 3583}, {2801, 3877}, {3058, 3929}, {3062, 34628}, {3428, 16418}, {3452, 31508}, {3616, 30424}, {3622, 43180}, {3624, 5880}, {3632, 4693}, {3636, 30340}, {3653, 31657}, {3656, 5762}, {3663, 16487}, {3683, 9580}, {3685, 17294}, {3729, 50310}, {3731, 50291}, {3822, 30311}, {3825, 30312}, {3826, 17533}, {3828, 18230}, {3878, 10394}, {3883, 50107}, {3886, 17346}, {3923, 48851}, {3928, 49736}, {4034, 49485}, {4293, 9814}, {4297, 50738}, {4301, 11106}, {4432, 17284}, {4669, 5686}, {4677, 5853}, {4679, 6174}, {4859, 15485}, {4888, 16484}, {4908, 50783}, {5044, 34707}, {5129, 5493}, {5231, 10707}, {5234, 10624}, {5248, 8543}, {5250, 5691}, {5426, 17525}, {5542, 38314}, {5572, 24473}, {5692, 15733}, {5728, 44663}, {5759, 28194}, {5766, 12572}, {5779, 28204}, {5795, 34711}, {5805, 38021}, {5845, 47358}, {5850, 8236}, {5902, 10177}, {6666, 19876}, {7174, 49742}, {7290, 17301}, {7982, 50241}, {9623, 36976}, {9624, 17571}, {9965, 30350}, {10382, 10385}, {10582, 44447}, {11112, 31435}, {11194, 42884}, {11495, 16371}, {12705, 37428}, {12848, 18421}, {13528, 31658}, {14100, 31165}, {15587, 34626}, {15677, 39778}, {15692, 43151}, {15837, 31141}, {16236, 50573}, {16469, 50114}, {16833, 28580}, {16857, 28198}, {17251, 49484}, {17272, 50311}, {17276, 35227}, {17528, 41869}, {17530, 42356}, {17564, 35242}, {17576, 30389}, {17784, 30393}, {18250, 34639}, {19861, 37299}, {20073, 49771}, {20588, 34611}, {22793, 50740}, {24280, 50119}, {24715, 31183}, {25509, 33068}, {26333, 35514}, {26446, 38180}, {31156, 43166}, {31160, 31434}, {31393, 36973}, {31424, 45700}, {34630, 37551}, {34719, 41229}, {34749, 37556}, {35031, 35093}, {37606, 44785}, {41325, 50115}, {42335, 50302}, {48849, 50118}, {49746, 50127}, {50297, 50314}

X(50836) = midpoint of X(i) and X(j) for these {i,j}: {144, 3241}, {390, 6172}, {3062, 34628}, {5698, 47357}, {14100, 31165}
X(50836) = reflection of X(i) in X(j) for these {i,j}: {1, 47357}, {7, 551}, {2951, 376}, {3241, 30331}, {3679, 9}, {4312, 6173}, {5223, 6172}, {5902, 10177}, {6173, 1001}, {24473, 5572}, {34628, 43161}
X(50836) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 551, 38024}, {1001, 6173, 25055}, {4312, 25055, 6173}, {18230, 38092, 3828}, {49742, 50130, 7174}, {50126, 50296, 3679}


X(50837) = X(144)X(551)∩X(390)X(519)

Barycentrics    22*a^3 - a^2*b - 16*a*b^2 - 5*b^3 - a^2*c - 24*a*b*c + 5*b^2*c - 16*a*c^2 + 5*b*c^2 - 5*c^3 : :
X(50837) = 5 X[9] - 3 X[38101], 5 X[3828] - 6 X[38101], 5 X[390] + 7 X[5223], X[390] + 7 X[6172], 31 X[390] - 7 X[12630], X[5223] - 5 X[6172], 31 X[5223] + 5 X[12630], 31 X[6172] + X[12630], 5 X[1125] - 8 X[15254], 11 X[1125] - 8 X[25557], 7 X[1125] - 4 X[43180], 11 X[15254] - 5 X[25557], 14 X[15254] - 5 X[43180], 14 X[25557] - 11 X[43180], 3 X[3524] + X[41705], X[3626] + 2 X[5698], X[4701] - 4 X[5220], 2 X[4746] + X[30332], 3 X[11038] - 4 X[41150], 5 X[18230] - 3 X[38094], 2 X[30424] - 5 X[31253]

X(50837) lies on these lines: {9, 3828}, {144, 551}, {390, 519}, {516, 3654}, {518, 41149}, {527, 1125}, {3062, 34638}, {3524, 41705}, {3626, 5698}, {3635, 47357}, {4701, 5220}, {4746, 30332}, {4930, 42871}, {5845, 50787}, {5850, 38316}, {11038, 41150}, {18230, 38094}, {30424, 31253}

X(50837) = midpoint of X(i) and X(j) for these {i,j}: {144, 551}, {3062, 34638}
X(50837) = reflection of X(i) in X(j) for these {i,j}: {3635, 47357}, {3828, 9}


X(50838) = X(2)X(38210)∩X(390)X(519)

Barycentrics    5*a^3 - 26*a^2*b + 25*a*b^2 - 4*b^3 - 26*a^2*c + 6*a*b*c + 4*b^2*c + 25*a*c^2 + 4*b*c^2 - 4*c^3 : :
X(50838) = 5 X[2] - 6 X[38210], 7 X[8] - 4 X[43180], 4 X[142] - 5 X[3679], 16 X[142] - 15 X[38024], 4 X[3679] - 3 X[38024], 4 X[390] - 7 X[5223], 5 X[390] - 7 X[6172], 13 X[390] - 7 X[12630], 5 X[5223] - 4 X[6172], 13 X[5223] - 4 X[12630], 13 X[6172] - 5 X[12630], 2 X[3243] - 3 X[19875], 5 X[3656] - 6 X[38139], 4 X[4669] - 3 X[38052], 4 X[4745] - 3 X[11038], 8 X[4746] - 5 X[30340], 5 X[20052] - 2 X[30424], X[20059] - 5 X[31145], 4 X[24393] - 3 X[25055], 5 X[30308] - 6 X[38154], 3 X[38097] - 2 X[42871]

X(50838) lies on these lines: {2, 38210}, {7, 34641}, {8, 43180}, {9, 34747}, {142, 3679}, {390, 519}, {518, 4677}, {527, 3632}, {3243, 19875}, {3633, 47357}, {3656, 38139}, {4669, 38052}, {4745, 11038}, {4746, 30340}, {4924, 48856}, {4995, 10383}, {5845, 50789}, {17294, 49707}, {20049, 30331}, {20052, 30424}, {20059, 31145}, {24393, 25055}, {30308, 38154}, {38097, 42871}

X(50838) = reflection of X(i) in X(j) for these {i,j}: {7, 34641}, {3633, 47357}, {20049, 30331}, {34747, 9}


X(50839) = X(7)X(528)∩X(390)X(519)

Barycentrics    13*a^3 - 19*a^2*b + 11*a*b^2 - 5*b^3 - 19*a^2*c - 6*a*b*c + 5*b^2*c + 11*a*c^2 + 5*b*c^2 - 5*c^3 : :
X(50839) = 2 X[2] - 3 X[8236], 7 X[2] - 6 X[38200], 5 X[2] - 6 X[38316], 7 X[8236] - 4 X[38200], 5 X[8236] - 4 X[38316], 5 X[38200] - 7 X[38316], 5 X[7] - 8 X[42871], 5 X[3241] - 4 X[42871], 5 X[8] - 8 X[15254], 4 X[15254] - 5 X[47357], 2 X[145] + X[30332], 5 X[390] - 2 X[5223], 2 X[390] + X[12630], 4 X[5223] - 5 X[6172], 4 X[5223] + 5 X[12630], 4 X[551] - 3 X[38092], 2 X[2550] - 3 X[38314], 7 X[3622] - 6 X[38093], 8 X[3635] - 5 X[30340], 4 X[3679] - 5 X[18230], 5 X[3679] - 6 X[38101], 5 X[18230] - 8 X[30331], 25 X[18230] - 24 X[38101], 5 X[30331] - 3 X[38101], 2 X[4677] - 3 X[5686], 4 X[5220] - X[20053], 2 X[5698] + X[20050], 4 X[5880] - 7 X[20057], 3 X[10304] - 4 X[43175], 6 X[25055] - 5 X[40333], 3 X[25055] - 4 X[43179], 5 X[40333] - 8 X[43179]

X(50839) lies on these lines: {2, 3158}, {7, 528}, {8, 4702}, {9, 31145}, {144, 20049}, {145, 527}, {390, 519}, {551, 38092}, {962, 34719}, {1001, 17547}, {2094, 20075}, {2403, 6006}, {2550, 38314}, {3543, 43166}, {3622, 38093}, {3635, 30340}, {3655, 35514}, {3679, 18230}, {3829, 7679}, {3880, 7671}, {3895, 37787}, {4308, 34701}, {4421, 7677}, {4677, 5686}, {5220, 20053}, {5435, 31146}, {5698, 20050}, {5730, 9785}, {5758, 34745}, {5819, 50113}, {5828, 34619}, {5845, 50790}, {5880, 20057}, {6223, 34629}, {6762, 50738}, {6764, 11111}, {7320, 12536}, {7673, 44663}, {7676, 11194}, {9797, 34610}, {10304, 43175}, {10578, 31140}, {25055, 40333}, {28204, 36991}, {31165, 34784}, {32087, 50310}, {34632, 43161}, {41325, 50131}, {41857, 50737}, {49704, 50129}

X(50839) = midpoint of X(i) and X(j) for these {i,j}: {144, 20049}, {6172, 12630}
X(50839) = reflection of X(i) in X(j) for these {i,j}: {7, 3241}, {8, 47357}, {3543, 43166}, {3679, 30331}, {6172, 390}, {31145, 9}, {34632, 43161}, {34784, 31165}, {35514, 3655}


X(50840) = X(2)X(10032)∩X(390)X(519)

Barycentrics    29*a^3 - 5*a^2*b - 17*a*b^2 - 7*b^3 - 5*a^2*c - 30*a*b*c + 7*b^2*c - 17*a*c^2 + 7*b*c^2 - 7*c^3 : :
X(50840) = 8 X[9] - 3 X[38092], 7 X[144] + 8 X[42819], 7 X[390] + 8 X[5223], X[390] + 4 X[6172], 19 X[390] - 4 X[12630], 2 X[5223] - 7 X[6172], 38 X[5223] + 7 X[12630], 19 X[6172] + X[12630], 8 X[3616] - 5 X[30340], X[3617] + 2 X[5698], 2 X[4668] + X[30332], 4 X[5220] - X[20052], X[15683] + 4 X[16112], X[20059] - 6 X[38025], 4 X[31165] + X[40269]

X(50840) lies on these lines: {2, 10032}, {9, 38092}, {144, 42819}, {390, 519}, {527, 3616}, {3617, 5698}, {3623, 47357}, {4668, 30332}, {5220, 20052}, {5759, 28202}, {5845, 50791}, {15683, 16112}, {16133, 16857}, {20059, 38025}, {28534, 40333}, {31165, 40269}

X(50840) = reflection of X(3623) in X(47357)


X(50841) = X(10)X(528)∩X(214)X(519)

Barycentrics    (2*a - b - c)*(a^3 + 2*a^2*b - a*b^2 - 2*b^3 + 2*a^2*c - 3*a*b*c + 2*b^2*c - a*c^2 + 2*b*c^2 - 2*c^3) : :
X(50841) = 5 X[2] - 3 X[16173], 4 X[2] - 3 X[32557], 13 X[2] - 9 X[32558], 4 X[16173] - 5 X[32557], 13 X[16173] - 15 X[32558], 13 X[32557] - 12 X[32558], 5 X[10] - 2 X[12019], 2 X[11] - 3 X[38104], 4 X[3828] - 3 X[38104], 5 X[100] + X[9897], 2 X[100] + X[15863], 5 X[3679] - X[9897], 2 X[9897] - 5 X[15863], X[214] + 2 X[1145], 5 X[214] - 2 X[1317], 7 X[214] - 4 X[33812], 5 X[1145] + X[1317], 4 X[1145] + X[11274], 7 X[1145] + 2 X[33812], X[1317] - 5 X[6174], 4 X[1317] - 5 X[11274], 7 X[1317] - 10 X[33812], 4 X[6174] - X[11274], 7 X[6174] - 2 X[33812], 7 X[11274] - 8 X[33812], 2 X[1125] + X[13996], X[1320] - 3 X[25055], 2 X[1387] - 3 X[19883], 2 X[3036] - 3 X[38098], 3 X[3545] - X[14217], 2 X[3626] + X[10609], 3 X[3653] - 5 X[38762], X[3656] - 3 X[38752], X[4301] - 4 X[20400], X[4677] + 3 X[15015], X[10031] - 3 X[15015], 4 X[4745] - 3 X[38213], 3 X[5054] - X[12737], 3 X[5055] - 2 X[16174], X[5493] + 2 X[38757], X[5528] + 3 X[38097], X[5541] + 2 X[6702], X[5541] + 3 X[19875], 2 X[6702] - 3 X[19875], X[10707] - 3 X[19875], X[6154] + 3 X[38099], 2 X[6713] - 3 X[38068], 2 X[8068] - 3 X[38105], 7 X[9588] - X[38669], X[12331] + 3 X[38066], X[13199] + 3 X[38074], 2 X[13464] - 5 X[38763], 7 X[19876] - 5 X[31272], 5 X[31235] - 3 X[38026], X[33337] - 4 X[35023], X[34641] + 4 X[35023], X[37725] + 2 X[43174]

X(50841) lies on these lines: {2, 2802}, {10, 528}, {11, 3828}, {40, 10711}, {100, 993}, {119, 28194}, {214, 519}, {376, 12751}, {535, 6735}, {549, 11715}, {551, 3035}, {553, 10956}, {900, 36912}, {952, 4669}, {1125, 13996}, {1320, 25055}, {1387, 19883}, {2800, 3654}, {2801, 5657}, {3036, 38098}, {3545, 14217}, {3626, 10609}, {3653, 38762}, {3656, 38752}, {3874, 34619}, {3887, 4448}, {4301, 20400}, {4677, 10031}, {4745, 17525}, {4781, 25030}, {5054, 12737}, {5055, 16174}, {5493, 38757}, {5528, 38097}, {5541, 6702}, {5726, 8545}, {5848, 50781}, {6154, 38099}, {6265, 34718}, {6633, 32043}, {6713, 38068}, {7972, 31145}, {8068, 38105}, {8715, 37721}, {9588, 38669}, {10056, 12736}, {10199, 37828}, {12119, 34627}, {12331, 38066}, {13199, 38074}, {13205, 16418}, {13464, 38763}, {16417, 22560}, {17780, 36923}, {19876, 31272}, {21630, 45310}, {22799, 28202}, {25005, 34719}, {25440, 37709}, {26364, 34711}, {28204, 33814}, {31235, 38026}, {33337, 34641}, {34632, 34789}, {37725, 43174}, {41191, 45314}

X(50841) = midpoint of X(i) and X(j) for these {i,j}: {40, 10711}, {100, 3679}, {376, 12751}, {1145, 6174}, {4677, 10031}, {5541, 10707}, {6265, 34718}, {7972, 31145}, {12119, 34627}, {33337, 34641}, {34632, 34789}
X(50841) = reflection of X(i) in X(j) for these {i,j}: {11, 3828}, {214, 6174}, {551, 3035}, {10707, 6702}, {11274, 214}, {11715, 549}, {15863, 3679}, {21630, 45310}, {41191, 45314}
X(50841) = barycentric product X(3245)*X(4358)
X(50841) = barycentric quotient X(3245)/X(88)
X(50841) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 3828, 38104}, {4677, 15015, 10031}, {5541, 19875, 10707}, {10707, 19875, 6702}


X(50842) = X(8)X(190)∩X(214)X(519)

Barycentrics    (2*a - b - c)*(2*a^3 - 5*a^2*b - 2*a*b^2 + 5*b^3 - 5*a^2*c + 12*a*b*c - 5*b^2*c - 2*a*c^2 - 5*b*c^2 + 5*c^3) : :
X(50842) = 2 X[8] + X[13996], 5 X[11] - 2 X[12653], 2 X[11] - 3 X[38099], 5 X[3679] - X[12653], 4 X[3679] - 3 X[38099], 4 X[12653] - 15 X[38099], 2 X[214] - 5 X[1145], 8 X[214] - 5 X[1317], 4 X[214] - 5 X[6174], 7 X[214] - 5 X[11274], 13 X[214] - 10 X[33812], 4 X[1145] - X[1317], 7 X[1145] - 2 X[11274], 13 X[1145] - 4 X[33812], 7 X[1317] - 8 X[11274], 13 X[1317] - 16 X[33812], 7 X[6174] - 4 X[11274], 13 X[6174] - 8 X[33812], 13 X[11274] - 14 X[33812], X[40663] + 2 X[44784], 4 X[551] - 5 X[31235], 2 X[25416] - 5 X[31235], 2 X[1387] - 3 X[19875], 2 X[3625] + X[10609], 4 X[3828] - 3 X[38026], 5 X[4668] - 2 X[12019], 4 X[4745] - 3 X[34122], X[6154] + 4 X[34641], 2 X[6702] - 3 X[38098], 2 X[6713] - 3 X[38066], 2 X[8068] - 3 X[38100], 3 X[25055] - X[26726]

X(50842) lies on these lines: {2, 5854}, {8, 190}, {11, 3679}, {100, 8168}, {165, 952}, {210, 2802}, {214, 519}, {529, 18802}, {551, 25416}, {900, 4543}, {1320, 45310}, {1387, 19875}, {3035, 3241}, {3036, 10707}, {3625, 10609}, {3828, 38026}, {3916, 4701}, {4370, 4530}, {4428, 13278}, {4668, 12019}, {4745, 34122}, {5552, 34710}, {5559, 50038}, {5848, 50783}, {6154, 34641}, {6702, 38098}, {6713, 38066}, {6876, 38665}, {7173, 34640}, {8068, 38100}, {10031, 24477}, {10711, 12245}, {12735, 34747}, {14740, 31165}, {16370, 25438}, {24466, 28204}, {25055, 26726}, {34610, 36972}, {34689, 34718}, {34749, 49169}, {37406, 37725}, {39776, 44663}

X(50842) = midpoint of X(i) and X(j) for these {i,j}: {100, 31145}, {10711, 12245}
X(50842) = reflection of X(i) in X(j) for these {i,j}: {11, 3679}, {1317, 6174}, {1320, 45310}, {3241, 3035}, {6174, 1145}, {10707, 3036}, {25416, 551}, {31165, 14740}, {34747, 12735}
X(50842) = {X(11),X(3679)}-harmonic conjugate of X(38099)


X(50843) = X(1)X(528)∩X(214)X(519)

Barycentrics    (2*a - b - c)*(4*a^3 - a^2*b - 4*a*b^2 + b^3 - a^2*c + 6*a*b*c - b^2*c - 4*a*c^2 - b*c^2 + c^3) : :
X(50843) = 2 X[1] + X[10609], 4 X[2] - 3 X[34122], 2 X[2] - 3 X[34123], 4 X[10031] + 3 X[34122], 2 X[10031] + 3 X[34123], X[11] + 2 X[33337], 2 X[11] - 3 X[38026], 4 X[551] - 3 X[38026], 4 X[33337] + 3 X[38026], X[1537] - 4 X[19907], X[80] - 3 X[25055], 3 X[25055] - 2 X[45310], X[100] + 2 X[12735], 2 X[100] + X[25416], 4 X[12735] - X[25416], 4 X[214] - X[1145], 2 X[214] + X[1317], X[214] + 2 X[33812], X[1145] + 2 X[1317], X[1145] + 4 X[11274], X[1145] + 8 X[33812], X[1317] - 4 X[33812], X[6174] + 2 X[11274], X[6174] + 4 X[33812], 4 X[15178] - X[37726], X[1320] + 2 X[9945], 2 X[1320] + X[12732], 4 X[9945] - X[12732], 2 X[1387] + X[6224], 4 X[1387] - X[12690], 2 X[1387] - 3 X[38314], 2 X[6224] + X[12690], X[6224] + 3 X[38314], X[10707] - 3 X[38314], X[12690] - 6 X[38314], 2 X[3035] + X[7972], 2 X[3036] - 3 X[19875], 2 X[3244] + X[13996], 5 X[3616] - 2 X[12019], 3 X[3653] - 2 X[6713], 4 X[3655] + X[13257], 4 X[6265] - X[13257], 4 X[3828] - 5 X[31235], 4 X[3828] - 3 X[38099], 2 X[15863] - 5 X[31235], 2 X[15863] - 3 X[38099], 5 X[31235] - 3 X[38099], 2 X[5882] + X[37725], 3 X[5054] - X[19914], X[5881] - 4 X[20400], 2 X[6246] - 3 X[38077], 4 X[6667] - X[9897], 2 X[6702] - 3 X[19883], 2 X[8068] - 3 X[38027], 2 X[10222] + X[10993], X[11219] - 3 X[30392], 2 X[12619] - 3 X[38069], X[13253] + 2 X[38759], X[24466] + 2 X[25485], X[34747] + 4 X[35023], 3 X[38066] - 5 X[38762]

X(50843) lies on these lines: {1, 528}, {2, 952}, {3, 12776}, {11, 551}, {30, 1537}, {80, 25055}, {100, 999}, {104, 16370}, {119, 17533}, {145, 34753}, {214, 519}, {354, 2802}, {376, 10698}, {381, 11729}, {392, 2801}, {405, 38669}, {442, 15178}, {474, 38665}, {499, 34700}, {535, 12831}, {542, 31525}, {900, 3251}, {944, 10711}, {997, 41701}, {1023, 4370}, {1320, 9945}, {1385, 37298}, {1387, 3488}, {1388, 45700}, {1483, 17564}, {2095, 34631}, {2771, 17525}, {2800, 10167}, {3035, 3679}, {3036, 19875}, {3158, 5854}, {3244, 13996}, {3304, 48713}, {3616, 12019}, {3653, 6713}, {3655, 6265}, {3656, 5840}, {3828, 15863}, {3829, 5533}, {4187, 5882}, {4421, 10087}, {4428, 10058}, {4870, 18976}, {4881, 5844}, {4996, 41345}, {5054, 19914}, {5083, 24473}, {5330, 37299}, {5730, 34610}, {5794, 12750}, {5848, 47358}, {5881, 20400}, {5901, 17577}, {6154, 44840}, {6246, 38077}, {6326, 46947}, {6667, 9897}, {6702, 19883}, {7373, 13279}, {7483, 20418}, {8068, 38027}, {10074, 11194}, {10090, 40726}, {10199, 10950}, {10222, 10993}, {10596, 10738}, {11114, 34773}, {11219, 30392}, {11570, 44663}, {11715, 15670}, {12119, 31162}, {12331, 16417}, {12611, 28208}, {12619, 38069}, {12738, 19861}, {12773, 16418}, {12848, 14151}, {13243, 50742}, {13253, 38759}, {13587, 22765}, {13607, 17614}, {13747, 37727}, {16865, 38631}, {17528, 37624}, {17549, 38602}, {17572, 38629}, {17660, 31165}, {19704, 38693}, {19705, 34474}, {21578, 25558}, {22836, 34749}, {22837, 34720}, {24466, 25485}, {24982, 32900}, {28174, 36005}, {28234, 35271}, {30144, 34606}, {34628, 34789}, {34747, 35023}, {35094, 35124}, {35457, 36004}, {38066, 38762}

X(50843) = midpoint of X(i) and X(j) for these {i,j}: {2, 10031}, {100, 3241}, {214, 11274}, {376, 10698}, {551, 33337}, {944, 10711}, {1317, 6174}, {3655, 6265}, {3679, 7972}, {6224, 10707}, {12119, 31162}, {17660, 31165}, {34628, 34789}
X(50843) = reflection of X(i) in X(j) for these {i,j}: {11, 551}, {80, 45310}, {381, 11729}, {1145, 6174}, {1317, 11274}, {3241, 12735}, {3679, 3035}, {6174, 214}, {10707, 1387}, {11274, 33812}, {12690, 10707}, {15863, 3828}, {24473, 5083}, {25416, 3241}, {34122, 34123}
X(50843) = X(106)-isoconjugate of X(24297)
X(50843) = X(214)-Dao conjugate of X(24297)
X(50843) = barycentric product X(4358)*X(5126)
X(50843) = barycentric quotient X(i)/X(j) for these {i,j}: {44, 24297}, {5126, 88}
X(50843) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 551, 38026}, {80, 25055, 45310}, {100, 12735, 25416}, {214, 1317, 1145}, {214, 33812, 1317}, {214, 41553, 5440}, {1317, 1319, 41556}, {1320, 9945, 12732}, {1387, 6224, 12690}, {3828, 15863, 38099}, {6224, 38314, 10707}, {10707, 38314, 1387}, {31235, 38099, 3828}


X(50844) = X(100)X(551)∩X(214)X(519)

Barycentrics    (2*a - b - c)*(5*a^3 + a^2*b - 5*a*b^2 - b^3 + a^2*c + 3*a*b*c + b^2*c - 5*a*c^2 + b*c^2 - c^3) : :
X(50844) = X[2] + 3 X[15015], 7 X[2] - 3 X[37718], 7 X[15015] + X[37718], 5 X[214] + X[1145], 7 X[214] - X[1317], 5 X[214] - X[11274], 4 X[214] - X[33812], 7 X[1145] + 5 X[1317], X[1145] - 5 X[6174], 4 X[1145] + 5 X[33812], X[1317] + 7 X[6174], 5 X[1317] - 7 X[11274], 4 X[1317] - 7 X[33812], 5 X[6174] + X[11274], 4 X[6174] + X[33812], 4 X[11274] - 5 X[33812], X[1768] - 5 X[15692], 3 X[3524] + X[6326], X[3543] - 5 X[15017], 2 X[3634] + X[10609], 3 X[3653] + X[12331], 3 X[5054] - X[10265], X[5528] + 3 X[38025], X[5541] + 3 X[38314], X[6154] + 3 X[38026], X[6224] + 3 X[19875], X[9803] - 9 X[15708], X[10707] - 3 X[19883], 3 X[19883] - 2 X[33709], 2 X[12019] - 5 X[31253], X[13146] + 3 X[15672], X[13199] + 3 X[38021], 3 X[15688] + X[16128], X[21630] - 3 X[25055], 5 X[31235] - 3 X[38104], 3 X[38068] - 5 X[38762]

X(50844) lies on these lines: {2, 5426}, {100, 551}, {214, 519}, {376, 21635}, {528, 1125}, {549, 22935}, {678, 14028}, {952, 4745}, {1768, 15692}, {2771, 12100}, {2802, 3742}, {3035, 3828}, {3524, 6326}, {3543, 15017}, {3634, 10609}, {3653, 12331}, {3679, 33337}, {4297, 10711}, {4669, 10031}, {4855, 10199}, {5054, 10265}, {5528, 38025}, {5541, 38314}, {5848, 50787}, {6154, 38026}, {6224, 19875}, {7972, 34641}, {9803, 15708}, {9945, 45310}, {10707, 19883}, {12019, 31253}, {12119, 34648}, {13146, 15672}, {13199, 38021}, {13587, 35204}, {15688, 16128}, {16861, 46816}, {21630, 25055}, {28194, 33814}, {31235, 38104}, {34638, 34789}, {38068, 38762}

X(50844) = midpoint of X(i) and X(j) for these {i,j}: {100, 551}, {214, 6174}, {376, 21635}, {549, 22935}, {1145, 11274}, {3679, 33337}, {4297, 10711}, {4669, 10031}, {7972, 34641}, {9945, 45310}, {12119, 34648}, {34638, 34789}
X(50844) = reflection of X(i) in X(j) for these {i,j}: {3828, 3035}, {10707, 33709}
X(50844) = barycentric product X(519)*X(35596)
X(50844) = barycentric quotient X(35596)/X(903)
X(50844) = {X(10707),X(19883)}-harmonic conjugate of X(33709)


X(50845) = X(100)X(3828)∩X(214)X(519)

Barycentrics    (2*a - b - c)*(7*a^3 + 5*a^2*b - 7*a*b^2 - 5*b^3 + 5*a^2*c - 3*a*b*c + 5*b^2*c - 7*a*c^2 + 5*b*c^2 - 5*c^3) : :
X(50845) = 7 X[214] + 5 X[1145], 17 X[214] - 5 X[1317], X[214] - 5 X[6174], 13 X[214] - 5 X[11274], 11 X[214] - 5 X[33812], 17 X[1145] + 7 X[1317], X[1145] + 7 X[6174], 13 X[1145] + 7 X[11274], 11 X[1145] + 7 X[33812], X[1317] - 17 X[6174], 13 X[1317] - 17 X[11274], 11 X[1317] - 17 X[33812], 13 X[6174] - X[11274], 11 X[6174] - X[33812], 11 X[11274] - 13 X[33812], 5 X[551] - X[12653], X[4669] + 3 X[15015], X[5528] + 3 X[38101], X[5541] + 3 X[19883], X[6154] + 3 X[38104], X[6224] + 3 X[38098], X[7993] - 9 X[15708], X[12331] + 3 X[38068], X[13199] + 3 X[38076], 7 X[19876] + X[20095], 3 X[34123] - 2 X[41150]

X(50845) lies on these lines: {100, 3828}, {214, 519}, {528, 3634}, {551, 12653}, {952, 44580}, {2802, 3848}, {4669, 15015}, {5528, 38101}, {5541, 19883}, {5848, 50788}, {6154, 38104}, {6224, 38098}, {7993, 15708}, {10711, 12512}, {12331, 38068}, {13199, 38076}, {19876, 20095}, {34123, 41150}

X(50845) = midpoint of X(i) and X(j) for these {i,j}: {100, 3828}, {10711, 12512}


X(50846) = X(145)X(528)∩X(214)X(519)

Barycentrics    (2*a - b - c)*(10*a^3 - 7*a^2*b - 10*a*b^2 + 7*b^3 - 7*a^2*c + 24*a*b*c - 7*b^2*c - 10*a*c^2 - 7*b*c^2 + 7*c^3) : :
X(50846) = 10 X[214] - 7 X[1145], 4 X[214] - 7 X[1317], 8 X[214] - 7 X[6174], 5 X[214] - 7 X[11274], 11 X[214] - 14 X[33812], 2 X[1145] - 5 X[1317], 4 X[1145] - 5 X[6174], 11 X[1145] - 20 X[33812], 5 X[1317] - 4 X[11274], 11 X[1317] - 8 X[33812], 5 X[6174] - 8 X[11274], 11 X[6174] - 16 X[33812], 11 X[11274] - 10 X[33812], 4 X[551] - 3 X[38099], X[6154] - 4 X[7972], X[6154] + 4 X[34747], 2 X[3036] - 3 X[38314], 2 X[3633] + X[13996], 4 X[3679] - 5 X[31235], 8 X[12735] - 5 X[31235], 2 X[4669] - 3 X[34123], 2 X[15863] - 3 X[38026]

X(50846) lies on these lines: {11, 3241}, {100, 20049}, {145, 528}, {214, 519}, {551, 38099}, {952, 1699}, {2093, 6154}, {3035, 31145}, {3036, 38314}, {3633, 13996}, {3679, 12735}, {4669, 34123}, {5848, 50790}, {5854, 10031}, {10711, 10893}, {12531, 45310}, {15863, 38026}, {34699, 34748}

X(50846) = midpoint of X(i) and X(j) for these {i,j}: {100, 20049}, {7972, 34747}
X(50846) = reflection of X(i) in X(j) for these {i,j}: {11, 3241}, {1145, 11274}, {3679, 12735}, {6174, 1317}, {12531, 45310}, {31145, 3035}


X(50847) = X(10)X(530)∩X(519)X(5463)

Barycentrics    Sqrt[3]*(a + b + c)*(4*a^4 + 3*a^3*b - 5*a^2*b^2 - 3*a*b^3 + b^4 + 3*a^3*c - 6*a^2*b*c + 3*a*b^2*c - 5*a^2*c^2 + 3*a*b*c^2 - 2*b^2*c^2 - 3*a*c^3 + c^4) + 2*(4*a^3 + a^2*b - 2*a*b^2 - 5*b^3 + a^2*c - 5*b^2*c - 2*a*c^2 - 5*b*c^2 - 5*c^3)*S : :
X(50847) = 5 X[5463] - X[7975], X[7975] + 5 X[12781], 4 X[3634] - 3 X[22489], X[4669] + 2 X[36769], 2 X[4745] + X[35751], 2 X[5478] - 3 X[38076], 2 X[6771] - 3 X[38068], 2 X[11705] - 3 X[19883], 2 X[16001] - 5 X[31399], 2 X[20252] - 3 X[38083]

X(50847) lies on these lines: {2, 37830}, {10, 530}, {13, 3828}, {14, 2796}, {516, 41042}, {519, 5463}, {542, 38430}, {551, 618}, {553, 12942}, {616, 3679}, {966, 49571}, {3634, 22489}, {4669, 36769}, {4745, 35751}, {5460, 11599}, {5478, 38076}, {5617, 28194}, {5699, 49588}, {6771, 38068}, {8591, 9900}, {11705, 19883}, {16001, 31399}, {20252, 38083}, {33440, 36458}, {33441, 36440}, {36386, 49580}

X(50847) = midpoint of X(i) and X(j) for these {i,j}: {616, 3679}, {5463, 12781}, {8591, 9900}
X(50847) = reflection of X(i) in X(j) for these {i,j}: {13, 3828}, {551, 618}, {11599, 5460}


X(50848) = X(8)X(530)∩X(519)X(5463)

Barycentrics    Sqrt[3]*(a + b + c)*(a^4 - 6*a^3*b + a^2*b^2 + 6*a*b^3 - 2*b^4 - 6*a^3*c + 12*a^2*b*c - 6*a*b^2*c + a^2*c^2 - 6*a*b*c^2 + 4*b^2*c^2 + 6*a*c^3 - 2*c^4) - 2*(5*a^3 - a^2*b + 2*a*b^2 - 4*b^3 - a^2*c - 4*b^2*c + 2*a*c^2 - 4*b*c^2 - 4*c^3)*S : :
X(50848) = 4 X[10] - 3 X[22489], X[7975] - 4 X[12781], 4 X[551] - 5 X[36770], 2 X[3656] - 3 X[36765], 4 X[4669] - X[35752], 2 X[4677] + X[35751], 2 X[5478] - 3 X[38074], 2 X[6771] - 3 X[38066], 7 X[9780] - 6 X[48311], 4 X[11362] - X[41020], 2 X[11705] - 3 X[19875], 2 X[20252] - 3 X[38081]

X(50848) lies on these lines: {8, 530}, {10, 22489}, {13, 3679}, {517, 41042}, {519, 5463}, {542, 34718}, {551, 36770}, {616, 31145}, {618, 3241}, {2482, 7974}, {3656, 36765}, {4669, 35752}, {4677, 35751}, {5460, 7983}, {5473, 28204}, {5478, 38074}, {6771, 38066}, {9114, 9881}, {9780, 48311}, {11362, 41020}, {11705, 19875}, {13178, 22577}, {20252, 38081}, {22493, 44659}, {22580, 49524}, {28194, 36961}

X(50848) = midpoint of X(616) and X(31145)
X(50848) = reflection of X(i) in X(j) for these {i,j}: {13, 3679}, {3241, 618}, {5463, 12781}, {7974, 2482}, {7975, 5463}, {7983, 5460}, {9114, 9881}, {22577, 13178}, {22580, 49524}


X(50849) = X(1)X(530)∩X(519)X(5463)

Barycentrics    Sqrt[3]*(a + b + c)*(5*a^4 - 3*a^3*b - 4*a^2*b^2 + 3*a*b^3 - b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c - 4*a^2*c^2 - 3*a*b*c^2 + 2*b^2*c^2 + 3*a*c^3 - c^4) - 2*(a^3 - 2*a^2*b + 4*a*b^2 + b^3 - 2*a^2*c + b^2*c + 4*a*c^2 + b*c^2 + c^3)*S : :
X(50849) = 2 X[7975] + X[12781], 4 X[1125] - 3 X[22489], 7 X[3624] - 6 X[48311], 3 X[3653] - 2 X[6771], 4 X[3828] - 5 X[36770], 2 X[4669] - 5 X[36767], X[4677] - 4 X[36768], 2 X[5459] - 3 X[25055], X[9901] - 3 X[25055], 2 X[5478] - 3 X[38021], 2 X[11705] - 3 X[38314], 2 X[20252] - 3 X[38022]

X(50849) lies on these lines: {1, 530}, {13, 551}, {515, 41042}, {519, 5463}, {542, 3655}, {616, 3241}, {618, 3679}, {671, 11706}, {1125, 22489}, {1386, 22580}, {2482, 12780}, {3624, 48311}, {3653, 6771}, {3828, 36770}, {4669, 36767}, {4677, 36768}, {5459, 9901}, {5460, 13178}, {5464, 11711}, {5473, 28194}, {5478, 38021}, {5617, 28204}, {6302, 36444}, {6306, 36462}, {8595, 44660}, {11599, 22577}, {11705, 38314}, {11707, 37786}, {11725, 31695}, {12337, 16371}, {16370, 22773}, {20252, 38022}, {35931, 44659}

X(50849) = midpoint of X(i) and X(j) for these {i,j}: {616, 3241}, {5463, 7975}
X(50849) = reflection of X(i) in X(j) for these {i,j}: {13, 551}, {671, 11706}, {3679, 618}, {5464, 11711}, {9901, 5459}, {12780, 2482}, {12781, 5463}, {13178, 5460}, {22577, 11599}, {22580, 1386}, {31695, 11725}, {37786, 11707}
X(50849) = {X(9901),X(25055)}-harmonic conjugate of X(5459)


X(50850) = X(10)X(531)∩X(519)X(5464)

Barycentrics    Sqrt[3]*(a + b + c)*(4*a^4 + 3*a^3*b - 5*a^2*b^2 - 3*a*b^3 + b^4 + 3*a^3*c - 6*a^2*b*c + 3*a*b^2*c - 5*a^2*c^2 + 3*a*b*c^2 - 2*b^2*c^2 - 3*a*c^3 + c^4) - 2*(4*a^3 + a^2*b - 2*a*b^2 - 5*b^3 + a^2*c - 5*b^2*c - 2*a*c^2 - 5*b*c^2 - 5*c^3)*S : :
X(50850) = 5 X[5464] - X[7974], X[7974] + 5 X[12780], 4 X[3634] - 3 X[22490], X[4669] + 2 X[47867], 2 X[4745] + X[36329], 2 X[5479] - 3 X[38076], 2 X[6774] - 3 X[38068], 2 X[11706] - 3 X[19883], 2 X[16002] - 5 X[31399], 2 X[20253] - 3 X[38083]

X(50850) lies on these lines: {2, 37833}, {10, 531}, {13, 2796}, {14, 3828}, {516, 41043}, {519, 5464}, {542, 38430}, {551, 619}, {553, 12941}, {617, 3679}, {966, 49572}, {3634, 22490}, {4669, 47867}, {4745, 36329}, {5459, 11599}, {5479, 38076}, {5613, 28194}, {5700, 49589}, {6774, 38068}, {8591, 9901}, {11706, 19883}, {16002, 31399}, {20253, 38083}, {33442, 36440}, {33443, 36458}, {36388, 49584}

X(50850) = midpoint of X(i) and X(j) for these {i,j}: {617, 3679}, {5464, 12780}, {8591, 9901}
X(50850) = reflection of X(i) in X(j) for these {i,j}: {14, 3828}, {551, 619}, {11599, 5459}


X(50851) = X(8)X(531)∩X(519)X(5464)

Barycentrics    Sqrt[3]*(a + b + c)*(a^4 - 6*a^3*b + a^2*b^2 + 6*a*b^3 - 2*b^4 - 6*a^3*c + 12*a^2*b*c - 6*a*b^2*c + a^2*c^2 - 6*a*b*c^2 + 4*b^2*c^2 + 6*a*c^3 - 2*c^4) + 2*(5*a^3 - a^2*b + 2*a*b^2 - 4*b^3 - a^2*c - 4*b^2*c + 2*a*c^2 - 4*b*c^2 - 4*c^3)*S : :
X(50851) = 4 X[10] - 3 X[22490], X[7974] - 4 X[12780], 4 X[4669] - X[36330], 2 X[4677] + X[36329], 2 X[5479] - 3 X[38074], 2 X[6774] - 3 X[38066], 7 X[9780] - 6 X[48312], 4 X[11362] - X[41021], 2 X[11706] - 3 X[19875], 2 X[20253] - 3 X[38081]

X(50851) lies on these lines: {8, 531}, {10, 22490}, {14, 3679}, {517, 41043}, {519, 5464}, {542, 34718}, {617, 31145}, {619, 3241}, {2482, 7975}, {4669, 36330}, {4677, 36329}, {5459, 7983}, {5474, 28204}, {5479, 38074}, {6774, 38066}, {9116, 9881}, {9780, 48312}, {11362, 41021}, {11706, 19875}, {13178, 22578}, {20253, 38081}, {22494, 44660}, {22579, 49524}, {28194, 36962}

X(50851) = midpoint of X(617) and X(31145)
X(50851) = reflection of X(i) in X(j) for these {i,j}: {14, 3679}, {3241, 619}, {5464, 12780}, {7974, 5464}, {7975, 2482}, {7983, 5459}, {9116, 9881}, {22578, 13178}, {22579, 49524}


X(50852) = X(1)X(531)∩X(519)X(5464)

Barycentrics    Sqrt[3]*(a + b + c)*(5*a^4 - 3*a^3*b - 4*a^2*b^2 + 3*a*b^3 - b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c - 4*a^2*c^2 - 3*a*b*c^2 + 2*b^2*c^2 + 3*a*c^3 - c^4) + 2*(a^3 - 2*a^2*b + 4*a*b^2 + b^3 - 2*a^2*c + b^2*c + 4*a*c^2 + b*c^2 + c^3)*S : :
X(50852) = 2 X[7974] + X[12780], 4 X[1125] - 3 X[22490], 7 X[3624] - 6 X[48312], 3 X[3653] - 2 X[6774], 2 X[5460] - 3 X[25055], X[9900] - 3 X[25055], 2 X[5479] - 3 X[38021], 2 X[11706] - 3 X[38314], 2 X[20253] - 3 X[38022]

X(50852) lies on these lines: {1, 531}, {14, 551}, {515, 41043}, {519, 5464}, {542, 3655}, {617, 3241}, {619, 3679}, {671, 11705}, {1125, 22490}, {1386, 22579}, {2482, 12781}, {3624, 48312}, {3653, 6774}, {5459, 13178}, {5460, 9900}, {5463, 11711}, {5474, 28194}, {5479, 38021}, {5613, 28204}, {6303, 36462}, {6307, 36444}, {8594, 44659}, {11599, 22578}, {11706, 38314}, {11708, 37785}, {11725, 31696}, {12336, 16371}, {16370, 22774}, {20253, 38022}, {35932, 44660}

X(50852) = midpoint of X(i) and X(j) for these {i,j}: {617, 3241}, {5464, 7974}
X(50852) = reflection of X(i) in X(j) for these {i,j}: {14, 551}, {671, 11705}, {3679, 619}, {5463, 11711}, {9900, 5460}, {12780, 5464}, {12781, 2482}, {13178, 5459}, {22578, 11599}, {22579, 1386}, {31696, 11725}, {37785, 11708}
X(50852) = {X(9900),X(25055)}-harmonic conjugate of X(5460)


X(50853) = X(1)X(623)∩X(10)X(15)

Barycentrics    Sqrt[3]*(a + b + c)*(a^4 - a^3*b + a*b^3 - b^4 - a^3*c + 2*a^2*b*c - a*b^2*c - a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4) - 2*(a^3 - b^3 - b^2*c - b*c^2 - c^3)*S : :
X(50853) = 4 X[1125] - 5 X[40334], 5 X[1698] - 4 X[6671], 3 X[5587] - 2 X[7684], X[5611] - 3 X[5790], 3 X[5657] - X[36993], 4 X[6672] - 3 X[38221], 4 X[6684] - 3 X[21158], X[7975] - 3 X[21359], 2 X[13350] - 3 X[26446], 3 X[19875] - 2 X[45879], 7 X[19876] - 6 X[48313], 4 X[19925] - 3 X[41036], 3 X[22511] - 2 X[50775]

X(50853) lies on these lines: {1, 623}, {2, 11707}, {8, 621}, {10, 15}, {30, 12781}, {40, 22896}, {316, 44660}, {355, 511}, {515, 14538}, {516, 36992}, {517, 20428}, {531, 3679}, {532, 9901}, {740, 49575}, {1125, 40334}, {1698, 6671}, {5587, 7684}, {5611, 5790}, {5657, 36993}, {6672, 38221}, {6684, 21158}, {7975, 21359}, {9903, 22651}, {10791, 36759}, {13350, 26446}, {18481, 36755}, {19875, 45879}, {19876, 48313}, {19925, 41036}, {22511, 50775}

X(50853) = midpoint of X(8) and X(621)
X(50853) = reflection of X(i) in X(j) for these {i,j}: {1, 623}, {15, 10}, {18481, 36755}
X(50853) = anticomplement of X(11707)


X(50854) = X(1)X(531)∩X(15)X(551)

Barycentrics    Sqrt[3]*(a + b + c)*(a^4 - 3*a^3*b - 2*a^2*b^2 + 3*a*b^3 + b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c - 2*a^2*c^2 - 3*a*b*c^2 - 2*b^2*c^2 + 3*a*c^3 + c^4) - 2*(a^3 - 2*a^2*b + 4*a*b^2 + b^3 - 2*a^2*c + b^2*c + 4*a*c^2 + b*c^2 + c^3)*S : :
X(50854) = 7 X[3624] - 6 X[48313], 3 X[3653] - 2 X[13350], 4 X[3828] - 5 X[40334], 2 X[7684] - 3 X[38021], 2 X[11707] - 3 X[38314], 3 X[25055] - 2 X[45879]

X(50854) lies on these lines: {1, 531}, {2, 44659}, {15, 551}, {511, 3656}, {621, 3241}, {623, 3679}, {3624, 48313}, {3653, 13350}, {3828, 40334}, {5184, 45880}, {7684, 38021}, {11705, 37786}, {11707, 38314}, {14538, 28194}, {20428, 28204}, {25055, 45879}

X(50854) = midpoint of X(621) and X(3241)
X(50854) = reflection of X(i) in X(j) for these {i,j}: {15, 551}, {3679, 623}, {5184, 45880}, {37786, 11705}


X(50855) = X(2)X(14)∩X(13)X(524)

Barycentrics    Sqrt[3]*(a^4 + a^2*b^2 - 2*b^4 + a^2*c^2 + 4*b^2*c^2 - 2*c^4) - 2*(a^2 - 2*b^2 - 2*c^2)*S : :
X(50855) = 5 X[2] - 4 X[6671], 4 X[2] - 5 X[40334], 7 X[2] - 6 X[48313], X[15] + 2 X[621], X[15] - 4 X[623], 5 X[15] - 8 X[6671], 2 X[15] - 5 X[40334], 3 X[15] - 4 X[45879], 7 X[15] - 12 X[48313], X[621] + 2 X[623], 5 X[621] + 4 X[6671], 4 X[621] + 5 X[40334], 3 X[621] + 2 X[45879], 7 X[621] + 6 X[48313], 5 X[623] - 2 X[6671], 8 X[623] - 5 X[40334], 3 X[623] - X[45879], 7 X[623] - 3 X[48313], 2 X[6109] - 3 X[22490], 16 X[6671] - 25 X[40334], 6 X[6671] - 5 X[45879], 14 X[6671] - 15 X[48313], 15 X[40334] - 8 X[45879], 35 X[40334] - 24 X[48313], 7 X[45879] - 9 X[48313], 2 X[22493] + X[22495], X[22493] + 2 X[31693], X[22495] - 4 X[31693], X[5463] - 3 X[21359], X[14538] + 2 X[20428], 2 X[14538] + X[36992], 4 X[20428] - X[36992], 2 X[298] + X[36969], 4 X[381] - 3 X[41036], 2 X[396] - 3 X[22489], 4 X[5459] - 3 X[16267], 3 X[16267] - 2 X[37786], 4 X[549] - 3 X[21158], 4 X[597] - 3 X[36757], X[3180] - 4 X[33560], 3 X[3524] - X[36993], 7 X[3526] - 4 X[21401], 3 X[3545] - 2 X[7684], 3 X[5054] - 2 X[13350], 3 X[5055] - X[5611], 4 X[5461] - 3 X[22510], 3 X[5470] - 2 X[22573], 4 X[6672] - 3 X[26613], 3 X[39554] - 4 X[45880], 2 X[11707] - 3 X[25055], 2 X[22329] - 3 X[22511], X[36967] - 4 X[44383], 5 X[36767] - X[42099], 5 X[36770] - 2 X[42942]

X(50855) lies on these lines: {2, 14}, {6, 22496}, {13, 524}, {16, 3849}, {18, 37341}, {30, 5463}, {61, 7817}, {62, 7812}, {69, 16808}, {141, 16809}, {187, 16645}, {298, 316}, {300, 35139}, {302, 10646}, {303, 42915}, {325, 9762}, {376, 44666}, {381, 511}, {395, 18907}, {396, 22489}, {532, 42973}, {533, 5459}, {543, 23004}, {549, 21158}, {597, 36757}, {618, 35931}, {624, 42918}, {627, 43633}, {633, 34509}, {635, 11304}, {671, 43538}, {804, 9162}, {858, 34314}, {1352, 41043}, {1992, 37170}, {2459, 36452}, {2460, 36470}, {3104, 7841}, {3105, 7775}, {3107, 11163}, {3180, 33560}, {3524, 36993}, {3526, 21401}, {3534, 36755}, {3545, 7684}, {3679, 44659}, {3734, 11295}, {3763, 42125}, {5054, 13350}, {5055, 5611}, {5099, 34316}, {5215, 42129}, {5318, 35752}, {5461, 22510}, {5470, 22573}, {5476, 20426}, {5858, 41107}, {5859, 41121}, {5862, 41112}, {5863, 31705}, {5965, 32907}, {6144, 42815}, {6582, 40707}, {6672, 26613}, {6694, 43776}, {6782, 43275}, {7615, 42036}, {7617, 9763}, {7801, 37333}, {7810, 37332}, {8352, 22576}, {9114, 9885}, {10168, 32909}, {11001, 49901}, {11008, 42895}, {11095, 49723}, {11168, 44219}, {11185, 22575}, {11289, 42993}, {11297, 42972}, {11298, 16268}, {11300, 39554}, {11302, 39555}, {11586, 40709}, {11645, 48655}, {11707, 25055}, {12100, 49902}, {12155, 22998}, {14541, 16626}, {15534, 42974}, {16002, 47517}, {16242, 33474}, {16635, 43276}, {16964, 37340}, {16966, 33475}, {18546, 31711}, {19106, 35751}, {19780, 49906}, {19924, 22796}, {20582, 37351}, {22110, 36765}, {22329, 22511}, {22577, 22894}, {22844, 42161}, {22845, 42598}, {22849, 36388}, {22997, 33477}, {29181, 41024}, {31695, 31703}, {31696, 46855}, {32455, 43030}, {32459, 35304}, {33458, 49907}, {33459, 41100}, {33624, 42952}, {34317, 41022}, {35229, 42489}, {36368, 43229}, {36767, 42099}, {36770, 42942}, {37144, 50226}, {37172, 42157}, {40335, 42095}, {40341, 42128}, {41017, 47354}, {42816, 47355}, {42975, 47352}

X(50855) = midpoint of X(i) and X(j) for these {i,j}: {2, 621}, {13, 22493}, {9114, 25166}, {19106, 35751}, {22849, 36388}
X(50855) = reflection of X(i) in X(j) for these {i,j}: {2, 623}, {13, 31693}, {15, 2}, {3534, 36755}, {8594, 619}, {15534, 44498}, {22495, 13}, {23005, 8352}, {34314, 858}, {34316, 5099}, {35304, 44383}, {35752, 5318}, {35931, 618}, {36330, 33518}, {36366, 31705}, {36967, 35304}, {37786, 5459}
X(50855) = anticomplement of X(45879)
X(50855) = {circumcircle-of-inner-Napoleon-triangle-inverse of X(5464)}
X(50855) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 617, 13083}, {2, 18581, 22490}, {2, 22491, 14}, {15, 623, 40334}, {69, 22492, 22494}, {302, 35932, 13084}, {621, 623, 15}, {5459, 37786, 16267}, {5863, 41119, 36366}, {9114, 36766, 9885}, {9761, 11296, 16}, {11303, 34508, 62}, {13084, 35932, 10646}, {14538, 20428, 36992}, {16808, 22494, 22492}, {22493, 31693, 22495}, {33474, 35303, 16242}, {47361, 47362, 5464}


X(50856) = X(1)X(624)∩X(10)X(16)

Barycentrics    Sqrt[3]*(a + b + c)*(a^4 - a^3*b + a*b^3 - b^4 - a^3*c + 2*a^2*b*c - a*b^2*c - a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4) + 2*(a^3 - b^3 - b^2*c - b*c^2 - c^3)*S : :
X(50856) = 4 X[1125] - 5 X[40335], 5 X[1698] - 4 X[6672], 3 X[5587] - 2 X[7685], X[5615] - 3 X[5790], 3 X[5657] - X[36995], 4 X[6671] - 3 X[38221], 4 X[6684] - 3 X[21159], X[7974] - 3 X[21360], 2 X[13349] - 3 X[26446], 3 X[19875] - 2 X[45880], 7 X[19876] - 6 X[48314], 4 X[19925] - 3 X[41037], 3 X[22510] - 2 X[50775]

X(50856) lies on these lines: {1, 624}, {2, 11708}, {8, 622}, {10, 16}, {30, 12780}, {40, 22851}, {316, 44659}, {355, 511}, {515, 14539}, {516, 36994}, {517, 20429}, {530, 3679}, {533, 9900}, {740, 49576}, {1125, 40335}, {1698, 6672}, {5587, 7685}, {5615, 5790}, {5657, 36995}, {6671, 38221}, {6684, 21159}, {7974, 21360}, {9903, 22652}, {10791, 36760}, {13349, 26446}, {18481, 36756}, {19875, 45880}, {19876, 48314}, {19925, 41037}, {22510, 50775}

X(50856) = midpoint of X(8) and X(622)
X(50856) = reflection of X(i) in X(j) for these {i,j}: {1, 624}, {16, 10}, {18481, 36756}
X(50856) = anticomplement of X(11708)


X(50857) = X(1)X(530)∩X(16)X(551)

Barycentrics    Sqrt[3]*(a + b + c)*(a^4 - 3*a^3*b - 2*a^2*b^2 + 3*a*b^3 + b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c - 2*a^2*c^2 - 3*a*b*c^2 - 2*b^2*c^2 + 3*a*c^3 + c^4) + 2*(a^3 - 2*a^2*b + 4*a*b^2 + b^3 - 2*a^2*c + b^2*c + 4*a*c^2 + b*c^2 + c^3)*S : :
X(50857) = 7 X[3624] - 6 X[48314], 3 X[3653] - 2 X[13349], 4 X[3828] - 5 X[40335], 2 X[7685] - 3 X[38021], 2 X[11708] - 3 X[38314], 3 X[25055] - 2 X[45880]

X(50857) lies on these lines: {1, 530}, {2, 44660}, {16, 551}, {511, 3656}, {622, 3241}, {624, 3679}, {3624, 48314}, {3653, 13349}, {3828, 40335}, {5184, 45879}, {7685, 38021}, {11706, 37785}, {11708, 38314}, {14539, 28194}, {20429, 28204}, {25055, 45880}

X(50857) = midpoint of X(622) and X(3241)
X(50857) = reflection of X(i) in X(j) for these {i,j}: {16, 551}, {3679, 624}, {5184, 45879}, {37785, 11706}


X(50858) = X(2)X(13)∩X(14)X(524)

Barycentrics    Sqrt[3]*(a^4 + a^2*b^2 - 2*b^4 + a^2*c^2 + 4*b^2*c^2 - 2*c^4) + 2*(a^2 - 2*b^2 - 2*c^2)*S : :
X(50858) = 5 X[2] - 4 X[6672], 4 X[2] - 5 X[40335], 7 X[2] - 6 X[48314], X[16] + 2 X[622], X[16] - 4 X[624], 5 X[16] - 8 X[6672], 2 X[16] - 5 X[40335], 3 X[16] - 4 X[45880], 7 X[16] - 12 X[48314], X[622] + 2 X[624], 5 X[622] + 4 X[6672], 4 X[622] + 5 X[40335], 3 X[622] + 2 X[45880], 7 X[622] + 6 X[48314], 5 X[624] - 2 X[6672], 8 X[624] - 5 X[40335], 3 X[624] - X[45880], 7 X[624] - 3 X[48314], 2 X[6108] - 3 X[22489], 16 X[6672] - 25 X[40335], 6 X[6672] - 5 X[45880], 14 X[6672] - 15 X[48314], 15 X[40335] - 8 X[45880], 35 X[40335] - 24 X[48314], 7 X[45880] - 9 X[48314], 2 X[22494] + X[22496], X[22494] + 2 X[31694], X[22496] - 4 X[31694], X[5464] - 3 X[21360], X[14539] + 2 X[20429], 2 X[14539] + X[36994], 4 X[20429] - X[36994], 2 X[299] + X[36970], 4 X[381] - 3 X[41037], 2 X[395] - 3 X[22490], 4 X[5460] - 3 X[16268], 3 X[16268] - 2 X[37785], 4 X[549] - 3 X[21159], 4 X[597] - 3 X[36758], X[3181] - 4 X[33561], 3 X[3524] - X[36995], 7 X[3526] - 4 X[21402], 3 X[3545] - 2 X[7685], 3 X[5054] - 2 X[13349], 3 X[5055] - X[5615], 4 X[5461] - 3 X[22511], 3 X[5469] - 2 X[22574], 4 X[6671] - 3 X[26613], 3 X[39555] - 4 X[45879], 2 X[11708] - 3 X[25055], 2 X[22329] - 3 X[22510], X[36968] - 4 X[44382]

X(50858) lies on these lines: {2, 13}, {6, 22495}, {14, 524}, {15, 3849}, {17, 37340}, {30, 5464}, {61, 7812}, {62, 7817}, {69, 16809}, {141, 16808}, {187, 16644}, {299, 316}, {301, 35139}, {302, 42914}, {303, 10645}, {325, 9760}, {376, 44667}, {381, 511}, {395, 22490}, {396, 18907}, {532, 5460}, {533, 42972}, {543, 23005}, {549, 21159}, {597, 36758}, {619, 35932}, {623, 42919}, {628, 43632}, {634, 34508}, {636, 11303}, {671, 43539}, {804, 9163}, {858, 34313}, {1352, 41042}, {1992, 37171}, {2459, 36469}, {2460, 36453}, {3104, 7775}, {3105, 7841}, {3106, 11163}, {3181, 33561}, {3524, 36995}, {3526, 21402}, {3534, 36756}, {3545, 7685}, {3679, 44660}, {3734, 11296}, {3763, 42128}, {5054, 13349}, {5055, 5615}, {5099, 34315}, {5215, 42132}, {5321, 36330}, {5461, 22511}, {5469, 22574}, {5476, 20425}, {5858, 41122}, {5859, 41108}, {5862, 31706}, {5863, 41113}, {5965, 32909}, {6144, 42816}, {6295, 40706}, {6671, 26613}, {6695, 43775}, {6783, 43274}, {7615, 42035}, {7617, 9761}, {7801, 37332}, {7810, 37333}, {8352, 22575}, {9116, 9886}, {10168, 32907}, {11001, 49902}, {11008, 42894}, {11096, 49723}, {11185, 22576}, {11290, 42992}, {11292, 35730}, {11297, 16267}, {11298, 42973}, {11299, 39555}, {11301, 39554}, {11645, 48656}, {11708, 25055}, {12100, 49901}, {12154, 22997}, {14540, 16627}, {15534, 42975}, {15743, 40710}, {16001, 47519}, {16241, 33475}, {16634, 43277}, {16965, 37341}, {16967, 33474}, {18546, 31712}, {19107, 36329}, {19781, 49905}, {19924, 22797}, {20582, 37352}, {22110, 44219}, {22329, 22510}, {22578, 22850}, {22844, 42599}, {22845, 42160}, {22895, 36386}, {22998, 33476}, {29181, 41025}, {31695, 46854}, {31696, 31704}, {32455, 43031}, {32459, 35303}, {33458, 41101}, {33459, 49908}, {33622, 42953}, {34318, 41023}, {35230, 42488}, {36366, 43228}, {37145, 50226}, {37173, 42158}, {40334, 42098}, {40341, 42125}, {41016, 47354}, {42815, 47355}, {42974, 47352}

X(50858) = midpoint of X(i) and X(j) for these {i,j}: {2, 622}, {14, 22494}, {9116, 25156}, {19107, 36329}, {22895, 36386}
X(50858) = reflection of X(i) in X(j) for these {i,j}: {2, 624}, {14, 31694}, {16, 2}, {3534, 36756}, {8595, 618}, {15534, 44497}, {22496, 14}, {23004, 8352}, {34313, 858}, {34315, 5099}, {35303, 44382}, {35752, 33517}, {35932, 619}, {36330, 5321}, {36368, 31706}, {36968, 35303}, {37785, 5460}
X(50858) = anticomplement of X(45880)
X(50858) = {circumcircle-of-outer-Napoleon-triangle-inverse of X(5463)}
X(50858) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 616, 13084}, {2, 18582, 22489}, {2, 22492, 13}, {16, 624, 40335}, {69, 22491, 22493}, {303, 35931, 13083}, {622, 624, 16}, {5460, 37785, 16268}, {5862, 41120, 36368}, {9763, 11295, 15}, {11304, 34509, 61}, {13083, 35931, 10645}, {14539, 20429, 36994}, {16809, 22493, 22491}, {22494, 31694, 22496}, {33475, 35304, 16241}, {47363, 47364, 5463}


X(50859) = X(2)X(17)∩X(14)X(99)

Barycentrics    7*a^4 - 11*a^2*b^2 + 4*b^4 - 11*a^2*c^2 - 8*b^2*c^2 + 4*c^4 + 2*Sqrt[3]*(a^2 - 2*b^2 - 2*c^2)*S : :
X(50859) = 5 X[2] - 4 X[6673], 5 X[2] - X[22113], 4 X[2] + X[22844], 7 X[2] - 2 X[33465], 5 X[2] + X[33622], 7 X[2] - X[33626], 13 X[2] - X[36326], 11 X[2] + X[36352], 4 X[2] - X[36366], 2 X[2] + X[36386], X[17] + 2 X[627], X[17] - 4 X[629], 5 X[17] - 8 X[6673], 5 X[17] - 2 X[22113], 2 X[17] + X[22844], 7 X[17] - 4 X[33465], 5 X[17] + 2 X[33622], 7 X[17] - 2 X[33626], 13 X[17] - 2 X[36326], 11 X[17] + 2 X[36352], X[627] + 2 X[629], 5 X[627] + 4 X[6673], 5 X[627] + X[22113], 4 X[627] - X[22844], 7 X[627] + 2 X[33465], 5 X[627] - X[33622], 7 X[627] + X[33626], 13 X[627] + X[36326], 11 X[627] - X[36352], 4 X[627] + X[36366], 5 X[629] - 2 X[6673], 10 X[629] - X[22113], 8 X[629] + X[22844], 7 X[629] - X[33465], 10 X[629] + X[33622], 14 X[629] - X[33626], 26 X[629] - X[36326], 22 X[629] + X[36352], 8 X[629] - X[36366], 4 X[629] + X[36386], 4 X[6673] - X[22113], 16 X[6673] + 5 X[22844], 14 X[6673] - 5 X[33465], 4 X[6673] + X[33622], 28 X[6673] - 5 X[33626], 52 X[6673] - 5 X[36326], 44 X[6673] + 5 X[36352], 16 X[6673] - 5 X[36366], 8 X[6673] + 5 X[36386], 4 X[22113] + 5 X[22844], and many others

X(50859) lies on these lines: {2, 17}, {3, 21359}, {5, 49953}, {6, 22892}, {13, 38412}, {14, 99}, {16, 37352}, {18, 11297}, {30, 16626}, {61, 33387}, {298, 11132}, {299, 33417}, {376, 44666}, {381, 5463}, {519, 22896}, {524, 41943}, {531, 14144}, {533, 37007}, {543, 11602}, {549, 5464}, {599, 5050}, {616, 16808}, {619, 34540}, {621, 42529}, {623, 36968}, {624, 22895}, {630, 42597}, {2482, 32909}, {3058, 22905}, {3181, 6671}, {3524, 22532}, {3534, 48666}, {3545, 22832}, {3582, 22930}, {3584, 22929}, {3643, 16967}, {3830, 22795}, {5054, 49106}, {5055, 16629}, {5064, 22482}, {5309, 16645}, {5434, 22904}, {5470, 14904}, {5858, 7764}, {5862, 42152}, {5982, 8592}, {6054, 16652}, {6670, 11122}, {6674, 38223}, {7757, 25167}, {7865, 22746}, {8259, 43229}, {8716, 42035}, {9761, 11301}, {10611, 22489}, {10653, 31705}, {11237, 18973}, {11238, 22910}, {11295, 36767}, {11300, 13084}, {11302, 16242}, {11304, 41115}, {11305, 41100}, {11307, 35689}, {11489, 14482}, {11739, 25055}, {13712, 36455}, {13835, 36437}, {13846, 49238}, {13847, 49239}, {16268, 37340}, {16635, 31704}, {19070, 32787}, {19071, 32788}, {19875, 22652}, {20377, 47865}, {22490, 22891}, {22845, 42490}, {22893, 23303}, {22900, 37832}, {22902, 34612}, {22903, 34606}, {22931, 45701}, {22932, 45700}, {31168, 45880}, {32455, 43232}, {33413, 49809}, {33415, 42489}, {33464, 49913}, {34508, 41101}, {35304, 36330}, {37172, 41108}, {41118, 41122}

X(50859) = midpoint of X(i) and X(j) for these {i,j}: {2, 627}, {17, 36386}, {3534, 48666}, {22113, 33622}, {22508, 22569}, {22844, 36366}
X(50859) = reflection of X(i) in X(j) for these {i,j}: {2, 629}, {17, 2}, {3830, 22795}, {22488, 22685}, {22844, 36386}, {33626, 33465}, {36366, 17}, {36386, 627}, {47865, 20377}
X(50859) = Thomson-isogonal conjugate of X(10645)
X(50859) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 36386, 36366}, {17, 627, 22844}, {302, 618, 14}, {302, 30472, 40707}, {627, 629, 17}, {6673, 22113, 17}


X(50860) = X(2)X(18)∩X(13)X(99)

Barycentrics    7*a^4 - 11*a^2*b^2 + 4*b^4 - 11*a^2*c^2 - 8*b^2*c^2 + 4*c^4 - 2*Sqrt[3]*(a^2 - 2*b^2 - 2*c^2)*S : :
X(50860) = 5 X[2] - 4 X[6674], 5 X[2] - X[22114], 4 X[2] + X[22845], 7 X[2] - 2 X[33464], 5 X[2] + X[33624], 7 X[2] - X[33627], 13 X[2] - X[36324], 11 X[2] + X[36346], 4 X[2] - X[36368], 2 X[2] + X[36388], X[18] + 2 X[628], X[18] - 4 X[630], 5 X[18] - 8 X[6674], 5 X[18] - 2 X[22114], 2 X[18] + X[22845], 7 X[18] - 4 X[33464], 5 X[18] + 2 X[33624], 7 X[18] - 2 X[33627], 13 X[18] - 2 X[36324], 11 X[18] + 2 X[36346], X[628] + 2 X[630], 5 X[628] + 4 X[6674], 5 X[628] + X[22114], 4 X[628] - X[22845], 7 X[628] + 2 X[33464], 5 X[628] - X[33624], 7 X[628] + X[33627], 13 X[628] + X[36324], 11 X[628] - X[36346], 4 X[628] + X[36368], 5 X[630] - 2 X[6674], 10 X[630] - X[22114], 8 X[630] + X[22845], 7 X[630] - X[33464], 10 X[630] + X[33624], 14 X[630] - X[33627], 26 X[630] - X[36324], 22 X[630] + X[36346], 8 X[630] - X[36368], 4 X[630] + X[36388], 4 X[6674] - X[22114], 16 X[6674] + 5 X[22845], 14 X[6674] - 5 X[33464], 4 X[6674] + X[33624], 28 X[6674] - 5 X[33627], 52 X[6674] - 5 X[36324], 44 X[6674] + 5 X[36346], 16 X[6674] - 5 X[36368], 8 X[6674] + 5 X[36388], 4 X[22114] + 5 X[22845], and many others

X(50860) lies on these lines: {2, 18}, {3, 21360}, {5, 49952}, {6, 22848}, {13, 99}, {15, 37351}, {17, 11298}, {30, 16627}, {62, 33386}, {141, 36770}, {298, 33416}, {299, 11133}, {376, 44667}, {381, 5464}, {519, 22851}, {524, 41944}, {530, 14145}, {532, 37008}, {543, 11603}, {549, 5463}, {599, 5050}, {617, 16809}, {618, 34541}, {622, 42528}, {623, 22849}, {624, 36967}, {629, 42596}, {2482, 32907}, {3058, 22860}, {3180, 6672}, {3524, 22531}, {3534, 48665}, {3545, 22831}, {3582, 22885}, {3584, 22884}, {3642, 16966}, {3830, 22794}, {5054, 49105}, {5055, 16628}, {5064, 22481}, {5309, 16644}, {5434, 22859}, {5469, 14905}, {5859, 7764}, {5863, 42149}, {5983, 8592}, {6054, 16653}, {6669, 11121}, {6673, 38223}, {7757, 25157}, {7865, 22745}, {8260, 43228}, {8716, 42036}, {9763, 11302}, {10612, 22490}, {10654, 31706}, {11237, 18972}, {11238, 22865}, {11299, 13083}, {11301, 16241}, {11303, 41114}, {11306, 41101}, {11308, 35688}, {11488, 14482}, {11740, 25055}, {13712, 36437}, {13835, 36455}, {13846, 49236}, {13847, 49237}, {16267, 37341}, {16634, 31703}, {19069, 32788}, {19072, 32787}, {19875, 22651}, {20378, 47866}, {22489, 22846}, {22844, 42491}, {22847, 23302}, {22856, 37835}, {22857, 34612}, {22858, 34606}, {22886, 45701}, {22887, 45700}, {31168, 45879}, {32455, 43233}, {33412, 49806}, {33414, 42488}, {33465, 49912}, {34509, 41100}, {35303, 35752}, {37173, 41107}, {41117, 41121}

X(50860) = midpoint of X(i) and X(j) for these {i,j}: {2, 628}, {18, 36388}, {3534, 48665}, {22114, 33624}, {22506, 22567}, {22845, 36368}
X(50860) = reflection of X(i) in X(j) for these {i,j}: {2, 630}, {18, 2}, {3830, 22794}, {22487, 22683}, {22845, 36388}, {33627, 33464}, {36368, 18}, {36388, 628}, {47866, 20378}
X(50860) = Thomson-isogonal conjugate of X(10646)
X(50860) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 36388, 36368}, {18, 628, 22845}, {303, 619, 13}, {303, 30471, 40706}, {628, 630, 18}, {6674, 22114, 18}


X(50861) = X(4)X(9)∩X(66)X(72)

Barycentrics    a^6 + a^4*b^2 - a^2*b^4 - b^6 + 2*a^4*b*c - 2*a^2*b^3*c + a^4*c^2 - 2*a^2*b^2*c^2 + b^4*c^2 - 2*a^2*b*c^3 - a^2*c^4 + b^2*c^4 - c^6 : :
X(50861) = 4 X[1125] - 5 X[31261], 5 X[1698] - 4 X[40530], 5 X[3617] - X[20061], 4 X[6684] - 3 X[21160]

X(50861) lies on these lines: {1, 5800}, {2, 5285}, {4, 9}, {8, 2893}, {20, 3220}, {25, 21015}, {30, 24320}, {33, 21062}, {55, 440}, {57, 7386}, {63, 1370}, {66, 72}, {197, 7580}, {198, 49132}, {201, 11392}, {212, 11393}, {219, 1503}, {220, 36990}, {226, 612}, {238, 1479}, {329, 2835}, {377, 4357}, {387, 16470}, {388, 3668}, {405, 1486}, {427, 7085}, {442, 23305}, {443, 17306}, {497, 7070}, {515, 30265}, {518, 41004}, {519, 31158}, {534, 3679}, {950, 3755}, {958, 13442}, {984, 1478}, {1001, 30810}, {1006, 15177}, {1125, 31261}, {1350, 26932}, {1352, 3781}, {1368, 20266}, {1376, 19542}, {1473, 7667}, {1631, 36017}, {1698, 40530}, {1751, 2195}, {1782, 21364}, {1836, 43214}, {1853, 26942}, {1899, 26893}, {2323, 6776}, {2475, 17257}, {2478, 17353}, {2876, 10477}, {3218, 16063}, {3219, 7391}, {3305, 6997}, {3306, 46336}, {3419, 3696}, {3421, 4901}, {3434, 3883}, {3436, 3717}, {3487, 30142}, {3538, 37526}, {3575, 26935}, {3617, 10251}, {3651, 39582}, {3688, 12588}, {3690, 11550}, {3718, 7270}, {3869, 21280}, {3925, 7522}, {3928, 26929}, {3929, 44442}, {4086, 8768}, {4302, 7295}, {4307, 5746}, {4362, 20539}, {4429, 37086}, {4647, 10869}, {4847, 36844}, {5046, 26685}, {5064, 26867}, {5080, 27549}, {5225, 15601}, {5227, 36851}, {5263, 37445}, {5273, 37456}, {5709, 6643}, {5745, 26118}, {5776, 29207}, {6284, 7083}, {6358, 7102}, {6360, 34186}, {6684, 21160}, {6925, 40880}, {7193, 46264}, {7308, 7392}, {7330, 34938}, {7394, 27065}, {7557, 9780}, {9895, 12699}, {9958, 18517}, {10996, 37551}, {11113, 48829}, {12329, 23300}, {12782, 46181}, {14790, 26921}, {15940, 28194}, {17532, 49725}, {17903, 44695}, {18531, 37584}, {19854, 25516}, {21376, 44447}, {21530, 37547}, {24701, 34381}, {26032, 27184}, {26872, 32064}, {26885, 31383}, {26933, 31152}, {27410, 48890}, {27540, 50698}, {28287, 37191}, {28731, 37444}, {30733, 49553}, {31327, 33076}, {32784, 37093}, {33094, 40973}

X(50861) = midpoint of X(8) and X(4329)
X(50861) = reflection of X(i) in X(j) for these {i,j}: {1, 18589}, {19, 10}
X(50861) = barycentric product X(10)*X(24606)
X(50861) = barycentric quotient X(24606)/X(86)
X(50861) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 26939, 9}, {20, 27509, 3220}, {1368, 37581, 20266}


X(50862) = X(4)X(551)∩X(10)X(30)

Barycentrics    16*a^4 - 3*a^3*b - 5*a^2*b^2 + 3*a*b^3 - 11*b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c - 5*a^2*c^2 - 3*a*b*c^2 + 22*b^2*c^2 + 3*a*c^3 - 11*c^4 : :
X(50862) = X[1] - 3 X[50687], 2 X[3] - 3 X[38076], 13 X[4] - 7 X[9624], 5 X[4] - 3 X[38021], 13 X[551] - 14 X[9624], 5 X[551] - 6 X[38021], 35 X[9624] - 39 X[38021], 11 X[10] - 8 X[3579], 13 X[10] - 16 X[18357], 5 X[10] - 8 X[18480], X[10] - 4 X[31673], 7 X[10] - 4 X[31730], X[10] + 8 X[33697], 13 X[3579] - 22 X[18357], 5 X[3579] - 11 X[18480], 2 X[3579] - 11 X[31673], 14 X[3579] - 11 X[31730], X[3579] + 11 X[33697], 16 X[3579] - 11 X[34638], 4 X[3579] - 11 X[34648], 10 X[18357] - 13 X[18480], 4 X[18357] - 13 X[31673], 28 X[18357] - 13 X[31730], 2 X[18357] + 13 X[33697], 32 X[18357] - 13 X[34638], 8 X[18357] - 13 X[34648], 2 X[18480] - 5 X[31673], 14 X[18480] - 5 X[31730], X[18480] + 5 X[33697], 16 X[18480] - 5 X[34638], 4 X[18480] - 5 X[34648], 7 X[31673] - X[31730], X[31673] + 2 X[33697], 8 X[31673] - X[34638], X[31730] + 14 X[33697], 8 X[31730] - 7 X[34638], 2 X[31730] - 7 X[34648], 16 X[33697] + X[34638], 4 X[33697] + X[34648], X[34638] - 4 X[34648], 2 X[40] - 3 X[38098], 5 X[376] - 7 X[31423], 10 X[19925] - 7 X[31423], 4 X[381] - 3 X[19883], 2 X[4297] - 3 X[19883], 4 X[382] + X[34641], and many others

X(50862) lies on these lines: {1, 50687}, {2, 28164}, {3, 38076}, {4, 551}, {10, 30}, {20, 3828}, {40, 38098}, {355, 15684}, {376, 19925}, {381, 4297}, {382, 28194}, {515, 3656}, {516, 4669}, {517, 33699}, {519, 962}, {548, 38083}, {550, 38068}, {553, 12943}, {946, 15687}, {1125, 3839}, {1385, 14893}, {1482, 35434}, {2796, 10723}, {3146, 3679}, {3241, 17578}, {3244, 31162}, {3522, 19876}, {3524, 18492}, {3534, 10164}, {3545, 19862}, {3576, 41099}, {3625, 34627}, {3626, 34632}, {3627, 4301}, {3634, 10304}, {3653, 3843}, {3654, 28150}, {3655, 18483}, {3817, 3845}, {3853, 5882}, {3856, 31666}, {3860, 11230}, {4314, 11237}, {4315, 11238}, {4677, 28228}, {4745, 15640}, {5066, 10165}, {5076, 13464}, {5086, 10032}, {5434, 21625}, {5587, 11001}, {5731, 30308}, {5732, 38094}, {6684, 15681}, {7406, 41141}, {7989, 15692}, {7991, 50691}, {8703, 10175}, {9588, 49140}, {9589, 31145}, {9956, 15686}, {10109, 17502}, {10171, 41106}, {10172, 15693}, {11231, 15690}, {11362, 28202}, {12100, 38140}, {12101, 28186}, {12512, 15683}, {12571, 25055}, {13473, 47593}, {13624, 38071}, {14269, 15808}, {15685, 26446}, {15689, 22266}, {15704, 31399}, {15708, 31253}, {17547, 35202}, {28154, 38127}, {28198, 35404}, {31165, 31871}, {31663, 44903}, {33703, 38074}, {35242, 46333}, {37714, 49135}, {38066, 49136}, {38073, 43176}, {38089, 44882}, {38104, 38759}, {38204, 50396}

X(50862) = midpoint of X(i) and X(j) for these {i,j}: {355, 15684}, {3146, 3679}, {3543, 5691}, {9589, 31145}, {34627, 41869}
X(50862) = reflection of X(i) in X(j) for these {i,j}: {10, 34648}, {20, 3828}, {376, 19925}, {551, 4}, {946, 15687}, {1385, 14893}, {3244, 31162}, {3625, 34627}, {3655, 18483}, {4297, 381}, {5493, 3679}, {15681, 6684}, {15683, 12512}, {15686, 9956}, {31165, 31871}, {34628, 1125}, {34632, 3626}, {34638, 10}, {34648, 31673}, {44903, 31663}
X(50862) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {381, 4297, 19883}, {3655, 38335, 18483}, {3839, 34628, 1125}, {15683, 19875, 12512}


X(50863) = X(30)X(3617)∩X(519)X(962)

Barycentrics    43*a^4 - 12*a^3*b - 14*a^2*b^2 + 12*a*b^3 - 29*b^4 - 12*a^3*c + 24*a^2*b*c - 12*a*b^2*c - 14*a^2*c^2 - 12*a*b*c^2 + 58*b^2*c^2 + 12*a*c^3 - 29*c^4 : :
X(50863) = 29 X[2] - 24 X[17502], 19 X[2] - 24 X[38140], 19 X[17502] - 29 X[38140], 4 X[382] + X[31145], 2 X[962] - 7 X[3543], X[962] + 14 X[5691], 29 X[962] - 14 X[11531], X[3543] + 4 X[5691], 29 X[3543] - 4 X[11531], 29 X[5691] + X[11531], 4 X[1698] - 3 X[10304], 3 X[10304] - 8 X[34648], 2 X[3241] - 7 X[50688], 2 X[3616] - 3 X[3839], X[3616] - 4 X[31673], 3 X[3839] - 8 X[31673], 7 X[3622] - 12 X[14269], 3 X[3623] - 4 X[3656], X[3623] - 3 X[50687], 4 X[3656] - 9 X[50687], 12 X[3653] - 17 X[3854], 4 X[3679] + X[49135], X[5059] - 6 X[38074], 3 X[7967] - 8 X[12101], X[12245] + 4 X[35404], 4 X[15684] + X[20070], 12 X[15688] - 17 X[46932], 18 X[15710] - 23 X[46931], 11 X[15721] - 16 X[19925], 24 X[17504] - 29 X[46930], 8 X[18357] - 3 X[46333], X[20052] + 8 X[33697], 4 X[33697] + X[34627], 6 X[38066] - X[49138], 6 X[38081] - X[49137]

X(50863) lies on these lines: {2, 17502}, {30, 3617}, {382, 31145}, {519, 962}, {1698, 10304}, {3146, 28202}, {3241, 50688}, {3616, 3839}, {3622, 14269}, {3623, 3656}, {3653, 3854}, {3679, 49135}, {3830, 28224}, {4668, 34632}, {5059, 38074}, {7967, 12101}, {10595, 35403}, {12245, 35404}, {15640, 28150}, {15682, 28174}, {15684, 20070}, {15688, 46932}, {15697, 28164}, {15710, 46931}, {15721, 19925}, {17504, 46930}, {17578, 28204}, {18357, 46333}, {19708, 28190}, {19862, 34628}, {20052, 33697}, {28186, 41099}, {28194, 50691}, {38066, 49138}, {38081, 49137}

X(50863) = reflection of X(i) in X(j) for these {i,j}: {1698, 34648}, {10595, 35403}, {20052, 34627}, {34628, 19862}, {34632, 4668}


X(50864) = X(2)X(515)∩X(519)X(962)

Barycentrics    11*a^4 - 6*a^3*b - 4*a^2*b^2 + 6*a*b^3 - 7*b^4 - 6*a^3*c + 12*a^2*b*c - 6*a*b^2*c - 4*a^2*c^2 - 6*a*b*c^2 + 14*b^2*c^2 + 6*a*c^3 - 7*c^4 : :
X(50864) = 2 X[1] - 3 X[3839], 3 X[3839] - 4 X[34648], 7 X[2] - 6 X[3576], 5 X[2] - 6 X[5587], 4 X[2] - 3 X[5731], 13 X[2] - 12 X[10165], 23 X[2] - 24 X[10172], 11 X[2] - 12 X[10175], 5 X[3576] - 7 X[5587], 8 X[3576] - 7 X[5731], 13 X[3576] - 14 X[10165], 23 X[3576] - 28 X[10172], 11 X[3576] - 14 X[10175], 8 X[5587] - 5 X[5731], 13 X[5587] - 10 X[10165], 23 X[5587] - 20 X[10172], 11 X[5587] - 10 X[10175], 13 X[5731] - 16 X[10165], 23 X[5731] - 32 X[10172], 11 X[5731] - 16 X[10175], 23 X[10165] - 26 X[10172], 11 X[10165] - 13 X[10175], 22 X[10172] - 23 X[10175], 2 X[3] - 3 X[38074], 3 X[4] - 2 X[3656], 8 X[4] - 5 X[5734], 7 X[4] - 4 X[10222], 5 X[4] - 2 X[37727], 3 X[3241] - 4 X[3656], 4 X[3241] - 5 X[5734], 7 X[3241] - 8 X[10222], 5 X[3241] - 4 X[37727], 16 X[3656] - 15 X[5734], 7 X[3656] - 6 X[10222], 5 X[3656] - 3 X[37727], 35 X[5734] - 32 X[10222], 25 X[5734] - 16 X[37727], 10 X[10222] - 7 X[37727], 5 X[8] - 2 X[6361], 7 X[8] - 4 X[12702], X[8] - 4 X[18525], 5 X[8] - 4 X[34718], 5 X[8] - 8 X[37705], 7 X[6361] - 10 X[12702], X[6361] - 10 X[18525], X[6361] - 5 X[34627], 4 X[6361] - 5 X[34632], and many others

X(50864) lies on these lines: {1, 3839}, {2, 515}, {3, 38074}, {4, 1392}, {8, 30}, {10, 10304}, {20, 3679}, {40, 15683}, {80, 5435}, {145, 31162}, {165, 4745}, {355, 376}, {381, 944}, {388, 15933}, {516, 4677}, {517, 15682}, {519, 962}, {528, 36991}, {535, 28610}, {548, 38081}, {549, 5818}, {550, 38066}, {551, 3091}, {553, 5727}, {938, 5434}, {952, 3830}, {1385, 5071}, {1482, 10248}, {1483, 14893}, {1698, 15708}, {2094, 9803}, {2784, 9875}, {3086, 7319}, {3090, 3653}, {3146, 5881}, {3476, 11238}, {3486, 11237}, {3523, 3828}, {3524, 9780}, {3525, 38083}, {3534, 5657}, {3545, 3616}, {3583, 4345}, {3584, 4305}, {3585, 4323}, {3621, 41869}, {3622, 18492}, {3623, 18483}, {3626, 34638}, {3654, 9778}, {3832, 5882}, {3845, 5603}, {3851, 38022}, {3854, 9624}, {3855, 15178}, {3860, 10283}, {3889, 16616}, {4297, 15692}, {4301, 34747}, {4308, 10072}, {4313, 10056}, {4428, 6912}, {4511, 18528}, {4669, 28164}, {4678, 31730}, {5054, 18357}, {5055, 5550}, {5056, 38076}, {5059, 11362}, {5066, 10246}, {5252, 10385}, {5493, 49140}, {5690, 15681}, {5732, 38092}, {5748, 6224}, {5768, 28452}, {5790, 8703}, {5844, 33699}, {5886, 41106}, {5905, 20085}, {6049, 10591}, {6253, 34700}, {6915, 40726}, {7406, 17310}, {7486, 30389}, {7967, 9779}, {7982, 17578}, {7987, 15721}, {7989, 19883}, {7991, 34641}, {8185, 37940}, {8591, 9864}, {9041, 36990}, {9143, 12368}, {9589, 50691}, {9613, 11037}, {9799, 17579}, {9956, 15702}, {10303, 19876}, {10430, 37429}, {10728, 18499}, {10914, 12125}, {11114, 34697}, {11160, 39885}, {11177, 13178}, {11231, 15719}, {11491, 28444}, {11500, 17549}, {12100, 38138}, {12114, 13587}, {12245, 28198}, {12512, 38098}, {12528, 44663}, {12536, 37433}, {12645, 15684}, {12647, 30332}, {12699, 20050}, {13464, 50689}, {13624, 15709}, {14269, 18526}, {14647, 36005}, {15685, 28190}, {15690, 38112}, {15693, 38042}, {15705, 46933}, {15717, 38068}, {16191, 28236}, {18391, 37006}, {18493, 23046}, {18761, 28461}, {19541, 38669}, {19708, 26446}, {19925, 25055}, {20053, 33697}, {20070, 47745}, {22791, 34748}, {28202, 33703}, {34557, 35736}, {34711, 34717}, {35403, 40273}, {35404, 48661}, {37546, 37945}, {38075, 43175}, {38087, 44882}, {38099, 38759}, {48923, 50415}, {48937, 50422}

X(50864) = midpoint of X(i) and X(j) for these {i,j}: {3146, 31145}, {12645, 15684}
X(50864) = reflection of X(i) in X(j) for these {i,j}: {1, 34648}, {8, 34627}, {20, 3679}, {145, 31162}, {376, 355}, {944, 381}, {962, 3543}, {1482, 15687}, {1483, 14893}, {3241, 4}, {3543, 5691}, {3655, 18480}, {6224, 10711}, {6361, 34718}, {7991, 34641}, {8591, 9864}, {9143, 12368}, {11001, 3654}, {11114, 34697}, {11160, 39885}, {11177, 13178}, {15681, 5690}, {15683, 40}, {17579, 34746}, {20049, 7982}, {20050, 34631}, {31145, 5881}, {31162, 31673}, {34627, 18525}, {34628, 10}, {34631, 12699}, {34632, 8}, {34638, 3626}, {34711, 34717}, {34718, 37705}, {34744, 34700}, {34747, 4301}, {34748, 22791}, {48661, 35404}, {48923, 50415}, {50422, 48937}
X(50864) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 34648, 3839}, {10, 34628, 10304}, {145, 50687, 31162}, {381, 944, 38314}, {3545, 3655, 3616}, {3654, 11001, 9778}, {3655, 18480, 3545}, {4297, 19875, 15692}, {6361, 37705, 8}, {31162, 31673, 50687}, {34748, 38335, 22791}


X(50865) = X(1)X(30)∩X(519)X(962)

Barycentrics    5*a^3 - 2*a^2*b + a*b^2 - 4*b^3 - 2*a^2*c - 2*a*b*c + 4*b^2*c + a*c^2 + 4*b*c^2 - 4*c^3 : :
X(50865) = 5 X[1] - 4 X[3655], 3 X[1] - 4 X[3656], X[1] - 4 X[12699], 7 X[1] - 4 X[18481], 5 X[1] - 8 X[22791], 11 X[1] - 8 X[34773], X[1] + 2 X[41869], 4 X[1836] - X[41860], 3 X[3655] - 5 X[3656], X[3655] - 5 X[12699], 7 X[3655] - 5 X[18481], 2 X[3655] - 5 X[31162], 8 X[3655] - 5 X[34628], 11 X[3655] - 10 X[34773], 2 X[3655] + 5 X[41869], X[3656] - 3 X[12699], 7 X[3656] - 3 X[18481], 5 X[3656] - 6 X[22791], 2 X[3656] - 3 X[31162], 8 X[3656] - 3 X[34628], 11 X[3656] - 6 X[34773], 2 X[3656] + 3 X[41869], 7 X[12699] - X[18481], 5 X[12699] - 2 X[22791], 8 X[12699] - X[34628], 11 X[12699] - 2 X[34773], 2 X[12699] + X[41869], X[16143] - 4 X[49177], 5 X[18481] - 14 X[22791], 2 X[18481] - 7 X[31162], 8 X[18481] - 7 X[34628], 11 X[18481] - 14 X[34773], 2 X[18481] + 7 X[41869], 4 X[22791] - 5 X[31162], 16 X[22791] - 5 X[34628], 11 X[22791] - 5 X[34773], 4 X[22791] + 5 X[41869], 4 X[31162] - X[34628], 11 X[31162] - 4 X[34773], 11 X[34628] - 16 X[34773], X[34628] + 4 X[41869], 4 X[34773] + 11 X[41869], 4 X[2] - 3 X[165], 2 X[2] - 3 X[1699], 5 X[2] - 6 X[3817], 8 X[2] - 9 X[7988], 5 X[2] - 3 X[9778], and many others

X(50865) lies on these lines: {1, 30}, {2, 165}, {3, 28202}, {4, 3679}, {5, 19876}, {7, 30350}, {8, 34648}, {10, 3839}, {20, 551}, {40, 381}, {57, 11238}, {63, 10032}, {147, 2796}, {200, 5057}, {226, 10385}, {355, 15687}, {376, 946}, {382, 7982}, {388, 30337}, {392, 50397}, {497, 553}, {511, 45829}, {515, 11224}, {517, 3830}, {519, 962}, {527, 3062}, {528, 1750}, {547, 31423}, {548, 38022}, {549, 8227}, {550, 3653}, {671, 9860}, {952, 33699}, {1001, 41853}, {1058, 4355}, {1125, 10304}, {1282, 10710}, {1385, 15681}, {1478, 9819}, {1479, 3339}, {1482, 15684}, {1490, 34629}, {1572, 11648}, {1597, 37546}, {1695, 48852}, {1697, 11237}, {1698, 3545}, {1702, 35822}, {1703, 35823}, {1709, 3928}, {1768, 10707}, {1770, 3361}, {1864, 5903}, {1992, 39878}, {2093, 3583}, {2100, 10720}, {2101, 10719}, {2550, 30393}, {2807, 21969}, {2948, 10706}, {2951, 6173}, {2999, 33094}, {3090, 38068}, {3091, 3828}, {3097, 44422}, {3146, 3241}, {3340, 12953}, {3434, 5223}, {3524, 3624}, {3529, 13464}, {3534, 3576}, {3579, 5055}, {3582, 15803}, {3586, 18421}, {3601, 4870}, {3627, 5881}, {3628, 31425}, {3632, 31673}, {3633, 34631}, {3654, 3845}, {3671, 15933}, {3715, 12702}, {3731, 33109}, {3746, 37411}, {3832, 38076}, {3843, 38066}, {3851, 38083}, {3860, 38042}, {3877, 15679}, {3914, 16469}, {3925, 41858}, {3929, 11372}, {3973, 32865}, {4297, 15683}, {4300, 48855}, {4318, 9577}, {4330, 6869}, {4338, 4857}, {4421, 42843}, {4428, 7580}, {4666, 43178}, {4668, 18480}, {4669, 28228}, {4863, 31672}, {4995, 5219}, {5054, 9955}, {5066, 26446}, {5071, 6684}, {5073, 10222}, {5079, 31447}, {5119, 5726}, {5128, 10896}, {5231, 44447}, {5250, 6175}, {5290, 10624}, {5298, 50443}, {5325, 5698}, {5400, 36634}, {5537, 19541}, {5541, 10711}, {5550, 15705}, {5584, 16857}, {5603, 11001}, {5657, 28232}, {5690, 14893}, {5715, 16208}, {5731, 28158}, {5732, 38024}, {5734, 49135}, {5735, 10431}, {5805, 10857}, {5812, 34746}, {5882, 33703}, {5886, 8703}, {5901, 15686}, {5927, 15104}, {6054, 13174}, {6174, 15017}, {6259, 34699}, {6261, 40265}, {6282, 28452}, {7308, 18482}, {7406, 41140}, {7753, 9593}, {7962, 12943}, {7967, 28172}, {7992, 45648}, {7993, 14217}, {7994, 31142}, {8148, 33697}, {8580, 24703}, {8591, 21636}, {8983, 9585}, {9140, 9904}, {9591, 44837}, {9612, 10056}, {9616, 13846}, {9620, 14537}, {9625, 18324}, {9668, 11529}, {9670, 11518}, {9801, 50119}, {9856, 31165}, {10136, 31527}, {10165, 19708}, {10175, 41106}, {10246, 15685}, {10247, 28168}, {10248, 19925}, {10439, 15310}, {10442, 17274}, {10446, 42057}, {10580, 30424}, {10582, 20292}, {10708, 39156}, {10718, 12408}, {10724, 13253}, {10728, 12653}, {10738, 12767}, {11012, 28444}, {11177, 11599}, {11230, 15693}, {11278, 34748}, {11495, 38093}, {12100, 38034}, {12101, 28212}, {12512, 15692}, {12645, 35434}, {12650, 34617}, {12700, 34697}, {12705, 31159}, {12915, 31391}, {13405, 30332}, {13462, 30384}, {13541, 44984}, {13624, 15689}, {15071, 24473}, {15178, 17800}, {15228, 23708}, {15601, 21949}, {15640, 28164}, {15688, 18493}, {15690, 38028}, {15694, 31663}, {15695, 17502}, {15708, 19862}, {16191, 28186}, {16200, 28160}, {16475, 43273}, {16487, 23681}, {16491, 48905}, {16496, 48910}, {16833, 28854}, {17578, 31145}, {17605, 35445}, {17606, 41348}, {17768, 24392}, {18201, 21267}, {18393, 30282}, {18788, 36731}, {19710, 28182}, {19722, 49130}, {20049, 50690}, {21363, 48940}, {23511, 24715}, {26040, 36835}, {28459, 30503}, {28538, 36990}, {29181, 47358}, {29229, 37521}, {30363, 37443}, {31164, 34611}, {31435, 44217}, {33179, 35400}, {34556, 35735}, {34640, 34716}, {34641, 50688}, {34647, 34701}, {34706, 44663}, {37022, 40726}, {38023, 44882}, {38026, 38759}, {47310, 47321}

X(50865) = midpoint of X(i) and X(j) for these {i,j}: {381, 48661}, {962, 3543}, {1482, 15684}, {3146, 3241}, {3679, 9589}, {31162, 41869}
X(50865) = reflection of X(i) in X(j) for these {i,j}: {1, 31162}, {8, 34648}, {20, 551}, {40, 381}, {165, 1699}, {355, 15687}, {376, 946}, {381, 22793}, {549, 40273}, {1282, 10710}, {1699, 9812}, {1768, 10707}, {2100, 10720}, {2101, 10719}, {2948, 10706}, {2951, 6173}, {3241, 4301}, {3632, 34627}, {3633, 34631}, {3654, 3845}, {3655, 22791}, {3679, 4}, {3928, 11235}, {5493, 3828}, {5541, 10711}, {5690, 14893}, {5691, 3543}, {7991, 3679}, {7994, 31142}, {8591, 21636}, {9778, 3817}, {9860, 671}, {9904, 9140}, {11177, 11599}, {12408, 10718}, {13174, 6054}, {15071, 24473}, {15104, 5927}, {15681, 1385}, {15683, 4297}, {15686, 5901}, {30304, 31146}, {31162, 12699}, {31165, 9856}, {34627, 31673}, {34628, 1}, {34632, 10}, {34638, 1125}, {34701, 34647}, {34716, 34640}, {34718, 18480}, {34747, 7982}, {34748, 11278}, {39156, 10708}, {39878, 1992}, {41338, 31140}, {47321, 47310}
X(50865) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1699, 30308}, {2, 30308, 7988}, {4, 7991, 37714}, {4, 9589, 7991}, {8, 50687, 34648}, {20, 11522, 30389}, {40, 381, 19875}, {165, 1699, 7988}, {165, 30308, 2}, {376, 946, 25055}, {376, 25055, 7987}, {381, 19875, 7989}, {497, 4312, 10980}, {962, 5691, 11531}, {1058, 4355, 30343}, {1125, 34638, 10304}, {1770, 9614, 3361}, {1836, 3058, 4654}, {1836, 9580, 1}, {3058, 4654, 1}, {3091, 5493, 9588}, {3091, 9588, 30315}, {3649, 41864, 1}, {3654, 3845, 5587}, {3839, 34632, 10}, {4654, 9580, 3058}, {5735, 10431, 30304}, {6361, 18483, 1698}, {9579, 12701, 1}, {9955, 35242, 34595}, {10248, 20070, 19925}, {11362, 38074, 3679}, {12512, 19883, 15692}, {12699, 41869, 1}, {15683, 38314, 4297}, {22793, 48661, 40}, {34718, 38335, 18480}


X(50866) = X(30)X(1698)∩X(519)X(962)

Barycentrics    37*a^4 - 3*a^3*b - 11*a^2*b^2 + 3*a*b^3 - 26*b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c - 11*a^2*c^2 - 3*a*b*c^2 + 52*b^2*c^2 + 3*a*c^3 - 26*c^4 : :
X(50866) = 7 X[1698] - 10 X[18492], 13 X[1698] - 10 X[35242], 13 X[18492] - 7 X[35242], X[40] + 4 X[35404], 3 X[165] + 2 X[15640], 4 X[382] + X[3679], X[962] - 11 X[3543], 4 X[962] + 11 X[5691], 26 X[962] - 11 X[11531], 4 X[3543] + X[5691], 26 X[3543] - X[11531], 13 X[5691] + 2 X[11531], 2 X[551] - 7 X[50688], 3 X[1699] - 8 X[3830], 13 X[1699] - 8 X[10246], 13 X[3830] - 3 X[10246], 8 X[3146] + 7 X[9588], 2 X[3529] - 7 X[19876], 3 X[3576] - 8 X[12101], X[3616] - 3 X[50687], X[34628] - 6 X[50687], 7 X[3624] - 12 X[14269], 6 X[3627] - X[3656], 3 X[3653] - 8 X[12102], 4 X[3828] + X[49135], 3 X[3839] - 2 X[19862], 8 X[3853] - 3 X[38021], X[4668] - 4 X[31673], X[4816] + 2 X[41869], X[5059] - 6 X[38076], 3 X[5657] + 7 X[15682], 7 X[7989] - 2 X[15683], X[7991] + 14 X[50690], 4 X[9956] + X[35400], 3 X[10304] - 4 X[31253], X[11522] - 4 X[17578], 8 X[15687] - 3 X[25055], 12 X[15688] - 17 X[19872], 2 X[18526] - 7 X[31162], X[18526] + 14 X[33697], X[31162] + 4 X[33697], 17 X[30315] - 2 X[49140], 2 X[31447] + X[35407], X[37714] + 2 X[50691], 6 X[38068] - X[49138], 6 X[38083] - X[49137]

X(50866) lies on these lines: {30, 1698}, {40, 35404}, {165, 15640}, {382, 3679}, {519, 962}, {551, 50688}, {1699, 3830}, {3146, 9588}, {3529, 19876}, {3576, 12101}, {3616, 34628}, {3617, 34648}, {3624, 14269}, {3627, 3656}, {3653, 12102}, {3828, 49135}, {3839, 19862}, {3853, 38021}, {4668, 31673}, {4816, 41869}, {5059, 38076}, {5657, 15682}, {7989, 15683}, {7991, 50690}, {8227, 35403}, {9583, 43503}, {9617, 42639}, {9956, 35400}, {10304, 31253}, {11522, 17578}, {15679, 38052}, {15687, 25055}, {15688, 19872}, {18526, 31162}, {28164, 30308}, {28172, 41099}, {28174, 33699}, {28208, 35434}, {30315, 49140}, {31447, 35407}, {37714, 50691}, {38068, 49138}, {38083, 49137}

X(50866) = reflection of X(i) in X(j) for these {i,j}: {3617, 34648}, {8227, 35403}, {34628, 3616}


X(50867) = X(30)X(9780)∩X(519)X(962)

Barycentrics    53*a^4 - 6*a^3*b - 16*a^2*b^2 + 6*a*b^3 - 37*b^4 - 6*a^3*c + 12*a^2*b*c - 6*a*b^2*c - 16*a^2*c^2 - 6*a*b*c^2 + 74*b^2*c^2 + 6*a*c^3 - 37*c^4 : :
X(50867) = 13 X[4] - 6 X[3653], 5 X[20] - 12 X[38076], 5 X[19876] - 6 X[38076], X[962] - 8 X[3543], 5 X[962] + 16 X[5691], 37 X[962] - 16 X[11531], 5 X[3543] + 2 X[5691], 37 X[3543] - 2 X[11531], 37 X[5691] + 5 X[11531], X[3241] - 8 X[3627], 4 X[3579] + 3 X[35409], 5 X[3616] - 12 X[38335], 5 X[3622] - 8 X[18483], X[3622] - 3 X[50687], 8 X[18483] - 15 X[50687], 2 X[3624] - 3 X[3839], 2 X[3654] + 5 X[15682], 23 X[3654] - 30 X[38176], 23 X[15682] + 12 X[38176], 4 X[3656] - 3 X[20057], 19 X[3656] - 12 X[32900], X[3656] + 6 X[33697], 19 X[20057] - 16 X[32900], X[20057] + 8 X[33697], 2 X[32900] + 19 X[33697], 2 X[3679] + 5 X[50691], 8 X[3828] - X[49140], 10 X[3830] - 3 X[5603], X[4678] - 4 X[31673], 8 X[31673] - X[34632], 4 X[5882] - 25 X[17578], 4 X[5901] - 11 X[35401], 9 X[9779] - 16 X[12101], 5 X[11001] - 12 X[11231], 13 X[19877] - 6 X[46333]

X(50867) lies on these lines: {2, 28172}, {4, 3653}, {20, 19876}, {30, 9780}, {519, 962}, {3241, 3627}, {3579, 35409}, {3616, 38335}, {3622, 18483}, {3624, 3839}, {3654, 15682}, {3656, 20057}, {3679, 50691}, {3828, 49140}, {3830, 5603}, {4678, 31673}, {5882, 17578}, {5901, 35401}, {9583, 43566}, {9779, 12101}, {10248, 28208}, {11001, 11231}, {15808, 34628}, {19877, 46333}, {28168, 41106}, {28194, 50690}, {28212, 33699}

X(50867) = reflection of X(i) in X(j) for these {i,j}: {20, 19876}, {34628, 15808}, {34632, 4678}


X(50868) = X(30)X(3626)∩X(519)X(962)

Barycentrics    38*a^4 - 15*a^3*b - 13*a^2*b^2 + 15*a*b^3 - 25*b^4 - 15*a^3*c + 30*a^2*b*c - 15*a*b^2*c - 13*a^2*c^2 - 15*a*b*c^2 + 50*b^2*c^2 + 15*a*c^3 - 25*c^4 : :
X(50868) = 4 X[3] - 5 X[3828], 19 X[3] - 25 X[31399], 13 X[3] - 15 X[38068], 19 X[3828] - 20 X[31399], 13 X[3828] - 12 X[38068], 65 X[31399] - 57 X[38068], 23 X[3845] - 15 X[10283], 19 X[3845] - 15 X[38034], 19 X[10283] - 23 X[38034], 5 X[962] - 13 X[3543], X[962] - 13 X[5691], 25 X[962] - 13 X[11531], X[3543] - 5 X[5691], 5 X[3543] - X[11531], 25 X[5691] - X[11531], 4 X[547] - 5 X[19925], 5 X[551] - 7 X[3832], 5 X[1125] - 6 X[3545], 7 X[1125] - 10 X[18492], 21 X[3545] - 25 X[18492], 3 X[3545] - 5 X[34648], 5 X[18492] - 7 X[34648], 5 X[1482] - 13 X[35402], X[3244] - 3 X[50687], 10 X[3634] - 9 X[15708], 9 X[15708] - 5 X[34628], 3 X[3635] - 4 X[3656], 7 X[3635] - 4 X[18526], X[3635] - 4 X[31673], 5 X[3635] - 12 X[38335], 7 X[3656] - 3 X[18526], X[3656] - 3 X[31673], 5 X[3656] - 9 X[38335], X[18526] - 7 X[31673], 5 X[18526] - 21 X[38335], 5 X[31673] - 3 X[38335], 2 X[3636] - 3 X[3839], 5 X[3679] - X[5059], 5 X[4297] - 7 X[15702], 7 X[4745] - 6 X[5657], 5 X[4745] - 2 X[11001], 5 X[4745] - 6 X[38155], 15 X[5657] - 7 X[11001], 5 X[5657] - 7 X[38155], X[11001] - 3 X[38155], 13 X[5067] - 15 X[38076], 15 X[5587] - 11 X[15719], 5 X[10171] - 4 X[31662], 5 X[11362] + X[49133], 3 X[11539] - 5 X[18480], 24 X[11539] - 25 X[31253], 8 X[18480] - 5 X[31253], 5 X[12512] - 4 X[15686], 5 X[13624] - 6 X[41985], X[15640] + 3 X[37712], X[15683] - 3 X[38098], X[15685] - 3 X[38127], 5 X[17578] - X[34747], 5 X[18357] - 3 X[41982], 5 X[30308] - 4 X[41150]

X(50868) lies on these lines: {3, 3828}, {30, 3626}, {515, 3845}, {519, 962}, {547, 19925}, {551, 3832}, {1125, 3545}, {1482, 35402}, {3146, 34641}, {3244, 50687}, {3634, 15708}, {3635, 3656}, {3636, 3839}, {3679, 5059}, {3830, 28236}, {3853, 28204}, {4297, 15702}, {4669, 28158}, {4691, 34638}, {4701, 34627}, {4745, 5657}, {4746, 34632}, {5067, 38076}, {5587, 15719}, {10171, 31662}, {11362, 49133}, {11539, 18480}, {11812, 28186}, {12512, 15686}, {13607, 14893}, {13624, 41985}, {15640, 37712}, {15682, 28228}, {15683, 38098}, {15684, 47745}, {15685, 38127}, {15690, 28160}, {17578, 34747}, {18357, 41982}, {28234, 33699}, {30308, 41150}

X(50868) = midpoint of X(i) and X(j) for these {i,j}: {3146, 34641}, {15684, 47745}
X(50868) = reflection of X(i) in X(j) for these {i,j}: {1125, 34648}, {4701, 34627}, {13607, 14893}, {34628, 3634}, {34632, 4746}, {34638, 4691}


X(50869) = X(30)X(1125)∩X(519)X(962)

Barycentrics    26*a^4 + 3*a^3*b - 7*a^2*b^2 - 3*a*b^3 - 19*b^4 + 3*a^3*c - 6*a^2*b*c + 3*a*b^2*c - 7*a^2*c^2 + 3*a*b*c^2 + 38*b^2*c^2 - 3*a*c^3 - 19*c^4 : :
X(50869) = 5 X[4] - 3 X[38076], 5 X[3828] - 6 X[38076], X[10] - 3 X[50687], 13 X[1125] - 16 X[9955], 19 X[1125] - 16 X[13624], 5 X[1125] - 8 X[18483], 19 X[9955] - 13 X[13624], 10 X[9955] - 13 X[18483], 10 X[13624] - 19 X[18483], X[355] - 5 X[35434], 3 X[382] + X[3656], 5 X[382] + X[5882], 5 X[3656] - 3 X[5882], X[3654] - 5 X[3830], 4 X[3654] - 5 X[4745], 11 X[3654] - 15 X[5790], 13 X[3654] - 15 X[38127], 4 X[3830] - X[4745], 11 X[3830] - 3 X[5790], 13 X[3830] - 3 X[38127], 11 X[4745] - 12 X[5790], 13 X[4745] - 12 X[38127], 13 X[5790] - 11 X[38127], X[962] + 7 X[3543], 5 X[962] + 7 X[5691], 19 X[962] - 7 X[11531], 5 X[3543] - X[5691], 19 X[3543] + X[11531], 19 X[5691] + 5 X[11531], 3 X[1699] + X[15640], X[3241] + 7 X[50690], 6 X[3545] - 5 X[31253], X[3626] + 2 X[41869], 2 X[3634] - 3 X[3839], 3 X[3839] - X[34638], 3 X[3653] + X[49136], X[3679] - 5 X[17578], 3 X[3817] - X[11001], 5 X[3843] - 3 X[38068], 5 X[3845] - 3 X[11231], 4 X[3853] - X[43174], 4 X[3860] - 3 X[10172], X[4701] - 4 X[31673], X[5493] - 7 X[50688], 3 X[5603] + 5 X[15682], 3 X[5731] - 4 X[41150], 9 X[7988] - 5 X[15697], 2 X[8703] - 3 X[10171], 3 X[10164] - 5 X[41099], 3 X[10165] - X[15685], 7 X[10248] - 3 X[25055], 3 X[10304] - 4 X[19878], 5 X[12699] - X[34748], 3 X[14269] - X[31730], X[15683] - 3 X[19883], 7 X[19876] - 11 X[50689], X[33703] + 3 X[38021]

X(50869) lies on these lines: {2, 28158}, {4, 3828}, {10, 50687}, {30, 1125}, {355, 35434}, {376, 12571}, {381, 12512}, {382, 3656}, {515, 33699}, {516, 3654}, {519, 962}, {551, 3146}, {946, 15684}, {1699, 15640}, {2796, 39838}, {3241, 50690}, {3545, 31253}, {3626, 34648}, {3627, 28194}, {3634, 3839}, {3635, 31162}, {3636, 34628}, {3653, 49136}, {3679, 17578}, {3817, 11001}, {3843, 38068}, {3845, 11231}, {3853, 28202}, {3860, 10172}, {4691, 34632}, {4701, 31673}, {5066, 28154}, {5493, 50688}, {5603, 15682}, {5731, 41150}, {6684, 14893}, {7988, 15697}, {8703, 10171}, {9589, 34641}, {10164, 41099}, {10165, 15685}, {10248, 25055}, {10304, 19878}, {12101, 28146}, {12699, 34748}, {14269, 31730}, {15679, 40998}, {15683, 19883}, {15687, 19925}, {19876, 50689}, {22793, 35404}, {28459, 43151}, {33703, 38021}

X(50869) = midpoint of X(i) and X(j) for these {i,j}: {551, 3146}, {946, 15684}, {9589, 34641}, {22793, 35404}, {34648, 41869}
X(50869) = reflection of X(i) in X(j) for these {i,j}: {376, 12571}, {3626, 34648}, {3635, 31162}, {3828, 4}, {6684, 14893}, {12512, 381}, {19925, 15687}, {34628, 3636}, {34632, 4691}, {34638, 3634}
X(50869) = {X(3839),X(34638)}-harmonic conjugate of X(3634)


X(50870) = X(30)X(3634)∩X(519)X(962)

Barycentrics    58*a^4 - 3*a^3*b - 17*a^2*b^2 + 3*a*b^3 - 41*b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c - 17*a^2*c^2 - 3*a*b*c^2 + 82*b^2*c^2 + 3*a*c^3 - 41*c^4 : :
X(50870) = 13 X[382] + 3 X[38066], 5 X[382] + X[43174], 15 X[38066] - 13 X[43174], X[962] - 17 X[3543], 7 X[962] + 17 X[5691], 41 X[962] - 17 X[11531], 7 X[3543] + X[5691], 41 X[3543] - X[11531], 41 X[5691] + 7 X[11531], X[551] - 5 X[17578], X[946] - 5 X[35434], X[1125] - 3 X[50687], 3 X[1699] - 2 X[41150], 7 X[3627] - X[13464], X[3679] + 7 X[50690], 11 X[3830] - 3 X[5886], 3 X[3839] - 2 X[19878], 5 X[4691] - 2 X[6361], X[6361] - 5 X[34648], X[4746] - 4 X[31673], 5 X[4746] - 4 X[34718], 5 X[31673] - X[34718], 3 X[5587] + 5 X[15682], 7 X[19876] + X[50692], X[33703] + 3 X[38076], 3 X[38068] + X[49136]

X(50870) lies on these lines: {30, 3634}, {382, 38066}, {516, 33699}, {519, 962}, {551, 17578}, {946, 35434}, {1125, 50687}, {1699, 41150}, {3146, 3828}, {3627, 13464}, {3679, 50690}, {3830, 5886}, {3839, 19878}, {4691, 6361}, {4746, 31673}, {5587, 15682}, {12101, 28172}, {12571, 15687}, {15684, 19925}, {19876, 50692}, {33703, 38076}, {38068, 49136}

X(50870) = midpoint of X(i) and X(j) for these {i,j}: {3146, 3828}, {15684, 19925}
X(50870) = reflection of X(i) in X(j) for these {i,j}: {4691, 34648}, {12571, 15687}


X(50871) = X(30)X(3632)∩X(519)X(962)

Barycentrics    17*a^4 - 15*a^3*b - 7*a^2*b^2 + 15*a*b^3 - 10*b^4 - 15*a^3*c + 30*a^2*b*c - 15*a*b^2*c - 7*a^2*c^2 - 15*a*b*c^2 + 20*b^2*c^2 + 15*a*c^3 - 10*c^4 : :
X(50871) = 5 X[1] - 6 X[3545], 3 X[3545] - 5 X[34627], 10 X[2] - 9 X[30392], 2 X[2] - 3 X[37712], 5 X[2] - 6 X[38155], 3 X[30392] - 5 X[37712], 3 X[30392] - 4 X[38155], 5 X[37712] - 4 X[38155], 4 X[3] - 5 X[3679], 2 X[3] - 5 X[5881], 32 X[3] - 35 X[9588], 62 X[3] - 65 X[31425], 47 X[3] - 50 X[31447], 13 X[3] - 15 X[38066], 8 X[3679] - 7 X[9588], 31 X[3679] - 26 X[31425], 47 X[3679] - 40 X[31447], 13 X[3679] - 12 X[38066], 16 X[5881] - 7 X[9588], 31 X[5881] - 13 X[31425], 47 X[5881] - 20 X[31447], 13 X[5881] - 6 X[38066], 91 X[9588] - 96 X[38066], 10 X[10] - 9 X[15708], 5 X[40] - 4 X[15686], 3 X[165] - 4 X[4669], 5 X[355] - 4 X[547], 4 X[355] - 3 X[25055], 16 X[547] - 15 X[25055], 5 X[381] - 4 X[33179], 5 X[4677] - 2 X[11001], 5 X[962] - 7 X[3543], 4 X[962] - 7 X[5691], 10 X[962] - 7 X[11531], 4 X[3543] - 5 X[5691], 5 X[5691] - 2 X[11531], 10 X[551] - 11 X[5056], 4 X[551] - 5 X[37714], 22 X[5056] - 25 X[37714], 5 X[944] - 7 X[15702], 2 X[944] - 3 X[19875], 14 X[15702] - 15 X[19875], 9 X[1699] - 8 X[3656], 15 X[1699] - 16 X[3845], 5 X[1699] - 4 X[16200], 5 X[3656] - 6 X[3845], and others

X(50871) lies on these lines: {1, 3545}, {2, 28236}, {3, 3679}, {4, 34747}, {8, 34628}, {10, 15708}, {20, 34641}, {30, 3632}, {40, 15686}, {145, 34648}, {165, 4669}, {355, 547}, {376, 47745}, {381, 33179}, {515, 4677}, {519, 962}, {551, 5056}, {944, 15702}, {952, 1699}, {1385, 15723}, {1698, 3655}, {3241, 3832}, {3244, 3839}, {3533, 19876}, {3576, 11812}, {3624, 18526}, {3625, 34632}, {3626, 10304}, {3633, 11278}, {3653, 16239}, {3654, 15690}, {3828, 30389}, {3850, 37727}, {3853, 7982}, {4301, 20049}, {4701, 34638}, {4745, 5731}, {4816, 34718}, {5059, 7991}, {5067, 5882}, {5071, 13607}, {5290, 37706}, {5790, 31662}, {7989, 38314}, {9897, 10074}, {11274, 15017}, {12645, 28208}, {15640, 28228}, {15682, 28234}, {15692, 38098}, {15693, 38176}, {18480, 34748}, {19708, 38127}, {19711, 26446}, {20050, 50687}, {22793, 35401}, {28194, 33703}, {28198, 35400}, {28202, 49133}, {31673, 34631}, {34690, 34746}, {34697, 34719}, {34700, 34716}, {34701, 34717}, {34773, 41983}, {35242, 41982}

X(50871) = reflection of X(i) in X(j) for these {i,j}: {1, 34627}, {20, 34641}, {145, 34648}, {376, 47745}, {3633, 31162}, {3655, 37705}, {3679, 5881}, {7991, 31145}, {11531, 3543}, {20049, 4301}, {31162, 18525}, {34628, 8}, {34631, 31673}, {34632, 3625}, {34638, 4701}, {34690, 34746}, {34701, 34717}, {34716, 34700}, {34719, 34697}, {34747, 4}, {34748, 18480}
X(50871) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11278, 38335, 31162}, {30392, 37712, 38155}


X(50872) = X(30)X(145)∩X(519)X(962)

Barycentrics    a^4 - 12*a^3*b - 2*a^2*b^2 + 12*a*b^3 + b^4 - 12*a^3*c + 24*a^2*b*c - 12*a*b^2*c - 2*a^2*c^2 - 12*a*b*c^2 - 2*b^2*c^2 + 12*a*c^3 + c^4 : :
X(50872) = 4 X[1] - 3 X[10304], 3 X[10304] - 2 X[34632], 5 X[2] - 4 X[3654], 3 X[2] - 4 X[3656], 5 X[2] - 6 X[5603], 7 X[2] - 6 X[5657], 11 X[2] - 12 X[5886], 23 X[2] - 24 X[11230], 25 X[2] - 24 X[11231], 13 X[2] - 12 X[26446], 3 X[3654] - 5 X[3656], 2 X[3654] - 3 X[5603], 14 X[3654] - 15 X[5657], 11 X[3654] - 15 X[5886], 23 X[3654] - 30 X[11230], 5 X[3654] - 6 X[11231], 13 X[3654] - 15 X[26446], 10 X[3656] - 9 X[5603], 14 X[3656] - 9 X[5657], 11 X[3656] - 9 X[5886], 23 X[3656] - 18 X[11230], 25 X[3656] - 18 X[11231], 13 X[3656] - 9 X[26446], 7 X[5603] - 5 X[5657], 11 X[5603] - 10 X[5886], 23 X[5603] - 20 X[11230], 5 X[5603] - 4 X[11231], 13 X[5603] - 10 X[26446], 11 X[5657] - 14 X[5886], 23 X[5657] - 28 X[11230], 25 X[5657] - 28 X[11231], 13 X[5657] - 14 X[26446], 23 X[5886] - 22 X[11230], 25 X[5886] - 22 X[11231], 13 X[5886] - 11 X[26446], 25 X[11230] - 23 X[11231], 26 X[11230] - 23 X[26446], 26 X[11231] - 25 X[26446], 2 X[8] - 3 X[3839], 5 X[8] - 8 X[18483], 7 X[8] - 10 X[18492], 15 X[3839] - 16 X[18483], 21 X[3839] - 20 X[18492], 3 X[3839] - 4 X[31162], 28 X[18483] - 25 X[18492], and many others

X(50872) lies on these lines: {1, 10304}, {2, 392}, {4, 31145}, {8, 3839}, {20, 3241}, {30, 145}, {40, 15692}, {376, 1482}, {381, 12245}, {390, 25415}, {515, 15640}, {519, 962}, {549, 10595}, {551, 3523}, {553, 7962}, {944, 15683}, {952, 15682}, {1145, 46873}, {1320, 9965}, {1480, 37685}, {1483, 15681}, {1699, 4669}, {2071, 47593}, {2093, 4345}, {2099, 10385}, {2102, 15159}, {2103, 15158}, {3057, 11036}, {3090, 38066}, {3091, 3679}, {3146, 20049}, {3244, 34628}, {3303, 37105}, {3340, 15933}, {3522, 10222}, {3524, 3622}, {3525, 38022}, {3534, 7967}, {3545, 3617}, {3579, 15705}, {3582, 18220}, {3600, 30323}, {3616, 15708}, {3621, 12699}, {3623, 3655}, {3632, 34648}, {3635, 34638}, {3653, 15717}, {3828, 7486}, {3830, 5844}, {3832, 38074}, {3851, 38081}, {3899, 5686}, {4294, 11280}, {4428, 37106}, {4745, 30308}, {5054, 46934}, {5055, 46933}, {5056, 11362}, {5059, 28202}, {5071, 5690}, {5493, 16189}, {5559, 31410}, {5731, 11224}, {5790, 41106}, {5881, 50688}, {5901, 15702}, {5921, 28538}, {6172, 43166}, {7406, 40891}, {7970, 8591}, {7978, 9143}, {7983, 11177}, {7989, 38098}, {8158, 16370}, {8703, 10247}, {9589, 34747}, {9624, 38068}, {9778, 16200}, {9812, 28234}, {10246, 19708}, {10248, 47745}, {10283, 15693}, {10303, 13464}, {10306, 13587}, {10442, 50108}, {10704, 37749}, {11001, 28174}, {11160, 39898}, {11240, 37625}, {11521, 48858}, {12645, 15687}, {15178, 21734}, {15685, 28216}, {15699, 46931}, {15719, 38028}, {15721, 25055}, {17549, 22770}, {18480, 20052}, {18493, 46932}, {18525, 20054}, {19876, 46935}, {20050, 41869}, {20053, 31673}, {20057, 31730}, {23340, 37427}, {34200, 37624}, {34640, 34744}, {34647, 34711}, {37705, 38335}, {37907, 47471}

X(50872) = midpoint of X(i) and X(j) for these {i,j}: {3146, 20049}, {9589, 34747}
X(50872) = reflection of X(i) in X(j) for these {i,j}: {8, 31162}, {20, 3241}, {145, 34631}, {376, 1482}, {3241, 7982}, {3543, 962}, {3621, 34627}, {3632, 34648}, {3655, 11278}, {3679, 4301}, {5731, 11224}, {6172, 43166}, {6361, 3655}, {7991, 551}, {8591, 7970}, {9143, 7978}, {9778, 16200}, {11160, 39898}, {11177, 7983}, {12245, 381}, {12645, 15687}, {15158, 2103}, {15159, 2102}, {15681, 1483}, {15683, 944}, {20070, 376}, {31145, 4}, {34627, 12699}, {34628, 3244}, {34631, 8148}, {34632, 1}, {34638, 3635}, {34711, 34647}, {34718, 22791}, {34744, 34640}, {37749, 10704}
X(50872) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 34632, 10304}, {8, 31162, 3839}, {40, 38314, 15692}, {3545, 34718, 3617}, {3621, 50687, 34627}, {3654, 5603, 2}, {5734, 7991, 3523}, {6361, 11278, 3623}, {12699, 34627, 50687}, {22791, 34718, 3545}


X(50873) = X(30)X(3616)∩X(519)X(962)

Barycentrics    31*a^4 + 6*a^3*b - 8*a^2*b^2 - 6*a*b^3 - 23*b^4 + 6*a^3*c - 12*a^2*b*c + 6*a*b^2*c - 8*a^2*c^2 + 6*a*b*c^2 + 46*b^2*c^2 - 6*a*c^3 - 23*c^4 : :
X(50873) = 17 X[3616] - 20 X[18493], 2 X[376] - 7 X[10248], 4 X[382] + X[3241], X[962] + 4 X[3543], 7 X[962] + 8 X[5691], 23 X[962] - 8 X[11531], 7 X[3543] - 2 X[5691], 23 X[3543] + 2 X[11531], 23 X[5691] + 7 X[11531], 4 X[551] + X[49135], X[944] + 4 X[35404], 2 X[1698] - 3 X[3839], 7 X[3146] + 8 X[13464], 4 X[3534] - 9 X[9779], X[3617] + 2 X[41869], X[3617] - 3 X[50687], X[34632] + 4 X[41869], X[34632] - 6 X[50687], 2 X[41869] + 3 X[50687], 6 X[3653] - X[49138], 14 X[3656] - 9 X[7967], 4 X[3656] - 9 X[9812], 2 X[3656] + 3 X[15682], 2 X[7967] - 7 X[9812], 3 X[7967] + 7 X[15682], 3 X[9812] + 2 X[15682], 2 X[3679] - 7 X[50688], 8 X[3845] - 3 X[9778], 8 X[3853] - 3 X[38074], 17 X[3854] - 12 X[38068], X[5059] - 6 X[38021], 3 X[5657] - 8 X[12101], 3 X[5731] + 2 X[15640], X[5734] + 2 X[50691], 4 X[5901] + X[35400], X[6361] - 6 X[38335], 7 X[9780] - 12 X[14269], 8 X[9955] - 3 X[46333], 3 X[10304] - 4 X[19862], 8 X[12102] - 3 X[38066], 16 X[12571] - 11 X[15721], X[20052] - 4 X[31673], 8 X[22793] - 3 X[38314], 4 X[33697] + X[34631], 6 X[38022] - X[49137]

X(50873) lies on these lines: {2, 28150}, {4, 28202}, {30, 3616}, {376, 10248}, {382, 3241}, {519, 962}, {551, 49135}, {944, 35404}, {1698, 3839}, {3146, 13464}, {3534, 9779}, {3617, 34632}, {3623, 31162}, {3653, 49138}, {3656, 7967}, {3679, 50688}, {3830, 28174}, {3845, 9778}, {3853, 38074}, {3854, 38068}, {4668, 34648}, {5059, 38021}, {5657, 12101}, {5731, 15640}, {5734, 50691}, {5818, 35403}, {5901, 35400}, {6361, 38335}, {9780, 14269}, {9955, 46333}, {10304, 19862}, {12102, 38066}, {12571, 15721}, {12953, 15933}, {15697, 28158}, {17578, 28194}, {19708, 28154}, {19709, 28182}, {20052, 31673}, {22793, 38314}, {28146, 41099}, {28224, 33699}, {31253, 34638}, {33697, 34631}, {38022, 49137}

X(50873) = reflection of X(i) in X(j) for these {i,j}: {3623, 31162}, {4668, 34648}, {5818, 35403}, {15697, 30308}, {34632, 3617}, {34638, 31253}
X(50873) = {X(41869),X(50687)}-harmonic conjugate of X(34632)


X(50874) = X(30)X(3624)∩X(519)X(962)

Barycentrics    47*a^4 + 3*a^3*b - 13*a^2*b^2 - 3*a*b^3 - 34*b^4 + 3*a^3*c - 6*a^2*b*c + 3*a*b^2*c - 13*a^2*c^2 + 3*a*b*c^2 + 68*b^2*c^2 - 3*a*c^3 - 34*c^4 : :
X(50874) = 13 X[4] - 6 X[38068], 13 X[19876] - 12 X[38068], 16 X[382] + 5 X[11522], 17 X[382] + 4 X[15178], 85 X[11522] - 64 X[15178], X[962] + 13 X[3543], 8 X[962] + 13 X[5691], 34 X[962] - 13 X[11531], 8 X[3543] - X[5691], 34 X[3543] + X[11531], 17 X[5691] + 4 X[11531], 2 X[551] + 5 X[50691], 5 X[1698] - 12 X[38335], 3 X[1699] + 4 X[15682], 8 X[3627] - X[3679], X[3656] + 6 X[33699], 10 X[3830] - 3 X[5587], 2 X[5901] + 5 X[35404], X[9588] - 4 X[50688], X[9780] - 3 X[50687], 4 X[9956] - 11 X[35401], 2 X[15640] + 5 X[30308], 4 X[15684] + 3 X[25055], 25 X[17578] - 4 X[43174], 17 X[19872] - 24 X[23046], 13 X[34595] - 6 X[46333], 2 X[34718] + 5 X[41869]

X(50874) lies on these lines: {4, 19876}, {30, 3624}, {382, 11522}, {519, 962}, {551, 50691}, {1698, 38335}, {1699, 15682}, {3622, 34628}, {3627, 3679}, {3656, 28186}, {3830, 5587}, {4678, 34648}, {5901, 35404}, {9588, 50688}, {9780, 50687}, {9956, 35401}, {15640, 30308}, {15684, 25055}, {17578, 43174}, {19872, 23046}, {34595, 46333}, {34718, 41869}

X(50874) = reflection of X(i) in X(j) for these {i,j}: {4678, 34648}, {19876, 4}, {34628, 3622}


X(50875) = (name pending)

Barycentrics    (a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - 3*a^4*c^2 - a^2*b^2*c^2 + b^4*c^2 + 3*a^2*c^4 + b^2*c^4 - c^6)*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 - 4*a^6*c^2 + a^4*b^2*c^2 + a^2*b^4*c^2 + 2*b^6*c^2 + 6*a^4*c^4 + a^2*b^2*c^4 - 6*b^4*c^4 - 4*a^2*c^6 + 2*b^2*c^6 + c^8)*(3*a^20 - 12*a^18*b^2 + 5*a^16*b^4 + 50*a^14*b^6 - 112*a^12*b^8 + 98*a^10*b^10 - 28*a^8*b^12 - 10*a^6*b^14 + 5*a^4*b^16 + 2*a^2*b^18 - b^20 - 12*a^18*c^2 + 65*a^16*b^2*c^2 - 110*a^14*b^4*c^2 + 49*a^12*b^6*c^2 + 50*a^10*b^8*c^2 - 83*a^8*b^10*c^2 + 70*a^6*b^12*c^2 - 25*a^4*b^14*c^2 - 14*a^2*b^16*c^2 + 10*b^18*c^2 + 5*a^16*c^4 - 110*a^14*b^2*c^4 + 231*a^12*b^4*c^4 - 172*a^10*b^6*c^4 + 70*a^8*b^8*c^4 - 78*a^6*b^10*c^4 + 59*a^4*b^12*c^4 + 40*a^2*b^14*c^4 - 45*b^16*c^4 + 50*a^14*c^6 + 49*a^12*b^2*c^6 - 172*a^10*b^4*c^6 + 91*a^8*b^6*c^6 + 18*a^6*b^8*c^6 - 91*a^4*b^10*c^6 - 56*a^2*b^12*c^6 + 120*b^14*c^6 - 112*a^12*c^8 + 50*a^10*b^2*c^8 + 70*a^8*b^4*c^8 + 18*a^6*b^6*c^8 + 104*a^4*b^8*c^8 + 28*a^2*b^10*c^8 - 210*b^12*c^8 + 98*a^10*c^10 - 83*a^8*b^2*c^10 - 78*a^6*b^4*c^10 - 91*a^4*b^6*c^10 + 28*a^2*b^8*c^10 + 252*b^10*c^10 - 28*a^8*c^12 + 70*a^6*b^2*c^12 + 59*a^4*b^4*c^12 - 56*a^2*b^6*c^12 - 210*b^8*c^12 - 10*a^6*c^14 - 25*a^4*b^2*c^14 + 40*a^2*b^4*c^14 + 120*b^6*c^14 + 5*a^4*c^16 - 14*a^2*b^2*c^16 - 45*b^4*c^16 + 2*a^2*c^18 + 10*b^2*c^18 - c^20) : :

See Antreas Hatzipolakis and Peter Moses, euclid 5261.

X(50875) lies on this line: {10272, 14354}


X(50876) = X(74)X(3828)∩X(113)X(551)

Barycentrics    4*a^10 - 3*a^9*b + 3*a^8*b^2 + 6*a^7*b^3 - 28*a^6*b^4 + 26*a^4*b^6 - 6*a^3*b^7 + 3*a*b^9 - 5*b^10 - 3*a^9*c + 6*a^8*b*c - 6*a^6*b^3*c + 6*a^5*b^4*c - 6*a^4*b^5*c + 6*a^2*b^7*c - 3*a*b^8*c + 3*a^8*c^2 + 32*a^6*b^2*c^2 - 9*a^5*b^3*c^2 - 19*a^4*b^4*c^2 + 15*a^3*b^5*c^2 - 31*a^2*b^6*c^2 - 6*a*b^7*c^2 + 15*b^8*c^2 + 6*a^7*c^3 - 6*a^6*b*c^3 - 9*a^5*b^2*c^3 + 18*a^4*b^3*c^3 - 9*a^3*b^4*c^3 - 6*a^2*b^5*c^3 + 6*a*b^6*c^3 - 28*a^6*c^4 + 6*a^5*b*c^4 - 19*a^4*b^2*c^4 - 9*a^3*b^3*c^4 + 62*a^2*b^4*c^4 - 10*b^6*c^4 - 6*a^4*b*c^5 + 15*a^3*b^2*c^5 - 6*a^2*b^3*c^5 + 26*a^4*c^6 - 31*a^2*b^2*c^6 + 6*a*b^3*c^6 - 10*b^4*c^6 - 6*a^3*c^7 + 6*a^2*b*c^7 - 6*a*b^2*c^7 - 3*a*b*c^8 + 15*b^2*c^8 + 3*a*c^9 - 5*c^10 : :
X(50876) = 2 X[125] - 3 X[38076], X[7978] - 5 X[10706], X[7978] + 5 X[12368], 3 X[3545] - X[33535], X[3656] - 3 X[38789], X[4301] - 4 X[38791], 2 X[11709] - 3 X[19883], 2 X[12041] - 3 X[38068]

X(50876) lies on these lines: {10, 541}, {74, 3828}, {113, 551}, {125, 38076}, {146, 3679}, {381, 13605}, {515, 5655}, {519, 7978}, {542, 34648}, {553, 12373}, {2771, 3845}, {2781, 50781}, {2784, 9144}, {2948, 3543}, {3545, 33535}, {3656, 38789}, {4297, 5642}, {4301, 38791}, {5691, 9143}, {7728, 28194}, {9140, 19925}, {11709, 19883}, {12041, 38068}

X(50876) = midpoint of X(i) and X(j) for these {i,j}: {146, 3679}, {2948, 3543}, {5691, 9143}, {10706, 12368}
X(50876) = reflection of X(i) in X(j) for these {i,j}: {74, 3828}, {551, 113}, {4297, 5642}, {9140, 19925}, {13605, 381}


X(50877) = X(74)X(3679)∩X(113)X(3241)

Barycentrics    5*a^10 - 6*a^9*b - 3*a^8*b^2 + 12*a^7*b^3 - 17*a^6*b^4 + 19*a^4*b^6 - 12*a^3*b^7 + 6*a*b^9 - 4*b^10 - 6*a^9*c + 12*a^8*b*c - 12*a^6*b^3*c + 12*a^5*b^4*c - 12*a^4*b^5*c + 12*a^2*b^7*c - 6*a*b^8*c - 3*a^8*c^2 + 31*a^6*b^2*c^2 - 18*a^5*b^3*c^2 - 17*a^4*b^4*c^2 + 30*a^3*b^5*c^2 - 23*a^2*b^6*c^2 - 12*a*b^7*c^2 + 12*b^8*c^2 + 12*a^7*c^3 - 12*a^6*b*c^3 - 18*a^5*b^2*c^3 + 36*a^4*b^3*c^3 - 18*a^3*b^4*c^3 - 12*a^2*b^5*c^3 + 12*a*b^6*c^3 - 17*a^6*c^4 + 12*a^5*b*c^4 - 17*a^4*b^2*c^4 - 18*a^3*b^3*c^4 + 46*a^2*b^4*c^4 - 8*b^6*c^4 - 12*a^4*b*c^5 + 30*a^3*b^2*c^5 - 12*a^2*b^3*c^5 + 19*a^4*c^6 - 23*a^2*b^2*c^6 + 12*a*b^3*c^6 - 8*b^4*c^6 - 12*a^3*c^7 + 12*a^2*b*c^7 - 12*a*b^2*c^7 - 6*a*b*c^8 + 12*b^2*c^8 + 6*a*c^9 - 4*c^10 : :
X(50877) = 2 X[125] - 3 X[38074], X[7978] - 4 X[12368], 5 X[5071] - 4 X[11735], 5 X[5818] - 4 X[45311], 2 X[5881] + X[14094], 2 X[11709] - 3 X[19875], 2 X[12041] - 3 X[38066]

X(50877) lies on these lines: {8, 541}, {74, 3679}, {110, 28204}, {113, 3241}, {125, 38074}, {146, 31145}, {355, 9140}, {381, 7984}, {519, 7978}, {542, 34627}, {944, 5642}, {952, 5655}, {2771, 15679}, {2781, 50783}, {5071, 11735}, {5818, 45311}, {5881, 14094}, {9041, 14982}, {10721, 28194}, {10752, 28538}, {11709, 19875}, {12041, 38066}, {12778, 28208}

X(50877) = midpoint of X(146) and X(31145)
X(50877) = reflection of X(i) in X(j) for these {i,j}: {74, 3679}, {944, 5642}, {3241, 113}, {7978, 10706}, {7984, 381}, {9140, 355}, {10706, 12368}


X(50878) = X(74)X(551)∩X(113)X(3679)

Barycentrics    a^10 - 3*a^9*b - 6*a^8*b^2 + 6*a^7*b^3 + 11*a^6*b^4 - 7*a^4*b^6 - 6*a^3*b^7 + 3*a*b^9 + b^10 - 3*a^9*c + 6*a^8*b*c - 6*a^6*b^3*c + 6*a^5*b^4*c - 6*a^4*b^5*c + 6*a^2*b^7*c - 3*a*b^8*c - 6*a^8*c^2 - a^6*b^2*c^2 - 9*a^5*b^3*c^2 + 2*a^4*b^4*c^2 + 15*a^3*b^5*c^2 + 8*a^2*b^6*c^2 - 6*a*b^7*c^2 - 3*b^8*c^2 + 6*a^7*c^3 - 6*a^6*b*c^3 - 9*a^5*b^2*c^3 + 18*a^4*b^3*c^3 - 9*a^3*b^4*c^3 - 6*a^2*b^5*c^3 + 6*a*b^6*c^3 + 11*a^6*c^4 + 6*a^5*b*c^4 + 2*a^4*b^2*c^4 - 9*a^3*b^3*c^4 - 16*a^2*b^4*c^4 + 2*b^6*c^4 - 6*a^4*b*c^5 + 15*a^3*b^2*c^5 - 6*a^2*b^3*c^5 - 7*a^4*c^6 + 8*a^2*b^2*c^6 + 6*a*b^3*c^6 + 2*b^4*c^6 - 6*a^3*c^7 + 6*a^2*b*c^7 - 6*a*b^2*c^7 - 3*a*b*c^8 - 3*b^2*c^8 + 3*a*c^9 + c^10 : :
X(50878) = 2 X[125] - 3 X[38021], 2 X[7978] + X[12368], 3 X[3653] - 2 X[12041], 2 X[4301] + X[14094], 2 X[5493] - 5 X[15034], X[5881] - 4 X[38791], X[7982] + 2 X[15063], X[7991] - 4 X[16534], 5 X[8227] - 4 X[45311], 7 X[9588] - 10 X[38795], X[9589] + 2 X[30714], 7 X[9624] - 4 X[20417], X[9904] - 4 X[11723], X[9904] - 3 X[25055], 4 X[11723] - 3 X[25055], 5 X[11522] - 2 X[16003], 2 X[11709] - 3 X[38314], 8 X[12900] - 7 X[19876], 4 X[13464] - X[15054], 13 X[15029] - 10 X[31399]

X(50878) lies on these lines: {1, 541}, {40, 5642}, {74, 551}, {110, 28194}, {113, 3679}, {125, 38021}, {146, 3241}, {376, 11720}, {381, 13211}, {517, 5655}, {519, 7978}, {542, 31162}, {946, 9140}, {962, 9143}, {2781, 47358}, {3653, 12041}, {3656, 5663}, {4301, 14094}, {5493, 15034}, {5881, 38791}, {7728, 28204}, {7982, 15063}, {7991, 16534}, {8227, 45311}, {9588, 38795}, {9589, 30714}, {9624, 20417}, {9860, 11656}, {9904, 11723}, {11522, 16003}, {11699, 28198}, {11709, 38314}, {12121, 28202}, {12327, 16371}, {12898, 28208}, {12900, 19876}, {13464, 15054}, {14982, 28538}, {15029, 31399}, {16370, 22583}

X(50878) = midpoint of X(i) and X(j) for these {i,j}: {146, 3241}, {962, 9143}, {7978, 10706}
X(50878) = reflection of X(i) in X(j) for these {i,j}: {40, 5642}, {74, 551}, {376, 11720}, {3679, 113}, {9140, 946}, {9860, 11656}, {12368, 10706}, {13211, 381}


X(50879) = X(98)X(3828)∩X(114)X(551)

Barycentrics    4*a^8 - 3*a^7*b + 3*a^6*b^2 + 6*a^5*b^3 - 8*a^4*b^4 - 6*a^3*b^5 + 6*a^2*b^6 + 3*a*b^7 - 5*b^8 - 3*a^7*c + 6*a^6*b*c - 6*a^4*b^3*c + 6*a^2*b^5*c - 3*a*b^6*c + 3*a^6*c^2 - 8*a^4*b^2*c^2 + 3*a^3*b^3*c^2 + a^2*b^4*c^2 - 6*a*b^5*c^2 + 9*b^6*c^2 + 6*a^5*c^3 - 6*a^4*b*c^3 + 3*a^3*b^2*c^3 - 6*a^2*b^3*c^3 + 6*a*b^4*c^3 - 8*a^4*c^4 + a^2*b^2*c^4 + 6*a*b^3*c^4 - 8*b^4*c^4 - 6*a^3*c^5 + 6*a^2*b*c^5 - 6*a*b^2*c^5 + 6*a^2*c^6 - 3*a*b*c^6 + 9*b^2*c^6 + 3*a*c^7 - 5*c^8 : :
X(50879) = 2 X[115] - 3 X[38076], 5 X[6054] - X[7970], X[7970] + 5 X[9864], 2 X[7970] - 5 X[21636], 2 X[9864] + X[21636], 2 X[1125] - 3 X[23234], X[3656] - 3 X[38743], 3 X[3817] - 2 X[12258], X[4301] - 4 X[38745], 3 X[5587] - X[12243], 3 X[10175] - 2 X[49102], X[11177] - 3 X[19875], 2 X[11710] - 3 X[19883], 2 X[12042] - 3 X[38068]

X(50879) lies on these lines: {2, 2784}, {4, 2796}, {10, 542}, {98, 3828}, {114, 551}, {115, 38076}, {147, 3679}, {355, 48657}, {381, 11599}, {515, 8724}, {516, 9881}, {519, 6054}, {543, 34648}, {553, 12184}, {671, 19925}, {946, 22566}, {950, 12350}, {1125, 23234}, {2482, 4297}, {3543, 13174}, {3656, 38743}, {3817, 12258}, {4301, 38745}, {5587, 12243}, {5691, 8591}, {6033, 28194}, {6684, 14830}, {9884, 28236}, {10106, 12351}, {10175, 49102}, {11177, 19875}, {11710, 19883}, {12042, 38068}, {12117, 28164}

X(50879) = midpoint of X(i) and X(j) for these {i,j}: {147, 3679}, {355, 48657}, {3543, 13174}, {5691, 8591}, {6054, 9864}
X(50879) = reflection of X(i) in X(j) for these {i,j}: {98, 3828}, {551, 114}, {671, 19925}, {946, 22566}, {4297, 2482}, {11599, 381}, {14830, 6684}, {21636, 6054}


X(50880) = X(98)X(3679)∩X(114)X(3241)

Barycentrics    5*a^8 - 6*a^7*b - 3*a^6*b^2 + 12*a^5*b^3 - a^4*b^4 - 12*a^3*b^5 + 3*a^2*b^6 + 6*a*b^7 - 4*b^8 - 6*a^7*c + 12*a^6*b*c - 12*a^4*b^3*c + 12*a^2*b^5*c - 6*a*b^6*c - 3*a^6*c^2 - a^4*b^2*c^2 + 6*a^3*b^3*c^2 - a^2*b^4*c^2 - 12*a*b^5*c^2 + 9*b^6*c^2 + 12*a^5*c^3 - 12*a^4*b*c^3 + 6*a^3*b^2*c^3 - 12*a^2*b^3*c^3 + 12*a*b^4*c^3 - a^4*c^4 - a^2*b^2*c^4 + 12*a*b^3*c^4 - 10*b^4*c^4 - 12*a^3*c^5 + 12*a^2*b*c^5 - 12*a*b^2*c^5 + 3*a^2*c^6 - 6*a*b*c^6 + 9*b^2*c^6 + 6*a*c^7 - 4*c^8 : :
X(50880) = 2 X[1] - 3 X[23234], 2 X[115] - 3 X[38074], 5 X[6054] - 4 X[21636], X[7970] - 4 X[9864], 5 X[7970] - 8 X[21636], 5 X[9864] - 2 X[21636], 2 X[3655] - 3 X[41134], 5 X[5071] - 4 X[11725], 4 X[5461] - 5 X[5818], 3 X[5587] - 2 X[12258], 3 X[5790] - 2 X[49102], 2 X[5881] + X[23235], X[9875] - 3 X[37712], 2 X[11710] - 3 X[19875], 2 X[12042] - 3 X[38066]

X(50880) lies on these lines: {1, 23234}, {8, 542}, {80, 10070}, {98, 3679}, {99, 28204}, {114, 3241}, {115, 38074}, {147, 31145}, {355, 671}, {381, 7983}, {515, 9881}, {519, 6054}, {543, 34627}, {944, 2482}, {952, 8724}, {1482, 22566}, {2784, 4669}, {3655, 41134}, {5071, 11725}, {5461, 5818}, {5587, 12258}, {5690, 14830}, {5790, 49102}, {5881, 23235}, {9875, 37712}, {10054, 37710}, {10722, 28194}, {10753, 28538}, {10944, 12351}, {10950, 12350}, {11710, 19875}, {12042, 38066}, {12645, 48657}, {12751, 49150}, {19057, 49602}, {19058, 49601}, {34673, 34718}

X(50880) = midpoint of X(i) and X(j) for these {i,j}: {147, 31145}, {12645, 48657}
X(50880) = reflection of X(i) in X(j) for these {i,j}: {98, 3679}, {671, 355}, {944, 2482}, {1482, 22566}, {3241, 114}, {6054, 9864}, {7970, 6054}, {7983, 381}, {9884, 8724}, {12117, 9881}, {14830, 5690}


X(50881) = X(98)X(551)∩X(114)X(3679)

Barycentrics    a^8 - 3*a^7*b - 6*a^6*b^2 + 6*a^5*b^3 + 7*a^4*b^4 - 6*a^3*b^5 - 3*a^2*b^6 + 3*a*b^7 + b^8 - 3*a^7*c + 6*a^6*b*c - 6*a^4*b^3*c + 6*a^2*b^5*c - 3*a*b^6*c - 6*a^6*c^2 + 7*a^4*b^2*c^2 + 3*a^3*b^3*c^2 - 2*a^2*b^4*c^2 - 6*a*b^5*c^2 + 6*a^5*c^3 - 6*a^4*b*c^3 + 3*a^3*b^2*c^3 - 6*a^2*b^3*c^3 + 6*a*b^4*c^3 + 7*a^4*c^4 - 2*a^2*b^2*c^4 + 6*a*b^3*c^4 - 2*b^4*c^4 - 6*a^3*c^5 + 6*a^2*b*c^5 - 6*a*b^2*c^5 - 3*a^2*c^6 - 3*a*b*c^6 + 3*a*c^7 + c^8 : :
X(50881) = 2 X[10] - 3 X[23234], 2 X[115] - 3 X[38021], 2 X[7970] + X[9864], X[7970] + 2 X[21636], X[9864] - 4 X[21636], 3 X[1699] - X[9875], 3 X[1699] - 2 X[9880], 2 X[4301] + X[23235], 3 X[3653] - 2 X[12042], 4 X[5461] - 5 X[8227], 3 X[5603] - X[12243], 3 X[5603] - 2 X[12258], X[5881] - 4 X[38745], 3 X[5886] - 2 X[49102], 2 X[6055] - 3 X[25055], X[9860] - 4 X[11724], X[9860] - 3 X[25055], 4 X[11724] - 3 X[25055], 8 X[6721] - 7 X[19876], X[7982] + 2 X[14981], 7 X[9588] - 10 X[38751], X[9589] + 2 X[10992], 7 X[9624] - 4 X[11623], X[11177] - 3 X[38314], 2 X[11710] - 3 X[38314], 2 X[11632] - 3 X[38220], 4 X[13464] - X[38664], 8 X[22247] - 7 X[31423]

X(50881) lies on these lines: {1, 542}, {10, 23234}, {40, 2482}, {65, 12351}, {98, 551}, {99, 28194}, {114, 3679}, {115, 38021}, {147, 3241}, {355, 22566}, {376, 11711}, {381, 13178}, {515, 9884}, {516, 12117}, {517, 8724}, {519, 6054}, {543, 31162}, {671, 946}, {962, 8591}, {1012, 22565}, {1385, 14830}, {1482, 48657}, {1519, 49150}, {1699, 9875}, {1836, 18969}, {2782, 3656}, {2796, 4301}, {3057, 12350}, {3149, 12326}, {3653, 12042}, {3655, 34636}, {5182, 12197}, {5184, 37461}, {5461, 8227}, {5603, 12243}, {5881, 38745}, {5886, 49102}, {6033, 28204}, {6055, 9860}, {6721, 19876}, {7982, 14981}, {9588, 38751}, {9589, 10992}, {9624, 11623}, {10054, 12047}, {10070, 30384}, {11177, 11710}, {11632, 38220}, {11656, 11723}, {12178, 16371}, {12348, 12672}, {12354, 12701}, {12356, 12608}, {13464, 38664}, {16370, 22504}, {22247, 31423}, {28202, 38730}, {41813, 49549}

X(50881) = midpoint of X(i) and X(j) for these {i,j}: {147, 3241}, {962, 8591}, {1482, 48657}, {6054, 7970}
X(50881) = reflection of X(i) in X(j) for these {i,j}: {40, 2482}, {98, 551}, {355, 22566}, {376, 11711}, {671, 946}, {3679, 114}, {5184, 37461}, {6054, 21636}, {6055, 11724}, {9860, 6055}, {9864, 6054}, {9875, 9880}, {9881, 8724}, {11177, 11710}, {11656, 11723}, {12243, 12258}, {13178, 381}, {14830, 1385}
X(50881) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1699, 9875, 9880}, {5603, 12243, 12258}, {6055, 11724, 25055}, {7970, 21636, 9864}, {9860, 25055, 6055}, {11177, 38314, 11710}


X(50882) = X(147)X(551)∩X(519)X(6054)

Barycentrics    2*a^8 + 3*a^7*b + 15*a^6*b^2 - 6*a^5*b^3 - 22*a^4*b^4 + 6*a^3*b^5 + 12*a^2*b^6 - 3*a*b^7 - 7*b^8 + 3*a^7*c - 6*a^6*b*c + 6*a^4*b^3*c - 6*a^2*b^5*c + 3*a*b^6*c + 15*a^6*c^2 - 22*a^4*b^2*c^2 - 3*a^3*b^3*c^2 + 5*a^2*b^4*c^2 + 6*a*b^5*c^2 + 9*b^6*c^2 - 6*a^5*c^3 + 6*a^4*b*c^3 - 3*a^3*b^2*c^3 + 6*a^2*b^3*c^3 - 6*a*b^4*c^3 - 22*a^4*c^4 + 5*a^2*b^2*c^4 - 6*a*b^3*c^4 - 4*b^4*c^4 + 6*a^3*c^5 - 6*a^2*b*c^5 + 6*a*b^2*c^5 + 12*a^2*c^6 + 3*a*b*c^6 + 9*b^2*c^6 - 3*a*c^7 - 7*c^8 : :
X(50882) = 7 X[6054] + X[7970], 5 X[6054] - X[9864], 5 X[7970] + 7 X[9864], X[7970] - 7 X[21636], X[9864] + 5 X[21636], 2 X[3634] - 3 X[23234], 3 X[3817] - X[12243], 3 X[10171] - 2 X[49102], X[11177] - 3 X[19883]

X(50882) lies on these lines: {114, 3828}, {147, 551}, {516, 8724}, {519, 6054}, {542, 1125}, {671, 12571}, {946, 48657}, {2482, 12512}, {2796, 14981}, {3634, 23234}, {3817, 12243}, {4298, 12351}, {9881, 28228}, {10171, 49102}, {11177, 19883}, {12117, 28158}, {12350, 12575}, {19925, 22566}

X(50882) = midpoint of X(i) and X(j) for these {i,j}: {147, 551}, {946, 48657}, {6054, 21636}
X(50882) = reflection of X(i) in X(j) for these {i,j}: {671, 12571}, {3828, 114}, {12512, 2482}, {19925, 22566}


X(50883) = X(98)X(3241)∩X(519)X(6054)

Barycentrics    7*a^8 - 12*a^7*b - 15*a^6*b^2 + 24*a^5*b^3 + 13*a^4*b^4 - 24*a^3*b^5 - 3*a^2*b^6 + 12*a*b^7 - 2*b^8 - 12*a^7*c + 24*a^6*b*c - 24*a^4*b^3*c + 24*a^2*b^5*c - 12*a*b^6*c - 15*a^6*c^2 + 13*a^4*b^2*c^2 + 12*a^3*b^3*c^2 - 5*a^2*b^4*c^2 - 24*a*b^5*c^2 + 9*b^6*c^2 + 24*a^5*c^3 - 24*a^4*b*c^3 + 12*a^3*b^2*c^3 - 24*a^2*b^3*c^3 + 24*a*b^4*c^3 + 13*a^4*c^4 - 5*a^2*b^2*c^4 + 24*a*b^3*c^4 - 14*b^4*c^4 - 24*a^3*c^5 + 24*a^2*b*c^5 - 24*a*b^2*c^5 - 3*a^2*c^6 - 12*a*b*c^6 + 9*b^2*c^6 + 12*a*c^7 - 2*c^8 : :
X(50883) = 2 X[8] - 3 X[23234], 5 X[6054] - 4 X[9864], 7 X[6054] - 8 X[21636], 5 X[7970] - 2 X[9864], 7 X[7970] - 4 X[21636], 7 X[9864] - 10 X[21636], 4 X[3656] - 3 X[14639], 4 X[5461] - 5 X[10595], X[9875] - 3 X[11224], 3 X[10247] - 2 X[49102], 2 X[12258] - 3 X[16200], 2 X[34718] - 3 X[41134]

X(50883) lies on these lines: {8, 23234}, {98, 3241}, {114, 31145}, {145, 542}, {147, 20049}, {517, 9884}, {519, 6054}, {543, 34631}, {671, 1482}, {1483, 14830}, {2482, 12245}, {3656, 14639}, {5461, 10595}, {5844, 8724}, {9041, 10753}, {9875, 11224}, {9881, 28234}, {10054, 11009}, {10247, 49102}, {10722, 28204}, {12258, 16200}, {12645, 22566}, {19057, 35642}, {19058, 35641}, {34685, 34748}, {34718, 41134}

X(50883) = midpoint of X(147) and X(20049)
X(50883) = reflection of X(i) in X(j) for these {i,j}: {98, 3241}, {671, 1482}, {6054, 7970}, {12117, 9884}, {12245, 2482}, {12645, 22566}, {14830, 1483}, {31145, 114}


X(50884) = X(99)X(3828)∩X(519)X(671)

Barycentrics    4*a^5 + a^4*b - 4*a^3*b^2 - a^2*b^3 - 2*a*b^4 - 5*b^5 + a^4*c - a^2*b^2*c - 5*b^4*c - 4*a^3*c^2 - a^2*b*c^2 + 8*a*b^2*c^2 + 11*b^3*c^2 - a^2*c^3 + 11*b^2*c^3 - 2*a*c^4 - 5*b*c^4 - 5*c^5 : :
X(50884) = X[1] - 3 X[41135], 2 X[114] - 3 X[38076], 5 X[671] - X[7983], 2 X[7983] - 5 X[11599], X[7983] + 5 X[13178], X[11599] + 2 X[13178], 2 X[1125] - 3 X[9166], 4 X[3634] - 3 X[41134], X[3656] - 3 X[38732], X[4301] - 4 X[38734], 2 X[5026] - 3 X[38089], 4 X[5461] - 3 X[19883], 2 X[11711] - 3 X[19883], X[8591] - 3 X[19875], X[9884] - 3 X[38220], 6 X[14971] - 5 X[19862], 2 X[33813] - 3 X[38068]

X(50884) lies on these lines: {1, 41135}, {2, 9875}, {10, 543}, {99, 3828}, {114, 38076}, {115, 551}, {148, 1654}, {381, 21636}, {515, 11632}, {519, 671}, {535, 11608}, {542, 34648}, {553, 13182}, {1125, 9166}, {2784, 12243}, {3543, 9860}, {3634, 41134}, {3654, 12355}, {3656, 38732}, {4297, 6055}, {4301, 38734}, {4745, 9881}, {5026, 38089}, {5461, 11711}, {5691, 11177}, {5969, 50781}, {6054, 19925}, {6321, 28194}, {8591, 19875}, {8596, 13174}, {9884, 38220}, {11161, 34379}, {12258, 36523}, {12780, 22578}, {12781, 22577}, {14971, 19862}, {33813, 38068}

X(50884) = midpoint of X(i) and X(j) for these {i,j}: {2, 9875}, {148, 3679}, {671, 13178}, {3543, 9860}, {3654, 12355}, {5691, 11177}, {8596, 13174}, {12780, 22578}, {12781, 22577}
X(50884) = reflection of X(i) in X(j) for these {i,j}: {99, 3828}, {551, 115}, {4297, 6055}, {6054, 19925}, {9881, 4745}, {11599, 671}, {11711, 5461}, {12258, 36523}, {21636, 381}
X(50884) = {X(5461),X(11711)}-harmonic conjugate of X(19883)


X(50885) = X(99)X(3679)∩X(519)X(671)

Barycentrics    5*a^5 - a^4*b - 5*a^3*b^2 + a^2*b^3 + 2*a*b^4 - 4*b^5 - a^4*c + a^2*b^2*c - 4*b^4*c - 5*a^3*c^2 + a^2*b*c^2 + a*b^2*c^2 + 7*b^3*c^2 + a^2*c^3 + 7*b^2*c^3 + 2*a*c^4 - 4*b*c^4 - 4*c^5 : :
X(50885) = 2 X[1] - 3 X[9166], 4 X[10] - 3 X[41134], 2 X[114] - 3 X[38074], X[145] - 3 X[41135], 5 X[671] - 4 X[11599], 5 X[7983] - 8 X[11599], X[7983] - 4 X[13178], 2 X[11599] - 5 X[13178], 4 X[551] - 5 X[14061], 5 X[3616] - 6 X[14971], 2 X[3656] - 3 X[14639], 2 X[5026] - 3 X[38087], 5 X[5071] - 4 X[11724], 4 X[5461] - 3 X[38314], 2 X[5881] + X[38664], 6 X[9167] - 7 X[9780], 2 X[11711] - 3 X[19875], 2 X[33813] - 3 X[38066], X[45018] - 4 X[49529]

X(50885) lies on these lines: {1, 9166}, {2, 9884}, {8, 543}, {10, 41134}, {98, 28204}, {99, 3679}, {114, 38074}, {115, 3241}, {145, 41135}, {148, 31145}, {355, 6054}, {381, 7970}, {518, 11161}, {519, 671}, {542, 34627}, {551, 14061}, {944, 6055}, {952, 11632}, {2796, 34641}, {3416, 50639}, {3616, 14971}, {3654, 12117}, {3656, 14639}, {4669, 9881}, {4677, 9875}, {5026, 38087}, {5071, 11724}, {5459, 7974}, {5460, 7975}, {5461, 38314}, {5881, 38664}, {5969, 34673}, {8593, 47359}, {9041, 11646}, {9167, 9780}, {10723, 28194}, {10754, 28538}, {11711, 19875}, {33813, 38066}, {45018, 49529}

X(50885) = midpoint of X(i) and X(j) for these {i,j}: {148, 31145}, {4677, 9875}
X(50885) = reflection of X(i) in X(j) for these {i,j}: {99, 3679}, {671, 13178}, {944, 6055}, {3241, 115}, {6054, 355}, {7970, 381}, {7974, 5459}, {7975, 5460}, {7983, 671}, {8593, 47359}, {9881, 4669}, {9884, 2}, {12117, 3654}, {50639, 3416}


X(50886) = X(86)X(99)∩X(519)X(671)

Barycentrics    a^5 - 2*a^4*b - a^3*b^2 + 2*a^2*b^3 + 4*a*b^4 + b^5 - 2*a^4*c + 2*a^2*b^2*c + b^4*c - a^3*c^2 + 2*a^2*b*c^2 - 7*a*b^2*c^2 - 4*b^3*c^2 + 2*a^2*c^3 - 4*b^2*c^3 + 4*a*c^4 + b*c^4 + c^5 : :
X(50886) = 2 X[2] - 3 X[38220], X[9881] - 4 X[12258], X[9881] - 3 X[38220], 4 X[12258] - 3 X[38220], X[8] - 3 X[41135], 2 X[10] - 3 X[9166], 2 X[114] - 3 X[38021], X[7983] + 2 X[11599], 2 X[7983] + X[13178], 4 X[11599] - X[13178], 4 X[1125] - 3 X[41134], 5 X[1698] - 6 X[14971], 2 X[2482] - 3 X[25055], 4 X[11725] - X[13174], 4 X[11725] - 3 X[25055], X[13174] - 3 X[25055], 7 X[3624] - 6 X[9167], 3 X[3653] - 2 X[33813], 4 X[3828] - 5 X[14061], 2 X[4301] + X[38664], X[4677] - 4 X[36523], 2 X[5026] - 3 X[38023], 4 X[5461] - 3 X[19875], X[5881] - 4 X[38734], 8 X[6722] - 7 X[19876], X[7991] - 4 X[11623], X[8591] - 3 X[38314], 2 X[11711] - 3 X[38314], 2 X[8598] - 3 X[38221], 7 X[9588] - 10 X[38740], X[9589] + 2 X[10991], 5 X[11522] - 2 X[14981], 4 X[13464] - X[23235], 2 X[14928] - 5 X[16491], 3 X[16475] - 2 X[18800]

X(50886) lies on these lines: {1, 543}, {2, 9881}, {8, 41135}, {10, 9166}, {40, 6055}, {86, 99}, {98, 28194}, {114, 38021}, {115, 3679}, {148, 3241}, {376, 11710}, {381, 9864}, {517, 11632}, {519, 671}, {524, 24711}, {542, 31162}, {946, 6054}, {962, 11177}, {1125, 41134}, {1698, 14971}, {2482, 11725}, {2782, 3656}, {2784, 49543}, {3624, 9167}, {3653, 33813}, {3654, 49102}, {3828, 14061}, {4301, 38664}, {4677, 36523}, {4870, 12350}, {5026, 38023}, {5184, 22329}, {5459, 12780}, {5460, 12781}, {5461, 19875}, {5463, 11706}, {5464, 11705}, {5847, 11161}, {5881, 38734}, {5969, 34636}, {6321, 28204}, {6722, 19876}, {7974, 22578}, {7975, 22577}, {7991, 11623}, {8591, 11711}, {8598, 38221}, {9588, 38740}, {9589, 10991}, {9830, 47356}, {9900, 31696}, {9901, 31695}, {11522, 14981}, {11646, 28538}, {13173, 16371}, {13464, 23235}, {14830, 28198}, {14928, 16491}, {16370, 22514}, {16475, 18800}, {16823, 31129}, {28202, 38741}, {30790, 39580}, {49511, 50639}

X(50886) = midpoint of X(i) and X(j) for these {i,j}: {148, 3241}, {671, 7983}, {962, 11177}, {7974, 22578}, {7975, 22577}
X(50886) = reflection of X(i) in X(j) for these {i,j}: {2, 12258}, {40, 6055}, {99, 551}, {376, 11710}, {671, 11599}, {2482, 11725}, {3654, 49102}, {3679, 115}, {5184, 22329}, {5463, 11706}, {5464, 11705}, {6054, 946}, {8591, 11711}, {9864, 381}, {9881, 2}, {9900, 31696}, {9901, 31695}, {12780, 5459}, {12781, 5460}, {13174, 2482}, {13178, 671}, {50639, 49511}
X(50886) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 12258, 38220}, {2482, 11725, 25055}, {7983, 11599, 13178}, {8591, 38314, 11711}, {9881, 38220, 2}, {13174, 25055, 2482}


X(50887) = X(115)X(121)∩X(519)X(671)

Barycentrics    2*a^5 + 5*a^4*b - 2*a^3*b^2 - 5*a^2*b^3 - 10*a*b^4 - 7*b^5 + 5*a^4*c - 5*a^2*b^2*c - 7*b^4*c - 2*a^3*c^2 - 5*a^2*b*c^2 + 22*a*b^2*c^2 + 19*b^3*c^2 - 5*a^2*c^3 + 19*b^2*c^3 - 10*a*c^4 - 7*b*c^4 - 7*c^5 : :
X(50887) = X[10] - 3 X[41135], 7 X[671] + X[7983], 5 X[671] - X[13178], X[7983] - 7 X[11599], 5 X[7983] + 7 X[13178], 5 X[11599] + X[13178], 2 X[3634] - 3 X[9166], X[4745] - 4 X[36523], X[8591] - 3 X[19883], X[8596] + 3 X[25055], 6 X[14971] - 5 X[31253], 4 X[19878] - 3 X[41134]

X(50887) lies on these lines: {10, 41135}, {115, 121}, {148, 551}, {516, 11632}, {519, 671}, {543, 1125}, {2784, 9880}, {3634, 9166}, {4745, 36523}, {5969, 50787}, {6054, 12571}, {6055, 12512}, {8591, 19883}, {8596, 25055}, {14971, 31253}, {19878, 41134}

X(50887) = midpoint of X(i) and X(j) for these {i,j}: {148, 551}, {671, 11599}
X(50887) = reflection of X(i) in X(j) for these {i,j}: {3828, 115}, {6054, 12571}, {12512, 6055}


X(50888) = X(99)X(3241)∩X(519)X(671)

Barycentrics    7*a^5 - 5*a^4*b - 7*a^3*b^2 + 5*a^2*b^3 + 10*a*b^4 - 2*b^5 - 5*a^4*c + 5*a^2*b^2*c - 2*b^4*c - 7*a^3*c^2 + 5*a^2*b*c^2 - 13*a*b^2*c^2 - b^3*c^2 + 5*a^2*c^3 - b^2*c^3 + 10*a*c^4 - 2*b*c^4 - 2*c^5 : :
X(50888) = 4 X[1] - 3 X[41134], 2 X[8] - 3 X[9166], 7 X[671] - 8 X[11599], 5 X[671] - 4 X[13178], 7 X[7983] - 4 X[11599], 5 X[7983] - 2 X[13178], 10 X[11599] - 7 X[13178], 5 X[3617] - 6 X[14971], X[3621] - 3 X[41135], 7 X[3622] - 6 X[9167], 4 X[3679] - 5 X[14061], 2 X[4669] - 3 X[38220], X[45018] - 4 X[49681]

X(50888) lies on these lines: {1, 41134}, {8, 9166}, {99, 3241}, {115, 31145}, {145, 543}, {148, 20049}, {519, 671}, {542, 34631}, {1482, 6054}, {3242, 50639}, {3617, 14971}, {3621, 41135}, {3622, 9167}, {3679, 14061}, {4669, 38220}, {4677, 12258}, {5844, 11632}, {5846, 11161}, {5969, 34685}, {6055, 12245}, {9041, 10754}, {10723, 28204}, {45018, 49681}

X(50888) = midpoint of X(148) and X(20049)
X(50888) = reflection of X(i) in X(j) for these {i,j}: {99, 3241}, {671, 7983}, {4677, 12258}, {6054, 1482}, {12245, 6055}, {31145, 115}, {50639, 3242}


X(50889) = X(100)X(3828)∩X(80)X(519)

Barycentrics    4*a^4 - 3*a^3*b + a^2*b^2 + 3*a*b^3 - 5*b^4 - 3*a^3*c - 2*a^2*b*c - 2*a*b^2*c + a^2*c^2 - 2*a*b*c^2 + 10*b^2*c^2 + 3*a*c^3 - 5*c^4 : :
X(50889) = 5 X[2] - 3 X[15015], X[2] - 3 X[37718], X[15015] - 5 X[37718], X[10] - 4 X[12019], 2 X[6594] - 3 X[38101], 4 X[11] - X[33337], 5 X[11] - 3 X[38026], 5 X[551] - 6 X[38026], 5 X[33337] - 12 X[38026], 5 X[80] + X[1320], 7 X[80] - X[12531], 2 X[80] + X[21630], 11 X[80] + X[26726], X[1320] - 5 X[10707], 7 X[1320] + 5 X[12531], 2 X[1320] - 5 X[21630], 11 X[1320] - 5 X[26726], 7 X[10707] + X[12531], 11 X[10707] - X[26726], 2 X[12531] + 7 X[21630], 11 X[12531] + 7 X[26726], 11 X[21630] - 2 X[26726], 2 X[119] - 3 X[38076], 2 X[214] - 3 X[19883], 3 X[19883] - 4 X[45310], 2 X[1145] - 3 X[38098], 2 X[3035] - 3 X[38104], 3 X[3545] - X[6326], 3 X[3839] + X[9803], 2 X[6702] + X[12690], X[6224] - 3 X[25055], X[6224] - 4 X[33709], 3 X[25055] - 4 X[33709], X[10031] - 3 X[16173], 2 X[10427] - 3 X[38094], 2 X[10609] - 5 X[19862], 2 X[19925] + X[49176], 3 X[14269] - X[16128], X[20085] + 2 X[33812], X[20085] + 3 X[38314], 2 X[33812] - 3 X[38314], 2 X[33814] - 3 X[38068]

X(50889) lies on these lines: {2, 5426}, {10, 528}, {11, 551}, {30, 10265}, {80, 519}, {100, 3828}, {119, 38076}, {149, 3679}, {210, 2802}, {214, 19883}, {381, 21635}, {547, 22935}, {553, 13273}, {900, 4049}, {952, 3817}, {1145, 38098}, {1387, 11274}, {1484, 28204}, {1768, 3543}, {2771, 3845}, {2796, 10769}, {2801, 38152}, {2805, 50096}, {3035, 38104}, {3241, 9897}, {3545, 6326}, {3655, 12747}, {3839, 9803}, {4745, 40998}, {6174, 6702}, {6224, 25055}, {6246, 7682}, {6264, 34627}, {9024, 50781}, {9581, 10199}, {9669, 34700}, {10031, 16173}, {10427, 38094}, {10609, 19862}, {10711, 19925}, {10738, 28194}, {11219, 28164}, {11263, 17577}, {12247, 31162}, {12653, 31145}, {14269, 16128}, {15863, 34641}, {16858, 35204}, {17549, 46816}, {20085, 33812}, {33814, 38068}, {34638, 46684}

X(50889) = midpoint of X(i) and X(j) for these {i,j}: {80, 10707}, {149, 3679}, {1768, 3543}, {3241, 9897}, {3655, 12747}, {6174, 12690}, {6264, 34627}, {10711, 49176}, {12247, 31162}, {12653, 31145}
X(50889) = reflection of X(i) in X(j) for these {i,j}: {100, 3828}, {214, 45310}, {551, 11}, {6174, 6702}, {10711, 19925}, {11274, 1387}, {21630, 10707}, {21635, 381}, {22935, 547}, {33337, 551}, {34638, 46684}, {34641, 15863}, {34648, 6246}
X(50889) = {X(214),X(45310)}-harmonic conjugate of X(19883)


X(50890) = X(80)X(519)∩X(100)X(993)

Barycentrics    5*a^4 - 6*a^3*b - a^2*b^2 + 6*a*b^3 - 4*b^4 - 6*a^3*c + 11*a^2*b*c - 7*a*b^2*c - a^2*c^2 - 7*a*b*c^2 + 8*b^2*c^2 + 6*a*c^3 - 4*c^4 : :
X(50890) = 5 X[2] - 6 X[34122], 7 X[2] - 6 X[34123], 5 X[10031] - 12 X[34122], 7 X[10031] - 12 X[34123], 7 X[34122] - 5 X[34123], 5 X[8] - 2 X[13996], 4 X[80] - X[1320], 2 X[80] + X[12531], 5 X[80] - 2 X[21630], 7 X[80] - X[26726], X[1320] + 2 X[12531], 5 X[1320] - 8 X[21630], 7 X[1320] - 4 X[26726], 5 X[10707] - 4 X[21630], 7 X[10707] - 2 X[26726], 5 X[12531] + 4 X[21630], 7 X[12531] + 2 X[26726], 14 X[21630] - 5 X[26726], X[100] + 2 X[9897], X[100] - 4 X[15863], X[9897] + 2 X[15863], 2 X[119] - 3 X[38074], X[145] - 4 X[12019], 2 X[214] - 3 X[19875], 2 X[5881] + X[38669], 4 X[551] - 5 X[31272], 2 X[7972] - 5 X[31272], 4 X[1145] - X[9963], 2 X[1145] + X[20085], X[9963] + 2 X[20085], 2 X[1317] - 3 X[38314], 3 X[38314] - 4 X[45310], 2 X[1537] - 3 X[3839], 4 X[12247] - X[13243], X[13243] + 4 X[34627], 2 X[3035] - 3 X[38099], 4 X[3036] - X[6224], 5 X[3617] - 2 X[10609], 3 X[5055] - 2 X[19907], 5 X[5071] - 4 X[11729], 2 X[6594] - 3 X[38097], 4 X[6702] - 3 X[25055], 2 X[11274] - 3 X[25055], 2 X[12735] - 3 X[38026], 2 X[10427] - 3 X[38092], X[12532] + 2 X[17636], 3 X[19883] - 2 X[33812], 2 X[25485] - 3 X[38021], 5 X[30308] - 6 X[38161], 2 X[33814] - 3 X[38066], 2 X[47745] + X[49176]

X(50890) lies on these lines: {2, 952}, {8, 190}, {11, 3241}, {21, 38665}, {30, 19914}, {80, 519}, {100, 993}, {104, 13587}, {119, 38074}, {145, 12019}, {149, 3421}, {214, 19875}, {355, 10711}, {381, 10698}, {404, 5881}, {515, 36005}, {527, 20119}, {535, 41684}, {551, 7972}, {666, 35170}, {900, 36593}, {1145, 9963}, {1317, 38314}, {1484, 17533}, {1537, 3839}, {2096, 12247}, {2476, 37725}, {2771, 15679}, {2801, 37712}, {2802, 3681}, {3035, 38099}, {3036, 6174}, {3617, 10609}, {3655, 12619}, {3828, 33337}, {3871, 37711}, {4193, 37726}, {4669, 15678}, {5047, 38216}, {5055, 19907}, {5071, 11729}, {5252, 14151}, {5330, 12645}, {5660, 38155}, {5690, 37299}, {6175, 12751}, {6246, 31162}, {6594, 38097}, {6702, 11274}, {6797, 24473}, {6915, 12776}, {8164, 12735}, {8666, 43731}, {9024, 50783}, {10199, 37707}, {10427, 38092}, {10529, 43734}, {10573, 34605}, {10724, 28194}, {10755, 28538}, {10896, 34710}, {11112, 37705}, {11219, 28236}, {11698, 17530}, {12331, 16370}, {12515, 28208}, {12532, 17636}, {12730, 47357}, {12747, 34718}, {12773, 16371}, {15015, 38213}, {17566, 20418}, {19883, 33812}, {20049, 25416}, {25485, 38021}, {28534, 36920}, {30308, 38161}, {33814, 38066}, {34628, 46684}, {34648, 34789}, {47745, 49176}

X(50890) = midpoint of X(i) and X(j) for these {i,j}: {149, 31145}, {3679, 9897}, {10707, 12531}, {12247, 34627}, {12747, 34718}
X(50890) = reflection of X(i) in X(j) for these {i,j}: {100, 3679}, {1317, 45310}, {1320, 10707}, {3241, 11}, {3655, 12619}, {3679, 15863}, {5660, 38155}, {6174, 3036}, {6224, 6174}, {7972, 551}, {10031, 2}, {10698, 381}, {10707, 80}, {10711, 355}, {11274, 6702}, {12730, 47357}, {15015, 38213}, {20049, 25416}, {24473, 6797}, {31162, 6246}, {33337, 3828}, {34628, 46684}, {34789, 34648}
X(50890) = X(24297)-anticomplementary conjugate of X(21290)
X(50890) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {80, 12531, 1320}, {1145, 20085, 9963}, {1317, 45310, 38314}, {6702, 11274, 25055}, {9897, 15863, 100}


X(50891) = X(80)X(519)∩X(100)X(551)

Barycentrics    a^4 - 3*a^3*b - 2*a^2*b^2 + 3*a*b^3 + b^4 - 3*a^3*c + 13*a^2*b*c - 5*a*b^2*c - 2*a^2*c^2 - 5*a*b*c^2 - 2*b^2*c^2 + 3*a*c^3 + c^4 : :
X(50891) = 5 X[1] - 2 X[10609], 2 X[10427] - 3 X[38024], 2 X[2] - 3 X[16173], 5 X[2] - 6 X[32557], 7 X[2] - 9 X[32558], 5 X[16173] - 4 X[32557], 7 X[16173] - 6 X[32558], 14 X[32557] - 15 X[32558], 2 X[11] + X[12653], 5 X[11] - 3 X[38099], 5 X[3679] - 6 X[38099], 5 X[12653] + 6 X[38099], 2 X[12737] + X[14217], X[80] + 2 X[1320], 5 X[80] - 2 X[12531], X[80] - 4 X[21630], 2 X[80] + X[26726], 5 X[1320] + X[12531], X[1320] + 2 X[21630], 4 X[1320] - X[26726], 5 X[10707] - X[12531], 4 X[10707] + X[26726], X[12531] - 10 X[21630], 4 X[12531] + 5 X[26726], 8 X[21630] + X[26726], 2 X[30384] + X[41702], 2 X[119] - 3 X[38021], 2 X[149] + X[7972], 2 X[214] + X[9802], 2 X[214] - 3 X[38314], X[9802] + 3 X[38314], 2 X[1145] - 3 X[19875], 3 X[19875] - 4 X[45310], 4 X[1387] - X[5541], 4 X[1387] - 3 X[25055], X[5541] - 3 X[25055], 2 X[6174] - 3 X[25055], 2 X[1482] + X[49176], 2 X[1537] + X[7993], 5 X[1698] - 2 X[13996], 2 X[3035] - 3 X[38026], 3 X[3545] - 4 X[16174], X[3632] - 4 X[12019], 3 X[3653] - 2 X[33814], 4 X[3828] - 5 X[31272], 2 X[4301] + X[38669], X[4677] - 3 X[37718], X[13272] + 2 X[33895], 2 X[6264] + X[34789], 2 X[6594] - 3 X[38025], 8 X[6667] - 7 X[19876], X[7982] + 2 X[37726], X[7991] - 4 X[20418], X[9897] + 2 X[25416], 2 X[9951] + X[11570], X[9963] - 4 X[33812], 5 X[11522] - 2 X[37725], 4 X[13464] - X[38665], 5 X[30308] - 6 X[38038]

X(50891) lies on these lines: {1, 528}, {2, 2802}, {10, 30855}, {11, 3679}, {30, 12737}, {35, 13279}, {80, 519}, {88, 14028}, {100, 551}, {104, 28194}, {119, 38021}, {149, 1478}, {214, 9802}, {376, 11715}, {381, 12751}, {499, 34711}, {517, 11219}, {535, 38460}, {900, 1022}, {903, 4089}, {946, 10711}, {952, 1699}, {1000, 17057}, {1145, 19875}, {1387, 5541}, {1388, 34707}, {1482, 49176}, {1537, 7993}, {1647, 4792}, {1698, 13996}, {2932, 40726}, {3035, 38026}, {3120, 10700}, {3545, 16174}, {3582, 17652}, {3632, 12019}, {3653, 33814}, {3655, 12119}, {3746, 48713}, {3828, 31272}, {3885, 37735}, {4301, 38669}, {4342, 5251}, {4345, 45043}, {4677, 5854}, {4857, 13272}, {5434, 20586}, {5441, 34649}, {5559, 24387}, {5603, 5660}, {5697, 45700}, {5903, 11240}, {5919, 26725}, {6224, 11274}, {6246, 34627}, {6264, 31162}, {6265, 34699}, {6594, 38025}, {6667, 19876}, {7982, 37356}, {7991, 20418}, {9024, 47358}, {9897, 25416}, {9951, 11570}, {9963, 33812}, {10031, 15679}, {10057, 11235}, {10199, 14923}, {10222, 37230}, {10389, 15015}, {10738, 28204}, {10912, 17556}, {11009, 12750}, {11114, 22837}, {11522, 37725}, {11524, 21031}, {11571, 24473}, {11604, 24302}, {12247, 34631}, {12619, 34718}, {12641, 13143}, {12747, 34748}, {12758, 34625}, {13205, 16371}, {13464, 38665}, {13541, 24222}, {15863, 31145}, {16370, 22560}, {18421, 41556}, {22791, 34749}, {25415, 31146}, {28202, 38753}, {30308, 38038}, {34632, 46684}, {37298, 37563}, {45035, 49169}, {47033, 49600}

X(50891) = midpoint of X(i) and X(j) for these {i,j}: {149, 3241}, {1320, 10707}, {3679, 12653}, {6264, 31162}, {9897, 34747}, {12247, 34631}, {12747, 34748}, {31160, 41702}
X(50891) = reflection of X(i) in X(j) for these {i,j}: {80, 10707}, {100, 551}, {376, 11715}, {1145, 45310}, {3679, 11}, {5541, 6174}, {5660, 5603}, {6174, 1387}, {6224, 11274}, {7972, 3241}, {10707, 21630}, {10711, 946}, {11571, 24473}, {12119, 3655}, {12751, 381}, {31145, 15863}, {31160, 30384}, {34627, 6246}, {34632, 46684}, {34718, 12619}, {34747, 25416}, {34789, 31162}
X(50891) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {80, 1320, 26726}, {1145, 45310, 19875}, {1320, 21630, 80}, {1387, 6174, 25055}, {5541, 25055, 6174}


X(50892) = X(11)X(3828)∩X(80)X(519)

Barycentrics    2*a^4 + 3*a^3*b + 5*a^2*b^2 - 3*a*b^3 - 7*b^4 + 3*a^3*c - 28*a^2*b*c + 8*a*b^2*c + 5*a^2*c^2 + 8*a*b*c^2 + 14*b^2*c^2 - 3*a*c^3 - 7*c^4 : :
X(50892) = 5 X[11] - 3 X[38104], 5 X[3828] - 6 X[38104], 7 X[80] + 5 X[1320], X[80] - 5 X[10707], 17 X[80] - 5 X[12531], X[80] + 5 X[21630], 19 X[80] + 5 X[26726], X[1320] + 7 X[10707], 17 X[1320] + 7 X[12531], X[1320] - 7 X[21630], 19 X[1320] - 7 X[26726], 17 X[10707] - X[12531], 19 X[10707] + X[26726], X[12531] + 17 X[21630], 19 X[12531] + 17 X[26726], 19 X[21630] - X[26726], 3 X[3839] + X[7993], X[4669] - 3 X[37718], X[4701] - 4 X[12019], X[9802] + 3 X[19875]

X(50892) lies on these lines: {11, 3828}, {80, 519}, {149, 551}, {528, 1125}, {952, 3860}, {1484, 28194}, {2802, 3740}, {3839, 7993}, {4669, 37718}, {4701, 12019}, {6174, 33709}, {6264, 34648}, {9024, 50787}, {9802, 19875}, {10711, 12571}, {11274, 12690}, {12653, 34641}, {20107, 34639}

X(50892) = midpoint of X(i) and X(j) for these {i,j}: {149, 551}, {6264, 34648}, {10707, 21630}, {11274, 12690}, {12653, 34641}
X(50892) = reflection of X(i) in X(j) for these {i,j}: {3828, 11}, {6174, 33709}, {10711, 12571}


X(50893) = X(11)X(34747)∩X(80)X(519)

Barycentrics    11*a^4 - 15*a^3*b - 4*a^2*b^2 + 15*a*b^3 - 7*b^4 - 15*a^3*c + 35*a^2*b*c - 19*a*b^2*c - 4*a^2*c^2 - 19*a*b*c^2 + 14*b^2*c^2 + 15*a*c^3 - 7*c^4 : :
X(50893) =5 X[2] - 6 X[38213], 7 X[80] - 4 X[1320], 5 X[80] - 4 X[10707], X[80] - 4 X[12531], 11 X[80] - 8 X[21630], 5 X[80] - 2 X[26726], 5 X[1320] - 7 X[10707], X[1320] - 7 X[12531], 11 X[1320] - 14 X[21630], 10 X[1320] - 7 X[26726], X[10707] - 5 X[12531], 11 X[10707] - 10 X[21630], 11 X[12531] - 2 X[21630], 10 X[12531] - X[26726], 20 X[21630] - 11 X[26726], 2 X[1317] - 3 X[19875], 4 X[3035] - 5 X[3679], 8 X[3035] - 5 X[7972], 4 X[3036] - 3 X[25055], 5 X[3656] - 6 X[38141], 5 X[4816] - 2 X[10609], 2 X[12735] - 3 X[38099], X[20095] - 5 X[31145], 2 X[25485] - 3 X[38074], 5 X[30308] - 6 X[38156], 2 X[33812] - 3 X[38098]

X(50893) lies on these lines: {2, 38213}, {11, 34747}, {80, 519}, {100, 34641}, {165, 952}, {528, 3632}, {1317, 19875}, {2802, 4661}, {3035, 3679}, {3036, 25055}, {3241, 15863}, {3656, 38141}, {4669, 10031}, {4816, 10609}, {6246, 34631}, {9024, 50789}, {10711, 47745}, {12119, 34718}, {12619, 34748}, {12735, 38099}, {20095, 31145}, {25485, 38074}, {28204, 38753}, {30308, 38156}, {33812, 38098}, {34627, 34789}

X(50893) =reflection of X(i) in X(j) for these {i,j}: {100, 34641}, {3241, 15863}, {7972, 3679}, {10031, 4669}, {10711, 47745}, {12119, 34718}, {26726, 10707}, {34631, 6246}, {34747, 11}, {34748, 12619}, {34789, 34627}


X(50894) = X(80)X(519)∩X(100)X(999)

Barycentrics    7*a^4 - 12*a^3*b - 5*a^2*b^2 + 12*a*b^3 - 2*b^4 - 12*a^3*c + 37*a^2*b*c - 17*a*b^2*c - 5*a^2*c^2 - 17*a*b*c^2 + 4*b^2*c^2 + 12*a*c^3 - 2*c^4 : :
X(50894) = 2 X[80] - 5 X[1320], 4 X[80] - 5 X[10707], 8 X[80] - 5 X[12531], 7 X[80] - 10 X[21630], X[80] + 5 X[26726], 4 X[1320] - X[12531], 7 X[1320] - 4 X[21630], X[1320] + 2 X[26726], 7 X[10707] - 8 X[21630], X[10707] + 4 X[26726], 7 X[12531] - 16 X[21630], X[12531] + 8 X[26726], 2 X[21630] + 7 X[26726], 5 X[100] - 8 X[12735], X[100] - 4 X[25416], 5 X[3241] - 4 X[12735], 2 X[12735] - 5 X[25416], 2 X[1145] - 3 X[38314], 5 X[3623] - 2 X[13996], 4 X[3679] - 5 X[31272], 5 X[3679] - 6 X[38104], 25 X[31272] - 24 X[38104], 2 X[4669] - 3 X[16173], 4 X[12019] - X[20053]

X(50894) lies on these lines: {2, 5854}, {11, 31145}, {80, 519}, {100, 999}, {145, 528}, {149, 20049}, {900, 2403}, {952, 3830}, {1145, 38314}, {1482, 10711}, {2802, 3873}, {3623, 13996}, {3679, 31272}, {4669, 16173}, {4853, 38216}, {5541, 11274}, {7317, 10527}, {7320, 25875}, {9024, 50790}, {9041, 10755}, {10724, 28204}, {12019, 20053}, {12653, 34747}, {13587, 25438}, {37251, 38665}

X(50894) = midpoint of X(i) and X(j) for these {i,j}: {149, 20049}, {12653, 34747}
X(50894) = reflection of X(i) in X(j) for these {i,j}: {100, 3241}, {3241, 25416}, {5541, 11274}, {10707, 1320}, {10711, 1482}, {12531, 10707}, {31145, 11}


X(50895) = X(101)X(3828)∩X(519)X(10695)

Barycentrics    4*a^5 - 3*a^4*b - a^3*b^2 + 2*a^2*b^3 + 3*a*b^4 - 5*b^5 - 3*a^4*c + 2*a^3*b*c - a^2*b^2*c + 2*a*b^3*c - a^3*c^2 - a^2*b*c^2 - 10*a*b^2*c^2 + 5*b^3*c^2 + 2*a^2*c^3 + 2*a*b*c^3 + 5*b^2*c^3 + 3*a*c^4 - 5*c^5 : :
X(50895) = 2 X[118] - 3 X[38076], X[10695] - 5 X[10708], 2 X[11712] - 3 X[19883], 3 X[19875] - 2 X[28346], 2 X[28345] - 3 X[38101], 3 X[38068] - 2 X[38599]

X(50895) lies on these lines: {2, 2784}, {10, 544}, {101, 3828}, {116, 551}, {118, 38076}, {150, 3679}, {519, 10695}, {2801, 3753}, {2809, 4669}, {2810, 50781}, {3543, 39156}, {10171, 15735}, {10710, 19925}, {10739, 28194}, {11712, 19883}, {19875, 28346}, {28345, 38101}, {38068, 38599}

X(50895) = midpoint of X(i) and X(j) for these {i,j}: {150, 3679}, {3543, 39156}
X(50895) = reflection of X(i) in X(j) for these {i,j}: {101, 3828}, {551, 116}, {10710, 19925}, {15735, 10171}
X(50895) = psi-transform of X(9779)


X(50896) = X(1)X(116)∩X(519)X(10695)

Barycentrics    a^5 - a^4*b + a*b^4 - b^5 - a^4*c + a^3*b*c - 2*a*b^2*c^2 + b^3*c^2 + b^2*c^3 + a*c^4 - c^5 : :
X(50896) = 3 X[1] - 4 X[11726], 3 X[116] - 2 X[11726], 3 X[10] - 2 X[28346], 3 X[101] - 4 X[28346], 2 X[118] - 3 X[5587], X[10695] - 3 X[10708], X[1282] - 3 X[3679], 4 X[1125] - 5 X[31273], 5 X[1698] - 4 X[6710], 3 X[3576] - 4 X[6712], 5 X[3617] - X[20096], 2 X[4297] - 3 X[38692], 3 X[5790] - X[38572], 4 X[6684] - 3 X[38690], 5 X[8227] - 4 X[11728], 4 X[9956] - 3 X[38764], 6 X[11231] - 5 X[38774], 3 X[26446] - 2 X[38599], 2 X[28345] - 3 X[38057], 7 X[31423] - 6 X[38772]

X(50896) lies on these lines: {1, 116}, {2, 11712}, {4, 48357}, {8, 150}, {10, 98}, {80, 885}, {103, 515}, {118, 5587}, {239, 31126}, {242, 29043}, {291, 23596}, {355, 2808}, {516, 10725}, {517, 10739}, {519, 10695}, {523, 24713}, {544, 1282}, {692, 21045}, {740, 41327}, {910, 28901}, {928, 13532}, {938, 14760}, {944, 11714}, {946, 10697}, {952, 50441}, {1111, 18343}, {1125, 31273}, {1362, 5252}, {1698, 6710}, {1837, 3022}, {1899, 17860}, {2550, 2801}, {2772, 12368}, {2774, 13211}, {2786, 13178}, {2802, 10770}, {2810, 3416}, {2812, 38955}, {2813, 38479}, {2825, 12784}, {3576, 6712}, {3617, 20096}, {3661, 31073}, {3939, 21091}, {4297, 38692}, {4858, 21293}, {5011, 28845}, {5090, 5185}, {5176, 34932}, {5179, 28849}, {5688, 34112}, {5691, 39156}, {5790, 38572}, {5847, 10756}, {6246, 10772}, {6684, 38690}, {8227, 11728}, {9518, 13280}, {9956, 38764}, {10175, 15735}, {10573, 18413}, {10727, 31673}, {10741, 18480}, {11028, 18391}, {11231, 38774}, {14942, 34906}, {18421, 34929}, {18481, 38601}, {18525, 38574}, {24712, 31131}, {24980, 30858}, {26446, 38599}, {28160, 38765}, {28345, 38057}, {31423, 38772}, {34457, 50037}, {40910, 48381}, {46073, 50438}, {46077, 50439}

X(50896) = midpoint of X(i) and X(j) for these {i,j}: {8, 150}, {5691, 39156}, {18525, 38574}
X(50896) = reflection of X(i) in X(j) for these {i,j}: {1, 116}, {101, 10}, {944, 11714}, {10697, 946}, {10727, 31673}, {10741, 18480}, {10772, 6246}, {15735, 10175}, {18481, 38601}
X(50896) = anticomplement of X(11712)
X(50896) = barycentric product X(10)*X(24619)
X(50896) = barycentric quotient X(24619)/X(86)


X(50897) = X(101)X(3679)∩X(519)X(10695)

Barycentrics    5*a^5 - 6*a^4*b + a^3*b^2 - 2*a^2*b^3 + 6*a*b^4 - 4*b^5 - 6*a^4*c + 7*a^3*b*c + a^2*b^2*c - 2*a*b^3*c + a^3*c^2 + a^2*b*c^2 - 8*a*b^2*c^2 + 4*b^3*c^2 - 2*a^2*c^3 - 2*a*b*c^3 + 4*b^2*c^3 + 6*a*c^4 - 4*c^5 : :
X(50897) = 2 X[118] - 3 X[38074], 4 X[551] - 5 X[31273], 5 X[5071] - 4 X[11728], 2 X[5881] + X[38668], 2 X[11712] - 3 X[19875], 2 X[28345] - 3 X[38097], 2 X[28346] - 3 X[38098], 3 X[38066] - 2 X[38599]

X(50897) lies on these lines: {8, 544}, {101, 3679}, {103, 28204}, {116, 3241}, {118, 38074}, {150, 31145}, {355, 10710}, {381, 10697}, {519, 10695}, {551, 31273}, {2784, 4669}, {2809, 4677}, {2810, 50783}, {5071, 11728}, {5790, 15735}, {5881, 38668}, {10725, 28194}, {10756, 28538}, {11712, 19875}, {28345, 38097}, {28346, 38098}, {38066, 38599}

X(50897) = midpoint of X(150) and X(31145)
X(50897) = reflection of X(i) in X(j) for these {i,j}: {101, 3679}, {3241, 116}, {10695, 10708}, {10697, 381}, {10710, 355}, {15735, 5790}


X(50898) = X(101)X(551)∩X(519)X(10695)

Barycentrics    a^5 - 3*a^4*b + 2*a^3*b^2 - 4*a^2*b^3 + 3*a*b^4 + b^5 - 3*a^4*c + 5*a^3*b*c + 2*a^2*b^2*c - 4*a*b^3*c + 2*a^3*c^2 + 2*a^2*b*c^2 + 2*a*b^2*c^2 - b^3*c^2 - 4*a^2*c^3 - 4*a*b*c^3 - b^2*c^3 + 3*a*c^4 + c^5 : :
X(50898) = 2 X[118] - 3 X[38021], X[1282] - 4 X[11726], X[1282] - 3 X[25055], 4 X[11726] - 3 X[25055], 3 X[3653] - 2 X[38599], 4 X[3828] - 5 X[31273], 2 X[4301] + X[38668], X[9589] + 2 X[33521], 2 X[11712] - 3 X[38314], 4 X[13464] - X[38666], 3 X[19883] - 2 X[28346], 2 X[28345] - 3 X[38025]

X(50898) lies on these lines: {1, 544}, {2, 2809}, {101, 551}, {103, 28194}, {116, 3679}, {118, 38021}, {150, 3241}, {376, 11714}, {497, 34930}, {519, 10695}, {528, 1565}, {946, 10710}, {1282, 11726}, {1621, 34928}, {2801, 3892}, {2808, 3656}, {2810, 47358}, {3653, 38599}, {3828, 31273}, {4301, 38668}, {9589, 33521}, {10072, 18413}, {10739, 28204}, {11712, 38314}, {13464, 38666}, {13576, 34578}, {19883, 28346}, {28202, 38765}, {28345, 38025}, {30384, 34934}

X(50898) = midpoint of X(i) and X(j) for these {i,j}: {150, 3241}, {10695, 10708}
X(50898) = reflection of X(i) in X(j) for these {i,j}: {101, 551}, {376, 11714}, {3679, 116}, {10710, 946}


X(50899) = X(4)X(80)∩X(519)X(10696)

Barycentrics    a^10 - 2*a^9*b + a^8*b^2 + 4*a^7*b^3 - 8*a^6*b^4 + 8*a^4*b^6 - 4*a^3*b^7 - a^2*b^8 + 2*a*b^9 - b^10 - 2*a^9*c + 7*a^8*b*c - 9*a^7*b^2*c - 2*a^6*b^3*c + 19*a^5*b^4*c - 16*a^4*b^5*c - 3*a^3*b^6*c + 10*a^2*b^7*c - 5*a*b^8*c + b^9*c + a^8*c^2 - 9*a^7*b*c^2 + 24*a^6*b^2*c^2 - 19*a^5*b^3*c^2 - 12*a^4*b^4*c^2 + 29*a^3*b^5*c^2 - 16*a^2*b^6*c^2 - a*b^7*c^2 + 3*b^8*c^2 + 4*a^7*c^3 - 2*a^6*b*c^3 - 19*a^5*b^2*c^3 + 40*a^4*b^3*c^3 - 22*a^3*b^4*c^3 - 10*a^2*b^5*c^3 + 13*a*b^6*c^3 - 4*b^7*c^3 - 8*a^6*c^4 + 19*a^5*b*c^4 - 12*a^4*b^2*c^4 - 22*a^3*b^3*c^4 + 34*a^2*b^4*c^4 - 9*a*b^5*c^4 - 2*b^6*c^4 - 16*a^4*b*c^5 + 29*a^3*b^2*c^5 - 10*a^2*b^3*c^5 - 9*a*b^4*c^5 + 6*b^5*c^5 + 8*a^4*c^6 - 3*a^3*b*c^6 - 16*a^2*b^2*c^6 + 13*a*b^3*c^6 - 2*b^4*c^6 - 4*a^3*c^7 + 10*a^2*b*c^7 - a*b^2*c^7 - 4*b^3*c^7 - a^2*c^8 - 5*a*b*c^8 + 3*b^2*c^8 + 2*a*c^9 + b*c^9 - c^10 : :
X(50899) = 3 X[1] - 4 X[11727], 3 X[117] - 2 X[11727], 2 X[124] - 3 X[5587], X[10696] - 3 X[10709], 5 X[1698] - 4 X[6711], 3 X[3576] - 4 X[6718], 2 X[4297] - 3 X[38697], 3 X[5790] - X[38573], 4 X[6684] - 3 X[38691], 3 X[7967] - 4 X[47115], 5 X[8227] - 4 X[11734], 4 X[9956] - 3 X[38776], 6 X[11231] - 5 X[38786], 3 X[26446] - 2 X[38600], 7 X[31423] - 6 X[38784]

X(50899) lies on these lines: {1, 117}, {2, 11713}, {4, 80}, {8, 151}, {10, 102}, {20, 14690}, {109, 515}, {124, 5587}, {355, 2818}, {388, 12016}, {516, 10726}, {517, 10740}, {519, 10696}, {944, 11700}, {946, 10703}, {1361, 1837}, {1364, 5252}, {1698, 6711}, {1795, 45287}, {2773, 12368}, {2779, 13211}, {2785, 9864}, {2792, 13178}, {2802, 10771}, {2816, 11362}, {2853, 12784}, {3040, 5794}, {3576, 6718}, {3738, 12751}, {4297, 38697}, {5790, 38573}, {5847, 10757}, {6684, 38691}, {7967, 47115}, {8227, 11734}, {9532, 13280}, {9956, 38776}, {10732, 31673}, {10747, 18480}, {11231, 38786}, {18481, 38607}, {18525, 38579}, {26446, 38600}, {28160, 38777}, {31423, 38784}, {34459, 50037}

X(50899) = midpoint of X(i) and X(j) for these {i,j}: {8, 151}, {18525, 38579}
X(50899) = reflection of X(i) in X(j) for these {i,j}: {1, 117}, {20, 14690}, {102, 10}, {944, 11700}, {10703, 946}, {10732, 31673}, {10747, 18480}, {10777, 6246}, {13532, 355}, {18481, 38607}
X(50899) = anticomplement of X(11713)


X(50900) = X(102)X(3679)∩X(519)X(10696)

Barycentrics    5*a^10 - 11*a^9*b + 3*a^8*b^2 + 23*a^7*b^3 - 35*a^6*b^4 - 3*a^5*b^5 + 37*a^4*b^6 - 19*a^3*b^7 - 6*a^2*b^8 + 10*a*b^9 - 4*b^10 - 11*a^9*c + 39*a^8*b*c - 45*a^7*b^2*c - 19*a^6*b^3*c + 99*a^5*b^4*c - 75*a^4*b^5*c - 19*a^3*b^6*c + 51*a^2*b^7*c - 24*a*b^8*c + 4*b^9*c + 3*a^8*c^2 - 45*a^7*b*c^2 + 124*a^6*b^2*c^2 - 96*a^5*b^3*c^2 - 65*a^4*b^4*c^2 + 147*a^3*b^5*c^2 - 74*a^2*b^6*c^2 - 6*a*b^7*c^2 + 12*b^8*c^2 + 23*a^7*c^3 - 19*a^6*b*c^3 - 96*a^5*b^2*c^3 + 206*a^4*b^3*c^3 - 109*a^3*b^4*c^3 - 51*a^2*b^5*c^3 + 62*a*b^6*c^3 - 16*b^7*c^3 - 35*a^6*c^4 + 99*a^5*b*c^4 - 65*a^4*b^2*c^4 - 109*a^3*b^3*c^4 + 160*a^2*b^4*c^4 - 42*a*b^5*c^4 - 8*b^6*c^4 - 3*a^5*c^5 - 75*a^4*b*c^5 + 147*a^3*b^2*c^5 - 51*a^2*b^3*c^5 - 42*a*b^4*c^5 + 24*b^5*c^5 + 37*a^4*c^6 - 19*a^3*b*c^6 - 74*a^2*b^2*c^6 + 62*a*b^3*c^6 - 8*b^4*c^6 - 19*a^3*c^7 + 51*a^2*b*c^7 - 6*a*b^2*c^7 - 16*b^3*c^7 - 6*a^2*c^8 - 24*a*b*c^8 + 12*b^2*c^8 + 10*a*c^9 + 4*b*c^9 - 4*c^10 : :
X(50900) = 2 X[124] - 3 X[38074], 5 X[5071] - 4 X[11734], 2 X[5881] + X[38674], 2 X[11713] - 3 X[19875], 3 X[38066] - 2 X[38600]

X(50900) lies on these lines: {102, 3679}, {109, 28204}, {117, 3241}, {124, 38074}, {151, 31145}, {355, 10716}, {381, 10703}, {519, 10696}, {2817, 4677}, {5071, 11734}, {5881, 38674}, {10726, 28194}, {10757, 28538}, {11713, 19875}, {14690, 34628}, {38066, 38600}

X(50900) = midpoint of X(151) and X(31145)
X(50900) = reflection of X(i) in X(j) for these {i,j}: {102, 3679}, {3241, 117}, {10696, 10709}, {10703, 381}, {10716, 355}, {34628, 14690}


X(50901) = X(102)X(551)∩X(519)X(10696)

Barycentrics    a^10 - 4*a^9*b - 3*a^8*b^2 + 10*a^7*b^3 + 2*a^6*b^4 - 6*a^5*b^5 + 2*a^4*b^6 - 2*a^3*b^7 - 3*a^2*b^8 + 2*a*b^9 + b^10 - 4*a^9*c + 15*a^8*b*c - 9*a^7*b^2*c - 20*a^6*b^3*c + 27*a^5*b^4*c - 6*a^4*b^5*c - 11*a^3*b^6*c + 12*a^2*b^7*c - 3*a*b^8*c - b^9*c - 3*a^8*c^2 - 9*a^7*b*c^2 + 32*a^6*b^2*c^2 - 21*a^5*b^3*c^2 - 22*a^4*b^4*c^2 + 33*a^3*b^5*c^2 - 4*a^2*b^6*c^2 - 3*a*b^7*c^2 - 3*b^8*c^2 + 10*a^7*c^3 - 20*a^6*b*c^3 - 21*a^5*b^2*c^3 + 52*a^4*b^3*c^3 - 20*a^3*b^4*c^3 - 12*a^2*b^5*c^3 + 7*a*b^6*c^3 + 4*b^7*c^3 + 2*a^6*c^4 + 27*a^5*b*c^4 - 22*a^4*b^2*c^4 - 20*a^3*b^3*c^4 + 14*a^2*b^4*c^4 - 3*a*b^5*c^4 + 2*b^6*c^4 - 6*a^5*c^5 - 6*a^4*b*c^5 + 33*a^3*b^2*c^5 - 12*a^2*b^3*c^5 - 3*a*b^4*c^5 - 6*b^5*c^5 + 2*a^4*c^6 - 11*a^3*b*c^6 - 4*a^2*b^2*c^6 + 7*a*b^3*c^6 + 2*b^4*c^6 - 2*a^3*c^7 + 12*a^2*b*c^7 - 3*a*b^2*c^7 + 4*b^3*c^7 - 3*a^2*c^8 - 3*a*b*c^8 - 3*b^2*c^8 + 2*a*c^9 - b*c^9 + c^10 : :
X(50901) = 2 X[124] - 3 X[38021], 3 X[3653] - 2 X[38600], 2 X[4301] + X[38674], 2 X[11713] - 3 X[38314], 4 X[11727] - 3 X[25055], 4 X[13464] - X[38667]

X(50901) = X(509) lies on these lines: {2, 2817}, {102, 551}, {109, 28194}, {117, 3679}, {124, 38021}, {151, 3241}, {376, 11700}, {381, 13532}, {519, 10696}, {946, 10716}, {1845, 10072}, {2818, 3656}, {3653, 38600}, {4301, 38674}, {10740, 28204}, {11713, 38314}, {11727, 25055}, {13464, 38667}, {14690, 34632}, {28202, 38777}

X(50901) = midpoint of X(i) and X(j) for these {i,j}: {151, 3241}, {10696, 10709}
X(50901) = reflection of X(i) in X(j) for these {i,j}: {102, 551}, {376, 11700}, {3679, 117}, {10716, 946}, {13532, 381}, {34632, 14690}


X(50902) = X(103)X(3828)∩X(519)X(10697)

Barycentrics    4*a^8 - 7*a^7*b + 10*a^6*b^2 - 14*a^5*b^3 - a^4*b^4 + 13*a^3*b^5 - 8*a^2*b^6 + 8*a*b^7 - 5*b^8 - 7*a^7*c + 16*a^6*b*c - 9*a^5*b^2*c - 3*a^4*b^3*c + 3*a^3*b^4*c + 6*a^2*b^5*c - 11*a*b^6*c + 5*b^7*c + 10*a^6*c^2 - 9*a^5*b*c^2 + 28*a^4*b^2*c^2 - 16*a^3*b^3*c^2 - 8*a^2*b^4*c^2 - 15*a*b^5*c^2 + 10*b^6*c^2 - 14*a^5*c^3 - 3*a^4*b*c^3 - 16*a^3*b^2*c^3 + 20*a^2*b^3*c^3 + 18*a*b^4*c^3 - 5*b^5*c^3 - a^4*c^4 + 3*a^3*b*c^4 - 8*a^2*b^2*c^4 + 18*a*b^3*c^4 - 10*b^4*c^4 + 13*a^3*c^5 + 6*a^2*b*c^5 - 15*a*b^2*c^5 - 5*b^3*c^5 - 8*a^2*c^6 - 11*a*b*c^6 + 10*b^2*c^6 + 8*a*c^7 + 5*b*c^7 - 5*c^8 : :
X(50902) = 2 X[116] - 3 X[38076], X[10697] - 5 X[10710], X[3656] - 3 X[38767], X[4301] - 4 X[38769], 2 X[11714] - 3 X[19883], 3 X[38068] - 2 X[38601]

X(50902) lies on these lines: {103, 3828}, {116, 38076}, {118, 551}, {152, 3679}, {376, 28346}, {519, 10697}, {544, 34648}, {1282, 3543}, {2784, 12243}, {2801, 38152}, {3656, 38767}, {4301, 38769}, {10708, 19925}, {10741, 28194}, {11714, 19883}, {38068, 38601}

X(50902) = midpoint of X(i) and X(j) for these {i,j}: {152, 3679}, {1282, 3543}
X(50902) = reflection of X(i) in X(j) for these {i,j}: {103, 3828}, {376, 28346}, {551, 118}, {10708, 19925}


X(50903) = X(1)X(118)∩X(519)X(10697)

Barycentrics    a^8 - 2*a^7*b + 2*a^6*b^2 - 2*a^5*b^3 + 2*a^3*b^5 - 2*a^2*b^6 + 2*a*b^7 - b^8 - 2*a^7*c + 5*a^6*b*c - 3*a^5*b^2*c - a^4*b^3*c + 3*a^2*b^5*c - 3*a*b^6*c + b^7*c + 2*a^6*c^2 - 3*a^5*b*c^2 + 6*a^4*b^2*c^2 - 2*a^3*b^3*c^2 - 2*a^2*b^4*c^2 - 3*a*b^5*c^2 + 2*b^6*c^2 - 2*a^5*c^3 - a^4*b*c^3 - 2*a^3*b^2*c^3 + 2*a^2*b^3*c^3 + 4*a*b^4*c^3 - b^5*c^3 - 2*a^2*b^2*c^4 + 4*a*b^3*c^4 - 2*b^4*c^4 + 2*a^3*c^5 + 3*a^2*b*c^5 - 3*a*b^2*c^5 - b^3*c^5 - 2*a^2*c^6 - 3*a*b*c^6 + 2*b^2*c^6 + 2*a*c^7 + b*c^7 - c^8 : :
X(50903) = 3 X[1] - 4 X[11728], 3 X[118] - 2 X[11728], 2 X[116] - 3 X[5587], 3 X[165] - 2 X[38773], X[10697] - 3 X[10710], 2 X[1385] - 3 X[38764], X[1482] - 3 X[38767], 5 X[1698] - 4 X[6712], 3 X[3576] - 4 X[6710], 3 X[3679] - X[39156], 2 X[4297] - 3 X[38690], 4 X[28346] - 3 X[38690], 3 X[5790] - X[38574], 4 X[6684] - 3 X[38692], X[7982] - 4 X[38769], 5 X[7987] - 6 X[38772], 5 X[8227] - 4 X[11726], 6 X[10175] - 5 X[31273], 4 X[13624] - 5 X[38774], 3 X[26446] - 2 X[38601], 7 X[30389] - 10 X[38775], 4 X[31663] - 3 X[38766], 5 X[35242] - 4 X[38771]

X(50903) lies on these lines: {1, 118}, {2, 11714}, {4, 2809}, {7, 80}, {8, 152}, {10, 103}, {101, 515}, {116, 5587}, {165, 38773}, {355, 2808}, {388, 11028}, {516, 3732}, {517, 10741}, {519, 10697}, {944, 11712}, {946, 10695}, {1056, 14760}, {1282, 5691}, {1362, 1837}, {1385, 38764}, {1482, 38767}, {1698, 6712}, {2772, 13211}, {2774, 12368}, {2784, 13178}, {2786, 9864}, {2802, 10772}, {2807, 3419}, {2820, 3762}, {2823, 3421}, {2825, 13280}, {3022, 5252}, {3033, 50037}, {3041, 5794}, {3576, 6710}, {3579, 38765}, {3679, 39156}, {3887, 12751}, {4297, 28346}, {5790, 38574}, {5847, 10758}, {6246, 10770}, {6684, 38692}, {7982, 38769}, {7987, 38772}, {8227, 11726}, {9518, 12784}, {10175, 31273}, {10590, 34930}, {10725, 31673}, {10739, 18480}, {12702, 38768}, {13624, 38774}, {15735, 28236}, {18328, 28850}, {18481, 38599}, {18525, 38572}, {26446, 38601}, {28345, 43161}, {30389, 38775}, {31663, 38766}, {35242, 38771}

X(50903) = midpoint of X(i) and X(j) for these {i,j}: {8, 152}, {1282, 5691}, {12702, 38768}, {18525, 38572}
X(50903) = reflection of X(i) in X(j) for these {i,j}: {1, 118}, {103, 10}, {944, 11712}, {4297, 28346}, {10695, 946}, {10725, 31673}, {10739, 18480}, {10770, 6246}, {18481, 38599}, {38765, 3579}, {43161, 28345}
X(50903) = anticomplement of X(11714)
X(50903) = {X(4297),X(28346)}-harmonic conjugate of X(38690)


X(50904) = X(103)X(3679)∩X(519)X(10697)

Barycentrics    5*a^8 - 11*a^7*b + 8*a^6*b^2 - 4*a^5*b^3 + a^4*b^4 + 5*a^3*b^5 - 10*a^2*b^6 + 10*a*b^7 - 4*b^8 - 11*a^7*c + 29*a^6*b*c - 18*a^5*b^2*c - 6*a^4*b^3*c - 3*a^3*b^4*c + 21*a^2*b^5*c - 16*a*b^6*c + 4*b^7*c + 8*a^6*c^2 - 18*a^5*b*c^2 + 26*a^4*b^2*c^2 - 2*a^3*b^3*c^2 - 10*a^2*b^4*c^2 - 12*a*b^5*c^2 + 8*b^6*c^2 - 4*a^5*c^3 - 6*a^4*b*c^3 - 2*a^3*b^2*c^3 - 2*a^2*b^3*c^3 + 18*a*b^4*c^3 - 4*b^5*c^3 + a^4*c^4 - 3*a^3*b*c^4 - 10*a^2*b^2*c^4 + 18*a*b^3*c^4 - 8*b^4*c^4 + 5*a^3*c^5 + 21*a^2*b*c^5 - 12*a*b^2*c^5 - 4*b^3*c^5 - 10*a^2*c^6 - 16*a*b*c^6 + 8*b^2*c^6 + 10*a*c^7 + 4*b*c^7 - 4*c^8 : :
X(50904) = 2 X[116] - 3 X[38074], 5 X[5071] - 4 X[11726], 2 X[5881] + X[38666], 2 X[11714] - 3 X[19875], 3 X[38066] - 2 X[38601]

X(50904) lies on these lines: {101, 28204}, {103, 3679}, {116, 38074}, {118, 3241}, {152, 31145}, {355, 10708}, {381, 10695}, {519, 10697}, {528, 18328}, {544, 34627}, {952, 15735}, {2801, 37712}, {4845, 37708}, {5071, 11726}, {5727, 44858}, {5881, 38666}, {9897, 34931}, {10727, 28194}, {10758, 28538}, {11714, 19875}, {38066, 38601}

X(50904) = midpoint of X(152) and X(31145)
X(50904) = reflection of X(i) in X(j) for these {i,j}: {103, 3679}, {3241, 118}, {10695, 381}, {10697, 10710}, {10708, 355}


X(50905) = X(103)X(551)∩X(519)X(10697)

Barycentrics    a^8 - 4*a^7*b - 2*a^6*b^2 + 10*a^5*b^3 + 2*a^4*b^4 - 8*a^3*b^5 - 2*a^2*b^6 + 2*a*b^7 + b^8 - 4*a^7*c + 13*a^6*b*c - 9*a^5*b^2*c - 3*a^4*b^3*c - 6*a^3*b^4*c + 15*a^2*b^5*c - 5*a*b^6*c - b^7*c - 2*a^6*c^2 - 9*a^5*b*c^2 - 2*a^4*b^2*c^2 + 14*a^3*b^3*c^2 - 2*a^2*b^4*c^2 + 3*a*b^5*c^2 - 2*b^6*c^2 + 10*a^5*c^3 - 3*a^4*b*c^3 + 14*a^3*b^2*c^3 - 22*a^2*b^3*c^3 + b^5*c^3 + 2*a^4*c^4 - 6*a^3*b*c^4 - 2*a^2*b^2*c^4 + 2*b^4*c^4 - 8*a^3*c^5 + 15*a^2*b*c^5 + 3*a*b^2*c^5 + b^3*c^5 - 2*a^2*c^6 - 5*a*b*c^6 - 2*b^2*c^6 + 2*a*c^7 - b*c^7 + c^8 : :
X(50905) = 2 X[116] - 3 X[38021], 3 X[3653] - 2 X[38601], 2 X[4301] + X[38666], X[5881] - 4 X[38769], 7 X[9588] - 10 X[38775], X[9589] + 2 X[33520], 2 X[11714] - 3 X[38314], 4 X[11728] - 3 X[25055], 4 X[11728] - X[39156], 3 X[25055] - X[39156], 4 X[13464] - X[38668]

X(50905) lies on these lines: {101, 28194}, {103, 551}, {116, 38021}, {118, 3679}, {152, 3241}, {376, 11712}, {516, 15735}, {519, 10697}, {544, 31162}, {946, 10708}, {2784, 49543}, {2808, 3656}, {3653, 38601}, {4301, 38666}, {4342, 44858}, {5881, 38769}, {9588, 38775}, {9589, 33520}, {10741, 28204}, {11714, 38314}, {11728, 25055}, {13464, 38668}, {15730, 30305}

X(50905) = midpoint of X(i) and X(j) for these {i,j}: {152, 3241}, {10697, 10710}
X(50905) = reflection of X(i) in X(j) for these {i,j}: {103, 551}, {376, 11712}, {3679, 118}, {10708, 946}


X(50906) = X(104)X(3828)∩X(519)X(1519)

Barycentrics    4*a^7 - 7*a^6*b + 9*a^4*b^3 - 12*a^3*b^4 + 3*a^2*b^5 + 8*a*b^6 - 5*b^7 - 7*a^6*c + 36*a^5*b*c - 32*a^4*b^2*c - 9*a^3*b^3*c + 34*a^2*b^4*c - 27*a*b^5*c + 5*b^6*c - 32*a^4*b*c^2 + 62*a^3*b^2*c^2 - 37*a^2*b^3*c^2 - 8*a*b^4*c^2 + 15*b^5*c^2 + 9*a^4*c^3 - 9*a^3*b*c^3 - 37*a^2*b^2*c^3 + 54*a*b^3*c^3 - 15*b^4*c^3 - 12*a^3*c^4 + 34*a^2*b*c^4 - 8*a*b^2*c^4 - 15*b^3*c^4 + 3*a^2*c^5 - 27*a*b*c^5 + 15*b^2*c^5 + 8*a*c^6 + 5*b*c^6 - 5*c^7 : :
X(50906) = 2 X[11] - 3 X[38076], 5 X[153] + X[12767], 5 X[3679] - X[12767], X[10698] - 5 X[10711], X[10698] + 5 X[12751], 2 X[10698] - 5 X[21635], 2 X[12751] + X[21635], 3 X[3545] - X[6264], X[3656] - 3 X[38755], 4 X[11698] - X[33337], X[4301] - 4 X[38757], 5 X[5071] - 4 X[33709], 3 X[5660] - X[10031], 2 X[11715] - 3 X[19883], 5 X[15017] - 3 X[38314], 2 X[20418] - 3 X[38104], 3 X[38068] - 2 X[38602]

X(50906) lies on these lines: {11, 38076}, {80, 14151}, {104, 3828}, {119, 551}, {153, 3679}, {355, 11263}, {381, 21630}, {519, 1519}, {528, 34648}, {553, 12763}, {952, 3817}, {2800, 4669}, {2801, 3753}, {3543, 5541}, {3545, 6264}, {3656, 38755}, {3814, 11698}, {4297, 6174}, {4301, 38757}, {5071, 33709}, {5660, 10031}, {6326, 34627}, {6831, 37725}, {9897, 10590}, {10707, 19925}, {10742, 28194}, {11715, 19883}, {12019, 21625}, {13253, 31145}, {15017, 38314}, {16128, 34718}, {20418, 38104}, {38068, 38602}

X(50906) = midpoint of X(i) and X(j) for these {i,j}: {153, 3679}, {3543, 5541}, {6326, 34627}, {10711, 12751}, {13253, 31145}, {16128, 34718}
X(50906) = reflection of X(i) in X(j) for these {i,j}: {104, 3828}, {551, 119}, {4297, 6174}, {10707, 19925}, {21630, 381}, {21635, 10711}


X(50907) = X(104)X(3679)∩X(519)X(1519)

Barycentrics    5*a^7 - 11*a^6*b + 18*a^4*b^3 - 15*a^3*b^4 - 3*a^2*b^5 + 10*a*b^6 - 4*b^7 - 11*a^6*c + 45*a^5*b*c - 40*a^4*b^2*c - 18*a^3*b^3*c + 47*a^2*b^4*c - 27*a*b^5*c + 4*b^6*c - 40*a^4*b*c^2 + 82*a^3*b^2*c^2 - 44*a^2*b^3*c^2 - 10*a*b^4*c^2 + 12*b^5*c^2 + 18*a^4*c^3 - 18*a^3*b*c^3 - 44*a^2*b^2*c^3 + 54*a*b^3*c^3 - 12*b^4*c^3 - 15*a^3*c^4 + 47*a^2*b*c^4 - 10*a*b^2*c^4 - 12*b^3*c^4 - 3*a^2*c^5 - 27*a*b*c^5 + 12*b^2*c^5 + 10*a*c^6 + 4*b*c^6 - 4*c^7 : :
X(50907) = 7 X[2] - 6 X[38032], 2 X[11] - 3 X[38074], X[10698] - 4 X[12751], 5 X[10698] - 8 X[21635], 5 X[10711] - 4 X[21635], 5 X[12751] - 2 X[21635], 4 X[1387] - 5 X[5071], 7 X[3090] - 6 X[38026], 5 X[5818] - 4 X[45310], 2 X[5881] + X[38665], 7 X[9780] - 6 X[38069], 2 X[11715] - 3 X[19875], 2 X[20418] - 3 X[38099], 6 X[38038] - 7 X[41106], 3 X[38066] - 2 X[38602]

X(50907) lies on these lines: {2, 952}, {8, 37430}, {11, 38074}, {100, 28204}, {104, 3679}, {119, 3241}, {153, 31145}, {355, 10707}, {376, 1145}, {381, 1320}, {519, 1519}, {528, 16112}, {944, 6174}, {1387, 5071}, {1537, 34631}, {2800, 4677}, {3090, 38026}, {3419, 12531}, {3813, 6941}, {4861, 12738}, {5818, 45310}, {5881, 6906}, {6940, 38669}, {6975, 37726}, {9780, 38069}, {10728, 28194}, {10759, 28538}, {11715, 19875}, {14217, 34648}, {19907, 34748}, {19914, 28458}, {20418, 38099}, {21669, 32537}, {25485, 34747}, {34629, 49169}, {38038, 41106}, {38066, 38602}, {47033, 47745}

X(50907) = midpoint of X(153) and X(31145)
X(50907) = reflection of X(i) in X(j) for these {i,j}: {104, 3679}, {376, 1145}, {944, 6174}, {1320, 381}, {3241, 119}, {10698, 10711}, {10707, 355}, {10711, 12751}, {14217, 34648}, {34631, 1537}, {34747, 25485}, {34748, 19907}


X(50908) = X(104)X(551)∩X(519)X(1519)

Barycentrics    a^7 - 4*a^6*b + 9*a^4*b^3 - 3*a^3*b^4 - 6*a^2*b^5 + 2*a*b^6 + b^7 - 4*a^6*c + 9*a^5*b*c - 8*a^4*b^2*c - 9*a^3*b^3*c + 13*a^2*b^4*c - b^6*c - 8*a^4*b*c^2 + 20*a^3*b^2*c^2 - 7*a^2*b^3*c^2 - 2*a*b^4*c^2 - 3*b^5*c^2 + 9*a^4*c^3 - 9*a^3*b*c^3 - 7*a^2*b^2*c^3 + 3*b^4*c^3 - 3*a^3*c^4 + 13*a^2*b*c^4 - 2*a*b^2*c^4 + 3*b^3*c^4 - 6*a^2*c^5 - 3*b^2*c^5 + 2*a*c^6 - b*c^6 + c^7 : :
X(50908) = 7 X[2] - 6 X[38133], 2 X[11] - 3 X[38021], 4 X[6265] - X[12119], 2 X[6265] + X[34789], X[12119] + 2 X[34789], X[80] - 4 X[12611], X[80] + 2 X[48667], 2 X[12611] + X[48667], 2 X[119] + X[13253], X[153] + 2 X[25485], 2 X[10698] + X[12751], X[10698] + 2 X[21635], X[12751] - 4 X[21635], 2 X[1537] + X[6326], 4 X[1537] - X[14217], 2 X[6326] + X[14217], 4 X[946] - X[49176], X[1768] - 4 X[11729], X[1768] - 3 X[25055], 4 X[11729] - 3 X[25055], 7 X[3090] - 6 X[38104], 3 X[3524] - 2 X[46684], 3 X[3545] - X[12247], X[7972] + 2 X[10742], 7 X[3624] - 6 X[38069], 3 X[3653] - 2 X[38602], X[16128] + 2 X[19907], 3 X[3839] - 2 X[6246], 2 X[4301] + X[38665], 3 X[5055] - 2 X[12619], 5 X[5071] - 4 X[6702], X[5881] - 4 X[38757], X[6264] + 2 X[13257], 4 X[6713] - X[12767], X[7982] + 2 X[37725], 5 X[8227] - 4 X[45310], 7 X[9588] - 10 X[38763], X[9589] + 2 X[10993], 7 X[9624] - 4 X[20418], 7 X[9624] - 6 X[38026], 2 X[20418] - 3 X[38026], X[9803] - 4 X[16174], X[9809] + 2 X[11715], X[9809] + 3 X[38314], 2 X[11715] - 3 X[38314], 2 X[10609] + X[41869], X[10728] + 2 X[33337], 5 X[11522] - 2 X[37726], 2 X[12019] - 3 X[38077], X[12738] + 2 X[22791], X[12747] - 3 X[14269], 4 X[13464] - X[38669], 5 X[15017] - 3 X[19875], 2 X[15863] - 3 X[38074], 5 X[30308] - 3 X[37718], 6 X[38161] - 7 X[41106]

X(50908) lies on these lines: {1, 12831}, {2, 2800}, {11, 11529}, {30, 6265}, {40, 6174}, {80, 381}, {100, 28194}, {104, 551}, {119, 3679}, {153, 3241}, {214, 376}, {354, 2771}, {515, 10031}, {517, 5660}, {519, 1519}, {528, 1537}, {549, 12515}, {944, 11274}, {946, 10707}, {952, 1699}, {1317, 3586}, {1768, 11729}, {2801, 3892}, {2802, 25568}, {3058, 12739}, {3090, 38104}, {3524, 46684}, {3543, 6224}, {3545, 12247}, {3582, 11571}, {3583, 5048}, {3624, 38069}, {3653, 38602}, {3654, 3899}, {3655, 12678}, {3839, 6246}, {4301, 38665}, {4512, 34123}, {4870, 17638}, {5055, 12619}, {5071, 6702}, {5434, 12740}, {5693, 45700}, {5881, 34640}, {5886, 11219}, {5901, 7701}, {6264, 13257}, {6713, 12767}, {6738, 47744}, {7982, 37725}, {8227, 45310}, {9588, 38763}, {9589, 10993}, {9624, 20418}, {9803, 16174}, {9809, 11715}, {10056, 12758}, {10072, 11570}, {10609, 41869}, {10728, 33337}, {11014, 34606}, {11114, 40257}, {11522, 37726}, {12019, 38077}, {12332, 16371}, {12665, 34625}, {12737, 34697}, {12738, 22791}, {12747, 14269}, {13464, 38669}, {15017, 19875}, {15863, 38074}, {16205, 34747}, {16370, 22775}, {19077, 35823}, {19078, 35822}, {22836, 34629}, {22935, 28198}, {28452, 45764}, {30144, 37430}, {30305, 41553}, {30308, 37718}, {34719, 37700}, {37704, 41556}, {37735, 40266}, {38161, 41106}

X(50908) = midpoint of X(i) and X(j) for these {i,j}: {153, 3241}, {381, 48667}, {3543, 6224}, {3655, 16128}, {3679, 13253}, {6326, 31162}, {10698, 10711}
X(50908) = reflection of X(i) in X(j) for these {i,j}: {40, 6174}, {80, 381}, {104, 551}, {376, 214}, {381, 12611}, {944, 11274}, {3241, 25485}, {3655, 19907}, {3679, 119}, {10707, 946}, {10711, 21635}, {11219, 5886}, {12515, 549}, {12751, 10711}, {14217, 31162}, {31162, 1537}, {49176, 10707}
X(50908) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1537, 6326, 14217}, {6265, 34789, 12119}, {10698, 21635, 12751}, {12611, 48667, 80}


X(50909) = X(153)X(551)∩X(519)X(1519)

Barycentrics    2*a^7 + a^6*b - 9*a^4*b^3 - 6*a^3*b^4 + 15*a^2*b^5 + 4*a*b^6 - 7*b^7 + a^6*c + 18*a^5*b*c - 16*a^4*b^2*c + 9*a^3*b^3*c + 8*a^2*b^4*c - 27*a*b^5*c + 7*b^6*c - 16*a^4*b*c^2 + 22*a^3*b^2*c^2 - 23*a^2*b^3*c^2 - 4*a*b^4*c^2 + 21*b^5*c^2 - 9*a^4*c^3 + 9*a^3*b*c^3 - 23*a^2*b^2*c^3 + 54*a*b^3*c^3 - 21*b^4*c^3 - 6*a^3*c^4 + 8*a^2*b*c^4 - 4*a*b^2*c^4 - 21*b^3*c^4 + 15*a^2*c^5 - 27*a*b*c^5 + 21*b^2*c^5 + 4*a*c^6 + 7*b*c^6 - 7*c^7 : :
X(50909) = X[10698] + 7 X[10711], 5 X[10698] + 7 X[12751], X[10698] - 7 X[21635], 5 X[10711] - X[12751], X[12751] + 5 X[21635], 3 X[3839] + X[5531], X[9809] + 3 X[19875], 5 X[15017] - 3 X[19883]

X(50909) lies on these lines: {119, 3828}, {153, 551}, {381, 42871}, {519, 1519}, {952, 3860}, {2800, 4745}, {3839, 5531}, {5660, 28164}, {6174, 12512}, {6326, 34648}, {9809, 19875}, {10707, 12571}, {11698, 28194}, {13253, 34641}, {15017, 19883}, {19925, 33592}

X(50909) = midpoint of X(i) and X(j) for these {i,j}: {153, 551}, {6326, 34648}, {10711, 21635}, {13253, 34641}
X(50909) = reflection of X(i) in X(j) for these {i,j}: {3828, 119}, {10707, 12571}, {12512, 6174}


X(50910) = X(104)X(3241)∩X(519)X(1519)

Barycentrics    7*a^7 - 19*a^6*b + 36*a^4*b^3 - 21*a^3*b^4 - 15*a^2*b^5 + 14*a*b^6 - 2*b^7 - 19*a^6*c + 63*a^5*b*c - 56*a^4*b^2*c - 36*a^3*b^3*c + 73*a^2*b^4*c - 27*a*b^5*c + 2*b^6*c - 56*a^4*b*c^2 + 122*a^3*b^2*c^2 - 58*a^2*b^3*c^2 - 14*a*b^4*c^2 + 6*b^5*c^2 + 36*a^4*c^3 - 36*a^3*b*c^3 - 58*a^2*b^2*c^3 + 54*a*b^3*c^3 - 6*b^4*c^3 - 21*a^3*c^4 + 73*a^2*b*c^4 - 14*a*b^2*c^4 - 6*b^3*c^4 - 15*a^2*c^5 - 27*a*b*c^5 + 6*b^2*c^5 + 14*a*c^6 + 2*b*c^6 - 2*c^7 : :
X(50910) = 7 X[2] - 6 X[38128], 5 X[10698] - 2 X[12751], 7 X[10698] - 4 X[21635], 5 X[10711] - 4 X[12751], 7 X[10711] - 8 X[21635], 7 X[12751] - 10 X[21635], 4 X[3036] - 5 X[5071], 7 X[3090] - 6 X[38099], 7 X[3622] - 6 X[38069], 7 X[9624] - 6 X[38104], 5 X[10595] - 4 X[45310], 2 X[15863] - 3 X[38021], 6 X[38156] - 7 X[41106]

X(50910) lies on these lines: {2, 38128}, {4, 34710}, {40, 11274}, {104, 3241}, {119, 31145}, {145, 34629}, {153, 20049}, {376, 1317}, {381, 12531}, {517, 10031}, {519, 1519}, {528, 34617}, {952, 3830}, {1482, 10707}, {1537, 34627}, {3036, 5071}, {3090, 38099}, {3149, 38665}, {3622, 38069}, {3679, 25485}, {6174, 12245}, {7972, 28194}, {9041, 10759}, {9624, 38104}, {10595, 45310}, {10728, 28204}, {13253, 34747}, {15863, 38021}, {19705, 34474}, {19907, 34718}, {38156, 41106}

X(50910) = midpoint of X(i) and X(j) for these {i,j}: {153, 20049}, {13253, 34747}
X(50910) = reflection of X(i) in X(j) for these {i,j}: {40, 11274}, {104, 3241}, {376, 1317}, {3679, 25485}, {10707, 1482}, {10711, 10698}, {12245, 6174}, {12531, 381}, {31145, 119}, {34627, 1537}, {34718, 19907}


X(50911) = X(1)X(120)∩X(519)X(10699)

Barycentrics    a^5 - 2*a^4*b + 3*a^3*b^2 - 3*a^2*b^3 + 2*a*b^4 - b^5 - 2*a^4*c + 3*a^3*b*c - 2*a^2*b^2*c + b^4*c + 3*a^3*c^2 - 2*a^2*b*c^2 - 3*a^2*c^3 + 2*a*c^4 + b*c^4 - c^5 : :
X(50911) = 3 X[1] - 4 X[11730], 3 X[120] - 2 X[11730], 3 X[3679] - X[5540], X[10699] - 3 X[10712], 5 X[1698] - 4 X[6714], 5 X[3617] - X[20097], 2 X[4297] - 3 X[38712], 2 X[5511] - 3 X[5587], 3 X[5790] - X[38575], 4 X[6684] - 3 X[38694], 3 X[26446] - 2 X[38603], 2 X[33970] - 3 X[34122]

X(50911) lies on these lines: {1, 120}, {2, 11716}, {8, 150}, {9, 80}, {10, 105}, {294, 20495}, {355, 28915}, {515, 1292}, {516, 10729}, {517, 10743}, {519, 10699}, {668, 32850}, {1111, 2550}, {1358, 5252}, {1438, 20482}, {1698, 6714}, {1837, 3021}, {2775, 12368}, {2788, 9864}, {2795, 13178}, {2802, 10773}, {2820, 3762}, {2826, 12751}, {2835, 3421}, {2836, 13211}, {2838, 13280}, {3617, 20097}, {4297, 38712}, {4528, 6084}, {4847, 24618}, {4863, 16833}, {5511, 5587}, {5790, 38575}, {5847, 10760}, {6684, 38694}, {9519, 21290}, {9523, 12784}, {15521, 18480}, {18481, 38619}, {18525, 38589}, {26446, 38603}, {31673, 44983}, {33970, 34122}

X(50911) = midpoint of X(i) and X(j) for these {i,j}: {8, 20344}, {18525, 38589}
X(50911) = reflection of X(i) in X(j) for these {i,j}: {1, 120}, {105, 10}, {15521, 18480}, {18481, 38619}, {44983, 31673}
X(50911) = anticomplement of X(11716)


X(50912) = X(105)X(3679)∩X(519)X(10699)

Barycentrics    5*a^5 - 11*a^4*b + 15*a^3*b^2 - 15*a^2*b^3 + 10*a*b^4 - 4*b^5 - 11*a^4*c + 15*a^3*b*c - 7*a^2*b^2*c - 3*a*b^3*c + 4*b^4*c + 15*a^3*c^2 - 7*a^2*b*c^2 + 2*a*b^2*c^2 - 15*a^2*c^3 - 3*a*b*c^3 + 10*a*c^4 + 4*b*c^4 - 4*c^5 : :
X(50912) = 2 X[5511] - 3 X[38074], 2 X[5881] + X[38684], 2 X[11716] - 3 X[19875], 2 X[33970] - 3 X[38099], 3 X[38066] - 2 X[38603]

X(50912) lies on these lines: {8, 190}, {105, 3679}, {120, 3241}, {519, 10699}, {1292, 28204}, {2809, 4677}, {5511, 38074}, {5881, 38684}, {9041, 18343}, {9519, 37712}, {10729, 28194}, {10760, 28538}, {11716, 19875}, {20344, 31145}, {33970, 38099}, {38066, 38603}

X(50912) = midpoint of X(20344) and X(31145)
X(50912) = reflection of X(i) in X(j) for these {i,j}: {105, 3679}, {3241, 120}, {10699, 10712}


X(50913) = X(105)X(551)∩X(519)X(10699)

Barycentrics    a^5 - 4*a^4*b + 3*a^3*b^2 - 3*a^2*b^3 + 2*a*b^4 + b^5 - 4*a^4*c + 3*a^3*b*c + 4*a^2*b^2*c - 6*a*b^3*c - b^4*c + 3*a^3*c^2 + 4*a^2*b*c^2 + 4*a*b^2*c^2 - 3*a^2*c^3 - 6*a*b*c^3 + 2*a*c^4 - b*c^4 + c^5 : :
X(50913) = 3 X[3653] - 2 X[38603], 2 X[4301] + X[38684], 2 X[5511] - 3 X[38021], X[5540] - 4 X[11730], X[5540] - 3 X[25055], 4 X[11730] - 3 X[25055], 2 X[11716] - 3 X[38314], 4 X[13464] - X[38670], 2 X[33970] - 3 X[38026]

X(50913) lies on these lines: {1, 528}, {2, 2809}, {105, 551}, {120, 3679}, {392, 2836}, {519, 10699}, {527, 45765}, {537, 34892}, {1292, 28194}, {3241, 20344}, {3653, 38603}, {3656, 28915}, {3912, 4767}, {4301, 38684}, {5511, 38021}, {5540, 11730}, {6084, 30580}, {10743, 28204}, {11716, 38314}, {13464, 38670}, {33970, 38026}

X(50913) = midpoint of X(i) and X(j) for these {i,j}: {3241, 20344}, {10699, 10712}
X(50913) = reflection of X(i) in X(j) for these {i,j}: {105, 551}, {3679, 120}


X(50914) = X(10)X(106)∩X(519)X(3699)

Barycentrics    a^4 - 2*a^3*b + 2*a*b^3 - b^4 - 2*a^3*c + 9*a^2*b*c - 7*a*b^2*c + b^3*c - 7*a*b*c^2 + 4*b^2*c^2 + 2*a*c^3 + b*c^3 - c^4 : :
X(50914) = 3 X[1] - 4 X[11731], 3 X[121] - 2 X[11731], 3 X[8] + X[17777], X[17777] - 3 X[21290], X[10700] - 3 X[10713], 3 X[10713] - 2 X[11814], X[1054] - 3 X[3679], 5 X[1698] - 4 X[6715], 5 X[3617] - X[20098], 2 X[4297] - 3 X[38713], 2 X[5510] - 3 X[5587], 3 X[5657] - 2 X[14664], 3 X[5790] - X[38576], 4 X[6684] - 3 X[38695], 3 X[26446] - 2 X[38604]

X(50914) lies on these lines: {1, 121}, {2, 11717}, {8, 80}, {10, 106}, {515, 1293}, {516, 10730}, {517, 10744}, {519, 3699}, {956, 34139}, {1054, 3679}, {1120, 23869}, {1357, 5252}, {1698, 6715}, {1837, 6018}, {2776, 12368}, {2789, 9864}, {2796, 4669}, {2810, 3416}, {2827, 4768}, {2841, 13532}, {2842, 13211}, {2844, 13280}, {3617, 20098}, {3632, 13541}, {4297, 38713}, {4487, 41684}, {4792, 21093}, {5510, 5587}, {5657, 14664}, {5790, 38576}, {5847, 10761}, {6684, 38695}, {7972, 17780}, {9527, 12784}, {12531, 49998}, {12653, 30566}, {15522, 18480}, {18481, 38620}, {18525, 38590}, {24003, 24864}, {26446, 38604}, {31673, 44984}, {33337, 43290}, {42020, 49169}

X(50914) = midpoint of X(i) and X(j) for these {i,j}: {8, 21290}, {3632, 13541}, {18525, 38590}
X(50914) = reflection of X(i) in X(j) for these {i,j}: {1, 121}, {106, 10}, {1120, 23869}, {10700, 11814}, {15522, 18480}, {18481, 38620}, {44984, 31673}
X(50914) = anticomplement of X(11717)
X(50914) = barycentric product X(312)*X(20586)
X(50914) = barycentric quotient X(20586)/X(57)
X(50914) = {X(10700),X(10713)}-harmonic conjugate of X(11814)


X(50915) = X(86)X(99)∩X(519)X(3699)

Barycentrics    a^4 - 4*a^3*b - 4*a^2*b^2 + 2*a*b^3 + b^4 - 4*a^3*c + 17*a^2*b*c - a*b^2*c - b^3*c - 4*a^2*c^2 - a*b*c^2 - 4*b^2*c^2 + 2*a*c^3 - b*c^3 + c^4 : :
X(50915) = 2 X[121] + X[13541], X[10700] + 2 X[11814], X[1054] - 4 X[11731], X[1054] - 3 X[25055], 4 X[11731] - 3 X[25055], X[1120] + 2 X[21087], 3 X[3524] - 2 X[14664], 3 X[3653] - 2 X[38604], 2 X[4301] + X[38685], 2 X[5510] - 3 X[38021], 2 X[11717] + X[17777], 2 X[11717] - 3 X[38314], X[17777] + 3 X[38314], 4 X[13464] - X[38671]

X(50915) lies on these lines: {1, 24709}, {2, 2802}, {86, 99}, {121, 3679}, {190, 14028}, {519, 3699}, {524, 47626}, {1054, 11731}, {1120, 21087}, {1293, 28194}, {2810, 47358}, {2842, 3794}, {3241, 21290}, {3524, 14664}, {3616, 4781}, {3653, 38604}, {4301, 38685}, {4792, 25377}, {5510, 38021}, {5603, 9519}, {10744, 28204}, {11717, 17777}, {13464, 38671}, {16370, 34139}

X(50915) = midpoint of X(i) and X(j) for these {i,j}: {3241, 21290}, {3679, 13541}, {10700, 10713}
X(50915) = reflection of X(i) in X(j) for these {i,j}: {106, 551}, {3679, 121}, {10713, 11814}


X(50916) = X(10)X(107)∩X(519)X(10701)

Barycentrics    a^13 - a^11*b^2 - 2*a^9*b^4 + 3*a^8*b^5 + 2*a^7*b^6 - 8*a^6*b^7 + a^5*b^8 + 6*a^4*b^9 - a^3*b^10 - b^13 + 3*a^8*b^4*c - 8*a^6*b^6*c + 6*a^4*b^8*c - b^12*c - a^11*c^2 + 5*a^9*b^2*c^2 - 6*a^8*b^3*c^2 - 2*a^7*b^4*c^2 + 8*a^6*b^5*c^2 - 6*a^5*b^6*c^2 + 4*a^4*b^7*c^2 + 3*a^3*b^8*c^2 - 8*a^2*b^9*c^2 + a*b^10*c^2 + 2*b^11*c^2 - 6*a^8*b^2*c^3 + 8*a^6*b^4*c^3 + 4*a^4*b^6*c^3 - 8*a^2*b^8*c^3 + 2*b^10*c^3 - 2*a^9*c^4 + 3*a^8*b*c^4 - 2*a^7*b^2*c^4 + 8*a^6*b^3*c^4 + 10*a^5*b^4*c^4 - 20*a^4*b^5*c^4 - 2*a^3*b^6*c^4 + 8*a^2*b^7*c^4 - 4*a*b^8*c^4 + b^9*c^4 + 3*a^8*c^5 + 8*a^6*b^2*c^5 - 20*a^4*b^4*c^5 + 8*a^2*b^6*c^5 + b^8*c^5 + 2*a^7*c^6 - 8*a^6*b*c^6 - 6*a^5*b^2*c^6 + 4*a^4*b^3*c^6 - 2*a^3*b^4*c^6 + 8*a^2*b^5*c^6 + 6*a*b^6*c^6 - 4*b^7*c^6 - 8*a^6*c^7 + 4*a^4*b^2*c^7 + 8*a^2*b^4*c^7 - 4*b^6*c^7 + a^5*c^8 + 6*a^4*b*c^8 + 3*a^3*b^2*c^8 - 8*a^2*b^3*c^8 - 4*a*b^4*c^8 + b^5*c^8 + 6*a^4*c^9 - 8*a^2*b^2*c^9 + b^4*c^9 - a^3*c^10 + a*b^2*c^10 + 2*b^3*c^10 + 2*b^2*c^11 - b*c^12 - c^13 : :
X(50916) = 3 X[1] - 4 X[11732], 3 X[122] - 2 X[11732], 2 X[133] - 3 X[5587], 3 X[165] - 2 X[3184], X[10701] - 3 X[10714], 5 X[1698] - 4 X[6716], 3 X[3576] - 4 X[34842], 2 X[4297] - 3 X[38714], 3 X[5657] - X[5667], 3 X[5790] - X[38577], 4 X[6684] - 3 X[23239], 5 X[8227] - 6 X[36520], 3 X[26446] - 2 X[38605]

X(50916) lies on these lines: {1, 122}, {2, 11718}, {8, 34186}, {10, 107}, {40, 2777}, {80, 2803}, {133, 5587}, {165, 3184}, {515, 1294}, {516, 10152}, {517, 10745}, {519, 10701}, {1698, 6716}, {1837, 7158}, {2790, 9864}, {2797, 13178}, {2802, 10775}, {2816, 11362}, {2828, 12751}, {2846, 13532}, {2848, 13280}, {3324, 5252}, {3576, 34842}, {3579, 23240}, {3679, 9530}, {4297, 38714}, {5657, 5667}, {5790, 38577}, {5847, 10762}, {6684, 23239}, {8193, 14673}, {8227, 36520}, {9033, 13211}, {9528, 47033}, {12699, 49117}, {14703, 15177}, {18480, 22337}, {18481, 38621}, {18525, 38591}, {26446, 38605}, {31673, 44985}

X(50916) = midpoint of X(i) and X(j) for these {i,j}: {8, 34186}, {18525, 38591}
X(50916) = reflection of X(i) in X(j) for these {i,j}: {1, 122}, {107, 10}, {12699, 49117}, {18481, 38621}, {22337, 18480}, {23240, 3579}, {44985, 31673}
X(50916) = anticomplement of X(11718)


X(50917) = X(10)X(108)∩X(519)X(10702)

Barycentrics    a^10 - a^9*b - a^8*b^2 + 2*a^7*b^3 - 2*a^6*b^4 + 2*a^4*b^6 - 2*a^3*b^7 + a^2*b^8 + a*b^9 - b^10 - a^9*c + 3*a^8*b*c - 2*a^7*b^2*c - a^6*b^3*c + 4*a^5*b^4*c - 7*a^4*b^5*c + 2*a^3*b^6*c + 5*a^2*b^7*c - 3*a*b^8*c - a^8*c^2 - 2*a^7*b*c^2 + 6*a^6*b^2*c^2 - 4*a^5*b^3*c^2 - 2*a^4*b^4*c^2 + 10*a^3*b^5*c^2 - 6*a^2*b^6*c^2 - 4*a*b^7*c^2 + 3*b^8*c^2 + 2*a^7*c^3 - a^6*b*c^3 - 4*a^5*b^2*c^3 + 14*a^4*b^3*c^3 - 10*a^3*b^4*c^3 - 5*a^2*b^5*c^3 + 4*a*b^6*c^3 - 2*a^6*c^4 + 4*a^5*b*c^4 - 2*a^4*b^2*c^4 - 10*a^3*b^3*c^4 + 10*a^2*b^4*c^4 + 2*a*b^5*c^4 - 2*b^6*c^4 - 7*a^4*b*c^5 + 10*a^3*b^2*c^5 - 5*a^2*b^3*c^5 + 2*a*b^4*c^5 + 2*a^4*c^6 + 2*a^3*b*c^6 - 6*a^2*b^2*c^6 + 4*a*b^3*c^6 - 2*b^4*c^6 - 2*a^3*c^7 + 5*a^2*b*c^7 - 4*a*b^2*c^7 + a^2*c^8 - 3*a*b*c^8 + 3*b^2*c^8 + a*c^9 - c^10 : :
X(50917) =3 X[1] - 4 X[11733], 3 X[123] - 2 X[11733], X[10702] - 3 X[10715], 5 X[1698] - 4 X[6717], 2 X[4297] - 3 X[38715], 3 X[5587] - 2 X[25640], 3 X[5790] - X[38578], 4 X[6684] - 3 X[38696], 3 X[26446] - 2 X[38606]

X(50917) lies on these lines: {1, 123}, {2, 11719}, {8, 151}, {10, 108}, {40, 1145}, {72, 2778}, {80, 2804}, {515, 1295}, {516, 10731}, {517, 10746}, {519, 10702}, {1359, 5252}, {1698, 6717}, {1837, 3318}, {2791, 9864}, {2798, 13178}, {2802, 10776}, {2812, 38955}, {2818, 15499}, {2823, 3421}, {2849, 4768}, {2850, 13211}, {4297, 38715}, {4528, 6087}, {5587, 25640}, {5790, 38578}, {5847, 10763}, {6684, 38696}, {6735, 49207}, {18339, 24031}, {18480, 33566}, {18481, 38622}, {18525, 38592}, {26446, 38606}, {31673, 44986}, {44692, 48358}

X(50917) =midpoint of X(i) and X(j) for these {i,j}: {8, 34188}, {18525, 38592}
X(50917) =reflection of X(i) in X(j) for these {i,j}: {1, 123}, {108, 10}, {18481, 38622}, {33566, 18480}, {44986, 31673}
X(50917) =anticomplement of X(11719)


X(50918) = X(109)X(551)∩X(519)X(10703)

Barycentrics    a^7 - 3*a^6*b + a^5*b^2 + 7*a^4*b^3 - 5*a^3*b^4 - 5*a^2*b^5 + 3*a*b^6 + b^7 - 3*a^6*c + 7*a^5*b*c - 9*a^4*b^2*c - 5*a^3*b^3*c + 12*a^2*b^4*c - 2*a*b^5*c + a^5*c^2 - 9*a^4*b*c^2 + 20*a^3*b^2*c^2 - 7*a^2*b^3*c^2 - 3*a*b^4*c^2 - 2*b^5*c^2 + 7*a^4*c^3 - 5*a^3*b*c^3 - 7*a^2*b^2*c^3 + 4*a*b^3*c^3 + b^4*c^3 - 5*a^3*c^4 + 12*a^2*b*c^4 - 3*a*b^2*c^4 + b^3*c^4 - 5*a^2*c^5 - 2*a*b*c^5 - 2*b^2*c^5 + 3*a*c^6 + c^7 : :
X(50918) = 2 X[117] - 3 X[38021], 2 X[10703] + X[13532], 3 X[3524] - 2 X[14690], 3 X[3653] - 2 X[38607], 2 X[4301] + X[38667], X[5881] - 4 X[38781], 7 X[9588] - 10 X[38787], 2 X[11700] - 3 X[38314], 4 X[11734] - 3 X[25055], 4 X[13464] - X[38674]

X(50918) lies on these lines: {2, 2800}, {102, 28194}, {109, 551}, {117, 38021}, {124, 3679}, {376, 11713}, {519, 10703}, {946, 10709}, {2818, 3656}, {3241, 33650}, {3524, 14690}, {3653, 38607}, {4301, 38667}, {5881, 38781}, {9588, 38787}, {10747, 28204}, {11700, 38314}, {11734, 25055}, {13464, 38674}

X(50918) = midpoint of X(i) and X(j) for these {i,j}: {3241, 33650}, {10703, 10716}
X(50918) = reflection of X(i) in X(j) for these {i,j}: {109, 551}, {376, 11713}, {3679, 124}, {10709, 946}, {13532, 10716}


X(50919) = X(110)X(3828)∩X(519)X(7984)

Barycentrics    4*a^7 + a^6*b - 4*a^5*b^2 - a^4*b^3 + 2*a^3*b^4 + 5*a^2*b^5 - 2*a*b^6 - 5*b^7 + a^6*c - a^4*b^2*c + 5*a^2*b^4*c - 5*b^6*c - 4*a^5*c^2 - a^4*b*c^2 - 9*a^2*b^3*c^2 + 2*a*b^4*c^2 + 5*b^5*c^2 - a^4*c^3 - 9*a^2*b^2*c^3 + 5*b^4*c^3 + 2*a^3*c^4 + 5*a^2*b*c^4 + 2*a*b^2*c^4 + 5*b^3*c^4 + 5*a^2*c^5 + 5*b^2*c^5 - 2*a*c^6 - 5*b*c^6 - 5*c^7 : :
X(50919) = 2 X[113] - 3 X[38076], X[7984] - 5 X[9140], X[7984] + 5 X[13211], 2 X[7984] - 5 X[13605], 2 X[13211] + X[13605], 2 X[1511] - 3 X[38068], X[3656] - 3 X[38724], X[4301] - 4 X[36253], 2 X[5609] - 5 X[31399], X[5882] - 4 X[20379], 2 X[6593] - 3 X[38089], X[9143] - 3 X[19875], 2 X[10272] - 3 X[38083], 3 X[11231] - 2 X[11694], 2 X[11720] - 3 X[19883], 3 X[19883] - 4 X[45311], X[12317] + 3 X[38074], 2 X[13464] - 5 X[15027], 5 X[15081] - 3 X[38021], 3 X[25330] + X[50783], X[25335] + 3 X[38087]

X(50919) lies on these lines: {10, 542}, {110, 3828}, {113, 38076}, {125, 551}, {265, 28194}, {376, 12407}, {515, 20126}, {519, 7984}, {541, 34648}, {547, 11699}, {553, 12903}, {1511, 38068}, {1992, 32261}, {2854, 50781}, {3448, 3679}, {3543, 9904}, {3656, 38724}, {4301, 36253}, {5609, 31399}, {5882, 20379}, {6593, 38089}, {9143, 19875}, {10264, 28204}, {10272, 38083}, {10706, 19925}, {11231, 11694}, {11720, 19883}, {12317, 38074}, {13169, 34379}, {13464, 15027}, {15081, 38021}, {25328, 28538}, {25330, 50783}, {25335, 38087}, {33535, 34627}

X(50919) = midpoint of X(i) and X(j) for these {i,j}: {376, 12407}, {1992, 32261}, {3448, 3679}, {3543, 9904}, {9140, 13211}, {33535, 34627}
X(50919) = reflection of X(i) in X(j) for these {i,j}: {110, 3828}, {551, 125}, {10706, 19925}, {11699, 547}, {11720, 45311}, {13605, 9140}
X(50919) = {X(11720),X(45311)}-harmonic conjugate of X(19883)


X(50920) = X(110)X(3679)∩X(519)X(7984)

Barycentrics    5*a^7 - a^6*b - 5*a^5*b^2 + a^4*b^3 - 2*a^3*b^4 + 4*a^2*b^5 + 2*a*b^6 - 4*b^7 - a^6*c + a^4*b^2*c + 4*a^2*b^4*c - 4*b^6*c - 5*a^5*c^2 + a^4*b*c^2 + 9*a^3*b^2*c^2 - 9*a^2*b^3*c^2 - 2*a*b^4*c^2 + 4*b^5*c^2 + a^4*c^3 - 9*a^2*b^2*c^3 + 4*b^4*c^3 - 2*a^3*c^4 + 4*a^2*b*c^4 - 2*a*b^2*c^4 + 4*b^3*c^4 + 4*a^2*c^5 + 4*b^2*c^5 + 2*a*c^6 - 4*b*c^6 - 4*c^7 : :
X(50920) = 2 X[113] - 3 X[38074], X[7984] - 4 X[13211], 5 X[7984] - 8 X[13605], 5 X[9140] - 4 X[13605], 5 X[13211] - 2 X[13605], 4 X[551] - 5 X[15059], 2 X[1511] - 3 X[38066], 2 X[3656] - 3 X[14644], 4 X[4301] - 7 X[15044], 5 X[5071] - 4 X[11723], 2 X[5881] + X[15054], 4 X[5882] - 7 X[15057], 2 X[6593] - 3 X[38087], 2 X[10272] - 3 X[38081], 2 X[11694] - 3 X[38112], 2 X[11720] - 3 X[19875], 8 X[13464] - 11 X[15025], 3 X[38314] - 4 X[45311]

X(50920) lies on these lines: {8, 542}, {67, 9041}, {74, 28204}, {110, 3679}, {113, 38074}, {125, 3241}, {355, 10706}, {381, 7978}, {518, 13169}, {519, 7984}, {541, 34627}, {549, 12898}, {551, 15059}, {597, 32298}, {895, 28538}, {952, 20126}, {1511, 38066}, {2854, 50783}, {3448, 31145}, {3656, 14644}, {4301, 15044}, {5071, 11723}, {5881, 15054}, {5882, 15057}, {6593, 38087}, {10272, 38081}, {10733, 28194}, {11694, 38112}, {11720, 19875}, {13464, 15025}, {34319, 49524}, {38314, 45311}, {41720, 47359}

X(50920) = midpoint of X(3448) and X(31145)
X(50920) = reflection of X(i) in X(j) for these {i,j}: {110, 3679}, {3241, 125}, {7978, 381}, {7984, 9140}, {9140, 13211}, {10706, 355}, {12898, 549}, {32298, 597}, {34319, 49524}, {41720, 47359}


X(50921) = X(110)X(551)∩X(519)X(7984)

Barycentrics    a^7 - 2*a^6*b - a^5*b^2 + 2*a^4*b^3 - 4*a^3*b^4 - a^2*b^5 + 4*a*b^6 + b^7 - 2*a^6*c + 2*a^4*b^2*c - a^2*b^4*c + b^6*c - a^5*c^2 + 2*a^4*b*c^2 + 9*a^3*b^2*c^2 - 4*a*b^4*c^2 - b^5*c^2 + 2*a^4*c^3 - b^4*c^3 - 4*a^3*c^4 - a^2*b*c^4 - 4*a*b^2*c^4 - b^3*c^4 - a^2*c^5 - b^2*c^5 + 4*a*c^6 + b*c^6 + c^7 : :
X(50921) = 2 X[113] - 3 X[38021], 4 X[12261] - X[12368], 2 X[7984] + X[13211], X[7984] + 2 X[13605], X[13211] - 4 X[13605], 2 X[1511] - 3 X[3653], X[2948] - 4 X[11735], X[2948] - 3 X[25055], 2 X[5642] - 3 X[25055], 4 X[11735] - 3 X[25055], 4 X[3828] - 5 X[15059], 2 X[4301] + X[15054], 2 X[5465] - 3 X[38220], 2 X[5493] - 5 X[15021], X[5881] - 4 X[36253], 2 X[6593] - 3 X[38023], 8 X[6723] - 7 X[19876], X[7982] + 2 X[16003], X[7991] - 4 X[20417], X[9143] - 3 X[38314], 2 X[11720] - 3 X[38314], 7 X[9588] - 10 X[38729], X[9589] + 2 X[10990], 7 X[9624] - 4 X[16534], 2 X[10272] - 3 X[38022], 5 X[11522] - 2 X[15063], 2 X[11694] - 3 X[38028], 4 X[13464] - X[14094], 7 X[15057] - 4 X[43174], 5 X[15081] - 3 X[38074], 4 X[15178] - X[23236], 2 X[15303] - 3 X[16475], 3 X[19875] - 4 X[45311], 3 X[25330] + X[50790]

X(50921) lies on these lines: {1, 542}, {67, 28538}, {74, 28194}, {110, 551}, {113, 38021}, {125, 3679}, {265, 28204}, {354, 2771}, {376, 11709}, {381, 12261}, {392, 2836}, {517, 20126}, {519, 7984}, {541, 31162}, {549, 12778}, {597, 32278}, {599, 32238}, {946, 10706}, {1386, 34319}, {1511, 3653}, {2842, 3794}, {2854, 47358}, {2948, 5642}, {3241, 3448}, {3564, 47593}, {3656, 5663}, {3828, 15059}, {4301, 15054}, {5465, 38220}, {5493, 15021}, {5621, 37546}, {5847, 13169}, {5881, 36253}, {6593, 38023}, {6723, 19876}, {7982, 16003}, {7991, 20417}, {9041, 25328}, {9143, 11720}, {9144, 12258}, {9588, 38729}, {9589, 10990}, {9624, 16534}, {10272, 38022}, {11522, 15063}, {11694, 38028}, {13204, 16371}, {13464, 14094}, {15057, 43174}, {15081, 38074}, {15178, 23236}, {15303, 16475}, {16370, 22586}, {19875, 45311}, {20127, 28202}, {25330, 50790}, {44569, 47321}

X(50921) = midpoint of X(i) and X(j) for these {i,j}: {3241, 3448}, {7984, 9140}, {31162, 33535}
X(50921) = reflection of X(i) in X(j) for these {i,j}: {110, 551}, {376, 11709}, {381, 12261}, {599, 32238}, {2948, 5642}, {3679, 125}, {5642, 11735}, {9140, 13605}, {9143, 11720}, {9144, 12258}, {10706, 946}, {12368, 381}, {12778, 549}, {13211, 9140}, {32278, 597}, {34319, 1386}, {47321, 44569}
X(50921) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2948, 25055, 5642}, {5642, 11735, 25055}, {7984, 13605, 13211}, {9143, 38314, 11720}


X(50922) = X(125)X(3828)∩X(519)X(7984)

Barycentrics    2*a^7 + 5*a^6*b - 2*a^5*b^2 - 5*a^4*b^3 + 10*a^3*b^4 + 7*a^2*b^5 - 10*a*b^6 - 7*b^7 + 5*a^6*c - 5*a^4*b^2*c + 7*a^2*b^4*c - 7*b^6*c - 2*a^5*c^2 - 5*a^4*b*c^2 - 18*a^3*b^2*c^2 - 9*a^2*b^3*c^2 + 10*a*b^4*c^2 + 7*b^5*c^2 - 5*a^4*c^3 - 9*a^2*b^2*c^3 + 7*b^4*c^3 + 10*a^3*c^4 + 7*a^2*b*c^4 + 10*a*b^2*c^4 + 7*b^3*c^4 + 7*a^2*c^5 + 7*b^2*c^5 - 10*a*c^6 - 7*b*c^6 - 7*c^7 : :
X(50922) = X[7984] + 7 X[9140], 5 X[7984] + 7 X[13211], X[7984] - 7 X[13605], 5 X[9140] - X[13211], X[13211] + 5 X[13605], X[9143] - 3 X[19883], X[12317] + 3 X[38021], 5 X[15081] - 3 X[38076], 4 X[20379] - X[43174], 3 X[25330] + X[47358], X[25335] + 3 X[38023]

X(50922) lies on these lines: {125, 3828}, {516, 20126}, {519, 7984}, {542, 1125}, {551, 3448}, {2796, 15357}, {2854, 50787}, {9143, 19883}, {10264, 28194}, {10706, 12571}, {12317, 38021}, {15081, 38076}, {20379, 43174}, {25330, 47358}, {25335, 38023}, {33535, 34648}

X(50922) = midpoint of X(i) and X(j) for these {i,j}: {551, 3448}, {9140, 13605}, {33535, 34648}
X(50922) = reflection of X(i) in X(j) for these {i,j}: {3828, 125}, {10706, 12571}


X(50923) = X(110)X(3241)∩X(519)X(7984)

Barycentrics    7*a^7 - 5*a^6*b - 7*a^5*b^2 + 5*a^4*b^3 - 10*a^3*b^4 + 2*a^2*b^5 + 10*a*b^6 - 2*b^7 - 5*a^6*c + 5*a^4*b^2*c + 2*a^2*b^4*c - 2*b^6*c - 7*a^5*c^2 + 5*a^4*b*c^2 + 27*a^3*b^2*c^2 - 9*a^2*b^3*c^2 - 10*a*b^4*c^2 + 2*b^5*c^2 + 5*a^4*c^3 - 9*a^2*b^2*c^3 + 2*b^4*c^3 - 10*a^3*c^4 + 2*a^2*b*c^4 - 10*a*b^2*c^4 + 2*b^3*c^4 + 2*a^2*c^5 + 2*b^2*c^5 + 10*a*c^6 - 2*b*c^6 - 2*c^7 : :
X(50923) = 5 X[7984] - 2 X[13211], 7 X[7984] - 4 X[13605], 5 X[9140] - 4 X[13211], 7 X[9140] - 8 X[13605], 7 X[13211] - 10 X[13605], 4 X[3679] - 5 X[15059], 4 X[5881] - 7 X[15044], 16 X[13464] - 13 X[15029]

X(50923) lies on these lines: {110, 3241}, {125, 31145}, {145, 542}, {519, 7984}, {541, 34631}, {895, 9041}, {1482, 10706}, {2854, 50790}, {3448, 20049}, {3679, 15059}, {5844, 20126}, {5846, 13169}, {5881, 15044}, {10733, 28204}, {13464, 15029}, {28538, 32244}

X(50923) = midpoint of X(3448) and X(20049)
X(50923) = reflection of X(i) in X(j) for these {i,j}: {110, 3241}, {9140, 7984}, {10706, 1482}, {31145, 125}


X(50924) = X(10)X(111)∩X(519)X(10704)

Barycentrics    a^7 - a^5*b^2 + 2*a^4*b^3 - 2*a^3*b^4 + a^2*b^5 - b^7 + 2*a^4*b^2*c + a^2*b^4*c - b^6*c - a^5*c^2 + 2*a^4*b*c^2 + 5*a^3*b^2*c^2 - 10*a^2*b^3*c^2 + 3*b^5*c^2 + 2*a^4*c^3 - 10*a^2*b^2*c^3 + 3*b^4*c^3 - 2*a^3*c^4 + a^2*b*c^4 + 3*b^3*c^4 + a^2*c^5 + 3*b^2*c^5 - b*c^6 - c^7 : :
X(50924) = X[10704] - 3 X[10717], 5 X[1698] - 4 X[6719], 3 X[3576] - 4 X[40556], 5 X[3617] - X[20099], 2 X[4297] - 3 X[38716], 2 X[5512] - 3 X[5587], 3 X[5657] - X[14654], 3 X[5790] - X[11258], 3 X[5886] - 4 X[40340], 4 X[6684] - 3 X[38698], 2 X[9172] - 3 X[19875], 4 X[9956] - 3 X[38796], 6 X[11231] - 5 X[38806], 2 X[14650] - 3 X[26446], 2 X[28662] - 3 X[38047], 7 X[31423] - 6 X[38804]

X(50924) lies on these lines: {1, 126}, {2, 11721}, {8, 14360}, {10, 111}, {40, 23699}, {80, 2805}, {355, 33962}, {515, 1296}, {516, 10734}, {517, 10748}, {518, 36883}, {519, 10704}, {543, 3679}, {1698, 6719}, {1837, 6019}, {2780, 12368}, {2793, 9864}, {2802, 10779}, {2813, 38479}, {2830, 12751}, {2852, 13532}, {2854, 3416}, {3325, 5252}, {3576, 40556}, {3617, 20099}, {3654, 32424}, {4297, 38716}, {5512, 5587}, {5657, 14654}, {5790, 11258}, {5847, 10765}, {5886, 40340}, {6684, 38698}, {9172, 19875}, {9956, 38796}, {11231, 38806}, {14650, 26446}, {14657, 15177}, {18480, 22338}, {18481, 38623}, {18525, 38593}, {28160, 38797}, {28662, 38047}, {31423, 38804}, {31673, 44987}

X(50924) = midpoint of X(i) and X(j) for these {i,j}: {8, 14360}, {18525, 38593}
X(50924) = reflection of X(i) in X(j) for these {i,j}: {1, 126}, {111, 10}, {18481, 38623}, {22338, 18480}, {44987, 31673}
X(50924) = anticomplement of X(11721)


X(50925) = X(111)X(3679)∩X(519)X(10704)

Barycentrics    5*a^7 - a^6*b - 9*a^5*b^2 + 9*a^4*b^3 - 12*a^3*b^4 + 6*a^2*b^5 + 2*a*b^6 - 4*b^7 - a^6*c + 9*a^4*b^2*c + 6*a^2*b^4*c - 4*b^6*c - 9*a^5*c^2 + 9*a^4*b*c^2 + 45*a^3*b^2*c^2 - 45*a^2*b^3*c^2 - 6*a*b^4*c^2 + 12*b^5*c^2 + 9*a^4*c^3 - 45*a^2*b^2*c^3 + 12*b^4*c^3 - 12*a^3*c^4 + 6*a^2*b*c^4 - 6*a*b^2*c^4 + 12*b^3*c^4 + 6*a^2*c^5 + 12*b^2*c^5 + 2*a*c^6 - 4*b*c^6 - 4*c^7 : :
X(50925) = 2 X[5512] - 3 X[38074], 2 X[5881] + X[38688], 2 X[11721] - 3 X[19875], 2 X[14650] - 3 X[38066], 2 X[28662] - 3 X[38087]

X(50925) lies on these lines: {8, 543}, {111, 3679}, {126, 3241}, {519, 10704}, {1296, 28204}, {2854, 50783}, {5512, 38074}, {5690, 14666}, {5881, 38688}, {9041, 36883}, {10734, 28194}, {10765, 28538}, {11721, 19875}, {14360, 31145}, {14650, 38066}, {28662, 38087}, {32424, 34718}

X(50925) = midpoint of X(14360) and X(31145)
X(50925) = reflection of X(i) in X(j) for these {i,j}: {111, 3679}, {3241, 126}, {10704, 10717}, {14666, 5690}


X(50926) = X(111)X(551)∩X(519)X(10704)

Barycentrics    a^7 - 2*a^6*b - 9*a^5*b^2 - 6*a^3*b^4 + 3*a^2*b^5 + 4*a*b^6 + b^7 - 2*a^6*c + 3*a^2*b^4*c + b^6*c - 9*a^5*c^2 + 45*a^3*b^2*c^2 - 12*a*b^4*c^2 - 3*b^5*c^2 - 3*b^4*c^3 - 6*a^3*c^4 + 3*a^2*b*c^4 - 12*a*b^2*c^4 - 3*b^3*c^4 + 3*a^2*c^5 - 3*b^2*c^5 + 4*a*c^6 + b*c^6 + c^7 : :
X(50926) = 3 X[3653] - 2 X[14650], 2 X[4301] + X[38688], 2 X[5512] - 3 X[38021], 2 X[9172] - 3 X[25055], 2 X[11721] - 3 X[38314], 4 X[13464] - X[38675], 2 X[28662] - 3 X[38023]

X(50926) lies on these lines: {1, 543}, {111, 551}, {126, 3679}, {519, 10704}, {962, 37749}, {1296, 28194}, {1385, 14666}, {2854, 47358}, {3241, 14360}, {3653, 14650}, {3655, 32424}, {3656, 33962}, {4301, 38688}, {5512, 38021}, {9172, 25055}, {10748, 28204}, {11721, 38314}, {13464, 38675}, {28202, 38797}, {28538, 36883}, {28662, 38023}

X(50926) = midpoint of X(i) and X(j) for these {i,j}: {962, 37749}, {3241, 14360}, {10704, 10717}
X(50926) = reflection of X(i) in X(j) for these {i,j}: {111, 551}, {3679, 126}, {14666, 1385}


X(50927) = X(125)X(146) ∩ X(136)X(1906)

Barycentrics    (a^6*(b^2+c^2)+a^2*(b^2-3*c^2)*(3*b^2-c^2)*(b^2+c^2)-3*a^4*(b^4-4*b^2*c^2+c^4)-(b^2-c^2)^2*(b^4+8*b^2*c^2+c^4))*(2*a^8+(b^2-c^2)^4+3*a^6*(b^2+c^2)+5*a^2*(b^2-c^2)*(b^4-c^4)-a^4*(11*b^4-14*b^2*c^2+11*c^4)) : :

See Ivan Pavlov, euclid 5264.

X(50927) lies on the nine-point circle and these lines: {5, 15613}, {122, 6823}, {125, 146}, {136, 1906}, {3258, 47096}, {46436, 46517}

X(50927) = reflection of X(15613) in X(5)
X(50927) = antipode of X(15613) in nine-point circle


X(50928) = X(4)X(931) ∩ X(115)X(4263)

Barycentrics    (-2*b*c*(b^2-c^2)^2+a^3*(b+c)*(b^2+c^2)+a^4*(b^2+4*b*c+c^2)-a*(b+c)*(b^4+c^4)-a^2*(b^4+c^4+2*b*c*(b^2+c^2)))*(2*a^4*b*c*(b+c)+b*c*(b+c)*(b^2-c^2)^2-a^2*b*c*(b+c)*(b^2+c^2)+2*a^5*(b^2+b*c+c^2)+a*(b^2-c^2)^2*(2*b^2+b*c+2*c^2)-a^3*(4*b^4+4*c^4+b*c*(b^2-4*b*c+c^2))) : :

See Ivan Pavlov, euclid 5264.

X(50928) lies on the nine-point circle and these lines: {4, 931}, {115, 4263}, {125, 2476}, {136, 1904}, {12558, 42425}

X(50928) = midpoint of X(4) and X(931)
X(50928) = complement of the circumperp conjugate of X(931)
X(50928) = complementary conjugate of the circumnormal-isogonal conjugate of X(931)
X(50928) = Poncelet point of X(931)
X(50928) = center of the circumconic {{A, B, C, X(4), X(931)}}


X(50929) = X(4)X(38968) ∩ X(122)X(47514)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^7*(b+c)*(b^2+c^2)+a^6*b*c*(b^2+4*b*c+c^2)+3*a^2*b*c*(b^2-c^2)*(b^4-c^4)+3*a^3*(b+c)*(b^2-c^2)*(b^4-c^4)-a*(b+c)*(b^2-c^2)^2*(b^4+4*b^2*c^2+c^4)-a^4*b*c*(3*b^4+2*b*(b-c)^2*c+3*c^4)-a^5*(b+c)*(3*b^4-4*b^2*c^2+3*c^4)-b*c*(b^2-c^2)^2*(b^4+c^4+2*b*c*(b+c)^2))*(2*a^5*(b+c)-b*c*(b^2-c^2)^2-a*(b+c)*(b^2-c^2)^2-a^3*(b+c)*(b^2+c^2)+2*a^4*(b^2+b*c+c^2)-a^2*(2*b^4+2*c^4+b*c*(b^2+c^2))) : :

See Ivan Pavlov, euclid 5264.

X(50929) lies on the nine-point circle and these lines: {4, 38968}, {122, 47514}, {125, 469}


X(50930) = X(4)X(972) ∩ X(11)X(278)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4*(b+c)-(b+c)*(b^2-c^2)^2-2*a^3*(b^2-b*c+c^2)+2*a*(b-c)*(b^3-c^3))*(a^7*(b+c)-3*a^5*(b-c)*(b^2-c^2)-a*(b+c)^3*(b^2-c^2)^2+a^6*(b^2-4*b*c+c^2)+a^3*(b-c)*(b^2-c^2)*(3*b^2+2*b*c+3*c^2)-a^4*(b-c)^2*(3*b^2+4*b*c+3*c^2)+3*a^2*(b^2-c^2)*(b^4-c^4)-(b-c)^2*(b^2-c^2)*(b^4-c^4)) : :

See Ivan Pavlov, euclid 5264.

X(50930) lies on the nine-point circle and these lines: {4, 972}, {11, 278}, {12, 31893}, {116, 6245}, {123, 8727}, {125, 44403}, {235, 38966}, {21664, 50946}, {42772, 44993}

X(50930) = midpoint of X(4) and X(40117)
X(50930) = complement of the circumperp conjugate of X(40117)
X(50930) = complementary conjugate of the circumnormal-isogonal conjugate of X(40117)
X(50930) = orthoassociate of X(972)
X(50930) = Poncelet point of X(40117)
X(50930) = center of the circumconic {{A, B, C, X(4), X(40117)}}
X(50930) = inverse of X(972) in polar circle


X(50931) = X(2)X(28159) ∩ X(4)X(4588)

Barycentrics    (4*a^4-a^3*(b+c)+a*(b-c)*(b^2-c^2)-2*(b^2-c^2)^2-2*a^2*(b^2-b*c+c^2))*(-(a^3*b*c*(b+c))+a*b*(b-c)*c*(b^2-c^2)+2*a^4*(b^2+c^2)+(b^2-c^2)^2*(2*b^2-b*c+2*c^2)-a^2*(4*b^4+4*c^4-b*c*(b^2+4*b*c+c^2))) : :

See Ivan Pavlov, euclid 5264.

X(50931) lies on the nine-point circle and these lines: {2, 28159}, {4, 4588}, {5, 15614}, {11, 5902}, {5520, 47321}

X(50931) = midpoint of X(4) and X(4588)
X(50931) = reflection of X(15614) in X(5)
X(50931) = complement of X(28159)
X(50931) = complementary conjugate of X(28160)
X(50931) = Poncelet point of X(4588)
X(50931) = center of the circumconic {{A, B, C, X(4), X(4588)}}
X(50931) = antipode of X(15614) in nine-point circle
X(50931) = X(4)-Ceva conjugate of-X(28160)
X(50931) = X(1)-complementary conjugate of-X(28160)


X(50932) = X(11)X(3333) ∩ X(21664)X(50944)

Barycentrics    (a^5*(b+c)-(b+c)^2*(b^2-c^2)^2-a^4*(b^2-4*b*c+c^2)+a*(b-c)*(b^2-c^2)*(b^2-4*b*c+c^2)-2*a^3*(b+c)*(b^2-3*b*c+c^2)+2*a^2*(b+c)^2*(b^2-3*b*c+c^2))*(a^6*(b+c)+2*a*(b+c)^2*(b^2-c^2)^2+(b-c)*(b^2-c^2)^3-a^4*(b+c)*(b^2-4*b*c+c^2)+2*a^5*(b^2-b*c+c^2)-a^2*(b-c)*(b^2-c^2)*(b^2+4*b*c+c^2)-2*a^3*(b+c)^2*(2*b^2-3*b*c+2*c^2)) : :

See Ivan Pavlov, euclid 5264.

X(50932) lies on the nine-point circle and these lines: {11, 3333}, {21664, 50944}


X(50933) = X(2)X(2723) ∩ X(4)X(929)

Barycentrics    (a^5*b^2 - a^4*b^3 - 2*a^3*b^4 + 2*a^2*b^5 + a*b^6 - b^7 - a^4*b^2*c + 2*a^3*b^3*c - 2*a*b^5*c + b^6*c + a^5*c^2 - a^4*b*c^2 + 2*a^3*b^2*c^2 - 2*a^2*b^3*c^2 + a*b^4*c^2 - b^5*c^2 - a^4*c^3 + 2*a^3*b*c^3 - 2*a^2*b^2*c^3 + b^4*c^3 - 2*a^3*c^4 + a*b^2*c^4 + b^3*c^4 + 2*a^2*c^5 - 2*a*b*c^5 - b^2*c^5 + a*c^6 + b*c^6 - c^7)*(2*a^7 - 2*a^6*b - a^5*b^2 + a^4*b^3 - a*b^6 + b^7 - 2*a^6*c + 4*a^5*b*c - a^4*b^2*c - 2*a^3*b^3*c + 2*a*b^5*c - b^6*c - a^5*c^2 - a^4*b*c^2 + 4*a^3*b^2*c^2 + a*b^4*c^2 - 3*b^5*c^2 + a^4*c^3 - 2*a^3*b*c^3 - 4*a*b^3*c^3 + 3*b^4*c^3 + a*b^2*c^4 + 3*b^3*c^4 + 2*a*b*c^5 - 3*b^2*c^5 - a*c^6 - b*c^6 + c^7) : :

X(50933) lies on the nine-point circle and these lines: {2, 2723}, {4, 929}, {5, 15612}, {11, 1465}, {113, 39212}, {116, 515}, {117, 514}, {118, 522}, {124, 516}, {125, 851}, {223, 35580}, {650, 20623}, {1521, 2807}, {1699, 3259}, {1785, 38966}, {2222, 15608}, {5179, 5514}, {5587, 46415}, {19925, 46670}, {25640, 39536}

X(50933) = midpoint of X(4) and X(929)
X(50933) = reflection of X(15612) in X(5)
X(50933) = complement of X(2723)
X(50933) = Stevanovic-circle-inverse of X(20623)
X(50933) = complement of the isogonal conjugate of X(2807)
X(50933) = medial-isogonal conjugate of X(2807)
X(50933) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 2807}, {2807, 10}
X(50933) = X(4)-Ceva conjugate of X(2807)


X(50934) = X(2)X(14388) ∩ X(4)X(11636)

Barycentrics    (4*a^6 - a^4*b^2 - a^2*b^4 - 2*b^6 - a^4*c^2 + 2*b^4*c^2 - a^2*c^4 + 2*b^2*c^4 - 2*c^6)*(2*a^6*b^2 - 2*a^4*b^4 - 2*a^2*b^6 + 2*b^8 + 2*a^6*c^2 + 2*a^4*b^2*c^2 + a^2*b^4*c^2 - 3*b^6*c^2 - 2*a^4*c^4 + a^2*b^2*c^4 + 2*b^4*c^4 - 2*a^2*c^6 - 3*b^2*c^6 + 2*c^8) : :

X(50934) lies on the nine-point circle and these lines: {2, 14388}, {4, 11636}, {5, 46657}, {111, 13994}, {115, 3845}, {125, 5169}, {127, 10254}, {136, 10301}, {381, 15922}, {3258, 7426}, {5099, 44961}, {5480, 12494}, {9993, 9999}, {13413, 46654}, {18323, 38971}

X(50934) = midpoint of X(4) and X(11636)
X(50934) = reflection of X(46657) in X(5)
X(50934) = complement of X(14388)
X(50934) = complement of the isogonal conjugate of X(11645)
X(50934) = medial-isogonal conjugate of X(11645)
X(50934) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 11645}, {31, 16308}, {11645, 10}, {41358, 226}
X(50934) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 16308}, {4, 11645}
X(50934) = X(16308)-Dao conjugate of X(2)
X(50934) = barycentric quotient X(16308)/X(14388)


X(50935) = X(2)X(43660) ∩ X(4)X(1302)

Barycentrics    (a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8 + a^6*c^2 + 8*a^4*b^2*c^2 - 5*a^2*b^4*c^2 - 4*b^6*c^2 - 3*a^4*c^4 - 5*a^2*b^2*c^4 + 10*b^4*c^4 + 3*a^2*c^6 - 4*b^2*c^6 - c^8)*(2*a^8 + a^6*b^2 - 7*a^4*b^4 + 3*a^2*b^6 + b^8 + a^6*c^2 + 10*a^4*b^2*c^2 - 3*a^2*b^4*c^2 - 4*b^6*c^2 - 7*a^4*c^4 - 3*a^2*b^2*c^4 + 6*b^4*c^4 + 3*a^2*c^6 - 4*b^2*c^6 + c^8) : :

X(50935) lies on the nine-point circle and these lines: {2, 43660}, {4, 1302}, {30, 46436}, {113, 9003}, {122, 15760}, {125, 381}, {132, 11251}, {135, 6623}, {136, 1596}, {3258, 11799}, {5099, 16334}, {7574, 46437}, {10297, 16177}, {16188, 36169}, {16221, 37984}, {18531, 35968}, {44263, 45182}

X(50935) = midpoint of X(4) and X(1302)
X(50935) = complement of X(43660)
X(50935) = orthocentroidal-circle-inverse of X(11472)
X(50935) = complement of the isogonal conjugate of X(14915)
X(50935) = medial isogonal conjugate of X(14915)
X(50935) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 14915}, {31, 16303}, {14915, 10}
X(50935) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 16303}, {4, 14915}
X(50935) = X(16303)-Dao conjugate of X(2)
X(50935) = barycentric quotient X(16303)/X(43660)


X(50936) = X(2)X(15323) ∩ X(4)X(932)

Barycentrics    (a^3*b^2 - a*b^4 - 2*a^3*b*c + a^2*b^2*c + b^4*c + a^3*c^2 + a^2*b*c^2 - b^3*c^2 - b^2*c^3 - a*c^4 + b*c^4)*(a^4*b^2 - a^3*b^3 - a^2*b^4 + a*b^5 - 2*a^4*b*c + a^2*b^3*c - b^5*c + a^4*c^2 + 2*a^2*b^2*c^2 - a*b^3*c^2 - a^3*c^3 + a^2*b*c^3 - a*b^2*c^3 + 2*b^3*c^3 - a^2*c^4 + a*c^5 - b*c^5) : :
X(50936) = 3 X[1699] + X[20375]

X(50936) lies on the nine-point circle and these lines: {2, 15323}, {4, 932}, {5, 5518}, {11, 982}, {92, 5521}, {115, 23447}, {116, 3825}, {123, 20545}, {946, 44948}, {1699, 20375}, {5511, 26470}, {6841, 44950}, {11680, 11689}

X(50936) = midpoint of X(4) and X(932)
X(50936) = reflection of X(5518) in X(5)
X(50936) = complement of X(15323)
X(50936) = complement of the isogonal conjugate of X(15310)
X(50936) = medial-isogonal conjugate of X(15310)
X(50936) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 15310}, {6, 43040}, {15310, 10}
X(50936) = X(4)-Ceva conjugate of X(15310)


X(50937) = X(2)X(5897) ∩ X(4)X(122)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8 + a^6*c^2 + 4*a^4*b^2*c^2 - 3*a^2*b^4*c^2 - 2*b^6*c^2 - 3*a^4*c^4 - 3*a^2*b^2*c^4 + 6*b^4*c^4 + 3*a^2*c^6 - 2*b^2*c^6 - c^8)*(2*a^10 - a^8*b^2 - 8*a^6*b^4 + 10*a^4*b^6 - 2*a^2*b^8 - b^10 - a^8*c^2 + 16*a^6*b^2*c^2 - 10*a^4*b^4*c^2 - 8*a^2*b^6*c^2 + 3*b^8*c^2 - 8*a^6*c^4 - 10*a^4*b^2*c^4 + 20*a^2*b^4*c^4 - 2*b^6*c^4 + 10*a^4*c^6 - 8*a^2*b^2*c^6 - 2*b^4*c^6 - 2*a^2*c^8 + 3*b^2*c^8 - c^10) : :

X(50937) lies on the nine-point circle and these lines: {2, 5897}, {4, 122}, {5, 35968}, {115, 393}, {123, 15763}, {125, 235}, {127, 1596}, {131, 11251}, {136, 37197}, {403, 16177}, {1559, 44436}, {1906, 46662}, {3089, 15613}, {3258, 10151}, {6389, 6624}, {13613, 20265}, {15311, 46065}, {33504, 44909}, {35488, 35969}, {37981, 46436}, {37984, 38971}, {38977, 44225}, {43831, 47600}

X(50937) = midpoint of X(4) and X(1301)
X(50937) = reflection of X(35968) in X(5)
X(50937) = complement of X(5897)
X(50937) = polar-circle-inverse of X(1294)
X(50937) = complement of the isogonal conjugate of X(15311)
X(50937) = medial isogonal conjugate of X(15311)
X(50937) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 15311}, {15311, 10}
X(50937) = X(4)-Ceva conjugate of X(15311)
X(50937) = barycentric product X(1559)*X(46065)


X(50938) = X(2)X(1301) ∩ X(4)X(127)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(2*a^6 - a^4*b^2 - b^6 - a^4*c^2 + b^4*c^2 + b^2*c^4 - c^6)*(a^8*b^2 - 2*a^6*b^4 + 2*a^2*b^8 - b^10 + a^8*c^2 + 2*a^6*b^2*c^2 - 2*a^2*b^6*c^2 - b^8*c^2 - 2*a^6*c^4 + 2*b^6*c^4 - 2*a^2*b^2*c^6 + 2*b^4*c^6 + 2*a^2*c^8 - b^2*c^8 - c^10) : :

X(50938) lies on the nine-point circle and these lines: {2, 1301}, {4, 127}, {25, 125}, {113, 2967}, {115, 235}, {122, 427}, {123, 37362}, {232, 33504}, {403, 38971}, {428, 20625}, {468, 16177}, {1560, 46425}, {1596, 14672}, {3258, 37981}, {3575, 46654}, {5064, 46662}, {5099, 10151}, {5139, 37197}, {5512, 6623}, {12145, 15526}, {13526, 13613}, {20208, 33584}, {35594, 40949}, {42426, 47225}, {46436, 47166}

X(50938) = midpoint of X(4) and X(1289)
X(50938) = complement of X(34168)
X(50938) = polar-circle-inverse of X(1297)
X(50938) = orthoptic-circle-of-Steiner-inellipse-inverse of X(1301)
X(50938) = complement of the isogonal conjugate of X(34146)
X(50938) = medial-isogonal conjugate of X(34146)
X(50938) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 34146}, {31, 16318}, {34146, 10}
X(50938) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 16318}, {4, 34146}
X(50938) = X(16318)-Dao conjugate of X(2)
X(50938) = barycentric quotient X(16318)/X(34168)


X(50939) = X(4)X(1288) ∩ X(24)X(124)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(2*a^10 - 5*a^8*b^2 + 4*a^6*b^4 - 2*a^4*b^6 + 2*a^2*b^8 - b^10 - 5*a^8*c^2 + 4*a^6*b^2*c^2 - 2*a^2*b^6*c^2 + 3*b^8*c^2 + 4*a^6*c^4 - 2*b^6*c^4 - 2*a^4*c^6 - 2*a^2*b^2*c^6 - 2*b^4*c^6 + 2*a^2*c^8 + 3*b^2*c^8 - c^10)*(a^12*b^2 - 4*a^10*b^4 + 5*a^8*b^6 - 5*a^4*b^10 + 4*a^2*b^12 - b^14 + a^12*c^2 - 2*a^10*b^2*c^2 + a^8*b^4*c^2 - 2*a^6*b^6*c^2 + 5*a^4*b^8*c^2 - 4*a^2*b^10*c^2 + b^12*c^2 - 4*a^10*c^4 + a^8*b^2*c^4 + 3*b^10*c^4 + 5*a^8*c^6 - 2*a^6*b^2*c^6 - 3*b^8*c^6 + 5*a^4*b^2*c^8 - 3*b^6*c^8 - 5*a^4*c^10 - 4*a^2*b^2*c^10 + 3*b^4*c^10 + 4*a^2*c^12 + b^2*c^12 - c^14) : :

X(50939) lies on the nine-point circle and these lines: {4, 1288}, {5, 35969}, {24, 125}, {115, 14576}, {122, 13371}, {127, 31723}, {235, 15241}, {6640, 35968}, {11819, 20625}, {16177, 44452}

X(50939) = midpoint of X(4) and X(1288)
X(50939) = reflection of X(35969) in X(5)


X(50940) = X(4)X(14733) ∩ X(5)X(46415)

Barycentrics    (2*a^6 - 2*a^5*b - 3*a^4*b^2 + 2*a^3*b^3 + 2*a^2*b^4 - b^6 - 2*a^5*c + 8*a^4*b*c - 2*a^3*b^2*c - 2*a^2*b^3*c - 4*a*b^4*c + 2*b^5*c - 3*a^4*c^2 - 2*a^3*b*c^2 + 4*a*b^3*c^2 + b^4*c^2 + 2*a^3*c^3 - 2*a^2*b*c^3 + 4*a*b^2*c^3 - 4*b^3*c^3 + 2*a^2*c^4 - 4*a*b*c^4 + b^2*c^4 + 2*b*c^5 - c^6)*(a^6*b^2 - 2*a^5*b^3 - a^4*b^4 + 4*a^3*b^5 - a^2*b^6 - 2*a*b^7 + b^8 + 4*a^4*b^3*c - 4*a^3*b^4*c - 4*a^2*b^5*c + 4*a*b^6*c + a^6*c^2 - 4*a^4*b^2*c^2 + 3*a^2*b^4*c^2 + 4*a*b^5*c^2 - 4*b^6*c^2 - 2*a^5*c^3 + 4*a^4*b*c^3 + 4*a^2*b^3*c^3 - 6*a*b^4*c^3 - a^4*c^4 - 4*a^3*b*c^4 + 3*a^2*b^2*c^4 - 6*a*b^3*c^4 + 6*b^4*c^4 + 4*a^3*c^5 - 4*a^2*b*c^5 + 4*a*b^2*c^5 - a^2*c^6 + 4*a*b*c^6 - 4*b^2*c^6 - 2*a*c^7 + c^8) : :

X(50940) lies on the nine-point circle and these lines: {4, 14733}, {5, 46415}, {11, 971}, {119, 3900}, {123, 5087}, {513, 44993}, {517, 5514}, {1566, 2717}, {3259, 7956}, {5511, 22835}, {5886, 15612}, {20620, 23710}, {31844, 46396}

X(50940) = reflection of X(46415) in X(5)
X(50940) = X(6)-complementary conjugate of X(43047)


X(50941) = X(2)X(99)∩X(476)X(691)

Barycentrics   (a^2 - b^2)*(a^2 - c^2)*(a^2 + b^2 - 2*c^2)*(a^2 - 2*b^2 + c^2)*(2*a^6 - 2*a^4*b^2 + a^2*b^4 - b^6 - 2*a^4*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6) : :

X(50941) lies on the cubic K010 and these lines: {2, 99}, {476, 691}, {523, 23348}, {892, 2395}, {895, 5967}, {1316, 5968}, {1640, 14999}, {1649, 47293}, {2394, 2396}, {2408, 34574}, {2502, 32221}, {5467, 23288}, {5468, 17708}, {7472, 8371}, {8029, 47291}, {9168, 47288}, {11123, 47289}, {16092, 45662}, {17948, 45331}, {21460, 46124}

X(50941) = X(i)-isoconjugate of X(j) for these (i,j): {842, 2642}, {896, 14998}, {922, 14223}
X(50941) = X(i)-Dao conjugate of X(j) for these (i, j): (15899, 14998), (23967, 690), (35582, 23992), (39061, 14223), (42426, 14273)
X(50941) = cevapoint of X(i) and X(j) for these (i,j): {1640, 45662}, {2493, 20403}
X(50941) = trilinear pole of line {542, 1550}
X(50941) = barycentric product X(i)*X(j) for these {i,j}: {99, 16092}, {542, 892}, {671, 14999}, {7473, 30786}
X(50941) = barycentric quotient X(i)/X(j) for these {i,j}: {111, 14998}, {542, 690}, {671, 14223}, {691, 842}, {892, 5641}, {895, 35909}, {1640, 1648}, {2247, 2642}, {5191, 351}, {5968, 23350}, {6041, 21906}, {6103, 14273}, {7473, 468}, {14999, 524}, {16092, 523}, {34761, 5967}, {36827, 46157}, {42743, 9155}, {45662, 1649}
X(50941) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2407, 14977, 892}, {4226, 5466, 691}


X(50942) = X(2)X(1637)∩X(478)X(1649)

Barycentrics    (b^2 - c^2)*(-2*a^2 + b^2 + c^2)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 - b^4*c^2 + 2*a^2*c^4 + 2*b^2*c^4 - 2*c^6)*(-a^6 + a^4*b^2 - 2*a^2*b^4 + 2*b^6 + a^4*c^2 - 2*b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6) : :

X(50942) lies on the cubic K010 and these lines: {2, 1637}, {468, 1649}, {523, 868}, {524, 18311}, {690, 5967}, {842, 2770}, {2394, 2395}, {2396, 2407}, {2793, 34174}, {5466, 10415}, {5486, 9003}, {5641, 18823}, {5664, 6390}, {9164, 45331}, {13574, 44010}, {24975, 36953}, {35522, 43084}

X(50942) = X(i)-isoconjugate of X(j) for these (i,j): {163, 16092}, {542, 36142}, {691, 2247}, {923, 14999}, {5191, 36085}, {7473, 36060}
X(50942) = X(i)-Dao conjugate of X(j) for these (i, j): (115, 16092), (1560, 7473), (1648, 45662), (1649, 1640), (2482, 14999), (21905, 6041), (23992, 542), (35582, 23967), (38988, 5191), (48317, 6103)
X(50942) = cevapoint of X(2492) and X(20403)
X(50942) = trilinear pole of line {690, 2682}
X(50942) = barycentric product X(i)*X(j) for these {i,j}: {524, 14223}, {690, 5641}, {842, 35522}, {1648, 6035}, {3266, 14998}, {5967, 34765}, {35909, 44146}, {35911, 37778}
X(50942) = barycentric quotient X(i)/X(j) for these {i,j}: {351, 5191}, {468, 7473}, {523, 16092}, {524, 14999}, {690, 542}, {842, 691}, {1648, 1640}, {1649, 45662}, {2642, 2247}, {5641, 892}, {5967, 34761}, {9155, 42743}, {14223, 671}, {14273, 6103}, {14998, 111}, {21906, 6041}, {23350, 5968}, {35909, 895}, {46157, 36827}
X(50942) = {X(7417),X(9168)}-harmonic conjugate of X(47219)


X(50943) = X(2)X(3904)∩X(514)X(42754)

Barycentrics    (2*a - b - c)*(b - c)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^3*c + 2*a^2*b*c + 2*a*b^2*c - 2*b^3*c + a^2*c^2 - 4*a*b*c^2 + b^2*c^2 + 2*a*c^3 + 2*b*c^3 - 2*c^4)*(a^4 - 2*a^3*b + a^2*b^2 + 2*a*b^3 - 2*b^4 + 2*a^2*b*c - 4*a*b^2*c + 2*b^3*c - 2*a^2*c^2 + 2*a*b*c^2 + b^2*c^2 - 2*b*c^3 + c^4) : :

X(50943) lies on the cubic K010 and these lines: {2, 3904}, {514, 42754}, {519, 23757}, {953, 2726}, {996, 23887}, {1000, 6366}, {1016, 2397}, {3762, 14628}, {23808, 37629}, {30725, 40218}, {35168, 46136}, {40437, 43728}

X(50943) = X(i)-isoconjugate of X(j) for these (i,j): {901, 2265}, {952, 32665}
X(50943) = X(i)-Dao conjugate of X(j) for these (i, j): (3310, 35013), (35092, 952), (38979, 2265)
X(50943) = trilinear pole of line {900, 3259}
X(50943) = barycentric product X(900)*X(46136)
X(50943) = barycentric quotient X(i)/X(j) for these {i,j}: {900, 952}, {953, 901}, {1635, 2265}, {3259, 35013}, {6550, 6075}, {30725, 43043}, {46041, 1320}, {46136, 4555}


X(50944) = X(99)X(112)∩X(523)X(1113)

Barycentrics    b^2*c^2*(b^2 - c^2)*(-a^2 + b^2 + c^2)*(a^2*(3*(a^2 - b^2 - c^2) - (a^2 - b^2 - c^2)*J) + 4*S^2)^2 : :
Barycentrics    (a^2 - b^2)*(a^2 - c^2)*(a^2*(-a^2 + b^2 + c^2)*(-1 + J) + (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(1 + J)) : :

X(50944) lies on the cubics K010, K011, K190, and K242, and these lines: {2, 2593}, {4, 16070}, {99, 112}, {523, 1113}, {525, 8115}, {879, 15461}, {2575, 6776}, {2580, 4560}, {3267, 46813}, {14618, 46815}, {15164, 23878}

X(50944) = reflection of X(i) in X(j) for these {i,j}: {2593, 8106}, {22340, 46811}
X(50944) = anticomplement of the isotomic conjugate of X(39298)
X(50944) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {163, 14807}, {1101, 22340}, {1113, 21294}, {1822, 13219}, {2576, 3448}, {39298, 6327}, {44123, 21221}
X(50944) = X(i)-Ceva conjugate of X(j) for these (i,j): {99, 1113}, {648, 8115}, {6331, 15164}, {39298, 2}
X(50944) = X(i)-cross conjugate of X(j) for these (i,j): {523, 22340}, {525, 2593}, {647, 2575}, {15167, 15461}
X(50944) = X(i)-isoconjugate of X(j) for these (i,j): {162, 15166}, {163, 1313}, {656, 41942}, {661, 15460}, {662, 44126}, {1114, 2578}, {1823, 8105}, {2574, 2577}, {2581, 42668}, {2582, 44124}, {14499, 36131}
X(50944) = X(i)-Dao conjugate of X(j) for these (i, j): (115, 1313), (125, 15166), (1084, 44126), (1312, 8105), (2575, 647), (8106, 523), (15167, 2574), (36830, 15460), (39008, 14499), (40596, 41942), (46811, 525)
X(50944) = cevapoint of X(i) and X(j) for these (i,j): {523, 8106}, {525, 46811}, {647, 2575}
X(50944) = crosspoint of X(i) and X(j) for these (i,j): {99, 46813}, {648, 46815}, {6331, 15164}
X(50944) = crosssum of X(3049) and X(42668)
X(50944) = trilinear pole of line {125, 1312}
X(50944) = crossdifference of every pair of points on line {15166, 20975}
X(50944) = barycentric product X(i)*X(j) for these {i,j}: {99, 1312}, {670, 44125}, {850, 15461}, {1113, 22340}, {2575, 15164}, {2580, 2583}, {2593, 8115}, {3267, 41941}, {6331, 15167}, {8106, 46813}, {14500, 16077}, {46811, 46815}
X(50944) = barycentric quotient X(i)/X(j) for these {i,j}: {110, 15460}, {112, 41942}, {512, 44126}, {523, 1313}, {647, 15166}, {1113, 1114}, {1312, 523}, {1822, 1823}, {2575, 2574}, {2576, 2577}, {2579, 2578}, {2580, 2581}, {2583, 2582}, {2585, 2584}, {2586, 2587}, {2589, 2588}, {2593, 2592}, {8106, 8105}, {8115, 8116}, {9033, 14499}, {14500, 9033}, {15164, 15165}, {15167, 647}, {15461, 110}, {22340, 22339}, {39241, 39240}, {39298, 39299}, {41941, 112}, {42667, 42668}, {44067, 44068}, {44123, 44124}, {44125, 512}, {46166, 46167}, {46811, 46814}, {46813, 46810}, {46815, 46812}
X(50944) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {99, 39298, 4235}, {648, 39298, 2407}


X(50945) = X(99)X(112)∩X(523)X(1114)

Barycentrics    b^2*c^2*(b^2 - c^2)*(-a^2 + b^2 + c^2)*(a^2*(3*(a^2 - b^2 - c^2) + (a^2 - b^2 - c^2)*J) + 4*S^2)^2 : :
Barycentrics    (a^2 - b^2)*(a^2 - c^2)*(a^2*(-a^2 + b^2 + c^2)*(1 + J) - (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(1 - J)) : :

X(50945) lies on the cubics K010, K011, K190, and K242, and these lines: {2, 2592}, {4, 16071}, {99, 112}, {523, 1114}, {525, 8116}, {879, 15460}, {2574, 6776}, {2581, 4560}, {3267, 46810}, {14618, 46812}, {15165, 23878}

X(50945) = reflection of X(i) in X(j) for these {i,j}: {2592, 8105}, {22339, 46814}
X(50945) = anticomplement of the isotomic conjugate of X(39299)
X(50945) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {163, 14808}, {1101, 22339}, {1114, 21294}, {1823, 13219}, {2577, 3448}, {39299, 6327}, {44124, 21221}
X(50945) = X(i)-Ceva conjugate of X(j) for these (i,j): {99, 1114}, {648, 8116}, {6331, 15165}, {39299, 2}
X(50945) = X(i)-cross conjugate of X(j) for these (i,j): {523, 22339}, {525, 2592}, {647, 2574}, {15166, 15460}
X(50945) = X(i)-isoconjugate of X(j) for these (i,j): {162, 15167}, {163, 1312}, {656, 41941}, {661, 15461}, {662, 44125}, {1113, 2579}, {1822, 8106}, {2575, 2576}, {2580, 42667}, {2583, 44123}, {14500, 36131}
X(50945) = X(i)-Dao conjugate of X(j) for these (i, j): (115, 1312), (125, 15167), (1084, 44125), (1313, 8106), (2574, 647), (8105, 523), (15166, 2575), (36830, 15461), (39008, 14500), (40596, 41941), (46814, 525)
X(50945) = cevapoint of X(i) and X(j) for these (i,j): {523, 8105}, {525, 46814}, {647, 2574}
X(50945) = crosspoint of X(i) and X(j) for these (i,j): {99, 46810}, {648, 46812}, {6331, 15165}
X(50945) = crosssum of X(3049) and X(42667)
X(50945) = trilinear pole of line {125, 1313}
X(50945) = crossdifference of every pair of points on line {15167, 20975}
X(50945) = barycentric product X(i)*X(j) for these {i,j}: {99, 1313}, {670, 44126}, {850, 15460}, {1114, 22339}, {2574, 15165}, {2581, 2582}, {2592, 8116}, {3267, 41942}, {6331, 15166}, {8105, 46810}, {14499, 16077}, {46812, 46814}
X(50945) = barycentric quotient X(i)/X(j) for these {i,j}: {110, 15461}, {112, 41941}, {512, 44125}, {523, 1312}, {647, 15167}, {1114, 1113}, {1313, 523}, {1823, 1822}, {2574, 2575}, {2577, 2576}, {2578, 2579}, {2581, 2580}, {2582, 2583}, {2584, 2585}, {2587, 2586}, {2588, 2589}, {2592, 2593}, {8105, 8106}, {8116, 8115}, {9033, 14500}, {14499, 9033}, {15165, 15164}, {15166, 647}, {15460, 110}, {22339, 22340}, {39240, 39241}, {39299, 39298}, {41942, 112}, {42668, 42667}, {44068, 44067}, {44124, 44123}, {44126, 512}, {46167, 46166}, {46810, 46813}, {46812, 46815}, {46814, 46811}
X(50945) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {99, 39299, 4235}, {648, 39299, 2407}


X(50946) = X(476)X(38861)∩X(523)X(2070)

Barycentrics    (b^2 - c^2)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 2*a^4*c^2 - 2*a^2*b^2*c^2 - 2*b^4*c^2 + a^2*c^4 + b^2*c^4)*(a^6 - 2*a^4*b^2 + a^2*b^4 - a^4*c^2 - 2*a^2*b^2*c^2 + b^4*c^2 - a^2*c^4 - 2*b^2*c^4 + c^6) : :

X(50946) lies on the X-parabola of ABC (see X(12065)) and these lines: {476, 38861}, {523, 2070}, {850, 924}, {1166, 2413}, {1179, 18808}, {1510, 11583}, {2501, 3050}, {3447, 15959}, {5466, 40393}, {10412, 20188}, {15047, 38539}, {15328, 40441}

X(50946) = polar conjugate of X(41677)
X(50946) = isogonal conjugate of the anticomplement of X(8901)
X(50946) = X(2216)-anticomplementary conjugate of X(11671)
X(50946) = X(i)-isoconjugate of X(j) for these (i,j): {48, 41677}, {101, 16698}, {162, 1216}, {163, 37636}, {570, 662}, {811, 23195}, {1209, 36134}, {1238, 32676}, {1594, 4575}, {4592, 47328}
X(50946) = X(i)-Dao conjugate of X(j) for these (i, j): (115, 37636), (125, 1216), (136, 1594), (137, 1209), (338, 1225), (1015, 16698), (1084, 570), (1249, 41677), (5139, 47328), (15450, 42445), (15526, 1238), (17423, 23195), (20625, 41590), (45161, 41578)
X(50946) = cevapoint of X(i) and X(j) for these (i,j): {512, 12077}, {523, 1510}
X(50946) = trilinear pole of line {115, 137}
X(50946) = crossdifference of every pair of points on line {570, 1216}
X(50946) = barycentric product X(i)*X(j) for these {i,j}: {523, 40393}, {525, 1179}, {1166, 18314}, {1577, 2216}, {14618, 40441}, {15412, 40449}
X(50946) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 41677}, {512, 570}, {513, 16698}, {523, 37636}, {525, 1238}, {647, 1216}, {1166, 18315}, {1179, 648}, {2216, 662}, {2489, 47328}, {2501, 1594}, {3049, 23195}, {12077, 1209}, {15451, 42445}, {16040, 41590}, {18314, 1225}, {40393, 99}, {40441, 4558}, {40449, 14570}


X(50947) = X(2)X(8901)∩X(3)X(2888)

Barycentrics    a^2*(a^2 - b^2)*(a^2 - c^2)*(a^4*b^2 - 2*a^2*b^4 + b^6 + a^4*c^2 - 2*a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6) : :

X(50947) lies on these lines: {2, 8901}, {3, 2888}, {22, 147}, {99, 925}, {100, 48391}, {107, 43351}, {110, 351}, {323, 44886}, {476, 20189}, {542, 23217}, {930, 25149}, {933, 14590}, {1995, 7665}, {2439, 14586}, {3135, 45794}, {3964, 26283}, {4230, 11794}, {7468, 47293}, {7495, 20775}, {8907, 16391}, {9155, 45237}, {11005, 13558}, {12121, 46585}, {14611, 40049}, {14918, 19189}, {14966, 35319}, {15019, 35222}, {23195, 37636}, {23286, 43969}

X(50947) = anticomplement of X(8901)
X(50947) = isogonal conjugate of the polar conjugate of X(41677)
X(50947) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {249, 21271}, {1101, 3}, {1625, 21221}, {2617, 3448}, {4575, 44003}, {14570, 21294}, {23357, 17479}, {24000, 5889}, {24041, 2979}
X(50947) = X(14587)-Ceva conjugate of X(3)
X(50947) = X(i)-isoconjugate of X(j) for these (i,j): {523, 2216}, {656, 1179}, {661, 40393}, {1166, 2618}, {2616, 40449}, {24006, 40441}
X(50947) = X(i)-Dao conjugate of X(j) for these (i, j): (570, 18314), (1209, 523), (36830, 40393), (37636, 41298), (40596, 1179)
X(50947) = crosspoint of X(i) and X(j) for these (i,j): {99, 18315}, {110, 930}
X(50947) = crosssum of X(i) and X(j) for these (i,j): {512, 12077}, {523, 1510}
X(50947) = trilinear pole of line {570, 1216}
X(50947) = crossdifference of every pair of points on line {115, 137}
X(50947) = barycentric product X(i)*X(j) for these {i,j}: {3, 41677}, {99, 570}, {100, 16698}, {110, 37636}, {112, 1238}, {648, 1216}, {1209, 18315}, {1225, 14586}, {1594, 4558}, {4563, 47328}, {6331, 23195}, {16039, 41590}, {18831, 42445}
X(50947) = barycentric quotient X(i)/X(j) for these {i,j}: {110, 40393}, {112, 1179}, {163, 2216}, {570, 523}, {1209, 18314}, {1216, 525}, {1225, 15415}, {1238, 3267}, {1594, 14618}, {1625, 40449}, {14586, 1166}, {16698, 693}, {23195, 647}, {32661, 40441}, {37636, 850}, {41677, 264}, {42445, 6368}, {47328, 2501}
X(50947) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 23181, 15329}, {110, 36829, 23181}, {1634, 23181, 110}, {1634, 36829, 15329}


X(50948) = (name pending)

Barycentrics    a^2 (a^8+2 a^7 b-2 a^6 b^2-6 a^5 b^3+6 a^3 b^5+2 a^2 b^6-2 a b^7-b^8+2 a^7 c+a^6 b c-7 a^5 b^2 c-4 a^4 b^3 c+8 a^3 b^4 c+5 a^2 b^5 c-3 a b^6 c-2 b^7 c-2 a^6 c^2-7 a^5 b c^2-5 a^4 b^2 c^2+6 a^3 b^3 c^2+7 a^2 b^4 c^2+a b^5 c^2-6 a^5 c^3-4 a^4 b c^3+6 a^3 b^2 c^3+6 a^2 b^3 c^3+4 a b^4 c^3+2 b^5 c^3+8 a^3 b c^4+7 a^2 b^2 c^4+4 a b^3 c^4+2 b^4 c^4+6 a^3 c^5+5 a^2 b c^5+a b^2 c^5+2 b^3 c^5+2 a^2 c^6-3 a b c^6-2 a c^7-2 b c^7-c^8) : :
Barycentrics    (SB+SC) (-4 a b SA-5 a c SA-3 b c SA-2 R^2 SA+a b SC-a c SC-a b SW-b c SW-4 SA SW) : :

See Kadir Altintas and Ercole Suppa, euclid 5269.

X(50948) lies on this line: {3, 6}

X(50948) = trilinear quotient X(3)/X(36744)


X(50949) = X(8)X(599)∩X(524)X(3416)

Barycentrics    4*a^3 - 2*a^2*b + a*b^2 - 5*b^3 - 2*a^2*c - 5*b^2*c + a*c^2 - 5*b*c^2 - 5*c^3 : :
X(50949) = 5 X[2] - 3 X[38315], 3 X[38315] + 5 X[50783], 5 X[10] - 3 X[38089], 5 X[597] - 6 X[38089], 5 X[141] - 2 X[49465], 2 X[4669] + X[22165], 5 X[3416] + X[3751], 3 X[3416] + X[47359], 2 X[3416] + X[49524], 5 X[3679] - X[3751], 3 X[3679] - X[47359], 3 X[3751] - 5 X[47359], 2 X[3751] - 5 X[49524], 2 X[47359] - 3 X[49524], 2 X[1386] - 3 X[48310], 4 X[3828] - 3 X[48310], 5 X[1698] - 3 X[38023], X[1992] - 5 X[3617], X[1992] - 3 X[38087], 5 X[3617] - 3 X[38087], X[3241] - 3 X[21358], X[3242] - 3 X[21356], 3 X[21356] + X[31145], 2 X[3589] - 3 X[19875], 3 X[19875] - X[47356], 7 X[3619] - X[49679], 5 X[3620] + X[49690], X[3629] - 6 X[38098], X[3630] + 2 X[49529], 2 X[3631] + X[49688], 5 X[3763] - 3 X[38314], X[4663] - 4 X[4691], 7 X[4678] + X[11160], 4 X[4745] - X[8584], X[8584] + 4 X[50786], 3 X[5657] - X[43273], 3 X[5790] - X[20423], 5 X[5818] - 3 X[38072], X[11179] - 3 X[38066], X[15533] - 5 X[50782], 3 X[25055] - 4 X[34573], 3 X[25055] - X[49681], 4 X[34573] - X[49681], X[34631] - 5 X[40330], 3 X[38086] - 5 X[40333], 4 X[41152] - 5 X[50784]

X(50949) lies on these lines: {1, 20582}, {2, 5846}, {8, 599}, {10, 597}, {141, 519}, {517, 47354}, {518, 3919}, {524, 3416}, {528, 50097}, {536, 49630}, {542, 5690}, {551, 3844}, {594, 49720}, {752, 49726}, {984, 17225}, {1350, 34627}, {1352, 34718}, {1386, 3828}, {1503, 3654}, {1698, 38023}, {1992, 3617}, {2836, 50919}, {3241, 21358}, {3242, 21356}, {3589, 19875}, {3619, 49679}, {3620, 49690}, {3629, 38098}, {3630, 49529}, {3631, 49688}, {3703, 4141}, {3755, 28329}, {3763, 38314}, {3773, 28562}, {3883, 41310}, {3932, 50296}, {4364, 32847}, {4645, 49727}, {4663, 4691}, {4677, 9053}, {4678, 11160}, {4711, 9004}, {4745, 5847}, {4971, 48829}, {5233, 12035}, {5648, 50920}, {5657, 43273}, {5790, 20423}, {5818, 38072}, {9055, 50086}, {9881, 12783}, {11179, 38066}, {15533, 50782}, {17237, 49762}, {17243, 33076}, {17313, 48849}, {17390, 48830}, {22791, 25561}, {25055, 34573}, {28208, 48881}, {28309, 50080}, {28337, 50282}, {28503, 49741}, {29615, 32850}, {31143, 33091}, {32217, 47496}, {34631, 40330}, {34632, 36990}, {34641, 49511}, {38086, 40333}, {41152, 50784}, {41311, 49476}, {47353, 50810}, {48798, 48862}, {48804, 48834}, {48851, 49738}, {49737, 50295}

X(50949) = midpoint of X(i) and X(j) for these {i,j}: {2, 50783}, {8, 599}, {1350, 34627}, {1352, 34718}, {3242, 31145}, {3416, 3679}, {4669, 50781}, {4677, 47358}, {4745, 50786}, {5648, 50920}, {34632, 36990}, {34641, 49511}, {47353, 50810}, {48798, 48862}, {48804, 48834}
X(50949) = reflection of X(i) in X(j) for these {i,j}: {1, 20582}, {551, 3844}, {597, 10}, {1386, 3828}, {22165, 50781}, {22791, 25561}, {32217, 47496}, {47356, 3589}, {49524, 3679}, {50112, 48821}
X(50949) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1386, 3828, 48310}, {1992, 3617, 38087}, {19875, 47356, 3589}, {21356, 31145, 3242}


X(50950) = X(1)X(599)∩X(524)X(3416)

Barycentrics    5*a^3 + 2*a^2*b - a*b^2 - 4*b^3 + 2*a^2*c - 4*b^2*c - a*c^2 - 4*b*c^2 - 4*c^3 : :
X(50950) = 4 X[2] - 3 X[16475], 7 X[2] - 6 X[38049], 7 X[16475] - 8 X[38049], 3 X[16475] - 8 X[50781], 3 X[38049] - 7 X[50781], 2 X[6] - 3 X[19875], 4 X[69] - X[16496], 5 X[69] - 2 X[49505], X[3875] - 4 X[50304], 5 X[16496] - 8 X[49505], 4 X[49630] - 3 X[50080], 8 X[141] - 5 X[16491], 4 X[141] - 3 X[25055], 5 X[16491] - 6 X[25055], 5 X[16491] - 4 X[47356], 3 X[25055] - 2 X[47356], 3 X[165] - 2 X[43273], X[4677] + 2 X[15533], 4 X[3416] - X[3751], 3 X[3416] - X[47359], 5 X[3416] - 2 X[49524], 3 X[3679] - 2 X[47359], 5 X[3679] - 4 X[49524], 3 X[3751] - 4 X[47359], 5 X[3751] - 8 X[49524], 5 X[47359] - 6 X[49524], 2 X[551] - 3 X[21356], 4 X[597] - 5 X[1698], 2 X[1386] - 3 X[21358], 3 X[1699] - 4 X[47354], 3 X[3524] - 2 X[39870], 7 X[3619] - 6 X[19883], 5 X[3620] - 3 X[38314], 5 X[3620] - 2 X[49684], 3 X[38314] - 2 X[49684], 7 X[3624] - 8 X[20582], 7 X[3624] - 6 X[38023], 4 X[20582] - 3 X[38023], 2 X[3630] + X[49688], 4 X[3631] - X[49681], 8 X[3844] - 7 X[19876], 4 X[3844] - 3 X[47352], 7 X[19876] - 6 X[47352], 2 X[4663] - 3 X[38087], 3 X[5587] - 2 X[20423], X[7982] - 4 X[34507], 7 X[7989] - 6 X[38072], X[7991] + 2 X[15069], 4 X[8550] - 7 X[9588], 2 X[8584] - 3 X[38047], 7 X[9780] - 6 X[38089], 4 X[9956] - 3 X[14848], 6 X[10516] - 5 X[30308], X[11008] - 6 X[38098], 4 X[11178] - 3 X[38021], 2 X[11477] - 5 X[37714], X[15534] - 5 X[50782], 4 X[19662] - 3 X[38220], X[20080] + 2 X[49529], 7 X[31423] - 6 X[38064], 3 X[38315] - 7 X[50785], 8 X[41152] - 7 X[50792]

X(50950) lies on these lines: {1, 599}, {2, 5847}, {6, 19875}, {8, 11160}, {10, 1992}, {30, 39885}, {40, 542}, {63, 4141}, {69, 519}, {141, 16491}, {165, 43273}, {319, 49720}, {518, 4677}, {524, 3416}, {528, 50076}, {540, 48812}, {551, 21356}, {597, 1698}, {612, 31143}, {752, 17294}, {1350, 34628}, {1352, 31162}, {1386, 21358}, {1699, 47354}, {1707, 50104}, {2796, 50089}, {3241, 49511}, {3242, 34747}, {3524, 39870}, {3564, 3654}, {3619, 19883}, {3620, 38314}, {3624, 20582}, {3630, 49688}, {3631, 49681}, {3632, 9041}, {3655, 48876}, {3729, 28558}, {3844, 19876}, {3879, 48830}, {3886, 28562}, {4645, 29617}, {4654, 12588}, {4663, 38087}, {4669, 34379}, {4725, 48829}, {4769, 14645}, {4851, 49740}, {4933, 35258}, {5587, 20423}, {5695, 50084}, {5846, 22165}, {5880, 50098}, {5921, 34632}, {5969, 9875}, {7982, 34507}, {7989, 38072}, {7991, 15069}, {8550, 9588}, {8584, 38047}, {9001, 50764}, {9053, 50789}, {9780, 38089}, {9830, 13174}, {9956, 14848}, {10516, 30308}, {11008, 38098}, {11178, 38021}, {11180, 28194}, {11477, 37714}, {11898, 34718}, {14927, 34638}, {15534, 50782}, {16833, 31151}, {17133, 24248}, {17225, 49445}, {17270, 48809}, {17271, 48854}, {17378, 48851}, {17594, 32852}, {18440, 28198}, {19662, 38220}, {20080, 49529}, {24452, 40341}, {24695, 50118}, {24723, 50121}, {28208, 33878}, {28534, 50087}, {28580, 50079}, {29573, 32846}, {29574, 50295}, {29594, 50303}, {29615, 50314}, {29828, 31179}, {31144, 39586}, {31423, 38064}, {32220, 47496}, {38315, 50785}, {41152, 50792}, {47353, 50865}, {48805, 50081}, {48821, 50131}, {49496, 50094}, {50091, 50129}, {50299, 50308}

X(50950) = midpoint of X(i) and X(j) for these {i,j}: {8, 11160}, {5921, 34632}, {11898, 34718}, {15533, 50783}
X(50950) = reflection of X(i) in X(j) for these {i,j}: {1, 599}, {2, 50781}, {1992, 10}, {3241, 49511}, {3655, 48876}, {3679, 3416}, {3751, 3679}, {4669, 50786}, {4677, 50783}, {5695, 50084}, {14927, 34638}, {24695, 50118}, {31162, 1352}, {32220, 47496}, {34628, 1350}, {34747, 3242}, {47356, 141}, {47358, 22165}, {48805, 50081}, {48818, 48834}, {49496, 50094}, {50126, 17294}, {50129, 50091}, {50131, 48821}, {50303, 29594}, {50865, 47353}
X(50950) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {141, 47356, 25055}, {3844, 47352, 19876}, {20582, 38023, 3624}, {25055, 47356, 16491}, {32846, 50296, 29573}


X(50951) = X(2)X(9053)∩X(524)X(3416)

Barycentrics    2*a^3 - 10*a^2*b + 5*a*b^2 - 7*b^3 - 10*a^2*c - 7*b^2*c + 5*a*c^2 - 7*b*c^2 - 7*c^3 : :
X(50951) = 5 X[2] - X[50790], X[8] + 3 X[38087], X[597] - 3 X[38087], 5 X[4745] - X[50787], X[3416] - 5 X[3679], 7 X[3416] + 5 X[3751], 3 X[3416] + 5 X[47359], X[3416] + 5 X[49524], 7 X[3679] + X[3751], 3 X[3679] + X[47359], 3 X[3751] - 7 X[47359], X[3751] - 7 X[49524], X[47359] - 3 X[49524], X[599] - 5 X[3617], X[1992] + 7 X[4678], X[3241] - 3 X[48310], X[3625] + 3 X[38089], 4 X[3626] + X[20583], X[3631] - 6 X[38098], X[3631] + 2 X[49529], 3 X[38098] + X[49529], X[3632] + 3 X[38023], X[4669] + 3 X[38191], X[4677] + 3 X[38047], X[5476] - 3 X[38165], 3 X[38165] + X[50823], 3 X[5790] - X[47354], X[11178] - 3 X[38081], X[12245] + 3 X[38072], X[12645] + 3 X[38064], 3 X[16475] - 4 X[41153], 3 X[16475] + X[50789], 4 X[41153] + X[50789], 3 X[19875] - 2 X[34573], 3 X[19875] + X[49688], 2 X[34573] + X[49688], 5 X[22165] - 7 X[50785], X[31145] + 3 X[47352], 3 X[38029] + X[50804], 3 X[38035] + X[50817], 3 X[38040] + X[50830], 3 X[38046] + X[50838], 3 X[38116] + X[50798], 3 X[38144] + X[50810], 3 X[38185] + X[50835], 3 X[38192] + X[50842], 3 X[38314] + X[49690]

X(50951) lies on these lines: {2, 9053}, {8, 597}, {10, 9041}, {141, 28635}, {518, 3968}, {519, 3589}, {524, 3416}, {545, 49630}, {599, 3617}, {1386, 34641}, {1992, 4678}, {3241, 48310}, {3625, 38089}, {3626, 20583}, {3631, 38098}, {3632, 38023}, {3654, 29181}, {3696, 17225}, {3717, 49737}, {4141, 33162}, {4669, 5846}, {4677, 38047}, {4901, 41312}, {5476, 38165}, {5480, 34718}, {5790, 47354}, {5847, 41149}, {6329, 47356}, {7227, 49720}, {8584, 50783}, {8705, 47488}, {11178, 38081}, {12245, 38072}, {12645, 38064}, {16475, 41153}, {19875, 34573}, {22165, 50785}, {28297, 48829}, {31145, 47352}, {32218, 47496}, {33165, 49740}, {34627, 44882}, {38029, 50804}, {38035, 50817}, {38040, 50830}, {38046, 50838}, {38116, 50798}, {38144, 50810}, {38185, 50835}, {38192, 50842}, {38314, 49690}, {48804, 48845}

X(50951) = midpoint of X(i) and X(j) for these {i,j}: {8, 597}, {1386, 34641}, {3679, 49524}, {5476, 50823}, {5480, 34718}, {8584, 50783}, {34627, 44882}, {48804, 48845}
X(50951) = reflection of X(i) in X(j) for these {i,j}: {20582, 10}, {32218, 47496}, {47356, 6329}
X(50951) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 38087, 597}, {38165, 50823, 5476}


X(50952) = X(1)X(1992)∩X(524)X(3416)

Barycentrics    7*a^3 + 10*a^2*b - 5*a*b^2 - 2*b^3 + 10*a^2*c - 2*b^2*c - 5*a*c^2 - 2*b*c^2 - 2*c^3 : :
X(50952) = 5 X[2] - 4 X[50787], 4 X[6] - 3 X[25055], 2 X[69] - 3 X[19875], 5 X[15534] - X[50790], 4 X[3416] - 5 X[3679], 2 X[3416] - 5 X[3751], 3 X[3416] - 5 X[47359], 7 X[3416] - 10 X[49524], 3 X[3679] - 4 X[47359], 7 X[3679] - 8 X[49524], 3 X[3751] - 2 X[47359], 7 X[3751] - 4 X[49524], 7 X[47359] - 6 X[49524], 2 X[551] - 3 X[5032], 8 X[576] - 5 X[11522], 8 X[597] - 7 X[3624], 4 X[599] - 5 X[1698], 5 X[1698] - 8 X[4663], 3 X[1699] - 4 X[20423], 4 X[3629] - X[16496], 5 X[8227] - 6 X[14848], 4 X[8584] - 3 X[16475], 3 X[16475] - 2 X[47358], X[9589] - 4 X[11477], 7 X[9624] - 10 X[11482], X[11008] + 2 X[49529], 6 X[14853] - 5 X[30308], 5 X[15533] - 7 X[50785], 5 X[16491] - 8 X[32455], 17 X[19872] - 16 X[20582], 7 X[19876] - 6 X[21356], 4 X[20583] - 3 X[38023], 2 X[22165] - 3 X[38047], 3 X[38314] - 2 X[49505], 2 X[49630] - 3 X[50282]

X(50952) lies on these lines: {1, 1992}, {2, 34379}, {6, 16590}, {10, 11160}, {30, 39878}, {69, 19875}, {193, 519}, {518, 3899}, {524, 3416}, {542, 5691}, {551, 5032}, {576, 11522}, {597, 3624}, {599, 1698}, {1351, 31162}, {1353, 3655}, {1699, 20423}, {1757, 29573}, {2796, 49495}, {3629, 16496}, {3632, 28538}, {3633, 9041}, {3654, 34380}, {3894, 9004}, {4141, 32912}, {4416, 48830}, {4677, 5847}, {4715, 50080}, {4912, 49486}, {5220, 50125}, {5850, 49543}, {5921, 34648}, {6776, 34628}, {8227, 14848}, {8584, 16475}, {9589, 11477}, {9624, 11482}, {9881, 14645}, {10436, 50309}, {11008, 49529}, {14853, 30308}, {15533, 50785}, {16491, 32455}, {17274, 50283}, {19872, 20582}, {19876, 21356}, {20583, 38023}, {22165, 38047}, {28198, 44456}, {28208, 39899}, {28558, 49497}, {31145, 49536}, {32935, 50089}, {38314, 49505}, {48851, 50074}, {49630, 50282}

X(50952) = reflection of X(i) in X(j) for these {i,j}: {1, 1992}, {599, 4663}, {3655, 1353}, {3679, 3751}, {5921, 34648}, {11160, 10}, {16496, 47356}, {17274, 50283}, {31145, 49536}, {31162, 1351}, {34628, 6776}, {47356, 3629}, {47358, 8584}, {50089, 32935}
X(50952) = {X(8584),X(47358)}-harmonic conjugate of X(16475)


X(50953) = X(1)X(38087)∩X(524)X(3416)

Barycentrics    a^3 - 14*a^2*b + 7*a*b^2 - 8*b^3 - 14*a^2*c - 8*b^2*c + 7*a*c^2 - 8*b*c^2 - 8*c^3 : :
X(50953) = X[1] - 6 X[38087], X[2] - 6 X[38191], X[69] - 6 X[38098], X[145] - 6 X[38089], 8 X[3618] - 5 X[16491], 2 X[3416] - 7 X[3679], 8 X[3416] + 7 X[3751], 3 X[3416] + 7 X[47359], X[3416] + 14 X[49524], 4 X[3679] + X[3751], 3 X[3679] + 2 X[47359], X[3679] + 4 X[49524], 3 X[3751] - 8 X[47359], X[3751] - 16 X[49524], X[47359] - 6 X[49524], 4 X[597] + X[3632], X[1992] + 4 X[3626], 2 X[3242] - 7 X[19876], X[3620] + 2 X[49529], X[3633] - 6 X[38023], X[3656] - 6 X[38165], 4 X[3763] - X[16496], 2 X[3763] - 3 X[19875], X[16496] - 6 X[19875], 2 X[4677] + 3 X[16475], 7 X[4745] - 2 X[50788], 4 X[5476] + X[50817], X[11531] - 6 X[38072], 3 X[21356] + 2 X[49536], 3 X[25055] + 2 X[49688], X[26726] - 6 X[38090], X[34747] - 6 X[47352], 3 X[37712] + 2 X[43273], 6 X[38116] - X[50811], 6 X[38118] - X[50818], 6 X[38144] - X[50865], 6 X[38146] - X[50872], 6 X[38167] - X[50805], 6 X[38190] - X[50836], 6 X[38192] - X[50891], 6 X[38194] - X[50839], 6 X[38197] - X[50894]

X(50953) lies on these lines: {1, 38087}, {2, 38191}, {69, 38098}, {145, 38089}, {518, 50791}, {519, 3618}, {524, 3416}, {597, 3632}, {1698, 9041}, {1992, 3626}, {3242, 19876}, {3620, 49529}, {3633, 38023}, {3656, 38165}, {3763, 16496}, {4141, 17594}, {4668, 28538}, {4677, 16475}, {4745, 50788}, {5476, 50817}, {11531, 38072}, {21356, 49536}, {25055, 49688}, {26726, 38090}, {28301, 50080}, {28322, 48829}, {34747, 47352}, {37712, 43273}, {38116, 50811}, {38118, 50818}, {38144, 50865}, {38146, 50872}, {38167, 50805}, {38190, 50836}, {38192, 50891}, {38194, 50839}, {38197, 50894}


X(50954) = X(381)X(524)∩X(382)X(599)

Barycentrics    13*a^6 - 10*a^4*b^2 + 11*a^2*b^4 - 14*b^6 - 10*a^4*c^2 + 30*a^2*b^2*c^2 + 14*b^4*c^2 + 11*a^2*c^4 + 14*b^2*c^4 - 14*c^6 : :
X(50954) = 2 X[69] + 3 X[14269], 8 X[141] - 3 X[15688], X[193] - 6 X[38071], 7 X[381] - 2 X[1351], X[381] + 4 X[1352], 13 X[381] - 8 X[5480], 4 X[381] + X[11898], 9 X[381] - 4 X[20423], 3 X[381] - 8 X[47354], X[1351] + 14 X[1352], 13 X[1351] - 28 X[5480], 8 X[1351] + 7 X[11898], 9 X[1351] - 14 X[20423], 3 X[1351] - 28 X[47354], 13 X[1352] + 2 X[5480], 16 X[1352] - X[11898], 9 X[1352] + X[20423], 3 X[1352] + 2 X[47354], 32 X[5480] + 13 X[11898], 18 X[5480] - 13 X[20423], 3 X[5480] - 13 X[47354], 9 X[11898] + 16 X[20423], 3 X[11898] + 32 X[47354], X[20423] - 6 X[47354], X[382] + 4 X[599], X[382] - 16 X[18553], X[599] + 4 X[18553], 4 X[546] + X[11160], 4 X[547] + X[5921], 4 X[549] + X[48662], 8 X[597] - 13 X[5079], 2 X[1992] - 7 X[3851], 7 X[3534] - 12 X[31884], X[3534] + 4 X[47353], 3 X[31884] + 7 X[47353], 2 X[3618] - 3 X[5055], X[3618] - 4 X[18358], 4 X[3618] - X[39899], 3 X[5055] + 2 X[11180], 3 X[5055] - 8 X[18358], 6 X[5055] - X[39899], X[11180] + 4 X[18358], 4 X[11180] + X[39899], 16 X[18358] - X[39899], 14 X[3619] - 9 X[15707], 4 X[3763] - 3 X[5054], 7 X[3763] - 4 X[5092], and many others

X(50954) lies on these lines: {30, 3620}, {69, 14269}, {141, 15688}, {193, 38071}, {381, 524}, {382, 599}, {518, 50797}, {542, 1656}, {546, 11160}, {547, 5921}, {549, 48662}, {597, 5079}, {1503, 15693}, {1992, 3851}, {3534, 29012}, {3564, 19709}, {3618, 5055}, {3619, 15707}, {3763, 5054}, {3818, 38335}, {3839, 44456}, {5032, 11737}, {5066, 5093}, {5072, 14848}, {5847, 50806}, {6776, 15703}, {10109, 14912}, {10516, 39561}, {10519, 15685}, {11161, 38743}, {11539, 39874}, {11645, 14093}, {13169, 38789}, {15046, 15303}, {15681, 21356}, {15684, 48876}, {15694, 40330}, {15700, 21358}, {15706, 46264}, {15720, 20582}, {15723, 24206}, {19924, 35434}, {34379, 50799}, {34380, 41099}, {35400, 48874}, {38083, 39878}, {40107, 49137}

X(50954) = midpoint of X(3618) and X(11180)
X(50954) = reflection of X(i) in X(j) for these {i,j}: {3763, 11178}, {15694, 40330}
X(50954) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5055, 11180, 39899}, {11178, 18440, 5054}, {11180, 18358, 5055}, {14848, 25561, 5072}, {15069, 25561, 14848}, {21356, 39884, 15681}


X(50955) = X(30)X(69)∩X(381)X(524)

Barycentrics    5*a^6 - 8*a^4*b^2 + 7*a^2*b^4 - 4*b^6 - 8*a^4*c^2 + 6*a^2*b^2*c^2 + 4*b^4*c^2 + 7*a^2*c^4 + 4*b^2*c^4 - 4*c^6 : :
X(50955) = 4 X[2] - 3 X[5050], 5 X[2] - 3 X[14912], 13 X[2] - 9 X[33748], 7 X[2] - 6 X[38110], 5 X[5050] - 4 X[14912], 13 X[5050] - 12 X[33748], 7 X[5050] - 8 X[38110], 13 X[14912] - 15 X[33748], 7 X[14912] - 10 X[38110], 21 X[33748] - 26 X[38110], X[3] + 2 X[15069], X[3] - 4 X[34507], 5 X[3] - 8 X[40107], 3 X[3] - 2 X[43273], 5 X[599] - 4 X[40107], 3 X[599] - X[43273], 2 X[5181] + X[32272], X[15069] + 2 X[34507], 5 X[15069] + 4 X[40107], 3 X[15069] + X[43273], X[32254] + 8 X[32275], X[32254] + 2 X[32306], 4 X[32275] - X[32306], 5 X[34507] - 2 X[40107], 6 X[34507] - X[43273], 12 X[40107] - 5 X[43273], 8 X[5] - 5 X[11482], 4 X[5] - 3 X[14848], 4 X[1992] - 5 X[11482], 2 X[1992] - 3 X[14848], 5 X[11482] - 6 X[14848], 2 X[6] - 3 X[5055], X[6] - 4 X[43150], 3 X[5055] - 4 X[11178], 3 X[5055] - 8 X[43150], 2 X[69] + X[18440], 4 X[69] - X[33878], 4 X[11180] + X[33878], 2 X[18440] + X[33878], 4 X[141] - 3 X[5054], 8 X[141] - 5 X[12017], 4 X[141] - X[39899], 3 X[5054] - 2 X[11179], 6 X[5054] - 5 X[12017], 3 X[5054] - X[39899], 4 X[11179] - 5 X[12017], 5 X[12017] - 2 X[39899], 4 X[182] - 5 X[15694], and many others

X(50955) lies on these lines: {2, 3167}, {3, 67}, {4, 11160}, {5, 1992}, {6, 5055}, {25, 15360}, {30, 69}, {114, 7610}, {141, 5054}, {182, 9703}, {183, 6054}, {193, 3545}, {343, 8780}, {376, 5921}, {381, 524}, {394, 13857}, {511, 3830}, {518, 50798}, {539, 19588}, {547, 1353}, {549, 6776}, {568, 29959}, {575, 5070}, {576, 3851}, {597, 1656}, {637, 48659}, {638, 48660}, {754, 50685}, {1003, 34623}, {1154, 11188}, {1350, 11645}, {1384, 15993}, {1482, 28538}, {1499, 44206}, {1503, 3534}, {1570, 18362}, {1975, 12117}, {1995, 44555}, {2393, 23039}, {2782, 5077}, {3090, 38079}, {3098, 15689}, {3242, 34748}, {3314, 11177}, {3410, 31133}, {3416, 34718}, {3519, 7529}, {3524, 3620}, {3526, 8550}, {3543, 39884}, {3580, 47597}, {3618, 15699}, {3619, 11539}, {3630, 31670}, {3631, 15688}, {3653, 39870}, {3654, 50781}, {3655, 49511}, {3656, 5847}, {3763, 10168}, {3818, 14269}, {3839, 20080}, {3843, 11477}, {3845, 34380}, {4995, 39900}, {5032, 5071}, {5066, 14853}, {5079, 20583}, {5085, 15701}, {5092, 15707}, {5093, 5476}, {5094, 40112}, {5182, 10104}, {5298, 39901}, {5477, 37637}, {5562, 34725}, {5613, 9761}, {5617, 9763}, {5642, 37638}, {5644, 11225}, {5663, 13169}, {5790, 47359}, {5846, 50805}, {5872, 11306}, {5873, 11305}, {5891, 8681}, {5969, 12355}, {6055, 7778}, {6144, 19130}, {6243, 43130}, {6391, 16072}, {6792, 21448}, {7503, 9925}, {7577, 11405}, {7788, 35458}, {7840, 13860}, {7841, 12243}, {7883, 39646}, {8548, 11704}, {8556, 35429}, {8584, 14561}, {8703, 10519}, {8860, 23234}, {9041, 12645}, {9140, 15066}, {9143, 26864}, {9830, 13188}, {9880, 14645}, {9996, 22253}, {10011, 23055}, {10056, 39873}, {10072, 39897}, {10170, 40673}, {10304, 39874}, {10706, 32244}, {10753, 22566}, {10983, 37345}, {11008, 38071}, {11185, 44369}, {11284, 41724}, {11318, 49102}, {11426, 14787}, {11442, 31152}, {11444, 15074}, {11459, 14984}, {11591, 15073}, {12007, 48310}, {12100, 25406}, {12134, 34726}, {12188, 19905}, {12429, 34664}, {12583, 20128}, {13321, 16776}, {13564, 15581}, {13692, 41491}, {13812, 41490}, {13862, 44367}, {14093, 44882}, {14530, 31166}, {14643, 15303}, {14826, 44212}, {14927, 15686}, {15068, 41614}, {15561, 18800}, {15683, 48874}, {15684, 19924}, {15685, 29012}, {15695, 31884}, {15703, 24206}, {15711, 33750}, {15716, 21167}, {16266, 45034}, {17813, 23325}, {18323, 47552}, {18350, 44470}, {19118, 37943}, {19544, 31143}, {19662, 38224}, {20987, 37956}, {21970, 26255}, {22329, 37071}, {22493, 41043}, {22494, 41042}, {25154, 37824}, {25164, 37825}, {25562, 38743}, {28204, 39885}, {28453, 36740}, {32220, 47334}, {32225, 35259}, {32234, 38397}, {32609, 44751}, {32808, 48678}, {32809, 48677}, {34379, 50796}, {35403, 48901}, {36757, 49905}, {36758, 49906}, {37451, 42850}, {38136, 41106}, {44265, 47473}

X(50955) = midpoint of X(i) and X(j) for these {i,j}: {4, 11160}, {69, 11180}, {376, 5921}, {381, 11898}, {599, 15069}, {10706, 32244}, {15533, 47353}, {15681, 48662}
X(50955) = reflection of X(i) in X(j) for these {i,j}: {3, 599}, {6, 11178}, {376, 48876}, {381, 1352}, {568, 29959}, {576, 25561}, {599, 34507}, {1351, 381}, {1353, 547}, {1992, 5}, {3543, 39884}, {3654, 50781}, {3655, 49511}, {3830, 47353}, {5093, 10516}, {6776, 549}, {8550, 20582}, {10753, 22566}, {11178, 43150}, {11179, 141}, {12188, 19905}, {14927, 15686}, {15534, 5476}, {15681, 1350}, {15683, 48874}, {15684, 36990}, {17813, 23325}, {18440, 11180}, {20128, 12583}, {20423, 47354}, {32220, 47334}, {34718, 3416}, {34748, 3242}, {39899, 11179}, {40673, 10170}, {44265, 47473}, {48679, 10706}
X(50955) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 1992, 14848}, {6, 11178, 5055}, {69, 18440, 33878}, {141, 11179, 5054}, {141, 39899, 12017}, {182, 21358, 15694}, {183, 6054, 40248}, {576, 25561, 38072}, {1352, 11898, 1351}, {1352, 20423, 47354}, {1992, 14848, 11482}, {3818, 40341, 44456}, {5032, 5071, 18583}, {5054, 11179, 12017}, {5054, 39899, 11179}, {5093, 19709, 5476}, {5476, 10516, 19709}, {5476, 15534, 5093}, {6776, 21356, 549}, {8550, 20582, 38064}, {9140, 15066, 32216}, {9143, 47596, 26864}, {10516, 15534, 5476}, {11477, 18553, 3843}, {15068, 41614, 45016}, {15069, 34507, 3}, {20423, 47354, 381}, {20582, 38064, 3526}, {22491, 22492, 20112}, {24206, 47352, 15703}, {25561, 38072, 3851}


X(50956) = X(30)X(3763)∩X(381)X(524)

Barycentrics    7*a^6 + 5*a^4*b^2 - a^2*b^4 - 11*b^6 + 5*a^4*c^2 + 30*a^2*b^2*c^2 + 11*b^4*c^2 - a^2*c^4 + 11*b^2*c^4 - 11*c^6 : :
X(50956) = 11 X[2] - 6 X[17508], 19 X[2] - 9 X[33750], 38 X[17508] - 33 X[33750], X[4] + 4 X[25561], 22 X[5] - 7 X[10541], 8 X[5] - 3 X[38064], 6 X[5] - X[43273], 28 X[10541] - 33 X[38064], 21 X[10541] - 11 X[43273], 9 X[38064] - 4 X[43273], X[6] - 6 X[38071], 2 X[141] + 3 X[14269], X[376] + 4 X[48889], 11 X[381] - X[1351], 4 X[381] + X[1352], 7 X[381] - 2 X[5480], 19 X[381] + X[11898], 6 X[381] - X[20423], 3 X[381] + 2 X[47354], 4 X[1351] + 11 X[1352], 7 X[1351] - 22 X[5480], 19 X[1351] + 11 X[11898], 6 X[1351] - 11 X[20423], 3 X[1351] + 22 X[47354], 7 X[1352] + 8 X[5480], 19 X[1352] - 4 X[11898], 3 X[1352] + 2 X[20423], 3 X[1352] - 8 X[47354], 38 X[5480] + 7 X[11898], 12 X[5480] - 7 X[20423], 3 X[5480] + 7 X[47354], 6 X[11898] + 19 X[20423], 3 X[11898] - 38 X[47354], X[20423] + 4 X[47354], X[382] + 4 X[20582], 11 X[3091] - 2 X[22234], 4 X[546] + X[599], 4 X[547] + X[36990], 2 X[576] - 17 X[3854], 2 X[597] - 7 X[3851], X[1350] + 4 X[14893], X[1992] - 11 X[3855], X[1992] + 4 X[18553], 11 X[3855] + 4 X[18553], 2 X[3098] + 3 X[50687], X[3543] + 4 X[24206], 3 X[3545] - X[3618], and many others

X(50956) lies on these lines: {2, 6030}, {4, 25561}, {5, 10541}, {6, 38071}, {30, 3763}, {141, 14269}, {376, 48889}, {381, 524}, {382, 20582}, {511, 41099}, {518, 50799}, {542, 3091}, {546, 599}, {547, 36990}, {576, 3854}, {597, 3851}, {1350, 14893}, {1503, 19709}, {1992, 3855}, {3098, 50687}, {3543, 24206}, {3545, 3618}, {3620, 3839}, {3845, 10516}, {3850, 38072}, {3856, 11477}, {3857, 15069}, {5055, 46264}, {5066, 14561}, {5068, 25565}, {5071, 11645}, {5085, 10109}, {5476, 41106}, {5846, 50806}, {7394, 15360}, {9053, 50797}, {10304, 48884}, {11180, 19130}, {11539, 48905}, {11737, 39884}, {12811, 38079}, {14639, 25562}, {14892, 48906}, {15534, 38136}, {15685, 21167}, {15687, 21358}, {15688, 34573}, {15702, 48898}, {15703, 44882}, {15708, 48892}, {15709, 42786}, {15710, 48891}, {18358, 23046}, {19708, 29323}, {19924, 40330}, {21356, 48901}, {31884, 33699}, {38140, 47359}, {38335, 43621}, {40107, 50689}, {42775, 44512}, {42776, 44511}, {47355, 47478}

X(50956) = reflection of X(i) in X(j) for these {i,j}: {3620, 11178}, {11179, 3618}
X(50956) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {381, 47354, 20423}, {3545, 3818, 11179}, {3839, 11178, 31670}, {5066, 47353, 14561}, {11737, 39884, 47352}, {15687, 21358, 48873}, {20423, 47354, 1352}


X(50957) = X(30)X(3619)∩X(381)X(524)

Barycentrics    11*a^6 + 4*a^4*b^2 + a^2*b^4 - 16*b^6 + 4*a^4*c^2 + 42*a^2*b^2*c^2 + 16*b^4*c^2 + a^2*c^4 + 16*b^2*c^4 - 16*c^6 : :
X(50957) = X[3] - 8 X[25561], X[69] + 6 X[23046], 4 X[141] + 3 X[38335], 8 X[381] - X[1351], 5 X[381] + 2 X[1352], 11 X[381] - 4 X[5480], 13 X[381] + X[11898], 9 X[381] - 2 X[20423], 3 X[381] + 4 X[47354], 5 X[1351] + 16 X[1352], 11 X[1351] - 32 X[5480], 13 X[1351] + 8 X[11898], 9 X[1351] - 16 X[20423], 3 X[1351] + 32 X[47354], 11 X[1352] + 10 X[5480], 26 X[1352] - 5 X[11898], 9 X[1352] + 5 X[20423], 3 X[1352] - 10 X[47354], 52 X[5480] + 11 X[11898], 18 X[5480] - 11 X[20423], 3 X[5480] + 11 X[47354], 9 X[11898] + 26 X[20423], 3 X[11898] - 52 X[47354], X[20423] + 6 X[47354], 4 X[597] - 11 X[5072], 2 X[599] + 5 X[3843], 2 X[1350] + 5 X[35403], X[1657] - 8 X[20582], X[1992] - 8 X[3850], 10 X[3091] - 3 X[14848], 5 X[3534] - 12 X[21167], 6 X[3545] + X[18440], 5 X[3618] - 12 X[14892], 10 X[3763] - 3 X[15689], 4 X[3818] + 3 X[5055], 5 X[3818] + 2 X[10168], 16 X[3818] + 5 X[12017], 6 X[3818] + X[43273], 2 X[3818] + X[47355], 15 X[5055] - 8 X[10168], 12 X[5055] - 5 X[12017], 9 X[5055] - 2 X[43273], 3 X[5055] - 2 X[47355], 32 X[10168] - 25 X[12017], 12 X[10168] - 5 X[43273], and many others

X(50957) lies on these lines: {3, 25561}, {30, 3619}, {69, 23046}, {141, 38335}, {381, 524}, {518, 50800}, {542, 3851}, {597, 5072}, {599, 3843}, {1350, 35403}, {1657, 20582}, {1992, 3850}, {3091, 14848}, {3534, 21167}, {3545, 18440}, {3564, 41106}, {3618, 14892}, {3763, 15689}, {3818, 5055}, {3830, 10516}, {3839, 18358}, {5050, 19709}, {5068, 38079}, {5071, 39884}, {5079, 38064}, {5847, 50807}, {6776, 11737}, {10124, 14927}, {10519, 12101}, {11178, 14269}, {11180, 38071}, {11482, 18553}, {11540, 33750}, {11645, 15703}, {14893, 21356}, {15681, 24206}, {15684, 21358}, {15687, 40330}, {15694, 36990}, {15701, 29012}, {15706, 34573}, {15707, 48905}, {15718, 48898}, {15723, 44882}, {25562, 38732}, {35401, 48904}, {35434, 48873}, {47352, 48662}

X(50957) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11178, 14269, 33878}, {19709, 47353, 5050}, {21358, 48889, 15684}


X(50958) = X(30)X(3631)∩X(381)X(524)

Barycentrics    14*a^6 - 17*a^4*b^2 + 16*a^2*b^4 - 13*b^6 - 17*a^4*c^2 + 24*a^2*b^2*c^2 + 13*b^4*c^2 + 16*a^2*c^4 + 13*b^2*c^4 - 13*c^6 : :
X(50958) = X[20] - 5 X[599], X[3631] - 4 X[43150], 5 X[69] + 3 X[50687], 13 X[140] - 10 X[20190], 4 X[140] - 5 X[20582], 8 X[20190] - 13 X[20582], 5 X[141] - 3 X[3524], 7 X[141] - X[39874], 3 X[141] - X[43273], 3 X[3524] + 5 X[11180], 21 X[3524] - 5 X[39874], 9 X[3524] - 5 X[43273], 7 X[11180] + X[39874], 3 X[11180] + X[43273], 3 X[39874] - 7 X[43273], 13 X[381] - 5 X[1351], X[381] - 5 X[1352], 7 X[381] - 5 X[5480], 11 X[381] + 5 X[11898], 9 X[381] - 5 X[20423], 3 X[381] - 5 X[47354], X[1351] - 13 X[1352], 7 X[1351] - 13 X[5480], 11 X[1351] + 13 X[11898], 9 X[1351] - 13 X[20423], 3 X[1351] - 13 X[47354], 7 X[1352] - X[5480], 11 X[1352] + X[11898], 9 X[1352] - X[20423], 3 X[1352] - X[47354], 11 X[5480] + 7 X[11898], 9 X[5480] - 7 X[20423], 3 X[5480] - 7 X[47354], 9 X[11898] + 11 X[20423], 3 X[11898] + 11 X[47354], X[20423] - 3 X[47354], 5 X[597] - 7 X[3090], 7 X[3090] + 5 X[15069], 5 X[1992] - 13 X[5068], 3 X[3545] - X[3629], 5 X[3589] - 6 X[15699], 11 X[3589] - 14 X[42786], 5 X[11178] - 3 X[15699], 11 X[11178] - 7 X[42786], 33 X[15699] - 35 X[42786], X[3627] + 5 X[34507], 3 X[3839] + X[40341], 2 X[3861] - 5 X[18553], 3 X[5055] - 2 X[6329], 11 X[5070] - 5 X[8550], 3 X[5102] - 7 X[41106], 5 X[5921] + 11 X[15721], X[5921] + 3 X[21358], 11 X[15721] - 15 X[21358], X[8584] - 3 X[10516], 5 X[10168] - 6 X[41984], 5 X[11160] + 11 X[50689], 4 X[12811] - 5 X[25561], 3 X[14892] - 5 X[18358], 12 X[14892] - 5 X[32455], 4 X[18358] - X[32455], X[15682] + 5 X[22165], X[15682] - 5 X[47353], X[15685] - 10 X[41152], 3 X[15689] + 5 X[18440], 3 X[21356] - X[44882], 3 X[23046] - X[37517], 5 X[40107] - 2 X[44245], 5 X[40330] - 3 X[48310], 4 X[41988] - 5 X[48889], X[44903] - 5 X[48876], 3 X[47599] - 2 X[50664]

X(50958) lies on these lines: {5, 20583}, {20, 599}, {30, 3631}, {69, 50687}, {140, 542}, {141, 3524}, {381, 524}, {511, 12101}, {518, 50801}, {547, 12007}, {597, 3090}, {1503, 8703}, {1992, 5068}, {3545, 3629}, {3564, 10109}, {3589, 11178}, {3627, 34507}, {3839, 40341}, {3861, 18553}, {5055, 6329}, {5066, 5965}, {5070, 8550}, {5097, 11737}, {5102, 41106}, {5476, 41149}, {5921, 15721}, {8584, 10516}, {9041, 47745}, {9053, 50804}, {10168, 41984}, {10170, 44323}, {11160, 50689}, {11179, 34573}, {11645, 15691}, {12811, 25561}, {14892, 18358}, {15682, 22165}, {15685, 41152}, {15689, 18440}, {21356, 44882}, {23046, 37517}, {40107, 44245}, {40330, 48310}, {41988, 48889}, {44903, 48876}, {47599, 50664}

X(50958) = midpoint of X(i) and X(j) for these {i,j}: {141, 11180}, {597, 15069}, {22165, 47353}
X(50958) = reflection of X(i) in X(j) for these {i,j}: {3589, 11178}, {5097, 11737}, {11179, 34573}, {12007, 547}, {20583, 5}, {41149, 5476}, {44323, 10170}


X(50959) = X(30)X(3589)∩X(381)X(524)

Barycentrics    2*a^6 + 13*a^4*b^2 - 8*a^2*b^4 - 7*b^6 + 13*a^4*c^2 + 24*a^2*b^2*c^2 + 7*b^4*c^2 - 8*a^2*c^4 + 7*b^2*c^4 - 7*c^6 : :
X(50959) = 5 X[2] - 3 X[21167], 7 X[2] - 3 X[31884], 7 X[21167] - 5 X[31884], X[4] + 3 X[38072], 3 X[4] + X[43273], X[597] - 3 X[38072], 3 X[597] - X[43273], 9 X[38072] - X[43273], X[6] + 3 X[3839], 7 X[3589] - 4 X[5092], 5 X[3589] - 4 X[10168], X[3589] - 4 X[19130], 19 X[3589] - 4 X[48891], 13 X[3589] - 4 X[48892], 5 X[3589] + 4 X[48895], 17 X[3589] + 4 X[48943], 5 X[5092] - 7 X[10168], X[5092] - 7 X[19130], 19 X[5092] - 7 X[48891], 13 X[5092] - 7 X[48892], 5 X[5092] + 7 X[48895], 17 X[5092] + 7 X[48943], X[10168] - 5 X[19130], 19 X[10168] - 5 X[48891], 13 X[10168] - 5 X[48892], 17 X[10168] + 5 X[48943], 19 X[19130] - X[48891], 13 X[19130] - X[48892], 5 X[19130] + X[48895], 17 X[19130] + X[48943], 13 X[48891] - 19 X[48892], 5 X[48891] + 19 X[48895], 17 X[48891] + 19 X[48943], 5 X[48892] + 13 X[48895], 17 X[48892] + 13 X[48943], 17 X[48895] - 5 X[48943], X[141] - 3 X[3545], X[376] - 3 X[48310], 7 X[381] + X[1351], 5 X[381] - X[1352], 17 X[381] - X[11898], 3 X[381] + X[20423], 3 X[381] - X[47354], 5 X[1351] + 7 X[1352], X[1351] - 7 X[5480], 17 X[1351] + 7 X[11898], and many others

X(50959) lies on these lines: {2, 21167}, {4, 597}, {5, 20582}, {6, 3839}, {30, 3589}, {140, 25565}, {141, 3545}, {182, 15687}, {373, 47311}, {376, 48310}, {381, 524}, {382, 38064}, {511, 5066}, {518, 50802}, {542, 546}, {547, 19924}, {549, 48901}, {575, 3861}, {576, 3858}, {599, 3091}, {698, 44422}, {946, 9041}, {962, 38087}, {1350, 5071}, {1386, 34648}, {1503, 3845}, {1699, 47359}, {1992, 3832}, {2393, 13570}, {3098, 15699}, {3524, 48910}, {3543, 44882}, {3564, 3860}, {3618, 50687}, {3627, 38079}, {3629, 11180}, {3631, 11178}, {3656, 9053}, {3818, 23046}, {3830, 14561}, {3843, 8550}, {3850, 25561}, {3853, 25555}, {3854, 11160}, {3855, 11477}, {3856, 18553}, {3857, 34507}, {5050, 41153}, {5054, 48881}, {5055, 31670}, {5085, 15682}, {5103, 14492}, {5133, 15360}, {5169, 44569}, {5461, 40927}, {5691, 38023}, {5846, 50796}, {5847, 50803}, {6034, 7745}, {6249, 9880}, {6329, 11179}, {7000, 13663}, {7374, 13783}, {7533, 40112}, {8584, 14853}, {8703, 38317}, {8705, 47332}, {8724, 44230}, {9300, 43450}, {9770, 14484}, {10124, 14810}, {10297, 25488}, {10304, 47355}, {10516, 22165}, {10541, 17578}, {10706, 25328}, {11645, 14893}, {11737, 24206}, {12007, 48889}, {12100, 29317}, {12101, 29012}, {12811, 40107}, {12816, 36758}, {12817, 36757}, {13860, 44401}, {13862, 22110}, {14891, 48885}, {15686, 48904}, {15688, 43621}, {15692, 48872}, {15694, 48873}, {17504, 48880}, {17508, 19710}, {19925, 28538}, {20192, 47296}, {22682, 37350}, {23292, 35266}, {25566, 32423}, {30308, 47358}, {31105, 37648}, {31162, 49524}, {31166, 41362}, {32218, 47334}, {32419, 36725}, {32421, 36724}, {33699, 38110}, {35404, 48898}, {36794, 42874}, {36991, 38086}, {38047, 50865}, {38049, 50862}, {38315, 50864}, {38335, 46264}, {42785, 48906}

X(50959) = midpoint of X(i) and X(j) for these {i,j}: {4, 597}, {182, 15687}, {381, 5480}, {549, 48901}, {1386, 34648}, {3543, 44882}, {3629, 11180}, {3845, 5476}, {8584, 47353}, {10168, 48895}, {10706, 25328}, {11178, 21850}, {14893, 18583}, {15686, 48904}, {20423, 47354}, {31162, 49524}, {31166, 41362}, {35404, 48898}
X(50959) = reflection of X(i) in X(j) for these {i,j}: {140, 25565}, {3631, 11178}, {11179, 6329}, {14810, 10124}, {20582, 5}, {24206, 11737}, {25561, 3850}, {32218, 47334}, {48885, 14891}
X(50959) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 38072, 597}, {381, 20423, 47354}, {3543, 47352, 44882}, {3845, 38136, 5476}, {5480, 47354, 20423}, {14853, 41099, 47353}, {14853, 47353, 8584}, {21850, 38071, 11178}


X(50960) = X(30)X(34573)∩X(381)X(524)

Barycentrics    10*a^6 + 11*a^4*b^2 - 4*a^2*b^4 - 17*b^6 + 11*a^4*c^2 + 48*a^2*b^2*c^2 + 17*b^4*c^2 - 4*a^2*c^4 + 17*b^2*c^4 - 17*c^6 : :
X(50960) = X[141] + 3 X[3839], 17 X[381] - X[1351], 7 X[381] + X[1352], 5 X[381] - X[5480], 31 X[381] + X[11898], 9 X[381] - X[20423], 3 X[381] + X[47354], 7 X[1351] + 17 X[1352], 5 X[1351] - 17 X[5480], 31 X[1351] + 17 X[11898], 9 X[1351] - 17 X[20423], 3 X[1351] + 17 X[47354], 5 X[1352] + 7 X[5480], 31 X[1352] - 7 X[11898], 9 X[1352] + 7 X[20423], 3 X[1352] - 7 X[47354], 31 X[5480] + 5 X[11898], 9 X[5480] - 5 X[20423], 3 X[5480] + 5 X[47354], 9 X[11898] + 31 X[20423], 3 X[11898] - 31 X[47354], X[20423] + 3 X[47354], 8 X[3860] + X[41152], 5 X[546] + X[40107], 5 X[25561] - X[40107], 5 X[549] - X[48896], X[597] - 5 X[3091], X[599] + 7 X[3832], X[1992] - 17 X[3854], 3 X[3545] - X[3589], 9 X[3545] - X[43273], 3 X[3589] - X[43273], 5 X[3763] + 3 X[50687], 2 X[3818] + X[6329], X[3818] + 3 X[38071], X[6329] - 6 X[38071], 11 X[3855] - X[20583], 11 X[3855] - 3 X[38072], X[20583] - 3 X[38072], 5 X[3859] + X[18553], 5 X[5071] - X[44882], 11 X[5072] - 3 X[38064], X[5092] - 3 X[47478], X[10168] - 3 X[14892], 3 X[10516] + 5 X[41099], X[11178] + 3 X[23046], 3 X[11539] + X[48884], 3 X[14561] - 2 X[41153], 3 X[14853] - X[41149], 3 X[14912] - 35 X[41106], 3 X[14912] + 5 X[47353], 7 X[41106] + X[47353], X[15682] + 3 X[21167], 3 X[17504] - 7 X[42786], X[34507] + 11 X[41991], X[36990] + 3 X[48310], 3 X[38335] + X[48881], 3 X[41983] - X[48891], 3 X[41987] - X[48895], 3 X[47598] - X[48892]

X(50960) lies on these lines: {4, 20582}, {30, 34573}, {141, 3839}, {381, 524}, {511, 3860}, {518, 50803}, {542, 3850}, {546, 25561}, {547, 48889}, {549, 48896}, {597, 3091}, {599, 3832}, {1503, 5066}, {1992, 3854}, {3545, 3589}, {3763, 50687}, {3818, 6329}, {3845, 29181}, {3855, 20583}, {3859, 18553}, {5071, 44882}, {5072, 38064}, {5092, 47478}, {5133, 35266}, {5846, 50802}, {7533, 44569}, {9041, 19925}, {9053, 50796}, {10109, 29012}, {10168, 14892}, {10516, 41099}, {11178, 23046}, {11180, 32455}, {11539, 48884}, {11645, 11737}, {11812, 29323}, {12571, 28538}, {12811, 25565}, {13862, 44401}, {14561, 41153}, {14853, 41149}, {14893, 24206}, {14912, 41106}, {15682, 21167}, {15691, 48942}, {17504, 42786}, {34507, 41991}, {36990, 48310}, {38335, 48881}, {40670, 46847}, {41983, 48891}, {41987, 48895}, {47598, 48892}

X(50960) = midpoint of X(i) and X(j) for these {i,j}: {4, 20582}, {546, 25561}, {547, 48889}, {11180, 32455}, {14893, 24206}, {15691, 48942}, {40670, 46847}
X(50960) = reflection of X(25565) in X(12811)


X(50961) = X(30)X(40341)∩X(381)X(524)

Barycentrics    11*a^6 - 23*a^4*b^2 + 19*a^2*b^4 - 7*b^6 - 23*a^4*c^2 + 6*a^2*b^2*c^2 + 7*b^4*c^2 + 19*a^2*c^4 + 7*b^2*c^4 - 7*c^6 : :
X(50961) = 7 X[2] - 6 X[39561], 5 X[6] - 6 X[15699], X[20] - 5 X[11160], 5 X[69] - 3 X[3524], 7 X[69] - 4 X[5092], 21 X[3524] - 20 X[5092], 6 X[3524] - 5 X[11179], 8 X[5092] - 7 X[11179], 4 X[140] - 5 X[599], 16 X[140] - 15 X[38064], 4 X[599] - 3 X[38064], 10 X[182] - 11 X[15721], 7 X[381] - 5 X[1351], 4 X[381] - 5 X[1352], 11 X[381] - 10 X[5480], X[381] - 5 X[11898], 6 X[381] - 5 X[20423], 9 X[381] - 10 X[47354], 4 X[1351] - 7 X[1352], 11 X[1351] - 14 X[5480], X[1351] - 7 X[11898], 6 X[1351] - 7 X[20423], 9 X[1351] - 14 X[47354], 11 X[1352] - 8 X[5480], X[1352] - 4 X[11898], 3 X[1352] - 2 X[20423], 9 X[1352] - 8 X[47354], 2 X[5480] - 11 X[11898], 12 X[5480] - 11 X[20423], 9 X[5480] - 11 X[47354], 6 X[11898] - X[20423], 9 X[11898] - 2 X[47354], 3 X[20423] - 4 X[47354], 10 X[576] - 13 X[5068], 10 X[597] - 11 X[5070], 5 X[1350] - 4 X[15691], 2 X[1353] - 3 X[21358], 5 X[1656] - 4 X[20583], 5 X[1992] - 7 X[3090], 7 X[1992] - 8 X[22330], 49 X[3090] - 40 X[22330], 7 X[3090] - 10 X[34507], 4 X[22330] - 7 X[34507], 3 X[3545] - X[11008], 15 X[3545] - 14 X[42785], 3 X[3545] - 4 X[43150], and many others

X(50961) lies on these lines: {2, 5965}, {6, 15699}, {20, 542}, {30, 40341}, {68, 38545}, {69, 3431}, {114, 9740}, {140, 599}, {182, 15721}, {193, 11178}, {315, 12243}, {381, 524}, {511, 11455}, {518, 50804}, {576, 5068}, {597, 5070}, {1350, 15691}, {1353, 21358}, {1503, 15685}, {1656, 20583}, {1992, 3090}, {3545, 7926}, {3564, 8703}, {3620, 10168}, {3627, 15069}, {3629, 5055}, {3630, 15689}, {3631, 5054}, {3763, 41984}, {3839, 37517}, {3861, 11477}, {5032, 24206}, {5066, 5102}, {5071, 5097}, {5085, 44580}, {5485, 13449}, {5921, 19924}, {6055, 37668}, {6144, 14892}, {10109, 14561}, {11180, 20080}, {12007, 15694}, {12101, 34380}, {12811, 38072}, {14891, 48876}, {15360, 45794}, {15701, 22165}, {15709, 50664}, {21850, 41987}, {34379, 50801}, {38029, 50787}, {38116, 50781}, {38118, 50788}, {38176, 47359}, {44903, 48873}

X(50961) = midpoint of X(11180) and X(20080)
X(50961) = reflection of X(i) in X(j) for these {i,j}: {193, 11178}, {1992, 34507}, {11179, 69}, {31670, 11180}


X(50962) = X(30)X(193)∩X(381)X(524)

Barycentrics    7*a^6 - 22*a^4*b^2 + 17*a^2*b^4 - 2*b^6 - 22*a^4*c^2 - 6*a^2*b^2*c^2 + 2*b^4*c^2 + 17*a^2*c^4 + 2*b^2*c^4 - 2*c^6 : :
X(50962) = 2 X[2] - 3 X[5093], 4 X[6] - 3 X[5054], 5 X[6] - 4 X[10168], 15 X[5054] - 16 X[10168], 7 X[193] - X[39874], 4 X[193] - X[39899], 2 X[193] + X[44456], 4 X[39874] - 7 X[39899], 2 X[39874] + 7 X[44456], X[39899] + 2 X[44456], 2 X[69] - 3 X[5055], 8 X[182] - 7 X[15700], 5 X[381] - 4 X[1352], 7 X[381] - 8 X[5480], 3 X[381] - 4 X[20423], 9 X[381] - 8 X[47354], 5 X[1351] - 2 X[1352], 7 X[1351] - 4 X[5480], 4 X[1351] - X[11898], 3 X[1351] - 2 X[20423], 9 X[1351] - 4 X[47354], 7 X[1352] - 10 X[5480], 8 X[1352] - 5 X[11898], 3 X[1352] - 5 X[20423], 9 X[1352] - 10 X[47354], 16 X[5480] - 7 X[11898], 6 X[5480] - 7 X[20423], 9 X[5480] - 7 X[47354], 3 X[11898] - 8 X[20423], 9 X[11898] - 16 X[47354], 3 X[20423] - 2 X[47354], X[382] - 4 X[11477], X[3534] - 4 X[15534], 3 X[3534] - 4 X[43273], 3 X[15534] - X[43273], 2 X[549] - 3 X[5032], 8 X[576] - 5 X[1656], 4 X[576] - 3 X[14848], 4 X[599] - 5 X[1656], 2 X[599] - 3 X[14848], 5 X[1656] - 6 X[14848], 8 X[597] - 7 X[3526], 4 X[597] - 5 X[11482], 7 X[3526] - 10 X[11482], 4 X[1350] - 5 X[14093], 3 X[3545] - X[20080], 5 X[3620] - 6 X[15699], and many others

X(50962) lies on these lines: {2, 5093}, {3, 1992}, {5, 11160}, {6, 5054}, {30, 193}, {69, 5055}, {182, 15700}, {195, 44492}, {323, 47597}, {376, 1353}, {381, 524}, {382, 542}, {511, 3534}, {518, 50805}, {549, 5032}, {576, 599}, {597, 3526}, {1350, 14093}, {1993, 15360}, {2080, 11165}, {3167, 35266}, {3543, 48662}, {3545, 20080}, {3564, 3830}, {3620, 15699}, {3629, 11179}, {3656, 34379}, {3751, 34718}, {5050, 8584}, {5070, 38079}, {5072, 34507}, {5085, 15716}, {5094, 44555}, {5097, 15723}, {5102, 5476}, {5642, 21970}, {5648, 45016}, {5847, 50798}, {5889, 34622}, {5921, 15687}, {5965, 47353}, {5969, 32520}, {6144, 18440}, {6243, 34726}, {6776, 15681}, {7754, 12243}, {7774, 40248}, {7840, 37071}, {8550, 15696}, {8703, 14912}, {8724, 14645}, {9041, 24844}, {9925, 18378}, {10519, 15701}, {10753, 48657}, {11004, 47596}, {11008, 11180}, {11159, 32515}, {11161, 38732}, {11178, 40341}, {12017, 15706}, {12645, 28538}, {13169, 38724}, {13340, 40673}, {13391, 15531}, {13857, 18449}, {13860, 44367}, {14561, 22165}, {14853, 19709}, {14984, 41720}, {15303, 32609}, {15689, 48906}, {15694, 48876}, {15695, 25406}, {15698, 33748}, {15703, 18583}, {15720, 20583}, {20126, 39562}, {21969, 34382}, {22112, 40912}, {28202, 39878}, {28443, 37492}, {32216, 37644}, {32284, 37484}, {34609, 41628}, {34780, 34788}, {35001, 47280}, {35381, 41153}, {35403, 39884}, {35434, 36990}, {37958, 47549}, {44265, 47541}

X(50962) = midpoint of X(11008) and X(11180)
X(50962) = reflection of X(i) in X(j) for these {i,j}: {3, 1992}, {376, 1353}, {381, 1351}, {599, 576}, {5921, 15687}, {11160, 5}, {11179, 3629}, {11180, 21850}, {11898, 381}, {13340, 40673}, {15533, 5476}, {15681, 6776}, {33878, 11179}, {34718, 3751}, {40341, 11178}, {44265, 47541}, {48657, 10753}, {48662, 3543}
X(50962) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {193, 44456, 39899}, {576, 599, 14848}, {599, 14848, 1656}, {5102, 15533, 5476}, {6144, 37517, 18440}, {11179, 33878, 15688}, {11180, 21850, 14269}, {18583, 21356, 15703}


X(50963) = X(30)X(3618)∩X(381)X(524)

Barycentrics    a^6 + 20*a^4*b^2 - 13*a^2*b^4 - 8*b^6 + 20*a^4*c^2 + 30*a^2*b^2*c^2 + 8*b^4*c^2 - 13*a^2*c^4 + 8*b^2*c^4 - 8*c^6 : :
X(50963) = X[2] - 6 X[38136], X[3] - 6 X[38072], 2 X[4] + 3 X[14848], 2 X[6] + 3 X[14269], X[20] - 6 X[38079], 8 X[3618] - 5 X[12017], X[69] - 6 X[38071], 4 X[182] + X[15684], 4 X[381] + X[1351], 7 X[381] - 2 X[1352], X[381] + 4 X[5480], 11 X[381] - X[11898], 3 X[381] + 2 X[20423], 9 X[381] - 4 X[47354], 7 X[1351] + 8 X[1352], X[1351] - 16 X[5480], 11 X[1351] + 4 X[11898], 3 X[1351] - 8 X[20423], 9 X[1351] + 16 X[47354], X[1352] + 14 X[5480], 22 X[1352] - 7 X[11898], 3 X[1352] + 7 X[20423], 9 X[1352] - 14 X[47354], 44 X[5480] + X[11898], 6 X[5480] - X[20423], 9 X[5480] + X[47354], 3 X[11898] + 22 X[20423], 9 X[11898] - 44 X[47354], 3 X[20423] + 2 X[47354], X[382] + 4 X[597], 2 X[3843] + X[11482], 4 X[546] + X[1992], 2 X[599] - 7 X[3851], 2 X[1350] - 7 X[15703], X[1657] - 6 X[38064], X[3534] - 6 X[14561], X[3543] + 4 X[18583], 3 X[3545] - X[3620], 3 X[3545] + 2 X[21850], X[3620] + 2 X[21850], 8 X[3589] - 3 X[15688], 7 X[3619] - 12 X[47478], X[3654] - 6 X[38146], 2 X[3763] - 3 X[5055], X[3763] - 4 X[19130], 4 X[3763] - X[33878], 11 X[3763] - 14 X[42786], 3 X[5055] - 8 X[19130], and many others

X(50963) lies on these lines: {2, 38136}, {3, 38072}, {4, 14848}, {6, 14269}, {20, 38079}, {30, 3618}, {69, 38071}, {182, 15684}, {381, 524}, {382, 597}, {511, 19709}, {518, 50806}, {542, 3843}, {546, 1992}, {599, 3851}, {1350, 15703}, {1657, 38064}, {3527, 18125}, {3534, 14561}, {3543, 18583}, {3545, 3620}, {3564, 41099}, {3589, 15688}, {3619, 47478}, {3654, 38146}, {3763, 5055}, {3830, 5050}, {3839, 18440}, {3845, 14853}, {3855, 11160}, {5020, 13857}, {5032, 39884}, {5054, 31670}, {5070, 25565}, {5079, 20582}, {5085, 15685}, {5093, 47353}, {5846, 50797}, {5847, 50799}, {6034, 30435}, {6249, 34505}, {6776, 14893}, {8724, 10983}, {9993, 40248}, {10109, 10519}, {10168, 15689}, {10541, 49134}, {11001, 38110}, {11178, 44456}, {11179, 38335}, {11180, 23046}, {11477, 25561}, {11645, 35403}, {11737, 21356}, {15681, 47352}, {15693, 29181}, {15694, 19924}, {15695, 29317}, {15700, 48310}, {15701, 38317}, {15702, 48874}, {15706, 48881}, {15707, 47355}, {17800, 25555}, {20190, 49139}, {23049, 32063}, {25406, 33699}, {35400, 48898}, {38090, 38753}, {46267, 48904}, {48906, 50687}

X(50963) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3830, 5476, 5050}, {10168, 48910, 15689}, {47352, 48901, 15681}, {48310, 48873, 15700}


X(50964) = X(30)X(47355)∩X(381)X(524)

Barycentrics    5*a^6 + 19*a^4*b^2 - 11*a^2*b^4 - 13*b^6 + 19*a^4*c^2 + 42*a^2*b^2*c^2 + 13*b^4*c^2 - 11*a^2*c^4 + 13*b^2*c^4 - 13*c^6 : :
X(50964) = 13 X[4] + 8 X[20190], 4 X[4] + 3 X[38064], 32 X[20190] - 39 X[38064], X[6] + 6 X[23046], X[20] - 8 X[25565], 13 X[381] + X[1351], 8 X[381] - X[1352], 5 X[381] + 2 X[5480], 29 X[381] - X[11898], 6 X[381] + X[20423], 9 X[381] - 2 X[47354], 8 X[1351] + 13 X[1352], 5 X[1351] - 26 X[5480], 29 X[1351] + 13 X[11898], 6 X[1351] - 13 X[20423], 9 X[1351] + 26 X[47354], 5 X[1352] + 16 X[5480], 29 X[1352] - 8 X[11898], 3 X[1352] + 4 X[20423], 9 X[1352] - 16 X[47354], 58 X[5480] + 5 X[11898], 12 X[5480] - 5 X[20423], 9 X[5480] + 5 X[47354], 6 X[11898] + 29 X[20423], 9 X[11898] - 58 X[47354], 3 X[20423] + 4 X[47354], 4 X[546] + 3 X[38072], 8 X[547] - X[48873], 2 X[597] + 5 X[3843], X[599] - 8 X[3850], X[1350] - 8 X[11737], 25 X[3091] - 4 X[40107], 3 X[3524] + 4 X[48895], 5 X[3543] + 2 X[48896], 3 X[3545] - X[3619], 6 X[3545] + X[31670], 2 X[3619] + X[31670], 4 X[3589] + 3 X[38335], 5 X[3763] - 12 X[14892], 6 X[3839] + X[11179], 3 X[3839] + 4 X[19130], X[11179] - 8 X[19130], 4 X[3845] + 3 X[14561], 6 X[3845] + X[43273], 9 X[14561] - 2 X[43273], 11 X[3855] - 4 X[25561], 20 X[3859] + X[11477], 4 X[3860] + 3 X[38136], 8 X[3860] - X[47353], 6 X[38136] + X[47353], 4 X[3861] + 3 X[38079], 6 X[5054] + X[43621], 5 X[5071] + 2 X[48901], 11 X[5072] - 4 X[20582], 3 X[5085] + 4 X[12101], 10 X[5476] - 3 X[14912], 2 X[5476] + 5 X[41099], 3 X[14912] + 25 X[41099], 8 X[10124] - X[48872], 4 X[10168] + 3 X[50687], 6 X[14269] + X[46264], 4 X[14893] + 3 X[47352], X[14927] - 8 X[46267], X[15069] - 22 X[41991], X[15640] + 6 X[17508], X[15682] + 6 X[38317], X[15684] + 6 X[48310], 5 X[15692] + 2 X[48904], 6 X[15699] + X[48910], 9 X[15705] - 2 X[48879], 9 X[15709] - 2 X[48880], 11 X[15715] - 4 X[48920], 11 X[15721] - 4 X[48885], 5 X[35403] + 2 X[44882], 3 X[38087] + 4 X[40273], 6 X[41987] + X[48906], 3 X[46333] + 4 X[48943]

X(50964) lies on these lines: {2, 29317}, {4, 20190}, {6, 23046}, {20, 25565}, {30, 47355}, {381, 524}, {511, 41106}, {518, 50807}, {542, 3832}, {546, 38072}, {547, 48873}, {597, 3843}, {599, 3850}, {1350, 11737}, {3091, 40107}, {3524, 48895}, {3543, 48896}, {3545, 3619}, {3589, 38335}, {3763, 14892}, {3839, 11179}, {3845, 14561}, {3855, 25561}, {3859, 11477}, {3860, 38136}, {3861, 38079}, {5054, 43621}, {5071, 48901}, {5072, 20582}, {5085, 12101}, {5476, 14912}, {5846, 50800}, {6997, 13857}, {10124, 48872}, {10168, 50687}, {14269, 46264}, {14893, 47352}, {14927, 46267}, {15069, 41991}, {15640, 17508}, {15682, 38317}, {15684, 48310}, {15692, 48904}, {15699, 48910}, {15705, 48879}, {15709, 48880}, {15715, 48920}, {15721, 48885}, {35403, 44882}, {38087, 40273}, {41987, 48906}, {46333, 48943}

X(50964) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3839, 19130, 11179}, {3860, 38136, 47353}


X(50965) = X(30)X(141)∩X(376)X(524)

Barycentrics    8*a^6 + 7*a^4*b^2 - 14*a^2*b^4 - b^6 + 7*a^4*c^2 - 12*a^2*b^2*c^2 + b^4*c^2 - 14*a^2*c^4 + b^2*c^4 - c^6 : :
X(50965) = 2 X[2] - 3 X[21167], X[2] - 3 X[31884], 7 X[3] - 3 X[14848], 3 X[3] - X[20423], 5 X[3] - 3 X[38064], 7 X[597] - 6 X[14848], 3 X[597] - 2 X[20423], 5 X[597] - 6 X[38064], 9 X[14848] - 7 X[20423], 5 X[14848] - 7 X[38064], 5 X[20423] - 9 X[38064], X[6] - 3 X[10304], X[141] - 4 X[3098], 7 X[141] - 4 X[3818], 5 X[141] - 4 X[11178], 11 X[141] - 8 X[18358], 3 X[141] - 2 X[47354], 11 X[141] + 4 X[48879], 5 X[141] + 4 X[48880], X[141] + 2 X[48881], 13 X[141] - 4 X[48884], 7 X[3098] - X[3818], 5 X[3098] - X[11178], 11 X[3098] - 2 X[18358], 6 X[3098] - X[47354], 11 X[3098] + X[48879], 5 X[3098] + X[48880], 2 X[3098] + X[48881], 13 X[3098] - X[48884], 5 X[3818] - 7 X[11178], 11 X[3818] - 14 X[18358], 6 X[3818] - 7 X[47354], 11 X[3818] + 7 X[48879], 5 X[3818] + 7 X[48880], 2 X[3818] + 7 X[48881], 13 X[3818] - 7 X[48884], 11 X[11178] - 10 X[18358], 6 X[11178] - 5 X[47354], 11 X[11178] + 5 X[48879], 2 X[11178] + 5 X[48881], 13 X[11178] - 5 X[48884], 12 X[18358] - 11 X[47354], 2 X[18358] + X[48879], 10 X[18358] + 11 X[48880], 4 X[18358] + 11 X[48881], 26 X[18358] - 11 X[48884], and many others

X(50965) lies on these lines: {2, 21167}, {3, 597}, {4, 20582}, {6, 10304}, {20, 599}, {22, 35266}, {30, 141}, {40, 9041}, {69, 41467}, {165, 47359}, {182, 34200}, {376, 524}, {381, 48873}, {511, 8584}, {518, 50808}, {541, 33851}, {542, 550}, {547, 48901}, {548, 8550}, {549, 5480}, {575, 46853}, {576, 33923}, {631, 38072}, {632, 25565}, {698, 33706}, {1351, 14093}, {1352, 15681}, {1353, 33751}, {1503, 3534}, {1992, 3522}, {2076, 5306}, {2781, 44261}, {3242, 34632}, {3416, 34628}, {3524, 3589}, {3528, 11477}, {3543, 21358}, {3545, 34573}, {3564, 15690}, {3618, 15705}, {3619, 50687}, {3627, 25561}, {3629, 11179}, {3630, 15689}, {3631, 11180}, {3763, 3839}, {3844, 34648}, {3845, 29317}, {4297, 28538}, {5054, 31670}, {5085, 19708}, {5092, 45759}, {5102, 33750}, {5188, 5969}, {5476, 12100}, {5651, 47312}, {5846, 50811}, {5847, 50815}, {5999, 11168}, {6329, 15710}, {6393, 11057}, {7470, 12243}, {7492, 40112}, {7555, 11694}, {7987, 38023}, {7998, 47313}, {8542, 47337}, {8546, 41463}, {8598, 22676}, {9019, 36987}, {9053, 50810}, {9740, 46944}, {9830, 38738}, {10168, 17504}, {10516, 15682}, {10519, 11001}, {10541, 21734}, {11160, 50693}, {11511, 47114}, {11539, 19130}, {11645, 15686}, {11812, 38317}, {12103, 34507}, {12117, 12122}, {13567, 15360}, {13857, 44210}, {14269, 43621}, {14561, 15693}, {14853, 15698}, {14891, 18583}, {14892, 42786}, {14893, 48904}, {14912, 41149}, {15069, 17538}, {15105, 15581}, {15107, 20192}, {15158, 15163}, {15159, 15162}, {15533, 15697}, {15534, 25406}, {15683, 21356}, {15687, 24206}, {15691, 48898}, {15692, 47352}, {15704, 40107}, {15708, 47355}, {15711, 38110}, {15712, 38079}, {15713, 38136}, {15759, 17508}, {16063, 44569}, {17225, 30273}, {19127, 37480}, {19710, 29012}, {19905, 38730}, {22110, 37182}, {25329, 38726}, {25555, 44682}, {32217, 47333}, {34379, 50816}, {34638, 49511}, {35243, 35707}, {35404, 48889}, {37283, 43576}, {37517, 41982}, {38071, 48895}, {39561, 46332}, {39884, 44903}, {45303, 47314}

X(50965) = midpoint of X(i) and X(j) for these {i,j}: {20, 599}, {376, 1350}, {381, 48873}, {549, 48874}, {1352, 15681}, {3242, 34632}, {3416, 34628}, {3543, 48872}, {11001, 47353}, {11178, 48880}, {11179, 33878}, {11180, 48905}, {15158, 15163}, {15159, 15162}, {15683, 36990}, {15686, 48876}, {19905, 38730}, {34638, 49511}, {39884, 44903}
X(50965) = reflection of X(i) in X(j) for these {i,j}: {4, 20582}, {182, 34200}, {549, 14810}, {597, 3}, {3627, 25561}, {3629, 11179}, {5476, 12100}, {5480, 549}, {11180, 3631}, {11477, 20583}, {15686, 48885}, {15687, 24206}, {18583, 14891}, {21167, 31884}, {21850, 10168}, {32217, 47333}, {34648, 3844}, {35404, 48889}, {44882, 376}, {44903, 48920}, {48898, 15691}, {48901, 547}, {48904, 14893}
X(50965) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {549, 5480, 48310}, {3098, 48881, 141}, {10519, 11001, 47353}, {14810, 48874, 5480}, {15683, 21356, 36990}, {15688, 33878, 11179}, {17504, 21850, 10168}, {21358, 48872, 3543}


X(50966) = X(30)X(3620)∩X(376)X(524)

Barycentrics    17*a^6 + 25*a^4*b^2 - 41*a^2*b^4 - b^6 + 25*a^4*c^2 - 30*a^2*b^2*c^2 + b^4*c^2 - 41*a^2*c^4 + b^2*c^4 - c^6 : :
X(50966) = 17 X[2] - 12 X[38136], 11 X[4] - 16 X[25561], 4 X[6] - 9 X[15710], 7 X[69] + 8 X[48891], X[193] - 6 X[15688], X[376] + 4 X[1350], 7 X[376] - 2 X[6776], 9 X[376] - 4 X[43273], 13 X[376] - 8 X[44882], 14 X[1350] + X[6776], 9 X[1350] + X[43273], 13 X[1350] + 2 X[44882], 9 X[6776] - 14 X[43273], 13 X[6776] - 28 X[44882], 13 X[43273] - 18 X[44882], 4 X[550] + X[11160], 8 X[597] - 13 X[10299], 4 X[599] + X[3529], 2 X[1992] - 7 X[3528], 11 X[1992] - 16 X[33749], 77 X[3528] - 32 X[33749], 8 X[3098] - 3 X[3524], 4 X[3098] - X[3618], 7 X[3098] - 2 X[10168], 6 X[3098] - X[20423], 3 X[3524] - 2 X[3618], 21 X[3524] - 16 X[10168], 9 X[3524] - 4 X[20423], 7 X[3618] - 8 X[10168], 3 X[3618] - 2 X[20423], 12 X[10168] - 7 X[20423], 17 X[3533] - 12 X[38072], X[3543] + 4 X[48874], 3 X[3545] - 4 X[3763], 11 X[3855] - 16 X[20582], 3 X[5032] - 8 X[34200], 3 X[5093] - 8 X[15759], X[5921] + 4 X[15686], 4 X[8584] - 9 X[33750], 8 X[8703] - 3 X[14912], 3 X[10304] + 2 X[33878], 6 X[10519] - X[15682], 9 X[10519] - 4 X[47354], 3 X[15682] - 8 X[47354], 2 X[11180] + 3 X[46333], X[11180] + 4 X[48881], 3 X[46333] - 8 X[48881], X[11541] - 16 X[40107], X[11898] + 4 X[15691], 16 X[14810] - 11 X[15715], 6 X[14848] - 11 X[15717], 6 X[14853] - 11 X[15719], X[15683] + 4 X[48876], 7 X[15698] - 12 X[31884], 9 X[15708] - 4 X[21850], 3 X[21356] + 2 X[48873], X[44456] - 6 X[45759]

X(50966) lies on these lines: {2, 38136}, {4, 25561}, {6, 15710}, {30, 3620}, {69, 48891}, {193, 15688}, {376, 524}, {511, 19708}, {518, 50809}, {542, 17538}, {550, 11160}, {597, 10299}, {599, 3529}, {1992, 3528}, {3098, 3524}, {3533, 38072}, {3543, 48874}, {3545, 3763}, {3564, 15697}, {3855, 20582}, {5032, 34200}, {5071, 19924}, {5093, 15759}, {5847, 50819}, {5921, 15686}, {7386, 15360}, {8584, 33750}, {8703, 14912}, {10304, 33878}, {10519, 15682}, {11001, 29012}, {11180, 46333}, {11541, 40107}, {11898, 15691}, {14810, 15715}, {14848, 15717}, {14853, 15719}, {15683, 48876}, {15695, 34380}, {15698, 31884}, {15708, 21850}, {21356, 48873}, {29181, 41099}, {34379, 50812}, {37485, 37948}, {44456, 45759}

X(50966) = {X(11180),X(48881)}-harmonic conjugate of X(46333)


X(50967) = X(30)X(69)∩X(376)X(524)

Barycentrics    a^6 + 11*a^4*b^2 - 13*a^2*b^4 + b^6 + 11*a^4*c^2 - 6*a^2*b^2*c^2 - b^4*c^2 - 13*a^2*c^4 - b^2*c^4 + c^6 : :
X(50967) = 5 X[2] - 4 X[5476], 2 X[2] - 3 X[10519], 7 X[2] - 6 X[14561], 4 X[2] - 3 X[14853], 13 X[2] - 12 X[38317], 8 X[5476] - 15 X[10519], 14 X[5476] - 15 X[14561], 16 X[5476] - 15 X[14853], 6 X[5476] - 5 X[20423], 13 X[5476] - 15 X[38317], 7 X[10519] - 4 X[14561], 9 X[10519] - 4 X[20423], 13 X[10519] - 8 X[38317], 8 X[14561] - 7 X[14853], 9 X[14561] - 7 X[20423], 13 X[14561] - 14 X[38317], 9 X[14853] - 8 X[20423], 13 X[14853] - 16 X[38317], 13 X[20423] - 18 X[38317], 3 X[4] - 4 X[47354], 3 X[599] - 2 X[47354], 2 X[6] - 3 X[3524], 5 X[69] - 2 X[18440], X[69] + 2 X[33878], 5 X[11180] - 4 X[18440], X[11180] + 4 X[33878], X[18440] + 5 X[33878], 4 X[140] - 3 X[14848], 4 X[141] - 3 X[3545], 4 X[182] - 3 X[5032], 4 X[182] - 5 X[15692], 3 X[5032] - 5 X[15692], X[193] - 4 X[3098], X[193] - 3 X[10304], 4 X[3098] - 3 X[10304], 3 X[10304] - 2 X[11179], 3 X[376] - 2 X[43273], 5 X[376] - 4 X[44882], 4 X[1350] - X[6776], 3 X[1350] - X[43273], 5 X[1350] - 2 X[44882], 3 X[6776] - 4 X[43273], 5 X[6776] - 8 X[44882], 5 X[43273] - 6 X[44882], 2 X[381] - 3 X[21356], 4 X[381] - 5 X[40330], and many others

