leftri rightri


This is PART 2: Centers X(1001) - X(3000)

Introduction and Centers X(1) - X(1000) Centers X(1001) - X(3000) Centers X(3001) - X(5000)
Centers X(5001) - X(7000) Centers X(7001) - X(10000) Centers X(10001) - X(12000)
Centers X(12001) - X(14000) Centers X(14001) - X(16000) Centers X(16001) - X(18000)
Centers X(18001) - X(20000) Centers X(20001) - X(22000) Centers X(22001) - X(24000)
Centers X(24001) - X(26000) Centers X(26001) - X(28000) Centers X(28001) - X(30000)
Centers X(30001) - X(32000) Centers X(32001) - X(34000) Centers X(34001) - X(36000)
Centers X(36001) - X(38000) Centers X(38001) - X(40000) Centers X(40001) - X(42000)
Centers X(42001) - X(44000) Centers X(44001) - X(46000) Centers X(46001) - X(48000)
Centers X(48001) - X(50000) Centers X(50001) - X(52000) Centers X(52001) - X(54000)
Centers X(54001) - X(56000) Centers X(56001) - X(58000) Centers X(58001) - X(60000)
Centers X(60001) - X(62000) Centers X(62001) - X(64000) Centers X(64001) - X(66000)
Centers X(66001) - X(68000) Centers X(68001) - X(70000) Centers X(70001) - X(72000)


X(1001) = MIDPOINT OF X(1) AND X(9)

Trilinears    a2 - a(b + c) - 2bc : :
X(1001) = X(1) + 3X(2) + (r/R)X(3)

Let OA be the circle tangent of side BC at its midpoint and to the circumcircle on the side of BC opposite A. Define OB and OC cyclically. X(1001) is the radical center of the circles OA, OB, OC. (Randy Hutson, 9/23/2011)

Let LA and MA be the external tangents to circles OB and OC, with LA being the farther from OA. Define LB, LC, MB, and MC cyclically. Let A' = LB∩LC and A'' = MB∩MC, and define B', B'', C', and C'' cyclically. The lines A'A'', B'B'', C'C'' concur in X(1001).

Let A* be the tangency point of OA and the circumcircle, and define B* and C* cyclically. Let A** be the radical trace of OB and OC. The lines A*A**, B*B**, C*C** concur in X(1001).

For details and relationships among X(1001), X(1), X(145), X(3361), X(3616), X(3913), and X(4719), see

Luis González, "On a Triad of Circles Tangent to the Circumcircle and the Sides at Their Midpoints," Forum Geometricorum 11 (2011) 145-154.

Let A' be the line through X(1) parallel to line BC. Let AB = A'∩AB and AC = A'∩AC. Define BC and CA cyclically, and define BA and CB cyclically. The six points AB, BC, CA, AB, BC, CA lie on a conic whose center is X(1001). (Angel Montesdeoca, April 27, 2016)

X(1001) lies on these lines: 1,6   2,11   3,142   7,21   8,344   31,940   35,474   42,748   63,354   182,692   388,452   527,551   529,1056   614,968   750,902   846,982   943,1058

X(1001) is the {X(1),X(238)}-harmonic conjugate of X(6). For a list of other harmonic conjugates of X(1001), click Tables at the top of this page.

X(1001) = midpoint of X(1) and X(9)
X(1001) = reflection of X(142) in X(1125)
X(1001) = isogonal conjugate of X(1002)
X(1001) = complement of X(2550)
X(1001) = crosssum of X(i) and X(j) for these (i,j): (116,824), (788,1015)
X(1001) = crossdifference of every pair of points on line X(513)X(665)
X(1001) = anticomplement of X(3826)
X(1001) = X(6)-of-2nd-circumperp-triangle
X(1001) = X(141)-of-hexyl-triangle
X(1001) = X(5480)-of-excentral-triangle
X(1001) = inverse-in-Feuerbach-hyperbola of X(55)
X(1001) = polar conjugate of isotomic conjugate of X(23151)


X(1002) = ISOGONAL CONJUGATE OF X(1001)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = 1/[a2 - a(b + c) - 2bc]

X(1002) lies on these lines: 1,672   2,210   6,105   8,274   28,607   42,57   55,81   65,279   145,330   277,942

X(1002) = isogonal conjugate of X(1001)
X(1002) = isotomic conjugate of X(4441)
X(1002) = trilinear pole of line X(513)X(665)
X(1002) = X(19)-isoconjugate of X(23151)


X(1003) = INTERCEPT OF EULER LINE AND LINE X(6)X(99)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = bc(3a4 - a2b2 - a2c2 + 2b2c2)

As a point on the Euler line, X(1003) has Shinagawa coefficients ((E + F)2 - 2S2, 3S2).

X(1003) lies on these lines: 2,3   6,99   32,538   183,187

X(1003) = midpoint of X(2) and X(33007)
X(1003) = reflection of X(7841) in X(2)
X(1003) = complement of X(33017)
X(1003) = anticomplement of X(33184)
X(1003) = circumcircle-inverse of X(37927)
X(1003) = orthocentroidal-circle-inverse of X(33228)
X(1003) = crossdifference of every pair of points on line X(647)X(888)
X(1003) = {X(2),X(4)}-harmonic conjugate of X(33228)
X(1003) = {X(2),X(20)}-harmonic conjugate of X(32986)


X(1004) = INTERCEPT OF EULER LINE AND LINE X(7)X(100)

Trilinears    a5 - 2a4(b + c) + 2a2(b3 + c3) - a(b2 + c2)2 + 2bc(b - c)(b2 - c2) : :

As a point on the Euler line, X(1004) has Shinagawa coefficients ((E+F)S2-$abSASB$, -(E+F)S2 +$ab$S2).

X(1004) lies on these lines: 2,3   7,100   46,200   63,210   65,224


X(1005) = INTERCEPT OF EULER LINE AND LINE X(9)X(100)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = a5 - 2a4(b + c) - a3bc + a2(2b3
                                              + 2c3 + b2c + bc2) - a(b4 + c4 - b3c - bc3 - 4b2c2)
                                              + bc(b - c)(b2 - c2)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c) As a point on the Euler line, X(1005) has Shinagawa coefficients ((E-2F)S2+$abSASB$+$ab$S2, 2(E+F)S2-2$ab$S2).

X(1005) lies on these lines: 2,3   9,100   55,329   108,342

X(1005) = isogonal conjugate of X(1242)


X(1006) = INTERCEPT OF EULER LINE AND LINEX(9)X(48)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = a6 - a5(b + c) - a4(2b2 + bc + 2c2)
                                              + 2a3(b3 + c3) + a2[b4 + c4 + 2bc(b2 + c2) + 2b2c2]
                                              - a[(b5 + c5) - bc(b3 + c3)] - bc(b2 - c2)2
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

As a point on the Euler line, X(1006) has Shinagawa coefficients ($aSA$ + abc, - $aSA$).

X(1006) lies on these lines: 1,201   2,3   9,48   35,950   36,226   54,72   238,1064   944,958   954,999

X(1006) = isogonal conjugate of X(1243)


X(1007) = INTERCEPT OF LINES X(2)X(6) AND X(4)X(99)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = bc[a4 - 4a2(b2 + c2) + 3b4 - 2b2c2 + 3c4]
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1007) lies on these lines: 2,6   4,99   305,311   315,631   316,376   317,6353

X(1007) = isotomic conjugate of X(7612)
X(1007) = complement of X(37667)
X(1007) = anticomplement of X(37637)
X(1007) = {X(7752),X(7763)}-harmonic conjugate of X(4)


X(1008) = INTERCEPT OF EULER LINE AND LINE X(1)X(76)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = bc[a5(b + c) + a4(b + c)2 + a3(b + c)(b2 + bc + c2)
                                              + a2(b2 + c2 + bc)2 + abc(b + c)3 + b2c2(b + c)2]
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

As a point on the Euler line, X(1008) has Shinagawa coefficients ((E + F)3 + 2$bc$(E + F)2 - $abSC$(E + F) + 2(E + F)S2, $bc$S2).

X(1008) lies on these lines: 1,76   2,3

X(1008) = anticomplement of X(37148)


X(1009) = INTERCEPT OF EULER LINE AND LINE X(1)X(39)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = a4(b + c) + 2a3bc - a2(b3 + c3) + bc(b + c)(b2 + c2)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

As a point on the Euler line, X(1009) has Shinagawa coefficients (2$bc$(E + F)2 + $bcSBSC$ - 2$bc(SA)2$ - 4$bc$S2, $bc$S2).

X(1009) lies on these lines: 1,39   2,3   72,672   283,1065   518,583

X(1009) = isogonal conjugate of X(1244)
X(1009) = crossdifference of every pair of points on line X(647)X(659)


X(1010) = INTERCEPT OF EULER LINE AND LINE X(1)X(75)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = bc[a2 + (b + c)2]/(b + c)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

As a point on the Euler line, X(1010) has Shinagawa coefficients ((E + F)2 + $bc$(E + F) + abc$a$, S2).

X(1010) lies on these lines: 1,75   2,3   8,81   10,58   72,894   283,1065   312,975   759,833

X(1010) = isogonal conjugate of X(1245)
X(1010) = crossdifference of every pair of points on line X(647)X(798)


X(1011) = INTERCEPT OF EULER LINE AND LINE X(6)X(31)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = a[a3(b + c) + a2bc - a(b + c)(b2 + c2) - bc(b + c)2]
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

As a point on the Euler line, X(1011) has Shinagawa coefficients (E + $bc$, -$bc$).

X(1011) lies on these lines: 2,3   6,31   9,228   35,43   51,573   184,572

X(1011) = isogonal conjugate of X(1246)
X(1011) = inverse-in-orthocentroidal circle of X(3136)
X(1011) = crosssum of X(834) and X(1086)
X(1011) = crossdifference of every pair of points on line X(514)X(647)


X(1012) = INTERCEPT OF EULER LINE AND LINE X(1)X(84)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = a7 - a5u + 2a4bc(b + c) + a3v - a(b + c)2(b2 - c2)2 - 2bc(b + c)(b2 - c2)2,
                        where u = 3b2 - 2bc + 3c2 and v = 3b4 + 2b2c2 + 3c4
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

As a point on the Euler line, X(1012) has Shinagawa coefficients (S2, abc$a$ - S2).

X(1012) lies on these lines: 1,84   2,3   7,104   40,958   55,515   56,946   63,517   268,281   516,993   954,971

X(1012) = center of circle {X(1),X(1709),PU(4)}


X(1013) = INTERCEPT OF EULER LINE AND LINE X(7)X(108)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = (cos A + cos B + cos C) cos A + (sec A + sec B + sec C) cos B cos C
Barycentrics (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(1013) has Shinagawa coefficients ($aSA$F, $aSBSC$).

X(1013) lies on these lines: 2,3   6,162   7,108   33,63   55,92   100,281


X(1014) = ISOGONAL CONJUGATE OF X(210)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = 1/[(b + c)(b + c - a)]
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1014) lies on these lines: 7,21   28,279   57,77   58,269   60,757   69,404   261,552   272,1088   274,961   332,1037   759,934

X(1014) = isogonal conjugate of X(210)
X(1014) = cevapoint of X(56) and X(57)
X(1014) = X(58)-cross conjugate of X(81)
X(1014) = isotomic conjugate of X(3701)
X(1014) = trilinear pole of line X(1019)X(1429)
X(1014) = crossdifference of every pair of points on line X(3709)X(4041)


X(1015) = EXSIMILICENTER OF MOSES CIRCLE AND INCIRCLE

Trilinears    a(b - c)2 : b(c - a)2 : c(a - b)2
Barycentrics    a2(b - c)2 : b2(c - a)2 : c2(a - b)2
X(1015) = (tan ω sin 2ω)R*X(1) - r*X(39)

The circle having center X(39) and radius 2R sin2ω, where R denotes the circumradius of triangle ABC, is here introduced as the Moses circle. It is tangent to the nine-point circle at X(115), and its internal and external centers of similitude with the incircle are X(1500) and X(1015), respectively. (based on notes from Peter J. C. Moses, 5/29/03)

X(1015) is the center of the hyperbola that passes through the points A, B, C, X(1), X(2), and X(28); also, X(1015) lies on the ellipse described at X(1125). (Randy Hutson, Hyacinthos #20179, 8/13/2011)

X(1015) lies on the Steiner inellipse, the Brocard inellipse, and these lines: 1,39   2,668   6,101   11,115   32,56   36,187   37,537   55,574   76,330   214,1100   216,1060   244,665   350,538   812,1086   1960,3122

X(1015) = midpoint of X(i) and X(j) for these (i,j): (1,291), (2,3227)
X(1015) = isogonal conjugate of X(1016)
X(1015) = isotomic conjugate of X(31625)
X(1015) = complement of X(668)
X(1015) = crosspoint of X(2) and X(513)
X(1015) = crosssum of X(i) and X(j) for these (i,j): (1,1018), (2,190), (6,100), (8,644), (101,595), (345,1332)
X(1015) = crosssum of circumcircle-intercepts of line X(1)X(6)
X(1015) = crossdifference of every pair of points on line X(100)X(190)
X(1015) = PU(25)-harmonic conjugate of X(1960)
X(1015) = polar conjugate of isogonal conjugate of X(22096)
X(1015) = bicentric difference of PU(25)
X(1015) = bicentric sum of PU(27)
X(1015) = midpoint of PU(27)
X(1015) = center of circumconic that is locus of trilinear poles of lines through X(513)
X(1015) = perspector of circumparabola centered at X(513)
X(1015) = X(2)-Ceva conjugate of X(513)
X(1015) = projection from Steiner circumellipse to Steiner inellipse of X(3227)
X(1015) = barycentric square of X(513)
X(1015) = center of {ABC, Gemini 7}-circumconic


X(1016) = X(1)-CROSS CONJUGATE OF X(99)

Trilinears    1/[sin A sin2(A/2) [1 - cos(B - C)]] : :
Barycentrics    (b - c)- 2 : :

X(1016) lies on these lines: 8,1083   99,813   100,667   190,514   238,519   512,660   644,666

X(1016) is the trilinear pole of line X(100)X(190), which is the tangent to the circumcircle at X(100) and to the Steiner circumellipse at X(190). This line is also the locus of trilinear poles of tangents at P to hyperbola {{A,B,C,X(2),P}}, as P moves on the Nagel line, and the locus of trilinear poles of tangents at P to hyperbola {{A,B,C,X(6),P}}, as P moves on line X(1)X(6). (Randy Hutson, October 15, 2018)

X(1016) is the Brianchon point (perspector) of the inellipse that is the barycentric square of the Nagel line. (Randy Hutson, October 15, 2018)

Let A5B5C5 and A6B6C6 be the Gemini triangles 5 and 6. Let A' be the barycentric product A5*A6 and define B' and C' cyclically. The lines AA', BB', CC' concur in X(1016). (Randy Hutson, November 30, 2018)

X(1016) = isogonal conjugate of X(1015)
X(1016) = isotomic conjugate of X(1086)
X(1016) = anticomplement of X(6547)
X(1016) = cevapoint of X(i) and X(j) for these (i,j): (2,190), (6,100)
X(1016) = X(i)-cross conjugate of X(j) for these (i,j): (1,99), (2,190), (6,100)
X(1016) = polar conjugate of X(2969)
X(1016) = X(92)-isoconjugate of X(22096)


X(1017) = POINT ALFIRK

Trilinears    a(b + c - 2a)2 : :

X(1017) lies on the Brocard inellipse and these lines: 6,101   44,214

X(1017) = isogonal conjugate of isotomic conjugate of X(4370)
X(1017) = polar conjugate of isotomic conjugate of X(22371)
X(1017) = crosssum of X(2) and X(903)
X(1017) = crossdifference of every pair of points on line X(900)X(903)
X(1017) = bicentric sum of PU(99)
X(1017) = PU(99)-harmonic conjugate of X(1960)
X(1017) = barycentric square of X(44)


X(1018) = X(512)-CROSS CONJUGATE OF X(1)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = (b + c)/(b - c)

X(1018) is the intersection, other than the vertices of the Gemini 18 triangle, of the {ABC, Gemini 18}-circumconic and {Gemini 17, Gemini 18}-circumconic. (Randy Hutson, November 30, 2018)

X(1018) lies on these lines: 1,39   9,80   40,728   63,544   99,813   100,101   163,643   190,646   346,573   519,672   664,1025

X(1018) = isogonal conjugate of X(1019)
X(1018) = isotomic conjugate of X(7199)
X(1018) = X(512)-cross conjugate of X(1)
X(1018) = crosspoint of X(100) and X(190)
X(1018) = crosssum of X(513) and X(649)
X(1018) = crossdifference of every pair of points on line X(244)X(659)
X(1018) = trilinear pole of line X(37)X(42)


X(1019) = X(99)-CEVA CONJUGATE OF X(1)

Trilinears    (b - c)/(b + c) : (c - a)/(c + a) : (a - b)/(a + b)
Barycentrics    a(b - c)/(b + c) : b(c - a)/(c + a) : c(a - b)/(a + b)
X(1019) = X[1] + 2 X[4784], 3 X[1] - 2 X[4879], 3 X[649] - X[4498], 4 X[649] - X[21385], 5 X[1698] - 4 X[21051], 7 X[3624] - 4 X[4806], 3 X[3733] - X[4833], 3 X[3737] - 2 X[4833], X[3737] + 2 X[4840], 2 X[3960] + X[4979], 3 X[4063] - 2 X[4498], 3 X[4367] - X[4879], 3 X[4379] - 2 X[4823], 4 X[4498] - 3 X[21385], 2 X[4560] + X[4960], 3 X[4750] - X[21124], 3 X[4750] - 2 X[21192], 3 X[4784] + X[4879], 2 X[4794] - 3 X[8643], X[4833] + 3 X[4840], X[4983] - 3 X[14419], X[23729] - 3 X[30724]

Evans conjectured that X(1), X(484), X(1276), X(1277) are concyclic, and reported that Paul Yiu confirmed this conjecture and noted that the center of this circle is X(1019). (Lawrence Evans, 2/24/2003)

The circle is now known as the Evans circle. (September 2020)

X(1019) lies on thje cubics K035 and K10174, and on these lines: {1, 512}, {2, 4129}, {3, 39577}, {8, 4807}, {21, 35355}, {36, 238}, {39, 14991}, {40, 28473}, {57, 7178}, {58, 1027}, {81, 1022}, {83, 4444}, {86, 23892}, {99, 813}, {110, 1308}, {163, 1414}, {239, 514}, {522, 5214}, {523, 20369}, {525, 4897}, {659, 6372}, {661, 1931}, {662, 3257}, {663, 6005}, {693, 29013}, {741, 14665}, {759, 840}, {798, 2669}, {799, 4607}, {812, 4509}, {824, 21389}, {830, 2254}, {918, 2483}, {1020, 1262}, {1025, 4237}, {1424, 7031}, {1429, 3669}, {1434, 23599}, {1577, 4369}, {1634, 35338}, {1698, 21051}, {1734, 8678}, {1924, 20981}, {2084, 3572}, {2484, 15411}, {2533, 2787}, {2786, 7265}, {2832, 23738}, {3249, 4375}, {3293, 22320}, {3309, 7659}, {3333, 34958}, {3337, 29136}, {3624, 4806}, {3667, 7253}, {3676, 17925}, {3708, 7266}, {3751, 9040}, {3762, 29402}, {3800, 39545}, {3801, 29029}, {3835, 25510}, {3907, 4761}, {3960, 4979}, {4010, 29150}, {4033, 37205}, {4041, 4160}, {4049, 27003}, {4083, 4378}, {4122, 29090}, {4151, 17166}, {4379, 4823}, {4380, 4801}, {4382, 29270}, {4391, 24601}, {4401, 4724}, {4449, 29350}, {4458, 29118}, {4467, 23879}, {4705, 9508}, {4762, 18196}, {4774, 29268}, {4782, 29198}, {4785, 17179}, {4794, 8643}, {4813, 27646}, {4817, 16737}, {4874, 29170}, {4922, 29298}, {5307, 14618}, {5539, 9424}, {6003, 6909}, {6006, 28591}, {6626, 27929}, {7153, 9336}, {7255, 16549}, {8027, 18169}, {8034, 29821}, {8690, 28520}, {8712, 18199}, {9013, 33844}, {10455, 21211}, {10566, 20950}, {16744, 23355}, {16755, 28859}, {16874, 16877}, {16887, 26843}, {17096, 30723}, {17174, 20295}, {17205, 31647}, {17210, 25381}, {17761, 26845}, {18827, 35172}, {20517, 29132}, {21146, 29070}, {21188, 23788}, {21392, 23875}, {22108, 28902}, {23729, 30724}, {23815, 24719}, {24019, 32668}, {24237, 26856}, {24624, 37222}, {26702, 28838}, {26775, 27013}, {26821, 26853}, {26823, 26825}, {27168, 27169}, {27527, 31286}, {29458, 29459}, {29770, 29772}, {32678, 35049}, {32944, 35353}, {39568, 39600}

X(1019) = midpoint of X(i) and X(j) for these {i,j}: {3669, 4790}, {3733, 4840}, {4367, 4784}, {4378, 4834}, {4380, 4801}, {4560, 7192}
X(1019) = reflection of X(i) in X(j) for these {i,j}: {1, 4367}, {8, 4807}, {661, 14838}, {1577, 4369}, {3737, 3733}, {4040, 667}, {4063, 649}, {4705, 9508}, {4724, 4401}, {4960, 7192}, {7265, 8045}, {14349, 905}, {21124, 21192}, {21385, 4063}, {24719, 23815}
X(1019) = isogonal conjugate of X(1018)
X(1019) = isotomic conjugate of X(4033)
X(1019) = anticomplement of X(4129)
X(1019) = anticomplement of the isotomic conjugate of X(37205)
X(1019) = isogonal conjugate of the anticomplement of X(17761)
X(1019) = isogonal conjugate of the isotomic conjugate of X(7199)
X(1019) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {110, 18133}, {163, 24068}, {596, 21294}, {8050, 21287}, {34594, 69}, {37205, 6327}
X(1019) = X(i)-Ceva conjugate of X(j) for these (i,j): {27, 17197}, {28, 18184}, {81, 16726}, {99, 1}, {100, 18166}, {110, 18164}, {190, 8025}, {662, 81}, {757, 244}, {799, 86}, {873, 3248}, {932, 18171}, {1014, 18191}, {1414, 58}, {1434, 17205}, {3733, 18197}, {4565, 57}, {4584, 18206}, {4589, 18792}, {4598, 16738}, {4603, 17207}, {4614, 4658}, {4623, 18169}, {4637, 1014}, {7192, 3737}, {8690, 18186}, {17096, 7203}, {34594, 16696}, {37205, 2}
X(1019) = X(i)-cross conjugate of X(j) for these (i,j): {244, 757}, {513, 7192}, {649, 3733}, {1015, 1}, {1086, 57}, {1977, 87}, {3123, 32010}, {3248, 873}, {3669, 17925}, {3733, 7203}, {3937, 269}, {3960, 1022}, {4979, 513}, {7252, 3737}, {8042, 16726}, {8632, 1027}, {16726, 81}, {16742, 274}, {17217, 18197}, {18191, 1014}, {23470, 36598}, {38346, 6}
X(1019) = X(i)-isoconjugate of X(j) for these (i,j): {1, 1018}, {2, 4557}, {4, 4574}, {6, 3952}, {8, 4559}, {9, 4551}, {10, 101}, {12, 5546}, {21, 21859}, {31, 4033}, {32, 27808}, {37, 100}, {42, 190}, {55, 4552}, {56, 30730}, {57, 4069}, {58, 4103}, {59, 3700}, {65, 644}, {71, 1897}, {72, 1783}, {82, 35309}, {99, 1500}, {106, 4169}, {108, 3694}, {109, 2321}, {110, 594}, {112, 3695}, {162, 3949}, {163, 1089}, {181, 645}, {200, 1020}, {210, 651}, {213, 668}, {220, 4566}, {225, 4587}, {226, 3939}, {228, 6335}, {281, 23067}, {306, 8750}, {313, 32739}, {321, 692}, {512, 1016}, {523, 1252}, {643, 2171}, {646, 1402}, {647, 15742}, {648, 3690}, {653, 2318}, {660, 2238}, {661, 765}, {662, 756}, {664, 1334}, {666, 20683}, {669, 31625}, {670, 7109}, {677, 17747}, {740, 813}, {787, 28593}, {789, 3774}, {798, 7035}, {799, 872}, {825, 3773}, {831, 28594}, {850, 23990}, {901, 3943}, {919, 3932}, {932, 20691}, {934, 4515}, {983, 7239}, {1023, 4674}, {1026, 18785}, {1042, 6558}, {1110, 1577}, {1126, 4115}, {1211, 32736}, {1213, 8701}, {1254, 7259}, {1275, 4524}, {1292, 3991}, {1293, 3950}, {1331, 1826}, {1332, 1824}, {1400, 3699}, {1415, 3701}, {1427, 4578}, {1461, 4082}, {1576, 28654}, {1834, 29163}, {1880, 4571}, {1918, 1978}, {1962, 37212}, {1983, 15065}, {2092, 8707}, {2149, 4086}, {2197, 36797}, {2205, 6386}, {2276, 4613}, {2284, 13576}, {2292, 36147}, {2295, 3903}, {2328, 4605}, {2333, 4561}, {2346, 35310}, {2427, 38955}, {2702, 6541}, {2748, 16611}, {2901, 29014}, {3122, 6632}, {3257, 21805}, {3610, 32691}, {3696, 8693}, {3704, 8687}, {3709, 4998}, {3710, 32674}, {3714, 32693}, {3724, 36804}, {3747, 4562}, {3778, 4621}, {3842, 28841}, {3930, 36086}, {3948, 34067}, {3971, 34071}, {3986, 28226}, {3992, 32665}, {3994, 34075}, {4024, 4570}, {4029, 6014}, {4041, 4564}, {4058, 28162}, {4072, 8699}, {4076, 7180}, {4078, 28847}, {4079, 4600}, {4080, 23344}, {4085, 28883}, {4095, 29055}, {4120, 9268}, {4125, 34073}, {4136, 8685}, {4158, 6529}, {4171, 7045}, {4516, 31615}, {4553, 18098}, {4556, 6535}, {4558, 7140}, {4565, 6057}, {4567, 4705}, {4573, 7064}, {4585, 34857}, {4595, 23493}, {4596, 21816}, {4603, 21803}, {4606, 37593}, {4618, 21821}, {4628, 15523}, {4629, 8013}, {4646, 6574}, {4729, 5382}, {4730, 5376}, {4756, 28625}, {4767, 28658}, {4770, 5385}, {4849, 27834}, {4878, 37206}, {5257, 8694}, {5295, 36080}, {5377, 24290}, {5378, 21832}, {5380, 21839}, {5381, 14404}, {6065, 7178}, {6539, 35327}, {6540, 20970}, {6543, 17943}, {6577, 21070}, {6606, 21795}, {6725, 6733}, {7012, 8611}, {7141, 32661}, {8684, 18904}, {8706, 21796}, {8708, 16589}, {8709, 21830}, {9271, 21885}, {13138, 21871}, {17757, 32641}, {20491, 20640}, {20501, 20696}, {20680, 39272}, {20693, 37135}, {20964, 27805}, {21033, 36098}, {21045, 31616}, {21075, 36049}, {21078, 36050}, {21759, 36863}, {21801, 36037}, {21868, 29227}, {29127, 37715}
X(1019) = cevapoint of X(i) and X(j) for these (i,j): {6, 23404}, {512, 14991}, {513, 649}, {661, 4132}, {3733, 7252}, {3768, 38349}, {7192, 17217}, {8042, 16726}
X(1019) = crosspoint of X(i) and X(j) for these (i,j): {81, 662}, {86, 799}, {99, 1509}, {190, 1255}, {593, 4565}, {823, 837}, {1014, 4637}, {1414, 1434}, {7192, 17096}
X(1019) = crosssum of X(i) and X(j) for these (i,j): {10, 4151}, {37, 661}, {42, 798}, {71, 8611}, {210, 4171}, {512, 1500}, {513, 3720}, {523, 3925}, {594, 3700}, {649, 1100}, {650, 2269}, {656, 17441}, {822, 836}, {1334, 4041}, {4024, 21675}, {4120, 21942}, {4705, 21816}, {4730, 21821}, {4770, 21822}, {4931, 21943}, {8061, 17456}, {20680, 24290}
X(1019) = trilinear pole of line {244, 659}
X(1019) = crossdifference of every pair of points on line {37, 42}
X(1019) = barycentric product X(i)*X(j) for these {i,j}: {1, 7192}, {6, 7199}, {7, 3737}, {8, 7203}, {9, 17096}, {11, 1414}, {19, 15419}, {21, 3676}, {27, 905}, {28, 4025}, {56, 18155}, {57, 4560}, {58, 693}, {60, 4077}, {63, 17925}, {75, 3733}, {81, 514}, {85, 7252}, {86, 513}, {87, 17217}, {92, 7254}, {99, 244}, {100, 17205}, {101, 16727}, {104, 23788}, {105, 23829}, {108, 17219}, {110, 1111}, {141, 39179}, {162, 1565}, {163, 23989}, {190, 16726}, {256, 17212}, {257, 18200}, {261, 4017}, {269, 7253}, {270, 17094}, {272, 23800}, {273, 23189}, {274, 649}, {279, 1021}, {284, 24002}, {286, 1459}, {310, 667}, {330, 18197}, {333, 3669}, {512, 873}, {522, 1014}, {523, 757}, {552, 4041}, {593, 1577}, {643, 1358}, {648, 3942}, {650, 1434}, {651, 17197}, {659, 18827}, {661, 1509}, {662, 1086}, {664, 18191}, {670, 3248}, {741, 3766}, {759, 4453}, {763, 4024}, {764, 4600}, {799, 1015}, {811, 3937}, {812, 37128}, {849, 850}, {876, 33295}, {893, 16737}, {932, 23824}, {982, 7255}, {1016, 8042}, {1020, 26856}, {1022, 16704}, {1027, 30941}, {1088, 21789}, {1146, 4637}, {1169, 4509}, {1171, 4978}, {1178, 4374}, {1333, 3261}, {1357, 7257}, {1396, 6332}, {1408, 35519}, {1412, 4391}, {1435, 15411}, {1444, 7649}, {1474, 15413}, {1647, 4622}, {1790, 17924}, {1847, 23090}, {1919, 6385}, {1977, 4602}, {2087, 4615}, {2160, 16755}, {2170, 4573}, {2185, 7178}, {2215, 15417}, {2310, 4616}, {2363, 3004}, {2533, 7303}, {2969, 4592}, {2973, 4575}, {3122, 4623}, {3125, 4610}, {3271, 4625}, {3337, 7372}, {3572, 30940}, {3801, 7305}, {3960, 24624}, {4049, 30576}, {4086, 7341}, {4131, 8747}, {4228, 26721}, {4367, 32010}, {4481, 14621}, {4556, 16732}, {4565, 4858}, {4567, 6545}, {4584, 27918}, {4589, 27846}, {4598, 16742}, {4601, 21143}, {4603, 7200}, {4635, 14936}, {4705, 6628}, {4840, 30598}, {4960, 25417}, {4979, 32014}, {5317, 30805}, {6384, 16695}, {6591, 17206}, {7058, 7216}, {7153, 27527}, {7177, 17926}, {7215, 36126}, {8034, 24037}, {9309, 17218}, {9311, 18199}, {10566, 16696}, {13478, 16754}, {14377, 16751}, {16887, 18108}, {20028, 21173}, {21208, 34594}, {23345, 30939}, {24018, 36419}, {30581, 31010}
X(1019) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3952}, {2, 4033}, {6, 1018}, {9, 30730}, {11, 4086}, {21, 3699}, {27, 6335}, {28, 1897}, {31, 4557}, {37, 4103}, {39, 35309}, {44, 4169}, {48, 4574}, {55, 4069}, {56, 4551}, {57, 4552}, {58, 100}, {60, 643}, {75, 27808}, {81, 190}, {86, 668}, {99, 7035}, {110, 765}, {162, 15742}, {163, 1252}, {244, 523}, {261, 7257}, {269, 4566}, {270, 36797}, {274, 1978}, {283, 4571}, {284, 644}, {310, 6386}, {333, 646}, {512, 756}, {513, 10}, {514, 321}, {521, 3710}, {522, 3701}, {523, 1089}, {552, 4625}, {593, 662}, {603, 23067}, {604, 4559}, {643, 4076}, {647, 3949}, {649, 37}, {650, 2321}, {652, 3694}, {656, 3695}, {657, 4515}, {659, 740}, {661, 594}, {662, 1016}, {663, 210}, {665, 3930}, {667, 42}, {669, 872}, {693, 313}, {741, 660}, {757, 99}, {763, 4610}, {764, 3120}, {798, 1500}, {799, 31625}, {810, 3690}, {812, 3948}, {849, 110}, {873, 670}, {891, 3994}, {900, 3992}, {905, 306}, {985, 4613}, {1014, 664}, {1015, 661}, {1021, 346}, {1022, 4080}, {1027, 13576}, {1086, 1577}, {1098, 7256}, {1100, 4115}, {1111, 850}, {1169, 36147}, {1171, 37212}, {1178, 3903}, {1333, 101}, {1357, 4017}, {1358, 4077}, {1396, 653}, {1400, 21859}, {1407, 1020}, {1408, 109}, {1412, 651}, {1414, 4998}, {1427, 4605}, {1434, 4554}, {1437, 1331}, {1444, 4561}, {1459, 72}, {1474, 1783}, {1475, 35310}, {1491, 3773}, {1509, 799}, {1565, 14208}, {1576, 1110}, {1577, 28654}, {1635, 3943}, {1769, 17757}, {1790, 1332}, {1919, 213}, {1924, 7109}, {1946, 2318}, {1960, 21805}, {1977, 798}, {1980, 1918}, {2087, 4120}, {2150, 5546}, {2170, 3700}, {2185, 645}, {2193, 4587}, {2194, 3939}, {2203, 8750}, {2206, 692}, {2254, 3932}, {2275, 7239}, {2287, 6558}, {2328, 4578}, {2363, 8707}, {2423, 2250}, {2483, 28594}, {2488, 21039}, {2516, 4072}, {2522, 3610}, {2530, 15523}, {2605, 3678}, {2832, 4442}, {2969, 24006}, {3004, 18697}, {3063, 1334}, {3120, 4036}, {3121, 4079}, {3122, 4705}, {3123, 21051}, {3125, 4024}, {3248, 512}, {3249, 3121}, {3261, 27801}, {3271, 4041}, {3285, 1023}, {3286, 1026}, {3287, 4095}, {3310, 21801}, {3337, 6758}, {3669, 226}, {3675, 4088}, {3676, 1441}, {3733, 1}, {3736, 3799}, {3737, 8}, {3756, 4404}, {3766, 35544}, {3776, 20234}, {3777, 2887}, {3900, 4082}, {3937, 656}, {3942, 525}, {3960, 3936}, {4014, 21052}, {4017, 12}, {4025, 20336}, {4040, 4651}, {4041, 6057}, {4057, 3293}, {4063, 3995}, {4077, 34388}, {4079, 762}, {4083, 3971}, {4091, 3998}, {4132, 4075}, {4164, 4039}, {4273, 4752}, {4367, 1215}, {4369, 3963}, {4374, 1237}, {4379, 4377}, {4391, 30713}, {4394, 3950}, {4401, 3896}, {4435, 3985}, {4448, 4783}, {4449, 3967}, {4453, 35550}, {4475, 4122}, {4481, 3661}, {4491, 31855}, {4498, 3175}, {4509, 1228}, {4556, 4567}, {4560, 312}, {4565, 4564}, {4567, 6632}, {4591, 5376}, {4610, 4601}, {4637, 1275}, {4653, 4767}, {4658, 4756}, {4705, 6535}, {4724, 3696}, {4762, 4044}, {4777, 4125}, {4782, 3993}, {4784, 3842}, {4790, 5257}, {4802, 4066}, {4833, 3679}, {4840, 1698}, {4874, 4710}, {4879, 4096}, {4960, 28605}, {4977, 4647}, {4978, 1230}, {4979, 1213}, {4983, 8013}, {5009, 3573}, {5029, 20693}, {5323, 14594}, {6085, 4695}, {6129, 21075}, {6363, 4642}, {6371, 2292}, {6372, 21020}, {6377, 21834}, {6545, 16732}, {6586, 4006}, {6588, 21074}, {6589, 21078}, {6591, 1826}, {6615, 21031}, {6628, 4623}, {6729, 6725}, {7054, 7259}, {7058, 7258}, {7117, 8611}, {7178, 6358}, {7180, 2171}, {7192, 75}, {7199, 76}, {7202, 7265}, {7203, 7}, {7216, 6354}, {7234, 21803}, {7250, 1254}, {7252, 9}, {7253, 341}, {7254, 63}, {7255, 7033}, {7303, 4594}, {7304, 36860}, {7341, 1414}, {8027, 3122}, {8034, 2643}, {8042, 1086}, {8054, 4132}, {8578, 22321}, {8632, 2238}, {8642, 4878}, {8643, 4849}, {8656, 21870}, {8712, 4656}, {9002, 4424}, {9508, 6541}, {14419, 4062}, {14438, 4144}, {14838, 3969}, {14936, 4171}, {15419, 304}, {16695, 43}, {16696, 4568}, {16704, 24004}, {16726, 514}, {16727, 3261}, {16737, 1920}, {16742, 3835}, {16751, 17233}, {16754, 4417}, {16755, 33939}, {16757, 4150}, {16947, 1415}, {17096, 85}, {17187, 4553}, {17197, 4391}, {17205, 693}, {17212, 1909}, {17214, 4106}, {17217, 6376}, {17219, 35518}, {17302, 21604}, {17418, 3714}, {17420, 3704}, {17477, 4139}, {17494, 4043}, {17925, 92}, {17926, 7101}, {18108, 18082}, {18155, 3596}, {18163, 25268}, {18184, 25259}, {18186, 25272}, {18191, 522}, {18196, 25264}, {18197, 192}, {18199, 3729}, {18200, 894}, {18210, 4064}, {18211, 3667}, {18268, 813}, {18600, 21580}, {18792, 23354}, {18827, 4583}, {19945, 14431}, {20979, 20691}, {20981, 2295}, {21007, 3294}, {21123, 3954}, {21143, 3125}, {21173, 17751}, {21191, 22028}, {21196, 27569}, {21758, 2245}, {21789, 200}, {21828, 4053}, {21832, 4037}, {22096, 810}, {22383, 71}, {23090, 3692}, {23092, 22370}, {23189, 78}, {23224, 3682}, {23345, 4674}, {23355, 18793}, {23572, 21877}, {23788, 3262}, {23824, 20906}, {23829, 3263}, {23989, 20948}, {24002, 349}, {24006, 7141}, {24624, 36804}, {26822, 18040}, {27527, 4110}, {27644, 4595}, {27846, 4010}, {28209, 4714}, {29226, 4135}, {29545, 26772}, {29821, 21295}, {30940, 27853}, {30966, 4505}, {31947, 21081}, {33295, 874}, {33296, 36863}, {36419, 823}, {36420, 24019}, {37128, 4562}, {38238, 21100}, {39179, 83}


X(1020) = POINT ALGEDI

Trilinears    (cos B + cos C)/(cos B - cos C) : :

Let X be a point on the Euler line. Let P and U be the 1st and 2nd bicentrics of X. As X varies, the bicentric sum of P and U trace the line X(42)X(65), of which X(1020) is the trilinear pole. (Randy Hutson, March 25, 2016)

X(1020) lies on these lines: 1,185   57,1086   101,651   108,109   190,658   269,292   347,573   648,1021   653,2637  

X(1020) = isogonal conjugate of X(1021)
X(1020) = crosssum of X(650) and X(652)
X(1020) = trilinear pole of line X(42)X(65)
X(1020) = crosspoint of X(651) and X(653)
X(1020) = cevapoint of Jerabek hyperbola intercepts of antiorthic axis


X(1021) = ISOGONAL CONJUGATE OF X(1020)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = (cos B - cos C)/(cos B + cos C)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1021) lies on these lines: 1,647   239,514   243,522   333,1024   521,650   654,2596   648,1020

X(1021) = isogonal conjugate of X(1020)
X(1021) = crosspoint of X(81) and X(162)
X(1021) = crosssum of X(i) and X(j) for these (i,j): (37,656), (65,661), (73,822), (647,1425), (649,1104)
X(1021) = crosssum of Jerabek hyperbola intercepts of antiorthic axis
X(1021) = crossdifference of every pair of points on line X(42)X(65)
X(1021) = cevapoint of X(650) and X(652)
X(1021) = perspector of excentral triangle and tangential triangle, wrt anticevian triangle of X(4), of bianticevian conic of X(1) and X(4)


X(1022) = INTERSECTION OF LINES X(1)X(513) AND X(2)X(514)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = (b - c)/(2a - b - c)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1022) lies on these lines: 1,513   2,514   81,1019   89,649   105,106   291,876   812,903

X(1022) = isogonal conjugate of X(1023)
X(1022) = crossdifference of every pair of points on line X(44)X(678)
X(1022) = isotomic conjugate of X(24004)
X(1022) = trilinear pole of line X(244)X(513)
X(1022) = barycentric quotient X(106)/X(100)


X(1023) = INTERSECTION OF LINES X(1)X(6) AND X(100)X(101)

Trilinears    (2a - b - c)/(b - c) : :

X(1023) lies on these lines: 1,6   100,101   813,898

X(1023) = isogonal conjugate of X(1022)
X(1023) = crossdifference of every pair of points on line X(244)X(513)
X(1023) = bicentric difference of PU(28)
X(1023) = PU(28)-harmonic conjugate of X(1)
X(1023) = trilinear pole of line X(44)X(678)


X(1024) = INTERSECTION OF LINES X(6)X(513) ANDX(9)X(522)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = (b - c)(b + c - a)/[b2 + c2 - a(b + c)]
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1024) lies on these lines: 6,513   9,522   55,650   57,649   333,1021   673,812

X(1024) = isogonal conjugate of X(1025)
X(1024) = crossdifference of every pair of points on line X(241)X(518)


X(1025) = INTERSECTION OF LINES X(2)X(7) AND X(100)X(109)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = [b2 + c2 - a(b + c)]/[(b - c)(b + c - a)]
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1025) lies on these lines: 2,7   56,1083   100,109   190,658   644,934   664,1018   813,927

X(1025) = isogonal conjugate of X(1024)
X(1025) = trilinear pole of line X(241)X(518)


X(1026) = INTERSECTION OF LINES X(1)X(2) AND X(100)X(101)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = [b2 + c2 - a(b + c)]/(b - c)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1026) lies on these lines: 1,2   55,1083   100,101   664,668   666,1027

X(1026) = isogonal conjugate of X(1027)
X(1026) = crosssum of X(513) and X(659)
X(1026) = crossdifference of every pair of points on line X(244)X(649)
X(1026) = trilinear pole of line X(518)X(672)


X(1027) = INTERSECTION OF LINES X(1)X(514) AND X(6)X(513)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = (b - c)/[b2 + c2 - a(b + c)]
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1027) lies on these lines: 1,514   6,513   56,667   58,1019   105,106   292,659   666,1026

X(1027) = isogonal conjugate of X(1026)
X(1027) = crosssum of X(659) and X(1279)
X(1027) = crossdifference of every pair of points on line X(518)X(672)
X(1027) = trilinear pole of line X(244)X(649)


X(1028) = POINT ALGENIB

Trilinears        1/A2 : 1/B2 : 1/C2
Barycentrics a/A2 : b/B2 : c/C2

X(1028) = isogonal conjugate of X(1085)


X(1029) = CYCLOCEVIAN CONJUGATE OF X(1)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = 1/[a + 2(a + b + c) cos A]
Barycentrics    1/(a^3 + a^2 (b + c) - a (b^2 + b c + c^2) - (b + c) (b^2 + c^2)) : :

X(1029) lies on the Kiepert hyperbola and these lines: 10,191   115,593   319,321

X(1029) = isogonal conjugate of X(1030)
X(1029) = isotomic conjugate of X(2895)
X(1029) = X(i)-cross conjugate of X(j) for these (i,j): (79,7), (81,2)
X(1029) = cyclocevian conjugate of X(1)
X(1029) = polar conjugate of X(451)


X(1030) = ISOGONAL CONJUGATE OF X(1029)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = a + 2(a + b + c) cos A
Barycentrics    a^2 (a^3 + a^2 (b + c) - a (b^2 + b c + c^2) - (b + c) (b^2 + c^2)) : :

X(1030) lies on these lines: 3,6   35,37   36,1100   45,198   55,199   100,594

X(1030) = isogonal conjugate of X(1029)
X(1030) = X(i)-Ceva conjugate of X(j) for these (i,j): (35,55), (37,6)
X(1030) = crosspoint of X(100) and X(249)
X(1030) = crosssum of X(115) and X(513)
X(1030) = Brocard-circle-inverse of X(5124)
X(1030) = circle-{X(371),X(372),PU(1),PU(39)}-inverse of X(36750)
X(1030) = {X(3),X(6)}-harmonic conjugate of X(5124)
X(1030) = {X(371),X(372)}-harmonic conjugate of X(36750)


X(1031) = CYCLOCEVIAN CONJUGATE OF X(6)

Trilinears    bc/(b4 + c4 - a4 + b2c2 + c2a2 + a2b2) : :     (M. Iliev, 5/13/07)

X(1031) lies on this line: 141,384

X(1031) = isotomic conjugate of X(2896)
X(1031) = X(83)-cross conjugate of X(2)
X(1031) = cyclocevian conjugate of X(6)
X(1031) = barycentric product of PU(137)


X(1032) = CYCLOCEVIAN CONJUGATE OF X(20)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = 1/[a(w2u2 + u2v2 - v2w2) + 2uvw(au + bv + cw) cos A],
                        where u : v : w = X(20)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c) X(3346)

X(1032) lies on the Lucas cubic and this line: 20,394

X(1032) = isogonal conjugate of X(1033)
X(1032) = X(4)-cross conjugate of X(69)
X(1032) = cyclocevian conjugate of X(20)
X(1032) = anticomplement of X(3343)
X(1032) = polar conjugate of X(6523)


X(1033) = X(3)-CEVA CONJUGATE OF X(25)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = a(w2u2 + u2v2 - v2w2) + 2uvw(au + bv + cw) cos A,
                        where u : v : w = X(20)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1033) lies on these lines: 6,64   19,56   25,393   55,204

X(1033) = isogonal conjugate of X(1032)
X(1033) = X(3)-Ceva conjugate of X(25)


X(1034) = X(4)-CROSS CONJUGATE OF X(8)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = 1/[a(w2u2 + u2v2 - v2w2) + 2uvw(au + bv + cw) cos A],
                        where u : v : w = X(329)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1034) lies on the Lucas cubic and these lines: 2,271   20,78

X(1034) = perpsector of triangle ABC and the pedal triangle of X(3345)

X(1034) = isogonal conjugate of X(1035)
X(1034) = isotomic conjugate of X(5932)
X(1034) = trilinear pole of line X(8058)X(14331)
X(1034) = anticomplement of X(3342)
X(1034) = anticomplementary conjugate of X(34162)
X(1034) = X(i)-cross conjugate of X(j) for these (i,j): (4,8), (282,2)
X(1034) = cyclocevian conjugate of X(329)


X(1035) = ISOGONAL CONJUGATE OF X(1034)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = a(w2u2 + u2v2 - v2w2) + 2uvw(au + bv + cw) cos A,
                        where u : v : w = X(329)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1035) lies on these lines: 3,223   6,603   25,34   55,64   222,581

X(1035) = isogonal conjugate of X(1034)
X(1035) = X(i)-Ceva conjugate of X(j) for these (i,j): (3,56), (223,6)


X(1036) = ISOGONAL CONJUGATE OF X(388)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 1/(1 + cos B cos C)
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1036) lies on these lines: 1,25   3,31   4,1065   21,332   29,497   41,219   55,78   56,77   73,1037   282,380   581,947   1058,1067   1059,1066

X(1036) = isogonal conjugate of X(388)


X(1037) = CEVAPOINT OF X(55) AND X(56)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 1/(1 - cos B cos C)
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1037) lies on these lines: 1,1041   3,1066   4,1067   29,388   48,949   55,77   56,78   73,1036   219,604   332,1014   916,1069   1056,1065   1057,1064

X(1037) = isogonal conjugate of X(497)
X(1037) = cevapoint of X(55) and X(56)
X(1037) = trilinear pole of line X(652)X(665)


X(1038) = INTERSECTION OF LINES X(1)X(3) AND X(2)X(34)

Trilinears    cos A + cos A cos B cos C : :
Trilinears    1 + sec B sec C : :

X(1038) lies on these lines: 1,3   2,34   4,1076   9,478   20,33   21,1041   38,1106   63,201   69,73   72,222   172,577   221,960   223,936   225,377   226,975   278,443   388,612   1068,1074

X(1038) is the {X(1),X(3)}-harmonic conjugate of X(1040). For a list of other harmonic conjugates of X(1038), click Tables at the top of this page.