X(50967) lies on these lines: {2, 51}, {3, 1992}, {4, 599}, {6, 3524}, {20, 542}, {30, 69}, {74, 30256}, {98, 9740}, {140, 14848}, {141, 3545}, {148, 19905}, {182, 5032}, {193, 3098}, {206, 43572}, {376, 524}, {381, 21356}, {394, 35266}, {518, 50810}, {519, 24728}, {549, 1351}, {575, 15717}, {576, 3523}, {597, 631}, {842, 6082}, {944, 28538}, {1007, 40248}, {1352, 3543}, {1353, 34200}, {1503, 11001}, {2482, 10753}, {2781, 5648}, {3066, 44833}, {3089, 15606}, {3090, 20582}, {3091, 40107}, {3146, 34507}, {3242, 34631}, {3416, 34627}, {3526, 38079}, {3528, 8550}, {3529, 15069}, {3530, 11482}, {3534, 3564}, {3589, 15709}, {3618, 5054}, {3619, 5055}, {3620, 3839}, {3629, 15710}, {3630, 46333}, {3631, 48910}, {3818, 50687}, {3832, 25561}, {3926, 8724}, {4549, 41721}, {5050, 12100}, {5071, 5480}, {5085, 8584}, {5092, 15705}, {5093, 15693}, {5102, 15719}, {5107, 21843}, {5171, 5182}, {5181, 10706}, {5188, 34511}, {5286, 44453}, {5562, 34621}, {5622, 37480}, {5642, 10752}, {5657, 47359}, {5846, 50818}, {5847, 50811}, {5864, 37173}, {5865, 37172}, {5921, 11645}, {5965, 15697}, {5969, 12243}, {6054, 37668}, {6055, 10754}, {6090, 37904}, {6174, 10759}, {7417, 14916}, {7426, 47468}, {7486, 25565}, {7493, 40112}, {7618, 8722}, {7736, 11173}, {7840, 37182}, {8182, 18860}, {8681, 36987}, {8703, 25406}, {9041, 12245}, {9774, 46944}, {9830, 13172}, {9888, 14645}, {10168, 15708}, {10299, 20583}, {10513, 43460}, {10516, 41099}, {10602, 18931}, {11008, 15688}, {11161, 23698}, {11177, 14931}, {11433, 43957}, {11694, 45016}, {11821, 34664}, {11898, 14927}, {12017, 17504}, {12324, 34614}, {13169, 17702}, {13330, 31400}, {13340, 14984}, {13635, 37654}, {13860, 42850}, {14269, 18358}, {14639, 19662}, {14912, 15534}, {14994, 32869}, {15035, 15303}, {15066, 26255}, {15073, 15644}, {15078, 37488}, {15640, 29317}, {15682, 22165}, {15684, 39884}, {15689, 39899}, {15694, 18583}, {15701, 38110}, {15702, 47352}, {15993, 43448}, {16051, 44569}, {16063, 44555}, {16475, 50828}, {17508, 33748}, {17578, 18553}, {17813, 23328}, {18800, 21166}, {18906, 46951}, {19782, 50430}, {20080, 46264}, {21161, 36740}, {23291, 31152}, {26118, 31143}, {26516, 44486}, {26521, 44485}, {28194, 39898}, {30775, 37638}, {31162, 49511}, {31423, 38089}, {32216, 37643}, {32220, 47333}, {32521, 32828}, {33266, 39141}, {33522, 44210}, {33851, 34319}, {34379, 50808}, {34781, 34787}, {37478, 41720}, {37483, 41614}, {37485, 44837}, {37645, 47596}, {37665, 44839}, {37907, 47569}, {39874, 40341}, {39875, 41946}, {39876, 41945}, {42522, 44474}, {42523, 44473}, {43150, 43621}, {43934, 45816}, {44471, 45523}, {44472, 45522}, {44493, 50007}, {47582, 47597}

X(50967) = midpoint of X(i) and X(j) for these {i,j}: {20, 11160}, {5921, 15683}, {11898, 15681}
X(50967) = reflection of X(i) in X(j) for these {i,j}: {4, 599}, {148, 19905}, {193, 11179}, {376, 1350}, {381, 48876}, {1351, 549}, {1353, 34200}, {1992, 3}, {3543, 1352}, {5102, 21167}, {6054, 50567}, {6776, 376}, {7426, 47468}, {10706, 5181}, {10752, 5642}, {10753, 2482}, {10754, 6055}, {10759, 6174}, {11179, 3098}, {11180, 69}, {11477, 597}, {14853, 10519}, {14912, 31884}, {14927, 15681}, {15681, 48874}, {15682, 47353}, {15683, 48873}, {15684, 39884}, {17813, 23328}, {31162, 49511}, {31670, 11178}, {32220, 47333}, {34319, 33851}, {34627, 3416}, {34631, 3242}, {37517, 10168}, {47353, 22165}
X(50967) = anticomplement of X(20423)
X(50967) = Thomson-isogonal conjugate of X(33850)
X(50967) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {193, 10304, 11179}, {381, 21356, 40330}, {381, 48876, 21356}, {3098, 11179, 10304}, {3620, 3839, 11178}, {5032, 15692, 182}, {5480, 21358, 5071}, {11178, 31670, 3839}, {11898, 48874, 14927}, {14912, 31884, 33750}, {20582, 38072, 3090}, {40341, 48881, 39874}


X(50968) = X(30)X(3763)∩X(376)X(524)

Barycentrics    23*a^6 + 10*a^4*b^2 - 29*a^2*b^4 - 4*b^6 + 10*a^4*c^2 - 30*a^2*b^2*c^2 + 4*b^4*c^2 - 29*a^2*c^4 + 4*b^2*c^4 - 4*c^6 : :
X(50968) = 8 X[3] - 3 X[38072], X[6] - 6 X[15688], 3 X[20] + 2 X[47354], 4 X[376] + X[1350], 11 X[376] - X[6776], 6 X[376] - X[43273], 7 X[376] - 2 X[44882], 11 X[1350] + 4 X[6776], 3 X[1350] + 2 X[43273], 7 X[1350] + 8 X[44882], 6 X[6776] - 11 X[43273], 7 X[6776] - 22 X[44882], 7 X[43273] - 12 X[44882], X[381] + 4 X[48885], 16 X[548] - X[11477], 4 X[549] + X[48872], 4 X[550] + X[599], 2 X[597] - 7 X[3528], X[1352] + 4 X[15691], 2 X[3098] + 3 X[15689], 6 X[3524] - X[48910], X[3529] + 4 X[20582], 2 X[3534] + 3 X[31884], 4 X[3534] + X[47353], 6 X[31884] - X[47353], 4 X[3589] - 9 X[15710], X[3618] - 3 X[10304], X[3618] + 2 X[48881], 3 X[10304] + 2 X[48881], 2 X[3620] + X[48905], 3 X[5054] + 2 X[48880], 3 X[5085] - 8 X[8703], 9 X[5085] - 4 X[20423], 6 X[8703] - X[20423], 7 X[5102] - 12 X[33748], 3 X[10516] + 2 X[11001], 6 X[11539] - X[43621], 3 X[14269] + 2 X[48879], 3 X[14561] - 8 X[15759], 4 X[14810] + X[15681], 8 X[14810] - 3 X[21358], 2 X[15681] + 3 X[21358], X[15069] + 14 X[50693], X[15682] - 6 X[21167], X[15684] + 4 X[48920], 4 X[15686] + X[36990], 7 X[15700] - 2 X[48901], 7 X[15703] - 2 X[48904], 9 X[15706] - 4 X[19130], 11 X[15715] - 6 X[48310], 11 X[15716] - 6 X[38317], 12 X[17504] - 7 X[47355], X[17800] + 4 X[25561], X[21850] - 6 X[41982], 8 X[31663] - 3 X[38087], X[31670] - 6 X[45759], 8 X[33923] - 3 X[38064], 8 X[34200] - 3 X[47352], 4 X[34200] + X[48873], 3 X[47352] + 2 X[48873], 3 X[38110] - 8 X[46332]

X(50968) lies on these lines: {3, 38072}, {6, 15688}, {20, 47354}, {30, 3763}, {376, 524}, {381, 48885}, {511, 15695}, {518, 50812}, {542, 15696}, {548, 11477}, {549, 48872}, {550, 599}, {597, 3528}, {1352, 15691}, {1503, 15697}, {3098, 15689}, {3524, 48910}, {3529, 20582}, {3534, 29012}, {3589, 15710}, {3618, 10304}, {3620, 48905}, {5054, 48880}, {5085, 8703}, {5102, 33748}, {5846, 50819}, {9053, 50809}, {10516, 11001}, {11539, 43621}, {14093, 19924}, {14269, 48879}, {14561, 15759}, {14810, 15681}, {15069, 50693}, {15682, 21167}, {15684, 48920}, {15686, 36990}, {15693, 29317}, {15700, 48901}, {15703, 48904}, {15706, 19130}, {15715, 48310}, {15716, 38317}, {17504, 47355}, {17800, 25561}, {19708, 29181}, {21850, 41982}, {31663, 38087}, {31670, 45759}, {33923, 38064}, {34200, 47352}, {38110, 46332}

X(50968) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3534, 31884, 47353}, {14810, 15681, 21358}, {34200, 48873, 47352}


X(50969) = X(30)X(3619)∩X(376)X(524)

Barycentrics    31*a^6 + 17*a^4*b^2 - 43*a^2*b^4 - 5*b^6 + 17*a^4*c^2 - 42*a^2*b^2*c^2 + 5*b^4*c^2 - 43*a^2*c^4 + 5*b^2*c^4 - 5*c^6 : :
X(50969) = 13 X[3] - 6 X[38079], 13 X[20] + 8 X[18553], X[69] + 6 X[15689], 4 X[141] + 3 X[46333], 5 X[376] + 2 X[1350], 8 X[376] - X[6776], 9 X[376] - 2 X[43273], 11 X[376] - 4 X[44882], 16 X[1350] + 5 X[6776], 9 X[1350] + 5 X[43273], 11 X[1350] + 10 X[44882], 9 X[6776] - 16 X[43273], 11 X[6776] - 32 X[44882], 11 X[43273] - 18 X[44882], 8 X[548] - X[1992], 4 X[576] - 25 X[3522], 4 X[597] - 11 X[21735], 2 X[599] + 5 X[17538], 8 X[3098] - X[11180], 3 X[3524] - 2 X[47355], 3 X[3524] + 4 X[48881], X[47355] + 2 X[48881], 5 X[3528] - 2 X[10541], 4 X[3534] + 3 X[10519], X[3543] - 8 X[14810], 5 X[3618] - 12 X[45759], 3 X[3839] + 4 X[48880], 3 X[5050] - 10 X[8703], 8 X[5050] - 15 X[33750], 16 X[8703] - 9 X[33750], 5 X[5071] + 2 X[48872], 8 X[5092] - 15 X[10304], 12 X[5092] - 5 X[20423], 9 X[10304] - 2 X[20423], 4 X[5480] - 11 X[15715], 13 X[10299] - 6 X[38072], X[11001] + 6 X[31884], 3 X[11001] + 4 X[47354], 9 X[31884] - 2 X[47354], 5 X[12017] - 12 X[41982], 5 X[14093] + 2 X[48874], 3 X[14848] - 10 X[46853], 3 X[14853] - 10 X[19708], X[14927] - 8 X[15691], 2 X[15683] + 5 X[40330], X[15683] - 8 X[48885], 5 X[40330] + 16 X[48885], 4 X[15686] + 3 X[21356], 15 X[15688] - X[44456], 5 X[15692] + 2 X[48873], 10 X[15695] - 3 X[25406], 9 X[15705] - 2 X[31670], 9 X[15709] - 2 X[48910], 11 X[15721] - 4 X[48901], 8 X[20582] - X[33703], 12 X[21167] - 5 X[41099], 13 X[21734] - 6 X[38064], 8 X[25561] - X[49135]

X(50969) lies on these lines: {2, 29317}, {3, 38079}, {20, 18553}, {30, 3619}, {69, 15689}, {141, 46333}, {376, 524}, {518, 50813}, {542, 50693}, {548, 1992}, {576, 3522}, {597, 21735}, {599, 17538}, {3098, 11180}, {3524, 47355}, {3528, 10541}, {3534, 10519}, {3543, 14810}, {3618, 45759}, {3839, 48880}, {5050, 8703}, {5071, 48872}, {5092, 10304}, {5480, 15715}, {5847, 50820}, {10299, 38072}, {11001, 31884}, {12017, 41982}, {14093, 48874}, {14848, 46853}, {14853, 19708}, {14927, 15691}, {15683, 40330}, {15686, 21356}, {15688, 44456}, {15692, 48873}, {15695, 25406}, {15698, 29181}, {15705, 31670}, {15709, 48910}, {15721, 48901}, {20582, 33703}, {21167, 41099}, {21734, 38064}, {25561, 49135}


X(50970) = X(30)X(3631)∩X(376)X(524)

Barycentrics    10*a^6 + 29*a^4*b^2 - 40*a^2*b^4 + b^6 + 29*a^4*c^2 - 24*a^2*b^2*c^2 - b^4*c^2 - 40*a^2*c^4 - b^2*c^4 + c^6 : :
X(50970) = 4 X[5] - 5 X[20582], 5 X[6] - 9 X[15705], 11 X[3631] - 8 X[43150], 5 X[141] - 3 X[3839], X[376] - 5 X[1350], 13 X[376] - 5 X[6776], 9 X[376] - 5 X[43273], 7 X[376] - 5 X[44882], 13 X[1350] - X[6776], 9 X[1350] - X[43273], 7 X[1350] - X[44882], 9 X[6776] - 13 X[43273], 7 X[6776] - 13 X[44882], 7 X[43273] - 9 X[44882], 5 X[597] - 7 X[3523], 5 X[599] - X[3146], 5 X[1992] - 13 X[21734], 4 X[3098] - X[32455], 5 X[3098] - 3 X[45759], 5 X[32455] - 12 X[45759], 3 X[3524] - 2 X[6329], 5 X[3589] - 6 X[5054], 3 X[3589] - 2 X[20423], X[3589] + 2 X[33878], 9 X[5054] - 5 X[20423], 3 X[5054] + 5 X[33878], X[20423] + 3 X[33878], X[3629] - 3 X[10304], 3 X[3830] - 5 X[47354], 3 X[5102] - 7 X[15698], 5 X[5480] - 7 X[15703], 5 X[6144] - 33 X[35418], X[8584] - 3 X[31884], 7 X[8584] - 9 X[33748], 7 X[31884] - 3 X[33748], 15 X[10519] - 7 X[41106], 2 X[12102] - 5 X[40107], 5 X[15711] - 3 X[39561], 3 X[17504] - X[37517], 5 X[19130] - 6 X[45757], X[35404] - 5 X[48876]

X(50970) lies on these lines: {3, 20583}, {5, 20582}, {6, 15705}, {30, 3631}, {141, 3839}, {376, 524}, {511, 12100}, {518, 50814}, {542, 12103}, {597, 3523}, {599, 3146}, {1503, 19710}, {1992, 21734}, {2979, 35266}, {3098, 32455}, {3524, 6329}, {3589, 5054}, {3629, 10304}, {3830, 29181}, {5097, 14891}, {5102, 15698}, {5480, 15703}, {5965, 15690}, {6144, 35418}, {8584, 31884}, {9053, 50817}, {9770, 46944}, {10519, 41106}, {12007, 34200}, {12102, 40107}, {14893, 19924}, {15644, 16270}, {15711, 39561}, {17504, 37517}, {19130, 45757}, {35404, 48876}, {41152, 47353}

X(50970) = reflection of X(i) in X(j) for these {i,j}: {5097, 14891}, {12007, 34200}, {20583, 3}, {47353, 41152}


X(50971) = X(30)X(3589)∩X(376)X(524)

Barycentrics    22*a^6 - a^4*b^2 - 16*a^2*b^4 - 5*b^6 - a^4*c^2 - 24*a^2*b^2*c^2 + 5*b^4*c^2 - 16*a^2*c^4 + 5*b^2*c^4 - 5*c^6 : :
X(50971) = 3 X[3] - X[47354], 3 X[20582] - 2 X[47354], 5 X[20] + 7 X[10541], 5 X[597] - 7 X[10541], 5 X[3589] - 8 X[5092], 7 X[3589] - 8 X[10168], 11 X[3589] - 8 X[19130], 7 X[3589] + 8 X[48891], X[3589] + 8 X[48892], 17 X[3589] - 8 X[48895], 29 X[3589] - 8 X[48943], 7 X[5092] - 5 X[10168], 11 X[5092] - 5 X[19130], 7 X[5092] + 5 X[48891], X[5092] + 5 X[48892], 17 X[5092] - 5 X[48895], 29 X[5092] - 5 X[48943], 11 X[10168] - 7 X[19130], X[10168] + 7 X[48892], 17 X[10168] - 7 X[48895], 29 X[10168] - 7 X[48943], 7 X[19130] + 11 X[48891], X[19130] + 11 X[48892], 17 X[19130] - 11 X[48895], 29 X[19130] - 11 X[48943], X[48891] - 7 X[48892], 17 X[48891] + 7 X[48895], 29 X[48891] + 7 X[48943], 17 X[48892] + X[48895], 29 X[48892] + X[48943], 29 X[48895] - 17 X[48943], X[141] - 3 X[10304], 5 X[376] - X[1350], 7 X[376] + X[6776], 3 X[376] + X[43273], 7 X[1350] + 5 X[6776], 3 X[1350] + 5 X[43273], X[1350] + 5 X[44882], 3 X[6776] - 7 X[43273], X[6776] - 7 X[44882], X[43273] - 3 X[44882], 8 X[15690] + X[41149], 5 X[550] + X[576], 4 X[550] + X[20583], 4 X[576] - 5 X[20583], X[599] - 5 X[3522], and many others

X(50971) lies on these lines: {3, 20582}, {20, 597}, {30, 3589}, {141, 10304}, {182, 15686}, {376, 524}, {511, 15690}, {518, 50815}, {542, 548}, {549, 48898}, {550, 576}, {599, 3522}, {1352, 14093}, {1386, 34638}, {1503, 8703}, {1657, 38064}, {1992, 50693}, {2916, 37941}, {3524, 34573}, {3529, 38072}, {3530, 25561}, {3534, 5050}, {3543, 48310}, {3631, 15688}, {3763, 15705}, {3818, 17504}, {3845, 17508}, {3853, 25565}, {4297, 9041}, {5066, 29323}, {5085, 11001}, {5476, 19710}, {5480, 15681}, {5846, 50808}, {5847, 50816}, {5894, 31166}, {7492, 44569}, {7667, 13857}, {8550, 15696}, {8584, 15697}, {8705, 47031}, {9053, 50811}, {9830, 38747}, {10124, 48889}, {10516, 15698}, {10519, 41152}, {11178, 45759}, {11179, 15689}, {11645, 33751}, {12007, 48885}, {12100, 29012}, {12117, 44251}, {12512, 28538}, {14561, 15685}, {14853, 41153}, {14891, 24206}, {14927, 21358}, {15516, 15691}, {15682, 33750}, {15683, 47352}, {15687, 48896}, {15692, 36990}, {15699, 48884}, {15714, 39884}, {17225, 30271}, {19708, 21167}, {22165, 31884}, {25488, 47340}, {26881, 35266}, {32218, 47333}, {33699, 38317}, {34628, 49524}, {37182, 44401}, {44903, 48901}, {46333, 48910}, {47355, 50687}

X(50971) = midpoint of X(i) and X(j) for these {i,j}: {20, 597}, {182, 15686}, {376, 44882}, {549, 48898}, {1386, 34638}, {5476, 19710}, {5480, 15681}, {5894, 31166}, {10168, 48891}, {11179, 48881}, {15687, 48896}, {34628, 49524}, {44903, 48901}
X(50971) = reflection of X(i) in X(j) for these {i,j}: {3853, 25565}, {20582, 3}, {24206, 14891}, {25561, 3530}, {32218, 47333}, {32455, 11179}, {34200, 33751}, {48889, 10124}
X(50971) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11179, 15689, 48881}, {19708, 47353, 21167}


X(50972) = X(30)X(34573)∩X(376)X(524)

Barycentrics    38*a^6 + 13*a^4*b^2 - 44*a^2*b^4 - 7*b^6 + 13*a^4*c^2 - 48*a^2*b^2*c^2 + 7*b^4*c^2 - 44*a^2*c^4 + 7*b^2*c^4 - 7*c^6 : :
X(50972) = 7 X[376] + X[1350], 17 X[376] - X[6776], 9 X[376] - X[43273], 5 X[376] - X[44882], 17 X[1350] + 7 X[6776], 9 X[1350] + 7 X[43273], 5 X[1350] + 7 X[44882], 9 X[6776] - 17 X[43273], 5 X[6776] - 17 X[44882], 5 X[43273] - 9 X[44882], 7 X[548] - X[575], 5 X[549] - X[48904], X[597] - 5 X[3522], X[599] + 7 X[50693], 8 X[15690] + X[41152], 3 X[3534] + X[47354], X[3589] - 3 X[10304], 3 X[5085] - 2 X[41153], 3 X[5093] - 35 X[15695], X[5476] - 5 X[8703], 7 X[5476] - 15 X[17508], 11 X[5476] - 15 X[38110], 7 X[8703] - 3 X[17508], 11 X[8703] - 3 X[38110], 11 X[17508] - 7 X[38110], X[5480] - 5 X[14093], 7 X[6329] - 10 X[12017], X[6329] - 6 X[15688], 3 X[6329] - 2 X[20423], X[6329] + 2 X[48881], 5 X[12017] - 21 X[15688], 15 X[12017] - 7 X[20423], 5 X[12017] + 7 X[48881], 9 X[15688] - X[20423], 3 X[15688] + X[48881], X[20423] + 3 X[48881], X[10168] - 3 X[41982], X[11001] + 3 X[21167], 3 X[11539] + X[48879], 15 X[15689] + X[18440], 5 X[15697] + 3 X[31884], 9 X[15706] - X[43621], 9 X[15710] - X[48910], 5 X[15714] - X[48901], 11 X[21735] - 3 X[38072], 3 X[25406] - X[41149], 3 X[41983] - X[48895], 3 X[45759] + X[48880], 3 X[47478] - X[48943], 3 X[48310] + X[48872]

X(50972) lies on these lines: {20, 20582}, {30, 34573}, {376, 524}, {518, 50816}, {542, 44245}, {547, 48920}, {548, 575}, {549, 48904}, {597, 3522}, {599, 50693}, {1503, 15690}, {3534, 47354}, {3589, 10304}, {5085, 41153}, {5093, 15695}, {5476, 8703}, {5480, 14093}, {5846, 50815}, {6329, 12017}, {9041, 12512}, {9053, 50808}, {10168, 41982}, {11001, 21167}, {11539, 48879}, {14810, 15691}, {15689, 18440}, {15697, 31884}, {15706, 43621}, {15710, 48910}, {15714, 48901}, {15759, 29317}, {21735, 38072}, {25406, 41149}, {34200, 48885}, {41983, 48895}, {45759, 48880}, {47478, 48943}, {48310, 48872}

X(50972) = midpoint of X(i) and X(j) for these {i,j}: {20, 20582}, {547, 48920}, {14810, 15691}, {34200, 48885}


X(50973) = X(30)X(40341)∩X(376)X(524)

Barycentrics    5*a^6 - 26*a^4*b^2 + 25*a^2*b^4 - 4*b^6 - 26*a^4*c^2 + 6*a^2*b^2*c^2 + 4*b^4*c^2 + 25*a^2*c^4 + 4*b^2*c^4 - 4*c^6 : :
X(50973) = 4 X[2] - 3 X[5102], 4 X[5] - 5 X[599], 8 X[5] - 5 X[11477], 6 X[5] - 5 X[20423], 16 X[5] - 15 X[38072], 3 X[599] - 2 X[20423], 4 X[599] - 3 X[38072], 3 X[11477] - 4 X[20423], 2 X[11477] - 3 X[38072], 8 X[20423] - 9 X[38072], 5 X[6] - 6 X[5054], 7 X[6] - 8 X[10168], 21 X[5054] - 20 X[10168], 5 X[69] - 3 X[3839], 3 X[69] - 2 X[47354], 9 X[3839] - 10 X[47354], 10 X[182] - 11 X[15718], 5 X[193] - 9 X[15705], 4 X[376] - 5 X[1350], 7 X[376] - 5 X[6776], 6 X[376] - 5 X[43273], 11 X[376] - 10 X[44882], 7 X[1350] - 4 X[6776], 3 X[1350] - 2 X[43273], 11 X[1350] - 8 X[44882], 6 X[6776] - 7 X[43273], 11 X[6776] - 14 X[44882], 11 X[43273] - 12 X[44882], 2 X[3830] - 5 X[15533], 4 X[3830] - 5 X[47353], 10 X[576] - 13 X[46219], 10 X[597] - 11 X[3525], 5 X[631] - 4 X[20583], 5 X[1351] - 7 X[15703], 2 X[1351] - 3 X[21358], 14 X[15703] - 15 X[21358], 5 X[1352] - 4 X[14893], 5 X[1992] - 7 X[3523], X[3146] - 5 X[11160], 2 X[3146] - 5 X[15069], 3 X[3524] - 2 X[3629], 3 X[3545] - 4 X[3631], 4 X[3630] - X[48910], 25 X[3763] - 24 X[47599], 15 X[5050] - 17 X[15722], 3 X[5055] - 2 X[37517], 15 X[5085] - 16 X[12100], 3 X[5085] - 2 X[15534], 8 X[12100] - 5 X[15534], 4 X[5097] - 5 X[15694], 5 X[6144] - 12 X[45759], 5 X[11179] - 6 X[45759], 8 X[6329] - 9 X[15709], 10 X[8550] - 13 X[21734], 2 X[8584] - 3 X[10519], 16 X[10124] - 15 X[47352], 4 X[10124] - 5 X[48876], 3 X[47352] - 4 X[48876], 3 X[10304] - X[11008], 3 X[10516] - 4 X[22165], 15 X[10516] - 14 X[41106], 10 X[22165] - 7 X[41106], 4 X[12007] - 5 X[15692], 16 X[12108] - 15 X[38064], 3 X[14269] - 4 X[43150], 3 X[14848] - 4 X[40107], 7 X[15701] - 6 X[39561], 9 X[15707] - 8 X[50664], 2 X[20080] + X[48905], 3 X[21167] - 2 X[41149], 7 X[33878] - 4 X[48891], 4 X[35404] - 5 X[36990], 3 X[38035] - 4 X[50787], 6 X[38127] - 5 X[47359], 3 X[38144] - 4 X[50781], 3 X[38146] - 4 X[50788]

X(50973) lies on these lines: {2, 5102}, {5, 599}, {6, 5054}, {30, 40341}, {69, 3839}, {182, 15718}, {193, 15705}, {376, 524}, {394, 15360}, {511, 3830}, {518, 50817}, {542, 1657}, {576, 46219}, {597, 3525}, {631, 20583}, {1351, 15703}, {1352, 14893}, {1992, 3523}, {3146, 11160}, {3524, 3629}, {3534, 5965}, {3545, 3631}, {3564, 19710}, {3630, 11180}, {3763, 47599}, {5050, 15722}, {5055, 37517}, {5085, 12100}, {5097, 15694}, {6144, 11179}, {6329, 15709}, {8550, 21734}, {8584, 10519}, {10124, 47352}, {10304, 11008}, {10516, 22165}, {11178, 44456}, {11412, 15738}, {11898, 19924}, {12007, 15692}, {12108, 38064}, {14269, 43150}, {14848, 40107}, {15701, 39561}, {15707, 50664}, {20080, 48905}, {20126, 37483}, {21167, 41149}, {33878, 48891}, {34379, 50814}, {35404, 36990}, {38035, 50787}, {38127, 47359}, {38144, 50781}, {38146, 50788}

X(50973) = reflection of X(i) in X(j) for these {i,j}: {6144, 11179}, {11180, 3630}, {11477, 599}, {15069, 11160}, {44456, 11178}, {47353, 15533}, {48910, 11180}
X(50973) = {X(599),X(11477)}-harmonic conjugate of X(38072)


X(50974) = X(30)X(193)∩X(376)X(524)

Barycentrics    13*a^6 - 19*a^4*b^2 + 11*a^2*b^4 - 5*b^6 - 19*a^4*c^2 - 6*a^2*b^2*c^2 + 5*b^4*c^2 + 11*a^2*c^4 + 5*b^2*c^4 - 5*c^6 : :
X(50974) = 5 X[2] - 6 X[5050], 2 X[2] - 3 X[14912], 7 X[2] - 9 X[33748], 11 X[2] - 12 X[38110], 4 X[5050] - 5 X[14912], 14 X[5050] - 15 X[33748], 11 X[5050] - 10 X[38110], 7 X[14912] - 6 X[33748], 11 X[14912] - 8 X[38110], 33 X[33748] - 28 X[38110], 5 X[4] - 8 X[576], 3 X[4] - 4 X[20423], 4 X[576] - 5 X[1992], 6 X[576] - 5 X[20423], 3 X[1992] - 2 X[20423], 4 X[6] - 3 X[3545], 3 X[6] - 2 X[47354], 3 X[3545] - 2 X[11180], 9 X[3545] - 8 X[47354], 3 X[11180] - 4 X[47354], 2 X[193] + X[39874], X[193] + 2 X[39899], 5 X[193] - 2 X[44456], X[39874] - 4 X[39899], 5 X[39874] + 4 X[44456], 5 X[39899] + X[44456], 2 X[69] - 3 X[3524], 5 X[69] - 8 X[5092], 15 X[3524] - 16 X[5092], 3 X[3524] - 4 X[11179], 4 X[5092] - 5 X[11179], 8 X[141] - 9 X[15709], 8 X[182] - 7 X[15702], 4 X[182] - 3 X[21356], 7 X[15702] - 6 X[21356], 5 X[376] - 4 X[1350], 3 X[376] - 4 X[43273], 7 X[376] - 8 X[44882], 2 X[1350] - 5 X[6776], 3 X[1350] - 5 X[43273], 7 X[1350] - 10 X[44882], 3 X[6776] - 2 X[43273], 7 X[6776] - 4 X[44882], 7 X[43273] - 6 X[44882], 2 X[381] - 3 X[5032], 4 X[1353] - 3 X[5032], 4 X[1353] - X[5921], and many others

X(50974) lies on these lines: {2, 3167}, {3, 11160}, {4, 542}, {6, 3545}, {30, 193}, {69, 3431}, {98, 9770}, {141, 15709}, {159, 37939}, {182, 15702}, {376, 524}, {381, 1353}, {511, 11001}, {518, 50818}, {549, 11898}, {575, 5067}, {597, 3090}, {599, 631}, {1007, 6055}, {1092, 43812}, {1351, 3543}, {1352, 5071}, {1503, 15534}, {1899, 13857}, {3091, 14848}, {3525, 34507}, {3533, 20582}, {3534, 34380}, {3544, 25561}, {3618, 11178}, {3619, 10168}, {3620, 5054}, {3751, 34627}, {3832, 11482}, {3839, 18440}, {3845, 5093}, {3855, 20583}, {5056, 38079}, {5085, 15719}, {5102, 41149}, {5476, 41106}, {5477, 6054}, {5642, 37643}, {5655, 25321}, {5847, 50810}, {5890, 8681}, {5965, 19708}, {6114, 37641}, {6115, 37640}, {6144, 46333}, {6353, 35266}, {6403, 14831}, {6515, 15360}, {6792, 50565}, {6804, 9936}, {6811, 13639}, {6813, 13759}, {7392, 12834}, {7410, 31144}, {7493, 44555}, {7774, 11177}, {8584, 14853}, {8598, 41400}, {8724, 32985}, {9041, 24817}, {9140, 30775}, {9143, 20772}, {9925, 22467}, {9974, 23269}, {9975, 23275}, {10304, 20080}, {10385, 39900}, {10519, 15533}, {11004, 31105}, {11008, 46264}, {11147, 47113}, {11161, 14651}, {11459, 40673}, {11477, 33703}, {12007, 40330}, {12017, 15708}, {12111, 32284}, {12117, 14645}, {12245, 28538}, {13482, 19124}, {13754, 15531}, {14002, 32254}, {14913, 16226}, {14927, 19924}, {14981, 37809}, {15032, 41614}, {15058, 44495}, {15687, 48662}, {15692, 48876}, {15710, 40341}, {16051, 40112}, {17040, 34801}, {18445, 37784}, {18917, 20126}, {18918, 21639}, {19459, 44837}, {21850, 50687}, {21969, 41715}, {22234, 25565}, {28194, 39878}, {28461, 37492}, {32225, 35260}, {32621, 35921}, {32984, 49102}, {33224, 39141}, {34379, 50811}, {34608, 41628}, {36757, 49813}, {36758, 49812}, {37182, 44367}, {37667, 40248}, {38074, 39885}, {39898, 47356}, {43598, 44489}, {45406, 49049}, {45407, 49048}

X(50974) = reflection of X(i) in X(j) for these {i,j}: {4, 1992}, {69, 11179}, {376, 6776}, {381, 1353}, {599, 8550}, {3543, 1351}, {5921, 381}, {6054, 5477}, {6403, 14831}, {10706, 5095}, {11160, 3}, {11180, 6}, {11459, 40673}, {11898, 549}, {15069, 597}, {34627, 3751}, {39898, 47356}, {47353, 8584}, {48662, 15687}
X(50974) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 11180, 3545}, {69, 11179, 3524}, {182, 21356, 15702}, {193, 39899, 39874}, {381, 1353, 5032}, {5032, 5921, 381}, {8584, 47353, 14853}, {9140, 37645, 30775}, {9143, 37644, 26255}, {14853, 47353, 41099}, {26288, 26289, 8716}


X(50975) = X(30)X(3618)∩X(376)X(524)

Barycentrics    29*a^6 - 5*a^4*b^2 - 17*a^2*b^4 - 7*b^6 - 5*a^4*c^2 - 30*a^2*b^2*c^2 + 7*b^4*c^2 - 17*a^2*c^4 + 7*b^2*c^4 - 7*c^6 : :
X(50975) = 7 X[2] - 12 X[17508], 4 X[2] - 9 X[33750], 16 X[17508] - 21 X[33750], 7 X[20] + 8 X[575], 3 X[20] + 2 X[20423], 12 X[575] - 7 X[20423], 7 X[3618] - 10 X[12017], X[69] - 6 X[15688], 4 X[141] - 9 X[15710], 4 X[182] + X[15683], 7 X[376] - 2 X[1350], 4 X[376] + X[6776], 3 X[376] + 2 X[43273], X[376] + 4 X[44882], 8 X[1350] + 7 X[6776], 3 X[1350] + 7 X[43273], X[1350] + 14 X[44882], 3 X[6776] - 8 X[43273], X[6776] - 16 X[44882], X[43273] - 6 X[44882], 4 X[549] + X[14927], 4 X[550] + X[1992], 4 X[597] + X[3529], 2 X[599] - 7 X[3528], X[1351] + 4 X[15691], X[3146] - 6 X[38064], 3 X[3524] - 2 X[3763], 9 X[3524] - 4 X[47354], 3 X[3763] - 2 X[47354], 7 X[3534] + 3 X[5093], 2 X[3534] + 3 X[25406], 2 X[5093] - 7 X[25406], X[3543] + 4 X[48898], 3 X[3545] + 2 X[48905], 7 X[3619] - 12 X[17504], X[3620] - 3 X[10304], 11 X[3620] - 8 X[43150], X[3620] + 2 X[46264], 6 X[10304] - X[11180], 33 X[10304] - 8 X[43150], 3 X[10304] + 2 X[46264], 11 X[11180] - 16 X[43150], X[11180] + 4 X[46264], 4 X[43150] + 11 X[46264], 4 X[3818] - 9 X[15708], 3 X[3839] - 8 X[5092], 3 X[5032] + 2 X[48873], 3 X[5050] + 2 X[19710], X[5073] - 6 X[38079], 6 X[5085] - X[15682], X[5921] - 16 X[33751], 8 X[8703] - 3 X[10519], 8 X[10168] - 3 X[50687], 13 X[10299] - 8 X[20582], 13 X[10303] - 8 X[25561], 6 X[10516] - 11 X[15719], 14 X[10541] + X[49138], 2 X[11001] + 3 X[14853], 4 X[11178] - 9 X[15705], 7 X[11179] - 2 X[37517], X[11179] + 4 X[48892], X[37517] + 14 X[48892], X[12250] + 4 X[31166], 6 X[14561] - X[15640], 3 X[14848] + 2 X[15704], 3 X[15689] + 2 X[48906], 7 X[15698] - 2 X[47353], 7 X[15700] - 2 X[39884], 7 X[15702] - 2 X[36990], 9 X[15706] - 4 X[18358], 11 X[15715] - 6 X[21358], X[18440] - 6 X[45759], 16 X[20190] - X[49135], 3 X[21356] - 8 X[34200], 16 X[25555] - X[50692], 16 X[25565] - 11 X[50689], X[33703] - 6 X[38072]

X(50975) lies on these lines: {2, 6030}, {20, 575}, {30, 3618}, {69, 15688}, {141, 15710}, {182, 15683}, {376, 524}, {511, 15697}, {518, 50819}, {542, 3522}, {549, 14927}, {550, 1992}, {597, 3529}, {599, 3528}, {1351, 15691}, {1503, 19708}, {3146, 38064}, {3524, 3763}, {3534, 5093}, {3543, 48898}, {3545, 48905}, {3564, 15695}, {3619, 17504}, {3620, 10304}, {3818, 15708}, {3839, 5092}, {5032, 48873}, {5050, 19710}, {5073, 38079}, {5085, 15682}, {5846, 50809}, {5847, 50812}, {5921, 33751}, {7386, 35266}, {8703, 10519}, {10168, 50687}, {10299, 20582}, {10303, 25561}, {10516, 15719}, {10541, 49138}, {11001, 14853}, {11178, 15705}, {11179, 37517}, {11645, 15692}, {12250, 31166}, {14561, 15640}, {14848, 15704}, {15689, 48906}, {15698, 47353}, {15700, 39884}, {15702, 36990}, {15706, 18358}, {15715, 21358}, {18440, 45759}, {20190, 49135}, {21356, 34200}, {25555, 50692}, {25565, 50689}, {33703, 38072}

X(50975) = reflection of X(i) in X(j) for these {i,j}: {11180, 3620}, {40330, 15692}
X(50975) = {X(10304),X(46264)}-harmonic conjugate of X(11180)


X(50976) = X(30)X(47355)∩X(376)X(524)

Barycentrics    37*a^6 + 2*a^4*b^2 - 31*a^2*b^4 - 8*b^6 + 2*a^4*c^2 - 42*a^2*b^2*c^2 + 8*b^4*c^2 - 31*a^2*c^4 + 8*b^2*c^4 - 8*c^6 : :
X(50976) = 11 X[3] - 4 X[25561], X[6] + 6 X[15689], 4 X[20] + 3 X[38072], 8 X[376] - X[1350], 13 X[376] + X[6776], 6 X[376] + X[43273], 5 X[376] + 2 X[44882], 13 X[1350] + 8 X[6776], 3 X[1350] + 4 X[43273], 5 X[1350] + 16 X[44882], 6 X[6776] - 13 X[43273], 5 X[6776] - 26 X[44882], 5 X[43273] - 12 X[44882], X[381] - 8 X[33751], 8 X[548] - X[599], 6 X[550] + X[20423], 2 X[597] + 5 X[17538], 4 X[3534] + 3 X[5085], 5 X[3534] + 2 X[5476], 15 X[5085] - 8 X[5476], 4 X[3589] + 3 X[46333], X[3619] - 3 X[10304], 3 X[3619] - 2 X[47354], 2 X[3619] + X[48905], 9 X[10304] - 2 X[47354], 6 X[10304] + X[48905], 4 X[47354] + 3 X[48905], 5 X[3620] - 33 X[35418], 5 X[3763] - 12 X[45759], 3 X[5055] + 4 X[48891], 3 X[5102] + 32 X[15690], 8 X[8703] - X[47353], 3 X[10516] - 10 X[19708], X[11477] + 20 X[15696], 11 X[11477] - 32 X[33749], 55 X[15696] + 8 X[33749], 4 X[12103] + 3 X[38064], 10 X[14093] - 3 X[21358], 5 X[14093] + 2 X[48898], 3 X[21358] + 4 X[48898], 5 X[15681] + 2 X[48904], X[15685] + 6 X[17508], 4 X[15686] + 3 X[47352], 15 X[15688] - X[18440], 3 X[15688] + 4 X[48892], X[18440] + 20 X[48892], 8 X[15691] - X[48872], 5 X[15694] + 2 X[48896], 10 X[15695] - 3 X[31884], 9 X[15707] - 2 X[48884], 11 X[15718] - 4 X[48889], 4 X[20582] - 11 X[21735], 8 X[25565] - X[49136], 8 X[34200] - X[36990]

X(50976) lies on these lines: {3, 25561}, {6, 15689}, {20, 38072}, {30, 47355}, {376, 524}, {381, 33751}, {518, 50820}, {548, 599}, {550, 20423}, {597, 17538}, {3534, 5085}, {3589, 46333}, {3619, 10304}, {3620, 35418}, {3763, 45759}, {5055, 48891}, {5102, 15690}, {5846, 50813}, {7716, 35489}, {8703, 47353}, {10516, 19708}, {11477, 15696}, {12103, 38064}, {14093, 21358}, {15681, 48904}, {15685, 17508}, {15686, 47352}, {15688, 18440}, {15691, 48872}, {15694, 48896}, {15695, 31884}, {15701, 29323}, {15707, 48884}, {15718, 48889}, {20582, 21735}, {25565, 49136}, {34200, 36990}

X(50976) = {X(14093),X(48898)}-harmonic conjugate of X(21358)


X(50977) = X(30)X(141)∩X(182)X(524)

Barycentrics    a^6 + 2*a^4*b^2 - 4*a^2*b^4 + b^6 + 2*a^4*c^2 - 6*a^2*b^2*c^2 - b^4*c^2 - 4*a^2*c^4 - b^2*c^4 + c^6 : :
X(50977) = X[2] + 3 X[10519], 5 X[2] - 3 X[14561], 7 X[2] - 3 X[14853], 4 X[2] - 3 X[38317], X[5476] + 6 X[10519], 5 X[5476] - 6 X[14561], 7 X[5476] - 6 X[14853], 3 X[5476] - 2 X[20423], 2 X[5476] - 3 X[38317], 5 X[10519] + X[14561], 7 X[10519] + X[14853], 9 X[10519] + X[20423], 4 X[10519] + X[38317], 7 X[14561] - 5 X[14853], 9 X[14561] - 5 X[20423], 4 X[14561] - 5 X[38317], 9 X[14853] - 7 X[20423], 4 X[14853] - 7 X[38317], 4 X[20423] - 9 X[38317], 5 X[3] + X[15069], 2 X[3] + X[34507], X[3] + 2 X[40107], 3 X[3] - X[43273], 5 X[599] - X[15069], 3 X[599] + X[43273], 2 X[5181] + X[32305], X[12584] + 2 X[49116], 2 X[15069] - 5 X[34507], X[15069] - 10 X[40107], 3 X[15069] + 5 X[43273], X[34507] - 4 X[40107], 3 X[34507] + 2 X[43273], 6 X[40107] + X[43273], X[6] - 3 X[5054], 3 X[5054] - 2 X[10168], X[20] + 2 X[18553], 2 X[141] + X[3098], 4 X[141] - X[3818], 5 X[141] - 2 X[18358], 3 X[141] - X[47354], 14 X[141] + X[48879], 8 X[141] + X[48880], 5 X[141] + X[48881], 10 X[141] - X[48884], 2 X[3098] + X[3818], 5 X[3098] + 4 X[18358], 3 X[3098] + 2 X[47354], 7 X[3098] - X[48879], 4 X[3098] - X[48880], and many others

X(50977) lies on these lines: {2, 51}, {3, 67}, {4, 25561}, {5, 20582}, {6, 5054}, {20, 18553}, {30, 141}, {69, 3431}, {76, 9302}, {99, 19905}, {125, 21766}, {140, 576}, {147, 9774}, {182, 524}, {183, 6055}, {193, 15708}, {298, 5981}, {299, 5980}, {343, 43957}, {376, 1352}, {381, 1350}, {518, 50821}, {547, 5480}, {573, 13633}, {574, 15993}, {575, 631}, {632, 38079}, {754, 35424}, {991, 13632}, {1092, 44491}, {1176, 43572}, {1351, 15694}, {1385, 28538}, {1469, 3584}, {1503, 8703}, {1656, 25565}, {2030, 21843}, {2393, 23329}, {2781, 15067}, {2782, 44774}, {2794, 25562}, {3017, 50591}, {3056, 3582}, {3094, 5309}, {3242, 34718}, {3314, 6054}, {3416, 3655}, {3523, 11160}, {3526, 11477}, {3530, 8550}, {3534, 29012}, {3543, 40330}, {3545, 3619}, {3564, 12100}, {3589, 11539}, {3618, 15709}, {3620, 10304}, {3630, 41983}, {3631, 17504}, {3653, 47356}, {3654, 47358}, {3763, 5055}, {3830, 10516}, {3839, 48895}, {3845, 29181}, {4265, 28443}, {5017, 7753}, {5032, 15516}, {5039, 9300}, {5050, 15534}, {5077, 19662}, {5085, 5965}, {5097, 15702}, {5104, 5475}, {5108, 16760}, {5138, 28465}, {5171, 8369}, {5182, 33274}, {5207, 11057}, {5418, 44502}, {5420, 44501}, {5447, 18281}, {5498, 11255}, {5642, 15066}, {5651, 7426}, {5690, 9041}, {5846, 50824}, {5847, 50828}, {5969, 49102}, {6034, 7746}, {6036, 7610}, {6228, 13804}, {6229, 13684}, {6393, 37671}, {6698, 32273}, {6699, 9976}, {6771, 9763}, {6774, 9761}, {6776, 15692}, {6791, 20481}, {7495, 40112}, {7496, 44555}, {7516, 43573}, {7552, 7999}, {7607, 7616}, {7748, 12355}, {7778, 40248}, {7818, 35387}, {7822, 9821}, {7827, 12251}, {7833, 12117}, {7834, 32521}, {7840, 37455}, {7841, 9880}, {7855, 12054}, {7937, 43453}, {8182, 47113}, {8262, 49671}, {8359, 9737}, {8541, 37118}, {8542, 15122}, {8548, 20191}, {8549, 25563}, {8584, 11812}, {8722, 37461}, {8981, 44474}, {9019, 44287}, {9023, 16235}, {9053, 50823}, {9140, 41462}, {9143, 15080}, {9306, 35266}, {9540, 44482}, {9735, 35304}, {9736, 35303}, {9829, 14916}, {9830, 33813}, {9971, 13340}, {9977, 32348}, {10018, 11470}, {10124, 18583}, {10170, 44275}, {10182, 19153}, {10193, 10249}, {10257, 11511}, {10282, 31166}, {10303, 22330}, {10541, 33749}, {10546, 37909}, {10625, 14787}, {10754, 17004}, {11001, 29323}, {11130, 46824}, {11131, 46825}, {11161, 21166}, {11173, 31489}, {11303, 25154}, {11304, 25164}, {11694, 19127}, {11898, 15700}, {12017, 15707}, {12177, 41134}, {12220, 44450}, {13085, 13086}, {13087, 13088}, {13169, 15035}, {13330, 31455}, {13334, 34511}, {13348, 43130}, {13391, 16776}, {13586, 43152}, {13634, 17297}, {13635, 17271}, {13700, 13820}, {13732, 49723}, {13910, 43211}, {13935, 44481}, {13966, 44473}, {13972, 43212}, {14093, 33751}, {14178, 14182}, {14269, 48910}, {14540, 37332}, {14541, 37333}, {14568, 43147}, {14643, 25566}, {14666, 36883}, {14869, 20583}, {14880, 42787}, {14912, 15719}, {14994, 32429}, {15061, 44751}, {15074, 50004}, {15303, 38793}, {15330, 19154}, {15462, 41720}, {15520, 15713}, {15681, 36990}, {15683, 48920}, {15684, 48872}, {15686, 39884}, {15687, 48874}, {15688, 18440}, {15689, 48905}, {15698, 25406}, {15699, 21850}, {15706, 39899}, {15710, 39874}, {15711, 41152}, {15810, 18860}, {16187, 32269}, {16266, 44494}, {16789, 37480}, {18800, 38748}, {19510, 50008}, {19649, 31143}, {20192, 47582}, {20299, 34787}, {20819, 50676}, {21163, 39785}, {21243, 31152}, {21554, 31144}, {22110, 37451}, {22329, 37450}, {22866, 22911}, {25556, 38794}, {26446, 47359}, {29573, 46475}, {30270, 37345}, {30739, 44569}, {31173, 37348}, {31401, 44500}, {32135, 38750}, {32216, 37638}, {32223, 47597}, {32267, 35259}, {34118, 34785}, {34155, 44493}, {34200, 44882}, {34331, 40929}, {34379, 50829}, {34621, 44870}, {34776, 35228}, {35001, 47448}, {35356, 40251}, {35375, 47101}, {37340, 47068}, {37341, 47066}, {40916, 41586}, {41614, 49672}, {41714, 44441}, {42089, 44497}, {42092, 44498}, {42149, 44511}, {42152, 44512}, {43621, 50687}, {44456, 47355}, {44513, 49105}, {44514, 49106}, {45303, 47311}, {47097, 47468}

X(50977) = midpoint of X(i) and X(j) for these {i,j}: {3, 599}, {69, 11179}, {99, 19905}, {376, 1352}, {381, 1350}, {549, 48876}, {3098, 11178}, {3242, 34718}, {3416, 3655}, {3534, 47353}, {3543, 48873}, {3654, 47358}, {5648, 20126}, {6055, 50567}, {7818, 35387}, {9971, 13340}, {11180, 46264}, {14666, 36883}, {15681, 36990}, {15684, 48872}, {15686, 39884}, {15687, 48874}, {16789, 44218}, {22677, 22712}, {47097, 47468}
X(50977) = reflection of X(i) in X(j) for these {i,j}: {4, 25561}, {5, 20582}, {6, 10168}, {182, 549}, {376, 14810}, {381, 24206}, {576, 597}, {597, 140}, {599, 40107}, {1992, 575}, {3543, 48889}, {3818, 11178}, {5097, 46267}, {5476, 2}, {5480, 547}, {10249, 10193}, {11178, 141}, {11179, 5092}, {11180, 43150}, {15520, 38110}, {15681, 48885}, {15683, 48920}, {17508, 21167}, {18583, 10124}, {19140, 5642}, {19153, 10182}, {19154, 15330}, {31166, 10282}, {34507, 599}, {44882, 34200}, {48896, 15686}, {48898, 376}, {48901, 381}, {48904, 15687}
X(50977) = complement of X(20423)
X(50977) = crossdifference of every pair of points on line {2492, 3288}
X(50977) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5476, 38317}, {3, 40107, 34507}, {6, 5054, 10168}, {69, 3524, 11179}, {141, 3098, 3818}, {141, 48881, 18358}, {376, 21356, 1352}, {381, 21358, 24206}, {631, 1992, 38064}, {1350, 21358, 381}, {1350, 24206, 48901}, {1351, 15694, 47352}, {1352, 14810, 48898}, {1656, 38072, 25565}, {1992, 38064, 575}, {3098, 3818, 48880}, {3098, 48884, 48881}, {3524, 11179, 5092}, {3526, 11477, 25555}, {3620, 10304, 11180}, {3620, 46264, 43150}, {3642, 3643, 7761}, {3763, 19130, 42786}, {3763, 33878, 19130}, {5650, 32225, 2}, {10124, 18583, 48310}, {10304, 11180, 46264}, {13083, 13084, 5569}, {13087, 13088, 34506}, {15066, 47596, 5642}, {18358, 48881, 48884}, {18358, 48884, 3818}, {31884, 47353, 3534}, {32216, 37638, 45311}, {40330, 48873, 48889}


X(50978) = X(30)X(69)∩X(182)X(524)

Barycentrics    4*a^6 - 19*a^4*b^2 + 20*a^2*b^4 - 5*b^6 - 19*a^4*c^2 + 12*a^2*b^2*c^2 + 5*b^4*c^2 + 20*a^2*c^4 + 5*b^2*c^4 - 5*c^6 : :
X(50978) = 5 X[2] - 3 X[5093], 5 X[5] - 2 X[11477], 3 X[5] - 2 X[20423], 7 X[5] - 6 X[38072], 5 X[599] - X[11477], 3 X[599] - X[20423], 7 X[599] - 3 X[38072], 3 X[11477] - 5 X[20423], 7 X[11477] - 15 X[38072], 7 X[20423] - 9 X[38072], 2 X[6] - 3 X[11539], 5 X[69] - X[11180], 7 X[69] - X[18440], 5 X[69] + X[33878], 7 X[11180] - 5 X[18440], 5 X[18440] + 7 X[33878], 4 X[141] - 3 X[15699], 4 X[182] - 5 X[549], 8 X[182] - 5 X[1353], 13 X[182] - 10 X[12007], 2 X[182] - 5 X[48876], 13 X[549] - 8 X[12007], 13 X[1353] - 16 X[12007], X[1353] - 4 X[48876], 4 X[12007] - 13 X[48876], X[193] - 3 X[5054], X[3845] - 4 X[22165], 3 X[3845] - 4 X[47354], 3 X[22165] - X[47354], 2 X[547] - 3 X[21356], X[1351] - 3 X[21356], 2 X[576] - 3 X[38079], 4 X[20582] - 3 X[38079], 4 X[597] - 5 X[632], 5 X[597] - 4 X[22330], 25 X[632] - 16 X[22330], 5 X[632] - 8 X[40107], 2 X[22330] - 5 X[40107], 3 X[3524] + X[20080], 3 X[3545] - X[44456], X[8703] + 2 X[15533], 5 X[8703] - 6 X[31884], 3 X[8703] - 2 X[43273], 5 X[15533] + 3 X[31884], 3 X[15533] + X[43273], 9 X[31884] - 5 X[43273], 5 X[3618] - 6 X[47598], 7 X[3619] - 6 X[47599], 5 X[3620] - 3 X[5055], and many others>

X(50978) lies on these lines: {2, 5093}, {3, 11160}, {5, 599}, {6, 11539}, {30, 69}, {140, 1992}, {141, 15699}, {182, 524}, {193, 5054}, {343, 13857}, {376, 11898}, {511, 3845}, {518, 50823}, {542, 550}, {547, 1351}, {576, 20582}, {597, 632}, {1350, 13666}, {1352, 15687}, {1483, 28538}, {1503, 19710}, {3524, 20080}, {3545, 44456}, {3564, 8703}, {3618, 47598}, {3619, 47599}, {3620, 5055}, {3627, 34507}, {3628, 14848}, {3629, 10168}, {3630, 45759}, {3631, 11178}, {3857, 25561}, {3933, 8724}, {5032, 15694}, {5050, 11812}, {5085, 19711}, {5097, 48310}, {5562, 16105}, {5648, 16789}, {5846, 50831}, {5847, 50824}, {5921, 15681}, {5965, 15711}, {6776, 34200}, {7750, 12117}, {7840, 37451}, {8550, 44682}, {8584, 38110}, {9544, 44210}, {10109, 14853}, {10154, 35266}, {10304, 39899}, {10519, 12100}, {11179, 17504}, {11482, 16239}, {11645, 44903}, {11694, 34351}, {11737, 40330}, {12017, 41983}, {13169, 32423}, {14645, 49102}, {14869, 38064}, {14912, 15693}, {15069, 15704}, {15360, 44212}, {15534, 15713}, {15683, 48662}, {15689, 39874}, {15759, 25406}, {18358, 23046}, {18583, 21358}, {19662, 38229}, {19924, 35404}, {28463, 36740}, {30739, 44555}, {33699, 47353}, {34379, 50821}, {37450, 44367}, {37668, 40248}, {37950, 47552}, {38035, 50792}, {38112, 47359}, {38136, 41152}, {38144, 50785}, {39561, 41149}, {43957, 45794}, {44266, 47473}

X(50978) = midpoint of X(i) and X(j) for these {i,j}: {3, 11160}, {376, 11898}, {5921, 15681}, {11179, 40341}, {11180, 33878}, {15683, 48662}
X(50978) = reflection of X(i) in X(j) for these {i,j}: {5, 599}, {549, 48876}, {576, 20582}, {597, 40107}, {1351, 547}, {1353, 549}, {1992, 140}, {3629, 10168}, {6776, 34200}, {11178, 3631}, {15686, 1350}, {15687, 1352}, {21850, 11178}, {33699, 47353}, {35404, 39884}, {41720, 11694}, {44266, 47473}, {44903, 48874}
X(50978) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {576, 20582, 38079}, {1351, 21356, 547}, {11178, 21850, 38071}


X(50979) = X(6)X(30)∩X(182)X(524)

Barycentrics    8*a^6 - 11*a^4*b^2 + 4*a^2*b^4 - b^6 - 11*a^4*c^2 - 12*a^2*b^2*c^2 + b^4*c^2 + 4*a^2*c^4 + b^2*c^4 - c^6 : :
X(50979) = X[2] - 3 X[5050], X[2] + 3 X[14912], X[2] - 9 X[33748], 2 X[2] - 3 X[38110], X[5050] - 3 X[33748], X[14912] + 3 X[33748], 2 X[14912] + X[38110], 6 X[33748] - X[38110], X[4] - 3 X[14848], X[5] - 4 X[575], X[5] + 2 X[8550], 7 X[5] - 4 X[18553], 5 X[5] - 8 X[25555], 5 X[5] - 4 X[25561], 7 X[5] - 8 X[25565], X[5] + 8 X[33749], 2 X[5] - 3 X[38079], 3 X[5] - 2 X[47354], 2 X[575] + X[8550], 7 X[575] - X[18553], 5 X[575] - 2 X[25555], 5 X[575] - X[25561], 7 X[575] - 2 X[25565], X[575] + 2 X[33749], 8 X[575] - 3 X[38079], 6 X[575] - X[47354], 7 X[597] - 2 X[18553], 5 X[597] - 4 X[25555], 5 X[597] - 2 X[25561], 7 X[597] - 4 X[25565], X[597] + 4 X[33749], 4 X[597] - 3 X[38079], 3 X[597] - X[47354], 7 X[8550] + 2 X[18553], 5 X[8550] + 4 X[25555], 5 X[8550] + 2 X[25561], 7 X[8550] + 4 X[25565], X[8550] - 4 X[33749], 4 X[8550] + 3 X[38079], 3 X[8550] + X[47354], 5 X[18553] - 14 X[25555], 5 X[18553] - 7 X[25561], X[18553] + 14 X[33749], 8 X[18553] - 21 X[38079], 6 X[18553] - 7 X[47354], 7 X[25555] - 5 X[25565], X[25555] + 5 X[33749], 16 X[25555] - 15 X[38079], 12 X[25555] - 5 X[47354], and many others

X(50979) lies on these lines: {2, 3167}, {3, 1992}, {4, 14848}, {5, 542}, {6, 30}, {20, 11482}, {49, 43815}, {69, 5054}, {140, 599}, {141, 10168}, {182, 524}, {184, 35266}, {193, 3524}, {376, 1351}, {381, 6776}, {389, 15074}, {397, 25154}, {398, 25164}, {428, 39588}, {511, 8584}, {518, 50824}, {546, 38072}, {547, 1352}, {548, 11477}, {550, 576}, {567, 5622}, {568, 44261}, {613, 15170}, {631, 11160}, {632, 20582}, {952, 47359}, {1199, 31802}, {1350, 34200}, {1368, 13366}, {1483, 9041}, {1495, 20192}, {1503, 3845}, {1596, 44102}, {1692, 5306}, {1993, 43957}, {2393, 5946}, {2456, 41624}, {2781, 45956}, {2782, 18800}, {3098, 32455}, {3329, 11177}, {3363, 8593}, {3398, 5182}, {3530, 10541}, {3534, 5093}, {3545, 18440}, {3546, 43908}, {3582, 39873}, {3584, 39897}, {3589, 11178}, {3618, 5055}, {3620, 15709}, {3627, 22234}, {3628, 15069}, {3629, 5092}, {3655, 3751}, {3656, 16475}, {3763, 47598}, {3815, 5477}, {3818, 6329}, {3830, 14853}, {3839, 39874}, {4663, 34773}, {5012, 15360}, {5034, 9300}, {5038, 31406}, {5066, 14561}, {5071, 5921}, {5085, 12100}, {5097, 15686}, {5102, 15690}, {5254, 9880}, {5309, 39764}, {5480, 11645}, {5642, 37648}, {5648, 8263}, {5663, 15303}, {5690, 28538}, {5846, 50823}, {5847, 50821}, {5890, 44285}, {5892, 8681}, {5901, 38023}, {5965, 15713}, {5967, 34094}, {5969, 32448}, {6036, 9771}, {6054, 7792}, {6102, 44479}, {6144, 41983}, {6467, 16226}, {6644, 32621}, {6661, 39141}, {6677, 17809}, {6770, 44219}, {6771, 33474}, {6774, 33475}, {6800, 37904}, {7426, 11003}, {7495, 44555}, {7575, 8546}, {7592, 34664}, {7709, 8598}, {7734, 37672}, {7735, 40248}, {7840, 37450}, {8370, 12243}, {8541, 37458}, {8548, 36752}, {8549, 31166}, {9007, 45681}, {9053, 50831}, {9140, 14389}, {9143, 15018}, {9729, 32284}, {9730, 14984}, {9956, 38089}, {9967, 14831}, {9977, 36966}, {10109, 10516}, {10124, 21358}, {10192, 32068}, {10301, 15019}, {10304, 33878}, {10485, 15993}, {10519, 15693}, {10753, 14830}, {10765, 14666}, {11002, 47313}, {11008, 15707}, {11161, 38224}, {11237, 39901}, {11238, 39900}, {11405, 18533}, {11416, 44239}, {11422, 30739}, {11431, 16195}, {11579, 34319}, {11693, 32114}, {11799, 43697}, {11812, 15533}, {11842, 19661}, {11898, 15694}, {12042, 41672}, {12117, 32467}, {12161, 44503}, {13169, 15061}, {13330, 32516}, {13335, 14645}, {13363, 29959}, {13394, 32225}, {13434, 43812}, {13630, 50649}, {14614, 35429}, {14810, 15714}, {14869, 40107}, {14893, 36990}, {14927, 15684}, {15026, 43130}, {15032, 45016}, {15037, 39562}, {15045, 15531}, {15073, 37481}, {15087, 22151}, {15520, 19710}, {15688, 44456}, {15691, 48873}, {15703, 40330}, {15704, 22330}, {15708, 20080}, {15711, 17508}, {15712, 20190}, {15759, 31884}, {16042, 32254}, {16473, 34634}, {18400, 23326}, {18449, 44249}, {18571, 47280}, {18911, 47097}, {19116, 44657}, {19117, 44656}, {19127, 44490}, {19130, 23046}, {19149, 44804}, {19153, 44275}, {19662, 34127}, {19711, 21167}, {22249, 47276}, {22329, 37451}, {24206, 46267}, {26255, 26864}, {28204, 39870}, {29012, 33699}, {31804, 36753}, {32046, 34351}, {32216, 37645}, {32305, 41595}, {32414, 35021}, {34331, 50476}, {34379, 50828}, {34613, 45034}, {35404, 48901}, {35707, 37936}, {35822, 49229}, {35823, 49228}, {35840, 41946}, {35841, 41945}, {36757, 43228}, {36758, 43229}, {37455, 44367}, {37644, 47596}, {37827, 37967}, {37950, 47549}, {38021, 39878}, {38029, 47358}, {38116, 50783}, {38118, 50781}, {38322, 44494}, {40647, 44495}, {41631, 42634}, {41641, 42633}, {43595, 44480}, {44266, 47544}, {44903, 48898}, {44961, 47458}, {47031, 47463}, {47277, 47333}, {47308, 47462}, {47310, 47461}, {47332, 47459}, {47334, 47457}, {47335, 47464}, {47336, 47460}, {47355, 47599}

X(50979) = midpoint of X(i) and X(j) for these {i,j}: {3, 1992}, {6, 11179}, {376, 1351}, {381, 6776}, {549, 1353}, {597, 8550}, {3655, 3751}, {5050, 14912}, {5093, 25406}, {5477, 6055}, {8549, 31166}, {8593, 11632}, {9730, 40673}, {9967, 14831}, {10753, 14830}, {10765, 14666}, {11180, 39899}, {11579, 34319}, {14927, 15684}, {20126, 41720}, {20423, 43273}, {47277, 47333}
X(50979) = reflection of X(i) in X(j) for these {i,j}: {5, 597}, {141, 10168}, {381, 18583}, {549, 182}, {576, 20583}, {597, 575}, {599, 140}, {1350, 34200}, {1352, 547}, {3845, 5476}, {5648, 11694}, {10168, 50664}, {11178, 3589}, {11180, 18358}, {15686, 44882}, {15687, 5480}, {18553, 25565}, {24206, 46267}, {25561, 25555}, {29959, 13363}, {34507, 20582}, {35404, 48901}, {36990, 14893}, {38110, 5050}, {39884, 381}, {44266, 47544}, {44903, 48898}, {47334, 47457}, {47353, 5066}, {48873, 15691}, {48874, 376}, {48876, 549}, {48906, 11179}
X(50979) = crossdifference of every pair of points on line {8675, 39232}
X(50979) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 597, 38079}, {6, 43273, 20423}, {6, 48906, 21850}, {141, 10168, 11539}, {182, 1353, 48876}, {182, 12007, 1353}, {376, 5032, 1351}, {575, 8550, 5}, {575, 33749, 8550}, {599, 38064, 140}, {1352, 47352, 547}, {3589, 11178, 15699}, {3618, 11180, 5055}, {3618, 39899, 18358}, {3845, 5476, 38136}, {5055, 11180, 18358}, {5055, 39899, 11180}, {5622, 41720, 20126}, {5648, 15462, 11694}, {6776, 18583, 39884}, {10653, 10654, 44526}, {11179, 20423, 43273}, {11842, 37461, 19661}, {11898, 15694, 21356}, {14561, 47353, 5066}, {14912, 33748, 5050}, {24206, 46267, 48310}, {41979, 41980, 43619}


X(50980) = X(30)X(3763)∩X(182)X(524)

Barycentrics    16*a^6 + 5*a^4*b^2 - 28*a^2*b^4 + 7*b^6 + 5*a^4*c^2 - 60*a^2*b^2*c^2 - 7*b^4*c^2 - 28*a^2*c^4 - 7*b^2*c^4 + 7*c^6 : :
X(50980) = 8 X[2] - 3 X[38136], X[69] + 9 X[15707], 6 X[140] - X[20423], 8 X[140] - 3 X[38079], 4 X[20423] - 9 X[38079], 2 X[141] + 3 X[17504], 2 X[182] - 7 X[549], 22 X[182] - 7 X[1353], 29 X[182] - 14 X[12007], 8 X[182] + 7 X[48876], 11 X[549] - X[1353], 29 X[549] - 4 X[12007], 4 X[549] + X[48876], 29 X[1353] - 44 X[12007], 4 X[1353] + 11 X[48876], 16 X[12007] + 29 X[48876], 4 X[547] + X[48874], X[550] + 4 X[20582], 2 X[597] - 7 X[14869], X[599] + 4 X[3530], 7 X[631] - X[11482], X[1350] + 4 X[10124], X[1351] - 11 X[15721], X[1352] + 4 X[14891], X[1992] - 11 X[15720], 2 X[3098] + 3 X[15699], 3 X[3524] + X[3620], 6 X[3524] - X[48906], 2 X[3620] + X[48906], X[3618] - 3 X[5054], 7 X[3618] - X[44456], 21 X[5054] - X[44456], 7 X[3619] + 3 X[15688], 2 X[5066] + 3 X[31884], 3 X[5085] - 8 X[44580], 3 X[5102] - 28 X[11812], 2 X[5102] - 7 X[38110], 8 X[11812] - 3 X[38110], X[6776] - 11 X[15718], X[8703] - 6 X[21167], 3 X[8703] + 2 X[47354], 9 X[21167] + X[47354], 13 X[10303] - 3 X[14848], 3 X[10304] + 2 X[18358], 3 X[10516] + 2 X[15690], 3 X[10519] + 7 X[15701], 2 X[11178] + 3 X[45759], X[11179] - 6 X[41983], X[11180] + 9 X[15706], 6 X[11539] - X[21850], 8 X[11540] - 3 X[14561], 4 X[11737] + X[48873], 6 X[12100] - X[43273], 8 X[12108] - 3 X[38064], 4 X[14810] + X[15687], 6 X[14892] - X[48910], X[15686] + 4 X[24206], 7 X[15700] + 3 X[21356], 7 X[15702] - 2 X[18583], X[15704] + 4 X[25561], 9 X[15705] + X[18440], 9 X[15709] + X[33878], 4 X[15759] + X[47353], 8 X[16239] - 3 X[38072], 3 X[21358] + 2 X[34200], 6 X[21358] - X[39884], 4 X[34200] + X[39884], 3 X[23046] + 2 X[48881], X[31670] - 6 X[47599], 8 X[34573] - 3 X[38071], 6 X[41982] - X[48905]

X(50980) lies on these lines: {2, 38136}, {30, 3763}, {69, 15707}, {140, 20423}, {141, 17504}, {182, 524}, {511, 15713}, {518, 50825}, {542, 15712}, {547, 48874}, {550, 20582}, {597, 14869}, {599, 3530}, {631, 11482}, {1350, 10124}, {1351, 15721}, {1352, 14891}, {1503, 15711}, {1992, 15720}, {3098, 15699}, {3524, 3620}, {3564, 15693}, {3618, 5054}, {3619, 15688}, {5066, 31884}, {5085, 44580}, {5102, 11812}, {5846, 50832}, {6776, 15718}, {8703, 21167}, {9053, 50822}, {10303, 14848}, {10304, 18358}, {10516, 15690}, {10519, 15701}, {11178, 45759}, {11179, 41983}, {11180, 15706}, {11539, 21850}, {11540, 14561}, {11645, 15714}, {11694, 15132}, {11737, 48873}, {12100, 43273}, {12108, 38064}, {14093, 40330}, {14810, 15687}, {14892, 48910}, {15686, 24206}, {15700, 21356}, {15702, 18583}, {15704, 25561}, {15705, 18440}, {15709, 33878}, {15759, 47353}, {16239, 38072}, {21358, 34200}, {23046, 48881}, {31670, 47599}, {34573, 38071}, {41982, 48905}

X(50980) = midpoint of X(14093) and X(40330)
X(50980) = {X(21358),X(34200)}-harmonic conjugate of X(39884)


X(50981) = X(30)X(3619)∩X(182)X(524)

Barycentrics    20*a^6 + 13*a^4*b^2 - 44*a^2*b^4 + 11*b^6 + 13*a^4*c^2 - 84*a^2*b^2*c^2 - 11*b^4*c^2 - 44*a^2*c^4 - 11*b^2*c^4 + 11*c^6 : :
X(50981) = X[69] + 6 X[41983], 10 X[140] - 3 X[14848], 4 X[141] + 3 X[45759], 4 X[182] - 11 X[549], 32 X[182] - 11 X[1353], 43 X[182] - 22 X[12007], 10 X[182] + 11 X[48876], 8 X[549] - X[1353], 43 X[549] - 8 X[12007], 5 X[549] + 2 X[48876], 43 X[1353] - 64 X[12007], 5 X[1353] + 16 X[48876], 20 X[12007] + 43 X[48876], 3 X[550] + 4 X[47354], 2 X[599] + 5 X[15712], 2 X[1352] + 5 X[15714], X[1992] - 8 X[12108], 4 X[3098] + 3 X[38071], 15 X[3524] - X[39899], 5 X[3618] - 12 X[14890], 5 X[3620] + 9 X[15706], X[3627] - 8 X[20582], 10 X[3763] - 3 X[23046], 5 X[8703] + 2 X[47353], 3 X[10519] + 4 X[11812], 9 X[11539] - 2 X[20423], 3 X[11539] - 2 X[47355], X[20423] - 3 X[47355], 10 X[12100] - 3 X[25406], 8 X[14810] - X[44903], 4 X[14891] + 3 X[21356], 3 X[14912] - 17 X[15722], X[15686] + 6 X[21358], 5 X[15687] + 2 X[48872], 2 X[15691] + 5 X[40330], 15 X[15699] - 8 X[19130], 5 X[15711] - 12 X[21167], 9 X[17504] - 2 X[43273], 8 X[24206] - X[35404], 6 X[31884] + X[33699], X[33878] + 6 X[47598]

X(50981) lies on these lines: {30, 3619}, {69, 41983}, {140, 14848}, {141, 45759}, {182, 524}, {518, 50826}, {542, 44682}, {550, 47354}, {599, 15712}, {1352, 15714}, {1992, 12108}, {3098, 38071}, {3524, 39899}, {3564, 19711}, {3618, 14890}, {3620, 15706}, {3627, 20582}, {3763, 23046}, {3845, 29317}, {5847, 50833}, {8703, 47353}, {10519, 11812}, {11539, 20423}, {12100, 25406}, {14810, 44903}, {14891, 21356}, {14912, 15722}, {15686, 21358}, {15687, 48872}, {15691, 40330}, {15699, 19130}, {15701, 34380}, {15711, 21167}, {17504, 43273}, {24206, 35404}, {31884, 33699}, {33878, 47598}


X(50982) = X(30)X(3631)∩X(182)X(524)

Barycentrics    2*a^6 - 23*a^4*b^2 + 28*a^2*b^4 - 7*b^6 - 23*a^4*c^2 + 24*a^2*b^2*c^2 + 7*b^4*c^2 + 28*a^2*c^4 + 7*b^2*c^4 - 7*c^6 : :
X(50982) = 7 X[2] - 3 X[5102], X[4] - 5 X[599], 3 X[4] - 5 X[47354], 3 X[599] - X[47354], 5 X[6] - 9 X[15709], 5 X[3631] - 2 X[43150], 5 X[69] + 3 X[10304], 3 X[69] + X[43273], 9 X[10304] - 5 X[43273], 5 X[141] - 3 X[5055], 3 X[141] - X[20423], 7 X[141] - X[44456], 9 X[5055] - 5 X[20423], 21 X[5055] - 5 X[44456], 7 X[20423] - 3 X[44456], 5 X[182] - 7 X[549], 13 X[182] - 7 X[1353], 10 X[182] - 7 X[12007], X[182] - 7 X[48876], 13 X[549] - 5 X[1353], X[549] - 5 X[48876], 10 X[1353] - 13 X[12007], X[1353] - 13 X[48876], X[12007] - 10 X[48876], 5 X[597] - 7 X[3526], 7 X[597] - 5 X[11482], 49 X[3526] - 25 X[11482], 5 X[1350] - X[15683], 5 X[1352] - X[15684], X[3534] + 5 X[22165], 5 X[1992] - 13 X[10303], 3 X[3524] + X[40341], 5 X[3589] - 6 X[47598], 4 X[3628] - 5 X[20582], 2 X[3628] - 5 X[40107], X[3629] - 3 X[5054], 5 X[3630] + 9 X[15706], 5 X[11179] - 9 X[15706], 4 X[3856] - 5 X[25561], X[5480] - 3 X[21356], 2 X[6329] - 3 X[11539], 17 X[7486] - 5 X[11477], 5 X[8550] - 11 X[15717], 5 X[11160] + 11 X[15717], 5 X[10168] - 6 X[14890], 12 X[14890] - 5 X[32455], 3 X[10519] + X[15533], 15 X[10519] - 7 X[15698], 5 X[15533] + 7 X[15698], X[11008] - 9 X[15708], 5 X[11178] - 3 X[23046], 5 X[11180] + 3 X[46333], 3 X[46333] - 5 X[48881], 19 X[15022] - 15 X[38072], 5 X[15069] + 7 X[50693], 3 X[15520] - 4 X[41153], X[15640] - 5 X[47353], 3 X[15699] - X[37517], X[15704] + 5 X[34507], 5 X[15713] - 3 X[39561], X[33699] - 10 X[41152]

X(50982) lies on these lines: {2, 5102}, {4, 599}, {6, 15709}, {30, 3631}, {69, 10304}, {140, 20583}, {141, 5055}, {182, 524}, {511, 5066}, {518, 50827}, {542, 548}, {597, 3526}, {1177, 34483}, {1350, 15683}, {1352, 15684}, {1503, 3534}, {1992, 10303}, {3524, 40341}, {3564, 15759}, {3589, 46114}, {3628, 20582}, {3629, 5054}, {3630, 11179}, {3856, 25561}, {5097, 10124}, {5480, 21356}, {5965, 12100}, {6329, 11539}, {7486, 11477}, {8550, 11160}, {9053, 50830}, {10168, 14890}, {10302, 14485}, {10519, 15533}, {11008, 15708}, {11178, 23046}, {11180, 46333}, {11540, 34380}, {13607, 28538}, {15022, 38072}, {15069, 50693}, {15520, 41153}, {15640, 47353}, {15699, 37517}, {15704, 34507}, {15713, 39561}, {29181, 33699}

X(50982) = midpoint of X(i) and X(j) for these {i,j}: {3630, 11179}, {8550, 11160}, {11180, 48881}
X(50982) = reflection of X(i) in X(j) for these {i,j}: {5097, 10124}, {12007, 549}, {20582, 40107}, {20583, 140}, {32455, 10168}


X(50983) = X(30)X(38072)∩X(182)X(524)

Barycentrics    10*a^6 - 7*a^4*b^2 - 4*a^2*b^4 + b^6 - 7*a^4*c^2 - 24*a^2*b^2*c^2 - b^4*c^2 - 4*a^2*c^4 - b^2*c^4 + c^6 : :
X(50983) = X[2] + 3 X[5085], 7 X[2] - 3 X[10516], 5 X[2] + 3 X[25406], 3 X[2] + X[43273], 5 X[2] - X[47353], 7 X[5085] + X[10516], 5 X[5085] - X[25406], 9 X[5085] - X[43273], 15 X[5085] + X[47353], 9 X[5085] + X[47354], 5 X[10516] + 7 X[25406], 9 X[10516] + 7 X[43273], 15 X[10516] - 7 X[47353], 9 X[10516] - 7 X[47354], 9 X[25406] - 5 X[43273], 3 X[25406] + X[47353], 9 X[25406] + 5 X[47354], 5 X[43273] + 3 X[47353], 3 X[47353] - 5 X[47354], 5 X[3] + 3 X[14848], 3 X[3] + X[20423], X[3] + 3 X[38064], 5 X[597] - 3 X[14848], 3 X[597] - X[20423], X[597] - 3 X[38064], 9 X[14848] - 5 X[20423], X[14848] - 5 X[38064], X[20423] - 9 X[38064], X[6] + 3 X[3524], X[20] + 3 X[38072], X[3589] + 2 X[5092], 5 X[3589] - 2 X[19130], 13 X[3589] + 2 X[48891], 7 X[3589] + 2 X[48892], 11 X[3589] - 2 X[48895], 23 X[3589] - 2 X[48943], 5 X[5092] + X[19130], 13 X[5092] - X[48891], 7 X[5092] - X[48892], 11 X[5092] + X[48895], 23 X[5092] + X[48943], 5 X[10168] - X[19130], 13 X[10168] + X[48891], 7 X[10168] + X[48892], 11 X[10168] - X[48895], 23 X[10168] - X[48943], 13 X[19130] + 5 X[48891], 7 X[19130] + 5 X[48892], and many others

X(50983) lies on these lines: {2, 154}, {3, 597}, {6, 3524}, {20, 38072}, {30, 3589}, {40, 38023}, {69, 15708}, {140, 542}, {141, 5054}, {182, 524}, {373, 37904}, {376, 5480}, {381, 44882}, {511, 12100}, {518, 50828}, {546, 25565}, {547, 11645}, {548, 25555}, {550, 38079}, {575, 3530}, {576, 15712}, {599, 631}, {944, 38087}, {1350, 15692}, {1351, 15700}, {1352, 15694}, {1385, 9041}, {1428, 4995}, {1691, 9300}, {1992, 3523}, {2330, 5298}, {2781, 16836}, {2916, 37939}, {3098, 6329}, {3313, 16226}, {3534, 14561}, {3545, 47355}, {3564, 11812}, {3576, 47359}, {3618, 10304}, {3628, 25561}, {3629, 15707}, {3654, 38029}, {3655, 49524}, {3763, 11180}, {3818, 15699}, {3839, 48905}, {3845, 38317}, {4297, 38089}, {5026, 6055}, {5050, 8584}, {5055, 46264}, {5066, 29012}, {5071, 36990}, {5096, 21161}, {5306, 50659}, {5476, 8703}, {5621, 7550}, {5622, 5648}, {5732, 38088}, {5759, 38086}, {5846, 50821}, {5847, 50829}, {5892, 9019}, {5893, 34664}, {5969, 13334}, {6034, 12117}, {6036, 9830}, {6247, 31166}, {6684, 28538}, {6696, 37515}, {6776, 15702}, {7395, 15579}, {7464, 38402}, {7495, 44569}, {7496, 40112}, {7575, 25488}, {7736, 20194}, {7789, 8724}, {8369, 37479}, {8705, 18579}, {8722, 19661}, {9053, 50824}, {9172, 14688}, {10124, 24206}, {10303, 15069}, {10519, 15534}, {11001, 33750}, {11178, 11539}, {11477, 15717}, {11695, 33591}, {11737, 48889}, {12101, 29323}, {12108, 40107}, {13331, 33706}, {13339, 15462}, {13857, 23292}, {14093, 48873}, {14810, 14891}, {14853, 19708}, {14869, 34507}, {14890, 43150}, {14912, 15533}, {14984, 44323}, {15303, 38727}, {15448, 22112}, {15686, 48901}, {15687, 48898}, {15688, 31670}, {15690, 29317}, {15691, 33751}, {15698, 31884}, {15701, 22165}, {15706, 33878}, {15711, 41153}, {15714, 48874}, {15721, 21356}, {16239, 18553}, {18358, 47598}, {18583, 19924}, {18800, 38737}, {19127, 44218}, {19153, 23328}, {19710, 38136}, {19711, 39561}, {19905, 38739}, {21163, 27088}, {21850, 45759}, {22110, 37450}, {22329, 37455}, {23046, 48884}, {24466, 38090}, {25329, 38728}, {26316, 44380}, {30264, 38091}, {31521, 44883}, {32455, 41983}, {34380, 41149}, {35404, 48896}, {35486, 41585}, {36703, 45870}, {37451, 44401}, {37648, 47596}, {38047, 50811}, {38049, 50808}, {38068, 39870}, {38315, 50810}, {43650, 44210}, {44903, 48904}, {49102, 49112}

X(50983) = midpoint of X(i) and X(j) for these {i,j}: {3, 597}, {141, 11179}, {182, 549}, {376, 5480}, {381, 44882}, {599, 8550}, {3655, 49524}, {5026, 6055}, {5050, 21167}, {5092, 10168}, {5476, 8703}, {6247, 31166}, {9172, 14688}, {10192, 10249}, {11178, 48906}, {15686, 48901}, {15687, 48898}, {17508, 38110}, {18583, 34200}, {19127, 44218}, {19153, 23328}, {35404, 48896}, {43273, 47354}, {44903, 48904}
X(50983) = reflection of X(i) in X(j) for these {i,j}: {546, 25565}, {3589, 10168}, {11178, 34573}, {14810, 14891}, {15691, 33751}, {18583, 46267}, {20582, 140}, {20583, 575}, {24206, 10124}, {25561, 3628}, {48889, 11737}
X(50983) = complement of X(47354)
X(50983) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 25406, 47353}, {2, 43273, 47354}, {3, 38064, 597}, {376, 47352, 5480}, {631, 10541, 8550}, {5054, 11179, 141}, {5054, 12017, 11179}, {5476, 17508, 8703}, {6776, 15702, 21358}, {8703, 38110, 5476}, {11178, 11539, 34573}, {11180, 15709, 3763}, {11539, 48906, 11178}, {13083, 13084, 12040}, {44882, 48310, 381}


X(50984) = X(30)X(34573)∩X(182)X(524)

Barycentrics    14*a^6 + a^4*b^2 - 20*a^2*b^4 + 5*b^6 + a^4*c^2 - 48*a^2*b^2*c^2 - 5*b^4*c^2 - 20*a^2*c^4 - 5*b^2*c^4 + 5*c^6 : :
X(50984) = X[2] + 3 X[21167], 5 X[2] + 3 X[31884], 5 X[21167] - X[31884], 3 X[3] + X[47354], 3 X[20582] - X[47354], X[6] - 9 X[15708], X[141] + 3 X[3524], 5 X[141] - X[11180], 11 X[141] + X[39874], 3 X[141] + X[43273], 15 X[3524] + X[11180], 33 X[3524] - X[39874], 9 X[3524] - X[43273], 11 X[11180] + 5 X[39874], 3 X[11180] + 5 X[43273], 3 X[39874] - 11 X[43273], X[182] - 5 X[549], 17 X[182] - 5 X[1353], 11 X[182] - 5 X[12007], 7 X[182] + 5 X[48876], 17 X[549] - X[1353], 11 X[549] - X[12007], 7 X[549] + X[48876], 11 X[1353] - 17 X[12007], 7 X[1353] + 17 X[48876], 7 X[12007] + 11 X[48876], X[597] - 5 X[631], 5 X[597] - X[11477], 25 X[631] - X[11477], X[599] + 7 X[3523], X[1350] + 7 X[15702], X[1350] + 3 X[48310], 7 X[15702] - 3 X[48310], X[1352] + 7 X[15700], X[3098] + 3 X[11539], 11 X[3525] - 3 X[38072], X[41152] + 8 X[44580], X[3589] - 3 X[5054], 3 X[3589] - X[20423], 5 X[3589] + X[33878], 9 X[5054] - X[20423], 15 X[5054] + X[33878], 5 X[20423] + 3 X[33878], 7 X[3619] + 9 X[15705], X[3631] + 9 X[15707], X[11179] - 9 X[15707], 5 X[3763] + 3 X[10304], X[3818] + 3 X[45759], 3 X[5050] - X[41149], 3 X[5055] + X[48881], 3 X[5085] - 11 X[15719], 3 X[5085] + X[22165], 11 X[15719] + X[22165], X[5092] - 3 X[41983], 3 X[5093] - 35 X[15701], X[5476] - 5 X[15713], X[5480] - 5 X[15694], X[8584] + 3 X[10519], 3 X[10516] + 5 X[19708], 7 X[10541] + X[11160], X[11178] + 3 X[17504], 10 X[12108] - X[22330], 5 X[15692] + 3 X[21358], 5 X[15692] - X[44882], 3 X[21358] + X[44882], 7 X[15698] + X[47353], 7 X[15703] + X[48873], 9 X[15706] - X[46264], 9 X[15710] - X[48905], 5 X[15714] - X[48898], 11 X[15715] + 5 X[40330], 11 X[15720] - X[20583], 11 X[15720] - 3 X[38064], X[20583] - 3 X[38064], 11 X[15721] - 3 X[47352], 3 X[17508] - 7 X[19711], X[19130] - 3 X[47598], 3 X[23046] - 7 X[42786], 3 X[38071] + X[48880], 3 X[38110] - 2 X[41153], 3 X[41987] - X[48943], 3 X[47478] - X[48895]

X(50984) lies on these lines: {2, 21167}, {3, 20582}, {6, 15708}, {30, 34573}, {141, 3524}, {182, 524}, {511, 11812}, {518, 50829}, {542, 3530}, {547, 14810}, {548, 25561}, {597, 631}, {599, 3523}, {1350, 15702}, {1352, 15700}, {1503, 10193}, {3098, 11539}, {3525, 38072}, {3564, 41152}, {3589, 5054}, {3619, 15705}, {3631, 11179}, {3763, 10304}, {3818, 45759}, {5050, 41149}, {5055, 48881}, {5085, 15719}, {5092, 41983}, {5093, 15701}, {5476, 15713}, {5480, 15694}, {5846, 50828}, {6329, 10168}, {6684, 9041}, {7496, 44569}, {7499, 13857}, {8584, 10519}, {9053, 50821}, {10109, 29317}, {10124, 19924}, {10516, 19708}, {10541, 11160}, {11178, 17504}, {11645, 14891}, {12108, 22330}, {14893, 48885}, {15691, 48889}, {15692, 21358}, {15698, 47353}, {15703, 48873}, {15706, 46264}, {15710, 48905}, {15714, 48898}, {15715, 40330}, {15720, 20583}, {15721, 47352}, {15759, 29012}, {16239, 25565}, {17508, 19711}, {19130, 47598}, {22110, 37455}, {23046, 42786}, {24206, 34200}, {37450, 44401}, {38071, 48880}, {38110, 41153}, {41987, 48943}, {47478, 48895}

X(50984) = midpoint of X(i) and X(j) for these {i,j}: {3, 20582}, {547, 14810}, {548, 25561}, {3631, 11179}, {14893, 48885}, {15691, 48889}, {24206, 34200}
X(50984) = reflection of X(i) in X(j) for these {i,j}: {6329, 10168}, {25565, 16239}
X(50984) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1350, 15702, 48310}, {15692, 21358, 44882}


X(50985) = X(30)X(40341)∩X(182)X(524)

Barycentrics    16*a^6 - 49*a^4*b^2 + 44*a^2*b^4 - 11*b^6 - 49*a^4*c^2 + 12*a^2*b^2*c^2 + 11*b^4*c^2 + 44*a^2*c^4 + 11*b^2*c^4 - 11*c^6 : :
X(50985) = X[4] - 5 X[11160], 5 X[6] - 6 X[47598], 5 X[69] - 3 X[5055], 10 X[182] - 11 X[549], 14 X[182] - 11 X[1353], 25 X[182] - 22 X[12007], 8 X[182] - 11 X[48876], 7 X[549] - 5 X[1353], 5 X[549] - 4 X[12007], 4 X[549] - 5 X[48876], 25 X[1353] - 28 X[12007], 4 X[1353] - 7 X[48876], 16 X[12007] - 25 X[48876], 5 X[193] - 9 X[15709], 6 X[548] - 5 X[43273], 5 X[599] - 4 X[3628], 4 X[599] - 3 X[38079], 16 X[3628] - 15 X[38079], 5 X[632] - 4 X[20583], 5 X[1992] - 7 X[3526], 2 X[3629] - 3 X[11539], 4 X[3630] - X[21850], 10 X[3630] - 3 X[23046], 5 X[3630] - 2 X[43150], 3 X[3630] - X[47354], 5 X[21850] - 6 X[23046], 5 X[21850] - 8 X[43150], 3 X[21850] - 4 X[47354], 3 X[23046] - 4 X[43150], 9 X[23046] - 10 X[47354], 6 X[43150] - 5 X[47354], 4 X[3631] - 3 X[15699], 8 X[3856] - 5 X[11477], 7 X[3857] - 10 X[34507], 3 X[5054] - X[11008], 14 X[5066] - 15 X[10516], 2 X[5066] - 5 X[15533], 6 X[5066] - 5 X[20423], 16 X[5066] - 15 X[38136], 3 X[10516] - 7 X[15533], 9 X[10516] - 7 X[20423], 8 X[10516] - 7 X[38136], 3 X[15533] - X[20423], 8 X[15533] - 3 X[38136], 8 X[20423] - 9 X[38136], 3 X[5102] - 4 X[10109], 5 X[6144] - 12 X[14890], 17 X[7486] - 15 X[14848], 3 X[10304] + 5 X[20080], 6 X[10304] - 5 X[48906], 2 X[20080] + X[48906], 8 X[11540] - 5 X[15534], 16 X[11540] - 15 X[38110], 2 X[15534] - 3 X[38110], 5 X[11898] - X[15684], 5 X[33878] - 3 X[46333], 2 X[37517] - 3 X[38071], 3 X[38040] - 4 X[50787], 3 X[38165] - 4 X[50781], 3 X[38167] - 4 X[50788], 3 X[38317] - 4 X[41152]

X(50985) lies on these lines: {4, 11160}, {6, 43513}, {30, 40341}, {69, 5055}, {182, 524}, {193, 15709}, {511, 33699}, {518, 50830}, {542, 15704}, {548, 43273}, {599, 3628}, {632, 20583}, {1992, 3526}, {3534, 3564}, {3629, 11539}, {3630, 21850}, {3631, 15699}, {3856, 11477}, {3857, 34507}, {5054, 11008}, {5066, 10516}, {5102, 10109}, {5965, 8703}, {6144, 14890}, {7486, 14848}, {7850, 44369}, {10304, 20080}, {11540, 15534}, {11898, 15684}, {33878, 46333}, {34379, 50827}, {37517, 38071}, {38040, 50787}, {38165, 50781}, {38167, 50788}, {38317, 41152}


X(50986) = X(30)X(193)∩X(182)X(524)

Barycentrics    20*a^6 - 41*a^4*b^2 + 28*a^2*b^4 - 7*b^6 - 41*a^4*c^2 - 12*a^2*b^2*c^2 + 7*b^4*c^2 + 28*a^2*c^4 + 7*b^2*c^4 - 7*c^6 : :
X(50986) = 7 X[5] - 10 X[11482], 5 X[5] - 6 X[14848], 7 X[1992] - 5 X[11482], 5 X[1992] - 3 X[14848], 25 X[11482] - 21 X[14848], 4 X[6] - 3 X[15699], 11 X[193] + X[39874], 5 X[193] + X[39899], 7 X[193] - X[44456], 5 X[39874] - 11 X[39899], 7 X[39874] + 11 X[44456], 7 X[39899] + 5 X[44456], 2 X[69] - 3 X[11539], 8 X[182] - 7 X[549], 4 X[182] - 7 X[1353], 11 X[182] - 14 X[12007], 10 X[182] - 7 X[48876], 11 X[549] - 16 X[12007], 5 X[549] - 4 X[48876], 11 X[1353] - 8 X[12007], 5 X[1353] - 2 X[48876], 20 X[12007] - 11 X[48876], 2 X[547] - 3 X[5032], 3 X[5032] - X[11898], 3 X[550] - 4 X[43273], 8 X[576] - 5 X[3858], 4 X[599] - 5 X[632], 7 X[3845] - 12 X[5102], X[3845] - 4 X[15534], 3 X[3845] - 4 X[20423], 5 X[3845] - 4 X[47353], 3 X[5102] - 7 X[15534], 9 X[5102] - 7 X[20423], 15 X[5102] - 7 X[47353], 3 X[15534] - X[20423], 5 X[15534] - X[47353], 5 X[20423] - 3 X[47353], 5 X[3620] - 6 X[47598], 5 X[3629] - 2 X[19130], 8 X[3629] - 3 X[38071], 3 X[3629] - X[47354], 16 X[19130] - 15 X[38071], 6 X[19130] - 5 X[47354], 9 X[38071] - 8 X[47354], 7 X[3857] - 4 X[15069], 6 X[5050] - 5 X[15713], 3 X[5054] - X[20080], 2 X[5066] - 3 X[5093], 4 X[6144] + 3 X[45759], 4 X[11179] - 3 X[45759], 8 X[8550] - 5 X[46853], 5 X[8703] - 6 X[25406], 6 X[10519] - 7 X[19711], 2 X[11008] + 3 X[17504], 2 X[11180] - 3 X[23046], 2 X[12100] - 3 X[14912], 7 X[15701] - 9 X[33748], 4 X[20583] - 3 X[38079], 2 X[34507] - 3 X[38079], 2 X[22165] - 3 X[38110], 5 X[44903] - 4 X[48872]

X(50986) lies on these lines: {5, 1992}, {6, 15699}, {30, 193}, {69, 11539}, {140, 11160}, {182, 524}, {511, 19710}, {518, 50831}, {542, 3627}, {547, 5032}, {550, 43273}, {576, 3858}, {599, 632}, {1351, 15687}, {3564, 3845}, {3620, 47598}, {3629, 19130}, {3630, 10168}, {3857, 15069}, {5050, 15713}, {5054, 20080}, {5066, 5093}, {5476, 41149}, {5847, 50823}, {5921, 14893}, {5965, 8584}, {6144, 11179}, {6776, 15686}, {7762, 12243}, {8550, 46853}, {8703, 25406}, {10154, 15360}, {10519, 19711}, {11008, 17504}, {11178, 32455}, {11180, 23046}, {12100, 14912}, {15701, 33748}, {20126, 37495}, {20583, 34507}, {22165, 38110}, {34379, 50824}, {35266, 41588}, {37451, 44367}, {44266, 47541}, {44903, 48872}

X(50986) = midpoint of X(6144) and X(11179)
X(50986) = reflection of X(i) in X(j) for these {i,j}: {5, 1992}, {549, 1353}, {3630, 10168}, {5476, 41149}, {5921, 14893}, {11160, 140}, {11178, 32455}, {11898, 547}, {15686, 6776}, {15687, 1351}, {34507, 20583}, {44266, 47541}
X(50986) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5032, 11898, 547}, {20583, 34507, 38079}


X(50987) = X(30)X(3618)∩X(182)X(524)

Barycentrics    28*a^6 - 25*a^4*b^2 - 4*a^2*b^4 + b^6 - 25*a^4*c^2 - 60*a^2*b^2*c^2 - b^4*c^2 - 4*a^2*c^4 - b^2*c^4 + c^6 : :
X(50987) = X[5] + 14 X[10541], X[5] - 6 X[38064], 3 X[5] + 2 X[43273], 7 X[10541] + 3 X[38064], 21 X[10541] - X[43273], 9 X[38064] + X[43273], 2 X[6] + 3 X[17504], X[3618] + 5 X[12017], 4 X[182] + X[549], 16 X[182] - X[1353], 17 X[182] - 2 X[12007], 14 X[182] + X[48876], 4 X[549] + X[1353], 17 X[549] + 8 X[12007], 7 X[549] - 2 X[48876], 17 X[1353] - 32 X[12007], 7 X[1353] + 8 X[48876], 28 X[12007] + 17 X[48876], X[193] + 9 X[15707], 2 X[548] + 3 X[14848], X[550] + 4 X[597], X[550] - 16 X[20190], X[597] + 4 X[20190], 8 X[575] + 7 X[44682], 2 X[599] - 7 X[14869], X[1351] + 4 X[14891], X[1992] + 4 X[3530], 8 X[3589] - 3 X[38071], X[3620] - 3 X[5054], X[3627] - 6 X[38079], 2 X[3763] - 3 X[11539], 2 X[11179] + 3 X[11539], X[3845] - 6 X[38110], 3 X[5032] + 7 X[15700], 3 X[5050] + 2 X[12100], 2 X[5066] + 3 X[25406], 6 X[5085] - X[8703], 9 X[5085] + X[20423], 3 X[8703] + 2 X[20423], 8 X[5092] - 3 X[45759], 3 X[5093] + 7 X[15698], 4 X[5476] + X[19710], 4 X[5480] + X[44903], 3 X[5622] + 2 X[11694], X[5921] - 11 X[15723], X[6776] + 4 X[10124], 8 X[10168] - 3 X[15699], 6 X[10168] - X[47354], 4 X[10168] + X[48906], 9 X[15699] - 4 X[47354], 3 X[15699] + 2 X[48906], 2 X[47354] + 3 X[48906], 3 X[10519] - 8 X[44580], X[11160] - 11 X[15720], X[11180] - 6 X[47598], X[11898] - 11 X[15721], 6 X[14561] - X[33699], 3 X[14853] + 2 X[15690], 3 X[14912] + 7 X[15701], X[15686] + 4 X[18583], X[15687] - 6 X[47352], 9 X[15705] + X[44456], 9 X[15709] + X[39899], 11 X[15719] + 9 X[33748], X[18440] - 6 X[47599], 3 X[23046] + 2 X[46264], X[35404] + 4 X[44882], X[35404] - 16 X[46267], X[44882] + 4 X[46267], X[39884] - 6 X[48310]

X(50987) lies on these lines: {5, 10541}, {6, 17504}, {30, 3618}, {182, 524}, {193, 15707}, {511, 15711}, {518, 50832}, {542, 632}, {548, 14848}, {550, 597}, {575, 44682}, {599, 14869}, {1351, 14891}, {1992, 3530}, {3564, 15713}, {3589, 38071}, {3620, 5054}, {3627, 38079}, {3763, 11179}, {3845, 29012}, {5032, 15700}, {5050, 12100}, {5066, 25406}, {5085, 8703}, {5092, 45759}, {5093, 15698}, {5476, 19710}, {5480, 44903}, {5622, 11694}, {5846, 50822}, {5847, 50825}, {5921, 15723}, {6776, 10124}, {10168, 15699}, {10519, 44580}, {11160, 15720}, {11180, 47598}, {11898, 15721}, {14561, 33699}, {14853, 15690}, {14912, 15701}, {15686, 18583}, {15687, 47352}, {15693, 34380}, {15705, 44456}, {15709, 39899}, {15719, 33748}, {18440, 47599}, {20126, 37471}, {23046, 46264}, {35266, 43650}, {35404, 44882}, {39884, 48310}

X(50987) = midpoint of X(3763) and X(11179)
X(50987) = {X(10168),X(48906)}-harmonic conjugate of X(15699)


X(50988) = X(30)X(47355)∩X(182)X(524)

Barycentrics    32*a^6 - 17*a^4*b^2 - 20*a^2*b^4 + 5*b^6 - 17*a^4*c^2 - 84*a^2*b^2*c^2 - 5*b^4*c^2 - 20*a^2*c^4 - 5*b^2*c^4 + 5*c^6 : :
X(50988) = 4 X[3] + 3 X[38079], X[6] + 6 X[41983], 6 X[140] + X[43273], 2 X[182] + 5 X[549], 26 X[182] - 5 X[1353], 31 X[182] - 10 X[12007], 16 X[182] + 5 X[48876], 13 X[549] + X[1353], 31 X[549] + 4 X[12007], 8 X[549] - X[48876], 31 X[1353] - 52 X[12007], 8 X[1353] + 13 X[48876], 32 X[12007] + 31 X[48876], 2 X[597] + 5 X[15712], X[599] - 8 X[12108], 15 X[3524] - X[33878], 20 X[3530] + X[11477], 4 X[3530] + 3 X[38064], X[11477] - 15 X[38064], 4 X[3589] + 3 X[45759], 5 X[3618] + 9 X[15706], X[3619] - 3 X[5054], 5 X[3619] - X[11180], 2 X[3619] + X[48906], 15 X[5054] - X[11180], 6 X[5054] + X[48906], 2 X[11180] + 5 X[48906], 5 X[3763] - 12 X[14890], X[3845] + 6 X[17508], 3 X[5050] + 11 X[15719], 3 X[5085] + 4 X[11812], 4 X[5092] + 3 X[11539], 6 X[5092] + X[47354], 9 X[11539] - 2 X[47354], 3 X[5093] + 25 X[15693], 2 X[5476] + 5 X[15711], 2 X[5480] + 5 X[15714], 4 X[8703] + 3 X[38136], 8 X[10124] - X[39884], 4 X[10168] + 3 X[17504], 8 X[10168] - X[21850], 6 X[17504] + X[21850], 3 X[10519] - 17 X[15722], 8 X[11540] - X[47353], 5 X[12017] + 9 X[15708], 6 X[12100] + X[20423], 10 X[12100] - 3 X[31884], 4 X[12100] + 3 X[38110], 5 X[20423] + 9 X[31884], 2 X[20423] - 9 X[38110], 2 X[31884] + 5 X[38110], 3 X[14561] + 4 X[15759], 3 X[14848] + 11 X[15717], 3 X[14853] + 11 X[15716], 4 X[14891] + 3 X[47352], 8 X[14891] - X[48874], 6 X[47352] + X[48874], X[15686] + 6 X[48310], 5 X[15692] + 2 X[18583], 9 X[15709] - 2 X[18358], 5 X[19709] + 9 X[33750], X[19710] + 6 X[38317], 4 X[33923] + 3 X[38072], X[46264] + 6 X[47598], 6 X[47478] + X[48905]

X(50988) lies on these lines: {3, 38079}, {6, 41983}, {30, 47355}, {140, 43273}, {182, 524}, {511, 19711}, {518, 50833}, {542, 14869}, {597, 15712}, {599, 12108}, {3524, 33878}, {3530, 11477}, {3564, 15701}, {3589, 45759}, {3618, 15706}, {3619, 5054}, {3763, 14890}, {3845, 17508}, {5050, 15719}, {5085, 11812}, {5092, 11539}, {5093, 15693}, {5476, 15711}, {5480, 15714}, {5846, 50826}, {8703, 29317}, {10124, 39884}, {10168, 17504}, {10519, 15722}, {11540, 47353}, {12017, 15708}, {12100, 20423}, {14561, 15759}, {14848, 15717}, {14853, 15716}, {14891, 47352}, {15686, 48310}, {15692, 18583}, {15709, 18358}, {19709, 33750}, {19710, 38317}, {33923, 38072}, {46264, 47598}, {47478, 48905}

X(50988) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10168, 17504, 21850}, {14891, 47352, 48874}


X(50989) = X(2)X(6)∩X(518)X(50782)

Barycentrics    13*a^2 - 14*b^2 - 14*c^2 : :
X(50989) = 14 X[2] - 9 X[6], X[2] + 9 X[69], 13 X[2] - 18 X[141], 29 X[2] - 9 X[193], 23 X[2] - 18 X[597], 4 X[2] - 9 X[599], 19 X[2] - 9 X[1992], 41 X[2] - 36 X[3589], 11 X[2] - 9 X[3618], 53 X[2] - 63 X[3619], 5 X[2] - 9 X[3620], 43 X[2] - 18 X[3629], 17 X[2] + 18 X[3630], 11 X[2] - 36 X[3631], 8 X[2] - 9 X[3763], 47 X[2] - 27 X[5032], 44 X[2] - 9 X[6144], 97 X[2] - 72 X[6329], 11 X[2] - 6 X[8584], 59 X[2] - 9 X[11008], 11 X[2] + 9 X[11160], 2 X[2] + 3 X[15533], 8 X[2] - 3 X[15534], 31 X[2] + 9 X[20080], 31 X[2] - 36 X[20582], 61 X[2] - 36 X[20583], 17 X[2] - 27 X[21356], 22 X[2] - 27 X[21358], X[2] - 6 X[22165], 71 X[2] - 36 X[32455], 67 X[2] - 72 X[34573], 16 X[2] + 9 X[40341], 9 X[2] - 4 X[41149], 3 X[2] - 8 X[41152], 21 X[2] - 16 X[41153], 32 X[2] - 27 X[47352], 68 X[2] - 63 X[47355], 59 X[2] - 54 X[48310], X[6] + 14 X[69], 13 X[6] - 28 X[141], 29 X[6] - 14 X[193], 23 X[6] - 28 X[597], 2 X[6] - 7 X[599], 19 X[6] - 14 X[1992], 41 X[6] - 56 X[3589], 11 X[6] - 14 X[3618], 53 X[6] - 98 X[3619], 5 X[6] - 14 X[3620], 43 X[6] - 28 X[3629], 17 X[6] + 28 X[3630], 11 X[6] - 56 X[3631],and many others

X(50989) lies on these lines: {2, 6}, {518, 50782}, {542, 15695}, {1350, 19710}, {1352, 12101}, {3534, 15069}, {3564, 15711}, {3830, 34507}, {5066, 11477}, {5085, 44580}, {5847, 50791}, {6034, 41148}, {7768, 11317}, {7784, 11054}, {7908, 50571}, {8550, 15719}, {10488, 36521}, {11165, 15602}, {11179, 19711}, {11180, 48872}, {11898, 15716}, {15515, 39785}, {15685, 29012}, {15701, 40107}, {15759, 48876}, {28313, 50076}, {28322, 50087}, {33683, 40344}, {33699, 47353}, {34379, 50784}, {38047, 50788}, {38315, 41150}, {47276, 47314}, {47359, 50785}

X(50989) = midpoint of X(3618) and X(11160)
X(50989) = reflection of X(3763) in X(599)
X(50989) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 22165, 15533}, {599, 6144, 21358}, {599, 15533, 15534}, {599, 40341, 47352}, {599, 47355, 21356}, {3631, 11160, 21358}, {3631, 21358, 599}, {6144, 8584, 15534}, {8584, 22165, 3631}, {11160, 21358, 6144}, {15533, 15534, 40341}, {15533, 22165, 599}, {32808, 32809, 37688}


X(50990) = X(2)X(6)∩X(518)X(50784)

Barycentrics    7*a^2 - 11*b^2 - 11*c^2 : :
X(50990) = 11 X[2] - 6 X[6], 2 X[2] + 3 X[69], 7 X[2] - 12 X[141], 13 X[2] - 3 X[193], 17 X[2] - 12 X[597], X[2] - 6 X[599], 8 X[2] - 3 X[1992], 29 X[2] - 24 X[3589], 4 X[2] - 3 X[3618], 16 X[2] - 21 X[3619], X[2] - 3 X[3620], 37 X[2] - 12 X[3629], 23 X[2] + 12 X[3630], X[2] + 24 X[3631], 5 X[2] - 6 X[3763], 19 X[2] - 9 X[5032], 41 X[2] - 6 X[6144], 73 X[2] - 48 X[6329], 9 X[2] - 4 X[8584], 28 X[2] - 3 X[11008], 7 X[2] + 3 X[11160], 3 X[2] + 2 X[15533], 7 X[2] - 2 X[15534], 17 X[2] + 3 X[20080], 19 X[2] - 24 X[20582], 49 X[2] - 24 X[20583], 4 X[2] - 9 X[21356], 13 X[2] - 18 X[21358], X[2] + 4 X[22165], 59 X[2] - 24 X[32455], 43 X[2] - 48 X[34573], 19 X[2] + 6 X[40341], 23 X[2] - 8 X[41149], X[2] - 16 X[41152], 47 X[2] - 32 X[41153], 23 X[2] - 18 X[47352], 47 X[2] - 42 X[47355], 41 X[2] - 36 X[48310], 4 X[6] + 11 X[69], 7 X[6] - 22 X[141], 26 X[6] - 11 X[193], 17 X[6] - 22 X[597], X[6] - 11 X[599], 16 X[6] - 11 X[1992], 29 X[6] - 44 X[3589], 8 X[6] - 11 X[3618], 32 X[6] - 77 X[3619], 2 X[6] - 11 X[3620], 37 X[6] - 22 X[3629], 23 X[6] + 22 X[3630], X[6] + 44 X[3631], 5 X[6] - 11 X[3763], 38 X[6] - 33 X[5032], and many others

X(50990) lies on these lines: {2, 6}, {76, 32532}, {376, 34507}, {487, 6496}, {488, 6497}, {511, 41099}, {518, 50784}, {542, 19708}, {1351, 10109}, {1352, 15682}, {1353, 11540}, {1444, 21497}, {1503, 15697}, {3524, 40107}, {3534, 11180}, {3564, 15693}, {3785, 27088}, {4677, 50781}, {4745, 50788}, {4748, 29622}, {5077, 32836}, {5846, 50791}, {6337, 7810}, {6393, 32896}, {6776, 12100}, {7386, 32255}, {7761, 45796}, {7794, 32985}, {7854, 33215}, {7929, 40246}, {8354, 10008}, {8550, 15708}, {8703, 10519}, {9053, 50782}, {10304, 15069}, {11001, 29012}, {11054, 33190}, {11161, 15300}, {11178, 41106}, {11179, 15719}, {11317, 32006}, {11898, 15701}, {13169, 43653}, {14826, 37904}, {15640, 47353}, {15698, 25406}, {15716, 48906}, {16935, 34614}, {17274, 28313}, {17294, 28301}, {17361, 35578}, {18440, 19710}, {19709, 40330}, {22493, 37171}, {22494, 37170}, {28322, 50081}, {29583, 49737}, {29615, 42697}, {29616, 49748}, {32099, 37756}, {33699, 33878}, {37350, 46951}, {47313, 47473}, {49830, 49831}

X(50990) = reflection of X(i) in X(j) for these {i,j}: {1992, 3618}, {3620, 599}
X(50990) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11160, 15534}, {2, 22165, 69}, {69, 141, 11008}, {69, 599, 21356}, {69, 3620, 3618}, {69, 21356, 1992}, {141, 15534, 2}, {599, 22165, 2}, {1992, 21356, 3619}, {3631, 41152, 22165}, {20582, 40341, 5032}, {22165, 41152, 599}, {32808, 32809, 15589}, {32810, 32811, 34229}


X(50991) = X(2)X(6)∩X(518)X(3968)

Barycentrics    2*a^2 - 7*b^2 - 7*c^2 : :
X(50991) = 7 X[2] - 3 X[6], 5 X[2] + 3 X[69], X[2] - 3 X[141], 19 X[2] - 3 X[193], 5 X[2] - 3 X[597], X[2] + 3 X[599], 11 X[2] - 3 X[1992], 4 X[2] - 3 X[3589], 23 X[2] - 15 X[3618], 13 X[2] - 21 X[3619], X[2] + 15 X[3620], 13 X[2] - 3 X[3629], 11 X[2] + 3 X[3630], 2 X[2] + 3 X[3631], 11 X[2] - 15 X[3763], 25 X[2] - 9 X[5032], 31 X[2] - 3 X[6144], 11 X[2] - 6 X[6329], 43 X[2] - 3 X[11008], 13 X[2] + 3 X[11160], 3 X[2] + X[15533], 5 X[2] - X[15534], 29 X[2] + 3 X[20080], 2 X[2] - 3 X[20582], 8 X[2] - 3 X[20583], X[2] - 9 X[21356], 5 X[2] - 9 X[21358], 10 X[2] - 3 X[32455], 5 X[2] - 6 X[34573], 17 X[2] + 3 X[40341], 4 X[2] - X[41149], X[2] + 2 X[41152], 7 X[2] - 4 X[41153], 13 X[2] - 9 X[47352], 25 X[2] - 21 X[47355], 11 X[2] - 9 X[48310], 5 X[6] + 7 X[69], X[6] - 7 X[141], 19 X[6] - 7 X[193], 5 X[6] - 7 X[597], X[6] + 7 X[599], 11 X[6] - 7 X[1992], 4 X[6] - 7 X[3589], 23 X[6] - 35 X[3618], 13 X[6] - 49 X[3619], X[6] + 35 X[3620], 13 X[6] - 7 X[3629], 11 X[6] + 7 X[3630], 2 X[6] + 7 X[3631], 11 X[6] - 35 X[3763], 25 X[6] - 21 X[5032], 31 X[6] - 7 X[6144], 11 X[6] - 14 X[6329], 9 X[6] - 7 X[8584], and many others

X(50991) lies on these lines: {2, 6}, {30, 18553}, {140, 33749}, {182, 15713}, {184, 37283}, {316, 10302}, {511, 5066}, {518, 3968}, {542, 12100}, {545, 29594}, {549, 34507}, {575, 10124}, {576, 15699}, {626, 8355}, {698, 14711}, {1086, 29615}, {1350, 15682}, {1352, 3534}, {1503, 8703}, {2854, 3819}, {2896, 9855}, {2930, 15246}, {3098, 19710}, {3363, 7818}, {3524, 15069}, {3564, 11812}, {3661, 7238}, {3662, 4478}, {3663, 50084}, {3818, 33699}, {3830, 29181}, {3845, 11178}, {3860, 25561}, {3912, 49737}, {3917, 8705}, {4364, 29573}, {4395, 17227}, {4399, 17287}, {4445, 48631}, {4669, 9041}, {4677, 9053}, {4690, 40480}, {4971, 50081}, {5054, 8550}, {5064, 41585}, {5071, 11477}, {5092, 44580}, {5181, 43957}, {5351, 35303}, {5352, 35304}, {5480, 19709}, {5846, 50781}, {5847, 50788}, {5891, 47332}, {5969, 19662}, {6390, 15602}, {6656, 11054}, {6676, 32257}, {6776, 15719}, {7227, 17228}, {7228, 17288}, {7232, 48636}, {7484, 8546}, {7620, 32532}, {7745, 32027}, {7780, 8365}, {7789, 7810}, {7794, 8359}, {7801, 15515}, {7811, 35954}, {7849, 8360}, {7854, 8369}, {7860, 8370}, {7879, 11317}, {7883, 8352}, {7908, 12040}, {7934, 45796}, {8182, 15603}, {8354, 15300}, {8681, 44323}, {8787, 9167}, {9055, 36525}, {9466, 37350}, {9830, 36521}, {10109, 24206}, {10150, 44496}, {10168, 11540}, {10516, 41099}, {10519, 11001}, {10541, 15721}, {11179, 15701}, {11180, 19708}, {11444, 40929}, {11645, 15690}, {11649, 44324}, {11898, 38064}, {12101, 18358}, {15360, 35283}, {15685, 48881}, {15695, 18440}, {15697, 31884}, {15698, 21167}, {15759, 43150}, {16252, 44262}, {16776, 21969}, {17045, 50125}, {17128, 40246}, {17132, 17229}, {17133, 17235}, {17230, 49748}, {17231, 50093}, {17236, 50121}, {17237, 29574}, {17250, 29622}, {17272, 41313}, {17274, 28297}, {17293, 35578}, {17294, 28309}, {17296, 41312}, {17332, 41310}, {17345, 50118}, {17359, 28333}, {17362, 48633}, {17365, 48634}, {17366, 48638}, {17369, 48639}, {17372, 50109}, {17382, 28337}, {17390, 41311}, {17758, 50271}, {17782, 44419}, {18579, 44201}, {19711, 48906}, {21521, 37503}, {22330, 48154}, {22493, 37351}, {22494, 37352}, {25488, 47558}, {25555, 47599}, {29577, 49742}, {31138, 49733}, {32113, 47314}, {32154, 34986}, {32218, 37904}, {33087, 49740}, {36792, 39998}, {37901, 47448}, {40330, 41106}, {46267, 47598}, {47359, 50792}, {48834, 48859}, {50076, 50112}

X(50991) = midpoint of X(i) and X(j) for these {i,j}: {2, 22165}, {69, 597}, {141, 599}, {549, 34507}, {1992, 3630}, {3629, 11160}, {3631, 20582}, {3663, 50084}, {8584, 15533}, {11178, 48876}, {11180, 44882}, {17274, 50097}, {17294, 49741}, {17345, 50118}, {17372, 50109}, {48834, 48859}, {50076, 50112}, {50081, 50092}
X(50991) = reflection of X(i) in X(j) for these {i,j}: {575, 10124}, {597, 34573}, {1992, 6329}, {3589, 20582}, {3631, 599}, {12007, 10168}, {20582, 141}, {20583, 3589}, {22165, 41152}, {32218, 47556}, {32455, 597}
X(50991) = complement of X(8584)
X(50991) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 69, 15534}, {2, 599, 22165}, {2, 15533, 8584}, {2, 15534, 597}, {69, 141, 34573}, {69, 21358, 597}, {69, 34573, 32455}, {141, 597, 21358}, {141, 3629, 3619}, {141, 3630, 3763}, {141, 3631, 3589}, {141, 22165, 2}, {591, 1991, 9740}, {597, 21358, 34573}, {599, 21356, 141}, {599, 21358, 69}, {599, 22165, 41152}, {1992, 3763, 48310}, {1992, 48310, 6329}, {3619, 11160, 47352}, {3620, 21356, 599}, {3630, 3763, 6329}, {3630, 48310, 1992}, {3631, 32455, 69}, {5032, 47355, 597}, {7778, 42850, 15597}, {8584, 22165, 15533}, {11160, 47352, 3629}, {15534, 21358, 2}, {15534, 32455, 41149}, {17287, 48632, 4399}, {17288, 48635, 7228}, {20582, 22165, 41149}, {21358, 34573, 20582}, {22165, 41152, 3631}, {32455, 34573, 3589}, {33458, 33459, 8667}, {39107, 39108, 41136}, {49921, 49922, 19708}


X(50992) = X(2)X(6)∩X(518)X(50789)

Barycentrics    11*a^2 - 7*b^2 - 7*c^2 : :
X(50992) = 7 X[2] - 6 X[6], 2 X[2] - 3 X[69], 11 X[2] - 12 X[141], 5 X[2] - 3 X[193], 13 X[2] - 12 X[597], 5 X[2] - 6 X[599], 4 X[2] - 3 X[1992], 25 X[2] - 24 X[3589], 16 X[2] - 15 X[3618], 20 X[2] - 21 X[3619], 13 X[2] - 15 X[3620], 17 X[2] - 12 X[3629], 5 X[2] - 12 X[3630], 19 X[2] - 24 X[3631], 29 X[2] - 30 X[3763], 11 X[2] - 9 X[5032], 13 X[2] - 6 X[6144], 53 X[2] - 48 X[6329], 5 X[2] - 4 X[8584], 8 X[2] - 3 X[11008], X[2] - 3 X[11160], X[2] + 3 X[20080], 23 X[2] - 24 X[20582], 29 X[2] - 24 X[20583], 8 X[2] - 9 X[21356], 17 X[2] - 18 X[21358], 3 X[2] - 4 X[22165], 31 X[2] - 24 X[32455], 47 X[2] - 48 X[34573], X[2] - 6 X[40341], 11 X[2] - 8 X[41149], 13 X[2] - 16 X[41152], 35 X[2] - 32 X[41153], 19 X[2] - 18 X[47352], 43 X[2] - 42 X[47355], 37 X[2] - 36 X[48310], 4 X[6] - 7 X[69], 11 X[6] - 14 X[141], 10 X[6] - 7 X[193], 13 X[6] - 14 X[597], 5 X[6] - 7 X[599], 8 X[6] - 7 X[1992], 25 X[6] - 28 X[3589], 32 X[6] - 35 X[3618], 40 X[6] - 49 X[3619], 26 X[6] - 35 X[3620], 17 X[6] - 14 X[3629], 5 X[6] - 14 X[3630], 19 X[6] - 28 X[3631], 29 X[6] - 35 X[3763], 22 X[6] - 21 X[5032], and many others

X(50992) lies on these lines: {2, 6}, {7, 50077}, {315, 11054}, {316, 5485}, {319, 35578}, {487, 6456}, {488, 6455}, {511, 11455}, {518, 50789}, {542, 11001}, {575, 15709}, {576, 5071}, {1350, 15697}, {1351, 5066}, {1352, 41099}, {1353, 11812}, {1370, 32244}, {1444, 21498}, {2930, 37913}, {2979, 9027}, {3363, 46951}, {3533, 46267}, {3534, 3564}, {3543, 15069}, {3545, 34507}, {3751, 4745}, {3830, 11180}, {3839, 11477}, {3845, 34380}, {3926, 27088}, {4643, 39260}, {4644, 29615}, {4669, 34379}, {4715, 50079}, {5050, 15713}, {5095, 38282}, {5569, 45796}, {5921, 15640}, {5965, 19708}, {6179, 33197}, {6193, 44261}, {6337, 7855}, {6390, 11147}, {6776, 8703}, {7426, 47552}, {7615, 7845}, {7751, 32984}, {7758, 31652}, {7760, 33230}, {7768, 33190}, {7776, 8355}, {7793, 12151}, {7813, 8182}, {7826, 15515}, {7863, 14023}, {7893, 9855}, {7946, 33006}, {8352, 32006}, {8550, 15692}, {8593, 36521}, {9741, 14907}, {9830, 14976}, {10519, 12100}, {10754, 36523}, {11159, 32836}, {11161, 14645}, {11179, 15698}, {11188, 21969}, {11482, 15699}, {12017, 44580}, {14711, 18906}, {14853, 19709}, {14912, 15719}, {15300, 47102}, {15693, 48876}, {15695, 39899}, {15702, 40107}, {16475, 50787}, {16491, 41150}, {17257, 50125}, {17274, 49543}, {18440, 33699}, {19710, 33878}, {20081, 40246}, {20423, 41106}, {21296, 37756}, {21972, 45312}, {22495, 37170}, {22496, 37171}, {29617, 42697}, {31145, 49722}, {32029, 36525}, {32064, 47314}, {32220, 47551}, {32827, 40727}, {33223, 41748}, {37901, 47276}, {39874, 48891}, {42696, 50128}, {42791, 49921}, {42792, 49922}, {43542, 44498}, {43543, 44497}, {43572, 44470}

X(50992) = midpoint of X(11160) and X(20080)
X(50992) = reflection of X(i) in X(j) for these {i,j}: {2, 15533}, {69, 11160}, {193, 599}, {599, 3630}, {1992, 69}, {3543, 15069}, {6144, 597}, {7426, 47552}, {11008, 1992}, {11160, 40341}, {11180, 11898}, {15534, 22165}, {32220, 47551}, {37901, 47276}
X(50992) = isotomic conjugate of X(32532)
X(50992) = anticomplement of X(15534)
X(50992) = anticomplement of the isogonal conjugate of X(40103)
X(50992) = isotomic conjugate of the isogonal conjugate of X(15655)
X(50992) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {33638, 7192}, {40103, 8}
X(50992) = X(31)-isoconjugate of X(32532)
X(50992) = X(2)-Dao conjugate of X(32532)
X(50992) = barycentric product X(76)*X(15655)
X(50992) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 32532}, {15655, 6}
X(50992) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 8584}, {2, 11160, 15533}, {2, 15533, 69}, {69, 193, 3619}, {69, 1992, 21356}, {69, 11008, 3618}, {193, 3630, 69}, {325, 9740, 23055}, {591, 1991, 15597}, {599, 3619, 21356}, {599, 8584, 2}, {1992, 21356, 3618}, {5858, 5859, 13468}, {5860, 7840, 32810}, {5861, 7840, 32811}, {6144, 15533, 41152}, {6189, 6190, 41133}, {8584, 41153, 6}, {11008, 21356, 1992}, {15533, 15534, 22165}, {15534, 22165, 2}, {20080, 40341, 69}, {32808, 32809, 37668}, {32810, 32811, 1007}, {33622, 33624, 19708}, {35750, 36331, 11001}, {39365, 39366, 41136}


X(50993) = X(2)X(6)∩X(518)X(50791)

Barycentrics    a^2 - 8*b^2 - 8*c^2 : :
X(50993) = 8 X[2] - 3 X[6], 7 X[2] + 3 X[69], X[2] - 6 X[141], 23 X[2] - 3 X[193], 11 X[2] - 6 X[597], 2 X[2] + 3 X[599], 13 X[2] - 3 X[1992], 17 X[2] - 12 X[3589], 5 X[2] - 3 X[3618], 11 X[2] - 21 X[3619], X[2] + 3 X[3620], 31 X[2] - 6 X[3629], 29 X[2] + 6 X[3630], 13 X[2] + 12 X[3631], 2 X[2] - 3 X[3763], 29 X[2] - 9 X[5032], 38 X[2] - 3 X[6144], 49 X[2] - 24 X[6329], 7 X[2] - 2 X[8584], 53 X[2] - 3 X[11008], 17 X[2] + 3 X[11160], 4 X[2] + X[15533], 6 X[2] - X[15534], 37 X[2] + 3 X[20080], 7 X[2] - 12 X[20582], 37 X[2] - 12 X[20583], X[2] + 9 X[21356], 4 X[2] - 9 X[21358], 3 X[2] + 2 X[22165], 47 X[2] - 12 X[32455], 19 X[2] - 24 X[34573], 22 X[2] + 3 X[40341], 19 X[2] - 4 X[41149], 7 X[2] + 8 X[41152], 31 X[2] - 16 X[41153], 14 X[2] - 9 X[47352], 26 X[2] - 21 X[47355], 23 X[2] - 18 X[48310], 7 X[6] + 8 X[69], X[6] - 16 X[141], 23 X[6] - 8 X[193], 11 X[6] - 16 X[597], X[6] + 4 X[599], 13 X[6] - 8 X[1992], 17 X[6] - 32 X[3589], 5 X[6] - 8 X[3618], 11 X[6] - 56 X[3619], X[6] + 8 X[3620], 31 X[6] - 16 X[3629], 29 X[6] + 16 X[3630], 13 X[6] + 32 X[3631], X[6] - 4 X[3763], 29 X[6] - 24 X[5032], and many others

X(50993) lies on these lines: {2, 6}, {30, 47448}, {381, 40107}, {511, 19709}, {518, 50791}, {542, 15040}, {549, 15069}, {576, 15703}, {1350, 3830}, {1352, 8703}, {1503, 19708}, {1620, 44273}, {2930, 7485}, {3094, 14711}, {3096, 11054}, {3098, 15685}, {3242, 4677}, {3534, 29012}, {3564, 15713}, {3844, 38087}, {3845, 10516}, {3860, 31670}, {4361, 48638}, {4363, 48639}, {4437, 36525}, {4445, 37756}, {4663, 19876}, {4669, 47358}, {4745, 49511}, {4912, 17286}, {5013, 39785}, {5023, 7810}, {5054, 10541}, {5055, 11477}, {5066, 48876}, {5077, 7865}, {5085, 15701}, {5092, 15722}, {5207, 14030}, {5846, 50782}, {5847, 50784}, {7232, 48634}, {7784, 8352}, {7794, 22332}, {7795, 27088}, {7801, 15815}, {7815, 12151}, {7818, 50280}, {7849, 11318}, {7853, 40727}, {7854, 22331}, {7883, 11317}, {8550, 15702}, {8716, 31168}, {9466, 44453}, {9544, 37283}, {10109, 20423}, {10168, 11898}, {10302, 17503}, {10488, 41134}, {10519, 15682}, {11001, 36990}, {11179, 11812}, {11180, 15698}, {11291, 17852}, {11645, 15695}, {11646, 15300}, {12100, 43273}, {12101, 48910}, {15067, 39484}, {15640, 48872}, {15681, 18553}, {15690, 48905}, {15759, 46264}, {16672, 17237}, {16675, 17231}, {17118, 17228}, {17119, 17227}, {17235, 50089}, {17250, 29620}, {17253, 41313}, {17267, 50093}, {17269, 49748}, {17272, 41310}, {17274, 28322}, {17290, 29617}, {17291, 50077}, {17293, 50128}, {17296, 41311}, {17304, 28329}, {17306, 50125}, {17311, 41312}, {17323, 50121}, {17325, 29574}, {17387, 25503}, {17814, 44262}, {18358, 33699}, {18906, 33291}, {24206, 38072}, {24441, 29577}, {25561, 33878}, {28301, 29594}, {28313, 50087}, {32113, 47311}, {32257, 34319}, {36194, 47284}, {36523, 50567}, {36792, 40022}, {37904, 43653}, {38047, 50792}, {38315, 50785}, {40330, 41099}, {41150, 49684}, {44580, 48906}, {46219, 46267}, {47097, 47276}, {47313, 47556}, {47359, 50787}, {47445, 47473}, {49543, 50076}, {50081, 50120}

X(50993) = midpoint of X(599) and X(3763)
X(50993) = reflection of X(599) in X(3620)
X(50993) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 69, 8584}, {2, 599, 15533}, {2, 8584, 47352}, {2, 15533, 6}, {2, 22165, 15534}, {69, 20582, 47352}, {141, 599, 21358}, {141, 3620, 3763}, {141, 21356, 599}, {599, 15534, 22165}, {599, 21358, 6}, {599, 47352, 69}, {8584, 20582, 2}, {8584, 41152, 69}, {13846, 13847, 7735}, {15533, 21358, 2}, {15534, 22165, 15533}, {20582, 41152, 8584}, {41152, 47352, 15533}


X(50994) = X(2)X(6)∩X(518)X(50792)

Barycentrics    5*a^2 - 13*b^2 - 13*c^2 : :
X(50994) = 13 X[2] - 6 X[6], 4 X[2] + 3 X[69], 5 X[2] - 12 X[141], 17 X[2] - 3 X[193], 19 X[2] - 12 X[597], X[2] + 6 X[599], 10 X[2] - 3 X[1992], 31 X[2] - 24 X[3589], 22 X[2] - 15 X[3618], 2 X[2] - 3 X[3619], X[2] - 15 X[3620], 47 X[2] - 12 X[3629], 37 X[2] + 12 X[3630], 11 X[2] + 24 X[3631], 23 X[2] - 30 X[3763], 23 X[2] - 9 X[5032], 55 X[2] - 6 X[6144], 83 X[2] - 48 X[6329], 11 X[2] - 4 X[8584], 38 X[2] - 3 X[11008], 11 X[2] + 3 X[11160], 5 X[2] + 2 X[15533], 9 X[2] - 2 X[15534], 25 X[2] + 3 X[20080], 17 X[2] - 24 X[20582], 59 X[2] - 24 X[20583], 2 X[2] - 9 X[21356], 11 X[2] - 18 X[21358], 3 X[2] + 4 X[22165], 73 X[2] - 24 X[32455], 41 X[2] - 48 X[34573], 29 X[2] + 6 X[40341], 29 X[2] - 8 X[41149], 5 X[2] + 16 X[41152], 53 X[2] - 32 X[41153], 25 X[2] - 18 X[47352], 7 X[2] - 6 X[47355], 43 X[2] - 36 X[48310], 8 X[6] + 13 X[69], 5 X[6] - 26 X[141], 34 X[6] - 13 X[193], 19 X[6] - 26 X[597], X[6] + 13 X[599], 20 X[6] - 13 X[1992], 31 X[6] - 52 X[3589], 44 X[6] - 65 X[3618], 4 X[6] - 13 X[3619], 2 X[6] - 65 X[3620], 47 X[6] - 26 X[3629], 37 X[6] + 26 X[3630], 11 X[6] + 52 X[3631], and many others

X(50994) lies on these lines: {2, 6}, {376, 40107}, {511, 41106}, {518, 50792}, {542, 15036}, {1350, 15640}, {1352, 11001}, {3524, 34507}, {3534, 10519}, {3564, 15701}, {3830, 48876}, {4669, 50787}, {4677, 49511}, {4745, 49536}, {4748, 29620}, {5050, 11540}, {5066, 40330}, {5846, 50785}, {6776, 15693}, {7494, 32257}, {7794, 33215}, {7800, 39785}, {7801, 47061}, {7812, 18840}, {7831, 9741}, {7854, 32985}, {7870, 39142}, {7879, 8352}, {7918, 11054}, {8355, 32828}, {8358, 32896}, {8550, 15721}, {8703, 11180}, {9027, 44299}, {10008, 32892}, {10109, 14853}, {11055, 14994}, {11161, 36521}, {11178, 41099}, {11185, 17503}, {11482, 47599}, {11487, 44275}, {12100, 25406}, {12101, 33878}, {14927, 15697}, {15069, 15692}, {15682, 29317}, {15690, 18440}, {15722, 39899}, {17228, 35578}, {17274, 50100}, {19709, 38136}, {32006, 32027}, {32983, 50280}, {33522, 47313}, {36523, 50639}, {40802, 46212}, {47314, 47473}, {49879, 49880}

X(50994) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 8584, 3618}, {2, 11160, 8584}, {2, 15533, 1992}, {141, 3631, 6144}, {141, 15533, 2}, {141, 41152, 15533}, {599, 3620, 21356}, {599, 15533, 41152}, {599, 21356, 69}, {599, 21358, 3631}, {1992, 21356, 141}, {3618, 3631, 69}, {3631, 21358, 11160}, {8584, 21358, 2}, {11160, 21358, 3618}, {20080, 47352, 1992}, {32810, 32811, 183}


X(50995) = X(7)X(141)∩X(524)X(6172)

Barycentrics    a*(a^3 + a*b^2 - 2*b^3 + 2*a*b*c - 2*b^2*c + a*c^2 - 2*b*c^2 - 2*c^3) : :
X(50995) = 4 X[1001] - 3 X[38315], 4 X[15254] - 3 X[38048], 4 X[2] - 3 X[38086], 4 X[5] - 3 X[38143], 4 X[10] - 3 X[38185], 4 X[140] - 3 X[38115], 4 X[142] - 5 X[3763], 3 X[599] - 2 X[47595], 3 X[5686] - 2 X[49524], 4 X[1125] - 3 X[38046], 4 X[3589] - 5 X[18230], 5 X[3620] - X[20059], 4 X[3628] - 3 X[38164], 4 X[3634] - 3 X[38187], 4 X[3844] - 3 X[38052], 3 X[5085] - 4 X[31658], 2 X[5480] - 3 X[5817], 2 X[5732] - 3 X[31884], 2 X[5805] - 3 X[10516], 2 X[6173] - 3 X[21358], 4 X[6666] - 3 X[38186], 8 X[6666] - 7 X[47355], 6 X[38186] - 7 X[47355], 4 X[6667] - 3 X[38188], 4 X[6668] - 3 X[38189], X[6776] - 3 X[21168], 3 X[10519] - X[36996], 4 X[24206] - 3 X[38107]

X(50995) lies on these lines: {1, 6}, {2, 38086}, {5, 38143}, {7, 141}, {8, 5819}, {10, 38185}, {19, 3059}, {40, 4515}, {55, 3930}, {56, 33299}, {57, 44798}, {63, 3693}, {69, 144}, {78, 3207}, {101, 3940}, {140, 38115}, {142, 3763}, {169, 34790}, {198, 480}, {200, 910}, {210, 40131}, {239, 49502}, {329, 17747}, {390, 5846}, {474, 17736}, {511, 5779}, {516, 2321}, {524, 6172}, {527, 599}, {528, 50087}, {529, 24247}, {594, 2550}, {673, 4361}, {674, 42014}, {728, 12526}, {742, 17262}, {966, 5686}, {971, 1350}, {1125, 38046}, {1146, 3421}, {1156, 9024}, {1213, 38057}, {1352, 5762}, {1376, 3509}, {1400, 41712}, {1418, 21446}, {1503, 5759}, {1696, 21033}, {1706, 7323}, {1759, 4006}, {1761, 2938}, {2099, 4390}, {2178, 5096}, {2280, 41711}, {2285, 8581}, {2551, 21049}, {3290, 37679}, {3304, 39244}, {3338, 25068}, {3436, 40997}, {3496, 3913}, {3589, 18230}, {3620, 20059}, {3628, 38164}, {3634, 38187}, {3681, 26241}, {3686, 49688}, {3694, 37499}, {3713, 5279}, {3729, 27474}, {3730, 3927}, {3811, 4258}, {3818, 31671}, {3827, 21871}, {3844, 38052}, {3869, 4513}, {3943, 5698}, {3950, 5847}, {3991, 12514}, {4383, 26242}, {4534, 34689}, {4908, 15533}, {5022, 25066}, {5085, 31658}, {5257, 38047}, {5480, 5817}, {5542, 5750}, {5696, 16548}, {5711, 28594}, {5732, 31884}, {5805, 10516}, {5815, 6554}, {5816, 38144}, {5838, 5839}, {5843, 48876}, {5848, 6068}, {5850, 17355}, {5853, 17299}, {6173, 21358}, {6600, 36744}, {6666, 38186}, {6667, 38188}, {6668, 38189}, {6776, 21168}, {8545, 34377}, {9041, 37654}, {10387, 14100}, {10519, 36996}, {10895, 21029}, {12572, 21096}, {15668, 27475}, {16593, 17267}, {17119, 49533}, {17259, 49481}, {17261, 49496}, {17275, 24393}, {17276, 50011}, {17277, 27484}, {17330, 48849}, {17349, 32029}, {17362, 49690}, {17388, 49679}, {17398, 38053}, {17595, 17756}, {17597, 33854}, {17738, 49507}, {20672, 23151}, {21044, 31141}, {21060, 40869}, {21075, 46835}, {24206, 38107}, {24352, 30946}, {26039, 30340}, {28538, 50836}, {28739, 39063}, {29181, 36991}, {30331, 49681}, {31672, 48910}, {34371, 36973}, {34820, 39273}, {40341, 49752}, {41338, 44424}, {47357, 50113}, {47358, 50115}, {50131, 50790}

X(50995) = midpoint of X(69) and X(144)
X(50995) = reflection of X(i) in X(j) for these {i,j}: {6, 9}, {7, 141}, {31671, 3818}, {48910, 31672}, {49681, 30331}
X(50995) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 16777, 38315}, {6, 49509, 3242}, {9, 22021, 954}, {37, 44, 16970}, {44, 16973, 6}, {63, 3693, 42316}, {72, 17742, 220}, {144, 346, 41325}, {728, 12526, 21872}, {1759, 4006, 5687}, {3930, 5282, 55}, {5279, 41228, 5781}, {5904, 17744, 218}, {6666, 38186, 47355}, {16503, 42871, 16884}


X(50996) = X(7)X(594)∩X(524)X(6172)

Barycentrics    a^4 + 4*a^3*b + 2*a^2*b^2 - 8*a*b^3 + b^4 + 4*a^3*c + 10*a^2*b*c - 8*a*b^2*c - 2*b^3*c + 2*a^2*c^2 - 8*a*b*c^2 + 2*b^2*c^2 - 8*a*c^3 - 2*b*c^3 + c^4 : :
X(50996) = 7 X[2] - 6 X[38186], 3 X[5686] - 2 X[47359], 4 X[597] - 5 X[18230], 7 X[3619] - 6 X[38093], 3 X[5817] - 2 X[20423], 2 X[6173] - 3 X[21356], 4 X[11178] - 3 X[38073], 4 X[20582] - 3 X[38086]

X(50996) lies on these lines: {2, 210}, {7, 594}, {9, 1992}, {69, 527}, {141, 5936}, {144, 11160}, {390, 28538}, {524, 6172}, {528, 50079}, {542, 5759}, {597, 18230}, {673, 9041}, {2550, 29615}, {3619, 38093}, {3929, 39273}, {4078, 5223}, {4663, 29624}, {5220, 17316}, {5698, 6542}, {5817, 20423}, {5845, 15533}, {5846, 50839}, {5847, 50836}, {6173, 21356}, {6600, 16436}, {11178, 38073}, {15254, 29585}, {16496, 50114}, {17389, 47357}, {20582, 38086}, {29580, 38025}, {34379, 50834}, {36731, 39898}, {49680, 50129}

X(50996) = midpoint of X(144) and X(11160)
X(50996) = reflection of X(i) in X(j) for these {i,j}: {7, 599}, {1992, 9}


X(50997) = X(7)X(597)∩X(524)X(6172)

Barycentrics    7*a^4 - 8*a^3*b + 5*a^2*b^2 - 2*a*b^3 - 2*b^4 - 8*a^3*c - 2*a^2*b*c - 2*a*b^2*c + 4*b^3*c + 5*a^2*c^2 - 2*a*b*c^2 - 4*b^2*c^2 - 2*a*c^3 + 4*b*c^3 - 2*c^4 : :
X(50997) = 2 X[7] - 3 X[38086], 4 X[597] - 3 X[38086], 2 X[142] - 3 X[38088], 2 X[2550] - 3 X[38087], 4 X[5476] - 3 X[38143], 2 X[5542] - 3 X[38023], 2 X[5805] - 3 X[38072], 3 X[5817] - 2 X[47354], 2 X[6173] - 3 X[47352], 4 X[10168] - 3 X[38065], 7 X[10541] - 4 X[43177], 5 X[18230] - 4 X[20582], 3 X[21358] - 2 X[47595], 2 X[31657] - 3 X[38064], 6 X[38093] - 7 X[47355]

X(50997) lies on these lines: {2, 5845}, {6, 527}, {7, 597}, {9, 599}, {142, 38088}, {144, 1992}, {390, 9041}, {516, 47359}, {518, 3899}, {524, 6172}, {528, 49721}, {542, 5779}, {971, 43273}, {2550, 38087}, {3242, 47357}, {5220, 32847}, {5223, 28538}, {5476, 38143}, {5542, 38023}, {5762, 20423}, {5805, 38072}, {5817, 47354}, {5819, 35578}, {5846, 50835}, {5847, 50834}, {6173, 47352}, {9053, 50839}, {10168, 38065}, {10541, 43177}, {18230, 20582}, {21358, 47595}, {31657, 38064}, {34379, 50837}, {38093, 47355}

X(50997) = midpoint of X(144) and X(1992)
X(50997) = reflection of X(i) in X(j) for these {i,j}: {7, 597}, {599, 9}, {3242, 47357}
X(50997) = {X(7),X(597)}-harmonic conjugate of X(38086)


X(50998) = X(8)X(20582)∩X(524)X(3241)

Barycentrics    8*a^3 - 4*a^2*b + 11*a*b^2 - b^3 - 4*a^2*c - b^2*c + 11*a*c^2 - b*c^2 - c^3 : :
X(50998) = 5 X[1] - 3 X[38023], 3 X[1] - X[47359], 5 X[597] - 6 X[38023], 3 X[597] - 2 X[47359], 9 X[38023] - 5 X[47359], X[141] - 4 X[49465], 4 X[551] - 3 X[48310], 3 X[48310] - 2 X[49524], X[1992] - 5 X[3623], 2 X[3589] - 3 X[38314], 5 X[3616] - 3 X[38087], X[3629] + 2 X[16496], X[3630] + 2 X[49681], 2 X[3631] + X[49679], 2 X[3654] - 3 X[21167], 3 X[7967] - X[43273], 3 X[10247] - X[20423], 5 X[10595] - 3 X[38072], X[20049] + 3 X[21356], 7 X[20057] - 2 X[20583], 3 X[21358] - X[31145], 3 X[25055] - X[49688], 4 X[34573] - X[49690], 5 X[37624] - 3 X[38064], 4 X[41152] - 5 X[50791], 2 X[49630] - 3 X[49741]

X(50998) lies on these lines: {1, 597}, {2, 9053}, {8, 20582}, {141, 519}, {145, 599}, {518, 3898}, {524, 3241}, {542, 1483}, {545, 50130}, {551, 48310}, {742, 50778}, {952, 47354}, {1350, 34631}, {1352, 34748}, {1992, 3623}, {3244, 28538}, {3416, 34747}, {3589, 38314}, {3616, 38087}, {3629, 16496}, {3630, 49681}, {3631, 49679}, {3654, 21167}, {3655, 44882}, {3844, 34641}, {4141, 4884}, {4364, 49771}, {4665, 36534}, {4864, 29574}, {5648, 50923}, {5846, 22165}, {6703, 30614}, {7174, 49737}, {7263, 49720}, {7967, 43273}, {7977, 9884}, {10247, 20423}, {10595, 38072}, {16590, 50026}, {17133, 49467}, {17225, 49470}, {20049, 21356}, {20057, 20583}, {21358, 31145}, {25055, 49688}, {25561, 37705}, {32217, 47472}, {34573, 49690}, {37624, 38064}, {41152, 50791}, {41310, 49527}, {41311, 49466}, {47353, 50818}, {48856, 49738}, {49630, 49741}

X(50998) = midpoint of X(i) and X(j) for these {i,j}: {2, 50790}, {145, 599}, {1350, 34631}, {1352, 34748}, {3241, 3242}, {3416, 34747}, {5648, 50923}, {16496, 47356}, {47353, 50818}
X(50998) = reflection of X(i) in X(j) for these {i,j}: {8, 20582}, {597, 1}, {3629, 47356}, {22165, 47358}, {32217, 47472}, {34641, 3844}, {37705, 25561}, {44882, 3655}, {48845, 48820}, {49524, 551}
X(50998) = {X(551),X(49524)}-harmonic conjugate of X(48310)


X(50999) = X(8)X(599)∩X(524)X(3241)

Barycentrics    a^3 - 5*a^2*b + 7*a*b^2 + b^3 - 5*a^2*c + b^2*c + 7*a*c^2 + b*c^2 + c^3 : :
X(50999) = 7 X[2] - 6 X[38047], 3 X[38047] - 7 X[47358], 9 X[38047] - 7 X[47359], 3 X[47358] - X[47359], 2 X[6] - 3 X[38314], X[69] + 2 X[16496], X[69] - 4 X[49505], X[16496] + 2 X[49505], 3 X[17274] - 2 X[49630], X[193] - 4 X[49465], 4 X[597] - 5 X[3616], 4 X[1386] - 3 X[5032], 5 X[3618] - 6 X[25055], 7 X[3619] - 6 X[19875], 7 X[3619] - 4 X[49529], 3 X[19875] - 2 X[49529], 5 X[3620] - 2 X[49688], 7 X[3622] - 4 X[4663], 7 X[3622] - 6 X[38023], 2 X[4663] - 3 X[38023], 7 X[3624] - 6 X[38089], 2 X[3630] + X[49679], 4 X[3631] - X[49690], 2 X[3654] - 3 X[10519], 2 X[3679] - 3 X[21356], 3 X[21356] - 4 X[49511], X[24280] - 4 X[49467], 3 X[5603] - 2 X[20423], 3 X[5731] - 2 X[43273], 5 X[5734] - 2 X[11477], 4 X[5901] - 3 X[14848], 2 X[8584] - 3 X[38315], 7 X[9780] - 8 X[20582], 7 X[9780] - 6 X[38087], 4 X[20582] - 3 X[38087], X[11008] - 4 X[49684], 4 X[11178] - 3 X[38074], X[20080] + 2 X[49681], 3 X[21358] - 2 X[49524], 8 X[41152] - 7 X[50785]

X(50999) lies on these lines: {1, 1992}, {2, 210}, {6, 38314}, {7, 49720}, {8, 599}, {30, 39898}, {69, 519}, {141, 28635}, {145, 4741}, {193, 17488}, {344, 49448}, {345, 4141}, {346, 49501}, {524, 3241}, {537, 50107}, {542, 944}, {551, 3751}, {597, 3616}, {1350, 34632}, {1352, 34627}, {1386, 5032}, {2796, 49458}, {2895, 30614}, {3416, 31145}, {3476, 17950}, {3618, 25055}, {3619, 19875}, {3620, 49688}, {3622, 4663}, {3624, 38089}, {3630, 49679}, {3631, 49690}, {3654, 10519}, {3655, 6776}, {3679, 21356}, {3828, 49536}, {3877, 9004}, {3886, 17132}, {4310, 37756}, {4644, 36534}, {4669, 50787}, {4677, 50781}, {4684, 29573}, {4702, 20073}, {4715, 50130}, {4912, 24280}, {5263, 35578}, {5603, 20423}, {5731, 43273}, {5734, 11477}, {5846, 15533}, {5848, 10031}, {5901, 14848}, {7174, 29574}, {7426, 47477}, {8584, 38315}, {9053, 22165}, {9780, 20582}, {9881, 9941}, {10404, 50429}, {11008, 49684}, {11178, 38074}, {11180, 28204}, {11898, 34748}, {12329, 13587}, {12513, 25906}, {14927, 34628}, {16973, 37654}, {17133, 49446}, {17227, 49714}, {17257, 42871}, {17271, 48849}, {17321, 48830}, {17333, 47357}, {17378, 48856}, {17549, 22769}, {20015, 33068}, {20080, 49681}, {21358, 49524}, {27549, 41310}, {28503, 50079}, {31144, 39581}, {31178, 48802}, {32220, 47472}, {34718, 48876}, {41152, 50785}, {41312, 49478}, {41313, 49515}, {47353, 50864}, {48809, 49479}, {49495, 50109}, {49675, 50296}, {50282, 50285}

X(50999) = midpoint of X(i) and X(j) for these {i,j}: {145, 11160}, {11898, 34748}, {15533, 50790}
X(50999) = reflection of X(i) in X(j) for these {i,j}: {2, 47358}, {8, 599}, {193, 47356}, {1992, 1}, {3241, 3242}, {3679, 49511}, {3751, 551}, {4669, 50787}, {4677, 50781}, {6776, 3655}, {7426, 47477}, {14927, 34628}, {31145, 3416}, {32220, 47472}, {34627, 1352}, {34632, 1350}, {34718, 48876}, {47356, 49465}, {48798, 48834}, {49495, 50109}, {49536, 3828}, {50107, 50316}, {50282, 50285}, {50783, 22165}, {50864, 47353}
X(50999) = anticomplement of X(47359)
X(50999) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3679, 49511, 21356}, {16496, 49505, 69}, {20582, 38087, 9780}


X(51000) = X(8)X(597)∩X(524)X(3241)

Barycentrics    7*a^3 + a^2*b + 4*a*b^2 - 2*b^3 + a^2*c - 2*b^2*c + 4*a*c^2 - 2*b*c^2 - 2*c^3 : :
X(51000) = 2 X[2] - 3 X[38315], 3 X[38315] - X[50783], 3 X[6] - 2 X[47359], 7 X[6] - 4 X[49529], 2 X[6] + X[49679], X[6] + 2 X[49681], X[6] - 4 X[49684], 5 X[6] - 2 X[49688], 4 X[6] - X[49690], 3 X[47356] - X[47359], 7 X[47356] - 2 X[49529], 4 X[47356] + X[49679], 5 X[47356] - X[49688], 8 X[47356] - X[49690], 7 X[47359] - 6 X[49529], 4 X[47359] + 3 X[49679], X[47359] + 3 X[49681], X[47359] - 6 X[49684], 5 X[47359] - 3 X[49688], 8 X[47359] - 3 X[49690], 8 X[49529] + 7 X[49679], 2 X[49529] + 7 X[49681], X[49529] - 7 X[49684], 10 X[49529] - 7 X[49688], 16 X[49529] - 7 X[49690], X[49679] - 4 X[49681], X[49679] + 8 X[49684], 5 X[49679] + 4 X[49688], 2 X[49679] + X[49690], X[49681] + 2 X[49684], 5 X[49681] + X[49688], 8 X[49681] + X[49690], 10 X[49684] - X[49688], 16 X[49684] - X[49690], 8 X[49688] - 5 X[49690], 2 X[8] - 3 X[38087], 4 X[597] - 3 X[38087], 2 X[10] - 3 X[38023], 2 X[141] - 3 X[38314], 2 X[355] - 3 X[38072], 4 X[551] - 3 X[21358], 2 X[3416] - 3 X[21358], 4 X[1386] - 3 X[47352], 2 X[3679] - 3 X[47352], 2 X[2550] - 3 X[38086], 2 X[3036] - 3 X[38090], 5 X[3616] - 4 X[20582],and many others

X(51000) lies on these lines: {1, 599}, {2, 5846}, {6, 519}, {8, 597}, {10, 38023}, {31, 4141}, {141, 38314}, {145, 190}, {182, 34718}, {355, 38072}, {517, 43273}, {518, 3899}, {524, 3241}, {528, 50120}, {542, 1482}, {551, 3416}, {752, 49747}, {952, 20423}, {1279, 29573}, {1350, 3655}, {1351, 34748}, {1386, 3679}, {2550, 38086}, {2796, 49453}, {3036, 38090}, {3616, 20582}, {3623, 11160}, {3626, 38089}, {3633, 4663}, {3654, 5085}, {3656, 47353}, {3751, 34747}, {3763, 25055}, {3883, 41312}, {3886, 28329}, {4252, 50589}, {4265, 11194}, {4307, 49727}, {4361, 49720}, {4363, 50015}, {4421, 5096}, {4669, 38047}, {4677, 16475}, {4745, 38049}, {4912, 49446}, {5032, 20049}, {5476, 38144}, {5480, 34627}, {5603, 47354}, {5690, 38064}, {5847, 15533}, {5853, 49543}, {5969, 7976}, {6144, 16496}, {6776, 34631}, {7290, 41310}, {7983, 9830}, {8584, 9053}, {8593, 50888}, {9024, 10031}, {10168, 38066}, {10222, 15069}, {10541, 11362}, {11477, 37727}, {12645, 14848}, {16491, 19875}, {16777, 49740}, {16884, 48830}, {16972, 50082}, {17119, 50017}, {17225, 24349}, {17301, 49630}, {17318, 49709}, {17330, 48856}, {17389, 49706}, {18493, 25561}, {20045, 31179}, {20050, 20583}, {22165, 50791}, {24393, 38088}, {28198, 48905}, {28208, 48910}, {28503, 49721}, {28558, 49455}, {28562, 32921}, {29815, 31143}, {31139, 50301}, {31145, 49524}, {31162, 36990}, {32113, 47472}, {34628, 48872}, {34632, 44882}, {37756, 50289}, {38029, 50821}, {38035, 50796}, {38116, 50823}, {38118, 50827}, {38146, 50801}, {40341, 49465}, {41313, 49476}, {41720, 50923}, {47276, 47491}, {47277, 47535}, {47280, 47489}, {47357, 50113}, {47450, 47495}, {47453, 47496}, {47455, 47488}, {47457, 47494}, {47458, 47490}, {47459, 47531}, {47460, 47533}, {47464, 47536}, {47466, 47537}, {48798, 48845}, {48820, 48834}, {49484, 50089}, {50075, 50779}

X(51000) = midpoint of X(i) and X(j) for these {i,j}: {145, 1992}, {1351, 34748}, {3751, 34747}, {6776, 34631}, {8593, 50888}, {15534, 50790}, {41720, 50923}, {47277, 47535}, {47356, 49681}
X(51000) = reflection of X(i) in X(j) for these {i,j}: {6, 47356}, {8, 597}, {599, 1}, {1350, 3655}, {3242, 3241}, {3416, 551}, {3679, 1386}, {15533, 47358}, {17281, 50294}, {31145, 49524}, {32113, 47472}, {34627, 5480}, {34632, 44882}, {34718, 182}, {36990, 31162}, {47353, 3656}, {47356, 49684}, {47494, 47457}, {48798, 48845}, {48804, 48867}, {48834, 48820}, {48862, 48824}, {48872, 34628}, {49721, 50303}, {50075, 50779}, {50087, 48805}, {50089, 49484}, {50783, 2}, {50789, 4669}, {50798, 5476}
X(51000) = crossdifference of every pair of points on line {2515, 9002}
X(51000) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 49679, 49690}, {6, 49681, 49679}, {8, 597, 38087}, {551, 3416, 21358}, {1386, 3679, 47352}, {5476, 50798, 38144}, {38047, 50789, 4669}, {38315, 50783, 2}, {49681, 49684, 6}


X(51001) = X(8)X(1992)∩X(524)X(3241)

Barycentrics    13*a^3 + 7*a^2*b + a*b^2 - 5*b^3 + 7*a^2*c - 5*b^2*c + a*c^2 - 5*b*c^2 - 5*c^3 : :
X(51001) = 5 X[2] - 6 X[16475], 11 X[2] - 12 X[38049], 5 X[2] - 4 X[50781], 11 X[16475] - 10 X[38049], 3 X[16475] - 2 X[50781], 15 X[38049] - 11 X[50781], 5 X[8] - 8 X[4663], 3 X[8] - 4 X[47359], 5 X[1992] - 4 X[4663], 3 X[1992] - 2 X[47359], 6 X[4663] - 5 X[47359], 2 X[69] - 3 X[38314], 3 X[38314] - 4 X[47356], 5 X[3241] - 4 X[3242], 8 X[597] - 7 X[9780], 4 X[599] - 5 X[3616], 4 X[1386] - 3 X[21356], 5 X[3620] - 6 X[25055], 2 X[3654] - 3 X[14912], 2 X[3679] - 3 X[5032], 3 X[3839] - 2 X[39885], 11 X[5550] - 12 X[38023], 5 X[5818] - 6 X[14848], 3 X[9778] - 4 X[43273], 9 X[9779] - 8 X[47354], 3 X[10304] - 4 X[39870], X[11008] + 2 X[49681], 3 X[16834] - 2 X[49630], X[20080] - 4 X[49684], 4 X[20583] - 3 X[38087], 2 X[22165] - 3 X[38315], 12 X[38089] - 11 X[46933]

X(50101 lies on these lines: {1, 11160}, {2, 5847}, {8, 1992}, {69, 38314}, {193, 519}, {518, 50839}, {524, 3241}, {542, 962}, {597, 9780}, {599, 3616}, {752, 50129}, {1351, 34627}, {1353, 34718}, {1386, 21356}, {3620, 25055}, {3654, 14912}, {3679, 5032}, {3751, 31145}, {3839, 39885}, {4141, 33088}, {4307, 29617}, {4933, 35261}, {5550, 38023}, {5698, 50121}, {5818, 14848}, {5839, 49720}, {5846, 15534}, {5921, 31162}, {6776, 34632}, {8584, 50783}, {9041, 20050}, {9778, 43273}, {9779, 47354}, {9884, 14645}, {10304, 39870}, {11008, 49681}, {16834, 49630}, {17133, 24280}, {20080, 49684}, {20583, 38087}, {22165, 38315}, {28198, 39874}, {38089, 46933}, {47357, 50132}, {48856, 50074}, {50079, 50303}, {50284, 50296}

X(51001) = reflection of X(i) in X(j) for these {i,j}: {8, 1992}, {69, 47356}, {5921, 31162}, {11160, 1}, {31145, 3751}, {34627, 1351}, {34632, 6776}, {34718, 1353}, {50079, 50303}, {50783, 8584}
X(51001) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 47356, 38314}, {16475, 50781, 2}


X(51002) = X(9)X(597)∩X(524)X(6173)

Barycentrics    a^4 - 5*a^3*b + 2*a^2*b^2 + a*b^3 + b^4 - 5*a^3*c - 8*a^2*b*c + a*b^2*c - 2*b^3*c + 2*a^2*c^2 + a*b*c^2 + 2*b^2*c^2 + a*c^3 - 2*b*c^3 + c^4 : :
X(51002) = 2 X[2] - 3 X[38186], 3 X[38046] - X[47358], 2 X[9] - 3 X[38088], 4 X[597] - 3 X[38088], 2 X[141] - 3 X[38093], 2 X[142] - 3 X[38086], X[599] - 3 X[38086], 2 X[1001] - 3 X[38023], 4 X[5476] - 3 X[38145], X[5735] + 2 X[8550], X[5779] - 3 X[14848], 4 X[10168] - 3 X[38067], X[11180] - 3 X[38073], X[11477] + 2 X[43177], 3 X[16475] - X[50836], 5 X[20195] - 4 X[20582], 2 X[24393] - 3 X[38087], 2 X[31658] - 3 X[38064], 3 X[38143] - X[47353], 3 X[38150] - 2 X[47354], 3 X[38185] - X[50783], 3 X[38187] - X[50781]

X(51002) lies on these lines: {2, 210}, {6, 527}, {7, 1992}, {9, 597}, {141, 38093}, {142, 599}, {239, 5880}, {516, 43273}, {524, 6173}, {528, 16834}, {542, 5805}, {971, 20423}, {1001, 38023}, {1386, 47357}, {2550, 28538}, {3243, 4929}, {3416, 50095}, {4384, 25557}, {4663, 5222}, {5220, 17023}, {5476, 38145}, {5698, 17014}, {5735, 8550}, {5779, 14848}, {5845, 8584}, {5853, 49543}, {6172, 17320}, {6600, 21539}, {10168, 38067}, {11180, 38073}, {11477, 43177}, {15254, 26626}, {16475, 50836}, {16973, 17392}, {17294, 49688}, {17389, 32029}, {20195, 20582}, {24393, 38087}, {24599, 30340}, {29574, 42871}, {31658, 38064}, {36404, 49742}, {38143, 47353}, {38150, 47354}, {38185, 50783}, {38187, 50781}, {49681, 50129}

X(51002) = midpoint of X(7) and X(1992)
X(51002) = reflection of X(i) in X(j) for these {i,j}: {9, 597}, {599, 142}, {47357, 1386}, {47595, 6173}
X(51002) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 597, 38088}, {599, 38086, 142}


X(51003) = X(10)X(9041)∩X(524)X(551)

Barycentrics    2*a^3 - a^2*b + 5*a*b^2 + 2*b^3 - a^2*c + 2*b^2*c + 5*a*c^2 + 2*b*c^2 + 2*c^3 : :
X(51003) = 5 X[2] - 3 X[38047], 3 X[38047] + 5 X[47358], 9 X[38047] - 5 X[47359], 3 X[47358] + X[47359], X[6] - 3 X[25055], X[69] + 3 X[38314], 3 X[38314] - X[47356], 2 X[141] + X[49465], X[4852] + 2 X[50315], X[17372] + 2 X[49472], X[1386] + 2 X[49511], X[49630] - 3 X[50092], 4 X[1125] - X[4663], 5 X[1698] - 3 X[38087], X[1992] - 5 X[3616], X[1992] - 3 X[38023], 5 X[3616] - 3 X[38023], X[3241] + 3 X[21356], X[3416] - 3 X[21356], X[3242] + 2 X[3844], X[3242] + 3 X[21358], X[3679] - 3 X[21358], 2 X[3844] - 3 X[21358], 3 X[3524] + X[39898], 3 X[3576] - X[43273], 2 X[3589] - 3 X[19883], 2 X[3589] + X[49505], 3 X[19883] + X[49505], 7 X[3619] - X[49688], 5 X[3620] + X[49681], 7 X[3622] + X[11160], 2 X[3631] + X[49684], 3 X[3653] - X[11179], 2 X[3663] + X[49485], X[3751] - 3 X[47352], 5 X[3763] + X[16496], 5 X[3763] - 3 X[19875], X[16496] + 3 X[19875], 2 X[3821] + X[49467], 3 X[5886] - X[20423], 5 X[8227] - 3 X[38072], 7 X[9624] - X[11477], X[10222] + 2 X[40107], 2 X[15178] + X[34507], X[15533] + 3 X[38315], X[15533] - 5 X[50791], 3 X[38315] + 5 X[50791], X[15534] - 3 X[16475], 7 X[15808] - 2 X[20583], 5 X[16491] + X[40341], 2 X[17229] + X[49455], 2 X[17235] + X[32941], 5 X[17304] + X[49460], X[17345] + 2 X[49482], 5 X[19862] - 3 X[38089], 4 X[34573] - X[49529], X[34627] - 5 X[40330], X[49463] + 2 X[49560]

X(51003) lies on these lines: {1, 599}, {2, 210}, {6, 16590}, {8, 48639}, {10, 9041}, {38, 4141}, {44, 29660}, {69, 38314}, {141, 519}, {392, 2836}, {515, 47354}, {524, 551}, {527, 48810}, {528, 49630}, {536, 50285}, {537, 17359}, {542, 1385}, {597, 1125}, {742, 50111}, {984, 41310}, {1211, 4906}, {1279, 50296}, {1350, 31162}, {1352, 3655}, {1469, 4870}, {1698, 38087}, {1992, 3616}, {2796, 49484}, {3098, 28198}, {3241, 3416}, {3242, 3679}, {3246, 4643}, {3524, 39898}, {3576, 43273}, {3589, 19883}, {3619, 49688}, {3620, 49681}, {3622, 11160}, {3631, 49684}, {3653, 11179}, {3662, 49720}, {3663, 49485}, {3696, 37756}, {3706, 50102}, {3739, 48809}, {3751, 47352}, {3763, 16496}, {3818, 28208}, {3821, 49467}, {3828, 49524}, {3834, 36480}, {3923, 4912}, {3993, 17225}, {4003, 33175}, {4026, 15570}, {4353, 17133}, {4357, 42819}, {4364, 49768}, {4389, 4702}, {4641, 29686}, {4657, 48830}, {4669, 9053}, {4677, 50790}, {4690, 50023}, {4708, 24331}, {4715, 50300}, {4864, 32784}, {4933, 46901}, {4966, 29574}, {5846, 50781}, {5847, 22165}, {5886, 20423}, {5969, 12258}, {7191, 31143}, {8227, 38072}, {8584, 34379}, {9624, 11477}, {9830, 11711}, {10222, 40107}, {11178, 28204}, {12329, 16417}, {15178, 34507}, {15254, 50093}, {15533, 38315}, {15534, 16475}, {15569, 41312}, {15808, 20583}, {16418, 22769}, {16491, 40341}, {16823, 31144}, {17227, 36534}, {17229, 49455}, {17235, 32941}, {17274, 28534}, {17280, 49513}, {17292, 24841}, {17301, 50316}, {17302, 49475}, {17304, 49460}, {17306, 42871}, {17313, 48854}, {17345, 28558}, {17348, 50309}, {17356, 49457}, {17357, 49448}, {17358, 49501}, {17384, 49490}, {17385, 49479}, {17395, 49763}, {18480, 25561}, {19862, 38089}, {19868, 25557}, {21342, 32783}, {24231, 49727}, {24476, 31165}, {25539, 49498}, {26150, 49450}, {27777, 29827}, {28329, 32921}, {28503, 29594}, {28562, 49473}, {28580, 49741}, {29615, 32922}, {29637, 49515}, {31136, 50103}, {31138, 50301}, {31178, 49509}, {34573, 49529}, {34627, 40330}, {34628, 36990}, {42055, 50052}, {42057, 50063}, {44663, 48803}, {47097, 47477}, {47353, 50811}, {47357, 47595}, {47473, 47593}, {48818, 48862}, {48824, 48834}, {49453, 50089}, {49463, 49560}, {49676, 50299}, {49747, 50126}

X(51003) = midpoint of X(i) and X(j) for these {i,j}: {1, 599}, {2, 47358}, {69, 47356}, {551, 49511}, {1350, 31162}, {1352, 3655}, {3241, 3416}, {3242, 3679}, {4677, 50790}, {5648, 50921}, {17274, 48805}, {17301, 50316}, {24476, 31165}, {31178, 49509}, {34628, 36990}, {47097, 47477}, {47353, 50811}, {47357, 47595}, {47473, 47593}, {48818, 48862}, {48824, 48834}, {49453, 50089}, {49463, 50084}, {49747, 50126}, {50285, 50311}
X(51003) = reflection of X(i) in X(j) for these {i,j}: {10, 20582}, {597, 1125}, {1386, 551}, {3679, 3844}, {4663, 597}, {18480, 25561}, {22165, 50787}, {49524, 3828}, {50084, 49560}
X(51003) = complement of X(47359)
X(51003) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 38314, 47356}, {1992, 3616, 38023}, {3241, 21356, 3416}, {3242, 21358, 3679}, {3679, 21358, 3844}, {38315, 50791, 15533}


X(51004) = X(10)X(599)∩X(524)X(551)

Barycentrics    4*a^3 + 7*a^2*b - 8*a*b^2 - 5*b^3 + 7*a^2*c - 5*b^2*c - 8*a*c^2 - 5*b*c^2 - 5*c^3 : :
X(51004) = 2 X[6] - 3 X[19883], 7 X[10] - 6 X[38087], 3 X[10] - 2 X[47359], 7 X[599] - 3 X[38087], 3 X[599] - X[47359], 9 X[38087] - 7 X[47359], 5 X[69] + X[16496], 2 X[69] + X[49505], 2 X[16496] - 5 X[49505], X[193] - 3 X[25055], X[4669] - 4 X[22165], 5 X[551] - 4 X[1386], 2 X[1386] - 5 X[49511], 4 X[597] - 5 X[19862], 5 X[3620] - 3 X[19875], 2 X[3630] + X[49684], 8 X[3631] - 3 X[38098], 4 X[3631] - X[49529], 3 X[38098] - 2 X[49529], X[3751] - 3 X[21356], 2 X[3828] - 3 X[21356], 3 X[3817] - 2 X[20423], 2 X[4663] - 3 X[38089], 4 X[20582] - 3 X[38089], 2 X[8584] - 3 X[38049], 3 X[10304] - X[39878], 4 X[11178] - 3 X[38076], X[15534] - 5 X[50791], 7 X[15808] - 6 X[38023], X[20080] + 3 X[38314], 3 X[38047] - 7 X[50792], 3 X[38191] - 8 X[41152]

X(51004) lies on these lines: {1, 11160}, {2, 34379}, {6, 19883}, {10, 599}, {69, 519}, {142, 50309}, {193, 25055}, {306, 4141}, {518, 3919}, {524, 551}, {542, 4297}, {597, 19862}, {1125, 1992}, {1350, 34638}, {1352, 34648}, {2796, 50639}, {3244, 28538}, {3416, 34641}, {3620, 19875}, {3625, 9041}, {3630, 49684}, {3631, 38098}, {3655, 11898}, {3664, 48809}, {3679, 49536}, {3751, 3828}, {3817, 20423}, {4133, 17132}, {4134, 9004}, {4663, 20582}, {4677, 50786}, {4684, 50296}, {4741, 49763}, {4745, 50788}, {5847, 15533}, {5921, 34628}, {8584, 38049}, {10304, 39878}, {11178, 38076}, {12258, 14645}, {15534, 50791}, {15808, 38023}, {17271, 48853}, {17272, 48830}, {17344, 49740}, {17361, 49720}, {20080, 38314}, {24231, 29617}, {28558, 50315}, {31144, 39580}, {38047, 50792}, {38191, 41152}, {40341, 47356}, {47353, 50862}, {49560, 50118}

X(51004) = midpoint of X(i) and X(j) for these {i,j}: {1, 11160}, {3655, 11898}, {5921, 34628}, {15533, 47358}, {40341, 47356}
X(51004) = reflection of X(i) in X(j) for these {i,j}: {2, 50787}, {10, 599}, {551, 49511}, {1992, 1125}, {3751, 3828}, {4663, 20582}, {4669, 50781}, {4677, 50786}, {4745, 50788}, {34638, 1350}, {34641, 3416}, {34648, 1352}, {49536, 3679}, {50118, 49560}, {50781, 22165}, {50862, 47353}
X(51004) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3751, 21356, 3828}, {4663, 20582, 38089}


X(51005) = X(10)X(597)∩X(524)X(551)

Barycentrics    8*a^3 + 5*a^2*b + 2*a*b^2 - b^3 + 5*a^2*c - b^2*c + 2*a*c^2 - b*c^2 - c^3 : :
X(51005) = X[2] - 3 X[16475], 2 X[2] - 3 X[38049], 6 X[16475] - X[50781], 3 X[38049] - X[50781], 3 X[6] - X[47359], 4 X[6] - X[49529], 11 X[6] + X[49679], 5 X[6] + X[49681], 2 X[6] + X[49684], 7 X[6] - X[49688], 13 X[6] - X[49690], 2 X[4856] + X[32941], 3 X[47356] + X[47359], 4 X[47356] + X[49529], 11 X[47356] - X[49679], 5 X[47356] - X[49681], 7 X[47356] + X[49688], 13 X[47356] + X[49690], 4 X[47359] - 3 X[49529], 11 X[47359] + 3 X[49679], 5 X[47359] + 3 X[49681], 2 X[47359] + 3 X[49684], 7 X[47359] - 3 X[49688], 13 X[47359] - 3 X[49690], 11 X[49529] + 4 X[49679], 5 X[49529] + 4 X[49681], X[49529] + 2 X[49684], 7 X[49529] - 4 X[49688], 13 X[49529] - 4 X[49690], 5 X[49679] - 11 X[49681], 2 X[49679] - 11 X[49684], 7 X[49679] + 11 X[49688], 13 X[49679] + 11 X[49690], 2 X[49681] - 5 X[49684], 7 X[49681] + 5 X[49688], 13 X[49681] + 5 X[49690], 7 X[49684] + 2 X[49688], 13 X[49684] + 2 X[49690], 13 X[49688] - 7 X[49690], 2 X[10] - 3 X[38089], 4 X[597] - 3 X[38089], X[69] - 3 X[25055], 2 X[141] - 3 X[19883], X[193] + 5 X[16491], X[193] + 3 X[38314], 5 X[16491] - 3 X[38314], X[355] - 3 X[14848], and many others

X(51005) lies on these lines: {1, 1992}, {2, 5847}, {6, 519}, {10, 597}, {30, 39870}, {69, 25055}, {141, 19883}, {193, 16491}, {238, 29574}, {355, 14848}, {515, 20423}, {516, 43273}, {518, 3898}, {524, 551}, {528, 50124}, {542, 946}, {575, 11362}, {576, 5882}, {599, 1125}, {740, 49543}, {752, 49630}, {1100, 49740}, {1351, 3655}, {1449, 48830}, {2308, 4141}, {2796, 49477}, {3011, 31179}, {3241, 3751}, {3244, 4432}, {3416, 3828}, {3545, 39885}, {3616, 11160}, {3618, 19875}, {3626, 38087}, {3629, 49505}, {3654, 5050}, {3663, 28558}, {3686, 48809}, {3755, 4991}, {3758, 50017}, {3759, 49720}, {3817, 47354}, {3844, 48310}, {3892, 9004}, {3923, 17133}, {4029, 4759}, {4078, 16468}, {4133, 28329}, {4301, 8550}, {4349, 4974}, {4363, 50020}, {4667, 50023}, {4669, 5846}, {4672, 50118}, {4676, 50121}, {4700, 36480}, {4725, 48810}, {4745, 38047}, {4870, 39897}, {4933, 35263}, {5182, 9881}, {5476, 38146}, {5480, 34648}, {6329, 38098}, {6684, 38064}, {6702, 38090}, {6776, 31162}, {8593, 50886}, {9830, 11599}, {9956, 38079}, {10168, 38068}, {11161, 38220}, {11179, 28194}, {11180, 38021}, {11194, 37492}, {11482, 37727}, {15533, 50787}, {15534, 34379}, {16469, 29573}, {16477, 49476}, {16834, 28580}, {17132, 32921}, {17225, 50117}, {19862, 20582}, {19925, 38072}, {21850, 28208}, {23536, 50234}, {25555, 31399}, {28198, 48906}, {28534, 50112}, {28542, 50108}, {31178, 49496}, {32455, 49465}, {34638, 44882}, {34641, 49524}, {37654, 48854}, {37756, 50307}, {38029, 50828}, {38035, 47353}, {38116, 50827}, {38118, 50821}, {38144, 50801}, {41011, 50102}, {41140, 50301}, {41720, 50921}, {46922, 50305}, {47277, 47472}, {47456, 47562}, {47457, 47496}, {47459, 47488}, {47460, 47492}, {47461, 47494}, {47462, 47489}, {47463, 47493}, {47464, 47491}, {47541, 47593}, {50126, 50129}, {50290, 50296}

X(51005) = midpoint of X(i) and X(j) for these {i,j}: {1, 1992}, {6, 47356}, {1351, 3655}, {3241, 3751}, {6776, 31162}, {8593, 50886}, {15534, 47358}, {16834, 50303}, {31178, 49496}, {41720, 50921}, {47277, 47472}, {47541, 47593}, {48805, 50131}, {50126, 50129}
X(51005) = reflection of X(i) in X(j) for these {i,j}: {10, 597}, {551, 1386}, {599, 1125}, {3416, 3828}, {4663, 20583}, {15533, 50787}, {34638, 44882}, {34641, 49524}, {34648, 5480}, {38049, 16475}, {47353, 50802}, {47496, 47457}, {49511, 551}, {49684, 47356}, {50091, 50114}, {50109, 49477}, {50118, 4672}, {50777, 50779}, {50781, 2}, {50783, 4745}, {50796, 5476}
X(51005) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 49684, 49529}, {10, 597, 38089}, {599, 38023, 1125}, {3241, 5032, 3751}, {3416, 47352, 3828}, {5476, 50796, 38146}, {15534, 38315, 47358}, {38035, 47353, 50802}, {38047, 50783, 4745}, {38049, 50781, 2}


X(51006) = X(1)X(597)∩X(524)X(551)

Barycentrics    10*a^3 + 4*a^2*b + 7*a*b^2 + b^3 + 4*a^2*c + b^2*c + 7*a*c^2 + b*c^2 + c^3 : :
X(51006) = X[1] + 3 X[38023], 3 X[1] + X[47359], X[597] - 3 X[38023], 3 X[597] - X[47359], 9 X[38023] - X[47359], X[2] + 3 X[38315], 5 X[2] - X[50783], 15 X[38315] + X[50783], X[6] + 3 X[38314], X[141] + 5 X[16491], X[141] - 3 X[25055], 5 X[16491] + 3 X[25055], 5 X[16491] - X[47356], 3 X[25055] + X[47356], X[145] + 3 X[38087], X[390] + 3 X[38086], 5 X[551] - X[49511], 5 X[1386] + X[49511], X[599] - 5 X[3616], X[944] + 3 X[38072], X[1317] + 3 X[38090], X[1482] + 3 X[38064], X[1483] + 3 X[38079], X[1992] + 7 X[3622], X[3241] + 3 X[47352], 3 X[47352] - X[49524], X[3243] + 3 X[38088], X[3244] + 3 X[38089], 4 X[3636] + X[20583], X[3656] + 3 X[38029], X[3679] - 3 X[48310], X[5476] - 3 X[38040], 3 X[38040] + X[50824], 3 X[5603] + X[43273], 5 X[5734] + 7 X[10541], 3 X[5886] - X[47354], 3 X[6034] + X[9884], 2 X[6329] + X[49465], X[8584] - 3 X[16475], 3 X[16475] + X[47358], 3 X[10246] + X[20423], X[11178] - 3 X[38022], 3 X[14848] + 5 X[37624], 3 X[17382] - X[49630], X[49630] + 3 X[50294], 3 X[19875] + X[49681], 3 X[19883] - 2 X[34573], 3 X[19883] + X[49684], 2 X[34573] + X[49684], 5 X[22165] - 7 X[50792], X[41149] + 8 X[41150], X[37734] + 3 X[38091], 3 X[38035] + X[50811], 3 X[38046] + X[50836], 3 X[38050] + X[50843], 3 X[38116] + X[50805], 3 X[38144] + X[50818], 3 X[38165] + X[50831], 3 X[38185] + X[50839], 3 X[38192] + X[50846]

X(51006) lies on these lines: {1, 597}, {2, 5846}, {6, 38314}, {141, 16491}, {145, 38087}, {238, 49737}, {390, 38086}, {518, 4532}, {519, 3589}, {524, 551}, {542, 5901}, {545, 50300}, {599, 3616}, {944, 38072}, {1125, 20582}, {1317, 38090}, {1482, 38064}, {1483, 38079}, {1992, 3622}, {3241, 47352}, {3243, 38088}, {3244, 38089}, {3636, 20583}, {3655, 5480}, {3656, 38029}, {3679, 48310}, {4141, 29819}, {4353, 4912}, {4472, 50023}, {4971, 48810}, {5476, 38040}, {5603, 43273}, {5734, 10541}, {5847, 50788}, {5886, 47354}, {6034, 9884}, {6082, 9097}, {6329, 49465}, {7290, 41312}, {8584, 16475}, {8705, 47495}, {9053, 38049}, {9055, 50111}, {9830, 11725}, {10246, 20423}, {11178, 38022}, {12258, 12264}, {14848, 37624}, {17045, 49740}, {17225, 24325}, {17366, 49720}, {17382, 49630}, {18357, 25565}, {19875, 49681}, {19883, 34573}, {22165, 50792}, {28333, 50285}, {28337, 50311}, {29831, 31179}, {31162, 44882}, {34379, 41149}, {37734, 38091}, {38035, 50811}, {38046, 50836}, {38050, 50843}, {38116, 50805}, {38144, 50818}, {38165, 50831}, {38185, 50839}, {38192, 50846}, {47544, 47593}, {48805, 50112}, {48820, 48867}, {48824, 48845}, {49463, 50118}, {49484, 50109}, {49741, 50303}

X(51006) = midpoint of X(i) and X(j) for these {i,j}: {1, 597}, {141, 47356}, {551, 1386}, {3241, 49524}, {3655, 5480}, {5476, 50824}, {8584, 47358}, {17382, 50294}, {31162, 44882}, {47544, 47593}, {48805, 50112}, {48820, 48867}, {48824, 48845}, {49463, 50118}, {49484, 50109}, {49741, 50303}
X(51006) = reflection of X(i) in X(j) for these {i,j}: {18357, 25565}, {20582, 1125}
X(51006) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 38023, 597}, {3241, 47352, 49524}, {16475, 47358, 8584}, {16491, 25055, 47356}, {25055, 47356, 141}, {38040, 50824, 5476}


X(51007) = X(11)X(141)∩X(524)X(6174)

Barycentrics    3*a^3*b^2 - 3*a^2*b^3 - a*b^4 + b^5 - 2*a^3*b*c - a^2*b^2*c + 4*a*b^3*c - b^4*c + 3*a^3*c^2 - a^2*b*c^2 - 2*a*b^2*c^2 - 3*a^2*c^3 + 4*a*b*c^3 - a*c^4 - b*c^4 + c^5 : :
X(51007) = 4 X[2] - 3 X[38090], 4 X[10755] - 9 X[38090], 4 X[5] - 3 X[38147], 4 X[10] - 3 X[38192], X[104] - 3 X[10519], 4 X[140] - 3 X[38119], 4 X[142] - 3 X[38188], X[149] - 5 X[3620], 2 X[182] - 3 X[38760], 2 X[576] - 5 X[38763], 4 X[1125] - 3 X[38050], X[1351] - 3 X[38752], 2 X[1386] - 3 X[34123], 4 X[3589] - 5 X[31235], 7 X[3619] - 5 X[31272], 4 X[3628] - 3 X[38168], 4 X[3631] + X[6154], 4 X[3634] - 3 X[38197], 5 X[3763] - 4 X[6667], 4 X[3844] - 3 X[34122], 3 X[5050] - 5 X[38762], 4 X[6666] - 3 X[38195], 4 X[6668] - 3 X[38199], X[6776] - 3 X[34474], X[10707] - 3 X[21356], X[10993] + 2 X[34507], X[11477] - 4 X[20400], 3 X[21358] - 2 X[45310], 3 X[23513] - 4 X[24206], 3 X[31884] - 2 X[38759], 4 X[35023] + X[40341], X[37726] - 4 X[40107]

X(51007) lies on these lines: {2, 10755}, {5, 38147}, {6, 3035}, {10, 38192}, {11, 141}, {69, 100}, {104, 10519}, {119, 511}, {140, 38119}, {142, 38188}, {149, 3620}, {182, 38760}, {214, 5847}, {518, 1145}, {524, 6174}, {528, 599}, {576, 38763}, {900, 4437}, {952, 3416}, {1125, 38050}, {1176, 3045}, {1317, 5846}, {1332, 40560}, {1350, 2829}, {1351, 38752}, {1352, 5840}, {1386, 34123}, {1469, 10956}, {1503, 24466}, {1768, 5227}, {1862, 41584}, {2787, 50567}, {2802, 49511}, {3098, 38761}, {3242, 5854}, {3564, 33814}, {3589, 31235}, {3619, 31272}, {3628, 38168}, {3631, 6154}, {3634, 38197}, {3763, 6667}, {3844, 34122}, {4553, 26932}, {4585, 26231}, {4996, 5849}, {5050, 38762}, {5181, 8674}, {5845, 6068}, {5856, 47595}, {6393, 38643}, {6666, 38195}, {6668, 38199}, {6776, 34474}, {9037, 17757}, {9041, 50842}, {10707, 21356}, {10742, 33878}, {10993, 34507}, {11477, 20400}, {12119, 39885}, {12735, 49681}, {12831, 34377}, {18358, 22938}, {21358, 45310}, {23513, 24206}, {25416, 49465}, {28538, 50843}, {31884, 38759}, {35023, 40341}, {37726, 40107}

X(51007) = midpoint of X(i) and X(j) for these {i,j}: {69, 100}, {10742, 33878}, {12119, 39885}
X(51007) = reflection of X(i) in X(j) for these {i,j}: {6, 3035}, {11, 141}, {22938, 18358}, {25416, 49465}, {38761, 3098}, {49681, 12735}
X(51007) = complement of X(10755)


X(51008) = X(11)X(597)∩X(524)X(6174)

Barycentrics    8*a^5 - 8*a^4*b - 3*a^3*b^2 + 3*a^2*b^3 + a*b^4 - b^5 - 8*a^4*c + 18*a^3*b*c - 7*a^2*b^2*c + b^4*c - 3*a^3*c^2 - 7*a^2*b*c^2 + 2*a*b^2*c^2 + 3*a^2*c^3 + a*c^4 + b*c^4 - c^5 : :
X(51008) = 2 X[11] - 3 X[38090], 4 X[597] - 3 X[38090], 4 X[575] - X[37726], 2 X[576] + X[10993], 2 X[1387] - 3 X[38023], 2 X[3036] - 3 X[38087], 2 X[4663] + X[10609], 3 X[5032] - X[10755], 4 X[5476] - 3 X[38147], X[6154] + 4 X[20583], 2 X[6702] - 3 X[38089], 2 X[6713] - 3 X[38064], 2 X[8068] - 3 X[38091], 2 X[8550] + X[37725], 4 X[10168] - 3 X[38069], X[10738] - 3 X[14848], X[15069] - 4 X[20400], 3 X[16475] - X[50891], 4 X[20582] - 5 X[31235], 2 X[34507] - 5 X[38763], 2 X[45310] - 3 X[47352]

X(51008) lies on these lines: {2, 5848}, {6, 528}, {11, 597}, {100, 1992}, {119, 542}, {376, 10759}, {518, 50843}, {524, 6174}, {575, 37726}, {576, 10993}, {599, 3035}, {952, 47359}, {1145, 28538}, {1317, 9041}, {1387, 38023}, {2787, 18800}, {2829, 43273}, {3036, 38087}, {4663, 10609}, {5032, 10755}, {5182, 13194}, {5476, 38147}, {5840, 20423}, {5846, 50842}, {5847, 50841}, {6154, 8539}, {6702, 38089}, {6713, 38064}, {6776, 10711}, {8068, 38091}, {8550, 37725}, {8584, 9024}, {8674, 15303}, {9053, 50846}, {10168, 38069}, {10738, 14848}, {15069, 20400}, {16475, 50891}, {16792, 38060}, {20582, 31235}, {34379, 50844}, {34507, 38763}, {45310, 47352}

X(51008) = midpoint of X(i) and X(j) for these {i,j}: {100, 1992}, {376, 10759}, {6776, 10711}
X(51008) = reflection of X(i) in X(j) for these {i,j}: {11, 597}, {599, 3035}
X(51008) = {X(11),X(597)}-harmonic conjugate of X(38090)


X(51009) = X(12)X(141)∩X(524)X(31157)

Barycentrics    3*a^4*b^2 - 4*a^2*b^4 + b^6 + 2*a^4*b*c - 2*a*b^4*c + 3*a^4*c^2 - 4*a^2*b^2*c^2 - 2*a*b^3*c^2 - b^4*c^2 - 2*a*b^2*c^3 - 4*a^2*c^4 - 2*a*b*c^4 - b^2*c^4 + c^6 : :
X(51009) = 4 X[2] - 3 X[38091], 4 X[5] - 3 X[38148], 4 X[10] - 3 X[38193], 4 X[140] - 3 X[38120], 4 X[142] - 3 X[38189], 4 X[1125] - 3 X[38051], 4 X[3589] - 5 X[31260], 5 X[3620] - X[20060], 4 X[3628] - 3 X[38169], 4 X[3634] - 3 X[38198], 5 X[3763] - 4 X[6668], 4 X[3844] - 3 X[38058], 4 X[6666] - 3 X[38196], 4 X[6667] - 3 X[38199], 3 X[10519] - X[11491], 4 X[24206] - 3 X[38109]

X(51009) lies on these lines: {2, 38091}, {5, 38148}, {6, 4999}, {10, 38193}, {12, 141}, {69, 2975}, {140, 38120}, {142, 38189}, {511, 26470}, {518, 10039}, {524, 31157}, {529, 599}, {758, 24476}, {952, 3416}, {1125, 38051}, {1350, 5842}, {1352, 5841}, {1503, 30264}, {3056, 10959}, {3242, 5855}, {3589, 31260}, {3620, 20060}, {3628, 38169}, {3634, 38198}, {3763, 6668}, {3844, 38058}, {4996, 5848}, {5227, 6763}, {5846, 37734}, {5857, 47595}, {6666, 38196}, {6667, 38199}, {9047, 24390}, {10519, 11491}, {24206, 38109}

X(51009) = midpoint of X(69) and X(2975)
X(51009) = reflection of X(i) in X(j) for these {i,j}: {6, 4999}, {12, 141}


X(51010) = X(13)X(141)∩X(15)X(524)

Barycentrics    a^6 + 5*a^4*b^2 - 7*a^2*b^4 + b^6 + 5*a^4*c^2 - 6*a^2*b^2*c^2 - b^4*c^2 - 7*a^2*c^4 - b^2*c^4 + c^6 + 2*Sqrt[3]*(a^2 - b^2 - c^2)*(a^2 + b^2 + c^2)*S : :
X(51010) = 4 X[3589] - 5 X[36770], 5 X[3763] - 4 X[6669], 2 X[5459] - 3 X[21358], 2 X[5478] - 3 X[10516], 2 X[5480] - 3 X[36765], 3 X[6034] - 4 X[6670], X[6770] - 3 X[10519], 2 X[8584] - 5 X[36767], X[15533] + 2 X[36769], X[15534] - 4 X[36768], 4 X[20582] - 3 X[22489], 2 X[22165] + X[35751]

X(51010) lies on these lines: {2, 16941}, {6, 618}, {13, 141}, {14, 5969}, {15, 524}, {32, 9115}, {69, 74}, {298, 511}, {299, 5980}, {302, 5476}, {396, 41751}, {518, 12781}, {530, 599}, {532, 22687}, {576, 627}, {619, 6582}, {621, 19924}, {622, 11178}, {634, 40107}, {1350, 41022}, {1352, 44463}, {1469, 12942}, {1503, 5473}, {3056, 12952}, {3094, 3643}, {3589, 36770}, {3630, 42929}, {3763, 6669}, {5092, 30471}, {5459, 21358}, {5478, 10516}, {5480, 36765}, {5846, 7975}, {5858, 6782}, {5965, 14145}, {6034, 6670}, {6770, 10519}, {8368, 42913}, {8584, 36767}, {9041, 50848}, {9116, 9830}, {9916, 37485}, {9989, 34507}, {11307, 44512}, {12205, 42534}, {12588, 18974}, {12589, 13076}, {14538, 36776}, {15533, 36769}, {15534, 36768}, {19130, 40707}, {19662, 31695}, {20194, 41409}, {20582, 22489}, {21360, 46054}, {22165, 35751}, {22796, 31670}, {23005, 35697}, {23024, 25183}, {28538, 50849}, {29181, 36961}, {31694, 42035}, {33878, 48655}, {36757, 36782}

X(51010) = midpoint of X(i) and X(j) for these {i,j}: {69, 616}, {33878, 48655}
X(51010) = reflection of X(i) in X(j) for these {i,j}: {6, 618}, {13, 141}, {6772, 3643}, {22513, 3642}, {22580, 2}, {23024, 25183}, {25154, 11178}, {31670, 22796}, {31695, 19662}, {41745, 22687}
X(51010) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {298, 5979, 5617}, {5463, 36775, 35304}


X(51011) = X(13)X(599)∩X(15)X(524)

Barycentrics    Sqrt[3]*(a^6 - 10*a^4*b^2 + 11*a^2*b^4 - 2*b^6 - 10*a^4*c^2 + 6*a^2*b^2*c^2 + 2*b^4*c^2 + 11*a^2*c^4 + 2*b^2*c^4 - 2*c^6) - 2*(5*a^2 - 4*b^2 - 4*c^2)*(a^2 + b^2 + c^2)*S : :
X(51011) = 4 X[141] - 3 X[22489], 3 X[22489] - 2 X[22580], 2 X[15533] + X[35751], 4 X[597] - 5 X[36770], 7 X[3619] - 6 X[48311], 2 X[5459] - 3 X[21356], 3 X[5470] - 4 X[19662], 2 X[15534] - 5 X[36767], 2 X[20423] - 3 X[36765], 4 X[22165] - X[35752]

X(51011) lies on these lines: {2, 14136}, {6, 36764}, {13, 599}, {15, 524}, {69, 530}, {141, 22489}, {298, 9762}, {511, 22493}, {518, 50848}, {531, 50639}, {532, 12155}, {542, 1350}, {597, 36770}, {616, 11160}, {618, 1992}, {622, 22576}, {1384, 9115}, {3619, 48311}, {5459, 21356}, {5460, 10754}, {5464, 50567}, {5470, 19662}, {5847, 50849}, {5858, 14645}, {5969, 35693}, {7615, 42035}, {7975, 28538}, {11129, 35932}, {11295, 22906}, {11646, 22577}, {15534, 36386}, {20423, 36765}, {21358, 42132}, {22165, 35752}, {34379, 50847}

X(51011) = midpoint of X(616) and X(11160)
X(51011) = reflection of X(i) in X(j) for these {i,j}: {13, 599}, {1992, 618}, {5464, 50567}, {10754, 5460}, {22577, 11646}, {22580, 141}
X(51011) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {141, 22580, 22489}, {9114, 35751, 5473}


X(51012) = X(13)X(597)∩X(15)X(524)

Barycentrics    Sqrt[3]*(5*a^6 - 5*a^4*b^2 + a^2*b^4 - b^6 - 5*a^4*c^2 - 6*a^2*b^2*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6) - 2*(a^2 + b^2 + c^2)^2*S : :
X(51012) = 2 X[6771] - 3 X[38064], X[22509] - 4 X[32135], 4 X[3589] - 3 X[22489], 2 X[5459] - 3 X[47352], 2 X[5478] - 3 X[38072], 2 X[8584] + X[35751], 2 X[11705] - 3 X[38023], X[13103] - 3 X[14848], X[15533] - 4 X[36768], X[15534] + 2 X[36769], 2 X[20252] - 3 X[38079], 4 X[20582] - 5 X[36770], 2 X[22165] - 5 X[36767], X[22495] - 3 X[36757], 3 X[36765] - 2 X[47354], 7 X[47355] - 6 X[48311]

X(51012) lies on these lines: {2, 98}, {6, 530}, {13, 597}, {14, 9830}, {15, 524}, {30, 12155}, {381, 40671}, {396, 9762}, {511, 8595}, {518, 50849}, {531, 22687}, {543, 10654}, {574, 9115}, {575, 11304}, {599, 618}, {616, 1992}, {1503, 31693}, {2782, 12154}, {3589, 22489}, {5026, 5464}, {5321, 22576}, {5334, 31696}, {5459, 42098}, {5460, 11646}, {5472, 22492}, {5476, 25154}, {5478, 38072}, {5846, 50848}, {5847, 50847}, {5969, 9116}, {5979, 37786}, {5980, 37785}, {6777, 50855}, {6782, 9761}, {7606, 46053}, {7841, 44514}, {7975, 9041}, {8546, 13859}, {8550, 37340}, {8584, 35751}, {8594, 35917}, {11146, 32599}, {11296, 41022}, {11632, 40672}, {11705, 38023}, {12781, 28538}, {13103, 14848}, {14645, 42511}, {15533, 36768}, {15534, 36769}, {18581, 33477}, {20252, 38079}, {20429, 44506}, {20582, 36770}, {22165, 36388}, {22490, 46054}, {22495, 36757}, {22574, 42975}, {32553, 45879}, {32907, 37171}, {35690, 49827}, {35691, 49876}, {35697, 41108}, {36765, 47354}, {37341, 41020}, {41751, 43229}, {41752, 43228}, {47355, 48311}

X(51012) = midpoint of X(616) and X(1992)
X(51012) = reflection of X(i) in X(j) for these {i,j}: {13, 597}, {599, 618}, {5464, 5026}, {11646, 5460}, {19905, 6774}, {22580, 6}, {25154, 5476}
X(51012) = {X(15),X(5463)}-harmonic conjugate of X(9885)


X(51013) = X(14)X(141)∩X(16)X(524)

Barycentrics    a^6 + 5*a^4*b^2 - 7*a^2*b^4 + b^6 + 5*a^4*c^2 - 6*a^2*b^2*c^2 - b^4*c^2 - 7*a^2*c^4 - b^2*c^4 + c^6 - 2*Sqrt[3]*(a^2 - b^2 - c^2)*(a^2 + b^2 + c^2)*S : :
X(51013) = 5 X[3763] - 4 X[6670], 2 X[5460] - 3 X[21358], 2 X[5479] - 3 X[10516], 3 X[6034] - 4 X[6669], X[6773] - 3 X[10519], X[15533] + 2 X[47867], 4 X[20582] - 3 X[22490], 2 X[22165] + X[36329]

X(51013) lies on these lines: {2, 16940}, {6, 619}, {13, 5969}, {14, 141}, {16, 524}, {32, 9117}, {69, 74}, {298, 5981}, {299, 383}, {303, 5476}, {395, 41753}, {487, 35748}, {518, 12780}, {531, 599}, {533, 22689}, {576, 628}, {618, 6295}, {621, 11178}, {622, 19924}, {633, 40107}, {1350, 41023}, {1352, 44459}, {1469, 12941}, {1503, 5474}, {3056, 12951}, {3094, 3642}, {3589, 41943}, {3630, 42928}, {3763, 6670}, {5092, 30472}, {5460, 21358}, {5479, 10516}, {5846, 7974}, {5859, 6783}, {5965, 14144}, {6034, 6669}, {6773, 10519}, {8368, 42912}, {9041, 50851}, {9114, 9830}, {9915, 37485}, {9988, 34507}, {11308, 44511}, {12204, 42534}, {12588, 18975}, {12589, 13075}, {15533, 47867}, {19130, 40706}, {19662, 31696}, {20194, 41408}, {20582, 22490}, {21359, 46053}, {22165, 36329}, {22797, 31670}, {23004, 35693}, {23018, 25187}, {28538, 50852}, {29181, 36962}, {31693, 42036}, {33878, 48656}

X(51013) = midpoint of X(i) and X(j) for these {i,j}: {69, 617}, {33878, 48656}
X(51013) = reflection of X(i) in X(j) for these {i,j}: {6, 619}, {14, 141}, {6775, 3642}, {22512, 3643}, {22579, 2}, {23018, 25187}, {25164, 11178}, {31670, 22797}, {31696, 19662}, {41746, 22689}
X(51013) = {X(299),X(5978)}-harmonic conjugate of X(5613)


X(51014) = X(14)X(599)∩X(16)X(524)

Barycentrics    Sqrt[3]*(a^6 - 10*a^4*b^2 + 11*a^2*b^4 - 2*b^6 - 10*a^4*c^2 + 6*a^2*b^2*c^2 + 2*b^4*c^2 + 11*a^2*c^4 + 2*b^2*c^4 - 2*c^6) + 2*(5*a^2 - 4*b^2 - 4*c^2)*(a^2 + b^2 + c^2)*S : :
X(51014) = 4 X[141] - 3 X[22490], 3 X[22490] - 2 X[22579], 2 X[15533] + X[36329], 7 X[3619] - 6 X[48312], 2 X[5460] - 3 X[21356], 3 X[5469] - 4 X[19662], 4 X[22165] - X[36330]

X(51014) lies on these lines: {2, 14137}, {14, 599}, {16, 524}, {69, 531}, {141, 22490}, {299, 9760}, {487, 35686}, {511, 22494}, {518, 50851}, {530, 50639}, {533, 12154}, {542, 1350}, {617, 11160}, {619, 1992}, {621, 22575}, {1384, 9117}, {3619, 48312}, {5459, 10754}, {5460, 21356}, {5463, 50567}, {5469, 19662}, {5847, 50852}, {5859, 14645}, {5969, 35697}, {7615, 42036}, {7974, 28538}, {11128, 35931}, {11296, 22862}, {11646, 22578}, {15534, 36388}, {21358, 42129}, {22165, 36330}, {34379, 50850}

X(51014) = midpoint of X(617) and X(11160)
X(51014) = reflection of X(i) in X(j) for these {i,j}: {14, 599}, {1992, 619}, {5463, 50567}, {10754, 5459}, {22578, 11646}, {22579, 141}
X(51014) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {141, 22579, 22490}, {9116, 36329, 5474}


X(51015) = X(14)X(597)∩X(16)X(524)

Barycentrics    Sqrt[3]*(5*a^6 - 5*a^4*b^2 + a^2*b^4 - b^6 - 5*a^4*c^2 - 6*a^2*b^2*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6) + 2*(a^2 + b^2 + c^2)^2*S : :
X(51015) = 2 X[6774] - 3 X[38064], X[22507] - 4 X[32135], 4 X[3589] - 3 X[22490], 2 X[5460] - 3 X[47352], 2 X[5479] - 3 X[38072], 2 X[8584] + X[36329], 2 X[11706] - 3 X[38023], X[13102] - 3 X[14848], X[15534] + 2 X[47867], 2 X[20253] - 3 X[38079], X[22496] - 3 X[36758], 7 X[47355] - 6 X[48312]

X(51015) lies on these lines: {2, 98}, {6, 531}, {13, 9830}, {14, 597}, {16, 524}, {30, 12154}, {381, 40672}, {395, 9760}, {511, 8594}, {518, 50852}, {530, 22689}, {543, 10653}, {574, 9117}, {575, 11303}, {599, 619}, {617, 1992}, {1152, 35686}, {1503, 31694}, {2782, 12155}, {3589, 22490}, {5026, 5463}, {5318, 22575}, {5335, 31695}, {5459, 11646}, {5460, 42095}, {5471, 22491}, {5476, 25164}, {5479, 38072}, {5846, 50851}, {5847, 50850}, {5969, 9114}, {5978, 37785}, {5981, 37786}, {6778, 50858}, {6783, 9763}, {7606, 46054}, {7841, 44513}, {7974, 9041}, {8546, 13858}, {8550, 37341}, {8584, 36329}, {8595, 35918}, {11145, 32599}, {11295, 41023}, {11632, 40671}, {11706, 38023}, {12780, 28538}, {13102, 14848}, {14645, 42510}, {15534, 47867}, {18582, 33476}, {20253, 38079}, {20428, 44505}, {22165, 36386}, {22489, 46053}, {22496, 36758}, {22573, 42974}, {32552, 45880}, {32909, 37170}, {35693, 41107}, {35694, 49826}, {35695, 49875}, {37340, 41021}, {41753, 43228}, {41754, 43229}, {47355, 48312}

X(51015) = midpoint of X(617) and X(1992)
X(51015) = reflection of X(i) in X(j) for these {i,j}: {14, 597}, {599, 619}, {5463, 5026}, {11646, 5459}, {19905, 6771}, {22579, 6}, {25164, 5476}
X(51015) = {X(16),X(5464)}-harmonic conjugate of X(9886)


X(51016) = X(13)X(524)∩X(15)X(141)

Barycentrics    Sqrt[3]*(a^6 - a^4*b^2 + a^2*b^4 - b^6 - a^4*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6) - 2*(a^2 - b^2 - c^2)*(a^2 + b^2 + c^2)*S : :
X(51016) = X[622] - 3 X[5207], 4 X[3589] - 3 X[36757], 4 X[3589] - 5 X[40334], 3 X[36757] - 5 X[40334], 3 X[1691] - 4 X[6672], 5 X[3763] - 4 X[6671], 6 X[5031] - 5 X[40335], 2 X[7684] - 3 X[10516], 3 X[10519] - X[36993], 3 X[21358] - 2 X[45879]

X(51016) lies on these lines: {4, 69}, {6, 623}, {13, 524}, {15, 141}, {18, 3589}, {182, 302}, {183, 5613}, {193, 42982}, {298, 542}, {299, 11178}, {303, 24206}, {325, 5617}, {518, 50853}, {531, 599}, {616, 11645}, {625, 18581}, {698, 25199}, {732, 23000}, {1350, 44666}, {1503, 14538}, {1691, 6672}, {2030, 11489}, {3098, 9988}, {3416, 44659}, {3618, 42987}, {3620, 43243}, {3629, 42779}, {3631, 42630}, {3763, 6671}, {5031, 40335}, {5872, 14880}, {5965, 44488}, {5969, 23004}, {5989, 22507}, {7684, 10516}, {7773, 16626}, {7797, 22114}, {7805, 40693}, {7834, 40694}, {8360, 11543}, {10519, 36993}, {11133, 12215}, {21358, 45879}, {22491, 31173}, {22736, 24273}, {28538, 50854}, {29181, 36992}, {34573, 42955}, {36755, 46264}, {36759, 42534}, {37341, 41406}, {43333, 47352}

X(51016) = midpoint of X(69) and X(621)
X(51016) = reflection of X(i) in X(j) for these {i,j}: {6, 623}, {15, 141}, {193, 44498}, {22580, 31693}, {23024, 31711}, {46264, 36755}
X(51016) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {316, 621, 20428}, {621, 5207, 3818}, {36757, 40334, 3589}


X(51017) = X(13)X(524)∩X(15)X(597)

Barycentrics    Sqrt[3]*(a^6 - 7*a^4*b^2 + 5*a^2*b^4 + b^6 - 7*a^4*c^2 - 6*a^2*b^2*c^2 - b^4*c^2 + 5*a^2*c^4 - b^2*c^4 + c^6) - 2*(a^2 + b^2 + c^2)^2*S : :
X(51017) = X[20428] + 2 X[44488], X[621] + 2 X[44498], X[5611] - 3 X[14848], 2 X[7684] - 3 X[38072], 2 X[11707] - 3 X[38023], 2 X[13350] - 3 X[38064], 4 X[20582] - 5 X[40334], 2 X[45879] - 3 X[47352], 7 X[47355] - 6 X[48313]

X(51017) lies on these lines: {2, 51}, {6, 531}, {13, 524}, {15, 597}, {30, 12155}, {141, 42915}, {182, 35932}, {518, 50854}, {542, 20428}, {576, 11303}, {599, 623}, {621, 1992}, {3849, 10653}, {5104, 45880}, {5459, 8586}, {5464, 42536}, {5475, 22491}, {5480, 31694}, {5611, 14848}, {5978, 37786}, {7684, 38072}, {8352, 25154}, {8594, 11300}, {8705, 34315}, {9830, 23004}, {10796, 12154}, {11305, 11477}, {11317, 25164}, {11707, 38023}, {13350, 38064}, {14538, 35304}, {19924, 35931}, {20582, 40334}, {22492, 31173}, {28538, 50853}, {32460, 47574}, {43273, 44666}, {44659, 47359}, {45879, 47352}, {47355, 48313}

X(51017) = midpoint of X(621) and X(1992)
X(51017) = reflection of X(i) in X(j) for these {i,j}: {15, 597}, {599, 623}, {1992, 44498}, {5104, 45880}


X(51018) = X(14)X(524)∩X(16)X(141)

Barycentrics    Sqrt[3]*(a^6 - a^4*b^2 + a^2*b^4 - b^6 - a^4*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6) + 2*(a^2 - b^2 - c^2)*(a^2 + b^2 + c^2)*S : :
X(51018) = X[621] - 3 X[5207], 4 X[3589] - 3 X[36758], 4 X[3589] - 5 X[40335], 3 X[36758] - 5 X[40335], 3 X[1691] - 4 X[6671], 5 X[3763] - 4 X[6672], 6 X[5031] - 5 X[40334], 2 X[7685] - 3 X[10516], 3 X[10519] - X[36995], 3 X[21358] - 2 X[45880]

X(51018) lies on these lines: {4, 69}, {6, 624}, {14, 524}, {16, 141}, {17, 3589}, {182, 303}, {183, 5617}, {193, 42983}, {298, 11178}, {299, 542}, {302, 24206}, {325, 5613}, {518, 50856}, {530, 599}, {617, 11645}, {625, 18582}, {698, 25203}, {732, 23009}, {1350, 44667}, {1503, 14539}, {1691, 6671}, {2030, 11488}, {3098, 9989}, {3416, 44660}, {3618, 42986}, {3620, 43242}, {3629, 42780}, {3631, 42629}, {3763, 6672}, {5031, 40334}, {5873, 14880}, {5965, 44487}, {5969, 23005}, {5989, 22509}, {7685, 10516}, {7773, 16627}, {7797, 22113}, {7805, 40694}, {7834, 40693}, {8360, 11542}, {10519, 36995}, {11132, 12215}, {21358, 45880}, {22492, 31173}, {22737, 24273}, {28538, 50857}, {29181, 36994}, {34573, 42954}, {36756, 46264}, {36760, 42534}, {37340, 41407}, {43332, 47352}

X(51018) = midpoint of X(69) and X(622)
X(51018) = reflection of X(i) in X(j) for these {i,j}: {6, 624}, {16, 141}, {193, 44497}, {22579, 31694}, {23018, 31712}, {46264, 36756}
X(51018) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {316, 622, 20429}, {622, 5207, 3818}, {36758, 40335, 3589}


X(51019) = X(14)X(524)∩X(16)X(597)

Barycentrics    Sqrt[3]*(a^6 - 7*a^4*b^2 + 5*a^2*b^4 + b^6 - 7*a^4*c^2 - 6*a^2*b^2*c^2 - b^4*c^2 + 5*a^2*c^4 - b^2*c^4 + c^6) + 2*(a^2 + b^2 + c^2)^2*S : :
X(51019) = X[20429] + 2 X[44487], X[622] + 2 X[44497], X[5615] - 3 X[14848], 2 X[7685] - 3 X[38072], 2 X[11708] - 3 X[38023], 2 X[13349] - 3 X[38064], 4 X[20582] - 5 X[40335], 2 X[45880] - 3 X[47352], 7 X[47355] - 6 X[48314]

X(51019) lies on these lines: {2, 51}, {6, 530}, {14, 524}, {16, 597}, {30, 12154}, {141, 42914}, {182, 35931}, {518, 50857}, {542, 20429}, {576, 11304}, {599, 624}, {622, 1992}, {3849, 10654}, {5104, 45879}, {5460, 8586}, {5463, 42536}, {5475, 22492}, {5480, 31693}, {5615, 14848}, {5979, 37785}, {7685, 38072}, {8352, 25164}, {8595, 11299}, {8705, 34316}, {9830, 23005}, {10796, 12155}, {11306, 11477}, {11317, 25154}, {11708, 38023}, {13349, 38064}, {14539, 35303}, {19924, 35932}, {20582, 40335}, {22491, 31173}, {28538, 50856}, {32461, 47574}, {43273, 44667}, {44660, 47359}, {45880, 47352}, {47355, 48314}

X(51019) = midpoint of X(622) and X(1992)
X(51019) = reflection of X(i) in X(j) for these {i,j}: {16, 597}, {599, 624}, {1992, 44497}, {5104, 45879}


X(51020) = X(17)X(141)∩X(524)X(41943)

Barycentrics    a^6 - 7*a^4*b^2 + 9*a^2*b^4 - 3*b^6 - 7*a^4*c^2 + 10*a^2*b^2*c^2 + 3*b^4*c^2 + 9*a^2*c^4 + 3*b^2*c^4 - 3*c^6 - 2*Sqrt[3]*(a^2 - b^2 - c^2)*(a^2 + b^2 + c^2)*S : :
X(51020) = 4 X[3631] + X[22844], 5 X[3620] - X[22113], 5 X[3763] - 4 X[6673], 4 X[6674] - 3 X[38232], 3 X[10516] - 2 X[22832], 3 X[10519] - X[22532], 2 X[22165] + X[36386]

X(51020) lies on these lines: {6, 629}, {16, 3631}, {17, 141}, {54, 69}, {302, 5097}, {511, 16626}, {518, 22896}, {524, 41943}, {532, 599}, {542, 14144}, {1350, 44666}, {1352, 44463}, {1469, 22904}, {1503, 22890}, {3056, 22905}, {3094, 22737}, {3412, 3629}, {3620, 22113}, {3763, 6673}, {5613, 5982}, {5846, 22912}, {5969, 11602}, {6674, 38232}, {10516, 22832}, {10519, 22532}, {12588, 18973}, {12589, 22910}, {22165, 36386}, {22508, 33462}, {22523, 42534}, {22657, 37485}, {22795, 31670}, {24206, 40707}, {33878, 48666}, {40341, 43238}

X(51020) = midpoint of X(i) and X(j) for these {i,j}: {69, 627}, {33878, 48666}
X(51020) = reflection of X(i) in X(j) for these {i,j}: {6, 629}, {17, 141}, {31670, 22795}


X(51021) = X(18)X(141)∩X(524)X(41944)

Barycentrics    a^6 - 7*a^4*b^2 + 9*a^2*b^4 - 3*b^6 - 7*a^4*c^2 + 10*a^2*b^2*c^2 + 3*b^4*c^2 + 9*a^2*c^4 + 3*b^2*c^4 - 3*c^6 + 2*Sqrt[3]*(a^2 - b^2 - c^2)*(a^2 + b^2 + c^2)*S : :
X(51021) = 4 X[3631] + X[22845], 5 X[3620] - X[22114], 5 X[3763] - 4 X[6674], 4 X[6673] - 3 X[38232], 3 X[10516] - 2 X[22831], 3 X[10519] - X[22531], 2 X[22165] + X[36388]

X(51021) lies on these lines: {6, 630}, {15, 3631}, {18, 141}, {54, 69}, {303, 5097}, {511, 16627}, {518, 22851}, {524, 41944}, {533, 599}, {542, 14145}, {1350, 44667}, {1352, 44459}, {1469, 22859}, {1503, 22843}, {3056, 22860}, {3094, 22736}, {3411, 3629}, {3620, 22114}, {3763, 6674}, {5617, 5983}, {5846, 22867}, {5969, 11603}, {6673, 38232}, {10516, 22831}, {10519, 22531}, {12588, 18972}, {12589, 22865}, {22165, 36388}, {22506, 33463}, {22522, 42534}, {22656, 37485}, {22794, 31670}, {24206, 40706}, {33878, 48665}, {40341, 43239}

X(51021) = midpoint of X(i) and X(j) for these {i,j}: {69, 628}, {33878, 48665}
X(51021) = reflection of X(i) in X(j) for these {i,j}: {6, 630}, {18, 141}, {31670, 22794}


X(51022) = X(30)X(141)∩X(524)X(3543)

Barycentrics    16*a^6 + 5*a^4*b^2 - 10*a^2*b^4 - 11*b^6 + 5*a^4*c^2 + 12*a^2*b^2*c^2 + 11*b^4*c^2 - 10*a^2*c^4 + 11*b^2*c^4 - 11*c^6 : :
X(51022) = 5 X[4] - 3 X[38072], 3 X[4] - X[43273], and many others

X(51022) lies on these lines: {4, 597}, {6, 43507}, {20, 20582}, {30, 141}, {182, 14893}, {381, 44882}, {511, 33699}, {518, 50862}, {524, 3543}, {542, 3627}, {547, 48898}, {549, 33751}, {550, 25561}, {599, 3146}, {1351, 35434}, {1352, 15684}, {1503, 3830}, {1597, 35707}, {1992, 17578}, {3534, 21167}, {3545, 48905}, {3589, 3839}, {3630, 11180}, {3843, 38064}, {3844, 34638}, {3845, 29012}, {3853, 8550}, {3858, 25565}, {3860, 38317}, {5085, 41099}, {5092, 38071}, {5476, 12101}, {5480, 11645}, {5691, 9041}, {5846, 50865}, {5847, 50869}, {5893, 31166}, {6247, 7540}, {7519, 44569}, {8703, 29323}, {9019, 32062}, {9053, 50864}, {9830, 39838}, {10109, 17508}, {10168, 23046}, {10304, 34573}, {10516, 11001}, {11160, 50690}, {11168, 40236}, {11179, 38335}, {11539, 48892}, {14269, 46264}, {14810, 44903}, {14927, 47352}, {15360, 34603}, {15682, 22165}, {15683, 21358}, {15686, 24206}, {16656, 34725}, {19924, 35404}, {20583, 50688}, {21356, 48872}, {30775, 41424}, {31133, 35266}, {32217, 47310}, {34200, 48896}, {34379, 50870}, {34648, 49524}, {45303, 47313}, {45759, 48891}

X(51022) = midpoint of X(i) and X(j) for these {i,j}: {599, 3146}, {1352, 15684}, {3543, 36990}, {11180, 48910}, {15682, 47353}, {35404, 39884}
X(51022) = reflection of X(i) in X(j) for these {i,j}: {20, 20582}, {182, 14893}, {549, 48889}, {550, 25561}, {597, 4}, {3630, 11180}, {5476, 12101}, {5480, 15687}, {15686, 24206}, {22165, 47353}, {31166, 5893}, {32217, 47310}, {34638, 3844}, {35404, 48942}, {44882, 381}, {44903, 14810}, {48881, 11178}, {48896, 34200}, {48898, 547}, {49524, 34648}
X(51022) = {X(381),X(44882)}-harmonic conjugate of X(48310)


X(51023) = X(30)X(69)∩X(524)X(3543)

Barycentrics    11*a^6 - 5*a^4*b^2 + a^2*b^4 - 7*b^6 - 5*a^4*c^2 + 6*a^2*b^2*c^2 + 7*b^4*c^2 + a^2*c^4 + 7*b^2*c^4 - 7*c^6 : :
X(51023) = 7 X[2] - 6 X[5085], 5 X[2] - 6 X[10516], 4 X[2] - 3 X[25406], 3 X[2] - 4 X[47354], 5 X[5085] - 7 X[10516], 8 X[5085] - 7 X[25406], 9 X[5085] - 7 X[43273], 3 X[5085] - 7 X[47353], 9 X[5085] - 14 X[47354], 8 X[10516] - 5 X[25406], 9 X[10516] - 5 X[43273], 3 X[10516] - 5 X[47353], 9 X[10516] - 10 X[47354], 9 X[25406] - 8 X[43273], 3 X[25406] - 8 X[47353], 9 X[25406] - 16 X[47354], X[43273] - 3 X[47353], 3 X[47353] - 2 X[47354], 7 X[4] - 4 X[576], 3 X[4] - 2 X[20423], 8 X[576] - 7 X[1992], 6 X[576] - 7 X[20423], 3 X[1992] - 4 X[20423], 2 X[32250] + X[41737], 2 X[6] - 3 X[3839], X[69] - 4 X[18440], 7 X[69] - 4 X[33878], 7 X[11180] - 2 X[33878], 7 X[18440] - X[33878], 4 X[141] - 3 X[10304], 4 X[182] - 5 X[5071], X[193] - 3 X[50687], 7 X[376] - 8 X[14810], 2 X[376] - 3 X[21356], 5 X[376] - 4 X[48898], 7 X[1352] - 4 X[14810], 4 X[1352] - X[14927], 4 X[1352] - 3 X[21356], 5 X[1352] - 2 X[48898], 16 X[14810] - 7 X[14927], 16 X[14810] - 21 X[21356], 10 X[14810] - 7 X[48898], X[14927] - 3 X[21356], 5 X[14927] - 8 X[48898], 15 X[21356] - 8 X[48898], 5 X[381] - 4 X[18583], and many others

X(51023) lies on these lines: {2, 154}, {4, 542}, {6, 3839}, {20, 599}, {30, 69}, {141, 10304}, {147, 9770}, {182, 5071}, {193, 50687}, {376, 1352}, {381, 6776}, {511, 11455}, {518, 50864}, {524, 3543}, {543, 50641}, {546, 14848}, {549, 40330}, {575, 3855}, {597, 3091}, {631, 18553}, {962, 28538}, {1007, 6054}, {1350, 15683}, {1351, 15687}, {1353, 14893}, {1499, 14977}, {1513, 23055}, {2393, 15305}, {2777, 13169}, {2794, 11161}, {3058, 39891}, {3090, 25561}, {3146, 11160}, {3410, 33522}, {3416, 34632}, {3523, 20582}, {3524, 3619}, {3529, 34507}, {3534, 10519}, {3544, 25565}, {3545, 3618}, {3564, 3830}, {3620, 48905}, {3751, 34648}, {3763, 15708}, {3832, 8550}, {3845, 14853}, {3851, 38079}, {3861, 11482}, {4232, 44569}, {5032, 5480}, {5050, 5066}, {5054, 18358}, {5055, 48906}, {5092, 15709}, {5182, 32984}, {5207, 14458}, {5434, 39892}, {5476, 14912}, {5622, 46261}, {5642, 30775}, {5846, 50872}, {5847, 50865}, {6000, 11188}, {6090, 47311}, {6241, 43130}, {6337, 8724}, {6792, 15638}, {7000, 13757}, {7374, 13637}, {7390, 31144}, {7426, 47474}, {7486, 10541}, {7519, 44555}, {7540, 11411}, {7735, 11177}, {7989, 38089}, {8352, 46034}, {8681, 32062}, {8721, 33215}, {9140, 26255}, {9143, 14982}, {9744, 10033}, {9862, 19905}, {9873, 12117}, {10298, 19596}, {10385, 12588}, {10991, 37809}, {11001, 29012}, {11008, 31670}, {11439, 50649}, {11442, 15360}, {11477, 17578}, {11550, 13857}, {11694, 18281}, {11898, 15684}, {12017, 15699}, {12203, 33230}, {12324, 38323}, {13851, 18919}, {14002, 16010}, {14118, 15581}, {14269, 39899}, {14561, 41106}, {14645, 36997}, {14826, 31152}, {15072, 29959}, {15533, 15640}, {15681, 48876}, {15692, 21358}, {15693, 33750}, {15697, 31884}, {15702, 24206}, {16475, 50802}, {16655, 34621}, {17538, 40107}, {18451, 22151}, {18931, 20126}, {19662, 34473}, {20080, 48910}, {20987, 37940}, {21850, 38335}, {23291, 44212}, {28194, 39885}, {28204, 39898}, {31099, 40112}, {31143, 50698}, {32220, 47310}, {33699, 34380}, {34229, 43460}, {34379, 50862}, {34628, 49511}, {34697, 39889}, {34746, 39890}, {35822, 39876}, {35823, 39875}, {36757, 41119}, {36758, 41120}, {36883, 37749}, {37182, 42850}, {37941, 44883}, {38021, 39870}, {40671, 41042}, {40672, 41043}, {40673, 46847}, {43150, 46333}

X(51023) = midpoint of X(i) and X(j) for these {i,j}: {381, 48662}, {3146, 11160}, {3543, 5921}, {11898, 15684}
X(51023) = reflection of X(i) in X(j) for these {i,j}: {2, 47353}, {20, 599}, {69, 11180}, {376, 1352}, {381, 39884}, {1351, 15687}, {1353, 14893}, {1992, 4}, {3543, 36990}, {3751, 34648}, {6776, 381}, {7426, 47474}, {9143, 14982}, {9862, 19905}, {11061, 10706}, {11160, 15069}, {11177, 11646}, {11179, 3818}, {11180, 18440}, {14927, 376}, {15072, 29959}, {15681, 48876}, {15683, 1350}, {32220, 47310}, {34628, 49511}, {34632, 3416}, {37749, 36883}, {39874, 11179}, {40673, 46847}, {43273, 47354}, {46264, 11178}
X(51023) = anticomplement of X(43273)
X(51023) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 1352, 21356}, {3524, 11178, 3619}, {3545, 11179, 3618}, {3545, 39874, 11179}, {3818, 11179, 3545}, {3818, 39874, 3618}, {9140, 26255, 37643}, {9143, 31105, 37645}, {9214, 14833, 36894}, {11178, 46264, 3524}, {14912, 41099, 5476}, {14927, 21356, 376}, {21358, 44882, 15692}, {25561, 38064, 3090}, {39884, 48662, 6776}, {43273, 47353, 47354}, {43273, 47354, 2}


X(51024) = X(6)X(30)∩X(524)X(3543)

Barycentrics    5*a^6 + 10*a^4*b^2 - 11*a^2*b^4 - 4*b^6 + 10*a^4*c^2 + 6*a^2*b^2*c^2 + 4*b^4*c^2 - 11*a^2*c^4 + 4*b^2*c^4 - 4*c^6 : :
X(51024) = 7 X[2] - 6 X[21167], 4 X[2] - 3 X[31884], 8 X[21167] - 7 X[31884], 2 X[3] - 3 X[38072], 3 X[4] - 2 X[47354], 3 X[599] - 4 X[47354], 5 X[6] - 4 X[11179], 3 X[6] - 4 X[20423], 5 X[6] - 8 X[21850], X[6] - 4 X[31670], 3 X[6] - 2 X[43273], 5 X[6] + 4 X[43621], 7 X[6] - 4 X[46264], 5 X[6] - 2 X[48905], 11 X[6] - 8 X[48906], X[6] + 2 X[48910], 3 X[11179] - 5 X[20423], X[11179] - 5 X[31670], 6 X[11179] - 5 X[43273], 7 X[11179] - 5 X[46264], 11 X[11179] - 10 X[48906], 2 X[11179] + 5 X[48910], 5 X[20423] - 6 X[21850], X[20423] - 3 X[31670], 5 X[20423] + 3 X[43621], 7 X[20423] - 3 X[46264], 10 X[20423] - 3 X[48905], 11 X[20423] - 6 X[48906], 2 X[20423] + 3 X[48910], 2 X[21850] - 5 X[31670], 12 X[21850] - 5 X[43273], 2 X[21850] + X[43621], 14 X[21850] - 5 X[46264], 4 X[21850] - X[48905], 11 X[21850] - 5 X[48906], 4 X[21850] + 5 X[48910], 6 X[31670] - X[43273], 5 X[31670] + X[43621], 7 X[31670] - X[46264], 10 X[31670] - X[48905], 11 X[31670] - 2 X[48906], 2 X[31670] + X[48910], 5 X[43273] + 6 X[43621], 7 X[43273] - 6 X[46264], 5 X[43273] - 3 X[48905], and many others

X(51024) lies on these lines: {2, 21167}, {3, 38072}, {4, 599}, {6, 30}, {20, 597}, {25, 13857}, {40, 38087}, {69, 50687}, {141, 3839}, {182, 15681}, {376, 5480}, {381, 1350}, {382, 542}, {511, 3830}, {516, 47359}, {518, 50865}, {524, 3543}, {547, 48874}, {548, 38079}, {549, 48873}, {550, 38064}, {575, 17800}, {576, 5073}, {962, 9041}, {1351, 11645}, {1352, 15687}, {1386, 34628}, {1498, 34613}, {1503, 15534}, {1657, 14848}, {1992, 3146}, {2781, 18405}, {2930, 10706}, {3053, 6034}, {3091, 20582}, {3098, 5055}, {3242, 31162}, {3416, 34648}, {3524, 47355}, {3526, 25565}, {3534, 5085}, {3545, 3763}, {3564, 33699}, {3589, 10304}, {3627, 15069}, {3654, 38144}, {3818, 38335}, {3843, 25561}, {3845, 10516}, {4297, 38023}, {5032, 14927}, {5050, 15685}, {5054, 19130}, {5076, 34507}, {5092, 15689}, {5093, 29323}, {5097, 35400}, {5102, 29012}, {5642, 41424}, {5691, 28538}, {5732, 38086}, {5846, 50864}, {5847, 50862}, {7519, 40112}, {7540, 37498}, {7747, 10542}, {8550, 33703}, {8584, 15640}, {8703, 14561}, {9053, 50872}, {9830, 10723}, {10168, 15688}, {10387, 11237}, {10488, 10753}, {10519, 41099}, {10606, 23049}, {10717, 37751}, {10719, 15163}, {10720, 15162}, {11001, 14853}, {11160, 17578}, {11163, 40236}, {11178, 14269}, {11180, 40341}, {11425, 34726}, {11482, 49134}, {11898, 35434}, {12017, 48879}, {12100, 38136}, {12512, 38089}, {13598, 34725}, {14093, 48885}, {14810, 15694}, {14893, 48876}, {15360, 23293}, {15683, 44882}, {15686, 18583}, {15690, 38110}, {15692, 48310}, {15693, 38317}, {15695, 17508}, {15696, 25555}, {16936, 34614}, {17810, 31152}, {17813, 36201}, {17834, 18488}, {17845, 31166}, {18534, 19596}, {19905, 22515}, {20126, 37489}, {20583, 49135}, {21969, 34146}, {21970, 45311}, {23326, 50709}, {25566, 32609}, {31099, 44569}, {31105, 37638}, {31860, 47597}, {32113, 47310}, {32216, 34417}, {34379, 50869}, {34603, 37672}, {34632, 49524}, {35228, 37939}, {35403, 48889}, {35707, 37945}, {35822, 36718}, {35823, 36734}, {36757, 46335}, {36758, 46334}, {37182, 42849}, {37517, 48943}, {38047, 50808}, {38049, 50815}, {38090, 38759}, {38191, 50814}, {38315, 50811}, {38402, 41463}, {44456, 48884}, {46267, 48920}, {47031, 47455}, {47276, 47309}, {47332, 47450}, {47333, 47453}, {47336, 47448}, {48662, 48942}

X(51024) = midpoint of X(i) and X(j) for these {i,j}: {1351, 15684}, {1992, 3146}, {11179, 43621}
X(51024) = reflection of X(i) in X(j) for these {i,j}: {20, 597}, {376, 5480}, {381, 48901}, {599, 4}, {1350, 381}, {1352, 15687}, {2930, 10706}, {3242, 31162}, {3416, 34648}, {3534, 5476}, {10488, 10753}, {10606, 23049}, {11178, 48895}, {11179, 21850}, {15162, 10720}, {15163, 10719}, {15533, 47353}, {15681, 182}, {15683, 44882}, {15684, 48904}, {15686, 18583}, {17845, 31166}, {19905, 22515}, {32113, 47310}, {33878, 11178}, {34628, 1386}, {34632, 49524}, {36990, 3543}, {37751, 10717}, {40341, 11180}, {43273, 20423}, {47353, 3830}, {48872, 376}, {48873, 549}, {48874, 547}, {48876, 14893}, {48880, 10168}, {48905, 11179}, {48920, 46267}
X(51024) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 5480, 47352}, {381, 1350, 21358}, {3534, 5476, 5085}, {10168, 48880, 15688}, {11178, 48895, 14269}, {14269, 33878, 11178}, {20423, 43273, 6}, {21850, 43621, 48905}, {21850, 48905, 6}, {31670, 43621, 21850}, {31670, 48910, 6}, {42154, 42155, 7737}, {42263, 42264, 43618}, {47352, 48872, 376}, {48905, 48910, 43621}


X(51025) = X(30)X(3631)∩X(524)X(3543)

Barycentrics    38*a^6 - 5*a^4*b^2 - 8*a^2*b^4 - 25*b^6 - 5*a^4*c^2 + 24*a^2*b^2*c^2 + 25*b^4*c^2 - 8*a^2*c^4 + 25*b^2*c^4 - 25*c^6 : :
X(51025) = 4 X[3] - 5 X[20582], 3 X[3] - 5 X[47354], 3 X[20582] - 4 X[47354], 13 X[3631] - 16 X[43150], 11 X[3543] + 5 X[5921], X[3543] - 5 X[36990], X[5921] + 11 X[36990], 5 X[597] - 7 X[3832], 5 X[599] - X[5059], 5 X[1351] - 13 X[35402], 7 X[3845] - 5 X[5476], 19 X[3845] - 15 X[38136], 5 X[3845] - 3 X[39561], 19 X[5476] - 21 X[38136], 25 X[5476] - 21 X[39561], 25 X[38136] - 19 X[39561], 6 X[3545] - 5 X[3589], 9 X[3545] - 5 X[43273], 3 X[3589] - 2 X[43273], X[3629] - 3 X[50687], 5 X[3818] - 3 X[11539], 3 X[3839] - 2 X[6329], 5 X[5092] - 6 X[41985], 6 X[5102] - 5 X[41149], 15 X[10516] - 11 X[15719], 15 X[10519] - 7 X[11001], 3 X[10519] - 7 X[47353], X[11001] - 5 X[47353], X[15686] - 5 X[39884], 7 X[15686] - 5 X[48896], 7 X[39884] - X[48896], 7 X[15702] - 5 X[44882], 9 X[15708] - 10 X[34573], 4 X[16239] - 5 X[25561], 5 X[18358] - 3 X[41982], 4 X[20423] - 3 X[32455], 5 X[20423] - 9 X[38335], 7 X[20423] - 3 X[39899], 5 X[32455] - 12 X[38335], 7 X[32455] - 4 X[39899], 21 X[38335] - 5 X[39899], 11 X[35401] + 5 X[48662]

X(51025) lies on these lines: {3, 20582}, {4, 20583}, {6, 42539}, {30, 3631}, {518, 50868}, {524, 3543}, {542, 3853}, {547, 11645}, {597, 3832}, {599, 5059}, {1351, 35402}, {1503, 3845}, {3545, 3589}, {3629, 50687}, {3818, 11539}, {3839, 6329}, {5092, 41985}, {5102, 41149}, {9053, 50871}, {10516, 15719}, {10519, 11001}, {12007, 14893}, {15686, 39884}, {15690, 29012}, {15702, 44882}, {15708, 34573}, {16239, 25561}, {18358, 41982}, {20423, 32455}, {35401, 48662}, {44323, 46847}

X(51025) = reflection of X(i) in X(j) for these {i,j}: {12007, 14893}, {20583, 4}, {44323, 46847}


X(51026) = X(30)X(3589)∩X(524)X(3543)

Barycentrics    26*a^6 + 25*a^4*b^2 - 32*a^2*b^4 - 19*b^6 + 25*a^4*c^2 + 24*a^2*b^2*c^2 + 19*b^4*c^2 - 32*a^2*c^4 + 19*b^2*c^4 - 19*c^6 : :
X(51026) = 19 X[3589] - 16 X[5092], 17 X[3589] - 16 X[10168], 13 X[3589] - 16 X[19130], 31 X[3589] - 16 X[48891], 25 X[3589] - 16 X[48892], 7 X[3589] - 16 X[48895], 5 X[3589] + 16 X[48943], 17 X[5092] - 19 X[10168], 13 X[5092] - 19 X[19130], 31 X[5092] - 19 X[48891], 25 X[5092] - 19 X[48892], 7 X[5092] - 19 X[48895], 5 X[5092] + 19 X[48943], 13 X[10168] - 17 X[19130], 31 X[10168] - 17 X[48891], 25 X[10168] - 17 X[48892], 7 X[10168] - 17 X[48895], 5 X[10168] + 17 X[48943], 31 X[19130] - 13 X[48891], 25 X[19130] - 13 X[48892], 7 X[19130] - 13 X[48895], 5 X[19130] + 13 X[48943], 25 X[48891] - 31 X[48892], 7 X[48891] - 31 X[48895], 5 X[48891] + 31 X[48943], 7 X[48892] - 25 X[48895], X[48892] + 5 X[48943], 5 X[48895] + 7 X[48943], X[141] - 3 X[50687], 5 X[382] + X[8550], 19 X[382] + 5 X[11482], 3 X[382] + X[20423], 4 X[382] + X[20583], 19 X[8550] - 25 X[11482], 3 X[8550] - 5 X[20423], 4 X[8550] - 5 X[20583], 15 X[11482] - 19 X[20423], 20 X[11482] - 19 X[20583], 4 X[20423] - 3 X[20583], 17 X[3543] - X[5921], 5 X[3543] - X[36990], 5 X[5921] - 17 X[36990], X[599] - 5 X[17578], X[1352] - 5 X[35434], 8 X[33699] + X[41149], X[1992] + 7 X[50690], 7 X[3627] - X[34507], X[3631] + 2 X[48910], 3 X[3830] - X[47354], 3 X[3839] - 2 X[34573], 3 X[14269] - X[48881], 3 X[14853] + 5 X[15682], 9 X[14853] - 5 X[43273], 3 X[15682] + X[43273], X[15683] - 3 X[48310], 5 X[15687] - X[48874], X[48874] + 5 X[48904], 3 X[15699] - X[48879], 3 X[21167] - 5 X[41099], 3 X[23046] - X[48880], 3 X[25406] - 4 X[41153], 5 X[32455] - 2 X[39874], X[33703] + 3 X[38072], 5 X[35403] - X[48873], 3 X[38064] + X[49136], 3 X[38335] + X[43621]

X(51026) lies on these lines: {4, 20582}, {30, 3589}, {141, 50687}, {382, 8550}, {518, 50869}, {524, 3543}, {597, 3146}, {599, 17578}, {1352, 35434}, {1503, 33699}, {1992, 50690}, {3627, 34507}, {3631, 48910}, {3830, 29181}, {3839, 34573}, {5480, 15684}, {5846, 50862}, {5847, 50870}, {9053, 50865}, {10124, 48920}, {11737, 48885}, {12101, 29317}, {12102, 25561}, {12103, 25565}, {14269, 48881}, {14853, 15682}, {15683, 48310}, {15687, 48874}, {15699, 48879}, {21167, 41099}, {23046, 48880}, {25406, 41153}, {32218, 47310}, {32455, 39874}, {33703, 38072}, {34603, 35266}, {35403, 48873}, {35404, 48901}, {38064, 49136}, {38335, 43621}

X(51026) = midpoint of X(i) and X(j) for these {i,j}: {597, 3146}, {5480, 15684}, {15687, 48904}, {35404, 48901}
X(51026) = reflection of X(i) in X(j) for these {i,j}: {12103, 25565}, {20582, 4}, {25561, 12102}, {32218, 47310}, {48885, 11737}, {48920, 10124}


X(51027) = X(30)X(40341)∩X(524)X(3543)

Barycentrics    17*a^6 - 20*a^4*b^2 + 13*a^2*b^4 - 10*b^6 - 20*a^4*c^2 + 6*a^2*b^2*c^2 + 10*b^4*c^2 + 13*a^2*c^4 + 10*b^2*c^4 - 10*c^6 : :
X(51027) = 4 X[3] - 5 X[599], 2 X[3] - 5 X[15069], 7 X[3] - 10 X[34507], 17 X[3] - 20 X[40107], 6 X[3] - 5 X[43273], 7 X[599] - 8 X[34507], 17 X[599] - 16 X[40107], 3 X[599] - 2 X[43273], 7 X[15069] - 4 X[34507], 17 X[15069] - 8 X[40107], 3 X[15069] - X[43273], X[25335] - 4 X[32272], 17 X[34507] - 14 X[40107], 12 X[34507] - 7 X[43273], 24 X[40107] - 17 X[43273], 5 X[6] - 6 X[3545], 3 X[6] - 4 X[47354], 3 X[3545] - 5 X[11180], 9 X[3545] - 10 X[47354], 3 X[11180] - 2 X[47354], 10 X[141] - 9 X[15708], 10 X[182] - 11 X[15723], 5 X[381] - 4 X[5097], X[3543] - 5 X[5921], 4 X[3543] - 5 X[36990], 4 X[5921] - X[36990], 4 X[547] - 5 X[1352], 16 X[547] - 15 X[47352], 4 X[1352] - 3 X[47352], 10 X[597] - 11 X[5056], 5 X[1350] - 4 X[15686], 2 X[11001] - 5 X[15533], 5 X[1992] - 7 X[3832], 5 X[3091] - 4 X[20583], 4 X[3845] - 3 X[5102], 8 X[3845] - 5 X[15534], 6 X[3845] - 5 X[20423], 4 X[3845] - 5 X[47353], 6 X[5102] - 5 X[15534], 9 X[5102] - 10 X[20423], 3 X[5102] - 5 X[47353], 3 X[15534] - 4 X[20423], 2 X[20423] - 3 X[47353], 2 X[3629] - 3 X[3839], 4 X[3631] - 3 X[10304], 4 X[3654] - 5 X[50782], and many others

X(51027) lies on these lines: {3, 67}, {6, 3545}, {30, 40341}, {69, 41467}, {141, 15708}, {147, 7610}, {182, 15723}, {381, 5097}, {518, 50871}, {524, 3543}, {547, 1352}, {597, 5056}, {1350, 13666}, {1503, 11001}, {1853, 13857}, {1992, 3832}, {3091, 20583}, {3564, 3845}, {3629, 3839}, {3631, 10304}, {3654, 50782}, {3763, 11179}, {3830, 5965}, {3850, 38072}, {3853, 11477}, {5054, 43150}, {5059, 11160}, {5067, 8550}, {5071, 12007}, {5085, 11812}, {5655, 25331}, {6054, 37637}, {6144, 18440}, {6776, 15702}, {7778, 11177}, {9143, 37638}, {10516, 39561}, {10541, 20582}, {10706, 16176}, {11008, 50687}, {11178, 39899}, {11531, 28538}, {11645, 11898}, {12243, 44518}, {14848, 18553}, {15303, 38792}, {16239, 38064}, {18800, 38746}, {19924, 35400}, {22165, 31884}, {34379, 50868}, {35401, 48901}, {38155, 47359}, {41983, 48906}

X(51027) = reflection of X(i) in X(j) for these {i,j}: {6, 11180}, {599, 15069}, {15534, 47353}, {16176, 10706}, {39899, 11178}
X(51027) = {X(5102),X(47353)}-harmonic conjugate of X(3845)


X(51028) = X(30)X(193)∩X(524)X(3543)

Barycentrics    a^6 - 25*a^4*b^2 + 23*a^2*b^4 + b^6 - 25*a^4*c^2 - 6*a^2*b^2*c^2 - b^4*c^2 + 23*a^2*c^4 - b^2*c^4 + c^6 : :
X(51028) = 7 X[2] - 8 X[5476], 7 X[2] - 6 X[10519], 11 X[2] - 12 X[14561], 5 X[2] - 6 X[14853], 3 X[2] - 4 X[20423], 23 X[2] - 24 X[38317], 4 X[5476] - 3 X[10519], 22 X[5476] - 21 X[14561], 20 X[5476] - 21 X[14853], 6 X[5476] - 7 X[20423], 23 X[5476] - 21 X[38317], 11 X[10519] - 14 X[14561], 5 X[10519] - 7 X[14853], 9 X[10519] - 14 X[20423], 23 X[10519] - 28 X[38317], 10 X[14561] - 11 X[14853], 9 X[14561] - 11 X[20423], 23 X[14561] - 22 X[38317], 9 X[14853] - 10 X[20423], 23 X[14853] - 20 X[38317], 23 X[20423] - 18 X[38317], 4 X[6] - 3 X[10304], 5 X[20] - 8 X[8550], X[20] - 4 X[11477], 3 X[20] - 4 X[43273], 5 X[1992] - 4 X[8550], 3 X[1992] - 2 X[43273], 2 X[8550] - 5 X[11477], 6 X[8550] - 5 X[43273], 3 X[11477] - X[43273], 5 X[193] - 2 X[39874], 7 X[193] - 4 X[39899], X[193] - 4 X[44456], 7 X[39874] - 10 X[39899], X[39874] - 10 X[44456], X[39899] - 7 X[44456], 2 X[69] - 3 X[3839], 3 X[69] - 4 X[47354], 9 X[3839] - 8 X[47354], 2 X[376] - 3 X[5032], 5 X[376] - 4 X[48874], 4 X[1351] - 3 X[5032], 5 X[1351] - 2 X[48874], 15 X[5032] - 8 X[48874], 5 X[3543] - 4 X[36990], 5 X[5921] - 8 X[36990], and many others

X(51028) lies on these lines: {2, 51}, {4, 11160}, {6, 10304}, {20, 1992}, {30, 193}, {69, 3839}, {376, 1351}, {518, 50872}, {524, 3543}, {542, 3146}, {575, 21734}, {576, 3522}, {597, 3523}, {599, 3091}, {631, 14848}, {1350, 15692}, {1353, 15681}, {1503, 15640}, {2104, 15159}, {2105, 15158}, {3098, 15705}, {3524, 33878}, {3525, 38079}, {3528, 11482}, {3534, 14912}, {3545, 3620}, {3546, 13421}, {3564, 15682}, {3618, 15708}, {3751, 34632}, {3830, 34380}, {3854, 25561}, {4232, 40112}, {5050, 19708}, {5056, 38072}, {5071, 48876}, {5093, 8703}, {5102, 33748}, {5304, 11173}, {5480, 21356}, {5648, 32605}, {5847, 50864}, {6243, 20126}, {6392, 12243}, {6776, 15683}, {7486, 20582}, {8369, 40268}, {8584, 15697}, {8591, 10753}, {9143, 10752}, {9543, 44656}, {9974, 43512}, {9975, 43511}, {10754, 11177}, {10765, 37749}, {11008, 48910}, {11054, 46034}, {11179, 37517}, {11180, 20080}, {11898, 15687}, {12017, 15710}, {12250, 34788}, {13482, 19131}, {15022, 40107}, {15069, 50688}, {15520, 33750}, {15534, 29181}, {15702, 18583}, {15717, 38064}, {15719, 38110}, {15721, 47352}, {15741, 38323}, {18906, 32869}, {19783, 48936}, {30308, 50787}, {30769, 44569}, {31099, 44555}, {33586, 35266}, {34379, 50865}, {34507, 50689}, {35404, 48662}, {37907, 47571}

X(51028) = reflection of X(i) in X(j) for these {i,j}: {20, 1992}, {376, 1351}, {1992, 11477}, {5921, 3543}, {8591, 10753}, {9143, 10752}, {11160, 4}, {11177, 10754}, {11179, 37517}, {11180, 31670}, {11898, 15687}, {15158, 2105}, {15159, 2104}, {15681, 1353}, {15683, 6776}, {20080, 11180}, {34632, 3751}, {37749, 10765}, {48662, 35404}
X(51028) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 1351, 5032}, {5476, 10519, 2}, {11180, 31670, 50687}, {20080, 50687, 11180}


X(51029) = X(30)X(3618)∩X(524)X(3543)

Barycentrics    31*a^6 + 35*a^4*b^2 - 43*a^2*b^4 - 23*b^6 + 35*a^4*c^2 + 30*a^2*b^2*c^2 + 23*b^4*c^2 - 43*a^2*c^4 + 23*b^2*c^4 - 23*c^6 : :
X(51029) = 13 X[4] - 8 X[25561], 23 X[3618] - 20 X[12017], X[376] + 4 X[48904], 4 X[382] + X[1992], 11 X[3543] - X[5921], 7 X[3543] - 2 X[36990], 7 X[5921] - 22 X[36990], 4 X[597] + X[49135], 2 X[599] - 7 X[50688], 3 X[3146] + 2 X[43273], 3 X[3524] - 8 X[48895], 3 X[3545] + 2 X[43621], 7 X[3619] - 12 X[14269], 3 X[3620] - 4 X[47354], X[3620] + 2 X[48910], X[3620] - 3 X[50687], 2 X[47354] + 3 X[48910], 4 X[47354] - 9 X[50687], 2 X[48910] + 3 X[50687], 2 X[3763] - 3 X[3839], X[5059] - 6 X[38072], X[6776] + 4 X[35404], 3 X[10519] - 8 X[12101], X[11179] + 4 X[48943], 23 X[14912] - 28 X[15520], 3 X[14912] + 7 X[15682], 9 X[14912] - 14 X[20423], 12 X[15520] + 23 X[15682], 18 X[15520] - 23 X[20423], 3 X[15682] + 2 X[20423], X[14927] + 4 X[15684], 2 X[15640] + 3 X[25406], 8 X[15687] - 3 X[21356], 9 X[15710] - 4 X[48879], 4 X[18583] + X[35400], 8 X[19130] - 3 X[46333], 11 X[21735] - 16 X[25565], 6 X[38064] - X[49138], 6 X[38079] - X[49137]

X(51029) lies on these lines: {4, 25561}, {30, 3618}, {376, 48904}, {382, 1992}, {518, 50873}, {524, 3543}, {597, 49135}, {599, 50688}, {3146, 43273}, {3524, 48895}, {3545, 43621}, {3619, 14269}, {3620, 47354}, {3763, 3839}, {5059, 38072}, {5846, 50863}, {5847, 50866}, {6776, 35404}, {10519, 12101}, {11179, 48943}, {12156, 14912}, {14927, 15684}, {15640, 25406}, {15687, 21356}, {15710, 48879}, {18583, 35400}, {19130, 46333}, {21735, 25565}, {29317, 41099}, {35403, 40330}, {38064, 49138}, {38079, 49137}

X(51029) = reflection of X(40330) in X(35403)


X(51030) = X(5)X(6509)∩X(216)X(417)

Barycentrics    a^2*(-a^2+b^2+c^2)*(b^12-5*(c^2+a^2)*b^10+(10*a^4+9*c^2*a^2+10*c^4)*b^8-2*(c^2+a^2)*(5*c^4-3*c^2*a^2+5*a^4)*b^6+5*(c^4-a^4)^2*b^4-(c^8-a^8)*b^2*(c^2-a^2)-(c^2-a^2)^4*c^2*a^2)*(c^12-5*(a^2+b^2)*c^10+(10*a^4+9*a^2*b^2+10*b^4)*c^8-2*(a^2+b^2)*(5*a^4-3*a^2*b^2+5*b^4)*c^6+5*(a^4-b^4)^2*c^4-(a^8-b^8)*c^2*(a^2-b^2)-(a^2-b^2)^4*a^2*b^2) : :
Barycentrics    (S^2-SB*SC)*(3*S^2+SB^2-2*SA*SC+4*R^2*(8*R^2-SB-2*SW))*(3*S^2+SC^2-2*SA*SB+4*R^2*(8*R^2-SC-2*SW)) : :

See Kadir Altintas and César Lozada, euclid 5272.

X(51030) lies on these lines: {5, 6509}, {216, 417}, {5907, 44715}

X(51030) = isogonal conjugate of X(51031)


X(51031) = ISOGONAL CONJUGATE OF X(51030)

Barycentrics    (a^12-5*(b^2+c^2)*a^10+(10*b^4+9*b^2*c^2+10*c^4)*a^8-2*(b^2+c^2)*(5*b^4-3*b^2*c^2+5*c^4)*a^6+5*(b^4-c^4)^2*a^4-(b^2-c^2)^4*b^2*c^2-(b^8-c^8)*(b^2-c^2)*a^2)*(a^2-b^2+c^2)*(a^2+b^2-c^2) : :

See Kadir Altintas and César Lozada, euclid 5272.

X(51031) lies on these lines: {4, 54}, {6, 14249}, {20, 26880}, {107, 389}, {133, 40240}, {185, 436}, {264, 11441}, {324, 43605}, {399, 14978}, {450, 9729}, {801, 35602}, {933, 43917}, {1093, 7592}, {1105, 34148}, {1181, 2052}, {1304, 14894}, {1597, 45062}, {1885, 10152}, {1941, 34986}, {3087, 33871}, {3091, 36794}, {3542, 43462}, {6616, 40065}, {9786, 37070}, {11426, 41372}, {12162, 37127}, {12241, 34170}, {13382, 40664}, {13450, 15032}, {14152, 40448}, {14627, 34334}, {15760, 43995}, {16080, 26879}, {19347, 41365}

X(51031) = isogonal conjugate of X(51030)
X(51031) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (4, 1614, 8884), (4, 1629, 19169), (4, 6759, 1629)


X(51032) = X(15619)X(43831)∩X(18403)X(40449)

Barycentrics    (3*b^8-7*(c^2+a^2)*b^6+3*(c^4+3*c^2*a^2+a^4)*b^4+(c^2+a^2)*(3*c^4-4*c^2*a^2+3*a^4)*b^2-(c^2-a^2)^2*(c^2+2*a^2)*(2*c^2+a^2))*(3*c^8-7*(a^2+b^2)*c^6+3*(a^4+3*a^2*b^2+b^4)*c^4+(a^2+b^2)*(3*a^4-4*a^2*b^2+3*b^4)*c^2-(a^2-b^2)^2*(a^2+2*b^2)*(2*a^2+b^2)) : :
Barycentrics    (3*S^4+(8*SA*SB-2*SA*SC+SB^2)*S^2-8*(SB+SC)*SA^2*SB)*(3*S^4-(2*SA*SB-8*SA*SC-SC^2)*S^2-8*(SB+SC)*SA^2*SC) : :

See Kadir Altintas and César Lozada, euclid 5272.

X(51032) lies on these lines: {15619, 43831}, {18403, 40449}, {31867, 43917}

X(51032) = isogonal conjugate of X(51033)
X(51032) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(38436)}} and {{A, B, C, X(4), X(5)}}


X(51033) = ISOGONAL CONJUGATE OF X(51032)

Barycentrics    a^2*(2*a^8-(3*b^2-c^2)*a^6-(3*b^4-b^2*c^2+6*c^4)*a^4+(b^2-c^2)*(7*b^4-2*b^2*c^2-c^4)*a^2-(3*b^2+2*c^2)*(b^2-c^2)^3)*(2*a^8+(b^2-3*c^2)*a^6-(6*b^4-b^2*c^2+3*c^4)*a^4+(b^2-c^2)*(b^4+2*b^2*c^2-7*c^4)*a^2+(2*b^2+3*c^2)*(b^2-c^2)^3)*(3*a^8-7*(b^2+c^2)*a^6+3*(b^4+3*b^2*c^2+c^4)*a^4+(b^2+c^2)*(3*b^4-4*b^2*c^2+3*c^4)*a^2-(b^2-c^2)^2*(b^2+2*c^2)*(2*b^2+c^2))^2 : :

See Kadir Altintas and César Lozada, euclid 5272.

X(51033) lies on these lines: {2, 12278}, {3, 54}, {4, 39242}, {6, 38438}, {20, 6030}, {110, 5907}, {140, 265}, {154, 11439}, {184, 11440}, {186, 5462}, {389, 38448}, {427, 41482}, {549, 45970}, {567, 15331}, {569, 15053}, {578, 10298}, {631, 5449}, {1147, 3431}, {1181, 11454}, {1199, 32110}, {1204, 11003}, {1209, 12383}, {1511, 34864}, {1593, 26881}, {1614, 15062}, {1620, 38441}, {1656, 18379}, {1657, 34513}, {1658, 15033}, {3060, 11425}, {3091, 11202}, {3448, 10619}, {3515, 5640}, {3516, 6800}, {3520, 10575}, {3523, 18911}, {3567, 18324}, {5059, 35268}, {5422, 15750}, {5663, 18364}, {5876, 9705}, {5888, 7509}, {5892, 46865}, {5944, 14130}, {6146, 9140}, {6644, 11465}, {7488, 11430}, {7503, 11449}, {7526, 11464}, {7527, 10282}, {7542, 50435}, {7550, 15020}, {7575, 38848}, {7722, 15055}, {7998, 35602}, {9706, 13754}, {9707, 15305}, {9729, 37941}, {9730, 17506}, {9786, 38446}, {10024, 10733}, {10095, 37922}, {10110, 37940}, {10114, 38727}, {10125, 43821}, {10212, 38728}, {10263, 13482}, {10540, 43613}, {10546, 11479}, {10821, 12235}, {11413, 15080}, {11444, 47391}, {11591, 43572}, {12006, 37955}, {12038, 35921}, {12100, 32165}, {12111, 19357}, {12429, 38397}, {13142, 15360}, {13339, 15036}, {13353, 15646}, {13564, 43576}, {14128, 32609}, {14449, 37472}, {14805, 37814}, {14915, 35478}, {15023, 20190}, {15043, 32534}, {15072, 35477}, {15078, 37476}, {15463, 40441}, {16659, 44218}, {17845, 31236}, {18580, 23294}, {19467, 23293}, {19481, 48375}, {20191, 43808}, {21649, 40632}, {32171, 43598}, {32210, 43806}, {35265, 44870}, {35472, 36752}, {35482, 44407}, {35500, 43614}, {37471, 43615}, {41462, 43652}, {43816, 44673}, {44082, 50689}

X(51033) = isogonal conjugate of X(51032)
X(51033) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (3, 5012, 43601), (3, 34148, 7691), (3, 43394, 43574), (569, 21844, 15053), (1614, 18570, 15062), (3516, 6800, 12279), (5944, 14130, 14157), (7691, 34148, 23061), (11425, 38444, 3060), (13353, 15646, 43597), (13367, 14118, 110), (14805, 37814, 43651), (32534, 37506, 15043), (37814, 43651, 43584)






preaamble pending


X(51034) = X(75)X(4723)∩X(536)X(984)

Barycentrics    a^2*b - 5*a*b^2 + a^2*c - 6*a*b*c - 2*b^2*c - 5*a*c^2 - 2*b*c^2 : :
X(51034) = 2 X[8] + X[49462], 4 X[10] - X[49483], 5 X[10] + X[49508], 2 X[10] + X[49515], 5 X[4688] + 2 X[49508], 5 X[49483] + 4 X[49508], X[49483] + 2 X[49515], 2 X[49508] - 5 X[49515], X[37] + 2 X[49457], 5 X[37] - 2 X[49471], 4 X[37] - X[49475], 3 X[37] - 2 X[50111], 3 X[37] - X[50778], 3 X[16590] - 2 X[50297], 5 X[49457] + X[49471], 8 X[49457] + X[49475], 3 X[49457] + X[50111], 6 X[49457] + X[50778], 8 X[49471] - 5 X[49475], X[49471] - 5 X[50094], 3 X[49471] - 5 X[50111], 6 X[49471] - 5 X[50778], X[49475] - 8 X[50094], 3 X[49475] - 8 X[50111], 3 X[49475] - 4 X[50778], 3 X[50094] - X[50111], 6 X[50094] - X[50778], 2 X[75] + X[49513], 2 X[984] + X[3696], 7 X[984] - X[49445], 5 X[984] + X[49474], 4 X[984] - X[49523], 3 X[984] + X[50086], 7 X[3679] + X[49445], 5 X[3679] - X[49474], 4 X[3679] + X[49523], 3 X[3679] - X[50086], 7 X[3696] + 2 X[49445], 5 X[3696] - 2 X[49474], 2 X[3696] + X[49523], 3 X[3696] - 2 X[50086], 5 X[49445] + 7 X[49474], 4 X[49445] - 7 X[49523], 3 X[49445] + 7 X[50086], 4 X[49474] + 5 X[49523], 3 X[49474] - 5 X[50086], 3 X[49523] + 4 X[50086], 4 X[3842] - X[49478], 2 X[3842] + X[49510], X[49478] + 2 X[49510], 2 X[1125] + X[49449], 5 X[1698] + X[49503], 2 X[15569] + X[49450], 5 X[3617] - X[4740], 5 X[3617] + X[49447], 2 X[3626] + X[49456], 4 X[3626] - X[49468], 2 X[49456] + X[49468], 4 X[3634] - X[49491], 2 X[3739] - 3 X[19875], 2 X[3739] + X[49448], 3 X[19875] - X[31178], 3 X[19875] + X[49448], 5 X[4668] + X[49452], 2 X[4681] + X[49459], X[4686] - 4 X[4732], X[4686] - 6 X[38098], X[4686] + 2 X[49520], 2 X[4732] - 3 X[38098], 2 X[4732] + X[49520], 3 X[38098] + X[49520], 5 X[4687] - 3 X[38314], 8 X[4691] + X[49522], 4 X[4698] - 3 X[25055], 4 X[4698] - X[49490], 3 X[25055] - X[49490], 5 X[4699] + X[49501], 2 X[4709] + X[4718], 2 X[4726] + X[49517], 4 X[4739] - X[49532], 7 X[9780] - X[49499], 7 X[19876] - 5 X[40328], 3 X[19883] + X[49504], 5 X[31238] - 2 X[49479]

X(51034) lies on these lines: {1, 4755}, {2, 210}, {6, 48854}, {8, 4664}, {9, 48805}, {10, 537}, {37, 519}, {44, 36480}, {45, 4702}, {75, 4723}, {391, 49681}, {524, 50291}, {527, 49725}, {528, 50093}, {536, 984}, {551, 3842}, {726, 4745}, {740, 4669}, {756, 31136}, {966, 48849}, {1100, 50283}, {1125, 49449}, {1213, 48853}, {1698, 49503}, {1738, 49741}, {3175, 42041}, {3241, 15569}, {3246, 17335}, {3247, 49680}, {3617, 4740}, {3626, 49456}, {3634, 49491}, {3723, 49497}, {3731, 49460}, {3739, 19875}, {3741, 42056}, {3828, 24325}, {3932, 29594}, {3967, 31330}, {3993, 34641}, {4026, 24393}, {4113, 28606}, {4357, 48821}, {4364, 49772}, {4428, 20967}, {4533, 19863}, {4663, 16830}, {4668, 49452}, {4670, 36531}, {4677, 28581}, {4681, 49459}, {4686, 4732}, {4687, 38314}, {4690, 32847}, {4691, 49522}, {4698, 25055}, {4699, 49501}, {4708, 29659}, {4709, 4718}, {4715, 25384}, {4726, 49517}, {4739, 49532}, {4753, 16666}, {4966, 29600}, {5220, 50127}, {5247, 50064}, {5263, 15481}, {5302, 13735}, {5838, 47357}, {5846, 50779}, {5904, 19871}, {6687, 29660}, {7174, 16833}, {9041, 49731}, {9780, 49499}, {10707, 27776}, {12329, 19322}, {15492, 49482}, {15624, 16370}, {16394, 41229}, {16496, 17259}, {16814, 32941}, {16815, 24841}, {17239, 33165}, {17245, 49505}, {17260, 42819}, {17261, 49485}, {17277, 49465}, {17281, 48802}, {17310, 31323}, {17333, 28534}, {17346, 28538}, {17395, 50022}, {19323, 22769}, {19870, 24473}, {19876, 40328}, {19883, 49504}, {20430, 34718}, {28333, 50307}, {28503, 50095}, {28580, 49742}, {29054, 50796}, {30273, 34627}, {31145, 49470}, {31161, 31993}, {31238, 49479}, {34747, 49689}, {36479, 49702}, {37654, 47356}, {41310, 50311}, {41311, 50287}, {41312, 50282}, {41313, 50316}, {42039, 42051}, {48809, 50313}, {48851, 49509}, {49692, 50296}, {49697, 50298}, {49721, 50314}

X(51034) = midpoint of X(i) and X(j) for these {i,j}: {2, 50075}, {8, 4664}, {551, 49510}, {984, 3679}, {3241, 49450}, {3993, 34641}, {4669, 50777}, {4688, 49515}, {4740, 49447}, {17333, 49720}, {17346, 50286}, {20430, 34718}, {30273, 34627}, {31145, 49470}, {31178, 49448}, {34747, 49689}, {49457, 50094}
X(51034) = reflection of X(i) in X(j) for these {i,j}: {1, 4755}, {37, 50094}, {551, 3842}, {3241, 15569}, {3696, 3679}, {4688, 10}, {24325, 3828}, {31178, 3739}, {49462, 4664}, {49478, 551}, {49483, 4688}, {50082, 50309}, {50096, 4745}, {50305, 49731}, {50778, 50111}
X(51034) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 4407, 17237}, {10, 49515, 49483}, {37, 50778, 50111}, {984, 3696, 49523}, {3626, 49456, 49468}, {3842, 49510, 49478}, {4732, 49520, 4686}, {17335, 36534, 3246}, {19875, 31178, 3739}, {19875, 49448, 31178}, {36531, 49712, 4670}, {37654, 48856, 47356}


X(51035) = X(75)X(3992)∩X(536)X(984)

Barycentrics    a^2*b + 4*a*b^2 + a^2*c + 3*a*b*c - 2*b^2*c + 4*a*c^2 - 2*b*c^2 : :
X(51035) = X[1] + 2 X[49447], X[1] - 4 X[49456], 7 X[1] - 4 X[49491], 5 X[1] - 2 X[49499], 3 X[1] - 4 X[50111], 7 X[4664] - 2 X[49491], 5 X[4664] - X[49499], 3 X[4664] - 2 X[50111], X[49447] + 2 X[49456], 7 X[49447] + 2 X[49491], 5 X[49447] + X[49499], 3 X[49447] + 2 X[50111], 7 X[49456] - X[49491], 10 X[49456] - X[49499], 3 X[49456] - X[50111], 10 X[49491] - 7 X[49499], 3 X[49491] - 7 X[50111], 3 X[49499] - 10 X[50111], 4 X[37] - 3 X[25055], 2 X[37] + X[49517], 4 X[37] - X[49532], 3 X[25055] - 2 X[31178], 3 X[25055] + 2 X[49517], 3 X[25055] - X[49532], 2 X[49517] + X[49532], 2 X[75] - 3 X[19875], 3 X[19875] - 4 X[50094], X[145] + 2 X[49508], 2 X[192] + X[49448], 4 X[192] - X[49469], 7 X[192] + 2 X[49504], X[192] + 2 X[49520], 2 X[49448] + X[49469], 7 X[49448] - 4 X[49504], X[49448] - 4 X[49520], 7 X[49469] + 8 X[49504], X[49469] + 8 X[49520], X[49504] - 7 X[49520], 5 X[984] - 2 X[3696], 2 X[984] + X[49445], 4 X[984] - X[49474], X[984] + 2 X[49523], 3 X[984] - X[50086], 5 X[3679] - 4 X[3696], X[3679] + 4 X[49523], 3 X[3679] - 2 X[50086], 4 X[3696] + 5 X[49445], 8 X[3696] - 5 X[49474], X[3696] + 5 X[49523], 6 X[3696] - 5 X[50086], 2 X[49445] + X[49474], X[49445] - 4 X[49523], 3 X[49445] + 2 X[50086], X[49474] + 8 X[49523], 3 X[49474] - 4 X[50086], 6 X[49523] + X[50086], 5 X[1698] - 4 X[4688], 5 X[1698] - 2 X[49493], 5 X[1698] + 4 X[49522], X[49493] + 2 X[49522], 2 X[3993] + X[31302], 4 X[3993] - X[49498], 2 X[31302] + X[49498], 7 X[3624] - 8 X[4755], 7 X[3624] - 4 X[49483], X[3632] + 2 X[49452], X[3632] - 4 X[49515], X[49452] + 2 X[49515], X[3633] - 4 X[49462], X[3633] + 2 X[49503], 2 X[49462] + X[49503], X[3644] + 2 X[49457], 8 X[3842] - 7 X[19876], 4 X[4681] - X[49490], 2 X[4681] + X[49513], X[49490] + 2 X[49513], 5 X[4704] - 3 X[38314], 5 X[4704] - 2 X[49479], 3 X[38314] - 2 X[49479], 2 X[4709] + X[4788], 2 X[4718] + X[49459], 4 X[4732] - X[4764], 3 X[16475] - 4 X[50779], 6 X[19883] - 7 X[27268], 5 X[40328] - 2 X[49525], 2 X[49461] + X[49689], 2 X[49471] + X[49501]

X(51035) lies on these lines: {1, 190}, {2, 726}, {10, 4740}, {37, 25055}, {38, 31137}, {75, 3992}, {145, 49508}, {192, 519}, {518, 3899}, {536, 984}, {545, 50301}, {551, 24349}, {740, 4677}, {752, 49748}, {1698, 4688}, {1757, 16834}, {2325, 29660}, {2796, 50286}, {3241, 3993}, {3416, 17225}, {3624, 4755}, {3632, 49452}, {3633, 49462}, {3644, 49457}, {3717, 50091}, {3729, 48854}, {3828, 50117}, {3842, 19876}, {3932, 49741}, {3994, 29827}, {4096, 36634}, {4360, 50283}, {4389, 4439}, {4419, 32847}, {4659, 36531}, {4669, 28522}, {4681, 49490}, {4704, 38314}, {4709, 4788}, {4718, 49459}, {4732, 4764}, {5220, 50120}, {5247, 50072}, {6534, 17157}, {6541, 29577}, {7174, 36554}, {7226, 31136}, {9055, 47359}, {15485, 17261}, {16475, 50779}, {16569, 42056}, {17132, 50291}, {17246, 33165}, {17262, 48805}, {17264, 50285}, {17318, 49712}, {17320, 50313}, {17336, 49472}, {19883, 27268}, {20430, 31162}, {22220, 42040}, {24231, 29600}, {25269, 49482}, {28297, 49725}, {28503, 49742}, {28516, 50096}, {28542, 49720}, {28606, 31161}, {29054, 50865}, {29582, 49676}, {29674, 50092}, {30273, 34628}, {31145, 49510}, {31151, 49747}, {34747, 49470}, {36814, 46795}, {37598, 50078}, {40328, 49525}, {42039, 42044}, {42041, 50106}, {42043, 42054}, {48830, 49528}, {49461, 49689}, {49471, 49501}, {49521, 50101}, {49543, 50834}, {49722, 50299}, {50088, 50309}

X(51035) = midpoint of X(i) and X(j) for these {i,j}: {3241, 31302}, {3679, 49445}, {4664, 49447}, {4688, 49522}, {31178, 49517}
X(51035) = reflection of X(i) in X(j) for these {i,j}: {1, 4664}, {2, 50777}, {75, 50094}, {3241, 3993}, {3679, 984}, {4664, 49456}, {4677, 50075}, {4740, 10}, {24349, 551}, {31145, 49510}, {31162, 20430}, {31178, 37}, {34628, 30273}, {34747, 49470}, {49474, 3679}, {49483, 4755}, {49493, 4688}, {49498, 3241}, {49532, 31178}, {49722, 50299}, {50088, 50309}, {50117, 3828}, {50296, 49742}
X(51035) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 31178, 25055}, {37, 49517, 49532}, {75, 50094, 19875}, {192, 49448, 49469}, {192, 49520, 49448}, {984, 49445, 49474}, {984, 49523, 49445}, {3993, 31302, 49498}, {4681, 49513, 49490}, {4937, 46901, 2}, {17261, 49455, 15485}, {25055, 49532, 31178}, {49447, 49456, 1}, {49452, 49515, 3632}, {49462, 49503, 3633}


X(51036) = X(75)X(4487)∩X(536)X(984)

Barycentrics    5*a^2*b - 7*a*b^2 + 5*a^2*c - 12*a*b*c - 10*b^2*c - 7*a*c^2 - 10*b*c^2 : :
X(51036) = 3 X[10] - X[50111], 3 X[4755] - 2 X[50111], X[3739] - 4 X[4732], X[984] - 5 X[3679], X[984] + 5 X[3696], 17 X[984] - 5 X[49445], 7 X[984] + 5 X[49474], 11 X[984] - 5 X[49523], 3 X[984] + 5 X[50086], 17 X[3679] - X[49445], 7 X[3679] + X[49474], 11 X[3679] - X[49523], 3 X[3679] + X[50086], 17 X[3696] + X[49445], 7 X[3696] - X[49474], 11 X[3696] + X[49523], 3 X[3696] - X[50086], 7 X[49445] + 17 X[49474], 11 X[49445] - 17 X[49523], 3 X[49445] + 17 X[50086], 11 X[49474] + 7 X[49523], 3 X[49474] - 7 X[50086], 3 X[49523] + 11 X[50086], 5 X[3617] - X[4664], 5 X[3617] + X[49468], 5 X[4668] + X[49483], 7 X[4678] + X[4740], 7 X[4678] - X[49515], X[4681] + 2 X[4709], X[4681] - 6 X[38098], X[4709] + 3 X[38098], 3 X[38098] - X[50094], 2 X[4698] - 3 X[19875], 2 X[4698] + X[49459], 3 X[19875] + X[49459], X[4726] + 2 X[49457], 3 X[25055] - X[49475], 5 X[31238] - 3 X[38314], X[34747] - 5 X[40328]

X(51036) lies on these lines: {2, 4891}, {8, 4675}, {10, 4755}, {75, 4487}, {518, 3919}, {519, 3739}, {536, 984}, {537, 3626}, {740, 4745}, {3617, 4664}, {3823, 29594}, {3828, 15569}, {4113, 31161}, {4668, 49483}, {4678, 4740}, {4681, 4709}, {4698, 19875}, {4725, 49725}, {4726, 49457}, {4739, 31178}, {4852, 48854}, {4923, 29600}, {15601, 49484}, {17239, 48821}, {17348, 48805}, {17382, 48802}, {22271, 44663}, {24325, 34641}, {25055, 49475}, {28329, 50291}, {28484, 50777}, {28534, 50309}, {28582, 50075}, {28633, 48853}, {28634, 48849}, {29054, 50827}, {30271, 34627}, {31145, 49478}, {31238, 38314}, {34747, 40328}, {49720, 50082}, {50085, 50286}

X(51036) = midpoint of X(i) and X(j) for these {i,j}: {8, 4688}, {3679, 3696}, {4664, 49468}, {4669, 50096}, {4709, 50094}, {4740, 49515}, {24325, 34641}, {30271, 34627}, {31145, 49478}, {49720, 50082}, {50085, 50286}
X(51036) = reflection of X(i) in X(j) for these {i,j}: {4681, 50094}, {4755, 10}, {15569, 3828}, {31178, 4739}
X(51036) = complement of X(50778)
X(51036) = {X(4709),X(38098)}-harmonic conjugate of X(50094)


X(51037) = X(75)X(4975)∩X(536)X(984)

Barycentrics    5*a^2*b + 2*a*b^2 + 5*a^2*c - 3*a*b*c - 10*b^2*c + 2*a*c^2 - 10*b*c^2 : :
X(51037) = 4 X[75] - 3 X[25055], 3 X[75] - 2 X[50111], 9 X[25055] - 8 X[50111], 2 X[192] - 3 X[19875], 4 X[1278] - X[49532], 4 X[984] - 5 X[3679], 7 X[984] - 10 X[3696], 8 X[984] - 5 X[49445], 2 X[984] - 5 X[49474], 13 X[984] - 10 X[49523], 3 X[984] - 5 X[50086], 7 X[3679] - 8 X[3696], 13 X[3679] - 8 X[49523], 3 X[3679] - 4 X[50086], 16 X[3696] - 7 X[49445], 4 X[3696] - 7 X[49474], 13 X[3696] - 7 X[49523], 6 X[3696] - 7 X[50086], X[49445] - 4 X[49474], 13 X[49445] - 16 X[49523], 3 X[49445] - 8 X[50086], 13 X[49474] - 4 X[49523], 3 X[49474] - 2 X[50086], 6 X[49523] - 13 X[50086], 5 X[1698] - 4 X[4664], 7 X[3624] - 8 X[4688], 7 X[3624] - 4 X[49452], X[3633] - 4 X[49493], 4 X[4686] - X[49469], 3 X[4686] - X[50778], 3 X[31178] - 2 X[50778], 3 X[49469] - 4 X[50778], 16 X[4755] - 17 X[19872], 2 X[4764] + X[49448], 7 X[4772] - 6 X[19883], 5 X[4816] - 8 X[49468], 5 X[4821] - 3 X[38314]

X(51037) lies on these lines: {1, 4740}, {2, 28522}, {75, 4975}, {192, 19875}, {519, 1278}, {536, 984}, {537, 3632}, {726, 4677}, {1698, 4664}, {3241, 50117}, {3624, 4688}, {3633, 49493}, {3644, 50094}, {3751, 17225}, {4365, 31137}, {4686, 31178}, {4716, 49721}, {4755, 19872}, {4764, 28554}, {4772, 19883}, {4816, 49468}, {4821, 38314}, {17160, 50300}, {20049, 49535}, {24349, 34747}, {28309, 50301}, {28516, 50075}, {28542, 50088}, {29674, 50100}, {31302, 34641}, {32857, 50079}, {33149, 50097}, {42038, 50106}

X(51037) = reflection of X(i) in X(j) for these {i,j}: {1, 4740}, {3241, 50117}, {3644, 50094}, {3679, 49474}, {20049, 49535}, {31178, 4686}, {31302, 34641}, {34747, 24349}, {49445, 3679}, {49452, 4688}, {49469, 31178}


X(51038) = X(3)X(4755)∩X(381)X(536)

Barycentrics    a^5*b + 4*a^3*b^3 - 5*a*b^5 + a^5*c + 4*a^4*b*c + 4*a^3*b^2*c - 2*a^2*b^3*c - 5*a*b^4*c - 2*b^5*c + 4*a^3*b*c^2 + 10*a*b^3*c^2 + 4*a^3*c^3 - 2*a^2*b*c^3 + 10*a*b^2*c^3 + 4*b^3*c^3 - 5*a*b*c^4 - 5*a*c^5 - 2*b*c^5 : :
X(51038) = X[75] - 3 X[3545], X[192] + 3 X[3839], 5 X[3091] - X[4740], 3 X[3524] - 5 X[4687], 2 X[3739] - 3 X[5055], 2 X[4681] + 3 X[14269], X[4686] - 6 X[38071], 4 X[4698] - 3 X[5054], 5 X[4704] + 3 X[50687], X[4718] + 6 X[23046], 3 X[5587] - X[50086], 4 X[9955] - X[49483], 3 X[10304] - 7 X[27268], 6 X[15699] - 5 X[31238], 4 X[18357] - X[49468], 2 X[18480] + X[49462], 2 X[18483] + X[49456], 5 X[18492] + X[49452], 2 X[22791] + X[49515], X[31178] - 3 X[38021]

X(51038) lies on these lines: {3, 4755}, {4, 4664}, {5, 4688}, {30, 37}, {75, 3545}, {192, 3839}, {381, 536}, {515, 50111}, {518, 3656}, {537, 946}, {549, 30271}, {726, 44422}, {740, 50796}, {742, 47354}, {952, 50778}, {984, 31162}, {1503, 50779}, {3091, 4740}, {3524, 4687}, {3543, 30273}, {3655, 15569}, {3739, 5055}, {3845, 29010}, {3993, 34648}, {4681, 14269}, {4686, 38071}, {4698, 5054}, {4704, 50687}, {4718, 23046}, {5587, 50086}, {9955, 49483}, {10056, 11997}, {10304, 27268}, {11180, 49496}, {15699, 31238}, {18357, 49468}, {18480, 49462}, {18483, 49456}, {18492, 49452}, {22791, 49515}, {28194, 50094}, {28484, 50799}, {28522, 50803}, {28555, 50807}, {28581, 50798}, {28582, 50806}, {29054, 50777}, {29597, 37474}, {31178, 38021}, {34627, 49470}, {34631, 49450}

X(51038) = midpoint of X(i) and X(j) for these {i,j}: {4, 4664}, {381, 20430}, {984, 31162}, {3543, 30273}, {3993, 34648}, {11180, 49496}, {34627, 49470}, {34631, 49450}
X(51038) = reflection of X(i) in X(j) for these {i,j}: {3, 4755}, {3655, 15569}, {4688, 5}, {30271, 549}


X(51039) = X(3)X(4664)∩X(381)X(536)

Barycentrics    a^5*b - 5*a^3*b^3 + 4*a*b^5 + a^5*c - 5*a^4*b*c - 5*a^3*b^2*c + 7*a^2*b^3*c + 4*a*b^4*c - 2*b^5*c - 5*a^3*b*c^2 - 8*a*b^3*c^2 - 5*a^3*c^3 + 7*a^2*b*c^3 - 8*a*b^2*c^3 + 4*b^3*c^3 + 4*a*b*c^4 + 4*a*c^5 - 2*b*c^5 : :
X(51039) = 4 X[37] - 3 X[5054], 2 X[75] - 3 X[5055], X[1278] - 3 X[3545], 5 X[1656] - 4 X[4688], 3 X[3524] - 5 X[4704], 7 X[3526] - 8 X[4755], 2 X[3644] + 3 X[14269], 3 X[3839] + X[4788], 8 X[4681] - 3 X[15688], 5 X[4699] - 6 X[15699], 4 X[4718] + 3 X[38335], 3 X[5050] - 4 X[50779], 3 X[5790] - 2 X[50086], X[8148] + 2 X[49447], 3 X[10246] - 4 X[50111], 6 X[11539] - 7 X[27268], X[12702] - 4 X[49456], 5 X[14093] - 4 X[30271], 5 X[18493] - 2 X[49493], X[18525] + 2 X[49452], X[18526] - 4 X[49462], 3 X[38066] - 4 X[50094], X[44456] + 2 X[49502]

X(51039) lies on these lines: {3, 4664}, {5, 4740}, {30, 192}, {37, 5054}, {75, 5055}, {381, 536}, {518, 50805}, {537, 1482}, {726, 3656}, {740, 50798}, {984, 34718}, {1278, 3545}, {1352, 17225}, {1656, 4688}, {3524, 4704}, {3526, 4755}, {3644, 14269}, {3654, 50777}, {3655, 3993}, {3830, 29010}, {3839, 4788}, {4451, 48804}, {4681, 15688}, {4699, 15699}, {4718, 38335}, {5050, 50779}, {5790, 50086}, {8148, 49447}, {9055, 20423}, {10246, 50111}, {11539, 27268}, {12702, 49456}, {14093, 30271}, {15681, 30273}, {18493, 49493}, {18525, 49452}, {18526, 49462}, {28484, 50797}, {28516, 50806}, {28522, 50796}, {31162, 49445}, {31302, 34631}, {34748, 49470}, {38066, 50094}, {44456, 49502}

X(51039) = midpoint of X(i) and X(j) for these {i,j}: {31162, 49445}, {31302, 34631}
X(51039) = reflection of X(i) in X(j) for these {i,j}: {3, 4664}, {381, 20430}, {3654, 50777}, {3655, 3993}, {4740, 5}, {15681, 30273}, {34718, 984}, {34748, 49470}


X(51040) = X(3)X(4688)∩X(381)X(536)

Barycentrics    2*a^5*b - a^3*b^3 - a*b^5 + 2*a^5*c - a^4*b*c - a^3*b^2*c + 5*a^2*b^3*c - a*b^4*c - 4*b^5*c - a^3*b*c^2 + 2*a*b^3*c^2 - a^3*c^3 + 5*a^2*b*c^3 + 2*a*b^2*c^3 + 8*b^3*c^3 - a*b*c^4 - a*c^5 - 4*b*c^5 : :
X(51040) = 2 X[37] - 3 X[5055], X[192] - 3 X[3545], X[1278] + 3 X[3839], 5 X[1656] - 4 X[4755], 3 X[3524] - 5 X[4699], X[3644] - 6 X[38071], 4 X[3739] - 3 X[5054], 2 X[3818] + X[49533], 2 X[4686] + 3 X[14269], 5 X[4687] - 6 X[15699], 4 X[4726] + 3 X[38335], 8 X[4739] - 3 X[15688], 7 X[4751] - 6 X[11539], X[4764] + 6 X[23046], 7 X[4772] - 3 X[10304], 5 X[4821] + 3 X[50687], 3 X[5886] - 2 X[50111], X[8148] + 2 X[49468], 4 X[9955] - X[49452], 3 X[10247] - 2 X[50778], 3 X[14561] - 2 X[50779], 4 X[18357] - X[49447], 4 X[18358] - X[49502], 2 X[18480] + X[49493], 5 X[18493] - 2 X[49462], X[18525] + 2 X[49483], 2 X[37705] + X[49499]

X(51040) lies on these lines: {2, 29010}, {3, 4688}, {4, 4740}, {5, 4664}, {30, 75}, {37, 5055}, {192, 3545}, {355, 537}, {381, 536}, {517, 50086}, {518, 50798}, {549, 30273}, {726, 50796}, {740, 3656}, {742, 20423}, {1278, 3839}, {1656, 4755}, {3524, 4699}, {3644, 38071}, {3654, 29054}, {3655, 24325}, {3696, 34718}, {3739, 5054}, {3818, 49533}, {4686, 14269}, {4687, 15699}, {4726, 38335}, {4739, 15688}, {4751, 11539}, {4764, 23046}, {4772, 10304}, {4821, 50687}, {5480, 17225}, {5886, 50111}, {8148, 49468}, {9055, 47354}, {9955, 49452}, {10247, 50778}, {11178, 49509}, {11179, 49481}, {14561, 50779}, {15681, 30271}, {16833, 37510}, {18357, 49447}, {18358, 49502}, {18480, 49493}, {18493, 49462}, {18525, 49483}, {24349, 34627}, {28204, 31178}, {28484, 50806}, {28516, 50799}, {28522, 50802}, {28555, 50800}, {28581, 50805}, {28582, 50797}, {31162, 49474}, {34648, 50117}, {34748, 49478}, {37705, 49499}

X(51040) = midpoint of X(i) and X(j) for these {i,j}: {4, 4740}, {24349, 34627}, {31162, 49474}, {34648, 50117}
X(51040) = reflection of X(i) in X(j) for these {i,j}: {3, 4688}, {3654, 50096}, {3655, 24325}, {4664, 5}, {11179, 49481}, {15681, 30271}, {20430, 381}, {30273, 549}, {34718, 3696}, {34748, 49478}, {49509, 11178}


X(51041) = X(4)X(4688)∩X(381)X(536)

Barycentrics    5*a^5*b + 2*a^3*b^3 - 7*a*b^5 + 5*a^5*c + 2*a^4*b*c + 2*a^3*b^2*c + 8*a^2*b^3*c - 7*a*b^4*c - 10*b^5*c + 2*a^3*b*c^2 + 14*a*b^3*c^2 + 2*a^3*c^3 + 8*a^2*b*c^3 + 14*a*b^2*c^3 + 20*b^3*c^3 - 7*a*b*c^4 - 7*a*c^5 - 10*b*c^5 : :
X(51041) = X[37] - 3 X[3545], X[75] + 3 X[3839], 5 X[381] - X[20430], 3 X[1699] + X[50086], 5 X[3091] - X[4664], 3 X[3524] - 5 X[31238], 3 X[3817] - X[50111], 7 X[3832] + X[4740], X[4681] - 6 X[38071], 2 X[4698] - 3 X[5055], 5 X[4699] + 3 X[50687], X[4726] + 6 X[23046], 2 X[4739] + 3 X[14269], 7 X[4751] - 3 X[10304], 5 X[5071] - X[30273], 3 X[5603] - X[50778], 5 X[18492] + X[49483], X[34628] - 5 X[40328], 3 X[38076] - X[50094]

X(51041) lies on these lines: {4, 4688}, {5, 4755}, {30, 3739}, {37, 3545}, {75, 3839}, {381, 536}, {518, 47354}, {537, 19925}, {726, 50803}, {740, 50802}, {1699, 50086}, {3091, 4664}, {3524, 31238}, {3543, 30271}, {3656, 28581}, {3696, 31162}, {3817, 50111}, {3832, 4740}, {4681, 38071}, {4698, 5055}, {4699, 50687}, {4726, 23046}, {4739, 14269}, {4751, 10304}, {5066, 29010}, {5071, 30273}, {5603, 50778}, {18492, 49483}, {24325, 34648}, {25939, 30976}, {28582, 50799}, {34627, 49478}, {34628, 40328}, {38076, 50094}

X(51041) = midpoint of X(i) and X(j) for these {i,j}: {4, 4688}, {3543, 30271}, {3696, 31162}, {24325, 34648}, {34627, 49478}
X(51041) = reflection of X(4755) in X(5)


X(51042) = X(3)X(4688)∩X(376)X(536)

Barycentrics    11*a^5*b - 10*a^3*b^3 - a*b^5 + 11*a^5*c + 8*a^4*b*c - 10*a^3*b^2*c - 4*a^2*b^3*c - a*b^4*c - 4*b^5*c - 10*a^3*b*c^2 + 2*a*b^3*c^2 - 10*a^3*c^3 - 4*a^2*b*c^3 + 2*a*b^2*c^3 + 8*b^3*c^3 - a*b*c^4 - a*c^5 - 4*b*c^5 : :
X(51042) = X[75] - 3 X[10304], 3 X[165] - X[50086], X[30271] + 2 X[30273], 5 X[3522] - X[4740], 3 X[3524] - 2 X[3739], 3 X[3545] - 4 X[4698], 4 X[3579] - X[49468], 3 X[3839] - 5 X[4687], X[4686] - 6 X[15688], 5 X[4699] - 9 X[15705], X[4718] + 6 X[15689], 4 X[4739] - 9 X[15710], 7 X[4751] - 9 X[15708], 6 X[5054] - 5 X[31238], 2 X[18481] + X[49515], 7 X[27268] - 3 X[50687], 2 X[31730] + X[49462]

X(51042) lies on these lines: {3, 4688}, {4, 4755}, {20, 4664}, {30, 37}, {75, 10304}, {165, 50086}, {376, 536}, {516, 50111}, {517, 50778}, {518, 43273}, {537, 4297}, {726, 50815}, {740, 50808}, {984, 34628}, {3522, 4740}, {3524, 3739}, {3545, 4698}, {3579, 49468}, {3655, 49478}, {3839, 4687}, {3842, 34648}, {3993, 34638}, {4686, 15688}, {4699, 15705}, {4718, 15689}, {4739, 15710}, {4751, 15708}, {5054, 31238}, {8703, 29010}, {15569, 31162}, {15681, 20430}, {18481, 49515}, {27268, 50687}, {28484, 50812}, {28522, 50816}, {28555, 50820}, {28581, 50810}, {28582, 50819}, {29181, 50779}, {31730, 49462}, {34632, 49470}

X(51042) = midpoint of X(i) and X(j) for these {i,j}: {20, 4664}, {376, 30273}, {984, 34628}, {3993, 34638}, {15681, 20430}, {34632, 49470}
X(51042) = reflection of X(i) in X(j) for these {i,j}: {4, 4755}, {4688, 3}, {30271, 376}, {31162, 15569}, {34648, 3842}, {49478, 3655}


X(51043) = X(4)X(4664)∩X(376)X(536)

Barycentrics    7*a^5*b - 8*a^3*b^3 + a*b^5 + 7*a^5*c + a^4*b*c - 8*a^3*b^2*c + 4*a^2*b^3*c + a*b^4*c - 5*b^5*c - 8*a^3*b*c^2 - 2*a*b^3*c^2 - 8*a^3*c^3 + 4*a^2*b*c^3 - 2*a*b^2*c^3 + 10*b^3*c^3 + a*b*c^4 + a*c^5 - 5*b*c^5 : :
X(51043) = 4 X[37] - 3 X[3545], 2 X[75] - 3 X[3524], 5 X[376] - 4 X[30271], 2 X[30271] - 5 X[30273], 5 X[631] - 4 X[4688], X[1278] - 3 X[10304], 7 X[3090] - 8 X[4755], 8 X[3739] - 9 X[15709], 3 X[3839] - 5 X[4704], 4 X[4686] - 9 X[15710], 5 X[4699] - 6 X[5054], 4 X[4718] + 3 X[46333], 7 X[4772] - 9 X[15708], 5 X[4821] - 9 X[15705], 6 X[5055] - 7 X[27268], 3 X[5603] - 4 X[50111], 3 X[5657] - 2 X[50086], X[6361] + 2 X[49452], 3 X[14853] - 4 X[50779], 3 X[38074] - 4 X[50094], X[39874] + 2 X[49502]

X(51043) lies on these lines: {2, 29010}, {3, 4740}, {4, 4664}, {30, 192}, {37, 3545}, {75, 3524}, {376, 536}, {518, 50818}, {537, 944}, {631, 4688}, {726, 50811}, {740, 50810}, {984, 34627}, {1278, 10304}, {1350, 17225}, {3090, 4755}, {3543, 20430}, {3655, 24349}, {3739, 15709}, {3839, 4704}, {3993, 31162}, {4451, 48798}, {4686, 15710}, {4699, 5054}, {4718, 46333}, {4772, 15708}, {4821, 15705}, {5055, 27268}, {5603, 50111}, {5657, 50086}, {6361, 49452}, {9055, 43273}, {11180, 49509}, {14853, 50779}, {28484, 50809}, {28516, 50819}, {28522, 50808}, {34628, 49445}, {34631, 49470}, {38074, 50094}, {39874, 49502}

X(51043) = midpoint of X(34628) and X(49445)
X(51043) = reflection of X(i) in X(j) for these {i,j}: {4, 4664}, {376, 30273}, {3543, 20430}, {4740, 3}, {11180, 49509}, {24349, 3655}, {31162, 3993}, {34627, 984}, {34631, 49470}


X(51044) = X(4)X(4688)∩X(376)X(536)

Barycentrics    4*a^5*b - 2*a^3*b^3 - 2*a*b^5 + 4*a^5*c + 7*a^4*b*c - 2*a^3*b^2*c - 8*a^2*b^3*c - 2*a*b^4*c + b^5*c - 2*a^3*b*c^2 + 4*a*b^3*c^2 - 2*a^3*c^3 - 8*a^2*b*c^3 + 4*a*b^2*c^3 - 2*b^3*c^3 - 2*a*b*c^4 - 2*a*c^5 + b*c^5 : :
X(51044) = 2 X[37] - 3 X[3524], X[192] - 3 X[10304], 4 X[30271] - X[30273], 5 X[631] - 4 X[4755], 4 X[3098] - X[49502], 3 X[3545] - 4 X[3739], 3 X[3576] - 2 X[50111], 4 X[3579] - X[49447], X[3644] - 6 X[15688], 3 X[3839] - 5 X[4699], 4 X[4681] - 9 X[15710], 5 X[4687] - 6 X[5054], 8 X[4698] - 9 X[15709], 5 X[4704] - 9 X[15705], 4 X[4726] + 3 X[46333], 7 X[4751] - 6 X[5055], X[4764] + 6 X[15689], 7 X[4772] - 3 X[50687], 3 X[5085] - 2 X[50779], X[6361] + 2 X[49483], 3 X[7967] - 2 X[50778], 2 X[12702] + X[49499], 9 X[15708] - 7 X[27268], 2 X[31730] + X[49493], 5 X[35242] - 2 X[49456], 2 X[48881] + X[49533]

X(51044) lies on these lines: {3, 4664}, {4, 4688}, {20, 4740}, {30, 75}, {37, 3524}, {40, 537}, {192, 10304}, {376, 536}, {515, 50086}, {518, 50810}, {549, 20430}, {631, 4755}, {726, 33706}, {740, 50811}, {742, 43273}, {990, 13634}, {1766, 13635}, {3098, 49502}, {3534, 29010}, {3545, 3739}, {3576, 50111}, {3579, 49447}, {3644, 15688}, {3654, 50075}, {3655, 49470}, {3696, 34627}, {3839, 4699}, {4681, 15710}, {4687, 5054}, {4698, 15709}, {4704, 15705}, {4726, 46333}, {4751, 5055}, {4764, 15689}, {4772, 50687}, {5085, 50779}, {6361, 49483}, {7967, 50778}, {11179, 49496}, {12702, 49499}, {13632, 17399}, {13633, 17342}, {15708, 27268}, {17225, 44882}, {24325, 31162}, {24349, 34632}, {28194, 31178}, {28484, 50819}, {28516, 50812}, {28522, 50815}, {28555, 50813}, {28581, 50818}, {28582, 50809}, {29584, 37474}, {31730, 49493}, {34628, 49474}, {34631, 49478}, {34638, 50117}, {34718, 49450}, {35242, 49456}, {48881, 49533}

X(51044) = midpoint of X(i) and X(j) for these {i,j}: {20, 4740}, {24349, 34632}, {34628, 49474}, {34638, 50117}
X(51044) = reflection of X(i) in X(j) for these {i,j}: {4, 4688}, {376, 30271}, {4664, 3}, {20430, 549}, {30273, 376}, {31162, 24325}, {34627, 3696}, {34631, 49478}, {49450, 34718}, {49470, 3655}, {49496, 11179}, {50075, 3654}


X(51045) = X(5)X(4755)∩X(536)X(549)

Barycentrics    5*a^5*b - 7*a^3*b^3 + 2*a*b^5 + 5*a^5*c + 2*a^4*b*c - 7*a^3*b^2*c - a^2*b^3*c + 2*a*b^4*c - b^5*c - 7*a^3*b*c^2 - 4*a*b^3*c^2 - 7*a^3*c^3 - a^2*b*c^3 - 4*a*b^2*c^3 + 2*b^3*c^3 + 2*a*b*c^4 + 2*a*c^5 - b*c^5 : :
X(51045) = X[75] - 3 X[5054], X[192] + 3 X[3524], 5 X[631] - X[4740], X[1278] - 9 X[15708], 3 X[3545] - 7 X[27268], X[3644] + 9 X[15707], 3 X[3653] - X[31178], 2 X[3739] - 3 X[11539], 2 X[4681] + 3 X[17504], 5 X[4687] - 3 X[5055], 4 X[4698] - 3 X[15699], 5 X[4699] - 9 X[15709], 5 X[4704] + 3 X[10304], X[4718] + 6 X[41983], 5 X[12017] + X[49502], 2 X[13624] + X[49456], 3 X[26446] - X[50086], 5 X[31238] - 6 X[47598], 2 X[32900] + X[49449]

X(51045) lies on these lines: {2, 29010}, {3, 4664}, {5, 4755}, {30, 37}, {75, 5054}, {140, 4688}, {192, 3524}, {376, 20430}, {381, 30273}, {511, 50779}, {517, 50111}, {518, 50824}, {536, 549}, {537, 1385}, {631, 4740}, {726, 50828}, {740, 50821}, {984, 3655}, {1278, 15708}, {3545, 27268}, {3644, 15707}, {3653, 31178}, {3739, 11539}, {4681, 17504}, {4687, 5055}, {4698, 15699}, {4699, 15709}, {4704, 10304}, {4718, 41983}, {5844, 50778}, {7611, 29365}, {10168, 49481}, {11179, 49509}, {12017, 49502}, {13624, 49456}, {13632, 17264}, {13633, 17320}, {26446, 50086}, {28204, 50094}, {28484, 50825}, {28522, 50829}, {28555, 50833}, {28581, 50823}, {28582, 50832}, {29584, 37510}, {30271, 34200}, {31238, 47598}, {32900, 49449}, {34718, 49470}, {34748, 49450}

X(51045) = midpoint of X(i) and X(j) for these {i,j}: {3, 4664}, {376, 20430}, {381, 30273}, {984, 3655}, {11179, 49509}, {34718, 49470}, {34748, 49450}
X(51045) = reflection of X(i) in X(j) for these {i,j}: {5, 4755}, {4688, 140}, {30271, 34200}, {49481, 10168}


X(51046) = X(5)X(37)∩X(536)X(549)

Barycentrics    2*a^5*b - 3*a^3*b^3 + a*b^5 + 2*a^5*c - 3*a^3*b^2*c + a^2*b^3*c + a*b^4*c - b^5*c - 3*a^3*b*c^2 - 2*a*b^3*c^2 - 3*a^3*c^3 + a^2*b*c^3 - 2*a*b^2*c^3 + 2*b^3*c^3 + a*b*c^4 + a*c^5 - b*c^5 : :
X(51046) = X[4] - 5 X[4704], 3 X[4664] - X[20430], 3 X[4664] + X[30273], X[550] + 4 X[4681], 5 X[631] - X[1278], 5 X[632] - 4 X[3739], 5 X[1656] - 7 X[27268], 7 X[3523] + X[4788], 11 X[3525] - 7 X[4772], 7 X[3526] - 5 X[4699], 4 X[3530] + X[3644], 3 X[3576] + X[49445], 4 X[3628] - 5 X[4687], 2 X[3696] - 3 X[38112], 4 X[3842] - 3 X[38042], 2 X[4686] - 7 X[14869], 2 X[4688] - 3 X[11539], 2 X[4718] + 5 X[15712], X[4740] - 3 X[5054], 7 X[4751] - 8 X[16239], 4 X[4755] - 3 X[15699], X[4764] - 8 X[12108], 5 X[4821] - 13 X[10303], 3 X[7967] + X[31302], 3 X[8703] - 2 X[30271], 3 X[10165] - X[50117], 3 X[10246] - X[24349], 3 X[10283] - 4 X[15569], 2 X[24325] - 3 X[38028], 3 X[26446] - X[49474], 2 X[32900] + X[49508], X[34773] + 2 X[49456], 3 X[38110] - 2 X[49481]

X(51046) lies on these lines: {3, 192}, {4, 4704}, {5, 37}, {30, 4664}, {75, 140}, {182, 9055}, {517, 3993}, {518, 1353}, {536, 549}, {537, 50824}, {550, 4681}, {631, 1278}, {632, 3739}, {726, 1385}, {740, 5690}, {742, 48876}, {952, 984}, {1009, 25245}, {1656, 27268}, {3523, 4788}, {3525, 4772}, {3526, 4699}, {3530, 3644}, {3564, 49509}, {3576, 49445}, {3628, 4687}, {3696, 38112}, {3842, 38042}, {3995, 4192}, {4032, 6147}, {4360, 37510}, {4686, 14869}, {4688, 11539}, {4718, 15712}, {4740, 5054}, {4751, 16239}, {4755, 15699}, {4764, 12108}, {4821, 10303}, {5844, 49470}, {5882, 49520}, {6684, 28522}, {7201, 24470}, {7967, 31302}, {8703, 30271}, {10165, 50117}, {10246, 24349}, {10283, 15569}, {10386, 11997}, {15178, 49479}, {16577, 20256}, {17262, 37474}, {17479, 21319}, {19540, 41839}, {19546, 31035}, {22791, 29054}, {24325, 38028}, {26446, 49474}, {28204, 50777}, {28606, 37365}, {29069, 48934}, {29343, 48888}, {32141, 34247}, {32453, 32515}, {32900, 49508}, {34380, 49496}, {34773, 49456}, {37727, 49448}, {38110, 49481}

X(51046) = midpoint of X(i) and X(j) for these {i,j}: {3, 192}, {5882, 49520}, {20430, 30273}, {37727, 49448}
X(51046) = reflection of X(i) in X(j) for these {i,j}: {5, 37}, {75, 140}, {49479, 15178}
X(51046) = {X(4664),X(30273)}-harmonic conjugate of X(20430)


X(51047) = X(5)X(4664)∩X(536)X(549)

Barycentrics    8*a^5*b - 13*a^3*b^3 + 5*a*b^5 + 8*a^5*c - 4*a^4*b*c - 13*a^3*b^2*c + 11*a^2*b^3*c + 5*a*b^4*c - 7*b^5*c - 13*a^3*b*c^2 - 10*a*b^3*c^2 - 13*a^3*c^3 + 11*a^2*b*c^3 - 10*a*b^2*c^3 + 14*b^3*c^3 + 5*a*b*c^4 + 5*a*c^5 - 7*b*c^5 : :
X(51047) = 4 X[37] - 3 X[15699], 2 X[75] - 3 X[11539], 5 X[632] - 4 X[4688], X[1278] - 3 X[5054], 3 X[3524] + X[4788], 2 X[3644] + 3 X[17504], 8 X[4681] - 3 X[38071], 5 X[4699] - 6 X[47598], 5 X[4704] - 3 X[5055], 4 X[4718] + 3 X[45759], 5 X[4821] - 9 X[15709], 3 X[10283] - 4 X[50111], 7 X[27268] - 6 X[47599], X[37705] - 4 X[49456], 3 X[38081] - 4 X[50094], 3 X[38112] - 2 X[50086]

X(51047) lies on these lines: {5, 4664}, {30, 192}, {37, 15699}, {75, 11539}, {140, 4740}, {518, 50831}, {536, 549}, {537, 1483}, {632, 4688}, {726, 50824}, {740, 50823}, {1278, 5054}, {3524, 4788}, {3644, 17504}, {3655, 49445}, {3845, 29010}, {4681, 38071}, {4699, 47598}, {4704, 5055}, {4718, 45759}, {4821, 15709}, {10283, 50111}, {15686, 30273}, {15687, 20430}, {17225, 48876}, {27268, 47599}, {28484, 50822}, {28516, 50832}, {28522, 50821}, {31302, 34748}, {37705, 49456}, {38081, 50094}, {38112, 50086}

X(51047) = midpoint of X(i) and X(j) for these {i,j}: {3655, 49445}, {31302, 34748}
X(51047) = reflection of X(i) in X(j) for these {i,j}: {5, 4664}, {4740, 140}, {15686, 30273}, {15687, 20430}


X(51048) = X(5)X(4688)∩X(536)X(549)

Barycentrics    2*a^5*b - a^3*b^3 - a*b^5 + 2*a^5*c + 8*a^4*b*c - a^3*b^2*c - 13*a^2*b^3*c - a*b^4*c + 5*b^5*c - a^3*b*c^2 + 2*a*b^3*c^2 - a^3*c^3 - 13*a^2*b*c^3 + 2*a*b^2*c^3 - 10*b^3*c^3 - a*b*c^4 - a*c^5 + 5*b*c^5 : :
X(51048) = 2 X[37] - 3 X[11539], X[192] - 3 X[5054], 5 X[632] - 4 X[4755], X[1278] + 3 X[3524], 3 X[3545] - 7 X[4772], 4 X[3739] - 3 X[15699], 2 X[4686] + 3 X[17504], 5 X[4687] - 6 X[47598], 5 X[4699] - 3 X[5055], 5 X[4704] - 9 X[15709], 4 X[4726] + 3 X[45759], 8 X[4739] - 3 X[38071], 7 X[4751] - 6 X[47599], X[4764] + 6 X[41983], X[4788] - 9 X[15708], 5 X[4821] + 3 X[10304], 3 X[38028] - 2 X[50111], 3 X[38110] - 2 X[50779]

X(51048) lies on these lines: {3, 4740}, {5, 4688}, {30, 75}, {37, 11539}, {140, 4664}, {182, 17225}, {192, 5054}, {518, 50823}, {536, 549}, {537, 5690}, {547, 20430}, {632, 4755}, {726, 50821}, {740, 50824}, {952, 50086}, {1278, 3524}, {3545, 4772}, {3655, 49474}, {3739, 15699}, {4686, 17504}, {4687, 47598}, {4699, 5055}, {4704, 15709}, {4726, 45759}, {4739, 38071}, {4751, 47599}, {4764, 41983}, {4788, 15708}, {4821, 10304}, {8703, 29010}, {15686, 30271}, {24349, 34718}, {28484, 50832}, {28516, 50825}, {28522, 50828}, {28555, 50826}, {28581, 50831}, {28582, 50822}, {30273, 34200}, {38028, 50111}, {38110, 50779}

X(51048) = midpoint of X(i) and X(j) for these {i,j}: {3, 4740}, {3655, 49474}, {24349, 34718}
X(51048) = reflection of X(i) in X(j) for these {i,j}: {5, 4688}, {4664, 140}, {15686, 30271}, {20430, 547}, {30273, 34200}


X(51049) = X(3)X(4688)∩X(536)X(549)

Barycentrics    7*a^5*b - 8*a^3*b^3 + a*b^5 + 7*a^5*c + 10*a^4*b*c - 8*a^3*b^2*c - 14*a^2*b^3*c + a*b^4*c + 4*b^5*c - 8*a^3*b*c^2 - 2*a*b^3*c^2 - 8*a^3*c^3 - 14*a^2*b*c^3 - 2*a*b^2*c^3 - 8*b^3*c^3 + a*b*c^4 + a*c^5 + 4*b*c^5 : :
X(51049) = X[37] - 3 X[5054], X[75] + 3 X[3524], X[192] - 9 X[15708], 5 X[631] - X[4664], 7 X[3523] + X[4740], 3 X[3545] - 7 X[4751], 3 X[3576] + X[50086], X[4686] + 9 X[15707], 5 X[4687] - 9 X[15709], 2 X[4698] - 3 X[11539], 5 X[4699] + 3 X[10304], X[4726] + 6 X[41983], 2 X[4739] + 3 X[17504], 7 X[4772] + 9 X[15705], 3 X[5055] - 5 X[31238], 3 X[10165] - X[50111], 3 X[10246] - X[50778], 5 X[15692] - X[30273], 5 X[15694] - X[20430], X[31162] - 5 X[40328], 3 X[38068] - X[50094]

X(51049) lies on these lines: {3, 4688}, {30, 3739}, {37, 5054}, {75, 3524}, {140, 4755}, {192, 15708}, {381, 30271}, {518, 50821}, {536, 549}, {537, 6684}, {631, 4664}, {726, 50829}, {740, 50828}, {3523, 4740}, {3545, 4751}, {3576, 50086}, {3582, 11997}, {3655, 3696}, {4686, 15707}, {4687, 15709}, {4698, 11539}, {4699, 10304}, {4726, 41983}, {4739, 17504}, {4772, 15705}, {5055, 31238}, {10165, 50111}, {10246, 50778}, {12100, 29010}, {15692, 30273}, {15694, 20430}, {16833, 37474}, {28581, 50824}, {28582, 50825}, {31162, 40328}, {34718, 49478}, {38068, 50094}

X(51049) = midpoint of X(i) and X(j) for these {i,j}: {3, 4688}, {381, 30271}, {3655, 3696}, {34718, 49478}
X(51049) = reflection of X(4755) in X(140)


X(51050) = X(6)X(4755)∩X(536)X(599)

Barycentrics    a^3*b - 5*a*b^3 + a^3*c + 4*a^2*b*c - 5*a*b^2*c - 2*b^3*c - 5*a*b*c^2 - 5*a*c^3 - 2*b*c^3 : :
X(51050) = 3 X[37] - 2 X[50779], X[75] - 3 X[21356], 5 X[3620] - X[4740], 5 X[3620] + X[49502], 2 X[3739] - 3 X[21358], 4 X[4698] - 3 X[47352], 3 X[5032] - 7 X[27268]

X(51050) lies on these lines: {2, 210}, {6, 4755}, {37, 524}, {69, 4664}, {75, 21356}, {141, 4688}, {335, 3696}, {536, 599}, {537, 3773}, {726, 50787}, {740, 49630}, {742, 22165}, {984, 29573}, {1386, 29580}, {3008, 49449}, {3242, 16834}, {3416, 50079}, {3620, 4373}, {3631, 17225}, {3661, 49483}, {3739, 21358}, {3797, 49513}, {3912, 49515}, {3962, 26759}, {3967, 31027}, {4005, 27097}, {4663, 16826}, {4698, 47352}, {5032, 27268}, {5846, 50778}, {5847, 50111}, {6542, 24723}, {9041, 50095}, {9055, 36525}, {11160, 49496}, {11180, 30273}, {15569, 47356}, {15624, 16436}, {16496, 16833}, {17284, 49503}, {17389, 28538}, {17738, 49467}, {20155, 48854}, {20582, 49481}, {25730, 43216}, {27474, 28582}, {27480, 50789}, {28484, 50784}, {28522, 50788}, {28555, 50792}, {28581, 50783}, {29584, 49465}, {29600, 49505}, {29604, 49491}, {29611, 49499}, {29616, 49447}, {29620, 31323}, {49456, 49765}, {49741, 50011}

X(51050) = midpoint of X(i) and X(j) for these {i,j}: {69, 4664}, {599, 49509}, {4740, 49502}, {11160, 49496}, {11180, 30273}, {49518, 50089}
X(51050) = reflection of X(i) in X(j) for these {i,j}: {6, 4755}, {4688, 141}, {47356, 15569}, {49481, 20582}


X(51051) = X(6)X(4688)∩X(536)X(599)

Barycentrics    2*a^3*b - a*b^3 + 2*a^3*c - a^2*b*c - a*b^2*c - 4*b^3*c - a*b*c^2 - a*c^3 - 4*b*c^3 : :
X(51051) = 2 X[37] - 3 X[21358], 2 X[69] + X[49533], X[192] - 3 X[21356], 4 X[3631] - X[49502], 4 X[3739] - 3 X[47352], 5 X[3763] - 4 X[4755], 7 X[4751] - 6 X[48310], 7 X[4772] - 3 X[5032]

X(51051) lies on these lines: {2, 742}, {6, 4688}, {37, 21358}, {69, 4740}, {75, 524}, {141, 4664}, {192, 21356}, {518, 4677}, {519, 24293}, {536, 599}, {537, 3416}, {597, 49496}, {726, 50781}, {740, 47358}, {1992, 49481}, {3631, 49502}, {3739, 47352}, {3763, 4755}, {3797, 49748}, {4751, 48310}, {4772, 5032}, {4777, 50766}, {9055, 22165}, {11178, 20430}, {24325, 47356}, {24357, 29574}, {28484, 50791}, {28516, 50784}, {28522, 50787}, {28538, 31178}, {28555, 50785}, {28581, 50790}, {28582, 50782}, {29594, 50011}, {41313, 49516}, {47359, 50096}, {47595, 50076}, {49706, 50126}, {49752, 50079}

X(51051) = midpoint of X(69) and X(4740)
X(51051) = reflection of X(i) in X(j) for these {i,j}: {6, 4688}, {1992, 49481}, {4664, 141}, {20430, 11178}, {47356, 24325}, {47359, 50096}, {49496, 597}, {49507, 50084}, {49509, 599}, {49533, 4740}
X(51051) = anticomplement of X(50779)


X(51052) = X(7)X(37)∩X(536)X(5838)

Barycentrics    2*a^3*b - 2*a^2*b^2 + 2*a^3*c - 3*a^2*b*c - b^3*c - 2*a^2*c^2 + 2*b^2*c^2 - b*c^3 : :
X(51052) = 2 X[7] - 3 X[27475], 4 X[37] - 3 X[27475], 4 X[142] - 5 X[4687], 2 X[5698] + X[49447], X[1278] - 3 X[27484], 2 X[3696] - 3 X[5686], 4 X[3739] - 5 X[18230], 4 X[3842] - 3 X[38052], 5 X[4704] - X[20059], 7 X[4751] - 8 X[6666], 3 X[8236] - 2 X[49478], 5 X[11025] - 4 X[13476], 3 X[11038] - 4 X[15569], X[30332] + 2 X[49515], 6 X[38059] - 5 X[40328]

X(51052) lies on these lines: {7, 37}, {9, 75}, {55, 10025}, {63, 20173}, {85, 1334}, {142, 4389}, {144, 145}, {516, 984}, {527, 4664}, {528, 17333}, {536, 5838}, {537, 50836}, {740, 5223}, {742, 17262}, {894, 1001}, {960, 25242}, {971, 30273}, {1253, 36086}, {1278, 27484}, {1423, 39258}, {1447, 24352}, {1633, 7676}, {1697, 30625}, {1742, 42079}, {2082, 32024}, {2170, 31169}, {2550, 17257}, {3208, 16284}, {3212, 21872}, {3644, 49759}, {3662, 16593}, {3665, 27129}, {3673, 3730}, {3693, 30946}, {3696, 4461}, {3732, 5119}, {3739, 7229}, {3758, 16503}, {3797, 25269}, {3826, 17248}, {3842, 38052}, {3993, 5850}, {4032, 42309}, {4059, 27253}, {4416, 5853}, {4431, 24393}, {4480, 49499}, {4488, 24349}, {4517, 39350}, {4704, 20059}, {4751, 6666}, {4911, 17732}, {5762, 20430}, {5779, 29010}, {5836, 27288}, {5845, 17334}, {6168, 31627}, {6180, 14189}, {6646, 20533}, {7179, 17747}, {7672, 20718}, {8236, 49478}, {8545, 8680}, {9318, 41423}, {11025, 13476}, {11038, 15569}, {11372, 29054}, {11495, 34247}, {16601, 17753}, {16728, 17183}, {17158, 21384}, {17302, 38186}, {17305, 20195}, {17319, 42871}, {17351, 24357}, {17379, 42819}, {17484, 27491}, {17691, 30618}, {17787, 21615}, {24248, 49692}, {26101, 32007}, {27489, 31018}, {27538, 40883}, {30331, 49490}, {30332, 49515}, {30568, 44792}, {36976, 44670}, {38059, 40328}

X(51052) = midpoint of X(144) and X(192)
X(51052) = reflection of X(i) in X(j) for these {i,j}: {7, 37}, {75, 9}, {49490, 30331}
X(51052) = barycentric product X(200)*X(47393)
X(51052) = barycentric quotient X(47393)/X(1088)
X(51052) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 37, 27475}, {192, 20073, 49514}, {192, 49496, 49470}, {192, 49514, 49447}, {3057, 3177, 9311}, {3729, 49516, 75}, {4416, 49507, 49450}, {4419, 41325, 7}, {6646, 20533, 47595}, {24352, 42316, 1447}


X(51053) = X(7)X(4688)∩X(536)X(5838)

Barycentrics    4*a^3*b - 2*a^2*b^2 - 2*a*b^3 + 4*a^3*c + 3*a^2*b*c - 6*a*b^2*c + b^3*c - 2*a^2*c^2 - 6*a*b*c^2 - 2*b^2*c^2 - 2*a*c^3 + b*c^3 : :
X(51053) = 4 X[2] - 3 X[27475], X[2] - 3 X[27484], X[27475] - 4 X[27484], 4 X[5220] - X[49447], 7 X[4751] - 6 X[38093], 4 X[4755] - 5 X[18230], 3 X[8236] - 2 X[50778], X[30332] + 2 X[49468]

X(51053) lies on these lines: {2, 210}, {7, 4688}, {9, 3759}, {75, 527}, {142, 48638}, {144, 4740}, {239, 5220}, {516, 50086}, {528, 29617}, {536, 5838}, {537, 673}, {726, 50834}, {740, 50836}, {984, 50114}, {1001, 29584}, {3008, 49503}, {3243, 29597}, {4384, 49499}, {4393, 15254}, {4607, 37131}, {4751, 38093}, {4755, 18230}, {4901, 17294}, {5222, 49515}, {6173, 17271}, {7671, 44671}, {8236, 50778}, {16593, 29577}, {16832, 49491}, {17251, 49481}, {17284, 49449}, {17349, 49502}, {25557, 29576}, {28484, 50840}, {28522, 50837}, {28581, 50839}, {29580, 42871}, {29594, 33165}, {30332, 49468}, {47357, 49470}, {49452, 50019}

X(51053) = midpoint of X(144) and X(4740)
X(51053) = reflection of X(i) in X(j) for these {i,j}: {7, 4688}, {4664, 9}, {49470, 47357}


X(51054) = X(8)X(4664)∩X(536)X(3241)

Barycentrics    7*a^2*b + a*b^2 + 7*a^2*c + 3*a*b*c - 5*b^2*c + a*c^2 - 5*b*c^2 : :
X(51054) = 5 X[2] - 4 X[50096], 3 X[2] - 4 X[50111], 5 X[50086] - 6 X[50096], 3 X[50096] - 5 X[50111], X[8] - 4 X[49462], 2 X[75] - 3 X[38314], X[145] + 2 X[49452], 5 X[192] - 2 X[49448], X[192] + 2 X[49469], 13 X[192] - 4 X[49504], 7 X[192] - 4 X[49520], X[49448] + 5 X[49469], 13 X[49448] - 10 X[49504], 7 X[49448] - 10 X[49520], 13 X[49469] + 2 X[49504], 7 X[49469] + 2 X[49520], 7 X[49504] - 13 X[49520], X[3241] + 4 X[49461], 5 X[3241] - 4 X[49478], 11 X[3241] - 4 X[49525], 3 X[3241] - 4 X[50778], X[24349] + 8 X[49461], X[24349] - 4 X[49470], 5 X[24349] - 8 X[49478], 11 X[24349] - 8 X[49525], 3 X[24349] - 8 X[50778], 2 X[49461] + X[49470], 5 X[49461] + X[49478], 11 X[49461] + X[49525], 3 X[49461] + X[50778], 5 X[49470] - 2 X[49478], 11 X[49470] - 2 X[49525], 3 X[49470] - 2 X[50778], 11 X[49478] - 5 X[49525], 3 X[49478] - 5 X[50778], 3 X[49525] - 11 X[50778], X[1278] - 4 X[49471], 5 X[3616] - 4 X[4688], X[3621] - 4 X[49456], 5 X[3623] - 2 X[49493], X[3644] + 2 X[49475], 5 X[4699] - 6 X[25055], 5 X[4704] - 2 X[49459], 5 X[4704] - 4 X[50094], 2 X[4709] - 3 X[19875], 4 X[4709] - 7 X[27268], 6 X[19875] - 7 X[27268], 8 X[4755] - 7 X[9780], 7 X[9780] - 4 X[49468], X[4788] + 2 X[49490], X[20014] + 2 X[49503], X[31302] + 2 X[49678], X[20050] + 2 X[49447], X[20053] - 4 X[49515], X[20054] - 4 X[49449], 7 X[20057] - 4 X[49483]

X(51054) lies on these lines: {1, 4740}, {2, 740}, {8, 4664}, {75, 4742}, {145, 537}, {192, 519}, {518, 50839}, {528, 50121}, {536, 3241}, {551, 49474}, {984, 31145}, {1278, 31178}, {1738, 29582}, {2796, 50133}, {3242, 17225}, {3616, 4688}, {3621, 49456}, {3623, 49493}, {3644, 49475}, {3679, 3993}, {3685, 16469}, {3875, 35227}, {3896, 27538}, {4360, 48805}, {4393, 4693}, {4676, 50124}, {4677, 50777}, {4699, 25055}, {4704, 49459}, {4709, 19875}, {4755, 9780}, {4780, 17242}, {4788, 28554}, {4970, 31137}, {4971, 49746}, {5695, 46922}, {16394, 41813}, {17133, 50310}, {17233, 48821}, {17310, 50080}, {17318, 36534}, {17319, 48854}, {17350, 50283}, {17389, 28580}, {17393, 49485}, {20014, 49503}, {20049, 31302}, {20050, 49447}, {20053, 49515}, {20054, 49449}, {20057, 49483}, {20430, 34627}, {24723, 50076}, {25269, 49497}, {28534, 50132}, {28581, 50075}, {29054, 50872}, {29577, 50091}, {29580, 50314}, {29584, 50126}, {30273, 34632}, {34747, 49445}, {48628, 48853}, {49720, 50113}, {49740, 50088}, {50110, 50286}

X(51054) = midpoint of X(i) and X(j) for these {i,j}: {20049, 31302}, {34747, 49445}
X(51054) = reflection of X(i) in X(j) for these {i,j}: {8, 4664}, {1278, 31178}, {3241, 49470}, {3679, 3993}, {4664, 49462}, {4677, 50777}, {4740, 1}, {20049, 49678}, {24349, 3241}, {31145, 984}, {31178, 49471}, {34627, 20430}, {34632, 30273}, {49459, 50094}, {49468, 4755}, {49474, 551}, {49720, 50113}, {50086, 50111}, {50088, 49740}, {50286, 50110}
X(51054) = anticomplement of X(50086)
X(51054) = {X(50086),X(50111)}-harmonic conjugate of X(2)


X(51055) = X(8)X(4675)∩X(536)X(3241)

Barycentrics    4*a^2*b - 2*a*b^2 + 4*a^2*c + 3*a*b*c + b^2*c - 2*a*c^2 + b*c^2 : :
X(51055) = 4 X[1] - X[49447], 5 X[1] - 2 X[49456], X[1] + 2 X[49491], 2 X[1] + X[49499], 3 X[1] - 2 X[50111], 5 X[4664] - 4 X[49456], X[4664] + 4 X[49491], 3 X[4664] - 4 X[50111], 5 X[49447] - 8 X[49456], X[49447] + 8 X[49491], X[49447] + 2 X[49499], 3 X[49447] - 8 X[50111], X[49456] + 5 X[49491], 4 X[49456] + 5 X[49499], 3 X[49456] - 5 X[50111], 4 X[49491] - X[49499], 3 X[49491] + X[50111], 3 X[49499] + 4 X[50111], 2 X[37] - 3 X[38314], 4 X[37] - X[49501], 6 X[38314] - X[49501], 7 X[75] - 4 X[4709], 5 X[75] - 2 X[49459], X[75] - 4 X[49479], X[75] + 2 X[49490], 3 X[75] - 2 X[50086], 2 X[4709] - 7 X[31178], 10 X[4709] - 7 X[49459], X[4709] - 7 X[49479], 2 X[4709] + 7 X[49490], 6 X[4709] - 7 X[50086], 5 X[31178] - X[49459], 3 X[31178] - X[50086], 3 X[39704] - 2 X[50301], X[49459] - 10 X[49479], X[49459] + 5 X[49490], 3 X[49459] - 5 X[50086], 2 X[49479] + X[49490], 6 X[49479] - X[50086], 3 X[49490] + X[50086], X[145] + 2 X[49483], 7 X[3241] - 2 X[49461], 5 X[3241] + 2 X[49525], 3 X[3241] - 2 X[50778], 7 X[24349] + 2 X[49461], 2 X[24349] + X[49470], X[24349] + 2 X[49478], 5 X[24349] - 2 X[49525], 3 X[24349] + 2 X[50778], 4 X[49461] - 7 X[49470], X[49461] - 7 X[49478], 5 X[49461] + 7 X[49525], 3 X[49461] - 7 X[50778], X[49470] - 4 X[49478], 5 X[49470] + 4 X[49525], 3 X[49470] - 4 X[50778], 5 X[49478] + X[49525], 3 X[49478] - X[50778], 3 X[49525] + 5 X[50778], X[984] + 2 X[49535], 4 X[1125] - X[49503], X[1278] + 2 X[49475], 5 X[1698] - 2 X[49449], 2 X[3244] + X[49493], 5 X[3616] - 4 X[4755], 5 X[3616] - 2 X[49515], 5 X[3623] - 2 X[49462], 4 X[3635] - X[49452], 4 X[3636] - X[49508], X[3644] - 4 X[49471], X[3644] + 2 X[49532], 2 X[49471] + X[49532], 4 X[24325] - X[49450], 2 X[24325] + X[49498], X[49450] + 2 X[49498], 4 X[3828] - 5 X[40328], 5 X[40328] - 2 X[49510], 5 X[4687] - 6 X[25055], 5 X[4687] - 2 X[49448], 5 X[4687] - 4 X[50094], 3 X[25055] - X[49448], 3 X[25055] - 2 X[50094], 5 X[4704] - 2 X[49513], 7 X[4751] - 6 X[19875], 7 X[4751] - 4 X[49457], 3 X[19875] - 2 X[49457], X[4764] + 2 X[49469], 3 X[4828] - 2 X[50764], 4 X[15569] - X[31302], 4 X[49465] - X[49502], X[20050] + 2 X[49468], 3 X[38315] - 2 X[50779], X[49678] + 2 X[50117]

X(51055) lies on these lines: {1, 190}, {2, 210}, {8, 4675}, {10, 48639}, {37, 38314}, {69, 48849}, {75, 519}, {86, 16496}, {145, 4740}, {312, 31161}, {320, 36479}, {524, 50310}, {527, 49746}, {528, 50128}, {536, 3241}, {551, 984}, {726, 11055}, {894, 42871}, {903, 50080}, {1125, 49503}, {1215, 31137}, {1278, 49475}, {1698, 49449}, {2099, 40862}, {3243, 5263}, {3244, 49493}, {3616, 4755}, {3623, 49462}, {3635, 49452}, {3636, 49508}, {3644, 28554}, {3655, 30273}, {3662, 48821}, {3679, 17297}, {3685, 49721}, {3696, 31145}, {3717, 29600}, {3759, 50283}, {3828, 40328}, {3932, 29582}, {4085, 48629}, {4307, 49695}, {4429, 5542}, {4644, 49709}, {4667, 49771}, {4670, 36534}, {4677, 50096}, {4684, 29594}, {4687, 25055}, {4704, 49513}, {4715, 24357}, {4751, 19875}, {4764, 49469}, {4828, 50764}, {4850, 17146}, {4883, 32937}, {4966, 29577}, {5224, 48853}, {7174, 29597}, {9041, 17392}, {12329, 19325}, {13587, 15624}, {14621, 20162}, {15569, 31302}, {16484, 17336}, {16834, 32922}, {17116, 49460}, {17117, 49680}, {17227, 29659}, {17234, 49529}, {17241, 33165}, {17271, 48851}, {17300, 49688}, {17310, 31317}, {17313, 49481}, {17320, 48830}, {17333, 49740}, {17335, 24331}, {17342, 50313}, {17346, 50305}, {17350, 42819}, {17354, 49768}, {17361, 33076}, {17379, 49465}, {17387, 32847}, {17389, 28503}, {17393, 49455}, {17399, 50285}, {17450, 30829}, {18137, 39739}, {19326, 22769}, {19767, 34860}, {20050, 49468}, {20090, 49681}, {21870, 24620}, {24231, 50091}, {25352, 49713}, {25492, 50191}, {26102, 42056}, {28538, 50133}, {28580, 49722}, {29054, 50811}, {30271, 34632}, {31136, 32771}, {34230, 46795}, {34247, 40726}, {34641, 49689}, {34747, 49474}, {36480, 41847}, {37756, 50282}, {38315, 50779}, {42034, 42057}, {42042, 42055}, {42043, 42053}, {47356, 49496}, {48630, 50315}, {49528, 50294}, {49678, 50117}

X(51055) = midpoint of X(i) and X(j) for these {i,j}: {145, 4740}, {551, 49535}, {3241, 24349}, {3679, 49498}, {4664, 49499}, {31178, 49490}, {34747, 49474}
X(51055) = reflection of X(i) in X(j) for these {i,j}: {8, 4688}, {75, 31178}, {984, 551}, {3241, 49478}, {3679, 24325}, {4664, 1}, {4677, 50096}, {4740, 49483}, {17333, 49740}, {17346, 50305}, {30273, 3655}, {31145, 3696}, {31178, 49479}, {34632, 30271}, {49447, 4664}, {49448, 50094}, {49450, 3679}, {49470, 3241}, {49496, 47356}, {49510, 3828}, {49515, 4755}, {49689, 34641}, {49720, 50116}, {50075, 2}, {50286, 17392}
X(51055) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 49491, 49499}, {1, 49499, 49447}, {24325, 49498, 49450}, {24331, 49712, 17335}, {24349, 49478, 49470}, {25055, 49448, 50094}, {25055, 50094, 4687}, {49471, 49532, 3644}, {49479, 49490, 75}


X(51056) = X(8)X(537)∩X(536)X(3241)

Barycentrics    a^2*b - 5*a*b^2 + a^2*c + 3*a*b*c + 7*b^2*c - 5*a*c^2 + 7*b*c^2 : :
X(51056) = 5 X[2] - 4 X[50777], 11 X[8] - 8 X[49449], X[8] - 4 X[49493], 7 X[8] - 4 X[49503], 3 X[8] - 4 X[50086], 11 X[4740] - 4 X[49449], 7 X[4740] - 2 X[49503], 3 X[4740] - 2 X[50086], 2 X[49449] - 11 X[49493], 14 X[49449] - 11 X[49503], 6 X[49449] - 11 X[50086], 7 X[49493] - X[49503], 3 X[49493] - X[50086], 3 X[49503] - 7 X[50086], 5 X[75] - 2 X[49513], 2 X[192] - 3 X[38314], 3 X[192] - 4 X[50111], 4 X[31178] - 3 X[38314], 3 X[31178] - 2 X[50111], 9 X[38314] - 8 X[50111], X[1278] + 2 X[49532], 13 X[3241] - 8 X[49461], 5 X[3241] - 4 X[49470], 7 X[3241] - 8 X[49478], X[3241] - 8 X[49525], 9 X[3241] - 8 X[50778], 13 X[24349] - 4 X[49461], 5 X[24349] - 2 X[49470], 7 X[24349] - 4 X[49478], X[24349] - 4 X[49525], 9 X[24349] - 4 X[50778], 10 X[49461] - 13 X[49470], 7 X[49461] - 13 X[49478], X[49461] - 13 X[49525], 9 X[49461] - 13 X[50778], 7 X[49470] - 10 X[49478], X[49470] - 10 X[49525], 9 X[49470] - 10 X[50778], X[49478] - 7 X[49525], 9 X[49478] - 7 X[50778], 9 X[49525] - X[50778], 5 X[3616] - 4 X[4664], 5 X[3616] - 8 X[49483], X[31302] - 4 X[50117], 7 X[4678] - 4 X[49508], 8 X[4688] - 7 X[9780], 7 X[9780] - 4 X[49447], 5 X[4699] - 2 X[49517], 5 X[4699] - 4 X[50094], 5 X[4704] - 6 X[25055], 4 X[4726] - X[49501], 7 X[4772] - 6 X[19875], 7 X[4772] - 4 X[49520], 3 X[19875] - 2 X[49520], X[4788] - 4 X[49479], 5 X[4821] - 2 X[49448], 11 X[5550] - 8 X[49456], X[20050] - 4 X[49499], 7 X[20057] - 4 X[49452]

X(51056) lies on these lines: {2, 726}, {8, 537}, {75, 4723}, {192, 28554}, {518, 50789}, {519, 1278}, {536, 3241}, {551, 49445}, {3210, 31161}, {3616, 4664}, {3679, 31302}, {3729, 16487}, {4398, 48821}, {4454, 50015}, {4659, 36534}, {4678, 49508}, {4688, 9780}, {4699, 49517}, {4704, 25055}, {4726, 49501}, {4755, 49522}, {4772, 19875}, {4788, 49479}, {4821, 49448}, {5550, 49456}, {16816, 24821}, {17090, 24816}, {17116, 48854}, {17132, 50310}, {17247, 48853}, {20049, 49498}, {20050, 49499}, {20057, 49452}, {24231, 29577}, {28297, 49746}, {28503, 49722}, {28582, 50075}, {31145, 49474}, {32922, 49721}, {34747, 49535}, {46922, 49453}, {50119, 50286}

X(51056) = reflection of X(i) in X(j) for these {i,j}: {8, 4740}, {192, 31178}, {3241, 24349}, {3679, 50117}, {4664, 49483}, {4740, 49493}, {20049, 49498}, {31145, 49474}, {31302, 3679}, {34747, 49535}, {49445, 551}, {49447, 4688}, {49517, 50094}, {49522, 4755}, {50286, 50119}
X(51056) = {X(192),X(31178)}-harmonic conjugate of X(38314)


X(51057) = X(9)X(4755)∩X(536)X(6173)

Barycentrics    a^3*b + 4*a^2*b^2 - 5*a*b^3 + a^3*c + 12*a^2*b*c + 3*a*b^2*c - 2*b^3*c + 4*a^2*c^2 + 3*a*b*c^2 + 4*b^2*c^2 - 5*a*c^3 - 2*b*c^3 : :
X(51057) = X[2] - 3 X[27475], 7 X[2] - 3 X[27484], 7 X[27475] - X[27484], 2 X[3739] - 3 X[38093], 4 X[25557] - X[49483], 2 X[5880] + X[49462], 2 X[43180] + X[49456], 5 X[30340] + X[49447], X[31178] - 3 X[38024], 3 X[38052] - X[50086]

X(51057) lies on these lines: {2, 210}, {7, 4664}, {9, 4755}, {37, 527}, {142, 594}, {335, 29575}, {516, 50111}, {528, 29574}, {536, 6173}, {537, 4078}, {673, 15570}, {1001, 20155}, {3243, 16833}, {3696, 17294}, {3739, 38093}, {3838, 31038}, {3912, 25557}, {4344, 15569}, {5220, 16831}, {5698, 29624}, {5845, 50779}, {5853, 50778}, {5880, 17316}, {6545, 28910}, {15254, 16826}, {16834, 42871}, {17389, 49475}, {29571, 49515}, {29580, 42819}, {29606, 43180}, {29621, 30340}, {29627, 49499}, {31178, 38024}, {31211, 49449}, {38052, 50086}, {49468, 49765}, {49478, 50114}

X(51057) = midpoint of X(7) and X(4664)
X(51057) = reflection of X(i) in X(j) for these {i,j}: {9, 4755}, {4688, 142}, {47357, 15569}


X(51058) = X(1)X(6)∩X(536)X(6173)

Barycentrics    a*(a*b^2 - b^3 + 3*a*b*c + a*c^2 - c^3) : :
X(51058) = 4 X[15569] - 3 X[38316], X[75] - 3 X[27475], 2 X[142] - 3 X[27475], X[144] - 5 X[4704], 3 X[11038] - X[24349], 2 X[24325] - 3 X[38053], 2 X[3696] - 3 X[38200], 4 X[3739] - 5 X[20195], 4 X[3842] - 3 X[38057], 4 X[25557] - X[49493], 3 X[38054] - X[50117], 5 X[4687] - 4 X[6666], 2 X[4688] - 3 X[38093], 2 X[5880] + X[49452], 3 X[38186] - 2 X[49481], 5 X[18230] - 7 X[27268], 5 X[18230] - 3 X[27484], 7 X[27268] - 3 X[27484], 3 X[38052] - X[49474]

X(51058) lies on these lines: {1, 6}, {2, 3930}, {7, 192}, {8, 21808}, {35, 17736}, {39, 3976}, {42, 26242}, {43, 3290}, {55, 3509}, {65, 3208}, {69, 49516}, {75, 142}, {141, 24357}, {144, 1959}, {145, 4051}, {226, 20173}, {244, 17756}, {281, 14943}, {312, 21101}, {321, 31006}, {344, 17755}, {346, 11038}, {354, 3693}, {390, 17452}, {516, 3993}, {527, 4664}, {528, 50113}, {536, 6173}, {579, 39258}, {594, 3826}, {672, 3873}, {673, 4360}, {726, 3950}, {728, 11518}, {740, 2294}, {742, 4851}, {908, 27491}, {942, 3501}, {966, 36479}, {971, 20430}, {982, 2276}, {986, 1500}, {1002, 4712}, {1018, 5902}, {1046, 14974}, {1056, 24247}, {1213, 29659}, {1278, 29583}, {1334, 3868}, {1400, 7672}, {1429, 1445}, {1475, 3889}, {1575, 17063}, {1621, 5282}, {1631, 15624}, {1698, 4006}, {1759, 3746}, {1914, 17715}, {1921, 17786}, {1953, 5819}, {2099, 4919}, {2170, 3241}, {2178, 37576}, {2243, 10987}, {2268, 30284}, {2277, 3774}, {2280, 3957}, {2298, 49530}, {2325, 49499}, {2344, 2346}, {2345, 24325}, {2667, 41265}, {2805, 5528}, {3116, 23462}, {3174, 19589}, {3218, 41423}, {3295, 3496}, {3572, 21834}, {3616, 33299}, {3617, 21921}, {3622, 39244}, {3644, 29601}, {3684, 3870}, {3686, 49450}, {3696, 4007}, {3697, 25086}, {3721, 22426}, {3730, 3874}, {3739, 17265}, {3742, 44798}, {3797, 17242}, {3812, 4515}, {3842, 3949}, {3862, 41886}, {3879, 49496}, {3881, 4253}, {3892, 24036}, {3932, 49531}, {3938, 5276}, {3943, 25557}, {3961, 5275}, {3962, 4520}, {3985, 32937}, {4029, 49447}, {4043, 22048}, {4050, 5836}, {4058, 38204}, {4071, 18134}, {4072, 38054}, {4073, 19586}, {4098, 49520}, {4119, 29641}, {4326, 11997}, {4328, 21446}, {4336, 28071}, {4385, 21071}, {4424, 9331}, {4650, 17735}, {4681, 29602}, {4687, 6666}, {4688, 38093}, {4698, 29598}, {4699, 29579}, {4709, 49766}, {4751, 29596}, {4771, 20012}, {4873, 49483}, {4898, 49469}, {5011, 25439}, {5045, 25066}, {5257, 24393}, {5316, 27489}, {5686, 21033}, {5805, 29010}, {5845, 17390}, {5853, 49470}, {5880, 49452}, {6006, 21143}, {6600, 19557}, {7179, 31038}, {7718, 17442}, {9055, 16593}, {9310, 34772}, {9327, 30144}, {9574, 18193}, {11495, 18788}, {12607, 21049}, {13407, 21073}, {14828, 24333}, {15668, 25384}, {15888, 40997}, {16547, 16550}, {16549, 18398}, {16583, 50581}, {16728, 18164}, {17018, 21840}, {17158, 20257}, {17248, 27495}, {17263, 49715}, {17279, 38186}, {17280, 31317}, {17281, 31178}, {17299, 32847}, {17303, 29637}, {17355, 49479}, {17362, 49689}, {17388, 49678}, {17398, 29660}, {17474, 26690}, {17592, 41269}, {17596, 31477}, {17737, 33127}, {17760, 18156}, {17868, 27480}, {17889, 21956}, {18230, 26626}, {20116, 25078}, {20171, 21617}, {20271, 20691}, {20680, 24578}, {20693, 37673}, {21096, 21620}, {21801, 24484}, {24326, 30945}, {26244, 29670}, {27479, 31019}, {28910, 48335}, {29676, 37661}, {29960, 39731}, {30090, 30693}, {30748, 30822}, {31402, 36574}, {31409, 37717}, {32771, 40463}, {33945, 40006}, {36279, 41322}, {36528, 40750}, {37658, 41711}, {38052, 49474}, {43929, 48307}, {47357, 50111}, {48830, 50094}, {49502, 49521}, {50086, 50087}

X(51058) = midpoint of X(7) and X(192)
X(51058) = reflection of X(i) in X(j) for these {i,j}: {9, 37}, {75, 142}, {47357, 50111}, {49490, 42871}
X(51058) = crosssum of X(1) and X(16779)
X(51058) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 9, 16503}, {1, 5280, 16787}, {1, 5525, 16788}, {1, 17742, 41239}, {1, 17744, 16783}, {37, 49509, 984}, {75, 17233, 27474}, {75, 17241, 27487}, {75, 27475, 142}, {145, 17451, 4051}, {192, 335, 49518}, {354, 3693, 17754}, {942, 3991, 3501}, {2276, 3726, 982}, {3555, 16601, 21384}, {3870, 40131, 3684}, {3889, 25082, 1475}, {3912, 49528, 75}, {4431, 27478, 75}, {17233, 36494, 75}, {20271, 20691, 24440}, {27268, 27484, 18230}


X(51059) = X(10)X(4664)∩X(536)X(551)

Barycentrics    8*a^2*b + 5*a*b^2 + 8*a^2*c + 6*a*b*c - 7*b^2*c + 5*a*c^2 - 7*b*c^2 : :
X(51059) = X[10] + 2 X[49452], 3 X[10] - 2 X[50086], 3 X[4664] - X[50086], 3 X[49452] + X[50086], 2 X[75] - 3 X[19883], 7 X[192] - X[49448], 5 X[192] + X[49469], 10 X[192] - X[49504], 4 X[192] - X[49520], 5 X[49448] + 7 X[49469], 10 X[49448] - 7 X[49504], 4 X[49448] - 7 X[49520], 2 X[49469] + X[49504], 4 X[49469] + 5 X[49520], 2 X[49504] - 5 X[49520], 7 X[551] - 8 X[15569], 5 X[551] - 4 X[24325], 3 X[551] - 4 X[50111], 7 X[3993] - 4 X[15569], 5 X[3993] - 2 X[24325], 3 X[3993] - 2 X[50111], 4 X[3993] - X[50117], 10 X[15569] - 7 X[24325], 6 X[15569] - 7 X[50111], 16 X[15569] - 7 X[50117], 3 X[24325] - 5 X[50111], 8 X[24325] - 5 X[50117], 8 X[50111] - 3 X[50117], X[3244] - 4 X[49462], 5 X[3244] + 4 X[49522], 3 X[3244] - 4 X[50778], 5 X[49462] + X[49522], 3 X[49462] - X[50778], 3 X[49522] + 5 X[50778], X[1278] - 3 X[25055], 2 X[49445] + X[49535], X[3625] - 4 X[49456], 4 X[4681] - X[4709], 8 X[4681] - 3 X[38098], 2 X[4709] - 3 X[38098], 3 X[38098] - 4 X[50094], 4 X[4688] - 5 X[19862], 5 X[4704] - 3 X[19875], 2 X[4718] + X[49479], X[4788] + 3 X[38314], 2 X[49461] + X[49510]

X(51059) lies on these lines: {2, 28522}, {10, 4664}, {75, 19883}, {192, 519}, {536, 551}, {537, 3244}, {726, 11055}, {740, 4669}, {984, 34641}, {1125, 4740}, {1278, 25055}, {2796, 50110}, {3241, 49445}, {3625, 49456}, {3644, 31178}, {3828, 49474}, {4681, 4709}, {4688, 19862}, {4704, 19875}, {4718, 28554}, {4788, 38314}, {6541, 50091}, {17225, 49511}, {17262, 50283}, {17318, 50300}, {20430, 34648}, {28309, 50297}, {28484, 50096}, {28542, 50113}, {28558, 50123}, {30273, 34638}, {31302, 34747}, {49461, 49510}, {49721, 50281}

X(51059) = midpoint of X(i) and X(j) for these {i,j}: {3241, 49445}, {3644, 31178}, {4664, 49452}, {31302, 34747}
X(51059) = reflection of X(i) in X(j) for these {i,j}: {10, 4664}, {551, 3993}, {4669, 50777}, {4709, 50094}, {4740, 1125}, {34638, 30273}, {34641, 984}, {34648, 20430}, {49474, 3828}, {49535, 3241}, {50094, 4681}, {50117, 551}
X(51059) = {X(4709),X(50094)}-harmonic conjugate of X(38098)


X(51060) = X(10)X(537)∩X(536)X(551)

Barycentrics    2*a^2*b - a*b^2 + 2*a^2*c + 6*a*b*c + 5*b^2*c - a*c^2 + 5*b*c^2 : :
X(51060) = X[10] + 2 X[49483], 4 X[10] - X[49508], 5 X[10] - 2 X[49515], 8 X[4688] - X[49508], 5 X[4688] - X[49515], 8 X[49483] + X[49508], 5 X[49483] + X[49515], 5 X[49508] - 8 X[49515], 2 X[37] - 3 X[19883], 4 X[75] - X[4709], 7 X[75] - X[49459], 2 X[75] + X[49479], 5 X[75] + X[49490], 3 X[75] - X[50086], X[4709] + 4 X[31178], 7 X[4709] - 4 X[49459], X[4709] + 2 X[49479], 5 X[4709] + 4 X[49490], 3 X[4709] - 4 X[50086], 7 X[31178] + X[49459], 5 X[31178] - X[49490], 3 X[31178] + X[50086], 2 X[49459] + 7 X[49479], 5 X[49459] + 7 X[49490], 3 X[49459] - 7 X[50086], 5 X[49479] - 2 X[49490], 3 X[49479] + 2 X[50086], 3 X[49490] + 5 X[50086], X[192] - 3 X[25055], 5 X[551] - 4 X[15569], 3 X[551] - 2 X[50111], 5 X[3993] - 8 X[15569], X[3993] - 4 X[24325], 3 X[3993] - 4 X[50111], X[3993] + 2 X[50117], 2 X[15569] - 5 X[24325], 6 X[15569] - 5 X[50111], 4 X[15569] + 5 X[50117], 3 X[24325] - X[50111], 2 X[24325] + X[50117], 2 X[50111] + 3 X[50117], 2 X[1125] + X[49493], X[1278] + 3 X[38314], X[3625] + 2 X[49491], 2 X[3626] + X[49499], 4 X[3634] - X[49447], 4 X[3636] - X[49452], 2 X[24349] + X[49510], 2 X[3696] + X[49535], 4 X[3739] - X[49520], 2 X[3842] + X[49525], 4 X[4691] - X[49503], 5 X[4699] - 3 X[19875], 5 X[4699] + X[49532], 3 X[19875] + X[49532], 2 X[4726] + X[49471], 4 X[4732] - X[49504], 8 X[4739] - 3 X[38098], 4 X[4739] - X[49457], 3 X[38098] - 2 X[49457], 7 X[4751] - X[49517], 4 X[4755] - 5 X[19862], 5 X[19862] - 2 X[49456], 7 X[4772] - X[49448], 5 X[4821] + X[49469], 3 X[38049] - 2 X[50779]

X(51060) lies on these lines: {1, 4740}, {2, 726}, {10, 537}, {37, 19883}, {75, 519}, {192, 25055}, {518, 3919}, {536, 551}, {545, 50297}, {740, 50778}, {752, 49727}, {984, 3828}, {1125, 4664}, {1278, 38314}, {1386, 17225}, {2796, 50119}, {3241, 49474}, {3625, 49491}, {3626, 49499}, {3634, 49447}, {3636, 49452}, {3663, 48853}, {3679, 24349}, {3696, 34641}, {3739, 49520}, {3842, 49525}, {4090, 4359}, {4361, 50283}, {4363, 50023}, {4439, 34824}, {4659, 24331}, {4660, 31995}, {4691, 49503}, {4699, 19875}, {4726, 49471}, {4732, 49504}, {4739, 38098}, {4745, 50075}, {4751, 49517}, {4755, 19862}, {4772, 49448}, {4821, 49469}, {4980, 42057}, {6534, 21080}, {6541, 29600}, {7263, 48821}, {7321, 50304}, {16815, 24821}, {16825, 50127}, {17116, 49482}, {17117, 49685}, {17118, 48805}, {17119, 50018}, {17140, 31136}, {24342, 49464}, {24357, 28301}, {24692, 42697}, {25557, 50097}, {25590, 48854}, {28503, 49733}, {28542, 49740}, {28562, 50310}, {29054, 50808}, {29594, 49676}, {30271, 34638}, {31145, 49498}, {31317, 41140}, {38049, 50779}, {46922, 49477}, {48822, 50101}, {49722, 50296}

X(51060) = midpoint of X(i) and X(j) for these {i,j}: {1, 4740}, {75, 31178}, {551, 50117}, {3241, 49474}, {3679, 24349}, {4664, 49493}, {4688, 49483}, {31145, 49498}, {34641, 49535}, {49722, 50296}, {50119, 50305}
X(51060) = reflection of X(i) in X(j) for these {i,j}: {10, 4688}, {551, 24325}, {984, 3828}, {3993, 551}, {4664, 1125}, {4669, 50096}, {34638, 30271}, {34641, 3696}, {49456, 4755}, {49479, 31178}, {49510, 3679}, {49520, 50094}, {50075, 4745}, {50094, 3739}, {50299, 49733}, {50777, 2}
X(51060) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 49479, 4709}, {24325, 50117, 3993}


X(51061) = X(1)X(4688)∩X(536)X(551)

Barycentrics    7*a^2*b + a*b^2 + 7*a^2*c + 12*a*b*c + 4*b^2*c + a*c^2 + 4*b*c^2 : :
X(51061) = 5 X[1] + X[49468], 3 X[1] + X[50086], 3 X[1] - X[50778], 5 X[4688] - X[49468], 3 X[4688] - X[50086], 3 X[4688] + X[50778], 3 X[49468] - 5 X[50086], 3 X[49468] + 5 X[50778], 5 X[2] - X[50075], X[37] - 3 X[25055], 7 X[37] - X[49517], 5 X[37] + X[49532], 3 X[25055] + X[31178], 21 X[25055] - X[49517], 15 X[25055] + X[49532], 7 X[31178] + X[49517], 5 X[31178] - X[49532], 5 X[49517] + 7 X[49532], X[75] + 3 X[38314], 5 X[3739] - 2 X[4732], 5 X[551] - X[3993], 3 X[551] - X[50111], 7 X[551] + X[50117], 2 X[3993] - 5 X[15569], X[3993] + 5 X[24325], 3 X[3993] - 5 X[50111], 7 X[3993] + 5 X[50117], X[15569] + 2 X[24325], 3 X[15569] - 2 X[50111], 7 X[15569] + 2 X[50117], 3 X[24325] + X[50111], 7 X[24325] - X[50117], 7 X[50111] + 3 X[50117], 5 X[3616] - X[4664], 5 X[3616] + X[49483], 7 X[3622] + X[4740], 7 X[3622] - X[49462], 7 X[3624] - X[49515], X[3679] - 5 X[40328], 5 X[3679] - X[49689], 5 X[40328] + X[49478], 25 X[40328] - X[49689], 5 X[49478] + X[49689], 2 X[4698] - 3 X[19883], 2 X[4698] + X[49479], 3 X[19883] + X[49479], 3 X[19883] - X[50094], 5 X[4699] + X[49475], 2 X[4739] + X[49471], 11 X[5550] + X[49499], 7 X[15808] - X[49456], 5 X[19862] + X[49491], 3 X[19875] - 5 X[31238], 3 X[19875] + X[49490], 5 X[31238] + X[49490], 7 X[19876] + X[49498], 7 X[27268] - X[49513], 13 X[34595] - X[49503], 13 X[46934] - X[49447]

X(51061) lies on these lines: {1, 4688}, {2, 210}, {37, 25055}, {75, 4742}, {141, 48853}, {142, 48821}, {519, 3739}, {536, 551}, {537, 1125}, {3241, 3696}, {3246, 4670}, {3555, 19871}, {3616, 4664}, {3622, 4740}, {3624, 49515}, {3679, 40328}, {4472, 49768}, {4648, 48849}, {4681, 28554}, {4698, 19883}, {4699, 49475}, {4715, 50297}, {4739, 49471}, {4796, 49710}, {4883, 31136}, {4906, 19701}, {5049, 44671}, {5550, 49499}, {10436, 42819}, {15254, 50127}, {15624, 16417}, {15668, 48854}, {15808, 49456}, {16823, 46922}, {16825, 50124}, {17313, 48851}, {17348, 50283}, {17382, 48822}, {17392, 28538}, {19862, 49491}, {19875, 31238}, {19876, 49498}, {24841, 29578}, {25501, 42056}, {25557, 50092}, {25590, 49485}, {27268, 49513}, {28522, 41150}, {28534, 49740}, {28580, 49733}, {28581, 50096}, {28582, 50777}, {28633, 50315}, {29054, 50828}, {29580, 32922}, {30271, 31162}, {31139, 50080}, {31161, 44307}, {31243, 36478}, {34595, 49503}, {46934, 49447}, {49741, 50290}

X(51061) = midpoint of X(i) and X(j) for these {i,j}: {1, 4688}, {37, 31178}, {551, 24325}, {3241, 3696}, {3679, 49478}, {4664, 49483}, {4740, 49462}, {17392, 50305}, {30271, 31162}, {49479, 50094}, {49740, 50116}, {50086, 50778}
X(51061) = reflection of X(i) in X(j) for these {i,j}: {4755, 1125}, {15569, 551}, {50094, 4698}
X(51061) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 50086, 50778}, {4670, 24331, 3246}, {4688, 50778, 50086}, {19883, 49479, 50094}, {19883, 50094, 4698}, {25055, 31178, 37}


X(51062) = X(11)X(37)∩X(536)X(6174)

Barycentrics    2*a^4*b - 2*a^3*b^2 - a^2*b^3 + a*b^4 + 2*a^4*c - 4*a^3*b*c + 3*a^2*b^2*c + a*b^3*c - b^4*c - 2*a^3*c^2 + 3*a^2*b*c^2 - 4*a*b^2*c^2 + b^3*c^2 - a^2*c^3 + a*b*c^3 + b^2*c^3 + a*c^4 - b*c^4 : :
X(51062) = X[149] - 5 X[4704], 4 X[4681] + X[6154], X[3644] + 4 X[35023], 4 X[3739] - 5 X[31235], 4 X[3842] - 3 X[34122], 5 X[4687] - 4 X[6667], X[10609] + 2 X[49456], X[13996] + 2 X[49462], 3 X[15015] + X[49445], 2 X[24325] - 3 X[34123], 7 X[27268] - 5 X[31272]

X(51062) lies on these lines: {11, 37}, {75, 3035}, {100, 192}, {119, 29010}, {149, 4704}, {214, 726}, {518, 1317}, {528, 4664}, {536, 6174}, {537, 50843}, {740, 1145}, {900, 20681}, {952, 984}, {1537, 29054}, {2397, 8299}, {2802, 3993}, {2805, 4681}, {2829, 30273}, {3644, 35023}, {3739, 31235}, {3842, 34122}, {4552, 21320}, {4687, 6667}, {5840, 20430}, {5848, 49509}, {5854, 49470}, {7201, 24465}, {7972, 49448}, {8680, 12831}, {10609, 49456}, {12735, 49490}, {13996, 49462}, {15015, 49445}, {24325, 34123}, {24845, 36942}, {25416, 49471}, {27268, 31272}, {27950, 39185}, {33337, 49520}

X(51062) = midpoint of X(i) and X(j) for these {i,j}: {100, 192}, {7972, 49448}, {33337, 49520}
X(51062) = reflection of X(i) in X(j) for these {i,j}: {11, 37}, {75, 3035}, {25416, 49471}, {49490, 12735}
X(51062) = {X(4552),X(21320)}-harmonic conjugate of X(23772)


X(51063) = X(20)X(37)∩X(536)X(3543)

Barycentrics    2*a^5*b - 2*a*b^5 + 2*a^5*c + 3*a^4*b*c - 2*a^2*b^3*c - 2*a*b^4*c - b^5*c + 4*a*b^3*c^2 - 2*a^2*b*c^3 + 4*a*b^2*c^3 + 2*b^3*c^3 - 2*a*b*c^4 - 2*a*c^5 - b*c^5 : :
X(51063) = 4 X[3] - 5 X[4687], 8 X[5] - 7 X[4751], 3 X[4664] - 4 X[20430], 3 X[4664] - 2 X[30273], 3 X[165] - 4 X[3842], 4 X[382] + X[3644], X[1278] - 5 X[17578], 3 X[1699] - 2 X[24325], 5 X[3091] - 4 X[3739], 5 X[3522] - 7 X[27268], 7 X[3523] - 8 X[4698], 8 X[3627] - X[4764], 6 X[3817] - 5 X[40328], 7 X[3832] - 5 X[4699], 3 X[3839] - 2 X[4688], 4 X[4681] + X[49135], 2 X[4686] - 7 X[50688], 5 X[4704] - X[5059], 2 X[4718] + 5 X[50691], 4 X[4732] - 5 X[37714], X[4740] - 3 X[50687], 4 X[4755] - 3 X[10304], 7 X[4772] - 11 X[50689], X[4788] + 7 X[50690], 11 X[5056] - 10 X[31238], 3 X[5731] - 4 X[15569], 2 X[5732] - 3 X[27475], 3 X[9812] - X[24349], 4 X[12699] - X[49499], 2 X[41869] + X[49447], 2 X[48910] + X[49502]

X(51063) lies on these lines: {2, 30271}, {3, 4687}, {4, 75}, {5, 4751}, {20, 37}, {30, 4664}, {153, 2805}, {165, 3842}, {192, 3146}, {382, 3644}, {388, 11997}, {515, 49470}, {516, 984}, {517, 48878}, {518, 962}, {536, 3543}, {537, 50865}, {740, 5691}, {742, 36990}, {746, 36997}, {950, 7201}, {971, 10446}, {990, 6996}, {1278, 17578}, {1503, 49496}, {1699, 24325}, {1766, 13727}, {1824, 18750}, {3091, 3739}, {3522, 27268}, {3523, 4698}, {3627, 4764}, {3673, 32118}, {3817, 40328}, {3832, 4699}, {3839, 4688}, {3993, 28164}, {4032, 9579}, {4301, 49490}, {4681, 49135}, {4686, 50688}, {4704, 5059}, {4718, 50691}, {4732, 37714}, {4740, 50687}, {4755, 10304}, {4772, 50689}, {4788, 50690}, {5056, 31238}, {5263, 12717}, {5728, 17753}, {5731, 15569}, {5732, 27475}, {5927, 9535}, {6895, 20171}, {7377, 12618}, {7991, 49457}, {7996, 50314}, {9589, 49448}, {9812, 24349}, {10394, 17220}, {10431, 20173}, {10723, 44970}, {10724, 44968}, {12610, 36652}, {12699, 49499}, {16706, 36670}, {17278, 36692}, {17303, 36693}, {17394, 37474}, {19546, 31233}, {25091, 37109}, {26011, 30971}, {28194, 50075}, {28228, 49510}, {28236, 49678}, {28606, 50694}, {28653, 36672}, {29054, 41869}, {29181, 49509}, {34628, 50111}, {34648, 50086}, {48910, 49502}

X(51063) = midpoint of X(i) and X(j) for these {i,j}: {192, 3146}, {9589, 49448}
X(51063) = reflection of X(i) in X(j) for these {i,j}: {20, 37}, {75, 4}, {7991, 49457}, {30273, 20430}, {34628, 50111}, {49490, 4301}, {50086, 34648}
X(51063) = anticomplement of X(30271)
X(51063) = {X(20430),X(30273)}-harmonic conjugate of X(4664)


X(51064) = X(20)X(4664)∩X(536)X(3543)

Barycentrics    5*a^5*b + 2*a^3*b^3 - 7*a*b^5 + 5*a^5*c + 11*a^4*b*c + 2*a^3*b^2*c - 10*a^2*b^3*c - 7*a*b^4*c - b^5*c + 2*a^3*b*c^2 + 14*a*b^3*c^2 + 2*a^3*c^3 - 10*a^2*b*c^3 + 14*a*b^2*c^3 + 2*b^3*c^3 - 7*a*b*c^4 - 7*a*c^5 - b*c^5 : :
X(51064) = 4 X[37] - 3 X[10304], 2 X[75] - 3 X[3839], X[1278] - 3 X[50687], 5 X[3091] - 4 X[4688], 7 X[3523] - 8 X[4755], 6 X[3524] - 7 X[27268], 6 X[3545] - 5 X[4699], 10 X[4687] - 9 X[15708], 3 X[5731] - 4 X[50111], 5 X[15692] - 4 X[30271], 3 X[25406] - 4 X[50779]

X(51064) lies on these lines: {4, 4740}, {20, 4664}, {30, 192}, {37, 10304}, {75, 3839}, {376, 20430}, {518, 50872}, {536, 3543}, {537, 962}, {726, 50865}, {740, 50864}, {984, 34632}, {1278, 50687}, {3091, 4688}, {3523, 4755}, {3524, 27268}, {3545, 4699}, {3993, 34628}, {4687, 15708}, {5731, 50111}, {7201, 15933}, {7996, 48854}, {15682, 29010}, {15683, 30273}, {15692, 30271}, {17225, 36990}, {24349, 31162}, {25406, 50779}, {28484, 50863}, {28516, 50873}, {28522, 50862}, {34648, 49474}

X(51064) = reflection of X(i) in X(j) for these {i,j}: {20, 4664}, {376, 20430}, {4740, 4}, {15683, 30273}, {24349, 31162}, {34628, 3993}, {34632, 984}, {49474, 34648}


X(51065) = X(20)X(4688)∩X(536)X(3543)

Barycentrics    8*a^5*b - 4*a^3*b^3 - 4*a*b^5 + 8*a^5*c + 5*a^4*b*c - 4*a^3*b^2*c + 2*a^2*b^3*c - 4*a*b^4*c - 7*b^5*c - 4*a^3*b*c^2 + 8*a*b^3*c^2 - 4*a^3*c^3 + 2*a^2*b*c^3 + 8*a*b^2*c^3 + 14*b^3*c^3 - 4*a*b*c^4 - 4*a*c^5 - 7*b*c^5 : :
X(51065) = 2 X[37] - 3 X[3839], X[192] - 3 X[50687], 3 X[1699] - 2 X[50111], 5 X[3091] - 4 X[4755], 6 X[3524] - 7 X[4751], 6 X[3545] - 5 X[4687], 4 X[3739] - 3 X[10304], 9 X[15708] - 10 X[31238], 4 X[31673] - X[49447]

X(51065) lies on these lines: {4, 4664}, {20, 4688}, {30, 75}, {37, 3839}, {192, 50687}, {381, 30273}, {516, 50086}, {518, 50864}, {536, 3543}, {537, 5691}, {726, 50862}, {740, 50865}, {984, 34648}, {1699, 50111}, {3091, 4755}, {3146, 4740}, {3524, 4751}, {3545, 4687}, {3696, 34632}, {3739, 10304}, {3830, 29010}, {15683, 30271}, {15687, 20430}, {15708, 31238}, {24325, 34628}, {28484, 50873}, {28516, 50866}, {28522, 50869}, {28555, 50867}, {28581, 50872}, {28582, 50863}, {29054, 50075}, {31162, 49470}, {31673, 49447}, {34627, 49450}

X(51065) = midpoint of X(3146) and X(4740)
X(51065) = reflection of X(i) in X(j) for these {i,j}: {20, 4688}, {984, 34648}, {4664, 4}, {15683, 30271}, {20430, 15687}, {30273, 381}, {34628, 24325}, {34632, 3696}, {49450, 34627}, {49470, 31162}


X(51066) = X(1)X(2)∩X(30)X(37714)

Barycentrics    a - 8*b - 8*c : :
X(51066) = 3 X[1] - 8 X[2], 7 X[1] + 8 X[8], X[1] - 16 X[10], 23 X[1] - 8 X[145], 11 X[1] - 16 X[551], 17 X[1] - 32 X[1125], X[1] - 4 X[1698], 13 X[1] - 8 X[3241], 31 X[1] - 16 X[3244], 5 X[1] - 8 X[3616], X[1] + 8 X[3617], 37 X[1] + 8 X[3621], 41 X[1] - 56 X[3622], 11 X[1] - 8 X[3623], 13 X[1] - 28 X[3624], 29 X[1] + 16 X[3625], 13 X[1] + 32 X[3626], 11 X[1] + 4 X[3632], 19 X[1] - 4 X[3633], 19 X[1] - 64 X[3634], 47 X[1] - 32 X[3635], 49 X[1] - 64 X[3636], X[1] + 4 X[3679], 7 X[1] - 32 X[3828], X[1] + 2 X[4668], 9 X[1] + 16 X[4669], 3 X[1] + 2 X[4677], 19 X[1] + 56 X[4678], 11 X[1] + 64 X[4691], 43 X[1] + 32 X[4701], 3 X[1] + 32 X[4745], 41 X[1] + 64 X[4746], 5 X[1] + 4 X[4816], 43 X[1] - 88 X[5550], 11 X[1] - 56 X[9780], 67 X[1] - 112 X[15808], 7 X[1] - 16 X[19862], 23 X[1] - 68 X[19872], X[1] - 6 X[19875], 2 X[1] - 7 X[19876], 29 X[1] - 104 X[19877], 53 X[1] - 128 X[19878], 23 X[1] - 48 X[19883], 83 X[1] - 8 X[20014], 43 X[1] - 8 X[20049], 53 X[1] - 8 X[20050], 13 X[1] + 8 X[20052], 67 X[1] + 8 X[20053], 97 X[1] + 8 X[20054], 71 X[1] - 56 X[20057], 79 X[1] - 304 X[22266], 7 X[1] - 12 X[25055], 17 X[1] + 8 X[31145], 11 X[1] - 32 X[31253], 11 X[1] - 26 X[34595], 19 X[1] + 16 X[34641], 7 X[1] - 2 X[34747], 7 X[1] + 48 X[38098], 19 X[1] - 24 X[38314], 93 X[1] - 128 X[41150], 67 X[1] - 232 X[46930], 49 X[1] - 184 X[46931], 31 X[1] - 136 X[46932], 13 X[1] - 88 X[46933], 59 X[1] - 104 X[46934], 7 X[2] + 3 X[8], X[2] - 6 X[10], 23 X[2] - 3 X[145], 11 X[2] - 6 X[551], 17 X[2] - 12 X[1125], 2 X[2] - 3 X[1698], 13 X[2] - 3 X[3241], 31 X[2] - 6 X[3244], 5 X[2] - 3 X[3616], X[2] + 3 X[3617], 37 X[2] + 3 X[3621], 41 X[2] - 21 X[3622], 11 X[2] - 3 X[3623], 26 X[2] - 21 X[3624], 29 X[2] + 6 X[3625], 13 X[2] + 12 X[3626], 22 X[2] + 3 X[3632], 38 X[2] - 3 X[3633], 19 X[2] - 24 X[3634], 47 X[2] - 12 X[3635], 49 X[2] - 24 X[3636], 2 X[2] + 3 X[3679], 7 X[2] - 12 X[3828], 4 X[2] + 3 X[4668], 3 X[2] + 2 X[4669], 4 X[2] + X[4677], 19 X[2] + 21 X[4678], 11 X[2] + 24 X[4691], 43 X[2] + 12 X[4701], X[2] + 4 X[4745], 41 X[2] + 24 X[4746], 10 X[2] + 3 X[4816], 43 X[2] - 33 X[5550], 11 X[2] - 21 X[9780], 67 X[2] - 42 X[15808], and many others

X(51066) lies on these lines: {1, 2}, {30, 37714}, {40, 3830}, {80, 31508}, {165, 3534}, {191, 15679}, {355, 8703}, {376, 9588}, {381, 7991}, {390, 38101}, {484, 3929}, {515, 19708}, {516, 50840}, {517, 19709}, {518, 50791}, {549, 5881}, {944, 38068}, {952, 15713}, {958, 19704}, {962, 38076}, {1268, 50132}, {1320, 38104}, {1376, 19705}, {1482, 38083}, {1656, 16189}, {1699, 38127}, {2550, 18513}, {2551, 18514}, {3219, 16558}, {3245, 3715}, {3305, 5541}, {3339, 11237}, {3416, 8584}, {3543, 43174}, {3545, 11362}, {3576, 15701}, {3579, 15685}, {3654, 3845}, {3655, 11812}, {3656, 7988}, {3681, 3968}, {3697, 44663}, {3711, 5425}, {3731, 4908}, {3746, 16857}, {3751, 15533}, {3817, 50872}, {3826, 38024}, {3839, 9589}, {3860, 12699}, {3869, 4540}, {3901, 3918}, {3913, 17542}, {3921, 5692}, {3973, 17330}, {3983, 5903}, {3992, 42034}, {4002, 5904}, {4085, 50089}, {4312, 38092}, {4338, 50736}, {4413, 37587}, {4421, 5251}, {4428, 48696}, {4445, 31312}, {4512, 50841}, {4654, 5726}, {4662, 24473}, {4664, 4732}, {4688, 49448}, {4695, 42041}, {4714, 42029}, {4731, 5902}, {4738, 19804}, {4748, 28301}, {4755, 49459}, {4859, 28635}, {4866, 17528}, {4888, 5936}, {4902, 5232}, {4912, 17251}, {4995, 5727}, {5010, 9708}, {5054, 30389}, {5055, 7982}, {5066, 5690}, {5071, 11522}, {5223, 38097}, {5258, 16371}, {5288, 40726}, {5298, 37709}, {5493, 50687}, {5657, 15682}, {5691, 11001}, {5731, 50829}, {5793, 16401}, {5818, 28194}, {5882, 15702}, {5886, 16191}, {6174, 9897}, {6684, 15698}, {7280, 9709}, {7741, 44847}, {7987, 15693}, {8275, 10589}, {8666, 36006}, {8715, 16858}, {9593, 39593}, {9624, 15699}, {9710, 17530}, {9711, 17533}, {9778, 50862}, {9812, 50803}, {9819, 11238}, {9900, 36329}, {9901, 35751}, {9902, 11055}, {9956, 11531}, {10164, 50801}, {10165, 50818}, {10175, 50827}, {10222, 15703}, {10436, 32101}, {10711, 12767}, {11224, 50817}, {11230, 50805}, {11231, 30392}, {11539, 37727}, {11540, 50824}, {11852, 34582}, {12100, 26446}, {12101, 41869}, {12780, 47866}, {12781, 47865}, {12782, 14711}, {13178, 15300}, {13624, 15722}, {14093, 31447}, {15015, 38213}, {15534, 50782}, {15621, 19293}, {15640, 34648}, {15695, 28208}, {15719, 50871}, {15759, 18481}, {15803, 19706}, {16173, 50842}, {16475, 50783}, {16490, 37682}, {16496, 21358}, {16667, 50082}, {16673, 50087}, {17271, 25590}, {17313, 28633}, {17525, 47033}, {17768, 38200}, {18145, 32104}, {18357, 33699}, {18492, 28198}, {19711, 37705}, {19925, 34632}, {20582, 49688}, {21356, 49529}, {22165, 47359}, {22650, 33706}, {22651, 36388}, {22652, 36386}, {22697, 44422}, {26726, 38026}, {28297, 33165}, {28484, 50086}, {28516, 50096}, {28582, 51034}, {28611, 44720}, {30393, 31140}, {31425, 34200}, {32557, 50894}, {34122, 50891}, {34773, 44580}, {35750, 50847}, {36331, 50850}, {37710, 38100}, {37720, 50038}, {38047, 50949}, {38057, 50836}, {38059, 50839}, {38155, 50864}, {38191, 50994}, {38210, 50835}, {41229, 50397}, {41990, 50807}, {43997, 50283}, {47311, 47321}, {47313, 47496}, {47358, 50951}, {48310, 49681}, {49474, 50094}, {49524, 50991}, {50047, 50066}, {50049, 50051}, {50777, 51037}, {50781, 50952}, {50786, 51001}, {50789, 51006}, {50808, 50863}

X(51066) = midpoint of X(i) and X(j) for these {i,j}: {1698, 3679}, {3241, 20052}, {3654, 50799}, {47359, 50784}
X(51066) = reflection of X(i) in X(j) for these {i,j}: {551, 31253}, {3623, 551}, {3654, 50822}, {3679, 3617}, {4668, 3679}, {5071, 31399}, {11522, 5071}, {14093, 31447}, {19862, 3828}, {50950, 50782}
X(51066) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 19875, 19876}, {2, 3679, 4677}, {2, 4677, 1}, {2, 4745, 3679}, {8, 3828, 25055}, {8, 25055, 34747}, {8, 38098, 3679}, {8, 46931, 3636}, {10, 3617, 1698}, {10, 3626, 46933}, {10, 3679, 19875}, {10, 4691, 9780}, {10, 4745, 2}, {10, 38098, 3828}, {1698, 3617, 4668}, {1698, 3623, 34595}, {1698, 4668, 1}, {1698, 4816, 3616}, {3582, 3584, 10321}, {3617, 46933, 20052}, {3623, 9780, 31253}, {3626, 46933, 3624}, {3632, 9780, 34595}, {3632, 34595, 1}, {3634, 4678, 3633}, {3634, 34641, 38314}, {3654, 5587, 50865}, {3679, 3828, 34747}, {3679, 19875, 1}, {3679, 25055, 8}, {3828, 38098, 8}, {4677, 19875, 2}, {4678, 38314, 34641}, {4691, 9780, 3632}, {9780, 31253, 1698}, {9956, 34718, 38021}, {20053, 46930, 15808}, {25055, 34747, 1}, {30286, 31434, 1}, {34641, 38314, 3633}, {34718, 38021, 11531}, {50796, 50809, 50866}, {50797, 50821, 50812}


X(51067) = X(1)X(2)∩X(355)X(15685)

Barycentrics    8*a - 19*b - 19*c : :
X(51067) = 9 X[1] - 19 X[2], 11 X[1] + 19 X[8], 4 X[1] - 19 X[10], 49 X[1] - 19 X[145], 14 X[1] - 19 X[551], 23 X[1] - 38 X[1125], 7 X[1] - 19 X[1698], 29 X[1] - 19 X[3241], 34 X[1] - 19 X[3244], 13 X[1] - 19 X[3616], X[1] - 19 X[3617], 71 X[1] + 19 X[3621], 25 X[1] - 19 X[3623], 73 X[1] - 133 X[3624], 26 X[1] + 19 X[3625], 7 X[1] + 38 X[3626], 41 X[1] + 19 X[3632], 79 X[1] - 19 X[3633], 31 X[1] - 76 X[3634], 53 X[1] - 38 X[3635], 61 X[1] - 76 X[3636], X[1] + 19 X[3679], 13 X[1] - 38 X[3828], 5 X[1] + 19 X[4668], 6 X[1] + 19 X[4669], 21 X[1] + 19 X[4677], 17 X[1] + 133 X[4678], X[1] - 76 X[4691], 37 X[1] + 38 X[4701], 3 X[1] - 38 X[4745], 29 X[1] + 76 X[4746], 17 X[1] + 19 X[4816], and many others

X(51067) lies on these lines: {1, 2}, {355, 15685}, {515, 15695}, {946, 38081}, {3036, 5325}, {3654, 28150}, {3845, 11362}, {3860, 40273}, {4058, 4908}, {4297, 38066}, {4301, 5066}, {4537, 44663}, {4688, 49504}, {4732, 49513}, {5493, 15682}, {5657, 50801}, {5690, 28202}, {5790, 50799}, {5881, 15698}, {5882, 11812}, {9778, 50868}, {10164, 15716}, {10172, 50805}, {10175, 50823}, {11001, 43174}, {12101, 28174}, {15711, 28204}, {15722, 26446}, {15759, 28224}, {15828, 17330}, {17768, 38210}, {19710, 28160}, {19711, 38112}, {21630, 38099}, {22165, 49529}, {28484, 50777}, {28516, 51034}, {28582, 50096}, {34379, 50953}, {34718, 38076}, {37712, 50815}, {38191, 50949}, {38213, 50889}, {41152, 49536}, {44580, 47745}, {47359, 50782}, {49505, 50991}, {50781, 50951}, {50784, 51004}, {50814, 50866}

X(51067) = midpoint of X(i) and X(j) for these {i,j}: {3617, 3679}, {3654, 50797}, {47359, 50782}
X(51067) = reflection of X(i) in X(j) for these {i,j}: {551, 1698}, {3616, 3828}, {51004, 50784}
X(51067) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 10, 15808}, {10, 3244, 22266}, {10, 34641, 19883}, {551, 4669, 4677}, {1698, 5550, 31253}, {3626, 4677, 4669}, {3626, 19878, 8}, {3654, 38155, 50862}, {3679, 4691, 38098}, {3679, 4745, 4669}, {3679, 19875, 4678}, {3679, 38098, 10}, {3828, 41150, 2}, {4669, 4745, 10}, {4669, 38098, 4745}, {4816, 31253, 3244}, {19875, 46930, 3828}


X(51068) = X(1)X(2)∩X(355)X(11001)

Barycentrics    5*a - 13*b - 13*c : :
X(51068) = 6 X[1] - 13 X[2], 8 X[1] + 13 X[8], 5 X[1] - 26 X[10], 34 X[1] - 13 X[145], 19 X[1] - 26 X[551], 31 X[1] - 52 X[1125], 23 X[1] - 65 X[1698], 20 X[1] - 13 X[3241], 47 X[1] - 26 X[3244], 44 X[1] - 65 X[3616], 2 X[1] - 65 X[3617], 50 X[1] + 13 X[3621], 10 X[1] - 13 X[3622], 86 X[1] - 65 X[3623], 7 X[1] - 13 X[3624], 37 X[1] + 26 X[3625], 11 X[1] + 52 X[3626], 29 X[1] + 13 X[3632], 55 X[1] - 13 X[3633], 41 X[1] - 104 X[3634], 73 X[1] - 52 X[3635], 83 X[1] - 104 X[3636], X[1] + 13 X[3679], 17 X[1] - 52 X[3828], 19 X[1] + 65 X[4668], 9 X[1] + 26 X[4669], 15 X[1] + 13 X[4677], 2 X[1] + 13 X[4678], X[1] + 104 X[4691], 53 X[1] + 52 X[4701], 3 X[1] - 52 X[4745], 43 X[1] + 104 X[4746], 61 X[1] + 65 X[4816], 80 X[1] - 143 X[5550], 4 X[1] - 13 X[9780], 17 X[1] - 26 X[15808], 67 X[1] - 130 X[19862], 95 X[1] - 221 X[19872], 11 X[1] - 39 X[19875], 5 X[1] - 13 X[19876], 64 X[1] - 169 X[19877], 43 X[1] - 78 X[19883], 118 X[1] - 13 X[20014], 62 X[1] - 13 X[20049], 76 X[1] - 13 X[20050], 82 X[1] + 65 X[20052], 92 X[1] + 13 X[20053], 134 X[1] + 13 X[20054], 16 X[1] - 13 X[20057], 25 X[1] - 39 X[25055], 22 X[1] + 13 X[31145], 85 X[1] - 169 X[34595], 23 X[1] + 26 X[34641], 41 X[1] - 13 X[34747], X[1] - 78 X[38098], 32 X[1] - 39 X[38314], 74 X[1] - 221 X[46932], 38 X[1] - 143 X[46933], 4 X[2] + 3 X[8], 5 X[2] - 12 X[10], 17 X[2] - 3 X[145], 19 X[2] - 12 X[551], 31 X[2] - 24 X[1125], 23 X[2] - 30 X[1698], 10 X[2] - 3 X[3241], 47 X[2] - 12 X[3244], 22 X[2] - 15 X[3616], X[2] - 15 X[3617], 25 X[2] + 3 X[3621], 5 X[2] - 3 X[3622], 43 X[2] - 15 X[3623], 7 X[2] - 6 X[3624], 37 X[2] + 12 X[3625], 11 X[2] + 24 X[3626], 29 X[2] + 6 X[3632], 55 X[2] - 6 X[3633], 41 X[2] - 48 X[3634], 73 X[2] - 24 X[3635], 83 X[2] - 48 X[3636], X[2] + 6 X[3679], 17 X[2] - 24 X[3828], 19 X[2] + 30 X[4668], 3 X[2] + 4 X[4669], 5 X[2] + 2 X[4677], X[2] + 3 X[4678], X[2] + 48 X[4691], 53 X[2] + 24 X[4701], X[2] - 8 X[4745], 43 X[2] + 48 X[4746], 61 X[2] + 30 X[4816], 40 X[2] - 33 X[5550], 2 X[2] - 3 X[9780], 17 X[2] - 12 X[15808], 67 X[2] - 60 X[19862], 95 X[2] - 102 X[19872], 11 X[2] - 18 X[19875], 5 X[2] - 6 X[19876], 32 X[2] - 39 X[19877], and many others

X(51068) lies on these lines: {1, 2}, {40, 15640}, {165, 50801}, {329, 45116}, {355, 11001}, {515, 50820}, {516, 50874}, {517, 41106}, {518, 50792}, {944, 15693}, {952, 15701}, {962, 41099}, {966, 4908}, {3036, 5273}, {3534, 5657}, {3654, 15682}, {3830, 5690}, {3839, 11362}, {3845, 5790}, {3913, 16861}, {3968, 4430}, {4723, 42029}, {4732, 4740}, {5055, 5734}, {5066, 5818}, {5587, 50827}, {5603, 10109}, {5731, 12100}, {5852, 38203}, {5881, 15692}, {5882, 15721}, {5936, 17378}, {6361, 33699}, {8584, 38087}, {8703, 34627}, {9778, 28172}, {9779, 50872}, {9956, 34631}, {10164, 50871}, {10175, 50817}, {10246, 11540}, {10248, 28194}, {10595, 38083}, {11231, 50804}, {12101, 12702}, {12780, 36327}, {12781, 35749}, {15533, 49524}, {15534, 50949}, {15679, 21677}, {15683, 43174}, {15690, 18525}, {15698, 28204}, {15709, 37727}, {15719, 26446}, {15722, 18526}, {15759, 37705}, {16210, 34582}, {17249, 32087}, {17271, 31995}, {17313, 28635}, {19708, 50821}, {19709, 38034}, {21296, 32025}, {22165, 50785}, {22651, 36346}, {22652, 36352}, {22851, 33627}, {22896, 33626}, {24393, 38092}, {28232, 50796}, {28555, 51034}, {28626, 32089}, {32101, 50088}, {32558, 50894}, {36521, 50885}, {37714, 50687}, {38128, 50907}, {38191, 50950}, {38200, 50835}, {38204, 50838}, {47314, 47488}, {47359, 50992}, {50045, 50047}, {50096, 51056}, {50781, 50953}, {50993, 50999}

X(51068) = reflection of X(i) in X(j) for these {i,j}: {3241, 3622}, {3622, 19876}, {4678, 3679}, {15808, 3828}, {19876, 10}
X(51068) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3617, 4745}, {2, 4677, 3241}, {8, 10, 5550}, {8, 9780, 20057}, {10, 3622, 9780}, {10, 3626, 3633}, {10, 3633, 46931}, {10, 4677, 2}, {10, 19872, 46933}, {3241, 5550, 38314}, {3616, 3626, 8}, {3621, 25055, 3241}, {3626, 19875, 31145}, {3633, 46931, 3616}, {3679, 4745, 2}, {3679, 19875, 3626}, {3679, 38098, 3617}, {4668, 20050, 8}, {4668, 46933, 20050}, {4678, 9780, 8}, {4691, 38098, 3679}, {5550, 20057, 3622}, {5690, 38074, 34632}, {19875, 31145, 3616}, {34718, 38081, 5818}


X(51069) = X(1)X(2)∩X(355)X(15693)

Barycentrics    2*a + 11*b + 11*c : :
X(51069) = 3 X[1] - 11 X[2], 13 X[1] + 11 X[8], X[1] + 11 X[10], 35 X[1] - 11 X[145], 7 X[1] - 11 X[551], 5 X[1] - 11 X[1125], 7 X[1] - 55 X[1698], 19 X[1] - 11 X[3241], 23 X[1] - 11 X[3244], 31 X[1] - 55 X[3616], 17 X[1] + 55 X[3617], 61 X[1] + 11 X[3621], 53 X[1] - 77 X[3622], 79 X[1] - 55 X[3623], 29 X[1] - 77 X[3624], 25 X[1] + 11 X[3625], 7 X[1] + 11 X[3626], 37 X[1] + 11 X[3632], 59 X[1] - 11 X[3633], 2 X[1] - 11 X[3634], 17 X[1] - 11 X[3635], 8 X[1] - 11 X[3636], 5 X[1] + 11 X[3679], X[1] - 11 X[3828], 41 X[1] + 55 X[4668], 9 X[1] + 11 X[4669], 21 X[1] + 11 X[4677], 43 X[1] + 77 X[4678], 4 X[1] + 11 X[4691], 19 X[1] + 11 X[4701], 3 X[1] + 11 X[4745], 10 X[1] + 11 X[4746], 89 X[1] + 55 X[4816], 49 X[1] - 121 X[5550], 5 X[1] - 77 X[9780], 41 X[1] - 77 X[15808], 19 X[1] - 55 X[19862], 43 X[1] - 187 X[19872], X[1] - 33 X[19875], 13 X[1] - 77 X[19876], 23 X[1] - 143 X[19877], 7 X[1] - 22 X[19878], 13 X[1] - 33 X[19883], 131 X[1] - 11 X[20014], 67 X[1] - 11 X[20049], 83 X[1] - 11 X[20050], 113 X[1] + 55 X[20052], 109 X[1] + 11 X[20053], 157 X[1] + 11 X[20054], 101 X[1] - 77 X[20057], 29 X[1] - 209 X[22266], 17 X[1] - 33 X[25055], 29 X[1] + 11 X[31145], 13 X[1] - 55 X[31253], 47 X[1] - 143 X[34595], 17 X[1] + 11 X[34641], 43 X[1] - 11 X[34747], X[1] + 3 X[38098], 25 X[1] - 33 X[38314], 15 X[1] - 22 X[41150], 5 X[1] - 29 X[46930], 37 X[1] - 253 X[46931], 19 X[1] - 187 X[46932], X[1] - 121 X[46933], 71 X[1] - 143 X[46934], 13 X[2] + 3 X[8], X[2] + 3 X[10], 35 X[2] - 3 X[145], 7 X[2] - 3 X[551], 5 X[2] - 3 X[1125], 7 X[2] - 15 X[1698], 19 X[2] - 3 X[3241], 23 X[2] - 3 X[3244], 31 X[2] - 15 X[3616], 17 X[2] + 15 X[3617], 61 X[2] + 3 X[3621], 53 X[2] - 21 X[3622], 79 X[2] - 15 X[3623], 29 X[2] - 21 X[3624], 25 X[2] + 3 X[3625], 7 X[2] + 3 X[3626], 37 X[2] + 3 X[3632], 59 X[2] - 3 X[3633], 2 X[2] - 3 X[3634], 17 X[2] - 3 X[3635], 8 X[2] - 3 X[3636], 5 X[2] + 3 X[3679], X[2] - 3 X[3828], 41 X[2] + 15 X[4668], 3 X[2] + X[4669], 7 X[2] + X[4677], 43 X[2] + 21 X[4678], 4 X[2] + 3 X[4691], 19 X[2] + 3 X[4701], 10 X[2] + 3 X[4746], 89 X[2] + 15 X[4816], 49 X[2] - 33 X[5550], 5 X[2] - 21 X[9780], and many others

X(51069) lies on these lines: {1, 2}, {40, 38076}, {165, 50862}, {214, 38099}, {355, 15693}, {376, 31425}, {381, 31399}, {515, 12100}, {516, 3845}, {517, 10109}, {946, 38066}, {952, 11540}, {993, 19705}, {1145, 38104}, {1213, 4908}, {1385, 38081}, {1739, 42039}, {2550, 38101}, {2796, 36522}, {3416, 38089}, {3534, 26446}, {3543, 9588}, {3579, 33699}, {3653, 47745}, {3654, 10175}, {3656, 10171}, {3740, 3968}, {3746, 17547}, {3751, 50990}, {3812, 4540}, {3817, 50810}, {3830, 19925}, {3839, 5493}, {3844, 50991}, {3860, 28198}, {3918, 44663}, {3921, 5883}, {3983, 24473}, {3992, 4980}, {4002, 31165}, {4015, 33815}, {4125, 42029}, {4297, 15698}, {4301, 5071}, {4547, 31794}, {4688, 49513}, {4708, 28301}, {4731, 10176}, {4732, 4755}, {4793, 18743}, {4937, 27812}, {5055, 11362}, {5066, 9956}, {5223, 38094}, {5258, 36006}, {5542, 38097}, {5587, 15682}, {5657, 41106}, {5690, 38083}, {5691, 15697}, {5790, 15701}, {5791, 19706}, {5818, 11001}, {5881, 15702}, {5882, 15694}, {6684, 8703}, {7988, 50872}, {7989, 34632}, {8715, 16857}, {9881, 50887}, {10164, 19708}, {10165, 50798}, {10172, 38112}, {10304, 37714}, {11230, 50823}, {11231, 15713}, {11274, 31235}, {11812, 28204}, {13464, 15699}, {15178, 47598}, {15534, 38047}, {15640, 34638}, {15673, 50845}, {15675, 47033}, {15685, 31673}, {15686, 31447}, {15690, 18357}, {15716, 18481}, {15719, 38155}, {15759, 28208}, {16189, 46935}, {17273, 32089}, {17533, 50038}, {18480, 19710}, {19704, 25440}, {21358, 49529}, {22165, 34379}, {24168, 42038}, {25351, 36525}, {25639, 44847}, {28186, 46332}, {28522, 50096}, {28562, 49731}, {31423, 34627}, {32557, 50842}, {34122, 50841}, {34560, 36466}, {35752, 50847}, {36330, 50850}, {38034, 50822}, {38049, 50783}, {38052, 50834}, {38054, 50835}, {38087, 49511}, {38138, 50825}, {38176, 50824}, {38191, 47358}, {38201, 50836}, {38213, 50843}, {47311, 47496}, {47359, 50787}, {49523, 50094}, {50786, 51005}, {50994, 51004}

X(51069) = midpoint of X(i) and X(j) for these {i,j}: {2, 4745}, {10, 3828}, {381, 43174}, {551, 3626}, {1125, 3679}, {3241, 4701}, {3635, 34641}, {3654, 50802}, {3740, 3968}, {4732, 4755}, {9881, 50887}, {10171, 38127}, {10172, 38112}, {12512, 34648}, {47359, 50787}, {50786, 51005}
X(51069) = reflection of X(i) in X(j) for these {i,j}: {551, 19878}, {3634, 3828}, {4746, 3679}
X(51069) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10, 4745}, {2, 4677, 551}, {8, 19876, 19883}, {10, 1698, 3626}, {10, 3634, 4691}, {10, 9780, 1125}, {10, 19875, 3828}, {10, 46932, 4701}, {145, 9780, 1698}, {1125, 3626, 145}, {1698, 3626, 19878}, {1698, 4677, 2}, {1698, 19878, 3634}, {3617, 25055, 34641}, {3634, 4691, 3636}, {3634, 4746, 1125}, {3654, 10175, 50802}, {3679, 19875, 9780}, {3679, 38314, 3625}, {3828, 4745, 2}, {4745, 41150, 4746}, {19876, 19883, 31253}, {25055, 34641, 3635}


X(51070) = X(1)X(2)∩X(515)X(15690)

Barycentrics    10*a - 17*b - 17*c : :
X(51070) = 9 X[1] - 17 X[2], 7 X[1] + 17 X[8], 5 X[1] - 17 X[10], 41 X[1] - 17 X[145], 13 X[1] - 17 X[551], 11 X[1] - 17 X[1125], 37 X[1] - 85 X[1698], 25 X[1] - 17 X[3241], 29 X[1] - 17 X[3244], 61 X[1] - 85 X[3616], 13 X[1] - 85 X[3617], 55 X[1] + 17 X[3621], 95 X[1] - 119 X[3622], 109 X[1] - 85 X[3623], 71 X[1] - 119 X[3624], 19 X[1] + 17 X[3625], X[1] + 17 X[3626], 31 X[1] + 17 X[3632], 65 X[1] - 17 X[3633], 8 X[1] - 17 X[3634], 23 X[1] - 17 X[3635], 14 X[1] - 17 X[3636], X[1] - 17 X[3679], 7 X[1] - 17 X[3828], 11 X[1] + 85 X[4668], 3 X[1] + 17 X[4669], 15 X[1] + 17 X[4677], X[1] + 119 X[4678], 2 X[1] - 17 X[4691], 13 X[1] + 17 X[4701], 3 X[1] - 17 X[4745], 4 X[1] + 17 X[4746], 59 X[1] + 85 X[4816], 47 X[1] - 119 X[9780], 83 X[1] - 119 X[15808], 49 X[1] - 85 X[19862], 19 X[1] - 51 X[19875], 55 X[1] - 119 X[19876], 19 X[1] - 34 X[19878], 31 X[1] - 51 X[19883], 137 X[1] - 17 X[20014], 73 X[1] - 17 X[20049], 89 X[1] - 17 X[20050], 83 X[1] + 85 X[20052], 103 X[1] + 17 X[20053], 151 X[1] + 17 X[20054], 35 X[1] - 51 X[25055], 23 X[1] + 17 X[31145], 43 X[1] - 85 X[31253], 11 X[1] + 17 X[34641], 49 X[1] - 17 X[34747], 7 X[1] - 51 X[38098], 43 X[1] - 51 X[38314], 27 X[1] - 34 X[41150], 67 X[1] - 187 X[46933], 7 X[2] + 9 X[8], 5 X[2] - 9 X[10], 41 X[2] - 9 X[145], 13 X[2] - 9 X[551], 11 X[2] - 9 X[1125], 37 X[2] - 45 X[1698], 25 X[2] - 9 X[3241], 29 X[2] - 9 X[3244], 61 X[2] - 45 X[3616], 13 X[2] - 45 X[3617], 55 X[2] + 9 X[3621], 95 X[2] - 63 X[3622], 109 X[2] - 45 X[3623], 71 X[2] - 63 X[3624], 19 X[2] + 9 X[3625], X[2] + 9 X[3626], 31 X[2] + 9 X[3632], 65 X[2] - 9 X[3633], 8 X[2] - 9 X[3634], 23 X[2] - 9 X[3635], 14 X[2] - 9 X[3636], X[2] - 9 X[3679], 7 X[2] - 9 X[3828], 11 X[2] + 45 X[4668], X[2] + 3 X[4669], 5 X[2] + 3 X[4677], X[2] + 63 X[4678], 2 X[2] - 9 X[4691], 13 X[2] + 9 X[4701], X[2] - 3 X[4745], 4 X[2] + 9 X[4746], 59 X[2] + 45 X[4816], 115 X[2] - 99 X[5550], 47 X[2] - 63 X[9780], 83 X[2] - 63 X[15808], 49 X[2] - 45 X[19862], 19 X[2] - 27 X[19875], 55 X[2] - 63 X[19876], 19 X[2] - 18 X[19878], 31 X[2] - 27 X[19883], 137 X[2] - 9 X[20014], 73 X[2] - 9 X[20049], and many others