X(1038) = isogonal conjugate of X(1039)
X(1038) = homothetic center of 6th anti-mixtilinear triangle and anti-tangential midarc triangle


X(1039) = ISOGONAL CONJUGATE OF X(1038)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 1/(cos A + cos A cos B cos C)
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1039) lies on these lines: 1,25   4,1096   7,34   8,33   9,607   21,1040   29,314   65,1041   943,968

X(1039) = isogonal conjugate of X(1038)


X(1040) = INTERSECTION OF LINES X(1)X(3) AND X(2)X(33)

Trilinears    cos A - cos A cos B cos C : :
Trilinears    1 - sec B sec C : :

X(1040) lies on these lines: 1,3   2,33   4,1074   20,34   21,1039   63,212   78,345   226,990   243,1096   497,614   1068,1076

X(1040) = isogonal conjugate of X(1041)
X(1040) = crosspoint of X(i) and X(j) for these (i,j): (21,332), (77,78)
X(1040) = crosssum of X(33) and X(34)
X(1040) = homothetic center of intangents triangle and mid-triangle of orthic and dual of orthic triangles


X(1041) = ISOGONAL CONJUGATE OF X(1040)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 1/(cos A - cos A cos B cos C)
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

The trilinear polar of X(1041) passes through X(650).

X(1041) lies on these lines: 1,1037   7,33   8,34   9,608   19,294   21,1038   65,1039

X(1041) = isogonal conjugate of X(1040)
X(1041) = cevapoint of X(33) and X(34)


X(1042) = CROSSPOINT OF X(1) AND X(64)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = (1 - cos A)(cos B + cos C)
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1042) lies on these lines: 1,7   31,56   34,207   42,65   57,959   241,960   517,1066   604,608   741,934   942,1064

X(1042) = isogonal conjugate of X(1043)
X(1042) = crosspoint of X(i) and X(j) for these (i,j): (1,64), (34,56)
X(1042) = crosssum of X(i) and X(j) for these (i,j): (1,20), (8,78), (200,346)
X(1042) = crossdifference of every pair of points on line X(657)X(1021)
X(1042) = trilinear pole of line X(798)X(7180)


X(1043) = CEVAPOINT OF X(1) AND X(20)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 1/[(1 - cos A)(cos B + cos C)]
Barycentrics    (a - b - c)^2/(b + c) : :

X(1043) lies on these lines: 1,75   8,21   20,64   27,306   29,33   58,519   72,190   81,145   99,103   200,341   220,346   239,1104   280,285   283,643   286,322

X(1043) = isogonal conjugate of X(1042)
X(1043) = isotomic conjugate of X(3668)
X(1043) = trilinear pole of line X(657)X(1021)
X(1043) = crosspoint of X(1) and X(20) wrt both the excentral and anticomplementary triangles
X(1043) = crossdifference of every pair of points on line X(798)X(7180)
X(1043) = trilinear product of X(8) and X(21)
X(1043) = anticomplement of X(1834)
X(1043) = X(314)-Ceva conjugate of X(333)
X(1043) = cevapoint of X(i) and X(j) for these (i,j): (1,20), (8,78), (200,346)


X(1044) = X(64)-CEVA CONJUGATE OF X(1)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = cos B + cos C - cos A + cos B cos C - cos A cos B - cos A cos C
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1044) lies on these lines: 1,7   43,46

X(1044) = X(64)-Ceva conjugate of X(1)


X(1045) = X(42)-CEVA CONJUGATE OF X(1)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = -u2 + v2 + w2 + vw + wu + uv, u : v : w = X(2)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1045) lies on these lines: 1,75   6,2665   9,43   40,511   42,894   190,872   192,869

X(1045) = X(42)-Ceva conjugate of X(1)
X(1045) = excentral-isogonal conjugate of X(1764)
X(1045) = excentral-isotomic conjugate of X(20)
X(1045) = perspector of trilinear obverse triangle of X(2) and unary cofactor triangle of trilinear N-obverse triangle of X(2)


X(1046) = X(65)-CEVA CONJUGATE OF X(1)

Trilinears    -u2 + v2 + w2 + vw + wu + uv, where u : v : w = X(3)
X(1046) = X(1) - 2 X(58)

Let La be the line parallel to the Brocard axis of BCI and passing through the A-excenter. Define Lb and Lc cyclically. The lines La, Lb, Lc concur in X(1046). (Randy Hutson, January 29, 2018)

X(1046) lies on these lines: 1,21   4,2648   6,986   10,894   40,511   43,46   57,978   72,171   238,942   484,1048

X(1046) = reflection of X(i) in X(j) for these (i,j): (1,58), (1330,10)
X(1046) = isogonal conjugate of X(1247)
X(1046) = X(65)-Ceva conjugate of X(1)
X(1046) = excentral-isogonal conjugate of X(20)
X(1046) = {X(1),X(58)}-harmonic conjugate of X(5429)


X(1047) = X(73)-CEVA CONJUGATE OF X(1)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = -u2 + v2 + w2 + vw + wu + uv, u : v : w = X(4)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1047) lies on these lines: 1,29   43,46

X(1047) = isogonal conjugate of X(1248)
X(1047) = X(73)-Ceva conjugate of X(1)


X(1048) = POINT ALGIEBA

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = -u2 + v2 + w2 + vw + wu + uv, u : v : w = X(5)
Trilinears    a^7 (b^2 + b c + c^2) + a^6 (b + c) (b^2 + b c + c^2) - a^5 (2 b^4 + b^3 c + b c^3 + 2 c^4) - 2 a^4 (b + c)^3 (b^2 - b c + c^2) + a^3 (b^6 - b^5 c - 2 b^4 c^2 - b^3 c^3 - 2 b^2 c^4 - b c^5 + c^6) + a^2 (b^7 + 2 b^6 c - 2 b^4 c^3 - 2 b^3 c^4 + 2 b c^6 + c^7) + a b c (b^2 - c^2)^2 (b^2 + c^2) - b^2 c^2 (b - c)^2 (b + c)^3 : :

X(1048) lies on these lines: 1,564   484,1046


X(1049) = TRILINEAR PURE ANGLES CENTER

Trilinears        A : B : C
Barycentrics aA : bB : cC

X(1049) = isogonal conjugate of X(1077)


X(1050) = POINT ALGOL

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = -u2 + v2 + w2 + vw + wu + uv, u : v : w = X(8)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1050) lies on these lines: 1,341   40,978


X(1051) = POINT ALGORAB

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = 3a2 + b2 + c2 + bc + 5ab + 5ac      (M. Iliev, 5/13/07)
Barycentrics af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1051) lies on these lines: 1,748   6,846   81,1054   165,572


X(1052) = X(244)-CEVA CONJUGATE OF X(1)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = -u2 + v2 + w2 + vw + wu + uv, u : v : w = X(100)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1052) lies on these lines: 1,765   238,517   513,1054

X(1052) = X(244)-Ceva conjugate of X(1)


X(1053) = POINT ALHENA

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = -u2 + v2 + w2 + vw + wu + uv, u : v : w = X(101)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1053) lies on these lines: 1,1110   238,517   905,1054


X(1054) = 6th SHARYGIN POINT

Trilinears    b2 + c2 - a2 - 3bc + ab + ac : :    (M. Iliev, 5/13/07)

See the description at X(1281).

In the plane of a triangle ABC, let
D = point on line AC with angle BAD = π - ∠BAC, such that |AD| = |AB|
E = point on line AB with angle CAE = π - ∠BAC, such that |AE|=|AC|
F = point on line BC with angle FCA = π - ∠ACB, such that |CF| = |AC|
G = point on line AC with angle GCB = π - ∠ACB, such that |CG| = |CB|
H = point on line AB with angle HBC = π - ∠ABC, such that |HB| = |BC|
I = point on line BC with angle IBA = π - ∠ABC, such that |IB| = |AB|
The Nagel lines of ADE, BHI, and CFG concur at X(1054). (Benjamin Warren, December 30, 2024)

X(1054) lies on the Bevan circle and these lines: 1,88   2,846   43,57   46,978   81,1051   105,165   474,986   513,1052   905,1053

X(1054) = reflection of X(1) in X(106)
X(1054) = isogonal conjugate of X(9282)
X(1054) = circumcircleiinverse of X(1283)
X(1054) = X(1)-Hirst inverse of X(244)
X(1054) = crosssum of PU(33)
X(1054) = intersection of tangents at PU(34) to conic {{A,B,C,PU(34)}}
X(1054) = crosspoint of PU(34)
X(1054) = trilinear pole wrt excentral triangle of line X(1)X(6)
X(1054) = excentral isogonal conjugate of X(3667)
X(1054) = X(107) of excentral triangle
X(1054) = Conway-circle-inverse of X(38484)


X(1055) = POINT ALIOTH

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = a(b2 + c2 - 2a2 + ab + ac - 2bc)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1055) lies on these lines: 6,41   36,101   106,919   187,237   609,995

X(1055) = isogonal conjugate of X(1121)
X(1055) = crosssum of X(2) and X(527)
X(1055) = complement of anticomplementary conjugate of X(39357)
X(1055) = crossdifference of every pair of points on line X(2)X(522)
X(1055) = inverse-in-Parry-isodynamic-circle of X(5075); see X(2)


X(1056) = POINT ALCYONE

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 2 + cos B cos C
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)
X(1056) = 4(R/r)*X(1) + 3X(2) - 2X(3)

X(1056) lies on these lines: 1,4   2,495   7,517   8,443   29,1059   30,390   55,376   56,631   145,377   329,392   355,938   529,1001   1037,1065

X(1056) = isogonal conjugate of X(1057)
X(1056) = mixtilinear-excentral-to-mixtilinear-incentral similarity image of X(4)


X(1057) = ISOGONAL CONJUGATE OF X(1056)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 1/(2 + cos B cos C)
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1057) lies on these lines: 29,1058   73,1059   77,999   78,392   497,1065   1037,1064

X(1057) = isogonal conjugate of X(1056)


X(1058) = POINT ALKALUROPS

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 2 - cos B cos C
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)
X(1058) = 4(R/r)*X(1) - 3X(2) + 2X(3)

X(1058) lies on these lines: 1,4   2,496   3,390   8,392   20,999   29,1057   55,631   56,376   149,377   452,956   517,938   942,962   943,1001   1036,1067

X(1058) = isogonal conjugate of X(1059)


X(1059) = ISOGONAL CONJUGATE OF X(1058)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 1/(2 - cos B cos C)
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1059) lies on these lines: 29,1056   73,1057   78,999   388,1067   1036,1066

X(1059) = isogonal conjugate of X(1058)


X(1060) = INTERSECTION OF LINES X(1)X(3) AND X(5)X(34)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 2 + sec B sec C
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1060) lies on these lines: 1,3   5,34   21,1063   30,33   68,73   72,394   141,997   201,255   216,1015   222,912   377,1068   495,612   601,774   976,1066

X(1060) = isogonal conjugate of X(1061)
X(1060) = homothetic center of 2nd Euler triangle and anti-tangential midarc triangle


X(1061) = ISOGONAL CONJUGATE OF X(1060)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 1/(2 + sec B sec C)
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1061) lies on these lines: 1,24   8,406   21,1062   33,80   34,79   65,1063

X(1061) = isogonal conjugate of X(1060)


X(1062) = INTERSECTION OF LINES X(1)X(3) AND X(5)X(33)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 2 - sec B sec C
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1062) lies on these lines: 1,3   5,33   21,1061   30,34   394,1069   496,614   602,774

X(1062) = isogonal conjugate of X(1063)
X(1062) = homothetic center of intangents triangle and 2nd Euler triangle


X(1063) = ISOGONAL CONJUGATE OF X(1062)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 1/(2 - sec B sec C)
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1063) lies on these lines: 1,378   8,475   21,1060   33,79   34,80   65,1061

X(1063) = isogonal conjugate of X(1062)


X(1064) = INTERSECTION OF LINES X(1)X(4) AND X(3)X(31)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 1 + cos A (cos B + cos C)
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1064) lies on these lines: 1,4   3,31   38,912   40,386   42,517   102,112   104,256   238,1006   631,978   942,1042   991,995   1037,1057

X(1064) = isogonal conjugate of X(1065)
X(1064) = crosssum of X(1) and X(1478)


X(1065) = ISOGONAL CONJUGATE OF X(1064)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 1/[1 + cos A (cos B + cos C)]
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1065) lies on these lines: 3,388   4,1036   102,226   283,1010   284,515   497,1057   1037,1056

X(1065) = isogonal conjugate of X(1064)
X(1065) = polar conjugate of X(30687)


X(1066) = HASTINGS POINT

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 1 - cos A (cos B + cos C)
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1066) lies on these lines: 1,4   3,1037   42,942   222,601   517,1042   774,912   947,951   976,1060   1036,1059

X(1066) = isogonal conjugate of X(1067)
X(1066) = crosssum of X(1) and X(1479)


X(1067) = ISOGONAL CONJUGATE OF X(1066)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 1/[1 - cos A (cos B + cos C)]
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1067) lies on these lines: 3,496   4,1037   388,1059   946,951   947,950   1036,1058

X(1067) = isogonal conjugate of X(1066)


X(1068) = X(46)-CROSS CONJUGATE OF X(4)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 1 - sec A (cos B + cos C)
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1068) lies on these lines: 1,4   8,860   24,108   92,406   155,651   158,3542   281,451   318,475   377,1060   429,495   1038,1074   1040,1076   3157,3193  

X(1068) = isogonal conjugate of X(1069)
X(1068) = X(158)-Ceva conjugate of X(4)
X(1068) = X(46)-cross conjugate of X(4)
X(1068) = polar conjugate of X(2994)


X(1069) = X(255)-CROSS CONJUGATE OF X(3)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 1/[1 - sec A (cos B + cos C)]
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1069) lies on these lines: 1,90   11,68   394,1062   496,613   916,1037

X(1069) = isogonal conjugate of X(1068)
X(1069) = X(90)-Ceva conjugate of X(3)
X(1069) = X(255)-cross conjugate of X(3)
X(1069) = X(92)-isoconjugate of X(2178)


X(1070) = POINT ALKES

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 1 + cos B cos C (cos B + cos C)
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1070) lies on these lines: 1,4   55,1076   56,1074


X(1071) = INTERSECTION OF LINES X(1)X(84) AND X(4)X(7)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = (b2 + c2 - a2)[a3(b + c) - (b - c)2(a2 + a(b + c) - (b + c)2)][a3 - (b + c)(a2 + a(b + c) - (b - c)2)]
Barycentrics af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1071) appears in Hyacinthos message #3849, Paul Yiu, Sept. 19, 2001.

If you have The Geometer's Sketchpad, you can view X(1071).

X(1071) lies on these lines: 1,84   4,7   6,63   10,2801   20,145   21,104   27,1871   198,1741   227,1735   355,377   412,1872   496,1519   774,1458   910,1729   1210,1532   1317,1364  

X(1071) = reflection of X(i) in X(j) for these (i,j): (4,942), (72,3)
X(1071) = isotomic conjugate of isogonal conjugate of X(23204)
X(1071) = crosspoint of X(7) and X(63)
X(1071) = crosssum of X(i) and X(j) for these (i,j): (1,1777), (19,55), (25,2331)
X(1071) = X(68)-of-intouch triangle
X(1071) = X(20)-of-X(1)-Brocard triangle
X(1071) = intouch isogonal conjugate of X(54)
X(1071) = intouch isotomic conjugate of X(12723)


X(1072) = POINT ALNILAM

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 1 - cos2B cos C - cos B cos2C
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1072) lies on these lines: 1,4   55,1074   56,1076


X(1073) = X(6)-CROSS CONJUGATE OF X(3)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = (cot A)/(cos A - cos B cos C)
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1073) lies on the Thomson cubic and these lines: 1,3341   2,253   3,64   4,3350   6,3343   9,223   57,3351   222,268

X(1073) = isogonal conjugate of X(1249)
X(1073) = complement of X(14361)
X(1073) = anticomplement of X(20207)
X(1073) = X(253)-Ceva conjugate of X(64)
X(1073) = cevapoint of X(6) and X(64)
X(1073) = X(i)-cross conjugate of X(j) for these (i,j): (6,3), (185,69)
X(1073) = crosssum of X(6) and X(1033)
X(1073) = isotomic conjugate of X(15466)
X(1073) = perspector of ABC and antipedal triangle of X(1498)
X(1073) = perspector of pedal and anticevian triangles of X(64)
X(1073) = perspector of ABC and medial triangle of pedal triangle of X(3346)
X(1073) = perspector of circumconic centered at X(3343)
X(1073) = center of circumconic that is locus of trilinear poles of lines passing through X(3343)
X(1073) = X(2)-Ceva conjugate of X(3343)


X(1074) = POINT ALNITAK

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = cos A + cos2B cos C + cos B cos2C
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1074) lies on these lines: 1,224   3,225   4,1040   55,1072   56,1070   1038,1068


X(1075) = X(3)-CEVA CONJUGATE OF X(4)

Trilinears    (sec A) (sec^2 B + sec^2 C - sec^2 A) : :
Trilinears    cos B cos C (cos2C cos2A + cos2A cos2B - cos2B cos2C) : :

X(1075) lies on the McCay cubic and these lines: 4,51   155,450   216,631   243,920   648,1092

X(1075) = isogonal conjugate of X(13855)
X(1075) = polar conjugate of X(34287)
X(1075) = eigencenter of cevian triangle of X(3)
X(1075) = eigencenter of anticevian triangle of X(4)
X(1075) = X(3)-Ceva conjugate of X(4)
X(1075) = X(155)-Hirst inverse of X(450)


X(1076) = POINT ALPHARD

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = cos A - cos2B cos C - cos B cos2C
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1076) lies on these lines: 3,225   4,1038   55,1070   56,1072   1040,1068


X(1077) = ISOGONAL CONJUGATE OF X(1049)

Trilinears        1/A : 1/B : 1/C
Barycentrics a/A : b/B : c/C

X(1077) = isogonal conjugate of X(1049).


X(1078) = INTERSECTION OF LINES X(2)X(32) AND X(3)X(76)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = bc(b2c2 + c2a2 + a2b2 - a4)
Barycentrics b2c2 + c2a2 + a2b2 - a4 : c2a2 + a2b2 + b2c2 - b4 : a2b2 + b2c2 + c2a2 - c4

X(1078) lies on these lines: 2,32   3,76   5,316   24,264   35,350   39,385   54,69   140,325   186,1235   187,384   194,574   274,404   298,619   279,618   302,635   303,636   7603,7843

X(1078) = isotomic conjugate of X(3613)
X(1078) = anticomplement of X(1506)
X(1078) = X(249)-Ceva conjugate of X(99)
X(1078) = complement of X(7785)
X(1078) = X(5038)-of-6th-Brocard-triangle
X(1078) = X(5116)-of-1st-anti-Brocard-triangle


X(1079) = TRILINEAR SQUARE OF X(46)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (cos B + cos C - cos A)2
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1079) lies on these lines: 1,4   46,1406   77,498   484,1103   651,920


X(1080) = INTERCEPT OF EULER LINE AND LINE (13)X(98)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B),
                         where f(A,B,C) = csc(B - C) [sin 2B cos(C - ω) sin(C - π/3) - sin 2C cos(B - ω) sin(B - π/3)]
Trilinears        g(a,b,c) : g(b,c,a) : g(c,a,b),
                         where g(a,b,c) = bc[3(a2 + b2 + c2)(a2 - b2 + c2)(a2 + b2 - c2) + 64(31/23]    (M. Iliev, 4/12/07)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(1080) has Shinagawa coefficients (31/2S, 3E + 3F).

Coordinates for X(1080) are obtained from those of X(383) by changing π/3 to - π/3; contributed by Edward Brisse.

X(1080) lies on these lines: 2,3   13,98   14,262   183,622   298,511   325,621

X(1080) = inverse-in-orthocentroidal-circle of X(383)


X(1081) = POINT ALPHECCA

Trilinears    sec(A/2)csc(A/2 - π/3) : sec(B/2) csc(B/2 - π/3) : sec(C/2) csc(C/2 - π/3)
Barycentrics    sin A sec(A/2) csc(A/2 - π/3) : sin B sec(B/2) csc(B/2 - π/3) : sin C sec(C/2) csc(C/2 - π/3)
Barycentrics    (a + b - c)*(a - b + c)*(a + 2*b + 2*c) - 2*Sqrt[3]*a*S : :

Coordinates for X(1081) are obtained from those of X(554) by changing π/3 to - π/3; contributed by Edward Brisse.

X(1081) lies on the cubics K134 and K419a and these lines: {1, 30}, {2, 2306}, {7, 559}, {13, 226}, {14, 43682}, {55, 10651}, {57, 3179}, {75, 298}, {395, 1653}, {497, 30345}, {553, 37773}, {675, 36072}, {1086, 11072}, {1365, 18974}, {2153, 41889}, {3475, 37833}, {3638, 3982}, {5239, 5905}, {5240, 5249}, {6186, 10647}, {7026, 11078}, {11706, 26700}, {30328, 37640}

X(1081) = isogonal conjugate of X(1250)
X(1081) = isotomic conjugate of X(40713)
X(1081) = X(i)-cross conjugate of X(j) for these (i,j): {553, 554}, {30383, 85}
X(1081) = cevapoint of X(i) and X(j) for these (i,j): {1, 1653}, {1251, 2306}
X(1081) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 40713}, {3, 1250}, {223, 1082}, {478, 2307}, {7026, 40578}
X(1081) = X(i)-isoconjugate of X(j) for these (i,j): {1, 1250}, {9, 2307}, {15, 19551}, {31, 40713}, {35, 33653}, {55, 1082}, {1251, 7006}, {2151, 7026}, {5353, 7126}, {7127, 46077}, {10638, 42680}, {35057, 36073}
X(1081) = barycentric product X(i)*X(j) for these {i,j}: {75, 2306}, {85, 1251}, {300, 19373}, {559, 30690}, {3261, 36072}
X(1081) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 40713}, {6, 1250}, {13, 7026}, {56, 2307}, {57, 1082}, {559, 3219}, {1251, 9}, {2153, 19551}, {2160, 33653}, {2306, 1}, {2307, 7006}, {3179, 5240}, {5240, 44688}, {7051, 5353}, {7052, 46077}, {11072, 7126}, {19373, 15}, {33654, 42680}, {36072, 101}, {39153, 5239}, {40714, 42033}
X(1081) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 4654, 554}, {226, 3639, 1082}, {3649, 37631, 554}, {3782, 5434, 554}


X(1082) = POINT ALPHERATZ

Trilinears    (sec A/2) sin(A/2 - π/3) : (sec B/2) sin(B/2 - π/3) : (sec C/2) sin(C/2 - π/3)
Barycentrics (sin A/2) sin(A/2 - π/3) : (sin B/2) sin(B/2 - π/3) : (sin C/2) sin(C/2 - π/3)

Coordinates for X(1082) are obtained from those of X(559) by changing π/3 to - π/3; contributed by Edward Brisse.

X(1082) lies on the cubics K134 and K341a and these lines: {1, 3}, {2, 5240}, {6, 7089}, {7, 554}, {13, 226}, {15, 16577}, {63, 5239}, {81, 33655}, {222, 7060}, {298, 319}, {466, 17043}, {497, 37833}, {553, 3638}, {651, 19551}, {1100, 1653}, {1250, 1442}, {1255, 2306}, {1276, 21476}, {1652, 16777}, {1836, 10651}, {1962, 10648}, {2003, 5353}, {2307, 3219}, {3474, 37830}, {3475, 30345}, {4336, 30300}, {7006, 42680}, {7051, 28606}, {9778, 30339}, {10391, 10649}, {10580, 30338}, {10647, 17017}, {10652, 11246}, {14100, 30356}, {17011, 19373}, {17778, 37795}, {25417, 33654}

X(1082) = isogonal conjugate of X(1251)
X(1082) = X(7345)-complementary conjugate of X(141)
X(1082) = X(1255)-Ceva conjugate of X(559)
X(1082) = cevapoint of X(1250) and X(2307)
X(1082) = barycentric product X(i)*X(j) for these {i,j}: {57, 40713}, {75, 2307}, {85, 1250}, {298, 33655}, {319, 33654}, {554, 3219}, {17095, 33653}, {18160, 36073}
X(1082) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 1251}, {223, 1081}, {478, 2306}, {5240, 40580}
X(1082) = X(i)-isoconjugate of X(j) for these (i,j): {1, 1251}, {9, 2306}, {55, 1081}, {79, 10638}, {522, 36072}, {559, 7073}, {2153, 5240}, {3179, 19551}, {5239, 11072}, {6186, 40714}, {7026, 42623}, {7126, 39153}, {11081, 36932}, {33653, 42677}
X(1082) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 1251}, {15, 5240}, {56, 2306}, {57, 1081}, {554, 30690}, {1250, 9}, {1415, 36072}, {2003, 559}, {2174, 10638}, {2307, 1}, {3219, 40714}, {5353, 5239}, {7026, 44690}, {7051, 39153}, {19373, 3179}, {33653, 7110}, {33654, 79}, {33655, 13}, {39151, 36933}, {40713, 312}, {46077, 7043}
X(1082) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 57, 559}, {1, 37772, 37773}, {56, 20182, 559}, {57, 559, 37773}, {65, 37595, 559}, {226, 3639, 1081}, {241, 3748, 559}, {559, 37772, 57}, {940, 2099, 559}, {1214, 24929, 559}, {1319, 3666, 559}, {1429, 17598, 559}, {7146, 17716, 559}, {13388, 13389, 37772}, {15934, 37543, 559}


X(1083) = MIDPOINT OF X(105) AND X(644)

Trilinears    a4 - a3(b + c) - a2bc + 2abc(b + c) - bc(b2 + c2): :L

X(1083) lies on a circle related to the 1st and 2nd Brocard points; Hyacinthos message #4053, Paul Yiu, Oct. 4, 2001. X(1083) lies on the Brocard circle.

X(1083) lies on the Brocard circle, the circle O(1,3), and these lines: 1,6   3,667   8,1016   55,1026   56,1025   105,644   840,898

X(1083) = midpoint of X(105) and X(644)
X(1083) = circumcircle-inverse of X(667)
X(1083) = Conway-circle-inverse of X(38485)
X(1083) = X(6)-Hirst inverse of X(518)
X(1083) = X(105)-of-1st-Brocard triangle
X(1083) = X(105)-of-X(1)-Brocard triangle
X(1083) = X(112)-of-1st-Montesdeoca-bisector-triangle
X(1083) = X(112)-of-2nd-Montesdeoca-bisector-triangle
X(1083) = similicenter of 1st and 2nd Montesdeoca bisector triangles
X(1083) = intersection, other than X(6), of the Brocard circle and line X(1)X(6)
X(1083) = 1st-Brocard-isogonal conjugate of X(2795)


X(1084) = CROSSPOINT OF X(2) AND X(512)

Trilinears        a3(b2 - c2)2 : b3(c2 - a2)2 : c3(a2 - b2)2
Barycentrics a4(b2 - c2)2 : b4(c2 - a2)2 : c4(a2 - b2)2

Let f(a,b,c) = a3(b2 - c2)2. Then the line
f(a,b,c)x + f(b,c,a)y + f(c,a,b)z = 0 is tangent to the circumcircle at X(99).

Randy Hutson observed (9/23/2011) that the centers of homothety of the Lucas(L:W) homothetic triangles and triangle ABC form a circumconic which passes through the points X(493), X(494), X(588), and X(589). Indeed the perspectors are given by barycentric coordinates

a2/[a2 + (L/W)S] : b2/[b2 + (L/W)S] : c2/[c2 + (L/W)S],

and the conic is the isogonal conjugate of the line X(2)X(6). Thus, X(2), X(6), and dozens of other named points lie on the conic; click Tables at the top of ETC, select CENTRAL LINES, and scroll to #15.

X(1084) is the center of the hyperbola H = {{A,B,C,X(2),X(6)}}, which is tangent to Brocard axis at X(6) and to line X(2)X(39) at X(2). Also, H is the locus of the trilinear pole of a line parallel to Lemoine axis (i.e. lines that pass through X(512)), and H is the isotomic conjugate of line the X(2)X(39). (Randy Hutson, July 20, 2016)

X(1084) lies on the Steiner inellipse and these lines: 2,670   6,694   39,597   115,804   351,865

X(1084) = midpoint of X(i) and X(j) for these (i,j): (6,694),(2,3228)
X(1084) = reflection of X(35073) in X(2)
X(1084) = isogonal conjugate of X(34537)
X(1084) = complement of X(670)
X(1084) = anticomplement of X(36950)
X(1084) = crosspoint of X(i) and X(j) for these {i,j}: {2, 512}, {6, 18105}, {32, 669}, {523, 6664}, {1974, 2489}, {798, 872}, {2395, 34238}
X(1084) = crosssum of X(i) and X(j) for these {i,j}: {2, 4576}, {6, 99}, {75, 21604}, {76, 670}, {110, 1627}, {305, 4563}, {799, 873}, {1509, 4623}, {2421, 5976}, {4631, 18021}, {5468, 31128}
X(1084) = crosssum of circumcircle intercepts of line X(2)X(6)
X(1084) = cevapoint of X(9427) and X(23216)
X(1084) = trilinear pole of line X(1645)X(23099)
X(1084) = crossdifference of every pair of points on line X(99)X(670)
X(1084) = center of the circumconic {{A,B,C,X(2),X(6)}}
X(1084) = projection from Steiner circumellipse to Steiner inellipse of X(3228)
X(1084) = Steiner-inellipse-antipode of X(35073)
X(1084) = perspector of circumconic centered at X(512) (parabola {{A,B,C,X(512),X(669)}})
X(1084) = intersection of trilinear polars of X(512) and X(669)
X(1084) = X(2)-Ceva conjugate of X(512)
X(1084) = perspector of ABC and the medial triangle of the cevian triangle of X(512)
X(1084) = perspector of unary cofactor triangles of 3rd, 5th and 6th Brocard triangles
X(1084) = barycentric square of X(512)
X(1084) = polar conjugate of isogonal conjugate of X(23216)
X(1084) = barycentric product X(32)*X(115)


X(1085) = ISOGONAL CONJUGATE OF X(1028)

Trilinears        A2 : B2 : C2
Barycentrics A2 sin A : B2 sin B : C2 sin C

X(1085) = isogonal conjugate of X(1028)


X(1086) = CENTER OF HYPERBOLA {{A,B,C,X(2),X(7)|}

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = bc(b - c)2
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = (b - c)2

The line f(a,b,c)x + f(b,c,a)y + f(c,a,b)z = 0 is tangent to the circumcircle at X(101). Also, X(1086) is the point of tangency of the Steiner inscribed ellipse with the line tangent to the nine-point circle and the incircle. (Paul Yiu, #4197, 11/24/01).

X(1086) = center of circumconic that is locus of trilinear poles of lines parallel to Gergonne line (i.e. lines that pass through X(514)). This conic is the isotomic conjugate of the Nagel line. (Randy Hutson, September 14, 2016)

Let A7B7C7 and A8B8C8 be the Gemini triangles 7 and 8. Let A' be the barycentric product A7*A8 and define B' and C' cyclically. The lines AA', BB', CC' concur in X(1086). (Randy Hutson, November 30, 2018)

X(1086) lies on the Steiner inellipse and these lines: 1,528   2,45   6,7   8,599   10,537   11,244   37,142   44,527   53,273   57,1020   75,141   115,116   220,277   239,320   812,1015   918,1111

X(1086) = midpoint of X(i) and X(j) for these (i,j): (2,903), (7,673), (75,335), (239,320)
X(1086) = isogonal conjugate of X(1252)
X(1086) = isotomic conjugate of X(1016)
X(1086) = complement of X(190)
X(1086) = crosspoint of X(2) and X(514)
X(1086) = crosssum of X(i) and X(j) for these (i,j): (6,101), (9,1018), (32,692), (219,906)
X(1086) = crossdifference of every pair of points on line X(101)X(692)
X(1086) = perspector of circumconic centered at X(514)
X(1086) = X(2)-Ceva conjugate of X(514)
X(1086) = projection from Steiner circumellipse to Steiner inellipse of X(903)
X(1086) = trilinear pole of line X(764)X(1647)
X(1086) = trilinear pole wrt medial triangle of Nagel line
X(1086) = anticomplement of X(4422)
X(1086) = barycentric product X(5997)*X(5998)
X(1086) = barycentric square of X(514)
X(1086) = {X(3661),X(3662)}-harmonic conjugate of X(17227)


X(1087) = TRILINEAR SQUARE OF X(5)

Trilinears    1 + cos(2B - 2C) : :
Trilinears    cos2(B - C) : :

X(1087) lies on these lines: 1,564   5,2599   31,91   54,2595    92,255

X(1087) = {X(1),X(564)}-harmonic conjugate of X(1109)
X(1087) = {X(2595),X(2596)}-harmonic conjugate of X(54)


X(1088) = TRILINEAR SQUARE OF X(7)

Trilinears    sec4(A/2) : :

Let A'B'C' be the cross-triangle of the inner and outer Soddy triangles. Let A" be the trilinear product B'*C', and define B" and C" cyclically. The lines AA", BB", CC" concur in X(1088). (Randy Hutson, December 10, 2016)

X(1088) is the Brianchon point (perspector) of the inellipse that is the trilinear square of the Gergonne line. The center of this inellipse is X(11019). (Randy Hutson, October 15, 2018)

Let A1B1C1 and A2B2C2 be the 1st and 2nd Conway triangles. Let A' be the trilinear product A1*A2, and define B' and C' cyclically. The lines AA', BB', CC' concur in X(1088). (Randy Hutson, July 11, 2019)

X(1088) lies on these lines: 2,85   7,354   57,658   75,3668   86,269   234,555   272,1014   305,341   675,934

X(1088) = isogonal conjugate of X(1253)
X(1088) = isotomic conjugate of X(200)
X(1088) = X(7)-cross conjugate of X(85)
X(1088) = cevapoint of X(7) and X(279)


X(1089) = TRILINEAR SQUARE OF X(10)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = b2c2(b + c)2
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1089) lies on these lines: 1,312   8,80   10,321   76,334   190,191   200,318   244,596   345,498   594,762   740,872

X(1089) = isogonal conjugate of X(849)
X(1089) = isotomic conjugate of X(757)
X(1089) = crosspoint of X(313) and X(321)
X(1089) = trilinear product of vertices of outer Garcia triangle


X(1090) = TRILINEAR SQUARE OF X(11)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = [1 - cos(B - C)]2
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1090) lies on these lines: 5,1091   11,523


X(1091) = TRILINEAR SQUARE OF X(12)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = [1 + cos(B - C)]2
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1091) lies on these lines: 5,1090   12,1109


X(1092) = TRILINEAR CUBE OF X(3)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = cos3A
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

Let A'B'C' be the triangle described in ADGEOM #2697 (8/26/2015, Tran Quang Hung). A'B'C' is homothetic to the circumcevian triangle of X(3) at X(1092). (Randy Hutson, June 7, 2019)

X(1092) lies on these lines: 2,578   3,49   4,801   20,110   24,511   54,69   68,125   140,343   156,550   450,1093   648,1075

X(1092) = reflection of X(1204) in X(3)
X(1092) = isogonal conjugate of X(1093)
X(1092) = X(92)-isoconjugate of X(393)


X(1093) = TRILINEAR CUBE OF X(4)

Trilinears    sec3A : :
X(1093) lies on these lines: 3,1105   4,51   5,264   24,107   155,648   158,225   393,800   403,847   436,578   450,1092

X(1093) = isogonal conjugate of X(1092)
X(1093) = isotomic conjugate of X(3964)
X(1093) = X(235)-cross conjugate of X(4)
X(1093) = polar conjugate of X(394)
X(1093) = X(978)-of-orthic-triangle if ABC is acute


X(1094) = TRILINEAR SQUARE OF X(15)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = sin2(A + π/3)
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1094) lies on these lines: 15,36   48,163


X(1095) = TRILINEAR SQUARE OF X(16)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = sin2(A - π/3)
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1095) lies on these lines: 16,36   48,163


X(1096) = TRILINEAR SQUARE OF X(19)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = tan2A
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1096) lies on these lines: 1,29   4,1039   19,31   25,1402   33,42   34,207   63,240   107,741   213,607   243,1040   278,614   281,612

X(1096) = isogonal conjugate of X(326)
X(1096) = X(158)-Ceva conjugate of X(19)
X(1096) = crosssum of X(394) and X(1259)
X(1096) = polar conjugate of X(304)
X(1096) = crossdifference of every pair of points on line X(822)X(4131)
X(1096) = trilinear product X(33)*X(34)


X(1097) = TRILINEAR SQUARE OF X(20)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = (cos A - cos B cos C)2
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1097) lies on these lines: 1,75   31,775


X(1098) = TRILINEAR SQUARE OF X(21)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 1/(cos B + cos C)2
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1098) lies on these lines: 3,662   8,643   21,60   29,270   58,86   65,409   81,1104

X(1098) = isogonal conjugate of X(1254)
X(1098) = cevapoint of X(i) and X(j) for these (i,j): (1,411), (21,283)


X(1099) = TRILINEAR SQUARE OF X(30)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = (cos A - 2 cos B cos C)2
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1099) lies on the inellipse centered at X(10) and on these lines: 1,564   75,811   162,255


X(1100) = COMPLEMENT OF X(319)

Trilinears    2a + b + c : 2b + c + a : 2c + a + b    (M. Iliev, 5/13/2007)
Trilinears    ar + S : br + S : cr + S;   (C. Lozada, 9/07/2013)
Barycentrics a(2a + b + c) : b(2b + c + a) : c(2c + a + b)

X(1100) is the midpoint of the bicentric pair y : z : x and z : x : y, where x : y : z = X(37)

X(1100) = QA-P16 (QA-Harmonic Center) of quadrangle ABCX(1); see http://www.chrisvantienhoven.nl/quadrangle-objects/15-mathematics/quadrangle-objects/artikelen-qa/44-qa-p16.html

X(1100) lies on these lines: 1,6   2,319   36,1030   48,354   65,604   71,583   81,593   86,239   214,1015   284,501   517,572   519,594   536,894   820,836

X(1100) is the {X(1),X(6)}-harmonic conjugate of X(37). For a list of other harmonic conjugates of X(1100), click Tables at the top of this page.

X(1100) = isogonal conjugate of X(1255)
X(1100) = isotomic conjugate of X(32018)
X(1100) = complement of X(319)
X(1100) = anticomplement of X(17239)
X(1100) = crosspoint of X(i) and X(j) for these (i,j): (1,81), (2,79)
X(1100) = crosssum of X(i) and X(j) for these (i,j): (1,37), (6,35), (559,1082)
X(1100) = crossdifference of every pair of points on line X(484)X(513)
X(1100) = bicentric sum of PU(31)
X(1100) = midpoint of PU(31)
X(1100) = reflection of X(3775) in X(1125)
X(1100) = X(1)-Ceva conjugate of X(1962)
X(1100) = X(1962)-Ceva conjugate of X(1125) wrt incentral triangle
X(1100) = perspector wrt incentral triangle of bicevian conic of X(1) and X(2)
X(1100) = polar conjugate of isogonal conjugate X(23201)
X(1100) = polar conjugate of isotomic conjugate of X(3916)


X(1101) = TRILINEAR SQUARE OF X(110)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = csc2(B - C)
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1101) lies on these lines: 59,60   163,798   656,662

X(1101) = isogonal conjugate of X(1109)
X(1101) = cevapoint of X(i) and X(j) for these (i,j): (31,163), (60,110)
X(1101) = X(i)-cross conjugate of X(j) for these (i,j): (31,163), (47,162)
X(1101) = isotomic conjugate of X(23994)
X(1101) = trilinear pole of line X(163)X(1983)
X(1101) = X(92)-isoconjugate of X(3708)


X(1102) = TRILINEAR CUBE OF X(63)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = cot3A
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1102) lies on these lines: 63,304   255,326


X(1103) = TRILINEAR SQUARE OF X(40)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = (cos B + cos C - cos A - 1)2
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1103) lies on these lines: 1,2   31,937   40,221   46,269   165,255

X(1103) = isogonal conjugate of X(1256)


X(1104) = CROSSPOINT OF X(1) AND X(28)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = 2avw + cv2 + bw2 + u(bv + cw), u : v : w = X(72)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1104) is the midpoint of the bicentric pair y : z : x and z : x : y, where x : y : z = X(72)

X(1104) lies on these lines: 1,6   11,429   25,34   31,65   32,910   58,942   81,1098   105,961   210,976   229,593   239,1043   440,950   517,580   581,995

X(1104) = isogonal conjugate of X(1257)
X(1104) = crosspoint of X(i) and X(j) for these (i,j): (1,28), (81,269)
X(1104) = crosssum of X(i) and X(j) for these (i,j): (1,72), (37,200)


X(1105) = CEVAPOINT OF X(3) AND X(4)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = (sec A)/(cos2B + cos2C)
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

Let A'B'C' be the cevian triangle of X(3). Let LA be the reflection of the line B'C' in the line BC, and define LB and LC cyclically. Let A'' = LB∩LC, and define B'' and C'' cyclically. The lines AA'', BB'', CC'' concur in X(1105). (Randy Hutson, 9/23/2011)

X(1105) lies on these lines: 3,1093   4,801   20,393   185,648   225,412   243,411   378,847

X(1105) = isogonal conjugate of X(185)
X(1105) = cevapoint of X(3) and X(4)
X(1105) = trilinear pole of line X(450)X(2451)


X(1106) = TRILINEAR SQUARE OF X(56)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = (1 - cos A)2
                        = sin4A/2 : sin4B/2 : sin4C/2

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1106) lies on these lines: 3,1037   7,987   31,56   32,604   34,244   36,255   38,1038   57,961   58,269   77,988   279,985   388,750   601,999   651,978   727,934

X(1106) = isogonal conjugate of X(341)
X(1106) = complement of anticomplementary conjugate of X(17480)
X(1106) = X(92)-isoconjugate of X(3692)
X(1106) = trilinear product of vertices of tangential mid-arc triangle


X(1107) = CROSSPOINT OF X(1) AND X(274)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 + c2) + bc(b + c)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1107) =(tan ω sin 2ω)R*X(10) + r*X(39)
X(1107) = X(1) + X(8) + (cot ω csc 2ω)(2r/R)*X(39)

X(1107) = midpoint of the bicentric pair y : z : x and z : x : y, where x : y : z = X(213)
X(1107) = insimilicenter of the Spieker and (1/2)-Moses circle. [The (1/2)-Moses circle is described at X(1575).]

X(1107) lies on these lines: 1,6   2,330   10,39   32,993   75,194   210,869   239,257

X(1107) = isogonal conjugate of X(1258)
X(1107) = isotomic conjugate of X(1221)
X(1107) = complement of X(1909)
X(1107) = crosspoint of X(i) and X(j) for these (i,j): (1,274), (2,256), (81,87)
X(1107) = crosssum of X(i) and X(j) for these (i,j): (1,213), (6,171), (37,43)
X(1107) = polar conjugate of isogonal conjugate of X(22389)
X(1107) = {X(1),X(9)}-harmonic conjugate of X(2176)
X(1107) = {X(10),X(39)}-harmonic conjugate of X(1575)


X(1108) = CROSSPOINT OF X(2) AND X(84)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2avw + cv2 + bw2 + u(bv + cw),
                        where u : v : w = X(219)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1108) is the midpoint of the bicentric pair y : z : x and z : x : y, where x : y : z = X(219)

X(1108) lies on these lines: 1,6   2,322   19,56   104,112   241,347   278,393   517,579

X(1108) = complement of X(322)
X(1108) = crosspoint of X(i) and X(j) for these (i,j): (1,278), (2,84)
X(1108) = crosssum of X(i) and X(j) for these (i,j): (1,219), (6,40)
X(1108) = polar conjugate of isogonal conjugate of X(23204)
X(1108) = {X(1),X(9)}-harmonic conjugate of X(2256)


X(1109) = TRILINEAR SQUARE OF X(523)

Trilinears    sin2(B - C) : :
Trilinears    1 - cos(2B - 2C) : :

X(1109): Let A'B'C' be the Feuerbach triangle. Let La be the trilinear polar of A', and define Lb, Lc cyclically. Let A" = Lb∩Lc, B" = Lc∩La, C" = La∩Lb. The lines AA", BB", CC" concur in X(1109). (Randy Hutson, December 26, 2015)

Let A'B'C' be the Feuerbach triangle. Let Ma be the tangent to conic {{A,B,C,B',C'}} at A, and define Mb and Mc cyclically. Let A* = Mb∩Mc, B* = Mc∩Ma, C* = Ma∩Mb. The lines AA*, BB*, CC* concur in X(1109); see also X(523). (Randy Hutson, December 26, 2015)

Let A'B'C' be the Feuerbach triangle. Let Ab = BC∩C'A', and define Bc and Ca cyclically. Let Ac = BC∩A'B', and define Ba and Cb cyclically. The points Ab, Ac, Bc, Ba, Ca, Cb lie on an ellipse, denoted by E. Let A" be the intersection of the tangents to E at Ba and Ca, and define B" and C" cyclically. The lines AA", BB", CC" concur in X(1109). (Randy Hutson, December 26, 2015)

Let A'B'C' be the Feuerbach triangle. Let A" be the trilinear product B'*C', and define B" and C" cyclically. The lines AA", BB", CC" concur in X(1109). (Randy Hutson, December 26, 2015)

Let La be the A-extraversion of line X(2610)X(4024) (the trilinear polar of X(12)), and define Lb and Lc cyclically. Let A' = Lb ∩ Lc, and define B' and C' cyclically. The lines AA', BB', CC' concur in X(1109). (Randy Hutson, January 29, 2018)

Let F be the Feuerbach point, X(11), and FaFbFc be the Feuerbach triangle (the extraversion triangle of X(11)). Let A' be the trilinear product F*Fa, and define B' and C' cyclically. The lines AA', BB', CC' concur in X(1109). (Randy Hutson, January 29, 2018)

X(1109) lies on these lines: 1,564   11,523   12,1091   31,92   75,799   91,255

X(1109) = isogonal conjugate of X(1101)
X(1109) = complement of X(6758)
X(1109) = anticomplement of X(16598)
X(1109) = crosspoint of X(12) and X(523)
X(1109) = crosssum of X(i) and X(j) for these (i,j): (31,163), (60,110)
X(1109) = trilinear product X(11)*X(12)
X(1109) = polar conjugate of isogonal conjugate of X(3708)
X(1109) = antipode of X(4736) in the inellipse centered at X(10)
X(1109) = reflection of X(4736) in X(10)
X(1109) = crossdifference of every pair of points on line X(163)X(1983)
X(1109) = bicentric difference of PU(73)
X(1109) = PU(73)-harmonic conjugate of X(2624)
X(1109) = polar conjugate of isotomic conjugate of X(20902)
X(1109) = {X(1),X(564)}-harmonic conjugate of X(1087)


X(1110) = TRILINEAR SQUARE OF X(101)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = [a/(b - c)]2
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(1110) lies on these lines: 1,1053   36,59   101,663   249,849   667,692

X(1110) = isogonal conjugate of X(1111)
X(1110) = X(i)-cross conjugate of X(j) for these (i,j): (32,163), (41,101)
X(1110) = crosssum of X(11) and X(1086)


X(1111) = TRILINEAR SQUARE OF X(514)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = [(b - c)/a]2
Trilinears    squared distance from A to line X(1)X(6) : :
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

Let A7B7C7 and A8B8C8 be the Gemini triangles 7 and 8. Let A' be the trilinear product A7*A8 and define B' and C' cyclically. The lines AA', BB', CC' concur in X(1111). (Randy Hutson, November 30, 2018)

Let A7B7C7 and A8B8C8 be Gemini triangles 7 and 8, resp. Let A' be the intersection of the tangent to the {ABC, Gemini 7}-circumconic at A7 and the tangent to the {ABC, Gemini 8}-circumconic at A8. Define B' and C' cyclically. The lines AA', BB', CC' concur in X(1111). (Randy Hutson, January 15, 2019)

X(1111) lies the inellipse centered at X(10) and on these lines: 1,85   7,80   75,537   76,334   269,273   348,499   918,1086

X(1111) = isogonal conjugate of X(1110)
X(1111) = isotomic conjugate of X(765)
X(1111) = crosssum of X(31) and X(692)
X(1111) = antipode of X(4712) in inellipse centered at X(10)
X(1111) = reflection of X(4712) in X(10)
X(1111) = trilinear product X(5997)*X(5998)
X(1111) = perspector of side- and vertex-triangles of Gemini triangles 7 and 8
X(1111) = trilinear product of vertices of Gemini triangle 7
X(1111) = trilinear product of vertices of Gemini triangle 8


X(1112) = CROSSPOINT OF X(4) AND X(250)

Trilinears    a[a4(b2 + c2) - 2a2(b4 + c4) + b6 + c6 ]/(b2 + c2 - a2) : :
Trilinears    sec A (1 + cos 3A cos(B - C)) : :

If you have The Geometer's Sketchpad, you can view X(1112).

X(1112) is the center of the hyperbola that passes through the vertices of the cevian triangles of X(4) and X(648), and also through the centers X(i) for I = 4, 113, 155, 193. (Paul Yiu, Oct. 16, 2001, as contributing editor for Clark Kimberling, "Conics associated with a cevian nest," Forum Geometricorum 1 (2001) 141-150; see Example 2.)

X(1112) is X(11)-of-the-orthic-triangle if ABC is acute. (Peter Moses, July 7, 2009)

X(1112) lies on these lines: 4,94   6,1177   25,110   51,125   52,113   389,974   428,542   468,511

X(1112) = reflection of X(974) in X(389)
X(1112) = crosspoint of X(4) and X(250)
X(1112) = crosssum of X(3) and X(125)
X(1112) = inverse-in-polar-circle of X(3448)
X(1112) = polar conjugate of isotomic conjugate of X(34990)
X(1112) = inverse-in-orthosymmedial-circle of X(427)
X(1112) = excentral-to-ABC functional image of X(11)
X(1112) = intersection of tangents to Walsmith rectangular hyperbola at X(110) and X(125)


X(1113) = 1st EULER-LINE-CIRCUMCIRCLE INTERSECTION

Trilinears    (R - d)cos A - 2R cos B cos C : (R - d)cos B - 2R cos C cos A : (R - d)cos C - 2R cos A cos B, where R = circumradius, d = distance |OH| between X(3) and X(4). (Joe Goggins, 2002)
Trilinears    (1 - J) cos A - 2 cos B cos C : : , where J = |OH|/R = (1/abc)[S(6) - S(2,4) + 3a2b2c2]1/2, where S(6) = a6 + b6 + c6, and S(2,4) = a2b4 + a2c4 + b2c4 + b2a4 + c2a4 + c2b4 (Peter J. C. Moses, 10/2/03)
Barycentrics    2RSBSC + (|OH| - R)a2SA : : , where |OH| = distance between X(3) and X(4), and R = circumradius (Peter J. C. Moses, 3/2003; cf. X(1313), X(1314))
Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) - a^2*(-a^2 + b^2 + c^2)*(1 - J) : :
X(1113) = 3X(2) + (-3 + |OH|/R)*X(3) = X(1113) = (- 1 + |OH|/R)*X(3) + X(4)

As a point on the Euler line, X(1113) has Shinagawa coefficients (R - |OH|, -3R + |OH|).

X(1113) is a point of intersection of the Euler line and the circumcircle. The other is X(1114). Of the two, X(1113) is the one closer to X(4).

X(1113) is one of 2 points P such that P is the circumcircle-antipode of Λ (trilinear polar of P); the other is X(1114). (Randy Hutson, November 2, 2017)

If you have The Geometer's Sketchpad, you can view X(1113) and X(1114).

X(1113) lies on these lines: {1, 2100}, {2, 3}, {6, 2104}, {11, 10781}, {54, 14374}, {74, 2575}, {98, 2593}, {100, 2580}, {101, 2576}, {108, 2586}, {109, 1822}, {110, 2574}, {111, 8106}, {112, 8105}, {165, 2101}, {187, 8426}, {511, 2105}, {517, 2103}, {691, 9173}, {759, 2589}, {1495, 13415}, {2249, 2579}, {2777, 14500}, {5840, 10782}, {5972, 14499}, {10287, 10686}

X(1113) = reflection of X(i) in X(j) for these (i,j): (4,1312), (1114,3)
X(1113) = isogonal conjugate of X(2574)
X(1113) = isotomic conjugate of X(22339)
X(1113) = anticomplement of X(1313)
X(1113) = X(250)-Ceva conjugate of X(1114)
X(1113) = trilinear product X(110)*X(1823)
X(1113) = trilinear pole of line X(6)X(1345) (the major axis of the orthic inconic)
X(1113) = Ψ(X(6), X(1345))
X(1113) = pole wrt polar circle of trilinear polar of X(2592) (line X(523)X(1313))
X(1113) = polar conjugate of X(2592)
X(1113) = inverse-in-polar-circle of X(1313)
X(1113) = Thomson isogonal conjugate of X(2575)
X(1113) = Lucas isogonal conjugate of X(2575)


X(1114) = 2nd EULER-LINE-CIRCUMCIRCLE INTERSECTION

Trilinears    (R + d)cos A - 2R cos B cos C : (R + d)cos B - 2R cos C cos A : (R + d)cos C - 2R cos A cos B, where R = circumradius, d = distance between X(3) and X(4). (Joe Goggins, 2002)
Trilinears    (1 + J) cos A - 2 cos B cos C, where J = |OH|/R; see X(1113)
Barycentrics    2RSBSC - (|OH| +R)a2SA : : , where |OH| = distance between X(3) and X(4), and R = circumradius (Peter J. C. Moses, 3/2003)
Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) - a^2*(-a^2 + b^2 + c^2)*(1 + J) : :

X(1114) = 3X(2) - (3 + |OH|/R)*X(3) = - (1 + |OH|/R)*X(3) + X(4)

As a point on the Euler line, X(1114) has Shinagawa coefficients (R + |OH|, -3R - |OH|).

X(1114) is a point of intersection of the Euler line and the circumcircle. Its antipode is X(1113).

X(1114) is one of 2 points P such that P is the circumcircle-antipode of Λ (trilinear polar of P); the other is X(1113). (Randy Hutson, November 2, 2017)

X(1114) lies on these lines: {1, 2101}, {2, 3}, {6, 2105}, {11, 10782}, {54, 14375}, {74, 2574}, {98, 2592}, {100, 2581}, {101, 2577}, {108, 2587}, {109, 1823}, {110, 2575}, {111, 8105}, {112, 8106}, {165, 2100}, {187, 8427}, {511, 2104}, {517, 2102}, {691, 9174}, {759, 2588}, {1379, 14899}, {1495, 13414}, {2249, 2578}, {2777, 14499}, {5840, 10781}, {5972, 14500}, {10288, 10687}

X(1114) = reflection of X(i) in X(j) for these (i,j): (4,1313), (1113,3)
X(1114) = isogonal conjugate of X(2575)
X(1114) = isotomic conjugate of X(22340)
X(1114) = anticomplement of X(1312)
X(1114) = X(250)-Ceva conjugate of X(1113)
X(1114) = trilinear product X(110)*X(1822) X(1114) = trilinear pole of line X(6)X(1344) (the minor axis of the orthic inconic)
X(1114) = Ψ(X(6), X(1344))
X(1114) = pole wrt polar circle of trilinear polar of X(2593) (line X(523)X(1312))
X(1114) = polar conjugate of X(2593)
X(1114) = inverse-in-polar-circle of X(1312)
X(1114) = Thomson isogonal conjugate of X(2574)
X(1114) = Lucas isogonal conjugate of X(2574)

leftri

Centers 1115-1150

rightri
were added to ETC on 1/10/03.

X(1115) = EXTERIOR-ANGLE CURVATURE CENTROID

Trilinears    (π - A)/a : (π - B)/b : (π - C)/c
Barycentrics   π - A : π - B : π - C

X(1115) = 9 X[2] - 5 X[18295], 3 X[360] - 5 X[18295], 6 X[18294] - 5 X[18295]

X(1115) is the center of mass of a point-mass system obtained by placing at vertex A a mass equal to the magnitude of the exterior angle (that's π - A) at A, and cyclically for B and C. (Peter Scales, Hyacinthos #5528, 5/22/02) This description is also found in Honsberger, Episodes in Nineteenth and Twentieth Century Eulidean Geometry, p. 120, where it is mistakenly attributed to the Steiner point, X(99).

X(1115) should not be confused with Jakob Steiner's actual "Curvature Centroid" (discovered in 1825), applicable to all polygons, obtained as the weighted sum of vertices with weights determined by sines of doubled vertex angles [1]. Remarkably, the pedal polygon of a polygon with respect to this point has extremal area: it is minimal (resp. maximal) if the sign of the sum of sines of double angles is negative (resp. positive) [1]. For a triangle, this point is the circumcenter X(3) and the extremal pedal triangle is the medial triangle. (Dan Reznik, July 7, 2020).

[1] Jakob Steiner, "Krümmungs Schwerpunkt ebener Curven", Abhandlungen der Königlich Preussischen Akademie der Wissenschaften, 1838. (Dan Reznick, July 7, 2020)

X(1115) lies on this line: 2,360

X(1115) = reflection of X(360) in X(18294)
X(1115) = isogonal conjugate of X(7021)
X(1115) = complement of X(360)
X(1115) = anticomplement of X(18294)
X(1115) = complement of the isogonal conjugate of X(359)
X(1115) = X(i)-complementary conjugate of X(j) for these (i,j): {359, 10}, {1077, 141}
X(1115) = X(i)-isoconjugate of X(j) for these (i,j): {1, 7021}, {6, 7041}
X(1115) = barycentric product X(75)*X(7039)
X(1115) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 7041}, {6, 7021}, {7039, 1}, {7041, 7036}, {7044, 7039}
X(1115) = {X(2),X(360)}-harmonic conjugate of X(18294)


X(1116) = CENTER OF THE LESTER CIRCLE

Trilinears    bc(b2-c2)[2(a2-b2)(c2-a2) + 3R2(2a2-b2-c2) - a2(a2+b2+c2) + a4+b4+c4], where R = (a csc A)/2 = circumradius of ABC.

Barycentrics    (b^2 - c^2)*(-2*a^8 + 5*a^6*b^2 - 3*a^4*b^4 - a^2*b^6 + b^8 + 5*a^6*c^2 - 8*a^4*b^2*c^2 + 4*a^2*b^4*c^2 - 4*b^6*c^2 - 3*a^4*c^4 + 4*a^2*b^2*c^4 + 6*b^4*c^4 - a^2*c^6 - 4*b^2*c^6 + c^8) : :
X(1116) = 2 X[15543] + X[18308]

The Lester circle passes through the points X(3), X(5), X(13), X(14). Coordinates of the center were determined by Milorad Stevanovic (#5895, 9/20/02). The circle is described in

June Lester, "Triangles III: complex centre functions and Ceva's theorem," Aequationes Mathematicae 53 (1997) 4-35.

The appearance of i in the following list means that X(i) lies on the Lester circle: 3, 5, 13, 14, 1117, 5671, 14854, 15475, 15535, 15536, 15537, 15538, 15539, 15540, 15541, 15542, 15543, 15544, 15545, 15546, 15547, 15548, 15549, 15550, 15551, 15552, 15553, 15554, 15555, 34365

If you have The Geometer's Sketchpad, you can view X(1116).

X(1116) lies on these lines: {{3, 15475}, {4, 39606}, {5, 15543}, {115, 125}, {140, 523}, {381, 32478}, {512, 5892}, {1510, 13363}, {3566, 39482}, {5664, 23105}, {6644, 39481}, {20184, 20299}, {38609, 38611}, {39504, 39512}

X(1116) = midpoint of X(i) and X(j) for these {i,j}: {3, 15475}, {5, 15543}, {5664, 23105}
X(1116) = reflection of X(18308) in X(5)
X(1116) = tripolar centroid of X(13582)
X(1116) = crossdifference of every pair of points on line {110, 11063}
X(1116) = pole wrt orthocentroidal circle of Napoleon axis (line X(6)X(17))


X(1117) = POINT ALRESCHA

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = n(a,b,c)/d(a,b,c),
                             n(a,b,c) = 5(SA)2[(SB)2 + (SC)2] - 3a2(SA)3 - 4(SB)2(SC)2 - SASBSC(2SA - SB - SC),
                             d(a,b,c) = 2a[4(SA)2 - b2c2][b2c2(3a2 - 8SA) + 8(SA)3],
                             SA = (b2 + c2 - a2)/2; SB = (c2 + a2 - b2)/2; SC = (a2 + b2 - c2)/2;
                             (coordinates by Edward Brisse, Peter J. C. Moses).

Barycentrics   (a^2-a b+b^2-c^2) (a^2+a b+b^2-c^2) (a^2-b^2-a c+c^2) (a^2-b^2+a c+c^2) (a^6-a^4 b^2-a^2 b^4+b^6-3 a^4 c^2+a^2 b^2 c^2-3 b^4 c^2+3 a^2 c^4+3 b^2 c^4-c^6) (a^6-3 a^4 b^2+3 a^2 b^4-b^6-a^4 c^2+a^2 b^2 c^2+3 b^4 c^2-a^2 c^4-3 b^2 c^4+c^6) (a^8-4 a^6 b^2+6 a^4 b^4-4 a^2 b^6+b^8-4 a^6 c^2+a^4 b^2 c^2+a^2 b^4 c^2+2 b^6 c^2+6 a^4 c^4+a^2 b^2 c^4-6 b^4 c^4-4 a^2 c^6+2 b^2 c^6+c^8) : :

X(1117) lies on the Lester circle. See Bernard Gibert's message, Hyacinthos #5613, 5/31/02.

X(1117) on the Lester circle, the cubic K060, and these lines: {5,3470}, {30,5671}, {265,13582}, {11071,11581}

X(1117) = X(13582)-Ceva conjugate of X(11071)
X(1117) = cevapoint of X(3471) and X(5671)
X(1117) = isogonal conjugate of inverse-in-circumcircle of isogonal conjugate of X(399)
X(1117) = antigonal conjugate of X(399)
X(1117) = syngonal conjugate of X(10264)
X(1117) = barycentric product X(1272)*X(11071)
X(1117) = barycentric product X(1989)X(1272)X(13582)
X(1117) = barycentric quotient X(i)/X(j) for these {i,j}: {11071, 1138}, {11074, 3470}


X(1118) = 1st HATZIPOLAKIS PERSPECTOR

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (1 - cos A)/cos2A
Barycentrics (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Let A'B'C' be the intouch triangle of ABC. Let CA be the point other than C' in which the perpendicular to BC from C' meets the incircle, let BA be the point other than B' in which the perpendicular to BC from B' meets the incircle, and let A0 be the point of intersection of lines BCA and CBA. Define B0 and C0 cyclically. Then triangle A0B0C0 is perspective to ABC, and the perspector is X(1118). (Antreas Hatzipolakis, #5321, 4/30/02)

X(1118) is the trilinear product A0*B0*C0, where A0, B0, C0 are as defined above. (Randy Hutson, January 15, 2019)

X(1118) lies on the hyperbola {{A,B,C,X(4),X(19)}} these lines: 4,65   7,286   12,281   19,208   20,243   24,108   28,56   34,207   92,388

X(1118) = isogonal conjugate of X(1259)
X(1118) = isotomic conjugate of X(1264)
X(1118) = X(63)-isoconjugate of X(219)
X(1118) = polar conjugate of X(345)


X(1119) = 2nd HATZIPOLAKIS PERSPECTOR

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = (1 - sec A)/(1 + cos A)
Barycentrics (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Let triangle A0B0C0 be as defined for X(1118). Let A1 be the orthogonal projection of A0 onto line BC, and define B1 and C1 cyclically. Then triangle A1B1C1 is perspective to ABC, and the perspector is X(1119). (Antreas Hatzipolakis, #5321, 4/30/02)

X(1119) lies on the hyperbola {{A,B,C,X(4),X(19)}} these lines: 3,347   4,7   19,57   28,279   34,269   142,281   393,1086   579,1020   915,934

X(1119) = isogonal conjugate of X(1260)
X(1119) = isotomic conjugate of X(1265)
X(1119) = X(34)-cross conjugate of X(278)
X(1119) = polar conjugate of X(346)


X(1120) = X(2)-BLAIKIE TRANSFORM OF X(1)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = bc/(b2 + c2 + ba + ca - 4bc)
Barycentrics af(a,b,c) : bf(b,c,a) : cf(c,a,b)

For the definition of Blaikie transform, see X(903).

X(1120) lies on these lines: 6,644   56,100   58,643   106,519  269,664

X(1120) = isogonal conjugate of X(1149)
X(1120) = isotomic conjugate of X(1266)
X(1120) = trilinear pole of line X(9)X(649)


X(1121) = X(7)-BLAIKIE TRANSFORM OF X(2)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = bc/[(b + c - a)a - (a + b - c)(a + c - b)]
Barycentrics af(a,b,c) : bf(b,c,a) : cf(c,a,b)

For the definition of Blaikie transform, see X(903).

X(1121) lies on the Steiner circumellipse and these lines: 2,664   8,190   29,648   99,333   312,668   519,666   903,918

X(1121) = reflection of X(i) in X(j) for these (i,j): (2,1146), (664,2)
X(1121) = isogonal conjugate of X(1055)
X(1121) = isotomic conjugate of X(527)
X(1121) = polar conjugate of X(23710)
X(1121) = complement of X(39357)
X(1121) = anticomplement of X(35110)
X(1121) = Steiner-circumellipse-antipode of X(664)
X(1121) = projection from Steiner inellipse to Steiner circumellipse of X(1146)
X(1121) = antipode of X(8) in hyperbola {{A,B,C,X(2),X(8)}}
X(1121) = trilinear pole of line X(2)X(522)


X(1122) = 1st GRINBERG POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b),    where f(a,b,c) = [a(b + c) + (b - c)2]/(b + c - a)
Barycentrics af(a,b,c) : bf(b,c,a) : cf(c,a,b)

Let AB be the touchpoint of the A-excircle and line AB, let AC be the touchpoint of the A-excircle and line AC, and let MA be the midpoint of segment ABAC. Define MB and MC cyclically. Let A', B', C' be the touchpoints of the incircle with lines BC, CA, AB, respectively. The triangles MAMBMC and A'B'C' are perspective, and the perspector is X(1122). (Darij Grinberg, 12/28/02)

If you have The Geometer's Sketchpad, you can view X(1122).

X(1122) lies on these lines: 7,8   56,269

X(1122) = isogonal conjugate of X(1261)
X(1122) = crosspoint of X(7) and X(269)
X(1122) = crosssum of X(55) and X(200)


X(1123) = PAASCHE POINT

Trilinears    1/(1 +sin A) : 1/(1 + sin B) : 1/(1 + sin C)
Barycentrics   (sin A)/(1 + sin A) : (sin B)/(1 + sin B) : (sin C)/(1 + sin C)
Barycentrics   1/(b*c + S) : :

Let D and E be the congruent circles each tangent to the other and to line BC, with D also tangent to line AB and E also tangent to line CA, meeting in a point A' lying outside triangle ABC. Define B' and C' cyclically. Then A'B'C' is perspective to ABC, and the perspector is X(1123). See

Ivan Paasche, Aufgabe P 933, Praxis der Mathematik 1 (1990), page 40.

Let PA be the parabola with focus A and directrix BC, and let LA be the line of the points of intersection of PA with the segments AB and AC. Define LB and LC cyclically. Let A' = LB∩LC, and define B' and C' cyclically. The lines AA', BB', CC' concur in X(1123). (Randy Hutson, 9/23/2011)

Suppose that ABC is an acute triangle. Let oA be the circle with diameter BC. Let wA be the circle tangent to segments AB and AC and also externally tangent to oA, in point XA. Define XB and XC cyclically. The lines AXA, BXB, CXC concur in X(1123). (Tomasz Cieśla, 19 January 2013) For a related construction, see X(1336).

In Hutson's construction of X(1123) given above, the parabola PA meets segments AB and AC in two points, here denoted by Ab and Ac. Cyclically, the parabolas PB and PC determine four more points; the six points are then Ab = 0 : 2R : c, Ac = 0 : b : 2R, Bc = a : 0 : 2R, Ba = 2R : 0 : c, Ca = 2R : b : 0, Cb = a : 2R : 0. These points lie on a conic, named the Paasche conic at X(37861). (Vijay Krishna, April 14, 2020)

For a construction and relationships to other points, see the preamble just before X(37994). See also X(1336).

If you have The Geometer's Sketchpad, you can view X(1123)

X(1123) lies on the conic {{A,B,C,X(1),X(2)}}, the cubic K1046, and these lines: {1, 3069}, {2, 586}, {4, 7133}, {28, 34121}, {37, 158}, {56, 44857}, {57, 482}, {81, 1335}, {88, 9661}, {105, 6135}, {176, 10252}, {274, 5391}, {443, 64631}, {498, 3302}, {499, 3300}, {920, 3068}, {1068, 13440}, {1096, 55403}, {1124, 30412}, {1377, 40399}, {1738, 8957}, {1785, 14121}, {1788, 8953}, {3083, 37994}, {3086, 37861}, {3421, 30556}, {4312, 64617}, {5405, 25430}, {6857, 30557}, {7040, 13429}, {9646, 30413}, {14986, 38492}, {21992, 57267}, {30333, 52810}, {31533, 32555}, {31582, 52816}, {38488, 38489}, {39312, 39315}, {39318, 39324}, {56041, 56427}, {56352, 56384}, {59591, 64632}

X(1123) = isogonal conjugate of X(1124)
X(1123) = isotomic conjugate of X(1267)
X(1123) = polar conjugate of X(13386)
X(1123) = polar conjugate of the isotomic conjugate of X(13387)
X(1123) = polar conjugate of the isogonal conjugate of X(34121)
X(1123) = X(i)-cross conjugate of X(j) for these (i,j): {11, 58840}, {2362, 4}, {3086, 1336}, {13456, 13454}, {34121, 13387}, {38487, 1}, {64209, 13437}
X(1123) = X(i)-isoconjugate of X(j) for these (i,j): {1, 1124}, {2, 605}, {3, 6212}, {6, 3083}, {25, 55388}, {31, 1267}, {41, 13453}, {48, 13386}, {55, 52419}, {57, 60848}, {63, 34125}, {101, 6364}, {184, 46744}, {255, 1336}, {394, 64210}, {604, 13425}, {606, 13424}, {1110, 22107}, {1259, 13460}, {1804, 13427}, {2066, 13389}, {2289, 13459}, {4091, 6136}, {6502, 30556}, {7125, 13426}, {14440, 34075}, {38003, 42019}, {53064, 56385}
X(1123) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 1267}, {3, 1124}, {9, 3083}, {223, 52419}, {514, 22107}, {1015, 6364}, {1249, 13386}, {3160, 13453}, {3161, 13425}, {3162, 34125}, {5452, 60848}, {6505, 55388}, {6523, 1336}, {32664, 605}, {36103, 6212}, {38015, 40650}, {39011, 14440}, {40653, 40651}, {49171, 38003}, {62605, 46744}
X(1123) = cevapoint of X(i) and X(j) for these (i,j): {11, 58840}, {514, 44320}, {13456, 64209}
X(1123) = trilinear pole of line {513, 58840}
X(1123) = pole of line {11436, 58897} with respect to the Feuerbach circumhyperbola
X(1123) = pole of line {1659, 13454} with respect to the ABCGGe
X(1123) = pole of line {1123, 3086} with respect to the ABCGI
X(1123) = pole of line {1124, 18604} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(1123) = pole of line {255, 605} with respect to the Kiepert circumhyperbola of the excentral triangle
X(1123) = pole of line {394, 1124} with respect to the Jerabek circumhyperbola of the excentral triangle
X(1123) = pole of line {1124, 1267} with respect to the Kiepert circumhyperbola of the anticomplementary triangle
X(1123) = pole of line {6364, 14298} with respect to the Steiner inellipse
X(1123) = pole of line {16228, 58838} with respect to the Orthic inconic
X(1123) = pole of line {905, 54019} with respect to the polar circle
X(1123) = barycentric product X(i)*X(j) for these {i,j}: {4, 13387}, {7, 13454}, {8, 13437}, {19, 46745}, {75, 64209}, {85, 13456}, {92, 6213}, {158, 3084}, {264, 34121}, {312, 13438}, {393, 5391}, {485, 13457}, {606, 57806}, {693, 6135}, {1118, 13458}, {1335, 2052}, {1336, 13435}, {1659, 7090}, {1857, 13436}, {2362, 60854}, {6520, 55387}, {56386, 61392}
X(1123) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3083}, {2, 1267}, {4, 13386}, {6, 1124}, {7, 13453}, {8, 13425}, {19, 6212}, {25, 34125}, {31, 605}, {55, 60848}, {57, 52419}, {63, 55388}, {92, 46744}, {393, 1336}, {513, 6364}, {606, 255}, {891, 14440}, {1086, 22107}, {1096, 64210}, {1118, 13459}, {1335, 394}, {1336, 13424}, {1857, 13426}, {2362, 13389}, {3084, 326}, {3086, 40650}, {3298, 55442}, {3300, 39312}, {3554, 38003}, {5391, 3926}, {6135, 100}, {6213, 63}, {6365, 4131}, {7090, 56385}, {7133, 30556}, {8941, 8393}, {13387, 69}, {13435, 5391}, {13436, 7055}, {13437, 7}, {13438, 57}, {13454, 8}, {13456, 9}, {13457, 492}, {13458, 1264}, {34121, 3}, {38487, 40651}, {39314, 39313}, {46745, 304}, {52420, 7183}, {55387, 1102}, {58840, 54019}, {60847, 1259}, {60850, 6502}, {60851, 2066}, {61392, 13390}, {61401, 64229}, {64209, 1}, {64617, 31547}
X(1123) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 38004, 38003}, {2, 37881, 40650}, {2, 39322, 39313}, {37, 3085, 1336}, {158, 393, 1336}, {281, 7952, 1336}, {13438, 13456, 6213}, {39311, 39314, 39319}, {39313, 39323, 39322}, {39313, 39615, 39612}, {39314, 39321, 39326}


X(1124) = ISOGONAL CONJUGATE OF X(1123)

Trilinears       1 + sin A : 1 + sin B : 1 + sin C
Trilinears       a(S + bc) : b(S + ca) : c(S + ab)
Barycentrics (1 + sin A) sin A : (1 + sin B) sin B : (1 + sin C) sin C

X(1124) lies on these lines: 1,6   3,2066   11,485   12,486   35,1152   36,1151   42,494   55,372   56,371   176,651   255,605   498,615   499,590

X(1124) = isogonal conjugate of X(1123)
X(1124) = isotomic conjugate of polar conjugate of X(34125)
X(1124) = {X(1),X(6)}-harmonic conjugate of X(1335)
X(1124) = X(19)-isoconjugate of X(13387)
X(1124) = insimilicenter of incircle and 2nd Lemoine circle


X(1125) = COMPLEMENT OF X(10)

Trilinears    (2a+b+c)/a : (a+2b+c)/b : (a+b+2c)/c
Trilinears    r + 2 R sin B sin C : :
Barycentrics 2a+b+c : a+2b+c : a+b+2c
X(1125) = X(1) + 3*X(2) = 3*X(1) + X(8) = 3*X(2) - X(10) = X(8) - 3*X(10)

The centroid of four points A,B,C,P is the complement of the complement of P with respect to triangle ABC. As an example, X(1125) is the centroid of {A,B,C,X(1)}. (Darij Grinberg, 12/28/02)

Let A' the midpoint of segment BC and let A'' be the midpoint of segment AA'. Define B'' and C'' cyclically. The triangle A''B''C'' is homothetic to ABC, and the center of homothety is X(1125).

Let I be the incenter of triangle ABC and A' the centroid of triangle BCI, and define B' and C' cyclically. The triangle A'B'C' is homothetic to ABC, and the center of homothety is X(1125).

X(1125) is the center of the ellipse which is the locus of centers of the conics passing through A, B, C, and X(1). This ellipse is also the locus of crosssums of the intersections of the circumcircle and lines through X(1). Furthmore, this ellipse is the bicevian conic of X(1) and X(2) (i.e. the conic which passes through the vertices of the incentral and medial triangles). The ellipse passes through X(11), X(214), X(244), X(1015) and the midpoints of the sides of ABC. (Randy Hutson, 8/13/2011, Hyacinthos #20179; see also #20181, by Chris van Tienhoven.)

A construction of X(1125) is given by Antreas Hatipolakis and Angel Montesdeoca at 24185.

Let A'B'C' be the incentral triangle. Let A" be the reflection of A in A', and define B" and C" cyclically. Let A* be the trilinear pole of line B"C", and define B* and C* cyclically. The lines AA*, BB*, CC* concur in X(1125). (Randy Hutson, July 21, 2017)

Let A'B'C' be the 2nd circumperp triangle. Let A"B"C" be the triangle bounded by the Simson lines of A', B', C'. A"B"C" is homothetic to A'B'C' at X(1125). (Randy Hutson, July 21, 2017)

See Dasari Naga Vijay Krishna, On a Conic Through Twelve Notable Points, Int. J. Adv. Math. and Mech. 7(2) (2019) 1-15.

For an other construction of the point X(1125) see Antreas Hatzipolakis and Peter Moses, euclid 5220.

X(1125) lies on these lines: 1,2   3,142   5,515   11,214   21,36   33,475   34,406   35,404   37,39   40,631   55,474   56,226   58,86   65,392   72,354   105,831   114,116   140,517   165,962   171,595   274,350   409,759   443,497   749,984   758,942   958,999   1015,1107

X(1125) is the {X(1),X(2)}-harmonic conjugate of X(10). For a list of other harmonic conjugates of X(1125), click Tables at the top of this page.

X(1125) = midpoint of X(i) and X(j) for these (i,j): (1,10), (2,551), (3,946), (5,1385), (8,3244), (11,214), (142,1001), (226,993), (942,960), (999,3452), (1100,3775), (4065,4647)
X(1125) = isogonal conjugate of X(1126)
X(1125) = isotomic conjugate of X(1268)
X(1125) = complement of X(10)
X(1125) = anticomplement of X(3634)
X(1125) = crosspoint of X(2) and X(86)
X(1125) = crosssum of X(6) and X(42)
X(1125) = perspector of circumconic centered at X(1213)
X(1125) = center of circumconic that is locus of trilinear poles of lines passing through X(1213)
X(1125) = center of bicevian conic of X(1) and X(2)
X(1125) = Kosnita(X(1),X(2)) point
X(1125) = X(1)-Ceva conjugate of X(4065)
X(1125) = X(2)-Ceva conjugate of X(1213)
X(1125) = X(214)-of-X(1)-Brocard triangle
X(1125) = complement of X(4065) wrt incentral triangle
X(1125) = trilinear product of vertices of anti-Aquila triangle
X(1125) = X(10110)-of-excentral-triangle
X(1125) = {X(1),X(8)}-harmonic conjugate of X(3244)
X(1125) = {X(2),X(10)}-harmonic conjugate of X(3634)
X(1125) = {X(8),X(10)}-harmonic conjugate of X(4691)
X(1125) = perspector of Gemini triangle 11 and cross-triangle of ABC and Gemini triangle 11
X(1125) = homothetic center of anticomplementary triangle and cross-triangle of Aquila and anti-Aquila triangles
X(1125) = trilinear pole of line X(4969)X(4976) (the perspectrix of ABC and Gemini triangle 12)
X(1125) = polar conjugate of isogonal conjugate of X(22054)
X(1125) = perspector of medial triangle and n(Medial)*n(Incentral) triangle


X(1126) = ISOGONAL CONJUGATE OF X(1125)

Trilinears       a/(2a+b+c) : b/(a+2b+c) : c/(a+b+2c)
Barycentrics a2/(2a+b+c) : b2/(a+2b+c) : c2/(a+b+2c)

X(1126) lies on these lines: 1,748   6,595   10,86   35,42   56,181   145,996   830,1027

X(1126) = isogonal conjugate of X(1125)
X(1126) = isotomic conjugate of X(1269)
X(1126) = cevapoint of X(6) and X(42)
X(1126) = X(512)-cross conjugate of X(101)
X(1126) = X(92)-isoconjugate of X(22054)
X(1126) = perspector of ABC and unary cofactor triangle of Gemini triangle 12


X(1127) = 1st DE VILLIERS POINT

Trilinears    (sin A/4)/sin(3A/4) : :
Trilinears    [1 - 2 cos(A/2)]/(1 + 2 cos A) : :      (M. Iliev, 5/13/07)
Barycentrics    1/(cot A - cot(A/4)) : : (Nikolaos Dergiades, ADGEOM #1511, 8/19/2014)

Let A', B', C' be the incenters of triangles XBC, XCA, XAB, respectively, where X is the incenter, X(1). The triangle A'B'C' is perspective to ABC, and the perspector is X(1127). Coordinates found by Darij Grinberg, 8/22/02. (The triangle A'B'C' is the BCI triangle.)

Michael de Villiers, A dual to Kosnita's theorem, reprinted from Mathematics & Informatics Quarterly 6 (1996) 1996.

X(1127) lies on this line: 174,481

X(1127) = isogonal conjugate of X(1129)

X(1127) = Hofstadter 1/4 point
X(1127) = trilinear product of vertices of BCI triangle

X(1128) = 2nd DE VILLIERS POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = (sin((π - A)/4))/sin((π + 3A)/4)
Trilinears       gA,B,C) : g(B,C,A) : g(C,A,B),
                        where g(A,B,C) = [1 - 2 sin(A/2)]/(1 - 2 cos A)     (M. Iliev, 5/13/07)
Barycentrics (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Let A",B",C" be the excenters of ABC, and let A', B', C' be the respective incenters of triangles A"BC, B"CA, C"AB, respectively. The triangle A'B'C' is perspective to ABC, and the perspector is X(1128). (Darij Grinberg, 8/22/02). See references at X(1127).

X(1128) lies on these lines: 164,173   188,519   258,505

X(1128) = isogonal conjugate of X(1130)


X(1129) = ISOGONAL CONJUGATE OF X(1127)

Trilinears    (sin 3A/4)/sin(A/4) : :
Trilinears    1 + 2 cos(A/2)      (M. Iliev, 5/13/07)

Let A', B', C' be as at X(1127). Let A" = BC' ∩ CB', B" = CA' ∩ AC', C" = AB' ∩ BA'. The lines AA", BB", CC" concur in X(1129). Note: A'B'C' and A"B"C" are analogous to the 1st Morley triangle and adjunct Morley triangle, substituting angle quadrisectors for angle trisectors. (Randy Hutson, January 29, 2018)

X(1129) lies on this line: 1,168

X(1129) = isogonal conjugate of X(1127)
X(1129) = Hofstadter 3/4 point
X(1129) = perspector of ABC and cross-triangle of ABC and BCI triangle


X(1130) = 1st STEVANOVIC POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = sin[(π + 3A)/4]/sin[(π - A)/4]

Trilinears       g(A,B,C) : g(B,C,A) : g(C,A,B),
                        where g(A,B,C) = 1 + 2 sin(A/2)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Let U be the A-excenter of triangle ABC; let A' be the incenter of triangle UBC, and define B', C' cyclically. Let A" = BC'∩CB', and define B", C" cyclically. The lines AA", BB", CC" concur in X(1130). (Milorad R. Stevanovic, Hyacinthos #7185, 5/21/03. See also X(1488) and X(1489).)

X(1130) lies on these lines: 1,164   173,505

X(1130) = isogonal conjugate of X(1128)


X(1131) = ARCTAN(2) KIEPERT POINT

Trilinears    1/(sin A + 2 cos A) : :
Trilinears    csc(A + t) : : , where t = arctan(2)
Barycentrics    1/(2 SA + S) : :

To construct the Vecten point, X(485), squares are erected outward on the sides of ABC. If A', B', C' are the centers of these squares, then triangle A'B'C' is perspective to ABC with perspector X(485). Now let A" be the midpoint of the side of the A-square that does not touch line BC, and define B" and C" cyclically. Then triangle A"B"C" is perspective to ABC with perspector X(1131). Angle(A"BC) = angle(B"CA) = angle(C"AB), so that X(1131) lies on the Kiepert hyperbola. Here, the common angle is arctan(2). (Darij Grinberg 9/22/02)

If you have The Geometer's Sketchpad, you can view X(1131).

X(1131) lies on these lines: 2,490   6,1132   4,3311   20,485   175,226

X(1131) = isogonal conjugate of X(1151)
X(1131) = isotomic conjugate of X(1270)
X(1131) = anticomplement of X(33364)
X(1131) = polar conjugate of X(3535)
X(1131) = {X(6),X(3832)}-harmonic conjugate of X(1132)


X(1132) = ARCTAN(-2) KIEPERT POINT

Trilinears    1/(sin A - 2 cos A) : :
Trilinears    csc(A - t) : : , where t = arctan(2)

Barycentrics    1/(2 SA - S) : :

X(1132) is constructed in the manner for X(1131), using squares erected inward, so that the three equal angles have common measure arctan(-2), and X(1132) lies on the Kiepert hyperbola. (Darij Grinberg 9/22/02)

If you have The Geometer's Sketchpad, you can view X(1132).

X(1132) lies on these lines: 2,489   4,3312   6,1131   20,486   176,226

X(1132) = isogonal conjugate of X(1152)
X(1132) = isotomic conjugate of X(1271)
X(1132) = anticomplement of X(33365)
X(1132) = polar conjugate of X(3536)
X(1132) = {X(6),X(3832)}-harmonic conjugate of X(1131)


X(1133) = BURGESS POINT

Trilinears    sin(π/3 - A/3)/sin(π/3 + A/3) : :

Rotate line BC about B away from A through angle B/3, and rotate line BC about C away from A through angle C/3; let A' be the point in which the two rotated lines meet. Define B' and C' cyclically. Let A" be the point of intersection of lines BC' and B'C, and define B" and C" cyclically. The lines AA', BB', CC' concur in X(357), and AA", BB", CC" concur in X(358). The first of these with reference to triangle A'B'C' is X(1133); i.e., X(1133) = X(357)-of-A'B'C'.

A. G. Burgess, "Concurrency of lines joining vertices of a triangle to opposite vertices of triangles on its sides,"Proceedings of the Edinburgh Mathematical Society 33 (1913-14) 58-64; page 63.

X(1133) = X(3273)-isoconjugate of X(3602)


X(1134) = 3rd MORLEY-TAYLOR-MARR CENTER

Trilinears    1/cos(A/3 + 2π/3) : :
Trilinears       sec(A/3 - π/3) : :

F. Glanville Taylor and W. L. Marr, "The six trisectors of each of the angles of a triangle," Proceedings of the Edinburgh Mathematical Society 33 (1913-14) 119-131; especially item 9, p. 127.

If you have The Geometer's Sketchpad, you can view X(1134).

X(1134) lies on these lines: 356,1135   357,3275

X(1134) = isogonal conjugate of X(1135)
X(1134) = perspector of ABC and 3rd Morley triangle
X(1134) = trilinear product of vertices of 3rd Morley triangle


X(1135) = 4th MORLEY-TAYLOR-MARR CENTER

Trilinears    cos(A/3 + 2π/3) : :
Trilinears    cos(A/3 - π/3) : :
Trilinears    cos(B/3) cos(C/3) - sin(B/3) sin(C/3) : :

See the reference at X(1134).

If you have The Geometer's Sketchpad, you can view X(1135).

X(1135) lies on these lines: 16,358   356,1134

X(1135) = isogonal conjugate of X(1134)
X(1135) = perspector of ABC and 3rd Morley adjunct triangle
X(1135) = trilinear product of vertices of 3rd Morley adjunct triangle
X(1135) = {X(357),X(3603)}-harmonic conjugate of X(3272)


X(1136) = 5th MORLEY-TAYLOR-MARR CENTER

Trilinears    1/cos(A/3 + 4π/3) : :
Trilinears      sec(A/3 + π/3) :
Trilinears    cos(A/3) - cos(B/3 - C/3) : :

See the reference at X(1134).

Another construction, by Seiichi Kirikami, appears at Hyacinthos 21423 (January 16, 2013), posted by Chris van Tienhoven.

If you have The Geometer's Sketchpad, you can view X(1136).

X(1136) = isogonal conjugate of X(1137)
X(1136) = perspector of ABC and 2nd Morley triangle
X(1136) = trilinear product of vertices of 2nd Morley triangle


X(1137) = 6th MORLEY-TAYLOR-MARR CENTER

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = cos(A/3 + 4π/3)

Trilinears       cos(A/3 + π/3) : cos(B/3 + π/3) : cos(C/3 + π/3)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

See the reference at X(1134).

If you have The Geometer's Sketchpad, you can view X(1137).