X(51070) lies on these lines: {1, 2}, {515, 15690}, {516, 33699}, {517, 3860}, {518, 41152}, {726, 51036}, {952, 44580}, {3534, 43174}, {3654, 15685}, {3655, 15722}, {3817, 50817}, {3830, 11362}, {4013, 36593}, {4301, 41106}, {4536, 44663}, {4738, 4980}, {4793, 42034}, {5493, 15640}, {5657, 50815}, {5686, 50837}, {5690, 19710}, {5790, 50802}, {5846, 41153}, {5847, 41149}, {5881, 19708}, {5882, 15701}, {6684, 19711}, {10165, 50804}, {11230, 50830}, {12101, 28194}, {12245, 38076}, {12512, 34627}, {12645, 38068}, {15533, 49529}, {15711, 28236}, {15716, 38066}, {15759, 28204}, {17249, 50099}, {19925, 34718}, {28158, 50814}, {28228, 50796}, {28522, 51034}, {34379, 50949}, {38034, 38176}, {38049, 50789}, {38054, 50838}, {38112, 50828}, {38127, 50798}, {38155, 50810}, {38191, 50783}, {38201, 50835}, {38213, 50842}, {47311, 47492}, {47359, 50786}, {49461, 50094}, {49505, 50994}, {49688, 50993}, {50781, 50989}

X(51070) = midpoint of X(i) and X(j) for these {i,j}: {8, 3828}, {551, 4701}, {1125, 34641}, {3626, 3679}, {3635, 31145}, {3654, 50801}, {4669, 4745}, {12512, 34627}, {19925, 34718}, {47359, 50786}
X(51070) = reflection of X(i) in X(j) for these {i,j}: {3636, 3828}, {4691, 3679}
X(51070) = anticomplement of X(41150)
X(51070) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 3679, 38098}, {8, 38098, 3828}, {10, 3244, 19872}, {10, 3621, 1125}, {10, 3625, 3622}, {10, 4669, 4677}, {10, 25055, 3828}, {1125, 3626, 4668}, {3241, 46931, 25055}, {3617, 3633, 10}, {3621, 20057, 3633}, {3626, 4691, 4746}, {3626, 4745, 4669}, {3679, 4669, 4745}, {4691, 4746, 3634}, {20057, 22266, 1125}


X(51071) = X(1)X(2)∩X(30)X(4301)

Barycentrics    8*a - b - c : :
X(51071) = 3 X[1] - X[2], 7 X[1] - X[8], 4 X[1] - X[10], 5 X[1] + X[145], 5 X[1] - 2 X[1125], 17 X[1] - 5 X[1698], 2 X[1] + X[3244], 11 X[1] - 5 X[3616], 23 X[1] - 5 X[3617], 19 X[1] - X[3621], 13 X[1] - 7 X[3622], X[1] + 5 X[3623], 19 X[1] - 7 X[3624], 10 X[1] - X[3625], 11 X[1] - 2 X[3626], 13 X[1] - X[3632], 11 X[1] + X[3633], 13 X[1] - 4 X[3634], X[1] + 2 X[3635], 7 X[1] - 4 X[3636], 5 X[1] - X[3679], 7 X[1] - 2 X[3828], 29 X[1] - 5 X[4668], 6 X[1] - X[4669], 9 X[1] - X[4677], 37 X[1] - 7 X[4678], 19 X[1] - 4 X[4691], 17 X[1] - 2 X[4701], 9 X[1] - 2 X[4745], 25 X[1] - 4 X[4746], 41 X[1] - 5 X[4816], 29 X[1] - 11 X[5550], 25 X[1] - 7 X[9780], 16 X[1] - 7 X[15808], 14 X[1] - 5 X[19862], 53 X[1] - 17 X[19872], 11 X[1] - 3 X[19875], 23 X[1] - 7 X[19876], 43 X[1] - 13 X[19877], 23 X[1] - 8 X[19878], 8 X[1] - 3 X[19883], 29 X[1] + X[20014], 13 X[1] + X[20049], 17 X[1] + X[20050], 47 X[1] - 5 X[20052], 31 X[1] - X[20053], 43 X[1] - X[20054], X[1] - 7 X[20057], 64 X[1] - 19 X[22266], 7 X[1] - 3 X[25055], 11 X[1] - X[31145], 31 X[1] - 10 X[31253], 37 X[1] - 13 X[34595], 8 X[1] - X[34641], 7 X[1] + X[34747], 14 X[1] - 3 X[38098], 5 X[1] - 3 X[38314], 15 X[1] - 8 X[41150], 95 X[1] - 29 X[46930], 77 X[1] - 23 X[46931], 59 X[1] - 17 X[46932], 41 X[1] - 11 X[46933], 31 X[1] - 13 X[46934], 7 X[2] - 3 X[8], 4 X[2] - 3 X[10], 5 X[2] + 3 X[145], 2 X[2] - 3 X[551], 5 X[2] - 6 X[1125], 17 X[2] - 15 X[1698], X[2] + 3 X[3241], 2 X[2] + 3 X[3244], 11 X[2] - 15 X[3616], 23 X[2] - 15 X[3617], 19 X[2] - 3 X[3621], 13 X[2] - 21 X[3622], X[2] + 15 X[3623], 19 X[2] - 21 X[3624], 10 X[2] - 3 X[3625], 11 X[2] - 6 X[3626], 13 X[2] - 3 X[3632], 11 X[2] + 3 X[3633], 13 X[2] - 12 X[3634], X[2] + 6 X[3635], 7 X[2] - 12 X[3636], 5 X[2] - 3 X[3679], 7 X[2] - 6 X[3828], 29 X[2] - 15 X[4668], 37 X[2] - 21 X[4678], 19 X[2] - 12 X[4691], 17 X[2] - 6 X[4701], 25 X[2] - 12 X[4746], 41 X[2] - 15 X[4816], 29 X[2] - 33 X[5550], 25 X[2] - 21 X[9780], 16 X[2] - 21 X[15808], 14 X[2] - 15 X[19862], 53 X[2] - 51 X[19872], 11 X[2] - 9 X[19875], 23 X[2] - 21 X[19876], 43 X[2] - 39 X[19877], 23 X[2] - 24 X[19878], and many others

X(51071) lies on these lines: {1, 2}, {6, 4098}, {20, 16189}, {30, 4301}, {37, 49504}, {40, 19708}, {45, 4982}, {55, 19704}, {56, 19705}, {81, 16490}, {86, 50099}, {100, 37602}, {142, 50112}, {165, 50814}, {214, 14563}, {226, 1317}, {354, 2802}, {355, 19709}, {376, 5493}, {381, 13464}, {392, 4134}, {495, 3829}, {514, 3251}, {515, 3656}, {516, 7967}, {517, 3892}, {518, 3898}, {524, 49465}, {527, 30331}, {528, 5542}, {529, 15170}, {535, 3058}, {536, 49471}, {537, 3993}, {540, 49739}, {545, 4667}, {549, 11362}, {553, 2099}, {597, 49529}, {599, 49681}, {726, 11055}, {730, 14711}, {740, 50778}, {752, 4356}, {758, 5919}, {903, 4896}, {942, 34639}, {944, 15682}, {946, 1483}, {952, 3817}, {956, 8162}, {960, 4537}, {962, 34628}, {993, 4428}, {999, 4421}, {1001, 50283}, {1100, 3950}, {1120, 41434}, {1255, 24857}, {1266, 39704}, {1319, 33595}, {1320, 5425}, {1385, 12100}, {1386, 9041}, {1392, 43732}, {1482, 3534}, {1699, 50864}, {1992, 16496}, {2098, 4314}, {2321, 50123}, {2550, 38094}, {2784, 50881}, {2796, 7983}, {3036, 38104}, {3057, 3881}, {3081, 16211}, {3242, 15534}, {3243, 43179}, {3246, 49713}, {3247, 4856}, {3295, 5267}, {3303, 8666}, {3304, 8715}, {3339, 6049}, {3416, 50993}, {3452, 15935}, {3476, 4654}, {3488, 28609}, {3524, 31425}, {3543, 5734}, {3545, 5881}, {3555, 3884}, {3576, 15698}, {3579, 15759}, {3653, 6684}, {3654, 10164}, {3663, 11057}, {3664, 50101}, {3671, 5434}, {3723, 3986}, {3746, 17549}, {3754, 17609}, {3839, 11522}, {3860, 18480}, {3874, 9957}, {3875, 4909}, {3878, 31792}, {3879, 17273}, {3880, 5049}, {3885, 18398}, {3889, 5697}, {3893, 3918}, {3899, 4430}, {3913, 16417}, {3928, 31393}, {3946, 17313}, {3947, 4870}, {3987, 46190}, {3997, 16971}, {4021, 17274}, {4029, 4370}, {4058, 17388}, {4072, 16884}, {4090, 34587}, {4125, 4975}, {4133, 49473}, {4135, 31161}, {4141, 35263}, {4234, 4658}, {4311, 11009}, {4349, 28580}, {4353, 15600}, {4357, 50132}, {4359, 4793}, {4360, 50108}, {4424, 42038}, {4432, 36522}, {4464, 17394}, {4653, 41629}, {4664, 49490}, {4670, 28309}, {4688, 4709}, {4692, 4742}, {4694, 42040}, {4700, 16672}, {4715, 49700}, {4717, 42029}, {4740, 49469}, {4755, 49457}, {4762, 48285}, {4780, 17392}, {4795, 17318}, {4803, 25507}, {4848, 5298}, {4852, 49738}, {4895, 23795}, {4924, 4991}, {4969, 16590}, {5071, 9624}, {5159, 47537}, {5257, 46845}, {5258, 16858}, {5281, 8275}, {5435, 16236}, {5450, 12000}, {5541, 27003}, {5563, 13587}, {5587, 50801}, {5603, 28236}, {5625, 49467}, {5657, 50817}, {5686, 50838}, {5690, 15713}, {5710, 16401}, {5731, 11224}, {5741, 21088}, {5745, 36867}, {5750, 50087}, {5790, 50804}, {5844, 10165}, {5846, 50781}, {5847, 15533}, {5850, 8236}, {5853, 38054}, {5854, 50841}, {5886, 38155}, {5901, 10109}, {6174, 25416}, {6702, 38026}, {6796, 12001}, {7373, 25440}, {7962, 10385}, {7972, 10707}, {7974, 36330}, {7975, 35752}, {7977, 12156}, {7980, 22484}, {7981, 22485}, {7991, 10304}, {8027, 29350}, {8148, 15695}, {8227, 38074}, {9053, 38049}, {9588, 15708}, {9589, 15683}, {9778, 50816}, {9802, 26842}, {9812, 50869}, {9875, 50887}, {9881, 50888}, {9884, 50886}, {9956, 38022}, {10031, 15679}, {10107, 50191}, {10175, 10283}, {10176, 10179}, {10595, 19925}, {11038, 50839}, {11112, 34699}, {11113, 34749}, {11114, 34690}, {11207, 11367}, {11208, 11366}, {11236, 37739}, {11237, 37738}, {11238, 37740}, {11260, 15673}, {11263, 49600}, {11278, 15690}, {11373, 34717}, {11374, 34700}, {11529, 34607}, {11531, 12512}, {11711, 36521}, {11813, 37728}, {12005, 23340}, {12053, 33176}, {12101, 31673}, {12245, 15719}, {12258, 36523}, {12437, 33895}, {12513, 16418}, {12531, 33709}, {12559, 34610}, {12577, 34701}, {12625, 50741}, {12630, 38092}, {12640, 17564}, {12781, 36767}, {13624, 15711}, {14891, 31666}, {14923, 33815}, {15569, 49510}, {15621, 19252}, {15640, 28164}, {15677, 16126}, {15678, 34195}, {15685, 18481}, {15692, 30389}, {15699, 31399}, {15863, 45310}, {15888, 17530}, {15934, 19706}, {16173, 50890}, {16484, 49685}, {16489, 32911}, {16777, 50131}, {17045, 50081}, {17079, 25716}, {17132, 49455}, {17133, 32941}, {17180, 33296}, {17256, 31332}, {17319, 50090}, {17382, 17390}, {17395, 31138}, {17460, 39697}, {17533, 37722}, {17556, 37724}, {17579, 34719}, {17766, 49630}, {17793, 36524}, {18146, 24524}, {18185, 19247}, {18483, 18526}, {19710, 28198}, {19722, 48863}, {19738, 48866}, {21161, 34486}, {21358, 49679}, {21627, 50396}, {22165, 28538}, {22791, 28208}, {22867, 36368}, {22912, 36366}, {23789, 48287}, {24393, 38101}, {26446, 50827}, {28522, 51054}, {28554, 49462}, {28581, 50096}, {30308, 50803}, {31150, 50767}, {31151, 49695}, {31178, 49470}, {31447, 41983}, {33682, 48805}, {34123, 50842}, {34379, 50999}, {34502, 39781}, {34582, 49585}, {34612, 44840}, {35610, 42525}, {35611, 42524}, {35751, 50849}, {36329, 50852}, {36768, 50847}, {37429, 43177}, {37904, 47472}, {37911, 47564}, {38028, 38127}, {38053, 38201}, {38089, 49524}, {38112, 50830}, {38220, 50885}, {38315, 47359}, {38496, 48824}, {42819, 50124}, {43531, 48862}, {44635, 49548}, {44636, 49547}, {45667, 50337}, {46922, 49482}, {47097, 47489}, {47311, 47493}, {47352, 49688}, {47729, 50760}, {49675, 49705}, {49676, 49691}, {49710, 49742}, {50053, 50064}, {50062, 50069}, {50070, 50072}, {50092, 50125}, {50100, 50121}, {50787, 50950}, {50844, 50894}

X(51071) = midpoint of X(i) and X(j) for these {i,j}: {1, 3241}, {8, 34747}, {40, 34631}, {145, 3679}, {355, 34748}, {376, 7982}, {381, 37727}, {551, 3244}, {599, 49681}, {944, 31162}, {962, 34628}, {1482, 3655}, {1992, 16496}, {3057, 24473}, {3242, 47356}, {3243, 47357}, {3555, 31165}, {3632, 20049}, {3633, 31145}, {3654, 50805}, {3899, 4430}, {4664, 49490}, {4688, 49475}, {4740, 49469}, {4795, 17318}, {5731, 11224}, {6174, 25416}, {7967, 16200}, {7972, 10707}, {9589, 15683}, {9881, 50888}, {9884, 50886}, {10031, 50891}, {11112, 34699}, {11113, 34749}, {11114, 34690}, {11531, 34632}, {15677, 16126}, {17579, 34719}, {31138, 49699}, {31150, 50767}, {31151, 49695}, {31178, 49470}, {34637, 34649}, {47097, 47489}, {47358, 51000}, {47359, 50790}, {47493, 47593}, {47729, 50760}, {49578, 49582}, {50070, 50072}
X(51071) = reflection of X(i) in X(j) for these {i,j}: {8, 3828}, {10, 551}, {381, 13464}, {549, 15178}, {551, 1}, {3241, 3635}, {3244, 3241}, {3625, 3679}, {3654, 50828}, {3655, 13607}, {3679, 1125}, {3828, 3636}, {3919, 354}, {4067, 31165}, {4084, 24473}, {4134, 392}, {4297, 3655}, {4669, 2}, {4677, 4745}, {4709, 4688}, {4780, 50109}, {5493, 376}, {5883, 5049}, {9875, 50887}, {10164, 10246}, {10175, 10283}, {10176, 10179}, {11274, 12735}, {11362, 549}, {15863, 45310}, {24473, 3881}, {31145, 3626}, {31165, 3884}, {33337, 11274}, {34627, 19925}, {34632, 12512}, {34638, 4297}, {34641, 10}, {34648, 946}, {34718, 6684}, {38098, 25055}, {38127, 38028}, {38155, 5886}, {38201, 38053}, {47357, 43179}, {49457, 4755}, {49510, 50094}, {49520, 4664}, {49529, 597}, {50053, 50064}, {50062, 50069}, {50094, 15569}, {50096, 51061}, {50109, 49472}, {50117, 31178}, {50118, 49482}, {50337, 45667}, {50777, 50111}, {50781, 51003}, {50884, 12258}, {50950, 50787}, {51004, 47358}
X(51071) = complement of X(4677)
X(51071) = anticomplement of X(4745)
X(51071) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 8, 3636}, {1, 145, 1125}, {1, 3244, 10}, {1, 3623, 3635}, {1, 3632, 3622}, {1, 3633, 3616}, {1, 3635, 3244}, {1, 3679, 38314}, {1, 34747, 25055}, {1, 36846, 30147}, {2, 4669, 10}, {2, 4677, 4745}, {6, 4098, 15828}, {8, 3616, 46931}, {8, 3636, 19862}, {8, 3828, 38098}, {8, 19862, 10}, {8, 25055, 3828}, {10, 551, 19883}, {145, 1125, 3625}, {145, 38314, 3679}, {145, 41150, 4669}, {145, 46930, 3621}, {551, 4669, 2}, {551, 19862, 25055}, {551, 19883, 15808}, {551, 38098, 19862}, {1100, 50113, 50115}, {1125, 3625, 10}, {1125, 4691, 46930}, {1125, 4746, 9780}, {1125, 38314, 551}, {1482, 13607, 4297}, {1483, 33179, 946}, {1698, 20050, 4701}, {3057, 3881, 4084}, {3241, 38314, 145}, {3244, 3625, 145}, {3244, 38098, 34747}, {3555, 3884, 4067}, {3616, 3633, 3626}, {3616, 31145, 19875}, {3621, 3624, 4691}, {3622, 3632, 3634}, {3623, 20057, 1}, {3633, 19875, 31145}, {3636, 3828, 25055}, {3636, 25055, 551}, {3636, 34747, 38098}, {3653, 34718, 6684}, {3654, 10246, 50828}, {3654, 50828, 10164}, {3679, 38314, 1125}, {3828, 25055, 19862}, {3828, 38098, 10}, {3993, 49478, 49535}, {4360, 50116, 50108}, {4677, 4745, 4669}, {5550, 20014, 4668}, {5882, 10222, 4301}, {10056, 10072, 10320}, {10246, 50805, 3654}, {10595, 34627, 38021}, {11019, 49626, 10}, {14923, 50190, 33815}, {19862, 38098, 3828}, {19875, 31145, 3626}, {19875, 46931, 3828}, {19883, 34641, 10}, {25055, 34747, 8}, {29574, 29584, 50114}, {29574, 50114, 29600}, {31792, 34791, 3878}, {33176, 37734, 12053}, {34627, 38021, 19925}, {34718, 37624, 3653}, {36444, 36462, 31145}, {38315, 50790, 47359}, {46922, 50110, 50118}, {49465, 49684, 49505}, {50113, 50115, 3950}


X(51072) = X(1)X(2)∩X(100)X(19704)

Barycentrics    7*a - 11*b - 11*c : :
X(51072) = 6 X[1] - 11 X[2], 4 X[1] + 11 X[8], 7 X[1] - 22 X[10], 26 X[1] - 11 X[145], 17 X[1] - 22 X[551], 29 X[1] - 44 X[1125], 5 X[1] - 11 X[1698], 16 X[1] - 11 X[3241], 37 X[1] - 22 X[3244], 8 X[1] - 11 X[3616], 2 X[1] - 11 X[3617], 34 X[1] + 11 X[3621], 62 X[1] - 77 X[3622], 14 X[1] - 11 X[3623], 47 X[1] - 77 X[3624], 23 X[1] + 22 X[3625], X[1] + 44 X[3626], 19 X[1] + 11 X[3632], 41 X[1] - 11 X[3633], 43 X[1] - 88 X[3634], 59 X[1] - 44 X[3635], 73 X[1] - 88 X[3636], X[1] - 11 X[3679], 19 X[1] - 44 X[3828], X[1] + 11 X[4668], 3 X[1] + 22 X[4669], 9 X[1] + 11 X[4677], 2 X[1] - 77 X[4678], 13 X[1] - 88 X[4691], 31 X[1] + 44 X[4701], 9 X[1] - 44 X[4745], 17 X[1] + 88 X[4746], 7 X[1] + 11 X[4816], 76 X[1] - 121 X[5550], 32 X[1] - 77 X[9780], 13 X[1] - 22 X[19862], 97 X[1] - 187 X[19872], 13 X[1] - 33 X[19875], 37 X[1] - 77 X[19876], 68 X[1] - 143 X[19877], 41 X[1] - 66 X[19883], 86 X[1] - 11 X[20014], 46 X[1] - 11 X[20049], 56 X[1] - 11 X[20050], 10 X[1] + 11 X[20052], 64 X[1] + 11 X[20053], 94 X[1] + 11 X[20054], 92 X[1] - 77 X[20057], 23 X[1] - 33 X[25055], 14 X[1] + 11 X[31145], 23 X[1] - 44 X[31253], 83 X[1] - 143 X[34595], 13 X[1] + 22 X[34641], 31 X[1] - 11 X[34747], X[1] - 6 X[38098], 28 X[1] - 33 X[38314], 14 X[1] - 29 X[46930], 82 X[1] - 187 X[46932], 46 X[1] - 121 X[46933], 98 X[1] - 143 X[46934], 2 X[2] + 3 X[8], 7 X[2] - 12 X[10], 13 X[2] - 3 X[145], 17 X[2] - 12 X[551], 29 X[2] - 24 X[1125], 5 X[2] - 6 X[1698], 8 X[2] - 3 X[3241], 37 X[2] - 12 X[3244], 4 X[2] - 3 X[3616], X[2] - 3 X[3617], 17 X[2] + 3 X[3621], 31 X[2] - 21 X[3622], 7 X[2] - 3 X[3623], 47 X[2] - 42 X[3624], 23 X[2] + 12 X[3625], X[2] + 24 X[3626], 19 X[2] + 6 X[3632], 41 X[2] - 6 X[3633], 43 X[2] - 48 X[3634], 59 X[2] - 24 X[3635], 73 X[2] - 48 X[3636], X[2] - 6 X[3679], 19 X[2] - 24 X[3828], X[2] + 6 X[4668], X[2] + 4 X[4669], 3 X[2] + 2 X[4677], X[2] - 21 X[4678], 13 X[2] - 48 X[4691], 31 X[2] + 24 X[4701], 3 X[2] - 8 X[4745], 17 X[2] + 48 X[4746], 7 X[2] + 6 X[4816], 38 X[2] - 33 X[5550], 16 X[2] - 21 X[9780], 109 X[2] - 84 X[15808], 13 X[2] - 12 X[19862], 97 X[2] - 102 X[19872], and many others

X(51072) lies on these lines: {1, 2}, {100, 19704}, {355, 15682}, {390, 38097}, {515, 15697}, {516, 50866}, {517, 41099}, {518, 50784}, {944, 12100}, {952, 15693}, {962, 3845}, {1320, 38099}, {1482, 10109}, {1483, 11540}, {2975, 19705}, {3036, 9802}, {3161, 17330}, {3303, 17547}, {3416, 50992}, {3534, 5690}, {3543, 11362}, {3654, 9778}, {3655, 15719}, {3656, 38176}, {3830, 28174}, {3902, 20942}, {3913, 16858}, {3951, 50737}, {4528, 44553}, {4723, 42034}, {4737, 4980}, {4738, 28605}, {4740, 49457}, {4748, 28309}, {4908, 17275}, {5066, 5790}, {5071, 5734}, {5226, 36920}, {5232, 50099}, {5296, 50087}, {5587, 50872}, {5657, 8703}, {5686, 50840}, {5731, 15698}, {5749, 50082}, {5818, 19709}, {5847, 50953}, {5881, 10304}, {5882, 15708}, {7229, 50074}, {7967, 50804}, {7991, 50687}, {8584, 50783}, {9041, 50993}, {9588, 15705}, {9776, 45116}, {9812, 50796}, {10247, 50830}, {10989, 47492}, {11160, 49529}, {11415, 33559}, {11531, 38076}, {11812, 38112}, {12245, 41106}, {12513, 36006}, {12630, 38025}, {12645, 15701}, {12702, 33699}, {12780, 36331}, {12781, 35750}, {15300, 50885}, {15533, 50782}, {15534, 49524}, {15640, 28150}, {15675, 44669}, {15678, 21677}, {15679, 17768}, {15690, 37705}, {15702, 37727}, {15716, 34773}, {17271, 32087}, {17794, 36524}, {18525, 19710}, {19708, 28204}, {20070, 34648}, {20582, 49690}, {21356, 49688}, {22651, 36324}, {22652, 36326}, {22851, 33624}, {22896, 33622}, {26446, 50818}, {26726, 38104}, {28466, 38665}, {28484, 51034}, {28516, 50086}, {28582, 50075}, {28635, 49738}, {32025, 50101}, {34122, 50894}, {37712, 50808}, {38042, 50805}, {38057, 50839}, {38127, 50811}, {38155, 50865}, {38210, 50836}, {38213, 50891}, {47313, 47488}, {47865, 50848}, {47866, 50851}, {48310, 49679}, {50045, 50046}, {50786, 50952}, {50791, 50991}

X(51072) = midpoint of X(i) and X(j) for these {i,j}: {3623, 31145}, {3679, 4668}, {19862, 34641}
X(51072) = reflection of X(i) in X(j) for these {i,j}: {3241, 3616}, {3617, 3679}, {5734, 5071}, {31145, 4816}, {50782, 50949}, {50809, 3654}, {50999, 50791}
X(51072) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10, 46930}, {1, 3679, 38098}, {2, 4669, 8}, {8, 10, 20050}, {8, 3617, 3616}, {8, 5550, 3632}, {8, 9780, 20053}, {8, 19877, 3621}, {8, 20057, 3625}, {8, 38314, 31145}, {10, 4816, 3623}, {10, 31145, 38314}, {3616, 20050, 3623}, {3617, 3623, 10}, {3617, 4668, 8}, {3617, 20052, 1698}, {3621, 4746, 8}, {3625, 25055, 20049}, {3625, 46933, 20057}, {3626, 4678, 8}, {3654, 50864, 9778}, {3679, 4669, 2}, {3679, 4677, 4745}, {3679, 19875, 4691}, {4669, 4745, 4677}, {4677, 4745, 2}, {4691, 34641, 19875}, {19875, 34641, 145}, {20049, 25055, 20057}, {20049, 46933, 25055}, {20050, 38314, 3241}, {20057, 31253, 3616}, {31145, 38314, 20050}, {34718, 38074, 962}, {50797, 50810, 50873}, {50798, 50822, 50819}


X(51073) = X(1)X(2)∩X(3)X(10172)

Barycentrics    4*a + 5*b + 5*c : :
X(51073) = X[1] - 15 X[2], 9 X[1] + 5 X[8], 2 X[1] + 5 X[10], 19 X[1] - 5 X[145], 8 X[1] - 15 X[551], 3 X[1] - 10 X[1125], 3 X[1] + 25 X[1698], 29 X[1] - 15 X[3241], 12 X[1] - 5 X[3244], 11 X[1] - 25 X[3616], 17 X[1] + 25 X[3617], 37 X[1] + 5 X[3621], 3 X[1] - 5 X[3622], 39 X[1] - 25 X[3623], X[1] - 5 X[3624], 16 X[1] + 5 X[3625], 11 X[1] + 10 X[3626], 23 X[1] + 5 X[3632], 33 X[1] - 5 X[3633], X[1] + 20 X[3634], 17 X[1] - 10 X[3635], 13 X[1] - 20 X[3636], 13 X[1] + 15 X[3679], X[1] + 6 X[3828], 31 X[1] + 25 X[4668], 4 X[1] + 3 X[4669], 41 X[1] + 15 X[4677], 3 X[1] + 4 X[4691], 5 X[1] + 2 X[4701], 19 X[1] + 30 X[4745], 29 X[1] + 20 X[4746], 59 X[1] + 25 X[4816], 13 X[1] - 55 X[5550], X[1] + 5 X[9780], 2 X[1] - 5 X[15808], 4 X[1] - 25 X[19862], X[1] - 85 X[19872], 11 X[1] + 45 X[19875], X[1] + 15 X[19876], X[1] + 13 X[19877], X[1] - 8 X[19878], 2 X[1] - 9 X[19883], 15 X[1] - X[20014], 113 X[1] - 15 X[20049], 47 X[1] - 5 X[20050], 73 X[1] + 25 X[20052], 13 X[1] + X[20053], 93 X[1] + 5 X[20054], 7 X[1] - 5 X[20057], 2 X[1] + 19 X[22266], 17 X[1] - 45 X[25055], 11 X[1] + 3 X[31145], X[1] - 50 X[31253], 9 X[1] - 65 X[34595], 34 X[1] + 15 X[34641], 71 X[1] - 15 X[34747], 32 X[1] + 45 X[38098], 31 X[1] - 45 X[38314], 71 X[1] - 120 X[41150], 9 X[1] + 145 X[46930], 11 X[1] + 115 X[46931], 13 X[1] + 85 X[46932], 3 X[1] + 11 X[46933], 23 X[1] - 65 X[46934], 27 X[2] + X[8], 6 X[2] + X[10], 57 X[2] - X[145], 8 X[2] - X[551], 9 X[2] - 2 X[1125], 9 X[2] + 5 X[1698], 29 X[2] - X[3241], 36 X[2] - X[3244], 33 X[2] - 5 X[3616], 51 X[2] + 5 X[3617], 111 X[2] + X[3621], 9 X[2] - X[3622], 117 X[2] - 5 X[3623], 48 X[2] + X[3625], 33 X[2] + 2 X[3626], 69 X[2] + X[3632], 99 X[2] - X[3633], 3 X[2] + 4 X[3634], 51 X[2] - 2 X[3635], 39 X[2] - 4 X[3636], 13 X[2] + X[3679], 5 X[2] + 2 X[3828], 93 X[2] + 5 X[4668], 20 X[2] + X[4669], 41 X[2] + X[4677], 15 X[2] + X[4678], 45 X[2] + 4 X[4691], 75 X[2] + 2 X[4701], 19 X[2] + 2 X[4745], 87 X[2] + 4 X[4746], 177 X[2] + 5 X[4816], 39 X[2] - 11 X[5550], 3 X[2] + X[9780], 6 X[2] - X[15808], 12 X[2] - 5 X[19862], 3 X[2] - 17 X[19872], 11 X[2] + 3 X[19875], and many others

X(51073) lies on these lines: {1, 2}, {3, 10172}, {5, 10164}, {21, 33696}, {35, 9342}, {36, 17535}, {40, 5067}, {55, 16854}, {56, 16864}, {72, 3833}, {79, 31254}, {100, 17546}, {140, 4297}, {142, 5852}, {165, 5056}, {191, 35595}, {320, 31252}, {354, 4015}, {355, 46219}, {373, 31757}, {375, 23156}, {392, 3918}, {474, 5267}, {515, 3526}, {516, 3090}, {547, 3579}, {549, 31673}, {590, 49547}, {615, 49548}, {631, 19925}, {632, 9956}, {726, 4751}, {942, 4134}, {946, 3628}, {958, 16863}, {960, 3919}, {962, 46935}, {984, 24167}, {993, 16408}, {1001, 16855}, {1015, 25614}, {1089, 24589}, {1111, 25585}, {1203, 37687}, {1213, 3707}, {1224, 39962}, {1376, 16853}, {1385, 16239}, {1656, 3817}, {1699, 7486}, {1724, 17124}, {1738, 17371}, {2325, 3986}, {2802, 4002}, {3035, 50205}, {3057, 3968}, {3068, 49619}, {3069, 49618}, {3091, 12512}, {3336, 27065}, {3361, 31188}, {3452, 11263}, {3523, 7989}, {3524, 18492}, {3525, 5587}, {3530, 38140}, {3533, 3576}, {3545, 34638}, {3555, 3956}, {3583, 26060}, {3619, 34379}, {3650, 6701}, {3663, 28653}, {3671, 24914}, {3678, 5439}, {3697, 3881}, {3698, 3884}, {3701, 6533}, {3717, 25539}, {3739, 28555}, {3740, 3874}, {3754, 25917}, {3812, 4084}, {3814, 5122}, {3822, 17529}, {3823, 49700}, {3824, 5325}, {3825, 3925}, {3826, 3847}, {3832, 16192}, {3836, 6687}, {3839, 50874}, {3841, 4187}, {3842, 31238}, {3844, 38049}, {3848, 34790}, {3851, 28150}, {3857, 28154}, {3868, 4537}, {3876, 4525}, {3878, 10107}, {3892, 4662}, {3911, 3947}, {3921, 17609}, {3950, 16674}, {3971, 24176}, {3988, 24473}, {3993, 4698}, {4065, 4519}, {4066, 4359}, {4067, 5044}, {4075, 24165}, {4078, 17384}, {4098, 4873}, {4193, 41859}, {4298, 10588}, {4301, 5070}, {4314, 5432}, {4315, 5433}, {4349, 17337}, {4358, 28611}, {4364, 28322}, {4395, 6541}, {4405, 28633}, {4413, 5248}, {4423, 8715}, {4480, 17248}, {4535, 50109}, {4663, 20582}, {4687, 49452}, {4755, 51059}, {4758, 17251}, {4896, 17250}, {4973, 5302}, {4982, 17275}, {5010, 16859}, {5032, 50788}, {5054, 34648}, {5055, 18483}, {5057, 31263}, {5071, 41869}, {5183, 11813}, {5217, 17542}, {5218, 41864}, {5220, 38101}, {5251, 5303}, {5257, 16814}, {5259, 17534}, {5264, 17125}, {5265, 5726}, {5296, 15828}, {5316, 12609}, {5326, 10543}, {5691, 10303}, {5692, 33815}, {5745, 37545}, {5750, 16885}, {5847, 47355}, {5880, 6666}, {5882, 38042}, {5901, 38127}, {5943, 31737}, {6361, 50802}, {6667, 21630}, {6681, 24953}, {6702, 10609}, {6721, 21636}, {6722, 11599}, {6723, 13605}, {6834, 21628}, {6853, 12617}, {6931, 40998}, {7746, 31396}, {7815, 49545}, {7988, 46936}, {8164, 12577}, {8167, 9709}, {8185, 40916}, {8227, 43174}, {8252, 13883}, {8253, 13936}, {8258, 41817}, {8983, 32789}, {9167, 50884}, {9588, 28228}, {9940, 15064}, {9955, 15699}, {10124, 18357}, {10170, 31728}, {10173, 31746}, {10304, 50803}, {10576, 13975}, {10577, 13912}, {10585, 31224}, {10589, 12575}, {11108, 25440}, {11230, 11362}, {11278, 41985}, {11284, 49553}, {11539, 13624}, {11695, 31732}, {12019, 38104}, {12100, 33697}, {12558, 50031}, {13893, 32786}, {13947, 32785}, {13971, 32790}, {14869, 28160}, {15178, 41992}, {15694, 18481}, {15703, 28194}, {15707, 50799}, {15708, 50815}, {16583, 25089}, {16668, 17398}, {17067, 25503}, {17095, 43186}, {17259, 33682}, {17327, 21255}, {17353, 24697}, {17357, 50290}, {17385, 25354}, {18249, 30827}, {18525, 50828}, {18743, 28612}, {19248, 23361}, {19253, 23383}, {19315, 37576}, {19646, 41430}, {19744, 43531}, {19827, 23537}, {19886, 19983}, {19933, 19957}, {19999, 27918}, {20195, 38054}, {21358, 50792}, {21635, 38133}, {22793, 35018}, {23789, 47794}, {23795, 25380}, {24206, 38118}, {24231, 26083}, {24325, 49508}, {24390, 34501}, {24719, 31251}, {27268, 28522}, {28168, 44682}, {28178, 44904}, {28346, 31273}, {28494, 50298}, {30424, 38094}, {31197, 37592}, {31243, 49676}, {31262, 38411}, {31287, 48284}, {31289, 49705}, {31447, 40273}, {31658, 38151}, {32900, 38028}, {33337, 34122}, {34573, 49511}, {34633, 43957}, {37453, 49542}, {37559, 37680}, {38047, 49505}, {38069, 50906}, {38093, 43180}, {38108, 43182}, {40328, 49499}, {44381, 50775}, {47352, 50785}, {47599, 50821}, {48065, 48196}, {48310, 50781}, {48311, 50847}, {48312, 50850}, {49449, 51061}, {49522, 50777}, {50687, 50816}

X(51073) = midpoint of X(i) and X(j) for these {i,j}: {1, 4678}, {2, 19876}, {10, 15808}, {3090, 31423}, {3523, 7989}, {3624, 9780}, {3832, 16192}
X(51073) = reflection of X(i) in X(j) for these {i,j}: {10, 9780}, {3622, 1125}, {15808, 3624}, {34638, 50813}, {34648, 50800}
X(51073) = complement of X(3624)
X(51073) = complement of the isotomic conjugate of X(28650)
X(51073) = X(i)-complementary conjugate of X(j) for these (i,j): {6, 28651}, {27789, 141}, {28196, 513}, {28650, 2887}, {48587, 116}
X(51073) = crosspoint of X(2) and X(28650)
X(51073) = barycentric product X(75)*X(46845)
X(51073) = barycentric quotient X(46845)/X(1)
X(51073) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2, 19878}, {1, 10, 4669}, {1, 1698, 46933}, {1, 3634, 22266}, {1, 3679, 20053}, {1, 3828, 10}, {1, 19877, 3828}, {1, 19878, 19883}, {1, 46933, 4691}, {2, 8, 34595}, {2, 10, 19862}, {2, 1698, 1125}, {2, 3634, 10}, {2, 3828, 19883}, {2, 9780, 3624}, {2, 19855, 10200}, {2, 19872, 31253}, {2, 19874, 19864}, {2, 19877, 1}, {2, 26030, 25512}, {2, 46930, 8}, {2, 46931, 3616}, {2, 46932, 5550}, {8, 34595, 1125}, {8, 46930, 1698}, {10, 551, 3625}, {10, 1125, 3244}, {10, 3625, 38098}, {10, 19862, 551}, {10, 19883, 1}, {10, 22266, 3828}, {10, 34641, 3617}, {40, 5067, 10171}, {100, 17546, 25542}, {140, 10175, 4297}, {165, 5056, 12571}, {632, 9956, 10165}, {1125, 1698, 10}, {1125, 3244, 551}, {1125, 3622, 15808}, {1125, 3634, 1698}, {1125, 3828, 4691}, {1125, 4691, 1}, {1385, 31399, 38155}, {1656, 6684, 3817}, {1698, 3633, 19875}, {1698, 34595, 8}, {1698, 46933, 3828}, {3244, 19862, 1125}, {3545, 50829, 34638}, {3616, 19875, 3626}, {3616, 31145, 1}, {3616, 46931, 19875}, {3617, 3635, 34641}, {3617, 25055, 3635}, {3622, 3624, 1125}, {3622, 46933, 4678}, {3624, 19876, 9780}, {3626, 3634, 46931}, {3626, 19875, 10}, {3628, 11231, 946}, {3634, 3828, 19877}, {3634, 19878, 3828}, {3634, 31253, 2}, {3636, 46932, 10}, {3679, 5550, 3636}, {3812, 10176, 4084}, {3817, 6684, 5493}, {3826, 17527, 25639}, {3828, 4691, 46933}, {3828, 19877, 22266}, {3828, 19878, 1}, {3828, 19883, 4669}, {3836, 6687, 49710}, {3925, 17575, 3825}, {4358, 28611, 42031}, {4413, 16842, 5248}, {4669, 19883, 551}, {4691, 19878, 1125}, {4691, 46933, 10}, {5044, 5883, 4067}, {5550, 46932, 3679}, {5705, 20103, 10}, {9342, 17536, 35}, {10588, 31231, 4298}, {19877, 19878, 10}, {19877, 20053, 46932}, {19877, 46933, 1698}, {19878, 19883, 19862}, {19878, 22266, 4669}, {19883, 22266, 10}, {19883, 46933, 3244}, {20582, 38089, 51004}


X(51074) = X(355)X(381)∩X(546)X(551)

Barycentrics    8*a^4 + 3*a^3*b + 11*a^2*b^2 - 3*a*b^3 - 19*b^4 + 3*a^3*c - 6*a^2*b*c + 3*a*b^2*c + 11*a^2*c^2 + 3*a*b*c^2 + 38*b^2*c^2 - 3*a*c^3 - 19*c^4 : :
X(51074) = 3 X[2] + X[50873], 3 X[3] + 2 X[50869], 3 X[4] + X[50819], 3 X[4] + 2 X[50828], 3 X[4] - X[50866], 2 X[50828] + X[50866], 8 X[5] - 3 X[38068], 6 X[5] - X[50808], 3 X[5] - X[50825], 9 X[38068] - 4 X[50808], 9 X[38068] - 8 X[50825], X[10] - 6 X[38071], 3 X[10] - 2 X[50822], 9 X[38071] - X[50822], X[355] - 11 X[381], 4 X[355] + 11 X[946], 19 X[355] + 11 X[1482], 9 X[355] + 11 X[3656], X[355] + 44 X[12571], 41 X[355] - 11 X[12645], 7 X[355] - 22 X[19925], 26 X[355] - 11 X[47745], 6 X[355] - 11 X[50796], 9 X[355] - 11 X[50797], 21 X[355] - 11 X[50798], 3 X[355] - 11 X[50799], 27 X[355] - 77 X[50800], 27 X[355] - 22 X[50801], 3 X[355] + 22 X[50802], 9 X[355] - 44 X[50803], 51 X[355] - 11 X[50804], 39 X[355] + 11 X[50805], 3 X[355] + 11 X[50806], 3 X[355] + 77 X[50807], 4 X[381] + X[946], 19 X[381] + X[1482], 9 X[381] + X[3656], X[381] + 4 X[12571], 41 X[381] - X[12645], 7 X[381] - 2 X[19925], 26 X[381] - X[47745], 6 X[381] - X[50796], 9 X[381] - X[50797], 21 X[381] - X[50798], 3 X[381] - X[50799], 27 X[381] - 7 X[50800], 27 X[381] - 2 X[50801], and many others

X(51074) lies on these lines: {2, 28150}, {3, 50869}, {4, 50819}, {5, 28202}, {10, 38071}, {30, 19862}, {355, 381}, {515, 30308}, {516, 19709}, {546, 551}, {1125, 14269}, {1698, 3545}, {1699, 38127}, {3091, 28194}, {3146, 50820}, {3534, 10171}, {3544, 19876}, {3579, 14892}, {3616, 3839}, {3617, 31162}, {3623, 18492}, {3655, 50868}, {3679, 3855}, {3817, 3845}, {3828, 3851}, {3830, 10165}, {3832, 5882}, {3850, 11362}, {3854, 50817}, {3857, 4301}, {3858, 28204}, {3860, 28224}, {4297, 14893}, {4669, 38140}, {5054, 50816}, {5055, 31253}, {5066, 10175}, {5493, 12811}, {5587, 50872}, {5603, 50871}, {5847, 50956}, {7988, 15682}, {9955, 23046}, {10109, 10164}, {10265, 38077}, {10516, 50784}, {11001, 50874}, {11230, 12101}, {11737, 22793}, {12512, 15703}, {12699, 50814}, {13464, 50818}, {15687, 19883}, {15688, 19878}, {15693, 28158}, {15699, 34638}, {15713, 28154}, {28484, 51041}, {28516, 51038}, {31447, 41989}, {33699, 50833}, {34379, 50963}, {38042, 41990}, {38139, 50834}, {38141, 50889}, {38335, 50870}, {38732, 50882}, {38743, 50887}, {38755, 50892}, {38789, 50922}

X(51074) = midpoint of X(i) and X(j) for these {i,j}: {3617, 31162}, {3656, 50797}, {30308, 41099}, {50799, 50806}, {50809, 50865}, {50811, 50863}, {50812, 50873}, {50819, 50866}
X(51074) = reflection of X(i) in X(j) for these {i,j}: {50796, 50799}, {50806, 50802}, {50808, 50825}, {50819, 50828}
X(51074) = complement of X(50812)
X(51074) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 50873, 50812}, {4, 50819, 50866}, {381, 3656, 50803}, {381, 50802, 50796}, {381, 50806, 50799}, {381, 50807, 50802}, {1698, 50865, 50809}, {3616, 50863, 50811}, {3656, 50799, 50797}, {3656, 50800, 50801}, {3656, 50803, 50796}, {9955, 23046, 34648}, {12571, 50802, 50807}, {19925, 50798, 50796}, {50796, 50802, 946}, {50797, 50806, 3656}, {50800, 50801, 50796}, {50801, 50803, 50800}, {50802, 50803, 3656}


X(51075) = X(20)X(551)∩X(355)X(381)

Barycentrics    2*a^4 - 15*a^3*b - 13*a^2*b^2 + 15*a*b^3 + 11*b^4 - 15*a^3*c + 30*a^2*b*c - 15*a*b^2*c - 13*a^2*c^2 - 15*a*b*c^2 - 22*b^2*c^2 + 15*a*c^3 + 11*c^4 : :
X(51075) = 5 X[1] + 3 X[50687], 3 X[1] + X[50862], 9 X[50687] - 5 X[50862], 3 X[4] - X[50868], 3 X[5] - X[50827], 3 X[10] + X[50872], X[20] - 5 X[551], X[20] - 25 X[11522], 11 X[20] - 35 X[30389], 3 X[20] - 5 X[50815], 3 X[20] + 5 X[50865], X[551] - 5 X[11522], 11 X[551] - 7 X[30389], 3 X[551] - X[50815], 3 X[551] + X[50865], 55 X[11522] - 7 X[30389], 15 X[11522] - X[50815], 15 X[11522] + X[50865], 21 X[30389] - 11 X[50815], 21 X[30389] + 11 X[50865], 6 X[140] - 5 X[50829], 5 X[355] - 13 X[381], X[355] - 13 X[946], 11 X[355] + 13 X[1482], 3 X[355] + 13 X[3656], 4 X[355] - 13 X[12571], 37 X[355] - 13 X[12645], 7 X[355] - 13 X[19925], 25 X[355] - 13 X[47745], 9 X[355] - 13 X[50796], 57 X[355] - 65 X[50797], 21 X[355] - 13 X[50798], 33 X[355] - 65 X[50799], 51 X[355] - 91 X[50800], 15 X[355] - 13 X[50801], 3 X[355] - 13 X[50802], 6 X[355] - 13 X[50803], 45 X[355] - 13 X[50804], 27 X[355] + 13 X[50805], 9 X[355] - 65 X[50806], 27 X[355] - 91 X[50807], X[381] - 5 X[946], 11 X[381] + 5 X[1482], 3 X[381] + 5 X[3656], 4 X[381] - 5 X[12571], 37 X[381] - 5 X[12645], and many others

X(51075) lies on these lines: {1, 50687}, {2, 28228}, {4, 50868}, {5, 50827}, {10, 50872}, {20, 551}, {30, 3636}, {140, 28194}, {355, 381}, {515, 12101}, {516, 8703}, {517, 10109}, {962, 15721}, {1125, 3524}, {1385, 44903}, {1699, 50864}, {3090, 3828}, {3091, 34641}, {3241, 50689}, {3244, 3839}, {3545, 3626}, {3616, 34638}, {3627, 13464}, {3634, 15699}, {3635, 34648}, {3654, 10171}, {3679, 5068}, {3817, 4745}, {3832, 34747}, {3845, 28236}, {3861, 28204}, {4669, 30308}, {4677, 9779}, {4691, 9955}, {4701, 34631}, {4870, 12575}, {5066, 28234}, {5070, 43174}, {5603, 15682}, {5847, 50958}, {5886, 15701}, {5901, 15691}, {7982, 38076}, {7991, 46935}, {9624, 21735}, {10164, 50809}, {10165, 15716}, {10304, 15808}, {10516, 50786}, {11230, 50825}, {11278, 38071}, {11531, 38098}, {12100, 28232}, {12512, 25055}, {12699, 15689}, {13607, 15687}, {14891, 28198}, {14893, 33179}, {15685, 28158}, {16200, 41099}, {18480, 50831}, {18493, 19878}, {19862, 34632}, {28174, 44580}, {28202, 44245}, {34628, 50873}, {38022, 44682}, {38034, 38176}, {38083, 50822}, {38155, 41106}, {41869, 50819}, {50878, 50922}, {50881, 50887}, {50882, 50886}, {50891, 50909}, {50892, 50908}

X(51075) = midpoint of X(i) and X(j) for these {i,j}: {1125, 31162}, {3635, 34648}, {3656, 50802}, {3828, 4301}, {4701, 34631}, {13607, 15687}, {14893, 33179}, {50811, 50869}, {50815, 50865}, {50878, 50922}, {50881, 50887}, {50882, 50886}, {50891, 50909}, {50892, 50908}
X(51075) = reflection of X(i) in X(j) for these {i,j}: {50803, 50802}, {50816, 50828}
X(51075) = complement of X(50814)
X(51075) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {381, 50804, 50796}, {551, 50865, 50815}, {946, 3656, 50802}, {946, 50796, 50806}, {3656, 50799, 1482}, {3656, 50806, 50796}, {3656, 50807, 50805}, {4301, 38021, 3828}, {50796, 50804, 50801}, {50796, 50806, 50802}, {50801, 50802, 381}, {50802, 50803, 12571}, {50805, 50806, 50807}, {50805, 50807, 50796}


X(51076) = X(2)X(28258)∩X(355)X(381)

Barycentrics    14*a^4 + 3*a^3*b + 17*a^2*b^2 - 3*a*b^3 - 31*b^4 + 3*a^3*c - 6*a^2*b*c + 3*a*b^2*c + 17*a^2*c^2 + 3*a*b*c^2 + 62*b^2*c^2 - 3*a*c^3 - 31*c^4 : :
X(51076) = 3 X[2] + X[50869], 3 X[4] + X[50815], 3 X[4] - X[50870], and many others

X(51076) lies on these lines: {2, 28158}, {4, 50815}, {5, 50829}, {30, 19878}, {355, 381}, {515, 3860}, {516, 5066}, {551, 3832}, {1125, 3839}, {1699, 4745}, {3090, 50812}, {3091, 3828}, {3545, 3634}, {3626, 50872}, {3635, 50871}, {3636, 34648}, {3679, 3854}, {3817, 41099}, {3830, 10171}, {3845, 11230}, {3850, 28194}, {3855, 38076}, {3856, 28204}, {3857, 38081}, {3858, 50824}, {4691, 31162}, {4746, 50817}, {5071, 12512}, {5072, 38068}, {5657, 41106}, {5847, 50960}, {7988, 50866}, {10109, 28150}, {10172, 50825}, {10304, 50874}, {10516, 50788}, {12811, 28202}, {13464, 41991}, {14639, 50882}, {18483, 38071}, {18492, 50818}, {19862, 50687}, {23046, 34773}, {28228, 38112}, {28522, 51041}, {30308, 50864}, {31253, 34638}, {34379, 50959}, {38140, 50823}

X(51076) = midpoint of X(i) and X(j) for these {i,j}: {381, 12571}, {3636, 34648}, {4691, 31162}, {50802, 50803}, {50815, 50870}, {50816, 50869}
X(51076) = complement of X(50816)
X(51076) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 50869, 50816}, {4, 50815, 50870}, {381, 50802, 50803}, {381, 50807, 50796}, {946, 50796, 50805}, {946, 50799, 50801}, {12571, 50803, 50802}, {19925, 50802, 3656}, {50796, 50805, 50801}, {50796, 50807, 50802}, {50799, 50805, 50796}, {50801, 50802, 946}


X(51077) = X(140)X(551)∩X(355)X(381)

Barycentrics    8*a^4 - 15*a^3*b - 7*a^2*b^2 + 15*a*b^3 - b^4 - 15*a^3*c + 30*a^2*b*c - 15*a*b^2*c - 7*a^2*c^2 - 15*a*b*c^2 + 2*b^2*c^2 + 15*a*c^3 - c^4 : :
X(51077) = 5 X[1] - 3 X[3524], 3 X[1] - X[50810], 3 X[1] - 2 X[50828], 3 X[3524] + 5 X[34631], 9 X[3524] - 5 X[50810], 9 X[3524] - 10 X[50828], 3 X[34631] + X[50810], 3 X[34631] + 2 X[50828], X[2] - 3 X[16200], 4 X[2] - 3 X[38127], 4 X[16200] - X[38127], 9 X[16200] - X[50817], 9 X[16200] - 2 X[50827], 9 X[38127] - 4 X[50817], 9 X[38127] - 8 X[50827], 3 X[3] - 2 X[50814], 3 X[4] - X[50871], 3 X[34747] + X[50871], 3 X[5] - X[50830], 3 X[34641] - 2 X[50830], 5 X[10] - 6 X[15699], 3 X[10] - 2 X[50823], 9 X[15699] - 5 X[50823], X[20] - 5 X[3241], 2 X[20] - 5 X[5882], X[20] + 5 X[7982], 3 X[20] - 5 X[50811], 3 X[20] + 5 X[50872], 3 X[3241] - X[50811], 3 X[3241] + X[50872], X[5882] + 2 X[7982], 3 X[5882] - 2 X[50811], 3 X[5882] + 2 X[50872], 3 X[7982] + X[50811], 3 X[7982] - X[50872], X[3244] + 2 X[11278], 4 X[140] - 5 X[551], 2 X[140] - 5 X[10222], 8 X[140] - 5 X[11362], 16 X[140] - 15 X[38068], 6 X[140] - 5 X[50821], 4 X[551] - 3 X[38068], 3 X[551] - 2 X[50821], 4 X[10222] - X[11362], 8 X[10222] - 3 X[38068], 3 X[10222] - X[50821], 2 X[11362] - 3 X[38068], and many others

X(51077) lies on these lines: {1, 3524}, {2, 16200}, {3, 50814}, {4, 34747}, {5, 34641}, {10, 15699}, {20, 3241}, {30, 3244}, {140, 551}, {145, 31162}, {355, 381}, {376, 11531}, {515, 11224}, {516, 15685}, {517, 3892}, {547, 38098}, {549, 33179}, {553, 25415}, {952, 12101}, {1125, 34718}, {1385, 14891}, {1483, 28198}, {3057, 10122}, {3090, 3679}, {3534, 28228}, {3545, 3632}, {3623, 34632}, {3625, 14892}, {3626, 5055}, {3627, 4301}, {3633, 18483}, {3635, 3655}, {3636, 5054}, {3653, 43174}, {3654, 10165}, {3828, 5070}, {3830, 28236}, {3839, 20050}, {4297, 15691}, {4669, 5844}, {4677, 5603}, {4701, 18493}, {4745, 5886}, {5066, 38155}, {5068, 5734}, {5073, 37727}, {5288, 28461}, {5298, 33176}, {5493, 44245}, {5690, 19883}, {5731, 50820}, {5817, 50838}, {5846, 50958}, {5847, 50961}, {5881, 20049}, {6684, 15721}, {7967, 50819}, {7991, 21735}, {9624, 46935}, {9812, 50863}, {10164, 44580}, {10246, 15716}, {10283, 50822}, {10304, 20057}, {10445, 50123}, {10516, 50789}, {10595, 19875}, {10711, 26726}, {11001, 28232}, {11009, 14526}, {11522, 38074}, {11539, 15808}, {12245, 25055}, {12699, 34748}, {12811, 38076}, {13600, 44663}, {15178, 44682}, {15698, 30392}, {15711, 31662}, {18480, 41987}, {18492, 20014}, {19862, 41984}, {22791, 34648}, {29054, 50778}, {34617, 34719}, {34629, 34690}, {34638, 34773}, {37712, 41099}, {38028, 50826}, {38034, 41990}, {38118, 51006}, {40273, 41988}, {47090, 47593}, {50690, 50873}, {50878, 50923}, {50881, 50888}, {50883, 50886}, {50891, 50910}, {50894, 50908}

X(51077) = midpoint of X(i) and X(j) for these {i,j}: {1, 34631}, {4, 34747}, {145, 31162}, {376, 11531}, {3241, 7982}, {3633, 34627}, {3655, 8148}, {3656, 50805}, {5881, 20049}, {10711, 26726}, {12699, 34748}, {34617, 34719}, {34629, 34690}, {34640, 34743}, {34647, 34710}, {50811, 50872}, {50818, 50865}, {50878, 50923}, {50881, 50888}, {50883, 50886}, {50891, 50910}, {50894, 50908}
X(51077) = reflection of X(i) in X(j) for these {i,j}: {376, 13607}, {549, 33179}, {551, 10222}, {3655, 3635}, {3679, 13464}, {5882, 3241}, {10165, 10247}, {11362, 551}, {31673, 31162}, {31730, 3655}, {34627, 18483}, {34638, 34773}, {34641, 5}, {34648, 22791}, {34718, 1125}, {47745, 381}, {50796, 3656}, {50798, 50802}, {50804, 50801}, {50808, 50824}, {50810, 50828}, {50817, 50827}
X(51077) = complement of X(50817)
X(51077) = anticomplement of X(50827)
X(51077) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 50810, 50828}, {2, 50817, 50827}, {355, 3656, 50806}, {355, 50803, 50796}, {355, 50806, 50803}, {381, 50801, 50796}, {381, 50804, 50801}, {551, 11362, 38068}, {1482, 50805, 3656}, {3241, 50872, 50811}, {3635, 8148, 31730}, {3656, 50796, 946}, {3656, 50798, 50802}, {3656, 50804, 381}, {5734, 31145, 38021}, {7982, 50811, 50872}, {19925, 50797, 50796}, {47745, 50796, 50801}, {50797, 50807, 19925}, {50798, 50802, 50796}, {50801, 50804, 47745}


X(51078) = X(2)X(28172)∩X(355)X(381)

Barycentrics    16*a^4 - 3*a^3*b + 13*a^2*b^2 + 3*a*b^3 - 29*b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c + 13*a^2*c^2 - 3*a*b*c^2 + 58*b^2*c^2 + 3*a*c^3 - 29*c^4 : :
X(51078) = 3 X[2] + X[50867], 4 X[4] + 3 X[38068], 3 X[4] + X[50813], 3 X[4] - X[50874], 4 X[19876] - 3 X[38068], 3 X[19876] - X[50813], 3 X[19876] + X[50874], 9 X[38068] - 4 X[50813], 9 X[38068] + 4 X[50874], 3 X[5] - X[50833], 6 X[5] + X[50862], 2 X[50833] + X[50862], X[10] + 6 X[23046], X[355] + 13 X[381], 8 X[355] + 13 X[946], 29 X[355] + 13 X[1482], 15 X[355] + 13 X[3656], 11 X[355] + 52 X[12571], 55 X[355] - 13 X[12645], 5 X[355] - 26 X[19925], 34 X[355] - 13 X[47745], 6 X[355] - 13 X[50796], 51 X[355] - 65 X[50797], 27 X[355] - 13 X[50798], 9 X[355] - 65 X[50799], 3 X[355] - 13 X[50800], 33 X[355] - 26 X[50801], 9 X[355] + 26 X[50802], 3 X[355] - 52 X[50803], 69 X[355] - 13 X[50804], 57 X[355] + 13 X[50805], 33 X[355] + 65 X[50806], 3 X[355] + 13 X[50807], 8 X[381] - X[946], 29 X[381] - X[1482], 15 X[381] - X[3656], 11 X[381] - 4 X[12571], 55 X[381] + X[12645], 5 X[381] + 2 X[19925], 34 X[381] + X[47745], 6 X[381] + X[50796], 51 X[381] + 5 X[50797], 27 X[381] + X[50798], 9 X[381] + 5 X[50799], 3 X[381] + X[50800], 33 X[381] + 2 X[50801], 9 X[381] - 2 X[50802], and many others

X(51078) lies on these lines: {2, 28172}, {4, 19876}, {5, 50833}, {10, 23046}, {355, 381}, {382, 50816}, {515, 41106}, {546, 5493}, {551, 3850}, {3091, 50811}, {3524, 50866}, {3534, 50870}, {3545, 3624}, {3576, 50863}, {3579, 41987}, {3622, 18492}, {3634, 38335}, {3817, 50824}, {3828, 3843}, {3830, 50829}, {3832, 28194}, {3839, 9780}, {3845, 10175}, {3854, 38021}, {3855, 5882}, {3857, 28204}, {3858, 11362}, {3860, 28212}, {3861, 38083}, {4297, 11737}, {4301, 41991}, {4678, 31162}, {5055, 50815}, {5066, 11230}, {5587, 50827}, {5657, 28232}, {5847, 50964}, {10164, 12101}, {10165, 19709}, {10172, 15682}, {10516, 50792}, {12512, 35403}, {13464, 50871}, {14269, 31730}, {14892, 19862}, {15689, 31253}, {15808, 34648}, {18483, 50810}, {19872, 46333}, {28555, 51041}, {30308, 50818}, {33697, 47478}, {34379, 50957}, {34638, 50825}, {38089, 48889}, {38098, 40273}, {38141, 50906}, {50687, 50812}, {50689, 50873}

X(51078) = midpoint of X(i) and X(j) for these {i,j}: {4, 19876}, {4678, 31162}, {15808, 34648}, {50800, 50807}, {50813, 50874}, {50820, 50867}
X(51078) = reflection of X(i) in X(j) for these {i,j}: {50796, 50800}, {50808, 50826}
X(51078) = complement of X(50820)
X(51078) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 50867, 50820}, {4, 50813, 50874}, {381, 50799, 50802}, {381, 50800, 50807}, {381, 50803, 50796}, {3656, 19925, 50796}, {12571, 19925, 12645}, {12571, 50801, 50806}, {12645, 50806, 3656}, {19876, 50874, 50813}, {47745, 50796, 50797}, {50799, 50802, 50796}, {50802, 50803, 50799}


X(51079) = X(40)X(376)∩X(550)X(551)

Barycentrics    52*a^4 - 3*a^3*b - 41*a^2*b^2 + 3*a*b^3 - 11*b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c - 41*a^2*c^2 - 3*a*b*c^2 + 22*b^2*c^2 + 3*a*c^3 - 11*c^4 : :
X(51079) = 8 X[3] - 3 X[38076], 3 X[3] - X[50799], 6 X[3] - X[50862], 9 X[38076] - 8 X[50799], 9 X[38076] - 4 X[50862], X[10] - 6 X[15688], 3 X[10] - 2 X[50797], 9 X[15688] - X[50797], 3 X[20] + 2 X[50802], 3 X[20] + X[50873], X[40] - 11 X[376], 19 X[40] + 11 X[944], 4 X[40] + 11 X[4297], 41 X[40] - 11 X[12245], 7 X[40] - 22 X[12512], 6 X[40] - 11 X[50808], 9 X[40] - 11 X[50809], 21 X[40] - 11 X[50810], 9 X[40] + 11 X[50811], 3 X[40] - 11 X[50812], 27 X[40] - 77 X[50813], 27 X[40] - 22 X[50814], 3 X[40] + 22 X[50815], 9 X[40] - 44 X[50816], 51 X[40] - 11 X[50817], 39 X[40] + 11 X[50818], 3 X[40] + 11 X[50819], 3 X[40] + 77 X[50820], 19 X[376] + X[944], 4 X[376] + X[4297], 41 X[376] - X[12245], 7 X[376] - 2 X[12512], 6 X[376] - X[50808], 9 X[376] - X[50809], 21 X[376] - X[50810], 9 X[376] + X[50811], 3 X[376] - X[50812], 27 X[376] - 7 X[50813], 27 X[376] - 2 X[50814], 3 X[376] + 2 X[50815], 9 X[376] - 4 X[50816], 51 X[376] - X[50817], 39 X[376] + X[50818], 3 X[376] + X[50819], 3 X[376] + 7 X[50820], 4 X[944] - 19 X[4297], 41 X[944] + 19 X[12245], 7 X[944] + 38 X[12512], and many others

X(51079) lies on these lines: {2, 50866}, {3, 38076}, {10, 15688}, {20, 50802}, {30, 19862}, {40, 376}, {515, 15695}, {516, 15697}, {548, 50821}, {550, 551}, {946, 15691}, {1698, 10304}, {3522, 37714}, {3524, 31253}, {3528, 3828}, {3534, 5886}, {3545, 50870}, {3616, 50865}, {3617, 34628}, {3634, 15710}, {3656, 15689}, {3817, 11001}, {4301, 50693}, {4669, 28224}, {5059, 50874}, {5493, 44245}, {5847, 50968}, {8703, 10164}, {10165, 19710}, {10171, 15640}, {10172, 15716}, {10175, 15759}, {11231, 46332}, {11362, 41981}, {15681, 19883}, {15685, 50807}, {15690, 28174}, {15693, 28172}, {15696, 28194}, {15704, 50833}, {15708, 50867}, {15711, 28168}, {17525, 38059}, {18480, 41982}, {18481, 50827}, {19708, 28164}, {28516, 51042}, {31663, 38098}, {31673, 45759}, {31730, 50824}, {31884, 50784}, {33923, 38068}, {34379, 50975}, {37705, 50822}, {38155, 50864}, {43174, 50871}

X(51079) = midpoint of X(i) and X(j) for these {i,j}: {3617, 34628}, {50809, 50811}, {50812, 50819}
X(51079) = reflection of X(i) in X(j) for these {i,j}: {34648, 1698}, {50796, 50825}, {50806, 50828}, {50808, 50812}, {50819, 50815}, {50862, 50799}, {50873, 50802}
X(51079) = complement of X(50866)
X(51079) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 50811, 50816}, {376, 50815, 50808}, {376, 50819, 50812}, {376, 50820, 50815}, {12512, 50810, 50808}, {50808, 50815, 4297}, {50809, 50819, 50811}, {50811, 50812, 50809}, {50811, 50813, 50814}, {50811, 50816, 50808}, {50813, 50814, 50808}, {50814, 50816, 50813}, {50815, 50816, 50811}


X(51080) = X(40)X(376)∩X(551)X(3146)

Barycentrics    50*a^4 - 15*a^3*b - 37*a^2*b^2 + 15*a*b^3 - 13*b^4 - 15*a^3*c + 30*a^2*b*c - 15*a*b^2*c - 37*a^2*c^2 - 15*a*b*c^2 + 26*b^2*c^2 + 15*a*c^3 - 13*c^4 : :
X(51080) = 3 X[3] - X[50801], 13 X[5] - 25 X[31666], and many others

X(51080) lies on these lines: {2, 50868}, {3, 50801}, {5, 31666}, {10, 15705}, {30, 3636}, {40, 376}, {515, 12100}, {516, 19710}, {551, 3146}, {1125, 3839}, {1385, 35404}, {1657, 3656}, {3522, 34641}, {3523, 3828}, {3534, 28228}, {3576, 41106}, {3625, 35418}, {3626, 10304}, {3634, 5054}, {3635, 34638}, {3679, 21734}, {3830, 5886}, {3860, 28160}, {4691, 37705}, {4745, 37712}, {5731, 28158}, {5847, 50970}, {8703, 28236}, {10124, 28208}, {10165, 50799}, {12101, 31662}, {12103, 28194}, {12571, 14893}, {13607, 15686}, {13624, 47599}, {14093, 47745}, {15640, 30392}, {15688, 50804}, {15690, 28234}, {15698, 38155}, {15703, 19925}, {15808, 50687}, {18480, 50833}, {19878, 34648}, {28204, 33923}, {30308, 50867}, {30389, 50866}, {31730, 50805}, {31884, 50786}, {34747, 50693}, {35408, 40273}, {38068, 50797}, {38127, 50798}

X(51080) = midpoint of X(i) and X(j) for these {i,j}: {1125, 34628}, {3635, 34638}, {13607, 15686}, {50811, 50815}
X(51080) = reflection of X(i) in X(j) for these {i,j}: {34648, 19878}, {50803, 50828}, {50816, 50815}, {50870, 50802}
X(51080) = complement of X(50868)
X(51080) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 50817, 50808}, {4297, 50808, 50819}, {4297, 50811, 50815}, {50808, 50817, 50814}, {50808, 50819, 50815}, {50811, 50812, 944}, {50811, 50819, 50808}, {50811, 50820, 50818}, {50814, 50815, 376}, {50818, 50819, 50820}, {50818, 50820, 50808}


X(51081) = X(40)X(376)∩X(551)X(50693)

Barycentrics    82*a^4 - 3*a^3*b - 65*a^2*b^2 + 3*a*b^3 - 17*b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c - 65*a^2*c^2 - 3*a*b*c^2 + 34*b^2*c^2 + 3*a*c^3 - 17*c^4 : :
X(51081) = 3 X[3] - X[50803], 3 X[20] + X[50869], X[40] - 17 X[376], 31 X[40] + 17 X[944], 7 X[40] + 17 X[4297], 65 X[40] - 17 X[12245], 5 X[40] - 17 X[12512], 9 X[40] - 17 X[50808], 69 X[40] - 85 X[50809], 33 X[40] - 17 X[50810], 15 X[40] + 17 X[50811], 21 X[40] - 85 X[50812], 39 X[40] - 119 X[50813], 21 X[40] - 17 X[50814], 3 X[40] + 17 X[50815], 3 X[40] - 17 X[50816], 81 X[40] - 17 X[50817], 63 X[40] + 17 X[50818], 27 X[40] + 85 X[50819], 9 X[40] + 119 X[50820], 31 X[376] + X[944], 7 X[376] + X[4297], 65 X[376] - X[12245], 5 X[376] - X[12512], 9 X[376] - X[50808], 69 X[376] - 5 X[50809], 33 X[376] - X[50810], 15 X[376] + X[50811], 21 X[376] - 5 X[50812], 39 X[376] - 7 X[50813], 21 X[376] - X[50814], 3 X[376] + X[50815], 3 X[376] - X[50816], 81 X[376] - X[50817], 63 X[376] + X[50818], 27 X[376] + 5 X[50819], 9 X[376] + 7 X[50820], 7 X[944] - 31 X[4297], 65 X[944] + 31 X[12245], 5 X[944] + 31 X[12512], 9 X[944] + 31 X[50808], 69 X[944] + 155 X[50809], 33 X[944] + 31 X[50810], 15 X[944] - 31 X[50811], 21 X[944] + 155 X[50812], 39 X[944] + 217 X[50813], and many others

X(51081) lies on these lines: {2, 50870}, {3, 50803}, {20, 50869}, {30, 19878}, {40, 376}, {516, 15690}, {550, 38022}, {551, 50693}, {3522, 3828}, {3523, 50866}, {3534, 10165}, {3634, 10304}, {3636, 34638}, {3656, 15696}, {4691, 34628}, {4746, 50871}, {5790, 15695}, {5847, 50972}, {8703, 11231}, {9588, 50864}, {10171, 15685}, {10248, 19883}, {12571, 15681}, {12699, 15689}, {14093, 19925}, {15688, 50796}, {15697, 50865}, {15705, 31253}, {15759, 28172}, {18483, 50833}, {21735, 38076}, {28168, 46332}, {28194, 44245}, {28204, 41981}, {28228, 50824}, {31884, 50788}, {34379, 50971}, {38066, 50801}

X(51081) = midpoint of X(i) and X(j) for these {i,j}: {3636, 34638}, {4691, 34628}, {12571, 15681}, {50815, 50816}
X(51081) = complement of X(50870)
X(51081) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 50815, 50816}, {376, 50820, 50808}, {4297, 50808, 50818}, {4297, 50812, 50814}, {12512, 50815, 50811}, {50808, 50818, 50814}, {50808, 50820, 50815}, {50812, 50818, 50808}, {50814, 50815, 4297}


X(51082) = X(5)X(551)∩X(40)X(376)

Barycentrics    20*a^4 - 15*a^3*b - 13*a^2*b^2 + 15*a*b^3 - 7*b^4 - 15*a^3*c + 30*a^2*b*c - 15*a*b^2*c - 13*a^2*c^2 - 15*a*b*c^2 + 14*b^2*c^2 + 15*a*c^3 - 7*c^4 : :
X(51082) = 5 X[1] - 3 X[3839], 3 X[1] - 2 X[50802], 3 X[1] - X[50864], 6 X[3839] - 5 X[34648], 9 X[3839] - 10 X[50802], 9 X[3839] - 5 X[50864], 3 X[34648] - 4 X[50802], 3 X[34648] - 2 X[50864], 7 X[2] - 9 X[30392], 5 X[2] - 3 X[37712], 4 X[2] - 3 X[38155], 15 X[30392] - 7 X[37712], 12 X[30392] - 7 X[38155], 27 X[30392] - 14 X[50801], 27 X[30392] - 7 X[50871], 4 X[37712] - 5 X[38155], 9 X[37712] - 10 X[50801], 9 X[37712] - 5 X[50871], 9 X[38155] - 8 X[50801], 9 X[38155] - 4 X[50871], 3 X[3] - X[50804], 3 X[3] - 2 X[50827], 3 X[34641] - 2 X[50804], 3 X[34641] - 4 X[50827], 3 X[4] - 2 X[50868], 4 X[5] - 5 X[551], 2 X[5] - 5 X[5882], 7 X[5] - 10 X[15178], 13 X[5] - 15 X[38022], 16 X[5] - 15 X[38076], 6 X[5] - 5 X[50796], 3 X[5] - 5 X[50824], 7 X[551] - 8 X[15178], 13 X[551] - 12 X[38022], 4 X[551] - 3 X[38076], 3 X[551] - 2 X[50796], 3 X[551] - 4 X[50824], 7 X[5882] - 4 X[15178], 13 X[5882] - 6 X[38022], 8 X[5882] - 3 X[38076], 3 X[5882] - X[50796], 3 X[5882] - 2 X[50824], 26 X[15178] - 21 X[38022], 32 X[15178] - 21 X[38076], 12 X[15178] - 7 X[50796], 6 X[15178] - 7 X[50824], and many others

X(51082) lies on these lines: {1, 3839}, {2, 28236}, {3, 34641}, {4, 50868}, {5, 551}, {8, 15705}, {10, 3655}, {20, 34747}, {30, 3244}, {40, 376}, {145, 34628}, {355, 15703}, {381, 13607}, {515, 3656}, {516, 50839}, {517, 19710}, {549, 38098}, {553, 37740}, {946, 14893}, {952, 4669}, {1125, 34627}, {1385, 10124}, {1483, 28208}, {1657, 28194}, {2784, 9884}, {3146, 3241}, {3523, 3679}, {3524, 3626}, {3525, 3828}, {3534, 28234}, {3545, 3636}, {3576, 4745}, {3623, 50866}, {3625, 34773}, {3632, 10304}, {3633, 34632}, {3635, 31162}, {3653, 46219}, {3817, 7967}, {3860, 28224}, {4421, 30283}, {4677, 5731}, {5055, 15808}, {5493, 12103}, {5734, 50867}, {5846, 50970}, {5847, 50973}, {5886, 50800}, {6684, 15718}, {7982, 49138}, {7991, 20049}, {8545, 30331}, {8703, 50830}, {9812, 50874}, {10165, 50832}, {10246, 50797}, {10443, 50131}, {10519, 50786}, {10711, 33812}, {11001, 28228}, {11179, 49536}, {11274, 21635}, {11362, 33923}, {11531, 15683}, {11812, 38176}, {12108, 38068}, {13464, 50806}, {13624, 50825}, {15682, 16200}, {15685, 28232}, {15687, 33179}, {15713, 31662}, {15722, 26446}, {18357, 45757}, {18481, 34638}, {18525, 50799}, {19862, 47599}, {19925, 38314}, {20053, 35418}, {20057, 50687}, {21734, 31145}, {31673, 32900}, {31884, 50789}, {35409, 41869}, {38146, 51006}, {38191, 50983}, {38693, 50893}, {50843, 50906}, {50844, 50907}

X(51082) = midpoint of X(i) and X(j) for these {i,j}: {20, 34747}, {145, 34628}, {3633, 34632}, {3655, 18526}, {7991, 20049}, {11531, 15683}, {18481, 34748}, {50811, 50818}
X(51082) = reflection of X(i) in X(j) for these {i,j}: {10, 3655}, {381, 13607}, {551, 5882}, {3817, 7967}, {4301, 3241}, {5881, 3828}, {10711, 33812}, {15687, 33179}, {21635, 11274}, {31145, 43174}, {31162, 3635}, {34627, 1125}, {34638, 18481}, {34641, 3}, {34648, 1}, {47745, 549}, {49536, 11179}, {50796, 50824}, {50798, 50828}, {50804, 50827}, {50808, 50811}, {50810, 50815}, {50817, 50814}, {50862, 3656}, {50864, 50802}, {50871, 50801}, {50906, 50843}, {50907, 50844}
X(51082) = complement of X(50871)
X(51082) = anticomplement of X(50801)
X(51082) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 50864, 50802}, {2, 50871, 50801}, {3, 50804, 50827}, {40, 50811, 50819}, {40, 50816, 50808}, {40, 50819, 50816}, {376, 50814, 50808}, {376, 50817, 50814}, {549, 47745, 38098}, {944, 50818, 50811}, {3655, 50798, 50828}, {5882, 50796, 50824}, {12512, 50809, 50808}, {50796, 50824, 551}, {50798, 50828, 10}, {50802, 50864, 34648}, {50804, 50827, 34641}, {50808, 50811, 4297}, {50809, 50820, 12512}, {50810, 50811, 50815}, {50810, 50815, 50808}, {50811, 50817, 376}


X(51083) = X(40)X(376)∩X(548)X(551)

Barycentrics    68*a^4 + 3*a^3*b - 55*a^2*b^2 - 3*a*b^3 - 13*b^4 + 3*a^3*c - 6*a^2*b*c + 3*a*b^2*c - 55*a^2*c^2 + 3*a*b*c^2 + 26*b^2*c^2 - 3*a*c^3 - 13*c^4 : :
X(51083) = 3 X[3] - X[50807], X[10] + 6 X[15689], 4 X[20] + 3 X[38076], 3 X[20] + 4 X[50829], 3 X[20] + X[50867], 4 X[19876] - 3 X[38076], 3 X[19876] - 4 X[50829], 3 X[19876] - X[50867], 9 X[38076] - 16 X[50829], 9 X[38076] - 4 X[50867], 4 X[50829] - X[50867], X[40] + 13 X[376], 29 X[40] + 13 X[944], 8 X[40] + 13 X[4297], 55 X[40] - 13 X[12245], 5 X[40] - 26 X[12512], 6 X[40] - 13 X[50808], 51 X[40] - 65 X[50809], 27 X[40] - 13 X[50810], 15 X[40] + 13 X[50811], 9 X[40] - 65 X[50812], 3 X[40] - 13 X[50813], 33 X[40] - 26 X[50814], 9 X[40] + 26 X[50815], 3 X[40] - 52 X[50816], 69 X[40] - 13 X[50817], 57 X[40] + 13 X[50818], 33 X[40] + 65 X[50819], 3 X[40] + 13 X[50820], 29 X[376] - X[944], 8 X[376] - X[4297], 55 X[376] + X[12245], 5 X[376] + 2 X[12512], 6 X[376] + X[50808], 51 X[376] + 5 X[50809], 27 X[376] + X[50810], 15 X[376] - X[50811], 9 X[376] + 5 X[50812], 3 X[376] + X[50813], 33 X[376] + 2 X[50814], 9 X[376] - 2 X[50815], 3 X[376] + 4 X[50816], 69 X[376] + X[50817], 57 X[376] - X[50818], 33 X[376] - 5 X[50819], 3 X[376] - X[50820], 8 X[944] - 29 X[4297], and many others

X(51083) lies on these lines: {2, 50874}, {3, 50807}, {10, 15689}, {20, 19876}, {40, 376}, {165, 50801}, {548, 551}, {550, 50796}, {3522, 50865}, {3524, 50869}, {3529, 50870}, {3534, 10164}, {3616, 35418}, {3624, 10304}, {3634, 46333}, {3656, 15695}, {3817, 19708}, {3828, 17538}, {4678, 34628}, {5493, 50824}, {5847, 50976}, {8703, 10165}, {9588, 50693}, {9780, 34648}, {11001, 50803}, {12103, 38068}, {12571, 15715}, {12699, 15688}, {14093, 19883}, {15690, 28186}, {15696, 38066}, {15698, 28158}, {16191, 50872}, {19862, 45759}, {31673, 50825}, {31884, 50792}, {34379, 50969}

X(51083) = midpoint of X(i) and X(j) for these {i,j}: {20, 19876}, {4678, 34628}, {15808, 34638}, {50813, 50820}
X(51083) = reflection of X(i) in X(j) for these {i,j}: {34648, 9780}, {50796, 50826}, {50808, 50813}, {50862, 50800}
X(51083) = complement of X(50874)
X(51083) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 50812, 50815}, {376, 50813, 50820}, {376, 50816, 50808}, {12245, 50819, 50811}, {12512, 50811, 50808}, {50812, 50815, 50808}, {50815, 50816, 50812}


X(51084) = X(30)X(19862)∩X(519)X(549)

Barycentrics    22*a^4 - 3*a^3*b - 26*a^2*b^2 + 3*a*b^3 + 4*b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c - 26*a^2*c^2 - 3*a*b*c^2 - 8*b^2*c^2 + 3*a*c^3 + 4*c^4 : :
X(51084) = X[1] + 9 X[15707], 2 X[2] + 3 X[17502], 8 X[2] - 3 X[38140], 3 X[2] + X[50819], 9 X[2] - X[50863], 4 X[17502] + X[38140], 9 X[17502] + 2 X[50799], 9 X[17502] - 2 X[50819], 27 X[17502] + 2 X[50863], 9 X[38140] - 8 X[50799], 9 X[38140] + 8 X[50819], 27 X[38140] - 8 X[50863], 3 X[50799] - X[50863], 3 X[50819] + X[50863], 7 X[3] + 3 X[38021], 3 X[3] + X[50806], 3 X[3] - X[50812], 9 X[3] + X[50865], 9 X[38021] - 7 X[50806], 9 X[38021] + 7 X[50812], 27 X[38021] - 7 X[50865], 3 X[50806] - X[50865], 3 X[50812] + X[50865], 3 X[5] + 2 X[50815], 3 X[20] + 7 X[50807], X[40] - 11 X[15718], 8 X[140] - 3 X[38083], 6 X[140] - X[50796], 9 X[38083] - 4 X[50796], X[355] - 11 X[15721], 13 X[376] + 7 X[10248], 3 X[376] + X[50873], 21 X[10248] - 13 X[50873], 3 X[381] - X[50866], 4 X[549] + X[1385], 19 X[549] + X[1483], 11 X[549] - X[5690], 7 X[549] - 2 X[6684], 23 X[549] + 2 X[13607], 6 X[549] - X[50821], 9 X[549] - X[50822], 21 X[549] - X[50823], 9 X[549] + X[50824], 3 X[549] - X[50825], 27 X[549] - 7 X[50826], 27 X[549] - 2 X[50827], 3 X[549] + 2 X[50828], and many others

X(51084) lies on these lines: {1, 15707}, {2, 17502}, {3, 28202}, {5, 50815}, {20, 50807}, {30, 19862}, {40, 15718}, {140, 38083}, {355, 15721}, {376, 10248}, {381, 50866}, {515, 15713}, {516, 15711}, {517, 15693}, {519, 549}, {547, 50862}, {551, 3530}, {631, 28204}, {946, 14891}, {1125, 17504}, {1698, 5054}, {3523, 3653}, {3524, 3579}, {3545, 50867}, {3576, 15701}, {3617, 3655}, {3624, 15688}, {3654, 15719}, {3679, 15720}, {3817, 15690}, {3828, 14869}, {3830, 50820}, {3845, 50870}, {4297, 10124}, {5055, 33697}, {5085, 50791}, {5550, 15710}, {5691, 15723}, {5847, 50980}, {5886, 15698}, {7987, 15694}, {7988, 15685}, {8227, 14093}, {8703, 11230}, {9955, 10304}, {9956, 15702}, {10164, 44580}, {10165, 12100}, {10171, 33699}, {10175, 11540}, {10246, 15722}, {11231, 11812}, {11278, 41983}, {11539, 18480}, {12108, 38068}, {12571, 44903}, {12699, 15705}, {14269, 34595}, {14890, 18357}, {15178, 50805}, {15686, 50869}, {15692, 28198}, {15695, 28154}, {15699, 50803}, {15700, 25055}, {15706, 31162}, {15709, 18481}, {15712, 28194}, {16239, 38076}, {19708, 28146}, {19709, 28168}, {19711, 38028}, {19878, 38071}, {19883, 22793}, {20052, 32900}, {21151, 50840}, {23961, 28466}, {26446, 50818}, {28484, 51049}, {28516, 51045}, {30389, 38066}, {31423, 50871}, {31673, 47599}, {34379, 50987}, {34628, 50800}, {34648, 47598}, {34773, 50801}, {38022, 44682}, {45759, 50816}

X(51084) = midpoint of X(i) and X(j) for these {i,j}: {3617, 3655}, {3656, 50809}, {7987, 15694}, {8227, 14093}, {15695, 30308}, {50797, 50811}, {50799, 50819}, {50806, 50812}, {50822, 50824}, {50825, 50832}
X(51084) = reflection of X(i) in X(j) for these {i,j}: {50821, 50825}, {50832, 50828}
X(51084) = complement of X(50799)
X(51084) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 50819, 50799}, {3, 50806, 50812}, {549, 50824, 50829}, {549, 50828, 50821}, {549, 50832, 50825}, {549, 50833, 50828}, {1698, 50811, 50797}, {3616, 50809, 3656}, {6684, 50823, 50821}, {15700, 25055, 31663}, {19883, 34200, 22793}, {50821, 50828, 1385}, {50822, 50832, 50824}, {50824, 50825, 50822}, {50824, 50826, 50827}, {50824, 50829, 50821}, {50826, 50827, 50821}, {50827, 50829, 50826}, {50828, 50829, 50824}


X(51085) = X(30)X(3636)∩X(519)X(549)

Barycentrics    26*a^4 - 15*a^3*b - 25*a^2*b^2 + 15*a*b^3 - b^4 - 15*a^3*c + 30*a^2*b*c - 15*a*b^2*c - 25*a^2*c^2 - 15*a*b*c^2 + 2*b^2*c^2 + 15*a*c^3 - c^4 : :
X(51085) = 5 X[1] + 3 X[10304], 7 X[1] + X[34632], 3 X[1] + X[50808], 9 X[1] - X[50872], 21 X[10304] - 5 X[34632], 9 X[10304] - 5 X[50808], 27 X[10304] + 5 X[50872], 3 X[34632] - 7 X[50808], 9 X[34632] + 7 X[50872], 3 X[50808] + X[50872], X[2] - 9 X[30392], 11 X[2] - 3 X[37712], 7 X[2] - 3 X[38155], 9 X[2] - X[50871], 33 X[30392] - X[37712], 21 X[30392] - X[38155], 27 X[30392] - X[50801], 81 X[30392] - X[50871], 7 X[37712] - 11 X[38155], 9 X[37712] - 11 X[50801], 27 X[37712] - 11 X[50871], 9 X[38155] - 7 X[50801], 27 X[38155] - 7 X[50871], 3 X[50801] - X[50871], 3 X[3] - X[50814], X[4] - 5 X[551], 11 X[4] - 35 X[9624], 7 X[4] - 15 X[38021], 3 X[4] - 5 X[50802], 3 X[4] + 5 X[50811], 9 X[4] - 5 X[50862], 11 X[551] - 7 X[9624], 7 X[551] - 3 X[38021], 3 X[551] - X[50802], 3 X[551] + X[50811], 9 X[551] - X[50862], 49 X[9624] - 33 X[38021], 21 X[9624] - 11 X[50802], 21 X[9624] + 11 X[50811], 63 X[9624] - 11 X[50862], 9 X[38021] - 7 X[50802], 9 X[38021] + 7 X[50811], 27 X[38021] - 7 X[50862], 3 X[50802] - X[50862], 3 X[50811] + X[50862], 5 X[10] - 9 X[15709], and many others

X(51085) lies on these lines: {1, 10304}, {2, 28236}, {3, 50814}, {4, 551}, {10, 15709}, {30, 3636}, {381, 50868}, {515, 5066}, {516, 3534}, {517, 15759}, {519, 549}, {548, 15178}, {631, 34641}, {944, 19883}, {946, 15684}, {952, 11540}, {1125, 3655}, {3241, 15717}, {3244, 3524}, {3523, 34747}, {3526, 3653}, {3545, 15808}, {3576, 15698}, {3616, 34648}, {3622, 34628}, {3626, 5054}, {3628, 28204}, {3632, 15708}, {3634, 47598}, {3635, 15706}, {3679, 10303}, {3857, 38022}, {4297, 15683}, {4298, 24926}, {4301, 50693}, {4669, 7967}, {4691, 14890}, {4701, 34748}, {4745, 10165}, {4746, 32900}, {5072, 50799}, {5493, 50813}, {5731, 15640}, {5847, 50982}, {5901, 50870}, {7982, 50809}, {8703, 28228}, {9588, 20049}, {10175, 50797}, {10283, 28158}, {11278, 45759}, {11522, 50692}, {12100, 28234}, {12512, 37624}, {12571, 28208}, {12577, 34471}, {13464, 15704}, {15022, 38076}, {15690, 28232}, {15694, 47745}, {15701, 38127}, {15702, 38098}, {15705, 20057}, {16200, 19708}, {18481, 50806}, {18526, 31253}, {19862, 34627}, {19925, 25055}, {23046, 34773}, {28164, 33699}, {31162, 46333}, {31673, 50807}, {33179, 34200}, {34638, 50820}, {35774, 43525}, {35775, 43526}, {37727, 38068}, {37931, 47593}, {43176, 47357}

X(51085) = midpoint of X(i) and X(j) for these {i,j}: {549, 13607}, {1125, 3655}, {3241, 43174}, {3656, 50815}, {3828, 5882}, {4701, 34748}, {33179, 34200}, {43176, 47357}, {50802, 50811}, {50824, 50828}
X(51085) = reflection of X(50829) in X(50828)
X(51085) = complement of X(50801)
X(51085) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {549, 50830, 50821}, {551, 50811, 50802}, {1385, 50821, 50832}, {1385, 50824, 50828}, {3653, 5882, 3828}, {13607, 50828, 50827}, {50821, 50830, 50827}, {50821, 50832, 50828}, {50824, 50825, 1483}, {50824, 50832, 50821}, {50824, 50833, 50831}, {50827, 50828, 549}, {50831, 50832, 50833}, {50831, 50833, 50821}


X(51086) = X(30)X(19878)∩X(519)X(549)

Barycentrics    34*a^4 - 3*a^3*b - 41*a^2*b^2 + 3*a*b^3 + 7*b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c - 41*a^2*c^2 - 3*a*b*c^2 - 14*b^2*c^2 + 3*a*c^3 + 7*c^4 : :
X(51086) = 3 X[2] + X[50815], 9 X[2] - X[50862], 3 X[50803] - X[50862], and others

X(51086) lies on these lines: {2, 28164}, {3, 50802}, {10, 15708}, {20, 50874}, {30, 19878}, {376, 12571}, {381, 50870}, {515, 11812}, {516, 12100}, {517, 41150}, {519, 549}, {551, 3523}, {631, 3828}, {946, 15700}, {1125, 3524}, {3525, 38076}, {3526, 50799}, {3530, 28194}, {3534, 10171}, {3545, 50820}, {3576, 4745}, {3624, 15705}, {3626, 50818}, {3634, 5054}, {3635, 50817}, {3636, 8148}, {3653, 43174}, {3654, 15722}, {3655, 4691}, {3656, 10165}, {3817, 19708}, {4297, 15702}, {4301, 50809}, {4746, 50804}, {5085, 50787}, {5790, 15701}, {5847, 50984}, {7987, 15721}, {7989, 50863}, {8227, 15715}, {8703, 28158}, {10109, 28172}, {10164, 15719}, {10299, 38021}, {10303, 30315}, {10304, 19862}, {11230, 15711}, {11540, 28160}, {12108, 28204}, {12512, 15692}, {15035, 50922}, {15688, 50807}, {15694, 19925}, {15698, 50812}, {15706, 31730}, {15709, 31253}, {15713, 17502}, {15720, 38068}, {15759, 28150}, {15808, 34632}, {18483, 45759}, {20070, 25055}, {21151, 50837}, {21154, 50844}, {21166, 50887}, {28154, 46332}, {28522, 51049}, {30389, 34641}, {34379, 50983}, {34473, 50882}, {34474, 50892}, {38067, 43176}, {38693, 50909}, {38760, 50845}

X(51086) = midpoint of X(i) and X(j) for these {i,j}: {376, 12571}, {3655, 4691}, {50802, 50816}, {50803, 50815}, {50828, 50829}
X(51086) = complement of X(50803)
X(51086) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 50815, 50803}, {3, 50802, 50816}, {549, 50828, 50829}, {549, 50833, 50821}, {1385, 50821, 50831}, {1385, 50825, 50827}, {3624, 15705, 34638}, {6684, 50828, 50824}, {15692, 19883, 12512}, {15709, 34648, 31253}, {50821, 50831, 50827}, {50821, 50833, 50828}, {50825, 50831, 50821}, {50827, 50828, 1385}


X(51087) = X(30)X(3244)∩X(519)X(549)

Barycentrics    14*a^4 - 15*a^3*b - 10*a^2*b^2 + 15*a*b^3 - 4*b^4 - 15*a^3*c + 30*a^2*b*c - 15*a*b^2*c - 10*a^2*c^2 - 15*a*b*c^2 + 8*b^2*c^2 + 15*a*c^3 - 4*c^4 : :
X(51087) = 5 X[1] - 3 X[5055], 3 X[1] - X[50798], 3 X[5055] + 5 X[34748], and many others

X(51087) lies on these lines: {1, 5055}, {2, 38176}, {3, 34747}, {4, 1392}, {5, 50801}, {8, 15709}, {10, 47598}, {30, 3244}, {140, 34641}, {145, 3579}, {381, 33179}, {515, 33699}, {517, 3534}, {519, 549}, {547, 47745}, {548, 5882}, {551, 3628}, {944, 15683}, {952, 3817}, {1482, 15684}, {1864, 31792}, {3524, 20050}, {3526, 3679}, {3545, 20057}, {3623, 9955}, {3625, 14890}, {3626, 11539}, {3632, 5054}, {3633, 13624}, {3635, 18480}, {3636, 15699}, {3653, 10303}, {3654, 7967}, {3829, 32213}, {3830, 16200}, {3845, 28236}, {3857, 13464}, {4421, 23961}, {4669, 11231}, {4677, 10246}, {4745, 38028}, {4870, 37707}, {5072, 5881}, {5288, 28443}, {5603, 50807}, {5731, 50809}, {5844, 15759}, {5846, 50982}, {5847, 50985}, {7972, 50194}, {7982, 17800}, {7991, 50820}, {8148, 34628}, {8703, 28234}, {9041, 12007}, {9956, 38314}, {10109, 38155}, {10124, 38098}, {10172, 41150}, {10247, 50806}, {11194, 33862}, {11224, 28168}, {11274, 22935}, {11531, 15681}, {11812, 38127}, {12645, 25055}, {12702, 50812}, {13606, 22936}, {15022, 38074}, {15640, 28160}, {15687, 50868}, {15693, 31662}, {15701, 30392}, {15704, 28194}, {15708, 20054}, {15717, 20049}, {15808, 47599}, {18481, 34631}, {18526, 31162}, {19709, 37712}, {19710, 28228}, {19875, 37624}, {21627, 49107}, {22793, 50862}, {34690, 34745}, {34698, 34719}, {34773, 50815}, {38021, 50800}, {38167, 51006}, {43150, 49465}, {50693, 50819}

X(51087) = midpoint of X(i) and X(j) for these {i,j}: {1, 34748}, {3, 34747}, {145, 3655}, {3241, 37727}, {3633, 34718}, {3656, 50818}, {8148, 34628}, {11531, 15681}, {18481, 34631}, {18526, 31162}, {34690, 34745}, {34698, 34719}, {50805, 50811}, {50824, 50831}
X(51087) = reflection of X(i) in X(j) for these {i,j}: {381, 33179}, {549, 13607}, {3579, 3655}, {3655, 32900}, {3679, 15178}, {10222, 3241}, {17502, 7967}, {22935, 11274}, {33697, 31162}, {34627, 9955}, {34641, 140}, {34718, 13624}, {47745, 547}, {50821, 50824}, {50823, 50828}, {50830, 50827}
X(51087) = complement of X(50804)
X(51087) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {145, 32900, 3579}, {549, 50827, 50821}, {549, 50830, 50827}, {1483, 50831, 50824}, {3241, 50818, 3656}, {3656, 37727, 50818}, {5690, 50824, 50832}, {5690, 50829, 50821}, {5690, 50832, 50829}, {6684, 50822, 50821}, {50821, 50824, 1385}, {50822, 50833, 6684}, {50823, 50824, 50828}, {50823, 50828, 50821}, {50824, 50830, 549}


X(51088) = X(5)X(50869)∩X(519)X(549)

Barycentrics    26*a^4 + 3*a^3*b - 34*a^2*b^2 - 3*a*b^3 + 8*b^4 + 3*a^3*c - 6*a^2*b*c + 3*a*b^2*c - 34*a^2*c^2 + 3*a*b*c^2 - 16*b^2*c^2 - 3*a*c^3 + 8*c^4 : :
X(51088) = 3 X[2] + X[50813], 25 X[3] + 17 X[30315], 4 X[3] + 3 X[38083], and many others

X(51088) lies on these lines: {2, 28146}, {3, 19876}, {5, 50869}, {10, 41983}, {140, 50808}, {165, 50806}, {376, 50867}, {381, 50874}, {515, 19711}, {517, 15701}, {519, 549}, {550, 50803}, {551, 12108}, {631, 3656}, {1698, 15706}, {3523, 28204}, {3524, 9780}, {3526, 28202}, {3530, 38068}, {3534, 50866}, {3576, 15722}, {3579, 3624}, {3622, 11278}, {3634, 45759}, {3655, 4678}, {3679, 31666}, {3828, 15712}, {3845, 50816}, {4677, 31662}, {5055, 50812}, {5085, 50785}, {5587, 15716}, {5790, 15693}, {5847, 50988}, {5886, 50809}, {8703, 28172}, {9955, 15709}, {9956, 15692}, {10124, 22793}, {10164, 11812}, {10172, 19710}, {10175, 15759}, {10222, 15720}, {10304, 33697}, {11230, 15713}, {11231, 12100}, {11539, 50802}, {13624, 15707}, {14869, 28194}, {14890, 19862}, {15178, 50817}, {15694, 31663}, {15698, 28160}, {15700, 28208}, {15702, 28198}, {15703, 16192}, {15714, 19925}, {15717, 50819}, {15718, 19875}, {15719, 26446}, {15721, 20070}, {17504, 18480}, {19872, 38335}, {23046, 31253}, {28555, 51049}, {31730, 47598}, {33923, 38076}, {34200, 50862}, {34379, 50981}, {34638, 47599}, {38176, 44580}, {44903, 50870}

X(51088) = midpoint of X(i) and X(j) for these {i,j}: {3, 19876}, {3655, 4678}, {15700, 31423}, {15703, 16192}, {50800, 50820}, {50807, 50813}, {50826, 50833}
X(51088) = reflection of X(50821) in X(50826)
X(51088) = complement of X(50807)
X(51088) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 50813, 50807}, {3, 50800, 50820}, {549, 50825, 50828}, {549, 50826, 50833}, {549, 50829, 50821}, {6684, 50824, 50821}, {19876, 50820, 50800}, {50825, 50828, 50821}, {50828, 50829, 50825}


X(51089) = X(2)X(38191)∩X(519)X(599)

Barycentrics    8*a^3 - 7*a^2*b + 14*a*b^2 - b^3 - 7*a^2*c - b^2*c + 14*a*c^2 - b*c^2 - c^3 : :
X(51089) = 4 X[2] - 3 X[38191], 7 X[2] - 5 X[50953], 21 X[38191] - 20 X[50953], X[193] - 5 X[3241], X[193] + 5 X[16496], 2 X[193] - 5 X[49684], 2 X[16496] + X[49684], X[8584] - 5 X[50998], 4 X[8584] - 5 X[51005], 4 X[50998] - X[51005], X[599] - 5 X[3242], 7 X[599] - 5 X[3416], 3 X[599] - 5 X[47358], 4 X[599] - 5 X[49511], 6 X[599] - 5 X[50781], 33 X[599] - 25 X[50782], 9 X[599] - 5 X[50783], 27 X[599] - 25 X[50784], 39 X[599] - 35 X[50785], 3 X[599] - 2 X[50786], 9 X[599] - 10 X[50787], 21 X[599] - 20 X[50788], 3 X[599] - X[50789], 3 X[599] + 5 X[50790], 21 X[599] - 25 X[50791], 33 X[599] - 35 X[50792], 7 X[3242] - X[3416], 3 X[3242] - X[47358], 4 X[3242] - X[49511], 6 X[3242] - X[50781], 33 X[3242] - 5 X[50782], 9 X[3242] - X[50783], 27 X[3242] - 5 X[50784], 39 X[3242] - 7 X[50785], 15 X[3242] - 2 X[50786], 9 X[3242] - 2 X[50787], 21 X[3242] - 4 X[50788], 15 X[3242] - X[50789], 3 X[3242] + X[50790], 21 X[3242] - 5 X[50791], 33 X[3242] - 7 X[50792], 3 X[3416] - 7 X[47358], 4 X[3416] - 7 X[49511], 6 X[3416] - 7 X[50781], 33 X[3416] - 35 X[50782], 9 X[3416] - 7 X[50783], and many others

X(51089) lies on these lines: {2, 38191}, {69, 34747}, {141, 34641}, {193, 3241}, {518, 3898}, {519, 599}, {524, 3244}, {551, 3589}, {597, 49536}, {3619, 3679}, {3626, 21358}, {3630, 28538}, {3632, 21356}, {3635, 47356}, {3636, 47352}, {3828, 49688}, {4669, 9053}, {5032, 20057}, {5846, 51004}, {5847, 50992}, {10516, 50801}, {10519, 50817}, {11178, 47745}, {11179, 13607}, {15808, 48310}, {17133, 49458}, {17765, 49630}, {19883, 49524}, {20582, 38098}, {28194, 48873}, {28204, 39884}, {28236, 47353}, {29574, 49675}, {31884, 50814}, {34379, 51000}, {38049, 47359}, {41153, 51006}, {49473, 50118}, {49543, 51050}, {49771, 50296}

X(51089) = midpoint of X(i) and X(j) for these {i,j}: {69, 34747}, {3241, 16496}, {47358, 50790}
X(51089) = reflection of X(i) in X(j) for these {i,j}: {551, 49465}, {4669, 51003}, {11179, 13607}, {34641, 141}, {47356, 3635}, {47745, 11178}, {49529, 551}, {49536, 597}, {49684, 3241}, {49688, 3828}, {50109, 49464}, {50118, 49473}, {50781, 47358}, {50783, 50787}, {50789, 50786}
X(51089) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {551, 49529, 38089}, {599, 50786, 50781}, {599, 50789, 50786}, {3242, 50790, 47358}, {3416, 47358, 50791}, {3416, 50788, 50781}, {3416, 50791, 50788}, {47358, 50781, 49511}, {47358, 50783, 50787}, {47358, 50789, 599}, {50783, 50787, 50781}


X(51090) = X(1)X(144)∩X(4)X(9)

Barycentrics    4*a^3 - a^2*b - 2*a*b^2 - b^3 - a^2*c - 4*a*b*c + b^2*c - 2*a*c^2 + b*c^2 - c^3 : :
X(51090) = 4 X[2] - 3 X[38094], 4 X[4312] - 9 X[38094], 3 X[9] - X[2550], 5 X[9] - 3 X[38057], 7 X[9] - 3 X[38200], 8 X[9] - 3 X[38201], 3 X[10] - 2 X[2550], X[10] + 2 X[5698], 5 X[10] - 6 X[38057], 7 X[10] - 6 X[38200], 4 X[10] - 3 X[38201], X[40] - 3 X[21168], X[2550] + 3 X[5698], 5 X[2550] - 9 X[38057], 7 X[2550] - 9 X[38200], 8 X[2550] - 9 X[38201], 5 X[5698] + 3 X[38057], 7 X[5698] + 3 X[38200], 8 X[5698] + 3 X[38201], 3 X[5817] - 2 X[19925], 7 X[38057] - 5 X[38200], 8 X[38057] - 5 X[38201], 8 X[38200] - 7 X[38201], 4 X[5] - 3 X[38151], 2 X[7] - 3 X[38054], 4 X[1125] - 3 X[38054], 4 X[140] - 3 X[38123], 4 X[142] - 5 X[19862], 2 X[142] - 3 X[38059], 3 X[11263] - 2 X[13159], 8 X[15254] - 5 X[19862], 4 X[15254] - X[30424], 4 X[15254] - 3 X[38059], 5 X[19862] - 2 X[30424], 5 X[19862] - 6 X[38059], X[30424] - 3 X[38059], X[390] + 3 X[6172], 5 X[390] - X[12630], 2 X[390] + 3 X[50834], 5 X[390] + 3 X[50835], X[390] - 3 X[50836], X[390] + 6 X[50837], 11 X[390] + 3 X[50838], 7 X[390] - 3 X[50839], X[390] + 15 X[50840], X[5223] - 3 X[6172], 5 X[5223] + X[12630], and many others

X(51090) lies on these lines: {1, 144}, {2, 4312}, {3, 43182}, {4, 9}, {5, 38151}, {6, 4356}, {7, 1125}, {8, 25728}, {20, 3062}, {31, 4656}, {37, 4349}, {44, 3755}, {55, 21060}, {63, 11019}, {72, 4314}, {140, 38123}, {142, 3647}, {149, 3219}, {162, 2328}, {165, 18228}, {190, 3883}, {191, 1210}, {210, 6154}, {214, 5851}, {226, 3683}, {238, 3663}, {329, 4512}, {386, 4335}, {390, 519}, {392, 4315}, {405, 3671}, {452, 6738}, {480, 8715}, {497, 3929}, {515, 5779}, {518, 3244}, {527, 551}, {528, 4669}, {553, 4423}, {673, 2796}, {726, 51052}, {748, 24177}, {752, 4078}, {758, 5728}, {936, 2951}, {946, 5762}, {954, 5248}, {956, 4342}, {958, 4301}, {960, 971}, {962, 5234}, {991, 24708}, {997, 5732}, {1155, 5316}, {1279, 17334}, {1329, 38130}, {1376, 50808}, {1385, 5843}, {1445, 9843}, {1621, 17781}, {1699, 5273}, {1707, 39595}, {1898, 40661}, {2325, 3416}, {2801, 33337}, {2802, 6068}, {2886, 5325}, {3008, 24248}, {3035, 3452}, {3059, 3678}, {3243, 43179}, {3305, 44447}, {3339, 5129}, {3474, 7308}, {3576, 36996}, {3589, 38187}, {3616, 20059}, {3625, 4133}, {3626, 5686}, {3628, 38172}, {3634, 18230}, {3635, 8236}, {3636, 11038}, {3650, 5439}, {3664, 24695}, {3672, 16469}, {3685, 4416}, {3686, 5695}, {3696, 3707}, {3717, 17336}, {3731, 4307}, {3781, 29353}, {3811, 4326}, {3814, 3826}, {3817, 5745}, {3821, 4759}, {3828, 40333}, {3840, 4368}, {3868, 41861}, {3869, 18412}, {3874, 5572}, {3876, 25722}, {3911, 4679}, {3928, 26105}, {3950, 5847}, {3986, 50302}, {4000, 15601}, {4021, 16475}, {4026, 50115}, {4058, 50308}, {4061, 32929}, {4084, 30329}, {4134, 15733}, {4294, 6743}, {4298, 31435}, {4304, 5692}, {4353, 4419}, {4357, 4676}, {4361, 28557}, {4384, 24280}, {4429, 49630}, {4432, 5845}, {4480, 24349}, {4645, 25101}, {4655, 21255}, {4666, 20078}, {4667, 15569}, {4672, 50290}, {4684, 17347}, {4700, 49486}, {4862, 16020}, {4877, 5327}, {4923, 49485}, {4924, 49712}, {4969, 49461}, {4989, 17301}, {5044, 15587}, {5218, 31142}, {5250, 12527}, {5263, 50093}, {5267, 43177}, {5436, 12563}, {5705, 12571}, {5735, 26363}, {5784, 44238}, {5791, 18483}, {5794, 31672}, {5809, 49168}, {5811, 10268}, {5852, 42819}, {5856, 21630}, {5880, 6666}, {5904, 30628}, {6067, 24387}, {6173, 19883}, {6246, 38127}, {6667, 38207}, {6668, 38208}, {6700, 21153}, {6737, 6872}, {6744, 30330}, {6745, 31018}, {7144, 13755}, {7262, 24210}, {7613, 31183}, {7672, 50573}, {7675, 22836}, {7989, 18231}, {7992, 37423}, {8165, 9588}, {8232, 10198}, {8543, 41572}, {8545, 12573}, {8580, 9778}, {8666, 42884}, {8732, 10200}, {9623, 28228}, {9708, 28194}, {9791, 17023}, {9965, 10582}, {10165, 31657}, {10176, 15726}, {10177, 20116}, {10384, 12575}, {10392, 11113}, {10624, 41229}, {10889, 17733}, {10980, 28610}, {11495, 25440}, {12560, 12848}, {13609, 15855}, {15485, 24231}, {15808, 38053}, {15837, 21075}, {15931, 41561}, {16112, 17647}, {16468, 50114}, {16825, 28526}, {17123, 24175}, {17243, 28570}, {17257, 19868}, {17261, 49476}, {17332, 49484}, {17348, 28530}, {17353, 24723}, {17596, 45204}, {18232, 24389}, {18253, 18482}, {20073, 49446}, {20533, 29594}, {25639, 42356}, {25681, 38122}, {25917, 31391}, {26066, 38108}, {26580, 35263}, {26723, 33100}, {27484, 49474}, {28164, 36991}, {29571, 50307}, {30147, 41563}, {30478, 38036}, {31302, 49771}, {31399, 38179}, {31418, 31446}, {41845, 50095}, {49445, 50017}, {49527, 49709}, {49742, 50294}, {50118, 50296}

X(51090) = midpoint of X(i) and X(j) for these {i,j}: {1, 144}, {9, 5698}, {20, 3062}, {72, 14100}, {390, 5223}, {3869, 18412}, {5759, 11372}, {5904, 30628}, {6172, 50836}, {36996, 41705}
X(51090) = reflection of X(i) in X(j) for these {i,j}: {7, 1125}, {10, 9}, {142, 15254}, {2951, 12512}, {3059, 3678}, {3243, 43179}, {3244, 30331}, {3874, 5572}, {4084, 30329}, {5542, 1001}, {5880, 6666}, {6172, 50837}, {15587, 5044}, {24393, 15481}, {30424, 142}, {31671, 18483}, {35514, 43174}, {36996, 43176}, {43182, 3}, {50834, 6172}
X(51090) = complement of X(4312)
X(51090) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 18249, 10}, {7, 1125, 38054}, {9, 41325, 17355}, {40, 18250, 10}, {63, 40998, 11019}, {142, 15254, 38059}, {142, 38059, 19862}, {165, 18228, 20103}, {329, 4512, 13405}, {390, 6172, 5223}, {390, 50835, 12630}, {452, 12526, 6738}, {1001, 5542, 551}, {2551, 43174, 10}, {3243, 47357, 43179}, {3452, 4640, 10164}, {3576, 36996, 43176}, {3576, 41705, 36996}, {4419, 7290, 4353}, {5223, 50836, 390}, {5745, 24703, 3817}, {5880, 6666, 38204}, {12514, 12572, 10}, {15254, 30424, 19862}, {17355, 50295, 10}, {18230, 38052, 3634}, {30424, 38059, 142}, {31018, 35258, 6745}, {31594, 31595, 6554}, {49520, 49705, 3244}, {50836, 50837, 50834}, {50836, 50840, 50837}


X(51091) = X(1)X(2)∩X(515)X(33699)

Barycentrics    22*a - 5*b - 5*c : :
X(51091) = 9 X[1] - 5 X[2], 17 X[1] - 5 X[8], 11 X[1] - 5 X[10], 7 X[1] + 5 X[145], 7 X[1] - 5 X[551], 8 X[1] - 5 X[1125], 49 X[1] - 25 X[1698], X[1] - 5 X[3241], X[1] + 5 X[3244], 37 X[1] - 25 X[3616], 61 X[1] - 25 X[3617], 41 X[1] - 5 X[3621], 47 X[1] - 35 X[3622], 13 X[1] - 25 X[3623], 59 X[1] - 35 X[3624], 23 X[1] - 5 X[3625], 14 X[1] - 5 X[3626], 29 X[1] - 5 X[3632], 19 X[1] + 5 X[3633], 19 X[1] - 10 X[3634], 2 X[1] - 5 X[3635], 13 X[1] - 10 X[3636], 13 X[1] - 5 X[3679], 73 X[1] - 25 X[4668], 3 X[1] - X[4669], 21 X[1] - 5 X[4677], 19 X[1] - 7 X[4678], 5 X[1] - 2 X[4691], 4 X[1] - X[4701], 12 X[1] - 5 X[4745], 31 X[1] - 10 X[4746], 97 X[1] - 25 X[4816], 91 X[1] - 55 X[5550], 71 X[1] - 35 X[9780], 53 X[1] - 35 X[15808], 43 X[1] - 25 X[19862], 157 X[1] - 85 X[19872], 31 X[1] - 15 X[19875], 67 X[1] - 35 X[19876], 25 X[1] - 13 X[19877], 7 X[1] - 4 X[19878], 5 X[1] - 3 X[19883], 11 X[1] + X[20014], 23 X[1] + 5 X[20049], 31 X[1] + 5 X[20050], 109 X[1] - 25 X[20052], 13 X[1] - X[20053], 89 X[1] - 5 X[20054], 23 X[1] - 35 X[20057], 37 X[1] - 19 X[22266], 23 X[1] - 15 X[25055], 5 X[1] - X[31145], 46 X[1] - 25 X[31253], 113 X[1] - 65 X[34595], 19 X[1] - 5 X[34641], 11 X[1] + 5 X[34747], 37 X[1] - 15 X[38098], 19 X[1] - 15 X[38314], 27 X[1] - 20 X[41150], 169 X[1] - 85 X[46932], 23 X[1] - 11 X[46933], 101 X[1] - 65 X[46934], 17 X[2] - 9 X[8], 11 X[2] - 9 X[10], 7 X[2] + 9 X[145], 7 X[2] - 9 X[551], 8 X[2] - 9 X[1125], 49 X[2] - 45 X[1698], X[2] - 9 X[3241], X[2] + 9 X[3244], 37 X[2] - 45 X[3616], 61 X[2] - 45 X[3617], 41 X[2] - 9 X[3621], 47 X[2] - 63 X[3622], 13 X[2] - 45 X[3623], 59 X[2] - 63 X[3624], 23 X[2] - 9 X[3625], 14 X[2] - 9 X[3626], 29 X[2] - 9 X[3632], 19 X[2] + 9 X[3633], 19 X[2] - 18 X[3634], 2 X[2] - 9 X[3635], 13 X[2] - 18 X[3636], 13 X[2] - 9 X[3679], 10 X[2] - 9 X[3828], 73 X[2] - 45 X[4668], 5 X[2] - 3 X[4669], 7 X[2] - 3 X[4677], 95 X[2] - 63 X[4678], 25 X[2] - 18 X[4691], 20 X[2] - 9 X[4701], 4 X[2] - 3 X[4745], 31 X[2] - 18 X[4746], 97 X[2] - 45 X[4816], 91 X[2] - 99 X[5550], 71 X[2] - 63 X[9780], 53 X[2] - 63 X[15808], 43 X[2] - 45 X[19862], 31 X[2] - 27 X[19875], and many others

X(51091) lies on these lines: {1, 2}, {515, 33699}, {516, 15685}, {517, 15690}, {518, 41149}, {553, 1317}, {726, 50778}, {946, 34748}, {952, 3860}, {1385, 19711}, {1483, 19710}, {3534, 5882}, {3543, 16189}, {3655, 12512}, {3656, 28236}, {3830, 37727}, {3845, 10222}, {4021, 50132}, {4297, 34631}, {4301, 15682}, {4370, 4982}, {4856, 16814}, {4908, 16668}, {4909, 50099}, {5066, 13464}, {5493, 15697}, {5603, 50803}, {5731, 50816}, {5844, 44580}, {5846, 41152}, {5847, 50998}, {5854, 50844}, {5881, 41106}, {7967, 50808}, {7982, 11001}, {8236, 50834}, {8692, 49685}, {9053, 41153}, {9812, 50870}, {10164, 50817}, {10175, 50804}, {10246, 50829}, {10247, 50796}, {10595, 38076}, {11224, 28158}, {11231, 50830}, {11274, 25416}, {11362, 15693}, {11531, 34638}, {11812, 15178}, {12100, 43174}, {12101, 28204}, {12437, 19706}, {12571, 34627}, {12630, 38024}, {13607, 15759}, {15481, 43179}, {15533, 49681}, {15534, 49684}, {15711, 17502}, {15722, 34718}, {16200, 50818}, {16669, 50113}, {16675, 50131}, {17355, 50123}, {22165, 49465}, {25716, 43186}, {28228, 50811}, {28522, 51055}, {34379, 51000}, {34637, 34719}, {34649, 34690}, {34710, 37545}, {37624, 38068}, {37904, 47491}, {38138, 50801}, {41147, 50887}, {47097, 47537}, {47311, 47489}, {47358, 50989}, {47538, 47593}, {49471, 49513}, {49505, 50992}, {49679, 50993}, {50786, 51003}, {50790, 51005}, {50805, 50814}

X(51091) = midpoint of X(i) and X(j) for these {i,j}: {10, 34747}, {145, 551}, {946, 34748}, {3241, 3244}, {3625, 20049}, {3633, 34641}, {4297, 34631}, {11274, 25416}, {11531, 34638}, {34637, 34719}, {34649, 34690}, {47097, 47537}, {47538, 47593}, {50790, 51005}
X(51091) = reflection of X(i) in X(j) for these {i,j}: {3626, 551}, {3635, 3241}, {3679, 3636}, {3828, 1}, {4701, 3828}, {12512, 3655}, {31145, 4691}, {34627, 12571}, {34641, 3634}, {50786, 51003}
X(51091) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3633, 4678}, {1, 4701, 1125}, {1, 20014, 10}, {1, 31145, 19883}, {145, 3623, 5550}, {3623, 20053, 1}, {3633, 38314, 34641}, {3635, 31253, 20057}, {3828, 4669, 4745}, {4691, 19883, 3828}, {4701, 4745, 4669}, {19883, 31145, 4691}, {20049, 20057, 25055}, {20049, 25055, 3625}, {20057, 46933, 1}, {34641, 38314, 3634}


X(51092) = X(1)X(2)∩X(515)X(50873)

Barycentrics    29*a - 7*b - 7*c : :
X(51092) = 12 X[1] - 7 X[2], 22 X[1] - 7 X[8], 29 X[1] - 14 X[10], 8 X[1] + 7 X[145], 19 X[1] - 14 X[551], 43 X[1] - 28 X[1125], 13 X[1] - 7 X[1698], 2 X[1] - 7 X[3241], X[1] + 14 X[3244], 10 X[1] - 7 X[3616], 16 X[1] - 7 X[3617], 52 X[1] - 7 X[3621], 64 X[1] - 49 X[3622], 4 X[1] - 7 X[3623], 79 X[1] - 49 X[3624], 59 X[1] - 14 X[3625], 73 X[1] - 28 X[3626], 37 X[1] - 7 X[3632], 23 X[1] + 7 X[3633], 101 X[1] - 56 X[3634], 13 X[1] - 28 X[3635], 71 X[1] - 56 X[3636], 17 X[1] - 7 X[3679], 53 X[1] - 28 X[3828], 19 X[1] - 7 X[4668], 39 X[1] - 14 X[4669], 27 X[1] - 7 X[4677], 124 X[1] - 49 X[4678], 131 X[1] - 56 X[4691], 103 X[1] - 28 X[4701], 9 X[1] - 4 X[4745], 23 X[1] - 8 X[4746], 25 X[1] - 7 X[4816], 122 X[1] - 77 X[5550], 94 X[1] - 49 X[9780], 143 X[1] - 98 X[15808], 23 X[1] - 14 X[19862], 41 X[1] - 21 X[19875], 89 X[1] - 49 X[19876], 166 X[1] - 91 X[19877], 67 X[1] - 42 X[19883], 68 X[1] + 7 X[20014], 4 X[1] + X[20049], 38 X[1] + 7 X[20050], 4 X[1] - X[20052], 82 X[1] - 7 X[20053], 16 X[1] - X[20054], 34 X[1] - 49 X[20057], 31 X[1] - 21 X[25055], 32 X[1] - 7 X[31145], and many others+

X(51092) lies on these lines: {1, 2}, {515, 50873}, {517, 15697}, {518, 50840}, {944, 28202}, {952, 41099}, {1317, 21454}, {1482, 15682}, {1483, 3534}, {3242, 50992}, {3543, 37727}, {3654, 31662}, {3830, 28224}, {3839, 10222}, {3845, 34748}, {3871, 19705}, {4373, 17378}, {4460, 30712}, {4740, 49475}, {4747, 28309}, {5066, 10247}, {5603, 50799}, {5731, 50812}, {5844, 15693}, {5846, 50791}, {7967, 8703}, {7974, 36331}, {7975, 35750}, {7982, 15683}, {8148, 19710}, {8584, 50790}, {9812, 50866}, {10109, 12645}, {10246, 50825}, {10595, 19709}, {10989, 47489}, {11001, 28174}, {11160, 49681}, {11812, 50822}, {12100, 12245}, {15178, 15721}, {15300, 50888}, {15533, 50998}, {15570, 38092}, {15640, 28160}, {15678, 31888}, {15692, 31666}, {15698, 50824}, {15713, 37624}, {15719, 34718}, {16189, 17578}, {16200, 50864}, {16677, 37654}, {18146, 25296}, {18526, 33699}, {21356, 49679}, {22867, 33624}, {22912, 33622}, {28484, 51055}, {28516, 51054}, {28582, 50778}, {32093, 50101}, {33179, 38074}, {37909, 47491}, {47313, 47493}, {50782, 50991}

X(51092) = midpoint of X(i) and X(j) for these {i,j}: {1698, 34747}, {20049, 20052}
X(51092) = reflection of X(i) in X(j) for these {i,j}: {3623, 3241}, {4668, 551}, {31145, 3617}, {34641, 31253}
X(51092) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 145, 20054}, {1, 3633, 4746}, {1, 20054, 46932}, {1, 46932, 3622}, {2, 3621, 4669}, {145, 3623, 3617}, {145, 46933, 20050}, {145, 46934, 20014}, {3241, 38314, 3635}, {3617, 20054, 20052}, {3623, 20052, 1}, {3635, 34747, 38314}, {4668, 46933, 3617}, {4669, 38314, 2}, {20014, 20057, 46934}, {34747, 38314, 3621}


X(51093) = X(1)X(2)∩X(4)X(16189)

Barycentrics    7*a - 2*b - 2*c : :
X(51093) = 3 X[1] - 2 X[2], 5 X[1] - 2 X[8], 7 X[1] - 4 X[10], X[1] + 2 X[145], 5 X[1] - 4 X[551], 11 X[1] - 8 X[1125], 8 X[1] - 5 X[1698], X[1] - 4 X[3244], 13 X[1] - 10 X[3616], 19 X[1] - 10 X[3617], 11 X[1] - 2 X[3621], 17 X[1] - 14 X[3622], 7 X[1] - 10 X[3623], 10 X[1] - 7 X[3624], 13 X[1] - 4 X[3625], 17 X[1] - 8 X[3626], 4 X[1] - X[3632], 2 X[1] + X[3633], 25 X[1] - 16 X[3634], 5 X[1] - 8 X[3635], 19 X[1] - 16 X[3636], 13 X[1] - 8 X[3828], 11 X[1] - 5 X[4668], 9 X[1] - 4 X[4669], 3 X[1] - X[4677], 29 X[1] - 14 X[4678], 31 X[1] - 16 X[4691], 23 X[1] - 8 X[4701], 15 X[1] - 8 X[4745], 37 X[1] - 16 X[4746], 14 X[1] - 5 X[4816], 31 X[1] - 22 X[5550], 23 X[1] - 14 X[9780], 37 X[1] - 28 X[15808], 29 X[1] - 20 X[19862], 26 X[1] - 17 X[19872], 5 X[1] - 3 X[19875], 11 X[1] - 7 X[19876], 41 X[1] - 26 X[19877], 47 X[1] - 32 X[19878], 17 X[1] - 12 X[19883], 13 X[1] + 2 X[20014], 5 X[1] + 2 X[20049], 7 X[1] + 2 X[20050], 31 X[1] - 10 X[20052], 17 X[1] - 2 X[20053], 23 X[1] - 2 X[20054], 11 X[1] - 14 X[20057], 121 X[1] - 76 X[22266], 4 X[1] - 3 X[25055], 7 X[1] - 2 X[31145], and many others

X(51093) lies on these lines: {1, 2}, {4, 16189}, {6, 4898}, {7, 50108}, {9, 13602}, {30, 7982}, {35, 11194}, {36, 4421}, {40, 1483}, {44, 36911}, {55, 8275}, {57, 1317}, {100, 11274}, {106, 36593}, {149, 18513}, {165, 7967}, {191, 6762}, {193, 50090}, {355, 5066}, {376, 5882}, {381, 5881}, {484, 3895}, {515, 11224}, {516, 50839}, {517, 3534}, {518, 3899}, {524, 16496}, {528, 3243}, {529, 30323}, {535, 34611}, {536, 49469}, {537, 49445}, {549, 9588}, {553, 3476}, {597, 16491}, {599, 49465}, {664, 21314}, {726, 51054}, {740, 51037}, {750, 4954}, {752, 49695}, {758, 10032}, {858, 47537}, {940, 16490}, {942, 19706}, {944, 11001}, {946, 34627}, {952, 1699}, {956, 4428}, {962, 15640}, {996, 32943}, {999, 48696}, {1100, 50087}, {1120, 2163}, {1320, 5561}, {1376, 37602}, {1385, 15693}, {1449, 17281}, {1482, 3830}, {1697, 6763}, {1757, 49691}, {1768, 12703}, {1992, 49684}, {2093, 34607}, {2094, 21578}, {2098, 4930}, {2099, 4654}, {2136, 3338}, {2550, 38024}, {2796, 49446}, {2800, 50910}, {2802, 3873}, {3036, 38026}, {3058, 7962}, {3081, 12626}, {3158, 5854}, {3189, 18217}, {3242, 15533}, {3247, 17330}, {3251, 9260}, {3295, 5288}, {3303, 5258}, {3304, 16417}, {3340, 4355}, {3416, 50991}, {3524, 11362}, {3543, 4301}, {3545, 13464}, {3555, 3901}, {3576, 3654}, {3586, 28609}, {3653, 5690}, {3664, 4460}, {3680, 5557}, {3681, 3898}, {3723, 4034}, {3731, 37654}, {3746, 12513}, {3748, 36922}, {3750, 16499}, {3751, 8584}, {3759, 31333}, {3761, 4479}, {3813, 17530}, {3817, 50801}, {3829, 7951}, {3839, 5734}, {3860, 18492}, {3871, 7280}, {3874, 3885}, {3875, 4888}, {3879, 4862}, {3880, 5902}, {3881, 14923}, {3893, 5045}, {3902, 4980}, {3913, 5563}, {3922, 50191}, {3928, 5119}, {3929, 31393}, {3946, 4916}, {3973, 4856}, {4007, 16884}, {4018, 34620}, {4297, 15697}, {4304, 28610}, {4305, 34646}, {4316, 20075}, {4324, 20076}, {4338, 34637}, {4360, 17274}, {4370, 16670}, {4383, 16489}, {4464, 17151}, {4644, 28301}, {4649, 48805}, {4653, 4921}, {4659, 4795}, {4664, 49448}, {4684, 50091}, {4688, 49459}, {4692, 42034}, {4693, 49721}, {4704, 49504}, {4715, 17318}, {4720, 42025}, {4737, 4975}, {4738, 18743}, {4740, 49479}, {4762, 50767}, {4803, 5333}, {4851, 50112}, {4852, 4859}, {4864, 31151}, {4867, 31142}, {4870, 9578}, {4873, 16666}, {4889, 17296}, {4900, 14563}, {4909, 32087}, {4910, 17390}, {4929, 16468}, {4969, 16676}, {4995, 13384}, {5010, 25439}, {5048, 5727}, {5054, 15178}, {5055, 9624}, {5223, 47357}, {5251, 6767}, {5264, 16401}, {5290, 10944}, {5298, 41687}, {5425, 6173}, {5426, 10389}, {5542, 12630}, {5559, 31436}, {5587, 10247}, {5603, 30308}, {5657, 15719}, {5687, 40726}, {5692, 5919}, {5731, 50808}, {5836, 50190}, {5839, 16673}, {5846, 22165}, {5847, 50992}, {5886, 10109}, {5903, 24473}, {5904, 9957}, {6172, 30331}, {6174, 12735}, {6256, 16207}, {6264, 37533}, {7174, 50296}, {7290, 49534}, {7308, 15935}, {7426, 47491}, {7966, 41338}, {7974, 36329}, {7975, 35751}, {7976, 11055}, {7987, 12245}, {7989, 10595}, {8148, 15685}, {8162, 9708}, {8186, 11208}, {8187, 11207}, {8192, 9591}, {8227, 12645}, {8236, 50835}, {8666, 17549}, {8715, 13587}, {9053, 16475}, {9331, 16975}, {9612, 34640}, {9613, 11009}, {9614, 34647}, {9778, 50815}, {9779, 50803}, {9802, 17483}, {9812, 50862}, {9819, 10385}, {9875, 50886}, {9881, 36521}, {9884, 50888}, {9897, 10707}, {9900, 47866}, {9901, 47865}, {9902, 14711}, {10165, 50827}, {10246, 15701}, {10436, 50088}, {10711, 25485}, {10826, 34717}, {10827, 34700}, {10912, 50397}, {10914, 18398}, {10980, 11041}, {11011, 11237}, {11113, 11523}, {11160, 49505}, {11235, 37708}, {11236, 37711}, {11260, 37571}, {11278, 18526}, {11280, 12559}, {11518, 11524}, {11520, 17579}, {11525, 44841}, {11529, 34612}, {11533, 49735}, {11540, 38028}, {11852, 16211}, {11910, 34582}, {12101, 22791}, {12258, 50885}, {12531, 30852}, {12607, 17533}, {12625, 17532}, {12644, 30408}, {12646, 30420}, {12699, 33699}, {12702, 15695}, {12781, 36768}, {13174, 15300}, {13178, 36523}, {13407, 21627}, {13624, 15716}, {13888, 49232}, {13942, 49233}, {14584, 36909}, {14976, 28562}, {15170, 34606}, {15485, 49497}, {15569, 49689}, {15675, 35016}, {15679, 34195}, {15690, 34773}, {15692, 43174}, {15700, 31425}, {15706, 31666}, {15713, 26446}, {15718, 31447}, {15759, 35242}, {15803, 34711}, {16173, 50893}, {16191, 28236}, {16205, 41698}, {16206, 48482}, {16484, 49680}, {16590, 16672}, {16667, 17314}, {16777, 50082}, {17078, 25716}, {17160, 39704}, {17179, 33296}, {17271, 17393}, {17272, 17320}, {17297, 49472}, {17306, 50081}, {17319, 50074}, {17556, 37721}, {17728, 50842}, {18145, 24524}, {18481, 19710}, {18514, 20060}, {18613, 19293}, {19738, 48863}, {20070, 34638}, {21630, 31053}, {22650, 44422}, {22713, 33706}, {22867, 36388}, {22912, 36386}, {24222, 33141}, {24393, 38025}, {24715, 36525}, {24857, 25430}, {25303, 32104}, {25590, 50099}, {28224, 50866}, {28313, 35578}, {28329, 49460}, {28337, 41312}, {28444, 37622}, {28466, 34486}, {28503, 50126}, {28522, 51056}, {28554, 49499}, {28580, 50284}, {28581, 50086}, {31140, 50194}, {31150, 48285}, {31178, 49474}, {31231, 36920}, {31423, 37624}, {32049, 37702}, {32941, 46922}, {33076, 50076}, {33087, 48821}, {33176, 50443}, {33595, 37525}, {34379, 51001}, {34657, 34667}, {34674, 34685}, {34689, 37724}, {34712, 34729}, {34714, 34737}, {36767, 50848}, {36769, 50849}, {37556, 41229}, {37718, 50890}, {37904, 47493}, {38023, 49524}, {38034, 50799}, {38047, 50953}, {38140, 50797}, {39948, 50048}, {39980, 42049}, {44553, 48286}, {47097, 47536}, {47311, 47535}, {47313, 47540}, {47314, 47538}, {47321, 47472}, {47352, 49690}, {47724, 50760}, {47867, 50852}, {47869, 50761}, {48167, 48296}, {48807, 48819}, {48812, 48824}, {49450, 50094}, {49511, 50990}, {49675, 50080}, {49708, 49747}, {49709, 49748}, {49723, 49739}, {50041, 50064}, {50046, 50069}, {50049, 50070}, {50066, 50072}, {50075, 50111}, {50121, 50127}, {50781, 50994}, {50783, 50993}, {50789, 50949}

X(51093) = midpoint of X(i) and X(j) for these {i,j}: {1, 34747}, {8, 20049}, {145, 3241}, {599, 49679}, {944, 34631}, {1482, 34748}, {3633, 3679}, {9884, 50888}, {10031, 50894}, {11531, 34628}, {20050, 31145}, {31178, 49678}, {34690, 34719}, {34699, 34749}, {47097, 47536}, {50790, 51000}
X(51093) = reflection of X(i) in X(j) for these {i,j}: {1, 3241}, {8, 551}, {40, 3655}, {100, 11274}, {165, 7967}, {376, 5882}, {381, 10222}, {551, 3635}, {599, 49465}, {1699, 16200}, {1992, 49684}, {3241, 3244}, {3543, 4301}, {3621, 34641}, {3625, 3828}, {3632, 3679}, {3633, 34747}, {3654, 50824}, {3655, 1483}, {3679, 1}, {3681, 3898}, {3751, 47356}, {4659, 4795}, {4664, 49471}, {4677, 2}, {4740, 49479}, {5223, 47357}, {5587, 10247}, {5691, 31162}, {5692, 5919}, {5881, 381}, {5903, 24473}, {5904, 31165}, {6172, 30331}, {6173, 42871}, {6174, 12735}, {7426, 47491}, {7991, 376}, {9875, 50886}, {9897, 10707}, {10711, 25485}, {11160, 49505}, {11531, 34631}, {11852, 16211}, {19876, 20057}, {20070, 34638}, {24473, 34791}, {31140, 50194}, {31145, 10}, {31150, 48285}, {31151, 4864}, {31159, 11011}, {31160, 5048}, {31162, 1482}, {31165, 9957}, {31178, 49478}, {34606, 15170}, {34627, 946}, {34628, 944}, {34632, 4297}, {34641, 1125}, {34690, 34749}, {34718, 1385}, {34719, 34699}, {34747, 145}, {37712, 5603}, {44553, 48286}, {47321, 47472}, {47358, 50998}, {47724, 50760}, {47869, 50761}, {48167, 48296}, {48807, 48819}, {48812, 48824}, {49448, 4664}, {49450, 50094}, {49459, 4688}, {49474, 31178}, {49577, 49579}, {49581, 49583}, {49688, 597}, {49723, 49739}, {50041, 50064}, {50046, 50069}, {50049, 50070}, {50066, 50072}, {50075, 50111}, {50089, 32941}, {50126, 50130}, {50783, 51003}, {50789, 50949}, {50817, 3654}, {50885, 12258}, {50950, 47358}
X(51093) = anticomplement of X(4669)
X(51093) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 8, 3624}, {1, 145, 3633}, {1, 3625, 19872}, {1, 3632, 1698}, {1, 3633, 3632}, {1, 3679, 25055}, {1, 4668, 1125}, {1, 4677, 2}, {1, 19875, 551}, {1, 20050, 4816}, {1, 30286, 44675}, {1, 34595, 3636}, {2, 8, 4745}, {2, 4677, 3679}, {2, 4745, 19875}, {8, 551, 19875}, {8, 3635, 1}, {8, 19875, 3679}, {8, 46934, 10}, {10, 3623, 1}, {145, 3244, 1}, {145, 3623, 20050}, {551, 3624, 25055}, {551, 4745, 2}, {551, 19875, 3624}, {1125, 3621, 4668}, {1125, 20057, 1}, {1317, 26726, 5541}, {3241, 3633, 25055}, {3241, 20049, 551}, {3241, 20050, 38314}, {3241, 34747, 3679}, {3241, 38314, 3623}, {3555, 5697, 3901}, {3576, 50817, 3654}, {3616, 20014, 3625}, {3617, 3636, 34595}, {3621, 20057, 1125}, {3621, 46932, 8}, {3622, 20053, 3626}, {3623, 20014, 46930}, {3623, 20050, 10}, {3623, 31145, 38314}, {3624, 3679, 19875}, {3632, 25055, 3679}, {3635, 20049, 19875}, {3654, 50824, 3576}, {3679, 25055, 1698}, {4360, 50132, 17274}, {4393, 29605, 17284}, {4746, 15808, 46933}, {5550, 20052, 4691}, {5603, 50796, 30308}, {5881, 10222, 11522}, {7972, 25416, 12653}, {9780, 20054, 4701}, {10056, 10072, 10321}, {10530, 11239, 45701}, {10530, 11240, 45700}, {10595, 47745, 7989}, {11239, 45700, 3584}, {11240, 45701, 3582}, {11278, 18526, 41869}, {12245, 13607, 7987}, {12645, 33179, 8227}, {16834, 17389, 29573}, {19872, 20014, 3632}, {19875, 19876, 46932}, {19876, 34641, 3679}, {20014, 41150, 4677}, {20050, 38314, 31145}, {29574, 50129, 16833}, {29585, 49770, 16832}, {30308, 37712, 50796}, {31145, 38314, 10}, {36444, 36462, 34747}, {38314, 46934, 551}, {49469, 49490, 49532}, {49470, 49498, 49445}, {49475, 49490, 49469}, {49478, 49678, 49474}, {50113, 50131, 9}, {50120, 50125, 6173}


X(51094) = X(1)X(2)∩X(515)X(50874)

Barycentrics    37*a - 8*b - 8*c : :
X(51094) = 15 X[1] - 8 X[2], 29 X[1] - 8 X[8], 37 X[1] - 16 X[10], 13 X[1] + 8 X[145], 23 X[1] - 16 X[551], 53 X[1] - 32 X[1125], 41 X[1] - 20 X[1698], X[1] - 8 X[3241], 5 X[1] + 16 X[3244], 61 X[1] - 40 X[3616], 103 X[1] - 40 X[3617], 71 X[1] - 8 X[3621], 11 X[1] - 8 X[3622], 19 X[1] - 40 X[3623], 7 X[1] - 4 X[3624], 79 X[1] - 16 X[3625], 95 X[1] - 32 X[3626], 25 X[1] - 4 X[3632], 17 X[1] + 4 X[3633], 127 X[1] - 64 X[3634], 11 X[1] - 32 X[3635], 85 X[1] - 64 X[3636], 11 X[1] - 4 X[3679], 67 X[1] - 32 X[3828], 31 X[1] - 10 X[4668], 51 X[1] - 16 X[4669], 9 X[1] - 2 X[4677], 23 X[1] - 8 X[4678], 169 X[1] - 64 X[4691], 137 X[1] - 32 X[4701], 81 X[1] - 32 X[4745], 211 X[1] - 64 X[4746], 83 X[1] - 20 X[4816], 151 X[1] - 88 X[5550], 17 X[1] - 8 X[9780], 25 X[1] - 16 X[15808], 143 X[1] - 80 X[19862], 131 X[1] - 68 X[19872], 13 X[1] - 6 X[19875], 83 X[1] - 48 X[19883], 97 X[1] + 8 X[20014], 41 X[1] + 8 X[20049], 55 X[1] + 8 X[20050], 187 X[1] - 40 X[20052], 113 X[1] - 8 X[20053], 155 X[1] - 8 X[20054], 5 X[1] - 8 X[20057], 19 X[1] - 12 X[25055], 43 X[1] - 8 X[31145], and many others

X(51094) lies on these lines: {1, 2}, {165, 50805}, {382, 16189}, {515, 50874}, {517, 50820}, {952, 50807}, {1483, 34628}, {3534, 11531}, {3830, 16200}, {4908, 16667}, {5066, 37712}, {5587, 50831}, {5844, 50833}, {5846, 50792}, {5881, 38071}, {7967, 50813}, {7982, 15681}, {7991, 15688}, {10222, 14269}, {10247, 30308}, {11001, 28232}, {11224, 28146}, {11278, 15685}, {11737, 37714}, {13607, 19708}, {15687, 37727}, {15693, 30392}, {15698, 28234}, {15700, 30389}, {16191, 28186}, {19709, 33179}, {28212, 50811}, {28555, 50778}, {37718, 50846}, {41099, 50871}, {47314, 47540}

X(51094) = reflection of X(i) in X(j) for these {i,j}: {3679, 3622}, {4678, 551}, {19876, 1}
X(51094) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3244, 3635, 20050}, {3622, 20052, 9780}, {3636, 4669, 2}, {3679, 19862, 19875}, {3679, 25055, 19877}, {20050, 20057, 3622}


X(51095) = X(1)X(2)∩X(515)X(50870)

Barycentrics    38*a - 7*b - 7*c : :
X(51095) = 15 X[1] - 7 X[2], 31 X[1] - 7 X[8], 19 X[1] - 7 X[10], 17 X[1] + 7 X[145], 11 X[1] - 7 X[551], 13 X[1] - 7 X[1125], 83 X[1] - 35 X[1698], X[1] + 7 X[3241], 5 X[1] + 7 X[3244], 59 X[1] - 35 X[3616], 107 X[1] - 35 X[3617], 79 X[1] - 7 X[3621], 73 X[1] - 49 X[3622], 11 X[1] - 35 X[3623], 97 X[1] - 49 X[3624], 43 X[1] - 7 X[3625], 25 X[1] - 7 X[3626], 55 X[1] - 7 X[3632], 41 X[1] + 7 X[3633], 16 X[1] - 7 X[3634], X[1] - 7 X[3635], 10 X[1] - 7 X[3636], 23 X[1] - 7 X[3679], 17 X[1] - 7 X[3828], 131 X[1] - 35 X[4668], 27 X[1] - 7 X[4669], 39 X[1] - 7 X[4677], 169 X[1] - 49 X[4678], 22 X[1] - 7 X[4691], 37 X[1] - 7 X[4701], 3 X[1] - X[4745], 4 X[1] - X[4746], 179 X[1] - 35 X[4816], 149 X[1] - 77 X[5550], 121 X[1] - 49 X[9780], 85 X[1] - 49 X[15808], 71 X[1] - 35 X[19862], 53 X[1] - 21 X[19875], 113 X[1] - 49 X[19876], 211 X[1] - 91 X[19877], 29 X[1] - 14 X[19878], 41 X[1] - 21 X[19883], 113 X[1] + 7 X[20014], 7 X[1] + X[20049], 65 X[1] + 7 X[20050], 29 X[1] - 5 X[20052], 127 X[1] - 7 X[20053], 25 X[1] - X[20054], 25 X[1] - 49 X[20057], 37 X[1] - 21 X[25055], 47 X[1] - 7 X[31145], and many others

X(51095) lies on these lines: {1, 2}, {515, 50870}, {517, 50816}, {952, 50803}, {1317, 3982}, {3534, 28228}, {3845, 28236}, {4796, 28301}, {4856, 16677}, {5066, 33179}, {5844, 50829}, {5846, 50788}, {5854, 50845}, {5882, 15681}, {6154, 11274}, {7967, 50815}, {8236, 50837}, {8703, 13607}, {10222, 15687}, {10247, 50802}, {11278, 19710}, {11362, 15707}, {11531, 15697}, {12100, 28234}, {12512, 34631}, {12630, 38094}, {13464, 38071}, {14269, 37727}, {15682, 16200}, {15700, 43174}, {15713, 50827}, {15719, 50817}, {16189, 49135}, {17378, 39707}, {17504, 31666}, {19705, 25439}, {19708, 50814}, {19709, 50801}, {19925, 34748}, {28522, 50778}, {34379, 50998}, {47311, 47540}, {47312, 47491}, {50786, 50993}

X(51095) = midpoint of X(i) and X(j) for these {i,j}: {145, 3828}, {3241, 3635}, {3626, 34747}, {12512, 34631}, {19925, 34748}
X(51095) = reflection of X(i) in X(j) for these {i,j}: {4691, 551}, {4745, 41150}
X(51095) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3633, 46932}, {1, 4745, 41150}, {2, 4677, 38098}, {2, 20050, 4677}, {2, 34641, 4745}, {1125, 46931, 19878}, {3244, 15808, 145}, {3244, 20057, 3626}, {20054, 20057, 1}


X(51096) = X(1)X(2)∩X(515)X(50805)

Barycentrics    20*a - 7*b - 7*c : :
X(51096) = 9 X[1] - 7 X[2], 13 X[1] - 7 X[8], 10 X[1] - 7 X[10], X[1] - 7 X[145], 8 X[1] - 7 X[551], 17 X[1] - 14 X[1125], 47 X[1] - 35 X[1698], 5 X[1] - 7 X[3241], 4 X[1] - 7 X[3244], 41 X[1] - 35 X[3616], 53 X[1] - 35 X[3617], 25 X[1] - 7 X[3621], 55 X[1] - 49 X[3622], 29 X[1] - 35 X[3623], 61 X[1] - 49 X[3624], 16 X[1] - 7 X[3625], 23 X[1] - 14 X[3626], 19 X[1] - 7 X[3632], 5 X[1] + 7 X[3633], 37 X[1] - 28 X[3634], 11 X[1] - 14 X[3635], 31 X[1] - 28 X[3636], 11 X[1] - 7 X[3679], 19 X[1] - 14 X[3828], 59 X[1] - 35 X[4668], 12 X[1] - 7 X[4669], 15 X[1] - 7 X[4677], 79 X[1] - 49 X[4678], 43 X[1] - 28 X[4691], 29 X[1] - 14 X[4701], 3 X[1] - 2 X[4745], 7 X[1] - 4 X[4746], 71 X[1] - 35 X[4816], 95 X[1] - 77 X[5550], 67 X[1] - 49 X[9780], 58 X[1] - 49 X[15808], 44 X[1] - 35 X[19862], 29 X[1] - 21 X[19875], 65 X[1] - 49 X[19876], 121 X[1] - 91 X[19877], 71 X[1] - 56 X[19878], 26 X[1] - 21 X[19883], 23 X[1] + 7 X[20014], 11 X[1] + 7 X[20050], 11 X[1] - 5 X[20052], 37 X[1] - 7 X[20053], 7 X[1] - X[20054], 43 X[1] - 49 X[20057], 25 X[1] - 21 X[25055], 17 X[1] - 7 X[31145], and many others

X(51096) lies on these lines: {1, 2}, {30, 47537}, {515, 50805}, {516, 50818}, {517, 19710}, {518, 51059}, {537, 49461}, {944, 34638}, {946, 3860}, {952, 12101}, {1385, 44580}, {1386, 41153}, {1482, 34648}, {1483, 15711}, {2784, 50883}, {2802, 50846}, {3242, 50989}, {3534, 5493}, {3654, 15716}, {3817, 50798}, {3830, 4301}, {3839, 16189}, {3950, 50131}, {4098, 37654}, {4297, 15690}, {4398, 4464}, {4536, 31165}, {4539, 5919}, {4664, 49504}, {4898, 15828}, {4908, 16671}, {4910, 21255}, {5066, 10222}, {5603, 50801}, {5731, 50814}, {5844, 15759}, {5846, 51004}, {5847, 50790}, {5850, 50839}, {5881, 41099}, {5882, 8703}, {7967, 50817}, {7982, 15682}, {7991, 15697}, {8236, 50838}, {8584, 49684}, {8666, 19704}, {8715, 19705}, {9041, 41149}, {9053, 51005}, {9812, 50868}, {9963, 26726}, {10164, 19711}, {10165, 50823}, {10246, 50827}, {10247, 50804}, {11224, 50864}, {11362, 12100}, {11599, 41147}, {11710, 41151}, {11725, 41148}, {12258, 41154}, {13464, 19709}, {13607, 34718}, {15178, 15713}, {15492, 50123}, {15533, 49505}, {15534, 49681}, {15685, 28194}, {15695, 28234}, {15698, 43174}, {15722, 50828}, {16200, 50802}, {16496, 50992}, {28164, 50872}, {28204, 33699}, {28236, 50862}, {28581, 51060}, {34637, 34749}, {34649, 34699}, {37712, 50803}, {37904, 47489}, {38034, 50796}, {38076, 47745}, {38191, 51006}, {41152, 49511}, {47311, 47536}, {47356, 49536}, {49465, 50991}, {49475, 49520}, {49535, 49678}, {50777, 50778}, {50781, 50998}

X(51096) = midpoint of X(i) and X(j) for these {i,j}: {1, 20049}, {145, 34747}, {3241, 3633}, {3679, 20050}
X(51096) = reflection of X(i) in X(j) for these {i,j}: {10, 3241}, {551, 3244}, {3625, 551}, {3632, 3828}, {3679, 3635}, {31145, 1125}, {34637, 34749}, {34638, 944}, {34641, 1}, {34648, 1482}, {34649, 34699}, {34718, 13607}, {49504, 4664}, {49536, 47356}, {50777, 50778}, {50781, 50998}
X(51096) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2, 41150}, {1, 8, 31253}, {1, 20054, 4746}, {10, 3622, 19862}, {10, 4677, 4669}, {10, 19883, 19876}, {551, 3625, 38098}, {3241, 3621, 25055}, {3244, 19862, 3635}, {3623, 4701, 15808}, {3626, 34595, 10}, {3633, 34595, 20014}, {4464, 50132, 50108}, {4691, 46931, 10}, {4745, 34641, 4669}, {4745, 41150, 2}


X(51097) = X(1)X(2)∩X(515)X(50866)

Barycentrics    23*a - 4*b - 4*c : :
X(51097) = 9 X[1] - 4 X[2], 19 X[1] - 4 X[8], 23 X[1] - 8 X[10], 11 X[1] + 4 X[145], 13 X[1] - 8 X[551], 31 X[1] - 16 X[1125], 5 X[1] - 2 X[1698], X[1] + 4 X[3241], 7 X[1] + 8 X[3244], 7 X[1] - 4 X[3616], 13 X[1] - 4 X[3617], 49 X[1] - 4 X[3621], 43 X[1] - 28 X[3622], X[1] - 4 X[3623], 29 X[1] - 14 X[3624], 53 X[1] - 8 X[3625], 61 X[1] - 16 X[3626], 17 X[1] - 2 X[3632], 13 X[1] + 2 X[3633], 77 X[1] - 32 X[3634], X[1] - 16 X[3635], 47 X[1] - 32 X[3636], 7 X[1] - 2 X[3679], 41 X[1] - 16 X[3828], 4 X[1] - X[4668], 33 X[1] - 8 X[4669], 6 X[1] - X[4677], 103 X[1] - 28 X[4678], 107 X[1] - 32 X[4691], 91 X[1] - 16 X[4701], 51 X[1] - 16 X[4745], 137 X[1] - 32 X[4746], 11 X[1] - 2 X[4816], 89 X[1] - 44 X[5550], 73 X[1] - 28 X[9780], 101 X[1] - 56 X[15808], 17 X[1] - 8 X[19862], 79 X[1] - 34 X[19872], 8 X[1] - 3 X[19875], 17 X[1] - 7 X[19876], 127 X[1] - 52 X[19877], 139 X[1] - 64 X[19878], 49 X[1] - 24 X[19883], 71 X[1] + 4 X[20014], 31 X[1] + 4 X[20049], 41 X[1] + 4 X[20050], 25 X[1] - 4 X[20052], 79 X[1] - 4 X[20053], 109 X[1] - 4 X[20054], 13 X[1] - 28 X[20057], 11 X[1] - 6 X[25055], and many others

X(51097) lies on these lines: {1, 2}, {30, 16189}, {165, 15759}, {515, 50866}, {517, 15695}, {952, 30308}, {1317, 4654}, {1449, 4908}, {1482, 15685}, {1483, 31162}, {1699, 50818}, {3534, 7982}, {3576, 15716}, {3654, 19711}, {3655, 11531}, {3656, 12101}, {3830, 10222}, {3845, 37727}, {3928, 16558}, {4301, 15640}, {4421, 37587}, {4902, 17378}, {4910, 31312}, {5066, 5881}, {5603, 50871}, {5844, 50825}, {5846, 50784}, {5882, 11001}, {5886, 50831}, {7967, 50819}, {7987, 15711}, {7988, 50798}, {7991, 8703}, {8236, 50840}, {9624, 10109}, {10246, 15722}, {10247, 50806}, {10283, 50804}, {10980, 12735}, {11224, 19710}, {11274, 12653}, {11362, 15719}, {11518, 19706}, {11522, 41099}, {12100, 30389}, {13464, 41106}, {13607, 34631}, {15015, 50894}, {15178, 15701}, {15533, 49465}, {15534, 16496}, {15570, 38024}, {15678, 16126}, {15693, 31447}, {16173, 50846}, {16191, 28150}, {16200, 28160}, {16475, 50790}, {16667, 50113}, {16673, 50131}, {19709, 37714}, {22165, 49681}, {24858, 39980}, {28484, 50778}, {28516, 51055}, {28538, 50989}, {33179, 34748}, {37712, 50797}, {38316, 50838}, {41149, 47356}, {47313, 47491}, {50782, 51003}, {50791, 50950}

X(51097) = midpoint of X(i) and X(j) for these {i,j}: {3241, 3623}, {4668, 34747}
X(51097) = reflection of X(i) in X(j) for these {i,j}: {3617, 551}, {3654, 50832}, {3679, 3616}, {50782, 51003}, {50950, 50791}
X(51097) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 19876, 38314}, {1, 34747, 19875}, {2, 41150, 25055}, {3244, 3634, 145}, {3616, 46933, 19862}, {3617, 3623, 20057}, {3621, 19883, 3679}, {3632, 38314, 19876}, {3633, 20057, 1}, {3679, 25055, 3634}, {3679, 34595, 19875}, {4669, 41150, 2}, {33179, 34748, 38021}


X(51098) = X(7)X(551)∩X(30)X(43176)

Barycentrics    2*a^3 + 13*a^2*b - 8*a*b^2 - 7*b^3 + 13*a^2*c + 24*a*b*c + 7*b^2*c - 8*a*c^2 + 7*b*c^2 - 7*c^3 : :
X(51098) = X[2] - 3 X[38054], 9 X[38054] - X[50834], X[7] + 3 X[38024], 3 X[7] + X[50836], X[551] - 3 X[38024], 3 X[551] - X[50836], 9 X[38024] - X[50836], X[10] + 5 X[30340], 3 X[10] - X[50835], 15 X[30340] + X[50835], 7 X[2550] + 5 X[3243], X[2550] + 5 X[5542], X[2550] - 5 X[6173], X[3243] - 7 X[5542], X[3243] + 7 X[6173], 7 X[1125] - 4 X[15254], X[1125] - 4 X[25557], X[1125] + 2 X[43180], 3 X[1125] - X[50837], X[15254] - 7 X[25557], 2 X[15254] + 7 X[43180], 12 X[15254] - 7 X[50837], 2 X[25557] + X[43180], 12 X[25557] - X[50837], 6 X[43180] + X[50837], 2 X[3634] - 3 X[38093], X[3635] + 2 X[5880], 2 X[3636] + X[30424], X[3654] - 3 X[38123], X[3679] - 3 X[38094], X[4312] + 3 X[38314], X[4669] - 3 X[38052], 3 X[4669] - X[50838], 9 X[38052] - X[50838], X[4677] - 3 X[38201], 2 X[5220] - 5 X[31253], X[6172] - 3 X[19883], 9 X[11038] - X[50839], 5 X[20195] - 3 X[38101], 3 X[21151] - X[50808], 3 X[27475] - X[50777], X[34641] - 3 X[38092], X[34648] - 3 X[38073], X[36996] + 3 X[38021], 3 X[38046] - X[51005], 3 X[38049] - X[50997], 3 X[38098] - 5 X[40333], 3 X[38107] - X[50796], 3 X[38111] - X[50821], 3 X[38122] - 2 X[50829], 3 X[38150] - 2 X[50803], 3 X[38187] - X[47359], 3 X[38316] - 4 X[41150]

X(51098) lies on these lines: {2, 5850}, {7, 551}, {10, 30340}, {30, 43176}, {142, 3828}, {516, 3534}, {518, 3968}, {519, 1056}, {527, 1125}, {528, 33812}, {726, 51057}, {971, 50802}, {2801, 50909}, {3634, 38093}, {3635, 5880}, {3636, 30424}, {3654, 38123}, {3679, 38094}, {4312, 38314}, {4353, 17392}, {4669, 38052}, {4677, 38201}, {4896, 50303}, {5220, 31253}, {5762, 50828}, {5856, 50844}, {6172, 19883}, {9352, 13405}, {11038, 50839}, {20195, 38101}, {21151, 50808}, {27475, 50777}, {28194, 31657}, {31162, 43182}, {34379, 51002}, {34641, 38092}, {34648, 38073}, {36996, 38021}, {38046, 51005}, {38049, 50997}, {38098, 40333}, {38107, 50796}, {38111, 50821}, {38122, 50829}, {38150, 50803}, {38187, 47359}, {38316, 41150}

X(51098) = midpoint of X(i) and X(j) for these {i,j}: {7, 551}, {5542, 6173}, {30424, 47357}, {31162, 43182}
X(51098) = reflection of X(i) in X(j) for these {i,j}: {3828, 142}, {47357, 3636}
X(51098) = complement of X(50834)
X(51098) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 38024, 551}, {25557, 43180, 1125}


X(51099) = X(7)X(528)∩X(9)X(551)

Barycentrics    a^3 - 7*a^2*b + 5*a*b^2 + b^3 - 7*a^2*c - 6*a*b*c - b^2*c + 5*a*c^2 - b*c^2 + c^3 : :
X(51099) = 4 X[1] - X[5698], 3 X[1] - X[50836], 3 X[5698] - 4 X[50836], 3 X[47357] - 2 X[50836], 5 X[2] - 3 X[5686], X[2] - 3 X[11038], 2 X[2] - 3 X[38053], 4 X[2] - 3 X[38057], X[5686] - 5 X[11038], 2 X[5686] - 5 X[38053], 4 X[5686] - 5 X[38057], 9 X[5686] - 5 X[50835], 4 X[11038] - X[38057], 9 X[11038] - X[50835], 3 X[27475] - X[50075], 3 X[38046] - X[47359], 9 X[38053] - 2 X[50835], 9 X[38057] - 4 X[50835], X[7] + 2 X[42871], 3 X[7] + X[50839], X[1320] + 2 X[25558], 3 X[3241] - X[50839], X[10031] - 3 X[14151], 6 X[42871] - X[50839], X[8] - 4 X[25557], 2 X[9] - 3 X[38025], 3 X[9] - 2 X[50834], 4 X[551] - 3 X[38025], 3 X[551] - X[50834], 9 X[38025] - 4 X[50834], 2 X[10] - 3 X[38093], 2 X[142] - 3 X[38024], 6 X[142] - X[50838], X[3679] - 3 X[38024], 3 X[3679] - X[50838], 9 X[38024] - X[50838], X[144] - 4 X[42819], 3 X[144] - 5 X[50840], 12 X[42819] - 5 X[50840], X[145] + 2 X[5880], X[145] + 5 X[30340], 2 X[5880] - 5 X[30340], X[390] - 4 X[15570], X[2550] + 2 X[3243], X[2550] - 4 X[5542], X[3243] + 2 X[5542], 2 X[1001] - 3 X[38314], X[6172] - 3 X[38314], X[3244] + 2 X[43180], 5 X[3616] - 2 X[5220], 7 X[3622] - 4 X[15254], 2 X[3635] + X[30424], 3 X[3653] - 2 X[31658], X[3654] - 3 X[38030], 4 X[3828] - 5 X[20195], 4 X[3828] - 3 X[38097], 5 X[20195] - 3 X[38097], X[4669] - 3 X[38054], 2 X[4669] - 3 X[38200], X[4677] - 3 X[38052], 2 X[4745] - 3 X[38204], X[5223] - 3 X[25055], X[5735] + 2 X[5882], X[5784] + 2 X[34791], 9 X[38316] - 4 X[50837], X[7982] + 2 X[43177], X[31145] - 3 X[38092], 3 X[19875] - 2 X[24393], 7 X[20057] - X[30332], 3 X[21151] - X[50810], 3 X[21153] - 4 X[50828], X[34627] - 3 X[38073], X[34641] - 3 X[38094], X[34718] - 3 X[38065], 3 X[38048] - 4 X[51006], 3 X[38107] - X[50798], 3 X[38111] - X[50823], 3 X[38122] - 2 X[50821], 3 X[38150] - 2 X[50796], 3 X[38315] - X[50997]

X(51099) lies on these lines: {1, 527}, {2, 210}, {7, 528}, {8, 17297}, {9, 551}, {10, 38093}, {30, 47507}, {55, 2094}, {65, 34711}, {69, 50310}, {142, 3679}, {144, 42819}, {145, 5880}, {226, 31146}, {376, 37569}, {381, 20330}, {388, 30318}, {390, 5048}, {495, 41555}, {497, 31164}, {516, 7967}, {519, 1056}, {529, 15933}, {535, 3488}, {537, 51058}, {553, 4321}, {599, 48849}, {938, 11236}, {942, 34619}, {966, 49505}, {971, 3656}, {1001, 6172}, {1022, 6006}, {1159, 10427}, {1319, 12848}, {2345, 49479}, {2346, 17549}, {2801, 3892}, {3189, 11112}, {3242, 17392}, {3244, 43180}, {3296, 3811}, {3452, 30350}, {3474, 3957}, {3485, 3889}, {3486, 34605}, {3487, 3881}, {3543, 12678}, {3555, 28629}, {3616, 5220}, {3622, 15254}, {3635, 30424}, {3653, 31658}, {3654, 38030}, {3655, 43161}, {3748, 9965}, {3828, 20195}, {3886, 50119}, {3945, 49465}, {4000, 49490}, {4298, 34701}, {4307, 4864}, {4310, 17301}, {4313, 34620}, {4402, 49680}, {4428, 28610}, {4452, 49475}, {4454, 4702}, {4648, 16496}, {4669, 38054}, {4677, 38052}, {4684, 17294}, {4745, 38204}, {4860, 6174}, {4869, 49688}, {4870, 8232}, {5049, 10177}, {5223, 25055}, {5252, 30275}, {5298, 41712}, {5328, 17051}, {5572, 34647}, {5731, 38454}, {5732, 28194}, {5735, 5882}, {5744, 37703}, {5762, 50824}, {5766, 34471}, {5784, 11036}, {5805, 28204}, {5809, 11238}, {5850, 38316}, {5856, 50843}, {6600, 16371}, {7222, 32941}, {7672, 11239}, {7675, 10385}, {7677, 42885}, {7982, 43177}, {8236, 15678}, {8543, 22759}, {9041, 17313}, {9776, 41711}, {9850, 34640}, {10056, 30274}, {10072, 18412}, {10707, 12831}, {11495, 34632}, {15185, 34625}, {15590, 49453}, {17146, 17740}, {17251, 39581}, {17264, 49499}, {17316, 24841}, {17373, 31145}, {18221, 32049}, {18391, 38055}, {19870, 22312}, {19875, 24393}, {20057, 30332}, {21151, 50810}, {21153, 50828}, {24231, 50080}, {24325, 48802}, {24349, 50107}, {24470, 34707}, {24473, 34744}, {26105, 31142}, {28538, 47595}, {30329, 45701}, {31140, 36845}, {31178, 50316}, {31995, 49460}, {32922, 39721}, {34627, 38073}, {34631, 35514}, {34641, 38094}, {34718, 38065}, {35167, 36221}, {35578, 48805}, {38048, 51006}, {38107, 50798}, {38111, 50823}, {38122, 50821}, {38150, 50796}, {38315, 50997}, {42047, 42057}, {42049, 42055}, {48830, 50285}, {48851, 49511}, {49446, 50110}, {49491, 50313}, {49675, 50301}

X(51099) = midpoint of X(i) and X(j) for these {i,j}: {7, 3241}, {3243, 6173}, {34631, 35514}
X(51099) = reflection of X(i) in X(j) for these {i,j}: {9, 551}, {381, 20330}, {2550, 6173}, {3241, 42871}, {3679, 142}, {5698, 47357}, {6172, 1001}, {6173, 5542}, {10177, 5049}, {34632, 11495}, {38053, 11038}, {38057, 38053}, {38200, 38054}, {43161, 3655}, {47357, 1}
X(51099) = complement of X(50835)
X(51099) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 14151, 3476}, {9, 551, 38025}, {145, 30340, 5880}, {3242, 17392, 48856}, {3243, 5542, 2550}, {3475, 3873, 24477}, {3679, 38024, 142}, {6172, 38314, 1001}, {11529, 41570, 2550}, {20195, 38097, 3828}, {51002, 51057, 2}


X(51100) = X(2)X(165)∩X(9)X(3828)

Barycentrics    4*a^3 - a^2*b + 2*a*b^2 - 5*b^3 - a^2*c + 12*a*b*c + 5*b^2*c + 2*a*c^2 + 5*b*c^2 - 5*c^3 : :
X(51100) = 3 X[1] - X[50839], X[2] - 3 X[38052], 4 X[2] - 3 X[38059], 2 X[2] - 3 X[38204], 3 X[21153] - 4 X[50829], 4 X[38052] - X[38059], 9 X[38052] - X[50836], 9 X[38059] - 4 X[50836], 3 X[38150] - 2 X[50802], 9 X[38204] - 2 X[50836], X[7] + 3 X[38092], 3 X[7] + X[50835], X[3679] - 3 X[38092], 3 X[3679] - X[50835], 9 X[38092] - X[50835], X[8] + 2 X[43180], 3 X[8] - X[50838], 6 X[43180] + X[50838], 2 X[9] - 3 X[38101], 3 X[9] - 2 X[50837], 4 X[3828] - 3 X[38101], 3 X[3828] - X[50837], 9 X[38101] - 4 X[50837], 5 X[10] - 2 X[5220], X[10] + 2 X[5880], 2 X[10] + X[30424], 3 X[10] - X[50834], X[5220] + 5 X[5880], 4 X[5220] + 5 X[30424], 6 X[5220] - 5 X[50834], 4 X[5880] - X[30424], 6 X[5880] + X[50834], 3 X[30424] + 2 X[50834], 4 X[142] - X[30331], 2 X[142] - 3 X[38094], 5 X[142] - 2 X[42819], X[551] - 3 X[38094], 5 X[551] - 4 X[42819], X[30331] - 6 X[38094], 5 X[30331] - 8 X[42819], 15 X[38094] - 4 X[42819], X[390] - 3 X[25055], X[4669] - 3 X[38201], 5 X[2550] + X[3243], 2 X[2550] + X[5542], 2 X[3243] - 5 X[5542], X[3243] - 5 X[6173], 2 X[1001] - 3 X[19883], 2 X[1125] - 3 X[38093], 3 X[38093] - X[47357], 3 X[1698] - X[50840], X[3241] - 3 X[38024], X[3244] - 4 X[25557], 3 X[3545] - X[11372], 7 X[3624] - X[30332], X[3632] + 5 X[30340], 4 X[3634] - X[5698], X[3654] - 3 X[38121], X[3655] - 3 X[38065], X[3656] - 3 X[38107], 2 X[3754] + X[5784], X[5735] + 2 X[43174], X[4312] + 3 X[19875], X[4312] + 5 X[40333], X[6172] - 3 X[19875], X[6172] - 5 X[40333], 3 X[19875] - 5 X[40333], 2 X[4745] - 3 X[38200], 4 X[4745] - 3 X[38210], X[5691] + 2 X[43181], 2 X[15587] + X[30329], 5 X[18230] - 7 X[19876], 3 X[38122] - 2 X[50828], 5 X[20195] - 3 X[38025], 3 X[21151] - X[50811], 2 X[24393] - 3 X[38098], X[31162] - 3 X[38073], X[35514] + 3 X[38073], 2 X[31658] - 3 X[38068], X[36996] + 3 X[38074], 3 X[38046] - X[51000], 3 X[38047] - X[50997], 3 X[38086] - X[47356], 3 X[38111] - X[50824], 3 X[38185] - X[47359], 3 X[38187] - X[51005], 3 X[38314] - 2 X[43179]

X(51100) lies on these lines: {1, 50839}, {2, 165}, {7, 3679}, {8, 43180}, {9, 3828}, {10, 527}, {142, 214}, {376, 43151}, {377, 43177}, {390, 25055}, {443, 4301}, {518, 3919}, {519, 1056}, {740, 51057}, {971, 50796}, {1001, 16417}, {1125, 38093}, {1698, 50840}, {1738, 4349}, {2801, 3753}, {2951, 3543}, {3008, 50303}, {3059, 24473}, {3241, 38024}, {3244, 25557}, {3545, 11372}, {3624, 30332}, {3632, 30340}, {3634, 5698}, {3654, 38121}, {3655, 38065}, {3656, 38107}, {3663, 50291}, {3664, 50282}, {3717, 49722}, {3754, 5784}, {3755, 17392}, {3814, 3826}, {3823, 49726}, {3833, 10177}, {4078, 28542}, {4208, 5735}, {4297, 6253}, {4312, 6172}, {4315, 30379}, {4353, 7613}, {4356, 50080}, {4645, 50095}, {4745, 5850}, {4896, 49772}, {5251, 30295}, {5493, 8728}, {5691, 43181}, {5762, 50821}, {5805, 28194}, {5847, 51002}, {5853, 38054}, {5856, 50841}, {5883, 15733}, {6006, 21198}, {6684, 50740}, {8582, 17577}, {9776, 31146}, {10175, 38216}, {11019, 31140}, {11024, 19925}, {11362, 50238}, {11495, 16418}, {12436, 45700}, {12512, 50739}, {15587, 30329}, {17057, 50573}, {17532, 38076}, {17564, 19862}, {18230, 19876}, {19706, 38122}, {20195, 38025}, {21060, 31164}, {21151, 50811}, {21255, 50311}, {24175, 33109}, {24199, 50310}, {24393, 38098}, {24715, 29571}, {25351, 31191}, {26040, 31142}, {28204, 31657}, {28580, 29600}, {28629, 34701}, {29594, 31151}, {31162, 35514}, {31658, 38068}, {34648, 43182}, {36996, 38074}, {38046, 51000}, {38047, 50997}, {38086, 47356}, {38111, 50824}, {38185, 47359}, {38187, 51005}, {38314, 43179}, {41141, 50126}, {43172, 50428}, {49725, 50092}

X(51100) = midpoint of X(i) and X(j) for these {i,j}: {7, 3679}, {2550, 6173}, {2951, 3543}, {3059, 24473}, {4312, 6172}, {31162, 35514}, {34648, 43182}
X(51100) = reflection of X(i) in X(j) for these {i,j}: {9, 3828}, {376, 43151}, {551, 142}, {5542, 6173}, {10177, 3833}, {30331, 551}, {34638, 11495}, {38059, 38204}, {38204, 38052}, {38210, 38200}, {47357, 1125}
X(51100) = complement of X(50836)
X(51100) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 38092, 3679}, {9, 3828, 38101}, {10, 5880, 30424}, {551, 38094, 142}, {1738, 50301, 50114}, {4312, 19875, 6172}, {6172, 40333, 19875}, {35514, 38073, 31162}, {38093, 47357, 1125}, {50091, 50299, 551}, {50096, 50781, 4669}, {50114, 50301, 4349}


X(51101) = X(1)X(50835)∩X(519)X(1056)

Barycentrics    8*a^3 - 29*a^2*b + 22*a*b^2 - b^3 - 29*a^2*c - 12*a*b*c + b^2*c + 22*a*c^2 + b*c^2 - c^3 : :
X(51101) = 3 X[1] - X[50835], 4 X[2] - 3 X[38210], 9 X[38210] - 4 X[50838], X[144] - 5 X[3241], 2 X[144] - 5 X[30331], 3 X[144] - 5 X[50836], 3 X[3241] - X[50836], 3 X[30331] - 2 X[50836], 2 X[145] + X[30424], X[2550] - 7 X[3243], 4 X[2550] - 7 X[5542], 5 X[2550] - 7 X[6173], 4 X[3243] - X[5542], 5 X[3243] - X[6173], 5 X[5542] - 4 X[6173], 5 X[551] - 4 X[6666], 4 X[551] - 3 X[38101], 16 X[6666] - 15 X[38101], 2 X[6666] - 5 X[42871], 3 X[38101] - 8 X[42871], 2 X[3626] - 3 X[38093], X[3633] + 2 X[43180], 3 X[3635] - X[50837], 3 X[47357] - 2 X[50837], 2 X[4669] - 3 X[38204], X[4677] - 3 X[11038], 2 X[4745] - 3 X[38053], 9 X[8236] - 5 X[50840], 3 X[19883] - 2 X[24393], 3 X[21151] - X[50817], X[31145] - 3 X[38024], 3 X[38107] - X[50804], 3 X[38111] - X[50830], 3 X[38122] - 2 X[50827], 3 X[38150] - 2 X[50801], 3 X[38194] - 4 X[51006]

X(51101) lies on these lines: {1, 50835}, {2, 38210}, {7, 34747}, {142, 34641}, {144, 3241}, {145, 30424}, {153, 34648}, {516, 50839}, {518, 3898}, {519, 1056}, {527, 3244}, {528, 34637}, {551, 3940}, {3626, 38093}, {3633, 43180}, {3635, 47357}, {3874, 34639}, {4669, 38204}, {4677, 11038}, {4745, 38053}, {5748, 31146}, {6172, 43179}, {8236, 50840}, {10167, 50808}, {19883, 24393}, {21151, 50817}, {31145, 38024}, {38107, 50804}, {38111, 50830}, {38122, 50827}, {38150, 50801}, {38194, 51006}, {49536, 49775}, {49675, 50114}

X(51101) = midpoint of X(7) and X(34747)
X(51101) = reflection of X(i) in X(j) for these {i,j}: {551, 42871}, {6172, 43179}, {30331, 3241}, {34641, 142}, {47357, 3635}
X(51101) = complement of X(50838)


X(51102) = X(8)X(527)∩X(9)X(80)

Barycentrics    5*a^3 - 8*a^2*b + 7*a*b^2 - 4*b^3 - 8*a^2*c + 6*a*b*c + 4*b^2*c + 7*a*c^2 + 4*b*c^2 - 4*c^3 : :
X(51102) = 2 X[1] - 3 X[38093], 5 X[2] - 3 X[8236], 2 X[2] - 3 X[38200], 4 X[2] - 3 X[38316], 2 X[8236] - 5 X[38200], 4 X[8236] - 5 X[38316], 9 X[8236] - 5 X[50839], 9 X[38200] - 2 X[50839], 9 X[38316] - 4 X[50839], 3 X[8] - X[50835], 2 X[9] - 3 X[38097], 3 X[9] - 2 X[50836], 4 X[3679] - 3 X[38097], 3 X[3679] - X[50836], 9 X[38097] - 4 X[50836], 2 X[142] - 3 X[38092], X[3241] - 3 X[38092], 3 X[4669] - X[50834], 3 X[4677] - X[50838], 4 X[2550] - X[3243], 5 X[2550] - 2 X[5542], 5 X[3243] - 8 X[5542], 4 X[5542] - 5 X[6173], 4 X[551] - 5 X[20195], 2 X[1001] - 3 X[19875], 3 X[3524] - 2 X[43175], 4 X[3626] - X[5698], 3 X[3626] - X[50837], 3 X[5698] - 4 X[50837], X[3632] + 2 X[5880], X[3633] - 4 X[25557], 2 X[3656] - 3 X[38150], 4 X[3826] - 3 X[25055], 4 X[3828] - 3 X[38025], 2 X[30331] - 3 X[38025], 5 X[4668] - 2 X[5220], 7 X[4678] - X[30332], 2 X[4701] + X[30424], 4 X[4745] - 3 X[38057], 9 X[5686] - 5 X[50840], 3 X[19883] - 2 X[43179], X[20053] + 5 X[30340], 3 X[21151] - X[50818], 3 X[21153] - 4 X[50821], 2 X[31658] - 3 X[38066], X[34631] - 3 X[38073], X[34747] - 3 X[38024], 3 X[38024] - 2 X[42871], X[34748] - 3 X[38065], 3 X[38107] - X[50805], 3 X[38111] - X[50831], 3 X[38122] - 2 X[50824], 3 X[38185] - X[51000], 3 X[38190] - 4 X[50951], 3 X[38314] - 5 X[40333]

X(51102) lies on these lines: {1, 38093}, {2, 3158}, {7, 31145}, {8, 527}, {9, 80}, {10, 47357}, {142, 3241}, {200, 17605}, {381, 43166}, {516, 4669}, {518, 4677}, {519, 1056}, {551, 20195}, {971, 50798}, {1001, 19536}, {1449, 50282}, {2136, 34720}, {2801, 50897}, {3247, 50291}, {3434, 31142}, {3524, 43175}, {3626, 5698}, {3632, 5880}, {3633, 25557}, {3656, 38150}, {3755, 48856}, {3826, 25055}, {3828, 30331}, {3872, 10031}, {3928, 34612}, {3929, 49719}, {4305, 34701}, {4662, 34706}, {4668, 5220}, {4678, 30332}, {4701, 30424}, {4745, 38057}, {4863, 5437}, {4882, 11236}, {4901, 50107}, {5082, 15829}, {5176, 36973}, {5223, 28534}, {5231, 6174}, {5438, 45700}, {5686, 50840}, {5732, 28204}, {5762, 50823}, {5846, 51002}, {5856, 50842}, {5927, 15104}, {6006, 21129}, {6172, 24393}, {6762, 11112}, {6765, 17528}, {6900, 7982}, {7174, 50080}, {7962, 45043}, {9041, 47595}, {11237, 12560}, {11495, 34628}, {11530, 12625}, {15726, 37712}, {16670, 49772}, {17294, 32850}, {17297, 49451}, {17668, 34717}, {19883, 43179}, {20053, 30340}, {21151, 50818}, {21153, 50821}, {28581, 51057}, {31164, 33110}, {31165, 40659}, {31424, 34707}, {31435, 34719}, {31658, 38066}, {34627, 35514}, {34631, 38073}, {34747, 38024}, {34748, 38065}, {38053, 38201}, {38107, 50805}, {38111, 50831}, {38122, 50824}, {38185, 51000}, {38190, 50951}, {38314, 40333}, {49698, 49722}

X(51102) = midpoint of X(i) and X(j) for these {i,j}: {7, 31145}, {34627, 35514}
X(51102) = reflection of X(i) in X(j) for these {i,j}: {9, 3679}, {3241, 142}, {3243, 6173}, {6172, 24393}, {6173, 2550}, {30331, 3828}, {31165, 40659}, {34628, 11495}, {34747, 42871}, {38053, 38201}, {38316, 38200}, {43166, 381}, {47357, 10}
X(51102) = complement of X(50839)
X(51102) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 3679, 38097}, {3241, 38092, 142}, {3828, 30331, 38025}, {34747, 38024, 42871}


X(51103) = X(1)X(2)∩X(11)X(11274)

Barycentrics    10*a + b + c : :
X(51103) = 3 X[1] + X[2], 11 X[1] + X[8], 5 X[1] + X[10], 13 X[1] - X[145], 2 X[1] + X[1125], 19 X[1] + 5 X[1698], 5 X[1] - X[3241], 7 X[1] - X[3244], 7 X[1] + 5 X[3616], 31 X[1] + 5 X[3617], 35 X[1] + X[3621], 5 X[1] + 7 X[3622], 17 X[1] - 5 X[3623], 17 X[1] + 7 X[3624], 17 X[1] + X[3625], 8 X[1] + X[3626], 23 X[1] + X[3632], 25 X[1] - X[3633], 7 X[1] + 2 X[3634], 4 X[1] - X[3635], X[1] + 2 X[3636], 7 X[1] + X[3679], 4 X[1] + X[3828], 43 X[1] + 5 X[4668], 9 X[1] + X[4669], 15 X[1] + X[4677], 53 X[1] + 7 X[4678], 13 X[1] + 2 X[4691], 14 X[1] + X[4701], 6 X[1] + X[4745], 19 X[1] + 2 X[4746], 67 X[1] + 5 X[4816], 25 X[1] + 11 X[5550], 29 X[1] + 7 X[9780], 11 X[1] + 7 X[15808], 13 X[1] + 5 X[19862], 55 X[1] + 17 X[19872], 13 X[1] + 3 X[19875], 25 X[1] + 7 X[19876], 47 X[1] + 13 X[19877], 11 X[1] + 4 X[19878], 7 X[1] + 3 X[19883], 61 X[1] - X[20014], 29 X[1] - X[20049], 37 X[1] - X[20050], 79 X[1] + 5 X[20052], 59 X[1] + X[20053], 83 X[1] + X[20054], 19 X[1] - 7 X[20057], 71 X[1] + 19 X[22266], 5 X[1] + 3 X[25055], 19 X[1] + X[31145], 16 X[1] + 5 X[31253], 35 X[1] + 13 X[34595], and many others

X(51103) lies on these lines: {1, 2}, {11, 11274}, {30, 13464}, {40, 15698}, {55, 19705}, {56, 19704}, {81, 16489}, {106, 3750}, {165, 50872}, {214, 3748}, {354, 3898}, {376, 4301}, {381, 5882}, {390, 38024}, {392, 3892}, {514, 9269}, {515, 3845}, {516, 3534}, {517, 12100}, {518, 4532}, {527, 42819}, {528, 43179}, {535, 25405}, {537, 15569}, {549, 10222}, {553, 1319}, {597, 49465}, {599, 49684}, {726, 50111}, {740, 51061}, {758, 5049}, {944, 12571}, {946, 3655}, {952, 10109}, {960, 4536}, {962, 15697}, {999, 4428}, {1255, 24858}, {1317, 33709}, {1385, 8703}, {1386, 8584}, {1387, 33812}, {1388, 4298}, {1482, 3653}, {1483, 38022}, {1621, 37602}, {1699, 50862}, {1992, 16491}, {2325, 39260}, {2784, 50882}, {2796, 4353}, {2802, 3742}, {3057, 33815}, {3081, 49585}, {3242, 38023}, {3243, 38025}, {3246, 49737}, {3295, 40726}, {3303, 16371}, {3304, 16370}, {3523, 16189}, {3524, 7982}, {3543, 11522}, {3545, 9624}, {3576, 19708}, {3579, 15711}, {3654, 10165}, {3663, 49614}, {3664, 17320}, {3723, 4908}, {3746, 13587}, {3754, 31792}, {3817, 7967}, {3822, 3829}, {3833, 3880}, {3848, 3968}, {3860, 9955}, {3874, 31165}, {3878, 17609}, {3884, 5045}, {3889, 4067}, {3890, 4084}, {3946, 49738}, {3982, 39782}, {3986, 37654}, {3993, 31178}, {4021, 4398}, {4125, 20942}, {4297, 10595}, {4315, 4654}, {4342, 10385}, {4421, 6767}, {4424, 42040}, {4430, 4525}, {4539, 10176}, {4653, 42028}, {4664, 49479}, {4667, 24441}, {4670, 28301}, {4688, 49471}, {4694, 42038}, {4700, 16590}, {4717, 4742}, {4757, 50192}, {4758, 10022}, {4793, 19804}, {4856, 17330}, {4870, 10106}, {4887, 39704}, {4909, 17249}, {4995, 5048}, {5054, 11362}, {5055, 37727}, {5066, 5901}, {5071, 5881}, {5248, 7373}, {5249, 9963}, {5257, 50131}, {5258, 16861}, {5289, 5325}, {5298, 11011}, {5493, 5734}, {5542, 47357}, {5563, 17549}, {5587, 50818}, {5603, 15682}, {5710, 16402}, {5731, 28158}, {5750, 46845}, {5844, 11540}, {5846, 50786}, {5847, 22165}, {5850, 38316}, {5883, 5919}, {5886, 19709}, {6173, 30331}, {6684, 11812}, {7987, 34632}, {7988, 50871}, {7991, 15692}, {8162, 25439}, {8227, 34627}, {8236, 38054}, {8610, 39974}, {8666, 16418}, {8715, 16417}, {9588, 15721}, {9884, 38220}, {10031, 16173}, {10164, 15719}, {10175, 50798}, {10436, 50108}, {10624, 24926}, {10707, 33337}, {11038, 50836}, {11114, 34637}, {11231, 50823}, {11263, 15679}, {11278, 19711}, {11705, 47865}, {11706, 47866}, {11725, 36523}, {12101, 18483}, {12258, 50887}, {12263, 14711}, {12436, 19706}, {12513, 16857}, {12563, 24928}, {12575, 34471}, {12699, 15685}, {12702, 15716}, {12735, 45310}, {13624, 15759}, {15533, 47356}, {15534, 34379}, {15640, 34628}, {15672, 16126}, {15675, 34195}, {15690, 28198}, {15695, 31730}, {15703, 31399}, {15713, 28234}, {15888, 17533}, {16475, 50999}, {16484, 46922}, {16490, 32911}, {16777, 50115}, {17078, 25723}, {17132, 49482}, {17133, 49472}, {17379, 50090}, {17392, 28562}, {17393, 50099}, {17398, 50123}, {17502, 50832}, {17525, 20323}, {17530, 37722}, {17579, 34649}, {18145, 25303}, {18613, 19251}, {19710, 22791}, {19722, 48866}, {19907, 44257}, {21358, 49681}, {22475, 44422}, {24167, 46190}, {24325, 49461}, {26446, 50805}, {27268, 49504}, {28212, 31662}, {28522, 51060}, {28534, 43180}, {28538, 50991}, {28580, 50293}, {28639, 50112}, {29350, 38238}, {30308, 50864}, {30392, 50816}, {31138, 49700}, {31150, 50761}, {31151, 49696}, {31666, 45759}, {32941, 50109}, {33699, 34773}, {34122, 50846}, {34123, 50841}, {34718, 38068}, {34748, 47745}, {34937, 48846}, {35752, 50849}, {36330, 50852}, {36767, 50847}, {37611, 43151}, {37734, 38027}, {37904, 47495}, {38042, 50831}, {38047, 50790}, {38049, 47359}, {38052, 50839}, {41193, 49549}, {43531, 48865}, {45314, 48296}, {45316, 48287}, {45320, 48285}, {45341, 48286}, {45667, 48294}, {47097, 47491}, {47311, 47472}, {47352, 49529}, {48284, 50760}, {49455, 50118}, {49478, 50094}, {49739, 50226}, {50053, 50072}, {50062, 50070}, {50064, 50069}, {50091, 50130}, {50096, 50778}, {50285, 50294}, {50777, 51055}, {50781, 50993}, {50788, 50950}, {50843, 50892}, {50992, 51004}

X(51103) = midpoint of X(i) and X(j) for these {i,j}: {1, 551}, {10, 3241}, {11, 11274}, {145, 34641}, {354, 3898}, {376, 4301}, {381, 5882}, {392, 3892}, {549, 10222}, {597, 49465}, {599, 49684}, {944, 34648}, {946, 3655}, {962, 34638}, {1992, 49505}, {3244, 3679}, {3625, 34747}, {3635, 3828}, {3817, 7967}, {3874, 31165}, {3878, 24473}, {3993, 31178}, {4297, 31162}, {4430, 4525}, {4664, 49479}, {4667, 24441}, {4688, 49471}, {5049, 10179}, {5542, 47357}, {5883, 5919}, {6173, 30331}, {8236, 38054}, {9884, 50884}, {10031, 50889}, {10164, 16200}, {10165, 10247}, {10707, 33337}, {11114, 34637}, {12735, 45310}, {17579, 34649}, {31138, 49700}, {31150, 50761}, {31151, 49696}, {32941, 50109}, {34748, 47745}, {41193, 49549}, {45314, 48296}, {45316, 48287}, {45320, 48285}, {45341, 48286}, {45667, 48294}, {47097, 47491}, {47356, 49511}, {47358, 51005}, {47495, 47593}, {48284, 50760}, {49455, 50118}, {49478, 50094}, {49579, 49583}, {49739, 50226}, {50053, 50072}, {50062, 50070}, {50064, 50069}, {50091, 50130}, {50096, 50778}, {50285, 50294}, {50777, 51055}, {50781, 51000}
X(51103) = reflection of X(i) in X(j) for these {i,j}: {551, 3636}, {1125, 551}, {3626, 3828}, {3654, 50829}, {3679, 3634}, {3828, 1125}, {3968, 3848}, {4701, 3679}, {4745, 2}, {10022, 4758}, {31145, 4746}, {34641, 4691}, {34648, 12571}, {43174, 549}, {50787, 51003}, {50887, 12258}, {50950, 50788}
X(51103) = complement of X(4669)
X(51103) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1125, 3635}, {1, 1698, 20057}, {1, 3616, 3244}, {1, 3622, 10}, {1, 3624, 3623}, {1, 3636, 1125}, {1, 25055, 3241}, {1, 38314, 551}, {1, 41150, 4745}, {2, 3241, 4677}, {2, 4677, 10}, {2, 4745, 3828}, {8, 15808, 19878}, {8, 19872, 10}, {10, 551, 25055}, {10, 3244, 3621}, {10, 34595, 3634}, {145, 19862, 4691}, {145, 19875, 34641}, {551, 3244, 19883}, {551, 19883, 3616}, {551, 38314, 3636}, {944, 38021, 34648}, {1125, 3626, 31253}, {1125, 3635, 3626}, {1125, 4701, 3634}, {1125, 4745, 2}, {1698, 31145, 38098}, {3241, 3622, 25055}, {3241, 25055, 10}, {3241, 38314, 3622}, {3244, 3616, 3634}, {3244, 3634, 4701}, {3244, 19883, 3679}, {3616, 3621, 34595}, {3616, 3634, 1125}, {3616, 3679, 19883}, {3621, 3622, 3616}, {3621, 34595, 10}, {3622, 25055, 551}, {3623, 3624, 3625}, {3633, 5550, 10}, {3633, 25055, 19876}, {3654, 10165, 50829}, {3679, 19883, 3634}, {3679, 25055, 34595}, {3890, 50190, 4084}, {4677, 25055, 2}, {4701, 19883, 3828}, {5734, 30389, 5493}, {5901, 13607, 19925}, {8227, 34627, 38076}, {9884, 38220, 50884}, {10031, 16173, 50889}, {15808, 19878, 1125}, {19862, 34641, 19875}, {19875, 34641, 4691}, {19876, 25055, 5550}, {25055, 34747, 46931}, {31145, 38098, 4746}, {34648, 38021, 12571}, {38315, 47358, 51005}, {49614, 49616, 3663}


X(51104) = X(1)X(2)∩X(515)X(50806)

Barycentrics    28*a + b + c : :
X(51104) = 9 X[1] + X[2], 29 X[1] + X[8], 14 X[1] + X[10], 31 X[1] - X[145], 4 X[1] + X[551], 13 X[1] + 2 X[1125], 11 X[1] + X[1698], 11 X[1] - X[3241], 16 X[1] - X[3244], 5 X[1] + X[3616], 17 X[1] + X[3617], 89 X[1] + X[3621], 23 X[1] + 7 X[3622], 7 X[1] - X[3623], 53 X[1] + 7 X[3624], 44 X[1] + X[3625], 43 X[1] + 2 X[3626], 59 X[1] + X[3632], 61 X[1] - X[3633], 41 X[1] + 4 X[3634], 17 X[1] - 2 X[3635], 11 X[1] + 4 X[3636], 19 X[1] + X[3679], 23 X[1] + 2 X[3828], 23 X[1] + X[4668], 24 X[1] + X[4669], 39 X[1] + X[4677], 143 X[1] + 7 X[4678], 71 X[1] + 4 X[4691], 73 X[1] + 2 X[4701], 33 X[1] + 2 X[4745], 101 X[1] + 4 X[4746], 35 X[1] + X[4816], 79 X[1] + 11 X[5550], 83 X[1] + 7 X[9780], 38 X[1] + 7 X[15808], 8 X[1] + X[19862], 163 X[1] + 17 X[19872], 37 X[1] + 3 X[19875], 73 X[1] + 7 X[19876], 137 X[1] + 13 X[19877], 67 X[1] + 8 X[19878], 22 X[1] + 3 X[19883], 151 X[1] - X[20014], 71 X[1] - X[20049], 91 X[1] - X[20050], 41 X[1] + X[20052], 149 X[1] + X[20053], 209 X[1] + X[20054], 37 X[1] - 7 X[20057], 206 X[1] + 19 X[22266], 17 X[1] + 3 X[25055], 49 X[1] + X[31145],

X(51104) lies on these lines: {1, 2}, {515, 50806}, {516, 50819}, {517, 15711}, {946, 12101}, {1385, 15759}, {1482, 15716}, {1699, 50863}, {3303, 19705}, {3304, 19704}, {3534, 4301}, {3576, 50809}, {3653, 15722}, {3656, 15685}, {3817, 50799}, {3830, 13464}, {3845, 5882}, {3860, 28224}, {4297, 19710}, {5493, 8703}, {5603, 50862}, {5734, 15697}, {5847, 50791}, {5850, 50840}, {5886, 50797}, {5901, 38076}, {7967, 50802}, {7982, 15698}, {10164, 44580}, {10165, 50825}, {10172, 50804}, {10222, 12100}, {10246, 50808}, {10247, 50828}, {10283, 50796}, {11224, 50814}, {11362, 11812}, {11725, 41154}, {12258, 41147}, {13607, 34648}, {15534, 49505}, {15690, 28174}, {15692, 16189}, {15695, 28194}, {15719, 43174}, {17394, 50108}, {19711, 33179}, {22165, 49684}, {28160, 33699}, {28164, 50873}, {28484, 51060}, {28516, 51059}, {28582, 50111}, {30392, 50872}, {38022, 47745}, {38023, 49536}, {38028, 50822}, {38049, 50998}, {38316, 50834}, {41149, 51005}, {41152, 51003}, {41153, 51006}, {46845, 50115}, {50784, 51000}

X(51104) = midpoint of X(i) and X(j) for these {i,j}: {1698, 3241}, {15692, 16189}, {20052, 34747}, {50784, 51000}
X(51104) = reflection of X(i) in X(j) for these {i,j}: {3679, 31253}, {4668, 3828}, {19862, 551}, {34641, 3617}
X(51104) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 38314, 551}, {551, 3625, 19883}, {551, 38098, 1125}, {1125, 20050, 10}, {3241, 3636, 19883}, {3241, 19883, 3625}, {3241, 38314, 46934}, {3616, 3623, 4816}, {3625, 4745, 4669}, {3626, 46930, 10}, {3635, 25055, 34641}, {3636, 19883, 551}, {3636, 20054, 15808}, {4677, 38098, 4669}, {20054, 46931, 4678}


X(51105) = X(1)X(2)∩X(515)X(30308)

Barycentrics    11*a + 2*b + 2*c : :
X(51105) = 3 X[1] + 2 X[2], 13 X[1] + 2 X[8], 11 X[1] + 4 X[10], 17 X[1] - 2 X[145], X[1] + 4 X[551], 7 X[1] + 8 X[1125], 2 X[1] + X[1698], 7 X[1] - 2 X[3241], 19 X[1] - 4 X[3244], X[1] + 2 X[3616], 7 X[1] + 2 X[3617], 43 X[1] + 2 X[3621], X[1] + 14 X[3622], 5 X[1] - 2 X[3623], 8 X[1] + 7 X[3624], 41 X[1] + 4 X[3625], 37 X[1] + 8 X[3626], 14 X[1] + X[3632], 16 X[1] - X[3633], 29 X[1] + 16 X[3634], 23 X[1] - 8 X[3635], X[1] - 16 X[3636], 4 X[1] + X[3679], 17 X[1] + 8 X[3828], 5 X[1] + X[4668], 21 X[1] + 4 X[4669], 9 X[1] + X[4677], 61 X[1] + 14 X[4678], 59 X[1] + 16 X[4691], 67 X[1] + 8 X[4701], 27 X[1] + 8 X[4745], 89 X[1] + 16 X[4746], 8 X[1] + X[4816], 23 X[1] + 22 X[5550], 31 X[1] + 14 X[9780], 17 X[1] + 28 X[15808], 5 X[1] + 4 X[19862], 28 X[1] + 17 X[19872], 7 X[1] + 3 X[19875], 13 X[1] + 7 X[19876], 49 X[1] + 26 X[19877], 43 X[1] + 32 X[19878], 13 X[1] + 12 X[19883], 77 X[1] - 2 X[20014], 37 X[1] - 2 X[20049], 47 X[1] - 2 X[20050], 19 X[1] + 2 X[20052], 73 X[1] + 2 X[20053], 103 X[1] + 2 X[20054], 29 X[1] - 14 X[20057], 149 X[1] + 76 X[22266], 2 X[1] + 3 X[25055], and many others

X(51105) lies on these lines: {1, 2}, {30, 11522}, {35, 19705}, {36, 4428}, {40, 3653}, {57, 24857}, {80, 38026}, {165, 15698}, {191, 15673}, {354, 3899}, {355, 10109}, {376, 9589}, {381, 9624}, {392, 3894}, {515, 30308}, {516, 15697}, {517, 15693}, {524, 16491}, {547, 37727}, {549, 7982}, {553, 13462}, {597, 16496}, {631, 16189}, {758, 15675}, {940, 16489}, {944, 41106}, {946, 15682}, {1001, 37602}, {1319, 4654}, {1385, 3534}, {1386, 15534}, {1388, 4870}, {1482, 15701}, {1621, 37587}, {1699, 3830}, {2163, 8616}, {3058, 13384}, {3303, 16417}, {3304, 16418}, {3340, 5298}, {3524, 7991}, {3545, 5882}, {3576, 3656}, {3579, 15716}, {3654, 11812}, {3655, 3845}, {3746, 16371}, {3751, 38023}, {3758, 31332}, {3817, 50864}, {3901, 5045}, {4040, 45667}, {4234, 28619}, {4301, 10304}, {4312, 38024}, {4338, 37299}, {4383, 16490}, {4653, 42025}, {4658, 17553}, {4664, 49532}, {4688, 49469}, {4692, 20942}, {4755, 49490}, {4798, 28309}, {4859, 49738}, {4862, 17320}, {4898, 17398}, {4908, 16777}, {4912, 16484}, {4975, 42034}, {4995, 7962}, {5032, 49505}, {5049, 5692}, {5054, 9588}, {5055, 5881}, {5066, 5886}, {5071, 37714}, {5223, 38025}, {5258, 16857}, {5259, 7373}, {5264, 16402}, {5426, 17525}, {5432, 8275}, {5437, 5541}, {5506, 6762}, {5563, 16370}, {5587, 50797}, {5603, 11001}, {5690, 11540}, {5731, 15640}, {5734, 15692}, {5847, 50990}, {5902, 10179}, {6173, 37525}, {6174, 12653}, {6684, 34631}, {7967, 7988}, {7972, 45310}, {7987, 10595}, {7989, 13607}, {8148, 15722}, {8162, 48696}, {8227, 19709}, {8584, 16475}, {8666, 16858}, {8715, 36006}, {9053, 50953}, {9614, 24926}, {9875, 36523}, {9897, 11274}, {9956, 34748}, {10031, 37718}, {10165, 11224}, {10247, 50821}, {10389, 15015}, {10716, 47115}, {11038, 50840}, {11230, 50798}, {11362, 15702}, {11531, 15719}, {11705, 35752}, {11706, 36330}, {11739, 36366}, {11740, 36368}, {12101, 34773}, {12156, 12264}, {12245, 38068}, {12268, 22484}, {12269, 22485}, {12513, 17542}, {12531, 38104}, {12635, 36946}, {12645, 38083}, {12699, 19710}, {13174, 36521}, {13888, 44636}, {13942, 44635}, {14093, 31666}, {15300, 50886}, {15485, 46922}, {15533, 38315}, {15569, 31178}, {15670, 16126}, {15678, 35016}, {15685, 41869}, {15690, 22791}, {15695, 28198}, {15707, 31425}, {15708, 43174}, {15711, 35242}, {16173, 50843}, {16191, 50829}, {16192, 34632}, {16236, 31231}, {16558, 23958}, {16672, 36911}, {16673, 50115}, {17079, 25723}, {17274, 17394}, {17304, 28562}, {17392, 35227}, {17530, 37720}, {17533, 37719}, {18146, 25303}, {18398, 44663}, {18481, 33699}, {18493, 28208}, {18613, 19254}, {19706, 24929}, {20582, 49681}, {21356, 49684}, {21630, 27186}, {22165, 47356}, {24473, 50190}, {24821, 36522}, {24858, 25430}, {25405, 31160}, {26446, 50817}, {28333, 41312}, {28484, 51037}, {28516, 50111}, {28538, 50993}, {28582, 51035}, {31423, 33179}, {32557, 50890}, {34122, 50893}, {37611, 44284}, {37710, 38027}, {37712, 50818}, {38042, 50804}, {38047, 50998}, {38057, 50838}, {38059, 50835}, {43997, 48805}, {44567, 50767}, {45316, 48282}, {46845, 50087}, {47313, 47495}, {47352, 49465}, {47865, 50849}, {47866, 50852}, {48310, 49688}, {48812, 48820}, {49472, 50089}, {49498, 50094}, {49511, 50992}, {50049, 50069}, {50064, 50066}, {50176, 50225}, {50782, 51000}, {50784, 50950}, {50787, 51001}, {50802, 50863}

X(51105) = midpoint of X(i) and X(j) for these {i,j}: {3241, 3617}, {5734, 15692}, {50782, 51000}
X(51105) = reflection of X(i) in X(j) for these {i,j}: {3616, 551}, {3654, 50825}, {3679, 1698}, {4816, 3679}, {14093, 31666}, {37714, 5071}, {50791, 51003}, {50950, 50784}
X(51105) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 551, 25055}, {1, 1125, 3632}, {1, 3616, 1698}, {1, 3624, 3633}, {1, 4668, 3623}, {1, 19875, 3241}, {1, 25055, 3679}, {1, 34595, 145}, {2, 3241, 4669}, {2, 4669, 19875}, {8, 19883, 19876}, {145, 15808, 34595}, {551, 3636, 38314}, {551, 38314, 1}, {1125, 3241, 19875}, {1125, 3632, 19872}, {1125, 4669, 2}, {1125, 19872, 3624}, {1698, 3632, 3617}, {3241, 19875, 3632}, {3241, 25055, 19872}, {3616, 3617, 1125}, {3616, 3623, 19862}, {3622, 3636, 1}, {3622, 38314, 551}, {3623, 19862, 4668}, {3624, 4816, 1698}, {3632, 19875, 3679}, {3655, 5901, 38021}, {3655, 38021, 5691}, {3656, 50832, 50812}, {3679, 19872, 19875}, {3679, 25055, 3624}, {4668, 19862, 1698}, {13464, 30389, 9589}, {16475, 47358, 50952}, {36440, 36458, 20049}, {36444, 36462, 19876}, {38024, 47357, 4312}, {47358, 51006, 16475}, {50806, 50811, 50866}


X(51106) = X(1)X(2)∩X(515)X(50807)

Barycentrics    32*a + 5*b + 5*c : :
X(51106) = 9 X[1] + 5 X[2], 37 X[1] + 5 X[8], 16 X[1] + 5 X[10], 47 X[1] - 5 X[145], 2 X[1] + 5 X[551], 11 X[1] + 10 X[1125], 59 X[1] + 25 X[1698], 19 X[1] - 5 X[3241], 26 X[1] - 5 X[3244], 17 X[1] + 25 X[3616], 101 X[1] + 25 X[3617], 121 X[1] + 5 X[3621], X[1] + 5 X[3622], 67 X[1] - 25 X[3623], 7 X[1] + 5 X[3624], 58 X[1] + 5 X[3625], 53 X[1] + 10 X[3626], 79 X[1] + 5 X[3632], 89 X[1] - 5 X[3633], 43 X[1] + 20 X[3634], 31 X[1] - 10 X[3635], X[1] + 20 X[3636], 23 X[1] + 5 X[3679], 5 X[1] + 2 X[3828], 143 X[1] + 25 X[4668], 6 X[1] + X[4669], 51 X[1] + 5 X[4677], 5 X[1] + X[4678], 17 X[1] + 4 X[4691], 19 X[1] + 2 X[4701], 39 X[1] + 10 X[4745], 127 X[1] + 20 X[4746], 227 X[1] + 25 X[4816], 71 X[1] + 55 X[5550], 13 X[1] + 5 X[9780], 4 X[1] + 5 X[15808], 38 X[1] + 25 X[19862], 167 X[1] + 85 X[19872], 41 X[1] + 15 X[19875], 11 X[1] + 5 X[19876], 29 X[1] + 13 X[19877], 13 X[1] + 8 X[19878], 4 X[1] + 3 X[19883], 43 X[1] - X[20014], 103 X[1] - 5 X[20049], 131 X[1] - 5 X[20050], 269 X[1] + 25 X[20052], 41 X[1] + X[20053], 289 X[1] + 5 X[20054], 11 X[1] - 5 X[20057], 44 X[1] + 19 X[22266], and many others

X(51106) lies on these lines: {1, 2}, {515, 50807}, {516, 50820}, {517, 19711}, {946, 33699}, {1385, 15690}, {1386, 41149}, {1699, 50867}, {3534, 13464}, {3576, 50813}, {3656, 15695}, {3817, 50824}, {3845, 15178}, {3860, 5901}, {4297, 15685}, {4301, 8703}, {4755, 49504}, {5066, 5882}, {5493, 19708}, {5847, 50792}, {5886, 50800}, {7982, 15719}, {8584, 49505}, {9624, 41106}, {9779, 50868}, {10164, 15722}, {10171, 50818}, {10222, 11812}, {10246, 28172}, {10283, 19710}, {11362, 15713}, {11522, 15640}, {11725, 41147}, {12101, 28186}, {13607, 38076}, {15570, 38101}, {15708, 16189}, {15711, 31663}, {15716, 50828}, {15759, 17502}, {16200, 50829}, {25723, 43186}, {28164, 50874}, {28555, 50111}, {30392, 50815}, {31666, 46332}, {33179, 38068}, {35381, 38066}, {38028, 50826}, {38094, 43179}, {38315, 51004}, {41154, 50884}, {47356, 50989}, {49684, 50991}

X(51106) = midpoint of X(19876) and X(20057)
X(51106) = reflection of X(i) in X(j) for these {i,j}: {551, 3622}, {4678, 3828}, {15808, 551}, {19876, 1125}
X(51106) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 551, 19883}, {1, 3616, 4691}, {1, 19878, 3244}, {1, 25055, 31145}, {1, 46933, 3635}, {2, 41150, 551}, {551, 3244, 25055}, {1125, 46932, 19862}, {3636, 38314, 551}, {4677, 4691, 4669}, {4745, 31145, 4669}, {19883, 34641, 22266}, {25055, 31145, 19878}


X(51107) = X(1)X(2)∩X(515)X(12101)

Barycentrics    26*a - b - c : :
X(51107) = 9 X[1] - X[2], 25 X[1] - X[8], 13 X[1] - X[10], 23 X[1] + X[145], 5 X[1] - X[551], 7 X[1] - X[1125], 53 X[1] - 5 X[1698], 7 X[1] + X[3241], 11 X[1] + X[3244], 29 X[1] - 5 X[3616], 77 X[1] - 5 X[3617], 73 X[1] - X[3621], 31 X[1] - 7 X[3622], 19 X[1] + 5 X[3623], 55 X[1] - 7 X[3624], 37 X[1] - X[3625], 19 X[1] - X[3626], 49 X[1] - X[3632], 47 X[1] + X[3633], 10 X[1] - X[3634], 5 X[1] + X[3635], 4 X[1] - X[3636], 17 X[1] - X[3679], 11 X[1] - X[3828], 101 X[1] - 5 X[4668], 21 X[1] - X[4669], 33 X[1] - X[4677], 127 X[1] - 7 X[4678], 16 X[1] - X[4691], 31 X[1] - X[4701], 15 X[1] - X[4745], 22 X[1] - X[4746], 149 X[1] - 5 X[4816], 83 X[1] - 11 X[5550], 79 X[1] - 7 X[9780], 43 X[1] - 7 X[15808], 41 X[1] - 5 X[19862], 161 X[1] - 17 X[19872], 35 X[1] - 3 X[19875], 71 X[1] - 7 X[19876], 133 X[1] - 13 X[19877], 17 X[1] - 2 X[19878], 23 X[1] - 3 X[19883], 119 X[1] + X[20014], 55 X[1] + X[20049], 71 X[1] + X[20050], 173 X[1] - 5 X[20052], 121 X[1] - X[20053], 169 X[1] - X[20054], 17 X[1] + 7 X[20057], 199 X[1] - 19 X[22266], 19 X[1] - 3 X[25055], 41 X[1] - X[31145], and many others

X(51107) lies on these lines: {1, 2}, {515, 12101}, {516, 19710}, {517, 15759}, {1385, 15711}, {1699, 50868}, {3303, 19704}, {3304, 19705}, {3576, 50814}, {3654, 15722}, {3655, 15685}, {3656, 28164}, {3817, 50818}, {3830, 5882}, {3845, 13464}, {3860, 12571}, {4301, 11001}, {4909, 7321}, {5557, 36005}, {5886, 50801}, {7967, 50870}, {7982, 19708}, {8584, 49465}, {8703, 10222}, {9041, 41153}, {9884, 50887}, {10031, 50892}, {10165, 50805}, {10171, 50798}, {10246, 15716}, {10247, 15695}, {10304, 16189}, {10595, 34648}, {11230, 50831}, {11362, 15701}, {12100, 15178}, {13607, 22793}, {15533, 49684}, {15690, 28194}, {15693, 43174}, {16200, 50808}, {19709, 37727}, {19711, 50828}, {28158, 50811}, {28234, 50829}, {28236, 50803}, {28538, 41152}, {32557, 50846}, {38028, 50827}, {38049, 50790}, {38054, 50839}, {47311, 47491}, {49511, 50989}, {49681, 50993}, {50787, 51000}, {50788, 51003}

X(51107) = midpoint of X(i) and X(j) for these {i,j}: {551, 3635}, {1125, 3241}, {3244, 3828}, {4701, 34747}, {9884, 50887}, {10031, 50892}, {50787, 51000}
X(51107) = reflection of X(i) in X(j) for these {i,j}: {2, 41150}, {3634, 551}, {3679, 19878}, {4746, 3828}, {50788, 51003}
X(51107) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {551, 19875, 1125}, {551, 20049, 3828}, {1125, 3626, 19877}, {3241, 38314, 3617}, {3244, 38314, 3828}, {3617, 4677, 4669}, {3624, 38314, 551}, {4669, 19875, 4745}, {20049, 38314, 3624}


X(51108) = X(1)X(2)∩X(515)X(5066)

Barycentrics    14*a + 5*b + 5*c : :
X(51108) = 3 X[1] + 5 X[2], 19 X[1] + 5 X[8], 7 X[1] + 5 X[10], 29 X[1] - 5 X[145], X[1] - 5 X[551], X[1] + 5 X[1125], 23 X[1] + 25 X[1698], 13 X[1] - 5 X[3241], 17 X[1] - 5 X[3244], X[1] - 25 X[3616], 47 X[1] + 25 X[3617], 67 X[1] + 5 X[3621], 11 X[1] - 35 X[3622], 49 X[1] - 25 X[3623], 13 X[1] + 35 X[3624], 31 X[1] + 5 X[3625], 13 X[1] + 5 X[3626], 43 X[1] + 5 X[3632], 53 X[1] - 5 X[3633], 4 X[1] + 5 X[3634], 11 X[1] - 5 X[3635], 2 X[1] - 5 X[3636], 11 X[1] + 5 X[3679], 71 X[1] + 25 X[4668], 3 X[1] + X[4669], 27 X[1] + 5 X[4677], 17 X[1] + 7 X[4678], 2 X[1] + X[4691], 5 X[1] + X[4701], 9 X[1] + 5 X[4745], 16 X[1] + 5 X[4746], 119 X[1] + 25 X[4816], 17 X[1] + 55 X[5550], 37 X[1] + 35 X[9780], X[1] + 35 X[15808], 11 X[1] + 25 X[19862], 59 X[1] + 85 X[19872], 17 X[1] + 15 X[19875], 29 X[1] + 35 X[19876], 11 X[1] + 13 X[19877], X[1] + 2 X[19878], X[1] + 3 X[19883], 25 X[1] - X[20014], 61 X[1] - 5 X[20049], 77 X[1] - 5 X[20050], 143 X[1] + 25 X[20052], 23 X[1] + X[20053], 163 X[1] + 5 X[20054], 59 X[1] - 35 X[20057], 17 X[1] + 19 X[22266], X[1] + 15 X[25055], 7 X[1] + X[31145], and many others

X(51108) lies on these lines: {1, 2}, {40, 15719}, {142, 19706}, {214, 38026}, {376, 9624}, {390, 38094}, {515, 5066}, {516, 8703}, {517, 11812}, {545, 4758}, {547, 15178}, {549, 13464}, {553, 15950}, {726, 51061}, {944, 38076}, {946, 3534}, {1317, 38104}, {1385, 3845}, {1386, 22165}, {1482, 38068}, {1483, 38083}, {1699, 15640}, {2796, 11725}, {2802, 3848}, {3081, 11831}, {3242, 38089}, {3243, 38101}, {3304, 17542}, {3524, 4301}, {3543, 30389}, {3576, 11001}, {3579, 19711}, {3655, 19709}, {3656, 10165}, {3746, 36006}, {3817, 41099}, {3830, 5886}, {3833, 10179}, {3860, 28208}, {4127, 50191}, {4234, 28620}, {4297, 15682}, {4298, 4870}, {4694, 42039}, {4908, 5750}, {4909, 17271}, {4975, 4980}, {4989, 50309}, {5054, 43174}, {5055, 5882}, {5248, 40726}, {5258, 17547}, {5493, 15692}, {5542, 38025}, {5563, 16858}, {5603, 15698}, {5731, 30308}, {5734, 15721}, {5847, 50788}, {5901, 12100}, {6684, 15713}, {7982, 15702}, {7987, 34638}, {7988, 50864}, {7991, 15708}, {8227, 34648}, {8584, 34379}, {8666, 16857}, {9955, 12101}, {10109, 28204}, {10164, 50814}, {10171, 10246}, {10175, 50801}, {10222, 11539}, {10283, 50821}, {10304, 11522}, {11038, 50834}, {11230, 28236}, {11231, 50827}, {11263, 15678}, {11281, 15673}, {11362, 15694}, {11705, 36769}, {11706, 47867}, {12258, 15300}, {12512, 19708}, {12699, 15695}, {13624, 15690}, {15533, 50787}, {15534, 38023}, {15679, 26725}, {15685, 18493}, {15686, 31666}, {15697, 50865}, {15703, 37727}, {15711, 22791}, {15759, 28198}, {16173, 50892}, {16475, 51004}, {16490, 37687}, {16491, 21356}, {16674, 17355}, {16675, 50115}, {17079, 43186}, {17252, 31334}, {17553, 28619}, {18483, 33699}, {18613, 19252}, {21358, 49684}, {24857, 39962}, {25485, 38069}, {28172, 31662}, {28522, 50111}, {28562, 40344}, {30331, 38093}, {30392, 50868}, {30598, 50088}, {31423, 34631}, {32557, 50843}, {34123, 50844}, {37734, 38105}, {38034, 50832}, {38049, 47358}, {38054, 50836}, {38127, 50805}, {38155, 50818}, {38176, 50831}, {38191, 50790}, {38201, 50839}, {38213, 50846}, {38220, 50887}, {38315, 50781}, {45316, 48065}, {47311, 47495}, {47356, 50993}, {48310, 49465}, {50786, 51000}

X(51108) = midpoint of X(i) and X(j) for these {i,j}: {1, 3828}, {547, 15178}, {549, 13464}, {551, 1125}, {3241, 3626}, {3635, 3679}, {3655, 19925}, {3833, 10179}, {10171, 10246}, {12512, 31162}, {50786, 51000}, {50787, 51005}
X(51108) = reflection of X(i) in X(j) for these {i,j}: {3636, 551}, {3828, 19878}, {4691, 3828}
X(51108) = complement of X(4745)
X(51108) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2, 4669}, {1, 1125, 19878}, {1, 1698, 20053}, {1, 3624, 46933}, {1, 4678, 3244}, {1, 5550, 22266}, {1, 19878, 4691}, {1, 19883, 3828}, {2, 4669, 3828}, {10, 551, 38314}, {10, 3244, 4816}, {10, 46934, 1125}, {145, 19876, 38098}, {551, 15808, 25055}, {551, 19883, 1}, {551, 25055, 1125}, {1125, 3626, 3624}, {1125, 3635, 19862}, {1125, 3636, 3634}, {1125, 3828, 19883}, {1125, 31253, 5550}, {3244, 5550, 31253}, {3244, 22266, 4678}, {3616, 15808, 1125}, {3616, 25055, 551}, {3622, 19862, 3635}, {3622, 19877, 1}, {3636, 4691, 1}, {3828, 19883, 19878}, {4669, 19883, 2}, {4691, 19878, 3634}, {4816, 46930, 10}, {5731, 30308, 50862}, {19875, 22266, 3828}, {31145, 38314, 1}


X(51109) = X(1)X(2)∩X(30)X(31666)

Barycentrics    16*a + 7*b + 7*c : :
X(51109) = 3 X[1] + 7 X[2], 23 X[1] + 7 X[8], 8 X[1] + 7 X[10], 37 X[1] - 7 X[145], 2 X[1] - 7 X[551], X[1] + 14 X[1125], 5 X[1] + 7 X[1698], 17 X[1] - 7 X[3241], 22 X[1] - 7 X[3244], X[1] - 7 X[3616], 11 X[1] + 7 X[3617], 83 X[1] + 7 X[3621], 19 X[1] - 49 X[3622], 13 X[1] - 7 X[3623], 11 X[1] + 49 X[3624], 38 X[1] + 7 X[3625], 31 X[1] + 14 X[3626], 53 X[1] + 7 X[3632], 67 X[1] - 7 X[3633], 17 X[1] + 28 X[3634], 29 X[1] - 14 X[3635], 13 X[1] - 28 X[3636], 13 X[1] + 7 X[3679], 11 X[1] + 14 X[3828], 17 X[1] + 7 X[4668], 18 X[1] + 7 X[4669], 33 X[1] + 7 X[4677], 101 X[1] + 49 X[4678], 47 X[1] + 28 X[4691], 61 X[1] + 14 X[4701], 3 X[1] + 2 X[4745], 11 X[1] + 4 X[4746], 29 X[1] + 7 X[4816], 13 X[1] + 77 X[5550], 41 X[1] + 49 X[9780], 4 X[1] - 49 X[15808], 2 X[1] + 7 X[19862], 61 X[1] + 119 X[19872], 19 X[1] + 21 X[19875], 31 X[1] + 49 X[19876], 59 X[1] + 91 X[19877], 19 X[1] + 56 X[19878], 4 X[1] + 21 X[19883], 157 X[1] - 7 X[20014], 11 X[1] - X[20049], 97 X[1] - 7 X[20050], 5 X[1] + X[20052], 143 X[1] + 7 X[20053], 29 X[1] + X[20054], 79 X[1] - 49 X[20057], 92 X[1] + 133 X[22266], and many others

X(51109) lies on these lines: {1, 2}, {30, 31666}, {354, 4525}, {392, 4744}, {515, 19709}, {516, 19708}, {517, 15713}, {547, 5882}, {549, 4301}, {597, 49505}, {946, 8703}, {1385, 5066}, {1386, 50991}, {1699, 50815}, {3304, 19536}, {3524, 5493}, {3534, 5886}, {3576, 15682}, {3579, 44580}, {3653, 3830}, {3655, 38076}, {3656, 10164}, {3671, 5298}, {3817, 3845}, {3839, 30389}, {3848, 3898}, {3860, 31673}, {3986, 15492}, {4098, 4908}, {4342, 4995}, {4432, 36525}, {4537, 25917}, {4663, 41153}, {4694, 42041}, {4698, 49504}, {4755, 49479}, {4758, 24441}, {4798, 28301}, {5054, 13464}, {5248, 19704}, {5267, 40726}, {5563, 16861}, {5603, 15719}, {5731, 50863}, {5847, 50784}, {5901, 11812}, {6667, 11274}, {7967, 50801}, {7982, 15709}, {7987, 15697}, {7988, 50803}, {7991, 15721}, {8227, 41099}, {8584, 49511}, {8666, 17542}, {9589, 15705}, {9955, 33699}, {10109, 11230}, {10124, 10222}, {10165, 12100}, {10172, 50798}, {10175, 50824}, {10246, 50797}, {10247, 50827}, {10283, 50822}, {11001, 38021}, {11263, 17525}, {11362, 11539}, {11522, 15692}, {11540, 50821}, {11599, 15300}, {11705, 36768}, {11711, 36523}, {12258, 36521}, {12571, 34628}, {13624, 19710}, {15015, 50892}, {15178, 15699}, {15533, 38023}, {15534, 50791}, {15673, 17768}, {15678, 26725}, {15693, 28194}, {15695, 18493}, {15698, 31162}, {15702, 43174}, {15711, 28198}, {15759, 31730}, {16173, 50844}, {16475, 50787}, {19711, 22791}, {20582, 49684}, {21630, 38026}, {22165, 51005}, {23789, 45316}, {28164, 30308}, {28484, 50111}, {28516, 51060}, {28582, 50777}, {30392, 50864}, {32557, 50889}, {33337, 45310}, {38049, 51003}, {38059, 50834}, {38083, 47745}, {38089, 49536}, {38094, 47357}, {38191, 50998}, {38315, 50782}, {41106, 50811}, {44567, 50761}, {48310, 49529}, {49535, 50094}, {50781, 51006}, {50788, 51001}

X(51109) = midpoint of X(i) and X(j) for these {i,j}: {551, 19862}, {3241, 4668}, {3623, 3679}, {11522, 15692}
X(51109) = reflection of X(i) in X(j) for these {i,j}: {551, 3616}, {3617, 3828}, {51004, 50791}
X(51109) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2, 4745}, {1, 1698, 20052}, {1, 4746, 3244}, {1, 20054, 3635}, {2, 4677, 3828}, {2, 38314, 4677}, {8, 22266, 10}, {551, 1125, 19883}, {551, 3244, 38314}, {551, 19883, 10}, {551, 25055, 15808}, {1125, 3616, 19862}, {1125, 3636, 5550}, {1125, 15808, 10}, {1125, 25055, 551}, {3241, 3634, 38098}, {3616, 5550, 3623}, {3617, 3623, 20053}, {3622, 19878, 3625}, {3624, 4677, 2}, {3624, 38314, 3828}, {3828, 38314, 3244}, {4745, 41150, 1}, {15808, 19883, 551}, {20049, 38314, 1}


X(51110) = X(1)X(2)∩X(30)X(9624)

Barycentrics    13*a + 4*b + 4*c : :
X(51110) = 3 X[1] + 4 X[2], 17 X[1] + 4 X[8], 13 X[1] + 8 X[10], 25 X[1] - 4 X[145], X[1] - 8 X[551], 5 X[1] + 16 X[1125], 11 X[1] + 10 X[1698], 11 X[1] - 4 X[3241], 29 X[1] - 8 X[3244], X[1] + 20 X[3616], 43 X[1] + 20 X[3617], 59 X[1] + 4 X[3621], X[1] - 4 X[3622], 41 X[1] - 20 X[3623], X[1] + 2 X[3624], 55 X[1] + 8 X[3625], 47 X[1] + 16 X[3626], 19 X[1] + 2 X[3632], 23 X[1] - 2 X[3633], 31 X[1] + 32 X[3634], 37 X[1] - 16 X[3635], 11 X[1] - 32 X[3636], 5 X[1] + 2 X[3679], 19 X[1] + 16 X[3828], 16 X[1] + 5 X[4668], 27 X[1] + 8 X[4669], 6 X[1] + X[4677], 11 X[1] + 4 X[4678], 73 X[1] + 32 X[4691], 89 X[1] + 16 X[4701], 33 X[1] + 16 X[4745], 115 X[1] + 32 X[4746], 53 X[1] + 10 X[4816], 19 X[1] + 44 X[5550], 5 X[1] + 4 X[9780], X[1] + 8 X[15808], 23 X[1] + 40 X[19862], 29 X[1] + 34 X[19872], 4 X[1] + 3 X[19875], 53 X[1] + 52 X[19877], 41 X[1] + 64 X[19878], 11 X[1] + 24 X[19883], 109 X[1] - 4 X[20014], 53 X[1] - 4 X[20049], 67 X[1] - 4 X[20050], 127 X[1] + 20 X[20052], 101 X[1] + 4 X[20053], 143 X[1] + 4 X[20054], 7 X[1] - 4 X[20057], X[1] + 6 X[25055], 31 X[1] + 4 X[31145], and many others

X(51110) lies on these lines: {1, 2}, {30, 9624}, {40, 15693}, {57, 16558}, {86, 4902}, {140, 16189}, {165, 3656}, {191, 15675}, {376, 11522}, {515, 41106}, {517, 15701}, {547, 5881}, {549, 7991}, {599, 16491}, {946, 11001}, {1001, 37587}, {1385, 3830}, {1386, 15533}, {1420, 4870}, {1699, 15682}, {3247, 4908}, {3304, 16857}, {3339, 5298}, {3524, 13464}, {3534, 3576}, {3601, 19706}, {3653, 5901}, {3654, 10283}, {3655, 5066}, {3746, 16417}, {3845, 5886}, {3860, 34773}, {4297, 15640}, {4301, 15692}, {4423, 37602}, {4428, 5010}, {4654, 13462}, {4755, 49448}, {4975, 42029}, {4995, 9819}, {5054, 7982}, {5055, 15178}, {5071, 5882}, {5258, 17542}, {5259, 11194}, {5426, 15678}, {5493, 15705}, {5563, 16418}, {5587, 10109}, {5603, 19708}, {5657, 16191}, {5691, 41099}, {5731, 50802}, {5734, 15708}, {5847, 50994}, {7280, 19704}, {7373, 25542}, {7967, 50871}, {7988, 10246}, {7989, 28204}, {8056, 24857}, {8584, 38023}, {8666, 16861}, {9588, 15702}, {9589, 10304}, {9619, 39593}, {9779, 50862}, {9812, 50815}, {9897, 45310}, {10031, 32557}, {10164, 50872}, {10165, 15719}, {10175, 50818}, {10222, 15694}, {10247, 50817}, {11055, 12263}, {11230, 37712}, {11231, 50805}, {11238, 13384}, {11274, 31272}, {11281, 17525}, {11362, 15709}, {11531, 11812}, {11540, 26446}, {11705, 35751}, {11706, 36329}, {11725, 15300}, {11739, 36386}, {11740, 36388}, {11831, 34582}, {12101, 18481}, {12513, 19536}, {12690, 25525}, {12699, 15690}, {12702, 15722}, {13607, 38074}, {13624, 15695}, {15534, 16475}, {15570, 38097}, {15671, 16126}, {15679, 35016}, {15689, 31666}, {15698, 16192}, {15699, 30315}, {15716, 35242}, {15721, 43174}, {15759, 22791}, {16173, 50396}, {16200, 50821}, {16487, 17392}, {16489, 37674}, {16490, 37679}, {16496, 47352}, {16673, 17340}, {16801, 20155}, {17364, 31334}, {17502, 50812}, {18398, 31165}, {19710, 41869}, {22165, 50792}, {22475, 33706}, {28555, 51061}, {28640, 50112}, {31139, 36834}, {31178, 49523}, {32558, 50889}, {33179, 38066}, {33595, 38093}, {34123, 50891}, {34471, 50444}, {34631, 38068}, {34748, 38083}, {36521, 50886}, {37718, 50843}, {38032, 50908}, {38049, 50999}, {38053, 50836}, {38092, 43179}, {38133, 50910}, {38204, 50839}, {38315, 50785}, {45316, 47970}, {47314, 47495}, {47356, 50991}, {50790, 50953}, {50992, 51005}

X(51110) = midpoint of X(i) and X(j) for these {i,j}: {1, 19876}, {551, 15808}, {3241, 4678}
X(51110) = reflection of X(i) in X(j) for these {i,j}: {3622, 551}, {3654, 50826}, {3679, 9780}, {9588, 15702}, {19876, 3624}, {50950, 50785}
X(51110) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2, 4677}, {1, 19875, 34747}, {1, 34595, 4668}, {2, 3241, 4745}, {2, 4677, 19875}, {2, 4745, 1698}, {551, 1125, 38314}, {551, 3616, 25055}, {551, 19883, 3636}, {551, 25055, 1}, {1125, 3636, 3625}, {1125, 4746, 19862}, {1125, 9780, 3624}, {1125, 38314, 3679}, {1385, 38021, 34628}, {1698, 3636, 1}, {3241, 19883, 1698}, {3241, 46934, 19883}, {3616, 3622, 15808}, {3622, 3624, 1}, {3622, 15808, 3624}, {3622, 25055, 19876}, {3622, 46934, 4678}, {3636, 19883, 3241}, {3636, 46934, 1698}, {3653, 5901, 31162}, {3653, 31162, 7987}, {3655, 38022, 8227}, {3679, 25055, 1125}, {3679, 38314, 1}, {4745, 19883, 2}, {4746, 19862, 46930}, {5886, 50811, 30308}, {19875, 34747, 4668}, {19877, 20049, 38098}, {20049, 38098, 4816}, {30308, 30392, 50811}, {34595, 34747, 19875}


X(51111) = X(1)X(21)∩X(12)X(1125)

Barycentrics    a*(2*a^3 - a^2*b - 2*a*b^2 + b^3 - a^2*c + 2*a*b*c - 2*b^2*c - 2*a*c^2 - 2*b*c^2 + c^3) : :
X(51111) = 3 X[1] + X[6763], 3 X[2975] - X[6763], 4 X[2] - 3 X[38105], 4 X[37710] - 9 X[38105], 4 X[5] - 3 X[38162], 4 X[10] - 3 X[38214], 4 X[140] - 3 X[38134], 8 X[4999] - 3 X[38214], 3 X[10165] - 2 X[31659], 2 X[12] - 3 X[38062], 4 X[1125] - 3 X[38062], 4 X[142] - 3 X[38208], 5 X[2646] - 3 X[33595], 3 X[31157] + X[37734], 3 X[551] - 2 X[37737], 3 X[10246] - X[37733], 3 X[3576] - X[11491], 4 X[3589] - 3 X[38198], 5 X[3616] - X[20060], 5 X[3616] - 3 X[37701], X[20060] - 3 X[37701], 4 X[3628] - 3 X[38183], 4 X[3634] - 5 X[31260], 4 X[3634] - 3 X[38058], 5 X[31260] - 3 X[38058], 2 X[8068] - 3 X[32557], 4 X[6666] - 3 X[38217], 4 X[6667] - 3 X[38219], 4 X[6668] - 5 X[19862], X[11010] - 3 X[17549]

X(51111) lies on these lines: {1, 21}, {2, 21842}, {5, 38162}, {8, 37291}, {9, 17438}, {10, 140}, {12, 1125}, {35, 2802}, {36, 3754}, {55, 22837}, {56, 5883}, {65, 4973}, {79, 20067}, {100, 37616}, {142, 38208}, {145, 2320}, {149, 5441}, {355, 40260}, {392, 41554}, {404, 3918}, {405, 1388}, {484, 5303}, {515, 6842}, {516, 30264}, {517, 5267}, {519, 2646}, {529, 551}, {535, 12047}, {549, 8256}, {936, 30392}, {944, 6853}, {946, 5841}, {950, 10959}, {956, 22836}, {958, 10176}, {960, 1493}, {976, 16499}, {999, 30143}, {1320, 37563}, {1329, 38028}, {1389, 5535}, {1483, 15862}, {1706, 3576}, {2098, 16370}, {2329, 24036}, {2475, 36975}, {2801, 21740}, {2886, 5499}, {3057, 30538}, {3218, 4757}, {3244, 5855}, {3294, 17439}, {3476, 10198}, {3486, 45700}, {3589, 38198}, {3601, 25439}, {3612, 3872}, {3616, 20060}, {3626, 5440}, {3628, 38183}, {3634, 17614}, {3635, 37080}, {3636, 12572}, {3652, 48667}, {3655, 5794}, {3678, 4511}, {3689, 4701}, {3746, 38460}, {3753, 37605}, {3811, 13384}, {3812, 5126}, {3822, 24541}, {3825, 8068}, {3833, 5253}, {3913, 37606}, {3916, 11011}, {3919, 37582}, {3968, 4881}, {4051, 4262}, {4084, 50194}, {4127, 4867}, {4189, 5697}, {4297, 5842}, {4304, 49600}, {4311, 12609}, {4325, 20292}, {4640, 10222}, {4652, 25415}, {4868, 15955}, {5010, 14923}, {5046, 37735}, {5080, 5443}, {5087, 38045}, {5122, 10107}, {5123, 38114}, {5218, 49169}, {5251, 18254}, {5260, 41689}, {5288, 34772}, {5289, 37624}, {5444, 27529}, {5542, 5857}, {5690, 26287}, {5731, 37163}, {5745, 13607}, {5795, 24927}, {5836, 13624}, {5847, 51009}, {5849, 49511}, {5852, 42819}, {5884, 32153}, {5901, 11813}, {6224, 47033}, {6265, 20117}, {6647, 17758}, {6666, 38217}, {6667, 38219}, {6668, 19862}, {6681, 24982}, {6906, 11014}, {6910, 12647}, {7294, 34122}, {7483, 10944}, {7967, 30478}, {9623, 30389}, {9678, 44636}, {9780, 38411}, {10056, 36977}, {10572, 24387}, {10914, 37600}, {11010, 17549}, {11263, 18990}, {12248, 49178}, {12648, 31452}, {12737, 37621}, {12773, 33858}, {13145, 38602}, {13375, 14804}, {14988, 33281}, {15064, 45770}, {15171, 21630}, {16139, 35457}, {16611, 21008}, {17221, 18698}, {17440, 21061}, {17619, 20107}, {18253, 44254}, {18447, 47115}, {18481, 47032}, {19860, 37618}, {21888, 37512}, {22758, 31803}, {22765, 31870}, {24301, 34823}, {25485, 26087}, {26066, 37727}, {26364, 34918}, {28234, 33596}, {28236, 33597}, {30323, 35258}, {31453, 35762}, {31650, 50824}, {31806, 46920}, {32636, 33815}, {37562, 46684}, {37592, 49682}, {43174, 50371}

X(51111) = midpoint of X(i) and X(j) for these {i,j}: {1, 2975}, {35, 4861}, {3916, 11011}, {5288, 34772}, {6906, 11014}
X(51111) = reflection of X(i) in X(j) for these {i,j}: {10, 4999}, {12, 1125}
X(51111) = complement of X(37710)
X(51111) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 21, 3884}, {1, 993, 3878}, {1, 5248, 3898}, {1, 8666, 3874}, {10, 1385, 214}, {12, 1125, 38062}, {56, 30147, 5883}, {145, 2320, 37571}, {956, 34471, 22836}, {958, 10246, 30144}, {958, 30144, 10176}, {993, 3878, 3647}, {3612, 3872, 8715}, {3616, 20060, 37701}, {4511, 5258, 3678}, {5258, 24926, 4511}, {11260, 24929, 3244}, {22758, 40257, 31803}, {24541, 45287, 3822}, {31260, 38058, 3634}


X(51112) = X(1)X(529)∩X(12)X(551)

Barycentrics    8*a^4 - 6*a^3*b - 7*a^2*b^2 + 6*a*b^3 - b^4 - 6*a^3*c + 10*a^2*b*c - 8*a*b^2*c - 7*a^2*c^2 - 8*a*b*c^2 + 2*b^2*c^2 + 6*a*c^3 - c^4 : :
X(51112) = 4 X[2] - 3 X[38058], 2 X[12] - 3 X[38027], 4 X[551] - 3 X[38027], 3 X[3653] - 2 X[31659], 4 X[3828] - 5 X[31260], 4 X[3828] - 3 X[38100], 5 X[31260] - 3 X[38100], 2 X[8068] - 3 X[38026], 2 X[37737] - 3 X[38314], 3 X[21155] - 4 X[50828], 3 X[25055] - X[37710], 3 X[38051] - 4 X[51006]

X(51112) lies on these lines: {1, 529}, {2, 952}, {12, 551}, {55, 25416}, {442, 5882}, {498, 34717}, {519, 2646}, {758, 5919}, {944, 17532}, {1145, 37525}, {1483, 3897}, {1621, 12735}, {2975, 3241}, {3036, 5444}, {3623, 50742}, {3649, 34637}, {3653, 31659}, {3655, 11112}, {3656, 5841}, {3679, 4999}, {3828, 31260}, {3925, 33337}, {4018, 34646}, {4187, 15178}, {5326, 15863}, {5734, 50242}, {5842, 50811}, {5849, 47358}, {5852, 50836}, {5901, 37375}, {6690, 7972}, {7483, 37727}, {8068, 38026}, {10197, 10944}, {10609, 34612}, {11194, 11507}, {11235, 12690}, {11491, 16371}, {11849, 17549}, {12732, 34607}, {17530, 26470}, {17556, 37737}, {17579, 34773}, {19704, 50810}, {21155, 50828}, {22836, 34689}, {22837, 34699}, {24987, 32900}, {25055, 37710}, {28194, 30264}, {28538, 51009}, {34471, 45701}, {34697, 40257}, {38051, 51006}

X(51112) = midpoint of X(i) and X(j) for these {i,j}: {2975, 3241}, {31157, 37734}
X(51112) = reflection of X(i) in X(j) for these {i,j}: {12, 551}, {3679, 4999}
X(51112) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 50824, 50843}, {12, 551, 38027}, {31260, 38100, 3828}


X(51113) = X(2)X(758)∩X(12)X(553)

Barycentrics    2*a^4 + 3*a^3*b - 4*a^2*b^2 - 3*a*b^3 + 2*b^4 + 3*a^3*c - 2*a^2*b*c - 2*a*b^2*c - 4*a^2*c^2 - 2*a*b*c^2 - 4*b^2*c^2 - 3*a*c^3 + 2*c^4 : :
X(51113) = 5 X[2] - 3 X[37701], 4 X[2] - 3 X[38062], 4 X[37701] - 5 X[38062], 2 X[12] - 3 X[38105], 4 X[3828] - 3 X[38105], 5 X[31157] - X[37734], 4 X[4745] - 3 X[38214], 3 X[5054] - X[37733], X[6763] + 3 X[19875], 2 X[8068] - 3 X[38104], 3 X[19883] - 2 X[37737], 3 X[21155] - 4 X[50829], 5 X[31260] - 3 X[38027], 2 X[31659] - 3 X[38068]

X(51113) lies on these lines: {2, 758}, {10, 529}, {12, 553}, {191, 37375}, {519, 2646}, {551, 4999}, {952, 4669}, {993, 5727}, {2975, 3679}, {3219, 6702}, {3647, 11113}, {3874, 10197}, {3878, 11376}, {3962, 20104}, {3988, 27529}, {4015, 5445}, {4134, 11231}, {4745, 38214}, {5054, 37733}, {5258, 37293}, {5841, 50796}, {5842, 50808}, {5849, 50781}, {5852, 38204}, {6763, 19875}, {8068, 38104}, {15065, 20879}, {19883, 37737}, {21155, 50829}, {26363, 34744}, {26470, 28194}, {31260, 38027}, {31659, 38068}, {36004, 47033}

X(51113) = midpoint of X(2975) and X(3679)
X(51113) = reflection of X(i) in X(j) for these {i,j}: {12, 3828}, {551, 4999}
X(51113) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {12, 3828, 38105}, {4669, 50821, 50841}


X(51114) = X(1)X(616)∩X(13)X(1125)

Barycentrics    (a + b + c)*(8*a^4 - 3*a^3*b - 7*a^2*b^2 + 3*a*b^3 - b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c - 7*a^2*c^2 - 3*a*b*c^2 + 2*b^2*c^2 + 3*a*c^3 - c^4) + 2*Sqrt[3]*(a^2*b - 2*a*b^2 - b^3 + a^2*c - b^2*c - 2*a*c^2 - b*c^2 - c^3)*S : :
X(51114) = 3 X[5463] + X[7975], 3 X[5463] - X[12781], 5 X[5463] - X[50848], 2 X[7975] + 3 X[50847], 5 X[7975] + 3 X[50848], X[7975] - 3 X[50849], 2 X[12781] - 3 X[50847], 5 X[12781] - 3 X[50848], X[12781] + 3 X[50849], 5 X[50847] - 2 X[50848], X[50847] + 2 X[50849], X[50848] + 5 X[50849], 3 X[551] - 2 X[11705], 3 X[3576] - X[6770], 4 X[3634] - 5 X[36770], 3 X[3817] - 2 X[5478], X[4669] - 4 X[36768], 2 X[4745] - 5 X[36767], 2 X[5459] - 3 X[19883], 3 X[5886] - X[13103], 4 X[6669] - 5 X[19862], 2 X[6771] - 3 X[10165], 3 X[11230] - 2 X[20252], 2 X[19925] - 3 X[36765]

X(51114) lies on these lines: {1, 616}, {2, 9901}, {10, 618}, {13, 1125}, {226, 18974}, {515, 5617}, {516, 5473}, {519, 5463}, {530, 551}, {532, 11707}, {542, 11709}, {950, 12952}, {993, 22773}, {2482, 50850}, {2796, 9116}, {3576, 6770}, {3634, 36770}, {3817, 5478}, {4297, 41022}, {4669, 36768}, {4745, 36767}, {5459, 19883}, {5460, 50884}, {5847, 51010}, {5886, 13103}, {6669, 19862}, {6771, 10165}, {8983, 49208}, {10062, 13411}, {10078, 44675}, {10106, 12942}, {11230, 20252}, {11599, 11706}, {12053, 13076}, {12337, 25440}, {12922, 17647}, {13624, 47610}, {13971, 49209}, {18481, 48655}, {19925, 36765}, {21636, 41023}, {22577, 50887}, {22796, 31673}, {28164, 36961}

X(51114) = midpoint of X(i) and X(j) for these {i,j}: {1, 616}, {5463, 50849}, {7975, 12781}, {18481, 48655}
X(51114) = reflection of X(i) in X(j) for these {i,j}: {10, 618}, {13, 1125}, {11599, 11706}, {22577, 50887}, {31673, 22796}, {47610, 13624}, {50847, 5463}, {50850, 2482}, {50884, 5460}
X(51114) = complement of X(9901)
X(51114) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5463, 7975, 12781}, {12781, 50849, 7975}


X(51115) = X(1)X(617)∩X(14)X(1125)

Barycentrics    (a + b + c)*(8*a^4 - 3*a^3*b - 7*a^2*b^2 + 3*a*b^3 - b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c - 7*a^2*c^2 - 3*a*b*c^2 + 2*b^2*c^2 + 3*a*c^3 - c^4) - 2*Sqrt[3]*(a^2*b - 2*a*b^2 - b^3 + a^2*c - b^2*c - 2*a*c^2 - b*c^2 - c^3)*S : :
X(51115) = 3 X[5464] + X[7974], 3 X[5464] - X[12780], 5 X[5464] - X[50851], 2 X[7974] + 3 X[50850], 5 X[7974] + 3 X[50851], X[7974] - 3 X[50852], 2 X[12780] - 3 X[50850], 5 X[12780] - 3 X[50851], X[12780] + 3 X[50852], 5 X[50850] - 2 X[50851], X[50850] + 2 X[50852], X[50851] + 5 X[50852], 3 X[551] - 2 X[11706], 3 X[3576] - X[6773], 3 X[3817] - 2 X[5479], 2 X[5460] - 3 X[19883], 3 X[5886] - X[13102], 4 X[6670] - 5 X[19862], 2 X[6774] - 3 X[10165], 3 X[11230] - 2 X[20253]

X(51115) lies on these lines: {1, 617}, {2, 9900}, {10, 619}, {14, 1125}, {226, 18975}, {515, 5613}, {516, 5474}, {519, 5464}, {531, 551}, {533, 11708}, {542, 11709}, {950, 12951}, {993, 22774}, {2482, 50847}, {2784, 36776}, {2796, 9114}, {3576, 6773}, {3817, 5479}, {4297, 41023}, {5459, 50884}, {5460, 19883}, {5847, 51013}, {5886, 13102}, {6670, 19862}, {6774, 10165}, {8983, 49210}, {10061, 13411}, {10077, 44675}, {10106, 12941}, {11230, 20253}, {11599, 11705}, {12053, 13075}, {12336, 25440}, {12921, 17647}, {13624, 47611}, {13971, 49211}, {18481, 48656}, {21636, 41022}, {22578, 50887}, {22797, 31673}, {28164, 36962}

X(51115) = midpoint of X(i) and X(j) for these {i,j}: {1, 617}, {5464, 50852}, {7974, 12780}, {18481, 48656}
X(51115) = reflection of X(i) in X(j) for these {i,j}: {10, 619}, {14, 1125}, {11599, 11705}, {22578, 50887}, {31673, 22797}, {47611, 13624}, {50847, 2482}, {50850, 5464}, {50884, 5459}
X(51115) = complement of X(9900)
X(51115) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5464, 7974, 12780}, {12780, 50852, 7974}


X(51116) = X(1)X(627)∩X(17)X(1125)

Barycentrics    (a + b + c)*(8*a^4 - 5*a^3*b - 9*a^2*b^2 + 5*a*b^3 + b^4 - 5*a^3*c + 10*a^2*b*c - 5*a*b^2*c - 9*a^2*c^2 - 5*a*b*c^2 - 2*b^2*c^2 + 5*a*c^3 + c^4) + 2*Sqrt[3]*(a^2*b - 2*a*b^2 - b^3 + a^2*c - b^2*c - 2*a*c^2 - b*c^2 - c^3)*S : :
X(51116) = X[22896] - 3 X[50859], X[22912] + 3 X[50859], 3 X[551] - 2 X[11739], 3 X[3576] - X[22532], 5 X[3616] - X[22113], 4 X[3636] + X[22844], 3 X[3817] - 2 X[22832], 3 X[5886] - X[16629], 4 X[6673] - 5 X[19862], 3 X[10165] - 2 X[49106], 7 X[15808] - 2 X[33465]

X(51116) lies on these lines: {1, 627}, {2, 22652}, {10, 629}, {17, 1125}, {226, 18973}, {515, 16626}, {516, 22890}, {519, 22896}, {532, 551}, {950, 22905}, {993, 22772}, {3576, 22532}, {3616, 22113}, {3636, 22844}, {3817, 22832}, {4297, 44666}, {5847, 51020}, {5886, 16629}, {5965, 12266}, {6673, 19862}, {8983, 49238}, {10106, 22904}, {10165, 49106}, {12053, 22910}, {13411, 22929}, {13971, 49239}, {15808, 33465}, {17647, 22902}, {18481, 48666}, {22558, 25440}, {22795, 31673}, {22930, 44675}, {33387, 49591}, {36782, 49603}

X(51116) = midpoint of X(i) and X(j) for these {i,j}: {1, 627}, {18481, 48666}, {22896, 22912}
X(51116) = reflection of X(i) in X(j) for these {i,j}: {10, 629}, {17, 1125}, {31673, 22795}
X(51116) = complement of X(22652)
X(51116) = {X(22912),X(50859)}-harmonic conjugate of X(22896)


X(51117) = X(1)X(628)∩X(18)X(1125)

Barycentrics    (a + b + c)*(8*a^4 - 5*a^3*b - 9*a^2*b^2 + 5*a*b^3 + b^4 - 5*a^3*c + 10*a^2*b*c - 5*a*b^2*c - 9*a^2*c^2 - 5*a*b*c^2 - 2*b^2*c^2 + 5*a*c^3 + c^4) - 2*Sqrt[3]*(a^2*b - 2*a*b^2 - b^3 + a^2*c - b^2*c - 2*a*c^2 - b*c^2 - c^3)*S : :
X(51117) = X[22851] - 3 X[50860], X[22867] + 3 X[50860], 3 X[551] - 2 X[11740], 3 X[3576] - X[22531], 5 X[3616] - X[22114], 4 X[3636] + X[22845], 3 X[3817] - 2 X[22831], 3 X[5886] - X[16628], 4 X[6674] - 5 X[19862], 3 X[10165] - 2 X[49105], 7 X[15808] - 2 X[33464]

X(51117) lies on these lines: {1, 628}, {2, 22651}, {10, 630}, {18, 1125}, {226, 18972}, {515, 16627}, {516, 22843}, {519, 22851}, {533, 551}, {950, 22860}, {993, 22771}, {3576, 22531}, {3616, 22114}, {3636, 22845}, {3817, 22831}, {4297, 44667}, {5847, 51021}, {5886, 16628}, {5965, 12266}, {6674, 19862}, {8983, 49236}, {10106, 22859}, {10165, 49105}, {12053, 22865}, {13411, 22884}, {13971, 49237}, {15808, 33464}, {17647, 22857}, {18481, 48665}, {22557, 25440}, {22794, 31673}, {22885, 44675}, {33386, 49590}, {36781, 49603}

X(51117) = midpoint of X(i) and X(j) for these {i,j}: {1, 628}, {18481, 48665}, {22851, 22867}
X(51117) = reflection of X(i) in X(j) for these {i,j}: {10, 630}, {18, 1125}, {31673, 22794}
X(51117) = complement of X(22651)
X(51117) = {X(22867),X(50860)}-harmonic conjugate of X(22851)


X(51118) = X(4)X(9)∩X(20)X(1125)

Barycentrics    4*a^4 + a^3*b - a^2*b^2 - a*b^3 - 3*b^4 + a^3*c - 2*a^2*b*c + a*b^2*c - a^2*c^2 + a*b*c^2 + 6*b^2*c^2 - a*c^3 - 3*c^4 : :
X(51118) = X[1] - 3 X[9812], X[3146] + 3 X[9812], 3 X[2] - 7 X[10248], 3 X[2] - 4 X[12571], 9 X[2] - 7 X[16192], 7 X[10248] - 2 X[12512], 7 X[10248] - 4 X[12571], 3 X[10248] - X[16192], 14 X[10248] - 3 X[34638], 6 X[12512] - 7 X[16192], 4 X[12512] - 3 X[34638], 12 X[12571] - 7 X[16192], 8 X[12571] - 3 X[34638], 14 X[16192] - 9 X[34638], 2 X[3] - 3 X[3817], 4 X[3] - 5 X[19862], 3 X[3817] - 4 X[18483], 6 X[3817] - 5 X[19862], 8 X[18483] - 5 X[19862], 3 X[4] - X[40], 4 X[4] - X[5493], 5 X[4] - 3 X[5587], 7 X[4] - 3 X[5657], 9 X[4] - 5 X[5818], 5 X[4] - X[6361], 7 X[4] - 5 X[18492], 3 X[4] - 2 X[19925], 5 X[4] - 2 X[43174], 3 X[10] - 2 X[40], 5 X[10] - 6 X[5587], 7 X[10] - 6 X[5657], 9 X[10] - 10 X[5818], 5 X[10] - 2 X[6361], 7 X[10] - 10 X[18492], 3 X[10] - 4 X[19925], X[10] + 2 X[41869], 5 X[10] - 4 X[43174], 4 X[40] - 3 X[5493], 5 X[40] - 9 X[5587], 7 X[40] - 9 X[5657], 3 X[40] - 5 X[5818], 5 X[40] - 3 X[6361], 7 X[40] - 15 X[18492], X[40] + 3 X[41869], 5 X[40] - 6 X[43174], 5 X[5493] - 12 X[5587], 7 X[5493] - 12 X[5657], 9 X[5493] - 20 X[5818], 5 X[5493] - 4 X[6361], and many others

X(51118) lies on these lines: {1, 3146}, {2, 10248}, {3, 3817}, {4, 9}, {5, 10164}, {7, 6744}, {8, 9589}, {20, 1125}, {30, 551}, {33, 4347}, {35, 36002}, {55, 3947}, {57, 5225}, {65, 9844}, {72, 31871}, {140, 28182}, {145, 50690}, {165, 3091}, {185, 31757}, {226, 4314}, {329, 6743}, {355, 3830}, {376, 8227}, {377, 40998}, {381, 6684}, {382, 515}, {388, 9580}, {390, 5290}, {405, 12511}, {442, 7965}, {497, 4298}, {499, 4333}, {517, 3625}, {519, 962}, {527, 34706}, {529, 21627}, {535, 49600}, {546, 3579}, {548, 11230}, {550, 9955}, {631, 10171}, {726, 51063}, {758, 12688}, {938, 4312}, {942, 15726}, {944, 15682}, {950, 1836}, {952, 33697}, {971, 3874}, {1012, 5267}, {1058, 12577}, {1210, 1770}, {1478, 10624}, {1479, 3338}, {1483, 28208}, {1537, 33337}, {1593, 49553}, {1597, 9911}, {1657, 5886}, {1697, 5229}, {1698, 3832}, {1702, 23249}, {1703, 23259}, {1737, 18514}, {1750, 3811}, {1864, 12432}, {1898, 15556}, {2777, 13605}, {2784, 10722}, {2794, 3429}, {2802, 13227}, {2807, 13598}, {2816, 10747}, {2829, 21630}, {2901, 22035}, {3008, 7406}, {3070, 49548}, {3071, 49547}, {3090, 35242}, {3189, 28609}, {3361, 5274}, {3434, 12527}, {3474, 9581}, {3475, 41864}, {3488, 12563}, {3520, 9625}, {3522, 3624}, {3523, 7988}, {3529, 3576}, {3545, 31423}, {3585, 31397}, {3586, 4295}, {3616, 5059}, {3622, 50692}, {3626, 7991}, {3635, 50691}, {3636, 5731}, {3653, 15685}, {3654, 38335}, {3656, 13607}, {3663, 4911}, {3678, 5927}, {3679, 20070}, {3742, 31805}, {3743, 15852}, {3825, 37374}, {3828, 3839}, {3841, 8226}, {3843, 26446}, {3845, 9956}, {3850, 11231}, {3851, 10172}, {3853, 11362}, {3854, 19877}, {3856, 31447}, {3860, 38083}, {3861, 31399}, {3878, 9856}, {3881, 12680}, {3911, 10896}, {3919, 7686}, {3927, 16112}, {4018, 12690}, {4082, 5300}, {4084, 6001}, {4134, 5777}, {4293, 9614}, {4294, 9612}, {4299, 44675}, {4302, 13411}, {4304, 12047}, {4311, 10483}, {4315, 7354}, {4342, 10106}, {4355, 10580}, {4356, 5717}, {4425, 48890}, {4512, 5177}, {4691, 37714}, {4701, 37712}, {4745, 34632}, {4857, 16118}, {4872, 10481}, {4973, 34862}, {5046, 8582}, {5056, 31253}, {5066, 38068}, {5071, 50829}, {5073, 13464}, {5076, 12702}, {5080, 6736}, {5122, 10593}, {5129, 38052}, {5175, 12526}, {5178, 17781}, {5248, 7580}, {5259, 7411}, {5261, 30332}, {5265, 50444}, {5284, 35202}, {5342, 17860}, {5439, 5918}, {5446, 31728}, {5475, 31396}, {5506, 6894}, {5536, 10916}, {5542, 9668}, {5550, 50693}, {5603, 33703}, {5690, 15687}, {5721, 29223}, {5732, 38054}, {5735, 9799}, {5787, 31671}, {5805, 43182}, {5806, 5883}, {5840, 21635}, {5842, 6260}, {5847, 36990}, {5850, 36991}, {5882, 22791}, {5893, 40660}, {5902, 9961}, {5907, 31737}, {6000, 31732}, {6147, 31795}, {6173, 43181}, {6245, 37532}, {6253, 21077}, {6256, 49184}, {6564, 13912}, {6565, 13975}, {6700, 50700}, {6737, 11415}, {6836, 9843}, {6851, 26333}, {6871, 35258}, {6920, 7688}, {6960, 20104}, {6972, 20107}, {6986, 41853}, {6991, 41858}, {6996, 31191}, {6998, 48925}, {6999, 29571}, {7379, 39580}, {7380, 49631}, {7407, 9746}, {7968, 42272}, {7969, 42271}, {7982, 28236}, {8193, 11403}, {8583, 37435}, {8591, 50882}, {8720, 49554}, {8726, 43178}, {8727, 25639}, {8728, 38059}, {8983, 42258}, {9041, 51026}, {9583, 43408}, {9591, 14118}, {9613, 30305}, {9616, 31412}, {9619, 43619}, {9624, 49138}, {9626, 37925}, {9670, 10404}, {9671, 17728}, {9780, 50689}, {9800, 18391}, {9842, 31777}, {9899, 32064}, {10039, 18513}, {10176, 31793}, {10198, 37421}, {10222, 28186}, {10246, 49136}, {10265, 22938}, {10304, 30308}, {10441, 29353}, {10446, 35633}, {10588, 35445}, {10591, 15803}, {10595, 50811}, {10625, 31751}, {10724, 34789}, {10728, 14217}, {10884, 41860}, {10915, 41698}, {11001, 38021}, {11012, 21669}, {11108, 11495}, {11177, 50887}, {11220, 18398}, {11235, 34646}, {11236, 34639}, {11278, 28224}, {11496, 37411}, {11661, 11681}, {11813, 37468}, {12102, 18357}, {12103, 17502}, {12173, 49542}, {12245, 34641}, {12261, 34584}, {12435, 45829}, {12520, 30143}, {12545, 31964}, {12564, 14100}, {12579, 37443}, {12608, 33596}, {12610, 29050}, {12679, 36999}, {12723, 35650}, {12909, 16159}, {13624, 15704}, {13731, 41430}, {13883, 23251}, {13888, 43512}, {13902, 42413}, {13936, 23261}, {13942, 43511}, {13959, 42414}, {13971, 42259}, {14893, 50821}, {14927, 16475}, {15022, 19872}, {15030, 31752}, {15171, 21620}, {15177, 35502}, {15310, 15488}, {15338, 17605}, {15640, 34628}, {15680, 24541}, {15681, 50828}, {15683, 25055}, {15692, 50816}, {15694, 50807}, {15702, 50812}, {15717, 34595}, {15908, 37447}, {15931, 33557}, {16128, 48680}, {16143, 18444}, {16174, 38761}, {16616, 31788}, {17579, 41012}, {17690, 25881}, {17768, 24391}, {17800, 18493}, {18482, 38151}, {18525, 28234}, {18527, 24470}, {19130, 38118}, {19541, 25440}, {19861, 31295}, {19875, 50803}, {20117, 37585}, {20420, 21616}, {21062, 37398}, {21636, 23698}, {22615, 35774}, {22644, 35775}, {24309, 37415}, {26363, 37434}, {28168, 34773}, {28204, 33699}, {28538, 51022}, {28550, 49609}, {29012, 39870}, {29054, 49520}, {29181, 49511}, {30389, 49140}, {31398, 39590}, {31404, 31421}, {31415, 31422}, {31418, 31424}, {31806, 31937}, {31837, 44286}, {32049, 34739}, {32557, 38759}, {33709, 38693}, {35402, 50797}, {35434, 50798}, {37108, 38037}, {37423, 38150}, {37428, 38094}, {38035, 48905}, {38036, 43176}, {38049, 44882}, {38089, 50959}, {39586, 44431}, {42283, 49227}, {42284, 49226}, {42561, 49619}, {43223, 50694}, {43531, 48900}, {44980, 48357}, {48482, 49170}, {48899, 48921}, {48910, 49505}, {50736, 50836}

X(51118) = midpoint of X(i) and X(j) for these {i,j}: {1, 3146}, {4, 41869}, {8, 9589}, {355, 48661}, {382, 12699}, {962, 5691}, {3543, 50865}, {3656, 15684}, {5073, 18481}, {10724, 34789}, {10728, 14217}, {15640, 34628}, {15682, 31162}, {16128, 48680}, {44980, 48357}
X(51118) = reflection of X(i) in X(j) for these {i,j}: {3, 18483}, {10, 4}, {20, 1125}, {40, 19925}, {72, 31871}, {185, 31757}, {376, 50802}, {550, 9955}, {946, 22793}, {1385, 40273}, {3244, 4301}, {3543, 50869}, {3579, 546}, {3878, 9856}, {4067, 31803}, {4297, 946}, {4301, 12699}, {4669, 34648}, {5493, 10}, {5882, 22791}, {6361, 43174}, {7686, 31822}, {7957, 3678}, {7991, 3626}, {8591, 50882}, {9943, 5806}, {10265, 22938}, {10625, 31751}, {11177, 50887}, {11362, 18480}, {12512, 12571}, {12680, 3881}, {15681, 50828}, {15683, 50815}, {15704, 13624}, {18357, 12102}, {18480, 3853}, {18481, 13464}, {31673, 3627}, {31728, 5446}, {31730, 5}, {31737, 5907}, {31788, 16616}, {31806, 31937}, {33337, 1537}, {34632, 4745}, {34638, 2}, {34639, 11236}, {34646, 11235}, {34648, 3830}, {37585, 20117}, {38761, 16174}, {40660, 5893}, {43182, 5805}, {50796, 15687}, {50808, 381}, {50821, 14893}, {50862, 3543}
X(51118) = anticomplement of X(12512)
X(51118) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 3817, 19862}, {3, 18483, 3817}, {4, 40, 19925}, {4, 5657, 18492}, {4, 6361, 5587}, {5, 31730, 10164}, {20, 1699, 1125}, {40, 19925, 10}, {165, 3091, 3634}, {226, 6284, 4314}, {376, 50802, 19883}, {388, 9580, 12575}, {442, 7965, 12558}, {497, 4298, 21625}, {497, 9579, 4298}, {546, 3579, 10175}, {550, 9955, 10165}, {946, 4297, 551}, {950, 1836, 3671}, {962, 3543, 5691}, {1385, 22793, 40273}, {1385, 40273, 946}, {1479, 4292, 11019}, {1750, 12651, 3811}, {1770, 3583, 1210}, {1836, 12953, 950}, {2550, 18250, 10}, {3146, 9812, 1}, {3522, 9779, 3624}, {3523, 7988, 19878}, {3586, 4295, 6738}, {3830, 48661, 355}, {3832, 9778, 1698}, {4294, 9612, 13405}, {5587, 6361, 43174}, {5587, 43174, 10}, {5691, 50865, 962}, {5731, 11522, 3636}, {5806, 9943, 5883}, {5927, 7957, 3678}, {7354, 12053, 4315}, {9616, 31412, 49618}, {10106, 12701, 4342}, {10483, 30384, 4311}, {11362, 18480, 38155}, {12512, 12571, 2}, {12701, 12943, 10106}, {15171, 21620, 30331}, {15683, 25055, 50815}, {15704, 38034, 13624}, {50864, 50870, 50862}, {50864, 50874, 50870}, {50865, 50866, 50872}, {50865, 50869, 50862}, {50865, 50873, 50869}, {50865, 50874, 50864}, {50866, 50868, 50862}, {50866, 50872, 50868}, {50869, 50870, 50874}


X(51119) = X(3)X(50802)∩X(30)X(3636)

Barycentrics    46*a^4 + 15*a^3*b - 11*a^2*b^2 - 15*a*b^3 - 35*b^4 + 15*a^3*c - 30*a^2*b*c + 15*a*b^2*c - 11*a^2*c^2 + 15*a*b*c^2 + 70*b^2*c^2 - 15*a*c^3 - 35*c^4 : :
X(51119) = 3 X[3] - 5 X[50802], 6 X[3] - 5 X[50816], 3 X[4] - X[50814], 5 X[355] - 13 X[35402], 23 X[3845] - 15 X[38042], 19 X[3845] - 15 X[38140], 6 X[3845] - 5 X[50803], 9 X[3845] - 5 X[50821], 19 X[38042] - 23 X[38140], 18 X[38042] - 23 X[50803], 27 X[38042] - 23 X[50821], 18 X[38140] - 19 X[50803], 27 X[38140] - 19 X[50821], 3 X[50803] - 2 X[50821], 5 X[962] + 11 X[3543], 13 X[962] + 11 X[5691], 35 X[962] - 11 X[11531], 9 X[962] + 11 X[50862], 57 X[962] + 55 X[50863], 21 X[962] + 11 X[50864], 3 X[962] - 11 X[50865], 3 X[962] + 5 X[50866], 51 X[962] + 77 X[50867], 15 X[962] + 11 X[50868], 3 X[962] + 11 X[50869], 6 X[962] + 11 X[50870], 45 X[962] + 11 X[50871], 27 X[962] - 11 X[50872], 9 X[962] + 55 X[50873], 27 X[962] + 77 X[50874], 13 X[3543] - 5 X[5691], 7 X[3543] + X[11531], 9 X[3543] - 5 X[50862], 57 X[3543] - 25 X[50863], 21 X[3543] - 5 X[50864], 3 X[3543] + 5 X[50865], 33 X[3543] - 25 X[50866], 51 X[3543] - 35 X[50867], 3 X[3543] - X[50868], 3 X[3543] - 5 X[50869], 6 X[3543] - 5 X[50870], 9 X[3543] - X[50871], 27 X[3543] + 5 X[50872], 9 X[3543] - 25 X[50873], and many others

X(51119) lies on these lines: {3, 50802}, {4, 50814}, {30, 3636}, {355, 35402}, {516, 3845}, {519, 962}, {547, 12571}, {551, 5059}, {3533, 50813}, {3545, 3634}, {3576, 11001}, {3626, 50687}, {3627, 50830}, {3656, 28164}, {3817, 15719}, {3828, 3832}, {3830, 28228}, {3850, 28202}, {3853, 28194}, {4691, 12702}, {4746, 34648}, {5847, 51025}, {9955, 41982}, {11278, 50831}, {11539, 18483}, {11812, 28146}, {12101, 28232}, {12512, 15702}, {15682, 16200}, {15686, 22793}, {15687, 50827}, {15690, 28150}, {15708, 19878}, {17578, 34641}, {28182, 46332}, {28236, 33699}, {30392, 41150}, {31730, 50807}, {33703, 50811}, {34747, 50690}, {35400, 37624}, {35401, 48661}, {35434, 47745}, {38076, 50809}, {38155, 50810}, {38758, 50845}, {43174, 50799}

X(51119) = midpoint of X(50865) and X(50869)
X(51119) = reflection of X(i) in X(j) for these {i,j}: {4746, 34648}, {34638, 19878}, {50816, 50802}, {50870, 50869}
X(51119) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3543, 50871, 50862}, {50862, 50871, 50868}, {50862, 50873, 50869}, {50865, 50866, 962}, {50865, 50873, 50862}, {50865, 50874, 50872}, {50868, 50869, 3543}, {50872, 50873, 50874}, {50872, 50874, 50862}


X(51120) = X(3)X(551)∩X(30)X(3244)

Barycentrics    4*a^4 + 15*a^3*b + a^2*b^2 - 15*a*b^3 - 5*b^4 + 15*a^3*c - 30*a^2*b*c + 15*a*b^2*c + a^2*c^2 + 15*a*b*c^2 + 10*b^2*c^2 - 15*a*c^3 - 5*c^4 : :
X(51120) = 3 X[1] - 2 X[50815], 3 X[34638] - 4 X[50815], 4 X[3] - 5 X[551], 13 X[3] - 15 X[3653], 3 X[3] - 5 X[3656], 2 X[3] - 5 X[4301], 8 X[3] - 5 X[5493], 7 X[3] - 10 X[13464], 6 X[3] - 5 X[50808], 9 X[3] - 10 X[50828], 13 X[551] - 12 X[3653], 3 X[551] - 4 X[3656], 7 X[551] - 8 X[13464], 3 X[551] - 2 X[50808], 9 X[551] - 8 X[50828], 9 X[3653] - 13 X[3656], 6 X[3653] - 13 X[4301], 24 X[3653] - 13 X[5493], 21 X[3653] - 26 X[13464], 18 X[3653] - 13 X[50808], 27 X[3653] - 26 X[50828], 2 X[3656] - 3 X[4301], 8 X[3656] - 3 X[5493], 7 X[3656] - 6 X[13464], 3 X[3656] - 2 X[50828], 4 X[4301] - X[5493], 7 X[4301] - 4 X[13464], 3 X[4301] - X[50808], 9 X[4301] - 4 X[50828], 7 X[5493] - 16 X[13464], 3 X[5493] - 4 X[50808], 9 X[5493] - 16 X[50828], 12 X[13464] - 7 X[50808], 9 X[13464] - 7 X[50828], 3 X[50808] - 4 X[50828], 3 X[4] - 2 X[50801], 3 X[4] - X[50817], 3 X[34641] - 4 X[50801], 3 X[34641] - 2 X[50817], 5 X[10] - 6 X[3545], 3 X[10] - 4 X[50802], 3 X[10] - 2 X[50810], 3 X[3545] - 5 X[31162], 9 X[3545] - 10 X[50802], 9 X[3545] - 5 X[50810], 3 X[31162] - 2 X[50802], and many others

X(51120) lies on these lines: {1, 34638}, {2, 28228}, {3, 551}, {4, 34641}, {10, 3545}, {30, 3244}, {40, 15702}, {381, 38098}, {515, 50805}, {516, 7967}, {517, 3845}, {519, 962}, {547, 946}, {553, 4342}, {1125, 15708}, {1699, 4745}, {3146, 34747}, {3241, 5059}, {3524, 15808}, {3534, 28232}, {3576, 50813}, {3579, 41983}, {3625, 12699}, {3626, 3839}, {3632, 50687}, {3635, 34628}, {3636, 10304}, {3654, 3817}, {3679, 3832}, {3828, 5056}, {3830, 28234}, {3850, 11362}, {3860, 38176}, {4297, 15686}, {4677, 9812}, {5066, 38127}, {5067, 38021}, {5603, 15719}, {5846, 51025}, {5847, 51027}, {5882, 28202}, {6361, 50812}, {6684, 15723}, {7982, 33703}, {8703, 31662}, {9956, 50822}, {10164, 11812}, {10165, 19711}, {11224, 28158}, {11539, 19862}, {12512, 38314}, {12645, 35402}, {13607, 15681}, {15682, 28236}, {15687, 47745}, {15690, 28174}, {16239, 38068}, {18483, 34718}, {20070, 25055}, {24644, 50837}, {28208, 50831}, {29054, 51059}, {30392, 50816}, {31663, 50833}, {34631, 41869}, {34639, 34647}, {34640, 34646}, {35400, 48661}, {37727, 49133}, {38191, 50959}, {38758, 50841}

X(51120) = midpoint of X(i) and X(j) for these {i,j}: {3146, 34747}, {3241, 9589}, {3543, 11531}, {34631, 41869}, {50865, 50872}
X(51120) = reflection of X(i) in X(j) for these {i,j}: {10, 31162}, {551, 4301}, {3625, 34648}, {5493, 551}, {7991, 3828}, {15681, 13607}, {15686, 33179}, {34628, 3635}, {34632, 1125}, {34638, 1}, {34639, 34647}, {34641, 4}, {34646, 34640}, {34648, 12699}, {34718, 18483}, {47745, 15687}, {50808, 3656}, {50810, 50802}, {50817, 50801}, {50862, 50865}, {50864, 50869}, {50871, 50868}
X(51120) = anticomplement of X(50814)
X(51120) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 50817, 50801}, {962, 50872, 50865}, {3543, 50868, 50862}, {3543, 50871, 50868}, {3656, 50808, 551}, {4301, 50808, 3656}, {5691, 50865, 50873}, {5691, 50870, 50862}, {5691, 50873, 50870}, {11531, 50865, 50871}, {31162, 50810, 50802}, {50801, 50817, 34641}, {50802, 50810, 10}, {50864, 50865, 50869}, {50864, 50869, 50862}, {50865, 50871, 3543}


X(51121) = X(514)X(3158)∩X(519)X(42050)

Barycentrics    3 a^4-4 b (b-c)^2 c-a^3 (b+c)+a^2 (-7 b^2+2 b c-7 c^2)+a (5 b^3-b^2 c-b c^2+5 c^3) : :

See Angel Montesdeoca, euclid 5290 and HG140319.

X(51121) lies on these lines: {514,3158}, {519,42050}, {527,43161}, {812,20317}, {3160,21096}, {3576,46180}, {3756,25567}, {4859,4962}, {10563,17132}, {30813,43057}


X(51122) = X(2)X(2418)∩X(3)X(538)

Barycentrics    3 a^4-7 a^2 (b^2+c^2)+8 b^2 c^2 : :

See Angel Montesdeoca, euclid 5290 and HG140319.

X(51122) lies on these lines: {2,2418}, {3,538}, {69,8354}, {83,1975}, {99,1384}, {194,1003}, {381,9767}, {385,15655}, {524,3534}, {525,3167}, {543,3830}, {574,8556}, {698,5050}, {754,15681}, {1351,5969}, {1569,36784}, {1657,7758}, {2516,3633}, {2782,9764}, {3053,41748}, {3161,4009}, {3311,22623}, {3312,22594}, {3716,4962}, {3734,14535}, {3843,7764}, {3845,9770}, {3849,15685}, {3857,28915}, {3926,33184}, {3933,32986}, {4779,6553}, {5013,9466}, {5055,34505}, {5066,7620}, {5073,7759}, {5077,7788}, {5254,33240}, {5286,8368}, {5305,33191}, {5477,11173}, {5503,17503}, {5858,35696}, {5859,35692}, {5860,43257}, {5861,43256}, {6144,6781}, {6221,22716}, {6294,33381}, {6392,33216}, {6398,22718}, {6581,33380}, {7610,15701}, {7618,13468}, {7739,33237}, {7754,13586}, {7762,33193}, {7774,47287}, {7775,14269}, {7776,33017}, {7778,14148}, {7798,15301}, {7799,11318}, {7804,22246}, {7813,44526}, {7816,43136}, {7819,32824}, {7837,8591}, {7855,44519}, {7866,32820}, {8359,32836}, {9350,12625}, {9740,19708}, {9888,12188}, {9909,15652}, {11152,22498}, {11159,41624}, {11184,18546}, {11287,32833}, {11485,22687}, {11486,22689}, {11648,39785}, {14023,15696}, {14692,48662}, {14892,25683}, {15484,32815}, {15689,34504}, {15695,47101}, {15707,34506}, {16508,33894}, {17130,22332}, {20081,33273}, {22575,22665}, {22576,22666}, {23334,33699}, {36373,42115}, {36378,42116}

X(51122) = midpoint of X(i) and X(j) for these {i, j}: {194,32474}, {9741,11148}
X(51122) = reflection of X(i) in X(j) for these (i, j): {3,8716}, {381,34511}, {3830,9766}, {5485,12040}, {8716,7781}, {11165,9741}, {12188,9888}, {40727,11165}


X(51123) = X(2)X(2418)∩X(5)X(7781)

Barycentrics    4 a^4-9 a^2 (b^2+c^2)+b^4+6 b^2 c^2+c^4 : :

See Angel Montesdeoca, euclid 5290 and HG140319.

X(51123) lies on these lines: {2,2418}, {5,7781}, {30,8716}, {99,12156}, {141,14148}, {194,35297}, {524,3098}, {525,10190}, {538,549}, {543,3845}, {547,34505}, {548,7758}, {550,754}, {591,42215}, {599,8358}, {698,38110}, {1353,14645}, {1657,34547}, {1975,31406}, {1991,42216}, {2482,5306}, {2896,3933}, {3036,10005}, {3627,7764}, {3629,32456}, {3830,9770}, {3849,19710}, {3926,11287}, {4962,45337}, {5026,8584}, {5066,11184}, {5305,6337}, {5395,14033}, {5452,14548}, {5503,35705}, {5569,19711}, {5860,9541}, {5874,32419}, {5875,32421}, {6179,33227}, {6309,32516}, {6661,32474}, {7610,11812}, {7615,10109}, {7618,8667}, {7620,19709}, {7622,15713}, {7739,8368}, {7751,15712}, {7757,8369}, {7759,15704}, {7762,33265}, {7765,33186}, {7767,33008}, {7775,15687}, {7776,33272}, {7777,47287}, {7780,44682}, {7788,8354}, {7798,32459}, {7799,33184}, {7813,14929}, {7837,8598}, {7840,8353}, {7863,9607}, {7902,33212}, {7906,33264}, {8182,15759}, {8357,32821}, {8359,32833}, {8362,10159}, {8588,15480}, {9605,14039}, {9740,15698}, {11055,11149}, {11168,14711}, {11318,32837}, {11648,22110}, {13571,33250}, {14023,33923}, {14537,15300}, {14614,27088}, {15686,34504}, {15690,47102}, {15699,38231}, {15711,46893}, {21356,32896}, {22165,40344}, {26288,26294}, {26289,26295}, {31470,32957}, {32538,36523}, {32818,33210}, {32831,33285}, {33459,36768}, {36775,43228}

X(51123) = midpoint of X(i) and X(j) for these {i, j}: {8716,34511}, {9741,11165}, {11148,40727}
X(51123) = reflection of X(i) in X(j) for these (i, j): {8667,12100}, {12040,11165}, {15686,34504}, {15687,7775}, {16509,12040}, {34505,547}, {47102,15690}


X(51124) = X(2)X(50791)∩X(524)X(3416)

Barycentrics    8*a^3 + 14*a^2*b - 7*a*b^2 - b^3 + 14*a^2*c - b^2*c - 7*a*c^2 - b*c^2 - c^3 : :
X(51124) = 7 X[2] - 5 X[50791], 5 X[6] - 3 X[38314], 3 X[6] - X[50999], 3 X[6] - 2 X[51006], 9 X[38314] - 5 X[50999], 9 X[38314] - 10 X[51006], 3 X[141] - 2 X[51004], X[145] - 5 X[1992], 3 X[145] - 5 X[51000], 3 X[1992] - X[51000], 3 X[165] - 2 X[50970], 3 X[8584] - X[50998], 3 X[8584] - 2 X[51005], 5 X[8584] - 2 X[51071], 7 X[8584] - 2 X[51089], 5 X[50998] - 6 X[51071], 7 X[50998] - 6 X[51089], 5 X[51005] - 3 X[51071], 7 X[51005] - 3 X[51089], 7 X[51071] - 5 X[51089], 5 X[3416] - 7 X[3679], X[3416] - 7 X[3751], 3 X[3416] - 7 X[47359], 4 X[3416] - 7 X[49524], 6 X[3416] - 7 X[50949], 9 X[3416] - 7 X[50950], 9 X[3416] - 14 X[50951], 3 X[3416] + 7 X[50952], 3 X[3416] - 5 X[50953], X[3679] - 5 X[3751], 3 X[3679] - 5 X[47359], 4 X[3679] - 5 X[49524], 6 X[3679] - 5 X[50949], 9 X[3679] - 5 X[50950], 9 X[3679] - 10 X[50951], 3 X[3679] + 5 X[50952], 21 X[3679] - 25 X[50953], 3 X[3751] - X[47359], 4 X[3751] - X[49524], 6 X[3751] - X[50949], 9 X[3751] - X[50950], 9 X[3751] - 2 X[50951], 3 X[3751] + X[50952], 21 X[3751] - 5 X[50953], 4 X[47359] - 3 X[49524], 3 X[47359] - X[50950], 3 X[47359] - 2 X[50951], and many others

X(51124) lies on these lines: {1, 20583}, {2, 50791}, {6, 38314}, {141, 51004}, {145, 190}, {165, 50970}, {518, 3898}, {519, 3629}, {524, 3416}, {597, 1125}, {599, 9780}, {3242, 5032}, {3625, 28538}, {3631, 19875}, {3655, 12007}, {4715, 49630}, {4753, 34824}, {5587, 50958}, {5657, 50973}, {5790, 50961}, {5846, 15534}, {6329, 25055}, {7277, 49720}, {9053, 41149}, {11160, 38087}, {12035, 37684}, {17332, 48830}, {22165, 34379}, {26446, 50982}, {28333, 50282}, {28582, 49543}, {32455, 47356}, {38047, 50991}, {38112, 50985}, {38140, 47354}, {47358, 51110}, {48310, 49511}, {50112, 50283}, {50782, 51068}

X(51124) = midpoint of X(47359) and X(50952)
X(51124) = reflection of X(i) in X(j) for these {i,j}: {1, 20583}, {597, 4663}, {3655, 12007}, {47356, 32455}, {50112, 50283}, {50949, 47359}, {50950, 50951}, {50998, 51005}, {50999, 51006}
X(51124) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 50999, 51006}, {3416, 47359, 50953}, {3751, 50952, 47359}, {8584, 50998, 51005}, {47359, 50949, 49524}, {47359, 50950, 50951}, {50950, 50951, 50949}


X(51125) = X(2)X(50789)∩X(524)X(3416)

Barycentrics    7*a^3 - 8*a^2*b + 4*a*b^2 - 11*b^3 - 8*a^2*c - 11*b^2*c + 4*a*c^2 - 11*b*c^2 - 11*c^3 : :
X(51125) = 4 X[2] + X[50789], X[6] - 6 X[38098], 3 X[8] + 2 X[51003], 8 X[10] - 3 X[38023], 6 X[10] - X[51000], 9 X[38023] - 4 X[51000], 5 X[50784] - 4 X[50990], X[50784] + 4 X[51072], X[50990] + 5 X[51072], X[3416] + 4 X[3679], 11 X[3416] + 4 X[3751], 3 X[3416] + 2 X[47359], 7 X[3416] + 8 X[49524], 3 X[3416] - 8 X[50949], 9 X[3416] - 4 X[50950], 9 X[3416] + 16 X[50951], 21 X[3416] + 4 X[50952], 3 X[3416] + 4 X[50953], 11 X[3679] - X[3751], 6 X[3679] - X[47359], 7 X[3679] - 2 X[49524], 3 X[3679] + 2 X[50949], 9 X[3679] + X[50950], 9 X[3679] - 4 X[50951], 21 X[3679] - X[50952], 3 X[3679] - X[50953], 6 X[3751] - 11 X[47359], 7 X[3751] - 22 X[49524], 3 X[3751] + 22 X[50949], 9 X[3751] + 11 X[50950], 9 X[3751] - 44 X[50951], 21 X[3751] - 11 X[50952], 3 X[3751] - 11 X[50953], 7 X[47359] - 12 X[49524], X[47359] + 4 X[50949], 3 X[47359] + 2 X[50950], 3 X[47359] - 8 X[50951], 7 X[47359] - 2 X[50952], 3 X[49524] + 7 X[50949], 18 X[49524] + 7 X[50950], 9 X[49524] - 14 X[50951], 6 X[49524] - X[50952], 6 X[49524] - 7 X[50953], 6 X[50949] - X[50950], 3 X[50949] + 2 X[50951], and many others

X(51125) lies on these lines: {2, 50789}, {6, 38098}, {8, 48639}, {10, 38023}, {515, 50968}, {517, 50956}, {518, 50784}, {519, 3763}, {524, 3416}, {599, 3626}, {952, 50980}, {3617, 28538}, {3618, 47356}, {3620, 49688}, {3632, 20582}, {3654, 29012}, {3844, 31145}, {4141, 33074}, {4668, 9041}, {4669, 47358}, {4677, 50998}, {4691, 38087}, {4745, 38047}, {5657, 50975}, {5790, 50963}, {5846, 51066}, {5847, 51067}, {15534, 38191}, {19875, 49681}, {19883, 49679}, {20423, 38176}, {21358, 34641}, {28301, 49630}, {28313, 48829}, {34379, 50782}, {37712, 50965}, {38112, 50987}, {38127, 43273}, {38155, 51024}, {38210, 50997}, {38315, 51069}, {47353, 50827}, {50781, 50989}, {51001, 51068}

X(51125) = reflection of X(i) in X(j) for these {i,j}: {47356, 3618}, {47358, 50993}, {47359, 50953}, {50989, 50781}
X(51125) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3679, 50949, 47359}, {3679, 50950, 50951}, {4745, 50783, 38047}, {38191, 50786, 15534}, {47359, 50949, 3416}, {49524, 50952, 47359}, {50949, 50951, 50950}, {50950, 50951, 47359}


X(51126) = X(2)X(6)∩X(5)X(5092)

Barycentrics    4*a^2 + 3*b^2 + 3*c^2 : :
X(51126) = 9 X[2] + X[6], 21 X[2] - X[69], 6 X[2] - X[141], 39 X[2] + X[193], 4 X[2] + X[597], 11 X[2] - X[599], 19 X[2] + X[1992], 3 X[2] + 2 X[3589], 3 X[2] + X[3618], 27 X[2] - 7 X[3619], 9 X[2] - X[3620], 24 X[2] + X[3629], 36 X[2] - X[3630], 27 X[2] - 2 X[3631], 37 X[2] + 3 X[5032], 69 X[2] + X[6144], 21 X[2] + 4 X[6329], 14 X[2] + X[8584], 99 X[2] + X[11008], 41 X[2] - X[11160], 31 X[2] - X[15533], 29 X[2] + X[15534], 81 X[2] - X[20080], 7 X[2] - 2 X[20582], 23 X[2] + 2 X[20583], 23 X[2] - 3 X[21356], 13 X[2] - 3 X[21358], 16 X[2] - X[22165], 33 X[2] + 2 X[32455], 9 X[2] - 4 X[34573], 51 X[2] - X[40341], 43 X[2] + 2 X[41149], 49 X[2] - 4 X[41152], 37 X[2] + 8 X[41153], 7 X[2] + 3 X[47352], 3 X[2] + 7 X[47355], 2 X[2] + 3 X[48310], 19 X[2] - X[50989], 13 X[2] - X[50990], 17 X[2] - 2 X[50991], 61 X[2] - X[50992], 7 X[2] - X[50993], 67 X[2] - 7 X[50994], 7 X[6] + 3 X[69], 2 X[6] + 3 X[141], 13 X[6] - 3 X[193], 4 X[6] - 9 X[597], 11 X[6] + 9 X[599], 19 X[6] - 9 X[1992], X[6] - 6 X[3589], X[6] - 3 X[3618], 3 X[6] + 7 X[3619], 8 X[6] - 3 X[3629], 4 X[6] + X[3630], and many others

X(51126) lies on these lines: {2, 6}, {3, 43621}, {5, 5092}, {140, 3098}, {156, 182}, {187, 5103}, {206, 11548}, {239, 48636}, {344, 16674}, {373, 3313}, {427, 44091}, {441, 10979}, {468, 3867}, {511, 632}, {518, 19862}, {545, 17304}, {546, 17508}, {547, 3818}, {549, 19130}, {574, 7819}, {583, 29492}, {594, 4405}, {625, 38010}, {631, 29181}, {698, 7786}, {732, 31239}, {742, 31238}, {894, 48631}, {1030, 21540}, {1086, 7231}, {1100, 29596}, {1125, 49465}, {1350, 3525}, {1352, 5070}, {1386, 3634}, {1469, 7294}, {1495, 37439}, {1503, 1656}, {1691, 8363}, {1698, 5846}, {1843, 40670}, {2030, 5031}, {2177, 29663}, {2321, 50112}, {2345, 4395}, {2916, 13595}, {3008, 17385}, {3056, 5326}, {3090, 5085}, {3096, 43527}, {3230, 16818}, {3242, 5550}, {3247, 17045}, {3524, 48910}, {3526, 14561}, {3530, 48901}, {3533, 14853}, {3545, 48905}, {3564, 48154}, {3616, 9053}, {3624, 16496}, {3663, 28322}, {3703, 29684}, {3723, 17023}, {3731, 4422}, {3739, 31191}, {3758, 48632}, {3759, 29613}, {3821, 28546}, {3839, 50971}, {3844, 38049}, {3845, 48892}, {3850, 48898}, {3855, 33750}, {3858, 29323}, {3861, 48896}, {3932, 29646}, {3934, 32449}, {3943, 17358}, {3946, 17359}, {3973, 17306}, {4000, 7227}, {4026, 15485}, {4048, 43620}, {4085, 48810}, {4256, 17698}, {4265, 17531}, {4357, 15492}, {4364, 16814}, {4370, 17247}, {4399, 5222}, {4437, 29612}, {4472, 17278}, {4478, 29611}, {4665, 17117}, {4687, 9055}, {4698, 49481}, {4798, 5845}, {4852, 50097}, {4856, 50081}, {4859, 49733}, {4884, 26061}, {4969, 17228}, {4971, 17286}, {5008, 6292}, {5020, 31521}, {5024, 7789}, {5026, 6722}, {5033, 8361}, {5047, 5096}, {5054, 31670}, {5055, 46264}, {5056, 36990}, {5066, 48884}, {5067, 10516}, {5097, 41992}, {5124, 21516}, {5157, 22112}, {5159, 19126}, {5207, 14047}, {5210, 16043}, {5254, 7859}, {5257, 6687}, {5296, 25503}, {5318, 11290}, {5321, 11289}, {5439, 9021}, {5476, 10124}, {5585, 32990}, {5749, 7228}, {5750, 17356}, {5847, 31253}, {5888, 22336}, {5965, 40331}, {5969, 31274}, {5972, 25328}, {6247, 14786}, {6411, 11291}, {6412, 11292}, {6593, 6723}, {6666, 25498}, {6680, 41413}, {6683, 24256}, {6688, 9969}, {6694, 42124}, {6695, 42121}, {6697, 34774}, {6698, 25329}, {6748, 11331}, {7263, 16706}, {7277, 17227}, {7375, 23249}, {7376, 23259}, {7388, 42284}, {7389, 42283}, {7392, 41424}, {7405, 20300}, {7483, 33844}, {7486, 25406}, {7494, 31860}, {7495, 10545}, {7499, 34417}, {7716, 38282}, {7750, 16897}, {7782, 19702}, {7800, 21309}, {7808, 8364}, {7832, 9606}, {7834, 43291}, {7844, 8367}, {7854, 14075}, {7866, 31415}, {7913, 18424}, {7915, 31406}, {7943, 32992}, {8167, 12329}, {8289, 9478}, {8359, 8588}, {8368, 15482}, {8369, 8589}, {8550, 24206}, {8703, 25565}, {8705, 47452}, {9015, 31250}, {9024, 31235}, {9030, 31277}, {9607, 16896}, {9780, 38315}, {9822, 10219}, {10022, 24199}, {10160, 47609}, {10168, 15699}, {10192, 23300}, {10303, 31884}, {10304, 51029}, {10436, 40480}, {10541, 46936}, {10546, 13394}, {10645, 37341}, {10646, 37340}, {11178, 47599}, {11179, 50954}, {11284, 35707}, {11286, 43619}, {11287, 43618}, {11295, 42113}, {11296, 42112}, {11297, 42086}, {11298, 42085}, {11303, 42101}, {11304, 42102}, {11305, 42111}, {11306, 42114}, {11311, 18581}, {11312, 18582}, {11313, 42274}, {11314, 42277}, {11480, 37178}, {11481, 37177}, {11539, 21850}, {11574, 16776}, {11742, 32981}, {12100, 48880}, {13925, 42832}, {13993, 42833}, {14064, 18584}, {14067, 18906}, {14096, 35222}, {14767, 20204}, {14810, 14869}, {14861, 15105}, {14927, 15022}, {14928, 14971}, {15080, 37990}, {15585, 23327}, {15686, 48943}, {15687, 48891}, {15689, 50964}, {15702, 38072}, {15703, 18440}, {15705, 50972}, {15708, 51024}, {15709, 50966}, {15712, 29317}, {15713, 19924}, {15717, 48872}, {15720, 48873}, {15808, 38191}, {15826, 47279}, {16045, 43448}, {16239, 18583}, {16474, 19881}, {16475, 19872}, {16483, 19784}, {16484, 29633}, {16677, 17321}, {16808, 37351}, {16809, 37352}, {16842, 36741}, {16862, 36740}, {16884, 29579}, {17014, 17309}, {17229, 50114}, {17235, 50115}, {17246, 17354}, {17255, 26104}, {17263, 29614}, {17267, 26626}, {17268, 50113}, {17280, 17395}, {17284, 17390}, {17285, 17388}, {17291, 17365}, {17292, 17362}, {17302, 17340}, {17305, 17334}, {17324, 49742}, {17325, 26685}, {17338, 17400}, {17339, 17399}, {17341, 17397}, {17342, 17396}, {17348, 29604}, {17351, 49741}, {17355, 17382}, {17394, 29629}, {18538, 23312}, {18762, 23311}, {19127, 19137}, {19140, 40685}, {19875, 49681}, {19876, 38023}, {19883, 49529}, {20108, 50609}, {20190, 39884}, {21496, 36743}, {21519, 36744}, {21543, 37503}, {21747, 32781}, {23046, 50988}, {23324, 37347}, {23328, 37470}, {25055, 49688}, {25101, 41311}, {25326, 36950}, {25555, 48876}, {26235, 42554}, {28653, 29607}, {30745, 47453}, {31423, 38035}, {32459, 33237}, {33184, 43457}, {33923, 48904}, {34200, 48879}, {37338, 41328}, {37491, 37827}, {37911, 47449}, {38089, 49505}, {38314, 49690}, {39080, 40478}, {40425, 41884}, {42894, 50855}, {42895, 50858}, {43150, 50979}, {44456, 46219}, {44682, 48885}, {45339, 50780}, {47598, 50977}, {48815, 48866}, {48821, 49482}, {48845, 48863}, {48847, 48859}, {49684, 50949}

X(51126) = midpoint of X(i) and X(j) for these {i,j}: {6, 3620}, {1992, 50989}, {3618, 3763}, {7786, 40332}, {11179, 50954}, {30745, 47453}
X(51126) = reflection of X(i) in X(j) for these {i,j}: {141, 3763}, {3618, 3589}, {50987, 10168}, {50993, 20582}
X(51126) = complement of X(3763)
X(51126) = complement of the isogonal conjugate of X(39955)
X(51126) = complement of the isotomic conjugate of X(43527)
X(51126) = X(i)-complementary conjugate of X(j) for these (i,j): {7954, 4369}, {39955, 10}, {43527, 2887}
X(51126) = crosspoint of X(2) and X(43527)
X(51126) = crosssum of X(6) and X(7772)
X(51126) = barycentric product X(39676)*X(42554)
X(51126) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6, 34573}, {2, 3589, 141}, {2, 3618, 3763}, {2, 16987, 7792}, {2, 17352, 1213}, {2, 17381, 17245}, {2, 37650, 17327}, {2, 47352, 20582}, {2, 47355, 3589}, {2, 48310, 597}, {6, 141, 3630}, {6, 599, 11008}, {6, 3619, 3631}, {6, 3630, 3629}, {6, 3763, 3620}, {6, 11008, 32455}, {6, 34573, 141}, {69, 6329, 8584}, {69, 20582, 141}, {69, 47352, 6329}, {140, 5480, 21167}, {140, 38317, 5480}, {141, 597, 3629}, {141, 3589, 597}, {141, 3629, 22165}, {141, 8584, 69}, {141, 48310, 3589}, {182, 42786, 18358}, {549, 19130, 48881}, {590, 615, 9300}, {597, 3630, 6}, {3589, 6329, 47352}, {3589, 20582, 6329}, {3589, 34573, 6}, {3589, 47355, 48310}, {3618, 3620, 6}, {3619, 3631, 141}, {3628, 18358, 42786}, {3631, 34573, 3619}, {3759, 29613, 48635}, {5222, 17293, 4399}, {5749, 17290, 7228}, {5750, 17356, 34824}, {6329, 20582, 69}, {7889, 39784, 8362}, {8584, 47352, 597}, {10168, 15699, 47354}, {11488, 11489, 37665}, {14869, 38136, 14810}, {16706, 17369, 7263}, {17023, 17357, 17243}, {17279, 29598, 17045}, {17289, 17366, 4665}, {17289, 29630, 17366}, {17327, 37650, 49731}, {17353, 17384, 4364}, {17354, 17383, 17246}, {17358, 17380, 3943}, {17367, 17371, 594}, {17368, 17370, 1086}, {20582, 47352, 8584}, {23302, 23303, 3815}, {24206, 38110, 8550}, {32789, 32790, 3055}, {38049, 51073, 3844}, {39022, 39023, 50251}, {45871, 45872, 15491}


X(51127) = X(2)X(6)∩X(5)X(17508)

Barycentrics    6*a^2 + 5*b^2 + 5*c^2 : :
X(51127) = 15 X[2] + X[6], 33 X[2] - X[69], 9 X[2] - X[141], 63 X[2] + X[193], 7 X[2] + X[597], 17 X[2] - X[599], 31 X[2] + X[1992], 3 X[2] + X[3589], 27 X[2] + 5 X[3618], 39 X[2] - 7 X[3619], 69 X[2] - 5 X[3620], 39 X[2] + X[3629], 57 X[2] - X[3630], 21 X[2] - X[3631], 21 X[2] - 5 X[3763], 61 X[2] + 3 X[5032], 111 X[2] + X[6144], 9 X[2] + X[6329], 23 X[2] + X[8584], 159 X[2] + X[11008], 65 X[2] - X[11160], 49 X[2] - X[15533], 47 X[2] + X[15534], 129 X[2] - X[20080], 5 X[2] - X[20582], 19 X[2] + X[20583], 35 X[2] - 3 X[21356], 19 X[2] - 3 X[21358], 25 X[2] - X[22165], 27 X[2] + X[32455], 81 X[2] - X[40341], 35 X[2] + X[41149], 19 X[2] - X[41152], 8 X[2] + X[41153], 13 X[2] + 3 X[47352], 9 X[2] + 7 X[47355], 5 X[2] + 3 X[48310], 149 X[2] - 5 X[50989], 101 X[2] - 5 X[50990], 13 X[2] - X[50991], 97 X[2] - X[50992], 53 X[2] - 5 X[50993], 103 X[2] - 7 X[50994], 11 X[6] + 5 X[69], 3 X[6] + 5 X[141], 21 X[6] - 5 X[193], 7 X[6] - 15 X[597], 17 X[6] + 15 X[599], 31 X[6] - 15 X[1992], X[6] - 5 X[3589], 9 X[6] - 25 X[3618], 13 X[6] + 35 X[3619], 23 X[6] + 25 X[3620], and many others

X(51127) lies on these lines: {2, 6}, {5, 17508}, {140, 14810}, {468, 46026}, {511, 16239}, {518, 4547}, {546, 48891}, {547, 5092}, {548, 48943}, {549, 48880}, {576, 41992}, {594, 29630}, {625, 6704}, {631, 48910}, {632, 21850}, {698, 6683}, {1125, 9053}, {1350, 3533}, {1386, 51073}, {1503, 3628}, {1656, 46264}, {1698, 49681}, {3008, 28633}, {3090, 44882}, {3098, 11539}, {3416, 19872}, {3524, 50972}, {3525, 21167}, {3526, 5480}, {3545, 50971}, {3616, 49690}, {3624, 49524}, {3634, 5846}, {3793, 6292}, {3818, 15699}, {3844, 31253}, {3857, 48896}, {3859, 48942}, {3861, 33751}, {3867, 37453}, {3946, 28309}, {4265, 17535}, {4370, 17324}, {4371, 17293}, {4395, 17289}, {4399, 17367}, {4402, 4665}, {4422, 17384}, {4472, 17356}, {4478, 17292}, {4657, 16676}, {4687, 49533}, {4698, 9055}, {4859, 10022}, {5054, 48881}, {5055, 50960}, {5066, 48892}, {5067, 5085}, {5070, 18440}, {5071, 48905}, {5096, 17536}, {5206, 8362}, {5222, 48636}, {5349, 11289}, {5350, 11290}, {5749, 48631}, {5750, 40480}, {6030, 37990}, {6666, 25358}, {7222, 17290}, {7227, 16706}, {7228, 17368}, {7229, 7263}, {7238, 17291}, {7375, 23253}, {7376, 23263}, {7486, 36990}, {7499, 44106}, {7745, 7937}, {7762, 43527}, {7819, 32459}, {7852, 12815}, {7859, 47286}, {7889, 35007}, {8705, 9822}, {9019, 10219}, {9024, 25144}, {10168, 18358}, {10304, 51026}, {11540, 19924}, {11574, 40670}, {11812, 25565}, {12017, 47354}, {12100, 48895}, {12108, 29317}, {12811, 29323}, {12812, 48889}, {14561, 46219}, {14712, 16897}, {14869, 48901}, {15693, 43621}, {15694, 31670}, {15706, 50964}, {15709, 50965}, {15723, 33878}, {16491, 50949}, {16673, 17279}, {16854, 36741}, {16864, 36740}, {17023, 46845}, {17045, 17357}, {17243, 29598}, {17286, 50112}, {17304, 49726}, {17340, 17383}, {17355, 28297}, {17358, 17395}, {17362, 29613}, {17365, 48637}, {17366, 17371}, {17369, 17370}, {17385, 31191}, {17390, 29596}, {17504, 48879}, {18230, 25503}, {19862, 49529}, {19877, 38315}, {19883, 49465}, {21520, 36743}, {21527, 36744}, {23332, 31267}, {24206, 48154}, {24295, 28530}, {25055, 50951}, {25406, 46935}, {25498, 31285}, {29012, 35018}, {31239, 41622}, {31268, 41749}, {32154, 41593}, {33186, 42534}, {34595, 38047}, {37439, 44082}, {37517, 38079}, {39899, 50958}, {41985, 50664}, {42786, 48906}, {44682, 48904}, {48843, 48865}

X(51127) = midpoint of X(i) and X(j) for these {i,j}: {141, 6329}, {3589, 34573}, {3861, 33751}, {11812, 25565}, {20583, 41152}
X(51127) = complement of X(34573)
X(51127) = complement of the isogonal conjugate of X(34572)
X(51127) = isotomic conjugate of the isogonal conjugate of X(34571)
X(51127) = X(34572)-complementary conjugate of X(10)
X(51127) = crosssum of X(6) and X(5041)
X(51127) = barycentric product X(76)*X(34571)
X(51127) = barycentric quotient X(34571)/X(6)
X(51127) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3589, 34573}, {2, 47355, 141}, {2, 48310, 20582}, {6, 3763, 21356}, {6, 11160, 3629}, {6, 48310, 3589}, {141, 193, 3631}, {141, 597, 193}, {141, 3589, 6329}, {141, 3618, 32455}, {141, 47355, 3589}, {193, 3763, 141}, {597, 3763, 3631}, {597, 21356, 41149}, {3589, 3631, 597}, {3589, 20582, 6}, {3589, 32455, 3618}, {3618, 32455, 6329}, {3619, 3629, 50991}, {3619, 47352, 3629}, {6329, 34573, 141}, {20582, 41149, 21356}, {20583, 21358, 41152}, {39022, 39023, 50248}


X(51128) = X(2)X(6)∩X(5)X(14810)

Barycentrics    4*a^2 + 5*b^2 + 5*c^2 : :
X(51128) = 15 X[2] - X[6], 27 X[2] + X[69], 6 X[2] + X[141], 57 X[2] - X[193], 8 X[2] - X[597], 13 X[2] + X[599], 29 X[2] - X[1992], 9 X[2] - 2 X[3589], 33 X[2] - 5 X[3618], 3 X[2] + X[3619], 51 X[2] + 5 X[3620], 36 X[2] - X[3629], 48 X[2] + X[3630], 33 X[2] + 2 X[3631], 9 X[2] + 5 X[3763], 59 X[2] - 3 X[5032], 99 X[2] - X[6144], 39 X[2] - 4 X[6329], 22 X[2] - X[8584], 141 X[2] - X[11008], 55 X[2] + X[11160], 41 X[2] + X[15533], 43 X[2] - X[15534], 111 X[2] + X[20080], 5 X[2] + 2 X[20582], 37 X[2] - 2 X[20583], 25 X[2] + 3 X[21356], 11 X[2] + 3 X[21358], 20 X[2] + X[22165], 51 X[2] - 2 X[32455], 3 X[2] + 4 X[34573], 69 X[2] + X[40341], 65 X[2] - 2 X[41149], 59 X[2] + 4 X[41152], 71 X[2] - 8 X[41153], 17 X[2] - 3 X[47352], 10 X[2] - 3 X[48310], 121 X[2] + 5 X[50989], 79 X[2] + 5 X[50990], 19 X[2] + 2 X[50991], 83 X[2] + X[50992], 37 X[2] + 5 X[50993], 11 X[2] + X[50994], 9 X[6] + 5 X[69], 2 X[6] + 5 X[141], 19 X[6] - 5 X[193], 8 X[6] - 15 X[597], 13 X[6] + 15 X[599], 29 X[6] - 15 X[1992], 3 X[6] - 10 X[3589], 11 X[6] - 25 X[3618], X[6] + 5 X[3619], 17 X[6] + 25 X[3620], and many others

X(51128) lies on these lines: {2, 6}, {5, 14810}, {30, 42786}, {140, 3818}, {182, 16239}, {206, 16187}, {518, 51073}, {546, 48879}, {547, 3098}, {549, 48892}, {575, 41992}, {594, 17370}, {631, 48905}, {632, 20190}, {1086, 17371}, {1350, 5067}, {1352, 46219}, {1386, 19878}, {1503, 3526}, {1531, 7399}, {1656, 31670}, {1698, 49688}, {2916, 7496}, {3090, 29181}, {3242, 19877}, {3313, 40670}, {3416, 34595}, {3524, 50976}, {3525, 10516}, {3533, 5085}, {3545, 50969}, {3616, 49679}, {3624, 5846}, {3628, 5480}, {3634, 49524}, {3828, 49465}, {3844, 19862}, {3858, 48885}, {3912, 46845}, {3932, 25539}, {3933, 39784}, {3943, 17383}, {3946, 50097}, {4265, 17536}, {4364, 17357}, {4370, 17249}, {4395, 17293}, {4399, 29611}, {4405, 5564}, {4422, 17306}, {4472, 17282}, {4478, 5222}, {4657, 16673}, {4665, 16706}, {4751, 9055}, {4969, 48634}, {5031, 33185}, {5054, 50957}, {5055, 50964}, {5056, 31884}, {5066, 48880}, {5068, 48872}, {5071, 48910}, {5079, 48873}, {5092, 11539}, {5096, 17535}, {5103, 31275}, {5159, 47451}, {5206, 7819}, {5349, 11290}, {5350, 11289}, {5749, 7238}, {6030, 15321}, {6292, 35007}, {6390, 7822}, {6683, 32449}, {6697, 10192}, {6723, 25328}, {7227, 17290}, {7231, 7321}, {7263, 17289}, {7277, 48633}, {7375, 23263}, {7376, 23253}, {7499, 44082}, {7750, 16896}, {7786, 41747}, {7807, 31268}, {7815, 42421}, {7820, 8362}, {7821, 41623}, {7844, 8364}, {8550, 43150}, {9041, 19876}, {9053, 9780}, {9607, 46226}, {10007, 12815}, {10124, 18358}, {10303, 36990}, {10304, 50960}, {11178, 47598}, {12017, 15723}, {12100, 48884}, {12108, 48898}, {12272, 44323}, {12811, 48904}, {14869, 29012}, {14928, 31274}, {15082, 16776}, {15694, 46264}, {15699, 19130}, {15707, 50956}, {15708, 50971}, {15712, 48889}, {15713, 25561}, {15826, 47278}, {16676, 17279}, {16854, 36740}, {16864, 36741}, {17045, 17284}, {17229, 50112}, {17235, 49726}, {17239, 31191}, {17243, 17384}, {17246, 17358}, {17262, 26104}, {17285, 17395}, {17303, 40480}, {17305, 17340}, {17355, 49741}, {17356, 29604}, {17362, 29630}, {17367, 48635}, {17368, 48632}, {17385, 34824}, {17388, 29587}, {17390, 29598}, {17400, 29629}, {17504, 48891}, {18440, 50983}, {19121, 37283}, {19137, 32217}, {19709, 43621}, {19872, 38047}, {19875, 50998}, {19883, 50949}, {20987, 40916}, {21520, 36744}, {21527, 36743}, {21637, 32154}, {23046, 48943}, {23324, 35228}, {24256, 33186}, {25326, 40478}, {25498, 50013}, {29323, 44682}, {30745, 32218}, {31521, 40920}, {35018, 48901}, {37439, 44106}, {37517, 41985}, {38317, 48154}, {40802, 46223}, {47599, 50977}, {48815, 48836}, {48843, 48859}, {50687, 50972}

X(51128) = midpoint of X(3619) and X(47355)
X(51128) = reflection of X(141) in X(3619)
X(51128) = complement of X(47355)
X(51128) = isotomic conjugate of the isogonal conjugate of X(41940)
X(51128) = barycentric product X(76)*X(41940)
X(51128) = barycentric quotient X(41940)/X(6)
X(51128) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3619, 47355}, {2, 3763, 3589}, {2, 16988, 7792}, {2, 17265, 6707}, {2, 17283, 17398}, {2, 17307, 17337}, {2, 20582, 48310}, {2, 34573, 141}, {6, 141, 22165}, {6, 20582, 141}, {141, 597, 3630}, {141, 3589, 3629}, {141, 8584, 3631}, {141, 48310, 6}, {302, 303, 37671}, {3589, 3629, 597}, {3589, 3763, 141}, {3589, 34573, 3763}, {3618, 3619, 50994}, {3618, 3631, 8584}, {3618, 11160, 6}, {3618, 21358, 3631}, {3620, 47352, 32455}, {3631, 21358, 141}, {3763, 6144, 21358}, {6144, 8584, 3629}, {6329, 41149, 6}, {17291, 17369, 48631}, {17292, 17366, 48636}, {17366, 48636, 4405}, {17369, 48631, 7231}, {17370, 29613, 594}, {17384, 29596, 17243}, {20582, 48310, 22165}, {22165, 48310, 597}


X(51129) = X(2)X(50968)∩X(381)X(524)

Barycentrics    8*a^6 + 25*a^4*b^2 - 14*a^2*b^4 - 19*b^6 + 25*a^4*c^2 + 60*a^2*b^2*c^2 + 19*b^4*c^2 - 14*a^2*c^4 + 19*b^2*c^4 - 19*c^6 : :
X(51129) = 3 X[2] + X[51029], 3 X[3] + 2 X[51026], 3 X[4] + X[50975], 3 X[4] + 2 X[50983], 6 X[5] - X[50965], 3 X[5] - X[50980], X[141] - 6 X[38071], 19 X[381] + X[1351], 11 X[381] - X[1352], 4 X[381] + X[5480], 41 X[381] - X[11898], 9 X[381] + X[20423], 6 X[381] - X[47354], 9 X[381] - X[50954], 21 X[381] - X[50955], 3 X[381] - X[50956], 27 X[381] - 7 X[50957], 27 X[381] - 2 X[50958], 3 X[381] + 2 X[50959], 9 X[381] - 4 X[50960], 51 X[381] - X[50961], 39 X[381] + X[50962], 3 X[381] + X[50963], 3 X[381] + 7 X[50964], 11 X[1351] + 19 X[1352], 4 X[1351] - 19 X[5480], 41 X[1351] + 19 X[11898], 9 X[1351] - 19 X[20423], 6 X[1351] + 19 X[47354], 9 X[1351] + 19 X[50954], 21 X[1351] + 19 X[50955], 3 X[1351] + 19 X[50956], 27 X[1351] + 133 X[50957], 27 X[1351] + 38 X[50958], 3 X[1351] - 38 X[50959], 9 X[1351] + 76 X[50960], 51 X[1351] + 19 X[50961], 39 X[1351] - 19 X[50962], 3 X[1351] - 19 X[50963], 3 X[1351] - 133 X[50964], 4 X[1352] + 11 X[5480], 41 X[1352] - 11 X[11898], 9 X[1352] + 11 X[20423], 6 X[1352] - 11 X[47354], 9 X[1352] - 11 X[50954], 21 X[1352] - 11 X[50955], and many others

X(51129) lies on these lines: {2, 50968}, {3, 51026}, {4, 50975}, {5, 50965}, {141, 38071}, {381, 524}, {518, 51074}, {542, 3858}, {546, 597}, {549, 48920}, {599, 3855}, {1503, 41099}, {1699, 50953}, {3098, 14892}, {3146, 50976}, {3545, 3763}, {3589, 14269}, {3618, 3839}, {3620, 50982}, {3627, 25565}, {3830, 50971}, {3832, 8550}, {3845, 29012}, {3851, 20582}, {3854, 50973}, {3857, 25561}, {3860, 5476}, {5054, 50972}, {5055, 48881}, {5066, 50977}, {5846, 50799}, {7394, 35266}, {8584, 38136}, {9053, 50806}, {10109, 21167}, {10124, 48904}, {10516, 50990}, {11179, 51025}, {11737, 48901}, {12101, 38317}, {14853, 51027}, {14893, 44882}, {15687, 48310}, {15699, 48895}, {19130, 23046}, {19709, 29181}, {31670, 50970}, {33699, 50988}, {38034, 50998}, {38140, 50949}, {41106, 50967}, {47599, 48880}

X(51129) = midpoint of X(i) and X(j) for these {i,j}: {20423, 50954}, {50956, 50963}, {50966, 51024}, {50968, 51029}
X(51129) = reflection of X(i) in X(j) for these {i,j}: {47354, 50956}, {50963, 50959}, {50965, 50980}, {50975, 50983}
X(51129) = complement of X(50968)
X(51129) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 51029, 50968}, {381, 20423, 50960}, {381, 50959, 47354}, {381, 50963, 50956}, {381, 50964, 50959}, {3763, 51024, 50966}, {20423, 50956, 50954}, {20423, 50957, 50958}, {20423, 50960, 47354}, {47354, 50959, 5480}, {50954, 50963, 20423}, {50957, 50958, 47354}, {50958, 50960, 50957}, {50959, 50960, 20423}


X(51130) = X(2)X(50970)∩X(381)X(524)

Barycentrics    2*a^6 - 41*a^4*b^2 + 28*a^2*b^4 + 11*b^6 - 41*a^4*c^2 - 48*a^2*b^2*c^2 - 11*b^4*c^2 + 28*a^2*c^4 - 11*b^2*c^4 + 11*c^6 : :
X(51130) = 3 X[4] - X[51025], 3 X[20583] + X[51025], 3 X[5] - X[50982], 5 X[6] + 3 X[50687], 3 X[6] + X[51022], 9 X[50687] - 5 X[51022], X[20] - 5 X[597], 11 X[20] - 35 X[10541], 3 X[20] - 5 X[50971], 3 X[20] + 5 X[51024], 11 X[597] - 7 X[10541], 3 X[597] - X[50971], 3 X[597] + X[51024], 21 X[10541] - 11 X[50971], 21 X[10541] + 11 X[51024], 11 X[6329] - 8 X[50664], 6 X[140] - 5 X[50984], 3 X[141] + X[51028], 5 X[182] - X[44903], 11 X[381] + 5 X[1351], 13 X[381] - 5 X[1352], X[381] - 5 X[5480], 37 X[381] - 5 X[11898], 3 X[381] + 5 X[20423], 9 X[381] - 5 X[47354], 57 X[381] - 25 X[50954], 21 X[381] - 5 X[50955], 33 X[381] - 25 X[50956], 51 X[381] - 35 X[50957], 3 X[381] - X[50958], 3 X[381] - 5 X[50959], 6 X[381] - 5 X[50960], 9 X[381] - X[50961], 27 X[381] + 5 X[50962], 9 X[381] - 25 X[50963], 27 X[381] - 35 X[50964], 13 X[1351] + 11 X[1352], X[1351] + 11 X[5480], 37 X[1351] + 11 X[11898], 3 X[1351] - 11 X[20423], 9 X[1351] + 11 X[47354], 57 X[1351] + 55 X[50954], 21 X[1351] + 11 X[50955], 3 X[1351] + 5 X[50956], 51 X[1351] + 77 X[50957], 15 X[1351] + 11 X[50958], and many others

X(51130) lies on these lines: {2, 50970}, {4, 20583}, {5, 50982}, {6, 43507}, {20, 597}, {30, 6329}, {140, 50984}, {141, 51028}, {182, 44903}, {381, 524}, {511, 10109}, {518, 51075}, {542, 3861}, {599, 5068}, {1503, 12101}, {1992, 50689}, {3090, 20582}, {3524, 3589}, {3545, 3631}, {3627, 22234}, {3629, 3839}, {3818, 50986}, {3860, 5965}, {5073, 14848}, {5097, 14893}, {5102, 41099}, {5476, 8703}, {5846, 50801}, {7000, 13664}, {7374, 13784}, {7610, 14484}, {8584, 51023}, {9053, 51077}, {12007, 15687}, {14561, 15701}, {14853, 15682}, {14891, 19924}, {14892, 19130}, {15685, 41153}, {15689, 31670}, {15691, 18583}, {15699, 21850}, {15721, 48310}, {21167, 50966}, {21735, 50968}, {32455, 50974}, {33699, 39561}, {37517, 38071}, {38079, 44682}, {38136, 41152}, {38317, 50980}, {41149, 47353}, {45762, 48889}, {48910, 50975}

X(51130) = midpoint of X(i) and X(j) for these {i,j}: {4, 20583}, {5097, 14893}, {12007, 15687}, {20423, 50959}, {41149, 47353}, {43273, 51026}, {50971, 51024}
X(51130) = reflection of X(i) in X(j) for these {i,j}: {50960, 50959}, {50972, 50983}
X(51130) = complement of X(50970)
X(51130) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {381, 50961, 47354}, {597, 51024, 50971}, {5480, 20423, 50959}, {5480, 47354, 50963}, {20423, 50956, 1351}, {20423, 50963, 47354}, {20423, 50964, 50962}, {47354, 50961, 50958}, {47354, 50963, 50959}, {50958, 50959, 381}, {50962, 50963, 50964}, {50962, 50964, 47354}


X(51131) = X(2)X(50972)∩X(381)X(524)

Barycentrics    14*a^6 + 37*a^4*b^2 - 20*a^2*b^4 - 31*b^6 + 37*a^4*c^2 + 96*a^2*b^2*c^2 + 31*b^4*c^2 - 20*a^2*c^4 + 31*b^2*c^4 - 31*c^6 : :
X(51131) = 3 X[2] + X[51026], 3 X[4] + X[50971], 3 X[5] - X[50984], 31 X[381] + X[1351], 17 X[381] - X[1352], 7 X[381] + X[5480], 65 X[381] - X[11898], 15 X[381] + X[20423], 9 X[381] - X[47354], 69 X[381] - 5 X[50954], 33 X[381] - X[50955], 21 X[381] - 5 X[50956], 39 X[381] - 7 X[50957], 21 X[381] - X[50958], 3 X[381] + X[50959], 3 X[381] - X[50960], 81 X[381] - X[50961], 63 X[381] + X[50962], 27 X[381] + 5 X[50963], 9 X[381] + 7 X[50964], 17 X[1351] + 31 X[1352], 7 X[1351] - 31 X[5480], 65 X[1351] + 31 X[11898], 15 X[1351] - 31 X[20423], 9 X[1351] + 31 X[47354], 69 X[1351] + 155 X[50954], 33 X[1351] + 31 X[50955], 21 X[1351] + 155 X[50956], 39 X[1351] + 217 X[50957], 21 X[1351] + 31 X[50958], 3 X[1351] - 31 X[50959], 3 X[1351] + 31 X[50960], 81 X[1351] + 31 X[50961], 63 X[1351] - 31 X[50962], 27 X[1351] - 155 X[50963], 9 X[1351] - 217 X[50964], 7 X[1352] + 17 X[5480], 65 X[1352] - 17 X[11898], 15 X[1352] + 17 X[20423], 9 X[1352] - 17 X[47354], 69 X[1352] - 85 X[50954], 33 X[1352] - 17 X[50955], 21 X[1352] - 85 X[50956], 39 X[1352] - 119 X[50957], and many others

X(51131) lies on these lines: {2, 50972}, {4, 50971}, {5, 50984}, {381, 524}, {518, 51076}, {542, 3856}, {547, 48885}, {597, 3832}, {599, 3854}, {1503, 3860}, {1699, 50951}, {3090, 50968}, {3091, 20582}, {3545, 34573}, {3589, 3839}, {3631, 51028}, {3845, 38317}, {3855, 50967}, {3857, 50982}, {3858, 50979}, {3859, 25561}, {3861, 25565}, {5066, 29181}, {5846, 50803}, {6329, 39874}, {9041, 12571}, {9053, 50802}, {9779, 50998}, {10168, 41987}, {10516, 41152}, {10519, 41106}, {14892, 48895}, {14893, 48942}, {23046, 48906}, {32455, 51027}, {38071, 50977}, {41099, 43273}

X(51131) = midpoint of X(i) and X(j) for these {i,j}: {3861, 25565}, {50959, 50960}, {50972, 51026}
X(51131) = complement of X(50972)
X(51131) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 51026, 50972}, {381, 50959, 50960}, {381, 50964, 47354}, {5480, 47354, 50962}, {5480, 50956, 50958}, {47354, 50962, 50958}, {47354, 50964, 50959}, {50956, 50962, 47354}, {50958, 50959, 5480}


X(51132) = X(2)X(5102)∩X(381)X(524)

Barycentrics    8*a^6 - 29*a^4*b^2 + 22*a^2*b^4 - b^6 - 29*a^4*c^2 - 12*a^2*b^2*c^2 + b^4*c^2 + 22*a^2*c^4 + b^2*c^4 - c^6 : :
X(51132) = X[2] - 3 X[5102], 9 X[5102] - X[50973], 9 X[5102] - 2 X[50982], 3 X[3] - 2 X[50970], 3 X[20583] - X[50970], 3 X[4] - X[51027], 3 X[5] - X[50985], 5 X[6] - 3 X[3524], 3 X[6] - X[50967], 3 X[6] - 2 X[50983], 9 X[3524] - 5 X[50967], 9 X[3524] - 10 X[50983], X[20] - 5 X[1992], 2 X[20] - 5 X[8550], X[20] + 5 X[11477], 3 X[20] - 5 X[43273], 3 X[20] + 5 X[51028], 3 X[1992] - X[43273], 3 X[1992] + X[51028], X[8550] + 2 X[11477], 3 X[8550] - 2 X[43273], 3 X[8550] + 2 X[51028], 3 X[11477] + X[43273], 3 X[11477] - X[51028], X[3629] + 2 X[37517], 2 X[140] - 5 X[576], 4 X[140] - 5 X[597], 6 X[140] - 5 X[50977], 3 X[576] - X[50977], 3 X[597] - 2 X[50977], 5 X[141] - 6 X[15699], 3 X[141] - 2 X[50978], 9 X[15699] - 5 X[50978], 5 X[182] - 4 X[14891], 5 X[193] + 3 X[50687], 3 X[193] + X[51023], 9 X[50687] - 5 X[51023], X[381] - 5 X[1351], 7 X[381] - 5 X[1352], 4 X[381] - 5 X[5480], 13 X[381] - 5 X[11898], 3 X[381] - 5 X[20423], 6 X[381] - 5 X[47354], 33 X[381] - 25 X[50954], 9 X[381] - 5 X[50955], 27 X[381] - 25 X[50956], 39 X[381] - 35 X[50957], and many others

X(51132) lies on these lines: {2, 5102}, {3, 20583}, {4, 51027}, {5, 50985}, {6, 3524}, {20, 1992}, {30, 3629}, {140, 576}, {141, 15699}, {182, 14891}, {193, 50687}, {323, 20192}, {376, 12007}, {381, 524}, {511, 8584}, {518, 51077}, {542, 3627}, {549, 5097}, {575, 44682}, {599, 3090}, {1350, 5032}, {1353, 19924}, {1503, 15534}, {1993, 35266}, {3545, 40341}, {3564, 12101}, {3630, 11178}, {3631, 5055}, {3818, 41987}, {3830, 51025}, {3839, 11008}, {3845, 5965}, {5050, 15716}, {5054, 6329}, {5068, 11160}, {5070, 14848}, {5093, 15701}, {5107, 5355}, {5111, 5306}, {5476, 10109}, {5648, 41585}, {5846, 50804}, {5847, 50801}, {6144, 11180}, {10168, 50980}, {10516, 50992}, {11173, 20194}, {11179, 15689}, {11482, 38064}, {11694, 34155}, {12100, 39561}, {12811, 34507}, {13340, 44323}, {13567, 13857}, {14561, 50991}, {14853, 15533}, {14912, 50975}, {15069, 50689}, {15520, 21167}, {15685, 29181}, {15691, 44882}, {17504, 50664}, {21735, 50966}, {21969, 34750}, {22330, 50988}, {25406, 50976}, {28538, 47745}, {31670, 51026}, {34379, 51075}, {38071, 43150}, {38079, 40107}, {38110, 50981}, {38136, 41990}, {38176, 50949}, {48310, 48876}, {50690, 51029}

X(51132) = midpoint of X(i) and X(j) for these {i,j}: {1992, 11477}, {6144, 11180}, {11179, 44456}, {20423, 50962}, {43273, 51028}, {50974, 51024}
X(51132) = reflection of X(i) in X(j) for these {i,j}: {3, 20583}, {376, 12007}, {549, 5097}, {597, 576}, {3630, 11178}, {8550, 1992}, {11179, 32455}, {13340, 44323}, {21167, 15520}, {22165, 5476}, {47354, 20423}, {48881, 11179}, {50955, 50959}, {50961, 50958}, {50965, 50979}, {50967, 50983}, {50973, 50982}
X(51132) = complement of X(50973)
X(51132) = anticomplement of X(50982)
X(51132) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 50973, 50982}, {6, 50967, 50983}, {381, 50958, 47354}, {381, 50961, 50958}, {1351, 50962, 20423}, {1352, 20423, 50963}, {1352, 50960, 47354}, {1352, 50963, 50960}, {1992, 51028, 43273}, {8584, 50965, 50979}, {11178, 42785, 14892}, {11477, 43273, 51028}, {15534, 51024, 50974}, {20423, 47354, 5480}, {20423, 50955, 50959}, {20423, 50961, 381}, {32455, 44456, 48881}, {50955, 50959, 47354}


X(51133) = X(2)X(50976)∩X(381)X(524)

Barycentrics    16*a^6 + 23*a^4*b^2 - 10*a^2*b^4 - 29*b^6 + 23*a^4*c^2 + 84*a^2*b^2*c^2 + 29*b^4*c^2 - 10*a^2*c^4 + 29*b^2*c^4 - 29*c^6 : :
X(51133) = 3 X[4] + X[50969], 3 X[5] - X[50988], 6 X[5] + X[51022], 2 X[50988] + X[51022], X[141] + 6 X[23046], 29 X[381] - X[1351], 13 X[381] + X[1352], 8 X[381] - X[5480], 55 X[381] + X[11898], 15 X[381] - X[20423], 6 X[381] + X[47354], 51 X[381] + 5 X[50954], 27 X[381] + X[50955], 9 X[381] + 5 X[50956], 3 X[381] + X[50957], 33 X[381] + 2 X[50958], 9 X[381] - 2 X[50959], 3 X[381] + 4 X[50960], 69 X[381] + X[50961], 57 X[381] - X[50962], 33 X[381] - 5 X[50963], 3 X[381] - X[50964], 13 X[1351] + 29 X[1352], 8 X[1351] - 29 X[5480], 55 X[1351] + 29 X[11898], 15 X[1351] - 29 X[20423], 6 X[1351] + 29 X[47354], 51 X[1351] + 145 X[50954], 27 X[1351] + 29 X[50955], 9 X[1351] + 145 X[50956], 3 X[1351] + 29 X[50957], 33 X[1351] + 58 X[50958], 9 X[1351] - 58 X[50959], 3 X[1351] + 116 X[50960], 69 X[1351] + 29 X[50961], 57 X[1351] - 29 X[50962], 33 X[1351] - 145 X[50963], 3 X[1351] - 29 X[50964], 8 X[1352] + 13 X[5480], 55 X[1352] - 13 X[11898], 15 X[1352] + 13 X[20423], 6 X[1352] - 13 X[47354], 51 X[1352] - 65 X[50954], 27 X[1352] - 13 X[50955], 9 X[1352] - 65 X[50956], and many others

X(51133) lies on these lines: {2, 50976}, {4, 50969}, {5, 50988}, {30, 42786}, {141, 23046}, {381, 524}, {382, 50972}, {518, 51078}, {542, 3857}, {546, 50977}, {549, 48942}, {597, 3850}, {1503, 41106}, {3091, 43273}, {3098, 41987}, {3545, 47355}, {3619, 3839}, {3830, 50984}, {3843, 20582}, {3845, 29317}, {3854, 38072}, {3855, 8550}, {3858, 25561}, {5055, 50971}, {5066, 38317}, {5846, 50807}, {9053, 50800}, {10516, 50982}, {10519, 41099}, {11737, 44882}, {12101, 21167}, {14269, 48881}, {15687, 48885}, {18553, 50986}, {25565, 50987}, {34573, 38335}, {38071, 48906}, {47478, 48884}, {48310, 48889}, {50687, 50968}, {50689, 51029}

X(51133) = midpoint of X(50957) and X(50964)
X(51133) = reflection of X(i) in X(j) for these {i,j}: {47354, 50957}, {50965, 50981}
X(51133) = complement of X(50976)
X(51133) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {381, 50956, 50959}, {381, 50957, 50964}, {381, 50960, 47354}, {11898, 50963, 20423}, {50956, 50959, 47354}, {50959, 50960, 50956}


X(51134) = X(376)X(524)∩X(550)X(597)

Barycentrics    52*a^6 + 5*a^4*b^2 - 46*a^2*b^4 - 11*b^6 + 5*a^4*c^2 - 60*a^2*b^2*c^2 + 11*b^4*c^2 - 46*a^2*c^4 + 11*b^2*c^4 - 11*c^6 : :
X(51134) = 3 X[3] - X[50956], 6 X[3] - X[51022], 3 X[20] + 2 X[50959], 3 X[20] + X[51029], X[141] - 6 X[15688], 3 X[141] - 2 X[50954], 9 X[15688] - X[50954], 11 X[376] - X[1350], 19 X[376] + X[6776], 9 X[376] + X[43273], 4 X[376] + X[44882], 6 X[376] - X[50965], 9 X[376] - X[50966], 21 X[376] - X[50967], 3 X[376] - X[50968], 27 X[376] - 7 X[50969], 27 X[376] - 2 X[50970], 3 X[376] + 2 X[50971], 9 X[376] - 4 X[50972], 51 X[376] - X[50973], 39 X[376] + X[50974], 3 X[376] + X[50975], 3 X[376] + 7 X[50976], 19 X[1350] + 11 X[6776], 9 X[1350] + 11 X[43273], 4 X[1350] + 11 X[44882], 6 X[1350] - 11 X[50965], 9 X[1350] - 11 X[50966], 21 X[1350] - 11 X[50967], 3 X[1350] - 11 X[50968], 27 X[1350] - 77 X[50969], 27 X[1350] - 22 X[50970], 3 X[1350] + 22 X[50971], 9 X[1350] - 44 X[50972], 51 X[1350] - 11 X[50973], 39 X[1350] + 11 X[50974], 3 X[1350] + 11 X[50975], 3 X[1350] + 77 X[50976], 9 X[6776] - 19 X[43273], 4 X[6776] - 19 X[44882], 6 X[6776] + 19 X[50965], 9 X[6776] + 19 X[50966], 21 X[6776] + 19 X[50967], 3 X[6776] + 19 X[50968], 27 X[6776] + 133 X[50969], 27 X[6776] + 38 X[50970], and many others

X(51134) lies on these lines: {3, 50956}, {20, 50959}, {141, 15688}, {376, 524}, {518, 51079}, {548, 50977}, {550, 597}, {1503, 15695}, {3524, 50960}, {3528, 20582}, {3534, 14561}, {3618, 51024}, {3620, 50958}, {3763, 10304}, {3818, 41982}, {5480, 15691}, {5846, 50812}, {8703, 21167}, {9053, 50819}, {11001, 51026}, {11482, 15696}, {14891, 48896}, {15681, 48310}, {15685, 50964}, {15686, 33751}, {15689, 20423}, {15690, 39561}, {15697, 29181}, {15704, 50988}, {15710, 34573}, {15711, 29323}, {17504, 48891}, {31884, 50990}, {46264, 50982}, {48881, 50979}, {48905, 51025}, {50993, 51023}

X(51134) = midpoint of X(i) and X(j) for these {i,j}: {43273, 50966}, {50968, 50975}
X(51134) = reflection of X(i) in X(j) for these {i,j}: {47354, 50980}, {50963, 50983}, {50965, 50968}, {50975, 50971}, {51022, 50956}, {51029, 50959}
X(51134) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 43273, 50972}, {376, 50971, 50965}, {376, 50975, 50968}, {376, 50976, 50971}, {43273, 50968, 50966}, {43273, 50969, 50970}, {43273, 50972, 50965}, {50965, 50971, 44882}, {50966, 50975, 43273}, {50969, 50970, 50965}, {50970, 50972, 50969}, {50971, 50972, 43273}


X(51135) = X(376)X(524)∩X(597)X(3146)

Barycentrics    50*a^6 - 17*a^4*b^2 - 20*a^2*b^4 - 13*b^6 - 17*a^4*c^2 - 48*a^2*b^2*c^2 + 13*b^4*c^2 - 20*a^2*c^4 + 13*b^2*c^4 - 13*c^6 : :
X(51135) = 3 X[3] - X[50958], 6 X[5] - 5 X[50960], 3 X[5] - 5 X[50983], 13 X[6329] - 16 X[50664], 5 X[141] - 9 X[15705], 5 X[182] - X[35404], 13 X[376] - 5 X[1350], 11 X[376] + 5 X[6776], 3 X[376] + 5 X[43273], X[376] - 5 X[44882], 9 X[376] - 5 X[50965], 57 X[376] - 25 X[50966], 21 X[376] - 5 X[50967], 33 X[376] - 25 X[50968], 51 X[376] - 35 X[50969], 3 X[376] - X[50970], 3 X[376] - 5 X[50971], 6 X[376] - 5 X[50972], 9 X[376] - X[50973], 27 X[376] + 5 X[50974], 9 X[376] - 25 X[50975], 27 X[376] - 35 X[50976], 11 X[1350] + 13 X[6776], 3 X[1350] + 13 X[43273], X[1350] - 13 X[44882], 9 X[1350] - 13 X[50965], 57 X[1350] - 65 X[50966], 21 X[1350] - 13 X[50967], 33 X[1350] - 65 X[50968], 51 X[1350] - 91 X[50969], 15 X[1350] - 13 X[50970], 3 X[1350] - 13 X[50971], 6 X[1350] - 13 X[50972], 45 X[1350] - 13 X[50973], 27 X[1350] + 13 X[50974], 9 X[1350] - 65 X[50975], 27 X[1350] - 91 X[50976], 3 X[6776] - 11 X[43273], X[6776] + 11 X[44882], 9 X[6776] + 11 X[50965], 57 X[6776] + 55 X[50966], 21 X[6776] + 11 X[50967], 3 X[6776] + 5 X[50968], 51 X[6776] + 77 X[50969], 15 X[6776] + 11 X[50970], and many others

X(51135) lies on these lines: {2, 51025}, {3, 50958}, {5, 50960}, {20, 20583}, {30, 6329}, {141, 15705}, {182, 35404}, {376, 524}, {518, 51080}, {542, 33923}, {597, 3146}, {599, 21734}, {1503, 10193}, {1657, 20423}, {3523, 20582}, {3589, 3839}, {3630, 35418}, {3631, 10304}, {3818, 50988}, {3830, 14561}, {3860, 29012}, {5054, 34573}, {5085, 41106}, {5092, 47599}, {5846, 50814}, {8703, 50982}, {9053, 51082}, {10124, 11645}, {12007, 15686}, {12017, 50964}, {14927, 48310}, {15520, 19710}, {15688, 50961}, {25406, 51024}, {32455, 51028}, {37712, 50951}, {41152, 50955}, {45759, 50977}, {48881, 50962}

X(51135) = midpoint of X(i) and X(j) for these {i,j}: {20, 20583}, {12007, 15686}, {43273, 50971}
X(51135) = reflection of X(i) in X(j) for these {i,j}: {50960, 50983}, {50972, 50971}
X(51135) = complement of X(51025)
X(51135) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 50973, 50965}, {43273, 44882, 50971}, {43273, 50968, 6776}, {43273, 50975, 50965}, {43273, 50976, 50974}, {44882, 50965, 50975}, {50965, 50973, 50970}, {50965, 50975, 50971}, {50970, 50971, 376}, {50974, 50975, 50976}, {50974, 50976, 50965}


X(51136) = X(5)X(542)∩X(376)X(524)

Barycentrics    20*a^6 - 23*a^4*b^2 + 10*a^2*b^4 - 7*b^6 - 23*a^4*c^2 - 12*a^2*b^2*c^2 + 7*b^4*c^2 + 10*a^2*c^4 + 7*b^2*c^4 - 7*c^6 : :
X(51136) = 3 X[3] - X[50961], 3 X[3] - 2 X[50982], 3 X[4] - 2 X[51025], 3 X[20583] - X[51025], 7 X[5] - 10 X[575], 4 X[5] - 5 X[597], 2 X[5] - 5 X[8550], 13 X[5] - 10 X[18553], 17 X[5] - 20 X[25555], 11 X[5] - 10 X[25561], 19 X[5] - 20 X[25565], 11 X[5] - 20 X[33749], 13 X[5] - 15 X[38079], 6 X[5] - 5 X[47354], 3 X[5] - 5 X[50979], 8 X[575] - 7 X[597], 4 X[575] - 7 X[8550], 13 X[575] - 7 X[18553], 17 X[575] - 14 X[25555], 11 X[575] - 7 X[25561], 19 X[575] - 14 X[25565], 11 X[575] - 14 X[33749], 26 X[575] - 21 X[38079], 12 X[575] - 7 X[47354], 6 X[575] - 7 X[50979], 13 X[597] - 8 X[18553], 17 X[597] - 16 X[25555], 11 X[597] - 8 X[25561], 19 X[597] - 16 X[25565], 11 X[597] - 16 X[33749], 13 X[597] - 12 X[38079], 3 X[597] - 2 X[47354], 3 X[597] - 4 X[50979], 13 X[8550] - 4 X[18553], 17 X[8550] - 8 X[25555], 11 X[8550] - 4 X[25561], 19 X[8550] - 8 X[25565], 11 X[8550] - 8 X[33749], 13 X[8550] - 6 X[38079], 3 X[8550] - X[47354], 3 X[8550] - 2 X[50979], 17 X[18553] - 26 X[25555], 11 X[18553] - 13 X[25561], 19 X[18553] - 26 X[25565], 11 X[18553] - 26 X[33749], and many others

X(51136) lies on these lines: {2, 50958}, {3, 50961}, {4, 20583}, {5, 542}, {6, 3839}, {30, 3629}, {69, 15705}, {98, 9771}, {141, 5054}, {182, 10124}, {376, 524}, {381, 12007}, {511, 19710}, {518, 51082}, {599, 3523}, {1352, 15703}, {1353, 11645}, {1503, 3830}, {1657, 50962}, {1992, 3146}, {3524, 3631}, {3525, 15069}, {3545, 6329}, {3564, 12100}, {3589, 11180}, {3630, 45759}, {3815, 11177}, {3860, 5476}, {5032, 36990}, {5050, 50954}, {5066, 39561}, {5085, 50991}, {5092, 50980}, {5097, 15687}, {5102, 15682}, {5480, 13687}, {5846, 50817}, {5847, 50814}, {5921, 47352}, {5965, 8703}, {6770, 33474}, {6773, 33475}, {6811, 13664}, {6813, 13784}, {8593, 35954}, {9143, 37648}, {9744, 15597}, {10304, 40341}, {10706, 41595}, {11160, 21734}, {11178, 47599}, {11459, 44323}, {11477, 49138}, {11539, 43150}, {12108, 34507}, {13567, 35266}, {14561, 50957}, {14848, 50964}, {14912, 41106}, {15360, 45968}, {15533, 25406}, {15534, 29181}, {15699, 50664}, {16226, 41579}, {18358, 45757}, {18440, 50956}, {20126, 23328}, {20192, 46818}, {31884, 50992}, {32234, 35492}, {32455, 39874}, {34379, 51080}, {34782, 37490}, {35409, 48910}, {37712, 47359}, {38064, 46219}, {38127, 50949}, {38323, 43612}, {39878, 47356}, {40107, 50981}

X(51136) = midpoint of X(i) and X(j) for these {i,j}: {11179, 39899}, {39878, 47356}, {43273, 50974}
X(51136) = reflection of X(i) in X(j) for these {i,j}: {4, 20583}, {141, 11179}, {381, 12007}, {597, 8550}, {10706, 41595}, {11180, 3589}, {11459, 44323}, {15069, 20582}, {15687, 5097}, {25561, 33749}, {47354, 50979}, {50955, 50983}, {50961, 50982}, {50965, 43273}, {50967, 50971}, {50973, 50970}, {51022, 20423}, {51023, 50959}, {51027, 50958}
X(51136) = complement of X(51027)
X(51136) = anticomplement of X(50958)
X(51136) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 51027, 50958}, {3, 50961, 50982}, {6, 51023, 50959}, {376, 50970, 50965}, {376, 50973, 50970}, {1350, 43273, 50975}, {1350, 50972, 50965}, {1350, 50975, 50972}, {6776, 50974, 43273}, {8550, 47354, 50979}, {8584, 51022, 20423}, {11179, 50955, 50983}, {43273, 50965, 44882}, {43273, 50967, 50971}, {43273, 50973, 376}, {47354, 50979, 597}, {50955, 50983, 141}, {50967, 50971, 50965}


X(51137) = X(2)X(6030)∩X(182)X(524)

Barycentrics    11*a^6 - 5*a^4*b^2 - 8*a^2*b^4 + 2*b^6 - 5*a^4*c^2 - 30*a^2*b^2*c^2 - 2*b^4*c^2 - 8*a^2*c^4 - 2*b^2*c^4 + 2*c^6 : :
X(51137) = 2 X[2] + 3 X[17508], 11 X[2] + 9 X[33750], 3 X[2] + X[50975], 11 X[17508] - 6 X[33750], 9 X[17508] + 2 X[50956], 9 X[17508] - 2 X[50975], 27 X[33750] + 11 X[50956], 27 X[33750] - 11 X[50975], 7 X[3] + 3 X[38072], 3 X[3] + X[50963], 3 X[3] - X[50968], 9 X[3] + X[51024], 9 X[38072] - 7 X[50963], 9 X[38072] + 7 X[50968], 27 X[38072] - 7 X[51024], 3 X[50963] - X[51024], 3 X[50968] + X[51024], 3 X[5] + 2 X[50971], X[6] + 9 X[15707], X[20] + 4 X[25565], 3 X[20] + 7 X[50964], 12 X[25565] - 7 X[50964], 6 X[140] - X[47354], X[182] + 4 X[549], 19 X[182] - 4 X[1353], 23 X[182] - 8 X[12007], 11 X[182] + 4 X[48876], 3 X[182] + 2 X[50977], 21 X[182] + 4 X[50978], 9 X[182] - 4 X[50979], 3 X[182] + 4 X[50980], 27 X[182] + 28 X[50981], 27 X[182] + 8 X[50982], 3 X[182] - 8 X[50983], 9 X[182] + 16 X[50984], 51 X[182] + 4 X[50985], 39 X[182] - 4 X[50986], 3 X[182] - 4 X[50987], 3 X[182] - 28 X[50988], 19 X[549] + X[1353], 23 X[549] + 2 X[12007], 11 X[549] - X[48876], 6 X[549] - X[50977], 21 X[549] - X[50978], 9 X[549] + X[50979], 3 X[549] - X[50980], and many others

X(51137) lies on these lines: {2, 6030}, {3, 38072}, {5, 50971}, {6, 15707}, {20, 25565}, {140, 47354}, {182, 524}, {376, 48904}, {381, 48896}, {511, 15693}, {518, 51084}, {542, 631}, {547, 48898}, {575, 50962}, {576, 3523}, {597, 3530}, {599, 15720}, {1350, 15718}, {1352, 15721}, {1503, 15713}, {3098, 3524}, {3526, 25561}, {3543, 33751}, {3545, 48892}, {3576, 50953}, {3589, 17504}, {3620, 11179}, {3763, 5054}, {3818, 11539}, {3830, 50976}, {5050, 15722}, {5055, 48884}, {5085, 15701}, {5476, 12100}, {5480, 14891}, {5846, 50825}, {6034, 15515}, {6036, 9877}, {7485, 13857}, {7775, 49112}, {8703, 38317}, {8724, 37479}, {9053, 50832}, {10124, 44882}, {10249, 46265}, {10304, 19130}, {11160, 33749}, {11645, 15694}, {12108, 34507}, {14269, 48891}, {14561, 15698}, {14810, 15700}, {14869, 20582}, {14890, 18358}, {15055, 25566}, {15360, 43650}, {15520, 21167}, {15686, 51026}, {15688, 47355}, {15689, 48895}, {15692, 19924}, {15699, 50960}, {15702, 24206}, {15703, 48889}, {15705, 31670}, {15709, 46264}, {15711, 29181}, {15715, 48873}, {15717, 25555}, {15719, 39561}, {15723, 36990}, {19708, 29317}, {19709, 29323}, {19711, 38110}, {21843, 42852}, {25563, 31166}, {34200, 48310}, {37517, 41983}, {38079, 44682}, {40107, 50961}, {42773, 44511}, {42774, 44512}, {42786, 47598}, {45759, 48880}, {48906, 50958}, {50974, 50990}

X(51137) = midpoint of X(i) and X(j) for these {i,j}: {3620, 11179}, {20423, 50966}, {43273, 50954}, {50956, 50975}, {50963, 50968}, {50980, 50987}
X(51137) = reflection of X(i) in X(j) for these {i,j}: {3618, 10168}, {11178, 3763}, {50977, 50980}, {50987, 50983}
X(51137) = complement of X(50956)
X(51137) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 50975, 50956}, {3, 50963, 50968}, {549, 50979, 50984}, {549, 50983, 50977}, {549, 50987, 50980}, {549, 50988, 50983}, {3524, 10168, 3098}, {3618, 50966, 20423}, {3763, 43273, 50954}, {5054, 5092, 11178}, {15700, 47352, 14810}, {34200, 48310, 48901}, {50977, 50983, 182}, {50979, 50981, 50982}, {50979, 50984, 50977}, {50981, 50982, 50977}, {50982, 50984, 50981}, {50983, 50984, 50979}


X(51138) = X(2)X(50958)∩X(182)X(524)

Barycentrics    26*a^6 - 29*a^4*b^2 + 4*a^2*b^4 - b^6 - 29*a^4*c^2 - 48*a^2*b^2*c^2 + b^4*c^2 + 4*a^2*c^4 + b^2*c^4 - c^6 : :
X(51138) = 9 X[2] - X[51027], 3 X[50958] - X[51027], 3 X[3] - X[50970], 3 X[20583] + X[50970], X[4] - 5 X[597], 7 X[4] - 15 X[38072], 3 X[4] + 5 X[43273], 3 X[4] - 5 X[50959], 9 X[4] - 5 X[51022], 7 X[597] - 3 X[38072], 3 X[597] + X[43273], 3 X[597] - X[50959], 9 X[597] - X[51022], 9 X[38072] + 7 X[43273], 9 X[38072] - 7 X[50959], 27 X[38072] - 7 X[51022], 3 X[43273] + X[51022], 3 X[50959] - X[51022], 5 X[6] + 3 X[10304], 3 X[6] + X[50965], 9 X[6] - X[51028], 9 X[10304] - 5 X[50965], 27 X[10304] + 5 X[51028], 3 X[50965] + X[51028], X[6329] - 4 X[50664], 5 X[141] - 9 X[15709], 3 X[141] + X[50974], 27 X[15709] + 5 X[50974], 5 X[182] - X[549], 11 X[182] + X[1353], 5 X[182] + X[12007], 13 X[182] - X[48876], 9 X[182] - X[50977], 21 X[182] - X[50978], 3 X[182] + X[50979], 33 X[182] - 5 X[50980], 51 X[182] - 7 X[50981], 15 X[182] - X[50982], 3 X[182] - X[50983], 6 X[182] - X[50984], 45 X[182] - X[50985], 27 X[182] + X[50986], 9 X[182] - 5 X[50987], 27 X[182] - 7 X[50988], 11 X[549] + 5 X[1353], 13 X[549] - 5 X[48876], 9 X[549] - 5 X[50977], and many others

X(51138) lies on these lines: {2, 50958}, {3, 20583}, {4, 597}, {6, 10304}, {30, 6329}, {141, 15709}, {182, 524}, {381, 51025}, {511, 15759}, {518, 51085}, {542, 3628}, {548, 575}, {599, 10303}, {1503, 5066}, {1992, 10541}, {3524, 3629}, {3526, 8550}, {3534, 5050}, {3564, 11540}, {3589, 5055}, {3631, 5054}, {3856, 25555}, {3857, 38079}, {5012, 35266}, {5072, 50956}, {5085, 8584}, {5097, 34200}, {5102, 19708}, {5476, 33699}, {5480, 15684}, {5846, 50827}, {5965, 11812}, {6776, 48310}, {8703, 39561}, {9041, 13607}, {9053, 51087}, {9730, 44323}, {10168, 34573}, {11477, 50966}, {12017, 15706}, {13353, 20126}, {14848, 17800}, {14912, 22165}, {15534, 21167}, {15640, 25406}, {15683, 44882}, {15708, 40341}, {16226, 17710}, {18583, 48942}, {23046, 48906}, {25561, 44904}, {37517, 45759}, {46264, 50963}, {46333, 50975}, {47352, 51023}

X(51138) = midpoint of X(i) and X(j) for these {i,j}: {3, 20583}, {549, 12007}, {3589, 11179}, {5097, 34200}, {8550, 20582}, {9730, 44323}, {20423, 50971}, {43273, 50959}, {50979, 50983}
X(51138) = reflection of X(i) in X(j) for these {i,j}: {5476, 41153}, {34573, 10168}, {50984, 50983}
X(51138) = complement of X(50958)
X(51138) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {182, 50977, 50987}, {182, 50979, 50983}, {549, 50985, 50977}, {597, 43273, 50959}, {8550, 38064, 20582}, {10168, 43150, 47598}, {12007, 50983, 50982}, {50977, 50985, 50982}, {50977, 50987, 50983}, {50979, 50980, 1353}, {50979, 50987, 50977}, {50979, 50988, 50986}, {50982, 50983, 549}, {50986, 50987, 50988}, {50986, 50988, 50977}


X(51139) = X(2)X(50960)∩X(182)X(524)

Barycentrics    34*a^6 - 13*a^4*b^2 - 28*a^2*b^4 + 7*b^6 - 13*a^4*c^2 - 96*a^2*b^2*c^2 - 7*b^4*c^2 - 28*a^2*c^4 - 7*b^2*c^4 + 7*c^6 : :
X(51139) = 3 X[2] + X[50971], 9 X[2] - X[51022], 3 X[50960] - X[51022], 3 X[50971] + X[51022], 3 X[3] + X[50959], 3 X[3] - X[50972], 5 X[140] - X[25561], X[141] - 9 X[15708], 9 X[141] - X[51027], 81 X[15708] - X[51027], X[182] + 7 X[549], 31 X[182] - 7 X[1353], 19 X[182] - 7 X[12007], 17 X[182] + 7 X[48876], 9 X[182] + 7 X[50977], 33 X[182] + 7 X[50978], 15 X[182] - 7 X[50979], 3 X[182] + 5 X[50980], 39 X[182] + 49 X[50981], 3 X[182] + X[50982], 3 X[182] - 7 X[50983], 3 X[182] + 7 X[50984], 81 X[182] + 7 X[50985], 9 X[182] - X[50986], 27 X[182] - 35 X[50987], 9 X[182] - 49 X[50988], 31 X[549] + X[1353], 19 X[549] + X[12007], 17 X[549] - X[48876], 9 X[549] - X[50977], 33 X[549] - X[50978], 15 X[549] + X[50979], 21 X[549] - 5 X[50980], 39 X[549] - 7 X[50981], 21 X[549] - X[50982], 3 X[549] + X[50983], 3 X[549] - X[50984], 81 X[549] - X[50985], 63 X[549] + X[50986], 27 X[549] + 5 X[50987], 9 X[549] + 7 X[50988], 19 X[1353] - 31 X[12007], 17 X[1353] + 31 X[48876], 9 X[1353] + 31 X[50977], 33 X[1353] + 31 X[50978], 15 X[1353] - 31 X[50979], and many others

X(51139) lies on these lines: {2, 50960}, {3, 50959}, {140, 25561}, {141, 15708}, {182, 524}, {376, 51026}, {511, 41153}, {518, 51086}, {542, 12108}, {597, 3523}, {631, 20582}, {1503, 11812}, {3524, 3589}, {3526, 50956}, {3530, 25555}, {3545, 50976}, {3576, 50951}, {3631, 50974}, {5054, 34573}, {5085, 50991}, {5102, 15719}, {5476, 19711}, {5480, 15700}, {5846, 50829}, {6329, 15707}, {9053, 50828}, {10164, 51006}, {10168, 41983}, {10299, 38072}, {10304, 51029}, {10519, 41149}, {11482, 38064}, {11539, 42786}, {11540, 29012}, {11737, 33751}, {12017, 50961}, {12100, 29181}, {14892, 48891}, {15688, 50964}, {15692, 48310}, {15693, 20423}, {15698, 50968}, {15701, 50958}, {15702, 44882}, {15705, 47355}, {15706, 48881}, {15709, 50975}, {15711, 38317}, {15713, 17508}, {15720, 50955}, {15721, 51023}, {25565, 33923}, {32455, 50973}, {34200, 48920}, {37455, 44401}, {41982, 48895}, {47599, 48892}

X(51139) = midpoint of X(i) and X(j) for these {i,j}: {11737, 33751}, {25565, 33923}, {50959, 50972}, {50960, 50971}, {50983, 50984}
X(51139) = complement of X(50960)
X(51139) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 50971, 50960}, {3, 50959, 50972}, {182, 50977, 50986}, {182, 50980, 50982}, {549, 50983, 50984}, {549, 50988, 50977}, {50977, 50986, 50982}, {50977, 50988, 50983}, {50980, 50986, 50977}, {50982, 50983, 182}


X(51140) = X(2)X(5965)∩X(182)X(524)

Barycentrics    7*a^6 - 13*a^4*b^2 + 8*a^2*b^4 - 2*b^6 - 13*a^4*c^2 - 6*a^2*b^2*c^2 + 2*b^4*c^2 + 8*a^2*c^4 + 2*b^2*c^4 - 2*c^6 : :
X(51140) = 2 X[2] - 3 X[39561], 9 X[39561] - 2 X[50961], 3 X[3] - X[50973], 2 X[4] - 5 X[576], X[4] - 5 X[1992], 3 X[4] - 5 X[20423], 3 X[4] + 5 X[50974], 9 X[4] - 5 X[51023], 3 X[576] - 2 X[20423], 3 X[576] + 2 X[50974], 9 X[576] - 2 X[51023], 3 X[1992] - X[20423], 3 X[1992] + X[50974], 9 X[1992] - X[51023], 3 X[20423] - X[51023], 3 X[50974] + X[51023], 3 X[5] - 2 X[50958], 3 X[20583] - X[50958], 5 X[6] - 3 X[5055], 5 X[6] - 2 X[43150], 3 X[6] - X[50955], 6 X[5055] - 5 X[11178], 3 X[5055] - 2 X[43150], 9 X[5055] - 5 X[50955], 5 X[11178] - 4 X[43150], 3 X[11178] - 2 X[50955], 6 X[43150] - 5 X[50955], 4 X[3629] - X[37517], 5 X[69] - 9 X[15709], 10 X[10168] - 9 X[15709], 5 X[141] - 6 X[47598], 5 X[182] - 4 X[549], X[182] - 4 X[1353], 5 X[182] - 8 X[12007], 7 X[182] - 4 X[48876], 3 X[182] - 2 X[50977], 9 X[182] - 4 X[50978], 3 X[182] - 4 X[50979], 27 X[182] - 20 X[50980], 39 X[182] - 28 X[50981], 15 X[182] - 8 X[50982], 9 X[182] - 8 X[50983], 21 X[182] - 16 X[50984], 15 X[182] - 4 X[50985], 3 X[182] + 4 X[50986], 21 X[182] - 20 X[50987], and many others

X(51140) lies on these lines: {2, 5965}, {3, 50973}, {4, 542}, {5, 20583}, {6, 5055}, {30, 3629}, {32, 8724}, {69, 10168}, {141, 47598}, {182, 524}, {184, 15360}, {193, 3098}, {194, 12117}, {195, 45622}, {381, 5097}, {511, 3534}, {518, 51087}, {548, 8550}, {575, 599}, {597, 3628}, {1147, 11694}, {1351, 11645}, {1352, 5032}, {1503, 33699}, {1993, 13857}, {3524, 11008}, {3564, 5066}, {3630, 14890}, {3631, 11539}, {3818, 23046}, {3830, 5102}, {3857, 50960}, {5050, 15533}, {5054, 40341}, {5072, 14848}, {5092, 6144}, {5093, 47353}, {5111, 11648}, {5642, 37644}, {5648, 44490}, {5846, 50830}, {5847, 50827}, {6036, 9770}, {6054, 7766}, {6055, 7774}, {6329, 15699}, {6776, 15683}, {7486, 25555}, {7775, 49102}, {7850, 39099}, {8703, 50970}, {9140, 11004}, {9143, 34417}, {9939, 32467}, {10303, 11160}, {11165, 47113}, {11180, 19130}, {11422, 44555}, {11477, 17800}, {11482, 18553}, {11485, 43275}, {11486, 43274}, {11540, 22165}, {11649, 15531}, {11898, 15516}, {12151, 39750}, {13352, 20126}, {14614, 35377}, {14853, 50964}, {14912, 15698}, {15022, 25565}, {15640, 29012}, {15687, 51025}, {15717, 33749}, {15759, 34380}, {21358, 46267}, {22491, 32907}, {22492, 32909}, {25406, 50966}, {33878, 50968}, {34379, 51085}, {34986, 37453}, {35266, 44077}, {35814, 44657}, {35815, 44656}, {37645, 45311}, {38071, 42785}, {38110, 50991}, {39899, 48884}, {44109, 47596}, {44456, 48879}, {46264, 46333}, {48901, 51022}, {48906, 50971}, {50693, 50975}

X(51140) = midpoint of X(i) and X(j) for these {i,j}: {193, 11179}, {20423, 50974}, {43273, 50962}, {50979, 50986}
X(51140) = reflection of X(i) in X(j) for these {i,j}: {5, 20583}, {69, 10168}, {381, 5097}, {549, 12007}, {576, 1992}, {599, 575}, {3098, 11179}, {5476, 8584}, {11160, 40107}, {11178, 6}, {11180, 19130}, {15069, 25561}, {17508, 14912}, {25561, 22330}, {34507, 597}, {50977, 50979}, {50978, 50983}, {50985, 50982}
X(51140) = complement of X(50961)
X(51140) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {549, 50982, 50977}, {549, 50985, 50982}, {1353, 50986, 50979}, {1992, 50974, 20423}, {5055, 43150, 11178}, {5476, 8584, 15520}, {11160, 38064, 40107}, {14848, 15069, 25561}, {15534, 43273, 50962}, {22330, 25561, 14848}, {48876, 50979, 50987}, {48876, 50984, 50977}, {48876, 50987, 50984}, {50977, 50979, 182}, {50978, 50979, 50983}, {50978, 50983, 50977}, {50979, 50985, 549}


X(51141) = X(2)X(29317)∩X(182)X(524)

Barycentrics    13*a^6 - a^4*b^2 - 16*a^2*b^4 + 4*b^6 - a^4*c^2 - 42*a^2*b^2*c^2 - 4*b^4*c^2 - 16*a^2*c^4 - 4*b^2*c^4 + 4*c^6 : :
X(51141) = 3 X[2] + X[50969], 5 X[3] + 2 X[25561], 3 X[3] + X[50957], 3 X[3] - X[50976], 6 X[25561] - 5 X[50957], 6 X[25561] + 5 X[50976], 9 X[5] - 2 X[51026], 6 X[140] + X[50965], X[141] + 6 X[41983], X[182] - 8 X[549], 29 X[182] - 8 X[1353], 37 X[182] - 16 X[12007], 13 X[182] + 8 X[48876], 3 X[182] + 4 X[50977], 27 X[182] + 8 X[50978], 15 X[182] - 8 X[50979], 9 X[182] + 40 X[50980], 3 X[182] + 8 X[50981], 33 X[182] + 16 X[50982], 9 X[182] - 16 X[50983], 3 X[182] + 32 X[50984], 69 X[182] + 8 X[50985], 57 X[182] - 8 X[50986], 33 X[182] - 40 X[50987], 3 X[182] - 8 X[50988], 29 X[549] - X[1353], 37 X[549] - 2 X[12007], 13 X[549] + X[48876], 6 X[549] + X[50977], 27 X[549] + X[50978], 15 X[549] - X[50979], 9 X[549] + 5 X[50980], 3 X[549] + X[50981], 33 X[549] + 2 X[50982], 9 X[549] - 2 X[50983], 3 X[549] + 4 X[50984], 69 X[549] + X[50985], 57 X[549] - X[50986], 33 X[549] - 5 X[50987], 3 X[549] - X[50988], 37 X[1353] - 58 X[12007], 13 X[1353] + 29 X[48876], 6 X[1353] + 29 X[50977], 27 X[1353] + 29 X[50978], 15 X[1353] - 29 X[50979], 9 X[1353] + 145 X[50980], and many others

X(51141) lies on these lines: {2, 29317}, {3, 25561}, {5, 51026}, {30, 42786}, {140, 50965}, {141, 41983}, {182, 524}, {381, 48920}, {511, 15701}, {518, 51088}, {542, 3523}, {547, 48904}, {550, 50960}, {575, 50973}, {576, 15720}, {597, 12108}, {631, 20423}, {1503, 19711}, {3098, 5054}, {3524, 3619}, {3525, 25565}, {3545, 48879}, {3763, 15706}, {3818, 17504}, {3845, 50972}, {5055, 50968}, {5071, 48885}, {5085, 15722}, {5092, 15707}, {5476, 11812}, {5846, 50833}, {9053, 50826}, {10124, 48901}, {10168, 15708}, {10304, 48884}, {10516, 15716}, {11539, 50959}, {11645, 15700}, {12100, 47354}, {14093, 48889}, {14561, 50966}, {14810, 15694}, {14891, 48898}, {15692, 24206}, {15693, 17508}, {15698, 29012}, {15699, 48880}, {15702, 19924}, {15705, 48892}, {15709, 19130}, {15712, 20582}, {15713, 38317}, {15715, 33751}, {15717, 50975}, {15718, 21358}, {15719, 50994}, {22234, 38064}, {31884, 50963}, {34200, 48896}, {34573, 45759}, {39561, 50962}, {40107, 50974}, {47598, 48881}

X(51141) = midpoint of X(i) and X(j) for these {i,j}: {50957, 50976}, {50964, 50969}, {50981, 50988}
X(51141) = reflection of X(i) in X(j) for these {i,j}: {11178, 3619}, {50977, 50981}
X(51141) = complement of X(50964)
X(51141) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 50969, 50964}, {3, 50957, 50976}, {549, 50980, 50983}, {549, 50981, 50988}, {549, 50984, 50977}, {11812, 21167, 5476}, {50980, 50983, 50977}, {50983, 50984, 50980}


X(51142) = X(2)X(6)∩X(518)X(51067)

Barycentrics    8*a^2 - 19*b^2 - 19*c^2 : :
X(51142) = 19 X[2] - 9 X[6], 11 X[2] + 9 X[69], 4 X[2] - 9 X[141], 49 X[2] - 9 X[193], 14 X[2] - 9 X[597], X[2] + 9 X[599], 29 X[2] - 9 X[1992], 23 X[2] - 18 X[3589], 13 X[2] - 9 X[3618], 43 X[2] - 63 X[3619], X[2] - 9 X[3620], 34 X[2] - 9 X[3629], 26 X[2] + 9 X[3630], 7 X[2] + 18 X[3631], 7 X[2] - 9 X[3763], 67 X[2] - 27 X[5032], 79 X[2] - 9 X[6144], 61 X[2] - 36 X[6329], 8 X[2] - 3 X[8584], 109 X[2] - 9 X[11008], 31 X[2] + 9 X[11160], 7 X[2] + 3 X[15533], 13 X[2] - 3 X[15534], 71 X[2] + 9 X[20080], 13 X[2] - 18 X[20582], 43 X[2] - 18 X[20583], 7 X[2] - 27 X[21356], 17 X[2] - 27 X[21358], 2 X[2] + 3 X[22165], 53 X[2] - 18 X[32455], 31 X[2] - 36 X[34573], 41 X[2] + 9 X[40341], 7 X[2] - 2 X[41149], X[2] + 4 X[41152], 13 X[2] - 8 X[41153], 37 X[2] - 27 X[47352], 73 X[2] - 63 X[47355], 32 X[2] - 27 X[48310], X[2] + 3 X[50990], X[2] - 6 X[50991], 17 X[2] + 3 X[50992], X[2] - 3 X[50993], X[2] - 21 X[50994], 11 X[6] + 19 X[69], 4 X[6] - 19 X[141], 49 X[6] - 19 X[193], 14 X[6] - 19 X[597], X[6] + 19 X[599], 29 X[6] - 19 X[1992], 23 X[6] - 38 X[3589], and many others

X(51142) lies on these lines: {2, 6}, {518, 51067}, {542, 15711}, {1352, 15685}, {1503, 15695}, {3860, 11178}, {5846, 50784}, {7854, 27088}, {8550, 11812}, {8703, 40107}, {9053, 50791}, {10519, 50958}, {12100, 34507}, {12101, 47354}, {15069, 15698}, {15690, 48898}, {15716, 21167}, {15759, 50977}, {19662, 41154}, {19710, 29012}, {19711, 50980}, {28313, 50081}, {28322, 50097}, {28538, 51104}, {33699, 48876}, {47353, 50966}, {50781, 50998}, {50787, 50949}, {50788, 51003}, {50954, 51022}, {50956, 50982}

X(51142) = midpoint of X(i) and X(j) for these {i,j}: {2, 50989}, {599, 3620}, {47353, 50966}, {50990, 50993}
X(51142) = reflection of X(i) in X(j) for these {i,j}: {597, 3763}, {3618, 20582}, {22165, 50990}, {50993, 50991}
X(51142) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 599, 41152}, {2, 15533, 41149}, {2, 15534, 41153}, {2, 41149, 597}, {2, 41152, 22165}, {2, 50990, 50989}, {141, 22165, 8584}, {597, 21356, 141}, {597, 22165, 15533}, {599, 21356, 3631}, {599, 50991, 22165}, {599, 50993, 50990}, {599, 50994, 50991}, {3620, 50990, 50993}, {3620, 50993, 50991}, {3631, 15533, 22165}, {3631, 21356, 597}, {15533, 50993, 3763}, {20582, 41153, 2}, {22165, 50991, 141}, {41152, 50991, 2}, {50989, 50993, 2}, {50990, 50994, 3620}


X(51143) = X(2)X(6)∩X(518)X(51069)

Barycentrics    2*a^2 + 11*b^2 + 11*c^2 : :
X(51143) = 11 X[2] - 3 X[6], 13 X[2] + 3 X[69], X[2] + 3 X[141], 35 X[2] - 3 X[193], 7 X[2] - 3 X[597], 5 X[2] + 3 X[599], 19 X[2] - 3 X[1992], 5 X[2] - 3 X[3589], 31 X[2] - 15 X[3618], 5 X[2] - 21 X[3619], 17 X[2] + 15 X[3620], 23 X[2] - 3 X[3629], 25 X[2] + 3 X[3630], 7 X[2] + 3 X[3631], 7 X[2] - 15 X[3763], 41 X[2] - 9 X[5032], 59 X[2] - 3 X[6144], 8 X[2] - 3 X[6329], 5 X[2] - X[8584], 83 X[2] - 3 X[11008], 29 X[2] + 3 X[11160], 7 X[2] + X[15533], 9 X[2] - X[15534], 61 X[2] + 3 X[20080], X[2] - 3 X[20582], 13 X[2] - 3 X[20583], 7 X[2] + 9 X[21356], X[2] - 9 X[21358], 3 X[2] + X[22165], 17 X[2] - 3 X[32455], 2 X[2] - 3 X[34573], 37 X[2] + 3 X[40341], 7 X[2] - X[41149], 2 X[2] + X[41152], 5 X[2] - 2 X[41153], 17 X[2] - 9 X[47352], 29 X[2] - 21 X[47355], 13 X[2] - 9 X[48310], 19 X[2] + 5 X[50989], 11 X[2] + 5 X[50990], 15 X[2] + X[50992], 3 X[2] + 5 X[50993], 9 X[2] + 7 X[50994], 13 X[6] + 11 X[69], X[6] + 11 X[141], 35 X[6] - 11 X[193], 7 X[6] - 11 X[597], 5 X[6] + 11 X[599], 19 X[6] - 11 X[1992], 5 X[6] - 11 X[3589], 31 X[6] - 55 X[3618],and many others

X(51143) lies on these lines: {2, 6}, {511, 10109}, {518, 51069}, {542, 11812}, {547, 40107}, {575, 47598}, {1350, 41099}, {1352, 15693}, {1503, 10193}, {3098, 33699}, {3242, 51072}, {3416, 51105}, {3534, 47354}, {3564, 11540}, {3818, 19710}, {3819, 8705}, {3830, 48873}, {3844, 4745}, {3845, 29181}, {3860, 19924}, {3934, 8355}, {4395, 29615}, {4399, 48634}, {4478, 17291}, {4669, 9053}, {5066, 24206}, {5476, 50982}, {5846, 50786}, {6292, 39785}, {6488, 11292}, {6489, 11291}, {7228, 48633}, {7238, 17292}, {7849, 8367}, {7863, 8359}, {7911, 8352}, {7928, 40246}, {8358, 19662}, {8546, 16419}, {8550, 15694}, {8598, 31168}, {8703, 11178}, {8787, 31274}, {9306, 37283}, {9855, 46226}, {10302, 47286}, {10516, 15682}, {10519, 41106}, {11001, 40330}, {11539, 34507}, {11645, 15759}, {12101, 25561}, {15069, 15702}, {15520, 50985}, {15690, 18358}, {15697, 36990}, {15698, 44882}, {15701, 50958}, {15713, 50983}, {15716, 46264}, {15719, 43273}, {15810, 32459}, {16239, 46267}, {16475, 50784}, {17227, 49727}, {17228, 50098}, {17237, 49737}, {18553, 34200}, {18840, 34505}, {19708, 21167}, {19709, 50959}, {21849, 40670}, {28297, 50092}, {28309, 29594}, {28538, 51108}, {29617, 48639}, {31884, 51022}, {32218, 47313}, {35954, 47005}, {37756, 48635}, {38317, 50978}, {47311, 47556}, {47358, 50951}, {48638, 50128}, {49543, 50081}, {50781, 51006}, {50785, 51001}, {50789, 50949}, {50792, 50952}

X(51143) = midpoint of X(i) and X(j) for these {i,j}: {2, 50991}, {69, 20583}, {141, 20582}, {547, 40107}, {597, 3631}, {599, 3589}, {5476, 50982}, {15533, 41149}, {18553, 34200}, {47353, 50971}, {47358, 50951}, {50781, 51006}
X(51143) = reflection of X(i) in X(j) for these {i,j}: {8584, 41153}, {34573, 20582}, {41152, 50991}, {46267, 16239}
X(51143) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 141, 50991}, {2, 599, 8584}, {2, 8584, 3589}, {2, 15533, 597}, {2, 21356, 15533}, {2, 50990, 6}, {2, 50993, 22165}, {2, 50994, 15534}, {69, 48310, 20583}, {141, 597, 21356}, {141, 3619, 3589}, {141, 3763, 3631}, {141, 21358, 20582}, {141, 22165, 50993}, {193, 3619, 3763}, {193, 8584, 41149}, {193, 21356, 599}, {597, 15533, 41149}, {597, 21356, 3631}, {599, 21358, 3619}, {599, 50992, 22165}, {3589, 3631, 193}, {3589, 8584, 41153}, {3631, 41149, 15533}, {3763, 15533, 2}, {3763, 21356, 597}, {8584, 22165, 50992}, {15534, 50993, 50994}, {15534, 50994, 22165}, {20582, 50991, 2}, {21167, 47353, 50971}, {22165, 50993, 50991}, {39022, 39023, 41136}, {41149, 50991, 3631}


X(51144) = X(6)X(144)∩X(9)X(141)

Barycentrics    4*a^4 - 4*a^3*b + 3*a^2*b^2 - 2*a*b^3 - b^4 - 4*a^3*c - 2*a*b^2*c + 2*b^3*c + 3*a^2*c^2 - 2*a*b*c^2 - 2*b^2*c^2 - 2*a*c^3 + 2*b*c^3 - c^4 : :
X(51144) = 3 X[9] - X[47595], 3 X[141] - 2 X[47595], 3 X[6172] - X[50995], 5 X[6172] - X[50996], 5 X[50995] - 3 X[50996], X[50995] + 3 X[50997], X[50996] + 5 X[50997], X[1350] - 3 X[21168], 5 X[3618] - X[20059], X[4312] - 3 X[38047], 3 X[5085] - X[36996], X[5735] - 3 X[38145], 2 X[6173] - 3 X[48310], 5 X[18230] - 4 X[34573], 3 X[21167] - 4 X[31658], 4 X[25555] - 3 X[38164], X[30424] - 3 X[38194]

X(51144) lies on these lines: {6, 144}, {7, 3589}, {9, 141}, {182, 5843}, {390, 9053}, {516, 17351}, {518, 3244}, {524, 6172}, {527, 597}, {673, 7263}, {910, 25355}, {971, 44882}, {1350, 21168}, {1386, 5850}, {1503, 5779}, {2550, 7227}, {3618, 20059}, {4312, 38047}, {4361, 5838}, {4363, 5819}, {4437, 17336}, {4718, 50026}, {5085, 36996}, {5223, 5846}, {5480, 5762}, {5728, 9021}, {5735, 38145}, {5759, 29181}, {6068, 9024}, {6173, 48310}, {9041, 50836}, {9055, 51052}, {15492, 50011}, {17225, 51053}, {17340, 20533}, {17345, 49775}, {18230, 34573}, {21167, 31658}, {25555, 38164}, {27481, 49496}, {28538, 50834}, {30424, 38194}, {47357, 50998}

X(51144) = midpoint of X(i) and X(j) for these {i,j}: {6, 144}, {6172, 50997}
X(51144) = reflection of X(i) in X(j) for these {i,j}: {7, 3589}, {141, 9}, {50998, 47357}


X(51145) = X(145)X(597)∩X(524)X(3241)

Barycentrics    22*a^3 - 2*a^2*b + 19*a*b^2 - 5*b^3 - 2*a^2*c - 5*b^2*c + 19*a*c^2 - 5*b*c^2 - 5*c^3 : :
X(51145) = 3 X[1] - X[50949], 3 X[20582] - 2 X[50949], X[41149] + 8 X[51091], 3 X[3589] - 2 X[50951], 3 X[3589] - 4 X[51006], 5 X[3241] - X[3242], 3 X[3241] - X[50998], 9 X[3241] - X[50999], 3 X[3241] + X[51000], 15 X[3241] + X[51001], 3 X[3242] - 5 X[50998], 9 X[3242] - 5 X[50999], 3 X[3242] + 5 X[51000], 3 X[3242] + X[51001], 3 X[50998] - X[50999], 5 X[50998] + X[51001], X[50999] + 3 X[51000], 5 X[50999] + 3 X[51001], 5 X[51000] - X[51001], X[599] - 5 X[3623], 5 X[3244] + X[4663], 4 X[3244] + X[20583], 3 X[3244] + X[51005], 4 X[4663] - 5 X[20583], 3 X[4663] - 5 X[51005], 3 X[20583] - 4 X[51005], X[3631] + 2 X[49681], 3 X[3631] - 2 X[50950], 3 X[49681] + X[50950], X[3633] + 3 X[38023], 3 X[3633] + 5 X[50953], 9 X[38023] - 5 X[50953], 3 X[5603] - 2 X[50960], 3 X[5731] - 2 X[50972], 4 X[50781] - 5 X[50991], 3 X[50781] - 5 X[51003], X[50781] - 5 X[51071], 3 X[50991] - 4 X[51003], X[50991] - 4 X[51071], X[51003] - 3 X[51071], 3 X[7967] - X[50965], X[8584] + 5 X[51092], X[50790] - 5 X[51092], 9 X[16475] - 5 X[47359], 3 X[16475] + 5 X[51093], and many others

X(51145) lies on these lines: {1, 20582}, {145, 597}, {515, 51026}, {517, 50971}, {518, 41149}, {519, 3589}, {524, 3241}, {599, 3623}, {952, 50959}, {3244, 4432}, {3631, 49681}, {3633, 38023}, {3635, 28538}, {5476, 50831}, {5480, 34748}, {5603, 50960}, {5731, 50972}, {5844, 50983}, {5846, 50781}, {5847, 51095}, {7967, 50965}, {8584, 50790}, {8705, 47493}, {9053, 16475}, {9055, 50778}, {10246, 50984}, {10247, 47354}, {12630, 38086}, {16200, 51025}, {17225, 49478}, {20049, 47352}, {20050, 38087}, {28309, 50130}, {31145, 48310}, {32218, 47472}, {32455, 47356}, {34573, 38314}, {34631, 44882}, {34747, 49524}, {47358, 51097}, {49465, 51004}, {50789, 51105}

X(51145) = midpoint of X(i) and X(j) for these {i,j}: {145, 597}, {5476, 50831}, {5480, 34748}, {8584, 50790}, {34631, 44882}, {34747, 49524}, {50998, 51000}
X(51145) = reflection of X(i) in X(j) for these {i,j}: {20582, 1}, {32218, 47472}, {32455, 47356}, {50951, 51006}
X(51145) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3241, 51000, 50998}, {3242, 51000, 51001}, {50951, 51006, 3589}


X(51146) = X(145)X(47359)∩X(524)X(3241)

Barycentrics    29*a^3 - a^2*b + 23*a*b^2 - 7*b^3 - a^2*c - 7*b^2*c + 23*a*c^2 - 7*b*c^2 - 7*c^3 : :
X(51146) = 7 X[2] - 2 X[50789], 3 X[8] - 8 X[51006], 3 X[145] + 2 X[47359], 7 X[3618] - 10 X[16491], 3 X[3618] - 2 X[50953], 15 X[16491] - 7 X[50953], 7 X[3241] - 2 X[3242], 9 X[3241] - 4 X[50998], 6 X[3241] - X[50999], 3 X[3241] + 2 X[51000], 9 X[3241] + X[51001], 9 X[3242] - 14 X[50998], 12 X[3242] - 7 X[50999], 3 X[3242] + 7 X[51000], 18 X[3242] + 7 X[51001], 8 X[50998] - 3 X[50999], 2 X[50998] + 3 X[51000], 4 X[50998] + X[51001], X[50999] + 4 X[51000], 3 X[50999] + 2 X[51001], 6 X[51000] - X[51001], 4 X[597] + X[20050], 2 X[599] - 7 X[20057], 4 X[1386] + X[20049], X[1992] + 4 X[3244], X[3620] + 2 X[49681], 3 X[3620] - 4 X[51003], 3 X[49681] + 2 X[51003], X[3621] - 6 X[38023], 6 X[3635] - X[51004], 2 X[3763] - 3 X[38314], 3 X[3763] - 2 X[50949], 9 X[38314] - 4 X[50949], 3 X[5603] - 2 X[50956], 3 X[5731] - 2 X[50968], 5 X[50782] - 7 X[50993], 3 X[7967] - X[50966], 3 X[10246] - 2 X[50980], 3 X[10247] - X[50954], 6 X[16200] - X[51023], 3 X[16475] + 2 X[51096], X[20053] - 6 X[38087], 9 X[38315] - 4 X[50951], 6 X[49684] - X[50952], 12 X[50787] - 7 X[50950], and many others

X(51146) lies on these lines: {2, 50789}, {8, 51006}, {145, 47359}, {515, 51029}, {517, 50975}, {518, 50840}, {519, 3618}, {524, 3241}, {597, 20050}, {599, 20057}, {952, 50963}, {1386, 20049}, {1992, 3244}, {3620, 49681}, {3621, 38023}, {3623, 28538}, {3635, 51004}, {3763, 38314}, {5603, 50956}, {5731, 50968}, {5844, 50987}, {5846, 50782}, {5847, 51097}, {7967, 50966}, {10246, 50980}, {10247, 50954}, {16200, 51023}, {16475, 51096}, {20053, 38087}, {38315, 50951}, {49684, 50952}, {50787, 50950}, {50992, 51095}, {51005, 51093}, {51089, 51094}

X(51146) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3241, 51000, 50999}, {3241, 51001, 50998}, {50998, 51000, 51001}, {50998, 51001, 50999}


X(51147) = X(6)X(145)∩X(524)X(3241)

Barycentrics    4*a^3 + 3*a*b^2 - b^3 - b^2*c + 3*a*c^2 - b*c^2 - c^3 : :
X(51147) = 3 X[1] - X[3416], 3 X[141] - 2 X[3416], X[141] + 2 X[49681], X[3416] + 3 X[49681], X[8] - 3 X[38315], 2 X[3589] - 3 X[38315], 2 X[3589] + X[49679], 3 X[38315] + X[49679], X[69] - 5 X[3623], 4 X[3244] + X[3629], X[3629] - 4 X[49684], 3 X[597] - 4 X[1386], 3 X[597] - 2 X[49524], 2 X[3773] - 3 X[48810], 3 X[3241] - X[3242], 5 X[3241] - X[50999], 7 X[3241] + X[51001], 2 X[3242] - 3 X[50998], 5 X[3242] - 3 X[50999], X[3242] + 3 X[51000], 7 X[3242] + 3 X[51001], 5 X[50998] - 2 X[50999], X[50998] + 2 X[51000], 7 X[50998] + 2 X[51001], X[50999] + 5 X[51000], 7 X[50999] + 5 X[51001], 7 X[51000] - X[51001], 3 X[551] - 2 X[3844], 4 X[3844] - 3 X[50949], X[1350] - 3 X[7967], X[1352] - 3 X[10247], 4 X[1385] - 3 X[21167], 5 X[3616] - 4 X[34573], 5 X[3617] - 7 X[47355], 5 X[3618] - X[3621], 7 X[3622] - 5 X[3763], X[3625] - 3 X[38049], X[3630] - 8 X[3635], X[3630] - 4 X[49465], 2 X[3631] - 7 X[20057], X[3632] - 5 X[16491], X[3632] - 3 X[38047], 5 X[16491] - 3 X[38047], X[3633] + 3 X[16475], 3 X[16475] - X[49688], 2 X[3679] - 3 X[48310], and many others

X(51147) lies on these lines: {1, 141}, {6, 145}, {8, 3589}, {31, 4884}, {44, 49527}, {69, 3623}, {182, 5844}, {390, 17318}, {511, 1483}, {516, 49463}, {517, 44882}, {518, 3244}, {519, 597}, {524, 3241}, {528, 32921}, {545, 49446}, {551, 3844}, {698, 7976}, {742, 49478}, {752, 49464}, {940, 19993}, {944, 29181}, {952, 5480}, {1086, 50289}, {1100, 49466}, {1211, 29815}, {1279, 17243}, {1317, 1469}, {1350, 7967}, {1352, 10247}, {1385, 21167}, {1482, 1503}, {1616, 20009}, {1992, 50790}, {2550, 4395}, {3056, 37734}, {3058, 32928}, {3243, 5845}, {3246, 4078}, {3555, 9021}, {3616, 34573}, {3617, 47355}, {3618, 3621}, {3622, 3763}, {3625, 38049}, {3630, 3635}, {3631, 20057}, {3632, 16491}, {3633, 16475}, {3655, 50965}, {3663, 28566}, {3679, 48310}, {3696, 4405}, {3703, 17469}, {3751, 8584}, {3755, 50112}, {3826, 50023}, {3827, 34791}, {3867, 12135}, {3871, 5096}, {3879, 4864}, {3883, 4364}, {3886, 4971}, {3920, 5743}, {3923, 28503}, {4030, 17017}, {4307, 7228}, {4310, 7238}, {4344, 4363}, {4353, 49741}, {4360, 49704}, {4383, 20020}, {4422, 7290}, {4437, 17389}, {4645, 48631}, {4648, 39567}, {4665, 5263}, {4677, 38023}, {4852, 5853}, {4865, 17061}, {4899, 16669}, {4929, 16670}, {4969, 49450}, {5085, 12245}, {5227, 37556}, {5266, 50589}, {5695, 28472}, {5718, 20045}, {5855, 47373}, {5881, 38035}, {6329, 20050}, {6707, 39581}, {7174, 17332}, {7231, 49483}, {7263, 32922}, {7277, 49499}, {7984, 32298}, {8148, 46264}, {8236, 50995}, {9055, 49470}, {10168, 50823}, {10283, 24206}, {10516, 10595}, {10800, 42421}, {11179, 50805}, {12583, 16211}, {12645, 14561}, {13910, 49232}, {13972, 49233}, {14839, 32449}, {15534, 51092}, {15826, 47489}, {16468, 49534}, {16972, 49451}, {17121, 49698}, {17225, 51055}, {17259, 39587}, {17366, 32850}, {17599, 44419}, {17602, 32844}, {17724, 33070}, {17726, 26227}, {17765, 49477}, {17766, 49472}, {17768, 49455}, {17769, 49482}, {17777, 32926}, {18526, 31670}, {19130, 37705}, {19875, 50789}, {20041, 28369}, {20423, 34748}, {20582, 38314}, {22165, 28538}, {24280, 28297}, {25555, 38165}, {28212, 48898}, {28216, 48896}, {28224, 48901}, {28530, 49453}, {28581, 49481}, {29832, 35466}, {29840, 37646}, {31145, 47352}, {31162, 51022}, {32924, 34612}, {34319, 50923}, {34627, 50959}, {34631, 43273}, {34632, 50971}, {34718, 50983}, {34747, 47359}, {34773, 48881}, {36404, 50131}, {42871, 50284}, {48856, 49731}, {49531, 49678}, {49536, 51005}, {49726, 50294}, {50011, 50125}

X(51147) = midpoint of X(i) and X(j) for these {i,j}: {1, 49681}, {6, 145}, {8, 49679}, {1992, 50790}, {3241, 51000}, {3244, 49684}, {3633, 49688}, {7984, 32298}, {8148, 46264}, {11179, 50805}, {18526, 31670}, {20050, 49690}, {20423, 34748}, {34319, 50923}, {34631, 43273}, {34747, 47359}, {47356, 51093}, {49531, 49678}
X(51147) = reflection of X(i) in X(j) for these {i,j}: {8, 3589}, {141, 1}, {3679, 51006}, {8584, 47356}, {31145, 50951}, {34627, 50959}, {34632, 50971}, {34718, 50983}, {37705, 19130}, {48881, 34773}, {49465, 3635}, {49524, 1386}, {49726, 50294}, {50783, 20582}, {50823, 10168}, {50949, 551}, {50965, 3655}, {50998, 3241}, {51022, 31162}
X(51147) = crossdifference of every pair of points on line {2483, 6363}
X(51147) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 49506, 4026}, {8, 38315, 3589}, {1279, 49476, 17243}, {1386, 49524, 597}, {3244, 49696, 49471}, {3632, 16491, 38047}, {3633, 16475, 49688}, {3679, 51006, 48310}, {31145, 47352, 50951}, {38314, 50783, 20582}, {38315, 49679, 8}, {50023, 50288, 3826}


X(51148) = X(10)X(597)∩X(524)X(3241)

Barycentrics    20*a^3 + 8*a^2*b + 5*a*b^2 - 7*b^3 + 8*a^2*c - 7*b^2*c + 5*a*c^2 - 7*b*c^2 - 7*c^3 : :
X(51148) = 7 X[2] - 5 X[50782], 3 X[6] - 2 X[50951], 4 X[10] - 5 X[597], 13 X[10] - 15 X[38089], 6 X[10] - 5 X[50949], 3 X[10] - 5 X[51005], 13 X[597] - 12 X[38089], 3 X[597] - 2 X[50949], 3 X[597] - 4 X[51005], 18 X[38089] - 13 X[50949], 9 X[38089] - 13 X[51005], 7 X[141] - 10 X[16491], 5 X[141] - 6 X[25055], 3 X[141] - 2 X[50950], 3 X[141] - 4 X[51006], 25 X[16491] - 21 X[25055], 5 X[16491] - 7 X[47356], 15 X[16491] - 7 X[50950], 15 X[16491] - 14 X[51006], 3 X[25055] - 5 X[47356], 9 X[25055] - 5 X[50950], 9 X[25055] - 10 X[51006], 3 X[47356] - X[50950], 3 X[47356] - 2 X[51006], 7 X[3241] - 5 X[3242], 6 X[3241] - 5 X[50998], 9 X[3241] - 5 X[50999], 3 X[3241] - 5 X[51000], 3 X[3241] + 5 X[51001], 6 X[3242] - 7 X[50998], 9 X[3242] - 7 X[50999], 3 X[3242] - 7 X[51000], 3 X[3242] + 7 X[51001], 3 X[50998] - 2 X[50999], X[50998] + 2 X[51001], X[50999] - 3 X[51000], X[50999] + 3 X[51001], 5 X[599] - 7 X[3622], 5 X[1992] - X[3621], 5 X[3416] - 7 X[19876], 2 X[3416] - 3 X[48310], 14 X[19876] - 15 X[48310], X[3630] - 4 X[49684], 3 X[3630] - 4 X[51004], and many others

X(51148) lies on these lines: {2, 50782}, {6, 50951}, {8, 20583}, {10, 597}, {141, 16491}, {518, 51059}, {519, 3629}, {524, 3241}, {599, 3622}, {1992, 3621}, {3416, 19876}, {3630, 49684}, {3631, 38314}, {3633, 9041}, {4677, 5846}, {5550, 20582}, {5603, 50958}, {5731, 50970}, {5847, 22165}, {7967, 50973}, {9053, 15534}, {9812, 51025}, {10246, 50982}, {10247, 50961}, {12007, 34718}, {28566, 49543}, {34595, 38023}, {38034, 47354}, {38315, 50991}, {49630, 50112}, {50783, 51068}, {50784, 51110}

X(51148) = midpoint of X(51000) and X(51001)
X(51148) = reflection of X(i) in X(j) for these {i,j}: {8, 20583}, {141, 47356}, {34718, 12007}, {50949, 51005}, {50950, 51006}, {50998, 51000}
X(51148) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {47356, 50950, 51006}, {50949, 51005, 597}, {50950, 51006, 141}


X(51149) = X(519)X(3763)∩X(524)X(3241)

Barycentrics    23*a^3 - 7*a^2*b + 26*a*b^2 - 4*b^3 - 7*a^2*c - 4*b^2*c + 26*a*c^2 - 4*b*c^2 - 4*c^3 : :
X(51149) = 8 X[1] - 3 X[38087], 3 X[1] - X[50953], 9 X[38087] - 8 X[50953], 3 X[145] + 2 X[50949], 4 X[3241] + X[3242], 3 X[3241] + 2 X[50998], 9 X[3241] + X[50999], 6 X[3241] - X[51000], 21 X[3241] - X[51001], 3 X[3242] - 8 X[50998], 9 X[3242] - 4 X[50999], 3 X[3242] + 2 X[51000], 21 X[3242] + 4 X[51001], 6 X[50998] - X[50999], 4 X[50998] + X[51000], 14 X[50998] + X[51001], 2 X[50999] + 3 X[51000], 7 X[50999] + 3 X[51001], 7 X[51000] - 2 X[51001], 2 X[597] - 7 X[20057], X[599] + 4 X[3244], 3 X[3618] - 4 X[51006], 2 X[3620] + X[49679], 6 X[3635] - X[51005], 5 X[50791] - 4 X[50990], X[50791] + 4 X[51092], X[50990] + 5 X[51092], 3 X[7967] - X[50975], 3 X[10247] - X[50963], X[15533] + 14 X[51094], X[15534] + 4 X[51089], X[15534] - 16 X[51095], X[51089] + 4 X[51095], 8 X[15570] - 3 X[38086], 6 X[16200] - X[51024], X[20050] + 4 X[20582], 3 X[21358] + 2 X[34747], 8 X[33179] - 3 X[38072], 3 X[38047] - 8 X[51107], 6 X[38314] - X[49690], 9 X[38314] - 4 X[50951], 3 X[49690] - 8 X[50951], 9 X[38315] - 4 X[47359], 3 X[38315] + 2 X[50790], and many others

X(51149) lies on these lines: {1, 38087}, {6, 36911}, {145, 50949}, {517, 50968}, {518, 51097}, {519, 3763}, {524, 3241}, {597, 20057}, {599, 3244}, {952, 50956}, {3618, 51006}, {3620, 49679}, {3623, 4473}, {3635, 51005}, {5844, 50980}, {5846, 50791}, {7967, 50975}, {10247, 50963}, {15533, 51094}, {15534, 51089}, {15570, 38086}, {16200, 51024}, {20050, 20582}, {21358, 34747}, {28301, 50130}, {33179, 38072}, {38047, 51107}, {38314, 49690}, {38315, 47359}, {47353, 51087}, {47358, 50989}, {49465, 50950}, {49681, 51004}, {50783, 50993}

X(51149) = reflection of X(i) in X(j) for these {i,j}: {50783, 50993}, {50989, 47358}
X(51149) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3241, 50998, 51000}, {50790, 51071, 38315}, {50998, 51000, 3242}


X(51150) = X(6)X(7)∩X(524)X(6173)