X(1137) lies on this line: 16,358

X(1137) = isogonal conjugate of X(1136)
X(1137) = perspector of ABC and 2nd Morley adjunct triangle
X(1137) = trilinear product of vertices of 2nd Morley adjunct triangle


X(1138) = ISOGONAL CONJUGATE OF X(399)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 1/(5 cos A - 4 cos B cos C - 8 cos2A sin B sin C)
Barycentrics    1/(a^8 - 4 a^6 (b^2 + c^2) + a^4 (6 b^4 + b^2 c^2 + 6 c^4) - a^2 (4 b^6 - b^4 c^2 - b^2 c^4 + 4 c^6) + (b^2 - c^2)^2 (b^4 + 4 b^2 c^2 + c^4)) : :

There are only two points X such that the pedal triangle of X is similar to the cevian triangle of X. They are X(4) and X(1138). (Jean-Pierre Ehrmann, January 4, 2003)

Let A'B'C' be the anticomplementary triangle of a triangle ABC, and let EA be the line through A parallel to the Euler line. Let A" be the point of intersection, other than A, of EA and the circumcircle. Define EB and EC cyclically. The locus of a point P such that the Euler line of PBC is parallel to the Euler line of ABC is a conic ABCA'A'' having the midpoint of segment BC as center. The conics, ABCA'A'', ABCB'B'', ABCC'C'' pass through X(1138). (Francisco Javier García Capitán, April 3, 2015: ADGEOM 2458)

X(1138) lies on the following curves and lines: K001 (Neuberg Cubic), K279, K449, K490, K515, K528, K614, Q066, Q105, {1,5677}, {3,3471}, {4,2132}, {15,5624}, {16,5623}, {30,146}, {74,5670}, {186,1990}, {484,3464}, {616,5675}, {617,5674}, {1157,5667}, {1272,3260}, {3258,5627}, {3465,5685}, {3479,5679}, {3480,5678}, {3484,5684}, {5672,5673}

X(1138) = reflection of X(5627) in X(3258)
X(1138) = isogonal conjugate of X(399)
X(1138) = isotomic conjugate of X(1272)
X(1138) = X(30)-Ceva conjugate of X(5670)
X(1138) = X(523)-cevapoint of X(3258)
X(1138) = X(i)-cross conjugate of X(j) for these (i,j): (74,4), (1989,2)
X(1138) = X(i)-vertex conjugate of X(j) for these (i,j): (4,3447), (30,186)
X(1138) = trilinear pole of the line X(526)X(1637)


X(1139) = OUTER PENTAGON POINT

Trilinears       (csc A)/(cot A + cot 2π/5) : (csc B)/(cot B + cot 2π/5) : (csc C)/(cot C + cot 2π/5)
Trilinears        csc(A + 2π/5) : csc(B + 2π/5) : csc(C + 2π/5)   (Joe Goggins, Oct. 19, 2005)
Barycentrics 1/(cot A + cot 2π/5) : 1/(cot B + cot 2π/5) : 1/(cot C + cot 2π/5)

Let A' be the outermost vertex of the regular pentagon erected outward on side BC of ABC. Define B' and C' cyclically. Then triangle A'B'C' is perspective to ABC, and the perspector is X(1139). (Steve Sigur and Antreas Hatzipolakis, Hyacinthos 5246, 12/31/02;

If you have The Geometer's Sketchpad, you can view Outer Pentagon Point.

X(1139) lies on these lines: {1,3369}, {3,3370}, {4,3368}, {5,3393}, {6,1140}

X(1139) = isogonal conjugate of X(3396)
X(1139) = X(3394)-cross conjugate of X(3397)


X(1140) = INNER PENTAGON POINT

Trilinears       (csc A)/(cot A - cot 2π/5) : (csc B)/(cot B - cot 2π/5) : (csc C)/(cot C - cot 2π/5)
Trilinears        csc(A + 3π/5) : csc(B + 3π/5) : csc(C + 3π/5)   (Joe Goggins, Oct. 19, 2005)

Barycentrics  1/(cot A - cot 2π/5) : 1/(cot B - cot 2π/5) : 1/(cot C - cot 2π/5)

Let A' be the innermost vertex of the regular pentagon erected inward on side BC of ABC. Define B' and C' cyclically. Then triangle A'B'C' is perspective to ABC, and the perspector is X(1140). See references at X(1140).

If you have The Geometer's Sketchpad, you can view Inner Pentagon Point.

X(1140) lies on these lines: {2,3396}, {3,3397}, {4,3395}, {5,3370}, {6,1139}

X(1140) = isogonal conjugate of X(3369)


X(1141) = GIBERT POINT

Trilinears    bc/[16D2 + (a2+c2-b2)(a2+b2-c2)][16D2 - 3(b2+c2-a2)2] : : , where D = area(ABC) = sec(B - C)/(1 - 4 cos2A) : sec(C - A)/(1 - 4 cos2B) : sec(A - B)/(1 - 4 cos2C) (Eric Weisstein, Nov. 17, 2005)
X(1141) = 3X(549) - 2X(6592)

X(1141) was first noted (Hyacinthos #1498, September 25, 2000) by Bernard Gibert as a point of intersection of the circumcircle and certain cubic, denoted Kn. To define Kn, note first that the Neuberg cubic is the locus of a point M such that the reflections of M in the sidelines of triangle ABC are the vertices of a triangle perspective to ABC. The locus of the perspector is the cubic Kn, and X(1141) is the point, other than A,B,C, in which Kn meets the circumcircle. Also, X(1141) is the perspector when M = X(1157).

In Jean-Pierre Ehrmann and Bernard Gibert, "Special Isocubics," downloadable from Cubics in the Triangle Plane, the point X(1141) is labeled E, barycentrics are given, and it is established that this point also lies on the line X(5)-to-X(110) [listed below as 5,49], two other cubics, and the hyperbola that passes through the points A, B, C, X(4), X(5).

Let A' be the reflection of A in line BC, and define B' and C' cyclically. Let AB be the reflection of A' in AB, and define AC, BC, BA, CA, CB cyclically. Let

       A1 = BAB∩CAC, and define B1 and C1 cyclically,
       A2 = BAC∩CAB, and define B2 and C2 cyclically,
       A3 = BBA∩CCA, and define B3 and C3 cyclically,
       A4 = BBC∩CCB, and define B4 and C4 cyclically,
       A5 = BCA∩CBA, and define B5 and C5 cyclically,
       A6 = BCB∩CBC, and define B6 and C6 cyclically.

Then triangle AnBnCn is perspective to ABC, for n = 1,2,3,4,5,6. The six perspectors are X(1141), X(186), X(4), X(54), X(265), X(5), respectively. (Keith Dean, #4953, 3/12/02; coordinates by Paul Yiu, #4963; summary by Dean, #4971)

X(1141) lies on the conic of {A, B, C, X(3), X(49)}, the conic of {A, B, C, X(6), X(567)}, and the conic of {A, B, C, X(70), X(253), X(254)}.

X(1141) is the antipode of X(930) on the circumcircle, and X(1141) lies on the line of the nine-point center, X(5), and its isogonal conjugate, X(54).

See X(20212) for an additional comment about X(1141); also, 24183.

X(1141) lies on the circumcircle, and cubics K060, K112, K466, K467, K491, the circumconic {{A,B,C,X(4),X(5)}}, and these lines: {2,128}, {3,252}, {4,137}, {5,49}, {20,11671}, {30,1157}, {53,112}, {55,7159}, {56,3327}, {79,109}, {94,96}, {95,99}, {101,7110}, {107,3518}, {140,11016}, {476,2070}, {549,6592}, {621,10409}, {622,10410}, {1303,5890}, {1304,5627}, {1487,10619}, {2166,2222}, {2413,5966}, {3153,10420}, {3459,12254}, {5994,11582}, {5995,11581}, {6069,11464}, {6240,6799}, {7418,9076}, {7731,9512}, {8800,12225}

X(1141) = midpoint of X(20) and X(11671)
X(1141) = reflection of X(i) in X(j) for these (i,j): (4,137), (5,12026), (930,3)
X(1141) = isogonal conjugate of X(1154)
X(1141) = isotomic conjugate of X(1273)
X(1141) = anticomplement of X(128)
X(1141) = X(231)-cross conjugate of X(2)
X(1141) = polar conjugate of X(14918)
X(1141) = antipode of X(4) in hyperbola {{A,B,C,X(4),X(5)}}
X(1141) = the point of intersection, other than A, B, C, of the circumcircle and hyperbola {{A,B,C,X(4),X(5)}}
X(1141) = Collings transform of X(137)
X(1141) = cevapoint of X(i) and X(j) for these {i,j}: {3,539}, {13,6104}, {14,6105}, {54,1157}, {265,5961}
X(1141) = X(110)-of-Lucas-triangle (defined at X(95))
X(1141) = X(i)-cross conjugate of X(j) for these (i,j): (4,5627), (231,2), (2070,1166), (10412,476), (11063,288)
X(1141) = isoconjugate of X(j) and X(j) for these (i,j): {1,1154}, {2,2290}, {5,6149}, {31,1273}, {63,11062}, {323,1953}, {526,2617}, {662,2081}, {2179,7799}
X(1141) = trilinear pole of line {6,2623}
X(1141) = inverse of X(54) in the circle having diameter OH
X(1141) = X(110)-of-circumorthic-triangle
X(1141) = trilinear pole, wrt circumorthic triangle, of line X(3)X(95)
X(1141) = barycentric product X(i)*X(j) for these {i,j}: {54,94}, {95,1989}, {97,6344}, {264,11077}, {265,275}, {328,8882}, {930,2413}, {2166,2167}
X(1141) = barycentric quotient X(i)/X(j) for these (i,j): (i,j}: (2,1273), (6,1154), (25,11062), (31,2290), (54,323), (94,311), (95,7799), (231,128), (265,343), (275,340), (512,2081), (1989,5), (2148,6149), (2623,526), (6344,324), (8737,6116), (8738,6117), (8882,186), (11060,51), (11071,1263), (11077,3)


X(1142) = 1st MALFATTI-RABINOWITZ POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = 1 - 2(1 + cos B/2)(1 + cos C/2)/(1 + cos A/2)      (M. Iliev, 5/13/07)
Trilinears       g(A,B,C) : g(B,C,A) : g(C,A,B),
                        where g(A,B,C) = 1 - 4 sec2(A/4)cos2(B/4)cos2(C/4)      (M. Iliev, 5/13/07)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Let A', B', C' be the respective centers of the three Malfatti circles of ABC. Let A" be the point of intersection of lines BC' and CB', and define B" and C" cyclically. Then triangle A"B"C" is perspective to ABC, and the perspector is X(1142). (Stanley Rabinowitz, #4610, 12/29/01; coordinates by Paul Yiu, #4614, 12/30/01)

Let A', B', C' be the centers of the Malfatti circles. Let A" be the trilinear product B'*C', and define B" and C" cyclically. The lines AA", BB", CC" concur in X(1142). The lines A'A", B'B", C'C" concur in X(179). (Randy Hutson, March 21, 2019)

If you have The Geometer's Sketchpad, you can view X(1142) and X(1142) External.

X(1142) lies on this line: 1,179

X(1142) = trilinear product of centers of Malfatti circles


X(1143) = 2nd MALFATTI-RABINOWITZ POINT

Trilinears       csc A tan A/4 : csc B tan B/4 : csc C tan C/4
Barycentrics tan A/4 : tan B/4 : tan C/4
                      = f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)1/2[2b1/2c1/2 - (a + b + c)1/2(b + c - a)1/2]

Along each side of ABC there is a segment that is a common tangent to two of the three Malfatti circles of ABC. Let A', B', C' be the midpoints of these respective segments. Then triangle A'B'C' isperspective to ABC, and the perspector is X(1143). (Stanley Rabinowitz, #4611, 12/29/01) For coordinates, see Paul Yiu, #4615, 12/30/01, and

Milorad R. Stevanovic, "Triangle Centers Associated with the Malfatti Circles," Forum Geometricorum 3 (2003) 83-93.

Let A' be the touchpoint of the line BC and the incircle of the triangle BCI, where I = incenter of ABC. Define B' and C' cyclically. The line AA', BB', CC' concur in X(1143). (Randy Hutson, 9/23/2011)

If you have The Geometer's Sketchpad, you can view X(1143) and X(1143) External.

X(1143) lies on the cubic K200 and these lines: 8,177   174,175   558,1488

X(1143) = isotomic conjugate of X(1274)
X(1143) = X(1489)-cross conjugate of X(2)
X(1143) = {X(8),X(556)}-harmonic conjugate of X(1274)


X(1144) = EHRMANN CONGRUENT SQUARES POINT

Trilinears    a/(a - L) : b/(b - L) : c/(c - L), where L = L(a,b,c) is the smallest root of a2/(a - L) + b2/(b - L) + c2/(c - L) = 2D/L, and D = area(ABC)
Barycentrics a2/(a - L) : b2/(b - L) : c2/(c - L)

Suppose that P is a point inside triangle ABC. Let SA be the square inscribed in triangle PBC, having two vertices on segment BC, one on PB, and one on PC. Define SB and SC cyclically. Then X(1144) is the unique choice of P for which the three squares are congruent. The function L(a,b,c) is symmetric, homogeneous of degree 1, and satisfies 0 < L(a,b,c) < min{a,b,c}. Also, X(1144) lies on the hyperbola {A,B,C,X(1),X(6)}; indeed, X(1144) lies on the open arc from X(1) to the vertex of ABC opposite the shortest side. L(a,b,c) is the common length of the sides of the three squares. (Jean-Pierre Ehrmann, 12/16/01)

See Jean-Pierre Ehrmann, Congruent Inscribed Rectangles.

If you have GeoGebra, you can view X(1144).

If you have The Geometer's Sketchpad, you can view X(1144).


X(1145) = 3rd EHRMANN POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = bc(b + c - 2a)[2abc - (b + c)(a2 - (b - c)2)]
Barycentrics af(a,b,c) : bf(b,c,a) : cf(c,a,b)

Let A',B',C' be the respective excenters of ABC, and let AB be the projection of A on A'B', let AC be the projection of A on A'C', and define BC, BA, CA, CB cyclically. The Euler lines of the three triangles A'ABAC, B'BCBA, C'CACB concur in X(1145). Also, X(1145) is X(974) of the excentral triangle. (Analogously, X(442) is X(973) of the excentral triangle; see the note at X(442).) Jean-Pierre Ehrmann (#4200, 10/24/01)

X(1145) lies on the Mandart hyperbola and these lines: 2,1000   3,8   9,80   10,11   119,517   144,153   214,519   484,529

X(1145) = midpoint of X(8) and X(100)
X(1145) = reflection of X(i) in X(j) for these (i,j): (11,10), (72,14740), (1317,214), (1320,1387), (1537,119)
X(1145) = isogonal conjugate of X(10428)
X(1145) = anticomplement of X(1387)
X(1145) = outer-Garcia-to-ABC similarity image of X(11)
X(1145) = excentral-to-ABC barycentric image of X(104)
X(1145) = X(974)-of-excentral-triangle
X(1145) = antipode of X(72) in the Mandart hyperbola


X(1146) = CENTER OF HYPERBOLA {{A,B,C,X(2),X(8)}}

Trilinears    bc[(b - c)(b + c - a)]2 : :
Let La, Lb, Lc be the lines through A, B, C, resp. parallel to the Soddy line. Let Ma, Mb, Mc be the reflections of BC, CA, AB in La, Lb, Lc, resp. Let A' = Mb∩Mc, and define B' and C' cyclically. Triangle A'B'C' is inversely similar to, and 3 times the size of, ABC. Let A"B"C" be the reflection of A'B'C' in the Soddy line. The triangle A"B"C" is homothetic to ABC, with center of homothety X(1146); see Hyacinthos #16741/16782, Sep 2008. (Randy Hutson, March 25, 2016)

X(1146) lies on the Steiner inellipse, the inconic having perspector X(2052), and these lines: 2,664   6,281   8,220   9,80   101,952   115,124   116,514   169,355   515,910   918,1086

X(1146) = midpoint of X(2) and X(1121)
X(1146) = reflection of X(i) in X(j) for these (i,j): of (1565,116), (35110,2)
X(1146) = reflection of X(35110) in X(2)
X(1146) = isogonal conjugate of X(1262)
X(1146) = isotomic conjugate of X(1275)
X(1146) = complement of X(664)
X(1146) = anticomplement of X(17044)
X(1146) = crosspoint of X(i) and X(j) for these (i,j): (2,522), (4,514), (9,1021)
X(1146) = crosssum of X(i) and X(j) for these (i,j): (3,101), (6,109), (56,1415), (57,1020), (1407,1461)
X(1146) = crosssum of circumcircle intercepts of line X(6)X(41) (or of circle {{X(1),X(15),X(16)}} (V(X(1)))
X(1146) = crossdifference of every pair of points on line X(109)X(692)
X(1146) = projection from Steiner circumellipse to Steiner inellipse of X(1121)
X(1146) = perspector of circumparabola centered at X(522)
X(1146) = center of circumconic that is locus of trilinear poles of lines passing through X(522)
X(1146) = X(2)-Ceva conjugate of X(522)
X(1146) = Steiner-inellipse antipode of X(35110)
X(1146) = trilinear pole wrt medial triangle of line X(2)X(7)
X(1146) = barycentric square of X(522)


X(1147) = ISOGONAL CONJUGATE OF X(847)

Trilinears       (sin 4A)/sin A : (sin 4B)/sin B : (sin 4C)/sin C
Trilinears       cos A cos 2A : cos B cos 2B : cos C cos 2C
Barycentrics sin 4A : sin 4B : sin 4C
Barycentrics    a^4 (b^2 + c^2 - a^2) (a^4 + b^4 + c^4 - 2 a^2 b^2 - 2 a^2 c^2) : :

V. Thebault, "Sine-triple-angle-circle," Mathesis 65 (1956) 282-284. (Contributed by Edward Brisse, 3/4/02)

Let A'B'C' be the circumcevian triangle of X(4). Let RA be the radical axis of the circles (B', |B'C|) and (C',|C'B|), and define RB and RC cyclically. The lines RA, RB, RC concur in X(1147). For figures, see Concurrent Radical Axes.    (Antreas Hatzipolakis and Peter Moses, April 10, 2013)

Let A'B'C' be the orthic triangle. Let A'' be the orthogonal projection of A onto line B'C', and define B'' and C'' cyclically; then X(1147) is the circumcenter of A''B''C''. Let L be the reflection of line B'C' in the perpendicular bisector of segment BC, and define M and N cyclically. Let A* = M∩N, and define B* and C* cyclically; then X(1147) is the incenter of A*B*C*. (Randy Hutson, August 26, 2014)

Let A'B'C' be the Kosnita triangle. Let L be the line through A' parallel to the Euler line, and define M and N dyclically. Let L' be the reflection of L in sideline BC, and define M' and N' cyclically. The lines L',M',N' concur in X(1147). (Randy Hutson, August 26, 2014)

Let DEF be the anticevian triangle of the circumcircle, O; then X(1147) is the centroid of the quadrilateral DEFO. (Randy Hutson, August 26, 2014)

Let A'B'C' be the triangle described in ADGEOM #2697 (8/26/2015, Tran Quang Hung). X(1147) = X(3)-of-A'B'C'. (Randy Hutson, October 15, 2018)

X(1147) is the insimilicenter of the circumcircle and the sine-triple-angle circle. (Randy Hutson, December 14, 2014)

X(1147) lies on these lines: 2,54   3,49   4,110   5,578   24,52   26,206   30,156   55,1069   56,215   140,141   143,576   195,568   912,960

X(1147) = midpoint of X(3) and X(155)
X(1147) = isogonal conjugate of X(847)
X(1147) = complement of X(68)
X(1147) = anticomplement of X(5449)
X(1147) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,577), (54,3)
X(1147) = crosspoint of X(i) and X(j) for these (i,j): (2,317), (371,372)
X(1147) = crosssum of X(485) and X(486)
X(1147) = orthic-to-ABC barycentric image of X(5)
X(1147) = perspector of the circumconic centered at X(577)
X(1147) = X(92)-isoconjugate of X(2165)
X(1147) = X(4)-of-Kosnita-triangle
X(1147) = X(91)-isoconjugate of X(4)
X(1147) = X(1158)-of-orthic-triangle if ABC is acute
X(1147) = perspector of 1st Hyacinth triangle and 1st Brocard triangle of 2nd Hyacinth triangle
X(1147) = Dao image of X(3)
X(1147) = {X(3),X(49)}-harmonic conjugate of X(184)


X(1148) = YIU-HATZIPOLAKIS POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = (sec B + sec C - sec A) sec A
Barycentrics (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Suppose LA, LB, LC are lines through a point P, respectively perpendicular to sidelines BC, CA, AB. Let AB be the point where LA meets AB, and let AC be the point where LA meets AC. Define BC, BA, CA, CB cyclically. Then X(1148) is the point P, which satisfies

|PAB| + |PAC| = |PBC| + |PBA| = |PCA| + |PCB|.

See Hyacinthos messages #4204-4206, 10/01.

X(1148) lies on these lines: 1,1075   3,653   4,65   46,243   92,942

X(1148) = X(1)-Ceva conjugate of X(4)
X(1148) = X(46)-Hirst inverse of X(243)
X(1148) = polar conjugate of X(7361)


X(1149) = ISOGONAL CONJUGATE OF X(1120)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = a(b2 + c2 + ba + ca - 4bc)
Barycentrics af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1149) lies on these lines: 1,2   31,999   36,106   38,392   244,517   513,663   672,1015   748,956

X(1149) = isogonal conjugate of X(1120)
X(1149) = crosspoint of X(1) and X(106)
X(1149) = crosssum of X(1) and X(519)
X(1149) = crossdifference of every pair of points on line X(9)X(649)
X(1149) = bicentric sum of PU(98)
X(1149) = PU(98)-harmonic conjugate of X(649)


X(1150) = INTERSECTION OF LINES X(2)X(6) AND X(3)X(8)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = (b2 + c2 - a2) + bc(b + c)/a
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1150) lies on these lines: 2,6   3,8   10,750   58,964   63,321   76,799   88,330   239,980

X(1150) = complement of X(31034)
X(1150) = anticomplement of X(5718)


X(1151) = ISOGONAL CONJUGATE OF X(1131)

Trilinears    sin A + 2 cos A : :
Trilinears     sin(A + arctan(2)) : :
Trilinears     a(2 SA + S) : :
Trilinears     a(b^2 + c^2 - a^2 + S) : :
Barycentrics    sin^2 A + sin 2A : :

X(1151) = La/Ra + Lb/Rb + Lc/Rc + X(3)/R, where La, Lb, Lc are the centers of the Lucas circles, and Ra, Rb, Rc their radii
X(1151) = La/Ra + Lb/Rb + Lc/Rc - Li/Ri, where Li, Ri are the center and radius of the Lucas inner circle
X(1151) = (Rb+Rc)*La + (Rc+Ra)*Lb + (Ra+Rb)*Lc
(Combos by Randy Hutson, September 5, 2015)

X(1151) is the radical center of the Lucas circles, the incenter of the Lucas central triangle, and the perspector of triangle ABC and the Lucas inner triangle.

Fourteen constructions for X(1151) received from Randy Hutson, September 5, 2015:

(1)-(10): Each pair of the following triangles are perspective, and their perspector is X(1151): tangential triangle, Lucas tangents triangle, Lucas inner tangential triangle, 1st Lucas secondary tangents triangle, Lucas Brocard triangle.

(11) Let A', B', C' be the centers of the Kenmotu squares. Let A" be the reflection of A' in X(371), and define B" and C" cyclically. The triangle A"B"C" is homothetic to ABC at X(1151).

(12) Let A'B'C' be the Lucas tangents triangle. Let A" be the cevapoint of B' and C', and define B" and C" cyclically. The lines AA", BB", CC" concur in X(1151).

(13) Let A'B'C' be the Lucas central triangle. Let A" be the pole, wrt the A-Lucas circle, of line B'C', and define B" and C" cyclically. The lines AA", BB", CC" concur in X(1151). The point A" is also the intersection of the polars of B' and C' wrt the A-Lucas circle, and likewise for B" and C".

(14) Let A'B'C' be the Lucas central triangle. Let A" be the pole, wrt the A-Lucas circle, of line BC, and define B" and C" cyclically. The lines AA", BB", CC" concur in X(1151).

Let A'B'C' be the triangle whose trilinear vertex matrix is the sum of the matrices for the Lucas central and Lucas tangents triangles, so that A' = 2a(SA + S) : b(2SB + S) : c(2SC + S). The lines AA', BB', CC' concur in X(1151). (Randy Hutson, September 14, 2016)

Let {a'} be the circle through B and C orthogonal to the circumcircle of ABC, and define {b'} and {c'} cyclically. The circle externally tangent to {a'}, {b'}, {c'} has center X(1151); see X(1152). (César Lozada, July 3, 2019)

X(1151) lies on these lines: 2,489   3,6   4,590   30,485   35,1335   36,1124   140,486   141,487   488,524   615,631

X(1151) is the {X(3),X(6)}-harmonic conjugate of X(1152). For a list of other harmonic conjugates of X(1151), click Tables at the top of this page.

X(1151) = reflection of X(485) in X(8981)
X(1151) = isogonal conjugate of X(1131)
X(1151) = inverse-in-Brocard circle of X(1152)
X(1151) = X(493)-Ceva conjugate of X(6)
X(1151) = crosspoint of X(249) and X(1306)
X(1151) = perspector of Lucas(8) central triangle and circumsymmedial triangle
X(1151) = insimilicenter of circumcircle and Lucas inner circle
X(1151) = inner Soddy center (X(176)) of tangential triangle, if ABC is acute
X(1151) = X(3)-of-Lucas-tangents-triangle
X(1151) = X(20)-of-X(2)-quadsquares-triangle
X(1151) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,371,6), (3,3311,372), (371,372,3311), (372,3311,6)


X(1152) = ISOGONAL CONJUGATE OF X(1132)

Trilinears    sin A - 2 cos A : :
Trilinears    sin(A - arctan(2)) : :
Trilinears    a(2SA - S) : :
Trilinears    a(b2 + c2 - a2 - S) : :
Barycentrics    sin^2 A - sin 2A : :

X(1152) is the radical center of the Lucas(-1:1) circles and the perspector of triangle ABC and the Lucas(-1,1) inner triangle.

X(1152) is the perpsector of each pairs of the following five triangles: tangential triangle, Lucas(-1) tangents triangle, Lucas(-1) inner tangential triangle, 1st Lucas(-1) secondary tangents triangle, Lucas(-1) Brocard triangle. Also, X(1152) perspector of Lucas(-8) central triangle and circumsymmedial triangle. (Randy Hutson, October 13, 2015)

Let A'B'C' be the Lucas(-1) tangents triangle. Let A" be the cevapoint of B' and C', and define B" and C" cyclically. The lines AA", BB", CC" concur in X(1152). (Randy Hutson, October 13, 2015)

Let A'B'C' be the Lucas(-1) central triangle. Let A" be the pole, wrt the A-Lucas(-1) circle, of line B'C', and define B" and C" cyclically. The lines AA", BB", CC" concur in X(1152). The pole A" can also be constructed as the intersection of the polars of B' and C' wrt the A-Lucas(-1) circle, and similarly for B" and C". (Randy Hutson, October 13, 2015)

Let A'B'C' be the Lucas(-1) central triangle. Let A" be the pole, wrt the A-Lucas(-1) circle, of line BC, and define B" and C" cyclically. The lines AA", BB", CC" concur in X(1152). (Randy Hutson, October 13, 2015)

Let A'B'C' be the triangle whose trilinear vertex matrix is the sum of the matrices for the Lucas(-1) central and Lucas(-1) tangents triangles, so that A' = 2a(SA - S) : b(2SB - S) : c(2SC - S). The lines AA', BB', CC' concur in X(1152). (Randy Hutson, September 14, 2016)

Let {a'} be the circle through B and C orthogonal to the circumcircle of ABC, and define {b'} and {c'} cyclically. The circle internally tangent to {a'}, {b'}, {c'} has center X(1152); see X(1151). (César Lozada, July 3, 2019)

X(1152) lies on these lines: 2,490   3,6   4,615   30,486   35,1124   36,1335  140,485   141,488   487,524   590,631

X(1152) = isogonal conjugate of X(1132)
X(1152) = inverse-in-Brocard circle of X(1151)
X(1152) = X(494)-Ceva conjugate of X(6)
X(1152) = crosspoint of X(249) and X(1307)
X(1152) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,372,6), (3,3312,371), (371,372,3312), (371,3312,6)
X(1152) = exsimilicenter of circumcircle and Lucas(-1) inner circle; the insimilicenter is X(6398)
X(1152) = outer Soddy center (X(175)) of tangential triangle, if ABC is acute
X(1152) = X(1)-of-Lucas(-1)-central-triangle, if the Lucas(-1) circles are all externally tangent; otherwise, X(1152) is an excenter of the Lucas(-1) central triangle X(1152) = X(3)-of-Lucas(-1)-tangents-triangle


X(1153) = CENTER OF THE VAN LAMOEN CIRCLE

Trilinears     bc[13a2(b2 + c2) + 10b2c2 - 10a4 - 4b4 - 4c4] : :
Barycentrics    13a2(b2 + c2) + 10b2c2 - 10a4 - 4b4 - 4c4 : :
Barycentrics    10*a^4 - 13*a^2*b^2 + 4*b^4 - 13*a^2*c^2 - 10*b^2*c^2 + 4*c^4 : :
X(1153) = X[2] + X[8182], 9 X[2] - X[23334], 13 X[2] - X[44678], 10 X[140] - X[7764], 8 X[140] + X[7780], 2 X[140] + X[34506], 3 X[549] + X[16509], 15 X[631] + X[5485], 5 X[631] - X[7618], 10 X[632] - X[7843], 7 X[3523] + X[7620], 7 X[3523] - X[34504], 3 X[3524] + X[7615], 7 X[3526] - X[7775], 3 X[5054] + X[7610], 3 X[5054] - X[7622], 9 X[5054] - X[11165], X[5485] + 3 X[7618], 3 X[5569] + X[8176], 3 X[5569] - X[8182], 9 X[5569] + X[23334], 13 X[5569] + X[44678], 3 X[7606] - X[42536], 3 X[7610] + X[11165], 5 X[7619] - X[7764], 4 X[7619] + X[7780], 3 X[7622] - X[11165], 4 X[7764] + 5 X[7780], X[7764] + 5 X[34506], X[7780] - 4 X[34506], 3 X[8176] - X[23334], 13 X[8176] - 3 X[44678], 3 X[8182] + X[23334], 13 X[8182] + 3 X[44678], X[9770] - 9 X[15709], X[9771] - 3 X[11539], 13 X[10303] - X[34511], X[11148] - 33 X[15721], X[11184] - 5 X[15694], X[12040] - 5 X[15713], X[13468] + 5 X[15713], 3 X[14161] - 2 X[14162], 3 X[15597] - X[16509], 5 X[15693] + X[18546], 7 X[15701] + X[40727], 11 X[15720] + X[34505], 13 X[23334] - 9 X[44678], X[25486] - 5 X[31274]
X(1153) = 8*G + 3*O + K + Csc[w]^2*(G - K)

A triangle is divided by its three medians into 6 smaller triangles. The circumcenters of these smaller triangles are concyclic. Their circle, the Van Lamoen circle, is introduced in

Floor van Lamoen Problem 10830, American Mathematical Monthly 107 (2000) 863; solution by the editors, 109 (2002) 396-397.

Numerous messages about this circle and its center can be accessed from the Hyacinthos archive using "Floor's Monthly problem" as search words. M. Stevanovic's message (#5599, 5/28/02) gives coordinates.

If you have The Geometer's Sketchpad, you can view X(1153).

X(1153) lies on the cubic K1258 and these lines: {2, 187}, {3, 7617}, {30, 32414}, {39, 8859}, {140, 524}, {141, 8787}, {404, 7621}, {511, 7606}, {538, 5054}, {543, 549}, {574, 8860}, {599, 10485}, {618, 33475}, {619, 33474}, {620, 11168}, {631, 5485}, {632, 7843}, {671, 8589}, {754, 9771}, {2482, 37688}, {2549, 23053}, {3054, 5461}, {3523, 7620}, {3524, 7615}, {3526, 7775}, {3788, 21356}, {4045, 44401}, {5032, 31401}, {5092, 9830}, {6683, 13330}, {6719, 10354}, {7496, 42008}, {7749, 7817}, {7769, 41136}, {7810, 41133}, {7815, 21358}, {7816, 33274}, {7848, 22110}, {7849, 33000}, {7854, 33204}, {7861, 33215}, {7880, 9167}, {7883, 16923}, {7886, 8359}, {8356, 14971}, {8587, 10302}, {8588, 11317}, {8597, 39601}, {8703, 20112}, {9166, 33273}, {9466, 11152}, {9770, 15709}, {9877, 37455}, {10303, 34511}, {11147, 11151}, {11148, 15721}, {11164, 32456}, {11184, 11842}, {11645, 40278}, {12040, 13468}, {14159, 14160}, {14161, 14162}, {15513, 33013}, {15693, 18546}, {15701, 40727}, {15720, 34505}, {19911, 21163}, {25486, 31274}, {32480, 37512}, {33476, 35304}, {33477, 35303}, {41895, 43619}

X(1153) = midpoint of X(i) and X(j) for these {i,j}: {2, 5569}, {3, 7617}, {549, 15597}, {7610, 7622}, {7619, 34506}, {7620, 34504}, {8176, 8182}, {8703, 20112}, {12040, 13468}
X(1153) = reflection of X(i) in X(j) for these {i,j}: {7619, 140}, {14160, 14159}
X(1153) = complement of X(8176)
X(1153) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 7771, 31173}, {2, 8182, 8176}, {5054, 7610, 7622}, {5569, 8176, 8182}


X(1154) = ISOGONAL CONJUGATE OF X(1141)

Trilinears    (1 - 4 cos2A)cos(B - C) : (1 - 4 cos2B)cos(C - A) : (1 - 4 cos2C)cos(A - B)
Barycentrics    a(1 - 4 cos2A)cos(B - C) : b(1 - 4 cos2B)cos(C - A) : c(1 - 4 cos2C)cos(A - B)
Barycentrics    a^2[(a^2 - b^2 - c^2)^2 - b^2c^2](b^4 + c^4 - a^2b^2 - a^2c^2 - 2b^2c^2) : :

As the isogonal conjugate of a point on the circumcircle, X(1154) lies on the line at infinity; X(1154) is, in fact, the point where the Euler line of the orthic triangle meets the line at infinity (Bernard Gibert, Hyacinthos 1498, September 25, 2000).

X(1154) lies on these (parallel) lines: 2,568   3,54   4,93   5,51   26,154   30,511   35,500   140,389   185,550   186,323   403,1112  

X(1154) = isogonal conjugate of X(1141)
X(1154) = complementary conjugate of X(128)
X(1154) = X(i)-Ceva conjugate of X(j) for these (i,j): (3,1511), (4,128)
X(1154) = crosspoint of X(i) and X(j) for these (i,j): (5,1263), (323,340)
X(1154) = crosssum of X(i) and X(j) for these (i,j): (3,539), (54,1157)
X(1154) = X(30)-of-orthic-triangle
X(1154) = X(30)-of-tangential-triangle
X(1154) = excentral-to-ABC functional image of X(30)
X(1154) = infinite point of tangent to hyperbola {{A,B,C,X(4),X(15)}} at X(15) and tangent to hyperbola {{A,B,C,X(4),X(16)}} at X(16)


X(1155) = SCHRÖDER POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos B + cos C - 2 cos A;
                        = g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = (b - c)2 + a(b + c - 2a)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)
                        = ag(a,b,c) : bg(b,c,a) : cg(c,a,b)

Let XYZ be the intouch triangle of ABC; i.e., the pedal triangle of the incenter, I. The circles AIX, BIY, CIZ concur in two points. One of them is I; the other is X(1155). This result is obtain by inversion in

Heinz Schröder, "Die Inversion und ihre Anwendung im Unterricht der Oberstufe," Der Mathematikunterricht 1 (1957) 59-80.

Each vertex of the tangential triangle of any triangle T is the inverse-in-the-circumcircle-of-T of the midpoints of the sides of T. Applying this to triangle XYZ shows that X(1155) is the inverse-in-the-incircle of the centroid of XYZ; i.e., X(1155) is X(23)-of-the-intouch-triangle. (Darij Grinberg, #6319, 1/11/03; coordinates by Jean-Pierre Ehrmann, #6320, 1/11/03)

X(1155) lies on the Darboux quintic and these lines: 1,3   10,535   11,516   37,750   44,513   47,582   63,210   88,105   89,1002   100,518   227,603   238,1054   243,653   244,902   377,667   404,960

X(1155) = midpoint of X(i) and X(j) for these (i,j): (1,3245), (36,484), (32622, 32623)
X(1155) = reflection of X(1319) in X(36)
X(1155) = isogonal conjugate of X(1156)
X(1155) = inverse-in-circumcircle of X(55)
X(1155) = inverse-in-incircle of X(354)
X(1155) = inverse-in-Bevan-circle of X(57)
X(1155) = crosspoint of X(i) and X(j) for these (i,j): (1,1156), (527,1323)
X(1155) = crosssum of X(1) and X(1155)
X(1155) = crossdifference of every pair of points on line X(1)X(650)
X(1155) = complement of X(5057)
X(1155) = anticomplement of X(5087)
X(1155) = orthogonal projection of X(1) on its trilinear polar
X(1155) = inverse-in-{circumcircle, incircle}-inverter of X(1)
X(1155) = homothetic center of intouch triangle and medial triangle of 1st circumperp triangle
X(1155) = endo-homothetic center of X(2)- and X(4)-Ehrmann triangles; the homothetic center is X(858)
X(1155) = X(468)-of-excentral-triangle
X(1155) = {X(1),X(3)}-harmonic conjugate of X(37600)


X(1156) = ISOGONAL CONJUGATE OF X(1155)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = 1/[(b - c)2 + a(b + c - 2a)]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

Let Bc be the reflection of B in the internal angle bisector of angle C, and let Cb be the reflection of C in the internal angle bisector of angle B. Let Γa be the circle that passes through A, Bc, Cb. Let A' be the pole of BC, with respect to Γa and define B 'and C' cyclically. Then X(1156) is the perspector of A'B'C' and ABC, and X(35445) is the perspector of A'B'C' and the excentral triangle. (Angel Montesdeoca, January 13, 2021)

X(1156) lies on the Darboux septic and these lines: 1,651   4,653   7,11   8,190   9,100   21,662   44,294   80,516   90,411   104,971   144,149   314,799   390,952   673,885

X(1156) = midpoint of X(144) and X(149)
X(1156) = reflection of X(i) in X(j) for these (i,j): (7,11), (100,9)
X(1156) = isogonal conjugate of X(1155)
X(1156) = isotomic conjugate of X(30806)
X(1156) = antigonal conjugate of X(7)
X(1156) = symgonal of X(9)
X(1156) = trilinear pole of line X(1)X(650)
X(1156) = polar conjugate of X(37805)
X(1156) = pole wrt polar circle of trilinear polar of X(37805) (line X(6366)X(12831))
X(1156) = intersection of the Feuerbach circumhyperbola and the circumellise centered at X(9)
X(1156) = BSS(a^2 → a) of X(74)


X(1157) = INVERSE-IN-CIRCUMCIRCLE OF X(54)

Trilinears    a[(a2 - b2)2 - c2(a2 + b2)][(a2 - c2)2 - b2(c2 + a2)]U(a,b,c),
                        where U(a,b,c) = a6 - b6 - c6 + 3a2(b4 + c4 - a2b2 - a2c2) + b2c2(b2 + c2) - a2b2c2

Trilinears    4 cos A + cos 3A sec A sec(B - C) : :

For any point X, let XA be the reflection of X in sideline BC, and define XB and XC cyclically. Then X(1157) is the unique point X for which the lines AXA, BXB, CXC concur on the circumcircle; the point of concurrence is X(1141).

X(1157) is the tangential of X(3) on the Neuberg cubic.

Let A'B'C' be the reflection triangle. The circumcircles of AB'C', BC'A', CA'B' (i.e., the Yiu circles) concur in X(1157). (Randy Hutson, July 20, 2016)

X(1157) lies on the Neuberg cubic and these lines: 1,3483   3,54   4,3482   5,252   30,1141   74,3484   186,933   1337,1338   3065,3465

X(1157) = isogonal conjugate of X(1263)
X(1157) = inverse-in-circumcircle of X(54)
X(1157) = X(30)-Ceva conjugate of X(3484)
X(1157) = Yiu-isogonal conjugate of X(195)
X(1157) = Cundy-Parry Phi transform of X(195)
X(1157) = Cundy-Parry Psi transform of X(3459)


X(1158) = CIRCUMCENTER OF EXTOUCH TRIANGLE

Trilinears    a6 - b6 - c6 + b2c2(b2 + c2) + 3a2(b4 + c4 - a2b2 - a2c2) + 2abc(a3 - b3 - c3 - abc + (a2 + bc)(b + c) - ab2 - ac2)

Trilinears    sin2B/2 cos B + sin2C/2 cos C - sin2A/2 cos A (D. Grinberg, 2/25/04)

X(1158) lies on these lines: 1,104   3,960   4,46   8,20   57,946   65,1012   117,208   165,191

X(1158) = midpoint of X(40) and X(84)
X(1158) = complement of isotomic conjugate of X(34413)
X(1158) = X(318)-Ceva conjugate of X(1)
X(1158) = X(68)-of-Fuhrmann-triangle
X(1158) = excentral isogonal conjugate of X(1745)
X(1158) = X(1147)-of-excentral-triangle
X(1158) = ABC-to-excentral barycentric image of X(3)
X(1158) = X(3)-of-extouch triangle, so that X(210)X(1158) = Euler line of the extouch triangle


X(1159) = GREENHILL POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B),
                        where f(A,B,C) = cos A + 4 cos B + 4 cos C
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1159) lies on these lines: 1,3   7,952

See Hyacinthos #6535 and

William Gallatly, The Modern Geometry of the Triangle, 2nd edition, Hodgson, London, 1913, page 23.

X(1159) = {X(2099),X(4860)}-harmonic conjugate of X(1)

X(1160) = CIRCUMCENTER OF OUTER GREBE TRIANGLE

Trilinears    (1 + 2 cot A + 2 cot B + 2 cot C) cos A - 2 sin A : :
Trilinears s   (1 + 2 cot ω) cos A - 2 sin A : :

See Hyacinthos #6537.

Let OA be the circle centered at the A-vertex of the anti-inner-Grebe triangle and passing through A; define OB and OC cyclically. X(1160) is the radical center of OA, OB, OC. (Randy Hutson, August 28, 2020)

X(1160) lies on these lines: 3,6   4,1162

X(1160) = reflection of X(1161) in X(3)


X(1161) = CIRCUMCENTER OF INNER GREBE TRIANGLE

Trilinears    (1 - 2 cot A - 2 cot B - 2 cot C) cos A + 2 sin A : :
Trilinears    (1 - 2 cot ω) cos A - 2 sin A : :

X(1161) lies on these lines: 3,6   4,1163

See Hyacinthos #6537.

X(1161) = reflection of X(1160) in X(3)


X(1162) = OUTER GREBE-ORTHIC PERSPECTOR

Trilinears    (area + a2)(2 area + b2 + c2)/[a(b2 + c2 - a2)]

See Hyacinthos #6537.

X(1162) lies on these lines: 4,1160   428,1163

X(1162) = X(4)-Ceva conjugate of X(3127)

X(1163) = INNER GREBE-ORTHIC PERSPECTOR

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = (area - a2)(2 area - b2 - c2)/[a(b2 + c2 - a2)]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1163) lies on these lines: 4,1161   428,1162

See Hyacinthos #6537.

X(1163) = X(4)-Ceva conjugate of X(3128)

X(1164) = POINT ALTAIR

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = (area + a2)(2 area - b2 - c2)/[a(b2 + c2 - a2)]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1164) lies on this line: 468,1165


X(1165) = POINT ALTAIS

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = (area - a2)(2 area + b2 + c2)/[a(b2 + c2 - a2)]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1165) lies on this line: 468,1164

leftri

Saragossa Points 1166-1208

rightri
Let A'B'C' be the cevian triangle of a point P, and let A", B", C" be the respective intersections of lines PA, PB, PC with the circumcircle of triangle ABC. Let

U = B'C"∩B"C'       V = C'A"∩C"A'       W = A'B"∩A"B'.

Lines AU, BV, CW concur in the 1st Saragossa point of P;
lines A'U, B'V, C'W concur in the 2nd Saragossa point of P;
lines A"U, B"V, C"W concur in the 3rd Saragossa point of P.

These concurrences were presented by Darij Grinberg (Hyacinthos #6531, February 14, 2003),
with coordinates as follows. Let P = x : y : z (trilinears), and abbreviate the 1st, 2nd, and 3rd Saragossa points
as Q, Q', Q", respectively; then first trilinears are

                                          for Q:    f(a,b,c) = a/[x(bz + cy)],
                                         for Q':     f(a,b,c) = ax[(b2z2 + c2y2)x + xyzbc + ayz(bz + cy)],
                                         for Q":    f(a,b,c) = ax[(b2z2 + c2y2)x + ayz(bz + cy)].

The name Saragossa refers to the king who proved Ceva's theorem before Ceva did. See

J. B. Hogendijk, "Al-Mu'taman ibn Hud [bar over u], 11th century king of Saragossa and brilliant mathematician," Historia Mathematica, 22 (1995) 1-18.

The points P, Q', Q" are collinear.

The 1st Saragossa point of X(i) is X(j) for these (i,j):
(1,58)   (2,251)   (3,4)   (4,54)   (6,6)   (19,284)   (21,961)   (24,847)   (25,2)   (28,943)   (31,81)
(32,83)   (51,288)   (55,57)   (56,1)   (58,1126)   (64,3)   (84,947)   (154,1073)   (184,275)
(198,282)   (512,249)   (513,59)   (667,1016)   (939,937)   (1036,959).