Barycentrics    2*a^3*b - a^2*b^2 - b^4 + 2*a^3*c + 4*a^2*b*c + 2*b^3*c - a^2*c^2 - 2*b^2*c^2 + 2*b*c^3 - c^4 : :
X(51150) = X[1] - 3 X[38046], X[2] - 3 X[38086], 9 X[38086] - X[50995], X[3] - 3 X[38115], X[4] - 3 X[38143], X[5] - 3 X[38164], X[8] - 3 X[38185], X[9] - 3 X[38186], 2 X[3589] - 3 X[38186], X[10] - 3 X[38187], 2 X[3844] - 3 X[38204], 3 X[38054] - X[49511], X[11] - 3 X[38188], X[12] - 3 X[38189], X[144] - 5 X[3618], X[390] - 3 X[38315], 3 X[6173] - X[47595], X[47595] + 3 X[51002], X[1350] - 3 X[21151], X[1352] - 3 X[38107], X[3242] - 3 X[11038], X[3416] - 3 X[38052], X[4312] + 3 X[16475], X[4663] + 2 X[43180], 3 X[5085] - X[5759], X[5223] - 3 X[38047], X[5698] - 3 X[38048], X[5779] - 3 X[14561], X[6172] - 3 X[47352], X[11372] - 3 X[38035], 3 X[14853] + X[36996], 3 X[27475] - X[49509], 5 X[18230] - 7 X[47355], 5 X[20195] - 4 X[34573], 2 X[20582] - 3 X[38093], 3 X[21358] - X[50996], 2 X[24206] - 3 X[38171], 4 X[25555] - 3 X[38166], 3 X[38023] - X[50836], 3 X[38024] - X[47358], 3 X[38049] - X[51090], 3 X[38073] - X[47353], 3 X[38087] - X[50835], 3 X[38089] - X[50834], 3 X[38092] - X[50783], 3 X[38094] - X[50781], 3 X[38111] - X[48876], 3 X[38137] - X[39884]

X(51150) lies on these lines: {1, 38046}, {2, 38086}, {3, 38115}, {4, 38143}, {5, 38164}, {6, 7}, {8, 38185}, {9, 3589}, {10, 141}, {11, 38188}, {12, 38189}, {41, 7198}, {144, 3618}, {182, 5762}, {390, 38315}, {496, 40690}, {511, 31657}, {516, 1386}, {524, 6173}, {527, 597}, {528, 50112}, {529, 24249}, {674, 8255}, {742, 7263}, {954, 36741}, {971, 5480}, {999, 17044}, {1001, 17045}, {1268, 3619}, {1329, 17048}, {1350, 21151}, {1352, 38107}, {1475, 3665}, {1503, 5805}, {2140, 6147}, {2160, 39273}, {2486, 42356}, {2550, 4361}, {3242, 4648}, {3243, 4851}, {3338, 20269}, {3416, 38052}, {3629, 50013}, {3672, 41325}, {3674, 40133}, {3751, 4859}, {3943, 49533}, {4312, 16475}, {4360, 20533}, {4395, 5880}, {4437, 17234}, {4663, 17067}, {4675, 16973}, {4852, 5853}, {4904, 5902}, {4966, 49531}, {5045, 34847}, {5085, 5759}, {5223, 17306}, {5224, 27484}, {5434, 9317}, {5572, 18589}, {5698, 38048}, {5732, 29181}, {5779, 14561}, {5843, 18583}, {6172, 47352}, {6666, 25498}, {9000, 21195}, {9024, 10427}, {9041, 17313}, {9055, 16593}, {10520, 40869}, {11372, 38035}, {13407, 24774}, {14377, 24470}, {14853, 36996}, {15299, 20270}, {15668, 19288}, {16972, 17301}, {17244, 49502}, {17245, 27475}, {17246, 51052}, {17276, 36404}, {17296, 49688}, {17300, 32029}, {17327, 38057}, {17351, 49775}, {17390, 42871}, {17728, 30742}, {17754, 25355}, {17761, 39542}, {18230, 47355}, {20195, 34573}, {20247, 40997}, {20330, 24220}, {20582, 38093}, {21239, 40646}, {21358, 50996}, {21746, 38989}, {24206, 38171}, {25555, 38166}, {28538, 51100}, {28634, 38200}, {31671, 46264}, {37676, 40688}, {38023, 50836}, {38024, 47358}, {38049, 51090}, {38073, 47353}, {38087, 50835}, {38089, 50834}, {38092, 50783}, {38094, 50781}, {38111, 48876}, {38137, 39884}, {38454, 47373}, {47357, 51006}, {48627, 49496}, {48854, 49738}

X(51150) = midpoint of X(i) and X(j) for these {i,j}: {6, 7}, {6173, 51002}, {31671, 46264}
X(51150) = reflection of X(i) in X(j) for these {i,j}: {9, 3589}, {141, 142}, {47357, 51006}
X(51150) = complement of X(50995)
X(51150) = crossdifference of every pair of points on line {926, 21007}
X(51150) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 5222, 5819}, {9, 38186, 3589}, {141, 49481, 49524}, {5222, 5244, 5834}, {16593, 51058, 17243}


X(51151) = X(7)X(594)∩X(524)X(6173)

Barycentrics    4*a^4 - 2*a^3*b - a^2*b^2 + 4*a*b^3 - 5*b^4 - 2*a^3*c + 4*a^2*b*c + 4*a*b^2*c + 10*b^3*c - a^2*c^2 + 4*a*b*c^2 - 10*b^2*c^2 + 4*a*c^3 + 10*b*c^3 - 5*c^4 : :
X(51151) = 3 X[7] + X[50996], 3 X[599] - X[50996], 3 X[6173] - X[51002], 3 X[47595] + X[51002], X[1992] - 3 X[38086], 2 X[3589] - 3 X[38093], X[6172] - 3 X[21358], 3 X[11038] - X[51000], X[11179] - 3 X[38065], 5 X[20195] - 3 X[38088], X[20423] - 3 X[38107], 3 X[21151] - X[43273], 3 X[21153] - 4 X[50984], 3 X[21356] - X[50995], 3 X[38024] - X[47356], 3 X[38052] - X[47359], 3 X[38053] - 2 X[51006], 3 X[38054] - X[51005], 3 X[38087] - 5 X[40333], 3 X[38111] - X[50979], 3 X[38122] - 2 X[50983], 3 X[38150] - 2 X[50959], 3 X[38200] - 2 X[50951]

X(51151) lies on these lines: {2, 5845}, {7, 594}, {9, 20582}, {141, 527}, {142, 597}, {516, 50965}, {518, 3919}, {524, 6173}, {528, 49741}, {542, 31657}, {742, 51057}, {971, 47354}, {1992, 38086}, {2550, 9041}, {3589, 38093}, {4437, 49722}, {5542, 28538}, {5762, 50977}, {5846, 51099}, {5847, 51098}, {5853, 50998}, {5880, 7238}, {6172, 21358}, {9053, 51102}, {11038, 51000}, {11179, 38065}, {17225, 51058}, {20195, 38088}, {20423, 38107}, {21151, 43273}, {21153, 50984}, {21356, 50995}, {25557, 50023}, {38024, 47356}, {38052, 47359}, {38053, 51006}, {38054, 51005}, {38087, 40333}, {38111, 50979}, {38122, 50983}, {38150, 50959}, {38200, 50951}, {49524, 49733}

X(51151) = midpoint of X(i) and X(j) for these {i,j}: {7, 599}, {6173, 47595}
X(51151) = reflection of X(i) in X(j) for these {i,j}: {9, 20582}, {597, 142}
X(51151) = complement of X(50997)


X(51152) = X(9)X(599)∩X(524)X(6173)

Barycentrics    5*a^4 - 7*a^3*b + a^2*b^2 + 5*a*b^3 - 4*b^4 - 7*a^3*c - 4*a^2*b*c + 5*a*b^2*c + 8*b^3*c + a^2*c^2 + 5*a*b*c^2 - 8*b^2*c^2 + 5*a*c^3 + 8*b*c^3 - 4*c^4 : :
X(51152) = 2 X[6] - 3 X[38093], 3 X[9] - 2 X[50997], 3 X[599] - X[50997], 3 X[69] - X[50996], 3 X[6173] - 2 X[51002], 3 X[47595] - X[51002], 4 X[597] - 5 X[20195], 2 X[8584] - 3 X[38186], 3 X[11038] - X[51001], 4 X[11178] - 3 X[38075], 2 X[20423] - 3 X[38150], 4 X[20582] - 3 X[38088], 3 X[21151] - X[50974], 3 X[21153] - 4 X[50977], 3 X[38052] - X[50952], 3 X[38053] - 2 X[51005], 3 X[38107] - X[50962], 3 X[38111] - X[50986], 3 X[38122] - 2 X[50979], 3 X[38200] - 2 X[47359], 3 X[38316] - 4 X[51003]

X(51152) lies on these lines: {6, 38093}, {7, 11160}, {9, 599}, {69, 527}, {142, 1992}, {516, 50967}, {518, 4677}, {524, 6173}, {542, 5732}, {597, 20195}, {971, 50955}, {3243, 28538}, {5762, 50978}, {5845, 22165}, {5847, 51099}, {5853, 50999}, {6172, 29577}, {8584, 38186}, {11038, 51001}, {11178, 38075}, {16496, 49747}, {20423, 38150}, {20582, 38088}, {21151, 50974}, {21153, 50977}, {34379, 51100}, {38052, 50952}, {38053, 51005}, {38107, 50962}, {38111, 50986}, {38122, 50979}, {38200, 47359}, {38316, 51003}, {47357, 49511}

X(51152) = midpoint of X(7) and X(11160)
X(51152) = reflection of X(i) in X(j) for these {i,j}: {9, 599}, {1992, 142}, {6173, 47595}, {47357, 49511}


X(51153) = X(2)X(50786)∩X(524)X(551)

Barycentrics    28*a^3 + 13*a^2*b + 16*a*b^2 + b^3 + 13*a^2*c + b^2*c + 16*a*c^2 + b*c^2 + c^3 : :
X(51153) = 7 X[2] - 2 X[50786], X[10] - 6 X[38023], 3 X[10] + 2 X[51000], 9 X[38023] + X[51000], X[3618] + 5 X[16491], 3 X[3618] - X[50953], 15 X[16491] + X[50953], X[551] + 4 X[1386], 7 X[551] - 2 X[49511], 9 X[551] - 4 X[51003], 6 X[551] - X[51004], 3 X[551] + 2 X[51005], 3 X[551] - 8 X[51006], 14 X[1386] + X[49511], 9 X[1386] + X[51003], 24 X[1386] + X[51004], 6 X[1386] - X[51005], 3 X[1386] + 2 X[51006], 9 X[49511] - 14 X[51003], 12 X[49511] - 7 X[51004], 3 X[49511] + 7 X[51005], 3 X[49511] - 28 X[51006], 8 X[51003] - 3 X[51004], 2 X[51003] + 3 X[51005], X[51003] - 6 X[51006], X[51004] + 4 X[51005], X[51004] - 16 X[51006], X[51005] + 4 X[51006], 4 X[597] + X[3244], 2 X[599] - 7 X[15808], 6 X[1125] - X[50950], X[1992] + 4 X[3636], 3 X[3576] - X[50966], 8 X[3589] - 3 X[38098], X[3620] - 3 X[25055], 3 X[3620] + X[51001], 9 X[25055] + X[51001], X[3625] - 6 X[38089], 3 X[3625] - 8 X[50951], 9 X[38089] - 4 X[50951], 2 X[3763] - 3 X[19883], 3 X[19883] + 2 X[47356], 3 X[3817] - 2 X[50956], X[4669] - 6 X[38049], 4 X[5476] + X[51082], 5 X[50784] - 7 X[50993], and many others

X(51153) lies on these lines: {2, 50786}, {10, 38023}, {515, 50963}, {516, 50975}, {517, 50987}, {518, 51104}, {519, 3618}, {524, 551}, {597, 3244}, {599, 15808}, {1125, 50950}, {1992, 3636}, {3576, 50966}, {3589, 38098}, {3620, 25055}, {3625, 38089}, {3763, 19883}, {3817, 50956}, {4669, 38049}, {5476, 51082}, {5847, 50784}, {5886, 50954}, {10165, 50980}, {13607, 14848}, {16475, 50999}, {19862, 28538}, {28164, 51029}, {28301, 50300}, {30392, 51028}, {34379, 51105}, {34641, 47352}, {38029, 50808}, {38035, 50862}, {38040, 50796}, {38048, 50834}, {38050, 50889}, {38079, 47745}, {38314, 49505}, {38315, 47359}, {47358, 51106}, {49684, 50949}, {50787, 51110}, {50990, 51108}

X(51153) = midpoint of X(3763) and X(47356)
X(51153) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {551, 51005, 51004}, {1386, 51006, 51005}, {51005, 51006, 551}


X(51154) = X(2)X(9053)∩X(524)X(551)

Barycentrics    14*a^3 + 2*a^2*b + 17*a*b^2 + 5*b^3 + 2*a^2*c + 5*b^2*c + 17*a*c^2 + 5*b*c^2 + 5*c^3 : :
X(51154) = 3 X[1] + X[50949], 3 X[20582] - X[50949], 7 X[2] + X[50790], 3 X[2] + X[50998], 3 X[50790] + 7 X[50951], 3 X[50790] - 7 X[50998], X[141] + 3 X[38314], 3 X[141] + X[51000], 9 X[38314] - X[51000], 5 X[551] - X[1386], 7 X[551] + X[49511], 3 X[551] + X[51003], 15 X[551] + X[51004], 9 X[551] - X[51005], 3 X[551] - X[51006], 7 X[1386] + 5 X[49511], 3 X[1386] + 5 X[51003], 3 X[1386] + X[51004], 9 X[1386] - 5 X[51005], 3 X[1386] - 5 X[51006], 3 X[49511] - 7 X[51003], 15 X[49511] - 7 X[51004], 9 X[49511] + 7 X[51005], 3 X[49511] + 7 X[51006], 5 X[51003] - X[51004], 3 X[51003] + X[51005], 3 X[51004] + 5 X[51005], X[51004] + 5 X[51006], X[51005] - 3 X[51006], X[597] - 5 X[3616], 3 X[597] + X[50999], 15 X[3616] + X[50999], X[599] + 7 X[3622], 3 X[1699] - X[51026], X[3242] + 3 X[48310], 3 X[3576] - X[50971], 5 X[3589] + X[16496], X[3589] - 3 X[25055], 3 X[3589] - X[47359], X[16496] + 15 X[25055], 3 X[16496] + 5 X[47359], 9 X[25055] - X[47359], 21 X[3624] - 5 X[50953], 11 X[5550] - 3 X[38087], 3 X[5603] + X[50965], 3 X[5731] + X[51022], and many others

X(51154) lies on these lines: {1, 20582}, {2, 9053}, {141, 38314}, {515, 50960}, {516, 50972}, {517, 50984}, {518, 51108}, {519, 34573}, {524, 551}, {597, 3616}, {599, 3622}, {1125, 9041}, {1699, 51026}, {3242, 48310}, {3576, 50971}, {3589, 16496}, {3624, 50953}, {3631, 47356}, {3636, 28538}, {5550, 38087}, {5603, 50965}, {5731, 51022}, {5846, 50786}, {5847, 41150}, {5886, 50959}, {9055, 51061}, {10246, 47354}, {10283, 50977}, {15569, 17225}, {16475, 41149}, {19883, 49465}, {20583, 38023}, {22165, 38315}, {28297, 48810}, {30392, 51025}, {38028, 50983}, {38049, 41153}, {47358, 51110}, {50781, 51106}, {50784, 50950}

X(51154) = midpoint of X(i) and X(j) for these {i,j}: {1, 20582}, {3631, 47356}, {50951, 50998}, {51003, 51006}
X(51154) = complement of X(50951)
X(51154) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 50998, 50951}, {551, 51003, 51006}, {1386, 51003, 51004}


X(51155) = X(2)X(50784)∩X(524)X(551)

Barycentrics    14*a^3 + 11*a^2*b - a*b^2 - 4*b^3 + 11*a^2*c - 4*b^2*c - a*c^2 - 4*b*c^2 - 4*c^3 : :
X(51155) = 7 X[2] - 5 X[50784], 5 X[6] - 3 X[19875], 3 X[6] - X[50950], 9 X[19875] - 5 X[50950], X[8] - 5 X[1992], 2 X[8] - 5 X[4663], 3 X[8] - 5 X[47359], 3 X[8] + 5 X[51001], 3 X[1992] - X[47359], 3 X[1992] + X[51001], 3 X[4663] - 2 X[47359], 3 X[4663] + 2 X[51001], 2 X[193] + X[49465], 3 X[193] + X[50999], 3 X[47356] - X[50999], 3 X[49465] - 2 X[50999], 7 X[15534] + X[50790], 3 X[15534] - X[50952], 3 X[15534] + X[51000], 5 X[15534] + X[51093], 3 X[50790] + 7 X[50952], 3 X[50790] - 7 X[51000], 5 X[50790] - 7 X[51093], 5 X[50952] + 3 X[51093], 5 X[51000] - 3 X[51093], 4 X[551] - 5 X[1386], 7 X[551] - 5 X[49511], 6 X[551] - 5 X[51003], 9 X[551] - 5 X[51004], 3 X[551] - 5 X[51005], 9 X[551] - 10 X[51006], 7 X[1386] - 4 X[49511], 3 X[1386] - 2 X[51003], 9 X[1386] - 4 X[51004], 3 X[1386] - 4 X[51005], 9 X[1386] - 8 X[51006], 6 X[49511] - 7 X[51003], 9 X[49511] - 7 X[51004], 3 X[49511] - 7 X[51005], 9 X[49511] - 14 X[51006], 3 X[51003] - 2 X[51004], 3 X[51003] - 4 X[51006], X[51004] - 3 X[51005], 3 X[51005] - 2 X[51006], 5 X[597] - 4 X[3634], and many others

X(51155) lies on these lines: {2, 50784}, {6, 19875}, {8, 1992}, {10, 20583}, {193, 17488}, {518, 3899}, {519, 3629}, {524, 551}, {542, 22793}, {597, 3634}, {599, 3624}, {1699, 51027}, {2836, 41720}, {3416, 5032}, {3576, 50973}, {3631, 19883}, {3635, 50998}, {3817, 50958}, {4141, 4641}, {4672, 50084}, {4745, 5847}, {4852, 28558}, {4906, 20086}, {5846, 41149}, {5886, 50961}, {10165, 50982}, {11008, 38314}, {11160, 38023}, {15254, 50125}, {15533, 16475}, {17768, 49543}, {25055, 40341}, {28208, 37517}, {28534, 50131}, {32455, 50951}, {34379, 51107}, {38028, 50985}, {38049, 50991}, {50783, 50953}, {50791, 51110}

X(51155) = midpoint of X(i) and X(j) for these {i,j}: {193, 47356}, {47359, 51001}, {50952, 51000}
X(51155) = reflection of X(i) in X(j) for these {i,j}: {10, 20583}, {4663, 1992}, {49465, 47356}, {50084, 4672}, {51003, 51005}, {51004, 51006}
X(51155) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1992, 51001, 47359}, {15534, 51000, 50952}, {51003, 51005, 1386}, {51004, 51005, 51006}, {51004, 51006, 51003}


X(51156) = X(2)X(38191)∩X(524)X(551)

Barycentrics    16*a^3 + a^2*b + 22*a*b^2 + 7*b^3 + a^2*c + 7*b^2*c + 22*a*c^2 + 7*b*c^2 + 7*c^3 : :
X(51156) = 8 X[2] - 3 X[38191], 4 X[2] + X[51089], 9 X[38191] - 8 X[50953], 3 X[38191] + 2 X[51089], 4 X[50953] + 3 X[51089], 3 X[10] + 2 X[50998], 7 X[551] - 2 X[1386], 4 X[551] + X[49511], 3 X[551] + 2 X[51003], 9 X[551] + X[51004], 6 X[551] - X[51005], 9 X[551] - 4 X[51006], 8 X[1386] + 7 X[49511], 3 X[1386] + 7 X[51003], 18 X[1386] + 7 X[51004], 12 X[1386] - 7 X[51005], 9 X[1386] - 14 X[51006], 3 X[49511] - 8 X[51003], 9 X[49511] - 4 X[51004], 3 X[49511] + 2 X[51005], 9 X[49511] + 16 X[51006], 6 X[51003] - X[51004], 4 X[51003] + X[51005], 3 X[51003] + 2 X[51006], 2 X[51004] + 3 X[51005], X[51004] + 4 X[51006], 3 X[51005] - 8 X[51006], 2 X[597] - 7 X[15808], X[599] + 4 X[3636], 8 X[1125] - 3 X[38089], 6 X[1125] - X[47359], 9 X[38089] - 4 X[47359], 3 X[1699] - X[51029], X[3244] + 4 X[20582], 3 X[3576] - X[50975], X[3618] - 3 X[25055], 3 X[3618] + X[50999], 9 X[25055] + X[50999], X[3620] + 3 X[38314], 2 X[3620] + X[49684], 3 X[3620] - X[50950], 6 X[38314] - X[49684], 9 X[38314] + X[50950], 3 X[49684] + 2 X[50950], 21 X[3622] - X[51001], and many others

X(51156) lies on these lines: {2, 38191}, {10, 50998}, {515, 50956}, {516, 50968}, {517, 50980}, {518, 51109}, {519, 3763}, {524, 551}, {597, 15808}, {599, 3636}, {1125, 38089}, {1699, 51029}, {3244, 20582}, {3576, 50975}, {3618, 25055}, {3620, 38314}, {3622, 51001}, {4141, 29686}, {5603, 50966}, {5846, 51104}, {5847, 50990}, {5886, 50963}, {9041, 19862}, {10246, 50954}, {19878, 38087}, {19883, 49529}, {28322, 48810}, {30392, 51023}, {34573, 38098}, {38028, 50987}, {38049, 47358}, {38315, 41150}, {47353, 51085}, {48310, 49536}, {49465, 50951}, {50781, 50993}, {50783, 51107}, {50789, 51095}, {50790, 51069}, {50949, 51071}, {50952, 51110}

X(51156) = reflection of X(i) in X(j) for these {i,j}: {50781, 50993}, {50989, 50787}
X(51156) = complement of X(50953)
X(51156) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 51089, 38191}, {551, 51003, 51005}, {551, 51004, 51006}, {41150, 50787, 38315}, {47358, 51108, 38049}, {51003, 51005, 49511}, {51003, 51006, 51004}, {51004, 51006, 51005}


X(51157) = X(6)X(100)∩X(524)X(6174)

Barycentrics    a*(2*a^4 - 2*a^3*b - 2*a^3*c + 4*a^2*b*c - 2*a*b^2*c + b^3*c - 2*a*b*c^2 + b*c^3) : :
X(51157) = 3 X[6] - X[10755], 3 X[100] + X[10755], X[80] - 3 X[38047], X[104] - 3 X[5085], X[149] - 5 X[3618], X[153] + 3 X[25406], 3 X[6174] - X[51007], X[51007] + 3 X[51008], X[1320] - 3 X[38315], X[1350] - 3 X[34474], X[10759] + 3 X[34474], X[1352] - 3 X[38752], X[1484] - 3 X[38110], X[3751] + 3 X[15015], X[3254] - 3 X[38186], X[3629] + 4 X[35023], 3 X[5050] + X[12331], X[5541] + 3 X[16475], 3 X[6034] - X[10769], X[6154] + 4 X[6329], X[10265] - 3 X[38118], 7 X[10541] - X[38669], X[10707] - 3 X[47352], X[10738] - 3 X[14561], 5 X[12017] - X[12773], X[12653] - 5 X[16491], X[12737] - 3 X[38029], X[13199] + 3 X[14853], 3 X[13331] - X[32454], X[14217] - 3 X[38035], X[19914] - 3 X[38116], X[20119] - 3 X[38185], X[21630] - 3 X[38049], 4 X[25555] - 3 X[38168], 5 X[31235] - 4 X[34573], 5 X[31272] - 7 X[47355], X[37726] - 3 X[38119], 3 X[38023] - X[50891], 3 X[38087] - X[50890], 3 X[38089] - X[50889], 2 X[45310] - 3 X[48310]

X(51157) lies on these lines: {6, 100}, {11, 2330}, {80, 38047}, {104, 5085}, {119, 1503}, {141, 3035}, {149, 3618}, {153, 25406}, {182, 952}, {214, 518}, {511, 33814}, {524, 6174}, {528, 597}, {545, 5091}, {611, 10090}, {613, 10087}, {692, 1083}, {765, 27950}, {1026, 17455}, {1086, 4579}, {1145, 5846}, {1317, 1428}, {1320, 38315}, {1350, 10759}, {1352, 38752}, {1386, 2802}, {1484, 38110}, {1492, 17369}, {1691, 13194}, {1862, 1974}, {2163, 3751}, {2787, 5026}, {2805, 28662}, {2806, 28343}, {2829, 44882}, {2830, 14688}, {2932, 36740}, {3254, 38186}, {3573, 4370}, {3629, 35023}, {4265, 17100}, {4553, 20958}, {4585, 31073}, {4996, 5096}, {5050, 12331}, {5092, 38602}, {5135, 10609}, {5138, 9945}, {5480, 5840}, {5541, 16475}, {5845, 10427}, {6034, 10769}, {6154, 6329}, {6593, 8674}, {7972, 49688}, {8299, 23344}, {9021, 11570}, {9041, 50843}, {9055, 51062}, {10265, 38118}, {10541, 38669}, {10707, 47352}, {10711, 43273}, {10728, 48905}, {10738, 14561}, {10742, 46264}, {11698, 48906}, {12017, 12773}, {12138, 19124}, {12653, 16491}, {12737, 38029}, {13199, 14853}, {13331, 32454}, {14217, 38035}, {16799, 41701}, {19130, 22938}, {19914, 38116}, {20119, 38185}, {21630, 38049}, {22799, 29012}, {24264, 49726}, {24466, 29181}, {25555, 38168}, {26890, 44419}, {28538, 50841}, {31235, 34573}, {31272, 47355}, {33337, 49529}, {35423, 38657}, {37222, 38310}, {37726, 38119}, {38023, 50891}, {38087, 50890}, {38089, 50889}, {38521, 39560}, {38655, 50659}, {45310, 48310}

X(51157) = midpoint of X(i) and X(j) for these {i,j}: {6, 100}, {1350, 10759}, {6174, 51008}, {7972, 49688}, {10711, 43273}, {10728, 48905}, {10742, 46264}, {11698, 48906}, {16799, 41701}, {33337, 49529}
X(51157) = reflection of X(i) in X(j) for these {i,j}: {11, 3589}, {141, 3035}, {22938, 19130}, {38602, 5092}
X(51157) = crosssum of X(2) and X(31118)
X(51157) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 19112, 48703}, {100, 19113, 48704}, {10759, 34474, 1350}


X(51158) = X(100)X(599)∩X(524)X(6174)

Barycentrics    2*a^5 - 2*a^4*b + 6*a^3*b^2 - 6*a^2*b^3 - 2*a*b^4 + 2*b^5 - 2*a^4*c - 4*a^2*b^2*c + 9*a*b^3*c - 2*b^4*c + 6*a^3*c^2 - 4*a^2*b*c^2 - 4*a*b^2*c^2 - 6*a^2*c^3 + 9*a*b*c^3 - 2*a*c^4 - 2*b*c^4 + 2*c^5 : :
X(51158) = 3 X[6174] - X[51008], 3 X[51007] + X[51008], X[10707] - 3 X[21358], X[10755] - 3 X[47352], 3 X[15015] + X[50950], X[20423] - 3 X[38752], 3 X[21154] - 4 X[50984], 5 X[31235] - 3 X[38090], 3 X[34123] - 2 X[51006], 3 X[34474] - X[43273], 3 X[38064] - 5 X[38762], 3 X[38760] - 2 X[50983]

X(51158) lies on these lines: {2, 9024}, {11, 20582}, {69, 27756}, {100, 599}, {141, 528}, {214, 28538}, {518, 50841}, {524, 6174}, {542, 33814}, {597, 3035}, {952, 50949}, {1145, 9041}, {1350, 10711}, {2802, 51003}, {2829, 50965}, {5840, 47354}, {5846, 50843}, {5847, 50844}, {5848, 22165}, {5854, 50998}, {9053, 50842}, {10031, 50783}, {10707, 21358}, {10755, 47352}, {15015, 50950}, {17225, 51062}, {20423, 38752}, {21154, 50984}, {22938, 25561}, {31235, 38090}, {34123, 51006}, {34379, 50845}, {34474, 43273}, {38064, 38762}, {38760, 50983}

X(51158) = midpoint of X(i) and X(j) for these {i,j}: {100, 599}, {1350, 10711}, {6174, 51007}, {10031, 50783}
X(51158) = reflection of X(i) in X(j) for these {i,j}: {11, 20582}, {597, 3035}, {22938, 25561}


X(51159) = X(6)X(616)∩X(15)X(524)

Barycentrics    8*a^6 - 5*a^4*b^2 - 2*a^2*b^4 - b^6 - 5*a^4*c^2 - 12*a^2*b^2*c^2 + b^4*c^2 - 2*a^2*c^4 + b^2*c^4 - c^6 - 2*Sqrt[3]*(b^2 + c^2)*(a^2 + b^2 + c^2)*S : :
X(51159) = 3 X[5463] - X[51010], 5 X[5463] - X[51011], 5 X[51010] - 3 X[51011], X[51010] + 3 X[51012], X[51011] + 5 X[51012], 3 X[5085] - X[6770], 2 X[5459] - 3 X[48310], X[8584] + 2 X[36769], X[9901] - 3 X[38047], X[13103] - 3 X[14561], 2 X[20252] - 3 X[38317], X[22165] - 4 X[36768], 4 X[34573] - 5 X[36770], 5 X[36767] - 2 X[50991]

X(51159) lies on these lines: {6, 616}, {13, 3589}, {14, 23019}, {15, 524}, {30, 22687}, {39, 9115}, {69, 30471}, {99, 42942}, {141, 542}, {182, 3643}, {298, 12215}, {395, 5980}, {396, 1691}, {518, 51114}, {530, 597}, {623, 11645}, {624, 10168}, {629, 18553}, {636, 20190}, {1503, 5617}, {3867, 12142}, {5085, 6770}, {5182, 14904}, {5459, 48310}, {5473, 29181}, {5846, 12781}, {6114, 9830}, {6582, 42913}, {6782, 33459}, {7975, 9053}, {8356, 42943}, {8584, 36769}, {9041, 50849}, {9116, 22579}, {9901, 38047}, {10645, 51013}, {11646, 23303}, {13103, 14561}, {13910, 49208}, {13972, 49209}, {16241, 51018}, {20252, 38317}, {22165, 36768}, {22580, 35751}, {28538, 50847}, {34573, 36770}, {35696, 36772}, {36767, 50991}, {41022, 44882}, {44382, 50983}, {46264, 48655}

X(51159) = midpoint of X(i) and X(j) for these {i,j}: {6, 616}, {5463, 51012}, {9116, 22579}, {22580, 35751}, {46264, 48655}
X(51159) = reflection of X(i) in X(j) for these {i,j}: {13, 3589}, {141, 618}, {47610, 5092}


X(51160) = X(6)X(617)∩X(16)X(524)

Barycentrics    8*a^6 - 5*a^4*b^2 - 2*a^2*b^4 - b^6 - 5*a^4*c^2 - 12*a^2*b^2*c^2 + b^4*c^2 - 2*a^2*c^4 + b^2*c^4 - c^6 + 2*Sqrt[3]*(b^2 + c^2)*(a^2 + b^2 + c^2)*S : :
X(51160) = 3 X[5464] - X[51013], 5 X[5464] - X[51014], 5 X[51013] - 3 X[51014], X[51013] + 3 X[51015], X[51014] + 5 X[51015], 3 X[5085] - X[6773], 2 X[5460] - 3 X[48310], X[8584] + 2 X[47867], X[9900] - 3 X[38047], X[13102] - 3 X[14561], 2 X[20253] - 3 X[38317]

X(51160) lies on these lines: {6, 617}, {13, 23025}, {14, 3589}, {16, 524}, {30, 22689}, {39, 9117}, {69, 30472}, {99, 42943}, {141, 542}, {182, 3642}, {299, 12215}, {395, 1691}, {396, 5981}, {518, 51115}, {531, 597}, {623, 10168}, {624, 11645}, {630, 18553}, {635, 20190}, {1503, 5613}, {3867, 12141}, {5085, 6773}, {5182, 14905}, {5460, 48310}, {5474, 29181}, {5846, 12780}, {6115, 9830}, {6295, 42912}, {6783, 33458}, {7974, 9053}, {8356, 42942}, {8584, 47867}, {9041, 50852}, {9114, 22580}, {9900, 38047}, {10646, 51010}, {11646, 23302}, {13102, 14561}, {13910, 49210}, {13972, 49211}, {16242, 51016}, {20253, 38317}, {22579, 36329}, {28538, 50850}, {41023, 44882}, {44383, 50983}, {46264, 48656}

X(51160) = midpoint of X(i) and X(j) for these {i,j}: {6, 617}, {5464, 51015}, {9114, 22580}, {22579, 36329}, {46264, 48656}
X(51160) = reflection of X(i) in X(j) for these {i,j}: {14, 3589}, {141, 619}, {47611, 5092}


X(51161) = X(6)X(621)∩X(13)X(524)

Barycentrics    Sqrt[3]*(3*a^4*b^2 - 2*a^2*b^4 - b^6 + 3*a^4*c^2 + 4*a^2*b^2*c^2 + b^4*c^2 - 2*a^2*c^4 + b^2*c^4 - c^6) + 2*(b^2 + c^2)*(a^2 + b^2 + c^2)*S : :
X(51161) = 2 X[624] - 3 X[5103], 3 X[50855] - X[51016], X[51016] + 3 X[51017], 3 X[5085] - X[36993], X[5611] - 3 X[14561], 4 X[6329] - 3 X[36757], 3 X[21359] - X[51010], 4 X[34573] - 5 X[40334], 2 X[45879] - 3 X[48310]

X(51161) lies on these lines: {5, 141}, {6, 621}, {13, 524}, {15, 3589}, {30, 22687}, {69, 42142}, {83, 398}, {316, 5318}, {396, 5978}, {397, 7762}, {531, 597}, {618, 19924}, {732, 31713}, {1350, 37463}, {1503, 20428}, {2076, 10617}, {3564, 44488}, {3629, 44498}, {3642, 5476}, {5085, 36993}, {5104, 23303}, {5321, 8370}, {5611, 14561}, {5617, 44385}, {5846, 50853}, {5969, 6115}, {6329, 36757}, {9041, 50854}, {11308, 42490}, {14538, 29181}, {16808, 51018}, {18583, 22683}, {21359, 51010}, {22797, 47354}, {23025, 25200}, {31670, 37333}, {34573, 40334}, {35943, 42942}, {36755, 48881}, {37832, 51013}, {40706, 43104}, {44659, 49524}, {44666, 44882}, {45879, 48310}

X(51161) = midpoint of X(i) and X(j) for these {i,j}: {6, 621}, {22493, 22580}, {23025, 25200}, {50855, 51017}
X(51161) = reflection of X(i) in X(j) for these {i,j}: {15, 3589}, {141, 623}, {3629, 44498}, {48881, 36755}
X(51161) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {623, 7684, 625}, {623, 19130, 5103}


X(51162) = X(6)X(622)∩X(14)X(524)

Barycentrics    Sqrt[3]*(3*a^4*b^2 - 2*a^2*b^4 - b^6 + 3*a^4*c^2 + 4*a^2*b^2*c^2 + b^4*c^2 - 2*a^2*c^4 + b^2*c^4 - c^6) - 2*(b^2 + c^2)*(a^2 + b^2 + c^2)*S : :
X(51162) = 2 X[623] - 3 X[5103], 3 X[50858] - X[51018], X[51018] + 3 X[51019], 3 X[5085] - X[36995], X[5615] - 3 X[14561], 4 X[6329] - 3 X[36758], 3 X[21360] - X[51013], 4 X[34573] - 5 X[40335], 2 X[45880] - 3 X[48310]

X(51162) lies on these lines: {5, 141}, {6, 622}, {14, 524}, {16, 3589}, {30, 22689}, {69, 42139}, {83, 397}, {316, 5321}, {395, 5979}, {398, 7762}, {530, 597}, {619, 19924}, {732, 31714}, {1350, 37464}, {1503, 20429}, {2076, 10616}, {3564, 44487}, {3629, 44497}, {3643, 5476}, {5085, 36995}, {5104, 23302}, {5318, 8370}, {5613, 44384}, {5615, 14561}, {5846, 50856}, {5969, 6114}, {6329, 36758}, {9041, 50857}, {11307, 42491}, {14539, 29181}, {16809, 51016}, {18583, 22685}, {21360, 51013}, {22796, 47354}, {23019, 25204}, {31670, 37332}, {34573, 40335}, {35942, 42943}, {36756, 48881}, {37835, 51010}, {40707, 43101}, {44219, 44382}, {44660, 49524}, {44667, 44882}, {45880, 48310}

X(51162) = midpoint of X(i) and X(j) for these {i,j}: {6, 622}, {22494, 22579}, {23019, 25204}, {50858, 51019}
X(51162) = reflection of X(i) in X(j) for these {i,j}: {16, 3589}, {141, 624}, {3629, 44497}, {48881, 36756}
X(51162) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {624, 7685, 625}, {624, 19130, 5103}


X(51163) = X(4)X(141)∩X(524)X(3543)

Barycentrics    4*a^6 + 5*a^4*b^2 - 6*a^2*b^4 - 3*b^6 + 5*a^4*c^2 + 4*a^2*b^2*c^2 + 3*b^4*c^2 - 6*a^2*c^4 + 3*b^2*c^4 - 3*c^6 : :
X(51163) = 3 X[4] - X[1350], 5 X[4] - 3 X[10516], 7 X[4] - 3 X[10519], 9 X[4] - 5 X[40330], 3 X[141] - 2 X[1350], 5 X[141] - 6 X[10516], 7 X[141] - 6 X[10519], 9 X[141] - 10 X[40330], X[141] + 2 X[48910], 5 X[1350] - 9 X[10516], 7 X[1350] - 9 X[10519], 3 X[1350] - 5 X[40330], X[1350] + 3 X[48910], 7 X[10516] - 5 X[10519], 27 X[10516] - 25 X[40330], 3 X[10516] + 5 X[48910], 27 X[10519] - 35 X[40330], 3 X[10519] + 7 X[48910], 5 X[40330] + 9 X[48910], 3 X[5] - 2 X[14810], 4 X[5] - 3 X[21167], 8 X[14810] - 9 X[21167], 4 X[14810] - 3 X[48881], X[14810] - 3 X[48895], 3 X[21167] - 2 X[48881], 3 X[21167] - 8 X[48895], X[48881] - 4 X[48895], 3 X[6] - X[14927], 3 X[3146] + X[14927], 8 X[182] - 9 X[597], 7 X[182] - 9 X[5476], 2 X[182] - 3 X[5480], 5 X[182] - 6 X[18583], 4 X[182] - 3 X[44882], 7 X[182] - 3 X[48896], 5 X[182] - 3 X[48898], X[182] - 3 X[48901], X[182] + 3 X[48904], 7 X[597] - 8 X[5476], 3 X[597] - 4 X[5480], 15 X[597] - 16 X[18583], 3 X[597] - 2 X[44882], 21 X[597] - 8 X[48896], 15 X[597] - 8 X[48898], 3 X[597] - 8 X[48901], and many others

X(51163) lies on these lines: {2, 48872}, {3, 43621}, {4, 141}, {5, 14810}, {6, 3146}, {20, 3589}, {30, 182}, {69, 17578}, {110, 34603}, {140, 48880}, {159, 5893}, {193, 50690}, {376, 48310}, {381, 48873}, {382, 1351}, {428, 5651}, {511, 3627}, {516, 17351}, {518, 51118}, {524, 3543}, {542, 33699}, {546, 3098}, {548, 38317}, {549, 48885}, {550, 19130}, {599, 50687}, {962, 9053}, {1352, 3830}, {1353, 11645}, {1370, 3066}, {1386, 28164}, {1657, 14561}, {1843, 40929}, {1885, 3867}, {2777, 25328}, {2781, 12295}, {2854, 13202}, {2916, 12087}, {3091, 31884}, {3242, 9812}, {3522, 47355}, {3529, 5085}, {3564, 48884}, {3618, 5059}, {3619, 50689}, {3631, 50688}, {3763, 3832}, {3815, 40236}, {3818, 3853}, {3839, 20582}, {3845, 24206}, {4265, 36002}, {5050, 49136}, {5071, 50984}, {5073, 46264}, {5076, 33878}, {5092, 15704}, {5097, 8550}, {5102, 39874}, {5103, 18860}, {5189, 37648}, {5229, 10387}, {5254, 12212}, {5646, 7392}, {5691, 5846}, {5743, 37456}, {5894, 23300}, {5895, 36851}, {5969, 39838}, {6247, 18382}, {6329, 25406}, {6361, 38144}, {6703, 50698}, {6707, 7390}, {6756, 37480}, {6776, 8584}, {7391, 13567}, {7394, 21766}, {7408, 17811}, {7500, 23292}, {7517, 35228}, {7519, 11064}, {7540, 37477}, {7553, 13352}, {7576, 43576}, {7667, 22112}, {8703, 48920}, {8705, 44439}, {9019, 12294}, {9041, 50865}, {9055, 51063}, {9589, 49688}, {10007, 22682}, {10168, 19710}, {10192, 32237}, {10541, 49140}, {11001, 38072}, {11178, 12101}, {11403, 37485}, {11745, 34938}, {12007, 15684}, {12017, 49137}, {12102, 18358}, {12103, 17508}, {12811, 42786}, {13394, 37900}, {13473, 41585}, {13598, 34146}, {13910, 42258}, {13972, 42259}, {14389, 20063}, {14677, 20301}, {14790, 15873}, {14853, 33703}, {14893, 50977}, {15107, 45303}, {15491, 37182}, {15516, 29323}, {15577, 18534}, {15681, 50983}, {15683, 47352}, {15685, 38064}, {15686, 33751}, {15687, 19924}, {15692, 50972}, {15694, 50964}, {15702, 50968}, {16051, 31860}, {17225, 51065}, {17504, 25565}, {17810, 44442}, {19145, 42275}, {19146, 42276}, {20062, 37649}, {20192, 47314}, {20300, 23328}, {21356, 50970}, {21358, 50960}, {22676, 40332}, {23311, 36658}, {23312, 36657}, {23324, 31723}, {23327, 50709}, {25555, 48891}, {28538, 50862}, {31099, 47296}, {31133, 32269}, {31162, 50998}, {31802, 44762}, {32455, 50691}, {33851, 46686}, {34417, 46517}, {34628, 51006}, {34632, 50951}, {34648, 50949}, {35402, 50954}, {35434, 50955}, {36709, 45498}, {36714, 45499}, {38110, 48892}, {40825, 43618}, {44437, 50668}, {44883, 47527}

X(51163) = midpoint of X(i) and X(j) for these {i,j}: {3, 43621}, {4, 48910}, {6, 3146}, {382, 31670}, {3543, 51024}, {5073, 46264}, {5895, 36851}, {9589, 49688}, {15684, 20423}, {33703, 48905}, {48901, 48904}
X(51163) = reflection of X(i) in X(j) for these {i,j}: {5, 48895}, {20, 3589}, {141, 4}, {159, 5893}, {376, 50959}, {550, 19130}, {3098, 546}, {3543, 51026}, {3818, 3853}, {5480, 48901}, {5894, 23300}, {6247, 18382}, {8550, 21850}, {11178, 12101}, {14677, 20301}, {15681, 50983}, {15683, 50971}, {15704, 5092}, {18358, 12102}, {19710, 10168}, {33851, 46686}, {34628, 51006}, {34632, 50951}, {40929, 1843}, {44882, 5480}, {47354, 15687}, {48874, 24206}, {48876, 48889}, {48879, 548}, {48880, 140}, {48881, 5}, {48891, 25555}, {48898, 18583}, {50949, 34648}, {50965, 381}, {50977, 14893}, {50998, 31162}, {51022, 3543}
X(51163) = complement of X(48872)
X(51163) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 48881, 21167}, {376, 50959, 48310}, {3091, 31884, 34573}, {3845, 48874, 24206}, {5480, 44882, 597}, {14853, 33703, 48905}, {15683, 47352, 50971}, {15687, 48876, 48889}, {15704, 38136, 5092}, {38317, 48879, 548}, {48876, 48889, 47354}, {51024, 51026, 51022}, {51024, 51029, 51026}


X(51164) = X(4)X(50969)∩X(524)X(3543)

Barycentrics    47*a^6 + 40*a^4*b^2 - 53*a^2*b^4 - 34*b^6 + 40*a^4*c^2 + 42*a^2*b^2*c^2 + 34*b^4*c^2 - 53*a^2*c^4 + 34*b^2*c^4 - 34*c^6 : :
X(51164) = 3 X[4] - X[50969], 3 X[47355] - 4 X[50964], 3 X[47355] - 2 X[50976], 9 X[47355] - 8 X[50988], 3 X[50964] - 2 X[50988], 3 X[50976] - 4 X[50988], 11 X[381] - 4 X[48920], 17 X[382] + 4 X[575], 11 X[382] + 3 X[14848], 6 X[382] + X[43273], 44 X[575] - 51 X[14848], 24 X[575] - 17 X[43273], 18 X[14848] - 11 X[43273], 29 X[3543] - X[5921], 8 X[3543] - X[36990], 9 X[3543] - 2 X[51022], 15 X[3543] - X[51023], 6 X[3543] + X[51024], 39 X[3543] - 4 X[51025], 3 X[3543] + 4 X[51026], 36 X[3543] - X[51027], 27 X[3543] + X[51028], 9 X[3543] + 5 X[51029], 8 X[5921] - 29 X[36990], 9 X[5921] - 58 X[51022], 15 X[5921] - 29 X[51023], 6 X[5921] + 29 X[51024], 39 X[5921] - 116 X[51025], 3 X[5921] + 116 X[51026], 36 X[5921] - 29 X[51027], 27 X[5921] + 29 X[51028], 9 X[5921] + 145 X[51029], 9 X[36990] - 16 X[51022], 15 X[36990] - 8 X[51023], 3 X[36990] + 4 X[51024], 39 X[36990] - 32 X[51025], 3 X[36990] + 32 X[51026], 9 X[36990] - 2 X[51027], 27 X[36990] + 8 X[51028], 9 X[36990] + 40 X[51029], 10 X[51022] - 3 X[51023], 4 X[51022] + 3 X[51024], and many others

X(51164) lies on these lines: {4, 50969}, {30, 47355}, {381, 48920}, {382, 575}, {518, 50874}, {524, 3543}, {597, 50691}, {599, 3627}, {3091, 50972}, {3146, 50959}, {3619, 50687}, {3763, 38335}, {3830, 10516}, {3845, 50968}, {3853, 50956}, {5846, 50867}, {15640, 50971}, {15684, 47352}, {15687, 48872}, {18583, 35404}, {20423, 33699}, {24206, 35401}, {25565, 49139}, {29181, 50994}, {31670, 50986}, {31884, 50960}, {35434, 48904}, {38072, 50987}, {43150, 48910}, {48884, 50962}, {48905, 50963}

X(51164) = reflection of X(50976) in X(50964)
X(51164) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3543, 51026, 51024}, {3543, 51029, 51022}, {50964, 50976, 47355}, {51022, 51024, 51027}, {51022, 51026, 51029}, {51022, 51027, 36990}, {51022, 51029, 51024}


X(51165) = X(4)X(50970)∩X(524)X(3543)

Barycentrics    46*a^6 + 65*a^4*b^2 - 76*a^2*b^4 - 35*b^6 + 65*a^4*c^2 + 48*a^2*b^2*c^2 + 35*b^4*c^2 - 76*a^2*c^4 + 35*b^2*c^4 - 35*c^6 : :
X(51165) = 3 X[3] - 5 X[50959], 6 X[3] - 5 X[50972], 3 X[4] - X[50970], 35 X[6329] - 32 X[50664], 37 X[3543] - 5 X[5921], 13 X[3543] - 5 X[36990], 9 X[3543] - 5 X[51022], 21 X[3543] - 5 X[51023], 3 X[3543] + 5 X[51024], 3 X[3543] - X[51025], 3 X[3543] - 5 X[51026], 9 X[3543] - X[51027], 27 X[3543] + 5 X[51028], 9 X[3543] - 25 X[51029], 13 X[5921] - 37 X[36990], 9 X[5921] - 37 X[51022], 21 X[5921] - 37 X[51023], 3 X[5921] + 37 X[51024], 15 X[5921] - 37 X[51025], 3 X[5921] - 37 X[51026], 45 X[5921] - 37 X[51027], 27 X[5921] + 37 X[51028], 9 X[5921] - 185 X[51029], 9 X[36990] - 13 X[51022], 21 X[36990] - 13 X[51023], 3 X[36990] + 13 X[51024], 15 X[36990] - 13 X[51025], 3 X[36990] - 13 X[51026], 45 X[36990] - 13 X[51027], 27 X[36990] + 13 X[51028], 9 X[36990] - 65 X[51029], 7 X[51022] - 3 X[51023], X[51022] + 3 X[51024], 5 X[51022] - 3 X[51025], X[51022] - 3 X[51026], 5 X[51022] - X[51027], 3 X[51022] + X[51028], X[51022] - 5 X[51029], X[51023] + 7 X[51024], 5 X[51023] - 7 X[51025], X[51023] - 7 X[51026], 15 X[51023] - 7 X[51027], and many others

X(51165) lies on these lines: {3, 50959}, {4, 50970}, {30, 6329}, {518, 51119}, {524, 3543}, {547, 14810}, {597, 5059}, {1352, 35402}, {3146, 20583}, {3533, 50969}, {3545, 34573}, {3627, 50985}, {3631, 50687}, {3830, 50958}, {3832, 20582}, {3845, 29181}, {3853, 18553}, {5085, 11001}, {5102, 15682}, {5846, 50868}, {9053, 51120}, {11812, 29317}, {15686, 48901}, {15687, 50982}, {15719, 50968}, {19130, 41982}, {33703, 43273}, {33878, 38335}, {37517, 50986}, {41152, 50967}, {43621, 50963}, {48881, 50964}, {48904, 50979}

X(51165) = midpoint of X(i) and X(j) for these {i,j}: {3146, 20583}, {51024, 51026}
X(51165) = reflection of X(50972) in X(50959)
X(51165) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3543, 51027, 51022}, {51022, 51027, 51025}, {51022, 51029, 51026}, {51024, 51029, 51022}, {51025, 51026, 3543}


X(51166) = X(4)X(50958)∩X(524)X(3543)

Barycentrics    4*a^6 + 35*a^4*b^2 - 34*a^2*b^4 - 5*b^6 + 35*a^4*c^2 + 12*a^2*b^2*c^2 + 5*b^4*c^2 - 34*a^2*c^4 + 5*b^2*c^4 - 5*c^6 : :
X(51166) = 4 X[3] - 5 X[597], 11 X[3] - 15 X[14848], 3 X[3] - 5 X[20423], 13 X[3] - 15 X[38064], 6 X[3] - 5 X[50965], 9 X[3] - 10 X[50983], 11 X[597] - 12 X[14848], 3 X[597] - 4 X[20423], 13 X[597] - 12 X[38064], 3 X[597] - 2 X[50965], 9 X[597] - 8 X[50983], 9 X[14848] - 11 X[20423], 13 X[14848] - 11 X[38064], 18 X[14848] - 11 X[50965], 27 X[14848] - 22 X[50983], 13 X[20423] - 9 X[38064], 3 X[20423] - 2 X[50983], 18 X[38064] - 13 X[50965], 27 X[38064] - 26 X[50983], 3 X[50965] - 4 X[50983], 3 X[4] - 2 X[50958], 3 X[4] - X[50973], 3 X[6] - 2 X[50971], 5 X[3629] - 8 X[37517], 5 X[141] - 6 X[3545], 3 X[141] - 4 X[50959], 3 X[141] - 2 X[50967], 9 X[3545] - 10 X[50959], 9 X[3545] - 5 X[50967], 3 X[381] - 2 X[50982], 8 X[3845] - 5 X[22165], 6 X[3845] - 5 X[47354], 9 X[3845] - 5 X[50978], 3 X[22165] - 4 X[47354], 9 X[22165] - 8 X[50978], 3 X[47354] - 2 X[50978], 13 X[3543] - 5 X[5921], 7 X[3543] - 5 X[36990], 6 X[3543] - 5 X[51022], 9 X[3543] - 5 X[51023], 3 X[3543] - 5 X[51024], 3 X[3543] - 2 X[51025], 9 X[3543] - 10 X[51026], 3 X[3543] - X[51027], and many others

X(51166) lies on these lines: {2, 50970}, {3, 597}, {4, 50958}, {6, 50971}, {20, 20583}, {30, 3629}, {141, 3545}, {381, 50982}, {511, 3845}, {518, 51120}, {524, 3543}, {547, 5480}, {599, 3832}, {1350, 15702}, {1503, 50962}, {1992, 5059}, {3098, 41983}, {3589, 15708}, {3630, 31670}, {3631, 3839}, {3830, 50961}, {5032, 48872}, {5056, 20582}, {5067, 38072}, {5085, 50969}, {5097, 15686}, {5102, 8584}, {5476, 11812}, {5846, 50871}, {5847, 50868}, {5965, 33699}, {6329, 10304}, {9041, 11531}, {11477, 33703}, {11539, 21850}, {11645, 50986}, {11898, 35402}, {12007, 15681}, {14810, 50988}, {14853, 15719}, {15687, 50985}, {15690, 39561}, {16200, 50998}, {25561, 41991}, {30392, 51006}, {34379, 51119}, {38155, 50949}, {40341, 50687}, {42785, 47599}, {48874, 50987}, {48881, 50664}

X(51166) = midpoint of X(51024) and X(51028)
X(51166) = reflection of X(i) in X(j) for these {i,j}: {20, 20583}, {15681, 12007}, {15686, 5097}, {50965, 20423}, {50967, 50959}, {50973, 50958}, {51022, 51024}, {51023, 51026}, {51027, 51025}
X(51166) = anticomplement of X(50970)
X(51166) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 50973, 50958}, {3543, 51025, 51022}, {3543, 51027, 51025}, {20423, 50965, 597}, {36990, 51024, 51029}, {50959, 50967, 141}, {51023, 51024, 51026}, {51023, 51026, 51022}, {51024, 51027, 3543}


X(51167) = X(4)X(50975)∩X(524)X(3543)

Barycentrics    37*a^6 + 20*a^4*b^2 - 31*a^2*b^4 - 26*b^6 + 20*a^4*c^2 + 30*a^2*b^2*c^2 + 26*b^4*c^2 - 31*a^2*c^4 + 26*b^2*c^4 - 26*c^6 : :
X(51167) = 3 X[4] - X[50975], 9 X[4] - 4 X[50983], 3 X[50975] - 4 X[50983], 12 X[5] - 7 X[50976], 3 X[20] - 8 X[50960], 3 X[3763] - 4 X[50956], 3 X[3763] - 2 X[50968], 9 X[3763] - 8 X[50980], 3 X[50956] - 2 X[50980], 3 X[50968] - 4 X[50980], 7 X[381] - 2 X[48896], X[381] + 4 X[48942], X[48896] + 14 X[48942], 4 X[382] + X[599], 11 X[382] + 4 X[18553], 3 X[382] + X[50954], 11 X[599] - 16 X[18553], 3 X[599] - 4 X[50954], 12 X[18553] - 11 X[50954], 19 X[3543] + X[5921], 4 X[3543] + X[36990], 3 X[3543] + 2 X[51022], 9 X[3543] + X[51023], 6 X[3543] - X[51024], 21 X[3543] + 4 X[51025], 9 X[3543] - 4 X[51026], 24 X[3543] + X[51027], 21 X[3543] - X[51028], 3 X[3543] - X[51029], 4 X[5921] - 19 X[36990], 3 X[5921] - 38 X[51022], 9 X[5921] - 19 X[51023], 6 X[5921] + 19 X[51024], 21 X[5921] - 76 X[51025], 9 X[5921] + 76 X[51026], 24 X[5921] - 19 X[51027], 21 X[5921] + 19 X[51028], 3 X[5921] + 19 X[51029], 3 X[36990] - 8 X[51022], 9 X[36990] - 4 X[51023], 3 X[36990] + 2 X[51024], 21 X[36990] - 16 X[51025], 9 X[36990] + 16 X[51026], 6 X[36990] - X[51027], and many others

X(51167) lies on these lines: {4, 50975}, {5, 50976}, {6, 42641}, {20, 50960}, {30, 3763}, {381, 48896}, {382, 599}, {518, 50866}, {524, 3543}, {597, 50688}, {1350, 35404}, {3146, 50965}, {3618, 50687}, {3627, 20423}, {3830, 5050}, {3839, 50971}, {3853, 38072}, {5073, 50957}, {5085, 12101}, {5846, 50873}, {9053, 50863}, {10519, 15682}, {11645, 35434}, {12102, 38064}, {14269, 47355}, {15640, 31884}, {15683, 50984}, {15684, 48872}, {15687, 47352}, {20582, 49135}, {24206, 35400}, {25561, 49136}, {29181, 50990}, {33699, 47353}, {38335, 48905}, {39899, 48884}, {48910, 50955}, {50690, 50958}

X(51167) = reflection of X(i) in X(j) for these {i,j}: {43273, 50963}, {50966, 47354}, {50968, 50956}, {50989, 47353}, {51024, 51029}
X(51167) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3543, 51022, 51024}, {3543, 51023, 51026}, {36990, 51024, 51027}, {47354, 50966, 50993}, {50956, 50968, 3763}, {51022, 51024, 36990}, {51022, 51026, 51023}, {51023, 51026, 51024}


X(51168) = X(165)X(50975)∩X(524)X(3416)

Barycentrics    13*a^3 - 2*a^2*b + a*b^2 - 14*b^3 - 2*a^2*c - 14*b^2*c + a*c^2 - 14*b*c^2 - 14*c^3 : :
X(51168) = 3 X[1] - 2 X[51146], 3 X[1] - 4 X[51156], X[2] + 4 X[50786], 6 X[50786] + X[51153], 3 X[8] + 2 X[51004], and many others

X(51168) lies on these lines: {1, 51146}, {2, 50786}, {8, 51004}, {10, 51001}, {165, 50975}, {193, 38098}, {515, 50966}, {517, 50954}, {518, 50782}, {519, 3620}, {524, 3416}, {599, 3632}, {1698, 28538}, {1699, 50956}, {3576, 50980}, {3618, 19875}, {3624, 51006}, {3626, 11160}, {3633, 50998}, {3763, 25055}, {4677, 50781}, {4816, 9041}, {5587, 50963}, {5846, 51105}, {5847, 51066}, {9053, 50784}, {16475, 51148}, {19872, 38023}, {21356, 34747}, {26446, 50987}, {28313, 49630}, {34379, 51072}, {37712, 50967}, {38127, 50974}, {38155, 51028}, {38176, 50962}, {47356, 51126}, {47358, 51142}, {49681, 51154}, {50783, 50993}, {50789, 50991}, {50994, 51089}

X(51168) = midpoint of X(i) and X(j) for these {i,j}: {50783, 50993}, {50950, 50953}
X(51168) = reflection of X(i) in X(j) for these {i,j}: {47356, 51126}, {47358, 51142}, {50953, 51125}, {50990, 50781}, {51125, 50949}, {51146, 51156}, {51149, 51003}
X(51168) = anticomplement of X(51153)
X(51168) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3416, 50949, 50950}, {3679, 50950, 50952}, {50949, 50950, 3679}, {50953, 51125, 3679}, {50993, 51149, 51003}, {51146, 51156, 1}


X(51169) = X(165)X(50976)∩X(524)X(3416)

Barycentrics    11*a^3 - 10*a^2*b + 5*a*b^2 - 16*b^3 - 10*a^2*c - 16*b^2*c + 5*a*c^2 - 16*b*c^2 - 16*c^3 : :
X(51169) = 3 X[145] - 10 X[51156], 3 X[165] - 2 X[50976], 2 X[3416] + 5 X[3679], 16 X[3416] + 5 X[3751], 9 X[3416] + 5 X[47359], and many others

X(51169) lies on these lines: {145, 51156}, {165, 50976}, {515, 50969}, {517, 50957}, {518, 50785}, {519, 3619}, {524, 3416}, {599, 4668}, {952, 50981}, {1125, 51146}, {1698, 51006}, {1699, 51133}, {1992, 4691}, {3576, 51141}, {3617, 51001}, {3626, 51004}, {3632, 50998}, {3633, 20582}, {3844, 34747}, {4669, 50787}, {4677, 50790}, {5587, 50964}, {5847, 51068}, {16475, 50783}, {16491, 19875}, {25055, 51128}, {26446, 50988}, {38047, 51148}, {38087, 51155}, {50781, 51072}, {50786, 51067}, {50789, 51105}, {51069, 51153}

X(51169) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3416, 50951, 50952}, {3416, 50952, 50950}, {3679, 50949, 50950}, {3679, 50950, 50953}, {3679, 50952, 50951}, {50783, 51066, 16475}, {50949, 50951, 3416}, {50949, 51125, 3679}, {50950, 50953, 3751}


X(51170) = X(2)X(6)∩X(20)X(1351)

Barycentrics    7*a^2 - b^2 - c^2 : :
X(51170) = 3 X[2] - 8 X[6], 9 X[2] - 4 X[69], 21 X[2] - 16 X[141], 3 X[2] + 2 X[193], 11 X[2] - 16 X[597], and many others

X(51170) lies on these lines: {2, 6}, {3, 33748}, {4, 1353}, {7, 17121}, {8, 17120}, {9, 29585}, {20, 1351}, {23, 19459}, {32, 439}, {51, 12272}, {144, 4393}, {145, 3685}, {147, 9748}, {148, 5477}, {182, 15717}, {194, 5052}, {239, 31995}, {251, 6339}, {263, 38262}, {316, 1570}, {317, 40138}, {344, 16669}, {376, 44456}, {393, 32002}, {487, 6420}, {488, 6419}, {511, 3522}, {518, 3623}, {568, 37460}, {575, 10519}, {576, 3146}, {621, 42998}, {622, 42999}, {631, 34380}, {648, 3087}, {698, 19693}, {742, 4821}, {858, 47463}, {894, 32087}, {895, 14683}, {1092, 11431}, {1199, 7400}, {1249, 27377}, {1278, 49496}, {1285, 31859}, {1350, 21734}, {1352, 5068}, {1384, 35287}, {1444, 37503}, {1449, 17257}, {1503, 17578}, {1587, 12221}, {1588, 12222}, {1743, 17316}, {1843, 11002}, {1974, 9544}, {1995, 19588}, {2257, 26699}, {2452, 36181}, {2916, 8546}, {2996, 7745}, {3060, 6467}, {3088, 18917}, {3089, 12161}, {3090, 11898}, {3091, 3564}, {3124, 10553}, {3161, 17389}, {3241, 17261}, {3244, 25728}, {3284, 40680}, {3448, 5095}, {3523, 5050}, {3524, 50962}, {3543, 21850}, {3545, 50954}, {3567, 34382}, {3616, 17331}, {3617, 5847}, {3621, 4663}, {3622, 16475}, {3672, 20072}, {3729, 4856}, {3758, 5564}, {3759, 4644}, {3785, 7772}, {3793, 33215}, {3818, 3832}, {3839, 18440}, {3870, 20978}, {3875, 28301}, {3879, 16670}, {3926, 5007}, {3973, 29574}, {4189, 37492}, {4232, 19118}, {4254, 21508}, {4260, 37267}, {4360, 20073}, {4402, 50128}, {4416, 16667}, {4452, 31300}, {4461, 20016}, {4558, 13345}, {4643, 16668}, {4699, 4747}, {4700, 10436}, {4851, 16671}, {4852, 28322}, {4888, 41140}, {4916, 17264}, {4969, 42696}, {5008, 34511}, {5017, 33014}, {5028, 20065}, {5034, 7793}, {5039, 33201}, {5041, 14023}, {5055, 50986}, {5056, 18583}, {5059, 5102}, {5092, 15705}, {5107, 14712}, {5111, 32997}, {5120, 21537}, {5189, 32220}, {5207, 33290}, {5222, 17364}, {5261, 39897}, {5274, 39873}, {5305, 32972}, {5309, 32827}, {5319, 7838}, {5346, 31275}, {5395, 43681}, {5446, 12283}, {5480, 50689}, {5640, 14913}, {5702, 32001}, {5749, 17363}, {5846, 20052}, {5965, 40330}, {5984, 10753}, {6172, 17319}, {6179, 31400}, {6375, 46948}, {6390, 30435}, {6391, 7398}, {6392, 7760}, {6403, 21852}, {6417, 11292}, {6418, 11291}, {6423, 6463}, {6424, 6462}, {6542, 49783}, {6636, 37491}, {6646, 17014}, {6680, 32825}, {6995, 12167}, {7229, 29617}, {7277, 42697}, {7289, 23958}, {7378, 11405}, {7391, 18935}, {7396, 11245}, {7404, 14627}, {7408, 8541}, {7426, 47281}, {7487, 37493}, {7500, 10602}, {7519, 34777}, {7754, 32971}, {7758, 7820}, {7762, 32974}, {7785, 32980}, {7787, 32830}, {7798, 32815}, {7803, 7850}, {7804, 32836}, {7805, 32828}, {7812, 43448}, {7813, 14075}, {7855, 34571}, {7893, 33202}, {7900, 33200}, {7906, 33181}, {7920, 33180}, {7941, 33199}, {7947, 33183}, {8267, 46712}, {8356, 14482}, {8359, 22246}, {8573, 35296}, {8593, 8596}, {8705, 47466}, {8737, 16770}, {8738, 16771}, {9001, 26777}, {9308, 40065}, {9545, 19128}, {9605, 32990}, {9706, 23042}, {9742, 37071}, {9812, 39878}, {9974, 39875}, {9975, 39876}, {10008, 32835}, {10303, 48876}, {10304, 33878}, {10565, 11402}, {10754, 14928}, {10755, 20095}, {10756, 20096}, {10760, 20097}, {10761, 20098}, {10765, 20099}, {10989, 47541}, {11003, 19121}, {11173, 33208}, {11179, 37517}, {11180, 19130}, {11216, 36851}, {11225, 23291}, {11422, 21637}, {11426, 44683}, {11477, 12007}, {11606, 43951}, {11800, 32248}, {12017, 15692}, {12220, 40673}, {12317, 39562}, {13330, 33244}, {13571, 32831}, {14001, 43136}, {14031, 18906}, {14033, 22253}, {14037, 32840}, {14230, 49057}, {14233, 49056}, {14561, 15022}, {14826, 15004}, {14848, 18358}, {14927, 50692}, {15032, 34621}, {15048, 33272}, {15471, 35265}, {15683, 46264}, {15708, 50980}, {15709, 50978}, {15741, 19467}, {16496, 51005}, {16666, 17321}, {16981, 32366}, {17037, 40896}, {17117, 35578}, {17276, 50124}, {17351, 50131}, {17355, 50079}, {17367, 21296}, {17368, 32099}, {17391, 18230}, {17548, 36740}, {17813, 34774}, {18919, 26926}, {19122, 34986}, {19617, 40819}, {20014, 49679}, {20018, 50600}, {20049, 49681}, {20050, 49536}, {20063, 47465}, {20078, 45222}, {20079, 39125}, {20081, 32451}, {20423, 48895}, {20794, 37465}, {21309, 32985}, {22152, 37338}, {22486, 41622}, {23249, 39894}, {23259, 39893}, {23300, 31857}, {24280, 49488}, {24599, 26806}, {24695, 28546}, {25329, 32255}, {26039, 32025}, {26869, 30769}, {27549, 50284}, {30745, 47462}, {31145, 49529}, {32621, 37913}, {32841, 33225}, {32872, 33020}, {32873, 33262}, {32964, 40825}, {33022, 50659}, {33025, 44499}, {35284, 36277}, {35418, 50969}, {35439, 44434}, {35840, 43134}, {35841, 43133}, {36741, 37307}, {37188, 38292}, {37907, 47279}, {37909, 47545}, {38314, 49505}, {43653, 44111}, {46934, 49511}, {47356, 51146}, {48836, 48857}, {49497, 50303}, {50953, 51001}, {50968, 51132}, {51124, 51149}, {51125, 51155}, {51136, 51167}

X(51170) = midpoint of X(193) and X(3620)
X(51170) = reflection of X(i) in X(j) for these {i,j}: {69, 3763}, {3618, 6}, {3620, 3618}, {11160, 50990}, {11180, 50956}, {50975, 11179}, {50993, 597}, {51146, 47356}
X(51170) = isotomic conjugate of X(43681)
X(51170) = anticomplement of X(3620)
X(51170) = anticomplement of the isotomic conjugate of X(5395)
X(51170) = isotomic conjugate of the isogonal conjugate of X(22331)
X(51170) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1973, 8892}, {5395, 6327}, {31506, 21289}
X(51170) = X(5395)-Ceva conjugate of X(2)
X(51170) = X(31)-isoconjugate of X(43681)
X(51170) = X(2)-Dao conjugate of X(43681)
X(51170) = barycentric product X(76)*X(22331)
X(51170) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 43681}, {22331, 6}
X(51170) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 20080}, {6, 193, 2}, {6, 599, 6329}, {6, 1992, 193}, {6, 3629, 69}, {6, 6144, 3589}, {6, 15534, 141}, {6, 32455, 1992}, {6, 40341, 597}, {69, 1992, 3629}, {69, 3618, 3763}, {69, 3629, 193}, {69, 3763, 3620}, {141, 11008, 11160}, {141, 15534, 11008}, {141, 20583, 6}, {141, 50990, 3620}, {193, 5032, 6}, {193, 11160, 11008}, {302, 303, 34803}, {385, 37665, 2}, {391, 17379, 2}, {597, 40341, 3619}, {648, 3087, 43981}, {895, 25321, 14683}, {1249, 27377, 37174}, {1270, 1271, 7788}, {1285, 31859, 35927}, {1351, 14912, 20}, {1353, 5093, 4}, {1992, 5032, 2}, {1992, 8584, 5032}, {1992, 20583, 11160}, {3068, 3069, 37637}, {3329, 15589, 2}, {3589, 3629, 6144}, {3589, 6144, 69}, {3618, 3620, 2}, {3618, 11008, 50990}, {3630, 47355, 21356}, {3729, 4856, 50129}, {3879, 16670, 26685}, {3879, 26685, 29583}, {3945, 17349, 2}, {4416, 16667, 26626}, {5304, 7774, 2}, {5319, 7838, 32816}, {5921, 14853, 3832}, {6189, 6190, 50774}, {7585, 7586, 7735}, {7736, 14614, 37667}, {7736, 37667, 2}, {7777, 37689, 2}, {7837, 16989, 37668}, {8584, 32455, 6}, {11008, 15534, 193}, {11477, 12007, 25406}, {16989, 37668, 2}, {17300, 37681, 2}, {19053, 26339, 491}, {19054, 26340, 492}, {21850, 39874, 3543}, {39365, 39366, 50251}


X(51171) = X(2)X(6)∩X(20)X(182)

Barycentrics    5*a^2 + b^2 + c^2 : :
X(51171) = 5 X[1] + 2 X[49536], 3 X[2] + 4 X[6], 9 X[2] - 2 X[69], 15 X[2] - 8 X[141], 6 X[2] + X[193], X[2] - 8 X[597], and many others

X(51171) lies on these lines: {1, 4899}, {2, 6}, {4, 5050}, {5, 5921}, {7, 17120}, {8, 16475}, {9, 26626}, {20, 182}, {23, 47457}, {32, 32990}, {39, 32973}, {44, 17321}, {51, 10565}, {58, 37339}, {83, 2996}, {110, 19137}, {115, 45018}, {125, 25321}, {140, 5093}, {144, 17302}, {145, 1386}, {146, 5622}, {148, 5182}, {159, 10169}, {184, 7398}, {192, 17014}, {194, 33198}, {206, 7693}, {216, 47740}, {239, 5749}, {264, 40138}, {297, 40065}, {316, 1692}, {344, 1100}, {346, 4393}, {373, 14913}, {376, 12017}, {381, 39874}, {390, 2330}, {393, 30535}, {404, 37492}, {405, 19783}, {439, 5013}, {441, 15851}, {458, 1249}, {487, 6419}, {488, 6420}, {511, 3523}, {518, 3622}, {549, 44456}, {569, 7487}, {574, 35287}, {575, 3091}, {576, 10303}, {611, 14986}, {621, 36757}, {622, 36758}, {631, 1351}, {698, 19692}, {742, 4772}, {858, 47459}, {894, 5222}, {1084, 25319}, {1176, 7500}, {1194, 18287}, {1199, 19139}, {1278, 49481}, {1285, 8356}, {1350, 15717}, {1352, 5056}, {1353, 1656}, {1384, 33215}, {1428, 3600}, {1449, 17316}, {1469, 5265}, {1475, 21371}, {1503, 3832}, {1570, 31401}, {1691, 32965}, {1724, 13736}, {1743, 17023}, {1843, 4232}, {1974, 5012}, {1995, 18919}, {2030, 14712}, {2071, 47571}, {2076, 33022}, {2082, 27059}, {2285, 26998}, {2321, 50129}, {2345, 3759}, {2456, 10359}, {2548, 7829}, {2896, 41623}, {2987, 46952}, {2998, 11175}, {3056, 5281}, {3060, 11574}, {3066, 9924}, {3087, 17907}, {3088, 36752}, {3089, 39588}, {3090, 3564}, {3094, 32964}, {3098, 15053}, {3146, 5480}, {3161, 17319}, {3241, 16491}, {3311, 11291}, {3312, 11292}, {3407, 14484}, {3416, 46933}, {3448, 15118}, {3522, 5085}, {3524, 33878}, {3525, 11482}, {3526, 34380}, {3543, 5476}, {3545, 18440}, {3548, 15047}, {3552, 50659}, {3553, 26639}, {3567, 9967}, {3616, 3751}, {3617, 38047}, {3621, 49524}, {3623, 38315}, {3624, 34379}, {3628, 11898}, {3672, 17350}, {3729, 50114}, {3758, 4000}, {3767, 32987}, {3785, 5007}, {3817, 39878}, {3839, 11179}, {3844, 46931}, {3850, 48662}, {3855, 39884}, {3867, 7408}, {3875, 50115}, {3879, 29579}, {3912, 16667}, {3926, 7772}, {3946, 50127}, {3972, 35927}, {3977, 5256}, {4021, 25728}, {4085, 50303}, {4188, 36740}, {4189, 36741}, {4190, 5135}, {4254, 21495}, {4265, 37307}, {4346, 31300}, {4357, 16670}, {4402, 17116}, {4416, 29598}, {4419, 17380}, {4422, 16884}, {4464, 4873}, {4473, 32029}, {4643, 16671}, {4644, 16706}, {4657, 16669}, {4663, 46934}, {4667, 17282}, {4672, 24280}, {4678, 5846}, {4689, 35284}, {4699, 24599}, {4700, 17270}, {4747, 26806}, {4748, 17400}, {4851, 16668}, {4852, 50107}, {4856, 17294}, {4916, 17240}, {4969, 17293}, {5017, 33004}, {5021, 22267}, {5024, 32985}, {5026, 20094}, {5028, 31400}, {5033, 12150}, {5038, 14035}, {5039, 7793}, {5041, 7795}, {5046, 5800}, {5052, 7786}, {5054, 50981}, {5055, 50974}, {5059, 44882}, {5068, 8550}, {5071, 18358}, {5092, 10304}, {5094, 46444}, {5095, 15059}, {5096, 17548}, {5111, 33206}, {5116, 33014}, {5120, 21511}, {5133, 19119}, {5138, 6904}, {5158, 40680}, {5159, 47461}, {5169, 15431}, {5189, 47458}, {5207, 33283}, {5227, 27065}, {5254, 32979}, {5262, 11851}, {5296, 17397}, {5305, 32968}, {5308, 17338}, {5319, 7808}, {5459, 42111}, {5460, 42114}, {5462, 6403}, {5477, 14061}, {5550, 49511}, {5596, 23327}, {5644, 6677}, {5645, 39125}, {5702, 32000}, {5818, 38167}, {5839, 17289}, {5847, 9780}, {5943, 6467}, {5946, 18438}, {6172, 17247}, {6194, 35439}, {6339, 39951}, {6353, 12167}, {6390, 9605}, {6392, 7770}, {6393, 32835}, {6462, 45512}, {6463, 45513}, {6542, 49775}, {6593, 14683}, {6622, 39871}, {6658, 42421}, {6661, 32817}, {6671, 42149}, {6672, 42152}, {6680, 32829}, {6723, 32244}, {6803, 11426}, {6997, 18935}, {7222, 37756}, {7229, 17117}, {7269, 28966}, {7277, 17290}, {7289, 27003}, {7378, 44102}, {7388, 7581}, {7389, 7582}, {7391, 41256}, {7392, 11402}, {7394, 19153}, {7404, 18917}, {7426, 47456}, {7485, 37491}, {7486, 15516}, {7494, 9777}, {7496, 31521}, {7664, 39024}, {7668, 25314}, {7737, 33272}, {7738, 32981}, {7739, 7804}, {7745, 32982}, {7753, 32827}, {7754, 16045}, {7755, 32838}, {7758, 7889}, {7762, 32956}, {7765, 32826}, {7769, 10008}, {7776, 33221}, {7783, 33201}, {7785, 33180}, {7791, 40825}, {7798, 32836}, {7807, 39142}, {7810, 14075}, {7817, 31415}, {7822, 41940}, {7823, 33025}, {7827, 43448}, {7828, 31404}, {7834, 32816}, {7839, 16898}, {7850, 7859}, {7851, 32980}, {7854, 34571}, {7892, 32831}, {7912, 33182}, {7920, 16924}, {7923, 33200}, {7932, 33199}, {8359, 21309}, {8362, 43136}, {8363, 32823}, {8541, 12834}, {8589, 37809}, {8796, 40393}, {8889, 45298}, {9001, 27115}, {9540, 35841}, {9541, 26618}, {9698, 32839}, {9748, 37182}, {9822, 11451}, {10168, 15708}, {10191, 31390}, {10272, 39562}, {10485, 33192}, {10516, 12007}, {10541, 29181}, {10553, 20976}, {10574, 12294}, {10583, 33181}, {10586, 45729}, {10587, 45728}, {10588, 39897}, {10589, 39873}, {10590, 39901}, {10591, 39900}, {10595, 38040}, {10759, 38119}, {11188, 32366}, {11206, 15583}, {11245, 46442}, {11284, 19588}, {11293, 19145}, {11294, 19146}, {11301, 42634}, {11302, 42633}, {11313, 19116}, {11314, 19117}, {11317, 18842}, {11331, 32001}, {11405, 38282}, {11416, 32223}, {11432, 44683}, {11465, 32284}, {11485, 37173}, {11486, 37172}, {11511, 15019}, {11539, 50962}, {11645, 42785}, {12055, 33266}, {12212, 33258}, {12317, 45016}, {12848, 17086}, {13196, 44000}, {13330, 33012}, {13331, 14037}, {13341, 36212}, {13353, 19154}, {13366, 14826}, {13562, 45968}, {13674, 45439}, {13794, 45438}, {13881, 33684}, {13935, 35840}, {14002, 20987}, {14033, 15048}, {14039, 14482}, {14360, 36696}, {14927, 17578}, {14965, 37186}, {15028, 44495}, {15045, 37511}, {15088, 32272}, {15246, 37485}, {15321, 43697}, {15484, 16041}, {15485, 48830}, {15492, 41312}, {15585, 17813}, {15655, 19661}, {15683, 48910}, {15688, 50987}, {15697, 48880}, {15705, 50983}, {15721, 46267}, {15751, 43831}, {15826, 47453}, {16043, 30435}, {16226, 21851}, {16477, 50295}, {16496, 38314}, {16666, 17279}, {16793, 29829}, {16798, 29832}, {16799, 29831}, {16826, 18230}, {16834, 17355}, {16885, 17045}, {16973, 29570}, {17037, 42287}, {17229, 50131}, {17266, 49783}, {17273, 26104}, {17286, 50079}, {17291, 21296}, {17292, 32099}, {17298, 31191}, {17299, 50124}, {17314, 17354}, {17331, 29614}, {17339, 29584}, {17351, 50101}, {17358, 29616}, {17363, 29611}, {17364, 29630}, {17366, 42697}, {17369, 42696}, {17383, 20072}, {17391, 29627}, {17484, 19823}, {17504, 50966}, {17784, 19133}, {18164, 29552}, {18228, 29841}, {18451, 18489}, {18800, 41135}, {18907, 32986}, {19127, 20062}, {19131, 43651}, {19155, 36153}, {19875, 51001}, {19883, 50952}, {20014, 51147}, {20018, 50595}, {20049, 49690}, {20059, 51150}, {20063, 32217}, {20065, 33202}, {20075, 47373}, {20081, 24256}, {20095, 51157}, {20099, 28662}, {20105, 32449}, {20190, 33750}, {20775, 37465}, {20794, 37338}, {21508, 36743}, {21537, 36744}, {21735, 48874}, {21736, 45410}, {21843, 44562}, {22234, 24206}, {22246, 33237}, {22829, 29959}, {23515, 32234}, {23583, 40867}, {24598, 39956}, {25055, 49505}, {25072, 29597}, {25099, 40133}, {25317, 36213}, {25318, 39080}, {25590, 41140}, {26223, 30699}, {26245, 46897}, {26881, 44091}, {29012, 50688}, {29590, 50013}, {29833, 31018}, {30712, 47595}, {30745, 32220}, {31145, 49681}, {31276, 32451}, {31406, 32970}, {31412, 49229}, {31467, 32977}, {31693, 42816}, {31694, 42815}, {31958, 44423}, {32064, 34774}, {32450, 32824}, {32488, 39875}, {32489, 39876}, {32818, 33217}, {33159, 50284}, {33203, 44499}, {33260, 39560}, {33269, 42534}, {33560, 41120}, {33561, 41119}, {33632, 42037}, {34507, 46935}, {34565, 43653}, {35578, 48627}, {36990, 50689}, {37126, 37488}, {37170, 42975}, {37171, 42974}, {37184, 40981}, {37335, 40947}, {37337, 41334}, {37460, 37506}, {37760, 47455}, {37874, 41899}, {37901, 47544}, {37907, 47454}, {37911, 47463}, {38023, 49465}, {39893, 42274}, {39894, 42277}, {39957, 39975}, {42561, 49228}, {42988, 47520}, {42989, 47518}, {43030, 50858}, {43031, 50855}, {43232, 50860}, {43233, 50859}, {43273, 50687}, {47478, 50954}, {47599, 50986}, {48810, 49680}, {48817, 48847}, {48837, 48867}, {48843, 48870}, {48857, 48866}, {48891, 50975}, {48898, 49140}, {48901, 49135}, {49482, 50282}, {49533, 50779}, {49685, 50316}, {50692, 51163}, {51023, 51133}, {51138, 51164}

X(51171) = midpoint of X(i) and X(j) for these {i,j}: {6, 47355}, {1992, 50994}, {11179, 50964}
X(51171) = reflection of X(i) in X(j) for these {i,j}: {3619, 47355}, {51128, 3589}, {51141, 10168}
X(51171) = anticomplement of X(3619)
X(51171) = anticomplement of the isotomic conjugate of X(18841)
X(51171) = complement of the isotomic conjugate of X(18845)
X(51171) = isogonal conjugate of the complement of X(41927)
X(51171) = isotomic conjugate of the polar conjugate of X(7714)
X(51171) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {18841, 6327}, {46289, 41928}
X(51171) = X(18845)-complementary conjugate of X(2887)
X(51171) = X(18841)-Ceva conjugate of X(2)
X(51171) = crosspoint of X(2) and X(18845)
X(51171) = crosssum of X(6) and X(15815)
X(51171) = barycentric product X(69)*X(7714)
X(51171) = barycentric quotient X(7714)/X(4)
X(51171) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6, 193}, {2, 193, 3620}, {2, 5032, 11160}, {2, 5304, 37667}, {2, 7766, 15589}, {2, 14930, 7774}, {2, 20080, 141}, {2, 20090, 4869}, {2, 37677, 3945}, {5, 14912, 5921}, {6, 141, 1992}, {6, 193, 5032}, {6, 597, 3618}, {6, 599, 32455}, {6, 3589, 69}, {6, 3618, 2}, {6, 3763, 3629}, {6, 20806, 1994}, {6, 40341, 8584}, {6, 47352, 141}, {6, 51126, 11008}, {69, 1992, 6144}, {69, 3589, 2}, {69, 3618, 3589}, {69, 6144, 20080}, {83, 5034, 39141}, {83, 5286, 32971}, {86, 37650, 2}, {141, 1992, 20080}, {141, 3630, 41152}, {141, 6144, 69}, {182, 14853, 20}, {193, 3620, 11160}, {302, 303, 1007}, {344, 1100, 29585}, {458, 1249, 43981}, {575, 6776, 33748}, {575, 14561, 6776}, {597, 6329, 6}, {599, 32455, 11008}, {966, 17381, 2}, {1351, 38110, 631}, {1449, 17353, 17316}, {1724, 19766, 13736}, {1743, 17023, 17257}, {1992, 20080, 193}, {1992, 47352, 2}, {3068, 3069, 3815}, {3087, 17907, 37174}, {3091, 33748, 6776}, {3329, 16989, 2}, {3589, 3629, 3763}, {3589, 51128, 47355}, {3619, 47355, 2}, {3619, 50994, 141}, {3620, 5032, 193}, {3629, 3763, 69}, {3630, 51127, 21358}, {3672, 17350, 20073}, {3751, 38049, 3616}, {4648, 17352, 2}, {5050, 18583, 4}, {5286, 32971, 2996}, {5319, 7808, 32828}, {5476, 50664, 46264}, {5480, 25406, 3146}, {6144, 51128, 50994}, {6189, 6190, 15480}, {6593, 25320, 14683}, {6776, 14561, 3091}, {7388, 7581, 12222}, {7389, 7582, 12221}, {7585, 7586, 37665}, {7735, 11174, 2}, {7736, 7792, 2}, {7739, 7804, 32815}, {7774, 7875, 2}, {7828, 31404, 32988}, {7839, 16898, 32830}, {8584, 34573, 40341}, {9822, 40673, 12272}, {10168, 50967, 15708}, {10601, 11427, 2}, {11433, 37649, 2}, {11451, 12272, 9822}, {11488, 11489, 3055}, {12017, 14848, 21850}, {12017, 21850, 376}, {13846, 45872, 32813}, {13847, 45871, 32812}, {14039, 14482, 31859}, {15583, 19132, 11206}, {16491, 49529, 3241}, {17120, 17367, 7}, {17121, 17368, 8}, {17352, 46922, 4648}, {17825, 37669, 2}, {18928, 23292, 2}, {20190, 48873, 33750}, {20583, 51127, 3630}, {23300, 41719, 20079}, {23327, 41593, 5596}, {25555, 39561, 1352}, {32455, 51126, 599}, {32812, 45871, 2}, {32813, 45872, 2}, {34573, 40341, 21356}, {37640, 37641, 9300}, {38317, 40330, 7486}


X(51172) = X(3)X(50966)∩X(381)X(524)

Barycentrics    11*a^6 - 50*a^4*b^2 + 37*a^2*b^4 + 2*b^6 - 50*a^4*c^2 - 30*a^2*b^2*c^2 - 2*b^4*c^2 + 37*a^2*c^4 - 2*b^2*c^4 + 2*c^6 : :
X(51172) = 3 X[3] - 2 X[50966], 3 X[3] - 4 X[50987], 3 X[3] + 2 X[51028], 2 X[50987] + X[51028], 3 X[4] + 2 X[50986], and many others

X(51172) lies on these lines: {3, 50966}, {4, 50986}, {6, 15688}, {193, 14269}, {381, 524}, {382, 1992}, {511, 15693}, {542, 5076}, {576, 1657}, {597, 15720}, {599, 5079}, {1353, 15684}, {3526, 11477}, {3534, 5093}, {3618, 5054}, {3620, 5055}, {3763, 37517}, {3830, 50974}, {3851, 11160}, {5032, 15681}, {5050, 50965}, {5072, 50985}, {5102, 29012}, {5476, 50973}, {5847, 50797}, {10246, 51153}, {11179, 51166}, {11482, 15696}, {14561, 50982}, {14853, 50990}, {14912, 15685}, {15690, 33748}, {15706, 33878}, {15723, 18583}, {19709, 34380}, {20080, 38071}, {21850, 38335}, {31670, 51136}, {34379, 50806}, {35402, 36990}, {38064, 50970}, {38136, 50992}, {39899, 48884}

X(51172) = midpoint of X(i) and X(j) for these {i,j}: {50954, 50962}, {50966, 51028}
X(51172) = reflection of X(i) in X(j) for these {i,j}: {50954, 50963}, {50955, 50956}, {50963, 20423}, {50966, 50987}, {50967, 50980}, {50975, 50979}, {50993, 5476}
X(51172) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1351, 20423, 50962}, {1351, 50955, 51132}, {1352, 20423, 51130}, {3618, 50967, 50980}, {5480, 50961, 50957}, {20423, 50961, 5480}, {20423, 50962, 381}, {20423, 51132, 50955}, {50954, 50963, 381}, {50955, 50956, 50954}, {50955, 50963, 50956}, {50955, 51132, 50962}, {50966, 50987, 3}


X(51173) = X(3)X(38079)∩X(381)X(524)

Barycentrics    a^6 - 34*a^4*b^2 + 23*a^2*b^4 + 10*b^6 - 34*a^4*c^2 - 42*a^2*b^2*c^2 - 10*b^4*c^2 + 23*a^2*c^4 - 10*b^2*c^4 + 10*c^6 : :
X(51173) = 5 X[3] - 12 X[38079], 3 X[3] - 2 X[50969], 3 X[3] - 4 X[50988], 18 X[38079] - 5 X[50969], 9 X[38079] - 5 X[50988], and many others

X(51173) lies on these lines: {2, 50981}, {3, 38079}, {5, 51028}, {6, 38335}, {20, 50987}, {140, 50966}, {193, 23046}, {381, 524}, {382, 575}, {546, 50986}, {576, 51027}, {597, 1657}, {599, 5072}, {1350, 15723}, {1656, 25565}, {1992, 3843}, {3098, 5054}, {3534, 5085}, {3545, 44456}, {3589, 15706}, {3618, 15689}, {3619, 5055}, {3620, 14892}, {3830, 14853}, {3845, 5093}, {3850, 11160}, {5032, 14893}, {5073, 51029}, {5076, 51022}, {5847, 50800}, {6776, 35403}, {10168, 50968}, {12017, 50971}, {12101, 14912}, {14093, 47352}, {14269, 39899}, {14561, 15693}, {15681, 18583}, {15685, 50975}, {15688, 31670}, {15695, 38110}, {15696, 38064}, {15700, 19924}, {15716, 51137}, {15718, 48874}, {18440, 51140}, {19709, 38136}, {33878, 51128}, {34379, 50807}, {34380, 41106}, {46264, 51026}, {46267, 48872}, {48895, 51167}, {49136, 51138}

X(51173) = midpoint of X(i) and X(j) for these {i,j}: {20423, 50964}, {43273, 51164}, {50976, 51024}
X(51173) = reflection of X(i) in X(j) for these {i,j}: {50957, 50964}, {50969, 50988}, {51133, 50959}
X(51173) = anticomplement of X(50981)
X(51173) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {381, 20423, 50962}, {381, 50962, 50954}, {5032, 14893, 48662}, {5480, 20423, 50963}, {5480, 51130, 20423}, {20423, 47354, 1351}, {20423, 50956, 51132}, {20423, 50959, 50955}, {20423, 50963, 381}, {50954, 50962, 11898}, {50955, 50959, 381}, {50955, 50963, 50959}, {50956, 51132, 50955}, {50957, 50964, 381}, {50959, 51132, 50956}, {50959, 51133, 50964}, {50969, 50988, 3}


X(51174) = X(3)X(50973)∩X(381)X(524)

Barycentrics    19*a^6 - 52*a^4*b^2 + 41*a^2*b^4 - 8*b^6 - 52*a^4*c^2 - 6*a^2*b^2*c^2 + 8*b^4*c^2 + 41*a^2*c^4 + 8*b^2*c^4 - 8*c^6 : :
X(51174) = 3 X[3] - 2 X[50973], 3 X[3] - 4 X[51140], 3 X[20] - 5 X[50974], 5 X[69] - 6 X[15699], 4 X[140] - 5 X[1992], and many others

X(51174) lies on these lines: {2, 50985}, {3, 50973}, {20, 50974}, {30, 11008}, {69, 15699}, {140, 1992}, {193, 3524}, {381, 524}, {382, 51166}, {511, 15685}, {542, 5073}, {599, 5070}, {1353, 14891}, {3090, 11160}, {3167, 15360}, {3526, 20583}, {3534, 51136}, {3564, 15682}, {3618, 41984}, {3627, 51023}, {3629, 5054}, {3830, 5965}, {5050, 15534}, {5055, 40341}, {5093, 15533}, {5097, 15703}, {5102, 19709}, {5847, 50804}, {6144, 15689}, {6776, 15691}, {8703, 25406}, {10109, 50992}, {10246, 51155}, {10519, 44580}, {12007, 15700}, {14269, 37517}, {15520, 50993}, {15688, 50970}, {15693, 51138}, {15696, 51135}, {15721, 48876}, {18440, 50687}, {34379, 51077}, {38079, 46935}, {38176, 50950}, {38317, 50989}, {44245, 50975}, {44456, 48884}, {48906, 50966}

X(51174) = reflection of X(i) in X(j) for these {i,j}: {50955, 50962}, {50961, 51132}, {50967, 50986}, {50973, 51140}
X(51174) = anticomplement of X(50985)
X(51174) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {381, 50961, 50955}, {381, 50962, 51132}, {1351, 50955, 50963}, {1351, 50957, 20423}, {1352, 20423, 51129}, {11898, 47354, 50955}, {20423, 50955, 50957}, {20423, 50957, 50963}, {20423, 50958, 381}, {20423, 50961, 50958}, {50955, 50962, 1351}, {50958, 51132, 20423}, {50961, 51132, 381}, {50973, 51140, 3}


X(51175) = X(3)X(11160)∩X(381)X(524)

Barycentrics    17*a^6 - 38*a^4*b^2 + 31*a^2*b^4 - 10*b^6 - 38*a^4*c^2 + 6*a^2*b^2*c^2 + 10*b^4*c^2 + 31*a^2*c^4 + 10*b^2*c^4 - 10*c^6 : :
X(51175) = 3 X[3] - 2 X[50974], 3 X[3] - 4 X[50978], 3 X[11160] - X[50974], 3 X[11160] - 2 X[50978], 4 X[69] - 3 X[5054], and many others

X(51175) lies on these lines: {2, 50986}, {3, 11160}, {30, 20080}, {69, 5054}, {193, 5055}, {381, 524}, {382, 51023}, {511, 51027}, {542, 1657}, {575, 599}, {1353, 15694}, {1656, 1992}, {3098, 15688}, {3534, 3564}, {3630, 11179}, {3830, 34380}, {5032, 15703}, {5050, 22165}, {5076, 15069}, {5079, 14848}, {5085, 5965}, {5790, 50952}, {5847, 50805}, {5921, 15684}, {6144, 11178}, {6776, 14093}, {7776, 49102}, {10246, 51004}, {10247, 51001}, {10519, 15716}, {11180, 38335}, {12017, 50984}, {12355, 14645}, {14912, 15701}, {15360, 35264}, {15520, 15534}, {15689, 50966}, {15696, 50965}, {15700, 48876}, {15707, 50981}, {15713, 33748}, {15720, 50983}, {15723, 21356}, {18440, 51024}, {34379, 50798}, {35381, 41152}, {37071, 44367}, {37779, 47597}, {37958, 47552}, {38110, 50994}, {46264, 50970}

X(51175) = reflection of X(i) in X(j) for these {i,j}: {3, 11160}, {381, 11898}, {6144, 11178}, {11179, 3630}, {15684, 5921}, {44456, 11180}, {50955, 50961}, {50962, 50955}, {50967, 50985}, {50974, 50978}
X(51175) = anticomplement of X(50986)
X(51175) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1351, 50955, 47354}, {1352, 20423, 50960}, {1352, 51132, 50963}, {11160, 50974, 50978}, {11180, 44456, 38335}, {11898, 50962, 50955}, {20423, 50954, 381}, {20423, 50955, 50954}, {20423, 50958, 50957}, {20423, 50960, 50963}, {50954, 50962, 20423}, {50955, 50957, 50958}, {50955, 50961, 11898}, {50955, 50962, 381}, {50955, 50963, 1352}, {50957, 50958, 50954}, {50960, 51132, 20423}, {50967, 50992, 50985}, {50974, 50978, 3}


X(51176) = X(2)X(50954)∩X(376)X(524)

Barycentrics    41*a^6 - 35*a^4*b^2 + 7*a^2*b^4 - 13*b^6 - 35*a^4*c^2 - 30*a^2*b^2*c^2 + 13*b^4*c^2 + 7*a^2*c^4 + 13*b^2*c^4 - 13*c^6 : :
X(51176) = 3 X[2] - 4 X[50987], 7 X[4] - 12 X[14848], 3 X[4] - 4 X[50963], 3 X[4] - 8 X[50979], and many others

X(51176) lies on these lines: {2, 50954}, {4, 14848}, {6, 42641}, {20, 50962}, {69, 15710}, {376, 524}, {542, 631}, {575, 50964}, {597, 3855}, {599, 10299}, {1353, 15683}, {1503, 41099}, {1992, 3529}, {3090, 47354}, {3524, 3620}, {3528, 11160}, {3534, 50986}, {3545, 3618}, {3564, 19708}, {3763, 11180}, {3845, 33748}, {5050, 41106}, {5085, 50958}, {5093, 15640}, {5603, 51153}, {5847, 50809}, {5921, 15702}, {8550, 33703}, {10304, 39899}, {10519, 50989}, {11001, 51028}, {12156, 14912}, {14853, 51022}, {15069, 50984}, {15688, 20080}, {15697, 34380}, {15698, 25406}, {15717, 50981}, {15719, 50993}, {17508, 50994}, {19459, 37948}, {21735, 50961}, {22165, 33750}, {31670, 35409}, {34379, 50819}, {38072, 51025}, {46264, 46333}, {47353, 51138}, {48905, 51166}

X(51176) = midpoint of X(50966) and X(50974)
X(51176) = reflection of X(i) in X(j) for these {i,j}: {3618, 11179}, {11180, 3763}, {50954, 50987}, {50955, 50980}, {50963, 50979}, {50966, 50975}, {50967, 50968}, {50975, 43273}, {51023, 50956}, {51029, 20423}
X(51176) = anticomplement of X(50954)
X(51176) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1350, 43273, 51135}, {3618, 51023, 50956}, {6776, 43273, 50974}, {6776, 50967, 51136}, {11179, 39874, 3545}, {43273, 50973, 44882}, {43273, 50974, 376}, {43273, 51136, 50967}, {44882, 50973, 50969}, {50954, 50987, 2}, {50955, 50980, 3620}, {50966, 50975, 376}, {50967, 50968, 50966}, {50967, 50975, 50968}, {50967, 51136, 50974}


X(51177) = X(2)X(50957)∩X(376)X(524)

Barycentrics    43*a^6 - 13*a^4*b^2 - 19*a^2*b^4 - 11*b^6 - 13*a^4*c^2 - 42*a^2*b^2*c^2 + 11*b^4*c^2 - 19*a^2*c^4 + 11*b^2*c^4 - 11*c^6 : :
X(51177) = 3 X[2] - 4 X[50988], 3 X[3] - 2 X[50981], 11 X[4] - 32 X[20190], 5 X[4] - 12 X[38064], and many others

X(51177) lies on these lines: {2, 50957}, {3, 50981}, {4, 20190}, {6, 46333}, {20, 11482}, {193, 15689}, {376, 524}, {542, 3528}, {548, 11160}, {550, 50962}, {597, 33703}, {599, 21735}, {631, 47354}, {1352, 15715}, {1503, 15698}, {1992, 17538}, {3146, 50963}, {3524, 3619}, {3525, 51137}, {3529, 51024}, {3533, 51025}, {3534, 14912}, {3545, 47355}, {3620, 45759}, {3830, 50987}, {5032, 15686}, {5059, 14848}, {5071, 14927}, {5085, 41099}, {5092, 50956}, {5476, 51029}, {5847, 50813}, {5921, 34200}, {10299, 50984}, {10304, 39874}, {10516, 51139}, {10519, 51027}, {11001, 20423}, {11179, 48880}, {11180, 15710}, {11645, 15702}, {12017, 50687}, {12100, 50954}, {14853, 51138}, {14891, 48662}, {15080, 30775}, {15360, 18950}, {15682, 51164}, {15688, 50978}, {15690, 50986}, {15705, 18440}, {15709, 51128}, {15719, 33750}, {15721, 39884}, {17578, 38079}, {19708, 50977}, {29012, 41106}, {34379, 50820}, {48892, 51140}, {48905, 50959}

X(51177) = midpoint of X(43273) and X(50976)
X(51177) = reflection of X(i) in X(j) for these {i,j}: {50957, 50988}, {50969, 50976}, {51133, 50983}
X(51177) = anticomplement of X(50957)
X(51177) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 43273, 50974}, {376, 50974, 50966}, {33750, 47353, 15719}, {43273, 44882, 50975}, {43273, 50965, 6776}, {43273, 50968, 51136}, {43273, 50971, 50967}, {43273, 50975, 376}, {44882, 51135, 43273}, {50957, 50988, 2}, {50967, 50971, 376}, {50967, 50975, 50971}, {50968, 51136, 50967}, {50969, 50976, 376}, {50971, 51136, 50968}, {50983, 51133, 47355}


X(51178) = X(2)X(5965)∩X(376)X(524)

Barycentrics    25*a^6 - 49*a^4*b^2 + 35*a^2*b^4 - 11*b^6 - 49*a^4*c^2 - 6*a^2*b^2*c^2 + 11*b^4*c^2 + 35*a^2*c^4 + 11*b^2*c^4 - 11*c^6 : :
X(51178) = 11 X[2] - 12 X[39561], 3 X[2] - 4 X[51140], 18 X[39561] - 11 X[50961], 9 X[39561] - 11 X[51140], and many others

X(51178) lies on these lines: {2, 5965}, {3, 50985}, {4, 51027}, {5, 1992}, {30, 11008}, {69, 5054}, {193, 3818}, {376, 524}, {542, 3146}, {576, 3854}, {599, 3525}, {631, 51138}, {1351, 14893}, {1353, 10124}, {3090, 20583}, {3523, 11160}, {3524, 40341}, {3545, 3629}, {3564, 3830}, {3618, 47599}, {3630, 50984}, {3631, 15709}, {3860, 50963}, {5032, 40330}, {5050, 50990}, {5102, 41099}, {5603, 51155}, {5847, 50817}, {6144, 51024}, {6392, 9880}, {9974, 42570}, {9975, 42571}, {10516, 41149}, {10519, 12100}, {11179, 15705}, {11477, 51022}, {11898, 15703}, {12007, 15702}, {12017, 50981}, {12108, 50987}, {13857, 23291}, {14853, 15534}, {14912, 15533}, {15069, 50959}, {15682, 51166}, {15718, 48876}, {15722, 50980}, {19710, 34380}, {32816, 49102}, {34379, 51082}, {34507, 46936}, {37517, 50687}, {37712, 50952}, {38127, 50950}

X(51178) = reflection of X(i) in X(j) for these {i,j}: {11180, 193}, {20080, 11179}, {50955, 50986}, {50961, 51140}, {50967, 50974}, {50973, 51136}, {51023, 50962}, {51027, 51132}
X(51178) = anticomplement of X(50961)
X(51178) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 50973, 50967}, {376, 50974, 51136}, {1350, 43273, 51134}, {6776, 50967, 50975}, {6776, 50969, 43273}, {43273, 50967, 50969}, {43273, 50969, 50975}, {43273, 50970, 376}, {43273, 50973, 50970}, {50955, 50986, 1992}, {50961, 51140, 2}, {50967, 50974, 6776}, {50970, 51136, 43273}, {50973, 51136, 376}, {51027, 51132, 4}


X(51179) = X(2)X(5093)∩X(376)X(524)

Barycentrics    11*a^6 - 41*a^4*b^2 + 37*a^2*b^4 - 7*b^6 - 41*a^4*c^2 + 6*a^2*b^2*c^2 + 7*b^4*c^2 + 37*a^2*c^4 + 7*b^2*c^4 - 7*c^6 : :
X(51179) = 7 X[2] - 6 X[5093], 3 X[2] - 4 X[50978], 9 X[5093] - 7 X[50962], 9 X[5093] - 14 X[50978], 3 X[3] - 2 X[50986], and many others

X(51179) lies on these lines: {2, 5093}, {3, 50986}, {4, 11160}, {6, 15709}, {30, 20080}, {69, 1568}, {193, 3524}, {376, 524}, {511, 11455}, {542, 3529}, {575, 631}, {597, 3533}, {599, 3090}, {1351, 5071}, {1353, 15692}, {3147, 41616}, {3523, 50987}, {3543, 11898}, {3564, 11001}, {3629, 50984}, {3630, 50958}, {3839, 44456}, {3855, 11477}, {5032, 15702}, {5050, 50980}, {5067, 14848}, {5102, 50991}, {5476, 50990}, {5603, 51004}, {5657, 50952}, {5847, 50818}, {6353, 15360}, {7967, 51001}, {9880, 32006}, {10516, 51130}, {10519, 15534}, {11008, 11179}, {11180, 40341}, {12243, 14645}, {14561, 50994}, {14853, 22165}, {14912, 15698}, {15069, 51022}, {15533, 41099}, {15693, 33748}, {15708, 50981}, {16051, 44555}, {21850, 50957}, {33703, 51027}, {34379, 50810}, {34507, 50956}, {37491, 37939}, {39874, 46333}, {41106, 50963}, {47353, 51166}, {48910, 51025}

X(51179) = reflection of X(i) in X(j) for these {i,j}: {4, 11160}, {3543, 11898}, {11008, 11179}, {11180, 40341}, {50955, 50985}, {50962, 50978}, {50967, 50973}, {50974, 50967}, {51023, 50961}, {51028, 50955}
X(51179) = anticomplement of X(50962)
X(51179) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1350, 43273, 50972}, {1350, 51136, 50975}, {5032, 48876, 15702}, {6776, 50967, 50965}, {11160, 51028, 50955}, {43273, 50966, 376}, {43273, 50967, 50966}, {43273, 50970, 50969}, {43273, 50972, 50975}, {50955, 50985, 11160}, {50955, 51028, 4}, {50962, 50978, 2}, {50966, 50974, 43273}, {50967, 50969, 50970}, {50967, 50974, 376}, {50967, 50975, 1350}, {50969, 50970, 50966}, {50972, 51136, 43273}, {50992, 51023, 50961}


X(51180) = X(5)X(50954)∩X(182)X(524)

Barycentrics    52*a^6 - 85*a^4*b^2 + 44*a^2*b^4 - 11*b^6 - 85*a^4*c^2 - 60*a^2*b^2*c^2 + 11*b^4*c^2 + 44*a^2*c^4 + 11*b^2*c^4 - 11*c^6 : :
X(51180) = 3 X[5] - 2 X[50954], 3 X[5] + 2 X[50974], 8 X[6] - 3 X[38071], 3 X[6] - X[50956], 9 X[38071] - 8 X[50956], and many others

X(51180) lies on these lines: {5, 50954}, {6, 38071}, {182, 524}, {193, 17504}, {511, 51134}, {542, 3858}, {550, 1992}, {1351, 44903}, {3618, 15699}, {3620, 11539}, {3627, 20423}, {3845, 14853}, {3857, 14848}, {5032, 15687}, {5050, 50990}, {5093, 33699}, {5097, 51022}, {5847, 50822}, {5965, 51142}, {6776, 35404}, {8550, 51166}, {8584, 29012}, {8703, 14912}, {10283, 51153}, {11160, 14869}, {11179, 50968}, {11812, 33748}, {15520, 51130}, {15686, 51028}, {15711, 34380}, {18583, 51027}, {19710, 43273}, {21850, 51026}, {23046, 39899}, {32455, 48879}, {34379, 50832}, {38079, 50958}, {45759, 50967}, {48906, 51132}, {50961, 50993}

X(51180) = midpoint of X(i) and X(j) for these {i,j}: {50954, 50974}, {50962, 50966}
X(51180) = reflection of X(i) in X(j) for these {i,j}: {50978, 50980}, {50987, 50979}
X(51180) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {182, 50985, 50981}, {1353, 50978, 51140}, {1353, 50979, 50986}, {12007, 50977, 50979}, {48876, 50979, 51138}, {50978, 50987, 50980}, {50978, 51140, 50986}, {50979, 50985, 182}, {50979, 50986, 549}, {50979, 51140, 50978}


X(51181) = X(5)X(50957)∩X(182)X(524)

Barycentrics    44*a^6 - 47*a^4*b^2 + 4*a^2*b^4 - b^6 - 47*a^4*c^2 - 84*a^2*b^2*c^2 + b^4*c^2 + 4*a^2*c^4 + b^2*c^4 - c^6 : :
X(51181) = 3 X[5] - 2 X[50957], 9 X[5] - 2 X[51023], 3 X[50957] - X[51023], 4 X[6] + 3 X[45759], 6 X[140] + X[50974], 8 X[182] - X[549], and many others

X(51181) lies on these lines: {5, 50957}, {6, 45759}, {140, 50974}, {182, 524}, {193, 41983}, {550, 20423}, {575, 46853}, {597, 3627}, {632, 15069}, {1351, 15714}, {1992, 15712}, {3618, 23046}, {3619, 11539}, {3620, 14890}, {3628, 50954}, {3845, 14561}, {3858, 38079}, {5032, 14891}, {5050, 8703}, {5085, 15711}, {5092, 51132}, {5093, 15759}, {5476, 51026}, {5847, 50826}, {10168, 51128}, {10541, 44682}, {11160, 12108}, {11179, 15699}, {11812, 14912}, {12017, 17504}, {12100, 50962}, {14848, 15704}, {14927, 15687}, {15693, 33748}, {15713, 50994}, {17508, 50970}, {18583, 35404}, {19710, 29317}, {19711, 34380}, {21850, 50971}, {25406, 33699}, {25555, 51129}, {34200, 51028}, {34379, 50833}, {38071, 48906}, {38081, 39870}, {38110, 47354}, {39874, 47478}, {39884, 46267}, {39899, 47598}, {44903, 51024}, {46264, 51167}, {48881, 50664}, {48884, 50959}, {48896, 51165}

X(51181) = midpoint of X(i) and X(j) for these {i,j}: {11179, 47355}, {20423, 50976}, {43273, 50964}, {50979, 50988}
X(51181) = reflection of X(i) in X(j) for these {i,j}: {50981, 50988}, {51128, 10168}, {51141, 50983}
X(51181) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {182, 50979, 50987}, {182, 51138, 50979}, {549, 50979, 50986}, {50977, 50979, 1353}, {50978, 50983, 549}, {50978, 50987, 50983}, {50979, 50980, 51140}, {50979, 50983, 50978}, {50979, 50987, 549}, {50980, 51140, 50978}, {50981, 50988, 549}, {50983, 51140, 50980}, {50983, 51141, 50988}


X(51182) = X(5)X(50961)∩X(182)X(524)

Barycentrics    44*a^6 - 101*a^4*b^2 + 76*a^2*b^4 - 19*b^6 - 101*a^4*c^2 - 12*a^2*b^2*c^2 + 19*b^4*c^2 + 76*a^2*c^4 + 19*b^2*c^4 - 19*c^6 : :
X(51182) = 3 X[4] - 5 X[50962], 3 X[5] - 2 X[50961], 5 X[69] - 6 X[47598], 20 X[182] - 19 X[549], 16 X[182] - 19 X[1353], and many others

X(51182) lies on these lines: {4, 50962}, {5, 50961}, {30, 11008}, {69, 47598}, {182, 524}, {193, 5055}, {548, 50967}, {550, 51136}, {1992, 3628}, {3526, 11160}, {3534, 34380}, {3564, 33699}, {3627, 51025}, {3629, 15699}, {3845, 5965}, {3856, 50963}, {3857, 47354}, {3858, 51130}, {5066, 14853}, {5847, 50830}, {6144, 20423}, {8703, 50973}, {10283, 51155}, {11539, 40341}, {11540, 50992}, {14848, 44904}, {15684, 51028}, {15687, 51027}, {15709, 20080}, {15759, 33750}, {34379, 51087}, {35404, 51166}, {38071, 50958}, {39899, 46333}

X(51182) = reflection of X(i) in X(j) for these {i,j}: {50978, 50986}, {50985, 51140}
X(51182) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {549, 50985, 50978}, {549, 50986, 51140}, {1353, 50978, 50987}, {1353, 50981, 50979}, {48876, 50979, 51137}, {50977, 51140, 12007}, {50978, 50979, 50981}, {50978, 50986, 1353}, {50979, 50981, 50987}, {50979, 50982, 549}, {50979, 50985, 50982}, {50982, 51140, 50979}, {50985, 51140, 549}


X(51183) = X(5)X(11160)∩X(182)X(524)

Barycentrics    28*a^6 - 79*a^4*b^2 + 68*a^2*b^4 - 17*b^6 - 79*a^4*c^2 + 12*a^2*b^2*c^2 + 17*b^4*c^2 + 68*a^2*c^4 + 17*b^2*c^4 - 17*c^6 : :
X(51183) = 3 X[5] - 2 X[50962], 3 X[11160] - X[50962], 4 X[69] - 3 X[15699], 16 X[182] - 17 X[549], 20 X[182] - 17 X[1353], and many others

X(51183) lies on these lines: {5, 11160}, {30, 20080}, {69, 15699}, {182, 524}, {193, 11539}, {550, 50967}, {632, 1992}, {3564, 19710}, {3627, 15069}, {3845, 34380}, {3857, 50963}, {3858, 47354}, {5847, 50831}, {5965, 50965}, {8703, 50974}, {10283, 51004}, {11898, 15687}, {14561, 15533}, {14912, 19711}, {14927, 44903}, {15520, 41152}, {18358, 20423}, {21850, 50958}, {23046, 50954}, {34379, 50823}, {35404, 51023}, {37517, 50960}, {38112, 50952}, {39884, 51166}, {39899, 50966}, {43150, 51129}, {48884, 51025}

X(51183) = reflection of X(i) in X(j) for these {i,j}: {5, 11160}, {15687, 11898}, {50978, 50985}, {50986, 50978}
X(51183) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1353, 50978, 50977}, {48876, 50979, 50984}, {48876, 51140, 50987}, {50978, 50981, 50982}, {50978, 50986, 549}, {50978, 50987, 48876}, {50979, 50982, 50981}, {50979, 50984, 50987}, {50984, 51140, 50979}


X(51184) = X(5)X(50963)∩X(182)X(524)

Barycentrics    4*a^6 + 35*a^4*b^2 - 52*a^2*b^4 + 13*b^6 + 35*a^4*c^2 - 60*a^2*b^2*c^2 - 13*b^4*c^2 - 52*a^2*c^4 - 13*b^2*c^4 + 13*c^6 : :
X(51184) = 3 X[5] - 2 X[50963], 3 X[5] + 2 X[50967], 3 X[3620] - X[50954], 3 X[3620] + X[50966], 2 X[69] + 3 X[17504], and many others

X(51184) lies on these lines: {5, 50963}, {30, 3620}, {69, 17504}, {140, 50962}, {141, 38071}, {182, 524}, {518, 50822}, {542, 46853}, {547, 51028}, {550, 599}, {1350, 35404}, {1352, 44903}, {1992, 14869}, {3098, 50958}, {3530, 11160}, {3564, 15711}, {3618, 11539}, {3627, 40107}, {3763, 15699}, {3845, 10516}, {5093, 11540}, {5847, 50832}, {8703, 10519}, {10283, 51156}, {11178, 50970}, {11898, 14891}, {12100, 50974}, {14912, 44580}, {15686, 51023}, {15687, 21356}, {15707, 20080}, {15713, 34380}, {18440, 50969}, {19710, 29012}, {23046, 33878}, {24206, 51166}, {34379, 50825}, {34507, 50971}, {38028, 51153}, {38112, 50953}, {38136, 51143}, {39874, 41982}, {43273, 45759}, {44456, 47599}, {44682, 50961}, {48874, 51022}, {48892, 51134}

X(51184) = midpoint of X(i) and X(j) for these {i,j}: {50954, 50966}, {50955, 50975}, {50963, 50967}, {50978, 50987}
X(51184) = reflection of X(i) in X(j) for these {i,j}: {50979, 51137}, {50980, 50977}, {50987, 50980}
X(51184) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {549, 50978, 50986}, {1353, 50978, 50985}, {3620, 50966, 50954}, {48876, 50977, 50978}, {48876, 50979, 50982}, {50975, 50990, 50955}, {50977, 50978, 549}, {50977, 50979, 50981}, {50977, 50982, 50979}, {50978, 50981, 50979}, {50979, 50980, 51137}, {50979, 50981, 549}, {50979, 50982, 50978}, {50979, 51137, 50987}, {50980, 50987, 549}, {50983, 50985, 1353}


X(51185) = X(2)X(6)∩X(182)X(3534)

Barycentrics    11*a^2 + 2*b^2 + 2*c^2 : :
X(51185) = 2 X[2] + 3 X[6], 13 X[2] - 3 X[69], 11 X[2] - 6 X[141], 17 X[2] + 3 X[193], X[2] - 6 X[597], and many others

X(51185) lies on these lines: {2, 6}, {30, 47458}, {83, 34505}, {115, 10488}, {154, 10169}, {182, 3534}, {251, 47075}, {376, 10541}, {381, 575}, {511, 15693}, {518, 51105}, {542, 19709}, {549, 11477}, {576, 5054}, {598, 45103}, {1030, 21497}, {1180, 25334}, {1350, 12100}, {1351, 10168}, {1352, 10109}, {1386, 51093}, {1449, 41310}, {1503, 41099}, {1656, 22234}, {1743, 41311}, {2548, 8355}, {2854, 11451}, {2930, 5020}, {3098, 15716}, {3242, 38023}, {3416, 38089}, {3526, 22330}, {3545, 8550}, {3751, 51110}, {3796, 47313}, {3830, 5050}, {3845, 11179}, {3851, 33749}, {3972, 42536}, {4265, 19705}, {4663, 25055}, {4669, 38087}, {4677, 16475}, {4745, 38047}, {4908, 16972}, {5012, 32069}, {5013, 27088}, {5023, 47061}, {5034, 39593}, {5038, 11159}, {5055, 15069}, {5064, 44102}, {5066, 14561}, {5085, 8703}, {5093, 50977}, {5096, 19704}, {5102, 11812}, {5124, 21498}, {5138, 19706}, {5210, 19661}, {5215, 44496}, {5222, 49727}, {5319, 8367}, {5355, 40727}, {5459, 42095}, {5460, 42098}, {5461, 18584}, {5480, 15682}, {5644, 5648}, {5749, 50098}, {5846, 51072}, {5847, 50782}, {6034, 18800}, {6636, 37827}, {6669, 43333}, {6670, 43332}, {6776, 41106}, {7484, 38402}, {7770, 11054}, {7772, 33237}, {7787, 9855}, {7810, 43136}, {7827, 11317}, {7829, 11318}, {7841, 7878}, {7864, 40246}, {8546, 13595}, {8716, 35954}, {8787, 9166}, {8889, 15471}, {9053, 51092}, {9140, 25336}, {10510, 15004}, {10516, 39561}, {10519, 51132}, {11001, 14853}, {11178, 15516}, {11180, 12007}, {11425, 44273}, {11482, 15694}, {11540, 48876}, {12017, 15695}, {12101, 48906}, {12150, 35955}, {13330, 44562}, {14912, 47354}, {14971, 41672}, {15019, 47596}, {15118, 25335}, {15303, 25331}, {15484, 50280}, {15520, 50962}, {15531, 40670}, {15640, 25406}, {15685, 48910}, {15688, 20190}, {15690, 21850}, {15697, 29181}, {15698, 31884}, {15703, 34507}, {15722, 44456}, {15826, 37907}, {16226, 37473}, {16491, 51097}, {16666, 29573}, {16667, 17267}, {16668, 17311}, {16670, 17325}, {16671, 17253}, {16884, 41313}, {16885, 41312}, {17281, 49543}, {17293, 50077}, {17366, 35578}, {17810, 37904}, {18842, 32532}, {19710, 31670}, {20113, 23293}, {21539, 37503}, {22236, 35303}, {22238, 35304}, {22331, 33215}, {22332, 32985}, {22579, 47867}, {22580, 36769}, {25328, 37353}, {25561, 39899}, {26615, 41946}, {26616, 41945}, {26626, 49737}, {28301, 49721}, {28313, 50115}, {28322, 50127}, {28538, 51066}, {33699, 46264}, {33748, 51023}, {34379, 50791}, {34898, 39951}, {35750, 51159}, {36331, 51160}, {36767, 42521}, {37476, 44261}, {37506, 44265}, {38049, 47358}, {38088, 50995}, {38191, 50789}, {38315, 47359}, {38317, 50955}, {43428, 48314}, {43429, 48313}, {46332, 48874}, {47097, 47460}, {47311, 47459}, {47465, 47473}, {47865, 51012}, {47866, 51015}, {48842, 48867}, {48861, 48862}, {48905, 48943}, {49529, 51091}, {49688, 51096}, {49909, 49910}, {50087, 50124}

X(51185) = midpoint of X(i) and X(j) for these {i,j}: {1992, 3620}, {11482, 15694}, {15534, 50989}
X(51185) = reflection of X(i) in X(j) for these {i,j}: {599, 3763}, {3618, 597}, {15533, 50990}, {47353, 50956}, {47358, 51156}, {50783, 51125}, {50790, 51149}, {50963, 5476}, {50989, 50993}, {50993, 2}
X(51185) = complement of X(50990)
X(51185) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6, 15534}, {2, 69, 51143}, {2, 193, 50994}, {2, 1992, 22165}, {2, 5032, 50992}, {2, 8584, 15533}, {2, 15534, 599}, {2, 22165, 21358}, {2, 50992, 141}, {2, 50993, 3763}, {2, 50994, 20582}, {6, 597, 47352}, {6, 3589, 40341}, {6, 3618, 3763}, {6, 15533, 8584}, {6, 21358, 1992}, {6, 47352, 599}, {6, 47355, 6144}, {141, 41149, 50992}, {576, 46267, 5054}, {599, 47352, 47355}, {1992, 3589, 21358}, {1992, 21358, 40341}, {3589, 22165, 2}, {3618, 3620, 3589}, {3763, 15534, 50989}, {3763, 40341, 3620}, {3763, 50989, 50993}, {5032, 50992, 41149}, {5050, 5476, 43273}, {8584, 15533, 15534}, {8974, 19054, 32787}, {11179, 18583, 38072}, {11179, 38072, 36990}, {13846, 13847, 31489}, {13950, 19053, 32788}, {14561, 50979, 47353}, {15533, 50990, 50989}, {15533, 50993, 50990}, {15534, 47352, 2}, {19053, 19054, 14930}, {20423, 50987, 50968}, {20583, 48310, 69}, {21358, 40341, 599}, {32787, 32788, 7736}, {38047, 51005, 50783}, {38315, 47359, 50790}, {43273, 50963, 51167}, {47359, 51153, 51149}, {48310, 51143, 2}, {50989, 50993, 599}


X(51186) = X(2)X(6)∩X(542)X(15701)

Barycentrics    a^2 + 10*b^2 + 10*c^2 : :
X(51186) = 10 X[2] - 3 X[6], 11 X[2] + 3 X[69], X[2] + 6 X[141], 31 X[2] - 3 X[193], 13 X[2] - 6 X[597], and many others

X(51186) lies on these lines: {2, 6}, {542, 15701}, {547, 11477}, {575, 15723}, {620, 10488}, {1350, 3845}, {1352, 12100}, {1503, 15698}, {2854, 44299}, {2930, 7484}, {3096, 34505}, {3242, 4669}, {3416, 51103}, {3534, 11178}, {3818, 15685}, {3830, 10516}, {3844, 51066}, {4677, 50790}, {4745, 47358}, {5054, 15069}, {5055, 40107}, {5066, 50964}, {5085, 11812}, {5102, 50978}, {5642, 25336}, {5648, 25330}, {5847, 50785}, {7784, 11317}, {7789, 47061}, {7800, 27088}, {7865, 11159}, {7937, 10302}, {8367, 31417}, {8550, 15709}, {8703, 47353}, {9041, 51068}, {10109, 38072}, {10147, 11292}, {10148, 11291}, {10519, 41099}, {10541, 15702}, {10989, 47448}, {11001, 31884}, {11164, 11742}, {11179, 15713}, {11180, 15719}, {11540, 38064}, {11646, 36521}, {13169, 25331}, {14561, 50973}, {14853, 50982}, {15300, 19662}, {15640, 50965}, {15682, 40330}, {15688, 18553}, {15693, 17508}, {15694, 34507}, {15695, 48905}, {15711, 46264}, {15716, 18440}, {16673, 17231}, {16676, 17237}, {17253, 41310}, {17290, 29615}, {17293, 48638}, {17304, 50084}, {17306, 46845}, {17311, 41311}, {17325, 29573}, {18358, 19710}, {18840, 32532}, {18906, 33288}, {19709, 24206}, {21167, 51023}, {25406, 50958}, {25561, 48910}, {25565, 44456}, {28538, 51110}, {29579, 49737}, {29587, 49748}, {29611, 49727}, {31168, 35955}, {33237, 35007}, {34379, 50792}, {37756, 48634}, {37904, 47451}, {38047, 50787}, {38049, 50788}, {38087, 49511}, {38110, 50961}, {38315, 50781}, {47097, 47446}, {47311, 47447}, {47313, 47450}, {47314, 47556}, {47356, 51109}, {47359, 50791}, {49679, 51097}, {49681, 51104}, {49688, 51067}, {50782, 51000}, {50783, 51071}, {50784, 51005}, {50786, 51156}, {50789, 51149}, {51089, 51125}

X(51186) = midpoint of X(i) and X(j) for these {i,j}: {2, 50994}, {599, 47355}, {47353, 50976}
X(51186) = reflection of X(i) in X(j) for these {i,j}: {10541, 15702}, {51128, 20582}
X(51186) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 141, 50993}, {2, 599, 15534}, {2, 3620, 50992}, {2, 15534, 47352}, {2, 21356, 22165}, {2, 22165, 6}, {2, 50990, 8584}, {2, 50991, 15533}, {2, 50992, 597}, {2, 50993, 599}, {2, 51143, 21358}, {6, 21356, 599}, {6, 21358, 20582}, {6, 51128, 47355}, {69, 51127, 6}, {141, 20582, 21356}, {141, 21358, 599}, {141, 51143, 2}, {597, 41152, 50992}, {599, 3763, 47352}, {599, 15534, 50989}, {599, 21358, 3763}, {599, 47352, 40341}, {3619, 47355, 3763}, {3619, 50994, 2}, {3620, 50992, 41152}, {3763, 15534, 2}, {3763, 50993, 50989}, {8584, 50990, 15533}, {8584, 50991, 50990}, {11160, 48310, 6}, {15533, 50991, 599}, {15533, 50993, 50991}, {15534, 50989, 40341}, {20582, 21356, 6}, {20582, 22165, 2}, {21358, 50993, 2}, {22165, 41149, 11160}, {22165, 48310, 41149}, {47352, 50989, 15534}


X(51187) = X(2)X(6)∩X(155)X(44266)

Barycentrics    19*a^2 - 8*b^2 - 8*c^2 : :
X(51187) = 8 X[2] - 9 X[6], 11 X[2] - 9 X[69], 19 X[2] - 18 X[141], 5 X[2] - 9 X[193], 17 X[2] - 18 X[597], and many others

X(51187) lies on these lines: {2, 6}, {155, 44266}, {182, 15722}, {511, 15685}, {576, 19709}, {1350, 15695}, {1353, 19711}, {3053, 39785}, {3242, 51097}, {3416, 51067}, {3564, 33699}, {3830, 11477}, {3845, 15069}, {3860, 20423}, {4663, 51066}, {5085, 51140}, {5102, 50955}, {5585, 11165}, {5847, 50789}, {5965, 47353}, {7758, 27088}, {7863, 22331}, {7877, 11054}, {7890, 15815}, {8550, 19708}, {9027, 21969}, {10516, 50961}, {10541, 15693}, {10542, 39593}, {11057, 33683}, {11179, 15759}, {11898, 38072}, {12101, 39884}, {13330, 14711}, {15690, 34380}, {15700, 33749}, {15703, 22330}, {15711, 50986}, {16475, 50791}, {16675, 50125}, {17118, 50077}, {17814, 39487}, {19710, 48873}, {31884, 50973}, {33748, 50984}, {34379, 51000}, {34898, 36616}, {37904, 47276}, {38315, 51155}, {40727, 50280}, {41150, 51005}, {44456, 48943}, {44580, 50979}, {47097, 47466}, {47280, 47311}, {47356, 51107}, {47358, 51104}, {47359, 50786}, {47448, 47546}, {47450, 47541}, {47453, 47551}, {49543, 49747}, {50783, 50952}, {50790, 51001}

X(51187) = reflection of X(i) in X(j) for these {i,j}: {599, 193}, {11160, 3629}, {15533, 15534}, {20080, 597}, {40341, 1992}, {47353, 50962}, {50783, 50952}, {50790, 51001}, {50992, 8584}
X(51187) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 69, 51142}, {6, 15533, 50993}, {193, 3619, 3629}, {193, 8584, 15534}, {193, 50992, 8584}, {599, 3589, 21358}, {599, 15534, 8584}, {599, 47352, 3619}, {599, 50992, 15533}, {1992, 21358, 6}, {1992, 40341, 21358}, {3629, 11160, 47352}, {3630, 8584, 51143}, {5858, 5859, 11184}, {8584, 22165, 3589}, {8584, 50992, 599}, {15533, 15534, 6}, {15533, 21358, 22165}, {22165, 40341, 15533}, {41149, 41153, 8584}, {41153, 50992, 50989}, {49905, 49906, 37637}, {49947, 49948, 7735}


X(51188) = X(2)X(6)∩X(511)X(51027)

Barycentrics    17*a^2 - 10*b^2 - 10*c^2 : :
X(51188) = X10 X[2] - 9 X[6], 7 X[2] - 9 X[69], 17 X[2] - 18 X[141], 13 X[2] - 9 X[193], 19 X[2] - 18 X[597], and many others

X(51188) lies on these lines: {2, 6}, {511, 51027}, {518, 51037}, {542, 15685}, {1350, 15690}, {1352, 3860}, {2930, 9909}, {3242, 51091}, {3416, 51070}, {3564, 19710}, {3830, 15069}, {3845, 11477}, {5085, 19711}, {5206, 39785}, {5648, 25331}, {5847, 50790}, {5965, 15695}, {8550, 15698}, {9872, 34481}, {9939, 44519}, {10488, 15300}, {10516, 50962}, {10541, 15719}, {11054, 44518}, {11055, 44453}, {11179, 15711}, {11646, 41147}, {11898, 48889}, {12101, 34380}, {13169, 25330}, {14023, 27088}, {14912, 50982}, {15693, 20190}, {15707, 33749}, {15716, 17508}, {15722, 50977}, {15723, 22234}, {15759, 50985}, {16673, 50125}, {17131, 50280}, {19709, 34507}, {31884, 50974}, {33699, 36990}, {34379, 50783}, {36386, 42504}, {36388, 42505}, {37904, 47446}, {38047, 50785}, {38049, 50792}, {38315, 51004}, {41150, 49511}, {44580, 48876}, {47276, 47313}, {47356, 51104}, {47358, 51107}, {47359, 50782}, {47451, 47551}, {49919, 49920}, {49959, 49960}, {50791, 51005}, {51000, 51097}

X(51188) = Xreflection of X(i) in X(j) for these {i,j}: {6, 11160}, {599, 40341}, {1992, 3630}, {6144, 599}, {11008, 597}, {15533, 50992}, {15534, 15533}, {47353, 50961}
X(51188) = X{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 69, 41152}, {2, 15533, 50989}, {2, 41149, 6}, {2, 41152, 50993}, {2, 50989, 599}, {6, 15533, 22165}, {6, 20582, 47352}, {69, 193, 51126}, {69, 8584, 50993}, {69, 47352, 599}, {141, 41153, 2}, {1992, 48310, 6}, {3630, 6329, 69}, {3763, 40341, 3630}, {5858, 5859, 7610}, {5862, 5863, 9740}, {6329, 20582, 48310}, {8584, 22165, 20582}, {8584, 41152, 2}, {8584, 50993, 47352}, {11160, 22165, 15533}, {15533, 15534, 599}, {15533, 50992, 40341}, {15533, 50993, 69}, {15534, 40341, 15533}, {15534, 47352, 8584}, {15534, 50989, 2}, {22165, 41149, 2}, {22165, 48310, 50991}, {50990, 51126, 50993}


X(51189) = X(2)X(6)∩X(511)X(5097)

Barycentrics    11*a^2 - 16*b^2 - 16*c^2 : :
X(51189) = 16 X[2] - 9 X[6], 5 X[2] + 9 X[69], 11 X[2] - 18 X[141], 37 X[2] - 9 X[193], 25 X[2] - 18 X[597], and many others

X(51189) lies on these lines: {2, 6}, {511, 50957}, {518, 50785}, {1350, 15685}, {1352, 33699}, {1503, 50969}, {3534, 34507}, {3564, 19711}, {3830, 18553}, {5054, 33749}, {5085, 15722}, {5847, 50792}, {7860, 11317}, {7879, 11054}, {8703, 15069}, {10516, 50964}, {10519, 51027}, {10541, 15701}, {11179, 44580}, {11477, 19709}, {12101, 51024}, {14711, 44453}, {15690, 48876}, {15693, 40107}, {15695, 31884}, {15716, 50977}, {15759, 43273}, {15815, 39785}, {17814, 44266}, {29317, 47353}, {37904, 47448}, {41150, 47356}, {47276, 47311}, {47358, 51096}, {47359, 50788}, {49511, 51091}, {50076, 50108}, {50782, 50999}, {50784, 51004}, {50787, 51000}, {50791, 50950}, {50967, 51164}

X(51189) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1992, 41153}, {2, 22165, 50989}, {2, 41152, 599}, {2, 50989, 15533}, {2, 50990, 41152}, {2, 50992, 41149}, {69, 599, 21358}, {69, 3620, 32455}, {69, 15534, 15533}, {69, 34573, 40341}, {69, 50991, 15534}, {141, 41149, 2}, {599, 15533, 50993}, {599, 15534, 50991}, {599, 22165, 15533}, {599, 40341, 21356}, {599, 47352, 3620}, {599, 50989, 2}, {3631, 22165, 50990}, {13846, 13847, 37689}, {15533, 21358, 15534}, {15533, 50993, 6}, {15534, 50991, 21358}, {21358, 50991, 50993}, {22165, 41152, 2}, {22165, 50990, 599}, {22165, 50991, 69}, {32455, 50991, 51143}, {49905, 49906, 230}, {49947, 49948, 5304}


X(51190) = X(6)X(7)∩X(524)X(6172)

Barycentrics    3*a^4 - 4*a^3*b + 2*a^2*b^2 - b^4 - 4*a^3*c - 2*a^2*b*c + 2*b^3*c + 2*a^2*c^2 - 2*b^2*c^2 + 2*b*c^3 - c^4 : :
X(51190) = 5 X[2] - 6 X[38088], 9 X[38088] - 5 X[47595], 3 X[6] - 2 X[51150], 3 X[7] - 4 X[51150], 4 X[141] - 5 X[18230], 4 X[142] - 5 X[3618], 4 X[182] - 3 X[21151], 3 X[6172] - 2 X[50995], 3 X[6172] - 4 X[51144], 4 X[50995] - 3 X[50996], X[50995] - 3 X[50997], X[50996] - 4 X[50997], 3 X[50996] - 8 X[51144], 3 X[50997] - 2 X[51144], 4 X[575] - 3 X[38115], 5 X[631] - 6 X[38117], 2 X[1352] - 3 X[5817], 4 X[1386] - 3 X[11038], 5 X[1656] - 6 X[38166], 5 X[1698] - 6 X[38194], 5 X[3091] - 6 X[38145], 2 X[3242] - 3 X[8236], 2 X[3416] - 3 X[5686], 5 X[3616] - 6 X[38048], 5 X[3617] - 6 X[38190], 7 X[3619] - 8 X[6666], 3 X[5032] - 2 X[51002], 3 X[5050] - 2 X[31657], 4 X[5476] - 3 X[38073], 2 X[5542] - 3 X[16475], 2 X[5732] - 3 X[25406], 2 X[5805] - 3 X[14853], 3 X[10519] - 4 X[31658], 3 X[14912] - X[36996], 4 X[18583] - 3 X[38107], 3 X[21356] - 2 X[51152], 5 X[30340] - 6 X[38046], 5 X[31272] - 6 X[38195], 6 X[38047] - 5 X[40333], 6 X[38108] - 5 X[40330], 3 X[47352] - 2 X[51151]

X(51190) lies on these lines: {2, 2348}, {6, 7}, {9, 69}, {41, 348}, {141, 18230}, {142, 3618}, {144, 145}, {182, 21151}, {218, 17170}, {497, 10025}, {511, 5759}, {513, 2402}, {516, 3751}, {524, 6172}, {527, 1992}, {575, 38115}, {631, 38117}, {674, 36976}, {742, 5839}, {894, 2550}, {950, 30625}, {954, 37492}, {971, 6776}, {1001, 17257}, {1156, 5848}, {1200, 6168}, {1351, 5762}, {1352, 5817}, {1353, 5843}, {1386, 11038}, {1445, 2183}, {1503, 36991}, {1654, 38057}, {1656, 38166}, {1698, 38194}, {1837, 30694}, {1843, 7717}, {2082, 6604}, {2647, 12560}, {3062, 39878}, {3091, 38145}, {3161, 4437}, {3189, 25242}, {3207, 17081}, {3242, 8236}, {3416, 5686}, {3476, 20096}, {3564, 5779}, {3616, 38048}, {3617, 38190}, {3619, 6666}, {3620, 30833}, {3729, 5853}, {3732, 18391}, {3827, 7672}, {3875, 49783}, {3945, 27475}, {4326, 24708}, {4419, 16973}, {4461, 49688}, {4648, 36404}, {5032, 51002}, {5050, 31657}, {5088, 7960}, {5223, 5847}, {5476, 38073}, {5542, 16475}, {5728, 34381}, {5732, 25406}, {5805, 14853}, {5850, 49455}, {5856, 10755}, {7222, 49481}, {7229, 49524}, {7671, 9004}, {7676, 12329}, {7677, 22769}, {8545, 9028}, {9041, 50839}, {9053, 12630}, {9317, 17079}, {10519, 31658}, {10889, 24705}, {11008, 29605}, {12718, 44670}, {12848, 34371}, {14548, 40131}, {14912, 36996}, {15507, 42884}, {16496, 30331}, {16503, 17321}, {16593, 26685}, {17139, 41610}, {17333, 47357}, {17350, 20533}, {17379, 38053}, {17756, 24499}, {18583, 38107}, {21356, 51152}, {21850, 31671}, {25050, 25304}, {28538, 50835}, {30340, 38046}, {31272, 38195}, {31300, 41845}, {34379, 51090}, {37650, 50011}, {38047, 40333}, {38108, 40330}, {47352, 51151}

X(51190) = midpoint of X(i) and X(j) for these {i,j}: {144, 193}, {3062, 39878}
X(51190) = reflection of X(i) in X(j) for these {i,j}: {7, 6}, {69, 9}, {6172, 50997}, {16496, 30331}, {31671, 21850}, {50995, 51144}, {50996, 6172}, {50999, 47357}
X(51190) = anticomplement of X(47595)
X(51190) = crossdifference of every pair of points on line {926, 20980}
X(51190) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 5838, 673}, {144, 390, 51052}, {4644, 5819, 7}, {50995, 50997, 51144}, {50995, 51144, 6172}


X(51191) = X(144)X(599)∩X(524)X(6172)

Barycentrics    8*a^4 - 4*a^3*b + 7*a^2*b^2 - 10*a*b^3 - b^4 - 4*a^3*c + 8*a^2*b*c - 10*a*b^2*c + 2*b^3*c + 7*a^2*c^2 - 10*a*b*c^2 - 2*b^2*c^2 - 10*a*c^3 + 2*b*c^3 - c^4 : :
X(51191) = 5 X[9] - 3 X[38088], 3 X[9] - X[51002], 5 X[597] - 6 X[38088], 3 X[597] - 2 X[51002], 9 X[38088] - 5 X[51002], 3 X[141] - 2 X[51151], 3 X[6172] + X[50996], 3 X[6172] - X[50997], 3 X[50995] - X[50996], 3 X[50995] + X[50997], 2 X[50995] + X[51144], 2 X[50996] + 3 X[51144], 2 X[50997] - 3 X[51144], 3 X[5686] - 2 X[50951], 3 X[5817] - 2 X[50959], 3 X[22165] - 2 X[51152], 3 X[8236] - 2 X[51145], 3 X[11038] - 4 X[51154], 5 X[18230] - 3 X[38086], 3 X[21151] - 4 X[50984], 3 X[21168] - X[43273], 6 X[38093] - 7 X[51128], 6 X[38139] - 5 X[51129], 3 X[48310] - 2 X[51150]

X(51191) lies on these lines: {7, 20582}, {9, 597}, {141, 527}, {144, 599}, {516, 50949}, {518, 3898}, {524, 6172}, {971, 50965}, {5220, 36479}, {5223, 9041}, {5686, 50951}, {5762, 47354}, {5817, 50959}, {5843, 50977}, {5845, 22165}, {5846, 50836}, {5847, 50837}, {5850, 51003}, {5851, 51158}, {8236, 51145}, {9053, 50835}, {9055, 51053}, {11038, 51154}, {17225, 51052}, {18230, 38086}, {21151, 50984}, {21168, 43273}, {28538, 51090}, {38093, 51128}, {38139, 51129}, {47357, 51147}, {48310, 51150}

X(51191) = midpoint of X(i) and X(j) for these {i,j}: {144, 599}, {6172, 50995}, {50996, 50997}
X(51191) = reflection of X(i) in X(j) for these {i,j}: {7, 20582}, {597, 9}, {51144, 6172}, {51147, 47357}
X(51191) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6172, 50996, 50997}, {50995, 50997, 50996}


X(51192) = X(6)X(8)∩X(524)X(3241)

Barycentrics    3*a^3 + a^2*b + a*b^2 - b^3 + a^2*c - b^2*c + a*c^2 - b*c^2 - c^3 : :
X(51192) = 3 X[1] - 2 X[49511], 3 X[69] - 4 X[49511], X[69] - 4 X[49684], X[49511] - 3 X[49684], and many others

X(51192) lies on these lines: {1, 69}, {2, 1386}, {6, 8}, {7, 32922}, {9, 49476}, {10, 3618}, {31, 345}, {40, 25406}, {44, 27549}, {75, 4307}, {86, 39581}, {100, 36741}, {141, 3616}, {144, 145}, {182, 5657}, {189, 1814}, {238, 344}, {239, 2550}, {320, 4310}, {329, 32926}, {346, 4676}, {355, 14853}, {387, 5015}, {391, 39587}, {497, 1999}, {511, 944}, {516, 3875}, {517, 6776}, {519, 1992}, {524, 3241}, {527, 49446}, {528, 32029}, {536, 24280}, {542, 7978}, {551, 21356}, {575, 38116}, {597, 50783}, {599, 38314}, {612, 14555}, {613, 18391}, {614, 18141}, {631, 38029}, {726, 24695}, {730, 18906}, {742, 4644}, {752, 24248}, {937, 6765}, {946, 39885}, {952, 1351}, {956, 37492}, {960, 20009}, {962, 1503}, {966, 16830}, {1001, 17316}, {1002, 39713}, {1036, 1791}, {1043, 4339}, {1125, 3619}, {1266, 4312}, {1279, 4851}, {1320, 5848}, {1350, 5731}, {1352, 5603}, {1353, 5844}, {1385, 10519}, {1428, 1788}, {1469, 3476}, {1482, 3564}, {1483, 34380}, {1656, 38040}, {1698, 38049}, {1743, 3717}, {1836, 30699}, {1843, 7718}, {1997, 11814}, {2098, 39873}, {2099, 39897}, {2263, 6604}, {2308, 32854}, {2551, 41261}, {2836, 4430}, {2854, 32298}, {2895, 29815}, {2975, 36740}, {3006, 24597}, {3011, 30828}, {3091, 38035}, {3187, 3434}, {3189, 3779}, {3210, 3474}, {3243, 49771}, {3244, 11008}, {3246, 29583}, {3262, 4008}, {3306, 49987}, {3475, 17778}, {3485, 12588}, {3488, 10477}, {3555, 34381}, {3589, 9780}, {3600, 24471}, {3617, 38047}, {3620, 3622}, {3621, 4663}, {3623, 20080}, {3629, 9053}, {3632, 49529}, {3635, 49505}, {3655, 50967}, {3656, 11180}, {3672, 24723}, {3679, 51005}, {3681, 20020}, {3685, 17314}, {3687, 5269}, {3703, 26065}, {3705, 37642}, {3712, 35261}, {3749, 4028}, {3755, 16834}, {3757, 5712}, {3759, 32850}, {3763, 5550}, {3773, 50300}, {3791, 4865}, {3827, 3868}, {3870, 14547}, {3871, 12329}, {3873, 19993}, {3891, 5905}, {3896, 20075}, {3912, 7290}, {3920, 5739}, {3932, 26685}, {3936, 26228}, {3974, 27064}, {3977, 36277}, {4000, 4645}, {4026, 26626}, {4259, 20040}, {4313, 10387}, {4349, 10436}, {4353, 17274}, {4362, 25385}, {4371, 49481}, {4402, 51150}, {4416, 7174}, {4427, 42058}, {4429, 5222}, {4460, 30332}, {4648, 16823}, {4649, 36479}, {4655, 28498}, {4660, 28512}, {4668, 38191}, {4700, 24393}, {4719, 37339}, {4725, 49467}, {4852, 28566}, {4901, 16670}, {4916, 49706}, {4991, 50287}, {5032, 31145}, {5039, 12195}, {5050, 5690}, {5093, 12645}, {5208, 41718}, {5211, 37684}, {5212, 46917}, {5223, 49527}, {5227, 5250}, {5476, 38074}, {5697, 39900}, {5734, 15069}, {5790, 18583}, {5818, 14561}, {5845, 24841}, {5853, 49495}, {5886, 40330}, {5903, 39901}, {5965, 7979}, {6224, 9024}, {6327, 17150}, {6361, 46264}, {7613, 37756}, {8148, 39899}, {8192, 37491}, {8240, 8424}, {8679, 36977}, {9001, 47729}, {9014, 48298}, {9015, 48304}, {9041, 15534}, {9312, 12573}, {9778, 44882}, {9812, 36990}, {9933, 34382}, {10246, 48876}, {10247, 11898}, {10327, 32911}, {10449, 50629}, {10453, 37676}, {11038, 39567}, {11160, 47358}, {11179, 50810}, {11269, 32844}, {11531, 39878}, {12135, 12167}, {12245, 14912}, {12410, 19459}, {12583, 16212}, {12648, 45729}, {12649, 45728}, {12652, 28849}, {12702, 48906}, {12898, 14984}, {13211, 25320}, {13605, 32261}, {14839, 32451}, {15569, 29585}, {15601, 25101}, {16020, 17234}, {16468, 32847}, {16469, 17353}, {16477, 33165}, {16704, 29832}, {17017, 26034}, {17024, 32863}, {17025, 33086}, {17061, 26132}, {17126, 17740}, {17127, 17776}, {17147, 20064}, {17162, 21283}, {17225, 51056}, {17270, 19868}, {17276, 28570}, {17294, 50294}, {17299, 49484}, {17300, 38053}, {17346, 48856}, {17349, 38057}, {17389, 47357}, {17469, 32852}, {17716, 32861}, {17718, 26245}, {17726, 37660}, {17763, 28808}, {17765, 49497}, {17766, 49488}, {17768, 49453}, {17769, 32935}, {17770, 49455}, {17772, 32941}, {17784, 20043}, {17792, 20036}, {18230, 38048}, {18358, 18493}, {18440, 22791}, {18525, 21850}, {18526, 44456}, {19789, 20292}, {19851, 28629}, {19877, 47355}, {20011, 25050}, {20016, 49531}, {20045, 31034}, {20049, 51155}, {20053, 32455}, {20057, 40341}, {20069, 41839}, {20076, 20082}, {20423, 34627}, {21358, 51006}, {21747, 33161}, {23340, 39902}, {24357, 49478}, {24474, 39903}, {24477, 29840}, {24599, 38186}, {25055, 50781}, {25321, 32278}, {29575, 38025}, {29819, 33080}, {29831, 31017}, {30340, 32093}, {30652, 33168}, {30653, 32849}, {30741, 35466}, {31091, 33114}, {31162, 51023}, {31232, 50752}, {31272, 38050}, {31663, 33750}, {32394, 44668}, {32930, 42032}, {32942, 34255}, {32946, 33144}, {33090, 37685}, {33100, 50071}, {33104, 50756}, {33121, 37666}, {33878, 34773}, {34631, 50974}, {34632, 43273}, {34718, 50979}, {34747, 50952}, {34748, 50962}, {35774, 39875}, {35775, 39876}, {36404, 37654}, {37625, 49164}, {37681, 39570}, {37714, 38146}, {38087, 51072}, {38089, 51066}, {42334, 48802}, {42696, 50314}, {42697, 50017}, {46922, 48849}, {47352, 50949}, {48798, 48857}, {48800, 48861}, {48805, 50079}, {49473, 50316}, {49489, 50282}, {49534, 49712}, {50110, 50836}, {50133, 51099}, {50990, 51103}, {50992, 51071}, {50994, 51105}

X(51192) = midpoint of X(i) and X(j) for these {i,j}: {145, 193}, {3241, 51001}, {8148, 39899}, {11531, 39878}, {18526, 44456}, {34631, 50974}, {34747, 50952}, {34748, 50962}
X(51192) = reflection of X(i) in X(j) for these {i,j}: {1, 49684}, {2, 47356}, {8, 6}, {40, 39870}, {69, 1}, {145, 49681}, {3241, 51000}, {3242, 51147}, {3416, 1386}, {3621, 49688}, {3632, 49529}, {3679, 51005}, {4655, 49472}, {4660, 49477}, {6361, 46264}, {10449, 50629}, {11160, 47358}, {11180, 3656}, {12702, 48906}, {16496, 3244}, {17276, 49463}, {17294, 50294}, {17299, 49484}, {18440, 22791}, {18525, 21850}, {20050, 49679}, {20053, 49690}, {24248, 32921}, {25304, 4259}, {31145, 47359}, {32261, 13605}, {33878, 34773}, {34627, 20423}, {34632, 43273}, {34718, 50979}, {39885, 946}, {39898, 1482}, {48798, 48857}, {48800, 48861}, {48806, 48870}, {49502, 49462}, {49505, 3635}, {49688, 4663}, {50079, 48805}, {50107, 50303}, {50636, 50635}, {50783, 597}, {50810, 11179}, {50950, 551}, {50967, 3655}, {50996, 47357}, {50999, 3241}, {51023, 31162}
X(51192) = anticomplement of X(3416)
X(51192) = anticomplement of the isogonal conjugate of X(3415)
X(51192) = X(3415)-anticomplementary conjugate of X(8)
X(51192) = crossdifference of every pair of points on line {2484, 6371}
X(51192) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 50295, 17321}, {8, 4344, 5263}, {10, 16475, 3618}, {31, 33088, 345}, {40, 39870, 25406}, {141, 38315, 3616}, {145, 390, 49470}, {239, 50289, 2550}, {551, 50950, 21356}, {1386, 3416, 2}, {2308, 32854, 33163}, {3210, 20101, 3474}, {3242, 51000, 51147}, {3242, 51147, 3241}, {3416, 47356, 1386}, {3745, 3966, 2}, {3769, 33071, 2}, {3791, 4865, 33137}, {4649, 49506, 36479}, {5032, 31145, 47359}, {6327, 17150, 19785}, {12627, 19065, 8}, {12628, 19066, 8}, {17126, 32842, 17740}, {17127, 33093, 17776}, {17147, 20064, 44447}, {17469, 32852, 33171}, {24248, 32921, 50101}, {29840, 37683, 24477}, {49232, 49329, 8}, {49233, 49330, 8}, {49470, 49709, 390}, {50999, 51000, 51146}, {51000, 51001, 50999}, {51000, 51148, 51001}


X(51193) = X(8)X(48639)∩X(524)X(3241)

Barycentrics    17*a^3 - 13*a^2*b + 29*a*b^2 - b^3 - 13*a^2*c - b^2*c + 29*a*c^2 - b*c^2 - c^3 : :
X(51193) = 3 X[1] - 2 X[51153], 17 X[2] - 12 X[38191], X[2] + 4 X[51089], 3 X[2] - 4 X[51156], 18 X[38191] - 17 X[50953], and many others

X(51193) lies on these lines: {1, 51153}, {2, 38191}, {8, 48639}, {145, 50950}, {517, 50966}, {519, 3620}, {524, 3241}, {599, 20050}, {952, 50954}, {1992, 20057}, {3244, 11160}, {3616, 9041}, {3618, 38314}, {5603, 50963}, {5657, 50980}, {5731, 50975}, {5846, 50989}, {5847, 51092}, {9053, 51072}, {9778, 50968}, {9779, 51129}, {9780, 50951}, {9812, 51029}, {10246, 50987}, {16200, 51028}, {16496, 51005}, {20049, 49511}, {30614, 31247}, {34379, 51097}, {47358, 50990}, {50783, 51142}, {50789, 50994}, {50790, 50949}, {50952, 51071}, {51004, 51093}, {51126, 51154}

X(51193) = midpoint of X(i) and X(j) for these {i,j}: {50790, 50993}, {50999, 51146}
X(51193) = reflection of X(i) in X(j) for these {i,j}: {50783, 51142}, {50953, 51156}, {50990, 47358}, {51125, 51003}, {51146, 51149}, {51149, 50998}
X(51193) = anticomplement of X(50953)
X(51193) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3241, 50999, 51001}, {3242, 50998, 50999}, {50953, 51156, 2}, {50998, 50999, 3241}, {51146, 51149, 3241}


X(51194) = X(1)X(6)∩X(524)X(6173)

Barycentrics    a*(a^3 - 3*a^2*b + a*b^2 + b^3 - 3*a^2*c - 4*a*b*c + b^2*c + a*c^2 + b*c^2 + c^3) : :
X(51194) = 3 X[6] - X[50995], 3 X[9] - 2 X[50995], 2 X[1001] - 3 X[16475], 4 X[1386] - 3 X[38316], 5 X[16491] - 4 X[42819], 4 X[141] - 5 X[20195], 2 X[141] - 3 X[38186], 5 X[20195] - 6 X[38186], 4 X[182] - 3 X[21153], 3 X[6173] - 2 X[47595], 3 X[6173] - 4 X[51150], 5 X[6173] - 4 X[51151], X[47595] - 3 X[51002], 5 X[47595] - 6 X[51151], 4 X[47595] - 3 X[51152], 3 X[51002] - 2 X[51150], 5 X[51002] - 2 X[51151], 4 X[51002] - X[51152], 5 X[51150] - 3 X[51151], 8 X[51150] - 3 X[51152], 8 X[51151] - 5 X[51152], 4 X[575] - 3 X[38117], 2 X[599] - 3 X[38093], 3 X[38053] - 2 X[49511], 2 X[1352] - 3 X[38150], 2 X[3416] - 3 X[38200], 5 X[3618] - 4 X[6666], 3 X[5032] - X[6172], 3 X[5050] - 2 X[31658], 3 X[5093] - X[5779], 4 X[5476] - 3 X[38075], X[5759] - 3 X[14912], 3 X[8584] - X[51144], X[11898] - 3 X[38107], X[15069] - 3 X[38143], X[15533] - 3 X[38086], 4 X[18583] - 3 X[38108], 3 X[38122] - 2 X[48876]

X(51194) lies on these lines: {1, 6}, {7, 193}, {57, 3684}, {63, 2280}, {69, 142}, {78, 1475}, {141, 16832}, {144, 4393}, {169, 3874}, {182, 21153}, {200, 17754}, {269, 34253}, {282, 14943}, {284, 1444}, {354, 37658}, {391, 11038}, {480, 21010}, {511, 5732}, {516, 4780}, {519, 24247}, {524, 6173}, {527, 1992}, {528, 50131}, {575, 38117}, {599, 38093}, {604, 1445}, {614, 37657}, {672, 3870}, {673, 3759}, {742, 17151}, {966, 38053}, {971, 1351}, {988, 2271}, {1352, 38150}, {1353, 5762}, {1405, 30318}, {1469, 4321}, {1572, 50028}, {1707, 1914}, {2082, 3868}, {2171, 11526}, {2223, 5120}, {2238, 5272}, {2262, 5781}, {2269, 7675}, {2285, 7672}, {2321, 49451}, {2345, 49529}, {2346, 23407}, {2550, 5839}, {2801, 10756}, {2999, 37676}, {3056, 4326}, {3169, 3174}, {3254, 5848}, {3340, 4051}, {3416, 4034}, {3501, 6765}, {3564, 5805}, {3589, 28640}, {3618, 6666}, {3620, 16815}, {3629, 5845}, {3693, 41711}, {3811, 4253}, {3826, 17275}, {3873, 40131}, {3875, 32029}, {3894, 5540}, {3984, 39244}, {4007, 49688}, {4254, 37575}, {4263, 50612}, {4360, 51052}, {4851, 16593}, {4859, 50011}, {4969, 5880}, {5021, 37552}, {5032, 6172}, {5050, 31658}, {5093, 5779}, {5268, 24512}, {5476, 38075}, {5528, 9024}, {5542, 16825}, {5575, 24471}, {5686, 16830}, {5750, 24393}, {5759, 14912}, {5850, 49477}, {5853, 49495}, {7289, 20367}, {8584, 51144}, {9593, 50581}, {11520, 17451}, {11898, 38107}, {15069, 38143}, {15533, 38086}, {16816, 20080}, {16826, 18230}, {17277, 27475}, {17355, 49458}, {17379, 27484}, {17474, 19861}, {18068, 41250}, {18440, 18482}, {18583, 38108}, {20162, 49514}, {20229, 22163}, {20262, 41573}, {20335, 24600}, {21620, 26036}, {21850, 31672}, {24331, 49505}, {25426, 45705}, {25590, 49481}, {28538, 51102}, {29597, 50996}, {31429, 37573}, {31657, 34380}, {31671, 39899}, {37654, 51099}, {38057, 39586}, {38122, 48876}, {39870, 43161}, {41325, 49684}, {46922, 51053}, {47357, 51005}, {48818, 48848}, {50016, 50026}, {50082, 50950}

X(51194) = midpoint of X(i) and X(j) for these {i,j}: {7, 193}, {31671, 39899}
X(51194) = reflection of X(i) in X(j) for these {i,j}: {9, 6}, {69, 142}, {6173, 51002}, {16496, 42871}, {18440, 18482}, {31672, 21850}, {43161, 39870}, {47357, 51005}, {47595, 51150}, {51152, 6173}
X(51194) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1743, 16970}, {6, 1100, 16475}, {6, 16973, 1}, {6, 49509, 36404}, {9, 1449, 16503}, {9, 3243, 51058}, {141, 38186, 20195}, {32029, 49496, 3875}, {36404, 49509, 3731}, {47595, 51002, 51150}, {47595, 51150, 6173}


X(51195) = X(7)X(597)∩X(524)X(6173)

Barycentrics    2*a^4 + 8*a^3*b - 5*a^2*b^2 + 2*a*b^3 - 7*b^4 + 8*a^3*c + 20*a^2*b*c + 2*a*b^2*c + 14*b^3*c - 5*a^2*c^2 + 2*a*b*c^2 - 14*b^2*c^2 + 2*a*c^3 + 14*b*c^3 - 7*c^4 : :
X(51195) = X[7] + 3 X[38086], 3 X[7] + X[50997], X[597] - 3 X[38086], 3 X[597] - X[50997], 9 X[38086] - X[50997], 3 X[141] - X[50996], 5 X[6173] - X[47595], 3 X[6173] + X[51002], 3 X[6173] - X[51151], 9 X[6173] - X[51152], 3 X[47595] + 5 X[51002], X[47595] + 5 X[51150], 3 X[47595] - 5 X[51151], 9 X[47595] - 5 X[51152], X[51002] - 3 X[51150], 3 X[51002] + X[51152], 3 X[51150] + X[51151], 9 X[51150] + X[51152], 3 X[51151] - X[51152], X[4312] + 3 X[38023], X[5476] - 3 X[38164], X[6172] - 3 X[48310], 3 X[11038] - X[50998], X[11178] - 3 X[38080], 3 X[21151] - X[50965], 3 X[21153] - 4 X[51139], 2 X[34573] - 3 X[38093], X[36996] + 3 X[38072], 3 X[38052] - X[50949], 3 X[38053] - 2 X[51154], 3 X[38054] - X[51003], 3 X[38107] - X[47354], 3 X[38111] - X[50977], 3 X[38122] - 2 X[50984], 3 X[38150] - 2 X[50960], 3 X[47352] - X[51144]

X(51195) lies on these lines: {7, 597}, {141, 5936}, {142, 20582}, {516, 50971}, {518, 3968}, {524, 6173}, {527, 3589}, {971, 50959}, {4312, 38023}, {5476, 38164}, {5542, 9041}, {5762, 50983}, {5846, 51100}, {5853, 51145}, {6172, 48310}, {9053, 51099}, {9055, 51057}, {11038, 50998}, {11178, 38080}, {21151, 50965}, {21153, 51139}, {25557, 36480}, {34573, 38093}, {36525, 50779}, {36996, 38072}, {38052, 50949}, {38053, 51154}, {38054, 51003}, {38107, 47354}, {38111, 50977}, {38122, 50984}, {38150, 50960}, {47352, 51144}

X(51195) = midpoint of X(i) and X(j) for these {i,j}: {7, 597}, {6173, 51150}, {51002, 51151}
X(51195) = reflection of X(20582) in X(142)
X(51195) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 38086, 597}, {6173, 51002, 51151}, {51150, 51151, 51002}


X(51196) = X(6)X(10)∩X(524)X(551)

Barycentrics    4*a^3 + 3*a^2*b - b^3 + 3*a^2*c - b^2*c - b*c^2 - c^3 : :
X(51196) = 2 X[193] + X[49505], 3 X[6] - X[3416], 5 X[6] - 3 X[38047], 3 X[10] - 2 X[3416], 5 X[10] - 6 X[38047], and many others

X(51196) lies on these lines: {1, 193}, {6, 10}, {8, 17120}, {9, 50284}, {31, 4028}, {40, 14912}, {44, 4078}, {58, 332}, {69, 1125}, {86, 39580}, {141, 19862}, {142, 4974}, {145, 25269}, {182, 10164}, {226, 3791}, {238, 3879}, {239, 50307}, {306, 2308}, {355, 5093}, {391, 39586}, {511, 4297}, {515, 1351}, {516, 4780}, {517, 1353}, {518, 3244}, {519, 1992}, {524, 551}, {527, 32921}, {542, 11599}, {575, 38118}, {597, 3844}, {599, 19883}, {613, 11019}, {726, 32451}, {730, 5052}, {742, 50117}, {752, 3755}, {946, 3564}, {962, 39878}, {993, 37492}, {1069, 45728}, {1100, 50290}, {1210, 27401}, {1352, 3817}, {1385, 34380}, {1449, 50295}, {1469, 4315}, {1503, 51118}, {1699, 5921}, {1738, 3759}, {1757, 49476}, {1829, 46444}, {1843, 31757}, {1999, 17777}, {2321, 4672}, {2550, 50022}, {2784, 10753}, {2796, 8593}, {2836, 25329}, {2948, 25321}, {3011, 31034}, {3056, 4314}, {3187, 41011}, {3241, 50952}, {3242, 15534}, {3589, 51073}, {3616, 17252}, {3618, 3634}, {3619, 19878}, {3620, 3624}, {3625, 4663}, {3635, 16496}, {3636, 11008}, {3655, 50962}, {3663, 17770}, {3664, 16825}, {3679, 5032}, {3696, 4969}, {3707, 3842}, {3745, 4104}, {3773, 50115}, {3779, 50590}, {3821, 4991}, {3827, 4084}, {3828, 50950}, {3840, 37676}, {3874, 34381}, {3875, 24695}, {3883, 4649}, {3912, 16468}, {3932, 16669}, {3946, 4655}, {3947, 12588}, {3986, 16972}, {4001, 17017}, {4026, 16666}, {4035, 6679}, {4054, 50756}, {4062, 21747}, {4085, 28498}, {4098, 50995}, {4138, 32946}, {4260, 9025}, {4292, 39901}, {4356, 16973}, {4368, 42057}, {4418, 50306}, {4464, 49452}, {4480, 49445}, {4644, 50020}, {4645, 17121}, {4667, 24325}, {4669, 8584}, {4676, 17377}, {4733, 50082}, {4743, 28494}, {4753, 24393}, {4852, 17768}, {5034, 31396}, {5039, 49545}, {5050, 6684}, {5097, 38155}, {5121, 37684}, {5257, 50293}, {5267, 36740}, {5294, 32852}, {5476, 38076}, {5493, 8550}, {5542, 50023}, {5839, 50314}, {5848, 21630}, {5850, 49455}, {5852, 49463}, {5853, 49497}, {5886, 11898}, {6144, 38315}, {7191, 20086}, {7277, 49483}, {7290, 49768}, {9001, 48284}, {9028, 49683}, {9031, 49288}, {9041, 41149}, {9791, 29584}, {10165, 48876}, {10171, 40330}, {10175, 18583}, {10624, 39900}, {10789, 39141}, {10916, 41610}, {11160, 25055}, {11179, 50808}, {11180, 50802}, {11365, 19588}, {11574, 31737}, {11711, 14645}, {12053, 39873}, {12167, 49542}, {12512, 25406}, {12699, 39899}, {13912, 48764}, {13975, 48765}, {14853, 19925}, {14927, 28158}, {15069, 38035}, {15254, 17390}, {15533, 38023}, {15808, 40341}, {16477, 17353}, {16670, 49766}, {16704, 29639}, {16823, 20090}, {16834, 24248}, {17023, 33082}, {17364, 24231}, {17766, 49685}, {17771, 49472}, {17781, 32928}, {18440, 18483}, {18481, 44456}, {19065, 49079}, {19066, 49078}, {19459, 49553}, {20423, 34648}, {20583, 38098}, {21850, 31673}, {24239, 37683}, {24280, 50129}, {24295, 29594}, {24342, 50095}, {24349, 50017}, {24597, 50752}, {24603, 43997}, {25320, 32261}, {26723, 32949}, {28558, 50109}, {28580, 49486}, {31162, 50974}, {31399, 38167}, {31730, 48906}, {32930, 50292}, {33071, 41629}, {33104, 50758}, {34628, 51028}, {34638, 43273}, {34641, 47359}, {37595, 41002}, {38054, 47595}, {38087, 51067}, {39874, 41869}, {41662, 48932}, {45729, 49626}, {46922, 48853}, {49473, 50294}, {49474, 49770}, {49498, 49771}, {49527, 49712}, {49531, 50026}, {49750, 49767}, {49772, 50289}, {50091, 50124}, {50992, 51108}

X(51196) = midpoint of X(i) and X(j) for these {i,j}: {1, 193}, {962, 39878}, {3241, 50952}, {3655, 50962}, {3679, 51001}, {3875, 24695}, {12699, 39899}, {15534, 47356}, {18481, 44456}, {31162, 50974}, {34628, 51028}, {39874, 41869}
X(51196) = reflection of X(i) in X(j) for these {i,j}: {10, 6}, {69, 1125}, {551, 51005}, {1843, 31757}, {2321, 4672}, {3244, 49684}, {3625, 49529}, {3663, 49477}, {3755, 49489}, {3821, 4991}, {4133, 3923}, {4297, 39870}, {4655, 3946}, {4663, 32455}, {4780, 49488}, {11160, 50787}, {11180, 50802}, {16496, 3635}, {18440, 18483}, {31673, 21850}, {31730, 48906}, {31737, 11574}, {34638, 43273}, {34641, 47359}, {34648, 20423}, {39885, 19925}, {49488, 4856}, {49505, 1}, {49511, 1386}, {49529, 4663}, {49536, 3751}, {49750, 49767}, {50091, 50124}, {50781, 597}, {50808, 11179}, {50950, 3828}, {51004, 551}, {51071, 47356}
X(51196) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 16475, 1125}, {141, 38049, 19862}, {1386, 49511, 551}, {3244, 49705, 30331}, {3244, 51090, 3993}, {3686, 50302, 10}, {3821, 4991, 50114}, {3993, 49710, 51090}, {4062, 21747, 35263}, {4753, 50288, 24393}, {5032, 51001, 3679}, {5750, 50308, 10}, {11160, 25055, 50787}, {13883, 49347, 10}, {13936, 49348, 10}, {14853, 39885, 19925}, {16477, 32846, 17353}, {32946, 40940, 4138}, {49511, 51005, 1386}, {49547, 49586, 10}, {49548, 49587, 10}, {51004, 51005, 51153}


X(51197) = X(10)X(1992)∩X(524)X(551)

Barycentrics    20*a^3 + 17*a^2*b - 4*a*b^2 - 7*b^3 + 17*a^2*c - 7*b^2*c - 4*a*c^2 - 7*b*c^2 - 7*c^3 : :
X(51197) = 5 X[2] - 4 X[50788], 3 X[10] - 2 X[50950], 3 X[1992] - X[50950], 2 X[69] - 3 X[19883], 3 X[193] - X[50952], and many others

X(51197) lies on these lines: {2, 50788}, {10, 1992}, {69, 19883}, {193, 519}, {515, 50962}, {516, 50974}, {517, 50986}, {518, 51059}, {524, 551}, {542, 51118}, {597, 51073}, {599, 19862}, {1125, 11160}, {1351, 34648}, {3244, 51000}, {3625, 28538}, {3629, 38098}, {3751, 34641}, {3817, 50955}, {3828, 5032}, {4663, 50951}, {4669, 5847}, {6144, 47356}, {6776, 34638}, {8584, 50781}, {10164, 50979}, {10165, 50978}, {15533, 50792}, {16475, 50787}, {16496, 51146}, {17770, 49543}, {20080, 25055}, {20583, 38089}, {22165, 38049}, {28164, 51028}, {34379, 50999}, {38054, 51152}, {47358, 51104}, {49684, 50998}, {50786, 51067}, {51089, 51145}

X(51197) = midpoint of X(i) and X(j) for these {i,j}: {6144, 47356}, {50952, 51001}
X(51197) = reflection of X(i) in X(j) for these {i,j}: {10, 1992}, {11160, 1125}, {34638, 6776}, {34641, 3751}, {34648, 1351}, {49505, 47356}, {50781, 8584}, {50992, 50787}, {51004, 51005}, {51005, 51155}
X(51197) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {193, 51001, 50952}, {16475, 50787, 51109}, {16475, 50992, 50787}, {49511, 51005, 51006}, {51003, 51005, 51153}, {51003, 51153, 551}, {51004, 51005, 551}, {51004, 51153, 51003}, {51005, 51156, 1386}


X(51198) = X(6)X(11)∩X(524)X(6174)

Barycentrics    4*a^5 - 4*a^4*b - 3*a^3*b^2 + 3*a^2*b^3 + a*b^4 - b^5 - 4*a^4*c + 10*a^3*b*c - 3*a^2*b^2*c - 2*a*b^3*c + b^4*c - 3*a^3*c^2 - 3*a^2*b*c^2 + 2*a*b^2*c^2 + 3*a^2*c^3 - 2*a*b*c^3 + a*c^4 + b*c^4 - c^5 : :
X(51198) = X[104] - 3 X[14912], 4 X[141] - 5 X[31235], 4 X[182] - 3 X[21154], 3 X[6174] - 2 X[51007], 3 X[6174] - 4 X[51157], 5 X[6174] - 4 X[51158], X[51007] - 3 X[51008], 5 X[51007] - 6 X[51158], 3 X[51008] - 2 X[51157], 5 X[51008] - 2 X[51158], 5 X[51157] - 3 X[51158], 3 X[1992] - X[10755], 4 X[575] - 3 X[38119], 2 X[1387] - 3 X[16475], 5 X[3618] - 4 X[6667], 4 X[3629] + X[6154], 3 X[5032] - X[10707], 3 X[5050] - 2 X[6713], 3 X[5093] - X[10738], 4 X[5476] - 3 X[38077], X[11008] + 4 X[35023], X[11898] - 3 X[38752], 4 X[18583] - 3 X[23513], 3 X[25406] - 2 X[38759], 3 X[34123] - 2 X[49511], 3 X[38760] - 2 X[48876]

X(51198) lies on these lines: {6, 11}, {69, 3035}, {100, 193}, {104, 14912}, {119, 3564}, {120, 4585}, {141, 31235}, {182, 21154}, {214, 34379}, {511, 24466}, {518, 1317}, {524, 6174}, {528, 1992}, {575, 38119}, {651, 18343}, {952, 1353}, {1145, 5847}, {1351, 5840}, {1387, 16475}, {1862, 46444}, {2787, 5477}, {2829, 6776}, {3618, 6667}, {3629, 3779}, {3738, 20455}, {5032, 10707}, {5050, 6713}, {5093, 10738}, {5095, 8674}, {5476, 38077}, {5800, 13273}, {9028, 12831}, {9037, 15326}, {9041, 50846}, {10058, 37492}, {10711, 50974}, {10728, 39874}, {10742, 39899}, {10956, 39897}, {11008, 35023}, {11570, 34381}, {11898, 38752}, {12735, 16496}, {12775, 39877}, {18583, 23513}, {20958, 26932}, {25406, 38759}, {25416, 49684}, {28538, 50842}, {33814, 34380}, {34123, 49511}, {34789, 39878}, {38760, 48876}, {38761, 48906}

X(51198) = midpoint of X(i) and X(j) for these {i,j}: {100, 193}, {6776, 10759}, {10711, 50974}, {10728, 39874}, {10742, 39899}, {34789, 39878}
X(51198) = reflection of X(i) in X(j) for these {i,j}: {11, 6}, {69, 3035}, {6174, 51008}, {16496, 12735}, {25416, 49684}, {38761, 48906}, {51007, 51157}
X(51198) = crossdifference of every pair of points on line {928, 10756}
X(51198) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1317, 6068, 51062}, {51007, 51008, 51157}, {51007, 51157, 6174}


X(51199) = X(100)X(597)∩X(524)X(6174)

Barycentrics    10*a^5 - 10*a^4*b + 3*a^3*b^2 - 3*a^2*b^3 - a*b^4 + b^5 - 10*a^4*c + 18*a^3*b*c - 11*a^2*b^2*c + 9*a*b^3*c - b^4*c + 3*a^3*c^2 - 11*a^2*b*c^2 - 2*a*b^2*c^2 - 3*a^2*c^3 + 9*a*b*c^3 - a*c^4 - b*c^4 + c^5 : :
X(51199) = 5 X[6174] - X[51007], 3 X[6174] + X[51008], 3 X[6174] - X[51158], 3 X[51007] + 5 X[51008], X[51007] + 5 X[51157], 3 X[51007] - 5 X[51158], X[51008] - 3 X[51157], 3 X[51157] + X[51158], X[5528] + 3 X[38088], X[5541] + 3 X[38023], X[6154] + 3 X[38090], X[6224] + 3 X[38087], X[10707] - 3 X[48310], X[12331] + 3 X[38064], X[13199] + 3 X[38072], 3 X[15015] + X[47359], X[20583] + 4 X[35023], 3 X[21154] - 4 X[51139], 3 X[34123] - 2 X[51154], 3 X[34474] - X[50965], 3 X[38752] - X[47354], 6 X[38758] - X[51025], 3 X[38760] - 2 X[50984]

X(51199) lies on these lines: {100, 597}, {214, 9041}, {518, 50844}, {524, 6174}, {528, 3589}, {952, 50951}, {2802, 51006}, {2829, 50971}, {3035, 20582}, {5528, 38088}, {5541, 38023}, {5840, 50959}, {5846, 50841}, {5847, 50845}, {5848, 50991}, {5854, 51145}, {6154, 38090}, {6224, 38087}, {9053, 50843}, {10707, 48310}, {10711, 44882}, {12331, 38064}, {13199, 38072}, {15015, 47359}, {20583, 35023}, {21154, 51139}, {34123, 51154}, {34474, 50965}, {38752, 47354}, {38758, 51025}, {38760, 50984}

X(51199) = midpoint of X(i) and X(j) for these {i,j}: {100, 597}, {6174, 51157}, {10711, 44882}, {51008, 51158}
X(51199) = reflection of X(20582) in X(3035)
X(51199) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6174, 51008, 51158}, {51157, 51158, 51008}


X(51200) = X(6)X(13)∩X(15)X(524)

Barycentrics    7*a^6 - 10*a^4*b^2 + 5*a^2*b^4 - 2*b^6 - 10*a^4*c^2 - 6*a^2*b^2*c^2 + 2*b^4*c^2 + 5*a^2*c^4 + 2*b^2*c^4 - 2*c^6 - 2*Sqrt[3]*a^2*(a^2 + b^2 + c^2)*S : :
X(51200) = 3 X[5469] - 2 X[11646], X[6778] - 4 X[41672], 3 X[5463] - 2 X[51010], 3 X[5463] - 4 X[51159], 4 X[51010] - 3 X[51011], X[51010] - 3 X[51012], X[51011] - 4 X[51012], 3 X[51011] - 8 X[51159], 3 X[51012] - 2 X[51159], 4 X[8550] - X[41020], 4 X[141] - 5 X[36770], 4 X[182] - 3 X[21156], 2 X[396] - 3 X[36757], 4 X[597] - 3 X[22489], 2 X[619] - 3 X[5182], 2 X[1352] - 3 X[36765], 5 X[3618] - 4 X[6669], 3 X[5050] - 2 X[6771], 3 X[5093] - X[13103], 5 X[11482] - 2 X[16001], 2 X[5478] - 3 X[14853], 2 X[6108] - 3 X[36758], X[6770] - 3 X[14912], 4 X[8584] - X[35752], X[19106] - 4 X[44498], 2 X[11705] - 3 X[16475], 2 X[15533] - 5 X[36767], 2 X[15534] + X[35751], 3 X[21359] - 2 X[51016], 4 X[36768] - X[50992]

X(51200) lies on these lines: {2, 6782}, {3, 9115}, {6, 13}, {15, 524}, {16, 11179}, {17, 15069}, {18, 575}, {30, 23006}, {62, 8550}, {69, 618}, {141, 36770}, {182, 16242}, {193, 616}, {395, 50979}, {396, 3564}, {511, 5473}, {518, 7975}, {530, 1992}, {531, 8593}, {533, 22687}, {543, 23013}, {576, 16964}, {597, 22489}, {599, 16241}, {619, 5182}, {1350, 42529}, {1351, 42154}, {1352, 36765}, {1353, 6772}, {1503, 36961}, {2482, 51014}, {2782, 41746}, {2854, 30439}, {3180, 5979}, {3181, 5980}, {3200, 15462}, {3411, 33749}, {3618, 6669}, {5026, 51013}, {5032, 5334}, {5039, 12205}, {5050, 6771}, {5093, 13103}, {5321, 25154}, {5339, 11482}, {5459, 18581}, {5460, 11161}, {5464, 18800}, {5478, 14853}, {5847, 12781}, {5921, 43403}, {5965, 36782}, {6054, 6783}, {6104, 14173}, {6108, 6770}, {6109, 9762}, {6115, 37640}, {6776, 10653}, {6780, 9114}, {8584, 22580}, {8724, 9117}, {8787, 51015}, {9019, 36979}, {9143, 37776}, {9830, 22579}, {9916, 19459}, {10168, 33416}, {10753, 41023}, {11178, 16966}, {11180, 18582}, {11477, 42157}, {11581, 22826}, {11645, 19106}, {11705, 16475}, {12007, 22511}, {12142, 12167}, {12177, 22997}, {12942, 39897}, {12952, 39873}, {13105, 45729}, {13107, 45728}, {13705, 22631}, {13825, 22602}, {15533, 36767}, {15534, 25235}, {16267, 36771}, {16268, 46054}, {16644, 50955}, {16941, 36320}, {16962, 36764}, {16967, 47352}, {18358, 43104}, {19924, 42099}, {20415, 42153}, {20423, 36970}, {20583, 43419}, {21356, 42092}, {21358, 33417}, {21359, 51016}, {21467, 40855}, {21850, 42940}, {22491, 40671}, {22496, 42035}, {22847, 42778}, {25166, 44488}, {25555, 42580}, {28538, 50848}, {33878, 42626}, {34379, 51114}, {34394, 38413}, {35749, 49827}, {35750, 49876}, {36251, 42999}, {36363, 43228}, {36383, 43229}, {36768, 50992}, {36769, 42511}, {36968, 43273}, {37517, 43245}, {38079, 43101}, {41039, 41060}, {41113, 47865}, {42429, 48905}, {42913, 47610}, {42943, 48906}, {42990, 44512}, {43150, 43544}, {43200, 50664}, {43399, 51022}, {43484, 51138}, {47861, 51023}

X(51200) = midpoint of X(i) and X(j) for these {i,j}: {193, 616}, {39899, 48655}
X(51200) = reflection of X(i) in X(j) for these {i,j}: {13, 6}, {69, 618}, {5463, 51012}, {5464, 18800}, {10653, 41620}, {10654, 47863}, {11161, 5460}, {18440, 22796}, {22580, 8584}, {23006, 41745}, {35752, 22580}, {36776, 12177}, {51010, 51159}, {51011, 5463}, {51013, 5026}, {51014, 2482}, {51015, 8787}
X(51200) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {13, 6777, 41042}, {15, 22998, 5463}, {381, 5472, 13}, {6268, 19074, 13}, {6270, 19073, 13}, {6770, 37641, 6108}, {6779, 36967, 5473}, {9112, 41042, 13}, {16962, 36766, 36764}, {49208, 49305, 13}, {49209, 49306, 13}, {51010, 51012, 51159}, {51010, 51159, 5463}


X(51201) = X(13)X(1992)∩X(15)X(524)

Barycentrics    Sqrt[3]*(11*a^6-20*a^4*b^2+13*a^2*b^4-4*b^6-20*a^4*c^2-6*a^2*b^2*c^2+4*b^4*c^2+13*a^2*c^4+4*b^2*c^4-4*c^6)-2*(7*a^2-2*b^2-2*c^2)*(a^2+b^2+c^2)*S : :
X(51201) = 4 X[6] - 3 X[22489], 5 X[5463] - 4 X[51010], 3 X[5463] - 2 X[51011], 3 X[5463] - 4 X[51012], 7 X[5463] - 8 X[51159], 6 X[51010] - 5 X[51011], 3 X[51010] - 5 X[51012], 7 X[51010] - 10 X[51159], 7 X[51011] - 12 X[51159], 7 X[51012] - 6 X[51159], 4 X[15534] - X[35752], 4 X[599] - 5 X[36770], 3 X[5032] - 2 X[5459], 3 X[5469] - 2 X[11161], 3 X[21156] - 4 X[50979], 3 X[36765] - 2 X[50955], 5 X[36767] - 2 X[50992]

X(51201) lies on these lines: {6, 22489}, {13, 1992}, {15, 524}, {193, 530}, {531, 23006}, {533, 12155}, {542, 1351}, {599, 36770}, {618, 11160}, {3180, 9762}, {3564, 22495}, {3629, 22580}, {5032, 5459}, {5182, 36388}, {5210, 9115}, {5464, 5477}, {5469, 11161}, {5847, 50848}, {6780, 36777}, {8584, 22846}, {8593, 9114}, {8787, 51013}, {9112, 50855}, {9116, 14645}, {10754, 22577}, {18800, 51014}, {21156, 50979}, {34379, 50849}, {36765, 50955}, {36767, 50992}, {41022, 50974}

X(51201) = reflection of X(i) in X(j) for these {i,j}: {13, 1992}, {5464, 5477}, {9114, 8593}, {11160, 618}, {22577, 10754}, {22580, 3629}, {51011, 51012}, {51013, 8787}, {51014, 18800}
X(51201) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {22998, 36775, 5463}, {51011, 51012, 5463}


X(51202) = X(13)X(20582)∩X(15)X(524)

Barycentrics    Sqrt[3]*(4*a^6 + 5*a^4*b^2 - 10*a^2*b^4 + b^6 + 5*a^4*c^2 - 12*a^2*b^2*c^2 - b^4*c^2 - 10*a^2*c^4 - b^2*c^4 + c^6) + 2*(4*a^2 - 5*b^2 - 5*c^2)*(a^2 + b^2 + c^2)*S : :
X(51202) = 3 X[5463] + X[51011], 3 X[5463] - X[51012], 3 X[51010] - X[51011], 3 X[51010] + X[51012], 2 X[51010] + X[51159], 2 X[51011] + 3 X[51159], 2 X[51012] - 3 X[51159], X[22165] + 2 X[36769], X[8584] - 4 X[36768], 3 X[21156] - 4 X[50984], 3 X[22489] - 4 X[34573], X[35750] + 5 X[50993], X[35751] + 2 X[50991], X[35752] - 4 X[51143], 3 X[36765] - 2 X[50959], 6 X[48311] - 7 X[51128]

X(51202) lies on these lines: {13, 20582}, {15, 524}, {141, 530}, {518, 50847}, {542, 8703}, {597, 618}, {599, 616}, {1351, 49961}, {2482, 51160}, {3589, 22580}, {5008, 9115}, {5846, 50849}, {5969, 33459}, {5979, 51161}, {8584, 36768}, {8595, 35943}, {9041, 12781}, {9053, 50848}, {9116, 35692}, {9762, 44383}, {11295, 22861}, {14145, 15533}, {21156, 50984}, {21356, 42120}, {22489, 34573}, {28538, 51114}, {29181, 41042}, {33474, 51162}, {35750, 50993}, {35751, 50991}, {35752, 51143}, {36765, 50959}, {41022, 50965}, {42121, 48310}, {48311, 51128}

X(51202) = midpoint of X(i) and X(j) for these {i,j}: {599, 616}, {5463, 51010}, {51011, 51012}
X(51202) = reflection of X(i) in X(j) for these {i,j}: {13, 20582}, {597, 618}, {22580, 3589}, {51159, 5463}, {51160, 2482}
X(51202) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5463, 51011, 51012}, {51010, 51012, 51011}


X(51203) = X(6)X(13)∩X(16)X(524)

Barycentrics    7*a^6 - 10*a^4*b^2 + 5*a^2*b^4 - 2*b^6 - 10*a^4*c^2 - 6*a^2*b^2*c^2 + 2*b^4*c^2 + 5*a^2*c^4 + 2*b^2*c^4 - 2*c^6 + 2*Sqrt[3]*a^2*(a^2 + b^2 + c^2)*S : :
X(51203) = 3 X[5470] - 2 X[11646], X[6777] - 4 X[41672], 3 X[5464] - 2 X[51013], 3 X[5464] - 4 X[51160], 4 X[51013] - 3 X[51014], X[51013] - 3 X[51015], X[51014] - 4 X[51015], 3 X[51014] - 8 X[51160], 3 X[51015] - 2 X[51160], 4 X[8550] - X[41021], 4 X[182] - 3 X[21157], 2 X[395] - 3 X[36758], 4 X[597] - 3 X[22490], 2 X[618] - 3 X[5182], 5 X[3618] - 4 X[6670], 3 X[5050] - 2 X[6774], 3 X[5093] - X[13102], 5 X[11482] - 2 X[16002], 2 X[5479] - 3 X[14853], 2 X[6109] - 3 X[36757], X[6773] - 3 X[14912], 4 X[8584] - X[36330], X[19107] - 4 X[44497], 2 X[11706] - 3 X[16475], 2 X[15534] + X[36329], 3 X[21360] - 2 X[51018]

X(51203) lies on these lines: {2, 6783}, {3, 9117}, {6, 13}, {15, 11179}, {16, 524}, {17, 575}, {18, 15069}, {30, 23013}, {61, 8550}, {69, 619}, {141, 50859}, {182, 16241}, {193, 617}, {395, 3564}, {396, 50979}, {511, 5474}, {518, 7974}, {530, 8593}, {531, 1992}, {532, 22689}, {543, 23006}, {576, 16965}, {597, 22490}, {599, 16242}, {618, 5182}, {1152, 35748}, {1350, 42528}, {1351, 42155}, {1352, 37835}, {1353, 6775}, {1503, 36962}, {2482, 51011}, {2782, 41745}, {2854, 30440}, {3180, 5981}, {3181, 5978}, {3201, 15462}, {3412, 33749}, {3618, 6670}, {5026, 51010}, {5032, 5335}, {5039, 12204}, {5050, 6774}, {5093, 13102}, {5318, 25164}, {5340, 11482}, {5459, 11161}, {5460, 18582}, {5463, 18800}, {5479, 14853}, {5847, 12780}, {5921, 43404}, {6054, 6782}, {6105, 14179}, {6108, 9760}, {6109, 6773}, {6114, 37641}, {6776, 10654}, {6779, 9116}, {8584, 22579}, {8724, 9115}, {8787, 51012}, {9019, 36981}, {9143, 37775}, {9830, 22580}, {9915, 19459}, {10168, 33417}, {10753, 41022}, {11178, 16967}, {11180, 18581}, {11477, 42158}, {11582, 22827}, {11645, 19107}, {11706, 16475}, {12007, 22510}, {12141, 12167}, {12177, 22998}, {12941, 39897}, {12951, 39873}, {13104, 45729}, {13106, 45728}, {13703, 22633}, {13823, 22604}, {15534, 25236}, {16267, 46053}, {16645, 50955}, {16940, 36318}, {16966, 47352}, {18358, 43101}, {19924, 42100}, {20416, 42156}, {20423, 36969}, {20583, 43418}, {21356, 42089}, {21358, 33416}, {21360, 51018}, {21466, 40854}, {21850, 42941}, {22492, 40672}, {22495, 42036}, {22893, 42777}, {25156, 44487}, {25555, 42581}, {28538, 50851}, {33878, 42625}, {34379, 51115}, {34395, 38414}, {36252, 42998}, {36327, 49826}, {36331, 49875}, {36362, 43229}, {36382, 43228}, {36967, 43273}, {37517, 43244}, {38079, 43104}, {41038, 41061}, {41112, 47866}, {42430, 48905}, {42510, 47867}, {42912, 47611}, {42942, 48906}, {42991, 44511}, {43150, 43545}, {43199, 50664}, {43400, 51022}, {43483, 51138}, {47862, 51023}

X(51203) = midpoint of X(i) and X(j) for these {i,j}: {193, 617}, {39899, 48656}
X(51203) = reflection of X(i) in X(j) for these {i,j}: {14, 6}, {69, 619}, {5463, 18800}, {5464, 51015}, {10653, 47864}, {10654, 41621}, {11161, 5459}, {18440, 22797}, {22579, 8584}, {23013, 41746}, {36330, 22579}, {51010, 5026}, {51011, 2482}, {51012, 8787}, {51013, 51160}, {51014, 5464}
X(51203) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {14, 6778, 41043}, {16, 22997, 5464}, {381, 5471, 14}, {6269, 19076, 14}, {6271, 19075, 14}, {6773, 37640, 6109}, {6780, 36968, 5474}, {9113, 41043, 14}, {49210, 49307, 14}, {49211, 49308, 14}, {51013, 51015, 51160}, {51013, 51160, 5464}


X(51204) = X(14)X(1992)∩X(16)X(524)

Barycentrics    Sqrt[3]*(11*a^6 - 20*a^4*b^2 + 13*a^2*b^4 - 4*b^6 - 20*a^4*c^2 - 6*a^2*b^2*c^2 + 4*b^4*c^2 + 13*a^2*c^4 + 4*b^2*c^4 - 4*c^6) + 2*(7*a^2 - 2*b^2 - 2*c^2)*(a^2 + b^2 + c^2)*S : :
X(51204) = 4 X[6] - 3 X[22490], 5 X[5464] - 4 X[51013], 3 X[5464] - 2 X[51014], 3 X[5464] - 4 X[51015], 7 X[5464] - 8 X[51160], 6 X[51013] - 5 X[51014], 3 X[51013] - 5 X[51015], 7 X[51013] - 10 X[51160], 7 X[51014] - 12 X[51160], 7 X[51015] - 6 X[51160], 4 X[15534] - X[36330], 3 X[5032] - 2 X[5460], 3 X[5470] - 2 X[11161], 3 X[21157] - 4 X[50979]

X(51204) lies on these lines: {6, 22490}, {14, 1992}, {16, 524}, {193, 531}, {530, 23013}, {532, 12154}, {542, 1351}, {619, 11160}, {3181, 9760}, {3564, 22496}, {3629, 22579}, {5032, 5460}, {5182, 36386}, {5210, 9117}, {5463, 5477}, {5470, 11161}, {5847, 50851}, {8584, 22891}, {8593, 9116}, {8787, 51010}, {9113, 50858}, {9114, 14645}, {10754, 22578}, {18800, 51011}, {21157, 50979}, {34379, 50852}, {41023, 50974}

X(51204) = reflection of X(i) in X(j) for these {i,j}: {14, 1992}, {5463, 5477}, {9116, 8593}, {11160, 619}, {22578, 10754}, {22579, 3629}, {51010, 8787}, {51011, 18800}, {51014, 51015}
X(51204) = {X(51014),X(51015)}-harmonic conjugate of X(5464)


X(51205) = X(14)X(20582)∩X(16)X(524)

Barycentrics    Sqrt[3]*(4*a^6 + 5*a^4*b^2 - 10*a^2*b^4 + b^6 + 5*a^4*c^2 - 12*a^2*b^2*c^2 - b^4*c^2 - 10*a^2*c^4 - b^2*c^4 + c^6) - 2*(4*a^2 - 5*b^2 - 5*c^2)*(a^2 + b^2 + c^2)*S : :
X(51205) = 3 X[5464] + X[51014], 3 X[5464] - X[51015], 3 X[51013] - X[51014], 3 X[51013] + X[51015], 2 X[51013] + X[51160], 2 X[51014] + 3 X[51160], 2 X[51015] - 3 X[51160], X[22165] + 2 X[47867], 3 X[21157] - 4 X[50984], 3 X[22490] - 4 X[34573], X[36329] + 2 X[50991], X[36330] - 4 X[51143], X[36331] + 5 X[50993], 6 X[48312] - 7 X[51128]

X(51205) lies on these lines: {14, 20582}, {16, 524}, {141, 531}, {518, 50850}, {542, 8703}, {597, 619}, {599, 617}, {1351, 49962}, {2482, 51159}, {3589, 22579}, {5008, 9117}, {5846, 50852}, {5969, 33458}, {5978, 51162}, {8594, 35942}, {9041, 12780}, {9053, 50851}, {9114, 35696}, {9760, 44382}, {11296, 22907}, {14144, 15533}, {21157, 50984}, {21356, 42119}, {22490, 34573}, {28538, 51115}, {29181, 41043}, {33475, 51161}, {36329, 50991}, {36330, 51143}, {36331, 50993}, {41023, 50965}, {42124, 48310}, {48312, 51128}

X(51205) = midpoint of X(i) and X(j) for these {i,j}: {599, 617}, {5464, 51013}, {51014, 51015}
X(51205) = reflection of X(i) in X(j) for these {i,j}: {14, 20582}, {597, 619}, {22579, 3589}, {51159, 2482}, {51160, 5464}
X(51205) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5464, 51014, 51015}, {51013, 51015, 51014}


X(51206) = X(3)X(6)∩X(13)X(524)

Barycentrics    a^2*(Sqrt[3]*(a^4 - 4*a^2*b^2 + 3*b^4 - 4*a^2*c^2 - 2*b^2*c^2 + 3*c^4) - 2*(a^2 + b^2 + c^2)*S) : :
X(51206) = 4 X[6] - 3 X[36757], 2 X[15] - 3 X[36757], X[15] - 4 X[44498], 4 X[182] - 3 X[21158], 2 X[187] - 3 X[36758], 4 X[2030] - 3 X[39555], 3 X[2456] - 2 X[36756], 3 X[5050] - 2 X[13350], 3 X[5093] - X[5611], 2 X[5104] - 3 X[39554], 3 X[5111] - 2 X[44497], X[14538] - 4 X[44488], 3 X[36757] - 8 X[44498], 3 X[50855] - 2 X[51016], 3 X[50855] - 4 X[51161], X[51016] - 3 X[51017], 3 X[51017] - 2 X[51161], 4 X[141] - 5 X[40334], 5 X[3618] - 4 X[6671], 4 X[5480] - 3 X[41036], 2 X[7684] - 3 X[14853], 2 X[11707] - 3 X[16475], 3 X[14912] - X[36993], 2 X[15993] - 3 X[22511]

X(51206) lies on these lines: {3, 6}, {4, 33518}, {13, 524}, {14, 20423}, {30, 23006}, {69, 623}, {115, 20425}, {141, 16966}, {193, 621}, {202, 8540}, {298, 6115}, {316, 33517}, {323, 37776}, {531, 1992}, {542, 23004}, {597, 16242}, {599, 37832}, {1080, 6782}, {1352, 16808}, {1353, 42118}, {1503, 19106}, {2854, 10657}, {2987, 3457}, {3170, 44122}, {3180, 5978}, {3200, 18374}, {3564, 5318}, {3589, 33416}, {3618, 6671}, {3751, 44659}, {5321, 21850}, {5475, 20426}, {5476, 37835}, {5480, 16809}, {5847, 50853}, {5921, 42134}, {5965, 22900}, {6108, 37786}, {6109, 37641}, {6403, 10641}, {6776, 42086}, {6779, 51012}, {7006, 19369}, {7684, 14853}, {7737, 23013}, {8550, 42158}, {8584, 41100}, {9023, 9162}, {9970, 10658}, {10516, 42919}, {10519, 42092}, {10661, 34382}, {10676, 34779}, {10677, 44668}, {11002, 37775}, {11160, 43403}, {11178, 41098}, {11179, 36968}, {11476, 39588}, {11542, 34380}, {11707, 16475}, {11898, 42128}, {14561, 16967}, {14848, 16645}, {14912, 36993}, {14927, 42113}, {14984, 36978}, {15069, 42813}, {15533, 41121}, {15534, 41107}, {15993, 22511}, {16267, 46054}, {16627, 18358}, {16628, 39590}, {18440, 42094}, {18583, 23303}, {19107, 31670}, {19130, 42918}, {19140, 32302}, {20080, 22113}, {21356, 42911}, {21359, 36771}, {22165, 49907}, {23302, 48876}, {24206, 42915}, {25406, 42091}, {25555, 42937}, {29181, 42099}, {36208, 46342}, {36766, 51010}, {38136, 42107}, {39874, 42141}, {39884, 42102}, {39899, 42127}, {40107, 42488}, {40330, 42114}, {41119, 50992}, {42088, 48906}, {42100, 46264}, {42796, 51138}, {42943, 50979}, {42974, 50962}, {43245, 51166}, {43544, 50982}

X(51206) = midpoint of X(193) and X(621)
X(51206) = reflection of X(i) in X(j) for these {i,j}: {6, 44498}, {15, 6}, {69, 623}, {22495, 22580}, {33878, 36755}, {50855, 51017}, {51016, 51161}
X(51206) = 2nd-Lemoine-circle-inverse of X(36758)
X(51206) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 15, 36757}, {6, 11173, 41407}, {6, 11481, 5050}, {6, 11486, 36758}, {6, 19780, 1692}, {15, 62, 41406}, {15, 10646, 21158}, {15, 34755, 39554}, {187, 5611, 15}, {1666, 1667, 36758}, {5093, 11486, 6}, {5611, 11486, 187}, {8586, 44488, 15}, {23004, 47859, 36969}, {51016, 51017, 51161}, {51016, 51161, 50855}


X(51207) = X(3)X(6)∩X(14)X(524)

Barycentrics    a^2*(Sqrt[3]*(a^4 - 4*a^2*b^2 + 3*b^4 - 4*a^2*c^2 - 2*b^2*c^2 + 3*c^4) + 2*(a^2 + b^2 + c^2)*S) : :
X(51207) = 4 X[6] - 3 X[36758], 2 X[16] - 3 X[36758], X[16] - 4 X[44497], 4 X[182] - 3 X[21159], 2 X[187] - 3 X[36757], 4 X[2030] - 3 X[39554], 3 X[2456] - 2 X[36755], 3 X[5050] - 2 X[13349], 3 X[5093] - X[5615], 2 X[5104] - 3 X[39555], 3 X[5111] - 2 X[44498], X[14539] - 4 X[44487], 3 X[36758] - 8 X[44497], 3 X[50858] - 2 X[51018], 3 X[50858] - 4 X[51162], X[51018] - 3 X[51019], 3 X[51019] - 2 X[51162], 4 X[141] - 5 X[40335], 5 X[3618] - 4 X[6672], 4 X[5480] - 3 X[41037], 2 X[7685] - 3 X[14853], 2 X[11708] - 3 X[16475], 3 X[14912] - X[36995], 2 X[15993] - 3 X[22510]

X(51207) lies on these lines: {3, 6}, {4, 33517}, {13, 20423}, {14, 524}, {30, 23013}, {69, 624}, {115, 20426}, {141, 16967}, {193, 622}, {203, 8540}, {299, 6114}, {316, 33518}, {323, 37775}, {383, 6783}, {530, 1992}, {542, 23005}, {597, 16241}, {599, 37835}, {1352, 16809}, {1353, 42117}, {1503, 19107}, {2854, 10658}, {2987, 3458}, {3171, 44083}, {3181, 5979}, {3201, 18374}, {3564, 5321}, {3589, 33417}, {3618, 6672}, {3751, 44660}, {5318, 21850}, {5475, 20425}, {5476, 37832}, {5480, 16808}, {5847, 50856}, {5921, 42133}, {5965, 22856}, {6108, 37640}, {6109, 37785}, {6403, 10642}, {6776, 42085}, {6779, 36772}, {6780, 51015}, {7005, 19369}, {7685, 14853}, {7737, 23006}, {8550, 42157}, {8584, 41101}, {9023, 9163}, {9970, 10657}, {10516, 42918}, {10519, 42089}, {10662, 34382}, {10675, 34779}, {10678, 44668}, {11002, 37776}, {11160, 43404}, {11178, 41094}, {11179, 36967}, {11475, 39588}, {11543, 34380}, {11708, 16475}, {11898, 42125}, {14561, 16966}, {14848, 16644}, {14912, 36995}, {14927, 42112}, {14984, 36980}, {15069, 42814}, {15533, 41122}, {15534, 41108}, {15993, 22510}, {16268, 46053}, {16626, 18358}, {16629, 39590}, {18440, 42093}, {18583, 23302}, {19106, 31670}, {19130, 42919}, {19140, 32301}, {20080, 22114}, {21356, 42910}, {22165, 49908}, {23303, 48876}, {24206, 42914}, {25406, 42090}, {25555, 42936}, {29181, 42100}, {36209, 46343}, {38136, 42110}, {39874, 42140}, {39884, 42101}, {39899, 42126}, {40107, 42489}, {40330, 42111}, {41120, 50992}, {42087, 48906}, {42099, 46264}, {42795, 51138}, {42942, 50979}, {42975, 50962}, {43244, 51166}, {43545, 50982}

X(51207) = midpoint of X(193) and X(622)
X(51207) = reflection of X(i) in X(j) for these {i,j}: {6, 44497}, {16, 6}, {69, 624}, {22496, 22579}, {33878, 36756}, {50858, 51019}, {51018, 51162}
X(51207) = 2nd-Lemoine-circle-inverse of X(36757)
X(51207) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 16, 36758}, {6, 11173, 41406}, {6, 11480, 5050}, {6, 11485, 36757}, {6, 19781, 1692}, {16, 61, 41407}, {16, 10645, 21159}, {16, 34754, 39555}, {187, 5615, 16}, {1666, 1667, 36757}, {5093, 11485, 6}, {5615, 11485, 187}, {8586, 44487, 16}, {23005, 47860, 36970}, {51018, 51019, 51162}, {51018, 51162, 50858}


X(51208) = X(6)X(17)∩X(524)X(41943)

Barycentrics    9*a^6 - 18*a^4*b^2 + 11*a^2*b^4 - 2*b^6 - 18*a^4*c^2 - 10*a^2*b^2*c^2 + 2*b^4*c^2 + 11*a^2*c^4 + 2*b^2*c^4 - 2*c^6 - 2*Sqrt[3]*a^2*(a^2 + b^2 + c^2)*S : :
X(51208) = 4 X[3629] + X[22844], 2 X[14138] - 3 X[36757], 3 X[50859] - 2 X[51020], 5 X[3618] - 4 X[6673], 3 X[5050] - 2 X[49106], 3 X[5093] - X[16629], 4 X[8584] - X[36366], 2 X[11739] - 3 X[16475], 3 X[14853] - 2 X[22832], 3 X[14912] - X[22532], 2 X[15534] + X[36386], X[22895] - 4 X[44497]

X(51208) lies on these lines: {6, 17}, {14, 5097}, {16, 12007}, {61, 3629}, {69, 629}, {193, 627}, {511, 22890}, {518, 22912}, {524, 41943}, {532, 1992}, {542, 11602}, {1351, 42154}, {1353, 6775}, {3564, 16626}, {3618, 6673}, {3631, 42936}, {5039, 22523}, {5050, 42491}, {5093, 16629}, {5102, 16964}, {5480, 22900}, {5847, 22896}, {6329, 42489}, {6776, 42086}, {8584, 22891}, {8593, 22488}, {11008, 42152}, {11179, 42631}, {11739, 16475}, {12167, 22482}, {14853, 22832}, {14912, 22532}, {15534, 36386}, {16268, 20583}, {18440, 22795}, {18583, 43101}, {19459, 22657}, {22895, 44497}, {22904, 39897}, {22905, 39873}, {22931, 45729}, {22932, 45728}, {31705, 42982}, {32455, 51162}, {33465, 40694}, {34379, 51116}, {37517, 42157}, {39899, 48666}, {42581, 43150}

X(51208) = midpoint of X(i) and X(j) for these {i,j}: {193, 627}, {39899, 48666}
X(51208) = reflection of X(i) in X(j) for these {i,j}: {17, 6}, {69, 629}, {18440, 22795}
X(51208) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {19070, 22899, 17}, {19071, 22898, 17}, {49238, 49335, 17}, {49239, 49336, 17}


X(51209) = X(6)X(17)∩X(524)X(41944)

Barycentrics    9*a^6 - 18*a^4*b^2 + 11*a^2*b^4 - 2*b^6 - 18*a^4*c^2 - 10*a^2*b^2*c^2 + 2*b^4*c^2 + 11*a^2*c^4 + 2*b^2*c^4 - 2*c^6 + 2*Sqrt[3]*a^2*(a^2 + b^2 + c^2)*S : :
X(51209) = 4 X[3629] + X[22845], 2 X[14139] - 3 X[36758], 3 X[50860] - 2 X[51021], 5 X[3618] - 4 X[6674], 3 X[5050] - 2 X[49105], 3 X[5093] - X[16628], 4 X[8584] - X[36368], 2 X[11740] - 3 X[16475], 3 X[14853] - 2 X[22831], 3 X[14912] - X[22531], 2 X[15534] + X[36388], X[22849] - 4 X[44498]

X(51209) lies on these lines: {6, 17}, {13, 5097}, {15, 12007}, {62, 3629}, {69, 630}, {193, 628}, {511, 22843}, {518, 22867}, {524, 41944}, {533, 1992}, {542, 11603}, {1351, 42155}, {1353, 6772}, {3564, 16627}, {3618, 6674}, {3631, 42937}, {5039, 22522}, {5050, 42490}, {5093, 16628}, {5102, 16965}, {5480, 22856}, {5847, 22851}, {6329, 42488}, {6776, 42085}, {8584, 22846}, {8593, 22487}, {11008, 42149}, {11179, 42632}, {11740, 16475}, {12167, 22481}, {14853, 22831}, {14912, 22531}, {15534, 36388}, {16267, 20583}, {18440, 22794}, {18583, 43104}, {19459, 22656}, {22849, 44498}, {22859, 39897}, {22860, 39873}, {22886, 45729}, {22887, 45728}, {31706, 42983}, {32455, 51161}, {33464, 40693}, {34379, 51117}, {36763, 43228}, {37517, 42158}, {39899, 48665}, {42580, 43150}

X(51209) = midpoint of X(i) and X(j) for these {i,j}: {193, 628}, {39899, 48665}
X(51209) = reflection of X(i) in X(j) for these {i,j}: {18, 6}, {69, 630}, {18440, 22794}
X(51209) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {19069, 22853, 18}, {19072, 22854, 18}, {49236, 49333, 18}, {49237, 49334, 18}


X(51210) = X(6)X(19)∩X(524)X(31158)

Barycentrics    a*(a^2 - b^2 - c^2)*(a^4 - 2*a^3*b - 2*a*b^3 - b^4 - 2*a^3*c + 2*a*b^2*c + 2*a*b*c^2 + 2*b^2*c^2 - 2*a*c^3 - c^4) : :
X(51210) = 4 X[141] - 5 X[31261], 4 X[182] - 3 X[21160], 5 X[3618] - 4 X[40530]

X(51210) lies on these lines: {1, 23620}, {6, 19}, {48, 77}, {69, 18589}, {78, 20727}, {141, 31261}, {182, 21160}, {193, 4329}, {219, 34381}, {511, 30265}, {516, 4780}, {524, 31158}, {534, 1992}, {610, 5018}, {1100, 1486}, {1386, 44101}, {2191, 46149}, {2876, 3056}, {3618, 40530}, {3751, 44661}, {3811, 14963}, {3951, 3958}, {5839, 11677}, {5847, 50861}, {8680, 49496}, {10602, 44670}, {16972, 44093}, {17275, 23305}, {18161, 39273}, {18732, 22131}, {32451, 46181}

X(51210) = midpoint of X(193) and X(4329)
X(51210) = reflection of X(i) in X(j) for these {i,j}: {19, 6}, {69, 18589}


X(51211) = X(20)X(575)∩X(524)X(3543)

Barycentrics    19*a^6 + 65*a^4*b^2 - 67*a^2*b^4 - 17*b^6 + 65*a^4*c^2 + 30*a^2*b^2*c^2 + 17*b^4*c^2 - 67*a^2*c^4 + 17*b^2*c^4 - 17*c^6 : :
X(51211) = 19 X[2] - 24 X[38136], 3 X[2] - 4 X[50963], 9 X[2] - 8 X[50980], 18 X[38136] - 19 X[50963], and many others

X(51211) lies on these lines: {2, 38136}, {4, 50954}, {20, 575}, {376, 50987}, {524, 3543}, {542, 50691}, {1992, 49135}, {3091, 51129}, {3146, 50974}, {3523, 50965}, {3618, 10304}, {3620, 3839}, {3763, 50959}, {5476, 50969}, {5480, 15721}, {5731, 51153}, {5847, 50863}, {10303, 51141}, {10519, 50964}, {11001, 33748}, {11160, 50688}, {14848, 50693}, {15640, 29012}, {15682, 50962}, {15683, 50979}, {15684, 50986}, {15692, 19924}, {15697, 29181}, {34379, 50873}, {47354, 50990}, {48872, 51138}, {48910, 51132}, {50687, 50955}, {50689, 50957}

X(51211) = reflection of X(i) in X(j) for these {i,j}: {50966, 50963}, {50967, 50956}, {50975, 20423}, {51023, 51167}, {51029, 51024}
X(51211) = anticomplement of X(50966)
X(51211) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {36990, 51024, 51165}, {50956, 50967, 3620}, {50963, 50966, 2}, {51023, 51029, 51167}, {51023, 51166, 51028}, {51024, 51027, 51163}, {51024, 51028, 3543}, {51024, 51166, 51023}


X(51212) = X(6)X(20)∩X(524)X(3543)

Barycentrics    a^6 + 5*a^4*b^2 - 5*a^2*b^4 - b^6 + 5*a^4*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 - 5*a^2*c^4 + b^2*c^4 - c^6 : :
X(51212) = 3 X[2] - 4 X[5480], 5 X[2] - 6 X[38072], 5 X[1350] - 9 X[38072], 10 X[5480] - 9 X[38072], 4 X[3] - 5 X[3618], and many others

X(51212) lies on these lines: {2, 1350}, {3, 3618}, {4, 69}, {5, 3619}, {6, 20}, {8, 43216}, {22, 11427}, {23, 15577}, {24, 28708}, {25, 37669}, {30, 1351}, {51, 7386}, {52, 18909}, {64, 15583}, {66, 15077}, {67, 43699}, {74, 25320}, {81, 50698}, {86, 7390}, {141, 3091}, {146, 2854}, {147, 5969}, {152, 2810}, {153, 9024}, {182, 376}, {184, 34608}, {185, 18935}, {186, 47581}, {193, 1503}, {206, 34148}, {263, 37190}, {265, 32247}, {287, 9530}, {297, 10002}, {323, 7519}, {343, 7378}, {378, 37488}, {381, 21356}, {382, 3564}, {388, 3056}, {389, 41256}, {393, 37200}, {394, 6995}, {403, 47468}, {411, 36740}, {428, 14826}, {441, 34815}, {487, 1161}, {488, 1160}, {491, 7000}, {492, 7374}, {497, 1469}, {516, 3751}, {518, 962}, {524, 3543}, {542, 10721}, {547, 50963}, {548, 12017}, {550, 5050}, {573, 36706}, {575, 17538}, {576, 3529}, {578, 1176}, {597, 10304}, {599, 3839}, {611, 4294}, {613, 4293}, {631, 3098}, {858, 37643}, {895, 2777}, {938, 24471}, {966, 7379}, {991, 36698}, {1007, 1513}, {1032, 14944}, {1370, 3060}, {1386, 5731}, {1593, 37491}, {1656, 38136}, {1657, 5093}, {1698, 38146}, {1699, 49511}, {1738, 43173}, {1885, 12167}, {1899, 21969}, {1974, 13346}, {1993, 7500}, {1994, 20062}, {2393, 41735}, {2549, 5052}, {2551, 17792}, {2781, 3448}, {2794, 10754}, {2829, 10755}, {2883, 9924}, {2979, 6997}, {3088, 17834}, {3089, 28419}, {3090, 7944}, {3094, 7736}, {3313, 6815}, {3430, 37176}, {3436, 25304}, {3522, 5085}, {3523, 3589}, {3524, 5476}, {3525, 38317}, {3528, 5092}, {3537, 36987}, {3542, 28408}, {3545, 24206}, {3552, 47619}, {3580, 23049}, {3616, 38035}, {3617, 38144}, {3620, 3832}, {3627, 18440}, {3629, 49135}, {3763, 5056}, {3830, 11180}, {3843, 18358}, {3845, 50990}, {3855, 40107}, {3917, 7392}, {3933, 40268}, {4232, 11064}, {4259, 6836}, {4260, 9535}, {4297, 16475}, {4301, 16496}, {4329, 10394}, {4648, 7385}, {5017, 5999}, {5028, 7737}, {5032, 12007}, {5039, 12203}, {5059, 5102}, {5071, 50977}, {5073, 39899}, {5094, 47582}, {5097, 11001}, {5107, 43618}, {5157, 13434}, {5159, 21970}, {5177, 26543}, {5182, 38738}, {5188, 16043}, {5189, 16981}, {5224, 7407}, {5225, 12589}, {5229, 12588}, {5446, 6643}, {5622, 16111}, {5640, 46336}, {5656, 39879}, {5663, 32255}, {5691, 5847}, {5712, 37443}, {5728, 17170}, {5734, 49465}, {5739, 37456}, {5800, 6925}, {5813, 41228}, {5840, 10759}, {5848, 10724}, {5889, 12324}, {5965, 48884}, {5972, 6353}, {6090, 10301}, {6101, 11487}, {6144, 50691}, {6193, 7553}, {6194, 24256}, {6201, 7389}, {6202, 7388}, {6243, 11411}, {6329, 10541}, {6393, 32816}, {6560, 35841}, {6561, 35840}, {6781, 39764}, {6803, 15644}, {6804, 10110}, {6811, 32805}, {6813, 32806}, {6816, 9969}, {6872, 15988}, {6909, 36741}, {6966, 33844}, {7396, 13567}, {7398, 17811}, {7400, 45089}, {7401, 10625}, {7404, 37486}, {7484, 40918}, {7486, 34573}, {7487, 20806}, {7493, 15107}, {7503, 37485}, {7528, 37484}, {7580, 37492}, {7667, 9777}, {7706, 9967}, {7710, 7774}, {7714, 9306}, {7728, 14984}, {7792, 9748}, {7987, 38049}, {7991, 49529}, {8229, 30828}, {8549, 40318}, {8703, 14848}, {8722, 33215}, {9019, 44439}, {9041, 50872}, {9541, 19145}, {9733, 21736}, {9753, 35387}, {9756, 37667}, {9815, 13348}, {9833, 34779}, {9968, 15801}, {9970, 12383}, {9974, 43408}, {9975, 43407}, {10008, 32827}, {10168, 15698}, {10263, 14790}, {10295, 47571}, {10299, 25555}, {10303, 21167}, {10483, 39901}, {10565, 23292}, {10752, 11061}, {10753, 23698}, {10996, 11574}, {11002, 16063}, {11004, 20063}, {11147, 37461}, {11160, 47353}, {11173, 43448}, {11178, 41099}, {11257, 35439}, {11291, 11824}, {11292, 11825}, {11382, 22555}, {11424, 19126}, {11444, 15435}, {11479, 11821}, {11482, 15704}, {11541, 29323}, {11579, 12244}, {11645, 50974}, {12086, 44883}, {12110, 13355}, {12160, 34781}, {12177, 13172}, {12220, 37201}, {12221, 13748}, {12222, 13749}, {12256, 45488}, {12257, 45489}, {12289, 29012}, {12584, 20125}, {12699, 39898}, {12943, 39897}, {12953, 39873}, {13142, 18945}, {13202, 41737}, {13331, 32522}, {13391, 18420}, {13421, 32140}, {13725, 48883}, {13860, 34229}, {14001, 30270}, {14449, 18951}, {14532, 15048}, {14538, 37172}, {14539, 37173}, {14540, 37177}, {14541, 37178}, {14555, 26118}, {14645, 39838}, {14693, 35383}, {14893, 50978}, {15055, 15118}, {15069, 17578}, {15081, 49116}, {15516, 48920}, {15520, 48879}, {15534, 15640}, {15681, 50979}, {15684, 50962}, {15686, 50975}, {15687, 50955}, {15692, 47352}, {15693, 38079}, {15702, 50966}, {15721, 48310}, {15723, 50980}, {15749, 16774}, {16982, 18952}, {17040, 31371}, {17508, 21735}, {17845, 34774}, {18124, 38442}, {18230, 38145}, {18533, 22151}, {18860, 32985}, {18925, 31305}, {18931, 37489}, {19118, 27082}, {19119, 19467}, {19137, 43652}, {19146, 35946}, {19459, 31802}, {19583, 25332}, {19708, 38064}, {20300, 31074}, {21358, 50959}, {21851, 39571}, {22330, 48891}, {22486, 32986}, {22728, 37348}, {23291, 34609}, {24220, 36660}, {24553, 36007}, {24981, 31383}, {25321, 32233}, {25898, 50408}, {26668, 37254}, {26864, 37899}, {26869, 46517}, {26870, 30258}, {28228, 49536}, {28538, 50864}, {30769, 47296}, {30775, 32225}, {31162, 50999}, {31272, 38147}, {31304, 34117}, {31673, 39885}, {32114, 38791}, {32218, 46451}, {32423, 48679}, {32455, 49140}, {32911, 50699}, {33007, 39141}, {34153, 45016}, {34200, 50969}, {34379, 51118}, {34417, 40132}, {34473, 46453}, {34628, 51005}, {34632, 47359}, {34648, 50950}, {35242, 38118}, {35389, 36998}, {35456, 37466}, {35471, 44469}, {35474, 41371}, {35922, 46124}, {36474, 48875}, {36526, 48934}, {36662, 48888}, {36674, 48908}, {36757, 42150}, {36758, 42151}, {36989, 41719}, {37197, 41584}, {37444, 37473}, {37460, 37497}, {37952, 47455}, {38383, 50640}, {38749, 41400}, {39561, 48892}, {39588, 44492}, {39871, 44438}, {40341, 50688}, {41465, 49669}, {42263, 49228}, {42264, 49229}, {42287, 42352}, {42313, 44924}, {44280, 47457}, {46034, 47286}, {46935, 51128}, {48837, 50600}

X(51212) = midpoint of X(i) and X(j) for these {i,j}: {193, 3146}, {382, 44456}, {3543, 51028}, {5073, 39899}, {11477, 48910}, {15684, 50962}, {33703, 39874}
X(51212) = reflection of X(i) in X(j) for these {i,j}: {3, 21850}, {4, 31670}, {20, 6}, {64, 15583}, {69, 4}, {193, 11477}, {376, 20423}, {1350, 5480}, {1352, 48901}, {1657, 48906}, {1843, 13598}, {3146, 48910}, {3529, 46264}, {3543, 51024}, {5059, 48905}, {5921, 36990}, {6776, 1351}, {7991, 49529}, {9833, 34779}, {9924, 2883}, {10295, 47571}, {11001, 11179}, {11061, 10752}, {11160, 47353}, {11180, 3830}, {11257, 35439}, {11898, 39884}, {12220, 50649}, {12244, 11579}, {12324, 36851}, {12383, 9970}, {13172, 12177}, {14532, 15048}, {14927, 6776}, {15681, 50979}, {15683, 43273}, {16496, 4301}, {17845, 34774}, {18440, 3627}, {19459, 31802}, {20080, 15069}, {26926, 13142}, {32114, 38791}, {32247, 265}, {33703, 43621}, {33878, 5}, {34507, 48895}, {34628, 51005}, {34632, 47359}, {36990, 51163}, {36998, 35389}, {37511, 5446}, {39885, 31673}, {39898, 12699}, {41465, 49669}, {41716, 12294}, {41737, 13202}, {46264, 576}, {48872, 44882}, {48873, 182}, {48874, 18583}, {48880, 575}, {48891, 22330}, {48898, 5097}, {48905, 8550}, {48920, 15516}, {50640, 38383}, {50641, 39838}, {50950, 34648}, {50955, 15687}, {50967, 381}, {50978, 14893}, {50992, 11180}, {50999, 31162}, {51023, 3543}
X(51212) = anticomplement of X(1350)
X(51212) = polar conjugate of X(42373)
X(51212) = anticomplement of the isogonal conjugate of X(3424)
X(51212) = isotomic conjugate of the isogonal conjugate of X(41266)
X(51212) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {3424, 8}, {42287, 4329}
X(51212) = X(48)-isoconjugate of X(42373)
X(51212) = X(1249)-Dao conjugate of X(42373)
X(51212) = crossdifference of every pair of points on line {3049, 47133}
X(51212) = barycentric product X(76)*X(41266)
X(51212) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 42373}, {41266, 6}
X(51212) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 14853, 3618}, {3, 21850, 14853}, {4, 43999, 39530}, {5, 10519, 3619}, {5, 33878, 10519}, {6, 20, 25406}, {6, 48872, 44882}, {20, 15741, 13568}, {23, 37645, 35260}, {51, 7386, 18928}, {52, 34938, 18909}, {182, 48873, 376}, {381, 48876, 40330}, {381, 50967, 21356}, {548, 12017, 33750}, {576, 46264, 14912}, {962, 36991, 51063}, {1160, 36709, 488}, {1161, 36714, 487}, {1350, 5480, 2}, {1351, 6776, 1992}, {1352, 31670, 48901}, {1352, 48901, 4}, {1370, 3060, 11433}, {1657, 5093, 48906}, {1992, 14927, 6776}, {1993, 7500, 11206}, {3098, 14561, 631}, {3529, 14912, 46264}, {3543, 5921, 36990}, {3589, 31884, 3523}, {3620, 3832, 10516}, {3830, 11898, 39884}, {5032, 15683, 43273}, {5085, 48881, 3522}, {5097, 48898, 11179}, {5102, 48905, 8550}, {5189, 16981, 37644}, {5921, 36990, 51023}, {6515, 7391, 32064}, {6560, 35841, 39875}, {6561, 35840, 39876}, {7774, 40236, 7710}, {11160, 50687, 47353}, {11898, 39884, 11180}, {12296, 12297, 382}, {12322, 12323, 32006}, {18583, 48874, 3}, {20423, 48873, 182}, {21167, 47355, 10303}, {21850, 48874, 18583}, {31305, 36747, 18925}, {34609, 41588, 23291}, {36990, 51024, 51163}, {36990, 51163, 3543}, {37200, 44704, 393}, {37517, 43621, 39874}, {40236, 44434, 7774}, {40330, 48876, 21356}, {40330, 50967, 48876}, {44882, 48872, 20}, {47352, 50965, 15692}, {51023, 51024, 51029}, {51024, 51027, 51026}, {51024, 51028, 51023}, {51024, 51166, 51028}, {51024, 51167, 51165}


X(51213) = X(20)X(38072)∩X(524)X(3543)

Barycentrics    41*a^6 + 55*a^4*b^2 - 65*a^2*b^4 - 31*b^6 + 55*a^4*c^2 + 42*a^2*b^2*c^2 + 31*b^4*c^2 - 65*a^2*c^4 + 31*b^2*c^4 - 31*c^6 : :
X(51213) = 3 X[2] - 4 X[50964], 9 X[2] - 8 X[51141], 3 X[50964] - 2 X[51141], 3 X[50969] - 4 X[51141], 3 X[4] - 2 X[50957], and many others

X(51213) lies on these lines: {2, 29317}, {4, 50957}, {20, 38072}, {376, 50988}, {381, 50981}, {382, 50974}, {524, 3543}, {542, 50690}, {597, 49140}, {1992, 50691}, {3091, 50965}, {3146, 20423}, {3545, 50980}, {3619, 3839}, {3620, 38335}, {3627, 11160}, {3818, 50687}, {3830, 50978}, {3845, 50966}, {3853, 50954}, {5032, 15684}, {5056, 51129}, {5059, 50975}, {5847, 50867}, {10304, 47355}, {11001, 38110}, {11541, 14848}, {15640, 33748}, {15683, 46267}, {15708, 50968}, {15721, 48872}, {25406, 51130}, {31670, 51140}, {31884, 51131}, {33699, 50962}, {34379, 50874}, {35409, 48906}, {47354, 50994}

X(51213) = midpoint of X(51024) and X(51164)
X(51213) = reflection of X(50969) in X(50964)
X(51213) = anticomplement of X(50969)
X(51213) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3543, 51024, 51028}, {50964, 50969, 2}, {51023, 51026, 3543}, {51023, 51029, 51026}, {51024, 51026, 51023}, {51024, 51029, 3543}, {51024, 51163, 51029}, {51024, 51167, 51166}, {51026, 51166, 51167}, {51163, 51165, 51024}, {51166, 51167, 51023}


X(51214) = X(20)X(51136)∩X(524)X(3543)

Barycentrics    13*a^6 - 55*a^4*b^2 + 47*a^2*b^4 - 5*b^6 - 55*a^4*c^2 - 6*a^2*b^2*c^2 + 5*b^4*c^2 + 47*a^2*c^4 + 5*b^2*c^4 - 5*c^6 : :
X(51214) = 5 X[2] - 6 X[5102], 9 X[2] - 8 X[50982], 3 X[2] - 4 X[51132], 9 X[5102] - 5 X[50973], and many others

X(51214) lies on these lines: {2, 5102}, {3, 1992}, {4, 50961}, {6, 15708}, {20, 51136}, {30, 11008}, {69, 1568}, {193, 43273}, {376, 51140}, {381, 50985}, {511, 11001}, {524, 3543}, {542, 33703}, {547, 1351}, {576, 3533}, {599, 5056}, {2080, 11147}, {3091, 51130}, {3523, 20583}, {3524, 50664}, {3618, 11539}, {3629, 10304}, {3630, 50960}, {3832, 11160}, {3839, 40341}, {3845, 34380}, {3850, 50963}, {5032, 50983}, {5050, 19711}, {5097, 15702}, {5476, 50994}, {5731, 51155}, {5847, 50871}, {5965, 15682}, {6776, 15686}, {8550, 50968}, {10519, 11812}, {11179, 50966}, {11180, 38335}, {14853, 50990}, {15533, 50959}, {15534, 25406}, {15690, 50975}, {15692, 51138}, {15697, 51135}, {15719, 39561}, {15723, 48876}, {16200, 50999}, {21850, 50954}, {30392, 51005}, {31884, 41149}, {33878, 50969}, {34379, 51120}, {34507, 50964}, {35401, 39884}, {38155, 50950}

X(51214) = reflection of X(i) in X(j) for these {i,j}: {11160, 11477}, {11180, 44456}, {50967, 50962}, {50973, 51132}, {51023, 51028}, {51027, 51166}
X(51214) = anticomplement of X(50973)
X(51214) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3543, 51027, 51023}, {3543, 51028, 51166}, {5921, 51022, 51023}, {50962, 50967, 1992}, {50973, 51132, 2}, {51024, 51025, 3543}, {51024, 51027, 51025}, {51025, 51166, 51024}, {51027, 51166, 3543}


X(51215) = X(20)X(542)∩X(524)X(3543)

Barycentrics    23*a^6 - 35*a^4*b^2 + 25*a^2*b^4 - 13*b^6 - 35*a^4*c^2 + 6*a^2*b^2*c^2 + 13*b^4*c^2 + 25*a^2*c^4 + 13*b^2*c^4 - 13*c^6 : :
X(51215) = 13 X[2] - 12 X[5050], 7 X[2] - 6 X[14912], 10 X[2] - 9 X[33748], 25 X[2] - 24 X[38110], and many others

X(51215) lies on these lines: {2, 3167}, {4, 50962}, {6, 50958}, {20, 542}, {30, 20080}, {69, 10304}, {147, 9740}, {193, 3818}, {376, 11898}, {381, 50986}, {511, 15640}, {524, 3543}, {576, 50964}, {597, 7486}, {599, 3523}, {1352, 5032}, {1353, 5071}, {1503, 50973}, {1992, 3091}, {2996, 9880}, {3524, 39899}, {3545, 50954}, {3620, 11179}, {3629, 50960}, {3630, 50970}, {3832, 50963}, {4232, 44555}, {5068, 14848}, {5085, 50994}, {5093, 41106}, {5731, 51004}, {5847, 50872}, {5965, 36324}, {6054, 37667}, {6776, 15692}, {8724, 35287}, {10303, 34507}, {11177, 37668}, {13449, 41895}, {14853, 50956}, {15533, 15697}, {15534, 50959}, {15682, 34380}, {15683, 50985}, {15702, 50987}, {15705, 48906}, {15721, 21356}, {18440, 50687}, {21358, 51138}, {22165, 25406}, {30769, 40112}, {31884, 51135}, {32972, 49102}, {34379, 50864}, {39874, 50966}, {46264, 50969}, {47353, 51132}

X(51215) = reflection of X(i) in X(j) for these {i,j}: {20, 11160}, {193, 11180}, {376, 11898}, {1992, 15069}, {3543, 5921}, {50967, 50961}, {50974, 50955}, {51023, 51027}, {51028, 51023}
X(51215) = anticomplement of X(50974)
X(51215) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {193, 11180, 3839}, {3620, 11179, 15708}, {5921, 51028, 51023}, {36990, 51166, 51029}, {50955, 50974, 2}, {50961, 50967, 11160}, {51023, 51027, 5921}, {51023, 51028, 3543}, {51023, 51029, 36990}


X(51216) = X(20)X(47354)∩X(524)X(3543)

Barycentrics    43*a^6 + 5*a^4*b^2 - 19*a^2*b^4 - 29*b^6 + 5*a^4*c^2 + 30*a^2*b^2*c^2 + 29*b^4*c^2 - 19*a^2*c^4 + 29*b^2*c^4 - 29*c^6 : :
X(51216) = 29 X[2] - 24 X[17508], 23 X[2] - 18 X[33750], 3 X[2] - 4 X[50956], 9 X[2] - 8 X[51137], and many others

X(51216) lies on these lines: {2, 6030}, {4, 14848}, {20, 47354}, {30, 3620}, {376, 50980}, {381, 50987}, {382, 11160}, {518, 50863}, {524, 3543}, {542, 17578}, {599, 49135}, {1699, 51153}, {1992, 50688}, {3146, 34507}, {3523, 50971}, {3524, 50957}, {3534, 50981}, {3618, 3839}, {3627, 50962}, {3763, 10304}, {3830, 50974}, {3854, 38064}, {5032, 15687}, {5085, 51133}, {5731, 51156}, {5847, 50873}, {11178, 50969}, {11180, 48884}, {12101, 14912}, {14927, 50983}, {15640, 47353}, {15682, 50955}, {15683, 48920}, {15684, 50978}, {15708, 48905}, {15717, 25561}, {18358, 46333}, {20423, 48895}, {29181, 50989}, {34379, 50866}, {38335, 39874}, {48662, 50986}, {50689, 50964}, {50690, 50961}, {50960, 51126}, {50965, 50993}

X(51216) = midpoint of X(51023) and X(51029)
X(51216) = reflection of X(i) in X(j) for these {i,j}: {43273, 51129}, {50966, 50954}, {50968, 47354}, {50975, 50956}, {50990, 47353}, {51029, 51167}, {51167, 51022}
X(51216) = anticomplement of X(50975)
X(51216) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3543, 51023, 51028}, {36990, 51022, 51023}, {36990, 51024, 51025}, {43273, 51129, 3618}, {50954, 50966, 3620}, {50956, 50975, 2}, {51022, 51023, 3543}, {51022, 51025, 51024}, {51023, 51028, 5921}, {51024, 51025, 51023}, {51029, 51167, 3543}


X(51217) = X(20)X(50984)∩X(524)X(3543)

Barycentrics    53*a^6 + 25*a^4*b^2 - 41*a^2*b^4 - 37*b^6 + 25*a^4*c^2 + 42*a^2*b^2*c^2 + 37*b^4*c^2 - 41*a^2*c^4 + 37*b^2*c^4 - 37*c^6 : :
X(51217) = 3 X[2] - 4 X[51133], 37 X[4] - 16 X[20190], 13 X[4] - 6 X[38064], 3 X[4] - 2 X[50964], and many others

X(51217) lies on these lines: {2, 50976}, {4, 20190}, {20, 50984}, {30, 3619}, {69, 48943}, {376, 51141}, {381, 50988}, {382, 50967}, {518, 50867}, {524, 3543}, {599, 50691}, {1992, 3627}, {3091, 50971}, {3098, 35409}, {3146, 47354}, {3545, 48892}, {3618, 38335}, {3818, 50966}, {3830, 14853}, {3839, 47355}, {3845, 50975}, {3853, 50963}, {3860, 33750}, {5059, 50968}, {5847, 50874}, {8550, 17578}, {10304, 50960}, {11001, 50956}, {14927, 15687}, {15640, 50965}, {15682, 29317}, {15684, 21356}, {15708, 51134}, {18583, 35401}, {20423, 39874}, {20582, 49140}, {25406, 50959}, {25561, 49138}, {29323, 41106}, {33699, 50955}, {43273, 50687}, {48905, 51129}, {48942, 50977}

X(51217) = reflection of X(i) in X(j) for these {i,j}: {50969, 50957}, {50976, 51133}
X(51217) = anticomplement of X(50976)
X(51217) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3543, 51022, 51023}, {3543, 51023, 51029}, {3543, 51028, 51026}, {36990, 51026, 51028}, {36990, 51028, 51023}, {50957, 50969, 3619}, {50976, 51133, 2}, {51022, 51026, 36990}, {51022, 51167, 3543}


X(51218) = ORTHOASSOCIATE OF X(7)

Barycentrics    a*(-a+b+c)*((b+c)*a^3-(3*b^2-4*b*c+3*c^2)*a^2+3*(b^2-c^2)*(b-c)*a-(b^2+4*b*c+c^2)*(b-c)^2)*(a^2-b^2+c^2)*(a^2+b^2-c^2) : :

See Antreas Hatzipolakis and César Lozada, euclid 5305.

X(51218) lies on these lines: {4, 7}, {25, 32625}, {1597, 35454}, {2202, 28044}, {3064, 3700}, {6001, 38388}, {7079, 15837}, {17112, 28120}, {25640, 35593}, {38966, 50940}

X(51218) = X(77)-isoconjugate-of-X(15731)
X(51218) = X(607)-reciprocal conjugate of-X(15731)
X(51218) = perspector of the circumconic {{A, B, C, X(281), X(13149)}}
X(51218) = inverse of X(7) in polar circle
X(51218) = orthoassociate of X(7)
X(51218) = Zosma transform of X(1323)
X(51218) = barycentric product X(281)*X(15726)
X(51218) = barycentric quotient X(607)/X(15731)
X(51218) = trilinear product X(33)*X(15726)
X(51218) = trilinear quotient X(33)/X(15731)
X(51218) = reflection of X(4) in the line X(3900)X(39532)
X(51218) = X(32625)-of-anti-Ara triangle


X(51219) = ORTHOASSOCIATE OF X(17)

Barycentrics    (2*sqrt(3)*S+b^2+c^2-a^2)*(a^2-b^2+c^2)*(a^2+b^2-c^2)*(-2*(2*a^4-(b^2+c^2)*a^2-(b^2-c^2)^2)*sqrt(3)*S+2*a^6-7*(b^2+c^2)*a^4+6*(b^4+c^4)*a^2-(b^4-c^4)*(b^2-c^2)) : :

See Antreas Hatzipolakis and César Lozada, euclid 5305.

X(51219) lies on these lines: {4, 15}, {61, 33496}, {511, 20411}, {6110, 15609}

X(51219) = inverse of X(17) in polar circle
X(51219) = orthoassociate of X(17)


X(51220) = ORTHOASSOCIATE OF X(18)

Barycentrics    (-2*sqrt(3)*S+b^2+c^2-a^2)*(a^2-b^2+c^2)*(a^2+b^2-c^2)*(2*(2*a^4-(b^2+c^2)*a^2-(b^2-c^2)^2)*sqrt(3)*S+2*a^6-7*(b^2+c^2)*a^4+6*(b^4+c^4)*a^2-(b^4-c^4)*(b^2-c^2)) : :

See Antreas Hatzipolakis and César Lozada, euclid 5305.

X(51220) lies on these lines: {4, 16}, {62, 33497}, {511, 20412}, {6111, 15610}, {32428, 44223}

X(51220) = inverse of X(18) in polar circle
X(51220) = orthoassociate of X(18)


X(51221) = ORTHOASSOCIATE OF X(102)

Barycentrics    (a^2-b^2+c^2)*(a^2+b^2-c^2)*((b^2+c^2)*a^6-(b+c)*b*c*a^5-(3*b^2+5*b*c+3*c^2)*(b-c)^2*a^4+2*(b^2-c^2)*(b-c)*b*c*a^3+(3*b^2-2*b*c+3*c^2)*(b^2-c^2)^2*a^2-(b^2-c^2)*(b-c)^3*b*c*a-(b^2-c^2)^2*(b^4+c^4-(b^2-4*b*c+c^2)*b*c))*(2*a^4-(b+c)*a^3-(b-c)^2*a^2+(b^2-c^2)*(b-c)*a-(b^2-c^2)^2) : :

See Antreas Hatzipolakis and César Lozada, euclid 5305.

X(51221) lies on the nine-point circle and these lines: {2, 41904}, {4, 102}, {5, 38977}, {11, 225}, {113, 21664}, {116, 18634}, {117, 14304}, {122, 3142}, {123, 6831}, {125, 407}, {235, 20620}, {1826, 5514}, {5587, 46663}, {16177, 36195}, {18641, 35968}

X(51221) = midpoint of X(4) and X(26704)
X(51221) = reflection of X(38977) in X(5)
X(51221) = complement of X(41904)
X(51221) = complementary conjugate of the isogonal conjugate of X(41904)
X(51221) = X(2)-Ceva conjugate of-X(8755)
X(51221) = X(31)-complementary conjugate of-X(8755)
X(51221) = center of the circumconic {{A, B, C, X(4), X(7452)}}
X(51221) = inverse of X(102) in polar circle
X(51221) = antipode of X(38977) in nine-point circle
X(51221) = orthoassociate of X(102)
X(51221) = orthojoin of X(8755)
X(51221) = Poncelet point of X(i) for these i: {7452, 23987, 26704, 36127}
X(51221) = Zosma transform of X(36055)
X(51221) = (medial)-isotomic conjugate-of-X(8755)
X(51221) = X(26704)-of-Euler triangle
X(51221) = X(38977)-of-Johnson triangle


X(51222) = ORTHOASSOCIATE OF X(138)

Barycentrics    a^2*(a^8-2*(b^2+c^2)*a^6-(b^4-2*b^2*c^2-2*c^4)*a^4+2*(b^2-c^2)*(2*b^4+c^4)*a^2-(2*b^4-c^4)*(b^2-c^2)^2)*(a^8-2*(b^2+c^2)*a^6+(2*b^4+2*b^2*c^2-c^4)*a^4-2*(b^2-c^2)*(b^4+2*c^4)*a^2+(b^4-2*c^4)*(b^2-c^2)^2) : :

See Antreas Hatzipolakis and César Lozada, euclid 5305.

X(51222) lies on the circumcircle and these lines: {4, 138}, {6, 933}, {51, 112}, {53, 107}, {99, 343}, {110, 216}, {111, 42651}, {935, 15340}, {1141, 14582}, {1300, 35361}, {1899, 13527}, {2351, 32692}, {9142, 26717}, {11077, 46966}, {12022, 30247}

X(51222) = X(1084)-Dao conjugate of X(42731)
X(51222) = X(662)-isoconjugate-of-X(42731)
X(51222) = X(512)-reciprocal conjugate of-X(42731)
X(51222) = inverse of X(138) in polar circle
X(51222) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(51)}} and circumcircle
X(51222) = trilinear pole of the line {6, 15451} X(51222) = Collings transform of X(15450)
X(51222) = orthoassociate of X(138)
X(51222) = barycentric quotient X(512)/X(42731)
X(51222) = trilinear quotient X(661)/X(42731)


X(51223) = ISOGONAL CONJUGATE OF X(405)

Barycentrics    a*(a^2*b-b^3+2*a^2*c+2*a*b*c+2*a*c^2+b*c^2)*(2*a^2*b+2*a*b^2+a^2*c+2*a*b*c+b^2*c-c^3) : :

See Ivan Pavlov, euclid 5311.

X(51223) lies on the Jerabek circumhyperbola, the conic {{A,B,C X(1), X(2)}}, and these lines: {1, 71}, {2, 72}, {3, 81}, {4, 40952}, {6, 28}, {7, 28786}, {20, 5751}, {54, 7501}, {56, 2982}, {57, 73}, {64, 4219}, {65, 278}, {66, 5800}, {68, 6826}, {69, 274}, {74, 36077}, {88, 5708}, {89, 37582}, {105, 16466}, {145, 35058}, {184, 1175}, {265, 44229}, {277, 24476}, {279, 1439}, {330, 20018}, {389, 37028}, {895, 16428}, {940, 7523}, {999, 40399}, {1104, 5165}, {1119, 1425}, {1170, 16453}, {1176, 5138}, {1193, 2282}, {1219, 3555}, {1224, 5904}, {1255, 15934}, {1466, 34051}, {1714, 5902}, {1899, 43712}, {1903, 5746}, {2006, 5292}, {2095, 19543}, {2287, 19285}, {3216, 8056}, {3338, 39947}, {3527, 7497}, {3601, 39948}, {3927, 16848}, {4259, 4340}, {4295, 15320}, {4846, 6851}, {5208, 37176}, {5320, 17562}, {5707, 7549}, {5712, 10974}, {5738, 37179}, {5747, 18397}, {5757, 7513}, {6857, 34259}, {6869, 34800}, {6904, 39747}, {7520, 37685}, {7535, 32911}, {8728, 32782}, {8811, 46017}, {10449, 30710}, {10477, 37037}, {10479, 24391}, {10693, 15904}, {10914, 20019}, {11402, 37236}, {11518, 25430}, {14017, 37538}, {15232, 18391}, {15474, 28787}, {15803, 39980}, {16082, 38955}, {17749, 39963}, {18180, 37666}, {19366, 44696}, {19716, 47512}, {24929, 25417}, {34772, 36000}, {36025, 42461}, {36029, 36742}, {36754, 37275}, {37266, 41014}, {37280, 43698}, {39959, 41863}, {43724, 50701}

X(51223) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}} and {{A, B, C, X(3), X(4)}}
X(51223) = isogonal conjugate of the anticomplement of X(8728)
X(51223) = isogonal conjugate of the complement of X(377)
X(51223) = isotomic conjugate of the anticomplement of X(4261)
X(51223) = X(4261)-cross conjugate of X(2)
X(51223) = cevapoint of X(i) and X(j) for these (i,j): {6, 37538}, {56, 19349}, {838, 1015}
X(51223) = trilinear pole of line {513, 647}
X(51223) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 44140), (3, 405), (9, 5271), (10, 5295), (206, 5320), (478, 37543), (1015, 23882), (8054, 46385), (36103, 39585), (40620, 15417)
X(51223) = X(i)-isoconjugate of X(j) for these (i,j): {1, 405}, {3, 39585}, {6, 5271}, {8, 1451}, {9, 37543}, {31, 44140}, {58, 5295}, {75, 5320}, {100, 46385}, {101, 23882}, {283, 1882}, {648, 46382}, {1474, 42706}, {1621, 14549}
X(51223) = barycentric product X(i)*X(j) for these {i,j}: {7, 2335}, {75, 2215}, {525, 36077}, {693, 36080}
X(51223) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 5271}, {2, 44140}, {6, 405}, {19, 39585}, {32, 5320}, {37, 5295}, {56, 37543}, {72, 42706}, {513, 23882}, {604, 1451}, {649, 46385}, {810, 46382}, {1880, 1882}, {2215, 1}, {2335, 8}, {2350, 14549}, {7192, 15417}, {36077, 648}, {36080, 100}, {45128, 5278}
X(51223) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 579, 13726}, {57, 386, 37264}


X(51224) = REFLECTION OF X(2) IN X(187)

Barycentrics    5*a^4 - 2*a^2*b^2 - b^4 - 2*a^2*c^2 + b^2*c^2 - c^4 : :
X(51224) = 5 X[2] - 4 X[625], 5 X[2] - 6 X[5215], 13 X[2] - 12 X[10150], 2 X[2] - 3 X[26613], 11 X[2] - 10 X[31275], 4 X[187] - X[316], 5 X[187] - 2 X[625], 5 X[187] - 3 X[5215], 13 X[187] - 6 X[10150], 2 X[187] + X[14712], 4 X[187] - 3 X[26613], 3 X[187] - X[31173], 11 X[187] - 5 X[31275], 5 X[316] - 8 X[625], 5 X[316] - 12 X[5215], 13 X[316] - 24 X[10150], X[316] + 2 X[14712], X[316] - 3 X[26613], 3 X[316] - 4 X[31173], 11 X[316] - 20 X[31275], 2 X[625] - 3 X[5215], 13 X[625] - 15 X[10150], 4 X[625] + 5 X[14712], 8 X[625] - 15 X[26613], 6 X[625] - 5 X[31173], 22 X[625] - 25 X[31275], 13 X[5215] - 10 X[10150], 6 X[5215] + 5 X[14712], 4 X[5215] - 5 X[26613], 9 X[5215] - 5 X[31173], 33 X[5215] - 25 X[31275], 12 X[10150] + 13 X[14712], 8 X[10150] - 13 X[26613], 18 X[10150] - 13 X[31173], 66 X[10150] - 65 X[31275], 2 X[14712] + 3 X[26613], 3 X[14712] + 2 X[31173], 11 X[14712] + 10 X[31275], 9 X[26613] - 4 X[31173], 33 X[26613] - 20 X[31275], 11 X[31173] - 15 X[31275], 2 X[671] - 3 X[14568], 3 X[14568] - 4 X[22329], 2 X[115] - 3 X[8859], and many others

X(51224) lies on the cubics K394 and K435 and these lines: {2, 187}, {3, 7812}, {4, 23055}, {6, 35955}, {15, 530}, {16, 531}, {20, 6179}, {30, 98}, {32, 7827}, {39, 34604}, {50, 45331}, {76, 33007}, {83, 8359}, {99, 524}, {112, 37765}, {115, 8597}, {141, 35954}, {148, 32479}, {183, 11159}, {194, 34504}, {230, 8352}, {249, 40112}, {315, 7870}, {325, 27088}, {340, 4235}, {376, 511}, {381, 8860}, {384, 7810}, {385, 543}, {512, 9147}, {519, 5184}, {538, 8591}, {542, 11676}, {547, 38230}, {549, 38225}, {550, 7760}, {551, 38221}, {597, 1691}, {599, 1003}, {648, 10295}, {754, 2482}, {842, 44265}, {1078, 8370}, {1285, 2030}, {1384, 5077}, {1509, 50235}, {1641, 17941}, {2021, 33008}, {2407, 46069}, {2459, 13757}, {2460, 13637}, {2959, 50089}, {3053, 7802}, {3096, 33237}, {3111, 33873}, {3363, 37688}, {3524, 47113}, {3534, 9301}, {3545, 13449}, {3552, 7768}, {3618, 38010}, {3767, 33192}, {4226, 15360}, {4234, 31144}, {4785, 41190}, {5007, 33260}, {5023, 7752}, {5032, 5107}, {5055, 14693}, {5099, 37907}, {5111, 20583}, {5140, 7714}, {5148, 10385}, {5182, 41146}, {5201, 11634}, {5206, 7769}, {5207, 14039}, {5210, 11184}, {5306, 8353}, {5309, 10631}, {5319, 33253}, {5461, 14041}, {5463, 35917}, {5464, 35918}, {5476, 10788}, {5978, 35303}, {5979, 35304}, {6054, 37461}, {6055, 21445}, {6337, 7949}, {6566, 13759}, {6567, 13639}, {6655, 7817}, {6658, 7780}, {6661, 20582}, {6787, 47638}, {7426, 35278}, {7610, 11317}, {7615, 17008}, {7617, 17004}, {7618, 7774}, {7619, 17005}, {7620, 37667}, {7622, 7777}, {7669, 37903}, {7736, 47061}, {7739, 33207}, {7745, 43459}, {7747, 33013}, {7750, 7832}, {7751, 33257}, {7753, 33273}, {7755, 33256}, {7758, 33254}, {7759, 33014}, {7763, 35287}, {7764, 33276}, {7765, 33267}, {7766, 32480}, {7772, 33275}, {7779, 32456}, {7781, 33268}, {7782, 7905}, {7784, 8366}, {7785, 15513}, {7786, 33215}, {7792, 19661}, {7796, 33235}, {7809, 22110}, {7813, 36521}, {7814, 32964}, {7818, 33246}, {7830, 7859}, {7843, 33259}, {7845, 41136}, {7856, 22331}, {7857, 11318}, {7860, 16925}, {7865, 14036}, {7873, 33225}, {7878, 32965}, {7884, 32986}, {7910, 33190}, {7911, 8360}, {7921, 15515}, {7922, 32973}, {7925, 9167}, {7926, 9770}, {7936, 14001}, {7940, 32006}, {7943, 33230}, {8584, 8586}, {8596, 19570}, {8627, 35295}, {8703, 35002}, {9127, 35279}, {9150, 38890}, {9218, 50706}, {9300, 11155}, {9420, 14275}, {9466, 19686}, {9740, 32815}, {9862, 11645}, {9891, 13677}, {9893, 13797}, {10159, 19697}, {10304, 18860}, {11001, 43453}, {11063, 35936}, {11104, 49723}, {11160, 32833}, {11161, 15993}, {11299, 39555}, {11300, 39554}, {11586, 21469}, {11707, 50857}, {11708, 50854}, {12110, 37345}, {13857, 35922}, {14023, 33244}, {14033, 39266}, {14061, 37350}, {15480, 47287}, {15534, 31859}, {15688, 47618}, {15743, 21468}, {16046, 31143}, {16508, 35705}, {16712, 50264}, {17006, 43457}, {17103, 50260}, {18800, 39099}, {19312, 50230}, {19924, 38749}, {20088, 37512}, {21163, 22503}, {23234, 37459}, {28562, 41193}, {31417, 33188}, {32817, 50992}, {33228, 44401}, {34507, 35951}, {34508, 35230}, {34509, 35229}, {35915, 50234}, {35916, 50226}, {35925, 50977}, {35933, 44555}, {35950, 40107}, {36196, 46998}, {37023, 50236}, {38704, 47333}, {40246, 41135}, {40334, 48314}, {40335, 48313}, {40884, 44569}, {41626, 50187}, {44969, 47584}, {50254, 50885}, {50775, 50886}

X(51224) = midpoint of X(i) and X(j) for these {i,j}: {2, 14712}, {385, 9855}, {3534, 9301}, {8591, 44367}, {11001, 43453}
X(51224) = reflection of X(i) in X(j) for these {i,j}: {2, 187}, {99, 8598}, {316, 2}, {325, 27088}, {671, 22329}, {842, 44265}, {5978, 35303}, {5979, 35304}, {6054, 37461}, {6787, 47638}, {7779, 39785}, {7799, 13586}, {7809, 35297}, {7813, 36521}, {7840, 2482}, {8352, 230}, {8586, 8584}, {8597, 115}, {9855, 6781}, {11054, 385}, {11161, 15993}, {22503, 21163}, {33873, 3111}, {35002, 8703}, {36196, 46998}, {39099, 18800}, {39785, 32456}, {50854, 11708}, {50855, 45880}, {50857, 11707}, {50858, 45879}, {50885, 50254}, {50886, 50775}
X(51224) = isotomic conjugate of X(36882)
X(51224) = anticomplement of X(31173)
X(51224) = reflection of X(11673) in the Brocard axis
X(51224) = orthoptic-circle-of-Steiner-inellipse-inverse of X(10162)
X(51224) = psi-transform of X(10166)
X(51224) = X(i)-isoconjugate of X(j) for these (i,j): {31, 36882}, {661, 9186}, {798, 9187}
X(51224) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 36882), (31998, 9187), (36830, 9186)
X(51224) = trilinear pole of line {9185, 9188}
X(51224) = crossdifference of every pair of points on line {9171, 17414}
X(51224) = barycentric product X(i)*X(j) for these {i,j}: {99, 9185}, {670, 9188}
X(51224) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 36882}, {99, 9187}, {110, 9186}, {9185, 523}, {9188, 512}
X(51224) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 187, 26613}, {2, 7737, 598}, {2, 8182, 7771}, {2, 44678, 48913}, {2, 47102, 11057}, {32, 7833, 7827}, {187, 14712, 316}, {230, 8352, 9166}, {315, 32985, 7870}, {316, 26613, 2}, {325, 27088, 41134}, {598, 7771, 2}, {625, 5215, 2}, {671, 22329, 14568}, {1153, 7603, 2}, {2482, 7840, 7799}, {3053, 7802, 7828}, {3552, 9939, 7801}, {3972, 14907, 7831}, {5206, 7775, 33274}, {5206, 7823, 7769}, {5475, 5569, 2}, {7737, 8182, 2}, {7747, 34506, 33013}, {7750, 8369, 7883}, {7775, 33274, 7769}, {7782, 20065, 7905}, {7801, 9939, 7768}, {7804, 15810, 2}, {7823, 33274, 7775}, {7827, 7833, 7847}, {7840, 13586, 2482}, {7883, 8369, 7832}, {8597, 8859, 115}, {14537, 46893, 2}, {20065, 33208, 34511}, {22331, 33234, 7856}, {33208, 34511, 7782}, {33265, 44367, 8591}, {39554, 50855, 45880}, {39555, 50858, 45879}


X(51225) = X(2)X(661)∩X(291)X(4753)

Barycentrics    (b^2 - a*c)*(a*b - c^2)*(-a^4 + a^2*b^2 + a*b^3 - a*b^2*c + a^2*c^2 - a*b*c^2 - b^2*c^2 + a*c^3) : :

X(51225) lies on the cubic K185 and these lines: {2, 661}, {291, 4753}, {334, 17790}, {335, 740}, {524, 18827}, {660, 20683}, {876, 24516}, {2245, 4584}, {3661, 35025}, {3764, 36817}, {3943, 4562}, {3948, 4639}, {7233, 17950}, {16826, 36218}, {20142, 37128}, {20337, 36800}, {33079, 40217}

X(51225) = X(2238)-isoconjugate of X(12031)
X(51225) = barycentric product X(99)*X(18009)
X(51225) = barycentric quotient X(i)/X(j) for these {i,j}: {741, 12031}, {5147, 3747}, {18009, 523}


X(51226) = X(2)X(690)∩X(99)X(524)

Barycentrics    (2*a^2 - b^2 - c^2)*(a^4 - 4*a^2*b^2 + b^4 + 2*a^2*c^2 + 2*b^2*c^2 - 2*c^4)*(a^4 + 2*a^2*b^2 - 2*b^4 - 4*a^2*c^2 + 2*b^2*c^2 + c^4) : :
X(51226) = X[99] + 2 X[14444], 2 X[1641] - 3 X[41134], 2 X[44915] + X[45018]

X(51226) lies on the cubics K185 and K394 and these lines: {2, 690}, {67, 11161}, {99, 524}, {297, 17952}, {542, 46069}, {671, 1648}, {1641, 9170}, {1992, 48654}, {2418, 50567}, {2482, 5468}, {4235, 5095}, {5026, 20380}, {8030, 31614}, {8591, 45291}, {10754, 34898}, {35279, 39446}, {37880, 38239}, {44915, 45018}

X(51226) = midpoint of X(8591) and X(45291)
X(51226) = reflection of X(i) in X(j) for these {i,j}: {671, 1648}, {1992, 48654}, {5468, 2482}, {9180, 34763}
X(51226) = isogonal conjugate of X(17964)
X(51226) = isotomic conjugate of X(17948)
X(51226) = antitomic conjugate of X(5468)
X(51226) = isotomic conjugate of the isogonal conjugate of X(48450)
X(51226) = X(1641)-cross conjugate of X(524)
X(51226) = cevapoint of X(524) and X(1641)
X(51226) = trilinear pole of line {524, 1649}
X(51226) = crossdifference of every pair of points on line {2502, 9171}
X(51226) = X(i)-isoconjugate of X(j) for these (i,j): {1, 17964}, {6, 17955}, {31, 17948}, {163, 18007}, {543, 923}, {661, 23348}, {662, 17993}, {798, 34760}, {897, 2502}, {8371, 36142}, {9171, 36085}, {9181, 23894}
X(51226) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 17948), (3, 17964), (9, 17955), (115, 18007), (524, 1641), (1084, 17993), (1648, 33921), (2482, 543), (6593, 2502), (23992, 8371), (31998, 34760), (36830, 23348), (38988, 9171)
X(51226) = barycentric product X(i)*X(j) for these {i,j}: {76, 48450}, {99, 34763}, {524, 18823}, {690, 9170}, {843, 3266}, {5468, 9180}
X(51226) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 17955}, {2, 17948}, {6, 17964}, {99, 34760}, {110, 23348}, {187, 2502}, {351, 9171}, {512, 17993}, {523, 18007}, {524, 543}, {690, 8371}, {843, 111}, {1641, 35087}, {1649, 33921}, {2482, 1641}, {3266, 45809}, {5467, 9181}, {5468, 9182}, {9170, 892}, {9180, 5466}, {14443, 14423}, {14444, 41176}, {18823, 671}, {34763, 523}, {48450, 6}


X(51227) = X(2)X(525)∩X(30)X(74)

Barycentrics    (a^4 - 2*a^2*b^2 + b^4 + a^2*c^2 + b^2*c^2 - 2*c^4)*(a^4 + a^2*b^2 - 2*b^4 - 2*a^2*c^2 + b^2*c^2 + c^4)*(2*a^6 - 2*a^4*b^2 + a^2*b^4 - b^6 - 2*a^4*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6) : :
X(51227) = X[323] - 3 X[44575], 2 X[11064] - 3 X[44578], 3 X[44576] - 4 X[47296]

X(51227) lies on the cubic K185 and these lines: {2, 525}, {30, 74}, {287, 524}, {297, 671}, {323, 44575}, {401, 44555}, {441, 14919}, {468, 22265}, {542, 7473}, {1304, 35266}, {3589, 46751}, {5641, 41254}, {7799, 11064}, {9214, 18808}, {9410, 44576}, {14999, 23967}, {16243, 44347}, {16280, 36166}, {20423, 35908}, {24975, 39290}, {34664, 38933}, {34761, 45662}, {36875, 50974}

X(51227) = midpoint of X(i) and X(j) for these {i,j}: {401, 44555}, {1494, 44769}
X(51227) = reflection of X(i) in X(j) for these {i,j}: {297, 44569}, {14999, 23967}, {40112, 441}
X(51227) = isogonal conjugate of X(48453)
X(51227) = antitomic conjugate of X(14999)
X(51227) = isotomic conjugate of the isogonal conjugate of X(48451)
X(51227) = isotomic conjugate of the polar conjugate of X(17986)
X(51227) = X(48451)-cross conjugate of X(17986)
X(51227) = X(i)-isoconjugate of X(j) for these (i,j): {1, 48453}, {842, 2173}, {5641, 9406}
X(51227) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 48453), (9410, 5641), (23967, 30), (36896, 842), (42426, 1990)
X(51227) = barycentric product X(i)*X(j) for these {i,j}: {69, 17986}, {76, 48451}, {542, 1494}, {2247, 33805}, {2394, 14999}, {7473, 34767}, {16092, 36890}, {18312, 44769}, {35910, 46786}
X(51227) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 48453}, {74, 842}, {542, 30}, {1494, 5641}, {1640, 1637}, {2247, 2173}, {2394, 14223}, {2433, 14998}, {5191, 1495}, {6041, 14398}, {6103, 1990}, {7473, 4240}, {14380, 35909}, {14999, 2407}, {16092, 9214}, {17986, 4}, {18312, 41079}, {23968, 41392}, {32112, 23350}, {34369, 35906}, {35910, 46787}, {36875, 34174}, {43087, 14254}, {44769, 5649}, {45662, 5642}, {46147, 46157}, {48451, 6}
X(51227) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 36890, 35910}, {16077, 16080, 297}, {36308, 36311, 12079}


X(51228) = X(2)X(1637)∩X(287)X(671)

Barycentrics    (2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 - b^4*c^2 + 2*a^2*c^4 + 2*b^2*c^4 - 2*c^6)*(a^6 - a^4*b^2 + 2*a^2*b^4 - 2*b^6 - a^4*c^2 + 2*b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6) : :

X(51228) lies on the cubic K185 and these lines: {2, 1637}, {287, 671}, {297, 340}, {323, 9141}, {542, 34174}, {842, 1302}, {1494, 1989}, {2407, 3163}, {3978, 9211}, {4240, 5642}, {5649, 30528}, {6034, 41254}, {6035, 22254}, {9033, 9214}, {9530, 40080}, {11070, 24975}, {11078, 36839}, {11092, 36840}, {14995, 23350}, {36890, 44427}, {38340, 41804}, {41253, 47110}, {41887, 41996}, {41888, 41995}

X(51228) = reflection of X(2407) in X(3163)
X(51228) = isogonal conjugate of X(48451)
X(51228) = polar conjugate of X(17986)
X(51228) = antitomic conjugate of X(2407)
X(51228) = isotomic conjugate of the isogonal conjugate of X(48453)
X(51228) = X(i)-isoconjugate of X(j) for these (i,j): {1, 48451}, {48, 17986}, {74, 2247}, {542, 2159}, {1640, 36034}, {2349, 5191}, {6103, 35200}
X(51228) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 48451), (133, 6103), (1249, 17986), (3163, 542), (3258, 1640)
X(51228) = trilinear pole of line {30, 5664}
X(51228) = barycentric product X(i)*X(j) for these {i,j}: {30, 5641}, {76, 48453}, {842, 3260}, {1637, 6035}, {2407, 14223}, {5649, 41079}, {34174, 36891}
X(51228) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 17986}, {6, 48451}, {30, 542}, {842, 74}, {1495, 5191}, {1637, 1640}, {1990, 6103}, {2173, 2247}, {2407, 14999}, {4240, 7473}, {5641, 1494}, {5642, 45662}, {5649, 44769}, {9214, 16092}, {14223, 2394}, {14254, 43087}, {14398, 6041}, {14998, 2433}, {23350, 32112}, {34174, 36875}, {35906, 34369}, {35909, 14380}, {41079, 18312}, {41392, 23968}, {46157, 46147}, {46787, 35910}, {48453, 6}
X(51228) = {X(9979),X(34765)}-harmonic conjugate of X(14223)


X(51229) = X(2)X(3569)∩X(110)X(237)

Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^4*b^4 - a^2*b^6 + a^6*c^2 - a^4*b^2*c^2 + 2*a^2*b^4*c^2 - b^6*c^2 - 2*a^4*c^4 - a^2*b^2*c^4 + b^4*c^4 + a^2*c^6)*(a^6*b^2 - 2*a^4*b^4 + a^2*b^6 - a^4*b^2*c^2 - a^2*b^4*c^2 + a^4*c^4 + 2*a^2*b^2*c^4 + b^4*c^4 - a^2*c^6 - b^2*c^6) : :

X(51229) lies on the cubic K185 and these lines: {2, 3569}, {110, 237}, {287, 694}, {297, 3978}, {524, 46142}, {526, 9513}, {1987, 31635}, {2396, 36790}, {2421, 11672}, {4230, 36213}, {25046, 46039}

X(51229) = reflection of X(2421) in X(11672)
X(51229) = isogonal conjugate of X(48452)
X(51229) = antitomic conjugate of X(2421)
X(51229) = X(i)-isoconjugate of X(j) for these (i,j): {1, 48452}, {1910, 2782}
X(51229) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 48452), (11672, 2782)
X(51229) = barycentric product X(i)*X(j) for these {i,j}: {325, 2698}, {511, 46142}, {2421, 46040}, {16069, 40810}
X(51229) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 48452}, {511, 2782}, {2698, 98}, {14251, 16068}, {16069, 14382}, {23098, 6072}, {46039, 14265}, {46040, 43665}, {46142, 290}


X(51230) = X(2)X(11058)∩X(6)X(3830)

Barycentrics    12*a^8 - 2*a^6*b^2 - 14*a^4*b^4 + 4*a^2*b^6 - 2*a^6*c^2 + 15*a^4*b^2*c^2 - 6*a^2*b^4*c^2 - 8*b^6*c^2 - 14*a^4*c^4 - 6*a^2*b^2*c^4 + 16*b^4*c^4 + 4*a^2*c^6 - 8*b^2*c^6 : :
X(51230) = X[11058] - 4 X[19601]

X(51230) lies on the cubics K213 and these lines: {2, 11058}, {6, 3830}, {23, 14614}, {6322, 40344}, {11057, 35138}

X(51230) = reflection of X(i) in X(j) for these {i,j}: {2, 19601}, {11058, 2}


X(51231) = X(30)X(74)∩X(399)X(15329)

Barycentrics    a^2*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*(a^14*b^2 - 3*a^12*b^4 + 10*a^8*b^8 - 15*a^6*b^10 + 9*a^4*b^12 - 2*a^2*b^14 + a^14*c^2 - 2*a^12*b^2*c^2 + 6*a^10*b^4*c^2 - 20*a^8*b^6*c^2 + 28*a^6*b^8*c^2 - 15*a^4*b^10*c^2 + a^2*b^12*c^2 + b^14*c^2 - 3*a^12*c^4 + 6*a^10*b^2*c^4 + 12*a^8*b^4*c^4 - 12*a^6*b^6*c^4 - 6*a^4*b^8*c^4 + 9*a^2*b^10*c^4 - 6*b^12*c^4 - 20*a^8*b^2*c^6 - 12*a^6*b^4*c^6 + 24*a^4*b^6*c^6 - 8*a^2*b^8*c^6 + 15*b^10*c^6 + 10*a^8*c^8 + 28*a^6*b^2*c^8 - 6*a^4*b^4*c^8 - 8*a^2*b^6*c^8 - 20*b^8*c^8 - 15*a^6*c^10 - 15*a^4*b^2*c^10 + 9*a^2*b^4*c^10 + 15*b^6*c^10 + 9*a^4*c^12 + a^2*b^2*c^12 - 6*b^4*c^12 - 2*a^2*c^14 + b^2*c^14) : :
X(51231) = X[74] - 3 X[14933], X[399] - 3 X[15329], 3 X[3134] - 4 X[40685]

X(51231) lies on the curve Q125 and these lines: {30, 74}, {399, 15329}, {526, 1511}, {549, 46129}, {2088, 44468}, {3134, 40685}


X(51232) = X(99)X(476)∩X(115)X(125)

Barycentrics    (b^2 - c^2)*(-(a^10*b^2) + 2*a^8*b^4 - a^6*b^6 - a^10*c^2 + 4*a^8*b^2*c^2 - 5*a^6*b^4*c^2 + 4*a^4*b^6*c^2 - 2*a^2*b^8*c^2 + b^10*c^2 + 2*a^8*c^4 - 5*a^6*b^2*c^4 + a^2*b^6*c^4 - 2*b^8*c^4 - a^6*c^6 + 4*a^4*b^2*c^6 + a^2*b^4*c^6 + 2*b^6*c^6 - 2*a^2*b^2*c^8 - 2*b^4*c^8 + b^2*c^10) : :
X(51232) = 4 X[620] - 3 X[44814]

X(51232) lies on these lines: {99, 476}, {115, 125}, {512, 6033}, {620, 44814}, {804, 12042}, {2782, 23105}, {3005, 42553}, {3014, 22260}, {8574, 44534}, {9479, 24978}, {10264, 14695}, {13162, 14443}, {13187, 23301}

X(51232) = reflection of X(42738) in X(1116)


X(51233) = X(6)X(74)∩X(186)X(3016)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^10 - 2*a^8*b^2 - a^6*b^4 + 5*a^4*b^6 - 4*a^2*b^8 + b^10 - 2*a^8*c^2 + 6*a^6*b^2*c^2 - 5*a^4*b^4*c^2 - a^2*b^6*c^2 + 2*b^8*c^2 - a^6*c^4 - 5*a^4*b^2*c^4 + 9*a^2*b^4*c^4 - 3*b^6*c^4 + 5*a^4*c^6 - a^2*b^2*c^6 - 3*b^4*c^6 - 4*a^2*c^8 + 2*b^2*c^8 + c^10) : :

X(51233) lies on the cubic K513 and these lines: {6, 74}, {186, 3016}, {3569, 13318}, {5663, 14591}, {7722, 32761}, {10986, 45723}, {11454, 39575}, {12270, 32661}


X(51234) = X(30)X(74)∩X(50)X(110)

Barycentrics    a^2*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*(a^10*b^2 - a^8*b^4 - 3*a^6*b^6 + 5*a^4*b^8 - 2*a^2*b^10 + a^10*c^2 - a^8*b^2*c^2 + 3*a^6*b^4*c^2 - 9*a^4*b^6*c^2 + 5*a^2*b^8*c^2 + b^10*c^2 - a^8*c^4 + 3*a^6*b^2*c^4 + 9*a^4*b^4*c^4 - 3*a^2*b^6*c^4 - 4*b^8*c^4 - 3*a^6*c^6 - 9*a^4*b^2*c^6 - 3*a^2*b^4*c^6 + 6*b^6*c^6 + 5*a^4*c^8 + 5*a^2*b^2*c^8 - 4*b^4*c^8 - 2*a^2*c^10 + b^2*c^10) : :

X(51234) lies on the cubic K13 and these lines: {30, 74}, {50, 110}, {1495, 11751}, {2088, 5640}, {15080, 15920}, {18578, 45237}


X(51235) = X(6)X(6187)∩X(31)X(3122)

Barycentrics    a^2*(3*a^4 - 2*a^3*b - 2*a^2*b^2 + 2*a*b^3 - b^4 - 2*a^3*c + 3*a^2*b*c - a*b^2*c - 2*a^2*c^2 - a*b*c^2 + 2*b^2*c^2 + 2*a*c^3 - c^4) : :

X(51235) lies on the cubic K312 and these lines: {6, 6187}, {31, 3122}, {36, 19619}, {55, 184}, {56, 106}, {103, 28170}, {654, 1960}, {902, 7113}, {942, 16110}, {1385, 1768}, {1623, 4588}, {2110, 5040}, {2183, 2361}, {2964, 20831}, {3207, 35326}, {7004, 34471}, {7355, 14529}, {8614, 23850}, {8648, 21786}, {23344, 23858}, {26884, 41341}

X(51235) = isogonal conjugate of X(36917)
X(51235) = isogonal conjugate of the isotomic conjugate of X(6224)
X(51235) = X(36)-Ceva conjugate of X(6)
X(51235) = X(i)-isoconjugate of X(j) for these (i,j): {1, 36917}, {75, 34431}, {18359, 19619}
X(51235) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 36917), (80, 20566), (206, 34431)
X(51235) = crosssum of X(i) and X(j) for these (i,j): {2, 20085}, {522, 46398}
X(51235) = crossdifference of every pair of points on line {1639, 10015}
X(51235) = barycentric product X(i)*X(j) for these {i,j}: {1, 16554}, {6, 6224}
X(51235) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 36917}, {32, 34431}, {6224, 76}, {16554, 75}
X(51235) = {X(692),X(34858)}-harmonic conjugate of X(215)


X(51236) = X(1)X(22775)∩X(3)X(102)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^6 - 2*a^5*b - a^4*b^2 + 4*a^3*b^3 - a^2*b^4 - 2*a*b^5 + b^6 - 2*a^5*c + 3*a^4*b*c - a^3*b^2*c - 3*a^2*b^3*c + 3*a*b^4*c - a^4*c^2 - a^3*b*c^2 + 4*a^2*b^2*c^2 - a*b^3*c^2 - b^4*c^2 + 4*a^3*c^3 - 3*a^2*b*c^3 - a*b^2*c^3 - a^2*c^4 + 3*a*b*c^4 - b^2*c^4 - 2*a*c^5 + c^6) : :

X(51236) lies on the cubics K312 and these lines: {1, 22775}, {3, 102}, {6, 909}, {34, 20832}, {36, 1455}, {56, 244}, {73, 37564}, {106, 1617}, {222, 14793}, {227, 11012}, {478, 5124}, {603, 8614}, {651, 4996}, {902, 1457}, {934, 38374}, {1035, 5204}, {1394, 7280}, {1413, 36052}, {1421, 37583}, {1616, 37579}, {2361, 34182}, {2932, 23703}, {3428, 24028}, {6914, 34029}, {6924, 34030}, {8071, 34046}, {10090, 43043}, {14792, 34043}, {15306, 33925}, {19524, 37558}, {21147, 26286}, {32612, 37697}

X(51236) = isogonal conjugate of the isotomic conjugate of X(36918)
X(51236) = X(i)-Ceva conjugate of X(j) for these (i,j): {36, 56}, {1455, 221}, {1465, 6}
X(51236) = X(8)-isoconjugate of X(47645)
X(51236) = X(2006)-Dao conjugate of X(20566)
X(51236) = crosssum of X(521) and X(10017)
X(51236) = barycentric product X(i)*X(j) for these {i,j}: {6, 36918}, {57, 6326}
X(51236) = barycentric quotient X(i)/X(j) for these {i,j}: {604, 47645}, {6326, 312}, {36918, 76}


X(51237) = X(17)X(530)∩X(18)X(531)

Barycentrics    13*a^4 - 13*a^2*b^2 + 4*b^4 - 13*a^2*c^2 - 7*b^2*c^2 + 4*c^4 : :

X(51237) lies on these lines: {2, 5206}, {3, 9166}, {17, 530}, {18, 531}, {30, 38223}, {99, 17004}, {140, 26613}, {384, 1153}, {543, 50570}, {549, 7827}, {576, 631}, {598, 3526}, {599, 1078}, {671, 7749}, {1975, 11149}, {2896, 22247}, {3589, 5104}, {3849, 16923}, {5054, 12150}, {5215, 7824}, {5569, 7883}, {7617, 33014}, {7619, 34604}, {7622, 7760}, {7763, 50992}, {7782, 8860}, {7812, 21843}, {7832, 51143}, {7847, 44401}, {7863, 33259}, {7909, 9167}, {7919, 33215}, {8182, 33000}, {8598, 15031}, {14971, 33260}, {15810, 33245}, {33276, 47617}, {37334, 43148}, {39142, 50990}

X(51237) {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5569, 7907, 7883}, {33259, 34506, 41134}


X(51238) = X(17)X(531)∩X(18)X(530)

Barycentrics    a^4 + 5*a^2*b^2 - 11*b^4 + 5*a^2*c^2 + 23*b^2*c^2 - 11*c^4 : :

X(51238) lies on the cubics K and K and these lines: {2, 7748}, {5, 41135}, {17, 531}, {18, 530}, {69, 8586}, {148, 37647}, {381, 9863}, {384, 20112}, {524, 50570}, {542, 38228}, {546, 8859}, {597, 7797}, {2896, 37350}, {3090, 32480}, {3091, 5032}, {3860, 18503}, {5025, 21358}, {5461, 15031}, {5569, 19691}, {6655, 7617}, {7610, 14062}, {7615, 32966}, {7620, 32963}, {7769, 8596}, {7775, 19570}, {7785, 15534}, {7827, 33024}, {7836, 32984}, {7860, 32993}, {8355, 17128}, {8370, 16984}, {9166, 16044}, {10303, 41895}, {14712, 18424}, {14971, 33225}, {15597, 33256}, {33011, 34511}


X(51239) = X(3)X(524)∩X(6)X(38532)

Barycentrics    a^2*(a^2 + b^2 - 3*b*c + c^2)*(a^2 + b^2 + 3*b*c + c^2)*(a^4 - 4*a^2*b^2 + b^4 - c^4)*(a^4 - b^4 - 4*a^2*c^2 + c^4) : :

X(51239) lies on the cubic K108 and these lines: {3, 524}, {6, 38532}, {23, 13493}, {111, 2393}, {2930, 47063}, {6093, 30247}, {8428, 22259}, {9027, 15406}, {9872, 10354}, {10870, 31961}

X(51239) = isogonal conjugate of X(34166)
X(51239) = circumcircle-inverse of X(13608)
X(51239) = isogonal conjugate of the anticomplement of X(10354)
X(51239) = isogonal conjugate of the isotomic conjugate of X(39157)
X(51239) = X(i)-isoconjugate of X(j) for these (i,j): {1, 34166}, {75, 13493}
X(51239) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 34166), (206, 13493)
X(51239) = crosspoint of X(15406) and X(35188)
X(51239) = barycentric product X(i)*X(j) for these {i,j}: {6, 39157}, {5486, 11580}, {13492, 13608}
X(51239) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 34166}, {32, 13493}, {11580, 11185}, {35188, 39296}, {39157, 76}


X(51240) = X(3)X(1177)∩X(6)X(3455)

Barycentrics    a^2*(3*a^8 - 2*a^6*b^2 - 2*a^4*b^4 + 2*a^2*b^6 - b^8 - 2*a^6*c^2 + 3*a^4*b^2*c^2 - a^2*b^4*c^2 - 2*a^4*c^4 - a^2*b^2*c^4 + 2*b^4*c^4 + 2*a^2*c^6 - c^8) : :
X(51240) = 2 X[112] + X[11641], X[112] + 2 X[40121], X[11641] - 4 X[40121], X[13310] - 4 X[14676], X[13310] + 2 X[19165], 2 X[14676] + X[19165], X[5938] + 2 X[10317], X[19164] + 2 X[38608], X[13115] - 4 X[34217], 4 X[14574] - X[22146]

X(51240) lies on the cubics K108 and K904 and these lines: {3, 1177}, {6, 3455}, {23, 22258}, {25, 111}, {32, 7669}, {132, 18494}, {154, 1625}, {187, 18374}, {206, 18472}, {351, 9517}, {381, 2794}, {403, 13200}, {468, 34163}, {2070, 2080}, {2393, 5938}, {2482, 34319}, {2844, 23383}, {2936, 5467}, {5024, 10766}, {5094, 11605}, {9142, 21309}, {9512, 36156}, {9818, 11637}, {9829, 10718}, {10254, 48681}, {10735, 18386}, {12593, 13493}, {13115, 34217}, {13236, 21177}, {14357, 16176}, {14574, 22146}, {14983, 37196}, {20975, 30435}

X(51240) = midpoint of X(112) and X(9157)
X(51240) = reflection of X(i) in X(j) for these {i,j}: {3, 14649}, {9157, 40121}, {11641, 9157}
X(51240) = isogonal conjugate of X(14364)
X(51240) = circumcircle-inverse of X(6593)
X(51240) = Stammler-circle-inverse of X(48679)
X(51240) = isogonal conjugate of the anticomplement of X(15900)
X(51240) = isogonal conjugate of the isotomic conjugate of X(11061)
X(51240) = tangential-isogonal conjugate of X(5938)
X(51240) = X(23)-Ceva conjugate of X(6)
X(51240) = X(i)-isoconjugate of X(j) for these (i,j): {1, 14364}, {75, 22258}, {10417, 46277}
X(51240) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 14364), (67, 18019), (206, 22258)
X(51240) = crosssum of X(525) and X(38971)
X(51240) = crossdifference of every pair of points on line {14417, 18310}
X(51240) = barycentric product X(i)*X(j) for these {i,j}: {6, 11061}, {23, 15900}, {187, 10416}
X(51240) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 14364}, {32, 22258}, {10416, 18023}, {11061, 76}, {14567, 10417}, {15900, 18019}
X(51240) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 19153, 37808}, {112, 40121, 11641}, {187, 18374, 21419}, {1384, 5191, 34106}, {14676, 19165, 13310}


X(51241) = X(1)X(3224)∩X(1759)X(21387)

Barycentrics    a*(a^5*b^4 - a^4*b^5 + a^4*b^4*c - 2*a^5*b^2*c^2 + 2*a^2*b^5*c^2 + a^5*c^4 + a^4*b*c^4 - a*b^4*c^4 - b^5*c^4 - a^4*c^5 + 2*a^2*b^2*c^5 - b^4*c^5) : :

X(51241) lies on the cubic K410 and these lines: {1, 3224}, {1759, 21387}, {16552, 16569}, {16557, 25264}, {16574, 21384}

X(51241) = X(194)-Ceva conjugate of X(1)
X(51241) = X(3223)-Dao conjugate of X(2998)


X(51242) = X(4)X(2992)∩X(16)X(184)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)/(Sqrt[3]*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) - 2*(a^2 - b^2 - c^2)*S) : :
X(51242) = 3 X[51] - 2 X[20412]

X(51242) lies on the cubics K050 and K1132 and these lines: {4, 2992}, {16, 184}, {51, 6116}, {128, 130}, {185, 3480}, {418, 44712}, {3129, 8479}, {11600, 14372}, {16807, 21648}, {20411, 21661}, {21660, 38931}

X(51242) = reflection of X(21661) in X(20411)
X(51242) = X(i)-isoconjugate of X(j) for these (i,j): {621, 2190}, {3129, 40440}
X(51242) = X(5)-Dao conjugate of X(621)
X(51242) = barycentric product X(i)*X(j) for these {i,j}: {216, 2992}, {343, 3438}, {40156, 44713}
X(51242) = barycentric quotient X(i)/X(j) for these {i,j}: {216, 621}, {217, 3129}, {2992, 276}, {3438, 275}


X(51243) = X(4)X(2993)∩X(15)X(184)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)/(Sqrt[3]*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) + 2*(a^2 - b^2 - c^2)*S) : :
X(51243) = 3 X[51] - 2 X[20411]

X(51243) lies on the cubics K050 and K1132b and these lines: {4, 2993}, {15, 184}, {51, 6117}, {128, 130}, {185, 3479}, {418, 44711}, {3130, 8471}, {11601, 14373}, {16806, 21647}, {20412, 21661}, {21660, 38932}

X(51243) = reflection of X(21661) in X(20412)
X(51243) = X(i)-isoconjugate of X(j) for these (i,j): {622, 2190}, {3130, 40440}
X(51243) = X(5)-Dao conjugate of X(622)
X(51243) = barycentric product X(i)*X(j) for these {i,j}: {216, 2993}, {343, 3439}, {40157, 44714}
X(51243) = barycentric quotient X(i)/X(j) for these {i,j}: {216, 622}, {217, 3130}, {2993, 276}, {3439, 275}


X(51244) = X(1)X(8867)∩X(3)X(147)

Barycentrics    (a^2 - b*c)*(a^2 + b*c)*(a^6 + b^6 - a^2*b^2*c^2 - c^6)*(a^6 - b^6 - a^2*b^2*c^2 + c^6) : :

X(51244) lies on the cubics K020 and K1065 and these lines: {1, 8867}, {3, 147}, {4, 34130}, {39, 8861}, {76, 3492}, {384, 3493}, {3224, 8743}, {3491, 8864}, {3494, 8862}, {8866, 8868}

X(51244) = isogonal conjugate of X(3493)
X(51244) = X(i)-isoconjugate of X(j) for these (i,j): {1, 3493}, {694, 19555}, {1581, 6660}, {1916, 19559}, {1934, 19558}, {1967, 5207}, {18896, 19560}, {19572, 41517}
X(51244) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 3493), (8290, 5207), (19576, 6660), (35078, 14316), (39031, 19559), (39043, 19555)
X(51244) = barycentric product X(i)*X(j) for these {i,j}: {385, 43696}, {3978, 41533}
X(51244) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 3493}, {385, 5207}, {804, 14316}, {1580, 19555}, {1691, 6660}, {1933, 19559}, {4027, 19571}, {14602, 19558}, {18902, 19556}, {41533, 694}, {43696, 1916}


X(51245) = X(3)X(8928)∩X(39)X(8863)

Barycentrics    (a^6*b^2 - b^8 + a^2*b^4*c^2 + 2*a^4*c^4 + b^2*c^6)*(2*a^4*b^4 + a^6*c^2 + b^6*c^2 + a^2*b^2*c^4 - c^8) : :

X(51245) lies on the cubic K020 and these lines: {3, 8928}, {39, 8863}, {76, 3505}, {194, 39938}, {384, 3492}, {2896, 3491}, {3493, 8790}, {3496, 8866}, {3499, 8861}, {3933, 40035}, {6196, 8867}, {8862, 8865}

X(51245) = isogonal conjugate of X(3492)
X(51245) = X(695)-cross conjugate of X(76)
X(51245) = X(1)-isoconjugate of X(3492)
X(51245) = X(3)-Dao conjugate of X(3492)
X(51245) = barycentric quotient X(6)/X(3492)


X(51246) = X(3)X(6374)∩X(32)X(3186)

Barycentrics    (a^6*b^2 + a^2*b^6 - a^6*c^2 - b^6*c^2 + a^4*c^4 + b^4*c^4)*(a^6*b^2 - a^4*b^4 - a^6*c^2 - b^4*c^4 - a^2*c^6 + b^2*c^6) : :

X(5126) lies on the cubics K020 and these lines: {3, 6374}, {32, 3186}, {76, 3504}, {83, 8874}, {184, 194}, {228, 22028}, {384, 3491}, {2200, 21080}, {3493, 8873}, {3496, 8872}, {3501, 8866}, {6196, 8862}, {8783, 8858}, {8861, 8871}, {8867, 8876}, {9229, 39927}, {14199, 17797}

X(51246) = isogonal conjugate of X(3491)
X(51246) = isogonal conjugate of the isotomic conjugate of X(43715)
X(51246) = X(i)-cross conjugate of X(j) for these (i,j): {695, 83}, {17984, 98}
X(51246) = X(1)-isoconjugate of X(3491)
X(51246) = X(3)-Dao conjugate of X(3491)
X(51246) = trilinear pole of line {3049, 23301}
X(51246) = barycentric product X(6)*X(43715)
X(51246) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 3491}, {43715, 76}


X(51247) = X(32)X(8874)∩X(76)X(22252)

Barycentrics    a^4*(a^6*b^6 + 2*a^2*b^8*c^2 + a^4*b^4*c^4 - a^6*c^6 + b^6*c^6)*(a^6*b^6 - a^4*b^4*c^4 - a^6*c^6 - b^6*c^6 - 2*a^2*b^2*c^8) : :

X(51247) lies on the cubic K020 and these lines: {32, 8874}, {76, 22252}, {194, 38817}, {384, 8790}, {2896, 8873}, {3491, 3499}, {3492, 8871}, {6196, 8866}, {8863, 8870}, {8865, 8872}

X(51247) = isogonal conjugate of X(8790)
X(51247) = X(695)-cross conjugate of X(32)
X(51247) = X(1)-isoconjugate of X(8790)
X(51247) = X(3)-Dao conjugate of X(8790)
X(51247) = barycentric quotient X(6)/X(8790)


X(51248) = X(3)X(46286)∩X(39)X(3493)

Barycentrics    a^2*(a^4 + a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 - c^4)*(a^4 - a^2*b^2 - b^4 + a^2*c^2 - b^2*c^2 + c^4)*(a^2*b^4 - b^4*c^2 + a^2*c^4 - b^2*c^4) : :

X(51248) lies on the cubic K020 and these lines: {3, 46286}, {39, 3493}, {76, 148}, {384, 8864}, {512, 5007}, {3224, 3492}, {3494, 3496}, {3500, 8867}, {8865, 8868}, {11229, 33260}, {30496, 43183}

X(51248) = isogonal conjugate of X(8864)
X(51248) = X(i)-isoconjugate of X(j) for these (i,j): {1, 8864}, {3225, 17799}, {7779, 43761}
X(51248) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 8864), (39080, 7779)
X(51248) = crosssum of X(2076) and X(8290)
X(51248) = barycentric product X(i)*X(j) for these {i,j}: {698, 46286}, {3229, 11606}
X(51248) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 8864}, {3229, 7779}, {9429, 5113}, {32748, 2076}, {46286, 3225}


X(51249) = X(4)X(8790)∩X(32)X(3499)

Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^4*b^4 + a^4*b^2*c^2 + a^2*b^4*c^2 - a^4*c^4 - a^2*b^2*c^4 - b^4*c^4)*(a^4*b^4 - a^4*b^2*c^2 + a^2*b^4*c^2 - a^4*c^4 - a^2*b^2*c^4 + b^4*c^4) : :

X(51249) lies on the cubics K020 and K547 and these lines: {4, 8790}, {32, 3499}, {39, 8871}, {76, 41520}, {194, 263}, {384, 8870}, {512, 3934}, {2896, 34214}, {3503, 6196}, {8865, 8875}

X(51249) = isogonal conjugate of X(8870)
X(51249) = X(5976)-cross conjugate of X(511)
X(51249) = X(i)-isoconjugate of X(j) for these (i,j): {1, 8870}, {1910, 40858}
X(51249) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 8870), (8623, 38382), (11672, 40858)
X(51249) = crosssum of X(38382) and X(40858)
X(51249) = barycentric product X(511)*X(39939)
X(51249) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 8870}, {511, 40858}, {36213, 38382}, {39939, 290}


X(51250) = X(3)X(3492)∩X(76)X(8863)

Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^8 - a^6*b^2 - a^2*b^6 + b^8 + a^6*c^2 + a^4*b^2*c^2 + a^2*b^4*c^2 + b^6*c^2 - 2*a^4*c^4 - a^2*b^2*c^4 - 2*b^4*c^4 + a^2*c^6 + b^2*c^6 - c^8)*(a^8 + a^6*b^2 - 2*a^4*b^4 + a^2*b^6 - b^8 - a^6*c^2 + a^4*b^2*c^2 - a^2*b^4*c^2 + b^6*c^2 + a^2*b^2*c^4 - 2*b^4*c^4 - a^2*c^6 + b^2*c^6 + c^8) : :

X(51250) lies on the cubic K020 and these lines: {3, 3492}, {76, 8863}, {185, 15407}, {384, 8861}, {525, 5305}, {2896, 42313}, {3172, 40802}, {3491, 3493}, {3496, 8862}, {3501, 8867}

X(51250) = isogonal conjugate of X(8861)
X(51250) = X(i)-isoconjugate of X(j) for these (i,j): {1, 8861}, {3404, 8928}
X(51250) = X(3)-Dao conjugate of X(8861)
X(51250) = barycentric product X(325)*X(43721)
X(51250) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 8861}, {43721, 98}


X(51251) = X(39)X(8866)∩X(384)X(8865)

Barycentrics    a*(a^4*b^2 - a^3*b^3 + a^2*b^4 - a^4*b*c + a^3*b^2*c - a^2*b^3*c + a*b^4*c + a^4*c^2 - a^3*b*c^2 + 2*a^2*b^2*c^2 - a*b^3*c^2 + b^4*c^2 + a^3*c^3 - a^2*b*c^3 + a*b^2*c^3 - b^3*c^3 + a^2*c^4 - a*b*c^4 + b^2*c^4)*(a^4*b^2 + a^3*b^3 + a^2*b^4 - a^4*b*c - a^3*b^2*c - a^2*b^3*c - a*b^4*c + a^4*c^2 + a^3*b*c^2 + 2*a^2*b^2*c^2 + a*b^3*c^2 + b^4*c^2 - a^3*c^3 - a^2*b*c^3 - a*b^2*c^3 - b^3*c^3 + a^2*c^4 + a*b*c^4 + b^2*c^4) : :

X(51251) lies on the cubic K020 and these lines: {39, 8866}, {384, 8865}, {2896, 4388}, {3492, 3503}, {3494, 8790}, {3496, 3499}, {3497, 39725}, {3498, 8862}, {3500, 8874}, {8867, 8870}

X(51251) = isogonal conjugate of X(8865)
X(51251) = X(695)-cross conjugate of X(3500)
X(51251) = X(1)-isoconjugate of X(8865)
X(51251) = X(3)-Dao conjugate of X(8865)
X(51251) = barycentric quotient X(6)/X(8865)


X(51252) = X(3)X(1176)∩X(22)X(76)

Barycentrics    a^2*(a^2 + b^2)*(a^2 - b^2 - c^2)^2*(a^2 + c^2)*(a^4*b^2 - b^6 + a^4*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 + b^2*c^4 - c^6) : :

X(51252) lies on the cubic K106 and these lines: {3, 1176}, {22, 76}, {83, 7503}, {251, 26216}, {3785, 5596}, {7404, 17500}, {7488, 21458}, {7494, 28417}, {10548, 14118}, {23208, 46442}

X(51252) = barycentric product X(5133)*X(28724)
X(51252) = barycentric quotient X(9969)/X(27376)


X(51253) = X(3)X(895)∩X(4)X(5968)

Barycentrics    a^2*(a^2 + b^2 - 2*c^2)*(a^2 - b^2 - c^2)^2*(a^2 - 2*b^2 + c^2)*(a^4*b^2 - b^6 + a^4*c^2 - 2*a^2*b^2*c^2 + b^4*c^2 + b^2*c^4 - c^6) : :

X(51253) lies on the cubic K1065 and these lines: {3, 895}, {4, 5968}, {22, 10422}, {76, 30786}, {691, 11413}, {2353, 14366}, {3265, 3926}, {14357, 33927}, {14961, 34158}, {19330, 26283}

X(51253) = X(14273)-isoconjugate of X(36095)
X(51253) = X(i)-Dao conjugate of X(j) for these (i, j): (895, 10424), (5181, 468)
X(51253) = crosssum of X(468) and X(41616)
X(51253) = barycentric product X(i)*X(j) for these {i,j}: {305, 34158}, {14961, 30786}
X(51253) = barycentric quotient X(i)/X(j) for these {i,j}: {858, 37778}, {14961, 468}, {34158, 25}, {42665, 14273}


X(51254) = X(3)X(125)∩X(4)X(250)

Barycentrics    (a^2 - b^2 - c^2)^2*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4) : :
X(51254) = 4 X[14254] - 3 X[14583]

X(51254) lies on the cubic K1065 and these lines: {3, 125}, {4, 250}, {5, 3233}, {20, 476}, {30, 14254}, {76, 328}, {376, 5627}, {520, 5489}, {542, 14264}, {550, 21317}, {1495, 34104}, {1531, 3284}, {1989, 44518}, {2777, 41512}, {3258, 15454}, {3534, 14993}, {6344, 18848}, {7471, 18279}, {7802, 35139}, {8431, 18318}, {10316, 32662}, {11589, 12113}, {12022, 18114}, {12028, 18531}, {12383, 14385}, {12605, 16934}, {14559, 15063}, {14670, 32423}, {15329, 18400}, {16186, 44665}, {16868, 23956}, {18404, 42424}, {30714, 41390}, {34298, 39290}, {34664, 43084}, {39643, 50433}

X(51254) = X(328)-Ceva conjugate of X(11064)
X(51254) = X(i)-cross conjugate of X(j) for these (i,j): {1650, 43083}, {39008, 41077}
X(51254) = X(i)-isoconjugate of X(j) for these (i,j): {158, 14385}, {186, 36119}, {2159, 14165}, {2624, 15459}, {32679, 32695}, {36131, 44427}
X(51254) = X(i)-Dao conjugate of X(j) for these (i, j): (265, 10421), (1147, 14385), (1511, 186), (3163, 14165), (7687, 43911), (9033, 3258), (38999, 526), (39008, 44427), (39170, 4)
X(51254) = cevapoint of X(1568) and X(16163)
X(51254) = crosspoint of X(265) and X(12028)
X(51254) = crosssum of X(i) and X(j) for these (i,j): {186, 1986}, {34397, 36423}
X(51254) = trilinear pole of line {1636, 18558}
X(51254) = barycentric product X(i)*X(j) for these {i,j}: {99, 18558}, {110, 18557}, {265, 11064}, {328, 3284}, {394, 14254}, {476, 41077}, {1636, 35139}, {1650, 39295}, {2407, 43083}, {3260, 50433}, {3265, 41392}, {3926, 14583}, {18478, 46809}, {36789, 50464}
X(51254) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 14165}, {265, 16080}, {476, 15459}, {577, 14385}, {1568, 14918}, {1636, 526}, {3284, 186}, {9033, 44427}, {9409, 47230}, {11064, 340}, {14254, 2052}, {14560, 32695}, {14582, 18808}, {14583, 393}, {16163, 14920}, {18478, 46808}, {18557, 850}, {18558, 523}, {32662, 1304}, {39008, 3258}, {39295, 42308}, {41077, 3268}, {41392, 107}, {43083, 2394}, {47405, 1986}, {50433, 74}, {50464, 40384}, {50467, 40391}
X(51254) = {X(3),X(265)}-harmonic conjugate of X(39170)


X(51255) = X(3)X(54)∩X(4)X(160)

Barycentrics    a^2*(a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - 2*a^2*c^2 - b^2*c^2 + c^4)*(a^4*b^2 - 2*a^2*b^4 + b^6 + a^4*c^2 - 2*a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6) : :

X(51224) lies on the cubic K1065 and these lines: {3, 54}, {4, 160}, {24, 275}, {25, 4994}, {39, 41270}, {76, 95}, {140, 8901}, {378, 8884}, {578, 21638}, {1141, 20189}, {1151, 16034}, {1152, 16029}, {1209, 50947}, {1593, 19173}, {1594, 23195}, {1599, 16037}, {1600, 16032}, {3133, 14389}, {3520, 19172}, {3541, 19174}, {4993, 6642}, {5489, 23286}, {7488, 43768}, {7503, 19179}, {7512, 36842}, {7526, 19176}, {7547, 19177}, {7604, 18369}, {9707, 26887}, {11456, 19206}, {14366, 14587}, {14533, 39643}, {14652, 27423}, {15329, 44516}, {18859, 19651}, {18912, 26954}, {19169, 35502}, {19180, 19357}, {19192, 35477}, {19197, 39588}, {20775, 34224}, {23295, 37119}, {37126, 40631}, {38848, 44890}

X(51255) = isogonal conjugate of X(40449)
X(51255) = X(i)-Ceva conjugate of X(j) for these (i,j): {95, 37636}, {99, 15412}
X(51255) = X(i)-isoconjugate of X(j) for these (i,j): {1, 40449}, {5, 2216}, {1087, 1166}, {1179, 44706}, {1953, 40393}, {2617, 50946}
X(51255) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 40449), (570, 45793), (1209, 5), (8901, 523)
X(51255) = cevapoint of X(570) and X(23195)
X(51255) = crosspoint of X(54) and X(252)
X(51255) = crosssum of X(i) and X(j) for these (i,j): {5, 143}, {51, 36412}
X(51255) = barycentric product X(i)*X(j) for these {i,j}: {54, 37636}, {95, 570}, {97, 1594}, {275, 1216}, {276, 23195}, {1238, 8882}, {15108, 30490}, {15412, 50947}, {23286, 41677}, {34386, 47328}
X(51255) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 40449}, {54, 40393}, {570, 5}, {1209, 45793}, {1216, 343}, {1238, 28706}, {1594, 324}, {2148, 2216}, {2623, 50946}, {6152, 14129}, {8882, 1179}, {14533, 40441}, {23195, 216}, {30490, 11538}, {37636, 311}, {47328, 53}, {50947, 14570}
X(51255) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 16030, 54}, {54, 19168, 19170}, {275, 19185, 24}


X(51256) = X(2)X(18127)∩X(3)X(2888)

Barycentrics    a^2*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*(a^8 - 2*a^6*b^2 + 2*a^4*b^4 - 2*a^2*b^6 + b^8 - 2*a^6*c^2 + a^4*b^2*c^2 + a^2*b^4*c^2 - 2*b^6*c^2 - a^2*b^2*c^4 + 2*a^2*c^6 + 2*b^2*c^6 - c^8)*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 - 2*a^6*c^2 + a^4*b^2*c^2 - a^2*b^4*c^2 + 2*b^6*c^2 + 2*a^4*c^4 + a^2*b^2*c^4 - 2*a^2*c^6 - 2*b^2*c^6 + c^8) : :

X(51256) lies on the cubic K1065 and these lines: {2, 18127}, {3, 2888}, {4, 3447}, {140, 45737}, {477, 3520}, {5489, 23286}, {5562, 14366}, {6794, 14354}, {12028, 35921}, {22115, 47055}, {34178, 35473}

X(51256) = X(i)-isoconjugate of X(j) for these (i,j): {2070, 2166}, {24978, 32678}
X(51256) = X(i)-Dao conjugate of X(j) for these (i, j): (11597, 2070), (18334, 24978)
X(51256) = barycentric product X(i)*X(j) for these {i,j}: {323, 33565}, {7799, 34448}, {9381, 22115}
X(51256) = barycentric quotient X(i)/X(j) for these {i,j}: {50, 2070}, {186, 37766}, {526, 24978}, {9381, 18817}, {33565, 94}, {34418, 30529}, {34448, 1989}
X(51256) = {X(3),X(38542)}-harmonic conjugate of X(34418)


X(51257) = X(3)X(16083)∩X(4)X(290)

Barycentrics    b^4*c^4*(a^4 + b^4 - a^2*c^2 - b^2*c^2)*(-a^4 + a^2*b^2 + b^2*c^2 - c^4)*(-2*a^6 + a^4*b^2 + b^6 + a^4*c^2 - b^4*c^2 - b^2*c^4 + c^6) : :

X(51257) lies on the cubic K056 and these lines: {3, 16083}, {4, 290}, {76, 525}, {182, 14382}, {327, 40804}, {2966, 10316}, {7745, 44549}, {7763, 14376}, {9476, 18022}, {14965, 44137}, {18024, 42287}, {31636, 44185}

X(51257) = X(15595)-cross conjugate of X(30737)
X(51257) = X(i)-isoconjugate of X(j) for these (i,j): {1297, 9417}, {9247, 39265}, {36046, 39469}
X(51257) = X(i)-Dao conjugate of X(j) for these (i, j): (441, 11672), (15595, 3289), (23976, 237), (33504, 39469), (39058, 1297), (39073, 9419), (50938, 2211)
X(51257) = cevapoint of X(15595) and X(30737)
X(51257) = barycentric product X(i)*X(j) for these {i,j}: {290, 30737}, {1503, 18024}, {18022, 34156}
X(51257) = barycentric quotient X(i)/X(j) for these {i,j}: {264, 39265}, {290, 1297}, {441, 3289}, {685, 32649}, {1503, 237}, {2312, 9417}, {9475, 9419}, {15595, 11672}, {16081, 43717}, {16318, 2211}, {17875, 23996}, {18024, 35140}, {22456, 44770}, {23977, 34859}, {30737, 511}, {34156, 184}, {34211, 14966}, {42671, 9418}, {43665, 34212}


X(51258) = X(30)X(98)∩X(111)X(468)

Barycentrics    (b - c)^2*(b + c)^2*(a^2 + b^2 - 2*c^2)*(-a^2 + 2*b^2 - c^2)*(-a^2 + b^2 + c^2) : :
X(51258) = 3 X[98] + X[44972], 3 X[671] + X[691], X[691] - 3 X[16092], 3 X[11632] + X[38953], X[935] - 3 X[34366], 3 X[115] - X[5099], 2 X[5099] - 3 X[14120], 2 X[125] - 3 X[34953], 2 X[40544] - 3 X[46980], 5 X[14061] - X[47288], 3 X[14651] - X[36166], X[36196] - 3 X[41135], 3 X[36196] + X[47292], 9 X[41135] + X[47292], 3 X[38224] - X[46634], X[38613] - 3 X[49102]

X(51258) lies on the cubic K217 and these lines: {2, 47293}, {5, 5968}, {30, 98}, {111, 468}, {115, 523}, {125, 525}, {148, 7472}, {187, 47238}, {230, 36180}, {265, 895}, {339, 3267}, {381, 2452}, {543, 40544}, {546, 14246}, {858, 31125}, {868, 2394}, {879, 10097}, {1312, 50944}, {1313, 50945}, {1499, 16278}, {1550, 22265}, {1551, 12243}, {2782, 36170}, {2794, 46982}, {2970, 10555}, {3143, 9178}, {3150, 15421}, {3767, 36156}, {3906, 15359}, {4064, 21046}, {4580, 34978}, {5159, 6390}, {5254, 14609}, {5461, 46986}, {5512, 8754}, {6036, 46987}, {6530, 9139}, {6776, 36894}, {7615, 50149}, {8753, 10151}, {8901, 9213}, {9137, 41125}, {10416, 37897}, {10561, 47175}, {10735, 13473}, {11799, 43917}, {13869, 37049}, {14061, 47288}, {14651, 36166}, {14729, 44533}, {15899, 46517}, {16760, 20398}, {16934, 18531}, {17948, 37350}, {17964, 47242}, {18583, 21460}, {23698, 46981}, {32113, 46154}, {32740, 47188}, {34169, 47155}, {34320, 47311}, {36174, 47291}, {36194, 40727}, {36196, 41135}, {38224, 46634}, {38613, 49102}, {42008, 47097}, {43448, 45143}, {47239, 47326}

X(51258) = midpoint of X(i) and X(j) for these {i,j}: {148, 7472}, {671, 16092}, {858, 47286}, {1550, 22265}, {1551, 12243}, {6321, 46633}, {36174, 47291}
X(51258) = reflection of X(i) in X(j) for these {i,j}: {187, 47238}, {468, 43291}, {6390, 5159}, {14120, 115}, {16760, 20398}, {36180, 230}, {46986, 5461}, {46987, 6036}, {47326, 47239}
X(51258) = complement of X(47293)
X(51258) = X(i)-Ceva conjugate of X(j) for these (i,j): {671, 10097}, {10415, 523}, {17983, 5466}, {30786, 14977}
X(51258) = X(i)-isoconjugate of X(j) for these (i,j): {112, 23889}, {162, 5467}, {163, 4235}, {250, 896}, {468, 1101}, {922, 18020}, {2642, 47443}, {3292, 24000}, {5468, 32676}, {14567, 46254}, {23200, 23999}, {23995, 44146}, {24041, 44102}
X(51258) = X(i)-Dao conjugate of X(j) for these (i, j): (115, 4235), (125, 5467), (523, 468), (525, 6390), (647, 524), (1649, 5095), (3005, 44102), (15526, 5468), (15899, 250), (18311, 7664), (18314, 44146), (23285, 3266), (34591, 23889), (39061, 18020), (41167, 9155)
X(51258) = crosspoint of X(i) and X(j) for these (i,j): {5466, 17983}, {14977, 30786}
X(51258) = crosssum of X(3292) and X(5467)
X(51258) = barycentric product X(i)*X(j) for these {i,j}: {111, 339}, {115, 30786}, {125, 671}, {338, 895}, {523, 14977}, {525, 5466}, {850, 10097}, {897, 20902}, {3267, 9178}, {3269, 46111}, {3708, 46277}, {8753, 36793}, {9213, 14592}, {10555, 34897}, {14208, 23894}, {14908, 23962}, {15526, 17983}, {17879, 36128}, {18023, 20975}, {23994, 36060}
X(51258) = barycentric quotient X(i)/X(j) for these {i,j}: {111, 250}, {115, 468}, {125, 524}, {338, 44146}, {339, 3266}, {523, 4235}, {525, 5468}, {647, 5467}, {656, 23889}, {671, 18020}, {691, 47443}, {895, 249}, {1648, 5095}, {2970, 37778}, {3124, 44102}, {3269, 3292}, {3708, 896}, {4466, 6629}, {5466, 648}, {5489, 14417}, {6791, 15471}, {8029, 14273}, {8430, 4230}, {8753, 23964}, {9178, 112}, {9213, 14590}, {10097, 110}, {10555, 37765}, {14208, 24039}, {14582, 14559}, {14908, 23357}, {14977, 99}, {15526, 6390}, {17983, 23582}, {18210, 16702}, {20902, 14210}, {20975, 187}, {21046, 4062}, {21134, 4750}, {23894, 162}, {30786, 4590}, {34953, 45291}, {36060, 1101}, {36128, 24000}, {41172, 9155}, {46277, 46254}
X(51258) = {X(31125),X(46783)}-harmonic conjugate of X(858)


X(51259) = X(3)X(76)∩X(262)X(523)

Barycentrics    b^2*c^2*(a^4 + b^4 - a^2*c^2 - b^2*c^2)*(-a^4 + a^2*b^2 + b^2*c^2 - c^4)*(3*a^4*b^2 - 2*a^2*b^4 + b^6 + 3*a^4*c^2 - 2*a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6) : :

X(51259) lies on the cubic K527 and these lines: {3, 76}, {262, 523}, {879, 18304}, {5967, 11422}, {7757, 37858}, {7998, 20021}, {9744, 44155}, {14355, 36820}, {40820, 43754}, {40822, 43461}

X(51259) = barycentric product X(i)*X(j) for these {i,j}: {290, 15993}, {2021, 18024}
X(51259) = barycentric quotient X(i)/X(j) for these {i,j}: {2021, 237}, {15993, 511}


X(51260) = X(2)X(1235)∩X(4)X(2393)

Barycentrics    b^2*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(a^8 + 2*a^6*b^2 - 2*a^4*b^4 - 2*a^2*b^6 + b^8 + 2*a^6*c^2 - 4*a^4*b^2*c^2 + 2*a^2*b^4*c^2 - 2*a^4*c^4 + 2*a^2*b^2*c^4 - 2*b^4*c^4 - 2*a^2*c^6 + c^8) : :

X(51260) lies on the cubic K527 and these lines: {2, 1235}, {4, 2393}, {76, 648}, {193, 41370}, {264, 5523}, {339, 45141}, {378, 11257}, {1236, 17907}, {7812, 37855}, {32708, 50437}

X(51260) = {X(1235),X(41361)}-harmonic conjugate of X(43678)


X(51261) = X(6)X(1131)∩X(631)X(5907)

Barycentrics    15*a^10 - 71*a^8*b^2 + 118*a^6*b^4 - 78*a^4*b^6 + 11*a^2*b^8 + 5*b^10 - 71*a^8*c^2 - 12*a^6*b^2*c^2 + 30*a^4*b^4*c^2 + 68*a^2*b^6*c^2 - 15*b^8*c^2 + 118*a^6*c^4 + 30*a^4*b^2*c^4 - 158*a^2*b^4*c^4 + 10*b^6*c^4 - 78*a^4*c^6 + 68*a^2*b^2*c^6 + 10*b^4*c^6 + 11*a^2*c^8 - 15*b^2*c^8 + 5*c^10 : :
X(51261) = 14 X[3832] - 9 X[15749], 7 X[3832] - 9 X[15751], 7 X[3832] - 6 X[15752], 3 X[15749] - 4 X[15752], 3 X[15751] - 2 X[15752], 11 X[15717] - 6 X[43691], 18 X[15748] - 13 X[21734]

X(51261) lies on the cubic K032 and these lines: {6, 1131}, {631, 5907}, {1906, 1992}, {10938, 45959}, {11020, 17609}, {12279, 37669}, {15063, 49138}, {15644, 16935}, {15717, 43691}, {15748, 21734}

X(51261) = reflection of X(15749) in X(15751)


X(51262) = X(3)X(74)∩X(691)X(1304)

Barycentrics    a^2*(a - b)*(a + b)*(a - c)*(a + c)*(a^4 - 2*a^2*b^2 + b^4 + a^2*c^2 + b^2*c^2 - 2*c^4)*(a^4 + a^2*b^2 - 2*b^4 - 2*a^2*c^2 + b^2*c^2 + c^4)*(2*a^6 - 2*a^4*b^2 + a^2*b^4 - b^6 - 2*a^4*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6) : :

X(51262) lies on the cubic K147 and these lines: {3, 74}, {691, 1304}, {2394, 4226}, {2420, 2433}, {5467, 14380}, {5649, 34291}, {5664, 14611}, {7471, 18556}, {9139, 23348}, {14560, 46608}, {14685, 48871}, {14687, 35908}, {34761, 45662}

X(51262) = X(i)-isoconjugate of X(j) for these (i,j): {842, 36035}, {1577, 48453}, {1784, 35909}, {2173, 14223}, {3258, 36096}, {14206, 14998}
X(51262) = X(i)-Dao conjugate of X(j) for these (i, j): (23967, 41079), (36896, 14223)
X(51262) = crosssum of X(i) and X(j) for these (i,j): {526, 47214}, {542, 22104}
X(51262) = crossdifference of every pair of points on line {1637, 3258}
X(51262) = barycentric product X(i)*X(j) for these {i,j}: {74, 14999}, {99, 48451}, {542, 44769}, {4558, 17986}, {7473, 14919}, {9717, 50941}, {34761, 35910}
X(51262) = barycentric quotient X(i)/X(j) for these {i,j}: {74, 14223}, {542, 41079}, {1576, 48453}, {2247, 36035}, {5191, 1637}, {7473, 46106}, {9717, 50942}, {14999, 3260}, {17986, 14618}, {18877, 35909}, {23968, 14254}, {32640, 842}, {35910, 34765}, {40352, 14998}, {44769, 5641}, {48451, 523}
X(51262) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 9717, 35910}, {5467, 14380, 44769}


X(51263) = X(23)X(110)∩X(250)X(4230)

Barycentrics    a^2*(a - b)*(a + b)*(a - c)*(a + c)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 - b^4*c^2 + 2*a^2*c^4 + 2*b^2*c^4 - 2*c^6)*(a^6 - a^4*b^2 + 2*a^2*b^4 - 2*b^6 - a^4*c^2 + 2*b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6) : :
X(51263) = 3 X[250] - 2 X[5467]

X(51263) lies on the cubic K147 and these lines: {23, 110}, {250, 4230}, {526, 14560}, {691, 9409}, {3284, 48453}, {4226, 50942}, {6035, 17941}, {7468, 14998}, {7471, 14223}, {7480, 35911}, {10420, 23969}, {33803, 42656}, {40866, 40885}

X(51263) = X(i)-isoconjugate of X(j) for these (i,j): {656, 17986}, {1577, 48451}, {1640, 2349}, {2159, 18312}, {2247, 2394}, {6041, 33805}
X(51263) = X(i)-Dao conjugate of X(j) for these (i, j): (3163, 18312), (40596, 17986)
X(51263) = trilinear pole of line {1511, 2420}
X(51263) = barycentric product X(i)*X(j) for these {i,j}: {30, 5649}, {99, 48453}, {842, 2407}, {1495, 6035}, {2420, 5641}, {6148, 23969}
X(51263) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 18312}, {112, 17986}, {842, 2394}, {1495, 1640}, {1576, 48451}, {2420, 542}, {5649, 1494}, {9407, 6041}, {14998, 12079}, {23347, 6103}, {23969, 5627}, {41392, 43087}, {48453, 523}
X(51263) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {23, 46787, 842}, {5467, 23350, 5649}


X(51264) = X(2)X(18)∩X(5)X(195)

Barycentrics    Sqrt[3]*a^2*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 - b^2*c^2 + c^4) + 2*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*S : :
X(51264) = X[3181] + 2 X[11120]

X(51264) lies on the cubic K420a and these lines: {2, 18}, {5, 195}, {14, 5616}, {302, 45799}, {323, 11543}, {395, 11063}, {398, 11146}, {636, 15108}, {1993, 42153}, {3181, 11087}, {3410, 5872}, {5615, 11671}, {7685, 14683}, {8836, 33530}, {10218, 16771}, {11004, 18581}, {11130, 16961}, {16628, 48794}, {16770, 19713}, {20416, 23061}, {20426, 34009}, {42993, 44718}

X(51264) = anticomplement of the isogonal conjugate of X(11088)
X(51264) = anticomplement of the isotomic conjugate of X(8836)
X(51264) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {2154, 634}, {8836, 6327}, {11088, 8}, {35198, 1272}, {50469, 4329}
X(51264) = X(i)-Ceva conjugate of X(j) for these (i,j): {8836, 2}, {33530, 19773}
X(51264) = barycentric product X(299)*X(8930)
X(51264) = barycentric quotient X(i)/X(j) for these {i,j}: {8839, 8457}, {8930, 14}
X(51264) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 22114, 19778}, {18, 11127, 2}, {33464, 33529, 11143}


X(51265) = X(5)X(303)∩X(18)X(76)

Barycentrics    a^10 - 2*a^8*b^2 + a^6*b^4 - a^4*b^6 + 2*a^2*b^8 - b^10 - 2*a^8*c^2 + 3*a^6*b^2*c^2 + 3*a^4*b^4*c^2 - 10*a^2*b^6*c^2 + 6*b^8*c^2 + a^6*c^4 + 3*a^4*b^2*c^4 + 10*a^2*b^4*c^4 - 5*b^6*c^4 - a^4*c^6 - 10*a^2*b^2*c^6 - 5*b^4*c^6 + 2*a^2*c^8 + 6*b^2*c^8 - c^10 - 2*Sqrt[3]*(a^8 - a^6*b^2 - a^2*b^6 + b^8 - a^6*c^2 - a^4*b^2*c^2 + 2*a^2*b^4*c^2 - 3*b^6*c^2 + 2*a^2*b^2*c^4 + 4*b^4*c^4 - a^2*c^6 - 3*b^2*c^6 + c^8)*S : :

X(51265) lies on the cubic K420a and these lines: {2, 11121}, {5, 303}, {14, 299}, {15, 22866}, {18, 76}, {69, 22114}, {99, 6672}, {298, 11543}, {301, 10218}, {383, 5981}, {395, 19570}, {622, 6773}, {3589, 7797}, {3642, 16966}, {3818, 16627}, {5965, 44487}, {5983, 31712}, {6390, 42591}, {6670, 7799}, {6674, 44030}, {7752, 22871}, {8836, 41001}, {11128, 16268}, {11132, 22891}, {11303, 31703}, {11304, 22861}, {11308, 42675}, {22506, 33400}, {22848, 30472}, {22855, 34509}, {44362, 47856}

X(51265) = reflection of X(i) in X(j) for these {i,j}: {299, 40706}, {22850, 624}
X(51265) = X(i)-Ceva conjugate of X(j) for these (i,j): {8836, 302}, {41001, 299}
X(51265) = X(38404)-Dao conjugate of X(6151)
X(51265) = {X(18),X(11133)}-harmonic conjugate of X(302)


X(51266) = X(14)X(275)∩X(18)X(471)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(2*a^8 - 5*a^6*b^2 + 3*a^4*b^4 + a^2*b^6 - b^8 - 5*a^6*c^2 + 4*a^4*b^2*c^2 - a^2*b^4*c^2 + 2*b^6*c^2 + 3*a^4*c^4 - a^2*b^2*c^4 - 2*b^4*c^4 + a^2*c^6 + 2*b^2*c^6 - c^8 + 2*Sqrt[3]*(a^2 - b^2 - c^2)*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*S) : :

X(51266) lies on the cubic K420a and these lines: {2, 19774}, {4, 45257}, {5, 3462}, {14, 275}, {18, 471}, {53, 395}, {324, 8836}, {398, 470}, {1629, 7685}, {11143, 14918}, {11547, 18581}, {41100, 44701}

X(51266) = polar conjugate of the isotomic conjugate of X(46754)
X(51266) = polar conjugate of the isogonal conjugate of X(8839)
X(51266) = X(i)-Ceva conjugate of X(j) for these (i,j): {324, 473}, {8836, 471}
X(51266) = X(8839)-cross conjugate of X(46754)
X(51266) = barycentric product X(i)*X(j) for these {i,j}: {4, 46754}, {264, 8839}
X(51266) = barycentric quotient X(i)/X(j) for these {i,j}: {8839, 3}, {46754, 69}
X(51266) = {X(275),X(6117)}-harmonic conjugate of X(473)


X(51267) = X(2)X(13)∩X(5)X(8929)

Barycentrics    (a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(-a^2 + b^2 - a*c - c^2)*(-a^2 + b^2 + a*c - c^2)*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - 3*a^4*c^2 - a^2*b^2*c^2 + b^4*c^2 + 3*a^2*c^4 + b^2*c^4 - c^6)*(Sqrt[3]*(a^2 - b^2 - c^2) + 2*S) : :

X(51267) lies on the cubic K420a and these lines: {2, 13}, {5, 8929}, {14, 14993}, {62, 10217}, {265, 6104}, {302, 43085}, {395, 18285}, {476, 11582}, {547, 34325}, {3411, 8919}, {5321, 11586}, {5612, 37779}, {5616, 10272}, {6105, 32223}, {6116, 36306}, {8836, 46072}, {10218, 11087}, {10413, 11063}, {11080, 37835}, {11537, 11543}, {11555, 42581}, {15441, 16809}, {16268, 36299}, {16461, 47517}, {16961, 18777}, {16964, 45778}, {36296, 45972}, {37340, 41474}

X(51267) = X(5612)-cross conjugate of X(13)
X(51267) = X(i)-isoconjugate of X(j) for these (i,j): {1094, 46072}, {2151, 13582}, {6149, 46076}
X(51267) = X(i)-Dao conjugate of X(j) for these (i, j): (8562, 30465), (14993, 46076), (40578, 13582)
X(51267) = barycentric product X(i)*X(j) for these {i,j}: {13, 37779}, {94, 5612}, {300, 11063}, {10272, 36308}, {23895, 45147}, {36299, 46751}, {37943, 40709}
X(51267) = barycentric quotient X(i)/X(j) for these {i,j}: {13, 13582}, {1989, 46076}, {3457, 14579}, {5612, 323}, {5616, 11131}, {5995, 1291}, {6140, 6137}, {10272, 41887}, {10413, 30465}, {11063, 15}, {11080, 46072}, {36296, 43704}, {36299, 3471}, {37779, 298}, {37943, 470}, {45147, 23870}, {47053, 17402}, {50461, 44718}
X(51267) = {X(8014),X(37832)}-harmonic conjugate of X(13)


X(51268) = X(5)X(49)∩X(14)X(275)

Barycentrics    (a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - 2*a^2*c^2 - b^2*c^2 + c^4)*(Sqrt[3]*(a^10 - 2*a^8*b^2 + a^6*b^4 - a^4*b^6 + 2*a^2*b^8 - b^10 - 2*a^8*c^2 + 4*a^6*b^2*c^2 + a^4*b^4*c^2 - 6*a^2*b^6*c^2 + 3*b^8*c^2 + a^6*c^4 + a^4*b^2*c^4 + 8*a^2*b^4*c^4 - 2*b^6*c^4 - a^4*c^6 - 6*a^2*b^2*c^6 - 2*b^4*c^6 + 2*a^2*c^8 + 3*b^2*c^8 - c^10) - 2*(a^8 - a^6*b^2 - a^2*b^6 + b^8 - a^6*c^2 + 4*a^4*b^2*c^2 + a^2*b^4*c^2 - 4*b^6*c^2 + a^2*b^2*c^4 + 6*b^4*c^4 - a^2*c^6 - 4*b^2*c^6 + c^8)*S) : :

X(51268) lies on the cubics K420a and these lines: {5, 49}, {14, 275}, {95, 302}, {97, 466}, {301, 34385}, {395, 11077}, {3458, 42300}, {8613, 50469}, {8795, 36297}, {10218, 16771}, {11087, 19712}, {11543, 46064}, {23896, 46138}, {34390, 44718}

X(51268) = isotomic conjugate of X(33530)
X(51268) = polar conjugate of X(6116)
X(51268) = isotomic conjugate of the complement of X(11126)
X(51268) = X(i)-cross conjugate of X(j) for these (i,j): {18, 11120}, {470, 36311}, {11600, 11117}
X(51268) = X(i)-isoconjugate of X(j) for these (i,j): {5, 2152}, {13, 2290}, {16, 1953}, {19, 44712}, {31, 33530}, {48, 6116}, {299, 2179}, {1154, 2153}, {2181, 44719}, {2617, 6138}, {8740, 44706}, {14213, 34395}, {35199, 36300}
X(51268) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 33530), (6, 44712), (1249, 6116), (30471, 1273), (38993, 2081), (40579, 5), (40580, 1154), (43961, 41078)
X(51268) = cevapoint of X(i) and X(j) for these (i,j): {2, 11126}, {14, 36297}
X(51268) = trilinear pole of line {15, 15412}
X(51268) = barycentric product X(i)*X(j) for these {i,j}: {14, 95}, {15, 46138}, {54, 301}, {275, 40710}, {276, 36297}, {298, 1141}, {3458, 34384}, {8738, 34386}, {15412, 23896}, {36311, 43768}, {39378, 43752}
X(51268) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 33530}, {3, 44712}, {4, 6116}, {14, 5}, {15, 1154}, {54, 16}, {95, 299}, {97, 44719}, {265, 44713}, {275, 471}, {298, 1273}, {301, 311}, {470, 14918}, {1141, 13}, {1157, 5612}, {2148, 2152}, {2151, 2290}, {2154, 1953}, {2623, 6138}, {3458, 51}, {5994, 1625}, {6137, 2081}, {8738, 53}, {8739, 11062}, {8882, 8740}, {8901, 30468}, {10218, 44714}, {10632, 20411}, {11077, 36296}, {11087, 36300}, {11092, 33529}, {11138, 36301}, {14533, 46113}, {15412, 23871}, {18315, 17403}, {20579, 12077}, {23870, 41078}, {23896, 14570}, {30453, 41221}, {36297, 216}, {36309, 35360}, {38413, 23181}, {38808, 44701}, {39378, 44715}, {40710, 343}, {41998, 35442}, {43768, 41888}, {44687, 44689}, {46076, 1263}, {46077, 35194}, {46138, 300}, {50466, 44711}


X(51269) = X(2)X(2992)∩X(3)X(14)

Barycentrics    (3*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) - 4*(Sqrt[3]*a^2 - S)*S)*(2*S^2 - (a^2 - b^2 - c^2)*(a^2 - Sqrt[3]*S)) : :

X(51269) lies on the cubic K420a and these lines: {2, 2992}, {3, 14}, {5, 8839}, {16, 6106}, {95, 302}, {140, 50466}, {395, 11088}, {471, 8738}, {3458, 11489}, {5961, 38943}, {5994, 6672}, {8836, 19713}, {11086, 23303}, {23283, 43083}, {33416, 36209}, {40581, 47201}

X(51269) = X(8836)-Ceva conjugate of X(14)
X(51269) = X(15778)-cross conjugate of X(628)
X(51269) = X(2152)-isoconjugate of X(19713)
X(51269) = X(40579)-Dao conjugate of X(19713)
X(51269) = barycentric product X(i)*X(j) for these {i,j}: {14, 628}, {3458, 46756}, {11120, 15778}
X(51269) = barycentric quotient X(i)/X(j) for these {i,j}: {14, 19713}, {628, 299}, {3458, 3490}, {8015, 39135}, {11138, 40168}, {15778, 619}
X(51269) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 50469, 38944}, {18, 6105, 14}, {23715, 47482, 40579}


X(51270) = X(2)X(19776)∩X(6)X(13)

Barycentrics    (Sqrt[3]*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) - 2*(a^2 - b^2 - c^2)*S)*(3*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) + 4*S*(Sqrt[3]*a^2 + S)) : :

X(51270) lies on the cubic K420a and these lines: {2, 19776}, {3, 45778}, {5, 8919}, {6, 13}, {16, 15441}, {62, 11581}, {264, 300}, {303, 23895}, {395, 11080}, {3411, 8929}, {8014, 37641}, {8838, 36296}, {10218, 14254}, {10646, 11586}, {11082, 18814}, {11120, 39290}, {11537, 23303}, {14583, 40579}, {16242, 46078}, {16770, 19713}, {34325, 43229}, {36211, 37835}, {42099, 48354}, {44713, 46925}

X(51270) = isogonal conjugate of X(40156)
X(51270) = X(3129)-cross conjugate of X(13)
X(51270) = X(i)-isoconjugate of X(j) for these (i,j): {1, 40156}, {2151, 2992}
X(51270) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 40156), (15, 11131), (40578, 2992), (46666, 6137)
X(51270) = barycentric product X(i)*X(j) for these {i,j}: {13, 621}, {265, 11093}, {300, 3129}, {8014, 46758}, {39262, 43085}
X(51270) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 40156}, {13, 2992}, {621, 298}, {3129, 15}, {3457, 3438}, {8014, 38931}, {11093, 340}, {39262, 38403}, {40580, 11131}
X(51270) = {X(2),X(36299)}-harmonic conjugate of X(40578)


X(51271) = X(2)X(17)∩X(5)X(195)

Barycentrics    Sqrt[3]*a^2*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 - b^2*c^2 + c^4) - 2*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*S : :
X(51271) = X[3180] + 2 X[11119]

X(51271) lies on the cubic K420b and these lines: {2, 17}, {5, 195}, {13, 5612}, {303, 45799}, {323, 11542}, {396, 11063}, {397, 11145}, {635, 15108}, {1993, 42156}, {3180, 11082}, {3410, 5873}, {5611, 11671}, {6770, 10210}, {7684, 14683}, {8838, 33529}, {10217, 16770}, {11004, 18582}, {11131, 16960}, {16629, 48796}, {16771, 19712}, {20415, 23061}, {20425, 34008}, {42992, 44719}

X(51271) = anticomplement of the isogonal conjugate of X(11083)
X(51271) = anticomplement of the isotomic conjugate of X(8838)
X(51271) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {2153, 633}, {8838, 6327}, {11083, 8}, {35199, 1272}, {50468, 4329}
X(51271) = X(i)-Ceva conjugate of X(j) for these (i,j): {8838, 2}, {33529, 19772}
X(51271) = barycentric product X(298)*X(8929)
X(51271) = barycentric quotient X(i)/X(j) for these {i,j}: {8837, 8447}, {8929, 13}
X(51271) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 22113, 19779}, {17, 11126, 2}, {33465, 33530, 11144}


X(51272) = X(5)X(302)∩X(17)X(76)

Barycentrics    a^10 - 2*a^8*b^2 + a^6*b^4 - a^4*b^6 + 2*a^2*b^8 - b^10 - 2*a^8*c^2 + 3*a^6*b^2*c^2 + 3*a^4*b^4*c^2 - 10*a^2*b^6*c^2 + 6*b^8*c^2 + a^6*c^4 + 3*a^4*b^2*c^4 + 10*a^2*b^4*c^4 - 5*b^6*c^4 - a^4*c^6 - 10*a^2*b^2*c^6 - 5*b^4*c^6 + 2*a^2*c^8 + 6*b^2*c^8 - c^10 + 2*Sqrt[3]*(a^8 - a^6*b^2 - a^2*b^6 + b^8 - a^6*c^2 - a^4*b^2*c^2 + 2*a^2*b^4*c^2 - 3*b^6*c^2 + 2*a^2*b^2*c^4 + 4*b^4*c^4 - a^2*c^6 - 3*b^2*c^6 + c^8)*S : :
X(51272) = 4 X[6671] - 3 X[36782]

X(51271) lies on the cubic K420b and these lines: {2, 11122}, {5, 302}, {13, 298}, {16, 22911}, {17, 76}, {69, 22113}, {99, 6671}, {299, 11542}, {300, 10217}, {396, 19570}, {621, 6770}, {1080, 5980}, {3589, 7797}, {3643, 16967}, {3818, 16626}, {5965, 44488}, {5982, 31711}, {6390, 42590}, {6669, 7799}, {6673, 44032}, {7752, 22916}, {8838, 41000}, {11129, 16267}, {11133, 22846}, {11303, 22907}, {11304, 31704}, {11307, 42674}, {22508, 33401}, {22892, 30471}, {22901, 34508}, {44361, 47855}

X(51272) = reflection of X(i) in X(j) for these {i,j}: {298, 40707}, {22894, 623}
X(51272) = X(i)-Ceva conjugate of X(j) for these (i,j): {8838, 303}, {41000, 298}
X(51272) = X(38403)-Dao conjugate of X(2981)
X(51272) = {X(17),X(11132)}-harmonic conjugate of X(303)


X(51273) = X(13)X(275)∩X(17)X(470)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(2*a^8 - 5*a^6*b^2 + 3*a^4*b^4 + a^2*b^6 - b^8 - 5*a^6*c^2 + 4*a^4*b^2*c^2 - a^2*b^4*c^2 + 2*b^6*c^2 + 3*a^4*c^4 - a^2*b^2*c^4 - 2*b^4*c^4 + a^2*c^6 + 2*b^2*c^6 - c^8 - 2*Sqrt[3]*(a^2 - b^2 - c^2)*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*S) : :

X(51273) lies on the cubic K420b and these lines: {2, 19775}, {4, 45256}, {5, 3462}, {13, 275}, {17, 470}, {53, 396}, {324, 8838}, {397, 471}, {1629, 7684}, {11144, 14918}, {11547, 18582}, {41101, 44700}

X(51273) = polar conjugate of the isotomic conjugate of X(46753)
X(51273) = polar conjugate of the isogonal conjugate of X(8837)
X(51273) = X(i)-Ceva conjugate of X(j) for these (i,j): {324, 472}, {8838, 470}
X(51273) = X(8837)-cross conjugate of X(46753)
X(51273) = barycentric product X(i)*X(j) for these {i,j}: {4, 46753}, {264, 8837}
X(51273) = barycentric quotient X(i)/X(j) for these {i,j}: {8837, 3}, {46753, 69}
X(51273) = {X(275),X(6116)}-harmonic conjugate of X(472)


X(51274) = X(2)X(14)∩X(5)X(8930)

Barycentrics    (a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(-a^2 + b^2 - a*c - c^2)*(-a^2 + b^2 + a*c - c^2)*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - 3*a^4*c^2 - a^2*b^2*c^2 + b^4*c^2 + 3*a^2*c^4 + b^2*c^4 - c^6)*(Sqrt[3]*(a^2 - b^2 - c^2) - 2*S) : :

X(51274) lies on the cubic K420b and these lines: {2, 14}, {5, 8930}, {13, 14993}, {61, 10218}, {265, 6105}, {303, 43086}, {396, 18285}, {476, 11581}, {547, 34326}, {3412, 8918}, {5318, 15743}, {5612, 10272}, {5616, 37779}, {6104, 32223}, {6117, 36309}, {8838, 46076}, {10217, 11082}, {10413, 11063}, {11085, 37832}, {11542, 11549}, {11556, 42580}, {15442, 16808}, {16267, 36298}, {16462, 47519}, {16960, 18776}, {16965, 45779}, {36297, 45972}, {37341, 41475}

X(51274) = X(5616)-cross conjugate of X(14)
X(51274) = X(i)-isoconjugate of X(j) for these (i,j): {1095, 46076}, {2152, 13582}, {6149, 46072}
X(51274) = X(i)-Dao conjugate of X(j) for these (i, j): (8562, 30468), (14993, 46072), (40579, 13582)
X(51274) = barycentric product X(i)*X(j) for these {i,j}: {14, 37779}, {94, 5616}, {301, 11063}, {10272, 36311}, {23896, 45147}, {36298, 46751}, {37943, 40710}
X(51274) = barycentric quotient X(i)/X(j) for these {i,j}: {14, 13582}, {1989, 46072}, {3458, 14579}, {5612, 11130}, {5616, 323}, {5994, 1291}, {6140, 6138}, {10272, 41888}, {10413, 30468}, {11063, 16}, {11085, 46076}, {36297, 43704}, {36298, 3471}, {37779, 299}, {37943, 471}, {45147, 23871}, {47053, 17403}, {50461, 44719}
X(51274) = {X(8015),X(37835)}-harmonic conjugate of X(14)


X(51275) = X(5)X(49)∩X(13)X(275)

Barycentrics    (a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - 2*a^2*c^2 - b^2*c^2 + c^4)*(Sqrt[3]*(a^10 - 2*a^8*b^2 + a^6*b^4 - a^4*b^6 + 2*a^2*b^8 - b^10 - 2*a^8*c^2 + 4*a^6*b^2*c^2 + a^4*b^4*c^2 - 6*a^2*b^6*c^2 + 3*b^8*c^2 + a^6*c^4 + a^4*b^2*c^4 + 8*a^2*b^4*c^4 - 2*b^6*c^4 - a^4*c^6 - 6*a^2*b^2*c^6 - 2*b^4*c^6 + 2*a^2*c^8 + 3*b^2*c^8 - c^10) + 2*(a^8 - a^6*b^2 - a^2*b^6 + b^8 - a^6*c^2 + 4*a^4*b^2*c^2 + a^2*b^4*c^2 - 4*b^6*c^2 + a^2*b^2*c^4 + 6*b^4*c^4 - a^2*c^6 - 4*b^2*c^6 + c^8)*S) : :

X(51275) lies on the cubic K420b and these lines: {5, 49}, {13, 275}, {95, 303}, {97, 465}, {300, 34385}, {396, 11077}, {3457, 42300}, {8613, 50468}, {8795, 36296}, {10217, 16770}, {11082, 19713}, {11542, 46064}, {23895, 46138}, {34389, 44719}

X(51275) = isotomic conjugate of X(33529)
X(51275) = polar conjugate of X(6117)
X(51275) = isotomic conjugate of the complement of X(11127)
X(51275) = X(i)-cross conjugate of X(j) for these (i,j): {17, 11119}, {471, 36308}, {11601, 11118}
X(51275) = X(i)-isoconjugate of X(j) for these (i,j): {5, 2151}, {14, 2290}, {15, 1953}, {19, 44711}, {31, 33529}, {48, 6117}, {298, 2179}, {1154, 2154}, {2181, 44718}, {2617, 6137}, {8739, 44706}, {14213, 34394}, {35198, 36301}
X(51275) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 33529), (6, 44711), (1249, 6117), (30472, 1273), (38994, 2081), (40578, 5), (40581, 1154), (43962, 41078)
X(51275) = cevapoint of X(i) and X(j) for these (i,j): {2, 11127}, {13, 36296}
X(51275) = trilinear pole of line {16, 15412}
X(51275) = barycentric product X(i)*X(j) for these {i,j}: {13, 95}, {16, 46138}, {54, 300}, {275, 40709}, {276, 36296}, {299, 1141}, {3457, 34384}, {8737, 34386}, {15412, 23895}, {36308, 43768}, {39377, 43752}
X(51275) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 33529}, {3, 44711}, {4, 6117}, {13, 5}, {16, 1154}, {54, 15}, {95, 298}, {97, 44718}, {265, 44714}, {275, 470}, {299, 1273}, {300, 311}, {471, 14918}, {1141, 14}, {1157, 5616}, {2148, 2151}, {2152, 2290}, {2153, 1953}, {2623, 6137}, {3457, 51}, {5995, 1625}, {6138, 2081}, {8737, 53}, {8740, 11062}, {8882, 8739}, {8901, 30465}, {10217, 44713}, {10633, 20412}, {11077, 36297}, {11078, 33530}, {11082, 36301}, {11139, 36300}, {14533, 46112}, {15412, 23870}, {18315, 17402}, {20578, 12077}, {23871, 41078}, {23895, 14570}, {30452, 41221}, {36296, 216}, {36306, 35360}, {38414, 23181}, {38808, 44700}, {39377, 44715}, {40709, 343}, {41997, 35442}, {43768, 41887}, {44687, 44688}, {46072, 1263}, {46073, 35194}, {46138, 301}, {50465, 44712}


X(51276) = X(2)X(2993)∩X(3)X(13)

Barycentrics    (3*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) + 4*S*(Sqrt[3]*a^2 + S))*(2*S^2 - (a^2 - b^2 - c^2)*(a^2 + Sqrt[3]*S)) : :

X(51276) lies on the cubic K420b and these lines: {2, 2993}, {3, 13}, {5, 8837}, {15, 6107}, {95, 303}, {140, 50465}, {396, 11083}, {470, 8737}, {3457, 11488}, {5961, 38944}, {5995, 6671}, {8838, 19712}, {11081, 23302}, {23284, 43083}, {33417, 36208}, {40580, 47201}

X(51276) = X(8838)-Ceva conjugate of X(13)
X(51276) = X(15802)-cross conjugate of X(627)
X(51276) = X(2151)-isoconjugate of X(19712)
X(51276) = X(40578)-Dao conjugate of X(19712)
X(51276) = barycentric product X(i)*X(j) for these {i,j}: {13, 627}, {3457, 46755}, {11119, 15802}
X(51276) = barycentric quotient X(i)/X(j) for these {i,j}: {13, 19712}, {627, 298}, {3457, 3489}, {8014, 39134}, {11139, 40167}, {15802, 618}
X(51276) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 50468, 38943}, {17, 6104, 13}, {23714, 47481, 40578}


X(51277) = X(2)X(19777)∩X(6)X(13)

Barycentrics    (Sqrt[3]*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) + 2*(a^2 - b^2 - c^2)*S)*(3*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) - 4*(Sqrt[3]*a^2 - S)*S) : :

X(51277) lies on the cubic K420b and these lines: {2, 19777}, {3, 45779}, {5, 8918}, {6, 13}, {15, 15442}, {61, 11582}, {264, 301}, {302, 23896}, {396, 11085}, {3412, 8930}, {8015, 37640}, {8836, 36297}, {10217, 14254}, {10645, 15743}, {11087, 18813}, {11119, 39290}, {11549, 23302}, {14583, 40578}, {16241, 46074}, {16771, 19712}, {34326, 43228}, {36210, 37832}, {42100, 48356}, {44714, 46926}

X(51277) = isogonal conjugate of X(40157)
X(51277) = X(3130)-cross conjugate of X(14)
X(51277) = X(i)-isoconjugate of X(j) for these (i,j): {1, 40157}, {2152, 2993}
X(51277) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 40157), (16, 11130), (40579, 2993), (46667, 6138)
X(51277) = barycentric product X(i)*X(j) for these {i,j}: {14, 622}, {265, 11094}, {301, 3130}, {8015, 46757}, {39261, 43086}
X(51277) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 40157}, {14, 2993}, {622, 299}, {3130, 16}, {3458, 3439}, {8015, 38932}, {11094, 340}, {39261, 38404}, {40581, 11130}
X(51277) = {X(2),X(36298)}-harmonic conjugate of X(40579)


X(51278) = X(5)X(13)∩X(660)X(6669)

Barycentrics    Sqrt[3]*(6*a^6 - 7*a^4*b^2 + 2*a^2*b^4 - b^6 - 7*a^4*c^2 - 8*a^2*b^2*c^2 + b^4*c^2 + 2*a^2*c^4 + b^2*c^4 - c^6) + 2*(2*a^4 - 7*a^2*b^2 + 17*b^4 - 7*a^2*c^2 - 34*b^2*c^2 + 17*c^4)*S : :
X(51278) = 5 X[13] + 3 X[18], X[13] + 3 X[22846], X[18] - 5 X[22846], 3 X[18] - 5 X[22847], 3 X[22846] - X[22847]

See Stanley Rabinowitz, Antreas Hatzipolakis, César Lozada and Peter Moses, euclid 5321 and euclid 5324.

X(51278) lies on these lines: {5, 13}, {396, 31703}, {533, 11542}, {547, 22848}, {549, 22862}, {618, 43102}, {620, 6669}, {5066, 31706}, {5470, 41943}, {6770, 41054}, {11121, 37170}, {11298, 30471}, {11603, 43548}, {16628, 37640}, {21843, 42086}, {22831, 43417}, {22850, 41121}, {22856, 43228}, {22892, 34602}, {33627, 49945}, {37352, 40706}, {42139, 48655}, {42154, 47610}

X(51278) = midpoint of X(i) and X(j) for these {i, j}: {13, 22847}, {396, 31703}, {6770, 41054}
X(51278) = {X(13), X(22846)}-harmonic conjugate of X(22847)


X(51279) = X(5)X(14)∩X(620)X(6670)

Barycentrics    Sqrt[3]*(6*a^6 - 7*a^4*b^2 + 2*a^2*b^4 - b^6 - 7*a^4*c^2 - 8*a^2*b^2*c^2 + b^4*c^2 + 2*a^2*c^4 + b^2*c^4 - c^6) - 2*(2*a^4 - 7*a^2*b^2 + 17*b^4 - 7*a^2*c^2 - 34*b^2*c^2 + 17*c^4)*S : :
X(51279) = 5 X[14] + 3 X[17], X[14] + 3 X[22891], X[17] - 5 X[22891], 3 X[17] - 5 X[22893], 3 X[22891] - X[22893]

See Stanley Rabinowitz, Antreas Hatzipolakis, César Lozada and Peter Moses, euclid 5321 and euclid 5324.

X(51279) lies on these lines: {5, 14}, {395, 31704}, {532, 11543}, {547, 22892}, {549, 22906}, {619, 43103}, {620, 6670}, {5066, 31705}, {5469, 41944}, {6773, 41055}, {11122, 37171}, {11297, 30472}, {11602, 43549}, {16629, 37641}, {21843, 42085}, {22832, 43416}, {22894, 41122}, {22900, 43229}, {33626, 49946}, {37351, 40707}, {42142, 48656}, {42155, 47611}

X(51279) = midpoint of X(i) and X(j) for these {i, j}: {14, 22893}, {395, 31704}, {6773, 41055}
X(51279) = {X(14), X(22891)}-harmonic conjugate of X(22893)


X(51280) = X(6)X(519)∩X(514)X(661)

Barycentrics    (a - b)*(a - c)*(b - c)^2 + (a^2 + b^2 + c^2)*(-(a*b) + b^2 - a*c + c^2) : :
X(51280) = X[2321] - 3 X[49781], 2 X[2321] - 3 X[49782], X[4482] - 3 X[17264]

X(51280) = lies on these lines: {6, 519}, {214, 4070}, {391, 16086}, {514, 661}, {742, 36230}, {1213, 49758}, {3061, 4153}, {4482, 17264}, {17234, 20444}, {17240, 49779}, {17310, 31034}, {20234, 20893}, {21070, 49763}, {21071, 49767}, {30169, 41771}, {30811, 41141}, {34542, 49769}

X(51280) = midpoint of X(6) and X(49778)
X(51280) = reflection of X(49782) in X(49781)
X(51280) = crossdifference of every pair of points on line {31, 9002}


X(51281) = X(1)X(3)∩X(90)X(2648)

Barycentrics    a*(2*a^6-a^5*(b+c)+b*c*(b^2-c^2)^2+2*a^2*(b^2+c^2)^2-a^4*(4*b^2+b*c+4*c^2)+2*a^3*(b^3+c^3)-a*(b-c)*(b^4-c^4)) : :

See Ivan Pavlov, euclid 5333.

X(51281) lies on these lines: {1, 3}, {4, 22361}, {29, 5705}, {33, 21165}, {58, 35981}, {63, 3465}, {73, 6876}, {90, 2648}, {212, 6905}, {255, 411}, {283, 1816}, {603, 3651}, {902, 30305}, {1013, 31424}, {1069, 36600}, {1479, 30943}, {1935, 6985}, {2000, 4652}, {2654, 6875}, {3074, 3149}, {4257, 4304}, {4294, 11269}, {5715, 7567}, {6734, 7538}, {6942, 22072}, {7531, 40950}, {7741, 37370}, {8616, 30384}, {15485, 23708}, {26091, 26363}, {37428, 43043}

X(51281) = intersection, other than A, B, C, of circumconics {{A, B, C, X(46), X(2648)}} and {{A, B, C, X(65), X(3362)}}
X(51281) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (3, 1936, 1), (255, 411, 1745), (3072, 26357, 1)


X(51282) = X(1)X(4)∩X(46)X(158)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6+a^5*(b+c)+2*b*c*(b^2-c^2)^2+a^2*(b^2+c^2)^2-2*a^4*(b^2+b*c+c^2)-2*a^3*(b^3+c^3)+a*(b-c)*(b^4-c^4)) : :

See Ivan Pavlov, euclid 5333.

X(51282) lies on these lines: {1, 4}, {3, 42385}, {29, 3612}, {35, 1013}, {36, 37258}, {46, 158}, {55, 39529}, {57, 1784}, {90, 1896}, {92, 5119}, {318, 41229}, {381, 42387}, {382, 42379}, {498, 39574}, {920, 1715}, {1118, 1770}, {1210, 43160}, {1723, 8748}, {1727, 1748}, {1737, 1857}, {1895, 3338}, {2646, 7524}, {2656, 3362}, {3560, 40946}, {4305, 7518}, {5125, 10826}, {5174, 37711}, {6985, 22341}, {7049, 36599}, {7741, 37371}, {7951, 39531}, {11375, 44225}, {12514, 17860}, {14803, 37253}, {17923, 23708}

X(51282) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(43764)}} and {{A, B, C, X(73), X(90)}}
X(51282) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (4, 243, 1), (158, 412, 46)


X(51283) = X(1)X(5)∩X(655)X(1087)

Barycentrics    a^10-2*b*c*(b^2-c^2)^4-3*a^8*(b^2+c^2)+a^7*(b+c)*(b^2+c^2)-a^5*(b+c)*(b^2+b*c+c^2)*(3*b^2-4*b*c+3*c^2)+a^2*b*c*(b^2-c^2)^2*(4*b^2-b*c+4*c^2)-a*(b^2-c^2)^3*(b^3-c^3)+3*a^6*(b^4+b^2*c^2+c^4)-a^4*(b^2+c^2)*(b^4+c^4+2*b*c*(b^2-b*c+c^2))+a^3*(b-c)*(b^2-c^2)*(3*b^4+3*c^4+4*b*c*(b^2+b*c+c^2)) : :

See See Ivan Pavlov, euclid 5333.

X(51283) lies on these lines: {1, 5}, {655, 1087}

X(51283) = {X(5), X(2596)}-harmonic conjugate of X(1)


X(51284) = X(1)X(2)∩X(40)X(190)

Barycentrics    a^4+a^3*(b+c)-2*b*c*(b+c)^2-a*(b+c)*(b^2-6*b*c+c^2)-a^2*(b^2+4*b*c+c^2) : :

See Ivan Pavlov, euclid 5333.

X(51284) lies on these lines: {1, 2}, {40, 190}, {57, 4737}, {63, 4723}, {346, 8074}, {1265, 11362}, {1697, 46937}, {1706, 4385}, {2093, 32937}, {2899, 10624}, {3421, 26929}, {3586, 36926}, {3596, 10444}, {3717, 5657}, {3869, 4767}, {3886, 33845}, {3895, 4358}, {3913, 4702}, {3992, 5119}, {4646, 17318}, {5100, 9581}, {5587, 32850}, {5775, 10005}, {5815, 6552}, {9369, 15803}, {17595, 50078}, {18743, 31393}, {30615, 40663}, {37704, 37758}

X(51284) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (8, 5205, 1), (3992, 5119, 30568)


X(51285) = X(1)X(2)∩X(190)X(191)

Barycentrics    a^4+a^3*(b+c)-2*b*c*(b+c)^2-a*(b+c)*(b^2+c^2)-a^2*(b^2+b*c+c^2) : :

See Ivan Pavlov, See Ivan Pavlov, euclid 5333.

X(51285) lies on these lines: {1, 2}, {35, 3714}, {46, 4659}, {190, 191}, {321, 484}, {333, 3992}, {1759, 16548}, {3219, 4125}, {3337, 4968}, {3376, 44691}, {3383, 44690}, {3416, 7951}, {3678, 4767}, {3702, 37563}, {3706, 48696}, {3746, 4702}, {3814, 33075}, {3822, 33078}, {4054, 11552}, {4385, 6763}, {4670, 37559}, {4692, 14829}, {5143, 5295}, {5315, 30818}, {5692, 5774}, {5694, 31778}, {17335, 46937}, {34790, 50362}, {37572, 50044}

X(51285) = {X(10), X(17763)}-harmonic conjugate of X(1)


X(51286) = X(1)X(11)∩X(655)X(1090)

Barycentrics    a^8+6*a^6*b*c-2*a^7*(b+c)+7*a^3*b*(b-c)*c*(b^2-c^2)-2*b*(b-c)^2*c*(b^2-c^2)^2-a^4*(b^2+b*c-3*c^2)*(3*b^2-b*c-c^2)-a*(b-c)^3*(b^2-c^2)*(b^2-3*b*c+c^2)+a^5*(b+c)*(3*b^2-8*b*c+3*c^2)+a^2*(b-c)^2*(2*b^4+2*c^4-b*c*(4*b^2+b*c+4*c^2)) : :

See See Ivan Pavlov, euclid 5333.

X(51286) lies on these lines: {1, 5}, {150, 21635}, {655, 1090}, {658, 1111}, {1768, 24618}


X(51287) = X(1)X(12)∩X(655)X(1091)

Barycentrics    (a+b-c)*(a-b+c)*(a^8+2*b*c*(b+c)^2*(b^2-c^2)^2+a^5*(b+c)*(b^2+c^2)-2*a^6*(b^2+b*c+c^2)+a^4*(b^2+b*c+c^2)^2-a^2*b*c*(b+c)^2*(2*b^2+7*b*c+2*c^2)+a*(b+c)^2*(b^2-c^2)*(b^3-c^3)-a^3*(b+c)*(2*b^4+2*c^4+b*c*(b^2+c^2))) : :

See Ivan Pavlov, euclid 5333.

X(51287) lies on these lines: {1, 5}, {655, 1091}


X(51288) = X(1)X(19)∩X(988)X(1871)

Barycentrics    a*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+3*b^4-2*b^2*c^2+3*c^4-4*a^2*(b^2+c^2)) : :

See Ivan Pavlov, euclid 5333.

X(51288) lies on these lines: {1, 19}, {63, 2181}, {158, 1733}, {162, 1096}, {278, 18193}, {897, 36063}, {920, 33781}, {988, 1871}, {1784, 4008}, {1859, 17594}, {1861, 18395}, {1956, 2184}, {1957, 16570}, {3751, 14571}, {15430, 51292}

X(51288) = barycentric product X(i)*X(j) for these {i, j}: {1, 37174}, {19, 1007}, {92, 1351}, {1096, 10008}
X(51288) = barycentric quotient X(i)/X(j) for these (i, j): (19, 7612), (158, 42298), (1007, 304), (1096, 47735), (1351, 63)
X(51288) = trilinear product X(i)*X(j) for these {i, j}: {4, 1351}, {6, 37174}, {25, 1007}
X(51288) = trilinear quotient X(i)/X(j) for these (i, j): (4, 7612), (393, 47735), (1007, 69), (1351, 3)
X(51288) = Mimosa transform of X(40801)
X(51288) = intersection, other than A, B, C, of circumconics {{A, B, C, X(28), X(37174)}} and {{A, B, C, X(48), X(8769)}}
X(51288) = X(4)-gimel conjugate of-X(33781)
X(51288) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 7612}, {394, 47735}, {577, 42298}
X(51288) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (19, 7612), (158, 42298), (1007, 304), (1096, 47735), (1351, 63)
X(51288) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (1, 18594, 1955), (19, 240, 1), (1096, 1748, 1707)


X(51289) = X(1)X(20)∩X(658)X(1097)

Barycentrics    a^10+3*a^9*b-8*a^7*b^3-6*a^6*b^4+6*a^5*b^5+8*a^4*b^6-3*a^2*b^8-a*b^9+ 3*a^9*c-18*a^8*b*c+4*a^7*b^2*c+24*a^6*b^3*c-14*a^5*b^4*c+4*a^4*b^5*c+4*a^3*b^6*c-8*a^2*b^7*c+3*a*b^8*c-2*b^9*c+4*a^7*b*c^2+12*a^6*b^2*c^2+8*a^5*b^3*c^2-8*a^4*b^4*c^2-12*a^3*b^5*c^2-4*a^2*b^6*c^2-8*a^7*c^3+24*a^6*b*c^3+8*a^5*b^2*c^3-40*a^4*b^3*c^3+ 8*a^3*b^4*c^3+8*a^2*b^5*c^3-8*a*b^6*c^3+8*b^7*c^3-6*a^6*c^4-14*a^5*b*c^4-8*a^4*b^2*c^4+ 8*a^3*b^3*c^4+14*a^2*b^4*c^4+6*a*b^5*c^4+6*a^5*c^5+4*a^4*b*c^5-12*a^3*b^2*c^5+ 8*a^2*b^3*c^5+6*a*b^4*c^5-12*b^5*c^5+8*a^4*c^6+4*a^3*b*c^6-4*a^2*b^2*c^6-8*a*b^3*c^6-8*a^2*b*c^7+8*b^3*c^7-3*a^2*c^8+3*a*b*c^8-a*c^9-2*b*c^9 : :

See Ivan Pavlov, euclid 5333.

X(51289) lies on these lines: {1, 20}, {658, 1097}


X(51290) = X(1)X(21)∩X(643)X(956)

Barycentrics    a*(a+b)*(a+c)*(a^4-2*a^3*(b+c)+b*c*(b+c)^2+2*a*(b+c)*(b^2+c^2)-a^2*(b^2+b*c+c^2)) : :

See Ivan Pavlov, euclid 5333.

X(51290) lies on these lines: {1, 21}, {3, 662}, {4, 25446}, {9, 5060}, {46, 409}, {60, 4189}, {261, 10446}, {270, 1013}, {333, 3419}, {411, 21363}, {643, 956}, {978, 34882}, {1092, 6875}, {1155, 11116}, {1175, 34259}, {1509, 50739}, {2185, 16370}, {2194, 37303}, {4302, 19642}, {4640, 17512}, {5267, 17104}, {5327, 11110}, {6061, 37106}, {11114, 24624}, {17549, 40214}, {19763, 20846}, {37284, 50619}

X(51290) = barycentric product X(63)*X(1982)
X(51290) = trilinear product X(3)*X(1982)
X(51290) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(37142)}} and {{A, B, C, X(4), X(2650)}}
X(51290) = {X(21), X(2651)}-harmonic conjugate of X(1)


X(51291) = X(1)X(21)∩X(32)X(2319)

Barycentrics    a*(2*a^4-b^2*c^2+a^2*(b^2+c^2)) : :

See See Ivan Pavlov, euclid 5333.

X(51291) lies on these lines: {1, 21}, {6, 50613}, {32, 2319}, {43, 2210}, {87, 7122}, {182, 6210}, {560, 662}, {922, 36289}, {1423, 3506}, {1438, 36598}, {1486, 16800}, {1582, 16571}, {1973, 38275}, {3097, 37586}, {3113, 3403}, {3223, 46289}, {3492, 3500}, {4112, 9902}, {4251, 42043}, {4650, 18208}, {5042, 16779}, {5299, 23538}, {7350, 8922}, {8626, 24598}, {12194, 24264}, {17126, 40790}, {17754, 40746}, {33782, 33783}

X(51291) = barycentric product X(i)*X(j) for these {i, j}: {1, 7766}, {31, 41259}, {82, 32449}, {560, 10010}, {662, 25423}
X(51291) = barycentric quotient X(i)/X(j) for these (i, j): (1, 43688), (163, 25424)
X(51291) = trilinear product X(i)*X(j) for these {i, j}: {6, 7766}, {32, 41259}, {110, 25423}, {251, 32449}, {691, 45680}, {1501, 10010}
X(51291) = trilinear quotient X(i)/X(j) for these (i, j): (2, 43688), (110, 25424)
X(51291) = Mimosa transform of X(43722)
X(51291) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(43761)}} and {{A, B, C, X(19), X(17799)}}
X(51291) = X(9)-Dao conjugate of X(43688)
X(51291) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 43688}, {523, 25424}
X(51291) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1, 43688), (163, 25424)
X(51291) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (1, 1707, 17799), (31, 1580, 1), (560, 33760, 1740)


X(51292) = X(1)X(33)∩X(653)X(1721)

Barycentrics    a*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(3*a^6-6*a^5*(b+c)+4*a^3*b*c*(b+c)-a^2*(b^2+c^2)*(3*b^2-4*b*c+3*c^2)+a^4*(3*b^2+2*b*c+3*c^2)+2*a*(b-c)*(b^2-c^2)*(3*b^2+4*b*c+3*c^2)-(b-c)^2*(3*b^4+3*c^4+2*b*c*(6*b^2+7*b*c+6*c^2))) : :

See See Ivan Pavlov, euclid 5333.

X(51292) lies on these lines: {1, 4}, {653, 1721}, {15430, 51288}


X(51293) = X(1)X(34)∩X(653)X(1722)

Barycentrics    a*(a+b-c)*(a-b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(3*a^6-4*a^3*b*c*(b+c)+4*a*b*c*(b+c)*(b^2+c^2)-a^4*(3*b^2-2*b*c+3*c^2)-a^2*(3*b^4+3*c^4-2*b*c*(2*b+c)*(b+2*c))+(b+c)^2*(3*b^4+3*c^4-2*b*c*(6*b^2-7*b*c+6*c^2))) : :

See See Ivan Pavlov, euclid 5333.

X(51293) lies on these lines: {1, 4}, {653, 1722}


X(51294) = X(1)X(37)∩X(756)X(846)

Barycentrics    a*(a^2-3*b^2-5*b*c-3*c^2-a*(b+c)) : :

See Ivan Pavlov, euclid 5333.

X(51294) lies on these lines: {1, 6}, {2, 21093}, {10, 9791}, {100, 756}, {190, 3842}, {191, 13610}, {498, 27547}, {726, 17260}, {1255, 4722}, {1334, 41323}, {1621, 42041}, {1654, 6541}, {1698, 3729}, {1961, 3219}, {3550, 7322}, {3624, 17368}, {3634, 17116}, {3679, 3790}, {3715, 17592}, {3773, 17256}, {3775, 17264}, {3826, 49742}, {3836, 17258}, {3923, 36531}, {3929, 37604}, {3932, 24697}, {3943, 42334}, {3989, 27065}, {3993, 50016}, {3994, 5235}, {4026, 49737}, {4078, 33082}, {4364, 33159}, {4384, 27481}, {4389, 25590}, {4413, 17596}, {4414, 9330}, {4429, 19875}, {4473, 24295}, {4527, 4668}, {4535, 32025}, {4641, 9332}, {4656, 33138}, {4677, 49746}, {4681, 4716}, {4687, 32935}, {4704, 49488}, {4942, 19744}, {5018, 29007}, {5260, 11533}, {5263, 50094}, {5284, 42039}, {6211, 8245}, {6536, 33166}, {7226, 29820}, {7308, 17591}, {7609, 31395}, {9345, 32913}, {9505, 22116}, {9780, 25269}, {15430, 51300}, {16815, 50117}, {16823, 49520}, {17235, 31252}, {17257, 29674}, {17259, 49493}, {17277, 49456}, {17317, 17771}, {17332, 32846}, {17335, 32921}, {17336, 50302}, {17355, 19856}, {17738, 31323}, {19876, 24441}, {24231, 25072}, {24248, 40333}, {24325, 24821}, {24331, 31302}, {25101, 29637}, {25601, 26364}, {25728, 39586}, {26580, 29862}, {26685, 29646}, {26792, 29682}, {27549, 29659}, {29657, 31018}, {30363, 37619}, {30393, 36634}, {33087, 41313}, {35595, 46901}, {43997, 50127}, {48829, 51066}, {50291, 51090}

X(51294) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(28482)}} and {{A, B, C, X(37), X(36632)}}
X(51294) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (37, 1757, 1), (37, 15481, 4649), (37, 21879, 20685), (190, 3842, 24342), (3989, 27065, 29821), (4078, 50093, 33082), (4649, 15481, 1757), (7174, 15485, 1), (16676, 51297, 1)


X(51295) = X(1)X(40)∩X(651)X(1103)

Barycentrics    a*(a^6-5*a^4*(b-c)^2-2*a^5*(b+c)+4*a^3*(b+c)^3-2*a*(b-c)*(b^2-c^2)*(b^2+6*b*c+c^2)-(b^2-c^2)^2*(3*b^2-2*b*c+3*c^2)+a^2*(7*b^4+7*c^4-2*b*c*(6*b^2+11*b*c+6*c^2))) : :

See Ivan Pavlov, euclid 5333.

X(51295) lies on these lines: {1, 3}, {280, 6736}, {651, 1103}, {5121, 9614}, {6048, 9365}, {8056, 30384}

X(51295) = {X(40), X(9371)}-harmonic conjugate of X(1)


X(51296) = X(1)X(42)∩X(872)X(1045)

Barycentrics    a*(-(b^2*c^2)+a*b*c*(b+c)+a^2*(3*b^2+5*b*c+3*c^2)) : :

See See Ivan Pavlov, euclid 5333.

X(51296) lies on these lines: {1, 2}, {100, 40749}, {190, 872}, {2663, 4670}, {3736, 4753}, {4090, 25264}, {4096, 32026}, {16468, 40732}, {21805, 40773}, {21870, 37596}, {21904, 39252}

X(51296) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (1, 36634, 16832), (42, 2664, 1), (16831, 42042, 1)


X(51297) = X(1)X(45)∩X(899)X(3097)

Barycentrics    a*(2*a^2-4*b^2-5*b*c-4*c^2+a*(b+c)) : :

See See Ivan Pavlov, euclid 5333.

X(51297) lies on these lines: {1, 6}, {10, 4480}, {88, 36263}, {89, 9330}, {190, 3679}, {192, 50018}, {210, 17601}, {239, 51035}, {537, 17335}, {726, 16816}, {756, 37604}, {899, 3097}, {1698, 17250}, {3219, 3550}, {3240, 40774}, {3551, 32635}, {3617, 4660}, {3634, 3662}, {3678, 37574}, {3715, 16569}, {3758, 50094}, {3842, 41847}, {3912, 51004}, {3952, 30564}, {3989, 17013}, {4363, 19875}, {4384, 24821}, {4393, 50777}, {4407, 17354}, {4416, 49766}, {4432, 50075}, {4439, 17346}, {4473, 50311}, {4557, 5010}, {4664, 4753}, {4668, 5695}, {4677, 4693}, {4704, 49685}, {4709, 25269}, {4741, 49769}, {4759, 36534}, {6646, 9780}, {9324, 39335}, {9345, 40434}, {17021, 32912}, {17160, 49445}, {17256, 50313}, {17261, 49469}, {17277, 49532}, {17282, 19872}, {17332, 33165}, {17336, 49457}, {17338, 19862}, {17348, 49517}, {17349, 49520}, {19856, 26039}, {25352, 50128}, {27549, 33082}, {29571, 50834}, {29601, 34379}, {29602, 50952}, {29659, 50093}, {32857, 38057}, {33761, 42042}, {36531, 50127}, {49701, 49746}, {49710, 50286}, {49721, 51066}, {50022, 50090}

X(51297) = barycentric product X(190)*X(48213)
X(51297) = trilinear product X(100)*X(48213)
X(51297) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(35170)}} and {{A, B, C, X(88), X(16468)}}
X(51297) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (1, 44, 16468), (1, 51294, 16676), (9, 49448, 15485), (44, 984, 1), (45, 5220, 49712), (45, 49712, 1), (3751, 16676, 1), (4649, 16672, 1), (15254, 49503, 1)


X(51298) = X(1)X(46)∩X(651)X(920)

Barycentrics    a*(a^6-2*a^5*(b+c)-(b^2-c^2)^2*(3*b^2-2*b*c+3*c^2)-a^4*(5*b^2+2*b*c+5*c^2)+4*a^3*(b^3+c^3)-2*a*(b-c)*(b^4-c^4)+a^2*(7*b^4-10*b^2*c^2+7*c^4)) : :

See Ivan Pavlov, euclid 5333.

X(51298) lies on these lines: {1, 3}, {225, 7040}, {651, 920}, {1937, 36599}

X(51298) = {X(46), X(8758)}-harmonic conjugate of X(1)


X(51299) = X(1)X(48)∩X(922)X(4008)

Barycentrics    a*(2*a^8+b^2*c^2*(b^2-c^2)^2-5*a^6*(b^2+c^2)-a^2*(b^2-c^2)*(b^4-c^4)+a^4*(4*b^4+3*b^2*c^2+4*c^4)) : :

See Ivan Pavlov, euclid 5333.

X(51299) lies on these lines: {1, 19}, {922, 4008}

X(51299) = {X(48), X(1955)}-harmonic conjugate of X(1)


X(51300) = X(1)X(3)∩X(220)X(4421)

Barycentrics    a*(2*a^4+b*(b-c)^2*c-5*a^3*(b+c)-a*(b-c)*(b^2-c^2)+a^2*(4*b^2+3*b*c+4*c^2)) : :

See Ivan Pavlov, euclid 5333.

X(51300) lies on these lines: {1, 3}, {170, 10482}, {220, 4421}, {294, 41423}, {651, 1253}, {673, 15485}, {902, 5222}, {3008, 8616}, {3939, 24708}, {4304, 49772}, {9440, 11495}, {10481, 50808}, {15430, 51294}, {17745, 42043}, {28043, 35258}

X(51300) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(36628)}} and {{A, B, C, X(57), X(36601)}}
X(51300) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (55, 9441, 1), (1253, 7676, 1742)


X(51301) = X(1)X(56)∩X(651)X(978)

Barycentrics    a*(a+b-c)*(a-b+c)*(2*a^4-a^3*(b+c)-b*c*(b+c)^2+a*(b+c)*(b^2+c^2)-a^2*(2*b^2-7*b*c+2*c^2)) : :

See Ivan Pavlov, euclid 5333.

X(51301) lies on these lines: {1, 3}, {651, 978}, {1413, 36602}, {6048, 9363}

X(51301) = {X(56), X(9364)}-harmonic conjugate of X(1)


X(51302) = X(1)X(3)∩X(269)X(651)

Barycentrics    a*(a+b-c)*(a-b+c)*(a^2+3*b^2-2*b*c+3*c^2-4*a*(b+c)) : :

See Ivan Pavlov, euclid 5333.

X(51302) lies on these lines: {1, 3}, {2, 10481}, {7, 3731}, {9, 1418}, {37, 7274}, {77, 16667}, {85, 16832}, {218, 1407}, {220, 3928}, {222, 17745}, {226, 24797}, {269, 651}, {277, 7365}, {279, 3008}, {348, 29598}, {948, 3911}, {1014, 18186}, {1170, 17074}, {1212, 5437}, {1323, 5222}, {1423, 5575}, {1427, 16572}, {1462, 16487}, {1742, 30330}, {2310, 30353}, {3062, 9442}, {3160, 50114}, {3218, 25930}, {3243, 42314}, {3306, 24635}, {3668, 4859}, {3973, 6180}, {4326, 21346}, {4328, 16673}, {4334, 5223}, {5018, 16469}, {5219, 20121}, {5308, 21454}, {5666, 8583}, {6604, 29573}, {6610, 16670}, {6743, 37655}, {9312, 16833}, {9436, 17284}, {11495, 18216}, {25242, 30567}, {25718, 50019}, {29621, 32098}, {31225, 40719}, {32003, 49765}, {34578, 43043}

X(51302) = barycentric product X(i)*X(j) for these {i, j}: {7, 3243}, {57, 29627}, {75, 42314}, {269, 10005}
X(51302) = barycentric quotient X(i)/X(j) for these (i, j): (57, 42318), (1407, 42315)
X(51302) = trilinear product X(i)*X(j) for these {i, j}: {2, 42314}, {56, 29627}, {57, 3243}, {1407, 10005}
X(51302) = trilinear quotient X(i)/X(j) for these (i, j): (7, 42318), (269, 42315)
X(51302) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3243)}} and {{A, B, C, X(2), X(10389)}}
X(51302) = X(333)-beth conjugate of-X(30625)
X(51302) = X(223)-Dao conjugate of X(42318)
X(51302) = X(i)-isoconjugate-of-X(j) for these {i, j}: {55, 42318}, {200, 42315}
X(51302) = X(57)-reciprocal conjugate of-X(42318)
X(51302) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (9, 1418, 7271), (57, 241, 1), (269, 1445, 1743), (279, 5435, 3008), (948, 3911, 31183), (3668, 8732, 4859), (13388, 13389, 10389), (21314, 31183, 948), (37772, 37773, 35445)


X(51303) = X(1)X(58)∩X(662)X(849)

Barycentrics    a*(a+b)*(a+c)*(2*a^4+2*a^3*(b+c)-b*c*(b+c)^2+a*(b+c)*(b^2+c^2)+a^2*(b^2+4*b*c+c^2)) : :

See Ivan Pavlov, euclid 5333.

X(51303) lies on these lines: {1, 21}, {662, 849}, {4256, 30576}, {17271, 34016}


X(51304) = X(1)X(21)∩X(326)X(610)

Barycentrics    a*(a^4-3*b^4-2*b^2*c^2-3*c^4+2*a^2*(b^2+c^2)) : :

See Ivan Pavlov, euclid 5333.

X(51304) lies on these lines: {1, 21}, {2, 3674}, {9, 7146}, {40, 25083}, {57, 3061}, {69, 18725}, {75, 18713}, {77, 5279}, {78, 7291}, {92, 1930}, {144, 17261}, {192, 10889}, {200, 18788}, {239, 20535}, {304, 2184}, {306, 36850}, {326, 610}, {329, 3912}, {908, 17284}, {1429, 3928}, {1581, 8769}, {1958, 18594}, {2172, 6507}, {2329, 3929}, {2349, 37216}, {2951, 12530}, {3666, 9575}, {3729, 10446}, {5227, 18161}, {5272, 18208}, {5744, 17023}, {5748, 29596}, {8557, 34377}, {10436, 11683}, {10444, 25252}, {11679, 17760}, {17742, 18727}, {17781, 29573}, {18656, 20223}, {18691, 21406}, {18695, 21582}, {20245, 45738}, {21446, 42309}, {25590, 30035}, {26575, 31080}, {27834, 36101}, {36973, 41772}

X(51304) = isotomic conjugate of the polar conjugate of X(23052)
X(51304) = barycentric product X(i)*X(j) for these {i, j}: {1, 37668}, {75, 1350}, {304, 45141}, {326, 10002}
X(51304) = barycentric quotient X(i)/X(j) for these (i, j): (1, 3424), (63, 42287), (1350, 1)
X(51304) = trilinear product X(i)*X(j) for these {i, j}: {2, 1350}, {6, 37668}, {20, 40813}, {69, 45141}, {250, 12037}, {394, 10002}
X(51304) = trilinear quotient X(i)/X(j) for these (i, j): (69, 42287), (1350, 6), (1529, 16318)
X(51304) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(23052)}} and {{A, B, C, X(31), X(2184)}}
X(51304) = X(9)-Dao conjugate of X(3424)
X(51304) = X(69)-gimel conjugate of-X(1)
X(51304) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 3424}, {25, 42287}
X(51304) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1, 3424), (63, 42287)
X(51304) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (1, 16570, 1580), (1, 17799, 1707), (63, 1959, 1), (326, 1760, 610)


X(51305) = X(1)X(65)∩X(651)X(1046)

Barycentrics    a*(a+b-c)*(a-b+c)*(a^4+a^3*(b+c)-a*(b+c)*(b^2+c^2)+(b+c)^2*(3*b^2-5*b*c+3*c^2)-a^2*(4*b^2+7*b*c+4*c^2)) : :

See Ivan Pavlov, euclid 5333.

X(51305) lies on these lines: {1, 3}, {10, 17950}, {651, 1046}, {2647, 7098}, {3671, 29640}, {24987, 26840}

X(51305) = {X(65), X(1758)}-harmonic conjugate of X(1)


X(51306) = X(1)X(6)∩X(100)X(2939)

Barycentrics    a*(a^6+3*a^5*(b+c)-a*(b+c)*(b^2-c^2)^2-2*a^3*(b+c)*(b^2+c^2)+3*a^2*(b+c)^2*(b^2+c^2)-a^4*(b^2+b*c+c^2)+(b+c)*(-3*b^2-2*b*c-3*c^2)*(b^3+c^3)) : :

See Ivan Pavlov, euclid 5333.

X(51306) lies on these lines: {1, 6}, {100, 2939}


X(51307) = X(1)X(73)∩X(653)X(1047)

Barycentrics    a*(a+b-c)*(a-b+c)*(-(a^7*b*c*(b+c))+a^3*b*c*(b+c)*(b^2-c^2)^2+b^2*c^2*(b+c)^2*(b^2-c^2)^2+a^5*b*c*(b+c)*(b^2+c^2)+a^8*(3*b^2+5*b*c+3*c^2)-a*b*c*(b+c)*(b^2-c^2)*(b^4-c^4)-a^2*(b^2-c^2)^2*(3*b^4+3*c^4+b*c*(b^2+7*b*c+c^2))+a^4*(b+c)^2*(9*b^4+9*c^4-b*c*(11*b^2-15*b*c+11*c^2))-a^6*(9*b^4+9*c^4+b*c*(11*b^2+5*b*c+11*c^2))) : :

See Ivan Pavlov, euclid 5333.

X(51307) lies on these lines: {1, 73}, {653, 1047}

X(51307) = {X(73), X(2655)}-harmonic conjugate of X(1)


X(51308) = X(1)X(7)∩X(223)X(658)

Barycentrics    a*(a+b-c)^2*(a-b+c)^2*(3*a^4+3*b^4+2*b^2*c^2+3*c^4+4*a*b*c*(b+c)-2*a^2*(3*b^2+2*b*c+3*c^2)) : :

See Ivan Pavlov, euclid 5333.

X(51308) lies on these lines: {1, 7}, {223, 658}


X(51309) = X(1)X(2)∩X(190)X(1490)

Barycentrics    a*(3*a^6-6*a^5*(b+c)-a^4*(3*b^2-2*b*c+3*c^2)-2*a*(b+c)*(b^2+c^2)*(3*b^2-2*b*c+3*c^2)+4*a^3*(b+c)*(3*b^2-b*c+3*c^2)+(b+c)^2*(3*b^4+2*b^2*c^2+3*c^4)-a^2*(3*b^4+3*c^4+2*b*c*(4*b^2+b*c+4*c^2))) : :

See Ivan Pavlov, euclid 5333.

X(51309) lies on these lines: {1, 2}, {190, 1490}

X(51309) = {X(78), X(23691)}-harmonic conjugate of X(1)


X(51310) = X(1)X(5)∩X(484)X(655)

Barycentrics    (a^2-a*b+b^2-c^2)*(a^2-b^2-a*c+c^2)*(a^6+a^5*(b+c)-a^3*(b-2*c)*(2*b-c)*(b+c)+2*b*c*(b^2-c^2)^2+a*(b-c)*(b^2-c^2)*(b^2-3*b*c+c^2)-2*a^4*(b^2+b*c+c^2)+a^2*(b^4-b^2*c^2+c^4)) : :

See Ivan Pavlov, euclid 5333.

X(51310) lies on these lines: {1, 5}, {484, 655}, {5541, 18359}

X(51310) = {X(80), X(14204)}-harmonic conjugate of X(1)


X(51311) = X(1)X(21)∩X(6)X(662)

Barycentrics    a*(a+b)*(a+c)*(a^2+b*c+2*a*(b+c)) : :

See Ivan Pavlov, euclid 5333.

X(51311) lies on the cubic K285 and these lines: {1, 21}, {2, 1171}, {6, 662}, {9, 1963}, {32, 593}, {86, 4643}, {99, 4393}, {162, 28044}, {239, 17103}, {261, 17379}, {270, 37396}, {333, 29576}, {741, 869}, {1178, 23524}, {1412, 41526}, {1414, 5228}, {1449, 38814}, {1475, 17209}, {2134, 5256}, {2308, 16480}, {3219, 21816}, {3661, 17731}, {3758, 19623}, {3765, 5209}, {4251, 30581}, {4641, 21879}, {5222, 24617}, {5333, 17210}, {6626, 17397}, {6629, 17023}, {7304, 24621}, {8025, 29592}, {8033, 20913}, {14534, 37683}, {16369, 16826}, {16481, 21747}, {16666, 16702}, {16777, 40438}, {17018, 33774}, {17120, 27958}, {17277, 30593}, {17378, 25536}, {17389, 32004}, {19308, 20970}, {20142, 51314}, {29570, 33770}, {29588, 31059}, {29617, 41629}, {37666, 50735}

X(51311) = isogonal conjugate of the isotomic conjugate of X(51314)
X(51311) = barycentric product X(i)*X(j) for these {i, j}: {6, 51314}, {63, 31904}, {81, 16826}, {86, 4649}, {99, 4784}, {662, 28840}
X(51311) = barycentric quotient X(i)/X(j) for these (i, j): (58, 30571), (81, 27483), (163, 28841), (1333, 25426)
X(51311) = trilinear product X(i)*X(j) for these {i, j}: {3, 31904}, {31, 51314}, {58, 16826}, {81, 4649}, {110, 28840}, {593, 3842}
X(51311) = trilinear quotient X(i)/X(j) for these (i, j): (58, 25426), (81, 30571), (86, 27483), (110, 28841)
X(51311) = perspector of the circumconic {{A, B, C, X(662), X(36066)}}
X(51311) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4649)}} and {{A, B, C, X(2), X(1962)}}
X(51311) = crossdifference of every pair of points on line {X(4155), X(8663)}
X(51311) = X(i)-isoconjugate-of-X(j) for these {i, j}: {10, 25426}, {37, 30571}, {42, 27483}, {523, 28841}
X(51311) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (58, 30571), (81, 27483), (163, 28841)
X(51311) = {X(81), X(1931)}-harmonic conjugate of X(1)


X(51312) = X(1)X(82)∩X(31)X(4599)

Barycentrics    a*(a^2+b^2)*(a^2+c^2)*(a^4+b^2*c^2+2*a^2*(b^2+c^2)) : :

See Ivan Pavlov, euclid 5333.

X(51312) lies on these lines: {1, 82}, {31, 4599}, {83, 4660}, {33760, 33793}

X(51312) = barycentric product X(i)*X(j) for these {i, j}: {75, 41295}, {82, 3329}
X(51312) = barycentric quotient X(82)/X(42006)
X(51312) = trilinear product X(i)*X(j) for these {i, j}: {2, 41295}, {83, 12212}, {251, 3329}
X(51312) = trilinear quotient X(i)/X(j) for these (i, j): (83, 42006), (827, 43357)
X(51312) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(43763)}} and {{A, B, C, X(19), X(16556)}}
X(51312) = X(i)-isoconjugate-of-X(j) for these {i, j}: {39, 42006}, {826, 43357}
X(51312) = X(82)-reciprocal conjugate of-X(42006)
X(51312) = {X(82), X(34054)}-harmonic conjugate of X(1)


X(51313) = X(1)X(84)∩X(189)X(3586)

Barycentrics    a*(a^3+a^2*(b-c)-a*(b-c)^2-(b+c)*(b^2-c^2))*(a^3-a^2*(b-c)-a*(b-c)^2+(b+c)*(b^2-c^2))*(a^6+4*a^5*(b+c)+a^4*(b^2-14*b*c+c^2)+(b^2-c^2)^2*(3*b^2+2*b*c+3*c^2)-8*a^3*(b^3+c^3)+4*a*(b-c)*(b^4-c^4)-a^2*(5*b^4+5*c^4-2*b*c*(6*b^2+b*c+6*c^2))) : :

See Ivan Pavlov, euclid 5333.

X(51313) lies on these lines: {1, 84}, {189, 3586}, {1256, 15803}, {30282, 41081}, {38271, 46355}


X(51314) = X(1)X(75)∩X(2)X(799)

Barycentrics    ((a+b)*(a+c)*(a^2+b*c+2*a*(b+c)))/a : :

See Ivan Pavlov, euclid 5333.

X(51314) lies on the cubic K286 and these lines: {1, 75}, {2, 799}, {6, 1509}, {39, 20133}, {43, 2668}, {76, 15668}, {99, 1001}, {238, 17103}, {261, 19309}, {310, 5333}, {670, 10009}, {870, 40328}, {940, 7304}, {984, 18827}, {1423, 1434}, {2106, 40728}, {4568, 24092}, {4635, 10004}, {4649, 40734}, {14621, 40759}, {16705, 26976}, {16712, 41312}, {16741, 24589}, {16831, 40874}, {16917, 41333}, {17018, 40439}, {17063, 32010}, {17277, 29459}, {18021, 19701}, {18140, 18143}, {20134, 27318}, {20142, 51311}, {25507, 31008}, {26102, 39915}, {27705, 28010}, {28365, 40409}, {30092, 40827}, {32004, 49497}

X(51314) = isotomic conjugate of the isogonal conjugate of X(51311)
X(51314) = barycentric product X(i)*X(j) for these {i, j}: {76, 51311}, {274, 16826}, {304, 31904}, {310, 4649}, {670, 4784}, {799, 28840}
X(51314) = barycentric quotient X(i)/X(j) for these (i, j): (81, 25426), (86, 30571), (274, 27483), (662, 28841)
X(51314) = trilinear product X(i)*X(j) for these {i, j}: {69, 31904}, {75, 51311}, {86, 16826}, {99, 28840}, {274, 4649}, {799, 4784}
X(51314) = trilinear quotient X(i)/X(j) for these (i, j): (86, 25426), (99, 28841), (274, 30571), (310, 27483)
X(51314) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4649)}} and {{A, B, C, X(2), X(740)}}
X(51314) = X(870)-Ceva conjugate of-X(8033)
X(51314) = X(i)-isoconjugate-of-X(j) for these {i, j}: {42, 25426}, {213, 30571}, {512, 28841}
X(51314) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (81, 25426), (86, 30571), (274, 27483), (662, 28841)
X(51314) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (2, 873, 8033), (86, 274, 30940), (86, 2669, 1), (16709, 18157, 274), (17175, 18792, 86)


X(51315) = X(1)X(29)∩X(19)X(823)

Barycentrics    b*c*(a^2+b^2-c^2)^2*(a^2-b^2+c^2)^2*(a^4-2*b^2*c^2-(b^2+c^2)*a^2) : :
Barycentrics    a (Csc(2C)*(Csc(2B) - Csc(2A)) - Csc(2A)*(Csc(2B) + 2 Csc(2A))) : :

See Ivan Pavlov, euclid 5333.

X(51315) lies on these lines: {1, 29}, {19, 823}, {63, 1969}, {610, 9252}, {1748, 21374}

X(51315) = barycentric product X(i)*X(j) for these {i, j}: {19, 44144}, {92, 458}, {158, 183}, {393, 3403}, {823, 23878}, {1096, 20023}
X(51315) = barycentric quotient X(i)/X(j) for these (i, j): (19, 43718), (92, 42313), (158, 262), (182, 255), (183, 326), (393, 2186)
X(51315) = trilinear product X(i)*X(j) for these {i, j}: {4, 458}, {25, 44144}, {107, 23878}, {182, 2052}, {183, 393}, {264, 10311}
X(51315) = trilinear quotient X(i)/X(j) for these (i, j): (4, 43718), (107, 26714), (158, 2186), (182, 577), (183, 394), (264, 42313)
X(51315) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1821)}} and {{A, B, C, X(29), X(458)}}
X(51315) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 43718}, {184, 42313}, {255, 2186}, {262, 577}, {263, 394}
X(51315) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (19, 43718), (92, 42313), (158, 262), (182, 255), (183, 326)


X(51316) = ISOGONAL CONJUGATE OF X(37672)

Barycentrics    1/(3 a^4 - 6 a^2 b^2 + 3 b^4 - 6 a^2 c^2 + 2 b^2 c^2 + 3 c^4) : :

See Angel Montesdeoca, euclid 5336.

X(51316) lies on these lines: {6,3091}, {25,37689}, {115,34570}, {230,36616}, {493,8972}, {494,13941}, {1968,8882}, {2987,20080}, {3620,40802}, {6622,33630}, {14572,47296}, {17907,42373}, {32830,42407}, {41890,43448}, {41891,43620}

X(51316) = isogonal conjugate of X(37672)
X(51316) = isotomic conjugate of X(32831)


X(51317) = X(2)X(47883)∩X(325)X(523)

Barycentrics    (b - c)*(a*b + b^2 + a*c + 5*b*c + c^2) : :
X(51317) = 5 X[693] - 2 X[3004], 3 X[693] - 2 X[4927], 4 X[693] - X[45746], 5 X[693] + X[47655], 2 X[693] + X[47656], and many more

X(51317) lies on these lines: {2, 47883}, {325, 523}, {514, 4120}, {522, 47755}, {661, 47674}, {812, 47791}, {824, 21115}, {918, 48423}, {3667, 5214}, {3676, 17161}, {3700, 47675}, {3776, 4838}, {3835, 47667}, {4024, 21116}, {4106, 28195}, {4122, 48127}, {4379, 27486}, {4382, 49282}, {4453, 4777}, {4467, 28205}, {4500, 4931}, {4608, 28191}, {4728, 47781}, {4762, 4789}, {4773, 47762}, {4778, 20295}, {4802, 48550}, {4885, 47661}, {4926, 43067}, {4928, 47878}, {4958, 28886}, {6548, 28169}, {6590, 26824}, {7662, 44433}, {14425, 31150}, {17494, 47766}, {21104, 47665}, {21183, 28161}, {21212, 50482}, {23813, 28199}, {26248, 48220}, {26277, 48240}, {26985, 44432}, {28151, 48558}, {28165, 47754}, {28183, 47891}, {28294, 47721}, {28468, 50457}, {28894, 47871}, {39386, 48107}, {44449, 48133}, {45320, 47782}, {46915, 47757}, {47650, 47660}, {47652, 48397}, {47658, 47960}, {47659, 48398}, {47670, 48404}, {47673, 48415}, {47699, 48090}, {47703, 48394}, {47719, 48393}, {47775, 47787}, {47776, 47789}, {47798, 47834}, {47930, 48430}, {47988, 48604}, {48126, 49275}, {48222, 48408}, {48266, 49291}, {48275, 49289}, {49287, 50522}

X(51317) = midpoint of X(i) and X(j) for these {i,j}: {4024, 21116}, {4931, 47672}, {26824, 47773}, {44435, 47656}, {47792, 47869}
X(51317) = reflection of X(i) in X(j) for these {i,j}: {4728, 48419}, {4931, 4500}, {17494, 47766}, {21116, 48399}, {25259, 4931}, {27486, 4379}, {31150, 47788}, {44433, 7662}, {44435, 693}, {45745, 44432}, {45746, 44435}, {46915, 47757}, {47663, 47773}, {47676, 21116}, {47755, 47780}, {47769, 47790}, {47771, 4789}, {47773, 6590}, {47774, 47786}, {47775, 47787}, {47776, 47789}, {47781, 4728}, {47782, 45320}, {47790, 48416}, {47798, 47834}, {47878, 4928}, {47892, 47881}, {47894, 21183}, {47975, 48182}, {48187, 48396}, {48408, 48222}, {48543, 21297}
X(51317) = anticomplement of X(47883)
X(51317) = crossdifference of every pair of points on line {32, 21747}
X(51317) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {693, 47655, 3004}, {693, 47656, 45746}, {693, 48274, 47656}, {3835, 47671, 47667}, {4024, 48399, 47676}, {4500, 47672, 25259}, {4789, 47892, 47881}, {6590, 26824, 47663}, {47660, 48125, 47650}, {47671, 48418, 3835}, {47675, 48424, 3700}, {47881, 47892, 47771}, {48275, 49289, 49298}


X(51318) = X(6)X(157)∩X(32)X(694)

Barycentrics    a^2*(a^2 - b*c)^2*(a^2 + b*c)^2 : :

X(51318) lies on the cubic K788 and thesae lines: {6, 157}, {32, 694}, {110, 699}, {172, 19578}, {251, 3124}, {385, 18902}, {827, 9427}, {1184, 20998}, {1580, 39043}, {1691, 8623}, {1914, 1933}, {2076, 36790}, {3229, 16385}, {5012, 5116}, {12829, 40820}, {14660, 34482}, {17941, 39080}, {19120, 25332}, {38873, 44453}, {39087, 41331}

X(51318) = isogonal conjugate of the isotomic conjugate of X(4027)
X(51318) = X(i)-isoconjugate of X(j) for these (i,j): {75, 41517}, {694, 1934}, {1581, 1916}, {1927, 44160}, {1967, 18896}, {30663, 40099}
X(51318) = X(i)-Dao conjugate of X(j) for these (i, j): (206, 41517), (804, 338), (8290, 18896), (19576, 1916), (39031, 1581), (39043, 1934), (41178, 23285)
X(51318) = crosspoint of X(385) and X(51244)
X(51318) = crosssum of X(694) and X(3493)
X(51318) = crossdifference of every pair of points on line {2799, 23596}
X(51318) = barycentric product X(i)*X(j) for these {i,j}: {6, 4027}, {249, 35078}, {385, 1691}, {512, 46294}, {798, 46295}, {1580, 1580}, {1914, 27982}, {1933, 1966}, {3978, 14602}, {5027, 17941}, {12215, 44089}, {14603, 18902}, {19576, 51244}, {36213, 40820}
X(51318) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 41517}, {385, 18896}, {1580, 1934}, {1691, 1916}, {1933, 1581}, {3978, 44160}, {4027, 76}, {14602, 694}, {18902, 9468}, {19575, 3493}, {27982, 18895}, {35078, 338}, {46294, 670}, {46295, 4602}
X(51318) = {X(32),X(3506)}-harmonic conjugate of X(694)


X(51319) = X(6)X(31)∩X(32)X(2319)

Barycentrics    a^2*(a*b + a*c - b*c)*(a^2 + b*c) : :

X(512) lies on the cubic K788 and these lines: {6, 31}, {32, 2319}, {37, 11688}, {100, 699}, {171, 172}, {213, 893}, {292, 1402}, {345, 6542}, {385, 17787}, {579, 24525}, {1403, 2176}, {2240, 32948}, {2242, 37604}, {2275, 23853}, {2345, 4386}, {3744, 17448}, {5143, 16584}, {8624, 17596}, {9310, 21001}, {9454, 21792}, {14829, 31027}, {20359, 20719}, {33863, 41346}

X(51319) = isogonal conjugate of X(27447)
X(51319) = isogonal conjugate of the isotomic conjugate of X(17752)
X(51319) = X(7122)-Ceva conjugate of X(172)
X(51319) = X(i)-isoconjugate of X(j) for these (i,j): {1, 27447}, {87, 257}, {256, 330}, {893, 6384}, {904, 6383}, {1431, 27424}, {1432, 7155}, {1581, 39914}, {1916, 34252}, {2162, 7018}, {2319, 7249}, {4451, 7153}, {7121, 44187}, {16606, 32010}, {27805, 43931}, {40432, 42027}, {40738, 45782}
X(51319) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 27447), (19576, 39914), (21051, 16732), (39031, 34252), (40597, 6384), (40598, 44187)
X(51319) = crosspoint of X(1423) and X(3502)
X(51319) = crosssum of X(2319) and X(3494)
X(51319) = barycentric product X(i)*X(j) for these {i,j}: {6, 17752}, {31, 41318}, {43, 171}, {100, 24533}, {109, 30584}, {172, 192}, {894, 2176}, {1215, 38832}, {1403, 7081}, {1423, 2329}, {1580, 41531}, {1691, 40848}, {1909, 2209}, {1918, 27891}, {2295, 27644}, {2330, 3212}, {3208, 7175}, {4083, 4579}, {4595, 20981}, {6376, 7122}, {7009, 20760}, {7119, 22370}, {17787, 41526}, {18047, 20979}, {20964, 33296}
X(51319) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 27447}, {43, 7018}, {171, 6384}, {172, 330}, {192, 44187}, {894, 6383}, {1403, 7249}, {1691, 39914}, {1933, 34252}, {2176, 257}, {2209, 256}, {2329, 27424}, {2330, 7155}, {4579, 18830}, {7122, 87}, {7175, 7209}, {17752, 76}, {20760, 7019}, {20964, 42027}, {24533, 693}, {30584, 35519}, {38832, 32010}, {40848, 18896}, {41318, 561}, {41526, 1432}, {41531, 1934}
X(51319) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {213, 37619, 893}, {1403, 2176, 20284}


X(51320) = X(6)X(22)∩X(32)X(695)

Barycentrics    a^2*(a^2 - b*c)*(a^2 + b*c)*(a^4 + b^2*c^2) : :

X(51320) lies on the cubic K788 and these lines: {6, 22}, {32, 695}, {172, 1933}, {248, 43721}, {385, 18902}, {694, 19558}, {699, 46970}, {1613, 14575}, {1691, 2679}, {1914, 19578}, {1915, 37893}, {3005, 3050}, {3224, 44162}, {3398, 14133}, {3499, 10547}, {8623, 19576}, {9418, 39087}, {18274, 18892}, {20968, 33786}, {33773, 44164}

X(51320) = isogonal conjugate of X(40847)
X(51320) = isogonal conjugate of the isotomic conjugate of X(16985)
X(51320) = X(i)-isoconjugate of X(j) for these (i,j): {1, 40847}, {561, 14946}, {694, 9239}, {695, 1934}, {711, 20627}, {1581, 9229}, {1916, 9285}, {8061, 18828}, {9236, 44160}, {9288, 18896}
X(51320) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 40847), (19576, 9229), (37895, 18896), (39031, 9285), (39043, 9239), (40368, 14946)
X(51320) = crosssum of X(i) and X(j) for these (i,j): {695, 3505}, {3852, 8265}
X(51320) = crossdifference of every pair of points on line {626, 826}
X(51320) = barycentric product X(i)*X(j) for these {i,j}: {6, 16985}, {384, 1691}, {385, 1915}, {419, 37893}, {710, 38826}, {782, 827}, {1580, 1582}, {1932, 1966}, {1933, 1965}, {4630, 35558}, {9230, 14602}, {11380, 12215}, {16101, 19575}, {35530, 44167}, {37894, 44089}
X(51320) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 40847}, {384, 18896}, {710, 44166}, {782, 23285}, {827, 18828}, {1501, 14946}, {1580, 9239}, {1582, 1934}, {1691, 9229}, {1915, 1916}, {1932, 1581}, {1933, 9285}, {4630, 783}, {9230, 44160}, {14602, 695}, {16985, 76}, {19575, 3505}, {35530, 8039}, {37893, 40708}, {44089, 37892}, {44167, 711}
X(51320) = {X(32),X(3492)}-harmonic conjugate of X(695)


X(51321) = X(31)X(172)∩X(32)X(2319)

Barycentrics    a^2*(a^2 - b*c)*(a*b - a*c - b*c)*(a*b - a*c + b*c) : :

X(51321) lies on the cubics K773 and K788 and these lines: {6, 20667}, {31, 172}, {32, 2319}, {58, 23525}, {87, 1716}, {251, 16606}, {292, 23566}, {593, 27455}, {932, 9111}, {1575, 34077}, {1580, 1914}, {1691, 2210}, {2275, 15373}, {4264, 21759}, {5053, 34071}

X(51321) = isogonal conjugate of X(40848)
X(51321) = isogonal conjugate of the isotomic conjugate of X(39914)
X(51321) = X(238)-cross conjugate of X(1914)
X(51321) = X(i)-isoconjugate of X(j) for these (i,j): {1, 40848}, {2, 41531}, {43, 335}, {192, 291}, {292, 6376}, {334, 2176}, {660, 3835}, {694, 41318}, {813, 20906}, {876, 4595}, {1423, 4518}, {1575, 33680}, {1581, 17752}, {1911, 6382}, {2209, 18895}, {3208, 7233}, {3212, 4876}, {3572, 36863}, {3971, 37128}, {4083, 4562}, {4583, 20979}, {4584, 21051}, {4589, 21834}, {4639, 50491}, {5378, 21138}, {7077, 30545}, {14598, 40367}, {18827, 20691}, {27644, 43534}, {36801, 43051}, {40155, 40844}
X(51321) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 40848), (6651, 6382), (18277, 40367), (19557, 6376), (19576, 17752), (32664, 41531), (39029, 192), (39043, 41318), (40623, 20906)
X(51321) = cevapoint of X(238) and X(34252)
X(51321) = crosspoint of X(3500) and X(7166)
X(51321) = crosssum of X(i) and X(j) for these (i,j): {1575, 17792}, {3501, 3507}
X(51321) = crossdifference of every pair of points on line {3835, 3971}
X(51321) = barycentric product X(i)*X(j) for these {i,j}: {1, 34252}, {6, 39914}, {87, 238}, {239, 2162}, {242, 23086}, {330, 1914}, {350, 7121}, {659, 932}, {812, 34071}, {1428, 7155}, {1429, 2319}, {1447, 2053}, {1691, 27447}, {1929, 8843}, {2210, 6384}, {3573, 43931}, {3684, 7153}, {4598, 8632}, {5009, 42027}, {6383, 14599}, {8848, 43747}, {21759, 30940}, {23493, 33295}
X(51321) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 40848}, {31, 41531}, {87, 334}, {238, 6376}, {239, 6382}, {330, 18895}, {659, 20906}, {727, 33680}, {932, 4583}, {1428, 3212}, {1429, 30545}, {1580, 41318}, {1691, 17752}, {1914, 192}, {1921, 40367}, {2053, 4518}, {2162, 335}, {2210, 43}, {3573, 36863}, {3684, 4110}, {3747, 3971}, {4455, 21051}, {5009, 33296}, {6383, 44170}, {6384, 44172}, {7121, 291}, {8632, 3835}, {8843, 20947}, {14599, 2176}, {18892, 2209}, {23086, 337}, {23493, 43534}, {27447, 18896}, {34071, 4562}, {34252, 75}, {39914, 76}, {40736, 3862}, {41333, 20691}


X(51322) = X(6)X(694)∩X(32)X(99)

Barycentrics    a^2*(a^2 - b*c)*(a^2 + b*c)*(a^2*b^4 - b^4*c^2 + a^2*c^4 - b^2*c^4) : :

X(51322) lies on the cubic K788 and these lines: {6, 694}, {32, 99}, {39, 21444}, {76, 10342}, {248, 19222}, {385, 3978}, {1384, 33756}, {1580, 1914}, {3229, 32748}, {5007, 9427}, {5027, 30654}, {8023, 8267}, {9431, 30435}, {10685, 43765}, {20457, 23640}, {20463, 20464}, {20975, 23642}, {32540, 47648}, {39643, 43183}

X(51322) = isogonal conjugate of the isotomic conjugate of X(39080)
X(51322) = X(i)-Ceva conjugate of X(j) for these (i,j): {6, 32748}, {32, 8623}, {99, 5027}, {4027, 36213}, {32540, 3229}
X(51322) = X(i)-isoconjugate of X(j) for these (i,j): {699, 1934}, {1581, 3225}, {1916, 43761}
X(51322) = X(i)-Dao conjugate of X(j) for these (i, j): (2086, 523), (3229, 76), (19576, 3225), (35540, 1502), (39031, 43761), (39080, 1916)
X(51322) = crosspoint of X(i) and X(j) for these (i,j): {6, 385}, {3229, 51248}
X(51322) = crosssum of X(i) and X(j) for these (i,j): {2, 694}, {3225, 8864}
X(51322) = crossdifference of every pair of points on line {804, 881}
X(51322) = barycentric product X(i)*X(j) for these {i,j}: {6, 39080}, {385, 3229}, {698, 1691}, {804, 41337}, {880, 9429}, {1580, 2227}, {3978, 32748}, {4027, 47648}, {5026, 36821}, {5976, 32540}, {8290, 51248}, {14602, 35524}
X(51322) = barycentric quotient X(i)/X(j) for these {i,j}: {698, 18896}, {1691, 3225}, {1933, 43761}, {2227, 1934}, {3229, 1916}, {9429, 882}, {14602, 699}, {32540, 36897}, {32748, 694}, {35524, 44160}, {39080, 76}, {41337, 18829}, {51248, 9477}
X(51322) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 3511, 9468}, {3511, 9468, 5106}


X(51323) = X(32)X(983)∩X(37)X(82)

Barycentrics    a^2*(a^2 + b*c)*(a^2*b^2 + a^2*b*c - a*b^2*c + a^2*c^2 - a*b*c^2 + b^2*c^2) : :

X(51323) lies on the cubic K788 and these lines: {32, 983}, {37, 82}, {101, 7104}, {172, 1691}, {385, 17787}, {1613, 18900}, {1918, 18274}, {2209, 9310}, {2670, 16785}, {18047, 39928}

X(51323) = isogonal conjugate of the isotomic conjugate of X(39929)
X(51323) = X(983)-Ceva conjugate of X(2330)
X(51323) = X(i)-isoconjugate of X(j) for these (i,j): {256, 39746}, {1581, 39937}, {3495, 7249}, {40432, 43687}
X(51323) = X(19576)-Dao conjugate of X(39937)
X(51323) = barycentric product X(i)*X(j) for these {i,j}: {6, 39929}, {172, 26752}, {2329, 3503}
X(51323) = barycentric quotient X(i)/X(j) for these {i,j}: {172, 39746}, {1691, 39937}, {20964, 43687}, {26752, 44187}, {39929, 76}


X(51324) = X(2)X(36425)∩X(4)X(32)

Barycentrics    a^2*(a^2 - b*c)*(a^2 + b*c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :

X(51324) lies on the cubics K782 and K788 and these lines: {2, 36425}, {4, 32}, {6, 43702}, {22, 23584}, {25, 694}, {39, 35476}, {114, 14966}, {186, 5162}, {187, 33874}, {232, 511}, {297, 8840}, {385, 17984}, {419, 8623}, {468, 46302}, {577, 37182}, {648, 25054}, {695, 43721}, {736, 44146}, {754, 46511}, {804, 12829}, {1194, 38356}, {1235, 18806}, {1284, 1914}, {1691, 2679}, {1843, 35432}, {2458, 19128}, {3053, 11325}, {3199, 46321}, {3563, 26714}, {4027, 16069}, {5028, 15920}, {5976, 39931}, {6680, 37125}, {8743, 43183}, {9420, 17994}, {9474, 34214}, {10313, 40236}, {10985, 41413}, {11547, 36417}, {21444, 27369}, {32452, 39575}, {35388, 41363}, {37187, 37669}, {37930, 38663}, {38652, 41172}, {38970, 44953}, {44099, 46627}

X(51324) = isogonal conjugate of the isotomic conjugate of X(39931)
X(51324) = polar conjugate of the isotomic conjugate of X(36213)
X(51324) = X(i)-Ceva conjugate of X(j) for these (i,j): {25, 232}, {39931, 36213}, {42396, 16230}
X(51324) = X(i)-isoconjugate of X(j) for these (i,j): {63, 36897}, {75, 15391}, {248, 1934}, {287, 1581}, {293, 1916}, {304, 34238}, {336, 694}, {656, 39291}, {879, 37134}, {1821, 36214}, {1910, 40708}, {17970, 46273}
X(51324) = X(i)-Dao conjugate of X(j) for these (i, j): (132, 1916), (206, 15391), (325, 305), (2491, 125), (3162, 36897), (8623, 69), (11672, 40708), (19576, 287), (24284, 15526), (39031, 293), (39039, 1934), (39043, 336), (40596, 39291), (40601, 36214)
X(51324) = crosspoint of X(i) and X(j) for these (i,j): {25, 44089}, {511, 51250}, {1691, 32542}
X(51324) = crosssum of X(i) and X(j) for these (i,j): {69, 40708}, {98, 8861}
X(51324) = crossdifference of every pair of points on line {684, 879}
X(51324) = barycentric product X(i)*X(j) for these {i,j}: {4, 36213}, {6, 39931}, {25, 5976}, {232, 385}, {237, 17984}, {240, 1580}, {297, 1691}, {325, 44089}, {419, 511}, {804, 4230}, {877, 5027}, {1933, 40703}, {2211, 3978}, {2679, 18020}, {2967, 40820}, {6531, 46888}, {12215, 34854}, {14602, 44132}, {17941, 17994}
X(51324) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 36897}, {32, 15391}, {112, 39291}, {232, 1916}, {237, 36214}, {240, 1934}, {297, 18896}, {419, 290}, {511, 40708}, {1580, 336}, {1691, 287}, {1933, 293}, {1974, 34238}, {2211, 694}, {2679, 125}, {4230, 18829}, {5027, 879}, {5976, 305}, {9418, 17970}, {14602, 248}, {17984, 18024}, {18902, 14600}, {32696, 18858}, {36213, 69}, {39931, 76}, {44089, 98}, {44132, 44160}, {46888, 6393}, {47418, 3269}
X(51324) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {32, 8922, 248}, {5017, 46272, 17970}


X(51325) = X(32)X(3499)∩X(110)X(251)

Barycentrics    a^2*(a^2 - b*c)*(a^2 + b*c)*(a^4*b^4 + a^4*b^2*c^2 - a^2*b^4*c^2 + a^4*c^4 - a^2*b^2*c^4 - b^4*c^4) : :

X(51325) lies on the cubic K788 and these lines: {32, 3499}, {110, 251}, {248, 682}, {385, 732}, {699, 43357}, {880, 19590}, {1613, 23173}, {1914, 30634}, {1971, 3852}, {19597, 33786}

X(51325) = isogonal conjugate of the isotomic conjugate of X(38382)
X(51325) = X(32)-Ceva conjugate of X(1691)
X(51325) = X(1581)-isoconjugate of X(39939)
X(51325) = X(i)-Dao conjugate of X(j) for these (i, j): (3978, 1502), (19576, 39939)
X(51325) = barycentric product X(i)*X(j) for these {i,j}: {6, 38382}, {1691, 40858}, {8870, 36213}
X(51325) = barycentric quotient X(i)/X(j) for these {i,j}: {1691, 39939}, {38382, 76}, {40858, 18896}


X(51326) = X(6)X(19585)∩X(32)X(3499)

Barycentrics    a^2*(a^4*b^4 + a^4*b^2*c^2 + a^2*b^4*c^2 - a^4*c^4 - a^2*b^2*c^4 - b^4*c^4)*(a^4*b^4 - a^4*b^2*c^2 + a^2*b^4*c^2 - a^4*c^4 - a^2*b^2*c^4 + b^4*c^4) : :

X(51326) lies on the cubic K788 and these lines: {6, 19585}, {32, 3499}, {83, 9427}, {99, 42346}, {183, 3224}, {213, 19580}, {1613, 46319}, {1918, 18274}, {8623, 9468}, {39087, 46308}

X(51326) = isogonal conjugate of X(40858)
X(51326) = isogonal conjugate of the anticomplement of X(3978)
X(51326) = isogonal conjugate of the isotomic conjugate of X(39939)
X(51326) = X(i)-cross conjugate of X(j) for these (i,j): {385, 6}, {733, 46286}
X(51326) = X(i)-isoconjugate of X(j) for these (i,j): {1, 40858}, {1581, 38382}, {1959, 8870}
X(51326) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 40858), (19576, 38382)
X(51326) = cevapoint of X(i) and X(j) for these (i,j): {5027, 9427}, {8623, 42548}
X(51326) = crosspoint of X(i) and X(j) for these (i,j): {733, 9497}, {39953, 41520}
X(51326) = crosssum of X(i) and X(j) for these (i,j): {732, 9496}, {3499, 3511}
X(51326) = trilinear pole of line {669, 20965}
X(51326) = barycentric product X(i)*X(j) for these {i,j}: {6, 39939}, {98, 51249}
X(51326) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 40858}, {1691, 38382}, {1976, 8870}, {39939, 76}, {51249, 325}


X(51327) = X(32)X(8870)∩X(98)X(8623)

Barycentrics    a^2*(a^4 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - b^2*c^2 + c^4)*(a^6*b^4 - a^4*b^6 + a^6*b^2*c^2 - a^4*b^4*c^2 - a^2*b^6*c^2 + a^6*c^4 - a^4*b^2*c^4 + a^2*b^4*c^4 + b^6*c^4 - a^4*c^6 - a^2*b^2*c^6 + b^4*c^6) : :

X(51327) lies on the cubic K788 and these lines: {32, 8870}, {98, 8623}, {237, 694}, {248, 290}, {699, 6037}, {1613, 32540}, {1910, 1914}, {2715, 14602}, {25332, 39941}, {39291, 39935}

X(51327) = isogonal conjugate of the isotomic conjugate of X(39941)
X(51327) = X(i)-Ceva conjugate of X(j) for these (i,j): {32, 248}, {40820, 1976}
X(51327) = X(1959)-isoconjugate of X(41520)
X(51327) = barycentric product X(i)*X(j) for these {i,j}: {6, 39941}, {98, 3511}, {1976, 25332}, {39092, 40820}
X(51327) = barycentric quotient X(i)/X(j) for these {i,j}: {1976, 41520}, {3511, 325}, {39941, 76}


X(51328) = X(6)X(692)∩X(31)X(292)

Barycentrics    a^2*(a^2 - b*c)^2 : :

X(51328) lies on the cubic K773 and these lines: {6, 692}, {31, 292}, {32, 101}, {58, 1015}, {110, 1977}, {184, 23538}, {238, 1691}, {251, 7109}, {1146, 15628}, {1191, 9259}, {1500, 4251}, {1501, 17127}, {1621, 5371}, {1633, 24289}, {1914, 2210}, {2162, 9306}, {3094, 7295}, {3573, 17475}, {3743, 16519}, {3792, 5104}, {3802, 8300}, {4517, 10987}, {4586, 30667}, {6184, 17735}, {6652, 39044}, {8632, 22384}, {12212, 40728}, {20333, 27916}, {21769, 23075}

X(51328) = isogonal conjugate of X(40098)
X(51328) = isogonal conjugate of the isotomic conjugate of X(4366)
X(51328) = X(i)-Ceva conjugate of X(j) for these (i,j): {31, 1691}, {251, 41333}, {593, 5009}
X(51328) = crosspoint of X(593) and X(5009)
X(51328) = crosssum of X(i) and X(j) for these (i,j): {2, 6653}, {594, 43534}, {1086, 4444}
X(51328) = crossdifference of every pair of points on line {918, 3837}
X(51328) = X(i)-isoconjugate of X(j) for these (i,j): {1, 40098}, {2, 30663}, {291, 335}, {292, 334}, {660, 4444}, {876, 4562}, {893, 30642}, {1502, 18267}, {1581, 30669}, {1911, 18895}, {1916, 18787}, {1922, 44172}, {3572, 4583}, {4584, 35352}, {4876, 7233}, {7018, 30657}, {14598, 44170}, {23596, 30664}, {30671, 41072}, {37128, 43534}
X(51328) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 40098), (740, 28654), (812, 23989), (1966, 561), (6651, 18895), (18277, 44170), (19557, 334), (19576, 30669), (32664, 30663), (39028, 44172), (39029, 335), (39031, 18787), (39786, 850), (40597, 30642)
X(51328) = barycentric product X(i)*X(j) for these {i,j}: {1, 8300}, {6, 4366}, {8, 12835}, {31, 39044}, {58, 4368}, {60, 3027}, {101, 4375}, {238, 238}, {239, 1914}, {242, 7193}, {292, 6652}, {350, 2210}, {593, 35068}, {659, 3573}, {692, 27855}, {740, 5009}, {757, 4094}, {985, 3802}, {1178, 4154}, {1252, 35119}, {1428, 3685}, {1429, 3684}, {1438, 27919}, {1580, 18786}, {1691, 17493}, {1921, 14599}, {2201, 20769}, {3253, 20663}, {3570, 8632}, {3747, 33295}, {8298, 40767}, {16360, 18754}, {17962, 27926}, {18891, 18892}, {18894, 44169}, {27982, 30658}, {30940, 41333}
X(51328) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 40098}, {31, 30663}, {171, 30642}, {238, 334}, {239, 18895}, {350, 44172}, {1428, 7233}, {1691, 30669}, {1914, 335}, {1917, 18267}, {1921, 44170}, {1933, 18787}, {2210, 291}, {3027, 34388}, {3573, 4583}, {3747, 43534}, {3802, 33931}, {4094, 1089}, {4154, 1237}, {4366, 76}, {4368, 313}, {4375, 3261}, {4455, 35352}, {5009, 18827}, {6652, 1921}, {7193, 337}, {8300, 75}, {8632, 4444}, {12835, 7}, {14599, 292}, {17493, 18896}, {18786, 1934}, {18892, 1911}, {18894, 1922}, {27855, 40495}, {35068, 28654}, {35119, 23989}, {39044, 561}
X(51328) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {31, 2112, 292}, {238, 14599, 1691}


X(51329) = X(31)X(57)∩X(36)X(23996)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^2 - b*c)*(a*b - b^2 + a*c - c^2) : :

X(51329) lies on the cubic K773 and these lines: {31, 57}, {36, 23996}, {38, 5083}, {56, 292}, {238, 1447}, {651, 9359}, {659, 3808}, {672, 1362}, {1106, 4350}, {1193, 7117}, {1357, 28360}, {1403, 3052}, {1428, 1691}, {1429, 3747}, {1477, 8693}, {1755, 20470}, {1758, 16586}, {1967, 29055}, {2116, 42290}, {2239, 3911}, {2876, 20786}, {3212, 16476}, {7146, 20985}, {8299, 20778}, {9472, 20663}, {17596, 46684}, {20665, 20995}

X(51329) = isogonal conjugate of X(33676)
X(51329) = isogonal conjugate of the isotomic conjugate of X(39775)
X(51329) = X(i)-Ceva conjugate of X(j) for these (i,j): {56, 1458}, {7132, 9454}
X(51329) = X(i)-isoconjugate of X(j) for these (i,j): {1, 33676}, {105, 4518}, {291, 14942}, {292, 36796}, {294, 335}, {334, 2195}, {660, 885}, {673, 4876}, {876, 36802}, {884, 4583}, {1024, 4562}, {1027, 36801}, {2481, 7077}, {7233, 28071}, {18785, 36800}
X(51329) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 33676), (665, 4858), (2238, 312), (3716, 24026), (3912, 3596), (19557, 36796), (27918, 35519), (36905, 18895), (39029, 14942), (39046, 4518), (39063, 334)
X(51329) = crosspoint of X(56) and X(1428)
X(51329) = crosssum of X(i) and X(j) for these (i,j): {8, 4518}, {2310, 28132}
X(51329) = crossdifference of every pair of points on line {885, 3716}
X(51329) = barycentric product X(i)*X(j) for these {i,j}: {1, 34253}, {6, 39775}, {56, 17755}, {57, 8299}, {238, 241}, {239, 1458}, {278, 20778}, {518, 1429}, {659, 1025}, {672, 1447}, {812, 2283}, {883, 8632}, {1284, 18206}, {1362, 6654}, {1428, 3912}, {1876, 20769}, {1914, 9436}, {2210, 40704}, {2223, 10030}, {2284, 43041}, {3286, 16609}, {3684, 34855}, {4435, 41353}, {4564, 38989}, {5236, 7193}, {9454, 18033}, {12835, 40217}
X(51329) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 33676}, {238, 36796}, {241, 334}, {672, 4518}, {1025, 4583}, {1362, 40217}, {1428, 673}, {1429, 2481}, {1447, 18031}, {1458, 335}, {1914, 14942}, {2210, 294}, {2223, 4876}, {2283, 4562}, {2284, 36801}, {3286, 36800}, {8299, 312}, {8632, 885}, {9436, 18895}, {9454, 7077}, {12835, 6654}, {14599, 2195}, {17755, 3596}, {20778, 345}, {27919, 4087}, {34253, 75}, {38989, 4858}, {39775, 76}, {40704, 44172}


X(51330) = X(6)X(2670)∩X(58)X(86)

Barycentrics    a^2*(a + b)*(a + c)*(a^2*b^2 + a^2*b*c + a*b^2*c + a^2*c^2 + a*b*c^2 - b^2*c^2) : :

X(51330) lies on the cubic K773 and these lines: {6, 2670}, {9, 40731}, {31, 2106}, {58, 86}, {81, 9401}, {110, 7122}, {284, 893}, {501, 595}, {662, 1918}, {1045, 18756}, {1963, 20985}, {2375, 43076}, {3747, 38814}, {5019, 9306}, {7168, 20663}, {21779, 23079}, {34021, 40743}

X(51330) = isogonal conjugate of the isotomic conjugate of X(39915)
X(51330) = X(31)-Ceva conjugate of X(58)
X(51330) = X(i)-isoconjugate of X(j) for these (i,j): {10, 40737}, {42, 18298}, {213, 43684}, {291, 39926}, {321, 40770}
X(51330) = X(i)-Dao conjugate of X(j) for these (i, j): (274, 561), (6626, 43684), (39029, 39926), (40592, 18298)
X(51330) = cevapoint of X(18756) and X(21779)
X(51330) = crosspoint of X(31) and X(18756)
X(51330) = crosssum of X(i) and X(j) for these (i,j): {75, 18298}, {523, 21725}
X(51330) = crossdifference of every pair of points on line {2533, 4079}
X(51330) = barycentric product X(i)*X(j) for these {i,j}: {6, 39915}, {27, 23079}, {31, 34021}, {58, 1655}, {81, 1045}, {86, 21779}, {274, 18756}, {757, 21883}, {3736, 40752}, {4610, 9402}
X(51330) = barycentric quotient X(i)/X(j) for these {i,j}: {81, 18298}, {86, 43684}, {1045, 321}, {1333, 40737}, {1655, 313}, {1914, 39926}, {2206, 40770}, {9402, 4024}, {18756, 37}, {21779, 10}, {21883, 1089}, {23079, 306}, {34021, 561}, {39915, 76}


X(51331) = X(31)X(1979)∩X(58)X(101)

Barycentrics    a^2*(a^2 - b*c)*(a^2*b^2 + a^2*b*c - a*b^2*c + a^2*c^2 - a*b*c^2 - b^2*c^2) : :

X(51331) lies on the cubic K773 and these lines: {31, 1979}, {58, 101}, {238, 1914}, {333, 31027}, {727, 28841}, {893, 2195}, {1206, 38346}, {1691, 30634}, {1792, 28631}, {2176, 18756}, {3570, 19579}, {3725, 5147}, {20677, 39029}

X(51331) = isogonal conjugate of the isotomic conjugate of X(39916)
X(51331) = X(31)-Ceva conjugate of X(1914)
X(51331) = X(i)-isoconjugate of X(j) for these (i,j): {291, 39925}, {335, 2665}, {741, 43685}, {2107, 40017}, {40098, 40769}
X(51331) = X(i)-Dao conjugate of X(j) for these (i, j): (350, 561), (8299, 43685), (39029, 39925), (39056, 334), (46390, 3120)
X(51331) = crosssum of X(3125) and X(4444)
X(51331) = crossdifference of every pair of points on line {876, 4010}
X(51331) = barycentric product X(i)*X(j) for these {i,j}: {6, 39916}, {31, 39028}, {101, 27854}, {238, 2664}, {239, 21788}, {242, 20796}, {1914, 17759}, {2106, 2238}, {2669, 3747}, {3802, 40772}, {4600, 38978}, {8300, 40796}, {40874, 41333}
X(51331) = barycentric quotient X(i)/X(j) for these {i,j}: {1914, 39925}, {2106, 40017}, {2210, 2665}, {2238, 43685}, {2664, 334}, {17759, 18895}, {20796, 337}, {21788, 335}, {27854, 3261}, {38978, 3120}, {39028, 561}, {39916, 76}


X(51332) = X(6)X(20668)∩X(31)X(2054)

Barycentrics    a^2*(a^2 - a*b - b^2 - a*c - b*c - c^2)*(a^2 + a*b + b^2 - a*c - b*c - c^2)*(a^2 - a*b - b^2 + a*c - b*c + c^2) : :

X(51332) lies on the cubic K773 and these lines: {6, 20668}, {31, 2054}, {58, 1015}, {238, 1929}, {893, 20663}, {1247, 3496}, {1914, 8852}, {2176, 18784}, {2702, 17735}, {3437, 21004}, {6626, 39921}

X(51332) = isogonal conjugate of the isotomic conjugate of X(39921)
X(51332) = X(2054)-Ceva conjugate of X(17962)
X(51332) = X(i)-isoconjugate of X(j) for these (i,j): {291, 39922}, {1757, 6625}, {2248, 20947}, {6542, 13610}, {20693, 40164}
X(51332) = X(39029)-Dao conjugate of X(39922)
X(51332) = crossdifference of every pair of points on line {18004, 20529}
X(51332) = barycentric product X(i)*X(j) for these {i,j}: {6, 39921}, {846, 1929}, {1654, 17962}, {2054, 6626}, {2702, 21196}, {4213, 17972}, {6650, 18755}, {9278, 38814}, {17982, 22139}
X(51332) = barycentric quotient X(i)/X(j) for these {i,j}: {846, 20947}, {1914, 39922}, {17962, 6625}, {18755, 6542}, {39921, 76}


X(51333) = X(6)X(1045)∩X(31)X(1979)

Barycentrics    a^2*(a^2*b^2 + a^2*b*c + a*b^2*c - a^2*c^2 - a*b*c^2 - b^2*c^2)*(a^2*b^2 - a^2*b*c + a*b^2*c - a^2*c^2 - a*b*c^2 + b^2*c^2) : :

X(51333) lies on the cubic K773 and these lines: {6, 1045}, {31, 1979}, {81, 1977}, {100, 21753}, {739, 3231}, {1001, 2162}, {1911, 3747}, {4164, 43929}, {4623, 18166}, {14621, 40743}, {20142, 20332}, {20172, 23538}

X(51333) = isogonal conjugate of X(17759)
X(51333) = isogonal conjugate of the anticomplement of X(350)
X(51333) = isogonal conjugate of the isotomic conjugate of X(39925)
X(51333) = X(i)-cross conjugate of X(j) for these (i,j): {238, 6}, {741, 17962}, {2107, 2665}
X(51333) = X(i)-isoconjugate of X(j) for these (i,j): {1, 17759}, {2, 2664}, {10, 2106}, {37, 2669}, {42, 40874}, {75, 21788}, {86, 21897}, {92, 20796}, {213, 41535}, {239, 40796}, {291, 39916}, {292, 39028}, {306, 15148}, {660, 27854}, {3783, 40742}, {3797, 40772}
X(51333) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 17759), (206, 21788), (6626, 41535), (19557, 39028), (22391, 20796), (32664, 2664), (39029, 39916), (40589, 2669), (40592, 40874), (40600, 21897)
X(51333) = cevapoint of X(i) and X(j) for these (i,j): {238, 40769}, {1977, 8632}, {3747, 21753}
X(51333) = crosspoint of X(2111) and X(40737)
X(51333) = crosssum of X(i) and X(j) for these (i,j): {1045, 24578}, {20796, 21788}
X(51333) = trilinear pole of line {667, 20963}
X(51333) = barycentric product X(i)*X(j) for these {i,j}: {1, 2665}, {6, 39925}, {86, 2107}, {291, 40769}, {1333, 43685}, {8934, 9499}, {8937, 13610}
X(51333) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 17759}, {31, 2664}, {32, 21788}, {58, 2669}, {81, 40874}, {86, 41535}, {184, 20796}, {213, 21897}, {238, 39028}, {1333, 2106}, {1911, 40796}, {1914, 39916}, {2107, 10}, {2203, 15148}, {2665, 75}, {8632, 27854}, {8937, 17762}, {39925, 76}, {40769, 350}, {43685, 27801}


X(51334) = X(24)X(112)∩X(25)X(248)

Barycentrics    a^2*(a^2 + b^2 - c^2)^2*(a^2 - b^2 + c^2)^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)^2 : :

X(51334) lies on the cubic K782 and these lines: {4, 1987}, {6, 32713}, {24, 112}, {25, 248}, {53, 338}, {107, 3124}, {232, 237}, {240, 39039}, {393, 694}, {2967, 11672}, {3094, 10002}, {3569, 16230}, {3981, 6525}, {4230, 47406}, {8743, 9707}, {8744, 9408}, {13450, 27376}, {17994, 43112}, {35474, 41368}, {36426, 36790}, {39931, 51329}

X(51334) = isogonal conjugate of the isotomic conjugate of X(36426)
X(51334) = polar conjugate of the isotomic conjugate of X(2967)
X(51334) = X(i)-Ceva conjugate of X(j) for these (i,j): {107, 17994}, {2052, 6530}, {36426, 2967}
X(51334) = X(i)-isoconjugate of X(j) for these (i,j): {63, 47388}, {248, 336}, {255, 34536}, {287, 293}, {326, 41932}, {1821, 17974}, {1910, 6394}, {24018, 41173}
X(51334) = X(i)-Dao conjugate of X(j) for these (i, j): (132, 287), (511, 394), (2799, 36793), (3162, 47388), (6523, 34536), (11672, 6394), (15259, 41932), (39039, 336), (40601, 17974), (41172, 3265)
X(51334) = crosspoint of X(i) and X(j) for these (i,j): {297, 39265}, {2052, 6530}
X(51334) = crosssum of X(i) and X(j) for these (i,j): {248, 34156}, {577, 17974}
X(51334) = crossdifference of every pair of points on line {17974, 39473}
X(51334) = barycentric product X(i)*X(j) for these {i,j}: {4, 2967}, {6, 36426}, {107, 41167}, {132, 39265}, {158, 23996}, {232, 297}, {240, 240}, {325, 34854}, {393, 36790}, {511, 6530}, {877, 17994}, {2052, 11672}, {2207, 32458}, {2211, 44132}, {4230, 16230}, {9419, 18027}, {19189, 39569}, {23964, 35088}
X(51334) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 47388}, {232, 287}, {237, 17974}, {240, 336}, {393, 34536}, {511, 6394}, {1355, 1804}, {2207, 41932}, {2211, 248}, {2967, 69}, {4230, 17932}, {6530, 290}, {7062, 1259}, {9419, 577}, {11672, 394}, {17994, 879}, {23996, 326}, {32713, 41173}, {34854, 98}, {34859, 2715}, {35088, 36793}, {36425, 14585}, {36426, 76}, {36790, 3926}, {41167, 3265}, {42075, 255}


X(51335) = X(2)X(38383)∩X(3)X(38873)

Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(2*a^4 - a^2*b^2 + b^4 - a^2*c^2 - 2*b^2*c^2 + c^4) : :
X(51335) = 3 X[9155] - 4 X[36213], 3 X[9155] - 2 X[36790], X[14570] - 3 X[25314], X[20021] - 3 X[46124]

X(51335) lies on the cubic K782 and these lines: {2, 38383}, {3, 38873}, {4, 40867}, {6, 157}, {25, 110}, {51, 1196}, {52, 27369}, {182, 37457}, {184, 5028}, {193, 3186}, {237, 511}, {246, 2781}, {263, 694}, {287, 1316}, {389, 11326}, {418, 9967}, {460, 3564}, {524, 50707}, {576, 3506}, {868, 15595}, {888, 9135}, {1154, 21177}, {1180, 9157}, {1350, 41275}, {1495, 5107}, {1570, 42671}, {1625, 2971}, {1986, 38551}, {2088, 47426}, {2300, 3271}, {2308, 20974}, {2393, 38368}, {2456, 37183}, {2502, 34417}, {2782, 25046}, {2790, 6776}, {2979, 20885}, {3053, 39907}, {3170, 44122}, {3171, 44083}, {3269, 39846}, {3569, 17994}, {4226, 46039}, {5017, 38880}, {5095, 9033}, {5118, 47412}, {5359, 9777}, {5360, 7062}, {5477, 42663}, {5889, 11325}, {6101, 11360}, {6243, 20960}, {7664, 47582}, {8540, 17455}, {9486, 11173}, {11002, 34098}, {11205, 13366}, {11477, 20897}, {12829, 47734}, {13354, 14096}, {13355, 46546}, {13754, 46522}, {14570, 25314}, {17810, 20998}, {18873, 40810}, {19571, 39099}, {20021, 46124}, {21748, 23659}, {31860, 46276}, {35236, 40948}, {35296, 35383}, {35926, 39141}, {39835, 47421}, {41266, 44456}, {44102, 47405}

X(51335) = reflection of X(i) in X(j) for these {i,j}: {246, 46130}, {20975, 6}, {36790, 36213}
X(51335) = isogonal conjugate of X(40428)
X(51335) = isogonal conjugate of the isotomic conjugate of X(114)
X(51335) = polar conjugate of the isotomic conjugate of X(47406)
X(51335) = X(i)-Ceva conjugate of X(j) for these (i,j): {6, 1692}, {25, 237}, {110, 3569}, {114, 47406}, {2967, 9475}, {14052, 868}, {14265, 230}
X(51335) = X(i)-isoconjugate of X(j) for these (i,j): {1, 40428}, {75, 2065}, {98, 8773}, {290, 36051}, {293, 35142}, {336, 3563}, {879, 36105}, {1821, 2987}, {1910, 8781}, {32654, 46273}, {35364, 36036}, {36120, 43705}
X(51335) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 40428), (114, 290), (132, 35142), (206, 2065), (230, 76), (868, 850), (2679, 35364), (11672, 8781), (36212, 305), (39001, 879), (39069, 1821), (39072, 98), (40601, 2987), (46094, 43705)
X(51335) = crosspoint of X(i) and X(j) for these (i,j): {6, 511}, {25, 460}, {230, 14265}
X(51335) = crosssum of X(i) and X(j) for these (i,j): {2, 98}, {69, 43705}, {647, 15630}, {2987, 34157}
X(51335) = crossdifference of every pair of points on line {287, 2395}
X(51335) = X(i)-lineconjugate of X(j) for these (i,j): {25, 2987}, {1316, 287}
X(51335) = barycentric product X(i)*X(j) for these {i,j}: {1, 17462}, {4, 47406}, {6, 114}, {230, 511}, {232, 3564}, {250, 41181}, {325, 1692}, {460, 36212}, {1733, 1755}, {1959, 8772}, {2396, 42663}, {3289, 44145}, {3569, 4226}, {5477, 5968}, {6393, 44099}, {11672, 14265}, {12829, 40810}, {36213, 47734}
X(51335) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 40428}, {32, 2065}, {114, 76}, {230, 290}, {232, 35142}, {237, 2987}, {460, 16081}, {511, 8781}, {1692, 98}, {1733, 46273}, {1755, 8773}, {2211, 3563}, {2491, 35364}, {3289, 43705}, {4226, 43187}, {8772, 1821}, {9417, 36051}, {9418, 32654}, {9419, 34157}, {12829, 14382}, {14966, 10425}, {17462, 75}, {41181, 339}, {42663, 2395}, {44099, 6531}, {47406, 69}
X(51335) = {X(36213),X(36790)}-harmonic conjugate of X(9155)


X(51336) = X(2)X(43188)∩X(154)X(237)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^2*b^2 - b^4 - 2*a^2*c^2 + b^2*c^2)*(2*a^2*b^2 - a^2*c^2 - b^2*c^2 + c^4) : :

X(51336) lies on the cubics K782 and K1009 and these lines: {2, 43188}, {154, 237}, {232, 800}, {248, 9306}, {647, 1899}, {1968, 33581}, {2056, 14575}, {3167, 3289}, {3563, 34481}, {6337, 6509}, {9243, 18909}, {9255, 42702}, {9258, 30456}, {9544, 23357}, {15391, 34156}, {26887, 33629}, {42287, 46831}

X(51336) = isogonal conjugate of X(9308)
X(51336) = isogonal conjugate of the anticomplement of X(41005)
X(51336) = isogonal conjugate of the isotomic conjugate of X(9289)
X(51336) = isotomic conjugate of the polar conjugate of X(9292)
X(51336) = isogonal conjugate of the polar conjugate of X(9307)
X(51336) = X(9307)-Ceva conjugate of X(9292)
X(51336) = X(i)-cross conjugate of X(j) for these (i,j): {185, 6}, {511, 248}, {647, 43188}, {6467, 3}, {6776, 43718}, {21655, 6415}, {21656, 6416}, {48445, 36214}
X(51336) = X(i)-isoconjugate of X(j) for these (i,j): {1, 9308}, {2, 1957}, {4, 1958}, {19, 1975}, {75, 1968}, {92, 9306}, {112, 17893}, {162, 30476}, {293, 40887}, {648, 17478}, {662, 16229}, {811, 2451}, {823, 22089}, {1783, 17215}, {1821, 15143}, {5379, 21137}, {8769, 37199}
X(51336) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 9308), (6, 1975), (125, 30476), (132, 40887), (206, 1968), (1084, 16229), (17423, 2451), (22391, 9306), (32664, 1957), (34591, 17893), (36033, 1958), (39006, 17215), (40601, 15143)
X(51336) = crosspoint of X(i) and X(j) for these (i,j): {1073, 3504}, {1988, 8770}, {9289, 9307}
X(51336) = crosssum of X(i) and X(j) for these (i,j): {6, 30549}, {193, 3164}, {1249, 3186}, {1968, 9306}
X(51336) = trilinear pole of line {2524, 39469}
X(51336) = crossdifference of every pair of points on line {15143, 16229}
X(51336) = barycentric product X(i)*X(j) for these {i,j}: {1, 9255}, {3, 9307}, {6, 9289}, {63, 9258}, {69, 9292}, {647, 43188}, {6776, 43727}
X(51336) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 1975}, {6, 9308}, {31, 1957}, {32, 1968}, {48, 1958}, {184, 9306}, {232, 40887}, {237, 15143}, {512, 16229}, {647, 30476}, {656, 17893}, {810, 17478}, {1459, 17215}, {3049, 2451}, {3053, 37199}, {9255, 75}, {9258, 92}, {9289, 76}, {9292, 4}, {9307, 264}, {39201, 22089}, {43188, 6331}


X(51337) = X(4)X(99)∩X(6)X(694)

Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^6 - a^4*b^2 + 2*a^2*b^4 - a^4*c^2 - a^2*b^2*c^2 - b^4*c^2 + 2*a^2*c^4 - b^2*c^4) : :

X(51337) lies on the cubic K782 and these lines: {4, 99}, {6, 694}, {232, 15143}, {248, 9306}, {682, 3491}, {1974, 4558}, {3619, 14060}, {5027, 6132}, {14913, 20975}, {21531, 44377}, {47079, 47620}

X(51337) = X(25)-Ceva conjugate of X(511)
X(51337) = X(6393)-Dao conjugate of X(305)
X(51337) = crossdifference of every pair of points on line {804, 44534}
X(51337) = barycentric product X(232)*X(19599)


X(51338) = X(3)X(46317)∩X(6)X(160)

Barycentrics    a^2*(a^2*b^2 - b^4 + 2*a^2*c^2 + b^2*c^2)*(2*a^2*b^2 + a^2*c^2 + b^2*c^2 - c^4)*(a^4 - 4*a^2*b^2 + 3*b^4 - 4*a^2*c^2 - 2*b^2*c^2 + 3*c^4) : :

X(51338) lies on the cubic K782 and these lines: {3, 46317}, {6, 160}, {262, 14494}, {327, 3620}, {511, 40803}, {3186, 34208}, {3563, 26714}, {3619, 8797}, {5052, 14252}, {14489, 33878}, {39682, 39874}

X(51338) = barycentric product X(i)*X(j) for these {i,j}: {262, 1351}, {263, 1007}, {9752, 40803}, {37174, 43718}
X(51338) = barycentric quotient X(i)/X(j) for these {i,j}: {263, 7612}, {1007, 20023}, {1351, 183}, {37174, 44144}


X(51339) = X(3)X(6)∩X(30)X(1029)

Barycentrics    a^2*(a^8+2*(b+c)*a^7-2*(b^2+c^2)*a^6-(2*b^2+7*b*c+2*c^2)*a^4*b*c-2*(b+c)*(3*b^2+b*c+3*c^2)*a^5+2*(b+c)*(3*b^4+3*c^4+2*(b^2+b*c+c^2)*b*c)*a^3+(2*b^4+2*c^4+(4*b^2+7*b*c+4*c^2)*b*c)*(b^2+c^2)*a^2-2*(b^2-c^2)*(b+c)^2*(b^3-c^3)*a-(b^4-c^4)*(b^2-c^2)*(b+c)^2) : :

See Kadir Altintas and César Lozada, euclid 5352.

X(51339) lies on these lines: {3, 6}, {30, 1029}, {35, 3065}, {55, 5899}, {3746, 44913}, {8143, 27787}

X(51339) = {X(36742), X(50948)}-harmonic conjugate of X(3)


X(51340) = X(3)X(6)∩X(30)X(81)

Barycentrics    a^2*(a^5+(b+c)*a^4-(2*b^2-3*b*c+2*c^2)*a^3-2*(b+c)*(b^2+c^2)*a^2+(b^2+b*c+c^2)*(b^2-4*b*c+c^2)*a+(b^2-c^2)^2*(b+c)) : :

See Kadir Altintas and César Lozada, euclid 5352.

X(51340) lies on these lines: {1, 399}, {3, 6}, {4, 14996}, {5, 26131}, {21, 323}, {30, 81}, {42, 35000}, {55, 6149}, {60, 1511}, {106, 39633}, {140, 37680}, {165, 39523}, {171, 18524}, {186, 44097}, {222, 15934}, {283, 37292}, {376, 37685}, {381, 940}, {382, 5707}, {394, 16418}, {404, 15018}, {405, 15066}, {517, 2941}, {549, 32911}, {601, 2177}, {631, 14997}, {651, 5719}, {902, 37621}, {999, 1464}, {1012, 11456}, {1064, 22765}, {1203, 13624}, {1385, 5315}, {1396, 15762}, {1437, 1495}, {1449, 7171}, {1456, 5045}, {1480, 1482}, {1597, 44105}, {1657, 5706}, {1834, 47032}, {1963, 38330}, {1993, 16370}, {1994, 17549}, {2003, 23071}, {2163, 26286}, {2194, 22115}, {2292, 13465}, {2915, 15107}, {3073, 16484}, {3247, 7330}, {3333, 33633}, {3560, 15068}, {3651, 48927}, {3652, 3743}, {4189, 11004}, {4340, 44229}, {4383, 5054}, {4653, 28453}, {4658, 48903}, {4868, 12515}, {5055, 37674}, {5204, 16472}, {5217, 16473}, {5422, 16371}, {5428, 16948}, {5499, 24883}, {5640, 16427}, {5710, 18526}, {5711, 18525}, {6841, 49743}, {6906, 15032}, {6912, 15052}, {7373, 15306}, {7489, 50317}, {10021, 24936}, {10222, 16490}, {10246, 11203}, {10391, 18455}, {10394, 37729}, {10601, 16417}, {10742, 37715}, {11539, 37687}, {12083, 37538}, {12112, 21669}, {13587, 34545}, {13632, 37676}, {13730, 26864}, {13745, 26637}, {14815, 37535}, {15047, 22392}, {15080, 20833}, {15178, 16489}, {15694, 37679}, {15696, 37537}, {15703, 37682}, {15952, 48909}, {16117, 48897}, {16485, 37615}, {16486, 37624}, {16857, 17811}, {18445, 28444}, {18480, 37559}, {18541, 37543}, {22936, 32167}, {25526, 48887}, {28458, 48847}, {34120, 37643}, {34435, 43704}, {35243, 44094}, {37230, 49745}, {37251, 37522}, {37402, 48924}, {37594, 40263}, {37732, 45976}, {46623, 48926}

X(51340) = reflection of X(45923) in X(81)
X(51340) = inverse of X(1030) in Schoute circle
X(51340) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(1030)}} and {{A, B, C, X(84), X(15792)}}
X(51340) = X(45923)-of-anti-orthocentroidal triangle
X(51340) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (1, 7701, 8143), (3, 36742, 36750), (3, 36750, 37509), (15, 16, 1030), (58, 500, 3), (601, 37698, 11849), (991, 5398, 3), (5396, 37469, 3), (11485, 11486, 4254), (13323, 37482, 3), (36742, 36746, 3), (36754, 37501, 3)


X(51341) = X(1)X(1696)∩X(6)X(7091)

Barycentrics    a (a - b - c)/(a^3+a^2 (b+c)-a (b^2-6 b c+c^2)-(b+c)^3) : :

See Angel Montesdeoca, euclid 5356.

X(51341) lies on these lines: {1,1696}, {6,7091}, {7,2999}, {44,7285}, {84,1743}, {90,3973}, {2324,3680}, {3731,7160}, {7070,33590}, {7655,35355}, {8809,14557}, {9372,18594}, {37269,43744}


X(51342) = X(3)X(133)∩X(4)X(64)

Barycentrics (a^4-(b^2-c^2)^2) (a^12+a^10 (b^2+c^2)+18 a^6 (b^2-c^2)^2 (b^2+c^2)+2 (b^2-c^2)^4 (b^4+4 b^2 c^2+c^4)-7 a^4 (b^2-c^2)^2 (b^4+6 b^2 c^2+c^4)-4 a^8 (3 b^4-5 b^2 c^2+3 c^4)-a^2 (b^2-c^2)^2 (3 b^6-19 b^4 c^2-19 b^2 c^4+3 c^6)) : :

See Angel Montesdeoca, euclid 5364 and HG040722.

X(51342) lies on these lines: {3,133}, {4,64}, {5,20203}, {53,42458}, {107,5925}, {381,14059}, {546,15312}, {1498,1559}, {2883,36876}, {3091,3346}, {3462,41372}, {6529,46829}, {6616,34782}, {6624,16252}

X(51342) = midpoint of X(4) and X(6523)
X(51342) = reflection of X(42457) in X(6523)


X(51343) = X(2)X(9476)∩X(22)X(110)

Barycentrics a^2*(a^2 - b*c)*(a^2 + b*c)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 + a^2*c^4 + b^2*c^4 - 2*c^6)*(a^6 + a^2*b^4 - 2*b^6 - a^4*c^2 + b^4*c^2 - a^2*c^4 + c^6) : :

X(51343) lies on the cubic K1009 and these lines: {2, 9476}, {22, 110}, {25, 39265}, {184, 15407}, {251, 16040}, {427, 47105}, {6353, 32649}, {9306, 40810}, {19158, 46594}, {32687, 36417}, {33514, 33651}

X(51343) = X(51324)-cross conjugate of X(385)
X(51343) = X(i)-isoconjugate of X(j) for these (i,j): {1503, 1581}, {1916, 2312}, {1934, 42671}, {1967, 30737}, {17875, 34238}
X(51343) = X(i)-Dao conjugate of X(j) for these (i, j): (8290, 30737), (8623, 15595), (19576, 1503), (39031, 2312)
X(51343) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(16591)}, {{A, B, C, X(22), X(419)}}, {{A, B, C, X(110), X(251)}}, {{A, B, C, X(111), X(38873)}}, {{A, B, C, X(154), X(44089)}}, {{A, B, C, X(385), X(394)}}
X(51343) = barycentric product X(i)*X(j) for these {i,j}: {385, 1297}, {1691, 35140}, {9476, 36213}, {12215, 43717}, {15407, 39931}, {17941, 34212}, {24284, 44770}
X(51343) = barycentric quotient X(i)/X(j) for these {i,j}: {385, 30737}, {1297, 1916}, {1691, 1503}, {1933, 2312}, {14382, 51257}, {14602, 42671}, {35140, 18896}, {36213, 15595}, {44089, 16318}, {51324, 132}


X(51344) = X(2)X(43188)∩X(25)X(385)

Barycentrics a^8*b^4 - 2*a^6*b^6 + a^4*b^8 - 4*a^8*b^2*c^2 + 4*a^6*b^4*c^2 + a^8*c^4 + 4*a^6*b^2*c^4 - 5*a^4*b^4*c^4 - b^8*c^4 - 2*a^6*c^6 + 2*b^6*c^6 + a^4*c^8 - b^4*c^8 : :

X(51344) lies on the cubic K1009 and these lines: {2, 43188}, {25, 385}, {154, 3164}, {194, 3167}, {394, 401}, {8770, 40815}, {9306, 40807}, {9544, 40642}, {34405, 39359}

X(51344) = anticomplement of the isotomic conjugate of X(9306)
X(51344) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {31, 1899}, {1957, 11442}, {1958, 315}, {1968, 21270}, {1975, 21275}, {2451, 21294}, {9306, 6327}
X(51344) = X(9306)-Ceva conjugate of X(2)


X(51345) = X(3)X(14583)∩X(30)X(74)

Barycentrics (a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(5*a^8 - 14*a^6*b^2 + 12*a^4*b^4 - 2*a^2*b^6 - b^8 - 14*a^6*c^2 + 17*a^4*b^2*c^2 - 7*a^2*b^4*c^2 + 4*b^6*c^2 + 12*a^4*c^4 - 7*a^2*b^2*c^4 - 6*b^4*c^4 - 2*a^2*c^6 + 4*b^2*c^6 - c^8) : :
X(51345) = X[265] - 4 X[476], 3 X[265] - 4 X[5627], 5 X[265] - 8 X[34209], 3 X[476] - X[5627], 5 X[476] - 2 X[34209], 2 X[5627] - 3 X[14993], 5 X[5627] - 6 X[34209], 5 X[14993] - 4 X[34209], 3 X[110] - 2 X[18285], 2 X[11749] - 5 X[15051], X[12121] + 2 X[38580], 2 X[14731] - 5 X[38794], 5 X[38794] - 4 X[45694], 3 X[15035] - 2 X[33855], 3 X[20124] - 4 X[40685], 8 X[38609] - 5 X[38728]

X(51345) lies on the cubic K614 and these lines: {3, 14583}, {30, 74}, {110, 18285}, {186, 18384}, {231, 1989}, {376, 14254}, {457, 16240}, {1138, 1511}, {1319, 50148}, {3830, 39170}, {5054, 14356}, {5961, 37922}, {6344, 35489}, {11586, 36210}, {11749, 15051}, {12028, 44265}, {12121, 38580}, {14560, 22115}, {14731, 38794}, {14851, 38700}, {14980, 37943}, {15035, 33855}, {15681, 51254}, {15743, 36211}, {16168, 38723}, {18318, 18508}, {20124, 40685}, {26700, 38588}, {32417, 36193}, {38582, 41392}, {38609, 38728}

X(51345) = reflection of X(i) in X(j) for these {i,j}: {265, 14993}, {1138, 1511}, {14731, 45694}, {14851, 38700}, {14993, 476}
X(51345) = barycentric quotient X(15782)/X(40604)
X(51345) = {X(46074),X(46078)}-harmonic conjugate of X(1989)


X(51346) = X(3)X(113)∩X(4)X(2693)

Barycentrics (a^2 - b^2 - c^2)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^8 + a^6*b^2 - 4*a^4*b^4 + a^2*b^6 + b^8 - 2*a^6*c^2 + 4*a^4*b^2*c^2 + 4*a^2*b^4*c^2 - 2*b^6*c^2 - 7*a^2*b^2*c^4 + 2*a^2*c^6 + 2*b^2*c^6 - c^8)*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 + a^6*c^2 + 4*a^4*b^2*c^2 - 7*a^2*b^4*c^2 + 2*b^6*c^2 - 4*a^4*c^4 + 4*a^2*b^2*c^4 + a^2*c^6 - 2*b^2*c^6 + c^8) : :

X(51346) lies on the cubic K009 and these lines: {3, 113}, {4, 2693}, {20, 250}, {32, 39008}, {185, 520}, {1650, 11589}, {3163, 3172}, {8431, 18390}, {14249, 18848}, {14385, 15404}, {31945, 44247}, {34156, 39169}, {39170, 39174}, {40948, 51254}, {44240, 47084}

X(51346) = isogonal conjugate of X(38937)
X(51346) = X(22239)-Ceva conjugate of X(9033)
X(51346) = X(i)-isoconjugate of X(j) for these (i,j): {1, 38937}, {2071, 36119}, {2349, 15262}, {34170, 35200}
X(51346) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 38937), (133, 34170), (1511, 2071), (9033, 16177)
X(51346) = intersection, other than A, B, C, of circumconics {A, B, C, X(3), X(30)}, {A, B, C, X(4), X(2777)}, {A, B, C, X(5), X(18508)}, {A, B, C, X(6), X(2935)}, {A, B, C, X(20), X(122)}, {A, B, C, X(32), X(9409)}, {A, B, C, X(54), X(13293)}, {A, B, C, X(64), X(10117)}, {A, B, C, X(68), X(16111)}, {A, B, C, X(69), X(37853)}, {A, B, C, X(74), X(13289)}, {A, B, C, X(113), X(4846)}, {A, B, C, X(185), X(933)} and {A, B, C, X(265), X(20127)}
X(51346) = cevapoint of X(9409) and X(39008)
X(51346) = crosssum of X(2071) and X(12825)
X(51346) = crossdifference of every pair of points on line {15262, 46425}
X(51346) = barycentric product X(i)*X(j) for these {i,j}: {9033, 48373}, {11064, 11744}, {22239, 41077}, {40082, 46106}
X(51346) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 38937}, {1495, 15262}, {1990, 34170}, {3284, 2071}, {9409, 46425}, {11744, 16080}, {22239, 15459}, {39008, 16177}, {40082, 14919}, {47405, 12825}, {48373, 16077}


X(51347) = X(3)X(1661)∩X(4)X(5897)

Barycentrics (a^2 - b^2 - c^2)*(3*a^4 - 2*a^2*b^2 - b^4 - 2*a^2*c^2 + 2*b^2*c^2 - c^4)*(a^8 + 2*a^6*b^2 - 6*a^4*b^4 + 2*a^2*b^6 + b^8 - 2*a^6*c^2 + 6*a^4*b^2*c^2 + 6*a^2*b^4*c^2 - 2*b^6*c^2 - 10*a^2*b^2*c^4 + 2*a^2*c^6 + 2*b^2*c^6 - c^8)*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 + 2*a^6*c^2 + 6*a^4*b^2*c^2 - 10*a^2*b^4*c^2 + 2*b^6*c^2 - 6*a^4*c^4 + 6*a^2*b^2*c^4 + 2*a^2*c^6 - 2*b^2*c^6 + c^8) : :

X(51347) lies on the cubic K009 and these lines: {3, 1661}, {4, 5897}, {32, 39020}, {1249, 41890}, {3348, 12241}, {15261, 34156}, {15394, 41005}, {17409, 40186}, {20207, 31829}, {27089, 35602}, {34233, 44247}, {34853, 39174}

X(51347) = isogonal conjugate of X(39268)
X(51347) = X(30249)-Ceva conjugate of X(8057)
X(51347) = X(184)-cross conjugate of X(1249)
X(51347) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39268}, {75, 17510}, {92, 14390}, {1895, 33583}, {2155, 46927}
X(51347) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 39268), (206, 17510), (8057, 35968), (22391, 14390), (45245, 46927), (45248, 11413)
X(51347) = cevapoint of X(39020) and X(42658)
X(51347) = crosssum of X(14390) and X(17510)
X(51347) = barycentric product X(i)*X(j) for these {i,j}: {18213, 40170}, {20580, 30249}, {37669, 43695}
X(51347) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 39268}, {20, 46927}, {32, 17510}, {184, 14390}, {14642, 33583}, {15905, 11413}, {18213, 14572}, {35602, 2063}, {39020, 35968}, {43695, 459}


X(51348) = X(4)X(20329)∩X(20)X(51261)

Barycentrics (5*a^8 + 12*a^6*b^2 - 34*a^4*b^4 + 12*a^2*b^6 + 5*b^8 - 16*a^6*c^2 + 16*a^4*b^2*c^2 + 16*a^2*b^4*c^2 - 16*b^6*c^2 + 18*a^4*c^4 - 20*a^2*b^2*c^4 + 18*b^4*c^4 - 8*a^2*c^6 - 8*b^2*c^6 + c^8)*(5*a^8 - 16*a^6*b^2 + 18*a^4*b^4 - 8*a^2*b^6 + b^8 + 12*a^6*c^2 + 16*a^4*b^2*c^2 - 20*a^2*b^4*c^2 - 8*b^6*c^2 - 34*a^4*c^4 + 16*a^2*b^2*c^4 + 18*b^4*c^4 + 12*a^2*c^6 - 16*b^2*c^6 + 5*c^8) : :

X(51348) lies on the cubic K032 and these lines: {4, 20329}, {20, 51261}, {1249, 3522}, {1657, 33702}, {3346, 15105}, {3523, 14249}, {5059, 33893}, {5068, 20203}, {5930, 9778}, {10152, 49135}, {33897, 34186}

X(51348) = isotomic conjugate of the anticomplement of X(33630)
X(51348) = X(33630)-cross conjugate of X(2)


X(51349) = X(4)X(476)∩X(30)X(15469)

Barycentrics (a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^8 - a^4*b^4 - 2*a^2*b^6 + 2*b^8 - 4*a^6*c^2 + 4*a^2*b^4*c^2 - 2*b^6*c^2 + 6*a^4*c^4 - b^4*c^4 - 4*a^2*c^6 + c^8)*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 - a^4*c^4 + 4*a^2*b^2*c^4 - b^4*c^4 - 2*a^2*c^6 - 2*b^2*c^6 + 2*c^8) : :

X(51349) lies on the cubic K1280 and these lines: {4, 476}, {30, 15469}, {265, 523}, {477, 15396}, {1138, 34312}, {1990, 41392}, {3258, 15454}, {41512, 46045}

X(51349) = reflection of X(i) in X(j) for these {i,j}: {476, 39170}, {15454, 3258}
X(51349) = isogonal conjugate of X(15468)
X(51349) = antigonal image of X(15454)
X(51349) = symgonal image of X(39170)
X(51349) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(30)}}, {{A, B, C, X(113), X(115)}}, {{A, B, C, X(265), X(476)}} X(51349) = X(i)-isoconjugate of X(j) for these (i,j): {1, 15468}, {6149, 34150}
X(51349) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 15468), (14993, 34150), (39170, 17702)
X(51349) = barycentric product X(i)*X(j) for these {i,j}: {94, 15469}, {35189, 41079}
X(51349) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 15468}, {1989, 34150}, {14583, 3018}, {15469, 323}, {32711, 1304}, {35189, 44769}, {41392, 7471}


X(51350) = EULER LINE INTERCEPT OF X(287)X(3098)

Barycentrics    2*a^8+b^2*c^2*(b^2-c^2)^2-5*a^6*(b^2+c^2)-a^2*(b^2-c^2)*(b^4-c^4)+a^4*(4*b^4+3*b^2*c^2+4*c^4) : :

See Ivan Pavlov, euclid 5367.

X(51350) lies on these lines: {2, 3}, {69, 40897}, {97, 46717}, {99, 40870}, {182, 47740}, {187, 40814}, {264, 22052}, {287, 3098}, {290, 35178}, {394, 36617}, {577, 648}, {1993, 7783}, {3284, 47383}, {5012, 32522}, {6194, 46806}, {7709, 34396}, {7782, 36212}, {7904, 37636}, {8588, 41254}, {10979, 36794}, {14810, 42313}, {15595, 48892}, {20477, 36748}, {40867, 46264}

X(51350) = barycentric product X(75)*X(51299)
X(51350) = trilinear product X(2)*X(51299)
X(51350) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(38256)}} and {{A, B, C, X(25), X(36617)}}
X(51350) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (3, 401, 2), (3, 35941, 401), (3, 37124, 3523), (7824, 41231, 2)


X(51351) = X(2)X(7)∩X(145)X(279)

Barycentrics    (a+b-c)*(a-b+c)*(a^2+3*b^2-2*b*c+3*c^2-4*a*(b+c)) : :

See Ivan Pavlov, euclid 5367.

X(51351) lies on these lines: {1, 32098}, {2, 7}, {8, 10481}, {10, 32086}, {65, 24797}, {77, 3957}, {85, 3617}, {145, 279}, {200, 7271}, {241, 29621}, {269, 3870}, {348, 3622}, {519, 21314}, {948, 24599}, {1088, 4373}, {1323, 3241}, {1418, 3693}, {1434, 11115}, {1536, 36996}, {1788, 24796}, {3160, 3623}, {3161, 30813}, {3485, 24798}, {3600, 30617}, {3621, 9312}, {3663, 9801}, {3664, 10578}, {3668, 4452}, {3672, 14548}, {3679, 20121}, {3744, 3945}, {3873, 34855}, {3999, 4346}, {4059, 5261}, {4188, 38859}, {4328, 4666}, {4350, 34772}, {4355, 19868}, {4678, 31994}, {4712, 39570}, {4847, 31995}, {4862, 11019}, {4888, 13405}, {4904, 7960}, {5708, 36682}, {6605, 25878}, {7190, 29817}, {7232, 25355}, {7274, 10582}, {10405, 20089}, {11036, 36706}, {14828, 37540}, {17079, 31145}, {17093, 32093}, {17170, 20070}, {20014, 25718}, {20052, 25719}, {21453, 30712}, {26531, 30695}, {26690, 45227}, {27086, 38900}, {27541, 40483}, {29583, 39775}, {29627, 51302}, {31130, 40704}, {33298, 46933}, {36606, 36620}, {41004, 50696}

X(51351) = isotomic conjugate of the isogonal conjugate of X(42314)
X(51351) = barycentric product X(i)*X(j) for these {i, j}: {7, 29627}, {75, 51302}, {76, 42314}, {85, 3243}, {279, 10005}
X(51351) = barycentric quotient X(i)/X(j) for these (i, j): (7, 42318), (269, 42315)
X(51351) = trilinear product X(i)*X(j) for these {i, j}: {2, 51302}, {7, 3243}, {57, 29627}, {75, 42314}, {269, 10005}
X(51351) = trilinear quotient X(i)/X(j) for these (i, j): (85, 42318), (279, 42315)
X(51351) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(29627)}} and {{A, B, C, X(9), X(1280)}}
X(51351) = X(i)-isoconjugate-of-X(j) for these {i, j}: {41, 42318}, {220, 42315}
X(51351) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (7, 42318), (269, 42315)
X(51351) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (2, 20059, 10025), (2, 40868, 144), (7, 9436, 2), (8, 10481, 43983), (279, 6604, 145), (9312, 32003, 3621)


X(51352) = X(2)X(7)∩X(220)X(664)

Barycentrics    2*a^4+b*(b-c)^2*c-5*a^3*(b+c)-a*(b-c)*(b^2-c^2)+a^2*(4*b^2+3*b*c+4*c^2) : :

See Ivan Pavlov, euclid 5367.

X(51352) lies on these lines: {2, 7}, {45, 14828}, {85, 43984}, {190, 37658}, {200, 25728}, {220, 664}, {1212, 32100}, {2348, 51052}, {2481, 16816}, {3693, 17336}, {3870, 17261}, {3957, 4704}, {3973, 24600}, {4666, 17120}, {5220, 14942}, {6603, 31169}, {6706, 32088}, {10580, 32912}, {16885, 24352}, {17331, 25006}, {17343, 26593}, {20089, 30625}, {20173, 37652}, {25243, 43989}, {29817, 37677}, {33298, 40483}

X(51352) = barycentric product X(75)*X(51300)
X(51352) = trilinear product X(2)*X(51300)
X(51352) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(40868)}} and {{A, B, C, X(57), X(36601)}}
X(51352) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (2, 144, 40868), (9, 10025, 2), (220, 32024, 3177)


X(51353) = X(1)X(2)∩X(190)X(594)

Barycentrics    a^2-3*b^2-5*b*c-3*c^2-a*(b+c) : :
X(51353) = 3*X(2)-4*X(29610)

See Ivan Pavlov, euclid 5367.

X(51353) lies on these lines: {1, 2}, {86, 4478}, {190, 594}, {192, 4748}, {319, 4670}, {321, 25280}, {335, 4732}, {671, 27797}, {1213, 32101}, {1268, 17390}, {1278, 5232}, {2895, 6539}, {3620, 4772}, {3696, 27495}, {3842, 31308}, {3871, 19237}, {3943, 31144}, {3969, 26044}, {4007, 17248}, {4034, 17368}, {4058, 17261}, {4060, 17319}, {4371, 17383}, {4399, 17307}, {4431, 17252}, {4440, 4665}, {4445, 17300}, {4470, 50133}, {4473, 17330}, {4645, 50312}, {4659, 6646}, {4690, 20072}, {4753, 42334}, {4781, 46918}, {4798, 50132}, {4967, 17287}, {5224, 17318}, {5564, 17239}, {5690, 6999}, {5790, 7384}, {6707, 32089}, {8025, 32004}, {12531, 24583}, {14433, 26798}, {17228, 28634}, {17236, 32087}, {17238, 42696}, {17275, 17280}, {17277, 48636}, {17278, 48640}, {17305, 50098}, {17317, 28633}, {17325, 50088}, {17343, 31300}, {17372, 28653}, {17391, 36834}, {20337, 31037}, {23905, 41809}, {24349, 31329}, {24628, 33079}, {31314, 49450}, {31319, 49678}, {33888, 49457}, {40480, 48635}, {41847, 50076}, {43990, 46707}, {50223, 50267}

X(51353) = reflection of X(29586) in X(29610)
X(51353) = anticomplement of X(29586)
X(51353) = barycentric product X(75)*X(51294)
X(51353) = trilinear product X(2)*X(51294)
X(51353) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(51294)}} and {{A, B, C, X(2), X(35162)}}
X(51353) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (2, 8, 20016), (2, 20055, 29588), (2, 29616, 29589), (8, 9780, 49488), (8, 29593, 2), (10, 6542, 2), (10, 29615, 6542), (239, 29591, 2), (319, 28604, 20090), (1698, 17389, 29592), (1698, 29592, 2), (2895, 6625, 31064), (3634, 49761, 29580), (3661, 4384, 29587), (4384, 29587, 2), (4665, 17271, 4440), (4668, 17308, 29617), (4967, 17287, 26806), (5564, 17239, 17302), (9780, 29570, 2), (9780, 50079, 29570), (16816, 29611, 2), (17292, 29590, 2), (17292, 50095, 29590), (17294, 29576, 29569), (19875, 29605, 29612), (26801, 27044, 2), (29569, 29576, 2), (29585, 46933, 2), (29586, 29610, 2)


X(51354) = EULER LINE INTERCEPT OF X(648)X(3187)

Barycentrics    (a+b)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6+3*a^2*b*c*(b+c)^2-a*(b+c)*(b^2-c^2)^2+a^3*(b+c)*(b^2+c^2)-a^4*(b^2+b*c+c^2)-2*b*c*(b+c)*(b^3+c^3)) : :

See Ivan Pavlov, euclid 5367.

X(51354) lies on these lines: {2, 3}, {648, 3187}, {26223, 40395}

X(51354) = {X(27), X(447)}-harmonic conjugate of X(2)


X(51355) = X(2)X(7)∩X(664)X(1407)

Barycentrics    (a+b-c)*(a-b+c)*(2*a^4-a^3*(b+c)-b*c*(b+c)^2+a*(b+c)*(b^2+c^2)-a^2*(2*b^2-7*b*c+2*c^2)) : :

See Ivan Pavlov, euclid 5367.

X(51355) lies on these lines: {2, 7}, {664, 1407}, {4398, 43036}, {6180, 24620}, {37684, 39126}

X(51355) = barycentric product X(75)*X(51301)
X(51355) = trilinear product X(2)*X(51301)
X(51355) = {X(57), X(40862)}-harmonic conjugate of X(2)


X(51356) = X(1)X(99)∩X(2)X(6)

Barycentrics    (a+b)*(a+c)*(a^2+b*c+2*a*(b+c)) : :

See Ivan Pavlov, euclid 5367.

X(51356) lies on the cubic K1018 and these lines: {1, 99}, {2, 6}, {7, 40164}, {8, 32004}, {31, 757}, {75, 873}, {115, 50262}, {187, 50264}, {274, 4658}, {316, 49744}, {319, 8013}, {350, 4038}, {551, 6629}, {662, 2280}, {799, 9345}, {892, 24345}, {894, 4037}, {1014, 1403}, {1125, 16480}, {1434, 35915}, {1621, 16679}, {1698, 32014}, {1931, 29570}, {2276, 37128}, {3616, 6626}, {3622, 16527}, {3730, 46194}, {3879, 21085}, {4216, 5937}, {4360, 17140}, {4573, 40719}, {4615, 27922}, {4649, 40734}, {4687, 33766}, {6625, 23903}, {7304, 10436}, {7771, 37522}, {7845, 50266}, {9782, 17169}, {10471, 35615}, {16369, 16826}, {16741, 26234}, {17014, 24378}, {17193, 45221}, {25526, 33297}, {28653, 32864}, {32772, 41851}, {33947, 35916}, {37159, 49743}, {47286, 50185}

X(51356) = isotomic conjugate of the polar conjugate of X(31904)
X(51356) = barycentric product X(i)*X(j) for these {i, j}: {1, 51314}, {69, 31904}, {75, 51311}, {86, 16826}, {99, 28840}, {274, 4649}
X(51356) = barycentric quotient X(i)/X(j) for these (i, j): (58, 25426), (81, 30571), (86, 27483), (110, 28841)
X(51356) = trilinear product X(i)*X(j) for these {i, j}: {2, 51311}, {6, 51314}, {63, 31904}, {81, 16826}, {86, 4649}, {99, 4784}
X(51356) = trilinear quotient X(i)/X(j) for these (i, j): (81, 25426), (86, 30571), (274, 27483), (662, 28841)
X(51356) = trilinear pole of the line {20142, 28840}
X(51356) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(16369)}} and {{A, B, C, X(2), X(16826)}}
X(51356) = X(i)-isoconjugate-of-X(j) for these {i, j}: {37, 25426}, {42, 30571}, {213, 27483}, {661, 28841}
X(51356) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (58, 25426), (81, 30571), (86, 27483), (110, 28841)
X(51356) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (1, 1509, 17103), (2, 20090, 20536), (81, 86, 33295), (81, 2106, 6), (86, 2668, 37632), (86, 17731, 2), (1963, 17379, 27958), (8025, 30941, 86), (40721, 40750, 3570)


X(51357) = X(2)X(11)∩X(666)X(1252)

Barycentrics    (a-b)*(a-c)*(2*a^4+b*(b-c)^2*c-2*a^3*(b+c)+a*(b-c)*(b^2-c^2)-a^2*(b^2-4*b*c+c^2)) : :

See Ivan Pavlov, euclid 5367.

X(51357) lies on these lines: {2, 11}, {101, 47776}, {190, 47772}, {664, 48571}, {666, 1252}, {693, 14589}, {901, 47763}, {4781, 35281}, {4998, 26985}, {5375, 26777}, {6162, 17693}, {7192, 41405}, {14513, 47759}, {43991, 46725}

X(51357) = {X(693), X(14589)}-harmonic conjugate of X(43986)


X(51358) = X(2)X(253)∩X(4)X(3426)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8 + a^6*c^2 + 4*a^4*b^2*c^2 - 3*a^2*b^4*c^2 - 2*b^6*c^2 - 3*a^4*c^4 - 3*a^2*b^2*c^4 + 6*b^4*c^4 + 3*a^2*c^6 - 2*b^2*c^6 - c^8) : :
X(51358) = X[5667] + 3 X[6761], X[5667] - 3 X[40664], 4 X[133] - 3 X[1559], 2 X[1515] - 3 X[1559], X[10152] - 3 X[34170]

X(51358) lies on these lines: {2, 253}, {4, 3426}, {5, 1075}, {20, 41425}, {30, 5667}, {53, 2052}, {92, 16608}, {107, 1503}, {112, 40884}, {125, 6530}, {133, 1515}, {186, 47146}, {196, 445}, {264, 37648}, {287, 20031}, {297, 525}, {323, 15262}, {343, 15466}, {393, 37643}, {394, 46927}, {403, 12079}, {427, 3168}, {436, 11245}, {450, 3564}, {458, 41370}, {468, 41204}, {470, 11542}, {471, 11543}, {472, 43417}, {473, 43416}, {495, 1148}, {496, 7049}, {648, 11064}, {685, 41175}, {858, 35360}, {1304, 47152}, {1495, 47204}, {1513, 47202}, {1585, 13665}, {1586, 13785}, {1853, 42854}, {1941, 16196}, {1990, 14165}, {3087, 11433}, {3146, 3183}, {3176, 3617}, {3462, 3628}, {4240, 46818}, {5094, 41371}, {5554, 25988}, {6225, 6526}, {6247, 14249}, {6331, 6393}, {6523, 12324}, {6524, 23291}, {6525, 32064}, {6716, 34147}, {6776, 37070}, {8794, 26954}, {10152, 15311}, {11331, 41361}, {11547, 26958}, {13450, 26879}, {14363, 20299}, {14461, 32428}, {15005, 17578}, {15258, 35260}, {15312, 34186}, {16264, 34417}, {16813, 46064}, {17907, 37638}, {17923, 18644}, {19772, 44700}, {19773, 44701}, {27377, 37644}, {31510, 47147}, {34289, 43678}, {35474, 47582}, {37765, 44569}, {38294, 47155}, {44576, 46808}, {45200, 46717}

X(51358) = midpoint of X(6761) and X(40664)
X(51358) = reflection of X(i) in X(j) for these {i,j}: {1304, 47152}, {1515, 133}, {15459, 1990}, {31510, 47147}, {34147, X(51358) = 6716}
X(51358) = polar conjugate of X(1294)
X(51358) = polar conjugate of the isogonal conjugate of X(6000)
X(51358) = X(5897)-anticomplementary conjugate of X(4329)
X(51358) = X(1494)-Ceva conjugate of X(4)
X(51358) = X(i)-isoconjugate of X(j) for these (i,j): {48, 1294}, {162, 2430}, {163, 43701}, {2173, 15404}, {2416, 32676}, {32320, 36043}
X(51358) = X(i)-Dao conjugate of X(j) for these (i, j): (115, 43701), (125, 2430), (1249, 1294), (1990, 30), (15526, 2416), (35579, 32320), (36896, 15404), (44436, 11064), (50937, 6)
X(51358) = cevapoint of X(i) and X(j) for these (i,j): {1249, 5667}, {1990, 15311}
X(51358) = crosspoint of X(2052) and X(16080)
X(51358) = crosssum of X(i) and X(j) for these (i,j): {577, 3284}, {1636, 47409}
X(51358) = trilinear pole of line {133, 50937}
X(51358) = crossdifference of every pair of points on line {184, 2430}
X(51358) = barycentric product X(i)*X(j) for these {i,j}: {133, 1494}, {253, 1559}, {264, 6000}, {525, 2404}, {850, 46587}, {1515, 36889}, {2052, 44436}, {2442, 3267}, {6530, 36893}
X(51358) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 1294}, {74, 15404}, {133, 30}, {523, 43701}, {525, 2416}, {647, 2430}, {1301, 46968}, {1515, 376}, {1559, 20}, {2404, 648}, {2442, 112}, {6000, 3}, {6529, 32646}, {36126, 36043}, {36893, 6394}, {39376, 50464}, {44436, 394}, {46587, 110}, {47433, 3284}, {50937, 15311}
X(51358) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {53, 13567, 43462}, {133, 1515, 1559}, {459, 14361, 2}, {858, 35360, 44704}, {1990, 47296, 14165}, {2052, 43462, 53}, {3580, 46106, 297}, {5523, 50188, 297}, {14165, 16080, 47296}


X(51359) = X(1)X(406)∩X(4)X(57)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^5*b - a^4*b^2 - 2*a^3*b^3 + 2*a^2*b^4 + a*b^5 - b^6 + a^5*c + 2*a^3*b^2*c - 3*a*b^4*c - a^4*c^2 + 2*a^3*b*c^2 - 4*a^2*b^2*c^2 + 2*a*b^3*c^2 + b^4*c^2 - 2*a^3*c^3 + 2*a*b^2*c^3 + 2*a^2*c^4 - 3*a*b*c^4 + b^2*c^4 + a*c^5 - c^6) : :

X(51359) lies on these lines: {1, 406}, {4, 57}, {10, 459}, {11, 1875}, {33, 18391}, {34, 3086}, {108, 515}, {158, 225}, {186, 17010}, {204, 461}, {235, 1426}, {240, 522}, {318, 24982}, {393, 24005}, {429, 40952}, {451, 13411}, {519, 15500}, {938, 4194}, {950, 7412}, {1119, 24213}, {1249, 20262}, {1319, 23711}, {1421, 1870}, {1498, 10361}, {1512, 45766}, {1528, 6001}, {1753, 1788}, {1767, 14647}, {1783, 40869}, {1845, 30384}, {1848, 1905}, {1877, 36110}, {1878, 6075}, {1890, 15299}, {1891, 11399}, {1895, 6734}, {1897, 6735}, {2883, 15498}, {3194, 17188}, {3911, 37305}, {4200, 5704}, {4304, 37441}, {5081, 26015}, {5657, 40971}, {5728, 37321}, {12616, 14257}, {15633, 36121}, {30686, 50195}, {33305, 46974}, {37410, 44695}

X(51359) = reflection of X(1528) in X(25640)
X(51359) = X(34234)-Ceva conjugate of X(19)
X(51359) = X(i)-isoconjugate of X(j) for these (i,j): {3, 1295}, {517, 15405}, {651, 2431}, {1415, 2417}, {36059, 43737}
X(51359) = X(i)-Dao conjugate of X(j) for these (i, j): (1146, 2417), (14571, 908), (20620, 43737), (36103, 1295), (38991, 2431)
X(51359) = crosspoint of X(158) and X(36123)
X(51359) = crosssum of X(255) and X(22350)
X(51359) = crossdifference of every pair of points on line {48, 2431}
X(51359) = barycentric product X(i)*X(j) for these {i,j}: {92, 6001}, {189, 1528}, {318, 43058}, {522, 2405}, {653, 14312}, {1577, 7435}, {2443, 35519}, {25640, 34234}
X(51359) = barycentric quotient X(i)/X(j) for these {i,j}: {19, 1295}, {522, 2417}, {663, 2431}, {909, 15405}, {1528, 329}, {2405, 664}, {2443, 109}, {3064, 43737}, {6001, 63}, {7435, 662}, {14312, 6332}, {25640, 908}, {43058, 77}, {47434, 22350}
X(51359) = {X(1737),X(1785)}-harmonic conjugate of X(1861)


X(51360) = X(2)X(3098)∩X(30)X(113)

Barycentrics    (b^2 + c^2)*(-2*a^4 + a^2*b^2 + b^4 + a^2*c^2 - 2*b^2*c^2 + c^4) : :
X(51360) = 2 X[113] - 3 X[1568], 2 X[1495] - 3 X[5642], X[1495] - 3 X[13857], 5 X[1495] - 6 X[35266], X[1533] - 3 X[1568], 3 X[5642] - 4 X[11064], 5 X[5642] - 4 X[35266], 2 X[11064] - 3 X[13857], and many others

X(51360) lies on these lines: {2, 3098}, {3, 3574}, {4, 5651}, {5, 5650}, {6, 31152}, {20, 35268}, {22, 48880}, {23, 5972}, {25, 48910}, {30, 113}, {38, 17055}, {51, 1368}, {110, 5189}, {115, 3231}, {122, 852}, {125, 511}, {126, 2679}, {141, 427}, {182, 16063}, {184, 1370}, {186, 15473}, {193, 1899}, {195, 18128}, {265, 37496}, {323, 542}, {373, 5480}, {376, 18388}, {382, 35259}, {394, 11550}, {468, 29181}, {524, 47155}, {546, 35283}, {550, 13394}, {576, 18911}, {578, 47528}, {623, 33500}, {624, 33498}, {625, 2450}, {826, 2474}, {1092, 14790}, {1154, 10264}, {1209, 10627}, {1350, 5094}, {1352, 31099}, {1503, 3292}, {1594, 15644}, {1657, 5448}, {1853, 34777}, {1995, 48901}, {2070, 14156}, {2071, 37853}, {2393, 32114}, {2777, 7464}, {2937, 43839}, {2979, 7703}, {3060, 31101}, {3153, 10733}, {3284, 6793}, {3448, 5965}, {3520, 35240}, {3529, 35260}, {3564, 47315}, {3581, 6699}, {3589, 43957}, {3618, 7386}, {3818, 15066}, {3819, 5133}, {4563, 5207}, {4576, 46157}, {5025, 35275}, {5064, 17811}, {5092, 14389}, {5159, 32269}, {5169, 7998}, {5181, 8705}, {5254, 40130}, {5446, 37452}, {5447, 5576}, {5449, 37484}, {5562, 23335}, {5999, 47200}, {6053, 12112}, {6090, 36990}, {6247, 45187}, {6388, 20977}, {6636, 32598}, {6643, 11424}, {6677, 44106}, {6723, 30745}, {6781, 8627}, {6791, 39602}, {6800, 48898}, {7391, 9306}, {7484, 47355}, {7492, 48885}, {7493, 48873}, {7495, 14810}, {7500, 44082}, {7519, 48904}, {7540, 43586}, {7556, 10182}, {7574, 15136}, {7575, 38793}, {7667, 22352}, {7728, 35001}, {7790, 37190}, {8889, 43653}, {9140, 37779}, {9218, 9514}, {9855, 35295}, {10263, 43817}, {10300, 18583}, {10301, 51163}, {10619, 34148}, {10625, 13371}, {10691, 37649}, {11178, 31105}, {11202, 44831}, {11245, 32455}, {11412, 20299}, {11477, 26869}, {11585, 45186}, {11591, 18488}, {11645, 40112}, {11649, 12827}, {11793, 15559}, {11799, 36518}, {12036, 31173}, {12295, 18572}, {12383, 18400}, {12901, 18859}, {13160, 13348}, {13346, 21659}, {13352, 14791}, {13391, 20304}, {13399, 13754}, {13414, 14808}, {13415, 14807}, {13434, 44862}, {13564, 44516}, {13567, 21969}, {14003, 30270}, {14157, 20125}, {14165, 35474}, {14467, 47286}, {14561, 22112}, {14643, 37924}, {14915, 15063}, {15072, 36852}, {15080, 48892}, {15122, 32110}, {15131, 32227}, {15311, 47091}, {15360, 45311}, {15448, 37899}, {15760, 36987}, {16051, 51212}, {16111, 37950}, {16275, 37894}, {17810, 31255}, {18281, 37478}, {18325, 46686}, {18390, 31180}, {18474, 31181}, {18860, 47526}, {19510, 32113}, {20021, 31125}, {20725, 47337}, {21531, 47638}, {21663, 47090}, {21970, 30771}, {22115, 44407}, {23217, 44886}, {23315, 41603}, {26864, 48905}, {26883, 34938}, {27553, 48897}, {27685, 48883}, {30436, 48887}, {31107, 46900}, {31383, 37669}, {31857, 33884}, {31860, 47597}, {32142, 33332}, {32225, 47097}, {32237, 37900}, {32257, 41721}, {32267, 37901}, {32966, 35288}, {33256, 35301}, {33260, 35277}, {33533, 44287}, {33878, 37638}, {34565, 45298}, {34603, 48943}, {34750, 41602}, {35254, 44218}, {35282, 37916}, {35452, 38790}, {35912, 43768}, {35933, 38736}, {36185, 40855}, {36186, 40854}, {37119, 46728}, {37517, 37644}, {37952, 48375}, {37967, 38795}, {38317, 40916}, {38749, 50706}, {41254, 43453}, {44109, 48906}, {44210, 48881}, {44231, 44436}, {44863, 50139}, {45303, 48876}, {46147, 46155}

X(51360) = midpoint of X(i) and X(j) for these {i,j}: {4, 43576}, {110, 5189}, {265, 37496}, {3448, 23061}, {7574, 37477}, {7728, 35001}, {40112, 47314}, {43574, 46450}
X(51360) = reflection of X(i) in X(j) for these {i,j}: {23, 5972}, {125, 858}, {1495, 11064}, {1533, 113}, {2070, 14156}, {3581, 6699}, {5642, 13857}, {12112, 6053}, {12295, 18572}, {13202, 1531}, {15107, 32223}, {15360, 45311}, {16111, 37950}, {16163, 10564}, {18325, 46686}, {20725, 47337}, {21663, 47090}, {24981, 3292}, {32110, 15122}, {32113, 19510}, {32225, 47097}, {32269, 5159}, {37899, 15448}, {37900, 32237}, {37901, 32267}, {41583, 141}, {41586, 125}, {41603, 23315}, {41721, 32257}, {47582, 47296}
X(51360) = complement of X(15107)
X(51360) = anticomplement of X(32223)
X(51360) = reflection of X(3258) in the De Longchamps axis
X(51360) = X(i)-Ceva conjugate of X(j) for these (i,j): {2420, 9033}, {46155, 826}
X(51360) = crosspoint of X(30) and X(3260)
X(51360) = crosssum of X(74) and X(40352)
X(51360) = crossdifference of every pair of points on line {251, 2433}
X(51360) = X(i)-isoconjugate of X(j) for these (i,j): {74, 82}, {83, 2159}, {251, 2349}, {1176, 36119}, {1494, 46289}, {2394, 34072}, {2433, 4599}, {3112, 40352}, {4580, 36131}, {8749, 34055}, {18070, 32640}, {32085, 35200}, {33805, 46288}
X(51360) = X(i)-Dao conjugate of X(j) for these (i, j): (39, 1494), (133, 32085), (141, 74), (1511, 1176), (3124, 2433), (3163, 83), (15449, 2394), (34452, 40352), (39008, 4580), (40585, 2349), (40938, 16080)
X(51360) = barycentric product X(i)*X(j) for these {i,j}: {30, 141}, {38, 14206}, {39, 3260}, {427, 11064}, {826, 2407}, {1235, 3284}, {1495, 8024}, {1634, 41079}, {1637, 4576}, {1930, 2173}, {1964, 46234}, {1990, 3933}, {2420, 23285}, {2525, 4240}, {2530, 42716}, {3665, 7359}, {3703, 6357}, {3917, 46106}, {4568, 11125}, {5642, 31125}, {5664, 46155}, {7813, 9214}, {9033, 41676}, {13857, 23297}, {15523, 18653}, {36789, 46147}, {41077, 46151}
X(51360) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 83}, {38, 2349}, {39, 74}, {141, 1494}, {427, 16080}, {826, 2394}, {1495, 251}, {1634, 44769}, {1843, 8749}, {1930, 33805}, {1964, 2159}, {1990, 32085}, {2173, 82}, {2407, 4577}, {2420, 827}, {2525, 34767}, {3005, 2433}, {3051, 40352}, {3260, 308}, {3284, 1176}, {3688, 15627}, {3917, 14919}, {4020, 35200}, {4240, 42396}, {6793, 21458}, {7813, 36890}, {8041, 46147}, {9033, 4580}, {9406, 46289}, {9407, 46288}, {11064, 1799}, {11125, 10566}, {13857, 10130}, {14206, 3112}, {14398, 18105}, {14399, 18108}, {17442, 36119}, {20775, 18877}, {27369, 40354}, {33299, 44693}, {35319, 36831}, {35325, 1304}, {36035, 18070}, {39691, 12079}, {41676, 16077}, {43768, 39287}, {46106, 46104}, {46147, 40384}, {46151, 15459}, {46154, 9139}, {46155, 39290}, {46234, 18833}
X(51360) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15107, 32223}, {2, 31670, 34417}, {394, 34609, 11550}, {1368, 21850, 37648}, {1370, 37645, 46264}, {1495, 11064, 5642}, {1495, 13857, 11064}, {1533, 1568, 113}, {2979, 31074, 21243}, {5169, 7998, 24206}, {5480, 30739, 373}, {7667, 23292, 22352}, {13346, 37444, 21659}, {14499, 14500, 5642}, {14561, 46336, 22112}, {15066, 31133, 3818}, {15122, 32110, 38727}, {21850, 37648, 51}, {34148, 44829, 10619}, {37645, 46264, 184}, {37669, 44442, 31383}, {46166, 46167, 3917}, {47097, 47582, 47296}, {47296, 47582, 32225}


X(51361) = X(1)X(227)∩X(19)X(25)

Barycentrics    a*(a - b - c)*(2*a^4 - a^3*b - a^2*b^2 + a*b^3 - b^4 - a^3*c + 2*a^2*b*c - a*b^2*c - a^2*c^2 - a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4) : :
X(51361) = X[10703] - 3 X[45272], 3 X[1455] - 4 X[11700], 2 X[11700] - 3 X[46974]

X(51361) lies on these lines: {1, 227}, {8, 27379}, {10, 7515}, {11, 1279}, {12, 37368}, {19, 25}, {31, 1864}, {35, 9590}, {40, 1854}, {42, 21860}, {44, 2342}, {100, 3100}, {102, 517}, {109, 971}, {117, 515}, {171, 10391}, {200, 219}, {210, 212}, {221, 1490}, {225, 6253}, {241, 18461}, {255, 14872}, {497, 3744}, {516, 16870}, {518, 1936}, {603, 12680}, {650, 663}, {692, 10535}, {750, 17603}, {902, 2310}, {919, 28071}, {950, 5266}, {976, 3057}, {990, 37541}, {1001, 9817}, {1012, 36985}, {1040, 1376}, {1062, 11499}, {1071, 1771}, {1100, 21854}, {1104, 1837}, {1155, 7004}, {1319, 33646}, {1331, 17615}, {1364, 8679}, {1456, 2635}, {1754, 41539}, {1785, 5842}, {1861, 25968}, {2077, 10016}, {2177, 4336}, {2646, 27622}, {2654, 37080}, {2968, 50366}, {3052, 30223}, {3072, 44547}, {3075, 12675}, {3085, 37799}, {3465, 6001}, {3486, 37539}, {3683, 7069}, {3745, 14547}, {3752, 11502}, {3938, 17642}, {4318, 36002}, {4640, 24430}, {4849, 19354}, {4864, 18839}, {5048, 17460}, {5264, 12711}, {5269, 10382}, {5440, 22306}, {5711, 10393}, {5787, 34030}, {6198, 11491}, {6796, 17102}, {7078, 17857}, {7124, 46830}, {7580, 8270}, {8144, 32141}, {9628, 14882}, {10149, 47185}, {10267, 37696}, {10394, 17126}, {10571, 20324}, {10830, 26357}, {11429, 20986}, {13405, 40960}, {14827, 20310}, {15622, 22341}, {17613, 23703}, {18340, 28160}, {18455, 18524}, {18491, 37697}, {19541, 34036}, {20962, 40172}, {21334, 22282}, {22276, 44707}, {26014, 40861}, {27542, 32850}, {28052, 28053}, {30284, 37633}, {33129, 45043}, {40962, 40970}

X(51361) = reflection of X(i) in X(j) for these {i,j}: {1455, 46974}, {1535, 117}, {2968, 50366}, {38357, 16870}
X(51361) = X(i)-Ceva conjugate of X(j) for these (i,j): {515, 2182}, {517, 44}, {1807, 37}, {2222, 650}, {34242, 14737}
X(51361) = crosspoint of X(80) and X(281)
X(51361) = crosssum of X(i) and X(j) for these (i,j): {1, 1465}, {36, 222}, {57, 1455}, {10015, 38357}
X(51361) = crossdifference of every pair of points on line {57, 905}
X(51361) = X(i)-isoconjugate of X(j) for these (i,j): {7, 102}, {56, 34393}, {57, 36100}, {77, 36121}, {85, 32677}, {273, 36055}, {279, 15629}, {658, 2432}, {693, 36040}, {1461, 2399}, {3261, 32643}, {4025, 36067}, {7339, 15633}, {15413, 32667}
X(51361) = X(i)-Dao conjugate of X(j) for these (i, j): (1, 34393), (5452, 36100), (6608, 15633), (10017, 693), (23986, 85), (35508, 2399), (36944, 18816), (46974, 320), (51221, 273)
X(51361) = barycentric product X(i)*X(j) for these {i,j}: {8, 2182}, {9, 515}, {41, 35516}, {78, 8755}, {101, 14304}, {200, 34050}, {281, 46974}, {346, 1455}, {663, 42718}, {1783, 39471}, {1897, 46391}, {2406, 3900}, {2425, 4397}, {7452, 8611}, {11700, 36910}, {15629, 24034}
X(51361) = barycentric quotient X(i)/X(j) for these {i,j}: {9, 34393}, {41, 102}, {55, 36100}, {515, 85}, {607, 36121}, {1253, 15629}, {1455, 279}, {2175, 32677}, {2182, 7}, {2406, 4569}, {2425, 934}, {3119, 15633}, {3900, 2399}, {8641, 2432}, {8755, 273}, {11700, 17078}, {14304, 3261}, {23987, 13149}, {32739, 36040}, {34050, 1088}, {35516, 20567}, {39471, 15413}, {40972, 46359}, {42076, 34050}, {42718, 4572}, {46391, 4025}, {46974, 348}
X(51361) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 11500, 227}, {1, 44425, 1465}, {100, 3100, 9371}, {200, 7070, 7074}


X(51362) = X(1)X(31246)∩X(10)X(141)

Barycentrics    (a - 2*b - 2*c)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :
X(51362) = X[908] + 3 X[6735], X[908] - 3 X[17757], X[1145] - 3 X[6735], X[1145] + 3 X[17757], 3 X[5123] - 2 X[6702], 3 X[3679] + X[4867], 3 X[3679] - X[36920], 3 X[3814] - X[21630], 3 X[7743] - 2 X[21630], 3 X[4511] + X[12531], 3 X[5048] - X[26726], 3 X[5176] + X[6224], 3 X[5440] - X[6224], X[5541] + 3 X[31160], 3 X[6174] - X[21578], X[26015] - 3 X[34122]

X(51362) lies on these lines: {1, 31246}, {4, 5828}, {5, 6736}, {8, 3090}, {10, 141}, {12, 13601}, {40, 22792}, {63, 50821}, {72, 6937}, {78, 46920}, {80, 3689}, {100, 28160}, {119, 517}, {144, 5657}, {145, 17619}, {153, 17613}, {200, 5790}, {329, 3654}, {355, 6847}, {480, 5587}, {515, 9945}, {516, 38757}, {519, 1387}, {529, 5122}, {944, 27525}, {952, 6745}, {956, 11231}, {971, 37725}, {999, 31190}, {1000, 5328}, {1155, 12763}, {1329, 9957}, {1385, 5552}, {1466, 9578}, {1656, 4853}, {1698, 3304}, {1706, 9654}, {2099, 3679}, {2136, 9669}, {2771, 17615}, {2802, 5087}, {3035, 5126}, {3421, 5744}, {3434, 38140}, {3436, 3579}, {3555, 25005}, {3621, 7705}, {3632, 17606}, {3656, 5748}, {3660, 10956}, {3698, 3824}, {3753, 31019}, {3814, 3880}, {3816, 49626}, {3820, 5316}, {3871, 31795}, {3872, 11230}, {3893, 7741}, {3895, 17556}, {4187, 31792}, {4315, 17564}, {4511, 12531}, {4652, 31447}, {4770, 4777}, {4847, 38042}, {4864, 6788}, {4928, 14077}, {5044, 10039}, {5045, 24982}, {5048, 26726}, {5049, 17051}, {5080, 28146}, {5119, 31141}, {5176, 5440}, {5223, 44785}, {5436, 31480}, {5541, 31160}, {5687, 18480}, {5690, 21075}, {5722, 34619}, {5726, 17528}, {5853, 12019}, {5903, 37829}, {6174, 21578}, {7988, 11525}, {8256, 21077}, {9623, 31479}, {9708, 31434}, {9955, 10914}, {10106, 47742}, {10593, 21627}, {10713, 41310}, {10942, 31788}, {12751, 50371}, {13528, 33898}, {14526, 21677}, {15178, 27385}, {16610, 24222}, {18242, 31798}, {18391, 36867}, {20060, 31776}, {21060, 38127}, {21290, 32851}, {24474, 46677}, {24870, 31138}, {24928, 26364}, {24929, 45701}, {25006, 38058}, {25405, 38455}, {25681, 49169}, {26015, 34122}, {27383, 37727}, {27757, 36919}, {28534, 50841}, {30144, 32537}, {37582, 37828}

X(51362) = midpoint of X(i) and X(j) for these {i,j}: {80, 3689}, {153, 17613}, {908, 1145}, {4867, 36920}, {5176, 5440}, {5223, 44785}, {6735, 17757}, {12751, 50371}
X(51362) = reflection of X(i) in X(j) for these {i,j}: {1538, 119}, {5126, 3035}, {7743, 3814}
X(51362) = X(i)-complementary conjugate of X(j) for these (i,j): {106, 40587}, {1000, 121}, {34446, 4370}, {36596, 1329}
X(51362) = X(27757)-Ceva conjugate of X(4908)
X(51362) = X(i)-isoconjugate of X(j) for these (i,j): {89, 909}, {104, 2163}, {2364, 34051}, {2401, 34073}, {2423, 4604}, {28607, 34234}, {34858, 39704}
X(51362) = X(i)-Dao conjugate of X(j) for these (i, j): (1145, 2320), (16586, 39704), (23980, 89), (36911, 34234), (36912, 36944), (40587, 104), (40613, 2163)
X(51362) = crossdifference of every pair of points on line {2423, 21007}
X(51362) = barycentric product X(i)*X(j) for these {i,j}: {45, 3262}, {517, 4671}, {908, 3679}, {1145, 4945}, {2397, 4777}, {4752, 36038}, {4767, 10015}, {4873, 22464}, {5219, 6735}, {5235, 17757}, {26611, 36921}
X(51362) = barycentric quotient X(i)/X(j) for these {i,j}: {45, 104}, {517, 89}, {908, 39704}, {2099, 34051}, {2177, 909}, {2183, 2163}, {2397, 4597}, {2427, 4588}, {3262, 20569}, {3679, 34234}, {4671, 18816}, {4752, 36037}, {4767, 13136}, {4775, 2423}, {4777, 2401}, {4908, 36944}, {4944, 43728}, {6735, 30608}, {17757, 30588}, {36920, 40218}
X(51362) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 12607, 942}, {908, 6735, 1145}, {1145, 17757, 908}, {1329, 10915, 9957}, {3679, 4867, 36920}, {3679, 5219, 40587}, {3698, 37719, 3824}, {8256, 21077, 50193}, {10039, 21031, 5044}, {10914, 11681, 9955}, {26364, 32049, 24928}


X(51363) = X(6)X(5064)∩X(51)X(53)

Barycentrics    (a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*(2*a^6 - a^4*b^2 - b^6 - a^4*c^2 + b^4*c^2 + b^2*c^4 - c^6) : :
X(51363) = 3 X[6793] - 2 X[8779], 3 X[6793] - 4 X[16318]

X(51363) lies on these lines: {6, 5064}, {51, 53}, {112, 15340}, {115, 3331}, {125, 232}, {132, 1503}, {185, 27376}, {216, 40588}, {217, 3574}, {230, 1495}, {343, 13157}, {381, 41376}, {393, 1899}, {1249, 32064}, {1562, 5523}, {1568, 1625}, {1853, 45141}, {1968, 21659}, {1970, 10619}, {1971, 6103}, {2081, 2600}, {3269, 13399}, {3767, 26883}, {5254, 11381}, {5304, 9993}, {5305, 16655}, {6529, 6761}, {7735, 31383}, {7745, 11572}, {8743, 18381}, {8744, 25739}, {8778, 17845}, {10312, 13419}, {10313, 13236}, {10317, 44407}, {14216, 41361}, {14864, 41366}, {15262, 41738}, {15595, 30737}, {20299, 39575}, {21243, 22240}, {32445, 43831}

X(51363) = midpoint of X(112) and X(15340)
X(51363) = reflection of X(i) in X(j) for these {i,j}: {1562, 5523}, {8779, 16318}
X(51363) = crosssum of X(3) and X(10313)
X(51363) = crossdifference of every pair of points on line {54, 2435}
X(51363) = X(i)-isoconjugate of X(j) for these (i,j): {97, 8767}, {1297, 2167}, {2148, 35140}, {2169, 6330}, {36134, 43673}
X(51363) = X(i)-Dao conjugate of X(j) for these (i, j): (137, 43673), (216, 35140), (14363, 6330), (15450, 2435), (15595, 34386), (23976, 95), (39019, 2419), (39071, 97), (40588, 1297), (50938, 275)
X(51363) = barycentric product X(i)*X(j) for these {i,j}: {5, 1503}, {51, 30737}, {53, 441}, {311, 42671}, {324, 8779}, {343, 16318}, {1154, 43089}, {2312, 14213}, {2409, 6368}, {12077, 34211}, {34156, 39569}
X(51363) = barycentric quotient X(i)/X(j) for these {i,j}: {5, 35140}, {51, 1297}, {53, 6330}, {441, 34386}, {1503, 95}, {2181, 8767}, {2312, 2167}, {2409, 18831}, {2445, 933}, {3199, 43717}, {6368, 2419}, {6793, 43768}, {8779, 97}, {12077, 43673}, {15451, 2435}, {16318, 275}, {21458, 39287}, {23977, 16813}, {30737, 34384}, {39473, 15414}, {42671, 54}, {43089, 46138}
X(51363) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {217, 27371, 3574}, {8779, 16318, 6793}


X(51364) = X(2)X(77)∩X(4)X(7177)

Barycentrics    (a + b - c)*(a - b + c)*(a^4*b - 2*a^3*b^2 + 2*a*b^4 - b^5 + a^4*c + 2*a^3*b*c - 2*a*b^3*c - b^4*c - 2*a^3*c^2 + 2*b^3*c^2 - 2*a*b*c^3 + 2*b^2*c^3 + 2*a*c^4 - b*c^4 - c^5) : :

X(51364) lies on these lines: {2, 77}, {4, 7177}, {7, 1699}, {8, 23244}, {10, 3160}, {11, 34855}, {273, 1088}, {279, 1210}, {307, 31627}, {347, 4847}, {348, 6734}, {515, 934}, {522, 693}, {651, 40869}, {658, 4872}, {664, 6735}, {738, 9581}, {971, 1543}, {1146, 43064}, {1323, 1737}, {1419, 24553}, {1439, 8727}, {1442, 13405}, {1804, 7580}, {1996, 14548}, {2124, 23058}, {3086, 4350}, {5543, 21625}, {5691, 17106}, {6245, 14256}, {6359, 18650}, {6736, 25718}, {7053, 19541}, {7179, 31526}, {7190, 10580}, {8582, 31994}, {9312, 24982}, {15634, 43672}, {24987, 27187}, {25006, 31600}, {26001, 43035}, {33864, 35312}, {34028, 40942}, {34029, 40719}, {38459, 44675}

X(51364) = reflection of X(1543) in X(44993)
X(51364) = X(18025)-Ceva conjugate of X(7)
X(51364) = X(i)-isoconjugate of X(j) for these (i,j): {55, 972}, {2175, 46137}
X(51364) = X(i)-Dao conjugate of X(j) for these (i, j): (223, 972), (35593, 4105), (40593, 46137), (43035, 516), (50930, 33)
X(51364) = cevapoint of X(971) and X(43044)
X(51364) = barycentric product X(i)*X(j) for these {i,j}: {75, 43044}, {85, 971}, {1121, 28344}, {2272, 6063}
X(51364) = barycentric quotient X(i)/X(j) for these {i,j}: {57, 972}, {85, 46137}, {971, 9}, {2272, 55}, {28344, 527}, {42772, 46393}, {43044, 1}
X(51364) = {X(1440),X(5932)}-harmonic conjugate of X(77)


X(51365) = X(1)X(10361)∩X(2)X(34032)

Barycentrics    (a + b - c)*(a - b + c)*(b + c)*(a^5*b - a^4*b^2 - 2*a^3*b^3 + 2*a^2*b^4 + a*b^5 - b^6 + a^5*c + 2*a^3*b^2*c - 3*a*b^4*c - a^4*c^2 + 2*a^3*b*c^2 - 4*a^2*b^2*c^2 + 2*a*b^3*c^2 + b^4*c^2 - 2*a^3*c^3 + 2*a*b^2*c^3 + 2*a^2*c^4 - 3*a*b*c^4 + b^2*c^4 + a*c^5 - c^6) : :

X(51365) lies on these lines: {1, 10361}, {2, 34032}, {57, 5928}, {65, 39579}, {108, 1503}, {109, 33305}, {221, 406}, {223, 17073}, {225, 26955}, {226, 1439}, {278, 13567}, {429, 1425}, {525, 1577}, {651, 11064}, {860, 38955}, {946, 15498}, {1146, 37790}, {1210, 12664}, {1211, 1214}, {1465, 26005}, {1528, 6001}, {1848, 46017}, {1865, 6354}, {1881, 26957}, {2182, 3911}, {2321, 26942}, {3564, 41349}, {3580, 37798}, {4205, 37558}, {4554, 6393}, {5257, 30456}, {5706, 18915}, {6247, 7952}, {7046, 20307}, {10535, 23711}, {20623, 39063}, {23710, 26956}, {25964, 37695}, {26932, 34050}, {37648, 37800}, {37799, 47296}, {40669, 50705}

X(51365) = X(i)-isoconjugate of X(j) for these (i,j): {162, 2431}, {163, 43737}, {284, 1295}, {2417, 32676}, {23090, 36044}
X(51365) = X(i)-Dao conjugate of X(j) for these (i, j): (115, 43737), (125, 2431), (15526, 2417), (35580, 23090), (40590, 1295)
X(51365) = crossdifference of every pair of points on line {2194, 2431}
X(51365) = barycentric product X(i)*X(j) for these {i,j}: {321, 43058}, {525, 2405}, {1441, 6001}, {2443, 3267}, {4566, 14312}
X(51365) = barycentric quotient X(i)/X(j) for these {i,j}: {65, 1295}, {523, 43737}, {525, 2417}, {647, 2431}, {2405, 648}, {2443, 112}, {6001, 21}, {14312, 7253}, {43058, 81}


X(51366) = X(1)X(25964)∩X(10)X(37)

Barycentrics    (b + c)*(-a^2 + b^2 + c^2)*(-2*a^3 + a^2*b + b^3 + a^2*c - b^2*c - b*c^2 + c^3) : :

X(51366) lies on these lines: {1, 25964}, {2, 954}, {3, 26939}, {4, 27508}, {8, 25000}, {10, 37}, {72, 307}, {100, 33305}, {101, 1503}, {118, 516}, {198, 49132}, {228, 440}, {406, 5687}, {461, 17784}, {525, 656}, {860, 17757}, {936, 17306}, {971, 40880}, {1145, 41215}, {1146, 29016}, {1331, 11064}, {1368, 20760}, {1565, 34381}, {1818, 26932}, {1944, 5762}, {2318, 21912}, {3089, 10306}, {3190, 13567}, {3198, 21062}, {3564, 17976}, {3682, 18643}, {4561, 6393}, {5728, 25019}, {5759, 27382}, {5783, 37148}, {5805, 27384}, {6745, 25882}, {6776, 20818}, {7085, 7536}, {7360, 15252}, {7515, 11517}, {7580, 27540}, {8728, 25521}, {13727, 27547}, {16252, 38857}, {16844, 19843}, {17484, 46488}, {19541, 27539}, {21913, 40967}, {22117, 37669}, {23089, 26929}, {23095, 48906}, {23693, 36949}, {24320, 49131}

X(51366) = midpoint of X(101) and X(41327)
X(51366) = reflection of X(i) in X(j) for these {i,j}: {1146, 31897}, {1547, 118}
X(51366) = isotomic conjugate of the polar conjugate of X(17747)
X(51366) = X(i)-isoconjugate of X(j) for these (i,j): {27, 911}, {28, 103}, {58, 36122}, {162, 2424}, {1019, 40116}, {1396, 2338}, {1474, 36101}, {1815, 5317}, {2203, 18025}, {2299, 43736}, {2400, 32676}, {8747, 36056}, {16751, 32701}, {17925, 36039}, {17926, 32668}
X(51366) = X(i)-Dao conjugate of X(j) for these (i, j): (10, 36122), (125, 2424), (226, 43736), (1566, 17925), (15526, 2400), (20622, 8747), (23972, 27), (40591, 103), (40869, 15149), (46095, 58), (50441, 29)
X(51366) = crossdifference of every pair of points on line {1474, 2424}
X(51366) = barycentric product X(i)*X(j) for these {i,j}: {10, 26006}, {69, 17747}, {71, 35517}, {72, 30807}, {306, 516}, {307, 40869}, {525, 2398}, {656, 42719}, {910, 20336}, {1231, 41339}, {2426, 3267}, {3265, 41321}, {3695, 14953}, {3710, 43035}, {3952, 39470}
X(51366) = barycentric quotient X(i)/X(j) for these {i,j}: {37, 36122}, {71, 103}, {72, 36101}, {228, 911}, {306, 18025}, {516, 27}, {525, 2400}, {647, 2424}, {676, 17925}, {910, 28}, {1214, 43736}, {1456, 1396}, {1886, 8747}, {2318, 2338}, {2398, 648}, {2426, 112}, {3234, 4241}, {3682, 1815}, {3990, 36056}, {4055, 32657}, {4466, 15634}, {4557, 40116}, {4574, 677}, {17747, 4}, {26006, 86}, {28346, 423}, {30807, 286}, {35517, 44129}, {39470, 7192}, {40869, 29}, {41321, 107}, {41339, 1172}, {42719, 811}, {50441, 15149}
X(51366) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {198, 50861, 49132}, {228, 21015, 440}, {2318, 21912, 26942}, {4026, 5257, 4205}, {40869, 50441, 1536}


X(51367) = X(2)X(2256)∩X(8)X(5721)

Barycentrics    (b + c)*(-a^2 + b^2 + c^2)*(-(a^2*b) + b^3 - a^2*c + 2*a*b*c - b^2*c - b*c^2 + c^3) : :

X(51367) lies on these lines: {2, 2256}, {8, 5721}, {69, 22129}, {100, 1503}, {119, 517}, {141, 17595}, {192, 26579}, {306, 307}, {313, 321}, {343, 345}, {344, 37648}, {442, 4158}, {525, 14208}, {914, 25083}, {1265, 3617}, {1332, 11064}, {3035, 5137}, {3564, 17977}, {3580, 32849}, {3713, 5739}, {3932, 21920}, {3935, 5846}, {3977, 26932}, {3995, 26609}, {4358, 26005}, {5552, 5706}, {5554, 37614}, {5710, 10528}, {5799, 11681}, {13567, 17776}, {17923, 40863}, {23600, 26872}, {26543, 32779}, {28297, 50043}, {28420, 37638}, {33168, 37636}

X(51367) = reflection of X(i) in X(j) for these {i,j}: {1548, 119}, {5137, 3035}
X(51367) = isotomic conjugate of the polar conjugate of X(17757)
X(51367) = X(i)-isoconjugate of X(j) for these (i,j): {27, 34858}, {28, 909}, {104, 1474}, {162, 2423}, {163, 43933}, {1019, 14776}, {1333, 36123}, {1396, 2342}, {1795, 5317}, {2203, 34234}, {2206, 16082}, {2299, 34051}, {2401, 32676}, {3737, 32702}, {7252, 36110}, {8747, 14578}, {36037, 43925}
X(51367) = X(i)-Dao conjugate of X(j) for these (i, j): (37, 36123), (115, 43933), (125, 2423), (226, 34051), (1145, 1172), (3259, 43925), (15526, 2401), (16586, 27), (23980, 28), (25640, 5317), (39004, 7252), (40591, 909), (40603, 16082), (40613, 1474), (46398, 17925)
X(51367) = crossdifference of every pair of points on line {2203, 2423}
X(51367) = barycentric product X(i)*X(j) for these {i,j}: {69, 17757}, {72, 3262}, {304, 21801}, {306, 908}, {307, 6735}, {313, 22350}, {517, 20336}, {525, 2397}, {1016, 42761}, {2183, 40071}, {2427, 3267}, {3695, 17139}, {3710, 22464}, {8677, 27808}
X(51367) = barycentric quotient X(i)/X(j) for these {i,j}: {10, 36123}, {71, 909}, {72, 104}, {228, 34858}, {306, 34234}, {321, 16082}, {517, 28}, {523, 43933}, {525, 2401}, {647, 2423}, {908, 27}, {1145, 37168}, {1214, 34051}, {1465, 1396}, {1785, 8747}, {2183, 1474}, {2318, 2342}, {2397, 648}, {2427, 112}, {3262, 286}, {3310, 43925}, {3682, 1795}, {3695, 38955}, {3949, 2250}, {3952, 1309}, {3990, 14578}, {4551, 36110}, {4557, 14776}, {4559, 32702}, {4574, 32641}, {6735, 29}, {8677, 3733}, {10015, 17925}, {14571, 5317}, {15632, 4246}, {17757, 4}, {18210, 15635}, {20336, 18816}, {21801, 19}, {21942, 8756}, {22350, 58}, {23067, 2720}, {35014, 18191}, {41389, 4227}, {42752, 42067}, {42759, 2969}, {42761, 1086}

X(51368) = X(2)X(7011)∩X(3)X(388)

Barycentrics    (a + b - c)*(a - b + c)*(b + c)*(a^2 - b^2 - c^2)*(2*a^4 - a^3*b - a^2*b^2 + a*b^3 - b^4 - a^3*c + 2*a^2*b*c - a*b^2*c - a^2*c^2 - a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4) : :

X(51368) lies on these lines: {2, 7011}, {3, 388}, {5, 20764}, {7, 6350}, {12, 18641}, {35, 44244}, {37, 226}, {56, 7515}, {57, 16608}, {108, 33305}, {109, 1503}, {117, 515}, {243, 15252}, {278, 19542}, {496, 38284}, {497, 38288}, {518, 2968}, {525, 8611}, {856, 17757}, {908, 16596}, {1375, 37799}, {1465, 5236}, {1813, 11064}, {3086, 38290}, {3564, 17975}, {3600, 27407}, {5219, 17073}, {5226, 6349}, {5261, 37180}, {5786, 34030}, {5800, 37541}, {8545, 30675}, {10319, 10401}, {12709, 41340}, {14206, 21452}, {15888, 40946}, {17102, 21620}, {22119, 34048}, {26942, 40152}, {37798, 46487}, {45206, 46017}

X(51368) = reflection of X(i) in X(j) for these {i,j}: {243, 15252}, {1549, 117}
X(51368) = X(22383)-complementary conjugate of X(38981)
X(51368) = X(i)-isoconjugate of X(j) for these (i,j): {28, 15629}, {29, 32677}, {102, 1172}, {162, 2432}, {284, 36121}, {1021, 36067}, {2204, 34393}, {2299, 36100}, {2399, 32676}, {7253, 32667}, {8748, 36055}, {17926, 36040}
X(51368) = X(i)-Dao conjugate of X(j) for these (i, j): (125, 2432), (226, 36100), (10017, 17926), (15526, 2399), (23986, 29), (40590, 36121), (40591, 15629), (51221, 8748)
X(51368) = crossdifference of every pair of points on line {2299, 2432}
X(51368) = barycentric product X(i)*X(j) for these {i,j}: {73, 35516}, {306, 34050}, {307, 515}, {525, 2406}, {1231, 2182}, {1441, 46974}, {1455, 20336}, {2425, 3267}, {3265, 23987}, {4566, 39471}, {24018, 24035}
X(51368) = barycentric quotient X(i)/X(j) for these {i,j}: {65, 36121}, {71, 15629}, {73, 102}, {307, 34393}, {515, 29}, {525, 2399}, {647, 2432}, {1214, 36100}, {1409, 32677}, {1455, 28}, {2182, 1172}, {2406, 648}, {2425, 112}, {8755, 8748}, {10017, 14010}, {11700, 17515}, {22341, 36055}, {23987, 107}, {24035, 823}, {34050, 27}, {35516, 44130}, {39471, 7253}, {46391, 1021}, {46974, 21}
X(51368) = {X(12),X(22341)}-harmonic conjugate of X(18641)


X(51369) = X(6)X(21485)∩X(65)X(17103)

Barycentrics    a*(a + b)*(a + c)*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :
X(51369) = 3 X[35297] - 2 X[50361]

X(51369) lies on these lines: {6, 21485}, {65, 17103}, {69, 24523}, {72, 34016}, {76, 37536}, {81, 593}, {86, 1431}, {99, 517}, {110, 2856}, {114, 325}, {183, 37521}, {274, 18180}, {286, 6385}, {314, 35626}, {315, 37482}, {320, 350}, {354, 51356}, {518, 7061}, {620, 5164}, {662, 910}, {758, 6629}, {760, 3110}, {942, 1509}, {960, 6626}, {1078, 5482}, {1414, 1455}, {1755, 1959}, {1975, 10441}, {2106, 3290}, {3027, 17768}, {3125, 16756}, {3185, 44179}, {3263, 4576}, {3873, 17393}, {3917, 37664}, {5045, 33770}, {5208, 8822}, {5752, 7763}, {7381, 18144}, {7769, 34466}, {14131, 43459}, {15488, 32819}, {15635, 17929}, {16735, 18167}, {17172, 37796}, {18178, 33296}, {18191, 33295}, {18827, 20358}, {19623, 34377}, {27958, 43216}, {32004, 34791}, {34371, 40882}, {35297, 50361}

X(51369) = reflection of X(5164) in X(620)
X(51369) = X(7095)-anticomplementary conjugate of X(2895)
X(51369) = X(274)-Ceva conjugate of X(16725)
X(51369) = X(i)-cross conjugate of X(j) for these (i,j): {511, 17209}, {16725, 274}
X(51369) = X(i)-isoconjugate of X(j) for these (i,j): {10, 1976}, {37, 1910}, {42, 98}, {71, 6531}, {101, 2395}, {190, 2422}, {213, 1821}, {228, 36120}, {248, 1826}, {287, 2333}, {290, 1918}, {293, 1824}, {313, 14601}, {878, 1897}, {879, 8750}, {1400, 15628}, {2200, 16081}, {2205, 46273}, {2715, 4024}, {2966, 4079}, {3404, 18098}, {4039, 34238}, {4064, 32696}, {4600, 15630}, {4705, 36084}, {32739, 43665}, {36036, 50487}
X(51369) = X(i)-Dao conjugate of X(j) for these (i, j): (132, 1824), (511, 5360), (1015, 2395), (2679, 50487), (5976, 321), (6626, 1821), (11672, 37), (16609, 7235), (26932, 879), (34021, 290), (34467, 878), (35088, 4036), (38987, 4705), (39039, 1826), (39040, 10), (40582, 15628), (40589, 1910), (40592, 98), (40601, 213), (40619, 43665), (46094, 228), (50440, 210), (50497, 15630)
X(51369) = cevapoint of X(511) and X(1959)
X(51369) = crosssum of X(4455) and X(4516)
X(51369) = trilinear pole of line {16725, 39040}
X(51369) = crossdifference of every pair of points on line {213, 2422}
X(51369) = barycentric product X(i)*X(j) for these {i,j}: {28, 6393}, {58, 46238}, {75, 17209}, {81, 325}, {86, 1959}, {237, 6385}, {240, 17206}, {274, 511}, {286, 36212}, {290, 16725}, {297, 1444}, {310, 1755}, {314, 43034}, {513, 2396}, {593, 42703}, {693, 2421}, {877, 905}, {1434, 44694}, {1437, 44132}, {1790, 40703}, {3261, 23997}, {3405, 16887}, {3569, 4623}, {4230, 15413}, {5968, 16741}, {7192, 42717}, {14966, 40495}, {16696, 20022}, {16756, 36892}
X(51369) = barycentric quotient X(i)/X(j) for these {i,j}: {21, 15628}, {27, 36120}, {28, 6531}, {58, 1910}, {81, 98}, {86, 1821}, {232, 1824}, {237, 213}, {240, 1826}, {274, 290}, {286, 16081}, {297, 41013}, {310, 46273}, {325, 321}, {511, 37}, {513, 2395}, {667, 2422}, {693, 43665}, {877, 6335}, {905, 879}, {1333, 1976}, {1437, 248}, {1444, 287}, {1755, 42}, {1790, 293}, {1959, 10}, {2396, 668}, {2421, 100}, {2491, 50487}, {2799, 4036}, {3121, 15630}, {3289, 228}, {3405, 18082}, {3569, 4705}, {4230, 1783}, {4556, 36084}, {4610, 36036}, {4623, 43187}, {5360, 1500}, {6385, 18024}, {6393, 20336}, {9155, 21839}, {9417, 1918}, {9418, 2205}, {11672, 5360}, {14966, 692}, {15631, 42717}, {16591, 7235}, {16696, 20021}, {16702, 5967}, {16725, 511}, {16726, 43920}, {16756, 36874}, {17187, 3404}, {17206, 336}, {17209, 1}, {18604, 17974}, {22383, 878}, {23997, 101}, {32458, 42703}, {36212, 72}, {42702, 3690}, {42703, 28654}, {42717, 3952}, {43034, 65}, {44114, 21833}, {44694, 2321}, {46238, 313}, {50440, 4037}, {50567, 42713}


X(51370) = X(58)X(86)∩X(99)X(516)

Barycentrics    (a + b)*(a + c)*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :

X(51370) lies on these lines: {58, 86}, {76, 24220}, {99, 516}, {114, 325}, {142, 51314}, {226, 8033}, {274, 1432}, {310, 17167}, {315, 991}, {514, 1921}, {573, 7763}, {620, 20666}, {799, 908}, {873, 5249}, {1738, 2669}, {1959, 46238}, {1975, 48902}, {3006, 4576}, {3120, 17204}, {3403, 30035}, {3912, 24479}, {3926, 10446}, {3933, 48934}, {3936, 16741}, {4416, 27691}, {4573, 34050}, {4610, 18653}, {6337, 48918}, {7304, 40940}, {7750, 48929}, {7752, 48888}, {7773, 48938}, {7776, 48908}, {15634, 17930}, {16591, 43034}, {16705, 17202}, {16748, 17173}, {16891, 17187}, {17103, 50307}, {17171, 44129}, {17182, 31008}, {17197, 30940}, {17203, 18169}, {17731, 34379}, {18827, 24231}, {20335, 40017}, {21246, 29968}, {23636, 29972}, {24210, 39915}, {24239, 32010}, {32816, 48878}, {32819, 48940}

X(51370) = reflection of X(20666) in X(620)
X(51370) = isotomic conjugate of the isogonal conjugate of X(17209)
X(51370) = X(39040)-cross conjugate of X(75)
X(51370) = X(i)-isoconjugate of X(j) for these (i,j): {37, 1976}, {42, 1910}, {98, 213}, {100, 2422}, {228, 6531}, {248, 1824}, {290, 2205}, {293, 2333}, {321, 14601}, {692, 2395}, {878, 1783}, {1402, 15628}, {1821, 1918}, {2200, 36120}, {2715, 4705}, {2966, 50487}, {4079, 36084}, {4567, 15630}, {5360, 41932}, {14600, 41013}
X(51370) = X(i)-Dao conjugate of X(j) for these (i, j): (132, 2333), (325, 4039), (1086, 2395), (5976, 10), (6626, 98), (8054, 2422), (11672, 42), (34021, 1821), (35088, 4024), (38987, 4079), (39006, 878), (39039, 1824), (39040, 37), (40589, 1976), (40592, 1910), (40601, 1918), (40605, 15628), (40618, 879), (40627, 15630), (46094, 2200), (50440, 1334)
X(51370) = cevapoint of X(325) and X(1959)
X(51370) = crosspoint of X(4620) and X(4639)
X(51370) = crossdifference of every pair of points on line {1918, 2422}
X(51370) = barycentric product X(i)*X(j) for these {i,j}: {27, 6393}, {76, 17209}, {81, 46238}, {86, 325}, {274, 1959}, {297, 17206}, {310, 511}, {514, 2396}, {757, 42703}, {877, 4025}, {1444, 40703}, {1755, 6385}, {1790, 44132}, {2421, 3261}, {2799, 4610}, {3405, 16703}, {7199, 42717}, {16725, 46273}, {16887, 20022}, {23997, 40495}, {28660, 43034}, {36212, 44129}
X(51370) = barycentric quotient X(i)/X(j) for these {i,j}: {27, 6531}, {58, 1976}, {81, 1910}, {86, 98}, {232, 2333}, {237, 1918}, {240, 1824}, {274, 1821}, {286, 36120}, {297, 1826}, {310, 290}, {325, 10}, {333, 15628}, {511, 42}, {514, 2395}, {649, 2422}, {868, 21043}, {877, 1897}, {1444, 293}, {1459, 878}, {1755, 213}, {1790, 248}, {1959, 37}, {2206, 14601}, {2396, 190}, {2421, 101}, {2799, 4024}, {3122, 15630}, {3261, 43665}, {3289, 2200}, {3405, 18098}, {3569, 4079}, {4025, 879}, {4230, 8750}, {4556, 2715}, {4610, 2966}, {4623, 36036}, {5360, 872}, {5976, 4039}, {6333, 4064}, {6385, 46273}, {6393, 306}, {6629, 5967}, {9417, 2205}, {14966, 32739}, {16696, 3404}, {16725, 1755}, {16887, 20021}, {17205, 43920}, {17206, 287}, {17209, 6}, {18653, 35906}, {20022, 18082}, {23996, 5360}, {23997, 692}, {36212, 71}, {40703, 41013}, {42703, 1089}, {42717, 1018}, {43034, 1400}, {44129, 16081}, {44694, 210}, {46238, 321}, {50567, 4062}


X(51371) = X(2)X(4121)∩X(54)X(69)

Barycentrics    (b^2 + c^2)*(-(a^2*b^2) + b^4 - a^2*c^2 + c^4) : :
X(51371) = 2 X[141] + X[7813], 2 X[325] + X[50567], 3 X[7799] - X[12215], 4 X[6390] - X[14928], X[11646] + 2 X[14148]

X(51371) lies on these lines: {2, 4121}, {6, 3788}, {39, 141}, {54, 69}, {76, 3399}, {99, 5207}, {114, 325}, {115, 698}, {125, 3266}, {193, 33203}, {305, 21243}, {315, 3098}, {316, 29317}, {524, 1692}, {542, 5152}, {599, 30532}, {620, 1691}, {626, 3094}, {754, 2076}, {826, 23285}, {1007, 14561}, {1350, 7776}, {1352, 3926}, {1503, 6390}, {1506, 24256}, {1570, 44380}, {1975, 3818}, {1992, 33231}, {2024, 15993}, {2482, 10291}, {3492, 8788}, {3564, 12042}, {3589, 7874}, {3618, 32952}, {3619, 7803}, {3763, 7834}, {3819, 45201}, {4048, 7863}, {4175, 8024}, {4576, 46157}, {5017, 7759}, {5028, 7888}, {5039, 7774}, {5103, 5969}, {5111, 14645}, {5477, 13196}, {5921, 32841}, {5972, 37804}, {6033, 35456}, {6337, 46264}, {6388, 48444}, {6723, 37803}, {6776, 32831}, {7749, 8177}, {7750, 14810}, {7752, 18906}, {7762, 41413}, {7768, 35422}, {7773, 48901}, {7779, 10352}, {7782, 48892}, {7788, 50977}, {7795, 13356}, {7802, 48885}, {7809, 19924}, {7820, 42534}, {7838, 12212}, {7852, 34573}, {7906, 32451}, {8041, 16893}, {9306, 34254}, {9744, 10519}, {9865, 45803}, {10008, 32825}, {11178, 32833}, {11179, 32837}, {11646, 14148}, {11898, 50684}, {13354, 48876}, {15595, 34138}, {16925, 41412}, {18553, 32820}, {23098, 44716}, {28419, 44141}, {31670, 32816}, {32006, 48873}, {32819, 48889}, {32821, 34507}, {32823, 51212}, {32830, 40330}, {35377, 39099}, {35389, 37466}, {39569, 44132}, {40123, 43653}, {40708, 40876}

X(51371) = midpoint of X(i) and X(j) for these {i,j}: {99, 5207}, {325, 6393}, {6033, 35456}, {9865, 45803}
X(51371) = reflection of X(i) in X(j) for these {i,j}: {115, 5031}, {1570, 44380}, {1691, 620}, {5477, 13196}, {50567, 6393}
X(51371) = X(2421)-Ceva conjugate of X(6333)
X(51371) = X(i)-isoconjugate of X(j) for these (i,j): {82, 1976}, {98, 46289}, {251, 1910}, {1821, 46288}, {2395, 34072}, {2422, 4599}, {3112, 14601}, {10547, 36120}, {18105, 36084}
X(51371) = X(i)-Dao conjugate of X(j) for these (i, j): (39, 98), (141, 1976), (339, 43665), (441, 21458), (3124, 2422), (5976, 83), (6665, 20021), (11672, 251), (15449, 2395), (34452, 14601), (38987, 18105), (39040, 82), (40585, 1910), (40601, 46288), (40938, 6531), (46094, 10547), (47648, 733)
X(51371) = crosssum of X(1976) and X(14601)
X(51371) = crossdifference of every pair of points on line {2422, 18105}
X(51371) = barycentric product X(i)*X(j) for these {i,j}: {38, 46238}, {141, 325}, {297, 3933}, {427, 6393}, {511, 8024}, {826, 2396}, {877, 2525}, {1235, 36212}, {1930, 1959}, {2421, 23285}, {2799, 4576}, {3917, 44132}, {6333, 41676}, {7794, 20022}, {14994, 46807}, {16696, 42703}, {20021, 32458}, {31125, 50567}, {35540, 40810}, {42717, 48084}
X(51371) = barycentric quotient X(i)/X(j) for these {i,j}: {38, 1910}, {39, 1976}, {141, 98}, {237, 46288}, {297, 32085}, {325, 83}, {427, 6531}, {511, 251}, {732, 40820}, {826, 2395}, {868, 34294}, {877, 42396}, {1235, 16081}, {1634, 2715}, {1755, 46289}, {1930, 1821}, {1959, 82}, {2396, 4577}, {2421, 827}, {2525, 879}, {3005, 2422}, {3051, 14601}, {3289, 10547}, {3313, 11610}, {3569, 18105}, {3703, 15628}, {3917, 248}, {3933, 287}, {4576, 2966}, {6333, 4580}, {6393, 1799}, {7794, 20021}, {7813, 5967}, {8024, 290}, {14966, 4630}, {14994, 46806}, {15595, 21458}, {20021, 41932}, {20775, 14600}, {20883, 36120}, {23285, 43665}, {23997, 34072}, {31125, 9154}, {32458, 20022}, {34138, 16277}, {35325, 32696}, {35540, 14382}, {36212, 1176}, {40810, 733}, {41676, 685}, {44132, 46104}, {46151, 20031}, {46238, 3112}, {46807, 42299}
X(51371) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 7763, 182}, {141, 3933, 14994}, {141, 10007, 6292}, {7752, 18906, 19130}, {7838, 12212, 41623}, {8041, 16893, 21248}, {14501, 14502, 32458}


X(51372) = X(2)X(187)∩X(30)X(113)

Barycentrics    (a^4 - a^2*b^2 - a^2*c^2 - 2*b^2*c^2)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4) : :

X(51372) lies on these lines: {2, 187}, {30, 113}, {32, 41238}, {99, 401}, {114, 47526}, {127, 441}, {183, 458}, {232, 41253}, {287, 39099}, {323, 538}, {325, 40884}, {343, 14929}, {373, 10796}, {385, 41254}, {511, 1316}, {524, 48721}, {543, 40112}, {754, 3580}, {858, 2794}, {868, 13449}, {1007, 37188}, {1993, 7798}, {2407, 3260}, {2453, 10510}, {2549, 37645}, {2782, 3292}, {3199, 28704}, {3288, 23878}, {3734, 15066}, {4045, 14389}, {4226, 18860}, {5107, 35606}, {5112, 5972}, {5651, 35930}, {5915, 37350}, {5999, 35278}, {6593, 11594}, {7766, 40814}, {7809, 44575}, {12042, 21531}, {14165, 40889}, {14581, 46106}, {14957, 42671}, {15013, 44436}, {15980, 47200}, {16321, 41583}, {17941, 39266}, {18502, 21513}, {18907, 37648}, {32110, 36177}, {32225, 34094}, {32456, 35933}, {34217, 37183}, {34986, 39906}, {46981, 47097}

X(51372) = midpoint of X(2453) and X(10510)
X(51372) = reflection of X(i) in X(j) for these {i,j}: {1555, 113}, {5112, 5972}, {32110, 36177}, {32225, 34094}, {41583, 16321}
X(51372) = X(i)-isoconjugate of X(j) for these (i,j): {74, 2186}, {262, 2159}, {263, 2349}, {1494, 3402}, {32112, 36132}, {33805, 46319}, {36119, 43718}
X(51372) = X(i)-Dao conjugate of X(j) for these (i, j): (1511, 43718), (3163, 262), (38997, 2433), (39009, 32112)
X(51372) = crossdifference of every pair of points on line {263, 2433}
X(51372) = barycentric product X(i)*X(j) for these {i,j}: {30, 183}, {182, 3260}, {458, 11064}, {1495, 20023}, {2173, 3403}, {2407, 23878}, {3284, 44144}
X(51372) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 262}, {182, 74}, {183, 1494}, {458, 16080}, {1495, 263}, {2173, 2186}, {2420, 26714}, {3260, 327}, {3284, 43718}, {3288, 2433}, {3403, 33805}, {9406, 3402}, {9407, 46319}, {10311, 8749}, {11064, 42313}, {14096, 46147}, {23878, 2394}, {34396, 40352}, {43768, 42300}
X(51372) = {X(41887),X(41888)}-harmonic conjugate of X(13857)


X(51373) = X(2)X(39)∩X(182)X(183)

Barycentrics    (a^4 - a^2*b^2 - a^2*c^2 - 2*b^2*c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :
X(51373) = 3 X[2] + X[9865], X[76] + 3 X[7799], X[5999] + 3 X[9772], X[1916] - 5 X[7925], X[22564] + 3 X[41136]

X(51373) lies on these lines: {2, 39}, {69, 9744}, {98, 12215}, {99, 5999}, {114, 325}, {182, 183}, {187, 5149}, {216, 40073}, {230, 732}, {232, 44132}, {262, 1007}, {315, 5188}, {316, 40236}, {385, 1692}, {570, 44166}, {620, 736}, {641, 48769}, {642, 48768}, {698, 2023}, {1078, 37455}, {1502, 14767}, {1570, 36849}, {1916, 7925}, {1975, 6248}, {2782, 6390}, {3003, 35549}, {3094, 7778}, {3095, 37071}, {3815, 24256}, {3906, 6333}, {3933, 37451}, {4048, 42535}, {5052, 7774}, {5207, 43460}, {5305, 41651}, {5969, 22110}, {6194, 9742}, {6337, 11257}, {7735, 32451}, {7752, 13862}, {7755, 41756}, {7759, 46321}, {7764, 18806}, {7770, 13356}, {7776, 9821}, {7807, 13357}, {7821, 46283}, {7888, 32452}, {7901, 32476}, {7907, 9983}, {8667, 12151}, {9753, 35439}, {9766, 13330}, {9770, 22486}, {10011, 32515}, {10997, 32456}, {12251, 32818}, {12829, 13196}, {13334, 37450}, {14931, 15301}, {15271, 50659}, {17932, 47382}, {22564, 41136}, {35377, 39093}, {35436, 37466}, {37688, 50652}, {41624, 44500}, {44137, 46271}, {44534, 44771}

X(51373) = midpoint of X(i) and X(j) for these {i,j}: {99, 39266}, {325, 5976}, {9466, 39785}
X(51373) = reflection of X(i) in X(j) for these {i,j}: {2021, 620}, {2023, 44377}
X(51373) = X(40824)-Ceva conjugate of X(32458)
X(51373) = X(i)-isoconjugate of X(j) for these (i,j): {98, 3402}, {263, 1910}, {512, 36132}, {661, 32716}, {798, 6037}, {1821, 46319}, {1976, 2186}, {3404, 42288}
X(51373) = X(i)-Dao conjugate of X(j) for these (i, j): (5976, 262), (11672, 263), (31998, 6037), (33569, 6784), (36830, 32716), (38997, 2422), (39009, 512), (39040, 2186), (39054, 36132), (40601, 46319)
X(51373) = crosspoint of X(183) and X(8842)
X(51373) = crossdifference of every pair of points on line {669, 2422}
X(51373) = barycentric product X(i)*X(j) for these {i,j}: {183, 325}, {458, 6393}, {511, 20023}, {1959, 3403}, {2396, 23878}, {4609, 9420}, {5976, 8842}, {14994, 20022}, {32458, 46806}, {36212, 44144}
X(51373) = barycentric quotient X(i)/X(j) for these {i,j}: {99, 6037}, {110, 32716}, {182, 1976}, {183, 98}, {237, 46319}, {325, 262}, {458, 6531}, {511, 263}, {662, 36132}, {1755, 3402}, {1959, 2186}, {2421, 26714}, {3288, 2422}, {3403, 1821}, {6393, 42313}, {6784, 15630}, {8842, 36897}, {9420, 669}, {14994, 20021}, {20022, 42299}, {20023, 290}, {23878, 2395}, {32458, 46807}, {33569, 2491}, {34396, 14601}, {36212, 43718}, {44144, 16081}, {46806, 41932}
X(51373) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {39, 7874, 6683}, {39, 31239, 7834}, {76, 7763, 39}, {325, 6393, 32458}, {385, 10352, 1692}, {1007, 18906, 262}, {3788, 8149, 39}, {7764, 18806, 46305}, {7769, 32832, 39784}, {7799, 32833, 39785}, {9744, 22712, 13354}, {14994, 15819, 183}, {31276, 32830, 76}, {36849, 39101, 1570}


X(51374) = X(20)X(64)∩X(114)X(325)

Barycentrics    (3*a^2 - b^2 - c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :
X(51374) = 2 X[99] + X[44369], X[325] - 4 X[50567], X[148] - 4 X[44395], X[193] - 4 X[32459], 2 X[1692] - 3 X[35297], X[22329] + 2 X[50639]

X(51374) lies on these lines: {4, 10008}, {6, 16925}, {20, 64}, {76, 48876}, {99, 3564}, {114, 325}, {141, 5025}, {148, 44395}, {183, 10519}, {193, 439}, {230, 46236}, {315, 33878}, {468, 4563}, {524, 2076}, {599, 33017}, {620, 1570}, {670, 17984}, {698, 15993}, {877, 6530}, {1351, 7763}, {1352, 32819}, {1692, 14645}, {2080, 6390}, {2211, 2421}, {2979, 45201}, {3580, 4576}, {3589, 33245}, {3618, 10542}, {3619, 33199}, {3620, 7784}, {3630, 33268}, {3631, 33256}, {3763, 33248}, {3933, 9821}, {5028, 7807}, {5207, 29181}, {7752, 21850}, {7769, 18583}, {7773, 51212}, {7782, 48906}, {7788, 50967}, {7802, 48874}, {8781, 10011}, {9606, 51171}, {14561, 37647}, {15514, 44380}, {22329, 50639}, {30262, 41005}, {32113, 36792}, {33254, 40341}, {35265, 38940}

X(51374) = reflection of X(i) in X(j) for these {i,j}: {325, 6393}, {1570, 620}, {6393, 50567}, {15514, 44380}
X(51374) = X(297)-Ceva conjugate of X(325)
X(51374) = X(i)-isoconjugate of X(j) for these (i,j): {98, 38252}, {293, 14248}, {1910, 8770}, {1976, 8769}, {36120, 40319}
X(51374) = X(i)-Dao conjugate of X(j) for these (i, j): (69, 287), (132, 14248), (5976, 2996), (6388, 879), (11672, 8770), (15525, 2395), (39040, 8769), (46094, 40319)
X(51374) = crosssum of X(878) and X(15630)
X(51374) = barycentric product X(i)*X(j) for these {i,j}: {193, 325}, {297, 6337}, {1707, 46238}, {1959, 18156}, {2396, 3566}, {3167, 44132}, {6353, 6393}
X(51374) = barycentric quotient X(i)/X(j) for these {i,j}: {193, 98}, {232, 14248}, {297, 34208}, {325, 2996}, {511, 8770}, {1707, 1910}, {1755, 38252}, {1959, 8769}, {2396, 35136}, {2421, 3565}, {3053, 1976}, {3167, 248}, {3289, 40319}, {3566, 2395}, {6337, 287}, {6353, 6531}, {6393, 6340}, {8651, 2422}, {10607, 17974}, {18156, 1821}, {32459, 5967}, {36212, 6391}, {47430, 15630}
X(51374) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 1350, 7750}, {1513, 32458, 325}


X(51375) = X(1)X(2)∩X(117)X(515)

Barycentrics    (a^3 + a^2*b - a*b^2 - b^3 + a^2*c - 2*a*b*c + b^2*c - a*c^2 + b*c^2 - c^3)*(2*a^4 - a^3*b - a^2*b^2 + a*b^3 - b^4 - a^3*c + 2*a^2*b*c - a*b^2*c - a^2*c^2 - a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4) : :

X(51375) lies on these lines: {1, 2}, {40, 196}, {117, 515}, {221, 6260}, {255, 12527}, {341, 1097}, {516, 1785}, {517, 15252}, {912, 12016}, {1394, 12667}, {1433, 9370}, {1512, 1870}, {1771, 4292}, {2800, 16869}, {2956, 6223}, {3074, 18250}, {3075, 4298}, {5089, 8074}, {5587, 34231}, {5930, 11500}, {6001, 16870}, {6129, 8058}, {6245, 34030}, {6684, 17102}, {7078, 20264}, {7680, 40960}, {7682, 34036}, {9812, 31516}, {15524, 37725}, {20263, 22124}, {21620, 41344}, {28194, 44901}

X(51375) = X(i)-isoconjugate of X(j) for these (i,j): {84, 102}, {189, 32677}, {513, 6081}, {1422, 15629}, {1433, 36121}, {1436, 36100}, {2208, 34393}, {2432, 37141}, {36055, 40836}
X(51375) = X(i)-Dao conjugate of X(j) for these (i, j): (6129, 15633), (23986, 189), (39026, 6081), (51221, 40836)
X(51375) = crossdifference of every pair of points on line {649, 1436}
X(51375) = barycentric product X(i)*X(j) for these {i,j}: {190, 6087}, {198, 35516}, {322, 2182}, {329, 515}, {2406, 8058}, {6129, 42718}, {7080, 34050}
X(51375) = barycentric quotient X(i)/X(j) for these {i,j}: {40, 36100}, {101, 6081}, {198, 102}, {329, 34393}, {515, 189}, {1455, 1422}, {2182, 84}, {2187, 32677}, {2331, 36121}, {2425, 8059}, {5514, 15633}, {6087, 514}, {7074, 15629}, {8058, 2399}, {8755, 40836}, {34050, 1440}, {35516, 44190}, {46974, 41081}


X(51376) = X(9)X(55)∩X(63)X(77)

Barycentrics    a*(a - b - c)*(a^2 - b^2 - c^2)*(2*a^3 - a^2*b - b^3 - a^2*c + b^2*c + b*c^2 - c^3) : :

X(51376) lies on these lines: {9, 55}, {37, 16283}, {41, 12711}, {44, 8608}, {48, 10167}, {63, 77}, {71, 2253}, {72, 1802}, {101, 2739}, {118, 516}, {169, 11496}, {220, 12514}, {281, 17784}, {518, 8558}, {521, 652}, {610, 10860}, {758, 6603}, {906, 46974}, {1146, 31896}, {1212, 5248}, {1252, 5089}, {1621, 40937}, {1709, 5781}, {2266, 5728}, {2272, 17613}, {2323, 8758}, {2324, 8270}, {3207, 12520}, {3695, 18249}, {4251, 12710}, {4294, 6554}, {4314, 41006}, {4386, 20310}, {5179, 5842}, {5282, 6602}, {5440, 34591}, {5687, 7079}, {7368, 17742}, {7719, 10306}, {9310, 12709}, {9778, 27382}, {17102, 22131}, {25440, 46830}

X(51376) = reflection of X(1146) in X(31896)
X(51376) = isotomic conjugate of the polar conjugate of X(41339)
X(51376) = X(i)-isoconjugate of X(j) for these (i,j): {19, 43736}, {34, 36101}, {57, 36122}, {103, 278}, {273, 911}, {608, 18025}, {653, 2424}, {1118, 1815}, {1119, 2338}, {1876, 9503}, {2400, 32674}, {3064, 24016}, {3676, 40116}, {7115, 15634}, {32668, 44426}
X(51376) = X(i)-Dao conjugate of X(j) for these (i, j): (6, 43736), (5452, 36122), (11517, 36101), (23972, 273), (35072, 2400), (39077, 5236), (40628, 15634), (46095, 57), (50441, 92)
X(51376) = crosssum of X(19) and X(1876)
X(51376) = crossdifference of every pair of points on line {34, 2424}
X(51376) = barycentric product X(i)*X(j) for these {i,j}: {9, 26006}, {63, 40869}, {69, 41339}, {78, 516}, {212, 35517}, {219, 30807}, {345, 910}, {521, 2398}, {644, 39470}, {652, 42719}, {676, 4571}, {1265, 1456}, {1812, 17747}, {1886, 3719}, {2426, 35518}, {3692, 43035}, {3694, 14953}
X(51376) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 43736}, {55, 36122}, {78, 18025}, {212, 103}, {219, 36101}, {516, 273}, {521, 2400}, {910, 278}, {1456, 1119}, {1802, 2338}, {1946, 2424}, {2289, 1815}, {2398, 18026}, {2426, 108}, {6056, 36056}, {7004, 15634}, {9502, 5236}, {17747, 40149}, {26006, 85}, {30807, 331}, {32660, 32668}, {36059, 24016}, {39470, 24002}, {40869, 92}, {41339, 4}, {42719, 46404}, {43035, 1847}, {46392, 3064}, {47422, 3675}


X(51377) = X(1)X(28238)∩X(100)X(511)

Barycentrics    a^2*(b + c)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :

X(51377) lies on these lines: {1, 28238}, {2, 35645}, {3, 16980}, {8, 970}, {10, 3142}, {11, 38472}, {12, 22300}, {21, 23841}, {25, 7074}, {31, 23638}, {40, 42448}, {42, 181}, {46, 23154}, {51, 55}, {52, 32141}, {100, 511}, {119, 517}, {165, 26892}, {184, 197}, {185, 11500}, {200, 26893}, {209, 3198}, {210, 430}, {227, 1425}, {283, 38903}, {373, 1001}, {375, 3683}, {389, 11491}, {512, 661}, {516, 38389}, {519, 3032}, {674, 3689}, {692, 1495}, {756, 21804}, {851, 4551}, {869, 9561}, {899, 3030}, {902, 3271}, {957, 1000}, {1155, 3937}, {1201, 44845}, {1211, 22325}, {1376, 3917}, {1460, 44104}, {1468, 50580}, {1486, 34417}, {1621, 5943}, {1682, 10459}, {1828, 7957}, {1843, 11383}, {2177, 21746}, {2183, 41215}, {2225, 14936}, {2390, 5183}, {2807, 44425}, {2810, 3218}, {2818, 48363}, {2841, 3245}, {2975, 15489}, {3035, 50362}, {3214, 10822}, {3240, 4260}, {3291, 21788}, {3293, 10974}, {3697, 43213}, {3925, 22278}, {3935, 9052}, {3936, 22294}, {4046, 14973}, {4413, 5650}, {4421, 21969}, {4511, 45955}, {4819, 44671}, {4847, 10440}, {4890, 21806}, {5057, 29309}, {5264, 50594}, {5284, 6688}, {5291, 50361}, {5399, 16453}, {5446, 11849}, {5462, 37621}, {5552, 10441}, {5562, 11499}, {5687, 5752}, {5929, 40999}, {6745, 29311}, {7211, 17874}, {8192, 36745}, {8677, 45884}, {9352, 23155}, {9535, 36855}, {9564, 31330}, {11248, 45186}, {11681, 15488}, {13329, 20999}, {13366, 20986}, {13754, 18524}, {14839, 32927}, {15030, 18491}, {16589, 22191}, {17441, 41539}, {17763, 35104}, {20455, 35505}, {20988, 44106}, {21031, 22299}, {21870, 22277}, {22321, 44661}, {24390, 34466}, {27385, 35631}, {35238, 36987}, {37516, 37540}, {37568, 42450}, {37603, 50578}, {41797, 47513}

X(51377) = reflection of X(i) in X(j) for these {i,j}: {11, 38472}, {3937, 1155}, {50362, 3035}
X(51377) = reflection of X(3259) in the anti-Orthic axis
X(51377) = isogonal conjugate of the isotomic conjugate of X(17757)
X(51377) = X(i)-Ceva conjugate of X(j) for these (i,j): {517, 21801}, {38955, 37}
X(51377) = crosspoint of X(i) and X(j) for these (i,j): {37, 38955}, {42, 34857}, {517, 2183}
X(51377) = crosssum of X(i) and X(j) for these (i,j): {21, 16704}, {81, 859}, {104, 34234}, {1565, 4453}, {4560, 14010}
X(51377) = crossdifference of every pair of points on line {81, 2401}
X(51377) = X(i)-isoconjugate of X(j) for these (i,j): {58, 18816}, {81, 34234}, {86, 104}, {274, 909}, {286, 1795}, {310, 34858}, {333, 34051}, {662, 2401}, {757, 38955}, {799, 2423}, {1019, 13136}, {1412, 36795}, {1414, 43728}, {1444, 36123}, {1509, 2250}, {1790, 16082}, {2720, 18155}, {4560, 37136}, {4592, 43933}, {4600, 15635}, {7192, 36037}, {7199, 32641}, {10428, 30939}, {14578, 44129}
X(51377) = X(i)-Dao conjugate of X(j) for these (i, j): (10, 18816), (517, 17139), (1084, 2401), (1145, 314), (3259, 7192), (5139, 43933), (16586, 310), (23980, 274), (25640, 286), (38981, 18155), (38996, 2423), (40586, 34234), (40599, 36795), (40600, 104), (40607, 38955), (40608, 43728), (40613, 86), (50497, 15635)
X(51377) = barycentric product X(i)*X(j) for these {i,j}: {1, 21801}, {6, 17757}, {10, 2183}, {37, 517}, {42, 908}, {71, 1785}, {72, 14571}, {106, 21942}, {210, 1465}, {213, 3262}, {512, 2397}, {523, 2427}, {594, 859}, {813, 42767}, {1016, 42752}, {1018, 1769}, {1252, 42759}, {1334, 22464}, {1400, 6735}, {1457, 2321}, {1500, 17139}, {1826, 22350}, {1875, 3694}, {2250, 24028}, {2804, 4559}, {3310, 3952}, {3700, 23981}, {3943, 14260}, {4041, 24029}, {4551, 46393}, {4557, 10015}, {4574, 39534}, {8611, 23706}, {16586, 34857}, {23980, 38955}
X(51377) = barycentric quotient X(i)/X(j) for these {i,j}: {37, 18816}, {42, 34234}, {210, 36795}, {213, 104}, {512, 2401}, {517, 274}, {669, 2423}, {859, 1509}, {872, 2250}, {908, 310}, {1402, 34051}, {1457, 1434}, {1500, 38955}, {1769, 7199}, {1785, 44129}, {1824, 16082}, {1918, 909}, {2183, 86}, {2200, 1795}, {2205, 34858}, {2333, 36123}, {2397, 670}, {2427, 99}, {2489, 43933}, {3121, 15635}, {3262, 6385}, {3310, 7192}, {3709, 43728}, {4557, 13136}, {6735, 28660}, {8677, 15419}, {14571, 286}, {15507, 30940}, {17757, 76}, {21801, 75}, {21942, 3264}, {22350, 17206}, {23220, 7254}, {23980, 17139}, {23981, 4573}, {24029, 4625}, {39258, 36819}, {42752, 1086}, {42753, 16727}, {42759, 23989}, {46393, 18155}
X(51377) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {42, 181, 40952}, {209, 3198, 3611}, {210, 22276, 3690}, {692, 20989, 1495}, {902, 20962, 3271}


X(51378) = X(100)X(518)∩X(119)X(517)

Barycentrics    a*(a^2 - 2*a*b + b^2 - 2*a*c + c^2)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :
X(51378) = 3 X[15104] + X[44425], X[3555] - 3 X[35271]

X(51378) lies on these lines: {2, 17642}, {8, 3427}, {63, 6244}, {65, 10528}, {72, 3426}, {78, 22770}, {100, 518}, {119, 517}, {144, 3059}, {200, 15104}, {210, 3434}, {392, 40587}, {516, 14740}, {912, 12331}, {960, 3617}, {971, 46685}, {1445, 1617}, {1621, 15837}, {1864, 20075}, {3035, 18839}, {3057, 5554}, {3158, 16465}, {3309, 4468}, {3436, 7957}, {3555, 4855}, {3740, 11680}, {3871, 44547}, {3880, 36920}, {3913, 41538}, {4662, 5086}, {5175, 45120}, {5440, 22765}, {5493, 12059}, {5836, 33108}, {6001, 12532}, {9779, 45776}, {9954, 17781}, {10707, 17636}, {10914, 31837}, {13374, 27529}, {15733, 50573}, {17626, 31224}, {28160, 34790}

X(51378) = reflection of X(i) in X(j) for these {i,j}: {17615, 14740}, {18839, 3035}
X(51378) = X(i)-isoconjugate of X(j) for these (i,j): {104, 2191}, {277, 909}, {2342, 40154}, {2423, 37206}
X(51378) = X(i)-Dao conjugate of X(j) for these (i, j): (1145, 6601), (4904, 43728), (23980, 277), (40613, 2191)
X(51378) = crossdifference of every pair of points on line {1643, 2423}
X(51378) = barycentric product X(i)*X(j) for these {i,j}: {218, 3262}, {344, 517}, {908, 3870}, {1445, 6735}, {2397, 3309}, {3991, 17139}, {17757, 41610}, {24029, 44448}
X(51378) = barycentric quotient X(i)/X(j) for these {i,j}: {218, 104}, {344, 18816}, {517, 277}, {1457, 17107}, {1465, 40154}, {1617, 34051}, {2183, 2191}, {2427, 1292}, {3309, 2401}, {3870, 34234}, {3991, 38955}, {4878, 2250}, {7719, 36123}, {8642, 2423}, {21059, 909}
X(51378) = {X(7957),X(46677)}-harmonic conjugate of X(3436)


X(51379) = X(3)X(63)∩X(59)X(518)

Barycentrics    a*(a - b - c)*(a^2 - b^2 - c^2)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :
X(51379) = 3 X[5692] + X[48696], 2 X[18856] - 3 X[38760]

X(51379) lies on these lines: {1, 10601}, {3, 63}, {8, 210}, {10, 10523}, {20, 18239}, {40, 2057}, {59, 518}, {65, 5552}, {100, 2745}, {119, 517}, {190, 10538}, {200, 5119}, {329, 6925}, {392, 3305}, {515, 17615}, {519, 14740}, {521, 6332}, {643, 15776}, {758, 6745}, {855, 44694}, {942, 13747}, {997, 20588}, {1331, 46974}, {1785, 26611}, {2476, 5836}, {3035, 18838}, {3091, 14923}, {3419, 6929}, {3436, 14110}, {3678, 6737}, {3681, 6992}, {3753, 31266}, {3811, 11508}, {3812, 27529}, {3868, 5435}, {3869, 6838}, {3878, 6736}, {3890, 5129}, {3939, 45272}, {3965, 4271}, {4158, 4187}, {4186, 41609}, {4297, 12059}, {4420, 37568}, {4847, 10176}, {4853, 41702}, {4861, 5047}, {5081, 16086}, {5176, 6840}, {5687, 5887}, {5790, 10914}, {5794, 10522}, {5904, 37618}, {6068, 15326}, {6172, 41228}, {6872, 20007}, {6959, 24474}, {7686, 11681}, {7957, 11415}, {9119, 27396}, {10527, 25917}, {11523, 34489}, {12635, 41538}, {15347, 17622}, {16465, 18397}, {17625, 35262}, {17781, 37429}, {18455, 22141}, {18524, 35460}, {18856, 38760}, {21075, 31806}, {23528, 25253}, {26003, 40863}, {31835, 37290}, {31895, 38389}, {34772, 44547}, {40255, 45770}, {43135, 44670}

X(51379) = midpoint of X(i) and X(j) for these {i,j}: {72, 5440}, {3057, 44784}
X(51379) = reflection of X(i) in X(j) for these {i,j}: {18838, 3035}, {38389, 31895}
X(51379) = crosspoint of X(8) and X(45393)
X(51379) = crosssum of X(56) and X(18838)
X(51379) = crossdifference of every pair of points on line {608, 2423}
X(51379) = X(i)-isoconjugate of X(j) for these (i,j): {19, 34051}, {34, 104}, {56, 36123}, {109, 43933}, {273, 34858}, {278, 909}, {513, 36110}, {514, 32702}, {604, 16082}, {608, 34234}, {653, 2423}, {1015, 39294}, {1118, 1795}, {1119, 2342}, {1309, 43924}, {1395, 18816}, {1396, 2250}, {1877, 10428}, {2401, 32674}, {2720, 7649}, {3676, 14776}, {6591, 37136}, {7012, 15635}, {8752, 40218}, {17924, 32669}, {36037, 43923}
X(51379) = X(i)-Dao conjugate of X(j) for these (i, j): (1, 36123), (6, 34051), (11, 43933), (517, 1875), (1145, 4), (3161, 16082), (3259, 43923), (7358, 43728), (11517, 104), (16586, 273), (23980, 278), (25640, 1118), (35014, 39534), (35072, 2401), (38981, 7649), (39004, 513), (39026, 36110), (40613, 34), (45247, 36125)
X(51379) = barycentric product X(i)*X(j) for these {i,j}: {63, 6735}, {78, 908}, {219, 3262}, {312, 22350}, {332, 21801}, {345, 517}, {521, 2397}, {646, 8677}, {1016, 35014}, {1264, 14571}, {1265, 1465}, {1332, 2804}, {1785, 3719}, {1809, 26611}, {1812, 17757}, {2183, 3718}, {2427, 35518}, {3692, 22464}, {3694, 17139}, {4561, 46393}, {4571, 10015}, {4587, 36038}, {15416, 23981}
X(51379) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 34051}, {8, 16082}, {9, 36123}, {78, 34234}, {101, 36110}, {212, 909}, {219, 104}, {345, 18816}, {517, 278}, {521, 2401}, {644, 1309}, {650, 43933}, {692, 32702}, {765, 39294}, {859, 1396}, {906, 2720}, {908, 273}, {1145, 37790}, {1265, 36795}, {1331, 37136}, {1457, 1435}, {1465, 1119}, {1802, 2342}, {1946, 2423}, {2183, 34}, {2289, 1795}, {2318, 2250}, {2397, 18026}, {2427, 108}, {2804, 17924}, {3262, 331}, {3310, 43923}, {3694, 38955}, {4571, 13136}, {4587, 36037}, {5440, 40218}, {6056, 14578}, {6735, 92}, {7117, 15635}, {8677, 3669}, {14571, 1118}, {17757, 40149}, {21801, 225}, {22350, 57}, {22464, 1847}, {23980, 1875}, {23981, 32714}, {24029, 36118}, {32656, 32669}, {35014, 1086}, {46393, 7649}, {47408, 18838}
X(51379) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {392, 17658, 3872}, {1260, 3940, 78}, {3057, 46677, 8}, {3868, 6921, 37566}, {3876, 3877, 18228}


X(51380) = X(1)X(46677)∩X(9)X(55)

Barycentrics    a*(a - b - c)^2*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :
X(51380) = 3 X[210] + X[3689]

X(51380) lies on these lines: {1, 46677}, {2, 12915}, {3, 2057}, {8, 392}, {9, 55}, {10, 26011}, {63, 9954}, {72, 5657}, {78, 956}, {100, 971}, {104, 5440}, {119, 517}, {329, 35514}, {354, 31190}, {497, 18236}, {518, 3035}, {942, 5552}, {960, 6736}, {1108, 3190}, {1259, 26285}, {1376, 20588}, {1391, 4511}, {1863, 5423}, {2340, 21805}, {2950, 13528}, {2968, 3717}, {3036, 3880}, {3239, 3900}, {3434, 10157}, {3436, 31793}, {3452, 15845}, {3555, 27383}, {3681, 5744}, {3699, 7360}, {3740, 3816}, {3753, 8164}, {3812, 44848}, {3868, 27525}, {3870, 42884}, {3967, 17860}, {4009, 24026}, {4015, 6743}, {4551, 43058}, {4662, 6737}, {4853, 25917}, {5045, 27385}, {5253, 11035}, {5574, 24771}, {5687, 5777}, {5748, 8166}, {5784, 46917}, {5806, 11681}, {5818, 10598}, {5853, 46694}, {5927, 17784}, {6065, 41391}, {8256, 13601}, {9778, 11678}, {9779, 14923}, {9943, 12059}, {10284, 38176}, {10707, 17652}, {10863, 45776}, {12641, 44784}, {17642, 30827}, {18227, 40998}, {18242, 21075}, {25568, 41539}, {26364, 50196}, {28582, 44311}, {45701, 50195}

X(51380) = midpoint of X(i) and X(j) for these {i,j}: {100, 17615}, {1145, 41389}, {6745, 14740}
X(51380) = reflection of X(3660) in X(3035)
X(51380) = crosspoint of X(9) and X(12641)
X(51380) = crosssum of X(i) and X(j) for these (i,j): {57, 5193}, {3669, 42753}
X(51380) = crossdifference of every pair of points on line {1407, 2423}
X(51380) = X(i)-isoconjugate of X(j) for these (i,j): {57, 34051}, {104, 269}, {279, 909}, {479, 2342}, {658, 2423}, {1088, 34858}, {1106, 18816}, {1119, 1795}, {1407, 34234}, {1461, 2401}, {1847, 14578}, {2720, 3676}, {3669, 37136}, {6614, 43728}, {7045, 15635}, {7053, 36123}, {7099, 16082}, {7366, 36795}, {24002, 32669}, {36037, 43932}
X(51380) = X(i)-Dao conjugate of X(j) for these (i, j): (1145, 7), (3259, 43932), (5452, 34051), (6552, 18816), (6600, 104), (16586, 1088), (17115, 15635), (23050, 36123), (23757, 1111), (23980, 279), (24771, 34234), (25640, 1119), (35508, 2401), (38966, 43933), (38981, 3676), (40613, 269)
X(51380) = barycentric product X(i)*X(j) for these {i,j}: {9, 6735}, {200, 908}, {220, 3262}, {341, 2183}, {346, 517}, {644, 2804}, {728, 22464}, {1043, 21801}, {1265, 14571}, {1457, 30693}, {1465, 5423}, {1769, 6558}, {1785, 3692}, {1875, 30681}, {2287, 17757}, {2397, 3900}, {2427, 4397}, {3699, 46393}, {4163, 24029}, {4515, 17139}, {4578, 10015}, {7101, 22350}
X(51380) = barycentric quotient X(i)/X(j) for these {i,j}: {55, 34051}, {200, 34234}, {220, 104}, {346, 18816}, {517, 279}, {908, 1088}, {1253, 909}, {1457, 738}, {1465, 479}, {1785, 1847}, {1802, 1795}, {2183, 269}, {2397, 4569}, {2427, 934}, {2804, 24002}, {3310, 43932}, {3689, 40218}, {3900, 2401}, {3939, 37136}, {4130, 43728}, {4515, 38955}, {4578, 13136}, {5423, 36795}, {6602, 2342}, {6735, 85}, {7046, 16082}, {7079, 36123}, {7368, 15501}, {8641, 2423}, {14010, 16727}, {14571, 1119}, {14827, 34858}, {14936, 15635}, {17757, 1446}, {21801, 3668}, {22350, 7177}, {22464, 23062}, {23981, 4617}, {24029, 4626}, {46393, 3676}
X(51380) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {210, 3711, 40659}, {480, 3711, 200}, {1145, 17757, 1512}


X(51381) = X(2)X(2170)∩X(119)X(517)

Barycentrics    (a^2 - b*c)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :

X(51381) lies on these lines: {2, 2170}, {6, 24324}, {8, 7385}, {63, 3732}, {100, 28850}, {119, 517}, {126, 5517}, {239, 385}, {312, 4595}, {322, 21371}, {544, 50095}, {812, 3766}, {1213, 25367}, {1654, 21233}, {2183, 3262}, {2262, 29967}, {2347, 26665}, {3169, 20171}, {3218, 35102}, {3310, 10015}, {3434, 28118}, {3666, 21138}, {3687, 34454}, {3882, 4858}, {3975, 35544}, {4019, 17788}, {4124, 8299}, {4165, 33077}, {4369, 24636}, {4384, 24591}, {4432, 36815}, {4904, 5249}, {5011, 24630}, {5440, 29331}, {5826, 28789}, {14557, 30076}, {16610, 49777}, {17060, 26001}, {17277, 21231}, {17793, 27838}, {20237, 21361}, {20881, 21362}, {21129, 47892}, {21271, 27108}, {24029, 46805}, {24980, 26231}, {26282, 49487}, {32851, 49755}, {35342, 45749}, {35466, 50014}, {46790, 50841}

X(51381) = crosspoint of X(10030) and X(27922)
X(51381) = crossdifference of every pair of points on line {1911, 2423}
X(51381) = X(i)-isoconjugate of X(j) for these (i,j): {104, 292}, {291, 909}, {335, 34858}, {660, 2423}, {741, 2250}, {875, 13136}, {876, 32641}, {1911, 34234}, {1922, 18816}, {2196, 36123}, {2401, 34067}, {3572, 36037}, {7077, 34051}, {18268, 38955}
X(51381) = X(i)-Dao conjugate of X(j) for these (i, j): (1145, 4876), (2238, 36819), (3259, 3572), (6651, 34234), (8299, 2250), (16586, 335), (19557, 104), (23980, 291), (35068, 38955), (35119, 2401), (39028, 18816), (39029, 909), (40613, 292), (46398, 4444)
X(51381) = barycentric product X(i)*X(j) for these {i,j}: {75, 15507}, {99, 42767}, {238, 3262}, {239, 908}, {350, 517}, {740, 17139}, {812, 2397}, {859, 35544}, {874, 1769}, {1145, 27922}, {1447, 6735}, {1457, 4087}, {1465, 3975}, {1921, 2183}, {3310, 27853}, {3570, 10015}, {3573, 36038}, {3685, 22464}, {17757, 33295}, {21801, 30940}, {22350, 40717}
X(51381) = barycentric quotient X(i)/X(j) for these {i,j}: {238, 104}, {239, 34234}, {242, 36123}, {350, 18816}, {517, 291}, {740, 38955}, {812, 2401}, {859, 741}, {908, 335}, {1429, 34051}, {1769, 876}, {1914, 909}, {2183, 292}, {2210, 34858}, {2238, 2250}, {2397, 4562}, {2427, 813}, {3262, 334}, {3310, 3572}, {3570, 13136}, {3573, 36037}, {3716, 43728}, {3975, 36795}, {4432, 36944}, {4693, 36921}, {6735, 4518}, {7193, 1795}, {8299, 36819}, {8632, 2423}, {10015, 4444}, {15507, 1}, {17139, 18827}, {17757, 43534}, {22350, 295}, {22464, 7233}, {27846, 15635}, {36815, 40437}, {42767, 523}


X(51382) = X(21)X(36)∩X(30)X(113)

Barycentrics    (a + b)*(a - b - c)*(a + c)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4) : :

X(51382) lies on these lines: {2, 45924}, {10, 13746}, {21, 36}, {29, 270}, {30, 113}, {58, 17584}, {60, 950}, {86, 17078}, {110, 515}, {125, 44910}, {163, 5179}, {448, 26006}, {516, 1325}, {517, 3109}, {519, 6740}, {522, 663}, {643, 6735}, {759, 30384}, {908, 1793}, {946, 11101}, {1010, 24564}, {1099, 1784}, {1737, 5127}, {1792, 27412}, {2077, 3658}, {2328, 11103}, {2478, 25441}, {2617, 22350}, {4234, 24556}, {4304, 40214}, {4720, 6737}, {5196, 28150}, {5546, 40869}, {5972, 36195}, {6684, 37158}, {6738, 46441}, {7054, 40942}, {7478, 28194}, {10572, 17104}, {12512, 37294}, {15677, 17190}, {17167, 36011}, {17209, 37009}, {18483, 37369}, {31730, 37405}

X(51382) = midpoint of X(110) and X(7424)
X(51382) = reflection of X(i) in X(j) for these {i,j}: {125, 44910}, {1558, 113}, {36195, 5972}
X(51382) = crossdifference of every pair of points on line {1400, 2433}
X(51382) = X(i)-isoconjugate of X(j) for these (i,j): {65, 74}, {73, 36119}, {108, 14380}, {225, 35200}, {226, 2159}, {651, 2433}, {1042, 44693}, {1214, 8749}, {1231, 40354}, {1400, 2349}, {1402, 1494}, {1409, 16080}, {1415, 2394}, {1427, 15627}, {1441, 40352}, {1880, 14919}, {18808, 36059}, {18877, 40149}
X(51382) = X(i)-Dao conjugate of X(j) for these (i, j): (133, 225), (1146, 2394), (1511, 73), (3163, 226), (6739, 10), (20620, 18808), (38983, 14380), (38991, 2433), (40582, 2349), (40602, 74), (40605, 1494), (40626, 34767)
X(51382) = barycentric product X(i)*X(j) for these {i,j}: {8, 18653}, {21, 14206}, {29, 11064}, {30, 333}, {86, 7359}, {99, 14400}, {283, 46106}, {284, 3260}, {314, 2173}, {332, 1990}, {521, 24001}, {522, 2407}, {645, 11125}, {811, 14395}, {1043, 6357}, {1495, 28660}, {1784, 1812}, {2194, 46234}, {2420, 35519}, {3284, 44130}, {3737, 42716}, {4240, 6332}, {4612, 36035}, {4636, 41079}, {7257, 14399}, {9406, 40072}
X(51382) = barycentric quotient X(i)/X(j) for these {i,j}: {21, 2349}, {29, 16080}, {30, 226}, {283, 14919}, {284, 74}, {314, 33805}, {333, 1494}, {522, 2394}, {652, 14380}, {663, 2433}, {1172, 36119}, {1495, 1400}, {1784, 40149}, {1990, 225}, {2173, 65}, {2193, 35200}, {2194, 2159}, {2287, 44693}, {2299, 8749}, {2328, 15627}, {2407, 664}, {2420, 109}, {3064, 18808}, {3260, 349}, {3284, 73}, {4240, 653}, {4636, 44769}, {6332, 34767}, {6357, 3668}, {7359, 10}, {9406, 1402}, {11064, 307}, {11125, 7178}, {14206, 1441}, {14395, 656}, {14399, 4017}, {14400, 523}, {18653, 7}, {21044, 12079}, {23347, 32674}, {24001, 18026}
X(51382) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21, 3615, 1125}, {13746, 35193, 10}


X(51383) = X(50)X(323)∩X(67)X(69)

Barycentrics    a^2*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :
X(51383) = 4 X[6786] - 3 X[12093], 3 X[7998] - X[46303]

X(51383) lies on these lines: {50, 323}, {67, 69}, {76, 15067}, {99, 5663}, {114, 325}, {183, 7998}, {298, 34375}, {299, 34373}, {302, 11626}, {303, 11624}, {315, 13340}, {373, 37647}, {526, 3268}, {568, 7763}, {620, 15544}, {1007, 11002}, {1154, 7799}, {1232, 36901}, {1511, 10411}, {1975, 11459}, {2421, 36790}, {2871, 2979}, {3098, 38641}, {3819, 6784}, {3917, 34383}, {5118, 38650}, {5562, 32820}, {5650, 37688}, {6101, 7796}, {7768, 10627}, {7769, 13363}, {7809, 13391}, {7814, 10263}, {9027, 44369}, {11412, 32821}, {15030, 32819}, {23039, 32833}

X(51383) = reflection of X(i) in X(j) for these {i,j}: {6784, 3819}, {15544, 620}
X(51383) = crossdifference of every pair of points on line {2422, 11060}
X(51383) = X(i)-isoconjugate of X(j) for these (i,j): {293, 18384}, {878, 36129}, {1821, 11060}, {1910, 1989}, {1976, 2166}, {2395, 32678}, {2422, 32680}, {14582, 36104}, {15475, 36084}
X(51383) = X(i)-Dao conjugate of X(j) for these (i, j): (132, 18384), (441, 43089), (3284, 35906), (5976, 94), (11597, 1976), (11672, 1989), (18334, 2395), (34544, 1910), (35088, 10412), (38987, 15475), (39000, 14582), (39040, 2166), (40601, 11060), (40604, 98)
X(51383) = barycentric product X(i)*X(j) for these {i,j}: {186, 6393}, {323, 325}, {340, 36212}, {511, 7799}, {526, 2396}, {877, 8552}, {2421, 3268}, {2799, 10411}, {4230, 45792}, {6148, 35910}, {6149, 46238}, {6333, 14590}, {14355, 32458}, {22115, 44132}
X(51383) = barycentric quotient X(i)/X(j) for these {i,j}: {50, 1976}, {186, 6531}, {232, 18384}, {237, 11060}, {297, 6344}, {323, 98}, {325, 94}, {340, 16081}, {511, 1989}, {526, 2395}, {684, 14582}, {877, 46456}, {1511, 35906}, {1959, 2166}, {2396, 35139}, {2421, 476}, {2799, 10412}, {3268, 43665}, {3569, 15475}, {6149, 1910}, {6333, 14592}, {6393, 328}, {7799, 290}, {8552, 879}, {10411, 2966}, {14270, 2422}, {14355, 41932}, {14590, 685}, {14591, 32696}, {14966, 14560}, {15595, 43089}, {19627, 14601}, {22115, 248}, {23997, 32678}, {35910, 5627}, {36212, 265}, {36790, 14356}, {42743, 23968}, {44132, 18817}, {50567, 43084}


X(51384) = X(2)X(6)∩X(8)X(21258)

Barycentrics    (a*b - b^2 + a*c - c^2)*(a*b - b^2 + a*c + 2*b*c - c^2) : :

X(51384) lies on these lines: {2, 6}, {8, 21258}, {9, 30813}, {11, 20335}, {12, 17046}, {72, 34847}, {85, 40997}, {116, 17757}, {120, 518}, {142, 354}, {190, 40868}, {200, 8271}, {220, 28740}, {241, 3693}, {320, 10025}, {346, 51351}, {442, 17758}, {519, 4904}, {594, 26593}, {672, 16593}, {958, 26101}, {1038, 18639}, {1086, 3726}, {1146, 30806}, {1229, 1233}, {1280, 9053}, {1358, 46180}, {1418, 45791}, {1818, 4966}, {1834, 26978}, {2140, 24390}, {2886, 30949}, {2887, 11019}, {3263, 4437}, {3290, 50011}, {3662, 26590}, {3684, 26007}, {3739, 25006}, {3782, 20173}, {3811, 20269}, {3834, 20541}, {3870, 4851}, {3873, 51150}, {3932, 4712}, {3957, 17390}, {4000, 17597}, {4369, 6003}, {4434, 13405}, {4511, 17044}, {4513, 6604}, {4645, 9453}, {4657, 4666}, {4859, 32865}, {5347, 35977}, {5526, 40534}, {6706, 6734}, {6745, 36956}, {7223, 24247}, {7232, 24352}, {7767, 29473}, {7819, 33953}, {8226, 24220}, {8580, 33084}, {8727, 37521}, {9317, 44669}, {10580, 32773}, {10582, 17306}, {10916, 24774}, {15325, 25532}, {15888, 17062}, {16284, 26531}, {17045, 29817}, {17169, 17672}, {17231, 44798}, {17282, 24600}, {17298, 40719}, {17347, 51352}, {17747, 20347}, {21049, 26563}, {21232, 40663}, {24953, 25500}, {25664, 37527}, {26932, 40869}, {27006, 34772}, {37270, 37538}, {40131, 47595}

X(51384) = reflection of X(5526) in X(40534)
X(51384) = X(649)-complementary conjugate of X(38980)
X(51384) = X(i)-Ceva conjugate of X(j) for these (i,j): {1026, 918}, {40017, 16708}
X(51384) = crosspoint of X(i) and X(j) for these (i,j): {3912, 40704}, {40017, 40217}
X(51384) = crossdifference of every pair of points on line {512, 884}
X(51384) = X(i)-isoconjugate of X(j) for these (i,j): {105, 1174}, {1170, 2195}, {1416, 6605}, {1438, 2346}, {1462, 10482}, {8751, 47487}
X(51384) = X(i)-Dao conjugate of X(j) for these (i, j): (142, 294), (1212, 673), (6184, 2346), (17755, 32008), (36905, 21453), (39046, 1174), (39063, 1170), (40606, 105), (40609, 6605)
X(51384) = barycentric product X(i)*X(j) for these {i,j}: {142, 3912}, {241, 1229}, {354, 3263}, {518, 20880}, {672, 1233}, {883, 6362}, {1212, 40704}, {3717, 10481}, {3925, 30941}, {3930, 16708}, {3932, 17169}, {4847, 9436}, {18157, 21808}, {21104, 42720}, {35312, 50333}
X(51384) = barycentric quotient X(i)/X(j) for these {i,j}: {142, 673}, {241, 1170}, {354, 105}, {518, 2346}, {672, 1174}, {883, 6606}, {1212, 294}, {1229, 36796}, {1233, 18031}, {1418, 1462}, {1475, 1438}, {1818, 47487}, {2293, 2195}, {2340, 10482}, {2488, 884}, {3059, 28071}, {3693, 6605}, {3912, 32008}, {3925, 13576}, {4847, 14942}, {6362, 885}, {9436, 21453}, {20880, 2481}, {21127, 1024}, {21808, 18785}, {22053, 36057}, {35312, 927}, {35326, 919}, {35335, 35333}, {35338, 36086}, {40704, 31618}, {48151, 1027}
X(51384) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 69, 37658}, {2, 17300, 14828}, {3912, 9436, 3693}


X(51385) = X(4)X(64)∩X(30)X(107)

Barycentrics    (a^2 + b^2 - c^2)^2*(a^2 - b^2 + c^2)^2*(a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8 + a^6*c^2 + 4*a^4*b^2*c^2 - 3*a^2*b^4*c^2 - 2*b^6*c^2 - 3*a^4*c^4 - 3*a^2*b^2*c^4 + 6*b^4*c^4 + 3*a^2*c^6 - 2*b^2*c^6 - c^8) : :
X(51385) = 4 X[133] - X[1515], 3 X[23239] - 2 X[27089], 3 X[37943] - 2 X[47166]

X(51385) lies on the cubic K741 and these lines: {2, 36876}, {3, 5879}, {4, 64}, {5, 14057}, {30, 107}, {133, 1515}, {186, 34178}, {230, 41368}, {235, 1093}, {325, 6528}, {403, 523}, {427, 47392}, {436, 16657}, {1075, 2883}, {1294, 39464}, {1503, 6761}, {1552, 10151}, {1568, 44704}, {1596, 2052}, {1896, 15763}, {2072, 34334}, {3089, 41365}, {3545, 10002}, {5656, 6624}, {6344, 48374}, {6524, 6623}, {6529, 16318}, {6616, 34781}, {6716, 12096}, {7680, 47372}, {13450, 17703}, {14157, 32713}, {14165, 37942}, {18554, 44576}, {21312, 46927}, {21396, 43615}, {21663, 47204}, {23239, 27089}, {33228, 36426}, {33703, 34286}, {37943, 47166}, {40887, 47286}, {44732, 44803}, {46106, 47096}

X(51385) = midpoint of X(i) and X(j) for these {i,j}: {4, 40664}, {107, 34170}
X(51385) = reflection of X(i) in X(j) for these {i,j}: {186, 47152}, {1515, 1559}, {1552, 10151}, {1559, 133}, {12096, 6716}
X(51385) = X(16080)-Ceva conjugate of X(393)
X(51385) = X(50937)-cross conjugate of X(4)
X(51385) = crosssum of X(3) and X(6760)
X(51385) = crossdifference of every pair of points on line {577, 2430}
X(51385) = X(i)-isoconjugate of X(j) for these (i,j): {163, 2416}, {255, 1294}, {662, 2430}, {4575, 43701}
X(51385) = X(i)-Dao conjugate of X(j) for these (i, j): (115, 2416), (136, 43701), (1084, 2430), (1990, 11064), (6523, 1294), (50937, 3)
X(51385) = barycentric product X(i)*X(j) for these {i,j}: {133, 16080}, {459, 1559}, {523, 2404}, {850, 2442}, {1093, 44436}, {2052, 6000}, {14618, 46587}
X(51385) = barycentric quotient X(i)/X(j) for these {i,j}: {133, 11064}, {393, 1294}, {512, 2430}, {523, 2416}, {1559, 37669}, {2404, 99}, {2442, 110}, {2501, 43701}, {6000, 394}, {8749, 15404}, {44436, 3964}, {46587, 4558}
X(51385) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 36876, 41372}, {4, 41425, 12250}, {64, 51342, 4}, {6523, 6526, 4}, {6624, 14361, 5656}


X(51386) = X(51)X(1007)∩X(69)X(305)

Barycentrics    a^2*(a^2 - b^2 - c^2)^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :

X(51386) lies on these lines: {51, 1007}, {69, 305}, {76, 11793}, {99, 2706}, {114, 325}, {183, 3819}, {184, 9723}, {185, 6337}, {232, 36790}, {315, 15644}, {373, 34803}, {389, 7763}, {394, 577}, {520, 3265}, {620, 50387}, {1216, 3933}, {1238, 4175}, {1975, 5907}, {2979, 37668}, {3098, 15574}, {3289, 36212}, {3292, 47390}, {3926, 5562}, {4558, 8779}, {4576, 30737}, {5447, 7767}, {5650, 34229}, {5866, 21663}, {5889, 32831}, {6390, 13754}, {6688, 37647}, {7750, 13348}, {7752, 10110}, {7769, 11695}, {7773, 13598}, {7776, 10625}, {7796, 15606}, {7998, 15589}, {8781, 39817}, {10513, 33884}, {11412, 32818}, {11444, 32830}, {11459, 32817}, {14831, 32837}, {15030, 32815}, {15043, 32835}, {15058, 32822}, {15630, 40428}, {22352, 44180}, {32816, 45186}, {32819, 44870}, {40077, 47389}

X(51386) = reflection of X(50387) in X(620)
X(51386) = isotomic conjugate of the polar conjugate of X(36212)
X(51386) = isogonal conjugate of the polar conjugate of X(6393)
X(51386) = X(6393)-Ceva conjugate of X(36212)
X(51386) = crosspoint of X(69) and X(43705)
X(51386) = crosssum of X(25) and X(460)
X(51386) = crossdifference of every pair of points on line {2207, 2422}
X(51386) = X(i)-isoconjugate of X(j) for these (i,j): {19, 6531}, {25, 36120}, {98, 1096}, {158, 1976}, {248, 6520}, {293, 6524}, {393, 1910}, {661, 20031}, {823, 2422}, {878, 36126}, {1821, 2207}, {1973, 16081}, {2395, 24019}, {2501, 36104}, {6521, 14600}, {15630, 23999}, {24006, 32696}, {36417, 46273}
X(51386) = X(i)-Dao conjugate of X(j) for these (i, j): (6, 6531), (132, 6524), (511, 34854), (1147, 1976), (5976, 2052), (6337, 16081), (6338, 290), (6503, 98), (6505, 36120), (11672, 393), (35071, 2395), (36212, 44145), (36830, 20031), (37867, 248), (39000, 2501), (39039, 6520), (39040, 158), (40601, 2207), (41167, 8754), (46093, 878), (46094, 25), (50440, 1857)
X(51386) = barycentric product X(i)*X(j) for these {i,j}: {3, 6393}, {69, 36212}, {232, 4176}, {240, 1102}, {255, 46238}, {297, 3964}, {305, 3289}, {325, 394}, {326, 1959}, {511, 3926}, {520, 2396}, {684, 4563}, {1092, 44132}, {1264, 43034}, {2421, 3265}, {4131, 42717}, {4143, 4230}, {4558, 6333}, {6394, 36790}, {6507, 40703}, {7183, 44694}, {17974, 32458}, {18604, 42703}, {34386, 44716}, {41172, 47389}
X(51386) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 6531}, {63, 36120}, {69, 16081}, {110, 20031}, {232, 6524}, {237, 2207}, {240, 6520}, {255, 1910}, {297, 1093}, {325, 2052}, {326, 1821}, {394, 98}, {511, 393}, {520, 2395}, {577, 1976}, {684, 2501}, {877, 15352}, {1092, 248}, {1102, 336}, {1259, 15628}, {1755, 1096}, {1959, 158}, {2396, 6528}, {2421, 107}, {3265, 43665}, {3289, 25}, {3926, 290}, {3964, 287}, {4230, 6529}, {4558, 685}, {4563, 22456}, {4575, 36104}, {6333, 14618}, {6393, 264}, {6394, 34536}, {6507, 293}, {9418, 36417}, {11672, 34854}, {14585, 14601}, {14966, 32713}, {17209, 8747}, {17974, 41932}, {23098, 51334}, {23606, 14600}, {23997, 24019}, {32320, 878}, {32661, 32696}, {34854, 36434}, {36212, 4}, {36790, 6530}, {39201, 2422}, {39469, 2489}, {40703, 6521}, {41172, 8754}, {42702, 1824}, {42743, 35907}, {43034, 1118}, {44716, 53}, {47389, 41174}, {47406, 460}, {50567, 37778}


X(51387) = X(15)X(620)∩X(16)X(754)

Barycentrics    -((a^2*b^2 - b^4 + a^2*c^2 - c^4)*(-(Sqrt[3]*a^2) + 2*S)) : :
X(51387) = X[14] - 3 X[21359], X[23004] - 3 X[50855], X[622] - 3 X[7809], 3 X[5464] - X[25236], 3 X[22493] + X[25236], X[5611] - 3 X[15561], 4 X[6671] - 5 X[31274], 4 X[6722] - 3 X[22510], 4 X[6722] - 5 X[40334], 3 X[22510] - 5 X[40334], 2 X[7684] - 3 X[36519], 3 X[9167] - 2 X[45879], 2 X[13350] - 3 X[38748], 3 X[21166] - X[36993]

X(51387) lies on these lines: {2, 16940}, {13, 33460}, {14, 11297}, {15, 620}, {16, 754}, {61, 6680}, {62, 7838}, {69, 5613}, {99, 621}, {114, 325}, {115, 623}, {141, 6114}, {298, 542}, {302, 5981}, {315, 47066}, {383, 51018}, {395, 533}, {491, 48725}, {492, 48724}, {524, 6108}, {531, 618}, {543, 23004}, {599, 9760}, {617, 3524}, {622, 7809}, {626, 3104}, {627, 12252}, {633, 1078}, {634, 7917}, {635, 6292}, {1350, 9750}, {2794, 14538}, {3105, 7764}, {3106, 4045}, {3589, 14137}, {5026, 6782}, {5464, 5569}, {5471, 22689}, {5611, 15561}, {5858, 51203}, {5864, 7776}, {5965, 5982}, {5969, 6115}, {5979, 19924}, {6054, 51010}, {6109, 44383}, {6671, 31274}, {6722, 22510}, {7684, 36519}, {7763, 47068}, {7798, 43455}, {7844, 43454}, {9167, 45879}, {9302, 40707}, {9736, 14907}, {9763, 51014}, {10007, 22692}, {13350, 38748}, {14645, 51206}, {14921, 35315}, {18122, 34375}, {19130, 23024}, {20428, 23698}, {21166, 36993}, {22714, 40107}, {23019, 34540}, {31693, 31695}, {33459, 51160}, {33474, 51205}, {36755, 38749}, {37825, 41057}, {38738, 44666}

X(51387) = midpoint of X(i) and X(j) for these {i,j}: {99, 621}, {298, 5978}, {5464, 22493}
X(51387) = reflection of X(i) in X(j) for these {i,j}: {15, 620}, {115, 623}, {6109, 44383}, {6782, 44385}, {9117, 619}, {31695, 31693}, {38749, 36755}, {41070, 114}
X(51387) = X(1910)-isoconjugate of X(6151)
X(51387) = X(i)-Dao conjugate of X(j) for these (i, j): (619, 98), (5976, 40706), (11672, 6151), (33527, 14355)
X(51387) = barycentric product X(i)*X(j) for these {i,j}: {325, 395}, {462, 6393}, {511, 41001}, {2799, 35315}, {14356, 14921}
X(51387) = barycentric quotient X(i)/X(j) for these {i,j}: {297, 38427}, {325, 40706}, {395, 98}, {462, 6531}, {511, 6151}, {2421, 10410}, {9117, 5967}, {19295, 14355}, {35315, 2966}, {35330, 2715}, {41001, 290}
X(51387) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {302, 5981, 6774}, {22510, 40334, 6722}, {22689, 34508, 5471}


X(51388) = X(15)X(754)∩X(16)X(620)

Barycentrics    (a^2*b^2 - b^4 + a^2*c^2 - c^4)*(Sqrt[3]*a^2 + 2*S) : :
X(51388) = X[13] - 3 X[21360], X[23005] - 3 X[50858], X[621] - 3 X[7809], 3 X[5463] - X[25235], 3 X[22494] + X[25235], X[5615] - 3 X[15561], 4 X[6672] - 5 X[31274], 4 X[6722] - 3 X[22511], 4 X[6722] - 5 X[40335], 3 X[22511] - 5 X[40335], 2 X[7685] - 3 X[36519], 3 X[9167] - 2 X[45880], 2 X[13349] - 3 X[38748], 3 X[16963] - 5 X[36770], 3 X[21166] - X[36995]

X(51388) lies on these lines: {2, 16941}, {13, 11298}, {14, 33461}, {15, 754}, {16, 620}, {61, 7838}, {62, 6680}, {69, 5617}, {99, 622}, {114, 325}, {115, 624}, {141, 6115}, {299, 542}, {303, 5980}, {315, 47068}, {396, 532}, {491, 48723}, {492, 48722}, {524, 6109}, {530, 619}, {543, 23005}, {599, 9762}, {616, 3524}, {621, 7809}, {626, 3105}, {628, 12252}, {633, 7917}, {634, 1078}, {636, 6292}, {1080, 51016}, {1350, 9749}, {2794, 14539}, {3104, 7764}, {3107, 4045}, {3589, 14136}, {5026, 6783}, {5463, 5569}, {5472, 22687}, {5615, 15561}, {5859, 51200}, {5865, 7776}, {5965, 5983}, {5969, 6114}, {5978, 19924}, {6054, 51013}, {6108, 44382}, {6672, 31274}, {6722, 22511}, {7685, 36519}, {7763, 47066}, {7798, 43454}, {7844, 43455}, {9167, 45880}, {9302, 40706}, {9735, 14907}, {9761, 51011}, {10007, 22691}, {11295, 36772}, {11301, 36764}, {11305, 36771}, {13349, 38748}, {14645, 51207}, {14922, 35314}, {16963, 36770}, {18122, 34373}, {19130, 23018}, {20429, 23698}, {21166, 36995}, {22715, 40107}, {23025, 34541}, {31694, 31696}, {33458, 51159}, {33475, 51202}, {36756, 38749}, {37824, 41056}, {38738, 44667}

X(51388) = midpoint of X(i) and X(j) for these {i,j}: {99, 622}, {299, 5979}, {5463, 22494}
X(51388) = reflection of X(i) in X(j) for these {i,j}: {16, 620}, {115, 624}, {6108, 44382}, {6783, 44384}, {9115, 618}, {31696, 31694}, {38749, 36756}, {41071, 114}
X(51388) = X(1910)-isoconjugate of X(2981)
X(51388) = X(i)-Dao conjugate of X(j) for these (i, j): (618, 98), (5976, 40707), (11672, 2981), (33526, 14355)
X(51388) = barycentric product X(i)*X(j) for these {i,j}: {325, 396}, {463, 6393}, {511, 41000}, {2799, 35314}, {14356, 14922}
X(51388) = barycentric quotient X(i)/X(j) for these {i,j}: {297, 38428}, {325, 40707}, {396, 98}, {463, 6531}, {511, 2981}, {2421, 10409}, {9115, 5967}, {19294, 14355}, {35314, 2966}, {35329, 2715}, {41000, 290}
X(51388) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {303, 5980, 6771}, {22511, 40335, 6722}, {22687, 34509, 5472}


X(51389) = X(2)X(99)∩X(30)X(113)

Barycentrics    (a^2*b^2 - b^4 + a^2*c^2 - c^4)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4) : :
X(51389) = 2 X[36177] - 3 X[38793]

X(51389) lies on these lines: {2, 99}, {3, 47200}, {20, 35278}, {22, 34217}, {30, 113}, {98, 35922}, {110, 2794}, {114, 868}, {125, 2782}, {132, 4230}, {232, 297}, {247, 1316}, {316, 40885}, {323, 754}, {394, 1625}, {468, 46987}, {511, 5112}, {523, 5181}, {524, 16303}, {538, 3580}, {542, 6795}, {736, 47181}, {1294, 35513}, {1634, 3014}, {1637, 5664}, {1975, 11331}, {2396, 32458}, {2407, 3163}, {2799, 3569}, {3016, 7761}, {3018, 40879}, {3849, 40112}, {4226, 35282}, {4558, 23583}, {5191, 38749}, {5463, 11658}, {5464, 11659}, {5651, 37242}, {6390, 44216}, {6394, 34229}, {6791, 15048}, {7737, 37645}, {7748, 41238}, {7798, 37644}, {7799, 44579}, {7804, 14389}, {7809, 44577}, {7853, 41237}, {9125, 19912}, {9818, 34840}, {10513, 35140}, {10992, 15000}, {14165, 15014}, {14570, 15526}, {14928, 41145}, {15550, 18883}, {16311, 32515}, {17235, 26543}, {18122, 34990}, {21731, 45687}, {24206, 48716}, {27371, 28417}, {32827, 37174}, {32836, 46808}, {32986, 35279}, {35906, 36891}, {36177, 38793}, {37765, 40888}, {40866, 45772}, {41676, 50188}, {46634, 47220}

X(51389) = midpoint of X(110) and X(36163)
X(51389) = reflection of X(i) in X(j) for these {i,j}: {125, 11007}, {1316, 5972}, {1561, 113}
X(51389) = X(36891)-Ceva conjugate of X(30)
X(51389) = crossdifference of every pair of points on line {351, 878}
X(51389) = X(i)-isoconjugate of X(j) for these (i,j): {74, 1910}, {98, 2159}, {248, 36119}, {293, 8749}, {336, 40354}, {879, 36131}, {1821, 40352}, {1976, 2349}, {2395, 36034}, {2433, 36084}, {6531, 35200}, {14380, 36104}, {14601, 33805}, {18877, 36120}
X(51389) = X(i)-Dao conjugate of X(j) for these (i, j): (30, 35906), (132, 8749), (133, 6531), (230, 36875), (1511, 248), (3163, 98), (3258, 2395), (3284, 14355), (5976, 1494), (6739, 15628), (11672, 74), (35088, 2394), (38970, 18808), (38987, 2433), (39000, 14380), (39008, 879), (39039, 36119), (39040, 2349), (40601, 40352), (41172, 32112), (46094, 18877), (50440, 15627)
X(51389) = barycentric product X(i)*X(j) for these {i,j}: {30, 325}, {114, 36891}, {297, 11064}, {511, 3260}, {877, 9033}, {1637, 2396}, {1755, 46234}, {1959, 14206}, {1990, 6393}, {2173, 46238}, {2407, 2799}, {2421, 41079}, {3284, 44132}, {4240, 6333}, {6148, 14356}, {9214, 50567}, {32458, 35906}, {35910, 36789}, {36212, 46106}, {43752, 44716}
X(51389) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 98}, {114, 36875}, {232, 8749}, {237, 40352}, {240, 36119}, {297, 16080}, {325, 1494}, {511, 74}, {684, 14380}, {868, 12079}, {877, 16077}, {1495, 1976}, {1511, 14355}, {1637, 2395}, {1755, 2159}, {1784, 36120}, {1959, 2349}, {1990, 6531}, {2173, 1910}, {2211, 40354}, {2407, 2966}, {2420, 2715}, {2421, 44769}, {2799, 2394}, {2967, 35908}, {3163, 35906}, {3260, 290}, {3284, 248}, {3289, 18877}, {3569, 2433}, {4230, 1304}, {4240, 685}, {5642, 5967}, {5968, 9139}, {6333, 34767}, {7359, 15628}, {9033, 879}, {9155, 9717}, {9214, 9154}, {9407, 14601}, {9409, 878}, {10564, 11653}, {11064, 287}, {14206, 1821}, {14356, 5627}, {14398, 2422}, {14966, 32640}, {16163, 35912}, {16230, 18808}, {23347, 32696}, {23997, 36034}, {35906, 41932}, {35910, 40384}, {35912, 47388}, {36212, 14919}, {36790, 35910}, {36891, 40428}, {41079, 43665}, {41167, 32112}, {42743, 51262}, {44694, 44693}, {44704, 10152}, {44716, 44715}, {44728, 44727}, {46106, 16081}, {46234, 46273}, {46238, 33805}, {50567, 36890}
X(51389) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 148, 41254}, {868, 9155, 114}, {35282, 38738, 4226}, {41887, 41888, 5642}


X(51390) = X(2)X(644)∩X(119)X(517)

Barycentrics    (a*b - b^2 + a*c - c^2)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :

X(51390) lies on these lines: {2, 644}, {8, 36652}, {11, 14839}, {115, 1211}, {119, 517}, {141, 545}, {190, 26932}, {226, 21232}, {241, 3693}, {312, 1952}, {321, 34387}, {329, 3732}, {344, 16608}, {513, 51007}, {538, 15986}, {594, 4957}, {918, 4437}, {1026, 50441}, {1086, 20881}, {1332, 36949}, {3035, 5091}, {3140, 50440}, {3161, 26540}, {3573, 26231}, {4415, 21138}, {4417, 4595}, {4752, 30858}, {5241, 27747}, {5432, 24264}, {6745, 28849}, {9620, 17720}, {10015, 26611}, {13567, 30568}, {17230, 25242}, {17233, 25252}, {17264, 37796}, {17339, 26530}, {17355, 26543}, {18639, 30701}, {21252, 40521}, {21942, 42754}, {23151, 28795}, {23681, 24795}, {24265, 39897}, {25101, 25964}, {25593, 26672}, {46790, 50842}

X(51390) = reflection of X(i) in X(j) for these {i,j}: {11, 24250}, {5091, 3035}
X(51390) = crossdifference of every pair of points on line {884, 2423}
X(51390) = X(i)-isoconjugate of X(j) for these (i,j): {104, 1438}, {105, 909}, {673, 34858}, {884, 37136}, {885, 32669}, {1024, 2720}, {1027, 32641}, {1462, 2342}, {1795, 8751}, {2195, 34051}, {2401, 32666}, {2423, 36086}, {14578, 36124}, {23696, 32702}, {32658, 36123}, {36037, 43929}, {36819, 41934}
X(51390) = X(i)-Dao conjugate of X(j) for these (i, j): (1145, 294), (3259, 43929), (6184, 104), (16586, 673), (17755, 34234), (23980, 105), (25640, 8751), (35094, 2401), (38981, 1024), (38989, 2423), (39046, 909), (39063, 34051), (40613, 1438)
X(51390) = barycentric product X(i)*X(j) for these {i,j}: {517, 3263}, {518, 3262}, {668, 42758}, {883, 2804}, {908, 3912}, {918, 2397}, {1016, 42770}, {1026, 36038}, {3717, 22464}, {3932, 17139}, {6735, 9436}, {10015, 42720}, {17757, 30941}, {18157, 21801}
X(51390) = barycentric quotient X(i)/X(j) for these {i,j}: {241, 34051}, {517, 105}, {518, 104}, {665, 2423}, {672, 909}, {908, 673}, {918, 2401}, {1025, 37136}, {1026, 36037}, {1457, 1416}, {1465, 1462}, {1769, 1027}, {1785, 36124}, {1818, 1795}, {1861, 36123}, {2183, 1438}, {2223, 34858}, {2283, 2720}, {2284, 32641}, {2340, 2342}, {2397, 666}, {2427, 919}, {2804, 885}, {3262, 2481}, {3263, 18816}, {3310, 43929}, {3675, 15635}, {3912, 34234}, {3930, 2250}, {3932, 38955}, {4712, 36819}, {6735, 14942}, {14571, 8751}, {17757, 13576}, {20752, 14578}, {21801, 18785}, {22350, 36057}, {23981, 32735}, {24029, 36146}, {34230, 10428}, {42720, 13136}, {42753, 43921}, {42758, 513}, {42770, 1086}, {42771, 3271}, {46108, 16082}, {46393, 1024}, {50333, 43728}


X(51391) = X(5)X(141)∩X(30)X(113)

Barycentrics    (2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^4*b^2 - 2*a^2*b^4 + b^6 + a^4*c^2 - a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6) : :
X(51391) = 2 X[3581] - 3 X[15361], X[23] - 3 X[14643], 3 X[113] - X[1533], X[113] - 3 X[1568], X[1531] + 3 X[13857], X[1533] - 9 X[1568], X[10564] - 3 X[13857], 3 X[186] - 5 X[38794], and many others

X(51391) lies on these lines: {2, 3581}, {3, 34798}, {4, 37477}, {5, 141}, {23, 14643}, {30, 113}, {49, 13470}, {51, 50140}, {52, 49673}, {110, 7574}, {140, 32110}, {156, 37444}, {186, 38794}, {193, 18449}, {265, 323}, {381, 15066}, {403, 13391}, {427, 15060}, {547, 32225}, {548, 43831}, {549, 18388}, {550, 5448}, {599, 39484}, {858, 5663}, {1092, 18377}, {1154, 2072}, {1352, 10510}, {1503, 5609}, {1594, 11591}, {2071, 20127}, {2777, 37950}, {2979, 10254}, {3001, 14670}, {3098, 44262}, {3153, 12383}, {3260, 14254}, {3292, 32423}, {3574, 3628}, {3917, 46029}, {4549, 18580}, {4550, 44287}, {5055, 15360}, {5071, 15362}, {5159, 34128}, {5462, 20424}, {5562, 10224}, {5576, 14128}, {5654, 14791}, {5655, 10989}, {5876, 13371}, {5890, 36852}, {5891, 39504}, {5944, 9820}, {5946, 37648}, {5965, 36253}, {5972, 7575}, {6102, 11585}, {6644, 40909}, {7464, 7728}, {7530, 48910}, {7577, 15110}, {7699, 7998}, {7703, 11459}, {9306, 44288}, {10024, 10627}, {10095, 50143}, {10113, 10297}, {10255, 11412}, {10264, 13754}, {10296, 12121}, {10540, 20125}, {10610, 12362}, {10625, 13406}, {10733, 18403}, {12041, 15122}, {12105, 38795}, {12225, 32171}, {12605, 43394}, {12900, 32223}, {13160, 32142}, {13491, 22660}, {13561, 18436}, {13630, 37452}, {14156, 15646}, {14644, 23061}, {14845, 50142}, {14852, 40341}, {15061, 30745}, {15068, 18440}, {15081, 37779}, {15448, 47342}, {15454, 45821}, {15473, 44272}, {15559, 45958}, {15704, 32903}, {15800, 44802}, {16072, 39522}, {16534, 29012}, {16619, 29181}, {16868, 37484}, {17702, 18572}, {18325, 43576}, {18400, 40111}, {18435, 31074}, {18445, 31180}, {18451, 31181}, {18531, 37645}, {18571, 38793}, {18859, 38790}, {18874, 50139}, {19924, 44266}, {20957, 36188}, {23236, 40113}, {23515, 41586}, {25739, 50461}, {29317, 37967}, {31282, 37490}, {31670, 44275}, {32227, 37980}, {34152, 37853}, {35001, 38789}, {35228, 48880}, {36518, 44961}, {38322, 43586}, {38724, 41724}, {41597, 45731}, {44235, 45186}, {44267, 46686}, {46261, 48884}, {47334, 47569}

X(51391) = midpoint of X(i) and X(j) for these {i,j}: {4, 37477}, {110, 7574}, {265, 323}, {1352, 10510}, {1531, 10564}, {3153, 22115}, {5655, 10989}, {7464, 7728}, {10296, 12121}, {10540, 46450}, {18325, 43576}, {18403, 43574}, {20957, 36188}, {25739, 50461}
X(51391) = reflection of X(i) in X(j) for these {i,j}: {1495, 10272}, {1511, 11064}, {3580, 20304}, {7575, 5972}, {8262, 24206}, {10113, 10297}, {12041, 15122}, {15361, 2}, {15646, 14156}, {32110, 140}, {32223, 12900}, {32225, 547}, {44267, 46686}, {47342, 15448}, {48876, 19510}
X(51391) = complement of X(3581)
X(51391) = complement of the isogonal conjugate of X(18316)
X(51391) = X(18316)-complementary conjugate of X(10)
X(51391) = X(2159)-isoconjugate of X(7578)
X(51391) = X(i)-Dao conjugate of X(j) for these (i, j): (566, 46808), (3163, 7578)
X(51391) = crosspoint of X(3260) and X(46809)
X(51391) = crossdifference of every pair of points on line {2433, 3050}
X(51391) = barycentric product X(i)*X(j) for these {i,j}: {566, 3260}, {7577, 11064}, {23039, 46106}, {36829, 41079}
X(51391) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 7578}, {566, 74}, {7577, 16080}, {18117, 2433}, {23039, 14919}, {36829, 44769}
X(51391) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {623, 624, 34827}, {1531, 13857, 10564}, {2072, 3580, 20304}, {5562, 10224, 34826}, {12900, 32223, 44282}


X(51392) = X(2)X(37478)∩X(30)X(113)

Barycentrics    (2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^4*b^2 - 2*a^2*b^4 + b^6 + a^4*c^2 - 2*a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6) : :
X(51392) = 2 X[23] - 5 X[38795], 5 X[113] - 2 X[1533], X[1533] - 5 X[1568], X[74] - 3 X[44450], 2 X[186] - 3 X[38793], 4 X[14156] - 3 X[38793], 4 X[2072] - 3 X[23515], 4 X[858] - X[16003], and many others

X(51392) lies on these lines: {2, 37478}, {3, 18388}, {4, 43614}, {5, 3917}, {20, 5448}, {23, 38795}, {30, 113}, {49, 44829}, {52, 11585}, {74, 44450}, {110, 44407}, {115, 45935}, {125, 1154}, {140, 3574}, {184, 14791}, {186, 14156}, {323, 539}, {381, 17811}, {389, 37452}, {394, 18474}, {427, 5891}, {511, 2072}, {541, 13445}, {542, 50461}, {550, 43831}, {569, 6643}, {858, 13754}, {1092, 18569}, {1147, 11750}, {1209, 1216}, {1368, 9730}, {1370, 5654}, {1506, 41480}, {1656, 17810}, {1657, 17821}, {1993, 31180}, {1994, 43573}, {2070, 5972}, {2071, 16111}, {2777, 18859}, {2979, 7577}, {3153, 17702}, {3292, 47341}, {3524, 41465}, {3581, 44673}, {3763, 5055}, {3819, 37347}, {5097, 45967}, {5133, 10170}, {5181, 11649}, {5189, 14157}, {5447, 13160}, {5449, 11412}, {5480, 14845}, {5562, 13371}, {5576, 11793}, {5651, 11818}, {5890, 31101}, {5899, 14643}, {5907, 18488}, {6101, 10224}, {6143, 7691}, {6639, 46728}, {6640, 46730}, {6689, 37126}, {7391, 46261}, {7488, 43839}, {7512, 44516}, {7574, 15139}, {7576, 43586}, {7579, 40107}, {7687, 37496}, {7728, 35452}, {9306, 31723}, {9955, 13852}, {9971, 24206}, {10024, 15644}, {10110, 50143}, {10254, 13340}, {10255, 37484}, {10257, 32110}, {10263, 49673}, {10510, 19380}, {10539, 14790}, {10540, 29012}, {10575, 22660}, {10619, 13470}, {11457, 15083}, {11459, 31074}, {11550, 15068}, {11563, 36518}, {11565, 36966}, {11803, 34564}, {11898, 17813}, {12006, 20424}, {12038, 12225}, {12162, 23335}, {12242, 13353}, {12295, 18403}, {12900, 15107}, {13346, 18404}, {13352, 18531}, {13403, 37495}, {13413, 44324}, {13419, 18350}, {13431, 32358}, {13619, 38726}, {14128, 33332}, {14641, 44866}, {15051, 35489}, {15061, 32608}, {15067, 39504}, {15122, 21663}, {15473, 37917}, {15699, 20192}, {15800, 43809}, {15801, 43808}, {16072, 44413}, {18358, 46026}, {18436, 20299}, {18442, 35498}, {18451, 34609}, {18536, 37506}, {21243, 23039}, {22051, 36153}, {23061, 36253}, {23292, 37513}, {29181, 37971}, {30771, 37489}, {32263, 45780}, {32269, 44911}, {34224, 41597}, {35001, 38791}, {37922, 38794}, {37955, 48378}, {43576, 46686}

X(51392) = midpoint of X(i) and X(j) for these {i,j}: {110, 46450}, {323, 25739}, {3153, 43574}, {5189, 14157}, {7574, 22115}, {7728, 35452}, {18403, 37477}
X(51392) = reflection of X(i) in X(j) for these {i,j}: {113, 1568}, {125, 37938}, {186, 14156}, {1511, 46114}, {2070, 5972}, {3581, 44673}, {12295, 18403}, {13619, 38726}, {14157, 16534}, {16111, 2071}, {21663, 15122}, {30714, 22115}, {32110, 10257}, {32269, 44911}
X(51392) = X(i)-isoconjugate of X(j) for these (i,j): {74, 2216}, {1179, 35200}, {2159, 40393}, {36034, 50946}, {36119, 40441}
X(51392) = X(i)-Dao conjugate of X(j) for these (i, j): (133, 1179), (1209, 74), (1511, 40441), (3163, 40393), (3258, 50946)
X(51392) = crosspoint of X(3260) and X(43768)
X(51392) = barycentric product X(i)*X(j) for these {i,j}: {30, 37636}, {570, 3260}, {1209, 43768}, {1216, 46106}, {1238, 1990}, {1594, 11064}, {9033, 41677}, {41079, 50947}, {42445, 43752}
X(51392) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 40393}, {570, 74}, {1216, 14919}, {1594, 16080}, {1637, 50946}, {1990, 1179}, {2173, 2216}, {3284, 40441}, {23195, 18877}, {37636, 1494}, {41677, 16077}, {42445, 44715}, {47328, 8749}, {50947, 44769}
X(51392) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {52, 11585, 43817}, {186, 14156, 38793}, {1147, 37444, 11750}, {1216, 1594, 1209}, {12242, 44862, 13353}, {14499, 14500, 1511}, {15068, 31181, 11550}


X(51393) = X(3)X(64)∩X(24)X(52)

Barycentrics    a^2*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + c^4) : :
X(51393) = X[15139] + 5 X[17821], X[23] + 5 X[15034], 5 X[15034] - X[43574], X[1495] + 2 X[1511], 2 X[1495] + X[10564], 4 X[1511] - X[10564], X[1531] - 4 X[10272], and many others

X(51393) lies on these lines: {2, 11464}, {3, 64}, {4, 11449}, {5, 13367}, {20, 26882}, {23, 15034}, {24, 52}, {25, 13352}, {26, 1092}, {30, 113}, {49, 389}, {51, 12106}, {54, 5462}, {68, 3147}, {74, 37941}, {110, 186}, {125, 44452}, {140, 5944}, {155, 3515}, {156, 185}, {182, 29959}, {184, 6644}, {187, 1625}, {195, 16625}, {206, 37511}, {232, 32661}, {323, 37940}, {343, 34351}, {376, 26881}, {378, 16194}, {381, 11430}, {394, 14070}, {399, 37955}, {403, 17702}, {468, 30714}, {511, 2070}, {539, 3580}, {541, 44280}, {542, 44214}, {546, 43394}, {549, 22352}, {567, 5943}, {568, 9703}, {569, 6642}, {578, 7506}, {858, 14156}, {924, 12095}, {1154, 3292}, {1199, 9706}, {1204, 32139}, {1209, 7542}, {1216, 7488}, {1493, 16881}, {1503, 10257}, {1594, 43839}, {1614, 22467}, {1658, 5562}, {1899, 45730}, {1971, 14961}, {1995, 14845}, {2071, 14157}, {2072, 5972}, {2079, 50387}, {2393, 15462}, {2420, 14581}, {2777, 44246}, {2883, 44240}, {2931, 34397}, {2937, 15644}, {2979, 7556}, {3043, 11557}, {3047, 11806}, {3060, 47485}, {3146, 38942}, {3167, 37489}, {3431, 3545}, {3517, 36747}, {3518, 5446}, {3524, 15080}, {3542, 12118}, {3546, 41738}, {3548, 9833}, {3564, 37935}, {3567, 9545}, {3574, 31830}, {3575, 9820}, {3581, 37922}, {3628, 10610}, {3763, 5054}, {3917, 7502}, {4240, 15454}, {4653, 28445}, {5012, 5892}, {5020, 37506}, {5050, 9813}, {5055, 14805}, {5097, 11935}, {5447, 7512}, {5448, 6240}, {5449, 10018}, {5504, 37951}, {5609, 18571}, {5650, 34513}, {5651, 7514}, {5654, 18533}, {5663, 15646}, {5876, 15331}, {5889, 41597}, {5890, 9544}, {5899, 32237}, {5946, 13366}, {6030, 44832}, {6101, 12107}, {6102, 43844}, {6146, 16238}, {6241, 43604}, {6622, 25712}, {6640, 18381}, {6689, 14788}, {6699, 46818}, {7387, 35602}, {7464, 15020}, {7505, 9927}, {7517, 13346}, {7529, 11425}, {7530, 44082}, {7689, 11441}, {7712, 10304}, {8538, 34787}, {9603, 44523}, {9704, 37481}, {9707, 17928}, {9714, 37498}, {9729, 43809}, {9818, 35259}, {9909, 37483}, {9967, 15577}, {10110, 13621}, {10113, 46031}, {10116, 26879}, {10125, 34826}, {10127, 37649}, {10151, 12295}, {10170, 35921}, {10182, 21243}, {10192, 15760}, {10224, 11572}, {10245, 33878}, {10255, 18383}, {10295, 16534}, {10297, 38795}, {10298, 11459}, {11003, 15045}, {11250, 11381}, {11410, 11472}, {11424, 13861}, {11438, 18445}, {11439, 35475}, {11440, 17506}, {11456, 15078}, {11550, 18281}, {11563, 34153}, {11585, 11750}, {11695, 13353}, {11801, 15350}, {11845, 47050}, {12041, 17856}, {12083, 37480}, {12084, 26883}, {12111, 21844}, {12112, 13445}, {12121, 31726}, {12163, 15750}, {12278, 16868}, {12370, 44232}, {12383, 37943}, {13160, 44516}, {13348, 13564}, {13391, 37936}, {13399, 38727}, {13431, 16624}, {13491, 43615}, {13557, 14703}, {13567, 44211}, {13595, 15033}, {13598, 18378}, {14094, 37952}, {14118, 43598}, {14130, 44870}, {14165, 39118}, {14643, 18403}, {14709, 32550}, {14710, 32549}, {14852, 37453}, {14865, 46849}, {14913, 19129}, {14984, 44102}, {15012, 43845}, {15030, 18570}, {15032, 15053}, {15039, 32608}, {15040, 18859}, {15063, 47335}, {15066, 44837}, {15068, 18324}, {15083, 35479}, {15107, 37939}, {15115, 37981}, {15136, 21284}, {15305, 35473}, {15311, 15647}, {15448, 37971}, {16195, 37486}, {16222, 32411}, {16226, 44109}, {16336, 34827}, {16386, 32111}, {16531, 24981}, {16657, 44233}, {18388, 38321}, {18404, 34785}, {18534, 37497}, {19128, 34382}, {19131, 23041}, {20125, 35489}, {21850, 44091}, {22955, 32379}, {22966, 44866}, {23061, 37953}, {23323, 36518}, {23515, 44911}, {26864, 37470}, {26917, 34799}, {31383, 44441}, {32352, 47360}, {32423, 44234}, {34417, 39522}, {35231, 43395}, {35232, 43396}, {35452, 38638}, {35500, 43614}, {37440, 45186}, {37452, 44829}, {37496, 37956}, {37933, 41615}, {37945, 43576}, {41580, 44259}, {44788, 49136}

X(51393) = midpoint of X(i) and X(j) for these {i,j}: {3, 10540}, {23, 43574}, {110, 186}, {2070, 22115}, {2071, 14157}, {3581, 50461}, {5899, 37477}, {7575, 40111}, {11563, 34153}, {12112, 13445}, {12121, 31726}, {12383, 50435}, {15035, 35265}, {16386, 32111}, {37940, 43572}, {37945, 43576}
X(51393) = reflection of X(i) in X(j) for these {i,j}: {125, 44452}, {858, 14156}, {2072, 5972}, {3292, 40111}, {5899, 32237}, {10113, 46031}, {11801, 15350}, {12041, 37968}, {12295, 10151}, {13851, 5}, {16386, 38726}, {21663, 15646}, {32110, 186}, {37971, 15448}
X(51393) = complement of X(25739)
X(51393) = X(i)-Ceva conjugate of X(j) for these (i,j): {5961, 52}, {46106, 3284}
X(51393) = crosspoint of X(317) and X(18883)
X(51393) = crosssum of X(12079) and X(14380)
X(51393) = crossdifference of every pair of points on line {2165, 2433}
X(51393) = barycentric product X(i)*X(j) for these {i,j}: {24, 11064}, {30, 1993}, {47, 14206}, {52, 43768}, {99, 14397}, {317, 3284}, {571, 3260}, {924, 2407}, {1147, 46106}, {1495, 7763}, {1511, 18883}, {1990, 9723}, {2173, 44179}, {2420, 6563}, {5961, 14920}, {9033, 41679}, {34948, 42716}
X(51393) = barycentric quotient X(i)/X(j) for these {i,j}: {24, 16080}, {30, 5392}, {47, 2349}, {563, 35200}, {571, 74}, {924, 2394}, {1147, 14919}, {1495, 2165}, {1511, 37802}, {1990, 847}, {1993, 1494}, {2173, 91}, {2407, 46134}, {2420, 925}, {3284, 68}, {4240, 30450}, {6753, 18808}, {11064, 20563}, {14206, 20571}, {14397, 523}, {14581, 14593}, {30451, 14380}, {34952, 2433}, {39176, 5962}, {41679, 16077}, {43768, 34385}, {44077, 8749}, {44179, 33805}, {47421, 12079}
X(51393) = X(i)-isoconjugate of X(j) for these (i,j): {68, 36119}, {74, 91}, {847, 35200}, {1820, 16080}, {2159, 5392}, {2165, 2349}, {2394, 36145}, {20571, 40352}
X(51393) = X(i)-Dao conjugate of X(j) for these (i, j): (133, 847), (135, 18808), (577, 14919), (1511, 68), (3163, 5392), (3284, 37802), (34116, 74), (39013, 2394)
X(51393) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11464, 18475}, {2, 18475, 37513}, {3, 3357, 43907}, {3, 6759, 10575}, {3, 8780, 18451}, {3, 9306, 5891}, {3, 10539, 12162}, {3, 18350, 5907}, {4, 11449, 12038}, {5, 32171, 13367}, {24, 1147, 52}, {25, 47391, 13352}, {26, 1092, 10625}, {49, 45735, 389}, {54, 44802, 5462}, {156, 37814, 185}, {184, 6644, 9730}, {378, 35264, 46261}, {378, 46261, 16194}, {394, 14070, 37478}, {568, 9703, 34986}, {1495, 1511, 10564}, {1511, 20771, 113}, {1511, 20773, 16163}, {1614, 22467, 40647}, {2070, 32609, 22115}, {2071, 35265, 14157}, {3518, 34148, 5446}, {6146, 16238, 43817}, {6642, 19357, 569}, {8780, 18451, 10539}, {9306, 11202, 3}, {10018, 14516, 5449}, {10575, 43898, 3}, {11441, 32534, 7689}, {11464, 43586, 37513}, {11585, 34782, 11750}, {12112, 37948, 13445}, {12383, 37943, 50435}, {13445, 15051, 37948}, {13621, 37472, 10110}, {14157, 15035, 2071}, {16165, 35266, 1495}, {18378, 37495, 13598}, {18475, 43586, 2}, {20773, 46817, 1495}, {37922, 50461, 3581}, {43614, 51033, 35500}, {43839, 45286, 1594}


X(51394) = X(3)X(49)∩X(30)X(113)

Barycentrics    a^2*(a^2 - b^2 - c^2)^2*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4) : :
X(51394) = 2 X[3] + X[3292], 3 X[3] + X[50461], 3 X[3292] - 2 X[50461], X[21663] + 2 X[22115], 3 X[21663] + 2 X[50461], 3 X[22115] - X[50461], X[23] - 7 X[15020], X[1495] - 4 X[1511], and many others

X(51394) lies on these lines: {2, 11430}, {3, 49}, {4, 18418}, {5, 15807}, {6, 16226}, {20, 10282}, {22, 11202}, {23, 15020}, {24, 13346}, {25, 37497}, {30, 113}, {51, 6644}, {52, 37814}, {54, 9729}, {69, 3431}, {74, 37948}, {86, 21162}, {110, 2071}, {125, 10257}, {140, 12370}, {154, 21312}, {156, 10575}, {182, 32127}, {186, 249}, {187, 3289}, {323, 12227}, {343, 549}, {376, 11464}, {378, 9306}, {381, 43586}, {389, 1994}, {403, 5972}, {520, 4091}, {539, 6699}, {548, 5944}, {550, 32171}, {567, 5892}, {575, 15045}, {578, 5422}, {631, 18912}, {648, 40664}, {858, 18400}, {1154, 14708}, {1192, 12160}, {1199, 15012}, {1350, 19153}, {1498, 41427}, {1503, 47090}, {1597, 35259}, {1614, 46850}, {1650, 51254}, {1658, 10625}, {1812, 21161}, {1993, 11438}, {2063, 11456}, {2070, 15040}, {2072, 13851}, {2407, 11845}, {2777, 16386}, {2904, 16879}, {2979, 10298}, {3047, 17855}, {3091, 44872}, {3098, 20806}, {3260, 43752}, {3269, 40349}, {3284, 47405}, {3313, 35228}, {3357, 11441}, {3484, 18315}, {3515, 37498}, {3516, 17814}, {3518, 13598}, {3519, 16665}, {3520, 5907}, {3523, 41724}, {3529, 26882}, {3530, 10610}, {3546, 19467}, {3548, 12118}, {3564, 16976}, {3574, 31833}, {3580, 44673}, {3581, 37955}, {3818, 28408}, {3819, 35921}, {3839, 10546}, {4240, 23097}, {5012, 16836}, {5054, 14805}, {5085, 9027}, {5446, 37495}, {5462, 15038}, {5498, 34826}, {5504, 21649}, {5622, 8681}, {5650, 7514}, {5651, 9818}, {5663, 34152}, {5876, 10226}, {5878, 30552}, {5890, 34986}, {5891, 18570}, {5899, 38638}, {5943, 15033}, {5946, 34565}, {5965, 48375}, {6053, 50434}, {6090, 11410}, {6101, 15331}, {6102, 43615}, {6146, 16196}, {6193, 26937}, {6337, 44141}, {6640, 9927}, {6642, 11424}, {6677, 16657}, {6759, 11413}, {6760, 8431}, {7464, 14157}, {7488, 15644}, {7512, 13348}, {7575, 13391}, {7691, 15606}, {7740, 15329}, {8115, 38708}, {8116, 38709}, {8779, 14961}, {9544, 15072}, {9545, 10574}, {9730, 13366}, {9820, 43831}, {10024, 43839}, {10110, 44802}, {10112, 26879}, {10151, 36518}, {10304, 15080}, {10419, 43755}, {10539, 11381}, {10540, 14915}, {11003, 20791}, {11250, 12162}, {11402, 37475}, {11412, 21844}, {11414, 17821}, {11425, 17825}, {11440, 35497}, {11442, 23329}, {11454, 35493}, {11459, 35473}, {11550, 44441}, {11572, 13371}, {11585, 21659}, {11589, 40948}, {11695, 13434}, {11793, 14118}, {12041, 17853}, {12085, 26883}, {12086, 13474}, {12100, 44683}, {12106, 44106}, {12113, 51346}, {12121, 18403}, {12241, 22966}, {12278, 18383}, {12295, 23323}, {12383, 25739}, {12825, 25564}, {12893, 45780}, {12901, 21650}, {13382, 43601}, {13399, 24981}, {13596, 46847}, {14070, 37483}, {14379, 16391}, {14516, 20299}, {14531, 16266}, {14585, 22401}, {14643, 31726}, {14810, 41716}, {14855, 44108}, {14865, 43598}, {14919, 34329}, {14984, 21639}, {15043, 37505}, {15058, 35475}, {15063, 15311}, {15107, 37940}, {15122, 30714}, {15448, 47093}, {15469, 39371}, {15472, 37951}, {15750, 17834}, {15774, 47304}, {18180, 44220}, {18281, 18474}, {18324, 37478}, {18369, 44863}, {18388, 38323}, {18396, 18466}, {18484, 36789}, {18534, 44082}, {18860, 47426}, {19374, 19510}, {21243, 37118}, {21268, 35235}, {21637, 37511}, {21651, 43587}, {21971, 34417}, {22133, 37508}, {22251, 43893}, {22416, 37512}, {22660, 44240}, {23061, 37952}, {23325, 30744}, {28419, 46264}, {28708, 31670}, {30522, 34153}, {32062, 46261}, {32138, 43907}, {32225, 44214}, {32237, 37925}, {32269, 37935}, {33851, 41612}, {34146, 34947}, {34382, 34982}, {34386, 43459}, {34545, 43584}, {34782, 41602}, {34785, 37444}, {35243, 35268}, {35260, 35513}, {35265, 37944}, {35478, 43613}, {37126, 51033}, {37470, 44109}, {37487, 37672}, {37496, 37922}, {37506, 43650}, {37917, 44084}, {38444, 46728}, {38726, 44246}, {38793, 44452}, {38795, 47336}, {40112, 44280}, {41670, 44272}, {42671, 47620}, {43815, 44495}

X(51394) = midpoint of X(i) and X(j) for these {i,j}: {3, 22115}, {110, 2071}, {186, 43574}, {1568, 16163}, {2070, 37477}, {3292, 21663}, {7464, 14157}, {10540, 18859}, {12121, 18403}, {12383, 25739}, {13399, 24981}, {15469, 39371}, {34152, 40111}, {34153, 37938}, {37925, 43576}, {37948, 43572}, {40112, 44280}
X(51394) = reflection of X(i) in X(j) for these {i,j}: {125, 10257}, {403, 5972}, {1531, 1568}, {1568, 11064}, {2072, 14156}, {3292, 22115}, {3580, 44673}, {12295, 23323}, {13851, 2072}, {21663, 3}, {32110, 15646}, {32225, 44214}, {32269, 37935}, {37925, 32237}, {44102, 15462}, {44246, 38726}, {44673, 48378}, {47093, 15448}
X(51394) = complement of X(50435)
X(51394) = isotomic conjugate of the polar conjugate of X(3284)
X(51394) = isogonal conjugate of the polar conjugate of X(11064)
X(51394) = X(i)-Ceva conjugate of X(j) for these (i,j): {11064, 3284}, {43755, 647}
X(51394) = crosspoint of X(3) and X(5504)
X(51394) = crosssum of X(i) and X(j) for these (i,j): {4, 403}, {12079, 18808}
X(51394) = crossdifference of every pair of points on line {393, 2433}
X(51394) = X(i)-isoconjugate of X(j) for these (i,j): {4, 36119}, {19, 16080}, {74, 158}, {92, 8749}, {162, 18808}, {393, 2349}, {661, 15459}, {823, 2433}, {1093, 35200}, {1096, 1494}, {1118, 44693}, {1304, 24006}, {1577, 32695}, {1969, 40354}, {2052, 2159}, {2207, 33805}, {2394, 24019}, {2643, 42308}, {6520, 14919}, {6521, 18877}, {12079, 24000}, {14380, 36126}, {14618, 36131}, {35908, 36120}
X(51394) = X(i)-Dao conjugate of X(j) for these (i, j): (6, 16080), (125, 18808), (133, 1093), (1147, 74), (1511, 4), (3163, 2052), (3284, 14165), (6503, 1494), (11064, 44138), (14401, 338), (22391, 8749), (35071, 2394), (36033, 36119), (36830, 15459), (37867, 14919), (38999, 523), (39008, 14618), (39170, 6344), (45248, 10152), (46093, 14380), (46094, 35908)
X(51394) = barycentric product X(i)*X(j) for these {i,j}: {3, 11064}, {30, 394}, {69, 3284}, {97, 1568}, {99, 1636}, {110, 41077}, {249, 1650}, {255, 14206}, {323, 51254}, {326, 2173}, {520, 2407}, {577, 3260}, {1092, 46106}, {1259, 6357}, {1495, 3926}, {1784, 6507}, {1804, 7359}, {1990, 3964}, {2420, 3265}, {2631, 4592}, {3682, 18653}, {4143, 23347}, {4176, 14581}, {4558, 9033}, {4563, 9409}, {5562, 43768}, {6148, 50433}, {6516, 14395}, {6517, 14400}, {10411, 18558}, {11589, 37669}, {14919, 16163}, {16165, 34897}, {23224, 42716}, {35912, 36212}
X(51394) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 16080}, {30, 2052}, {48, 36119}, {110, 15459}, {184, 8749}, {249, 42308}, {255, 2349}, {326, 33805}, {394, 1494}, {520, 2394}, {577, 74}, {647, 18808}, {1092, 14919}, {1495, 393}, {1511, 14165}, {1568, 324}, {1576, 32695}, {1636, 523}, {1650, 338}, {1784, 6521}, {1990, 1093}, {2173, 158}, {2289, 44693}, {2407, 6528}, {2420, 107}, {2631, 24006}, {3260, 18027}, {3269, 12079}, {3284, 4}, {3289, 35908}, {4100, 35200}, {4240, 15352}, {4558, 16077}, {5642, 37778}, {6056, 15627}, {9033, 14618}, {9406, 1096}, {9407, 2207}, {9409, 2501}, {11064, 264}, {11589, 459}, {14391, 23290}, {14395, 44426}, {14575, 40354}, {14581, 6524}, {14585, 40352}, {15905, 10152}, {16163, 46106}, {16165, 37765}, {18558, 10412}, {23347, 6529}, {23606, 18877}, {32320, 14380}, {32661, 1304}, {35912, 16081}, {39201, 2433}, {40373, 40351}, {41077, 850}, {43768, 8795}, {47405, 403}, {47414, 35235}, {50433, 5627}, {51254, 94}
X(51394) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 49, 40647}, {3, 155, 1204}, {3, 1092, 5562}, {3, 1147, 185}, {3, 3167, 10605}, {3, 12038, 13367}, {3, 18475, 22352}, {3, 19357, 10984}, {3, 34783, 43604}, {3, 35602, 1092}, {3, 47391, 184}, {20, 11449, 10282}, {20, 38942, 11449}, {22, 37480, 36987}, {24, 13346, 45186}, {52, 43898, 37814}, {140, 12370, 43817}, {185, 1147, 43844}, {378, 9306, 15030}, {1199, 43597, 15012}, {1511, 10564, 1495}, {1511, 25487, 113}, {1993, 11438, 14831}, {1993, 15078, 11438}, {1994, 15053, 389}, {1994, 22467, 15053}, {6644, 13352, 51}, {6760, 15781, 44436}, {10539, 12084, 11381}, {11064, 16163, 1531}, {11202, 37480, 22}, {13367, 22352, 18475}, {14865, 43598, 44870}, {14961, 32661, 8779}, {15035, 43574, 186}, {15053, 34148, 1994}, {18859, 32609, 10540}, {22467, 34148, 389}, {37472, 43809, 5462}, {37495, 45735, 5446}, {41427, 45248, 1498}, {41597, 43604, 34783}


X(51395) = X(39)X(640)∩X(114)X(325)

Barycentrics    (a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^2 + 2*S) : :

X(51395) lies on these lines: {39, 640}, {69, 45554}, {114, 325}, {115, 32432}, {182, 491}, {298, 48722}, {299, 48724}, {315, 9738}, {371, 7759}, {372, 3788}, {490, 7690}, {492, 576}, {590, 641}, {620, 2459}, {626, 3103}, {637, 45542}, {638, 7763}, {639, 7821}, {754, 2460}, {1271, 45510}, {1504, 35685}, {1570, 44392}, {1692, 44394}, {3102, 7764}, {3525, 32806}, {5207, 33340}, {5965, 44365}, {6230, 8294}, {6566, 32421}, {6567, 7845}, {6811, 42858}, {7750, 43144}, {7761, 45564}, {7776, 9732}, {8997, 50374}, {11314, 45512}, {18993, 31463}, {32490, 45577}, {32811, 50974}, {32831, 49038}, {35840, 45472}, {39387, 43124}, {45486, 45515}

X(51395) = midpoint of X(6567) and X(7845)
X(51395) = reflection of X(i) in X(j) for these {i,j}: {115, 32432}, {2459, 620}
X(51395) = X(i)-isoconjugate of X(j) for these (i,j): {588, 1910}, {8825, 36120}
X(51395) = X(i)-Dao conjugate of X(j) for these (i, j): (641, 98), (11672, 588), (46094, 8825)
X(51395) = barycentric product X(325)*X(590)
X(51395) = barycentric quotient X(i)/X(j) for these {i,j}: {511, 588}, {590, 98}, {3289, 8825}, {5062, 1976}
X(51395) = {X(638),X(7763)}-harmonic conjugate of X(9739)


X(51396) = X(6)X(754)∩X(114)X(325)

Barycentrics    (4*a^2 + b^2 + c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :
X(51396) = X[69] - 3 X[7809], 5 X[325] - 3 X[6393], 6 X[6393] - 5 X[50567], 3 X[5182] - X[14712], 3 X[41136] - X[50639], 3 X[41137] - X[51224]

X(51396) lies on these lines: {6, 754}, {30, 14928}, {69, 1568}, {76, 6249}, {99, 19924}, {114, 325}, {115, 524}, {141, 7603}, {182, 14907}, {183, 5476}, {187, 44380}, {298, 51017}, {299, 51019}, {315, 576}, {316, 542}, {575, 7750}, {597, 5008}, {599, 8176}, {620, 5104}, {625, 15993}, {626, 13330}, {637, 44472}, {638, 44471}, {1078, 25555}, {1352, 32827}, {1992, 7790}, {2882, 14962}, {3314, 22486}, {3849, 18800}, {5026, 6781}, {5038, 7830}, {5039, 16989}, {5052, 7853}, {5182, 14712}, {5207, 5965}, {5480, 14994}, {5642, 26276}, {5969, 7813}, {6656, 44500}, {7752, 31958}, {7762, 44499}, {7764, 44453}, {7771, 10168}, {7773, 34507}, {7776, 11477}, {7778, 11173}, {7779, 10754}, {8586, 14645}, {9866, 50248}, {9993, 37668}, {11416, 13219}, {12215, 29317}, {14561, 34229}, {14853, 15589}, {21849, 45201}, {23061, 38940}, {31670, 32815}, {32817, 51212}, {41136, 50639}, {41137, 51224}, {41586, 46124}

X(51396) = midpoint of X(i) and X(j) for these {i,j}: {316, 39099}, {5107, 7845}, {7779, 10754}
X(51396) = reflection of X(i) in X(j) for these {i,j}: {187, 44380}, {5104, 620}, {6781, 5026}, {15993, 625}, {18800, 41146}, {50567, 325}
X(51396) = X(1910)-isoconjugate of X(39389)
X(51396) = X(i)-Dao conjugate of X(j) for these (i, j): (5976, 10302), (11672, 39389), (15810, 98)
X(51396) = crossdifference of every pair of points on line {2422, 9012}
X(51396) = barycentric product X(i)*X(j) for these {i,j}: {325, 597}, {511, 26235}, {2396, 12073}, {2799, 35356}, {6393, 10301}
X(51396) = barycentric quotient X(i)/X(j) for these {i,j}: {325, 10302}, {511, 39389}, {597, 98}, {2396, 42367}, {2421, 12074}, {5008, 1976}, {10301, 6531}, {12073, 2395}, {26235, 290}, {35356, 2966}, {35357, 2715}


X(51397) = X(69)X(3431)∩X(114)X(325)

Barycentrics    (a^2 - 2*b^2 - 2*c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :
X(51397) = X[69] + 3 X[7799], X[325] + 3 X[6393], 3 X[6393] - X[50567], 7 X[3619] - 3 X[14568], 3 X[12151] + X[40341], 3 X[6034] - 5 X[31275], 5 X[7925] - X[10754], 3 X[35297] - 2 X[38010]

X(51397) lies on these lines: {69, 3431}, {76, 11261}, {99, 11645}, {114, 325}, {141, 538}, {524, 620}, {542, 6390}, {574, 599}, {575, 7763}, {625, 5969}, {698, 32457}, {1007, 5476}, {1352, 32817}, {1975, 18553}, {3094, 7853}, {3292, 38940}, {3619, 14568}, {3788, 44499}, {3818, 32815}, {3819, 4121}, {3906, 19510}, {3926, 34507}, {3933, 13334}, {4175, 37636}, {5033, 12151}, {5104, 7845}, {5207, 29323}, {5971, 32225}, {6034, 31275}, {7764, 44500}, {7813, 15993}, {7821, 44453}, {7913, 21358}, {7925, 10754}, {9146, 13857}, {10513, 10519}, {11185, 25561}, {14645, 44380}, {14810, 14907}, {32827, 48901}, {34349, 36212}, {34803, 38317}, {35297, 38010}, {39602, 45672}

X(51397) = midpoint of X(i) and X(j) for these {i,j}: {325, 50567}, {599, 39785}, {5104, 7845}, {7813, 15993}
X(51397) = reflection of X(i) in X(j) for these {i,j}: {2030, 620}, {44496, 44380}
{2422, 17413}, {8599, 35088}, {30491, 39000}, {38987, 46001}
X(51397) = crossdifference of every pair of points on line {2422, 46001}
X(51397) = X(i)-isoconjugate of X(j) for these (i,j): {1383, 1910}, {30491, 36104}, {36084, 46001}
X(51397) = X(i)-Dao conjugate of X(j) for these (i, j): (5976, 598), (8542, 1976), (11165, 98), (11672, 1383), (17416, 2395)
X(51397) = barycentric product X(i)*X(j) for these {i,j}: {325, 599}, {511, 9464}, {2396, 3906}, {2799, 9146}, {5094, 6393}, {36263, 46238}, {42008, 50567}
X(51397) = barycentric quotient X(i)/X(j) for these {i,j}: {325, 598}, {511, 1383}, {574, 1976}, {599, 98}, {684, 30491}, {2396, 35138}, {2421, 11636}, {2799, 8599}, {3569, 46001}, {3906, 2395}, {5094, 6531}, {9145, 2715}, {9146, 2966}, {9464, 290}, {13857, 35906}, {17414, 2422}, {36212, 43697}, {36263, 1910}, {39785, 5967}, {42008, 9154}
X(51397) = {X(325),X(6393)}-harmonic conjugate of X(50567)


X(51398) = (name pending)

Barycentrics    a^14 b^2+a^12 b^4-5 a^10 b^6-a^8 b^8+7 a^6 b^10-a^4 b^12-3 a^2 b^14+b^16+a^14 c^2-4 a^12 b^2 c^2-6 a^10 b^4 c^2+2 a^8 b^6 c^2-a^6 b^8 c^2+6 a^4 b^10 c^2+6 a^2 b^12 c^2-4 b^14 c^2+a^12 c^4-6 a^10 b^2 c^4-16 a^8 b^4 c^4+4 a^6 b^6 c^4+9 a^4 b^8 c^4-4 a^2 b^10 c^4+4 b^12 c^4-5 a^10 c^6+2 a^8 b^2 c^6+4 a^6 b^4 c^6-12 a^4 b^6 c^6+a^2 b^8 c^6+4 b^10 c^6-a^8 c^8-a^6 b^2 c^8+9 a^4 b^4 c^8+a^2 b^6 c^8-10 b^8 c^8+7 a^6 c^10+6 a^4 b^2 c^10-4 a^2 b^4 c^10+4 b^6 c^10-a^4 c^12+6 a^2 b^2 c^12+4 b^4 c^12-3 a^2 c^14-4 b^2 c^14+c^16 : :
Barycentrics    S^4 (3 R^2-SW)^2-SB SC (R^2-SW) SW^3+S^2 (3 R^2-SW) (9 R^2 SB SC-3 SB SC SW+SW^3) : :

As a point on the Euler line, X(51398) has Shinagawa coefficients {4 (E+F)^3 (E+4*F)-(E+4*F)^2 S^2,-4 (E+F)^3 (3*E+4*F)-3 (E+4*F)^2 S^2}.

See Tran Quang Hung and Ercole Suppa, euclid 5374.

X(51398) lies on this line: {2, 3}

X(51398) = inverse in Euler asymptotic hyperbola of X(30)


X(51399) = X(33)X(64)∩X(34)X(1407)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^5*b - a^4*b^2 - 2*a^3*b^3 + 2*a^2*b^4 + a*b^5 - b^6 + a^5*c + 2*a^3*b^2*c - 3*a*b^4*c - a^4*c^2 + 2*a^3*b*c^2 - 4*a^2*b^2*c^2 + 2*a*b^3*c^2 + b^4*c^2 - 2*a^3*c^3 + 2*a*b^2*c^3 + 2*a^2*c^4 - 3*a*b*c^4 + b^2*c^4 + a*c^5 - c^6) : :

X(51399) lies on these lines: {4, 10309}, {33, 64}, {34, 1407}, {56, 1452}, {57, 1905}, {108, 517}, {196, 50195}, {221, 36103}, {393, 2358}, {406, 12709}, {513, 1835}, {910, 32674}, {942, 34231}, {1118, 1426}, {1319, 10016}, {1467, 7713}, {1528, 6001}, {1845, 5570}, {1870, 3660}, {2262, 3213}, {3827, 34187}, {6198, 13601}, {7952, 31788}, {11398, 34489}, {11406, 37550}, {14257, 34339}

X(51399) = polar conjugate of the isotomic conjugate of X(43058)
X(51399) = X(i)-Ceva conjugate of X(j) for these (i,j): {34051, 608}, {36121, 34}
X(51399) = crosssum of X(i) and X(j) for these (i,j): {3, 15524}, {1259, 51379}
X(51399) = crossdifference of every pair of points on line {219, 2431}
X(51399) = barycentric product X(i)*X(j) for these {i,j}: {4, 43058}, {28, 51365}, {57, 51359}, {278, 6001}, {513, 2405}, {693, 2443}, {1422, 1528}, {7178, 7435}, {14312, 32714}, {25640, 34051}
X(51399) = barycentric quotient X(i)/X(j) for these {i,j}: {513, 2417}, {608, 1295}, {667, 2431}, {2405, 668}, {2443, 100}, {6001, 345}, {6591, 43737}, {7435, 645}, {14312, 15416}, {43058, 69}, {47434, 51379}, {51359, 312}, {51365, 20336}
X(51399) = X(i)-isoconjugate of X(j) for these (i,j): {78, 1295}, {101, 2417}, {190, 2431}, {1331, 43737}, {6735, 15405}
X(51399) = X(i)-Dao conjugate of X(j) for these (i, j): (1015, 2417), (5521, 43737)
X(51399) = {X(1875),X(18838)}-harmonic conjugate of X(1876)


X(51400) = X(2)X(7)∩X(4)X(277)

Barycentrics    (a*b - b^2 + a*c - c^2)*(a^2 + b^2 - 2*b*c + c^2) : :

X(51400) lies on these lines: {1, 26101}, {2, 7}, {3, 20269}, {4, 277}, {5, 24774}, {12, 6706}, {65, 21258}, {72, 14019}, {105, 516}, {116, 1737}, {120, 518}, {140, 24784}, {141, 210}, {220, 30617}, {238, 36057}, {239, 20552}, {241, 5089}, {294, 3008}, {305, 20923}, {354, 51150}, {427, 1827}, {495, 20328}, {497, 614}, {515, 9317}, {517, 4904}, {519, 10699}, {612, 3475}, {673, 4872}, {858, 20129}, {910, 26007}, {946, 16020}, {1086, 3290}, {1111, 5179}, {1146, 43037}, {1212, 3665}, {1319, 17044}, {1358, 44664}, {1429, 26006}, {1565, 43065}, {1699, 1721}, {1738, 13576}, {1754, 24220}, {1770, 14377}, {1848, 24789}, {1861, 20621}, {1936, 3011}, {2082, 17170}, {2140, 12047}, {2238, 50011}, {2254, 3667}, {2299, 17171}, {2321, 31130}, {2348, 5845}, {2975, 27006}, {3177, 7185}, {3212, 26531}, {3263, 3912}, {3663, 26242}, {3664, 5276}, {3673, 17671}, {3674, 17451}, {3693, 16593}, {3739, 3925}, {3946, 7191}, {4223, 4292}, {4361, 4863}, {4384, 45962}, {4423, 4657}, {4511, 26140}, {4675, 5275}, {4679, 17290}, {4851, 4952}, {4869, 6555}, {4911, 17682}, {4967, 31077}, {4986, 49773}, {5074, 17761}, {5853, 20344}, {6554, 7195}, {6714, 17768}, {6734, 17046}, {6735, 21232}, {6996, 24781}, {7146, 25935}, {7289, 15487}, {7292, 17067}, {10327, 17296}, {10382, 26052}, {13161, 26978}, {13407, 17758}, {14189, 14732}, {15271, 30754}, {15668, 16353}, {16580, 17278}, {16608, 41539}, {16609, 26001}, {16713, 17177}, {16823, 17050}, {17058, 20461}, {17062, 24987}, {17073, 25907}, {17232, 30791}, {17234, 30758}, {17356, 25345}, {18343, 28849}, {18635, 40952}, {18651, 26723}, {19314, 25500}, {20752, 34253}, {20880, 33839}, {21060, 21255}, {21062, 23681}, {21495, 25593}, {21627, 39567}, {22070, 28278}, {23537, 24790}, {24199, 26234}, {24471, 25964}, {25497, 50716}, {26274, 48627}, {27000, 33867}, {30296, 45704}, {30385, 31534}, {30386, 31535}, {30753, 44377}, {30810, 37597}, {34855, 39063}, {37658, 47595}, {40534, 41391}, {46399, 47806}

X(51400) = reflection of X(41391) in X(40534)
X(51400) = X(6)-complementary conjugate of X(39048)
X(51400) = X(i)-Ceva conjugate of X(j) for these (i,j): {673, 2082}, {36086, 514}
X(51400) = crosspoint of X(i) and X(j) for these (i,j): {85, 673}, {15149, 18157}
X(51400) = crosssum of X(41) and X(672)
X(51400) = crossdifference of every pair of points on line {663, 2440}
X(51400) = X(i)-isoconjugate of X(j) for these (i,j): {105, 7123}, {294, 1037}, {673, 7084}, {2195, 7131}, {32666, 48070}
X(51400) = X(i)-Dao conjugate of X(j) for these (i, j): (4000, 6559), (6554, 673), (15487, 105), (17060, 9), (17755, 30701), (18589, 18785), (35094, 48070), (36905, 8817), (39046, 7123), (39063, 7131)
X(51400) = barycentric product X(i)*X(j) for these {i,j}: {497, 9436}, {518, 3673}, {614, 3263}, {673, 17060}, {918, 3732}, {1861, 17170}, {2082, 40704}, {3717, 7195}, {3912, 4000}, {3914, 30941}, {3930, 16750}, {5236, 27509}, {7289, 46108}, {15149, 18589}, {16583, 18157}, {42720, 48398}
X(51400) = barycentric quotient X(i)/X(j) for these {i,j}: {241, 7131}, {497, 14942}, {614, 105}, {672, 7123}, {918, 48070}, {1458, 1037}, {1473, 36057}, {1633, 36086}, {1851, 36124}, {1876, 1041}, {2082, 294}, {2223, 7084}, {3673, 2481}, {3732, 666}, {3912, 30701}, {3914, 13576}, {4000, 673}, {4319, 28071}, {6554, 6559}, {7083, 2195}, {7289, 1814}, {9436, 8817}, {15149, 40411}, {16502, 1438}, {16583, 18785}, {17060, 3912}, {17170, 31637}, {18206, 40403}, {28017, 1462}, {41353, 8269}, {41785, 31638}
X(51400) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 7, 40131}, {2, 3598, 40127}, {142, 226, 30949}, {2140, 40690, 12047}, {5074, 17761, 30384}, {17170, 41785, 2082}, {30380, 30381, 7}, {30382, 30383, 41857}


X(51401) = X(39)X(639)∩X(114)X(325)

Barycentrics    (a^2*b^2 - b^4 + a^2*c^2 - c^4)*(-a^2 + 2*S) : :

X(51401) lies on these lines: {39, 639}, {69, 45555}, {114, 325}, {115, 32435}, {182, 492}, {298, 48723}, {299, 48725}, {315, 9739}, {371, 3788}, {372, 7759}, {489, 7692}, {491, 576}, {615, 642}, {620, 2460}, {626, 3102}, {637, 7763}, {638, 45543}, {640, 7821}, {754, 2459}, {1270, 45511}, {1505, 35684}, {1570, 44394}, {1692, 44392}, {3103, 7764}, {3525, 32805}, {5207, 33341}, {5965, 44364}, {6231, 8293}, {6566, 7845}, {6567, 32419}, {6813, 42859}, {7750, 43141}, {7761, 45565}, {7776, 9733}, {11313, 45513}, {13989, 50375}, {32491, 45576}, {32810, 50974}, {32831, 49039}, {35841, 45473}, {39388, 43125}, {45487, 45514}

X(51401) = midpoint of X(6566) and X(7845)
X(51401) = reflection of X(i) in X(j) for these {i,j}: {115, 32435}, {2460, 620}, {51395, 325}
X(51401) = X(589)-isoconjugate of X(1910)
X(51401) = X(i)-Dao conjugate of X(j) for these (i, j): (642, 98), (11672, 589)
X(51401) = barycentric product X(325)*X(615)
X(51401) = barycentric quotient X(i)/X(j) for these {i,j}: {511, 589}, {615, 98}, {5058, 1976}
X(51401) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {114, 51371, 51395}, {637, 7763, 9738}


X(51402) = X(11)X(522)∩X(65)X(31680)

Barycentrics    (a - b - c)*(2*a - b - c)*(b - c)^2*(a^2 - b^2 + b*c - c^2) : :

X(51402) lies on these lines: {11, 522}, {65, 31680}, {116, 47882}, {214, 519}, {244, 656}, {518, 15632}, {521, 14115}, {523, 6075}, {650, 1146}, {900, 3259}, {918, 40629}, {952, 38617}, {953, 18341}, {1086, 23809}, {1565, 47754}, {1638, 35094}, {1647, 23757}, {1737, 16610}, {2348, 39050}, {3025, 3738}, {3258, 46660}, {3684, 34544}, {3700, 46101}, {3756, 6129}, {3900, 33646}, {4152, 6745}, {4511, 32851}, {4706, 8758}, {4904, 7658}, {6370, 38982}, {6615, 7004}, {6741, 34589}, {9001, 15635}, {14584, 36944}, {18191, 38992}, {18210, 21121}, {38989, 50440}

X(51402) = midpoint of X(953) and X(18341)
X(51402) = reflection of X(38385) in X(3259)
X(51402) = complement of the isotomic conjugate of X(4453)
X(51402) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 1639}, {36, 513}, {56, 3738}, {57, 46397}, {320, 21260}, {513, 3814}, {514, 21237}, {604, 10015}, {649, 908}, {654, 3452}, {667, 44}, {758, 31946}, {849, 6370}, {1408, 21180}, {1443, 17072}, {1870, 20316}, {1919, 49758}, {1983, 4422}, {2245, 4129}, {2323, 20317}, {2361, 4521}, {3218, 3835}, {3724, 661}, {3733, 758}, {3738, 1329}, {3904, 21244}, {3960, 141}, {4089, 21252}, {4453, 2887}, {4585, 27076}, {4707, 21245}, {7113, 514}, {8648, 9}, {9456, 21198}, {16944, 900}, {20924, 21262}, {21758, 2}, {21828, 1211}, {22379, 3}, {23345, 6702}, {27950, 27854}, {28607, 23884}, {32669, 40536}, {40215, 4928}, {43924, 1737}
X(51402) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 1639}, {8, 3738}, {596, 6370}, {4858, 4530}, {36588, 23884}, {36917, 514}, {36944, 900}
X(51402) = X(i)-isoconjugate of X(j) for these (i,j): {59, 1168}, {655, 32665}, {901, 2222}, {1411, 9268}, {3257, 32675}, {16944, 46649}, {24027, 36590}, {32719, 35174}
X(51402) = X(i)-Dao conjugate of X(j) for these (i, j): (44, 4564), (522, 36590), (900, 14584), (1639, 2), (3936, 4998), (3960, 7), (6544, 2006), (6615, 1168), (21198, 41803), (35092, 655), (35128, 3257), (35204, 9268), (38979, 2222), (38984, 901)
X(51402) = crosspoint of X(i) and X(j) for these (i,j): {2, 4453}, {8, 4768}, {519, 522}
X(51402) = crosssum of X(106) and X(109)
X(51402) = crossdifference of every pair of points on line {23981, 32665}
X(51402) = barycentric product X(i)*X(j) for these {i,j}: {214, 4858}, {320, 4530}, {900, 3904}, {1146, 41801}, {1227, 2170}, {1639, 4453}, {1647, 32851}, {2325, 4089}, {3738, 3762}, {3960, 4768}, {17455, 34387}, {36944, 46398}
X(51402) = barycentric quotient X(i)/X(j) for these {i,j}: {214, 4564}, {654, 901}, {900, 655}, {1146, 36590}, {1635, 2222}, {1647, 2006}, {1960, 32675}, {2087, 1411}, {2170, 1168}, {2323, 9268}, {3025, 40215}, {3738, 3257}, {3762, 35174}, {3904, 4555}, {4511, 5376}, {4530, 80}, {4768, 36804}, {8648, 32665}, {14584, 23592}, {17455, 59}, {35092, 14584}, {41801, 1275}, {46384, 23838}


X(51403) = X(4)X(54)∩X(30)X(113)

Barycentrics    (2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^4*b^2 - 2*a^2*b^4 + b^6 + a^4*c^2 + 4*a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6) : :
X(51403) = X[23] + 2 X[38791], 2 X[113] + X[1533], 4 X[113] - X[51360], 5 X[113] - 2 X[51391], 3 X[113] - X[51392], X[1495] + 2 X[1514], 2 X[1495] + X[13202], and many others

X(51403) lies on these lines: {2, 13445}, {4, 54}, {5, 10575}, {23, 38791}, {24, 22802}, {30, 113}, {49, 12897}, {51, 1596}, {74, 37943}, {115, 3331}, {125, 403}, {146, 32223}, {154, 44438}, {156, 44271}, {185, 235}, {186, 2777}, {232, 1562}, {381, 10601}, {382, 5448}, {399, 539}, {427, 32062}, {468, 10990}, {511, 47096}, {542, 37784}, {546, 6346}, {550, 43898}, {1147, 31725}, {1154, 13417}, {1199, 40240}, {1204, 3542}, {1209, 45959}, {1498, 37197}, {1503, 10151}, {1510, 16337}, {1516, 43919}, {1559, 6530}, {1594, 13474}, {1885, 13367}, {1899, 5656}, {1906, 12233}, {2070, 7728}, {2071, 5972}, {2072, 14915}, {3147, 20427}, {3153, 15462}, {3357, 7505}, {3426, 5055}, {3515, 5895}, {3518, 34563}, {3521, 13621}, {3575, 5893}, {3839, 11179}, {5133, 46847}, {5449, 18439}, {5480, 40673}, {5576, 46849}, {5655, 50461}, {5663, 11563}, {5899, 38789}, {5907, 37636}, {5925, 15750}, {6146, 44226}, {6225, 6622}, {6241, 44958}, {6524, 6624}, {6793, 14581}, {7488, 35240}, {7507, 15811}, {7577, 11455}, {7687, 10821}, {9306, 44440}, {9730, 46030}, {10110, 44803}, {10112, 43605}, {10117, 37954}, {10182, 35473}, {10282, 18560}, {10540, 17702}, {10606, 37453}, {10721, 13619}, {11202, 35481}, {11456, 18390}, {11558, 32423}, {11649, 32271}, {11744, 37917}, {11799, 13754}, {11800, 13446}, {12041, 44234}, {12162, 15761}, {12290, 16868}, {12295, 30522}, {13160, 44870}, {13289, 37970}, {13352, 44276}, {13366, 16657}, {13391, 16105}, {13473, 15152}, {13491, 43817}, {14130, 44516}, {14156, 14643}, {14641, 37452}, {14677, 16532}, {14807, 32615}, {14808, 32614}, {14940, 25563}, {15030, 15760}, {15105, 43903}, {15125, 37981}, {15305, 21243}, {15350, 34128}, {15448, 37931}, {15646, 16111}, {16003, 44961}, {16534, 18325}, {16621, 23047}, {16659, 18383}, {17824, 22972}, {18128, 43821}, {18374, 36201}, {18381, 35488}, {18386, 19153}, {18396, 32063}, {18403, 44407}, {18436, 44322}, {18533, 44082}, {18537, 43650}, {18555, 32358}, {20125, 43572}, {20127, 37955}, {20725, 47114}, {21451, 43601}, {22352, 34664}, {22467, 22800}, {22660, 45186}, {23515, 46031}, {24981, 44665}, {26879, 44959}, {29181, 47094}, {29317, 37945}, {30714, 44267}, {32743, 46431}, {32767, 35487}, {34152, 38793}, {34170, 41204}, {34785, 35490}, {35579, 50937}, {37201, 43652}, {37853, 37941}, {37922, 38790}, {37944, 38792}, {37948, 48378}, {37950, 38795}, {38727, 44452}, {40664, 47204}, {43577, 45735}, {44231, 44437}, {44668, 48914}, {46852, 50137}

X(51403) = midpoint of X(i) and X(j) for these {i,j}: {4, 14157}, {403, 32111}, {1533, 1568}, {2070, 7728}, {10540, 31726}, {10721, 13619}, {12112, 25739}, {18325, 22115}
X(51403) = reflection of X(i) in X(j) for these {i,j}: {74, 44673}, {125, 403}, {1568, 113}, {2071, 5972}, {10990, 21663}, {11800, 13446}, {12041, 44234}, {12295, 44283}, {13399, 125}, {13851, 10151}, {16111, 15646}, {16163, 51393}, {18403, 46686}, {18859, 14156}, {20725, 47114}, {21663, 468}, {22115, 16534}, {25739, 7687}, {37931, 15448}, {51360, 1568}, {51393, 46817}
X(51403) = complement of X(13445)
X(51403) = X(1141)-Ceva conjugate of X(16035)
X(51403) = X(i)-isoconjugate of X(j) for these (i,j): {74, 775}, {801, 2159}, {1105, 35200}, {2349, 41890}
X(51403) = X(i)-Dao conjugate of X(j) for these (i, j): (133, 1105), (2883, 74), (3163, 801), (6509, 1494), (14091, 16080)
X(51403) = crosspoint of X(i) and X(j) for these (i,j): {4, 43917}, {1141, 14254}, {22239, 32230}
X(51403) = crosssum of X(i) and X(j) for these (i,j): {3, 43574}, {1154, 14385}, {15291, 40352}
X(51403) = crossdifference of every pair of points on line {2433, 17434}
X(51403) = barycentric product X(i)*X(j) for these {i,j}: {30, 13567}, {185, 46106}, {235, 11064}, {774, 14206}, {800, 3260}, {1624, 41079}, {1784, 6508}, {1990, 41005}, {2173, 17858}, {3284, 44131}, {9033, 41678}
X(51403) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 801}, {185, 14919}, {235, 16080}, {774, 2349}, {800, 74}, {1495, 41890}, {1624, 44769}, {1990, 1105}, {2173, 775}, {3260, 40830}, {13567, 1494}, {17858, 33805}, {41678, 16077}, {44079, 8749}
X(51403) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 1614, 13403}, {4, 6759, 21659}, {4, 13419, 32340}, {4, 14862, 10619}, {4, 43831, 3574}, {4, 51031, 35717}, {5, 32137, 18488}, {74, 37943, 44673}, {113, 1533, 51360}, {115, 3331, 51363}, {235, 2883, 185}, {546, 16655, 11572}, {1495, 1514, 13202}, {1554, 2682, 13202}, {1614, 13403, 10619}, {1885, 16252, 13367}, {3542, 5878, 1204}, {5656, 6623, 1899}, {6225, 6622, 26937}, {11799, 15063, 41586}, {12290, 16868, 20299}, {13403, 14862, 1614}, {13491, 44235, 43817}, {14499, 14500, 13202}, {14643, 18859, 14156}, {32340, 32364, 3574}


X(51404) = X(98)X(230)∩X(115)X(512)

Barycentrics    (b - c)^2*(b + c)^2*(-a^2 + b^2 + c^2)*(a^4 + b^4 - a^2*c^2 - b^2*c^2)*(-a^4 + a^2*b^2 + b^2*c^2 - c^4) : :
X(51404) = X[3331] - 4 X[43291]

X(51404) lies on these lines: {5, 45910}, {6, 36183}, {30, 48452}, {98, 230}, {115, 512}, {125, 647}, {248, 265}, {287, 11064}, {290, 47286}, {297, 22456}, {339, 525}, {524, 37858}, {879, 10097}, {1495, 47198}, {1648, 2395}, {1976, 8791}, {2211, 16318}, {2501, 2970}, {2549, 36822}, {2623, 8901}, {3049, 34978}, {3094, 51259}, {3231, 20021}, {3288, 36189}, {3289, 3564}, {3331, 43291}, {3580, 46786}, {5254, 14265}, {5967, 41939}, {6531, 20031}, {6656, 14382}, {7473, 46253}, {9154, 34169}, {16081, 51358}, {18907, 35906}, {35912, 48906}, {36874, 43448}, {36897, 46292}

X(51404) = X(i)-Ceva conjugate of X(j) for these (i,j): {98, 878}, {287, 879}, {6531, 2395}, {34536, 523}
X(51404) = crosspoint of X(i) and X(j) for these (i,j): {98, 43665}, {287, 879}, {2395, 6531}
X(51404) = crosssum of X(i) and X(j) for these (i,j): {232, 4230}, {511, 14966}, {2421, 36212}
X(51404) = crossdifference of every pair of points on line {2421, 4230}
X(51404) = X(i)-isoconjugate of X(j) for these (i,j): {162, 2421}, {163, 877}, {232, 24041}, {237, 46254}, {240, 249}, {250, 1959}, {297, 1101}, {648, 23997}, {662, 4230}, {811, 14966}, {1755, 18020}, {2211, 24037}, {2396, 32676}, {3289, 23999}, {5379, 17209}, {15631, 36104}, {23357, 40703}, {23995, 44132}, {24000, 36212}, {41174, 42075}
X(51404) = X(i)-Dao conjugate of X(j) for these (i, j): (115, 877), (125, 2421), (512, 2211), (523, 297), (525, 6393), (647, 325), (1084, 4230), (3005, 232), (15526, 2396), (17423, 14966), (17434, 51386), (18314, 44132), (24284, 46888), (36899, 18020), (39000, 15631), (39085, 249), (41167, 36790)
X(51404) = barycentric product X(i)*X(j) for these {i,j}: {98, 125}, {115, 287}, {248, 338}, {290, 20975}, {293, 1109}, {305, 15630}, {336, 2643}, {339, 1976}, {523, 879}, {525, 2395}, {647, 43665}, {685, 5489}, {850, 878}, {868, 47388}, {1821, 3708}, {1910, 20902}, {2422, 3267}, {2632, 36120}, {2970, 17974}, {3269, 16081}, {3695, 43920}, {5967, 51258}, {6394, 8754}, {6531, 15526}, {8029, 17932}, {12079, 35912}, {14600, 23962}, {20031, 23616}, {23105, 43754}, {34536, 41172}
X(51404) = barycentric quotient X(i)/X(j) for these {i,j}: {98, 18020}, {115, 297}, {125, 325}, {248, 249}, {287, 4590}, {293, 24041}, {336, 24037}, {338, 44132}, {512, 4230}, {523, 877}, {525, 2396}, {647, 2421}, {684, 15631}, {810, 23997}, {878, 110}, {879, 99}, {1084, 2211}, {1109, 40703}, {1821, 46254}, {1976, 250}, {2086, 51324}, {2395, 648}, {2422, 112}, {2643, 240}, {2715, 47443}, {2971, 34854}, {2972, 51386}, {3049, 14966}, {3124, 232}, {3269, 36212}, {3708, 1959}, {4466, 51370}, {5489, 6333}, {6394, 47389}, {6531, 23582}, {8029, 16230}, {8754, 6530}, {14600, 23357}, {15526, 6393}, {15630, 25}, {16186, 51383}, {17932, 31614}, {18210, 51369}, {20902, 46238}, {20975, 511}, {22260, 17994}, {23216, 9418}, {34536, 41174}, {34982, 21525}, {36120, 23999}, {41172, 36790}, {41221, 39569}, {43665, 6331}, {44114, 2967}
X(51404) = {X(98),X(47388)}-harmonic conjugate of X(41175)


X(51405) = X(5)X(21460)∩X(69)X(525)

Barycentrics    (a^2 + b^2 - 2*c^2)*(a^2 - b^2 - c^2)*(a^2 - 2*b^2 + c^2)*(2*a^6 - 2*a^4*b^2 + a^2*b^4 - b^6 - 2*a^4*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6) : :
X(51405) = 3 X[249] - X[45018]

X(51405) lies on these lines: {5, 21460}, {30, 14833}, {69, 525}, {111, 3580}, {249, 45018}, {265, 895}, {287, 11064}, {316, 524}, {323, 31125}, {427, 10559}, {542, 1550}, {691, 1503}, {858, 32583}, {1352, 5968}, {2966, 45774}, {3448, 46783}, {5133, 10558}, {5169, 10560}, {5181, 47293}, {6390, 34897}, {8869, 26926}, {9214, 11180}, {18023, 44137}, {32729, 46818}, {40112, 42008}, {50941, 51227}

X(51405) = reflection of X(i) in X(j) for these {i,j}: {895, 51258}, {47293, 5181}
X(51405) = isotomic conjugate of the polar conjugate of X(16092)
X(51405) = X(32676)-isoconjugate of X(50942)
X(51405) = X(i)-Dao conjugate of X(j) for these (i, j): (15526, 50942), (23967, 468)
X(51405) = barycentric product X(i)*X(j) for these {i,j}: {69, 16092}, {525, 50941}, {542, 30786}, {14977, 14999}
X(51405) = barycentric quotient X(i)/X(j) for these {i,j}: {525, 50942}, {542, 468}, {895, 842}, {1640, 14273}, {5191, 44102}, {10097, 14998}, {14977, 14223}, {14999, 4235}, {16092, 4}, {30786, 5641}, {39474, 1649}, {45662, 5095}, {50941, 648}


X(51406) = X(2)X(5845)∩X(118)X(516)

Barycentrics    (2*a - b - c)*(2*a^3 - a^2*b - b^3 - a^2*c + b^2*c + b*c^2 - c^3) : :
X(51406) = 2 X[101] + X[1146], 2 X[910] + X[17747], X[910] + 2 X[40869], X[1566] + 2 X[3234], X[17747] - 4 X[40869], 4 X[28346] - X[50441], X[150] - 4 X[40483], X[1565] - 4 X[6710], X[3732] + 2 X[17044], X[6603] + 2 X[8074], X[20096] + 5 X[31640], 4 X[20401] - X[31851]

X(51406) lies on these lines: {2, 5845}, {6, 3756}, {9, 1768}, {10, 28877}, {11, 2246}, {37, 14936}, {41, 21049}, {44, 3911}, {45, 5218}, {101, 952}, {118, 516}, {125, 1213}, {150, 40483}, {169, 5886}, {220, 5657}, {346, 43290}, {375, 6784}, {514, 35110}, {676, 9502}, {900, 1635}, {1023, 1145}, {1086, 9318}, {1212, 10165}, {1317, 4530}, {1565, 6710}, {2238, 39686}, {2264, 28019}, {3204, 21933}, {3207, 5731}, {3509, 5852}, {3570, 4437}, {3689, 3943}, {3732, 17044}, {3932, 4070}, {4413, 17369}, {4534, 17439}, {4969, 22356}, {5011, 28212}, {5134, 28182}, {5179, 28160}, {5276, 17726}, {5540, 16173}, {5587, 46835}, {5792, 28827}, {5819, 9779}, {5843, 8558}, {5848, 17330}, {6184, 35111}, {6603, 8074}, {7359, 44425}, {11219, 16554}, {15288, 38031}, {16593, 24685}, {17281, 46917}, {17455, 41556}, {17718, 40131}, {20096, 31640}, {20401, 31851}, {23058, 37712}, {23980, 23986}, {26258, 37658}

X(51406) = midpoint of X(3732) and X(38941)
X(51406) = reflection of X(38941) in X(17044)
X(51406) = tripolar centroid of X(2398)
X(51406) = X(i)-isoconjugate of X(j) for these (i,j): {88, 103}, {106, 36101}, {677, 1022}, {679, 45144}, {903, 911}, {1797, 36122}, {1815, 36125}, {2316, 43736}, {2400, 32665}, {2424, 3257}, {6336, 36056}, {6548, 36039}, {9456, 18025}, {9503, 34230}
X(51406) = X(i)-Dao conjugate of X(j) for these (i, j): (214, 36101), (1566, 6548), (4370, 18025), (6544, 15634), (20622, 6336), (23972, 903), (35092, 2400), (46095, 1797), (50441, 4997)
X(51406) = crosssum of X(i) and X(j) for these (i,j): {103, 45144}, {2316, 34230}
X(51406) = crossdifference of every pair of points on line {103, 106}
vbarycentric product X(i)*X(j) for these {i,j}: {44, 30807}, {516, 519}, {676, 17780}, {900, 2398}, {902, 35517}, {910, 4358}, {1456, 4723}, {1635, 42719}, {1886, 3977}, {2325, 43035}, {3911, 40869}, {3943, 14953}, {4241, 14429}, {4528, 23973}, {8756, 26006}, {14427, 24015}, {16704, 17747}, {37168, 51366}, {37790, 51376}
X(51406) = barycentric quotient X(i)/X(j) for these {i,j}: {44, 36101}, {516, 903}, {519, 18025}, {676, 6548}, {900, 2400}, {902, 103}, {910, 88}, {1017, 45144}, {1319, 43736}, {1647, 15634}, {1886, 6336}, {1960, 2424}, {2251, 911}, {2398, 4555}, {2426, 901}, {17747, 4080}, {22356, 1815}, {23202, 36056}, {23344, 677}, {30807, 20568}, {40869, 4997}, {41339, 1320}
X(51406) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {910, 40869, 17747}, {9318, 26007, 1086}


X(51407) = X(8)X(37715)∩X(119)X(517)

Barycentrics    (a - b - c)*(a*b + b^2 + a*c + c^2)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :

X(51407) lies on these lines: {8, 37715}, {11, 35104}, {12, 9565}, {78, 5396}, {100, 29207}, {119, 517}, {200, 33076}, {219, 28807}, {345, 41883}, {1211, 2092}, {1259, 5810}, {1329, 10480}, {2968, 44694}, {3035, 5061}, {3580, 27757}, {3912, 26005}, {4415, 20237}, {4417, 26942}, {4434, 5847}, {5552, 5711}, {5743, 11679}, {7358, 7360}, {14555, 23600}, {16608, 30828}, {20895, 26580}, {23691, 51366}, {26932, 32851}, {27385, 37594}, {28813, 37680}

X(51407) = reflection of X(5061) in X(3035)
X(51407) = X(i)-isoconjugate of X(j) for these (i,j): {909, 961}, {2423, 36098}, {4581, 32669}
X(51407) = X(i)-Dao conjugate of X(j) for these (i, j): (1145, 2298), (1211, 34051), (2092, 104), (23980, 961), (38992, 2423)
X(51407) = barycentric product X(i)*X(j) for these {i,j}: {908, 3687}, {960, 3262}, {2397, 3910}, {3704, 17139}, {4357, 6735}
X(51407) = barycentric quotient X(i)/X(j) for these {i,j}: {517, 961}, {960, 104}, {2269, 909}, {2397, 6648}, {2427, 8687}, {2804, 4581}, {3262, 31643}, {3666, 34051}, {3687, 34234}, {3704, 38955}, {3882, 37136}, {3910, 2401}, {6735, 1220}, {20967, 34858}, {21033, 2250}, {22074, 14578}, {46878, 36123}, {51379, 1791}
X(51407) = {X(908),X(51367)}-harmonic conjugate of X(51390)


X(51408) = X(1)X(11219)∩X(117)X(515)

Barycentrics    (2*a^2 - a*b - b^2 - a*c + 2*b*c - c^2)*(2*a^4 - a^3*b - a^2*b^2 + a*b^3 - b^4 - a^3*c + 2*a^2*b*c - a*b^2*c - a^2*c^2 - a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4) : :
X(51408) = X[109] + 2 X[15252], 2 X[109] + X[38357], 4 X[15252] - X[38357], 2 X[117] + X[38554], X[1455] + 2 X[51375], 2 X[34050] + X[51361], X[2968] - 4 X[6718], X[21664] + 2 X[38607]

X(51408) lies on these lines: {1, 11219}, {6, 43960}, {109, 15252}, {117, 515}, {125, 17056}, {354, 33883}, {614, 3756}, {650, 23972}, {940, 3475}, {1060, 26446}, {1086, 45946}, {1125, 20324}, {1149, 34590}, {1155, 23710}, {1214, 10164}, {1638, 6174}, {1936, 38454}, {2968, 6718}, {5348, 6354}, {5432, 20277}, {5658, 34032}, {5848, 17392}, {6357, 44425}, {6510, 6745}, {7100, 31659}, {21664, 38607}, {23711, 40560}, {23986, 46391}

X(51408) = tripolar centroid of X(2406)
X(51408) = crossdifference of every pair of points on line {102, 2291}
X(51408) = X(i)-isoconjugate of X(j) for these (i,j): {102, 1156}, {1121, 32677}, {2291, 36100}, {2399, 36141}, {2432, 37139}, {15629, 34056}, {34068, 34393}
X(51408) = X(i)-Dao conjugate of X(j) for these (i, j): (23986, 1121), (35091, 2399), (35110, 34393)
X(51408) = barycentric product X(i)*X(j) for these {i,j}: {515, 527}, {1055, 35516}, {2182, 30806}, {2406, 6366}, {6745, 34050}, {14304, 23890}, {14413, 42718}, {14414, 24035}, {37780, 51361}, {37805, 46974}
X(51408) = barycentric quotient X(i)/X(j) for these {i,j}: {515, 1121}, {527, 34393}, {1055, 102}, {1155, 36100}, {1455, 34056}, {2182, 1156}, {2406, 35157}, {2425, 14733}, {6139, 2432}, {6366, 2399}, {33573, 15633}, {51361, 41798}
X(51408) = {X(109),X(15252)}-harmonic conjugate of X(38357)


X(51409) = X(1)X(529)∩X(8)X(381)

Barycentrics    (2*a + b + c)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :
X(51409) = 2 X[5057] + X[10609], 2 X[36] - 3 X[34123], 4 X[908] - X[1145], 3 X[908] - X[6735], 5 X[908] - 2 X[51362], 3 X[1145] - 4 X[6735], 5 X[1145] - 8 X[51362], and many others

X(51409) lies on these lines: {1, 529}, {2, 36279}, {3, 11415}, {4, 5730}, {5, 3869}, {8, 381}, {10, 3614}, {11, 758}, {12, 3878}, {21, 12913}, {30, 4511}, {36, 17768}, {44, 50759}, {46, 13747}, {63, 5886}, {65, 4187}, {72, 946}, {78, 12699}, {80, 5855}, {100, 5180}, {119, 517}, {144, 20330}, {145, 4930}, {191, 4999}, {200, 31162}, {214, 15326}, {226, 392}, {329, 956}, {355, 11682}, {405, 3485}, {430, 1230}, {442, 960}, {474, 4295}, {484, 3035}, {495, 3877}, {496, 3868}, {515, 13257}, {516, 5440}, {518, 30384}, {527, 38026}, {535, 12831}, {546, 5086}, {553, 1125}, {856, 16596}, {859, 15507}, {942, 41012}, {952, 5080}, {962, 5687}, {993, 15950}, {995, 3782}, {997, 1836}, {999, 5905}, {1086, 49997}, {1149, 32856}, {1193, 33145}, {1210, 4018}, {1329, 5903}, {1387, 17484}, {1454, 7483}, {1478, 5289}, {1479, 12635}, {1482, 3436}, {1484, 12532}, {1565, 20347}, {1621, 5719}, {1699, 3419}, {1737, 5087}, {1749, 38063}, {1864, 3555}, {2093, 30827}, {2292, 29688}, {2886, 5692}, {2975, 5901}, {3057, 10955}, {3218, 15325}, {3336, 6691}, {3339, 25522}, {3421, 6957}, {3434, 3940}, {3452, 3753}, {3474, 16371}, {3487, 13615}, {3579, 27385}, {3582, 4880}, {3583, 4867}, {3616, 6147}, {3622, 31156}, {3632, 13463}, {3648, 5303}, {3656, 3872}, {3671, 5439}, {3686, 44730}, {3695, 25253}, {3742, 11551}, {3811, 12701}, {3812, 17575}, {3813, 5904}, {3814, 34122}, {3816, 5902}, {3820, 27131}, {3824, 24564}, {3825, 4084}, {3874, 37722}, {3876, 31419}, {3884, 15888}, {3899, 7951}, {3901, 37720}, {3918, 50038}, {3925, 10176}, {3927, 10527}, {3957, 15170}, {3962, 10916}, {4004, 8582}, {4028, 50122}, {4046, 4717}, {4067, 24387}, {4292, 17614}, {4301, 10914}, {4305, 50242}, {4338, 17583}, {4424, 37662}, {4539, 24393}, {4640, 37298}, {4848, 17619}, {4857, 41696}, {4966, 4975}, {4996, 48698}, {5046, 37730}, {5074, 51384}, {5176, 5844}, {5221, 10200}, {5231, 38021}, {5250, 11374}, {5253, 14450}, {5259, 11281}, {5315, 17061}, {5330, 20060}, {5529, 24715}, {5538, 34789}, {5552, 12702}, {5657, 5748}, {5690, 6980}, {5694, 26470}, {5697, 12607}, {5698, 16370}, {5841, 6265}, {5842, 6326}, {5852, 16173}, {5887, 6831}, {6001, 37374}, {6224, 28186}, {6284, 22836}, {6361, 27383}, {6690, 37701}, {6734, 9955}, {6737, 18483}, {6745, 28194}, {6763, 37735}, {6882, 14988}, {6894, 15911}, {6943, 33899}, {6968, 12245}, {6976, 10595}, {7082, 11376}, {7191, 39544}, {7354, 30144}, {7508, 38033}, {7681, 37625}, {7682, 17618}, {7743, 26015}, {8227, 12526}, {8255, 50836}, {8543, 37306}, {9352, 17564}, {9612, 15829}, {9614, 11523}, {9623, 31142}, {9669, 12649}, {9708, 31018}, {9945, 28178}, {10225, 38760}, {10427, 28534}, {10742, 35457}, {10896, 49168}, {11019, 24473}, {11236, 12647}, {11362, 40260}, {11680, 38034}, {11729, 22765}, {11827, 40257}, {12019, 37375}, {12433, 34195}, {12527, 13464}, {12608, 14110}, {12609, 17529}, {12653, 32426}, {12732, 48696}, {15015, 15228}, {15171, 34772}, {15908, 31806}, {16483, 33144}, {16594, 49993}, {16842, 28629}, {17556, 18391}, {17724, 40091}, {17734, 37691}, {18481, 41543}, {18541, 35272}, {19927, 43053}, {21630, 34503}, {21677, 25639}, {21740, 31789}, {24045, 40997}, {24541, 31445}, {24982, 50193}, {25055, 25557}, {25416, 38455}, {25568, 30305}, {26066, 37692}, {26364, 37567}, {26446, 30852}, {28234, 38156}, {28916, 36728}, {29824, 46521}, {30323, 32049}, {31160, 41684}, {31937, 37447}, {33099, 37617}, {33134, 48847}, {37356, 40266}, {37359, 39599}, {37468, 45770}, {37536, 42448}, {37646, 49500}, {40292, 42843}

X(51409) = midpoint of X(i) and X(j) for these {i,j}: {100, 5180}, {3583, 4867}, {4511, 5057}, {5538, 34789}, {10742, 35457}
X(51409) = reflection of X(i) in X(j) for these {i,j}: {11, 11813}, {484, 3035}, {1145, 17757}, {1737, 5087}, {3218, 15325}, {4973, 1125}, {10609, 4511}, {12690, 3583}, {12732, 48696}, {15326, 214}, {17757, 908}, {22765, 11729}, {26015, 7743}, {40663, 3814}
X(51409) = X(i)-isoconjugate of X(j) for these (i,j): {104, 1126}, {909, 1255}, {1171, 2250}, {1268, 34858}, {2423, 37212}, {28615, 34234}, {32641, 47947}, {33635, 34051}, {36037, 50344}
X(51409) = X(i)-Dao conjugate of X(j) for these (i, j): (1125, 38955), (1145, 32635), (1213, 34234), (3259, 50344), (3647, 104), (16586, 1268), (23980, 1255), (35076, 2401), (40613, 1126), (46398, 4608)
X(51409) = crosspoint of X(908) and X(17139)
X(51409) = crossdifference of every pair of points on line {2423, 28615}
X(51409) = barycentric product X(i)*X(j) for these {i,j}: {517, 4359}, {553, 6735}, {859, 1230}, {908, 1125}, {1100, 3262}, {1213, 17139}, {1269, 2183}, {1465, 3702}, {1785, 4001}, {2397, 4977}, {3686, 22464}, {4115, 23788}, {4427, 10015}, {4985, 24029}, {8025, 17757}, {16709, 21801}, {31900, 51367}, {35342, 36038}
X(51409) = barycentric quotient X(i)/X(j) for these {i,j}: {517, 1255}, {859, 1171}, {908, 1268}, {1100, 104}, {1125, 34234}, {1145, 31011}, {1213, 38955}, {1769, 47947}, {1839, 36123}, {1962, 2250}, {2183, 1126}, {2308, 909}, {2397, 6540}, {2427, 8701}, {3262, 32018}, {3310, 50344}, {3702, 36795}, {4359, 18816}, {4427, 13136}, {4969, 36944}, {4976, 43728}, {4977, 2401}, {5298, 40218}, {6735, 4102}, {10015, 4608}, {17139, 32014}, {17757, 6539}, {22054, 1795}, {22350, 1796}, {23201, 14578}, {32636, 34051}, {35327, 32641}, {35342, 36037}, {36075, 2720}, {50512, 2423}
X(51409) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 24703, 11113}, {10, 17605, 17530}, {46, 25681, 13747}, {65, 21616, 4187}, {72, 946, 24390}, {191, 5443, 4999}, {329, 5603, 956}, {960, 12047, 442}, {997, 1836, 11112}, {1125, 3683, 15670}, {1125, 4973, 5298}, {1737, 5087, 17533}, {3683, 4870, 1125}, {3814, 40663, 34122}, {3877, 31053, 495}, {3927, 18493, 10527}, {4301, 21075, 10914}, {5253, 14450, 24470}, {5692, 18393, 2886}, {11375, 12514, 7483}, {12609, 25917, 17529}, {17605, 31165, 10}, {24703, 34647, 1}


X(51410) = X(2)X(41007)∩X(119)X(517)

Barycentrics    (a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3)*(2*a^3 + a^2*b + b^3 + a^2*c - b^2*c - b*c^2 + c^3) : :

X(51410) lies on these lines: {2, 41007}, {11, 44661}, {19, 37695}, {30, 5146}, {92, 19542}, {119, 517}, {226, 2262}, {242, 33305}, {278, 7011}, {442, 1829}, {851, 2969}, {916, 13257}, {946, 43213}, {1068, 13737}, {1375, 17923}, {1465, 14571}, {1730, 6354}, {1731, 35466}, {1763, 3772}, {1824, 8226}, {1848, 6708}, {1851, 7580}, {1871, 6831}, {2264, 40940}, {2968, 8229}, {3100, 33302}, {4187, 41340}, {4271, 4415}, {7291, 33129}, {11349, 37798}, {15252, 33849}, {17056, 17443}, {20243, 37358}, {20989, 45946}, {21370, 24789}, {21452, 22464}, {35221, 41345}, {37790, 51368}

X(51410) = X(i)-isoconjugate of X(j) for these (i,j): {104, 2983}, {909, 1257}, {14578, 40445}
X(51410) = X(i)-Dao conjugate of X(j) for these (i, j): (440, 34234), (23980, 1257), (40613, 2983)
X(51410) = barycentric product X(i)*X(j) for these {i,j}: {517, 17863}, {908, 40940}, {950, 22464}, {1104, 3262}, {1785, 18650}, {1834, 17139}, {2397, 29162}, {10015, 14543}
X(51410) = barycentric quotient X(i)/X(j) for these {i,j}: {517, 1257}, {1104, 104}, {1457, 951}, {1785, 40445}, {1834, 38955}, {1842, 36123}, {2183, 2983}, {2427, 29163}, {14543, 13136}, {17863, 18816}, {29162, 2401}, {40940, 34234}, {40977, 2250}


X(51411) = X(11)X(740)∩X(119)X(517)

Barycentrics    (a*b^2 + b^2*c + a*c^2 + b*c^2)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :

X(51411) lies on these lines: {10, 50032}, {11, 740}, {12, 25385}, {43, 20545}, {119, 517}, {325, 4087}, {594, 2886}, {1329, 37598}, {2092, 24210}, {2887, 25140}, {3032, 11813}, {3035, 5143}, {3142, 3702}, {3685, 37370}, {3741, 30097}, {3816, 17592}, {3931, 4187}, {4271, 24703}, {5295, 24390}, {10453, 20256}, {20486, 21241}, {20487, 29673}, {20557, 20760}, {24248, 30960}, {32929, 37354}, {32932, 37365}

X(51411) = X(i)-Dao conjugate of X(j) for these (i, j): (16586, 40418), (21838, 34234), (23980, 1258)
X(51411) =barycentric product X(i)*X(j) for these {i,j}: {517, 20891}, {908, 3741}, {1107, 3262}, {6735, 30097}, {16738, 17757}, {17139, 21024}
X(51411) =barycentric quotient X(i)/X(j) for these {i,j}: {517, 1258}, {908, 40418}, {1107, 104}, {1197, 34858}, {2309, 909}, {3262, 1221}, {3728, 2250}, {3741, 34234}, {17139, 40409}, {20891, 18816}, {21024, 38955}, {22065, 1795}, {22389, 14578}, {42752, 40525}, {50510, 2423}
X(51411) ={X(20557),X(27518)}-harmonic conjugate of X(20760)


X(51412) = X(2)X(1843)∩X(114)X(325)

Barycentrics    a^2*(a^2 + b^2 - 2*b*c + c^2)*(a^2 + b^2 + 2*b*c + c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :
X(51412) = 5 X[325] - 9 X[12093]

X(51412) lies on these lines: {2, 1843}, {5, 16983}, {20, 40325}, {25, 577}, {30, 5140}, {51, 7736}, {114, 325}, {183, 14913}, {185, 7710}, {187, 2386}, {216, 20885}, {230, 2393}, {232, 237}, {262, 10110}, {385, 8681}, {389, 9744}, {427, 14767}, {1184, 19459}, {1194, 20775}, {1370, 41762}, {1611, 9924}, {2387, 50387}, {2854, 50774}, {3284, 44089}, {3313, 7778}, {3815, 9969}, {3819, 7868}, {5139, 47096}, {5167, 6000}, {5171, 15574}, {5304, 40673}, {5306, 32366}, {5943, 11174}, {6054, 39846}, {6291, 7374}, {6406, 7000}, {6467, 7735}, {8705, 44381}, {9019, 44377}, {9027, 15480}, {9729, 40951}, {9752, 15073}, {9769, 32260}, {9770, 21969}, {9967, 37071}, {9971, 31489}, {9973, 37637}, {10313, 44099}, {11163, 21849}, {11188, 34229}, {11325, 22401}, {11513, 45401}, {11514, 45400}, {12272, 37667}, {13166, 37931}, {14961, 21177}, {15271, 29959}, {15491, 16776}

X(51412) = X(i)-Dao conjugate of X(j) for these (i, j): (5976, 40831), (40125, 98)
X(51412) = barycentric product X(i)*X(j) for these {i,j}: {232, 7386}, {297, 19459}, {325, 1184}, {511, 5286}
X(51412) = barycentric quotient X(i)/X(j) for these {i,j}: {325, 40831}, {1184, 98}, {5286, 290}, {19459, 287}


X(51413) = X(2)X(14557)∩X(119)X(517)

Barycentrics    a*(a^2 + 2*a*b + b^2 + 2*a*c - 2*b*c + c^2)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :

X(51413) lies on these lines: {2, 14557}, {51, 11018}, {119, 517}, {223, 7053}, {957, 39779}, {971, 34462}, {1465, 2183}, {1763, 4383}, {1824, 10157}, {1828, 31793}, {1829, 5044}, {2262, 5219}, {3091, 43213}, {3149, 5909}, {3660, 8679}, {3666, 21361}, {3827, 38472}, {3911, 34371}, {3937, 11575}, {5045, 16980}, {5122, 36058}, {5908, 6834}, {7013, 11347}, {7291, 37680}, {8712, 40137}, {9535, 20921}, {11227, 26892}, {21370, 37679}, {21871, 31142}, {31787, 42448}

X(51413) = reflection of X(3937) in X(11575)
X(51413) = X(i)-isoconjugate of X(j) for these (i,j): {104, 2297}, {909, 1219}, {7050, 34234}
X(51413) = X(i)-Dao conjugate of X(j) for these (i, j): (23980, 1219), (40613, 2297)
X(51413) = crossdifference of every pair of points on line {2423, 7050}
X(51413) = barycentric product X(i)*X(j) for these {i,j}: {517, 3672}, {908, 2999}, {1191, 3262}, {1465, 18228}, {1697, 22464}, {2397, 8712}, {4646, 17139}
X(51413) = barycentric quotient X(i)/X(j) for these {i,j}: {517, 1219}, {1191, 104}, {1457, 7091}, {1875, 11546}, {2183, 2297}, {2427, 6574}, {2999, 34234}, {3672, 18816}, {4646, 38955}, {8662, 2423}, {8712, 2401}, {18228, 36795}


X(51414) = X(2)X(198)∩X(117)X(515)

Barycentrics    (a*b + b^2 + a*c + c^2)*(2*a^4 - a^3*b - a^2*b^2 + a*b^3 - b^4 - a^3*c + 2*a^2*b*c - a*b^2*c - a^2*c^2 - a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4) : :

X(51414) lies on these lines: {2, 198}, {4, 15844}, {11, 1284}, {55, 26118}, {57, 19542}, {63, 5928}, {109, 29207}, {117, 515}, {197, 25907}, {325, 4872}, {429, 22345}, {440, 5745}, {851, 26933}, {940, 2286}, {1150, 21270}, {1211, 19608}, {1214, 21621}, {1376, 7386}, {1503, 1936}, {1565, 18593}, {1764, 26942}, {1848, 3666}, {1951, 35466}, {2183, 26005}, {2968, 44661}, {3004, 3910}, {3185, 23304}, {3198, 34822}, {3218, 46487}, {3220, 33305}, {3704, 41600}, {3752, 16580}, {3782, 36503}, {3911, 26012}, {4329, 17740}, {4966, 50362}, {5233, 41828}, {5513, 16593}, {6284, 36496}, {11347, 20266}, {14829, 21276}, {18589, 25939}, {19645, 28774}, {25365, 47522}, {29057, 38357}, {30847, 37660}, {36504, 44416}, {37613, 39566}

X(51414) = X(i)-isoconjugate of X(j) for these (i,j): {102, 2298}, {961, 15629}, {1220, 32677}, {2359, 36121}, {2432, 36098}
X(51414) = X(i)-Dao conjugate of X(j) for these (i, j): (1211, 36100), (23986, 1220), (38992, 2432)
X(51414) = barycentric product X(i)*X(j) for these {i,j}: {515, 4357}, {1193, 35516}, {2182, 20911}, {2406, 3910}, {3687, 34050}, {42718, 48131}
X(51414) = barycentric quotient X(i)/X(j) for these {i,j}: {515, 1220}, {1193, 102}, {1455, 961}, {1829, 36121}, {2182, 2298}, {2269, 15629}, {2300, 32677}, {2406, 6648}, {2425, 8687}, {3666, 36100}, {3910, 2399}, {4357, 34393}, {22345, 36055}, {35516, 1240}, {46974, 1791}


X(51415) = X(1)X(9711)∩X(2)X(6)

Barycentrics    (2*a - b - c)*(a*b + b^2 + a*c - 2*b*c + c^2) : :
X(51415) = 3 X[3756] - 2 X[24216], 3 X[5121] - X[24216]

X(51415) lies on these lines: {1, 9711}, {2, 6}, {5, 17749}, {11, 899}, {12, 1450}, {37, 5316}, {39, 38930}, {43, 3816}, {44, 3911}, {88, 17484}, {121, 519}, {140, 37469}, {142, 31197}, {226, 16602}, {238, 3035}, {239, 37758}, {312, 27130}, {386, 17527}, {518, 3756}, {594, 30818}, {595, 47742}, {740, 11814}, {748, 5432}, {902, 6174}, {908, 1086}, {952, 45763}, {978, 1329}, {995, 3820}, {1054, 17768}, {1104, 6700}, {1146, 50027}, {1201, 21031}, {1279, 6745}, {1532, 33810}, {1575, 17747}, {1616, 7080}, {1647, 21805}, {1722, 25681}, {1724, 13747}, {1738, 5087}, {1743, 31190}, {1834, 3216}, {1901, 46838}, {2324, 3772}, {2886, 16569}, {2999, 20196}, {3008, 6547}, {3214, 37722}, {3218, 43055}, {3264, 3943}, {3306, 17365}, {3452, 3663}, {3628, 24880}, {3662, 31233}, {3687, 17229}, {3699, 5211}, {3704, 25079}, {3740, 24239}, {3782, 27131}, {3813, 6048}, {3814, 49992}, {3817, 21949}, {3826, 17717}, {3829, 32865}, {3840, 50315}, {3846, 6686}, {3880, 38471}, {3912, 25125}, {3932, 24003}, {3977, 4370}, {4000, 5328}, {4023, 30942}, {4110, 17242}, {4129, 6002}, {4205, 20108}, {4252, 17567}, {4255, 5084}, {4257, 17564}, {4328, 5219}, {4361, 28808}, {4395, 4997}, {4422, 32851}, {4644, 31202}, {4849, 11019}, {4850, 17246}, {4871, 4966}, {4884, 27538}, {4888, 5437}, {4902, 8056}, {4967, 44417}, {5096, 33849}, {5205, 5846}, {5212, 28581}, {5230, 31246}, {5247, 6691}, {5297, 17726}, {5400, 37374}, {5513, 5519}, {5529, 44669}, {5692, 24223}, {5706, 6983}, {5721, 6963}, {5744, 16885}, {5847, 50535}, {5852, 18201}, {6557, 42047}, {6667, 33140}, {6688, 18165}, {6690, 17123}, {6736, 45219}, {6882, 45926}, {6944, 36745}, {6953, 37537}, {7263, 24620}, {7277, 37520}, {7292, 17724}, {8055, 42049}, {9041, 50533}, {9342, 33107}, {9350, 34612}, {9458, 32844}, {10459, 50038}, {11681, 27625}, {12053, 21896}, {12607, 21214}, {15621, 28364}, {15888, 28352}, {16486, 34619}, {16706, 30867}, {17051, 49490}, {17233, 30861}, {17243, 30829}, {17276, 31142}, {17332, 24627}, {17334, 17595}, {17340, 17740}, {17366, 17720}, {17495, 30566}, {17529, 37693}, {17531, 49745}, {17546, 24936}, {17757, 24222}, {17775, 27186}, {17777, 28530}, {20072, 31227}, {20470, 28239}, {21060, 21342}, {21120, 28006}, {23361, 28271}, {24789, 30852}, {25882, 26010}, {26748, 43036}, {26791, 32939}, {27002, 33066}, {27489, 49509}, {28248, 44411}, {31053, 40688}, {31242, 33084}, {31272, 33139}, {32918, 41002}, {33106, 49732}, {33129, 37691}, {33141, 36634}, {37787, 43056}, {38455, 47623}, {43290, 49704}

X(51415) = midpoint of X(3699) and X(5211)
X(51415) = reflection of X(3756) in X(5121)
X(51415) = complement of the isotomic conjugate of X(14554)
X(51415) = X(i)-complementary conjugate of X(j) for these (i,j): {14554, 2887}, {50039, 21260}
X(51415) = X(24624)-Ceva conjugate of X(18163)
X(51415) = X(i)-isoconjugate of X(j) for these (i,j): {106, 23617}, {1222, 9456}, {1320, 3451}, {1476, 2316}
X(51415) = X(i)-Dao conjugate of X(j) for these (i, j): (214, 23617), (2170, 23838), (3452, 88), (3752, 4997), (4370, 1222), (6544, 40451)
X(51415) = crosspoint of X(i) and X(j) for these (i,j): {2, 14554}, {3911, 4358}, {14628, 24624}
X(51415) = crosssum of X(i) and X(j) for these (i,j): {6, 5053}, {2316, 9456}
X(51415) = crossdifference of every pair of points on line {512, 2441}
X(51415) = barycentric product X(i)*X(j) for these {i,j}: {44, 26563}, {519, 3663}, {900, 21272}, {1122, 4723}, {1201, 3264}, {1319, 20895}, {1635, 21580}, {3452, 3911}, {3752, 4358}, {3762, 21362}, {3943, 18600}, {4415, 16704}, {4642, 30939}, {17183, 40663}, {24004, 48334}, {25268, 30725}
X(51415) = barycentric quotient X(i)/X(j) for these {i,j}: {44, 23617}, {519, 1222}, {1201, 106}, {1319, 1476}, {1404, 3451}, {1647, 40451}, {1828, 36125}, {1877, 40446}, {2347, 2316}, {3057, 1320}, {3452, 4997}, {3663, 903}, {3689, 1261}, {3752, 88}, {3911, 40420}, {4358, 32017}, {4415, 4080}, {4642, 4674}, {6363, 23345}, {6615, 23838}, {17780, 8706}, {20228, 9456}, {21272, 4555}, {21362, 3257}, {22344, 36058}, {23845, 901}, {25268, 4582}, {26563, 20568}, {45204, 31227}, {48334, 1022}
X(51415) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4383, 37646}, {2, 5233, 141}, {2, 5241, 1213}, {2, 5712, 37682}, {2, 5718, 17245}, {2, 30828, 17265}, {2, 30832, 34573}, {2, 32911, 37634}, {2, 37650, 31187}, {2, 37651, 5718}, {2, 37662, 17056}, {2, 37663, 37662}, {2, 37680, 35466}, {908, 16610, 1086}, {3216, 4187, 1834}, {3452, 3752, 4415}, {3452, 45204, 3752}, {4383, 25934, 6}, {5718, 17245, 17056}, {5718, 37651, 37662}, {5718, 37663, 37651}, {17245, 37662, 5718}, {17595, 31018, 17334}, {23511, 30827, 3772}, {31187, 37679, 37650}


X(51416) = X(2)X(42884)∩X(119)X(517)

Barycentrics    (a - b - c)*(a*b - b^2 + a*c + 2*b*c - c^2)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :

X(51416) lies on these lines: {2, 42884}, {5, 5082}, {8, 442}, {10, 26005}, {11, 3689}, {12, 6736}, {78, 5886}, {100, 37374}, {119, 517}, {142, 354}, {145, 25962}, {200, 2886}, {226, 17658}, {390, 14022}, {480, 31140}, {496, 27383}, {497, 6600}, {1058, 50206}, {1259, 18517}, {1260, 3434}, {1329, 1697}, {1387, 4511}, {1706, 15844}, {1836, 20588}, {2078, 3035}, {2340, 33136}, {2550, 37363}, {2968, 3006}, {3295, 4187}, {3340, 12607}, {3421, 6907}, {3695, 23528}, {3703, 17860}, {3816, 10389}, {3826, 5231}, {3932, 24026}, {4193, 27525}, {4853, 25466}, {5687, 6831}, {5748, 7956}, {5837, 21031}, {6737, 11011}, {6881, 10247}, {6882, 12331}, {7046, 25985}, {7360, 32850}, {7373, 8728}, {8727, 17784}, {9779, 11681}, {10388, 15845}, {10527, 17529}, {10707, 17533}, {10742, 35461}, {11019, 25973}, {13257, 17615}, {15837, 40998}, {15908, 21075}, {17575, 27529}, {19542, 36855}, {20075, 37358}, {21077, 46677}, {23541, 51366}, {27542, 33305}

X(51416) = midpoint of X(10742) and X(35461)
X(51416) = reflection of X(2078) in X(3035)
X(51416) = X(i)-isoconjugate of X(j) for these (i,j): {909, 1170}, {1174, 34051}, {21453, 34858}
X(51416) = X(i)-Dao conjugate of X(j) for these (i, j): (142, 104), (1145, 2346), (16586, 21453), (23980, 1170), (40606, 34051)
X(51416) = crosspoint of X(3262) and X(6735)
X(51416) = barycentric product X(i)*X(j) for these {i,j}: {142, 6735}, {517, 1229}, {908, 4847}, {1212, 3262}, {2397, 6362}, {16713, 17757}, {35341, 36038}
X(51416) = barycentric quotient X(i)/X(j) for these {i,j}: {354, 34051}, {517, 1170}, {908, 21453}, {1212, 104}, {1229, 18816}, {1855, 36123}, {2293, 909}, {2397, 6606}, {2488, 2423}, {3262, 31618}, {4847, 34234}, {6362, 2401}, {6735, 32008}, {8012, 2342}, {20229, 34858}, {21039, 2250}, {22079, 14578}, {22350, 1803}, {22464, 10509}, {35326, 2720}, {35338, 37136}, {35341, 36037}, {51380, 6605}
X(51416) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {119, 51362, 17757}, {908, 6735, 51380}


X(51417) = X(1)X(27688)∩X(114)X(325)

Barycentrics    (b + c)*(2*a + b + c)*(-(a^2*b^2) + b^4 - a^2*c^2 + c^4) : :

X(51417) lies on these lines: {1, 27688}, {8, 27704}, {69, 7410}, {99, 20558}, {114, 325}, {115, 726}, {125, 3006}, {442, 24199}, {518, 44396}, {620, 1326}, {982, 46828}, {984, 46826}, {1100, 1125}, {1211, 24239}, {3663, 37159}, {3701, 30436}, {3710, 27555}, {3729, 37049}, {3751, 27556}, {3836, 17058}, {3932, 8287}, {3977, 33329}, {5051, 17324}, {5145, 7764}, {5846, 50773}, {5949, 49483}, {6033, 35462}, {6367, 30591}, {7380, 50632}, {10026, 34379}, {16830, 27707}, {20337, 24231}, {30171, 34829}, {34528, 49511}, {39040, 44694}

X(51417) = midpoint of X(i) and X(j) for these {i,j}: {99, 20558}, {6033, 35462}
X(51417) = reflection of X(i) in X(j) for these {i,j}: {115, 20546}, {1326, 620}
X(51417) = X(i)-isoconjugate of X(j) for these (i,j): {1171, 1910}, {1976, 40438}, {2715, 47947}, {36084, 50344}
X(51417) = X(i)-Dao conjugate of X(j) for these (i, j): (1125, 98), (5976, 32014), (11672, 1171), (35088, 4608), (38987, 50344), (39040, 40438)
X(51417) = crossdifference of every pair of points on line {2422, 50344}
X(51417) = barycentric product X(i)*X(j) for these {i,j}: {297, 41014}, {325, 1213}, {430, 6393}, {511, 1230}, {1100, 42703}, {1959, 4647}, {1962, 46238}, {2396, 6367}, {2799, 4427}, {3958, 40703}, {8013, 51370}, {22080, 44132}, {30591, 42717}, {36212, 44143}
X(51417) = barycentric quotient X(i)/X(j) for these {i,j}: {325, 32014}, {430, 6531}, {511, 1171}, {1213, 98}, {1230, 290}, {1959, 40438}, {1962, 1910}, {2421, 6578}, {2799, 4608}, {3569, 50344}, {3958, 293}, {4046, 15628}, {4427, 2966}, {4647, 1821}, {5360, 28615}, {6367, 2395}, {8663, 2422}, {20970, 1976}, {22080, 248}, {35327, 2715}, {35342, 36084}, {41014, 287}, {42703, 32018}, {42717, 4596}, {44143, 16081}


X(51418) = X(1)X(6)∩X(118)X(516)

Barycentrics    a*(a - b - c)^2*(2*a^3 - a^2*b - b^3 - a^2*c + b^2*c + b*c^2 - c^3) : :
X(51418) = 2 X[9] + X[6603], X[910] - 4 X[28345]

X(51418) lies on these lines: {1, 6}, {41, 14100}, {55, 28070}, {101, 971}, {118, 516}, {144, 348}, {210, 6602}, {390, 6554}, {480, 4515}, {527, 36956}, {657, 3900}, {673, 34852}, {919, 40567}, {1146, 5853}, {1260, 45791}, {1334, 15837}, {1456, 9502}, {1615, 10860}, {1802, 3059}, {2550, 46835}, {3119, 3689}, {3158, 5574}, {3207, 5732}, {3683, 8012}, {3685, 6559}, {3730, 31658}, {4258, 4326}, {4421, 41795}, {5819, 27508}, {5845, 40880}, {6605, 27065}, {6745, 13609}, {8581, 9310}, {10164, 45203}, {14189, 44664}, {15855, 35258}, {16283, 20310}, {18482, 24045}, {20533, 37774}, {21153, 42316}, {21856, 46839}, {26006, 39063}, {27382, 41325}, {30331, 41006}

X(51418) = X(2736)-complementary conjugate of X(17072)
X(51418) = X(40869)-Ceva conjugate of X(41339)
X(51418) = crosspoint of X(i) and X(j) for these (i,j): {9, 28071}, {1275, 36802}
X(51418) = crosssum of X(57) and X(34855)
X(51418) = crossdifference of every pair of points on line {269, 513}
X(51418) = X(i)-isoconjugate of X(j) for these (i,j): {57, 43736}, {103, 279}, {269, 36101}, {479, 2338}, {514, 24016}, {658, 2424}, {693, 32668}, {911, 1088}, {1119, 1815}, {1262, 15634}, {1407, 18025}, {1461, 2400}, {1847, 36056}, {7177, 36122}, {9503, 34855}
X(51418) = X(i)-Dao conjugate of X(j) for these (i, j): (5452, 43736), (6600, 36101), (20622, 1847), (23972, 1088), (24771, 18025), (35508, 2400), (46095, 7177), (50441, 85)
X(51418) = barycentric product X(i)*X(j) for these {i,j}: {8, 41339}, {9, 40869}, {190, 46392}, {200, 516}, {220, 30807}, {281, 51376}, {346, 910}, {657, 42719}, {676, 4578}, {728, 43035}, {1253, 35517}, {1456, 5423}, {1886, 3692}, {2287, 17747}, {2398, 3900}, {2426, 4397}, {4183, 51366}, {4515, 14953}, {6559, 9502}, {7079, 26006}, {28071, 50441}
X(51418) = barycentric quotient X(i)/X(j) for these {i,j}: {55, 43736}, {200, 18025}, {220, 36101}, {516, 1088}, {692, 24016}, {910, 279}, {1253, 103}, {1456, 479}, {1802, 1815}, {1886, 1847}, {2310, 15634}, {2398, 4569}, {2426, 934}, {3234, 24015}, {3900, 2400}, {6602, 2338}, {7071, 36122}, {8641, 2424}, {14827, 911}, {17747, 1446}, {28345, 37757}, {32739, 32668}, {40869, 85}, {41321, 13149}, {41339, 7}, {42719, 46406}, {43035, 23062}, {46392, 514}, {51376, 348}
X(51418) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 1001, 1212}, {9, 2324, 50995}, {7079, 7368, 4515}, {40869, 51376, 910}


X(51419) = X(2)X(1565)∩X(119)X(517)

Barycentrics    (2*a^2 - a*b + b^2 - a*c - 2*b*c + c^2)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :

X(51419) lies on these lines: {2, 1565}, {11, 2809}, {100, 28915}, {101, 5723}, {119, 517}, {142, 374}, {226, 4904}, {513, 10427}, {948, 37272}, {1086, 21362}, {1211, 21253}, {2348, 3008}, {2808, 13257}, {2810, 38055}, {3434, 10743}, {3452, 5514}, {4928, 16594}, {5219, 43960}, {5845, 24618}, {6084, 16593}, {7291, 19512}, {9004, 41555}, {10015, 42762}, {16551, 17337}, {17056, 20982}, {17060, 34852}, {18421, 26727}, {19542, 20921}, {21138, 37662}, {23511, 24795}, {28344, 39063}, {28827, 30808}, {30810, 30854}, {46790, 50843}

X(51419) = X(i)-isoconjugate of X(j) for these (i,j): {909, 1280}, {2342, 43760}, {32641, 35355}, {34858, 36807}
X(51419) = X(i)-Dao conjugate of X(j) for these (i, j): (16586, 36807), (16593, 34234), (23980, 1280), (39048, 104)
X(51419) = crossdifference of every pair of points on line {2342, 2423}
X(51419) = barycentric product X(i)*X(j) for these {i,j}: {908, 3008}, {1279, 3262}, {2397, 6084}, {5853, 22464}
X(51419) = barycentric quotient X(i)/X(j) for these {i,j}: {517, 1280}, {908, 36807}, {1279, 104}, {1457, 1477}, {1465, 43760}, {1769, 35355}, {2427, 6078}, {3008, 34234}, {6084, 2401}, {8647, 2342}, {8659, 2423}, {20780, 1795}, {22350, 1810}, {22464, 35160}
X(51419) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {908, 51381, 51390}, {51381, 51390, 1145}


X(51420) = X(28)X(60)∩X(30)X(113)

Barycentrics    a*(a + b)*(a + c)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4) : :
X(51420) = X[6740] - 3 X[7478], 3 X[15035] - X[36001]

X(51420) lies on these lines: {1, 47484}, {21, 4881}, {28, 60}, {30, 113}, {36, 238}, {58, 14158}, {65, 17104}, {110, 517}, {125, 44898}, {154, 37241}, {163, 910}, {354, 9275}, {392, 17512}, {501, 2360}, {515, 3109}, {662, 5440}, {759, 1319}, {849, 1104}, {971, 2074}, {1071, 13739}, {1098, 3916}, {1155, 5127}, {1175, 37544}, {1354, 6357}, {1385, 11101}, {1408, 5358}, {1790, 13151}, {2173, 9406}, {2182, 2341}, {3290, 5006}, {3579, 35193}, {3615, 9955}, {3753, 11116}, {3794, 17513}, {4383, 37034}, {5196, 28146}, {5972, 30447}, {6003, 47402}, {6740, 7478}, {7424, 28160}, {7452, 45766}, {9956, 37158}, {10282, 37468}, {10540, 37976}, {13367, 20420}, {13369, 44253}, {13746, 18480}, {14192, 15524}, {15035, 36001}, {15792, 37080}, {17209, 46548}, {17523, 36742}, {17579, 26881}, {18475, 28452}, {20840, 48897}, {23059, 34339}, {23692, 46974}, {24929, 40214}, {25507, 25516}, {27643, 27652}, {28459, 43586}, {31663, 37294}, {31794, 46441}, {40589, 40937}

X(51420) = midpoint of X(i) and X(j) for these {i,j}: {110, 1325}, {10540, 37976}, {18653, 51382}
X(51420) = reflection of X(i) in X(j) for these {i,j}: {125, 44898}, {30447, 5972}
X(51420) = X(2173)-cross conjugate of X(18653)
X(51420) = cevapoint of X(1495) and X(2173)
X(51420) = crosssum of X(210) and X(4053)
X(51420) = crossdifference of every pair of points on line {37, 2433}
X(51420) = X(i)-isoconjugate of X(j) for these (i,j): {10, 74}, {37, 2349}, {42, 1494}, {65, 44693}, {71, 16080}, {72, 36119}, {101, 2394}, {190, 2433}, {213, 33805}, {226, 15627}, {306, 8749}, {313, 40352}, {321, 2159}, {1304, 4064}, {1331, 18808}, {1826, 14919}, {1897, 14380}, {4024, 44769}, {4036, 36034}, {4062, 9139}, {4570, 12079}, {8750, 34767}, {18082, 46147}, {35200, 41013}, {40071, 40354}
X(51420) = X(i)-Dao conjugate of X(j) for these (i, j): (133, 41013), (1015, 2394), (1511, 72), (3163, 321), (3258, 4036), (3284, 42701), (5521, 18808), (6626, 33805), (6739, 3701), (26932, 34767), (34467, 14380), (40589, 2349), (40592, 1494), (40602, 44693), (50330, 12079)
X(51420) = barycentric product X(i)*X(j) for these {i,j}: {1, 18653}, {21, 6357}, {28, 11064}, {30, 81}, {57, 51382}, {58, 14206}, {86, 2173}, {99, 14399}, {274, 1495}, {286, 3284}, {310, 9406}, {513, 2407}, {662, 11125}, {693, 2420}, {905, 4240}, {1014, 7359}, {1333, 3260}, {1414, 14400}, {1437, 46106}, {1444, 1990}, {1459, 24001}, {1784, 1790}, {2206, 46234}, {3733, 42716}, {4556, 36035}, {4623, 14398}, {6385, 9407}, {9214, 16702}, {15413, 23347}, {15454, 18609}, {16164, 21907}, {18180, 43768}, {35906, 51369}
X(51420) = barycentric quotient X(i)/X(j) for these {i,j}: {28, 16080}, {30, 321}, {58, 2349}, {81, 1494}, {86, 33805}, {284, 44693}, {513, 2394}, {667, 2433}, {905, 34767}, {1333, 74}, {1437, 14919}, {1474, 36119}, {1495, 37}, {1511, 42701}, {1568, 42698}, {1637, 4036}, {1990, 41013}, {2173, 10}, {2194, 15627}, {2203, 8749}, {2206, 2159}, {2407, 668}, {2420, 100}, {2631, 4064}, {3125, 12079}, {3233, 42716}, {3260, 27801}, {3284, 72}, {4240, 6335}, {5642, 42713}, {6357, 1441}, {6591, 18808}, {7359, 3701}, {9406, 42}, {9407, 213}, {10564, 42704}, {11064, 20336}, {11125, 1577}, {14206, 313}, {14398, 4705}, {14399, 523}, {14400, 4086}, {14581, 1824}, {16164, 32849}, {16702, 36890}, {18653, 75}, {22383, 14380}, {23347, 1783}, {35266, 42724}, {42716, 27808}, {51372, 42711}, {51382, 312}, {51389, 42703}, {51393, 42700}, {51394, 3998}
X(51420) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {28, 1437, 18180}, {60, 229, 942}, {501, 37816, 2646}, {3615, 37369, 9955}, {35193, 37405, 3579}


X(51421) = X(4)X(221)∩X(12)X(73)

Barycentrics    (a + b - c)*(a - b + c)*(b + c)*(2*a^4 - a^3*b - a^2*b^2 + a*b^3 - b^4 - a^3*c + 2*a^2*b*c - a*b^2*c - a^2*c^2 - a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4) : :

X(51421) lies on the cubic K741 and these lines: {1, 6831}, {3, 34030}, {4, 221}, {5, 10571}, {10, 227}, {11, 1457}, {12, 73}, {30, 109}, {34, 1837}, {36, 43043}, {53, 21767}, {55, 13734}, {56, 5230}, {65, 225}, {80, 6357}, {117, 515}, {151, 37420}, {201, 21677}, {222, 1478}, {223, 5587}, {226, 37715}, {230, 17966}, {255, 11827}, {278, 5721}, {325, 664}, {355, 1060}, {381, 34029}, {388, 940}, {393, 3197}, {394, 3436}, {442, 37558}, {495, 50317}, {523, 656}, {603, 5348}, {612, 5252}, {651, 5080}, {860, 38955}, {976, 10944}, {1038, 5794}, {1042, 21935}, {1076, 14110}, {1086, 18838}, {1146, 5089}, {1213, 40590}, {1319, 3011}, {1329, 37694}, {1394, 5691}, {1406, 18961}, {1409, 1901}, {1413, 12667}, {1422, 5923}, {1456, 1877}, {1465, 1737}, {1479, 34040}, {1512, 43058}, {1745, 18242}, {1771, 37468}, {1783, 45929}, {1785, 6001}, {1826, 30456}, {1838, 7686}, {1846, 2390}, {1854, 7952}, {1875, 3827}, {1880, 21933}, {2182, 8755}, {2886, 24806}, {2968, 50368}, {3157, 10526}, {3419, 8270}, {3585, 34043}, {3649, 50705}, {4296, 5086}, {4551, 17757}, {4559, 17747}, {4694, 41556}, {5090, 8900}, {5722, 34036}, {5725, 45126}, {5881, 34039}, {6826, 34042}, {6839, 34035}, {6882, 34586}, {6905, 51236}, {7066, 22299}, {8283, 22654}, {8757, 37821}, {11237, 17392}, {11500, 41402}, {12616, 17102}, {14594, 16086}, {15252, 45272}, {15253, 30117}, {16318, 32674}, {17555, 20306}, {18419, 33146}, {20617, 39791}, {22072, 50031}, {23536, 37566}, {25466, 37523}, {26012, 43035}, {26332, 41344}, {28774, 49492}, {30725, 45884}, {35110, 46415}, {35580, 51221}, {36127, 51385}, {37541, 48837}

X(51421) = midpoint of X(i) and X(j) for these {i,j}: {109, 38945}, {151, 37420}
X(51421) = reflection of X(i) in X(j) for these {i,j}: {1455, 34050}, {2968, 50368}, {38357, 1785}, {45272, 15252}, {51361, 51375}
X(51421) = polar conjugate of the isotomic conjugate of X(51368)
X(51421) = X(38955)-Ceva conjugate of X(65)
X(51421) = crosssum of X(102) and X(36055)
X(51421) = crossdifference of every pair of points on line {284, 2432}
X(51421) = X(i)-isoconjugate of X(j) for these (i,j): {21, 102}, {29, 36055}, {81, 15629}, {163, 2399}, {283, 36121}, {284, 36100}, {333, 32677}, {662, 2432}, {2194, 34393}, {7253, 36040}, {15411, 32667}
X(51421) = X(i)-Dao conjugate of X(j) for these (i, j): (115, 2399), (1084, 2432), (1214, 34393), (1465, 17139), (10017, 7253), (23986, 333), (40586, 15629), (40590, 36100), (40611, 102), (51221, 29)
X(51421) = barycentric product X(i)*X(j) for these {i,j}: {4, 51368}, {10, 34050}, {226, 515}, {307, 8755}, {321, 1455}, {523, 2406}, {525, 23987}, {656, 24035}, {850, 2425}, {1020, 14304}, {1400, 35516}, {1441, 2182}, {1446, 51361}, {4017, 42718}, {8808, 51375}, {40149, 46974}
X(51421) = barycentric quotient X(i)/X(j) for these {i,j}: {42, 15629}, {65, 36100}, {226, 34393}, {512, 2432}, {515, 333}, {523, 2399}, {1400, 102}, {1402, 32677}, {1409, 36055}, {1455, 81}, {1880, 36121}, {2182, 21}, {2406, 99}, {2425, 110}, {8755, 29}, {21044, 15633}, {23987, 648}, {24035, 811}, {34050, 86}, {35516, 28660}, {39471, 15411}, {42718, 7257}, {46974, 1812}, {51361, 2287}, {51368, 69}, {51375, 27398}
X(51421) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 5930, 227}, {1409, 8736, 1901}


X(51422) = X(1)X(1537)∩X(117)X(515)

Barycentrics    (2*a - b - c)*(a + b - c)*(a - b + c)*(2*a^4 - a^3*b - a^2*b^2 + a*b^3 - b^4 - a^3*c + 2*a^2*b*c - a*b^2*c - a^2*c^2 - a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4) : :
X(51422) = 3 X[1455] - 2 X[34050]

X(51422) lies on these lines: {1, 1537}, {56, 3756}, {65, 3937}, {80, 43043}, {104, 51236}, {109, 952}, {117, 515}, {221, 944}, {223, 50811}, {227, 4297}, {388, 17724}, {513, 1361}, {519, 13539}, {603, 10950}, {651, 6224}, {900, 1317}, {1062, 18481}, {1086, 1411}, {1145, 23703}, {1146, 1415}, {1319, 1846}, {1359, 6087}, {1362, 34194}, {1465, 21578}, {2099, 17365}, {3315, 3600}, {3476, 6180}, {3486, 34046}, {4551, 10609}, {4565, 6740}, {10246, 34029}, {10571, 34773}, {12832, 14584}, {15252, 18340}, {18525, 34030}, {24028, 24466}, {28186, 38945}, {37706, 46819}

X(51422) = reflection of X(i) in X(j) for these {i,j}: {10017, 39762}, {18340, 15252}, {38357, 1}
X(51422) = X(36944)-Ceva conjugate of X(1319)
X(51422) = X(i)-isoconjugate of X(j) for these (i,j): {88, 15629}, {102, 1320}, {2316, 36100}, {2399, 32665}, {2432, 3257}, {4997, 32677}
X(51422) = X(i)-Dao conjugate of X(j) for these (i, j): (23986, 4997), (35092, 2399)
X(51422) = crossdifference of every pair of points on line {2316, 2432}
X(51422) = barycentric product X(i)*X(j) for these {i,j}: {515, 3911}, {519, 34050}, {900, 2406}, {1404, 35516}, {1455, 4358}, {11700, 14628}, {37168, 51368}, {37790, 46974}
X(51422) = barycentric quotient X(i)/X(j) for these {i,j}: {515, 4997}, {900, 2399}, {902, 15629}, {1319, 36100}, {1404, 102}, {1455, 88}, {1960, 2432}, {2182, 1320}, {2406, 4555}, {2425, 901}, {3911, 34393}, {4530, 15633}, {34050, 903}


X(51423) = X(1)X(5905)∩X(2)X(2093)

Barycentrics    (3*a + b + c)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :
X(51423) = 5 X[908] - 2 X[1145], 3 X[908] - 2 X[17757], 7 X[908] - 4 X[51362], 4 X[1145] - 5 X[6735], 3 X[1145] - 5 X[17757], 7 X[1145] - 10 X[51362], 3 X[6735] - 4 X[17757], 7 X[6735] - 8 X[51362], 7 X[17757] - 6 X[51362], X[4880] - 3 X[16173], 2 X[5122] - 3 X[34123]

X(51423) lies on these lines: {1, 5905}, {2, 2093}, {4, 11682}, {8, 1699}, {10, 3899}, {11, 44663}, {21, 41551}, {40, 6962}, {55, 34647}, {63, 5603}, {65, 3816}, {72, 22010}, {78, 962}, {100, 28194}, {119, 517}, {145, 3586}, {149, 519}, {226, 3877}, {329, 3872}, {377, 15829}, {390, 41570}, {392, 5249}, {452, 4323}, {496, 4018}, {515, 5057}, {516, 4511}, {529, 5048}, {535, 11274}, {551, 11551}, {758, 26015}, {946, 3869}, {956, 3656}, {960, 3925}, {1056, 31164}, {1058, 11520}, {1125, 3336}, {1149, 24231}, {1319, 17768}, {1457, 17139}, {1479, 41575}, {1737, 11813}, {1770, 30144}, {1836, 5289}, {2099, 24703}, {2390, 50362}, {2476, 5837}, {2478, 3340}, {2886, 31165}, {2975, 13464}, {3035, 5183}, {3218, 44675}, {3241, 4342}, {3361, 3616}, {3434, 18406}, {3436, 7982}, {3474, 35262}, {3485, 5250}, {3576, 44447}, {3577, 6957}, {3636, 3648}, {3754, 25011}, {3813, 3962}, {3822, 3878}, {3868, 12053}, {3870, 30305}, {3884, 13407}, {3890, 21620}, {3895, 25568}, {3901, 49627}, {3916, 5901}, {3984, 5082}, {4004, 17527}, {4101, 4673}, {4187, 50193}, {4193, 4848}, {4295, 19861}, {4298, 14450}, {4640, 15950}, {4684, 4742}, {4855, 6361}, {4861, 12527}, {4870, 6690}, {4880, 16173}, {4930, 9668}, {5086, 18483}, {5087, 40663}, {5122, 34123}, {5128, 6921}, {5176, 28234}, {5330, 10106}, {5440, 28174}, {5542, 38314}, {5552, 7991}, {5657, 30852}, {5692, 25006}, {5697, 21077}, {5730, 12699}, {5903, 21616}, {5904, 49600}, {6224, 28164}, {6745, 28228}, {6836, 7971}, {7962, 28609}, {9614, 12649}, {9623, 31018}, {9785, 10382}, {9819, 11239}, {9945, 28216}, {10527, 11522}, {10589, 34744}, {10609, 28146}, {10624, 34772}, {11113, 50194}, {11362, 11681}, {12514, 24541}, {12532, 21630}, {12609, 24564}, {12635, 12701}, {14923, 21075}, {15326, 28534}, {17484, 38460}, {20070, 27383}, {21578, 39778}, {24171, 28370}, {25681, 37567}, {26892, 39550}, {27529, 43174}, {31053, 31397}, {32857, 47623}, {35631, 42448}, {44840, 49736}

X(51423) = midpoint of X(i) and X(j) for these {i,j}: {4511, 5180}, {17484, 38460}
X(51423) = reflection of X(i) in X(j) for these {i,j}: {1737, 11813}, {3218, 44675}, {5183, 3035}, {6735, 908}, {26015, 30384}, {40663, 5087}
X(51423) = X(i)-isoconjugate of X(j) for these (i,j): {104, 2334}, {909, 25430}, {2401, 34074}, {2423, 4606}, {5936, 34858}, {32641, 47915}, {34051, 34820}
X(51423) = X(i)-Dao conjugate of X(j) for these (i, j): (1145, 4866), (16586, 5936), (23980, 25430), (40613, 2334)
X(51423) = barycentric product X(i)*X(j) for these {i,j}: {391, 22464}, {517, 19804}, {908, 3616}, {1449, 3262}, {1465, 4673}, {2397, 4778}, {4811, 24029}, {5257, 17139}, {6735, 21454}, {17757, 42028}, {31903, 51367}
X(51423) = barycentric quotient X(i)/X(j) for these {i,j}: {517, 25430}, {908, 5936}, {1449, 104}, {1769, 47915}, {2183, 2334}, {2427, 8694}, {3262, 40023}, {3361, 34051}, {3616, 34234}, {4258, 2342}, {4673, 36795}, {4700, 36944}, {4765, 43728}, {4778, 2401}, {5257, 38955}, {5342, 16082}, {19804, 18816}, {37593, 2250}
X(51423) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {392, 39542, 5249}, {946, 3869, 6734}, {3878, 12047, 24987}, {3899, 18393, 10}, {5903, 21616, 24982}, {11522, 12526, 10527}


X(51424) = X(1)X(6357)∩X(117)X(515)

Barycentrics    (a*b - b^2 + a*c + 2*b*c - c^2)*(2*a^4 - a^3*b - a^2*b^2 + a*b^3 - b^4 - a^3*c + 2*a^2*b*c - a*b^2*c - a^2*c^2 - a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4) : :

X(51424) lies on these lines: {1, 6357}, {4, 34046}, {11, 1458}, {117, 515}, {225, 12680}, {227, 6245}, {354, 1827}, {408, 23361}, {497, 6180}, {603, 6253}, {971, 38357}, {1076, 14872}, {1468, 1834}, {1496, 6284}, {1836, 17365}, {1837, 4320}, {1838, 12675}, {1854, 9799}, {3000, 33136}, {3434, 22129}, {3925, 22053}, {4293, 5721}, {4551, 37374}, {4847, 13156}, {5723, 18461}, {5787, 21147}, {6362, 6608}, {6836, 9370}, {10431, 23144}, {17747, 20752}, {18450, 33129}, {43043, 44425}

X(51424) = reflection of X(51361) in X(34050)
X(51424) = X(i)-isoconjugate of X(j) for these (i,j): {102, 2346}, {1170, 15629}, {1174, 36100}, {32008, 32677}, {36121, 47487}
X(51424) = X(i)-Dao conjugate of X(j) for these (i, j): (1212, 34393), (23986, 32008), (40606, 36100)
X(51424) = crossdifference of every pair of points on line {1174, 2432}
X(51424) = barycentric product X(i)*X(j) for these {i,j}: {142, 515}, {1229, 1455}, {1475, 35516}, {2182, 20880}, {2406, 6362}, {4847, 34050}, {13156, 51375}, {42718, 48151}
X(51424) = barycentric quotient X(i)/X(j) for these {i,j}: {142, 34393}, {354, 36100}, {515, 32008}, {1455, 1170}, {1475, 102}, {2182, 2346}, {2293, 15629}, {2406, 6606}, {2488, 2432}, {6362, 2399}, {34050, 21453}, {51361, 6605}


X(51425) = X(2)X(11456)∩X(30)X(113)

Barycentrics    (2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - 3*a^4*c^2 - 2*a^2*b^2*c^2 + b^4*c^2 + 3*a^2*c^4 + b^2*c^4 - c^6) : :
X(51425) = 2 X[1511] + X[1514], 3 X[5642] - X[51394], 4 X[10272] - X[11064], 5 X[10272] - X[46114], 2 X[10272] + X[46817], 5 X[11064] - 4 X[46114], X[11064] + 2 X[46817], and many others

X(51425) lies on these lines: {2, 11456}, {3, 1661}, {4, 9820}, {5, 156}, {24, 22660}, {25, 5654}, {30, 113}, {49, 12241}, {51, 44233}, {52, 21841}, {110, 403}, {125, 44911}, {140, 12162}, {146, 37941}, {154, 18531}, {155, 3542}, {185, 16238}, {230, 1625}, {235, 1147}, {323, 46451}, {343, 10201}, {381, 8780}, {399, 47296}, {427, 46261}, {468, 13148}, {511, 37971}, {524, 45016}, {525, 47221}, {858, 14157}, {1112, 45780}, {1154, 32269}, {1351, 41585}, {1352, 19153}, {1498, 3548}, {1503, 2072}, {1576, 13557}, {1596, 13352}, {1885, 12038}, {1990, 47405}, {2070, 15448}, {2071, 32111}, {2931, 37951}, {3089, 36747}, {3147, 12163}, {3153, 35265}, {3545, 14389}, {3549, 17814}, {3564, 37942}, {3575, 5448}, {3580, 20125}, {3589, 5055}, {3850, 15806}, {3917, 16618}, {5159, 38795}, {5562, 13383}, {5655, 44214}, {5663, 44452}, {5876, 10020}, {5891, 6676}, {5899, 29181}, {5907, 7542}, {5972, 6000}, {6053, 44673}, {6102, 44232}, {6193, 6622}, {6247, 6640}, {6353, 37489}, {6677, 9730}, {6696, 18439}, {6759, 11585}, {6841, 17188}, {7499, 10170}, {7505, 11441}, {7506, 12233}, {7514, 13394}, {7552, 37636}, {7568, 14128}, {7728, 44246}, {8254, 12811}, {9306, 15760}, {9544, 12022}, {10018, 12111}, {10024, 18350}, {10151, 17702}, {10154, 37478}, {10282, 12605}, {10297, 18400}, {10575, 16196}, {10706, 44280}, {11202, 44249}, {11251, 15454}, {11438, 44211}, {11449, 18560}, {11459, 44201}, {11562, 44234}, {11563, 40111}, {11745, 13621}, {11793, 34002}, {11799, 22115}, {11911, 34810}, {12007, 45967}, {12118, 37197}, {12168, 37917}, {12225, 26882}, {12278, 18504}, {12370, 44235}, {13160, 43598}, {13292, 43844}, {13353, 50139}, {13371, 16655}, {13391, 16619}, {13473, 46686}, {13567, 18445}, {13568, 45735}, {13851, 36518}, {13861, 45089}, {14156, 14915}, {14516, 16868}, {14561, 32621}, {14788, 43614}, {14845, 18583}, {14862, 46850}, {15035, 16386}, {15063, 21663}, {15067, 25337}, {15305, 37118}, {15585, 18438}, {15873, 36749}, {16003, 37911}, {16072, 26864}, {16111, 47114}, {16657, 46030}, {16658, 31074}, {16976, 38793}, {18282, 31834}, {18404, 34782}, {18420, 35259}, {18475, 34664}, {18537, 37506}, {18914, 43817}, {18917, 26958}, {18928, 36752}, {22802, 44240}, {23047, 45286}, {23323, 30522}, {23335, 26883}, {23515, 44912}, {25739, 46818}, {26451, 47050}, {26879, 43605}, {27087, 44816}, {30714, 37984}, {30771, 32063}, {31726, 32609}, {31833, 43831}, {32110, 37935}, {32348, 40247}, {32411, 41671}, {32423, 46031}, {34153, 44283}, {35254, 44837}, {37483, 37669}, {37645, 44413}, {37948, 50434}, {38791, 47308}, {39522, 44275}, {43574, 47096}, {43898, 44247}, {44282, 44569}, {44829, 50414}

X(51425) = midpoint of X(i) and X(j) for these {i,j}: {110, 403}, {113, 51393}, {858, 14157}, {1495, 1568}, {2071, 32111}, {2072, 10540}, {5655, 44214}, {6053, 44673}, {7728, 44246}, {10706, 44280}, {11563, 40111}, {11799, 22115}, {15063, 21663}, {25739, 46818}, {34153, 44283}, {43574, 47096}
X(51425) = reflection of X(i) in X(j) for these {i,j}: {125, 44911}, {2070, 15448}, {10257, 5972}, {13473, 46686}, {16111, 47114}, {32110, 37935}, {32411, 41671}, {44569, 44282}, {47090, 14156}
X(51425) = X(i)-isoconjugate of X(j) for these (i,j): {74, 921}, {254, 35200}, {2159, 6504}, {15316, 36119}
X(51425) = X(i)-Dao conjugate of X(j) for these (i, j): (133, 254), (1511, 15316), (3163, 6504)
X(51425) = barycentric product X(i)*X(j) for these {i,j}: {30, 6515}, {155, 46106}, {920, 14206}, {1609, 3260}, {1990, 40697}, {2173, 33808}, {3542, 11064}, {39116, 51393}, {41587, 43768}
X(51425) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 6504}, {155, 14919}, {920, 2349}, {1609, 74}, {1990, 254}, {2173, 921}, {2420, 13398}, {3284, 15316}, {3542, 16080}, {6515, 1494}, {14581, 39109}, {33808, 33805}, {46106, 46746}
X(51425) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 156, 6146}, {5, 10539, 12134}, {155, 3542, 41587}, {7505, 11441, 12359}, {10018, 12111, 44158}, {10201, 15068, 343}, {10272, 46817, 11064}, {10539, 34116, 156}, {10540, 14643, 2072}


X(51426) = X(2)X(6467)∩X(114)X(325)

Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^4 + 2*a^2*b^2 + b^4 + 2*a^2*c^2 - 6*b^2*c^2 + c^4) : :
X(51426) = X[325] - 9 X[12093], 3 X[6786] - X[51386]

X(51426) lies on these lines: {2, 6467}, {25, 10607}, {99, 5140}, {114, 325}, {230, 8681}, {232, 15143}, {620, 2386}, {1007, 1843}, {1196, 20794}, {1368, 31367}, {1611, 19588}, {2393, 44377}, {2854, 44381}, {3491, 9729}, {3815, 9822}, {4558, 44099}, {5020, 5065}, {5889, 9742}, {5943, 7736}, {6337, 40325}, {6688, 11174}, {7710, 46850}, {7778, 11574}, {9027, 50774}, {9770, 21849}, {10011, 34382}, {11188, 34803}, {29959, 31489}, {33755, 39095}

X(51426) = midpoint of X(99) and X(5140)
X(51426) = X(34854)-Ceva conjugate of X(511)
X(51426) = X(i)-isoconjugate of X(j) for these (i,j): {287, 2129}, {336, 15369}, {1821, 40322}, {1910, 6339}
X(51426) = X(i)-Dao conjugate of X(j) for these (i, j): (11672, 6339), (40601, 40322)
X(51426) = crossdifference of every pair of points on line {2422, 40322}
X(51426) = barycentric product X(i)*X(j) for these {i,j}: {232, 19583}, {240, 2128}, {297, 19588}, {325, 1611}, {511, 6392}, {877, 2519}, {1755, 33787}, {1959, 33781}, {6338, 34854}, {6461, 6530}
X(51426) = barycentric quotient X(i)/X(j) for these {i,j}: {237, 40322}, {511, 6339}, {1611, 98}, {2128, 336}, {2211, 15369}, {2519, 879}, {6392, 290}, {6461, 6394}, {19588, 287}, {33781, 1821}, {33787, 46273}


X(51427) = X(3)X(3491)∩X(114)X(325)

Barycentrics    a^2*(a^2*b^2 + a^2*c^2 - b^2*c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :
X(51427) = X[325] - 3 X[6786], X[385] - 3 X[47638], X[7779] + 3 X[11673]

X(51427) lies on these lines: {3, 3491}, {51, 7777}, {99, 5167}, {114, 325}, {141, 1368}, {211, 7764}, {230, 34383}, {232, 40810}, {237, 51337}, {327, 6248}, {385, 33755}, {439, 9292}, {512, 32456}, {577, 1971}, {620, 2387}, {924, 6132}, {1613, 20794}, {1975, 6310}, {2421, 9418}, {2979, 7897}, {3186, 6374}, {3221, 21191}, {3229, 3511}, {3289, 36213}, {3314, 3917}, {3815, 5943}, {4173, 7807}, {4576, 35524}, {5650, 16986}, {7779, 11673}, {7888, 41262}, {8681, 15993}, {11174, 34236}, {11325, 40811}, {32547, 33014}

X(51427) = midpoint of X(99) and X(5167)
X(51427) = reflection of X(35060) in X(620)
X(51427) = X(237)-Ceva conjugate of X(511)
X(51427) = X(i)-isoconjugate of X(j) for these (i,j): {98, 3223}, {290, 34248}, {1821, 3224}, {1910, 2998}, {1976, 18832}, {3504, 36120}
X(51427) = X(i)-Dao conjugate of X(j) for these (i, j): (76, 18024), (5976, 40162), (8623, 39927), (11672, 2998), (23301, 15630), (32746, 290), (39040, 18832), (40601, 3224), (46094, 3504)
X(51427) = crosspoint of X(1613) and X(47642)
X(51427) = crosssum of X(2998) and X(39927)
X(51427) = crossdifference of every pair of points on line {2422, 3224}
X(51427) = barycentric product X(i)*X(j) for these {i,j}: {194, 511}, {237, 6374}, {297, 20794}, {325, 1613}, {877, 2524}, {1424, 44694}, {1513, 40811}, {1740, 1959}, {1755, 17149}, {2396, 3221}, {2421, 23301}, {3186, 36212}, {5976, 47642}, {6393, 11325}, {9417, 18837}, {17209, 21080}, {20910, 23997}, {21877, 51369}, {38834, 51371}, {42717, 50516}
X(51427) = barycentric quotient X(i)/X(j) for these {i,j}: {194, 290}, {237, 3224}, {325, 40162}, {511, 2998}, {1613, 98}, {1740, 1821}, {1755, 3223}, {1959, 18832}, {2421, 3222}, {2524, 879}, {3186, 16081}, {3221, 2395}, {3289, 3504}, {6374, 18024}, {9417, 34248}, {9491, 2422}, {11325, 6531}, {17149, 46273}, {20794, 287}, {23301, 43665}, {36212, 43714}, {36213, 39927}, {47642, 36897}


X(51428) = X(115)X(512)∩X(125)X(523)

Barycentrics    (b - c)^2*(b + c)^2*(-2*a^6 + 2*a^4*b^2 - a^2*b^4 + b^6 + 2*a^4*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6) : :
X(51428) = X[14999] - 3 X[16092], 2 X[15448] - 3 X[47240], 3 X[38727] - 2 X[46987]

X(51428) lies on these lines: {4, 9154}, {115, 512}, {125, 523}, {230, 1495}, {524, 47155}, {542, 1550}, {826, 35605}, {1499, 16278}, {1503, 16315}, {1533, 46999}, {1648, 8029}, {2393, 15993}, {2501, 6791}, {2966, 9862}, {3005, 8288}, {3124, 30452}, {3800, 34953}, {3906, 15357}, {5099, 12073}, {5191, 23967}, {5254, 10568}, {5642, 46980}, {6103, 34369}, {6699, 46634}, {7735, 41932}, {9181, 50711}, {11074, 11080}, {11645, 22329}, {13202, 46982}, {15448, 47240}, {16163, 46981}, {16316, 47296}, {16318, 44102}, {16341, 36523}, {17702, 46633}, {23991, 39691}, {32225, 47146}, {38727, 46987}

X(51428) = reflection of X(i) in X(j) for these {i,j}: {1495, 230}, {1533, 46999}, {2682, 115}, {5099, 15359}, {5642, 46980}, {13202, 46982}, {16163, 46981}, {16278, 51258}, {16316, 47296}, {46634, 6699}
X(51428) = X(i)-Ceva conjugate of X(j) for these (i,j): {542, 1640}, {6103, 6041}
X(51428) = X(i)-isoconjugate of X(j) for these (i,j): {163, 6035}, {662, 5649}, {842, 24041}, {1101, 5641}, {10411, 36096}
X(51428) = X(i)-Dao conjugate of X(j) for these (i, j): (115, 6035), (523, 5641), (1084, 5649), (3005, 842), (23967, 4590), (35582, 5468), (42426, 18020)
X(51428) = crosspoint of X(542) and X(1640)
X(51428) = crosssum of X(i) and X(j) for these (i,j): {842, 5649}, {36790, 42743}
X(51428) = crossdifference of every pair of points on line {249, 2420}
X(51428) = barycentric product X(i)*X(j) for these {i,j}: {115, 542}, {125, 6103}, {338, 5191}, {512, 18312}, {523, 1640}, {850, 6041}, {868, 34369}, {1109, 2247}, {1648, 16092}, {2088, 43087}, {5489, 35907}, {8029, 14999}, {33919, 50941}, {44114, 46786}
X(51428) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 5641}, {512, 5649}, {523, 6035}, {542, 4590}, {1640, 99}, {2247, 24041}, {3124, 842}, {5191, 249}, {6041, 110}, {6103, 18020}, {8029, 14223}, {14398, 51263}, {14999, 31614}, {18312, 670}, {22260, 14998}, {33919, 50942}, {44114, 46787}


X(51429) = X(114)X(325)∩X(125)X(523)

Barycentrics    (b - c)^2*(b + c)^2*(-2*a^2 + b^2 + c^2)*(-(a^2*b^2) + b^4 - a^2*c^2 + c^4) : :
X(51429) = 3 X[2682] - 2 X[38395], 3 X[5099] - X[38395], 3 X[38727] - 2 X[46981]

X(51429) lies on these lines: {4, 5641}, {114, 325}, {115, 3906}, {125, 523}, {230, 6793}, {373, 18122}, {468, 524}, {512, 15357}, {525, 14120}, {542, 36166}, {620, 9181}, {626, 45284}, {684, 38987}, {690, 2682}, {826, 15359}, {842, 11005}, {868, 35088}, {1495, 16320}, {1503, 16316}, {1533, 46993}, {1648, 1649}, {3124, 23991}, {3233, 32269}, {5972, 14999}, {6388, 45212}, {6699, 46633}, {6784, 8675}, {6791, 9209}, {7794, 35077}, {7840, 15360}, {7927, 35605}, {12036, 13857}, {13202, 46988}, {15000, 23967}, {16092, 45311}, {16163, 46987}, {16280, 36189}, {16315, 47296}, {17702, 46634}, {36207, 37638}, {38727, 46981}, {39099, 41721}

X(51429) = midpoint of X(i) and X(j) for these {i,j}: {842, 11005}, {7840, 15360}, {39099, 41721}
X(51429) = reflection of X(i) in X(j) for these {i,j}: {1495, 16320}, {1533, 46993}, {2682, 5099}, {5095, 47550}, {5181, 47557}, {5642, 46986}, {9181, 620}, {13202, 46988}, {13857, 22110}, {14999, 5972}, {16092, 45311}, {16163, 46987}, {16278, 14120}, {16315, 47296}, {46633, 6699}
X(51429) = tripolar centroid of X(50942)
X(51429) = X(i)-Ceva conjugate of X(j) for these (i,j): {5967, 690}, {36892, 6333}
X(51429) = X(i)-isoconjugate of X(j) for these (i,j): {691, 36084}, {1101, 9154}, {2715, 36085}, {2966, 36142}, {32729, 36036}
X(51429) = X(i)-Dao conjugate of X(j) for these (i, j): (523, 9154), (690, 5967), (1649, 98), (2679, 32729), (21905, 1976), (23992, 2966), (35088, 892), (35582, 34761), (38987, 691), (38988, 2715), (41167, 895), (48317, 685)
X(51429) = crosspoint of X(690) and X(5967)
X(51429) = crosssum of X(691) and X(5968)
X(51429) = crossdifference of every pair of points on line {691, 2420}
X(51429) = barycentric product X(i)*X(j) for these {i,j}: {115, 50567}, {325, 1648}, {338, 9155}, {524, 868}, {690, 2799}, {2396, 33919}, {3266, 44114}, {3569, 35522}, {5967, 35088}, {6333, 14273}, {14417, 16230}, {17994, 45807}, {41172, 44146}
X(51429) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 9154}, {351, 2715}, {690, 2966}, {868, 671}, {1648, 98}, {2421, 45773}, {2491, 32729}, {2642, 36084}, {2682, 35906}, {2799, 892}, {3569, 691}, {5968, 34539}, {8430, 34574}, {9155, 249}, {14273, 685}, {14417, 17932}, {21906, 1976}, {23992, 5967}, {33919, 2395}, {35522, 43187}, {41172, 895}, {44114, 111}, {44146, 41174}, {50567, 4590}


X(51430) = X(2)X(5191)∩X(30)X(113)

Barycentrics    (a^2 - b*c)*(a^2 + b*c)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4) : :
X(51430) = 3 X[5642] - X[51389], X[6795] - 3 X[15462], 3 X[18374] - X[32224]

X(51430) lies on these lines: {2, 5191}, {3, 35278}, {5, 47200}, {25, 41253}, {30, 113}, {83, 21513}, {110, 1316}, {114, 35282}, {127, 6676}, {187, 44215}, {385, 419}, {511, 37906}, {523, 6593}, {524, 16321}, {542, 34094}, {754, 32223}, {804, 4107}, {868, 22505}, {1576, 40879}, {1995, 10796}, {2409, 2967}, {2790, 6795}, {2794, 5972}, {3167, 22253}, {3260, 9407}, {3292, 32515}, {3734, 4074}, {3972, 11328}, {4226, 9155}, {5663, 36177}, {5976, 17941}, {6334, 45687}, {7473, 46634}, {9544, 39906}, {10418, 18907}, {11174, 31636}, {11176, 14270}, {11272, 37335}, {11286, 35279}, {11818, 39118}, {12188, 41254}, {14880, 41238}, {18374, 32224}, {21531, 42671}, {21973, 43291}, {34319, 50146}, {35259, 35930}, {35606, 39689}, {35922, 38741}, {39072, 44377}

X(51430) = midpoint of X(i) and X(j) for these {i,j}: {110, 1316}, {1495, 51372}, {1561, 16163}, {34319, 50146}
X(51430) = reflection of X(11007) in X(5972)
X(51430) = X(35906)-Ceva conjugate of X(30)
X(51430) = crossdifference of every pair of points on line {694, 2433}
X(51430) = X(i)-isoconjugate of X(j) for these (i,j): {74, 1581}, {694, 2349}, {1494, 1967}, {1916, 2159}, {1934, 40352}, {2433, 37134}, {9468, 33805}, {36119, 36214}, {43763, 46147}
X(51430) = X(i)-Dao conjugate of X(j) for these (i, j): (1511, 36214), (3163, 1916), (8290, 1494), (8623, 35910), (19576, 74), (35078, 2394), (36213, 46147), (39031, 2159), (39043, 2349), (39044, 33805)
X(51430) = barycentric product X(i)*X(j) for these {i,j}: {30, 385}, {419, 11064}, {804, 2407}, {880, 14398}, {1495, 3978}, {1580, 14206}, {1637, 17941}, {1691, 3260}, {1926, 9406}, {1933, 46234}, {1966, 2173}, {1990, 12215}, {2420, 14295}, {3284, 17984}, {4039, 18653}, {4164, 42716}, {4240, 24284}, {5026, 9214}, {5976, 35906}, {9407, 14603}, {12829, 36891}, {35912, 39931}, {40820, 51389}
X(51430) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 1916}, {385, 1494}, {419, 16080}, {804, 2394}, {1495, 694}, {1580, 2349}, {1691, 74}, {1933, 2159}, {1966, 33805}, {2173, 1581}, {2407, 18829}, {2420, 805}, {3260, 18896}, {3284, 36214}, {5026, 36890}, {5027, 2433}, {8623, 46147}, {9406, 1967}, {9407, 9468}, {11064, 40708}, {12829, 36875}, {14206, 1934}, {14398, 882}, {14581, 17980}, {14602, 40352}, {24284, 34767}, {35906, 36897}, {36213, 35910}, {44089, 8749}, {51324, 35908}, {51372, 8842}
X(51430) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5191, 12042}, {4226, 9155, 33813}


X(51431) = X(2)X(10722)∩X(30)X(113)

Barycentrics    (2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(2*a^4 - a^2*b^2 + b^4 - a^2*c^2 - 2*b^2*c^2 + c^4) : :
X(51431) = 3 X[5642] - 2 X[51389], 2 X[16303] - 3 X[44102], 3 X[18374] - X[47275], 4 X[36177] - 3 X[38727]

X(51431) lies on these lines: {2, 10722}, {4, 35278}, {25, 1560}, {30, 113}, {51, 15510}, {110, 23698}, {114, 4226}, {115, 5191}, {125, 1316}, {184, 1562}, {187, 50707}, {230, 460}, {237, 6781}, {401, 43460}, {468, 46988}, {523, 5095}, {524, 16312}, {804, 32121}, {868, 35282}, {1576, 3018}, {1637, 9409}, {2452, 2847}, {2782, 24981}, {3148, 5475}, {3150, 14689}, {5355, 34396}, {5477, 42663}, {5972, 36163}, {6128, 9142}, {6791, 7737}, {6793, 35906}, {7473, 47220}, {7835, 35926}, {9155, 38738}, {9862, 41254}, {10568, 10990}, {12828, 47146}, {14003, 36997}, {14583, 41392}, {14900, 47202}, {15048, 44109}, {16303, 44102}, {18374, 47275}, {26864, 44526}, {36177, 38727}

X(51431) = midpoint of X(110) and X(36181)
X(51431) = reflection of X(i) in X(j) for these {i,j}: {125, 1316}, {13202, 1561}, {36163, 5972}, {51360, 51372}
X(51431) = X(36875)-Ceva conjugate of X(230)
X(51431) = crosspoint of X(i) and X(j) for these (i,j): {30, 35906}, {230, 36875}
X(51431) = crosssum of X(74) and X(35910)
X(51431) = crossdifference of every pair of points on line {2433, 2987}
X(51431) = X(i)-isoconjugate of X(j) for these (i,j): {74, 8773}, {1494, 36051}, {2159, 8781}, {2349, 2987}, {14380, 36105}, {32654, 33805}, {35142, 35200}, {36119, 43705}
X(51431) = X(i)-Dao conjugate of X(j) for these (i, j): (30, 36891), (114, 1494), (133, 35142), (1511, 43705), (3163, 8781), (39001, 14380), (39069, 2349), (39072, 74)
X(51431) = barycentric product X(i)*X(j) for these {i,j}: {30, 230}, {114, 35906}, {460, 11064}, {1637, 4226}, {1692, 3260}, {1733, 2173}, {1990, 3564}, {3163, 36875}, {3284, 44145}, {5477, 9214}, {6782, 36299}, {6783, 36298}, {8772, 14206}
X(51431) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 8781}, {230, 1494}, {460, 16080}, {1495, 2987}, {1692, 74}, {1733, 33805}, {1990, 35142}, {2173, 8773}, {2420, 10425}, {3163, 36891}, {3284, 43705}, {5477, 36890}, {8772, 2349}, {9406, 36051}, {9407, 32654}, {14398, 35364}, {14581, 3563}, {23347, 32697}, {35906, 40428}, {36875, 31621}, {42663, 2433}, {44099, 8749}, {51335, 35910}
X(51431) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 35278, 47200}, {35282, 39838, 868}


X(51432) = X(3)X(3419)∩X(119)X(517)

Barycentrics    (a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3)*(a^4 - 2*a^3*b + 2*a*b^3 - b^4 - 2*a^3*c - 2*a^2*b*c + 2*b^2*c^2 + 2*a*c^3 - c^4) : :

X(51432) lies on these lines: {3, 3419}, {8, 6261}, {10, 1479}, {55, 24982}, {63, 6925}, {72, 37406}, {78, 6834}, {100, 1737}, {119, 517}, {224, 2900}, {1210, 4855}, {1319, 26015}, {1331, 1877}, {2476, 10039}, {2886, 3057}, {3436, 41338}, {3983, 37829}, {3984, 6736}, {4847, 28236}, {5175, 5273}, {5176, 36002}, {5552, 37569}, {5794, 10966}, {5842, 13528}, {5855, 44784}, {6690, 25011}, {6959, 27385}, {6992, 17784}, {7682, 30852}, {10609, 18857}, {10915, 25415}, {10916, 37618}, {13747, 24929}, {15094, 46685}, {16465, 37566}, {20075, 25005}, {24564, 31245}, {31266, 31397}, {37797, 38460}

X(51432) = X(i)-isoconjugate of X(j) for these (i,j): {104, 34430}, {909, 39947}, {1795, 41505}, {34858, 39695}
X(51432) = X(i)-Dao conjugate of X(j) for these (i, j): (78, 1809), (16586, 39695), (23980, 39947), (25640, 41505), (40613, 34430)
X(51432) = barycentric product X(i)*X(j) for these {i,j}: {908, 12649}, {1723, 3262}
X(51432) = barycentric quotient X(i)/X(j) for these {i,j}: {517, 39947}, {908, 39695}, {1723, 104}, {2183, 34430}, {3211, 1795}, {12649, 34234}, {14571, 41505}, {34489, 34051}
X(51432) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1145, 1532, 51379}, {1532, 51379, 908}


X(51433) = X8)X(20)∩X(36)X(100)

Barycentrics    (3*a - b - c)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :
X(51433) = X[908] - 4 X[1145], 3 X[908] - 4 X[17757], 5 X[908] - 8 X[51362], 3 X[1145] - X[17757], 5 X[1145] - 2 X[51362], 3 X[6735] - 2 X[17757], 5 X[6735] - 4 X[51362], and many others

X(51433) lies on these lines: {1, 6921}, {2, 4345}, {8, 20}, {10, 3877}, {36, 100}, {46, 49169}, {57, 12648}, {78, 6927}, {119, 517}, {145, 1420}, {224, 6765}, {497, 34711}, {516, 5176}, {529, 5183}, {644, 8074}, {956, 3654}, {1155, 38455}, {1210, 3885}, {1319, 5854}, {1320, 44675}, {1329, 37829}, {1482, 27385}, {1697, 5554}, {1737, 2802}, {1788, 36846}, {1842, 5174}, {2098, 37828}, {2136, 12649}, {2183, 21942}, {2646, 32157}, {2975, 43174}, {3035, 5048}, {3057, 3816}, {3340, 10528}, {3421, 17781}, {3434, 3583}, {3436, 7991}, {3582, 12653}, {3617, 5837}, {3621, 24391}, {3625, 37572}, {3626, 5086}, {3667, 4404}, {3680, 10529}, {3689, 5855}, {3698, 24564}, {3812, 45081}, {3822, 10039}, {3869, 6736}, {3872, 5657}, {3880, 13996}, {3890, 8582}, {3895, 18391}, {3911, 38460}, {3913, 37579}, {3925, 5836}, {4190, 37709}, {4301, 11681}, {4315, 9352}, {4421, 37740}, {4511, 28234}, {4669, 49719}, {4678, 5175}, {4861, 6684}, {5057, 28228}, {5080, 28194}, {5128, 20076}, {5193, 12641}, {5249, 31397}, {5330, 6700}, {5433, 33895}, {5440, 5844}, {5541, 41684}, {5552, 7982}, {5687, 11249}, {5690, 6734}, {5727, 20075}, {5853, 37787}, {5902, 49626}, {5903, 10915}, {6001, 46685}, {6172, 24393}, {7080, 11682}, {7354, 32537}, {7672, 41570}, {7743, 34122}, {8666, 38901}, {9436, 21272}, {9780, 25522}, {10107, 15888}, {10273, 32213}, {10912, 24914}, {11239, 11529}, {12053, 25005}, {12531, 28236}, {13463, 17606}, {13464, 27529}, {15326, 50842}, {15637, 37743}, {15803, 36977}, {17636, 32198}, {18395, 49600}, {18524, 34718}, {25006, 37358}, {25304, 49529}, {25405, 25416}, {25415, 45701}, {25438, 32760}, {26364, 30323}, {28204, 38761}, {31145, 34716}, {32049, 37567}, {36920, 41542}, {44720, 44721}

X(51433) = midpoint of X(i) and X(j) for these {i,j}: {1155, 44784}, {5541, 41684}, {7991, 41698}, {13996, 40663}
X(51433) = reflection of X(i) in X(j) for these {i,j}: {908, 6735}, {1320, 44675}, {5048, 3035}, {6735, 1145}, {25416, 25405}, {26015, 40663}, {30384, 10}, {38460, 3911}
X(51433) = X(22464)-Ceva conjugate of X(908)
X(51433) = X(i)-isoconjugate of X(j) for these (i,j): {104, 3445}, {909, 8056}, {2342, 19604}, {2401, 34080}, {2423, 27834}, {4373, 34858}, {34234, 38266}
X(51433) = X(i)-Dao conjugate of X(j) for these (i, j): (1145, 3680), (3756, 43728), (16586, 4373), (23980, 8056), (40613, 3445), (40621, 2401), (45036, 104)
X(51433) = crosspoint of X(31227) and X(39126)
X(51433) = crossdifference of every pair of points on line {2423, 38266}
X(51433) = barycentric product X(i)*X(j) for these {i,j}: {145, 908}, {517, 18743}, {1145, 31227}, {1457, 44723}, {1465, 44720}, {1743, 3262}, {2397, 3667}, {3161, 22464}, {3950, 17139}, {4248, 51367}, {5435, 6735}, {10015, 43290}, {17757, 41629}, {42754, 44724}
X(51433) = barycentric quotient X(i)/X(j) for these {i,j}: {145, 34234}, {517, 8056}, {908, 4373}, {1420, 34051}, {1457, 40151}, {1465, 19604}, {1743, 104}, {2183, 3445}, {2427, 1293}, {3052, 909}, {3262, 40014}, {3667, 2401}, {3950, 38955}, {4521, 43728}, {4849, 2250}, {6735, 6557}, {8643, 2423}, {17757, 4052}, {18743, 18816}, {20818, 1795}, {22464, 27818}, {23981, 38828}, {43290, 13136}, {44720, 36795}, {51378, 27819}
X(51433) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 5697, 41012}, {1145, 18802, 39776}, {3057, 8256, 24982}, {3913, 41687, 41575}, {4848, 12640, 145}, {5690, 10914, 6734}


X(51434) = X4)X(5039)∩X(6)X(3574)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(b^2 + c^2)*(2*a^6 - a^4*b^2 - b^6 - a^4*c^2 + b^4*c^2 + b^2*c^4 - c^6) : :

X(51434) lies on these lines: {4, 5039}, {6, 3574}, {112, 29012}, {115, 2211}, {125, 14580}, {132, 1503}, {184, 13854}, {511, 5523}, {542, 41363}, {648, 5207}, {826, 21108}, {1352, 39604}, {1562, 34146}, {1570, 5095}, {1691, 6103}, {1843, 19595}, {1974, 3767}, {3162, 11550}, {3172, 36990}, {3818, 8743}, {5254, 12294}, {5922, 41489}, {6240, 41413}, {8778, 48905}, {8879, 31383}, {10516, 45141}, {18553, 41366}, {24206, 39575}, {27366, 27371}, {32250, 41358}, {35325, 51360}, {41676, 51371}

X(51434) = X(20021)-Ceva conjugate of X(1843)
X(51434) = X(i)-isoconjugate of X(j) for these (i,j): {1297, 34055}, {2419, 34072}, {2435, 4599}, {3405, 15407}, {8767, 28724}
X(51434) = X(i)-Dao conjugate of X(j) for these (i, j): (232, 20022), (3124, 2435), (15449, 2419), (23976, 1799), (39071, 28724), (40938, 35140), (50938, 83)
X(51434) = crossdifference of every pair of points on line {1176, 2435}
X(51434) = barycentric product X(i)*X(j) for these {i,j}: {132, 20021}, {141, 16318}, {427, 1503}, {441, 27376}, {826, 2409}, {1235, 42671}, {1843, 30737}, {2312, 20883}, {2445, 23285}, {2525, 23977}
X(51434) = barycentric quotient X(i)/X(j) for these {i,j}: {132, 20022}, {427, 35140}, {826, 2419}, {1503, 1799}, {1843, 1297}, {2312, 34055}, {2409, 4577}, {2445, 827}, {3005, 2435}, {8779, 28724}, {16318, 83}, {23977, 42396}, {27376, 6330}, {42671, 1176}


X(51435) = X(1)X(3732)∩X(114)X(124)

Barycentrics    (a^2 - b*c)*(2*a^3 - a^2*b - b^3 - a^2*c + b^2*c + b*c^2 - c^3) : :

X(51435) lies on these lines: {1, 3732}, {3, 43163}, {9, 9746}, {10, 30618}, {31, 26267}, {101, 28850}, {105, 9318}, {114, 124}, {118, 516}, {142, 6714}, {169, 48900}, {214, 2826}, {238, 1447}, {242, 740}, {514, 11712}, {537, 9451}, {659, 812}, {676, 39470}, {908, 26231}, {927, 36905}, {1083, 21232}, {1125, 1565}, {1146, 2784}, {1212, 48932}, {1281, 8932}, {1282, 14942}, {1360, 39063}, {1376, 3923}, {2246, 13576}, {2310, 14543}, {2607, 20677}, {3035, 3452}, {3573, 51381}, {3742, 33682}, {4366, 27947}, {4471, 24424}, {4650, 5435}, {4672, 17754}, {4724, 39046}, {4974, 7193}, {5179, 28845}, {6654, 8300}, {6682, 36540}, {8074, 28849}, {24315, 25375}, {24320, 24325}, {24329, 24336}, {25354, 25361}, {28877, 50896}, {29043, 31897}

X(51435) = midpoint of X(i) and X(j) for these {i,j}: {1, 3732}, {1282, 14942}
X(51435) = reflection of X(i) in X(j) for these {i,j}: {1565, 1125}, {50441, 28346}
X(51435) = X(i)-isoconjugate of X(j) for these (i,j): {103, 291}, {292, 36101}, {295, 36122}, {335, 911}, {660, 2424}, {677, 876}, {1911, 18025}, {2400, 34067}, {3252, 9503}, {4444, 36039}, {7077, 43736}
X(51435) = X(i)-Dao conjugate of X(j) for these (i, j): (1566, 4444), (6651, 18025), (19557, 36101), (23972, 335), (35119, 2400), (39029, 103), (39077, 22116), (40869, 40217), (46095, 295), (50441, 4518)
X(51435) = crosspoint of X(1447) and X(6654)
X(51435) = crosssum of X(3252) and X(7077)
X(51435) = crossdifference of every pair of points on line {292, 2424}
X(51435) = barycentric product X(i)*X(j) for these {i,j}: {238, 30807}, {239, 516}, {242, 26006}, {350, 910}, {659, 42719}, {676, 3570}, {740, 14953}, {812, 2398}, {1447, 40869}, {1456, 3975}, {1914, 35517}, {3685, 43035}, {4148, 23973}, {4241, 24459}, {6654, 50441}, {10030, 41339}, {17747, 33295}, {28346, 40725}, {31905, 51366}
X(51435) = barycentric quotient X(i)/X(j) for these {i,j}: {238, 36101}, {239, 18025}, {516, 335}, {676, 4444}, {812, 2400}, {910, 291}, {1429, 43736}, {1914, 103}, {2201, 36122}, {2210, 911}, {2398, 4562}, {2426, 813}, {7193, 1815}, {8632, 2424}, {9502, 22116}, {14953, 18827}, {17747, 43534}, {26006, 337}, {27918, 15634}, {30807, 334}, {35517, 18895}, {40869, 4518}, {41339, 4876}, {42719, 4583}, {43035, 7233}, {50441, 40217}


X(51436) = X(101)X(511)∩X(118)X(516)

Barycentrics    a^2*(b + c)*(2*a^3 - a^2*b - b^3 - a^2*c + b^2*c + b*c^2 - c^3) : :

X(51436) lies on these lines: {25, 14827}, {32, 7083}, {37, 44661}, {41, 21746}, {101, 511}, {118, 516}, {169, 31394}, {197, 16283}, {213, 1042}, {220, 573}, {228, 21795}, {512, 798}, {991, 3207}, {1284, 18785}, {1495, 32739}, {1500, 2333}, {2200, 20970}, {2205, 21813}, {3185, 16588}, {3271, 9454}, {3730, 48886}, {4251, 39543}, {5011, 29309}, {5452, 15494}, {6603, 29311}, {13329, 20672}, {15507, 20605}, {19554, 20670}, {20459, 20662}, {20991, 30706}, {22080, 40586}, {24045, 48940}, {27624, 27634}

X(51436) = midpoint of X(101) and X(41323)
X(51436) = isogonal conjugate of the isotomic conjugate of X(17747)
X(51436) = X(i)-isoconjugate of X(j) for these (i,j): {81, 18025}, {86, 36101}, {103, 274}, {286, 1815}, {310, 911}, {333, 43736}, {662, 2400}, {677, 7199}, {799, 2424}, {4567, 15634}, {9503, 30941}, {17206, 36122}, {36056, 44129}
X(51436) = X(i)-Dao conjugate of X(j) for these (i, j): (1084, 2400), (20622, 44129), (23972, 310), (38996, 2424), (39077, 18157), (40586, 18025), (40600, 36101), (40627, 15634), (46095, 17206), (50441, 28660)
X(51436) = crosssum of X(i) and X(j) for these (i,j): {86, 14953}, {333, 30941}, {18025, 36101}
X(51436) = crossdifference of every pair of points on line {86, 2400}
X(51436) = barycentric product X(i)*X(j) for these {i,j}: {6, 17747}, {25, 51366}, {37, 910}, {42, 516}, {65, 41339}, {71, 1886}, {210, 1456}, {213, 30807}, {512, 2398}, {523, 2426}, {647, 41321}, {676, 4557}, {798, 42719}, {1020, 46392}, {1334, 43035}, {1400, 40869}, {1500, 14953}, {1880, 51376}, {1918, 35517}, {2054, 28346}, {2333, 26006}, {4524, 23973}, {9502, 18785}
X(51436) = barycentric quotient X(i)/X(j) for these {i,j}: {42, 18025}, {213, 36101}, {512, 2400}, {516, 310}, {669, 2424}, {910, 274}, {1402, 43736}, {1886, 44129}, {1918, 103}, {2200, 1815}, {2205, 911}, {2398, 670}, {2426, 99}, {3122, 15634}, {9502, 18157}, {17747, 76}, {30807, 6385}, {40869, 28660}, {41321, 6331}, {41339, 314}, {42719, 4602}, {51366, 305}
X(51436) = {X(2205),X(21813)}-harmonic conjugate of X(40984)


X(51437) = X(6)X(64)∩X(112)X(511)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(2*a^6 - a^4*b^2 - b^6 - a^4*c^2 + b^4*c^2 + b^2*c^4 - c^6) : :
X(51437) = X[8779] - 4 X[28343]

X(51437) lies on these lines: {6, 64}, {24, 41412}, {32, 1843}, {51, 17409}, {112, 511}, {132, 1503}, {182, 8743}, {184, 3162}, {232, 1691}, {459, 34407}, {512, 1692}, {648, 12215}, {1249, 25406}, {1350, 8778}, {1495, 14580}, {1899, 8879}, {1974, 2207}, {1976, 34854}, {2030, 8744}, {2032, 15630}, {2393, 34190}, {3199, 44091}, {3292, 35325}, {5039, 39588}, {5085, 45141}, {5092, 39575}, {5523, 29012}, {6000, 34137}, {6403, 41413}, {11550, 13854}, {14561, 41370}, {20031, 47388}, {20232, 33581}, {22352, 40938}, {36417, 42295}, {40130, 44080}, {41361, 46264}

X(51437) = midpoint of X(112) and X(41363)
X(51437) = isogonal conjugate of the isotomic conjugate of X(16318)
X(51437) = polar conjugate of the isotomic conjugate of X(42671)
X(51437) = X(i)-Ceva conjugate of X(j) for these (i,j): {1976, 1974}, {16318, 42671}, {34854, 44099}, {43717, 25}
X(51437) = crosspoint of X(i) and X(j) for these (i,j): {4, 34129}, {25, 43717}
X(51437) = crosssum of X(i) and X(j) for these (i,j): {3, 34137}, {69, 441}, {3926, 6393}
X(51437) = crossdifference of every pair of points on line {69, 2419}
X(51437) = X(i)-isoconjugate of X(j) for these (i,j): {63, 35140}, {304, 1297}, {326, 6330}, {662, 2419}, {799, 2435}, {3926, 8767}, {4143, 36092}, {4592, 43673}, {15407, 46238}
X(51437) = X(i)-Dao conjugate of X(j) for these (i, j): (1084, 2419), (3162, 35140), (5139, 43673), (15259, 6330), (23976, 305), (38996, 2435), (39071, 3926), (39073, 6393), (50938, 76)
X(51437) = barycentric product X(i)*X(j) for these {i,j}: {4, 42671}, {6, 16318}, {19, 2312}, {25, 1503}, {132, 1976}, {393, 8779}, {441, 2207}, {512, 2409}, {523, 2445}, {607, 43045}, {647, 23977}, {810, 24024}, {1096, 8766}, {1843, 21458}, {1974, 30737}, {2489, 34211}, {6531, 9475}, {6793, 8749}, {8753, 35282}, {8791, 28343}, {8882, 51363}, {15639, 34212}, {23976, 43717}, {34156, 34854}, {34397, 43089}
X(51437) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 35140}, {512, 2419}, {669, 2435}, {1503, 305}, {1974, 1297}, {2207, 6330}, {2312, 304}, {2409, 670}, {2445, 99}, {2489, 43673}, {8779, 3926}, {9475, 6393}, {14601, 15407}, {16318, 76}, {23977, 6331}, {27369, 46164}, {28343, 37804}, {30737, 40050}, {36417, 43717}, {42671, 69}, {51363, 28706}
X(51437) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 1968, 12294}, {1692, 2211, 44102}, {1692, 14581, 2211}, {2207, 40825, 1974}, {36417, 42295, 44079}


X(51438) = X(30)X(69)∩X(99)X(524)

Barycentrics    (5*a^2 - b^2 - c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :
X(51438) = 2 X[6] - 3 X[35297], 2 X[325] - 3 X[6393], 5 X[325] - 6 X[51371], X[325] - 3 X[51374], 3 X[325] - 2 X[51396], 3 X[325] - 4 X[51397], 3 X[6393] - 4 X[50567], and many others

X(51438) lies on these lines: {6, 35297}, {23, 38940}, {30, 69}, {99, 524}, {114, 325}, {141, 7934}, {187, 14645}, {193, 13586}, {230, 10754}, {237, 36892}, {297, 877}, {542, 44369}, {599, 8352}, {620, 5107}, {1350, 14907}, {1351, 37459}, {1384, 1992}, {3564, 13188}, {3620, 14041}, {3793, 50249}, {3815, 22486}, {4563, 32269}, {5182, 32459}, {5468, 7426}, {5476, 37647}, {5477, 32456}, {5969, 15993}, {5999, 15589}, {6390, 9301}, {6656, 44453}, {7664, 40112}, {7763, 11477}, {7774, 11173}, {7782, 8550}, {8586, 44380}, {9146, 15360}, {9855, 11160}, {10008, 32827}, {10011, 14853}, {10411, 32217}, {10513, 40236}, {10519, 34229}, {10997, 50248}, {11676, 32817}, {12215, 34380}, {14360, 44555}, {15638, 37745}, {15980, 18906}, {20080, 33265}, {21356, 37350}, {30786, 44569}, {32220, 36180}, {32515, 50640}, {32819, 34507}, {36166, 47468}, {36196, 47473}, {37688, 50977}

X(51438) = midpoint of X(9855) and X(11160)
X(51438) = reflection of X(i) in X(j) for these {i,j}: {325, 50567}, {1351, 37459}, {1992, 27088}, {5107, 620}, {5477, 32456}, {6393, 51374}, {8352, 599}, {8586, 44380}, {10754, 230}, {15980, 48876}, {32220, 36180}, {36166, 47468}, {36196, 47473}, {39099, 6390}, {47286, 15993}, {50249, 3793}, {51396, 51397}
X(51438) = X(i)-isoconjugate of X(j) for these (i,j): {1821, 39238}, {1910, 21448}, {2422, 37216}
X(51438) = X(i)-Dao conjugate of X(j) for these (i, j): (5976, 5485), (11147, 98), (11672, 21448), (35133, 2395), (40601, 39238)
X(51438) = crossdifference of every pair of points on line {2422, 9171}
X(51438) = barycentric product X(i)*X(j) for these {i,j}: {325, 1992}, {511, 11059}, {1499, 2396}, {4232, 6393}, {36277, 46238}, {42724, 51369}
X(51438) = barycentric quotient X(i)/X(j) for these {i,j}: {237, 39238}, {325, 5485}, {511, 21448}, {1384, 1976}, {1499, 2395}, {1992, 98}, {2396, 35179}, {2421, 1296}, {4232, 6531}, {8644, 2422}, {11059, 290}, {12093, 13492}, {27088, 5967}, {35266, 35906}, {36277, 1910}
X(51438) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {325, 50567, 6393}, {325, 51374, 50567}, {50567, 51396, 51397}, {51396, 51397, 325}


X(51439) = X(66)X(69)∩X(114)X(325)

Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + c^4) : :
X(51439) = X[325] - 3 X[51383], 3 X[51383] - 2 X[51386], 3 X[35297] - 2 X[50387]

X(51439) lies on these lines: {52, 7763}, {66, 69}, {76, 1216}, {99, 13754}, {114, 325}, {183, 3917}, {232, 2421}, {315, 10625}, {394, 1971}, {571, 1993}, {924, 6563}, {1007, 3060}, {1078, 5447}, {1154, 6390}, {1350, 15574}, {1975, 5562}, {3289, 36790}, {3567, 32829}, {3819, 37688}, {3926, 11412}, {3933, 6101}, {5012, 44180}, {5446, 7752}, {5462, 7769}, {5640, 34803}, {5889, 6337}, {5891, 11185}, {5907, 32819}, {5943, 37647}, {6403, 10008}, {7750, 15644}, {7767, 10627}, {7773, 45186}, {7776, 37484}, {7782, 40647}, {7998, 34229}, {7999, 32828}, {8681, 44369}, {11459, 32815}, {12058, 20477}, {13137, 40428}, {15024, 32839}, {15058, 32826}, {15575, 32964}, {15589, 33884}, {35296, 43705}, {35297, 50387}, {36212, 41270}, {39807, 46236}

X(51439) = reflection of X(325) in X(51386)
X(51439) = X(44132)-Ceva conjugate of X(36212)
X(51439) = X(i)-isoconjugate of X(j) for these (i,j): {91, 1976}, {293, 14593}, {1820, 6531}, {1910, 2165}, {2351, 36120}, {2395, 36145}, {14601, 20571}
X(51439) = X(i)-Dao conjugate of X(j) for these (i, j): (132, 14593), (577, 248), (5976, 5392), (11672, 2165), (34116, 1976), (39013, 2395), (39040, 91), (46094, 2351)
X(51439) = barycentric product X(i)*X(j) for these {i,j}: {24, 6393}, {47, 46238}, {297, 9723}, {317, 36212}, {325, 1993}, {511, 7763}, {924, 2396}, {1147, 44132}, {1959, 44179}, {2421, 6563}, {6333, 41679}, {11547, 51386}, {18605, 42703}, {18883, 51383}, {31635, 36790}, {42700, 51369}
X(51439) = barycentric quotient X(i)/X(j) for these {i,j}: {24, 6531}, {47, 1910}, {232, 14593}, {297, 847}, {317, 16081}, {325, 5392}, {511, 2165}, {571, 1976}, {877, 30450}, {924, 2395}, {1147, 248}, {1748, 36120}, {1959, 91}, {1993, 98}, {2396, 46134}, {2421, 925}, {3289, 2351}, {6393, 20563}, {6563, 43665}, {7763, 290}, {9723, 287}, {14966, 32734}, {23997, 36145}, {30451, 878}, {31635, 34536}, {34952, 2422}, {36212, 68}, {41270, 41271}, {41679, 685}, {44179, 1821}, {46238, 20571}, {51383, 37802}, {51393, 35906}
X(51439) = {X(325),X(51383)}-harmonic conjugate of X(51386)


X(51440) = X(69)X(1369)∩X(114)X(325)

Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 - b^2*c^2 + c^4) : :
X(51440) = 2 X[325] - 3 X[51383], 3 X[325] - 4 X[51386], 9 X[51383] - 8 X[51386]

X(51440) lies on these lines: {51, 37647}, {69, 1369}, {76, 6101}, {99, 1154}, {114, 325}, {143, 7769}, {183, 2979}, {302, 36980}, {303, 36978}, {315, 37484}, {316, 13391}, {1078, 10627}, {1510, 41298}, {1975, 11412}, {1994, 2965}, {2393, 44369}, {3917, 37688}, {5562, 32819}, {5989, 39807}, {6102, 7782}, {6243, 7763}, {7750, 10625}, {7752, 10263}, {9723, 39231}, {11002, 34803}, {11185, 23039}, {13340, 14907}, {14128, 15031}, {15574, 33878}, {33884, 34229}, {34373, 44361}, {34375, 44362}

X(51440) = reflection of X(16979) in the Lemoine axis
X(51440) = X(i)-isoconjugate of X(j) for these (i,j): {1910, 2963}, {1976, 2962}, {2395, 36148}
X(51440) = X(i)-Dao conjugate of X(j) for these (i, j): (5976, 11140), (11672, 2963), (39018, 2395), (39040, 2962)
X(51440) = crossdifference of every pair of points on line {2422, 37085}
X(51440) = barycentric product X(i)*X(j) for these {i,j}: {49, 44132}, {297, 44180}, {325, 1994}, {511, 7769}, {1510, 2396}, {2421, 41298}, {2964, 46238}, {3518, 6393}, {30529, 51383}, {32002, 36212}
X(51440) = barycentric quotient X(i)/X(j) for these {i,j}: {49, 248}, {297, 93}, {325, 11140}, {511, 2963}, {877, 38342}, {1510, 2395}, {1959, 2962}, {1994, 98}, {2396, 46139}, {2421, 930}, {2964, 1910}, {2965, 1976}, {3518, 6531}, {7769, 290}, {14966, 32737}, {23997, 36148}, {32002, 16081}, {36212, 3519}, {41298, 43665}, {44132, 20572}, {44180, 287}


X(51441) = X(30)X(98)∩X(115)X(512)

Barycentrics    (b^2-c^2)^2*(a^4-b^2*a^2-(b^2-c^2)*c^2)*(a^4-c^2*a^2+(b^2-c^2)*b^2) : :
X(51441) = 3 X[39663] - 2 X[44227]

X(51441) lies on the cubic K741 and these lines: {2, 36822}, {5, 14265}, {30, 98}, {115, 512}, {125, 31174}, {230, 237}, {290, 325}, {338, 523}, {385, 14957}, {460, 6531}, {524, 20021}, {597, 5967}, {685, 47158}, {868, 879}, {882, 44114}, {1084, 2489}, {1976, 1989}, {2086, 2422}, {2395, 9178}, {3143, 43665}, {4079, 21043}, {5191, 48721}, {5254, 32540}, {5306, 35906}, {6036, 47079}, {6394, 40428}, {6543, 17747}, {7697, 51259}, {9124, 41146}, {9140, 36826}, {10602, 36207}, {12188, 14999}, {13137, 15535}, {16081, 16098}, {18105, 31644}, {23291, 36893}, {39022, 41881}, {39023, 41880}, {39663, 44227}, {43920, 50344}

X(51441) = midpoint of X(i) and X(j) for these {i,j}: {98, 34175}, {385, 14957}
X(51441) = reflection of X(i) in X(j) for these {i,j}: {237, 230}, {325, 21531}, {47079, 6036}
X(51441) = isotomic conjugate of the isogonal conjugate of X(15630)
X(51441) = X(i)-Ceva conjugate of X(j) for these (i,j): {98, 2395}, {6531, 2422}, {18024, 43665}, {36897, 523}
X(51441) = X(2086)-cross conjugate of X(34294)
X(51441) = crosspoint of X(i) and X(j) for these (i,j): {98, 2395}, {18024, 43665}
X(51441) = crosssum of X(i) and X(j) for these (i,j): {511, 2421}, {9418, 14966}
X(51441) = trilinear pole of line {3124, 8029}
X(51441) = crossdifference of every pair of points on line {2421, 14966}
X(51441) = X(i)-isoconjugate of X(j) for these (i,j): {99, 23997}, {163, 2396}, {237, 24037}, {249, 1959}, {325, 1101}, {511, 24041}, {662, 2421}, {799, 14966}, {877, 4575}, {1755, 4590}, {3289, 46254}, {4230, 4592}, {4556, 42717}, {4567, 17209}, {4570, 51369}, {9417, 34537}, {15631, 36084}, {23357, 46238}, {24000, 51386}, {40703, 47390}
X(51441) = barycentric product X(i)*X(j) for these {i,j}: {76, 15630}, {98, 115}, {125, 6531}, {248, 2970}, {287, 8754}, {290, 3124}, {338, 1976}, {512, 43665}, {523, 2395}, {594, 43920}, {850, 2422}, {868, 41932}, {878, 14618}, {879, 2501}, {1084, 18024}, {1109, 1910}, {1365, 15628}, {1648, 9154}, {1821, 2643}, {2715, 23105}, {2966, 8029}, {3708, 36120}, {5489, 20031}, {12079, 35906}, {14601, 23962}, {16081, 20975}, {20021, 34294}, {22260, 43187}, {34536, 44114}
X(51441) = barycentric quotient X(i)/X(j) for these {i,j}: {98, 4590}, {115, 325}, {125, 6393}, {287, 47389}, {290, 34537}, {512, 2421}, {523, 2396}, {669, 14966}, {798, 23997}, {868, 32458}, {878, 4558}, {879, 4563}, {1084, 237}, {1109, 46238}, {1648, 50567}, {1821, 24037}, {1910, 24041}, {1976, 249}, {2086, 36213}, {2088, 51383}, {2395, 99}, {2422, 110}, {2489, 4230}, {2501, 877}, {2643, 1959}, {2679, 46888}, {2966, 31614}, {2970, 44132}, {2971, 232}, {3120, 51370}, {3122, 17209}, {3124, 511}, {3125, 51369}, {3269, 51386}, {3569, 15631}, {4117, 9417}, {4705, 42717}, {6041, 42743}, {6388, 51374}, {6531, 18020}, {8029, 2799}, {8288, 51397}, {8754, 297}, {9427, 9418}, {14600, 47390}, {14601, 23357}, {15628, 6064}, {15630, 6}, {18024, 44168}, {20975, 36212}, {21906, 9155}, {22260, 3569}, {23099, 2491}, {32696, 47443}, {34294, 20022}, {36120, 46254}, {36897, 39292}, {39691, 51371}, {42068, 2211}, {43665, 670}, {43920, 1509}, {44114, 36790}
X(51441) = {X(2),X(36874)}-harmonic conjugate of X(36822)


X(51442) = X(11)X(522)∩X(523)X(3259)

Barycentrics    (a - b - c) (b - c)^2 (a^2 b - b^3 + a^2 c - 4 a b c + 2 b^2 c + 2 b c^2 - c^3) : :

See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 5385.

X(51442) lies on these lines: {8,36590}, {11,522}, {513,38385}, {523,3259}, {765,17777}, {900,6075}, {1086,45320}, {1146,4944}, {1168,10774}, {2618,8286}, {2802,13756}, {2969,16228}, {3120,30591}, {4009,6735}, {4086,6741}, {4762,40629}, {4976,46101}, {9001,44013}, {21132,23615}, {34590,43909}, {44675,44901}


X(51443) = X(41)X(58)∩X(55)X(81)

Barycentrics    a^2/((b+c)*(-a^2+a*b+a*c+2*b*c)) : :

See Ivan Pavlov, euclid 5387.

X(51443) lies on these lines: {21, 1509}, {25, 1396}, {31, 1412}, {41, 58}, {55, 81}, {105, 1014}, {593, 2194}, {609, 2279}, {884, 3733}


X(51444) = X(32)X(54)∩X(95)X(98)

Barycentrics    (a^2*(-a^2+b^2+c^2))/((a^4-2*b^2*c^2-a^2*(b^2+c^2))*(-(b^2-c^2)^2+a^2*(b^2+c^2))) : :

See Ivan Pavlov, euclid 5387.

X(51444) lies on these lines: {25, 262}, {32, 54}, {95, 98}, {97, 184}


X(51445) = (name pending)

Barycentrics    a^2/(((b-c)^2*(b+c)+a*(b^2+c^2))*(a^6+2*a^4*b*c-2*a^3*b*c*(b+c)+4*a*b^2*c^2*(b+c)-2*b^2*c^2*(b+c)^2-a^2*(b^4+c^4))) : :

See Ivan Pavlov, euclid 5387.

X(51445) lies on this line: {197, 2985}


X(51446) = X(4)X(616)∩X(112)X(2380)

Barycentrics    a^2/((c*cos(B-Pi/6)+b*cos(C-Pi/6))*(2*b*c*cos(A-Pi/6)^2+a*c*cos(A-Pi/6)*cos(B-Pi/6)+a*b*cos(A-Pi/6)*cos(C-Pi/6)-a^2*cos(B-Pi/6)*cos(C-Pi/6))) : :
Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(Sqrt[3]*b^2 + 2*S)*(Sqrt[3]*c^2 + 2*S) : :
Barycentrics    Sin[A]*Tan[A] / (Cos[B - C] + 2*Sin[A + Pi/6]) : :

See Ivan Pavlov, euclid 5387.

X(51446) lies on these lines: {4, 616}, {25, 2981}, {112, 2380}, {378, 38403}, {403, 11119}, {463, 18384}, {1843, 2914}, {3563, 10409}, {7576, 11117}, {8739, 16459}, {8740, 34321}

X(51446) = polar conjugate of X(41000)
X(51446) = isogonal conjugate of the anticomplement of X(11542)
X(51446) = isogonal conjugate of the isotomic conjugate of X(38428)
X(51446) = polar conjugate of the isotomic conjugate of X(2981)
X(51446) = X(38428)-Ceva conjugate of X(2981)
X(51446) = X(186)-cross conjugate of X(51447)
X(51446) = cevapoint of X(25) and X(8739)
X(51446) = crosspoint of X(3440) and X(3489)
X(51446) = crosssum of X(616) and X(627)
X(51446) = trilinear pole of line {2489, 8740}
X(51446) = X(i)-isoconjugate of X(j) for these (i,j): {48, 41000}, {63, 396}, {293, 51388}, {326, 463}, {656, 35314}, {14208, 35329}
X(51446) = X(i)-Dao conjugate of X(j) for these (i, j): (132, 51388), (1249, 41000), (3162, 396), (15259, 463), (40596, 35314)
X(51446) = barycentric product X(i)*X(j) for these {i,j}: {4, 2981}, {6, 38428}, {25, 40707}, {340, 11084}, {470, 16459}, {471, 2380}, {473, 34321}, {2501, 10409}, {8737, 38403}, {8739, 11119}, {8740, 11117}
X(51446) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 41000}, {25, 396}, {112, 35314}, {186, 14922}, {232, 51388}, {2207, 463}, {2380, 40710}, {2981, 69}, {8737, 43085}, {8739, 618}, {8740, 532}, {10409, 4563}, {10642, 6671}, {11084, 265}, {16459, 40709}, {34321, 40712}, {34397, 19294}, {38428, 76}, {40707, 305}, {44102, 9115}


X(51447) = X(4)X(617)∩X(112)X(2381)

Barycentrics    a^2/((c*cos(B+Pi/6)+b*cos(C+Pi/6))*(2*b*c*cos(A+Pi/6)^2+a*c*cos(A+Pi/6)*cos(B+Pi/6)+ a*b*cos(A+Pi/6)*cos(C+Pi/6)-a^2*cos(B+Pi/6)*cos(C+Pi/6))) : :
Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(Sqrt[3]*b^2 - 2*S)*(Sqrt[3]*c^2 - 2*S) : :
Barycentrics    Sin[A]*Tan[A] / (Cos[B - C] - 2*Sin[A - Pi/6) : :

See Ivan Pavlov, euclid 5387.