The 2nd Saragossa point of X(i) is X(j) for these (i,j): (1,386)   (6,6)
The 3rd Saragossa point of X(i) is X(j) for these (i,j): (3,185)   (4,389)   (6,6)


X(1166) = 1st SARAGOSSA POINT OF X(5)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1166) lies on these lines: 2,252   5,96   52,54

X(1166) = isogonal conjugate of X(1209)
X(1166) = isotomic conjugate of X(1225)


X(1167) = 1st SARAGOSSA POINT OF X(34)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1167) lies on these lines: 31,937   34,40   56,580   255,269   271,936   595,998

X(1167) = isogonal conjugate of X(1210)
X(1167) = isotomic conjugate of X(1226)
X(1167) = cevapoint of X(i) and X(j) for these (i,j): (6,212), (31,198)


X(1168) = 1st SARAGOSSA POINT OF X(36)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1168) lies on these lines: 36,88   44,517   80,519   484,759   535,903

X(1168) = isogonal conjugate of X(214)
X(1168) = isotomic conjugate of X(1227)
X(1168) = X(6)-cross conjugate of X(88)


X(1169) = 1st SARAGOSSA POINT OF X(37)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1169) lies on these lines: 2,261   6,60   21,172   28,961   32,941   42,284   572,849   604,1178

X(1169) = isogonal conjugate of X(1211)
X(1169) = isotomic conjugate of X(1228)
X(1169) = cevapoint of X(6) and X(1333)
X(1169) = X(92)-isoconjugate of X(22076)


X(1170) = 1st SARAGOSSA POINT OF X(41)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))
Trilinears    1/((a - b - c) (a (b + c) - (b - c)^2)) : :

X(1170) lies on these lines: 2,220   3,955   6,279   7,218   41,57   56,1002   65,105   81,241   278,607

X(1170) = isogonal conjugate of X(1212)
X(1170) = isotomic conjugate of X(1229)
X(1170) = X(92)-isoconjugate of X(22079)
X(1170) = cevapoint of X(i) and X(j) for these (i,j): (1,218), (6,57)


X(1171) = 1st SARAGOSSA POINT OF X(42)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))
Trilinears    a/((b + c) (2 a + b + c)) : :

X(1171) lies on these lines: 6,593   35,58   37,81

X(1171) = isogonal conjugate of X(1213)
X(1171) = isotomic conjugate of X(1230)
X(1171) = cevapoint of X(6) and X(58)
X(1171) = trilinear pole of line X(512)X(1326)
X(1171) = X(92)-isoconjugate of X(22080)


X(1172) = 1st SARAGOSSA POINT OF X(48)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1172) lies on the Feuerbach hyperbola and these lines: 1,19   4,6   7,27   8,29   9,33   21,270   25,941   37,943   58,84   104,112   162,1156   186,1030   286,648   406,966

X(1172) = isogonal conjugate of X(1214)
X(1172) = isotomic conjugate of X(1231)
X(1172) = X(27)-Ceva conjugate of X(28)
X(1172) = cevapoint of X(6) and X(19)
X(1172) = X(i)-cross conjugate of X(j) for these (i,j): (6,284), (33,29)
X(1172) = crosspoint of X(i) and X(j) for these (i,j): (27,29), (81,285)
X(1172) = crosssum of X(i) and X(j) for these (i,j): (37,227), (71,73)
X(1172) = crossdifference of every pair of points on line X(520)X(656)
X(1172) = trilinear pole of line X(650)X(1946)
X(1172) = polar conjugate of X(1441)
X(1172) = X(92)-isoconjugate of X(22341)


X(1173) = 1st SARAGOSSA POINT OF X(54)

Trilinears    a/[2a^4 - 3a^2(b^2 + c^2) + (b^2 - c^2)^2] : :

Let P and Q be the intersections of line BC and the 2nd Lemoine circle. Let X = X(6). Let A' be the circumcenter of triangle PQX, and define B' and C' cyclically. The lines AA', BB', CC' concur in X(1173); c.f. X(592), where the circle is the 1st Lemoine circle. X(571): Let A'B'C' be the Kosnita triangle. Let A" be the barycentric product B'*C', and define B" and C" cyclically. The lines AA", BB", CC" concur in X(571). (Randy Hutson, December 2, 2017)

Let Ha be the foot of the A-altitude. Let Ba, Ca be the feet of perpendiculars from Ha to CA, AB, resp. Let Na be the nine-point center of HaBaCa. Define Nb and Nc cyclically. The lines ANa, BNb, CNc concur in X(1173). (Randy Hutson, December 2, 2017)

X(1173) lies on the the conics {{A, B, C, X(13), X(62)}} and {A, B, C, X(14), X(61)}} and on these lines: 3,143   51,54   69,576   74,389   265,546   575,1176

X(1173) = isogonal conjugate of X(140)
X(1173) = isotomic conjugate of X(1232)
X(1173) = cevapoint of X(i) and X(j) for these (i,j): (6,51), (61,62)
X(1173) = X(6)-cross conjugate of X(288)
X(1173) = X(5506)-of-orthic-triangle if ABC is acute
X(1173) = X(92)-isoconjugate of X(22052)


X(1174) = 1st SARAGOSSA POINT OF X(57)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1174) lies on these lines: 41,57   55,218   101,354   226,673   284,672   661,1024

X(1174) = isogonal conjugate of X(142)
X(1174) = isotomic conjugate of X(1233)
X(1174) = cevapoint of X(6) and X(41)
X(1174) = X(513)-cross conjugate of X(101)
X(1174) = X(92)-isoconjugate of X(22053)
X(1174) = crosssum of X(354) and X(1212)


X(1175) = 1st SARAGOSSA POINT OF X(65)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1175) lies on these lines: 3,60   21,72   28,65   35,71   58,73   69,261   110,942

X(1175) = isogonal conjugate of X(442)
X(1175) = isotomic conjugate of X(1234)
X(1175) = X(513)-cross conjugate of X(110)
X(1175) = trilinear pole of line X(647)X(2605)


X(1176) = 1st SARAGOSSA POINT OF X(66)

Trilinears    a(b2 + c2 - a2)/(b2 + c2) : :      (M. Iliev, 5/13/07)
Trilinears    sin 2A csc(A + ω) : :

X(1176) lies on these lines: 2,66   4,83   6,22   54,511   65,82   67,110   69,184   74,827   216,248   290,308   575,1173

X(1176) = isogonal conjugate of X(427)
X(1176) = isotomic conjugate of X(1235)
X(1176) = X(83)-Ceva conjugate of X(251)
X(1176) = cevapoint of X(i) and X(j) for these (i,j): (3,184), (6,206)
X(1176) = antigonal conjugate of X(18125)
X(1176) = X(39)-isoconjugate of X(92)


X(1177) = 1st SARAGOSSA POINT OF X(67)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/(b6 + c6 - a4b2 - a4c2 + 2a2b2c2 - b4c2 - b2c4)     (M. Iliev, 5/25/07)

See Angel Montesdeoca, Hyacinthos #21528, 2/12/2013

X(1177) lies on these lines: 6,1112   23,895   66,125   67,468   68,542   69,110   72,692   290,685

X(1177) = reflection of X(i) in X(j) for these (i,j): (66,125), (110,206)
X(1177) = isogonal conjugate of X(858)
X(1177) = isotomic conjugate of X(1236)
X(1177) = cevapoint of X(i) and X(j) for these (i,j): (3,101), (6,109)
X(1177) = trilinear pole of line X(32)X(647)
X(1177) = Jerabek-hyperbola antipode of X(66)
X(1177) = antigonal conjugate of X(66)
X(1177) = barycentric product of circumcircle intercepts of line X(6)X(525)


X(1178) = 1st SARAGOSSA POINT OF X(82)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/[(b + c)(a2 + bc)]      (M. Iliev, 5/13/07)

X(1178) lies on these lines: 6,694   21,238   82,662   284,893   409,1201   604,1169   741,985   759,995   765,872   869,983

X(1178) = isogonal conjugate of X(1215)
X(1178) = isotomic conjugate of X(1237)
X(1178) = X(92)-isoconjugate of X(22061)


X(1179) = 1st SARAGOSSA POINT OF X(96)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1179) lies on these lines: 4,569   24,264   25,847   93,324

X(1179) = isogonal conjugate of X(1216)
X(1179) = isotomic conjugate of X(1238)
X(1179) = cevapoint of X(25) and X(53)
X(1179) = polar conjugate of X(37636)
X(1179) = trilinear pole of line X(2501)X(3050)
X(1179) = X(63)-isoconjugate of X(570)


X(1180) = 2nd SARAGOSSA POINT OF X(2)

Trilinears    a(b4 + c4 + b2c2 + c2a2 + a2b2) : :      (M. Iliev, May 13, 2007)

X(1180) lies on these lines: 2,39,   6,22   111,907

X(1180) = isotomic conjugate of X(1239)
X(1180) = anticomplement of X(8891)
X(1180) = crossdifference of every pair of points on line X(669)X(826)


X(1181) = 2nd SARAGOSSA POINT OF X(3)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (1 - cos A sin B sin C) cos A

X(1181) lies on these lines: 3,49   4,6   5,1899   24,154   25,389   54,64   110,974   125,399   186,1192   1060,1069

X(1181) = reflection of X(1593) in X(578)
X(1181) = isogonal conjugate of X(1217)
X(1181) = crosssum of X(4) and X(631)


X(1182) = 2nd SARAGOSSA POINT OF X(19)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1182) lies on these lines: 3,6   9,498   19,208


X(1183) = 2nd SARAGOSSA POINT OF X(21)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1183) lies on these lines: 1,41   6,959   8,1036   391,958


X(1184) = 2nd SARAGOSSA POINT OF X(25)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))
Barycentrics    a^2 ((a^2 + b^2 + c^2)^2 - 4 b^2 c^2) : :

X(1184) lies on these lines: 2,6   3,1194   25,32


X(1185) = 2nd SARAGOSSA POINT OF X(31)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1185) lies on these lines: 1,1206   2,6   31,32

X(1185) = isogonal conjugate of X(1218)
X(1185) = crossdifference of every pair of points on line X(512)X(693)


X(1186) = 2nd SARAGOSSA POINT OF X(32)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1186) lies on these lines: 2,1207   6,76   32,184

X(1186) = crossdifference of every pair of points on line X(688)X(850)


X(1187) = 2nd SARAGOSSA POINT OF X(37)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1187) lies on these lines: 6,60   10,37


X(1188) = 2nd SARAGOSSA POINT OF X(41)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1188) lies on these lines: 6,279   31,32


X(1189) = 2nd SARAGOSSA POINT OF X(43)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1189) lies on this line: 1,2


X(1190) = 2nd SARAGOSSA POINT OF X(55)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1190) lies on these lines: 6,57   41,55   56,1202   165,218   294,940


X(1191) = 2nd SARAGOSSA POINT OF X(56)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1191) lies on these lines: 1,6   3,595   28,957   31,56   55,1193   58,999   65,614   105,959   387,1058

X(1191) = isogonal conjugate of X(1219)
X(1191) = crosspoint of X(1016) and X(1310)


X(1192) = 2nd SARAGOSSA POINT OF X(64)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1192) lies on these lines: 3,6   25,64

X(1192) = circle-{X(371),X(372),PU(1),PU(39)}-inverse of X(38292)
X(1192) = {X(371),X(372)}-harmonic conjugate of X(38292)

X(1193) = 3rd SARAGOSSA POINT OF X(1)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 + c2 + ab + ac)      (M. Iliev, 5/13/2007)
Trilinears       a(as + SA) : b(bs + SB) : c(cs + SC)      (C. Lozada, 9/07/2013)

X(1193) lies on these lines: 1,2   3,31   6,41   21,238   35,595   36,58   37,992   38,72   39,213   57,959   63,988   106,1126   171,404   222,1106   244,942   405,748   474,750   518,872   999,1066   1045,1050

X(1193) is the {X(1),X(43)}-harmonic conjugate of X(8). For a list of other harmonic conjugates of X(1193), click Tables at the top of this page.

X(1193) = midpoint of X(1) and X(3293)
X(1193) = isogonal conjugate of X(1220)
X(1193) = isotomic conjugate of X(1240)
X(1193) = crosspoint of X(i) and X(j) for these (i,j): (1,58), (6,893), (57,86)
X(1193) = crosssum of X(i) and X(j) for these (i,j): (1,10), (2,894), (9,42)
X(1193) = crossdifference of every pair of points on line X(522)X(649)
X(1193) = X(92)-isoconjugate of X(2359)
X(1193) = polar conjugate of isotomic conjugate of X(22097)


X(1194) = 3rd SARAGOSSA POINT OF X(2)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b4 + c4 + a2b2 + a2c2)      (M. Iliev, 5/13/07)

Let L be the isogonal conjugate of the isotomic conjugate of line X(2)X(6) (i.e., line X(6)X(25)). Let M be the isotomic conjugate of the isogonal conjugate of line X(2)X(6) (i.e., line X(2)X(39)). Then X(1194) = L∩M. (Randy Hutson, March 21, 2019)

X(1194) lies on these lines: 2,39   6,25   22,32   23,251   230,570

X(1194) = isotomic conjugate of X(1241)
X(1194) = crosspoint of X(i) and X(j) for these (i,j): (2,251), (4,308), (6,893)
X(1194) = crosssum of X(i) and X(j) for these (i,j): (2,384), (6,141)
X(1194) = crossdifference of every pair of points on line X(525)X(669)


X(1195) = 3rd SARAGOSSA POINT OF X(19)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1195) lies on these lines: 19,208   41,71   43,165   60,283

X(1195) = crosspoint of X(19) and X(284)
X(1195) = crosssum of X(63) and X(226)


X(1196) = 3rd SARAGOSSA POINT OF X(25)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b4 + c4 + a2b2 + a2c2 - 2b2c2)      (M. Iliev, 5/13/07)

X(1196) lies on these lines: {2,39}, {3,1611}, {6,2056}, {22,187}, {23,1627}, {25,32}, {51,3051}, {111,251}, {115,427}, {184,1692}, {216,230}, {232,800}, {233,3815}, {394,5028}, {511,1613}, {612,1500}, {614,1015}, {682,3080}, {1084,2493}, {1368,5254}, {1495,1501}, {1570,1993}, {1915,3506}, {1995,5007}, {2092,5275}, {2275,5272}, {2276,5268}, {2670,4263}, {3094,3819}, {3231,3917}, {3796,5033}

X(1196) = complement of X(305)
X(1196) = crosspoint of X(2) and X(25)
X(1196) = crosssum of X(6) and X(96)
X(1196) = perspector of circumconic centered at X(1368)
X(1196) = center of circumconic that is locus of trilinear poles of lines passing through X(1368)
X(1196) = X(2)-Ceva conjugate of X(1368)


X(1197) = 3rd SARAGOSSA POINT OF X(31)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(ab2 + ac2 + b2c + bc2)      (M. Iliev, 5/13/07)

X(1197) lies on these lines: 6,43   31,32   81,239   284,893

X(1197) = isogonal conjugate of X(1221)
X(1197) = crosspoint of X(i) and X(j) for these (i,j): (6,904), (31,81)
X(1197) = crosssum of X(37) and X(75)
X(1197) = polar conjugate of isotomic conjugate of X(22389)


X(1198) = 3rd SARAGOSSA POINT OF X(43)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1198) lies on this line: 1,2


X(1199) = 3rd SARAGOSSA POINT OF X(54)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1199) lies on these lines: 4,6   5,3410   23,143   54,186   140,195   288,1157   578,1204

X(1199) = crosspoint of X(54) and X(1173)
X(1199) = crosssum of X(5) and X(140)
X(1199) = antipode of X(74) in Moses-Jerabek conic


X(1200) = 3rd SARAGOSSA POINT OF X(55)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1200) lies on these lines: 41,55   43,165   57,279   171,294

X(1200) is the {X(55),X(1190)}-harmonic conjugate of X(41). For a list of other harmonic conjugates, click Tables at the top of this page.

X(1200) = crosspoint of X(55) and X(57)
X(1200) = crosssum of X(7) and X(9)


X(1201) = 3rd SARAGOSSA POINT OF X(56)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 + c2 - 2bc + ab + ac)      (M. Iliev, 5/13/07)
Trilinears       csc2(B/2) + csc2(C/2) : csc2(C/2) + csc2(A/2) : csc2(A/2) + csc2(B/2)     (Randy Hutson, 9/23/2011)

X(1201) lies on these lines: 1,2   3,902   31,56   32,1055   36,595   38,960   58,106   65,244   73,1104   105,904   205,604   213,1015   409,1178   500,1064   748,958   651, 1476   1279,2293

X(1201) is the {X(56),X(1191)}-harmonic conjugate of X(31). For a list of other harmonic conjugates of X(1201), click Tables at the top of this page.

X(1201) = isogonal conjugate of X(1222)
X(1201) = crosspoint of X(1) and X(56)
X(1201) = crosssum of X(1) and X(8)
X(1201) = bicentric sum of PU(92)
X(1201) = PU(92)-harmonic conjugate of X(649)


X(1202) = 3rd SARAGOSSA POINT OF X(57)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1202) lies on these lines: 6,31   57,279

X(1202) = isogonal conjugate of X(1223)
X(1202) = crosspoint of X(57) and X(1174)
X(1202) = crosssum of X(9) and X(142)


X(1203) = 3rd SARAGOSSA POINT OF X(58)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[(a + b + c)2 - bc]      (M. Iliev, 5/13/2007)
Trilinears       as - rR : bs - rR : cs - rR     (C. Lozada, 9/07/2013)

X(1203) lies on these lines: 1,6   31,35   36,58   42,595   81,1125   580,1064   581,602

X(1203) = isogonal conjugate of X(1224)
X(1203) = crosspoint of X(58) and X(1126)
X(1203) = crosssum of X(10) and X(1125)


X(1204) = 3rd SARAGOSSA POINT OF X(64)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))
Barycentrics    a^2 (a^2 - b^2 - c^2) (a^6 - 3 a^2 (b^2 - c^2)^2 + 2 (b^2 - c^2)^2 (b^2 + c^2)) : :

X(1204) lies on these lines: 3,49   4,74   25,64   217,574   378,389   578,1199

X(1204) = reflection of X(1092) in X(3)
X(1204) = crosspoint of X(3) and X(64)
X(1204) = crosssum of X(i) and X(j) for these (i,j): (4,20), (489,490)
X(1204) = inverse-in-Jerabek-hyperbola of X(3357)
X(1204) = {X(4),X(74)}-harmonic conjugate of X(3357)
X(1204) = crossdifference of every pair of points on line X(1636)X(2501)


X(1205) = 3rd SARAGOSSA POINT OF X(67)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1205) lies on this line: 74,511

X(1205) = crosspoint of X(67) and X(1177)
X(1205) = crosssum of X(23) and X(858)


X(1206) = 3rd SARAGOSSA POINT OF X(81)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1206) lies on these lines: 6,31   81,239


X(1207) = 3rd SARAGOSSA POINT OF X(83)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1207) lies on these lines: 3,6   83,3978


X(1208) = 3rd SARAGOSSA POINT OF X(84)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1166))

X(1208) lies on these lines: 6,963   56,64

X(1208) = crosspoint of X(84) and X(947)
X(1208) = crosssum of X(40) and X(946)


X(1209) = ISOGONAL CONJUGATE OF X(1166)

Barycentrics    (S^2 + SB SC) (a^2 (SA^2 + S^2) + 2 SA (S^2 + SB SC)) : :
Barycentrics    (a^2 (b^2 + c^2) - (b^2 - c^2)^2) (a^4 (b^2 + c^2) - 2 a^2 (b^4 + b^2 c^2 + c^4) + (b^2 - c^2)^2 (b^2 + c^2)) : :

In the plane of a triangle ABC, let
A'B'C' = medial triangle;
BA = reflection of B' in BC, and define CB and AC cyclically;
CA = reflection of C' in BC, and define AB and BC cyclically;
OA = circle {{B', C', BA, CA}}, and define OB and OC cyclically.
Then X(1209) = radical center of OA, OB, OC. (Dasari Naga Vijay Krishna, September 8, 2021)

X(1209) lies on these lines: 2,54   3,161   5,51   6,17   12,942   125,128   127,129

X(1209) is the {X(17),X(18)}-harmonic conjugate of X(231). For a list of other harmonic conjugates of X(1209), click Tables at the top of this page.

X(1209) = reflection of X(52) in X(973)
X(1209) = isogonal conjugate of X(1166)
X(1209) = complement of X(54)
X(1209) = complementary conjugate of X(140)
X(1209) = crosspoint of X(2) and X(311)
X(1209) = perspector of circumconic centered at X(570)
X(1209) = center of circumconic that is locus of trilinear poles of lines passing through X(570)
X(1209) = X(2)-Ceva conjugate of X(570)
X(1209) = X(54) of X(5)-Brocard triangle


X(1210) = ISOGONAL CONJUGATE OF X(1167)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1167)
Barycentrics    a^3 (b + c) - a^2 (b - c)^2 - a (b - c)^2 (b + c) + (b^2 - c^2)^2 : :

X(1210) lies on these lines: 1,2   3,950   4,57   5,226   7,3091   11,65   12,354   29,58   36,411   40,497   46,516   56,515   79,1156   142,442   158,273   189,937   355,999   381,553   496,517   1089,1229

X(1210) is the {X(2),X(8)}-harmonic conjugate of X(936). For a list of other harmonic conjugates of X(1210), click Tables at the top of this page.

X(1210) = isogonal conjugate of X(1167)
X(1210) = crosspoint of X(i) and X(j) for these (i,j): (2,273), (75,189)
X(1210) = crosssum of X(i) and X(j) for these (i,j): (6,212), (31,198)
X(1210) = complement of X(78)
X(1210) = complementary conjugate of X(34823)
X(1210) = barycentric product X(1)*X(17862)
X(1210) = homothetic center of 4th Euler triangle and inverse-in-incircle triangle


X(1211) = ISOGONAL CONJUGATE OF X(1169)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b + c)(b2 + c2 + ab + ac)      (M. Iliev, 5/13/07)

X(1211) lies on these lines: 2,6   9,440   10,12   37,306   120,125   223,936   257,312   278,860   313,321   429,960   1086,1227

X(1211) = isogonal conjugate of X(1169)
X(1211) = isotomic conjugate of X(14534)
X(1211) = complement of X(81)
X(1211) = crosspoint of X(i) and X(j) for these (i,j): (2,321), (76,1441)
X(1211) = crosssum of X(6) and X(1333)

X(1211) = polar conjugate of isogonal conjugate of X(22076)

X(1212) = ISOGONAL CONJUGATE OF X(1170)

Trilinears    (a - b - c) (b^2 + c^2 - a b - a c - 2 b c) : :

X(1212) lies on these lines: 1,6   2,85   3,169   10,1146   21,294   65,672   281,475

X(1212) = isogonal conjugate of X(1170)
X(1212) = complement of X(85)
X(1212) = X(i)-Ceva conjugate of X(j) for these (i,j) : (2,142), (142,354)
X(1212) = crosspoint of X(i) and X(j) for these (i,j): (1,277), (2,9)
X(1212) = crosssum of X(i) and X(j) for these (i,j): (1,218), (6,57)
X(1212) = isotomic conjugate of X(31618)
X(1212) = polar conjugate of isogonal conjugate of X(22079)
X(1212) = {X(1),X(9)}-harmonic conjugate of X(220)
X(1212) = perspector of circumconic centered at X(142)
X(1212) = center of circumconic that is locus of trilinear poles of lines passing through X(142)


X(1213) = ISOGONAL CONJUGATE OF X(1171)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b + c)(2a + b + c)      (M. Iliev, 5/13/07)

X(1213) lies on these lines: 2,6   5,573   9,46   10,37   19,429   21,1030   115,121   140,572   190,1268   281,860   440,910   451,1172   1100,1125   1230,1269

X(1213) = isogonal conjugate of X(1171)
X(1213) = isotomic conjugate of X(32014)
X(1213) = complement of X(86)
X(1213) = crosspoint of X(2) and X(10)
X(1213) = crosssum of X(6) and X(58)
X(1213) = crossdifference of every pair of points on line X(512)X(1326)
X(1213) = perspector of circumconic centered at X(1125)
X(1213) = center of circumconic that is locus of trilinear poles of lines passing through X(1125)
X(1213) = X(2)-Ceva conjugate of X(1125)
X(1213) = {X(2),X(6)}-harmonic conjugate of X(17398)
X(1213) = {X(2),X(69)}-harmonic conjugate of X(15668)
X(1213) = {X(2),X(141)}-harmonic conjugate of X(17245)


X(1214) = ISOGONAL CONJUGATE OF X(1172)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1172)
                        = cot A (cos B + cos C) : cot B (cos C + cos A) : cot C (cos A + cos B) (Darij Grinberg, 4/11/03)
Barycentrics    sec B + sec C : :

X(1214) lies on these lines: 1,3   2,92   5,1838   7,464   9,223   10,227   34,405   37,226   63,77   72,73   216,1108   225,442   304,345   306,307   333,664   343,914

X(1214) = isogonal conjugate of X(1172)
X(1214) = isotomic conjugate of X(31623)
X(1214) = polar conjugate of X(1896)
X(1214) = trilinear pole of line X(520)X(656)
X(1214) = X(6)-isoconjugate of X(29)
X(1214) = X(92)-isoconjugate of X(2194)
X(1214) = complement of X(92)
X(1214) = X(i)-Ceva conjugate of X(j) for these (i,j) : (2,226), (77,73), (307,72), (348, 307)
X(1214) = cevapoint of X(i) and X(j) for these (i,j): (37,227), (71,73)
X(1214) = X(i)-cross conjugate of X(j) for these (i,j): (71,72), (201,307)
X(1214) = crosspoint of X(i) and X(j) for these (i,j): (2,63), (77,348), (1231,1441)
X(1214) = crosssum of X(i) and X(j) for these (i,j): (6,19), (33,607)


X(1215) = ISOGONAL CONJUGATE OF X(1178)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b + c)(a2 + bc)      (M. Iliev, 5/13/07)

X(1215) lies on these lines: 1,312   2,38   10,12   37,714   42,321   43,75   171,385   190,846   964,976

X(1215) = midpoint of X(42) and X(321)
X(1215) = isogonal conjugate of X(1178)
X(1215) = isotomic conjugate of X(32010)
X(1215) = complement of X(38)
X(1215) = crosssum of X(893) and X(904)
X(1215) = polar conjugate of isogonal conjugate of X(22061)
X(1215) = complementary conjugate of X(21249)
X(1215) = barycentric product X(10)*X(894)


X(1216) = ISOGONAL CONJUGATE OF X(1179)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1179)

X(1216) lies on these lines: 2,52   3,49   5,141   54,323   68,69   140,389

X(1216) = midpoint of X(1352) and X(3313)
X(1216) = reflection of X(389) in X(140)
X(1216) = isogonal conjugate of X(1179)
X(1216) = isotomic conjugate of isogonal conjugate of X(23195)
X(1216) = isotomic conjugate of polar conjugate of X(570)
X(1216) = complementary conjugate of X(34835)
X(1216) = complement of X(52)
X(1216) = crosspoint of X(69) and X(97)
X(1216) = crosssum of X(25) and X(53)
X(1216) = anticomplement of X(5462)
X(1216) = X(4) of polar triangle of complement of polar circle


X(1217) = CRETAN PERSPECTOR

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (sec A)/(1 - cos A sin B sin C)
Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (tan A)/(1 - cos A sin B sin C)
Barycentrics  h(a,b,c) : h(b,c,a) : h(c,a,b), where h(a,b,c) = 1/(a2 - 3b2 - 3c2)      (Peter Moses, Oct. 22, 2012)

Let A'B'C' be the medial triangle of the orthic triangle of triangle ABC. Let A" be the reflection of X(4) in A', and define B" and C" cyclically. Let Kab and Kac be the circumcenters of triangles A"BA and A"CA, respectively. Let A''' = BKac∩CKab, and define B''' and C''' cyclically. The lines AA''', BB''', CC''' concur in X(1217). (Antreas Hatzipolakis, Anopolis #39, 3/19/2002)

Using barycentric coordinates, let P = p : q : r be a point not on a sideline of triangle ABC, and let P' be the isogonal conjugate of P. Let DEF and D'E'F' be the pedal triangles of P and P', respectively. Let

X = PD'∩P'D,     Y = PE'∩P'E,     Z = PF'∩P'F.

Then the triangle XYZ is perspective to ABC (Dominik Burek, June 8, 2012) and the perspector is given by barycentric coordinates k(a,b,c) : k(b,c,a) : k(c,a,b), where k = 1/(pqr(b2 + c2 - a2) + 2p(b2r2 + c2q2))      (Peter Moses, Oct. 22, 2012). The point X(1217) results from taking P = X(3).

X(1217) lies on these lines: 2,1093   3,393   4,394   5,1073   20,97   254,378

X(1217) = trilinear pole of line X(520)X(2501)
X(1217) = isogonal conjugate of X(1181)


X(1218) = ISOGONAL CONJUGATE OF X(1185)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1185)

X(1218) lies on these lines: 6,274   25,286   37,76   42,75   767,785

X(1218) = isogonal conjugate of X(1185)
X(1218) = isotomic conjugate of X(5283)
X(1218) = trilinear pole of line X(512)X(693)


X(1219) = ISOGONAL CONJUGATE OF X(1191)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1191)

X(1219) lies on these lines: 1,346   2,341   8,57   28,956   72,957   75,279   81,145   105,958   278,318   518,959

X(1219) = isogonal conjugate of X(1191)
X(1219) = isotomic conjugate of X(3672)
X(1219) = trilinear pole of orthic axis of 2nd extouch triangle


X(1220) = ISOGONAL CONJUGATE OF X(1193)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1193)

X(1220) lies on these lines: 1,312   2,12   6,8   10,58   34,92   42,1043   65,257   85,269   86,313   106,1125   292,1107   341,612   519,1126

X(1220) = isogonal conjugate of X(1193)
X(1220) = isotomic conjugate of X(4357)
X(1220) = cevapoint of X(i) and X(j) for these (i,j): (1,10), (9,42)
X(1220) = crosspoint of X(1) and X(10) wrt the excentral triangle
X(1220) = trilinear pole of line X(522)X(649)
X(1220) = pole wrt polar circle of trilinear polar of X(1848)
X(1220) = X(19)-isoconjugate of X(22097)
X(1220) = X(48)-isoconjugate (polar conjugate) of X(1848)
X(1220) = intersection of tangents at X(1) and X(10) to hyperbola passing through X(1), X(10) and the excenters


X(1221) = ISOGONAL CONJUGATE OF X(1197)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1197)

X(1221) lies on these lines: 43,75   76,192   213,274

X(1221) = isogonal conjugate of X(1197)
X(1221) = isotomic conjugate of X(1107)
X(1221) = cevapoint of X(37) and X(75)


X(1222) = ISOGONAL CONJUGATE OF X(1201)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1201)

X(1222) lies on these lines: 1,341   6,145   8,56   10,106   34,318   58,519   75,269   190,3057

X(1222) = isogonal conjugate of X(1201)
X(1222) = cevapoint of X(1) and X(8)
X(1222) = crosssum of X(1) and X(1050)
X(1222) = isotomic conjugate of X(3663)
X(1222) = intersection of tangents at X(1) and X(8) to hyperbola passing through X(1), X(8) and the excenters
X(1222) = crosspoint of X(1) and X(8) wrt the excentral triangle
X(1222) = trilinear pole of line X(649)X(4949)


X(1223) = ISOGONAL CONJUGATE OF X(1202)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1202)

X(1223) lies on these lines: 2,480   7,220   9,1038   75,728

X(1223) = isogonal conjugate of X(1202)
X(1223) = cevapoint of X(9) and X(142)


X(1224) = ISOGONAL CONJUGATE OF X(1203)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1203)

X(1224) lies on these lines: 1,594   2,1089   10,81   12,57   274,313   1125,1255

X(1224) = isogonal conjugate of X(1203)


X(1225) = ISOTOMIC CONJUGATE OF X(1166)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1166)

X(1225) lies on these lines: 5,311   69,2888   76,95   339,1232  

X(1225) = isotomic conjugate of X(1166)


X(1226) = ISOTOMIC CONJUGATE OF X(1167)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1167)

X(1226) lies on these lines: 10,75   85,264   86,811   311,349   1233,1234

X(1226) = isotomic conjugate of X(1167)


X(1227) = ISOTOMIC CONJUGATE OF X(1168)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1168)

X(1227) lies on these lines: 63,190   75,537   313,1232   320,758   321,545   1086,1211   1234,1269

X(1227) = isotomic conjugate of X(1168)


X(1228) = ISOTOMIC CONJUGATE OF X(1169)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1169)

X(1228) lies on these lines: 2,39   12,313   312,857

X(1228) = isotomic conjugate of X(1169)


X(1229) = ISOTOMIC CONJUGATE OF X(1170)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1170)
Barycentrics    b c (a - b - c) (b^2 + c^2 - a b - a c - 2 b c) : :

X(1229) lies on these lines: 2,37   294,314   1089,1210

X(1229) = isotomic conjugate of X(1170)
X(1229) = crosspoint of X(76) and X(312)
X(1229) = crosssum of X(32) and X(604)


X(1230) = ISOTOMIC CONJUGATE OF X(1171)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b3c3(b + c)(2a + b + c)      (M. Iliev, 5/13/07)

X(1230) lies on these lines: 2,39   312,1234   313,321   339,440   469,1235   1213,1269

X(1230) = isotomic conjugate of X(1171)
X(1230) = crosspoint of X(76) and X(313)


X(1231) = ISOTOMIC CONJUGATE OF X(1172)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1172)

X(1231) lies on these lines: 7,8   76,331   201,307   304,345   321,349   664,1043

X(1231) = isogonal conjugate of X(2204)
X(1231) = isotomic conjugate of X(1172)
X(1231) = X(76)-Ceva conjugate of X(349)
X(1231) = cevapoint of X(306) and X(307)
X(1231) = crosspoint of X(76) and X(304)


X(1232) = ISOTOMIC CONJUGATE OF X(1173)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1173)

X(1232) lies on these lines: 4,69   95,252   313,1227   339,1225   1238,1273

X(1232) = isotomic conjugate of X(1173)
X(1232) = anticomplement of X(5421)
X(1232) = polar conjugate of X(33631)


X(1233) = ISOTOMIC CONJUGATE OF X(1174)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1174)

X(1233) lies on these lines: 69,674   76,85   310,333   1226,1234

X(1233) = isotomic conjugate of X(1174)


X(1234) = ISOTOMIC CONJUGATE OF X(1175)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1175)

X(1234) lies on these lines: 4,69   12,313   312,1230   1226,1233   1227,1269

X(1234) = isotomic conjugate of X(1175)


X(1235) = ISOTOMIC CONJUGATE OF X(1176)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1176)
Barycentrics    (csc A) (csc 2A) sin(A + ω) : :

X(1235) lies on these lines: 4,69   5,339   24,183   25,1239   54,276   83,648   112,384   297,324   469,1230

X(1235) = isotomic conjugate of X(1176)
X(1235) = X(264)-Ceva conjugate of X(427)
X(1235) = cevapoint of X(141) and X(427)
X(1235) = trilinear product of vertices of 5th Euler triangle
X(1235) = polar conjugate of X(251)


X(1236) = ISOTOMIC CONJUGATE OF X(1177)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1177)

X(1236) lies on these lines: 4,69   325,339   826,850

X(1236) = isotomic conjugate of X(1177)


X(1237) = ISOTOMIC CONJUGATE OF X(1178)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b3c3(b + c)(a2 + bc)      (M. Iliev, 5/13/07)

X(1237) lies on these lines: 12,313   75,1240   76,334   561,756

X(1237) = isotomic conjugate of X(1178)


X(1238) = ISOTOMIC CONJUGATE OF X(1179)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1179)

X(1238) lies on these lines: 3,69   311,325   1232,1273

X(1238) = isotomic conjugate of X(1179)


X(1239) = ISOTOMIC CONJUGATE OF X(1180)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1180)

X(1239) lies on these lines: 25,1235   76,251

X(1239) = isotomic conjugate of X(1180)


X(1240) = ISOTOMIC CONJUGATE OF X(1193)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1193)

X(1240) lies on these lines: 7,76   75,1237   86,313   903,1269

X(1240) = isotomic conjugate of X(1193)

X(1240) = cevapoint of X(i) and X(j) for these (i,j): (10,312), (75,313)


X(1241) = ISOTOMIC CONJUGATE OF X(1194)

Trilinears       1/(a2f(a,b,c) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1194)

X(1241) lies on these lines: 6,305   25,76   251,384

X(1241) = isotomic conjugate of X(1194)
X(1241) = cevapoint of X(39) and X(69)


X(1242) = ISOGONAL CONJUGATE OF X(1005)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1005)

X(1242) lies on these lines: 71,1155   72,527

X(1242) = isogonal conjugate of X(1005)


X(1243) = ISOGONAL CONJUGATE OF X(1006)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1006)

X(1243) lies on these lines: 5,72   28,54   71,517   73,942   270,1175

X(1243) = isogonal conjugate of X(1006)


X(1244) = ISOGONAL CONJUGATE OF X(1009)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1009)

X(1244) lies on these lines: 71,238   72,239

X(1244) = isogonal conjugate of X(1009)
X(1244) = trilinear pole of line X(647)X(659)


X(1245) = ISOGONAL CONJUGATE OF X(1010)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1010)

X(1245) lies on these lines: 1,69   3,31   4,1039   42,72   71,213   895,923   1176,1203

X(1245) = isogonal conjugate of X(1010)
X(1245) = crosspoint of X(1036) and X(1039)
X(1245) = crosssum of X(388) and X(1038)
X(1245) = trilinear pole of line X(647)X(798)


X(1246) = ISOGONAL CONJUGATE OF X(1011)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1011)

X(1246) lies on these lines: 2,71   3,86   6,27   7,73   65,273   69,310   72,75

X(1246) = isogonal conjugate of X(1011)
X(1246) = isotomic conjugate of X(10449)
X(1246) = trilinear pole of line X(514)X(647)
X(1246) = X(386)-cross conjugate of X(2)


X(1247) = ISOGONAL CONJUGATE OF X(1046)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1046))

X(1247) lies on these lines: 1,409   10,846   65,1046   158,415

X(1247) = isogonal conjugate of X(1046)
X(1247) = X(21)-cross conjugate of X(1)


X(1248) = ISOGONAL CONJUGATE OF X(1047)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1047)

X(1248) lies on these lines: 1,410   73,1047   255,416

X(1248) = isogonal conjugate of X(1047)
X(1248) = X(29)-cross conjugate of X(1)


X(1249) = ISOGONAL CONJUGATE OF X(1073)

Trilinears    (tan A)(cos A - cos B cos C) : :
Barycentrics    [3a^4 - 2a^2b^2 - 2a^2c^2 - (b^2 - c^2)^2]/(b^2 + c^2 - a^2) : :

X(1249) is the perspector of triangle ABC and the tangential triangle of the circumconic centered at X(4). X(1249) is also the perspector of the medial triangle and the triangle formed by the trilinear poles of the sidelines of the orthic triangle. (Randy Hutson, 9/23/2011)

X(1249) is the unique point whose anticomplement is also its polar conjugate, namely X(253). (Randy Hutson, March 14, 2018)

Let Ea be the ellipse with B and C as foci and passing through X(4), and define Eb and Ec cyclically.
Let La be the line tangent to Ea at X(4), and define Lb and Lc cyclically.
Let A' be the trilinear pole of line La, and define B' and C' cyclically.
Then A', B', C' lie on the circumconic centered at X(1249). (Randy Hutson, March 14, 2018)

Let A'B'C' be the medial triangle. Let A" be the pole, wrt the polar circle, of line B'C', and define B" and C" cyclically. Also, A"B"C" is the triangle formed by trilinear poles of sides of the orthic triangle. The lines A'A", B'B", C'C" concur in X(1249). (Randy Hutson, March 14, 2018)

X(1249) lies on hyperbola {{X(2),X(6),X(216),X(233),X(1249),X(1560),X(3162)}}. This hyperbola is a circumconic of the medial triangle, and the locus of perspectors of circumconics centered at a point on the Euler line. The hyperbola is tangent to Euler line at X(2).