X(51447) lies on these lines: {4, 617}, {25, 6151}, {112, 2381}, {378, 38404}, {403, 11120}, {462, 18384}, {1843, 2914}, {3563, 10410}, {7576, 11118}, {8739, 34322}, {8740, 16460}

X(51447) = polar conjugate of X(41001)
X(51447) = isogonal conjugate of the anticomplement of X(11543)
X(51447) = isogonal conjugate of the isotomic conjugate of X(38427)
X(51447) = polar conjugate of the isotomic conjugate of X(6151)
X(51447) = X(38427)-Ceva conjugate of X(6151)
X(51447) = X(186)-cross conjugate of X(51446)
X(51447) = cevapoint of X(25) and X(8740)
X(51447) = crosspoint of X(3441) and X(3490)
X(51447) = crosssum of X(617) and X(628)
X(51447) = trilinear pole of line {2489, 8739}
X(51447) = X(i)-isoconjugate of X(j) for these (i,j): {48, 41001}, {63, 395}, {293, 51387}, {326, 462}, {656, 35315}, {14208, 35330}
X(51447) = X(i)-Dao conjugate of X(j) for these (i, j): (132, 51387), (1249, 41001), (3162, 395), (15259, 462), (40596, 35315)
X(51447) = barycentric product X(i)*X(j) for these {i,j}: {4, 6151}, {6, 38427}, {25, 40706}, {340, 11089}, {470, 2381}, {471, 16460}, {472, 34322}, {2501, 10410}, {8738, 38404}, {8739, 11118}, {8740, 11120}
X(51447) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 41001}, {25, 395}, {112, 35315}, {186, 14921}, {232, 51387}, {2207, 462}, {2381, 40709}, {6151, 69}, {8738, 43086}, {8739, 533}, {8740, 619}, {10410, 4563}, {10641, 6672}, {11089, 265}, {16460, 40710}, {34322, 40711}, {34397, 19295}, {38427, 76}, {40706, 305}, {44102, 9117}


X(51448) = (name pending)

Barycentrics    a^2/((-2*a^2*(b^2-c^2)^2+a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2))*(a^12-2*b^2*c^2*(b^2-c^2)^4+3*a^10*(b^2+c^2)-a^4*(b^2+c^2)^2*(3*b^4+2*b^2*c^2+3*c^4)-2*a^8*(7*b^4-b^2*c^2+7*c^4)-a^2*(b^2-c^2)^2*(b^6+7*b^4*c^2+7*b^2*c^4+c^6)+2*a^6*(7*b^6+5*b^4*c^2+5*b^2*c^4+7*c^6))) : :

See Ivan Pavlov, euclid 5387.

X(51448) lies on this line: {801, 1661}


X(51449) = X(43)X(81)∩X(58)X(2176)

Barycentrics    a^2/((b+c)*(2*a^2-b*c+a*(b+c))) : :

See Ivan Pavlov, euclid 5387.

X(51449) lies on these lines: {43, 81}, {58, 2176}


X(51450) = X(83)X(194)∩X(251)X(1613)

Barycentrics    a^2/((b^2+c^2)*(2*a^4-b^2*c^2+a^2*(b^2+c^2))) : :

See Ivan Pavlov, euclid 5387.

X(51450) lies on these lines: {83, 194}, {251, 1613}


X(51451) = EULER LINE INTERCEPT OF X(523)X(12359)

Barycentrics    a^14 b^2-6 a^12 b^4+14 a^10 b^6-15 a^8 b^8+5 a^6 b^10+4 a^4 b^12-4 a^2 b^14+b^16+a^14 c^2-a^10 b^4 c^2-5 a^8 b^6 c^2+11 a^6 b^8 c^2-14 a^4 b^10 c^2+13 a^2 b^12 c^2-5 b^14 c^2-6 a^12 c^4-a^10 b^2 c^4+16 a^8 b^4 c^4-12 a^6 b^6 c^4+8 a^4 b^8 c^4-15 a^2 b^10 c^4+10 b^12 c^4+14 a^10 c^6-5 a^8 b^2 c^6-12 a^6 b^4 c^6+4 a^4 b^6 c^6+6 a^2 b^8 c^6-11 b^10 c^6-15 a^8 c^8+11 a^6 b^2 c^8+8 a^4 b^4 c^8+6 a^2 b^6 c^8+10 b^8 c^8+5 a^6 c^10-14 a^4 b^2 c^10-15 a^2 b^4 c^10-11 b^6 c^10+4 a^4 c^12+13 a^2 b^2 c^12+10 b^4 c^12-4 a^2 c^14-5 b^2 c^14+c^16 : :
Barycentrics    S^4-SB SC (36 R^4-8 R^2 SW-SW^2)+S^2 (108 R^4-3 SB SC-48 R^2 SW+5 SW^2) : :
X(51451) = 2*X(13371)-3*X(28144), X(14790)-3*X(18870)

As a point on the Euler line, X(51451) has Shinagawa coefficients {E^2 + 8*E*F - 4 (5*F^2 + S^2), -3*E^2 - 16*E*F - 4*F^2 + 12*S^2}.

See Tran Quang Hung and Ercole Suppa, euclid 5403.

X(51451) lies on inverse in Euler asymptotic hyperbola of X(30) and these lines: {2,3}, {523,12359}, {2452,18951}, {3258,5562}, {10539,16319}, {15112,23293}

X(51451) = reflection of X(i) in X(j)X(k) for these (i,j,k): (3,523,44158), (5,523,5449)
X(51451) = trilinear quotient X(3)/X(35235)


X(51452) = (name pending)

Barycentrics    (a - b - c)*(b - c)^2*(a^2 - b^2 - b*c - c^2)*(2*a^4 - a^3*b - a^2*b^2 + a*b^3 - b^4 - a^3*c + a*b^2*c - a^2*c^2 + a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4) : :

See Antreas Hatzipolakis and Peter Moses, euclid 5409.

X(51452) lies on this line: {3024, 6741}

X(51452) = barycentric quotient X(44409)/X(38340)


X(51453) = (name pending)

Barycentrics    (a^2-b^2-c^2) (a^16 b^4-a^14 b^6-3 a^12 b^8+3 a^10 b^10+3 a^8 b^12-3 a^6 b^14-a^4 b^16+a^2 b^18-2 a^14 b^4 c^2+5 a^12 b^6 c^2-4 a^10 b^8 c^2-9 a^8 b^10 c^2+14 a^6 b^12 c^2+3 a^4 b^14 c^2-8 a^2 b^16 c^2+b^18 c^2+a^16 c^4-2 a^14 b^2 c^4-16 a^12 b^4 c^4+9 a^10 b^6 c^4+41 a^8 b^8 c^4-28 a^6 b^10 c^4-22 a^4 b^12 c^4+21 a^2 b^14 c^4-4 b^16 c^4-a^14 c^6+5 a^12 b^2 c^6+9 a^10 b^4 c^6-70 a^8 b^6 c^6+17 a^6 b^8 c^6+61 a^4 b^10 c^6-25 a^2 b^12 c^6+4 b^14 c^6-3 a^12 c^8-4 a^10 b^2 c^8+41 a^8 b^4 c^8+17 a^6 b^6 c^8-82 a^4 b^8 c^8+11 a^2 b^10 c^8+4 b^12 c^8+3 a^10 c^10-9 a^8 b^2 c^10-28 a^6 b^4 c^10+61 a^4 b^6 c^10+11 a^2 b^8 c^10-10 b^10 c^10+3 a^8 c^12+14 a^6 b^2 c^12-22 a^4 b^4 c^12-25 a^2 b^6 c^12+4 b^8 c^12-3 a^6 c^14+3 a^4 b^2 c^14+21 a^2 b^4 c^14+4 b^6 c^14-a^4 c^16-8 a^2 b^2 c^16-4 b^4 c^16+a^2 c^18+b^2 c^18) : :
Barycentrics    SA (2 S^4 (6 R^2-SW)^2+(4 R^2-SW) (2 R^2-2 SA-SW) (SA-SW) SW^3+S^2 (-216 R^6 SA+72 R^4 SA^2+216 R^6 SW+36 R^4 SA SW-24 R^2 SA^2 SW-108 R^4 SW^2+6 R^2 SA SW^2+2 SA^2 SW^2+10 R^2 SW^3-SA SW^3+SW^4)) : :

As a point on the Euler line, X(51453) has Shinagawa coefficients {4*(E-2*F)*F*(E+F)^3-(E-2*F)^2(E+2*F)S^2,-4*F*(E+F)^3(E+2*F)+(E-2*F)^3*S^2}.

See Tran Quang Hung and Ercole Suppa, euclid 5403.

X(51453) lies on inverse in Euler asymptotic hyperbola of X(30) and this line: {2,3}


X(51454) = X(2)X(38652)∩X(3)X(114)

Barycentrics    (a^2 - b^2 - c^2)*(a^6 + b^6 - a^4*c^2 - a^2*b^2*c^2 - b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6)*(a^6 - a^4*b^2 + a^2*b^4 - b^6 - a^2*b^2*c^2 + b^4*c^2 - b^2*c^4 + c^6) : :

X(51454) lies on the cubic K1281 and these lines: {2, 38652}, {3, 114}, {112, 7807}, {132, 37071}, {232, 34129}, {325, 11610}, {339, 3767}, {394, 4121}, {538, 34897}, {1297, 1513}, {2799, 44534}, {2974, 6389}, {3564, 17974}, {3926, 28405}, {5481, 37450}, {6393, 10766}, {6720, 32954}, {10718, 35297}, {13219, 16925}, {14919, 44767}, {28697, 28724}

X(51454) = isogonal conjugate of X(41363)
X(51454) = circumcircle-inverse of X(39644)
X(51454) = X(i)-isoconjugate of X(j) for these (i,j): {1, 41363}, {19, 37183}
X(51454) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 41363), (6, 37183)
X(51454) = cevapoint of X(684) and X(38356)
X(51454) = trilinear pole of line {520, 6467}
X(51454) = barycentric product X(i)*X(j) for these {i,j}: {305, 39644}, {525, 44767}, {3926, 39645}, {40708, 50732}
X(51454) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 37183}, {6, 41363}, {39644, 25}, {39645, 393}, {44767, 648}, {50732, 419}


X(51455) = X(3)X(512)∩X(98)X(325)

Barycentrics    a^2*(a^4 - a^2*b^2 + 2*b^4 - 2*a^2*c^2 - b^2*c^2 + c^4)*(a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + 2*c^4)*(a^6*b^2 - a^4*b^4 + a^6*c^2 - 2*a^4*b^2*c^2 + a^2*b^4*c^2 - b^6*c^2 - a^4*c^4 + a^2*b^2*c^4 + 2*b^4*c^4 - b^2*c^6) : :
X(51455) = X[35002] + 2 X[45938]

X(51455) lies on the cubic K1281 and these lines: {3, 512}, {98, 325}, {805, 3563}, {2080, 32654}, {2421, 13137}, {2987, 14510}, {3398, 45915}, {35002, 45938}

X(51455) = isogonal conjugate of X(46039)
X(51455) = X(i)-isoconjugate of X(j) for these (i,j): {1, 46039}, {1733, 2698}, {8772, 46142}
X(51455) = X(3)-Dao conjugate of X(46039)
X(51455) = barycentric product X(2782)*X(2987)
X(51455) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 46039}, {2987, 46142}, {16068, 47734}, {32654, 2698}, {34157, 51229}, {35364, 46040}, {48452, 14265}
X(51455) = {X(2065),X(10425)}-harmonic conjugate of X(42065)


X(51456) = X(3)X(523)∩X(30)X(50)

Barycentrics    (a^6 - a^4*b^2 - a^2*b^4 + b^6 - 2*a^4*c^2 + 2*a^2*b^2*c^2 - 2*b^4*c^2 + a^2*c^4 + b^2*c^4)*(2*a^6 - 2*a^4*b^2 + a^2*b^4 - b^6 - 2*a^4*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6)*(a^6 - 2*a^4*b^2 + a^2*b^4 - a^4*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 - a^2*c^4 - 2*b^2*c^4 + c^6) : :

X(51456) lies on the cubic K1281 and these lines: {3, 523}, {30, 50}, {67, 3564}, {98, 858}, {687, 691}, {1494, 7799}, {3580, 34310}, {5877, 18281}, {6103, 16188}, {7471, 47208}, {14611, 34834}, {14911, 44280}, {17986, 51262}, {24975, 43090}, {34150, 39295}, {37118, 38936}

X(51456) = X(842)-isoconjugate of X(1725)
X(51456) = X(i)-Dao conjugate of X(j) for these (i, j): (23967, 3580), (42426, 403)
X(51456) = barycentric product X(i)*X(j) for these {i,j}: {542, 2986}, {1640, 18878}, {5191, 40832}, {7473, 15421}, {10420, 18312}, {14999, 15328}, {15454, 51227}
X(51456) = barycentric quotient X(i)/X(j) for these {i,j}: {542, 3580}, {2247, 1725}, {2986, 5641}, {5191, 3003}, {6041, 21731}, {6103, 403}, {7473, 16237}, {10420, 5649}, {14910, 842}, {15328, 14223}, {15454, 51228}, {18878, 6035}, {23968, 41512}, {48451, 14264}


X(51457) = X(3)X(690)∩X(110)X(468)

Barycentrics    (2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^8 - 3*a^6*b^2 + 4*a^4*b^4 - 3*a^2*b^6 + b^8 - a^6*c^2 + 2*a^4*b^2*c^2 + 2*a^2*b^4*c^2 - b^6*c^2 - a^4*c^4 - 2*a^2*b^2*c^4 - b^4*c^4 + a^2*c^6 + b^2*c^6)*(a^8 - a^6*b^2 - a^4*b^4 + a^2*b^6 - 3*a^6*c^2 + 2*a^4*b^2*c^2 - 2*a^2*b^4*c^2 + b^6*c^2 + 4*a^4*c^4 + 2*a^2*b^2*c^4 - b^4*c^4 - 3*a^2*c^6 - b^2*c^6 + c^8) : :

X(51457) lies on the cubic K1281 and these lines: {3, 690}, {98, 35191}, {110, 468}, {113, 2420}, {1637, 34810}, {1691, 14982}, {2986, 35235}, {3003, 14559}, {4240, 20772}, {5063, 46129}, {15454, 41079}

X(51457) = X(i)-isoconjugate of X(j) for these (i,j): {2349, 2493}, {14984, 36119}
X(51457) = X(1511)-Dao conjugate of X(14984)
X(51457) = barycentric product X(11064)*X(40118)
X(51457) = barycentric quotient X(i)/X(j) for these {i,j}: {1495, 2493}, {2407, 14221}, {2420, 7468}, {3284, 14984}, {35906, 34175}, {40083, 35910}, {40118, 16080}, {48453, 38939}


X(51458) = X(3)X(49)∩X(50)X(647)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^8 - 2*a^6*b^2 + a^4*b^4 - 2*a^6*c^2 + a^4*b^2*c^2 - b^6*c^2 + a^4*c^4 + 2*b^4*c^4 - b^2*c^6) : :

X(51458) lies on the cubic K1281 and these lines: {3, 49}, {50, 647}, {96, 275}, {97, 23195}, {98, 858}, {186, 8154}, {250, 11657}, {323, 14652}, {340, 47201}, {421, 44375}, {450, 47208}, {468, 1576}, {511, 13558}, {648, 47143}, {852, 23200}, {933, 14165}, {1495, 14673}, {1516, 17702}, {1613, 22391}, {1629, 6240}, {1899, 23606}, {1993, 2351}, {3291, 10311}, {6146, 19210}, {7507, 21268}, {7778, 10163}, {9512, 41202}, {16319, 38861}, {18374, 44890}, {19165, 21284}, {34834, 43969}, {34986, 50648}

X(51458) = reflection of X(13557) in X(14889)
X(51458) = reflection of X(13558) in the Lemoine axis
X(51458) = circumcircle-inverse of X(184)
X(51458) = Moses-radical-circle-inverse of X(1971)
X(51458) = isogonal conjugate of the polar conjugate of X(44375)
X(51458) = crosssum of X(4) and X(41203)
X(51458) = crossdifference of every pair of points on line {5, 2501}
X(51458) = barycentric product X(i)*X(j) for these {i,j}: {3, 44375}, {394, 421}
X(51458) = barycentric quotient X(i)/X(j) for these {i,j}: {421, 2052}, {44375, 264}
X(51458) = {X(50),X(15139)}-harmonic conjugate of X(44886)


X(51459) = X(2)X(14885)∩X(3)X(305)

Barycentrics    (a^2 + b^2)*(a^2 - b^2 - c^2)*(a^2 + c^2)*(a^6 + b^6 + a^2*b^2*c^2 - 2*b^4*c^2 - 2*b^2*c^4 + c^6) : :

X(51459) lies on the cubic K1281 and these lines: {2, 14885}, {3, 305}, {468, 4577}, {827, 37803}, {858, 16095}, {3266, 9076}, {3763, 10160}, {5157, 26190}, {7836, 10130}, {18105, 23285}

X(51459) = circumcircle-inverse of X(1799)
X(51459) = X(9076)-Ceva conjugate of X(1799)
X(51459) = barycentric product X(1799)*X(19577)
X(51459) = barycentric quotient X(i)/X(j) for these {i,j}: {8869, 46154}, {19577, 427}


X(51460) = X(3)X(115)∩X(24)X(5139)

Barycentrics    a^2*(a^12 - 4*a^10*b^2 + 5*a^8*b^4 - 5*a^4*b^8 + 4*a^2*b^10 - b^12 - 4*a^10*c^2 + 13*a^8*b^2*c^2 - 15*a^6*b^4*c^2 + 12*a^4*b^6*c^2 - 9*a^2*b^8*c^2 + 3*b^10*c^2 + 5*a^8*c^4 - 15*a^6*b^2*c^4 + 4*a^4*b^4*c^4 + 3*a^2*b^6*c^4 - 3*b^8*c^4 + 12*a^4*b^2*c^6 + 3*a^2*b^4*c^6 + 2*b^6*c^6 - 5*a^4*c^8 - 9*a^2*b^2*c^8 - 3*b^4*c^8 + 4*a^2*c^10 + 3*b^2*c^10 - c^12) : :
X(51460) = 5 X[3] - X[35453], 5 X[2079] + X[35453], X[6321] - 3 X[15546], X[3563] + 3 X[6091], X[3565] + 3 X[15565], X[14669] - 3 X[15565]

X(51460) lies on these lines: {3, 115}, {24, 5139}, {182, 12893}, {186, 691}, {3565, 5966}, {5961, 15475}, {6644, 14655}, {7502, 14650}, {11616, 25644}, {13335, 22467}, {34217, 37814}, {37917, 41521}

X(51460) = midpoint of X(i) and X(j) for these {i,j}: {3, 2079}, {3565, 14669}
X(51460) = circumcircle-inverse of X(6321)
X(51460) = {X(3565),X(15565)}-harmonic conjugate of X(14669)


X(51461) = (name pending)

Barycentrics    a*(a - b - c)*(b - c)^2*(a^2 + b*c)*(a^3*b - a^2*b^2 - a*b^3 + b^4 + a^3*c - a*b^2*c - a^2*c^2 - a*b*c^2 - a*c^3 + c^4) : :

See Antreas Hatzipolakis and Peter Moses, euclid 5409.

X(51461) lies on this line: {3023, 3907}

X(51461) = barycentric quotient X(44410)/X(37137)


X(51462) = X(758)X(3028)∩X(1155)X(6718)

Barycentrics    (b + c)*(a^2 - b^2 + b*c - c^2)*(a^3 - b^3 + b^2*c + b*c^2 - c^3) : :

See Antreas Hatzipolakis and Peter Moses, euclid 5409.

X(51462) lies on these lines: {758, 3028}, {1155, 6718}, {1836, 17073}, {2361, 17923}, {4552, 21920}, {4854, 18635}, {11064, 17768}, {15668, 32776}

X(51462) = X(759)-isoconjugate of X(37741)
X(51462) = X(i)-Dao conjugate of X(j) for these (i, j): (17073, 6740), (34586, 37741)
X(51462) = crosspoint of X(860) and X(41804)
X(51462) = barycentric product X(i)*X(j) for these {i,j}: {860, 17073}, {1836, 3936}, {17860, 18593}, {17923, 21912}, {41804, 46835}
X(51462) = barycentric quotient X(i)/X(j) for these {i,j}: {1836, 24624}, {2245, 37741}, {3936, 34409}, {4336, 2341}, {46835, 6740}


X(51463) = X(11)X(518)∩X(12)X(3555)

Barycentrics    (2*a - b - c)*(a*b - b^2 + a*c + 2*b*c - c^2) : :
X(51463) = 3 X[11] - 2 X[908], 5 X[11] - 4 X[5087], 5 X[908] - 6 X[5087], X[908] - 3 X[26015], 2 X[5087] - 5 X[26015], 3 X[36] - 2 X[9945], 2 X[142] - 3 X[41555], 2 X[1145] - 3 X[40663], 2 X[3689] - 3 X[6174], 4 X[3911] - 3 X[6174], 3 X[5298] - 2 X[5440], 3 X[1737] - 2 X[51362], 4 X[6702] - 3 X[17757], 4 X[6745] - 5 X[31235], 3 X[10707] - X[17484]

See Antreas Hatzipolakis and Peter Moses, euclid 5409.

X(51463) lies on these lines: {1, 5791}, {2, 3711}, {7, 31140}, {8, 3304}, {9, 31146}, {10, 17609}, {11, 518}, {12, 3555}, {36, 9945}, {38, 4854}, {55, 5744}, {57, 4863}, {63, 3058}, {72, 37722}, {100, 41341}, {141, 33120}, {142, 354}, {144, 497}, {145, 5218}, {149, 17768}, {191, 15172}, {200, 17728}, {210, 5316}, {214, 519}, {239, 26007}, {329, 11238}, {385, 29840}, {442, 3881}, {495, 17057}, {496, 5904}, {523, 13277}, {524, 9318}, {528, 3218}, {535, 12690}, {594, 31136}, {758, 17638}, {899, 3756}, {952, 44425}, {1086, 17449}, {1155, 5853}, {1210, 21031}, {1211, 29655}, {1279, 49989}, {1387, 4867}, {1647, 21805}, {1737, 51362}, {1738, 3999}, {1788, 6764}, {1836, 24392}, {1837, 6762}, {2099, 34625}, {2550, 4860}, {2886, 3873}, {2975, 10543}, {3006, 4966}, {3011, 4864}, {3035, 3935}, {3057, 24391}, {3189, 5204}, {3219, 49736}, {3242, 11269}, {3243, 5231}, {3244, 45081}, {3315, 33139}, {3419, 5434}, {3434, 11246}, {3475, 31245}, {3621, 8256}, {3626, 46916}, {3632, 46917}, {3633, 5690}, {3649, 3874}, {3681, 3816}, {3699, 49707}, {3703, 10453}, {3706, 4431}, {3715, 26105}, {3742, 25006}, {3748, 5745}, {3751, 17721}, {3755, 4003}, {3782, 33141}, {3811, 5433}, {3813, 3868}, {3829, 31053}, {3870, 5432}, {3889, 25466}, {3893, 4848}, {3894, 39542}, {3901, 22791}, {3914, 21342}, {3932, 29824}, {3936, 17145}, {3938, 37646}, {3940, 10072}, {3943, 14439}, {3957, 6690}, {3961, 37634}, {3962, 12053}, {3977, 4702}, {3983, 9843}, {4009, 4899}, {4015, 17575}, {4018, 49600}, {4023, 49450}, {4026, 29835}, {4030, 14829}, {4046, 17135}, {4062, 21676}, {4126, 18743}, {4152, 49702}, {4369, 4807}, {4420, 6691}, {4423, 10580}, {4430, 11680}, {4442, 17154}, {4649, 17726}, {4662, 50038}, {4679, 5223}, {4865, 36538}, {4871, 49693}, {4880, 28174}, {4884, 32915}, {4906, 26723}, {4969, 22356}, {5057, 5852}, {5082, 5221}, {5119, 34699}, {5137, 5846}, {5175, 9657}, {5205, 49698}, {5241, 49457}, {5252, 34749}, {5258, 12433}, {5288, 37730}, {5289, 11240}, {5537, 13226}, {5718, 29676}, {5722, 34606}, {5771, 34486}, {5839, 40127}, {5843, 34789}, {5844, 11219}, {5855, 38460}, {5901, 41696}, {5905, 11235}, {6224, 22560}, {6253, 12704}, {6362, 6608}, {6702, 17757}, {6734, 15888}, {6737, 20323}, {6745, 31235}, {6763, 15171}, {6765, 24914}, {7171, 34630}, {7173, 21077}, {8728, 50190}, {9041, 32927}, {9052, 50362}, {9053, 17763}, {10529, 12635}, {10707, 17484}, {10944, 26437}, {10948, 41686}, {10950, 10966}, {10957, 14054}, {11260, 37734}, {11375, 41863}, {11376, 11523}, {11531, 33899}, {12437, 37605}, {12531, 38455}, {12611, 12665}, {12629, 41687}, {13476, 21926}, {14151, 37797}, {15104, 37364}, {15950, 45700}, {16496, 17720}, {16594, 49701}, {16610, 24216}, {16704, 20042}, {17056, 29690}, {17061, 33142}, {17070, 33148}, {17236, 32773}, {17241, 29641}, {17245, 17450}, {17248, 29843}, {17365, 33104}, {17597, 33137}, {17605, 24386}, {17717, 49498}, {17724, 33140}, {17740, 49460}, {18398, 31419}, {18481, 41709}, {21242, 49479}, {23958, 49719}, {24003, 49697}, {24217, 49448}, {24841, 37759}, {24929, 31157}, {25385, 49491}, {25557, 33108}, {26627, 49725}, {27003, 49732}, {29639, 49478}, {29844, 32853}, {30350, 41867}, {30567, 30615}, {30818, 49529}, {30942, 49524}, {31137, 33165}, {32848, 50001}, {32865, 40688}, {32943, 44416}, {36479, 37660}, {37758, 49714}, {49694, 49991}

X(51463) = reflection of X(i) in X(j) for these {i,j}: {11, 26015}, {3689, 3911}, {3935, 3035}, {4867, 1387}, {5537, 13226}, {6154, 1155}
X(51463) = X(1023)-Ceva conjugate of X(900)
X(51463) = X(i)-isoconjugate of X(j) for these (i,j): {88, 1174}, {106, 2346}, {1170, 2316}, {9456, 32008}, {36125, 47487}
X(51463) = X(i)-Dao conjugate of X(j) for these (i, j): (142, 1320), (214, 2346), (1212, 903), (4370, 32008), (40606, 88)
X(51463) = barycentric product X(i)*X(j) for these {i,j}: {44, 20880}, {142, 519}, {354, 4358}, {902, 1233}, {1229, 1319}, {1418, 4723}, {1475, 3264}, {1639, 35312}, {2325, 10481}, {3762, 35338}, {3911, 4847}, {3925, 16704}, {3943, 17169}, {3992, 18164}, {16708, 21805}, {16713, 40663}, {17780, 21104}, {21808, 30939}, {22053, 46109}, {24004, 48151}, {40218, 51416}
X(51463) = barycentric quotient X(i)/X(j) for these {i,j}: {44, 2346}, {142, 903}, {354, 88}, {519, 32008}, {902, 1174}, {1212, 1320}, {1319, 1170}, {1475, 106}, {2293, 2316}, {3689, 6605}, {3911, 21453}, {3925, 4080}, {4847, 4997}, {20880, 20568}, {21104, 6548}, {21127, 23838}, {21808, 4674}, {22053, 1797}, {22356, 47487}, {35326, 901}, {35338, 3257}, {40983, 8752}, {48151, 1022}
X(51463) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {{2, 42871, 37703}, {57, 4863, 34612}, {72, 49627, 37722}, {354, 4847, 3925}, {1647, 21805, 51415}, {3242, 11269, 17602}, {3243, 5231, 17718}, {3555, 10916, 12}, {3689, 3911, 6174}, {3874, 24390, 3649}, {6734, 34791, 15888}, {11260, 41575, 37734}, {12513, 12649, 10950}, {12832, 36920, 40663}, {17449, 33136, 1086}, {24216, 49772, 16610}, {24477, 36845, 55}, {29676, 49490, 5718}, {29835, 46909, 4026}, {33140, 49675, 17724}


X(51464) = X(115)X(2388)∩X(325)X(6007)

Barycentrics    a*(b + c)*(a^2 - b*c)*(a*b^2 - b^3 + b^2*c + a*c^2 + b*c^2 - c^3) : :

See Antreas Hatzipolakis and Peter Moses, euclid 5409.

X(51464) lies on these lines: {115, 2388}, {325, 6007}, {594, 20723}, {740, 3027}, {2886, 18165}, {3056, 33141}, {4890, 17056}, {10026, 44671}, {17747, 20683}, {20863, 33136}

X(51464) = X(i)-isoconjugate of X(j) for these (i,j): {741, 40419}, {3449, 18827}
X(51464) = X(i)-Dao conjugate of X(j) for these (i, j): (8299, 40419), (16588, 40017)
X(51464) = barycentric product X(i)*X(j) for these {i,j}: {238, 21029}, {239, 21804}, {740, 17451}, {1284, 40997}, {2238, 2886}, {3747, 20236}, {3948, 21746}, {4037, 18165}, {7235, 16699}, {18033, 21819}
X(51464) = barycentric quotient X(i)/X(j) for these {i,j}: {2238, 40419}, {2886, 40017}, {17451, 18827}, {21029, 334}, {21746, 37128}, {21804, 335}, {21819, 7077}, {41333, 3449}, {46177, 4584}


X(51465) = X(758)X(3028)∩X(1495)X(17768)

Barycentrics    (b + c)*(-a^2 + b^2 - b*c + c^2)*(a*b^2 + b^3 - b^2*c + a*c^2 - b*c^2 + c^3) : :

See Antreas Hatzipolakis and Peter Moses, euclid 5409.

X(51465) lies on these lines: {758, 3028}, {1495, 17768}, {3782, 16700}

X(51465) = X(2341)-isoconjugate of X(3450)
X(51465) = X(i)-Dao conjugate of X(j) for these (i, j): (1329, 34079), (17053, 6740)
X(51465) = barycentric product X(i)*X(j) for these {i,j}: {1329, 41804}, {3782, 3936}, {17078, 21030}, {18593, 20237}, {21936, 40075}, {24443, 35550}
X(51465) = barycentric quotient X(i)/X(j) for these {i,j}: {1329, 6740}, {1464, 3450}, {3782, 24624}, {3936, 2985}, {17053, 34079}, {17452, 2341}, {21030, 36910}, {21936, 6187}, {24443, 759}


X(51466) = (name pending)

Barycentrics    (b - c)^2*(-a + b + c)*(-a^4 + b^4 - 2*a^2*b*c + b^3*c - b^2*c^2 + b*c^3 + c^4)*(-2*a^6 + 2*a^5*b + 2*a^4*b^2 - a^3*b^3 - a^2*b^4 - a*b^5 + b^6 + 2*a^5*c - a^3*b^2*c - a*b^4*c + 2*a^4*c^2 - a^3*b*c^2 + 2*a*b^3*c^2 - b^4*c^2 - a^3*c^3 + 2*a*b^2*c^3 - a^2*c^4 - a*b*c^4 - b^2*c^4 - a*c^5 + c^6) : :

See Antreas Hatzipolakis and Peter Moses, euclid 5409.

X(51466) lies on these lines: { }


X(51467) = (name pending)

Barycentrics    (a - b - c)*(b - c)^2*(a^4 - b^4 + a^2*b*c - b^3*c - b*c^3 - c^4)*(2*a^6 - 3*a^5*b - a^4*b^2 + 2*a^3*b^3 + a*b^5 - b^6 - 3*a^5*c + 2*a^3*b^2*c + a*b^4*c - a^4*c^2 + 2*a^3*b*c^2 - 2*a*b^3*c^2 + b^4*c^2 + 2*a^3*c^3 - 2*a*b^2*c^3 + a*b*c^4 + b^2*c^4 + a*c^5 - c^6) : :

See Antreas Hatzipolakis and Peter Moses, euclid 5409.

X(51467) lies on these lines: { }


X(51468) = X(3325)X(4160)∩X(4897)X(17058)

Barycentrics    (b - c)^2*(-2*a^2 - a*b + b^2 - a*c + c^2)*(a^2 + b^2 + 3*b*c + c^2) : :

See Antreas Hatzipolakis and Peter Moses, euclid 5409.

X(51468) lies on these lines: {3325, 4160}, {4897, 17058}, {17213, 17476}

X(51468) = barycentric product X(4789)*X(4897)
X(51468) = barycentric quotient X(i)/X(j) for these {i,j}: {4897, 37210}, {17213, 34914}


X(51469) = (name pending)

Barycentrics    (b - c)^2*(-a + b + c)*(-a^4 + b^4 - 4*a^2*b*c + b^3*c - 3*b^2*c^2 + b*c^3 + c^4)*(-2*a^6 + 4*a^4*b^2 + a^3*b^3 - 3*a^2*b^4 - a*b^5 + b^6 + a^3*b^2*c - a*b^4*c + 4*a^4*c^2 + a^3*b*c^2 + 2*a*b^3*c^2 - b^4*c^2 + a^3*c^3 + 2*a*b^2*c^3 - 3*a^2*c^4 - a*b*c^4 - b^2*c^4 - a*c^5 + c^6) : :

See Antreas Hatzipolakis and Peter Moses, euclid 5409.

X(51469) lies on these lines: { }


X(51470) = X(3)X(191)∩X(4)X(2687)

Barycentrics    a^2*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c - a*b*c + b^2*c - a*c^2 + b*c^2 + c^3)*(a^4 - 2*a^2*b^2 + b^4 + a^2*b*c + a*b^2*c - a*b*c^2 - c^4)*(a^4 - b^4 + a^2*b*c - a*b^2*c - 2*a^2*c^2 + a*b*c^2 + c^4) : :

X(51470) lies on the cubic K009 and these lines: {3, 191}, {4, 2687}, {32, 35090}, {56, 38982}, {14357, 34160}, {14385, 39175}, {34159, 39169}, {39170, 39173}

X(51470) = X(2766)-Ceva conjugate of X(8674)
X(51470) = X(i)-isoconjugate of X(j) for these (i,j): {1290, 21180}, {1325, 5620}, {16548, 21907}
X(51470) = X(8674)-Dao conjugate of X(5520)
X(51470) = cevapoint of X(35090) and X(42670)
X(51470) = barycentric product X(i)*X(j) for these {i,j}: {10693, 37783}, {32849, 34442}
X(51470) = barycentric quotient X(i)/X(j) for these {i,j}: {5172, 37798}, {17796, 5080}, {19622, 1325}, {34442, 21907}, {35090, 5520}, {42670, 47227}


X(51471) = X(3)X(4549)∩X(4)X(1302)

Barycentrics    (a^2 - b^2 - c^2)*(a^4 + 4*a^2*b^2 + b^4 - 2*a^2*c^2 - 2*b^2*c^2 + c^4)*(a^4 - 2*a^2*b^2 + b^4 + 4*a^2*c^2 - 2*b^2*c^2 + c^4)*(3*a^6 - 5*a^4*b^2 + a^2*b^4 + b^6 - 5*a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 + a^2*c^4 - b^2*c^4 + c^6) : :

X(51471) lies on the cubic K009 and these lines: {3, 4549}, {4, 1302}, {20, 39263}, {32, 3163}, {3146, 47103}, {13352, 32738}, {13608, 34157}, {14376, 39174}, {37645, 40387}

X(51471) = barycentric product X(i)*X(j) for these {i,j}: {4846, 37645}, {11064, 40387}, {34289, 47391}
X(51471) = barycentric quotient X(i)/X(j) for these {i,j}: {37645, 44134}, {40387, 16080}, {47391, 15066}


X(51472) = X(3)X(684)∩X(4)X(842)

Barycentrics    a^4*(a^2 - b^2 - c^2)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 - b^4*c^2 + 2*a^2*c^4 + 2*b^2*c^4 - 2*c^6)*(a^6 - a^4*b^2 + 2*a^2*b^4 - 2*b^6 - a^4*c^2 + 2*b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6)*(a^8*b^2 - 2*a^6*b^4 + 2*a^2*b^8 - b^10 + a^8*c^2 + a^4*b^4*c^2 - 2*a^2*b^6*c^2 - 2*a^6*c^4 + a^4*b^2*c^4 + b^6*c^4 - 2*a^2*b^2*c^6 + b^4*c^6 + 2*a^2*c^8 - c^10) : :

X(51472) lies on the cubic K009 and these lines: {3, 684}, {4, 842}, {32, 14385}, {6337, 51346}, {8743, 48453}, {14376, 39170}, {14378, 38542}, {14379, 39169}, {38987, 44895}

X(51472) = X(842)-Ceva conjugate of X(2781)
X(51472) = X(2781)-Dao conjugate of X(42426)
X(51472) = crosssum of X(542) and X(38552)
X(51472) = barycentric product X(i)*X(j) for these {i,j}: {35911, 37937}, {40079, 46787}
X(51472) = barycentric quotient X(i)/X(j) for these {i,j}: {40079, 46786}, {47427, 38552}


X(51473) = X(3)X(6511)∩X(4)X(13397)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^3 + a^2*b + a*b^2 + b^3 - a^2*c - 2*a*b*c - b^2*c - a*c^2 - b*c^2 + c^3)*(a^3 - a^2*b - a*b^2 + b^3 + a^2*c - 2*a*b*c - b^2*c + a*c^2 - b*c^2 + c^3)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 2*a^4*b*c + 2*a^3*b^2*c + 2*a^2*b^3*c - 2*a*b^4*c - a^4*c^2 + 2*a^3*b*c^2 + 6*a^2*b^2*c^2 - 2*a*b^3*c^2 - b^4*c^2 + 2*a^2*b*c^3 - 2*a*b^2*c^3 - a^2*c^4 - 2*a*b*c^4 - b^2*c^4 + c^6) : :

X(51473) lies on the cubic K009 and these lines: {3, 6511}, {4, 13397}, {14376, 34159}, {14379, 39173}, {34160, 39172}, {37275, 39267}, {39166, 39167}, {39175, 51347}


X(51474) = X(3)X(690)∩X(4)X(691)

Barycentrics    (2*a^6 - 2*a^4*b^2 + a^2*b^4 - b^6 - 2*a^4*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6)*(a^8 - 3*a^6*b^2 + 4*a^4*b^4 - 3*a^2*b^6 + b^8 - a^6*c^2 + 2*a^4*b^2*c^2 + 2*a^2*b^4*c^2 - b^6*c^2 - a^4*c^4 - 2*a^2*b^2*c^4 - b^4*c^4 + a^2*c^6 + b^2*c^6)*(a^8 - a^6*b^2 - a^4*b^4 + a^2*b^6 - 3*a^6*c^2 + 2*a^4*b^2*c^2 - 2*a^2*b^4*c^2 + b^6*c^2 + 4*a^4*c^4 + 2*a^2*b^2*c^4 - b^4*c^4 - 3*a^2*c^6 - b^2*c^6 + c^8) : :

X(51474) lies on the cubic K009 and these lines: {3, 690}, {4, 691}, {32, 23967}, {1147, 14357}, {5967, 43754}, {6337, 14385}, {14566, 46981}, {15261, 51346}, {18312, 51456}

X(51474) = isogonal conjugate of X(38939)
X(51474) = X(40118)-Ceva conjugate of X(542)
X(51474) = X(1)-isoconjugate of X(38939)
X(51474) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 38939), (542, 16188)
X(51474) = cevapoint of X(5191) and X(23967)
X(51474) = barycentric product X(i)*X(j) for these {i,j}: {40083, 46786}, {51227, 51457}
X(51474) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 38939}, {5191, 2493}, {14999, 14221}, {23967, 16188}, {34369, 34175}, {40083, 46787}, {51457, 51228}


X(51475) = X(3)X(9033)∩X(4)X(477)

Barycentrics    (a^2 - b^2 - c^2)*(a^8 + a^6*b^2 - 4*a^4*b^4 + a^2*b^6 + b^8 - 3*a^6*c^2 + 2*a^4*b^2*c^2 + 2*a^2*b^4*c^2 - 3*b^6*c^2 + 3*a^4*c^4 - 2*a^2*b^2*c^4 + 3*b^4*c^4 - a^2*c^6 - b^2*c^6)*(a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6 + a^6*c^2 + 2*a^4*b^2*c^2 - 2*a^2*b^4*c^2 - b^6*c^2 - 4*a^4*c^4 + 2*a^2*b^2*c^4 + 3*b^4*c^4 + a^2*c^6 - 3*b^2*c^6 + c^8)*(2*a^10 - 2*a^8*b^2 - 5*a^6*b^4 + 7*a^4*b^6 - a^2*b^8 - b^10 - 2*a^8*c^2 + 12*a^6*b^2*c^2 - 7*a^4*b^4*c^2 - 6*a^2*b^6*c^2 + 3*b^8*c^2 - 5*a^6*c^4 - 7*a^4*b^2*c^4 + 14*a^2*b^4*c^4 - 2*b^6*c^4 + 7*a^4*c^6 - 6*a^2*b^2*c^6 - 2*b^4*c^6 - a^2*c^8 + 3*b^2*c^8 - c^10) : :

X(51475) lies on the cubic K009 and these lines: {3, 9033}, {4, 477}, {32, 32663}, {1147, 51346}, {1614, 34210}, {7740, 31510}, {14379, 39170}, {16186, 36164}, {22802, 39985}

X(51475) = X(477)-Ceva conjugate of X(2777)
X(51475) = X(2693)-isoconjugate of X(36063)
X(51475) = X(2777)-Dao conjugate of X(18809)
X(51475) = barycentric quotient X(32663)/X(2693)


X(51476) = X(31)X(200)∩X(32)X(220)

Barycentrics    a^2*(a^2-2*a*b+b^2+a*c+b*c)*(a^2+a*b-2*a*c+b*c+c^2) : :

See Ivan Pavlov, euclid 5422.

X(51476) lies on circumconics {A,B,C,X(1),X(33)}, {A,B,C,X(2),X(2291)}, {A,B,C,X(3),X(5269)}, {A,B,C,X(6),X(1743)}, {A,B,C,X(9),X(42467)}, {A,B,C,X(10),X(2357)}, {A,B,C,X(19),X(2983)}, {A,B,C,X(25),X(106)}, {A,B,C,X(31),X(32)}, {A,B,C,X(35),X(3745)}, {A,B,C,X(42),X(902)}, {A,B,C,X(57),X(7123)}, {A,B,C,X(79),X(8605)}, {A,B,C,X(81),X(1174)}, {A,B,C,X(101),X(31615)}, {A,B,C,X(109),X(40150)}, {A,B,C,X(171),X(2223)}, {A,B,C,X(210),X(5559)}, {A,B,C,X(212),X(1795)}, {A,B,C,X(251),X(739)}, {A,B,C,X(284),X(572)}
and on these lines: {1,1106}, {3,53089}, {6,52804}, {31,200}, {32,220}, {33,1395}, {55,572}, {58,519}, {109,3744}, {165,7218}, {171,1416}, {212,52429}, {238,20103}, {595,997}, {727,8706}, {750,31249}, {902,2206}, {985,29649}, {1864,40528}, {2801,7281}, {3304,14261}, {3550,7220}, {3664,21453}, {3745,7073}, {4339,5264}, {5053,15621}, {5266,6001}, {7191,35281}, {9310,9315}, {17126,36845}, {20015,30652}

X(51476) = trilinear pole of line {657,1919}
X(51476) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3663}, {2, 3752}, {6, 26563}, {7, 3057}, {8, 1122}, {9, 52563}, {37, 18600}, {56, 20895}, {57, 3452}, {65, 17183}, {69, 1828}, {75, 1201}, {76, 20228}, {81, 4415}, {85, 2347}, {86, 4642}, {190, 48334}, {192, 27499}, {226, 18163}, {264, 22344}, {269, 6736}, {273, 22072}, {274, 21796}, {329, 42549}, {513, 21272}, {514, 21362}, {649, 21580}, {651, 21120}, {664, 6615}, {668, 6363}, {693, 23845}, {905, 17906}, {934, 42337}, {1014, 21031}, {1434, 21809}, {3161, 45205}, {3212, 52195}, {3669, 25268}, {4373, 45219}, {7182, 40982}, {8056, 45204}, {12640, 19604}, {17924, 23113}, {28006, 37137}, {44720, 46367}
X(51476) = X(i)-vertex conjugate of X(j) for these {i, j}: {2, 1412}, {9315, 51476}
X(51476) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 20895}, {3, 3663}, {9, 26563}, {206, 1201}, {478, 52563}, {5375, 21580}, {5452, 3452}, {6600, 6736}, {14714, 42337}, {32664, 3752}, {38991, 21120}, {39025, 6615}, {39026, 21272}, {40586, 4415}, {40589, 18600}, {40600, 4642}, {40602, 17183}
X(51476) = X(i)-cross conjugate of X(j) for these {i, j}: {55, 1261}, {3063, 101}, {4130, 36049}, {4162, 3939}
X(51476) = barycentric product X(i)*X(j) for these (i, j): {1, 23617}, {6, 1222}, {8, 3451}, {9, 1476}, {31, 32017}, {55, 40420}, {56, 52549}, {57, 1261}, {219, 40446}, {649, 8706}, {657, 6613}, {1252, 40451}, {4564, 40528}
X(51476) = barycentric quotient X(i)/X(j) for these (i, j): {1, 26563}, {6, 3663}, {9, 20895}, {31, 3752}, {32, 1201}, {41, 3057}, {42, 4415}, {55, 3452}, {56, 52563}, {58, 18600}, {100, 21580}, {213, 4642}, {220, 6736}, {284, 17183}, {560, 20228}, {604, 1122}, {657, 42337}, {663, 21120}, {667, 48334}, {692, 21362}, {902, 51415}, {1222, 76}, {1261, 312}, {1334, 21031}, {1476, 85}, {1918, 21796}, {1919, 6363}, {1973, 1828}, {2175, 2347}, {2194, 18163}, {2208, 42549}, {3052, 45204}, {3063, 6615}, {3451, 7}, {3939, 25268}, {5255, 24994}, {6613, 46406}, {7121, 27499}, {8706, 1978}, {8750, 17906}, {9247, 22344}, {16945, 45205}, {23617, 75}, {32017, 561}, {32656, 23113}, {32739, 23845}, {40420, 6063}, {40446, 331}, {40451, 23989}, {40528, 4858}, {52425, 22072}, {52549, 3596}


X(51477) = X(3)X(3519)∩X(98)X(930)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^4-a^2*b^2+b^4-2*a^2*c^2-2*b^2*c^2+c^4)*(a^4-2*a^2*b^2+b^4-a^2*c^2-2*b^2*c^2+c^4) : :

See Ivan Pavlov, euclid 5422.

lies on circumconics {A,B,C,X(2),X(37457)}, {A,B,C,X(3),X(25)}, {A,B,C,X(6),X(10979)}, {A,B,C,X(22),X(41275)}, {A,B,C,X(51),X(54)},{A,B,C,X(68),X(34154)}, {A,B,C,X(97),X(647)}, {A,B,C,X(186),X(418)}, {A,B,C,X(216),X(570)}, {A,B,C,X(237),X(6636)}, {A,B,C,X(248),X(3108)} and on these lines: {3,539}, {17,1607}, {18,1608}, {25,2934}, {32,8565}, {51,51546}, {54,47895}, {93,186}, {98,930}, {184,10979}, {237,3456}, {378,14111}, {418,52153}, {562,35473}, {570,8603}, {1487,3518}, {2353,41275}, {2937,18370}, {3425,7485}, {3438,37848}, {3439,37850}, {3917,42065}, {5899,31392}, {7502,25043}, {10547,52144}, {19778,22532}, {19779,22531}, {32637,34418}, {32737,40352}

= X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 32002}, {19, 7769}, {75, 3518}, {92, 1994}, {143, 40440}, {158, 44180}, {162, 41298}, {264, 2964}, {811, 1510}, {1969, 2965}, {2167, 14129}, {30529, 52414}, {36120, 51440}
= X(i)-vertex conjugate of X(j) for these {i, j}: {39284, 39284}
= X(i)-Dao conjugate of X(j) for these {i, j}: {3, 32002}, {6, 7769}, {125, 41298}, {206, 3518}, {1147, 44180}, {15450, 20577}, {17423, 1510}, {21975, 264}, {22391, 1994}, {39171, 311}, {40588, 14129}, {46094, 51440}, {46604, 4}
= X(i)-cross conjugate of X(j) for these {i, j}: {23195, 184}
= barycentric product X(i)*X(j) for these (i, j): {3, 2963}, {6, 3519}, {17, 32586}, {18, 32585}, {48, 2962}, {93, 577}, {184, 11140}, {216, 252}, {525, 32737}, {562, 50433}, {647, 930}, {656, 36148}, {1487, 22052}, {3049, 46139}, {8603, 52204}, {8604, 52203}, {14533, 25043}, {14585, 20572}, {21461, 40711}, {21462, 40712}, {21975, 34433}, {38342, 39201}
= barycentric quotient X(i)/X(j) for these (i, j): {3, 7769}, {6, 32002}, {32, 3518}, {51, 14129}, {93, 18027}, {184, 1994}, {217, 143}, {252, 276}, {577, 44180}, {647, 41298}, {930, 6331}, {2962, 1969}, {2963, 264}, {3049, 1510}, {3289, 51440}, {3519, 76}, {9247, 2964}, {11140, 18022}, {14575, 2965}, {14585, 49}, {15451, 20577}, {19627, 52417}, {21461, 472}, {21462, 473}, {32585, 303}, {32586, 302}, {32737, 648}, {36148, 811}, {40981, 14577}, {52153, 30529} = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51890, 51891, 2963}


X(51478) = X(54)X(575)∩X(99)X(35191)

Barycentrics    a^4*(a - b)*(a + b)*(a - c)*(a + c)*(a^2 + b^2 - 2*c^2)*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*(a^2 - 2*b^2 + c^2) : :

X(51478) lies on the cubic K1282 and these lines: {54, 575}, {99, 35191}, {110, 249}, {111, 39448}, {526, 10411}, {1511, 14355}, {5182, 5648}, {5968, 32609}, {9160, 45773}, {10097, 35324}

X(51478) = X(i)-isoconjugate of X(j) for these (i,j): {94, 2642}, {661, 43084}, {690, 2166}, {896, 10412}, {1109, 14559}, {1648, 32680}, {4062, 43082}, {14210, 15475}
X(51478) = X(i)-Dao conjugate of X(j) for these (i, j): (11597, 690), (15477, 15475), (15899, 10412), (36830, 43084), (40604, 35522)
X(51478) = barycentric product X(i)*X(j) for these {i,j}: {50, 892}, {111, 10411}, {249, 9213}, {323, 691}, {895, 14590}, {2088, 45773}, {6149, 36085}, {7799, 32729}, {14591, 30786}, {34539, 44814}
X(51478) = barycentric quotient X(i)/X(j) for these {i,j}: {50, 690}, {110, 43084}, {111, 10412}, {323, 35522}, {691, 94}, {892, 20573}, {895, 14592}, {9213, 338}, {10411, 3266}, {14270, 1648}, {14590, 44146}, {14591, 468}, {14908, 14582}, {19627, 351}, {22115, 14417}, {23357, 14559}, {32729, 1989}, {32740, 15475}, {34397, 14273}, {36142, 2166}


X(51479) = X(5)X(523)∩X(94)X(9180)

Barycentrics    b^2*(b - c)*c^2*(b + c)*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(-a^2 + b^2 - a*c - c^2)*(-a^2 + b^2 + a*c - c^2)*(-2*a^2 + b^2 + c^2) : :

X(51479) lies on the cubic K1282 and these lines: {5, 523}, {94, 9180}, {99, 476}, {115, 12077}, {128, 16188}, {265, 512}, {690, 41586}, {826, 18557}, {6344, 14618}

X(51479) = X(i)-isoconjugate of X(j) for these (i,j): {50, 36085}, {323, 36142}, {691, 6149}, {923, 10411}, {1101, 9213}, {14590, 36060}
X(51479) = X(i)-Dao conjugate of X(j) for these (i, j): (523, 9213), (690, 44814), (1560, 14590), (1649, 526), (2482, 10411), (14993, 691), (15295, 32729), (21905, 14270), (23992, 323), (38988, 50), (48317, 186)
X(51479) = barycentric product X(i)*X(j) for these {i,j}: {94, 690}, {328, 14273}, {338, 14559}, {351, 20573}, {468, 14592}, {523, 43084}, {524, 10412}, {1648, 35139}, {1989, 35522}, {3266, 15475}, {6344, 14417}, {14582, 44146}, {18384, 45807}, {37778, 43083}, {42713, 43082}, {43087, 50942}
X(51479) = barycentric quotient X(i)/X(j) for these {i,j}: {94, 892}, {115, 9213}, {351, 50}, {468, 14590}, {524, 10411}, {690, 323}, {1648, 526}, {1989, 691}, {2166, 36085}, {2642, 6149}, {10412, 671}, {11060, 32729}, {14273, 186}, {14559, 249}, {14582, 895}, {14592, 30786}, {15475, 111}, {21906, 14270}, {23992, 44814}, {33919, 2088}, {35522, 7799}, {39295, 45773}, {43084, 99}, {43087, 50941}, {44102, 14591}


X(51480) = X(3)X(690)∩X(6)X(14273)

Barycentrics    (b - c)*(b + c)*(a^8 - 3*a^6*b^2 + 4*a^4*b^4 - 3*a^2*b^6 + b^8 - a^6*c^2 + 2*a^4*b^2*c^2 + 2*a^2*b^4*c^2 - b^6*c^2 - a^4*c^4 - 2*a^2*b^2*c^4 - b^4*c^4 + a^2*c^6 + b^2*c^6)*(a^8 - a^6*b^2 - a^4*b^4 + a^2*b^6 - 3*a^6*c^2 + 2*a^4*b^2*c^2 - 2*a^2*b^4*c^2 + b^6*c^2 + 4*a^4*c^4 + 2*a^2*b^2*c^4 - b^4*c^4 - 3*a^2*c^6 - b^2*c^6 + c^8) : :

X(51480) lies on the Jerabek circumhyperbola, the cubic K1282, and these lines: {3, 690}, {6, 14273}, {67, 924}, {68, 9517}, {69, 526}, {74, 3566}, {99, 35191}, {115, 10097}, {125, 35364}, {265, 512}, {338, 15328}, {523, 895}, {525, 5504}, {826, 43704}, {1176, 22105}, {1499, 34802}, {1510, 18125}, {1576, 14559}, {2775, 34800}, {2780, 4846}, {3265, 43705}, {6391, 9033}, {10293, 20186}, {11559, 32478}, {20184, 34437}, {23287, 43697}, {35909, 36189}

X(51480) = reflection of X(35364) in X(125)
X(51480) = isogonal conjugate of X(7468)
X(51480) = isotomic conjugate of X(14221)
X(51480) = circumcircle-inverse of X(40083)
X(51480) = antigonal image of X(35364)
X(51480) = isogonal conjugate of the anticomplement of X(36189)
X(51480) = X(i)-isoconjugate of X(j) for these (i,j): {1, 7468}, {31, 14221}, {162, 14984}, {662, 2493}, {23997, 34175}
X(51480) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 14221), (3, 7468), (125, 14984), (1084, 2493)
X(51480) = cevapoint of X(512) and X(1640)
X(51480) = trilinear pole of line {647, 1648}
X(51480) = crossdifference of every pair of points on line {2493, 14984}
X(51480) = barycentric product X(i)*X(j) for these {i,j}: {525, 40118}, {2394, 51457}, {14223, 51474}, {40083, 43665}
X(51480) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 14221}, {6, 7468}, {512, 2493}, {647, 14984}, {1640, 16188}, {2395, 34175}, {14998, 38939}, {40083, 2421}, {40118, 648}, {51457, 2407}, {51474, 14999}


X(51481) = X(2)X(39)∩X(4)X(52)

Barycentrics    b^2*c^2*(2*a^4 - a^2*b^2 + b^4 - a^2*c^2 - 2*b^2*c^2 + c^4) : :

X(51481) lies on these lines: {2, 39}, {3, 39906}, {4, 52}, {6, 311}, {22, 39646}, {23, 5986}, {50, 44376}, {51, 6248}, {69, 41760}, {83, 11140}, {94, 671}, {98, 37183}, {99, 35296}, {110, 419}, {112, 44328}, {125, 33314}, {141, 1232}, {148, 40853}, {193, 264}, {230, 47406}, {231, 46184}, {237, 2782}, {239, 34387}, {248, 290}, {287, 34137}, {297, 525}, {300, 37786}, {301, 37785}, {308, 30535}, {313, 25978}, {315, 45794}, {316, 37779}, {323, 1236}, {327, 7777}, {328, 41626}, {338, 524}, {339, 441}, {343, 5254}, {350, 26639}, {394, 41238}, {458, 1235}, {460, 3564}, {467, 27376}, {511, 14957}, {599, 44148}, {648, 37778}, {698, 36790}, {894, 34388}, {1234, 3770}, {1269, 26538}, {1273, 44388}, {1495, 46493}, {1916, 46807}, {1992, 44135}, {1994, 7760}, {2052, 2996}, {2393, 25051}, {2979, 12251}, {2986, 17708}, {2987, 16081}, {2990, 43189}, {2998, 40815}, {3001, 7668}, {3003, 14570}, {3068, 34391}, {3069, 34392}, {3095, 37988}, {3186, 12272}, {3292, 46512}, {3620, 44149}, {3701, 25984}, {3963, 25245}, {4226, 14265}, {4558, 44375}, {5117, 23293}, {5422, 7770}, {5485, 34289}, {5921, 43976}, {6381, 25007}, {6504, 43678}, {6636, 12203}, {6656, 37636}, {6660, 12188}, {7468, 47207}, {7745, 45793}, {7762, 41628}, {7793, 51350}, {8882, 34385}, {9308, 40318}, {9722, 39113}, {10104, 37457}, {10358, 15004}, {11008, 44136}, {11160, 44133}, {11185, 37644}, {11205, 37649}, {11257, 37184}, {11328, 13108}, {11338, 46900}, {12243, 15360}, {12362, 31388}, {14096, 49111}, {14615, 20080}, {14880, 46546}, {15066, 41235}, {15143, 47202}, {16985, 40870}, {17862, 25977}, {17984, 40867}, {18033, 23989}, {20022, 39266}, {20891, 26573}, {21531, 32515}, {23235, 35298}, {31859, 37067}, {33529, 36251}, {33530, 36252}, {34148, 37124}, {34854, 35360}, {36789, 44569}, {37188, 41009}, {37874, 43681}, {41194, 44780}, {41195, 44781}, {41617, 48540}, {41676, 44893}, {41757, 41762}, {43084, 45331}

X(51481) = reflection of X(i) in X(j) for these {i,j}: {3001, 7668}, {3260, 338}, {7468, 47207}, {14570, 3003}
X(51481) = isogonal conjugate of X(32654)
X(51481) = isotomic conjugate of X(2987)
X(51481) = anticomplement of X(36212)
X(51481) = polar conjugate of X(3563)
X(51481) = anticomplement of the isogonal conjugate of X(6531)
X(51481) = anticomplement of the isotomic conjugate of X(16081)
X(51481) = isotomic conjugate of the isogonal conjugate of X(230)
X(51481) = isotomic conjugate of the polar conjugate of X(44145)
X(51481) = polar conjugate of the isogonal conjugate of X(3564)
X(51481) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {19, 147}, {98, 4329}, {293, 6527}, {661, 14721}, {685, 7192}, {1096, 40867}, {1821, 1370}, {1910, 20}, {1973, 39355}, {1976, 6360}, {6531, 8}, {16081, 6327}, {20031, 7253}, {22456, 17217}, {32696, 4560}, {36084, 6563}, {36104, 523}, {36120, 69}
X(51481) = X(i)-Ceva conjugate of X(j) for these (i,j): {264, 2974}, {290, 14265}, {16081, 2}, {43187, 850}, {44132, 30737}
X(51481) = X(i)-cross conjugate of X(j) for these (i,j): {230, 44145}, {2974, 264}, {38359, 99}
X(51481) = X(i)-isoconjugate of X(j) for these (i,j): {1, 32654}, {6, 36051}, {19, 42065}, {31, 2987}, {32, 8773}, {48, 3563}, {163, 35364}, {560, 8781}, {798, 10425}, {810, 32697}, {1755, 2065}, {1910, 34157}, {1973, 43705}, {3049, 36105}, {9247, 35142}, {9417, 40428}
X(51481) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 2987), (3, 32654), (6, 42065), (9, 36051), (114, 6), (115, 35364), (230, 511), (1249, 3563), (6337, 43705), (6374, 8781), (6376, 8773), (11672, 34157), (31998, 10425), (34156, 248), (35067, 3), (36899, 2065), (39001, 3049), (39058, 40428), (39062, 32697), (39069, 31), (39072, 32), (41181, 520), (44377, 1570)
X(51481) = cevapoint of X(i) and X(j) for these (i,j): {6, 39828}, {230, 3564}
X(51481) = crosspoint of X(i) and X(j) for these (i,j): {76, 290}, {6528, 41174}
X(51481) = crosssum of X(i) and X(j) for these (i,j): {32, 237}, {3569, 47421}
X(51481) = trilinear pole of line {114, 2974}
X(51481) = crossdifference of every pair of points on line {184, 669}
X(51481) = barycentric product X(i)*X(j) for these {i,j}: {69, 44145}, {75, 1733}, {76, 230}, {114, 290}, {264, 3564}, {300, 6782}, {301, 6783}, {305, 460}, {325, 14265}, {561, 8772}, {850, 4226}, {1502, 1692}, {2974, 35142}, {3260, 36875}, {3978, 47734}, {4609, 42663}, {5477, 18023}, {12829, 18896}, {17462, 46273}, {18024, 51335}, {40050, 44099}, {41174, 41181}
X(51481) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 36051}, {2, 2987}, {3, 42065}, {4, 3563}, {6, 32654}, {69, 43705}, {75, 8773}, {76, 8781}, {98, 2065}, {99, 10425}, {114, 511}, {230, 6}, {264, 35142}, {290, 40428}, {460, 25}, {511, 34157}, {523, 35364}, {648, 32697}, {811, 36105}, {1692, 32}, {1733, 1}, {2782, 51455}, {2974, 3564}, {3260, 36891}, {3564, 3}, {4226, 110}, {5477, 187}, {6782, 15}, {6783, 16}, {8772, 31}, {10011, 1351}, {12829, 1691}, {12830, 2076}, {14265, 98}, {14356, 39374}, {17462, 1755}, {17984, 47736}, {31842, 34382}, {34174, 842}, {36875, 74}, {38359, 6132}, {41181, 41172}, {42663, 669}, {44099, 1974}, {44145, 4}, {46039, 2698}, {47406, 3289}, {47734, 694}, {51335, 237}, {51431, 1495}
X(51481) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {76, 5286, 26214}, {76, 20023, 8024}, {76, 40814, 2}, {343, 5254, 41237}, {458, 1235, 40684}, {458, 7754, 1993}, {648, 44138, 37778}, {5392, 6515, 324}, {12251, 37190, 2979}, {13428, 13439, 11442}, {26539, 26588, 2}, {26541, 26592, 2}, {41000, 41001, 3266}


X(51482) = X(2)X(13)∩X(4)X(542)

Barycentrics    3*Sqrt[3]*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) + 2*(5*a^2 - b^2 - c^2)*S : :
X(51482) = 5 X[2] - 4 X[618], 3 X[2] - 4 X[5459], 7 X[2] - 8 X[6669], 5 X[2] - 6 X[22489], 11 X[2] - 16 X[35019], 2 X[2] + X[35749], 4 X[2] - X[35750], 5 X[2] - 2 X[35751], X[2] + 2 X[35752], 13 X[2] - 10 X[36767], 11 X[2] - 8 X[36768], 7 X[2] - 4 X[36769], 11 X[2] - 10 X[36770], and many others

X(51482) lies on these lines: {2, 13}, {4, 542}, {14, 41135}, {15, 25156}, {30, 5611}, {62, 5460}, {115, 37641}, {147, 41043}, {148, 531}, {193, 22576}, {265, 21468}, {298, 31683}, {299, 11296}, {302, 42128}, {303, 35303}, {316, 51017}, {376, 9735}, {381, 37785}, {383, 11163}, {396, 35931}, {397, 597}, {398, 20583}, {470, 44569}, {519, 9901}, {524, 621}, {532, 42973}, {543, 617}, {598, 51019}, {599, 634}, {619, 9116}, {628, 5464}, {631, 20415}, {633, 5344}, {1080, 22329}, {2043, 13637}, {2044, 13757}, {2482, 37173}, {2782, 44464}, {3146, 41020}, {3181, 22491}, {3448, 46856}, {3524, 6771}, {3534, 47610}, {3543, 41022}, {3545, 5617}, {3629, 42102}, {3642, 22494}, {3830, 33625}, {3839, 5478}, {3845, 36344}, {5032, 5334}, {5055, 20252}, {5321, 8584}, {5469, 40694}, {5472, 6772}, {5473, 10304}, {5476, 20429}, {5859, 33624}, {5863, 33626}, {5981, 42036}, {6670, 42800}, {6773, 11632}, {6782, 43404}, {6783, 8594}, {7714, 12142}, {7775, 33460}, {7818, 37170}, {8588, 11488}, {8596, 22113}, {8860, 37463}, {9114, 20094}, {9115, 11489}, {9763, 35932}, {9885, 42120}, {9900, 50884}, {10385, 13076}, {10654, 23005}, {10657, 11004}, {11001, 49858}, {11121, 12816}, {11177, 22573}, {11179, 44477}, {11239, 49144}, {11240, 49143}, {11289, 20582}, {11295, 42974}, {11542, 35304}, {11705, 38314}, {13083, 36968}, {13172, 25559}, {13174, 50850}, {13859, 14002}, {15534, 42094}, {15682, 33623}, {15692, 21156}, {16267, 30560}, {16963, 22846}, {18581, 22998}, {19053, 49209}, {19054, 49208}, {19776, 43091}, {19875, 50847}, {21356, 51010}, {21358, 51202}, {22490, 32553}, {22493, 40898}, {22570, 34511}, {22572, 42103}, {22575, 51203}, {22796, 36363}, {22847, 49906}, {25055, 51114}, {25226, 30440}, {25235, 37835}, {25561, 37825}, {30471, 33618}, {31144, 37144}, {31709, 51206}, {32455, 42101}, {33458, 35691}, {33465, 43633}, {33475, 42943}, {33477, 42142}, {33602, 33622}, {33609, 36388}, {33610, 49862}, {33611, 36366}, {34508, 42813}, {35020, 43233}, {35696, 42588}, {36251, 42998}, {36302, 37765}, {36386, 49951}, {36775, 43465}, {36961, 50687}, {37172, 37809}, {37332, 48657}, {40672, 47864}, {42035, 43540}, {42062, 43542}, {42133, 51170}, {45420, 49034}, {45421, 49035}, {47352, 51159}, {49814, 49950}, {49830, 49962}, {49901, 49903}

X(51482) = midpoint of X(i) and X(j) for these {i,j}: {13, 35752}, {616, 35749}, {22495, 36969}
X(51482) = reflection of X(i) in X(j) for these {i,j}: {2, 13}, {4, 25154}, {13, 47865}, {147, 41043}, {298, 31693}, {616, 2}, {671, 31695}, {1992, 22580}, {3180, 22495}, {3534, 47610}, {5463, 5459}, {5980, 40671}, {6773, 11632}, {8591, 5464}, {8594, 6783}, {8595, 6108}, {8596, 22577}, {9114, 32552}, {9116, 619}, {9900, 50884}, {13174, 50850}, {20094, 9114}, {25154, 16001}, {31693, 43416}, {33622, 40707}, {33627, 11121}, {35304, 11542}, {35750, 616}, {35751, 618}, {35931, 396}, {36344, 48655}, {36363, 22796}, {36768, 35019}, {36769, 6669}, {40671, 47861}, {40898, 22493}, {41042, 5478}, {48655, 3845}, {50849, 11705}
X(51482) = anticomplement of X(5463)
X(51482) = circumcircle-of-inner-Napoleon-triangle-inverse of X(5459)
X(51482) = circumcircle-of-outer-Napoleon-triangle-inverse of X(45880)
X(51482) = psi-transform of X(5460)
X(51482) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 35749, 35750}, {2, 35752, 35749}, {13, 5463, 5459}, {13, 6115, 43403}, {13, 6779, 46054}, {13, 23006, 6108}, {13, 35751, 22489}, {13, 36770, 35019}, {13, 47859, 10653}, {115, 41745, 37641}, {618, 22489, 2}, {5459, 5463, 2}, {5472, 6772, 37640}, {5478, 41042, 3839}, {6108, 9762, 2}, {6302, 6306, 36770}, {9762, 23006, 8595}, {9763, 42155, 35932}, {10653, 22492, 2}, {11705, 50849, 38314}, {13084, 37832, 2}, {22489, 35751, 618}, {22580, 25154, 671}, {31710, 51200, 5334}, {35019, 36768, 48311}, {35752, 47865, 2}, {36768, 48311, 36770}, {36770, 48311, 2}, {47363, 47364, 45880}


X(51483) = X(2)X(14)∩X(4)X(542)

Barycentrics    3*Sqrt[3]*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) - 2*(5*a^2 - b^2 - c^2)*S : :
X(51483) = 5 X[2] - 4 X[619], 3 X[2] - 4 X[5460], 7 X[2] - 8 X[6670], 5 X[2] - 6 X[22490], 11 X[2] - 16 X[35020], 2 X[2] + X[36327], 5 X[2] - 2 X[36329], X[2] + 2 X[36330], 4 X[2] - X[36331], and many others

X(51483) lies on these lines: {2, 14}, {4, 542}, {13, 41135}, {16, 25166}, {30, 5615}, {61, 5459}, {115, 37640}, {147, 41042}, {148, 530}, {193, 22575}, {265, 21469}, {298, 11295}, {299, 31684}, {302, 35304}, {303, 42125}, {316, 51019}, {376, 9736}, {381, 37786}, {383, 22329}, {395, 35932}, {397, 20583}, {398, 597}, {471, 44569}, {519, 9900}, {524, 622}, {533, 42972}, {543, 616}, {598, 51017}, {599, 633}, {618, 9114}, {627, 5463}, {631, 20416}, {634, 5343}, {1080, 11163}, {2043, 13757}, {2044, 13637}, {2482, 37172}, {2782, 44460}, {3146, 41021}, {3180, 22492}, {3448, 46857}, {3524, 6774}, {3534, 47611}, {3543, 41023}, {3545, 5613}, {3629, 42101}, {3643, 22493}, {3830, 33623}, {3839, 5479}, {3845, 36319}, {5032, 5335}, {5055, 20253}, {5318, 8584}, {5470, 40693}, {5471, 6775}, {5474, 10304}, {5476, 20428}, {5858, 33622}, {5862, 33627}, {5980, 42035}, {6669, 42799}, {6770, 11632}, {6782, 8595}, {6783, 43403}, {7714, 12141}, {7775, 33461}, {7818, 37171}, {8588, 11489}, {8596, 22114}, {8860, 37464}, {9116, 20094}, {9117, 11488}, {9761, 35931}, {9886, 42119}, {9901, 50884}, {10385, 13075}, {10653, 23004}, {10658, 11004}, {11001, 49855}, {11122, 12817}, {11177, 22574}, {11179, 44478}, {11239, 49146}, {11240, 49145}, {11290, 20582}, {11296, 42975}, {11543, 35303}, {11706, 38314}, {13084, 36967}, {13172, 25560}, {13174, 50847}, {13858, 14002}, {15534, 42093}, {15682, 33625}, {15692, 21157}, {16268, 30559}, {16962, 22891}, {18582, 22997}, {19053, 49211}, {19054, 49210}, {19777, 43092}, {19875, 50850}, {21356, 51013}, {21358, 51205}, {22489, 32552}, {22494, 40899}, {22568, 34511}, {22571, 42106}, {22576, 51200}, {22797, 36362}, {22893, 49905}, {25055, 51115}, {25225, 30439}, {25236, 37832}, {25561, 37824}, {30472, 33619}, {31144, 37145}, {31710, 51207}, {32455, 42102}, {33459, 35695}, {33464, 43632}, {33474, 42942}, {33476, 42139}, {33603, 33624}, {33608, 36386}, {33610, 36368}, {33611, 49861}, {34509, 42814}, {35019, 43232}, {35692, 42589}, {36252, 42999}, {36303, 37765}, {36388, 49954}, {36962, 50687}, {37173, 37809}, {37333, 48657}, {40671, 47863}, {42036, 43541}, {42063, 43543}, {42134, 51170}, {45420, 49036}, {45421, 49037}, {47352, 51160}, {49815, 49949}, {49831, 49961}, {49902, 49904}

X(51483) = midpoint of X(i) and X(j) for these {i,j}: {14, 36330}, {617, 36327}, {22496, 36970}
X(51483) = reflection of X(i) in X(j) for these {i,j}: {2, 14}, {4, 25164}, {14, 47866}, {147, 41042}, {299, 31694}, {617, 2}, {671, 31696}, {1992, 22579}, {3181, 22496}, {3534, 47611}, {5464, 5460}, {5981, 40672}, {6770, 11632}, {8591, 5463}, {8594, 6109}, {8595, 6782}, {8596, 22578}, {9114, 618}, {9116, 32553}, {9901, 50884}, {13174, 50847}, {20094, 9116}, {25164, 16002}, {31694, 43417}, {33624, 40706}, {33626, 11122}, {35303, 11543}, {35932, 395}, {36319, 48656}, {36329, 619}, {36331, 617}, {36362, 22797}, {40672, 47862}, {40899, 22494}, {41043, 5479}, {47867, 6670}, {48656, 3845}, {50852, 11706}
X(51483) = anticomplement of X(5464)
X(51483) = circumcircle-of-inner-Napoleon-triangle-inverse of X(45879)
X(51483) = circumcircle-of-outer Napoleon-triangle-inverse of X(5460)
X(51483) = psi-transform of X(5459)
X(51483) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 36327, 36331}, {2, 36330, 36327}, {14, 5464, 5460}, {14, 6114, 43404}, {14, 6780, 46053}, {14, 23013, 6109}, {14, 36329, 22490}, {14, 47860, 10654}, {115, 41746, 37640}, {619, 22490, 2}, {5460, 5464, 2}, {5471, 6775, 37641}, {5479, 41043, 3839}, {6109, 9760, 2}, {9760, 23013, 8594}, {9761, 42154, 35931}, {10654, 22491, 2}, {11706, 50852, 38314}, {13083, 37835, 2}, {22490, 36329, 619}, {22579, 25164, 671}, {31709, 51203, 5335}, {36330, 47866, 2}, {47361, 47362, 45879}


X(51484) = X(2)X(14)∩X(3)X(37785)

Barycentrics    Sqrt[3]*(5*a^4 - 4*a^2*b^2 - b^4 - 4*a^2*c^2 + 2*b^2*c^2 - c^4) - 2*(5*a^2 - b^2 - c^2)*S : :
X(51484) = 5 X[2] - 4 X[623], 7 X[2] - 8 X[6671], 11 X[2] - 10 X[40334], 3 X[2] - 4 X[45879], 11 X[2] - 12 X[48313], 4 X[15] - X[621], 5 X[15] - 2 X[623], 7 X[15] - 4 X[6671], and many others

X(51484) lies on these lines: {2, 14}, {3, 37785}, {6, 35932}, {30, 5611}, {99, 51012}, {182, 22579}, {187, 37641}, {298, 6390}, {299, 11295}, {302, 42116}, {303, 31694}, {316, 43482}, {376, 511}, {524, 616}, {530, 3180}, {533, 5463}, {574, 41746}, {597, 11300}, {599, 11299}, {618, 22493}, {622, 3849}, {628, 11304}, {631, 21401}, {633, 7801}, {634, 9939}, {2549, 37640}, {2992, 43092}, {3105, 34604}, {3241, 44659}, {3524, 13350}, {3543, 44666}, {3545, 20428}, {3839, 7684}, {3845, 33625}, {5032, 51206}, {5189, 34314}, {5238, 34508}, {5321, 33475}, {5352, 22114}, {5459, 16962}, {5979, 36775}, {6582, 46708}, {6771, 31696}, {6772, 9117}, {6781, 41745}, {7812, 47068}, {8584, 42943}, {8595, 51200}, {9114, 22687}, {9761, 11480}, {9763, 42154}, {10304, 14538}, {10617, 49906}, {10645, 13084}, {10653, 32480}, {10667, 32787}, {10671, 32788}, {11296, 11485}, {11303, 22236}, {11488, 18424}, {11586, 16770}, {11707, 38314}, {11812, 49855}, {13637, 36455}, {13757, 36437}, {15534, 42626}, {15640, 33623}, {15692, 21158}, {16940, 19661}, {16963, 30560}, {17503, 43542}, {19106, 47865}, {19708, 36755}, {19780, 43229}, {19924, 22580}, {21356, 51016}, {22492, 42085}, {22494, 40901}, {23004, 41135}, {23005, 40246}, {25166, 46054}, {31173, 37171}, {31693, 42912}, {33459, 33627}, {33611, 43228}, {33624, 49897}, {33960, 50860}, {34315, 37909}, {34509, 42157}, {35229, 40694}, {35749, 42087}, {35750, 42122}, {35752, 42099}, {36992, 50687}, {37341, 42925}, {39555, 45880}, {41134, 51387}, {44250, 50979}, {47352, 51161}

X(51484) = midpoint of X(35752) and X(42099)
X(51484) = reflection of X(i) in X(j) for these {i,j}: {2, 15}, {298, 35304}, {616, 35931}, {617, 8594}, {621, 2}, {5189, 34314}, {19106, 47865}, {22493, 618}, {31693, 42912}, {35931, 42942}, {40246, 23005}, {50854, 11707}, {50855, 45879}
X(51484) = anticomplement of X(50855)
X(51484) = circumcircle-of-inner-Napoleon-triangle-inverse of X(5460)
X(51484) = psi-transform of X(45880)
X(51484) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {14, 13083, 2}, {15, 50855, 45879}, {10645, 22496, 13084}, {11707, 50854, 38314}, {40334, 48313, 2}, {45879, 50855, 2}, {47361, 47362, 5460}


X(51485) = X(2)X(13)∩X(3)X(37786)

Barycentrics    Sqrt[3]*(5*a^4 - 4*a^2*b^2 - b^4 - 4*a^2*c^2 + 2*b^2*c^2 - c^4) + 2*(5*a^2 - b^2 - c^2)*S : :
X(51485) = 5 X[2] - 4 X[624], 7 X[2] - 8 X[6672], 11 X[2] - 10 X[40335], 3 X[2] - 4 X[45880], 11 X[2] - 12 X[48314], 4 X[16] - X[622], 5 X[16] - 2 X[624], 7 X[16] - 4 X[6672], and many others

X(51485) lies on these lines: {2, 13}, {3, 37786}, {6, 35931}, {30, 5615}, {99, 51015}, {182, 22580}, {187, 37640}, {298, 11296}, {299, 6390}, {302, 31693}, {303, 42115}, {316, 43481}, {376, 511}, {524, 617}, {531, 3181}, {532, 5464}, {574, 41745}, {597, 11299}, {599, 11300}, {619, 22494}, {621, 3849}, {627, 11303}, {631, 21402}, {633, 9939}, {634, 7801}, {2549, 37641}, {2993, 43091}, {3104, 34604}, {3241, 44660}, {3365, 35741}, {3524, 13349}, {3543, 44667}, {3545, 20429}, {3839, 7685}, {3845, 33623}, {5032, 51207}, {5189, 34313}, {5237, 34509}, {5318, 33474}, {5351, 22113}, {5460, 16963}, {6295, 46709}, {6774, 31695}, {6775, 9115}, {6781, 41746}, {7812, 47066}, {8584, 42942}, {8594, 51203}, {9116, 22689}, {9761, 42155}, {9763, 11481}, {10304, 14539}, {10616, 49905}, {10646, 13083}, {10654, 32480}, {10668, 32787}, {10672, 32788}, {11295, 11486}, {11304, 22238}, {11489, 18424}, {11708, 38314}, {11812, 49858}, {13637, 36437}, {13757, 36455}, {15534, 42625}, {15640, 33625}, {15692, 21159}, {15743, 16771}, {16941, 19661}, {16962, 30559}, {17503, 43543}, {19107, 47866}, {19708, 36756}, {19781, 43228}, {19924, 22579}, {21356, 51018}, {22491, 42086}, {22493, 40900}, {23004, 40246}, {23005, 41135}, {25156, 46053}, {31173, 37170}, {31694, 42913}, {33458, 33626}, {33610, 43229}, {33622, 49898}, {33959, 50859}, {34316, 37909}, {34508, 42158}, {35230, 40693}, {36327, 42088}, {36330, 42100}, {36331, 42123}, {36994, 50687}, {37340, 42924}, {39554, 45879}, {41134, 51388}, {47352, 51162}

X(51485) = midpoint of X(36330) and X(42100)
X(51485) = reflection of X(i) in X(j) for these {i,j}: {2, 16}, {299, 35303}, {616, 8595}, {617, 35932}, {622, 2}, {5189, 34313}, {19107, 47866}, {22494, 619}, {31694, 42913}, {35932, 42943}, {40246, 23004}, {50857, 11708}, {50858, 45880}
X(51485) = anticomplement of X(50858)
X(51485) = circumcircle-of-outer-Napoleon-triangle-inverse of X(5459)
X(51485) = psi-transform of X(45879)
X(51485) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {13, 13084, 2}, {16, 50858, 45880}, {10646, 22495, 13083}, {11708, 50857, 38314}, {40335, 48314, 2}, {45880, 50858, 2}, {47363, 47364, 5459}


X(51486) = X(2)X(17)∩X(13)X(148)

Barycentrics    a^4 - 8*a^2*b^2 + 7*b^4 - 8*a^2*c^2 - 14*b^2*c^2 + 7*c^4 - 2*Sqrt[3]*(5*a^2 - b^2 - c^2)*S : :
X(51486) = 5 X[2] - 4 X[629], 7 X[2] - 8 X[6673], 7 X[2] - 2 X[22844], X[2] + 4 X[33465], 4 X[2] - X[33622], 2 X[2] + X[33626], 5 X[2] + X[36326], 7 X[2] - X[36352], X[2] + 2 X[36366], and many others

X(51486) lies on these lines: {2, 17}, {3, 49858}, {4, 33625}, {5, 49914}, {6, 22893}, {13, 148}, {30, 16629}, {69, 40707}, {141, 42777}, {299, 11542}, {303, 11302}, {376, 9735}, {381, 37786}, {396, 622}, {519, 22652}, {530, 30559}, {533, 41121}, {547, 37785}, {597, 42898}, {616, 5472}, {621, 16634}, {623, 40899}, {633, 5859}, {1992, 5071}, {3180, 18582}, {3181, 22894}, {3524, 49106}, {3543, 44666}, {3545, 16626}, {3629, 43104}, {3643, 16960}, {3839, 22832}, {3845, 48666}, {5032, 51208}, {5487, 33607}, {5863, 7751}, {5979, 47857}, {6669, 34540}, {7714, 22482}, {7753, 37171}, {8259, 11304}, {8716, 9763}, {10304, 22890}, {10385, 22910}, {10611, 37170}, {10653, 22900}, {10654, 31704}, {11117, 19712}, {11132, 32833}, {11239, 49175}, {11240, 49174}, {11297, 42988}, {11303, 33458}, {11305, 44776}, {11602, 41135}, {11739, 38314}, {12815, 49812}, {16241, 22895}, {19053, 49239}, {19054, 49238}, {20583, 42899}, {21356, 51020}, {22795, 41099}, {22845, 49809}, {22901, 37835}, {25055, 51116}, {32455, 43101}, {33387, 49819}, {33405, 42990}, {33459, 42598}, {33604, 43676}, {33959, 45879}, {34508, 49907}, {35020, 43031}, {35689, 42992}, {37007, 41108}, {37172, 49862}, {41104, 41112}, {41107, 44029}, {41114, 41119}, {41117, 49874}, {41129, 49825}, {42975, 51279}, {45420, 49066}, {45421, 49067}

X(51486) = midpoint of X(i) and X(j) for these {i,j}: {2, 22113}, {17, 36366}, {627, 33626}
X(51486) = reflection of X(i) in X(j) for these {i,j}: {2, 17}, {627, 2}, {22113, 36366}, {33622, 627}, {33626, 22113}, {36352, 22844}, {36366, 33465}, {36386, 629}, {48666, 3845}
X(51486) = anticomplement of X(50859)
X(51486) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 33626, 33622}, {2, 36326, 36386}, {2, 36366, 33626}, {17, 22113, 627}, {17, 22844, 6673}, {17, 33465, 22113}, {633, 42156, 33413}, {16267, 34509, 2}


X(51487) = X(2)X(18)∩X(14)X(148)

Barycentrics    a^4 - 8*a^2*b^2 + 7*b^4 - 8*a^2*c^2 - 14*b^2*c^2 + 7*c^4 + 2*Sqrt[3]*(5*a^2 - b^2 - c^2)*S : :
X(51487) = 5 X[2] - 4 X[630], 7 X[2] - 8 X[6674], 7 X[2] - 2 X[22845], X[2] + 4 X[33464], 4 X[2] - X[33624], 2 X[2] + X[33627], 5 X[2] + X[36324], 7 X[2] - X[36346], X[2] + 2 X[36368], and many others

X(51487) lies on these lines: {2, 18}, {3, 49855}, {4, 33623}, {5, 49911}, {6, 22847}, {14, 148}, {30, 16628}, {69, 40706}, {141, 42778}, {298, 11543}, {302, 11301}, {376, 9736}, {381, 37785}, {395, 621}, {519, 22651}, {531, 30560}, {532, 41122}, {547, 37786}, {597, 42899}, {617, 5471}, {622, 16635}, {624, 40898}, {634, 5858}, {1992, 5071}, {3180, 22850}, {3181, 18581}, {3524, 49105}, {3543, 44667}, {3545, 16627}, {3629, 43101}, {3642, 16961}, {3839, 22831}, {3845, 48665}, {5032, 51209}, {5488, 33606}, {5862, 7751}, {5978, 47858}, {6670, 34541}, {7714, 22481}, {7753, 37170}, {8260, 11303}, {8716, 9761}, {10304, 22843}, {10385, 22865}, {10612, 37171}, {10653, 31703}, {10654, 22856}, {11118, 19713}, {11133, 32833}, {11239, 49173}, {11240, 49172}, {11298, 42989}, {11304, 33459}, {11306, 44777}, {11603, 41135}, {11740, 38314}, {12815, 49813}, {16242, 22849}, {19053, 49237}, {19054, 49236}, {20583, 42898}, {21356, 51021}, {22794, 41099}, {22844, 49806}, {22855, 37832}, {25055, 51117}, {32455, 43104}, {33386, 49816}, {33404, 42991}, {33458, 42599}, {33605, 43676}, {33960, 45880}, {34509, 49908}, {35019, 43030}, {35688, 42993}, {36344, 44289}, {37008, 41107}, {37173, 49861}, {41105, 41113}, {41108, 44031}, {41115, 41120}, {41118, 49873}, {41128, 49824}, {42974, 51278}, {45420, 49064}, {45421, 49065}

X(51487) = midpoint of X(i) and X(j) for these {i,j}: {2, 22114}, {18, 36368}, {628, 33627}
X(51487) = reflection of X(i) in X(j) for these {i,j}: {2, 18}, {628, 2}, {22114, 36368}, {33624, 628}, {33627, 22114}, {36346, 22845}, {36368, 33464}, {36388, 630}, {48665, 3845}
X(51487) = anticomplement of X(50860)
X(51487) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 33627, 33624}, {2, 36324, 36388}, {2, 36368, 33627}, {18, 22114, 628}, {18, 22845, 6674}, {18, 33464, 22114}, {634, 42153, 33412}, {16268, 34508, 2}


X(51488) = X(1)X(4753)∩X(2)X(37)

Barycentrics    4*a*b + 4*a*c + b*c : :
X(51488) = 7 X[1] + 2 X[49449], 2 X[1] + X[50075], X[1] + 2 X[50094], 4 X[49449] - 7 X[50075], X[49449] - 7 X[50094], X[50075] - 4 X[50094], X[2] + 2 X[37], 4 X[2] - X[75], 5 X[2] + X[192], and many others

X(51488) lies on these lines: {1, 4753}, {2, 37}, {6, 29580}, {9, 17394}, {44, 29570}, {45, 3758}, {86, 3731}, {141, 29582}, {190, 16676}, {239, 16672}, {319, 5296}, {320, 5308}, {335, 4370}, {376, 51038}, {381, 30273}, {518, 38023}, {519, 41848}, {527, 27475}, {537, 25055}, {547, 51040}, {549, 20430}, {551, 984}, {597, 49509}, {599, 29575}, {650, 50763}, {726, 19883}, {740, 19875}, {742, 21358}, {872, 42042}, {894, 16675}, {966, 17315}, {1086, 29581}, {1125, 17354}, {1213, 17242}, {1654, 17386}, {1698, 50096}, {1992, 51050}, {2667, 42043}, {3241, 15569}, {3247, 16834}, {3543, 51042}, {3589, 49502}, {3616, 49499}, {3622, 49515}, {3624, 49456}, {3634, 49452}, {3636, 49503}, {3679, 3842}, {3696, 51054}, {3723, 17349}, {3759, 16777}, {3828, 3993}, {3834, 29599}, {3912, 17250}, {3943, 29576}, {3986, 5224}, {4029, 24603}, {4098, 4967}, {4357, 17241}, {4360, 16673}, {4363, 29578}, {4364, 17227}, {4389, 29571}, {4422, 17397}, {4428, 34247}, {4473, 29592}, {4643, 17387}, {4648, 17258}, {4670, 29595}, {4673, 27785}, {4677, 49471}, {4708, 17230}, {4709, 51069}, {4725, 16590}, {4745, 49459}, {4748, 29583}, {4851, 17328}, {4971, 31322}, {5055, 29010}, {5071, 51043}, {5257, 17233}, {5550, 49483}, {5750, 30598}, {6172, 51057}, {6173, 51052}, {6666, 17380}, {7611, 44430}, {9055, 48310}, {9466, 32453}, {9780, 49462}, {10124, 51048}, {10180, 42056}, {13635, 46475}, {14829, 25430}, {15492, 37677}, {15668, 16677}, {15692, 30271}, {15694, 51039}, {15702, 51049}, {16568, 40131}, {16674, 17259}, {16814, 17379}, {16815, 17318}, {16817, 50072}, {16830, 48805}, {16832, 17160}, {17045, 17338}, {17228, 17243}, {17234, 17249}, {17237, 29572}, {17245, 17247}, {17246, 27147}, {17251, 17310}, {17252, 17311}, {17253, 17312}, {17254, 17313}, {17256, 17316}, {17257, 17317}, {17265, 17324}, {17266, 17325}, {17267, 17326}, {17268, 17327}, {17269, 29610}, {17271, 29573}, {17290, 29626}, {17294, 31144}, {17300, 17329}, {17330, 17389}, {17331, 17390}, {17332, 17391}, {17333, 17392}, {17337, 17396}, {17339, 17398}, {17346, 29574}, {17350, 28639}, {17352, 25072}, {17369, 29612}, {17378, 50093}, {17381, 25101}, {17395, 29628}, {17448, 39738}, {18146, 21615}, {19853, 50122}, {19862, 49493}, {19876, 49474}, {20582, 51051}, {20943, 27255}, {20945, 27285}, {21330, 42039}, {24325, 51035}, {24349, 51061}, {25358, 29608}, {26255, 44670}, {27776, 31179}, {27811, 44671}, {29054, 38021}, {29617, 49731}, {31145, 50778}, {31319, 47352}, {31336, 36911}, {31997, 32009}, {32092, 32102}, {34641, 49678}, {36817, 36872}, {39586, 50126}, {40328, 51060}, {41875, 50179}, {45310, 51062}, {46933, 49468}, {49448, 51105}, {49457, 51093}, {49469, 51066}, {49479, 51108}, {49490, 51103}, {49501, 51110}, {49504, 51104}, {49507, 50109}, {49518, 50118}, {49520, 51109}, {49523, 51056}, {49533, 51126}, {49722, 50090}, {49738, 49742}, {49740, 50286}, {49746, 50291}, {49748, 50116}, {50074, 50125}, {50088, 50110}, {50095, 50121}, {51053, 51058}

X(51488) = barycentric product X(190)*X(48548)
X(51488) = barycentric quotient X(48548)/X(514)
X(51488) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 50094, 50075}, {2, 37, 4664}, {2, 192, 4688}, {2, 4664, 75}, {2, 4688, 4751}, {2, 4704, 4740}, {2, 4740, 3739}, {2, 4755, 4687}, {2, 27268, 4755}, {2, 41312, 17399}, {2, 41313, 17342}, {9, 29597, 46922}, {37, 3739, 4704}, {37, 4687, 75}, {37, 4698, 192}, {37, 4755, 2}, {37, 27268, 4687}, {45, 16826, 3758}, {86, 3731, 17336}, {190, 16831, 41847}, {192, 4698, 4751}, {192, 4751, 75}, {344, 17322, 17371}, {376, 51038, 51063}, {381, 30273, 51065}, {381, 51045, 30273}, {547, 51046, 51040}, {549, 20430, 51044}, {551, 984, 51055}, {599, 50779, 49496}, {1125, 50777, 31178}, {1213, 17242, 48630}, {3241, 51034, 49450}, {3247, 17277, 17393}, {3644, 3739, 75}, {3679, 50111, 49470}, {3739, 4704, 3644}, {3828, 3993, 50086}, {3842, 50111, 3679}, {3912, 17250, 48639}, {4357, 17241, 48638}, {4364, 17244, 17227}, {4643, 29569, 17387}, {4664, 4687, 2}, {4681, 4699, 4764}, {4687, 4751, 4698}, {4688, 4698, 2}, {4699, 4764, 75}, {5224, 17240, 48640}, {15569, 51034, 3241}, {15668, 16677, 17261}, {15692, 51064, 30271}, {16674, 17259, 17319}, {16676, 16831, 190}, {16777, 17260, 3759}, {17234, 17249, 48637}, {17243, 17248, 17228}, {17245, 17247, 48629}, {17254, 29620, 17313}, {17256, 17316, 17360}, {17257, 17317, 17361}, {17263, 17321, 17370}, {17330, 17389, 50077}, {17333, 29622, 17392}, {17346, 29574, 50132}, {17392, 49737, 17333}, {17395, 31285, 29628}, {29597, 46922, 17394}, {31178, 50777, 49447}, {49731, 50113, 29617}, {49738, 49742, 50128}


X(51489) = X(3)X(9)∩X(144)X(1071)

Barycentrics    a*(a^7*(b+c)+a^6*(-3*b^2+4*b*c-3*c^2)-(b^2-c^2)^4-a^2*(b^2-c^2)^2*(b^2-4*b*c+c^2)+a^5*(b^3-7*b^2*c-7*b*c^2+c^3)+a*(b-c)^4*(3*b^3+7*b^2*c+7*b*c^2+3*c^3)+a^4*(5*b^4-8*b^3*c-2*b^2*c^2-8*b*c^3+5*c^4)+a^3*(-5*b^5+11*b^4*c+10*b^3*c^2+10*b^2*c^3+11*b*c^4-5*c^5)) : :

See Ivan Pavlov, euclid 5444.

X(51489) lies on these lines: {3, 9}, {144, 1071}, {165, 1864}, {390, 3488}


X(51490) = X(3)X(77)∩X(4)X(189)

Barycentrics    a*(a^2-b^2-c^2)*(2*a^5*(b-c)^2+a^6*(b+c)-a^4*(b-c)^2*(b+c)-a^2*(b-c)^2*(b+c)^3+(b-c)^4*(b+c)^3+2*a*(b^2-c^2)^2*(b^2+c^2)-4*a^3*(b-c)^2*(b^2+b*c+c^2)) : :

See Ivan Pavlov, euclid 5444.

X(51490) lies on the cubic K401 and these lines: {3, 77}, {4, 189}, {20, 145}, {40, 222}, {57, 1433}, {65, 1359}


X(51491) = X(4)X(64)∩X(5)X(1539)

Barycentrics    4*a^10-12*a^6*(b^2-c^2)^2-16*a^2*b^2*c^2*(b^2-c^2)^2-3*a^8*(b^2+c^2)+14*a^4*(b^2-c^2)^2*(b^2+c^2)-3*(b^2-c^2)^4*(b^2+c^2) : :

See Ivan Pavlov, euclid 5444.

X(51491) lies on these lines: {4, 64}, {5, 1539}, {154, 3529}, {156, 1147}, {185, 1112}, {382, 1351}


X(51492) = X(2)X(1340)∩X(6)X(99)

Barycentrics    3*a^6 - 2*a^4*b^2 + a^2*b^4 - 2*a^4*c^2 - 3*a^2*b^2*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 + (3*a^4 - a^2*b^2 - a^2*c^2 + 2*b^2*c^2)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4] : :
X(51492) = 3 X[1340] - 2 X[47089]

X(51492) has Steiner coordinates (0, (-2*(-a^2 + b^2)*(b^2 - c^2)*(-a^2 + c^2)*(a^4 + b^4 + c^4 - (a^2 + b^2 + c^2)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4]))/(a^2*b^2 + a^2*c^2 + b^2*c^2)).

X(51492) lies on the Steiner minor axis, the cubics K248 and K553, and on these lines: {2, 1340}, {6, 99}, {148, 31863}, {187, 6189}, {194, 3413}, {384, 14630}, {385, 1379}, {538, 2029}, {1380, 13586}, {1916, 46024}, {2028, 32456}, {3552, 3558}, {6248, 47366}, {7783, 14631}, {35297, 39023}, {39022, 47286}

X(51492) = reflection of X(6190) in X(2029)
X(51492) = crossdifference of every pair of points on line {888, 5638}
X(51492) = {X(39204),X(39205)}-harmonic conjugate of X(5639)


X(51493) = X(2)X(1341)∩X(6)X(99)

Barycentrics    3*a^6 - 2*a^4*b^2 + a^2*b^4 - 2*a^4*c^2 - 3*a^2*b^2*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - (3*a^4 - a^2*b^2 - a^2*c^2 + 2*b^2*c^2)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4] : :
X(51493) = 3 X[1341] - 2 X[47088]

X(51493) has Steiner coordinates ((-2*(-a^2 + b^2)*(b^2 - c^2)*(-a^2 + c^2)*(a^4 + b^4 + c^4 + (a^2 + b^2 + c^2)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4]))/(a^2*b^2 + a^2*c^2 + b^2*c^2), 0).

X(51493) lies on the Steiner minor axis, the cubics K248 and K553, and on these lines: {2, 1341}, {6, 99}, {148, 31862}, {187, 6190}, {194, 3414}, {384, 14631}, {385, 1380}, {538, 2028}, {1379, 13586}, {1916, 46023}, {2029, 32456}, {3552, 3557}, {6248, 47365}, {7783, 14630}, {35297, 39022}, {39023, 47286}

X(51493) = reflection of X(6189) in X(2028)
X(51493) = crossdifference of every pair of points on line {888, 5639}
X(51493) = {X(39202),X(39203)}-harmonic conjugate of X(5638)


X(51494) = X(39)X(512)∩X(187)X(729)

Barycentrics    a^2*(-b^2 + a*c)*(b^2 + a*c)*(a*b - c^2)*(a*b + c^2)*(a^4*b^2 - 2*a^2*b^4 + a^4*c^2 + b^4*c^2 - 2*a^2*c^4 + b^2*c^4) : :
X(51494) = X[694] - 3 X[41517]

X(51494) lies on the cubics K248 and K353 and on these lines: {39, 512}, {187, 729}, {511, 694}, {538, 671}, {574, 45146}, {625, 18896}, {1570, 34238}, {1692, 9467}, {2021, 47642}, {2023, 35078}, {5969, 35077}, {36214, 46292}, {44422, 47734}

X(51494) = midpoint of X(1916) and X(18829)
X(51494) = reflection of X(35078) in X(2023)
X(51494) = isogonal conjugate of X(47646)
X(51494) = X(i)-isoconjugate of X(j) for these (i,j): {1, 47646}, {1580, 35146}, {1966, 5970}
X(51494) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 47646), (9467, 5970), (35077, 3978), (39092, 35146)
X(51494) = barycentric product X(i)*X(j) for these {i,j}: {694, 5969}, {805, 11182}, {882, 14607}, {1916, 5106}
X(51494) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 47646}, {694, 35146}, {881, 14606}, {5106, 385}, {5969, 3978}, {9468, 5970}, {11182, 14295}, {14607, 880}
X(51494) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {805, 9468, 187}, {14251, 47648, 39}


X(51495) = (name pending)

Barycentrics    a/(-a^9+3*a^6*b*c*(b+c)+a^2*b*(b-c)^2*c*(b+c)^3+a*b*(b-c)^2*c*(b+c)^4+b*(b-c)^2*c*(b+c)^3*(b^2+c^2)+3*a^7*(b^2+b*c+c^2)+a^3*(b^2-c^2)^2*(b^2+b*c+c^2)-a^5*(b+c)^2*(3*b^2-b*c+3*c^2)-5*a^4*b*c*(b^3+b^2*c+b*c^2+c^3)) : :

See Ivan Pavlov, euclid 5453.

X(51495) lies on this line: {28, 216}

X(51495) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}} and {{A, B, C, X(3), X(5)}}


X(51496) = X(57)X(581)∩X(278)X(942)

Barycentrics    a/(-a^6+a^5*(b+c)+a*(b-c)^2*(b+c)^3-a^2*(b+c)^4+2*b*c*(b^2-c^2)^2+2*a^4*(b^2+b*c+c^2)-2*a^3*(b^3+b^2*c+b*c^2+c^3)) : :

See Ivan Pavlov, euclid 5453.

X(51496) lies on these lines: {3, 2982}, {57, 581}, {278, 942}

X(51496) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}} and {{A, B, C, X(3), X(7)}}


X(51497) = (name pending)

Barycentrics    a/(-a^6+a^5*(b+c)-2*a^3*(b-c)^2*(b+c)+a*(b-c)^4*(b+c)-a^2*(b^2-c^2)^2+2*b*c*(b^2-c^2)^2+2*a^4*(b^2-b*c+c^2)) : :

See Ivan Pavlov, euclid 5453.

X(51497) lies on this line: {999, 2982}

X(51497) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}} and {{A, B, C, X(3), X(8)}}


X(51498) = X(3)X(1422)∩X(40)X(278)

Barycentrics    a/(-a^6+4*a^3*b*c*(b+c)-4*a*b*(b-c)^2*c*(b+c)+(b-c)^2*(b+c)^4-3*a^2*(b^2-c^2)^2+a^4*(3*b^2-2*b*c+3*c^2)) : :

See Ivan Pavlov, euclid 5453.

X(51498) lies on these lines: {3, 1422}, {28, 2270}, {40, 278}, {81, 1819}

X(51498) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}} and {{A, B, C, X(3), X(9)}}


X(51499) = (name pending)

Barycentrics    a/(a^6-5*a^3*b*c*(b+c)+a*b*(b-c)^2*c*(b+c)-b*c*(b^2-c^2)^2+a^2*(b+c)^2*(b^2-3*b*c+c^2)-2*a^4*(b^2+b*c+c^2)) : :

See Ivan Pavlov, euclid 5453.

X(51499) lies on this line: {28, 573}

X(51499) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}} and {{A, B, C, X(3), X(10)}}


X(51500) = X(5)X(81)∩X(28)X(53)

Barycentrics    1/(a^5+b^5+b^4*c+b*c^4+c^5+a^4*(b+c)-a^3*(2*b^2+b*c+2*c^2)-2*a^2*(b^3+b^2*c+b*c^2+c^3)+a*(b^4+b^3*c+b*c^3+c^4)) : :

See Ivan Pavlov, euclid 5453.

X(51500) lies on these lines: {5, 81}, {28, 53}, {274, 311}

X(51500) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}} and {{A, B, C, X(4), X(5)}}


X(51501) = X(12)X(2982)∩X(81)X(442)

Barycentrics    1/ (a^5+b^5+b^4*c+b*c^4+c^5+a^4*(b+c)-2*a^2*(b+c)^3+a*(b+c)^2*(b^2-3*b*c+c^2)-a^3*(2*b^2+3*b*c+2*c^2)) : :

See Ivan Pavlov, euclid 5453.

X(51501) lies on these lines: {12, 2982}, {28, 1865}, {81, 442}, {274, 1234}

X(51501) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}} and {{A, B, C, X(4), X(12)}}


X(51502) = X(20)X(81)∩X(57)X(387)

Barycentrics    1/(a^5+b^5+b^4*c+6*b^3*c^2+6*b^2*c^3+b*c^4+c^5+a^4*(b+c)-2*a^3*(b+c)^2+a*(b+c)^4-2*a^2*(b^3+b^2*c+b*c^2+c^3)) : :

See Ivan Pavlov, euclid 5453.

X(51502) lies on these lines: {20, 81}, {28, 1249}, {57, 387}

X(51502) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}} and {{A, B, C, X(4), X(20)}}


X(51503) = (name pending)

Barycentrics    a/(-a^9+a^6*b*c*(b+c)+a*b*(b-c)^2*c*(b+c)^4+b*(b-c)^2*c*(b+c)^3*(b^2+c^2)-a^2*b*c*(b+c)*(b^2+c^2)^2+a^7*(3*b^2+b*c+3*c^2)-a^4*b*c*(b^3+b^2*c+b*c^2+c^3)+a^3*(b+c)^2*(b^4-3*b^3*c+2*b^2*c^2-3*b*c^3+c^4)-a^5*(3*b^4+b^3*c+2*b^2*c^2+b*c^3+3*c^4)) : :

See Ivan Pavlov, euclid 5453.

X(51503) lies on this line: {52, 81}

X(51503) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}} and {{A, B, C, X(5), X(6)}}



leftri

Perspectors involving the García-Moses triangle: X(51504)-X(51507)

rightri

This preamble is contributed by Clark Kimberling, based on notes from Emmanuel José García and Peter Moses.

In the plane of a triangle ABC, let

A'B'C' = cevian triangle of X(1); Ma = midpoint of AA', and define Mb and Mc cyclically; A'' = BMc∩CMb, and define B'' and C'' cyclicaly. The triangle A''B''C'' is here named the García-Moses triangle. Barycentrics for the vertices are given by

A'' = a : a+c : a+b,      B'' = b+c : b + b+a, C'' =      c+b : c+a : c.

The appearance of (T,i) in the following list means that T is perspective to A'B'C', and the perspector is X(i):

(ABC, 10), (medial, 9), (excentral, 9), (extouch, 1), (1st circumperp, 4220), (half-altitude, 1), (1st Sharygin, 4220), (outer García, 10), (2nd extouch, 9), (tangential of excentral, 9), (García reflection, 9), (2nd Zaniah, 9), (Gemini 4, 9), (Gemini 5, 9), (Gemini 7, 2), (Gemini 8, 9), Gemini 15, 2), (Gemini 17, 2), (Gemini 25, 2), (Gemini 26, 10), (Gemini 119, 9), (extangents, 51504), (1st Conway, 51505), (anti-inner-García, 51506), (Aquilla, 51507)

The appearance of (T,i) in the following list means that T is orthologic to A'B'C', and the orthology center is X(i):

(Jenkins [centers of Jenkins circles], 10), (Ehrmann cross triangle, 30), (centers of the Apollonius circles, 511), (8th Brocard, 511), (1st Savin [c.f. X(44301), 10)

The appearance of (T,i) in the following list means that T is paralogic to A'B'C', and the parallelogy center is X(i):

(Ehrmann cross triangle, 523), (centers of the Apollonius circles, 512), (8th Brocard, 512)


X(51504) = X(1)X(3688)∩X(5)X(40)

Barycentrics    a*(b + c)*(a^5 + 2*a^4*b - 2*a^2*b^3 - a*b^4 + 2*a^4*c + a^3*b*c - 3*a^2*b^2*c - a*b^3*c + b^4*c - 3*a^2*b*c^2 - 8*a*b^2*c^2 - b^3*c^2 - 2*a^2*c^3 - a*b*c^3 - b^2*c^3 - a*c^4 + b*c^4) : :

X(51504) lies on these lines: {1, 3688}, {5, 40}, {9, 20306}, {55, 3216}, {71, 3294}, {573, 19855}, {1018, 4647}, {1764, 19854}, {3730, 4295}, {4026, 31435}, {4972, 5250}, {5251, 48883}, {5584, 33536}, {6254, 30503}, {6684, 26031}, {8274, 11529}, {10624, 13576}, {10901, 41342}, {12514, 37330}, {17524, 35338}, {21362, 32277}


X(51505) = X(7)X(21471)∩X(21)X(42)

Barycentrics    a*(a^5 + 4*a^4*b + 2*a^3*b^2 - 4*a^2*b^3 - 3*a*b^4 + 4*a^4*c + 9*a^3*b*c - 7*a^2*b^2*c - 13*a*b^3*c - b^4*c + 2*a^3*c^2 - 7*a^2*b*c^2 - 16*a*b^2*c^2 - 7*b^3*c^2 - 4*a^2*c^3 - 13*a*b*c^3 - 7*b^2*c^3 - 3*a*c^4 - b*c^4) : :

X(51505) lies on these line:s {7, 21471}, {21, 42}, {63, 3731}, {2345, 5273}, {4220, 31445}, {7411, 8580}, {28610, 49737}


X(51506) = X(9)X(48)∩X(10)X(21)

Barycentrics    a*(a^6 - a^5*b - 2*a^4*b^2 + 2*a^3*b^3 + a^2*b^4 - a*b^5 - a^5*c + a^4*b*c + a*b^4*c - b^5*c - 2*a^4*c^2 + 2*a^2*b^2*c^2 - 2*a*b^3*c^2 + 2*a^3*c^3 - 2*a*b^2*c^3 + 2*b^3*c^3 + a^2*c^4 + a*b*c^4 - a*c^5 - b*c^5) : :

X(51506) lies on these lines: {1, 1331}, {2, 4996}, {3, 119}, {8, 10087}, {9, 48}, {10, 21}, {11, 405}, {12, 37308}, {36, 908}, {40, 12775}, {55, 1145}, {56, 34123}, {63, 11570}, {72, 12739}, {149, 16865}, {153, 37106}, {191, 11571}, {210, 41541}, {392, 12740}, {404, 7951}, {442, 13273}, {474, 31235}, {528, 16418}, {529, 41345}, {631, 18861}, {936, 15015}, {943, 6596}, {952, 958}, {954, 6068}, {956, 1317}, {960, 6265}, {999, 42843}, {1001, 1387}, {1012, 24466}, {1259, 49168}, {1319, 41389}, {1320, 1621}, {1376, 6914}, {1377, 48715}, {1378, 48714}, {1478, 37300}, {1512, 2077}, {1537, 3428}, {1697, 2802}, {1718, 16586}, {1768, 31424}, {1807, 24433}, {1826, 4227}, {2478, 39692}, {2550, 13199}, {2551, 6875}, {2771, 31445}, {2800, 12514}, {2886, 7489}, {2932, 6174}, {2950, 30503}, {2975, 5692}, {3036, 9708}, {3219, 12532}, {3295, 5854}, {3303, 25416}, {3419, 12743}, {3436, 36152}, {3560, 5840}, {3585, 35979}, {3651, 10728}, {3683, 17638}, {3746, 13278}, {3811, 14740}, {3814, 6905}, {3820, 7508}, {3878, 10698}, {4127, 8666}, {4187, 37564}, {4189, 17100}, {4293, 37313}, {4299, 37301}, {4316, 36003}, {4640, 12515}, {5044, 22935}, {5047, 31272}, {5080, 27086}, {5119, 39776}, {5172, 17757}, {5234, 5531}, {5250, 12758}, {5253, 37701}, {5258, 7972}, {5259, 13279}, {5267, 5660}, {5273, 9803}, {5289, 19907}, {5302, 12738}, {5428, 11698}, {5432, 19525}, {5450, 5720}, {5533, 10527}, {5541, 9623}, {5587, 6906}, {5693, 18232}, {5705, 37718}, {5727, 8715}, {5745, 10265}, {5850, 7677}, {6154, 19526}, {6667, 11108}, {6675, 13272}, {6702, 37306}, {6713, 6883}, {6734, 10073}, {6735, 32760}, {6745, 17010}, {6874, 38163}, {6907, 12761}, {6909, 28164}, {6912, 10724}, {6920, 25639}, {8069, 45701}, {8071, 10200}, {8256, 11849}, {9678, 48700}, {9840, 34868}, {10057, 24987}, {10198, 37248}, {10483, 35976}, {10707, 16858}, {10711, 21161}, {10902, 12751}, {10956, 37579}, {11012, 21616}, {11113, 12764}, {11249, 11729}, {11508, 49169}, {11517, 22760}, {11700, 16578}, {12119, 17647}, {12513, 12735}, {12572, 21635}, {12611, 24703}, {12619, 26066}, {12749, 14798}, {12776, 15829}, {13243, 15096}, {13271, 15171}, {13274, 24390}, {13587, 31160}, {13732, 15654}, {15528, 18443}, {15863, 38665}, {16857, 45310}, {16872, 49128}, {17571, 35023}, {18397, 22836}, {18406, 21669}, {21077, 37583}, {25005, 45392}, {25531, 37017}, {25681, 26286}, {26031, 37043}, {26285, 37828}, {28376, 49553}, {28453, 49732}, {31458, 37726}, {32612, 37713}, {33337, 38669}, {34583, 36058}, {36740, 51007}, {37560, 46684}, {38109, 45976}, {41229, 46685}

X(51506) = crossdifference of every pair of points on line {1769, 21828}
X(51506) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4996, 10090}, {9, 6326, 18254}, {21, 100, 10058}, {55, 1145, 25438}, {80, 35204, 100}, {214, 993, 104}, {214, 18254, 6326}, {1001, 22560, 1387}, {1329, 3035, 38752}, {3219, 39778, 12532}, {5251, 35204, 80}, {8071, 25875, 10200}, {9708, 12331, 3036}


X(51507) = X(1)X(966)∩X(10)X(329)

Barycentrics    a^4 + a^3*b - 7*a^2*b^2 - 9*a*b^3 - 2*b^4 + a^3*c - 14*a^2*b*c - 23*a*b^2*c - 8*b^3*c - 7*a^2*c^2 - 23*a*b*c^2 - 12*b^2*c^2 - 9*a*c^3 - 8*b*c^3 - 2*c^4 : :

X(51507) lies on these lines: {1, 966}, {10, 329}, {72, 8274}, {1203, 37658}, {1211, 1698}, {1453, 17330}, {1745, 8580}, {3175, 3679}, {3624, 4038}, {3707, 37037}, {5739, 19859}, {9614, 31330}, {19872, 30811}, {31142, 39564}, {37554, 49724}

X(51507) = reflection of X(41921) in X(10)


X(51508) = X(25)X(251)∩X(64)X(1176)

Barycentrics    a^2*(a^2 + b^2)*(a^2 + c^2)*(3*a^4 - 2*a^2*b^2 - b^4 - 2*a^2*c^2 + 2*b^2*c^2 - c^4) : :

X(51508) lies on these lines: {25, 251}, {64, 1176}, {83, 3091}, {827, 1297}, {1042, 46289}, {9292, 33632}, {10002, 10548}, {10313, 20968}, {14885, 21637}, {16277, 18841}, {18105, 46615}, {19153, 26216}, {20993, 22240}, {23047, 32581}

X(51508) = X(1176)-Ceva conjugate of X(251)
X(51508) = X(i)-isoconjugate of X(j) for these (i,j): {38, 253}, {64, 1930}, {141, 2184}, {427, 19611}, {1073, 20883}, {1235, 19614}, {1964, 41530}, {2155, 8024}, {3665, 44692}, {3703, 8809}, {8061, 44326}, {17442, 34403}
X(51508) = X(i)-Dao conjugate of X(j) for these (i, j): (4, 1235), (122, 23285), (41884, 41530), (45245, 8024), (45248, 3933)
X(51508) = barycentric product X(i)*X(j) for these {i,j}: {20, 251}, {82, 610}, {83, 154}, {204, 34055}, {827, 6587}, {1176, 1249}, {1799, 3172}, {4628, 21172}, {6525, 28724}, {10547, 15466}, {14615, 46288}, {15905, 32085}, {17500, 33629}, {17898, 34072}, {18105, 36841}, {18750, 46289}, {26224, 40174}, {42396, 42658}
X(51508) = barycentric quotient X(i)/X(j) for these {i,j}: {20, 8024}, {83, 41530}, {154, 141}, {204, 20883}, {251, 253}, {610, 1930}, {827, 44326}, {1176, 34403}, {1249, 1235}, {3172, 427}, {4630, 46639}, {6587, 23285}, {10547, 1073}, {15905, 3933}, {42658, 2525}, {46288, 64}, {46289, 2184}


X(51509) = X(6)X(24)∩X(20)X(112)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^10 - 2*a^8*b^2 + 2*a^4*b^6 - a^2*b^8 - 2*a^8*c^2 + 2*b^8*c^2 + 2*a^2*b^4*c^4 - 2*b^6*c^4 + 2*a^4*c^6 - 2*b^4*c^6 - a^2*c^8 + 2*b^2*c^8) : :
X(51509) = 3 X[5085] - 2 X[44885]a

X(51509) lies on these lines: {3, 3162}, {4, 251}, {6, 64}, {20, 112}, {24, 14580}, {32, 3575}, {235, 36417}, {1092, 35325}, {1498, 22135}, {1503, 19595}, {1560, 3548}, {2353, 27373}, {2937, 8428}, {5085, 44885}, {5889, 41363}, {6753, 34116}, {7503, 8743}, {8778, 37198}, {9818, 40144}, {11325, 44077}, {12225, 36414}, {37126, 39575}, {37196, 41358}

X(51509) = reflection of X(3) in X(44884)
X(51509) = X(1176)-Ceva conjugate of X(25)
X(51509) = X(27376)-Dao conjugate of X(1235)
X(51509) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {112, 41361, 10316}, {1033, 3172, 2138}


X(51510) = X(2)X(5970)∩X(6)X(99)

Barycentrics    (a^2 - b*c)*(a^2 + b*c)*(2*a^2*b^2 - a^2*c^2 - b^2*c^2)*(a^2*b^2 - 2*a^2*c^2 + b^2*c^2) : :
X(51510) lies on the cubics K281 and K688, and on these lines: {2, 5970}, {6, 99}, {32, 4590}, {83, 18105}, {182, 32717}, {385, 880}, {804, 47646}, {886, 3734}, {1691, 17941}, {3407, 34087}, {5967, 34238}, {10314, 41932}, {17103, 20981}, {18047, 20964}, {39292, 47047}

X(51510) = X(i)-isoconjugate of X(j) for these (i,j): {538, 1967}, {694, 2234}, {888, 37134}, {1581, 3231}, {1927, 30736}, {1934, 33875}
X(51510) = X(i)-Dao conjugate of X(j) for these (i, j): (8290, 538), (8623, 6786), (19576, 3231), (35078, 9148), (39043, 2234)
X(51510) = trilinear pole of line {385, 5027}
X(51510) = barycentric product X(i)*X(j) for these {i,j}: {385, 3228}, {729, 3978}, {804, 9150}, {886, 5027}, {1691, 34087}, {1966, 37132}, {14295, 32717}
X(51510) = barycentric quotient X(i)/X(j) for these {i,j}: {385, 538}, {729, 694}, {804, 9148}, {1580, 2234}, {1691, 3231}, {3228, 1916}, {3978, 30736}, {5026, 45672}, {5027, 888}, {9150, 18829}, {14602, 33875}, {17941, 23342}, {32717, 805}, {34087, 18896}, {36133, 37134}, {36213, 6786}, {37132, 1581}, {40820, 36822}, {41309, 18872}, {44089, 46522}
X(51510) = {X(2),X(41309)}-harmonic conjugate of X(9150)


X(51511) = X(2)X(46278)∩X(39)X(512)

Barycentrics    a^2*(-b^2 + a*c)*(b^2 + a*c)*(a*b - c^2)*(a*b + c^2)*(a^6*b^2 + a^6*c^2 - b^6*c^2 - b^2*c^6) : :

X(51511) lies on these lines: {2, 46278}, {6, 1916}, {39, 512}, {694, 9465}, {805, 3094}, {20965, 47734}

X(51511) = X(737)-isoconjugate of X(1966)
X(51511) = X(9467)-Dao conjugate of X(737)
X(51511) = barycentric product X(i)*X(j) for these {i,j}: {694, 736}, {9468, 35542}
X(51511) = barycentric quotient X(i)/X(j) for these {i,j}: {736, 3978}, {9468, 737}, {35542, 14603}


X(51512) = X(8)X(5173)∩X(9)X(3485)

Barycentrics    (a + b - c)*(a - b + c)*(a^4 + 2*a^3*b - 6*a^2*b^2 + 2*a*b^3 + b^4 - 4*a^2*b*c - 4*a*b^2*c - 2*a^2*c^2 - 6*a*b*c^2 - 2*b^2*c^2 + c^4)*(a^4 - 2*a^2*b^2 + b^4 + 2*a^3*c - 4*a^2*b*c - 6*a*b^2*c - 6*a^2*c^2 - 4*a*b*c^2 - 2*b^2*c^2 + 2*a*c^3 + c^4) : :

X(51512) lies on the Feuerbach circumhyperbola and these lines: {8, 5173}, {9, 3485}, {21, 41549}, {84, 3671}, {388, 6598}, {942, 3427}, {943, 3428}, {3486, 5665}, {3889, 43740}, {4866, 6856}, {6988, 7160}, {10390, 12573}, {12047, 38271}, {12608, 38308}, {12867, 19843}, {17097, 50695}


X(51513) = X(378)X(1116)∩X(460)X(512)

Barycentrics    (b^2-c^2) (a^6 (b^2+c^2)-a^4 (b^2-c^2)^2-a^2 (b^2-c ^2)^2(b^2+c^2)+(b^2-c^2)^4) : :

See Angel Montesdeoca, euclid 5464.

X(51513) lies on these lines: {4,18335}, {24,39481}, {25,15475}, {51,35361}, {186,39606}, {378,1116}, {427,39512}, {460,512}, {523,37942}, {690,16229}, {826,14618}, {1499,42399}, {1637,39201}, {3566,39533}, {3850,44926}, {6368,18314}, {7577,39494}, {8754,43967}, {12077,15451}, {17994,39799}.

X(51513) = midpoint of X(i) and X(j) for these {i,j}: {12077, 15451}, {14618, 16230}


X(51514) = X(3)X(7)∩X(144)X(1656)

Barycentrics    -5*a^6+2*a^5*(b+c)+4*(b-c)^4*(b+c)^2+6*a^4*(2*b^2-b*c+2*c^2)-a^2*(b- c)^2*(11*b^2+8*b*c+11*c^2)-2*a^3*(b^3+b^2*c+b*c^2+c^3) : :

See Ivan Pavlov, euclid 5465.

X(51514) lies on these lines: {3, 7}, {144, 1656}


X(51515) = X(3)X(8)∩X(5)X(3621)

Barycentrics    2*a^3*(-a^2+b^2+c^2)+(-a+b+c)*(3*a^4+4*(b^2-c^2)^2-7*a^2*(b^2+c^2)) : :

See Ivan Pavlov, euclid 5465.

X(51515) lies on these lines: {3, 8}, {5, 3621}, {140, 4678}, {145, 1656}, {355, 3625}


X(51516) = X(3)X(9)∩X(5)X(144)

Barycentrics    a*(a*(-a^2+b^2+c^2)*(-(b-c)^2+a*(b+c))+(-a+b+c)*(3*a^4+4*(b^2-c^2)^2- 7*a^2*(b^2+c^2))) : :

See Ivan Pavlov, euclid 5465.

X(51516) lies on these lines: {3, 9}, {5, 144}, {7, 1656}


X(51517) = X(3)X(11)∩X(5)X(149)

Barycentrics    a^2*(-a^2+b^2+c^2)*((a-b)^2*(a+b-c)+(a-c)^2*(a-b+c))+(b-c)^2*(- a+b+c)*(3*a^4+4*(b^2-c^2)^2-7*a^2*(b^2+c^2)) : :

See Ivan Pavlov, euclid 5465.

X(51517) lies on these lines: {3, 11}, {4, 1484}, {5, 149}, {80, 1482}, {100, 1656}, {104, 382}, {119, 3851}, {153, 546}, {381, 3241}


X(51518) = X(3)X(12)∩X(381)X(3241)

Barycentrics    a^8-a^5*b*c*(b+c)-2*(b^2-c^2)^4-a^6*(b^2-3*b*c+c^2)+a^2*(b^2- c^2)^2*(5*b^2+4*b*c+5*c^2)+a^3*b*c*(b^3+b^2*c+b*c^2+c^3)- a^4*(3*b^4+7*b^3*c+2*b^2*c^2+7*b*c^3+3*c^4) : :

See Ivan Pavlov, euclid 5465.

X(51518) lies on these lines: {3, 12}, {381, 3241}


X(51519) = EULER LINE INTERCEPT OF X(154)X(568)

Barycentrics    a^2*(3*a^8 - 6*a^6*b^2 + 6*a^2*b^6 - 3*b^8 - 6*a^6*c^2 + 2*a^4*b^2*c^2 - 4*a^2*b^4*c^2 + 8*b^6*c^2 - 4*a^2*b^2*c^4 - 10*b^4*c^4 + 6*a^2*c^6 + 8*b^2*c^6 - 3*c^8) : :
Barycentrics    Tan[A]*(Sin[2*B] + Sin[2*C] - 3*Cos[2*A]*(Sin[2*A] + Sin[2*B] + Sin[2*C])) - Sin[2*A]*(Tan[B] + Tan[C]) : : (Peter Moses, August 15, 2022)
X(51519) = 8*X[2] + (J^2 - 7)*X[3]
X(51519) = X[3] - 4 X[24], X[3] + 2 X[7517], 7 X[3] - 4 X[11413], 3 X[3] - 4 X[15078], X[3] + 8 X[37440], 5 X[3] - 8 X[37814], 13 X[3] - 16 X[43615], 2 X[5] + X[31304], 2 X[24] + X[7517], 7 X[24] - X[11413], 3 X[24] - X[15078], X[24] + 2 X[37440], 5 X[24] - 2 X[37814], 13 X[24] - 4 X[43615], 8 X[235] - 5 X[3843], X[382] + 2 X[35471], 5 X[1656] - 2 X[37444], 5 X[1656] - 8 X[44232], 7 X[3851] - 4 X[18404], 7 X[3851] - 16 X[21841], 11 X[5070] - 8 X[11585], X[5073] - 4 X[31725], 7 X[7517] + 2 X[11413], 3 X[7517] + 2 X[15078], X[7517] - 4 X[37440], 5 X[7517] + 4 X[37814], 13 X[7517] + 8 X[43615], 3 X[11413] - 7 X[15078], X[11413] + 14 X[37440], 5 X[11413] - 14 X[37814], 13 X[11413] - 28 X[43615], X[15078] + 6 X[37440], 5 X[15078] - 6 X[37814], 13 X[15078] - 12 X[43615], 5 X[15694] - 8 X[44211], 5 X[15695] - 8 X[44268], 7 X[15703] - 4 X[31180], 16 X[16238] - 13 X[46219], X[18404] - 4 X[21841], 5 X[19709] - 8 X[44270], 5 X[37440] + X[37814], 13 X[37440] + 2 X[43615], X[37444] - 4 X[44232], 13 X[37814] - 10 X[43615]

See Ivan Pavlov, euclid 5465.

X(51519) lies on these lines: {2, 3}, {49, 44078}, {143, 9707}, {154, 568}, {542, 20987}, {567, 17810}, {1147, 21969}, {1154, 35264}, {1351, 9703}, {1495, 14831}, {1609, 1989}, {2931, 5655}, {3167, 45780}, {3581, 18451}, {3654, 49553}, {3679, 9625}, {5050, 9971}, {5093, 19153}, {5309, 9699}, {5892, 35268}, {5898, 19588}, {5946, 6800}, {6243, 37672}, {6759, 37490}, {7716, 19129}, {7739, 9608}, {8185, 28204}, {8193, 38066}, {8584, 15582}, {8724, 39828}, {8780, 50461}, {9306, 37494}, {9590, 31162}, {9626, 25055}, {9682, 41945}, {9704, 37493}, {9880, 39854}, {10117, 20126}, {10282, 21849}, {10540, 37489}, {11402, 13321}, {11464, 39522}, {11632, 39857}, {12161, 26882}, {12824, 32609}, {13364, 34513}, {13754, 44082}, {14805, 31860}, {15080, 41448}, {15087, 26864}, {15577, 20423}, {15578, 51022}, {15580, 51136}, {16266, 43572}, {17821, 37472}, {17834, 18350}, {18474, 32223}, {18475, 34417}, {20771, 44456}, {22115, 33586}, {22655, 32447}, {23039, 35259}, {34225, 36609}, {37488, 50955}, {38794, 48910}

X(51519) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {{2, 13490, 381}, {2, 37939, 26}, {3, 5899, 44457}, {3, 20850, 5899}, {3, 37956, 9909}, {3, 44454, 35452}, {4, 37940, 18324}, {23, 6644, 12083}, {23, 47485, 6644}, {24, 7517, 3}, {24, 35471, 3515}, {24, 37440, 7517}, {25, 2070, 3}, {25, 3515, 403}, {25, 9715, 11818}, {25, 9818, 7545}, {25, 14070, 381}, {26, 3518, 7506}, {26, 7506, 3}, {26, 7516, 38435}, {26, 7568, 9715}, {26, 44213, 14070}, {381, 382, 18568}, {381, 2070, 14070}, {381, 14070, 3}, {382, 3515, 3}, {403, 18568, 381}, {1656, 9715, 3}, {2937, 6642, 3}, {3517, 9714, 3}, {3518, 37939, 2}, {3543, 47334, 381}, {3627, 32534, 47524}, {3830, 37922, 3}, {6644, 12083, 3}, {7387, 45735, 3}, {7426, 7576, 10201}, {7529, 16195, 3}, {7556, 13595, 7514}, {7576, 10201, 381}, {9714, 9909, 37956}, {10254, 18494, 3843}, {11414, 43809, 3}, {12106, 37936, 22}, {13490, 44213, 2}, {15682, 37941, 12084}, {15682, 44879, 37941}, {15694, 34006, 3}, {18378, 37922, 3830}, {32534, 47524, 3}, {37444, 44232, 1656}


X(51520) = (name pending)

Barycentrics    -3*(b^2-c^2)^4+4*a^6*(b^2+c^2)-a^4*(9*b^4+4*b^2*c^2+9*c^4)+2*a^2*(4*b^6-5*b^4*c^2-5*b^2*c^4+4*c^6) : :

See Ivan Pavlov, euclid 5467.

X(51520) lies on this line: {5, 141}


X(51521) = (name pending)

Barycentrics    a^2*(a^2+b^2+c^2)*(a^14-3*a^12*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)^3+a^10*(b^4+7*b^2*c^2+c^4)+a^8*(5*b^6-4*b^4*c^2-4*b^2*c^4+5*c^6)+a^2*(b^2-c^2)^2*(3*b^8+4*b^6*c^2+3*b^4*c^4+4*b^2*c^6+3*c^8)-a^6*(5*b^8+b^6*c^2-4*b^4*c^4+b^2*c^6+5*c^8)-a^4*(b^10-2*b^8*c^2+2*b^6*c^4+2*b^4*c^6-2*b^2*c^8+c^10)) : :

See Ivan Pavlov, euclid 5467.

X(51521) lies on this line: {3, 74}


X(51522) = X(3)X(74)∩X(125)X(546)

Barycentrics    a^2*(2*a^8-a^6*(b^2+c^2)+a^4*(-9*b^4+16*b^2*c^2-9*c^4)-(b^2-c^2)^2*(5*b^4+13*b^2*c^2+5*c^4)+a^2*(13*b^6-12*b^4*c^2-12*b^2*c^4+13*c^6)) : :

See Ivan Pavlov, euclid 5467.

X(51522) lies on the circle ((X3), 3R/2) and these lines: {3, 74}, {113, 3628}, {125, 546}, {146, 3090}


X(51523) = X(3)X(76)∩X(5)X(575)

Barycentrics    2*a^8-3*b^2*c^2*(b^2-c^2)^2-a^6*(b^2+c^2)+a^4*(b^4-4*b^2*c^2+c^4)+a^2*(-2*b^6+3*b^4*c^2+3*b^2*c^4-2*c^6) : :

See Ivan Pavlov, euclid 5467.

X(51523) lies on the circle ((X3), 3R/2) and these lines: {3, 76}, {5, 575}, {114, 3628}, {115, 546}, {147, 3090}, {148, 3529}, {382, 671}


X(51524) = X(3)X(76)∩X(114)X(546)

Barycentrics    2*a^8+3*b^2*c^2*(b^2-c^2)^2-7*a^6*(b^2+c^2)+a^4*(7*b^4+8*b^2*c^2+7*c^4)-a^2*(2*b^6+3*b^4*c^2+3*b^2*c^4+2*c^6) : :

See Ivan Pavlov, euclid 5467.

X(51524) lies on the circle ((X3), 3R/2) and these lines: {3, 76}, {26, 2936}, {114, 546}, {115, 3628}, {147, 3529}, {148, 3090}


X(51525) = X(3)X(8)∩X(119)X(546)

Barycentrics    -(a*(2*a^6-2*a^5*(b+c)+3*b*c*(b^2-c^2)^2-4*a^4*(b^2+c^2)-2*a*(b-c)^2*(b^3+4*b^2*c+4*b*c^2+c^3)+a^3*(4*b^3+6*b^2*c+6*b*c^2+4*c^3)+a^2*(2*b^4-3*b^3*c-8*b^2*c^2-3*b*c^3+2*c^4))) : :

See Ivan Pavlov, euclid 5467.

X(51525) lies on the circle ((X3), 3R/2) and these lines: {3, 8}, {11, 3628}, {119, 546}, {149, 3090}, {153, 3529}


X(51526) = X(3)X(101)∩X(116)X(3628)

Barycentrics    a^2*(2*a^6-2*a^5*(b+c)+a^4*(-5*b^2+2*b*c-5*c^2)-2*a*(b-c)^2*(2*b^3+5*b^2*c+5*b*c^2+2*c^3)+a^3*(6*b^3+4*b^2*c+4*b*c^2+6*c^3)+2*a^2*(b^4-2*b^3*c-3*b^2*c^2-2*b*c^3+c^4)+(b-c)^2*(b^4+4*b^3*c+8*b^2*c^2+4*b*c^3+c^4)) : :

See Ivan Pavlov, euclid 5467.

X(51526) lies on the circle ((X3), 3R/2) and these lines: {3, 101}, {116, 3628}, {150, 3090}, {152, 3529}


X(51527) = X(3)X(102)∩X(124)X(546)

Barycentrics    a^2*(-2*a^8+2*a^7*(b+c)+a^6*(b^2-6*b*c+c^2)+a^5*(-6*b^3+8*b^2*c+8*b*c^2-6*c^3)-2*a*(b-c)^4*(b^3-2*b^2*c-2*b*c^2+c^3)+2*a^3*(b-c)^2*(3*b^3-5*b^2*c-5*b*c^2+3*c^3)+(b^2-c^2)^2*(5*b^4-8*b^3*c+16*b^2*c^2-8*b*c^3+5*c^4)+a^4*(9*b^4+4*b^3*c-28*b^2*c^2+4*b*c^3+9*c^4)-a^2*(b-c)^2*(13*b^4+16*b^3*c-2*b^2*c^2+16*b*c^3+13*c^4)) : :

See Ivan Pavlov, euclid 5467.

X(51527) lies on the circle ((X3), 3R/2) and these lines: {3, 102}, {117, 3628}, {124, 546}, {151, 3090}


X(51528) = X(3)X(101)∩X(116)X(546)

Barycentrics    a^2*(2*a^6-2*a^5*(b+c)+a^4*(b+c)^2+2*a^2*(b^2-b*c+c^2)^2+a^3*(-6*b^3+4*b^2*c+4*b*c^2-6*c^3)+2*a*(b-c)^2*(4*b^3+7*b^2*c+7*b*c^2+4*c^3)-(b-c)^2*(5*b^4+8*b^3*c+16*b^2*c^2+8*b*c^3+5*c^4)) : :

See Ivan Pavlov, euclid 5467.

X(51528) lies on the circle ((X3), 3R/2) and these lines: {3, 101}, {116, 546}, {118, 3628}, {150, 3529}, {152, 3090}


X(51529) = X(3)X(8)∩X(11)X(546)

Barycentrics    a*(2*a^6-2*a^5*(b+c)-3*b*c*(b^2-c^2)^2-4*a^4*(b^2-3*b*c+c^2)-2*a*(b-c)^2*(b^3-2*b^2*c-2*b*c^2+c^3)+a^3*(4*b^3-6*b^2*c-6*b*c^2+4*c^3)+a^2*(2*b^4-9*b^3*c+16*b^2*c^2-9*b*c^3+2*c^4)) : :

See Ivan Pavlov, euclid 5467.

X(51529) lies on the circle ((X3), 3R/2) and these lines: {3, 8}, {11, 546}, {119, 3628}, {149, 3529}, {153, 3090}


X(51530) = X(3)X(105)∩X(120)X(3628)

Barycentrics    -(a*(2*a^7-4*a^6*(b+c)-6*a^4*b*c*(b+c)-3*b*(b-c)^4*c*(b+c)+2*a^5*(b^2+4*b*c+c^2)+a^3*(-2*b^4+9*b^3*c-4*b^2*c^2+9*b*c^3-2*c^4)-a*(b-c)^2*(2*b^4-3*b^3*c-2*b^2*c^2-3*b*c^3+2*c^4)+a^2*(4*b^5-11*b^4*c+5*b^3*c^2+5*b^2*c^3-11*b*c^4+4*c^5))) : :

See Ivan Pavlov, euclid 5467.

X(515300) lies on the circle ((X3), 3R/2) and these lines: {3, 105}, {120, 3628}


X(51531) = X(3)X(106)∩X(121)X(3628)

Barycentrics    -(a^2*(2*a^5-5*b^5+19*b^4*c-16*b^3*c^2-16*b^2*c^3+19*b*c^4-5*c^5-4*a^4*(b+c)-3*a^3*(b^2-6*b*c+c^2)+3*a^2*(3*b^3-5*b^2*c-5*b*c^2+3*c^3)+a*(b^4-18*b^3*c+44*b^2*c^2-18*b*c^3+c^4))) : :

See Ivan Pavlov, euclid 5467.

X(51531) lies on the circle ((X3), 3R/2) and these lines: {3, 106}, {121, 3628}


X(51532) = X(3)X(107)∩X(133)X(546)

Barycentrics    -2*a^16-19*a^8*b^2*c^2*(b^2-c^2)^2-3*b^2*c^2*(b^2-c^2)^6+7*a^14*(b^2+c^2)+5*a^10*b^2*c^2*(b^2+c^2)-a^12*(7*b^4+8*b^2*c^2+7*c^4)+a^2*(b^2-c^2)^4*(2*b^6-b^4*c^2-b^2*c^4+2*c^6)+a^6*(b^2-c^2)^2*(7*b^6+19*b^4*c^2+19*b^2*c^4+7*c^6)-a^4*(b^2-c^2)^2*(7*b^8-8*b^6*c^2+34*b^4*c^4-8*b^2*c^6+7*c^8) : :

See Ivan Pavlov, euclid 5467.

X(51532) lies on the circle ((X3), 3R/2) and these lines: {3, 107}, {122, 3628}, {133, 546}


X(51533) = X(3)X(108)∩X(123)X(3628)

Barycentrics    a*(2*a^12-2*a^11*(b+c)+3*b*(b-c)^6*c*(b+c)^4+a^10*(-6*b^2+4*b*c-6*c^2)-2*a^7*(b-c)^2*(2*b^3+5*b^2*c+5*b*c^2+2*c^3)+a^9*(6*b^3+4*b^2*c+4*b*c^2+6*c^3)-2*a*(b-c)^4*(b+c)^3*(b^4-4*b^2*c^2+c^4)+2*a^6*(b-c)^2*(2*b^4+7*b^3*c+11*b^2*c^2+7*b*c^3+2*c^4)+a^8*(4*b^4-11*b^3*c+4*b^2*c^2-11*b*c^3+4*c^4)-2*a^5*(b-c)^2*(2*b^5+3*b^4*c+9*b^3*c^2+9*b^2*c^3+3*b*c^4+2*c^5)+2*a^2*(b^2-c^2)^2*(b^6-5*b^5*c+2*b^4*c^2+8*b^3*c^3+2*b^2*c^4-5*b*c^5+c^6)+2*a^3*(b-c)^2*(3*b^7+4*b^6*c-2*b^5*c^2-13*b^4*c^3-13*b^3*c^4-2*b^2*c^5+4*b*c^6+3*c^7)+a^4*(-6*b^8+8*b^7*c+10*b^6*c^2-24*b^4*c^4+10*b^2*c^6+8*b*c^7-6*c^8)) : :

See Ivan Pavlov, euclid 5467.

X(51533) lies on the circle ((X3), 3R/2) and these lines: {3, 108}, {123, 3628}


X(51534) = X(3)X(102)∩X(117)X(546)

Barycentrics    a^2*(2*a^8-2*a^7*(b+c)+a^6*(-7*b^2+6*b*c-7*c^2)+2*a*(b-c)^4*(b^3+4*b^2*c+4*b*c^2+c^3)-2*a^3*(b-c)^2*(3*b^3+7*b^2*c+7*b*c^2+3*c^3)+a^5*(6*b^3+4*b^2*c+4*b*c^2+6*c^3)+(b^2-c^2)^2*(b^4-4*b^3*c+8*b^2*c^2-4*b*c^3+c^4)-a^2*(b-c)^2*(5*b^4-4*b^3*c-10*b^2*c^2-4*b*c^3+5*c^4)+a^4*(9*b^4-16*b^3*c+4*b^2*c^2-16*b*c^3+9*c^4)) : :

See Ivan Pavlov, euclid 5467.

X(51534) lies on the circle ((X3), 3R/2) and these lines: {3, 102}, {117, 546}, {124, 3628}, {151, 3529}


X(51535) = X(3)X(111)∩X(126)X(3628)

Barycentrics    a^2*(2*a^8-5*b^8+25*b^6*c^2-48*b^4*c^4+25*b^2*c^6-5*c^8-5*a^6*(b^2+c^2)+3*a^4*(b^4+c^4)+5*a^2*(b^6+c^6)) : :

See Ivan Pavlov, euclid 5467.

X(51535) lies on the circle ((X3), 3R/2) and these lines: {3, 111}, {126, 3628}


X(51536) = X(3)X(112)∩X(132)X(546)

Barycentrics    a^2*(2*a^12-7*a^10*(b^2+c^2)+a^8*(5*b^4+12*b^2*c^2+5*c^4)-a^4*(b^2-c^2)^2*(8*b^4+5*b^2*c^2+8*c^4)+a^2*(b^2-c^2)^2*(b^6+c^6)+a^6*(6*b^6-11*b^4*c^2-11*b^2*c^4+6*c^6)+(b^2-c^2)^2*(b^8-b^6*c^2+8*b^4*c^4-b^2*c^6+c^8)) : :

See Ivan Pavlov, euclid 5467.

X(51536) lies on the circle ((X3), 3R/2) and these lines: {3, 112}, {132, 546}


X(51537) = X(2)X(14927)∩X(4)X(69)

Barycentrics    (-a^2 + b^2 - c^2)*(-a^2 - b^2 + c^2)*(a^2 + b^2 + c^2) - (a^2 - b^2 - c^2)*S^2 : :
X(51537) = 6 X[2] - X[14927], 3 X[2] + 2 X[36990], 9 X[2] - 4 X[44882], X[14927] + 4 X[36990], 3 X[14927] - 8 X[44882], 3 X[36990] + 2 X[44882], 4 X[4] + X[69], 3 X[4] + 2 X[1352], X[4] + 4 X[3818], 7 X[4] + 8 X[18553], 7 X[4] - 2 X[31670], 11 X[4] + 4 X[34507], 17 X[4] + 8 X[43150], 3 X[4] - 8 X[48889], 13 X[4] - 8 X[48895], 9 X[4] - 4 X[48901], 6 X[4] - X[51212], 3 X[69] - 8 X[1352], X[69] - 16 X[3818], 7 X[69] - 32 X[18553], 7 X[69] + 8 X[31670], 11 X[69] - 16 X[34507], 17 X[69] - 32 X[43150], 3 X[69] + 32 X[48889], 13 X[69] + 32 X[48895], 9 X[69] + 16 X[48901], 3 X[69] + 2 X[51212], X[1352] - 6 X[3818], 7 X[1352] - 12 X[18553], 7 X[1352] + 3 X[31670], 11 X[1352] - 6 X[34507], 17 X[1352] - 12 X[43150], and many others

X(51537) lies on these lines: {2, 14927}, {4, 69}, {5, 12017}, {6, 1131}, {20, 3619}, {30, 40330}, {66, 6225}, {141, 3146}, {146, 32274}, {182, 3545}, {193, 50689}, {343, 7408}, {376, 24206}, {381, 6776}, {382, 10519}, {394, 7409}, {487, 36711}, {488, 36712}, {516, 17286}, {542, 41099}, {546, 1353}, {549, 50957}, {599, 50687}, {631, 29012}, {1176, 26883}, {1350, 3543}, {1351, 3845}, {1386, 9779}, {1503, 3091}, {1539, 32247}, {1699, 51192}, {1853, 7398}, {1992, 3839}, {2883, 20079}, {3088, 28408}, {3090, 46264}, {3098, 33703}, {3313, 15056}, {3416, 9812}, {3424, 7792}, {3448, 7394}, {3522, 3763}, {3523, 48905}, {3524, 25561}, {3526, 33750}, {3529, 48884}, {3533, 17508}, {3544, 38317}, {3564, 3843}, {3589, 5068}, {3620, 17578}, {3830, 48876}, {3844, 9778}, {3850, 5050}, {3851, 48906}, {3853, 33878}, {3854, 51171}, {3855, 14561}, {3860, 14848}, {4048, 37690}, {4232, 45303}, {5032, 50959}, {5056, 5085}, {5059, 31884}, {5064, 14826}, {5067, 5092}, {5071, 11645}, {5072, 38110}, {5097, 50974}, {5133, 11206}, {5225, 12588}, {5229, 12589}, {5972, 8889}, {6393, 32826}, {6515, 37349}, {6564, 39876}, {6565, 39875}, {6811, 32813}, {6813, 32812}, {6995, 32269}, {6997, 11451}, {7000, 32805}, {7374, 32806}, {7378, 37669}, {7392, 11550}, {7403, 18925}, {7527, 15577}, {7528, 18909}, {7544, 7729}, {7687, 25320}, {7714, 21243}, {9822, 11381}, {9969, 12111}, {10019, 19118}, {10151, 32220}, {10299, 48892}, {11001, 14810}, {11008, 15069}, {11178, 15682}, {11179, 41106}, {11439, 34146}, {11541, 48880}, {11898, 14269}, {12007, 38072}, {12571, 16475}, {13860, 34803}, {14118, 20987}, {14232, 48467}, {14237, 48466}, {14484, 41624}, {14893, 50955}, {14912, 19130}, {14982, 32255}, {15022, 47355}, {15059, 36201}, {15073, 46852}, {15305, 19161}, {15435, 37201}, {15683, 21358}, {15687, 50967}, {15692, 51216}, {15694, 50975}, {15698, 33751}, {15717, 34573}, {17040, 18296}, {17538, 29323}, {18141, 37456}, {18386, 39871}, {18480, 39898}, {18483, 39885}, {18537, 41257}, {19119, 43831}, {19924, 51029}, {21167, 50693}, {22682, 32451}, {32822, 51371}, {33006, 39141}, {33522, 34603}, {34648, 50999}, {35260, 36989}, {35403, 50954}, {36757, 42921}, {36758, 42920}, {37511, 46849}, {38136, 39899}, {38146, 39878}, {39902, 45631}, {39903, 45630}, {40107, 43621}, {44442, 44833}, {44802, 44883}, {47352, 50960}, {48310, 51025}, {48881, 49135}, {48910, 50688}, {48942, 50977}, {50982, 51213}

X(51537) = midpoint of X(i) and X(j) for these {i,j}: {3620, 17578}, {11482, 18440}, {15692, 51216}, {35403, 50954}
X(51537) = reflection of X(i) in X(j) for these {i,j}: {3522, 3763}, {3618, 3091}, {5071, 50956}, {12017, 5}, {22234, 19130}, {50975, 15694}
X(51537) = anticomplement of the isogonal conjugate of X(43951)
X(51537) = X(43951)-anticomplementary conjugate of X(8)
X(51537) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 36990, 14927}, {4, 1352, 51212}, {20, 10516, 3619}, {381, 39884, 6776}, {381, 48662, 18583}, {382, 18358, 10519}, {546, 18440, 14853}, {1352, 48889, 4}, {1352, 51212, 69}, {3543, 47354, 21356}, {3818, 48889, 1352}, {3839, 5921, 5480}, {3839, 47353, 1992}, {3855, 39874, 14561}, {5480, 5921, 1992}, {5480, 47353, 5921}, {6776, 39884, 51023}, {6997, 32064, 18928}, {7687, 41737, 25320}, {12322, 12323, 76}, {18583, 39884, 48662}, {18583, 48662, 6776}, {21358, 51022, 15683}


X(51538) = X(2)X(21167)∩X(4)X(69)

Barycentrics    (-a^2 + b^2 - c^2)*(-a^2 - b^2 + c^2)*(a^2 + b^2 + c^2) + (a^2 - b^2 - c^2)*S^2 : :
X(51538) = 5 X[2] - 4 X[21167], 5 X[2] - 8 X[50959], 7 X[2] - 4 X[50965], 19 X[2] - 16 X[50984], X[2] + 2 X[51024], 6 X[21167] - 5 X[31884], 7 X[21167] - 5 X[50965], 19 X[21167] - 20 X[50984], 2 X[21167] + 5 X[51024], 5 X[31884] - 12 X[50959], 7 X[31884] - 6 X[50965], 19 X[31884] - 24 X[50984], X[31884] + 3 X[51024], 14 X[50959] - 5 X[50965], 19 X[50959] - 10 X[50984], 4 X[50959] + 5 X[51024], 19 X[50965] - 28 X[50984], 2 X[50965] + 7 X[51024], 8 X[50984] + 19 X[51024], 4 X[4] - X[69], 5 X[4] - 2 X[1352], 7 X[4] - 4 X[3818], 17 X[4] - 8 X[18553], X[4] + 2 X[31670], 13 X[4] - 4 X[34507], 23 X[4] - 8 X[43150], 11 X[4] - 8 X[48889], 5 X[4] - 8 X[48895], X[4] - 4 X[48901], 2 X[4] + X[51212], 5 X[69] - 8 X[1352], 7 X[69] - 16 X[3818], 17 X[69] - 32 X[18553], X[69] + 8 X[31670], 13 X[69] - 16 X[34507], 23 X[69] - 32 X[43150], 11 X[69] - 32 X[48889], 5 X[69] - 32 X[48895], X[69] - 16 X[48901], X[69] + 2 X[51212], 7 X[1352] - 10 X[3818], 17 X[1352] - 20 X[18553], X[1352] + 5 X[31670], 13 X[1352] - 10 X[34507], 23 X[1352] - 20 X[43150], and many others

X(51538) lies on these lines: {2, 21167}, {3, 38136}, {4, 69}, {6, 3146}, {20, 3618}, {30, 5050}, {51, 44442}, {64, 15741}, {66, 15749}, {141, 3832}, {146, 32255}, {165, 38146}, {182, 3529}, {193, 17578}, {343, 7409}, {373, 7386}, {376, 10168}, {381, 10519}, {382, 5093}, {394, 7408}, {428, 6090}, {487, 36712}, {488, 36711}, {516, 50127}, {518, 9812}, {524, 50687}, {546, 33878}, {568, 18909}, {575, 11541}, {576, 39874}, {597, 15683}, {631, 19130}, {698, 44434}, {895, 13202}, {1176, 11424}, {1350, 3091}, {1351, 3627}, {1370, 5640}, {1469, 5225}, {1503, 1992}, {1513, 34803}, {1656, 48874}, {1657, 18583}, {1692, 43618}, {2777, 25320}, {3056, 5229}, {3060, 32064}, {3089, 28408}, {3090, 3098}, {3424, 14614}, {3522, 3589}, {3523, 48881}, {3524, 38317}, {3525, 14810}, {3528, 48880}, {3534, 33750}, {3545, 19924}, {3564, 3830}, {3620, 50689}, {3751, 51118}, {3763, 5068}, {3839, 10516}, {3843, 48876}, {3845, 50957}, {3853, 18440}, {3855, 24206}, {4872, 5809}, {5034, 43619}, {5059, 44882}, {5073, 48906}, {5076, 39884}, {5092, 17538}, {5103, 37690}, {5133, 33522}, {5175, 43216}, {5261, 10387}, {5476, 11001}, {5650, 7392}, {5691, 51192}, {5731, 38035}, {5893, 9924}, {5895, 15583}, {5921, 11008}, {6225, 36851}, {6293, 12324}, {6393, 32827}, {6515, 16981}, {6800, 7500}, {6811, 32812}, {6813, 32813}, {6995, 35259}, {6997, 7998}, {7000, 32806}, {7374, 32805}, {7378, 33586}, {7391, 11002}, {7394, 33884}, {7396, 17810}, {7487, 28708}, {7519, 35265}, {7528, 13340}, {7553, 18925}, {7736, 40236}, {7738, 13331}, {7757, 15428}, {8550, 50691}, {8584, 51026}, {8703, 50963}, {9589, 49529}, {9730, 34938}, {9778, 38047}, {10002, 37200}, {10113, 32247}, {10304, 38072}, {10733, 11061}, {10752, 12295}, {10753, 39809}, {10754, 39838}, {10762, 38956}, {11174, 14484}, {11179, 29323}, {11180, 15687}, {11206, 34603}, {11403, 37491}, {12017, 15704}, {12101, 50955}, {12156, 14912}, {12317, 32273}, {12383, 32271}, {13203, 45237}, {13910, 43512}, {13972, 43511}, {14555, 37456}, {15022, 34573}, {15312, 31886}, {15437, 20859}, {15531, 41735}, {15533, 51166}, {15534, 51022}, {15640, 33748}, {15685, 50975}, {15689, 38079}, {15693, 50969}, {15697, 50983}, {15705, 48310}, {15717, 47355}, {15740, 41256}, {16051, 34417}, {16475, 28164}, {16774, 18296}, {18918, 31723}, {18950, 21849}, {19119, 21659}, {19145, 43408}, {19146, 43407}, {20070, 49524}, {20079, 41362}, {21735, 48885}, {22491, 41024}, {22492, 41025}, {22615, 35840}, {22644, 35841}, {22682, 32983}, {22793, 39898}, {25555, 48879}, {31099, 37643}, {31305, 37506}, {31861, 41465}, {31952, 40981}, {33280, 39141}, {33703, 39561}, {34608, 35268}, {35502, 37488}, {35820, 39875}, {35821, 39876}, {36002, 36740}, {36757, 42085}, {36758, 42086}, {38147, 38693}, {38168, 38754}, {40132, 51360}, {41106, 50977}, {42104, 51206}, {42105, 51207}, {47353, 50992}, {47354, 50990}, {48898, 49138}, {48905, 49135}, {50690, 51170}, {50960, 50993}, {50964, 50966}, {50970, 51186}, {50974, 51217}, {51130, 51185}, {51132, 51216}, {51136, 51164}

X(51538) = midpoint of X(i) and X(j) for these {i,j}: {382, 5093}, {5085, 48910}, {14912, 15682}, {39561, 48904}
X(51538) = reflection of X(i) in X(j) for these {i,j}: {3, 38136}, {20, 5085}, {165, 38146}, {376, 14561}, {3534, 38110}, {5085, 5480}, {5093, 21850}, {5731, 38035}, {6776, 5093}, {9778, 38047}, {10304, 38072}, {10519, 381}, {14912, 20423}, {15689, 38079}, {21167, 50959}, {21356, 3839}, {25406, 14853}, {38693, 38147}, {38754, 38168}, {46264, 39561}
X(51538) = anticomplement of X(31884)
X(51538) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 31670, 51212}, {4, 51212, 69}, {6, 3146, 14927}, {6, 51163, 3146}, {20, 5480, 3618}, {182, 43621, 3529}, {193, 17578, 36990}, {382, 21850, 6776}, {546, 33878, 40330}, {1350, 3091, 3619}, {1352, 48895, 4}, {3534, 38110, 33750}, {3589, 48872, 3522}, {5059, 51171, 44882}, {5076, 44456, 39884}, {5480, 48910, 20}, {5921, 11477, 11008}, {12322, 12323, 315}, {18906, 32006, 69}, {19130, 48873, 631}, {31670, 48901, 4}, {46264, 48904, 33703}, {47353, 51028, 50992}


X(51539) = X(5)X(39642)∩X(160)X(184)

Barycentrics    a^4*(b^2*c^2 + I*(-a^2 + b^2 + c^2)*S - 2*S^2) : :

X(51539) lies on the conic {{A,B,C,X(4),X(5)}}, the cubic K1284, and these lines: {5, 39642}, {160, 184}, {32046, 39641}


X(51539) = barycentric product X(39642)*X(39642)
X(51539) = barycentric quotient X(51540)/X(32)


X(51540) = X(5)X(39641)∩X(160)X(184)

Barycentrics    a^4*(b^2*c^2 - I*(-a^2 + b^2 + c^2)*S - 2*S^2) : :

X(51540) lies on the conic {{A,B,C,X(4),X(5)}}, the cubic K1284, and these lines: {5, 39641}, {160, 184}, {32046, 39642}

X(51540) = barycentric product X(39641)*X (39641)
X(51540) = barycentric quotient X(51539)/X(32)


X(51541) = X(2)X(187)∩X(351)X(523)

Barycentrics    (2*a^2 - b^2 - c^2)*(2*a^2 + 2*b^2 - c^2)*(2*a^2 - b^2 + 2*c^2) : :
X(51541) = 3 X[26613] - X[34205]

X(51541) lies on the cubic K1285 and these lines: {2, 187}, {6, 10166}, {23, 671}, {111, 8859}, {325, 9164}, {351, 523}, {385, 18823}, {524, 7664}, {597, 13410}, {599, 9516}, {1691, 9169}, {1992, 5486}, {1995, 8860}, {2482, 3266}, {2770, 11636}, {4590, 7840}, {5467, 11163}, {5967, 32225}, {5971, 41134}, {7495, 15464}, {7665, 46275}, {8591, 15390}, {8596, 19577}, {8787, 14567}, {9855, 42008}, {10717, 13586}, {11059, 11149}, {11183, 34763}, {13574, 37760}, {14568, 37909}, {14614, 18361}, {22110, 36953}, {23055, 26255}, {26235, 40826}, {30491, 45335}, {31125, 32479}, {35511, 44367}, {40511, 44401}, {46806, 46808}, {46807, 46809}

X(51541) = isogonal conjugate of X(42007)
X(51541) = isotomic conjugate of X(42008)
X(51541) = X(i)-Ceva conjugate of X(j) for these (i,j): {598, 20380}, {10511, 23297}, {18818, 598}
X(51541) = X(i)-cross conjugate of X(j) for these (i,j): {8262, 44146}, {9125, 5468}, {20380, 598}, {20382, 8599}
X(51541) = X(i)-isoconjugate of X(j) for these (i,j): {1, 42007}, {31, 42008}, {111, 36263}, {163, 23288}, {574, 897}, {599, 923}, {661, 32583}, {3906, 36142}, {5094, 36060}, {9145, 23894}, {17414, 36085}
X(51541) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 42008), (3, 42007), (115, 23288), (187, 10510), (524, 39785), (1560, 5094), (1649, 8288), (2482, 599), (6593, 574), (14961, 19510), (23992, 3906), (36830, 32583), (38988, 17414)
X(51541) = cevapoint of X(i) and X(j) for these (i,j): {23, 11580}, {524, 27088}
X(51541) = crosspoint of X(i) and X(j) for these (i,j): {598, 18818}, {10512, 40826}
X(51541) = trilinear pole of line {690, 15303}
X(51541) = crossdifference of every pair of points on line {574, 17414}
X(51541) = barycentric product X(i)*X(j) for these {i,j}: {99, 23287}, {187, 40826}, {524, 598}, {671, 20380}, {690, 35138}, {1383, 3266}, {2482, 18818}, {5468, 8599}, {6593, 10512}, {7664, 10511}, {11636, 35522}, {43697, 44146}
X(51541) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 42008}, {6, 42007}, {110, 32583}, {187, 574}, {351, 17414}, {468, 5094}, {523, 23288}, {524, 599}, {598, 671}, {690, 3906}, {896, 36263}, {1383, 111}, {1648, 8288}, {2482, 39785}, {3266, 9464}, {5181, 19510}, {5467, 9145}, {5468, 9146}, {5642, 13857}, {6593, 10510}, {8599, 5466}, {10511, 10415}, {11636, 691}, {20380, 524}, {20382, 1648}, {23287, 523}, {23297, 31125}, {27088, 11165}, {30489, 46154}, {30491, 10097}, {35138, 892}, {40826, 18023}, {43697, 895}, {44102, 8541}, {46001, 9178}, {50567, 51397}
X(51541) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 598, 23297}, {2, 1383, 598}


X(51542) = X(6)X(157)∩X(98)X(230)

Barycentrics    a^2*(a^4 - a^2*b^2 - a^2*c^2 - 2*b^2*c^2)*(a^4 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - b^2*c^2 + c^4) : :

X(51542) lies on the cubic K1284 and these lines: {6, 157}, {53, 6531}, {95, 141}, {98, 230}, {183, 46806}, {290, 8177}, {577, 34383}, {694, 32654}, {2065, 5111}, {2076, 46237}, {2422, 2492}, {2966, 43664}, {3094, 37813}, {3506, 11672}, {3589, 31636}, {5085, 17974}, {6394, 34828}, {6784, 10311}, {10313, 46303}, {11610, 14495}, {12042, 32661}, {18898, 47737}, {20021, 45838}, {35906, 45819}

X(51542) = isogonal conjugate of X(46807)
X(51542) = isogonal conjugate of the isotomic conjugate of X(46806)
X(51542) = X(i)-isoconjugate of X(j) for these (i,j): {1, 46807}, {240, 42313}, {262, 1959}, {263, 46238}, {325, 2186}, {327, 1755}, {40703, 43718}
X(51542) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 46807), (36899, 327), (38997, 2799), (39085, 42313)
X(51542) = trilinear pole of line {3288, 34396}
X(51542) = crossdifference of every pair of points on line {2799, 41167}
X(51542) = barycentric product X(i)*X(j) for these {i,j}: {6, 46806}, {98, 182}, {183, 1976}, {248, 458}, {287, 10311}, {290, 34396}, {2715, 23878}, {2966, 3288}, {14600, 44144}, {14601, 20023}, {17974, 33971}, {32545, 39683}
X(51542) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 46807}, {98, 327}, {182, 325}, {248, 42313}, {458, 44132}, {1976, 262}, {3288, 2799}, {6784, 868}, {9420, 41167}, {10311, 297}, {14096, 51371}, {14600, 43718}, {14601, 263}, {34396, 511}, {46806, 76}
X(51542) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {248, 1976, 6}, {287, 31635, 141}


X(51543) = X(6)X(160)∩X(53)X(141)

Barycentrics    a^2*(a^2*b^2 - b^4 + 2*a^2*c^2 + b^2*c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(2*a^2*b^2 + a^2*c^2 + b^2*c^2 - c^4) : :

X(51543) lies on the cubic K1284 and these lines: {6, 160}, {30, 34359}, {39, 30499}, {53, 141}, {230, 694}, {250, 32217}, {262, 1513}, {325, 36790}, {446, 44453}, {511, 11672}, {523, 3569}, {524, 46142}, {842, 5104}, {868, 18575}, {1350, 40801}, {1503, 1987}, {1691, 2065}, {1971, 32716}, {2076, 34130}, {2186, 3863}, {2211, 19189}, {2450, 3613}, {3425, 5017}, {5116, 46317}, {6037, 34369}, {6530, 51334}, {7426, 36885}, {9139, 42007}, {13330, 14252}, {14533, 46288}

X(51543) = isogonal conjugate of X(46806)
X(51543) = isogonal conjugate of the isotomic conjugate of X(46807)
X(51543) = X(i)-isoconjugate of X(j) for these (i,j): {1, 46806}, {182, 1821}, {183, 1910}, {293, 458}, {336, 10311}, {1976, 3403}, {3288, 36036}, {17974, 51315}, {23878, 36084}, {34396, 46273}
X(51543) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 46806), (132, 458), (2679, 3288), (5976, 20023), (11672, 183), (38987, 23878), (39040, 3403), (40601, 182), (47648, 8842)
X(51543) = crossdifference of every pair of points on line {182, 23878}
X(51543) = barycentric product X(i)*X(j) for these {i,j}: {6, 46807}, {232, 42313}, {237, 327}, {262, 511}, {263, 325}, {297, 43718}, {1513, 40803}, {1959, 2186}, {2799, 26714}, {3402, 46238}, {6037, 41167}, {23350, 36885}, {39569, 51444}, {39682, 40804}, {42288, 51371}
X(51543) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 46806}, {232, 458}, {237, 182}, {262, 290}, {263, 98}, {297, 44144}, {325, 20023}, {327, 18024}, {511, 183}, {1959, 3403}, {2186, 1821}, {2211, 10311}, {2491, 3288}, {3402, 1910}, {3569, 23878}, {9418, 34396}, {26714, 2966}, {32716, 41173}, {34854, 33971}, {36790, 51373}, {40810, 8842}, {43718, 287}, {46319, 1976}, {46807, 76}
X(51543) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {263, 43718, 6}, {327, 42313, 141}, {43718, 51338, 263}


X(51544) = X(6)X(74)∩X(141)X(1494)

Barycentrics    a^2*(a^4 - 2*a^2*b^2 + b^4 + a^2*c^2 + b^2*c^2 - 2*c^4)*(a^4 + a^2*b^2 - 2*b^4 + a^2*c^2 + 4*b^2*c^2 - 2*c^4)*(a^4 + a^2*b^2 - 2*b^4 - 2*a^2*c^2 + b^2*c^2 + c^4) : :

X(51544) lies on the cubic K1284 and these lines: {6, 74}, {141, 1494}, {399, 47405}, {1304, 16328}, {1495, 3003}, {1987, 41433}, {1990, 14165}, {2433, 2492}, {3163, 6699}, {3457, 39380}, {3458, 39381}, {3569, 14380}, {4550, 5158}, {6128, 13202}, {6748, 10152}, {9139, 42007}, {11060, 11074}, {12079, 16303}, {14385, 18573}, {14581, 34329}, {14989, 47275}, {34150, 47322}, {37638, 46808}

X(51544) = isogonal conjugate of X(46809)
X(51544) = isogonal conjugate of the isotomic conjugate of X(46808)
X(51544) = X(32681)-Ceva conjugate of X(2433)
X(51544) = X(i)-isoconjugate of X(j) for these (i,j): {1, 46809}, {3431, 14206}
X(51544) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 46809), (4550, 11064)
X(51544) = crosssum of X(3284) and X(10564)
X(51544) = crossdifference of every pair of points on line {5664, 9033}
X(51544) = barycentric product X(i)*X(j) for these {i,j}: {6, 46808}, {74, 381}, {1494, 34417}, {3581, 5627}, {5158, 16080}, {8749, 37638}, {9139, 32225}, {18477, 36119}, {18487, 40384}, {40352, 44135}
X(51544) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 46809}, {381, 3260}, {3581, 6148}, {5158, 11064}, {8749, 43530}, {18479, 51254}, {18487, 36789}, {34416, 1495}, {34417, 30}, {40352, 3431}, {40355, 18316}, {46808, 76}
X(51544) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 74, 18877}, {6, 9412, 39176}, {74, 8749, 6}


X(51545) = X(6)X(186)∩X(50)X(74)

Barycentrics    a^2*(2*a^4 - 4*a^2*b^2 + 2*b^4 - a^2*c^2 - b^2*c^2 - c^4)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(2*a^4 - a^2*b^2 - b^4 - 4*a^2*c^2 - b^2*c^2 + 2*c^4) : :

X(51545) lies on these lines: {6, 186}, {50, 74}, {53, 16263}, {141, 44578}, {526, 647}, {577, 33533}, {1495, 39176}, {1511, 3284}, {1990, 9408}, {6148, 11064}, {6749, 43462}, {8882, 46091}, {18877, 40384}, {32663, 34210}

X(51545) = isogonal conjugate of X(46808)
X(51545) = isogonal conjugate of the isotomic conjugate of X(46809)
X(51545) = X(i)-isoconjugate of X(j) for these (i,j): {1, 46808}, {381, 2349}, {2159, 44135}, {16080, 18477}, {18486, 40384}, {33805, 34417}, {36119, 37638}
X(51545) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 46808), (1511, 37638), (3163, 44135)
X(51545) = crosspoint of X(18316) and X(43530)
X(51545) = crosssum of X(i) and X(j) for these (i,j): {381, 18487}, {3581, 5158}
X(51545) = barycentric product X(i)*X(j) for these {i,j}: {6, 46809}, {30, 3431}, {1511, 18316}, {3284, 43530}, {16163, 22455}, {16263, 51394}
X(51545) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 46808}, {30, 44135}, {1495, 381}, {3284, 37638}, {3431, 1494}, {9407, 34417}, {9408, 18487}, {42074, 18486}, {46809, 76}


X(51546) = X(6)X(3131)∩X(15)X(18)

Barycentrics    a^2*(a^2 - b^2 - c^2 - 2*Sqrt[3]*S)*(a^2 + b^2 - c^2 - 2*Sqrt[3]*S)*(a^2 - b^2 + c^2 - 2*Sqrt[3]*S) : :

X(51546) lies on the cubic K1284 and these lines: {6, 3131}, {15, 18}, {16, 10263}, {51, 51477}, {53, 462}, {61, 1493}, {141, 40711}, {216, 11088}, {302, 11143}, {2005, 10639}, {2380, 16807}, {2913, 11267}, {2963, 3458}, {2965, 11083}, {3443, 30403}, {3489, 19781}, {10642, 11135}, {10645, 37850}, {11086, 14533}, {19778, 34540}

X(51546) = isogonal conjugate of X(11144)
X(51546) = isogonal conjugate of the isotomic conjugate of X(11143)
X(51546) = X(11138)-Ceva conjugate of X(8604)
X(51546) = X(11137)-cross conjugate of X(11083)
X(51546) = X(i)-isoconjugate of X(j) for these (i,j): {1, 11144}, {3375, 8836}
X(51546) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 11144), (10640, 303)
X(51546) = barycentric product X(i)*X(j) for these {i,j}: {6, 11143}, {14, 10678}, {18, 61}, {302, 21462}, {473, 32586}, {8604, 16771}, {10642, 40711}, {11082, 11146}, {11083, 19778}, {11126, 11138}, {16807, 23872}, {42678, 42681}
X(51546) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 11144}, {18, 34389}, {61, 303}, {8604, 19779}, {10642, 472}, {10678, 299}, {11083, 16770}, {11135, 11145}, {11137, 11127}, {11141, 8836}, {11143, 76}, {11146, 11133}, {16807, 32036}, {21462, 17}, {32586, 40712}, {34394, 10677}
X(51546) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 32586, 8604}, {2963, 11138, 36301}, {21462, 32586, 6}


X(51547) = X(6)X(3132)∩X(15)X(10263)

Barycentrics    a^2*(a^2 - b^2 - c^2 + 2*Sqrt[3]*S)*(a^2 + b^2 - c^2 + 2*Sqrt[3]*S)*(a^2 - b^2 + c^2 + 2*Sqrt[3]*S) : :

X(51547) lies on the cubic K1284 and these lines: {6, 3132}, {15, 10263}, {16, 17}, {51, 51477}, {53, 463}, {62, 1493}, {141, 40712}, {216, 11083}, {303, 11144}, {2004, 10640}, {2381, 16806}, {2912, 11268}, {2963, 3457}, {2965, 11088}, {3442, 30402}, {3490, 19780}, {10641, 11136}, {10646, 37848}, {11081, 14533}, {19779, 34541}

X(51547) = isogonal conjugate of X(11143)
X(51547) = isogonal conjugate of the isotomic conjugate of X(11144)
X(51547) = X(11139)-Ceva conjugate of X(8603)
X(51547) = X(11134)-cross conjugate of X(11088)
X(51547) = X(i)-isoconjugate of X(j) for these (i,j): {1, 11143}, {3384, 8838}
X(51547) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 11143), (10639, 302)
X(51547) = barycentric product X(i)*X(j) for these {i,j}: {6, 11144}, {13, 10677}, {17, 62}, {303, 21461}, {472, 32585}, {8603, 16770}, {10641, 40712}, {11087, 11145}, {11088, 19779}, {11127, 11139}, {16806, 23873}, {42676, 42679}
X(51547) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 11143}, {17, 34390}, {62, 302}, {8603, 19778}, {10641, 473}, {10677, 298}, {11088, 16771}, {11134, 11126}, {11136, 11146}, {11142, 8838}, {11144, 76}, {11145, 11132}, {16806, 32037}, {21461, 18}, {32585, 40711}, {34395, 10678}
X(51547) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 32585, 8603}, {2963, 11139, 36300}, {21461, 32585, 6}


X(51548) = X(4)X(567)∩X(113)X(1495)

Barycentrics    (2*a^4-(b^2-c^2)^2-a^2*(b^2+c^2))*(a^2*(b^2-2*c^2)*(2*b^2-c^2)-(b^2+c^2)*(a^4+(b^2-c^2)^2)) : :

See Ivan Pavlov, euclid 5479.

X(51548) lies on these lines: {4, 567}, {113, 1495}, {146, 3581}, {597, 3845}

X(51548) = Orthopole of the trilinear polar of X(7578)


X(51549) = (name pending)

Barycentrics    b^3*(b-c)^4*c^3*(b+c)^3-a*b^2*(b-c)^4*c^2*(b+c)^2*(b^2+b*c+c^2)-a^10*(3*b^3+b^2*c+b*c^2+3*c^3)+a^9*(3*b^4+b^3*c+4*b^2*c^2+b*c^3+3*c^4)-a^2*b*(b-c)^4*c*(b^5+4*b^4*c+6*b^3*c^2+6*b^2*c^3+4*b*c^4+c^5)+a^8*(5*b^5+6*b^4*c+8*b^3*c^2+8*b^2*c^3+6*b*c^4+5*c^5)+a^5*(b+c)^2*(b^6+5*b^5*c-5*b^3*c^3+5*b*c^5+c^6)-a^7*(5*b^6+9*b^5*c+10*b^4*c^2+13*b^3*c^3+10*b^2*c^4+9*b*c^5+5*c^6)-a^6*(b^7+2*b^6*c+9*b^5*c^2-11*b^4*c^3-11*b^3*c^4+9*b^2*c^5+2*b*c^6+c^7)+a^3*(b-c)^2*(b^8+3*b^7*c+b^6*c^2-6*b^5*c^3-14*b^4*c^4-6*b^3*c^5+b^2*c^6+3*b*c^7+c^8)-a^4*(b^9+2*b^8*c-2*b^7*c^2+5*b^6*c^3-2*b^5*c^4-2*b^4*c^5+5*b^3*c^6-2*b^2*c^7+2*b*c^8+c^9) : :

See Ivan Pavlov, euclid 5481.

X(51549) lies on this line: {20, 101}


X(51550) = X(1)X(50014)∩X(2)X(3)

Barycentrics    a*(a^5 - a^4*b + a^2*b^3 - a*b^4 - a^4*c - a^3*b*c + 7*a^2*b^2*c + 7*a*b^3*c + 7*a^2*b*c^2 + 16*a*b^2*c^2 + 6*b^3*c^2 + a^2*c^3 + 7*a*b*c^3 + 6*b^2*c^3 - a*c^4) : :

X(51550) lies on these lines: {1, 50014}, {2, 3}, {3303, 36480}, {3304, 24331}, {3746, 36531}, {5563, 36529}, {25352, 36475}

{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 16855, 19320}, {405, 19309, 19329}, {5047, 19318, 3}


X(51551) = X(2)X(3)∩X(315)X(17103)

Barycentrics    a^6 + a^4*b^2 + a^3*b^3 + a*b^5 + a^4*b*c + 2*a^3*b^2*c + 2*a^2*b^3*c + 2*a*b^4*c + b^5*c + a^4*c^2 + 2*a^3*b*c^2 + a^2*b^2*c^2 + a*b^3*c^2 + b^4*c^2 + a^3*c^3 + 2*a^2*b*c^3 + a*b^2*c^3 + 2*a*b*c^4 + b^2*c^4 + a*c^5 + b*c^5 : :

X(51551) lies on these lines: {1, 20924}, {2, 3}, {315, 17103}, {1468, 5015}, {4389, 5263}

X(51551) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1010, 13727, 1008}


X(51552) = X(1)X(50025)∩X(2)X(3)

Barycentrics    a^6 - a^3*b^3 - a^2*b^4 + a*b^5 - a^4*b*c - 6*a^3*b^2*c - 6*a^2*b^3*c + b^5*c - 6*a^3*b*c^2 - 14*a^2*b^2*c^2 - 7*a*b^3*c^2 - a^3*c^3 - 6*a^2*b*c^3 - 7*a*b^2*c^3 - 2*b^3*c^3 - a^2*c^4 + a*c^5 + b*c^5 : :

X(51552) lies on these lines: {1, 50025}, {2, 3}, {3826, 4265}, {3874, 36480}, {6763, 36531}

X(51552) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {16454, 37149, 474}


X(51553) = X(1)X(49756)∩X(2)X(3)

Barycentrics    a^6 - 6*a^5*b - 7*a^4*b^2 - 6*a^3*b^3 - 9*a^2*b^4 - 4*a*b^5 - b^6 - 6*a^5*c - 18*a^4*b*c - 14*a^3*b^2*c - 14*a^2*b^3*c - 16*a*b^4*c - 4*b^5*c - 7*a^4*c^2 - 14*a^3*b*c^2 - 10*a^2*b^2*c^2 - 16*a*b^3*c^2 - 7*b^4*c^2 - 6*a^3*c^3 - 14*a^2*b*c^3 - 16*a*b^2*c^3 - 8*b^3*c^3 - 9*a^2*c^4 - 16*a*b*c^4 - 7*b^2*c^4 - 4*a*c^5 - 4*b*c^5 - c^6 : :

X(51553) lies on these lines: {1, 49756}, {2, 3}, {1453, 29660}


X(51554) = X(1)X(5319)∩X(2)X(3)

Barycentrics    3*a^6 - a^4*b^2 - 2*a^3*b^3 - 3*a^2*b^4 + 2*a*b^5 + b^6 - 6*a^4*b*c - 8*a^3*b^2*c - 8*a^2*b^3*c - 4*a*b^4*c + 2*b^5*c - a^4*c^2 - 8*a^3*b*c^2 - 10*a^2*b^2*c^2 - 10*a*b^3*c^2 - b^4*c^2 - 2*a^3*c^3 - 8*a^2*b*c^3 - 10*a*b^2*c^3 - 4*b^3*c^3 - 3*a^2*c^4 - 4*a*b*c^4 - b^2*c^4 + 2*a*c^5 + 2*b*c^5 + c^6 : :

X(51554) lies on these lines: {1, 5319}, {2, 3}, {1453, 29676}, {7869, 50224}, {9607, 19758}, {15888, 36486}, {29659, 37721}, {36479, 37724}


X(51555) = X(1)X(9351)∩X(2)X(3)

Barycentrics    a*(a^5 - a^4*b + a^2*b^3 - a*b^4 - a^4*c - 2*a^3*b*c + 4*a^2*b^2*c + 4*a*b^3*c - b^4*c + 4*a^2*b*c^2 + 10*a*b^2*c^2 + 3*b^3*c^2 + a^2*c^3 + 4*a*b*c^3 + 3*b^2*c^3 - a*c^4 - b*c^4) : :

X(51555) lies on these lines: {1, 9351}, {2, 3}, {1453, 29820}, {3246, 4290}, {8666, 24331}, {23855, 49725}

X(51555) = crossdifference of every pair of points on line {647, 50359}
X(51555) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {405, 4223, 13723}, {405, 19309, 1009}


X(51556) = X(1)X(7760)∩X(2)X(3)

Barycentrics    a^6 - a^5*b - a^4*b^2 - a^3*b^3 - 2*a^2*b^4 - a^5*c - 4*a^4*b*c - 4*a^3*b^2*c - 4*a^2*b^3*c - 3*a*b^4*c - a^4*c^2 - 4*a^3*b*c^2 - 5*a^2*b^2*c^2 - 5*a*b^3*c^2 - b^4*c^2 - a^3*c^3 - 4*a^2*b*c^3 - 5*a*b^2*c^3 - 2*b^3*c^3 - 2*a^2*c^4 - 3*a*b*c^4 - b^2*c^4 : :

X(51556) lies on these lines: {1, 7760}, {2, 3}, {595, 36480}, {1104, 25368}, {1724, 7878}, {3923, 27971}, {5007, 50225}, {7283, 24326}, {7768, 49723}, {7794, 50224}, {7873, 50220}

X(51556) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {405, 1008, 37027}, {4195, 13723, 11104}


X(51557) = X(1)X(50036)∩X(2)X(3)

Barycentrics    (b + c)*(a^5*b + 3*a^4*b^2 + 2*a^3*b^3 - 2*a^2*b^4 - 3*a*b^5 - b^6 + a^5*c + 2*a^3*b^2*c + 2*a^2*b^3*c - 3*a*b^4*c - 2*b^5*c + 3*a^4*c^2 + 2*a^3*b*c^2 + 4*a^2*b^2*c^2 + 6*a*b^3*c^2 + b^4*c^2 + 2*a^3*c^3 + 2*a^2*b*c^3 + 6*a*b^2*c^3 + 4*b^3*c^3 - 2*a^2*c^4 - 3*a*b*c^4 + b^2*c^4 - 3*a*c^5 - 2*b*c^5 - c^6) : :

X(51557) lies on these lines: {1, 50036}, {2, 3}, {1211, 21616}, {1453, 7741}, {1728, 1901}, {1834, 10826}, {2360, 32431}, {3714, 17757}, {3966, 24390}, {11375, 45126}, {17056, 37692}, {37696, 44113}

X(51557) = orthocentroidal-circle-inverse of X(37063)
X(51557) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 37063}, {5, 429, 442}, {5, 1985, 37359}, {3136, 21530, 442}, {3136, 27555, 21530}, {3142, 30444, 442}, {14008, 37983, 6841}


X(51558) = X(1)X(2051)∩X(2)X(3)

Barycentrics    a^6*b + a^5*b^2 - a^2*b^5 - a*b^6 + a^6*c + 2*a^5*b*c + a^4*b^2*c - 2*a^3*b^3*c - a^2*b^4*c - b^6*c + a^5*c^2 + a^4*b*c^2 + 2*a^2*b^3*c^2 + a*b^4*c^2 - b^5*c^2 - 2*a^3*b*c^3 + 2*a^2*b^2*c^3 + 2*b^4*c^3 - a^2*b*c^4 + a*b^2*c^4 + 2*b^3*c^4 - a^2*c^5 - b^2*c^5 - a*c^6 - b*c^6 : :

X(51558) lies on these lines: {1, 2051}, {2, 3}, {8, 970}, {10, 21363}, {12, 21321}, {355, 34466}, {386, 10454}, {388, 5718}, {497, 5710}, {515, 1193}, {516, 3831}, {517, 3702}, {519, 9569}, {573, 10479}, {602, 27631}, {944, 5396}, {952, 5754}, {959, 18391}, {962, 15488}, {978, 5400}, {1210, 1400}, {1478, 37693}, {1479, 5264}, {1724, 13478}, {1764, 50605}, {1826, 28266}, {2183, 34831}, {2551, 5743}, {2829, 27657}, {3436, 5741}, {3616, 6176}, {3670, 29069}, {3679, 9568}, {3840, 12545}, {4383, 5786}, {5225, 37540}, {5230, 48482}, {5278, 5788}, {5307, 19372}, {5587, 31339}, {5740, 21279}, {5767, 36754}, {5797, 12116}, {6245, 28274}, {6734, 39591}, {7080, 36855}, {9535, 10449}, {9548, 31330}, {9553, 10473}, {9554, 10480}, {10476, 30942}, {10886, 19858}, {18180, 20028}, {20923, 51063}, {23383, 26095}, {27627, 31673}, {29824, 35631}, {35206, 44425}, {37536, 48941}, {46827, 51118}

X(51558) = reflection of X(i) in X(j) for these {i,j}: {19648, 5}, {50702, 19513}
X(51558) = complement of X(50702)
X(51558) = anticomplement of X(19513)
X(51558) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 50702, 19513}, {3, 4, 15971}, {4, 6836, 36496}, {4, 6865, 26118}, {4, 36575, 37456}, {5, 13731, 2}, {3142, 28238, 2}, {5192, 19645, 37415}, {13740, 23512, 37399}, {14784, 14785, 19543}, {35732, 42282, 19647}


X(51559) = X(1)X(50038)∩X(2)X(3)

Barycentrics    a^2*b^2 - b^4 - 8*a^2*b*c - 8*a*b^2*c + a^2*c^2 - 8*a*b*c^2 + 2*b^2*c^2 - c^4 : :
X(51559) = 3 X[2] + X[5084], 9 X[2] - X[6904], 3 X[5084] + X[6904], X[6904] - 3 X[16408]

X(51559) lies on these lines: {1, 50038}, {2, 3}, {9, 34753}, {10, 10179}, {12, 13462}, {78, 15935}, {392, 25011}, {495, 3624}, {496, 1698}, {551, 9711}, {936, 12433}, {942, 5316}, {946, 31797}, {952, 8583}, {1001, 47742}, {1125, 3820}, {1329, 19862}, {1376, 10386}, {1483, 19861}, {2886, 51073}, {3452, 6147}, {3634, 3816}, {3646, 26446}, {3695, 30829}, {3813, 3828}, {3825, 3826}, {3841, 3847}, {3848, 21077}, {3925, 10593}, {3968, 13463}, {4358, 50042}, {4413, 15171}, {5044, 9843}, {5326, 26476}, {5432, 25542}, {5433, 13370}, {5437, 24470}, {5550, 17757}, {5690, 8582}, {5708, 18228}, {6260, 10156}, {6684, 7956}, {6688, 37536}, {6692, 31445}, {7173, 41859}, {7681, 38059}, {7741, 31508}, {7988, 50031}, {8167, 26364}, {9342, 26127}, {9669, 26040}, {9709, 15172}, {9842, 31805}, {10283, 19860}, {11374, 20196}, {16589, 31406}, {16610, 50067}, {17337, 45939}, {17619, 24564}, {17749, 48847}, {19117, 31473}, {19875, 37722}, {19876, 37720}, {19877, 24390}, {19878, 25466}, {21031, 25055}, {21060, 50192}, {23537, 31197}, {24954, 37737}, {24982, 38112}, {24987, 32214}, {37719, 44847}

X(51559) = midpoint of X(5084) and X(16408)
X(51559) = complement of X(16408)
X(51559) = orthocentroidal-circle-inverse of X(16863)
X(51559) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 16863}, {2, 377, 16864}, {2, 2478, 16862}, {2, 3090, 50726}, {2, 4187, 8728}, {2, 4193, 17529}, {2, 5047, 13747}, {2, 5055, 50395}, {2, 5084, 16408}, {2, 6675, 632}, {2, 6933, 50207}, {2, 11108, 140}, {2, 16842, 6675}, {2, 16845, 3526}, {2, 16853, 50205}, {2, 17527, 5}, {2, 17536, 7483}, {2, 17546, 17590}, {2, 17554, 3525}, {2, 17559, 3}, {2, 17570, 17566}, {2, 17575, 17527}, {2, 33034, 8362}, {2, 33042, 7866}, {2, 37162, 17535}, {2, 50202, 11539}, {3, 1656, 6964}, {3, 5129, 50243}, {5, 140, 37424}, {5, 11539, 44222}, {21, 17564, 15712}, {140, 3628, 6959}, {381, 17582, 50238}, {404, 50241, 8703}, {442, 4187, 5154}, {452, 16417, 548}, {547, 37356, 5}, {1656, 6922, 5}, {3090, 8727, 5}, {3526, 6961, 140}, {3634, 3816, 31419}, {3825, 31253, 3826}, {4187, 8728, 5}, {5046, 50240, 15687}, {6825, 6841, 37406}, {6919, 17528, 3850}, {7483, 17536, 50202}, {8728, 17527, 4187}, {9709, 26105, 15172}, {11111, 17573, 33923}, {11113, 17531, 17563}, {11113, 17563, 15704}, {16418, 17567, 3530}, {16842, 19520, 11108}, {17535, 37162, 11112}, {17566, 17570, 15670}


X(51560) = ISOTOMIC CONJUGATE OF X(2254)

Barycentrics    (a - b)*b*(a - c)*c*(a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2) : :

X(51560) lies on these lines: {100, 693}, {105, 8709}, {294, 30627}, {350, 14942}, {643, 799}, {644, 666}, {664, 4449}, {673, 4607}, {765, 20954}, {789, 919}, {812, 813}, {874, 4583}, {1280, 34018}, {1320, 2481}, {1577, 34906}, {1897, 46107}, {1909, 40724}, {1966, 33676}, {1978, 3699}, {3570, 42719}, {3685, 14197}, {3766, 36236}, {3903, 21272}, {4358, 36796}, {4569, 41075}, {4589, 4645}, {4593, 32666}, {4602, 7257}, {4625, 35338}, {6163, 23794}, {6654, 18064}, {9318, 35961}, {20920, 46277}, {33805, 44693}, {35167, 38980}, {36037, 39293}, {36146, 36147}

X(51560) = isotomic conjugate of X(2254)
X(51560) = isotomic conjugate of the anticomplement of X(3716)
X(51560) = isotomic conjugate of the isogonal conjugate of X(36086)
X(51560) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {813, 14732}, {32735, 39362}, {39293, 20345}
X(51560) = X(46135)-Ceva conjugate of X(34085)
X(51560) = X(i)-cross conjugate of X(j) for these (i,j): {350, 7035}, {666, 34085}, {1026, 190}, {1027, 673}, {3570, 799}, {3716, 2}, {3907, 33676}, {31637, 39293}, {35333, 36086}, {42719, 4554}
X(51560) = X(i)-isoconjugate of X(j) for these (i,j): {4, 23225}, {6, 665}, {7, 8638}, {31, 2254}, {32, 918}, {56, 926}, {57, 46388}, {241, 3063}, {512, 3286}, {513, 2223}, {514, 9454}, {518, 667}, {649, 672}, {659, 40730}, {663, 1458}, {669, 30941}, {692, 3675}, {693, 9455}, {798, 18206}, {875, 8299}, {884, 1362}, {919, 35505}, {927, 15615}, {1015, 2284}, {1019, 39258}, {1026, 3248}, {1027, 42079}, {1333, 24290}, {1397, 50333}, {1415, 17435}, {1459, 2356}, {1876, 1946}, {1918, 23829}, {1919, 3912}, {1924, 18157}, {1960, 34230}, {1977, 42720}, {1980, 3263}, {2175, 43042}, {2206, 4088}, {2283, 3271}, {2340, 43924}, {2720, 42771}, {3049, 15149}, {3252, 8632}, {3733, 20683}, {5089, 22383}, {6184, 43929}, {6591, 20752}, {8641, 34855}, {34067, 38989}, {34858, 42758}
X(51560) = X(i)-Dao conjugate of X(j) for these (i, j): (1, 926), (2, 2254), (9, 665), (37, 24290), (666, 39344), (1086, 3675), (1146, 17435), (5375, 672), (5452, 46388), (6376, 918), (6631, 518), (9296, 3912), (9428, 18157), (10001, 241), (16586, 42758), (17755, 3126), (31998, 18206), (33675, 514), (34021, 23829), (35119, 38989), (36033, 23225), (38980, 35505), (38981, 42771), (39026, 2223), (39053, 1876), (39054, 3286), (39060, 5236), (40593, 43042), (40603, 4088)
X(51560) = cevapoint of X(i) and X(j) for these (i,j): {1, 812}, {190, 1026}, {514, 1738}, {522, 3912}, {666, 36802}, {668, 874}, {673, 1027}, {740, 1577}, {1966, 3907}
X(51560) = crosspoint of X(36803) and X(46135)
X(51560) = trilinear pole of line {9, 75}
X(51560) = barycentric product X(i)*X(j) for these {i,j}: {1, 36803}, {8, 34085}, {9, 46135}, {75, 666}, {76, 36086}, {85, 36802}, {100, 18031}, {105, 1978}, {190, 2481}, {294, 4572}, {308, 35333}, {312, 927}, {561, 919}, {664, 36796}, {668, 673}, {670, 18785}, {799, 13576}, {889, 36816}, {1027, 31625}, {1438, 6386}, {1502, 32666}, {3261, 5377}, {3596, 36146}, {3699, 34018}, {3729, 14727}, {4391, 39293}, {4554, 14942}, {4569, 6559}, {4583, 6654}, {6335, 31637}, {18833, 46163}, {28071, 46406}, {28659, 32735}, {30854, 41075}
X(51560) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 665}, {2, 2254}, {9, 926}, {10, 24290}, {41, 8638}, {48, 23225}, {55, 46388}, {75, 918}, {85, 43042}, {99, 18206}, {100, 672}, {101, 2223}, {105, 649}, {190, 518}, {274, 23829}, {294, 663}, {312, 50333}, {321, 4088}, {514, 3675}, {522, 17435}, {644, 2340}, {646, 3717}, {651, 1458}, {653, 1876}, {658, 34855}, {660, 3252}, {662, 3286}, {664, 241}, {666, 1}, {668, 3912}, {670, 18157}, {673, 513}, {692, 9454}, {765, 2284}, {799, 30941}, {811, 15149}, {812, 38989}, {813, 40730}, {874, 17755}, {885, 2170}, {908, 42758}, {919, 31}, {927, 57}, {1016, 1026}, {1018, 20683}, {1024, 3271}, {1025, 1362}, {1026, 6184}, {1027, 1015}, {1275, 41353}, {1331, 20752}, {1332, 1818}, {1438, 667}, {1462, 43924}, {1783, 2356}, {1814, 1459}, {1897, 5089}, {1978, 3263}, {2195, 3063}, {2254, 35505}, {2284, 42079}, {2398, 9502}, {2481, 514}, {3257, 34230}, {3570, 8299}, {3699, 3693}, {3729, 42341}, {3912, 3126}, {3952, 3930}, {4033, 3932}, {4554, 9436}, {4557, 39258}, {4561, 25083}, {4562, 22116}, {4564, 2283}, {4572, 40704}, {4583, 40217}, {4606, 14626}, {4998, 1025}, {5377, 101}, {6185, 1027}, {6335, 1861}, {6559, 3900}, {6654, 659}, {7035, 42720}, {9503, 2424}, {13136, 36819}, {13576, 661}, {14625, 4822}, {14727, 9311}, {14942, 650}, {14947, 34905}, {17780, 14439}, {18026, 5236}, {18031, 693}, {18047, 4447}, {18743, 4925}, {18785, 512}, {19804, 50357}, {20906, 23773}, {23696, 7117}, {28071, 657}, {28132, 2310}, {31637, 905}, {31638, 3309}, {32666, 32}, {32735, 604}, {32739, 9455}, {34018, 3676}, {34085, 7}, {34906, 5091}, {35313, 17439}, {35333, 39}, {36038, 42770}, {36057, 22383}, {36086, 6}, {36124, 6591}, {36146, 56}, {36796, 522}, {36802, 9}, {36803, 75}, {36816, 891}, {39293, 651}, {41075, 21446}, {42719, 50441}, {42720, 4712}, {43921, 21143}, {43929, 3248}, {46135, 85}, {46149, 21123}, {46163, 1964}, {46388, 15615}, {46393, 42771}


X(51561) = ISOTOMIC CONJUGATE OF X(4442)

Barycentrics    (a + b)*(a + c)*(a^2 - 3*a*b + b^2 + c^2)*(a^2 + b^2 - 3*a*c + c^2) : :

X(51561) lies on these lines: {1, 24038}, {81, 644}, {86, 3699}, {100, 1014}, {111, 524}, {643, 757}, {664, 3896}, {873, 7257}, {1320, 23829}, {3873, 3903}, {3875, 6742}, {9041, 9146}

X(51561) = isogonal conjugate of X(39688)
X(51561) = isotomic conjugate of X(4442)
X(51561) = isotomic conjugate of the anticomplement of X(3712)
X(51561) = X(3712)-cross conjugate of X(2)
X(51561) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39688}, {4, 23230}, {6, 16611}, {31, 4442}, {37, 16784}, {42, 7292}, {56, 24394}, {213, 37756}, {923, 16597}, {2832, 4557}, {3952, 8650}, {6088, 8691}
X(51561) = X(i)-Dao conjugate of X(j) for these (i, j): (1, 24394), (2, 4442), (3, 39688), (9, 16611), (2482, 16597), (6626, 37756), (36033, 23230), (40589, 16784), (40592, 7292), (40620, 47871)
X(51561) = cevapoint of X(i) and X(j) for these (i,j): {1, 524}, {690, 17058}, {34892, 34893}
X(51561) = trilinear pole of line {9, 1019}
X(51561) = barycentric product X(i)*X(j) for these {i,j}: {86, 34892}, {274, 34893}, {2748, 7199}, {4789, 6082}, {5387, 17205}
X(51561) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 16611}, {2, 4442}, {6, 39688}, {9, 24394}, {48, 23230}, {58, 16784}, {81, 7292}, {86, 37756}, {524, 16597}, {1019, 2832}, {2748, 1018}, {5235, 4956}, {6082, 37210}, {7192, 47871}, {34892, 10}, {34893, 37}


X(51562) = ISOTOMIC CONJUGATE OF X(4453)

Barycentrics    (a - b)*(a - c)*(a^2 - a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2) : :
X(51562) = 2 X[80] - 3 X[36590], X[80] - 3 X[36909]

X(51562) lies on these lines: {2, 51402}, {5, 7979}, {80, 519}, {100, 522}, {101, 47874}, {145, 14584}, {149, 51442}, {350, 20566}, {476, 8701}, {513, 15343}, {518, 14204}, {521, 34151}, {523, 14513}, {643, 765}, {644, 3239}, {660, 17763}, {664, 693}, {666, 30565}, {900, 901}, {918, 37143}, {952, 38954}, {1120, 1411}, {1252, 3700}, {1280, 2006}, {1737, 33129}, {1807, 4358}, {1897, 44426}, {2397, 17780}, {2804, 46649}, {3241, 34232}, {3699, 4397}, {3732, 48557}, {3870, 14628}, {3900, 15632}, {3932, 46785}, {3935, 14942}, {4467, 4998}, {4551, 6742}, {4583, 17935}, {4723, 15898}, {4820, 14589}, {6187, 8851}, {6735, 15633}, {6740, 15065}, {7035, 7257}, {8707, 36069}, {17989, 34067}, {18341, 31841}, {21093, 39136}, {32675, 36147}, {33136, 41684}, {33148, 46972}, {36037, 43728}, {36815, 40172}, {36910, 40869}, {40865, 47790}, {41405, 48266}

X(51562) = reflection of X(i) in X(j) for these {i,j}: {149, 51442}, {18341, 31841}, {36590, 36909}
X(51562) = isotomic conjugate of X(4453)
X(51562) = anticomplement of X(51402)
X(51562) = isotomic conjugate of the anticomplement of X(1639)
X(51562) = isotomic conjugate of the complement of X(47772)
X(51562) = X(35174)-Ceva conjugate of X(655)
X(51562) = X(i)-cross conjugate of X(j) for these (i,j): {522, 36590}, {1023, 190}, {1639, 2}, {2804, 8}, {3943, 1016}, {7359, 46102}, {17757, 15742}, {44669, 4076}
X(51562) = X(i)-isoconjugate of X(j) for these (i,j): {2, 21758}, {4, 22379}, {6, 3960}, {7, 8648}, {31, 4453}, {36, 513}, {56, 3738}, {57, 654}, {81, 21828}, {214, 23345}, {320, 667}, {514, 7113}, {593, 2610}, {603, 44428}, {604, 3904}, {649, 3218}, {663, 1443}, {692, 4089}, {757, 42666}, {758, 3733}, {849, 6370}, {900, 16944}, {1015, 4585}, {1019, 2245}, {1022, 17455}, {1086, 1983}, {1262, 46384}, {1333, 4707}, {1459, 1870}, {1464, 3737}, {1635, 40215}, {1835, 23189}, {1919, 20924}, {1980, 40075}, {2222, 3025}, {2323, 3669}, {2361, 3676}, {2423, 16586}, {3063, 17078}, {3572, 27950}, {3724, 7192}, {3937, 4242}, {4282, 7178}, {4511, 43924}, {4973, 50344}, {6591, 22128}, {7252, 18593}, {17923, 22383}, {23884, 28607}, {32669, 46398}
X(51562) = X(i)-Dao conjugate of X(j) for these (i, j): (1, 3738), (2, 4453), (9, 3960), (37, 4707), (1086, 4089), (3161, 3904), (4075, 6370), (5375, 3218), (5452, 654), (6631, 320), (7952, 44428), (9296, 20924), (10001, 17078), (15898, 513), (32664, 21758), (36033, 22379), (36909, 522), (36910, 21198), (36911, 23884), (38984, 3025), (39026, 36), (40586, 21828), (40607, 42666)
X(51562) = cevapoint of X(i) and X(j) for these (i,j): {1, 900}, {2, 47772}, {514, 17067}, {519, 522}, {2427, 4557}, {3952, 17780}
X(51562) = crosspoint of X(i) and X(j) for these (i,j): {4555, 13136}, {35174, 36804}
X(51562) = crosssum of X(i) and X(j) for these (i,j): {1960, 3310}, {8648, 21758}
X(51562) = trilinear pole of line {9, 80}
X(51562) = barycentric product X(i)*X(j) for these {i,j}: {1, 36804}, {8, 655}, {9, 35174}, {10, 47318}, {55, 46405}, {80, 190}, {100, 18359}, {101, 20566}, {312, 2222}, {476, 3969}, {644, 18815}, {646, 1411}, {662, 15065}, {664, 36910}, {668, 2161}, {759, 4033}, {799, 34857}, {1018, 14616}, {1089, 37140}, {1168, 24004}, {1807, 6335}, {1978, 6187}, {2006, 3699}, {2397, 40437}, {3596, 32675}, {3678, 32680}, {3904, 46649}, {3952, 24624}, {4552, 6740}, {4562, 36815}, {4582, 14584}, {6742, 41226}, {14147, 17791}, {27808, 34079}, {28654, 36069}
X(51562) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3960}, {2, 4453}, {8, 3904}, {9, 3738}, {10, 4707}, {31, 21758}, {41, 8648}, {42, 21828}, {48, 22379}, {55, 654}, {80, 514}, {100, 3218}, {101, 36}, {190, 320}, {281, 44428}, {514, 4089}, {594, 6370}, {644, 4511}, {651, 1443}, {654, 3025}, {655, 7}, {664, 17078}, {668, 20924}, {692, 7113}, {756, 2610}, {759, 1019}, {765, 4585}, {901, 40215}, {1018, 758}, {1023, 214}, {1110, 1983}, {1168, 1022}, {1331, 22128}, {1411, 3669}, {1500, 42666}, {1639, 51402}, {1783, 1870}, {1807, 905}, {1897, 17923}, {1978, 40075}, {2006, 3676}, {2161, 513}, {2222, 57}, {2310, 46384}, {2341, 3737}, {2427, 34586}, {2804, 46398}, {3204, 39478}, {3573, 27950}, {3678, 32679}, {3679, 23884}, {3699, 32851}, {3939, 2323}, {3952, 3936}, {3969, 3268}, {4033, 35550}, {4373, 27836}, {4551, 18593}, {4552, 41804}, {4557, 2245}, {4559, 1464}, {4752, 4867}, {4767, 27757}, {6187, 649}, {6740, 4560}, {7069, 2600}, {14147, 3065}, {14584, 30725}, {14616, 7199}, {15065, 1577}, {18359, 693}, {18815, 24002}, {20566, 3261}, {21801, 42768}, {23344, 17455}, {24004, 1227}, {24624, 7192}, {32665, 16944}, {32671, 849}, {32675, 56}, {34079, 3733}, {34857, 661}, {35174, 85}, {35342, 4973}, {36069, 593}, {36804, 75}, {36815, 812}, {36909, 21198}, {36910, 522}, {37140, 757}, {37630, 43048}, {38938, 47680}, {40172, 1635}, {40437, 2401}, {40521, 4053}, {41226, 4467}, {46405, 6063}, {46649, 655}, {47318, 86}


X(51563) = ISOTOMIC CONJUGATE OF X(4804)

Barycentrics    (a - b)*(a + b)*(a - c)*(a + c)*(a*b - b^2 + 2*a*c + b*c)*(2*a*b + a*c + b*c - c^2) : :

X(51563) lies on these lines: {86, 2293}, {99, 644}, {100, 4573}, {643, 4610}, {662, 36138}, {664, 4635}, {799, 3699}, {3903, 17136}, {4625, 35338}, {5235, 41798}, {8849, 8851}, {28840, 28841}, {37684, 42290}

X(51563) = isotomic conjugate of X(4804)
X(51563) = isotomic conjugate of the anticomplement of X(4913)
X(51563) = X(i)-cross conjugate of X(j) for these (i,j): {3907, 40739}, {4913, 2}, {16054, 4620}
X(51563) = X(i)-isoconjugate of X(j) for these (i,j): {31, 4804}, {42, 4724}, {213, 4762}, {512, 1001}, {661, 2280}, {663, 42289}, {667, 3696}, {669, 4441}, {798, 4384}, {1400, 45755}, {1471, 4041}, {1893, 1946}, {1919, 4044}, {1924, 21615}, {2489, 23151}, {3709, 5228}, {7180, 37658}
X(51563) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 4804), (6626, 4762), (6631, 3696), (9296, 4044), (9428, 21615), (31998, 4384), (36830, 2280), (39053, 1893), (39054, 1001), (40582, 45755), (40592, 4724)
X(51563) = cevapoint of X(i) and X(j) for these (i,j): {1, 28840}, {522, 24603}, {1019, 3736}, {32041, 37138}
X(51563) = trilinear pole of line {9, 86}
X(51563) = barycentric product X(i)*X(j) for these {i,j}: {86, 32041}, {99, 27475}, {274, 37138}, {310, 8693}, {668, 42302}, {670, 2279}, {799, 1002}, {1978, 51443}, {4625, 40779}, {7257, 42290}
X(51563) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 4804}, {21, 45755}, {81, 4724}, {86, 4762}, {99, 4384}, {110, 2280}, {190, 3696}, {643, 37658}, {645, 3886}, {651, 42289}, {653, 1893}, {662, 1001}, {668, 4044}, {670, 21615}, {799, 4441}, {1002, 661}, {1414, 5228}, {2279, 512}, {4565, 1471}, {4573, 40719}, {4592, 23151}, {4616, 42309}, {7257, 28809}, {8693, 42}, {18791, 9279}, {27475, 523}, {32041, 10}, {37138, 37}, {40779, 4041}, {42290, 4017}, {42302, 513}, {51443, 649}


X(51564) = ISOTOMIC CONJUGATE OF X(21183)

Barycentrics    (a - b)*(a - c)*(a^2 - 4*a*b + b^2 - c^2)*(a^2 - b^2 - 4*a*c + c^2) : :

X(51564) lies on these lines: {2, 1000}, {200, 4738}, {643, 43290}, {644, 17780}, {1120, 3870}, {2415, 3952}, {3699, 24004}, {3939, 36037}, {6006, 6014}, {6742, 14594}, {8851, 11345}, {36916, 41798}

X(51564) = isotomic conjugate of X(21183)
X(51564) = X(i)-cross conjugate of X(j) for these (i,j): {997, 765}, {4752, 190}
X(51564) = X(i)-isoconjugate of X(j) for these (i,j): {31, 21183}, {244, 35281}, {513, 999}, {649, 3306}, {667, 42697}, {1919, 20925}, {3063, 17079}, {3733, 3753}, {3872, 43924}, {6591, 22129}
X(51564) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 21183), (5375, 3306), (6631, 42697), (9296, 20925), (10001, 17079), (39026, 999)
X(51564) = cevapoint of X(i) and X(j) for these (i,j): {1, 6006}, {522, 3679}, {1512, 23757}
X(51564) = trilinear pole of line {9, 519}
X(51564) = barycentric product X(i)*X(j) for these {i,j}: {190, 1000}, {664, 36916}, {1897, 30680}, {1978, 34446}
X(51564) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 21183}, {100, 3306}, {101, 999}, {190, 42697}, {644, 3872}, {664, 17079}, {668, 20925}, {1000, 514}, {1018, 3753}, {1252, 35281}, {1331, 22129}, {3699, 28808}, {3952, 4054}, {4752, 40587}, {30680, 4025}, {34446, 649}, {36916, 522}


X(51565) = ISOTOMIC CONJUGATE OF X(22464)

Barycentrics    (a - b - c)*(a^3 - a^2*b - a*b^2 + b^3 + 2*a*b*c - a*c^2 - b*c^2)*(a^3 - a*b^2 - a^2*c + 2*a*b*c - b^2*c - a*c^2 + c^3) : :
X(51565) = 3 X[5731] - 2 X[38554], 5 X[3616] - 4 X[15252], 3 X[5603] - 2 X[21664]

X(51565) lies on these the conic {{A,B,C,X(1),X(3)}} and these lines: {1, 318}, {3, 8}, {4, 945}, {75, 77}, {78, 341}, {102, 515}, {124, 18340}, {145, 280}, {200, 4738}, {219, 346}, {283, 643}, {284, 2322}, {296, 518}, {332, 7257}, {497, 3478}, {517, 10538}, {519, 1795}, {522, 10703}, {909, 2359}, {947, 5882}, {951, 10106}, {1036, 3486}, {1037, 3476}, {1057, 3488}, {1069, 36626}, {1219, 34051}, {1280, 2401}, {1317, 4081}, {1320, 2804}, {1794, 6737}, {1807, 4358}, {2370, 2720}, {2811, 10695}, {2829, 33650}, {3345, 12650}, {3422, 37295}, {3616, 15252}, {3903, 4451}, {4768, 37628}, {4861, 6742}, {5603, 21664}, {6556, 7080}, {6734, 40442}, {6735, 32851}, {6736, 50914}, {7046, 7967}, {7219, 36977}, {14942, 23696}, {24203, 34387}, {26027, 43533}, {38460, 48380}

X(51565) = reflection of X(i) in X(j) for these {i,j}: {8, 2968}, {1897, 1}, {18340, 124}
X(51565) = isogonal conjugate of X(1457)
X(51565) = isotomic conjugate of X(22464)
X(51565) = isotomic conjugate of the isogonal conjugate of X(2342)
X(51565) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {102, 153}, {104, 151}
X(51565) = X(18816)-Ceva conjugate of X(34234)
X(51565) = X(i)-cross conjugate of X(j) for these (i,j): {519, 8}, {2323, 333}, {4768, 3699}, {36910, 4997}, {37628, 36037}, {46391, 653}
X(51565) = X(i)-isoconjugate of X(j) for these (i,j): {1, 1457}, {3, 1875}, {6, 1465}, {31, 22464}, {34, 22350}, {56, 517}, {57, 2183}, {59, 42753}, {65, 859}, {104, 1361}, {108, 8677}, {109, 1769}, {222, 14571}, {513, 23981}, {603, 1785}, {604, 908}, {649, 24029}, {651, 3310}, {1014, 51377}, {1106, 6735}, {1145, 1417}, {1319, 14260}, {1397, 3262}, {1398, 51379}, {1402, 17139}, {1408, 17757}, {1411, 34586}, {1412, 21801}, {1415, 10015}, {1459, 23706}, {1461, 46393}, {1846, 36058}, {2149, 42754}, {2427, 3669}, {2720, 42757}, {7023, 51380}, {16945, 51433}, {17101, 34346}, {18026, 23220}, {18838, 39173}, {23980, 34051}, {24027, 35015}, {32735, 42758}, {36040, 42755}, {36059, 39534}, {36141, 42762}
X(51565) = X(i)-Dao conjugate of X(j) for these (i, j): (1, 517), (2, 22464), (3, 1457), (8, 51433), (9, 1465), (11, 1769), (522, 35015), (650, 42754), (656, 35014), (1145, 24028), (1146, 10015), (2968, 2804), (3161, 908), (5375, 24029), (5452, 2183), (6552, 6735), (6615, 42753), (7952, 1785), (10017, 42755), (11517, 22350), (20619, 1846), (20620, 39534), (23757, 3326), (35091, 42762), (35111, 51419), (35204, 34586), (35508, 46393), (36103, 1875), (36944, 515), (38981, 42757), (38983, 8677), (38991, 3310), (39026, 23981), (40599, 21801), (40602, 859), (40605, 17139), (40613, 1361), (40624, 36038), (40625, 23788), (51402, 23757)
X(51565) = cevapoint of X(i) and X(j) for these (i,j): {1, 515}, {8, 4511}, {104, 15501}, {200, 2325}, {519, 36944}, {663, 4530}, {1639, 4081}, {2968, 39471}
X(51565) = crosspoint of X(i) and X(j) for these (i,j): {4997, 34393}, {18816, 36795}
X(51565) = trilinear pole of line {9, 652}
X(51565) = barycentric product X(i)*X(j) for these {i,j}: {1, 36795}, {8, 34234}, {9, 18816}, {76, 2342}, {78, 16082}, {92, 1809}, {104, 312}, {190, 43728}, {314, 2250}, {333, 38955}, {341, 34051}, {345, 36123}, {522, 13136}, {909, 3596}, {1309, 6332}, {1795, 7017}, {2401, 3699}, {2968, 39294}, {4391, 36037}, {4397, 37136}, {4997, 36944}, {6335, 37628}, {15416, 36110}, {15501, 34404}, {28659, 34858}, {30608, 36921}, {32641, 35519}, {32851, 40437}, {36796, 36819}
X(51565) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 1465}, {2, 22464}, {6, 1457}, {8, 908}, {9, 517}, {11, 42754}, {19, 1875}, {33, 14571}, {55, 2183}, {100, 24029}, {101, 23981}, {104, 57}, {210, 21801}, {219, 22350}, {281, 1785}, {284, 859}, {312, 3262}, {333, 17139}, {346, 6735}, {391, 51423}, {522, 10015}, {650, 1769}, {652, 8677}, {663, 3310}, {728, 51380}, {909, 56}, {950, 51410}, {1146, 35015}, {1309, 653}, {1334, 51377}, {1639, 23757}, {1697, 51413}, {1731, 15906}, {1783, 23706}, {1795, 222}, {1809, 63}, {2170, 42753}, {2183, 1361}, {2250, 65}, {2316, 14260}, {2321, 17757}, {2323, 34586}, {2325, 1145}, {2342, 6}, {2401, 3676}, {2423, 43924}, {2720, 1461}, {3064, 39534}, {3161, 51433}, {3239, 2804}, {3684, 15507}, {3685, 51381}, {3686, 51409}, {3692, 51379}, {3699, 2397}, {3710, 51367}, {3717, 51390}, {3900, 46393}, {3939, 2427}, {4391, 36038}, {4511, 16586}, {4530, 3259}, {4560, 23788}, {4873, 51362}, {5853, 51419}, {6366, 42762}, {6735, 26611}, {8756, 1846}, {13136, 664}, {14400, 42750}, {14430, 42764}, {14432, 42760}, {14578, 603}, {14776, 32674}, {15501, 223}, {16082, 273}, {18816, 85}, {21044, 42759}, {32641, 109}, {34051, 269}, {34234, 7}, {34591, 35014}, {34858, 604}, {36037, 651}, {36110, 32714}, {36123, 278}, {36795, 75}, {36819, 241}, {36921, 5219}, {36944, 3911}, {37136, 934}, {37628, 905}, {38955, 226}, {40437, 2006}, {43728, 514}, {46393, 42757}
X(51565) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {104, 36921, 38955}, {104, 38955, 34234}, {36921, 36944, 34234}, {36944, 38955, 104}


X(51566) = ISOTOMIC CONJUGATE OF X(23800)

Barycentrics    (a - b)*b*(a - c)*c*(a^3 + b^3 - a*b*c - a*c^2 - b*c^2)*(a^3 - a*b^2 - a*b*c - b^2*c + c^3) : :

X(51566) lies on these lines: {100, 1305}, {272, 40039}, {322, 1320}, {334, 7270}, {643, 668}, {644, 4033}, {2218, 8851}, {3699, 27808}, {6386, 7257}, {6740, 20566}, {14942, 40011}, {29013, 29014}

X(51566) = isotomic conjugate of X(23800)
X(51566) = X(i)-cross conjugate of X(j) for these (i,j): {27410, 46102}, {44426, 312}
X(51566) = X(i)-isoconjugate of X(j) for these (i,j): {6, 43060}, {31, 23800}, {56, 8676}, {209, 3733}, {513, 2352}, {579, 649}, {663, 4306}, {667, 3868}, {1019, 2198}, {1397, 20294}, {1919, 18134}, {3190, 43924}, {5190, 32660}
X(51566) = X(i)-Dao conjugate of X(j) for these (i, j): (1, 8676), (2, 23800), (9, 43060), (5375, 579), (6631, 3868), (9296, 18134), (39026, 2352)
X(51566) = cevapoint of X(i) and X(j) for these (i,j): {1, 29013}, {78, 4391}, {306, 522}
X(51566) = trilinear pole of line {9, 321}
X(51566) = barycentric product X(i)*X(j) for these {i,j}: {100, 40011}, {190, 2997}, {272, 4033}, {312, 1305}, {644, 15467}, {668, 1751}, {799, 41506}, {811, 40161}, {1978, 2218}
X(51566) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 43060}, {2, 23800}, {9, 8676}, {100, 579}, {101, 2352}, {190, 3868}, {272, 1019}, {312, 20294}, {644, 3190}, {651, 4306}, {668, 18134}, {1018, 209}, {1305, 57}, {1751, 513}, {2218, 649}, {2997, 514}, {3699, 27396}, {3952, 22021}, {4557, 2198}, {6335, 5125}, {15467, 24002}, {23289, 2170}, {35519, 17878}, {40011, 693}, {40161, 656}, {41506, 661}, {44426, 5190}


X(51567) = X(2)X(644)∩X(7)X(100)

Barycentrics    (a^3 - a^2*b - a*b^2 + b^3 - 2*a^2*c + 2*a*b*c - 2*b^2*c + a*c^2 + b*c^2)*(a^3 - 2*a^2*b + a*b^2 - a^2*c + 2*a*b*c + b^2*c - a*c^2 - 2*b*c^2 + c^3) : :

X(51567) lies on the conic {{A,B,C,X(2),X(7)}} and these lines: {2, 644}, {7, 100}, {75, 3699}, {86, 643}, {200, 1111}, {273, 1897}, {310, 7257}, {527, 2291}, {664, 1088}, {673, 908}, {675, 2742}, {1280, 4453}, {1320, 6548}, {1440, 13138}, {3306, 27475}, {3903, 7249}, {3935, 30806}, {4025, 24841}, {4373, 31343}, {5057, 10426}, {5328, 42318}, {9436, 36037}, {13588, 39734}, {14828, 39704}, {14942, 36038}, {17740, 39749}, {30565, 41798}, {32851, 36807}, {36620, 36845}, {37206, 38375}

X(51567) = isotomic conjugate of X(26015)
X(51567) = isotomic conjugate of the anticomplement of X(6745)
X(51567) = isotomic conjugate of the complement of X(3935)
X(51567) = X(10426)-anticomplementary conjugate of X(329)
X(51567) = X(i)-cross conjugate of X(j) for these (i,j): {3254, 1121}, {3887, 190}, {6745, 2}, {35348, 37143}
X(51567) = X(i)-isoconjugate of X(j) for these (i,j): {6, 43065}, {31, 26015}, {32, 37788}, {41, 30379}, {55, 3660}, {56, 15733}, {692, 2826}, {2175, 38468}, {5580, 15728}, {10427, 34068}
X(51567) = X(i)-Dao conjugate of X(j) for these (i, j): (1, 15733), (2, 26015), (9, 43065), (223, 3660), (1086, 2826), (1212, 41555), (3160, 30379), (6376, 37788), (35110, 10427), (40593, 38468)
X(51567) = cevapoint of X(i) and X(j) for these (i,j): {1, 527}, {2, 3935}, {1086, 6366}, {4105, 33573}
X(51567) = trilinear pole of line {9, 514}
X(51567) = barycentric product X(i)*X(j) for these {i,j}: {8, 43762}, {85, 34894}, {312, 15728}, {2742, 3261}
X(51567) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 43065}, {2, 26015}, {7, 30379}, {9, 15733}, {57, 3660}, {75, 37788}, {85, 38468}, {142, 41555}, {514, 2826}, {527, 10427}, {2742, 101}, {3911, 41556}, {10426, 2291}, {15728, 57}, {34894, 9}, {43762, 7}, {50573, 18801}


X(51568) = ISOTOMIC CONJUGATE OF X(47695)

Barycentrics    (a - b)*(a - c)*(a^3 + b^3 - a^2*c - a*b*c - b^2*c + a*c^2 + b*c^2 - c^3)*(a^3 - a^2*b + a*b^2 - b^3 - a*b*c + b^2*c - b*c^2 + c^3) : :

X(51568) lies on these lines: {100, 4025}, {643, 4576}, {644, 4568}, {693, 1897}, {918, 919}, {927, 47695}, {1280, 9436}, {1320, 49771}, {3100, 14942}, {3218, 32029}, {3699, 25724}, {4560, 41676}, {15420, 17136}, {31022, 31058}

X(51568) = isotomic conjugate of X(47695)
X(51568) = isotomic conjugate of the anticomplement of X(50333)
X(51568) = X(i)-cross conjugate of X(j) for these (i,j): {9053, 1016}, {23696, 36101}, {35333, 660}, {50333, 2}
X(51568) = X(i)-isoconjugate of X(j) for these (i,j): {31, 47695}, {513, 40910}, {663, 4318}, {667, 32850}, {36086, 38363}
X(51568) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 47695), (6631, 32850), (38989, 38363), (39026, 40910)
X(51568) = cevapoint of X(i) and X(j) for these (i,j): {1, 918}, {39, 926}, {518, 905}, {522, 3008}, {16502, 21003}
X(51568) = trilinear pole of line {9, 141}
X(51568) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 47695}, {101, 40910}, {190, 32850}, {651, 4318}, {665, 38363}


X(51569) = X(1)X(149)∩X(2)X(3065)

Barycentrics    (a^3 + a^2*b - a*b^2 - b^3 + a^2*c - a*b*c + b^2*c - a*c^2 + b*c^2 - c^3)*(a^3*b - a^2*b^2 - a*b^3 + b^4 + a^3*c + 2*a^2*b*c - a^2*c^2 - 2*b^2*c^2 - a*c^3 + c^4) : :
X(51569) = 3 X[2475] + X[6224], X[6224] - 3 X[34600], 3 X[11263] - X[21630], 3 X[11263] - 2 X[33593], 2 X[33812] - 3 X[39778], X[80] - 3 X[6175], 3 X[442] - 2 X[6702], X[3652] - 3 X[38752], X[12531] - 3 X[47033], 3 X[15015] + X[16118], X[16113] - 3 X[34474], X[26726] - 3 X[34195]

X(51569) lies on the Feuerbach circumhyperbola of the medial triangle and on these lines: {1, 149}, {2, 3065}, {3, 16128}, {10, 2771}, {11, 6701}, {30, 214}, {79, 100}, {80, 6175}, {140, 33856}, {226, 41541}, {442, 6702}, {484, 17484}, {758, 1145}, {908, 35204}, {946, 35597}, {952, 49107}, {1125, 46816}, {2476, 41862}, {2800, 37401}, {2802, 3649}, {3035, 3647}, {3651, 47034}, {3652, 38752}, {5134, 39041}, {5840, 16125}, {5856, 13159}, {6265, 47032}, {6326, 6951}, {6594, 17768}, {6972, 15017}, {8261, 12267}, {9945, 12444}, {10087, 16153}, {10090, 16152}, {10123, 11517}, {11530, 12247}, {12531, 47033}, {15015, 16118}, {15767, 19658}, {16113, 34474}, {17532, 50889}, {19079, 19113}, {19080, 19112}, {26726, 34195}, {33557, 34789}, {36004, 50844}, {40587, 50798}, {48714, 49243}, {48715, 49242}

X(51569) = midpoint of X(i) and X(j) for these {i,j}: {79, 100}, {2475, 34600}, {3651, 47034}, {6265, 47032}, {11604, 13146}, {33557, 34789}
X(51569) = reflection of X(i) in X(j) for these {i,j}: {11, 6701}, {3647, 3035}, {21630, 33593}, {33856, 140}, {46816, 1125}
X(51569) = complement of X(3065)
X(51569) = complement of the isogonal conjugate of X(484)
X(51569) = complement of the isotomic conjugate of X(17791)
X(51569) = medial-isogonal conjugate of X(11813)
X(51569) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 11813}, {6, 3218}, {56, 3582}, {106, 33709}, {484, 10}, {1411, 33593}, {4559, 32679}, {6126, 214}, {11076, 5249}, {17484, 141}, {17791, 2887}, {19297, 2}, {21864, 1211}, {23071, 3}, {35055, 34589}, {42657, 1146}, {47058, 3834}, {50148, 25639}
X(51569) = crosspoint of X(2) and X(17791)
X(51569) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11263, 21630, 33593}, {11604, 31019, 33593}


X(51570) = X(1)X(89)∩X(2)X(5561)

Barycentrics    a*(4*a + b + c)*(2*a^2 - 2*b^2 - b*c - 2*c^2) : :
X(51570) = 3 X[1] - 5 X[2320], 3 X[1] + 5 X[16558], 3 X[551] - 2 X[39782], 6 X[3828] - 5 X[17057], 5 X[10129] - 8 X[19878]

X(51570) lies on the Feuerbach circumhyperbola of the medial triangle and on these lines: {1, 89}, {2, 5561}, {10, 550}, {119, 10164}, {142, 5122}, {214, 4640}, {442, 51073}, {551, 4031}, {993, 40587}, {1145, 4669}, {2092, 16669}, {3828, 17057}, {4134, 5010}, {4781, 4793}, {4867, 17549}, {4973, 42819}, {6594, 15481}, {7171, 49183}, {10129, 19878}, {10427, 51090}, {12514, 45036}, {16675, 34261}, {22266, 50240}, {41451, 49712}, {41886, 49992}

X(51570) = midpoint of X(2320) and X(16558)
X(51570) = complement of X(5561)
X(51570) = complement of the isogonal conjugate of X(5010)
X(51570) = complement of the isotomic conjugate of X(17360)
X(51570) = X(i)-complementary conjugate of X(j) for these (i,j): {6, 31019}, {31, 16666}, {692, 4944}, {4134, 3454}, {5010, 10}, {17360, 2887}, {34073, 21199}
X(51570) = X(2)-Ceva conjugate of X(16666)
X(51570) = X(5561)-isoconjugate of X(41434)
X(51570) = X(16666)-Dao conjugate of X(2)
X(51570) = crosspoint of X(2) and X(17360)
X(51570) = barycentric product X(i)*X(j) for these {i,j}: {4134, 26860}, {5010, 24589}, {16666, 17360}
X(51570) = barycentric quotient X(i)/X(j) for these {i,j}: {4134, 27797}, {5010, 40434}, {16666, 5561}


X(51571) = X(1)X(141)∩X(2)X(2221)

Barycentrics    (a*b + b^2 + a*c + c^2)*(a^2*b + b^3 + a^2*c + 2*a*b*c + b^2*c + b*c^2 + c^3) : :

X(51571) lies on the Feuerbach circumhyperbola of the medial triangle and on these lines: {1, 141}, {2, 2221}, {3, 16872}, {9, 5743}, {10, 8230}, {142, 2887}, {332, 38814}, {442, 3739}, {966, 27509}, {1145, 17239}, {1211, 2092}, {1460, 26034}, {2345, 7377}, {2886, 10472}, {3126, 50330}, {3220, 49728}, {3846, 21246}, {3883, 37539}, {4000, 16062}, {5132, 11517}, {5241, 17353}, {6703, 16470}, {15985, 19557}, {17257, 17740}, {17382, 50051}, {18635, 21240}, {20891, 26601}, {21250, 41886}, {27626, 37266}, {34824, 41862}, {35204, 45388}

X(51571) = complement of X(2298)
X(51571) = complement of the isogonal conjugate of X(3666)
X(51571) = complement of the isotomic conjugate of X(20911)
X(51571) = medial-isogonal conjugate of X(44417)
X(51571) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 44417}, {2, 3831}, {6, 5750}, {56, 39595}, {57, 3812}, {58, 6703}, {63, 37613}, {81, 49598}, {109, 3910}, {110, 8045}, {190, 6371}, {256, 15985}, {513, 17197}, {649, 3125}, {960, 3452}, {1193, 2}, {1211, 3454}, {1829, 226}, {1848, 5}, {2092, 1213}, {2269, 9}, {2292, 1211}, {2300, 37}, {2354, 6}, {3004, 116}, {3666, 10}, {3674, 2886}, {3687, 1329}, {3725, 16589}, {3733, 24195}, {3882, 513}, {3910, 124}, {4267, 5745}, {4357, 141}, {4509, 21252}, {6371, 1086}, {16705, 3741}, {16739, 21240}, {17185, 960}, {17420, 26932}, {18697, 21245}, {20911, 2887}, {20967, 1212}, {21124, 125}, {22076, 440}, {22097, 3}, {22345, 1214}, {24471, 142}, {27455, 3840}, {40153, 1125}, {40966, 38930}, {40976, 46835}, {41003, 17052}, {42467, 44545}, {42661, 6627}, {45218, 21024}, {46878, 41883}, {48131, 11}, {50330, 8287}, {51414, 117}
X(51571) = X(100)-Ceva conjugate of X(3910)
X(51571) = crosspoint of X(2) and X(20911)
X(51571) = barycentric quotient X(29142)/X(4581)


X(51572) = X(1)X(210)∩X(10)X(381)

Barycentrics    a*(a + 2*b + 2*c)*(a^2 - b^2 - 4*b*c - c^2) : :
X(51572) = X[1] - 3 X[3646], X[1] + 3 X[4866], 3 X[3646] - 2 X[14150], 3 X[4866] + 2 X[14150], 7 X[9780] - 3 X[11024], 5 X[1698] - X[5586], 5 X[1698] + X[41852]

X(51572) lies on the Feuerbach circumhyperbola of the medial triangle and on these lines: {1, 210}, {2, 3296}, {3, 3740}, {5, 38057}, {8, 15170}, {9, 3579}, {10, 381}, {44, 34261}, {45, 2092}, {55, 41872}, {119, 9711}, {142, 3634}, {149, 1145}, {214, 958}, {329, 442}, {354, 16855}, {405, 4420}, {517, 11530}, {518, 16853}, {936, 13624}, {952, 45085}, {960, 8148}, {1001, 4015}, {1158, 51516}, {1376, 3647}, {1482, 10176}, {1698, 3715}, {2551, 18357}, {3126, 47949}, {3240, 4204}, {3295, 3305}, {3303, 5506}, {3452, 12864}, {3626, 12640}, {3678, 15934}, {3681, 16842}, {3711, 5259}, {3811, 16857}, {3873, 16854}, {3913, 3956}, {3921, 5250}, {4075, 4361}, {4413, 37524}, {4430, 17546}, {4539, 11520}, {4661, 17534}, {4662, 6767}, {4860, 19872}, {4930, 19860}, {5217, 35204}, {5258, 35272}, {5273, 47742}, {5297, 37060}, {5534, 38031}, {5550, 17590}, {5686, 17559}, {5687, 27065}, {5715, 9956}, {5779, 6684}, {5790, 48482}, {5886, 31494}, {6260, 26446}, {6537, 8818}, {6600, 8668}, {8580, 31445}, {9623, 11278}, {9669, 25006}, {10164, 12684}, {10427, 45084}, {10864, 33575}, {10941, 17757}, {11231, 31446}, {11517, 13615}, {12331, 18233}, {13089, 37572}, {16408, 32636}, {16860, 37080}, {17057, 37567}, {18228, 31419}, {18250, 31673}, {18253, 48668}, {22793, 38200}, {25568, 50205}, {26066, 41540}, {26202, 35238}, {31594, 40653}, {37271, 37582}, {48928, 49730}

X(51572) = midpoint of X(i) and X(j) for these {i,j}: {3646, 4866}, {5586, 41852}
X(51572) = reflection of X(1) in X(14150)
X(51572) = complement of X(3296)
X(51572) = complement of the isogonal conjugate of X(3295)
X(51572) = complement of the isotomic conjugate of X(42696)
X(51572) = medial-isogonal conjugate of X(31419)
X(51572) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 31419}, {31, 16777}, {48, 6349}, {692, 4765}, {3295, 10}, {3305, 141}, {3697, 3454}, {4917, 2885}, {7190, 2886}, {42032, 21244}, {42696, 2887}, {47965, 116}, {48268, 21252}, {48340, 11}
X(51572) = X(2)-Ceva conjugate of X(16777)
X(51572) = X(16777)-Dao conjugate of X(2)
X(51572) = crosspoint of X(2) and X(42696)
X(51572) = barycentric product X(i)*X(j) for these {i,j}: {1698, 3305}, {3295, 28605}, {3697, 5333}, {4007, 7190}, {4756, 47965}, {5221, 42032}, {16777, 42696}
X(51572) = barycentric quotient X(i)/X(j) for these {i,j}: {3295, 25417}, {3305, 30598}, {3927, 30679}, {16777, 3296}, {48340, 48074}
X(51572) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3646, 14150}, {1698, 3715, 3927}, {3305, 3697, 3295}, {3634, 5220, 5708}


X(51573) = X(1)X(748)∩X(10)X(546)

Barycentrics    a*(2*a + 3*b + 3*c)*(a^2 - b^2 - 3*b*c - c^2) : :
X(51573) = X[1] - 5 X[5506], X[1] + 5 X[32635], 6 X[3828] - 5 X[34501], 4 X[3634] - X[34502], 5 X[9782] - 13 X[19877]

X(51573) lies on the Feuerbach circumhyperbola of the medial triangle and on these lines: {1, 748}, {2, 5557}, {3, 15064}, {10, 546}, {142, 5852}, {214, 5044}, {442, 3828}, {993, 45036}, {1145, 4691}, {2092, 16814}, {3634, 3982}, {3647, 3740}, {3715, 3874}, {3746, 4015}, {3878, 40587}, {3881, 35595}, {3951, 5883}, {4547, 5259}, {4669, 12640}, {4701, 15862}, {4973, 17531}, {5220, 16855}, {5302, 17502}, {5905, 9782}, {7997, 25440}, {12864, 21616}, {13089, 35982}, {16885, 34261}, {17057, 46933}, {19883, 50205}, {24036, 39041}, {38130, 43182}

X(51573) = midpoint of X(5506) and X(32635)
X(51573) = complement of X(5557)
X(51573) = complement of the isogonal conjugate of X(3746)
X(51573) = complement of the isotomic conjugate of X(5564)
X(51573) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 3723}, {692, 4976}, {3746, 10}, {4015, 3454}, {5564, 2887}, {7269, 2886}, {27065, 141}, {48003, 116}, {48306, 11}
X(51573) = X(2)-Ceva conjugate of X(3723)
X(51573) = X(3723)-Dao conjugate of X(2)
X(51573) = crosspoint of X(2) and X(5564)
X(51573) = barycentric product X(i)*X(j) for these {i,j}: {3634, 27065}, {3723, 5564}, {3746, 4980}, {4060, 7269}
X(51573) = barycentric quotient X(3723)/X(5557)


X(51574) = X(1)X(4261)∩X(3)X(48)

Barycentrics    a^2*(b + c)*(a^2 - b^2 - c^2)*(a^2*b - b^3 + a^2*c + a*b*c - c^3) : :

X(51574) lies on the Feuerbach circumhyperbola of the medial triangle and on these lines: {1, 4261}, {2, 2335}, {3, 48}, {6, 11517}, {10, 5721}, {37, 442}, {42, 6600}, {72, 18591}, {100, 1172}, {119, 1826}, {142, 3666}, {198, 4456}, {209, 579}, {214, 50650}, {216, 5440}, {284, 2983}, {306, 307}, {313, 25252}, {346, 26027}, {906, 1333}, {1108, 1145}, {1400, 23067}, {2092, 16584}, {2257, 3293}, {2276, 11358}, {2360, 38868}, {3126, 50350}, {4055, 20741}, {4255, 15276}, {5125, 27396}, {6260, 8804}, {17077, 17740}, {17757, 21854}, {18734, 25083}, {22276, 40600}, {33149, 41862}

X(51574) = isogonal conjugate of X(40574)
X(51574) = complement of X(2997)
X(51574) = complement of the isogonal conjugate of X(2352)
X(51574) = complement of the isotomic conjugate of X(3868)
X(51574) = isotomic conjugate of the polar conjugate of X(209)
X(51574) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 72}, {109, 8676}, {184, 7515}, {209, 3454}, {579, 141}, {2198, 1211}, {2352, 10}, {3190, 1329}, {3868, 2887}, {4306, 2886}, {5125, 21243}, {8676, 124}, {18134, 626}, {22021, 21245}, {23800, 21252}, {27396, 21244}, {41320, 41883}, {43060, 116}
X(51574) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 72}, {100, 8676}, {2983, 219}, {27396, 22021}
X(51574) = X(i)-isoconjugate of X(j) for these (i,j): {1, 40574}, {19, 272}, {27, 2218}, {28, 1751}, {1474, 2997}, {2203, 40011}, {2204, 15467}
X(51574) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 40574), (6, 272), (72, 2), (40591, 1751)
X(51574) = crosspoint of X(2) and X(3868)
X(51574) = crosssum of X(6) and X(2218)
X(51574) = barycentric product X(i)*X(j) for these {i,j}: {63, 22021}, {69, 209}, {71, 18134}, {72, 3868}, {304, 2198}, {306, 579}, {307, 3190}, {1214, 27396}, {2352, 20336}, {3682, 5125}, {3710, 4306}, {20294, 23067}
X(51574) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 272}, {6, 40574}, {71, 1751}, {72, 2997}, {209, 4}, {228, 2218}, {306, 40011}, {307, 15467}, {579, 27}, {2198, 19}, {2352, 28}, {3190, 29}, {3690, 41506}, {3868, 286}, {7066, 28786}, {18134, 44129}, {22021, 92}, {23067, 1305}, {27396, 31623}, {40572, 40395}, {41320, 8748}, {43060, 17925}
X(51574) = {X(71),X(3682)}-harmonic conjugate of X(219)


X(51575) = X(1)X(75)∩X(2)X(256)

Barycentrics    (a^2 + b*c)*(a*b^2 + b^2*c + a*c^2 + b*c^2) : :

X(51575) lies on the Feuerbach circumhyperbola of the medial triangle and on these lines: {1, 75}, {2, 256}, {3, 3923}, {9, 1755}, {10, 511}, {37, 3229}, {141, 24327}, {142, 3840}, {171, 385}, {214, 2783}, {244, 27017}, {333, 25123}, {442, 3831}, {714, 16696}, {896, 17350}, {1125, 28358}, {1145, 40608}, {1221, 7168}, {1403, 3980}, {1431, 16609}, {1441, 41350}, {1575, 2092}, {1580, 27958}, {1581, 36800}, {1909, 7184}, {2309, 20891}, {2345, 19584}, {2887, 29967}, {3122, 26979}, {3123, 26971}, {3647, 29301}, {3662, 30982}, {3663, 12263}, {3724, 4418}, {3728, 16738}, {3739, 19563}, {3741, 30097}, {3794, 27798}, {3821, 37148}, {3846, 21246}, {3978, 27890}, {4039, 28369}, {4357, 5976}, {4363, 20990}, {4368, 45705}, {4459, 27697}, {4553, 28593}, {4672, 5156}, {5224, 25120}, {6184, 17355}, {6600, 29670}, {7104, 25842}, {7227, 25382}, {7379, 50295}, {8053, 24425}, {8845, 16917}, {10472, 37521}, {12640, 35104}, {17178, 25295}, {17260, 24003}, {17277, 25106}, {17787, 40790}, {17861, 24293}, {19270, 25079}, {19278, 25591}, {20236, 24255}, {20359, 31993}, {20892, 21352}, {21330, 27145}, {21688, 30055}, {24450, 27164}, {24456, 26107}, {24697, 25688}, {25570, 34284}, {25785, 44187}, {28604, 40848}, {29649, 34261}, {30035, 31330}, {31785, 35628}, {32935, 44421}, {35078, 35118}, {37596, 42027}, {37619, 40600}, {49488, 50598}, {50169, 50299}

X(51575) = midpoint of X(i) and X(j) for these {i,j}: {314, 1045}, {7168, 18830}
X(51575) = complement of X(256)
X(51575) = complement of the isogonal conjugate of X(171)
X(51575) = complement of the isotomic conjugate of X(1909)
X(51575) = medial isogonal conjugate of X(3846)
X(51575) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 3846}, {6, 4357}, {31, 1107}, {37, 46826}, {56, 24239}, {57, 17062}, {58, 6682}, {100, 21051}, {101, 25666}, {109, 3907}, {171, 10}, {172, 2}, {292, 325}, {335, 5031}, {385, 20333}, {604, 28358}, {692, 3709}, {893, 26558}, {894, 141}, {1215, 3454}, {1415, 24782}, {1492, 3805}, {1580, 17793}, {1691, 17755}, {1909, 2887}, {1911, 18904}, {1914, 39044}, {1920, 626}, {1922, 3229}, {1966, 20542}, {2162, 30038}, {2295, 1211}, {2298, 15985}, {2329, 3452}, {2330, 9}, {2533, 125}, {3287, 26932}, {3907, 124}, {3955, 3}, {3963, 21245}, {4032, 17052}, {4039, 45162}, {4164, 38989}, {4367, 11}, {4369, 116}, {4374, 21252}, {4434, 121}, {4447, 120}, {4459, 46100}, {4477, 5514}, {4504, 5510}, {4567, 40546}, {4579, 513}, {4588, 48289}, {4774, 15614}, {4922, 3259}, {6647, 31844}, {6649, 17072}, {7009, 5}, {7081, 1329}, {7119, 226}, {7122, 37}, {7175, 142}, {7176, 2886}, {7196, 17046}, {7205, 17047}, {7211, 34829}, {7234, 115}, {7267, 126}, {8033, 21240}, {14006, 34831}, {16720, 21248}, {17103, 3741}, {17752, 21250}, {17787, 21244}, {18047, 3835}, {18111, 44312}, {18200, 17761}, {18787, 3836}, {20964, 1213}, {20981, 1086}, {21725, 24040}, {21823, 23991}, {22061, 440}, {22093, 2968}, {24533, 5518}, {27958, 21246}, {27982, 39080}, {30657, 26582}, {30669, 20541}, {40519, 21099}, {40745, 21264}, {51319, 6376}
X(51575) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 1107}, {100, 3907}
X(51575) = X(i)-isoconjugate of X(j) for these (i,j): {893, 1258}, {904, 40418}, {1221, 7104}, {40409, 40729}
X(51575) = X(i)-Dao conjugate of X(j) for these (i, j): (1107, 2), (21838, 257), (40597, 1258)
X(51575) = crosspoint of X(2) and X(1909)
X(51575) = crosssum of X(6) and X(904)
X(51575) = barycentric product X(i)*X(j) for these {i,j}: {171, 20891}, {274, 27880}, {894, 3741}, {1107, 1909}, {1215, 16738}, {1920, 2309}, {3728, 8033}, {3963, 18169}, {7081, 30097}, {16720, 18091}, {17103, 21024}
X(51575) = barycentric quotient X(i)/X(j) for these {i,j}: {171, 1258}, {894, 40418}, {1107, 256}, {1197, 904}, {1909, 1221}, {2309, 893}, {3741, 257}, {4128, 40525}, {16738, 32010}, {17103, 40409}, {18169, 40432}, {20891, 7018}, {22065, 7015}, {22389, 7116}, {23473, 3863}, {27880, 37}, {30097, 7249}


X(51576) = X(1)X(3052)∩X(10)X(20)

Barycentrics    a*(3*a + b + c)*(3*a^2 - 3*b^2 - 2*b*c - 3*c^2) : :
X(51576) = 2 X[10] - 3 X[18231]

X(51576) lies on the Feuerbach circumhyperbola of the medial triangle and on these lines: {1, 3052}, {2, 5556}, {3, 7992}, {9, 16192}, {10, 20}, {21, 3339}, {35, 5223}, {36, 22754}, {40, 40587}, {55, 9898}, {84, 49183}, {100, 4866}, {119, 10270}, {142, 3624}, {145, 8275}, {191, 30282}, {214, 1768}, {411, 3062}, {442, 16118}, {936, 3647}, {958, 11530}, {960, 45036}, {993, 7991}, {1145, 4668}, {1707, 45784}, {1743, 2092}, {2975, 9819}, {3086, 50836}, {3126, 3803}, {3189, 3632}, {3216, 24708}, {3220, 15592}, {3361, 3616}, {3522, 18249}, {3523, 51090}, {3601, 3962}, {3636, 11034}, {3646, 5122}, {3731, 34261}, {3820, 31425}, {3878, 30392}, {3922, 5128}, {3929, 4005}, {4189, 12526}, {4882, 35445}, {4915, 37568}, {5010, 11517}, {5087, 5131}, {5119, 15347}, {5248, 10980}, {5250, 13462}, {5267, 30389}, {5785, 37105}, {6361, 12864}, {6738, 50742}, {7990, 38669}, {7997, 25440}, {8580, 31445}, {8666, 30337}, {8727, 15908}, {9589, 30478}, {10058, 12653}, {10268, 18481}, {10304, 12447}, {10398, 37284}, {11529, 17571}, {12409, 12639}, {16209, 41540}, {16570, 37574}, {16673, 17736}, {17057, 50239}, {18229, 24850}, {19877, 37161}, {21153, 43182}, {24703, 34595}, {26363, 50865}, {46932, 50725}

X(51576) = complement of X(5556)
X(51576) = complement of the isogonal conjugate of X(5217)
X(51576) = complement of the isotomic conjugate of X(32099)
X(51576) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 1449}, {3929, 141}, {4005, 3454}, {5217, 10}, {32099, 2887}
X(51576) = X(2)-Ceva conjugate of X(1449)
X(51576) = X(2334)-isoconjugate of X(5556)
X(51576) = X(1449)-Dao conjugate of X(2)
X(51576) = crosspoint of X(2) and X(32099)
X(51576) = barycentric product X(i)*X(j) for these {i,j}: {1449, 32099}, {3616, 3929}, {4005, 42028}, {5217, 19804}
X(51576) = barycentric quotient X(i)/X(j) for these {i,j}: {1449, 5556}, {3929, 5936}, {5217, 25430}, {32099, 40023}
X(51576) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {165, 31424, 5234}, {4512, 4652, 3361}, {31445, 35242, 8580}


X(51577) = X(1)X(3922)∩X(2)X(43734)

Barycentrics    a*(3*a - 2*b - 2*c)*(3*a^2 - 3*b^2 + 4*b*c - 3*c^2) : :

X(51577) lies on the Feuerbach circumhyperbola of the medial triangle and on these lines: {1, 3922}, {2, 43734}, {9, 1385}, {10, 3526}, {56, 16126}, {100, 1392}, {119, 6971}, {142, 3636}, {145, 1145}, {214, 1482}, {442, 496}, {517, 45036}, {999, 11517}, {1388, 3632}, {2092, 16884}, {3624, 5727}, {3635, 12640}, {3647, 13465}, {3723, 34261}, {3940, 21842}, {3962, 37618}, {4004, 35262}, {4018, 4930}, {4127, 11194}, {4757, 37545}, {5044, 30392}, {5552, 50843}, {6260, 18481}, {6594, 22836}, {6600, 7373}, {6767, 22754}, {9709, 11530}, {10427, 22791}, {11011, 17573}, {13089, 37525}, {20107, 34700}, {31424, 31662}, {34710, 50844}, {37624, 40587}

X(51577) = complement of X(43734)
X(51577) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 16885}, {4018, 3454}, {4930, 21251}
X(51577) = X(2)-Ceva conjugate of X(16885)
X(51577) = X(16885)-Dao conjugate of X(2)
X(51577) = barycentric product X(4018)*X(4921)
X(51577) = barycentric quotient X(16885)/X(43734)


X(51578) = X(2)X(846)∩X(10)X(99)

Barycentrics    (a^2 + a*b - b^2 + a*c - b*c - c^2)*(2*a^3 + a^2*b - a*b^2 - b^3 + a^2*c - a*c^2 - c^3) : :
X(51578) = 3 X[2] + X[13174], 3 X[10] - X[13178], 3 X[99] + X[13178], X[98] - 3 X[10164], X[147] + 3 X[165], X[148] - 5 X[1698], 3 X[2482] - X[11711], 3 X[551] - X[7983], X[551] - 3 X[41134], X[7983] + 3 X[9881], X[7983] - 9 X[41134], X[9881] + 3 X[41134], 3 X[620] - X[11725], 3 X[1125] - 2 X[11725], X[946] - 3 X[15561], 3 X[3097] + X[8782], X[3626] + 4 X[35022], X[4297] - 3 X[21166], X[9864] + 3 X[21166], X[4745] + 2 X[36521], 3 X[5182] - X[51196], X[5184] + 3 X[7799], 3 X[5587] + X[13172], X[6321] - 3 X[10175], 4 X[6721] - 3 X[10171], 4 X[6722] - 5 X[31253], X[8591] + 3 X[19875], 3 X[19875] - X[50884], 3 X[9167] - X[12258], 7 X[9780] + X[20094], X[9862] - 5 X[35242], 3 X[10165] - 5 X[38750], X[11632] - 3 X[38068], X[11710] - 3 X[38748], 2 X[12571] - 3 X[36519], X[12778] + 3 X[14850], X[13188] + 3 X[26446], 5 X[14061] - 7 X[51073], 3 X[14651] - 7 X[31423], X[15300] + 2 X[51069], 5 X[19862] - 3 X[38220], 7 X[19876] - 3 X[41135], 4 X[19878] - 5 X[31274], 3 X[19883] - X[50886], 3 X[35297] - X[50775], X[35369] - 17 X[46932], 3 X[38098] - X[50885]

X(51578) lies on the Kiepert circumhyperbola of the medial triangle and on these lines: {2, 846}, {3, 2784}, {10, 99}, {39, 8258}, {40, 21636}, {98, 10164}, {100, 8935}, {114, 516}, {115, 3634}, {147, 165}, {148, 1698}, {171, 643}, {244, 41820}, {376, 50879}, {515, 33813}, {519, 2482}, {543, 3828}, {551, 7983}, {620, 1125}, {726, 5976}, {740, 44379}, {946, 15561}, {950, 15452}, {986, 15903}, {1210, 10086}, {1326, 8298}, {1649, 45674}, {2782, 6684}, {2786, 9508}, {2792, 48886}, {2794, 12512}, {3027, 3911}, {3029, 6685}, {3097, 8782}, {3626, 35022}, {3666, 16598}, {4297, 9864}, {4745, 36521}, {5026, 5847}, {5182, 51196}, {5184, 7799}, {5248, 13173}, {5461, 50887}, {5463, 50850}, {5464, 50847}, {5587, 13172}, {6033, 31730}, {6054, 50808}, {6055, 50829}, {6321, 10175}, {6337, 49488}, {6541, 39922}, {6721, 10171}, {6722, 31253}, {8290, 17766}, {8591, 19875}, {9167, 12258}, {9780, 20094}, {9862, 35242}, {9884, 34641}, {10026, 17770}, {10089, 31397}, {10165, 38750}, {10353, 10789}, {11632, 38068}, {11710, 38748}, {12117, 34648}, {12571, 36519}, {12778, 14850}, {12780, 51114}, {12781, 51115}, {13188, 26446}, {13405, 24472}, {13883, 49267}, {13936, 49266}, {14061, 51073}, {14651, 31423}, {15300, 51069}, {17768, 44399}, {19108, 49548}, {19109, 49547}, {19862, 38220}, {19876, 41135}, {19878, 31274}, {19883, 50886}, {19925, 23698}, {20362, 20687}, {22505, 28150}, {28158, 39838}, {28164, 38738}, {31422, 43449}, {31673, 38730}, {31737, 39846}, {34379, 50567}, {35297, 50775}, {35369, 46932}, {38098, 50885}, {38481, 43223}, {39652, 49545}

X(51578) = midpoint of X(i) and X(j) for these {i,j}: {10, 99}, {40, 21636}, {376, 50879}, {551, 9881}, {4297, 9864}, {5463, 50850}, {5464, 50847}, {6033, 31730}, {6054, 50808}, {8591, 50884}, {9884, 34641}, {11599, 13174}, {12117, 34648}, {12780, 51114}, {12781, 51115}, {31673, 38730}, {31737, 39846}
X(51578) = reflection of X(i) in X(j) for these {i,j}: {115, 3634}, {1125, 620}, {6055, 50829}, {50887, 5461}
X(51578) = complement of X(11599)
X(51578) = complement of the isogonal conjugate of X(1326)
X(51578) = complement of the isotomic conjugate of X(17731)
X(51578) = polar conjugate of the isogonal conjugate of X(20784)
X(51578) = medial-isogonal conjugate of X(20546)
X(51578) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 20546}, {6, 20337}, {31, 10026}, {58, 49676}, {163, 2786}, {423, 20305}, {1326, 10}, {1333, 239}, {1757, 3454}, {1931, 141}, {2786, 21253}, {5029, 8287}, {6542, 21245}, {8298, 45162}, {9508, 125}, {17731, 2887}, {17735, 1211}, {17934, 21260}, {17943, 513}, {17976, 21530}, {18266, 1213}
X(51578) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 10026}, {99, 2786}
X(51578) = X(1929)-isoconjugate of X(28482)
X(51578) = X(i)-Dao conjugate of X(j) for these (i, j): (10026, 2), (35114, 6650), (41841, 35162)
X(51578) = crosspoint of X(2) and X(17731)
X(51578) = crosssum of X(6) and X(2054)
X(51578) = crossdifference of every pair of points on line {5029, 17962}
X(51578) = barycentric product X(i)*X(j) for these {i,j}: {264, 20784}, {4600, 41180}, {6542, 17770}, {10026, 17731}
X(51578) = barycentric quotient X(i)/X(j) for these {i,j}: {6542, 35162}, {10026, 11599}, {17735, 28482}, {17770, 6650}, {20666, 2054}, {20784, 3}, {41180, 3120}
X(51578) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 13174, 11599}, {8591, 19875, 50884}, {9864, 21166, 4297}, {9881, 41134, 551}


X(51579) = X(2)X(15815)∩X(20)X(114)

Barycentrics    (5*a^2 - 3*b^2 - 3*c^2)*(3*a^2 - b^2 - c^2) : :

X(51579) lies on the Kiepert circumhyperbola of the medial triangle and on these lines: {2, 15815}, {3, 3620}, {20, 114}, {39, 32973}, {99, 2996}, {193, 439}, {489, 33364}, {490, 33365}, {620, 32972}, {629, 18581}, {630, 18582}, {641, 6561}, {642, 6560}, {1003, 5395}, {1125, 17304}, {2482, 3926}, {3091, 14162}, {3291, 18287}, {3314, 21734}, {3522, 7710}, {3523, 11257}, {3788, 33272}, {5023, 20080}, {5032, 11165}, {5056, 38228}, {5059, 7925}, {5204, 8299}, {5304, 10335}, {5940, 40321}, {5976, 20081}, {6292, 15515}, {6392, 35297}, {6461, 37784}, {6462, 45515}, {6463, 45514}, {6503, 35296}, {6636, 40125}, {7487, 34835}, {7763, 35927}, {7782, 32974}, {7783, 33205}, {7795, 15810}, {7816, 32987}, {7836, 10304}, {7879, 19708}, {7881, 21735}, {8290, 33014}, {8598, 32823}, {10565, 30793}, {13586, 32831}, {14063, 45017}, {15814, 33192}, {20094, 33262}, {21843, 32824}, {32456, 32816}, {32834, 33274}, {32835, 33007}, {32868, 34506}, {32871, 33016}, {32898, 33013}, {33228, 39142}, {33620, 35303}, {33621, 35304}

X(51579) = reflection of X(38259) in X(39143)
X(51579) = complement of X(38259)
X(51579) = anticomplement of X(39143)
X(51579) = complement of the isogonal conjugate of X(5023)
X(51579) = complement of the isotomic conjugate of X(20080)
X(51579) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 193}, {5023, 10}, {16570, 141}, {20080, 2887}, {38252, 39143}, {38282, 20305}
X(51579) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 193}, {38282, 20080}
X(51579) = X(i)-isoconjugate of X(j) for these (i,j): {8769, 36616}, {38252, 38259}
X(51579) = X(193)-Dao conjugate of X(2)
X(51579) = crosspoint of X(2) and X(20080)
X(51579) = crosssum of X(6) and X(36616)
X(51579) = barycentric product X(i)*X(j) for these {i,j}: {193, 20080}, {6337, 38282}, {16570, 18156}
X(51579) = barycentric quotient X(i)/X(j) for these {i,j}: {193, 38259}, {3053, 36616}, {3167, 38263}, {5023, 8770}, {6353, 36611}, {16570, 8769}, {20080, 2996}, {38282, 34208}
X(51579) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 38259, 39143}, {99, 32989, 2996}, {439, 6337, 193}, {6337, 32459, 439}


X(51580) = X(2)X(12215)∩X(3)X(315)

Barycentrics    (a^4 - a^2*b^2 - a^2*c^2 - 2*b^2*c^2)*(a^4 + 2*a^2*b^2 - b^4 + 2*a^2*c^2 - c^4) : :

X(51580) lies on the Kiepert circumhyperbola of the medial triangle and on these lines: {2, 12215}, {3, 315}, {6, 5976}, {22, 34452}, {39, 1975}, {69, 35423}, {76, 32467}, {98, 50684}, {99, 262}, {114, 3818}, {147, 39096}, {182, 183}, {194, 39095}, {384, 6337}, {458, 8842}, {1003, 2482}, {1007, 5999}, {1649, 30474}, {1692, 14614}, {1995, 38998}, {2076, 9766}, {3053, 35701}, {3329, 10335}, {3788, 6292}, {3815, 4048}, {5017, 7774}, {5024, 11356}, {5026, 42535}, {5116, 7778}, {5152, 6054}, {5939, 9756}, {6194, 39099}, {6811, 43155}, {6813, 43156}, {7470, 32816}, {7622, 7865}, {7752, 43460}, {7754, 8149}, {7769, 38907}, {7771, 9751}, {7777, 8290}, {7784, 34873}, {7788, 50977}, {7809, 9774}, {7832, 46307}, {7836, 46315}, {8304, 48785}, {8305, 48784}, {9723, 46094}, {9770, 11147}, {11165, 11286}, {15850, 43157}, {20885, 24729}, {22712, 35429}, {32458, 35424}, {32829, 37334}, {35925, 40824}, {41624, 51374}

X(51580) = complement of the isogonal conjugate of X(5017)
X(51580) = complement of the isotomic conjugate of X(7774)
X(51580) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 183}, {5017, 10}, {7774, 2887}, {50550, 8287}
X(51580) = X(2)-Ceva conjugate of X(183)
X(51580) = X(183)-Dao conjugate of X(2)
X(51580) = crosspoint of X(2) and X(7774)
X(51580) = barycentric product X(i)*X(j) for these {i,j}: {183, 7774}, {5017, 20023}
X(51580) = barycentric quotient X(i)/X(j) for these {i,j}: {5017, 263}, {7774, 262}
X(51580) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {182, 51373, 183}, {7763, 9744, 325}


X(51581) = X(2)X(7748)∩X(3)X(43150)

Barycentrics    (3*a^2 - 2*b^2 - 2*c^2)*(4*a^2 - b^2 - c^2) : :
X(51581) = 3 X[2] + 5 X[45017]

X(51581) lies on the Kiepert circumhyperbola of the medial triangle and on these lines: {2, 7748}, {3, 43150}, {32, 11165}, {39, 6329}, {99, 43676}, {114, 550}, {187, 6337}, {546, 15850}, {574, 33242}, {620, 33229}, {629, 42163}, {630, 42166}, {641, 42258}, {642, 42259}, {1125, 28550}, {1649, 8651}, {2482, 3933}, {2548, 18843}, {3528, 7710}, {3530, 15819}, {3629, 35007}, {3631, 7863}, {3788, 33253}, {5023, 39785}, {5041, 32985}, {5206, 40341}, {5976, 35022}, {6292, 8589}, {7280, 8299}, {7752, 32456}, {7789, 15810}, {7801, 11147}, {7813, 33227}, {7819, 15602}, {7842, 41134}, {7855, 35287}, {7871, 33014}, {8290, 33276}, {10335, 32450}, {23217, 38998}, {30471, 41745}, {30472, 41746}, {33620, 42631}, {33621, 42632}, {34200, 34510}

X(51581) = complement of the isogonal conjugate of X(5206)
X(51581) = complement of the isotomic conjugate of X(40341)
X(51581) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 3629}, {5206, 10}, {37453, 20305}, {40341, 2887}
X(51581) = X(2)-Ceva conjugate of X(3629)
X(51581) = X(3629)-Dao conjugate of X(2)
X(51581) = crosspoint of X(2) and X(40341)
X(51581) = barycentric product X(3629)*X(40341)
X(51581) = barycentric quotient X(40341)/X(43676)


X(51582) = X(2)X(1501)∩X(3)X(3096)

Barycentrics    (b^2 - b*c + c^2)*(b^2 + b*c + c^2)*(2*a^4 + a^2*b^2 + b^4 + a^2*c^2 + c^4) : :

X(51582) lies on the Kiepert circumhyperbola of the medial triangle and on these lines: {2, 1501}, {3, 3096}, {39, 325}, {114, 5092}, {141, 5976}, {262, 7934}, {316, 11356}, {620, 10291}, {1506, 8363}, {1513, 15819}, {1649, 5996}, {2482, 7880}, {2896, 34870}, {3094, 3314}, {3619, 37182}, {3666, 26590}, {5116, 7778}, {5162, 7761}, {6292, 7807}, {6337, 7791}, {6626, 21993}, {7485, 14713}, {7736, 7912}, {7752, 7859}, {7799, 11165}, {7819, 10292}, {7846, 38905}, {7849, 15821}, {7901, 39095}, {7911, 37243}, {7931, 8290}, {8569, 33734}, {9744, 12054}, {10336, 50249}, {11147, 33008}, {15810, 35297}, {33190, 40824}, {35002, 37242}, {37455, 39096}

X(51582) = reflection of X(10291) in X(620)
X(51582) = complement of X(3407)
X(51582) = complement of the isogonal conjugate of X(3094)
X(51582) = complement of the isotomic conjugate of X(3314)
X(51582) = medial isogonal conjugate of X(24256)
X(51582) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 24256}, {31, 7792}, {661, 6784}, {788, 21138}, {869, 17353}, {982, 21264}, {2186, 34236}, {2275, 24325}, {3094, 10}, {3116, 2}, {3117, 37}, {3250, 3271}, {3314, 2887}, {3408, 49111}, {4602, 9006}, {5117, 20305}, {7032, 17023}, {7146, 17792}, {17415, 16592}, {18899, 16584}, {19603, 19602}, {33946, 788}, {42061, 18904}, {43977, 16600}, {46507, 5}, {50549, 8287}
X(51582) = X(2)-Ceva conjugate of X(7792)
X(51582) = X(7792)-Dao conjugate of X(2)
X(51582) = crosspoint of X(2) and X(3314)
X(51582) = crosssum of X(6) and X(18898)
X(51582) = barycentric product X(3314)*X(7792)
X(51582) = barycentric quotient X(7792)/X(3407)


X(51583) = X(2)X(45)∩X(3)X(8)

Barycentrics    (2*a - b - c)*(a^2 - b^2 + b*c - c^2) : :
X(51583) = 3 X[2] + X[30579], X[30579] + 2 X[37691]

X(51583) lies on the Kiepert circumhyperbola of the medial triangle and on these lines: {2, 45}, {3, 8}, {7, 30834}, {11, 4427}, {39, 4850}, {57, 18139}, {63, 5741}, {75, 18359}, {81, 40605}, {89, 17378}, {99, 24624}, {114, 1281}, {121, 1054}, {165, 5014}, {214, 36923}, {239, 2482}, {244, 1125}, {320, 2245}, {321, 20879}, {329, 25737}, {333, 19302}, {345, 21488}, {519, 678}, {528, 4781}, {618, 39150}, {619, 39151}, {672, 4070}, {896, 49710}, {900, 39155}, {902, 49700}, {908, 4480}, {982, 29638}, {993, 6187}, {1016, 37222}, {1155, 3006}, {1227, 40988}, {1635, 3762}, {1647, 4432}, {2108, 29827}, {2246, 3707}, {2295, 29569}, {2325, 3911}, {3035, 3952}, {3244, 3722}, {3285, 4969}, {3306, 16549}, {3315, 3622}, {3578, 3687}, {3661, 15810}, {3666, 29833}, {3679, 9324}, {3689, 49702}, {3705, 4450}, {3712, 8299}, {3904, 3960}, {3909, 3937}, {3912, 24593}, {3928, 32859}, {3935, 49714}, {3969, 14829}, {3995, 37634}, {4000, 31229}, {4003, 26230}, {4009, 37762}, {4115, 24069}, {4141, 4439}, {4152, 6174}, {4274, 45048}, {4359, 4858}, {4395, 17495}, {4437, 31020}, {4442, 32845}, {4552, 43043}, {4553, 34583}, {4644, 31179}, {4650, 29849}, {4652, 5016}, {4689, 29835}, {4696, 6684}, {4697, 29688}, {4712, 6745}, {4738, 41529}, {4750, 4763}, {4860, 29830}, {4873, 50105}, {4933, 49764}, {4972, 17596}, {4999, 17164}, {5109, 17012}, {5161, 8300}, {5217, 36500}, {5222, 11165}, {5235, 6626}, {5432, 17165}, {5433, 25253}, {5435, 17776}, {5739, 37781}, {6184, 42723}, {6292, 17292}, {6337, 24597}, {6687, 16610}, {6690, 17140}, {6703, 41820}, {7238, 31029}, {8298, 14459}, {8720, 21935}, {9352, 29641}, {11288, 30884}, {13587, 16086}, {14193, 21290}, {17146, 37703}, {17147, 37646}, {17154, 17724}, {17191, 17455}, {17244, 27754}, {17330, 30564}, {17346, 24616}, {17350, 37651}, {17360, 33077}, {17593, 29631}, {17601, 33120}, {17729, 24638}, {17777, 31272}, {18134, 23958}, {18151, 19804}, {18201, 29632}, {18253, 27628}, {20880, 24589}, {21129, 47892}, {23757, 47695}, {24004, 36791}, {24344, 49720}, {24636, 45674}, {25248, 26686}, {25734, 30827}, {26073, 46933}, {26738, 50128}, {26840, 30831}, {26842, 41878}, {27003, 33116}, {29656, 42038}, {29662, 32934}, {29672, 42040}, {29689, 42053}, {29832, 37540}, {29872, 33068}, {30172, 37524}, {30568, 31224}, {30588, 50116}, {32918, 33167}, {33150, 41806}, {36913, 41801}, {38000, 41809}

X(51583) = midpoint of X(4080) and X(30579)
X(51583) = reflection of X(4080) in X(37691)
X(51583) = complement of X(4080)
X(51583) = anticomplement of X(37691)
X(51583) = complement of the isogonal conjugate of X(3285)
X(51583) = complement of the isotomic conjugate of X(16704)
X(51583) = isotomic conjugate of the isogonal conjugate of X(17455)
X(51583) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 3936}, {44, 3454}, {58, 3834}, {81, 21241}, {110, 4928}, {163, 900}, {284, 5123}, {519, 21245}, {849, 4395}, {900, 21253}, {902, 1211}, {1023, 31946}, {1319, 17052}, {1333, 519}, {1404, 442}, {1408, 17067}, {1576, 3960}, {1635, 125}, {1960, 8287}, {2206, 16610}, {2251, 1213}, {3285, 10}, {9459, 16589}, {16704, 2887}, {17455, 31845}, {18268, 25351}, {22086, 34846}, {22356, 21530}, {23202, 440}, {23344, 4129}, {30576, 3741}, {30939, 626}, {32739, 21894}, {34079, 6702}, {37168, 20305}
X(51583) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 3936}, {75, 519}, {99, 900}, {190, 3904}, {1016, 4585}, {2985, 323}, {4998, 17780}
X(51583) = X(i)-cross conjugate of X(j) for these (i,j): {214, 41801}, {40988, 214}
X(51583) = X(i)-isoconjugate of X(j) for these (i,j): {6, 1168}, {80, 9456}, {88, 6187}, {106, 2161}, {604, 36590}, {1411, 2316}, {1417, 36910}, {1807, 8752}, {2226, 40172}, {4674, 34079}, {23838, 32675}
X(51583) = X(i)-Dao conjugate of X(j) for these (i, j): (9, 1168), (44, 1), (214, 2161), (1639, 11), (2245, 14260), (3161, 36590), (3218, 47058), (3936, 2), (3960, 1086), (4370, 80), (35069, 4674), (35128, 23838), (35204, 2316), (36914, 5219), (40584, 106), (40612, 88)
X(51583) = cevapoint of X(1145) and X(4370)
X(51583) = crosspoint of X(i) and X(j) for these (i,j): {2, 16704}, {75, 20924}, {1016, 24004}
X(51583) = crossdifference of every pair of points on line {1960, 3310}
X(51583) = X(993)-lineconjugate of X(6187)
X(51583) = barycentric product X(i)*X(j) for these {i,j}: {1, 1227}, {8, 41801}, {36, 3264}, {44, 20924}, {75, 214}, {76, 17455}, {274, 40988}, {320, 519}, {321, 17191}, {758, 30939}, {902, 40075}, {1443, 4723}, {2325, 17078}, {3218, 4358}, {3762, 4585}, {3911, 32851}, {3936, 16704}, {3960, 24004}, {3977, 17923}, {4453, 17780}, {4998, 51402}, {22128, 46109}, {30608, 36913}, {36791, 40215}, {36923, 39704}
X(51583) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 1168}, {8, 36590}, {36, 106}, {44, 2161}, {214, 1}, {320, 903}, {519, 80}, {678, 40172}, {758, 4674}, {902, 6187}, {1227, 75}, {1317, 14584}, {1319, 1411}, {1870, 36125}, {1983, 32665}, {2323, 2316}, {2325, 36910}, {3218, 88}, {3264, 20566}, {3285, 34079}, {3738, 23838}, {3911, 2006}, {3936, 4080}, {3960, 1022}, {3992, 15065}, {4089, 6549}, {4358, 18359}, {4432, 36815}, {4453, 6548}, {4511, 1320}, {4585, 3257}, {4707, 4049}, {4867, 4792}, {5440, 1807}, {7113, 9456}, {14628, 34535}, {16704, 24624}, {17191, 81}, {17455, 6}, {17923, 6336}, {20924, 20568}, {21805, 34857}, {22128, 1797}, {23703, 2222}, {23884, 23598}, {24004, 36804}, {27757, 4945}, {30939, 14616}, {32851, 4997}, {34586, 14260}, {36913, 5219}, {36923, 3679}, {36944, 40437}, {40215, 2226}, {40612, 47058}, {40988, 37}, {41801, 7}, {50843, 34232}, {51402, 11}
X(51583) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 88, 24183}, {2, 190, 30566}, {2, 4080, 37691}, {2, 17487, 4945}, {2, 30577, 88}, {2, 30578, 4997}, {2, 30579, 4080}, {57, 33113, 18139}, {190, 4997, 30578}, {320, 27757, 3936}, {320, 32851, 27757}, {1054, 33115, 24988}, {3218, 27757, 320}, {3218, 32851, 3936}, {3911, 3977, 4358}, {4422, 43055, 2}, {4997, 30578, 30566}, {5744, 17740, 1150}, {14829, 33168, 3969}, {17596, 33119, 4972}, {26070, 30577, 2}, {32845, 33140, 4442}, {41138, 41802, 2}


X(51584) = X(2)X(8589)∩X(3)X(50993)

Barycentrics    (5*a^2 - 4*b^2 - 4*c^2)*(8*a^2 - b^2 - c^2) : :
X(51584) = X[2] - 3 X[11149], 9 X[11149] - X[17503]

X(51584) lies on the Kiepert circumhyperbola of the medial triangle and on these lines: {2, 8589}, {3, 50993}, {30, 15850}, {39, 27088}, {99, 8587}, {114, 8703}, {187, 11165}, {620, 15814}, {629, 35304}, {630, 35303}, {1649, 8644}, {2482, 22165}, {3787, 50729}, {5008, 7618}, {5475, 42011}, {5976, 14711}, {6337, 7855}, {6626, 22351}, {7710, 19708}, {8289, 46893}, {8584, 33550}, {8588, 15533}, {8594, 30472}, {8595, 30471}, {8598, 50280}, {8786, 41134}, {11147, 50994}, {12100, 15819}, {15655, 51187}, {15810, 32459}, {22848, 40672}, {22892, 40671}, {34835, 44261}, {35007, 35287}, {42625, 50858}, {42626, 50855}

X(51584) = midpoint of X(99) and X(8587)
X(51584) = reflection of X(15814) in X(620)
X(51584) = complement of X(17503)
X(51584) = complement of the isogonal conjugate of X(8588)
X(51584) = complement of the isotomic conjugate of X(15533)
X(51584) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 8584}, {8588, 10}, {15533, 2887}
X(51584) = X(2)-Ceva conjugate of X(8584)
X(51584) = X(8584)-Dao conjugate of X(2)
X(51584) = crosspoint of X(2) and X(15533)
X(51584) = barycentric product X(8584)*X(15533)
X(51584) = barycentric quotient X(8584)/X(17503)


X(51585) = X(2)X(7756)∩X(114)X(548)

Barycentrics    (4*a^2 - 3*b^2 - 3*c^2)*(6*a^2 - b^2 - c^2) : :

X(51585) lies on the Kiepert circumhyperbola of the medial triangle and on these lines: {2, 7756}, {114, 548}, {620, 33267}, {629, 5321}, {630, 5318}, {1657, 10242}, {2482, 7767}, {3053, 11165}, {3627, 15850}, {3630, 15513}, {5206, 6337}, {6292, 32459}, {7710, 21735}, {7810, 11147}, {7890, 35287}, {15712, 15819}

X(51585) = complement of the isogonal conjugate of X(15513)
X(51585) = complement of the isotomic conjugate of X(3630)
X(51585) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 32455}, {3630, 2887}, {15513, 10}
X(51585) = X(2)-Ceva conjugate of X(32455)
X(51585) = X(32455)-Dao conjugate of X(2)
X(51585) = crosspoint of X(2) and X(3630)
X(51585) = barycentric product X(3630)*X(32455)


X(51586) = X(2)X(1171)∩X(3)X(31872)

Barycentrics    (b + c)*(2*a + b + c)*(2*a^2 + 4*a*b + b^2 + 4*a*c + 4*b*c + c^2) : :

X(51586) lies on the Kiepert circumhyperbola of the medial triangle and on these lines: {2, 1171}, {3, 31872}, {115, 3634}, {239, 41820}, {1100, 1125}, {1649, 4988}, {1698, 23903}, {3337, 46196}, {3666, 16589}, {3828, 23905}, {5257, 15349}, {5259, 8299}, {5745, 38930}, {6626, 31248}, {7410, 7710}, {10026, 19878}, {25946, 40592}, {35068, 35076}, {36812, 46842}, {40605, 41817}

X(51586) = complement of X(32014)
X(51586) = complement of the isogonal conjugate of X(20970)
X(51586) = complement of the isotomic conjugate of X(1213)
X(51586) = X(i)-complementary conjugate of X(j) for these (i,j): {6, 27798}, {31, 6707}, {32, 3743}, {41, 18253}, {42, 17239}, {163, 6367}, {213, 3634}, {430, 20305}, {667, 24185}, {669, 16726}, {798, 3120}, {872, 41809}, {1100, 3741}, {1125, 21240}, {1213, 2887}, {1230, 21235}, {1918, 44307}, {1962, 141}, {2308, 3739}, {2355, 34830}, {3649, 17046}, {3683, 21246}, {3958, 1368}, {4046, 21244}, {4115, 21260}, {4427, 42327}, {4557, 48049}, {4647, 626}, {4983, 116}, {4988, 21252}, {6367, 21253}, {8013, 21245}, {8663, 8287}, {20970, 10}, {21816, 3454}, {22080, 18589}, {32636, 17050}, {32739, 8043}, {35327, 4369}, {35342, 512}, {50512, 17761}
X(51586) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 6707}, {99, 6367}
X(51586) = X(6707)-Dao conjugate of X(2)
X(51586) = crosspoint of X(2) and X(1213)
X(51586) = crosssum of X(6) and X(1171)
X(51586) = crossdifference of every pair of points on line {8663, 50344}
X(51586) = barycentric product X(i)*X(j) for these {i,j}: {1213, 6707}, {4988, 24074}
X(51586) = barycentric quotient X(i)/X(j) for these {i,j}: {6707, 32014}, {24074, 4632}


X(51587) = X(2)X(7765)∩X(3)X(5965)

Barycentrics    (2*a^2 - 3*b^2 - 3*c^2)*(4*a^2 - b^2 - c^2) : :
X(51587) = 6 X[2] - 5 X[12815], 17 X[2] - 15 X[38223], 9 X[2] - 5 X[50570], 17 X[12815] - 18 X[38223], 5 X[12815] - 2 X[43676], 3 X[12815] - 2 X[50570], 45 X[38223] - 17 X[43676], 27 X[38223] - 17 X[50570], 3 X[43676] - 5 X[50570], 17 X[3544] - 15 X[38228]

X(51587) lies on the Kiepert circumhyperbola of the medial triangle and on these lines: {2, 7765}, {3, 5965}, {99, 35005}, {114, 546}, {397, 619}, {398, 618}, {532, 42792}, {533, 42791}, {641, 43880}, {642, 43879}, {1125, 17246}, {1649, 2525}, {2482, 5007}, {3529, 7710}, {3544, 38228}, {3629, 35007}, {3631, 37512}, {5206, 11008}, {5563, 8299}, {5976, 32450}, {6292, 6390}, {6337, 7772}, {7764, 33257}, {7794, 15810}, {7820, 22332}, {7845, 44245}, {7858, 36521}, {7903, 17538}, {8290, 35022}, {8786, 14042}, {11147, 34511}, {11165, 33242}, {13701, 41945}, {13821, 41946}, {14869, 15819}, {33614, 51487}, {33615, 51486}, {33616, 37172}, {33617, 37173}, {33618, 41100}, {33619, 41101}, {33620, 50860}, {33621, 50859}, {36849, 39091}

X(51587) = midpoint of X(i) and X(j) for these {i,j}: {99, 35005}, {22844, 22845}
X(51587) = complement of X(43676)
X(51587) = complement of the isogonal conjugate of X(35007)
X(51587) = complement of the isotomic conjugate of X(3629)
X(51587) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 3631}, {163, 32478}, {3629, 2887}, {32478, 21253}, {35007, 10}
X(51587) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 3631}, {99, 32478}
X(51587) = X(3631)-Dao conjugate of X(2)
X(51587) = crosspoint of X(2) and X(3629)
X(51587) = barycentric product X(3629)*X(3631)
X(51587) = barycentric quotient X(3631)/X(43676)


X(51588) = X(2)X(14482)∩X(3)X(597)

Barycentrics    (7*a^2 + b^2 + c^2)*(a^2 + 4*b^2 + 4*c^2) : :
X(51588) = 3 X[3524] - X[46944]

X(51588) lies on the Kiepert circumhyperbola of the medial triangle and on these lines: {2, 14482}, {3, 597}, {6, 15810}, {30, 14484}, {114, 5055}, {381, 7710}, {524, 22246}, {543, 14535}, {599, 6292}, {641, 13783}, {642, 13663}, {671, 11174}, {1125, 41313}, {1384, 51185}, {1649, 45327}, {1992, 7767}, {2482, 5024}, {3329, 5077}, {3524, 46944}, {3589, 11165}, {3618, 11147}, {5050, 14830}, {5070, 7817}, {6329, 8182}, {6337, 33237}, {6767, 8299}, {7786, 8860}, {7923, 11318}, {8290, 8591}, {8359, 43136}, {8362, 11160}, {8981, 33365}, {10291, 50659}, {11057, 12156}, {13966, 33364}, {15603, 47061}, {15694, 15819}, {15707, 47618}, {21309, 44839}, {21509, 40592}, {33220, 39091}, {37344, 40604}

X(51588) = midpoint of X(2) and X(14482)
X(51588) = complement of the isogonal conjugate of X(21309)
X(51588) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 21358}, {1973, 31415}, {21309, 10}
X(51588) = X(2)-Ceva conjugate of X(21358)
X(51588) = X(21358)-Dao conjugate of X(2)


X(51589) = X(2)X(32532)∩X(3)X(50991)

Barycentrics    (11*a^2 - 7*b^2 - 7*c^2)*(7*a^2 - 2*b^2 - 2*c^2) : :
X(51589) = 5 X[15692] - X[47586]

X(51589) lies on the Kiepert circumhyperbola of the medial triangle and on these lines: {2, 32532}, {3, 50991}, {39, 51185}, {99, 10153}, {114, 3534}, {381, 15850}, {2482, 5210}, {6337, 27088}, {7710, 8703}, {8584, 11165}, {8588, 50989}, {11147, 50990}, {15534, 33554}, {15655, 50992}, {15692, 47586}, {15693, 15819}, {15810, 51186}, {15814, 41134}, {21498, 40592}

X(51589) = midpoint of X(99) and X(10153)
X(51589) = complement of X(32532)
X(51589) = complement of the isogonal conjugate of X(15655)
X(51589) = complement of the isotomic conjugate of X(50992)
X(51589) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 15534}, {15655, 10}, {50992, 2887}
X(51589) = X(2)-Ceva conjugate of X(15534)
X(51589) = X(15534)-Dao conjugate of X(2)
X(51589) = crosspoint of X(2) and X(50992)
X(51589) = barycentric product X(15534)*X(50992)
X(51589) = barycentric quotient X(i)/X(j) for these {i,j}: {15534, 32532}, {15655, 40103}


X(51590) = X(1)X(50041)∩X(2)X(3)

Barycentrics    5*a^4 + 6*a^3*b + 5*a^2*b^2 + 6*a*b^3 + 2*b^4 + 6*a^3*c + 12*a^2*b*c + 12*a*b^2*c + 6*b^3*c + 5*a^2*c^2 + 12*a*b*c^2 + 8*b^2*c^2 + 6*a*c^3 + 6*b*c^3 + 2*c^4 : :
X(51590) = 2 X[1] + X[50041], X[1] + 2 X[50052], X[50041] - 4 X[50052], 2 X[2] + X[16394], 7 X[2] - X[50055], 4 X[2] - X[50056], 5 X[2] - 2 X[50058], X[2] + 2 X[50059], 5 X[2] + X[50061], 7 X[16394] + 2 X[50055], 2 X[16394] + X[50056], 5 X[16394] + 4 X[50058], X[16394] - 4 X[50059], 5 X[16394] - 2 X[50061], 4 X[50055] - 7 X[50056], 5 X[50055] - 14 X[50058], X[50055] + 14 X[50059], 5 X[50055] + 7 X[50061], 5 X[50056] - 8 X[50058], X[50056] + 8 X[50059], 5 X[50056] + 4 X[50061], X[50058] + 5 X[50059], 2 X[50058] + X[50061], 10 X[50059] - X[50061], 2 X[10] + X[50070], 2 X[551] + X[50048], 4 X[551] - X[50072], 2 X[50048] + X[50072], 8 X[1125] + X[50044], 2 X[1125] + X[50053], 4 X[1125] - X[50068], X[50044] - 4 X[50053], X[50044] + 2 X[50068], 2 X[50053] + X[50068], 5 X[1698] - 2 X[50051], X[3241] + 2 X[50047], 5 X[3616] + X[50043], 5 X[3616] - 2 X[50069], X[50043] + 2 X[50069], 7 X[3622] + 2 X[50042], 7 X[3624] + 2 X[50054], 7 X[3624] - X[50066], 2 X[50054] + X[50066], X[3679] + 2 X[50064], 4 X[3828] - X[50046], 11 X[5550] + X[50045], 11 X[5550] - 2 X[50067], X[50045] + 2 X[50067], 10 X[19862] - X[50065], X[50049] + 2 X[50063]

X(51590) lies on these lines: {1, 50041}, {2, 3}, {10, 50070}, {536, 25055}, {551, 50048}, {1125, 4387}, {1211, 48870}, {1698, 50051}, {3241, 50047}, {3616, 50043}, {3622, 50042}, {3624, 50054}, {3679, 50064}, {3828, 50046}, {3920, 48804}, {5550, 50045}, {6703, 48859}, {19784, 49732}, {19862, 50065}, {29667, 48800}, {32783, 48825}, {33171, 48823}, {50049, 50063}

X(51590) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 50052, 50041}, {2, 21, 50410}, {2, 376, 13728}, {2, 964, 381}, {2, 1010, 44217}, {2, 11115, 50321}, {2, 15670, 16343}, {2, 16394, 50056}, {2, 17526, 50202}, {2, 31156, 4205}, {2, 37037, 50323}, {2, 37176, 15670}, {2, 50059, 16394}, {2, 50061, 50058}, {2, 50407, 442}, {549, 50318, 2}, {551, 50048, 50072}, {1125, 50053, 50068}, {3616, 50043, 50069}, {11115, 50321, 3534}, {50053, 50068, 50044}


X(51591) = X(1)X(50043)∩X(2)X(3)

Barycentrics    7*a^4 + 6*a^3*b + 4*a^2*b^2 + 6*a*b^3 + b^4 + 6*a^3*c + 12*a^2*b*c + 12*a*b^2*c + 6*b^3*c + 4*a^2*c^2 + 12*a*b*c^2 + 10*b^2*c^2 + 6*a*c^3 + 6*b*c^3 + c^4 : :
X(51591) = 2 X[1] + X[50043], X[1] + 2 X[50053], X[50043] - 4 X[50053], X[2] + 2 X[16394], 4 X[2] - X[50055], 5 X[2] - 2 X[50056], 7 X[2] - 4 X[50058], X[2] - 4 X[50059], 2 X[2] + X[50061], 8 X[16394] + X[50055], 5 X[16394] + X[50056], 7 X[16394] + 2 X[50058], X[16394] + 2 X[50059], 4 X[16394] - X[50061], 5 X[50055] - 8 X[50056], 7 X[50055] - 16 X[50058], X[50055] - 16 X[50059], X[50055] + 2 X[50061], 7 X[50056] - 10 X[50058], X[50056] - 10 X[50059], 4 X[50056] + 5 X[50061], X[50058] - 7 X[50059], 8 X[50058] + 7 X[50061], 8 X[50059] + X[50061], X[8] - 4 X[50052], X[8] + 2 X[50070], 2 X[50052] + X[50070], X[145] + 2 X[50041], 2 X[551] + X[50049], 4 X[551] - X[50071], 2 X[50049] + X[50071], 4 X[1125] - X[50066], X[3241] + 2 X[50048], X[3241] - 4 X[50064], X[50048] + 2 X[50064], 5 X[3616] + X[50045], 5 X[3616] + 4 X[50054], 5 X[3616] - 2 X[50068], X[50045] - 4 X[50054], X[50045] + 2 X[50068], 2 X[50054] + X[50068], 7 X[3622] + 2 X[50044], 7 X[3622] - 4 X[50069], X[50044] + 2 X[50069], 5 X[3623] + 4 X[50042], 11 X[5550] - 2 X[50065], 7 X[9780] - 4 X[50051], 13 X[19877] - 4 X[50050], X[31145] - 4 X[50047], 13 X[46934] - 4 X[50067]

X(51591) lies on these lines: {1, 50043}, {2, 3}, {8, 50052}, {145, 50041}, {306, 48828}, {536, 38314}, {551, 50049}, {940, 48859}, {1125, 50066}, {3241, 50048}, {3616, 50045}, {3622, 50044}, {3623, 50042}, {3920, 48806}, {5550, 50065}, {5739, 48870}, {9780, 50051}, {10436, 15956}, {19877, 50050}, {20020, 48804}, {25055, 33147}, {29667, 48798}, {31145, 50047}, {33171, 48825}, {46934, 50067}

X(51591) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 50053, 50043}, {2, 20, 50321}, {2, 3543, 5051}, {2, 4195, 31156}, {2, 11115, 376}, {2, 15677, 13725}, {2, 16394, 50061}, {2, 31156, 37314}, {2, 50061, 50055}, {2, 50408, 6175}, {3, 50323, 2}, {376, 37037, 2}, {551, 50049, 50071}, {2049, 15670, 2}, {3616, 50045, 50068}, {16394, 50059, 2}, {16458, 50202, 2}, {17698, 44217, 2}, {37176, 50407, 2}, {50048, 50064, 3241}, {50052, 50070, 8}, {50054, 50068, 50045}


X(51592) = X(1)X(50045)∩X(2)X(3)

Barycentrics    11*a^4 + 6*a^3*b + 2*a^2*b^2 + 6*a*b^3 - b^4 + 6*a^3*c + 12*a^2*b*c + 12*a*b^2*c + 6*b^3*c + 2*a^2*c^2 + 12*a*b*c^2 + 14*b^2*c^2 + 6*a*c^3 + 6*b*c^3 - c^4 : :
X(51592) = 2 X[1] + X[50045], X[2] - 4 X[16394], 5 X[2] - 2 X[50055], 7 X[2] - 4 X[50056], 11 X[2] - 8 X[50058], 5 X[2] - 8 X[50059], X[2] + 2 X[50061], 10 X[16394] - X[50055], 7 X[16394] - X[50056], 11 X[16394] - 2 X[50058], 5 X[16394] - 2 X[50059], 2 X[16394] + X[50061], 7 X[50055] - 10 X[50056], 11 X[50055] - 20 X[50058], X[50055] - 4 X[50059], X[50055] + 5 X[50061], 11 X[50056] - 14 X[50058], 5 X[50056] - 14 X[50059], 2 X[50056] + 7 X[50061], 5 X[50058] - 11 X[50059], 4 X[50058] + 11 X[50061], 4 X[50059] + 5 X[50061], X[8] - 4 X[50053], X[145] + 2 X[50043], X[145] + 8 X[50054], X[145] - 4 X[50070], X[50043] - 4 X[50054], X[50043] + 2 X[50070], 2 X[50054] + X[50070], X[3241] + 2 X[50049], 5 X[3616] - 2 X[50066], 5 X[3617] - 8 X[50052], X[3621] - 4 X[50041], 7 X[3622] - 4 X[50068], 5 X[3623] + 4 X[50044], X[20014] + 8 X[50042], X[31145] - 4 X[50048], 17 X[46932] - 8 X[50050], 11 X[46933] - 8 X[50051], 13 X[46934] - 4 X[50065], 4 X[50064] - X[50071]

X(51592) lies on these lines: {1, 50045}, {2, 3}, {8, 50053}, {145, 50043}, {3241, 50049}, {3616, 50066}, {3617, 50052}, {3621, 50041}, {3622, 50068}, {3623, 50044}, {19993, 48824}, {20014, 50042}, {20020, 48806}, {31145, 50048}, {46932, 50050}, {46933, 50051}, {46934, 50065}, {50064, 50071}

X(51592) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15683, 17676}, {2, 50322, 3543}, {21, 50407, 2}, {376, 964, 2}, {1010, 31156, 2}, {4217, 19276, 2}, {6175, 37176, 2}, {11001, 37037, 50321}, {16394, 50061, 2}, {17526, 44217, 2}, {37037, 50321, 2}, {50043, 50070, 145}, {50054, 50070, 50043}, {50055, 50059, 2}


X(51593) = X(1)X(50051)∩X(2)X(3)

Barycentrics    a^4 + 6*a^3*b + 7*a^2*b^2 + 6*a*b^3 + 4*b^4 + 6*a^3*c + 12*a^2*b*c + 12*a*b^2*c + 6*b^3*c + 7*a^2*c^2 + 12*a*b*c^2 + 4*b^2*c^2 + 6*a*c^3 + 6*b*c^3 + 4*c^4 : :
X(51593) = X[1] + 2 X[50051], 4 X[2] - X[16394], 5 X[2] + X[50055], 2 X[2] + X[50056], X[2] + 2 X[50058], 5 X[2] - 2 X[50059], 7 X[2] - X[50061], 5 X[16394] + 4 X[50055], X[16394] + 2 X[50056], X[16394] + 8 X[50058], 5 X[16394] - 8 X[50059], 7 X[16394] - 4 X[50061], 2 X[50055] - 5 X[50056], X[50055] - 10 X[50058], X[50055] + 2 X[50059], 7 X[50055] + 5 X[50061], X[50056] - 4 X[50058], 5 X[50056] + 4 X[50059], 7 X[50056] + 2 X[50061], 5 X[50058] + X[50059], 14 X[50058] + X[50061], 14 X[50059] - 5 X[50061], X[8] + 2 X[50069], 4 X[10] - X[50041], 2 X[10] + X[50068], X[50041] + 2 X[50068], 2 X[551] + X[50046], 4 X[1125] - X[50070], 10 X[1698] - X[50044], 5 X[1698] - 2 X[50052], 5 X[1698] + X[50066], X[50044] - 4 X[50052], X[50044] + 2 X[50066], 2 X[50052] + X[50066], 7 X[3624] + 2 X[50050], 4 X[3634] - X[50053], 8 X[3634] + X[50065], 2 X[50053] + X[50065], X[3679] + 2 X[50063], 2 X[3679] + X[50072], 4 X[50063] - X[50072], 4 X[3828] - X[50048], 2 X[3828] + X[50062], X[50048] + 2 X[50062], 7 X[9780] - X[50043], 7 X[9780] + 2 X[50067], X[50043] + 2 X[50067], 7 X[19876] - X[50049], 13 X[19877] - X[50045], 11 X[46933] - 2 X[50042], 2 X[50047] + X[50071]

X(51593) lies on these lines: {1, 50051}, {2, 3}, {8, 50069}, {10, 50041}, {536, 19875}, {551, 50046}, {1125, 50070}, {1211, 48857}, {1698, 50044}, {1714, 49730}, {3624, 50050}, {3634, 50053}, {3679, 50063}, {3828, 50048}, {3920, 48800}, {4026, 10056}, {5739, 48861}, {9780, 50043}, {19876, 50049}, {19877, 50045}, {20083, 49729}, {29667, 48804}, {46933, 50042}, {50047, 50071}

X(51593) = orthocentroidal-circle-inverse of X(50323)
X(51593) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 50323}, {2, 3543, 37037}, {2, 5051, 381}, {2, 6175, 2049}, {2, 11359, 19290}, {2, 13725, 15670}, {2, 16062, 44217}, {2, 17679, 19332}, {2, 31156, 17698}, {2, 37314, 50202}, {2, 44217, 16458}, {2, 50055, 50059}, {2, 50056, 16394}, {2, 50058, 50056}, {2, 50321, 3}, {2, 50410, 16343}, {10, 50068, 50041}, {1698, 50066, 50052}, {3679, 50063, 50072}, {3828, 50062, 50048}, {50052, 50066, 50044}


X(51594) = X(1)X(50074)∩X(2)X(3)

Barycentrics    4*a^4 - 5*a^3*b - 12*a^2*b^2 - 5*a*b^3 - 2*b^4 - 5*a^3*c - 21*a^2*b*c - 21*a*b^2*c - 5*b^3*c - 12*a^2*c^2 - 21*a*b*c^2 - 6*b^2*c^2 - 5*a*c^3 - 5*b*c^3 - 2*c^4 : :

X(51594) lies on these lines: {1, 50074}, {2, 3}, {17320, 19851}, {17330, 20018}, {17378, 49728}, {48838, 50224}, {48858, 49729}, {49723, 50133}

X(51594) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {33309, 50410, 2}


X(51595) = X(1)X(4753)∩X(2)X(3)

Barycentrics    3*a^4 - a^3*b - 5*a^2*b^2 - a*b^3 - a^3*c - 11*a^2*b*c - 11*a*b^2*c - b^3*c - 5*a^2*c^2 - 11*a*b*c^2 - 2*b^2*c^2 - a*c^3 - b*c^3 : :

X(51595) lies on these lines: {1, 4753}, {2, 3}, {536, 16817}, {551, 5247}, {1104, 4755}, {1453, 29597}, {1724, 46922}, {4688, 7283}, {5263, 19871}, {16824, 50122}, {17297, 49723}, {19723, 48858}, {19851, 50072}, {19853, 48805}, {25507, 48866}, {41229, 51055}, {41813, 50111}

X(51595) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 405, 13735}, {2, 13735, 1010}, {2, 14020, 17677}, {2, 16858, 4234}, {2, 16861, 33309}, {2, 16865, 16393}, {2, 31156, 48816}, {2, 48814, 17678}, {2, 50430, 37038}, {405, 19241, 21}, {405, 37035, 1010}, {5047, 11110, 13741}, {11357, 16857, 2}, {13735, 37035, 2}, {13736, 17552, 33833}, {16351, 19536, 2}, {16844, 16860, 17697}, {16844, 17697, 19280}, {17547, 17553, 2}, {50056, 50714, 2}


X(51596) = X(1)X(50076)∩X(2)X(3)

Barycentrics    8*a^3*b + 13*a^2*b^2 + 8*a*b^3 + 3*b^4 + 8*a^3*c + 22*a^2*b*c + 22*a*b^2*c + 8*b^3*c + 13*a^2*c^2 + 22*a*b*c^2 + 10*b^2*c^2 + 8*a*c^3 + 8*b*c^3 + 3*c^4 : :

X(51596) lies on these lines: {1, 50076}, {2, 3}, {4688, 19857}, {17303, 50049}, {17321, 50072}, {19871, 48821}, {25498, 50064}, {28606, 50047}, {31993, 50062}, {46922, 49716}, {50122, 50290}

X(51596) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 13725, 16394}, {2, 48814, 50323}, {2, 50055, 2049}, {2, 50058, 442}, {13728, 17514, 17529}, {13728, 37039, 17514}, {50058, 50409, 2}


X(51597) = X(1)X(31144)∩X(2)X(3)

Barycentrics    a^4 - 7*a^3*b - 13*a^2*b^2 - 7*a*b^3 - 2*b^4 - 7*a^3*c - 25*a^2*b*c - 25*a*b^2*c - 7*b^3*c - 13*a^2*c^2 - 25*a*b*c^2 - 10*b^2*c^2 - 7*a*c^3 - 7*b*c^3 - 2*c^4 : :

X(51597) lies on these lines: {1, 31144}, {2, 3}, {86, 49723}, {551, 41816}, {3616, 31143}, {4653, 41817}, {5333, 50234}, {16817, 41311}, {25507, 50226}, {42028, 49729}

X(51597) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 13745, 1010}, {2, 50165, 14005}, {2, 50171, 14007}, {405, 19318, 17513}, {13745, 17514, 2}


X(51598) = X(1)X(25503)∩X(2)X(3)

Barycentrics    a^4 + 10*a^3*b + 15*a^2*b^2 + 10*a*b^3 + 4*b^4 + 10*a^3*c + 24*a^2*b*c + 24*a*b^2*c + 10*b^3*c + 15*a^2*c^2 + 24*a*b*c^2 + 12*b^2*c^2 + 10*a*c^3 + 10*b*c^3 + 4*c^4 : :

X(51598) lies on these lines: {1, 25503}, {2, 3}, {41311, 50072}

X(51598) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4217, 50318}, {2, 50321, 19277}


X(51599) = X(1)X(50082)∩X(2)X(3)

Barycentrics    a^4 - 8*a^3*b - 15*a^2*b^2 - 8*a*b^3 - 2*b^4 - 8*a^3*c - 30*a^2*b*c - 30*a*b^2*c - 8*b^3*c - 15*a^2*c^2 - 30*a*b*c^2 - 12*b^2*c^2 - 8*a*c^3 - 8*b*c^3 - 2*c^4 : :

X(51599) lies on these lines: {1, 50082}, {2, 3}, {16828, 48829}, {17251, 50259}, {17281, 19857}

X(51599) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14020, 2049}, {2, 37038, 16458}, {2, 37314, 37150}


X(51600) = X(1)X(50084)∩X(2)X(3)

Barycentrics    7*a^4 + 14*a^3*b + 17*a^2*b^2 + 14*a*b^3 + 4*b^4 + 14*a^3*c + 32*a^2*b*c + 32*a*b^2*c + 14*b^3*c + 17*a^2*c^2 + 32*a*b*c^2 + 20*b^2*c^2 + 14*a*c^3 + 14*b*c^3 + 4*c^4 : :

X(51600) = X(51600) lies on these lines: {1, 50084}, {2, 3}, {17327, 49723}, {21358, 25526}, {41311, 50044}

X(51600) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 37037, 13745}


X(51601) = X(1)X(50085)∩X(2)X(3)

Barycentrics    5*a^4 + 12*a^3*b + 17*a^2*b^2 + 12*a*b^3 + 2*b^4 + 12*a^3*c + 38*a^2*b*c + 38*a*b^2*c + 12*b^3*c + 17*a^2*c^2 + 38*a*b*c^2 + 20*b^2*c^2 + 12*a*c^3 + 12*b*c^3 + 2*c^4 : :

X(51601) lies on these lines: {1, 50085}, {2, 3}, {3241, 27790}, {17251, 25526}, {25055, 28617}

X(51601) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 2049, 17556}, {2, 11111, 17514}, {2, 14005, 17528}, {2, 50323, 19536}


X(51602) = X(1)X(4688)∩X(2)X(3)

Barycentrics    3*a^4 + 4*a^3*b + 5*a^2*b^2 + 4*a*b^3 + 4*a^3*c + 14*a^2*b*c + 14*a*b^2*c + 4*b^3*c + 5*a^2*c^2 + 14*a*b*c^2 + 8*b^2*c^2 + 4*a*c^3 + 4*b*c^3 : :

X(51602) lies on these lines: {1, 4688}, {2, 3}, {37, 50049}, {75, 50072}, {958, 19871}, {1125, 47040}, {1698, 4252}, {3679, 37559}, {3739, 50064}, {3916, 19859}, {4664, 50044}, {4755, 50054}, {5247, 19875}, {6051, 50126}, {7283, 51488}, {9534, 46922}, {12635, 41812}, {17251, 50276}, {19797, 50041}, {19819, 50069}, {19822, 50047}, {19870, 48832}, {25526, 50259}, {42028, 48850}, {47037, 50163}, {50122, 50314}

X(51602) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 377, 50058}, {2, 1010, 16394}, {2, 11354, 17542}, {2, 16394, 405}, {2, 16397, 16342}, {2, 19276, 16370}, {2, 19290, 16371}, {2, 19336, 19279}, {2, 37150, 17556}, {2, 48816, 50056}, {2, 50055, 4205}, {2, 50169, 17532}, {1010, 16458, 405}, {2049, 16454, 474}, {4189, 17551, 16457}, {11115, 16844, 19526}, {16300, 16395, 37057}, {16394, 16458, 2}, {16395, 19283, 16300}, {16418, 19346, 16370}, {16454, 17589, 2049}, {16849, 37241, 405}, {17524, 19282, 405}, {19273, 19284, 19537}, {19277, 19332, 2}, {19279, 19336, 19705}, {48816, 50056, 50397}


X(51603) = X(1)X(4727)∩X(2)X(3)

Barycentrics    5*a^4 + 8*a^3*b + 9*a^2*b^2 + 8*a*b^3 + 2*b^4 + 8*a^3*c + 18*a^2*b*c + 18*a*b^2*c + 8*b^3*c + 9*a^2*c^2 + 18*a*b*c^2 + 12*b^2*c^2 + 8*a*c^3 + 8*b*c^3 + 2*c^4 : :

X(51603) lies on these lines: {1, 4727}, {2, 3}, {1453, 19875}, {17251, 50272}, {17313, 25526}, {17320, 50044}, {19784, 49725}, {19865, 49746}, {24931, 27739}, {41311, 50049}

X(51603) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4217, 4205}, {2, 19277, 44217}, {2, 50059, 16370}, {1010, 37035, 16913}


X(51604) = X(1)X(50088)∩X(2)X(3)

Barycentrics    4*a^4 + 7*a^3*b + 9*a^2*b^2 + 7*a*b^3 + b^4 + 7*a^3*c + 21*a^2*b*c + 21*a*b^2*c + 7*b^3*c + 9*a^2*c^2 + 21*a*b*c^2 + 12*b^2*c^2 + 7*a*c^3 + 7*b*c^3 + c^4 : :

X(51604) lies on these lines: {1, 50088}, {2, 3}, {17378, 25526}, {19865, 48829}

X(51604) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1010, 37038}, {2, 37038, 37039}


X(51605) = X(1)X(4527)∩X(2)X(3)

Barycentrics    4*a^4 + 5*a^3*b + 5*a^2*b^2 + 5*a*b^3 + b^4 + 5*a^3*c + 11*a^2*b*c + 11*a*b^2*c + 5*b^3*c + 5*a^2*c^2 + 11*a*b*c^2 + 8*b^2*c^2 + 5*a*c^3 + 5*b*c^3 + c^4 : :

X(51605) lies on these lines: {1, 4527}, {2, 3}, {551, 42029}, {597, 9534}, {4340, 21356}, {5224, 49723}, {5247, 48809}, {7283, 41312}, {17320, 50049}, {18134, 50226}, {19883, 24178}, {32782, 50234}, {41311, 50054}, {41816, 48870}

X(51605) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4195, 13745}, {2, 13745, 37039}, {2, 16394, 37038}, {2, 50171, 16062}, {1010, 37036, 33833}, {1010, 37037, 37036}, {7833, 13745, 37038}


X(51606) = X(1)X(4480)∩X(2)X(3)

Barycentrics    11*a^4 + 2*a^3*b - 6*a^2*b^2 + 2*a*b^3 - b^4 + 2*a^3*c - 6*a^2*b*c - 6*a*b^2*c + 2*b^3*c - 6*a^2*c^2 - 6*a*b*c^2 + 6*b^2*c^2 + 2*a*c^3 + 2*b*c^3 - c^4 : :

X(51606) lies on these lines: {1, 4480}, {2, 3}, {1043, 37654}, {1104, 50101}, {1265, 4370}, {3871, 34446}, {4304, 26685}, {4339, 50286}, {5248, 48833}, {5436, 50116}, {5657, 35284}

X(51606) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21, 4217, 2}, {376, 33309, 2}, {4195, 11106, 13736}, {11111, 13735, 2}, {16394, 50430, 2}, {16418, 48817, 2}, {16858, 50061, 2}, {17576, 17697, 37339}


X(51607) = X(3)X(69)∩X(7)X(58)

Barycentrics    (a + b)*(a + c)*(a^2 - b^2 - c^2)*(2*a^3 - a^2*b + b^3 - a^2*c - b^2*c - b*c^2 + c^3) : :

X(51607) lies on these lines: {3, 69}, {7, 58}, {99, 29242}, {239, 514}, {283, 17170}, {348, 1437}, {379, 24597}, {5744, 24632}, {6604, 37227}, {31016, 31017}

X(51607) = X(37)-isoconjugate of X(9085)
X(51607) = X(i)-Dao conjugate of X(j) for these (i, j): (5513, 1826), (40589, 9085)
X(51607) = crossdifference of every pair of points on line {42, 2489}
X(51607) = barycentric product X(i)*X(j) for these {i,j}: {86, 9028}, {99, 2504}, {3011, 17206}, {4025, 4237}, {4563, 29240}
X(51607) = barycentric quotient X(i)/X(j) for these {i,j}: {58, 9085}, {2504, 523}, {3011, 1826}, {4237, 1897}, {4558, 29241}, {7254, 35365}, {9028, 10}, {29240, 2501}


X(51608) = X(3)X(69)∩X(514)X(661)

Barycentrics    (b + c)*(-a^2 + b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 + 3*a^2*b*c - b^3*c - 2*a^2*c^2 - b*c^3 + c^4) : :

X(51608) lies on these lines: {2, 45930}, {3, 69}, {514, 661}, {664, 860}, {1150, 24581}, {1441, 12609}, {6505, 41809}, {20926, 20930}, {27249, 27267}, {29961, 29981}, {30033, 30034}, {30808, 30828}

X(51608) = anticomplement of X(45930)
X(51608) = crossdifference of every pair of points on line {31, 2489}
X(51608) = barycentric product X(1231)*X(1776)
X(51608) = barycentric quotient X(1776)/X(1172)


X(51609) = X(3)X(69)∩X(241)X(514)

Barycentrics    (a^2 - b^2 - c^2)*(2*a^5 - a^3*b^2 + 3*a^2*b^3 + a*b^4 - b^5 - 3*a^2*b^2*c + b^4*c - a^3*c^2 - 3*a^2*b*c^2 - 2*a*b^2*c^2 + 3*a^2*c^3 + a*c^4 + b*c^4 - c^5) : :

X(51609) lies on these lines: {3, 69}, {241, 514}, {30810, 30811}, {31184, 31232}

X(51609) = crossdifference of every pair of points on line {55, 2489}


X(51610) = X(3)X(69)∩X(115)X(2971)

Barycentrics    (a^2 - b^2 - c^2)*(3*a^2 - b^2 - c^2)*(b^2 - c^2)^2*(2*a^4 - a^2*b^2 + b^4 - a^2*c^2 - 2*b^2*c^2 + c^4) : :

X(51610) lies on the cubic K203 and these lines: {3, 69}, {115, 2971}

X(51610) = X(i)-complementary conjugate of X(j) for these (i,j): {35364, 4138}, {36051, 3566}
X(51610) = X(98)-Ceva conjugate of X(3566)
X(51610) = X(3565)-isoconjugate of X(36105)
X(51610) = X(39001)-Dao conjugate of X(3565)
X(51610) = crosssum of X(3563) and X(10425)
X(51610) = crossdifference of every pair of points on line {2489, 4558}
X(51610) = barycentric product X(3564)*X(6388)
X(51610) = barycentric quotient X(i)/X(j) for these {i,j}: {6388, 35142}, {8651, 32697}, {47430, 3563}


X(51611) = X(3)X(69)∩X(230)X(231)

Barycentrics    (a^2 - b^2 - c^2)*(2*a^6 - a^4*b^2 + 4*a^2*b^4 - b^6 - a^4*c^2 - 8*a^2*b^2*c^2 + b^4*c^2 + 4*a^2*c^4 + b^2*c^4 - c^6) : :

X(51611) lies on these lines: {3, 69}, {187, 47279}, {230, 231}, {235, 30549}, {441, 20975}, {460, 1632}, {1352, 10608}, {1609, 41584}, {3284, 47277}, {5181, 44395}, {5201, 47582}, {6467, 34828}, {7493, 37667}, {7778, 30739}, {8667, 44210}, {10602, 37188}, {11063, 32113}, {11799, 38580}, {14601, 41909}, {18365, 47280}, {32114, 32459}, {34569, 47462}, {35282, 40135}, {40809, 44556}, {43291, 47285}

X(51611) = crossdifference of every pair of points on line {3, 2489}
X(51611) = X(i)-line conjugate of X(j) for these (i,j): {69, 3}, {230, 2489}
X(51611) = {X(40947),X(41005)}-harmonic conjugate of X(26926)


X(51612) = X(3)X(69)∩X(10)X(75)

Barycentrics    (a^2 - b^2 - c^2)*(a^2*b - b^3 + a^2*c - a*b*c - c^3) : :

X(51612) lies on these lines: {3, 69}, {10, 75}, {57, 3719}, {86, 7763}, {190, 18747}, {274, 51499}, {304, 307}, {325, 10446}, {345, 26942}, {573, 4417}, {1102, 7013}, {1264, 4561}, {1265, 51366}, {3729, 16603}, {3945, 32831}, {4201, 5232}, {4254, 22374}, {5207, 35462}, {7799, 17378}, {11359, 32836}, {17271, 32833}, {17272, 17596}, {17740, 32782}, {18135, 24986}, {24282, 41003}, {25000, 28809}, {48902, 51417}

X(51612) = isotomic conjugate of the polar conjugate of X(4417)
X(51612) = X(4998)-Ceva conjugate of X(4561)
X(51612) = X(i)-isoconjugate of X(j) for these (i,j): {25, 2217}, {667, 26704}, {1395, 10570}, {1973, 13478}, {1974, 2995}, {2203, 15232}, {2204, 40160}, {6591, 32653}
X(51612) = X(i)-Dao conjugate of X(j) for these (i, j): (4417, 16066), (6332, 11), (6337, 13478), (6505, 2217), (6589, 8735), (6631, 26704), (37646, 37226)
X(51612) = crossdifference of every pair of points on line {1919, 2489}
X(51612) = barycentric product X(i)*X(j) for these {i,j}: {69, 4417}, {304, 3869}, {305, 573}, {561, 22134}, {3185, 40364}, {3718, 17080}, {3926, 17555}, {4225, 40071}, {4998, 40626}
X(51612) = barycentric quotient X(i)/X(j) for these {i,j}: {63, 2217}, {69, 13478}, {124, 8735}, {190, 26704}, {304, 2995}, {306, 15232}, {307, 40160}, {332, 19607}, {345, 10570}, {573, 25}, {1331, 32653}, {1332, 36050}, {3185, 1973}, {3192, 2207}, {3869, 19}, {4225, 1474}, {4417, 4}, {4561, 44765}, {10571, 608}, {17080, 34}, {17555, 393}, {21078, 1824}, {21189, 6591}, {22134, 31}, {22276, 2333}, {34588, 2170}, {40626, 11}, {44717, 15386}, {47411, 3271}


X(51613) = X(2)X(6)∩X(3124)X(8754)

Barycentrics    (3*a^2 - b^2 - c^2)*(b^2 - c^2)^2*(2*a^4 - a^2*b^2 + b^4 - a^2*c^2 - 2*b^2*c^2 + c^4) : :

X(51613) lies on these lines: {2, 6}, {3124, 8754}, {6388, 15525}

X(51613) = X(i)-Ceva conjugate of X(j) for these (i,j): {3564, 42663}, {40120, 669}
X(51613) = X(2489)-Dao conjugate of X(35142)
X(51613) = crossdifference of every pair of points on line {512, 3565}
X(51613) = barycentric product X(i)*X(j) for these {i,j}: {230, 6388}, {3564, 5139}, {8772, 17876}, {47430, 51481}
X(51613) = barycentric quotient X(i)/X(j) for these {i,j}: {5139, 35142}, {6388, 8781}, {8651, 10425}, {42663, 3565}, {47430, 2987}
X(51613) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1992, 44401, 1641}


X(51614) = ISOTOMIC CONJUGATE OF X(4458)

Barycentrics    (a - b)*(a - c)*(a^3 + b^3 - a*b*c - c^3)*(a^3 - b^3 - a*b*c + c^3) : :

X(51614) lies on these lines: {99, 29037}, {100, 4467}, {518, 7061}, {644, 3807}, {664, 3907}, {693, 6742}, {740, 7281}, {1320, 7261}, {2702, 2786}, {3699, 4505}, {3732, 9237}, {3900, 3903}, {4564, 36147}, {8844, 8851}, {32927, 40846}

X(51614) = isotomic conjugate of X(4458)
X(51614) = isotomic conjugate of the complement of X(4088)
X(51614) = X(3573)-cross conjugate of X(190)
X(51614) = X(i)-isoconjugate of X(j) for these (i,j): {31, 4458}, {513, 17798}, {514, 19554}, {649, 3509}, {663, 5018}, {665, 40754}, {667, 4645}, {693, 18262}, {875, 1281}, {876, 19561}, {1919, 17789}, {1922, 27951}, {3572, 19557}, {3733, 20715}, {4367, 41532}, {4369, 41882}, {4444, 18038}, {6591, 20741}, {20981, 40873}
X(51614) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 4458), (5375, 3509), (6631, 4645), (9296, 17789), (39026, 17798), (39028, 27951)
X(51614) = cevapoint of X(i) and X(j) for these (i,j): {1, 2786}, {2, 4088}, {239, 522}, {3930, 23954}, {24129, 27846}
X(51614) = trilinear pole of line {9, 1654}
X(51614) = barycentric product X(i)*X(j) for these {i,j}: {100, 40845}, {101, 18036}, {190, 7261}, {668, 3512}, {874, 24479}, {1978, 8852}, {3903, 40846}, {4554, 7281}, {7061, 27805}, {27853, 30648}
X(51614) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 4458}, {100, 3509}, {101, 17798}, {190, 4645}, {350, 27951}, {651, 5018}, {666, 40724}, {668, 17789}, {692, 19554}, {874, 18037}, {1018, 20715}, {1331, 20741}, {3512, 513}, {3570, 1281}, {3573, 19557}, {3903, 40873}, {3952, 4071}, {4427, 4987}, {7061, 4369}, {7261, 514}, {7281, 650}, {8852, 649}, {18036, 3261}, {24479, 876}, {30648, 3572}, {32739, 18262}, {36086, 40754}, {40781, 2254}, {40845, 693}, {40846, 4374}, {41534, 4367}



leftri

Incircle-inverses of points on the Euler line: X(51615) - X(51618)

rightri

This preamble is contributed by Clark Kimberling and Peter Moses, August 30, 2022.

The incenter-inverse of the Euler line is the circle with center X(39540) and pass-through points as indicated in the following list, in which the appearance of (i,j) means that X(i) is on the Euler line, and X(j) = incircle-inverse of X(i):

(2,51615), (3,5590), (4,51616), (5,5533), (20, 51617), (30, 1), (1012, 51618), (1314,1315), (1315, 1314), (3109, 55509)

See the preambles just before X(39486), X(39475), and X(51619).


X(51615) = INCIRCLE-INVERSE OF X(2)

Barycentrics    2*a^3 - 3*a^2*b + 8*a*b^2 - 3*b^3 - 3*a^2*c - 12*a*b*c + 3*b^2*c + 8*a*c^2 + 3*b*c^2 - 3*c^3 : :
X(51615) = 4 X[1] - 3 X[37743], 3 X[5121] - X[5524], 3 X[5211] + X[38473], X[5212] - 3 X[50533], X[18201] - 3 X[24216], X[1155] - 3 X[14027]

X(51615) lies on these lines: {1, 2}, {88, 15637}, {516, 18201}, {518, 3038}, {908, 22942}, {1155, 3021}, {3664, 17721}, {3667, 3676}, {3756, 5853}, {4353, 24217}, {4392, 24802}, {4896, 10520}, {4899, 26139}, {4909, 17726}, {7963, 12536}, {11031, 50534}, {15601, 24477}, {21621, 46957}, {24175, 24392}, {33103, 50802}, {36263, 40998}

X(51615) = incircle-inverse of X(2)
X(51615) = orthoptic-circle-of-Steiner-inellipse-inverse of X(16020)
X(51615) = orthoptic-circle-of-Steiner-circumellipse-inverse of X(39567)
X(51615) = psi-transform of X(7613)
X(51615) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {17222, 8055}, {31316, 3436}
X(51615) = {X(1647),X(49989)}-harmonic conjugate of X(6745)


X(51616) = INCIRCLE-INVERSE OF X(4)

Barycentrics    2*a^7 - a^6*b - 2*a^5*b^2 + 3*a^4*b^3 - 2*a^3*b^4 - 3*a^2*b^5 + 2*a*b^6 + b^7 - a^6*c + 4*a^5*b*c - 3*a^4*b^2*c - 4*a^3*b^3*c + 5*a^2*b^4*c - b^6*c - 2*a^5*c^2 - 3*a^4*b*c^2 + 12*a^3*b^2*c^2 - 2*a^2*b^3*c^2 - 2*a*b^4*c^2 - 3*b^5*c^2 + 3*a^4*c^3 - 4*a^3*b*c^3 - 2*a^2*b^2*c^3 + 3*b^4*c^3 - 2*a^3*c^4 + 5*a^2*b*c^4 - 2*a*b^2*c^4 + 3*b^3*c^4 - 3*a^2*c^5 - 3*b^2*c^5 + 2*a*c^6 - b*c^6 + c^7 : :
X(51616) = X[1] + 2 X[44901], 3 X[5603] + X[45766], 5 X[3616] - X[10538]

X(51616) lies on these lines: {1, 4}, {516, 46974}, {517, 15252}, {522, 905}, {1125, 6509}, {1210, 50368}, {1319, 1359}, {1324, 11365}, {1455, 38357}, {1456, 15524}, {1735, 3911}, {1736, 50759}, {1854, 6245}, {1875, 2817}, {1886, 34591}, {2331, 20263}, {2716, 5193}, {2723, 36079}, {3086, 5573}, {3616, 10538}, {3663, 14878}, {3671, 41344}, {4975, 24014}, {6001, 12016}, {6051, 13411}, {12915, 39544}, {15633, 36121}, {18237, 41402}, {18339, 50443}, {24034, 38462}, {39595, 50195}

X(51616) = midpoint of X(i) and X(j) for these {i,j}: {1, 1785}, {1319, 3326}, {1455, 38357}
X(51616) = reflection of X(i) in X(j) for these {i,j}: {1785, 44901}, {16870, 16869}, {51375, 15252}
X(51616) = incircle-inverse of X(4)
X(51616) = polar-circle-inverse of X(7952)
X(51616) = circumcircle-of-anticomplementary-triangle-inverse of X(34936)
X(51616) = X(i)-complementary conjugate of X(j) for these (i,j): {56, 25640}, {1295, 1329}, {36044, 20316}
X(51616) = crossdifference of every pair of points on line {198, 652}
X(51616) = {X(1),X(1699)}-harmonic conjugate of X(34231)


X(51617) = INCIRCLE-INVERSE OF X(20)

Barycentrics    6*a^6 - 3*a^5*b - 5*a^4*b^2 - 2*a^3*b^3 + 5*a*b^5 - b^6 - 3*a^5*c + 2*a^4*b*c + 6*a^3*b^2*c - 4*a^2*b^3*c - 3*a*b^4*c + 2*b^5*c - 5*a^4*c^2 + 6*a^3*b*c^2 + 8*a^2*b^2*c^2 - 2*a*b^3*c^2 + b^4*c^2 - 2*a^3*c^3 - 4*a^2*b*c^3 - 2*a*b^2*c^3 - 4*b^3*c^3 - 3*a*b*c^4 + b^2*c^4 + 5*a*c^5 + 2*b*c^5 - c^6 : :

X(51617) lies on these lines: {1, 7}, {514, 44409}, {938, 5199}, {1210, 31897}, {3562, 31896}, {4649, 6738}, {4658, 6744}, {5853, 6510}, {11019, 16475}, {11028, 34381}

X(51617) = incircle-inverse of X(20)


X(51618) = INCIRCLE-INVERSE OF X(1012)

Barycentrics    a*(a^11*b - 3*a^10*b^2 - a^9*b^3 + 11*a^8*b^4 - 6*a^7*b^5 - 14*a^6*b^6 + 14*a^5*b^7 + 6*a^4*b^8 - 11*a^3*b^9 + a^2*b^10 + 3*a*b^11 - b^12 + a^11*c + 3*a^9*b^2*c - 10*a^8*b^3*c - 10*a^7*b^4*c + 28*a^6*b^5*c + 2*a^5*b^6*c - 24*a^4*b^7*c + 9*a^3*b^8*c + 4*a^2*b^9*c - 5*a*b^10*c + 2*b^11*c - 3*a^10*c^2 + 3*a^9*b*c^2 + 6*a^8*b^2*c^2 + 12*a^7*b^3*c^2 - 10*a^6*b^4*c^2 - 30*a^5*b^5*c^2 + 16*a^4*b^6*c^2 + 12*a^3*b^7*c^2 - 11*a^2*b^8*c^2 + 3*a*b^9*c^2 + 2*b^10*c^2 - a^9*c^3 - 10*a^8*b*c^3 + 12*a^7*b^2*c^3 - 8*a^6*b^3*c^3 + 14*a^5*b^4*c^3 + 8*a^4*b^5*c^3 - 28*a^3*b^6*c^3 + 16*a^2*b^7*c^3 + 3*a*b^8*c^3 - 6*b^9*c^3 + 11*a^8*c^4 - 10*a^7*b*c^4 - 10*a^6*b^2*c^4 + 14*a^5*b^3*c^4 - 12*a^4*b^4*c^4 + 18*a^3*b^5*c^4 + 10*a^2*b^6*c^4 - 22*a*b^7*c^4 + b^8*c^4 - 6*a^7*c^5 + 28*a^6*b*c^5 - 30*a^5*b^2*c^5 + 8*a^4*b^3*c^5 + 18*a^3*b^4*c^5 - 40*a^2*b^5*c^5 + 18*a*b^6*c^5 + 4*b^7*c^5 - 14*a^6*c^6 + 2*a^5*b*c^6 + 16*a^4*b^2*c^6 - 28*a^3*b^3*c^6 + 10*a^2*b^4*c^6 + 18*a*b^5*c^6 - 4*b^6*c^6 + 14*a^5*c^7 - 24*a^4*b*c^7 + 12*a^3*b^2*c^7 + 16*a^2*b^3*c^7 - 22*a*b^4*c^7 + 4*b^5*c^7 + 6*a^4*c^8 + 9*a^3*b*c^8 - 11*a^2*b^2*c^8 + 3*a*b^3*c^8 + b^4*c^8 - 11*a^3*c^9 + 4*a^2*b*c^9 + 3*a*b^2*c^9 - 6*b^3*c^9 + a^2*c^10 - 5*a*b*c^10 + 2*b^2*c^10 + 3*a*c^11 + 2*b*c^11 - c^12) : :

X(51618) lies on these lines: {1, 84}, {72, 50379}, {521, 7649}, {912, 15500}, {1712, 14054}, {3193, 8885}, {7149, 43740}, {7952, 40263}, {24474, 44696}

X(51618) = reflection of X(72) in X(50379)
X(51618) = incircle-inverse of X(1012)
X(51618) = crossdifference of every pair of points on line {14298, 19350}

leftri

Circumcircle-inverses of points on the Nagel line: X(51619) - X(51631)

rightri

This preamble is contributed by Clark Kimberling and Peter Moses, August 30, 2022.

The circumcircle-inverse of the Nagel line is the circle with center X(39225) and pass-through points as indicated in the following list, in which the appearance of (i,j) means that X(i) is on the Nagel line, and X(j) = circumcircle-inverse of X(i):

(1,36), (2,23), (8,17100), (10,1324), (42, 32759), (78, 51629), (386, 51619), (519, 3), (997, 51620), (1125, 51621), (3811, 51622), (5121,51623), (5205, 51630), (5529, 51624), (6788, 51625), (6789, 39225), (22837, 51626), (23869, 51627), (30144, 51628)

See the preambles just before X(39486), X(39475), and X(51615).


X(51619) = CIRCUMCIRCLE-INVERSE OF X(386)

Barycentrics    a^2*(a^4 + 2*a^3*b + a^2*b^2 - a*b^3 - b^4 + 2*a^3*c + 2*a^2*b*c - a*b^2*c - b^3*c + a^2*c^2 - a*b*c^2 - b^2*c^2 - a*c^3 - b*c^3 - c^4) : :

X(51619) lies on these lines: {3, 6}, {23, 902}, {35, 20964}, {199, 38832}, {316, 13740}, {385, 726}, {512, 4057}, {595, 23868}, {612, 846}, {754, 51417}, {2244, 3647}, {2702, 28476}, {2711, 29187}, {2712, 8694}, {3743, 5184}, {3849, 11354}, {4195, 14712}, {4234, 31144}, {7295, 39582}, {12031, 15322}, {15485, 19318}, {17735, 21830}, {18792, 19308}, {19312, 25354}, {28369, 37023}, {37617, 38221}

X(51619) = midpoint of X(i) and X(j) for these {i,j}: {9301, 35462}, {14712, 20558}
X(51619) = reflection of X(i) in X(j) for these {i,j}: {316, 20546}, {1326, 187}
X(51619) = reflection of X(1326) in the Lemoine axis
X(51619) = circumcircle-inverse of X(386)
X(51619) = crossdifference of every pair of points on line {523, 17398}
X(51619) = barycentric product X(58)*X(27573)
X(51619) = barycentric quotient X(27573)/X(313)
X(51619) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {187, 20666, 1691}, {1379, 1380, 386}, {2076, 20675, 187}


X(51620) = CIRCUMCIRCLE-INVERSE OF X(997)

Barycentrics    a^2*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 + 3*a^6*b*c - a^4*b^3*c + 4*a^3*b^4*c - 3*a^2*b^5*c - 4*a*b^6*c + b^7*c - 2*a^6*c^2 + 6*a^4*b^2*c^2 - 6*a^3*b^3*c^2 - 4*a^2*b^4*c^2 + 6*a*b^5*c^2 - a^4*b*c^3 - 6*a^3*b^2*c^3 + 10*a^2*b^3*c^3 - 2*a*b^4*c^3 - b^5*c^3 + 4*a^3*b*c^4 - 4*a^2*b^2*c^4 - 2*a*b^3*c^4 + 2*b^4*c^4 - 3*a^2*b*c^5 + 6*a*b^2*c^5 - b^3*c^5 + 2*a^2*c^6 - 4*a*b*c^6 + b*c^7 - c^8) : :

X(51620) lies on these lines: {3, 960}, {8, 35988}, {23, 38460}, {40, 1603}, {56, 34049}, {101, 2745}, {104, 2728}, {521, 4057}, {603, 995}, {1737, 33849}, {8668, 39600}

X(51620) = circumcircle-inverse of X(997)
X(51620) = {X(3435),X(3556)}-harmonic conjugate of X(1158)


X(51621) = CIRCUMCIRCLE-INVERSE OF X(1125)

Barycentrics    a^2*(a^4 + a^3*b - a*b^3 - b^4 + a^3*c - a^2*b*c + a*b^2*c - b^3*c + a*b*c^2 + 2*b^2*c^2 - a*c^3 - b*c^3 - c^4) : :

X(51621) lies on these lines: {1, 20836}, {3, 142}, {6, 41323}, {23, 20999}, {25, 92}, {55, 1961}, {56, 5018}, {101, 9052}, {149, 33325}, {198, 51058}, {199, 1621}, {238, 17798}, {284, 39543}, {405, 19865}, {511, 36942}, {514, 4057}, {595, 2305}, {674, 17976}, {692, 37510}, {740, 8301}, {831, 2725}, {859, 34179}, {902, 32759}, {927, 9108}, {947, 13598}, {962, 20838}, {999, 2097}, {1284, 6660}, {1617, 9909}, {1622, 39568}, {2076, 9259}, {2178, 37590}, {2702, 20472}, {2726, 8707}, {3286, 16686}, {3295, 5011}, {4245, 41327}, {5020, 49653}, {5078, 23404}, {5088, 13730}, {5263, 19329}, {5527, 8273}, {5687, 17233}, {5989, 5991}, {6186, 17469}, {6690, 19516}, {7083, 37507}, {8424, 24325}, {9708, 31897}, {9709, 17293}, {11349, 20533}, {11350, 31319}, {12410, 13737}, {15494, 20760}, {16059, 37577}, {16422, 37557}, {16678, 20834}, {16684, 20831}, {16689, 50293}, {20841, 37578}, {20918, 38863}, {20991, 37581}, {23095, 45728}, {23379, 23850}, {37502, 37580}

X(51621) = circumcircle-inverse of X(1125)
X(51621) = Stammler-circle-inverse of X(12699)
X(51621) = X(6650)-Ceva conjugate of X(6)
X(51621) = X(17735)-Dao conjugate of X(6542)
X(51621) = crosspoint of X(2702) and X(15378)
X(51621) = crosssum of X(116) and X(2786)
X(51621) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1001, 1631, 3}, {16678, 20988, 20834}, {20470, 20872, 3}, {20470, 23854, 20872}


X(51622) = CIRCUMCIRCLE-INVERSE OF X(3811)

Barycentrics    a^2*(a^7 - a^6*b - a^5*b^2 + a^4*b^3 - a^3*b^4 + a^2*b^5 + a*b^6 - b^7 - a^6*c - 3*a^5*b*c + 4*a^4*b^2*c + 2*a^3*b^3*c - 5*a^2*b^4*c + a*b^5*c + 2*b^6*c - a^5*c^2 + 4*a^4*b*c^2 + 6*a^3*b^2*c^2 - 6*a^2*b^3*c^2 - a*b^4*c^2 - 2*b^5*c^2 + a^4*c^3 + 2*a^3*b*c^3 - 6*a^2*b^2*c^3 + 6*a*b^3*c^3 + b^4*c^3 - a^3*c^4 - 5*a^2*b*c^4 - a*b^2*c^4 + b^3*c^4 + a^2*c^5 + a*b*c^5 - 2*b^2*c^5 + a*c^6 + 2*b*c^6 - c^7) : :

X(51622) lies on these lines: {3, 518}, {23, 14664}, {36, 38695}, {165, 7298}, {2736, 15344}, {3309, 4057}, {5526, 37508}, {7390, 24309}

X(51622) = circumcircle-inverse of X(3811)


X(51623) = CIRCUMCIRCLE-INVERSE OF X(5121)

Barycentrics    a^2*(a^7 - a^6*b - a^5*b^2 + a^4*b^3 - a^3*b^4 + a^2*b^5 + a*b^6 - b^7 - a^6*c + 4*a^5*b*c - a^4*b^2*c + a^2*b^4*c - 4*a*b^5*c + b^6*c - a^5*c^2 - a^4*b*c^2 - 2*a^3*b^2*c^2 - a*b^4*c^2 + b^5*c^2 + a^4*c^3 + 4*a*b^3*c^3 - b^4*c^3 - a^3*c^4 + a^2*b*c^4 - a*b^2*c^4 - b^3*c^4 + a^2*c^5 - 4*a*b*c^5 + b^2*c^5 + a*c^6 + b*c^6 - c^7) : :

X(51623) lies on these lines: {2, 10058}, {3, 5121}, {22, 36}, {23, 11809}, {25, 1324}, {109, 7295}, {165, 7298}, {1283, 39475}, {1617, 9909}, {5119, 5310}, {5345, 13462}, {35988, 36152}

X(51623) = circumcircle-inverse of X(5121)
X(51623) = orthoptic-circle-of-Steiner-inellipse-inverse of X(39692)


X(51624) = CIRCUMCIRCLE-INVERSE OF X(5529)

Barycentrics    a^2*(a^5 + 2*a^4*b + a^3*b^2 - a^2*b^3 - 2*a*b^4 - b^5 + 2*a^4*c + 2*a^3*b*c - 2*a^2*b^2*c - 3*a*b^3*c - b^4*c + a^3*c^2 - 2*a^2*b*c^2 - 3*a*b^2*c^2 - b^3*c^2 - a^2*c^3 - 3*a*b*c^3 - b^2*c^3 - 2*a*c^4 - b*c^4 - c^5) : :

X(51624) lies on these lines: {1, 20836}, {3, 5529}, {23, 3743}, {35, 228}, {36, 58}, {199, 1046}, {213, 2305}, {1030, 21879}, {1281, 4647}, {2092, 5280}, {3647, 17100}, {3778, 18757}, {4471, 16478}, {5009, 14815}, {5259, 25354}, {5526, 37508}, {17524, 24436}, {38882, 39633}

X(51624) = circumcircle-inverse of X(5529)
X(51624) = {X(58),X(501)}-harmonic conjugate of X(19655)


X(51625) = CIRCUMCIRCLE-INVERSE OF X(6788)

Barycentrics    a^2*(a^8 - a^7*b - 2*a^6*b^2 + 3*a^5*b^3 - 3*a^3*b^5 + 2*a^2*b^6 + a*b^7 - b^8 - a^7*c + a^6*b*c + a^5*b^2*c - a^4*b^3*c + a^3*b^4*c - a^2*b^5*c - a*b^6*c + b^7*c - 2*a^6*c^2 + a^5*b*c^2 + a^4*b^2*c^2 - a^3*b^3*c^2 - a^2*b^4*c^2 - a*b^5*c^2 + b^6*c^2 + 3*a^5*c^3 - a^4*b*c^3 - a^3*b^2*c^3 + 3*a^2*b^3*c^3 + a*b^4*c^3 - b^5*c^3 + a^3*b*c^4 - a^2*b^2*c^4 + a*b^3*c^4 - 3*a^3*c^5 - a^2*b*c^5 - a*b^2*c^5 - b^3*c^5 + 2*a^2*c^6 - a*b*c^6 + b^2*c^6 + a*c^7 + b*c^7 - c^8) : :

X(51625) lies on these lines: {3, 6788}, {23, 3011}, {36, 244}, {186, 7649}, {759, 859}, {1725, 5497}, {1737, 17010}, {20918, 38863}, {31841, 38612}, {36152, 38511}

X(51625) = midpoint of X(36) and X(1283)
X(51625) = circumcircle-inverse of X(6788)


X(51626) = CIRCUMCIRCLE-INVERSE OF X(22837)

Barycentrics    a^2*(a^8 - 3*a^7*b - 2*a^6*b^2 + 9*a^5*b^3 - 9*a^3*b^5 + 2*a^2*b^6 + 3*a*b^7 - b^8 - 3*a^7*c + 16*a^6*b*c - 12*a^5*b^2*c - 29*a^4*b^3*c + 32*a^3*b^4*c + 9*a^2*b^5*c - 17*a*b^6*c + 4*b^7*c - 2*a^6*c^2 - 12*a^5*b*c^2 + 47*a^4*b^2*c^2 - 13*a^3*b^3*c^2 - 42*a^2*b^4*c^2 + 25*a*b^5*c^2 - 3*b^6*c^2 + 9*a^5*c^3 - 29*a^4*b*c^3 - 13*a^3*b^2*c^3 + 48*a^2*b^3*c^3 - 9*a*b^4*c^3 - 4*b^5*c^3 + 32*a^3*b*c^4 - 42*a^2*b^2*c^4 - 9*a*b^3*c^4 + 8*b^4*c^4 - 9*a^3*c^5 + 9*a^2*b*c^5 + 25*a*b^2*c^5 - 4*b^3*c^5 + 2*a^2*c^6 - 17*a*b*c^6 - 3*b^2*c^6 + 3*a*c^7 + 4*b*c^7 - c^8) : :

X(51626) lies on these lines: {3, 2802}, {106, 32612}, {1293, 26286}, {2827, 4057}, {5450, 10744}, {10700, 26285}, {11012, 38620}, {11717, 37535}, {19649, 38693}, {32153, 50914}, {37561, 38604}

X(51626) = circumcircle-inverse of X(22837)


X(51627) = CIRCUMCIRCLE-INVERSE OF X(23869)

Barycentrics    a^2*(a^7 - a^6*b - a^5*b^2 + a^4*b^3 - a^3*b^4 + a^2*b^5 + a*b^6 - b^7 - a^6*c - 2*a^5*b*c + 5*a^4*b^2*c - 5*a^2*b^4*c + 2*a*b^5*c + b^6*c - a^5*c^2 + 5*a^4*b*c^2 - 5*a^3*b^2*c^2 + 3*a^2*b^3*c^2 - 7*a*b^4*c^2 + b^5*c^2 + a^4*c^3 + 3*a^2*b^2*c^3 + 10*a*b^3*c^3 - b^4*c^3 - a^3*c^4 - 5*a^2*b*c^4 - 7*a*b^2*c^4 - b^3*c^4 + a^2*c^5 + 2*a*b*c^5 + b^2*c^5 + a*c^6 + b*c^6 - c^7) : :

X(51627) lies on these lines: {3, 23869}, {23, 105}, {36, 1279}, {238, 3446}, {528, 5172}, {1324, 20470}, {5078, 32759}, {5540, 19297}

X(51627) = circumcircle-inverse of X(23869)
X(51627) = {X(36),X(38863)}-harmonic conjugate of X(20872)


X(51628) = CIRCUMCIRCLE-INVERSE OF X(30144)

Barycentrics    a^2*(a^8 - a^7*b - 2*a^6*b^2 + 3*a^5*b^3 - 3*a^3*b^5 + 2*a^2*b^6 + a*b^7 - b^8 - a^7*c + 4*a^6*b*c - 2*a^5*b^2*c - 5*a^4*b^3*c + 8*a^3*b^4*c - a^2*b^5*c - 5*a*b^6*c + 2*b^7*c - 2*a^6*c^2 - 2*a^5*b*c^2 + 11*a^4*b^2*c^2 - 7*a^3*b^3*c^2 - 8*a^2*b^4*c^2 + 9*a*b^5*c^2 - b^6*c^2 + 3*a^5*c^3 - 5*a^4*b*c^3 - 7*a^3*b^2*c^3 + 16*a^2*b^3*c^3 - 5*a*b^4*c^3 - 2*b^5*c^3 + 8*a^3*b*c^4 - 8*a^2*b^2*c^4 - 5*a*b^3*c^4 + 4*b^4*c^4 - 3*a^3*c^5 - a^2*b*c^5 + 9*a*b^2*c^5 - 2*b^3*c^5 + 2*a^2*c^6 - 5*a*b*c^6 - b^2*c^6 + a*c^7 + 2*b*c^7 - c^8) : :

X(51628) lies on these lines: {3, 214}, {36, 2841}, {80, 28077}, {109, 34880}, {1324, 2802}, {2217, 10738}, {3417, 10698}, {3705, 35996}, {3738, 4057}, {9798, 22560}, {11715, 23850}, {12737, 23843}

X(51628) = circumcircle-inverse of X(30144)


X(51629) = CIRCUMCIRCLE-INVERSE OF X(78)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*b*c + 2*a^2*b^3*c - b^5*c - a^4*c^2 + 4*a^2*b^2*c^2 - 2*a*b^3*c^2 - b^4*c^2 + 2*a^2*b*c^3 - 2*a*b^2*c^3 + 2*b^3*c^3 - a^2*c^4 - b^2*c^4 - b*c^5 + c^6) : :

X(51629) lies on these lines: {3, 63}, {36, 1331}, {102, 6099}, {643, 2075}, {1725, 5497}, {4057, 15313}, {5119, 5310}, {6735, 49207}, {6921, 20266}

X(51629) = circumcircle-inverse of X(78)
X(51629) = crossdifference of every pair of points on line {6591, 20227}


X(51630) = CIRCUMCIRCLE-INVERSE OF X(5205)

Barycentrics    a*(a^5 - a*b^4 + a^3*b*c - a^2*b^2*c - a^2*b*c^2 + a*b^2*c^2 - b^3*c^2 - b^2*c^3 - a*c^4) : :

X(51630) lies on these lines: {2, 36}, {3, 5205}, {5, 26259}, {8, 35988}, {22, 1324}, {23, 26227}, {25, 92}, {55, 4664}, {75, 20989}, {100, 3790}, {197, 32932}, {612, 846}, {1623, 26272}, {1995, 16823}, {2915, 4385}, {2975, 33849}, {3011, 17522}, {3705, 35996}, {3920, 37610}, {4057, 15621}, {4220, 29641}, {4672, 5363}, {4676, 5078}, {5211, 8666}, {5285, 32937}, {5297, 32759}, {5314, 27538}, {5329, 27064}, {6636, 17100}, {7283, 39582}, {7411, 38712}, {11194, 50533}, {14002, 26261}, {19649, 38693}, {23407, 47523}, {26231, 44210}, {26268, 39572}, {29634, 37325}

X(51630) = circumcircle-inverse of X(5205)
X(51630) = orthoptic-circle-of-Steiner-inellipse-inverse of X(3814)
X(51630) = orthoptic-circle-of-Steiner-circumellipse-inverse of X(5080)
X(51630) = psi-transform of X(5150)
X(51630) = {X(3),X(26264)}-harmonic conjugate of X(5205)


X(51631) = X(1)X(900)∩X(2)X(3)

Barycentrics    2*a^7 - 2*a^6*b - 4*a^5*b^2 + 3*a^4*b^3 + a^3*b^4 - a^2*b^5 + a*b^6 - 2*a^6*c + 8*a^5*b*c - a^4*b^2*c - 4*a^3*b^3*c + 2*a^2*b^4*c - 4*a*b^5*c + b^6*c - 4*a^5*c^2 - a^4*b*c^2 + 4*a^3*b^2*c^2 - a^2*b^3*c^2 - a*b^4*c^2 + b^5*c^2 + 3*a^4*c^3 - 4*a^3*b*c^3 - a^2*b^2*c^3 + 8*a*b^3*c^3 - 2*b^4*c^3 + a^3*c^4 + 2*a^2*b*c^4 - a*b^2*c^4 - 2*b^3*c^4 - a^2*c^5 - 4*a*b*c^5 + b^2*c^5 + a*c^6 + b*c^6 : :

X(51631) lies on these lines: {1, 900}, {2, 3}, {5690, 38569}, {10944, 24864}, {14260, 36944}, {16944, 34590}, {24871, 37735}

X(51631) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 24875, 24877}, {2, 24877, 24865}, {2475, 17539, 404}, {7447, 7451, 859}, {13744, 37043, 3109}, {24865, 24866, 24867}, {24866, 24875, 24865}, {24866, 24877, 2}



leftri

Circumcircle-inverses of points on the line X(1)X(6): X(51632) - X(51639)

rightri

This preamble is contributed by Clark Kimberling and Peter Moses, August 31, 2022.

The circumcircle-inverse of the line X(1)X(6) is the circle with center X(39227) and pass-through points as indicated in the following list, in which the appearance of (i,j) means that X(i) is on X(1)X(6), and X(j) = circumcircle-inverse of X(i):

(1,36), (6,187), (9,32625), (37,32758), (72,51632), (220,51633), (238,51634), (405,51635), (518,3) (956,51636), (958, 51637), (960, 51638), (5220,51639), (1001,5144), (1083,667), (3230,11650)

See the preambles just before X(39486), X(39475), X(51615), and X(51619).


X(51632) = CIRCUMCIRCLE-INVERSE OF X(72)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*b*c + a^3*b^2*c + a^2*b^3*c - a*b^4*c - a^4*c^2 + a^3*b*c^2 + 4*a^2*b^2*c^2 - a*b^3*c^2 - b^4*c^2 + a^2*b*c^3 - a*b^2*c^3 - a^2*c^4 - a*b*c^4 - b^2*c^4 + c^6) : :

X(51632) lies on the cubic K039 and these lines: {3, 63}, {28, 47106}, {74, 6099}, {100, 186}, {187, 906}, {667, 15313}, {1030, 51574}, {2077, 50530}, {2915, 41507}, {5080, 36001}, {5172, 23067}, {32849, 43659}

X(51632) = circumcircle-inverse of X(72)
X(51632) = X(i)-Ceva conjugate of X(j) for these (i,j): {32849, 22123}, {43659, 72}
X(51632) = crossdifference of every pair of points on line {6591, 40941}


X(51633) = CIRCUMCIRCLE-INVERSE OF X(220)

Barycentrics    a^2*(2*a^6 - 4*a^5*b + 3*a^4*b^2 - 4*a^3*b^3 + 4*a^2*b^4 - b^6 - 4*a^5*c + 8*a^4*b*c - 2*a^3*b^2*c - 2*a^2*b^3*c - 2*a*b^4*c + 2*b^5*c + 3*a^4*c^2 - 2*a^3*b*c^2 + 2*a*b^3*c^2 - 3*b^4*c^2 - 4*a^3*c^3 - 2*a^2*b*c^3 + 2*a*b^2*c^3 + 4*b^3*c^3 + 4*a^2*c^4 - 2*a*b*c^4 - 3*b^2*c^4 + 2*b*c^5 - c^6) : :

X(51633) lies on these lines: {3, 101}, {41, 1362}, {667, 926}, {910, 2809}, {1212, 11714}, {3022, 9310}, {17732, 38765}, {46835, 50903}

X(51633) = circumcircle-inverse of X(220)
X(51633) = crosssum of X(514) and X(44012)
X(51633) = crossdifference of every pair of points on line {676, 4000}
X(51633) = {X(101),X(103)}-harmonic conjugate of X(220)


X(51634) = CIRCUMCIRCLE-INVERSE OF X(238)

Barycentrics    a^2*(a^4*b^2 - a^2*b^4 - 2*a^4*b*c + a*b^4*c + a^4*c^2 + a^2*b^2*c^2 - b^3*c^3 - a^2*c^4 + a*b*c^4) : :

X(51634) lies on these lines: {1, 667}, {3, 238}, {31, 46597}, {35, 1083}, {41, 813}, {727, 38986}, {898, 25439}, {932, 8851}, {1016, 8715}, {1283, 17664}, {2053, 46032}, {2382, 43362}, {3871, 9266}, {4057, 24338}, {5143, 8626}, {6376, 8709}, {11650, 16784}

X(51634) = midpoint of X(932) and X(8851)
X(51634) = circumcircle-inverse of X(238)
X(51634) = crossdifference of every pair of points on line {1575, 21348}


X(51635) = CIRCUMCIRCLE-INVERSE OF X(405)

Barycentrics    a*(2*a^6 + 2*a^5*b - 2*a^2*b^4 - 2*a*b^5 + 2*a^5*c + 2*a^4*b*c - a^2*b^3*c - 2*a*b^4*c - b^5*c + 2*a^2*b^2*c^2 + 2*a*b^3*c^2 - a^2*b*c^3 + 2*a*b^2*c^3 + 2*b^3*c^3 - 2*a^2*c^4 - 2*a*b*c^4 - 2*a*c^5 - b*c^5) : :
X(51635) = 3 X[23] - X[37919], 3 X[186] - X[36001], 3 X[1325] + X[37919]

X(51635) lies on these lines: {2, 3}, {187, 3290}, {229, 49743}, {511, 51420}, {517, 1495}, {523, 667}, {1781, 3247}, {5842, 9625}, {7286, 32636}, {10149, 20129}, {17757, 20989}, {35193, 48924}

X(51635) = midpoint of X(i) and X(j) for these {i,j}: {23, 1325}, {5899, 37976}
X(51635) = reflection of X(i) in X(j) for these {i,j}: {858, 44898}, {17757, 47149}, {30447, 468}
X(51635) = reflection of X(30447) in the Orthic axis
X(51635) = circumcircle-inverse of X(405)
X(51635) = polar-circle-inverse of X(5142)
X(51635) = crossdifference of every pair of points on line {647, 4261}
X(51635) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 4228, 15670}, {3, 36009, 8226}, {28, 2915, 442}, {1113, 1114, 405}, {7520, 17562, 405}


X(51636) = CIRCUMCIRCLE-INVERSE OF X(956)

Barycentrics    a*(2*a^6 - 2*a^5*b - 4*a^4*b^2 + 4*a^3*b^3 + 2*a^2*b^4 - 2*a*b^5 - 2*a^5*c + 10*a^4*b*c - 2*a^3*b^2*c - 9*a^2*b^3*c + 4*a*b^4*c - b^5*c - 4*a^4*c^2 - 2*a^3*b*c^2 + 6*a^2*b^2*c^2 + 4*a^3*c^3 - 9*a^2*b*c^3 + 2*b^3*c^3 + 2*a^2*c^4 + 4*a*b*c^4 - 2*a*c^5 - b*c^5) : :
X(51636) = X[100] - 3 X[17100], 4 X[6667] - 3 X[39692]

X(51636) lies on these lines: {3, 8}, {9, 15015}, {11, 10199}, {36, 528}, {46, 12653}, {55, 50843}, {65, 15999}, {153, 6966}, {187, 43065}, {214, 392}, {404, 12019}, {442, 6667}, {667, 900}, {993, 6174}, {1001, 10058}, {1155, 2802}, {1317, 25439}, {1320, 36279}, {1470, 41556}, {2646, 15558}, {2771, 41389}, {2800, 17613}, {2801, 5440}, {2829, 37374}, {3035, 5251}, {3419, 11219}, {3911, 5427}, {4015, 5267}, {4299, 13272}, {4413, 34122}, {4855, 12738}, {5204, 48713}, {5450, 37725}, {5541, 11256}, {5880, 16173}, {6909, 51409}, {7483, 31235}, {8666, 13996}, {9024, 33844}, {10074, 13205}, {10090, 12690}, {10306, 12776}, {10310, 48694}, {10993, 26286}, {12732, 22560}, {13257, 48695}, {17010, 35271}, {17528, 31272}, {17647, 44848}, {20418, 24390}, {31190, 37718}, {32612, 37726}, {37428, 38761}, {37587, 50891}

X(51636) = circumcircle-inverse of X(956)
X(51636) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 104, 956}, {100, 956, 1145}, {104, 2932, 1145}, {214, 41166, 392}, {956, 2932, 100}, {10074, 13205, 25416}


X(51637) = CIRCUMCIRCLE-INVERSE OF X(958)

Barycentrics    a*(2*a^6 - 2*a^4*b^2 + 2*a^3*b^3 - 2*a*b^5 + 4*a^4*b*c - a^3*b^2*c - 3*a^2*b^3*c + a*b^4*c - b^5*c - 2*a^4*c^2 - a^3*b*c^2 + 2*a^2*b^2*c^2 + a*b^3*c^2 + 2*a^3*c^3 - 3*a^2*b*c^3 + a*b^2*c^3 + 2*b^3*c^3 + a*b*c^4 - 2*a*c^5 - b*c^5) : :

X(51637) lies on these lines: {3, 10}, {28, 1785}, {35, 1610}, {36, 1738}, {56, 24177}, {57, 49487}, {187, 910}, {198, 16370}, {226, 37397}, {522, 667}, {610, 3465}, {859, 17010}, {929, 29310}, {950, 37259}, {968, 3601}, {1210, 20842}, {1603, 8185}, {2182, 5440}, {2751, 6574}, {3220, 6909}, {3435, 49553}, {3452, 49128}, {4304, 11334}, {7501, 45766}, {7520, 10538}, {11700, 44662}, {12572, 15952}, {13411, 37227}, {16870, 37052}, {24892, 37262}, {27621, 38945}, {44661, 46974}

X(51637) = circumcircle-inverse of X(958)
X(51637) = crossdifference of every pair of points on line {2277, 6589}
X(51637) = {X(2217),X(2933)}-harmonic conjugate of X(10)


X(51638) = CIRCUMCIRCLE-INVERSE OF X(960)

Barycentrics    a^2*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 + 3*a^6*b*c + a^5*b^2*c - 2*a^4*b^3*c + 2*a^3*b^4*c - a^2*b^5*c - 3*a*b^6*c - 2*a^6*c^2 + a^5*b*c^2 + 6*a^4*b^2*c^2 - 4*a^3*b^3*c^2 - 4*a^2*b^4*c^2 + 3*a*b^5*c^2 - 2*a^4*b*c^3 - 4*a^3*b^2*c^3 + 6*a^2*b^3*c^3 + 2*a^3*b*c^4 - 4*a^2*b^2*c^4 + 2*b^4*c^4 - a^2*b*c^5 + 3*a*b^2*c^5 + 2*a^2*c^6 - 3*a*b*c^6 - c^8) : :

X(51638) lies on the cuibc K904 and these lines: {3, 960}, {521, 667}, {910, 32758}, {999, 10829}, {1324, 9912}, {1603, 5687}, {1610, 2915}, {2070, 12773}, {2217, 20831}, {2720, 38882}, {2750, 29163}, {4185, 38949}, {17638, 34442}, {19914, 35221}

X(51638) = circumcircle-inverse of X(960)
X(51638) = Stammler-circle-inverse of X(40266)
X(51638) = crosspoint of X(2766) and X(15385)
X(51638) = crosssum of X(123) and X(2850)


X(51639) = CIRCUMCIRCLE-INVERSE OF X(5220)

Barycentrics    a^2*(2*a^6 - 2*a^5*b - 2*a^4*b^2 + 2*a^2*b^4 + 2*a*b^5 - 2*b^6 - 2*a^5*c + 4*a^4*b*c + 5*a^3*b^2*c - 7*a^2*b^3*c - a*b^4*c + b^5*c - 2*a^4*c^2 + 5*a^3*b*c^2 - 4*a^2*b^2*c^2 + 2*a*b^3*c^2 - b^4*c^2 - 7*a^2*b*c^3 + 2*a*b^2*c^3 + 4*b^3*c^3 + 2*a^2*c^4 - a*b*c^4 - b^2*c^4 + 2*a*c^5 + b*c^5 - 2*c^6) : :

X(51639) lies on these lines: {3, 2801}, {36, 2809}, {55, 11712}, {100, 17294}, {101, 5010}, {528, 5144}, {667, 3887}, {4256, 44858}, {10695, 37587}, {26086, 51526}

X(51639) = circumcircle-inverse of X(5220)



leftri

Points on the Helman line: X(51640) - X(51664)

rightri

This preamble is based on notes from Dan Reznik and Peter Moses, August 31, 2022.

The radical axis of the incircle and circumcircle is here named the Helman line, after Mark Helman, who discovered special properties of this line under isgonal conjugation; see X(1319). The Helman line passes through X(1319) and is parallel to X(1)X(3); the Helman line is also L(9), the trilinear polar of X(57), and it passes through X(i) for these i:

513, 663, 855, 1149, 1279, 1284, 1319, 1455, 1456, 1457, 1458, 1459, 1463, 1464, 1769, 2605, 3669, 3777, 4017, 4367, 4822, 6129, 6610, 6615, 14292, 14413, 25569, 39688, 42336, 43924, 48116, 48121, 48122, 48123, 48128, 48129, 48131, 48136, 48137, 48144, 48149, 48150, 48151, 48306, 48329, 48330, 48336, 48340, 48350, 48367, 48597, 48616, 50332, 50353, 50354, 50458, 50459, 50508, 50517, 50523, 50526, and 51640-to-51664.


X(51640) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(9)X(318)

Barycentrics    a^3*(b - c)*(a + b - c)*(a - b + c)*(b + c)*(a^2 - b^2 - c^2)^2 : :

X(51640) lies on these lines: {73, 656}, {109, 2719}, {222, 23189}, {513, 663}, {603, 23226}, {810, 42658}, {822, 32320}, {1363, 38985}, {4077, 48281}, {4086, 37558}, {8062, 37523}

X(51640) = X(39201)-cross conjugate of X(822)
X(51640) = X(i)-isoconjugate of X(j) for these (i,j): {4, 36797}, {8, 107}, {9, 823}, {29, 1897}, {33, 811}, {55, 6528}, {78, 36126}, {99, 1857}, {100, 1896}, {112, 7017}, {158, 643}, {162, 318}, {190, 8748}, {219, 15352}, {281, 648}, {312, 24019}, {345, 6529}, {393, 645}, {607, 6331}, {646, 5317}, {653, 2322}, {670, 6059}, {1043, 36127}, {1096, 7257}, {1118, 7256}, {1172, 6335}, {1783, 31623}, {2052, 5546}, {2332, 46404}, {3596, 32713}, {3699, 8747}, {3700, 23582}, {4041, 23999}, {4086, 24000}, {4183, 18026}, {4552, 36421}, {5379, 44426}, {7359, 15459}, {8750, 44130}, {14308, 44181}, {17926, 46102}, {30730, 36419}, {34856, 36801}
X(51640) = X(i)-Dao conjugate of X(j) for these (i, j): (125, 318), (130, 7069), (223, 6528), (478, 823), (1147, 643), (6503, 7257), (8054, 1896), (17423, 33), (26932, 44130), (34467, 29), (34591, 7017), (35071, 312), (36033, 36797), (38985, 8), (38986, 1857), (39006, 31623), (46093, 78)
X(51640) = crosspoint of X(1459) and X(23224)
X(51640) = crosssum of X(i) and X(j) for these (i,j): {318, 4086}, {7069, 8611}
X(51640) = crossdifference of every pair of points on line {9, 318}
X(51640) = barycentric product X(i)*X(j) for these {i,j}: {7, 822}, {48, 17094}, {56, 24018}, {57, 520}, {65, 4091}, {73, 905}, {77, 647}, {85, 39201}, {163, 1367}, {201, 7254}, {222, 656}, {226, 23224}, {255, 7178}, {273, 32320}, {307, 22383}, {326, 7180}, {348, 810}, {394, 4017}, {512, 7183}, {513, 40152}, {514, 22341}, {523, 7125}, {525, 603}, {577, 4077}, {604, 3265}, {652, 1439}, {661, 1804}, {798, 7055}, {823, 1363}, {1019, 7066}, {1020, 1364}, {1214, 1459}, {1259, 7216}, {1395, 4143}, {1400, 4131}, {1402, 30805}, {1409, 4025}, {1410, 6332}, {1414, 3269}, {1415, 17216}, {1577, 7335}, {1813, 18210}, {2632, 4565}, {3049, 7182}, {3125, 6517}, {3668, 36054}, {3669, 3682}, {3676, 3990}, {3719, 7250}, {3942, 23067}, {3998, 43924}, {4055, 24002}, {4466, 36059}, {4560, 7138}, {7053, 8611}, {16730, 36127}, {23189, 37755}, {23286, 44708}
X(51640) = barycentric quotient X(i)/X(j) for these {i,j}: {34, 15352}, {48, 36797}, {56, 823}, {57, 6528}, {73, 6335}, {77, 6331}, {222, 811}, {255, 645}, {394, 7257}, {520, 312}, {577, 643}, {603, 648}, {604, 107}, {608, 36126}, {647, 318}, {649, 1896}, {656, 7017}, {667, 8748}, {798, 1857}, {810, 281}, {822, 8}, {905, 44130}, {1259, 7258}, {1363, 24018}, {1367, 20948}, {1395, 6529}, {1397, 24019}, {1409, 1897}, {1410, 653}, {1439, 46404}, {1459, 31623}, {1804, 799}, {1924, 6059}, {1946, 2322}, {2289, 7256}, {3049, 33}, {3265, 28659}, {3269, 4086}, {3682, 646}, {3990, 3699}, {4017, 2052}, {4055, 644}, {4077, 18027}, {4091, 314}, {4131, 28660}, {4565, 23999}, {6056, 7259}, {6517, 4601}, {7055, 4602}, {7066, 4033}, {7125, 99}, {7138, 4552}, {7180, 158}, {7183, 670}, {7335, 662}, {17094, 1969}, {18210, 46110}, {22341, 190}, {22383, 29}, {23224, 333}, {24018, 3596}, {30805, 40072}, {32320, 78}, {32660, 5379}, {34980, 8611}, {36054, 1043}, {39201, 9}, {40152, 668}, {42293, 7069}, {46088, 44687}


X(51641) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(9)X(312)

Barycentrics    a^3*(b - c)*(a + b - c)*(a - b + c)*(b + c) : :

X(51641) lies on these lines: {1, 4170}, {42, 4729}, {56, 16695}, {109, 2703}, {181, 50493}, {512, 810}, {513, 663}, {667, 50514}, {798, 3049}, {1042, 7216}, {1356, 38986}, {1414, 29055}, {3900, 23655}, {4010, 17478}, {4077, 29051}, {4449, 4804}, {4815, 48281}, {7178, 47998}, {22090, 50336}

X(51641) = isogonal conjugate of X(7257)
X(51641) = isogonal conjugate of the anticomplement of X(16613)
X(51641) = isogonal conjugate of the isotomic conjugate of X(4017)
X(51641) = X(i)-Ceva conjugate of X(j) for these (i,j): {1397, 3248}, {4551, 1400}, {4625, 57}, {7180, 798}, {29055, 56}, {43924, 7180}
X(51641) = X(i)-cross conjugate of X(j) for these (i,j): {669, 798}, {8034, 3248}
X(51641) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 7257), (115, 28659), (125, 3718), (206, 643), (223, 670), (244, 3596), (478, 799), (512, 4041), (513, 18155), (798, 27527), (1015, 28660), (1084, 312), (1086, 40072), (1214, 6386), (2679, 44694), (3005, 4086), (3160, 4602), (4858, 40363), (5139, 318), (5452, 7258), (5521, 44130), (6609, 4625), (8054, 314), (17423, 78), (32664, 645), (34467, 332), (36908, 4572), (38985, 1264), (38986, 8), (38996, 9), (39025, 1043), (40586, 646), (40589, 4631), (40590, 1978), (40593, 4609), (40600, 3699), (40608, 341), (40611, 668), (40615, 6385), (40617, 310), (40622, 561), (40627, 4391), (50330, 35519), (50497, 522)
X(51641) = crosspoint of X(i) and X(j) for these (i,j): {1, 6010}, {56, 4559}, {57, 4625}, {1400, 4551}, {7180, 7250}
X(51641) = crosssum of X(i) and X(j) for these (i,j): {1, 6002}, {8, 4560}, {200, 4529}, {312, 4086}, {314, 18155}, {333, 3737}, {514, 24178}, {522, 3687}, {645, 7256}, {646, 3699}, {663, 3691}, {668, 4561}, {1193, 4498}, {3702, 4391}, {4041, 33299}, {4110, 30584}
X(51641) = trilinear pole of line {3121, 21755}
X(51641) = crossdifference of every pair of points on line {9, 312}
X(51641) = X(i)-isoconjugate of X(j) for these (i,j): {1, 7257}, {2, 645}, {7, 7256}, {8, 99}, {9, 799}, {21, 668}, {29, 4561}, {37, 4631}, {41, 4602}, {55, 670}, {57, 7258}, {60, 27808}, {69, 36797}, {75, 643}, {76, 5546}, {78, 811}, {81, 646}, {85, 7259}, {86, 3699}, {100, 314}, {101, 28660}, {107, 1264}, {110, 3596}, {162, 3718}, {163, 28659}, {190, 333}, {200, 4625}, {210, 4623}, {219, 6331}, {261, 3952}, {274, 644}, {281, 4563}, {284, 1978}, {286, 4571}, {310, 3939}, {312, 662}, {313, 4636}, {318, 4592}, {321, 4612}, {332, 1897}, {341, 1414}, {345, 648}, {346, 4573}, {391, 4633}, {522, 4600}, {523, 6064}, {650, 4601}, {664, 1043}, {689, 3688}, {692, 40072}, {728, 4635}, {765, 18155}, {789, 3786}, {823, 3719}, {873, 4069}, {892, 3712}, {1016, 4560}, {1259, 6528}, {1331, 44130}, {1332, 31623}, {1434, 6558}, {1509, 30730}, {1576, 40363}, {1792, 18026}, {1812, 6335}, {2175, 4609}, {2185, 4033}, {2194, 6386}, {2238, 36806}, {2287, 4554}, {2311, 27853}, {2319, 36860}, {2321, 4610}, {2325, 4615}, {2327, 46404}, {2328, 4572}, {2329, 7260}, {2396, 15628}, {3239, 4620}, {3570, 36800}, {3684, 4639}, {3685, 4589}, {3686, 4632}, {3689, 4634}, {3700, 4590}, {3702, 4596}, {3703, 4577}, {3709, 34537}, {3737, 7035}, {3886, 51563}, {3975, 4584}, {4030, 35137}, {4041, 24037}, {4076, 7192}, {4086, 24041}, {4092, 31614}, {4391, 4567}, {4552, 7058}, {4556, 30713}, {4557, 18021}, {4558, 7017}, {4570, 35519}, {4582, 16704}, {4587, 44129}, {4593, 33299}, {4594, 7081}, {4597, 4720}, {4603, 17787}, {4614, 4673}, {4616, 5423}, {4622, 4723}, {4637, 30693}, {4998, 7253}, {5379, 35518}, {5383, 27527}, {6632, 17197}, {7252, 31625}, {8611, 46254}, {8706, 17183}, {11609, 17935}, {14574, 44159}, {15411, 46102}, {27382, 44326}, {27398, 44327}, {27805, 27958}, {30729, 32014}, {30941, 36802}, {32851, 47318}, {33295, 36801}, {36036, 44694}, {37204, 40972}
X(51641) = barycentric product X(i)*X(j) for these {i,j}: {1, 7180}, {6, 4017}, {7, 798}, {9, 7250}, {31, 7178}, {32, 4077}, {34, 647}, {37, 43924}, {42, 3669}, {55, 7216}, {56, 661}, {57, 512}, {65, 649}, {71, 43923}, {73, 6591}, {77, 2489}, {85, 669}, {109, 3125}, {163, 1365}, {181, 1019}, {201, 43925}, {213, 3676}, {225, 22383}, {226, 667}, {244, 4559}, {269, 3709}, {273, 3049}, {278, 810}, {349, 1980}, {513, 1400}, {514, 1402}, {523, 604}, {525, 1395}, {603, 2501}, {608, 656}, {650, 1042}, {651, 3122}, {652, 1426}, {663, 1427}, {664, 3121}, {738, 4524}, {799, 1356}, {822, 1118}, {872, 17096}, {875, 16609}, {1014, 4079}, {1015, 4551}, {1018, 1357}, {1020, 3271}, {1021, 7143}, {1084, 4625}, {1106, 3700}, {1254, 7252}, {1284, 3572}, {1334, 43932}, {1393, 2623}, {1397, 1577}, {1398, 8611}, {1407, 4041}, {1408, 4024}, {1409, 7649}, {1410, 3064}, {1411, 21828}, {1412, 4705}, {1414, 3124}, {1415, 3120}, {1416, 24290}, {1417, 4120}, {1432, 7234}, {1434, 50487}, {1441, 1919}, {1459, 1880}, {1461, 4516}, {1500, 7203}, {1911, 7212}, {1918, 24002}, {1924, 6063}, {1973, 17094}, {2171, 3733}, {2642, 7316}, {2643, 4565}, {3063, 3668}, {3248, 4552}, {4036, 16947}, {4128, 37137}, {4171, 7023}, {4564, 8034}, {4635, 7063}, {4729, 40151}, {6614, 36197}, {7131, 50490}, {7147, 21789}, {7153, 50491}, {7337, 24018}, {8639, 44733}, {9426, 20567}, {9456, 30572}, {14321, 16945}, {16592, 29055}, {18097, 50521}, {18210, 32674}, {20948, 41280}, {20982, 26700}, {23493, 43051}, {32669, 42759}, {37136, 42752}, {39258, 43930}
X(51641) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 7257}, {7, 4602}, {31, 645}, {32, 643}, {34, 6331}, {41, 7256}, {42, 646}, {55, 7258}, {56, 799}, {57, 670}, {58, 4631}, {65, 1978}, {85, 4609}, {109, 4601}, {163, 6064}, {181, 4033}, {213, 3699}, {226, 6386}, {512, 312}, {513, 28660}, {514, 40072}, {523, 28659}, {560, 5546}, {603, 4563}, {604, 99}, {608, 811}, {647, 3718}, {649, 314}, {661, 3596}, {667, 333}, {669, 9}, {688, 33299}, {741, 36806}, {798, 8}, {810, 345}, {822, 1264}, {872, 30730}, {875, 36800}, {1015, 18155}, {1019, 18021}, {1042, 4554}, {1084, 4041}, {1106, 4573}, {1284, 27853}, {1356, 661}, {1357, 7199}, {1365, 20948}, {1395, 648}, {1397, 662}, {1400, 668}, {1402, 190}, {1403, 36860}, {1407, 4625}, {1408, 4610}, {1409, 4561}, {1412, 4623}, {1414, 34537}, {1415, 4600}, {1417, 4615}, {1426, 46404}, {1427, 4572}, {1431, 7260}, {1577, 40363}, {1918, 644}, {1919, 21}, {1924, 55}, {1973, 36797}, {1977, 3737}, {1980, 284}, {2084, 3703}, {2171, 27808}, {2175, 7259}, {2200, 4571}, {2205, 3939}, {2206, 4612}, {2489, 318}, {2491, 44694}, {3049, 78}, {3063, 1043}, {3121, 522}, {3122, 4391}, {3124, 4086}, {3125, 35519}, {3248, 4560}, {3249, 18191}, {3669, 310}, {3676, 6385}, {3709, 341}, {4017, 76}, {4077, 1502}, {4079, 3701}, {4117, 3709}, {4455, 3975}, {4524, 30693}, {4551, 31625}, {4559, 7035}, {4565, 24037}, {4625, 44168}, {4705, 30713}, {4729, 44723}, {4832, 4673}, {6591, 44130}, {7023, 4635}, {7063, 4171}, {7109, 4069}, {7178, 561}, {7180, 75}, {7212, 18891}, {7216, 6063}, {7234, 17787}, {7250, 85}, {7337, 823}, {7366, 4616}, {8027, 17197}, {8034, 4858}, {8639, 11679}, {9426, 41}, {9491, 7075}, {9494, 40972}, {14407, 4723}, {17094, 40364}, {20948, 44159}, {21751, 40499}, {21755, 3907}, {21832, 4087}, {21835, 4147}, {22383, 332}, {38986, 27527}, {39201, 3719}, {41280, 163}, {42336, 18600}, {43923, 44129}, {43924, 274}, {46386, 3786}, {50487, 2321}, {50491, 4110}


X(51642) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(9)X(2648)

Barycentrics    a*(b - c)*(a + b - c)*(a - b + c)*(a^3 - 2*a^2*b + b^3 - 2*a^2*c + a*b*c + c^3) : :

X(51642) lies on these lines: {57, 14419}, {65, 9508}, {85, 14296}, {110, 934}, {226, 2787}, {388, 4922}, {513, 663}, {891, 43050}, {905, 1938}, {928, 3960}, {1387, 2826}, {2775, 24929}, {2785, 17992}, {3340, 4730}, {3485, 4010}, {4077, 48288}, {4449, 9397}, {4870, 45342}, {5219, 14431}, {5226, 30709}, {7178, 47799}, {8674, 12739}, {9511, 14414}, {15253, 29240}, {17094, 48290}, {23770, 30725}, {37583, 42670}, {37761, 44435}, {43049, 48332}

X(51642) = X(i)-isoconjugate of X(j) for these (i,j): {8, 2701}, {42, 17931}, {55, 35154}, {100, 2648}, {101, 17947}, {190, 17963}, {643, 2652}, {1897, 17973}, {4570, 18013}, {4600, 18000}, {5546, 11608}
X(51642) = X(i)-Dao conjugate of X(j) for these (i, j): (223, 35154), (1015, 17947), (8054, 2648), (34467, 17973), (35086, 312), (39055, 190), (40592, 17931), (50330, 18013), (50497, 18000)
X(51642) = crossdifference of every pair of points on line {9, 2648}
X(51642) = barycentric product X(i)*X(j) for these {i,j}: {57, 2785}, {81, 18006}, {85, 5075}, {274, 17992}, {513, 17950}, {514, 1758}, {693, 17966}, {905, 17985}, {2651, 7178}, {3125, 17933}, {4017, 40882}, {4077, 5060}, {16732, 17942}, {17924, 17975}
X(51642) = barycentric quotient X(i)/X(j) for these {i,j}: {57, 35154}, {81, 17931}, {513, 17947}, {604, 2701}, {649, 2648}, {667, 17963}, {1758, 190}, {2651, 645}, {2785, 312}, {3121, 18000}, {3125, 18013}, {4017, 11608}, {5060, 643}, {5075, 9}, {7180, 2652}, {17933, 4601}, {17942, 4567}, {17950, 668}, {17966, 100}, {17975, 1332}, {17985, 6335}, {17992, 37}, {18006, 321}, {22383, 17973}, {40882, 7257}


X(51643) = X(108)X(110)∩X(513)X(663)

Barycentrics    a*(b - c)*(a + b - c)*(a - b + c)*(a^4 - a^3*b + a*b^3 - b^4 - a^3*c + a^2*b*c + a*b^2*c - b^3*c + a*b*c^2 + a*c^3 - b*c^3 - c^4) : :

X(51643) lies on these lines: {65, 8674}, {108, 110}, {513, 663}, {521, 43923}, {1462, 10099}, {1476, 46041}, {2285, 24290}, {3738, 4458}, {3801, 9001}, {6003, 44410}, {7178, 9013}, {30212, 44409}, {31603, 47755}

X(51643) = X(i)-isoconjugate of X(j) for these (i,j): {55, 35169}, {3939, 16099}, {36797, 43693}
X(51643) = X(i)-Dao conjugate of X(j) for these (i, j): (223, 35169), (35122, 312), (40617, 16099)
X(51643) = crosspoint of X(2006) and X(18026)
X(51643) = crosssum of X(1946) and X(2323)
X(51643) = barycentric product X(i)*X(j) for these {i,j}: {85, 42662}, {651, 867}, {3669, 16086}, {42709, 43924}
X(51643) = barycentric quotient X(i)/X(j) for these {i,j}: {57, 35169}, {867, 4391}, {3669, 16099}, {16086, 646}, {42662, 9}


X(51644) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(9)X(607)

Barycentrics    a*(b - c)*(a + b - c)*(a - b + c)*(a^2 - b^2 - c^2)*(a^2 + b^2 + 2*b*c + c^2) : :

X(51644) lies on these lines: {388, 2517}, {513, 663}, {514, 43923}, {521, 4025}, {522, 23732}, {656, 9051}, {905, 23187}, {1461, 46152}, {8760, 44409}, {9373, 47136}, {11934, 39540}, {14300, 40628}, {18344, 21172}, {21107, 49296}, {23727, 47960}

X(51644) = reflection of X(i) in X(j) for these {i,j}: {11934, 39540}, {18344, 21172}
X(51644) = crossdifference of every pair of points on line {9, 607}
X(51644) = X(i)-Ceva conjugate of X(j) for these (i,j): {388, 26933}, {7091, 7004}
X(51644) = X(i)-isoconjugate of X(j) for these (i,j): {8, 32691}, {9, 36099}, {33, 1310}, {100, 1039}, {607, 37215}, {1036, 1897}, {1245, 36797}, {1783, 2339}, {8750, 30479}
X(51644) = X(i)-Dao conjugate of X(j) for these (i, j): (478, 36099), (5515, 318), (8054, 1039), (17421, 8), (26932, 30479), (26933, 2478), (34467, 1036), (39006, 2339)
X(51644) = barycentric product X(i)*X(j) for these {i,j}: {7, 2522}, {57, 23874}, {77, 6590}, {222, 2517}, {348, 8678}, {388, 905}, {514, 1038}, {521, 7365}, {525, 5323}, {651, 26933}, {693, 2286}, {1214, 47844}, {1460, 15413}, {2285, 4025}, {2303, 17094}, {2484, 7182}, {3610, 7203}, {3676, 5227}, {3942, 14594}, {4320, 6332}, {7085, 24002}, {10376, 15411}, {19799, 43924}
X(51644) = barycentric quotient X(i)/X(j) for these {i,j}: {56, 36099}, {77, 37215}, {222, 1310}, {388, 6335}, {604, 32691}, {649, 1039}, {905, 30479}, {1038, 190}, {1459, 2339}, {1460, 1783}, {2285, 1897}, {2286, 100}, {2303, 36797}, {2484, 33}, {2517, 7017}, {2522, 8}, {4320, 653}, {5227, 3699}, {5323, 648}, {6590, 318}, {7085, 644}, {7197, 13149}, {7365, 18026}, {8646, 607}, {8678, 281}, {22383, 1036}, {23874, 312}, {26933, 4391}, {47844, 31623}


X(51645) = X(7)X(27)∩X(513)X(663)

Barycentrics    a*(a + b - c)*(a - b + c)*(b + c)*(a^4 - a^2*b^2 + a^2*b*c - b^3*c - a^2*c^2 + 2*b^2*c^2 - b*c^3) : :

X(51645) lies on these lines: {7, 27}, {34, 39791}, {221, 4331}, {241, 27637}, {513, 663}, {527, 20752}, {651, 17950}, {940, 50197}, {1400, 1427}, {1409, 3668}, {1423, 7106}, {1430, 26884}, {1439, 1880}, {1469, 2393}, {2286, 6180}, {3330, 4466}, {3649, 34046}, {4334, 5429}, {6349, 17257}, {18607, 28287}, {26109, 26119}, {28015, 28031}

X(51645) = X(42669)-cross conjugate of X(851)
X(51645) = X(i)-isoconjugate of X(j) for these (i,j): {8, 2249}, {9, 37142}, {55, 35145}, {296, 2322}, {1043, 1945}, {1937, 2287}, {1952, 2328}, {3900, 41206}, {4183, 40843}
X(51645) = X(i)-Dao conjugate of X(j) for these (i, j): (223, 35145), (478, 37142), (35075, 312), (36908, 1952), (39032, 1043), (39037, 2287)
X(51645) = barycentric product X(i)*X(j) for these {i,j}: {7, 851}, {56, 44150}, {57, 8680}, {65, 5088}, {85, 42669}, {243, 1439}, {307, 1430}, {1427, 1944}, {1441, 26884}, {1446, 1951}, {1936, 3668}, {6063, 44112}, {7180, 15418}, {17094, 23353}
X(51645) = barycentric quotient X(i)/X(j) for these {i,j}: {56, 37142}, {57, 35145}, {604, 2249}, {851, 8}, {1042, 1937}, {1410, 296}, {1427, 1952}, {1430, 29}, {1461, 41206}, {1936, 1043}, {1951, 2287}, {2202, 2322}, {5088, 314}, {8680, 312}, {23353, 36797}, {26884, 21}, {32714, 41207}, {42669, 9}, {44112, 55}, {44150, 3596}


X(51646) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(9)X(11604)

Barycentrics    a^2*(b - c)*(a + b - c)*(a - b + c)*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c - a*b*c + b^2*c - a*c^2 + b*c^2 + c^3) : :

X(51646) lies on these lines: {1, 30572}, {35, 2776}, {109, 110}, {513, 663}, {1400, 5029}, {1405, 14407}, {3737, 21180}, {4145, 11011}, {4814, 7627}, {5040, 17992}, {5903, 44812}, {8648, 8677}, {8674, 41541}, {21112, 46385}, {21118, 48281}, {39771, 39778}

X(51646) = X(34921)-Ceva conjugate of X(56)
X(51646) = crosspoint of X(109) and X(1411)
X(51646) = crosssum of X(i) and X(j) for these (i,j): {522, 4511}, {663, 1731}
X(51646) = crossdifference of every pair of points on line {9, 11604}
X(51646) = X(i)-isoconjugate of X(j) for these (i,j): {8, 1290}, {55, 35156}, {100, 11604}, {643, 5620}, {644, 21907}
X(51646) = X(i)-Dao conjugate of X(j) for these (i, j): (223, 35156), (8054, 11604), (35090, 312)
X(51646) = barycentric product X(i)*X(j) for these {i,j}: {57, 8674}, {77, 47235}, {85, 42670}, {226, 42741}, {514, 5172}, {1022, 41541}, {1459, 37799}, {3676, 17796}, {4017, 37783}, {4077, 19622}, {5127, 7178}, {32849, 43924}, {41542, 47947}
X(51646) = barycentric quotient X(i)/X(j) for these {i,j}: {57, 35156}, {604, 1290}, {649, 11604}, {5127, 645}, {5172, 190}, {7180, 5620}, {8674, 312}, {17796, 3699}, {19622, 643}, {37783, 7257}, {41541, 24004}, {42670, 9}, {42741, 333}, {43924, 21907}, {47235, 318}


X(51647) = X(21)X(77)∩X(513)X(663)

Barycentrics    a*(a + b - c)*(a - b + c)*(2*a^6 - a^4*b^2 - b^6 - a^4*c^2 + b^4*c^2 + b^2*c^4 - c^6) : :

X(51647) lies on these lines: {1, 12725}, {21, 77}, {34, 604}, {56, 8615}, {109, 2747}, {221, 2256}, {222, 11031}, {223, 4220}, {513, 663}, {614, 2208}, {651, 44694}, {846, 34033}, {1035, 3145}, {1254, 7122}, {1503, 8766}, {1580, 5018}, {2199, 37237}, {2312, 8779}, {5930, 48890}, {8229, 34050}, {11203, 34027}, {18623, 37443}, {34044, 35623}

X(51647) = X(i)-Ceva conjugate of X(j) for these (i,j): {26702, 56}, {43045, 2312}
X(51647) = X(42671)-cross conjugate of X(2312)
X(51647) = crosssum of X(78) and X(44694)
X(51647) = X(i)-isoconjugate of X(j) for these (i,j): {8, 1297}, {55, 35140}, {78, 8767}, {219, 6330}, {345, 43717}, {645, 34212}, {2435, 36797}, {5546, 43673}
X(51647) = X(i)-Dao conjugate of X(j) for these (i, j): (223, 35140), (15595, 3718), (23976, 312), (39071, 78), (39073, 44694), (50938, 318)
X(51647) = barycentric product X(i)*X(j) for these {i,j}: {1, 43045}, {7, 2312}, {34, 441}, {57, 1503}, {77, 16318}, {85, 42671}, {273, 8779}, {278, 8766}, {604, 30737}, {3213, 16096}, {4017, 34211}, {7182, 51437}
X(51647) = barycentric quotient X(i)/X(j) for these {i,j}: {34, 6330}, {57, 35140}, {441, 3718}, {604, 1297}, {608, 8767}, {1395, 43717}, {1503, 312}, {2312, 8}, {3213, 14944}, {4017, 43673}, {8766, 345}, {8779, 78}, {9475, 44694}, {16318, 318}, {30737, 28659}, {34211, 7257}, {42671, 9}, {43045, 75}, {51437, 33}


X(51648) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(9)X(35)

Barycentrics    a*(b - c)*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c + b^2*c - a*c^2 + b*c^2 - c^3) : :
X(51648) = X[1459] - 3 X[14413], X[4017] + 3 X[14413], 2 X[14353] + X[48283], X[23752] - 3 X[47887], X[2517] - 3 X[47796], X[3762] - 3 X[48186], X[4086] - 3 X[47795], X[4391] - 3 X[48209], X[4397] - 3 X[48246], X[4404] - 3 X[48228], X[4462] - 3 X[48165], 2 X[20317] - 3 X[48181], X[21222] + 3 X[48173], X[44444] - 3 X[47819]

X(51648) lies on these lines: {1, 15313}, {56, 34948}, {513, 663}, {521, 14353}, {522, 3960}, {523, 905}, {650, 4802}, {656, 4449}, {676, 43049}, {764, 22654}, {832, 48328}, {834, 48332}, {900, 39540}, {1734, 48293}, {1946, 48382}, {2254, 48303}, {2509, 21348}, {2517, 47796}, {3309, 48302}, {3762, 48186}, {3900, 48292}, {3907, 47843}, {4036, 4885}, {4086, 47795}, {4132, 50336}, {4378, 50330}, {4391, 48209}, {4397, 48246}, {4404, 48228}, {4458, 28984}, {4462, 48165}, {4815, 48321}, {4824, 27674}, {4905, 48307}, {6588, 7180}, {6591, 23770}, {7250, 8677}, {7650, 17496}, {7655, 8674}, {7661, 30719}, {8043, 28151}, {9001, 21189}, {12114, 24457}, {14838, 28147}, {16754, 47844}, {16757, 47691}, {17420, 48342}, {20317, 48181}, {21147, 42769}, {21222, 48173}, {22091, 48391}, {23880, 30591}, {28175, 47965}, {28191, 48003}, {28199, 47921}, {35057, 48287}, {38469, 48344}, {40134, 47799}, {44444, 47819}

X(51648) = midpoint of X(i) and X(j) for these {i,j}: {1, 23800}, {656, 4449}, {663, 50354}, {1459, 4017}, {1734, 48293}, {1769, 43924}, {2254, 48303}, {3669, 6129}, {3777, 50353}, {4378, 50330}, {4815, 48321}, {4905, 48307}, {7650, 17496}, {7661, 30719}, {17420, 48342}, {21189, 48281}, {48144, 50332}, {48151, 48340}, {48292, 50350}
X(51648) = reflection of X(i) in X(j) for these {i,j}: {650, 31947}, {4036, 4885}
X(51648) = X(i)-Ceva conjugate of X(j) for these (i,j): {7649, 513}, {21188, 46389}
X(51648) = crosspoint of X(i) and X(j) for these (i,j): {1, 13397}, {28, 13486}, {108, 1063}, {278, 934}
X(51648) = crosssum of X(i) and X(j) for these (i,j): {1, 15313}, {6, 50501}, {219, 3900}, {521, 1062}, {522, 10916}, {650, 7082}
X(51648) = crossdifference of every pair of points on line {9, 35}
X(51648) = X(i)-isoconjugate of X(j) for these (i,j): {8, 36082}, {90, 100}, {101, 2994}, {109, 36626}, {190, 2164}, {664, 7072}, {692, 20570}, {1069, 1897}, {1331, 7040}, {1783, 6513}, {3939, 7318}
X(51648) = X(i)-Dao conjugate of X(j) for these (i, j): (11, 36626), (63, 4561), (1015, 2994), (1086, 20570), (5521, 7040), (6506, 345), (8054, 90), (34467, 1069), (39006, 6513), (39025, 7072), (40617, 7318)
X(51648) = barycentric product X(i)*X(j) for these {i,j}: {1, 21188}, {7, 46389}, {46, 514}, {513, 5905}, {649, 20930}, {693, 2178}, {905, 1068}, {934, 6506}, {1019, 21077}, {1406, 4391}, {3157, 17924}, {3193, 7178}, {3669, 5552}, {4017, 31631}, {6505, 7649}, {7192, 21853}
X(51648) = barycentric quotient X(i)/X(j) for these {i,j}: {46, 190}, {513, 2994}, {514, 20570}, {604, 36082}, {649, 90}, {650, 36626}, {667, 2164}, {1068, 6335}, {1406, 651}, {1459, 6513}, {2178, 100}, {3063, 7072}, {3157, 1332}, {3193, 645}, {3669, 7318}, {5552, 646}, {5905, 668}, {6505, 4561}, {6506, 4397}, {6591, 7040}, {20930, 1978}, {21077, 4033}, {21188, 75}, {21853, 3952}, {22383, 1069}, {23224, 6512}, {31631, 7257}, {46389, 8}
X(51648) = {X(4017),X(14413)}-harmonic conjugate of X(1459)


X(51649) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(9)X(3064)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^2 - b^2 - c^2)*(a^3*b - a^2*b^2 - a*b^3 + b^4 + a^3*c + a*b^2*c - a^2*c^2 + a*b*c^2 - 2*b^2*c^2 - a*c^3 + c^4) : :

X(51649) lies on these lines: {1, 5553}, {3, 73}, {34, 4306}, {36, 10692}, {56, 26892}, {109, 32760}, {201, 18607}, {221, 11510}, {513, 663}, {1064, 22767}, {1066, 11508}, {1193, 34880}, {1393, 1427}, {1410, 30493}, {1413, 34430}, {1415, 8776}, {1532, 2635}, {1737, 14266}, {1745, 6834}, {1818, 51379}, {2252, 47408}, {2478, 37523}, {3057, 4300}, {4337, 5119}, {6905, 34051}, {6921, 37694}, {10571, 37618}, {10966, 34046}, {14798, 34043}, {18857, 34586}, {22341, 23154}, {34052, 37395}

X(51649) = crosssum of X(i) and X(j) for these (i,j): {4, 15500}, {10692, 36052}
X(51649) = crossdifference of every pair of points on line {9, 3064}
X(51649) = X(i)-isoconjugate of X(j) for these (i,j): {4, 45393}, {8, 915}, {9, 37203}, {55, 46133}, {281, 2990}, {312, 913}, {318, 36052}, {522, 36106}, {3657, 36797}, {4391, 32698}, {6099, 44426}, {7017, 32655}
X(51649) = X(i)-Dao conjugate of X(j) for these (i, j): (119, 318), (223, 46133), (478, 37203), (36033, 45393), (39002, 522), (39175, 51565)
X(51649) = barycentric product X(i)*X(j) for these {i,j}: {7, 2252}, {56, 914}, {57, 912}, {63, 18838}, {77, 8609}, {222, 1737}, {603, 48380}, {1797, 12832}, {37136, 42769}
X(51649) = barycentric quotient X(i)/X(j) for these {i,j}: {48, 45393}, {56, 37203}, {57, 46133}, {603, 2990}, {604, 915}, {912, 312}, {914, 3596}, {1397, 913}, {1415, 36106}, {1737, 7017}, {2252, 8}, {8609, 318}, {12832, 46109}, {18838, 92}, {32660, 6099}, {47408, 6735}
X(51649) = {X(1455),X(1464)}-harmonic conjugate of X(1457)


X(51650) = CROSSSUM OF X(8) AND X(3737)

Barycentrics    a^2*(b - c)*(a + b - c)*(a - b + c)*(b + c)*(a^2 + a*b + a*c - b*c) : :

X(51650) lies on these lines: {42, 4139}, {513, 663}, {1042, 7250}, {4170, 42312}, {4449, 4815}, {4804, 23655}, {7180, 42664}, {7265, 30572}, {8611, 21894}, {10571, 34496}, {20295, 48307}

X(51650) = X(4552)-Ceva conjugate of X(1400)
X(51650) = crosspoint of X(56) and X(4551)
X(51650) = crosssum of X(i) and X(j) for these (i,j): {8, 3737}, {663, 3686}
X(51650) = X(i)-isoconjugate of X(j) for these (i,j): {8, 34594}, {9, 37205}, {21, 8050}, {314, 40519}, {596, 643}, {644, 39747}, {645, 39798}, {3699, 39949}, {4612, 40085}, {5546, 40013}, {7256, 20615}, {7257, 40148}
X(51650) = X(i)-Dao conjugate of X(j) for these (i, j): (478, 37205), (649, 4560), (4129, 18155), (40611, 8050)
X(51650) = barycentric product X(i)*X(j) for these {i,j}: {56, 4129}, {57, 4132}, {65, 4063}, {73, 17922}, {225, 22154}, {226, 4057}, {595, 7178}, {1042, 47793}, {1400, 20295}, {1402, 20949}, {1427, 48307}, {2220, 4077}, {3293, 3669}, {3871, 7216}, {3995, 43924}, {4017, 32911}, {4360, 7180}, {4552, 8054}, {4559, 21208}
X(51650) = barycentric quotient X(i)/X(j) for these {i,j}: {56, 37205}, {595, 645}, {604, 34594}, {1400, 8050}, {2220, 643}, {3293, 646}, {3871, 7258}, {4017, 40013}, {4057, 333}, {4063, 314}, {4129, 3596}, {4132, 312}, {7180, 596}, {8054, 4560}, {17922, 44130}, {20295, 28660}, {20949, 40072}, {22154, 332}, {32911, 7257}, {43924, 39747}


X(51651) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(9)X(4086)

Barycentrics    a^3*(a + b - c)*(a - b + c)*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :

X(51651) lies on these lines: {1, 29057}, {29, 34}, {56, 904}, {65, 41350}, {73, 8766}, {109, 2699}, {307, 15991}, {511, 43034}, {513, 663}, {603, 604}, {664, 1966}, {741, 36065}, {872, 19369}, {971, 45932}, {1038, 25898}, {1350, 20753}, {1394, 1424}, {1395, 7125}, {1399, 7122}, {1415, 19554}, {1428, 3248}, {1469, 1964}, {1755, 3289}, {1911, 30648}, {2234, 7235}, {4296, 7187}, {4434, 4551}, {5145, 7146}, {16609, 18792}, {26110, 26121}

X(51651) = X(i)-Ceva conjugate of X(j) for these (i,j): {741, 56}, {43034, 1755}
X(51651) = X(237)-cross conjugate of X(1755)
X(51651) = crosspoint of X(1) and X(29056)
X(51651) = crosssum of X(i) and X(j) for these (i,j): {1, 29057}, {200, 3985}, {3716, 24026}
X(51651) = crossdifference of every pair of points on line {9, 4086}
X(51651) = X(i)-isoconjugate of X(j) for these (i,j): {2, 15628}, {8, 98}, {9, 1821}, {33, 336}, {41, 46273}, {55, 290}, {78, 36120}, {219, 16081}, {248, 7017}, {281, 287}, {293, 318}, {312, 1910}, {345, 6531}, {645, 2395}, {879, 36797}, {1857, 6394}, {1976, 3596}, {2175, 18024}, {2966, 3700}, {3709, 43187}, {3712, 9154}, {4041, 36036}, {4076, 43920}, {4086, 36084}, {5546, 43665}, {6064, 51441}, {14601, 40363}
X(51651) = X(i)-Dao conjugate of X(j) for these (i, j): (132, 318), (223, 290), (478, 1821), (511, 44694), (2679, 4041), (3160, 46273), (5976, 28659), (11672, 312), (16609, 35544), (32664, 15628), (38987, 4086), (39039, 7017), (39040, 3596), (40593, 18024), (40601, 9), (46094, 78), (50440, 341)
X(51651) = barycentric product X(i)*X(j) for these {i,j}: {1, 43034}, {7, 1755}, {34, 36212}, {56, 1959}, {57, 511}, {65, 17209}, {77, 232}, {85, 237}, {222, 240}, {273, 3289}, {297, 603}, {325, 604}, {741, 16591}, {1355, 1821}, {1395, 6393}, {1397, 46238}, {1400, 51369}, {1401, 3405}, {1402, 51370}, {1407, 44694}, {1414, 3569}, {1434, 5360}, {2211, 7182}, {2421, 4017}, {2491, 4625}, {4077, 14966}, {6063, 9417}, {6530, 7125}, {7178, 23997}, {7183, 34854}, {9418, 20567}, {16947, 42703}, {19189, 44708}, {37136, 42751}, {42717, 43924}
X(51651) = barycentric quotient X(i)/X(j) for these {i,j}: {7, 46273}, {31, 15628}, {34, 16081}, {56, 1821}, {57, 290}, {85, 18024}, {222, 336}, {232, 318}, {237, 9}, {240, 7017}, {325, 28659}, {511, 312}, {603, 287}, {604, 98}, {608, 36120}, {1355, 1959}, {1395, 6531}, {1397, 1910}, {1414, 43187}, {1755, 8}, {1959, 3596}, {2211, 33}, {2421, 7257}, {2491, 4041}, {3289, 78}, {3569, 4086}, {4017, 43665}, {4565, 36036}, {5360, 2321}, {7125, 6394}, {9417, 55}, {9418, 41}, {11672, 44694}, {14966, 643}, {16591, 35544}, {17209, 314}, {23997, 645}, {36212, 3718}, {39469, 8611}, {41270, 44687}, {42702, 3710}, {43034, 75}, {46238, 40363}, {51369, 28660}, {51370, 40072}


X(51652) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(9)X(497)

Barycentrics    a^2*(b - c)*(a + b - c)*(a - b + c)*(a^2 - 2*a*b + b^2 - 2*a*c + c^2) : :

X(51652) lies on these lines: {1, 30719}, {7, 30183}, {34, 1027}, {56, 8643}, {57, 4401}, {65, 4498}, {109, 1110}, {221, 8676}, {388, 28470}, {513, 663}, {652, 665}, {1413, 2424}, {1734, 43050}, {3309, 43049}, {3667, 34496}, {3676, 4040}, {4077, 29186}, {4449, 6362}, {4724, 7178}, {4794, 30723}, {7216, 48032}, {10397, 43060}, {10581, 20980}, {43052, 47929}

X(51652) = isogonal conjugate of the isotomic conjugate of X(31605)
X(51652) = X(i)-Ceva conjugate of X(j) for these (i,j): {101, 56}, {109, 21059}
X(51652) = crosspoint of X(i) and X(j) for these (i,j): {101, 218}, {109, 269}
X(51652) = crosssum of X(i) and X(j) for these (i,j): {200, 522}, {277, 514}, {650, 3059}, {3239, 4012}
X(51652) = crossdifference of every pair of points on line {9, 497}
X(51652) = X(i)-isoconjugate of X(j) for these (i,j): {8, 1292}, {9, 37206}, {100, 6601}, {277, 644}, {294, 2414}, {2191, 3699}, {2428, 36796}, {3717, 36041}, {4578, 40154}, {6558, 17107}
X(51652) = X(i)-Dao conjugate of X(j) for these (i, j): (220, 6558), (478, 37206), (3309, 44448), (3676, 3261), (4904, 341), (5519, 3717), (8054, 6601)
X(51652) = barycentric product X(i)*X(j) for these {i,j}: {1, 43049}, {6, 31605}, {34, 24562}, {56, 4468}, {57, 3309}, {59, 23760}, {85, 8642}, {101, 40615}, {109, 4904}, {218, 3676}, {344, 43924}, {513, 1445}, {514, 1617}, {649, 6604}, {650, 4350}, {663, 17093}, {667, 21609}, {934, 38375}, {1019, 41539}, {1407, 44448}, {1458, 2402}, {2440, 9436}, {3669, 3870}, {3991, 7203}, {4017, 41610}, {4565, 21945}, {4878, 17096}, {7649, 23144}, {21059, 24002}
X(51652) = barycentric quotient X(i)/X(j) for these {i,j}: {56, 37206}, {218, 3699}, {604, 1292}, {649, 6601}, {1445, 668}, {1458, 2414}, {1617, 190}, {2440, 14942}, {3309, 312}, {3870, 646}, {4350, 4554}, {4468, 3596}, {4878, 30730}, {4904, 35519}, {6600, 6558}, {6604, 1978}, {8642, 9}, {17093, 4572}, {21059, 644}, {21609, 6386}, {23144, 4561}, {23760, 34387}, {24562, 3718}, {31605, 76}, {38375, 4397}, {40615, 3261}, {41539, 4033}, {41610, 7257}, {43049, 75}, {43924, 277}
X(51652) = {X(663),X(43924)}-harmonic conjugate of X(3669)


X(51653) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(9)X(4041)

Barycentrics    a*(a + b - c)*(a - b + c)*(2*a^2 - b^2 - c^2) : :

X(51653) lies on these lines: {6, 7614}, {7, 17482}, {56, 4471}, {57, 77}, {109, 2721}, {241, 1404}, {269, 7225}, {513, 663}, {524, 7181}, {527, 17439}, {664, 35155}, {672, 6510}, {896, 3292}, {1055, 34371}, {1429, 1443}, {1442, 2171}, {2173, 7202}, {3305, 25897}, {3664, 17440}, {3942, 7113}, {5226, 26109}, {5429, 13462}, {7122, 9340}, {17365, 17438}, {28368, 28387}

X(51653) = X(7181)-Ceva conjugate of X(896)
X(51653) = X(187)-cross conjugate of X(896)
X(51653) = crossdifference of every pair of points on line {9, 4041}
X(51653) = X(i)-isoconjugate of X(j) for these (i,j): {2, 5547}, {8, 111}, {9, 897}, {41, 46277}, {55, 671}, {78, 36128}, {219, 17983}, {281, 895}, {312, 923}, {318, 36060}, {345, 8753}, {346, 7316}, {607, 30786}, {643, 23894}, {645, 9178}, {650, 5380}, {691, 3700}, {892, 3709}, {2175, 18023}, {3596, 32740}, {3712, 10630}, {4041, 36085}, {4086, 36142}, {5466, 5546}, {5968, 15628}, {7017, 14908}, {7359, 9139}, {9214, 15627}, {10097, 36797}, {19626, 40363}, {30730, 43926}
X(51653) = X(i)-Dao conjugate of X(j) for these (i, j): (223, 671), (478, 897), (1560, 318), (2482, 312), (3160, 46277), (6593, 9), (23992, 4086), (32664, 5547), (38988, 4041), (40593, 18023)
X(51653) = barycentric product X(i)*X(j) for these {i,j}: {1, 7181}, {7, 896}, {34, 6390}, {56, 14210}, {57, 524}, {65, 6629}, {77, 468}, {85, 187}, {226, 16702}, {269, 3712}, {273, 3292}, {351, 4625}, {603, 44146}, {604, 3266}, {651, 4750}, {664, 14419}, {690, 1414}, {897, 1366}, {922, 6063}, {934, 14432}, {1014, 4062}, {1400, 16741}, {1412, 42713}, {1432, 7267}, {1434, 21839}, {2642, 4573}, {4017, 5468}, {4077, 5467}, {7125, 37778}, {7178, 23889}, {7180, 24039}, {7182, 44102}, {7316, 24038}, {14567, 20567}, {31013, 32636}, {37136, 42760}, {42721, 43924}
X(51653) = barycentric quotient X(i)/X(j) for these {i,j}: {7, 46277}, {31, 5547}, {34, 17983}, {56, 897}, {57, 671}, {77, 30786}, {85, 18023}, {109, 5380}, {187, 9}, {273, 46111}, {351, 4041}, {468, 318}, {524, 312}, {603, 895}, {604, 111}, {608, 36128}, {690, 4086}, {896, 8}, {922, 55}, {1106, 7316}, {1366, 14210}, {1395, 8753}, {1397, 923}, {1414, 892}, {2642, 3700}, {3266, 28659}, {3292, 78}, {3712, 341}, {4017, 5466}, {4062, 3701}, {4565, 36085}, {4750, 4391}, {4760, 3975}, {4831, 4673}, {5467, 643}, {5468, 7257}, {6390, 3718}, {6629, 314}, {7180, 23894}, {7181, 75}, {7267, 17787}, {9155, 44694}, {9717, 44693}, {14210, 3596}, {14419, 522}, {14432, 4397}, {14567, 41}, {16702, 333}, {16741, 28660}, {21839, 2321}, {23200, 212}, {23889, 645}, {42081, 3712}, {42713, 30713}, {44102, 33}
X(51653) = {X(1442),X(7175)}-harmonic conjugate of X(2171)


X(51654) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(9)X(8611)

Barycentrics    a*(a + b - c)*(a - b + c)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4) : :

X(51654) lies on these lines: {1, 10308}, {28, 34}, {30, 6357}, {56, 6186}, {73, 500}, {109, 484}, {201, 1935}, {212, 3587}, {221, 2099}, {222, 15934}, {223, 30282}, {225, 46468}, {226, 49744}, {255, 37584}, {388, 17716}, {513, 663}, {601, 17699}, {759, 14158}, {896, 7286}, {1012, 20277}, {1038, 3305}, {1060, 7069}, {1254, 1399}, {1406, 3924}, {1465, 5122}, {1870, 7004}, {1877, 34050}, {2173, 3284}, {2292, 16140}, {2635, 46974}, {3468, 6906}, {4303, 13151}, {4642, 18360}, {4653, 47057}, {5119, 21147}, {5226, 26120}, {5425, 34043}, {5434, 17469}, {7100, 13743}, {7478, 9405}, {10571, 37525}, {18421, 34033}, {23071, 37496}, {24028, 35460}, {26892, 32065}, {28032, 28038}, {28380, 28387}, {32047, 44706}

X(51654) = isogonal conjugate of X(44693)
X(51654) = X(i)-Ceva conjugate of X(j) for these (i,j): {759, 56}, {6357, 2173}
X(51654) = X(1495)-cross conjugate of X(2173)
X(51654) = crosssum of X(44688) and X(44689)
X(51654) = crossdifference of every pair of points on line {9, 8611}
X(51654) = X(i)-isoconjugate of X(j) for these (i,j): {1, 44693}, {2, 15627}, {8, 74}, {9, 2349}, {41, 33805}, {55, 1494}, {78, 36119}, {219, 16080}, {281, 14919}, {312, 2159}, {318, 35200}, {345, 8749}, {645, 2433}, {2394, 5546}, {3445, 44727}, {3596, 40352}, {3700, 44769}, {3712, 9139}, {4086, 36034}, {5547, 36890}, {7017, 18877}, {7359, 40384}, {14380, 36797}, {15628, 35910}
X(51654) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 44693), (133, 318), (223, 1494), (478, 2349), (1511, 78), (3160, 33805), (3163, 312), (3258, 4086), (6739, 341), (18593, 35550), (32664, 15627), (45036, 44727)
X(51654) = barycentric product X(i)*X(j) for these {i,j}: {1, 6357}, {7, 2173}, {30, 57}, {34, 11064}, {56, 14206}, {65, 18653}, {77, 1990}, {85, 1495}, {222, 1784}, {226, 51420}, {269, 7359}, {273, 3284}, {603, 46106}, {604, 3260}, {651, 11125}, {664, 14399}, {934, 14400}, {1354, 2349}, {1393, 43768}, {1397, 46234}, {1414, 1637}, {1427, 51382}, {2407, 4017}, {2420, 4077}, {4565, 36035}, {4625, 14398}, {6063, 9406}, {7182, 14581}, {9407, 20567}, {11589, 44697}, {14395, 36118}, {37136, 42750}, {42716, 43924}
X(51654) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 44693}, {7, 33805}, {30, 312}, {31, 15627}, {34, 16080}, {56, 2349}, {57, 1494}, {603, 14919}, {604, 74}, {608, 36119}, {1354, 14206}, {1395, 8749}, {1397, 2159}, {1495, 9}, {1637, 4086}, {1743, 44727}, {1784, 7017}, {1990, 318}, {2173, 8}, {2407, 7257}, {2420, 643}, {3213, 10152}, {3260, 28659}, {3284, 78}, {4017, 2394}, {6357, 75}, {7359, 341}, {9406, 55}, {9407, 41}, {9409, 8611}, {11064, 3718}, {11125, 4391}, {14206, 3596}, {14398, 4041}, {14399, 522}, {14400, 4397}, {14581, 33}, {18653, 314}, {36298, 44691}, {36299, 44690}, {42074, 7359}, {46234, 40363}, {51394, 3719}, {51420, 333}
X(51654) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {34, 603, 1393}, {34, 1394, 603}, {1455, 1456, 1457}, {1935, 4296, 201}


X(51655) = CROSSSUM OF X(8) AND X(3100)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^4*b - b^5 + a^4*c - 2*a^3*b*c + b^4*c + b*c^4 - c^5) : :

X(51655) lies on these lines: {66, 73}, {77, 4357}, {513, 663}, {604, 608}, {1037, 34040}, {1201, 7083}, {1212, 30456}, {1818, 46153}, {4318, 49704}, {4551, 49991}, {25904, 37558}

X(51655) = crosspoint of X(34) and X(1416)
X(51655) = crosssum of X(i) and X(j) for these (i,j): {8, 3100}, {78, 3717}
X(51655) = X(i)-isoconjugate of X(j) for these (i,j): {8, 26703}, {15416, 32688}
X(51655) = X(39690)-Dao conjugate of X(37774)
X(51655) = barycentric product X(i)*X(j) for these {i,j}: {57, 3827}, {5236, 34160}
X(51655) = barycentric quotient X(i)/X(j) for these {i,j}: {604, 26703}, {3827, 312}, {47431, 3717}


X(51656) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(9)X(3057)

Barycentrics    a*(3*a - b - c)*(b - c)*(a + b - c)*(a - b + c) : :
X(51656) = 3 X[3669] - 2 X[4017], X[4017] - 3 X[43924]

X(51656) lies on these lines: {1, 30198}, {34, 23345}, {56, 37627}, {65, 23835}, {109, 2743}, {221, 15313}, {513, 663}, {522, 30725}, {650, 9364}, {651, 765}, {1394, 14812}, {3063, 17410}, {3309, 34496}, {3667, 4162}, {3676, 28225}, {3738, 7655}, {3945, 23819}, {4778, 7178}, {4790, 7180}, {4926, 30572}, {4977, 43052}, {6003, 42319}, {6006, 30726}, {6085, 7250}, {6363, 43051}, {7234, 7659}, {17418, 47921}, {39771, 39781}, {43932, 48032}

X(51656) = midpoint of X(14812) and X(23800)
X(51656) = reflection of X(i) in X(j) for these {i,j}: {650, 21173}, {3669, 43924}, {47921, 17418}
X(51656) = isogonal conjugate of X(31343)
X(51656) = X(i)-Ceva conjugate of X(j) for these (i,j): {100, 56}, {109, 45219}, {651, 1743}, {30719, 4394}, {43932, 3669}
X(51656) = X(i)-cross conjugate of X(j) for these (i,j): {4394, 3669}, {8643, 4394}, {23764, 18211}
X(51656) = crosspoint of X(i) and X(j) for these (i,j): {1, 30236}, {100, 145}, {269, 651}
X(51656) = crosssum of X(i) and X(j) for these (i,j): {1, 30198}, {9, 4162}, {200, 650}, {513, 3445}, {522, 6736}, {3900, 34524}
X(51656) = crossdifference of every pair of points on line {9, 3057}
X(51656) = X(i)-isoconjugate of X(j) for these (i,j): {1, 31343}, {8, 1293}, {9, 27834}, {100, 3680}, {101, 6557}, {109, 6556}, {312, 34080}, {346, 38828}, {644, 8056}, {646, 38266}, {650, 5382}, {2316, 2415}, {2429, 4997}, {3445, 3699}, {3939, 4373}, {4052, 5546}, {4578, 19604}, {4723, 36042}, {6558, 40151}, {33963, 43290}
X(51656) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 31343), (11, 6556), (478, 27834), (1015, 6557), (3669, 693), (3756, 341), (4394, 20317), (4521, 4391), (5516, 4723), (8054, 3680), (40615, 40014), (40617, 4373), (40621, 312), (45036, 3699)
X(51656) = barycentric product X(i)*X(j) for these {i,j}: {1, 30719}, {7, 4394}, {56, 4462}, {57, 3667}, {85, 8643}, {100, 40617}, {145, 3669}, {269, 4521}, {279, 4162}, {513, 5435}, {514, 1420}, {649, 39126}, {651, 3756}, {738, 4546}, {934, 4534}, {1014, 14321}, {1019, 4848}, {1319, 2403}, {1412, 4404}, {1414, 21950}, {1432, 4504}, {1434, 4729}, {1461, 4939}, {1462, 4925}, {1743, 3676}, {2976, 43760}, {3052, 24002}, {3161, 43932}, {3950, 7203}, {4017, 41629}, {4077, 33628}, {4552, 18211}, {4564, 23764}, {4617, 4953}, {4849, 17096}, {7178, 16948}, {18743, 43924}, {19604, 31182}
X(51656) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 31343}, {56, 27834}, {109, 5382}, {145, 646}, {513, 6557}, {604, 1293}, {649, 3680}, {650, 6556}, {1106, 38828}, {1319, 2415}, {1397, 34080}, {1420, 190}, {1743, 3699}, {2441, 1320}, {3052, 644}, {3158, 6558}, {3667, 312}, {3669, 4373}, {3676, 40014}, {3756, 4391}, {4017, 4052}, {4162, 346}, {4394, 8}, {4404, 30713}, {4462, 3596}, {4504, 17787}, {4521, 341}, {4534, 4397}, {4546, 30693}, {4729, 2321}, {4848, 4033}, {4849, 30730}, {5435, 668}, {8643, 9}, {14321, 3701}, {14425, 4723}, {16948, 645}, {18211, 4560}, {20818, 4571}, {21950, 4086}, {23764, 4858}, {30719, 75}, {31182, 44720}, {33628, 643}, {39126, 1978}, {40617, 693}, {41629, 7257}, {43924, 8056}, {43932, 27818}, {45219, 25268}


X(51657) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(9)X(4391)

Barycentrics    a^3*(a + b - c)*(a - b + c)*(a*b^2 - b^3 + a*c^2 - c^3) : :

X(51657) lies on these lines: {1, 29069}, {31, 184}, {77, 4666}, {241, 46153}, {513, 663}, {674, 43039}, {869, 1405}, {1104, 40611}, {1400, 1964}, {1404, 3248}, {2171, 2309}, {2310, 45932}, {3745, 14547}, {6510, 39046}, {15733, 46177}

X(51657) = X(43039)-Ceva conjugate of X(2225)
X(51657) = X(8618)-cross conjugate of X(2225)
X(51657) = crosspoint of X(1) and X(29068)
X(51657) = crosssum of X(1) and X(29069)
X(51657) = X(i)-isoconjugate of X(j) for these (i,j): {8, 675}, {9, 37130}, {55, 43093}, {312, 2224}, {4391, 36087}, {32682, 35519}
X(51657) = X(i)-Dao conjugate of X(j) for these (i, j): (223, 43093), (478, 37130), (38990, 4391)
X(51657) = crossdifference of every pair of points on line {9, 4391}
X(51657) = barycentric product X(i)*X(j) for these {i,j}: {1, 43039}, {7, 2225}, {57, 674}, {65, 14964}, {85, 8618}, {604, 3006}, {1415, 23887}, {42723, 43924}
X(51657) = barycentric quotient X(i)/X(j) for these {i,j}: {56, 37130}, {57, 43093}, {604, 675}, {674, 312}, {1397, 2224}, {2225, 8}, {3006, 28659}, {8618, 9}, {14964, 314}, {43039, 75}


X(51658) = CROSSSUM OF X(219) AND X(21789)

Barycentrics    a*(b - c)*(a + b - c)*(a - b + c)*(b + c)*(a^2*b - b^3 + a^2*c + a*b*c - c^3) : :

X(51658) lies on these lines: {226, 50329}, {513, 663}, {520, 7250}, {523, 4077}, {656, 7216}, {2485, 7180}, {3960, 23187}, {4815, 6362}, {7178, 47842}, {8676, 23800}, {35050, 37818}, {40933, 42768}, {43042, 48084}

X(51658) = crosspoint of X(i) and X(j) for these (i,j): {1, 44065}, {278, 4566}
X(51658) = crosssum of X(219) and X(21789)
X(51658) = X(i)-isoconjugate of X(j) for these (i,j): {272, 3939}, {643, 2218}, {1305, 2328}, {1751, 5546}, {2194, 51566}, {4570, 23289}, {4587, 40574}, {4636, 41506}
X(51658) = X(i)-Dao conjugate of X(j) for these (i, j): (72, 4571), (1214, 51566), (36908, 1305), (40617, 272), (40622, 2997), (50330, 23289)
X(51658) = barycentric product X(i)*X(j) for these {i,j}: {209, 24002}, {226, 23800}, {579, 4077}, {1427, 20294}, {1441, 43060}, {1446, 8676}, {1577, 4306}, {3676, 22021}, {3868, 7178}, {4017, 18134}
X(51658) = barycentric quotient X(i)/X(j) for these {i,j}: {209, 644}, {226, 51566}, {579, 643}, {1427, 1305}, {2198, 3939}, {2352, 5546}, {3125, 23289}, {3190, 7259}, {3669, 272}, {3868, 645}, {4017, 1751}, {4077, 40011}, {4306, 662}, {7178, 2997}, {7180, 2218}, {8676, 2287}, {18134, 7257}, {22021, 3699}, {23800, 333}, {27396, 7256}, {43060, 21}, {43923, 40574}, {51574, 4571}


X(51659) = X(7)X(4077)∩X(513)X(663)

Barycentrics    a*(b - c)*(a + b - c)*(a - b + c)*(b + c)*(a^3 - a*b^2 - b^2*c - a*c^2 - b*c^2) : :

X(51659) lies on these lines: {7, 4077}, {56, 4833}, {512, 30572}, {513, 663}, {661, 1400}, {1423, 27469}, {1469, 9013}, {2827, 4170}, {3738, 17496}, {4091, 17418}, {6003, 36975}, {8672, 23755}, {17077, 27114}, {28081, 28094}, {39771, 39780}

X(51659) = X(i)-isoconjugate of X(j) for these (i,j): {643, 994}, {645, 46018}, {4636, 45095}
X(51659) = barycentric product X(i)*X(j) for these {i,j}: {65, 48321}, {993, 7178}, {1150, 4017}, {2278, 4077}, {7216, 49492}
X(51659) = barycentric quotient X(i)/X(j) for these {i,j}: {993, 645}, {1150, 7257}, {2278, 643}, {7180, 994}, {48321, 314}, {49492, 7258}


X(51660) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(9)X(14331)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^5*b - a^4*b^2 - 2*a^3*b^3 + 2*a^2*b^4 + a*b^5 - b^6 + a^5*c + 2*a^3*b^2*c - 3*a*b^4*c - a^4*c^2 + 2*a^3*b*c^2 - 4*a^2*b^2*c^2 + 2*a*b^3*c^2 + b^4*c^2 - 2*a^3*c^3 + 2*a*b^2*c^3 + 2*a^2*c^4 - 3*a*b*c^4 + b^2*c^4 + a*c^5 - c^6) : :

X(51660) lies on these lines: {1, 10309}, {3, 2122}, {34, 207}, {55, 64}, {56, 1413}, {109, 2077}, {222, 1064}, {223, 30503}, {478, 2267}, {513, 663}, {581, 17831}, {603, 1193}, {608, 1033}, {909, 32667}, {1066, 34040}, {1394, 3576}, {1410, 42448}, {1433, 18237}, {2361, 34182}, {2635, 51421}, {3556, 7114}, {4337, 30282}, {6001, 43058}, {14547, 17832}, {23843, 47380}, {26105, 37523}, {34049, 46974}

X(51660) = X(102)-Ceva conjugate of X(56)
X(51660) = crosspoint of X(84) and X(36123)
X(51660) = crosssum of X(i) and X(j) for these (i,j): {8, 10538}, {40, 22350}, {78, 6735}
X(51660) = crossdifference of every pair of points on line {9, 14331}
X(51660) = X(i)-isoconjugate of X(j) for these (i,j): {8, 1295}, {100, 43737}, {1783, 2417}, {2431, 6335}, {15416, 32647}
X(51660) = X(i)-Dao conjugate of X(j) for these (i, j): (8054, 43737), (34050, 35516), (39006, 2417)
X(51660) = barycentric product X(i)*X(j) for these {i,j}: {1, 43058}, {57, 6001}, {58, 51365}, {63, 51399}, {222, 51359}, {1459, 2405}, {1461, 14312}, {2443, 4025}
X(51660) = barycentric quotient X(i)/X(j) for these {i,j}: {604, 1295}, {649, 43737}, {1459, 2417}, {2443, 1897}, {6001, 312}, {43058, 75}, {47434, 6735}, {51359, 7017}, {51365, 313}, {51399, 92}
X(51660) = {X(1456),X(1464)}-harmonic conjugate of X(1457)


X(51661) = X(3)X(77)∩X(513)X(663)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^2 - b^2 - c^2)*(2*a^4 - a^3*b - a^2*b^2 - a*b^3 + b^4 - a^3*c + 2*a^2*b*c + a*b^2*c - a^2*c^2 + a*b*c^2 - 2*b^2*c^2 - a*c^3 + c^4) : :

X(51661) lies on these lines: {3, 77}, {25, 34052}, {223, 37366}, {513, 663}, {604, 2262}, {1037, 11508}, {1461, 1876}, {1813, 34381}, {1828, 34491}, {7099, 20277}, {7125, 17441}, {26884, 43058}, {34489, 34492}, {37516, 45963}


X(51662) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(9)X(16699)

Barycentrics    a*(b - c)*(a + b - c)*(a - b + c)*(b + c)*(a^3 - a*b^2 + a*b*c - b^2*c - a*c^2 - b*c^2) : :
X(51662) = 3 X[354] - 4 X[34954], 3 X[354] - 2 X[44409], 5 X[17609] - 4 X[39540]

X(51662) lies on these lines: {7, 7199}, {56, 3737}, {57, 50346}, {65, 523}, {354, 34954}, {513, 663}, {1019, 34496}, {1363, 44044}, {1365, 3025}, {1409, 3050}, {2099, 48293}, {2616, 23286}, {3028, 3319}, {4077, 43067}, {4132, 30572}, {4170, 30198}, {4504, 6003}, {5214, 10473}, {6371, 30725}, {7178, 7250}, {11011, 48292}, {11375, 48209}, {17609, 39540}, {21173, 23187}, {24914, 48204}, {32636, 50349}, {38989, 40622}, {43923, 43927}

X(51662) = reflection of X(i) in X(j) for these {i,j}: {7178, 7250}, {44409, 34954}
X(51662) = X(i)-Ceva conjugate of X(j) for these (i,j): {7, 24237}, {7192, 7178}
X(51662) = crosspoint of X(i) and X(j) for these (i,j): {7, 1020}, {651, 31643}
X(51662) = crosssum of X(i) and X(j) for these (i,j): {55, 1021}, {521, 40946}, {650, 20967}
X(51662) = crossdifference of every pair of points on line {9, 16699}
X(51662) = X(i)-isoconjugate of X(j) for these (i,j): {101, 46880}, {643, 34434}, {2051, 5546}, {3939, 20028}
X(51662) = X(i)-Dao conjugate of X(j) for these (i, j): (12, 3952), (1015, 46880), (21796, 25268), (24237, 17183), (34589, 8), (40617, 20028)
X(51662) = barycentric product X(i)*X(j) for these {i,j}: {65, 17496}, {226, 21173}, {514, 37558}, {523, 17074}, {572, 4077}, {1020, 34589}, {2975, 7178}, {3669, 17751}, {3676, 21061}, {4017, 14829}, {4551, 24237}, {4560, 20617}, {4566, 11998}, {14973, 17096}, {23187, 40149}
X(51662) = barycentric quotient X(i)/X(j) for these {i,j}: {513, 46880}, {572, 643}, {2975, 645}, {3669, 20028}, {4017, 2051}, {7180, 34434}, {11998, 7253}, {14829, 7257}, {14973, 30730}, {17074, 99}, {17496, 314}, {17751, 646}, {20617, 4552}, {20986, 5546}, {21061, 3699}, {21173, 333}, {23187, 1812}, {24237, 18155}, {37558, 190}
X(51662) = {X(34954),X(44409)}-harmonic conjugate of X(354)


X(51663) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(9)X(1793)

Barycentrics    a*(b - c)*(a + b - c)*(a - b + c)*(b + c)^2*(a^2 - b^2 + b*c - c^2) : :

X(51663) lies on these lines: {12, 21714}, {56, 42741}, {110, 9811}, {513, 663}, {523, 36035}, {526, 3028}, {900, 3649}, {1365, 2611}, {2827, 46816}, {3738, 39778}, {4077, 45746}, {6050, 43923}, {9213, 18593}, {21828, 47230}, {23755, 50330}, {41003, 43042}

X(51663) = X(42666)-cross conjugate of X(2610)
X(51663) = crossdifference of every pair of points on line {9, 1793}
X(51663) = X(i)-isoconjugate of X(j) for these (i,j): {8, 36069}, {9, 37140}, {60, 51562}, {80, 4636}, {110, 6740}, {162, 1793}, {284, 47318}, {312, 32671}, {476, 35193}, {643, 759}, {645, 34079}, {655, 7054}, {662, 2341}, {1098, 2222}, {2150, 36804}, {2161, 4612}, {3700, 9273}, {4086, 9274}, {4556, 36910}, {5546, 24624}, {7058, 32675}, {9404, 39295}, {11107, 36061}, {32680, 35192}
X(51663) = X(i)-Dao conjugate of X(j) for these (i, j): (125, 1793), (244, 6740), (478, 37140), (1084, 2341), (15267, 2222), (16221, 11107), (34586, 643), (35069, 645), (35128, 7058), (38982, 8), (38984, 1098), (40584, 4612), (40590, 47318), (40622, 14616), (51583, 7257)
X(51663) = barycentric product X(i)*X(j) for these {i,j}: {7, 2610}, {12, 3960}, {57, 6370}, {65, 4707}, {85, 42666}, {523, 18593}, {525, 1835}, {526, 43682}, {661, 41804}, {758, 7178}, {1254, 3904}, {1365, 4585}, {1441, 21828}, {1443, 4024}, {1464, 1577}, {2171, 4453}, {2245, 4077}, {3676, 4053}, {3738, 6354}, {3936, 4017}, {4089, 21859}, {4705, 17078}, {7180, 35550}, {21758, 34388}, {37755, 44428}
X(51663) = barycentric quotient X(i)/X(j) for these {i,j}: {12, 36804}, {36, 4612}, {56, 37140}, {65, 47318}, {320, 4631}, {512, 2341}, {604, 36069}, {647, 1793}, {654, 1098}, {661, 6740}, {758, 645}, {1254, 655}, {1397, 32671}, {1443, 4610}, {1464, 662}, {1835, 648}, {2088, 35057}, {2171, 51562}, {2245, 643}, {2610, 8}, {2624, 35193}, {3028, 4585}, {3724, 5546}, {3738, 7058}, {3936, 7257}, {3960, 261}, {4017, 24624}, {4053, 3699}, {4585, 6064}, {4705, 36910}, {4707, 314}, {6354, 35174}, {6370, 312}, {7113, 4636}, {7178, 14616}, {7180, 759}, {8648, 7054}, {14270, 35192}, {17078, 4623}, {18593, 99}, {21758, 60}, {21828, 21}, {26700, 39295}, {41804, 799}, {42666, 9}, {43682, 35139}, {47230, 11107}


X(51664) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(9)X(33)

Barycentrics    a*(b - c)*(a + b - c)*(a - b + c)*(b + c)*(a^2 - b^2 - c^2) : :

X(51664) lies on these lines: {7, 4560}, {12, 21052}, {56, 21789}, {57, 14838}, {65, 4041}, {73, 810}, {108, 2727}, {109, 2722}, {222, 7254}, {226, 1577}, {388, 3907}, {513, 663}, {514, 3064}, {520, 656}, {525, 8611}, {553, 45671}, {603, 22093}, {652, 905}, {661, 6587}, {942, 39212}, {1365, 3328}, {1367, 34591}, {1451, 21761}, {2254, 8676}, {3649, 4804}, {3671, 4151}, {3676, 14349}, {4063, 43050}, {4162, 38329}, {4391, 46396}, {4566, 35307}, {6332, 15413}, {7250, 50330}, {14414, 22091}, {14837, 46393}, {17496, 46400}, {20296, 24562}, {20318, 25925}, {28983, 47796}, {29162, 30725}, {30719, 48335}, {43052, 47918}, {43923, 46385}

X(51664) = midpoint of X(17496) and X(46400)
X(51664) = reflection of X(i) in X(j) for these {i,j}: {652, 905}, {4391, 46396}, {8611, 24018}
X(51664) = isotomic conjugate of the polar conjugate of X(4017)
X(51664) = isogonal conjugate of the polar conjugate of X(4077)
X(51664) = X(i)-Ceva conjugate of X(j) for these (i,j): {7, 7004}, {222, 3942}, {226, 4466}, {514, 7178}, {1414, 603}, {1439, 18210}, {4077, 4017}, {17094, 656}, {37136, 18593}
X(51664) = X(i)-cross conjugate of X(j) for these (i,j): {647, 656}, {18210, 1439}
X(51664) = X(i)-Dao conjugate of X(j) for these (i, j): (6, 643), (9, 36797), (11, 2322), (115, 318), (125, 9), (223, 648), (226, 190), (244, 281), (478, 162), (647, 4086), (1015, 29), (1084, 33), (1086, 31623), (1214, 6335), (3125, 46878), (3160, 811), (4858, 7017), (4988, 44426), (5190, 1896), (5521, 8748), (6337, 7257), (6505, 645), (6615, 17926), (6741, 7101), (8054, 1172), (11517, 7259), (15450, 7069), (15526, 312), (17423, 41), (26932, 333), (34467, 284), (34591, 8), (35071, 78), (35072, 1043), (36033, 5546), (36908, 653), (38983, 2287), (38985, 219), (38986, 607), (38991, 4183), (38996, 2212), (39000, 44694), (39006, 21), (39025, 2332), (40590, 1897), (40591, 644), (40593, 6331), (40608, 7079), (40611, 1783), (40615, 286), (40617, 27), (40618, 314), (40619, 44130), (40622, 92), (40623, 14024), (40627, 18344), (40628, 7253), (40837, 823), (46093, 2289), (50330, 3064), (51574, 3699)
X(51664) = crosspoint of X(i) and X(j) for these (i,j): {85, 1414}, {226, 1020}, {514, 905}
X(51664) = crosssum of X(i) and X(j) for these (i,j): {9, 8611}, {41, 4041}, {101, 1783}, {281, 17926}, {284, 1021}, {650, 2264}, {3737, 5324}
X(51664) = trilinear pole of line {18210, 22094}
X(51664) = crossdifference of every pair of points on line {9, 33}
X(51664) = X(i)-isoconjugate of X(j) for these (i,j): {4, 5546}, {6, 36797}, {8, 112}, {9, 162}, {19, 643}, {21, 1783}, {25, 645}, {27, 3939}, {28, 644}, {29, 101}, {33, 662}, {34, 7259}, {41, 811}, {55, 648}, {59, 17926}, {78, 24019}, {99, 607}, {100, 1172}, {107, 219}, {108, 2287}, {109, 2322}, {110, 281}, {163, 318}, {190, 2299}, {212, 823}, {250, 3700}, {270, 1018}, {284, 1897}, {294, 4238}, {312, 32676}, {333, 8750}, {345, 32713}, {461, 4627}, {608, 7256}, {646, 2203}, {650, 5379}, {651, 4183}, {653, 2328}, {664, 2332}, {666, 37908}, {668, 2204}, {692, 31623}, {799, 2212}, {813, 14024}, {906, 1896}, {1021, 7012}, {1043, 32674}, {1259, 6529}, {1301, 27382}, {1304, 7359}, {1331, 8748}, {1395, 7258}, {1396, 4578}, {1414, 7079}, {1474, 3699}, {1576, 7017}, {1824, 4612}, {1826, 4636}, {1857, 4558}, {1973, 7257}, {2175, 6331}, {2189, 3952}, {2194, 6335}, {2289, 36126}, {2316, 46541}, {2326, 4551}, {2327, 36127}, {2338, 4241}, {2341, 4242}, {2489, 6064}, {3064, 4570}, {3688, 42396}, {3709, 18020}, {4076, 43925}, {4092, 47443}, {4230, 15628}, {4235, 5547}, {4240, 15627}, {4557, 46103}, {4563, 6059}, {4565, 7046}, {4567, 18344}, {4571, 5317}, {4573, 7071}, {4587, 8747}, {4633, 44100}, {5548, 37168}, {6056, 15352}, {6062, 34568}, {6065, 17925}, {6742, 41502}, {7115, 7253}, {7252, 15742}, {7452, 15629}, {8611, 24000}, {16813, 44707}, {21789, 46102}, {23067, 36421}, {32739, 44130}, {36104, 44694}, {44695, 46639}
X(51664) = barycentric product X(i)*X(j) for these {i,j}: {1, 17094}, {3, 4077}, {7, 656}, {34, 3265}, {56, 14208}, {57, 525}, {63, 7178}, {65, 4025}, {69, 4017}, {71, 24002}, {72, 3676}, {73, 693}, {77, 523}, {85, 647}, {108, 17216}, {125, 1414}, {162, 1367}, {201, 7192}, {222, 1577}, {225, 4131}, {226, 905}, {273, 520}, {278, 24018}, {279, 8611}, {304, 7180}, {306, 3669}, {307, 513}, {331, 822}, {345, 7216}, {348, 661}, {349, 22383}, {512, 7182}, {514, 1214}, {521, 3668}, {522, 1439}, {603, 850}, {604, 3267}, {649, 1231}, {651, 4466}, {652, 1446}, {664, 18210}, {810, 6063}, {1014, 4064}, {1019, 26942}, {1020, 26932}, {1021, 20618}, {1042, 35518}, {1111, 23067}, {1365, 4592}, {1400, 15413}, {1409, 3261}, {1410, 35519}, {1425, 18155}, {1427, 6332}, {1441, 1459}, {1565, 4551}, {1804, 24006}, {1813, 16732}, {1880, 30805}, {2171, 15419}, {2197, 7199}, {2501, 7183}, {3049, 20567}, {3120, 6516}, {3213, 14638}, {3695, 7203}, {3700, 7177}, {3708, 4573}, {3710, 43932}, {3718, 7250}, {3737, 6356}, {3942, 4552}, {3949, 17096}, {4041, 7056}, {4086, 7053}, {4091, 40149}, {4171, 30682}, {4560, 37755}, {4565, 20902}, {4566, 7004}, {4625, 20975}, {6358, 7254}, {7125, 14618}, {7131, 21107}, {7147, 15411}, {8057, 8809}, {9436, 10099}, {14321, 27832}, {15412, 44708}, {17924, 40152}, {20336, 43924}, {21174, 47344}, {21207, 36059}, {22341, 46107}, {23800, 28786}, {31603, 43708}, {37136, 42761}
X(51664) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 36797}, {3, 643}, {7, 811}, {34, 107}, {48, 5546}, {56, 162}, {57, 648}, {63, 645}, {65, 1897}, {69, 7257}, {71, 644}, {72, 3699}, {73, 100}, {77, 99}, {78, 7256}, {85, 6331}, {109, 5379}, {125, 4086}, {201, 3952}, {219, 7259}, {222, 662}, {226, 6335}, {228, 3939}, {273, 6528}, {278, 823}, {306, 646}, {307, 668}, {345, 7258}, {348, 799}, {512, 33}, {513, 29}, {514, 31623}, {520, 78}, {521, 1043}, {523, 318}, {525, 312}, {603, 110}, {604, 112}, {608, 24019}, {647, 9}, {649, 1172}, {650, 2322}, {652, 2287}, {656, 8}, {659, 14024}, {661, 281}, {663, 4183}, {667, 2299}, {669, 2212}, {684, 44694}, {693, 44130}, {798, 607}, {810, 55}, {822, 219}, {905, 333}, {1019, 46103}, {1020, 46102}, {1042, 108}, {1118, 36126}, {1214, 190}, {1231, 1978}, {1319, 46541}, {1365, 24006}, {1367, 14208}, {1393, 35360}, {1395, 32713}, {1397, 32676}, {1400, 1783}, {1402, 8750}, {1409, 101}, {1410, 109}, {1414, 18020}, {1425, 4551}, {1426, 36127}, {1427, 653}, {1437, 4636}, {1439, 664}, {1446, 46404}, {1455, 7452}, {1456, 4241}, {1457, 4246}, {1458, 4238}, {1459, 21}, {1464, 4242}, {1565, 18155}, {1577, 7017}, {1790, 4612}, {1804, 4592}, {1813, 4567}, {1919, 2204}, {1946, 2328}, {2170, 17926}, {2197, 1018}, {2318, 4578}, {2524, 7075}, {2605, 11107}, {2631, 7359}, {3049, 41}, {3063, 2332}, {3120, 44426}, {3122, 18344}, {3125, 3064}, {3265, 3718}, {3267, 28659}, {3269, 8611}, {3668, 18026}, {3669, 27}, {3676, 286}, {3682, 4571}, {3690, 4069}, {3694, 6558}, {3700, 7101}, {3708, 3700}, {3709, 7079}, {3733, 270}, {3937, 3737}, {3942, 4560}, {3949, 30730}, {3958, 30729}, {3990, 4587}, {4017, 4}, {4025, 314}, {4041, 7046}, {4047, 30728}, {4064, 3701}, {4077, 264}, {4091, 1812}, {4131, 332}, {4367, 14006}, {4404, 44721}, {4466, 4391}, {4551, 15742}, {4573, 46254}, {4592, 6064}, {4822, 461}, {6357, 24001}, {6516, 4600}, {6591, 8748}, {7004, 7253}, {7053, 1414}, {7056, 4625}, {7099, 4565}, {7117, 1021}, {7125, 4558}, {7138, 23067}, {7177, 4573}, {7178, 92}, {7180, 19}, {7182, 670}, {7183, 4563}, {7216, 278}, {7250, 34}, {7252, 2326}, {7254, 2185}, {7335, 4575}, {7649, 1896}, {8611, 346}, {8673, 4123}, {10099, 14942}, {14208, 3596}, {14380, 44693}, {14429, 4723}, {15413, 28660}, {15451, 7069}, {16732, 46110}, {17094, 75}, {17206, 4631}, {17216, 35518}, {18210, 522}, {20975, 4041}, {22094, 35057}, {22341, 1331}, {22383, 284}, {23067, 765}, {23189, 1098}, {23224, 283}, {23226, 35193}, {23286, 44687}, {24002, 44129}, {24018, 345}, {24459, 3975}, {26942, 4033}, {28786, 51566}, {30493, 2617}, {30572, 38462}, {30682, 4635}, {32320, 2289}, {36054, 2327}, {36059, 4570}, {37755, 4552}, {39201, 212}, {40152, 1332}, {42658, 7070}, {43923, 8747}, {43924, 28}, {44708, 14570}, {48144, 44734}, {50330, 46878}, {50332, 4194}, {50490, 40987}, {51368, 42718}
X(51664) = {X(661),X(7216)}-harmonic conjugate of X(7178)


X(51665) = X(1)X(50092)∩X(2)X(3)

Barycentrics    3*a^4 - 4*a^3*b - 8*a^2*b^2 - 4*a*b^3 - 3*b^4 - 4*a^3*c - 8*a^2*b*c - 8*a*b^2*c - 4*b^3*c - 8*a^2*c^2 - 8*a*b*c^2 - 2*b^2*c^2 - 4*a*c^3 - 4*b*c^3 - 3*c^4 : :

X(51665) lies on these lines: {1, 50092}, {2, 3}, {388, 48799}, {958, 48821}, {2345, 50049}, {3666, 50046}, {3672, 50072}, {3679, 42049}, {4026, 4293}, {4294, 48805}, {4304, 17306}, {4657, 50064}, {5712, 48835}, {10385, 48803}, {14552, 48847}, {19766, 46922}, {37654, 49723}, {42047, 50066}

X(51665) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20, 16394}, {2, 13736, 51595}, {2, 16394, 37037}, {2, 17676, 50055}, {2, 37038, 11111}, {2, 50055, 4}, {2, 50165, 4217}, {2, 51595, 17552}, {3, 50058, 2}, {20, 13728, 37037}, {4201, 13725, 443}, {11112, 51596, 51602}, {13728, 16394, 2}, {13736, 33833, 17552}, {16052, 19279, 2}, {16418, 48815, 2}, {33833, 51595, 2}, {51596, 51602, 2}


X(51666) = X(1)X(50096)∩X(2)X(3)

Barycentrics    3*a^4 + 5*a^3*b + 7*a^2*b^2 + 5*a*b^3 + 5*a^3*c + 19*a^2*b*c + 19*a*b^2*c + 5*b^3*c + 7*a^2*c^2 + 19*a*b*c^2 + 10*b^2*c^2 + 5*a*c^3 + 5*b*c^3 : :

X(51666) lies on these lines: {1, 50096}, {2, 3}, {3828, 5247}, {4755, 7283}, {16817, 50064}, {19865, 48821}, {25526, 46922}, {41813, 50086}, {41816, 48868}, {41817, 48835}, {42028, 48852}, {50049, 51488}

X(51666) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1010, 13735}, {2, 4201, 51596}, {2, 13735, 37035}, {2, 16393, 11110}, {2, 16394, 51595}, {2, 37038, 51597}, {2, 51602, 1010}, {1010, 51595, 16394}, {14007, 16454, 19270}, {16394, 51595, 13735}, {16458, 51602, 2}


X(51667) = X(1)X(50098)∩X(2)X(3)

Barycentrics    4*a^4 + 8*a^3*b + 11*a^2*b^2 + 8*a*b^3 + b^4 + 8*a^3*c + 26*a^2*b*c + 26*a*b^2*c + 8*b^3*c + 11*a^2*c^2 + 26*a*b*c^2 + 14*b^2*c^2 + 8*a*c^3 + 8*b*c^3 + c^4 : :

X(51676) lies on these lines: {1, 50098}, {2, 3}, {524, 25526}, {1211, 50226}, {1213, 49723}, {3624, 17070}, {31143, 49743}, {31144, 49716}, {41809, 50234}

X(51667) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1010, 13745}, {2, 11111, 51599}, {2, 11112, 51596}, {2, 13745, 17514}, {2, 17589, 50171}, {2, 19277, 11113}, {2, 50171, 4205}, {2, 50428, 51593}, {2, 51591, 11357}, {2, 51602, 11112}, {858, 8728, 442}, {51601, 51602, 2}


X(51668) = X(1)X(1266)∩X(2)X(3)

Barycentrics    5*a^4 + 2*a^3*b + 2*a*b^3 - b^4 + 2*a^3*c + 6*a^2*b*c + 6*a*b^2*c + 2*b^3*c + 6*a*b*c^2 + 6*b^2*c^2 + 2*a*c^3 + 2*b*c^3 - c^4 : :

X(51668) lies on these lines: {1, 1266}, {2, 3}, {10, 48833}, {551, 24159}, {958, 49725}, {1043, 4340}, {1448, 17079}, {1453, 41140}, {3241, 50106}, {4252, 49734}, {4274, 9534}, {4292, 17274}, {4293, 5263}, {4294, 49746}, {4295, 41846}, {4304, 10436}, {16485, 24199}, {17281, 50054}, {17301, 50064}, {18141, 48863}, {20009, 50044}, {20077, 50074}, {42044, 50045}, {42051, 50070}, {47040, 50226}, {48832, 49732}, {50049, 50107}, {50586, 51223}

X(51668) = reflection of X(2) in X(19276)
X(51668) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20, 37038}, {2, 6872, 14020}, {2, 11111, 50430}, {2, 17537, 2478}, {2, 17579, 48813}, {2, 37038, 13725}, {2, 48816, 50428}, {2, 50061, 48817}, {2, 50322, 17537}, {2, 50408, 37150}, {2, 50429, 17528}, {2, 51606, 405}, {3, 37150, 2}, {20, 1010, 13725}, {377, 11115, 37176}, {443, 4195, 13742}, {1010, 37038, 2}, {4195, 4201, 16898}, {4234, 48816, 2}, {11112, 16394, 2}, {11113, 19290, 2}, {11359, 50059, 2}, {13728, 51603, 2}, {13745, 51602, 2}, {14020, 16454, 2}, {16370, 50169, 2}, {16393, 50171, 2}, {16898, 37037, 13742}, {17537, 19284, 2}, {19284, 50322, 2478}


X(51669) = X(1)X(39711)∩X(2)X(3)

Barycentrics    (a + b)*(a + c)*(3*a^2 - a*b + 2*b^2 - a*c + 4*b*c + 2*c^2) : :
X(51669) = 2 X[81] + X[4720], 5 X[3616] - 2 X[4854]

X(51669) lies on these lines: {1, 39711}, {2, 3}, {8, 41629}, {10, 16948}, {58, 3679}, {81, 519}, {86, 16711}, {99, 28539}, {333, 48832}, {540, 31143}, {551, 25526}, {612, 48812}, {940, 48862}, {1043, 3241}, {1778, 17330}, {1931, 48809}, {2287, 50115}, {2303, 17281}, {2363, 50052}, {2941, 5250}, {3175, 50054}, {3616, 4854}, {3786, 50127}, {4653, 5333}, {4658, 51093}, {5235, 19875}, {5260, 19870}, {5276, 48864}, {5303, 19863}, {5323, 5434}, {5429, 21020}, {17016, 50083}, {17180, 33953}, {17196, 28534}, {19722, 19767}, {19796, 19848}, {19883, 24617}, {24275, 37675}, {24557, 51382}, {24883, 49734}, {27644, 50300}, {28618, 51109}, {28619, 51103}, {28620, 51110}, {32782, 48834}, {32911, 48867}, {35016, 41812}, {37633, 48863}, {37680, 48866}, {39673, 48852}, {40773, 48854}, {41610, 47359}, {41816, 50215}, {42044, 50049}, {42051, 50064}

X(51669) = barycentric product X(99)*X(47881)
X(51669) = barycentric quotient X(47881)/X(523)
X(51669) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 21, 17553}, {2, 2475, 16052}, {2, 4189, 16351}, {2, 4195, 11346}, {2, 4234, 21}, {2, 11115, 4234}, {2, 11346, 5047}, {2, 13735, 16861}, {2, 15677, 13745}, {2, 16393, 17549}, {2, 16865, 11357}, {2, 17553, 17557}, {2, 19336, 404}, {2, 33309, 17547}, {2, 50061, 11114}, {2, 50171, 6175}, {2, 50172, 17677}, {2, 50428, 4197}, {2, 51592, 48817}, {21, 1010, 14005}, {21, 14005, 17557}, {21, 17551, 11110}, {58, 3679, 4921}, {405, 19332, 2}, {964, 19336, 2}, {1010, 4234, 2}, {1010, 11110, 17589}, {1010, 11115, 21}, {1010, 17539, 17551}, {1043, 42028, 3241}, {2049, 16351, 2}, {4184, 19259, 21}, {4195, 16454, 5047}, {4216, 11358, 404}, {4225, 19531, 21}, {11110, 17539, 21}, {11110, 17589, 17551}, {11112, 50059, 2}, {11115, 17589, 17539}, {11346, 16454, 2}, {11354, 19276, 19290}, {11354, 19290, 2}, {11357, 16458, 2}, {11359, 51590, 2}, {13740, 19284, 17531}, {14005, 17553, 2}, {16370, 19277, 2}, {16371, 19247, 4225}, {16371, 19531, 19247}, {16394, 19276, 2}, {16394, 19290, 11354}, {16418, 51602, 2}, {17539, 17589, 11110}, {17551, 17589, 14005}, {17677, 50172, 15679}, {37176, 50428, 2}


X(51670) = X(1)X(50107)∩X(2)X(3)

Barycentrics    7*a^4 + 6*a^3*b + 4*a^2*b^2 + 6*a*b^3 + b^4 + 6*a^3*c + 10*a^2*b*c + 10*a*b^2*c + 6*b^3*c + 4*a^2*c^2 + 10*a*b*c^2 + 10*b^2*c^2 + 6*a*c^3 + 6*b*c^3 + c^4 : :

X(51670) lies on these lines: {1, 50107}, {2, 3}, {1220, 34619}, {1453, 50095}, {4340, 17297}, {5247, 48802}, {11240, 24552}, {14555, 48866}, {17281, 50064}, {17301, 50054}, {31030, 46934}, {38314, 42044}, {50049, 50101}

X(51670) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4195, 11111}, {2, 11111, 13725}, {2, 13735, 50430}, {2, 50061, 48813}, {2, 50408, 17528}, {2, 51592, 17579}, {2, 51606, 13745}, {4195, 37037, 13725}, {11111, 37037, 2}, {11113, 51590, 2}, {11354, 50059, 2}, {13735, 51605, 2}, {13745, 51603, 2}, {16370, 50323, 2}, {17528, 17698, 2}, {51595, 51604, 2}, {51596, 51600, 2}


X(51671) = X(1)X(4395)∩X(2)X(3)

Barycentrics    2*a^4 + 2*a^3*b + 3*a^2*b^2 + 2*a*b^3 - b^4 + 2*a^3*c + 12*a^2*b*c + 12*a*b^2*c + 2*b^3*c + 3*a^2*c^2 + 12*a*b*c^2 + 6*b^2*c^2 + 2*a*c^3 + 2*b*c^3 - c^4 : :

X(51671) lies on these lines: {1, 4395}, {2, 3}, {10, 37520}, {72, 50116}, {392, 29309}, {529, 19870}, {752, 27637}, {3753, 3819}, {4273, 25526}, {4340, 37654}, {4472, 19867}, {5165, 17330}, {6051, 28580}, {9534, 17378}, {18990, 19874}, {41313, 50049}, {49723, 49731}

X(51671) = complement of X(14020)
X(51671) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4217, 11108}, {2, 11112, 13745}, {2, 13725, 51599}, {2, 17679, 50058}, {2, 19277, 50323}, {2, 36004, 17553}, {2, 48816, 11113}, {2, 48817, 17542}, {2, 50061, 16857}, {2, 50428, 17532}, {443, 16458, 13728}, {17563, 50432, 16342}, {17589, 17674, 50318}, {33833, 51604, 2}


X(51672) = X(1)X(3943)∩X(2)X(3)

Barycentrics    4*a^4 + 4*a^3*b + 3*a^2*b^2 + 4*a*b^3 + b^4 + 4*a^3*c + 6*a^2*b*c + 6*a*b^2*c + 4*b^3*c + 3*a^2*c^2 + 6*a*b*c^2 + 6*b^2*c^2 + 4*a*c^3 + 4*b*c^3 + c^4 : :

X(51672) lies on these lines: {1, 3943}, {2, 3}, {72, 50115}, {551, 3175}, {1211, 48866}, {1453, 3679}, {1724, 4290}, {3058, 48811}, {7283, 17320}, {7354, 48808}, {17271, 49716}, {17301, 50049}, {17359, 50064}, {17382, 50054}, {19784, 48829}, {25526, 49738}, {34606, 48826}, {42044, 50069}, {42051, 50053}, {50044, 50101}, {50072, 50107}

X(51672) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 964, 37150}, {2, 4195, 37038}, {2, 11114, 50058}, {2, 11319, 14020}, {2, 11354, 11113}, {2, 13725, 51598}, {2, 13735, 13745}, {2, 13745, 51596}, {2, 14020, 4205}, {2, 16394, 11112}, {2, 17537, 5051}, {2, 17579, 48815}, {2, 37037, 51603}, {2, 37038, 13728}, {2, 37150, 442}, {2, 48817, 50056}, {2, 50061, 11359}, {2, 51591, 19276}, {2, 51594, 37039}, {2, 51606, 13725}, {405, 51603, 2}, {964, 17698, 442}, {1010, 37035, 16911}, {4195, 37036, 13728}, {13742, 16458, 17590}, {17698, 37150, 2}, {37036, 37038, 2}


X(51673) = X(1)X(2325)∩X(2)X(3)

Barycentrics    7*a^4 + 4*a^3*b + 4*a*b^3 + b^4 + 4*a^3*c + 4*b^3*c + 6*b^2*c^2 + 4*a*c^3 + 4*b*c^3 + c^4 : :

X(51673) lies on these lines: {1, 2325}, {2, 3}, {388, 48833}, {519, 1453}, {958, 48810}, {1104, 17281}, {1724, 37654}, {3488, 5294}, {3974, 49480}, {4080, 46934}, {4294, 48829}, {4340, 17313}, {5247, 50316}, {5657, 35263}, {5698, 19869}, {5712, 48866}, {6361, 25904}, {7283, 50101}, {10385, 48831}, {16485, 17355}, {19855, 49725}, {41313, 50064}

X(51673) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4217, 4}, {2, 11319, 4217}, {2, 13735, 11111}, {2, 51606, 37038}, {405, 1009, 19256}, {4195, 13742, 443}, {4217, 17526, 2}, {11319, 17526, 4}, {13735, 37038, 51606}, {16857, 50059, 2}, {17697, 37176, 5084}, {19277, 50202, 2}, {37035, 51604, 2}, {37038, 51606, 11111}, {51595, 51605, 2}


X(51674) = X(1)X(1278)∩X(2)X(3)

Barycentrics    4*a^4 + 3*a^3*b + 2*a^2*b^2 + 3*a*b^3 + 3*a^3*c + 7*a^2*b*c + 7*a*b^2*c + 3*b^3*c + 2*a^2*c^2 + 7*a*b*c^2 + 6*b^2*c^2 + 3*a*c^3 + 3*b*c^3 : :

X(51674) lies on these lines: {1, 1278}, {2, 3}, {192, 50054}, {894, 11523}, {1043, 17379}, {1104, 4699}, {1453, 16816}, {3616, 33147}, {3617, 5247}, {3945, 33954}, {4292, 17236}, {4302, 19865}, {4340, 17375}, {4704, 7283}, {4740, 50064}, {4772, 19851}, {4788, 50044}, {5263, 12513}, {16996, 19761}, {17343, 20077}, {19827, 50050}, {20018, 37677}, {24598, 50622}, {26111, 32942}, {27269, 50164}

X(51674) = anticomplement of X(37164)
X(51674) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1010, 4195, 2}, {1010, 13735, 16458}, {1010, 16394, 4195}, {1010, 37035, 51602}, {4201, 37037, 2}, {11115, 17589, 4184}, {16454, 17697, 2}, {16865, 17589, 2}, {16926, 17696, 2}, {26051, 37176, 2}, {51594, 51604, 2}


X(51675) = X(1)X(50118)∩X(2)X(3)

Barycentrics    13*a^4 + 8*a^3*b + 2*a^2*b^2 + 8*a*b^3 + b^4 + 8*a^3*c + 8*a^2*b*c + 8*a*b^2*c + 8*b^3*c + 2*a^2*c^2 + 8*a*b*c^2 + 14*b^2*c^2 + 8*a*c^3 + 8*b*c^3 + c^4 : :

X(51675) lies on these lines: {1, 50118}, {2, 3}, {3679, 4339}, {5232, 49723}, {5304, 24275}, {5716, 50104}, {7229, 16485}, {11036, 35578}, {34610, 48810}, {34619, 48826}, {34625, 48811}, {37666, 48863}

X(51675) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4234, 10304}, {2, 11106, 13745}, {2, 15683, 11359}, {2, 48817, 3543}, {2, 50171, 4208}, {2, 50687, 16052}, {4190, 6872, 20063}, {11346, 51591, 2}, {13735, 51605, 50430}, {13745, 37037, 2}, {17526, 50171, 2}, {50430, 51605, 2}


X(51676) = X(1)X(4755)∩X(2)X(3)

Barycentrics    3*a^4 - 2*a^3*b - 7*a^2*b^2 - 2*a*b^3 - 2*a^3*c - 16*a^2*b*c - 16*a*b^2*c - 2*b^3*c - 7*a^2*c^2 - 16*a*b*c^2 - 4*b^2*c^2 - 2*a*c^3 - 2*b*c^3 : :

X(51676) lies on these lines: {1, 4755}, {2, 3}, {37, 50072}, {3739, 50049}, {4428, 19870}, {4664, 16817}, {4688, 50044}, {4698, 50064}, {5247, 25055}, {5259, 19871}, {5302, 51061}, {17251, 50260}, {17313, 49723}, {17776, 50047}, {19723, 48855}, {24789, 50062}

X(51676) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 405, 16394}, {2, 11114, 50427}, {2, 11346, 19277}, {2, 13735, 51602}, {2, 14020, 17528}, {2, 16394, 16458}, {2, 16418, 19290}, {2, 16858, 19276}, {2, 16861, 11354}, {2, 17553, 19279}, {2, 37314, 50058}, {2, 48814, 44217}, {2, 50055, 8728}, {2, 50430, 11112}, {2, 51595, 405}, {2, 51605, 51601}, {405, 51602, 13735}, {5047, 19238, 405}, {5259, 19871, 48805}, {13735, 51602, 16394}, {16408, 17588, 19289}, {19238, 37035, 16844}, {37035, 51595, 2}, {50058, 50205, 2}


X(51677) = X(1)X(599)∩X(2)X(3)

Barycentrics    a^4 - 4*a^3*b - 7*a^2*b^2 - 4*a*b^3 - 2*b^4 - 4*a^3*c - 10*a^2*b*c - 10*a*b^2*c - 4*b^3*c - 7*a^2*c^2 - 10*a*b*c^2 - 4*b^2*c^2 - 4*a*c^3 - 4*b*c^3 - 2*c^4 : :

X(51677) lies on these lines: {1, 599}, {2, 3}, {6, 49723}, {45, 19867}, {540, 19722}, {597, 49728}, {956, 4026}, {1724, 47352}, {1992, 19766}, {3679, 4646}, {7761, 50230}, {7801, 19758}, {7810, 19761}, {7865, 50225}, {9534, 31144}, {11160, 19783}, {11178, 48894}, {15360, 19771}, {16466, 50296}, {17251, 50179}, {17313, 25499}, {17320, 50072}, {19684, 50234}, {19701, 48835}, {19723, 49729}, {19732, 48843}, {19738, 50215}, {19767, 31143}, {19782, 50977}, {37631, 48834}, {48840, 50305}, {48845, 49730}, {48857, 49724}, {48868, 50268}

X(51677) = crossdifference of every pair of points on line {647, 2515}
X(51677) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4234, 51590}, {2, 11112, 51602}, {2, 11357, 50714}, {2, 11359, 44217}, {2, 13725, 13745}, {2, 13745, 405}, {2, 16394, 51603}, {2, 17579, 19277}, {2, 17676, 50171}, {2, 17679, 50427}, {2, 37038, 16394}, {2, 48813, 50169}, {2, 48817, 50323}, {2, 49735, 11354}, {2, 50055, 37150}, {2, 50056, 17532}, {2, 50165, 964}, {2, 50171, 2049}, {2, 50321, 11359}, {2, 51594, 51595}, {2, 51602, 51601}, {2, 51605, 51600}, {2049, 17676, 50239}, {4201, 37039, 16458}, {4202, 16844, 50207}, {11112, 51596, 2}, {11359, 50410, 2}, {11359, 50427, 17679}, {13725, 13728, 405}, {13728, 13745, 2}, {16351, 51593, 2}, {16394, 51598, 2}, {16394, 51600, 51605}, {17679, 50427, 44217}, {19266, 37329, 37058}, {37038, 51598, 51603}, {48813, 50169, 50397}, {50321, 50410, 44217}, {51600, 51605, 51603}


X(51678) = X(1)X(2796)∩X(2)X(3)

Barycentrics    5*a^4 + a^3*b - 2*a^2*b^2 + a*b^3 - b^4 + a^3*c + a^2*b*c + a*b^2*c + b^3*c - 2*a^2*c^2 + a*b*c^2 + 4*b^2*c^2 + a*c^3 + b*c^3 - c^4 : :
X(51678) = 5 X[2] - 4 X[16052], 5 X[4234] - 2 X[16052], 3 X[4234] - X[17677], 6 X[16052] - 5 X[17677], X[8] - 4 X[24850], 2 X[1043] + X[20077], 5 X[3616] - 2 X[24851], X[6224] + 2 X[24852]

X(51678) lies on these lines: {1, 2796}, {2, 3}, {8, 896}, {99, 50230}, {519, 1046}, {524, 1043}, {894, 4304}, {958, 49720}, {1104, 37756}, {1220, 15338}, {1654, 14712}, {1975, 17378}, {1992, 20018}, {2650, 3241}, {3616, 24851}, {4313, 35578}, {4653, 26109}, {5550, 25378}, {5731, 29057}, {6224, 24852}, {6781, 24275}, {7270, 50104}, {7750, 17271}, {7779, 50236}, {15326, 32942}, {16485, 48627}, {16712, 50225}, {17320, 50064}, {17778, 50234}, {20065, 50074}, {20101, 49492}, {31144, 49728}, {34620, 48805}, {34626, 48832}, {34701, 50127}, {37589, 37764}, {42028, 49739}, {44367, 50156}, {50164, 51224}

X(51678) = reflection of X(2) in X(4234)
X(51678) = anticomplement of X(17677)
X(51678) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15680, 50165}, {2, 50165, 26117}, {2, 50171, 26051}, {20, 4195, 4201}, {21, 50171, 2}, {376, 48817, 2}, {1010, 13745, 2}, {11112, 13735, 2}, {11114, 16393, 2}, {11115, 15680, 26117}, {11115, 50165, 2}, {11319, 20063, 26117}, {15680, 37256, 20063}, {16046, 50170, 2}, {16394, 37038, 2}, {16397, 17537, 2}, {16418, 48816, 2}, {17561, 50428, 2}, {19276, 48814, 2}, {35935, 50168, 2}


X(51679) = X(1)X(4285)∩X(2)X(3)

Barycentrics    2*a^4 - 4*a^3*b - 9*a^2*b^2 - 4*a*b^3 - b^4 - 4*a^3*c - 18*a^2*b*c - 18*a*b^2*c - 4*b^3*c - 9*a^2*c^2 - 18*a*b*c^2 - 6*b^2*c^2 - 4*a*c^3 - 4*b*c^3 - c^4 : :

X(51679) lies on these lines: {1, 4285}, {2, 3}, {392, 29311}, {528, 19871}, {1453, 25055}, {3679, 48846}, {5259, 48810}, {16817, 17320}, {16828, 49725}, {17251, 50235}, {17378, 49716}, {17392, 49723}, {19853, 49746}, {37631, 48839}, {48844, 50224}, {48848, 50316}, {48852, 49739}, {48855, 49724}, {49728, 49738}

X(51679) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4195, 51604}, {2, 4217, 2049}, {2, 11111, 51602}, {2, 13745, 11112}, {2, 14020, 37150}, {2, 16858, 50059}, {2, 31156, 19277}, {2, 33309, 50323}, {2, 48814, 50169}, {2, 50055, 50427}, {2, 50430, 16394}, {2, 51594, 37038}, {2, 51599, 17514}, {405, 51599, 2}, {13728, 37035, 17590}, {14020, 37150, 11113}, {16844, 37314, 442}, {37038, 51594, 13745}, {51595, 51597, 2}


X(51680) = X(1)X(17250)∩X(2)X(3)

Barycentrics    a^4 - 5*a^3*b - 9*a^2*b^2 - 5*a*b^3 - 2*b^4 - 5*a^3*c - 15*a^2*b*c - 15*a*b^2*c - 5*b^3*c - 9*a^2*c^2 - 15*a*b*c^2 - 6*b^2*c^2 - 5*a*c^3 - 5*b*c^3 - 2*c^4 : :

X(51680) lies on these lines: {1, 17250}, {2, 3}, {16817, 17382}, {19766, 37654}, {19853, 48829}, {25507, 48835}, {25526, 41923}, {26044, 48847}, {46922, 49723}

X(51680) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4195, 51603}, {2, 11111, 51605}, {2, 13725, 37038}, {2, 13745, 13735}, {2, 14020, 13740}, {2, 26117, 37150}, {2, 37038, 1010}, {2, 37150, 19280}, {2, 51594, 405}, {2, 51606, 37037}, {405, 51598, 2}, {13725, 37039, 1010}, {13745, 51596, 2}, {26117, 50409, 19280}, {37038, 37039, 2}, {37150, 50409, 2}


X(51681) = X(1)X(4741)∩X(2)X(3)

Barycentrics    4*a^4 - 3*a^3*b - 8*a^2*b^2 - 3*a*b^3 - 2*b^4 - 3*a^3*c - 11*a^2*b*c - 11*a*b^2*c - 3*b^3*c - 8*a^2*c^2 - 11*a*b*c^2 - 2*b^2*c^2 - 3*a*c^3 - 3*b*c^3 - 2*c^4 : :

X(51681) lies on these lines: {1, 4741}, {2, 3}, {1043, 17251}, {1104, 17399}, {4304, 17248}, {10449, 48841}, {16485, 17324}, {16824, 50080}, {17301, 19851}, {17346, 20018}, {48850, 49729}, {48869, 50224}, {49723, 50074}

X(51681) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11111, 4195}, {2, 13745, 51594}, {11110, 17528, 2}, {11111, 13725, 2}, {13745, 37038, 2}, {16342, 17577, 2}, {16858, 50321, 2}, {17556, 19270, 2}, {51596, 51605, 2}, {51597, 51602, 2}


X(51682) = CIRCUMCIRCLE-INVERSE OF X(241)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^4 - 2*a^3*b + 2*a^2*b^2 - 2*a*b^3 + b^4 - 2*a^3*c + 3*a^2*b*c - a*b^2*c + 2*a^2*c^2 - a*b*c^2 - 2*a*c^3 + c^4) : :

X(51682) lies one these lines: {1, 3}, {6, 59}, {7, 3446}, {105, 5723}, {108, 17724}, {388, 37009}, {405, 19890}, {513, 1037}, {651, 16686}, {1086, 40576}, {1458, 20872}, {1471, 51627}, {1602, 1618}, {1995, 14513}, {2222, 2725}, {2720, 28838}, {3433, 43947}, {3476, 47043}, {5096, 7677}, {14733, 43079}, {14936, 51633}, {20468, 34253}, {37815, 42884}

X(51682) = circumcircle-inverse of X(241)
X(51682) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 40577, 38530}, {55, 56, 2283}, {1037, 1486, 6180}, {1381, 1382, 241}


X(51683) = X(1)X(21)∩X(2)X(10950)

Barycentrics    a*(3*a^3 - 2*a^2*b - 3*a*b^2 + 2*b^3 - 2*a^2*c + a*b*c - 3*b^2*c - 3*a*c^2 - 3*b*c^2 + 2*c^3) : :
X(51683) = 2*(2*r + R)*X[1] + (2*r + 3*R)*X[21]

X(51683) lies on these lines: {1, 21}, {2, 10950}, {3, 1389}, {5, 944}, {8, 7483}, {36, 33815}, {65, 5303}, {80, 1125}, {86, 17221}, {100, 2646}, {110, 40430}, {145, 18231}, {149, 10543}, {214, 17531}, {355, 38183}, {388, 1388}, {404, 30147}, {442, 6224}, {515, 7548}, {551, 5443}, {950, 10707}, {1001, 40269}, {1006, 46920}, {1320, 3746}, {1385, 5253}, {1482, 7508}, {2099, 4189}, {3295, 19525}, {3306, 30389}, {3486, 11680}, {3487, 11113}, {3601, 14923}, {3636, 11813}, {3649, 20067}, {3754, 13587}, {3812, 4881}, {3871, 37571}, {3918, 15015}, {3957, 11260}, {4004, 17502}, {4297, 20292}, {4313, 34611}, {4323, 44447}, {4511, 5044}, {4861, 24929}, {5047, 30144}, {5080, 37737}, {5086, 24541}, {5176, 13411}, {5289, 16865}, {5428, 35457}, {5438, 13384}, {5603, 7491}, {5691, 10129}, {5731, 37468}, {5777, 6265}, {5784, 30284}, {5901, 38039}, {5903, 17549}, {6049, 37358}, {6690, 37734}, {6852, 7967}, {6912, 40257}, {6940, 26287}, {6965, 10805}, {7419, 23846}, {7489, 37624}, {7987, 9352}, {8572, 9335}, {9964, 12675}, {10039, 12531}, {10197, 37707}, {10584, 46934}, {10698, 33281}, {10954, 11681}, {11035, 25405}, {11263, 36975}, {12671, 18444}, {17541, 30140}, {17548, 37567}, {18481, 49107}, {20323, 29817}, {20846, 26437}, {21740, 40263}, {21842, 30143}, {27003, 37605}, {31649, 48667}, {32633, 50193}, {33108, 47516}, {34339, 38693}, {34773, 37230}, {37080, 38460}, {37291, 40663}

X(51683) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2975, 34195}, {1, 3897, 2975}, {1, 5248, 5330}, {1, 5426, 3884}, {80, 1125, 7504}, {3622, 5046, 15950}, {3754, 37616, 13587}, {7483, 37728, 8}, {30147, 37525, 404}


X(51684) = (name pending)

Barycentrics    6 a+Sqrt(6) Sqrt(a^2+b^2+c^2) : :
X(51684) = Sqrt(2) (a + b + c) X[1] + Sqrt(3) Sqrt(a^2 + b^2 + c^2) X[2]

See Angel Montesdeoca, euclid 5486.

X(51684) lies on this line: {1, 2}


X(51685) = X(3624)X(4657)∩X(3966)X(4034)

Barycentrics    (a-b-c)/(a^2+2 a b-b^2+2 a c-b c-c^2) : :

See Angel Montesdeoca, euclid 5486.

X(51685) lies on these lines: {3624,4657}, {3966,4034}


X(51686) = X(1)X(25)∩X(28)X(86)

Barycentrics    a^2/((-a^2+b^2+c^2) (a^2+b^2+2 b c+c^2)) : :

See Angel Montesdeoca, euclid 5486.

X(51686) lies on these lines: {1,25}, {3,2339}, {4,1220}, {6,1245}, {19,34261}, {28,86}, {34,7337}, {56,1395}, {58,1473}, {72,12410}, {87,1044}, {106,32691}, {198,2336}, {269,1398}, {427,19784}, {468,19836}, {573,2983}, {870,37101}, {939,20991}, {977,1870}, {996,4186}, {998,1828}, {1203,19118}, {1222,4222}, {1310,15344}, {1474,16502}, {1593,2297}, {1707,39946}, {1851,8747}, {1974,16466}, {2215,2281}, {2334,2356}, {4185,12609}, {5331,34260}, {7085,8193}, {14017,40436}, {16483,44091}, {19881,37453}, {23383,34430}, {24320,30479}, {26927,42467}, {36099,37129}, {37034,37613}


X(51687) = MIDPOINT OF X(1) AND X(19)

Barycentrics    a*(a^5 - a*b^4 + a^2*b^2*c - b^4*c + a^2*b*c^2 + 2*a*b^2*c^2 + b^3*c^2 + b^2*c^3 - a*c^4 - b*c^4) : :
X(51687) = X[40] - 3 X[21160], 3 X[3576] - X[30265], 5 X[3616] - X[4329], 7 X[3622] + X[20061], 7 X[3624] - 5 X[31261], 3 X[16475] - X[51210], 3 X[25055] - X[31158]

X(51687) lies on these lines: {1, 19}, {2, 5285}, {3, 142}, {7, 3220}, {9, 4223}, {10, 7535}, {21, 10436}, {22, 5249}, {23, 31019}, {25, 226}, {30, 25365}, {31, 57}, {35, 37264}, {40, 21160}, {55, 11347}, {56, 2218}, {63, 4228}, {65, 2175}, {73, 40983}, {92, 107}, {154, 37543}, {197, 13405}, {198, 954}, {206, 942}, {212, 1730}, {238, 579}, {355, 7562}, {390, 24604}, {404, 17282}, {405, 5750}, {443, 11677}, {497, 7490}, {515, 7497}, {527, 24320}, {534, 551}, {553, 1473}, {758, 34176}, {894, 17522}, {908, 1995}, {929, 2725}, {950, 4185}, {993, 8680}, {1012, 44356}, {1104, 5019}, {1203, 51223}, {1279, 5301}, {1376, 20106}, {1436, 42884}, {1439, 1456}, {1479, 14018}, {1503, 16608}, {1598, 6260}, {1621, 1817}, {1633, 4312}, {1691, 20271}, {1699, 4219}, {1738, 37576}, {1763, 5338}, {1836, 14667}, {2182, 5728}, {2214, 38315}, {2328, 24310}, {2355, 17441}, {2550, 40910}, {2876, 4260}, {2886, 6678}, {2975, 45738}, {3008, 36741}, {3211, 45728}, {3246, 37582}, {3306, 37449}, {3452, 5020}, {3487, 17562}, {3556, 3671}, {3576, 30265}, {3601, 4319}, {3616, 4329}, {3622, 20061}, {3624, 7523}, {3664, 36740}, {3755, 37580}, {3836, 16415}, {3883, 26241}, {3924, 7122}, {4031, 26866}, {4220, 25525}, {4222, 9612}, {4265, 4675}, {4292, 13730}, {4298, 22654}, {4304, 37241}, {4331, 37583}, {4357, 19310}, {4423, 21483}, {4667, 37492}, {5096, 17278}, {5219, 33849}, {5250, 37277}, {5257, 19309}, {5259, 13726}, {5263, 16054}, {5316, 11284}, {5347, 24789}, {5436, 37399}, {5437, 19649}, {5450, 43160}, {5480, 36949}, {5542, 22769}, {5603, 7501}, {5715, 7412}, {5745, 25514}, {6636, 27186}, {6692, 16434}, {7295, 50307}, {7419, 30035}, {7453, 30961}, {7549, 8227}, {8021, 16678}, {8185, 13407}, {8299, 16056}, {8301, 29671}, {8727, 23304}, {8728, 23305}, {9250, 9254}, {9257, 16592}, {9318, 46586}, {9579, 28029}, {9798, 21620}, {9856, 12262}, {11712, 37533}, {11719, 15746}, {12047, 14017}, {12053, 37245}, {12263, 46181}, {13411, 37034}, {13595, 31053}, {15569, 24929}, {15951, 51118}, {16048, 17353}, {16428, 45765}, {16475, 51210}, {17248, 19318}, {17560, 31424}, {17581, 19859}, {17718, 20989}, {17810, 34048}, {18446, 36009}, {19322, 50092}, {20258, 28383}, {20266, 26118}, {21258, 44882}, {22791, 44220}, {25055, 31158}, {25439, 50288}, {27339, 37103}, {27626, 28288}, {27802, 34937}, {28348, 30097}, {30267, 41869}, {31266, 35996}, {32942, 37092}, {37261, 41867}, {37538, 40940}, {51616, 51637}

X(51687) = midpoint of X(1) and X(19)
X(51687) = reflection of X(i) in X(j) for these {i,j}: {10, 40530}, {18589, 1125}
X(51687) = complement of X(50861)
X(51687) = crossdifference of every pair of points on line {656, 6586}
X(51687) = barycentric product X(i)*X(j) for these {i,j}: {1, 379}, {75, 44081}
X(51687) = barycentric quotient X(i)/X(j) for these {i,j}: {379, 75}, {44081, 1}
X(51687) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 37254, 3220}, {5880, 20872, 24309}, {7535, 37547, 10}, {8225, 31546, 946}, {25514, 37581, 5745}


X(51688) = REFLECTION OF X(1) IN X(15)

Barycentrics    a*(Sqrt[3]*(a + b + c)*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c - 2*a*b*c + b^2*c - a*c^2 + b*c^2 - c^3) - 2*(a^2 + 2*a*b - b^2 + 2*a*c - c^2)*S) : :
X(51688) = 3 X[1] - 4 X[11707], 3 X[15] - 2 X[11707], 3 X[165] - 2 X[14538], 3 X[3679] - 2 X[50853], 4 X[623] - 5 X[1698], 3 X[1699] - 4 X[7684], 3 X[3576] - 4 X[13350], 7 X[3624] - 8 X[6671], 3 X[5587] - 2 X[20428], 5 X[7987] - 6 X[21158], 2 X[11705] - 3 X[16962], 2 X[11708] - 3 X[39555], 3 X[19875] - 2 X[50855], 3 X[25055] - 4 X[45879], 3 X[25055] - 2 X[50854], 5 X[35242] - 4 X[36755], 3 X[38047] - 2 X[51161]

X(51688) lies on these lines: {1, 15}, {10, 621}, {30, 9901}, {40, 511}, {165, 14538}, {515, 36993}, {517, 5611}, {519, 51484}, {531, 3679}, {533, 12781}, {623, 1698}, {1277, 1757}, {1699, 7684}, {3576, 13350}, {3624, 6671}, {5587, 20428}, {5690, 22651}, {5691, 22652}, {7968, 10671}, {7969, 10667}, {7987, 21158}, {10789, 36759}, {11705, 16962}, {11708, 39555}, {19875, 50855}, {22851, 33960}, {25055, 45879}, {35242, 36755}, {38047, 51161}

X(51688) = reflection of X(i) in X(j) for these {i,j}: {1, 15}, {621, 10}, {50854, 45879}
X(51688) = {X(45879),X(50854)}-harmonic conjugate of X(25055)


X(51689) = REFLECTION OF X(15) IN X(1)

Barycentrics    a*(Sqrt[3]*(a + b + c)*(a^3 - 2*a^2*b - a*b^2 + 2*b^3 - 2*a^2*c + 4*a*b*c - 2*b^2*c - a*c^2 - 2*b*c^2 + 2*c^3) - 2*(a^2 - a*b + 2*b^2 - a*c + 2*c^2)*S) : :
X(51689) = 3 X[1] - 2 X[11707], 3 X[15] - 4 X[11707], 4 X[10] - 5 X[40334], X[50853] - 3 X[50854], 2 X[50853] - 3 X[50855], 4 X[946] - 3 X[41036], 4 X[1385] - 3 X[21158], 4 X[1386] - 3 X[36757], 5 X[3616] - 4 X[6671], 2 X[5184] - 3 X[39554], 4 X[11708] - 3 X[39554], 3 X[5603] - 2 X[7684], X[5611] - 3 X[10247], 3 X[7967] - X[36993], 2 X[9901] - 3 X[42973], 3 X[10246] - 2 X[13350], 4 X[11705] - 3 X[16267], 4 X[11725] - 3 X[22510], 3 X[22511] - 2 X[50254], 3 X[38314] - 2 X[45879]

X(51689) lies on these lines: {1, 15}, {8, 623}, {10, 40334}, {30, 7975}, {145, 621}, {511, 1482}, {515, 36992}, {517, 14538}, {518, 51206}, {519, 50853}, {531, 3241}, {944, 22912}, {946, 41036}, {952, 20428}, {1385, 21158}, {1386, 36757}, {3616, 6671}, {5184, 11708}, {5603, 7684}, {5611, 10247}, {5846, 51016}, {7967, 36993}, {9041, 51017}, {9053, 51161}, {9901, 42973}, {10246, 13350}, {10800, 36759}, {11705, 16267}, {11725, 22510}, {12702, 36755}, {22511, 50254}, {38314, 45879}

(51689) = midpoint of X(145) and X(621)
(51689) = reflection of X(i) in X(j) for these {i,j}: {8, 623}, {15, 1}, {5184, 11708}, {12702, 36755}, {50855, 50854}
(51689) = {X(5184),X(11708)}-harmonic conjugate of X(39554)


X(51690) = REFLECTION OF X(1) IN X(16)

Barycentrics    a*(Sqrt[3]*(a + b + c)*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c - 2*a*b*c + b^2*c - a*c^2 + b*c^2 - c^3) + 2*(a^2 + 2*a*b - b^2 + 2*a*c - c^2)*S) : :
X(51690) = 3 X[1] - 4 X[11708], 3 X[16] - 2 X[11708], 3 X[165] - 2 X[14539], 3 X[3679] - 2 X[50856], 4 X[624] - 5 X[1698], 3 X[1699] - 4 X[7685], 3 X[3576] - 4 X[13349], 7 X[3624] - 8 X[6672], 3 X[5587] - 2 X[20429], 5 X[7987] - 6 X[21159], 2 X[11706] - 3 X[16963], 2 X[11707] - 3 X[39554], 3 X[19875] - 2 X[50858], 3 X[25055] - 4 X[45880], 3 X[25055] - 2 X[50857], 5 X[35242] - 4 X[36756], 3 X[38047] - 2 X[51162]

X(51690) lies on these lines: {1, 16}, {10, 622}, {30, 9900}, {40, 511}, {165, 14539}, {515, 36995}, {517, 5615}, {519, 51485}, {530, 3679}, {532, 12780}, {624, 1698}, {1276, 1757}, {1699, 7685}, {3576, 13349}, {3624, 6672}, {5587, 20429}, {5690, 22652}, {5691, 22651}, {7968, 10672}, {7969, 10668}, {7987, 21159}, {10789, 36760}, {11706, 16963}, {11707, 39554}, {19875, 50858}, {22896, 33959}, {25055, 45880}, {35242, 36756}, {38047, 51162}

X(51690) = reflection of X(i) in X(j) for these {i,j}: {1, 16}, {622, 10}, {50857, 45880}
X(51690) = {X(45880),X(50857)}-harmonic conjugate of X(25055)


X(51691) = REFLECTION OF X(16) IN X(1)

Barycentrics    a*(Sqrt[3]*(a + b + c)*(a^3 - 2*a^2*b - a*b^2 + 2*b^3 - 2*a^2*c + 4*a*b*c - 2*b^2*c - a*c^2 - 2*b*c^2 + 2*c^3) + 2*(a^2 - a*b + 2*b^2 - a*c + 2*c^2)*S) : :
X(51691) = 3 X[1] - 2 X[11708], 3 X[16] - 4 X[11708], 4 X[10] - 5 X[40335], X[50856] - 3 X[50857], 2 X[50856] - 3 X[50858], 4 X[946] - 3 X[41037], 4 X[1385] - 3 X[21159], 4 X[1386] - 3 X[36758], 5 X[3616] - 4 X[6672], 2 X[5184] - 3 X[39555], 4 X[11707] - 3 X[39555], 3 X[5603] - 2 X[7685], X[5615] - 3 X[10247], 3 X[7967] - X[36995], 2 X[9900] - 3 X[42972], 3 X[10246] - 2 X[13349], 4 X[11706] - 3 X[16268], 4 X[11725] - 3 X[22511], 3 X[22510] - 2 X[50254], 3 X[38314] - 2 X[45880]

X(51691) lies on these lines: {1, 16}, {8, 624}, {10, 40335}, {30, 7974}, {145, 622}, {511, 1482}, {515, 36994}, {517, 14539}, {518, 51207}, {519, 50856}, {530, 3241}, {944, 22867}, {946, 41037}, {952, 20429}, {1385, 21159}, {1386, 36758}, {3616, 6672}, {5184, 11707}, {5603, 7685}, {5615, 10247}, {5846, 51018}, {7967, 36995}, {9041, 51019}, {9053, 51162}, {9900, 42972}, {10246, 13349}, {10800, 36760}, {11706, 16268}, {11725, 22511}, {12702, 36756}, {22510, 50254}, {38314, 45880}

X(51691) = midpoint of X(145) and X(622)
X(51691) = reflection of X(i) in X(j) for these {i,j}: {8, 624}, {16, 1}, {5184, 11707}, {12702, 36756}, {50858, 50857}
X(51691) = {X(5184),X(11707)}-harmonic conjugate of X(39555)


X(51692) = MIDPOINT OF X(1) AND X(22)

Barycentrics    a*(2*a^6 + a^5*b - a^4*b^2 - 2*a^2*b^4 - a*b^5 + b^6 + a^5*c - a*b^4*c - a^4*c^2 - b^4*c^2 - 2*a^2*c^4 - a*b*c^4 - b^2*c^4 - a*c^5 + c^6) : :
X(51692) = X[40] - 3 X[44837], X[378] - 3 X[3576], 5 X[3616] - X[7391], 7 X[3622] + X[20062], 7 X[3624] - 5 X[31236], X[3679] - 3 X[47596], 3 X[5603] + X[44831], 3 X[5731] + X[44440], X[5882] + 2 X[16618], 3 X[5886] - X[31723], 2 X[7555] + X[10222], 3 X[10246] + X[12083], 3 X[11230] - 2 X[39504], 3 X[25055] - X[31133]

X(51692) lies on these lines: {1, 22}, {10, 6676}, {30, 551}, {40, 44837}, {378, 3576}, {427, 1125}, {515, 15760}, {516, 44239}, {517, 7502}, {518, 19127}, {519, 44210}, {952, 25337}, {1062, 39582}, {1319, 40961}, {1386, 9019}, {2781, 11720}, {2915, 9630}, {3616, 7391}, {3622, 20062}, {3624, 31236}, {3679, 47596}, {5603, 44831}, {5731, 44440}, {5847, 16789}, {5882, 16618}, {5886, 31723}, {7555, 10222}, {9626, 37932}, {9955, 44288}, {10246, 12083}, {11230, 39504}, {13624, 18570}, {18480, 46029}, {25055, 31133}, {28160, 44263}, {28194, 44261}, {28204, 44262}, {44218, 50828}, {44260, 44662}

X(51692) = midpoint of X(1) and X(22)
X(51692) = reflection of X(i) in X(j) for these {i,j}: {10, 6676}, {427, 1125}, {18480, 46029}, {18570, 13624}, {44218, 50828}, {44288, 9955}


X(51693) = MIDPOINT OF X(1) AND X(23)

Barycentrics    a*(2*a^6 + a^5*b - a^4*b^2 - 2*a^2*b^4 - a*b^5 + b^6 + a^5*c - a*b^4*c - a^4*c^2 + 4*a^2*b^2*c^2 + a*b^3*c^2 - b^4*c^2 + a*b^2*c^3 - 2*a^2*c^4 - a*b*c^4 - b^2*c^4 - a*c^5 + c^6) : :
X(51693) = X[8] - 5 X[37760], X[40] - 3 X[186], 3 X[165] - 5 X[37952], 3 X[403] - 2 X[19925], 3 X[7426] - X[47321], X[691] - 3 X[38221], X[1482] + 3 X[2070], 3 X[1699] - X[10296], 3 X[2071] - 5 X[7987], X[2948] - 3 X[35265], X[3241] + 3 X[37909], X[3244] + 4 X[37897], 2 X[37897] + X[47491], X[3416] - 3 X[47450], 3 X[3576] - X[7464], 5 X[3616] - X[5189], 7 X[3622] + X[20063], 7 X[3624] - 5 X[30745], X[3625] - 8 X[47316], 4 X[47316] - X[47492], 4 X[3636] + X[37900], X[3679] - 3 X[37907], 3 X[3817] - 2 X[10297], 4 X[5159] - 5 X[19862], X[5493] - 4 X[37934], 5 X[5818] - 9 X[37943], X[5882] + 2 X[16619], 3 X[5886] - X[7574], 3 X[5899] + 5 X[37624], 2 X[6684] - 3 X[44214], X[7982] + 5 X[37953], X[7991] - 7 X[37957], 2 X[9956] - 3 X[44282], 3 X[10165] - 2 X[15122], X[10222] + 2 X[12105], 3 X[10246] + X[37924], 3 X[10247] + 5 X[37923], X[10989] - 3 X[25055], X[11531] + 9 X[37940], 2 X[12512] - 3 X[44280], X[12702] - 5 X[37958], 2 X[15178] + X[37967], 3 X[15646] - 2 X[31663], 7 X[15808] - 2 X[46517], 7 X[16192] - 9 X[37941], 3 X[18374] - X[32278], and many others

X(51693) lies on these lines: {1, 23}, {8, 37760}, {10, 468}, {30, 551}, {40, 186}, {165, 37952}, {403, 19925}, {511, 11720}, {515, 11799}, {516, 10295}, {517, 7575}, {518, 32217}, {519, 7426}, {523, 1960}, {691, 38221}, {858, 1125}, {952, 25338}, {1319, 7286}, {1325, 37571}, {1386, 8705}, {1482, 2070}, {1503, 13605}, {1699, 10296}, {1902, 44281}, {2071, 7987}, {2646, 5160}, {2690, 29330}, {2948, 35265}, {3241, 37909}, {3244, 37897}, {3416, 47450}, {3576, 7464}, {3579, 18571}, {3616, 5189}, {3622, 20063}, {3624, 30745}, {3625, 47316}, {3636, 37900}, {3679, 37907}, {3817, 10297}, {4301, 47471}, {4669, 47496}, {5159, 19862}, {5446, 43822}, {5493, 37934}, {5818, 37943}, {5844, 44264}, {5846, 32218}, {5847, 32113}, {5882, 16619}, {5886, 7574}, {5899, 37624}, {6684, 44214}, {7469, 22836}, {7982, 37953}, {7991, 37957}, {8193, 37920}, {9798, 37973}, {9955, 18572}, {9956, 44282}, {10149, 20129}, {10165, 15122}, {10222, 12105}, {10246, 37924}, {10247, 37923}, {10989, 25055}, {11365, 37972}, {11531, 37940}, {11709, 14915}, {11735, 29012}, {12030, 29095}, {12112, 33535}, {12512, 44280}, {12702, 37958}, {13624, 37950}, {15178, 37967}, {15646, 31663}, {15808, 46517}, {16192, 37941}, {18323, 18483}, {18325, 18481}, {18374, 32278}, {18480, 44961}, {19883, 47097}, {21284, 49553}, {28160, 44267}, {28194, 44265}, {28204, 44266}, {30143, 37959}, {31673, 47336}, {31730, 47335}, {32220, 34379}, {33179, 37936}, {34638, 47031}, {34641, 47488}, {34648, 47332}, {37901, 38314}, {37904, 47472}, {37911, 51073}, {37981, 49542}, {38047, 47453}, {44569, 50919}, {47245, 50776}, {47246, 50772}, {47310, 50862}, {47311, 51109}, {47312, 47593}, {47313, 51103}, {47314, 51108}, {47333, 50808}, {47334, 50796}, {47477, 49505}, {47506, 49536}, {47540, 51096}, {47556, 50781}

X(51693) = midpoint of X(i) and X(j) for these {i,j}: {1, 23}, {10149, 51635}, {12112, 33535}, {16619, 47476}, {18325, 18481}, {37904, 47472}, {47245, 50776}, {47312, 47593}
X(51693) = reflection of X(i) in X(j) for these {i,j}: {10, 468}, {551, 47495}, {858, 1125}, {3244, 47491}, {3579, 18571}, {3625, 47492}, {4301, 47471}, {4669, 47496}, {5882, 47476}, {18323, 18483}, {18480, 44961}, {18572, 9955}, {31673, 47336}, {31730, 47335}, {34638, 47031}, {34641, 47488}, {34648, 47332}, {37950, 13624}, {49505, 47477}, {49536, 47506}, {50781, 47556}, {50796, 47334}, {50808, 47333}, {50862, 47310}, {50919, 44569}, {51071, 47472}, {51096, 47540}
X(51693) = crossdifference of every pair of points on line {4286, 46381}


X(51694) = MIDPOINT OF X(1) AND X(24)

Barycentrics    a*(2*a^9 - a^8*b - 4*a^7*b^2 + 2*a^6*b^3 + 4*a^3*b^6 - 2*a^2*b^7 - 2*a*b^8 + b^9 - a^8*c + 2*a^7*b*c - 2*a^5*b^3*c + 2*a^4*b^4*c - 2*a^3*b^5*c + 2*a*b^7*c - b^8*c - 4*a^7*c^2 + 8*a^5*b^2*c^2 - 4*a^4*b^3*c^2 - 6*a^3*b^4*c^2 + 6*a^2*b^5*c^2 + 2*a*b^6*c^2 - 2*b^7*c^2 + 2*a^6*c^3 - 2*a^5*b*c^3 - 4*a^4*b^2*c^3 + 8*a^3*b^3*c^3 - 4*a^2*b^4*c^3 - 2*a*b^5*c^3 + 2*b^6*c^3 + 2*a^4*b*c^4 - 6*a^3*b^2*c^4 - 4*a^2*b^3*c^4 - 2*a^3*b*c^5 + 6*a^2*b^2*c^5 - 2*a*b^3*c^5 + 4*a^3*c^6 + 2*a*b^2*c^6 + 2*b^3*c^6 - 2*a^2*c^7 + 2*a*b*c^7 - 2*b^2*c^7 - 2*a*c^8 - b*c^8 + c^9) : :
X(51694) = X[40] - 3 X[15078], 3 X[1699] - X[35490], 3 X[3576] - X[11413], 5 X[3616] - X[37444], 7 X[3622] + X[31304], 7 X[3624] - 5 X[31282], 3 X[5603] + X[35471], X[5882] + 2 X[21841], 3 X[5886] - X[18404], X[7517] + 3 X[10246], 3 X[10165] - 2 X[16196], 3 X[11230] - 2 X[49673], 2 X[15178] + X[37440], 3 X[25055] - X[31180], 5 X[37624] + 3 X[51519]

X(51694) lies on these lines: {1, 24}, {10, 16238}, {30, 551}, {40, 15078}, {235, 515}, {516, 44240}, {517, 37814}, {519, 44211}, {952, 44232}, {1125, 11585}, {1386, 12266}, {1699, 35490}, {3576, 11413}, {3579, 43615}, {3616, 37444}, {3622, 31304}, {3624, 31282}, {5603, 35471}, {5882, 21841}, {5886, 18404}, {7517, 10246}, {8758, 37812}, {10165, 16196}, {11230, 49673}, {11709, 12262}, {11720, 31732}, {15178, 37440}, {18480, 44235}, {18481, 31725}, {21842, 34036}, {24299, 51687}, {25055, 31180}, {28160, 44271}, {28194, 44268}, {28204, 44270}, {31673, 44226}, {31730, 44247}, {37624, 51519}

X(51694) = midpoint of X(i) and X(j) for these {i,j}: {1, 24}, {18481, 31725}
X(51694) = reflection of X(i) in X(j) for these {i,j}: {10, 16238}, {3579, 43615}, {11585, 1125}, {18480, 44235}, {31673, 44226}, {31730, 44247}


X(51695) = MIDPOINT OF X(1) AND X(25)

Barycentrics    a*(2*a^6 + a^5*b - a^4*b^2 - 2*a^2*b^4 - a*b^5 + b^6 + a^5*c - a*b^4*c - a^4*c^2 + 8*a^2*b^2*c^2 + 2*a*b^3*c^2 - b^4*c^2 + 2*a*b^2*c^3 - 2*a^2*c^4 - a*b*c^4 - b^2*c^4 - a*c^5 + c^6) : :
X(51695) = X[1370] - 5 X[3616], 3 X[1699] - X[44438], X[3241] + 3 X[26255], 3 X[3576] - X[21312], 7 X[3622] + X[7500], 7 X[3624] - 5 X[31255], X[3679] - 3 X[47597], 3 X[3817] - 2 X[44920], 3 X[5603] + X[18533], 3 X[5886] - X[18531], X[7530] + 2 X[15178], 5 X[8227] - 3 X[16072], X[10222] + 2 X[12106], 3 X[10246] + X[18534], X[10602] - 3 X[16475], 5 X[11522] + X[37196], 2 X[13464] + X[37458], 3 X[25055] - X[31152]

X(51695) lies on these lines: {1, 25}, {10, 6677}, {30, 551}, {515, 1596}, {516, 44241}, {517, 6644}, {518, 19136}, {519, 44212}, {952, 44233}, {1060, 1486}, {1125, 1368}, {1319, 34036}, {1370, 3616}, {1386, 2393}, {1479, 40985}, {1699, 44438}, {2646, 37241}, {2790, 11710}, {2834, 11716}, {3241, 26255}, {3576, 21312}, {3622, 7500}, {3624, 31255}, {3679, 47597}, {3817, 44920}, {5603, 18533}, {5847, 8263}, {5886, 18531}, {7530, 15178}, {8227, 16072}, {8758, 11334}, {10222, 12106}, {10246, 18534}, {10602, 16475}, {11522, 37196}, {11720, 14984}, {11721, 11722}, {11735, 36201}, {13464, 37458}, {15569, 24929}, {18480, 46030}, {25055, 31152}, {28160, 44276}, {28194, 44273}, {28204, 44275}, {31811, 44547}, {37613, 49553}, {37729, 40635}, {37951, 41722}

X(51695) = midpoint of X(1) and X(25)
X(51695) = reflection of X(i) in X(j) for these {i,j}: {10, 6677}, {1368, 1125}, {18480, 46030}


X(51696) = MIDPOINT OF X(1) AND X(26)

Barycentrics    a*(2*a^9 - a^8*b - 4*a^7*b^2 + 2*a^6*b^3 + 4*a^3*b^6 - 2*a^2*b^7 - 2*a*b^8 + b^9 - a^8*c + 2*a^7*b*c - 2*a^5*b^3*c + 2*a^4*b^4*c - 2*a^3*b^5*c + 2*a*b^7*c - b^8*c - 4*a^7*c^2 + 4*a^5*b^2*c^2 - 2*a^4*b^3*c^2 - 2*a^3*b^4*c^2 + 4*a^2*b^5*c^2 + 2*a*b^6*c^2 - 2*b^7*c^2 + 2*a^6*c^3 - 2*a^5*b*c^3 - 2*a^4*b^2*c^3 + 4*a^3*b^3*c^3 - 2*a^2*b^4*c^3 - 2*a*b^5*c^3 + 2*b^6*c^3 + 2*a^4*b*c^4 - 2*a^3*b^2*c^4 - 2*a^2*b^3*c^4 - 2*a^3*b*c^5 + 4*a^2*b^2*c^5 - 2*a*b^3*c^5 + 4*a^3*c^6 + 2*a*b^2*c^6 + 2*b^3*c^6 - 2*a^2*c^7 + 2*a*b*c^7 - 2*b^2*c^7 - 2*a*c^8 - b*c^8 + c^9) : :
X(51696) = X[40] - 3 X[18324], X[355] - 3 X[10201], X[1482] + 3 X[14070], X[1483] + 3 X[10154], 3 X[3576] - X[12084], 5 X[3616] - X[14790], 7 X[3622] + X[31305], 7 X[3624] - 5 X[31283], X[5690] - 3 X[34351], 3 X[5886] - X[18569], 2 X[6684] - 3 X[34477], X[7387] + 3 X[10246], 3 X[9909] + 5 X[37624], 4 X[10125] - 3 X[11231], 3 X[10165] - 2 X[23336], X[10222] + 2 X[12107], 2 X[10224] - 3 X[11230], 2 X[10226] - 3 X[17502], 3 X[10247] + 5 X[16195], 2 X[15178] + X[17714], X[23335] - 3 X[38028], 3 X[25055] - X[31181]

X(51696) lies on these lines: {1, 26}, {5, 11363}, {10, 10020}, {30, 551}, {40, 18324}, {156, 912}, {355, 10201}, {515, 15761}, {516, 44242}, {517, 1658}, {518, 19154}, {519, 44213}, {952, 13383}, {1125, 13371}, {1319, 32047}, {1482, 14070}, {1483, 10154}, {1829, 37440}, {1902, 18570}, {2070, 41722}, {2646, 8144}, {3576, 12084}, {3579, 15331}, {3616, 14790}, {3622, 31305}, {3624, 31283}, {5663, 40658}, {5690, 34351}, {5844, 44277}, {5886, 18569}, {6684, 34477}, {7387, 10246}, {7525, 37613}, {7542, 12135}, {7968, 11265}, {7969, 11266}, {8141, 37080}, {9645, 34471}, {9714, 11396}, {9909, 37624}, {9955, 18377}, {10125, 11231}, {10165, 23336}, {10222, 12107}, {10224, 11230}, {10226, 17502}, {10247, 16195}, {11250, 13624}, {11720, 31738}, {13406, 18480}, {15178, 17714}, {15330, 50821}, {23335, 38028}, {25055, 31181}, {28160, 44279}, {28194, 48368}, {28204, 44278}, {28454, 33596}, {32046, 44547}

X(51696) = midpoint of X(1) and X(26)
X(51696) = reflection of X(i) in X(j) for these {i,j}: {10, 10020}, {3579, 15331}, {11250, 13624}, {13371, 1125}, {18377, 9955}, {18480, 13406}, {50821, 15330}
X(51696) = {X(11363),X(24301)}-harmonic conjugate of X(5)


X(51697) = MIDPOINT OF X(1) AND X(27)

Barycentrics    2*a^7 + a^6*b + 2*a^4*b^3 - 2*a^3*b^4 - 3*a^2*b^5 + a^6*c + 2*a^5*b*c + 3*a^4*b^2*c + 2*a^3*b^3*c - 3*a^2*b^4*c - 4*a*b^5*c - b^6*c + 3*a^4*b*c^2 + 8*a^3*b^2*c^2 + 6*a^2*b^3*c^2 - b^5*c^2 + 2*a^4*c^3 + 2*a^3*b*c^3 + 6*a^2*b^2*c^3 + 8*a*b^3*c^3 + 2*b^4*c^3 - 2*a^3*c^4 - 3*a^2*b*c^4 + 2*b^3*c^4 - 3*a^2*c^5 - 4*a*b*c^5 - b^2*c^5 - b*c^6 : :
X(51697) = X[40] - 3 X[21162], X[3151] - 5 X[3616], 3 X[3576] - X[30266], 7 X[3622] + X[31292], 7 X[3624] - 5 X[31256], 3 X[25055] - X[31153]

X(51697) lies on these lines: {1, 27}, {10, 6678}, {30, 551}, {40, 21162}, {440, 1125}, {515, 15762}, {516, 44243}, {993, 8680}, {997, 36019}, {1012, 43160}, {1455, 4298}, {1762, 42055}, {2822, 11714}, {2939, 31903}, {3151, 3616}, {3576, 30266}, {3622, 31292}, {3624, 31256}, {3874, 49683}, {11365, 20834}, {12263, 46182}, {16418, 25363}, {18673, 31900}, {25055, 31153}, {26128, 37098}, {28194, 48369}

X(51697) = midpoint of X(1) and X(27)
X(51697) = reflection of X(i) in X(j) for these {i,j}: {10, 6678}, {440, 1125}


X(51698) = MIDPOINT OF X(1) AND X(28)

Barycentrics    a*(2*a^6 + a^5*b - a^4*b^2 - 2*a^2*b^4 - a*b^5 + b^6 + a^5*c + a^3*b^2*c + a^2*b^3*c - 2*a*b^4*c - b^5*c - a^4*c^2 + a^3*b*c^2 + 6*a^2*b^2*c^2 + 3*a*b^3*c^2 - b^4*c^2 + a^2*b*c^3 + 3*a*b^2*c^3 + 2*b^3*c^3 - 2*a^2*c^4 - 2*a*b*c^4 - b^2*c^4 - a*c^5 - b*c^5 + c^6) : :
X(51698) = 3 X[3576] - X[30267], 7 X[3622] + X[31293], 7 X[3624] - 5 X[31257], 3 X[25055] - X[31154]

X(51698) lies on these lines: {1, 19}, {30, 551}, {110, 39772}, {226, 11363}, {515, 15763}, {517, 44220}, {692, 12432}, {758, 44253}, {950, 40985}, {999, 11365}, {1015, 1104}, {1125, 21530}, {1420, 4320}, {1437, 10122}, {1486, 4347}, {2646, 40960}, {2817, 45176}, {2828, 11715}, {2838, 11716}, {3145, 18593}, {3576, 30267}, {3622, 31293}, {3624, 31257}, {3874, 42463}, {5884, 6759}, {10158, 17581}, {12564, 20986}, {23171, 23383}, {25055, 31154}, {26702, 40431}, {28194, 48370}

X(51698) = midpoint of X(1) and X(28)
X(51698) = reflection of X(21530) in X(1125)


X(51699) = MIDPOINT OF X(1) AND X(29)

Barycentrics    2*a^7 + a^6*b - 2*a^5*b^2 - 2*a^4*b^3 - 2*a^3*b^4 + a^2*b^5 + 2*a*b^6 + a^6*c - 2*a^5*b*c - a^4*b^2*c - a^2*b^4*c + 2*a*b^5*c + b^6*c - 2*a^5*c^2 - a^4*b*c^2 + 4*a^3*b^2*c^2 - 2*a*b^4*c^2 + b^5*c^2 - 2*a^4*c^3 - 4*a*b^3*c^3 - 2*b^4*c^3 - 2*a^3*c^4 - a^2*b*c^4 - 2*a*b^2*c^4 - 2*b^3*c^4 + a^2*c^5 + 2*a*b*c^5 + b^2*c^5 + 2*a*c^6 + b*c^6 : :
X(51699) = X[3152] - 5 X[3616], 3 X[3576] - X[30268], 7 X[3622] + X[31294], 7 X[3624] - 5 X[31258], 3 X[25055] - X[31155]

X(51699) lies on these lines: {1, 29}, {30, 551}, {515, 44225}, {516, 44244}, {1125, 18641}, {1621, 15777}, {2605, 42455}, {2654, 38983}, {2816, 11713}, {3152, 3616}, {3468, 14004}, {3576, 30268}, {3622, 31294}, {3624, 31258}, {5136, 45131}, {5625, 7100}, {6198, 35109}, {11365, 20836}, {15171, 17043}, {25055, 31155}, {44290, 44661}

X(51699) = midpoint of X(1) and X(29)
X(51699) = reflection of X(18641) in X(1125)


X(51700) = MIDPOINT OF X(1) AND X(140)

Barycentrics    6*a^4 - 4*a^3*b - 7*a^2*b^2 + 4*a*b^3 + b^4 - 4*a^3*c + 8*a^2*b*c - 4*a*b^2*c - 7*a^2*c^2 - 4*a*b*c^2 - 2*b^2*c^2 + 4*a*c^3 + c^4 : :
X(51700) = 3 X[1] + X[5690], 5 X[1] + 3 X[26446], 9 X[1] + 7 X[31423], X[1] + 3 X[38028], 3 X[140] - X[5690], 5 X[140] - 3 X[26446], 9 X[140] - 7 X[31423], X[140] - 3 X[38028], 5 X[5690] - 9 X[26446], 3 X[5690] - 7 X[31423], X[5690] - 9 X[38028], 27 X[26446] - 35 X[31423], X[26446] - 5 X[38028], 7 X[31423] - 27 X[38028], 3 X[2] + X[1483], 9 X[2] - X[12645], 7 X[2] + X[34748], 3 X[2] + 5 X[37624], 7 X[2] - 3 X[38081], 3 X[1483] + X[12645], 7 X[1483] - 3 X[34748], X[1483] - 5 X[37624], 7 X[1483] + 9 X[38081], 7 X[12645] + 9 X[34748], X[12645] + 15 X[37624], 7 X[12645] - 27 X[38081], 3 X[34748] - 35 X[37624], X[34748] + 3 X[38081], 35 X[37624] + 9 X[38081], X[3] + 7 X[3622], X[3] + 3 X[10283], 3 X[3] + 5 X[10595], 9 X[3] - X[20070], 7 X[3622] - 3 X[10283], 21 X[3622] - 5 X[10595], 63 X[3622] + X[20070], 9 X[10283] - 5 X[10595], 27 X[10283] + X[20070], 15 X[10595] + X[20070], 3 X[5] + X[944], X[5] - 5 X[3616], X[5] + 3 X[10246], 5 X[5] - X[18525], X[944] + 15 X[3616], X[944] - 9 X[10246], 5 X[944] + 3 X[18525], 5 X[3616] + 3 X[10246], and many others

X(51700) lies on these lines: {1, 140}, {2, 1483}, {3, 3622}, {5, 944}, {8, 632}, {10, 16239}, {11, 24926}, {30, 551}, {40, 3653}, {56, 7508}, {104, 31649}, {145, 3526}, {355, 547}, {376, 50832}, {390, 38111}, {392, 24475}, {442, 1484}, {495, 1388}, {496, 34471}, {499, 37728}, {500, 32486}, {515, 3850}, {516, 44245}, {517, 3530}, {519, 10124}, {542, 51154}, {546, 5691}, {548, 3576}, {549, 1482}, {550, 5603}, {631, 10247}, {758, 44254}, {952, 1125}, {962, 8703}, {1001, 5843}, {1159, 5265}, {1201, 50418}, {1317, 34126}, {1319, 13407}, {1386, 34380}, {1387, 2646}, {1420, 6147}, {1621, 37535}, {1656, 7967}, {3090, 18526}, {3241, 11539}, {3242, 38110}, {3243, 38113}, {3244, 11231}, {3523, 8148}, {3525, 3623}, {3533, 3621}, {3617, 46219}, {3624, 37727}, {3627, 5731}, {3635, 45760}, {3655, 5066}, {3656, 7987}, {3679, 47598}, {3746, 33814}, {3817, 3856}, {3828, 41984}, {3853, 9624}, {3861, 9955}, {3884, 5885}, {3898, 35004}, {4301, 17502}, {4323, 37545}, {5045, 31838}, {5049, 31837}, {5054, 12245}, {5126, 24470}, {5253, 37621}, {5330, 37298}, {5426, 12409}, {5427, 5563}, {5428, 22765}, {5550, 5790}, {5587, 12812}, {5657, 14869}, {5719, 24928}, {5734, 44682}, {5818, 15699}, {5882, 11230}, {6265, 10021}, {6361, 46853}, {6684, 11812}, {6713, 33281}, {6863, 10586}, {6883, 7373}, {6914, 16203}, {6920, 12773}, {6924, 16202}, {6958, 10587}, {7294, 41684}, {7583, 35762}, {7584, 35763}, {7989, 47478}, {8728, 32214}, {8981, 44636}, {9626, 12105}, {9957, 12736}, {10039, 12735}, {10109, 28204}, {10164, 11278}, {10165, 10222}, {10179, 34339}, {10248, 35404}, {10386, 37606}, {10543, 16173}, {10950, 15079}, {11108, 24558}, {11365, 17714}, {11373, 13384}, {11531, 41983}, {11540, 51071}, {11545, 37734}, {11707, 11740}, {11708, 11739}, {11729, 24927}, {11735, 32423}, {11737, 19925}, {12101, 38021}, {12102, 28160}, {12103, 12699}, {12255, 13743}, {12266, 50708}, {12331, 17531}, {12433, 44675}, {12512, 13464}, {12515, 35010}, {12571, 28208}, {12702, 15712}, {12747, 32558}, {12811, 18480}, {13373, 14988}, {13411, 25405}, {13902, 19117}, {13959, 19116}, {13966, 44635}, {14891, 31663}, {14893, 50811}, {14986, 15935}, {15026, 16980}, {15170, 37571}, {15171, 37525}, {15174, 37722}, {15687, 50867}, {15690, 31162}, {15691, 50820}, {15694, 50823}, {15700, 50872}, {15701, 34631}, {15702, 50805}, {15703, 50818}, {15711, 34632}, {15713, 34718}, {15721, 50826}, {15759, 28194}, {15854, 26728}, {15950, 18990}, {16617, 21740}, {16826, 19512}, {17527, 32213}, {18483, 28190}, {19861, 50205}, {19883, 47745}, {19907, 38032}, {21214, 37698}, {23841, 32205}, {24299, 37281}, {25524, 32141}, {28178, 31662}, {28198, 50816}, {30308, 41987}, {31650, 34195}, {31657, 38316}, {31666, 31730}, {32789, 35842}, {32790, 35843}, {34753, 50194}, {35255, 35642}, {35256, 35641}, {37618, 39542}, {37935, 41722}, {38068, 51104}, {38165, 47355}, {38176, 51073}, {38315, 48876}, {41988, 50862}, {43822, 50476}, {44234, 47321}, {44580, 51106}, {46933, 51515}

X(51700) = midpoint of X(i) and X(j) for these {i,j}: {1, 140}, {546, 34773}, {547, 50824}, {548, 22791}, {1125, 15178}, {1385, 5901}, {3655, 5066}, {3656, 34200}, {3853, 18481}, {3884, 5885}, {4297, 40273}, {5045, 31838}, {5882, 18357}, {6684, 33179}, {9956, 13607}, {12103, 12699}, {12104, 16137}, {13464, 13624}, {14893, 50811}, {15690, 31162}
X(51700) = reflection of X(i) in X(j) for these {i,j}: {10, 16239}, {3628, 1125}, {3861, 9955}, {14891, 50828}, {18357, 35018}, {18480, 12811}, {23841, 32205}, {33923, 13624}, {50862, 41988}
X(51700) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 38028, 140}, {2, 34748, 38081}, {2, 37624, 1483}, {3, 3622, 10283}, {145, 3526, 38112}, {551, 1385, 5901}, {1125, 13607, 9956}, {1387, 2646, 15172}, {1656, 7967, 37705}, {3090, 18526, 38138}, {3576, 22791, 548}, {3616, 10246, 5}, {3624, 37727, 38042}, {3624, 38042, 48154}, {3655, 38022, 5066}, {3655, 51110, 38022}, {5731, 18493, 3627}, {5882, 11230, 18357}, {5882, 15808, 11230}, {5886, 34773, 546}, {6684, 51103, 33179}, {7967, 46934, 1656}, {9624, 18481, 38034}, {9624, 30392, 18481}, {9956, 15178, 13607}, {11230, 18357, 35018}, {15950, 21842, 18990}, {18481, 38034, 3853}, {25055, 50824, 547}


X(51701) = MIDPOINT OF X(1) AND X(186)

Barycentrics    a*(2*a^9 - a^8*b - 4*a^7*b^2 + 2*a^6*b^3 + 4*a^3*b^6 - 2*a^2*b^7 - 2*a*b^8 + b^9 - a^8*c + 2*a^7*b*c - 2*a^5*b^3*c + 2*a^4*b^4*c - 2*a^3*b^5*c + 2*a*b^7*c - b^8*c - 4*a^7*c^2 + 8*a^5*b^2*c^2 - 3*a^4*b^3*c^2 - 5*a^3*b^4*c^2 + 5*a^2*b^5*c^2 + a*b^6*c^2 - 2*b^7*c^2 + 2*a^6*c^3 - 2*a^5*b*c^3 - 3*a^4*b^2*c^3 + 6*a^3*b^3*c^3 - 3*a^2*b^4*c^3 - 2*a*b^5*c^3 + 2*b^6*c^3 + 2*a^4*b*c^4 - 5*a^3*b^2*c^4 - 3*a^2*b^3*c^4 + 2*a*b^4*c^4 - 2*a^3*b*c^5 + 5*a^2*b^2*c^5 - 2*a*b^3*c^5 + 4*a^3*c^6 + a*b^2*c^6 + 2*b^3*c^6 - 2*a^2*c^7 + 2*a*b*c^7 - 2*b^2*c^7 - 2*a*c^8 - b*c^8 + c^9) : :
X(51701) = X[10] + 2 X[47476], X[40] - 3 X[37941], 2 X[468] + X[5882], X[944] + 3 X[37943], X[1482] + 3 X[37955], X[1483] + 3 X[16532], X[2070] + 3 X[10246], X[2071] - 3 X[3576], X[3153] - 5 X[3616], X[3244] + 4 X[16531], 3 X[3817] - 2 X[23323], X[4301] + 2 X[47335], 3 X[5603] + X[13619], 3 X[5886] - X[18403], X[7464] - 7 X[30389], X[7575] + 2 X[15178], X[7982] + 5 X[37952], 5 X[7987] - 3 X[37948], 7 X[9624] - X[10296], X[31673] + 2 X[47469], 3 X[10165] - 2 X[10257], 3 X[10175] - 4 X[44911], X[10222] + 2 X[18571], X[10295] + 2 X[13464], 5 X[10595] + 3 X[35489], X[11362] + 2 X[47491], 2 X[13607] + X[47321], 2 X[18579] + X[51071], 9 X[30392] + X[37925], 5 X[31399] - 8 X[37911], X[31730] + 2 X[47471], 5 X[37624] + 3 X[37922], X[37938] - 3 X[38028], X[44265] + 2 X[51103], 2 X[47569] + X[49684]

X(51701) lies on these lines: {1, 186}, {10, 44452}, {30, 551}, {40, 37941}, {389, 43822}, {403, 515}, {468, 5882}, {516, 44246}, {517, 15646}, {519, 44214}, {944, 37943}, {952, 44234}, {1125, 2072}, {1319, 47115}, {1482, 37955}, {1483, 16532}, {2070, 10246}, {2071, 3576}, {2646, 10149}, {3153, 3616}, {3244, 16531}, {3579, 37968}, {3817, 23323}, {4301, 47335}, {5603, 13619}, {5886, 18403}, {5899, 11365}, {6000, 11709}, {7464, 30389}, {7575, 15178}, {7982, 37952}, {7987, 37948}, {9624, 10296}, {10151, 11363}, {10165, 10257}, {10175, 44911}, {10222, 18571}, {10295, 13464}, {10595, 35489}, {11362, 47491}, {11563, 34773}, {11720, 13754}, {11735, 18400}, {12261, 30522}, {13607, 47321}, {13624, 34152}, {15350, 18357}, {18480, 46031}, {18481, 31726}, {18579, 51071}, {28160, 44283}, {28194, 44280}, {28204, 44282}, {30392, 37925}, {31399, 37911}, {31730, 47471}, {37624, 37922}, {37938, 38028}, {44265, 51103}, {44272, 44662}, {47569, 49684}

X(51701) = midpoint of X(i) and X(j) for these {i,j}: {1, 186}, {10151, 47469}, {11563, 34773}, {18481, 31726}, {44452, 47476}
X(51701) = reflection of X(i) in X(j) for these {i,j}: {10, 44452}, {2072, 1125}, {3579, 37968}, {18357, 15350}, {18480, 46031}, {31673, 10151}, {34152, 13624}


X(51702) = MIDPOINT OF X(1) AND X(235)

Barycentrics    2*a^10 - 2*a^9*b - 5*a^8*b^2 + 4*a^7*b^3 + 2*a^6*b^4 + 4*a^4*b^6 - 4*a^3*b^7 - 4*a^2*b^8 + 2*a*b^9 + b^10 - 2*a^9*c + 4*a^8*b*c - 4*a^6*b^3*c + 4*a^5*b^4*c - 4*a^4*b^5*c + 4*a^2*b^7*c - 2*a*b^8*c - 5*a^8*c^2 + 8*a^6*b^2*c^2 - 8*a^5*b^3*c^2 - 8*a^4*b^4*c^2 + 12*a^3*b^5*c^2 + 8*a^2*b^6*c^2 - 4*a*b^7*c^2 - 3*b^8*c^2 + 4*a^7*c^3 - 4*a^6*b*c^3 - 8*a^5*b^2*c^3 + 16*a^4*b^3*c^3 - 8*a^3*b^4*c^3 - 4*a^2*b^5*c^3 + 4*a*b^6*c^3 + 2*a^6*c^4 + 4*a^5*b*c^4 - 8*a^4*b^2*c^4 - 8*a^3*b^3*c^4 - 8*a^2*b^4*c^4 + 2*b^6*c^4 - 4*a^4*b*c^5 + 12*a^3*b^2*c^5 - 4*a^2*b^3*c^5 + 4*a^4*c^6 + 8*a^2*b^2*c^6 + 4*a*b^3*c^6 + 2*b^4*c^6 - 4*a^3*c^7 + 4*a^2*b*c^7 - 4*a*b^2*c^7 - 4*a^2*c^8 - 2*a*b*c^8 - 3*b^2*c^8 + 2*a*c^9 + c^10 : :
X(51702) = X[24] + 3 X[5603], X[962] + 3 X[15078], 5 X[3616] - X[11413], 3 X[5886] - X[11585], 3 X[10246] + X[31725], 2 X[13464] + X[21841], X[18404] - 5 X[18493]

X(51702) lies on these lines: {1, 235}, {24, 5603}, {30, 551}, {515, 44226}, {516, 44247}, {517, 16238}, {952, 44235}, {962, 15078}, {1125, 16196}, {3616, 11413}, {3656, 44211}, {5886, 11585}, {10246, 31725}, {12699, 44240}, {13464, 21841}, {18404, 18493}, {22791, 37814}, {28174, 43615}, {31162, 44268}, {34773, 44271}

X(51702) = midpoint of X(i) and X(j) for these {i,j}: {1, 235}, {3656, 44211}, {12699, 44240}, {22791, 37814}, {31162, 44268}, {34773, 44271}
X(51702) = reflection of X(16196) in X(1125)


X(51703) = MIDPOINT OF X(1) AND X(237)

Barycentrics    a*(2*a^6*b^2 + a^5*b^3 - 3*a^4*b^4 - a^3*b^5 + a^2*b^6 + a^5*b^2*c - a^3*b^4*c + 2*a^6*c^2 + a^5*b*c^2 + b^6*c^2 + a^5*c^3 - 3*a^4*c^4 - a^3*b*c^4 - 2*b^4*c^4 - a^3*c^5 + a^2*c^6 + b^2*c^6) : :
X(51703) = 3 X[3576] - X[47620], 5 X[3616] - X[14957], 7 X[3622] + X[46518]

X(51703) lies on these lines: {1, 237}, {30, 551}, {460, 11363}, {512, 48064}, {515, 44227}, {517, 44221}, {519, 44215}, {1125, 21531}, {3576, 47620}, {3616, 14957}, {3622, 46518}

X(51703) = midpoint of X(1) and X(237)
X(51703) = reflection of X(21531) in X(1125)


X(51704) = MIDPOINT OF X(1) AND X(297)

Barycentrics    2*a^9 - a^7*b^2 + a^6*b^3 - a^5*b^4 - a^4*b^5 - 3*a^3*b^6 - a^2*b^7 + 3*a*b^8 + b^9 + a^6*b^2*c - a^4*b^4*c - a^2*b^6*c + b^8*c - a^7*c^2 + a^6*b*c^2 + 2*a^5*b^2*c^2 + 3*a^3*b^4*c^2 + a^2*b^5*c^2 - 4*a*b^6*c^2 - 2*b^7*c^2 + a^6*c^3 + a^2*b^4*c^3 - 2*b^6*c^3 - a^5*c^4 - a^4*b*c^4 + 3*a^3*b^2*c^4 + a^2*b^3*c^4 + 2*a*b^4*c^4 + 2*b^5*c^4 - a^4*c^5 + a^2*b^2*c^5 + 2*b^4*c^5 - 3*a^3*c^6 - a^2*b*c^6 - 4*a*b^2*c^6 - 2*b^3*c^6 - a^2*c^7 - 2*b^2*c^7 + 3*a*c^8 + b*c^8 + c^9 : :
X(51704) = X[401] - 5 X[3616], X[3241] + 3 X[44579], 3 X[3576] - X[44252], 7 X[3622] + X[40853], X[3679] - 3 X[44576], 3 X[5603] + X[35474], 3 X[5886] - X[44231], 5 X[19862] - 4 X[44335], 3 X[19883] - 2 X[44346], 3 X[25055] - X[40884], 3 X[38314] + X[40885]

X(51704) lies on these lines: {1, 297}, {10, 44334}, {30, 551}, {401, 3616}, {441, 1125}, {515, 44228}, {516, 44248}, {519, 44216}, {525, 676}, {3241, 44579}, {3576, 44252}, {3622, 40853}, {3679, 44576}, {5603, 35474}, {5886, 44231}, {6660, 11365}, {19862, 44335}, {19883, 44346}, {25055, 40884}, {38314, 40885}, {49768, 51616}

X(51704) = midpoint of X(1) and X(297)
X(51704) = reflection of X(i) in X(j) for these {i,j}: {10, 44334}, {441, 1125}


X(51705) = MIDPOINT OF X(1) AND X(376)

Barycentrics    8*a^4 - 3*a^3*b - 7*a^2*b^2 + 3*a*b^3 - b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c - 7*a^2*c^2 - 3*a*b*c^2 + 2*b^2*c^2 + 3*a*c^3 - c^4 : :
X(51705) = 5 X[1] + X[6361], 2 X[1] + X[31730], 5 X[376] - X[6361], 2 X[6361] - 5 X[31730], X[2] - 3 X[3576], 5 X[2] - 3 X[5587], X[2] + 3 X[5731], 2 X[2] - 3 X[10165], 7 X[2] - 6 X[10172], 4 X[2] - 3 X[10175], 5 X[2] - X[50864], 5 X[3576] - X[5587], 7 X[3576] - 2 X[10172], 4 X[3576] - X[10175], 6 X[3576] - X[50796], 3 X[3576] + X[50811], 3 X[3576] - 2 X[50828], 15 X[3576] - X[50864], X[5587] + 5 X[5731], 2 X[5587] - 5 X[10165], 7 X[5587] - 10 X[10172], 4 X[5587] - 5 X[10175], 6 X[5587] - 5 X[50796], 3 X[5587] + 5 X[50811], 3 X[5587] - 10 X[50828], 3 X[5587] - X[50864], 2 X[5731] + X[10165], 7 X[5731] + 2 X[10172], 4 X[5731] + X[10175], 6 X[5731] + X[50796], 3 X[5731] - X[50811], 3 X[5731] + 2 X[50828], 15 X[5731] + X[50864], 7 X[10165] - 4 X[10172], 3 X[10165] - X[50796], 3 X[10165] + 2 X[50811], 3 X[10165] - 4 X[50828], 15 X[10165] - 2 X[50864], 8 X[10172] - 7 X[10175], 12 X[10172] - 7 X[50796], 6 X[10172] + 7 X[50811], 3 X[10172] - 7 X[50828], 30 X[10172] - 7 X[50864], 3 X[10175] - 2 X[50796], 3 X[10175] + 4 X[50811], 3 X[10175] - 8 X[50828], and many others

X(51705) lies on these lines: {1, 376}, {2, 515}, {3, 519}, {4, 25055}, {5, 19883}, {8, 15692}, {10, 549}, {20, 13464}, {30, 551}, {40, 3241}, {57, 14563}, {84, 50742}, {104, 15931}, {140, 31399}, {142, 13151}, {145, 35242}, {165, 7967}, {214, 3452}, {226, 21578}, {355, 3828}, {381, 1125}, {392, 17525}, {500, 50604}, {511, 51005}, {516, 3534}, {517, 3892}, {524, 39870}, {527, 37611}, {528, 11715}, {535, 28459}, {541, 11720}, {542, 11709}, {543, 11710}, {544, 11714}, {547, 18480}, {548, 5493}, {550, 4301}, {572, 50115}, {631, 19875}, {758, 44255}, {944, 3524}, {950, 10072}, {952, 4669}, {991, 50294}, {993, 5325}, {1000, 31508}, {1071, 31165}, {1201, 48897}, {1210, 5298}, {1319, 3058}, {1350, 47356}, {1388, 10624}, {1420, 4305}, {1482, 12512}, {1483, 31663}, {1503, 51003}, {1698, 15702}, {1699, 15682}, {1770, 24926}, {2320, 5249}, {2646, 4311}, {2784, 8724}, {2800, 10167}, {2816, 50901}, {3098, 49684}, {3146, 9624}, {3244, 3579}, {3304, 37426}, {3333, 15933}, {3361, 17706}, {3476, 30282}, {3488, 13462}, {3522, 7982}, {3523, 5881}, {3525, 37714}, {3528, 7991}, {3529, 11522}, {3530, 38098}, {3543, 3616}, {3545, 5691}, {3564, 51004}, {3582, 10572}, {3584, 37616}, {3612, 10056}, {3622, 15683}, {3624, 5071}, {3625, 14891}, {3626, 15700}, {3632, 15715}, {3634, 15694}, {3635, 12702}, {3636, 12699}, {3651, 5563}, {3746, 37403}, {3817, 3845}, {3829, 6907}, {3830, 5886}, {3839, 8227}, {3878, 13369}, {3881, 37585}, {4031, 5425}, {4292, 34471}, {4293, 4654}, {4313, 40270}, {4314, 15170}, {4315, 24929}, {4342, 25405}, {4511, 17781}, {4677, 5657}, {4691, 15718}, {4745, 15693}, {4847, 10609}, {4848, 7280}, {4870, 7354}, {4995, 31397}, {5055, 19925}, {5066, 11230}, {5085, 47359}, {5092, 49529}, {5122, 37728}, {5126, 11019}, {5248, 28444}, {5267, 5837}, {5270, 6903}, {5450, 9948}, {5476, 38049}, {5550, 18492}, {5603, 11001}, {5690, 17504}, {5732, 47357}, {5734, 50693}, {5790, 15701}, {5818, 15709}, {5844, 15759}, {5884, 31786}, {6173, 43161}, {6175, 24541}, {6246, 45310}, {6260, 11113}, {6261, 11111}, {6702, 38069}, {6796, 16371}, {6909, 34486}, {6987, 28609}, {7415, 42028}, {7968, 41945}, {7969, 41946}, {7988, 41106}, {8983, 35822}, {9143, 33535}, {9530, 11722}, {9583, 19054}, {9588, 10299}, {9589, 17538}, {9626, 37940}, {9778, 16200}, {9780, 15721}, {9864, 41134}, {9875, 14651}, {9881, 21166}, {9884, 34473}, {9955, 15687}, {9956, 11539}, {10031, 38693}, {10109, 38140}, {10124, 18357}, {10168, 38089}, {10171, 19709}, {10247, 15695}, {10268, 34744}, {10270, 34711}, {10283, 19710}, {10476, 48858}, {10519, 50950}, {10680, 12511}, {10707, 12119}, {10884, 40257}, {10902, 17549}, {11114, 12608}, {11224, 50813}, {11231, 11812}, {11237, 13411}, {11238, 44675}, {11274, 46684}, {11500, 16417}, {12005, 14110}, {12053, 21842}, {12101, 28190}, {12114, 16418}, {12117, 50886}, {12245, 15710}, {12258, 23698}, {12355, 50887}, {12515, 33812}, {12571, 14269}, {12616, 37298}, {12645, 15706}, {12675, 31806}, {12680, 20117}, {12773, 24393}, {13405, 37606}, {13490, 34633}, {13587, 37561}, {13634, 50305}, {13635, 50291}, {13971, 35823}, {14893, 33697}, {14912, 50952}, {15677, 16132}, {15678, 50908}, {15684, 18493}, {15685, 28158}, {15686, 22791}, {15689, 37624}, {15690, 28174}, {15697, 28232}, {15703, 19878}, {15705, 31145}, {15708, 31423}, {15711, 50823}, {15713, 38042}, {15714, 32900}, {15716, 50804}, {15719, 50871}, {15723, 31253}, {16174, 38026}, {16226, 31760}, {17614, 34697}, {17642, 46681}, {19711, 38112}, {19861, 31156}, {20323, 34630}, {20423, 38029}, {21077, 34698}, {21167, 50949}, {21356, 39885}, {24387, 37401}, {25406, 50999}, {25439, 35238}, {25485, 38759}, {26287, 34637}, {28168, 33699}, {28212, 51083}, {28460, 33858}, {28534, 43177}, {29010, 51060}, {29012, 51156}, {29054, 51042}, {29181, 51006}, {30273, 31178}, {30503, 34607}, {31787, 34639}, {31803, 31838}, {31805, 45776}, {31884, 51000}, {33337, 38602}, {33595, 50371}, {33597, 34606}, {34380, 51197}, {34617, 37571}, {34618, 37080}, {34619, 34716}, {34620, 34647}, {34625, 34701}, {34626, 34640}, {34745, 49600}, {34937, 48818}, {36444, 36463}, {36445, 36462}, {37474, 50300}, {37499, 50131}, {37602, 41853}, {37620, 42057}, {38035, 51024}, {38118, 50983}, {38123, 51100}, {38165, 50988}, {38176, 44580}, {43273, 47358}, {44273, 44662}, {44566, 44819}, {44661, 48370}, {47031, 47593}, {47097, 47469}, {48906, 49505}, {49102, 50884}, {50096, 51049}, {50130, 50677}, {50777, 51045}, {50781, 50977}, {50787, 50955}, {50791, 51027}, {50799, 50868}, {50805, 50814}, {50806, 50869}, {50809, 51097}

X(51705) = midpoint of X(i) and X(j) for these {i,j}: {1, 376}, {2, 50811}, {3, 3655}, {4, 34628}, {20, 31162}, {40, 3241}, {165, 7967}, {381, 18481}, {549, 34773}, {551, 4297}, {944, 3679}, {1071, 31165}, {1350, 47356}, {3058, 37429}, {3534, 3656}, {3576, 5731}, {4301, 34638}, {4669, 51082}, {4677, 50818}, {5434, 37428}, {5732, 47357}, {6173, 43161}, {7982, 34632}, {7991, 34631}, {8703, 50824}, {9143, 33535}, {9778, 16200}, {10707, 12119}, {11001, 50865}, {11274, 46684}, {12117, 50886}, {12245, 34747}, {12699, 15681}, {14110, 24473}, {15677, 16132}, {15683, 41869}, {15686, 22791}, {28460, 33858}, {30273, 31178}, {34619, 34716}, {34620, 34647}, {34625, 34701}, {34626, 34640}, {34718, 37727}, {43273, 47358}, {47031, 47593}, {47097, 47469}, {48897, 50422}, {50808, 51071}, {50809, 51097}, {50810, 51093}, {50814, 51091}, {50815, 51103}, {50816, 51107}, {50819, 51105}, {51079, 51104}, {51080, 51108}
X(51705) = reflection of X(i) in X(j) for these {i,j}: {2, 50828}, {10, 549}, {355, 3828}, {381, 1125}, {549, 13624}, {551, 1385}, {946, 551}, {3241, 13607}, {3534, 50815}, {3543, 18483}, {3579, 34200}, {3656, 51103}, {3679, 6684}, {3817, 38028}, {3830, 50802}, {4669, 50821}, {4677, 50827}, {4745, 50829}, {5325, 28466}, {5882, 3655}, {6246, 45310}, {10164, 17502}, {10165, 3576}, {10175, 10165}, {12355, 50887}, {15687, 9955}, {18357, 10124}, {18480, 547}, {24473, 12005}, {31162, 13464}, {31673, 381}, {31730, 376}, {33697, 14893}, {34633, 13490}, {34638, 550}, {34641, 5690}, {34648, 5}, {34718, 43174}, {38028, 31662}, {38127, 10164}, {38155, 11231}, {44566, 44819}, {47745, 3679}, {50096, 51049}, {50777, 51045}, {50781, 50977}, {50796, 2}, {50798, 4745}, {50801, 51069}, {50802, 51108}, {50805, 51091}, {50808, 8703}, {50821, 12100}, {50862, 3845}, {50884, 49102}, {50955, 50787}, {51067, 50825}, {51069, 51086}, {51071, 50824}, {51074, 51109}, {51075, 41150}, {51077, 51071}, {51096, 51087}, {51103, 51085}, {51109, 50832}
X(51705) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3576, 50828}, {2, 5731, 50811}, {2, 50796, 10175}, {2, 50828, 10165}, {2, 50864, 5587}, {3, 5882, 11362}, {3, 37727, 43174}, {10, 549, 38068}, {20, 38314, 31162}, {165, 51093, 50810}, {355, 5054, 3828}, {381, 3653, 1125}, {547, 18480, 38076}, {548, 10222, 5493}, {550, 15178, 4301}, {631, 34627, 19875}, {944, 3524, 3679}, {944, 6684, 47745}, {944, 7987, 6684}, {1125, 18481, 31673}, {1385, 4297, 946}, {2646, 4311, 21620}, {3241, 10304, 40}, {3524, 3679, 6684}, {3534, 10246, 3656}, {3543, 3616, 38021}, {3543, 38021, 18483}, {3576, 50811, 2}, {3653, 18481, 381}, {3656, 10246, 51103}, {3679, 7987, 3524}, {3817, 3845, 51074}, {3817, 50862, 3845}, {3830, 5886, 50802}, {3845, 50832, 38028}, {4669, 10164, 50821}, {4669, 50821, 38127}, {4677, 5657, 50827}, {4745, 50829, 26446}, {5603, 11001, 50865}, {5603, 50819, 11001}, {5657, 50818, 4677}, {5818, 15709, 19876}, {5901, 51118, 946}, {7967, 19708, 50810}, {7967, 50810, 51093}, {10124, 18357, 38083}, {10124, 38083, 51073}, {10164, 51082, 4669}, {10165, 50796, 2}, {10171, 50803, 19709}, {11231, 51084, 11812}, {12100, 50821, 10164}, {12100, 51082, 38127}, {13624, 34773, 10}, {15687, 38022, 9955}, {15693, 26446, 50829}, {15693, 50798, 26446}, {15698, 50818, 5657}, {15700, 18526, 38066}, {15702, 38074, 1698}, {17502, 50821, 12100}, {19708, 50810, 165}, {19711, 38112, 50825}, {19862, 38076, 547}, {19883, 34648, 5}, {21578, 37525, 226}, {25055, 34628, 4}, {26446, 50798, 4745}, {30389, 34628, 25055}, {30392, 50865, 51105}, {31162, 38314, 13464}, {38042, 50833, 15713}, {50801, 51069, 5790}, {50802, 51108, 5886}, {50808, 50824, 51077}, {50811, 50828, 50796}, {50815, 51085, 3656}, {50862, 51109, 3817}, {50865, 51105, 5603}, {51085, 51103, 10246}, {51114, 51115, 49511}


X(51706) = MIDPOINT OF X(1) AND X(377)

Barycentrics    a^3*b + a^2*b^2 - a*b^3 - b^4 + a^3*c + 6*a^2*b*c + 3*a*b^2*c + a^2*c^2 + 3*a*b*c^2 + 2*b^2*c^2 - a*c^3 - c^4 : :
X(51706) = X[8] - 5 X[50237], 2 X[1125] + X[10404], X[145] + 7 X[50794], 7 X[3624] - 5 X[31259], 5 X[1698] - 7 X[50393], X[3244] + 4 X[50238], 2 X[5302] - 5 X[19862], 5 X[19862] - 4 X[50205], 5 X[3616] - X[6872], 7 X[3622] + X[31295], 4 X[3634] - 5 X[50207], 2 X[3635] + 5 X[50713], 4 X[3636] + X[50239], X[3679] - 3 X[50793], 7 X[15808] - 2 X[50241], 8 X[19878] - 7 X[50795], 11 X[5550] - 7 X[50398], 3 X[5886] - X[37234], 3 X[10176] - 2 X[45120], 3 X[19883] - 2 X[50202], 2 X[50396] + X[51071], 3 X[25055] - X[31156], 8 X[50394] - 7 X[51073], X[50397] + 2 X[51103]

X(51706) lies on these lines: {1, 224}, {2, 3338}, {4, 38053}, {5, 3742}, {7, 12514}, {8, 27186}, {10, 141}, {11, 9844}, {12, 5439}, {30, 551}, {35, 36003}, {40, 6173}, {56, 226}, {57, 10198}, {86, 4911}, {145, 50794}, {210, 17529}, {354, 442}, {386, 24178}, {388, 34489}, {392, 3649}, {443, 3475}, {474, 17718}, {496, 3838}, {498, 3306}, {499, 31266}, {515, 30143}, {516, 37426}, {517, 44222}, {519, 44217}, {527, 25363}, {595, 28026}, {758, 44256}, {908, 3624}, {960, 6147}, {975, 33144}, {997, 3487}, {999, 28628}, {1010, 33124}, {1056, 28629}, {1071, 12617}, {1086, 3931}, {1145, 3922}, {1210, 3822}, {1330, 16823}, {1386, 49743}, {1479, 4666}, {1519, 9624}, {1621, 1770}, {1698, 50393}, {1889, 39579}, {2886, 3824}, {3011, 37522}, {3085, 9776}, {3178, 24165}, {3244, 50238}, {3295, 5880}, {3296, 24477}, {3333, 25525}, {3339, 30379}, {3452, 4999}, {3555, 3925}, {3616, 4293}, {3622, 4305}, {3634, 4860}, {3635, 50713}, {3636, 12053}, {3646, 28609}, {3660, 3814}, {3663, 3743}, {3671, 3878}, {3679, 50793}, {3695, 49483}, {3753, 10915}, {3754, 31397}, {3782, 6051}, {3813, 5049}, {3817, 6260}, {3833, 8582}, {3841, 3881}, {3848, 17527}, {3869, 11551}, {3873, 4197}, {3889, 33108}, {3898, 4301}, {3918, 6736}, {3919, 11362}, {3921, 34501}, {3935, 26060}, {3953, 29639}, {3976, 33111}, {4078, 24068}, {4084, 5837}, {4208, 11038}, {4292, 5248}, {4315, 51111}, {4321, 5290}, {4325, 5426}, {4355, 31424}, {4385, 17234}, {4640, 24470}, {4654, 31435}, {4656, 27784}, {4675, 5711}, {4848, 33815}, {4966, 5295}, {4968, 18139}, {5119, 10587}, {5126, 11813}, {5219, 10200}, {5236, 39585}, {5264, 28027}, {5316, 19878}, {5437, 26364}, {5530, 24046}, {5550, 31053}, {5563, 24541}, {5692, 24564}, {5705, 10980}, {5708, 26066}, {5714, 26105}, {5725, 17054}, {5787, 38030}, {5794, 15934}, {5836, 49626}, {5886, 6259}, {5902, 24987}, {5927, 7958}, {6223, 38037}, {6245, 18260}, {6684, 10197}, {6685, 50199}, {6690, 37582}, {6700, 50203}, {6701, 24387}, {6734, 18398}, {6765, 38052}, {6837, 10085}, {6854, 17857}, {6889, 12704}, {6897, 37569}, {6907, 13374}, {7191, 26131}, {7483, 32636}, {7535, 22769}, {7680, 9940}, {8071, 13411}, {8226, 12680}, {8227, 10785}, {8255, 16201}, {8261, 24475}, {9612, 10582}, {9943, 31657}, {10056, 18223}, {10106, 30147}, {10164, 37623}, {10165, 26286}, {10176, 45120}, {10179, 22791}, {10202, 12616}, {10580, 31418}, {10586, 23708}, {11019, 16193}, {11024, 34619}, {11036, 12559}, {11037, 19843}, {11112, 37080}, {11374, 25524}, {11518, 49168}, {11523, 41870}, {12436, 13405}, {15171, 42819}, {15569, 50067}, {16454, 33122}, {16484, 24851}, {17023, 50200}, {17050, 49488}, {17056, 37592}, {17061, 37594}, {17167, 28619}, {17182, 28620}, {17582, 25568}, {17609, 24390}, {17674, 46897}, {17862, 23555}, {18249, 43180}, {18393, 50244}, {18443, 26332}, {19796, 41813}, {19883, 34646}, {20330, 37424}, {20418, 21635}, {21621, 29645}, {21627, 50396}, {21628, 43177}, {21677, 24473}, {23806, 48295}, {24199, 28612}, {24982, 37719}, {25006, 41859}, {25055, 31156}, {26015, 50190}, {27385, 37731}, {27475, 33838}, {27577, 46901}, {28160, 44286}, {28194, 44284}, {29675, 37603}, {31339, 33069}, {31419, 34791}, {31871, 41561}, {33073, 50589}, {33130, 37607}, {34046, 37695}, {37112, 41338}, {37329, 43223}, {37398, 40985}, {38316, 41869}, {39586, 51400}, {41814, 50095}, {47358, 50427}, {49477, 49564}, {50058, 51061}, {50394, 51073}, {50397, 51103}

X(51706) = midpoint of X(i) and X(j) for these {i,j}: {1, 377}, {405, 10404}
X(51706) = reflection of X(i) in X(j) for these {i,j}: {10, 8728}, {405, 1125}, {5302, 50205}
X(51706) = complement of X(41229)
X(51706) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5249, 12609}, {2, 13407, 21077}, {10, 5542, 3874}, {142, 21620, 10}, {226, 1125, 21616}, {354, 442, 10916}, {443, 3475, 3811}, {495, 3812, 10}, {551, 4297, 35016}, {551, 11263, 946}, {942, 25466, 10}, {1125, 4298, 993}, {1385, 11281, 551}, {2886, 5045, 49627}, {3333, 25525, 26363}, {3616, 31019, 12047}, {3753, 15888, 10915}, {3824, 5045, 2886}, {3826, 34790, 10}, {3841, 3881, 4847}, {3947, 9843, 3814}, {5563, 26725, 24541}, {12436, 13405, 25440}, {25466, 25557, 942}


X(51707) = MIDPOINT OF X(1) AND X(378)

Barycentrics    a*(2*a^9 - a^8*b - 4*a^7*b^2 + 2*a^6*b^3 + 4*a^3*b^6 - 2*a^2*b^7 - 2*a*b^8 + b^9 - a^8*c + 2*a^7*b*c - 2*a^5*b^3*c + 2*a^4*b^4*c - 2*a^3*b^5*c + 2*a*b^7*c - b^8*c - 4*a^7*c^2 + 8*a^5*b^2*c^2 - 2*a^3*b^4*c^2 + 2*a^2*b^5*c^2 - 2*a*b^6*c^2 - 2*b^7*c^2 + 2*a^6*c^3 - 2*a^5*b*c^3 - 2*a*b^5*c^3 + 2*b^6*c^3 + 2*a^4*b*c^4 - 2*a^3*b^2*c^4 + 8*a*b^4*c^4 - 2*a^3*b*c^5 + 2*a^2*b^2*c^5 - 2*a*b^3*c^5 + 4*a^3*c^6 - 2*a*b^2*c^6 + 2*b^3*c^6 - 2*a^2*c^7 + 2*a*b*c^7 - 2*b^2*c^7 - 2*a*c^8 - b*c^8 + c^9) : :
X(51707) = X[22] - 3 X[3576], 3 X[1699] - X[35480], 5 X[3616] - X[44440], 3 X[5587] - 5 X[31236], 3 X[5603] + X[35481], 3 X[5731] + X[7391], 2 X[6676] - 3 X[10165], 2 X[7555] - 5 X[31666], 5 X[7987] - 3 X[44837], 3 X[11230] - 2 X[46029], X[12082] - 7 X[30389], 4 X[13413] - 3 X[38140]

X(51707) lies on these lines: {1, 378}, {22, 3576}, {30, 551}, {427, 515}, {516, 24301}, {517, 18570}, {519, 44218}, {952, 44236}, {1125, 15760}, {1386, 2781}, {1699, 35480}, {3616, 44440}, {5587, 31236}, {5603, 35481}, {5731, 7391}, {6676, 10165}, {7502, 13624}, {7555, 31666}, {7987, 44837}, {9955, 44263}, {11230, 46029}, {11363, 18483}, {11365, 12083}, {12082, 30389}, {12262, 12266}, {13151, 51687}, {13413, 38140}, {18480, 39504}, {18481, 31723}, {28160, 44288}, {28194, 44285}, {28204, 44287}, {31133, 50811}, {34036, 37525}, {37970, 41722}, {44210, 50828}, {44274, 44662}

X(51707) = midpoint of X(i) and X(j) for these {i,j}: {1, 378}, {18481, 31723}, {31133, 50811}
X(51707) = reflection of X(i) in X(j) for these {i,j}: {7502, 13624}, {15760, 1125}, {18480, 39504}, {44210, 50828}, {44263, 9955}


X(51708) = MIDPOINT OF X(1) AND X(379)

Barycentrics    2*a^6 - a^5*b + a^4*b^2 + a^3*b^3 - 3*a^2*b^4 - a^5*c + 5*a^3*b^2*c + a^2*b^3*c - 4*a*b^4*c - b^5*c + a^4*c^2 + 5*a^3*b*c^2 + 8*a^2*b^2*c^2 + 4*a*b^3*c^2 + a^3*c^3 + a^2*b*c^3 + 4*a*b^2*c^3 + 2*b^3*c^3 - 3*a^2*c^4 - 4*a*b*c^4 - b*c^5 : :
X(51708) = 5 X[3616] - X[31015]

X(51708) lies on these lines: {1, 379}, {30, 551}, {993, 24331}, {1125, 30810}, {1386, 4667}, {3616, 31015}, {3874, 50023}, {5436, 43531}, {5792, 15934}, {9895, 34791}, {17647, 49768}, {17758, 24929}, {24315, 51687}, {30117, 41245}

X(51708) = midpoint of X(1) and X(379)
X(51708) = reflection of X(30810) in X(1125)


X(51709) = MIDPOINT OF X(1) AND X(381)

Barycentrics    2*a^4 - 3*a^3*b - 4*a^2*b^2 + 3*a*b^3 + 2*b^4 - 3*a^3*c + 6*a^2*b*c - 3*a*b^2*c - 4*a^2*c^2 - 3*a*b*c^2 - 4*b^2*c^2 + 3*a*c^3 + 2*c^4 : :
X(51709) = X[1] + 2 X[9955], 2 X[1] + X[18480], 7 X[1] + 5 X[18492], X[1] + 5 X[18493], 5 X[1] + X[18525], 7 X[1] - X[18526], 3 X[1] + 5 X[30308], 5 X[1] - 2 X[32900], X[1] + 3 X[38021], 7 X[381] - 5 X[18492], X[381] - 5 X[18493], 5 X[381] - X[18525], 7 X[381] + X[18526], 3 X[381] - 5 X[30308], 5 X[381] + 2 X[32900], X[381] - 3 X[38021], 4 X[9955] - X[18480], 14 X[9955] - 5 X[18492], 2 X[9955] - 5 X[18493], 10 X[9955] - X[18525], 14 X[9955] + X[18526], 6 X[9955] - 5 X[30308], 5 X[9955] + X[32900], 2 X[9955] - 3 X[38021], 7 X[18480] - 10 X[18492], X[18480] - 10 X[18493], 5 X[18480] - 2 X[18525], 7 X[18480] + 2 X[18526], 3 X[18480] - 10 X[30308], 5 X[18480] + 4 X[32900], X[18480] - 6 X[38021], X[18492] - 7 X[18493], 25 X[18492] - 7 X[18525], 5 X[18492] + X[18526], 3 X[18492] - 7 X[30308], 25 X[18492] + 14 X[32900], 5 X[18492] - 21 X[38021], 25 X[18493] - X[18525], 35 X[18493] + X[18526], 3 X[18493] - X[30308], 25 X[18493] + 2 X[32900], 5 X[18493] - 3 X[38021], 7 X[18525] + 5 X[18526], 3 X[18525] - 25 X[30308], X[18525] + 2 X[32900], and many others

X(51709) lies on these lines: {1, 381}, {2, 392}, {3, 9589}, {4, 3655}, {5, 519}, {8, 5071}, {10, 547}, {11, 50194}, {30, 551}, {40, 5054}, {56, 28444}, {65, 3582}, {140, 4301}, {145, 38074}, {165, 15693}, {226, 1387}, {354, 2771}, {355, 3241}, {376, 3616}, {382, 34628}, {390, 38073}, {495, 15845}, {496, 15844}, {497, 18407}, {499, 50193}, {511, 51003}, {515, 3845}, {516, 8703}, {518, 5476}, {527, 20330}, {528, 11729}, {541, 11735}, {542, 1386}, {543, 11724}, {544, 11728}, {546, 5882}, {548, 34638}, {549, 1125}, {550, 31666}, {553, 39542}, {631, 34632}, {632, 43174}, {758, 44257}, {942, 10072}, {944, 3839}, {952, 3817}, {962, 3524}, {999, 4654}, {1001, 28466}, {1056, 18516}, {1058, 18517}, {1201, 48903}, {1317, 38077}, {1319, 18393}, {1352, 47356}, {1420, 31776}, {1478, 25405}, {1480, 37674}, {1482, 3679}, {1483, 19925}, {1503, 51006}, {1537, 38026}, {1656, 7982}, {1657, 30389}, {1698, 8148}, {1699, 3830}, {1836, 5126}, {2098, 37692}, {2099, 23708}, {2475, 35597}, {2782, 12258}, {2800, 38044}, {3057, 3584}, {3058, 15950}, {3086, 31794}, {3090, 5734}, {3091, 34627}, {3242, 38072}, {3243, 38075}, {3244, 11737}, {3304, 37234}, {3485, 5045}, {3487, 9844}, {3526, 7991}, {3530, 5493}, {3534, 3576}, {3543, 3622}, {3560, 11194}, {3564, 51005}, {3615, 7478}, {3624, 12702}, {3626, 38081}, {3628, 11362}, {3635, 37705}, {3636, 15687}, {3649, 26202}, {3746, 37251}, {3751, 14848}, {3828, 5690}, {3851, 5881}, {3860, 28224}, {3919, 32557}, {3953, 5492}, {3957, 12738}, {4323, 47743}, {4345, 8164}, {4413, 44455}, {4421, 6911}, {4428, 22753}, {4669, 5844}, {4677, 5790}, {4745, 10171}, {4857, 37230}, {5048, 7951}, {5072, 37714}, {5079, 16189}, {5093, 50952}, {5249, 37429}, {5298, 37582}, {5315, 45923}, {5425, 39782}, {5434, 12047}, {5439, 13145}, {5440, 49719}, {5550, 15702}, {5563, 13743}, {5587, 10247}, {5691, 14269}, {5694, 34647}, {5731, 15682}, {5777, 11240}, {5805, 47357}, {5816, 50131}, {5818, 31145}, {5885, 12672}, {5887, 6583}, {5919, 37701}, {5965, 51155}, {6173, 10269}, {6246, 11274}, {6265, 10707}, {6361, 15692}, {6684, 11539}, {6702, 38084}, {6767, 18491}, {6841, 37722}, {6913, 28609}, {6914, 28534}, {6918, 37622}, {7373, 18761}, {7576, 11363}, {7686, 10197}, {7741, 11011}, {7962, 31479}, {7967, 9779}, {7968, 35822}, {7969, 35823}, {7970, 9166}, {7983, 23234}, {7987, 15688}, {7989, 12645}, {8143, 37592}, {8226, 37726}, {8724, 50886}, {9580, 37606}, {9588, 46219}, {9591, 34006}, {9614, 31795}, {9626, 37956}, {9668, 13384}, {9778, 15698}, {9812, 11001}, {9856, 13373}, {9875, 38732}, {9881, 15561}, {9884, 14639}, {9957, 10056}, {10124, 19862}, {10164, 11812}, {10165, 12100}, {10172, 38112}, {10199, 35004}, {10297, 47472}, {10516, 51000}, {10591, 37739}, {10596, 37820}, {10597, 37821}, {10711, 12737}, {11009, 17606}, {11012, 28443}, {11178, 28538}, {11179, 38023}, {11218, 50891}, {11224, 50817}, {11248, 16417}, {11249, 16418}, {11365, 14070}, {11372, 38024}, {11374, 31792}, {11496, 32612}, {11531, 19876}, {11567, 17577}, {11632, 38220}, {11721, 32424}, {12053, 15170}, {12101, 28186}, {12268, 13667}, {12269, 13787}, {12512, 45759}, {12515, 27003}, {12571, 13607}, {12610, 49738}, {12619, 45310}, {12675, 31828}, {12688, 26201}, {12773, 37602}, {13374, 44663}, {13407, 34697}, {13462, 18541}, {13587, 26086}, {13846, 35775}, {13847, 35774}, {13911, 42602}, {13912, 43211}, {13973, 42603}, {13975, 43212}, {14561, 47359}, {14853, 50999}, {14892, 47745}, {14893, 31673}, {14986, 50192}, {15251, 50114}, {15670, 22937}, {15671, 16139}, {15677, 16159}, {15681, 41869}, {15690, 28178}, {15700, 35242}, {15706, 16192}, {15708, 20070}, {15711, 28232}, {15713, 28228}, {15723, 34595}, {15759, 28216}, {15764, 34556}, {15808, 31730}, {15829, 31493}, {15934, 37704}, {16137, 22798}, {16174, 19907}, {16370, 26286}, {16371, 26285}, {16491, 18440}, {16857, 22770}, {17382, 24220}, {17532, 46920}, {17579, 26287}, {17609, 40263}, {17614, 34629}, {17648, 34619}, {17781, 51409}, {18358, 49684}, {18398, 40266}, {18482, 42819}, {18515, 37587}, {19130, 49465}, {19706, 38107}, {19710, 28150}, {19711, 51086}, {19861, 44217}, {20126, 50878}, {20323, 34698}, {20423, 38035}, {20430, 31178}, {21949, 45763}, {22758, 31164}, {22765, 28453}, {24160, 45219}, {24474, 31165}, {25154, 50849}, {25164, 50852}, {26087, 37375}, {26200, 37562}, {28164, 33699}, {28172, 50869}, {28236, 50803}, {28454, 51687}, {28460, 49177}, {28461, 45977}, {29010, 50111}, {29054, 51045}, {29181, 51154}, {29597, 36731}, {30827, 40587}, {30852, 51362}, {31140, 37533}, {31394, 41311}, {31395, 41310}, {31399, 35018}, {31755, 31840}, {32486, 50103}, {33176, 37710}, {33595, 34611}, {34380, 51004}, {34640, 45701}, {34641, 47478}, {34745, 37080}, {34937, 48820}, {37712, 50797}, {37734, 38078}, {37943, 41722}, {38029, 43273}, {38036, 50836}, {38037, 51099}, {38038, 50843}, {38039, 51112}, {38040, 50979}, {38041, 51098}, {38093, 43166}, {38138, 50801}, {38144, 50790}, {38146, 51089}, {38149, 50839}, {38155, 51096}, {38156, 50846}, {38158, 51101}, {38172, 51100}, {38315, 47353}, {41106, 50799}, {44275, 44662}, {47097, 47471}, {47332, 47593}, {48887, 50608}, {50787, 50978}, {50791, 50973}, {50800, 50871}, {50814, 50825}

X(51709) = midpoint of X(i) and X(j) for these {i,j}: {1, 381}, {2, 3656}, {3, 31162}, {4, 3655}, {355, 3241}, {376, 12699}, {382, 34628}, {549, 22791}, {551, 946}, {1352, 47356}, {1482, 3679}, {1699, 10246}, {3058, 28452}, {3534, 50865}, {3543, 18481}, {3830, 50811}, {3845, 50824}, {4669, 51077}, {4677, 50805}, {5587, 10247}, {5603, 5886}, {5655, 50921}, {5790, 16200}, {5805, 47357}, {5881, 34748}, {5882, 34648}, {5887, 24473}, {6246, 11274}, {6265, 10707}, {7982, 34718}, {8724, 50886}, {10283, 38034}, {10297, 47472}, {10711, 12737}, {11632, 50881}, {12645, 34747}, {15677, 16159}, {15681, 41869}, {15687, 34773}, {20126, 50878}, {20423, 47358}, {20430, 31178}, {22758, 31164}, {24474, 31165}, {25154, 50849}, {25164, 50852}, {28460, 49177}, {31140, 37533}, {34627, 37727}, {34640, 45701}, {34647, 45700}, {47097, 47471}, {47332, 47593}, {48903, 50415}, {50796, 51071}, {50797, 51097}, {50798, 51093}, {50801, 51091}, {50802, 51103}, {50803, 51107}, {50806, 51105}, {51074, 51104}, {51075, 51108}
X(51709) = reflection of X(i) in X(j) for these {i,j}: {10, 547}, {376, 13624}, {381, 9955}, {549, 1125}, {551, 5901}, {1385, 551}, {3241, 33179}, {3579, 549}, {3655, 15178}, {3679, 9956}, {3845, 50802}, {5690, 3828}, {8703, 50828}, {11230, 5886}, {11231, 11230}, {12619, 45310}, {15687, 18483}, {17502, 38028}, {18357, 11737}, {18480, 381}, {19710, 50815}, {22937, 15670}, {24473, 6583}, {31673, 14893}, {31730, 34200}, {31840, 31755}, {33697, 15687}, {34638, 548}, {34648, 546}, {38042, 10171}, {38112, 10172}, {38140, 3817}, {38176, 10175}, {50796, 5066}, {50808, 12100}, {50821, 2}, {50823, 4745}, {50824, 51103}, {50827, 51069}, {50828, 51108}, {50831, 51091}, {50862, 12101}, {50978, 50787}, {51084, 51109}, {51085, 41150}, {51087, 51071}
X(51709) = complement of X(3654)
X(51709) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 7743, 18527}, {1, 9955, 18480}, {1, 18492, 18526}, {1, 18493, 9955}, {1, 18525, 32900}, {1, 38021, 381}, {2, 5603, 3656}, {2, 50810, 26446}, {2, 50821, 11231}, {2, 50872, 5657}, {4, 38314, 3655}, {5, 13464, 10222}, {10, 547, 38083}, {355, 10595, 33179}, {376, 3616, 3653}, {376, 3653, 13624}, {381, 18493, 38021}, {381, 38021, 9955}, {549, 38022, 1125}, {946, 1385, 22793}, {946, 4297, 40273}, {946, 5901, 1385}, {1125, 22791, 3579}, {1482, 5055, 3679}, {1482, 8227, 9956}, {1656, 34718, 19875}, {1699, 50811, 3830}, {1699, 51105, 50811}, {3241, 3545, 355}, {3485, 11373, 5045}, {3545, 10595, 3241}, {3576, 50865, 3534}, {3616, 12699, 13624}, {3636, 18483, 34773}, {3653, 12699, 376}, {3655, 38314, 15178}, {3656, 5886, 2}, {3679, 5055, 9956}, {3679, 8227, 5055}, {3817, 50796, 5066}, {3817, 51071, 50796}, {3830, 10246, 50811}, {3830, 50806, 1699}, {3845, 10283, 50824}, {3845, 38034, 50802}, {4677, 16200, 50805}, {5066, 50796, 38140}, {5587, 51093, 50798}, {5690, 15699, 3828}, {5790, 50805, 4677}, {7967, 41099, 50864}, {7982, 19875, 34718}, {7988, 16200, 5790}, {8148, 15703, 38066}, {8703, 38028, 50828}, {8703, 50828, 17502}, {9624, 11522, 3}, {9624, 31162, 25055}, {9779, 41099, 50807}, {9779, 50864, 41099}, {10109, 51077, 38176}, {10164, 11812, 51088}, {10165, 12100, 51084}, {10165, 50808, 12100}, {10172, 50827, 51069}, {10175, 51077, 4669}, {10246, 50806, 3830}, {10247, 19709, 50798}, {10247, 50798, 51093}, {10283, 50824, 51103}, {11224, 51066, 50817}, {11230, 50821, 2}, {11522, 25055, 31162}, {11705, 11706, 1386}, {11723, 12261, 11699}, {11737, 18357, 38076}, {15703, 38066, 1698}, {15950, 30384, 24929}, {18483, 34773, 33697}, {19709, 50798, 5587}, {19862, 38068, 10124}, {22791, 38022, 549}, {25055, 31162, 3}, {38034, 50824, 3845}, {38035, 47358, 20423}, {38042, 50823, 4745}, {38220, 50881, 11632}, {50808, 51109, 10165}, {50811, 51105, 10246}, {50827, 51069, 38112}, {50828, 51108, 38028}, {50865, 51110, 3576}


X(51710) = MIDPOINT OF X(1) AND X(384)

Barycentrics    2*a^5 + a^4*b + a^3*b^2 + a*b^4 + a^4*c + a^3*c^2 + 2*a*b^2*c^2 + b^3*c^2 + b^2*c^3 + a*c^4 : :
X(51710) = X[8] - 5 X[19689], X[145] + 7 X[19692], 5 X[1698] - 7 X[19694], X[3244] + 4 X[19697], 3 X[3576] - X[7470], 5 X[3616] - X[6655], 7 X[3622] + X[6658], 7 X[3624] - 5 X[7948], 2 X[3626] - 7 X[19702], 4 X[3636] + X[19687], 3 X[5886] - X[37243], X[7924] - 3 X[25055], 2 X[8357] - 7 X[15808], 4 X[8364] - 5 X[19862], X[19686] + 3 X[38314], 5 X[19690] - 13 X[46934]

X(51710) lies on these lines: {1, 335}, {8, 19689}, {10, 7819}, {30, 551}, {76, 11368}, {141, 49561}, {145, 19692}, {515, 44230}, {516, 44251}, {517, 44224}, {518, 42421}, {519, 6661}, {612, 19670}, {614, 19669}, {698, 1386}, {736, 12263}, {952, 44237}, {1104, 50023}, {1125, 6656}, {1698, 19694}, {3244, 19697}, {3576, 7470}, {3616, 6655}, {3622, 6658}, {3624, 7948}, {3626, 19702}, {3636, 19687}, {3720, 19650}, {3920, 19700}, {3972, 9941}, {5886, 37243}, {7822, 9857}, {7924, 25055}, {8357, 15808}, {8364, 19862}, {10459, 19679}, {10582, 19666}, {11711, 12264}, {16826, 19667}, {17397, 19698}, {19664, 26102}, {19671, 30950}, {19674, 28082}, {19676, 30116}, {19680, 26230}, {19681, 29571}, {19682, 21352}, {19683, 29639}, {19686, 38314}, {19690, 46934}

X(51710) = midpoint of X(1) and X(384)
X(51710) = reflection of X(i) in X(j) for these {i,j}: {10, 7819}, {6656, 1125}


X(51711) = MIDPOINT OF X(1) AND X(401)

Barycentrics    2*a^9 + a^8*b - 3*a^7*b^2 - 2*a^6*b^3 + a^5*b^4 + a^4*b^5 - a^3*b^6 + a*b^8 + a^8*c - 2*a^6*b^2*c + a^4*b^4*c - 3*a^7*c^2 - 2*a^6*b*c^2 + 2*a^5*b^2*c^2 + a^4*b^3*c^2 + a^3*b^4*c^2 + b^7*c^2 - 2*a^6*c^3 + a^4*b^2*c^3 + b^6*c^3 + a^5*c^4 + a^4*b*c^4 + a^3*b^2*c^4 - 2*a*b^4*c^4 - 2*b^5*c^4 + a^4*c^5 - 2*b^4*c^5 - a^3*c^6 + b^3*c^6 + b^2*c^7 + a*c^8 : :
X(51711) = 3 X[3576] - X[35474], 5 X[3616] - X[40853], X[3679] - 3 X[44575], 3 X[3817] - 2 X[44228], 2 X[3828] - 3 X[44578], 5 X[19862] - 4 X[44334], 3 X[19883] - 2 X[44216], 3 X[25055] - X[40885], 3 X[38314] + X[44651], 8 X[44335] - 7 X[51073]

X(51711) lies on these lines: {1, 401}, {10, 441}, {30, 551}, {297, 1125}, {448, 30143}, {515, 44231}, {516, 44252}, {519, 40884}, {3576, 35474}, {3616, 40853}, {3679, 44575}, {3817, 44228}, {3828, 44578}, {19862, 44334}, {19883, 44216}, {25055, 40885}, {38314, 44651}, {44335, 51073}

X(51711) = midpoint of X(1) and X(401)
X(51711) = reflection of X(i) in X(j) for these {i,j}: {10, 441}, {297, 1125}


X(51712) = MIDPOINT OF X(1) AND X(402)

Barycentrics    (2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(3*a^9 + a^8*b - 3*a^7*b^2 - a^6*b^3 - 8*a^5*b^4 - 2*a^4*b^5 + 13*a^3*b^6 + 3*a^2*b^7 - 5*a*b^8 - b^9 + a^8*c - a^6*b^2*c - 2*a^4*b^4*c + 3*a^2*b^6*c - b^8*c - 3*a^7*c^2 - a^6*b*c^2 + 19*a^5*b^2*c^2 + 5*a^4*b^3*c^2 - 13*a^3*b^4*c^2 - 3*a^2*b^5*c^2 - 3*a*b^6*c^2 - b^7*c^2 - a^6*c^3 + 5*a^4*b^2*c^3 - 3*a^2*b^4*c^3 - b^6*c^3 - 8*a^5*c^4 - 2*a^4*b*c^4 - 13*a^3*b^2*c^4 - 3*a^2*b^3*c^4 + 16*a*b^4*c^4 + 4*b^5*c^4 - 2*a^4*c^5 - 3*a^2*b^2*c^5 + 4*b^4*c^5 + 13*a^3*c^6 + 3*a^2*b*c^6 - 3*a*b^2*c^6 - b^3*c^6 + 3*a^2*c^7 - b^2*c^7 - 5*a*c^8 - b*c^8 - c^9) : :
X(51712) = X[1] + 3 X[11831], 5 X[1] + 3 X[11852], 3 X[1] + X[12438], X[402] - 3 X[11831], 5 X[402] - 3 X[11852], 3 X[402] - X[12438], 5 X[11831] - X[11852], 9 X[11831] - X[12438], 9 X[11852] - 5 X[12438], 3 X[2] + X[12626], X[8] - 5 X[15183], X[8] + 3 X[16211], 5 X[15183] + 3 X[16211], 3 X[551] + X[49585], X[145] + 3 X[16210], X[944] + 3 X[11897], X[962] + 3 X[16190], X[1482] + 3 X[26451], X[1650] - 5 X[3616], X[1650] + 3 X[16212], 5 X[3616] + 3 X[16212], X[1651] + 3 X[38314], 3 X[3576] + X[12696], 7 X[3622] + X[4240], 3 X[5603] + X[12113], 3 X[10246] + X[11251], 3 X[10283] + X[32162], 5 X[10595] + 3 X[11845], X[11049] - 3 X[25055], 3 X[11911] + 5 X[37624], X[12583] + 3 X[38315], X[12729] + 3 X[16173], 5 X[18493] - X[18507], X[34582] + 5 X[51105]

X(51712) lies on these lines: {1, 402}, {2, 12626}, {8, 15183}, {30, 551}, {145, 16210}, {944, 11897}, {962, 16190}, {1125, 11900}, {1388, 18958}, {1482, 26451}, {1650, 3616}, {1651, 38314}, {3303, 11848}, {3304, 22755}, {3576, 12696}, {3622, 4240}, {5603, 12113}, {7968, 19018}, {7969, 19017}, {10246, 11251}, {10283, 32162}, {10595, 11845}, {11049, 25055}, {11905, 15950}, {11909, 34471}, {11911, 37624}, {12583, 38315}, {12729, 16173}, {13894, 19066}, {13948, 19065}, {18493, 18507}, {34582, 51105}, {44610, 44636}, {44611, 44635}

X(51712) = midpoint of X(1) and X(402)
X(51712) = reflection of X(15184) in X(1125)
X(51712) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 11831, 402}, {3616, 16212, 1650}, {15183, 16211, 8}


X(51713) = MIDPOINT OF X(1) AND X(403)

Barycentrics    2*a^10 - 2*a^9*b - 5*a^8*b^2 + 4*a^7*b^3 + 2*a^6*b^4 + 4*a^4*b^6 - 4*a^3*b^7 - 4*a^2*b^8 + 2*a*b^9 + b^10 - 2*a^9*c + 4*a^8*b*c - 4*a^6*b^3*c + 4*a^5*b^4*c - 4*a^4*b^5*c + 4*a^2*b^7*c - 2*a*b^8*c - 5*a^8*c^2 + 8*a^6*b^2*c^2 - 6*a^5*b^3*c^2 - 6*a^4*b^4*c^2 + 10*a^3*b^5*c^2 + 6*a^2*b^6*c^2 - 4*a*b^7*c^2 - 3*b^8*c^2 + 4*a^7*c^3 - 4*a^6*b*c^3 - 6*a^5*b^2*c^3 + 12*a^4*b^3*c^3 - 6*a^3*b^4*c^3 - 4*a^2*b^5*c^3 + 4*a*b^6*c^3 + 2*a^6*c^4 + 4*a^5*b*c^4 - 6*a^4*b^2*c^4 - 6*a^3*b^3*c^4 - 4*a^2*b^4*c^4 + 2*b^6*c^4 - 4*a^4*b*c^5 + 10*a^3*b^2*c^5 - 4*a^2*b^3*c^5 + 4*a^4*c^6 + 6*a^2*b^2*c^6 + 4*a*b^3*c^6 + 2*b^4*c^6 - 4*a^3*c^7 + 4*a^2*b*c^7 - 4*a*b^2*c^7 - 4*a^2*c^8 - 2*a*b*c^8 - 3*b^2*c^8 + 2*a*c^9 + c^10 : :
X(51713) = 2 X[5] + X[47491], X[186] + 3 X[5603], X[468] + 2 X[13464], X[858] - 7 X[9624], X[962] + 3 X[37941], 2 X[1125] + X[47471], X[2071] - 5 X[3616], X[2072] - 3 X[5886], 3 X[3576] - X[16386], X[5882] + 2 X[37984], 2 X[9955] + X[47476], 3 X[10165] - 2 X[16976], 3 X[10175] - 4 X[44912], 2 X[10222] + X[47492], 3 X[10246] + X[31726], 3 X[10283] + X[11563], X[10295] + 5 X[11522], 5 X[10595] + 3 X[37943], 5 X[10595] + X[47321], 3 X[37943] - X[47321], X[11362] - 4 X[37911], 2 X[18483] + X[47469], 2 X[15178] + X[47336], X[18403] - 5 X[18493], X[34152] - 3 X[38028], X[47332] + 2 X[51103]

X(51713) lies on these lines: {1, 403}, {5, 47491}, {10, 44911}, {30, 551}, {186, 5603}, {468, 13464}, {515, 10151}, {517, 44452}, {858, 9624}, {952, 46031}, {962, 37941}, {1125, 10257}, {1884, 45934}, {2070, 11365}, {2071, 3616}, {2072, 5886}, {3576, 16386}, {3656, 44214}, {5844, 15350}, {5882, 37984}, {6000, 11735}, {9955, 23323}, {10149, 15950}, {10165, 16976}, {10175, 44912}, {10222, 47492}, {10246, 31726}, {10283, 11563}, {10295, 11522}, {10595, 37943}, {11362, 37911}, {11709, 15311}, {11720, 44665}, {11723, 13754}, {12241, 43822}, {12266, 22476}, {12699, 44246}, {13473, 18483}, {15178, 47336}, {15646, 22791}, {18403, 18493}, {28174, 37968}, {31162, 44280}, {31730, 47114}, {34152, 38028}, {34773, 44283}, {40942, 47161}, {44282, 47496}, {47332, 51103}

X(51713) = midpoint of X(i) and X(j) for these {i,j}: {1, 403}, {3656, 44214}, {10257, 47471}, {12699, 44246}, {13473, 47469}, {15646, 22791}, {23323, 47476}, {31162, 44280}, {34773, 44283}
X(51713) = reflection of X(i) in X(j) for these {i,j}: {10, 44911}, {10257, 1125}, {13473, 18483}, {23323, 9955}, {31730, 47114}, {47496, 44282}


X(51714) = MIDPOINT OF X(1) AND X(404)

Barycentrics    a*(2*a^3 - a^2*b - 2*a*b^2 + b^3 - a^2*c + 6*a*b*c - 2*a*c^2 + c^3) : :
X(51714) = 5 X[3616] - X[5046], 3 X[3576] - X[37403], 7 X[3622] + X[37256], 3 X[10246] + X[37251]

X(51714) lies on these lines: {1, 88}, {3, 3898}, {5, 11715}, {10, 6691}, {12, 1125}, {30, 551}, {36, 3884}, {56, 3878}, {58, 47623}, {104, 7701}, {355, 10199}, {392, 3647}, {474, 22837}, {515, 24927}, {519, 17614}, {535, 41012}, {758, 5563}, {993, 1420}, {997, 6762}, {999, 3874}, {1043, 47626}, {1388, 30147}, {1478, 3616}, {1482, 40726}, {1483, 11274}, {1960, 24099}, {2475, 16173}, {2646, 3636}, {2800, 37535}, {3304, 3892}, {3336, 5330}, {3337, 4757}, {3476, 10200}, {3576, 37403}, {3622, 4294}, {3626, 44848}, {3635, 5440}, {3742, 15178}, {3743, 37617}, {3746, 4881}, {3812, 25405}, {3822, 8070}, {3825, 45287}, {3869, 37587}, {3881, 4511}, {3890, 7280}, {3897, 25055}, {3918, 4861}, {3919, 10222}, {3968, 17531}, {4004, 33176}, {4015, 5288}, {4315, 21616}, {5126, 5267}, {5248, 37618}, {5255, 47622}, {5885, 19907}, {5886, 33898}, {6265, 12005}, {6584, 12030}, {6681, 10039}, {6702, 37710}, {6903, 10532}, {7173, 33709}, {7705, 38104}, {8666, 10176}, {9259, 16600}, {9782, 37571}, {10074, 47320}, {10179, 13624}, {10246, 11500}, {10283, 26287}, {10912, 16417}, {10944, 15863}, {11009, 27003}, {11011, 33815}, {11567, 34353}, {11813, 18990}, {12513, 35272}, {12514, 13462}, {12565, 30389}, {12737, 45976}, {12758, 14800}, {13463, 17563}, {13587, 37563}, {15854, 37592}, {15888, 34123}, {16116, 50908}, {16139, 22765}, {16203, 40257}, {17564, 50841}, {17567, 49169}, {19947, 48330}, {25005, 38213}, {25485, 35004}, {25639, 44675}, {32612, 46684}, {33337, 37730}, {33812, 37734}, {34772, 37602}, {37080, 51103}, {38054, 42819}, {38316, 43178}, {50604, 50627}, {50915, 51678}

X(51714) = midpoint of X(i) and X(j) for these {i,j}: {1, 404}, {3336, 5330}, {17614, 20323}
X(51714) = reflection of X(4187) in X(1125)
X(51714) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5253, 3754}, {1, 35262, 8715}, {56, 3878, 4973}, {551, 1385, 35016}, {551, 11263, 5901}, {999, 30144, 3874}, {1125, 1319, 51111}, {1125, 10106, 3814}, {3304, 22836, 3892}, {8666, 19861, 10176}


X(51715) = MIDPOINT OF X(1) AND X(405)

Barycentrics    a*(2*a^3 - a^2*b - 2*a*b^2 + b^3 - a^2*c - 6*a*b*c - 3*b^2*c - 2*a*c^2 - 3*b*c^2 + c^3) : :
X(51715) = 2 X[1] + X[5302], 3 X[1] + X[41229], 3 X[405] - X[41229], 3 X[5302] - 2 X[41229], X[8] - 5 X[31259], X[145] + 7 X[50398], 7 X[15808] - 2 X[50238], X[377] - 5 X[3616], 7 X[3622] + X[6872], 7 X[3622] - X[10404], 5 X[1698] - 7 X[50795], 3 X[3576] - X[37426], 7 X[3624] - 5 X[50207], 4 X[3636] + X[50241], 3 X[3653] - X[44284], X[3679] - 3 X[50714], X[31156] + 3 X[38314], 11 X[5550] - 7 X[50393], 3 X[5886] - X[44229], 3 X[10246] + X[37234], 3 X[25055] - X[44217], 5 X[19862] - 4 X[50394], 3 X[19883] - 2 X[50395], 3 X[38028] - X[44222], 3 X[38034] - X[44286], 13 X[46934] - 5 X[50237], X[50396] - 4 X[51108], X[50397] - 7 X[51110]

X(51715) lies on these lines: {1, 6}, {2, 3189}, {3, 3742}, {8, 3748}, {10, 12433}, {20, 38053}, {21, 354}, {30, 551}, {35, 5439}, {40, 4428}, {55, 3812}, {56, 4666}, {65, 1621}, {78, 4423}, {142, 4314}, {145, 50398}, {191, 24473}, {210, 5047}, {214, 15808}, {241, 4332}, {377, 497}, {390, 28629}, {452, 3475}, {474, 3848}, {496, 1125}, {517, 30143}, {519, 50202}, {536, 25363}, {612, 50715}, {614, 4719}, {936, 8167}, {938, 26066}, {942, 4640}, {950, 25466}, {962, 47357}, {968, 37549}, {976, 44307}, {993, 5045}, {1009, 28600}, {1043, 16823}, {1071, 7701}, {1210, 6690}, {1319, 3485}, {1329, 13405}, {1376, 50203}, {1468, 4883}, {1479, 3838}, {1698, 50795}, {1848, 11363}, {1889, 40985}, {2201, 37396}, {2320, 5556}, {2478, 17718}, {2551, 10578}, {2975, 17609}, {3035, 9843}, {3085, 5123}, {3295, 5836}, {3303, 3880}, {3306, 5217}, {3338, 16370}, {3487, 24703}, {3488, 5794}, {3560, 12675}, {3576, 37426}, {3579, 5883}, {3584, 17619}, {3601, 10582}, {3624, 5440}, {3636, 12577}, {3653, 44284}, {3666, 28082}, {3679, 50714}, {3681, 16859}, {3683, 3868}, {3689, 9780}, {3696, 16817}, {3698, 3871}, {3714, 3757}, {3720, 37329}, {3740, 3811}, {3744, 50717}, {3746, 3753}, {3750, 4646}, {3752, 37573}, {3816, 13411}, {3824, 31795}, {3869, 44840}, {3870, 4662}, {3873, 16865}, {3874, 31445}, {3884, 50194}, {3890, 11011}, {3897, 20323}, {3898, 10222}, {3913, 10389}, {3916, 18398}, {3924, 37548}, {3931, 30117}, {3935, 3983}, {3957, 5260}, {4002, 48696}, {4004, 11010}, {4005, 27065}, {4101, 41002}, {4189, 32636}, {4255, 5272}, {4292, 25557}, {4294, 5880}, {4339, 4648}, {4420, 17536}, {4512, 11518}, {4647, 49485}, {4652, 4860}, {4653, 4906}, {4661, 17544}, {4670, 24424}, {4682, 5266}, {4689, 24443}, {4711, 6765}, {4857, 20288}, {4891, 17733}, {4999, 11019}, {5016, 29830}, {5049, 8666}, {5087, 11374}, {5119, 10107}, {5129, 25568}, {5221, 35258}, {5249, 6284}, {5250, 44663}, {5252, 10587}, {5253, 36003}, {5262, 37593}, {5284, 25917}, {5426, 5563}, {5550, 50393}, {5698, 11036}, {5703, 25681}, {5719, 21616}, {5722, 10198}, {5745, 6744}, {5799, 6176}, {5853, 9710}, {5886, 24299}, {5919, 33895}, {6001, 37615}, {6261, 10246}, {6666, 6743}, {6675, 10916}, {6910, 17728}, {6912, 12680}, {6914, 13373}, {6920, 14872}, {6986, 7957}, {7283, 49483}, {7686, 10267}, {7987, 40726}, {8162, 36846}, {8227, 33597}, {8261, 16139}, {8720, 42053}, {8726, 10178}, {9614, 37525}, {9943, 11496}, {9956, 10197}, {9957, 30147}, {10180, 42443}, {10181, 40658}, {10572, 31936}, {10580, 30478}, {10884, 15726}, {10896, 31266}, {10912, 37556}, {11020, 15823}, {11024, 34607}, {11038, 11106}, {11113, 13407}, {11235, 17614}, {11495, 12651}, {12109, 22276}, {12128, 25405}, {12437, 24389}, {12514, 15934}, {12609, 15171}, {12688, 18444}, {12699, 13151}, {13742, 38047}, {13745, 51003}, {15170, 49600}, {16394, 51061}, {16826, 50200}, {17045, 18589}, {17054, 17594}, {17063, 37574}, {17201, 20880}, {17320, 41874}, {17441, 41591}, {17554, 38057}, {17558, 24477}, {17588, 46909}, {17688, 31306}, {17691, 27475}, {18221, 34744}, {18253, 24391}, {18527, 25639}, {18530, 31493}, {19267, 30116}, {19851, 49470}, {19862, 50394}, {19883, 50395}, {19919, 24475}, {21842, 50242}, {21935, 29689}, {22935, 32557}, {24316, 41312}, {24325, 50054}, {24541, 37722}, {24953, 26015}, {25364, 49740}, {26102, 50199}, {26117, 33124}, {26729, 33100}, {28639, 34830}, {31165, 34195}, {31272, 41541}, {37552, 37674}, {37594, 49480}, {38025, 45085}, {38028, 44222}, {38034, 44286}, {41245, 50400}, {46934, 50237}, {47358, 50430}, {49484, 49598}, {49511, 49728}, {50243, 51111}, {50396, 51108}, {50397, 51110}, {51034, 51595}

X(51715) = midpoint of X(i) and X(j) for these {i,j}: {1, 405}, {3303, 19860}, {6872, 10404}
X(51715) = reflection of X(i) in X(j) for these {i,j}: {10, 50205}, {5302, 405}, {8728, 1125}
X(51715) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 958, 34791}, {1, 1001, 960}, {1, 3555, 15570}, {1, 5234, 3243}, {1, 5247, 49478}, {1, 5251, 3555}, {1, 5259, 72}, {1, 5436, 958}, {1, 16478, 1100}, {1, 31435, 12635}, {37, 41239, 30618}, {72, 5259, 15254}, {497, 3616, 28628}, {551, 946, 11281}, {551, 35016, 1385}, {614, 19765, 4719}, {942, 5248, 4640}, {1001, 12635, 31435}, {2975, 29817, 17609}, {3601, 10582, 25524}, {3811, 11108, 3740}, {3897, 38314, 20323}, {5284, 34772, 25917}, {5703, 26105, 25681}, {5886, 24299, 37837}, {11281, 49736, 946}, {11496, 18443, 9943}, {12635, 31435, 960}, {25055, 37571, 17614}


X(51716) = MIDPOINT OF X(1) AND X(407)

Barycentrics    2*a^7 - a^5*b^2 + 3*a^4*b^3 - 2*a^3*b^4 - 4*a^2*b^5 + a*b^6 + b^7 + 4*a^5*b*c + a^4*b^2*c - 4*a*b^5*c - b^6*c - a^5*c^2 + a^4*b*c^2 + 8*a^3*b^2*c^2 + 4*a^2*b^3*c^2 - a*b^4*c^2 - 3*b^5*c^2 + 3*a^4*c^3 + 4*a^2*b^2*c^3 + 8*a*b^3*c^3 + 3*b^4*c^3 - 2*a^3*c^4 - a*b^2*c^4 + 3*b^3*c^4 - 4*a^2*c^5 - 4*a*b*c^5 - 3*b^2*c^5 + a*c^6 - b*c^6 + c^7 : :

X(51716) lies on these lines: {1, 407}, {30, 551}, {56, 24159}, {1437, 3649}, {1710, 3338}, {3145, 7742}, {3485, 14016}, {12047, 40985}, {14529, 39542}, {15253, 35650}, {16193, 51616}, {37737, 37836}

X(51716) = midpoint of X(1) and X(407)


X(51717) = MIDPOINT OF X(1) AND X(411)

Barycentrics    a*(2*a^6 - 3*a^5*b - 3*a^4*b^2 + 6*a^3*b^3 - 3*a*b^5 + b^6 - 3*a^5*c + 4*a^4*b*c - 3*a^3*b^2*c - 3*a^2*b^3*c + 6*a*b^4*c - b^5*c - 3*a^4*c^2 - 3*a^3*b*c^2 + 10*a^2*b^2*c^2 - 3*a*b^3*c^2 - b^4*c^2 + 6*a^3*c^3 - 3*a^2*b*c^3 - 3*a*b^2*c^3 + 2*b^3*c^3 + 6*a*b*c^4 - b^2*c^4 - 3*a*c^5 - b*c^5 + c^6) : :
X(51717) = 3 X[5731] + X[37437], 3 X[3576] - X[6906], 5 X[3616] - X[6895], X[5691] - 3 X[17577], 5 X[7987] - 3 X[17549], 3 X[17530] - 2 X[19925]

X(51717) lies on these lines: {1, 411}, {3, 214}, {10, 37837}, {20, 37525}, {30, 551}, {80, 6960}, {104, 6597}, {165, 11682}, {515, 6842}, {516, 2646}, {519, 33597}, {550, 26287}, {758, 11012}, {944, 45700}, {950, 1319}, {958, 15064}, {962, 37571}, {993, 6261}, {1125, 6831}, {1479, 5731}, {1484, 11715}, {1768, 5303}, {2320, 3146}, {2801, 2975}, {2802, 11014}, {3149, 30147}, {3428, 22836}, {3576, 5248}, {3616, 6895}, {3622, 43161}, {3647, 5887}, {3678, 6326}, {3754, 6905}, {3874, 11249}, {3884, 10902}, {3892, 10680}, {3897, 5691}, {3898, 10267}, {4084, 37623}, {4301, 24929}, {4757, 5535}, {4973, 5884}, {5250, 7987}, {5267, 6001}, {5440, 43174}, {5443, 6840}, {5444, 6972}, {5536, 34195}, {5563, 10122}, {5690, 50841}, {5732, 24644}, {5836, 40262}, {5837, 10164}, {5882, 49627}, {6702, 6949}, {6909, 37616}, {6941, 38161}, {6962, 10573}, {7580, 34471}, {8666, 18446}, {9943, 13624}, {10167, 37605}, {10176, 45770}, {10884, 37618}, {11813, 31789}, {12005, 22765}, {12512, 50371}, {12758, 14795}, {13464, 24299}, {15680, 34789}, {17530, 19925}, {17614, 37298}, {21625, 24928}, {22753, 30143}, {28194, 33596}, {36002, 51683}

X(51717) = midpoint of X(i) and X(j) for these {i,j}: {1, 411}, {11012, 21740}, {11014, 11491}
X(51717) = reflection of X(6831) in X(1125)
X(51717) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 40257, 3878}, {946, 1385, 35016}, {993, 6261, 31803}, {5884, 26286, 4973}, {22765, 33858, 12005}


X(51718) = MIDPOINT OF X(1) AND X(427)

Barycentrics    2*a^7 - 3*a^5*b^2 - a^4*b^3 - 2*a^3*b^4 + 3*a*b^6 + b^7 - a^4*b^2*c + b^6*c - 3*a^5*c^2 - a^4*b*c^2 - 3*a*b^4*c^2 - b^5*c^2 - a^4*c^3 - b^4*c^3 - 2*a^3*c^4 - 3*a*b^2*c^4 - b^3*c^4 - b^2*c^5 + 3*a*c^6 + b*c^6 + c^7 : :
X(51718) = X[8] - 5 X[31236], X[22] - 5 X[3616], X[378] + 3 X[5603], 3 X[3576] - X[44239], 7 X[3622] + X[7391], 3 X[3653] - X[44261], 3 X[5886] - X[15760], X[7502] - 3 X[38028], 3 X[10246] + X[31723], 3 X[25055] - X[44210], X[31133] + 3 X[38314], 3 X[38022] - X[44262], 3 X[38034] - X[44263]

X(51718) lies on these lines: {1, 427}, {8, 31236}, {22, 3616}, {30, 551}, {378, 5603}, {952, 39504}, {1125, 6676}, {2781, 11735}, {3576, 44239}, {3622, 7391}, {3653, 44261}, {3656, 44218}, {5886, 15760}, {7502, 38028}, {10246, 31723}, {12699, 44249}, {13413, 18357}, {15950, 34036}, {17111, 37729}, {18570, 22791}, {25055, 44210}, {31133, 38314}, {31162, 44285}, {34773, 44288}, {38022, 44262}, {38034, 44263}

X(51718) = midpoint of X(i) and X(j) for these {i,j}: {1, 427}, {3656, 44218}, {12699, 44249}, {18570, 22791}, {31162, 44285}, {34773, 44288}
X(51718) = reflection of X(i) in X(j) for these {i,j}: {6676, 1125}, {18357, 13413}


X(51719) = MIDPOINT OF X(1) AND X(428)

Barycentrics    2*a^7 + 2*a^6*b + a^5*b^2 + a^4*b^3 - 2*a^3*b^4 - 2*a^2*b^5 - a*b^6 - b^7 + 2*a^6*c + a^4*b^2*c - 2*a^2*b^4*c - b^6*c + a^5*c^2 + a^4*b*c^2 + 16*a^3*b^2*c^2 + 4*a^2*b^3*c^2 + a*b^4*c^2 + b^5*c^2 + a^4*c^3 + 4*a^2*b^2*c^3 + b^4*c^3 - 2*a^3*c^4 - 2*a^2*b*c^4 + a*b^2*c^4 + b^3*c^4 - 2*a^2*c^5 + b^2*c^5 - a*c^6 - b*c^6 - c^7 : :
X(51719) = X[3575] + 5 X[11522], X[4301] + 2 X[9825], 3 X[5603] + X[7576], X[6756] + 2 X[13464], X[7667] - 3 X[25055], 3 X[25055] + X[34657], 2 X[7734] - 3 X[19883], 3 X[19875] - X[34656], X[34603] + 3 X[38314], X[34634] - 3 X[38314], X[34664] - 3 X[38021]

X(51719) lies on these lines: {1, 428}, {2, 8193}, {10, 10128}, {30, 551}, {517, 10127}, {1125, 10691}, {3575, 11522}, {4301, 9825}, {5434, 34036}, {5603, 7576}, {6756, 13464}, {7667, 25055}, {7714, 9798}, {7734, 19883}, {11113, 48833}, {19875, 34656}, {34603, 34634}, {34664, 38021}, {37439, 37546}, {48810, 51687}

X(51719) = midpoint of X(i) and X(j) for these {i,j}: {1, 428}, {7667, 34657}, {34603, 34634}
X(51719) = reflection of X(i) in X(j) for these {i,j}: {10, 10128}, {10691, 1125}
X(51719) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {25055, 34657, 7667}, {34603, 38314, 34634}


X(51720) = MIDPOINT OF X(1) AND X(429)

Barycentrics    2*a^7 - 3*a^5*b^2 - a^4*b^3 - 2*a^3*b^4 + 3*a*b^6 + b^7 - 3*a^4*b^2*c - 2*a^3*b^3*c + 2*a^2*b^4*c + 2*a*b^5*c + b^6*c - 3*a^5*c^2 - 3*a^4*b*c^2 + 4*a^3*b^2*c^2 - 2*a^2*b^3*c^2 - 3*a*b^4*c^2 - b^5*c^2 - a^4*c^3 - 2*a^3*b*c^3 - 2*a^2*b^2*c^3 - 4*a*b^3*c^3 - b^4*c^3 - 2*a^3*c^4 + 2*a^2*b*c^4 - 3*a*b^2*c^4 - b^3*c^4 + 2*a*b*c^5 - b^2*c^5 + 3*a*c^6 + b*c^6 + c^7 : :
X(51720) = X[2960] - 9 X[25055], 5 X[3616] - X[16049], 3 X[5603] + X[7414], 3 X[5886] - X[37361]

X(51720) lies on these lines: {1, 429}, {30, 551}, {496, 23304}, {2778, 11735}, {2915, 11365}, {2960, 25055}, {3616, 16049}, {5603, 7414}, {5886, 37361}, {11376, 38336}, {15569, 37737}

X(51720) = midpoint of X(1) and X(429)


X(51721) = MIDPOINT OF X(1) AND X(440)

Barycentrics    2*a^7 - 4*a^6*b - 5*a^5*b^2 + 5*a^4*b^3 - 2*a^2*b^5 + 3*a*b^6 + b^7 - 4*a^6*c - 8*a^5*b*c + 3*a^4*b^2*c + 10*a^3*b^3*c - 2*a*b^5*c + b^6*c - 5*a^5*c^2 + 3*a^4*b*c^2 + 20*a^3*b^2*c^2 + 10*a^2*b^3*c^2 - 3*a*b^4*c^2 - b^5*c^2 + 5*a^4*c^3 + 10*a^3*b*c^3 + 10*a^2*b^2*c^3 + 4*a*b^3*c^3 - b^4*c^3 - 3*a*b^2*c^4 - b^3*c^4 - 2*a^2*c^5 - 2*a*b*c^5 - b^2*c^5 + 3*a*c^6 + b*c^6 + c^7 : :
X(51721) = X[8] - 5 X[31256], X[27] - 5 X[3616], X[3151] + 7 X[3622], 3 X[3576] - X[44243], 3 X[3653] - X[48369], 3 X[5603] + X[30266], 3 X[5886] - X[15762], X[31153] + 3 X[38314]

X(51721) lies on these lines: {1, 440}, {8, 31256}, {27, 3616}, {30, 551}, {497, 37098}, {1001, 36011}, {1125, 6678}, {1762, 31435}, {2822, 11728}, {3151, 3622}, {3576, 44243}, {3653, 48369}, {4234, 41874}, {4653, 41003}, {5603, 30266}, {5799, 30143}, {5886, 15762}, {8680, 15569}, {16418, 24316}, {18589, 24929}, {24424, 39544}, {25363, 50059}, {31153, 38314}

X(51721) = midpoint of X(1) and X(440)
X(51721) = reflection of X(6678) in X(1125)


X(51722) = MIDPOINT OF X(1) AND X(441)

Barycentrics    6*a^9 + 2*a^8*b - 7*a^7*b^2 - 3*a^6*b^3 + a^5*b^4 + a^4*b^5 - 5*a^3*b^6 - a^2*b^7 + 5*a*b^8 + b^9 + 2*a^8*c - 3*a^6*b^2*c + a^4*b^4*c - a^2*b^6*c + b^8*c - 7*a^7*c^2 - 3*a^6*b*c^2 + 6*a^5*b^2*c^2 + 2*a^4*b^3*c^2 + 5*a^3*b^4*c^2 + a^2*b^5*c^2 - 4*a*b^6*c^2 - 3*a^6*c^3 + 2*a^4*b^2*c^3 + a^2*b^4*c^3 + a^5*c^4 + a^4*b*c^4 + 5*a^3*b^2*c^4 + a^2*b^3*c^4 - 2*a*b^4*c^4 - 2*b^5*c^4 + a^4*c^5 + a^2*b^2*c^5 - 2*b^4*c^5 - 5*a^3*c^6 - a^2*b*c^6 - 4*a*b^2*c^6 - a^2*c^7 + 5*a*c^8 + b*c^8 + c^9 : :
X(51722) = X[297] - 5 X[3616], X[401] + 7 X[3622], X[3241] + 3 X[44578], 3 X[3576] - X[44248], 3 X[5603] + X[44252], 3 X[5886] - X[44228], 3 X[10246] + X[44231], 3 X[25055] - X[44216], 3 X[38314] + X[40884]

X(51722) lies on these lines: {1, 441}, {10, 44335}, {30, 551}, {297, 3616}, {401, 3622}, {519, 44346}, {1125, 44334}, {3241, 44578}, {3576, 44248}, {5603, 44252}, {5886, 44228}, {10246, 44231}, {25055, 44216}, {30143, 44336}, {38314, 40884}

X(51722) = midpoint of X(1) and X(441)
X(51722) = reflection of X(i) in X(j) for these {i,j}: {10, 44335}, {44334, 1125}


X(51723) = MIDPOINT OF X(1) AND X(443)

Barycentrics    a^3*b + a^2*b^2 - a*b^3 - b^4 + a^3*c + 14*a^2*b*c + 5*a*b^2*c + a^2*c^2 + 5*a*b*c^2 + 2*b^2*c^2 - a*c^3 - c^4 : :
X(51723) = X[452] - 5 X[3616], 7 X[3622] + X[37435], 7 X[3622] - X[41864]

X(51723) lies on these lines: {1, 142}, {2, 6762}, {8, 44841}, {9, 11037}, {10, 3742}, {20, 38316}, {30, 551}, {226, 452}, {354, 21677}, {388, 10582}, {442, 24386}, {495, 9843}, {515, 6849}, {527, 31435}, {553, 5250}, {908, 46934}, {942, 5837}, {950, 4666}, {958, 999}, {960, 5542}, {962, 6173}, {1001, 4298}, {1056, 5795}, {1191, 3664}, {1219, 29627}, {1616, 4675}, {1697, 9776}, {2136, 11024}, {2886, 21625}, {3085, 6692}, {3158, 17580}, {3295, 12436}, {3306, 10587}, {3333, 5745}, {3475, 8583}, {3555, 24393}, {3622, 4313}, {3624, 21075}, {3636, 12609}, {3671, 25557}, {3720, 23675}, {3753, 12640}, {3812, 12915}, {3816, 3947}, {3833, 10915}, {3848, 12607}, {3873, 24564}, {3931, 24171}, {3982, 11415}, {4208, 24392}, {4301, 10179}, {4308, 21617}, {4314, 42819}, {4323, 30379}, {4339, 35227}, {4355, 5698}, {4423, 12527}, {4428, 12512}, {4646, 24175}, {4667, 16466}, {4673, 24199}, {4847, 17609}, {5049, 8728}, {5257, 21384}, {5289, 12563}, {5290, 26105}, {5302, 38059}, {5316, 5550}, {5438, 10578}, {5439, 31397}, {5794, 6744}, {5836, 12855}, {5880, 12575}, {5882, 30143}, {5883, 11362}, {5886, 6260}, {6743, 42871}, {6764, 38200}, {6765, 17582}, {6904, 10389}, {8158, 38122}, {8227, 9842}, {8582, 15888}, {9710, 38204}, {9797, 40333}, {9856, 43177}, {10165, 11249}, {10175, 10942}, {10177, 12680}, {10404, 40998}, {10586, 31266}, {10588, 31249}, {10864, 38037}, {11019, 25466}, {11036, 15829}, {11038, 11523}, {11106, 41857}, {13405, 16411}, {13407, 25055}, {13464, 37611}, {14986, 25525}, {15808, 21616}, {15985, 49511}, {17244, 17480}, {20420, 43175}, {24177, 37548}, {25881, 46897}, {29639, 46190}, {34701, 38314}, {38049, 43149}, {41813, 50109}, {45085, 51099}, {49600, 51103}

X(51723) = midpoint of X(i) and X(j) for these {i,j}: {1, 443}, {37435, 41864}
X(51723) = reflection of X(11108) in X(1125)
X(51723) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 24178, 3755}, {1125, 12577, 958}, {1125, 18250, 8167}, {1125, 21620, 3452}, {3600, 3616, 5436}, {3622, 5249, 12053}


X(51724) = MIDPOINT OF X(1) AND X(452)

Barycentrics    4*a^4 - a^3*b - 3*a^2*b^2 + a*b^3 - b^4 - a^3*c - 14*a^2*b*c - 5*a*b^2*c - 3*a^2*c^2 - 5*a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4 : :
X(51724) = 2 X[1125] + X[41864], 5 X[3616] - X[37435], 3 X[3817] - 2 X[6849]

X(51724) lies on these lines: {1, 329}, {4, 38316}, {10, 1001}, {30, 551}, {40, 47357}, {55, 9843}, {142, 15171}, {390, 11024}, {392, 40661}, {443, 497}, {516, 8726}, {519, 31435}, {958, 40270}, {960, 3244}, {993, 21625}, {1058, 5436}, {1210, 1621}, {2886, 19862}, {3158, 17559}, {3189, 3646}, {3485, 3636}, {3616, 4304}, {3622, 4311}, {3663, 41874}, {3671, 34489}, {3742, 31730}, {3746, 8582}, {3748, 21075}, {3817, 6849}, {3874, 5572}, {3986, 40963}, {4292, 4666}, {4294, 10582}, {4301, 30143}, {4342, 30147}, {4428, 6684}, {4847, 5259}, {5049, 50241}, {5084, 10389}, {5129, 6765}, {5248, 11019}, {5493, 5883}, {5791, 18530}, {5795, 6767}, {5837, 12433}, {5882, 10179}, {6259, 10246}, {6675, 24386}, {6700, 26105}, {6744, 12514}, {7682, 10267}, {9623, 12541}, {10164, 11248}, {10580, 31424}, {11235, 19883}, {12635, 51071}, {15170, 21627}, {15808, 28628}, {16411, 25440}, {16845, 24392}, {16854, 46916}, {18250, 43179}, {21620, 42819}, {24171, 29820}, {33771, 45204}, {34649, 51100}, {37423, 43166}, {38053, 41869}, {47742, 51073}

X(51724) = midpoint of X(i) and X(j) for these {i,j}: {1, 452}, {443, 41864}
X(51724) = reflection of X(i) in X(j) for these {i,j}: {10, 11108}, {443, 1125}
X(51724) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1001, 24389, 38059}, {4294, 10582, 12436}, {5129, 8236, 6765}


X(51725) = MIDPOINT OF X(1) AND X(468)

Barycentrics    6*a^7 + 2*a^6*b - 5*a^5*b^2 - a^4*b^3 - 6*a^3*b^4 - 2*a^2*b^5 + 5*a*b^6 + b^7 + 2*a^6*c - a^4*b^2*c - 2*a^2*b^4*c + b^6*c - 5*a^5*c^2 - a^4*b*c^2 + 16*a^3*b^2*c^2 + 4*a^2*b^3*c^2 - 5*a*b^4*c^2 - b^5*c^2 - a^4*c^3 + 4*a^2*b^2*c^3 - b^4*c^3 - 6*a^3*c^4 - 2*a^2*b*c^4 - 5*a*b^2*c^4 - b^3*c^4 - 2*a^2*c^5 - b^2*c^5 + 5*a*c^6 + b*c^6 + c^7 : :
X(51725) = 3 X[1] + X[47321], 3 X[468] - X[47321], 2 X[37911] + X[47491], X[23] + 7 X[3622], 3 X[186] + 5 X[10595], 3 X[403] + X[944], X[858] - 5 X[3616], X[962] + 3 X[44280], X[1482] + 3 X[44214], X[1483] + 3 X[44282], X[3242] + 3 X[47455], 3 X[47455] - X[47506], 4 X[3636] + X[37897], X[3751] - 3 X[47459], 3 X[5603] + X[10295], X[5690] - 3 X[44452], X[5691] - 3 X[10151], 3 X[5886] - X[10297], X[7426] + 3 X[38314], 3 X[38314] - X[47593], X[7575] + 3 X[10283], 7 X[9624] - X[47339], 2 X[9956] - 3 X[44911], 3 X[10246] + X[11799], 2 X[12512] - 3 X[47114], 2 X[13464] + X[37934], 2 X[13607] + 3 X[37942], X[15122] - 3 X[38028], 7 X[15808] - 2 X[47629], 3 X[16475] - X[47277], 5 X[16491] + X[47279], X[16496] + 5 X[47456], X[18323] - 5 X[18493], X[20070] - 9 X[37941], 3 X[25055] - X[47097], 5 X[30745] - 13 X[46934], X[32113] + 3 X[38315], X[37904] + 5 X[51105], 3 X[44246] + X[48661], 3 X[47240] - X[50254], X[47311] - 7 X[51110], 2 X[47454] + X[49465]

X(51725) lies on these lines: {1, 468}, {2, 47472}, {3, 47471}, {4, 47469}, {5, 47476}, {6, 47477}, {7, 47470}, {8, 47489}, {9, 47507}, {10, 37911}, {23, 3622}, {30, 551}, {145, 47490}, {186, 10595}, {403, 944}, {515, 37984}, {518, 47457}, {858, 3616}, {962, 44280}, {1125, 5159}, {1482, 44214}, {1483, 44282}, {1503, 11735}, {3109, 16272}, {3241, 47488}, {3242, 47455}, {3243, 47508}, {3244, 47492}, {3564, 11720}, {3625, 47537}, {3632, 47536}, {3633, 47533}, {3636, 37897}, {3655, 47332}, {3656, 47333}, {3679, 47493}, {3751, 47459}, {4663, 47460}, {4669, 47540}, {4677, 47535}, {5603, 10295}, {5690, 44452}, {5691, 10151}, {5886, 10297}, {7286, 34036}, {7426, 38314}, {7575, 10283}, {9624, 47339}, {9798, 37777}, {9956, 44911}, {10246, 11799}, {12512, 47114}, {12699, 47308}, {13464, 37934}, {13607, 37942}, {13869, 16309}, {15122, 38028}, {15808, 47629}, {16304, 47274}, {16322, 47273}, {16475, 47277}, {16491, 47279}, {16496, 47456}, {18323, 18493}, {18481, 47309}, {20070, 37941}, {22791, 47335}, {25055, 47097}, {30745, 46934}, {31162, 47031}, {32113, 38315}, {34641, 47538}, {34747, 47531}, {34773, 47336}, {37904, 51105}, {44246, 48661}, {47240, 50254}, {47310, 50811}, {47311, 51110}, {47334, 50824}, {47356, 47473}, {47358, 47545}, {47454, 49465}, {47494, 51093}, {47496, 51071}

X(51725) = midpoint of X(i) and X(j) for these {i,j}: {1, 468}, {2, 47472}, {3, 47471}, {4, 47469}, {5, 47476}, {6, 47477}, {7, 47470}, {8, 47489}, {9, 47507}, {10, 47491}, {145, 47490}, {551, 47495}, {3109, 16272}, {3241, 47488}, {3242, 47506}, {3243, 47508}, {3244, 47492}, {3625, 47537}, {3632, 47536}, {3633, 47533}, {3655, 47332}, {3656, 47333}, {3679, 47493}, {4669, 47540}, {4677, 47535}, {7426, 47593}, {12699, 47308}, {13869, 16309}, {16304, 47274}, {16322, 47273}, {18481, 47309}, {22791, 47335}, {31162, 47031}, {34641, 47538}, {34747, 47531}, {34773, 47336}, {47310, 50811}, {47334, 50824}, {47356, 47473}, {47358, 47545}, {47494, 51093}, {47496, 51071}
X(51725) = reflection of X(i) in X(j) for these {i,j}: {10, 37911}, {4663, 47460}, {5159, 1125}
X(51725) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3242, 47455, 47506}, {7426, 38314, 47593}


X(51726) = X(6)X(6059)&X(25)X(31)

Barycentrics    a^2*(a - b - c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - a^2*b^2 + a^2*b*c - b^3*c - a^2*c^2 + 2*b^2*c^2 - b*c^3) : :

X(51726) lies on these lines: {6, 6059}, {19, 2175}, {25, 31}, {154, 7337}, {184, 1096}, {204, 1397}, {240, 7193}, {243, 1944}, {281, 2330}, {692, 14571}, {1118, 26888}, {1172, 1859}, {1430, 26884}, {1456, 1875}, {1857, 11429}, {1957, 3955}, {1974, 40987}, {2223, 8750}, {7076, 26890}, {19133, 36010}, {30456, 44087}, {34068, 36140}

X(51726) = isogonal conjugate of the isotomic conjugate of X(243)
X(51726) = polar conjugate of the isotomic conjugate of X(1951)
X(51726) = X(243)-Ceva conjugate of X(1951)
X(51726) = X(i)-isoconjugate of X(j) for these (i,j): {2, 40843}, {63, 1952}, {69, 1937}, {75, 296}, {76, 1949}, {304, 1945}, {307, 37142}, {525, 41206}, {1214, 35145}, {1231, 2249}, {24018, 41207}
X(51726) = X(i)-Dao conjugate of X(j) for these (i, j): (206, 296), (3162, 1952), (32664, 40843), (39032, 304), (39033, 76), (39035, 305), (39036, 561), (39037, 69)
X(51726) = crosspoint of X(1430) and X(2202)
X(51726) = crossdifference of every pair of points on line {307, 6332}
X(51726) = barycentric product X(i)*X(j) for these {i,j}: {1, 2202}, {4, 1951}, {6, 243}, {9, 1430}, {19, 1936}, {25, 1944}, {29, 42669}, {31, 1948}, {281, 26884}, {450, 7106}, {607, 5088}, {608, 7360}, {650, 23353}, {663, 1981}, {851, 1172}, {1096, 6518}, {1400, 15146}, {1949, 41500}, {2204, 44150}, {2299, 8680}, {4183, 51647}, {7016, 41368}, {7107, 41497}, {7108, 44096}, {17963, 41499}, {31623, 44112}
X(51726) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 1952}, {31, 40843}, {32, 296}, {243, 76}, {560, 1949}, {851, 1231}, {1430, 85}, {1936, 304}, {1944, 305}, {1948, 561}, {1951, 69}, {1973, 1937}, {1974, 1945}, {1981, 4572}, {2202, 75}, {2204, 37142}, {2299, 35145}, {15146, 28660}, {23353, 4554}, {26884, 348}, {32676, 41206}, {32713, 41207}, {42669, 307}, {44096, 1943}, {44112, 1214}


X(51727) = ISOGONAL CONJUGATE OF X(50245)

Barycentrics    a^2*((2 + Sqrt[3])*(-a^2 + b^2 + c^2) + 6*S) : :

X(51727) lies on these lines: {3, 6}, {4, 50246}, {13, 42280}, {17, 42228}, {18, 43880}, {398, 35738}, {485, 42236}, {590, 3367}, {632, 42564}, {1588, 3392}, {1656, 36453}, {2041, 3412}, {2042, 42991}, {2044, 41101}, {2045, 36467}, {3068, 3391}, {3071, 3366}, {3091, 42247}, {3146, 42249}, {3411, 32788}, {6459, 42257}, {6561, 42238}, {7583, 42237}, {7585, 42256}, {8252, 42593}, {8960, 16267}, {9112, 44647}, {10654, 35731}, {11542, 42240}, {13886, 42218}, {14814, 32787}, {16808, 42243}, {16960, 42200}, {16962, 18585}, {16964, 35730}, {18586, 41108}, {19107, 42245}, {22615, 42182}, {22927, 33350}, {31412, 42188}, {31414, 41112}, {31487, 49947}, {34552, 43228}, {35740, 42117}, {35813, 41944}, {35823, 42993}, {36709, 41020}, {40693, 42282}, {41973, 42279}, {42157, 42230}, {42173, 43014}, {42180, 42269}, {42185, 42895}, {42201, 42896}, {42210, 42630}, {42212, 42273}, {42214, 42271}, {42215, 42235}, {42231, 43776}, {42233, 42779}, {42234, 42432}, {42251, 43879}, {42278, 42992}, {43376, 49825}

X(51727) = isogonal conjugate of X(50245)
X(51727) = X(1)-isoconjugate of X(50245)
X(51727) = barycentric quotient X(6)/X(50245)
X(51727) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 6419, 62}, {6, 3389, 3365}, {15, 371, 3364}, {61, 62, 3364}, {61, 3389, 62}, {61, 5238, 372}, {62, 35739, 22238}, {1151, 11485, 3390}, {3068, 42255, 3391}, {6425, 22236, 3}, {16964, 35730, 42281}


X(51728) = ISOGONAL CONJUGATE OF X(50246)

Barycentrics    a^2*(3*(2 - Sqrt[3])*(-a^2 + b^2 + c^2) + 2*S) : :

X(51728) lies on these lines: {2, 42195}, {3, 6}, {4, 50245}, {13, 6561}, {14, 590}, {17, 3071}, {18, 5418}, {20, 42197}, {140, 42170}, {203, 2066}, {303, 35741}, {395, 35255}, {396, 42215}, {398, 8981}, {485, 16964}, {550, 42168}, {615, 16241}, {1328, 49907}, {1587, 42150}, {1588, 42152}, {2041, 19106}, {2042, 33416}, {2044, 16809}, {2046, 16966}, {2067, 7005}, {3068, 10654}, {3070, 42157}, {3200, 9676}, {3206, 9677}, {3366, 18581}, {3367, 18582}, {3391, 19107}, {3392, 32790}, {3411, 9680}, {5318, 42225}, {5321, 18538}, {5334, 8972}, {5335, 42255}, {5339, 8976}, {6306, 32552}, {6459, 40693}, {6560, 36967}, {6564, 36970}, {6565, 37832}, {7583, 42147}, {7584, 16772}, {8252, 36453}, {8253, 37835}, {8960, 41973}, {9540, 40694}, {9541, 10653}, {9681, 42990}, {10576, 42175}, {10577, 42936}, {10819, 36209}, {11488, 23273}, {13665, 42154}, {13785, 16644}, {13846, 41108}, {13951, 43238}, {13966, 42945}, {14241, 36446}, {14813, 16967}, {14814, 42100}, {16645, 35734}, {16808, 18585}, {16960, 42230}, {16961, 42199}, {16965, 42222}, {18586, 42914}, {18762, 23302}, {19054, 42511}, {22891, 35851}, {23249, 42085}, {23251, 42204}, {23261, 42206}, {23263, 42921}, {23267, 42119}, {23269, 43770}, {23303, 34551}, {31412, 42160}, {31454, 42991}, {32786, 42092}, {32787, 41101}, {35730, 43792}, {35732, 42111}, {35740, 42146}, {35815, 42934}, {35820, 43632}, {35821, 42813}, {35823, 41943}, {36208, 49216}, {36449, 41100}, {36468, 42532}, {36470, 42975}, {36969, 42263}, {37641, 43509}, {41112, 43257}, {42086, 42196}, {42087, 42226}, {42090, 42256}, {42099, 42172}, {42101, 42182}, {42102, 42180}, {42112, 42189}, {42113, 42282}, {42114, 42187}, {42121, 42167}, {42123, 42169}, {42124, 42562}, {42133, 42190}, {42134, 42188}, {42144, 42240}, {42151, 42638}, {42158, 42173}, {42161, 43408}, {42177, 42266}, {42178, 42919}, {42179, 42186}, {42181, 42184}, {42192, 42209}, {42194, 42207}, {42216, 42942}, {42243, 42630}, {42251, 42895}, {42259, 42434}, {42262, 42488}, {42265, 42814}, {42270, 42581}, {42279, 42918}, {42417, 42506}, {42930, 43315}, {42935, 43339}, {42998, 43512}

X(51728) = isogonal conjugate of X(50246)
X(51728) = Schoutte-circle-inverse of X(3389)} X(51728) = X(1)-isoconjugate of X(50246)
X(51728) = barycentric quotient X(6)/X(50246)
X(51728) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 3364, 3390}, {3, 6200, 10645}, {3, 42115, 6412}, {6, 6200, 16}, {6, 11480, 6398}, {15, 16, 3389}, {15, 3364, 16}, {15, 10646, 6200}, {15, 35739, 11480}, {61, 371, 3389}, {372, 11481, 16}, {2046, 42174, 16966}, {3311, 22236, 3365}, {6199, 11485, 6}, {6200, 10645, 3389}, {6412, 42115, 3365}, {32785, 42198, 3366}, {32790, 42221, 3392}, {34755, 35739, 6398}, {36446, 42589, 14241}


X(51729) = MIDPOINT OF X(6) AND X(21)

Barycentrics    a*(2*a^5 - 2*a^3*b^2 - 4*a^3*b*c - 4*a^2*b^2*c - a*b^3*c - b^4*c - 2*a^3*c^2 - 4*a^2*b*c^2 - 4*a*b^2*c^2 - b^3*c^2 - a*b*c^3 - b^2*c^3 - b*c^4) : :
X(51729) = X[69] - 5 X[15674], X[191] + 3 X[16475], X[193] + 7 X[15676], 2 X[575] + X[31649], X[576] + 2 X[12104], X[599] - 3 X[15671], X[1350] - 3 X[21161], X[1351] + 3 X[28443], X[1992] + 3 X[15672], X[2475] - 5 X[3618], X[3651] - 3 X[5085], X[3751] + 3 X[5426], 3 X[5050] + X[13743], 2 X[5097] + 3 X[28463], X[5499] - 3 X[38110], X[6175] - 3 X[47352], X[8550] + 2 X[16617], X[8584] + 2 X[15673], 7 X[10541] - X[33557], X[11263] - 3 X[38049], 5 X[12017] - X[16117], 3 X[14561] - X[37230], X[15534] + 5 X[15675], X[15678] + 5 X[51185], X[15680] + 7 X[51171], X[16126] - 5 X[16491], 3 X[25406] + X[37433], 5 X[31254] - 7 X[47355], 3 X[31650] - X[48876], X[33858] - 3 X[38029], X[34195] - 3 X[38315], 3 X[38035] - X[49177], 3 X[38047] - X[47033]

X(51729) lies on these lines: {6, 21}, {30, 182}, {69, 15674}, {141, 5138}, {191, 16475}, {193, 15676}, {442, 3589}, {511, 5428}, {518, 35016}, {524, 15670}, {542, 44257}, {575, 31649}, {576, 12104}, {599, 15671}, {758, 1386}, {1350, 21161}, {1351, 28443}, {1428, 3649}, {1469, 5427}, {1503, 6841}, {1992, 15672}, {2194, 6703}, {2330, 10543}, {2475, 3618}, {2771, 6593}, {2795, 5026}, {2854, 16164}, {3564, 10021}, {3651, 5085}, {3751, 5426}, {3818, 46028}, {3827, 8261}, {4265, 27086}, {5050, 13743}, {5097, 28463}, {5320, 5743}, {5499, 38110}, {5846, 19133}, {6175, 47352}, {7193, 17045}, {8550, 16617}, {8584, 15673}, {9021, 39772}, {9024, 35204}, {10541, 33557}, {11263, 38049}, {12017, 16117}, {14561, 37230}, {15534, 15675}, {15678, 51185}, {15680, 51171}, {16126, 16491}, {16160, 48906}, {17768, 51150}, {20423, 28460}, {24471, 41547}, {25406, 37433}, {26543, 27083}, {29012, 44258}, {29181, 44238}, {31254, 47355}, {31650, 48876}, {33858, 38029}, {34195, 38315}, {34380, 44254}, {36740, 37308}, {36741, 37286}, {38035, 49177}, {38047, 47033}, {44669, 47373}

X(51729) = midpoint of X(i) and X(j) for these {i,j}: {6, 21}, {16160, 48906}, {20423, 28460}
X(51729) = reflection of X(i) in X(j) for these {i,j}: {141, 6675}, {442, 3589}, {3818, 46028}


X(51730) = MIDPOINT OF X(6) AND X(24)

Barycentrics    a^2*(a^10 - 2*a^8*b^2 + 2*a^4*b^6 - a^2*b^8 - 2*a^8*c^2 + 2*a^6*b^2*c^2 - 3*a^4*b^4*c^2 + 4*a^2*b^6*c^2 - b^8*c^2 - 3*a^4*b^2*c^4 - 6*a^2*b^4*c^4 + b^6*c^4 + 2*a^4*c^6 + 4*a^2*b^2*c^6 + b^4*c^6 - a^2*c^8 - b^2*c^8) : :
X(51730) = X[8550] + 2 X[21841], 5 X[1974] - X[26883], 2 X[575] + X[37440], X[1350] - 3 X[15078], 5 X[3618] - X[37444], 3 X[5050] + X[7517], 3 X[5085] - X[11413], 3 X[14561] - X[18404], 3 X[14853] + X[35471], X[31180] - 3 X[47352], 5 X[31282] - 7 X[47355], X[31304] + 7 X[51171], 3 X[38317] - 2 X[49673]

X(51730) lies on these lines: {6, 24}, {25, 11746}, {26, 17710}, {30, 182}, {141, 16238}, {156, 32165}, {184, 12007}, {186, 44439}, {206, 8550}, {235, 1503}, {389, 41593}, {511, 37814}, {518, 51694}, {524, 44211}, {542, 44270}, {569, 6329}, {575, 9969}, {1147, 3629}, {1177, 3426}, {1192, 46374}, {1350, 15078}, {1351, 15040}, {1353, 44490}, {1495, 15580}, {2781, 44269}, {2854, 20771}, {3003, 37813}, {3060, 27866}, {3098, 43615}, {3200, 51208}, {3201, 51209}, {3517, 34777}, {3518, 9973}, {3532, 34778}, {3564, 33563}, {3589, 11585}, {3618, 37444}, {3818, 44235}, {5012, 17810}, {5026, 39811}, {5050, 7517}, {5085, 11413}, {5102, 34148}, {5622, 36990}, {6467, 15582}, {6593, 19138}, {6776, 18374}, {7506, 41579}, {8547, 51519}, {9019, 44259}, {10110, 50664}, {10282, 32366}, {11245, 44078}, {11579, 48662}, {12106, 41714}, {12283, 19596}, {12294, 15578}, {12893, 34155}, {13567, 41729}, {14491, 19151}, {14561, 18404}, {14853, 35471}, {15139, 37643}, {16196, 19126}, {19118, 34117}, {19142, 19149}, {19161, 44102}, {20300, 45179}, {23042, 44489}, {28343, 40825}, {29012, 44271}, {29181, 44240}, {31180, 47352}, {31282, 47355}, {31304, 51171}, {31725, 46264}, {32046, 39561}, {35228, 50649}, {36989, 41613}, {38110, 44491}, {38317, 49673}, {44247, 48881}

X(51730) = midpoint of X(i) and X(j) for these {i,j}: {6, 24}, {31725, 46264}
X(51730) = reflection of X(i) in X(j) for these {i,j}: {141, 16238}, {3098, 43615}, {3818, 44235}, {11585, 3589}, {48881, 44247}
X(51730) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {182, 19136, 5480}, {182, 19154, 19127}, {19121, 43815, 5085}


X(51731) = MIDPOINT OF X(6) AND X(27)

Barycentrics    2*a^8 + 3*a^5*b^3 - 2*a^4*b^4 - 2*a^3*b^5 - a*b^7 + 3*a^5*b^2*c + 3*a^4*b^3*c - 2*a^3*b^4*c - 2*a^2*b^5*c - a*b^6*c - b^7*c + 3*a^5*b*c^2 + 8*a^4*b^2*c^2 + 4*a^3*b^3*c^2 + a*b^5*c^2 + 3*a^5*c^3 + 3*a^4*b*c^3 + 4*a^3*b^2*c^3 + 4*a^2*b^3*c^3 + a*b^4*c^3 + b^5*c^3 - 2*a^4*c^4 - 2*a^3*b*c^4 + a*b^3*c^4 - 2*a^3*c^5 - 2*a^2*b*c^5 + a*b^2*c^5 + b^3*c^5 - a*b*c^6 - a*c^7 - b*c^7 : :
X(51731) = X[1350] - 3 X[21162], X[3151] - 5 X[3618], 3 X[5085] - X[30266], X[31153] - 3 X[47352], 5 X[31256] - 7 X[47355], X[31292] + 7 X[51171]

X(51731) lies on these lines: {6, 27}, {30, 182}, {141, 6678}, {440, 3589}, {518, 51697}, {1350, 21162}, {1503, 15762}, {3151, 3618}, {5085, 30266}, {7683, 23583}, {8680, 49481}, {24256, 46182}, {29181, 44243}, {31153, 47352}, {31256, 47355}, {31292, 51171}

X(51731) = midpoint of X(6) and X(27)
X(51731) = reflection of X(i) in X(j) for these {i,j}: {141, 6678}, {440, 3589}


X(51732) = MIDPOINT OF X(6) AND X(140)

Barycentrics    6*a^6 - 9*a^4*b^2 + 2*a^2*b^4 + b^6 - 9*a^4*c^2 - 16*a^2*b^2*c^2 - b^4*c^2 + 2*a^2*c^4 - b^2*c^4 + c^6 : :
X(51732) = 3 X[2] + X[1353], 9 X[2] - X[11898], 3 X[1353] + X[11898], X[3] + 7 X[51171], X[5] - 5 X[3618], X[5] + 3 X[5050], 3 X[5] + X[6776], 5 X[5] - X[18440], 5 X[3618] + 3 X[5050], 15 X[3618] + X[6776], 25 X[3618] - X[18440], 9 X[5050] - X[6776], 15 X[5050] + X[18440], 5 X[6776] + 3 X[18440], X[6] + 3 X[38110], 3 X[6] + X[48876], X[140] - 3 X[38110], 3 X[140] - X[48876], 9 X[38110] - X[48876], X[182] + 3 X[597], 5 X[182] + 3 X[5476], 3 X[182] + X[5480], 5 X[182] - X[44882], 17 X[182] - X[48896], 9 X[182] - X[48898], 7 X[182] + X[48901], 15 X[182] + X[48904], 11 X[182] + X[51163], 5 X[597] - X[5476], 9 X[597] - X[5480], 3 X[597] - X[18583], 15 X[597] + X[44882], 51 X[597] + X[48896], 27 X[597] + X[48898], 21 X[597] - X[48901], 45 X[597] - X[48904], 33 X[597] - X[51163], 9 X[5476] - 5 X[5480], 3 X[5476] - 5 X[18583], 3 X[5476] + X[44882], 51 X[5476] + 5 X[48896], 27 X[5476] + 5 X[48898], 21 X[5476] - 5 X[48901], 9 X[5476] - X[48904], 33 X[5476] - 5 X[51163], X[5480] - 3 X[18583], 5 X[5480] + 3 X[44882], 17 X[5480] + 3 X[48896], and many others

X(51732) lies on these lines: {2, 1353}, {3, 51171}, {5, 3618}, {6, 140}, {30, 182}, {69, 632}, {125, 37649}, {141, 16239}, {143, 11574}, {156, 19137}, {184, 10128}, {193, 3526}, {206, 23411}, {376, 50987}, {468, 15018}, {511, 3530}, {518, 51700}, {524, 10124}, {542, 10109}, {546, 14561}, {547, 1352}, {548, 5085}, {549, 1351}, {550, 12017}, {569, 9825}, {575, 3564}, {576, 12108}, {599, 47598}, {631, 5093}, {1350, 12100}, {1386, 5844}, {1503, 3850}, {1570, 14138}, {1595, 19118}, {1656, 14912}, {1843, 15026}, {1992, 11539}, {2330, 15172}, {2854, 13392}, {3090, 33748}, {3313, 14449}, {3523, 44456}, {3525, 51170}, {3533, 20080}, {3545, 48662}, {3620, 46219}, {3627, 25406}, {3629, 22234}, {3751, 38028}, {3815, 39764}, {3818, 12811}, {3851, 39874}, {3853, 38136}, {3860, 48889}, {3861, 19130}, {5032, 15694}, {5034, 5305}, {5052, 40108}, {5055, 5921}, {5066, 11179}, {5092, 33923}, {5095, 34128}, {5097, 10168}, {5159, 14389}, {5422, 6676}, {5462, 44277}, {5477, 34127}, {5640, 37897}, {5644, 6353}, {5663, 32300}, {5690, 16475}, {5901, 38049}, {5943, 15448}, {5946, 9967}, {5965, 34573}, {6403, 37935}, {6642, 18919}, {6677, 10601}, {6756, 13353}, {7499, 34545}, {7508, 36741}, {7542, 15047}, {7605, 46818}, {7734, 43650}, {7792, 10011}, {8359, 11842}, {8550, 18358}, {8584, 11540}, {8703, 14848}, {8705, 44264}, {9306, 13361}, {9822, 32205}, {10096, 47453}, {10169, 15577}, {10257, 47461}, {10516, 12812}, {10519, 11482}, {10541, 12103}, {10592, 39901}, {10593, 39900}, {11231, 51196}, {11245, 11548}, {11451, 12283}, {11465, 12272}, {11645, 51138}, {11695, 34382}, {12101, 38072}, {12102, 29012}, {12362, 19129}, {13383, 44503}, {13394, 47316}, {13413, 20300}, {13434, 31829}, {13562, 43588}, {13910, 44657}, {13972, 44656}, {14683, 37990}, {14805, 37934}, {14810, 14891}, {14892, 47353}, {14893, 43273}, {14927, 15687}, {15019, 47582}, {15043, 18438}, {15045, 16976}, {15080, 37910}, {15118, 32423}, {15122, 47459}, {15583, 23042}, {15683, 51173}, {15691, 48872}, {15699, 40330}, {15700, 51028}, {15702, 50962}, {15703, 50974}, {15712, 33878}, {15718, 51172}, {15721, 50981}, {15759, 41153}, {16619, 47456}, {16989, 37451}, {18357, 38167}, {18538, 49229}, {18762, 49228}, {18914, 21637}, {19121, 37471}, {19697, 32448}, {19924, 50972}, {20190, 29181}, {20423, 34200}, {20582, 41984}, {21167, 37517}, {21356, 50986}, {21841, 39588}, {23300, 50138}, {23336, 44480}, {25338, 47455}, {26206, 36753}, {31831, 36153}, {31833, 43815}, {32113, 44234}, {32455, 40107}, {34126, 51198}, {34417, 47630}, {34507, 51126}, {35255, 35841}, {35256, 35840}, {35283, 44109}, {35404, 50963}, {37119, 46444}, {37648, 37911}, {37942, 39871}, {38071, 51537}, {38111, 51190}, {38112, 51192}, {38113, 51194}, {39893, 42583}, {39894, 42582}, {41257, 44288}, {41988, 51022}, {43102, 51208}, {43103, 51209}, {44452, 47277}, {44900, 47451}, {46031, 47474}, {47355, 48154}

X(51732) = midpoint of X(i) and X(j) for these {i,j}: {6, 140}, {143, 11574}, {182, 18583}, {546, 48906}, {547, 50979}, {548, 21850}, {575, 3589}, {3313, 14449}, {3853, 46264}, {5066, 11179}, {8550, 18358}, {12007, 24206}, {12103, 31670}, {13562, 43588}, {14893, 43273}, {18357, 39870}, {20423, 34200}, {25555, 50664}, {32455, 40107}
X(51732) = reflection of X(i) in X(j) for these {i,j}: {141, 16239}, {3628, 3589}, {3818, 12811}, {3861, 19130}, {9822, 32205}, {11812, 10168}, {14891, 50983}, {18358, 35018}, {33923, 5092}, {51022, 41988}
X(51732) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 38110, 140}, {182, 597, 18583}, {182, 5476, 44882}, {575, 24206, 12007}, {3090, 33748, 39899}, {3589, 12007, 24206}, {3618, 5050, 5}, {5032, 15694, 50978}, {5085, 21850, 548}, {5476, 48904, 5480}, {5480, 44882, 48904}, {8550, 38317, 18358}, {8981, 13966, 31401}, {11179, 38079, 5066}, {12017, 14853, 550}, {14561, 48906, 546}, {18358, 38317, 35018}, {38136, 46264, 3853}, {38167, 39870, 18357}, {47352, 50979, 547}


X(51733) = MIDPOINT OF X(6) AND X(186)

Barycentrics    a^2*(2*a^10 - 4*a^8*b^2 + 4*a^4*b^6 - 2*a^2*b^8 - 4*a^8*c^2 + 4*a^6*b^2*c^2 - 3*a^4*b^4*c^2 + 6*a^2*b^6*c^2 - 3*b^8*c^2 - 3*a^4*b^2*c^4 - 8*a^2*b^4*c^4 + 3*b^6*c^4 + 4*a^4*c^6 + 6*a^2*b^2*c^6 + 3*b^4*c^6 - 2*a^2*c^8 - 3*b^2*c^8) : :
X(51733) = 2 X[182] + X[32217], X[5480] - 4 X[47457], X[44882] + 2 X[47581], 2 X[468] + X[8550], X[403] - 3 X[47455], 3 X[5622] + X[14157], X[5622] + 3 X[19128], X[14157] - 3 X[18374], X[14157] - 9 X[19128], X[18374] - 3 X[19128], 3 X[15462] - X[22115], 2 X[575] + X[7575], 4 X[575] - X[15826], 2 X[7575] + X[15826], X[576] + 2 X[18571], X[37934] + 2 X[47460], X[1350] - 3 X[37941], X[1351] + 3 X[37955], X[1353] + 3 X[16532], X[10151] - 5 X[47456], X[2070] + 3 X[5050], X[2071] - 3 X[5085], X[21663] + 3 X[44102], X[3153] - 5 X[3618], X[3629] + 4 X[16531], X[3629] + 2 X[47569], X[6776] + 3 X[37943], X[6776] + 5 X[47453], 3 X[37943] - 5 X[47453], X[7464] - 7 X[10541], X[8584] + 2 X[18579], X[37936] + 4 X[50664], X[10295] + 5 X[47458], X[10602] + 3 X[37917], X[11477] + 5 X[37952], 2 X[12007] + X[32113], 5 X[12017] - X[18859], X[13619] + 3 X[14853], 3 X[14561] - X[18403], X[18572] - 4 X[25555], 4 X[20190] - X[37950], X[32449] + 2 X[47583], X[37931] + 3 X[47459], X[37938] - 3 X[38110], 2 X[47571] + X[48881]

X(51733) lies on these lines: {6, 186}, {23, 3796}, {24, 12061}, {30, 182}, {51, 37969}, {54, 47280}, {110, 44569}, {141, 44452}, {154, 37962}, {184, 468}, {206, 37942}, {403, 1503}, {511, 15646}, {518, 51701}, {524, 15462}, {542, 44282}, {567, 44265}, {575, 5946}, {576, 18571}, {578, 37934}, {858, 37649}, {1092, 47546}, {1176, 47096}, {1177, 10293}, {1316, 30540}, {1350, 37941}, {1351, 37955}, {1353, 16532}, {1495, 12099}, {1974, 10151}, {2030, 28343}, {2070, 5050}, {2071, 5085}, {2072, 3589}, {2330, 10149}, {2393, 44272}, {2781, 21663}, {2854, 51393}, {3098, 37968}, {3153, 3618}, {3564, 44234}, {3629, 16531}, {3818, 46031}, {5012, 7426}, {5054, 37283}, {5092, 34152}, {5157, 47090}, {6593, 13754}, {6776, 37943}, {7464, 10541}, {8549, 37777}, {8584, 18579}, {9777, 21284}, {9969, 37936}, {10110, 37967}, {10169, 37458}, {10257, 19131}, {10295, 15033}, {10540, 11579}, {10601, 37980}, {10602, 15577}, {10605, 34117}, {11003, 37907}, {11477, 37952}, {11563, 48906}, {11645, 44872}, {11745, 13353}, {12007, 32113}, {12017, 18859}, {13198, 15448}, {13352, 47333}, {13473, 19124}, {13619, 14853}, {14561, 18403}, {14912, 47450}, {15118, 18400}, {15122, 44491}, {15350, 18358}, {15873, 16619}, {16308, 37930}, {16311, 36178}, {16386, 19121}, {16976, 19126}, {18572, 25555}, {19118, 44883}, {19137, 44912}, {19138, 44665}, {19142, 32344}, {20190, 37950}, {21639, 44668}, {23324, 37984}, {23332, 44077}, {29012, 44283}, {29181, 44246}, {31726, 46264}, {32233, 50435}, {32449, 47583}, {32599, 50461}, {34397, 47296}, {37814, 40929}, {37827, 39522}, {37931, 47459}, {37938, 38110}, {37991, 39560}, {43650, 47097}, {44470, 47549}, {44489, 47464}, {44503, 45171}, {47571, 48881}

X(51733) = midpoint of X(i) and X(j) for these {i,j}: {6, 186}, {5622, 18374}, {10540, 11579}, {11563, 48906}, {14912, 47450}, {31726, 46264}, {32233, 50435}, {32599, 50461}
X(51733) = reflection of X(i) in X(j) for these {i,j}: {141, 44452}, {2072, 3589}, {3098, 37968}, {3818, 46031}, {18358, 15350}, {34152, 5092}, {37942, 47454}, {47569, 16531}
X(51733) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {182, 19154, 44882}, {575, 7575, 15826}, {5622, 19128, 18374}, {19127, 47544, 32217}, {19154, 47581, 32217}


X(51734) = MIDPOINT OF X(6) AND X(235)

Barycentrics    2*a^12 - 7*a^10*b^2 + 5*a^8*b^4 + 6*a^6*b^6 - 8*a^4*b^8 + a^2*b^10 + b^12 - 7*a^10*c^2 + 6*a^8*b^2*c^2 - 14*a^6*b^4*c^2 + 20*a^4*b^6*c^2 - 3*a^2*b^8*c^2 - 2*b^10*c^2 + 5*a^8*c^4 - 14*a^6*b^2*c^4 - 24*a^4*b^4*c^4 + 2*a^2*b^6*c^4 - b^8*c^4 + 6*a^6*c^6 + 20*a^4*b^2*c^6 + 2*a^2*b^4*c^6 + 4*b^6*c^6 - 8*a^4*c^8 - 3*a^2*b^2*c^8 - b^4*c^8 + a^2*c^10 - 2*b^2*c^10 + c^12 : :
X(51734) = X[24] + 3 X[14853], 5 X[3618] - X[11413], 3 X[5050] + X[31725], X[11585] - 3 X[14561], 3 X[15078] + X[51212]

X(51734) lies on these lines: {6, 235}, {24, 14853}, {30, 182}, {428, 13198}, {468, 44439}, {511, 16238}, {518, 51702}, {1503, 44226}, {3089, 34777}, {3564, 44235}, {3589, 16196}, {3618, 11413}, {5050, 31725}, {5972, 21849}, {9969, 11808}, {11430, 11745}, {11585, 14561}, {12241, 41593}, {15078, 51212}, {16252, 32366}, {18390, 41729}, {19360, 23300}, {20423, 44211}, {21850, 37814}, {29181, 44247}, {31670, 44240}, {41714, 44233}, {44271, 48906}, {44493, 49673}

X(51734) = midpoint of X(i) and X(j) for these {i,j}: {6, 235}, {20423, 44211}, {21850, 37814}, {31670, 44240}, {44271, 48906}
X(51734) = reflection of X(16196) in X(3589)


X(51735) = MIDPOINT OF X(6) AND X(237)

Barycentrics    a^2*(2*a^6*b^2 - 2*a^4*b^4 + 2*a^6*c^2 + 2*a^4*b^2*c^2 - a^2*b^4*c^2 + b^6*c^2 - 2*a^4*c^4 - a^2*b^2*c^4 - 2*b^4*c^4 + b^2*c^6) : :
X(51735) = 5 X[3618] - X[14957], 3 X[5085] - X[47620], X[36189] - 3 X[47455], X[46518] + 7 X[51171]

X(51735) lies on these lines: {6, 160}, {30, 182}, {53, 460}, {98, 32716}, {110, 22329}, {184, 5306}, {230, 9418}, {511, 34990}, {512, 2030}, {518, 51703}, {524, 36213}, {1084, 1692}, {1495, 6784}, {1503, 7668}, {1513, 15920}, {1576, 1691}, {1976, 1989}, {2086, 14567}, {2871, 3003}, {3589, 3613}, {3618, 14957}, {5085, 47620}, {5118, 27088}, {5305, 40643}, {5651, 11168}, {6530, 19128}, {9306, 13468}, {11081, 44122}, {11086, 44083}, {13240, 34098}, {16308, 44114}, {19153, 21177}, {32738, 32741}, {36189, 47455}, {37809, 50672}, {39176, 44102}, {39560, 45900}, {46518, 51171}

X(51735) = midpoint of X(6) and X(237)
X(51735) = reflection of X(21531) in X(3589)
X(51735) = crossdifference of every pair of points on line {599, 23878}


X(51736) = MIDPOINT OF X(6) AND X(297)

Barycentrics    2*a^10 - a^8*b^2 - 4*a^4*b^6 + 2*a^2*b^8 + b^10 - a^8*c^2 + 4*a^6*b^2*c^2 + 2*a^4*b^4*c^2 - 4*a^2*b^6*c^2 - b^8*c^2 + 2*a^4*b^2*c^4 + 4*a^2*b^4*c^4 - 4*a^4*c^6 - 4*a^2*b^2*c^6 + 2*a^2*c^8 - b^2*c^8 + c^10 : :
X(51736) = X[287] + 3 X[37765], X[401] - 5 X[3618], X[599] - 3 X[44576], X[1992] + 3 X[44579], 3 X[5085] - X[44252], X[7473] - 3 X[47455], 3 X[14561] - X[44231], 3 X[14853] + X[35474], 3 X[15014] + X[30227], X[34360] - 3 X[44650], 3 X[38049] - X[51711], X[40853] + 7 X[51171], X[40884] - 3 X[47352], 4 X[44335] - 5 X[51126], 2 X[44346] - 3 X[48310]

X(51736) lies on these lines: {6, 297}, {30, 182}, {141, 44334}, {216, 441}, {287, 37765}, {401, 3618}, {468, 44114}, {511, 23583}, {518, 51704}, {524, 3163}, {525, 2492}, {599, 44576}, {1503, 39569}, {1992, 44579}, {2393, 46097}, {5085, 44252}, {7473, 47455}, {7829, 10110}, {14561, 44231}, {14853, 35474}, {15014, 30227}, {18487, 41145}, {24256, 44340}, {29181, 44248}, {34360, 44650}, {38049, 51711}, {40853, 51171}, {40884, 47352}, {44335, 51126}, {44342, 50609}, {44346, 48310}

X(51736) = midpoint of X(i) and X(j) for these {i,j}: {6, 297}, {18487, 41145}
X(51736) = reflection of X(i) in X(j) for these {i,j}: {141, 44334}, {441, 3589}


X(51737) = MIDPOINT OF X(6) AND X(376)

Barycentrics    8*a^6 - 5*a^4*b^2 - 2*a^2*b^4 - b^6 - 5*a^4*c^2 - 12*a^2*b^2*c^2 + b^4*c^2 - 2*a^2*c^4 + b^2*c^4 - c^6 : :
X(51737) = X[2] - 3 X[5085], 5 X[2] - 3 X[10516], X[2] + 3 X[25406], 5 X[2] - X[51023], 5 X[5085] - X[10516], 3 X[5085] + X[43273], 9 X[5085] - X[47353], 6 X[5085] - X[47354], 3 X[5085] - 2 X[50983], 15 X[5085] - X[51023], X[10516] + 5 X[25406], 3 X[10516] + 5 X[43273], 9 X[10516] - 5 X[47353], 6 X[10516] - 5 X[47354], 3 X[10516] - 10 X[50983], 3 X[10516] - X[51023], 3 X[25406] - X[43273], 9 X[25406] + X[47353], 6 X[25406] + X[47354], 3 X[25406] + 2 X[50983], 15 X[25406] + X[51023], 3 X[43273] + X[47353], 2 X[43273] + X[47354], X[43273] + 2 X[50983], 5 X[43273] + X[51023], 2 X[47353] - 3 X[47354], X[47353] - 6 X[50983], 5 X[47353] - 3 X[51023], X[47354] - 4 X[50983], 5 X[47354] - 2 X[51023], 10 X[50983] - X[51023], 2 X[3] + X[8550], X[4] - 7 X[10541], X[4] - 3 X[47352], 7 X[10541] - 3 X[47352], X[5] - 4 X[20190], 2 X[5] - 3 X[48310], 4 X[10168] - 3 X[48310], 8 X[20190] - 3 X[48310], 2 X[6] + X[48881], 3 X[182] - X[5476], 4 X[182] - X[5480], 5 X[182] - 2 X[18583], 2 X[182] + X[44882], 11 X[182] + X[48896], 5 X[182] + X[48898], 7 X[182] - X[48901], and many others

X(51737) lies on these lines: {2, 154}, {3, 524}, {4, 10541}, {5, 10168}, {6, 376}, {23, 20192}, {30, 182}, {40, 47356}, {69, 15692}, {74, 34319}, {98, 11168}, {140, 11178}, {141, 542}, {184, 43957}, {186, 41585}, {353, 5913}, {381, 3589}, {428, 19124}, {511, 8584}, {518, 51705}, {541, 6593}, {543, 14688}, {547, 3818}, {548, 576}, {550, 575}, {599, 3524}, {631, 11180}, {632, 18553}, {1003, 35423}, {1176, 11744}, {1350, 1992}, {1351, 15688}, {1352, 5054}, {1353, 14810}, {1386, 28194}, {1428, 3058}, {1513, 9774}, {1691, 5306}, {2030, 15048}, {2330, 5434}, {2393, 16836}, {2781, 15303}, {2883, 10984}, {3054, 11646}, {3098, 3629}, {3313, 14831}, {3522, 5032}, {3523, 15069}, {3530, 34507}, {3534, 5050}, {3543, 3618}, {3545, 36990}, {3549, 43592}, {3564, 12100}, {3576, 47358}, {3619, 15721}, {3627, 25555}, {3630, 14891}, {3631, 15700}, {3654, 5846}, {3655, 9041}, {3656, 38029}, {3763, 15702}, {3830, 14561}, {3839, 14927}, {3844, 38068}, {3845, 29012}, {3867, 7576}, {5033, 5309}, {5066, 38317}, {5071, 47355}, {5093, 15695}, {5097, 33751}, {5102, 33748}, {5135, 37428}, {5157, 15583}, {5158, 44248}, {5182, 8356}, {5254, 39560}, {5473, 22580}, {5474, 22579}, {5477, 8589}, {5621, 35921}, {5640, 47313}, {5642, 30739}, {5648, 15035}, {5655, 15462}, {5657, 50783}, {5892, 16776}, {5894, 34117}, {5921, 15708}, {5965, 15711}, {5969, 13354}, {6054, 37450}, {6055, 9830}, {6329, 14848}, {6644, 35707}, {6661, 34624}, {6749, 35474}, {7395, 44762}, {7426, 15080}, {7495, 9140}, {7496, 9143}, {7503, 15579}, {7540, 37471}, {7558, 16254}, {7606, 20112}, {7739, 40825}, {7967, 50790}, {8359, 37479}, {8370, 12203}, {8541, 37931}, {8593, 34473}, {8598, 22486}, {8705, 40280}, {8721, 33237}, {9019, 9730}, {9300, 50659}, {9530, 28343}, {9607, 44251}, {9744, 22110}, {9760, 33474}, {9762, 33475}, {9968, 15105}, {9971, 15045}, {10124, 18358}, {10164, 50781}, {10519, 15533}, {10606, 41719}, {10645, 51203}, {10646, 51200}, {10989, 14389}, {10991, 15810}, {11001, 14853}, {11003, 40112}, {11160, 15705}, {11177, 37455}, {11424, 34614}, {11539, 24206}, {11579, 37283}, {11623, 16509}, {11745, 34726}, {11812, 51137}, {11898, 15706}, {12041, 25329}, {12054, 37345}, {12177, 14830}, {12215, 37671}, {13567, 22352}, {13634, 17330}, {13635, 17392}, {13910, 35822}, {13972, 35823}, {14093, 32455}, {14677, 25556}, {14694, 32525}, {14893, 48884}, {14912, 15534}, {15018, 37901}, {15055, 41720}, {15074, 40929}, {15078, 35228}, {15311, 19153}, {15448, 47597}, {15471, 35485}, {15516, 48885}, {15578, 41729}, {15582, 17928}, {15682, 51164}, {15683, 48910}, {15685, 41153}, {15686, 21850}, {15687, 19130}, {15689, 48873}, {15690, 39561}, {15691, 48880}, {15693, 50955}, {15694, 18440}, {15697, 50976}, {15699, 25561}, {15701, 50958}, {15703, 51127}, {15709, 40330}, {15712, 40107}, {15713, 50988}, {15715, 40341}, {15716, 50961}, {15719, 50993}, {15759, 34380}, {15826, 47335}, {16226, 32191}, {17504, 48876}, {18382, 41256}, {18579, 34513}, {18800, 21163}, {18911, 44569}, {19133, 34618}, {19709, 50960}, {19710, 29317}, {19711, 50980}, {20791, 44280}, {22234, 44245}, {22489, 41019}, {23292, 31152}, {25565, 38071}, {26316, 37461}, {28204, 49524}, {28538, 39870}, {29323, 33699}, {31133, 37649}, {31162, 38023}, {32267, 44212}, {32274, 45311}, {33532, 37827}, {33749, 46853}, {34417, 47312}, {34613, 43651}, {34627, 38087}, {34648, 38089}, {34774, 44883}, {34782, 37515}, {35268, 37904}, {35303, 51012}, {35304, 51015}, {35404, 48895}, {36757, 41100}, {36758, 41101}, {37351, 41043}, {37352, 41042}, {37470, 47333}, {37513, 44218}, {38035, 50865}, {38115, 51195}, {38116, 50798}, {38118, 50796}, {38144, 50864}, {38146, 50862}, {40248, 44401}, {41149, 50962}, {41624, 47619}, {42528, 51206}, {42529, 51207}, {44268, 44668}, {44580, 51141}, {44820, 45336}, {44903, 48891}, {46475, 49737}, {47359, 50811}, {50805, 51145}, {50808, 51005}, {50810, 51000}, {50821, 50949}, {50824, 50998}, {50828, 51003}, {50871, 50953}, {50956, 51025}, {50963, 51026}, {50990, 51215}, {51120, 51153}, {51178, 51188}, {51179, 51187}

X(51737) = midpoint of X(i) and X(j) for these {i,j}: {2, 43273}, {3, 11179}, {6, 376}, {40, 47356}, {74, 34319}, {381, 46264}, {549, 48906}, {597, 44882}, {599, 6776}, {1350, 1992}, {3313, 14831}, {3534, 20423}, {3543, 48905}, {5085, 25406}, {5473, 22580}, {5474, 22579}, {8584, 50965}, {8703, 50979}, {9140, 32233}, {9143, 16010}, {10606, 41719}, {11001, 51024}, {12177, 14830}, {14912, 31884}, {15533, 50974}, {15534, 50967}, {15681, 31670}, {15683, 48910}, {15686, 21850}, {22165, 51136}, {41149, 50970}, {47359, 50811}, {50808, 51005}, {50810, 51000}, {50975, 51185}, {50993, 51176}, {51178, 51188}, {51179, 51187}
X(51737) = reflection of X(i) in X(j) for these {i,j}: {2, 50983}, {5, 10168}, {141, 549}, {381, 3589}, {549, 5092}, {597, 182}, {1351, 20583}, {1352, 20582}, {1992, 12007}, {3098, 34200}, {3534, 50971}, {3656, 51006}, {3818, 547}, {3830, 50959}, {5480, 597}, {8550, 11179}, {8584, 50979}, {10168, 20190}, {11178, 140}, {15533, 50982}, {15686, 48892}, {15687, 19130}, {16776, 5892}, {18358, 10124}, {19130, 46267}, {20112, 7606}, {21167, 17508}, {22165, 50977}, {32274, 45311}, {35404, 48895}, {39884, 25561}, {44903, 48891}, {45336, 44820}, {47354, 2}, {48880, 15691}, {48881, 376}, {48884, 14893}, {48889, 25565}, {50798, 50951}, {50805, 51145}, {50949, 50821}, {50955, 50991}, {50958, 51143}, {50962, 41149}, {50965, 8703}, {50977, 12100}, {50991, 50984}, {50998, 50824}, {51003, 50828}, {51022, 3845}, {51130, 41153}, {51132, 8584}, {51142, 50980}, {51143, 51139}
X(51737) = complement of X(47353)
X(51737) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5085, 50983}, {2, 6800, 35266}, {2, 25406, 43273}, {2, 51023, 10516}, {5, 10168, 48310}, {182, 44882, 5480}, {182, 48898, 18583}, {381, 12017, 38064}, {381, 38064, 3589}, {631, 11180, 21358}, {1352, 5054, 20582}, {1992, 10304, 1350}, {3524, 6776, 599}, {3534, 5050, 20423}, {3543, 3618, 38072}, {3656, 38029, 51006}, {3830, 14561, 50959}, {3845, 50987, 38110}, {5085, 43273, 2}, {5092, 48906, 141}, {5097, 33751, 48874}, {6055, 37451, 15597}, {10519, 15533, 50982}, {10519, 50974, 15533}, {11001, 14853, 51024}, {12017, 46264, 3589}, {12100, 50977, 21167}, {14848, 15681, 31670}, {14853, 50975, 11001}, {14912, 19708, 50967}, {14912, 33750, 31884}, {14912, 50967, 15534}, {15534, 31884, 50967}, {15687, 38079, 19130}, {15690, 39561, 51166}, {15698, 50974, 10519}, {15699, 39884, 25561}, {17508, 50977, 12100}, {18583, 48898, 51163}, {18583, 51163, 5480}, {18911, 47596, 44569}, {19130, 46267, 38079}, {19708, 50967, 31884}, {21167, 22165, 50977}, {21167, 51136, 22165}, {25565, 48889, 38071}, {33750, 50967, 19708}, {38064, 46264, 381}, {38072, 48905, 3543}, {38116, 50798, 50951}, {43273, 50983, 47354}, {44882, 51163, 48898}, {48892, 50664, 21850}, {50965, 50979, 51132}, {50971, 51138, 20423}, {51024, 51185, 14853}, {51159, 51160, 141}


X(51738) = MIDPOINT OF X(6) AND X(377)

Barycentrics    3*a^4*b^2 - 2*a^2*b^4 - b^6 + 8*a^4*b*c + 8*a^3*b^2*c + 2*a^2*b^3*c + 2*a*b^4*c + 3*a^4*c^2 + 8*a^3*b*c^2 + 4*a^2*b^2*c^2 + 2*a*b^3*c^2 + b^4*c^2 + 2*a^2*b*c^3 + 2*a*b^2*c^3 - 2*a^2*c^4 + 2*a*b*c^4 + b^2*c^4 - c^6 : :
X(51738) = X[69] - 5 X[50237], X[193] + 7 X[50794], X[599] - 3 X[50793], 5 X[3618] - X[6872], X[3629] + 4 X[50238], 5 X[3763] - 7 X[50393], 4 X[6329] + X[50239], X[8584] + 2 X[50396], 3 X[38047] - X[41229], 3 X[14561] - X[37234], X[31156] - 3 X[47352], 5 X[31259] - 7 X[47355], X[31295] + 7 X[51171], 2 X[32455] + 5 X[50713], 4 X[34573] - 5 X[50207], 3 X[48310] - 2 X[50202], 4 X[50205] - 5 X[51126], 8 X[50394] - 7 X[51128], 7 X[50795] - 8 X[51127]

X(51738) lies on these lines: {6, 377}, {10, 141}, {30, 182}, {69, 50237}, {193, 50794}, {405, 3589}, {511, 44222}, {524, 44217}, {599, 50793}, {1386, 48847}, {1503, 44229}, {3618, 6872}, {3629, 50238}, {3763, 50393}, {3867, 37398}, {4265, 36003}, {5256, 50201}, {6329, 50239}, {6703, 16353}, {7469, 13394}, {8584, 50396}, {13728, 38047}, {14561, 37234}, {16056, 22769}, {29012, 44286}, {29181, 37426}, {30810, 38186}, {31156, 47352}, {31259, 47355}, {31295, 51171}, {32455, 50713}, {34573, 50207}, {48310, 50202}, {50205, 51126}, {50394, 51128}, {50795, 51127}

X(51738) = midpoint of X(6) and X(377)
X(51738) = reflection of X(i) in X(j) for these {i,j}: {141, 8728}, {405, 3589}


X(51739) = MIDPOINT OF X(6) AND X(378)

Barycentrics    a^2*(a^10 - 2*a^8*b^2 + 2*a^4*b^6 - a^2*b^8 - 2*a^8*c^2 + 2*a^6*b^2*c^2 + 3*a^4*b^4*c^2 - 3*b^8*c^2 + 3*a^4*b^2*c^4 + 2*a^2*b^4*c^4 + 3*b^6*c^4 + 2*a^4*c^6 + 3*b^4*c^6 - a^2*c^8 - 3*b^2*c^8) : :
X(51739) = X[22] - 3 X[5085], X[184] + 3 X[19124], 5 X[3618] - X[44440], X[7391] + 3 X[25406], 3 X[9818] - X[44754], 3 X[10516] - 5 X[31236], 7 X[10541] - X[12082], 5 X[12017] - X[12083], 3 X[14853] + X[35481], 3 X[38317] - 2 X[46029]

X(51739) lies on these lines: {3, 9019}, {4, 18374}, {6, 74}, {22, 5085}, {30, 182}, {110, 47353}, {184, 427}, {185, 15579}, {186, 9971}, {381, 15462}, {511, 18570}, {518, 51707}, {524, 13352}, {542, 44287}, {550, 44491}, {567, 11179}, {575, 40647}, {576, 7689}, {578, 6247}, {599, 43574}, {1176, 48905}, {1351, 32608}, {1352, 22115}, {1576, 32444}, {1593, 34117}, {1597, 19153}, {1691, 6785}, {1843, 35228}, {1995, 16165}, {2393, 11430}, {3431, 12367}, {3520, 37473}, {3541, 34118}, {3564, 44236}, {3589, 15760}, {3618, 44440}, {3818, 10272}, {3851, 43811}, {5012, 31133}, {5034, 19220}, {5092, 5892}, {5094, 32274}, {5157, 44239}, {5169, 32233}, {5943, 44260}, {6403, 37970}, {6593, 31861}, {6644, 16776}, {7391, 25406}, {7526, 44469}, {7527, 22151}, {7699, 14157}, {8262, 18580}, {8541, 44281}, {8549, 11425}, {8705, 39242}, {9306, 47354}, {9544, 51023}, {9703, 18440}, {9818, 44754}, {10110, 20190}, {10168, 44262}, {10516, 31236}, {10541, 12082}, {11003, 31105}, {11422, 16010}, {11424, 13568}, {11427, 34944}, {11464, 19596}, {11745, 13336}, {12017, 12083}, {12038, 43130}, {12084, 44480}, {13367, 15582}, {13482, 15534}, {13630, 44494}, {14156, 24206}, {14853, 35481}, {15069, 34148}, {15578, 19161}, {15581, 19357}, {15872, 44679}, {15873, 16618}, {16387, 37648}, {18388, 36201}, {18475, 35707}, {19121, 48910}, {19126, 48881}, {19128, 35480}, {19129, 31670}, {19130, 44263}, {19131, 29181}, {21639, 50649}, {29012, 44288}, {29959, 51394}, {31723, 46264}, {34417, 37969}, {38317, 46029}, {39588, 44269}, {43650, 44210}

X(51739) = midpoint of X(i) and X(j) for these {i,j}: {6, 378}, {31133, 43273}, {31723, 46264}
X(51739) = reflection of X(i) in X(j) for these {i,j}: {3818, 39504}, {7502, 5092}, {15760, 3589}, {19127, 182}, {35707, 18475}, {44210, 50983}, {44262, 10168}, {44263, 19130}
X(51739) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 5621, 5890}, {182, 48901, 19154}, {5622, 15033, 6}


X(51740) = MIDPOINT OF X(6) AND X(401)

Barycentrics    2*a^10 - 2*a^8*b^2 - a^6*b^4 + a^2*b^8 - 2*a^8*c^2 - 2*a^6*b^2*c^2 + 3*a^4*b^4*c^2 + b^8*c^2 - a^6*c^4 + 3*a^4*b^2*c^4 - 2*a^2*b^4*c^4 - b^6*c^4 - b^4*c^6 + a^2*c^8 + b^2*c^8 : :
X(51740) = X[599] - 3 X[44575], 5 X[3618] - X[40853], 3 X[15013] - X[34360], 3 X[5085] - X[35474], 2 X[20582] - 3 X[44578], X[40885] - 3 X[47352], 2 X[44216] - 3 X[48310], 4 X[44334] - 5 X[51126], 8 X[44335] - 7 X[51128]

X(51740) lies on these lines: {6, 401}, {30, 182}, {95, 34573}, {141, 441}, {287, 524}, {297, 3589}, {518, 51711}, {599, 44575}, {1503, 1576}, {3618, 40853}, {3763, 43980}, {4048, 15013}, {5031, 46184}, {5085, 35474}, {7473, 8705}, {13196, 25327}, {20021, 23200}, {20582, 44578}, {23583, 29012}, {26206, 44329}, {29181, 44252}, {40885, 47352}, {44216, 48310}, {44334, 51126}, {44335, 51128}

X(51740) = midpoint of X(6) and X(401)
X(51740) = reflection of X(i) in X(j) for these {i,j}: {141, 441}, {297, 3589}


X(51741) = MIDPOINT OF X(6) AND X(402)

Barycentrics    (2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(3*a^10 - 2*a^8*b^2 - 9*a^6*b^4 + 11*a^4*b^6 - 2*a^2*b^8 - b^10 - 2*a^8*c^2 + 17*a^6*b^2*c^2 - 10*a^4*b^4*c^2 - 3*a^2*b^6*c^2 - 2*b^8*c^2 - 9*a^6*c^4 - 10*a^4*b^2*c^4 + 10*a^2*b^4*c^4 + 3*b^6*c^4 + 11*a^4*c^6 - 3*a^2*b^2*c^6 + 3*b^4*c^6 - 2*a^2*c^8 - 2*b^2*c^8 - c^10) : :
X(51741) = 3 X[6] + X[12583], 3 X[402] - X[12583], X[69] - 5 X[15183], X[1351] + 3 X[26451], X[1650] - 5 X[3618], X[3751] + 3 X[11831], X[4240] + 7 X[51171], 3 X[5050] + X[11251], 3 X[5182] + X[13179], 3 X[5622] + X[12369], X[6776] + 3 X[11897], X[11049] - 3 X[47352], 5 X[12017] - X[35241], X[12113] + 3 X[14853], X[12438] + 3 X[16475], 3 X[14912] + X[39886], 3 X[16190] + X[51212], 3 X[16210] + X[51192], X[34582] + 5 X[51185]

X(51741) lies on these lines: {6, 402}, {30, 182}, {69, 15183}, {518, 51712}, {1351, 26451}, {1386, 11910}, {1650, 3618}, {3589, 15184}, {3751, 11831}, {4240, 51171}, {5050, 11251}, {5182, 13179}, {5622, 12369}, {6776, 11897}, {9033, 32300}, {11049, 47352}, {11832, 19118}, {12017, 35241}, {12113, 14853}, {12438, 16475}, {14912, 39886}, {16190, 51212}, {16210, 51192}, {34582, 51185}

X(51741) = midpoint of X(6) and X(402)
X(51741) = reflection of X(15184) in X(3589)


X(51742) = MIDPOINT OF X(6) AND X(403)

Barycentrics    2*a^12 - 7*a^10*b^2 + 5*a^8*b^4 + 6*a^6*b^6 - 8*a^4*b^8 + a^2*b^10 + b^12 - 7*a^10*c^2 + 6*a^8*b^2*c^2 - 8*a^6*b^4*c^2 + 16*a^4*b^6*c^2 - 5*a^2*b^8*c^2 - 2*b^10*c^2 + 5*a^8*c^4 - 8*a^6*b^2*c^4 - 16*a^4*b^4*c^4 + 4*a^2*b^6*c^4 - b^8*c^4 + 6*a^6*c^6 + 16*a^4*b^2*c^6 + 4*a^2*b^4*c^6 + 4*b^6*c^6 - 8*a^4*c^8 - 5*a^2*b^2*c^8 - b^4*c^8 + a^2*c^10 - 2*b^2*c^10 + c^12 : :
X(51742) = X[4] + 5 X[47458], 2 X[5] + X[47549], 2 X[5476] + X[47544], X[5480] + 2 X[47457], 2 X[18583] + X[47581], X[186] + 3 X[14853], X[186] - 3 X[47455], 2 X[575] + X[47336], X[10151] + 3 X[47459], X[13851] + 3 X[44102], X[2071] - 5 X[3618], X[2072] - 3 X[14561], 2 X[3589] + X[47571], 3 X[5050] + X[31726], 3 X[5085] - X[16386], X[15122] - 4 X[25555], X[8550] + 2 X[37984], X[8550] - 4 X[47460], X[37984] + 2 X[47460], 2 X[12007] - 5 X[47461], 2 X[12007] + X[47474], 5 X[47461] + X[47474], 2 X[15471] + X[32274], X[32113] - 3 X[37943], X[34152] - 3 X[38110], X[37931] - 5 X[47456], 3 X[37941] + X[51212]

X(51742) lies on these lines: {4, 47458}, {5, 47549}, {6, 403}, {30, 182}, {51, 468}, {141, 44911}, {186, 14853}, {460, 18121}, {511, 14156}, {518, 51713}, {575, 47336}, {858, 10601}, {1503, 10151}, {1596, 10169}, {1899, 34117}, {2071, 3618}, {2072, 14561}, {2781, 16227}, {2854, 51425}, {3564, 34155}, {3589, 10257}, {5050, 31726}, {5085, 16386}, {5892, 15122}, {6000, 15118}, {6593, 44665}, {7426, 17810}, {8550, 18390}, {8705, 37971}, {9969, 11649}, {10110, 16619}, {11427, 37962}, {12007, 47461}, {12061, 21841}, {12828, 47296}, {14845, 25488}, {15350, 34380}, {15471, 32274}, {15577, 37951}, {15646, 21850}, {15826, 15873}, {16238, 40929}, {16306, 36183}, {16387, 37649}, {18382, 19118}, {19130, 23323}, {20423, 44214}, {31670, 44246}, {32113, 37943}, {34152, 38110}, {37931, 47456}, {37935, 47454}, {37941, 51212}, {44234, 47569}, {44282, 47556}, {44283, 48906}, {47114, 48881}

X(51742) = midpoint of X(i) and X(j) for these {i,j}: {6, 403}, {10257, 47571}, {14853, 47455}, {15646, 21850}, {20423, 44214}, {31670, 44246}, {44283, 48906}
X(51742) = reflection of X(i) in X(j) for these {i,j}: {141, 44911}, {10257, 3589}, {23323, 19130}, {37935, 47454}, {47556, 44282}, {47569, 44234}, {48881, 47114}
X(51742) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5476, 19136, 5480}, {19136, 47457, 47544}, {37984, 47460, 8550}, {47461, 47474, 12007}


X(51743) = MIDPOINT OF X(6) AND X(405)

Barycentrics    a*(a^5 - a^3*b^2 - 4*a^3*b*c - 4*a^2*b^2*c - a*b^3*c - b^4*c - a^3*c^2 - 4*a^2*b*c^2 - 2*a*b^2*c^2 - b^3*c^2 - a*b*c^3 - b^2*c^3 - b*c^4) : :
X(51743) = 3 X[16475] + X[41229], X[69] - 5 X[31259], X[193] + 7 X[50398], X[377] - 5 X[3618], X[599] - 3 X[50714], 5 X[3763] - 7 X[50795], 3 X[5050] + X[37234], 3 X[5085] - X[37426], 4 X[6329] + X[50241], X[6872] + 7 X[51171], 3 X[14561] - X[44229], 3 X[38049] - X[51706], 3 X[38064] - X[44284], 3 X[38110] - X[44222], 3 X[38136] - X[44286], X[44217] - 3 X[47352], 7 X[47355] - 5 X[50207], 3 X[48310] - 2 X[50395], 4 X[50394] - 5 X[51126]

X(51743) lies on these lines: {1, 6}, {30, 182}, {58, 16299}, {69, 17201}, {141, 50205}, {193, 50398}, {377, 3618}, {379, 38186}, {524, 50202}, {583, 13723}, {584, 1009}, {599, 50714}, {940, 50715}, {964, 19133}, {1428, 10404}, {1974, 37398}, {3416, 5278}, {3589, 5138}, {3740, 37060}, {3763, 50795}, {3844, 19732}, {4245, 22769}, {4383, 16353}, {4682, 19725}, {5047, 41610}, {5050, 37234}, {5085, 37426}, {5248, 22277}, {5640, 7469}, {6329, 50241}, {6872, 51171}, {11346, 47359}, {11357, 51003}, {14561, 44229}, {19723, 28538}, {19738, 38023}, {19742, 51192}, {20835, 36741}, {27632, 50717}, {36740, 37282}, {37492, 50204}, {38049, 51706}, {38064, 44284}, {38110, 44222}, {38136, 44286}, {44217, 47352}, {47355, 50207}, {47373, 48866}, {48310, 50395}, {48863, 49524}, {50394, 51126}

X(51743) = midpoint of X(6) and X(405)
X(51743) = reflection of X(i) in X(j) for these {i,j}: {141, 50205}, {8728, 3589}


X(51744) = MIDPOINT OF X(6) AND X(427)

Barycentrics    2*a^8 - 3*a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 + b^8 - 3*a^6*c^2 - 2*a^4*b^2*c^2 - 3*a^2*b^4*c^2 - 3*a^4*c^4 - 3*a^2*b^2*c^4 - 2*b^4*c^4 + 3*a^2*c^6 + c^8 : :
X(51744) = X[22] - 5 X[3618], 3 X[597] - X[19127], X[69] - 5 X[31236], X[378] + 3 X[14853], 3 X[5050] + X[31723], 3 X[5085] - X[44239], X[7391] + 7 X[51171], X[7502] - 3 X[38110], X[16618] - 4 X[25555], 3 X[14561] - X[15760], X[44210] - 3 X[47352], X[37969] - 3 X[47455], 3 X[38049] - X[51692], 3 X[38064] - X[44261], 3 X[38079] - X[44262], 3 X[38136] - X[44263]

X(51744) lies on these lines: {2, 16789}, {4, 19153}, {5, 44469}, {6, 66}, {22, 3618}, {30, 182}, {69, 31236}, {141, 9813}, {206, 3867}, {378, 14853}, {389, 2781}, {428, 18374}, {468, 9971}, {511, 44201}, {518, 51718}, {524, 21243}, {546, 6593}, {576, 12359}, {1177, 1885}, {1503, 18388}, {1594, 15141}, {1595, 34117}, {2393, 23292}, {3532, 38005}, {3564, 39504}, {3589, 5943}, {5050, 31723}, {5085, 44239}, {5133, 22151}, {5305, 7668}, {5486, 17813}, {5640, 16387}, {6677, 16776}, {7378, 41719}, {7391, 41256}, {7502, 38110}, {7699, 47474}, {7716, 31267}, {8550, 10250}, {9820, 43130}, {10024, 45034}, {10110, 16618}, {10300, 32154}, {10510, 37454}, {11064, 29959}, {11427, 32621}, {11536, 25328}, {13413, 18358}, {13567, 34177}, {14561, 15760}, {14865, 32262}, {16310, 37988}, {17810, 44210}, {18570, 21850}, {18907, 24270}, {20423, 37489}, {21637, 46026}, {23335, 44480}, {25488, 35370}, {31166, 36990}, {31670, 44249}, {34417, 47454}, {37969, 47455}, {38049, 51692}, {38064, 44261}, {38079, 44262}, {38136, 44263}, {39588, 45179}, {41585, 47449}, {42442, 47413}, {44288, 48906}

X(51744) = midpoint of X(i) and X(j) for these {i,j}: {6, 427}, {18570, 21850}, {20423, 44218}, {31670, 44249}, {44288, 48906}
X(51744) = reflection of X(i) in X(j) for these {i,j}: {6676, 3589}, {18358, 13413}
X(51744) = complement of X(16789)
X(51744) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {597, 5480, 19136}, {597, 19136, 47457}


X(51745) = MIDPOINT OF X(6) AND X(428)

Barycentrics    2*a^8 + 3*a^6*b^2 - a^4*b^4 - 3*a^2*b^6 - b^8 + 3*a^6*c^2 + 18*a^4*b^2*c^2 + 3*a^2*b^4*c^2 - a^4*c^4 + 3*a^2*b^2*c^4 + 2*b^4*c^4 - 3*a^2*c^6 - c^8 : :
X(51745) = X[7540] + 3 X[14848], X[7576] + 3 X[14853], X[7667] - 3 X[47352], 2 X[7734] - 3 X[48310], 4 X[23411] - X[34507], X[34634] - 3 X[38023], X[34656] - 3 X[38087], X[34664] - 3 X[38072]

X(51745) lies on these lines: {2, 37485}, {6, 428}, {30, 182}, {141, 10128}, {159, 7714}, {511, 10127}, {518, 51719}, {524, 9969}, {542, 10110}, {546, 37827}, {599, 17810}, {3564, 13451}, {3589, 10691}, {3861, 25328}, {5064, 23300}, {6593, 31830}, {6756, 37505}, {6995, 32621}, {7540, 14848}, {7576, 14853}, {7667, 47352}, {7734, 48310}, {8541, 47464}, {11745, 15644}, {13488, 15118}, {14449, 23410}, {15559, 32262}, {15873, 47354}, {20423, 36747}, {23411, 34507}, {34417, 47449}, {34634, 38023}, {34656, 38087}, {34664, 38072}, {41585, 47446}

X(51745) = midpoint of X(6) and X(428)
X(51745) = reflection of X(i) in X(j) for these {i,j}: {141, 10128}, {10691, 3589}


X(51746) = MIDPOINT OF X(6) AND X(441)

Barycentrics    6*a^10 - 5*a^8*b^2 - 2*a^6*b^4 - 4*a^4*b^6 + 4*a^2*b^8 + b^10 - 5*a^8*c^2 + 8*a^4*b^4*c^2 - 4*a^2*b^6*c^2 + b^8*c^2 - 2*a^6*c^4 + 8*a^4*b^2*c^4 - 2*b^6*c^4 - 4*a^4*c^6 - 4*a^2*b^2*c^6 - 2*b^4*c^6 + 4*a^2*c^8 + b^2*c^8 + c^10 : :
X(51746) = X[297] - 5 X[3618], X[401] + 7 X[51171], X[1992] + 3 X[44578], 3 X[5050] + X[44231], 3 X[5085] - X[44248], 3 X[14561] - X[44228], 3 X[14853] + X[44252], 3 X[38049] - X[51704], X[44216] - 3 X[47352]

X(51746) lies on these lines: {6, 441}, {30, 182}, {141, 44335}, {297, 3087}, {401, 51171}, {518, 51722}, {524, 44346}, {1503, 23583}, {1992, 44578}, {3589, 44334}, {5050, 44231}, {5085, 44248}, {6723, 44401}, {14561, 44228}, {14853, 44252}, {26206, 44341}, {38049, 51704}, {42854, 46264}, {44216, 47352}

X(51746) = midpoint of X(6) and X(441)
X(51746) = reflection of X(i) in X(j) for these {i,j}: {141, 44335}, {44334, 3589}


X(51747) = MIDPOINT OF X(6) AND X(442)

Barycentrics    2*a^6 - 5*a^4*b^2 + 2*a^2*b^4 + b^6 - 8*a^4*b*c - 8*a^3*b^2*c - 2*a^2*b^3*c - 2*a*b^4*c - 5*a^4*c^2 - 8*a^3*b*c^2 - 8*a^2*b^2*c^2 - 2*a*b^3*c^2 - b^4*c^2 - 2*a^2*b*c^3 - 2*a*b^2*c^3 + 2*a^2*c^4 - 2*a*b*c^4 - b^2*c^4 + c^6 : :
X(51747) = X[21] - 5 X[3618], X[69] - 5 X[31254], X[2475] + 7 X[51171], X[3651] + 3 X[14853], X[3751] + 3 X[26725], 3 X[5050] + X[37230], 3 X[5085] - X[44238], X[5428] - 3 X[38110], X[6841] - 3 X[14561], X[15670] - 3 X[47352], 3 X[16475] + X[47033], X[16617] - 4 X[25555], X[21677] - 3 X[38047], X[35016] - 3 X[38049], 3 X[38064] - X[44255], 3 X[38079] - X[44257], 3 X[38136] - X[44258]

X(51747) lies on these lines: {6, 442}, {21, 3618}, {30, 182}, {69, 31254}, {518, 11281}, {1386, 44669}, {2475, 51171}, {2771, 15118}, {3589, 4260}, {3651, 14853}, {3751, 26725}, {5050, 37230}, {5085, 44238}, {5428, 38110}, {6841, 14561}, {15670, 47352}, {16475, 47033}, {16617, 25555}, {21677, 38047}, {35016, 38049}, {35979, 36740}, {38064, 44255}, {38079, 44257}, {38136, 44258}

X(51747) = midpoint of X(6) and X(442)
X(51747) = reflection of X(6675) in X(3589)


X(51748) = X(1)X(14158)∩X(21)X(36)

Barycentrics    a*(a + b)*(a + c)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 + a*c + c^2)*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c - a*b*c + 5*b^2*c - a*c^2 + 5*b*c^2 + c^3) : :

See Ivan Pavlov and Peter Moses, euclid 5500.

X(51748) lies on these lines: {1, 14158}, {21, 36}, {58, 26202}, {81, 22461}, {1030, 8818}, {2160, 4877}, {3065, 13486}, {3649, 26700}, {4065, 6742}, {4658, 7073}, {16118, 37405}

X(51748) = {X(79),X(14844)}-harmonic conjugate of X(11263)


X(51749) = X(1)X(4)∩X(11)X(559)

Barycentrics    a^3 + a*b^2 - 2*b^3 - 2*a*b*c + 2*b^2*c + a*c^2 + 2*b*c^2 - 2*c^3 + 2*Sqrt[3]*a*S : :
X(51749) = (r + Sqrt[3]*s)*X[1] + 2*r*X[4], 2*s*X[1] + (Sqrt[3]*r - s)*X[51750]

See Peter Moses, euclid 5501.

X(51749) lies on these lines: {1, 4}, {2, 37830}, {11, 559}, {17, 42677}, {57, 10652}, {142, 30357}, {354, 554}, {622, 4425}, {1082, 1836}, {1251, 30310}, {2783, 5613}, {2886, 5239}, {3638, 11019}, {5219, 30434}, {5226, 30339}, {5240, 24703}, {5249, 10650}, {6191, 40693}, {9812, 37833}, {10431, 10649}, {10580, 30344}, {10653, 11789}, {11246, 37772}, {11705, 36941}, {17728, 37773}, {18471, 31019}, {29821, 33396}

X(51749) = reflection of X(51750) in X(24210)
X(51749) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1082, 1836, 10651}


X(51750) = X(1)X(4)∩X(11)X(1082)

Barycentrics    a^3 + a*b^2 - 2*b^3 - 2*a*b*c + 2*b^2*c + a*c^2 + 2*b*c^2 - 2*c^3 - 2*Sqrt[3]*a*S : :
X(51750) = (r - Sqrt[3]*s)*X[1] + 2*r*X[4], 2*s*X[1] - (Sqrt[3]*r + s)*X[51749]

See Peter Moses, euclid 5501.

X(51750) lies on these lines: {1, 4}, {2, 37833}, {11, 1082}, {18, 42680}, {57, 10651}, {142, 30356}, {354, 1081}, {554, 16038}, {559, 1836}, {621, 4425}, {2783, 5617}, {2886, 5240}, {3639, 11019}, {5219, 30433}, {5226, 30338}, {5239, 24703}, {5249, 10649}, {6192, 40694}, {9812, 37830}, {10431, 10650}, {10580, 30345}, {10654, 11752}, {11246, 37773}, {11706, 36940}, {17728, 37772}, {18469, 31019}, {29821, 33397}, {30309, 33653}

X(51750) = reflection of X(51749) in X(24210)
X(51750) = {X(559),X(1836)}-harmonic conjugate of X(10652)


X(51751) = X(1)X(4)∩X(30)X(11700)

Barycentrics    a^6*b - a^4*b^3 - a^2*b^5 + b^7 + a^6*c - a^3*b^3*c + a*b^5*c - b^6*c + 2*a^3*b^2*c^2 + a^2*b^3*c^2 - 3*b^5*c^2 - a^4*c^3 - a^3*b*c^3 + a^2*b^2*c^3 - 2*a*b^3*c^3 + 3*b^4*c^3 + 3*b^3*c^4 - a^2*c^5 + a*b*c^5 - 3*b^2*c^5 - b*c^6 + c^7 : :

See Peter Moses, euclid 5501.

X(51751) lies on these lines: {1, 4}, {30, 11700}, {65, 43820}, {522, 4823}, {860, 24026}, {942, 36250}, {1074, 10165}, {1076, 31730}, {1324, 23383}, {1735, 10265}, {2222, 26707}, {2800, 51421}, {3028, 3326}, {4347, 10525}, {5172, 14667}, {5842, 15252}, {6882, 24025}, {11529, 33134}, {11813, 34586}, {15325, 17070}, {18407, 37729}, {22765, 38578}, {25639, 37565}, {34030, 40256}

X(51751) = midpoint of X(1) and X(38945)
X(51751) = reflection of X(16869) in X(44901)
X(51751) = incircle inverse of X(12047)
X(51751) = polar circle inverse of X(6198)
X(51751) = crossdifference of every pair of points on line {652, 2174}


X(51752) = MIDPOINT OF X(4) AND (60)

Barycentrics    2*a*b^2*(b-c)^2*c^2*(b+c)^3+2*a^8*(b^2+c^2)-4*a^5*b*c*(b+c)*(b^2+c^2)+a^2*(b-c)^2*(b+c)^4*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)+2*a^3*b*(b-c)^2*c*(b+c)*(2*b^2+3*b*c+2*c^2)-a^6*(5*b^4+2*b^3*c+2*b^2*c^2+2*b*c^3+5*c^4)+a^4*(3*b^6-3*b^4*c^2-4*b^3*c^3-3*b^2*c^4+3*c^6) : :

See Ivan Pavlov, euclid 5496.

X(51752) lies on these lines: {4, 60}, {113, 946}

X(51752) = midpoint of X(4) and X(60)


X(51753) = MIDPOINT OF X(4) AND (61)

Barycentrics    2*a*((b^2-c^2)^2-a^2*(b^2+c^2))*csc(B+Pi/6)*csc(C+Pi/6)+(-a^4+(b^2-c^2)^2)*csc(A+Pi/6)*(c*csc(B+Pi/6)+b*csc(C+Pi/6)) : :
Barycentrics    Sqrt[3]*(3*a^4*b^2 - 2*a^2*b^4 - b^6 + 3*a^4*c^2 + 4*a^2*b^2*c^2 + b^4*c^2 - 2*a^2*c^4 + b^2*c^4 - c^6) + 2*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*S : :

See Ivan Pavlov, euclid 5496.

X(51753) lies on these lines {2, 14540}, {3, 6694}, {4, 13}, {5, 141}, {17, 383}, {62, 1080}, {132, 46652}, {381, 533}, {397, 5007}, {398, 7753}, {530, 37333}, {546, 5479}, {576, 5872}, {618, 47066}, {627, 5979}, {633, 3091}, {1350, 11311}, {3060, 33529}, {3104, 6115}, {3642, 5865}, {3818, 5873}, {5133, 33530}, {5318, 7747}, {5321, 39590}, {5869, 42974}, {8259, 10613}, {11289, 14541}, {11306, 38072}, {11307, 14538}, {12110, 16965}, {13111, 16629}, {14853, 40694}, {15609, 41059}, {16626, 20426}, {16630, 22693}, {16772, 41034}, {20423, 34508}, {20425, 37825}, {22512, 47861}, {22531, 41100}, {30439, 47026}, {37349, 51271}, {37464, 42488}, {41017, 42166}, {41035, 42148}, {41036, 42814}, {41040, 42153}, {42150, 44463}, {42161, 44459}, {45880, 49105}

X(51753) = midpoint of X(4) and X(61)
X(51753) = reflection of X(i) in X(j) for these {i,j}: {3, 6694}, {635, 5}
X(51753) = complement of X(14540)
X(51753) = X(51753)-Dao conjugate of X(14540)
X(51753) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 5480, 51754}, {5, 51754, 7685}, {5479, 22832, 546}, {5480, 7684, 7685}, {7684, 51754, 5}, {8259, 42147, 10613}


X(51754) = MIDPOINT OF X(4) AND (62)

Barycentrics    2*a*((b^2-c^2)^2-a^2*(b^2+c^2))*csc(B-Pi/6)*csc(C-Pi/6)+(-a^4+(b^2-c^2)^2)*csc(A-Pi/6)*(c*csc(B-Pi/6)+b*csc(C-Pi/6)) : :
Barycentrics    Sqrt[3]*(3*a^4*b^2 - 2*a^2*b^4 - b^6 + 3*a^4*c^2 + 4*a^2*b^2*c^2 + b^4*c^2 - 2*a^2*c^4 + b^2*c^4 - c^6) - 2*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*S : :

See Ivan Pavlov, euclid 5496.

X(51754) lies on these lines {2, 14541}, {3, 6695}, {4, 14}, {5, 141}, {18, 1080}, {61, 383}, {132, 46653}, {381, 532}, {397, 7753}, {398, 5007}, {531, 37332}, {546, 5478}, {576, 5873}, {619, 47068}, {628, 5978}, {634, 3091}, {1350, 11312}, {3060, 33530}, {3105, 6114}, {3643, 5864}, {3818, 5872}, {5133, 33529}, {5318, 39590}, {5321, 7747}, {5868, 42975}, {8260, 10614}, {11290, 14540}, {11305, 38072}, {11308, 14539}, {12110, 16964}, {13111, 16628}, {14853, 40693}, {15610, 41058}, {16627, 20425}, {16631, 22694}, {16773, 41035}, {20423, 34509}, {20426, 37824}, {22513, 47862}, {22532, 41101}, {30440, 47027}, {36765, 40707}, {37349, 51264}, {37463, 42489}, {41016, 42163}, {41034, 42147}, {41037, 42813}, {41041, 42156}, {42151, 44459}, {42160, 44463}, {45879, 49106}

X(51754) = midpoint of X(4) and X(62)
X(51754) = reflection of X(i) in X(j) for these {i,j}: {3, 6695}, {636, 5}
X(51754) = complement of X(14541)
X(51754) = X(51754)-Dao conjugate of X(14541)
X(51754) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 5480, 51753}, {5, 51753, 7684}, {5478, 22831, 546}, {5480, 7685, 7684}, {7685, 51753, 5}, {8260, 42148, 10614}


X(51755) = MIDPOINT OF X(4) AND (63)

Barycentrics    a^3*SA^2+2*a*SA*SB*SC+2*(b+c)*sb*SB*sc*SC : :

See Ivan Pavlov, euclid 5496.

X(51755) lies on these lines: {3, 10}, {4, 63}, {5, 226}, {38, 1072}, {57, 1478}, {116, 119}, {201, 1076}, {381, 2095}, {442, 1071}, {774, 1070}, {950, 3560}

X(51755) = midpoint of X(4) and X(63)


X(51756) = MIDPOINT OF X(4) AND (66)

Barycentrics    a^4*(a^4-b^4-c^4)*(a^4-(b^2-c^2)^2)+(a^4+b^4-c^4)*(a^4-b^4+c^4)*((b^2-c^2)^2-a^2*(b^2+c^2)) : :

See Ivan Pavlov, euclid 5496.

X(51756) lies on these lines: {4, 66}, {5, 182}, {6, 3574}, {25, 125}, {265, 1351}

X(51756) = midpoint of X(4) and X(66)


X(51757) = MIDPOINT OF X(4) AND (70)

Barycentrics    (-((a^2-b^2)^2*(a^4+b^4))+2*(a^6+b^6)*c^2-2*(a^2+b^2)*c^6+c^8)*((b^2-c^2)^2-a^2*(b^2+c^2))*(b^8-2*b^6*(a^2+c^2)-(a^2-c^2)^2*(a^4+c^4)+2*b^2*(a^6+c^6))+a^4*(a^4-(b^2-c^2)^2)*(a^4+b^4+c^4-2*a^2*(b^2+c^2))*(a^8-2*a^6*(b^2+c^2)-(b^2-c^2)^2*(b^4+c^4)+2*a^2*(b^6+c^6)) : :

See Ivan Pavlov, euclid 5496.

X(51757) lies on these lines: {4, 70}, {5, 156}, {24, 125}, {155, 265}

X(51757) = midpoint of X(4) and X(70)


X(51758) = MIDPOINT OF X(4) AND (71)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(-(a^2*b*c*(b+c))+b*(b-c)^2*c*(b+c)+a*(b^2-c^2)^2-a^3*(b^2+c^2))+2*a^2*(b+c)*(a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-2*a^2*(b^4+c^4)) : :

See Ivan Pavlov, euclid 5496.

X(51758) lies on these lines: {2, 2947}, {4, 9}, {118, 125}

X(51758) = midpoint of X(4) and X(71)


X(51759) = MIDPOINT OF X(4) AND (73)

Barycentrics    sa*SB*SC*(b^2*(a+c)*SB*sc+(a+b)*c^2*sb*SC)+a^2*(b+c)*SA*sb*sc*(a^2*SA+2*SB*SC) : :

See Ivan Pavlov, euclid 5496.

X(51759) lies on these lines: {1, 4}, {5, 34831}, {40, 26027}, {117, 125}, {942, 24030}, {1210, 19366}, {2183, 40942}, {2657, 9393}, {3074, 7567}, {3574, 14055}, {3791, 31812}, {5480, 7681}, {5777, 44916}, {5909, 6708}, {6001, 20617}, {6247, 7680}, {6684, 37154}, {10894, 15232}, {11496, 15622}, {21228, 26091}, {22753, 23361}, {43724, 45046}

X(51759) = midpoint of X(4) and X(73)


X(51760) = X(99)X(1234)∩X(110)X(442)

Barycentrics    (a^8-2*a^5*b*c*(b+c)+2*a^3*b*c^3*(b+c)-2*a*b^3*(b-c)*c*(b+c)^2+a^4*c^3*(2*b+3*c)+b^2*(b^2-c^2)^3-a^6*(b^2+2*b*c+3*c^2)-a^2*(b^6+2*b^5*c-2*b^3*c^3-2*b^2*c^4+c^6))*(a^8-2*a^5*b*c*(b+c)+2*a^3*b^3*c*(b+c)+2*a*b*(b-c)*c^3*(b+c)^2+a^4*b^3*(3*b+2*c)+c^2*(-b^2+c^2)^3-a^6*(3*b^2+2*b*c+c^2)-a^2*(b^6-2*b^4*c^2-2*b^3*c^3+2*b*c^5+c^6)) : :

See Ivan Pavlov, euclid 5496.

X(51760) lies on these lines: {99, 1234}, {110, 442}, {112, 1865}

X(51760) = reflection of X(4) in the center of the rectangular circumhyperbola through X(12)


X(51761) = X(4)X(1288)∩X(26)X(110)

Barycentrics    a^2*((a^2-b^2)^4*(a^2+b^2)-2*(a^8-a^6*b^2-a^2*b^6+b^8)*c^2+2*(a^6+b^6)*c^4-4*(a^4+a^2*b^2+b^4)*c^6+5*(a^2+b^2)*c^8-2*c^10)*((a^2-b^2)^3*(a^4+a^2*b^2+2*b^4)+(-3*a^8+2*a^6*b^2-4*a^2*b^6+5*b^8)*c^2+2*(a^6-2*b^6)*c^4+2*(a^4+a^2*b^2+b^4)*c^6-(3*a^2+2*b^2)*c^8+c^10) : :

See Ivan Pavlov, euclid 5496.

X(51761) lies on these lines: {4, 1288}, {26, 110}, {476, 2072}

X(51761) = reflection of X(4) in the center of the rectangular circumhyperbola through X(26)


X(51762) = X(4)X(934)∩X(33)X(109)

Barycentrics    a*((a-b)^4*(a+b)^2+(a-b)^2*(a+b)^3*c-2*(a-b)^2*(a^2+a*b+b^2)*c^2-2*(a-b)^2*(a+b)*c^3+(a^2-4*a*b+b^2)*c^4+(a+b)*c^5)*(a^4-(b^2-c^2)^2)*(a^6+a^5*(b-2*c)+a^2*(b-c)*(b+c)^3+(b-c)^2*c*(b+c)^3-a^4*(2*b^2-b*c+c^2)+a*(b-c)^2*(b^3-2*b^2*c-3*b*c^2-2*c^3)-2*a^3*(b^3-b^2*c+b*c^2-2*c^3)) : :

See Ivan Pavlov, euclid 5496.

X(51762) lies on these lines: {4, 934}, {33, 109}, {108, 1857}, {110, 4183}

X(51762) = reflection of X(4) in X(38966)


X(51763) = REFLECTION OF X(1) IN X(175)

Barycentrics    3*a^3 - a*b^2 - 2*b^3 + 2*a*b*c + 2*b^2*c - a*c^2 + 2*b*c^2 - 2*c^3 - 4*a*S : :
X(51763) = 3 X[1] - 2 X[30334], 3 X[175] - X[30334], 5 X[1698] - 4 X[14121], 7 X[3624] - 8 X[31534]

X(51763) lies on these lines: {1, 7}, {165, 13390}, {1697, 10911}, {1698, 14121}, {1699, 13388}, {3624, 31534}, {4014, 7353}, {7991, 31532}, {30556, 38052}

X(51763) = reflection of X(1) in X(175)
X(51763) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 30425, 4312}, {390, 31569, 1}, {390, 31602, 31569}, {481, 31568, 30342}, {5542, 30333, 1}, {30342, 31568, 1}


X(51764) = REFLECTION OF X(1) IN X(176)

Barycentrics    3*a^3 - a*b^2 - 2*b^3 + 2*a*b*c + 2*b^2*c - a*c^2 + 2*b*c^2 - 2*c^3 + 4*a*S : :
X(51764) = 3 X[1] - 2 X[30333], 3 X[176] - X[30333], 5 X[1698] - 4 X[7090], 7 X[3624] - 8 X[31535]

X(51764) lies on these lines: {1, 7}, {165, 1659}, {1697, 10910}, {1698, 7090}, {1699, 13389}, {3624, 31535}, {4014, 7362}, {7991, 31533}, {30557, 38052}

X(51764) = reflection of X(1) in X(176)
X(51764) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 30426, 4312}, {390, 31570, 1}, {390, 31601, 31570}, {482, 31567, 30341}, {5542, 30334, 1}, {21169, 30334, 5542}, {30341, 31567, 1}


X(51765) = X(1)X(9519)∩X(43)X(57)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^3 - 2*a^2*b + 4*a*b^2 + b^3 - 2*a^2*c - 3*a*b*c - 2*b^2*c + 4*a*c^2 - 2*b*c^2 + c^3) : :

X(51765) lies on these lines: {1, 9519}, {7, 2796}, {43, 57}, {56, 7312}, {106, 269}, {651, 3361}, {1293, 31508}, {1319, 5018}, {2099, 13541}, {2802, 4321}, {5223, 43760}, {5226, 11814}, {5726, 10713}, {24715, 40617}, {32920, 42304}

X(51765) = crossdifference of every pair of points on line {4435, 14427}


X(51766) = X(1)X(651)∩X(43)X(57)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^3 + 2*a^2*b - 4*a*b^2 + b^3 + 2*a^2*c - 3*a*b*c + 2*b^2*c - 4*a*c^2 + 2*b*c^2 + c^3) : :
X(51766) = 3 X[5018] - 4 X[6610]

X(51766) lies on these lines {1, 651}, {7, 50282}, {43, 57}, {77, 49448}, {101, 604}, {103, 31508}, {109, 41553}, {150, 3664}, {202, 11752}, {203, 11789}, {222, 3961}, {238, 1319}, {241, 49712}, {518, 5018}, {519, 40862}, {537, 664}, {984, 2114}, {1046, 34925}, {1419, 16496}, {1456, 49675}, {1458, 1757}, {1742, 2807}, {2099, 6180}, {2263, 49498}, {2784, 4307}, {2786, 30572}, {2808, 31393}, {2809, 18421}, {2823, 12652}, {2943, 38502}, {3219, 25941}, {3476, 50303}, {3679, 41801}, {3973, 28345}, {4407, 17095}, {4552, 24821}, {4649, 8581}, {4674, 7271}, {5252, 50301}, {5290, 34929}, {5524, 9364}, {5726, 10708}, {7050, 7281}, {9440, 24929}, {11028, 30350}, {17625, 29821}, {24436, 51682}, {29820, 34048}, {39126, 49497}

X(51766) = reflection of X(1) in X(44858)


X(51767) = X(1)X(6946)∩X(57)X(1317)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^4 - 2*a^2*b^2 + b^4 - 23*a^2*b*c + 25*a*b^2*c - 6*b^3*c - 2*a^2*c^2 + 25*a*b*c^2 - 14*b^2*c^2 - 6*b*c^3 + c^4) : :
X(51767) = 5 X[1] - 2 X[24297], 4 X[1317] - X[16236], 4 X[214] - X[4900], X[1768] - 4 X[7966], 2 X[7972] + X[8275]

X(51767) lies on these lines {1, 6946}, {57, 1317}, {100, 13462}, {104, 31508}, {214, 4900}, {484, 28234}, {519, 37787}, {952, 10384}, {1000, 3065}, {1319, 15015}, {1768, 5119}, {2099, 12653}, {2801, 9819}, {2802, 4321}, {3305, 12531}, {3577, 24302}, {3895, 10031}, {5226, 21630}, {5425, 39779}, {5726, 10707}, {6264, 24929}, {7091, 10609}, {7962, 41701}, {8545, 12730}, {10087, 30282}, {11525, 20586}, {12736, 30350}, {40587, 41541}

X(51767) = reflection of X(18421) in X(14151)


X(51768) = X(1)X(651)∩X(9)X(80)

Barycentrics    a*(a^5 - a^4*b - 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 - b^5 - a^4*c + 5*a^3*b*c - 2*a^2*b^2*c + a*b^3*c - 3*b^4*c - 2*a^3*c^2 - 2*a^2*b*c^2 - 4*a*b^2*c^2 + 4*b^3*c^2 + 2*a^2*c^3 + a*b*c^3 + 4*b^2*c^3 + a*c^4 - 3*b*c^4 - c^5) : :
X(51768) = X[1] + 2 X[1156], 3 X[1] - 2 X[14151], 3 X[1156] + X[14151], 4 X[9] - X[5541], 3 X[3679] - 4 X[38211], 4 X[11] - X[4312], X[1768] + 2 X[11372], X[5528] - 4 X[15254], 2 X[104] + X[3062], X[144] + 2 X[21630], X[149] + 2 X[51090], 2 X[390] + X[9897], 3 X[37718] - 2 X[45043], 2 X[17638] + X[18412], 3 X[3582] - 2 X[30379], 7 X[3624] - 4 X[10427], 2 X[5223] + X[12653], 3 X[5131] - 2 X[30295], X[5696] + 2 X[36868], 2 X[5779] + X[6264], 3 X[16173] - 2 X[38055], 3 X[19875] - 4 X[38216], 3 X[25055] - 4 X[38060], X[30628] + 2 X[47320], 3 X[32558] - 2 X[38054]

X(51768) lies on these lines {1, 651}, {7, 3065}, {9, 80}, {11, 57}, {35, 5506}, {36, 15726}, {40, 12019}, {63, 10707}, {84, 20418}, {90, 3254}, {100, 3305}, {104, 3062}, {144, 21630}, {149, 3219}, {165, 41166}, {191, 1479}, {390, 9897}, {484, 516}, {496, 7701}, {517, 41700}, {527, 30384}, {673, 51286}, {952, 10384}, {956, 30294}, {971, 1319}, {1001, 5426}, {1158, 47744}, {1387, 50908}, {1708, 50865}, {1727, 28534}, {1728, 9589}, {1776, 5536}, {2099, 13253}, {2771, 15934}, {2800, 10398}, {2802, 4915}, {2932, 15587}, {2950, 10265}, {2951, 10090}, {3306, 38207}, {3336, 10591}, {3337, 30424}, {3582, 30379}, {3587, 5840}, {3624, 10427}, {3748, 37736}, {3895, 50890}, {3899, 5223}, {4309, 5766}, {5083, 30350}, {5131, 30295}, {5220, 5697}, {5226, 21635}, {5425, 5728}, {5437, 45310}, {5531, 10382}, {5692, 42014}, {5696, 36868}, {5726, 10711}, {5729, 5903}, {5779, 6264}, {5850, 51423}, {5851, 16173}, {5880, 7741}, {6068, 41229}, {6172, 30305}, {6173, 23708}, {6174, 7308}, {6326, 14100}, {6797, 41712}, {7082, 9580}, {7280, 43178}, {7290, 15430}, {7330, 37726}, {7675, 45764}, {7678, 16763}, {7704, 50444}, {7993, 15558}, {8068, 17699}, {8255, 37701}, {8581, 12773}, {10057, 15518}, {10058, 15015}, {10389, 33519}, {10392, 12247}, {10609, 31435}, {10738, 37584}, {10770, 34925}, {10826, 15297}, {11010, 30332}, {11570, 30330}, {11571, 12560}, {12331, 15837}, {12736, 12767}, {13205, 18236}, {13243, 18240}, {15932, 18483}, {16112, 42884}, {16133, 20116}, {17768, 41555}, {19875, 38216}, {25055, 38060}, {25557, 37735}, {29007, 30331}, {30275, 38037}, {30628, 47320}, {31424, 48713}, {32558, 38054}, {34894, 38271}, {36973, 50891}, {38052, 39692}

X(51768) = reflection of X(484) in X(37787)
X(51768) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {90, 9614, 6763}, {1709, 11219, 1768}, {11372, 15299, 4312}, {39144, 39145, 1768}


X(51769) = X(1)X(9519)∩X(9)X(80)

Barycentrics    a*(a^5 + a^4*b - a*b^4 - b^5 + a^4*c - 19*a^3*b*c + 14*a^2*b^2*c - 7*a*b^3*c + 7*b^4*c + 14*a^2*b*c^2 + 4*a*b^2*c^2 - 6*b^3*c^2 - 7*a*b*c^3 - 6*b^2*c^3 - a*c^4 + 7*b*c^4 - c^5) : :

X(51769) lies on these lines {1, 9519}, {9, 80}, {57, 3021}, {105, 31508}, {1219, 4294}, {1292, 13462}, {2836, 5697}, {28915, 31393}


X(51770) = X(1)X(38670)∩X(57)X(1358)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^4 - 2*a^3*b + 2*a^2*b^2 - 2*a*b^3 + b^4 - 2*a^3*c + a^2*b*c + a*b^2*c + 4*b^3*c + 2*a^2*c^2 + a*b*c^2 - 10*b^2*c^2 - 2*a*c^3 + 4*b*c^3 + c^4) : :

X(51770) lies on these lines {1, 38670}, {57, 1358}, {105, 13462}, {278, 7313}, {1292, 31508}, {2809, 18421}, {5726, 10712}, {9519, 9819}, {28915, 31393}


X(51771) = X(57)X(1365)∩X(759)X(13462)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^6 - a^5*b - a^4*b^2 + 2*a^3*b^3 - a^2*b^4 - a*b^5 + b^6 - a^5*c + 5*b^5*c - a^4*c^2 + 3*a^2*b^2*c^2 - b^4*c^2 + 2*a^3*c^3 - 10*b^3*c^3 - a^2*c^4 - b^2*c^4 - a*c^5 + 5*b*c^5 + c^6) : :

X(51771) lies on these lines {57, 1365}, {759, 13462}, {2099, 6180}, {5119, 34196}, {6011, 31508}


X(51772) = X(1)X(3)∩X(1435)X(1878)

Barycentrics    a*(a + b - c)*(a - b + c)*(2*a^4 - a^3*b - 3*a^2*b^2 + a*b^3 + b^4 - a^3*c + 14*a^2*b*c - 5*a*b^2*c - 3*a^2*c^2 - 5*a*b*c^2 - 2*b^2*c^2 + a*c^3 + c^4) : :
X(51772) = 5 X[1319] + 2 X[3339] = (4*R^2 - r^2 - 5*r*R)*X[1] + r*(3*r - 4*R)*X[3]

X(51772) lies on these lines {1, 3}, {1435, 1878}, {1476, 3812}, {3086, 12678}, {3880, 37789}, {5265, 25568}, {5815, 7288}, {5850, 34123}, {9850, 25524}

X(51772) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1319, 18838, 5048}, {3660, 5193, 1319}


X(51773) = X(1)X(3)∩X(6)X(4322)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c - 10*a*b*c + 3*b^2*c - a*c^2 + 3*b*c^2 + c^3) : :
X(51773) = (r - 4*R)*R*X[1] + r*(r + 4*R)*X[3]

X(51773) lies on these lines {1, 3}, {6, 4322}, {9, 9850}, {12, 17559}, {198, 40133}, {220, 604}, {388, 4423}, {405, 4315}, {480, 6762}, {948, 28037}, {954, 12577}, {956, 12447}, {958, 4308}, {1001, 3600}, {1014, 5543}, {1042, 1616}, {1106, 3052}, {1191, 1458}, {1212, 1696}, {1279, 4320}, {1376, 5265}, {1407, 3915}, {1427, 28011}, {1445, 34791}, {1476, 11194}, {1788, 6764}, {3555, 41712}, {3913, 5435}, {4297, 42884}, {4306, 16483}, {4350, 7023}, {4413, 7288}, {4512, 7091}, {5022, 7368}, {5261, 8167}, {5298, 11501}, {5433, 19855}, {5726, 16853}, {5732, 9848}, {6939, 7958}, {7191, 15832}, {7959, 10535}, {8059, 28193}, {8572, 11505}, {8581, 31435}, {9785, 11495}, {10866, 12565}, {11035, 15298}, {12128, 31658}, {12513, 20007}, {12573, 51723}, {15998, 34720}, {17745, 38296}, {33590, 43065}, {36846, 37309}, {37411, 37704}

X(51773) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 7957, 2098}, {1, 8273, 55}, {1, 15803, 6766}, {1, 37544, 2099}, {1, 37551, 3057}, {3, 3295, 31508}, {3, 13462, 56}, {56, 1319, 3304}, {56, 3303, 57}, {56, 11510, 1466}, {56, 37579, 5204}, {1420, 1617, 56}, {1420, 37583, 41426}, {1466, 11510, 55}, {1616, 42314, 1042}, {1617, 41426, 37583}, {3304, 5204, 10966}, {4308, 7677, 958}, {10966, 41341, 5204}, {37583, 41426, 56}


X(51774) = X(1)X(3)∩X(499)X(9947)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^3*b - a^2*b^2 - a*b^3 + b^4 + a^3*c + 12*a^2*b*c - 5*a*b^2*c - a^2*c^2 - 5*a*b*c^2 - 2*b^2*c^2 - a*c^3 + c^4) : :
X(51774) = (4*R^2 - r^2 - 4*r*R)*X[1] + r*(r - 4*R)*X[3]
X(51774) = X[65] + 7 X[1319], X[65] - 7 X[3660], 3 X[65] - 7 X[18838], 3 X[1319] + X[18838], 3 X[3660] - X[18838], 7 X[5126] + 5 X[50191], 3 X[3956] - 7 X[6681]

X(51774) lies on these lines {1, 3}, {499, 9947}, {513, 30723}, {631, 17624}, {971, 44675}, {3085, 12128}, {3555, 5265}, {3624, 9850}, {3742, 4315}, {3921, 31188}, {3956, 6681}, {4308, 5439}, {4311, 5806}, {4342, 10178}, {5731, 17626}, {6049, 10914}, {7288, 34790}, {8581, 25055}, {9780, 17644}, {10156, 31397}, {11035, 13411}, {12053, 31805}, {14027, 38471}, {24465, 28198}

X(51774) = midpoint of X(1319) and X(3660)
X(51774) = isogonal conjugate of X(12868)
X(51774) = incircle-inverse of X(3339)
X(51774) = X(1)-isoconjugate of X(12868)
X(51774) = barycentric quotient X(6)/X(12868)
X(51774) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {56, 5045, 37544}, {1319, 5193, 5126}, {2446, 2447, 3339}


X(51775) = X(2)X(5088)∩X(3)X(142)

Barycentrics    2 a^4 - a^2 (b - c)^2 - a^3 (b + c) - a (b - c)^2 (b + c) + (b - c)^2 (b^2 + c^2) : :

See Francisco Javier García Capitán, euclid 5505.

X(51775) lies on these lines: {2, 5088}, {3, 142}, {12, 24784}, {25, 15497}, {56, 20269}, {101, 9436}, {116, 515}, {140, 6706}, {169, 348}, {214, 17060}, {241, 514}, {242, 7521}, {277, 7288}, {404, 27006}, {517, 17044}, {527, 28345}, {549, 20328}, {910, 1565}, {911, 15634}, {978, 5018}, {1308, 9061}, {1319, 4904}, {1385, 21258}, {1445, 4253}, {1478, 30742}, {1730, 18652}, {1737, 9317}, {3306, 5011}, {3323, 20662}, {3612, 26101}, {3732, 17078}, {4209, 17181}, {4278, 30733}, {4292, 40690}, {4881, 26140}, {5134, 14021}, {5195, 17397}, {5199, 31184}, {5249, 36016}, {5433, 24774}, {5745, 31896}, {6666, 27473}, {6710, 40869}, {6713, 40554}, {11347, 21621}, {11712, 28849}, {13411, 17758}, {17030, 27301}, {17046, 17647}, {17081, 41785}, {17095, 17682}, {17367, 38941}, {17683, 27187}, {17761, 44675}, {20244, 28969}, {20267, 23536}, {20367, 26006}, {21073, 28734}, {24582, 30806}, {25065, 25092}, {29069, 44356}, {32763, 32764}, {36907, 37034}


X(51776) = X(2)X(11610)∩X(69)X(248)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^4 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + c^4)*(a^4 - a^2*b^2 - b^2*c^2 + c^4)::

X(51776) is the perspector of ABC and the triangle A'B'C' constructed at X(41679).

X(51776) lies on these lines: {2, 11610}, {69, 248}, {97, 3917}, {98, 1370}, {112, 36426}, {290, 34385}, {317, 571}, {394, 14600}, {511, 1976}, {687, 2966}, {31636, 46184}.

X(51776) = reflection of X(4558) in X(577)
X(51776) = isogonal conjugate of the polar conjugate of X(31635)
X(51776) = X(290)-Ceva conjugate of X(17974)
X(51776) = X(i)-isoconjugate of X(j) for these (i,j): {91, 232}, {240, 2165}, {847, 1755}, {1820, 6530}, {1959, 14593}, {2168, 39569}, {2211, 20571}, {16230, 36145}
X(51776) = X(i)-Dao conjugate of X(j) for these (i, j): (577, 511), (34116, 232), (36899, 847), (39013, 16230), (39085, 2165)
X(51776) = barycentric product X(i)*X(j) for these {i,j}: {3, 31635}, {24, 6394}, {47, 336}, {98, 9723}, {248, 7763}, {287, 1993}, {290, 1147}, {293, 44179}, {317, 17974}, {563, 46273}, {924, 17932}, {6563, 43754}, {30451, 43187}, {47388, 51439}
X(51776) = barycentric quotient X(i)/X(j) for these {i,j}: {24, 6530}, {47, 240}, {52, 39569}, {98, 847}, {248, 2165}, {287, 5392}, {293, 91}, {336, 20571}, {563, 1755}, {571, 232}, {924, 16230}, {1147, 511}, {1976, 14593}, {1993, 297}, {2966, 30450}, {5961, 14356}, {6394, 20563}, {7763, 44132}, {9723, 325}, {14355, 5962}, {17932, 46134}, {17974, 68}, {30451, 3569}, {31635, 264}, {34952, 17994}, {43754, 925}, {44077, 34854}, {44179, 40703}


X(51777) = (name pending)

Barycentrics    a^2 (a^4+b^4+c^4-2 a^2 (b^2+c^2)) /(a^16-5 a^14 (b^2+c^2)-(b^2-c^2)^4 (b^4+c^4)^2-a^4 (b^4-c^4)^2 (2 b^4-b^2 c^2+2 c^4)+a^12 (10 b^4+13 b^2 c^2+10 c^4)-a^10 (11 b^6+13 b^4 c^2+13 b^2 c^4+11 c^6)+a^8 (8 b^8+6 b^6 c^2+4 b^4 c^4+6 b^2 c^6+8 c^8)+a^6 (-3 b^10+b^8 c^2-2 b^6 c^4-2 b^4 c^6+b^2 c^8-3 c^10)+a^2 (b^2-c^2)^2 (3 b^10-b^8 c^2+2 b^6 c^4+2 b^4 c^6-b^2 c^8+3 c^10))

X(51777) is the perspector of the perspeconic of ABC and the triangle A'B'C' constructed at X(41679).

X(51777) lies on these lines: { }


X(51778) = (name pending)

Barycentrics    a^2 (a^22-7 a^20 (b^2+c^2)+a^18 (23 b^4+38 b^2 c^2+23 c^4)-(b^2-c^2)^4 (b^4+c^4)^2 (b^6+c^6)-a^16 (49 b^6+92 b^4 c^2+92 b^2 c^4+49 c^6)+a^14 (78 b^8+136 b^6 c^2+155 b^4 c^4+136 b^2 c^6+78 c^8)-2 a^12 (49 b^10+69 b^8 c^2+76 b^6 c^4+76 b^4 c^6+69 b^2 c^8+49 c^10)+a^10 (98 b^12+92 b^10 c^2+99 b^8 c^4+94 b^6 c^6+99 b^4 c^8+92 b^2 c^10+98 c^12)-2 a^8 (39 b^14+12 b^12 c^2+22 b^10 c^4+19 b^8 c^6+19 b^6 c^8+22 b^4 c^10+12 b^2 c^12+39 c^14)+a^2 (b^2-c^2)^2 (7 b^16-4 b^14 c^2+7 b^12 c^4+7 b^4 c^12-4 b^2 c^14+7 c^16)+a^6 (49 b^16-24 b^14 c^2+21 b^12 c^4+4 b^10 c^6+16 b^8 c^8+4 b^6 c^10+21 b^4 c^12-24 b^2 c^14+49 c^16)-a^4 (23 b^18-33 b^16 c^2+24 b^14 c^4-12 b^12 c^6+6 b^10 c^8+6 b^8 c^10-12 b^6 c^12+24 b^4 c^14-33 b^2 c^16+23 c^18)) : :

X(51778) is the center of the perspeconic of ABC and the triangle A'B'C' constructed at X(41679).

X(51778) lies on these lines: { }


X(51779) = X(1)X(3)∩X(9)X(3241)

Barycentrics    a*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c - 22*a*b*c + b^2*c - a*c^2 + b*c^2 - c^3) : :
X(51779) = 5 X[10857] - 7 X[30389]
X(51779) = (-r + 10*R)*X[1] + 2*r*X[3]

X(51779) lies on these lines: {1, 3}, {9, 3241}, {11, 51767}, {145, 3305}, {200, 10179}, {519, 7308}, {962, 3982}, {1056, 9580}, {1058, 9578}, {1317, 51768}, {1358, 51769}, {1706, 3622}, {2136, 3616}, {2170, 3247}, {2270, 3723}, {2999, 16486}, {3021, 51770}, {3022, 51766}, {3219, 3623}, {3243, 3877}, {3244, 31435}, {3475, 4342}, {3476, 30331}, {3488, 50818}, {3586, 15170}, {3632, 3646}, {3872, 38316}, {3880, 10582}, {3884, 41863}, {3890, 11523}, {3895, 5437}, {3929, 51071}, {4031, 34632}, {4114, 11037}, {4315, 10385}, {4423, 4915}, {4654, 30305}, {5226, 12053}, {5250, 20057}, {5436, 36846}, {5603, 7966}, {5726, 11238}, {5779, 18452}, {6018, 51765}, {6049, 7091}, {7171, 50824}, {8236, 8545}, {9579, 12575}, {9613, 15172}, {10056, 37704}, {10106, 41864}, {11239, 30827}, {12705, 13607}, {14151, 15558}, {15174, 16138}, {15600, 49454}, {20049, 35595}, {20196, 34619}, {31231, 38068}, {34194, 51771}, {35227, 49487}, {36973, 47357}, {37723, 40270}

X(51779) = reflection of X(44841) in X(1)
X(51779) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2093, 5049}, {1, 3057, 11518}, {1, 3295, 1420}, {1, 3303, 3601}, {1, 5919, 7962}, {1, 6767, 10389}, {1, 7991, 17609}, {1, 9819, 354}, {1, 9957, 3340}, {1, 10389, 13384}, {1, 11224, 44840}, {1, 30337, 65}, {1, 31393, 57}, {1, 37556, 1697}, {57, 31393, 1697}, {57, 37556, 31393}, {484, 3333, 57}, {1466, 3303, 3295}, {3895, 38314, 5437}, {5919, 8162, 1}, {9957, 37544, 3057}


X(51780) = X(1)X(3697)∩X(2)X(7)

Barycentrics    a*(a^2 - b^2 - 10*b*c - c^2) : :
X(51780) = X[30350] + 3 X[30393]

X(51780) lies on these lines: {1, 3697}, {2, 7}, {5, 3587}, {10, 1058}, {37, 23511}, {40, 3090}, {44, 37682}, {45, 16602}, {46, 5506}, {72, 16854}, {78, 17536}, {84, 140}, {165, 15254}, {171, 15601}, {200, 3748}, {210, 3243}, {405, 5438}, {484, 5087}, {496, 7160}, {497, 38200}, {518, 30350}, {549, 18540}, {612, 17125}, {614, 7322}, {631, 9841}, {632, 37534}, {738, 17095}, {748, 5269}, {756, 3677}, {899, 37553}, {936, 2900}, {940, 16670}, {942, 16855}, {958, 13462}, {960, 18421}, {984, 5573}, {1001, 3158}, {1125, 6762}, {1212, 5574}, {1255, 5256}, {1319, 8583}, {1376, 31508}, {1420, 5260}, {1449, 4383}, {1621, 46917}, {1656, 37584}, {1697, 5274}, {1698, 1706}, {1699, 3826}, {1743, 37674}, {2099, 15829}, {2257, 37662}, {2323, 17825}, {2999, 3247}, {3035, 51768}, {3036, 51767}, {3038, 51765}, {3039, 51770}, {3041, 51766}, {3057, 11530}, {3062, 10178}, {3091, 37551}, {3220, 16419}, {3333, 19862}, {3361, 5302}, {3525, 37526}, {3526, 7330}, {3601, 5047}, {3617, 37556}, {3624, 17590}, {3628, 5709}, {3666, 16676}, {3680, 45830}, {3681, 44841}, {3707, 37655}, {3731, 3752}, {3742, 5223}, {3751, 25502}, {3772, 31183}, {3781, 6688}, {3784, 15082}, {3789, 26102}, {3795, 16569}, {3848, 5220}, {3876, 11518}, {3886, 26038}, {3898, 11525}, {3916, 16864}, {3955, 16187}, {3961, 35227}, {4034, 34255}, {4035, 29627}, {4095, 4384}, {4326, 17604}, {4413, 4512}, {4415, 4859}, {4419, 24175}, {4652, 17535}, {4659, 19804}, {4682, 16469}, {4855, 16859}, {4866, 34791}, {4915, 10179}, {5044, 11523}, {5045, 51572}, {5054, 7171}, {5122, 16408}, {5227, 47355}, {5234, 25524}, {5250, 19877}, {5268, 7290}, {5272, 7174}, {5281, 10384}, {5284, 10389}, {5285, 11284}, {5287, 37680}, {5439, 16856}, {5440, 17542}, {5587, 6947}, {5705, 17527}, {5720, 13151}, {5732, 10157}, {5743, 17284}, {5779, 10156}, {5790, 7966}, {5791, 51559}, {5815, 51723}, {5927, 10857}, {6684, 6964}, {6700, 16845}, {6721, 24469}, {6738, 45085}, {6834, 12705}, {6896, 41869}, {6903, 18492}, {7079, 17917}, {7091, 7288}, {7289, 34573}, {7956, 26446}, {8056, 31197}, {9340, 17124}, {9342, 35258}, {9578, 24564}, {9579, 37462}, {9612, 17529}, {9842, 37108}, {10164, 11372}, {10167, 30326}, {10176, 11529}, {10580, 24393}, {11019, 38057}, {11679, 30829}, {12514, 51073}, {12572, 17582}, {12701, 34501}, {12717, 24295}, {13411, 17552}, {14151, 46694}, {14555, 17296}, {15803, 16862}, {16239, 24467}, {16572, 17056}, {16579, 26669}, {16832, 44417}, {16863, 31445}, {17021, 25417}, {17151, 35652}, {17259, 18229}, {17277, 30567}, {17784, 46916}, {18164, 25507}, {19541, 21153}, {19854, 25522}, {20103, 38059}, {21060, 38053}, {21520, 25083}, {21529, 25066}, {21547, 32555}, {21548, 32556}, {22112, 26885}, {24703, 38052}, {25072, 45204}, {26040, 40998}, {27385, 31259}, {31146, 38097}, {31273, 34925}, {34595, 41229}, {37364, 38108}, {37650, 39595}, {39962, 39963}

X(51780) = X(16673)-Dao conjugate of X(46933)
X(51780) = barycentric product X(8)*X(7274)
X(51780) = barycentric quotient X(7274)/X(7)
X(51780) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 9, 5437}, {2, 226, 20195}, {2, 908, 41867}, {2, 3305, 57}, {2, 3452, 25525}, {2, 5273, 6692}, {2, 5316, 30827}, {2, 5745, 31190}, {2, 7308, 9}, {2, 18228, 142}, {2, 18230, 5745}, {2, 27065, 3306}, {2, 31142, 38093}, {2, 35595, 63}, {9, 5437, 3928}, {10, 26105, 24392}, {57, 3305, 9}, {57, 7308, 3305}, {142, 18228, 28609}, {200, 4423, 38316}, {210, 10582, 3243}, {936, 11108, 5436}, {1001, 8580, 3158}, {1698, 31435, 1706}, {2999, 44307, 3247}, {3306, 27065, 3929}, {3740, 8167, 1}, {3848, 5220, 10980}, {3929, 27065, 9}, {4383, 17022, 1449}, {5268, 17123, 7290}, {5506, 19872, 46}, {9776, 20214, 4114}, {19804, 30568, 4659}


X(51781) = X(8)X(57)∩X(9)X(80)

Barycentrics    a*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c - 10*a*b*c + 13*b^2*c - a*c^2 + 13*b*c^2 - c^3) : :

X(51781) lies on these lines: {1, 3848}, {8, 57}, {9, 80}, {10, 1058}, {40, 3529}, {200, 2099}, {484, 4668}, {519, 5437}, {738, 25719}, {936, 3680}, {958, 31508}, {997, 11525}, {1319, 4853}, {1376, 4915}, {1697, 3305}, {3035, 51767}, {3158, 9623}, {3219, 4678}, {3243, 3753}, {3306, 31145}, {3333, 3625}, {3338, 4816}, {3576, 38665}, {3587, 5690}, {3677, 4695}, {3740, 9819}, {3812, 30350}, {3872, 41553}, {3880, 8580}, {3893, 8583}, {3895, 7308}, {3913, 5436}, {3928, 4669}, {3929, 51072}, {4659, 4737}, {4662, 5927}, {4711, 5223}, {4731, 10582}, {4882, 5836}, {5687, 30282}, {5881, 9841}, {6666, 45116}, {6765, 15934}, {7171, 50798}, {7330, 35460}, {7966, 26446}, {9575, 21868}, {9709, 12629}, {9780, 37556}, {10860, 37712}, {10914, 15829}, {11239, 41867}, {11372, 38155}, {11519, 25524}, {17699, 41684}, {24393, 36991}, {25525, 34619}, {31190, 34625}, {31397, 38200}, {37560, 47745}

X(51781) = reflection of X(26105) in X(10)
X(51781) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 1706, 6762}, {4882, 5836, 11523}


X(51782) = X(1)X(3091)∩X(10)X(57)

Barycentrics    (a + b - c)*(a - b + c)*(2*a^2 - a*b + 3*b^2 - a*c + 6*b*c + 3*c^2) : :
X(51782) = 3 X[226] - X[2099], X[226] - 3 X[11237], X[2099] + 3 X[5252], X[2099] - 9 X[11237], X[5252] + 3 X[11237], 3 X[495] - X[24929], 3 X[13405] - 2 X[24929], 3 X[1478] + X[5119], X[5119] - 3 X[31397], X[4304] - 3 X[10056], 3 X[10956] - X[41553]

X(51782) lies on these lines: {1, 3091}, {2, 4315}, {4, 12575}, {7, 3679}, {8, 3671}, {10, 57}, {12, 1125}, {20, 31508}, {34, 30145}, {55, 28164}, {56, 3634}, {65, 3626}, {80, 14151}, {85, 4737}, {149, 51767}, {150, 3664}, {153, 51768}, {226, 519}, {355, 6738}, {377, 6736}, {484, 4292}, {495, 515}, {498, 4311}, {516, 1478}, {518, 33558}, {529, 5745}, {546, 31792}, {551, 3476}, {553, 4745}, {938, 30350}, {942, 11545}, {946, 9654}, {950, 3748}, {999, 10175}, {1000, 31162}, {1056, 5587}, {1058, 18492}, {1210, 10827}, {1317, 4870}, {1323, 7179}, {1420, 10588}, {1441, 4692}, {1450, 49992}, {1697, 5229}, {1698, 3600}, {1699, 4342}, {1836, 28228}, {1837, 6744}, {2067, 49618}, {2093, 30424}, {2784, 15730}, {2801, 50195}, {2809, 34929}, {3085, 4297}, {3219, 12527}, {3244, 3485}, {3295, 31673}, {3305, 3436}, {3333, 5818}, {3339, 3617}, {3340, 3625}, {3361, 9780}, {3452, 11236}, {3475, 5727}, {3487, 5881}, {3545, 37704}, {3576, 8164}, {3584, 21578}, {3585, 10624}, {3586, 8232}, {3614, 20323}, {3624, 4308}, {3633, 4323}, {3635, 10944}, {3636, 11375}, {3649, 4701}, {3654, 18541}, {3660, 3833}, {3674, 32847}, {3753, 8581}, {3828, 3911}, {3838, 38455}, {3848, 51774}, {4114, 4691}, {4293, 10164}, {4301, 9612}, {4304, 10056}, {4314, 5691}, {4321, 38204}, {4654, 4669}, {4662, 37544}, {4709, 7201}, {4746, 41687}, {4853, 5177}, {4995, 50815}, {5045, 18357}, {5049, 12019}, {5068, 50444}, {5080, 40998}, {5122, 6684}, {5123, 6692}, {5176, 5249}, {5199, 40131}, {5225, 37556}, {5316, 31141}, {5425, 12563}, {5433, 31253}, {5435, 19875}, {5439, 9850}, {5493, 9579}, {5542, 18391}, {5714, 7982}, {5719, 28204}, {5722, 50796}, {5744, 34646}, {5794, 6743}, {5795, 25466}, {5828, 17580}, {5882, 11374}, {5883, 17625}, {5902, 43180}, {6223, 9949}, {6502, 49619}, {6700, 15844}, {6871, 36846}, {6943, 13411}, {7146, 49766}, {7176, 36531}, {7247, 10521}, {7288, 51073}, {7354, 12512}, {7951, 10171}, {7989, 14986}, {9581, 21625}, {9655, 31730}, {9656, 12701}, {9812, 9819}, {9957, 18483}, {10165, 31479}, {10172, 15325}, {10385, 50862}, {10386, 33697}, {10592, 24928}, {10865, 18412}, {10895, 12053}, {10956, 41553}, {11238, 50803}, {11551, 41684}, {12432, 34790}, {12447, 21075}, {12526, 20214}, {12573, 37787}, {12588, 34379}, {12629, 31418}, {12667, 21628}, {12943, 28158}, {13370, 17531}, {13464, 22835}, {13607, 37737}, {15950, 51103}, {16236, 31145}, {16842, 51773}, {17057, 34690}, {17077, 19870}, {17609, 17644}, {17757, 20103}, {19372, 30148}, {19876, 31188}, {20292, 51433}, {20344, 51770}, {21147, 30142}, {21290, 51765}, {25719, 33949}, {28234, 39542}, {29604, 41245}, {30384, 50802}, {31408, 49547}, {33709, 41554}, {34547, 51769}, {36279, 38127}, {36493, 43054}, {37694, 50604}, {37716, 39595}, {38207, 51098}, {49492, 50753}

X(51782) = midpoint of X(i) and X(j) for these {i,j}: {226, 5252}, {1478, 31397}
X(51782) = reflection of X(13405) in X(495)
X(51782) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5261, 3947}, {1, 10590, 3817}, {8, 5290, 3671}, {10, 388, 4298}, {12, 10106, 1125}, {355, 21620, 6738}, {388, 9578, 10}, {1056, 5587, 11019}, {1420, 10588, 19862}, {1697, 5229, 51118}, {3085, 9613, 4297}, {3476, 5219, 551}, {3485, 37709, 3244}, {4292, 10039, 43174}, {4293, 31434, 10164}, {5252, 11237, 226}, {5270, 10039, 4292}, {5542, 38155, 18391}, {7951, 44675, 10171}, {10895, 12053, 12571}, {12527, 24987, 18249}, {20060, 24987, 12527}, {30331, 34648, 3586}, {37719, 45287, 13411}


X(51783) = X(1)X(3146)∩X(2)X(31508)

Barycentrics    4*a^3 - 3*a^2*b + 2*a*b^2 - 3*b^3 - 3*a^2*c - 4*a*b*c + 3*b^2*c + 2*a*c^2 + 3*b*c^2 - 3*c^3 : :
X(51783) = X[57] - 3 X[497], 5 X[57] - 3 X[3474], X[57] + 3 X[9580], 2 X[57] - 3 X[11019], 5 X[497] - X[3474], X[3474] + 5 X[9580], 2 X[3474] - 5 X[11019], 2 X[9580] + X[11019], X[4342] + 2 X[9668], X[20214] + 3 X[36845], X[9965] - 3 X[31146]

X(51783) lies on these lines: {1, 3146}, {2, 31508}, {4, 12575}, {7, 30350}, {10, 1479}, {11, 10164}, {20, 13462}, {30, 4315}, {35, 5284}, {55, 3817}, {57, 497}, {80, 4669}, {142, 49736}, {149, 3219}, {152, 51766}, {153, 51767}, {165, 5274}, {226, 3058}, {329, 519}, {354, 4114}, {376, 37704}, {390, 1699}, {484, 1210}, {496, 5122}, {515, 4342}, {528, 3452}, {551, 4304}, {908, 34611}, {938, 9589}, {946, 4314}, {950, 2099}, {962, 6738}, {999, 28150}, {1001, 37271}, {1058, 4298}, {1125, 4294}, {1317, 51082}, {1319, 4297}, {1387, 51705}, {1697, 5225}, {1836, 3982}, {2801, 17642}, {2802, 17658}, {3057, 5927}, {3085, 12571}, {3086, 12512}, {3244, 5057}, {3295, 3947}, {3465, 49686}, {3475, 43179}, {3485, 41864}, {3488, 31162}, {3523, 50444}, {3583, 31397}, {3612, 15808}, {3625, 3681}, {3627, 31792}, {3634, 10591}, {3636, 4305}, {3663, 4872}, {3671, 12699}, {3715, 38210}, {3825, 25973}, {3839, 5726}, {3877, 30294}, {3880, 9954}, {3885, 11678}, {3911, 11238}, {3925, 38059}, {3950, 4865}, {4035, 4702}, {4052, 32920}, {4082, 5014}, {4292, 21625}, {4293, 28158}, {4295, 6744}, {4302, 44675}, {4309, 13411}, {4312, 10580}, {4313, 11522}, {4326, 30275}, {4349, 37595}, {4356, 20182}, {4423, 38204}, {4640, 24386}, {4666, 38054}, {5046, 6736}, {5082, 18250}, {5218, 10171}, {5219, 10385}, {5229, 37556}, {5252, 34648}, {5273, 50836}, {5281, 7988}, {5316, 34612}, {5691, 9785}, {5698, 24392}, {5722, 28194}, {5745, 11235}, {5787, 9949}, {5850, 20214}, {5853, 21060}, {5918, 17626}, {6684, 9669}, {6745, 20075}, {7673, 15104}, {7677, 41853}, {7741, 51073}, {7743, 10165}, {7962, 28236}, {9579, 12577}, {9581, 43174}, {9665, 31396}, {9955, 10386}, {9957, 31673}, {9965, 31146}, {10072, 34638}, {10106, 12953}, {10136, 31526}, {10167, 18240}, {10569, 31391}, {10589, 35445}, {11362, 11545}, {11813, 34649}, {12019, 38127}, {12609, 51724}, {12915, 15726}, {13912, 35802}, {13975, 35803}, {14151, 34789}, {15172, 21620}, {16236, 50872}, {17556, 34639}, {17716, 24210}, {17784, 20103}, {18193, 51615}, {18220, 30389}, {18391, 28228}, {18527, 28174}, {19883, 23708}, {20344, 51769}, {20347, 42057}, {21628, 48482}, {21633, 31770}, {21635, 41553}, {22791, 31795}, {24175, 24715}, {24177, 33094}, {25440, 25893}, {25525, 47357}, {28232, 36279}, {28526, 29844}, {29353, 35645}, {29571, 33109}, {30827, 34607}, {31164, 51071}, {33098, 49989}, {33110, 38201}, {33169, 50118}, {34547, 51770}, {34548, 51765}, {35242, 47743}, {43180, 44841}

X(51783) = midpoint of X(i) and X(j) for these {i,j}: {497, 9580}, {3586, 30305}
X(51783) = reflection of X(i) in X(j) for these {i,j}: {11019, 497}, {17784, 20103}, {21060, 24703}
X(51783) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {226, 3058, 30331}, {390, 1699, 13405}, {946, 15171, 4314}, {950, 12701, 4301}, {1058, 41869, 4298}, {1479, 10624, 10}, {1697, 5225, 19925}, {3295, 18483, 3947}, {3434, 40998, 10}, {4294, 9614, 1125}, {4304, 30384, 551}, {5274, 30332, 165}, {6284, 12053, 4297}, {9670, 12701, 950}, {15172, 22793, 21620}


X(51784) = X(1)X(2)∩X(4)X(5726)

Barycentrics    a^4 + a^3*b - 3*a^2*b^2 - a*b^3 + 2*b^4 + a^3*c - 10*a^2*b*c + a*b^2*c - 3*a^2*c^2 + a*b*c^2 - 4*b^2*c^2 - a*c^3 + 2*c^4 : :
X(51784) = 5 X[1698] - 4 X[5705]

X(51784) lies on these lines: {1, 2}, {4, 5726}, {5, 31393}, {7, 43174}, {9, 12607}, {11, 37556}, {12, 1697}, {20, 31508}, {35, 9613}, {37, 23058}, {40, 495}, {46, 4355}, {55, 5691}, {57, 9588}, {65, 15104}, {165, 388}, {226, 7991}, {390, 19925}, {497, 7989}, {516, 5261}, {631, 13462}, {946, 8164}, {950, 37714}, {954, 3913}, {962, 3947}, {999, 31423}, {1000, 13464}, {1015, 31428}, {1056, 3361}, {1058, 10175}, {1420, 5432}, {1482, 8275}, {1656, 31792}, {1695, 10408}, {1706, 25466}, {1768, 10956}, {1788, 10980}, {1837, 10389}, {1891, 38300}, {2093, 13407}, {2136, 2886}, {2476, 3895}, {2646, 37709}, {3057, 5219}, {3090, 50444}, {3091, 12575}, {3158, 5794}, {3247, 21049}, {3295, 5587}, {3297, 13947}, {3298, 13893}, {3303, 9581}, {3304, 31231}, {3333, 26446}, {3339, 5657}, {3340, 17718}, {3421, 5234}, {3436, 4512}, {3475, 4848}, {3476, 30389}, {3485, 11531}, {3486, 37712}, {3487, 11362}, {3523, 4315}, {3586, 3746}, {3600, 10164}, {3601, 5252}, {3646, 3820}, {3654, 6147}, {3673, 17885}, {3698, 41867}, {3731, 6554}, {3748, 37723}, {3817, 9785}, {3890, 30852}, {3893, 31245}, {3894, 13750}, {3986, 31325}, {4293, 16192}, {4297, 5281}, {4301, 5226}, {4326, 12617}, {4642, 23681}, {4654, 37567}, {4662, 5728}, {4859, 6706}, {4866, 10398}, {4917, 5178}, {5119, 9589}, {5122, 31425}, {5128, 10404}, {5129, 5828}, {5218, 7987}, {5435, 12577}, {5437, 37828}, {5531, 10393}, {5586, 36279}, {5690, 11529}, {5708, 50821}, {5714, 28194}, {5719, 16236}, {5727, 37080}, {5815, 18249}, {5836, 25525}, {5837, 25568}, {5880, 32157}, {5881, 24929}, {5904, 50195}, {5919, 50443}, {6690, 32049}, {6762, 26066}, {6767, 9956}, {7160, 15909}, {7308, 21031}, {7320, 18220}, {7354, 35445}, {7373, 11231}, {7951, 9614}, {7962, 11218}, {7982, 11374}, {7988, 10588}, {8227, 9957}, {8581, 31787}, {9579, 11237}, {9580, 10895}, {9590, 10831}, {9591, 10037}, {9646, 13888}, {9654, 41869}, {9848, 10157}, {9850, 11227}, {9947, 14100}, {10156, 12128}, {10172, 47743}, {10590, 10624}, {10944, 13384}, {10955, 30223}, {11108, 51362}, {11236, 50836}, {11246, 41348}, {11518, 40663}, {12588, 39878}, {12631, 17057}, {12710, 18908}, {14923, 31266}, {15017, 15558}, {15171, 18492}, {16200, 37737}, {16201, 41861}, {17757, 31435}, {18412, 34790}, {18990, 35242}, {20060, 35258}, {20789, 31246}, {25415, 37731}, {30282, 31452}, {30323, 37701}, {30330, 38057}, {31399, 40270}, {31432, 44622}, {31794, 41870}, {34639, 50736}, {37571, 37708}, {37725, 51768}, {37726, 51767}

X(51784) = reflection of X(1) in X(5703)
X(51784) = X(45830)-complementary conjugate of X(1329)
X(51784) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 498, 3624}, {1, 10039, 3679}, {1, 12647, 3633}, {1, 19875, 1210}, {1, 30286, 6738}, {1, 31434, 1698}, {1, 34595, 44675}, {8, 13405, 1}, {10, 4882, 3679}, {10, 34619, 4882}, {12, 1697, 1699}, {40, 495, 5290}, {40, 5290, 4312}, {55, 9578, 5691}, {1056, 6684, 3361}, {1656, 31792, 37704}, {1706, 25466, 38052}, {3057, 5219, 11522}, {3085, 31397, 1}, {3487, 11362, 18421}, {3617, 6738, 30286}, {3617, 10578, 6738}, {3746, 10827, 3586}, {3828, 21625, 5704}, {5119, 9612, 9589}, {5119, 37719, 9612}, {5218, 10106, 7987}, {5657, 21620, 3339}, {6738, 10578, 1}, {7988, 30337, 12053}, {9612, 31436, 5119}, {9957, 31479, 8227}, {10039, 10056, 1}, {10198, 10915, 9623}, {10528, 24987, 200}, {10587, 24982, 10582}, {10588, 12053, 7988}, {11237, 37568, 9579}, {11375, 45081, 7962}, {26363, 49626, 12629}, {31436, 37719, 9589}, {31452, 45287, 30282}


X(51785) = X(1)X(4)∩X(2)X(12575)

Barycentrics    (a - b - c)*(a^3 + 2*a^2*b + 3*a*b^2 + 2*b^3 + 2*a^2*c - 6*a*b*c - 2*b^2*c + 3*a*c^2 - 2*b*c^2 + 2*c^3) : :

X(51785) lies on these lines: {1, 4}, {2, 12575}, {3, 37704}, {5, 31393}, {7, 21625}, {8, 4342}, {9, 3813}, {10, 5274}, {11, 1697}, {12, 37556}, {20, 13462}, {40, 496}, {55, 3624}, {56, 9580}, {57, 9589}, {149, 19861}, {165, 3086}, {200, 41012}, {381, 31792}, {390, 1125}, {516, 3361}, {517, 10866}, {528, 5438}, {551, 4313}, {613, 39878}, {631, 31508}, {938, 4301}, {942, 9848}, {960, 24392}, {962, 3339}, {999, 41869}, {1210, 7991}, {1319, 9670}, {1329, 2136}, {1387, 12119}, {1420, 6284}, {1482, 18527}, {1706, 3816}, {1836, 4355}, {1837, 3632}, {1858, 3894}, {2066, 13888}, {2098, 3633}, {2099, 37723}, {2478, 4853}, {2551, 4915}, {2646, 41864}, {3057, 3679}, {3058, 3601}, {3085, 7988}, {3091, 5726}, {3100, 30148}, {3146, 4315}, {3158, 25681}, {3244, 4345}, {3295, 7743}, {3296, 31507}, {3303, 5219}, {3304, 9579}, {3333, 4312}, {3421, 11519}, {3434, 8583}, {3452, 4882}, {3576, 11373}, {3600, 51118}, {3612, 16173}, {3616, 4314}, {3622, 50725}, {3649, 44841}, {3656, 12433}, {3671, 9800}, {3746, 23708}, {3868, 31146}, {3881, 10394}, {3890, 10707}, {3895, 4193}, {3913, 30827}, {3947, 9779}, {3976, 4862}, {4292, 50865}, {4294, 7987}, {4295, 5586}, {4298, 9812}, {4304, 30389}, {4305, 30392}, {4308, 28164}, {4309, 30282}, {4326, 12609}, {4333, 37587}, {4512, 10527}, {4654, 17609}, {4855, 34611}, {4859, 34847}, {4866, 18228}, {5045, 14100}, {5046, 36846}, {5082, 8580}, {5119, 5445}, {5128, 17728}, {5218, 34595}, {5231, 5250}, {5234, 40998}, {5248, 48713}, {5261, 12571}, {5265, 12512}, {5281, 19862}, {5289, 12625}, {5328, 12632}, {5414, 13942}, {5433, 35445}, {5435, 5493}, {5436, 49736}, {5587, 9669}, {5687, 25522}, {5703, 30331}, {5704, 43174}, {5705, 24387}, {5722, 5763}, {5758, 10398}, {5766, 19843}, {5833, 17558}, {5886, 15172}, {5904, 17642}, {5919, 9578}, {6223, 9851}, {6259, 9845}, {6684, 47743}, {6736, 6919}, {6745, 26129}, {6762, 24703}, {6763, 10959}, {6764, 21060}, {6765, 21616}, {6767, 9955}, {7288, 16192}, {7330, 37726}, {7373, 22793}, {7677, 12511}, {7741, 15845}, {7966, 18242}, {7989, 10591}, {8165, 12541}, {8951, 49772}, {9590, 10046}, {9591, 10832}, {9623, 49600}, {9624, 24929}, {9668, 24928}, {9844, 28609}, {9898, 21631}, {9943, 17626}, {10072, 15803}, {10246, 31795}, {10386, 10993}, {10389, 11375}, {10391, 50190}, {10826, 17622}, {10950, 51093}, {11023, 11407}, {11374, 15170}, {11529, 22791}, {11531, 18391}, {12245, 30286}, {12260, 37692}, {12526, 26015}, {12572, 34625}, {12672, 30294}, {12680, 16215}, {12688, 12915}, {12700, 37560}, {12711, 18398}, {12953, 20323}, {13370, 37022}, {13384, 50240}, {15006, 38053}, {15071, 50196}, {15325, 35242}, {15558, 37718}, {16200, 37730}, {16616, 39779}, {17272, 50608}, {17604, 34790}, {23681, 28011}, {24177, 28016}, {24390, 31435}, {24600, 27129}, {24644, 37434}, {24954, 46917}, {28198, 37545}, {28628, 38316}, {30323, 37702}, {31231, 37568}, {31424, 45700}, {31428, 31433}, {31432, 44623}, {34471, 51105}, {37429, 37618}, {37607, 48944}, {37707, 50871}, {37725, 51767}, {38314, 50737}, {41863, 51409}

X(51785) = reflection of X(3361) in X(14986)
X(51785) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1479, 5691}, {1, 1699, 5290}, {1, 3583, 9613}, {1, 4857, 3586}, {1, 9614, 1699}, {1, 30384, 11522}, {10, 9785, 9819}, {11, 1697, 1698}, {55, 50443, 3624}, {57, 12701, 9589}, {497, 12053, 1}, {938, 4301, 18421}, {946, 1058, 1}, {946, 40270, 3487}, {962, 11019, 3339}, {1058, 3487, 40270}, {1210, 30305, 7991}, {1837, 7962, 3632}, {2098, 5727, 3633}, {2551, 21627, 4915}, {3057, 9581, 3679}, {3057, 11238, 9581}, {3058, 11376, 3601}, {3086, 10624, 165}, {3295, 7743, 8227}, {3333, 12699, 4312}, {3487, 40270, 1}, {3488, 13464, 1}, {3601, 11376, 25055}, {3646, 31419, 1698}, {4294, 44675, 7987}, {4295, 10980, 5586}, {4313, 18220, 551}, {5265, 30332, 12512}, {5274, 9785, 10}, {5919, 10896, 9578}, {7989, 30337, 31397}, {9669, 9957, 5587}, {10591, 31397, 7989}, {11373, 15171, 3576}, {12701, 37722, 57}


X(51786) = X(57)X(145)∩X(63)X(519)

Barycentrics    a*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c - 16*a*b*c + 7*b^2*c - a*c^2 + 7*b*c^2 - c^3) : :
X(51786) = 3 X[63] - 4 X[5119], 3 X[3895] - 2 X[5119], 2 X[2099] - 3 X[3870], 3 X[3872] - 4 X[24929], 6 X[11239] - 5 X[31266]

X(51786) lies on these lines: {1, 3833}, {8, 3305}, {9, 31145}, {40, 20050}, {57, 145}, {63, 519}, {100, 13462}, {484, 3633}, {1319, 3913}, {1445, 41558}, {1621, 4915}, {1697, 3219}, {1706, 3623}, {2099, 3870}, {2975, 11519}, {3057, 3984}, {3158, 38460}, {3174, 14151}, {3218, 20049}, {3241, 3306}, {3587, 12245}, {3617, 37556}, {3632, 5250}, {3680, 34772}, {3681, 9819}, {3748, 3893}, {3871, 12629}, {3872, 24929}, {3875, 21272}, {3885, 6765}, {3890, 4882}, {3935, 7962}, {4487, 30568}, {4742, 51284}, {5226, 12541}, {5541, 10031}, {5844, 37584}, {5853, 8545}, {5919, 8168}, {6762, 20014}, {7171, 50818}, {7991, 11220}, {9802, 31162}, {10528, 21627}, {10914, 15934}, {11239, 31266}, {11240, 31224}, {11520, 14923}, {12531, 51768}, {12630, 37787}, {12640, 12649}, {13243, 18452}, {16140, 44669}, {24590, 29605}, {30852, 34619}, {32426, 37740}, {35262, 48696}, {36845, 51433}

X(51786) = reflection of X(63) in X(3895)
X(51786) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 31393, 3305}, {3885, 6765, 11682}, {3913, 36846, 4855}


X(51787) = X(1)X(3)∩X(6)X(7086)

Barycentrics    a*(4*a^3 + a^2*b - 4*a*b^2 - b^3 + a^2*c - 10*a*b*c + b^2*c - 4*a*c^2 + b*c^2 - c^3) : :
X(51787) = X[1] - 5 X[55], 9 X[1] - 5 X[2099], 3 X[1] + 5 X[5119], 3 X[1] - 5 X[24929], 13 X[1] - 5 X[25415], 7 X[1] - 5 X[50194], 9 X[55] - X[2099], 3 X[55] + X[5119], 3 X[55] - X[24929], 13 X[55] - X[25415], 7 X[55] - X[50194], X[2099] + 3 X[5119], X[2099] - 3 X[24929], 13 X[2099] - 9 X[25415], 7 X[2099] - 9 X[50194], 13 X[5119] + 3 X[25415], 7 X[5119] + 3 X[50194], 3 X[10679] + X[37584], 3 X[17502] - 5 X[32613], 13 X[24929] - 3 X[25415], 7 X[24929] - 3 X[50194], 7 X[25415] - 13 X[50194], 5 X[2886] - 7 X[51073], 5 X[3434] - 13 X[19877], X[3895] + 3 X[16370], 5 X[20075] + 11 X[46933], 5 X[6690] - 4 X[19878]
X(51787) = (-r + 4*R)*X[1] + 5*r*X[3]

X(51787) lies on these lines: {1, 3}, {6, 7086}, {10, 10386}, {140, 12575}, {226, 28198}, {390, 18527}, {495, 28146}, {497, 11231}, {528, 3828}, {950, 11545}, {1000, 3655}, {1478, 28154}, {2161, 16814}, {2771, 41553}, {2886, 51073}, {3085, 22793}, {3219, 3871}, {3305, 5687}, {3434, 17559}, {3488, 3654}, {3683, 48696}, {3830, 5726}, {3895, 16370}, {3911, 15170}, {3913, 31445}, {4294, 18480}, {4302, 28168}, {4304, 28204}, {4314, 5690}, {4315, 8703}, {4342, 38028}, {4640, 25439}, {4669, 5325}, {4678, 11106}, {4691, 50243}, {4701, 44669}, {4853, 17571}, {4995, 30384}, {5044, 8715}, {5054, 37704}, {5129, 20075}, {5218, 11230}, {5226, 12699}, {5252, 28208}, {5281, 5886}, {5432, 7743}, {5493, 6147}, {5719, 28194}, {5722, 10385}, {5766, 37822}, {6684, 15172}, {6690, 19878}, {6736, 50241}, {6939, 37820}, {8164, 30332}, {9578, 33697}, {9580, 31479}, {9612, 31480}, {9668, 31434}, {9856, 11491}, {9955, 10624}, {9956, 15171}, {10056, 28202}, {11113, 51362}, {12331, 15837}, {12433, 43174}, {12515, 14151}, {12701, 31452}, {12732, 15670}, {12773, 51767}, {13405, 28174}, {15481, 15733}, {16781, 31430}, {19535, 36846}, {28160, 31397}, {30305, 51709}, {31145, 50742}, {31439, 35809}, {31730, 31776}, {34744, 36867}, {34753, 40270}, {38574, 51766}, {38575, 51769}, {38589, 51770}, {38590, 51765}, {40262, 45776}, {46219, 50444}

X(51787) = midpoint of X(i) and X(j) for these {i,j}: {4640, 25439}, {5119, 24929}
X(51787) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 10386, 31795}, {35, 9957, 13624}, {55, 5119, 24929}, {390, 26446, 18527}, {484, 3746, 3748}, {484, 3748, 942}, {3295, 3579, 5045}, {3746, 37568, 942}, {3748, 37568, 484}, {5010, 5919, 5126}, {9668, 31434, 38140}, {11010, 37080, 50193}, {13151, 35460, 31788}, {13528, 34486, 11227}, {25405, 37600, 31662}, {31393, 31508, 3}, {35460, 37621, 13151}


X(51788) = X(1)X(3)∩X(2)X(51362)

Barycentrics    a*(2*a^3 - a^2*b - 2*a*b^2 + b^3 - a^2*c + 10*a*b*c - b^2*c - 2*a*c^2 - b*c^2 + c^3) : :
X(51788) = 3 X[1] + X[57], 7 X[1] + X[2093], 5 X[1] - X[7962], 5 X[1] + X[36279], X[57] - 3 X[999], 7 X[57] - 3 X[2093], 5 X[57] + 3 X[7962], 5 X[57] - 3 X[36279], 7 X[999] - X[2093], 5 X[999] + X[7962], 5 X[999] - X[36279], 5 X[2093] + 7 X[7962], 5 X[2093] - 7 X[36279], 3 X[3576] - X[6244], 3 X[5049] - X[12915], X[7982] + 3 X[21164], X[7994] - 9 X[30392], 3 X[10246] - X[37611], X[200] - 3 X[35272], X[329] - 9 X[38314], 3 X[551] - X[3452], X[3421] - 5 X[3616], 5 X[20196] - 9 X[25055], X[31142] - 5 X[51105]
(-r + 4*R)*X[1] - r*X[3]

X(51788) lies on these lines: {1, 3}, {2, 51362}, {7, 3656}, {11, 38140}, {30, 4315}, {58, 45219}, {104, 10569}, {106, 3752}, {145, 17614}, {153, 17618}, {200, 35272}, {214, 14563}, {226, 1387}, {329, 38314}, {355, 6964}, {381, 37704}, {388, 9955}, {392, 3219}, {474, 36846}, {495, 11230}, {496, 10106}, {497, 28160}, {500, 4322}, {515, 7956}, {519, 6692}, {527, 42819}, {550, 12575}, {551, 3452}, {938, 37727}, {946, 22792}, {952, 11019}, {956, 3305}, {957, 25417}, {993, 10179}, {1000, 3654}, {1056, 5226}, {1058, 4308}, {1125, 3820}, {1210, 11545}, {1212, 9327}, {1317, 51087}, {1318, 47058}, {1320, 27003}, {1386, 2810}, {1407, 1480}, {1476, 15179}, {1478, 7743}, {1479, 33697}, {1483, 6738}, {1538, 12115}, {1737, 38176}, {2094, 2320}, {2096, 11036}, {2316, 16666}, {2771, 17625}, {2835, 47115}, {3035, 49626}, {3058, 21578}, {3086, 9956}, {3241, 5440}, {3244, 51714}, {3296, 4323}, {3419, 11240}, {3421, 3616}, {3476, 5722}, {3487, 37822}, {3488, 3655}, {3582, 38083}, {3586, 28208}, {3600, 12699}, {3622, 5129}, {3635, 17706}, {3689, 51093}, {3753, 38460}, {3754, 33895}, {3812, 22837}, {3817, 38757}, {3851, 50444}, {3890, 3916}, {3895, 16371}, {3897, 11106}, {3898, 4640}, {3911, 50821}, {3982, 39542}, {4018, 5330}, {4293, 28146}, {4297, 15172}, {4298, 22791}, {4301, 24470}, {4304, 15170}, {4311, 15171}, {4317, 12701}, {4342, 28174}, {4511, 17658}, {4849, 45763}, {4853, 16408}, {4861, 5439}, {4906, 49682}, {4995, 51084}, {5044, 12513}, {5055, 5726}, {5123, 10199}, {5252, 10072}, {5253, 10914}, {5288, 25917}, {5290, 18493}, {5315, 23071}, {5434, 30384}, {5437, 40587}, {5542, 11715}, {5714, 18220}, {5728, 6265}, {5777, 12128}, {5882, 7682}, {5901, 21620}, {5927, 38669}, {6147, 12577}, {6691, 10915}, {6744, 13607}, {6797, 20586}, {7967, 10580}, {8257, 42871}, {8545, 22758}, {8581, 12773}, {8666, 31445}, {9269, 48330}, {9580, 28154}, {9613, 9669}, {9614, 9655}, {9654, 50443}, {9668, 28168}, {9709, 12629}, {9840, 10108}, {9850, 40263}, {9965, 50742}, {10200, 32049}, {10241, 30283}, {10586, 36977}, {10595, 11037}, {11231, 15325}, {11237, 23708}, {11362, 34753}, {12053, 18990}, {12331, 51767}, {12647, 17728}, {12711, 26201}, {12735, 22935}, {12737, 17626}, {12763, 16173}, {13405, 38028}, {14663, 51771}, {15306, 34036}, {15570, 20116}, {15935, 50824}, {16140, 22936}, {16236, 50805}, {16486, 37817}, {16499, 44307}, {16610, 49494}, {17622, 26200}, {18541, 31162}, {19861, 34790}, {19907, 46681}, {20196, 25055}, {28198, 30305}, {29126, 48328}, {30144, 34791}, {30286, 51515}, {30331, 51705}, {31142, 51105}, {32900, 37739}, {34232, 40172}, {34862, 45776}, {37722, 45287}, {38295, 40985}, {38572, 51766}, {38575, 51770}, {38576, 51765}, {38589, 51769}, {50243, 51111}

X(51788) = midpoint of X(i) and X(j) for these {i,j}: {1, 999}, {1482, 3359}, {3476, 5722}, {5882, 7682}, {7962, 36279}, {8257, 42871}
X(51788) = reflection of X(i) in X(j) for these {i,j}: {3820, 1125}, {18516, 9955}, {35238, 13624}
X(51788) = crosspoint of X(1) and X(15180)
X(51788) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3, 31792}, {1, 36, 5919}, {1, 56, 9957}, {1, 354, 50194}, {1, 942, 10222}, {1, 1319, 24929}, {1, 1420, 3295}, {1, 3304, 942}, {1, 3333, 1482}, {1, 3338, 2098}, {1, 3576, 6767}, {1, 5563, 3057}, {1, 5902, 5048}, {1, 7373, 5045}, {1, 10980, 16200}, {1, 11529, 10247}, {1, 13462, 31393}, {1, 18398, 11011}, {1, 20323, 24928}, {1, 21842, 37080}, {1, 24928, 1385}, {1, 37525, 3748}, {1, 37602, 354}, {1, 37618, 3303}, {55, 5126, 17502}, {56, 5119, 5122}, {56, 9957, 3579}, {226, 1387, 51709}, {388, 11373, 9955}, {495, 44675, 11230}, {496, 10106, 18480}, {942, 9957, 13601}, {1000, 5435, 3654}, {1058, 4308, 18481}, {1058, 18481, 31795}, {1319, 3748, 37525}, {1319, 24929, 1385}, {1420, 3295, 13624}, {1482, 3333, 31794}, {2098, 3338, 50193}, {2099, 31393, 13600}, {3057, 5563, 37582}, {3600, 12699, 31776}, {3748, 37525, 24929}, {5049, 25405, 1}, {5119, 5122, 3579}, {5122, 9957, 5119}, {5882, 21625, 12433}, {10980, 16200, 1159}, {12053, 18990, 22793}, {12577, 13464, 6147}, {13462, 31393, 3}, {15325, 31397, 11231}, {24928, 24929, 1319}


X(51789) = X(1)X(546)∩X(10)X(57)

Barycentrics    -((-a + b - c)*(a + b - c)*(5*a^2 - a*b + 6*b^2 - a*c + 12*b*c + 6*c^2)) : :

X(51789) lies on these lines: {1, 546}, {8, 3982}, {10, 57}, {12, 13462}, {56, 19872}, {226, 3241}, {495, 30282}, {553, 51068}, {1319, 5219}, {1420, 5261}, {1478, 9580}, {1837, 30350}, {2099, 3633}, {3305, 20060}, {3340, 3621}, {3476, 51103}, {3622, 5226}, {3748, 5691}, {4654, 4677}, {5119, 5270}, {5122, 31434}, {5176, 6173}, {5229, 37556}, {5425, 5881}, {5434, 5726}, {5727, 15934}, {5837, 20214}, {7354, 31508}, {9613, 24929}, {9654, 50443}, {9963, 41553}, {11236, 20196}, {12763, 51768}, {13273, 51767}, {31266, 34716}, {37711, 41870}

X(51789) = {X(5434),X(5726)}-harmonic conjugate of X(31231)


X(51790) = X(1)X(3627)∩X(4)X(57)

Barycentrics    7*a^4 + a^3*b - a^2*b^2 - a*b^3 - 6*b^4 + a^3*c + 2*a^2*b*c + a*b^2*c - a^2*c^2 + a*b*c^2 + 12*b^2*c^2 - a*c^3 - 6*c^4 : :
X(51790) = 3 X[5219] - 2 X[30282]

X(51790) lies on these lines: {1, 3627}, {4, 57}, {7, 50687}, {12, 31508}, {30, 5219}, {226, 3543}, {381, 5122}, {382, 9612}, {484, 5587}, {546, 15803}, {938, 4114}, {942, 5076}, {950, 17578}, {1319, 1699}, {1420, 18483}, {1478, 9580}, {1697, 5229}, {1770, 18492}, {1836, 5727}, {1892, 13473}, {2093, 11545}, {2099, 5691}, {2475, 3305}, {3146, 3601}, {3340, 31673}, {3585, 5119}, {3586, 3830}, {3587, 6923}, {3614, 16192}, {3748, 5290}, {3839, 3911}, {3853, 37723}, {3982, 11518}, {4304, 15682}, {4313, 50690}, {4333, 31423}, {5128, 19925}, {5175, 20214}, {5218, 28158}, {5252, 50865}, {5438, 31295}, {5703, 50691}, {5719, 33699}, {5722, 15687}, {5818, 41348}, {7354, 13462}, {7962, 9812}, {7988, 15326}, {8227, 10483}, {9613, 22793}, {9614, 9655}, {10248, 12053}, {10385, 50869}, {10404, 30350}, {10590, 28150}, {10724, 41553}, {10725, 15730}, {10826, 16118}, {11112, 20196}, {11113, 41867}, {11114, 25525}, {12699, 37709}, {12763, 51767}, {13273, 51768}, {13384, 28164}, {13411, 33703}, {15950, 34628}, {17579, 30827}, {18228, 50737}, {18393, 50811}, {18541, 38335}, {21578, 38021}, {28146, 31434}, {28154, 31479}, {31053, 34701}, {31190, 37375}, {34595, 50243}

X(51790) = reflection of X(35445) in X(10590)
X(51790) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 9579, 9581}, {3585, 41869, 9578}, {5229, 51118, 1697}, {5290, 12953, 41864}


X(51791) = X(1)X(3627)∩X(57)X(497)

Barycentrics    7*a^3 - 6*a^2*b + 5*a*b^2 - 6*b^3 - 6*a^2*c - 10*a*b*c + 6*b^2*c + 5*a*c^2 + 6*b*c^2 - 6*c^3 : :
X(51791) = X[57] - 6 X[497], 11 X[57] - 6 X[3474], 2 X[57] + 3 X[9580], 7 X[57] - 12 X[11019], 11 X[497] - X[3474], 4 X[497] + X[9580], 7 X[497] - 2 X[11019], 4 X[3474] + 11 X[9580], 7 X[3474] - 22 X[11019], 7 X[9580] + 8 X[11019]

X(51791) lies on these lines: {1, 3627}, {11, 31508}, {57, 497}, {149, 3305}, {528, 20196}, {950, 5734}, {1319, 9670}, {1479, 9578}, {1697, 5818}, {1699, 3748}, {1836, 30350}, {3058, 5219}, {3219, 24392}, {3586, 28204}, {3982, 9812}, {4114, 10580}, {4857, 5119}, {5225, 37556}, {5226, 10389}, {5274, 35445}, {5425, 31162}, {5727, 5844}, {6284, 13462}, {9614, 18493}, {9668, 28168}, {11238, 31231}, {12701, 18421}, {12764, 51767}, {13274, 51768}, {15006, 30275}, {15171, 30282}, {30827, 34611}, {41867, 49736}


X(51792) = X(1)X(546)∩X(4)X(57)

Barycentrics    5*a^4 - a^3*b + a^2*b^2 + a*b^3 - 6*b^4 - a^3*c - 2*a^2*b*c - a*b^2*c + a^2*c^2 - a*b*c^2 + 12*b^2*c^2 + a*c^3 - 6*c^4 : :

X(51792) lies on these lines: {1, 546}, {4, 57}, {5, 30282}, {11, 13462}, {12, 41858}, {30, 31231}, {80, 31162}, {226, 3839}, {381, 3586}, {382, 5122}, {484, 10826}, {938, 3982}, {950, 3832}, {1319, 5691}, {1420, 10591}, {1421, 36985}, {1479, 9578}, {1697, 5225}, {1698, 12953}, {1699, 2099}, {1718, 9611}, {1837, 15911}, {2093, 12019}, {3058, 5726}, {3091, 3601}, {3305, 5046}, {3340, 18483}, {3419, 31142}, {3476, 34648}, {3486, 12571}, {3488, 41099}, {3543, 3911}, {3545, 4304}, {3576, 6982}, {3583, 5119}, {3587, 6928}, {3627, 15803}, {3748, 10895}, {3817, 13384}, {3843, 9612}, {3845, 4654}, {3854, 4313}, {3855, 13411}, {3858, 11374}, {4333, 15079}, {5076, 37582}, {5080, 24392}, {5123, 34706}, {5128, 51118}, {5187, 5438}, {5435, 50687}, {5436, 6871}, {5560, 21398}, {5704, 50688}, {5719, 23046}, {6175, 20195}, {6284, 7989}, {7173, 7987}, {7741, 37406}, {8227, 37525}, {9613, 9669}, {9614, 18480}, {9668, 31434}, {10175, 35445}, {10385, 50803}, {10389, 10590}, {10589, 28164}, {11518, 50689}, {11545, 12699}, {12701, 37714}, {12764, 51768}, {13274, 51767}, {15683, 31188}, {15950, 30308}, {16860, 19872}, {17532, 41867}, {17556, 20196}, {17577, 25525}, {17579, 31190}, {18528, 37736}, {18782, 37584}, {20214, 24391}, {23708, 50811}, {30305, 50796}, {30827, 37375}, {30852, 34701}, {31410, 40270}, {40663, 50865}

X(51792) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 9581, 9579}, {381, 3586, 5219}, {1479, 18492, 9578}, {3583, 5587, 9580}, {5225, 19925, 1697}, {5691, 10896, 50443}, {9614, 18480, 37709}, {9668, 38140, 31434}, {10591, 31673, 1420}, {10826, 18514, 41869}


X(51793) = X(1)X(14094)∩X(57)X(2948)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^7 + a^6*b - 7*a^5*b^2 - a^4*b^3 + 11*a^3*b^4 - a^2*b^5 - 5*a*b^6 + b^7 + a^6*c - 12*a^5*b*c - a^4*b^2*c + 12*a^3*b^3*c - a^2*b^4*c + b^6*c - 7*a^5*c^2 - a^4*b*c^2 + 3*a^3*b^2*c^2 + 3*a^2*b^3*c^2 - a*b^4*c^2 - b^5*c^2 - a^4*c^3 + 12*a^3*b*c^3 + 3*a^2*b^2*c^3 - 12*a*b^3*c^3 - b^4*c^3 + 11*a^3*c^4 - a^2*b*c^4 - a*b^2*c^4 - b^3*c^4 - a^2*c^5 - b^2*c^5 - 5*a*c^6 + b*c^6 + c^7) : :

X(51793) lies on these lines: {1, 14094}, {57, 2948}, {74, 31508}, {110, 13462}, {222, 6126}, {2771, 15934}, {4315, 9143}, {5119, 9904}, {5226, 13605}, {5655, 37704}, {5663, 31393}, {5726, 9140}, {10088, 30282}, {24929, 33535}


X(51794) = X(1)X(15054)∩X(57)X(3024)

Barycentrics    a*(a^8 + 4*a^6*b^2 - 6*a^5*b^3 - 12*a^4*b^4 + 12*a^3*b^5 + 8*a^2*b^6 - 6*a*b^7 - b^8 - 10*a^6*b*c + 6*a^5*b^2*c + 10*a^4*b^3*c - 2*a^2*b^5*c - 6*a*b^6*c + 2*b^7*c + 4*a^6*c^2 + 6*a^5*b*c^2 + 5*a^4*b^2*c^2 - 12*a^3*b^3*c^2 - 3*a^2*b^4*c^2 - 6*a^5*c^3 + 10*a^4*b*c^3 - 12*a^3*b^2*c^3 - 6*a^2*b^3*c^3 + 12*a*b^4*c^3 - 2*b^5*c^3 - 12*a^4*c^4 - 3*a^2*b^2*c^4 + 12*a*b^3*c^4 + 2*b^4*c^4 + 12*a^3*c^5 - 2*a^2*b*c^5 - 2*b^3*c^5 + 8*a^2*c^6 - 6*a*b*c^6 - 6*a*c^7 + 2*b*c^7 - c^8) : :

X(51794) lies on these lines: {1, 15054}, {57, 3024}, {74, 13462}, {110, 31508}, {2836, 5697}, {2948, 5119}, {5663, 31393}, {5726, 10706}, {10065, 30282}, {20126, 37704}


X(51795) = X(1)X(23235)∩X(7)X(2796)

Barycentrics    -((-a + b - c)*(a + b - c)*(a^6 + a^5*b - 7*a^4*b^2 - a^3*b^3 + a^2*b^4 + a*b^5 + a^5*c - 12*a^4*b*c - a^3*b^2*c + 12*a^2*b^3*c + a*b^4*c - 7*a^4*c^2 - a^3*b*c^2 + 23*a^2*b^2*c^2 - a*b^3*c^2 - 6*b^4*c^2 - a^3*c^3 + 12*a^2*b*c^3 - a*b^2*c^3 - 12*b^3*c^3 + a^2*c^4 + a*b*c^4 - 6*b^2*c^4 + a*c^5)) : :

X(51795) lies on these lines: {1, 23235}, {7, 2796}, {57, 3027}, {98, 31508}, {99, 13462}, {671, 5726}, {2782, 31393}, {2786, 30572}, {4315, 8591}, {5119, 9860}, {5219, 12350}, {5226, 11599}, {5252, 9875}, {8724, 37704}, {10086, 30282}, {24472, 30350}


X(51796) = X(1)X(38664)∩X(57)X(3023)

Barycentrics    a^7 + 4*a^5*b^2 - 6*a^4*b^3 + 2*a^3*b^4 - a*b^6 - 10*a^5*b*c + 6*a^4*b^2*c + 10*a^3*b^3*c - 12*a^2*b^4*c + 2*a*b^5*c + 4*a^5*c^2 + 6*a^4*b*c^2 - 23*a^3*b^2*c^2 + 12*a^2*b^3*c^2 + 6*a*b^4*c^2 - 6*b^5*c^2 - 6*a^4*c^3 + 10*a^3*b*c^3 + 12*a^2*b^2*c^3 - 14*a*b^3*c^3 + 6*b^4*c^3 + 2*a^3*c^4 - 12*a^2*b*c^4 + 6*a*b^2*c^4 + 6*b^3*c^4 + 2*a*b*c^5 - 6*b^2*c^5 - a*c^6 : :

X(51796) lies on these lines: {1, 38664}, {57, 3023}, {98, 13462}, {99, 31508}, {2782, 31393}, {2784, 4307}, {3586, 9875}, {4315, 11177}, {5119, 13174}, {5226, 21636}, {5726, 6054}, {10053, 30282}, {11632, 37704}, {12351, 31231}


X(51797) = X(6)X(23)∩X(110)X(599)

Barycentrics    a^2*(4*a^6 - 4*a^2*b^4 - a^2*b^2*c^2 - 2*b^4*c^2 - 4*a^2*c^4 - 2*b^2*c^4) : :
X(51797) = X[6] + 2 X[7712], 4 X[7703] - 7 X[47355], 2 X[18550] + X[48905]

X(51797) lies on the cubics K729 and K1286 and these lines: {3, 19140}, {6, 23}, {110, 599}, {182, 381}, {184, 15534}, {206, 3763}, {511, 11935}, {1176, 7703}, {1350, 7502}, {1351, 19150}, {1386, 5902}, {1495, 12039}, {2930, 26864}, {5012, 32069}, {5085, 11472}, {6144, 19121}, {6593, 15080}, {7728, 25566}, {7784, 14247}, {9306, 51186}, {9544, 15533}, {9970, 34513}, {9971, 32237}, {10117, 19153}, {10510, 35268}, {10546, 32154}, {10606, 15578}, {11179, 44266}, {11464, 33851}, {11579, 14852}, {12017, 18551}, {18550, 19151}, {18572, 46264}, {18911, 47453}, {21358, 37283}, {25335, 37638}, {32111, 51737}, {40341, 41615}, {43576, 48872}, {43977, 44557}, {44961, 47455}

X(51797) = midpoint of X(7712) and X(43697)
X(51797) = reflection of X(6) in X(43697)
X(51797) = isogonal conjugate of X(34213)
X(51797) = isogonal conjugate of the isotomic conjugate of X(6031)
X(51797) = X(i)-isoconjugate of X(j) for these (i,j): {1, 34213}, {75, 30488}
X(51797) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 34213), (206, 30488)
X(51797) = barycentric product X(6)*X(6031)
X(51797) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 34213}, {32, 30488}, {6031, 76}
X(51797) = {X(11003),X(32217)}-harmonic conjugate of X(6)


X(51798) = X(2)X(353)∩X(3)X(67)

Barycentrics    5*a^6 - 3*a^4*b^2 - b^6 - 3*a^4*c^2 - 3*a^2*b^2*c^2 + 3*b^4*c^2 + 3*b^2*c^4 - c^6 : :
X(51798) = 4 X[5026] - X[11646], 2 X[2482] + X[10488], X[25335] - 4 X[48946], X[6] + 2 X[14928], 3 X[12151] - 2 X[41146], 2 X[597] - 3 X[5182], 4 X[597] - 3 X[6034], X[671] - 3 X[5182], 2 X[671] - 3 X[6034], 3 X[99] - X[50639], 3 X[8593] + X[50639], 2 X[115] - 3 X[47352], 2 X[141] - 3 X[41134], 2 X[141] + X[45018], X[11161] - 3 X[41134], 3 X[41134] + X[45018], X[8591] + 2 X[8787], 4 X[620] - 3 X[21358], 3 X[1691] - 2 X[22329], 4 X[3589] - 3 X[9166], 5 X[3618] - 3 X[41135], 5 X[3763] - 6 X[9167], 5 X[3763] - 4 X[19662], 3 X[9167] - 2 X[19662], 3 X[5032] + X[20094], 3 X[5085] - 2 X[6055], X[6321] - 4 X[32135], 2 X[15300] + X[15534], X[7840] - 3 X[12215], 2 X[8550] + X[23235], X[8597] - 3 X[41137], X[11177] - 3 X[25406], 2 X[9880] - 3 X[38072], 4 X[10168] - 3 X[38224], 7 X[10541] - 4 X[11623], 2 X[10992] + X[11477], 2 X[11178] - 3 X[15561], 2 X[12258] - 3 X[38023], X[12355] - 3 X[14848], 5 X[14061] - 6 X[48310], 6 X[14971] - 7 X[47355], X[15533] - 4 X[36521], 3 X[23234] - 2 X[47354], 3 X[38064] - 2 X[49102]

X(51798) lies on the cubic K1286 and these lines: {2, 353}, {3, 67}, {6, 543}, {30, 12151}, {83, 597}, {98, 11168}, {99, 524}, {110, 1641}, {114, 47353}, {115, 14535}, {126, 46276}, {141, 11161}, {147, 11150}, {182, 11632}, {187, 16508}, {194, 1992}, {230, 9877}, {530, 22689}, {531, 22687}, {549, 19905}, {590, 13642}, {615, 13761}, {620, 21358}, {690, 34319}, {732, 44367}, {804, 5652}, {1386, 50886}, {1503, 6054}, {1691, 22329}, {2782, 11179}, {2796, 49477}, {3589, 9166}, {3618, 41135}, {3763, 9167}, {5032, 20094}, {5085, 6055}, {5459, 33409}, {5460, 33408}, {5461, 7834}, {5471, 42035}, {5472, 42036}, {5476, 6321}, {5477, 11173}, {5978, 51159}, {5979, 51160}, {5989, 11163}, {6033, 11645}, {6593, 9144}, {6779, 9116}, {6780, 9114}, {7832, 20582}, {7840, 12215}, {8030, 9146}, {8352, 44380}, {8550, 23235}, {8584, 10754}, {8596, 14035}, {8597, 41137}, {9027, 32442}, {9041, 9884}, {9117, 36775}, {9127, 9225}, {9143, 14916}, {9172, 20998}, {9772, 11177}, {9773, 34803}, {9829, 15080}, {9855, 22561}, {9880, 38072}, {9881, 28538}, {9890, 37809}, {10168, 38224}, {10485, 11185}, {10541, 11623}, {10753, 12117}, {10808, 10809}, {10992, 11477}, {11160, 33208}, {11178, 15561}, {11711, 47358}, {12258, 38023}, {12355, 14848}, {14061, 48310}, {14360, 39689}, {14971, 47355}, {15533, 36521}, {15993, 19911}, {18440, 25562}, {19687, 20583}, {19924, 38730}, {22562, 22563}, {22579, 22685}, {22580, 22683}, {23234, 47354}, {33265, 50640}, {33432, 49214}, {33433, 49215}, {34369, 37858}, {34504, 44453}, {35749, 49804}, {35750, 49853}, {35751, 49900}, {35752, 49944}, {36327, 49805}, {36329, 49899}, {36330, 49943}, {36331, 49854}, {38064, 49102}, {40866, 45331}, {41939, 42008}, {42849, 50659}, {49524, 50885}, {50781, 51578}, {50888, 51147}

X(51798) = midpoint of X(i) and X(j) for these {i,j}: {99, 8593}, {599, 10488}, {1992, 8591}, {5477, 15300}, {9114, 51200}, {9116, 51203}, {9855, 39099}, {10753, 12117}, {11161, 45018}, {14928, 18800}
X(51798) = reflection of X(i) in X(j) for these {i,j}: {2, 5026}, {6, 18800}, {98, 51737}, {599, 2482}, {671, 597}, {1992, 8787}, {5104, 8598}, {5476, 32135}, {6034, 5182}, {6321, 5476}, {8352, 44380}, {9144, 6593}, {10754, 8584}, {11161, 141}, {11632, 182}, {11646, 2}, {15533, 50567}, {15534, 5477}, {15993, 27088}, {18440, 25562}, {19905, 549}, {47353, 114}, {47358, 11711}, {50567, 36521}, {50781, 51578}, {50885, 49524}, {50886, 1386}, {50888, 51147}
X(51798) = psi-transform of X(9829)
X(51798) = crossdifference of every pair of points on line {2492, 9023}
X(51798) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 8592, 35705}, {110, 10717, 1641}, {597, 671, 6034}, {671, 5182, 597}, {5463, 5464, 8724}, {8289, 8592, 2}, {9146, 10554, 8030}, {9167, 19662, 3763}, {9966, 34013, 2930}, {11161, 41134, 141}, {22562, 22563, 22566}, {41134, 45018, 11161}


X(51799) = X(3)X(11178)∩X(23)X(9829)

Barycentrics    a^2*(4*a^8 - 4*a^6*b^2 + 4*a^2*b^6 - 4*b^8 - 4*a^6*c^2 + 3*a^4*b^2*c^2 + 6*a^2*b^4*c^2 + 2*b^6*c^2 + 6*a^2*b^2*c^4 + 12*b^4*c^4 + 4*a^2*c^6 + 2*b^2*c^6 - 4*c^8) : :

X(51799) lies on the cubic K1286 and these lines: {3, 11178}, {23, 9829}, {32, 30489}, {110, 353}, {1995, 9699}, {3734, 7492}, {7617, 14002}, {11648, 13233}, {33981, 34013}


X(51800) = X(2)X(5191)∩X(3)X(19140)

Barycentrics    a^2*(4*a^12 - 8*a^10*b^2 + 2*a^8*b^4 + 4*a^6*b^6 - 4*a^4*b^8 + 4*a^2*b^10 - 2*b^12 - 8*a^10*c^2 - a^8*b^2*c^2 + 6*a^6*b^4*c^2 + 3*a^4*b^6*c^2 - a^2*b^8*c^2 + b^10*c^2 + 2*a^8*c^4 + 6*a^6*b^2*c^4 - 3*a^4*b^4*c^4 - 6*a^2*b^6*c^4 + 2*b^8*c^4 + 4*a^6*c^6 + 3*a^4*b^2*c^6 - 6*a^2*b^4*c^6 - 2*b^6*c^6 - 4*a^4*c^8 - a^2*b^2*c^8 + 2*b^4*c^8 + 4*a^2*c^10 + b^2*c^10 - 2*c^12) : :
X(51800) = 2 X[11636] + X[14681]

X(51800) lies on the cubic K1286 and these lines: {2, 5191}, {3, 19140}, {827, 14388}, {842, 2080}, {1384, 2079}, {1576, 35002}, {3398, 9142}, {13115, 34217}, {14270, 34291}, {14685, 32235}, {15922, 33980}

X(51800) = circumcircle-inverse of X(19140)
X(51800) = psi-transform of X(15080)
X(51800) = {X(5191),X(26316)}-harmonic conjugate of X(14830)


X(51801) = X(1)X(1748)∩X(35)X(186)

Barycentrics    a*(a^2 + b^2 - c^2)*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*(a^2 - b^2 + c^2)*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4) : :

X(51801) lies on the cubic K1287 and these lines: {1, 1748}, {35, 186}, {36, 11587}, {158, 2962}, {162, 1749}, {204, 920}, {240, 522}, {1087, 2181}, {1870, 2914}, {6149, 35201}

X(51801) = polar conjugate of the isogonal conjugate of X(2290)
X(51801) = X(i)-Ceva conjugate of X(j) for these (i,j): {1, 35201}, {17515, 186}
X(51801) = X(i)-isoconjugate of X(j) for these (i,j): {2, 11077}, {3, 1141}, {4, 50463}, {54, 265}, {94, 14533}, {96, 5961}, {97, 1989}, {184, 46138}, {275, 50433}, {476, 23286}, {539, 15401}, {933, 43083}, {1157, 15392}, {2166, 2169}, {2616, 36061}, {3463, 34304}, {6344, 19210}, {6368, 46966}, {10412, 15958}, {11060, 34386}, {11079, 43768}, {14254, 46090}, {14582, 18315}, {14586, 14592}, {14859, 22115}, {15412, 32662}, {36296, 51268}, {36297, 51275}, {46088, 46456}
X(51801) = X(i)-Dao conjugate of X(j) for these (i, j): (11597, 2169), (14363, 2166), (14920, 75), (16221, 2616), (17433, 656), (18402, 1), (32664, 11077), (34544, 97), (36033, 50463), (36103, 1141)
X(51801) = barycentric product X(i)*X(j) for these {i,j}: {1, 14918}, {19, 1273}, {75, 11062}, {92, 1154}, {162, 41078}, {186, 14213}, {264, 2290}, {324, 6149}, {340, 1953}, {811, 2081}, {2181, 7799}, {2617, 44427}, {2618, 14590}, {14165, 44706}, {17923, 35194}, {32679, 35360}
X(51801) = barycentric quotient X(i)/X(j) for these {i,j}: {19, 1141}, {31, 11077}, {48, 50463}, {50, 2169}, {53, 2166}, {92, 46138}, {186, 2167}, {1154, 63}, {1273, 304}, {1625, 36061}, {1953, 265}, {2081, 656}, {2180, 5961}, {2181, 1989}, {2290, 3}, {2618, 14592}, {2624, 23286}, {6149, 97}, {11062, 1}, {14165, 40440}, {14213, 328}, {14591, 36134}, {14918, 75}, {34397, 2148}, {35201, 43768}, {35360, 32680}, {41078, 14208}, {47230, 2616}
X(51801) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {240, 1725, 1784}, {1725, 1784, 36063}


X(51802) = X(1)X(35195)∩X(35)X(1511)

Barycentrics    a^3*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - 3*a^4*c^2 - a^2*b^2*c^2 + b^4*c^2 + 3*a^2*c^4 + b^2*c^4 - c^6) : :

X(51802) lies on the cubic K1287 and these lines: {1, 35195}, {35, 1511}, {36, 1154}, {48, 16562}, {662, 2166}, {820, 2169}, {1100, 34544}, {2964, 4575}, {5353, 19294}, {5357, 19295}, {40214, 47054}

X(51802) = X(i)-Ceva conjugate of X(j) for these (i,j): {1, 6149}, {35195, 1154}
X(51802) = X(i)-isoconjugate of X(j) for these (i,j): {2, 11071}, {4, 15392}, {13, 46076}, {14, 46072}, {94, 14579}, {1117, 1138}, {1141, 1263}, {1291, 10412}, {1989, 13582}, {3459, 34302}, {3471, 5627}, {6344, 43704}
X(51802) = X(i)-Dao conjugate of X(j) for these (i, j): (323, 75), (10413, 1577), (32664, 11071), (34544, 13582), (36033, 15392)
X(51802) = crosspoint of X(1) and X(1749)
X(51802) = barycentric product X(i)*X(j) for these {i,j}: {1, 40604}, {63, 2914}, {163, 45790}, {323, 1749}, {662, 8562}, {1273, 19306}, {6149, 37779}, {32679, 47053}
X(51802) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 11071}, {48, 15392}, {1749, 94}, {2151, 46076}, {2152, 46072}, {2290, 1263}, {2914, 92}, {6149, 13582}, {8562, 1577}, {11063, 2166}, {19303, 1117}, {19306, 1141}, {40604, 75}, {45790, 20948}, {47053, 32680}


X(51803) = X(1)X(195)∩X(35)X(54)

Barycentrics    a^2*(a^2 - b^2 + b*c - c^2)*(a^3 - a^2*b - a*b^2 + b^3 + a^2*c - a*b*c + b^2*c - a*c^2 - b*c^2 - c^3)*(a^3 + a^2*b - a*b^2 - b^3 - a^2*c - a*b*c - b^2*c - a*c^2 + b*c^2 + c^3) : :

X(518031) lies on the cubic K1287 and these lines: {1, 195}, {11, 50708}, {12, 22051}, {35, 54}, {36, 1154}, {56, 12316}, {499, 12325}, {1493, 3746}, {1737, 5397}, {1870, 2914}, {2888, 7741}, {3299, 12965}, {3301, 12971}, {3583, 32423}, {3585, 20424}, {5270, 11803}, {5353, 10678}, {5357, 10677}, {5563, 7356}, {5697, 9905}, {6284, 36966}, {7127, 35199}, {7280, 12307}, {7343, 43704}, {9638, 12291}, {11271, 37720}, {11399, 12175}, {12266, 24926}, {12896, 14049}, {14101, 31674}, {14102, 27246}, {18514, 48675}, {19470, 43580}, {19658, 51751}, {22765, 32899}, {22781, 44759}, {38458, 50461}

X(51803) = X(6149)-cross conjugate of X(36)
X(51803) = X(i)-isoconjugate of X(j) for these (i,j): {2, 11069}, {80, 3336}, {484, 14452}, {1411, 27529}, {2161, 17483}, {2166, 35197}, {6187, 46749}, {7165, 34300}, {18359, 21773}, {21863, 24624}, {35174, 42649}
X(51803) = X(i)-Dao conjugate of X(j) for these (i, j): (11597, 35197), (32664, 11069), (35204, 27529), (40584, 17483), (40612, 46749)
X(51803) = barycentric product X(i)*X(j) for these {i,j}: {3218, 3467}, {7113, 46750}
X(51803) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 11069}, {36, 17483}, {50, 35197}, {2323, 27529}, {3218, 46749}, {3467, 18359}, {3724, 21863}, {7113, 3336}, {19302, 14452}
X(51803) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 195, 35197}, {54, 6286, 35}, {1493, 13079, 47378}, {7356, 10082, 5563}, {10082, 15801, 7356}, {13079, 47378, 3746}


X(51804) = X(1)X(35195)∩X(35)X(14367)

Barycentrics    a*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 3*a^4*c^2 + a^2*b^2*c^2 - 3*b^4*c^2 + 3*a^2*c^4 + 3*b^2*c^4 - c^6)*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - a^4*c^2 + a^2*b^2*c^2 + 3*b^4*c^2 - a^2*c^4 - 3*b^2*c^4 + c^6) : :

X(51804) lies on the cubic K1287 and these lines: {1, 35195}, {10, 13582}, {19, 19303}, {35, 14367}, {37, 14579}, {65, 6126}, {484, 1263}, {759, 1291}, {1109, 2962}, {1749, 2166}, {1910, 16546}, {2153, 35198}, {2154, 35199}, {2190, 35201}, {3065, 5671}, {3336, 3471}, {3467, 38935}, {35055, 47054}

X(51804) = isogonal conjugate of X(1749)
X(51804) = X(6149)-cross conjugate of X(1)
X(51804) = X(i)-isoconjugate of X(j) for these (i,j): {1, 1749}, {2, 11063}, {3, 37943}, {4, 50461}, {5, 1157}, {6, 37779}, {13, 5616}, {14, 5612}, {15, 51267}, {16, 51274}, {30, 3470}, {74, 10272}, {99, 6140}, {110, 45147}, {195, 11584}, {249, 10413}, {265, 2914}, {399, 14451}, {476, 8562}, {523, 47053}, {1138, 15766}, {1495, 46751}, {1989, 40604}, {2070, 38542}, {3459, 15770}, {6592, 33643}, {8487, 18285}, {14213, 19306}, {14354, 14993}, {14560, 45790}
X(51804) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 1749), (9, 37779), (244, 45147), (32664, 11063), (34544, 40604), (36033, 50461), (36103, 37943), (38986, 6140)
X(51804) = cevapoint of X(2624) and X(2643)
X(51804) = trilinear pole of line {661, 17438}
X(51804) = barycentric product X(i)*X(j) for these {i,j}: {1, 13582}, {75, 14579}, {92, 43704}, {1263, 2167}, {1291, 1577}, {2349, 3471}, {20879, 43657}
X(51804) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 37779}, {6, 1749}, {19, 37943}, {31, 11063}, {48, 50461}, {163, 47053}, {661, 45147}, {798, 6140}, {1263, 14213}, {1291, 662}, {2148, 1157}, {2151, 5616}, {2152, 5612}, {2153, 51267}, {2154, 51274}, {2159, 3470}, {2173, 10272}, {2349, 46751}, {2624, 8562}, {2643, 10413}, {3471, 14206}, {6149, 40604}, {11071, 2166}, {13582, 75}, {14579, 1}, {19303, 15766}, {32679, 45790}, {43704, 63}


X(51805) = X(1)X(1094)∩X(13)X(79)