X(1249) lies on the Thomson cubic and these lines: {1,281}, {2,253}, {3,1033}, {4,6}, {9,1712}, {19,57}, {20,3172}, {25,5304}, {69,648}, {108,198}, {112,376}, {154,3079}, {186,1609}, {193,297}, {208,2270}, {216,631}, {219,1783}, {223,3352}, {232,800}, {233,3090}, {264,3618}, {273,5222}, {317,1992}, {346,1897}, {347,653}, {461,3192}, {579,1715}, {604,2202}, {608,2122}, {610,3213}, {920,1720}, {1108,1148}, {1118,2264}, {1743,1785}, {1838,2956}, {1870,3554}, {1941,2138}, {1968,5065}, {2165,3018}, {3003,3147}, {3068,3535}, {3069,3536}, {3089,5305}, {3199,5319}, {3284,3529}, {3343,3356}, {5200,5411}}

X(1249) = isogonal conjugate of X(1073)
X(1249) = isotomic conjugate of X(34403)
X(1249) = anticomplement of X(20208)
X(1249) = X(2)-Ceva conjugate of X(4)
X(1249) = X(154)-cross conjugate of X(20)
X(1249) = X(2)-crosspoint of X(20)
X(1249) = crosssum of X(6) and X(64)
X(1249) = X(4)-Hirst inverse of X(1503)
X(1249) = complement of X(253)
X(1249) = polar conjugate of X(253)
X(1249) = perspector of ABC and antipedal triangle of X(3346)
X(1249) = perspector of pedal and anticevian triangles of X(3183)
X(1249) = perspector of ABC and medial triangle of pedal triangle of X(1498)
X(1249) = center of circumconic that is locus of trilinear poles of lines passing through X(4)
X(1249) = trilinear product X(6)*X(661)
X(1249) = perspector, wrt medial triangle, of polar circle


X(1250) = ISOGONAL CONJUGATE OF X(1081)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1081)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = cos(A/2) cos(A/2 + π/6)

X(1250) lies on these lines: 1,16   6,31   15,35   37,1251

X(1250) = isogonal conjugate of X(1081)
X(1250) = crosssum of X(1) and X(1277)
X(1250) = {X(6),X(55)}-harmonic conjugate of X(10638)


X(1251) = ISOGONAL CONJUGATE OF X(1082)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1082)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = sin(A) csc(A/2) sec(A/2 + π/6)
Trilinears    (cos A/2) csc(A/2 - π/3) : :

X(1251) lies on these lines: 1,15   7,559   13,80   37,1250   55,199

X(1251) = isogonal conjugate of X(1082)


X(1252) = ISOGONAL CONJUGATE OF X(1086)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1086)

X(1252) is the vertex conjugate of the foci of the inellipse that is the barycentric square of the Nagel line. (Randy Hutson, October 15, 2018)

X(1252) lies on these lines: 44,765   59,672   100,650   101,649   110,813   241,1262   644,906   902,1110   1018,1021

X(1252) = isogonal conjugate of X(1086)
X(1252) = isotomic conjugate of X(23989)
X(1252) = cevapoint of X(6) and X(101)
X(1252) = X(i)-cross conjugate of X(j) for these (i,j): (6,101), (31,110), (55,100)
X(1252) = trilinear pole of line X(101)X(692) (the tangent to circumcircle at X(101))
X(1252) = polar conjugate of X(2973)
X(1252) = X(92)-isoconjugate of X(3937)
X(1252) = crossdifference of every pair of points on line X(764)X(1647)


X(1253) = ISOGONAL CONJUGATE OF X(1088)

Trilinears       a2(b + c - a)2 : b2(c + a - b)2 : c2(a + b - c)2                         = cos4A/2 : cos4B/2 : cos4C/2

X(1253) lies on these lines: 1,1170   3,1037   6,31   9,294   33,756   35,255   38,1040   40,1254   48,692   165,269   219,949   220,480   238,390   497,748

X(1253) = isogonal conjugate of X(1088)
X(1253) = X(55)-Ceva conjugate of X(41)
X(1253) = crosspoint of X(55) and X(220)
X(1253) = trilinear square of X(55)
X(1253) = crosssum of X(i) and X(j) for these (i,j): (1,1445), (7,279)


X(1254) = ISOGONAL CONJUGATE OF X(1098)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1098)

X(1254) lies on these lines: 1,411   4,774   7,986   10,307   12,201   31,34   38,388   40,1253   42,65   46,255   56,244   57,961   200,1257   208,1096   269,1126   279,291   651,1046   750,1038

X(1254) = isogonal conjugate of X(1098)
X(1254) = crosspoint of X(65) and X(225)
X(1254) = crosssum of X(i) and X(j) for these (i,j): (1,411), (21,283)
X(1254) = trilinear square of X(65)


X(1255) = ISOGONAL CONJUGATE OF X(1100)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1100))

Let A12B12C12 be Gemini triangle 12. Let A' be the perspector of conic {{A,B,C,B12,C12}}, and define B' and C' cyclically. The lines AA', BB', CC' concur in X(1255). (Randy Hutson, January 15, 2019)

X(1255) lies on these lines: 1,748   2,594   37,81   89,940   274,321   278,469   1125,1224

X(1255) = isogonal conjugate of X(1100)
X(1255) = isotomic conjugate of X(4359)
X(1255) = cevapoint of X(i) and X(j) for these (i,j): (1,37), (6,35)
X(1255) = crosssum of X(1) and X(1051)
X(1255) = trilinear pole of line X(484)X(513)
X(1255) = X(19)-isoconjugate of X(3916)
X(1255) = X(92)-isoconjugate of X(23201)


X(1256) = ISOGONAL CONJUGATE OF X(1103)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1103))

X(1256) lies on these lines: 1,280   6,282   56,84   58,285   189,937   271,936

X(1256) = isogonal conjugate of X(1103)
X(1256) = trilinear square of X(84)


X(1257) = ISOGONAL CONJUGATE OF X(1104)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1104))

X(1257) lies on these lines: 2,1265   8,278   28,72   57,78   69,279   105,960   200,1254   518,961

X(1257) = isogonal conjugate of X(1104)
X(1257) = cevapoint of X(i) and X(j) for these (i,j): (1,72), (37,200)


X(1258) = ISOGONAL CONJUGATE OF X(1107)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1107)

X(1258) lies on these lines: 6,330   81,172   171,904   213,274   291,1193

X(1258) = isogonal conjugate of X(1107)
X(1258) = cevapoint of X(i) and X(j) for these (i,j): (1,213), (6,171), (37,43)
X(1258) = X(92)-isoconjugate of X(22389)


X(1259) = ISOGONAL CONJUGATE OF X(1118)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1118))
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = (cos2A)/(1 - cos A)

X(1259) lies on these lines: 3,63   7,404   8,21   12,377   20,100   35,200   219,283   255,394   268,271   318,1013   329,411   355,1012   651,1035

X(1259) = isogonal conjugate of X(1118)
X(1259) = crosspoint of X(345) and X(1264)
X(1259) = X(92)-isoconjugate of X(608)
X(1259) = isotomic conjugate of isogonal conjugate of X(6056)
X(1259) = isotomic conjugate of polar conjugate of X(219)
X(1259) = X(19)-isoconjugate of X(278)


X(1260) = ISOGONAL CONJUGATE OF X(1119)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1119))
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = (1 + cos A)/(1 - sec A)

X(1260) lies on these lines: 1,939   2,954   3,63   8,405   9,55   31,218   100,329   101,154   212,219   956,1006

X(1260) = isogonal conjugate of X(1119)
X(1260) = crosspoint of X(i) and X(j) for these (i,j): (346,1265), (1252,1331)
X(1260) = crosssum of X(i) and X(j) for these (i,j): (34,1435), (1398,1407)
X(1260) = X(92)-isoconjugate of X(1407)


X(1261) = ISOGONAL CONJUGATE OF X(1122)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1122))

X(1261) lies on these lines: 8,56   31,200   41,728

X(1261) = isogonal conjugate of X(1122)
X(1261) = cevapoint of X(55) and X(200)


X(1262) = ISOGONAL CONJUGATE OF X(1146)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1146))
X(1262) lies on these lines: 36,59   109,663   241,1252   651,905   919,934   1019,1020

X(1262) = isogonal conjugate of X(1146)
X(1262) = isotomic conjugate of X(23978)
X(1262) = anticomplement of complementary conjugate of X(17044)
X(1262) = X(i)-cross conjugate of X(j) for these (i,j): (6,109), (48,110), (198,100)
X(1262) = cevapoint of X(i) and X(j) for these (i,j): (3,101), (6,109)
X(1262) = cevapoint of circumcircle intercepts of line X(6)X(41) (or of circle {{X(1),X(15),X(16)}} (V(X(1)))
X(1262) = trilinear pole of line X(109)X(692) (the tangent to the circumcircle at X(109))
X(1262) = X(92)-isoconjugate of X(3270)


X(1263) = ISOGONAL CONJUGATE OF X(1157)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as in X(1157))

Let A' be the reflection in BC of the A-vertex of the antipedal triangle of X(5), and define B' and C' cyclically. The circumcircles of A'BC, B'CA, and C'AB concur at X(1263). (Randy Hutson, December 2, 2017)

X(1263) lies on the Neuberg cubic and these lines: 4,195   5,128   30,1141   140,930

X(1263) = reflection of X(i) in X(j) for these (i,j): (5,137), (930,140)
X(1263) = isogonal conjugate of X(1157)
X(1263) = X(399)-of-orthic-triangle
X(1263) = tangential of X(484) on the Neuberg cubic
X(1263) = antigonal conjugate of X(5)
X(1263) = Cundy-Parry Psi transform of X(195)


X(1264) = ISOTOMIC CONJUGATE OF X(1118)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1118))
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = (cot2A)/(1 - cos A)

X(1264) lies on these lines: 8,314   69,72   219,332   319,341

X(1264) = isogonal conjugate of X(7337)
X(1264) = isotomic conjugate of X(1118)


X(1265) = ISOTOMIC CONJUGATE OF X(1119)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1119))
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = (cos A)(csc4A/2)

X(1265) lies on these lines: 1,344   2,1257   8,210   20,190   69,72   78,345   145,1191   220,346

X(1265) = isogonal conjugate of X(1398)
X(1265) = isotomic conjugate of X(1119)
X(1265) = anticomplement of X(17054)


X(1266) = ISOTOMIC CONJUGATE OF X(1120)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1120))

X(1266) lies on these lines: 7,145   10,75   44,545   142,192   239,527   320,519   522,693   536,1086

X(1266) = isotomic conjugate of X(1120)
X(1266) = anticomplement of X(2325)
X(1266) = crosspoint of X(75) and X(903)
X(1266) = crosssum of X(31) and X(902)


X(1267) = ISOTOMIC CONJUGATE OF X(1123)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1123))
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = (csc A)(1 + csc A)
Trilinears        (bc + S)/a : (ca + S)/b : (ab + S)/c

X(1267) lies on these lines: 2,37   7,492   8,491   319,1271   320,1270

X(1267) = isotomic conjugate of X(1123)
X(1267) = {X(2),X(75)}-harmonic conjugate of X(5391)


X(1268) = ISOTOMIC CONJUGATE OF X(1125)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1125))

Let A22B22C22 be Gemini triangle 22. Let A' be the perspector of conic {{A,B,C,B22,C22}}, and define B' and C' cyclically. The lines AA', BB', CC' concur in X(1268). (Randy Hutson, January 15, 2019)

X(1268) lies on these lines: 2,594   7,12   10,86   75,1089   190,1213   310,313   333,1171

X(1268) = isogonal conjugate of X(2308)
X(1268) = isotomic conjugate of X(1125)
X(1268) = X(523)-cross conjugate of X(190)
X(1268) = cevapoint of X(2) and X(10)
X(1268) = polar conjugate of X(1839)
X(1268) = X(19)-isoconjugate of X(22054)


X(1269) = ISOTOMIC CONJUGATE OF X(1126)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1126))

X(1269) lies on these lines: 7,349   10,75   69,674   79,314   86,310   141,321   903,1240   1213,1230   1227,1234

X(1269) is the {X(75),X(76)}-harmonic conjugate of X(313). For a list of other harmonic conjugates of X(1269), click Tables at the top of this page.

X(1269) = isotomic conjugate of X(1126)
X(1269) = crosspoint of X(76) and X(310)


X(1270) = ISOTOMIC CONJUGATE OF X(1131)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1131))
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = (csc A)(1 + 2 cot A)

X(1270) lies on these lines: 2,6   4,1160   8,175   20,488   76,1132   320,1267

X(1270) is the {X(2),X(69)}-harmonic conjugate of X(1271). For a list of other harmonic conjugates of X(1270), click Tables at the top of this page.

X(1270) = isotomic conjugate of X(1131)
X(1270) = anticomplement of X(3068)
X(1270) = X(1151)-cross conjugate of X(3535)
X(1270) = homothetic center of anticomplementary triangle and cross-triangle of ABC and outer Grebe triangle
X(1270) = homothetic center of outer Grebe triangle and cross-triangle of ABC and outer Grebe triangle


X(1271) = ISOTOMIC CONJUGATE OF X(1132)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1132))
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = (csc A)(1 - 2 cot A)

X(1271) lies on these lines: 2,6   4,1161   8,176   20,487   76,1131   319,1267

X(1271) = isotomic conjugate of X(1132)
X(1271) = anticomplement of X(3069)
X(1271) = X(1152)-cross conjugate of X(3536)
X(1271) = homothetic center of anticomplementary triangle and cross-triangle of ABC and inner Grebe triangle
X(1271) = homothetic center of inner Grebe triangle and cross-triangle of ABC and inner Grebe triangle


X(1272) = ISOTOMIC CONJUGATE OF X(1138)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1138))
Barycentrics    a^8 - 4 a^6 (b^2 + c^2) + a^4 (6 b^4 + b^2 c^2 + 6 c^4) - a^2 (4 b^6 - b^4 c^2 - b^2 c^4 + 4 c^6) + (b^2 - c^2)^2 (b^4 + 4 b^2 c^2 + c^4) : :

X(1272) lies on these lines: 2,94   69,74

X(1272) = isotomic conjugate of X(1138)
X(1272) = anticomplement of X(1989)


X(1273) = ISOTOMIC CONJUGATE OF X(1141)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1141))

X(1273) lies on these lines: 2,231   5,311   54,69   93,264   186,340   325,523   1232,1238

X(1273) = isotomic conjugate of X(1141)
X(1273) = anticomplement of X(231)
X(1273) = X(128)-cross conjugate of X(2)


X(1274) = ISOTOMIC CONJUGATE OF X(1143)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1143))
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = (csc A)(cot A/4)

Let I be the incenter of ABC and EA the excircle of triangle BCI that touches segment BC, and let A' be the touchpoint. Define B' and C' cyclically. The lines AA', BB', CC' concur in X(1274). (Randy Hutson, 9/23/2011)

X(1274) lies on the cubic K200 and these lines: 2,1489   8,177   174,176   557,1488

X(1274) = isotomic conjugate of X(1143)
X(1274) = {X(8),X(556)}-harmonic conjugate of X(11143)


X(1275) = ISOTOMIC CONJUGATE OF X(1146)

Trilinears       1/(a2f(a,b,c)) : 1/(b2f(b,c,a)) : 1/(c2f(c,a,b)), where f(a,b,c) is as in X(1146))

X(1275) lies on these lines: 7,59   320,765   513,927   522,664   651,666   898,934

X(1275) = isotomic conjugate of X(1146)
X(1275) = isogonal conjugate of X(14936)
X(1275) = cevapoint of X(i) and X(j) for these (i,j): (69,190), (100,220)
X(1275) = X(i)-cross conjugate of X(j) for these (i,j): (63,99), (144,190), (220,100)
X(1275) = trilinear pole of line X(100)X(658) (the tangent to Steiner circumellipse at X(664))
X(1275) = X(2)-cross conjugate of X(664)
X(1275) = barycentric square of X(664)


X(1276) = 2nd EVANS PERSPECTOR

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sqrt(3/4) + sin(A + π/3) - sin(B + π/3) - sin(C + π/3)
                         = sqrt(3/4) + cos(A - π/6) - cos(B - π/6) - cos(C - π/6)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Let T be the excentral triangle, whose vertices are the A-, B-, C- excenters of triangle ABC. Let U be the equilateral triangle having segment BC as base with vertex A' on the side of BC that does not contain vertex A. Define B' and C' cyclically, and let T' be the triangle A'B'C'. Let V be the equilateral triangle having BC as base with vertex A" on the side of BC that contains A. Define B" and C" cyclically, and let T" = A"B"C". Then T and T' are perspective, and X(1276) is their perspector. (Lawrence Evans, 2/4/2003)

Evans conjectured that X(1), X(484), X(1276), X(1277) are concyclic, and he reported that Paul Yiu confirmed this conjecture and noted that the center of this circle is X(1019). (Lawrence Evans, 2/24/2003)

X(1276) is the perspector of the excentral triangle and the apices of equilateral triangles constructed outward from the sides, as in the construction of X(13). More generally, the excentral triangle is perspective to every Kiepert triangle. The locus of the perspector Kθ is the line X(4)X(9). Specifically, Kθ divides the segment from X(75) to X(9) in the ratio - ((4R+r)/s) cot θ. (Paul Yiu, 2/27/04).

X(1276) lies on the Neuberg cubic and these lines: 1,15   4,9   14,484   63,616

X(1276) = reflection of X(1277) in X(5011)
X(1276) = anticomplement of X(33397)
X(1276) = X(16)-of-excentral-triangle
X(1276) = inverse-in-Bevan-circle of X(1277) (noted by Peter J. C. Moses, Sept. 8, 2004)


X(1277) = 3rd EVANS PERSPECTOR

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sqrt(3/4) - sin(A - π/3) + sin(B - π/3) + sin(C - π/3)
                         = - sqrt(3/4) - cos(A + π/6) + cos(B + π/6) + cos(C + π/6)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Continuing from X(1276), the triangles T and T" are perspective with perspector X(1277). (Lawrence Evans, 2/4/2003).

X(1277) is the perspector of the excentral triangle and the apices of equilateral triangles constructed inward from the sides, as in the construction of X(14); for a generalization, see X(1276). (Paul Yiu, 2/27/04).

X(1277) lies on the Neuberg cubic and these lines: 1,16   4,9   13,484   63,617

X(1277) = reflection of X(1276) in X(5011)
X(1277) = anticomplement of X(33396)
X(1277) = X(15)-of-excentral-triangle
X(1277) = inverse-in-Bevan-circle of X(1276) (noted by Peter J. C. Moses, Sept. 8, 2004)


X(1278) = CONGRUENT MIDWAY-PARALLELIANS POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(ab +ac - 3bc)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

Antreas Hatzipolakis described this point in Hyacinthos #3190 (7/13/2001). See also

Paul Yiu, Introduction to the Geometry of the Triangle, 2002, Section 3.3.1, exercise 2.

X(1278) lies on these lines: 2,37   8,726   145,740   193,742

X(1278) is the {X(75),X(192)}-harmonic conjugate of X(2). For a list of harmonic conjugates, click Tables at the top of this page.

X(1278) = reflection of X(192) in X(75)
X(1278) = isogonal conjugate of X(36614)
X(1278) = isotomic conjugate of X(38247)
X(1278) = crosssum of X(i) and X(j) for these {i,j}: {512, 23571}, {649, 23470}, {667, 23560}
X(1278) = crossdifference of every pair of points on line X(667)X(23472)
X(1278) = anticomplement of X(192)
X(1278) = complement of X(4788)
X(1278) = polar conjugate of isogonal conjugate of X(22149)


X(1279) = MIDPOINT OF X(1) AND X(238)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)2 - a(b + c - 2a)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1279) lies on these lines: 1,6   31,354   55,614   105,910   145,344   210,748   244,902   513,663   516,1086   551,752   595,942   56,1418   1201,2293

X(1279) is the {X(1),X(1001)}-harmonic conjugate of X(37). For a list of other harmonic conjugates of X(1279), click Tables at the top of this page.

X(1279) = midpoint of X(1) and X(238)
X(1279) = reflection of X(44) in X(238)
X(1279) = isogonal conjugate of X(1280)
X(1279) = complement of X(32850)
X(1279) = anticomplement of X(3823)
X(1279) = crosspoint of X(i) and X(j) for these (i,j): (1,105), (927,1016)
X(1279) = crosssum of X(i) and X(j) for these (i,j): (1,518), (926,1015)
X(1279) = crossdifference of every pair of points on line X(9)X(513)
X(1279) = {X(1),X(9)}-harmonic conjugate of X(3242)
X(1279) = crossdifference of PU(56)
X(1279) = midpoint of PU(96)
X(1279) = bicentric sum of PU(96)
X(1279) = X(2)-Ceva conjugate of X(39048)
X(1279) = perspector of hyperbola {{A,B,C,X(57),X(100)}}


X(1280) = ISOGONAL CONJUGATE OF X(1279)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[(b-c)2 - a(b + c - 2a)]

X(1280) lies on these lines: 1,644   8,277   57,100   81,643   105,518   145,279   200,244

X(1280) = reflection of X(644) in X(1)
X(1280) = isogonal conjugate of X(1279)
X(1280) = trilinear pole of line X(9)X(513)


X(1281) = 3rd SHARYGIN POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(a2 - bc)(b3 + c3 - a3 - abc)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

The Sharygin points are described in

Darij Grinberg, Sharygin Points Report, Hyacinthos #6293 (1/8/03) and #6315 (1/10/03)

The first of ten sections is an Introduction quoted, in part, here:

We will treat two remarkable triangles: the triangle bounded by the perpendicular bisectors of the internal angle bisectors of a triangle ABC, and the triangle bounded by the perpendicular bisectors of the external angle bisectors of triangle ABC. These two triangles and the triangle ABC are three perspective triangles, having a common perspectrix: the Lemoine axis of ABC. The mutual perspectors of the three triangles will be called the first, second and third Sharygin points of ABC (after a problem of Igor Sharygin - see Section 10).
The report introduces fifteen Sharygin points, of which the 1st, 2nd, 4th, and 6th are X(256), X(291), X(846),
and X(1054), respectively. X(1281) is the 3rd Sharygin point. See also Hyacinthos #6293 and #6315.

Let A' be the point where the internal angle bisector of angle CAB meets line BC, and let A" be the point where the external angle bisector of angle CAB meets line BC. Let x be the perpendicular bisector of segment AA', and let x' be the perpendicular bisector of segment AA". Define y, z, y', z' cyclically. Let D be the point where lines y and z meet, and let D' be the point where lines y' and z' meet. Define E, F, E', F' cyclically. Then

X(1281) = points of concurrence of lines DD', EE', FF'
X(846) = homothetic center of the excentral triangle and triangle DEF
X(1054) = center of similitude of the excentral triangle and triangle D'E'F'.

X(1281) lies on the Yff contact circle and these lines: 2,846   21,99   63,147   98,100   256,291   350,1284   385,740   659,804

X(1281) = isogonal conjugate of X(30648)
X(1281) = perspector of unary cofactor triangles of Gemini triangles 33 and 34
X(1281) = crossdifference of every pair of points on line X(5029)X(30654)
X(1281) = X(1)-of-1st-anti-Brocard-triangle
X(1281) = perspector of (cross-triangle of ABC and 1st Sharygin triangle) and (cross-triangle of ABC and 2nd Sharygin triangle)

X(1282) = 5th SHARYGIN POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4 + a3(b + c) - a2(2b2 + 3bc + 2c2)
                                                                                    + a(b + c)(b2 + c2) - (b - c)2(b2 + bc + c2)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1282) is the perspector of the excentral triangle and the triangle D'E'F' constructed at X(1281). Coordinates were found by Jean-Pierre Ehrmann. See Hyacinthos #6293 and #6315.

Let IaIbIc be the excentral triangle. Let La be the line parallel to the Brocard axis of BCIa and passing through Ia. Define Lb and Lc cyclically. The lines La, Lb, Lc concur in X(1282). (Randy Hutson, December 2, 2017)

X(1282) lies on the Bevan circle and these lines: 1,41   8,1281   10,150   40,170   43,57   55,846   63,100   152,516   354,1051   518,910   (659,926)

X(1282) = X(98)-of-excentral-triangle


X(1283) = 7th SHARYGIN POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[a4 - (b + c)a3 + (b3 + c3)a + b2c2 - b4 - c4]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1283) is the center of similitude of the triangles DEF and D'E'F' constructed at X(1281). Coordinates were found by Jean-Pierre Ehrmann. See Hyacinthos #6293 and #6315.

X(1283) lies on these lines: 3,1054   10,21   36,244   55,846   242,243

X(1283) = inverse-in-circumcircle of X(1054)
X(1283) = QA-P9 (QA-Miquel Center) of quadrangle ABCX(1) (see http://www.chrisvantienhoven.nl/quadrangle-objects/15-mathematics/quadrangle-objects/artikelen-qa/30-qa-p9.html)


X(1284) = 8th SHARYGIN POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c)(bc - a2)/(b + c - a)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1284) is the homothetic center of the intouch intriangle and the triangle DEF constructed at X(1281). Coordinates were found by Jean-Pierre Ehrmann. See Hyacinthos #6293 and #6315.

X(1284) lies on these lines: 1,256   7,21   37,65   57,846   350,1281   513,663

X(1284) = crosspoint of X(i) and X(j) for these (i,j): (1,98), (238,242), (1429,1447)
X(1284) = crosssum of X(i) and X(j) for these (i,j): (1,511), (291,295)
X(1284) = X(65)-Hirst inverse of X(1400)
X(1284) = bicentric sum of PU(88)
X(1284) = PU(88)-harmonic conjugate of X(3287)


X(1285) = LEMOINE HOMOTHETIC CENTER

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(3a2 + b2 - c2)(3a2 - b2 + c2)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1285) is the homothetic center of the antipedal triangle of X(2) and the pedal triangle of X(6). (Darij Grinberg, Hyacinthos #6577, 2/21/03). See also X(3066).

Let T denote the antipedal triangle of X(2), and let T(m) denote X(m)-of-T. Then T(m) is a triangle center of the reference triangle ABC. The appearance of (m,n) in the following list means that T(m) = X(n). Note the special case m = 1285.

(2,376), (6,2), (115,99), (125,1296), (597,3), (599,20), (1285,1285), (1992,4), (2030,187), (2549,69)

Let U denote the pedal triangle of X(6), and let U(m) denote X(m)-of-U. Then U(m) is a triangle center of the reference triangle ABC. The appearance of (m,n) in the following list means that U(m) = X(n). (This list and the one just above were contributed by Peter Moses, 11/15/2007.)

(2,6), (3,597), (4,1992), (20,599), (69,2549), (99,115), (187,2030), (376,2), (1285, 1285), (1296, 125)

Let A'B'C' be the antipedal triangle of X(2). The centroid of A'B'C' is X(376). Let A"B"C" be the antipedal triangle, wrt A'B'C', of X(376). A"B"C" is homothetic to ABC, and the center of homothety is X(1285). (Randy Hutson, March 21, 2019)

Let A'B'C' be the pedal triangle of X(6). Let K' be X(6) of A'B'C'. Let A"B"C" be the pedal triangle, wrt A'B'C', of K'. A"B"C" is homothetic to ABC, and the center of homothety is X(1285). (Randy Hutson, March 21, 2019)

If you have The Geometer's Sketchpad, you can view X(1285) and X(1285) Intersection.

X(1285) lies on these lines: 2,1384   4,32   6,376   99,1992   172,1058   193,1003   497,609   631,3053   1056,1914

leftri

Collings Transforms: 1286-1311

rightri
If ABC is a triangle, P is a point, and A', B', C' are the reflections of A, B, C in P, then the circumcircles of triangles AB'C', A'BC' and A'B'C concur at a point Q on the circumcircle of triangle ABC. The transformation T given by Q = T(P) was described by

S. N. Collings, "Reflections on reflections 2", Mathematical Gazette 1974, page 264.

It was further discussed by Floor van Lamoen and Darij Grinberg, and coordinates were found by Barry Wolk; see Hyacinthos #4547, #4548, #6469, #6538, #6546, #6560. Paul Yiu noted that T(P) is the point, other than A, B, C, in which the circumconic centered at P meets the circumcircle of triangle ABC (#4548).

If P = x : y : z (trilinears), then Q = f(a,b,c) : f(b,c,a) : f(c,a,b), where

f(a,b,c) = 1/[bz(ax + by - cz) - cy(ax + cz - by)].

For given Q, the set of points P satisfying T(P) = Q is a conic. Examples follow:

if Q = X(74), the conic passes through X(i) for I = 125;
if Q = X(98), the conic passes through X(i) for I = 115, 868;
if Q = X(99), the conic passes through X(i) for I = 2, 39, 114, 618, 619, 629, 630, 641, 642, 1125;
if Q = X(100), the conic passes through X(i) for I = 1, 9, 10, 119, 142, 214, 442, 1145;
if Q = X(107), the conic passes through X(i) for I = 4, 133, 800, 1249;
if Q = X(110), the conic passes through X(i) for I = 5, 6, 113, 141, 206, 942, 960, 1147, 1209;
if Q = X(476), the conic passes through X(i) for I = 30.

Bernard Gibert (4/02/03) identified T(P) as the trilinear pole of the line of X(6) and the X(2)-Ceva conjugate of P. He identified the locus of P as the rectangular hyperbola that circumscribes the medial triangle and has center W given by the vector equation 4X(2)W = X(2)Q. The anticomplement of this hyperbola is the rectangular ABC-circumhyperbola whose center is the complement of Q. Thus, referring to examples given above:

if Q = X(99), the conic is the Kiepert hyperbola of the medial triangle;
if Q = X(100), the conic is the Feuerbach hyperbola of the medial triangle;
if Q = X(110), the conic is the Jerabek hyperbola of the medial triangle.


X(1286) = COLLINGS TRANSFORM OF X(22)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1286))

X(1286) lies on the circumcircle and this line: 26,98


X(1287) = COLLINGS TRANSFORM OF X(23)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1286))

X(1287) lies on the circumcircle and these lines: 5,842   110,826   523,827


X(1288) = COLLINGS TRANSFORM OF X(24)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1286))

X(1288) lies on the circumcircle and this line: 70,74

X(1288) = anticomplement of X(35969)
X(1288) = trilinear pole of line X(6)X(70)
X(1288) = Ψ(X(6), X(70))


X(1289) = COLLINGS TRANSFORM OF X(25)

Trilinears    tan A csc(B - C)/(sin 2A - tan ω) : :

X(1289) lies on the circumcircle and these lines: 4,127   24,98   25,339   66,74   111,459   378,1294   403,842   648,827

X(1289) = isogonal conjugate of X(8673)
X(1289) = trilinear pole of line X(6)X(66)
X(1289) = Ψ(X(3), X(66))
X(1289) = Ψ(X(6), X(66))
X(1289) = polar-circle-inverse of X(127)
X(1289) = polar conjugate of X(33294)
X(1289) = Thomson-isogonal conjugate of X(34146)
X(1289) = Lucas-isogonal conjugate of X(34146)
X(1289) = X(63)-isoconjugate of X(2485)


X(1290) = COLLINGS TRANSFORM OF X(36)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1286))

X(1290) lies on the circumcircle and these lines: 23,105   30,104   36,759   74,517   99,693   100,523   101,661   110,513   186,915   354,840

X(1290) = reflection of X(1325) in X(36)
X(1290) = isogonal conjugate of X(8674)
X(1290) = cevapoint of X(36) and X(513)
X(1290) = trilinear pole of line X(6)X(1718)
X(1290) = Ψ(X(6), X(1718))
X(1290) = reflection of X(100) in the Euler line
X(1290) = reflection of X(110) in line X(1)X(3)


X(1291) = COLLINGS TRANSFORM OF X(50)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1286))
Barycentrics    a^2/((b^2 - c^2) (a^12 - 4 a^10 (b^2 + c^2) + 5 a^8 (b^4 + b^2 c^2 + c^4) + a^6 b^2 c^2 (b^2 + c^2) - a^4 (5 b^8 - b^6 c^2 + 2 b^4 c^4 - b^2 c^6 + 5 c^8) + a^2 (b^2 - c^2)^2 (4 b^6 + 3 b^4 c^2 + 3 b^2 c^4 + 4 c^6) - (b^2 - c^2)^4 (b^2 + c^2)^2)) : :

X(1291) lies on the circumcircle and these lines: 30,1141   74,1154   477,550   523,930

X(1291) = cevapoint of X(50) and X(512)


X(1292) = COLLINGS TRANSFORM OF X(55)

Trilinears    1/((b - c) (a^2 + b^2 + c^2 - 2 a b - 2 a c)) : :

Let LA be the reflection of the line X(1)X(6) in the line BC, and define LB and LC cyclically. Let A' = LB∩LC, and define B' and C' cyclically. The lines AA', BB', CC' concur in X(1292). Let MA be the reflection of the line X(7)X(8) in the line BC, and define MB and MC cyclically. Let A'' = MB∩MC, and define B'' and C'' cyclically. The lines AA'', BB'', CC'' concur in X(1292). (Randy Hutson, 9/23/2011)

Let A'B'C' be the excentral triangle. The van Aubel lines of triangles A'BC, B'CA, C'AB bound a triangle perspective to ABC at X(1292). (Randy Hutson, June 27, 2018)

X(1292) lies on the circumcircle and these lines: 3,105   4,120   40,103   104,376   378,915   411,1311   517,840   601,727   906,919

X(1292) = reflection of X(i) in X(j) for these (i,j): (4,120), (105,3)
X(1292) = isogonal conjugate of X(3309)
X(1292) = complement of X(34547)
X(1292) = trilinear pole of line X(6)X(354)
X(1292) = cevapoint of X(55) and X(513)
X(1292) = Ψ(X(6), X(354))
X(1292) = Λ(X(1), X(3309))
X(1292) = Λ(X(4), X(885))
X(1292) = X(127)-of-excentral-triangle
X(1292) = X(132)-of-hexyl-triangle
X(1292) = Cundy-Parry Phi transform of X(14267)
X(1292) = Cundy-Parry Psi transform of X(34159)
X(1292) = Thomson-isogonal conjugate of X(518)
X(1292) = Lucas-isogonal conjugate of X(518)


X(1293) = COLLINGS TRANSFORM OF X(121)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/[(b - c)(3a - b - c)]      (M. Iliev, 5/13/07)

Let LA be the reflection of the line X(1)X(2) in the line BC, and define LB and LC cyclically. Let A' = LB∩LC, and define B' and C' cyclically. The lines AA', BB', CC' concur in X(1293). (Randy Hutson, 9/23/2011)

X(1293) lies on the circumcircle and these lines: 3,106   4,121   40,104   105,165   182,727   572,739

X(1293) = reflection of X(i) in X(j) for these (i,j): (4,121), (106,3)
X(1293) = isogonal conjugate of X(3667)
X(1293) = complement of X(34548)
X(1293) = trilinear pole of line X(6)X(1201)
X(1293) = cevapoint of X(55) and X(649)
X(1293) = Ψ(X(6), X(1201))
X(1293) = trilinear pole wrt 1st circumperp triangle of line X(40)X(518)
X(1293) = X(107)-of-1st-circumperp-triangle
X(1293) = X(122)-of-excentral-triangle
X(1293) = X(133)-of-hexyl-triangle
X(1293) = Λ(X(649), X(4949))
X(1293) = Thomson-isogonal conjugate of X(519)
X(1293) = Lucas-isogonal conjugate of X(519)
X(1293) = Λ(X(2254), X(3667))


X(1294) = COLLINGS TRANSFORM OF X(122)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1286))
Barycentrics    1/(a^6 (b^2 + c^2) - a^4 (3 b^4 - 4 b^2 c^2 + 3 c^4) + 3 a^2 (b^2 - c^2)^2 (b^2 + c^2) - (b^2 - c^2)^2 (b^4 + 4 b^2 c^2 + c^4)) : :

X(1294) lies on the circumcircle and these lines: 2,133   3,107   4,122   20,110   22,1302   30,1304   112,376   378,1289   550,933

X(1294) = reflection of X(i) in X(j) for these (i,j): (4,122), (107,3)
X(1294) = complement of X(34549)
X(1294) = cevapoint of X(3) and X(30)
X(1294) = X(193)-Hirst inverse of X(297)
X(1294) = isogonal conjugate of X(6000)
X(1294) = anticomplement of X(133)
X(1294) = Λ(X(74), X(186))
X(1294) = Λ(X(5), X(2883))
X(1294) = X(134)-of-hexyl-triangle
X(1294) = eigencenter of circumanticevian triangle of X(4)
X(1294) = Cundy-Parry Phi transform of X(14249)
X(1294) = Cundy-Parry Psi transform of X(14379)
X(1294) = Thomson-isogonal conjugate of X(520)
X(1294) = Lucas-isogonal conjugate of X(520)
X(1294) = trilinear pole, wrt Thomson triangle, of line X(64)X(631)
X(1294) = the point of intersection, other than A, B, and C, of the circumcircle and hyperbola {A,B,C,X(4),X(20)} (circumconic centered at X(122))
X(1294) = trilinear pole, wrt circumcevian triangle of X(30), of line X(22)X(476)


X(1295) = COLLINGS TRANSFORM OF X(123)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1286))

X(1295) lies on the circumcircle and these lines: 3,108   4,123   20,100   21,107   28,1301   40,109   101,610   268,281   347,934

X(1295) = reflection of X(i) in X(j) for these (i,j): (4,123), (108,3)
X(1295) = complement of X(34550)
X(1295) = cevapoint of X(3) and X(517)
X(1295) = isogonal conjugate of X(6001)
X(1295) = Λ(X(3), X(960))
X(1295) = Λ(X(104), X(1319))
X(1295) = X(135)-of-hexyl-triangle
X(1295) = trilinear pole of line X(6)X(2431)
X(1295) = Ψ(X(6), X(2431))
X(1295) = Cundy-Parry Phi transform of X(14257)
X(1295) = Cundy-Parry Psi transform of X(39167)
X(1295) = Thomson-isogonal conjugate of X(521)
X(1295) = Lucas-isogonal conjugate of X(521)


X(1296) = COLLINGS TRANSFORM OF X(126)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1286))
Barycentrics    a^2/((b^2 - c^2) (5 a^2 - b^2 - c^2)) : :

Let LA be the reflection of the line X(2)X(6) in the line BC, and define LB and LC cyclically. Let A' = LB∩LC, and define B' and C' cyclically. The lines AA', BB', CC' concur in X(1296). (Randy Hutson, 9/23/2011)

X(1296) lies on the circumcircle and these lines: 3,111   4,126   98,376   182,729   511,843

X(1296) = reflection of X(i) in X(j) for these (i,j): (4,126), (111,3)
X(1296) = isogonal conjugate of X(1499)
X(1296) = cevapoint of X(512) and X(574)
X(1296) = trilinear pole of line X(6)X(373)
X(1296) = Ψ(X(6), X(373))
X(1296) = reflection of X(2696) in the Euler line
X(1296) = reflection of X(2709) in the Brocard axis
X(1296) = reflection of X(2746) in line X(1)X(3)
X(1296) = reflection of X(74) in line X(3)X(351)
X(1296) = X(138)-of-hexyl-triangle
X(1296) = X(74)-of-circumsymmedial-triangle
X(1296) = Λ(trilinear polar of X(1992))
X(1296) = 1st-Parry-to-ABC similarity image of X(111)
X(1296) = X(4) of 4th anti-Brocard triangle
X(1296) = perspector of 4th anti-Brocard and 1st Ehrmann triangles
X(1296) = Cundy-Parry Phi transform of X(14263)
X(1296) = Cundy-Parry Psi transform of X(34161)
X(1296) = Thomson-isogonal conjugate of X(524)
X(1296) = Lucas-isogonal conjugate of X(524)
X(1296) = perspector of ABC and 1st anti-Parry triangle
X(1296) = X(111)-of-1st-anti-Parry-triangle
X(1296) = X(9156)-of-2nd-anti-Parry-triangle


X(1297) = COLLINGS TRANSFORM OF X(127)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/(b6 + c6 - 2a6 + a4b2 + a4c2 - b4c2 - b2c4)      (M. Iliev, 5/13/07)

X(1297) lies on the circumcircle, the hyperbolas {{A,B,C,X(4),X(22)}} and {{A,B,C,X(2),X(3)}}, and these lines: 2,107   3,112   4,127   20,99   22,110   23,1304   25,1073   30,935   97,933   108,1214   476,858

X(1297) = reflection of X(i) in X(j) for these (i,j): (4,127), (112,3)
X(1297) = X(232)-cross conjugate of X(2)
X(1297) = cevapoint of X(3) and X(511)
X(1297) = crosssum of X(20) and X(147)
X(1297) = isogonal conjugate of X(1503)
X(1297) = isotomic conjugate of X(30737)
X(1297) = complement of X(12384)
X(1297) = anticomplement of X(132)
X(1297) = trilinear pole of line X(6)X(520)
X(1297) = Ψ(X(6), X(520))
X(1297) = Λ(X(4), X(6))
X(1297) = Λ(X(98), X(230))
X(1297) = X(139)-of-hexyl triangle
X(1297) = inverse-in-{circumcircle, nine-point circle}-inverter of X(122)
X(1297) = Cundy-Parry Phi transform of X(8743)
X(1297) = Cundy-Parry Psi transform of X(14376)
X(1297) = Thomson-isogonal conjugate of X(525)
X(1297) = Lucas-isogonal conjugate of X(525)
X(1297) = X(4)-of-1st-anti-orthosymmedial-triangle
X(1297) = SR(P,U), where P and U are the circumcircle intercepts of the van Aubel line
X(1297) = orthoptic-circle-of-Steiner-circumellipse-inverse of X(34186)


X(1298) = COLLINGS TRANSFORM OF X(130)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1286))

X(1298) lies on the circumcircle and these lines: 2,129   3,1303   4,130   51,107   54,112   97,110   184,933

X(1298) = reflection of X(i) in X(j) for these (i,j): (4,130), (1303,3)
X(1298) = isogonal conjugate of X(32428)
X(1298) = anticomplement of X(129)
X(1298) = X(107)-of-Lucas-triangle (defined at X(95))
X(1298) = X(99)-of-circumorthic-triangle
X(1298) = trilinear pole, wrt Lucas triangle, of line X(2979)X(33971)
X(1298) = point of intersection, other than A, B, C, of circumcircle and hyperbola {{A,B,C,X(4),X(51)}} (circumconic centered at X(130))


X(1299) = COLLINGS TRANSFORM OF X(135)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1286))

X(1299) lies on the circumcircle and these lines: 4,131   24,110   99,317   403,476   459,1302

X(1299) = reflection of X(4) in X(135)
X(1299) = Λ(X(4), X(155))
X(1299) = the point of intersection, other than A, B, and C, of the circumcircle and hyperbola {{A,B,C,X(4),X(24)}} (circumconic centered at X(135))
X(1299) = isogonal conjugate of crosspoint of X(155) and X(2931) wrt both the excentral and tangential triangles
X(1299) = inverse-in-polar-circle of X(131)


X(1300) = COLLINGS TRANSFORM OF X(136)

Trilinears    (sec A)/(1 + cos 2B + cos 2C) : :
Trilinears    (sec A)/(-1 + 2cos^2 B + 2 cos^2 C) : :
Barycentrics    1/((a^2 - b^2 - c^2) (a^4 (b^2 + c^2) - 2 a^2 (b^4 - b^2 c^2 + c^4) + (b^2 - c^2)^2 (b^2 + c^2)) : :

X(1300) lies on the circumcircle and these lines: 2,131   3,847   4,110   20,254   24,107   25,1302   93,930   99,264   109,225   112,393   186,476   403,1304   687,691

X(1300) = reflection of X(i) in X(j) for these (i,j): (4,136), (925,3)
X(1300) = isogonal conjugate of X(13754)
X(1300) = cevapoint of X(4) and X(186)
X(1300) = X(i)-cross conjugate of X(j) for these (i,j): (30,4), (50,275)
X(1300) = Λ(X(5), X(389))
X(1300) = anticomplement of X(131)
X(1300) = inverse-in-polar-circle of X(113)
X(1300) = pole wrt polar circle of trilinear polar of X(3580)
X(1300) = X(48)-isoconjugate (polar conjugate) of X(3580)
X(1300) = eigencenter of circumanticevian triangle of X(3)
X(1300) = the point of intersection, other than A, B, C, of the circumcircle and hyperbola {{A,B,C,X(4),X(93)}} (circumconic centered at X(136))


X(1301) = COLLINGS TRANSFORM OF X(235)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1286))

X(1301) lies on the circumcircle and these lines: 4,122   24,64   25,1073   28,1295   98,459   162,934   403,477

X(1301) = anticomplement of X(35968)
X(1301) = X(520)-cross conjugate of X(4)
X(1301) = cevapoint of X(i) and X(j) for these (i,j): (25,647), (235,523)
X(1301) = isogonal conjguate of X(8057)
X(1301) = trilinear pole of line X(6)X(64)
X(1301) = concurrence of reflections in sides of ABC of line X(4)X(64)
X(1301) = Ψ(X(3), X(64))
X(1301) = Ψ(X(4), X(64))
X(1301) = Ψ(X(6), X(64))
X(1301) = Ψ(X(69), X(20))
X(1301) = Λ(X(6587), X(8057)) (line X(6587)X(8057) is the trilinear polar of X(20), which is also perspectrix of ABC and half-altitude triangle)
X(1301) = polar-circle-inverse of X(122)
X(1301) = Moses-radical-circle-inverse of X(32687)
X(1301) = X(63)-isoconjugate of X(6587)


X(1302) = COLLINGS TRANSFORM OF X(381)

Trilinears    1/((cos A) (sin 2B - sin 2C) + cos B sin C - sin B cos C) : :
Barycentrics    1/((b^2 - c^2) (a^4 + b^4 + c^4 - 2 a^2 b^2 - 2 a^2 c^2 + 4 b^2 c^2)) : :

X(1302) lies on the circumcircle and these lines: 2,74   22,1294   23,477   25,1300   30,841   459,1299   648,1304

X(1302) = cevapoint of X(381) and X(523)
X(1302) = isogonal conjugate of X(8675)
X(1302) = isotomic conjugate of X(30474)
X(1302) = trilinear pole of line X(6)X(30)
X(1302) = Ψ(X(6), X(30))
X(1302) = Λ(X(6), X(647))
X(1302) = inverse-in-orthoptic-circle-of-Steiner-inellipse of X(113)


X(1303) = COLLINGS TRANSFORM OF X(389)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1286))

X(1303) lies on the circumcircle and these lines: 2,130   3,1298   4,129   98,185

X(1303) = reflection of X(i) in X(j) for these (i,j): (4,129), (1298,3)
X(1303) = cevapoint of X(389) and X(512)
X(1303) = anticomplement of X(130)
X(1303) = X(1294)-of-Lucas-triangle (defined at X(95))
X(1303) = X(98)-of-circumorthic-triangle


X(1304) = COLLINGS TRANSFORM OF X(403)

Trilinears    (sin A)/[(tan B - tan C)(tan B + tan C - 2 tan A)] : :
Barycentrics    a^2/((b^2 - c^2) (a^2 - b^2 - c^2) (2 a^4 - b^4 - c^4 - a^2 b^2 - a^2 c^2 + 2 b^2 c^2)) : :

Let A', B', C' be the intersections of the Euler line and lines BC, CA, AB, resp. The circumcircles of AB'C', BC'A', CA'B' concur in X(1304). (Randy Hutson, February 10, 2016)

X(1304) lies on the circumcircle and these lines: {2, 2697}, {3, 2693}, {4, 477}, {21, 2694}, {23, 1297}, {25, 842}, {27, 2688}, {28, 2687}, {29, 2695}, {30, 1294}, {74, 186}, {98, 468}, {99, 3233}, {100, 5379}, {102, 2075}, {103, 2073}, {104, 2074}, {107, 523}, {110, 250}, {111, 232}, {112, 647}, {378, 841}, {403, 1300}, {476, 4240}, {648, 1302}, {691, 4230}, {877, 2855}, {925, 7471}, {933, 1624}, {935, 2394}, {1141, 5627}, {1290, 4246}, {1292, 7476}, {1295, 1325}, {1296, 7482}, {1305, 7479}, {1494, 2373}, {2071, 5897}, {2159, 2249}, {2328, 2738}, {2360, 2732}, {2370, 7478}, {2433, 2715}, {2689, 7452}, {2690, 4241}, {2691, 4238}, {2696, 4235}, {2734, 3109}, {2752, 4233}, {2758, 4248}, {2766, 7435}, {2770, 4232}, {3470, 3518}, {3565, 7468}

X(1304) = reflection of X(2693) in X(3)
X(1304) = isogonal conjugate of X(9033)
X(1304) = X(186)-cross conjugate of X(250)
X(1304) = cevapoint of X(403) and X(523)
X(1304) = crosssum of X(30) and X(402)
X(1304) = cevapoint of {403, 523}, {647, 1495}
X(1304) = X(i)-cross conjugate of X(j) for these (i,j): (186,250), (526,4), (686,2052), (3003,249),. (5502,110)
X(1304) = trilinear pole of {6, 74}
X(1304) = trilinear product X(i)*X(j) for these {i,j}: {74, 162}, {112, 2349}, {648, 2159}, {662, 8749}
X(1304) = barycentric product X(i)*X(j) for these {i,j}: {74, 648}, {99, 8749}, {112, 1494}, {162, 2349}, {250, 2394}, {811, 2159}
X(1304) = polar-circle-inverse of X(3258)
X(1304) = Moses-radical-circle-inverse of X(112)
X(1304) = trilinear pole of line X(6)X(74)
X(1304) = Ψ(X(i), X(j)) for these (i,j): (3,74), (6,74), (69,74)
X(1304) = Λ(X(i), X(j)) for these (i,j): (74,1294), (107,110), (113,133), (122,125), (1636,1637), (1494,3268)
X(1304) = reflection of X(107) in the Euler line
X(1304) = inverse-in-polar-circle of X(3258)
X(1304) = inverse-in-Moses-radical-circle of X(112)
X(1304) = isotomic conjugate of polar conjugate of X(32695)
X(1304) = polar conjugate of isogonal conjugate of X(32640)
X(1304) = perspector of circumorthic triangle and cross-triangle of ABC and circumcevian triangle of X(186)
X(1304) = X(i)-isoconjugate of X(j) for these {i,j}: {1,9033}, {2,2631}, {30,656}, {63,1637}, {92,1636}, {162,1650}, {520,1784}, {525,2173}, {810,3260}, {1568,2616}, {1577,3284}, {2407,3708}, {2632,4240}, {6357,8611}


X(1305) = COLLINGS TRANSFORM OF X(440)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1286))

X(1305) lies on the circumcircle and these lines: 3,917   20,103   22,675   106,347   110,664   112,653   272,759   915,1006

X(1305) = reflection of X(917) in X(3)
X(1305) = isogonal conjugate of X(8676)
X(1305) = anticomplement of X(5190)
X(1305) = trilinear pole of line X(6)X(226)
X(1305) = Ψ(X(6), X(226))
X(1305) = cevapoint of X(i) and X(j) for these (i,j): (3,514), (440,523), (513,1214)


X(1306) = COLLINGS TRANSFORM OF X(639)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1286))

X(1306) lies on the circumcircle and these lines: 98,637   111,493

X(1306) = trilinear pole of line X(6)X(493)
X(1306) = Ψ(X(6), X(493))


X(1307) = COLLINGS TRANSFORM OF X(640)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1286))

X(1307) lies on the circumcircle and these lines: 98,638   111,494

X(1307) = trilinear pole of line X(6)X(494)
X(1307) = Ψ(X(6), X(494))


X(1308) = COLLINGS TRANSFORM OF X(661)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1286))

Let A'B'C' be the excentral triangle. The Fermat axes of triangles A'BC, B'CA, C'AB bound a triangle perspective to ABC at X(1308). (Randy Hutson, June 27, 2018)

X(1308) lies on the circumcircle and these lines: 1,840   36,105   100,514   101,513   103,517   104,516   106,1279   110,1019   813,876   901,1022   919,1027

X(1308) = reflection of X(101) in line X(1)X(3)
X(1308) = isogonal conjugate of X(3887)
X(1308) = cevapoint of X(513) and X(1155)
X(1308) = trilinear pole of line X(6)X(244)
X(1308) = Ψ(X(i), X(j)) for these (i,j): (1, 528), (6, 244), (9, 11)
X(1308) = trilinear product of circumcircle intercepts of line X(1)X(528)


X(1309) = COLLINGS TRANSFORM OF X(860)

Trilinears    (csc 2A)/[4(sin^2 B - sin^2 C) cos B cos C + sin^2 B cos B - sin^2 C cos C] : :
Trilinears    bc/[(b - c)(a^2 - b^2 - c^2)(a^2b + a^2c - 2abc + b^2c + bc^2 - b^3 - c^3)] : :

Let A', B', C' be the intersections of line X(4)X(8) and lines BC, CA, AB, resp. The circumcircles of AB'C', BC'A', CA'B' concur in X(1309). (Randy Hutson, January 29, 2018)

X(1309) lies on the circumcircle and these lines: 4,953   102,515   105,243   109,522   693,934

X(1309) = isogonal conjugate of X(8677)
X(1309) = anticomplement of X(10017)
X(1309) = cevapoint of X(i) and X(j) for these (i,j): (515,522), (523,860)
X(1309) = Λ(X(1459), X(1946))
X(1309) = Λ(trilinear polar of X(905))
X(1309) = trilinear pole of line X(6)X(281)
X(1309) = circumcircle-antipode of X(2734)
X(1309) = Ψ(X(3), X(8))
X(1309) = Ψ(X(6), X(281))
X(1309) = inverse-in-polar-circle of X(3259)
X(1309) = pole wrt polar circle of Sherman line (line X(3259)X(3326)) (see http://forumgeom.fau.edu/FG2012volume12/FG201220.pdf)
X(1309) = intersection of antipedal lines of X(102) and X(109)
X(1309) = polar conjugate of X(10015)
X(1309) = X(63)-isoconjugate of X(3310)


X(1310) = COLLINGS TRANSFORM OF X(940)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) (see note above X(1286))

X(1310) lies on the circumcircle and these lines: 98,336   105,1036   107,811   108,664   112,662   741,1245

X(1310) = cevapoint of X(513) and X(940)
X(1310) = isogonal conjugate of X(8678)
X(1310) = isotomic conjugate of X(2517)
X(1310) = trilinear pole of line X(6)X(63)
X(1310) = Ψ(X(1), X(69))
X(1310) = Ψ(X(6), X(63))
X(1310) = Λ(X(661), X(663))
X(1310) = isogonal conjugate of perspector of hyperbola {{A,B,C,X(2),X(19)}}


X(1311) = COLLINGS TRANSFORM OF X(1146)

Barycentrics    1/(a^2 (b^2 + c^2) - a b c (b + c) - (b - c)^2 (b^2 + b c + c^2)) : :

X(1311) lies on the circumcircle and these lines: 2,109   8,101   29,112   85,934   92,108   100,312   110,333   411,1292

X(1311) = isogonal conjugate of X(8679)
X(1311) = isotomic conjugate of X(33864)
X(1311) = orthoptic-circle-of-Steiner-circumellipse-inverse of X(33650)
X(1311) = trilinear pole of line X(6)X(522)
X(1311) = Ψ(X(6), X(522))
X(1311) = inverse-in-orthoptic-circle-of-Steiner-inellipse of X(124)


X(1312) = 1st MOSES INTERSECTION

Trilinears       bcf(a,b,c) : caf(b,c,a): abf(c,a,b), where f(a,b,c) is the 1st barycentric given below

Trilinears       g(A,B,C) : g(B,C,A) : g(C,A,B),
                        where g(A,B,C) = (J - 1)cos A + 2(J + 1)cos B cos C, where J = |OH|/R; see X(1113)

Barycentrics  f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (J - 1)a2SA + 2(J + 1) SB SC, where
                        SA = (b2 + c2 - a2)/2, and SB and SC are defined cyclically.
X(1312) = 3X(2) - (3 + |OH|/R)*X(5) = 3(1 + |OH|/R)*X(2) - (3 + |OH|/R)*X(3)

As a point on the Euler line, X(1312) has Shinagawa coefficients (J - 1, J + 3).