Barycentrics    a*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + 4*b^2*c^2 + c^4 + 2*Sqrt[3]*(a^2 - b^2 - c^2)*S) : :
X(51805) = Cos[A + Pi/6]*Sec[A - Pi/6]*Sin[A] : :

X(51805) lies on the cubics K221 and K1287 and these lines: {1, 1094}, {13, 79}, {35, 6104}, {80, 38943}, {1725, 2159}, {2154, 2166}, {5353, 6126}, {35199, 35201}, {39150, 46078}

X(51805) = X(i)-isoconjugate of X(j) for these (i,j): {2, 11086}, {4, 50466}, {6, 11092}, {13, 36209}, {14, 15}, {16, 36210}, {18, 6105}, {61, 11600}, {110, 23284}, {186, 10218}, {298, 3458}, {301, 34394}, {323, 11085}, {470, 36297}, {526, 36840}, {533, 16460}, {618, 2380}, {1094, 2166}, {1989, 11131}, {2307, 36932}, {5616, 46076}, {5994, 23870}, {6110, 39378}, {6137, 23896}, {8603, 16771}, {8738, 44718}, {8739, 40710}, {9204, 9207}, {11060, 11129}, {11087, 11146}, {11088, 19778}, {11127, 11138}, {14920, 39381}, {17402, 20579}, {18776, 47072}, {23715, 47482}, {39150, 42680}, {39152, 46077}
X(51805) = X(i)-Dao conjugate of X(j) for these (i, j): (9, 11092), (244, 23284), (11597, 1094), (32664, 11086), (34544, 11131), (36033, 50466)
X(51805) = barycentric product X(i)*X(j) for these {i,j}: {1, 11078}, {75, 11081}, {92, 50465}, {94, 1095}, {299, 2153}, {300, 2152}, {559, 36933}, {662, 23283}, {2166, 11130}, {3375, 8838}, {32679, 36839}
X(51805) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 11092}, {31, 11086}, {48, 50466}, {50, 1094}, {661, 23284}, {1095, 323}, {1251, 36932}, {2151, 36209}, {2152, 15}, {2153, 14}, {2154, 36210}, {3383, 8836}, {3457, 2154}, {6149, 11131}, {8604, 3384}, {11078, 75}, {11080, 2166}, {11081, 1}, {11083, 3376}, {11134, 35198}, {23283, 1577}, {32678, 36840}, {34395, 2151}, {35199, 11146}, {36839, 32680}, {50465, 63}
X(51805) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3383, 2153}, {1, 19298, 1094}, {2306, 19551, 13}


X(51806) = X(1)X(1095)∩X(14)X(79)

Barycentrics    a*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + 4*b^2*c^2 + c^4 - 2*Sqrt[3]*(a^2 - b^2 - c^2)*S) : :
X(51806) = Cos[A - Pi/6]*Sec[A + Pi/6]*Sin[A] : :

X(51806) lies on the cubics K221 and K1287 and these lines: {1, 1095}, {14, 79}, {35, 6105}, {80, 38944}, {1725, 2159}, {2153, 2166}, {5357, 6126}, {35198, 35201}, {39151, 46074}

X(51806) = X(i)-isoconjugate of X(j) for these (i,j): {2, 11081}, {4, 50465}, {6, 11078}, {13, 16}, {14, 36208}, {15, 36211}, {17, 6104}, {62, 11601}, {110, 23283}, {186, 10217}, {299, 3457}, {300, 34395}, {323, 11080}, {471, 36296}, {526, 36839}, {532, 16459}, {619, 2381}, {1095, 2166}, {1989, 11130}, {5612, 46072}, {5995, 23871}, {6111, 39377}, {6138, 23895}, {8604, 16770}, {8737, 44719}, {8740, 40709}, {9205, 9206}, {11060, 11128}, {11082, 11145}, {11083, 19779}, {11126, 11139}, {14920, 39380}, {17403, 20578}, {18777, 47073}, {23714, 47481}, {39151, 42677}, {39153, 46073}
X(51806) = X(i)-Dao conjugate of X(j) for these (i, j): (9, 11078), (244, 23283), (11597, 1095), (32664, 11081), (34544, 11130), (36033, 50465)
X(51806) = barycentric product X(i)*X(j) for these {i,j}: {1, 11092}, {75, 11086}, {92, 50466}, {94, 1094}, {298, 2154}, {301, 2151}, {662, 23284}, {1082, 36932}, {2166, 11131}, {3384, 8836}, {32679, 36840}
X(51806) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 11078}, {31, 11081}, {48, 50465}, {50, 1095}, {661, 23283}, {1094, 323}, {2151, 16}, {2152, 36208}, {2153, 36211}, {2154, 13}, {3376, 8838}, {3458, 2153}, {6149, 11130}, {8603, 3375}, {11085, 2166}, {11086, 1}, {11088, 3383}, {11092, 75}, {11137, 35199}, {23284, 1577}, {32678, 36839}, {33653, 36933}, {34394, 2152}, {35198, 11145}, {36840, 32680}, {50466, 63}
X(51806) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3376, 2154}, {1, 19299, 1095}, {7126, 33654, 14}


X(51807) = X(1)X(6946)∩X(57)X(1361)

Barycentrics    a*(a^6 - 3*a^5*b - 3*a^4*b^2 + 6*a^3*b^3 + 3*a^2*b^4 - 3*a*b^5 - b^6 - 3*a^5*c + 15*a^4*b*c - 8*a^3*b^2*c - 20*a^2*b^3*c + 11*a*b^4*c + 5*b^5*c - 3*a^4*c^2 - 8*a^3*b*c^2 + 34*a^2*b^2*c^2 - 8*a*b^3*c^2 + b^4*c^2 + 6*a^3*c^3 - 20*a^2*b*c^3 - 8*a*b^2*c^3 - 10*b^3*c^3 + 3*a^2*c^4 + 11*a*b*c^4 + b^2*c^4 - 3*a*c^5 + 5*b*c^5 - c^6) : :

X(51807) lies on these lines: {1, 6946}, {57, 1361}, {108, 13462}, {1054, 5119}, {1739, 47623}, {1769, 51768}, {4674, 8056}, {6014, 31508}, {29820, 37525}, {30282, 51769}


X(51808) = X(1)X(38667)∩X(57)X(1364)

Barycentrics    a*(a^8 - a^7*b + 4*a^6*b^2 - 3*a^5*b^3 - 12*a^4*b^4 + 9*a^3*b^5 + 8*a^2*b^6 - 5*a*b^7 - b^8 - a^7*c - 7*a^6*b*c + 3*a^5*b^2*c + 17*a^4*b^3*c - 3*a^3*b^4*c - 13*a^2*b^5*c + a*b^6*c + 3*b^7*c + 4*a^6*c^2 + 3*a^5*b*c^2 - 10*a^4*b^2*c^2 - 6*a^3*b^3*c^2 + 8*a^2*b^4*c^2 + 3*a*b^5*c^2 - 2*b^6*c^2 - 3*a^5*c^3 + 17*a^4*b*c^3 - 6*a^3*b^2*c^3 - 6*a^2*b^3*c^3 + a*b^4*c^3 - 3*b^5*c^3 - 12*a^4*c^4 - 3*a^3*b*c^4 + 8*a^2*b^2*c^4 + a*b^3*c^4 + 6*b^4*c^4 + 9*a^3*c^5 - 13*a^2*b*c^5 + 3*a*b^2*c^5 - 3*b^3*c^5 + 8*a^2*c^6 + a*b*c^6 - 2*b^2*c^6 - 5*a*c^7 + 3*b*c^7 - c^8) : :

X(51808) lies on these lines: {1, 38667}, {57, 1364}, {102, 13462}, {109, 31508}, {151, 51782}, {1361, 51779}, {1742, 2807}, {2773, 51794}, {2779, 51793}, {2785, 51796}, {2792, 51795}, {2800, 51767}, {2814, 51770}, {2815, 51765}, {2817, 18421}, {2818, 31393}, {2835, 51769}, {3040, 51781}, {3042, 51780}, {3465, 34371}, {3738, 51768}, {5726, 10709}, {33650, 51783}, {38573, 51788}, {38579, 51787}


X(51809) = X(1)X(23056)∩X(57)X(3022)

Barycentrics    a*(a^6 - a^5*b + 5*a^4*b^2 - 18*a^3*b^3 + 19*a^2*b^4 - 5*a*b^5 - b^6 - a^5*c - 9*a^4*b*c + 18*a^3*b^2*c - 2*a^2*b^3*c - 9*a*b^4*c + 3*b^5*c + 5*a^4*c^2 + 18*a^3*b*c^2 - 34*a^2*b^2*c^2 + 14*a*b^3*c^2 - 3*b^4*c^2 - 18*a^3*c^3 - 2*a^2*b*c^3 + 14*a*b^2*c^3 + 2*b^3*c^3 + 19*a^2*c^4 - 9*a*b*c^4 - 3*b^2*c^4 - 5*a*c^5 + 3*b*c^5 - c^6) : :

X(51809) lies on these lines: {1, 23056}, {57, 3022}, {101, 31508}, {103, 13462}, {150, 51783}, {152, 51782}, {165, 4845}, {1282, 5119}, {1362, 51779}, {2772, 51793}, {2774, 51794}, {2784, 51795}, {2786, 51796}, {2801, 9819}, {2808, 31393}, {2809, 51769}, {2820, 51770}, {2821, 51765}, {3041, 51781}, {3887, 51768}, {5726, 10710}, {11224, 34930}, {38572, 51787}, {38574, 51788}

X(51809) = reflection of X(51766) in X(31393)


X(51810) = X(1)X(38670)∩X(57)X(5580)

Barycentrics    a*(a^6 + a^5*b - 11*a^4*b^2 + 18*a^3*b^3 - 13*a^2*b^4 + 5*a*b^5 - b^6 + a^5*c + 3*a^4*b*c - 4*a^3*b^2*c + 4*a^2*b^3*c - 5*a*b^4*c + b^5*c - 11*a^4*c^2 - 4*a^3*b*c^2 + 6*a^2*b^2*c^2 + 5*b^4*c^2 + 18*a^3*c^3 + 4*a^2*b*c^3 - 10*b^3*c^3 - 13*a^2*c^4 - 5*a*b*c^4 + 5*b^2*c^4 + 5*a*c^5 + b*c^5 - c^6) : :

X(51810) lies on these lines: {1, 38670}, {57, 5580}, {1282, 5119}, {2291, 31508}, {10058, 15015}, {13462, 28291}, {24333, 51796}, {24436, 40292}, {44764, 51794}, {47006, 51779}


X(51811) = X(1)X(38685)∩X(57)X(6018)

Barycentrics    a*(a^6 - a^5*b - 11*a^4*b^2 - 6*a^3*b^3 + 11*a^2*b^4 + 7*a*b^5 - b^6 - a^5*c - 5*a^4*b*c + 58*a^3*b^2*c + 10*a^2*b^3*c - 49*a*b^4*c + 3*b^5*c - 11*a^4*c^2 + 58*a^3*b*c^2 - 166*a^2*b^2*c^2 + 66*a*b^3*c^2 + b^4*c^2 - 6*a^3*c^3 + 10*a^2*b*c^3 + 66*a*b^2*c^3 - 6*b^3*c^3 + 11*a^2*c^4 - 49*a*b*c^4 + b^2*c^4 + 7*a*c^5 + 3*b*c^5 - c^6) : :

X(51811) lies on these lines: {1, 38685}, {57, 6018}, {106, 31508}, {1054, 5119}, {1293, 13462}, {1357, 51779}, {2776, 51793}, {2789, 51795}, {2796, 51796}, {2802, 4915}, {2821, 51766}, {2827, 51767}, {2832, 51769}, {2842, 51794}, {3038, 51781}, {9519, 9819}, {21290, 51783}, {31393, 51765}, {34548, 51782}, {38576, 51787}, {38590, 51788}

X(51811) = reflection of X(51765) in X(31393)


X(51812) = X(1)X(15157)∩X(57)X(2100)

Barycentrics    6*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4) - a*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c - 10*a*b*c + b^2*c - a*c^2 + b*c^2 - c^3)*J : :

X(51812) lies on these lines: {1, 15157}, {30, 31393}, {57, 2100}, {1113, 13462}, {1114, 31508}, {2101, 5119}, {2574, 51793}, {2575, 51794}, {4315, 15158}, {5726, 10719}, {14807, 51782}, {14808, 51783}, {15154, 51788}, {15155, 51787}, {20408, 51784}, {20409, 51785}


X(51813) = X(1)X(15156)∩X(57)X(2101)

Barycentrics    6*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4) + a*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c - 10*a*b*c + b^2*c - a*c^2 + b*c^2 - c^3)*J : :

X(51813) lies on these lines: {1, 15156}, {30, 31393}, {57, 2101}, {1113, 31508}, {1114, 13462}, {2100, 5119}, {2574, 51794}, {2575, 51793}, {4315, 15159}, {5726, 10720}, {14807, 51783}, {14808, 51782}, {15154, 51787}, {15155, 51788}, {20408, 51785}, {20409, 51784}


X(51814) = X(1)X(38675)∩X(57)X(3325)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^7 + a^6*b + 3*a^5*b^2 - 3*a^4*b^3 + 9*a^3*b^4 - 3*a^2*b^5 + 7*a*b^6 + b^7 + a^6*c - 12*a^5*b*c - 3*a^4*b^2*c + 12*a^3*b^3*c - 3*a^2*b^4*c + 24*a*b^5*c + b^6*c + 3*a^5*c^2 - 3*a^4*b*c^2 - 33*a^3*b^2*c^2 + 15*a^2*b^3*c^2 - 3*a*b^4*c^2 - 3*b^5*c^2 - 3*a^4*c^3 + 12*a^3*b*c^3 + 15*a^2*b^2*c^3 - 60*a*b^3*c^3 - 3*b^4*c^3 + 9*a^3*c^4 - 3*a^2*b*c^4 - 3*a*b^2*c^4 - 3*b^3*c^4 - 3*a^2*c^5 + 24*a*b*c^5 - 3*b^2*c^5 + 7*a*c^6 + b*c^6 + c^7) : :

X(51814) lies on these lines: {1, 38675}, {57, 3325}, {111, 13462}, {543, 51795}, {1296, 31508}, {2780, 51794}, {2793, 51796}, {2805, 51767}, {2813, 51766}, {2830, 51768}, {2837, 51770}, {2843, 51765}, {2854, 51793}, {5726, 10717}, {6019, 51779}, {9522, 51769}, {11258, 51788}, {14360, 51782}, {31393, 33962}, {38593, 51787}


X(51815) = X(1)X(38688)∩X(57)X(6019)

Barycentrics    a*(a^8 - 10*a^6*b^2 + 6*a^5*b^3 - 12*a^4*b^4 + 12*a^3*b^5 - 2*a^2*b^6 + 6*a*b^7 - b^8 - 10*a^6*b*c + 18*a^5*b^2*c + 6*a^4*b^3*c + 18*a^2*b^5*c - 18*a*b^6*c + 2*b^7*c - 10*a^6*c^2 + 18*a^5*b*c^2 + 69*a^4*b^2*c^2 - 60*a^3*b^3*c^2 - 15*a^2*b^4*c^2 - 24*a*b^5*c^2 + 2*b^6*c^2 + 6*a^5*c^3 + 6*a^4*b*c^3 - 60*a^3*b^2*c^3 - 30*a^2*b^3*c^3 + 60*a*b^4*c^3 - 6*b^5*c^3 - 12*a^4*c^4 - 15*a^2*b^2*c^4 + 60*a*b^3*c^4 + 6*b^4*c^4 + 12*a^3*c^5 + 18*a^2*b*c^5 - 24*a*b^2*c^5 - 6*b^3*c^5 - 2*a^2*c^6 - 18*a*b*c^6 + 2*b^2*c^6 + 6*a*c^7 + 2*b*c^7 - c^8) : :

X(51815) lies on these lines: {1, 38688}, {57, 6019}, {111, 31508}, {543, 51796}, {1296, 13462}, {2780, 51793}, {2793, 51795}, {2805, 51768}, {2824, 51766}, {2830, 51767}, {2837, 51769}, {2854, 51794}, {3325, 51779}, {4315, 37749}, {9522, 51770}, {9526, 51765}, {11258, 51787}, {14360, 51783}, {31393, 33962}, {38593, 51788}


X(51816) = X(1)X(3)∩X(63)X(551)

Barycentrics    a*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c + 8*a*b*c + b^2*c - a*c^2 + b*c^2 - c^3) : :
X(51816) = X[1] + 2 X[4860]
X(51816) = (r + 5*R)*X[1] - 2*r*X[3], 5*R*X[1] - r*X[40]

X(51816) lies on these lines: {1, 3}, {7, 7284}, {9, 25055}, {58, 28011}, {63, 551}, {78, 3881}, {79, 4355}, {80, 41556}, {84, 5557}, {90, 3296}, {169, 17474}, {173, 30423}, {226, 10072}, {258, 30411}, {377, 49627}, {388, 6896}, {474, 34791}, {495, 17728}, {496, 10404}, {499, 21620}, {519, 3306}, {529, 17051}, {938, 37721}, {946, 3982}, {950, 4317}, {956, 3742}, {993, 4666}, {997, 3873}, {1056, 1737}, {1058, 1770}, {1125, 3305}, {1158, 10595}, {1210, 10827}, {1373, 34495}, {1374, 34494}, {1449, 2174}, {1468, 46190}, {1476, 17098}, {1478, 11019}, {1479, 4298}, {1698, 6762}, {1706, 3633}, {1709, 5603}, {1728, 3487}, {1743, 47299}, {1768, 11034}, {2163, 35227}, {2999, 16474}, {3086, 5226}, {3218, 38314}, {3219, 3616}, {3241, 27003}, {3244, 51786}, {3293, 11512}, {3476, 50818}, {3488, 21578}, {3524, 18490}, {3555, 25524}, {3577, 15180}, {3582, 5219}, {3583, 51790}, {3584, 31231}, {3585, 51792}, {3600, 10572}, {3622, 12514}, {3624, 17590}, {3632, 51781}, {3636, 5250}, {3649, 11373}, {3679, 5437}, {3689, 16417}, {3729, 4975}, {3751, 9039}, {3754, 36846}, {3811, 3889}, {3870, 3892}, {3872, 5883}, {3874, 19861}, {3895, 51071}, {3901, 15829}, {3911, 10056}, {3915, 9340}, {3928, 51105}, {3929, 51110}, {3983, 16863}, {4004, 10912}, {4031, 28194}, {4114, 12053}, {4292, 21625}, {4293, 10580}, {4304, 50815}, {4309, 40270}, {4311, 6744}, {4321, 41861}, {4324, 41864}, {4333, 15171}, {4338, 12701}, {4654, 18393}, {4662, 16862}, {4692, 30567}, {4857, 9579}, {4973, 35258}, {5234, 25542}, {5249, 45700}, {5251, 10582}, {5252, 11545}, {5270, 9581}, {5289, 24473}, {5290, 7741}, {5292, 23675}, {5298, 37703}, {5434, 5722}, {5439, 12513}, {5440, 40726}, {5443, 10396}, {5445, 51784}, {5529, 49498}, {5541, 50843}, {5542, 8545}, {5558, 5703}, {5587, 51789}, {5851, 16173}, {5904, 8583}, {6147, 11376}, {6261, 45977}, {6763, 31435}, {7171, 11552}, {7289, 16491}, {7313, 39958}, {7330, 9624}, {7956, 12678}, {8257, 51099}, {9331, 9574}, {9336, 9575}, {9589, 9841}, {9612, 37720}, {9613, 37702}, {9776, 34625}, {10074, 18240}, {10090, 41553}, {10106, 37711}, {10199, 30852}, {10385, 50813}, {10390, 15175}, {10461, 28619}, {10527, 51706}, {10529, 12609}, {10586, 21616}, {10597, 12616}, {10864, 22792}, {11038, 15298}, {11520, 30144}, {11712, 34925}, {11813, 31164}, {12047, 14986}, {12611, 18540}, {12763, 37718}, {12943, 18527}, {12953, 31776}, {15325, 17718}, {16137, 16140}, {16370, 42819}, {16666, 23073}, {17647, 41709}, {17722, 48825}, {17742, 29660}, {18391, 37708}, {18613, 23206}, {19875, 51362}, {21454, 30305}, {26725, 41571}, {28039, 49744}, {34036, 51656}, {38052, 41555}, {38476, 49474}, {41869, 51791}

X(51816) = X(18490)-Ceva conjugate of X(1)
X(51816) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 56, 3612}, {1, 57, 5119}, {1, 65, 30323}, {1, 484, 31393}, {1, 3333, 3338}, {1, 3336, 1697}, {1, 3337, 40}, {1, 3338, 46}, {1, 3339, 5697}, {1, 3361, 35}, {1, 5010, 10389}, {1, 5563, 37618}, {1, 5902, 25415}, {1, 10980, 5902}, {1, 11010, 37556}, {1, 13462, 37525}, {1, 15803, 3746}, {1, 18193, 4424}, {1, 37587, 3576}, {3, 17609, 1}, {55, 5049, 1}, {56, 5045, 1}, {56, 40292, 36}, {57, 5119, 46}, {57, 31393, 484}, {57, 51779, 40}, {65, 7373, 1}, {226, 10072, 23708}, {354, 999, 1}, {354, 1319, 15934}, {484, 31393, 5119}, {938, 45287, 37721}, {942, 3304, 1}, {942, 51788, 2099}, {999, 15934, 1319}, {999, 22767, 5563}, {1319, 15934, 1}, {2099, 3304, 51788}, {2099, 17699, 5119}, {2099, 51788, 1}, {3086, 11037, 13407}, {3086, 13407, 37692}, {3338, 5119, 57}, {3361, 30343, 1}, {3576, 44841, 1}, {3889, 5253, 3811}, {4355, 9614, 79}, {4654, 37704, 18393}, {5563, 37525, 13462}, {5563, 50190, 1}, {5902, 37602, 1}, {10222, 37612, 40}, {10246, 44840, 1}, {10980, 37602, 25415}, {11531, 35010, 37560}, {12701, 24470, 4338}, {13462, 30350, 1}, {13462, 37525, 37618}, {40726, 42871, 5440}


X(51817) = X(1)X(3)∩X(11)X(11539)

Barycentrics    a^2*(4*a^2 - 4*b^2 - 5*b*c - 4*c^2) : :
X(51817) = 5*R*X[1] + 8*r*X[3]

X(51817) lies on these lines: {1, 3}, {11, 11539}, {33, 47485}, {37, 20997}, {100, 16858}, {109, 28153}, {187, 9331}, {390, 3582}, {495, 15686}, {497, 15702}, {498, 3832}, {547, 5432}, {612, 37913}, {758, 16558}, {902, 5313}, {993, 4677}, {1015, 15602}, {1030, 16673}, {1124, 6430}, {1250, 34754}, {1253, 6149}, {1335, 6429}, {1376, 17542}, {1478, 11001}, {1479, 5067}, {1621, 36006}, {1698, 16859}, {2067, 6486}, {2276, 5008}, {2308, 5312}, {2330, 37517}, {3056, 50664}, {3058, 11812}, {3085, 4324}, {3244, 17548}, {3533, 4857}, {3543, 3584}, {3545, 3583}, {3585, 8164}, {3614, 41991}, {3632, 4189}, {3633, 5267}, {3636, 37307}, {3845, 4995}, {3850, 6284}, {4294, 5056}, {4304, 38155}, {4309, 5274}, {4316, 10056}, {4421, 5251}, {4668, 8715}, {4853, 45392}, {5041, 5332}, {5248, 17536}, {5258, 8168}, {5259, 16854}, {5268, 13595}, {5284, 17535}, {5288, 19535}, {5315, 21000}, {5326, 7741}, {5561, 28146}, {5687, 19539}, {5727, 28463}, {6484, 35809}, {6485, 35808}, {6487, 6502}, {6914, 37712}, {7031, 31451}, {8167, 16864}, {8540, 39561}, {9336, 37512}, {9778, 11552}, {10385, 15719}, {10386, 37720}, {10593, 41992}, {10638, 34755}, {11551, 50808}, {15079, 31795}, {15171, 16239}, {15228, 17718}, {15325, 41983}, {15338, 37719}, {16370, 48696}, {17549, 25439}, {18990, 41981}, {19704, 51094}, {21508, 29602}, {31245, 34707}, {31479, 38335}, {32141, 37714}, {40091, 41451}

X(51817) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {35, 55, 5010}, {35, 3746, 5217}, {55, 999, 3746}, {55, 5010, 1}, {55, 5217, 999}, {498, 4330, 18514}, {1697, 37616, 1}, {3584, 4302, 18513}, {3601, 11010, 1}, {3612, 37563, 1}, {3746, 5217, 7280}, {3746, 7280, 1}, {4302, 5281, 3584}, {5010, 37587, 3}, {8186, 8187, 4860}


X(51818) = X(6)X(3425)∩X(112)X(186)

Barycentrics    a^2*(a^12 - 3*a^10*b^2 + 2*a^8*b^4 - a^4*b^8 + 3*a^2*b^10 - 2*b^12 - 3*a^10*c^2 - a^8*b^2*c^2 + 4*a^6*b^4*c^2 - 2*a^4*b^6*c^2 - a^2*b^8*c^2 + 3*b^10*c^2 + 2*a^8*c^4 + 4*a^6*b^2*c^4 - 2*a^2*b^6*c^4 - 4*b^8*c^4 - 2*a^4*b^2*c^6 - 2*a^2*b^4*c^6 + 6*b^6*c^6 - a^4*c^8 - a^2*b^2*c^8 - 4*b^4*c^8 + 3*a^2*c^10 + 3*b^2*c^10 - 2*c^12) : :

X(51818) lies on the cubics K888 and K890 and these lines: {6, 3425}, {39, 15562}, {111, 47200}, {112, 186}, {184, 353}, {574, 2794}, {1297, 3098}, {5024, 11641}, {5171, 38676}, {5188, 38689}, {6200, 48789}, {6396, 48788}, {7761, 10718}, {10313, 11649}, {10979, 34841}, {13195, 41412}, {13509, 14917}, {15462, 22240}

X(51818) = {X(19165),X(38652)}-harmonic conjugate of X(11610)


X(51819) = X(2)X(99)∩X(25)X(2489)

Barycentrics    a^4*(a^2 + b^2 - 2*c^2)*(a^2 - 2*b^2 + c^2)*(a^2*b^2 + b^4 + a^2*c^2 - 4*b^2*c^2 + c^4) : :

X(51819) lies on the cubic K969 and these lines: {2, 99}, {25, 2489}, {32, 41936}, {184, 32740}, {1194, 5968}, {3291, 11634}, {3981, 46154}, {14948, 34574}, {15398, 36182}, {21001, 36821}, {40350, 46589}

X(51819) = isogonal conjugate of the isotomic conjugate of X(14263)
X(51819) = X(111)-Ceva conjugate of X(3291)
X(51819) = crosspoint of X(111) and X(41936)
X(51819) = crosssum of X(524) and X(36792)
X(51819) = crossdifference of every pair of points on line {351, 6390}
X(51819) = X(i)-isoconjugate of X(j) for these (i,j): {75, 34161}, {14210, 41909}, {24038, 44182}
X(51819) = X(i)-Dao conjugate of X(j) for these (i, j): (126, 3266), (206, 34161), (15477, 41909), (34158, 69)
X(51819) = barycentric product X(i)*X(j) for these {i,j}: {6, 14263}, {111, 3291}, {126, 41936}, {895, 5140}, {8681, 8753}, {9134, 32729}, {9178, 11634}, {21905, 34574}, {32740, 47286}
X(51819) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 34161}, {3291, 3266}, {5140, 44146}, {14263, 76}, {32740, 41909}, {41936, 44182}


X(51820) = X(2)X(98)∩X(4)X(41173)

Barycentrics    (a^4 + b^4 - a^2*c^2 - b^2*c^2)*(2*a^4 - a^2*b^2 + b^4 - a^2*c^2 - 2*b^2*c^2 + c^4)*(a^4 - a^2*b^2 - b^2*c^2 + c^4) : :

X(51820) lies on the cubic K969 and these lines: {2, 98}, {4, 41173}, {22, 47635}, {25, 669}, {51, 15630}, {237, 32540}, {263, 34238}, {290, 35926}, {685, 6353}, {879, 38359}, {1007, 40428}, {1316, 34156}, {2396, 19599}, {2966, 36874}, {3060, 13137}, {4226, 14265}, {5191, 35606}, {5304, 47737}, {5306, 35906}, {6340, 31632}, {6524, 20031}, {6531, 47735}, {7735, 41932}, {7766, 18873}, {7793, 8870}, {8667, 36822}, {9755, 46124}, {12829, 47734}, {14163, 14583}, {14382, 20023}, {14593, 17409}, {34157, 46606}, {36899, 37689}

X(51820) = isogonal conjugate of the isotomic conjugate of X(14265)
X(51820) = X(i)-Ceva conjugate of X(j) for these (i,j): {98, 230}, {41173, 2395}
X(51820) = cevapoint of X(230) and X(12829)
X(51820) = crosspoint of X(98) and X(41932)
X(51820) = crosssum of X(511) and X(36790)
X(51820) = crossdifference of every pair of points on line {3569, 36212}
X(51820) = X(i)-isoconjugate of X(j) for these (i,j): {75, 34157}, {240, 43705}, {325, 36051}, {511, 8773}, {684, 36105}, {1755, 8781}, {1959, 2987}, {23996, 40428}, {32654, 46238}, {40703, 42065}
X(51820) = X(i)-Dao conjugate of X(j) for these (i, j): (114, 325), (206, 34157), (230, 32458), (15295, 39374), (34156, 69), (35067, 6393), (36899, 8781), (39001, 684), (39069, 1959), (39072, 511), (39085, 43705)
X(51820) = barycentric product X(i)*X(j) for these {i,j}: {6, 14265}, {98, 230}, {114, 41932}, {248, 44145}, {287, 460}, {290, 1692}, {1733, 1910}, {1821, 8772}, {1976, 51481}, {2395, 4226}, {3564, 6531}, {5477, 9154}, {12829, 36897}, {34174, 34369}, {34536, 51335}, {35906, 36875}, {40820, 47734}, {42663, 43187}, {46039, 48452}
X(51820) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 34157}, {98, 8781}, {114, 32458}, {230, 325}, {248, 43705}, {460, 297}, {1692, 511}, {1733, 46238}, {1910, 8773}, {1976, 2987}, {2422, 35364}, {2715, 10425}, {3564, 6393}, {4226, 2396}, {5477, 50567}, {6531, 35142}, {8772, 1959}, {11060, 39374}, {12829, 5976}, {14265, 76}, {14600, 42065}, {14601, 32654}, {32696, 32697}, {35906, 36891}, {36104, 36105}, {41932, 40428}, {42663, 3569}, {44099, 232}, {44145, 44132}, {51335, 36790}, {51431, 51389}
X(51820) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 40820, 5967}, {98, 40820, 2}, {98, 46806, 20021}


X(51821) = X(2)X(74)∩X(25)X(512)

Barycentrics    a^4*(a^4 - 2*a^2*b^2 + b^4 + a^2*c^2 + b^2*c^2 - 2*c^4)*(a^4 + a^2*b^2 - 2*b^4 - 2*a^2*c^2 + b^2*c^2 + c^4)*(a^4*b^2 - 2*a^2*b^4 + b^6 + a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6) : :

X(51821) lies on the cubic K969 and these lines: {2, 74}, {25, 512}, {184, 1576}, {394, 9717}, {3134, 15311}, {6515, 36831}, {6525, 14593}, {10419, 13352}, {10605, 34329}, {11074, 11080}, {11438, 32417}, {12079, 13567}, {13754, 14264}, {17409, 40354}, {32715, 44077}, {40630, 46868}

X(51821) = isogonal conjugate of the isotomic conjugate of X(14264)
X(51821) = X(74)-Ceva conjugate of X(3003)
X(51821) = crosspoint of X(i) and X(j) for these (i,j): {74, 40353}, {40352, 40355}
X(51821) = crosssum of X(i) and X(j) for these (i,j): {30, 36789}, {2986, 14911}, {3260, 6148}
X(51821) = crossdifference of every pair of points on line {11064, 41079}
X(51821) = X(i)-isoconjugate of X(j) for these (i,j): {75, 15454}, {1099, 40423}, {2173, 40832}, {2986, 14206}, {3260, 36053}, {14910, 46234}, {15421, 24001}, {18878, 36035}
X(51821) = X(i)-Dao conjugate of X(j) for these (i, j): (113, 3260), (206, 15454), (15295, 39375), (36896, 40832), (39174, 69)
X(51821) = barycentric product X(i)*X(j) for these {i,j}: {6, 14264}, {74, 3003}, {113, 40353}, {403, 18877}, {686, 1304}, {1725, 2159}, {1986, 11079}, {2315, 36119}, {2433, 15329}, {3580, 40352}, {6334, 32715}, {8749, 13754}, {14919, 44084}, {21731, 44769}, {34333, 40388}, {34834, 40355}
X(51821) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 15454}, {74, 40832}, {1725, 46234}, {3003, 3260}, {11060, 39375}, {14264, 76}, {19627, 39371}, {21731, 41079}, {32640, 18878}, {32715, 687}, {40352, 2986}, {40353, 40423}, {40354, 1300}, {40355, 40427}, {44084, 46106}


X(51822) = X(2)X(107)∩X(25)X(647)

Barycentrics    a^4*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 + a^2*c^4 + b^2*c^4 - 2*c^6)*(a^6 + a^2*b^4 - 2*b^6 - a^4*c^2 + b^4*c^2 - a^2*c^4 + c^6) : :

X(51822 lies on the cubic K979 and these lines: {2, 107}, {25, 647}, {184, 17409}, {237, 34859}, {1968, 15391}, {4230, 36212}, {14593, 17407}, {23357, 36414}, {43717, 43718}, {44770, 51343}, {51324, 51336}

X(51822) = polar conjugate of X(51257)
X(51822) = isogonal conjugate of the isotomic conjugate of X(39265)
X(51822) = X(1297)-Ceva conjugate of X(232)
X(51822) = cevapoint of X(17994) and X(38368)
X(51822) = trilinear pole of line {2211, 39469}
X(51822) = X(i)-isoconjugate of X(j) for these (i,j): {48, 51257}, {75, 34156}, {290, 8766}, {293, 30737}, {336, 1503}, {441, 1821}, {8779, 46273}, {17875, 47388}
X(51822) = X(i)-Dao conjugate of X(j) for these (i, j): (132, 30737), (206, 34156), (1249, 51257), (40601, 441)
X(51822) = barycentric product X(i)*X(j) for these {i,j}: {6, 39265}, {232, 1297}, {237, 6330}, {511, 43717}, {684, 32687}, {1755, 8767}, {2211, 35140}, {2419, 34859}, {2799, 32649}, {3569, 44770}, {4230, 34212}, {15407, 51334}
X(51822) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 51257}, {32, 34156}, {232, 30737}, {237, 441}, {2211, 1503}, {6330, 18024}, {8767, 46273}, {9417, 8766}, {9418, 8779}, {32649, 2966}, {32687, 22456}, {34859, 2409}, {36046, 36036}, {39265, 76}, {39469, 39473}, {43717, 290}, {44770, 43187}


X(51823) = X(2)X(112)∩X(25)X(523)

Barycentrics    (2*a^2 - b^2 - c^2)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 + 2*a^2*b^2*c^2 - a^2*c^4 - b^2*c^4)*(a^6 - a^2*b^4 - a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 - a^2*c^4 + c^6) : :

X(51823) lies on the cubic K979 and these lines: {2, 112}, {4, 10415}, {25, 523}, {184, 1177}, {394, 36823}, {1992, 41511}, {2770, 6353}, {3266, 4235}, {4232, 10424}, {4590, 34254}, {5967, 12828}, {9516, 46165}

X(51823) = X(2373)-Ceva conjugate of X(468)
X(51823) = X(187)-cross conjugate of X(1177)
X(51823) = cevapoint of X(i) and X(j) for these (i,j): {187, 5095}, {5099, 14273}
X(51823) = crosssum of X(895) and X(14909)
X(51823) = trilinear pole of line {690, 44102}
X(51823) = crossdifference of every pair of points on line {14961, 42665}
X(51823) = X(i)-isoconjugate of X(j) for these (i,j): {19, 51253}, {75, 34158}, {858, 36060}, {895, 18669}, {897, 14961}, {14908, 20884}, {36085, 42665}
X(51823) = X(i)-Dao conjugate of X(j) for these (i, j): (6, 51253), (206, 34158), (1560, 858), (2492, 38971), (6593, 14961), (38988, 42665), (48317, 47138)
X(51823) = barycentric product X(i)*X(j) for these {i,j}: {468, 2373}, {1177, 44146}, {10422, 34336}, {10423, 35522}, {18876, 37778}, {44102, 46140}
X(51823) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 51253}, {32, 34158}, {187, 14961}, {351, 42665}, {468, 858}, {1177, 895}, {2373, 30786}, {5095, 5181}, {5099, 38971}, {10422, 15398}, {10423, 691}, {12828, 12827}, {14273, 47138}, {36095, 36085}, {44102, 2393}, {44146, 1236}


X(51824) = X(2)X(104)∩X(25)X(667)

Barycentrics    a^2*(a^3 - a^2*b - a*b^2 + b^3 + 2*a*b*c - a*c^2 - b*c^2)*(a^3 - a*b^2 - a^2*c + 2*a*b*c - b^2*c - a*c^2 + c^3)*(a^3*b - a^2*b^2 - a*b^3 + b^4 + a^3*c + a*b^2*c - a^2*c^2 + a*b*c^2 - 2*b^2*c^2 - a*c^3 + c^4) : :

X(51824) lies on the cubic K979 and these lines: {2, 104}, {25, 667}, {55, 184}, {56, 6075}, {57, 15635}, {3658, 14266}, {11248, 15381}, {14593, 17408}, {36944, 49492}

X(51824) = isogonal conjugate of the isotomic conjugate of X(14266)
X(51824) = X(104)-Ceva conjugate of X(8609)
X(51824) = crosspoint of X(104) and X(41933)
X(51824) = crosssum of X(517) and X(26611)
X(51824) = X(i)-isoconjugate of X(j) for these (i,j): {75, 39173}, {908, 2990}, {3262, 36052}, {6099, 36038}, {22350, 46133}, {22464, 45393}
X(51824) = X(i)-Dao conjugate of X(j) for these (i, j): (119, 3262), (206, 39173), (39175, 69)
X(51824) = barycentric product X(i)*X(j) for these {i,j}: {6, 14266}, {104, 8609}, {119, 41933}, {909, 1737}, {2252, 36123}, {34858, 48380}
X(51824) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 39173}, {8609, 3262}, {14266, 76}, {34858, 2990}


X(51825) = X(2)X(1380)∩X(30)X(1379)

Barycentrics    3*a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4) + (a^4 + a^2*b^2 - 2*b^4 + a^2*c^2 + 4*b^2*c^2 - 2*c^4)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4] : :
X(51825) = X[1380] - 4 X[2040], 2 X[2039] - 3 X[3545], 3 X[5055] - X[38597]

X(51825) lies on the cubic K1289 and these lines: {2, 1380}, {30, 1379}, {381, 511}, {524, 31862}, {543, 14501}, {671, 3414}, {1666, 35822}, {1667, 35823}, {2029, 11648}, {2038, 48852}, {2039, 3545}, {3413, 6040}, {3558, 7775}, {3830, 38596}, {5055, 38597}, {6189, 7809}, {7827, 14630}, {7841, 13325}, {13722, 34320}, {19570, 39365}

X(51825) = midpoint of X(3830) and X(38596)
X(51825) = reflection of X(i) in X(j) for these {i,j}: {2, 2040}, {1380, 2}
X(51825) = {X(47361),X(47363)}-harmonic conjugate of X(1379)


X(51826) = X(2)X(1379)∩X(30)X(1380)

Barycentrics    3*a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4) - (a^4 + a^2*b^2 - 2*b^4 + a^2*c^2 + 4*b^2*c^2 - 2*c^4)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4] : :
X(51826) = X[1379] - 4 X[2039], 2 X[2040] - 3 X[3545], 3 X[5055] - X[38596]

X(51826) lies on the cubic K1289 and these lines: {2, 1379}, {30, 1380}, {381, 511}, {524, 31863}, {543, 14502}, {671, 3413}, {1666, 35823}, {1667, 35822}, {2028, 11648}, {2037, 48852}, {2040, 3545}, {3414, 6039}, {3557, 7775}, {3830, 38597}, {5055, 38596}, {6190, 7809}, {7827, 14631}, {7841, 13326}, {13636, 34320}, {19570, 39366}

X(51826) = midpoint of X(3830) and X(38597)
X(51826) = reflection of X(i) in X(j) for these {i,j}: {2, 2039}, {1379, 2}
X(51826) = {X(47362),X(47364)}-harmonic conjugate of X(1380)


X(51827) = X(2)X(44772)∩X(39)X(83)

Barycentrics    3*a^6*b^2 + 5*a^4*b^4 + a^2*b^6 + 3*a^6*c^2 + 12*a^4*b^2*c^2 + 8*a^2*b^4*c^2 + 5*a^4*c^4 + 8*a^2*b^2*c^4 + 2*b^4*c^4 + a^2*c^6 : :
X(51827) = 3 X[39] - X[32476], 3 X[83] + X[32476], 3 X[262] + X[12252], X[2896] - 5 X[7786], 5 X[3618] - X[45804], X[5188] - 3 X[9751], 3 X[13331] + X[24273], 3 X[7812] + X[9990], 3 X[11171] + X[13111], X[12122] - 3 X[21163], 5 X[31239] - 3 X[42006]

X(51827) lies on the cubic K459 and these lines: {2, 44772}, {6, 8150}, {39, 83}, {187, 12206}, {262, 12252}, {325, 6292}, {395, 25184}, {396, 25188}, {511, 49112}, {548, 13334}, {597, 18806}, {625, 2024}, {732, 3589}, {754, 8359}, {1506, 9478}, {2896, 7759}, {3618, 8149}, {3815, 32190}, {5041, 39089}, {5188, 9751}, {7736, 31982}, {7780, 41755}, {7808, 13331}, {7812, 9990}, {7838, 10007}, {7858, 9866}, {7878, 46283}, {7931, 31268}, {11171, 13111}, {11174, 32189}, {12122, 21163}, {12264, 14839}, {14881, 48892}, {14907, 20088}, {16987, 31239}, {29012, 50652}, {33468, 41632}, {33469, 41642}

X(51827) = midpoint of X(39) and X(83)
X(51827) = reflection of X(i) in X(j) for these {i,j}: {3934, 6704}, {6292, 6683}
X(51827) = isogonal conjugate of X(39397)
X(51827) = complement of X(44772)
X(51827) = X(1)-isoconjugate of X(39397)
X(51827) = X(3)-Dao conjugate of X(39397)
X(51827) = barycentric quotient X(6)/X(39397)


X(51828) = X(2)X(44771)∩X(39)X(698)

Barycentrics    a^8*b^2 + a^4*b^6 + a^2*b^8 + a^8*c^2 - 2*a^4*b^4*c^2 + a^2*b^6*c^2 - 2*a^4*b^2*c^4 - 2*a^2*b^4*c^4 - b^6*c^4 + a^4*c^6 + a^2*b^2*c^6 - b^4*c^6 + a^2*c^8 : :
X(51828) = X[12215] - 3 X[13331]

X(51828) lies on the cubic K459 and these lines: {2, 44771}, {5, 32449}, {6, 38907}, {39, 698}, {141, 32189}, {325, 732}, {511, 12042}, {736, 5103}, {1691, 1916}, {2024, 5026}, {3094, 7824}, {3329, 10334}, {5969, 35297}, {6393, 10007}, {8177, 32452}, {12055, 32476}, {16896, 40332}, {18906, 33225}, {32429, 40279}

X(51828) = midpoint of X(i) and X(j) for these {i,j}: {6, 45803}, {1691, 1916}
X(51828) = reflection of X(i) in X(j) for these {i,j}: {5026, 2024}, {5031, 2023}, {6393, 10007}
X(51828) = complement of X(44771)


X(51829) = X(2)X(44774)∩X(6)X(11261)

Barycentrics    3*a^8*b^2 - 5*a^6*b^4 + 2*a^2*b^8 + 3*a^8*c^2 - 8*a^6*b^2*c^2 - 18*a^4*b^4*c^2 + a^2*b^6*c^2 + b^8*c^2 - 5*a^6*c^4 - 18*a^4*b^2*c^4 - 12*a^2*b^4*c^4 - b^6*c^4 + a^2*b^2*c^6 - b^4*c^6 + 2*a^2*c^8 + b^2*c^8 : :
X(51829) = X[39] + 2 X[25555], X[575] + 2 X[11272], X[576] + 5 X[7786], 5 X[7786] - X[22677], 2 X[2023] + X[32135], 2 X[3589] + X[44423], 5 X[3618] - X[31958], 3 X[5085] + X[22728], X[5097] + 2 X[10007], X[7697] + 3 X[13331], X[7697] - 3 X[38317], 4 X[6683] - X[40107], X[7709] + 3 X[14561], X[14881] + 2 X[20190], 3 X[17508] - X[22676], X[19130] + 2 X[50652], X[22650] + 3 X[38029], X[32447] + 3 X[47352]

X(51829) lies on the cubic K459 and these lines: {2, 44774}, {6, 11261}, {39, 25555}, {83, 43157}, {182, 262}, {395, 22691}, {396, 22692}, {511, 549}, {575, 11272}, {576, 7786}, {2023, 32135}, {3589, 32149}, {3618, 31958}, {3815, 24206}, {5085, 22728}, {5097, 10007}, {5309, 7697}, {5476, 11171}, {6683, 40107}, {7709, 14561}, {7792, 15819}, {7827, 43532}, {8704, 45690}, {10796, 39498}, {14881, 20190}, {14994, 37647}, {17005, 32451}, {17508, 22676}, {19063, 42833}, {19064, 42832}, {19130, 50652}, {19924, 21163}, {22650, 38029}, {22682, 29012}, {32429, 48663}, {32447, 47352}

X(51829) = midpoint of X(i) and X(j) for these {i,j}: {6, 11261}, {182, 262}, {576, 22677}, {5476, 11171}, {13331, 38317}, {32149, 44423}, {32429, 48663}
X(51829) = reflection of X(32149) in X(3589)
X(51829) = complement of X(44774)


X(51830) = X(4)X(141)∩X(20)X(40187)

Barycentrics    (a^2 + 3*b^2 + c^2)*(a^2 + b^2 + 3*c^2)*(7*a^4 - 6*a^2*b^2 - b^4 - 6*a^2*c^2 + 2*b^2*c^2 - c^4) : :

X(51830) lies on the cubics K047 and K616 and these lines: {4, 141}, {20, 40187}, {376, 907}, {4298, 23051}, {7386, 40189}, {7392, 40182}, {10691, 45833}, {14930, 39951}

X(51830) = X(i)-Dao conjugate of X(j) for these (i, j): (15613, 3800), (22333, 3796), (40182, 22334)
X(51830) = barycentric product X(3522)*X(18840)
X(51830) = barycentric quotient X(i)/X(j) for these {i,j}: {3522, 3618}, {39951, 22334}
X(51830) = {X(4),X(14259)}-harmonic conjugate of X(18840)


X(51831) = X(4)X(2393)∩X(69)X(46140)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - b^4 - c^4)*(a^4 - 4*a^2*b^2 + b^4 - c^4)*(a^4 - b^4 - 4*a^2*c^2 + c^4) : :

X(51831) lies on the cubic K615 and these lines: {4, 2393}, {69, 46140}, {186, 3425}, {251, 6353}, {376, 1297}, {7386, 13575}, {11605, 41761}, {34208, 36877}

X(51831) = X(2156)-isoconjugate of X(41614)
X(51831) = X(i)-Dao conjugate of X(j) for these (i, j): (127, 30209), (427, 29959)
X(51831) = barycentric product X(i)*X(j) for these {i,j}: {5486, 17907}, {30247, 33294}
X(51831) = barycentric quotient X(i)/X(j) for these {i,j}: {22, 41614}, {2485, 30209}, {5486, 14376}, {8743, 1995}, {17409, 19136}, {17907, 11185}, {30247, 44766}, {40938, 29959}


X(51832) = X(4)X(513)∩X(104)X(376)

Barycentrics    (a^3 - a^2*b - a*b^2 + b^3 + 2*a*b*c - a*c^2 - b*c^2)*(a^3 - a*b^2 - a^2*c + 2*a*b*c - b^2*c - a*c^2 + c^3)*(a^2*b + b^3 + a^2*c - 2*a*b*c - b^2*c - b*c^2 + c^3) : :

X(51832) lies on the cubic K616 and these lines: {2, 45145}, {4, 513}, {69, 150}, {104, 376}, {1056, 34230}, {2250, 41325}, {2550, 36819}, {3434, 15635}, {5082, 21306}, {24247, 24484}, {30943, 34234}

X(51832) = X(i)-isoconjugate of X(j) for these (i,j): {2183, 2991}, {15344, 22350}
X(51832) = X(i)-Dao conjugate of X(j) for these (i, j): (120, 517), (3290, 51390), (3675, 42758)
X(51832) = barycentric product X(i)*X(j) for these {i,j}: {1738, 34234}, {3290, 18816}, {13136, 23770}, {16082, 34381}, {16752, 38955}
X(51832) = barycentric quotient X(i)/X(j) for these {i,j}: {104, 2991}, {120, 51390}, {1738, 908}, {3290, 517}, {13136, 35574}, {16752, 17139}, {21956, 17757}, {23770, 10015}


X(51833) = X(4)X(52)∩X(20)X(46200)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*b^2*c^2 + c^4)*(a^4 + b^4 - 2*a^2*c^2 - 2*b^2*c^2 + c^4)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + 4*b^2*c^2 + c^4) : :

X(51833) lies on the cubic K616 and these lines: {4, 52}, {20, 46200}, {69, 46134}, {96, 459}, {186, 2351}, {376, 925}, {485, 13429}, {486, 13440}, {631, 34853}, {1249, 2165}, {3520, 16391}, {9308, 45179}, {20563, 32000}, {41371, 45178}

X(51833) = X(5891)-cross conjugate of X(378)
X(51833) = X(i)-isoconjugate of X(j) for these (i,j): {47, 4846}, {563, 34289}
X(51833) = X(34853)-Dao conjugate of X(4846)
X(51833) = barycentric product X(i)*X(j) for these {i,j}: {378, 5392}, {847, 15066}, {2165, 44134}, {8675, 30450}, {14593, 32833}
X(51833) = barycentric quotient X(i)/X(j) for these {i,j}: {378, 1993}, {847, 34289}, {2165, 4846}, {5063, 1147}, {11653, 51776}, {14593, 34288}, {15066, 9723}, {42660, 30451}, {44080, 571}, {44134, 7763}
X(51833) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {68, 847, 4}, {68, 14593, 5962}, {847, 5962, 14593}, {5962, 14593, 4}


X(51834) = X(4)X(6003)∩X(69)X(14616)

Barycentrics    (a^2 - a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^5 - a^4*b - a*b^4 + b^5 - a^4*c - a^3*b*c + a^2*b^2*c - a*b^3*c - 2*b^4*c + a^2*b*c^2 + 4*a*b^2*c^2 + b^3*c^2 - a*b*c^3 + b^2*c^3 - a*c^4 - 2*b*c^4 + c^5) : :

X(51834) lies on the cubic K616 and these lines: {4, 6003}, {69, 14616}, {80, 3421}, {376, 759}, {2161, 41325}, {2550, 36815}, {6827, 37650}, {7735, 48449}, {36927, 37654}

X(51834) = barycentric product X(80)*X(24781)
X(51834) = barycentric quotient X(24781)/X(320)


X(51835) = X(4)X(94)∩X(376)X(476)

Barycentrics    (a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 - 2*a^6*c^2 + 11*a^4*b^2*c^2 - 6*a^2*b^4*c^2 - 3*b^6*c^2 - 6*a^2*b^2*c^4 + 8*b^4*c^4 + 2*a^2*c^6 - 3*b^2*c^6 - c^8) : :
X(51835) = 9 X[3545] - 4 X[39239]

X(51835) lies on the cubic K616 and these lines: {2, 34209}, {4, 94}, {69, 35139}, {376, 476}, {3090, 39170}, {3524, 14993}, {3529, 51254}, {3545, 5627}, {10412, 44834}, {12106, 31676}, {14583, 15682}

X(51835) = X(6149)-isoconjugate of X(10293)
X(51835) = X(i)-Dao conjugate of X(j) for these (i, j): (14993, 10293), (46436, 526)
X(51835) = barycentric product X(i)*X(j) for these {i,j}: {94, 7464}, {20573, 40114}
X(51835) = barycentric quotient X(i)/X(j) for these {i,j}: {1989, 10293}, {7464, 323}, {40114, 50}


X(51836) = X(1)X(21)∩X(2)X(18208)

Barycentrics    a*(b^2 - b*c + c^2)*(b^2 + b*c + c^2) : :

X(51836) lies on the cubics K1015 and K1032 and these lines: {1, 21}, {2, 18208}, {48, 16556}, {69, 18207}, {75, 1581}, {141, 18168}, {192, 17470}, {304, 9239}, {561, 1928}, {982, 2275}, {984, 1469}, {1582, 1760}, {1740, 17446}, {2186, 17471}, {2223, 9941}, {2887, 33930}, {3507, 3681}, {3661, 3864}, {3662, 7237}, {3701, 29674}, {3705, 3865}, {3741, 17760}, {3905, 32853}, {3912, 3971}, {3961, 18788}, {3970, 21820}, {4137, 17155}, {4443, 35552}, {4446, 18179}, {4850, 17795}, {4876, 49509}, {4903, 29579}, {16571, 17872}, {16887, 18204}, {17244, 20703}, {17289, 20274}, {17445, 18041}, {17464, 21809}, {17789, 30953}, {17889, 20880}, {17890, 20889}, {17900, 21406}, {18055, 30982}, {18203, 20911}, {19603, 46507}, {20236, 24230}, {20895, 23669}, {20917, 43534}, {21808, 26102}, {22196, 27705}, {23486, 39731}, {24165, 30038}, {25591, 29637}, {27241, 31036}

X(51836) = isotomic conjugate of X(3113)
X(51836) = isotomic conjugate of the isogonal conjugate of X(3116)
X(51836) = isotomic conjugate of the polar conjugate of X(46507)
X(51836) = X(i)-Ceva conjugate of X(j) for these (i,j): {75, 19600}, {40773, 3117}
X(51836) = X(3116)-cross conjugate of X(46507)
X(51836) = X(i)-isoconjugate of X(j) for these (i,j): {2, 18898}, {4, 43722}, {6, 3407}, {31, 3113}, {32, 3114}, {251, 14617}, {512, 33514}, {560, 46281}, {983, 985}, {1976, 8840}, {2344, 7132}, {9063, 9426}, {17743, 40746}, {38813, 40718}
X(51836) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 3113), (9, 3407), (3094, 19591), (3789, 983), (6374, 46281), (6376, 3114), (10335, 75), (19584, 17743), (19602, 1), (27481, 7033), (32664, 18898), (36033, 43722), (39040, 8840), (39054, 33514), (40585, 14617), (41771, 870)
X(51836) = crosssum of X(1) and X(51291)
X(51836) = barycentric product X(i)*X(j) for these {i,j}: {1, 3314}, {63, 5117}, {69, 46507}, {75, 3094}, {76, 3116}, {561, 3117}, {799, 50549}, {824, 3888}, {982, 3661}, {984, 3662}, {1491, 33946}, {1581, 9865}, {1926, 42061}, {1928, 18899}, {2275, 33931}, {2276, 33930}, {2887, 40773}, {3061, 7179}, {3705, 7146}, {3721, 30966}, {3736, 20234}, {3776, 3799}, {3777, 3807}, {3786, 16888}, {3790, 41777}, {3794, 16603}, {3864, 33891}, {4602, 17415}, {19222, 19600}, {33890, 45782}
X(51836) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3407}, {2, 3113}, {31, 18898}, {38, 14617}, {48, 43722}, {75, 3114}, {76, 46281}, {662, 33514}, {982, 14621}, {984, 17743}, {1469, 7132}, {1959, 8840}, {2275, 985}, {2276, 983}, {3056, 2344}, {3094, 1}, {3095, 3409}, {3116, 6}, {3117, 31}, {3314, 75}, {3408, 3406}, {3661, 7033}, {3662, 870}, {3721, 40718}, {3777, 4817}, {3778, 40747}, {3799, 4621}, {3808, 23597}, {3863, 40763}, {3865, 40738}, {3888, 4586}, {4481, 7255}, {4602, 9063}, {5117, 92}, {7032, 40746}, {7184, 40745}, {7239, 4613}, {9006, 1924}, {9865, 1966}, {17415, 798}, {18899, 560}, {19600, 18906}, {19602, 19591}, {19603, 11328}, {30966, 38810}, {33946, 789}, {40773, 40415}, {42061, 1967}, {43977, 46289}, {46507, 4}, {50549, 661}
X(51836) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 63, 1580}, {1, 17799, 31}, {38, 1959, 1}, {984, 7146, 40790}


X(51837) = X(1)X(87)∩X(7)X(20081)

Barycentrics    (a*b - a*c - b*c)*(a*b - a*c + b*c)*(b^2 + b*c + c^2) : :

X(51837) lies on the cubic K1032 and these lines: {1, 87}, {7, 20081}, {37, 27455}, {39, 6378}, {63, 2319}, {75, 257}, {76, 3662}, {239, 18906}, {312, 335}, {319, 44453}, {511, 17363}, {538, 50128}, {730, 50289}, {732, 17364}, {761, 932}, {984, 3116}, {1278, 20348}, {1916, 3705}, {2285, 7153}, {3094, 3661}, {3666, 16606}, {3739, 27432}, {3758, 32449}, {3790, 3864}, {3797, 7146}, {4359, 27438}, {4645, 9902}, {4699, 27430}, {4772, 27448}, {5969, 29617}, {7096, 30167}, {7148, 12782}, {7179, 9865}, {7275, 37598}, {10007, 29613}, {17248, 45197}, {17291, 31276}, {17367, 24256}, {19804, 27439}, {21080, 27880}, {22016, 22036}, {27466, 47677}, {27481, 40773}, {28606, 45218}, {32035, 44353}, {41838, 43225}, {43931, 48271}

X(51837) = reflection of X(i) in X(j) for these {i,j}: {192, 17760}, {33890, 75}
X(51837) = X(45782)-Ceva conjugate of X(3661)
X(51837) = X(33931)-cross conjugate of X(3661)
X(51837) = X(i)-isoconjugate of X(j) for these (i,j): {43, 40746}, {825, 4083}, {985, 2176}, {1403, 2344}, {1492, 20979}, {2209, 14621}, {3835, 34069}, {4586, 8640}, {5384, 6377}, {18898, 41886}, {21793, 40756}, {38832, 40747}, {40763, 51319}
X(51837) = X(i)-Dao conjugate of X(j) for these (i, j): (3789, 2176), (10335, 33890), (19584, 43), (19602, 20284), (27481, 192), (38995, 20979)
X(51837) = barycentric product X(i)*X(j) for these {i,j}: {75, 45782}, {87, 33931}, {330, 3661}, {824, 4598}, {984, 6384}, {1491, 18830}, {1502, 40736}, {2276, 6383}, {4505, 43931}, {7146, 27424}, {7155, 7179}, {30966, 42027}
X(51837) = barycentric quotient X(i)/X(j) for these {i,j}: {87, 985}, {330, 14621}, {788, 8640}, {824, 3835}, {869, 2209}, {932, 1492}, {984, 43}, {1469, 1403}, {1491, 4083}, {2162, 40746}, {2276, 2176}, {2319, 2344}, {3094, 20284}, {3250, 20979}, {3314, 33890}, {3661, 192}, {3736, 38832}, {3773, 3971}, {3775, 4970}, {3781, 20760}, {3790, 27538}, {3805, 24533}, {3807, 4595}, {3864, 41531}, {4122, 21051}, {4475, 3123}, {4481, 18197}, {4505, 36863}, {4522, 4147}, {4598, 4586}, {6384, 870}, {7146, 1423}, {7179, 3212}, {16606, 40747}, {18830, 789}, {27447, 40738}, {30966, 33296}, {33931, 6376}, {34071, 825}, {40736, 32}, {40773, 27644}, {40783, 16468}, {42027, 40718}, {45782, 1}
X(51837) = {X(330),X(7155)}-harmonic conjugate of X(39914)


X(51838) = X(44)X(9501)∩X(105)X(910)

Barycentrics    a*(a^2 + b^2 - a*c - b*c)^2*(a^2 - a*b - b*c + c^2)^2 : :

X(51838) lies on the cubic K983 and these lines: {44, 9501}, {105, 910}, {238, 516}, {294, 518}, {666, 32922}, {765, 33676}, {1386, 40754}, {1428, 1456}, {1438, 9454}, {1458, 36146}, {9499, 9503}, {14942, 32850}, {16706, 40724}, {36041, 36057}, {36111, 36124}

X(51838) = midpoint of X(294) and X(9453)
X(51838) = isogonal conjugate of X(4712)
X(51838) = X(i)-cross conjugate of X(j) for these (i,j): {31, 1438}, {244, 1027}, {649, 36146}
X(51838) = X(i)-isoconjugate of X(j) for these (i,j): {1, 4712}, {2, 6184}, {3, 34337}, {6, 4437}, {8, 1362}, {37, 16728}, {69, 42071}, {75, 42079}, {76, 39686}, {100, 3126}, {105, 23102}, {120, 34159}, {241, 3693}, {264, 20776}, {665, 42720}, {672, 3912}, {883, 926}, {918, 2284}, {1016, 35505}, {1026, 2254}, {1252, 35094}, {1458, 3717}, {1818, 1861}, {2223, 3263}, {2283, 50333}, {2340, 9436}, {2481, 23612}, {3252, 17755}, {3286, 3932}, {3323, 6065}, {3930, 18206}, {4684, 14626}, {5089, 25083}, {7123, 17060}, {8299, 22116}, {14506, 28914}, {18157, 39258}, {20683, 30941}, {20752, 46108}, {32041, 33570}, {33700, 39350}
X(51838) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 4712), (9, 4437), (206, 42079), (661, 35094), (8054, 3126), (15487, 17060), (32664, 6184), (36103, 34337), (39046, 23102), (40589, 16728)
X(51838) = cevapoint of X(i) and X(j) for these (i,j): {31, 1438}, {244, 1027}
X(51838) = trilinear pole of line {1027, 1438}
X(51838) = barycentric product X(i)*X(j) for these {i,j}: {1, 6185}, {75, 41934}, {105, 673}, {666, 1027}, {884, 34085}, {885, 36146}, {927, 1024}, {1416, 36796}, {1438, 2481}, {1462, 14942}, {1814, 36124}, {2195, 34018}, {2402, 36041}, {8751, 31637}, {43929, 51560}
X(51838) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 4437}, {6, 4712}, {19, 34337}, {31, 6184}, {32, 42079}, {58, 16728}, {105, 3912}, {244, 35094}, {294, 3717}, {560, 39686}, {604, 1362}, {614, 17060}, {649, 3126}, {672, 23102}, {673, 3263}, {919, 1026}, {1024, 50333}, {1027, 918}, {1416, 241}, {1438, 518}, {1462, 9436}, {1973, 42071}, {2195, 3693}, {3248, 35505}, {6185, 75}, {8751, 1861}, {9247, 20776}, {9454, 23612}, {14267, 20431}, {18785, 3932}, {32658, 1818}, {32666, 2284}, {32735, 1025}, {36041, 2414}, {36057, 25083}, {36086, 42720}, {36124, 46108}, {36146, 883}, {41934, 1}, {43929, 2254}


X(51839) = X(1)X(474)∩X(6)X(19604)

Barycentrics    a*(a + b - 3*c)*(a - 3*b + c)*(2*a^2 - a*b + b^2 - a*c - 2*b*c + c^2) : :

X(51839) lies on the cubics K137 and K983 and these lines: {1, 474}, {6, 19604}, {9, 47636}, {37, 27819}, {44, 27834}, {239, 27830}, {1100, 27827}, {1429, 17967}, {3008, 35111}, {3669, 4394}, {3772, 6557}, {4000, 4373}, {4384, 27813}, {4513, 16602}, {5222, 27818}, {5382, 16610}, {6610, 38828}, {17023, 27820}, {17107, 40151}, {17348, 27835}, {17951, 37756}, {24151, 37679}, {24592, 27824}, {24599, 27828}, {24600, 27829}, {33963, 45219}

X(51839) = X(2348)-cross conjugate of X(1279)
X(51839) = X(i)-isoconjugate of X(j) for these (i,j): {1280, 1743}, {1477, 3161}, {3052, 36807}, {3158, 43760}, {3667, 6078}
X(51839) = X(i)-Dao conjugate of X(j) for these (i, j): (16593, 18743), (24151, 36807), (35111, 44720), (39048, 145)
X(51839) = crossdifference of every pair of points on line {3158, 4394}
X(51839) = X(i)-lineconjugate of X(j) for these (i,j): {1, 3158}, {3669, 4394}
X(51839) = barycentric product X(i)*X(j) for these {i,j}: {1279, 4373}, {2348, 27818}, {3008, 8056}, {5853, 19604}, {6084, 27834}
X(51839) = barycentric quotient X(i)/X(j) for these {i,j}: {1279, 145}, {2348, 3161}, {3008, 18743}, {3445, 1280}, {5853, 44720}, {6084, 4462}, {8056, 36807}, {8647, 3158}, {8659, 4394}, {16945, 1477}, {19604, 35160}, {20780, 4855}, {23704, 30720}, {34080, 6078}, {40151, 43760}, {48032, 3667}


X(51840) = X(1)X(87)∩X(75)X(337)

Barycentrics    (b^2 - b*c + c^2)*(a^2*b - a*b^2 + a^2*c - a*b*c + b^2*c - a*c^2 + b*c^2) : :

X(51840) lies on the cubic K1032 and these lines: {1, 87}, {63, 17797}, {75, 337}, {305, 561}, {696, 4446}, {1194, 17053}, {2810, 6467}, {3056, 33946}, {3661, 9229}, {3662, 7237}, {3705, 20234}, {3778, 33890}, {9369, 21147}, {17181, 20629}, {17786, 23772}, {20294, 20504}, {21095, 29653}, {21142, 31337}, {21299, 46180}, {21804, 33933}, {23669, 29673}, {32937, 39930}

X(51840) = X(75)-Ceva conjugate of X(3662)
X(51840) = X(982)-Dao conjugate of X(1)
X(51840) = crosspoint of X(75) and X(17786)
X(51840) = barycentric product X(i)*X(j) for these {i,j}: {982, 17786}, {3501, 33930}, {3662, 32937}, {3888, 21438}, {13588, 20234}, {17072, 33946}
X(51840) = barycentric quotient X(i)/X(j) for these {i,j}: {982, 3500}, {3501, 983}, {17786, 7033}, {32937, 17743}


X(51841) = X(1)X(371)∩X(6)X(57)

Barycentrics    a*((a + b - c)*(a - b + c)*(a + b + c) - 4*a*S) : :

X(51841) lies on the cubic K351 and these lines: {1, 371}, {2, 31438}, {4, 19068}, {6, 57}, {7, 7585}, {9, 13388}, {12, 13893}, {35, 9582}, {40, 1335}, {46, 1703}, {55, 9616}, {56, 18992}, {65, 6415}, {109, 606}, {165, 5414}, {175, 30413}, {226, 3068}, {266, 7010}, {282, 15892}, {354, 19038}, {372, 15803}, {388, 13883}, {481, 30325}, {485, 9612}, {553, 19054}, {580, 3077}, {590, 5219}, {615, 31231}, {942, 3311}, {950, 6459}, {1124, 3333}, {1151, 3601}, {1155, 19037}, {1210, 1588}, {1420, 7968}, {1449, 13389}, {1500, 31437}, {1587, 4292}, {1617, 18999}, {1697, 3298}, {1698, 44622}, {1699, 44623}, {1743, 6203}, {1745, 32555}, {1781, 8938}, {1788, 13936}, {1836, 19030}, {1876, 5410}, {2078, 44591}, {2093, 35774}, {2276, 31427}, {2362, 3339}, {2646, 9615}, {2956, 6213}, {3008, 30276}, {3062, 7133}, {3069, 3911}, {3070, 9579}, {3071, 9581}, {3085, 13912}, {3256, 44590}, {3295, 31439}, {3299, 3338}, {3312, 37582}, {3340, 7969}, {3361, 6502}, {3485, 8983}, {3586, 6561}, {3592, 11518}, {3664, 30277}, {3947, 49618}, {4298, 31408}, {4304, 9541}, {4313, 43512}, {4654, 32787}, {4848, 19065}, {5045, 31474}, {5083, 19113}, {5122, 6398}, {5128, 49227}, {5226, 8972}, {5290, 31472}, {5393, 30324}, {5435, 7586}, {5437, 31473}, {5708, 6417}, {5714, 13886}, {5722, 42215}, {6199, 15934}, {6200, 30282}, {6221, 24929}, {6418, 37545}, {6424, 16780}, {6847, 8987}, {7288, 13971}, {8227, 9661}, {8583, 30556}, {8981, 11374}, {9540, 13411}, {9578, 13911}, {9613, 49601}, {10106, 19066}, {10253, 34495}, {10404, 19028}, {11036, 42522}, {11375, 18965}, {12047, 13904}, {12526, 30557}, {12736, 19082}, {12832, 19077}, {13407, 13905}, {13898, 17605}, {13901, 17718}, {13947, 19027}, {14121, 31532}, {15888, 31440}, {17728, 19029}, {18512, 18541}, {18995, 32636}, {19000, 37541}, {19056, 24472}, {19116, 34753}, {19117, 24470}, {26458, 37550}, {34033, 46378}, {36482, 36492}, {36538, 36553}, {36570, 36585}, {37709, 49232}, {37736, 48714}, {42283, 51792}, {42284, 51790}, {43826, 43855}

X(51841) = isogonal conjugate of X(15891)
X(51841) = X(i)-Ceva conjugate of X(j) for these (i,j): {13388, 1}, {13390, 45070}
X(51841) = X(i)-isoconjugate of X(j) for these (i,j): {1, 15891}, {2, 30336}, {6, 40699}, {57, 34911}, {7090, 46376}, {15889, 16214}
X(51841) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 15891), (9, 40699), (5452, 34911), (16663, 85), (32664, 30336)
X(51841) = cevapoint of X(2067) and X(8833)
X(51841) = crosspoint of X(175) and X(16662)
X(51841) = barycentric product X(i)*X(j) for these {i,j}: {1, 175}, {9, 16662}, {57, 30413}, {2362, 31547}, {32083, 34215}, {34033, 40700}
X(51841) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 40699}, {6, 15891}, {31, 30336}, {55, 34911}, {175, 75}, {16662, 85}, {18992, 30417}, {30413, 312}, {34033, 176}, {46378, 7090}
X(51841) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1702, 31432}, {46, 3301, 1703}, {65, 18996, 18991}, {2067, 16232, 1}, {3298, 49226, 1697}, {3339, 19004, 2362}, {3361, 19003, 6502}, {4298, 49548, 31408}, {19027, 24914, 13947}, {35768, 35775, 1}


X(51842) = X(1)X(372)∩X(6)X(57)

Barycentrics    a*((a + b - c)*(a - b + c)*(a + b + c) + 4*a*S) : :

X(51842) lies on the cubic K351 and these lines: {1, 372}, {4, 19067}, {6, 57}, {7, 7586}, {9, 13389}, {10, 31408}, {12, 13947}, {36, 9583}, {40, 1124}, {46, 1702}, {56, 18991}, {63, 31438}, {65, 6416}, {109, 605}, {165, 2066}, {176, 30412}, {226, 3069}, {266, 7001}, {282, 15891}, {354, 19037}, {371, 15803}, {388, 13936}, {482, 30324}, {486, 9612}, {553, 19053}, {580, 3076}, {590, 31231}, {615, 5219}, {942, 3312}, {950, 6460}, {1152, 3601}, {1155, 9616}, {1210, 1587}, {1335, 3333}, {1420, 7969}, {1449, 13388}, {1571, 31471}, {1588, 4292}, {1617, 19000}, {1697, 3297}, {1698, 31472}, {1699, 44624}, {1743, 6204}, {1745, 32556}, {1781, 8942}, {1788, 13883}, {1836, 19029}, {1876, 5411}, {2067, 3361}, {2078, 44590}, {2093, 35775}, {2956, 6212}, {3008, 30277}, {3062, 30289}, {3068, 3911}, {3070, 9581}, {3071, 9579}, {3085, 13975}, {3256, 44591}, {3301, 3338}, {3311, 37582}, {3339, 16232}, {3340, 7968}, {3485, 13971}, {3579, 31474}, {3586, 6560}, {3594, 11518}, {3664, 30276}, {3947, 49619}, {4298, 49547}, {4313, 43511}, {4654, 32788}, {4847, 31413}, {4848, 19066}, {5083, 19112}, {5122, 6221}, {5128, 49226}, {5204, 9615}, {5226, 13941}, {5231, 31484}, {5290, 44622}, {5405, 30325}, {5435, 7585}, {5708, 6418}, {5714, 13939}, {5722, 42216}, {6395, 15934}, {6396, 30282}, {6398, 24929}, {6417, 37545}, {6423, 16780}, {6847, 13974}, {7090, 31533}, {7288, 8983}, {7982, 38235}, {8583, 30557}, {9574, 31459}, {9578, 13973}, {9588, 31475}, {9613, 49602}, {9646, 31423}, {10106, 19065}, {10252, 34494}, {10404, 19027}, {11036, 42523}, {11374, 13966}, {11375, 18966}, {12047, 13962}, {12526, 30556}, {12736, 19081}, {12832, 19078}, {13407, 13963}, {13411, 13935}, {13893, 19028}, {13955, 17605}, {13958, 17718}, {17728, 19030}, {18510, 18541}, {18996, 32636}, {18999, 37541}, {19055, 24472}, {19116, 24470}, {19117, 34753}, {26464, 37550}, {34033, 46379}, {36482, 36491}, {36538, 36552}, {36570, 36584}, {37709, 49233}, {37736, 48715}, {42283, 51790}, {42284, 51792}, {43825, 43855}

X(51842) = isogonal conjugate of X(15892)
X(51842) = X(i)-Ceva conjugate of X(j) for these (i,j): {1659, 45069}, {13389, 1}
X(51842) = X(i)-isoconjugate of X(j) for these (i,j): {1, 15892}, {2, 30335}, {6, 40700}, {57, 34912}, {259, 5451}, {14121, 46377}, {15890, 16213}
X(51842) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 15892), (9, 40700), (5452, 34912), (16662, 85), (32664, 30335)
X(51842) = cevapoint of X(6502) and X(8831)
X(51842) = crosspoint of X(176) and X(16663)
X(51842) = barycentric product X(i)*X(j) for these {i,j}: {1, 176}, {9, 16663}, {57, 30412}, {16232, 31548}, {32082, 34216}, {34033, 40699}
X(51842) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 40700}, {6, 15892}, {31, 30335}, {55, 34912}, {176, 75}, {266, 5451}, {16663, 85}, {18991, 30416}, {30412, 312}, {34033, 175}, {46379, 14121}
X(51842) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 38004, 15892}, {40, 1124, 31432}, {46, 3299, 1702}, {65, 18995, 18992}, {1155, 19038, 9616}, {2362, 6502, 1}, {3297, 49227, 1697}, {3339, 19003, 16232}, {3361, 19004, 2067}, {19028, 24914, 13893}, {35769, 35774, 1}


X(51843) = X(2)X(17984)∩X(4)X(3978)

Barycentrics    b^2*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(-(a^2*b^2) - a^2*c^2 + b^2*c^2) : :

X(51843) lies on the cubics K718 and K738 and these lines: {2, 17984}, {4, 3978}, {6, 43715}, {25, 5989}, {75, 24430}, {76, 5117}, {92, 17789}, {114, 43976}, {264, 305}, {287, 1988}, {290, 1853}, {297, 3981}, {317, 1899}, {419, 41259}, {850, 3060}, {1368, 40822}, {1843, 19573}, {1916, 2052}, {3186, 6374}, {5064, 46104}, {8889, 44144}, {8920, 37894}, {11550, 46247}, {19562, 25332}, {21536, 41009}, {22456, 40820}, {23962, 31074}, {37439, 46328}, {40877, 44146}

X(51843) = isogonal conjugate of X(15389)
X(51843) = isotomic conjugate of X(3504)
X(51843) = polar conjugate of X(3224)
X(51843) = isotomic conjugate of the isogonal conjugate of X(3186)
X(51843) = polar conjugate of the isotomic conjugate of X(6374)
X(51843) = polar conjugate of the isogonal conjugate of X(194)
X(51843) = orthic-isogonal conjugate of X(264)
X(51843) = X(4)-Ceva conjugate of X(264)
X(51843) = X(194)-cross conjugate of X(6374)
X(51843) = X(i)-isoconjugate of X(j) for these (i,j): {1, 15389}, {3, 34248}, {31, 3504}, {48, 3224}, {184, 3223}, {560, 43714}, {2998, 9247}, {14575, 18832}, {19606, 34055}
X(51843) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 3504), (3, 15389), (76, 69), (194, 22152), (1249, 3224), (6374, 43714), (21191, 22386), (23301, 23216), (32746, 3), (36103, 34248), (50516, 23227)
X(51843) = cevapoint of X(194) and X(3186)
X(51843) = crosspoint of X(4) and X(3186)
X(51843) = crosssum of X(3) and X(3504)
X(51843) = barycentric product X(i)*X(j) for these {i,j}: {4, 6374}, {19, 18837}, {76, 3186}, {92, 17149}, {194, 264}, {286, 22028}, {811, 20910}, {1502, 11325}, {1613, 18022}, {1740, 1969}, {6331, 23301}, {6335, 23807}, {7017, 17082}, {18027, 20794}, {21080, 44129}, {25128, 46404}, {40359, 41293}
X(51843) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 3504}, {4, 3224}, {6, 15389}, {19, 34248}, {76, 43714}, {92, 3223}, {194, 3}, {264, 2998}, {1235, 42551}, {1424, 603}, {1613, 184}, {1740, 48}, {1843, 19606}, {1969, 18832}, {2524, 39201}, {3186, 6}, {3221, 3049}, {6331, 3222}, {6374, 69}, {7075, 212}, {11325, 32}, {17082, 222}, {17149, 63}, {17984, 39927}, {18022, 40162}, {18837, 304}, {20794, 577}, {20910, 656}, {21080, 71}, {21191, 1459}, {21877, 228}, {22028, 72}, {23301, 647}, {23807, 905}, {25128, 652}, {27168, 22160}, {32746, 22152}, {38834, 10547}, {41293, 9233}, {43976, 40821}, {47642, 17970}, {50516, 22383}, {51427, 3289}
X(51843) = {X(427),X(18022)}-harmonic conjugate of X(264)


X(51844) = X(1)X(2227)∩X(82)X(1740)

Barycentrics    a*(a^2*b^2 + 2*b^4 - a^2*c^2 + b^2*c^2)*(a^2*b^2 - a^2*c^2 - b^2*c^2 - 2*c^4) : :

X(51844) lies on the cubic K1032 and these lines: {1, 2227}, {10, 33890}, {19, 16571}, {37, 19584}, {75, 18069}, {82, 1740}, {759, 25424}, {1423, 3507}, {1930, 18832}, {2319, 7166}, {3494, 3500}, {3501, 3502}, {3662, 42027}, {6210, 8926}, {7350, 23605}, {16569, 18785}, {17754, 17795}, {18833, 18837}, {19591, 51291}

X(51844) = isogonal conjugate of X(51291)
X(51844) = X(i)-isoconjugate of X(j) for these (i,j): {1, 51291}, {6, 7766}, {32, 41259}, {110, 25423}, {251, 32449}, {691, 45680}, {1501, 10010}, {10335, 18898}
X(51844) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 51291), (9, 7766), (244, 25423), (6376, 41259), (40585, 32449)
X(51844) = cevapoint of X(1491) and X(3123)
X(51844) = barycentric product X(i)*X(j) for these {i,j}: {1, 43688}, {1577, 25424}, {1930, 51450}
X(51844) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 7766}, {6, 51291}, {38, 32449}, {75, 41259}, {561, 10010}, {661, 25423}, {2642, 45680}, {25424, 662}, {43688, 75}, {51450, 82}


X(51845) = X(1)X(3732)∩X(6)X(1633)

Barycentrics    a*(a^2 + b^2 - a*c - b*c)*(a*b - b^2 - 2*a*c + b*c)*(a^2 - a*b - b*c + c^2)*(2*a*b - a*c - b*c + c^2) : :

X(51845) lies on the conic {{A,B,C,I(1),X(6)}}, the cubic K983, and these lines: {1, 3732}, {6, 1633}, {87, 673}, {105, 3445}, {190, 4319}, {269, 3248}, {292, 910}, {294, 1376}, {659, 2424}, {1222, 14942}, {2279, 9315}, {2951, 9359}, {3000, 37129}, {3226, 14727}, {30610, 31638}, {31637, 32023}

X(51845) = X(i)-isoconjugate of X(j) for these (i,j): {6, 40883}, {9, 6168}, {100, 42341}, {200, 41355}, {241, 4513}, {518, 1376}, {672, 3729}, {1026, 4449}, {2284, 4885}, {2340, 9312}, {3286, 3967}, {3693, 6180}, {3717, 9316}, {3912, 9310}, {16283, 40704}, {20980, 42720}
X(51845) = X(i)-Dao conjugate of X(j) for these (i, j): (9, 40883), (478, 6168), (6609, 41355), (8054, 42341), (45252, 3717)
X(51845) = trilinear pole of line {614, 649}
X(51845) = barycentric product X(i)*X(j) for these {i,j}: {7, 6169}, {105, 9311}, {649, 14727}, {673, 9309}, {1027, 30610}, {1438, 32023}, {2481, 9315}, {9439, 34018}
X(51845) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 40883}, {56, 6168}, {105, 3729}, {649, 42341}, {1027, 4885}, {1407, 41355}, {1416, 6180}, {1438, 1376}, {1462, 9312}, {2195, 4513}, {6169, 8}, {9309, 3912}, {9311, 3263}, {9315, 518}, {9439, 3693}, {14727, 1978}, {18785, 3967}, {43921, 21139}, {43929, 4449}


X(51846) = X(1)X(3732)∩X(57)X(658)

Barycentrics    (a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(a^3*b - 2*a^2*b^2 + a*b^3 + a^3*c + a^2*b*c - a*b^2*c - b^3*c - 2*a^2*c^2 - a*b*c^2 + 2*b^2*c^2 + a*c^3 - b*c^3) : :

X(51846) lies on the cubic K983 and these lines: {1, 3732}, {57, 658}, {294, 3212}, {518, 10025}, {910, 14189}, {1814, 6654}, {1966, 33675}, {2402, 9511}, {3061, 31637}, {6559, 16284}, {18031, 46792}, {20995, 31526}, {30567, 36796}

X(51846) = X(294)-Ceva conjugate of X(673)
X(51846) = X(85)-Dao conjugate of X(40704)
X(51846) = trilinear pole of line {1742, 21195}
X(51846) = barycentric product X(i)*X(j) for these {i,j}: {105, 20935}, {294, 40593}, {666, 21195}, {673, 3177}, {1742, 2481}, {14942, 31526}, {18031, 20995}, {34497, 36796}
X(51846) = barycentric quotient X(i)/X(j) for these {i,j}: {1742, 518}, {3177, 3912}, {20793, 1818}, {20935, 3263}, {20995, 672}, {21084, 3932}, {21195, 918}, {21856, 3930}, {31526, 9436}, {34497, 241}, {40593, 40704}


X(51847) = X(5)X(523)∩X(30)X(50)

Barycentrics    (a^2 - b^2 - c^2)*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^6*b^2 - a^4*b^4 - a^2*b^6 + b^8 + a^6*c^2 - 2*a^4*b^2*c^2 + 2*a^2*b^4*c^2 - 3*b^6*c^2 - a^4*c^4 + 2*a^2*b^2*c^4 + 4*b^4*c^4 - a^2*c^6 - 3*b^2*c^6 + c^8) : :

X(51847) lies on the cubic K164 and these lines: {5, 523}, {23, 30529}, {30, 50}, {94, 858}, {265, 895}, {328, 2072}, {468, 476}, {1141, 11635}, {2493, 16188}, {5961, 7575}, {6530, 46456}, {11064, 14595}, {14560, 47188}, {14583, 44212}, {17986, 39290}, {18572, 39818}

X(51847) = X(6149)-isoconjugate of X(40118)
X(51847) = X(i)-Dao conjugate of X(j) for these (i, j): (14993, 40118), (16188, 186), (39170, 51457)
X(51847) = X(30)-lineconjugate of X(50)
X(51847) = barycentric product X(i)*X(j) for these {i,j}: {94, 14984}, {328, 2493}, {7468, 14592}, {14221, 14582}
X(51847) = barycentric quotient X(i)/X(j) for these {i,j}: {1989, 40118}, {2493, 186}, {7468, 14590}, {14582, 51480}, {14984, 323}
X(51847) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {476, 18883, 468}, {14356, 43084, 5}, {14356, 43087, 43090}, {43087, 43090, 34209}


X(51848) = X(2)X(4048)∩X(5)X(182)

Barycentrics    a^4*b^2 + a^2*b^4 + b^6 + a^4*c^2 + a^2*c^4 + c^6 : :
X(51848) = X[6] - 5 X[7851], X[1975] - 5 X[3763], X[5017] + 3 X[7841], 3 X[10516] + X[39646]

X(51848) lies on the cubic K458 and these lines: {2, 4048}, {5, 182}, {6, 5025}, {39, 5031}, {66, 24730}, {69, 7933}, {76, 141}, {115, 24256}, {316, 12212}, {325, 32449}, {384, 46285}, {511, 7861}, {524, 5028}, {574, 7789}, {597, 7884}, {599, 19570}, {626, 732}, {1194, 40379}, {1350, 43453}, {1352, 12188}, {1513, 44882}, {1691, 7828}, {1975, 3763}, {2076, 6655}, {2782, 4045}, {3098, 7872}, {3231, 31107}, {3407, 7792}, {3618, 32966}, {3628, 39498}, {3767, 8177}, {5017, 7841}, {5039, 7825}, {5085, 37446}, {5092, 7886}, {5480, 15980}, {6329, 39764}, {6680, 29012}, {7752, 13331}, {7765, 51371}, {7769, 12055}, {7796, 41747}, {7804, 48889}, {7821, 41622}, {7842, 41413}, {7853, 14994}, {7875, 44000}, {7887, 50659}, {7901, 12215}, {7919, 11646}, {7934, 32451}, {7943, 32992}, {8267, 16893}, {10516, 39646}, {11356, 43449}, {13862, 36990}, {15491, 43461}, {15821, 44772}, {16921, 47355}, {18440, 43456}, {26316, 44230}, {29181, 35387}, {31711, 36252}, {31712, 36251}, {37451, 44381}, {42286, 43084}

X(51848) = midpoint of X(i) and X(j) for these {i,j}: {66, 24730}, {141, 5254}, {3818, 14880}, {7842, 41413}, {11646, 19120}
X(51848) = reflection of X(7789) in X(34573)
X(51848) = complement of X(4048)
X(51848) = crosspoint of X(76) and X(3407)
X(51848) = crosssum of X(32) and X(3094)
X(51848) = crossdifference of every pair of points on line {5113, 9426}
X(51848) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 5025, 5103}, {76, 24733, 1502}, {1348, 1349, 7808}, {3818, 7834, 42534}, {4045, 24206, 10007}, {5207, 7797, 6}, {5989, 24273, 4048}, {7834, 42534, 3589}


X(51849) = X(2)X(6439)∩X(5)X(3592)

Barycentrics    13*a^4 + 10*a^2*b^2 - 23*b^4 + 10*a^2*c^2 + 46*b^2*c^2 - 23*c^4 - 39*a^2*S : :

X(51849) lies on the cubic K458 and these lines: {2, 6439}, {5, 3592}, {6, 43380}, {486, 15691}, {1132, 32788}, {1151, 41984}, {1328, 42226}, {3071, 15709}, {6434, 11001}, {6451, 8252}, {6454, 43439}, {6471, 43521}, {6484, 15723}, {9691, 42262}, {13951, 15688}, {15684, 23261}, {15687, 43435}, {15692, 41951}, {15759, 43569}, {22615, 35408}, {23251, 43341}, {32787, 42604}, {35409, 43209}, {41950, 43536}, {41968, 50693}, {42574, 42576}, {42642, 43571}, {43317, 43503}

X(51849) = crosssum of X(6398) and X(6434)
X(51849) = {X(13847),X(23259)}-harmonic conjugate of X(42577)


X(51850) = X(2)X(6440)∩X(5)X(3594)

Barycentrics    13*a^4 + 10*a^2*b^2 - 23*b^4 + 10*a^2*c^2 + 46*b^2*c^2 - 23*c^4 + 39*a^2*S : :

X(51850) lies on the cubic K458 and these lines: {2, 6440}, {5, 3594}, {6, 43380}, {485, 15691}, {1131, 32787}, {1152, 41984}, {1327, 42225}, {3070, 15709}, {6433, 11001}, {6452, 8253}, {6453, 43438}, {6470, 43522}, {6485, 15723}, {8976, 15688}, {15684, 23251}, {15687, 43434}, {15692, 41952}, {15759, 43568}, {22644, 35408}, {23261, 43340}, {32788, 42605}, {35409, 43210}, {41967, 50693}, {42575, 42577}, {42641, 43570}, {43316, 43504}

X(51850) = crosssum of X(6221) and X(6433)
X(51850) = {X(13846),X(23249)}-harmonic conjugate of X(42576)


X(51851) = X(2)X(2076)∩X(5)X(32)

Barycentrics    3*a^6*b^2 - b^8 + 3*a^6*c^2 + 6*a^4*b^2*c^2 + 3*a^2*b^4*c^2 + b^6*c^2 + 3*a^2*b^2*c^4 + b^2*c^6 - c^8 : :

X(51851) lies on the cubic K458 and these lines: {2, 2076}, {5, 32}, {6, 147}, {115, 22681}, {262, 1513}, {381, 43449}, {598, 33228}, {1506, 14881}, {2023, 19130}, {2896, 7773}, {3055, 3098}, {3070, 45434}, {3071, 45435}, {3096, 32992}, {3407, 7792}, {3972, 6656}, {5023, 7876}, {5025, 10583}, {5038, 43460}, {5116, 40236}, {5254, 44230}, {5306, 47354}, {5476, 9300}, {7603, 15819}, {7753, 22566}, {7777, 8782}, {7806, 9478}, {7811, 11168}, {7865, 8176}, {7875, 39560}, {8370, 10000}, {8570, 37988}, {9301, 31415}, {9756, 9862}, {15821, 31239}, {15980, 26316}, {22505, 43457}, {23055, 32994}, {33002, 34229}, {33013, 46318}

X(51851) = crosspoint of X(262) and X(3407)
X(51851) = crosssum of X(182) and X(3094)
X(51851) = {X(5475),X(10796)}-harmonic conjugate of X(7745)


X(51852) = X(2)X(371)∩X(5)X(13)

Barycentrics    4*S^2 + Sqrt[3]*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4 - 2*a^2*S) : :

X(51852) lies on the cubic K1198 and these lines: {2, 371}, {5, 13}, {6, 18586}, {14, 3071}, {15, 34551}, {16, 615}, {17, 43880}, {30, 3365}, {39, 48722}, {61, 14813}, {298, 640}, {372, 2044}, {383, 48466}, {396, 3364}, {398, 35738}, {485, 37641}, {590, 16967}, {619, 33392}, {629, 33424}, {641, 30472}, {1328, 36463}, {2042, 10654}, {2043, 6565}, {2045, 42247}, {2046, 40693}, {3070, 41107}, {3102, 6303}, {3367, 16242}, {3390, 32788}, {3391, 16963}, {5058, 48725}, {5335, 6564}, {5613, 49355}, {6114, 50719}, {6419, 40694}, {6420, 35732}, {6560, 42175}, {6561, 42119}, {6773, 48467}, {7583, 43229}, {10576, 42910}, {11304, 33440}, {11489, 42274}, {11543, 34559}, {13785, 42129}, {13951, 42563}, {13966, 41100}, {15764, 42258}, {16268, 32787}, {16645, 18587}, {16965, 42281}, {18762, 23303}, {19116, 43228}, {22604, 49220}, {23312, 33459}, {33361, 33472}, {33443, 35851}, {34508, 45463}, {34562, 42913}, {35733, 42633}, {35739, 42943}, {35813, 42229}, {35821, 42242}, {35822, 36467}, {36445, 36465}, {36449, 36469}, {36452, 42256}, {36454, 42245}, {36457, 42236}, {36468, 42257}, {37332, 49305}, {37640, 42230}, {37832, 42583}, {41944, 42241}, {42089, 42557}, {42149, 42233}, {42191, 42199}, {42232, 43404}, {42265, 49948}, {42270, 49908}, {42273, 43418}, {47864, 50720}

X(51852) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {14, 3392, 15765}, {371, 486, 42564}, {3367, 16242, 34552}, {3389, 3392, 42565}, {16645, 42262, 18587}


X(51853) = X(2)X(371)∩X(5)X(14)

Barycentrics    4*S^2 - Sqrt[3]*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4 - 2*a^2*S) : :

X(51853) lies on the cubic K1198 and these lines: {2, 371}, {5, 14}, {6, 18587}, {13, 3071}, {15, 615}, {16, 34552}, {18, 43880}, {30, 3390}, {39, 48724}, {62, 14814}, {299, 640}, {372, 2043}, {395, 3389}, {485, 37640}, {590, 16966}, {618, 33395}, {630, 33427}, {641, 30471}, {1080, 48466}, {1328, 36445}, {2041, 10653}, {2044, 6565}, {2045, 40694}, {2046, 42246}, {3070, 41108}, {3102, 6302}, {3365, 32788}, {3366, 16962}, {3392, 16241}, {5058, 48723}, {5334, 6564}, {5617, 49355}, {6115, 50719}, {6419, 40693}, {6420, 42229}, {6560, 42177}, {6561, 42120}, {6770, 48467}, {7583, 43228}, {10576, 42911}, {11303, 33442}, {11488, 42274}, {11542, 34562}, {13785, 42132}, {13951, 42565}, {13966, 41101}, {16267, 32787}, {16644, 18586}, {16772, 35738}, {16964, 42280}, {18762, 23302}, {19116, 43229}, {22602, 49220}, {23312, 33458}, {33359, 33473}, {33441, 35754}, {34509, 45463}, {34559, 42912}, {35813, 42227}, {35821, 42244}, {35822, 36449}, {36436, 42243}, {36439, 42235}, {36447, 36463}, {36450, 42256}, {36452, 36467}, {36469, 42257}, {37333, 49307}, {37641, 42228}, {37835, 42583}, {41943, 42239}, {42092, 42557}, {42152, 42231}, {42192, 42201}, {42234, 43403}, {42258, 42631}, {42265, 49947}, {42270, 49907}, {42273, 43419}, {47863, 50720}

X(51853) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {13, 3367, 18585}, {371, 486, 42562}, {3364, 3367, 42563}, {3392, 16241, 34551}, {16644, 42262, 18586}


X(51854) = X(2)X(372)∩X(5)X(13)

Barycentrics    4*S^2 - Sqrt[3]*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4 + 2*a^2*S) : :

X(51854) lies on the cubic K1198 and these lines: {2, 372}, {5, 13}, {6, 18587}, {14, 3070}, {15, 34552}, {16, 590}, {17, 43879}, {30, 3364}, {39, 48723}, {61, 14814}, {298, 639}, {371, 2043}, {383, 48467}, {396, 3365}, {486, 37641}, {549, 35739}, {615, 16967}, {619, 33394}, {629, 33426}, {642, 30472}, {1327, 36445}, {2041, 10654}, {2044, 6564}, {2045, 8960}, {2046, 42249}, {3071, 41107}, {3103, 6307}, {3366, 16242}, {3389, 32787}, {3392, 16963}, {5062, 48724}, {5335, 6565}, {5613, 49356}, {6114, 50720}, {6419, 42228}, {6420, 40694}, {6560, 42119}, {6561, 42176}, {6773, 48466}, {7584, 43229}, {8976, 42562}, {8981, 41100}, {10577, 42910}, {11304, 33441}, {11489, 42277}, {11543, 34562}, {13665, 42129}, {16268, 32788}, {16645, 18586}, {16773, 35738}, {16965, 42280}, {18538, 23303}, {19117, 43228}, {22633, 49221}, {23311, 33459}, {33358, 33470}, {33442, 35850}, {34508, 45462}, {34559, 42913}, {35740, 41944}, {35812, 42230}, {35820, 42243}, {35823, 36450}, {36436, 42244}, {36439, 42238}, {36446, 36463}, {36449, 42255}, {36453, 36468}, {36470, 42254}, {37332, 49306}, {37640, 42229}, {37832, 42582}, {42089, 42558}, {42149, 42234}, {42193, 42200}, {42223, 51728}, {42231, 43404}, {42259, 42632}, {42262, 49948}, {42270, 43418}, {42273, 49908}, {47864, 50719}

X(51854) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {14, 3391, 18585}, {372, 485, 42565}, {3366, 16242, 34551}, {3390, 3391, 42564}, {16645, 42265, 18586}


X(51855) = X(2)X(372)∩X(5)X(14)

Barycentrics    4*S^2 + Sqrt[3]*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4 + 2*a^2*S) : :

X(51855) lies on the cubic K1198 and these lines: {2, 372}, {5, 14}, {6, 18586}, {13, 3070}, {15, 590}, {16, 34551}, {18, 43879}, {30, 3389}, {39, 48725}, {62, 14813}, {299, 639}, {371, 2044}, {395, 3390}, {397, 35738}, {486, 37640}, {615, 16966}, {618, 33393}, {630, 33425}, {642, 30471}, {1080, 48467}, {1327, 36463}, {2042, 10653}, {2043, 6564}, {2045, 42248}, {2046, 8960}, {3071, 41108}, {3103, 6306}, {3364, 32787}, {3367, 16962}, {3391, 16241}, {3392, 50246}, {5062, 48722}, {5334, 6565}, {5617, 49356}, {6115, 50720}, {6419, 35732}, {6420, 40693}, {6560, 42120}, {6561, 42178}, {6770, 48466}, {7584, 43228}, {8976, 42564}, {8981, 41101}, {10577, 42911}, {11303, 33443}, {11488, 42277}, {11542, 34559}, {13665, 42132}, {15764, 42259}, {16267, 32788}, {16644, 18587}, {16964, 35730}, {18538, 23302}, {19117, 43229}, {22631, 49221}, {23311, 33458}, {33360, 33471}, {33440, 35753}, {34509, 45462}, {34562, 42912}, {35739, 41946}, {35812, 42228}, {35820, 42245}, {35823, 36468}, {36445, 36464}, {36450, 36470}, {36453, 42255}, {36454, 42242}, {36457, 42237}, {36467, 42254}, {37333, 49308}, {37641, 42227}, {37835, 42582}, {41943, 42240}, {42092, 42558}, {42152, 42232}, {42194, 42202}, {42233, 43403}, {42262, 49947}, {42270, 43419}, {42273, 49907}, {47863, 50719}

X(51855) = midpoint of X(35731) and X(42238)
X(51855) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {13, 3366, 15765}, {372, 485, 42563}, {3365, 3366, 42562}, {3391, 16241, 34552}, {16644, 42265, 18587}


X(51856) = X(171)X(40772)∩X(238)X(292)

Barycentrics    a^4*(-b^2 + a*c)^2*(a*b - c^2)^2 : :

X(51856) lies on the cubic K772 and these lines: {171, 40772}, {238, 292}, {660, 21830}, {741, 813}, {1015, 14665}, {1911, 2223}, {1918, 18263}, {1922, 9454}, {3508, 18787}, {9468, 19554}, {14598, 14599}, {19565, 41072}, {30642, 43262}, {30669, 40834}, {34067, 41333}, {37128, 40098}

X(51856) = X(i)-cross conjugate of X(j) for these (i,j): {31, 9468}, {669, 34067}, {3051, 18268}
X(51856) = X(i)-isoconjugate of X(j) for these (i,j): {2, 39044}, {75, 4366}, {76, 8300}, {190, 27855}, {238, 1921}, {239, 350}, {274, 4368}, {334, 6652}, {561, 51328}, {659, 27853}, {668, 4375}, {740, 30940}, {812, 874}, {873, 35068}, {1429, 4087}, {1447, 3975}, {1914, 18891}, {1966, 17493}, {2210, 44169}, {2481, 27919}, {3570, 3766}, {3684, 18033}, {3685, 10030}, {3948, 33295}, {3978, 18786}, {7035, 35119}, {12835, 28659}, {14599, 44171}, {18032, 27926}, {18035, 40767}, {19563, 40835}, {20769, 40717}, {27982, 30643}
X(51856) = X(i)-Dao conjugate of X(j) for these (i, j): (206, 4366), (9467, 17493), (9470, 1921), (32664, 39044), (36906, 18891), (40368, 51328)
X(51856) = crosssum of X(27855) and X(35119)
X(51856) = barycentric product X(i)*X(j) for these {i,j}: {31, 30663}, {32, 40098}, {75, 18267}, {291, 1911}, {292, 292}, {334, 14598}, {335, 1922}, {660, 875}, {813, 3572}, {876, 34067}, {893, 30657}, {1967, 18787}, {7233, 18265}, {9468, 30669}, {18893, 44172}, {18895, 18897}
X(51856) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 39044}, {32, 4366}, {291, 18891}, {292, 1921}, {334, 44171}, {335, 44169}, {560, 8300}, {667, 27855}, {813, 27853}, {875, 3766}, {1501, 51328}, {1911, 350}, {1918, 4368}, {1919, 4375}, {1922, 239}, {1927, 18786}, {1977, 35119}, {7077, 4087}, {7109, 35068}, {9454, 27919}, {9468, 17493}, {14598, 238}, {14599, 6652}, {18263, 40725}, {18265, 3685}, {18267, 1}, {18268, 30940}, {18787, 1926}, {18893, 2210}, {18897, 1914}, {18900, 3802}, {30657, 1920}, {30663, 561}, {30669, 14603}, {34067, 874}, {40098, 1502}, {41280, 12835}
X(51856) = {X(292),X(30657)}-harmonic conjugate of X(30663)


X(51857) = X(2)X(39)∩X(99)X(199)

Barycentrics    b^2*c^2*(-a^2 + a*b + b^2 + a*c + b*c + c^2) : :

X(51857) lies on the cubic K1007 and these lines: {2, 39}, {75, 4425}, {99, 199}, {306, 21587}, {312, 18035}, {313, 1920}, {325, 34119}, {350, 29821}, {1909, 1961}, {1978, 28654}, {3596, 6382}, {3690, 33948}, {3701, 18760}, {3770, 8033}, {4505, 6057}, {17762, 21085}, {18137, 40035}, {18157, 27792}, {18835, 29671}, {22009, 41324}, {24169, 24731}, {29641, 33932}, {29643, 40365}, {29673, 33938}, {43534, 43684}

X(51857) = isotomic conjugate of X(2248)
X(51857) = isotomic conjugate of the isogonal conjugate of X(1654)
X(51857) = X(i)-Ceva conjugate of X(j) for these (i,j): {313, 76}, {1920, 6382}
X(51857) = X(27569)-cross conjugate of X(17762)
X(51857) = X(i)-isoconjugate of X(j) for these (i,j): {6, 18757}, {31, 2248}, {32, 13610}, {560, 6625}, {2203, 15377}, {2205, 40164}
X(51857) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 2248), (9, 18757), (86, 58), (6374, 6625), (6376, 13610), (6627, 649), (21196, 3124)
X(51857) = crosspoint of X(1978) and X(34537)
X(51857) = crosssum of X(1084) and X(1919)
X(51857) = barycentric product X(i)*X(j) for these {i,j}: {75, 17762}, {76, 1654}, {274, 27569}, {305, 4213}, {310, 21085}, {313, 6626}, {561, 846}, {668, 50451}, {1502, 18755}, {1978, 21196}, {2905, 40071}, {3596, 17084}, {6385, 21879}, {6627, 34537}, {18022, 22139}, {27691, 28660}, {27801, 38814}, {27954, 44187}
X(51857) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 18757}, {2, 2248}, {75, 13610}, {76, 6625}, {306, 15377}, {310, 40164}, {846, 31}, {1654, 6}, {2905, 1474}, {4213, 25}, {6626, 58}, {6627, 3124}, {14844, 6186}, {17084, 56}, {17762, 1}, {18035, 39922}, {18755, 32}, {21085, 42}, {21196, 649}, {21879, 213}, {22139, 184}, {24381, 7234}, {27569, 37}, {27691, 1400}, {27954, 172}, {33931, 40777}, {38814, 1333}, {39921, 17962}, {40722, 40746}, {45783, 18268}, {50451, 513}
X(51857) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {310, 1230, 76}, {1228, 28660, 76}, {1230, 3266, 310}, {8024, 18152, 76}


X(51858) = X(6)X(19587)∩X(9)X(4518)

Barycentrics    a^3*(a - b - c)*(-b^2 + a*c)*(a*b - c^2) : :

X(51858) lies on the cubics K532 and K772 and these lines: {6, 19587}, {9, 4518}, {21, 644}, {25, 5364}, {31, 1911}, {41, 18265}, {55, 7077}, {56, 292}, {63, 335}, {105, 238}, {171, 8932}, {213, 904}, {220, 2053}, {257, 3401}, {295, 3252}, {384, 3500}, {385, 3508}, {692, 18038}, {694, 51319}, {741, 8693}, {884, 46388}, {1707, 18787}, {1755, 2076}, {2198, 8615}, {2218, 4426}, {2225, 6187}, {3271, 36265}, {3550, 9315}, {3684, 8851}, {3730, 3864}, {4584, 43262}, {5282, 43534}, {8301, 14200}, {14974, 23392}, {18268, 34074}, {34067, 34068}, {34238, 41882}

X(51858) = isogonal conjugate of X(10030)
X(51858) = isogonal conjugate of the isotomic conjugate of X(4876)
X(51858) = X(i)-Ceva conjugate of X(j) for these (i,j): {292, 1911}, {2311, 7077}
X(51858) = X(18265)-cross conjugate of X(1911)
X(51858) = cevapoint of X(3501) and X(3508)
X(51858) = crosspoint of X(292) and X(7077)
X(51858) = crosssum of X(i) and X(j) for these (i,j): {239, 1447}, {9436, 43040}
X(51858) = trilinear pole of line {3063, 23522}
X(51858) = crossdifference of every pair of points on line {3716, 3766}
X(51858) = X(i)-isoconjugate of X(j) for these (i,j): {1, 10030}, {2, 1447}, {6, 18033}, {7, 239}, {56, 1921}, {57, 350}, {65, 30940}, {75, 1429}, {76, 1428}, {85, 238}, {86, 16609}, {99, 7212}, {190, 43041}, {222, 40717}, {226, 33295}, {242, 348}, {269, 3975}, {273, 20769}, {274, 1284}, {279, 3685}, {307, 31905}, {331, 7193}, {349, 5009}, {385, 7249}, {552, 4037}, {604, 18891}, {651, 3766}, {658, 3716}, {659, 4554}, {664, 812}, {673, 39775}, {740, 1434}, {874, 3669}, {1014, 3948}, {1088, 3684}, {1275, 4124}, {1397, 44169}, {1407, 4087}, {1412, 35544}, {1431, 3978}, {1432, 1966}, {1509, 7235}, {1874, 17206}, {1914, 6063}, {2201, 7182}, {2210, 20567}, {2481, 34253}, {3212, 39914}, {3253, 43040}, {3570, 3676}, {3573, 24002}, {3911, 27922}, {4010, 4573}, {4148, 4626}, {4366, 7233}, {4435, 4569}, {4572, 8632}, {4624, 4830}, {4625, 21832}, {4998, 27918}, {6654, 9436}, {7176, 17493}, {7196, 18786}, {8299, 34018}, {8850, 32020}, {12835, 18895}, {14296, 37137}, {14599, 41283}, {17078, 36815}, {18031, 51329}, {18815, 27950}, {18894, 41287}, {22384, 46404}, {27853, 43924}, {30545, 34252}
X(51858) = X(i)-Dao conjugate of X(j) for these (i, j): (1, 1921), (3, 10030), (9, 18033), (206, 1429), (3161, 18891), (5452, 350), (6600, 3975), (9467, 1432), (9470, 85), (24771, 4087), (32664, 1447), (36906, 6063), (38986, 7212), (38991, 3766), (39025, 812), (40599, 35544), (40600, 16609), (40602, 30940)
X(51858) = barycentric product X(i)*X(j) for these {i,j}: {1, 7077}, {6, 4876}, {8, 1911}, {9, 292}, {31, 4518}, {33, 295}, {37, 2311}, {41, 335}, {55, 291}, {75, 18265}, {210, 741}, {213, 36800}, {281, 2196}, {294, 3252}, {312, 1922}, {334, 2175}, {337, 2212}, {522, 34067}, {644, 3572}, {650, 813}, {660, 663}, {667, 36801}, {694, 2329}, {875, 3699}, {876, 3939}, {1253, 7233}, {1334, 37128}, {1581, 2330}, {1808, 1824}, {1967, 7081}, {2053, 41531}, {2194, 43534}, {2195, 22116}, {2223, 33676}, {2321, 18268}, {2344, 3862}, {3063, 4562}, {3271, 5378}, {3596, 14598}, {3709, 4584}, {4087, 18267}, {8851, 40155}, {9447, 18895}, {9448, 44172}, {9468, 17787}, {14942, 40730}, {18893, 40363}, {18897, 28659}, {34247, 43748}
X(51858) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 18033}, {6, 10030}, {8, 18891}, {9, 1921}, {31, 1447}, {32, 1429}, {33, 40717}, {41, 239}, {55, 350}, {200, 4087}, {210, 35544}, {213, 16609}, {220, 3975}, {284, 30940}, {291, 6063}, {292, 85}, {295, 7182}, {312, 44169}, {334, 41283}, {335, 20567}, {560, 1428}, {644, 27853}, {660, 4572}, {663, 3766}, {667, 43041}, {798, 7212}, {813, 4554}, {872, 7235}, {875, 3676}, {1253, 3685}, {1334, 3948}, {1911, 7}, {1918, 1284}, {1922, 57}, {1927, 1431}, {1967, 7249}, {2175, 238}, {2194, 33295}, {2196, 348}, {2204, 31905}, {2212, 242}, {2223, 39775}, {2311, 274}, {2329, 3978}, {2330, 1966}, {3063, 812}, {3252, 40704}, {3572, 24002}, {3596, 44171}, {3939, 874}, {4518, 561}, {4876, 76}, {7077, 75}, {7081, 1926}, {8641, 3716}, {9447, 1914}, {9448, 2210}, {9454, 34253}, {9455, 51329}, {9468, 1432}, {14598, 56}, {14827, 3684}, {17787, 14603}, {18265, 1}, {18268, 1434}, {18758, 39919}, {18787, 7205}, {18892, 12835}, {18893, 1397}, {18897, 604}, {20665, 33891}, {34067, 664}, {36800, 6385}, {36801, 6386}, {40730, 9436}, {44172, 41287}


X(51859) = X(2)X(292)∩X(291)X(29673)

Barycentrics    b*c*(b^2 - a*c)*(a*b - c^2)*(-a^3 + b^3 - a*b*c + c^3) : :

X(51859) lies on the cubic K1007 and these lines: {2, 292}, {291, 29673}, {306, 4562}, {312, 18034}, {335, 3782}, {660, 33066}, {2887, 30663}, {3252, 18134}, {4388, 9470}, {6063, 6358}, {7018, 30642}, {22116, 29641}, {29653, 40794}, {30179, 40098}

X(51859) = X(4645)-cross conjugate of X(334)
X(51859) = X(i)-isoconjugate of X(j) for these (i,j): {1914, 8852}, {2210, 3512}, {7261, 14599}, {18036, 18894}, {18892, 40845}, {30648, 51328}
X(51859) = X(i)-Dao conjugate of X(j) for these (i, j): (238, 51328), (36906, 8852)
X(51859) = barycentric product X(i)*X(j) for these {i,j}: {334, 4645}, {335, 17789}, {3509, 18895}, {4071, 40017}, {4458, 4583}, {17798, 44172}, {18037, 40098}, {19554, 44170}
X(51859) = barycentric quotient X(i)/X(j) for these {i,j}: {291, 8852}, {334, 7261}, {335, 3512}, {1281, 8300}, {3509, 1914}, {4071, 2238}, {4458, 659}, {4518, 7281}, {4583, 51614}, {4645, 238}, {5018, 1428}, {17789, 239}, {17798, 2210}, {18037, 4366}, {18262, 18892}, {18895, 40845}, {19554, 14599}, {19557, 51328}, {20715, 3747}, {27951, 4375}, {30663, 30648}, {30669, 41534}, {40098, 24479}, {40217, 40781}, {44172, 18036}


X(51860) = X(1)X(3790)∩X(2)X(3108)

Barycentrics    3*a^4 + 5*a^2*b^2 + b^4 + 5*a^2*c^2 + b^2*c^2 + c^4 : :

X(51860) lies on the Kiepert circumhyperbola of the anticomplementary triangle, the cubic K1071, and these lines: {1, 3790}, {2, 3108}, {5, 147}, {6, 2896}, {20, 182}, {39, 8782}, {61, 617}, {62, 616}, {63, 17367}, {83, 148}, {194, 3618}, {382, 7864}, {384, 597}, {524, 16897}, {575, 37336}, {627, 3411}, {628, 3412}, {631, 3095}, {3526, 7616}, {3530, 47618}, {3589, 7839}, {3832, 7694}, {3933, 16987}, {4045, 20088}, {5007, 33021}, {5034, 10345}, {5041, 7779}, {5286, 10334}, {5309, 33020}, {6292, 50248}, {6329, 14712}, {6655, 7878}, {7486, 9742}, {7736, 7932}, {7757, 19689}, {7768, 41940}, {7774, 33221}, {7777, 33218}, {7781, 19692}, {7785, 7803}, {7791, 9731}, {7792, 9606}, {7793, 33258}, {7807, 12040}, {7812, 19690}, {7814, 7834}, {7827, 16044}, {7833, 51185}, {7836, 7875}, {7840, 8364}, {7881, 22246}, {7901, 9300}, {7902, 32993}, {7904, 43136}, {7907, 31492}, {7912, 37665}, {7920, 11174}, {7946, 32956}, {7948, 41624}, {8716, 14038}, {9855, 41153}, {9939, 33202}, {11003, 18796}, {11148, 33198}, {11163, 14065}, {11293, 13798}, {11294, 13678}, {12150, 33260}, {15717, 30270}, {16895, 47352}, {16984, 31406}, {17244, 41930}, {21378, 39724}, {22332, 33246}, {25555, 32467}, {29569, 30562}, {31400, 33262}, {31407, 33277}, {31417, 32966}, {31457, 33259}, {32480, 32981}, {33610, 41100}, {33611, 41101}

X(51860) = isotomic conjugate of X(40042)
X(51860) = anticomplement of X(10159)
X(51860) = anticomplement of the isogonal conjugate of X(5007)
X(51860) = anticomplement of the isotomic conjugate of X(3589)
X(51860) = isogonal conjugate of the isotomic conjugate of X(39999)
X(51860) = anticomplementary isogonal conjugate of X(7768)
X(51860) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1, 7768}, {6, 28599}, {31, 141}, {32, 28598}, {163, 7927}, {428, 21270}, {1973, 7762}, {3589, 6327}, {4030, 21286}, {5007, 8}, {7198, 21285}, {7927, 21294}, {8664, 21221}, {10330, 17217}, {11205, 21289}, {16707, 17138}, {17200, 17137}, {17457, 1369}, {17469, 69}, {18062, 44445}, {21802, 1330}, {22352, 4329}, {34072, 31065}, {39998, 21275}, {44091, 5905}, {46289, 83}, {48101, 21293}
X(51860) = X(i)-Ceva conjugate of X(j) for these (i,j): {3589, 2}, {7839, 194}, {46226, 2896}
X(51860) = X(31)-isoconjugate of X(40042)
X(51860) = X(2)-Dao conjugate of X(40042)
X(51860) = barycentric product X(6)*X(39999)
X(51860) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 40042}, {39999, 76}
X(51860) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 7772, 13571}, {3589, 7839, 46226}, {5041, 7859, 7779}, {5309, 33020, 50570}, {7792, 9606, 33245}, {7875, 9605, 7836}


X(51861) = X(2)X(330)∩X(38)X(3778)

Barycentrics    b*c*(a^2*b^2 - a*b^3 + b^3*c + a^2*c^2 - a*c^3 + b*c^3) : :

X(51861) lies on the cubic K100 and these lines: {2, 330}, {38, 3778}, {75, 21949}, {76, 3705}, {305, 561}, {306, 1959}, {313, 325}, {321, 1916}, {350, 29840}, {354, 18052}, {668, 7081}, {982, 18067}, {1447, 44139}, {1920, 4518}, {3006, 8024}, {3314, 20891}, {3666, 18057}, {3701, 18760}, {4358, 31120}, {4710, 5988}, {5276, 39928}, {6381, 24239}, {7155, 20537}, {7172, 25278}, {11174, 18044}, {16703, 48647}, {17786, 20935}, {17787, 30660}, {18203, 20911}, {18906, 25306}, {20553, 37456}, {20892, 30631}, {20945, 30758}, {21241, 21416}, {24995, 29673}, {25303, 29838}

X(51861) = isotomic conjugate of the isogonal conjugate of X(17792)
X(51861) = X(i)-Ceva conjugate of X(j) for these (i,j): {1920, 321}, {4518, 3263}
X(51861) = X(i)-isoconjugate of X(j) for these (i,j): {560, 18299}, {1397, 39924}
X(51861) = X(i)-Dao conjugate of X(j) for these (i, j): (6374, 18299), (17760, 41886)
X(51861) = crosspoint of X(17760) and X(27436)
X(51861) = barycentric product X(i)*X(j) for these {i,j}: {75, 17760}, {76, 17792}, {1502, 18758}, {3596, 28391}, {6376, 27436}, {6386, 45902}, {8844, 18895}, {28659, 41350}
X(51861) = barycentric quotient X(i)/X(j) for these {i,j}: {76, 18299}, {312, 39924}, {8844, 1914}, {17760, 1}, {17792, 6}, {18758, 32}, {24349, 40758}, {27436, 87}, {28391, 56}, {39919, 1429}, {41350, 604}, {45240, 904}, {45902, 667}
X(51861) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {305, 29641, 3263}, {3596, 7179, 3263}


X(51862) = X(3)X(83)∩X(6)X(22)

Barycentrics    a^2*(a^2 + b^2)*(a^2 + c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :

X(51862) lies on the cubics K1001 and 1057 and these lines: {2, 3613}, {3, 83}, {4, 51252}, {6, 22}, {21, 27067}, {23, 385}, {24, 28724}, {25, 183}, {26, 3425}, {82, 23868}, {160, 7774}, {182, 30499}, {230, 34294}, {237, 325}, {250, 21284}, {315, 20960}, {316, 21177}, {378, 32581}, {404, 27005}, {427, 10550}, {476, 9076}, {511, 9418}, {733, 805}, {827, 842}, {1634, 7779}, {1975, 9917}, {1995, 10130}, {2353, 42359}, {2421, 40810}, {2937, 14247}, {2966, 6660}, {2967, 19189}, {3053, 38834}, {3151, 18710}, {3289, 51543}, {3329, 6636}, {3511, 20854}, {4577, 39093}, {5017, 43977}, {5322, 18170}, {5345, 18194}, {5392, 16277}, {5899, 12188}, {5968, 21525}, {5989, 24729}, {6031, 13239}, {6781, 11634}, {7387, 39646}, {7418, 14356}, {7428, 29534}, {7467, 7792}, {7485, 39668}, {7488, 10548}, {7736, 37184}, {7737, 35924}, {7750, 27369}, {7752, 11360}, {7762, 23208}, {7766, 37913}, {7868, 11328}, {8667, 13481}, {8793, 41768}, {8852, 20872}, {9307, 9909}, {13595, 43458}, {14712, 37896}, {14885, 44525}, {15270, 20065}, {16276, 33769}, {16318, 21459}, {16453, 29568}, {17928, 26224}, {18091, 19312}, {19165, 34130}, {20775, 41624}, {20885, 45093}, {26184, 31268}, {30435, 39674}, {34098, 34229}, {37183, 39095}, {37898, 39857}, {37928, 46426}

X(51862) = isogonal conjugate of X(20021)
X(51862) = isogonal conjugate of the anticomplement of X(36213)
X(51862) = isogonal conjugate of the complement of X(25046)
X(51862) = isogonal conjugate of the isotomic conjugate of X(20022)
X(51862) = tangential isogonal conjugate of X(15588)
X(51862) = X(14970)-Ceva conjugate of X(6)
X(51862) = X(i)-cross conjugate of X(j) for these (i,j): {511, 20022}, {2491, 2421}, {2799, 4230}
X(51862) = cevapoint of X(237) and X(511)
X(51862) = crosspoint of X(i) and X(j) for these (i,j): {251, 733}, {805, 27867}
X(51862) = crosssum of X(i) and X(j) for these (i,j): {141, 732}, {688, 41178}, {804, 7668}, {1843, 51434}
X(51862) = trilinear pole of line {3569, 36213}
X(51862) = crossdifference of every pair of points on line {39, 826}
X(51862) = X(i)-isoconjugate of X(j) for these (i,j): {1, 20021}, {2, 3404}, {38, 98}, {39, 1821}, {141, 1910}, {248, 20883}, {287, 17442}, {290, 1964}, {293, 427}, {336, 1843}, {826, 36084}, {1923, 18024}, {1930, 1976}, {2084, 43187}, {2236, 36897}, {2525, 36104}, {2616, 35362}, {2966, 8061}, {3005, 36036}, {3051, 46273}, {3917, 36120}, {4020, 16081}
X(51862) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 20021), (132, 427), (325, 35540), (2679, 3005), (5976, 8024), (8623, 732), (11672, 141), (32664, 3404), (35088, 23285), (38987, 826), (39000, 2525), (39039, 20883), (39040, 1930), (40601, 39), (41884, 290), (46094, 3917), (50440, 3703)
X(51862) = barycentric product X(i)*X(j) for these {i,j}: {1, 3405}, {6, 20022}, {82, 1959}, {83, 511}, {232, 1799}, {237, 308}, {240, 34055}, {251, 325}, {297, 1176}, {684, 42396}, {689, 2491}, {733, 5976}, {827, 2799}, {1755, 3112}, {2396, 18105}, {3289, 46104}, {3569, 4577}, {4230, 4580}, {6530, 28724}, {8928, 51250}, {9417, 18833}, {9418, 40016}, {10547, 44132}, {14970, 36213}, {17209, 18082}, {18070, 23997}, {18098, 51369}, {18108, 42717}, {32085, 36212}, {39276, 50440}, {42288, 51373}, {46238, 46289}
X(51862) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 20021}, {31, 3404}, {82, 1821}, {83, 290}, {232, 427}, {237, 39}, {240, 20883}, {251, 98}, {297, 1235}, {308, 18024}, {325, 8024}, {511, 141}, {684, 2525}, {733, 36897}, {827, 2966}, {1176, 287}, {1625, 35362}, {1755, 38}, {1959, 1930}, {2211, 1843}, {2421, 4576}, {2491, 3005}, {2799, 23285}, {3112, 46273}, {3289, 3917}, {3405, 75}, {3569, 826}, {4230, 41676}, {4577, 43187}, {4599, 36036}, {4630, 2715}, {5360, 3954}, {5968, 31125}, {5976, 35540}, {9155, 7813}, {9417, 1964}, {9418, 3051}, {10547, 248}, {14966, 1634}, {17209, 16887}, {18105, 2395}, {20022, 76}, {28724, 6394}, {32085, 16081}, {34055, 336}, {34072, 36084}, {34854, 27376}, {36212, 3933}, {36213, 732}, {36790, 51371}, {36823, 46165}, {41270, 16030}, {42396, 22456}, {43034, 3665}, {44114, 39691}, {46288, 1976}, {46289, 1910}, {51369, 16703}
X(51862) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {23, 5201, 9149}, {308, 1799, 183}, {3329, 6636, 41328}, {7467, 40981, 7792}


X(51863) = X(2)X(3121)∩X(38)X(75)

Barycentrics    b*c*(-(a^2*b^2) - a^2*b*c - a*b^2*c - a^2*c^2 - a*b*c^2 + b^2*c^2) : :

X(51863) lies on the cubic K100 and these lines: {2, 3121}, {10, 1920}, {38, 75}, {141, 30631}, {210, 25280}, {257, 312}, {274, 27798}, {321, 27495}, {322, 325}, {333, 1966}, {334, 3925}, {350, 3706}, {668, 1215}, {670, 24450}, {740, 31008}, {756, 1978}, {799, 4418}, {846, 874}, {982, 10009}, {984, 6382}, {1045, 34021}, {1654, 30660}, {1655, 21883}, {1909, 31993}, {1921, 3741}, {1965, 5263}, {4087, 4357}, {4096, 36863}, {4425, 18035}, {4485, 5224}, {4981, 35543}, {5271, 18056}, {6384, 19804}, {8033, 24342}, {15523, 20932}, {16748, 27812}, {18064, 32914}, {18136, 24731}, {18138, 20955}, {18743, 22230}, {18832, 31359}, {20445, 20939}, {20532, 25134}, {20929, 31089}, {21779, 40743}, {25286, 46897}, {30632, 32782}, {30964, 32860}, {32942, 39044}, {41816, 43271}

X(51863) = isotomic conjugate of X(40737)
X(51863) = isotomic conjugate of the isogonal conjugate of X(1045)
X(51863) = X(i)-Ceva conjugate of X(j) for these (i,j): {10, 75}, {1920, 312}, {34021, 1655}
X(51863) = X(i)-isoconjugate of X(j) for these (i,j): {6, 40770}, {31, 40737}, {560, 18298}, {1501, 43684}, {40746, 40778}
X(51863) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 40737), (9, 40770), (274, 86), (6374, 18298), (19584, 40778)
X(51863) = barycentric product X(i)*X(j) for these {i,j}: {10, 34021}, {75, 1655}, {76, 1045}, {257, 27890}, {310, 21883}, {321, 39915}, {561, 21779}, {1502, 18756}, {1969, 23079}, {3661, 40743}, {4602, 9402}, {27801, 51330}, {33931, 40752}
X(51863) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 40770}, {2, 40737}, {76, 18298}, {561, 43684}, {984, 40778}, {1045, 6}, {1655, 1}, {3948, 39926}, {9402, 798}, {18756, 32}, {21779, 31}, {21883, 42}, {23079, 48}, {27890, 894}, {34021, 86}, {39915, 81}, {40743, 14621}, {40752, 985}, {51330, 1333}
X(51863) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {38, 40087, 75}, {310, 21020, 75}, {561, 31330, 75}, {25280, 41318, 210}, {30966, 35544, 75}


X(51864) = X(1)X(41396)∩X(6)X(43)

Barycentrics    a^3*(a*b - a*c - b*c)*(a*b - a*c + b*c)*(a*b^2 - b^2*c + a*c^2 - b*c^2) : :

X(51864) lies on the cubic K772 and these lines: {1, 41396}, {6, 43}, {213, 7121}, {292, 23566}, {330, 24282}, {932, 3230}, {1914, 34071}, {1919, 8640}, {2176, 17105}, {5383, 7035}, {7032, 23561}, {8709, 20669}, {20671, 21760}, {21001, 43114}, {23660, 40720}

X(51864) = isogonal conjugate of X(40844)
X(51864) = isogonal conjugate of the isotomic conjugate of X(40881)
X(51864) = X(20332)-Ceva conjugate of X(17105)
X(51864) = X(i)-cross conjugate of X(j) for these (i,j): {3009, 21760}, {38367, 34071}
X(51864) = X(i)-isoconjugate of X(j) for these (i,j): {1, 40844}, {43, 32020}, {192, 3226}, {239, 33680}, {727, 6382}, {3212, 36799}, {3253, 40848}, {3835, 8709}, {6376, 20332}, {8851, 30545}, {18793, 31008}, {27809, 33296}
X(51864) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 40844), (17793, 6382)
X(51864) = crosssum of X(1575) and X(24524)
X(51864) = crossdifference of every pair of points on line {4083, 6376}
X(51864) = barycentric product X(i)*X(j) for these {i,j}: {6, 40881}, {87, 3009}, {330, 21760}, {726, 7121}, {932, 6373}, {1463, 2053}, {1575, 2162}, {18792, 23493}, {34252, 40155}
X(51864) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 40844}, {1575, 6382}, {1911, 33680}, {2162, 32020}, {3009, 6376}, {6373, 20906}, {7121, 3226}, {21759, 27809}, {21760, 192}, {40881, 76}
X(51864) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 2162, 40753}, {2162, 40736, 21759}


X(51865) = X(2)X(20939)∩X(75)X(8033)

Barycentrics    b*c*(-a^2 - a*b + b^2 - a*c - b*c - c^2)*(a^2 + a*b + b^2 + a*c + b*c - c^2) : :

X(51865) lies on the cubic K1007 and these lines: {2, 20939}, {75, 8033}, {92, 423}, {313, 1920}, {321, 1909}, {561, 33943}, {873, 1109}, {1441, 7196}, {1934, 40017}, {2886, 35960}, {3112, 18757}, {4418, 4600}, {4425, 18032}, {16708, 20511}, {16709, 44188}, {33779, 46277}

X(51865) = isotomic conjugate of X(846)
X(51865) = isotomic conjugate of the isogonal conjugate of X(13610)
X(51865) = X(i)-cross conjugate of X(j) for these (i,j): {274, 75}, {7018, 6384}, {23913, 10}
X(51865) = cevapoint of X(i) and X(j) for these (i,j): {75, 41875}, {693, 1109}
X(51865) = trilinear pole of line {1577, 2786}
X(51865) = X(i)-isoconjugate of X(j) for these (i,j): {6, 18755}, {25, 22139}, {31, 846}, {32, 1654}, {184, 4213}, {213, 38814}, {560, 17762}, {869, 40751}, {1333, 21879}, {1918, 6626}, {2175, 17084}, {2200, 2905}, {2206, 21085}, {2308, 38836}, {6627, 23357}, {7104, 27954}, {17735, 51332}, {21196, 32739}, {40722, 40728}, {41333, 45783}
X(51865) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 846), (9, 18755), (37, 21879), (6374, 17762), (6376, 1654), (6505, 22139), (6626, 38814), (34021, 6626), (40593, 17084), (40603, 21085), (40619, 21196)
X(51865) = barycentric product X(i)*X(j) for these {i,j}: {75, 6625}, {76, 13610}, {321, 40164}, {561, 2248}, {1502, 18757}
X(51865) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 18755}, {2, 846}, {10, 21879}, {63, 22139}, {75, 1654}, {76, 17762}, {85, 17084}, {86, 38814}, {92, 4213}, {274, 6626}, {286, 2905}, {313, 27569}, {321, 21085}, {693, 21196}, {870, 40722}, {1109, 6627}, {1255, 38836}, {1441, 27691}, {1909, 27954}, {1929, 51332}, {2248, 31}, {3261, 50451}, {6625, 1}, {13610, 6}, {14621, 40751}, {15377, 228}, {18032, 39921}, {18757, 32}, {18827, 45783}, {30690, 14844}, {31997, 17689}, {39922, 8298}, {39925, 8937}, {40164, 81}, {40777, 2276}


X(51866) = X(6)X(40730)∩X(9)X(40217)

Barycentrics    a^2*(-b^2 + a*c)*(a^2 + b^2 - a*c - b*c)*(a*b - c^2)*(a^2 - a*b - b*c + c^2) : :

X(51866) lies on the cubic K772 and these lines: {6, 40730}, {9, 40217}, {31, 41934}, {105, 238}, {171, 40761}, {292, 1438}, {294, 34252}, {666, 2311}, {673, 37207}, {741, 919}, {875, 884}, {1416, 1428}, {2111, 6185}, {2280, 3252}, {3248, 18267}, {3253, 6654}, {3684, 36906}, {8300, 30663}, {24727, 33676}

X(51866) = isogonal conjugate of X(17755)
X(51866) = isogonal conjugate of the complement of X(335)
X(51866) = X(i)-cross conjugate of X(j) for these (i,j): {6, 1438}, {31, 741}, {649, 813}, {798, 32666}, {3248, 1027}, {16874, 36066}, {20981, 36146}
X(51866) = cevapoint of X(6) and X(292)
X(51866) = crosssum of X(239) and X(27945)
X(51866) = trilinear pole of line {1911, 3572}
X(51866) = X(i)-isoconjugate of X(j) for these (i,j): {1, 17755}, {2, 8299}, {8, 34253}, {9, 39775}, {92, 20778}, {238, 3912}, {239, 518}, {241, 3685}, {242, 25083}, {291, 27919}, {312, 51329}, {350, 672}, {659, 42720}, {665, 874}, {740, 18206}, {812, 1026}, {883, 4435}, {918, 3573}, {1016, 38989}, {1025, 3716}, {1281, 40781}, {1429, 3717}, {1447, 3693}, {1458, 3975}, {1861, 20769}, {1914, 3263}, {1921, 2223}, {2238, 30941}, {2254, 3570}, {2284, 3766}, {2340, 10030}, {3252, 39044}, {3286, 3948}, {3684, 9436}, {3747, 18157}, {3930, 33295}, {4148, 41353}, {4238, 24459}, {4366, 22116}, {4447, 17493}, {4712, 6654}, {7193, 46108}, {8300, 40217}, {9454, 18891}, {9455, 44169}, {14439, 27922}, {20683, 30940}, {20752, 40717}, {24578, 33701}, {36819, 51381}
X(51866) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 17755), (478, 39775), (9470, 3912), (22391, 20778), (32664, 8299), (33675, 18891), (36906, 3263), (39029, 27919)
X(51866) = barycentric product X(i)*X(j) for these {i,j}: {56, 33676}, {105, 291}, {292, 673}, {295, 36124}, {335, 1438}, {660, 1027}, {666, 3572}, {741, 13576}, {875, 51560}, {876, 36086}, {919, 4444}, {1416, 4518}, {1462, 4876}, {1911, 2481}, {1922, 18031}, {2195, 7233}, {3252, 6185}, {4562, 43929}, {5378, 43921}, {18785, 37128}, {24479, 40754}, {29956, 37207}, {30648, 40724}, {40217, 41934}
X(51866) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 17755}, {31, 8299}, {56, 39775}, {105, 350}, {184, 20778}, {291, 3263}, {292, 3912}, {294, 3975}, {604, 34253}, {666, 27853}, {673, 1921}, {741, 30941}, {813, 42720}, {875, 2254}, {884, 3716}, {919, 3570}, {1027, 3766}, {1397, 51329}, {1416, 1447}, {1438, 239}, {1462, 10030}, {1911, 518}, {1914, 27919}, {1922, 672}, {2195, 3685}, {2196, 25083}, {2481, 18891}, {3248, 38989}, {3252, 4437}, {3572, 918}, {7077, 3717}, {13576, 35544}, {14598, 2223}, {14942, 4087}, {18031, 44169}, {18265, 2340}, {18267, 40730}, {18268, 18206}, {18785, 3948}, {18893, 9455}, {18897, 9454}, {29956, 4486}, {32658, 20769}, {32666, 3573}, {33676, 3596}, {34067, 1026}, {36086, 874}, {36124, 40717}, {37128, 18157}, {40730, 4712}, {40754, 18037}, {41934, 6654}, {43929, 812}
X(51866) = {X(292),X(1914)}-harmonic conjugate of X(38874)


X(51867) = X(6)X(694)∩X(31)X(110)

Barycentrics    a^2*(a + b)*(a + c)*(-b^2 + a*c)*(a*b - c^2)*(a^2 - a*b - b^2 - a*c - b*c - c^2) : :

X(51867) lies on the cubic K772 and these lines: {6, 694}, {31, 110}, {58, 19561}, {99, 4154}, {171, 40759}, {238, 1931}, {261, 18827}, {292, 51330}, {1326, 2223}, {2300, 18268}, {4584, 18787}, {38814, 45783}

X(51867) = X(292)-Ceva conjugate of X(741)
X(51867) = X(i)-isoconjugate of X(j) for these (i,j): {740, 13610}, {2238, 6625}, {2248, 3948}, {9278, 39922}, {18757, 35544}
X(51867) = X(86)-Dao conjugate of X(1921)
X(51867) = barycentric product X(i)*X(j) for these {i,j}: {1, 45783}, {291, 38814}, {292, 6626}, {295, 2905}, {741, 1654}, {846, 37128}, {2311, 17084}, {17762, 18268}, {18755, 18827}
X(51867) = barycentric quotient X(i)/X(j) for these {i,j}: {741, 6625}, {846, 3948}, {1326, 39922}, {1654, 35544}, {2905, 40717}, {6626, 1921}, {18268, 13610}, {18755, 740}, {38814, 350}, {45783, 75}


X(51868) = X(38)X(25757)∩X(171)X(41072)

Barycentrics    b*c*(b^2 - a*c)*(a*b - c^2)*(-(a^3*b^3) + a^2*b^2*c^2 - a^3*c^3 + b^3*c^3) : :

X(51868) lies on the cubic K1007 and these lines: {38, 25757}, {171, 41072}, {312, 335}, {321, 40098}, {334, 561}, {1920, 30633}, {1965, 9470}, {3971, 4583}, {4639, 39915}, {7018, 30642}, {18895, 21416}, {30660, 30669}, {43534, 43684}

X(51868) = X(30663)-Ceva conjugate of X(334)
X(51868) = X(2210)-isoconjugate of X(7168)
X(51868) = X(1921)-Dao conjugate of X(39044)
X(51868) = barycentric product X(i)*X(j) for these {i,j}: {291, 18275}, {334, 19565}, {335, 19567}, {3510, 18895}, {18277, 30663}, {18278, 44172}, {19581, 40098}
X(51868) = barycentric quotient X(i)/X(j) for these {i,j}: {335, 7168}, {3510, 1914}, {18275, 350}, {18277, 39044}, {18278, 2210}, {19565, 238}, {19567, 239}, {19579, 8300}, {19580, 51328}, {19581, 4366}, {40098, 24576}, {40849, 18786}


X(51869) = X(3)X(76)∩X(6)X(157)

Barycentrics    a^2*(b^2 + c^2)*(a^4 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - b^2*c^2 + c^4) : :

X(51869) lies on the cubics K1001 and K1057 and these lines: {3, 76}, {6, 157}, {22, 42359}, {25, 6531}, {32, 27375}, {39, 3203}, {141, 1634}, {187, 15630}, {230, 237}, {287, 19459}, {385, 37183}, {574, 41440}, {755, 2715}, {878, 3455}, {882, 2422}, {1511, 11653}, {1593, 45031}, {1843, 41331}, {1910, 17798}, {2076, 34238}, {2080, 13137}, {2353, 14600}, {2421, 36214}, {2966, 6660}, {3329, 37335}, {3404, 3954}, {5013, 17042}, {5201, 25322}, {5967, 8546}, {6464, 26292}, {6664, 8177}, {9154, 37914}, {9418, 42671}, {11174, 31636}, {11610, 40121}, {17008, 36874}, {17423, 34156}, {17974, 19357}, {20897, 44533}, {24729, 39941}, {27369, 27376}, {32696, 44090}, {34218, 47082}, {40085, 40519}

X(51869) = isogonal conjugate of X(20022)
X(51869) = isogonal conjugate of the anticomplement of X(8623)
X(51869) = isogonal conjugate of the isotomic conjugate of X(20021)
X(51869) = X(i)-Ceva conjugate of X(j) for these (i,j): {98, 20021}, {2966, 2422}, {36897, 6}
X(51869) = cevapoint of X(39) and X(8623)
X(51869) = crosspoint of X(98) and X(1976)
X(51869) = crosssum of X(i) and X(j) for these (i,j): {2, 25046}, {325, 511}
X(51869) = trilinear pole of line {3005, 3051}
X(51869) = crossdifference of every pair of points on line {2491, 2799}
X(51869) = X(i)-line conjugate of X(j) for these (i,j): {3, 5976}, {882, 2491}
X(51869) = X(i)-isoconjugate of X(j) for these (i,j): {1, 20022}, {2, 3405}, {82, 325}, {83, 1959}, {237, 18833}, {240, 1799}, {251, 46238}, {297, 34055}, {308, 1755}, {511, 3112}, {1176, 40703}, {2421, 18070}, {2491, 37204}, {2799, 4599}, {3569, 4593}, {5976, 43763}, {9417, 40016}, {10566, 42717}, {18082, 51369}, {18098, 51370}
X(51869) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 20022), (141, 325), (3124, 2799), (32664, 3405), (34452, 511), (36213, 5976), (36899, 308), (39058, 40016), (39085, 1799), (40585, 46238), (40938, 44132)
X(51869) = barycentric product X(i)*X(j) for these {i,j}: {1, 3404}, {6, 20021}, {38, 1910}, {39, 98}, {141, 1976}, {248, 427}, {287, 1843}, {290, 3051}, {293, 17442}, {688, 43187}, {732, 34238}, {826, 2715}, {878, 41676}, {879, 35325}, {1235, 14600}, {1401, 15628}, {1634, 2395}, {1821, 1964}, {1923, 46273}, {2084, 36036}, {2422, 4576}, {2525, 32696}, {2623, 35362}, {2966, 3005}, {3917, 6531}, {4020, 36120}, {5967, 46154}, {8024, 14601}, {8061, 36084}, {8623, 36897}, {15407, 51434}, {16081, 20775}, {17974, 27376}, {18024, 41331}, {34369, 46157}, {35906, 46147}, {36822, 46156}
X(51869) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 20022}, {31, 3405}, {38, 46238}, {39, 325}, {98, 308}, {248, 1799}, {290, 40016}, {427, 44132}, {688, 3569}, {878, 4580}, {1634, 2396}, {1821, 18833}, {1843, 297}, {1910, 3112}, {1923, 1755}, {1964, 1959}, {1976, 83}, {2715, 4577}, {2966, 689}, {3005, 2799}, {3051, 511}, {3404, 75}, {3787, 51374}, {3917, 6393}, {3954, 42703}, {6531, 46104}, {8041, 51371}, {8623, 5976}, {9494, 2491}, {14096, 51373}, {14600, 1176}, {14601, 251}, {15630, 34294}, {17187, 51370}, {17442, 40703}, {20021, 76}, {20775, 36212}, {27369, 232}, {32696, 42396}, {34238, 14970}, {35325, 877}, {36036, 37204}, {36084, 4593}, {40972, 44694}, {41272, 5968}, {41331, 237}, {43187, 42371}
X(51869) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {98, 8870, 39685}, {248, 1976, 14601}, {290, 31635, 183}


X(51870) = X(4)X(23844)∩X(5)X(10)

Barycentrics    (b + c)*(-(a^2*b) + b^3 - a^2*c + a*b*c - a*c^2 - b*c^2)*(a^2*b + a*b^2 + a^2*c - a*b*c + b^2*c - c^3) : :

X(51870) lies on the conic {{A,B,C,X(4),X(5)}}, the cubic K682, and these lines: {4, 23844}, {5, 10}, {12, 2292}, {21, 1220}, {42, 10950}, {53, 1826}, {71, 17369}, {80, 3293}, {311, 313}, {594, 21011}, {1089, 3704}, {1224, 47515}, {1263, 11698}, {1268, 20028}, {2486, 21935}, {3142, 40663}, {3159, 4013}, {3185, 50037}, {3214, 41506}, {4036, 42757}, {4651, 14008}, {4705, 42455}, {5046, 17500}, {7504, 19874}, {11681, 25253}, {15666, 39542}, {15971, 23845}, {23846, 51558}, {29822, 51683}, {34969, 42078}

X(51870) = X(46880)-Ceva conjugate of X(37)
X(51870) = cevapoint of X(i) and X(j) for these (i,j): {115, 42661}, {4705, 21044}
X(51870) = crosssum of X(572) and X(20986)
X(51870) = trilinear pole of line {4024, 12077}
X(51870) = X(i)-isoconjugate of X(j) for these (i,j): {27, 22118}, {58, 2975}, {60, 37558}, {81, 572}, {86, 20986}, {110, 21173}, {162, 23187}, {163, 17496}, {284, 17074}, {593, 21061}, {849, 17751}, {1333, 14829}, {1437, 11109}, {4636, 51664}
X(51870) = X(i)-Dao conjugate of X(j) for these (i, j): (10, 2975), (37, 14829), (115, 17496), (125, 23187), (244, 21173), (4075, 17751), (4988, 24237), (40586, 572), (40590, 17074), (40600, 20986)
X(51870) = barycentric product X(i)*X(j) for these {i,j}: {10, 2051}, {12, 46880}, {321, 34434}, {594, 20028}
X(51870) = barycentric quotient X(i)/X(j) for these {i,j}: {10, 14829}, {37, 2975}, {42, 572}, {65, 17074}, {213, 20986}, {228, 22118}, {523, 17496}, {594, 17751}, {647, 23187}, {661, 21173}, {756, 21061}, {762, 14973}, {1826, 11109}, {2051, 86}, {2171, 37558}, {2486, 26847}, {3120, 24237}, {4516, 11998}, {20028, 1509}, {21044, 34589}, {21051, 27346}, {34434, 81}, {40966, 46879}, {46880, 261}


X(51871) = X(6)X(41350)∩X(31)X(56)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^4 - a^3*b + 2*a^2*b^2 - a*b^3 - b^4 - a^3*c + a^2*b*c - a*b^2*c + b^3*c + 2*a^2*c^2 - a*b*c^2 - a*c^3 + b*c^3 - c^4) : :

X(51871) lies on the cubic K772 and these lines: {6, 41350}, {31, 56}, {109, 2700}, {171, 28391}, {213, 18784}, {222, 21010}, {238, 241}, {651, 4447}, {958, 4296}, {1403, 16502}, {1911, 30648}, {2275, 9316}, {6180, 7184}, {24806, 36476}, {34043, 37609}

X(51871) = isogonal conjugate of the isotomic conjugate of X(41352)
X(51871) = X(292)-Ceva conjugate of X(56)
X(51871) = X(8)-isoconjugate of X(43747)
X(51871) = X(1447)-Dao conjugate of X(1921)
X(51871) = crosssum of X(3716) and X(4081)
X(51871) = crossdifference of every pair of points on line {3239, 40998}
X(51871) = barycentric product X(i)*X(j) for these {i,j}: {6, 41352}, {57, 18788}
X(51871) = barycentric quotient X(i)/X(j) for these {i,j}: {604, 43747}, {8932, 3975}, {18788, 312}, {41352, 76}
X(51871) = {X(109),X(43034)}-harmonic conjugate of X(17798)


X(51872) = X(3)X(147)∩X(5)X(39)

Barycentrics    3*a^6*b^2 - 4*a^4*b^4 + 2*a^2*b^6 - b^8 + 3*a^6*c^2 - 4*a^4*b^2*c^2 + a^2*b^4*c^2 + b^6*c^2 - 4*a^4*c^4 + a^2*b^2*c^4 + 2*a^2*c^6 + b^2*c^6 - c^8 : :
X(51872) = X[12188] + 3 X[48657], 3 X[3] - X[9862], 3 X[147] + X[9862], 3 X[4] + X[20094], 3 X[4] - X[38733], X[4] - 3 X[38743], 3 X[13188] - X[20094], 3 X[13188] + X[38733], X[13188] + 3 X[38743], X[20094] + 9 X[38743], X[38733] - 9 X[38743], 3 X[5] - 2 X[115], X[5] + 2 X[14981], 9 X[5] - 8 X[15092], 7 X[5] - 6 X[23514], 5 X[5] - 6 X[36519], 4 X[5] - 3 X[38229], 3 X[114] - X[115], 9 X[114] - 4 X[15092], 7 X[114] - 3 X[23514], 5 X[114] - 3 X[36519], 8 X[114] - 3 X[38229], X[115] + 3 X[14981], 3 X[115] - 4 X[15092], 7 X[115] - 9 X[23514], 5 X[115] - 9 X[36519], 8 X[115] - 9 X[38229], 9 X[14981] + 4 X[15092], 7 X[14981] + 3 X[23514], 5 X[14981] + 3 X[36519], 8 X[14981] + 3 X[38229], 28 X[15092] - 27 X[23514], 20 X[15092] - 27 X[36519], 32 X[15092] - 27 X[38229], 5 X[23514] - 7 X[36519], 8 X[23514] - 7 X[38229], 8 X[36519] - 5 X[38229], 3 X[5617] - X[6777], X[6777] + 3 X[36776], 3 X[5613] - X[6778], X[99] + 3 X[6054], X[99] - 3 X[8724], 3 X[99] + X[10722], 7 X[99] - 3 X[12117], 3 X[99] - X[38730], X[6033] - 3 X[6054], and many others

X(51872) lies on the cubic K440 and these lines: {2, 7711}, {3, 147}, {4, 13188}, {5, 39}, {15, 5617}, {16, 5613}, {20, 38744}, {26, 39803}, {30, 99}, {32, 12830}, {74, 14850}, {83, 44237}, {98, 140}, {141, 542}, {143, 39817}, {148, 381}, {160, 2934}, {376, 7897}, {382, 13172}, {384, 35464}, {399, 14972}, {495, 3023}, {496, 3027}, {517, 21636}, {523, 51232}, {543, 3845}, {546, 6321}, {547, 11632}, {548, 21166}, {550, 2794}, {568, 39808}, {574, 9996}, {590, 35824}, {615, 35825}, {616, 30472}, {617, 30471}, {631, 5984}, {632, 6036}, {671, 5066}, {804, 8552}, {952, 9864}, {1154, 39846}, {1263, 3613}, {1272, 47285}, {1352, 5116}, {1353, 41672}, {1385, 2784}, {1484, 2783}, {1513, 9772}, {1551, 47289}, {1595, 12131}, {1596, 5186}, {1656, 14651}, {1691, 3564}, {1916, 44230}, {1975, 40279}, {2079, 5877}, {2080, 40239}, {2482, 8703}, {2787, 11698}, {2795, 16160}, {2936, 18570}, {3070, 35879}, {3071, 35878}, {3091, 38732}, {3095, 9993}, {3098, 7908}, {3530, 34473}, {3579, 51578}, {3580, 44215}, {3627, 22505}, {3628, 7859}, {3788, 14880}, {3818, 6298}, {3830, 8591}, {3839, 12355}, {3850, 14639}, {3853, 10723}, {3857, 38734}, {3933, 5976}, {4027, 7807}, {5013, 43449}, {5054, 11177}, {5055, 12243}, {5149, 7789}, {5182, 8368}, {5305, 44534}, {5355, 33694}, {5477, 41675}, {5663, 6786}, {5844, 7970}, {5913, 32526}, {5969, 21850}, {5985, 7483}, {5986, 7499}, {5987, 7495}, {5988, 37592}, {5989, 7763}, {6055, 11539}, {6147, 24472}, {6243, 39807}, {6656, 32516}, {6721, 11623}, {6722, 15491}, {7470, 7947}, {7514, 39832}, {7530, 13175}, {7575, 39825}, {7697, 43461}, {7735, 37466}, {7737, 44532}, {7762, 39652}, {7764, 14881}, {7779, 9301}, {7783, 32528}, {7786, 9478}, {7796, 9821}, {7819, 10352}, {7835, 26316}, {7858, 18502}, {7892, 10353}, {7906, 8782}, {7921, 18501}, {7934, 11257}, {8550, 32135}, {8596, 41099}, {8981, 49212}, {9155, 11007}, {9166, 10109}, {9167, 15713}, {9744, 38654}, {9760, 44289}, {9766, 9890}, {9830, 12040}, {9860, 26446}, {9880, 23046}, {9955, 11599}, {10069, 15325}, {10086, 12185}, {10089, 12184}, {10272, 18332}, {10283, 11724}, {10753, 34380}, {10991, 15712}, {10992, 39838}, {11005, 32423}, {11152, 33228}, {11178, 15482}, {11288, 39899}, {11646, 12055}, {11710, 38028}, {11711, 34773}, {12100, 14830}, {12103, 38731}, {12161, 39820}, {12350, 15170}, {12699, 13174}, {13108, 37446}, {13178, 18357}, {13754, 51427}, {13862, 32447}, {13908, 42639}, {13966, 49213}, {13968, 42640}, {14643, 22265}, {14791, 39842}, {14849, 15059}, {14869, 38737}, {15068, 39849}, {15300, 33699}, {15484, 35930}, {15687, 39809}, {15696, 38635}, {15704, 38738}, {15928, 44287}, {18436, 39837}, {18572, 39847}, {19709, 41135}, {19710, 36521}, {20253, 36765}, {21525, 50947}, {21536, 36212}, {22247, 26614}, {23039, 39836}, {23318, 39816}, {24206, 40108}, {24469, 26921}, {28194, 50882}, {28204, 50879}, {30270, 40278}, {31401, 44531}, {31727, 31839}, {32469, 39663}, {33923, 38742}, {34013, 37950}, {34152, 39860}, {35071, 42353}, {36755, 41023}, {36756, 41022}, {37440, 39828}, {37938, 39845}, {38627, 38740}, {38642, 51582}, {38747, 46853}, {38953, 47288}, {40236, 47618}, {42215, 49266}, {42216, 49267}, {44386, 49006}, {45921, 47322}

X(51872) = midpoint of X(i) and X(j) for these {i,j}: {2, 48657}, {3, 147}, {4, 13188}, {20, 38744}, {99, 6033}, {114, 14981}, {382, 13172}, {399, 18331}, {616, 48656}, {617, 48655}, {3830, 8591}, {5617, 36776}, {6054, 8724}, {6243, 39807}, {6298, 6299}, {6321, 23235}, {7779, 9301}, {8782, 48673}, {9766, 9890}, {10722, 38730}, {10992, 39838}, {12699, 13174}, {14692, 38664}, {18436, 39837}, {20094, 38733}, {22505, 51524}, {35002, 43460}, {38953, 47288}, {40236, 47618}
X(51872) = reflection of X(i) in X(j) for these {i,j}: {5, 114}, {98, 140}, {550, 33813}, {671, 5066}, {1511, 33512}, {3579, 51578}, {3627, 22505}, {3845, 22566}, {6036, 20399}, {6321, 546}, {8550, 32135}, {8703, 2482}, {10723, 3853}, {11599, 9955}, {11623, 6721}, {11632, 547}, {11646, 18358}, {12042, 620}, {13178, 18357}, {14830, 12100}, {15704, 38738}, {18332, 10272}, {22505, 38745}, {31727, 31839}, {32521, 5976}, {34127, 38746}, {34773, 11711}, {38736, 35022}, {38741, 548}, {39817, 143}, {47610, 619}, {47611, 618}, {48906, 5026}, {49006, 44386}, {51523, 6036}
X(51872) = complement of X(12188)
X(51872) = orthoptic-circle-of-Steiner-inellipse-inverse of X(7711)
X(51872) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 20094, 38733}, {98, 15561, 140}, {99, 6054, 6033}, {99, 10722, 38730}, {620, 12042, 549}, {6033, 8724, 99}, {6033, 38730, 10722}, {6721, 11623, 34127}, {7799, 43460, 35002}, {7832, 12054, 140}, {10086, 12185, 15171}, {10089, 12184, 18990}, {11623, 38746, 6721}, {11632, 23234, 547}, {13188, 38733, 20094}, {13188, 38743, 4}, {14692, 38224, 38664}, {14830, 41134, 12100}, {20399, 51523, 632}, {21166, 38741, 548}, {34473, 38750, 3530}, {35022, 38736, 33813}, {38745, 51524, 3627}, {49266, 50719, 42215}, {49267, 50720, 42216}


X(51873) = X(1)X(30)∩X(2)X(2463)

Barycentrics    2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4 + 2*a*Sqrt[a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 + 3*a^2*b^2*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6] : :

X(51873) lies on the incircle, the cubic K672, and these lines: {1, 30}, {2, 2463}, {4, 2464}, {11, 1312}, {12, 1313}, {35, 35232}, {36, 35231}, {55, 1114}, {56, 1113}, {57, 2100}, {388, 14807}, {497, 14808}, {612, 20406}, {614, 20405}, {999, 15154}, {1478, 10750}, {1479, 10751}, {1697, 2101}, {2098, 2103}, {2099, 2102}, {2554, 2565}, {2555, 2564}, {2574, 3028}, {2575, 3024}, {3295, 15155}, {3303, 15156}, {3304, 15157}, {3582, 13626}, {3584, 13627}, {3746, 30525}, {4293, 15160}, {4294, 15161}, {5204, 38708}, {5217, 38709}, {5563, 30524}, {10385, 15159}, {10387, 15163}, {10719, 11237}, {10720, 11238}, {10736, 12943}, {10737, 12953}, {10781, 13273}, {10782, 13274}, {14374, 43820}, {14375, 43819}, {15325, 31681}, {15326, 34592}, {15888, 20408}, {20409, 37722}, {51779, 51813}


X(51874) = X(1)X(30)∩X(2)X(2464)

Barycentrics    -2*a^4 + a^2*b^2 + b^4 + a^2*c^2 - 2*b^2*c^2 + c^4 + 2*a*Sqrt[a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 + 3*a^2*b^2*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6] : :

X(51874) lies on the incircle, the cubic K672, and these lines: {1, 30}, {2, 2464}, {4, 2463}, {11, 1313}, {12, 1312}, {35, 35231}, {36, 35232}, {55, 1113}, {56, 1114}, {57, 2101}, {388, 14808}, {497, 14807}, {612, 20405}, {614, 20406}, {999, 15155}, {1478, 10751}, {1479, 10750}, {1697, 2100}, {2098, 2102}, {2099, 2103}, {2554, 2564}, {2555, 2565}, {2574, 3024}, {2575, 3028}, {3295, 15154}, {3303, 15157}, {3304, 15156}, {3582, 13627}, {3584, 13626}, {3746, 30524}, {4293, 15161}, {4294, 15160}, {5204, 38709}, {5217, 38708}, {5563, 30525}, {10385, 15158}, {10387, 15162}, {10719, 11238}, {10720, 11237}, {10736, 12953}, {10737, 12943}, {10781, 13274}, {10782, 13273}, {10944, 18871}, {14374, 43819}, {14375, 43820}, {15325, 31682}, {15326, 34593}, {15888, 20409}, {20408, 37722}, {51779, 51812}


X(51875) = X(2)X(72)∩X(4)X(209)

Barycentrics    a*(a^2*b - b^3 + 2*a^2*c + 2*a*b*c + 2*a*c^2 + b*c^2)*(2*a^2*b + 2*a*b^2 + a^2*c + 2*a*b*c + b^2*c - c^3)*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c - 2*a*b*c + b^2*c - a*c^2 + b*c^2 + c^3) : :

X(51875) lies on the cubic K385 and these lines: {2, 72}, {4, 209}, {6, 943}, {1260, 40406}, {2215, 4253}, {2911, 30733}, {5752, 5759}, {11517, 40571}, {14054, 17776}, {15344, 36080}

X(51875) = X(i)-isoconjugate of X(j) for these (i,j): {1451, 43740}, {13397, 46385}, {37543, 39943}
X(51875) = barycentric product X(17776)*X(51223)
X(51875) = barycentric quotient X(i)/X(j) for these {i,j}: {2335, 43740}, {2911, 405}, {3811, 5271}, {15313, 23882}, {17776, 44140}, {36080, 13397}, {37579, 37543}, {51223, 15474}


X(51876) = X(3)X(2542)∩X(83)X(1380)

Barycentrics    a^6 + a^4*b^2 - a^2*b^4 + a^4*c^2 - a^2*b^2*c^2 - a^2*c^4 + a^4*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4] + b^2*c^2*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4] : :

X(51876) lies on the cubic K1159 and these lines: {3, 2542}, {83, 1380}, {99, 1379}, {141, 384}, {316, 2039}, {754, 6189}, {2029, 32450}, {6177, 7860}, {7809, 47088}, {13586, 39022}

X(51876) = cevapoint of X(2896) and X(3413)


X(51877) = X(4)X(51)∩X(107)X(154)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(2*a^6*b^2 - 4*a^4*b^4 + 2*a^2*b^6 + 2*a^6*c^2 + 3*a^4*b^2*c^2 - 2*a^2*b^4*c^2 - 3*b^6*c^2 - 4*a^4*c^4 - 2*a^2*b^2*c^4 + 6*b^4*c^4 + 2*a^2*c^6 - 3*b^2*c^6) : :
X(51877) = X[4] + 5 X[1075], 2 X[4] - 5 X[14249], X[4] - 10 X[14363], 2 X[1075] + X[14249], X[1075] + 2 X[14363], X[14249] - 4 X[14363], 14 X[3526] - 5 X[15318], 8 X[3628] - 5 X[14059], 17 X[7486] + 10 X[22257], 10 X[8798] - 19 X[15022]

X(51877) lies on the cubic K581 and these lines: {4, 51}, {107, 154}, {232, 37689}, {264, 11451}, {2979, 15466}, {3526, 15318}, {3628, 14059}, {5055, 10184}, {7486, 22257}, {8798, 15022}, {11204, 40664}, {14569, 43462}, {23332, 51358}, {35260, 42452}, {35450, 41372}, {37453, 47202}, {41204, 44082}

X(51877) = polar conjugate of the isogonal conjugate of X(41367)
X(51877) = Thomson-isogonal conjugate of X(3357)
X(51877) = barycentric product X(264)*X(41367)
X(51877) = barycentric quotient X(41367)/X(3)
X(51877) = {X(1075),X(14363)}-harmonic conjugate of X(14249)


X(51878) = X(3)X(2543)∩X(83)X(1379)

Barycentrics    -a^6 - a^4*b^2 + a^2*b^4 - a^4*c^2 + a^2*b^2*c^2 + a^2*c^4 + a^4*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4] + b^2*c^2*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4] : :

X(51878) lies on the cubic K1159 and these lines: {3, 2543}, {83, 1379}, {99, 1380}, {141, 384}, {316, 2040}, {754, 6190}, {2028, 32450}, {6178, 7860}, {7809, 47089}, {13586, 39023}

X(51878) = cevapoint of X(2896) and X(3414)


X(51879) = X(11)X(2599)∩X(12)X(1091)

Barycentrics    (a + b - c)*(a - b + c)*(b + c)^2*(a^5*b - 2*a^3*b^3 + a*b^5 + a^5*c - a^3*b^2*c + a^2*b^3*c - b^5*c - a^3*b*c^2 - 2*a^2*b^2*c^2 - a*b^3*c^2 - 2*a^3*c^3 + a^2*b*c^3 - a*b^2*c^3 + 2*b^3*c^3 + a*c^5 - b*c^5) : :

X(51879) lies on the cubic K672 and these lines: {11, 2599}, {12, 1091}, {60, 655}, {140, 16577}, {201, 1834}, {389, 517}, {404, 4552}, {442, 6358}, {523, 2594}, {570, 8609}, {1825, 3575}, {1901, 2171}, {5396, 45238}

X(51879) = X(1)-Ceva conjugate of X(12)
X(51879) = X(6358)-Dao conjugate of X(75)
X(51879) = crosspoint of X(1) and X(37732)
X(51879) = barycentric product X(i)*X(j) for these {i,j}: {12, 18662}, {1441, 21860}, {4552, 8819}, {6358, 37732}, {21770, 34388}
X(51879) = barycentric quotient X(i)/X(j) for these {i,j}: {8819, 4560}, {18662, 261}, {21770, 60}, {21860, 21}, {37732, 2185}


X(51880) = X(3)X(41367)∩X(4)X(39)

Barycentrics    a^2*(4*a^6*b^4 - 8*a^4*b^6 + 4*a^2*b^8 + 13*a^6*b^2*c^2 - 7*a^4*b^4*c^2 - 5*a^2*b^6*c^2 - b^8*c^2 + 4*a^6*c^4 - 7*a^4*b^2*c^4 + 2*a^2*b^4*c^4 + b^6*c^4 - 8*a^4*c^6 - 5*a^2*b^2*c^6 + b^4*c^6 + 4*a^2*c^8 - b^2*c^8) : :
X(51880) = 2 X[39] - 5 X[14252]

X(51880) lies on the cubic K581 and these lines: {3, 41367}, {4, 39}, {237, 1384}, {376, 11672}, {647, 35260}, {1285, 3117}, {1625, 37184}, {5023, 17821}, {5167, 50370}, {11206, 40588}, {13531, 15340}, {26714, 47052}
X(51880) = Thomson-isogonal conjugate of X(9756)


X(51881) = X(6)X(46408)∩X(36)X(1464)

Barycentrics    a^2*(a^2 - b^2 + b*c - c^2)*(2*a^5 - 2*a^4*b - a^3*b^2 + a^2*b^3 - a*b^4 + b^5 - 2*a^4*c + 4*a^3*b*c - a^2*b^2*c - a*b^3*c - a^3*c^2 - a^2*b*c^2 + 4*a*b^2*c^2 - b^3*c^2 + a^2*c^3 - a*b*c^3 - b^2*c^3 - a*c^4 + c^5) : :
X(51881) = 3 X[36] + X[6126], X[6126] - 3 X[47379]

X(51881) lies on the cubic K1052 and these lines: {6, 46408}, {36, 1464}, {74, 2720}, {110, 840}, {399, 41345}, {513, 1495}, {517, 10564}, {526, 3724}, {542, 15986}, {652, 1055}, {902, 1459}, {1155, 18593}, {2078, 3024}, {2771, 5126}, {3660, 15904}, {4257, 13868}, {5092, 34583}, {11430, 31849}, {31847, 43586}, {43610, 43820}

X(51881) = midpoint of X(36) and X(47379)
X(51881) = reflection of X(15904) in X(3660)


X(51882) = X(2)X(15106)∩X(4)X(195)

Barycentrics    a^2*(a^10 - 3*a^8*b^2 + 2*a^6*b^4 + 2*a^4*b^6 - 3*a^2*b^8 + b^10 - 3*a^8*c^2 + 2*a^6*b^2*c^2 - a^4*b^4*c^2 + 2*a^2*b^6*c^2 + 2*a^6*c^4 - a^4*b^2*c^4 - a^2*b^4*c^4 - b^6*c^4 + 2*a^4*c^6 + 2*a^2*b^2*c^6 - b^4*c^6 - 3*a^2*c^8 + c^10) : :

X(51882) lies on the cubic K440 and these lines: {2, 15106}, {4, 195}, {6, 3448}, {23, 110}, {67, 7570}, {74, 11562}, {113, 15052}, {125, 15018}, {146, 11456}, {265, 7565}, {542, 1994}, {567, 5663}, {1177, 41435}, {1511, 7488}, {1993, 9143}, {2781, 6636}, {3098, 13201}, {3581, 38898}, {4550, 12281}, {5092, 27866}, {5987, 38383}, {6243, 25714}, {6593, 7496}, {7492, 48679}, {7533, 15135}, {7552, 10272}, {7556, 32609}, {7712, 10117}, {7728, 10296}, {7731, 37478}, {9140, 34155}, {9730, 43578}, {10264, 15037}, {10545, 41671}, {10657, 33517}, {10658, 33518}, {10989, 19379}, {12308, 31861}, {12824, 13595}, {13403, 15063}, {15066, 17847}, {15131, 30745}, {15132, 44802}, {15140, 40342}, {15141, 16063}, {15246, 15462}, {16042, 41670}, {16223, 43584}, {18445, 37077}, {22467, 25711}, {24981, 32271}, {26284, 44456}, {34153, 37496}, {37784, 41720}, {38402, 43697}

X(51882) = reflection of X(i) in X(j) for these {i,j}: {74, 37513}, {41171, 113}
X(51882) = {X(9140),X(34155)}-harmonic conjugate of X(34545)


X(51883) = X(1)X(30)∩X(4)X(6757)

Barycentrics    (a^2 + a*b + b^2 - c^2)*(a^2 - b^2 + a*c + c^2)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*b*c - a^3*b^2*c + a^2*b^3*c + a*b^4*c - a^4*c^2 - a^3*b*c^2 + 4*a^2*b^2*c^2 - a*b^3*c^2 - b^4*c^2 + a^2*b*c^3 - a*b^2*c^3 - a^2*c^4 + a*b*c^4 - b^2*c^4 + c^6) : :
X(51883) = 5 X[8227] - 4 X[44898]

X(51883) lies on the cubic K685 and these lines: {1, 30}, {4, 6757}, {19, 403}, {40, 30447}, {102, 476}, {186, 5248}, {265, 517}, {484, 42422}, {515, 6742}, {516, 36001}, {946, 1325}, {1789, 11012}, {2006, 12028}, {2070, 20988}, {2166, 3583}, {2687, 11813}, {2694, 26700}, {3153, 14213}, {5180, 33650}, {5310, 37959}, {5627, 36910}, {8227, 44898}, {10738, 14980}, {10740, 34301}, {10902, 37979}, {18403, 18407}

X(51883) = reflection of X(i) in X(j) for these {i,j}: {40, 30447}, {484, 42422}, {1325, 946}, {2687, 11813}


X(51884) = X(2)X(2138)∩X(4)X(339)

Barycentrics    a^10 - a^8*b^2 - 2*a^6*b^4 + 2*a^4*b^6 + a^2*b^8 - b^10 - a^8*c^2 + 6*a^6*b^2*c^2 - 2*a^4*b^4*c^2 - 2*a^2*b^6*c^2 - b^8*c^2 - 2*a^6*c^4 - 2*a^4*b^2*c^4 + 2*a^2*b^4*c^4 + 2*b^6*c^4 + 2*a^4*c^6 - 2*a^2*b^2*c^6 + 2*b^4*c^6 + a^2*c^8 - b^2*c^8 - c^10 : :

X(51884) lies on the cubic K928 and these lines: {2, 2138}, {4, 339}, {20, 64}, {22, 7767}, {76, 44440}, {112, 14376}, {194, 39352}, {264, 7544}, {315, 28706}, {401, 7893}, {858, 7776}, {1369, 1370}, {1494, 38937}, {1593, 40995}, {1968, 15526}, {2071, 3926}, {2373, 41896}, {2896, 3164}, {3153, 32006}, {3172, 20208}, {3785, 7488}, {3933, 11413}, {6815, 32000}, {7219, 17170}, {7391, 18018}, {7394, 44142}, {7396, 40123}, {7503, 41005}, {7800, 22240}, {9308, 26154}, {10313, 14023}, {11348, 11433}, {12111, 44141}, {25053, 37644}, {26166, 44134}, {26170, 41361}, {30552, 32817}, {37126, 40680}

X(51884) = anticomplement of X(8743)
X(51884) = anticomplement of the isogonal conjugate of X(14376)
X(51884) = anticomplementary isogonal conjugate of X(41361)
X(51884) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1, 41361}, {3, 21215}, {63, 5596}, {66, 5905}, {69, 21288}, {293, 34137}, {2156, 193}, {2353, 21216}, {14376, 8}, {18018, 21270}, {40404, 17165}, {43678, 5906}, {44766, 7253}, {46244, 11442}, {46765, 17489}
{X(315),X(30737)}-harmonic conjugate of X(37444)


X(51885) = X(5)X(1173)∩X(6)X(3411)

Barycentrics    3*a^10 - 14*a^8*b^2 + 25*a^6*b^4 - 21*a^4*b^6 + 8*a^2*b^8 - b^10 - 14*a^8*c^2 + 21*a^6*b^2*c^2 + 6*a^4*b^4*c^2 - 16*a^2*b^6*c^2 + 3*b^8*c^2 + 25*a^6*c^4 + 6*a^4*b^2*c^4 + 16*a^2*b^4*c^4 - 2*b^6*c^4 - 21*a^4*c^6 - 16*a^2*b^2*c^6 - 2*b^4*c^6 + 8*a^2*c^8 + 3*b^2*c^8 - c^10 : :
X(51885) = 2 X[5] - 3 X[1173], 7 X[3526] - 9 X[15047], 14 X[3526] - 9 X[34483], 2 X[52] + X[18476], 5 X[631] - 3 X[2889], 13 X[5067] - 18 X[46084], 3 X[5900] - 4 X[20379], 4 X[10821] - 3 X[15061], 4 X[16239] - 3 X[44756]

X(51885) lies on the cubic K125 and these lines: {3, 34564}, {5, 1173}, {6, 3411}, {20, 6102}, {49, 3629}, {52, 18476}, {143, 11271}, {382, 10112}, {631, 2889}, {1353, 41464}, {1493, 18368}, {1992, 47525}, {3530, 13353}, {3843, 9927}, {3853, 7728}, {5067, 45794}, {5900, 20379}, {6152, 23236}, {7506, 15534}, {10821, 15061}, {11536, 41586}, {13431, 18369}, {15800, 41362}, {16239, 44756}, {17823, 36747}, {33542, 37486}, {34224, 43599}, {37636, 48154}, {43601, 46853}

X(51885) = reflection of X(i) in X(j) for these {i,j}: {3, 34564}, {18368, 1493}, {34483, 15047}


X(51886) = X(35)X(2222)∩X(80)X(517)

Barycentrics    (a^2 - a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 + 2*a^4*b*c - 2*a^3*b^2*c + 2*a*b^4*c - 2*b^5*c - a^4*c^2 - 2*a^3*b*c^2 + 5*a^2*b^2*c^2 - 2*a*b^3*c^2 - b^4*c^2 - 2*a*b^2*c^3 + 4*b^3*c^3 - a^2*c^4 + 2*a*b*c^4 - b^2*c^4 - 2*b*c^5 + c^6) : :

X(51886) lies on the cubic K682 and these lines: {35, 2222}, {80, 517}, {484, 1263}, {901, 15228}, {953, 5443}, {5080, 15065}, {5444, 38617}, {5445, 31841}, {5697, 39270}, {7951, 34464}, {11280, 14584}, {18393, 38586}


X(51887) = X(3)X(275)∩X(6)X(24)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - 2*a^2*c^2 - b^2*c^2 + c^4)*(a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8 + a^6*c^2 - 3*a^2*b^4*c^2 + 2*b^6*c^2 - 3*a^4*c^4 - 3*a^2*b^2*c^4 - 2*b^4*c^4 + 3*a^2*c^6 + 2*b^2*c^6 - c^8) : :

X(51887) lies on the cubic K1057 and these lines: {3, 275}, {4, 19172}, {6, 24}, {25, 1093}, {97, 17928}, {107, 43918}, {183, 276}, {186, 51255}, {378, 4994}, {389, 19170}, {1181, 26887}, {1593, 19192}, {1598, 19169}, {3087, 26876}, {3515, 16030}, {3517, 19173}, {3575, 8901}, {4993, 7503}, {6642, 19179}, {6644, 19210}, {7395, 19188}, {7487, 19174}, {7506, 19176}, {9786, 19180}, {10605, 19206}, {11398, 19175}, {11399, 19182}, {12173, 19177}, {15203, 16032}, {15204, 16037}, {18533, 19205}, {19194, 37489}, {22467, 43768}

X(51887) = polar conjugate of the isotomic conjugate of X(19170)
X(51887) = X(40448)-isoconjugate of X(44706)
X(51887) = barycentric product X(i)*X(j) for these {i,j}: {4, 19170}, {275, 389}, {2167, 45225}, {2190, 45224}, {8882, 45198}, {8884, 46832}
X(51887) = barycentric quotient X(i)/X(j) for these {i,j}: {275, 42333}, {389, 343}, {6750, 45793}, {8882, 40448}, {19170, 69}, {45198, 28706}, {45224, 18695}, {45225, 14213}
X(51887) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {24, 54, 19189}, {25, 16035, 8884}, {3515, 16030, 19185}, {8794, 8884, 41365}


X(51888) = X(3)X(2052)∩X(5)X(53)

Barycentrics    (a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*(a^12 - 4*a^10*b^2 + 6*a^8*b^4 - 4*a^6*b^6 + a^4*b^8 - 4*a^10*c^2 + 9*a^8*b^2*c^2 - 4*a^6*b^4*c^2 - 2*a^4*b^6*c^2 + b^10*c^2 + 6*a^8*c^4 - 4*a^6*b^2*c^4 + 2*a^4*b^4*c^4 - 4*b^8*c^4 - 4*a^6*c^6 - 2*a^4*b^2*c^6 + 6*b^6*c^6 + a^4*c^8 - 4*b^4*c^8 + b^2*c^10) : :
X(51888) = 2 X[5] - 3 X[14640], 3 X[51] - X[13322], X[52] - 3 X[42453]

X(51888) lies on the cubic K714 and these lines: {3, 2052}, {5, 53}, {13, 46703}, {14, 46702}, {20, 1075}, {30, 143}, {51, 13322}, {52, 42453}, {54, 41202}, {68, 1987}, {381, 13599}, {418, 13450}, {1093, 42329}, {1154, 15912}, {1658, 5961}, {2055, 8613}, {2790, 6759}, {3070, 8954}, {3071, 32589}, {5562, 41481}, {6662, 32142}, {7387, 14880}, {14059, 46717}, {14152, 41204}, {14790, 14881}, {15780, 33664}, {26897, 44732}

X(51888) = midpoint of X(5562) and X(41481)
X(51888) = reflection of X(i) in X(j) for these {i,j}: {143, 6663}, {6662, 32142}
X(51888) = Taylor-circle-inverse of X(32411)
X(51888) = X(34538)-Ceva conjugate of X(1625)
X(51888) = X(2167)-isoconjugate of X(8612)
X(51888) = X(i)-Dao conjugate of X(j) for these (i, j): (38976, 15412), (40588, 8612)
X(51888) = cevapoint of X(15780) and X(41481)
X(51888) = crosssum of X(2623) and X(34980)
X(51888) = barycentric product X(i)*X(j) for these {i,j}: {5, 8613}, {324, 2055}
X(51888) = barycentric quotient X(i)/X(j) for these {i,j}: {51, 8612}, {2055, 97}, {8613, 95}, {38976, 2972}
X(51888) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 35719, 42862}, {216, 8887, 5}, {10600, 39569, 5}


X(51889) = X(1)X(4)∩X(10)X(522)

Barycentrics    a^6*b - a^4*b^3 - a^2*b^5 + b^7 + a^6*c - 4*a^5*b*c + 2*a^4*b^2*c + a^3*b^3*c - 2*a^2*b^4*c + 3*a*b^5*c - b^6*c + 2*a^4*b*c^2 - 2*a^3*b^2*c^2 + 3*a^2*b^3*c^2 - 3*b^5*c^2 - a^4*c^3 + a^3*b*c^3 + 3*a^2*b^2*c^3 - 6*a*b^3*c^3 + 3*b^4*c^3 - 2*a^2*b*c^4 + 3*b^3*c^4 - a^2*c^5 + 3*a*b*c^5 - 3*b^2*c^5 - b*c^6 + c^7 : :
X(51889) = 3 X[5587] - X[18339]

X(51889) lies on the cubic K682 and these lines: {1, 4}, {10, 522}, {11, 25437}, {30, 33649}, {35, 2222}, {40, 24029}, {119, 24025}, {496, 23869}, {1074, 10175}, {1324, 20831}, {1387, 11717}, {1647, 23536}, {1897, 13532}, {2716, 37561}, {2800, 38357}, {2817, 21664}, {2829, 11700}, {3057, 3326}, {5587, 18339}, {6788, 23537}, {7004, 10265}, {10017, 17102}, {10538, 27529}, {11373, 14028}, {18242, 34345}, {21635, 34586}, {23703, 31730}, {36250, 37730}, {47115, 51422}

X(51889) = midpoint of X(i) and X(j) for these {i,j}: {1, 18340}, {1897, 13532}, {3465, 38945}
X(51889) = reflection of X(i) in X(j) for these {i,j}: {11700, 15252}, {51422, 47115}, {51751, 1785}
X(51889) = incircle-inverse of X(30384)
X(51889) = polar circle inverse of X(1870)
X(51889) = crossdifference of every pair of points on line {652, 7113}
X(51889) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 35015, 946}, {24457, 42455, 21201}


X(51890) = X(3)X(13)∩X(6)X(3132)

Barycentrics    a^2*(Sqrt[3]*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - 3*a^4*c^2 + b^4*c^2 + 3*a^2*c^4 + b^2*c^4 - c^6) - 2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*S) : :

X(51890) lies on the cubics K1054b and K1057 and these lines: {3, 13}, {6, 3132}, {16, 3201}, {25, 2934}, {50, 8740}, {183, 34389}, {299, 11145}, {395, 38432}, {599, 40712}, {930, 34376}, {2070, 15743}, {2379, 16806}, {3130, 11063}, {3131, 36300}, {8018, 15109}, {8604, 34395}, {9763, 11144}, {10677, 11486}, {11081, 46113}, {16460, 19781}, {19302, 19304}, {23283, 23286}, {34328, 38404}, {36304, 50660}

X(51890) = isogonal conjugate of X(16771)
X(51890) = isogonal conjugate of the anticomplement of X(11130)
X(51890) = isogonal conjugate of the isotomic conjugate of X(19779)
X(51890) = X(i)-Ceva conjugate of X(j) for these (i,j): {11087, 6}, {39432, 36304}
X(51890) = X(i)-isoconjugate of X(j) for these (i,j): {1, 16771}, {2, 3376}, {63, 46926}, {75, 11141}, {302, 2154}, {2166, 11146}, {3384, 30529}, {8838, 51806}, {24041, 43968}
X(51890) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 16771), (206, 11141), (3005, 43968), (3162, 46926), (11126, 11132), (11597, 11146), (15610, 41298), (32664, 3376), (38994, 23872), (40581, 302), (46604, 11138)
X(51890) = crossdifference of every pair of points on line {6671, 23872}
X(51890) = barycentric product X(i)*X(j) for these {i,j}: {1, 3375}, {6, 19779}, {16, 17}, {299, 21461}, {323, 11139}, {471, 32585}, {532, 34321}, {2963, 11145}, {2981, 40667}, {6138, 32036}, {8603, 11078}, {8604, 11144}, {8740, 40712}, {8741, 44719}, {10677, 11601}, {11087, 11130}, {11134, 11140}, {11600, 36208}, {16806, 23871}, {34389, 34395}, {36211, 37848}
X(51890) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 16771}, {16, 302}, {17, 301}, {25, 46926}, {31, 3376}, {32, 11141}, {50, 11146}, {3124, 43968}, {3375, 75}, {6138, 23872}, {8603, 11092}, {8604, 11143}, {8740, 473}, {11081, 8838}, {11130, 11132}, {11134, 1994}, {11139, 94}, {11142, 30529}, {11145, 7769}, {16806, 23896}, {19627, 11137}, {19779, 76}, {21461, 14}, {32585, 40710}, {34321, 11117}, {34395, 61}, {35331, 35316}, {40667, 41000}, {51547, 8836}
X(51890) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3130, 11063, 11141}, {8603, 21461, 6}, {8603, 51547, 21461}, {21461, 32585, 8603}, {32585, 51547, 6}


X(51891) = X(3)X(14)∩X(6)X(3131)

Barycentrics    a^2*(Sqrt[3]*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - 3*a^4*c^2 + b^4*c^2 + 3*a^2*c^4 + b^2*c^4 - c^6) + 2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*S) : :

X(51891) lies on the cubics K1054a and K1057 and these lines: {3, 14}, {6, 3131}, {15, 3200}, {25, 2934}, {50, 8739}, {183, 34390}, {298, 11146}, {396, 38431}, {599, 40711}, {930, 34374}, {2070, 11586}, {2378, 16807}, {3129, 11063}, {3132, 36301}, {8019, 15109}, {8603, 34394}, {9761, 11143}, {10678, 11485}, {11086, 46112}, {16459, 19780}, {19302, 19305}, {21773, 42623}, {23284, 23286}, {34327, 38403}, {36305, 50660}

X(51891) = isogonal conjugate of X(16770)
X(51891) = isogonal conjugate of the anticomplement of X(11131)
X(51891) = isogonal conjugate of the isotomic conjugate of X(19778)
X(51891) = X(i)-Ceva conjugate of X(j) for these (i,j): {11082, 6}, {39433, 36305}
X(51891) = crossdifference of every pair of points on line {6672, 23873}
X(51891) = X(i)-isoconjugate of X(j) for these (i,j): {1, 16770}, {2, 3383}, {63, 46925}, {75, 11142}, {303, 2153}, {2166, 11145}, {3375, 30529}, {8836, 51805}, {24041, 43967}
X(51891) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 16770), (206, 11142), (3005, 43967), (3162, 46925), (11127, 11133), (11597, 11145), (15609, 41298), (32664, 3383), (38993, 23873), (40580, 303), (46604, 11139)
X(51891) = barycentric product X(i)*X(j) for these {i,j}: {1, 3384}, {6, 19778}, {15, 18}, {298, 21462}, {323, 11138}, {470, 32586}, {533, 34322}, {2963, 11146}, {6137, 32037}, {6151, 40668}, {8603, 11143}, {8604, 11092}, {8739, 40711}, {8742, 44718}, {10678, 11600}, {11082, 11131}, {11137, 11140}, {11601, 36209}, {16807, 23870}, {34390, 34394}, {36210, 37850}
X(51891) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 16770}, {15, 303}, {18, 300}, {25, 46925}, {31, 3383}, {32, 11142}, {50, 11145}, {3124, 43967}, {3384, 75}, {6137, 23873}, {8603, 11144}, {8604, 11078}, {8739, 472}, {11086, 8836}, {11131, 11133}, {11137, 1994}, {11138, 94}, {11141, 30529}, {11146, 7769}, {16807, 23895}, {19627, 11134}, {19778, 76}, {21462, 13}, {32586, 40709}, {34322, 11118}, {34394, 62}, {35332, 35317}, {40668, 41001}, {51546, 8838}
X(51891) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3129, 11063, 11142}, {8604, 21462, 6}, {8604, 51546, 21462}, {21462, 32586, 8604}, {32586, 51546, 6}


X(51892) = X(2)X(11589)∩X(4)X(51)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^12 - 9*a^8*b^4 + 16*a^6*b^6 - 9*a^4*b^8 + b^12 + 13*a^8*b^2*c^2 - 14*a^6*b^4*c^2 - 12*a^4*b^6*c^2 + 14*a^2*b^8*c^2 - b^10*c^2 - 9*a^8*c^4 - 14*a^6*b^2*c^4 + 42*a^4*b^4*c^4 - 14*a^2*b^6*c^4 - 5*b^8*c^4 + 16*a^6*c^6 - 12*a^4*b^2*c^6 - 14*a^2*b^4*c^6 + 10*b^6*c^6 - 9*a^4*c^8 + 14*a^2*b^2*c^8 - 5*b^4*c^8 - b^2*c^10 + c^12) : :
X(51892) = 3 X[4] - X[6761], 2 X[6761] - 3 X[34170], 2 X[1515] + X[10152], 5 X[3091] - 2 X[34109], X[3146] + 2 X[34147], 3 X[37941] - 4 X[40557], 3 X[38719] - 2 X[44246]

X(51892) lies on the cubic K449 and these lines: {2, 11589}, {4, 51}, {20, 12096}, {30, 1294}, {107, 1559}, {133, 40664}, {186, 18809}, {2072, 2693}, {3091, 34109}, {3146, 34147}, {3832, 35711}, {10304, 16253}, {11251, 38937}, {13473, 20774}, {13488, 51031}, {14165, 51403}, {15384, 47109}, {17037, 50687}, {18400, 48364}, {31725, 43995}, {37941, 40557}, {38719, 44246}, {44990, 44992}

X(51892) = reflection of X(i) in X(j) for these {i,j}: {20, 12096}, {107, 1559}, {186, 18809}, {2693, 2072}, {34170, 4}, {40664, 133}
X(51892) = anticomplement of X(11589)
X(51892) = polar-circle-inverse of X(11381)
X(51892) = circumcircle-of-anticomplementary-triangle-inverse of X(6225)
X(51892) = anticomplement of the isogonal conjugate of X(10152)
X(51892) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {204, 39358}, {1895, 146}, {2349, 253}, {8749, 18663}, {10152, 8}, {15291, 6360}, {36119, 3146}
X(51892) = crosssum of X(9409) and X(47409)
X(51892) = crossdifference of every pair of points on line {20233, 32320}
X(51892) = {X(4),X(5878)}-harmonic conjugate of X(14249)


X(51893) = X(2)X(6)∩X(7)X(2997)

Barycentrics    a^6*b - a^5*b^2 - 2*a^4*b^3 + 2*a^3*b^4 + a^2*b^5 - a*b^6 + a^6*c + a^5*b*c - 3*a^4*b^2*c - 2*a^3*b^3*c + 3*a^2*b^4*c + a*b^5*c - b^6*c - a^5*c^2 - 3*a^4*b*c^2 - 4*a^3*b^2*c^2 - 2*a^2*b^3*c^2 + a*b^4*c^2 + b^5*c^2 - 2*a^4*c^3 - 2*a^3*b*c^3 - 2*a^2*b^2*c^3 - 2*a*b^3*c^3 + 2*a^3*c^4 + 3*a^2*b*c^4 + a*b^2*c^4 + a^2*c^5 + a*b*c^5 + b^2*c^5 - a*c^6 - b*c^6 : :

X(51893) lies on the cubic K385 and these lines: {2, 6}, {7, 2997}, {20, 6604}, {75, 16465}, {85, 942}, {991, 9436}, {3190, 3879}, {3332, 14942}, {4352, 37549}, {4872, 10446}, {18650, 24310}

X(51893) = {X(69),X(30962)}-harmonic conjugate of X(18134)


X(51894) = X(50)X(67)∩X(111)X(230)

Barycentrics    3*a^12 - 6*a^10*b^2 + 7*a^8*b^4 - 9*a^6*b^6 + 7*a^4*b^8 - 3*a^2*b^10 + b^12 - 6*a^10*c^2 + 4*a^8*b^2*c^2 + 3*a^6*b^4*c^2 - 4*a^4*b^6*c^2 + 4*a^2*b^8*c^2 - 2*b^10*c^2 + 7*a^8*c^4 + 3*a^6*b^2*c^4 - 3*a^4*b^4*c^4 - a^2*b^6*c^4 - b^8*c^4 - 9*a^6*c^6 - 4*a^4*b^2*c^6 - a^2*b^4*c^6 + 4*b^6*c^6 + 7*a^4*c^8 + 4*a^2*b^2*c^8 - b^4*c^8 - 3*a^2*c^10 - 2*b^2*c^10 + c^12 : :

X(51894) lies on the cubic K483 and these lines: {6, 23967}, {50, 67}, {111, 230}, {115, 38953}, {187, 11645}, {395, 43091}, {396, 43092}, {892, 45331}, {7669, 51428}, {11063, 37914}

X(51894) = crosssum of X(6) and X(38583)
X(51894) = crossdifference of every pair of points on line {20403, 33752}


X(51895) = X(3)X(523)∩X(24)X(107)

Barycentrics    a^2*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 2*a^4*c^2 + 2*a^2*b^2*c^2 - 2*b^4*c^2 + a^2*c^4 + b^2*c^4)*(a^6 - 2*a^4*b^2 + a^2*b^4 - a^4*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 - a^2*c^4 - 2*b^2*c^4 + c^6)*(a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8 + a^6*c^2 + 4*a^4*b^2*c^2 - 3*a^2*b^4*c^2 - 2*b^6*c^2 - 3*a^4*c^4 - 3*a^2*b^2*c^4 + 6*b^4*c^4 + 3*a^2*c^6 - 2*b^2*c^6 - c^8) : :

X(51895) lies on the cubics K389 and K928 and these lines: {3, 523}, {22, 14911}, {24, 107}, {26, 16168}, {64, 155}, {378, 10419}, {382, 17703}, {2693, 10420}, {3053, 14910}, {6644, 12028}, {7503, 33927}, {7514, 47055}, {7526, 14670}, {18859, 39371}, {46587, 51385}

X(51895) = isogonal conjugate of the anticomplement of X(39174)
X(51895) = X(40948)-cross conjugate of X(6000)
X(51895) = X(1294)-isoconjugate of X(1725)
X(51895) = X(50937)-Dao conjugate of X(403)
X(51895) = crosspoint of X(1300) and X(10419)
X(51895) = crosssum of X(113) and X(13754)
X(51895) = barycentric product X(i)*X(j) for these {i,j}: {1300, 44436}, {2986, 6000}, {5504, 51358}, {15421, 46587}, {40423, 47433}
X(51895) = barycentric quotient X(i)/X(j) for these {i,j}: {6000, 3580}, {14910, 1294}, {46587, 16237}, {47433, 113}, {51358, 44138}
X(51895) = {X(15454),X(39986)}-harmonic conjugate of X(3)


X(51896) = X(3)X(102)∩X(4)X(80)

Barycentrics    a^2*(a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8 + a^6*b*c - 2*a^5*b^2*c + 4*a^3*b^4*c - 3*a^2*b^5*c - 2*a*b^6*c + 2*b^7*c + a^6*c^2 - 2*a^5*b*c^2 + 5*a^4*b^2*c^2 - 3*a^3*b^3*c^2 - 4*a^2*b^4*c^2 + 5*a*b^5*c^2 - 2*b^6*c^2 - 3*a^3*b^2*c^3 + 8*a^2*b^3*c^3 - 3*a*b^4*c^3 - 2*b^5*c^3 - 3*a^4*c^4 + 4*a^3*b*c^4 - 4*a^2*b^2*c^4 - 3*a*b^3*c^4 + 6*b^4*c^4 - 3*a^2*b*c^5 + 5*a*b^2*c^5 - 2*b^3*c^5 + 3*a^2*c^6 - 2*a*b*c^6 - 2*b^2*c^6 + 2*b*c^7 - c^8) : :

X(51896) lies on the cubic K685 and these lines: {1, 2779}, {3, 102}, {4, 80}, {65, 34462}, {117, 6830}, {124, 2476}, {151, 6840}, {484, 6127}, {517, 38945}, {573, 4559}, {859, 5127}, {994, 1836}, {1361, 2099}, {1364, 34471}, {2475, 33650}, {2841, 3030}, {2849, 14299}, {3738, 6224}, {10693, 11670}, {10716, 17532}, {10895, 15050}, {11571, 18341}, {11700, 37525}, {12016, 30274}

X(51896) = reflection of X(i) in X(j) for these {i,j}: {10703, 1361}, {34242, 1845}, {38507, 109}


X(51897) = X(1)X(399)∩X(2)X(1768)

Barycentrics    a*(a^8 - 2*a^7*b - 2*a^6*b^2 + 6*a^5*b^3 - 6*a^3*b^5 + 2*a^2*b^6 + 2*a*b^7 - b^8 - 2*a^7*c + 10*a^6*b*c - 6*a^5*b^2*c - 16*a^4*b^3*c + 14*a^3*b^4*c + 6*a^2*b^5*c - 6*a*b^6*c - 2*a^6*c^2 - 6*a^5*b*c^2 + 25*a^4*b^2*c^2 - 6*a^3*b^3*c^2 - 13*a^2*b^4*c^2 - 2*a*b^5*c^2 + 4*b^6*c^2 + 6*a^5*c^3 - 16*a^4*b*c^3 - 6*a^3*b^2*c^3 + 10*a^2*b^3*c^3 + 6*a*b^4*c^3 + 14*a^3*b*c^4 - 13*a^2*b^2*c^4 + 6*a*b^3*c^4 - 6*b^4*c^4 - 6*a^3*c^5 + 6*a^2*b*c^5 - 2*a*b^2*c^5 + 2*a^2*c^6 - 6*a*b*c^6 + 4*b^2*c^6 + 2*a*c^7 - c^8) : :
X(51897) = 2 X[11715] - 3 X[28461]

X(51897) lies on the cubic K913 and these lines: {1, 399}, {2, 1768}, {11, 41695}, {30, 12751}, {40, 38756}, {79, 24465}, {119, 3652}, {191, 2950}, {484, 10742}, {952, 16138}, {1709, 3158}, {1749, 47034}, {3255, 5851}, {3337, 12611}, {5536, 17768}, {7330, 12767}, {7993, 12705}, {10021, 35010}, {10269, 33856}, {10270, 45649}, {11684, 39776}, {11715, 28461}, {12515, 19919}, {13253, 22837}, {15910, 46435}, {16133, 18240}, {16143, 35204}, {22936, 37561}, {26364, 51569}, {33593, 45655}, {34600, 48695}

X(51897) = reflection of X(i) in X(j) for these {i,j}: {3065, 7701}, {12515, 19919}, {16143, 35204}, {49178, 119}


X(51898) = X(2)X(1341)∩X(69)X(74)

Barycentrics    (5*a^4 - 4*a^2*b^2 - b^4 - 4*a^2*c^2 + 2*b^2*c^2 - c^4)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4] - 2*(2*a^6 - 2*a^4*b^2 + a^2*b^4 - b^6 - 2*a^4*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6) : :
X(51898) = 3 X[2] - 4 X[47088], 5 X[631] - 4 X[47369], 3 X[3524] - 2 X[47366], 3 X[3545] - 4 X[47370], 5 X[15692] - 4 X[47089]

X(51898) lies on the major axis of the Steiner circumellipse, and X(51898) lies on minor axis.

X(51898) lies on the cubics K187 and K953 and these lines: {2, 1341}, {3, 47367}, {4, 14502}, {20, 3414}, {30, 6189}, {69, 74}, {193, 51492}, {325, 6040}, {631, 47369}, {1379, 39365}, {3524, 47366}, {3543, 31862}, {3545, 47370}, {6190, 6390}, {14712, 39366}, {15692, 47089}, {30508, 38940}, {36969, 47362}, {36970, 47364}

X(51898) = reflection of X(i) in X(j) for these {i,j}: {4, 47365}, {3543, 31862}, {31863, 47088}, {39365, 1379}, {47367, 3}
X(51898) = anticomplement of X(31863)
X(51898) = crossdifference of every pair of points on line {5639, 14398}
X(51898) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {31863, 47088, 2}, {39158, 39159, 30509}


X(51899) = X(2)X(1340)∩X(69)X(74)

Barycentrics    (5*a^4 - 4*a^2*b^2 - b^4 - 4*a^2*c^2 + 2*b^2*c^2 - c^4)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4] + 2*(2*a^6 - 2*a^4*b^2 + a^2*b^4 - b^6 - 2*a^4*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6) : :
X(51899) = 3 X[2] - 4 X[47089], 5 X[631] - 4 X[47370], 3 X[3524] - 2 X[47365], 3 X[3545] - 4 X[47369], 5 X[15692] - 4 X[47088]

X(51899) lies on the major axis of the Steiner circumellipse, and X(51898) lies on minor axis.

X(51899) lies on the cubics K187 and K953 and these lines: {2, 1340}, {3, 47368}, {4, 14501}, {20, 3413}, {30, 6190}, {69, 74}, {193, 51493}, {325, 6039}, {631, 47370}, {1380, 39366}, {3524, 47365}, {3543, 31863}, {3545, 47369}, {6189, 6390}, {14712, 39365}, {15692, 47088}, {30509, 38940}, {36969, 47361}, {36970, 47363}

X(51899) = reflection of X(i) in X(j) for these {i,j}: {4, 47366}, {3543, 31863}, {31862, 47089}, {39366, 1380}, {47368, 3}
X(51899) = anticomplement of X(31862)
X(51899) = crossdifference of every pair of points on line {5638, 14398}
X(51899) = {X(31862),X(47089)}-harmonic conjugate of X(2)


X(51900) = X(3)X(14818)∩X(15)X(20)

Barycentrics    a^2*(2*a^8 - 5*a^6*b^2 + 3*a^4*b^4 + a^2*b^6 - b^8 - 5*a^6*c^2 + 8*a^4*b^2*c^2 + 3*a^2*b^4*c^2 - 6*b^6*c^2 + 3*a^4*c^4 + 3*a^2*b^2*c^4 + 14*b^4*c^4 + a^2*c^6 - 6*b^2*c^6 - c^8 + 8*Sqrt[3]*(b^2 + c^2)*S^3) : :

X(51900) lies on the cubics K1071 and K1256 and these lines: {3, 14818}, {13, 8837}, {15, 20}, {39, 46626}, {61, 185}, {62, 13434}, {2981, 43601}, {3106, 11424}, {3107, 7503}, {10613, 46850}, {14817, 15047}

X(51900) = X(397)-Ceva conjugate of X(62)


X(51901) = X(3)X(14819)∩X(16)X(20)

Barycentrics    a^2*(2*a^8 - 5*a^6*b^2 + 3*a^4*b^4 + a^2*b^6 - b^8 - 5*a^6*c^2 + 8*a^4*b^2*c^2 + 3*a^2*b^4*c^2 - 6*b^6*c^2 + 3*a^4*c^4 + 3*a^2*b^2*c^4 + 14*b^4*c^4 + a^2*c^6 - 6*b^2*c^6 - c^8 - 8*Sqrt[3]*(b^2 + c^2)*S^3) : :

X(51901) lies on the cubics K1071 and K1256 and these lines: {3, 14819}, {14, 8839}, {16, 20}, {39, 46626}, {61, 13434}, {62, 185}, {3106, 7503}, {3107, 11424}, {6151, 43601}, {10614, 46850}, {14816, 15047}

X(51901) = X(3978)-Ceva conjugate of X(61)


X(51902) = X(1)X(6)∩X(31)X(983)

Barycentrics    a*(a*b + a*c - b*c)*(a^2 + b*c) : :

X(51902) lies on the cubic K989 and these lines: {1, 6}, {31, 983}, {42, 256}, {43, 1403}, {58, 8669}, {86, 24659}, {87, 21010}, {171, 385}, {183, 10436}, {190, 1918}, {192, 2209}, {291, 1400}, {572, 11364}, {573, 12782}, {594, 50254}, {645, 51330}, {651, 41350}, {726, 4279}, {899, 28402}, {982, 21371}, {1045, 37619}, {1046, 6211}, {1376, 16571}, {1431, 1581}, {1580, 2330}, {1613, 40736}, {1740, 34247}, {1756, 3293}, {2183, 24478}, {2239, 6646}, {2650, 25024}, {3329, 17123}, {3507, 17792}, {3685, 37588}, {3718, 20947}, {3747, 17261}, {3831, 33159}, {3840, 17353}, {3846, 27296}, {3905, 18906}, {3923, 4385}, {3971, 38832}, {4039, 17787}, {4357, 6685}, {4447, 7184}, {4579, 7122}, {4641, 20359}, {4650, 20368}, {5156, 32935}, {6210, 50581}, {7175, 18787}, {7226, 27631}, {9441, 24728}, {14614, 50127}, {15624, 24696}, {17120, 20985}, {17717, 27254}, {17719, 29967}, {17795, 28358}, {18278, 21759}, {18754, 18758}, {20258, 20498}, {25108, 28362}, {27078, 32944}, {27644, 41531}, {27958, 40731}, {27963, 28008}, {28369, 40790}, {29507, 31337}, {51322, 51323}

X(51902) = isogonal conjugate of the isotomic conjugate of X(41318)
X(51902) = X(i)-Ceva conjugate of X(j) for these (i,j): {172, 171}, {4600, 4595}
X(51902) = X(17752)-cross conjugate of X(171)
X(51902) = crosspoint of X(172) and X(51319)
X(51902) = crosssum of X(i) and X(j) for these (i,j): {257, 27447}, {2053, 34249}, {6377, 50510}
X(51902) = X(i)-isoconjugate of X(j) for these (i,j): {6, 27447}, {87, 256}, {257, 2162}, {330, 893}, {694, 39914}, {904, 6384}, {1178, 42027}, {1431, 7155}, {1432, 2319}, {1581, 34252}, {1916, 51321}, {2053, 7249}, {3903, 43931}, {6383, 7104}, {7018, 7121}, {7148, 7303}, {16606, 40432}, {23493, 32010}, {40763, 45782}
X(51902) = X(i)-Dao conjugate of X(j) for these (i, j): (9, 27447), (75, 44187), (19576, 34252), (21051, 3120), (39031, 51321), (39043, 39914), (40597, 330), (40598, 7018)
X(51902) = barycentric product X(i)*X(j) for these {i,j}: {1, 17752}, {6, 41318}, {43, 894}, {75, 51319}, {171, 192}, {172, 6376}, {190, 24533}, {213, 27891}, {385, 41531}, {651, 30584}, {1215, 27644}, {1403, 17787}, {1423, 7081}, {1580, 40848}, {1909, 2176}, {1920, 2209}, {2295, 33296}, {2329, 3212}, {2330, 30545}, {3208, 7176}, {3502, 17741}, {3835, 4579}, {3963, 38832}, {4083, 18047}, {4367, 4595}, {6382, 7122}, {7009, 22370}, {7175, 27538}, {7234, 36860}, {7304, 21803}, {17103, 20691}, {20964, 31008}, {20981, 36863}
X(51902) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 27447}, {43, 257}, {171, 330}, {172, 87}, {192, 7018}, {894, 6384}, {1403, 1432}, {1423, 7249}, {1580, 39914}, {1691, 34252}, {1909, 6383}, {1933, 51321}, {2176, 256}, {2209, 893}, {2295, 42027}, {2329, 7155}, {2330, 2319}, {3208, 4451}, {4579, 4598}, {6376, 44187}, {7081, 27424}, {7122, 2162}, {7176, 7209}, {17752, 75}, {18047, 18830}, {20284, 3865}, {20964, 16606}, {20981, 43931}, {22370, 7019}, {24533, 514}, {27644, 32010}, {27891, 6385}, {30584, 4391}, {38832, 40432}, {40848, 1934}, {41318, 76}, {41526, 1431}, {41531, 1916}, {51319, 1}
X(51902) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {31, 7766, 34252}, {43, 1423, 41886}, {894, 7081, 51575}, {894, 20964, 171}


X(51903) = X(1)X(163)∩X(31)X(1581)

Barycentrics    a*(a^2 - b*c)^2*(a^2 + b*c)^2 : :

X(51903) lies on the cubic K989 and these lines: {1, 163}, {31, 1581}, {82, 2643}, {171, 19576}, {238, 1691}, {560, 662}, {1580, 1933}, {1966, 19574}, {4117, 4599}, {17467, 18042}

X(51903) = X(i)-isoconjugate of X(j) for these (i,j): {2, 41517}, {694, 1916}, {882, 18829}, {1934, 1967}, {8789, 44160}, {9468, 18896}, {17980, 40708}, {36897, 40810}
X(51903) = X(i)-Dao conjugate of X(j) for these (i, j): (804, 1109), (8290, 1934), (19576, 1581), (32664, 41517), (39030, 44160), (39031, 694), (39043, 1916), (39044, 18896)
X(51903) = crosssum of X(1916) and X(40099)
X(51903) = barycentric product X(i)*X(j) for these {i,j}: {1, 4027}, {75, 51318}, {238, 27982}, {385, 1580}, {512, 46295}, {661, 46294}, {1691, 1966}, {1926, 14602}, {1933, 3978}, {6645, 8300}, {19572, 51244}, {24041, 35078}
X(51903) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 41517}, {385, 1934}, {1580, 1916}, {1691, 1581}, {1926, 44160}, {1933, 694}, {1966, 18896}, {4027, 75}, {6652, 30643}, {7369, 30642}, {8300, 40099}, {14602, 1967}, {18902, 1927}, {19578, 3493}, {27982, 334}, {35078, 1109}, {46294, 799}, {46295, 670}, {51318, 1}


X(51904) = X(1)X(82)∩X(31)X(9285)

Barycentrics    a*(a^2 - b*c)*(a^2 + b*c)*(a^4 + b^2*c^2) : :

X(51904) lies on the cubic K989 and these lines: {1, 82}, {31, 9285}, {171, 1691}, {238, 19576}, {1580, 19578}, {1581, 19559}, {1582, 1932}, {1740, 9247}, {1966, 19574}, {2236, 19572}, {8061, 8634}, {14599, 19580}, {17453, 33782}

X(51904) = X(i)-isoconjugate of X(j) for these (i,j): {6, 40847}, {76, 14946}, {626, 711}, {694, 9229}, {695, 1916}, {783, 826}, {1581, 9285}, {1934, 9288}, {1967, 9239}, {3005, 18828}, {36214, 37892}
X(51904) = X(i)-Dao conjugate of X(j) for these (i, j): (9, 40847), (8290, 9239), (19576, 9285), (37895, 1934), (39031, 695), (39043, 9229)
X(51904) = crossdifference of every pair of points on line {4118, 8061}
X(51904) = X(i)-line conjugate of X(j) for these (i,j): {1, 4118}, {8634, 8061}
X(51904) = barycentric product X(i)*X(j) for these {i,j}: {1, 16985}, {75, 51320}, {384, 1580}, {385, 1582}, {782, 4599}, {1691, 1965}, {1915, 1966}, {1925, 14602}, {1932, 3978}, {1933, 9230}, {16101, 19578}, {34072, 35558}
X(51904) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 40847}, {384, 1934}, {385, 9239}, {560, 14946}, {710, 20627}, {1580, 9229}, {1582, 1916}, {1691, 9285}, {1915, 1581}, {1925, 44160}, {1932, 694}, {1933, 695}, {1965, 18896}, {4599, 18828}, {14602, 9288}, {16985, 75}, {18902, 9236}, {19578, 3505}, {34072, 783}, {51320, 1}


X(51905) = X(2)X(13960)∩X(3)X(6414)

Barycentrics    a^2*(a^2 - b^2 - c^2)^2*(a^2 - S) : :

X(51905) lies on the cubic K1047 and these lines: {2, 13960}, {3, 6414}, {6, 494}, {25, 26875}, {216, 5407}, {255, 606}, {371, 8277}, {372, 12160}, {394, 577}, {487, 3069}, {491, 27377}, {615, 11091}, {1351, 26894}, {1368, 26945}, {3167, 26920}, {3564, 26873}, {3796, 8908}, {5020, 26919}, {5050, 26891}, {5406, 22052}, {5408, 36748}, {5410, 10960}, {5413, 9732}, {6290, 44638}, {6391, 6413}, {6458, 12164}, {8576, 13943}, {8780, 26886}, {8946, 12960}, {9306, 26953}, {9937, 10897}, {10132, 11513}, {10133, 19447}, {12306, 17820}, {12978, 26293}, {15066, 26912}, {19355, 20794}, {19458, 44589}, {26454, 40322}, {26951, 30771}

X(51905) = isogonal conjugate of the isotomic conjugate of X(8223)
X(51905) = isotomic conjugate of the polar conjugate of X(10133)
X(51905) = isogonal conjugate of the polar conjugate of X(487)
X(51905) = X(i)-Ceva conjugate of X(j) for these (i,j): {487, 10133}, {5409, 3}
X(51905) = X(i)-isoconjugate of X(j) for these (i,j): {4, 19217}, {19, 24243}, {92, 8946}, {158, 494}, {1096, 5491}
X(51905) = X(i)-Dao conjugate of X(j) for these (i, j): (6, 24243), (1147, 494), (6503, 5491), (8222, 76), (22391, 8946), (33365, 2052), (36033, 19217)
X(51905) = crosspoint of X(i) and X(j) for these (i,j): {6, 45596}, {487, 8223}
X(51905) = crosssum of X(2) and X(26503)
X(51905) = barycentric product X(i)*X(j) for these {i,j}: {3, 487}, {6, 8223}, {63, 19216}, {69, 10133}, {184, 46743}, {394, 3069}, {3926, 6424}, {4558, 17432}, {5409, 24245}, {8222, 45596}, {26922, 39388}
X(51905) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 24243}, {48, 19217}, {184, 8946}, {394, 5491}, {487, 264}, {577, 494}, {3069, 2052}, {6424, 393}, {8223, 76}, {10133, 4}, {14585, 26461}, {17432, 14618}, {19216, 92}, {19447, 3128}, {46743, 18022}
X(51905) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 8943, 494}, {6, 19409, 5409}, {6, 44630, 26455}, {6, 45595, 19034}, {19443, 45726, 8219}


X(51906) = X(2)X(38278)∩X(39)X(83)

Barycentrics    a^2*(a^2 + b^2)*(b - c)^2*(b + c)^2*(a^2 + c^2) : :

X(51906) lies on the cubic K554 and these lines: {2, 38278}, {39, 83}, {111, 251}, {115, 804}, {308, 3228}, {512, 14990}, {1015, 4367}, {1176, 14498}, {1180, 41917}, {1500, 14992}, {3111, 9431}, {3124, 5027}, {3229, 7845}, {3291, 26276}, {5007, 9149}, {5052, 43977}, {5475, 17500}, {6375, 7853}, {7753, 8265}, {11060, 46288}, {15484, 34811}, {16589, 27067}, {18092, 45210}, {27375, 44164}, {32085, 33842}, {32581, 33843}, {35007, 38834}, {35971, 46654}

X(51906) = isogonal conjugate of the isotomic conjugate of X(34294)
X(51906) = X(i)-complementary conjugate of X(j) for these (i,j): {3108, 42327}, {4117, 15527}, {10159, 21263}, {31065, 21235}
X(51906) = X(i)-Ceva conjugate of X(j) for these (i,j): {83, 512}, {251, 18105}, {38278, 22105}
X(51906) = X(i)-cross conjugate of X(j) for these (i,j): {3124, 34294}, {8029, 2489}, {23099, 512}
X(51906) = cevapoint of X(i) and X(j) for these (i,j): {1084, 3124}, {21906, 38988}
X(51906) = crosspoint of X(251) and X(18105)
X(51906) = crosssum of X(i) and X(j) for these (i,j): {6, 10330}, {141, 4576}, {1634, 3051}, {35325, 41584}
X(51906) = trilinear pole of line {2086, 22260}
X(51906) = crossdifference of every pair of points on line {1634, 4576}
X(51906) = X(i)-isoconjugate of X(j) for these (i,j): {38, 4590}, {39, 24037}, {141, 24041}, {249, 1930}, {662, 4576}, {799, 1634}, {1101, 8024}, {1923, 44168}, {1964, 34537}, {2236, 39292}, {3917, 46254}, {4553, 4610}, {4567, 16887}, {4570, 16703}, {4592, 41676}, {4600, 16696}, {4601, 17187}, {4623, 46148}, {4631, 46153}, {7340, 33299}, {8061, 31614}, {17442, 47389}, {24039, 36827}
X(51906) = X(i)-Dao conjugate of X(j) for these (i, j): (512, 39), (523, 8024), (826, 14125), (1084, 4576), (3005, 141), (5139, 41676), (21905, 7813), (38996, 1634), (40627, 16887), (41884, 34537), (50330, 16703), (50497, 16696)
X(51906) = barycentric product X(i)*X(j) for these {i,j}: {6, 34294}, {82, 2643}, {83, 3124}, {115, 251}, {181, 18101}, {308, 1084}, {338, 46288}, {523, 18105}, {689, 23099}, {798, 18070}, {827, 8029}, {1109, 46289}, {1176, 8754}, {1799, 2971}, {2086, 14970}, {2489, 4580}, {2970, 10547}, {3122, 18082}, {3125, 18098}, {4079, 10566}, {4117, 18833}, {4577, 22260}, {4628, 21131}, {4630, 23105}, {4705, 18108}, {6784, 42299}, {9178, 22105}, {9427, 40016}, {15630, 20022}, {20975, 32085}, {23610, 42371}
X(51906) = barycentric quotient X(i)/X(j) for these {i,j}: {82, 24037}, {83, 34537}, {115, 8024}, {251, 4590}, {308, 44168}, {512, 4576}, {669, 1634}, {733, 39292}, {827, 31614}, {881, 46161}, {1084, 39}, {1176, 47389}, {1356, 1401}, {2086, 732}, {2489, 41676}, {2643, 1930}, {2971, 427}, {3121, 16696}, {3122, 16887}, {3124, 141}, {3125, 16703}, {4079, 4568}, {4117, 1964}, {6784, 14994}, {7063, 3688}, {8029, 23285}, {8754, 1235}, {9427, 3051}, {15449, 14125}, {15630, 20021}, {18070, 4602}, {18098, 4601}, {18101, 18021}, {18105, 99}, {18108, 4623}, {20975, 3933}, {21823, 16720}, {21906, 7813}, {22260, 826}, {23099, 3005}, {23216, 20775}, {23610, 688}, {33918, 14406}, {34294, 76}, {42068, 1843}, {44114, 51371}, {46288, 249}, {46289, 24041}, {50487, 4553}


X(51907) = X(1)X(75)∩X(6)X(904)

Barycentrics    a^3*(a^2*b^4 - b^4*c^2 + a^2*c^4 - b^2*c^4) : :

X(51907) lies on the cubics K432 and K991 and these lines: {1, 75}, {6, 904}, {31, 19603}, {38, 45232}, {238, 38986}, {560, 1932}, {667, 788}, {704, 35539}, {896, 4117}, {1580, 1927}, {1755, 1967}, {1911, 2076}, {1918, 18758}, {2309, 4161}, {4116, 5145}, {8772, 42075}, {17149, 33782}, {18755, 20996}, {18904, 45905}, {20473, 37538}, {23489, 33764}

X(51907) = isogonal conjugate of the isotomic conjugate of X(2227)
X(51907) = X(i)-Ceva conjugate of X(j) for these (i,j): {1580, 1755}, {1927, 1964}, {37134, 798}
X(51907) = X(i)-isoconjugate of X(j) for these (i,j): {2, 3225}, {4, 8858}, {75, 43761}, {76, 699}, {1916, 32544}, {8864, 11606}
X(51907) = X(i)-Dao conjugate of X(j) for these (i, j): (206, 43761), (3229, 1926), (32664, 3225), (36033, 8858), (39031, 32544), (39080, 75), (40810, 1934)
X(51907) = crosspoint of X(i) and X(j) for these (i,j): {1, 1967}, {741, 7121}
X(51907) = crosssum of X(i) and X(j) for these (i,j): {1, 1966}, {740, 6376}, {812, 38986}
X(51907) = crossdifference of every pair of points on line {75, 798}
X(51907) = X(i)-lineconjugate of X(j) for these (i,j): {1, 75}, {667, 798}
X(51907) = barycentric product X(i)*X(j) for these {i,j}: {1, 3229}, {6, 2227}, {31, 698}, {75, 32748}, {560, 35524}, {661, 41337}, {799, 9429}, {896, 36821}, {1580, 47648}, {1581, 51322}, {1959, 32540}, {1967, 39080}, {17799, 51248}
X(51907) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 3225}, {32, 43761}, {48, 8858}, {560, 699}, {698, 561}, {1933, 32544}, {2227, 76}, {3229, 75}, {9429, 661}, {32540, 1821}, {32748, 1}, {35524, 1928}, {36821, 46277}, {39080, 1926}, {41337, 799}, {47648, 1934}, {51322, 1966}


X(51908) = X(1)X(513)∩X(44)X(88)

Barycentrics    a*(a + b - 2*c)*(a - 2*b + c)*(2*a^2 - 2*a*b - b^2 - 2*a*c + 4*b*c - c^2) : :

X(51908) lies on the cubic K137 and these lines: {1, 513}, {44, 88}, {106, 3246}, {190, 46795}, {239, 903}, {320, 4080}, {518, 4792}, {527, 6549}, {536, 4555}, {545, 6633}, {1086, 46790}, {1155, 39154}, {3666, 47058}, {3834, 4997}, {4419, 36887}, {4440, 17953}, {4622, 16702}, {4634, 30938}, {4670, 27922}, {4674, 49712}, {4945, 31138}, {6548, 24407}, {6687, 31227}, {24416, 28220}, {27921, 34762}, {37520, 40215}

X(51908) = X(i)-isoconjugate of X(j) for these (i,j): {101, 34764}, {519, 2384}, {902, 35168}
X(51908) = X(i)-Dao conjugate of X(j) for these (i, j): (1015, 34764), (35121, 4358), (40594, 35168)
X(51908) = crossdifference of every pair of points on line {44, 3251}
X(51908) = X(i)-line conjugate of X(j) for these (i,j): {1, 3251}, {88, 44}
X(51908) = barycentric product X(i)*X(j) for these {i,j}: {88, 545}, {513, 34762}, {679, 1644}, {1022, 6633}, {1320, 43038}, {3257, 14475}, {4555, 14421}, {4618, 33920}, {8649, 20568}
X(51908) = barycentric quotient X(i)/X(j) for these {i,j}: {88, 35168}, {513, 34764}, {545, 4358}, {1644, 4738}, {6633, 24004}, {8649, 44}, {9456, 2384}, {14421, 900}, {14475, 3762}, {34762, 668}
X(51908) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {88, 3257, 44}, {88, 9326, 3257}, {679, 3257, 88}, {679, 9326, 44}, {2226, 40594, 16610}


X(51909) = X(1)X(3495)∩X(31)X(19565)

Barycentrics    a*(a^2 + b*c)*(a^3*b^3 + a^2*b^2*c^2 + a^3*c^3 - b^3*c^3) : :

X(51909) lies on the cubic K989 and these lines: {1, 3495}, {31, 19565}, {82, 34252}, {171, 1920}, {238, 9285}, {1580, 3955}, {1740, 23186}, {2236, 17797}, {6196, 23192}, {7083, 23853}, {8022, 19580}

X(51909) = X(31)-Ceva conjugate of X(171)
X(51909) = X(i)-isoconjugate of X(j) for these (i,j): {256, 7346}, {694, 39934}
X(51909) = X(i)-Dao conjugate of X(j) for these (i, j): (1920, 561), (39043, 39934)
X(51909) = barycentric product X(i)*X(j) for these {i,j}: {1, 39928}, {172, 24732}, {894, 6196}, {1909, 34251}
X(51909) = barycentric quotient X(i)/X(j) for these {i,j}: {172, 7346}, {1580, 39934}, {6196, 257}, {24732, 44187}, {34251, 256}, {39928, 75}


X(51910) = X(3)X(3366)∩X(20)X(486)

Barycentrics    9*a^4 - 7*a^2*b^2 - 2*b^4 - 7*a^2*c^2 + 4*b^2*c^2 - 2*c^4 + 2*a^2*S : :
X(51910) = 3 X[10577] - 2 X[35787], 5 X[10577] - 4 X[42270], 5 X[35787] - 6 X[42270]

X(51910) lies on the cubic K1202 and these lines: {3, 3366}, {5, 43312}, {6, 15696}, {20, 486}, {30, 10577}, {371, 376}, {372, 550}, {382, 6412}, {485, 3528}, {548, 6200}, {549, 42272}, {590, 33923}, {615, 15704}, {631, 35786}, {1131, 5418}, {1152, 3534}, {1328, 46333}, {1350, 39894}, {1587, 9542}, {1657, 6410}, {2041, 42103}, {2042, 42106}, {3069, 6485}, {3070, 8703}, {3071, 12103}, {3311, 43339}, {3312, 15689}, {3316, 21735}, {3522, 6560}, {3523, 22644}, {3524, 42269}, {3529, 5420}, {3530, 42284}, {3850, 43785}, {3853, 32790}, {4297, 35611}, {5010, 35800}, {5059, 42268}, {5073, 6497}, {5412, 35503}, {5413, 35491}, {6361, 35811}, {6395, 43338}, {6409, 13903}, {6411, 35812}, {6419, 44245}, {6420, 42260}, {6422, 44541}, {6429, 42525}, {6430, 18510}, {6433, 31487}, {6434, 13961}, {6449, 15695}, {6450, 42263}, {6452, 17800}, {6453, 42216}, {6454, 6561}, {6456, 15681}, {6478, 42418}, {6481, 7584}, {6484, 32787}, {6487, 13966}, {6496, 13846}, {7280, 35802}, {8976, 14093}, {9541, 35771}, {9680, 23267}, {10295, 11474}, {10299, 12818}, {10898, 44246}, {11001, 22615}, {11514, 44240}, {12100, 42582}, {12124, 35944}, {12375, 38723}, {12376, 16111}, {14689, 35829}, {15022, 42601}, {15055, 35834}, {15326, 35809}, {15338, 35769}, {15690, 35770}, {15691, 32788}, {15692, 23253}, {15697, 43511}, {15698, 43558}, {15709, 43503}, {15710, 42602}, {15712, 42273}, {15715, 43515}, {15717, 42277}, {15722, 42576}, {16163, 35827}, {18481, 35843}, {19708, 31412}, {21734, 23249}, {24466, 35857}, {31663, 35788}, {31730, 35642}, {32785, 43336}, {32786, 49138}, {32789, 44682}, {33703, 42274}, {34091, 43255}, {34200, 43209}, {34782, 35865}, {35256, 42271}, {35824, 38742}, {35825, 38738}, {35826, 38788}, {35841, 48881}, {35856, 38754}, {35878, 38731}, {35879, 38749}, {35883, 38761}, {35947, 40275}, {42171, 43464}, {42173, 43463}, {42226, 46853}, {42232, 43770}, {42234, 43769}, {42413, 43510}, {42523, 43257}, {42569, 45385}, {43340, 43879}

X(51910) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 42264, 10576}, {3, 42267, 6564}, {20, 6396, 35821}, {20, 13935, 42275}, {376, 42261, 371}, {548, 42259, 6200}, {631, 42276, 35786}, {1152, 3534, 42266}, {1152, 42266, 35823}, {1657, 6410, 6565}, {3524, 42414, 42269}, {5073, 6497, 8252}, {6396, 35821, 35813}, {6452, 17800, 42262}, {6456, 15681, 23261}, {6561, 42637, 6454}, {10304, 43407, 5418}, {17538, 42637, 6561}


X(51911) = X(3)X(3367)∩X(5)X(43313)

Barycentrics    9*a^4 - 7*a^2*b^2 - 2*b^4 - 7*a^2*c^2 + 4*b^2*c^2 - 2*c^4 - 2*a^2*S : :
X(51911) = 3 X[10576] - 2 X[35786], 5 X[10576] - 4 X[42273], 5 X[35786] - 6 X[42273]

X(51911) lies on the cubic K1202 and these lines: {3, 3367}, {5, 43313}, {6, 15696}, {20, 485}, {30, 10576}, {371, 550}, {372, 376}, {382, 6411}, {486, 3528}, {548, 6396}, {549, 42271}, {590, 15704}, {615, 33923}, {631, 35787}, {1132, 5420}, {1151, 3534}, {1327, 46333}, {1350, 39893}, {1587, 9543}, {1588, 43884}, {1657, 6409}, {2041, 42106}, {2042, 42103}, {3068, 6484}, {3070, 12103}, {3071, 8703}, {3311, 15689}, {3312, 43338}, {3317, 21735}, {3522, 6561}, {3523, 22615}, {3524, 42268}, {3529, 5418}, {3530, 42283}, {3850, 43786}, {3853, 32789}, {4297, 35610}, {5010, 35801}, {5059, 42269}, {5073, 6496}, {5412, 35491}, {5413, 35503}, {6199, 43339}, {6361, 35810}, {6410, 13961}, {6412, 35813}, {6419, 9541}, {6420, 44245}, {6421, 44541}, {6429, 18512}, {6430, 42524}, {6433, 13903}, {6449, 8960}, {6450, 15695}, {6451, 17800}, {6453, 6560}, {6454, 42215}, {6455, 15681}, {6460, 9681}, {6468, 31487}, {6479, 42417}, {6480, 7583}, {6485, 32788}, {6486, 8981}, {6497, 13847}, {7280, 35803}, {9682, 33524}, {10295, 11473}, {10299, 12819}, {10897, 44246}, {11001, 22644}, {11513, 44240}, {12100, 42583}, {12123, 35945}, {12375, 16111}, {12376, 38723}, {13951, 14093}, {14689, 35828}, {15022, 42600}, {15055, 35835}, {15326, 35808}, {15338, 35768}, {15690, 35771}, {15691, 32787}, {15692, 23263}, {15697, 43512}, {15698, 43559}, {15709, 43504}, {15710, 42603}, {15712, 42270}, {15715, 43516}, {15717, 42274}, {15722, 42577}, {16163, 35826}, {18481, 35842}, {19708, 42561}, {21734, 23259}, {24466, 35856}, {31454, 42226}, {31663, 35789}, {31730, 35641}, {32785, 49138}, {32786, 43337}, {32790, 44682}, {33703, 42277}, {34089, 43254}, {34200, 43210}, {34782, 35864}, {35255, 42272}, {35733, 42430}, {35824, 38738}, {35825, 38742}, {35827, 38788}, {35840, 48881}, {35857, 38754}, {35878, 38749}, {35879, 38731}, {35882, 38761}, {35946, 40274}, {42172, 43464}, {42174, 43463}, {42225, 46853}, {42231, 43770}, {42233, 43769}, {42414, 43509}, {42522, 43256}, {42568, 45384}, {43341, 43880}

X(51911) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 42263, 10577}, {3, 42266, 6565}, {20, 6200, 35820}, {20, 9540, 42276}, {376, 42260, 372}, {548, 42258, 6396}, {631, 42275, 35787}, {1151, 3534, 42267}, {1151, 42267, 35822}, {1657, 6409, 6564}, {3524, 42413, 42268}, {5073, 6496, 8253}, {6200, 35820, 35812}, {6449, 42264, 8960}, {6451, 17800, 42265}, {6455, 15681, 23251}, {6560, 42638, 6453}, {9541, 42261, 6419}, {9541, 50693, 42261}, {10304, 43408, 5420}, {17538, 42638, 6560}


X(51912) = X(1)X(1581)∩X(31)X(799)

Barycentrics    a*(a^2 - b*c)*(a^2 + b*c)*(a^2*b^4 - b^4*c^2 + a^2*c^4 - b^2*c^4) : :

X(51912) lies on the cubic K989 and these lines: {1, 1581}, {31, 799}, {38, 23491}, {171, 8290}, {238, 385}, {1926, 1966}, {2309, 8299}, {3708, 21336}, {3720, 38346}, {4094, 39915}, {4117, 17469}, {17470, 20591}, {17752, 38382}, {18671, 23478}, {20356, 21334}, {20362, 20363}, {21001, 25853}

X(51912) = X(31)-Ceva conjugate of X(2236)
X(51912) = X(i)-isoconjugate of X(j) for these (i,j): {694, 3225}, {699, 1916}, {1581, 43761}, {8858, 17980}, {32544, 41517}
X(51912) = X(i)-Dao conjugate of X(j) for these (i, j): (2086, 661), (3229, 75), (19576, 43761), (35540, 561), (39031, 699), (39043, 3225), (39080, 1581)
X(51912) = crosspoint of X(1) and X(1966)
X(51912) = crosssum of X(1) and X(1967)
X(51912) = X(1)-line conjugate of X(1581)
X(51912) = X(51912) = barycentric product X(i)*X(j) for these {i,j}: {1, 39080}, {75, 51322}, {385, 2227}, {698, 1580}, {1926, 32748}, {1933, 35524}, {1966, 3229}
barycentric quotient X(i)/X(j) for these {i,j}: {698, 1934}, {1580, 3225}, {1691, 43761}, {1933, 699}, {2227, 1916}, {3229, 1581}, {32748, 1967}, {39080, 75}, {41337, 37134}, {51322, 1}


X(51913) = X(1)X(9285)∩X(19)X(27)

Barycentrics    a*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^2*b^2 + a^2*c^2 - b^2*c^2) : :

X(51913) lies on the cubic K432 and these lines: {1, 9285}, {6, 2201}, {19, 27}, {25, 2053}, {38, 46507}, {162, 43761}, {204, 9258}, {1096, 1967}, {1430, 3162}, {1580, 1957}, {3186, 7075}, {5247, 37101}, {8020, 37652}, {11325, 21877}, {15310, 23143}

X(51913) = polar conjugate of X(18832)
X(51913) = polar conjugate of the isotomic conjugate of X(1740)
X(51913) = X(i)-Ceva conjugate of X(j) for these (i,j): {1957, 204}, {1973, 19}
X(51913) = X(i)-isoconjugate of X(j) for these (i,j): {2, 3504}, {3, 2998}, {6, 43714}, {48, 18832}, {63, 3223}, {69, 3224}, {76, 15389}, {184, 40162}, {304, 34248}, {647, 3222}, {1176, 42551}, {6391, 47733}, {36214, 39927}
X(51913) = X(i)-Dao conjugate of X(j) for these (i, j): (9, 43714), (76, 40364), (1249, 18832), (3162, 3223), (32664, 3504), (32746, 304), (36103, 2998), (39052, 3222)
X(51913) = crosssum of X(3) and X(23143)
X(51913) = crossdifference of every pair of points on line {810, 25098}
X(51913) = barycentric product X(i)*X(j) for these {i,j}: {1, 3186}, {4, 1740}, {19, 194}, {25, 17149}, {27, 21877}, {28, 21080}, {33, 17082}, {75, 11325}, {92, 1613}, {108, 25128}, {112, 20910}, {158, 20794}, {162, 23301}, {278, 7075}, {281, 1424}, {811, 3221}, {823, 2524}, {1474, 22028}, {1783, 21191}, {1897, 50516}, {1928, 41293}, {1973, 6374}, {1974, 18837}, {5379, 21144}, {6331, 23503}, {6335, 23572}, {8750, 23807}, {20883, 38834}, {36120, 51427}
X(51913) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 43714}, {4, 18832}, {19, 2998}, {25, 3223}, {31, 3504}, {92, 40162}, {162, 3222}, {194, 304}, {560, 15389}, {1424, 348}, {1613, 63}, {1740, 69}, {1973, 3224}, {1974, 34248}, {2524, 24018}, {3186, 75}, {3221, 656}, {6374, 40364}, {7075, 345}, {9491, 810}, {11325, 1}, {17082, 7182}, {17149, 305}, {17442, 42551}, {18837, 40050}, {20794, 326}, {20910, 3267}, {21080, 20336}, {21191, 15413}, {21877, 306}, {22028, 40071}, {23301, 14208}, {23503, 647}, {23572, 905}, {25128, 35518}, {38834, 34055}, {41293, 560}, {50516, 4025}


X(51914) = X(1)X(18270)∩X(6)X(19579)

Barycentrics    b*c*(-(a^6*b^6) + 2*a^8*b^2*c^2 - a^4*b^4*c^4 - a^6*c^6 + b^6*c^6) : :

X(51914) lies on the cubic K432 and these lines: {1, 18270}, {6, 19579}, {31, 799}, {75, 1967}, {183, 2053}, {1580, 18271}, {1755, 1966}, {1910, 18832}, {1965, 39337}, {5989, 16364}

X(51914) = X(1580)-Ceva conjugate of X(75)
X(51914) = X(18896)-Dao conjugate of X(1934)
X(51914) = barycentric product X(1966)*X(39935)
X(51914) = barycentric quotient X(39935)/X(1581)
X(51914) = {X(19579),X(39933)}-harmonic conjugate of X(6)


X(51915) = X(3)X(5349)∩X(6)X(10304)

Barycentrics    5*(11*a^4 - 10*a^2*b^2 - b^4 - 10*a^2*c^2 + 2*b^2*c^2 - c^4) - 2*Sqrt[3]*a^2*S : :

X(51915) lies on the cubic K1202 and these lines: {3, 5349}, {6, 10304}, {13, 8703}, {16, 46332}, {140, 43400}, {376, 42098}, {395, 34200}, {396, 3528}, {548, 5350}, {3522, 42166}, {5237, 43233}, {5238, 33923}, {5321, 15759}, {10645, 41982}, {10653, 14093}, {11480, 43304}, {11543, 42505}, {12100, 42108}, {14891, 43402}, {15686, 43399}, {15688, 23302}, {15690, 42500}, {15692, 42107}, {15696, 43104}, {15697, 42110}, {15704, 42596}, {15706, 42101}, {15710, 23303}, {15711, 43101}, {16241, 42900}, {16242, 45759}, {19708, 33605}, {19711, 42430}, {21734, 42626}, {21735, 42147}, {22238, 42927}, {35418, 42693}, {36968, 42687}, {41944, 43335}, {41981, 42429}, {42087, 42956}, {42136, 43204}, {42434, 42778}, {42491, 43557}, {42509, 49812}, {42513, 42970}, {42520, 42791}, {42625, 49813}, {42794, 42974}, {42912, 43302}, {42913, 42934}, {43372, 43416}, {43428, 43481}


X(51916) = X(3)X(5350)∩X(6)X(10304)

Barycentrics    5*(11*a^4 - 10*a^2*b^2 - b^4 - 10*a^2*c^2 + 2*b^2*c^2 - c^4) + 2*Sqrt[3]*a^2*S : :

X(51916) lies on the cubic K1202 and these lines: {3, 5350}, {6, 10304}, {14, 8703}, {15, 46332}, {140, 43399}, {376, 42095}, {395, 3528}, {396, 34200}, {548, 5349}, {3522, 42163}, {5237, 33923}, {5238, 43232}, {5318, 15759}, {10646, 41982}, {10654, 14093}, {11481, 43305}, {11542, 42504}, {12100, 42109}, {14891, 43401}, {15686, 43400}, {15688, 23303}, {15690, 42501}, {15692, 42110}, {15696, 43101}, {15697, 42107}, {15704, 42597}, {15706, 42102}, {15710, 23302}, {15711, 43104}, {16241, 45759}, {16242, 42901}, {19708, 33604}, {19711, 42429}, {21734, 42625}, {21735, 42148}, {22236, 42926}, {35418, 42692}, {36967, 42686}, {41943, 43334}, {41981, 42430}, {42088, 42957}, {42137, 43203}, {42433, 42777}, {42490, 43556}, {42508, 49813}, {42512, 42971}, {42521, 42792}, {42626, 49812}, {42793, 42975}, {42912, 42935}, {42913, 43303}, {43373, 43417}, {43429, 43482}


X(51917) = X(10)X(82)∩X(31)X(17743)

Barycentrics    a*(a^2 + b*c)*(a^2*b^2 + a^2*b*c - a*b^2*c + a^2*c^2 - a*b*c^2 + b^2*c^2) : :

X(51917) lies on the cubic K989 and these lines: {10, 82}, {31, 17743}, {43, 32468}, {100, 904}, {171, 172}, {213, 19580}, {1376, 2176}, {1740, 3499}, {2053, 37540}, {2236, 17741}, {2274, 12782}, {6647, 7188}, {8299, 37588}, {14133, 37570}, {17752, 38382}

X(51917) = X(17743)-Ceva conjugate of X(2329)
X(51917) = X(i)-isoconjugate of X(j) for these (i,j): {694, 39937}, {893, 39746}, {1178, 43687}, {1432, 3495}
X(51917) = X(i)-Dao conjugate of X(j) for these (i, j): (39043, 39937), (40597, 39746)
X(51917) = barycentric product X(i)*X(j) for these {i,j}: {1, 39929}, {75, 51323}, {171, 26752}, {3503, 7081}
X(51917) = barycentric quotient X(i)/X(j) for these {i,j}: {171, 39746}, {1580, 39937}, {2295, 43687}, {2330, 3495}, {3503, 7249}, {26752, 7018}, {39929, 75}, {51323, 1}


X(51918) = X(3)X(729)∩X(6)X(37338)

Barycentrics    a^4*(a^2*b^2 + 3*b^4 - 2*a^2*c^2 + b^2*c^2)*(2*a^2*b^2 - a^2*c^2 - b^2*c^2 - 3*c^4) : :

X(51918) lies on the cubic K297 and these lines: {3, 729}, {6, 37338}, {39, 33705}, {83, 1975}, {183, 3225}, {956, 27810}, {1974, 33875}, {2207, 46522}, {3114, 11174}, {3224, 5013}, {5023, 36615}, {5041, 10014}, {6531, 36822}, {32748, 46319}, {42346, 43136}

X(51918) = X(i)-isoconjugate of X(j) for these (i,j): {75, 14614}, {561, 41412}, {799, 32472}, {3112, 41622}
X(51918) = X(i)-Dao conjugate of X(j) for these (i, j): (206, 14614), (34452, 41622), (38996, 32472), (40368, 41412)
X(51918) = barycentric product X(512)*X(39639)
X(51918) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 14614}, {669, 32472}, {1501, 41412}, {3051, 41622}, {39639, 670}


X(51919) = X(1)X(40736)∩X(6)X(19579)

Barycentrics    a^2*(a^3*b^3 + a^2*b^2*c^2 - a^3*c^3 - b^3*c^3)*(a^3*b^3 - a^2*b^2*c^2 - a^3*c^3 + b^3*c^3) : :

X(51919) lies on the cubics K432 and K673 and these lines: {1, 40736}, {6, 19579}, {43, 7075}, {256, 16360}, {291, 16361}, {560, 30634}, {1403, 1613}, {1580, 1922}, {2053, 3224}, {2176, 18756}, {3499, 3502}, {4598, 40418}, {7104, 8300}, {17475, 33296}

X(51919) = isogonal conjugate of X(19565)
X(51919) = isotomic conjugate of X(18275)
X(51919) = isogonal conjugate of the anticomplement of X(1921)
X(51919) = X(i)-cross conjugate of X(j) for these (i,j): {239, 6}, {1967, 8852}
X(51919) = X(i)-isoconjugate of X(j) for these (i,j): {1, 19565}, {2, 3510}, {6, 19567}, {31, 18275}, {75, 18278}, {92, 23186}, {171, 40849}, {291, 19579}, {292, 19581}, {334, 18274}, {335, 19580}, {726, 40755}, {1911, 18277}, {4645, 8875}, {18895, 30634}
X(51919) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 18275), (3, 19565), (9, 19567), (206, 18278), (6651, 18277), (19557, 19581), (22391, 23186), (32664, 3510), (39029, 19579)
X(51919) = cevapoint of X(8632) and X(21762)
X(51919) = crosssum of X(i) and X(j) for these (i,j): {18278, 23186}, {30661, 30667}
X(51919) = trilinear pole of line {2309, 8630}
X(51919) = barycentric product X(i)*X(j) for these {i,j}: {1, 7168}, {238, 24576}, {893, 39933}, {2210, 30633}, {3512, 8868}, {20332, 40782}
X(51919) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 19567}, {2, 18275}, {6, 19565}, {31, 3510}, {32, 18278}, {184, 23186}, {238, 19581}, {239, 18277}, {893, 40849}, {1914, 19579}, {2210, 19580}, {7168, 75}, {8868, 17789}, {14599, 18274}, {18892, 30634}, {24576, 334}, {30633, 44172}, {34077, 40755}, {39933, 1920}


X(51920) = X(1)X(40736)∩X(31)X(19580)

Barycentrics    a*(a^2 + b*c)*(a^3*b^3 + a^2*b^2*c^2 - a^3*c^3 - b^3*c^3)*(a^3*b^3 - a^2*b^2*c^2 - a^3*c^3 + b^3*c^3) : :

X(51928) lies on the cubics K155 and K989 and these lines: {1, 40736}, {31, 19580}, {171, 18270}, {238, 9468}, {1423, 1740}, {2106, 3009}, {2108, 8868}, {2144, 41534}, {3225, 34252}, {17752, 38382}, {51322, 51323}

X(51920) = X(i)-cross conjugate of X(j) for these (i,j): {292, 41534}, {1966, 171}
X(51920) = X(i)-isoconjugate of X(j) for these (i,j): {6, 40849}, {256, 3510}, {257, 18278}, {694, 19579}, {893, 19565}, {904, 19567}, {1581, 19580}, {1916, 18274}, {1934, 30634}, {1967, 19581}, {7104, 18275}, {8875, 40873}, {9468, 18277}
X(51920) = X(i)-Dao conjugate of X(j) for these (i, j): (9, 40849), (8290, 19581), (19576, 19580), (39031, 18274), (39043, 19579), (39044, 18277), (40597, 19565)
X(51920) = barycentric product X(i)*X(j) for these {i,j}: {1, 39933}, {385, 24576}, {894, 7168}, {1691, 30633}, {7061, 8868}
X(51920) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 40849}, {171, 19565}, {172, 3510}, {385, 19581}, {894, 19567}, {1580, 19579}, {1691, 19580}, {1909, 18275}, {1933, 18274}, {1966, 18277}, {7122, 18278}, {7168, 257}, {14602, 30634}, {24576, 1916}, {30633, 18896}, {39933, 75}


X(51921) = X(1)X(6)∩X(31)X(19586)

Barycentrics    a^2*(a^3*b - a^2*b^2 + a*b^3 + a^3*c - a^2*b*c + a*b^2*c - b^3*c - a^2*c^2 + a*b*c^2 - b^2*c^2 + a*c^3 - b*c^3) : :

X(51921) lies on the cubic K432 and these lines: {1, 6}, {31, 19586}, {75, 17741}, {101, 1691}, {190, 698}, {560, 2053}, {595, 12212}, {660, 18278}, {726, 24294}, {732, 40859}, {872, 904}, {995, 13331}, {1580, 41531}, {1611, 38876}, {1755, 2076}, {2295, 4645}, {3094, 3730}, {3747, 7077}, {3774, 18755}, {3780, 49707}, {3943, 15990}, {3997, 17770}, {4136, 49693}, {4544, 17765}, {5017, 14974}, {5103, 41324}, {5116, 21008}, {12329, 23863}, {17750, 49676}, {17798, 46286}, {18047, 19565}, {20072, 28369}, {20995, 21780}, {21791, 37998}, {32449, 34063}

X(51921) = isogonal conjugate of the isotomic conjugate of X(33889)
X(51921) = X(41531)-Ceva conjugate of X(34247)
X(51921) = X(2)-isoconjugate of X(7166)
X(51921) = X(32664)-Dao conjugate of X(7166)
X(51921) = crosspoint of X(1016) and X(8684)
X(51921) = crosssum of X(i) and X(j) for these (i,j): {812, 21138}, {1015, 3808}
X(51921) = crossdifference of every pair of points on line {513, 17235}
X(51921) = barycentric product X(i)*X(j) for these {i,j}: {1, 3507}, {6, 33889}
X(51921) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 7166}, {3507, 75}, {33889, 76}


X(51922) = X(6)X(513)∩X(44)X(294)

Barycentrics    a*(a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(2*a^3 - 2*a^2*b + a*b^2 - b^3 - 2*a^2*c + b^2*c + a*c^2 + b*c^2 - c^3) : :

X(51922) lies on the cubic K1050 and these lines: {6, 513}, {44, 294}, {105, 910}, {528, 35113}, {536, 666}, {1100, 40754}, {1438, 7113}, {1462, 6610}, {2161, 2195}, {3834, 31637}, {4864, 9453}, {6687, 31638}, {7297, 18785}, {8751, 14571}, {14578, 32644}

X(51922) = X(i)-isoconjugate of X(j) for these (i,j): {518, 37131}, {672, 18821}, {840, 3912}, {34230, 46791}
X(51922) = X(35113)-Dao conjugate of X(3263)
X(51922) = crosssum of X(518) and X(1642)
X(51922) = crossdifference of every pair of points on line {518, 3126}
X(51922) = barycentric product X(i)*X(j) for these {i,j}: {105, 528}, {294, 5723}, {666, 1643}, {673, 2246}, {1642, 6185}, {42722, 43929}
X(51922) = barycentric quotient X(i)/X(j) for these {i,j}: {105, 18821}, {528, 3263}, {1438, 37131}, {1642, 4437}, {1643, 918}, {2246, 3912}, {5723, 40704}
X(51922) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {294, 36086, 44}, {1462, 36146, 6610}


X(51923) = X(1)X(659)∩X(44)X(190)

Barycentrics    a*(a*b + a*c - 2*b*c)*(a^2*b + a*b^2 - 2*a^2*c - 2*b^2*c + a*c^2 + b*c^2)*(2*a^2*b - a*b^2 - a^2*c - b^2*c - a*c^2 + 2*b*c^2) : :

X(51923) lies on the cubic K137 and these lines: {1, 659}, {44, 190}, {88, 292}, {2382, 29351}, {3768, 46782}, {4465, 13466}, {16507, 37129}, {23343, 42083}, {24407, 47070}, {27921, 46801}, {30579, 30667}, {39044, 41314}

X(51923) = X(i)-isoconjugate of X(j) for these (i,j): {537, 739}, {667, 46780}, {20331, 37129}, {34075, 36848}
X(51923) = X(i)-Dao conjugate of X(j) for these (i, j): (6631, 46780), (39011, 36848), (40614, 537)
X(51923) = trilinear pole of line {899, 14434}
X(51923) = barycentric product X(i)*X(j) for these {i,j}: {190, 46782}, {899, 18822}, {2382, 6381}
X(51923) = barycentric quotient X(i)/X(j) for these {i,j}: {190, 46780}, {891, 36848}, {899, 537}, {2382, 37129}, {3230, 20331}, {18822, 31002}, {46782, 514}


X(51924) = X(13)X(382)∩X(14)X(13951)

Barycentrics    a^4 + a^2*b^2 - 2*b^4 + a^2*c^2 + 4*b^2*c^2 - 2*c^4 - 6*a^2*S + 2*Sqrt[3]*a^2*(a^2 - b^2 - c^2 + S) : :

X(51924) lies on the cubic K1202 and these lines: {13, 382}, {14, 13951}, {15, 42206}, {30, 36449}, {61, 42278}, {371, 49947}, {372, 42154}, {381, 3366}, {396, 485}, {615, 42172}, {1152, 3534}, {1328, 42239}, {2041, 37640}, {2043, 3069}, {2044, 43408}, {3053, 49209}, {3070, 36466}, {3365, 13847}, {6301, 15294}, {6561, 42088}, {6564, 42817}, {6565, 42126}, {8976, 49905}, {10576, 43544}, {10577, 49908}, {10654, 42229}, {13665, 42176}, {13785, 42130}, {18585, 35255}, {18586, 42085}, {22615, 36448}, {23253, 49813}, {23261, 46335}, {35731, 36836}, {35820, 41101}, {35821, 36967}, {36453, 42265}, {42095, 42204}, {42232, 42975}, {42279, 43194}


X(51925) = X(13)X(8976)∩X(14)X(382)

Barycentrics    a^4 + a^2*b^2 - 2*b^4 + a^2*c^2 + 4*b^2*c^2 - 2*c^4 + 2*Sqrt[3]*a^2*(a^2 - b^2 - c^2 - S) + 6*a^2*S : :

X(51925) lies on the cubic K1202 and these lines: {13, 8976}, {14, 382}, {16, 42203}, {30, 36450}, {62, 42278}, {371, 42155}, {372, 49948}, {381, 3392}, {395, 486}, {590, 42173}, {1151, 3534}, {1327, 35740}, {2041, 37641}, {2043, 3068}, {2044, 43407}, {3053, 49210}, {3071, 36466}, {3389, 13846}, {6304, 15293}, {6560, 42087}, {6564, 42127}, {6565, 42818}, {8960, 16965}, {10576, 49907}, {10577, 43545}, {10653, 42228}, {13665, 42131}, {13785, 42177}, {13951, 49906}, {18585, 35256}, {18586, 42086}, {22644, 36448}, {23251, 46334}, {23263, 49812}, {31487, 42233}, {35739, 36470}, {35820, 36968}, {35821, 41100}, {36452, 42262}, {42098, 42205}, {42279, 43193}


X(51926) = X(2)X(523)∩X(25)X(17983)

Barycentrics    (a^2 + b^2 - 2*c^2)*(a^2 - 2*b^2 + c^2)*(4*a^6 - a^4*b^2 - a^2*b^4 - 2*b^6 - a^4*c^2 + 2*b^4*c^2 - a^2*c^4 + 2*b^2*c^4 - 2*c^6) : :

X(51926) lies on the cubic K395 and these lines: {2, 523}, {25, 17983}, {381, 14246}, {671, 3830}, {691, 3534}, {892, 7788}, {895, 8877}, {3845, 51258}, {5309, 14263}, {7837, 31125}, {9154, 40820}, {9766, 11058}, {11648, 17964}, {14609, 39593}, {15398, 47597}, {21460, 51185}, {41404, 44526}

X(51926) = X(896)-isoconjugate of X(14388)
X(51926) = X(15899)-Dao conjugate of X(14388)
X(51926) = barycentric product X(i)*X(j) for these {i,j}: {671, 11645}, {30786, 41358}
X(51926) = barycentric quotient X(i)/X(j) for these {i,j}: {111, 14388}, {11645, 524}, {41358, 468}
X(51926) = {X(9214),X(16092)}-harmonic conjugate of X(5968)


X(51927) = X(3)X(843)∩X(6)X(9145)

Barycentrics    a^2*(2*a^2 - b^2 - c^2)*(a^4 - a^2*b^2 + 4*b^4 - 4*a^2*c^2 - b^2*c^2 + c^4)*(a^4 - 4*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + 4*c^4) : :

X(51927) lies on the cubic K297 and these lines: {3, 843}, {6, 9145}, {99, 598}, {183, 35146}, {249, 1384}, {512, 574}, {524, 47047}, {3815, 35606}, {5024, 5968}, {5210, 9217}, {33962, 34241}

X(51927) = X(i)-isoconjugate of X(j) for these (i,j): {897, 22329}, {2030, 46277}, {2793, 36085}, {23894, 34245}
X(51927) = X(i)-Dao conjugate of X(j) for these (i, j): (6593, 22329), (38988, 2793)
X(51927) = crosssum of X(18800) and X(22329)
X(51927) = crossdifference of every pair of points on line {2793, 22329}
X(51927) = barycentric product X(i)*X(j) for these {i,j}: {187, 5503}, {351, 46144}, {690, 2709}, {5467, 34246}
X(51927) = barycentric quotient X(i)/X(j) for these {i,j}: {187, 22329}, {351, 2793}, {2434, 17937}, {2709, 892}, {5467, 34245}, {5503, 18023}, {14567, 2030}, {39689, 18800}


X(51928) = X(6)X(31)∩X(75)X(183)

Barycentrics    a^2*(a^3*b^2 - a^2*b^3 + a^3*b*c - a^2*b^2*c + a*b^3*c + a^3*c^2 - a^2*b*c^2 + a*b^2*c^2 - b^3*c^2 - a^2*c^3 + a*b*c^3 - b^2*c^3) : :

X(51928) lies on the cubic K432 and these lines: {3, 11364}, {6, 31}, {75, 183}, {100, 385}, {187, 8671}, {190, 8844}, {220, 23863}, {692, 9418}, {872, 893}, {1001, 11174}, {1045, 37619}, {1575, 2110}, {1580, 18265}, {1621, 3329}, {1755, 7077}, {1910, 17798}, {1919, 23865}, {2053, 46319}, {2223, 19589}, {2329, 18758}, {3207, 20996}, {3507, 3511}, {3744, 18170}, {3749, 18194}, {4259, 12837}, {4413, 15271}, {4421, 14614}, {7754, 12338}, {8299, 37686}, {8852, 20872}, {9301, 35000}, {9318, 24326}, {9755, 22556}, {11490, 30435}, {11500, 39646}, {12188, 18524}, {16693, 20331}, {18278, 51326}

X(51928) = X(18265)-Ceva conjugate of X(34247)
X(51928) = X(i)-isoconjugate of X(j) for these (i,j): {2, 7167}, {81, 43686}
X(51928) = X(i)-Dao conjugate of X(j) for these (i, j): (32664, 7167), (40586, 43686)
X(51928) = crosspoint of X(i) and X(j) for these (i,j): {813, 4998}, {1252, 8684}
X(51928) = crosssum of X(i) and X(j) for these (i,j): {812, 3271}, {1086, 3808}
X(51928) = barycentric product X(i)*X(j) for these {i,j}: {1, 3508}, {7077, 39940}
X(51928) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 7167}, {42, 43686}, {3508, 75}, {39940, 18033}


X(51929) = X(1)X(514)∩X(44)X(673)

Barycentrics    (a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(a^3*b - a^2*b^2 + a^3*c - 2*a^2*b*c + a*b^2*c - b^3*c - a^2*c^2 + a*b*c^2 + 2*b^2*c^2 - b*c^3) : :

X(520) lies on the cubic K137 and these lines: {1, 514}, {44, 673}, {190, 46798}, {239, 294}, {241, 292}, {672, 3008}, {3685, 33674}, {5088, 34906}, {6559, 34852}, {13576, 49772}, {16830, 40724}, {19624, 36086}, {34085, 40862}

X(51929) = X(2223)-isoconjugate of X(35167)
X(51929) = X(35120)-Dao conjugate of X(3912)
X(51929) = X(3008)-lineconjugate of X(672)
X(51929) = barycentric quotient X(673)/X(35167)
X(51929) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {666, 2481, 239}, {666, 6185, 294}


X(51930) = X(1)X(1581)∩X(3)X(2053)

Barycentrics    a*(a^6*b^2 - a^4*b^4 - a^2*b^6 + a^6*c^2 + a^4*b^2*c^2 - a^2*b^4*c^2 + b^6*c^2 - a^4*c^4 - a^2*b^2*c^4 + b^4*c^4 - a^2*c^6 + b^2*c^6) : :

X(51930) lies on Feuerbach circumhyperbola of the tangential triangle, the cubic K432, and these lines: {1, 1581}, {3, 2053}, {6, 7166}, {75, 2640}, {560, 662}, {610, 16571}, {1575, 9509}, {1580, 2227}, {1755, 16559}, {2234, 39339}, {3216, 18754}, {3499, 3502}, {3507, 3511}, {8925, 23605}, {13174, 35916}, {17596, 24578}, {23080, 37580}, {23177, 37576}, {36292, 39337}

X(51930) = X(i)-Ceva conjugate of X(j) for these (i,j): {1580, 1}, {2227, 1740}
X(51930) = X(1916)-Dao conjugate of X(1934)
X(51930) = barycentric product X(1)*X(8782)
X(51930) = barycentric quotient X(8782)/X(75)


X(51931) = X(1)X(3511)∩X(6)X(1967)

Barycentrics    a^2*(a^6*b^3 - a^3*b^6 - a^4*b^4*c + a^5*b^2*c^2 - a^2*b^5*c^2 + a^6*c^3 + b^6*c^3 - a^4*b*c^4 + a*b^4*c^4 - a^2*b^2*c^5 - a^3*c^6 + b^3*c^6) : :

X(51931) lies on the cubic K432 and these lines: {1, 3511}, {6, 1967}, {31, 19561}, {55, 4094}, {75, 1281}, {238, 20677}, {560, 30634}, {1403, 37137}, {1755, 41532}, {1910, 2053}, {2110, 3185}, {2176, 23861}, {3556, 23863}, {4027, 30670}, {20994, 21004}

X(51931) = X(1580)-Ceva conjugate of X(6)
X(51931) = X(291)-isoconjugate of X(16364)
X(51931) = X(i)-Dao conjugate of X(j) for these (i, j): (1581, 1934), (39029, 16364)
X(51931) = barycentric quotient X(1914)/X(16364)
X(51931) = {X(8301),X(8424)}-harmonic conjugate of X(5989)


X(51932) = X(2)X(99)∩X(32X(5969)

Barycentrics    3*a^8 - a^6*b^2 + a^4*b^4 - 4*a^2*b^6 - a^6*c^2 + a^4*b^2*c^2 - 2*a^2*b^4*c^2 + 2*b^6*c^2 + a^4*c^4 - 2*a^2*b^2*c^4 + 4*b^4*c^4 - 4*a^2*c^6 + 2*b^2*c^6 : :

X(51932) lies on the cubic K728 and these lines: {2, 99}, {32, 5969}, {538, 5162}, {542, 30270}, {2936, 6660}, {3098, 14830}, {3407, 7757}, {3455, 46546}, {3506, 5118}, {5182, 7772}, {5206, 31981}, {5939, 17131}, {7781, 11152}, {7782, 8150}, {7798, 8289}, {7883, 9878}, {8177, 8588}, {8724, 9737}, {11645, 35002}, {12188, 14711}, {13188, 18860}, {33705, 34013}

X(51932) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {99, 9888, 2482}, {99, 14931, 3734}, {2482, 9888, 574}


X(51933) = X(3)X(33556)∩X(4)X(9820)

Barycentrics    a^2*(9*a^8 - 24*a^6*b^2 + 18*a^4*b^4 - 3*b^8 - 24*a^6*c^2 + 28*a^4*b^2*c^2 - 12*a^2*b^4*c^2 + 8*b^6*c^2 + 18*a^4*c^4 - 12*a^2*b^2*c^4 - 10*b^4*c^4 + 8*b^2*c^6 - 3*c^8) : :
X(51933) = 3 X[3] - X[43719], 6 X[33556] - X[43719], X[4] + 3 X[25712]

X(51933) lies on the cubic K855 and these lines: {3, 33556}, {4, 9820}, {5, 14528}, {24, 15801}, {26, 9970}, {30, 44788}, {110, 12163}, {140, 1352}, {154, 550}, {155, 3515}, {156, 22955}, {382, 7666}, {399, 11999}, {575, 6642}, {1147, 1351}, {1181, 10937}, {1498, 1511}, {1656, 6288}, {1657, 7728}, {1993, 47486}, {3098, 10282}, {3516, 10539}, {3522, 35254}, {3523, 9707}, {3532, 5663}, {3576, 5887}, {3796, 15720}, {3850, 11425}, {3851, 35259}, {5056, 37506}, {5462, 38263}, {5944, 17811}, {6800, 10299}, {8780, 12038}, {9936, 37935}, {11413, 15034}, {11441, 17506}, {11449, 15062}, {12118, 44960}, {12174, 43898}, {14530, 35237}, {15805, 43586}, {17814, 32171}, {17821, 32379}, {17834, 40111}, {23041, 34507}, {26882, 37483}, {35265, 49135}, {38726, 48672}

X(51933) = reflection of X(i) in X(j) for these {i,j}: {3, 33556}, {32533, 5}


X(51934) = X(1)X(18270)∩X(31)X(39337)

Barycentrics    a*(a^4*b^4 + a^4*b^2*c^2 + a^2*b^4*c^2 - a^4*c^4 - a^2*b^2*c^4 - b^4*c^4)*(a^4*b^4 - a^4*b^2*c^2 + a^2*b^4*c^2 - a^4*c^4 - a^2*b^2*c^4 + b^4*c^4) : :

X(51934) lies on the cubic K989 and these lines: {1, 18270}, {31, 39337}, {42, 19579}, {213, 19580}, {1740, 3402}, {1967, 2236}, {3112, 4117}, {3223, 3403}, {3495, 7346}, {3503, 6196}, {3508, 3510}, {7167, 7168}, {8927, 43738}, {39933, 39937}

X(51934) = X(1966)-cross conjugate of X(1)
X(51934) = X(i)-isoconjugate of X(j) for these (i,j): {6, 40858}, {511, 8870}, {694, 38382}, {1916, 51325}
X(51934) = X(i)-Dao conjugate of X(j) for these (i, j): (9, 40858), (39031, 51325), (39043, 38382)
X(51934) = trilinear pole of line {798, 17445}
X(51934) = barycentric product X(i)*X(j) for these {i,j}: {1, 39939}, {75, 51326}, {1821, 51249}
X(51934) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 40858}, {1580, 38382}, {1910, 8870}, {1933, 51325}, {39939, 75}, {51249, 1959}, {51326, 1}


X(51935) = X(1)X(8925)∩X(98)X(109)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^2 - b*c)*(a^3*b^2 - a^2*b^3 + a^3*b*c - a^2*b^2*c + a*b^3*c + a^3*c^2 - a^2*b*c^2 + a*b^2*c^2 - b^3*c^2 - a^2*c^3 + a*b*c^3 - b^2*c^3) : :

X(51935) lies on the cubic K989 and these lines: {1, 8925}, {98, 109}, {238, 1284}, {651, 1911}, {1403, 4383}, {1423, 1740}, {1431, 1581}, {1447, 2236}, {1966, 18033}, {6180, 21010}

X(51935) = X(i)-isoconjugate of X(j) for these (i,j): {2311, 43686}, {4876, 7167}, {8927, 43748}
X(51935) = barycentric product X(i)*X(j) for these {i,j}: {1, 39940}, {1447, 3508}
X(51935) = barycentric quotient X(i)/X(j) for these {i,j}: {1284, 43686}, {1428, 7167}, {3508, 4518}, {39940, 75}


X(51936) = X(6)X(64)∩X(25)X(34818)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6 - 3*a^6*c^2 + a^2*b^4*c^2 + 2*b^6*c^2 + 3*a^4*c^4 + a^2*b^2*c^4 - 4*b^4*c^4 - a^2*c^6 + 2*b^2*c^6) : :

X(51936) lies on the cubic K378 and these lines: {6, 64}, {25, 34818}, {32, 393}, {53, 428}, {112, 376}, {132, 41761}, {216, 7509}, {232, 1609}, {571, 1990}, {800, 8745}, {2165, 6103}, {2207, 8573}, {3003, 8746}, {3087, 13342}, {5065, 40138}, {5158, 35500}, {5301, 14571}, {5523, 34613}, {6748, 33872}, {7735, 36417}, {8778, 36748}, {8779, 17849}, {10316, 42459}, {10317, 34726}, {10979, 39575}, {14379, 18890}, {21767, 32674}, {34854, 40947}, {36751, 45141}, {42453, 43131}

X(51936) = polar conjugate of the isotomic conjugate of X(6759)
X(51936) = X(54)-Ceva conjugate of X(25)
X(51936) = X(i)-isoconjugate of X(j) for these (i,j): {63, 15318}, {75, 18890}, {304, 32319}, {656, 30441}, {14213, 14371}
X(51936) = X(i)-Dao conjugate of X(j) for these (i, j): (53, 311), (206, 18890), (3162, 15318), (40596, 30441)
X(51936) = crosspoint of X(112) and X(23590)
X(51936) = crossdifference of every pair of points on line {8057, 40494}
X(51936) = barycentric product X(i)*X(j) for these {i,j}: {4, 6759}, {25, 20477}, {54, 14363}, {648, 30442}
X(51936) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 15318}, {32, 18890}, {112, 30441}, {1974, 32319}, {6759, 69}, {14363, 311}, {20477, 305}, {30442, 525}
X(51936) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {53, 13345, 10311}, {112, 1249, 577}, {800, 14581, 8745}, {1033, 3172, 6}, {3172, 51509, 1968}, {16318, 17409, 10311}


X(51937) = X(3)X(112)∩X(6)X(520)

Barycentrics    a^2*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 + a^2*c^4 + b^2*c^4 - 2*c^6)*(a^6 + a^2*b^4 - 2*b^6 - a^4*c^2 + b^4*c^2 - a^2*c^4 + c^6) : :

X(51937) lies on the cubic K297 and these lines: {3, 112}, {6, 520}, {25, 32649}, {183, 35140}, {250, 15905}, {381, 47105}, {1597, 8431}, {2420, 51394}, {2693, 32687}, {3284, 23347}, {5020, 51343}, {5050, 15407}, {9818, 50464}, {11589, 14581}, {19153, 32738}, {40856, 43673}, {41392, 51254}

X(51937) = X(i)-isoconjugate of X(j) for these (i,j): {441, 36119}, {1494, 2312}, {1503, 2349}, {2159, 30737}, {8766, 16080}, {33805, 42671}, {43045, 44693}
X(51937) = X(i)-Dao conjugate of X(j) for these (i, j): (1511, 441), (3163, 30737), (38999, 39473)
X(51937) = crosssum of X(1503) and X(6793)
X(51937) = trilinear pole of line {1495, 1636}
X(51937) = barycentric product X(i)*X(j) for these {i,j}: {30, 1297}, {1495, 35140}, {2407, 34212}, {2419, 23347}, {2420, 43673}, {2435, 4240}, {3284, 6330}, {9033, 44770}, {11064, 43717}, {11589, 14944}, {32687, 41077}, {35912, 39265}
X(51937) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 30737}, {1297, 1494}, {1495, 1503}, {1636, 39473}, {2420, 34211}, {2435, 34767}, {3284, 441}, {9406, 2312}, {9407, 42671}, {9408, 6793}, {11589, 16096}, {14581, 16318}, {14583, 43089}, {23347, 2409}, {32649, 1304}, {32687, 15459}, {34212, 2394}, {43717, 16080}, {44770, 16077}


X(51938) = X(4)X(1499)∩X(67)X(524)

Barycentrics    (a^2 + b^2 - 2*c^2)*(a^2 - 2*b^2 + c^2)*(2*a^8 - 2*a^6*b^2 + 3*a^4*b^4 - 4*a^2*b^6 + b^8 - 2*a^6*c^2 - 4*a^4*b^2*c^2 + 4*a^2*b^4*c^2 + 3*a^4*c^4 + 4*a^2*b^2*c^4 - 2*b^4*c^4 - 4*a^2*c^6 + c^8) : :

X(51938) lies on the cubic K288 and these lines: {4, 1499}, {67, 524}, {98, 5913}, {111, 1503}, {468, 32729}, {691, 3580}, {1995, 9169}, {3448, 46783}, {3564, 32583}, {5968, 18911}, {5971, 31127}, {10558, 11245}, {10559, 45968}, {14908, 47526}, {14916, 16051}

X(51938) = barycentric product X(671)*X(41359)
X(51938) = barycentric quotient X(41359)/X(524)
X(51938) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3448, 46783, 51405}, {6792, 34169, 34806}


X(51939) = X(2)X(15258)∩X(4)X(51)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^8 - 2*a^6*b^2 + 2*a^4*b^4 - 2*a^2*b^6 + b^8 - 2*a^6*c^2 - a^4*b^2*c^2 + 2*a^2*b^4*c^2 + b^6*c^2 + 2*a^4*c^4 + 2*a^2*b^2*c^4 - 4*b^4*c^4 - 2*a^2*c^6 + b^2*c^6 + c^8) : :
X(51939) = X[4] - 3 X[6761], 2 X[4] - 3 X[34170], 4 X[468] - 3 X[1304], 4 X[140] - 3 X[6760], 5 X[3522] - 6 X[11589], 7 X[3523] - 6 X[12096], 6 X[16177] - 5 X[30745]

X(51939) lies on the cubic K288 and these lines: {2, 15258}, {4, 51}, {20, 34109}, {30, 23241}, {98, 468}, {107, 1503}, {125, 14165}, {133, 48364}, {138, 13509}, {140, 6760}, {186, 6070}, {264, 18911}, {275, 11245}, {297, 38664}, {340, 520}, {401, 14900}, {427, 42873}, {450, 542}, {459, 11206}, {648, 858}, {1629, 13567}, {1853, 15274}, {1897, 41327}, {2351, 5963}, {2719, 39429}, {3448, 46106}, {3462, 32767}, {3522, 11589}, {3523, 12096}, {5189, 12384}, {6032, 37665}, {8884, 26879}, {9140, 37765}, {11442, 15466}, {11547, 23291}, {14580, 34235}, {14920, 16177}, {18400, 40664}, {18914, 51031}, {25738, 43995}, {26869, 33971}, {26905, 46760}, {26944, 41365}, {35260, 41374}, {35474, 41586}, {41377, 50188}, {43460, 47202}, {44134, 46336}

X(51939) = reflection of X(i) in X(j) for these {i,j}: {20, 34109}, {107, 51358}, {34170, 6761}, {48364, 133}
X(51939) = anticomplement of X(34147)
X(51939) = polar-circle-inverse of X(51)
X(51939) = circumcircle-of-anticomplementary-triangle-inverse of X(32064)
X(51939) = polar conjugate of X(34579)
X(51939) = antigonal image of X(13509)
X(51939) = polar conjugate of the isogonal conjugate of X(13509)
X(51939) = X(48)-isoconjugate of X(34579)
X(51939) = X(1249)-Dao conjugate of X(34579)
X(51939) = crossdifference of every pair of points on line {217, 32320}
X(51939) = barycentric product X(264)*X(13509)
X(51939) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 34579}, {13509, 3}
X(51939) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {125, 41204, 14165}, {14363, 14864, 4}, {26869, 33971, 43462}


X(51940) = X(4)X(6)∩X(30)X(935)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(4*a^10 - 3*a^8*b^2 - 2*a^6*b^4 - 2*a^2*b^8 + 3*b^10 - 3*a^8*c^2 - 2*a^6*b^2*c^2 + 4*a^4*b^4*c^2 + 2*a^2*b^6*c^2 - b^8*c^2 - 2*a^6*c^4 + 4*a^4*b^2*c^4 - 2*b^6*c^4 + 2*a^2*b^2*c^6 - 2*b^4*c^6 - 2*a^2*c^8 - b^2*c^8 + 3*c^10) : :
X(51940) = 3 X[4] - X[41377], 3 X[5523] - 2 X[41377]

X(51940) lies on the cubic K537 and these lines: {4, 6}, {30, 935}, {112, 1529}, {1593, 5938}, {2697, 10297}, {2715, 45031}, {6000, 20410}, {10295, 42426}, {15311, 34163}, {18560, 36997}, {23047, 32581}, {44990, 45148}

X(51940) = reflection of X(i) in X(j) for these {i,j}: {112, 1529}, {2697, 10297}, {5523, 4}, {10295, 42426}
X(51940) = polar-circle-inverse of X(36990)
X(51940) = circumcircle-of-anticomplementary-triangle-inverse of X(41735)


X(51941) = X(3)X(19140)∩X(6)X(5663)

Barycentrics    a^2*(a^10 - 5*a^8*b^2 + 6*a^6*b^4 + 2*a^4*b^6 - 7*a^2*b^8 + 3*b^10 - 5*a^8*c^2 - 3*a^6*b^2*c^2 + 2*a^4*b^4*c^2 + 5*a^2*b^6*c^2 + b^8*c^2 + 6*a^6*c^4 + 2*a^4*b^2*c^4 - 4*a^2*b^4*c^4 - 4*b^6*c^4 + 2*a^4*c^6 + 5*a^2*b^2*c^6 - 4*b^4*c^6 - 7*a^2*c^8 + b^2*c^8 + 3*c^10) : :
X(51941) = 3 X[6] - 2 X[11579], 3 X[9970] - X[11579], 4 X[9970] - X[16010], 4 X[11579] - 3 X[16010], 3 X[110] - 2 X[33851], 3 X[1350] - 4 X[33851], 2 X[67] - 3 X[10516], 4 X[113] - 3 X[10516], 2 X[74] - 3 X[5085], 3 X[5085] - 4 X[6593], 4 X[182] - 3 X[5621], 2 X[182] - 3 X[45016], 3 X[5621] - 2 X[10620], X[10620] - 3 X[45016], X[25335] - 4 X[32271], X[2930] + 2 X[48679], 2 X[7728] + X[25336], 2 X[895] - 3 X[5102], 4 X[1511] - 3 X[31884], X[11477] + 2 X[14094], 2 X[3098] - 3 X[32609], 5 X[3763] - 6 X[14643], 5 X[3763] - 4 X[49116], 3 X[14643] - 2 X[49116], 2 X[3818] - 3 X[38789], X[32306] - 3 X[38789], 3 X[5050] - 4 X[25556], 3 X[5050] - 2 X[32305], 3 X[5055] - 4 X[25566], 4 X[5092] - 3 X[15041], 3 X[5093] - 2 X[9976], 4 X[5097] - 3 X[39562], 2 X[8550] - 3 X[25321], 2 X[9140] - 3 X[38072], 2 X[10264] - 3 X[14561], 3 X[10519] - 5 X[20125], 7 X[10541] - 4 X[51522], 2 X[12041] - 3 X[15462], X[12317] - 3 X[14853], 3 X[14853] - 2 X[25328], 2 X[13211] - 3 X[38144], 2 X[13605] - 3 X[38035], 4 X[14810] - 5 X[15040], 3 X[14912] - 4 X[41595], and many others

X(51941) lies on the cubic K537 and these lines: {3, 19140}, {6, 5663}, {22, 110}, {25, 32235}, {67, 113}, {74, 5085}, {141, 32247}, {146, 1503}, {182, 5621}, {265, 25335}, {399, 511}, {524, 32111}, {541, 34319}, {542, 1351}, {599, 5655}, {611, 7727}, {613, 19470}, {895, 5102}, {1177, 17835}, {1386, 33535}, {1511, 31884}, {2777, 11820}, {2854, 10752}, {2935, 15138}, {3024, 32289}, {3028, 32290}, {3066, 12824}, {3098, 32609}, {3448, 5480}, {3564, 16176}, {3763, 14643}, {3818, 32306}, {5050, 25556}, {5055, 25566}, {5092, 15041}, {5093, 9976}, {5095, 12165}, {5097, 39562}, {5181, 6053}, {5544, 45311}, {5651, 15106}, {6776, 25329}, {7669, 14687}, {8547, 11456}, {8550, 25321}, {8705, 12112}, {9140, 38072}, {10088, 10387}, {10264, 14561}, {10510, 14915}, {10519, 20125}, {10541, 51522}, {10628, 34779}, {10706, 47353}, {12039, 15030}, {12041, 15462}, {12121, 48872}, {12163, 19138}, {12167, 32250}, {12168, 32262}, {12244, 44882}, {12294, 19504}, {12302, 19139}, {12317, 14853}, {12373, 32243}, {12374, 32297}, {12383, 29181}, {12584, 33878}, {13211, 38144}, {13605, 38035}, {14683, 51212}, {14810, 15040}, {14912, 41595}, {14982, 15063}, {15061, 47355}, {17702, 48910}, {18374, 32110}, {19125, 32607}, {19130, 38724}, {19145, 35826}, {19146, 35827}, {20126, 47352}, {21650, 32251}, {25711, 37475}, {29012, 38790}, {31670, 32423}, {32124, 35265}, {32237, 45082}, {32254, 44456}, {34153, 48873}, {34783, 44490}, {37473, 46261}, {38661, 47619}, {39899, 41731}, {41428, 44883}, {46817, 47450}

X(51941) = midpoint of X(i) and X(j) for these {i,j}: {146, 11061}, {399, 48679}, {1351, 12308}, {10752, 14094}, {14683, 51212}, {25336, 36990}, {32254, 44456}
X(51941) = reflection of X(i) in X(j) for these {i,j}: {3, 19140}, {6, 9970}, {67, 113}, {74, 6593}, {265, 32271}, {599, 5655}, {1350, 110}, {2930, 399}, {2935, 15141}, {3448, 5480}, {5181, 6053}, {5621, 45016}, {6776, 25329}, {10117, 19149}, {10620, 182}, {11477, 10752}, {12163, 19138}, {12244, 44882}, {12302, 19139}, {12317, 25328}, {12902, 48901}, {14982, 15063}, {15069, 14982}, {16010, 6}, {17835, 1177}, {25335, 265}, {32247, 141}, {32305, 25556}, {32306, 3818}, {33535, 1386}, {33878, 12584}, {36990, 7728}, {39899, 41731}, {43273, 34319}, {47353, 10706}, {48872, 12121}, {48873, 34153}, {48905, 32233}
X(51941) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {67, 113, 10516}, {74, 6593, 5085}, {182, 10620, 5621}, {10620, 45016, 182}, {12317, 14853, 25328}, {14643, 49116, 3763}, {25556, 32305, 5050}, {32306, 38789, 3818}


X(51942) = X(3)X(10706)∩X(22)X(2930)

Barycentrics    a^2*(4*a^10 - 4*a^8*b^2 - 8*a^6*b^4 + 8*a^4*b^6 + 4*a^2*b^8 - 4*b^10 - 4*a^8*c^2 + 19*a^6*b^2*c^2 - 7*a^4*b^4*c^2 - 10*a^2*b^6*c^2 + 2*b^8*c^2 - 8*a^6*c^4 - 7*a^4*b^2*c^4 + 11*a^2*b^4*c^4 + 2*b^6*c^4 + 8*a^4*c^6 - 10*a^2*b^2*c^6 + 2*b^4*c^6 + 4*a^2*c^8 + 2*b^2*c^8 - 4*c^10) : :
X(51942) = 3 X[74] - 2 X[43720], 4 X[7703] - 5 X[15059], 2 X[6593] - 3 X[51797], 3 X[15041] - X[33887]

X(51942) lies on the cubic K728 and these lines: {3, 10706}, {22, 2930}, {23, 9140}, {74, 7575}, {110, 3098}, {895, 8705}, {1177, 5012}, {1995, 7703}, {3357, 15021}, {4550, 15055}, {6593, 15080}, {6800, 48679}, {7464, 12901}, {7496, 32600}, {7527, 32401}, {7530, 15044}, {7545, 15025}, {7550, 15029}, {7555, 7691}, {7556, 7689}, {9208, 11643}, {9938, 12082}, {10546, 12041}, {10721, 18550}, {10733, 37924}, {11999, 51522}, {12105, 20126}, {12106, 15057}, {13289, 37952}, {15041, 33887}, {23061, 41615}, {25328, 47313}, {32273, 37901}, {46602, 46608}

X(51942) = reflection of X(i) in X(j) for these {i,j}: {110, 7712}, {10721, 18550}


X(51943) = X(4)X(512)∩X(98)X(230)

Barycentrics    (a^4 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - b^2*c^2 + c^4)*(a^8*b^2 - 2*a^6*b^4 + 2*a^4*b^6 - 2*a^2*b^8 + b^10 + a^8*c^2 - a^4*b^4*c^2 + 2*a^2*b^6*c^2 - 2*b^8*c^2 - 2*a^6*c^4 - a^4*b^2*c^4 + b^6*c^4 + 2*a^4*c^6 + 2*a^2*b^2*c^6 + b^4*c^6 - 2*a^2*c^8 - 2*b^2*c^8 + c^10) : :

X(51943) lies on the cubic K288 and these lines: {4, 512}, {98, 230}, {287, 858}, {511, 16083}, {542, 37858}, {685, 14165}, {2794, 48452}, {3448, 46786}, {20021, 47638}, {35605, 40079}

X(51943) = reflection of X(98) in X(51404)
X(51943) = X(45158)-Dao conjugate of X(511)
X(51943) = crossdifference of every pair of points on line {3289, 41167}


X(51944) = X(2)X(42514)∩X(3)X(36969)

Barycentrics    23*a^6 + 10*a^4*b^2 - 29*a^2*b^4 - 4*b^6 + 10*a^4*c^2 - 30*a^2*b^2*c^2 + 4*b^4*c^2 - 29*a^2*c^4 + 4*b^2*c^4 - 4*c^6 + 2*Sqrt[3]*(27*a^4 - 21*a^2*b^2 - 4*b^4 - 21*a^2*c^2 + 8*b^2*c^2 - 4*c^4)*S : :
X(51944) = 10 X[42111] - 13 X[43028]

X(51944) lies on the cubic K1202 and these lines: {2, 42514}, {3, 36969}, {6, 15688}, {14, 15696}, {16, 15695}, {20, 42776}, {30, 42111}, {62, 43420}, {376, 395}, {396, 3528}, {548, 22238}, {549, 42106}, {550, 16645}, {1656, 42429}, {1657, 10187}, {3146, 42501}, {3522, 22236}, {3523, 43401}, {3524, 42097}, {3534, 12817}, {3627, 42475}, {5054, 42498}, {5237, 43486}, {5321, 15697}, {5339, 44245}, {5340, 46853}, {8703, 10653}, {10304, 11488}, {10645, 43646}, {10646, 15689}, {11001, 42095}, {11485, 42631}, {11539, 42113}, {11812, 42105}, {12100, 42094}, {12103, 42491}, {14093, 16960}, {14891, 42586}, {15022, 42595}, {15684, 43468}, {15686, 42093}, {15691, 18581}, {15692, 42098}, {15693, 42100}, {15698, 42941}, {15700, 19106}, {15702, 42109}, {15704, 42774}, {15706, 16808}, {15708, 42102}, {15710, 23302}, {15711, 42584}, {15712, 42610}, {15714, 42092}, {15716, 16966}, {15717, 43104}, {15719, 42110}, {15759, 18582}, {16644, 34200}, {17504, 43029}, {17538, 42940}, {19708, 33602}, {19710, 42089}, {21734, 43238}, {21735, 42156}, {33923, 43193}, {36836, 42990}, {36843, 36967}, {40694, 41981}, {41982, 42118}, {41983, 42114}, {42086, 45759}, {42090, 49948}, {42115, 43301}, {42119, 42792}, {42124, 46332}, {42126, 43032}, {42141, 42500}, {42153, 43480}, {42157, 42796}, {42433, 42974}, {42490, 43416}, {42503, 43327}, {42504, 43004}, {42507, 42996}, {42587, 43417}, {42683, 43326}, {42686, 43543}, {42777, 43869}, {42793, 43494}, {42817, 43244}, {42913, 43194}, {42930, 49903}, {42945, 43332}, {42948, 49140}, {42989, 43245}, {42993, 43331}, {42999, 43305}, {43105, 49812}, {43231, 43373}, {43400, 49139}, {43402, 43474}, {43418, 49905}

X(51944) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3534, 42129, 42430}, {8703, 42625, 11480}, {11812, 42105, 42474}, {15688, 42528, 6}, {15711, 42584, 42911}, {34200, 42091, 16644}, {42625, 49947, 42123}


X(51945) = X(2)X(42515)∩X(3)X(36970)

Barycentrics    23*a^6 + 10*a^4*b^2 - 29*a^2*b^4 - 4*b^6 + 10*a^4*c^2 - 30*a^2*b^2*c^2 + 4*b^4*c^2 - 29*a^2*c^4 + 4*b^2*c^4 - 4*c^6 - 2*Sqrt[3]*(27*a^4 - 21*a^2*b^2 - 4*b^4 - 21*a^2*c^2 + 8*b^2*c^2 - 4*c^4)*S : :
X(51945) = 10 X[42114] - 13 X[43029]

X(51945) lies on the cubic K1202 and these lines: {2, 42515}, {3, 36970}, {6, 15688}, {13, 15696}, {15, 15695}, {20, 42775}, {30, 42114}, {61, 43421}, {376, 396}, {395, 3528}, {548, 22236}, {549, 42103}, {550, 16644}, {1656, 42430}, {1657, 10188}, {3146, 42500}, {3522, 22238}, {3523, 43402}, {3524, 42096}, {3534, 12816}, {3627, 42474}, {5054, 42499}, {5238, 43485}, {5318, 15697}, {5339, 46853}, {5340, 44245}, {8703, 10654}, {10304, 11489}, {10645, 15689}, {10646, 43645}, {11001, 42098}, {11486, 42632}, {11539, 42112}, {11812, 42104}, {12100, 42093}, {12103, 42490}, {14093, 16961}, {14891, 42587}, {15022, 42594}, {15684, 43467}, {15686, 42094}, {15691, 18582}, {15692, 42095}, {15693, 42099}, {15698, 42940}, {15700, 19107}, {15702, 42108}, {15704, 42773}, {15706, 16809}, {15708, 42101}, {15710, 23303}, {15711, 42585}, {15712, 42611}, {15714, 42089}, {15716, 16967}, {15717, 43101}, {15719, 42107}, {15759, 18581}, {16645, 34200}, {17504, 43028}, {17538, 42941}, {19708, 33603}, {19710, 42092}, {21734, 43239}, {21735, 42153}, {33923, 43194}, {36836, 36968}, {36843, 42991}, {40693, 41981}, {41982, 42117}, {41983, 42111}, {42085, 45759}, {42091, 49947}, {42116, 43300}, {42120, 42791}, {42121, 46332}, {42127, 43033}, {42140, 42501}, {42156, 43479}, {42158, 42795}, {42434, 42975}, {42491, 43417}, {42502, 43326}, {42505, 43005}, {42506, 42997}, {42586, 43416}, {42682, 43327}, {42687, 43542}, {42778, 43870}, {42794, 43493}, {42818, 43245}, {42912, 43193}, {42931, 49904}, {42944, 43333}, {42949, 49140}, {42988, 43244}, {42992, 43330}, {42998, 43304}, {43106, 49813}, {43230, 43372}, {43399, 49139}, {43401, 43473}, {43419, 49906}

X(51945) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3534, 42132, 42429}, {8703, 42626, 11481}, {11812, 42104, 42475}, {15688, 42529, 6}, {15711, 42585, 42910}, {34200, 42090, 16645}, {42626, 49948, 42122}


X(51946) = X(2)X(8966)∩X(3)X(6413)

Barycentrics    a^2*(a^2 - b^2 - c^2)^2*(3*a^10 - 11*a^8*b^2 + 14*a^6*b^4 - 6*a^4*b^6 - a^2*b^8 + b^10 - 11*a^8*c^2 + 12*a^6*b^2*c^2 + 6*a^4*b^4*c^2 - 4*a^2*b^6*c^2 - 3*b^8*c^2 + 14*a^6*c^4 + 6*a^4*b^2*c^4 + 10*a^2*b^4*c^4 + 2*b^6*c^4 - 6*a^4*c^6 - 4*a^2*b^2*c^6 + 2*b^4*c^6 - a^2*c^8 - 3*b^2*c^8 + c^10 - 2*a^8*S - 4*a^6*b^2*S + 16*a^4*b^4*S - 12*a^2*b^6*S + 2*b^8*S - 4*a^6*c^2*S + 12*a^2*b^4*c^2*S - 8*b^6*c^2*S + 16*a^4*c^4*S + 12*a^2*b^2*c^4*S + 12*b^4*c^4*S - 12*a^2*c^6*S - 8*b^2*c^6*S + 2*c^8*S) : :

X(51946) lies on the cubic K1047 and these lines: {2, 8966}, {3, 6413}, {6, 493}, {216, 5406}, {255, 605}, {371, 12160}, {372, 8276}, {394, 577}, {488, 3068}, {492, 27377}, {511, 26953}, {590, 11090}, {1152, 8963}, {1351, 26919}, {1368, 26873}, {1993, 26868}, {3167, 8911}, {3564, 26945}, {5020, 26894}, {5407, 22052}, {5409, 36748}, {5411, 10962}, {5412, 9733}, {6289, 44637}, {6391, 6414}, {6457, 12164}, {8577, 13889}, {8948, 12967}, {8969, 32421}, {9909, 26886}, {9937, 10898}, {10132, 19446}, {10133, 11514}, {12305, 17819}, {12979, 26292}, {19356, 20794}, {19458, 44588}, {26461, 40322}, {26950, 30771}

X(51946) = isogonal conjugate of the isotomic conjugate of X(8222)
X(51946) = isotomic conjugate of the polar conjugate of X(10132)
X(51946) = isogonal conjugate of the polar conjugate of X(488)
X(51946) = X(i)-Ceva conjugate of X(j) for these (i,j): {488, 10132}, {5408, 3}
X(51946) = X(i)-isoconjugate of X(j) for these (i,j): {4, 19218}, {19, 24244}, {92, 8948}, {158, 493}, {1096, 5490}
X(51946) = X(i)-Dao conjugate of X(j) for these (i, j): (6, 24244), (1147, 493), (6503, 5490), (8223, 76), (22391, 8948), (33364, 2052), (36033, 19218)
X(51946) = crosspoint of X(i) and X(j) for these (i,j): {6, 45595}, {488, 8222}
X(51946) = crosssum of X(2) and X(26494)
X(51946) = barycentric product X(i)*X(j) for these {i,j}: {3, 488}, {6, 8222}, {63, 19215}, {69, 10132}, {184, 46742}, {394, 3068}, {487, 42022}, {3926, 6423}, {3964, 5200}, {4558, 17431}, {5408, 24246}, {8223, 45595}
X(51946) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 24244}, {48, 19218}, {184, 8948}, {394, 5490}, {488, 264}, {577, 493}, {3068, 2052}, {5200, 1093}, {6423, 393}, {8222, 76}, {10132, 4}, {14585, 26454}, {17431, 14618}, {19215, 92}, {19446, 3127}, {42022, 24243}, {46742, 18022}
X(51946) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 8939, 493}, {6, 19408, 5408}, {6, 44627, 26460}, {6, 45596, 19031}, {1993, 26912, 26868}, {19442, 45727, 8216}


X(51947) = X(2)X(2112)∩X(25)X(41)

Barycentrics    a^3*(a^3 - b^3 - a*b*c - c^3) : :

X(51947) lies on the cubic K1008 and these lines: {2, 2112}, {25, 41}, {31, 1501}, {48, 1613}, {101, 3961}, {184, 18038}, {222, 604}, {284, 25058}, {692, 40972}, {893, 1915}, {1691, 30646}, {1965, 4586}, {2175, 5364}, {2210, 21750}, {2280, 17011}, {3051, 7104}, {3121, 5371}, {3185, 9447}, {3204, 20693}, {3220, 23636}, {3920, 9310}, {4228, 17451}, {4388, 40597}, {5310, 20684}, {20459, 26889}, {22230, 37325}

X(51947) = isogonal conjugate of the isotomic conjugate of X(3496)
X(51947) = X(893)-Ceva conjugate of X(31)
X(51947) = X(i)-isoconjugate of X(j) for these (i,j): {2, 7224}, {6, 18836}, {75, 3497}, {76, 34250}
X(51947) = X(i)-Dao conjugate of X(j) for these (i, j): (9, 18836), (171, 1920), (206, 3497), (32664, 7224)
X(51947) = crosssum of X(2) and X(33867)
X(51947) = crossdifference of every pair of points on line {4025, 17072}
X(51947) = barycentric product X(i)*X(j) for these {i,j}: {1, 23868}, {6, 3496}, {19, 23150}, {31, 4388}, {32, 17788}, {41, 17086}, {560, 18835}, {692, 4142}, {893, 40597}, {904, 17797}, {1333, 4109}
X(51947) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 18836}, {31, 7224}, {32, 3497}, {560, 34250}, {3496, 76}, {4109, 27801}, {4142, 40495}, {4388, 561}, {17086, 20567}, {17788, 1502}, {18835, 1928}, {23150, 304}, {23868, 75}, {40597, 1920}
X(51947) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {31, 32664, 19554}, {1501, 30647, 31}, {14599, 16584, 31}


X(51948) = X(3)X(695)∩X(6)X(3504)

Barycentrics    a^4*(b^4 + a^2*c^2)*(a^2*b^2 + c^4) : :

X(51948) lies on the cubics K252 and X1008 and these lines: {3, 695}, {6, 3504}, {32, 46505}, {39, 37894}, {98, 1196}, {110, 711}, {184, 18899}, {228, 9288}, {238, 9285}, {385, 1194}, {419, 51246}, {1184, 47643}, {1915, 9468}, {2200, 9236}, {3051, 14946}, {3505, 8265}, {3866, 6308}, {8022, 14599}, {8290, 8858}, {10547, 14602}

X(51948) = isogonal conjugate of X(9230)
X(51948) = isogonal conjugate of the anticomplement of X(45210)
X(51948) = isogonal conjugate of the isotomic conjugate of X(695)
X(51948) = X(51245)-complementary conjugate of X(21235)
X(51948) = X(1691)-cross conjugate of X(9468)
X(51948) = X(i)-isoconjugate of X(j) for these (i,j): {1, 9230}, {2, 1965}, {6, 1925}, {75, 384}, {76, 1582}, {92, 37894}, {561, 1915}, {1502, 1932}, {1934, 16985}, {1969, 37893}, {3112, 4074}, {9239, 36432}, {11380, 40364}, {16101, 19555}, {18271, 22252}, {19564, 40835}
X(51948) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 9230), (9, 1925), (206, 384), (22391, 37894), (32664, 1965), (34452, 4074), (40368, 1915)
X(51948) = crosssum of X(i) and X(j) for these (i,j): {2, 37889}, {384, 37894}, {6374, 40035}, {17788, 24732}
X(51948) = trilinear pole of line {3049, 9006}
X(51948) = barycentric product X(i)*X(j) for these {i,j}: {1, 9288}, {6, 695}, {31, 9285}, {32, 9229}, {75, 9236}, {184, 37892}, {385, 14946}, {560, 9239}, {3505, 41533}, {14602, 40847}
X(51948) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 1925}, {6, 9230}, {31, 1965}, {32, 384}, {184, 37894}, {560, 1582}, {695, 76}, {1501, 1915}, {1917, 1932}, {3051, 4074}, {9229, 1502}, {9236, 1}, {9239, 1928}, {9285, 561}, {9288, 75}, {14575, 37893}, {14602, 16985}, {14946, 1916}, {18902, 51320}, {27369, 12143}, {37892, 18022}, {40847, 44160}, {41533, 16101}, {44162, 11380}
X(51948) = {X(1915),X(40377)}-harmonic conjugate of X(9468)


X(51949) = X(2)X(1429)∩X(25)X(41)

Barycentrics    a^3*(a^2*b - a*b^2 + a^2*c - a*b*c + b^2*c - a*c^2 + b*c^2) : :

X(51949) lies on the cubic K1008 and these lines: {2, 1429}, {6, 18613}, {25, 41}, {31, 1911}, {43, 101}, {48, 2276}, {55, 9454}, {57, 23622}, {100, 7075}, {184, 19587}, {213, 23543}, {219, 604}, {644, 4203}, {692, 9447}, {1011, 1334}, {1055, 4191}, {1385, 25074}, {1397, 16283}, {1402, 5364}, {1500, 2304}, {1613, 51319}, {1958, 17759}, {2205, 2209}, {2280, 17018}, {2352, 39258}, {3185, 40972}, {3204, 21904}, {3217, 37657}, {3500, 40171}, {3501, 13588}, {3570, 25287}, {3684, 20012}, {4184, 41423}, {4209, 39741}, {4251, 42042}, {4390, 31330}, {4651, 26232}, {7122, 15370}, {7225, 30949}, {9620, 42669}, {14827, 23522}, {16788, 43223}, {17149, 18047}, {20460, 28348}, {20662, 23653}, {23638, 51436}, {24549, 27263}, {28751, 30956}

X(51949) = isogonal conjugate of the isotomic conjugate of X(3501)
X(51949) = X(i)-isoconjugate of X(j) for these (i,j): {75, 3500}, {7249, 39936}, {10030, 43748}, {17170, 30688}
X(51949) = X(i)-Dao conjugate of X(j) for these (i, j): (206, 3500), (810, 26932), (5518, 3261), (17072, 4858)
X(51949) = crosspoint of X(692) and X(4564)
X(51949) = crosssum of X(693) and X(2170)
X(51949) = crossdifference of every pair of points on line {3766, 4025}
X(51949) = barycentric product X(i)*X(j) for these {i,j}: {1, 34247}, {6, 3501}, {31, 32937}, {32, 17786}, {42, 13588}, {100, 23655}, {101, 21348}, {163, 21958}, {662, 22229}, {692, 17072}, {1110, 23772}, {1783, 22443}, {4551, 23864}, {4559, 21388}, {21438, 32739}
X(51949) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 3500}, {3501, 76}, {13588, 310}, {17072, 40495}, {17786, 1502}, {18265, 43748}, {21348, 3261}, {21958, 20948}, {22229, 1577}, {22443, 15413}, {23655, 693}, {23864, 18155}, {32937, 561}, {34247, 75}


X(51950) = X(2)X(3)∩X(194)X(23173)

Barycentrics    a^4*(a^4*b^4 - a^2*b^6 + b^6*c^2 + a^4*c^4 - a^2*c^6 + b^2*c^6) : :

X(51950) lies on the cubic K1008 and these lines: {2, 3}, {194, 23173}, {1194, 23209}, {1196, 21444}, {1501, 15389}, {1691, 23221}, {1915, 47642}, {3051, 14946}, {7783, 23174}, {10329, 20775}, {20859, 23635}

X(51950) = isogonal conjugate of X(43715)
X(51950) = isogonal conjugate of the isotomic conjugate of X(3491)
X(51950) = X(i)-Ceva conjugate of X(j) for these (i,j): {1915, 3051}, {47642, 32748}
X(51950) = X(i)-isoconjugate of X(j) for these (i,j): {1, 43715}, {75, 51246}
X(51950) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 43715), (206, 51246), (3491, 50666)
X(51950) = barycentric product X(6)*X(3491)
X(51950) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 43715}, {32, 51246}, {3491, 76}
X(51950) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 46505, 237}, {22, 33728, 237}


X(51951) = X(2)X(699)∩X(32)X(1613)

Barycentrics    a^4*(a^2*b^2 - a^2*c^2 - b^2*c^2)*(a^2*b^2 - a^2*c^2 + b^2*c^2) : : a

X(51951) lies on the cubics K693, K1008, and K1013, and these lines: {2, 699}, {32, 1613}, {39, 15371}, {184, 8789}, {251, 2998}, {1501, 15389}, {2205, 2209}, {3168, 40820}, {3407, 24733}, {9490, 32546}, {14602, 44162}, {36417, 44089}

X(51951) = isogonal conjugate of X(6374)
X(51951) = isogonal conjugate of the anticomplement of X(6375)
X(51951) = isogonal conjugate of the complement of X(2998)
X(51951) = isogonal conjugate of the isotomic conjugate of X(3224)
X(51951) = polar conjugate of the isotomic conjugate of X(15389)
X(51951) = X(i)-Ceva conjugate of X(j) for these (i,j): {6, 32546}, {3224, 15389}
X(51951) = X(i)-cross conjugate of X(j) for these (i,j): {6, 32}, {669, 3222}, {9490, 6}, {19606, 3224}
X(51951) = X(i)-isoconjugate of X(j) for these (i,j): {1, 6374}, {2, 17149}, {6, 18837}, {75, 194}, {76, 1740}, {86, 22028}, {99, 20910}, {190, 23807}, {274, 21080}, {304, 3186}, {310, 21877}, {312, 17082}, {561, 1613}, {668, 21191}, {799, 23301}, {1424, 3596}, {1926, 47642}, {1969, 20794}, {1978, 50516}, {3221, 4602}, {4554, 25128}, {4601, 21144}, {4609, 23503}, {4623, 21056}, {6063, 7075}, {6386, 23572}, {11325, 40364}, {46273, 51427}
X(51951) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 6374), (9, 18837), (206, 194), (32664, 17149), (38986, 20910), (38996, 23301), (40368, 1613), (40600, 22028)
X(51951) = cevapoint of X(6) and X(3224)
X(51951) = crosspoint of X(6) and X(32543)
X(51951) = crosssum of X(2) and X(32548)
X(51951) = trilinear pole of line {9426, 9429}
X(51951) = crossdifference of every pair of points on line {23301, 23807}
X(51951) = barycentric product X(i)*X(j) for these {i,j}: {1, 34248}, {4, 15389}, {6, 3224}, {25, 3504}, {31, 3223}, {32, 2998}, {83, 19606}, {560, 18832}, {669, 3222}, {1501, 40162}, {1974, 43714}, {9468, 39927}, {40799, 40821}, {42551, 46288}
X(51951) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 18837}, {6, 6374}, {31, 17149}, {32, 194}, {213, 22028}, {560, 1740}, {667, 23807}, {669, 23301}, {798, 20910}, {1397, 17082}, {1501, 1613}, {1918, 21080}, {1919, 21191}, {1974, 3186}, {1980, 50516}, {2205, 21877}, {2998, 1502}, {3222, 4609}, {3223, 561}, {3224, 76}, {3504, 305}, {8789, 47642}, {9418, 51427}, {9426, 3221}, {9447, 7075}, {14575, 20794}, {15389, 69}, {18832, 1928}, {19606, 141}, {32546, 32548}, {34248, 75}, {39927, 14603}, {40162, 40362}, {40821, 40822}, {40823, 40811}, {43714, 40050}, {44162, 11325}


X(51952) = X(2)X(489)∩X(20)X(14242)

Barycentrics    13*a^4 - 10*a^2*b^2 - 3*b^4 - 10*a^2*c^2 + 6*b^2*c^2 - 3*c^4 - 8*a^2*S + 8*b^2*S + 8*c^2*S : :
X(51952) = 3 X[2] - 4 X[33365]

X(51952) lies on on the Kiepert circumhyperbola of the anticomplementary triangle, the cubic K156, and these lines: {2, 489}, {20, 14242}, {69, 43691}, {148, 6569}, {487, 3146}, {488, 3522}, {491, 17578}, {637, 15717}, {638, 13798}, {1270, 21734}, {1271, 5059}, {3595, 50689}, {3854, 32806}, {5068, 45509}, {7000, 12509}, {9542, 11313}, {12221, 13933}, {12323, 50692}, {13835, 13935}, {15705, 45508}, {23312, 43508}, {32419, 45077}, {34573, 43383}, {43377, 45872}

X(51952) = reflection of X(i) in X(j) for these {i,j}: {148, 6569}, {1132, 33365}
X(51952) = anticomplement of X(1132)
X(51952) = anticomplement of the isogonal conjugate of X(1152)
X(51952) = anticomplement of the isotomic conjugate of X(1271)
X(51952) = anticomplementary isogonal conjugate of X(12323)
X(51952) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1, 12323}, {1152, 8}, {1271, 6327}, {3536, 21270}, {5410, 5905}
X(51952) = X(1271)-Ceva conjugate of X(2)
X(51952) = {X(1132),X(33365)}-harmonic conjugate of X(2)


X(51953) = X(2)X(490)∩X(20)X(14227)

Barycentrics    13*a^4 - 10*a^2*b^2 - 3*b^4 - 10*a^2*c^2 + 6*b^2*c^2 - 3*c^4 + 8*a^2*S - 8*b^2*S - 8*c^2*S : :
X(51953) = 3 X[2] - 4 X[33364]

X(51953) lies on the cubic K156 and these lines: {2, 490}, {20, 14227}, {69, 43691}, {148, 6568}, {487, 3522}, {488, 3146}, {492, 17578}, {637, 13678}, {638, 15717}, {1270, 5059}, {1271, 21734}, {3593, 50689}, {3854, 32805}, {5068, 45508}, {6462, 9543}, {7374, 12510}, {9540, 13712}, {12222, 13879}, {12322, 50692}, {15705, 45509}, {23311, 43507}, {32421, 45076}, {34573, 43382}, {43376, 45871}

X(51953) = reflection of X(i) in X(j) for these {i,j}: {148, 6568}, {1131, 33364}
X(51953) = anticomplement of X(1131)
X(51953) = anticomplement of the isogonal conjugate of X(1151)
X(51953) = anticomplement of the isotomic conjugate of X(1270)
X(51953) = anticomplementary isogonal conjugate of X(12322)
X(51953) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1, 12322}, {1151, 8}, {1270, 6327}, {3535, 21270}, {5411, 5905}
X(51953) = X(1270)-Ceva conjugate of X(2)
X(51953) = {X(1131),X(33364)}-harmonic conjugate of X(2)


X(51954) = X(2)X(9467)∩X(22)X(40810)

Barycentrics    a^4*(-b^2 + a*c)*(b^2 + a*c)*(a*b - c^2)*(a*b + c^2)*(a^6 - b^6 + a^2*b^2*c^2 - c^6) : :

X(51954) lies on the cubic K1008 and these lines: {2, 9467}, {22, 40810}, {25, 694}, {51, 34238}, {184, 14251}, {805, 3917}, {1501, 9468}, {1915, 41517}, {3493, 6660}, {3796, 45146}

X(51954) = isogonal conjugate of the isotomic conjugate of X(3493)
X(51954) = X(41517)-Ceva conjugate of X(9468)
X(51954) = X(19556)-cross conjugate of X(9468)
X(51954) = X(i)-isoconjugate of X(j) for these (i,j): {75, 51244}, {1926, 41533}, {1966, 43696}
X(51954) = X(i)-Dao conjugate of X(j) for these (i, j): (206, 51244), (9467, 43696), (46669, 14295)
X(51954) = barycentric product X(i)*X(j) for these {i,j}: {6, 3493}, {694, 6660}, {1581, 19559}, {1916, 19558}, {1934, 19560}, {1967, 19555}, {5207, 9468}, {14316, 17938}, {18896, 19556}, {19576, 41517}
X(51954) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 51244}, {3493, 76}, {5207, 14603}, {6660, 3978}, {8789, 41533}, {9468, 43696}, {19555, 1926}, {19556, 1691}, {19558, 385}, {19559, 1966}, {19560, 1580}, {19575, 4027}


X(51955) = X(1)X(1151)∩X(4)X(9)

Barycentrics    a*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c - 2*a*b*c + b^2*c - a*c^2 + b*c^2 - c^3 - a*S + b*S + c*S) : :

X(51955) lies on the cubic K156 and these lines: {1, 1151}, {4, 9}, {46, 51763}, {57, 175}, {165, 30556}, {517, 32556}, {1132, 41348}, {1449, 1702}, {1697, 6204}, {1703, 16670}, {1743, 49227}, {3579, 32555}, {5128, 6203}, {5437, 31534}, {6252, 21746}, {6404, 20683}, {7991, 30557}, {8957, 10624}, {13389, 31432}, {20070, 30413}

X(51955) = {X(40),X(6212)}-harmonic conjugate of X(9)


X(51956) = X(6)X(41)∩X(32)X(1423)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^2 - b*c)*(a^2*b - a*b^2 + a^2*c - a*b*c + b^2*c - a*c^2 + b*c^2) : :

X(51956) lies on the cubic K788 and these lines: {6, 41}, {32, 1423}, {385, 10030}, {695, 51323}, {1284, 1914}, {1415, 1463}, {1429, 41333}, {5277, 30097}, {20769, 34253}, {51318, 51321}

X(51956) = isogonal conjugate of the isotomic conjugate of X(39930)
X(51956) = X(i)-isoconjugate of X(j) for these (i,j): {2, 43748}, {1581, 39936}, {3500, 4518}
X(51956) = X(i)-Dao conjugate of X(j) for these (i, j): (19576, 39936), (32664, 43748)
X(51956) = crossdifference of every pair of points on line {522, 20258}
X(51956) = barycentric product X(i)*X(j) for these {i,j}: {6, 39930}, {1284, 13588}, {1403, 14199}, {1428, 32937}, {1429, 3501}, {1447, 34247}
X(51956) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 43748}, {1691, 39936}, {34247, 4518}, {39930, 76}


X(51957) = X(1)X(1152)∩X(4)X(9)

Barycentrics    a*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c - 2*a*b*c + b^2*c - a*c^2 + b*c^2 - c^3 + a*S - b*S - c*S) : :

X(51957) lies on the cubic K156 and these lines: {1, 1152}, {4, 9}, {46, 51764}, {57, 176}, {165, 30557}, {517, 32555}, {1131, 41348}, {1449, 1703}, {1697, 6203}, {1702, 16670}, {1743, 49226}, {3579, 32556}, {5128, 6204}, {5437, 31535}, {6252, 20683}, {6404, 21746}, {7991, 30556}, {8984, 9841}, {8986, 10860}, {20070, 30412}

X(51957) = {X(40),X(6213)}-harmonic conjugate of X(9)


X(51958) = X(32)X(39953)∩X(82)X(172)

Barycentrics    a^2*(a^2 + b^2)*(a^2 + c^2)*(a^4*b^4 + a^4*b^2*c^2 + a^2*b^4*c^2 + a^4*c^4 + a^2*b^2*c^4 - b^4*c^4) : :

X(51958) lies on the cubic K788 and these lines: {32, 39953}, {82, 172}, {251, 308}, {695, 1176}, {733, 40981}, {1627, 8265}, {4577, 9497}, {8623, 41884}, {24256, 46227}, {32085, 51324}, {46288, 51318}

X(51958) = isogonal conjugate of the isotomic conjugate of X(38817)
X(51958) = X(32)-Ceva conjugate of X(251)
X(51958) = X(3499)-cross conjugate of X(38817)
X(51958) = X(38)-isoconjugate of X(39953)
X(51958) = X(308)-Dao conjugate of X(1502)
X(51958) = barycentric product X(i)*X(j) for these {i,j}: {6, 38817}, {83, 3499}, {23174, 32085}
X(51958) = barycentric quotient X(i)/X(j) for these {i,j}: {251, 39953}, {3499, 141}, {23174, 3933}, {38817, 76}


X(51959) = X(1)X(43730)∩X(3)X(15748)

Barycentrics    a^2*(25*a^8 - 100*a^6*b^2 + 150*a^4*b^4 - 100*a^2*b^6 + 25*b^8 - 100*a^6*c^2 + 4*a^4*b^2*c^2 + 36*a^2*b^4*c^2 + 60*b^6*c^2 + 150*a^4*c^4 + 36*a^2*b^2*c^4 - 170*b^4*c^4 - 100*a^2*c^6 + 60*b^2*c^6 + 25*c^8) : :
X(51959) = 4 X[3] - 5 X[15748], 8 X[3] - 5 X[43691], 7 X[3832] - 5 X[15749], 21 X[3832] - 25 X[15751], 28 X[3832] - 25 X[15752], 7 X[3832] - 25 X[51261], 3 X[15749] - 5 X[15751], 4 X[15749] - 5 X[15752], X[15749] - 5 X[51261], 4 X[15751] - 3 X[15752], X[15751] - 3 X[51261], X[15752] - 4 X[51261]

X(51959) lies on on the Feuerbach circumhyperbola of the tangential triangle, the cubic K156, and these lines: {1, 43730}, {3, 15748}, {6, 1131}, {195, 38335}, {547, 15805}, {1498, 11001}, {6429, 8939}, {6430, 8943}, {11441, 16936}, {15047, 18451}, {35400, 37498}

X(51959) = reflection of X(43691) in X(15748)
X(51959) = X(5059)-Ceva conjugate of X(3)


X(51960) = X(4)X(1987)∩X(5)X(525)

Barycentrics    (2*a^6 - a^4*b^2 - b^6 - a^4*c^2 + b^4*c^2 + b^2*c^4 - c^6)*(a^4*b^4 - 2*a^2*b^6 + b^8 + a^6*c^2 + a^2*b^4*c^2 - 2*b^6*c^2 - 2*a^4*c^4 + b^4*c^4 + a^2*c^6)*(a^6*b^2 - 2*a^4*b^4 + a^2*b^6 + a^4*c^4 + a^2*b^2*c^4 + b^4*c^4 - 2*a^2*c^6 - 2*b^2*c^6 + c^8) : :

X(51960) lies on the cubics K054 and K667 and these lines: {4, 1987}, {5, 525}, {6, 32542}, {143, 11437}, {458, 9476}, {1007, 34403}, {1972, 42287}, {3095, 14059}, {9475, 34156}, {13568, 44549}, {18338, 39575}

X(51960) = X(132)-cross conjugate of X(1503)
X(51960) = X(1297)-isoconjugate of X(1955)
X(51960) = X(i)-Dao conjugate of X(j) for these (i, j): (23976, 401), (50938, 41204)
X(51960) = barycentric product X(i)*X(j) for these {i,j}: {1503, 1972}, {1987, 30737}
X(51960) = barycentric quotient X(i)/X(j) for these {i,j}: {1503, 401}, {1972, 35140}, {1987, 1297}, {2312, 1955}, {16318, 41204}, {30737, 44137}, {32542, 51343}, {42671, 1971}, {51363, 32428}


X(51961) = X(6)X(513)∩X(66)X(2911)

Barycentrics    a^2*(a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(a^4*b - b^5 + a^4*c - 2*a^3*b*c + b^4*c + b*c^4 - c^5) : :

X(51961) lies on the cubic K429 and these lines: {6, 513}, {66, 2911}, {193, 1814}, {219, 46163}, {393, 8751}, {478, 32735}, {571, 32658}, {608, 1974}, {666, 3596}, {4429, 40724}, {21769, 46149}

X(51961) = polar conjugate of the isotomic conjugate of X(34160)
X(51961) = X(3912)-isoconjugate of X(26703)
X(51961) = crosspoint of X(8751) and X(41934)
X(51961) = crosssum of X(i) and X(j) for these (i,j): {518, 47431}, {4437, 25083}
X(51961) = barycentric product X(i)*X(j) for these {i,j}: {4, 34160}, {105, 3827}, {4244, 10099}, {6185, 47431}, {14942, 51657}
X(51961) = barycentric quotient X(i)/X(j) for these {i,j}: {3827, 3263}, {34160, 69}, {47431, 4437}, {51657, 9436}


X(51962) = X(6)X(512)∩X(66)X(193)

Barycentrics    a^4*(a^2 + b^2 - 2*c^2)*(a^2 - 2*b^2 + c^2)*(a^4*b^2 - b^6 + a^4*c^2 - 2*a^2*b^2*c^2 + b^4*c^2 + b^2*c^4 - c^6) : :

X(51962) lies on the cubic K429 and these lines: {6, 512}, {66, 193}, {69, 36827}, {206, 32729}, {393, 8753}, {571, 14908}, {892, 1502}, {1974, 32740}, {7790, 14246}, {8541, 51428}, {8542, 15899}, {8877, 48945}, {9973, 46154}, {10415, 45096}, {11188, 46783}, {11511, 38971}, {36851, 36894}

X(51962) = polar conjugate of the isotomic conjugate of X(34158)
X(51962) = X(i)-Ceva conjugate of X(j) for these (i,j): {892, 47138}, {8753, 14580}, {10415, 41272}
X(51962) = X(i)-isoconjugate of X(j) for these (i,j): {524, 37220}, {896, 46140}, {2373, 14210}, {36095, 45807}
X(51962) = X(i)-Dao conjugate of X(j) for these (i, j): (2393, 5181), (15477, 2373), (15899, 46140)
X(51962) = crosspoint of X(8753) and X(41936)
X(51962) = crosssum of X(i) and X(j) for these (i,j): {524, 47426}, {3266, 7664}, {6390, 36792}
X(51962) = crossdifference of every pair of points on line {524, 45807}
X(51962) = barycentric product X(i)*X(j) for these {i,j}: {4, 34158}, {111, 2393}, {858, 32740}, {895, 14580}, {923, 18669}, {1236, 19626}, {2207, 51253}, {5181, 41936}, {5523, 14908}, {8753, 14961}, {10097, 46592}, {10630, 47426}, {32729, 47138}
X(51962) = barycentric quotient X(i)/X(j) for these {i,j}: {111, 46140}, {923, 37220}, {2393, 3266}, {14580, 44146}, {19626, 1177}, {32740, 2373}, {34158, 69}, {41272, 46165}, {42665, 45807}, {47426, 36792}


X(51963) = X(2)X(9473)∩X(6)X(523)

Barycentrics    (a^4 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - b^2*c^2 + c^4)*(2*a^6 - a^4*b^2 - b^6 - a^4*c^2 + b^4*c^2 + b^2*c^4 - c^6) : :

X(51963) lies on the cubic K429 and these lines: {2, 9473}, {4, 47388}, {6, 523}, {20, 8861}, {66, 248}, {69, 2966}, {98, 3424}, {193, 253}, {393, 1974}, {685, 1249}, {1503, 34156}, {1609, 47635}, {2445, 16318}, {2697, 2715}, {2980, 51542}, {5304, 40820}, {6776, 32545}, {7735, 41932}, {8779, 30737}, {9292, 34238}, {9476, 42287}, {14853, 47741}, {21458, 51363}, {23977, 51437}, {28343, 43089}, {39141, 39941}, {40079, 44883}, {46767, 47731}

X(51963) = polar conjugate of the isotomic conjugate of X(34156)
X(51963) = X(i)-Ceva conjugate of X(j) for these (i,j): {6531, 16318}, {9476, 98}, {47388, 1976}
X(51963) = X(i)-cross conjugate of X(j) for these (i,j): {23976, 16318}, {51437, 1976}
X(51963) = X(i)-isoconjugate of X(j) for these (i,j): {63, 39265}, {1297, 1959}, {1755, 35140}, {3405, 46164}, {6333, 36046}, {8767, 36212}, {9476, 23996}, {23997, 43673}
X(51963) = X(i)-Dao conjugate of X(j) for these (i, j): (441, 32458), (1503, 15595), (3162, 39265), (15595, 6393), (23976, 325), (33504, 6333), (36899, 35140), (39071, 36212), (39073, 36790), (42671, 38652), (50938, 297)
X(51963) = crosspoint of X(i) and X(j) for these (i,j): {98, 9476}, {6531, 41932}
X(51963) = crosssum of X(i) and X(j) for these (i,j): {511, 9475}, {36212, 36790}
X(51963) = crossdifference of every pair of points on line {511, 39073}
X(51963) = barycentric product X(i)*X(j) for these {i,j}: {4, 34156}, {32, 51257}, {98, 1503}, {132, 47388}, {287, 16318}, {290, 42671}, {441, 6531}, {879, 2409}, {1821, 2312}, {1976, 30737}, {2395, 34211}, {8766, 36120}, {8779, 16081}, {9154, 35282}, {9475, 34536}, {9476, 23976}, {14355, 43089}, {15595, 41932}, {15628, 43045}, {20021, 21458}, {20031, 39473}
X(51963) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 39265}, {98, 35140}, {441, 6393}, {878, 2435}, {879, 2419}, {1503, 325}, {1976, 1297}, {2312, 1959}, {2395, 43673}, {2409, 877}, {2422, 34212}, {2445, 4230}, {6531, 6330}, {6793, 51389}, {8779, 36212}, {9475, 36790}, {15595, 32458}, {16318, 297}, {21458, 20022}, {23976, 15595}, {24023, 17875}, {32696, 44770}, {34156, 69}, {34211, 2396}, {35282, 50567}, {41932, 9476}, {42671, 511}, {51257, 1502}, {51437, 232}
X(51963) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {34369, 35906, 5967}, {36899, 47737, 2}


X(51964) = X(6)X(647)∩X(32)X(40353)

Barycentrics    a^4*(a^4 - 2*a^2*b^2 + b^4 + a^2*c^2 + b^2*c^2 - 2*c^4)*(a^4 + a^2*b^2 - 2*b^4 - 2*a^2*c^2 + b^2*c^2 + c^4)*(a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8 + a^6*c^2 + 4*a^4*b^2*c^2 - 3*a^2*b^4*c^2 - 2*b^6*c^2 - 3*a^4*c^4 - 3*a^2*b^2*c^4 + 6*b^4*c^4 + 3*a^2*c^6 - 2*b^2*c^6 - c^8) : :

X(51964) lies on the cubic K429 and these lines: {6, 647}, {32, 40353}, {115, 393}, {193, 14919}, {571, 14642}, {577, 32640}, {1974, 40352}, {2132, 5158}, {14385, 33871}, {15291, 18890}, {39376, 47433}

X(51964) = polar conjugate of the isotomic conjugate of X(39174)
X(51964) = X(i)-isoconjugate of X(j) for these (i,j): {1294, 14206}, {24001, 43701}, {36043, 41077}
X(51964) = X(i)-Dao conjugate of X(j) for these (i, j): (35579, 41077), (50937, 46106)
X(51964) = crosspoint of X(8749) and X(40353)
X(51964) = crosssum of X(i) and X(j) for these (i,j): {30, 47433}, {11064, 36789}
X(51964) = barycentric product X(i)*X(j) for these {i,j}: {4, 39174}, {74, 6000}, {186, 39376}, {8749, 44436}, {14380, 46587}, {18877, 51358}, {40384, 47433}
X(51964) = barycentric quotient X(i)/X(j) for these {i,j}: {6000, 3260}, {39174, 69}, {39376, 328}, {40352, 1294}, {47433, 36789}


X(51965) = X(4)X(40388)∩X(6)X(2501)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 2*a^4*c^2 + 2*a^2*b^2*c^2 - 2*b^4*c^2 + a^2*c^4 + b^2*c^4)*(a^6 - 2*a^4*b^2 + a^2*b^4 - a^4*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 - a^2*c^4 - 2*b^2*c^4 + c^6) : :

X(51965) lies on the cubic K429 and these lines: {4, 40388}, {6, 2501}, {112, 393}, {193, 2986}, {687, 5649}, {1249, 32708}, {1974, 16240}, {1990, 2420}, {2407, 46106}, {3258, 46262}, {12028, 43911}, {14642, 47731}, {34334, 39176}, {38936, 40138}

X(51965) = polar conjugate of the isotomic conjugate of X(15454)
X(51965) = X(i)-cross conjugate of X(j) for these (i,j): {3163, 1990}, {14583, 4}
X(51965) = X(i)-isoconjugate of X(j) for these (i,j): {63, 14264}, {1494, 2315}, {1725, 14919}, {2349, 13754}, {3580, 35200}, {6334, 36034}
X(51965) = X(i)-Dao conjugate of X(j) for these (i, j): (133, 3580), (3162, 14264), (3258, 6334)
X(51965) = cevapoint of X(i) and X(j) for these (i,j): {1990, 39176}, {14581, 16240}
X(51965) = crosssum of X(13754) and X(47405)
X(51965) = barycentric product X(i)*X(j) for these {i,j}: {4, 15454}, {30, 1300}, {186, 39375}, {687, 1637}, {1784, 36053}, {1990, 2986}, {4240, 15328}, {6344, 39371}, {10419, 34334}, {14254, 38936}, {14581, 40832}, {14910, 46106}, {16240, 40423}, {32708, 41079}, {36035, 36114}, {36789, 40388}, {39176, 40427}
X(51965) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 14264}, {1300, 1494}, {1495, 13754}, {1637, 6334}, {1990, 3580}, {9406, 2315}, {9408, 47405}, {14398, 686}, {14581, 3003}, {14583, 39170}, {14910, 14919}, {15328, 34767}, {15454, 69}, {16240, 113}, {23347, 15329}, {32708, 44769}, {39176, 34834}, {39375, 328}, {40388, 40384}


X(51966) = X(21)X(2800)∩X(58)X(65)

Barycentrics    a^2*(a + b)*(a + c)*(a^6 - 2*a^5*b - a^4*b^2 + 4*a^3*b^3 - a^2*b^4 - 2*a*b^5 + b^6 - 2*a^5*c + 3*a^4*b*c - a^3*b^2*c - 3*a^2*b^3*c + 3*a*b^4*c - a^4*c^2 - a^3*b*c^2 + 4*a^2*b^2*c^2 - a*b^3*c^2 - b^4*c^2 + 4*a^3*c^3 - 3*a^2*b*c^3 - a*b^2*c^3 - a^2*c^4 + 3*a*b*c^4 - b^2*c^4 - 2*a*c^5 + c^6) : :

X(51966) lies on the cubic K340 and these lines: {21, 2800}, {28, 1845}, {58, 65}, {81, 11700}, {102, 110}, {163, 284}, {215, 501}, {333, 13532}, {580, 27622}, {859, 5127}, {1325, 5535}, {2849, 35055}, {4221, 14690}, {4653, 10703}, {6718, 25526}, {8677, 42741}

X(51966) = X(1325)-Ceva conjugate of X(501)
X(51966) = X(10)-isoconjugate of X(47645)
X(51966) = barycentric product X(i)*X(j) for these {i,j}: {81, 6326}, {284, 36918}, {333, 51236}
X(51966) = barycentric quotient X(i)/X(j) for these {i,j}: {1333, 47645}, {6326, 321}, {36918, 349}, {51236, 226}


X(51967) = X(2)X(41678)∩X(69)X(146)

Barycentrics    b^2*c^2*(-a^8 + 2*a^6*b^2 - 2*a^2*b^6 + b^8 - a^6*c^2 - 4*a^4*b^2*c^2 + 7*a^2*b^4*c^2 - 2*b^6*c^2 + 4*a^4*c^4 - 4*a^2*b^2*c^4 - a^2*c^6 + 2*b^2*c^6 - c^8)*(a^8 + a^6*b^2 - 4*a^4*b^4 + a^2*b^6 + b^8 - 2*a^6*c^2 + 4*a^4*b^2*c^2 + 4*a^2*b^4*c^2 - 2*b^6*c^2 - 7*a^2*b^2*c^4 + 2*a^2*c^6 + 2*b^2*c^6 - c^8) : :

X(51967) lies on the cubic K279 and these lines: {2, 41678}, {69, 146}, {95, 40082}, {253, 339}, {287, 37784}, {328, 43090}, {1494, 44138}, {2071, 3260}, {2373, 22239}, {2419, 35522}, {6330, 37778}, {6527, 44402}, {20563, 35520}, {30737, 30786}

X(51967) = isotomic conjugate of X(2071)
X(51967) = polar conjugate of X(15262)
X(51967) = isotomic conjugate of the anticomplement of X(403)
X(51967) = isotomic conjugate of the isogonal conjugate of X(11744)
X(51967) = X(i)-cross conjugate of X(j) for these (i,j): {74, 94}, {403, 2}, {1514, 34289}, {15311, 2052}, {32125, 4}, {47296, 76}
X(51967) = X(i)-isoconjugate of X(j) for these (i,j): {31, 2071}, {48, 15262}, {163, 46425}
X(51967) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 2071), (115, 46425), (1249, 15262), (34834, 12825)
X(51967) = cevapoint of X(6509) and X(13754)
X(51967) = trilinear pole of line {525, 13567}
X(51967) = barycentric product X(i)*X(j) for these {i,j}: {76, 11744}, {850, 48373}, {3267, 22239}, {7799, 48374}, {18027, 40082}
X(51967) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 2071}, {4, 15262}, {523, 46425}, {2052, 34170}, {3580, 12825}, {11744, 6}, {16080, 38937}, {22239, 112}, {40082, 577}, {47296, 11598}, {48373, 110}, {48374, 1989}, {51346, 3284}


X(51968) = X(2)X(41678)∩X(4)X(74)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^14 - 3*a^12*b^2 + a^10*b^4 + 5*a^8*b^6 - 5*a^6*b^8 - a^4*b^10 + 3*a^2*b^12 - b^14 - 3*a^12*c^2 + 15*a^10*b^2*c^2 - 15*a^8*b^4*c^2 - 14*a^6*b^6*c^2 + 27*a^4*b^8*c^2 - 9*a^2*b^10*c^2 - b^12*c^2 + a^10*c^4 - 15*a^8*b^2*c^4 + 46*a^6*b^4*c^4 - 26*a^4*b^6*c^4 - 15*a^2*b^8*c^4 + 9*b^10*c^4 + 5*a^8*c^6 - 14*a^6*b^2*c^6 - 26*a^4*b^4*c^6 + 42*a^2*b^6*c^6 - 7*b^8*c^6 - 5*a^6*c^8 + 27*a^4*b^2*c^8 - 15*a^2*b^4*c^8 - 7*b^6*c^8 - a^4*c^10 - 9*a^2*b^2*c^10 + 9*b^4*c^10 + 3*a^2*c^12 - b^2*c^12 - c^14) : :

X(51968) lies on the cubic K279 and these lines: {2, 41678}, {4, 74}, {92, 18625}, {323, 15262}, {459, 2986}, {648, 14361}, {858, 12384}, {1249, 14920}, {26212, 41253}, {36789, 41361}

X(51968) = polar conjugate of X(50480)
X(51968) = anticomplement of the isogonal conjugate of X(15262)
X(51968) = polar conjugate of the isogonal conjugate of X(2935)
X(51968) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {2071, 4329}, {15262, 8}, {34170, 21270}
X(51968) = X(3260)-Ceva conjugate of X(4)
X(51968) = X(48)-isoconjugate of X(50480)
X(51968) = X(i)-Dao conjugate of X(j) for these (i, j): (1249, 50480), (8749, 74)
X(51968) = barycentric product X(264)*X(2935)
X(51968) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 50480}, {2935, 3}


X(51969) = X(1)X(6254)∩X(19)X(57)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^7*b - 2*a^6*b^2 - a^5*b^3 + 4*a^4*b^4 - a^3*b^5 - 2*a^2*b^6 + a*b^7 + a^7*c - a^6*b*c - a^5*b^2*c + a^4*b^3*c - a^3*b^4*c + a^2*b^5*c + a*b^6*c - b^7*c - 2*a^6*c^2 - a^5*b*c^2 - 2*a^4*b^2*c^2 + 2*a^3*b^3*c^2 + 2*a^2*b^4*c^2 - a*b^5*c^2 + 2*b^6*c^2 - a^5*c^3 + a^4*b*c^3 + 2*a^3*b^2*c^3 - 2*a^2*b^3*c^3 - a*b^4*c^3 + b^5*c^3 + 4*a^4*c^4 - a^3*b*c^4 + 2*a^2*b^2*c^4 - a*b^3*c^4 - 4*b^4*c^4 - a^3*c^5 + a^2*b*c^5 - a*b^2*c^5 + b^3*c^5 - 2*a^2*c^6 + a*b*c^6 + 2*b^2*c^6 + a*c^7 - b*c^7) : :

X(51969) lies on the cubic K145 and these lines: {1, 6254}, {19, 57}, {73, 991}, {84, 3487}, {198, 34032}, {223, 18591}, {579, 43035}, {610, 1020}, {651, 2289}, {1423, 3220}, {1439, 18161}, {2114, 27626}, {2124, 3182}, {6282, 34488}, {6356, 15656}, {7013, 18631}, {18623, 40152}, {24220, 41010}, {34492, 34497}

X(51969) = X(3)-Ceva conjugate of X(57)
X(51969) = X(273)-Dao conjugate of X(264)
X(51969) = barycentric product X(7)*X(2947)
X(51969) = barycentric quotient X(2947)/X(8)


X(51970) = X(28)X(108)∩X(35)X(2778)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^9 - a^8*b - 2*a^7*b^2 + 2*a^6*b^3 + 2*a^3*b^6 - 2*a^2*b^7 - a*b^8 + b^9 - a^8*c + 2*a^7*b*c - a^6*b^2*c - 2*a^5*b^3*c + 5*a^4*b^4*c - 2*a^3*b^5*c - 3*a^2*b^6*c + 2*a*b^7*c - 2*a^7*c^2 - a^6*b*c^2 + 5*a^5*b^2*c^2 - 3*a^4*b^3*c^2 - 4*a^3*b^4*c^2 + 5*a^2*b^5*c^2 + a*b^6*c^2 - b^7*c^2 + 2*a^6*c^3 - 2*a^5*b*c^3 - 3*a^4*b^2*c^3 + 4*a^3*b^3*c^3 - 2*a*b^5*c^3 + b^6*c^3 + 5*a^4*b*c^4 - 4*a^3*b^2*c^4 - b^5*c^4 - 2*a^3*b*c^5 + 5*a^2*b^2*c^5 - 2*a*b^3*c^5 - b^4*c^5 + 2*a^3*c^6 - 3*a^2*b*c^6 + a*b^2*c^6 + b^3*c^6 - 2*a^2*c^7 + 2*a*b*c^7 - b^2*c^7 - a*c^8 + c^9) : :

X(51970) lies on the cubic K340 and these lines: {28, 108}, {35, 2778}, {36, 1455}, {65, 34442}, {73, 501}, {1415, 2193}, {2817, 11012}, {2829, 3585}, {2849, 8648}, {37561, 38696}

X(51970) = X(1325)-Ceva conjugate of X(65)


X(51971) = X(4)X(57)∩X(19)X(6524)

Barycentrics    a*(a - b - c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^8*b + a^7*b^2 - 3*a^6*b^3 - 3*a^5*b^4 + 3*a^4*b^5 + 3*a^3*b^6 - a^2*b^7 - a*b^8 + a^8*c + a^7*b*c + 2*a^6*b^2*c - a^5*b^3*c - 6*a^4*b^4*c - a^3*b^5*c + 2*a^2*b^6*c + a*b^7*c + b^8*c + a^7*c^2 + 2*a^6*b*c^2 + 4*a^5*b^2*c^2 + 3*a^4*b^3*c^2 - 3*a^3*b^4*c^2 - 4*a^2*b^5*c^2 - 2*a*b^6*c^2 - b^7*c^2 - 3*a^6*c^3 - a^5*b*c^3 + 3*a^4*b^2*c^3 + 2*a^3*b^3*c^3 + 3*a^2*b^4*c^3 - a*b^5*c^3 - 3*b^6*c^3 - 3*a^5*c^4 - 6*a^4*b*c^4 - 3*a^3*b^2*c^4 + 3*a^2*b^3*c^4 + 6*a*b^4*c^4 + 3*b^5*c^4 + 3*a^4*c^5 - a^3*b*c^5 - 4*a^2*b^2*c^5 - a*b^3*c^5 + 3*b^4*c^5 + 3*a^3*c^6 + 2*a^2*b*c^6 - 2*a*b^2*c^6 - 3*b^3*c^6 - a^2*c^7 + a*b*c^7 - b^2*c^7 - a*c^8 + b*c^8) : :

X(51971) lies on the cubic K145 and these lines: {4, 57}, {19, 6524}, {33, 11435}, {71, 8802}, {108, 2947}, {204, 3192}, {207, 6254}, {243, 27659}, {1249, 40945}, {1400, 1857}, {36103, 37225}

X(51971) = X(3)-Ceva conjugate of X(19)
X(51971) = X(158)-Dao conjugate of X(264)


X(51972) = X(1)X(21096)∩X(8)X(9)

Barycentrics    (a - b - c)^2*(a*b - b^2 + a*c + 2*b*c - c^2) : :

X(51972) lies on the cubic K1066 and these lines: {1, 21096}, {8, 9}, {10, 3693}, {41, 12437}, {69, 30625}, {72, 2809}, {76, 85}, {78, 40869}, {142, 1229}, {190, 34932}, {200, 6554}, {218, 519}, {220, 6737}, {306, 30807}, {321, 25002}, {329, 2391}, {345, 4384}, {515, 17742}, {672, 24391}, {946, 21073}, {1018, 11362}, {1043, 6559}, {1146, 4515}, {1210, 8568}, {1212, 4847}, {1759, 31730}, {1864, 6057}, {2170, 21627}, {2481, 29960}, {3061, 12053}, {3239, 42455}, {3419, 49782}, {3452, 27390}, {3501, 4848}, {3661, 27288}, {3687, 30854}, {3694, 20262}, {3729, 6604}, {3827, 8804}, {3893, 4534}, {3935, 26793}, {3970, 21620}, {3974, 10382}, {3985, 40661}, {3991, 31397}, {4136, 10395}, {4416, 32024}, {4454, 32098}, {4855, 26258}, {4869, 32086}, {4967, 27544}, {4987, 10123}, {5179, 21075}, {5257, 27396}, {5438, 40127}, {5525, 45287}, {5687, 8074}, {5927, 10324}, {6734, 25082}, {6738, 17355}, {6743, 37658}, {6745, 46835}, {7080, 23058}, {8232, 31994}, {8582, 21049}, {9436, 25242}, {9843, 25068}, {10106, 24247}, {10481, 51384}, {10572, 17744}, {10914, 23840}, {10916, 24036}, {12526, 41325}, {12527, 50995}, {12848, 32003}, {15490, 41789}, {16284, 17233}, {17294, 42032}, {17787, 30030}, {21090, 21616}, {22021, 42712}, {25019, 45744}, {25101, 32008}, {25525, 29627}, {25719, 40872}, {26015, 26690}, {27340, 31038}, {28739, 34059}, {30618, 44669}, {30806, 43971}, {41239, 49466}, {42033, 50095}

X(51972) = isotomic conjugate of X(10509)
X(51972) = isotomic conjugate of the isogonal conjugate of X(8012)
X(51972) = X(i)-Ceva conjugate of X(j) for these (i,j): {312, 1229}, {346, 45791}, {668, 4163}, {1229, 4847}, {4578, 3239}
X(51972) = X(3059)-cross conjugate of X(4847)
X(51972) = X(i)-isoconjugate of X(j) for these (i,j): {31, 10509}, {32, 42311}, {34, 1803}, {56, 1170}, {269, 1174}, {604, 21453}, {608, 40443}, {738, 10482}, {1106, 32008}, {1397, 31618}, {1407, 2346}, {1435, 47487}, {6605, 7023}
X(51972) = X(i)-Dao conjugate of X(j) for these (i, j): (1, 1170), (2, 10509), (142, 57), (1212, 279), (3119, 513), (3161, 21453), (4847, 1445), (5572, 1202), (6376, 42311), (6552, 32008), (6600, 1174), (11517, 1803), (24771, 2346), (40606, 269), (45791, 7674)
X(51972) = cevapoint of X(3059) and X(45791)
X(51972) = crosspoint of X(312) and X(346)
X(51972) = crosssum of X(604) and X(1407)
X(51972) = barycentric product X(i)*X(j) for these {i,j}: {8, 4847}, {9, 1229}, {75, 3059}, {76, 8012}, {85, 45791}, {142, 346}, {200, 20880}, {220, 1233}, {312, 1212}, {314, 21039}, {341, 354}, {345, 1855}, {646, 21127}, {668, 6608}, {1043, 3925}, {1418, 30693}, {1827, 3718}, {1978, 10581}, {2293, 3596}, {2321, 16713}, {3699, 6362}, {3701, 17194}, {4082, 17169}, {4163, 35312}, {4391, 35341}, {4397, 35338}, {4515, 16708}, {4572, 6607}, {5423, 10481}, {6558, 21104}, {6559, 51384}, {8551, 20567}, {20229, 28659}, {21795, 28660}, {51416, 51565}
X(51972) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 10509}, {8, 21453}, {9, 1170}, {75, 42311}, {78, 40443}, {142, 279}, {200, 2346}, {219, 1803}, {220, 1174}, {312, 31618}, {346, 32008}, {354, 269}, {480, 10482}, {728, 6605}, {1212, 57}, {1229, 85}, {1260, 47487}, {1418, 738}, {1475, 1407}, {1827, 34}, {1855, 278}, {2293, 56}, {2488, 43924}, {3059, 1}, {3699, 6606}, {3925, 3668}, {4847, 7}, {6067, 10481}, {6362, 3676}, {6607, 663}, {6608, 513}, {8012, 6}, {8551, 41}, {10481, 479}, {10581, 649}, {15185, 4350}, {16713, 1434}, {17194, 1014}, {20229, 604}, {20880, 1088}, {21039, 65}, {21127, 3669}, {21795, 1400}, {21808, 1427}, {22053, 7053}, {22079, 603}, {35310, 1020}, {35312, 4626}, {35326, 1461}, {35338, 934}, {35341, 651}, {40983, 1398}, {42449, 45227}, {45791, 9}, {48151, 43932}, {51416, 22464}
X(51972) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 346, 728}, {1146, 4515, 6736}, {1210, 25066, 8568}, {2321, 41006, 8}, {3693, 40997, 10}, {21049, 44798, 8582}


X(51973) = X(1)X(39)∩X(2)X(7033)

Barycentrics    a^2*(-b^2 + a*c)*(a*b + a*c - b*c)*(a*b - c^2) : :

X(51973) lies on the cubics K775 and K787 and these lines: {1, 39}, {2, 7033}, {6, 19587}, {37, 4518}, {42, 694}, {43, 6377}, {55, 1911}, {172, 18265}, {190, 19579}, {334, 27295}, {335, 3666}, {727, 813}, {741, 43077}, {1458, 30657}, {1575, 32922}, {1966, 17759}, {2176, 38986}, {2238, 3508}, {2329, 9468}, {3224, 22061}, {3229, 3507}, {3510, 8844}, {3693, 20363}, {4562, 10027}, {4595, 16742}, {7245, 16712}, {9315, 40730}, {17594, 18787}, {18895, 24326}, {25058, 36800}, {27020, 40094}, {37128, 42028}, {38832, 51319}, {40093, 41240}, {41269, 43534}

X(51973) = isogonal conjugate of X(39914)
X(51973) = isogonal conjugate of the isotomic conjugate of X(40848)
X(51973) = X(1911)-Ceva conjugate of X(292)
X(51973) = X(41531)-cross conjugate of X(292)
X(51973) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39914}, {2, 34252}, {75, 51321}, {87, 239}, {238, 330}, {350, 2162}, {659, 4598}, {812, 932}, {1428, 27424}, {1429, 7155}, {1447, 2319}, {1580, 27447}, {1914, 6384}, {1921, 7121}, {2053, 10030}, {2210, 6383}, {3253, 40881}, {3500, 14199}, {3570, 43931}, {3685, 7153}, {3766, 34071}, {5383, 27846}, {6650, 8843}, {8632, 18830}, {15373, 40717}, {16606, 33295}, {23493, 30940}
X(51973) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 39914), (75, 18891), (206, 51321), (798, 27846), (3835, 27918), (9470, 330), (32664, 34252), (36906, 6384), (39092, 27447), (40598, 1921), (40610, 3766)
X(51973) = cevapoint of X(18758) and X(21760)
X(51973) = trilinear pole of line {20667, 20979}
X(51973) = crossdifference of every pair of points on line {659, 4107}
X(51973) = barycentric product X(i)*X(j) for these {i,j}: {1, 41531}, {6, 40848}, {43, 291}, {192, 292}, {334, 2209}, {335, 2176}, {660, 4083}, {694, 17752}, {741, 3971}, {813, 3835}, {875, 36863}, {1403, 4518}, {1423, 4876}, {1911, 6376}, {1916, 51319}, {1922, 6382}, {1967, 41318}, {3009, 33680}, {3123, 5378}, {3212, 7077}, {3572, 4595}, {4562, 20979}, {4583, 8640}, {4584, 21834}, {4589, 50491}, {16362, 40795}, {18897, 40367}, {20691, 37128}, {20906, 34067}, {38832, 43534}
X(51973) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 39914}, {31, 34252}, {32, 51321}, {43, 350}, {192, 1921}, {291, 6384}, {292, 330}, {335, 6383}, {660, 18830}, {694, 27447}, {813, 4598}, {875, 43931}, {1403, 1447}, {1423, 10030}, {1911, 87}, {1922, 2162}, {2176, 239}, {2209, 238}, {3208, 3975}, {3212, 18033}, {3971, 35544}, {4083, 3766}, {4595, 27853}, {4876, 27424}, {6376, 18891}, {6377, 27918}, {6382, 44169}, {7077, 7155}, {8640, 659}, {14598, 7121}, {17752, 3978}, {18265, 2053}, {18266, 8843}, {20284, 33891}, {20691, 3948}, {20979, 812}, {21835, 39786}, {24533, 14296}, {27538, 4087}, {27644, 30940}, {34067, 932}, {34247, 14199}, {38832, 33295}, {38986, 27846}, {40848, 76}, {41318, 1926}, {41526, 1429}, {41531, 75}, {50491, 4010}, {51319, 385}


X(51974) = X(1)X(893)∩X(6)X(904)

Barycentrics    a^2*(b^2 + a*c)*(a*b - a*c - b*c)*(a*b - a*c + b*c)*(a*b + c^2) : :

X(51974) lies on the conic {{A,B,C,X(1),X(6)}}, the cubic K787, and these lines: {1, 893}, {6, 904}, {39, 3494}, {56, 2162}, {58, 23525}, {86, 16744}, {87, 256}, {172, 7104}, {257, 3226}, {269, 7153}, {292, 1967}, {330, 870}, {694, 20460}, {733, 932}, {979, 23447}, {1015, 3865}, {1220, 16606}, {1431, 30658}, {1691, 41526}, {2329, 9468}, {4451, 20363}, {6378, 39977}, {7121, 40746}, {16720, 18830}, {18758, 51319}, {20471, 34445}, {21008, 34249}, {24528, 39969}, {34252, 40763}, {39972, 40729}

X(51974) = isogonal conjugate of X(17752)
X(51974) = isogonal conjugate of the anticomplement of X(30038)
X(51974) = isogonal conjugate of the isotomic conjugate of X(27447)
X(51974) = X(i)-cross conjugate of X(j) for these (i,j): {256, 893}, {50521, 18830}
X(51974) = X(i)-isoconjugate of X(j) for these (i,j): {1, 17752}, {6, 41318}, {43, 894}, {75, 51319}, {171, 192}, {172, 6376}, {190, 24533}, {213, 27891}, {385, 41531}, {651, 30584}, {1215, 27644}, {1403, 17787}, {1423, 7081}, {1580, 40848}, {1909, 2176}, {1920, 2209}, {2295, 33296}, {2329, 3212}, {2330, 30545}, {3208, 7176}, {3502, 17741}, {3835, 4579}, {3963, 38832}, {4083, 18047}, {4367, 4595}, {6382, 7122}, {7009, 22370}, {7175, 27538}, {7234, 36860}, {7304, 21803}, {17103, 20691}, {20964, 31008}, {20981, 36863}
X(51974) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 17752), (9, 41318), (206, 51319), (6626, 27891), (38991, 30584), (39092, 40848)
X(51974) = crossdifference of every pair of points on line {24533, 30584}
X(51974) = barycentric product X(i)*X(j) for these {i,j}: {6, 27447}, {87, 256}, {257, 2162}, {330, 893}, {694, 39914}, {904, 6384}, {1178, 42027}, {1431, 7155}, {1432, 2319}, {1581, 34252}, {1916, 51321}, {2053, 7249}, {3903, 43931}, {6383, 7104}, {7018, 7121}, {7148, 7303}, {16606, 40432}, {23493, 32010}, {40763, 45782}
X(51974) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 41318}, {6, 17752}, {32, 51319}, {86, 27891}, {87, 1909}, {256, 6376}, {257, 6382}, {330, 1920}, {663, 30584}, {667, 24533}, {694, 40848}, {893, 192}, {904, 43}, {1178, 33296}, {1431, 3212}, {1432, 30545}, {1967, 41531}, {2053, 7081}, {2162, 894}, {2319, 17787}, {3863, 33890}, {3903, 36863}, {4603, 36860}, {6378, 21021}, {7104, 2176}, {7116, 22370}, {7121, 171}, {7153, 7196}, {16606, 3963}, {21759, 2295}, {23493, 1215}, {27447, 76}, {34071, 18047}, {34249, 17741}, {34252, 1966}, {39914, 3978}, {40432, 31008}, {40729, 20691}, {42027, 1237}, {43931, 4374}, {44187, 40367}, {45209, 27880}, {45218, 27697}, {51321, 385}


X(51975) = X(1)X(51562)∩X(2)X(36909)

Barycentrics    b*c*(-2*a + b + c)*(a^2 - a*b + b^2 - c^2)*(-a^2 + b^2 + a*c - c^2) : :

X(51975) lies on the cubics K971 and K1066 and these lines: {1, 51562}, {2, 36909}, {8, 80}, {10, 522}, {12, 18120}, {76, 1227}, {85, 18821}, {214, 36944}, {341, 4076}, {355, 38954}, {519, 14584}, {759, 8706}, {956, 14204}, {997, 40437}, {1168, 4737}, {1411, 22837}, {1772, 18395}, {1807, 30144}, {2006, 45700}, {2161, 4095}, {2222, 2757}, {2325, 4169}, {2801, 14266}, {3244, 34232}, {3679, 36590}, {3701, 49998}, {3992, 17780}, {6554, 36910}, {18815, 36588}, {20900, 33937}, {24624, 51285}, {38955, 47320}

X(51975) = isogonal conjugate of X(16944)
X(51975) = isotomic conjugate of the isogonal conjugate of X(40172)
X(51975) = X(i)-Ceva conjugate of X(j) for these (i,j): {20566, 4358}, {35174, 3762}
X(51975) = X(i)-cross conjugate of X(j) for these (i,j): {900, 51562}, {1145, 519}, {3992, 15065}, {4370, 4358}
X(51975) = X(i)-isoconjugate of X(j) for these (i,j): {1, 16944}, {6, 40215}, {36, 106}, {88, 7113}, {1022, 1983}, {1417, 4511}, {1870, 36058}, {2226, 17455}, {3218, 9456}, {3257, 21758}, {3960, 32665}, {4453, 32719}, {4591, 21828}, {8752, 22128}, {10428, 34586}, {17923, 32659}, {36590, 41282}, {41935, 51583}
X(51975) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 16944), (9, 40215), (214, 36), (519, 214), (4370, 3218), (15898, 106), (20619, 1870), (35092, 3960), (36909, 1320), (36910, 40594), (36912, 4867), (51402, 3738)
X(51975) = cevapoint of X(i) and X(j) for these (i,j): {80, 36909}, {3992, 4738}
X(51975) = trilinear pole of line {1639, 3943}
X(51975) = crossdifference of every pair of points on line {7113, 21758}
X(51975) = barycentric product X(i)*X(j) for these {i,j}: {8, 14628}, {44, 20566}, {76, 40172}, {80, 4358}, {312, 14584}, {519, 18359}, {655, 4768}, {900, 36804}, {1168, 36791}, {1639, 35174}, {1807, 46109}, {2006, 4723}, {2161, 3264}, {2325, 18815}, {3762, 51562}, {3943, 14616}, {3992, 24624}, {4895, 46405}, {15065, 16704}
X(51975) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 40215}, {6, 16944}, {44, 36}, {80, 88}, {519, 3218}, {678, 17455}, {900, 3960}, {902, 7113}, {1145, 16586}, {1168, 2226}, {1639, 3738}, {1807, 1797}, {1960, 21758}, {2161, 106}, {2325, 4511}, {3264, 20924}, {3689, 2323}, {3762, 4453}, {3911, 1443}, {3943, 758}, {3992, 3936}, {4358, 320}, {4370, 214}, {4432, 27950}, {4723, 32851}, {4727, 4880}, {4730, 21828}, {4738, 51583}, {4768, 3904}, {4895, 654}, {4908, 4867}, {4969, 4973}, {5440, 22128}, {6187, 9456}, {8756, 1870}, {14584, 57}, {14628, 7}, {15065, 4080}, {17780, 4585}, {18359, 903}, {20566, 20568}, {21805, 2245}, {22086, 22379}, {23344, 1983}, {36791, 1227}, {36804, 4555}, {36909, 40594}, {36910, 1320}, {38462, 17923}, {40172, 6}, {40663, 18593}, {47318, 4622}, {51562, 3257}


X(51976) = X(1)X(15)∩X(57)X(77)

Barycentrics    a*(a + b - c)*(a - b + c)*(3*a^2 - 2*a*b - b^2 - 2*a*c - 2*b*c - c^2 + 2*Sqrt[3]*S) : :

X(51976) lies on the cubic K1146 and these lines: {1, 15}, {6, 1653}, {9, 5362}, {37, 1082}, {57, 77}, {396, 1081}, {559, 16884}, {1046, 2307}, {1100, 37773}, {1277, 5353}, {3180, 17364}, {3945, 30281}, {5222, 30280}, {6127, 11789}

X(51976) = X(1082)-Ceva conjugate of X(1)
X(51976) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 37772, 1653}, {15, 39153, 1}


X(51977) = X(1)X(16)∩X(57)X(77)

Barycentrics    a*(a + b - c)*(a - b + c)*(3*a^2 - 2*a*b - b^2 - 2*a*c - 2*b*c - c^2 - 2*Sqrt[3]*S) : :

X(51977) lies on the cubic K1146 and these lines: {1, 16}, {6, 1652}, {9, 5367}, {37, 559}, {57, 77}, {395, 554}, {1082, 16884}, {1100, 37772}, {1276, 5357}, {3181, 17364}, {3945, 30280}, {5222, 30281}, {6127, 11752}

X(51977) = X(559)-Ceva conjugate of X(1)
X(51977) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 37773, 1652}, {16, 39152, 1}


X(51978) = X(4)X(69)∩X(8)X(21)

Barycentrics    (a + b)*(a - b - c)^2*(a + c)*(a^2*b - b^3 + a^2*c + 2*a*b*c + b^2*c + b*c^2 - c^3) : :

X(51978) lies on the cubic K1066 and these lines: {4, 69}, {8, 21}, {29, 1812}, {58, 49168}, {81, 5716}, {85, 30941}, {86, 938}, {274, 955}, {312, 41509}, {388, 5208}, {411, 14829}, {515, 10461}, {950, 17185}, {1010, 18391}, {1150, 20846}, {1444, 5768}, {1478, 35637}, {1479, 18417}, {1788, 13588}, {1834, 26543}, {1858, 3706}, {2287, 6554}, {2476, 18134}, {2551, 3786}, {3056, 18178}, {3086, 18465}, {3419, 18180}, {3434, 41723}, {3485, 10453}, {3869, 4673}, {3886, 12514}, {4305, 37303}, {4417, 6828}, {4966, 31936}, {5086, 7270}, {5730, 37357}, {5794, 18165}, {6734, 14547}, {6737, 46877}, {6841, 41014}, {6857, 9534}, {6872, 14552}, {7098, 32932}, {7253, 42455}, {7474, 10327}, {7491, 32128}, {8822, 9799}, {9581, 17182}, {10393, 11679}, {11114, 50215}, {12625, 18163}, {15984, 21024}, {16752, 17054}, {16992, 37149}, {18206, 24391}, {19259, 37730}, {22292, 22301}, {25015, 37796}, {27398, 28827}, {30943, 34259}, {37655, 50695}, {41610, 51192}, {48850, 50739}

X(51978) = isotomic conjugate of the isogonal conjugate of X(8021)
X(51978) = X(i)-isoconjugate of X(j) for these (i,j): {512, 36048}, {661, 32651}, {943, 1042}, {1175, 1254}, {1400, 2982}, {1409, 40573}, {1426, 1794}, {1427, 2259}, {4017, 15439}, {37755, 40570}
X(51978) = X(i)-Dao conjugate of X(j) for these (i, j): (442, 65), (942, 1425), (6734, 15556), (15607, 512), (16585, 3668), (18591, 1427), (34961, 15439), (36830, 32651), (39054, 36048), (40582, 2982), (40937, 6354)
X(51978) = crosspoint of X(314) and X(7058)
X(51978) = crossdifference of every pair of points on line {3049, 7180}
X(51978) = barycentric product X(i)*X(j) for these {i,j}: {76, 8021}, {314, 40937}, {333, 6734}, {442, 7058}, {670, 33525}, {1043, 5249}, {1234, 7054}, {3596, 46882}, {3718, 46884}, {7258, 50354}, {14547, 28660}
X(51978) = barycentric quotient X(i)/X(j) for these {i,j}: {21, 2982}, {29, 40573}, {110, 32651}, {442, 6354}, {662, 36048}, {942, 1427}, {1043, 40435}, {1841, 1426}, {1859, 1880}, {2260, 1042}, {2287, 943}, {2294, 1254}, {2327, 1794}, {2328, 2259}, {5249, 3668}, {5546, 15439}, {6734, 226}, {7054, 1175}, {7058, 40412}, {8021, 6}, {14547, 1400}, {14597, 1410}, {17926, 14775}, {18591, 1425}, {18607, 1439}, {23207, 1409}, {31938, 16577}, {33525, 512}, {40937, 65}, {40967, 2171}, {46882, 56}, {46883, 1435}, {46884, 34}, {46885, 4341}, {46890, 1398}, {50354, 7216}
X(51978) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {314, 44130, 44140}, {333, 1043, 1792}


X(51979) = X(1)X(2670)∩X(2)X(893)

Barycentrics    a^2*(b^2 + a*c)*(a*b + c^2)*(a^3*b^3 - a^2*b^2*c^2 + a^3*c^3 - b^3*c^3) : :

X(51979) lies on the cubic K155 and K787 and these lines: {1, 2670}, {2, 893}, {6, 904}, {39, 256}, {238, 9468}, {292, 30658}, {672, 1967}, {1178, 23660}, {1931, 20332}, {2108, 16363}, {2111, 2114}, {2669, 40432}, {4279, 7104}, {18786, 24727}, {19579, 40849}

X(51979) = isogonal conjugate of X(39933)
X(51979) = isogonal conjugate of the isotomic conjugate of X(40849)
X(51979) = X(i)-Ceva conjugate of X(j) for these (i,j): {238, 41532}, {9468, 893}
X(51979) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39933}, {385, 24576}, {894, 7168}, {1691, 30633}, {7061, 8868}
X(51979) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 39933), (1921, 14603)
X(51979) = barycentric product X(i)*X(j) for these {i,j}: {6, 40849}, {256, 3510}, {257, 18278}, {694, 19579}, {893, 19565}, {904, 19567}, {1581, 19580}, {1916, 18274}, {1934, 30634}, {1967, 19581}, {7104, 18275}, {8875, 40873}, {9468, 18277}
X(51979) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 39933}, {904, 7168}, {1581, 30633}, {1967, 24576}, {3510, 1909}, {8875, 40846}, {18274, 385}, {18277, 14603}, {18278, 894}, {19565, 1920}, {19579, 3978}, {19580, 1966}, {19581, 1926}, {30634, 1580}, {40849, 76}, {41882, 8868}
X(51979) = {X(292),X(30658)}-harmonic conjugate of X(41532)


X(51980) = X(4)X(542)∩X(6)X(512)

Barycentrics    a^4*(a^2 + b^2 - 2*c^2)*(a^2 - 2*b^2 + c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :
X(51980) = 3 X[182] - 2 X[14811]

X(51980) lies on the cubic K055 and these lines: {2, 36827}, {4, 542}, {6, 512}, {32, 1084}, {110, 10560}, {111, 263}, {182, 691}, {184, 10558}, {237, 14966}, {511, 2421}, {524, 3143}, {597, 36157}, {892, 44155}, {1316, 45329}, {3016, 42007}, {3818, 51405}, {5028, 37841}, {5039, 34238}, {5466, 46124}, {5476, 16092}, {5480, 51258}, {5640, 46783}, {5651, 32583}, {8542, 35087}, {8877, 15004}, {9306, 10559}, {9971, 13330}, {11511, 35923}, {14263, 44500}, {20022, 51396}, {22826, 22827}, {32648, 39238}, {33752, 36823}, {36892, 50567}, {44102, 46592}, {47572, 51736}

X(51980) = isogonal conjugate of the isotomic conjugate of X(5968)
X(51980) = X(9154)-Ceva conjugate of X(111)
X(51980) = X(i)-isoconjugate of X(j) for these (i,j): {75, 5967}, {98, 14210}, {187, 46273}, {290, 896}, {293, 44146}, {336, 468}, {524, 1821}, {690, 36036}, {922, 18024}, {1910, 3266}, {2395, 24039}, {2642, 43187}, {6390, 36120}, {9154, 24038}, {23889, 43665}, {35522, 36084}, {36104, 45807}
X(51980) = X(i)-Dao conjugate of X(j) for these (i, j): (132, 44146), (206, 5967), (511, 50567), (2679, 690), (11672, 3266), (15477, 98), (15899, 290), (38987, 35522), (39000, 45807), (39061, 18024), (40601, 524), (46094, 6390)
X(51980) = crosspoint of X(111) and X(9154)
X(51980) = crosssum of X(524) and X(9155)
X(51980) = trilinear pole of line {237, 2491}
X(51980) = crossdifference of every pair of points on line {524, 35522}
X(51980) = X(3143)-lineconjugate of X(524)
X(51980) = barycentric product X(i)*X(j) for these {i,j}: {6, 5968}, {110, 8430}, {111, 511}, {232, 895}, {237, 671}, {240, 36060}, {297, 14908}, {325, 32740}, {691, 3569}, {892, 2491}, {897, 1755}, {923, 1959}, {2211, 30786}, {2421, 9178}, {2799, 32729}, {3289, 17983}, {4230, 10097}, {5466, 14966}, {5547, 43034}, {8753, 36212}, {9154, 11672}, {9155, 10630}, {9417, 46277}, {9418, 18023}, {20022, 41272}, {23894, 23997}, {41936, 50567}
X(51980) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 5967}, {111, 290}, {232, 44146}, {237, 524}, {511, 3266}, {671, 18024}, {684, 45807}, {691, 43187}, {897, 46273}, {923, 1821}, {1755, 14210}, {2211, 468}, {2491, 690}, {3289, 6390}, {3569, 35522}, {5360, 42713}, {5968, 76}, {8430, 850}, {8753, 16081}, {9155, 36792}, {9178, 43665}, {9417, 896}, {9418, 187}, {9419, 9155}, {11672, 50567}, {14908, 287}, {14966, 5468}, {19626, 1976}, {23997, 24039}, {32729, 2966}, {32740, 98}, {34854, 37778}, {36060, 336}, {36142, 36036}, {39469, 14417}, {41272, 20021}, {41936, 9154}
X(51980) = {X(691),X(21460)}-harmonic conjugate of X(182)


X(51981) = X(2)X(292)∩X(6)X(2196)

Barycentrics    a^2*(-b^2 + a*c)*(a*b - c^2)*(a^3*b^3 + a^2*b^2*c^2 + a^3*c^3 - b^3*c^3) : :

X(51981) lies on the cubic K787 and these lines: {2, 292}, {6, 2196}, {39, 8866}, {291, 23447}, {733, 932}, {1691, 14598}, {1911, 16372}, {3224, 22061}, {3229, 3510}, {9468, 40597}

X(51981) = isogonal conjugate of X(39934)
X(51981) = X(9468)-Ceva conjugate of X(292)
X(51981) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39934}, {239, 7346}
X(51981) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 39934), (1920, 14603)
X(51981) = barycentric product X(i)*X(j) for these {i,j}: {291, 6196}, {335, 34251}, {694, 39928}, {1911, 24732}
X(51981) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 39934}, {1911, 7346}, {6196, 350}, {24732, 18891}, {34251, 239}, {39928, 3978}


X(51982) = X(39)X(695)∩X(141)X(9229)

Barycentrics    a^2*(-b^2 + a*c)*(b^2 + a*c)*(a*b - c^2)*(a*b + c^2)*(b^4 + a^2*c^2)*(a^2*b^2 + c^4) : :

X(51982) lies on the cubics K787 and K1023 and these lines: {39, 695}, {141, 9229}, {694, 1843}, {711, 827}, {733, 14370}, {755, 783}, {1915, 9468}, {1916, 42551}, {2353, 33786}, {3229, 3505}, {5207, 19566}, {9284, 9285}, {14970, 18828}, {18896, 40379}, {44163, 44166}

X(51982) = isogonal conjugate of X(16985)
X(51982) = isogonal conjugate of the anticomplement of X(40876)
X(51982) = isotomic conjugate of the isogonal conjugate of X(14946)
X(51982) = isogonal conjugate of the isotomic conjugate of X(40847)
X(51982) = X(i)-cross conjugate of X(j) for these (i,j): {2, 41517}, {882, 18828}, {23635, 36897}
X(51982) = X(i)-isoconjugate of X(j) for these (i,j): {1, 16985}, {75, 51320}, {384, 1580}, {385, 1582}, {782, 4599}, {1691, 1965}, {1915, 1966}, {1925, 14602}, {1932, 3978}, {1933, 9230}, {16101, 19578}, {34072, 35558}
X(51982) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 16985), (206, 51320), (3124, 782), (8265, 35530), (9467, 1915), (15449, 35558), (39092, 384)
X(51982) = trilinear pole of line {3005, 20859}
X(51982) = crossdifference of every pair of points on line {782, 39082}
X(51982) = barycentric product X(i)*X(j) for these {i,j}: {6, 40847}, {76, 14946}, {626, 711}, {694, 9229}, {695, 1916}, {783, 826}, {1581, 9285}, {1934, 9288}, {1967, 9239}, {3005, 18828}, {36214, 37892}
X(51982) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 16985}, {32, 51320}, {626, 35530}, {694, 384}, {695, 385}, {711, 40416}, {783, 4577}, {826, 35558}, {1581, 1965}, {1916, 9230}, {1927, 1932}, {1934, 1925}, {1967, 1582}, {3005, 782}, {3505, 19571}, {9229, 3978}, {9236, 1933}, {9239, 1926}, {9285, 1966}, {9288, 1580}, {9468, 1915}, {14946, 6}, {17970, 37893}, {18828, 689}, {20859, 710}, {36214, 37894}, {37892, 17984}, {40847, 76}


X(51983) = X(2)X(6)∩X(3)X(33786)

Barycentrics    a^2*(a^4*b^4 + a^4*b^2*c^2 - a^2*b^4*c^2 + a^4*c^4 - a^2*b^2*c^4 - b^4*c^4) : :

X(51983) lies on the cubic K787 and these lines: {2, 6}, {3, 33786}, {39, 3499}, {187, 9431}, {292, 1755}, {308, 4074}, {669, 2513}, {670, 19573}, {703, 9150}, {733, 805}, {893, 1964}, {1078, 44164}, {1186, 7786}, {1207, 6683}, {1576, 51320}, {1691, 9418}, {1915, 41331}, {1979, 16693}, {3053, 3224}, {3229, 3511}, {3819, 45210}, {8623, 9468}, {9225, 33875}, {10007, 43977}, {10191, 39968}, {10329, 41328}, {35325, 44090}, {38382, 40858}, {38854, 42548}, {39932, 47642}

X(51983) = isogonal conjugate of X(39939)
X(51983) = isogonal conjugate of the isotomic conjugate of X(40858)
X(51983) = X(i)-Ceva conjugate of X(j) for these (i,j): {8623, 2076}, {9468, 6}
X(51983) = X(38382)-cross conjugate of X(6)
X(51983) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39939}, {75, 51326}, {1821, 51249}
X(51983) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 39939), (206, 51326), (3978, 14603), (40601, 51249)
X(51983) = crosspoint of X(805) and X(34537)
X(51983) = crosssum of X(i) and X(j) for these (i,j): {6, 24729}, {523, 41178}, {804, 1084}
X(51983) = crossdifference of every pair of points on line {512, 3934}
X(51983) = barycentric product X(i)*X(j) for these {i,j}: {6, 40858}, {511, 8870}, {694, 38382}, {1916, 51325}
X(51983) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 39939}, {32, 51326}, {237, 51249}, {8870, 290}, {38382, 3978}, {40858, 76}, {51325, 385}
X(51983) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 18899, 6}, {6, 21001, 183}, {385, 32748, 6}, {3051, 3329, 6}, {3231, 14607, 38303}, {3231, 32748, 385}, {3289, 39095, 6}


X(51984) = X(4)X(6073)∩X(8)X(11)

Barycentrics    (a + b - 2*c)*(a - b - c)^2*(a - 2*b + c)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :

X(51984) lies on the cubic K1066 and these lines: {4, 6073}, {8, 11}, {106, 26364}, {341, 4397}, {901, 3436}, {3262, 51362}, {3421, 10428}, {5176, 17780}, {5687, 38950}, {6735, 35015}, {12607, 34230}, {14260, 17757}, {14923, 15632}, {21290, 36944}

X(51984) = X(i)-isoconjugate of X(j) for these (i,j): {604, 40218}, {1106, 36944}, {1404, 34051}, {30725, 32669}
X(51984) = X(i)-Dao conjugate of X(j) for these (i, j): (1145, 1319), (2804, 3259), (3161, 40218), (6552, 36944), (6735, 41554), (23757, 1647), (45247, 56)
X(51984) = barycentric product X(i)*X(j) for these {i,j}: {2804, 4582}, {4997, 6735}, {20568, 51380}
X(51984) = barycentric quotient X(i)/X(j) for these {i,j}: {8, 40218}, {346, 36944}, {1320, 34051}, {2804, 30725}, {5548, 2720}, {6735, 3911}, {14260, 1407}, {41215, 47420}, {51380, 44}


X(51985) = X(2)X(7033)∩X(6)X(292)

Barycentrics    a^2*(-b^2 + a*c)*(a*b - c^2)*(a^2*b^2 + a^2*b*c - a*b^2*c + a^2*c^2 - a*b*c^2 + b^2*c^2) : :

X(51985) lies on the cubic K787 and these lines: {2, 7033}, {6, 292}, {39, 8865}, {100, 733}, {213, 18274}, {239, 21897}, {1979, 20665}, {2092, 4876}, {2664, 3229}, {27633, 40093}

X(51985) = isogonal conjugate of X(39937)
X(51985) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39937}, {238, 39746}, {1447, 3495}
X(51985) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 39937), (9470, 39746)
X(51985) = barycentric product X(i)*X(j) for these {i,j}: {292, 26752}, {694, 39929}, {1916, 51323}, {3503, 4876}
X(51985) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 39937}, {292, 39746}, {3503, 10030}, {26752, 1921}, {39929, 3978}, {51323, 385}


X(51986) = X(19)X(232)∩X(39)X(3497)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(b^2 + a*c)*(a*b + c^2)*(a^2*b - a*b^2 + a^2*c - a*b*c + b^2*c - a*c^2 + b*c^2) : :

X(51986) lies on the cubic K787 and these lines: {19, 232}, {39, 3497}, {198, 7116}, {256, 1742}, {292, 694}, {573, 7015}, {664, 39928}, {1423, 3229}, {1432, 39970}, {1691, 41526}, {2305, 20676}, {7104, 29055}, {7131, 21371}, {27633, 37137}

X(51986) = isogonal conjugate of X(39936)
X(51986) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39936}, {385, 43748}, {3500, 7081}
X(51986) = X(3)-Dao conjugate of X(39936)
X(51986) = barycentric product X(i)*X(j) for these {i,j}: {694, 39930}, {1431, 32937}, {1432, 3501}, {7249, 34247}, {17072, 29055}, {21348, 37137}
X(51986) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 39936}, {1967, 43748}, {3501, 17787}, {22229, 4140}, {23655, 3907}, {34247, 7081}, {39930, 3978}


X(51987) = X(4)X(218)∩X(6)X(513)

Barycentrics    a^2*(a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :

X(51987) lies on the cubic K055 and these lines: {4, 218}, {6, 513}, {32, 56}, {105, 957}, {219, 44184}, {222, 36146}, {517, 2427}, {919, 953}, {1376, 35333}, {1814, 1992}, {2176, 18785}, {2238, 3140}, {5398, 36057}, {5452, 31140}, {24482, 36086}, {30962, 31637}

X(51987) = X(i)-isoconjugate of X(j) for these (i,j): {2, 36819}, {104, 3912}, {241, 51565}, {518, 34234}, {672, 18816}, {909, 3263}, {918, 36037}, {1025, 43728}, {1026, 2401}, {1458, 36795}, {1795, 46108}, {1809, 5236}, {1818, 16082}, {2250, 30941}, {2254, 13136}, {2342, 40704}, {3717, 34051}, {18206, 38955}, {25083, 36123}, {37136, 50333}
X(51987) = X(i)-Dao conjugate of X(j) for these (i, j): (517, 51390), (3259, 918), (23980, 3263), (25640, 46108), (32664, 36819), (40613, 3912)
X(51987) = crossdifference of every pair of points on line {518, 50333}
X(51987) = barycentric product X(i)*X(j) for these {i,j}: {105, 517}, {294, 1465}, {666, 3310}, {673, 2183}, {859, 13576}, {885, 23981}, {908, 1438}, {919, 10015}, {1024, 24029}, {1416, 6735}, {1457, 14942}, {1769, 36086}, {1785, 36057}, {1814, 14571}, {2195, 22464}, {2397, 43929}, {2804, 32735}, {4246, 10099}, {5377, 42753}, {22350, 36124}, {23696, 23706}, {32666, 36038}, {36146, 46393}, {41934, 51390}
X(51987) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 36819}, {105, 18816}, {294, 36795}, {517, 3263}, {859, 30941}, {884, 43728}, {919, 13136}, {1438, 34234}, {1457, 9436}, {1465, 40704}, {2183, 3912}, {2195, 51565}, {2427, 42720}, {3310, 918}, {8751, 16082}, {14571, 46108}, {23980, 51390}, {23981, 883}, {32666, 36037}, {43929, 2401}, {51377, 3932}


X(51988) = X(2)X(216)∩X(19)X(292)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4*b^4 - a^2*b^6 + b^6*c^2 + a^4*c^4 - a^2*c^6 + b^2*c^6) : :

X(51988) lies on the cubic K787 and these lines: {2, 216}, {19, 292}, {39, 8863}, {419, 6375}, {694, 1843}, {733, 32085}, {1691, 1968}, {3186, 3229}, {5117, 45210}, {40981, 51324}

X(51988) = polar conjugate of X(43715)
X(51988) = polar conjugate of the isotomic conjugate of X(3491)
X(51988) = X(9468)-Ceva conjugate of X(232)
X(51988) = X(i)-isoconjugate of X(j) for these (i,j): {48, 43715}, {63, 51246}
X(51988) = X(i)-Dao conjugate of X(j) for these (i, j): (1249, 43715), (3162, 51246)
X(51988) = crosssum of X(6) and X(24730)
X(51988) = barycentric product X(4)*X(3491)
X(51988) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 43715}, {25, 51246}, {3491, 69}


X(51989) = X(1)X(39)∩X(2)X(14267)

Barycentrics    a*(a*b - b^2 + a*c - c^2)*(a^4 - a^3*b + a^2*b^2 + a*b^3 - a^3*c - 3*a^2*b*c + a*b^2*c - b^3*c + a^2*c^2 + a*b*c^2 + a*c^3 - b*c^3) : :

X(51989) lies on the cubic K258 and these lines: {1, 39}, {2, 14267}, {3, 667}, {5, 120}, {518, 23102}, {1026, 2223}, {3293, 16479}, {3573, 21495}, {3675, 25083}, {5091, 21477}, {5880, 16593}, {17284, 24250}, {37828, 50441}

X(51989) = complement of X(14267)
X(51989) = complement of the isogonal conjugate of X(34159)
X(51989) = X(i)-complementary conjugate of X(j) for these (i,j): {2991, 20335}, {34159, 10}
X(51989) = X(105)-Ceva conjugate of X(518)
X(51989) = X(4437)-Dao conjugate of X(3263)
X(51989) = crossdifference of every pair of points on line {659, 3290}
X(51989) = barycentric product X(i)*X(j) for these {i,j}: {518, 32029}, {3263, 38865}
X(51989) = barycentric quotient X(i)/X(j) for these {i,j}: {32029, 2481}, {38865, 105}
X(51989) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 34159, 47080}, {8299, 22116, 1}, {34159, 47048, 3}


X(51990) = X(6)X(1597)∩X(32)X(18877)

Barycentrics    a^4*(a^2 - b^2 - c^2)*(a^4 - 2*a^2*b^2 + b^4 + 4*a^2*c^2 + 4*b^2*c^2 - 5*c^4)*(a^4 + 4*a^2*b^2 - 5*b^4 - 2*a^2*c^2 + 4*b^2*c^2 + c^4) : :

X(51990) lies on the cubic K055 and these lines: {6, 1597}, {32, 18877}, {184, 9407}, {287, 1992}, {394, 3284}, {520, 2430}, {577, 20233}, {5065, 14533}, {9064, 10311}, {36429, 41937}, {40065, 40402}

X(51990) = isogonal conjugate of the polar conjugate of X(3426)
X(51990) = X(i)-isoconjugate of X(j) for these (i,j): {19, 44133}, {63, 47392}, {75, 40138}, {92, 376}, {811, 9209}, {823, 9007}, {1969, 26864}
X(51990) = X(i)-Dao conjugate of X(j) for these (i, j): (6, 44133), (206, 40138), (3162, 47392), (17423, 9209), (22391, 376)
X(51990) = crosssum of X(376) and X(40138)
X(51990) = crossdifference of every pair of points on line {1515, 9007}
X(51990) = barycentric product X(i)*X(j) for these {i,j}: {3, 3426}, {184, 36889}, {520, 9064}
X(51990) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 44133}, {25, 47392}, {32, 40138}, {184, 376}, {3049, 9209}, {3426, 264}, {9064, 6528}, {14575, 26864}, {36889, 18022}, {39201, 9007}


X(51991) = X(1)X(88)∩X(2)X(38938)

Barycentrics    a*(a^2 - b^2 + b*c - c^2)*(2*a^4 - 2*a^3*b - a^2*b^2 + 3*a*b^3 - 2*a^3*c + a*b^2*c - b^3*c - a^2*c^2 + a*b*c^2 - 2*b^2*c^2 + 3*a*c^3 - b*c^3) : :

X(51991) lies on the cubic K258 and these lines: {1, 88}, {2, 38938}, {3, 3733}, {5, 25652}, {39, 35069}, {3878, 38568}, {6739, 13747}, {6906, 16528}, {25645, 36154}, {27690, 37710}

X(51991) = complement of X(38938)
X(51991) = complement of the isogonal conjugate of X(39166)
X(51991) = X(39166)-complementary conjugate of X(10)
X(51991) = X(759)-Ceva conjugate of X(758)


X(51992) = X(39)X(8864)∩X(385)X(3225)

Barycentrics    a^2*(-b^2 + a*c)*(b^2 + a*c)*(a*b - c^2)*(a*b + c^2)*(a^4*b^2 + a^2*b^4 - a^4*c^2 - b^4*c^2)*(a^4*b^2 - a^4*c^2 - a^2*c^4 + b^2*c^4) : :

X(51992) lies on the cubic K787 and these lines: {39, 8864}, {385, 3225}, {699, 805}, {733, 19566}, {1916, 8858}, {3407, 32544}, {8871, 9490}, {14251, 47643}, {32531, 47648}, {36897, 45907}

X(51992) = isogonal conjugate of X(39080)
X(51992) = isogonal conjugate of the complement of X(694)
X(51992) = X(i)-cross conjugate of X(j) for these (i,j): {2, 733}, {6, 3225}, {669, 805}, {47648, 694}
X(51992) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39080}, {75, 51322}, {385, 2227}, {698, 1580}, {1926, 32748}, {1933, 35524}, {1966, 3229}
X(51992) = X(i)-Dao conjugate of X(j) for these (i, j): (3, 39080), (206, 51322), (9467, 3229), (39092, 698)
X(51992) = cevapoint of X(i) and X(j) for these (i,j): {6, 9468}, {694, 47648}, {882, 1084}
X(51992) = trilinear pole of line {694, 5027}
X(51992) = barycentric product X(i)*X(j) for these {i,j}: {694, 3225}, {699, 1916}, {1581, 43761}, {8858, 17980}, {32544, 41517}
X(51992) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 39080}, {32, 51322}, {694, 698}, {699, 385}, {1916, 35524}, {1967, 2227}, {3225, 3978}, {8789, 32748}, {9468, 3229}, {17938, 41337}, {43761, 1966}


X(51993) = X(4)X(541)∩X(30)X(182)

Barycentrics    (a^4 + a^2*b^2 - 2*b^4 + a^2*c^2 + 4*b^2*c^2 - 2*c^4)*(5*a^6 - 8*a^4*b^2 + a^2*b^4 + 2*b^6 - 8*a^4*c^2 - 2*b^4*c^2 + a^2*c^4 - 2*b^2*c^4 + 2*c^6) : :
X(51993) = 4 X[7706] - X[8717], 3 X[3830] + X[44750], X[4550] + 2 X[40909], X[3426] - 5 X[35403], 3 X[3545] - X[4549], 5 X[5071] - X[41465], X[11472] - 3 X[14269], 5 X[19709] - 3 X[32620]

X(51993) lies on the cubic K934 and these lines: {4, 541}, {30, 182}, {51, 3830}, {381, 1531}, {547, 35254}, {1147, 20424}, {3426, 35403}, {3543, 4846}, {3545, 4549}, {5071, 41465}, {5462, 34725}, {5655, 46261}, {7576, 44080}, {7699, 37907}, {8262, 11178}, {8541, 18494}, {9971, 13754}, {10297, 20192}, {10989, 37470}, {11472, 14269}, {12101, 18376}, {13565, 46730}, {13851, 38335}, {15303, 17702}, {15684, 35237}, {15687, 18390}, {18388, 32267}, {18559, 44077}, {19709, 32620}, {19924, 50008}, {32423, 51140}, {45619, 45622}

X(51993) = midpoint of X(i) and X(j) for these {i,j}: {381, 40909}, {3543, 4846}, {15684, 35237}
X(51993) = reflection of X(i) in X(j) for these {i,j}: {4550, 381}, {35254, 547}
X(51993) = {X(5480),X(47544)}-harmonic conjugate of X(5476)


X(51994) = X(4)X(67)∩X(22)X(7716)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(b^2 + c^2)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 - a^2*b^2*c^2 - 2*b^4*c^2 - a^2*c^4 - 2*b^2*c^4 + c^6) : :
X(51994) = 3 X[16776] - X[19127], X[16789] - 3 X[29959], X[12220] - 5 X[31236]

X(51994) lies on the cubic K934 and these lines: {4, 67}, {22, 7716}, {25, 16776}, {141, 427}, {143, 12585}, {378, 31884}, {394, 11188}, {468, 40670}, {524, 47328}, {599, 6403}, {2393, 23292}, {2854, 8541}, {6676, 9822}, {8263, 41714}, {9969, 15255}, {11746, 19136}, {12220, 31236}, {15577, 51739}, {15809, 34177}, {41618, 45237}, {44668, 45179}

X(51994) = midpoint of X(427) and X(1843)
X(51994) = reflection of X(6676) in X(9822)
X(51994) = barycentric product X(1843)*X(11056)
X(51994) = barycentric quotient X(35325)/X(44061)
X(51994) = {X(1843),X(29959)}-harmonic conjugate of X(41585)


X(51995) = X(6)X(2196)∩X(9)X(22205)

Barycentrics    a^2*(a - b - c)*(-b^2 + a*c)*(a*b - c^2)*(a^2*b - a*b^2 - a^2*c + a*b*c - b^2*c - a*c^2 + b*c^2)*(a^2*b + a*b^2 - a^2*c - a*b*c - b^2*c + a*c^2 + b*c^2) : :

X(51995) lies on the cubic K787 and these lines: {6, 2196}, {9, 22205}, {19, 292}, {39, 3500}, {57, 6377}, {284, 23522}, {333, 39936}, {893, 47642}, {2319, 14936}, {3229, 3512}

X(51995) = isogonal conjugate of X(39930)
X(51995) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39930}, {1423, 14199}, {1428, 17786}, {1429, 32937}, {1447, 3501}, {8927, 39940}, {10030, 34247}, {13588, 16609}
X(51995) = X(3)-Dao conjugate of X(39930)
X(51995) = trilinear pole of line {663, 20460}
X(51995) = barycentric product X(i)*X(j) for these {i,j}: {1, 43748}, {694, 39936}, {3500, 4876}
X(51995) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 39930}, {2053, 14199}, {3500, 10030}, {4876, 17786}, {7077, 32937}, {18265, 34247}, {39936, 3978}, {43748, 75}


X(51996) = X(30)X(3527)∩X(631)X(9815)

Barycentrics    (a^4 + 2*a^2*b^2 - 3*b^4 + 2*a^2*c^2 + 6*b^2*c^2 - 3*c^4)*(13*a^6 - 23*a^4*b^2 + 7*a^2*b^4 + 3*b^6 - 23*a^4*c^2 - 6*a^2*b^2*c^2 - 3*b^4*c^2 + 7*a^2*c^4 - 3*b^2*c^4 + 3*c^6) : :
X(51996) = 3 X[3091] - 2 X[33537], 3 X[15741] + 2 X[33537]

X(51996) lies on the cubic K934 and these lines: {30, 3527}, {631, 9815}, {1656, 11821}, {3091, 15741}, {3522, 3618}, {5422, 16936}, {11433, 17578}, {11745, 37669}, {17538, 43651}, {18296, 22334}, {19136, 27082}

X(51996) = midpoint of X(3091) and X(15741)
X(51996) = reflection of X(i) in X(j) for these {i,j}: {631, 9815}, {11821, 1656}


X(51997) = X(4)X(39)∩X(6)X(46317)

Barycentrics    a^2*(a^2*b^2 - b^4 + 2*a^2*c^2 + b^2*c^2)*(2*a^2*b^2 + a^2*c^2 + b^2*c^2 - c^4)*(a^4*b^2 - a^2*b^4 + a^4*c^2 + a^2*b^2*c^2 + b^4*c^2 - a^2*c^4 + b^2*c^4) : :

X(51997) lies on the cubics K782 and K787 and these lines: {4, 39}, {6, 46317}, {32, 26714}, {263, 694}, {327, 31276}, {446, 44453}, {511, 40803}, {3053, 3224}, {3552, 39681}, {9781, 46305}

X(51997) = X(25)-Ceva conjugate of X(51338)
X(51997) = X(3403)-isoconjugate of X(47643)
X(51997) = barycentric product X(i)*X(j) for these {i,j}: {262, 11328}, {263, 18906}, {2186, 19591}
X(51997) = barycentric quotient X(i)/X(j) for these {i,j}: {263, 19222}, {6234, 8842}, {11328, 183}, {18906, 20023}, {19591, 3403}, {45907, 23878}, {46319, 47643}
X(51997) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {39, 14252, 43718}, {262, 14252, 39}


X(51998) = X(4)X(64)∩X(30)X(5972)

Barycentrics    (5*a^4 - 2*a^2*b^2 - 3*b^4 - 2*a^2*c^2 + 6*b^2*c^2 - 3*c^4)*(2*a^6 - a^4*b^2 - 4*a^2*b^4 + 3*b^6 - a^4*c^2 + 8*a^2*b^2*c^2 - 3*b^4*c^2 - 4*a^2*c^4 - 3*b^2*c^4 + 3*c^6) : :
X(51998) = 3 X[1514] - X[14157], 3 X[10151] - X[21663], 3 X[13202] + X[21663], 2 X[13202] + X[47296], 2 X[21663] - 3 X[47296]

X(51998) lies on the cubic K934 and these lines: {4, 64}, {30, 5972}, {143, 12102}, {184, 5893}, {382, 51425}, {468, 50709}, {546, 43604}, {1147, 3627}, {1503, 13473}, {1514, 14157}, {1539, 44665}, {1992, 36990}, {2777, 44872}, {3146, 15748}, {3853, 16621}, {10151, 11598}, {15811, 50688}, {16252, 35490}, {18296, 22334}, {23292, 44438}, {37853, 44912}, {41362, 45010}

X(51998) = midpoint of X(i) and X(j) for these {i,j}: {382, 51425}, {10151, 13202}
X(51998) = reflection of X(i) in X(j) for these {i,j}: {37853, 44912}, {47296, 10151}
X(51998) = X(11598)-Dao conjugate of X(3532)
X(51998) = crosspoint of X(253) and X(46206)
X(51998) = crosssum of X(154) and X(34569)
X(51998) = barycentric product X(i)*X(j) for these {i,j}: {3146, 47296}, {18594, 18699}, {33630, 40996}
X(51998) = barycentric quotient X(i)/X(j) for these {i,j}: {3146, 44877}, {10151, 38253}, {21663, 36609}, {40135, 3532}, {47296, 35510}
X(51998) = {X(3146),X(15751)}-harmonic conjugate of X(27082)


X(51999) = X(2)X(14263)∩X(3)X(669)

Barycentrics    (2*a^2 - b^2 - c^2)*(a^6*b^2 + 2*a^4*b^4 + a^2*b^6 + a^6*c^2 - 12*a^4*b^2*c^2 + 4*a^2*b^4*c^2 - b^6*c^2 + 2*a^4*c^4 + 4*a^2*b^2*c^4 - 2*b^4*c^4 + a^2*c^6 - b^2*c^6) : :
X(51999) = 5 X[631] - 3 X[47046]

X(51999) lies on the cubic K258 and these lines: {2, 14263}, {3, 669}, {5, 126}, {39, 597}, {384, 31128}, {524, 23106}, {631, 47046}, {3788, 46986}, {3933, 23992}, {6390, 21906}, {7664, 7807}, {7789, 14357}, {9177, 32459}, {27088, 38239}

X(51999) = complement of X(14263)
X(51999) = complement of the isogonal conjugate of X(34161)
X(51999) = X(i)-complementary conjugate of X(j) for these (i,j): {23889, 21905}, {34161, 10}, {41909, 4892}
X(51999) = X(111)-Ceva conjugate of X(524)
X(51999) = X(36792)-Dao conjugate of X(3266)
X(51999) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 34161, 47077}, {2482, 40517, 39}, {34161, 47047, 3}


X(52000) = X(4)X(51)∩X(24)X(52)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + c^4)*(a^4*b^2 - 2*a^2*b^4 + b^6 + a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6) : :
X(52000) = 3 X[51] - X[13851], 5 X[3567] - X[25739], 3 X[568] + X[10540], X[1986] + 2 X[44084], 3 X[16223] - X[51394], X[2072] - 3 X[16222], X[13148] + 2 X[37984]

X(52000) lies on the cubic K934 and these lines: {3, 44405}, {4, 51}, {6, 18532}, {24, 52}, {25, 568}, {30, 1112}, {110, 37951}, {112, 50387}, {113, 403}, {143, 3575}, {186, 249}, {235, 6102}, {378, 5422}, {427, 5946}, {468, 1154}, {546, 43823}, {973, 11745}, {974, 15311}, {1199, 46363}, {1216, 10018}, {1495, 12227}, {1593, 37481}, {1594, 5462}, {1885, 13630}, {1992, 6403}, {1994, 45173}, {2070, 34397}, {2071, 15472}, {2072, 16222}, {2781, 16227}, {2979, 35486}, {3060, 18533}, {3147, 11412}, {3515, 6243}, {3518, 16625}, {3520, 9729}, {3541, 15043}, {3542, 5889}, {3581, 37954}, {3618, 15045}, {5446, 6240}, {5476, 12294}, {5562, 7505}, {5663, 10151}, {5892, 37118}, {5907, 16868}, {5943, 7577}, {6143, 11695}, {6146, 41589}, {6152, 10115}, {6242, 47486}, {6746, 6756}, {7576, 47328}, {7722, 10706}, {8745, 50647}, {9826, 10257}, {9967, 44837}, {10019, 45959}, {10095, 23047}, {10111, 12140}, {10575, 35490}, {10625, 32534}, {10982, 15138}, {11410, 40280}, {11438, 44269}, {11456, 41580}, {11793, 14940}, {11802, 12300}, {11806, 12292}, {12085, 45010}, {12162, 35488}, {12235, 14516}, {12358, 44911}, {13148, 37984}, {13289, 38534}, {13293, 13417}, {13321, 18494}, {13348, 17506}, {13391, 37931}, {13567, 45179}, {13598, 34797}, {14581, 15544}, {14831, 44079}, {14865, 15012}, {15010, 15030}, {15126, 26879}, {15473, 18400}, {15644, 21844}, {15646, 25487}, {15750, 37484}, {16836, 35473}, {18322, 44090}, {18559, 21849}, {18560, 40647}, {19136, 19161}, {19504, 22115}, {20791, 35485}, {21243, 45178}, {23039, 37453}, {25711, 44665}, {26206, 37511}, {26937, 43896}, {32110, 37970}, {32225, 37943}, {34146, 46430}, {34148, 45172}, {34783, 37197}, {35471, 45186}, {40111, 44272}

X(52000) = midpoint of X(i) and X(j) for these {i,j}: {52, 51393}, {403, 1986}, {13417, 21663}
X(52000) = reflection of X(i) in X(j) for these {i,j}: {403, 44084}, {10257, 9826}, {12358, 44911}
X(52000) = X(i)-isoconjugate of X(j) for these (i,j): {68, 36053}, {91, 5504}, {1820, 2986}, {15421, 36145}
X(52000) = X(i)-Dao conjugate of X(j) for these (i, j): (113, 68), (135, 15328), (34116, 5504), (34834, 20563), (35588, 520), (39013, 15421)
X(52000) = crosspoint of X(4) and X(38534)
X(52000) = crosssum of X(3) and X(2072)
X(52000) = barycentric product X(i)*X(j) for these {i,j}: {24, 3580}, {317, 3003}, {403, 1993}, {571, 44138}, {924, 16237}, {1725, 1748}, {1986, 18883}, {7763, 44084}, {11547, 13754}
X(52000) = barycentric quotient X(i)/X(j) for these {i,j}: {24, 2986}, {317, 40832}, {403, 5392}, {571, 5504}, {924, 15421}, {1986, 37802}, {3003, 68}, {3580, 20563}, {6753, 15328}, {8745, 1300}, {16237, 46134}, {41679, 18878}, {44077, 14910}, {44084, 2165}
X(52000) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {24, 2904, 1147}, {51, 185, 18390}, {186, 15463, 51394}, {3567, 5890, 11433}, {6756, 16881, 6746}, {19504, 37917, 22115}



This is the end of PART 26: Centers X(50001) - X(52000)

Introduction and Centers X(1) - X(1000) Centers X(1001) - X(3000) Centers X(3001) - X(5000)
Centers X(5001) - X(7000) Centers X(7001) - X(10000) Centers X(10001) - X(12000)
Centers X(12001) - X(14000) Centers X(14001) - X(16000) Centers X(16001) - X(18000)
Centers X(18001) - X(20000) Centers X(20001) - X(22000) Centers X(22001) - X(24000)
Centers X(24001) - X(26000) Centers X(26001) - X(28000) Centers X(28001) - X(30000)
Centers X(30001) - X(32000) Centers X(32001) - X(34000) Centers X(34001) - X(36000)
Centers X(36001) - X(38000) Centers X(38001) - X(40000) Centers X(40001) - X(42000)
Centers X(42001) - X(44000) Centers X(44001) - X(46000) Centers X(46001) - X(48000)
Centers X(48001) - X(50000) Centers X(50001) - X(52000) Centers X(52001) - X(54000)
Centers X(54001) - X(56000) Centers X(56001) - X(58000) Centers X(58001) - X(60000)
Centers X(60001) - X(62000) Centers X(62001) - X(64000) Centers X(64001) - X(66000)
Centers X(66001) - X(68000) Centers X(68001) - X(70000) Centers X(70001) - X(72000)