X(1312) is a point of intersection of the Euler line and the nine-point circle. Its antipode on the nine-point circle
is X(1313). Of the two points, X(1312) is the one closer to X(4). The asymptotes of the Jerabek hyperbola meet at X(125) on the nine-point circle. One of the asymptotes meets the circle again at X(1312), and the other, at X(1313). Thus, the points X(125), X(1312), X(1313) form a right triangle of which the midpoint of the hypotenuse X(1312)-to-X(1313) is X(5). (Peter J. C. Moses, 3/14/2003)

Of the points other than X(125) in which the nine-point circle meets the asymptotes of the Jerabek hyperbola, X(1312) is the one farther from X(3). (Randy Hutson, December 2, 2017)

X(1312) lies on the nine-point circle, the MacBeath inconic and this line: 2,3

X(1312) = midpoint of X(4) and X(1113)
X(1312) = reflection of X(1313) in X(5)
X(1312) = complement of X(1114)
X(1312) = X(1113)-Ceva conjugate of X(523)
X(1312) = inverse-in-polar-circle of X(1114)
X(1312) = excentral-to-ABC functional image of X(1381)
X(1312) = X(1381)-of-orthic-triangle if ABC is acute
X(1312) = {X(2),X(1113)}-harmonic conjugate of X(468)
X(1312) = {X(2),X(858)}-harmonic conjugate of X(1313)
X(1312) = {X(4),X(403)}-harmonic conjugate of X(1313)
X(1312) = {X(427),X(468)}-harmonic conjugate of X(1313)

For a list of harmonic conjugates, click Tables at the top of this page.


X(1313) = 2nd MOSES INTERSECTION

Trilinears    (J + 1)cos A + 2(J - 1)cos B cos C, where J = |OH|/R; see X(1113)
Barycentrics    (J + 1)a2SA + 2(J - 1) SB SC; cf. X(1312)
X(1313) = 3X(2) + (-3 + |OH|/R)*X(5) = 3(1 - |OH|/R)*X(2) + (-3 + |OH|/R)*X(3)

As a point on the Euler line, X(1313) has Shinagawa coefficients (J + 1, J - 3).

Of the points other than X(125) in which the nine-point circle meets the asymptotes of the Jerabek hyperbola, X(1313) is the one nearer to X(3). (Randy Hutson, December 2, 2017)

X(1313) lies on the nine-point circle, the MacBeath inconic, and this line: 2,3

X(1313) = midpoint of X(4) and X(1114)
X(1313) = reflection of X(1312) in X(5)
X(1313) = complement of X(1113)
X(1313) = X(1114)-Ceva conjugate of X(523)
X(1313) = inverse-in-polar-circle of X(1113)
X(1313) = X(1382)-of-orthic-triangle if ABC is acute
X(1313) = excentral-to-ABC functional image of X(1382)
X(1313) = {X(2),X(1114)}-harmonic conjugate of X(468)


X(1314) = 3rd MOSES INTERSECTION

Trilinears        bcf(a,b,c) : caf(b,c,a): abf(c,a,b), where f(a,b,c) is the 1st barycentric given below

Barycentrics  f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = [d2 + (4r - R)R + sqrt(Q)]SBSC + (d2 + 2r2 - R2)a2SA,
                        where Q = 4d2R(4r - R) + [d2 - 3R2 + 4r(r + R)]2,
                        d = distance between X(3) and X(4),
                        R = circumradius, r = inradius,
                        SA = (b2 + c2 - a2)/2, and SB and SC are defined cyclically (Peter J. C. Moses, 3/2003)

As a point on the Euler line, X(1314) has Shinagawa coefficients (d2 + 2r2 - R2,4rR - 2r2 + Q1/2).

X(1314) is a point of intersection of the Euler line and the incircle. For some obtuse triangles, this point is not in the real plane (specifically, for those a,b,c such that Q < 0).

X(1314) lies on the incircle and this line: 2,3


X(1315) = 4th MOSES INTERSECTION

Trilinears        bcf(a,b,c) : caf(b,c,a): abf(c,a,b), where f(a,b,c) is the 1st barycentric given below

Barycentrics  f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = [d2 + (4r - R)R - sqrt(Q)]SBSC + (d2 + 2r2 - R2)a2SA,
                        where Q = 4d2R(4r - R) + [d2 - 3R2 + 4r(r + R)]2,
                        d = distance between X(3) and X(4),
                        R = circumradius, r = inradius,
                        SA = (b2 + c2 - a2)/2, and SB and SC are defined cyclically (Peter J. C. Moses, 3/2003)

As a point on the Euler line, X(1315) has Shinagawa coefficients (d2 + 2r2 - R2, 4rR - 2r2 - Q1/2).

X(1315) is a point of intersection of the Euler line and the incircle. For some obtuse triangles, this point is not in the real plane (specifically, for those a,b,c such that Q < 0).

X(1315) lies on the incircle and this line: 2,3


X(1316) = 5th MOSES INTERSECTION

Trilinears    bc sin^2(B - C) + a^2 sin(A - B) sin(A - C) : :

Barycentrics    a8 + a4b2c2 - a6(b2 + c2) + b2c2(b2 - c2)2 : :
Barycentrics    b2c2(b2 - c2)2 + a4(a2 - b2)(a2 - c2)
X(1316) = X[2452] + 2 X[2453]

As a point on the Euler line, X(1316) has Shinagawa coefficients (3(E + F)F - S2, -(E + F)2 + 3S2).

X(1316) is the point of intersection, other than X(3), of the Euler line and Brocard circle.
X(1316) is the point of intersection, other than X(6), of the Brocard circle and orthosymmedial circle.
X(1316) is the point of intersection of the Euler line and the trilinear polar of X(98). (P.J.C. Moses, 6/22/04)
X(1316) is the orthogonal projection of X(6) on the Euler line.

Let A2B2C2, A3B3C3, A4B4C4 be the 2nd, 3rd and 4th Brocard triangles, respectively. Let A' = B3B4∩C3C4, and define B' and C' cyclically. The lines A2A', B2B', C2C' concur in X(1316). (Randy Hutson, January 29, 2015)

If you have The Geometer's Sketchpad, you can view X(1316).

X(1316) lies on the Brocard circle, the orthosymmedial circle, the cubics K023, K166, K508, K509, K876, K1091, and these lines: {2, 3}, {6, 523}, {51, 31850}, {76, 17941}, {98, 5191}, {99, 9155}, {110, 2782}, {115, 8429}, {125, 2794}, {182, 6795}, {183, 34245}, {184, 18338}, {247, 5972}, {250, 264}, {262, 842}, {287, 10753}, {323, 32515}, {338, 1576}, {373, 3111}, {476, 2698}, {538, 3292}, {542, 16280}, {543, 5465}, {691, 3972}, {1083, 24271}, {1561, 2777}, {1632, 20975}, {1648, 7737}, {1649, 14685}, {1968, 34859}, {1975, 2396}, {2394, 9168}, {2549, 16319}, {2790, 5622}, {3233, 35259}, {3447, 3613}, {3734, 5108}, {3815, 16320}, {3849, 32225}, {5091, 24288}, {5099, 5475}, {5149, 13518}, {5468, 6090}, {5476, 16279}, {5489, 11123}, {6232, 12508}, {6322, 11594}, {6531, 9475}, {6792, 18307}, {6794, 15048}, {7668, 7669}, {7698, 9159}, {7735, 16315}, {7736, 16316}, {7816, 11052}, {8723, 11183}, {8754, 23583}, {9169, 15539}, {11130, 14185}, {11131, 14187}, {11422, 14480}, {11586, 16632}, {12079, 26869}, {13434, 15112}, {14265, 32545}, {14682, 32314}, {15033, 15111}, {15743, 16633}, {16321, 32113}, {19128, 32428}, {19571, 25332}, {22505, 30789}, {22512, 30465}, {22513, 30468}, {23635, 30716}, {30715, 34845}, {32222, 32424}

X(1316) = midpoint of X(6) and X(2453)
X(1316) = reflection of X(i) in X(j) for these {i,j}: {2452, 6}, {5112, 468}, {6795, 182}, {16279, 5476}, {32113, 16321}, {32224, 32217}
X(1316) = isogonal conjugate of X(9513)
X(1316) = complement of X(36163)
X(1316) = anticomplement of X(11007)
X(1316) = crosspoint of X(16070) and X(16071)
X(1316) = crosssum of X(13414) and X(13415)
X(1316) = crossdifference of PU(145)
X(1316) = antigonal conjugate of X(38947)
X(1316) = X(2)-Ceva conjugate of X(39078)
X(1316) = perspector of conic {{A,B,C,X(98),X(648)}}
X(1316) = circumcircle-inverse of X(237)
X(1316) = nine-point-circle-inverse of X(2450)
X(1316) = 2nd-Lemoine-circle-inverse of X(2451)
X(1316) = orthocentroidal-circle-inverse of X(868)
X(1316) = polar-circle-inverse of X(297)
X(1316) = orthoptic-circle-of-Steiner-inellipse-inverse of X(1513)
X(1316) = circumcircle-of-inner-Napoleon-triangle-inverse of X(1080)
X(1316) = circumcircle-of-outer-Napoleon-triangle-inverse-of X(383)
X(1316) = psi-transform of X(98)
X(1316) = X(1)-isoconjugate of X(9513)
X(1316) = crosspoint of X(16070) and X(16071)
X(1316) = crosssum of X(13414) and X(13415)
X(1316) = crossdifference of every pair of points on line X(511)X(647)
X(1316) = intersection, other than X(6), of Brocard circles of ABC and orthocentroidal triangle
X(1316) = X(6)-Hirst inverse of X(523)
X(1316) = X(110) of 1st Brocard triangle
X(1316) = orthocentroidal-to-1st-Brocard similarity image of X(2)
X(1316) = crosssum of S1 and S2 on the Brocard (third) cubic, K019, these being the Brocard-circle intercepts of the line X(2)X(98)
X(1316) = 1st-Brocard-isogonal conjugate of X(690)
X(1316) = 1st-Brocard-isotomic conjugate of X(3569)
X(1316) = barycentric product X(2966)*X(31953)
X(1316) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 9513}, {31953, 2799}
X(1316) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 868}, {2, 20, 35922}, {2, 23, 9832}, {2, 4226, 3}, {2, 10684, 14960}, {2, 26255, 14694}, {3, 25, 21525}, {4, 2409, 25}, {98, 35278, 5191}, {338, 1576, 9512}, {401, 419, 237}, {441, 460, 2450}, {868, 15000, 2}, {1113, 1114, 237}, {1312, 1313, 2450}, {5004, 5005, 15915}, {16179, 16180, 381}, {16181, 16182, 3}, {32460, 32461, 2}, {35606, 35906, 1640}


X(1317) = REFLECTION OF X(11) IN X(1)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(c + a - b)(a + b - c)(b + c - 2a)2
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = (c + a - b)(a + b - c)(b + c - 2a)2

X(1317) is the antipode of X(11) on the incircle.

X(1317) lies on these lines: 1,5   7,528   55,104   56,100   149,388   153,497   214,519

X(1317) = midpoint of X(100) and X(145)
X(1317) = reflection of X(i) in X(j) for these (i,j): (11,1), (80,1387), (1145,214)
X(1317) = isogonal conjugate of X(1318)
X(1317) = anticomplement of X(3036)
X(1317) = X(74)-of-intouch-triangle
X(1317) = X(104)-of-Mandart-incircle-triangle
X(1317) = homothetic center of intangents triangle and reflection of extangents triangle in X(104)
X(1317) = inverse-in-Feuerbach-hyperbola of X(1387)
X(1317) = {X(1),X(80)}-harmonic conjugate of X(1387)


X(1318) = ISOGONAL CONJUGATE OF X(1317)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b + c - a)/(b + c - 2a)2
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1318) lies on these lines: 1,1168   36,106   88,517   679,1319


X(1319) = BEVAN-SCHRÖDER POINT

Trilinears    (b + c - 2a)/ (b + c - a) : :
Trilinears    2 - 2 cos A - cos B - cos C
Barycentrics    a*(2*a - b - c)*(a + b - c)*(a - b + c) : :
X(1319) = (R-r)*X(1) - r*X(3)
X(1319) = 3 X[1] + X[484], 2 X[1] + X[1155], 5 X[1] + X[3245], 3 X[1] + 2 X[5122], X[1] + 2 X[5126], 5 X[1] + 3 X[5131], 4 X[1] + X[5183], 3 X[3] - X[35460], 3 X[36] - X[484], 5 X[36] - X[3245], 2 X[36] + X[5048], 3 X[36] - 2 X[5122], 5 X[36] - 3 X[5131], 4 X[36] - X[5183], X[36] + 2 X[25405], X[57] - 3 X[5193], X[65] - 4 X[3660], 3 X[354] - 2 X[5570], , and many others

Let X'Y'Z' be the pedal triangle of the Bevan point, W = X(40); then X(1319) is the point, other than W, in which the circles AWX', BWY', CWZ' concur. (Floor van Lamoen, Hyacinthos #6321, 6352).

X(1319) = intersection of X(1)X(3) and the Helman line (the radical axis of the incircle and circumcircle, i.e., X(513)X(663); see the preamble just before X(51640)).

(i) The Helman line is the radical axis of the Zaslavsky pencil, containing the circumcircle and incenter (A. Zaslavsky, August, 2022)

(ii) the isogonal image of the Helman line is the I-centered circumellipse having semiaxes of lengths 2R(R-r+d) and 2R(R-r-d), where d = |OI. Accordingly, over Chapple's porism (with fixed R an r), the I-circumellipse rotates rigidly about its center. (D. Reznik et al., August, 2022). See GeoGebra sketch

(iii) Over Chapple's porism, the locus of each point on the Helman line is a circle, called a Skutin circle, of radius R. (D. Reznik, August, 2022). This is a special case of a result in A. Skutin, "On Rotation of Isogonal Point", J. Classical Geom., vol 2, 2013.

(iv) The set of Skutin circles corresponding to all the points on a given circle in the Zaslavsky pencil all have the same radius. The locus of the center is a circle. (D. Reznik, August, 2022). See GeoGebra sketch

X(1319) lies on the curves K338, K826, K1160, and Q071, and on these lines: {1, 3}, {2, 3476}, {4, 7704}, {5, 45287}, {7, 2320}, {8, 6049}, {10, 5433}, {11, 515}, {12, 1125}, {19, 37519}, {20, 12701}, {21, 1408}, {30, 1387}, {33, 37391}, {34, 1878}, {37, 604}, {41, 40133}, {42, 1450}, {44, 1404}, {48, 1108}, {59, 518}, {63, 5289}, {72, 8666}, {73, 1104}, {77, 1122}, {78, 12513}, {79, 31776}, {80, 3582}, {85, 24805}, {100, 3880}, {101, 2348}, {104, 2720}, {105, 14733}, {106, 1168}, {108, 953}, {109, 2718}, {140, 10039}, {145, 1788}, {198, 3554}, {210, 956}, {214, 519}, {221, 1616}, {222, 16483}, {223, 16485}, {225, 23675}, {226, 535}, {227, 3924}, {238, 9282}, {269, 35227}, {278, 5146}, {279, 24796}, {329, 34610}, {348, 24798}, {355, 499}, {376, 30305}, {381, 23708}, {388, 2478}, {392, 993}, {404, 4861}, {405, 9850}, {442, 10957}, {474, 3698}, {495, 38028}, {496, 10572}, {497, 5731}, {513, 663}, {516, 15326}, {528, 30379}, {529, 908}, {536, 43135}, {553, 51103}, {572, 38855}, {595, 1399}, {603, 3915}, {611, 38029}, {614, 37366}, {651, 3246}, {664, 1447}, {672, 6603}, {679, 1318}, {751, 1386}, {758, 5083}, {759, 34921}, {840, 934}, {859, 18191}, {901, 1417}, {909, 2161}, {910, 1055}, {912, 6265}, {936, 3983}, {938, 6962}, {943, 15179}, {944, 1837}, {946, 4311}, {950, 37722}, {952, 1737}, {958, 3305}, {959, 25417}, {960, 2975}, {961, 1255}, {1000, 3524}, {1001, 8545}, {1006, 44085}, {1014, 7269}, {1015, 43039}, {1042, 20615}, {1056, 6947}, {1058, 4305}, {1071, 7335}, {1100, 1400}, {1191, 34046}, {1193, 2594}, {1210, 5882}, {1212, 9310}, {1254, 46190}, {1308, 1477}, {1320, 13587}, {1323, 1358}, {1329, 26482}, {1354, 31522}, {1357, 11717}, {1359, 3326}, {1360, 3328}, {1361, 3025}, {1362, 11712}, {1364, 11713}, {1365, 31524}, {1376, 3872}, {1389, 37518}, {1401, 49480}, {1405, 16666}, {1406, 34040}, {1407, 16486}, {1409, 16685}, {1412, 4653}, {1415, 1914}, {1418, 7225}, {1419, 16487}, {1434, 4955}, {1442, 24471}, {1445, 42871}, {1452, 11396}, {1471, 49478}, {1478, 5886}, {1479, 11373}, {1519, 2829}, {1538, 12764}, {1575, 21859}, {1612, 26888}, {1621, 10179}, {1647, 14584}, {1656, 10827}, {1698, 37709}, {1699, 12943}, {1723, 20818}, {1727, 48667}, {1743, 38296}, {1770, 22791}, {1836, 4293}, {1841, 7120}, {1846, 1877}, {1858, 12675}, {1864, 18446}, {1876, 3446}, {1887, 6198}, {1898, 6261}, {1935, 9363}, {1960, 6550}, {2003, 5315}, {2067, 7968}, {2082, 3207}, {2087, 2251}, {2136, 15347}, {2171, 3723}, {2178, 2262}, {2208, 2218}, {2260, 17438}, {2263, 15306}, {2285, 16777}, {2329, 36476}, {2360, 40980}, {2362, 44635}, {2390, 3937}, {2551, 24954}, {2650, 42443}, {2703, 35108}, {2716, 8059}, {2745, 30239}, {2771, 47379}, {2800, 17010}, {2802, 35271}, {3011, 6075}, {3021, 39760}, {3022, 11714}, {3023, 11710}, {3024, 11709}, {3027, 11711}, {3028, 11720}, {3035, 6735}, {3058, 4304}, {3085, 6967}, {3146, 18220}, {3160, 7195}, {3218, 44663}, {3230, 4559}, {3241, 5435}, {3243, 41712}, {3244, 4848}, {3286, 43947}, {3290, 9259}, {3306, 40726}, {3320, 11722}, {3324, 11718}, {3325, 11721}, {3419, 45700}, {3436, 25681}, {3452, 34606}, {3475, 6992}, {3485, 3600}, {3486, 6838}, {3487, 6936}, {3555, 22836}, {3583, 7743}, {3584, 5444}, {3585, 9955}, {3586, 11238}, {3624, 9578}, {3634, 7294}, {3636, 3649}, {3638, 49538}, {3639, 49540}, {3653, 10056}, {3655, 5722}, {3671, 4114}, {3674, 7198}, {3679, 31231}, {3720, 40109}, {3752, 49487}, {3769, 20037}, {3812, 5253}, {3827, 38863}, {3877, 4640}, {3878, 3916}, {3881, 15556}, {3884, 5267}, {3890, 4189}, {3893, 5687}, {3895, 4421}, {3912, 43053}, {3913, 4855}, {3947, 15808}, {3962, 5730}, {4059, 7176}, {4124, 47043}, {4188, 14923}, {4225, 18178}, {4292, 13464}, {4295, 10595}, {4296, 35998}, {4297, 6284}, {4299, 7702}, {4316, 28146}, {4318, 40577}, {4321, 38316}, {4333, 48661}, {4345, 9778}, {4351, 23152}, {4390, 44798}, {4413, 4731}, {4432, 24816}, {4487, 17780}, {4534, 8074}, {4551, 49997}, {4654, 51105}, {4702, 4742}, {4719, 17016}, {4853, 5438}, {4863, 34625}, {4868, 26740}, {4906, 17080}, {4915, 46917}, {4995, 50828}, {4999, 24987}, {5044, 5258}, {5088, 24203}, {5089, 32674}, {5219, 11237}, {5220, 30318}, {5248, 12709}, {5261, 46934}, {5270, 5443}, {5288, 34790}, {5432, 10165}, {5439, 30147}, {5441, 31795}, {5450, 12672}, {5453, 13391}, {5541, 41702}, {5550, 10588}, {5552, 32049}, {5572, 30284}, {5577, 33902}, {5691, 10896}, {5718, 6176}, {5724, 24239}, {5745, 31157}, {5784, 42842}, {5790, 37708}, {5794, 10527}, {5844, 12735}, {5853, 41555}, {5854, 51433}, {5887, 32153}, {5901, 12047}, {5905, 34647}, {6020, 12265}, {6224, 37797}, {6285, 12262}, {6502, 7969}, {6604, 17081}, {6647, 20335}, {6691, 24982}, {6700, 21031}, {6880, 7967}, {6882, 38032}, {6906, 45776}, {7051, 7052}, {7117, 8608}, {7173, 19925}, {7175, 16484}, {7178, 48328}, {7181, 9436}, {7191, 35996}, {7223, 40719}, {7235, 39766}, {7247, 17084}, {7284, 28444}, {7292, 14513}, {7340, 47376}, {7355, 40658}, {7491, 39599}, {7672, 15570}, {7741, 18480}, {7951, 11230}, {7972, 22935}, {8077, 10506}, {8227, 9613}, {8283, 21147}, {8286, 36195}, {8607, 47434}, {8649, 49758}, {8983, 19028}, {9318, 44664}, {9552, 19858}, {9579, 11522}, {9583, 19038}, {9612, 9624}, {9614, 12953}, {9615, 31432}, {9654, 37692}, {9655, 18493}, {9661, 49601}, {9708, 35272}, {9848, 10884}, {9956, 37710}, {10016, 34182}, {10081, 11670}, {10090, 12737}, {10283, 39542}, {10320, 26492}, {10391, 18444}, {10401, 17321}, {10428, 34051}, {10459, 28385}, {10483, 22793}, {10501, 18456}, {10502, 18454}, {10503, 18448}, {10573, 37727}, {10609, 41552}, {10624, 15338}, {10826, 18525}, {10866, 12520}, {10914, 22837}, {10934, 18621}, {10949, 17647}, {10956, 17757}, {11236, 30852}, {11281, 33961}, {11346, 28997}, {11364, 12835}, {11365, 18954}, {11368, 18957}, {11370, 18959}, {11371, 18960}, {11374, 18962}, {11377, 18963}, {11378, 18964}, {11496, 17634}, {11570, 14988}, {11699, 19470}, {11705, 18974}, {11706, 18975}, {11726, 34929}, {11735, 46683}, {11739, 18973}, {11740, 18972}, {11831, 18958}, {12019, 28224}, {12081, 20718}, {12114, 12688}, {12119, 13274}, {12258, 18969}, {12259, 18970}, {12260, 18979}, {12261, 18968}, {12263, 18982}, {12264, 18983}, {12266, 18984}, {12267, 18985}, {12268, 18989}, {12269, 18988}, {12607, 27385}, {12647, 26446}, {12749, 38752}, {12758, 38602}, {12848, 51099}, {13182, 38220}, {13374, 45977}, {13407, 37737}, {13411, 15888}, {13607, 37734}, {13667, 18986}, {13787, 18987}, {13883, 18965}, {13902, 31408}, {13936, 18966}, {13971, 19027}, {14100, 42884}, {14204, 40437}, {14257, 38295}, {14597, 21770}, {14872, 45770}, {15015, 48696}, {15175, 15180}, {15228, 28198}, {15298, 38031}, {15500, 37305}, {15558, 17613}, {15726, 18450}, {15746, 47006}, {15999, 17114}, {16174, 24042}, {16232, 44636}, {16417, 40587}, {16609, 50023}, {16826, 41245}, {16858, 29007}, {17044, 51400}, {17053, 40590}, {17221, 17863}, {17284, 31230}, {17448, 41526}, {17566, 32537}, {17604, 30283}, {17611, 30285}, {17637, 33858}, {17768, 51423}, {18242, 26476}, {18395, 37707}, {18458, 30375}, {18460, 30376}, {18469, 30377}, {18471, 30378}, {18514, 33697}, {18526, 37711}, {18593, 24201}, {18654, 24993}, {18971, 22475}, {18978, 22476}, {18991, 18995}, {18992, 18996}, {19365, 44547}, {19373, 33655}, {19860, 25524}, {21008, 41015}, {21214, 37694}, {21342, 49454}, {21871, 36743}, {22344, 23844}, {22345, 23846}, {23154, 41682}, {23205, 23845}, {23711, 51359}, {24029, 34230}, {24036, 41391}, {24216, 43056}, {24331, 36487}, {24465, 28174}, {24541, 25466}, {24583, 26581}, {24612, 30812}, {24871, 25026}, {25904, 25914}, {26015, 41557}, {26115, 26126}, {26321, 31937}, {26367, 26433}, {26368, 26434}, {26369, 26435}, {26370, 26436}, {26690, 30618}, {26959, 28771}, {28027, 28036}, {28077, 28082}, {28461, 41695}, {28969, 33839}, {29604, 31221}, {29660, 36493}, {29817, 35989}, {30275, 38053}, {30827, 31141}, {31053, 34605}, {31225, 36534}, {31394, 49537}, {32238, 32243}, {32331, 32336}, {32426, 35023}, {33337, 33598}, {33595, 51071}, {33646, 51361}, {33667, 39778}, {34195, 41697}, {34522, 40131}, {34586, 38984}, {34772, 34791}, {35762, 35768}, {35763, 35769}, {36123, 45766}, {36444, 36451}, {36505, 36513}, {36926, 37758}, {36944, 38462}, {37006, 37718}, {37139, 39308}, {37168, 37790}, {37728, 50824}, {37815, 45272}, {39870, 39873}, {39897, 49511}, {41389, 51506}, {43052, 48344}, {43054, 49768}, {43820, 43822}, {45398, 45404}, {45399, 45405}, {45500, 45506}, {45501, 45507}, {48894, 49745}, {50148, 51345}, {50594, 50604}, {51625, 51628}, {51627, 51629}

X(1319) = midpoint of X(i) and X(j) for these {i,j}: {1, 36}, {100, 38460}, {1155, 5048}, {1317, 40663}, {2718, 47622}, {3583, 36975}, {4318, 40577}, {5057, 20067}, {5126, 25405}, {5541, 41702}, {7972, 41684}, {10222, 10225}, {14151, 37787}, {21578, 30384}, {31524, 39751}
X(1319) = reflection of X(i) in X(j) for these {i,j}: {1, 25405}, {3, 18857}, {4, 22835}, {10, 6681}, {11, 44675}, {36, 5126}, {65, 18838}, {484, 5122}, {1155, 36}, {1737, 15325}, {3326, 51616}, {3583, 7743}, {3689, 5440}, {3814, 1125}, {5048, 1}, {5080, 5087}, {5176, 5123}, {5183, 1155}, {5440, 214}, {6735, 3035}, {13528, 3}, {18838, 3660}, {23960, 33179}, {24042, 16174}, {30384, 1387}, {36920, 40663}, {40663, 3911}, {41542, 5427}, {41698, 1538}, {44784, 1145}
X(1319) = isogonal conjugate of X(1320)
X(1319) = complement of X(5176)
X(1319) = anticomplement of X(5123)
X(1319) = circumcircle-inverse of X(56)
X(1319) = incircle-inverse of X(65)
X(1319) = Bevan-circle-inverse of X(5128)
X(1319) = Conway-circle-inverse of X(12435)
X(1319) = isogonal conjugate of the anticomplement of X(1145)
X(1319) = isogonal conjugate of the polar conjugate of X(37790)
X(1319) = X(i)-Ceva conjugate of X(j) for these (i,j): {8, 13539}, {1411, 65}, {1443, 1465}, {1465, 2182}, {2222, 513}, {3911, 44}, {8686, 56}, {24029, 654}, {34051, 6}, {36944, 51422}, {37136, 650}, {37168, 1877}
X(1319) = X(i)-cross conjugate of X(j) for these (i,j): {902, 44}, {2087, 30725}
X(1319) = cevapoint of X(i) and X(j) for these (i,j): {902, 1404}, {1647, 30572}, {1960, 2087}
X(1319) = crosspoint of X(i) and X(j) for these (i,j): {1, 104}, {7, 2006}, {59, 2720}, {7052, 33655}
X(1319) = crosssum of X(i) and X(j) for these (i,j): {1, 517}, {9, 3689}, {11, 2804}, {55, 2323}, {521, 35014}, {2170, 4895}, {3880, 45247}, {4867, 40587}, {5239, 5240}
X(1319) = trilinear pole of line {1635, 20972}
X(1319) = crossdifference of every pair of points on line {9, 650}
X(1319) = X(186)-of-intouch-triangle
X(1319) = X(2077)-of-Mandart-incircle- triangle
X(1319) = homothetic center of intangents triangle and reflection of extangents triangle in X(2077)
X(1319) = orthocenter of pedal triangle of X(36)
X(1319) = perspector of ABC and reflection of extangents triangle in antiorthic axis
X(1319) = X(i)-isoconjugate of X(j) for these (i,j): {1, 1320}, {2, 2316}, {6, 4997}, {8, 106}, {9, 88}, {11, 9268}, {21, 4674}, {36, 36590}, {41, 20568}, {55, 903}, {60, 4013}, {78, 36125}, {100, 23838}, {219, 6336}, {281, 1797}, {284, 4080}, {312, 9456}, {318, 36058}, {341, 1417}, {345, 8752}, {514, 5548}, {519, 1318}, {522, 901}, {644, 1022}, {649, 4582}, {650, 3257}, {663, 4555}, {679, 3689}, {999, 36596}, {1120, 45247}, {1168, 4511}, {1639, 4638}, {2170, 5376}, {2226, 2325}, {2320, 4792}, {2364, 4945}, {3699, 23345}, {3700, 4591}, {3709, 4615}, {3939, 6548}, {4041, 4622}, {4049, 5546}, {4076, 43922}, {4391, 32665}, {4543, 39414}, {4618, 4895}, {4845, 36887}, {5549, 23598}, {6065, 6549}, {6551, 21132}, {6735, 10428}, {7017, 32659}, {7077, 27922}, {8851, 36814}, {14260, 51565}, {14942, 34230}, {32719, 35519}, {36910, 40215}
X(1319) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 1320}, {8, 214}, {9, 4997}, {44, 32851}, {88, 478}, {223, 903}, {312, 4370}, {318, 20619}, {519, 4723}, {522, 38979}, {1319, 5176}, {1647, 4768}, {2316, 32664}, {3160, 20568}, {3262, 3911}, {4080, 40590}, {4391, 35092}, {4397, 51402}, {4582, 5375}, {4674, 40611}, {4858, 6544}, {6548, 40617}, {8054, 23838}, {15898, 36590}
X(1319) = barycentric product X(i)*X(j) for these {i,j}: {1, 3911}, {3, 37790}, {7, 44}, {12, 30576}, {34, 3977}, {36, 14628}, {56, 4358}, {57, 519}, {63, 1877}, {65, 16704}, {75, 1404}, {77, 8756}, {81, 40663}, {85, 902}, {88, 1317}, {89, 36920}, {100, 30725}, {109, 3762}, {214, 2006}, {222, 38462}, {269, 2325}, {273, 22356}, {278, 5440}, {279, 3689}, {331, 23202}, {514, 23703}, {517, 40218}, {603, 46109}, {604, 3264}, {651, 900}, {658, 4895}, {662, 30572}, {664, 1635}, {934, 1639}, {1014, 3943}, {1023, 3676}, {1145, 34051}, {1170, 51463}, {1214, 37168}, {1254, 30606}, {1255, 5298}, {1400, 30939}, {1407, 4723}, {1411, 51583}, {1412, 3992}, {1414, 4120}, {1417, 36791}, {1432, 4434}, {1434, 21805}, {1441, 3285}, {1461, 4768}, {1465, 36944}, {1476, 51415}, {1647, 4564}, {1960, 4554}, {2087, 4998}, {2161, 41801}, {2251, 6063}, {2990, 12832}, {3218, 14584}, {3257, 39771}, {3669, 17780}, {4169, 7203}, {4487, 40151}, {4528, 4617}, {4530, 7045}, {4573, 4730}, {4625, 14407}, {4626, 14427}, {4702, 42290}, {4922, 37137}, {5376, 14027}, {5723, 14191}, {6174, 34056}, {6550, 31615}, {6630, 14122}, {7052, 36668}, {8686, 16594}, {9459, 20567}, {13462, 36915}, {14418, 36118}, {17078, 40172}, {17455, 18815}, {18026, 22086}, {20332, 24816}, {21907, 41541}, {23344, 24002}, {23757, 37136}, {24004, 43924}, {30573, 37139}, {30731, 43932}, {31011, 32636}, {33655, 36669}, {34578, 41553}, {36100, 51422}, {39155, 45273}, {43736, 51406}
X(1319) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 4997}, {6, 1320}, {7, 20568}, {31, 2316}, {34, 6336}, {44, 8}, {56, 88}, {57, 903}, {59, 5376}, {65, 4080}, {100, 4582}, {109, 3257}, {214, 32851}, {519, 312}, {603, 1797}, {604, 106}, {608, 36125}, {649, 23838}, {651, 4555}, {678, 2325}, {692, 5548}, {900, 4391}, {902, 9}, {1017, 3689}, {1023, 3699}, {1317, 4358}, {1395, 8752}, {1397, 9456}, {1400, 4674}, {1404, 1}, {1405, 4792}, {1414, 4615}, {1415, 901}, {1417, 2226}, {1420, 31227}, {1429, 27922}, {1635, 522}, {1639, 4397}, {1647, 4858}, {1877, 92}, {1960, 650}, {2087, 11}, {2099, 4945}, {2149, 9268}, {2161, 36590}, {2171, 4013}, {2251, 55}, {2325, 341}, {2429, 31343}, {3251, 1639}, {3264, 28659}, {3285, 21}, {3669, 6548}, {3689, 346}, {3762, 35519}, {3911, 75}, {3943, 3701}, {3977, 3718}, {3992, 30713}, {4017, 4049}, {4120, 4086}, {4358, 3596}, {4370, 4723}, {4432, 3975}, {4434, 17787}, {4487, 44723}, {4530, 24026}, {4565, 4622}, {4573, 4634}, {4700, 4673}, {4702, 28809}, {4730, 3700}, {4773, 4811}, {4819, 42712}, {4895, 3239}, {4969, 3702}, {4984, 4985}, {5298, 4359}, {5440, 345}, {6544, 4768}, {6550, 40166}, {6610, 36887}, {8756, 318}, {9456, 1318}, {9459, 41}, {12832, 48380}, {14122, 4440}, {14407, 4041}, {14408, 4147}, {14427, 4163}, {14437, 14430}, {14439, 3717}, {14584, 18359}, {14628, 20566}, {16704, 314}, {17455, 4511}, {17780, 646}, {20972, 3880}, {21805, 2321}, {22086, 521}, {22356, 78}, {23202, 219}, {23344, 644}, {23703, 190}, {30572, 1577}, {30576, 261}, {30725, 693}, {30939, 28660}, {31615, 6635}, {36920, 4671}, {36944, 36795}, {37168, 31623}, {37790, 264}, {38462, 7017}, {39251, 3883}, {39771, 3762}, {40172, 36910}, {40218, 18816}, {40663, 321}, {41541, 32849}, {41553, 17264}, {41554, 37758}, {41556, 37788}, {41801, 20924}, {42084, 4530}, {43924, 1022}, {47420, 35014}, {47425, 45269}, {51415, 20895}, {51463, 1229}
X(1319) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3, 3057}, {1, 35, 9957}, {1, 40, 2098}, {1, 46, 1482}, {1, 55, 5919}, {1, 56, 65}, {1, 57, 2099}, {1, 65, 11011}, {1, 165, 7962}, {1, 260, 10508}, {1, 354, 44840}, {1, 988, 37614}, {1, 999, 354}, {1, 1381, 2447}, {1, 1382, 2446}, {1, 1385, 2646}, {1, 1420, 56}, {1, 1482, 33176}, {1, 2093, 16200}, {1, 2646, 37080}, {1, 3304, 17609}, {1, 3336, 11009}, {1, 3361, 3340}, {1, 3428, 17642}, {1, 3576, 55}, {1, 3601, 3303}, {1, 3612, 3295}, {1, 3746, 31792}, {1, 5126, 1155}, {1, 5193, 18838}, {1, 5563, 942}, {1, 5902, 50194}, {1, 5903, 10222}, {1, 7280, 5697}, {1, 7742, 14110}, {1, 7987, 1697}, {1, 10389, 8162}, {1, 10882, 10480}, {1, 11009, 33179}, {1, 13370, 13601}, {1, 13462, 57}, {1, 15803, 7982}, {1, 21842, 1385}, {1, 24928, 20323}, {1, 24929, 3748}, {1, 25415, 10247}, {1, 30282, 31393}, {1, 30389, 3601}, {1, 30392, 13384}, {1, 32612, 25414}, {1, 37524, 11278}, {1, 37525, 24929}, {1, 37552, 37542}, {1, 37587, 5902}, {1, 37602, 5049}, {1, 37605, 37568}, {1, 37616, 3746}, {1, 37617, 3666}, {1, 37618, 3}, {1, 37620, 21334}, {1, 41426, 37566}, {2, 3476, 5252}, {2, 5176, 5123}, {3, 56, 34880}, {3, 999, 22767}, {3, 3057, 37568}, {3, 10680, 40255}, {3, 34489, 37566}, {3, 37618, 37605}, {3, 41426, 56}, {8, 6921, 37828}, {8, 7288, 24914}, {8, 37828, 37829}, {36, 484, 5122}, {36, 2078, 5172}, {36, 3245, 5131}, {36, 5048, 5183}, {36, 5193, 56}, {36, 25405, 5048}, {36, 32760, 3}, {48, 1108, 2264}, {55, 56, 1470}, {55, 3576, 37600}, {56, 65, 32636}, {56, 1388, 1}, {56, 2099, 57}, {56, 3303, 1466}, {56, 3304, 26437}, {56, 5172, 36}, {56, 5221, 3361}, {56, 11510, 3}, {57, 1420, 13462}, {57, 2099, 65}, {57, 13462, 56}, {63, 5289, 31165}, {65, 13751, 942}, {101, 43065, 2348}, {104, 12740, 17638}, {108, 1870, 1875}, {145, 1788, 41687}, {145, 5265, 1788}, {214, 1317, 41541}, {214, 41554, 1317}, {226, 551, 15950}, {226, 4315, 5434}, {226, 15950, 4870}, {348, 30617, 24798}, {355, 499, 17606}, {388, 3616, 11375}, {392, 993, 3683}, {404, 4861, 5836}, {484, 5119, 35460}, {484, 5122, 1155}, {484, 30282, 2077}, {496, 34773, 10572}, {551, 4315, 226}, {551, 5434, 4870}, {559, 1082, 3666}, {664, 1447, 43037}, {672, 17439, 6603}, {934, 38459, 34855}, {942, 15178, 1}, {944, 3086, 1837}, {946, 4311, 7354}, {956, 997, 210}, {958, 19861, 25917}, {999, 1617, 56}, {999, 10246, 1}, {999, 41345, 22765}, {1055, 2170, 910}, {1125, 10106, 12}, {1149, 1458, 1457}, {1155, 2646, 50371}, {1201, 4322, 73}, {1201, 28386, 28389}, {1210, 5882, 10950}, {1279, 1458, 1456}, {1284, 1458, 1463}, {1317, 3911, 36920}, {1317, 5298, 40663}, {1381, 1382, 56}, {1385, 10222, 26287}, {1385, 15178, 24299}, {1385, 20323, 37080}, {1385, 24928, 1}, {1385, 24929, 37525}, {1388, 1420, 65}, {1403, 24806, 65}, {1420, 2078, 5126}, {1420, 34489, 41426}, {1455, 1457, 1456}, {1457, 1458, 1464}, {1467, 3303, 65}, {1467, 3601, 1466}, {1478, 5886, 17605}, {1697, 7987, 5217}, {2078, 3660, 1155}, {2078, 5193, 36}, {2098, 5204, 40}, {2446, 2447, 65}, {2448, 2449, 5128}, {2646, 3748, 24929}, {2646, 20323, 1}, {3057, 37566, 65}, {3057, 37605, 3}, {3304, 34471, 1}, {3336, 11009, 50193}, {3340, 3361, 5221}, {3340, 5221, 65}, {3485, 3600, 10404}, {3513, 3514, 1155}, {3576, 31393, 30282}, {3583, 16173, 7743}, {3585, 37735, 9955}, {3586, 37704, 11238}, {3600, 3622, 3485}, {3616, 4308, 388}, {3660, 5126, 56}, {3748, 24929, 37080}, {3872, 35262, 1376}, {4293, 5603, 1836}, {4297, 12053, 6284}, {4413, 9623, 4731}, {4855, 36846, 3913}, {4881, 38460, 100}, {5172, 18838, 1155}, {5289, 11194, 63}, {5298, 40663, 3911}, {5425, 14798, 5119}, {5433, 10944, 10}, {5434, 15950, 226}, {5537, 11575, 1155}, {5552, 36977, 32049}, {5563, 37583, 56}, {5570, 41345, 1155}, {5597, 5598, 37541}, {5597, 26404, 65}, {5598, 26380, 65}, {5691, 50443, 10896}, {5697, 7280, 3579}, {5901, 18990, 12047}, {5919, 37600, 55}, {6049, 7288, 37738}, {6261, 22760, 1898}, {6265, 10074, 17660}, {7113, 8609, 2182}, {7677, 14151, 37787}, {7967, 18391, 37740}, {7982, 15803, 37567}, {8227, 9613, 10895}, {8666, 30144, 72}, {9957, 13624, 35}, {10090, 12737, 17636}, {10165, 31397, 5432}, {10222, 26287, 33596}, {10222, 37582, 5903}, {10247, 36279, 25415}, {10857, 30389, 3576}, {11011, 32636, 65}, {11014, 37561, 31788}, {11373, 18481, 1479}, {11510, 34489, 65}, {11510, 37566, 37568}, {11510, 41426, 34880}, {13388, 13389, 17595}, {13751, 37583, 32636}, {14792, 14795, 33862}, {15934, 41345, 484}, {16173, 36975, 3583}, {17642, 37578, 7964}, {17728, 37740, 18391}, {18839, 41341, 1155}, {21842, 24928, 2646}, {22765, 41345, 36}, {22837, 25440, 10914}, {24914, 37738, 8}, {24929, 37525, 2646}, {26365, 26366, 37606}, {30282, 31393, 55}, {32760, 34489, 18838}, {32760, 37618, 18857}, {33179, 50193, 11009}, {33812, 41558, 1317}, {34489, 37618, 56}, {34880, 37566, 32636}, {36920, 41541, 3689}, {37566, 37605, 34880}, {37704, 50811, 3586}, {38013, 38014, 50371}, {41556, 50843, 1317}


X(1320) = ISOGONAL CONJUGATE OF X(1319)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)/ (b + c - 2a)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

Let DEF be the intouch triangle. Let Ha be the orthocenter of IBC. Let A1 be the point, other than A, where AI meets the circumcircle. Let ta be the tangent to the circle (DHaA1) at Ha, and define tb and tc cyclically. The lines ta, tb , tc concur in X(1320). (Angel Montesdeoca, September 3, 2020)

X(1320) lies on the Darboux septic and on these lines: 1,88   2,1000   4,145   7,528   8,11   9,644   21,643   80,519   104,517   518,1156   900,1120   1022,1280

X(1320) = midpoint of X(145) and X(149)
X(1320) = reflection of X(i) in X(j) for these (i,j): (8,11), (100,1), (1145,1387)
X(1320) = isogonal conjugate of X(1319)
X(1320) = anticomplement of X(1145)
X(1320) = cevapoint of X(1) and X(517)
X(1320) = crosssum of X(902) and X(1404)
X(1320) = antigonal conjugate of X(8)
X(1320) = symgonal of X(1)
X(1320) = trilinear pole of line X(9)X(650)
X(1320) = Kirikami concurrent circles image of X(1)
X(1320) = polar conjugate of X(37790)
X(1320) = pole wrt polar circle of trilinear polar of X(37790) (line X(900)X(1846))
X(1320) = excentral-to-ABC barycentric image of X(5541)


X(1321) = 1st YIU SQUARES PERSPECTOR

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (2 cos A + sin A)/(cos2A + cos A sin A)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Let BBACAC be the external square on side BC, and define CCBABA and AACBCB cyclically. Let X = BCB∩CBC and X' = BAB∩CAC, and define Y, Z and Y', Z' cyclically. The lines AX, BY, CZ concur in X(4), and the lines AX', BY', CZ' concur in X(485). The lines XX', YY', ZZ' concur in X(1321), as shown in

Paul Yiu, On the Squares Erected Externally on the Sides of a Triangle.

X(1321) lies on these lines: 4,371   1322,2165


X(1322) = 2nd YIU SQUARES PERSPECTOR

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (2 cos A - sin A)/(cos2A - cos A sin A)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

The construction of X(1322) is like that of X(1321), but using internally positioned squares. See the reference
at X(1321).

X(1322) lies on these lines: 4,372   1321,2165


X(1323) = FLETCHER POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (sec2A/2)(2 cos2A/2 - cos2B/2 - cos2C/2)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)
                        = g(a,b,c) : g(b,c,a) : g(c,a,b),
                        where g(a,b,c) = (2a2 - b2 - c2 - ab - ac + 2bc)/(b + c - a) [P. J. C. Moses, 6/25/04]

X(1323) is the point of intersection of the line X(1)X(7) and the trilinear polar of X(7). These two lines are orthogonal.
X(1323) is named in honor of T. J. Fletcher in

Adrian Oldknow, "The Euler-Gergonne-Soddy Triangle of a Triangle," American Mathematical Monthly 103 (1996) 319-329.

See also MathWorld, Fletcher Point

X(1323) is the radical trace of the inner and outer Soddy circles.

X(1323) lies on these lines: 1,7   10,348   36,934   40,738   85,1125   106,927   165,479   241,514   519,664   1319,1355

X(1323) = midpoint of X(1155) and X(3328)
X(1323) = isogonal conjugate of X(4845)
X(1323) = inverse-in-incircle of X(7)
X(1323) = X(1260)-cross conjugate of X(527)
X(1323) = crossdifference of every pair of points on line X(55)X(657)
X(1323) = X(187)-of-intouch-triangle


X(1324) = CIRCUMCIRCLE-INVERSE OF X(10)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = a[a5 - b5 - c5 + a3bc - b3ca - c3ab + a2b2(b - a) + a2c2(c - a) + b2c2(b + c)]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1324) lies on these lines: 3,10   35,228   36,1054   58,181   98,929   759,859

X(1324) = isogonal conjugate of isotomic conjugate of X(21277)
X(1324) = isogonal conjugate of polar conjugate of X(37770)
X(1324) = isogonal conjugate of antigonal image of X(58)
X(1324) = polar conjugate of isotomic conjugate of X(23120)
X(1324) = circumciorcle-inverse of X(10)


X(1325) = CIRCUMCIRCLE-INVERSE OF X(21)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = [b4 + c4 - a4 + abc(b + c - a) - 2b2c2]/(b + c)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

As a point on the Euler line, X(1325) has Shinagawa coefficients ($a$(E + 4F) + 2abc, -4$a$(E + F) - 6abc).

X(1325) lies on these lines: 1,229   2,3   36,759   60,65   104,476   105,691   110,517   1295,1304

X(1325) = reflection of X(1290) in X(36)
X(1325) = circumcircle-inverse of X(21)
X(1325) = nine-point-circle-inverse of X(37983)
X(1325) = crosspoint of X(3) and X(2948) wrt both the excentral and tangential triangles
X(1325) = crossdifference of every pair of points on line X(647)X(2092)
X(1325) = reflection of X(110) in line X(36)X(238) (the polar of X(1) wrt circumcircle)


X(1326) = INVERSE-IN-CIRCUMCIRCLE OF X(58)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 + c2 - a2 + bc - ab - ac)/(b + c)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1326) lies on these lines: 3,6   10,261   35,849   42,593   99,726   106,691   110,902   238,662   249,1101   727,805

X(1326) = isogonal conjugate of X(11599)
X(1326) = complement of X(20558)
X(1326) = anticomplement of X(20546)
X(1326) = circumcircle-inverse of X(58)
X(1326) = X(741)-Ceva conjugate of X(58)
X(1326) = crossdifference of every pair of points on line X(523)X(1213)
X(1326) = X(6)-Hirst inverse of X(58)


X(1327) = ARCTAN(3) KIEPERT POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/(sin A + 3 cos A)
Barycentrics   1/(3 SA + S) : :

Let BBACAC be the external square on side BC, and define CCBABA and AACBCB cyclically. The lines ABBA, BCCB, CAAC form a triangle perspective to triangle ABC, and the perspector is X(1327).

If you have The Geometer's Sketchpad, you can view X(1327).

X(1327) lies on these lines: 6,1328   30,485   371,1131   381,486   547,1152

X(1327) = isogonal conjugate of X(6200)


X(1328) = ARCTAN(-3) KIEPERT POINT

Trilinears    1/(sin A - 3 cos A) : :
Barycentrics   1/(3 SA - S) : :

The construction of X(1328) is like that of X(1327), but using internally positioned squares. See the reference
at X(1321).

X(1328) lies on these lines: 6,1327   30,486   372,1132   381,485   547,1151

X(1328) = isogonal conjugate of X(6396)
X(1328) = X(2)-of-3rd-anti-tri-squares-triangle
X(1328) = perspector of ABC and 3rd anti-tri-squares triangle


X(1329) = COMPLEMENTARY CONJUGATE OF X(1)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[b2/(a - b + c) + c2/(a + b - c)]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1329) lies on these lines: 2,12   3,119   5,10   8,11   9,46   65,908   121,124   140,993   355,997   405,498   495,1125   496,519   499,956   518,1210   975,998

X(1329) = isogonal conjugate of X(3450)
X(1329) = isotomic conjugate of isogonal conjugate of X(23638)
X(1329) = complement of X(56)
X(1329) = complementary conjugate of X(1)
X(1329) = crosssum of X(6) and X(1397)
X(1329) = polar conjugate of isogonal conjugate of X(22071)


X(1330) = ANTICOMPLEMENTARY CONJUGATE OF X(1)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[b2/(a + c) + c2/(a + b) - a2/(b + c)]
Barycentrics (c^2 + a^2 - b^2) (a^2 + b^2 - c^2) - (b^2 + c^2 - a^2) (a + b + c)^2 : :

X(1330) lies on these lines: 2,58   4,69   8,79   10,894   30,1043   193,387   320,942   333,442   1010,1211

X(1330) = reflection of X(1046) in X(10)
X(1330) = isogonal conjugate of X(3437)
X(1330) = anticomplement of X(58)
X(1330) = anticomplementary conjugate of X(1)
X(1330) = X(313)-Ceva conjugate of X(2)
X(1330) = {X(4),X(69)}-harmonic conjugate of X(10449)


X(1331) = ORTHOCORRESPONDENT OF X(101)

Trilinears    (cos A)/(b - c) : :

For the definition of orthocorrespondent, see the notes just before X(1992).

X(1331) lies on the MacBeath circumconic and these lines: 63,212   71,895   72,283   78,255   100,109   101,110   145,595   162,190   228,295   287,293   394,1260   677,1252   901,1293   906,4574

X(1331) = isogonal conjugate of X(7649)
X(1331) = isotomic conjugate of polar conjugate of X(101)
X(1331) = trilinear pole of line X(3)X(48)
X(1331) = crossdifference of every pair of points on line X(2170)X(2969)
X(1331) = X(19)-isoconjugate of X(514)
X(1331) = X(92)-isoconjugate of X(649)
X(1331) = X(i)-Ceva conjugate of X(j) for these (i,j): (190,101), (643,100)
X(1331) = X(i)-cross conjugate of X(j) for these (i,j): (521,283), (652,63), (1260,1252)
X(1331) = cevapoint of X(i) and X(j) for these (i,j): (3,1459), (72,521), (212,652)


X(1332) = ORTHOCORRESPONDENT OF X(100)

Trilinears    (b2 + c2 - a2)/(b - c) : :
Trilinears    (cot A)/(b - c) : :

For the definition of orthocorrespondent, see the notes just before X(1992).

X(1332) lies on the MacBeath circumconic and these lines: 6,344   69,219   72,895   100,110   101,1310   190,644   287,336   345,394   645,648   646,1016   677,765   815,932   4561,4574

X(1332) = reflection of X(2991) in X(6)
X(1332) = isogonal conjugate of X(6591)
X(1332) = isotomic conjugate of X(17924)
X(1332) = MacBeath circumconic antipode of X(2991)
X(1332) = trilinear pole of line X(3)X(63)
X(1332) = X(92)-isoconjugate of X(667)
X(1332) = X(i)-Ceva conjugate of X(j) for these (i,j): (645, 190), (668,100), (1016,345)
X(1332) = X(i)-cross conjugate of X(j) for these (i,j): (521,69), (905,63), (906,100)
X(1332) = cevapoint of X(i) and X(j) for these (i,j): (63,905), (71,1459), (219,521)


X(1333) = POINT ALULA

Trilinears    a2/(b + c) : :

X(1333) lies on these lines: {2,18744}, {3,6}, {9,609}, {19,2217}, {21,37}, {27,3772}, {28,1104}, {31,48}, {36,16470}, {44,1778}, {45,4877}, {47,22134}, {53,7511}, {56,608}, {65,1950}, {81,593}, {86,3662}, {99,713}, {100,21858}, {104,112}, {110,739}, {141,5337}, {163,9456}, {213,2174}, {219,1780}, {261,27164}, {272,379}, {286,16732}, {292,4628}, {314,19623}, {321,17587}, {333,4386}, {346,17539}, {385,3770}, {536,16046}, {594,5291}, {595,16685}, {603,604}, {662,18274}, {692,1911}, {741,825}, {759,5341}, {849,1437}, {859,2178}, {872,18266}, {896,3958}, {910,5324}, {940,16368}, {963,2332}, {992,27660}, {1010,4426}, {1014,1418}, {1043,17299}, {1086,17189}, {1171,28625}, {1178,3863}, {1191,2255}, {1193,22054}, {1213,5277}, {1396,1427}, {1399,1409}, {1400,1415}, {1407,1412}, {1436,2299}, {1449,7031}, {1575,13588}, {1627,5276}, {1766,15952}, {1790,2221}, {1801,2327}, {1811,5546}, {1817,3752}, {1901,13442}, {1931,4469}, {1951,2264}, {1977,17961}, {2160,3125}, {2162,21769}, {2197,5172}, {2241,4658}, {2242,4653}, {2256,2328}, {2262,18191}, {2268,10457}, {2269,22361}, {2276,4184}, {2277,4225}, {2311,3862}, {2345,11115}, {2361,22074}, {2423,7252}, {2699,2715}, {2991,4558}, {3290,4228}, {3330,28381}, {3454,24935}, {3739,26643}, {3998,4641}, {4000,14953}, {4234,17281}, {4567,5381}, {4749,23868}, {5358,16583}, {5563,16488}, {5839,16704}, {7735,26118}, {8069,22132}, {8822,17276}, {9341,19297}, {10315,21866}, {10789,18194}, {11102,16974}, {11320,18147}, {12194,18170}, {12610,17197}, {13728,17398}, {16047,17263}, {16050,17279}, {16054,17278}, {16350,19701}, {16580,17171}, {16706,21997}, {16917,25457}, {16973,18206}, {17052,24890}, {17053,21773}, {17187,21764}, {18697,24335}, {19308,24530}, {19785,26830}, {21353,21833}

X(1333) = isogonal conjugate of X(321)
X(1333) = isotomic conjugate of X(27801)
X(1333) = complement of X(21287)
X(1333) = anticomplement of X(21245)
X(1333) = X(i)-Ceva conjugate of X(j) for these (i,j): (593,58), (1169,6), (1175,184)
X(1333) = X(31)-cross conjugate of X(58)
X(1333) = cevapoint of X(31) and X(32)
X(1333) = crosspoint of X(i) and X(j) for these (i,j): (28,81), (58,1412), (593,849)
X(1333) = crosssum of X(i) and X(j) for (i,j) = (37,72), (594,1089)
X(1333) = trilinear pole of line X(667)X(838)
X(1333) = X(92)-isoconjugate of X(72)
X(1333) = X(100)-isoconjugate of X(1577)
X(1333) = perspector of ABC and unary cofactor triangle of Gemini triangle 21
X(1333) = perspector of ABC and unary cofactor triangle of Gemini triangle 27


X(1334) = POINT ALYA

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b + c)(b + c - a)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1334) lies on these lines: 1,672   3,1055   8,9   10,1018   21,644   32,902   35,101   37,65   39,1201   41,55   42,213   607,1253   756,862

X(1334) = isogonal conjugate of X(1434)
X(1334) = complement of X(20244)
X(1334) = anticomplement of X(17050)
X(1334) = X(i)-Ceva conjugate of X(j) for these (i,j): (9, 210), (37,42), (644,663)
X(1334) = crosspoint of X(i) and X(j) for these (i,j): (9,55), (37,210)
X(1334) = crosssum of X(i) and X(j) for (i,j) = (7,57), (81,1014)
X(1334) = crossdifference of every pair of points on line X(1443)X(1447)
X(1334) = trilinear pole of line X(1443)X(1447)


X(1335) = {X(1),X(6)}-HARMONIC CONJUGATE OF X(1124)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1 - sin A
Trilinears       a(S - bc) : b(S - ca) : c(S - ab)
Barycentrics   1/(b*c - S) : :

X(1335) lies on these lines: 1,6   11,486   12,485   35,1151   36,1152   42,493   55,371   56,372   81,1123   175,651   255,606   498,590   499,615

X(1335) = isogonal conjugate of X(1336)
X(1335) = isotomic conjugate of polar conjugate of X(34121)
X(1335) = X(19)-isoconjugate of X(13386)
X(1335) = exsimilicenter of incircle and 2nd Lemoine circle; the insimilicenter is X(1124)


X(1336) = ISOGONAL CONJUGATE OF X(1335)

Trilinears    1/(1 - sin A) : :
Barycentrics    1/(b*c - S) : :

The parabola with focus A and directrix BC meets line AB in two points; let AB be the one further from B, and define AC similarly. Let LA be the line ABAC, and define LB and LC cyclically. Let A' = LB∩LC, and define B' and C' cyclically. The lines AA', BB', CC' concur in X(1336). (Randy Hutson, 9/23/2011)

In the configuration for the Paasche point X(1123), there are 4 circles tangent to the circle with diameter BC and also tangent to the lines AB and AC. Of the 4 circles, there are two pairs, one having X(1123) as perspector, and the other having X(1336). (Peter Moses, 21 January 2013)

Referring to the parabola described above in Hutson's note, the construction of X(1336) depends on AB being the one further of two points from B; if "further" is changed to "nearer", the resulting point is X(1123). Barycentrics for the nearer of the two points are

a*c : S : 0 = 2*R : b : 0 = csc(B) : 1 : 0 ,

and barycentrics for the further of the two points are

a*c : -S : 0 = -2*R : b : 0 = -csc(B) : 1 : 0 .

If you have GeoGebra, you can view these two points, as well as X(1336) and X(1123). (Peter Moses, December 10, 2024)

If you have The Geometer's Sketchpad, you can view X(1336)

X(1336) lies on the conic {A,B,C,X(1),X(2)}}, the cubic K1046, and these lines: {1, 3068}, {2, 585}, {4, 2362}, {28, 34125}, {37, 158}, {57, 481}, {81, 1124}, {105, 6136}, {175, 10253}, {274, 1267}, {443, 64632}, {498, 3300}, {499, 3302}, {920, 3069}, {1068, 13429}, {1096, 55404}, {1255, 9646}, {1335, 30413}, {1378, 40399}, {1422, 38003}, {1785, 7090}, {3084, 56354}, {3086, 37862}, {3421, 30557}, {3475, 8953}, {4312, 64336}, {5393, 25430}, {5727, 44038}, {6857, 30556}, {7040, 13440}, {14986, 63689}, {21909, 57266}, {30334, 52807}, {31532, 32556}, {31583, 52815}, {56041, 56384}, {56230, 65083}, {56352, 56427}, {59591, 64631}

X(1336) = isogonal conjugate of X(1335)
X(1336) = isotomic conjugate of X(5391)
X(1336) = polar conjugate of X(13387)
X(1336) = polar conjugate of the isotomic conjugate of X(13386)
X(1336) = polar conjugate of the isogonal conjugate of X(34125)
X(1336) = X(i)-cross conjugate of X(j) for these (i,j): {11, 58838}, {3086, 1123}, {13427, 13426}, {16232, 4}, {34125, 13386}, {64210, 13459}
X(1336) = X(i)-isoconjugate of X(j) for these (i,j): {1, 1335}, {2, 606}, {3, 6213}, {6, 3084}, {25, 55387}, {31, 5391}, {41, 13436}, {48, 13387}, {55, 52420}, {57, 60847}, {63, 34121}, {101, 6365}, {184, 46745}, {255, 1123}, {394, 64209}, {604, 13458}, {605, 13435}, {1110, 22106}, {1259, 13438}, {1804, 13456}, {2067, 30557}, {2289, 13437}, {4091, 6135}, {5414, 13388}, {7125, 13454}, {14445, 34075}, {53063, 56386}, {53066, 65082}
X(1336) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 5391}, {3, 1335}, {9, 3084}, {223, 52420}, {514, 22106}, {1015, 6365}, {1249, 13387}, {3160, 13436}, {3161, 13458}, {3162, 34121}, {5452, 60847}, {6505, 55387}, {6523, 1123}, {32664, 606}, {36103, 6213}, {39011, 14445}, {62605, 46745}
X(1336) = cevapoint of X(i) and X(j) for these (i,j): {11, 58838}, {13427, 64210}
X(1336) = trilinear pole of line {513, 58838}
X(1336) = pole of line {11436, 58896} with respect to the Feuerbach circumhyperbola
X(1336) = pole of line {13390, 13426} with respect to the ABCGGe
X(1336) = pole of line {1336, 3086} with respect to the ABCGI
X(1336) = pole of line {1335, 18604} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(1336) = pole of line {255, 606} with respect to the Kiepert circumhyperbola of the excentral triangle
X(1336) = pole of line {394, 1335} with respect to the Jerabek circumhyperbola of the excentral triangle
X(1336) = pole of line {1335, 5391} with respect to the Kiepert circumhyperbola of the anticomplementary triangle
X(1336) = pole of line {6365, 14298} with respect to the Steiner inellipse
X(1336) = pole of line {16228, 58840} with respect to the Orthic inconic
X(1336) = pole of line {905, 54017} with respect to the polar circle
X(1336) = barycentric product X(i)*X(j) for these {i,j}: {4, 13386}, {7, 13426}, {8, 13459}, {19, 46744}, {75, 64210}, {85, 13427}, {92, 6212}, {158, 3083}, {264, 34125}, {312, 13460}, {393, 1267}, {605, 57806}, {693, 6136}, {1118, 13425}, {1123, 13424}, {1124, 2052}, {1857, 13453}, {6520, 55388}, {13390, 14121}, {16232, 60853}, {56385, 61393}
X(1336) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3084}, {2, 5391}, {4, 13387}, {6, 1335}, {7, 13436}, {8, 13458}, {19, 6213}, {25, 34121}, {31, 606}, {55, 60847}, {57, 52420}, {63, 55387}, {92, 46745}, {393, 1123}, {513, 6365}, {605, 255}, {891, 14445}, {1086, 22106}, {1096, 64209}, {1118, 13437}, {1123, 13435}, {1124, 394}, {1267, 3926}, {1857, 13454}, {3083, 326}, {3297, 55441}, {6136, 100}, {6212, 63}, {6364, 4131}, {8945, 8394}, {13386, 69}, {13390, 65082}, {13424, 1267}, {13425, 1264}, {13426, 8}, {13427, 9}, {13453, 7055}, {13459, 7}, {13460, 57}, {14121, 56386}, {16232, 13388}, {34125, 3}, {42013, 30557}, {46744, 304}, {52419, 7183}, {55388, 1102}, {58838, 54017}, {60848, 1259}, {60849, 2067}, {60852, 5414}, {61393, 1659}, {61400, 64230}, {64210, 1}, {64336, 31548}
X(1336) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 3085, 1123}, {158, 393, 1123}, {281, 7952, 1123}, {13427, 13460, 6212}


X(1337) = 1st WERNAU POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[x1 + 2Dx2/sqrt(3)], where
                        D = area(ABC),
                        x1 = 4a2U3 + (a2 + V)(a2 + W)U2 - 7V2W2 - 5a2UVW,
                        x2 = 3U3 + 7a2U2 - 6a2VW - 5 UVW,
                        U = (b2 + c2 - a2)/2, V = (c2 + a2 - b2)/2, W = (a2 + b2 - c2)/2

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a2(2DU - 31/2VW)/(4D + 31/2a2),
                        D, U, V, W as above; see Hyacinthos #8874

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a2(2DU - 31/2VW)/(4D + 31/2a2),

Barycentrics    a^2*(-2*(-a^2+b^2+c^2)*S+sqrt(3)*(a^2-c^2+b^2)*(a^2-b^2+c^2))*(sqrt(3)*b^2+2*S)*(sqrt(3)*c^2+2*S) : :      (César Lozada, December 15, 2019)

Let A'BC be the external equilateral triangle on side BC, and define CB'A and AC'B cyclically. Let (AB'C') be the circle passing through the points A, B', C', and define (BC'A') and (CA'B') cyclically. The three circles concur in X(1337). Wernau is a town near Stuttgart, the site of a mathematics olympiad seminar in Spring 2003. (Darij Grinberg; Hyacinthos, April, 2003: #6874, 6881, 6882; coordinates by Jean-Pierre Ehrmann)

X(1337) is the tangential of X(15) on the Neuberg cubic.

X(1337) lies on the Neuberg cubic and these lines: 4,616   15,2981   399,3441   1157,1338

X(1337) = isogonal conjugate of X(3479)
X(1337) = anticomplement of X(33500)
X(1337) = antigonal conjugate of X(662)
X(1337) = symgonal of X(16)

X(1338) = 2nd WERNAU POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[x1 - 2Dx2/sqrt(3)], where
                        D = area(ABC), x1, x2 are as at X(1337).

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a2(2DU + 31/2VW)/(4D - 31/2a2),
                        D, U, V, W as at X(1337); see Hyacinthos #8874

Barycentrics    a^2*(2*(-a^2+b^2+c^2)*S+sqrt(3)*(a^2-c^2+b^2)*(a^2-b^2+c^2))*(sqrt(3)*b^2-2*S)*(sqrt(3)*c^2-2*S) : :      (César Lozada, December 15, 2019)

Let A'BC be the internal equilateral triangle on side BC, and define CB'A and AC'B cyclically. Let (AB'C') be the circle passing through the points A, B', C', and define (BC'A') and (CA'B') cyclically. The three circles concur in X(1338). For details, see X(1337).

X(1338) is the tangential of X(16) on the Neuberg cubic.

X(1338) lies on the Neuberg cubic and these lines: 4,617   16,3458   399,3440   1157,1337

X(1338) = isogonal conjugate of X(3480)
X(1338) = anticomplement of X(33498)
X(1338) = antigonal conjugate of X(661)
X(1338) = symgonal of X(15)


X(1339) = NAGEL-SCHRÖDER POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b+c-2a)[4bc(b+c-a) - (a+b+c)(b2 + c2 - a2)]/(b+c-3a)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

Let X'Y'Z' be the extouch triangle of ABC; viz., X' is where the A-excircle meets line BC, and X'Y'Z' is the pedal triangle of X(40). Let I = incenter of ABC. The circles (AIX'), (BIY'), (CIZ') concur in two points: I and X(1339). (Jean-Pierre Ehrmann, Hyacinthos #6545)

X(1339) lies on this line: 1,474


X(1340) = INSIMILICENTER(CIRCUMCIRCLE, BROCARD CIRCLE)

Trilinears    a + 2(|OK| + R) cot ω cos A : :, where |OK| = distance between X(3) and X(6), ω = Brocard angle of ABC, and R = circumradius of ABC
Trilinears    e cos A + cos(A - ω), e =(1 - 4 sin2ω)1/2
X(1340) = (1 + |OK|/R)*X(3) + X(6)
X(1340) = 2 X[3] + X[3557], X[4] - 4 X[14633], 4 X[39] - X[3558], 2 X[39] + X[13325], X[1380] + 2 X[2029], X[3558] + 2 X[13325], X[13326] - 4 X[13334]

If you have The Geometer's Sketchpad, you can view X(1340).

X(1340) lies on the cubics K280, K309, K657, K792, K793, K795, K889, K890, K891, K911, and these lines: {1, 1704}, {2, 1349}, {3, 6}, {4, 1348}, {20, 2542}, {51, 21036}, {55, 1675}, {56, 1674}, {76, 6178}, {110, 6142}, {111, 6141}, {165, 1705}, {262, 6039}, {353, 5638}, {549, 39023}, {958, 1679}, {1083, 11652}, {1344, 2470}, {1345, 2469}, {1376, 1678}, {1503, 19660}, {2039, 43461}, {2040, 7790}, {2549, 31863}, {3413, 7709}, {3589, 19659}, {3972, 46023}, {4045, 14501}, {5091, 36736}, {6189, 7771}, {6190, 7757}, {11650, 11651}, {15048, 39022}, {21032, 22352}

X(1340) = reflection of X(1341) in X(11171)
X(1340) = isogonal conjugate of X(46023)
X(1340) = Brocard-circle-inverse of X(1380)
X(1340) = Schoutte-circle-inverse of X(1341)
X(1340) = 2nd-Brocard-circle-inverse of X(3558)
X(1340) = psi-transform of X(5639)
X(1340) = crossdifference of every pair of points on line {523, 5638}
X(1340) = internal center of similitude of circumcircle and Brocard circle (Peter J. C. Moses, 4/2003)
X(1340) = {X(3),X(182)}-harmonic conjugate of X(1341)
X(1340) = radical center of Lucas(t) circles, for t where circles are tangent to Brocard circle
X(1340) = intersection of Brocard axis and minor axis of Steiner circumellipse
X(1340) = homothetic center of 1st Brocard triangle and circumcevian triangle of X(3414)
X(1340) = barycentric product X(7998)*X(46024)
X(1340) = barycentric quotient X(6)/X(46023)
X(1340) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 2543, 1349}, {3, 6, 1380}, {3, 182, 1341}, {3, 14630, 3558}, {3, 38596, 3098}, {6, 574, 1341}, {6, 1380, 3558}, {6, 2029, 3557}, {15, 16, 1341}, {32, 5116, 1341}, {39, 2029, 6}, {39, 3094, 1341}, {39, 13325, 3558}, {371, 372, 14631}, {566, 2088, 1341}, {1342, 1343, 2558}, {1380, 14630, 6}, {1670, 1671, 3558}, {1689, 1690, 1341}, {2029, 8589, 44453}, {2080, 39498, 1341}, {3102, 3103, 13326}, {3106, 3107, 1341}, {5013, 5028, 1341}, {5050, 9734, 1341}, {5092, 26316, 1341}, {8589, 10485, 1341}, {13325, 14630, 3557}, {15815, 39764, 1341}, {30260, 30261, 1341}, {35608, 35609, 31862}


X(1341) = EXSIMILICENTER(CIRCUMCIRCLE, BROCARD CIRCLE)

Trilinears    a - 2(|OK| - R) cot ω cos A : :
Trilinears    e cos A - cos(A - ω), : : , where e = (1 - 4 sin2ω)1/2
Barycentrics a^2*(a^4 - a^2*b^2 - a^2*c^2 - 2*b^2*c^2 + (-a^2 + b^2 + c^2)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4]) : :
X(1341) = (-1 + |OK|/R)*X(3) - X(6)
X(1341) = 2 X[3] + X[3558], X[4] - 4 X[14632], 4 X[39] - X[3557], 2 X[39] + X[13326], X[1379] + 2 X[2028], X[3557] + 2 X[13326], X[13325] - 4 X[13334]

X(1341) = external center of similitude of circumcircle and Brocard circle (Peter J. C. Moses, 4/2003)

X(1341) lies on the cubics K280, K309, K657, K792, K793, K795, K889, K890, K891, K911 and these lines: 1, 1705}, {2, 1348}, {3, 6}, {4, 1349}, {20, 2543}, {51, 21032}, {55, 1674}, {56, 1675}, {76, 6177}, {110, 6141}, {111, 6142}, {165, 1704}, {262, 6040}, {353, 5639}, {549, 39022}, {958, 1678}, {1083, 11651}, {1344, 2469}, {1345, 2470}, {1376, 1679}, {1503, 19659}, {2039, 7790}, {2549, 31862}, {3414, 7709}, {3589, 19660}, {4045, 14502}, {5091, 36735}, {6189, 7757}, {6190, 7771}, {11650, 11652}, {15048, 39023}, {21036, 22352}

X(1341) = reflection of X(1340) in X(11171)
X(1341) = isogonal conjugate of X(46024)
X(1341) = Brocard-circle-inverse of X(1379)
X(1341) = 2nd-Brocard-circle-inverse of X(3557)
X(1341) = Schoutte-circle-inverse of X(1340) X(1341) = psi-transform of X(5638)
X(1341) = crossdifference of every pair of points on line {523, 5639}
X(1341) = intersection of Brocard axis and major axis of Steiner circumellipse
X(1341) = homothetic center of 1st Brocard triangle and circumcevian triangle of X(3413)
X(1341) = barycentric product X(7998)*X(46023)
X(1341) = barycentric quotient X(6)/X(46024)
X(1341) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 2542, 1348}, {3, 6, 1379}, {3, 182, 1340}, {3, 14631, 3557}, {3, 38597, 3098}, {6, 574, 1340}, {6, 1379, 3557}, {6, 2028, 3558}, {15, 16, 1340}, {32, 5116, 1340}, {39, 2028, 6}, {39, 3094, 1340}, {39, 13326, 3557}, {371, 372, 14630}, {566, 2088, 1340}, {1342, 1343, 2559}, {1379, 14631, 6}, {1670, 1671, 3557}, {1689, 1690, 1340}, {2028, 8589, 44453}, {2080, 39498, 1340}, {3102, 3103, 13325}, {3106, 3107, 1340}, {5013, 5028, 1340}, {5050, 9734, 1340}, {5092, 26316, 1340}, {8589, 10485, 1340}, {13326, 14631, 3558}, {14899, 35607, 31863}, {15815, 39764, 1340}, {30260, 30261, 1340}, {39162, 39163, 5638}


X(1342) = INSIMILICENTER(CIRCUMCIRCLE, 1stLEMOINE CIRCLE)

Trilinears    sin A + cos A cot(ω/2) : :
Trilinears    sin A - sin(A - ω) : :
Trilinears    cos A + cos(A - ω) : :
Trilinears    cos(A - ω/2) : :
Trilinears    sin A + (csc ω + cot ω) cos A : :
Trilinears    cos A + (csc ω - cot ω) sin A : :

X(1342) =(sec ω)*X(3) + 2*X(182) = (1 + sec ω)*X(3) + X(6)

X(1342) = internal center of similitude of circumcircle and 1st Lemoine circle (Peter J. C. Moses, 4/2003; cf. X(1343), X(1670), X(1671))

X(1342) lies on this line: 3,6

X(1342) = reflection of X(1343) in X(3398)
X(1342) = isogonal conjugate of X(5403)
X(1342) = Brocard-circle-inverse of X(1670)
X(1342) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (371,372,1671), (1687,1688,1343)
X(1342) = insimilicenter of 1st and 2nd Brocard circles; the insimilicenter is X(1343)
X(1342) = inner-Montesdeoca-Lemoine-circle-inverse of X(38720)


X(1343) = EXSIMILICENTER(CIRCUMCIRCLE, 1stLEMOINE CIRCLE)

Trilinears    sin A - cos A tan(ω/2) : :
Trilinears    sin A + sin(A - ω) : :
Trilinears    cos A - cos(A - ω) : :
Trilinears    sin(A - ω/2) : :
Trilinears    sin A - (sec ω + tan ω) cos A: :
Trilinears    sin A + (cot ω - csc ω) cos A: :
Trilinears    cos A - (csc ω + cot ω) sin A : :
X(1343) =(sec ω)*X(3) - 2*X(182) = (1 - sec ω)*X(3) + X(6)

X(1343) = external center of similitude of circumcircle and 1st Lemoine circle (Peter J. C. Moses, 4/2003)

Let Lbc be the line obtained by rotating line CA through C by an angle of ω/2 toward B. Let Lcb be the line obtained by rotating line AB through B by an angle of ω/2 toward C. Let A' =Lbc∩\Lcb. Define B' and C' cyclically. The lines AA', BB', CC' concur in X(1343). (Randy Hutson, October 13, 2015)

X(1343) lies on this line: 3,6

X(1343) = reflection of X(1342) in X(3398)
X(1343) = isogonal conjugate of X(5404)
X(1343) = inverse-in-Brocard-circle of X(1671)
X(1343) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (371,372,1670), (1687,1688,1342)
X(1343) = exsimilicenter of 1st and 2nd Brocard circles (the insimilicenter is X(1342))
X(1343) = outer-Montesdeoca-Lemoine-circle-inverse of X(38721)


X(1344) = INSIMILICENTER(CIRCUMCIRCLE, ORTHOCENTROIDAL CIRCLE)

Trilinears     (|OH| + R) cos A + 4R cos B cos C : :
Barycentrics    a^4+a^2 b^2-2 b^4+a^2 c^2+4 b^2 c^2-2 c^4-a^2 (a^2-b^2-c^2) J : :
X(1344) = 6X(2) + (-3 + |OH|/R)*X(3)

As a point on the Euler line, X(1344) has Shinagawa coefficients (R + |OH|,3R - |OH|).

X(1344) = internal center of similitude of circumcircle and orthocentroidal circle (Peter J. C. Moses, 4/2003)

X(1344) lies on the cubics K281, K297, K708, K843, and on these lines: {2,3}, {6,2574}, {55,2464}, {56,2463}, {64,14375}, {111,8427}, {112,8426}, {183,15165}, {371,2466}, {372,2465}, {958,2468}, {1340,2470}, {1341,2469}, {1342,2472}, {1343,2471}, {1351,8116}, {1376,2467}, {1689,2015}, {1690,2016}, {2575,11472}, {5640,24651}, {5968,16070}, {6090,8115}

X(1344) = orthocentroidal circle inverse of X(1313)
X(1344) = X(11472)-line conjugate of X(2575)
X(1344) = X(1345)-vertex conjugate of X(11181)
X(1344) = crossdifference of every pair of points on line {647, 2575}
X(1344) = homothetic center of orthocentroidal triangle and circumcevian triangle of X(2574)
X(1344) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 4, 1313), (2, 1113, 3), (2, 1346, 5094), (2, 1995, 1345), (2, 2553, 1347), (3, 381, 1345), (3, 3830, 15155), (4, 378, 1345), (4, 1113, 25), (4, 1346, 381), (4, 10737, 3830), (4, 14709, 3), (5, 6644, 1345), (5, 20478, 3), (22, 5169, 1345), (23, 10719, 15155), (24, 7577, 1345), (25, 5094, 1345), (458, 4230, 1345), (868, 3148, 1345), (1113, 10719, 23), (1346, 14709, 378), (1347, 2553, 381), (2070, 7579, 1345), (3091, 14709, 3516), (3091, 15078, 1345), (3526, 21308, 1345), (7418, 13860, 1345), (7485, 7533, 1345), (14807, 15158, 20063)


X(1345) = EXSIMILICENTER(CIRCUMCIRCLE, ORTHOCENTROIDAL CIRCLE)

Trilinears    (|OH| - R) cos A - 4R cos B cosC : :
Barycentrics    a^4+a^2 b^2-2 b^4+a^2 c^2+4 b^2 c^2-2 c^4+a^2 (a^2-b^2-c^2) J : :
X(1345) = 6X(2) - (3 + |OH|/R)*X(3)

As a point on the Euler line, X(1345) has Shinagawa coefficients (R - |OH|,3R + |OH|).

X(1345) = external center of similitude of circumcircle and orthocentroidal circle (Peter J. C. Moses, 4/2003)

X(1345) lies on the cubics K281, K297, K708, K843, and on these lines: {2,3}, {6,2575}, {55,2463}, {56,2464}, {64,14374}, {111,8426}, {112,8427}, {183,15164}, {371,2465}, {372,2466}, {958,2467}, {1340,2469}, {1341,2470}, {1342,2471}, {1343,2472}, {1351,8115}, {1376,2468}, {1689,2016}, {1690,2015}, {2574,11472}, {5640,24650}, {5968,16071}, {6090,8116}

X(1345) = orthocentroidal circle inverse of X(1312)
X(1345) = X(11472)-line conjugate of X(2574)
X(1345) = X(1344)-vertex conjugate of X(11181)
X(1345) = crossdifference of every pair of points on line {647, 2574}
X(1345) = homothetic center of orthocentroidal triangle and circumcevian triangle of X(2575)
X(1345) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 4, 1312), (2, 1114, 3), (2, 1347, 5094), (2, 1995, 1344), (2, 2552, 1346), (3, 381, 1344), (3, 3830, 15154), (4, 378, 1344), (4, 1114, 25), (4, 1347, 381), (4, 10736, 3830), (4, 14710, 3), (5, 6644, 1344), (5, 20479, 3), (22, 5169, 1344), (23, 10720, 15154), (24, 7577, 1344), (25, 5094, 1344), (458, 4230, 1344), (868, 3148, 1344), (1114, 10720, 23), (1346, 2552, 381), (1347, 14710, 378), (2070, 7579, 1344), (3091, 14710, 3516), (3091, 15078, 1344), (3526, 21308, 1344), (7418, 13860, 1344), (7485, 7533, 1344), (14808, 15159, 20063)


X(1346) = INSIMILICENTER(NINE-POINT CIRCLE, ORTHOCENTROIDAL CIRCLE)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = R cos A + |OH|cos(B - C) + 4 R cos B cos C
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)
X(1346) = 3(2 + |OH|/R)*X(2) - (3 + |OH|/R)*X(3)

As a point on the Euler line, X(1346) has Shinagawa coefficients (R + |OH|,3R + |OH|).

X(1346) lies on these lines: 2,3   56,2464

X(1346) = internal center of similitude of nine-point circle and orthocentroidal circle (Peter J. C. Moses, 4/2003)


X(1347) = EXSIMILICENTER(NINE-POINT CIRCLE, ORTHOCENTROIDAL CIRCLE)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = R cos A - |OH|cos(B - C) + 4 R cos B cos C

X(1347) = 3(-2 + |OH|/R)*X(2) + (3 - |OH|/R)*X(3)

As a point on the Euler line, X(1347) has Shinagawa coefficients (R - |OH|,3R - |OH|).

X(1347) = external center of similitude of nine-point circle and orthocentroidal circle (Peter J. C. Moses, 4/2003)

X(1347) lies on this line: 2,3


X(1348) = INSIMILICENTER(NINE-POINT CIRCLE, BROCARD CIRCLE)

Trilinears    e cos(B - C) + cos(A - ω), where e = (1 - 4 sin2ω)1/2
Trilinears    e cos A + 2 e cos B cos C + cos(A - ω) : :
Barycentrics    a^2*(a^4 - a^2*b^2 - a^2*c^2 - 2*b^2*c^2) + (-(a^2*b^2) + b^4 - a^2*c^2 - 2*b^2*c^2 + c^4)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4] : :
X(1348) = |OK|*X(5) + R*X(182)
X(1348) = (e sec ω)*X(5) + X(182)
X(1348) = X(3) + 2(e sec ω)*X(5) + X(6)
X(1348) = 3 X[2] + X[35913]

X(1348) = internal center of similitude of nine-point circle and Brocard circle (Peter J. C. Moses, 4/2003)

X(1348) lies on these lines: {2, 1341}, {3, 2040}, {4, 1340}, {5, 182}, {6, 2039}, {10, 1694}, {11, 1674}, {12, 1675}, {115, 2033}, {316, 1379}, {485, 1668}, {486, 1669}, {574, 19660}, {1329, 1678}, {1342, 2567}, {1343, 2566}, {1346, 2470}, {1347, 2469}, {1380, 38227}, {1506, 2034}, {1664, 5403}, {1665, 5404}, {1679, 2886}, {1693, 2051}, {1698, 1705}, {1699, 1704}, {2009, 2012}, {2010, 2011}, {2543, 3091}, {2558, 37446}, {2559, 5025}, {3414, 7694}, {3557, 7785}, {6039, 9993}, {6177, 7746}, {7818, 39022}, {7828, 14631}, {13414, 13870}

X(1348) = crosssum of X(1341) and X(3557)
X(1348) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 2542, 1341}, {5, 182, 1349}, {3589, 7844, 1349}


X(1349) = EXSIMILICENTER(NINE-POINT CIRCLE, BROCARD CIRCLE)

Trilinears    e cos(B - C) - cos(A - ω), where e = (1 - 4 sin2ω)1/2
Trilinears    e cos A + 2 e cos B cos C - cos(A - ω) : :
X(1348) = |OK|*X(5) - R*X(182) = (e sec ω)*X(5) - X(182) = X(3) - 2(e sec ω)*X(5) + X(6)

X(1349) = external center of similitude of nine-point circle and Brocard circle (Peter J. C. Moses, 4/2003)

X(1349) lies on these lines: 2,1340   4,1341   5,182


X(1350) = REFLECTION OF X(6) IN X(3)

Trilinears    a - 4R cot ω cos A : :
Trilinears    sin A - 2 cos A cot ω : :
Trilinears        h(A,B,C) : h(B,C,A) : h(C,A,B), where h(A,B,C) = 2 cos A - sin A tan ω   (Peter J. C. Moses, 8/22/03)
Barycentrics    a^2(a^4 - 3b^4 - 3c^4 + 2a^2b^2 + 2a^2c^2 - 2b^2c^2) : :
X(1350) = 2X(3) - X(6)

Let A'B'C' be the reflection of ABC in X(3). Let AB = BC∩C'A', and define BC and CA cyclically. AC = BC∩A'B', and define BA and CB cyclically. The 6 points AB, BC, CA, AC, BA, CB lie on a conic. Let A" be the intersection of the tangents to the conic at AB and AC, and define B", C" cyclically. The lines A'A", B'B", C'C" concur in X(1350). (Randy Hutson, January 29, 2015)

X(1350) lies on these lines: 2,3066  3,6   4,141   20,64   22,110   30,599   35,611   36,613   40,518   74,1296   103,1293   206,1092   343,1370   376,524   517,990

X(1350) = midpoint of X(20) and X(69)
X(1350) = reflection of X(i) in X(j) for these (i,j): (4,141), (6,3), (1351,182), (1498,159)
X(1350) = isogonal conjugate of X(3424)
X(1350) = X(6) of circumcevian triangle of X(511)
X(1350) = radical center of Lucas(-tan ω) circles
X(1350) = {X(182),X(1351)}-harmonic conjugate of X(6)
X(1350) = inverse-in-2nd-Brocard-circle of X(5188)
X(1350) = antipedal-isogonal conjugate of X(6)
X(1350) = X(53)-of-the-hexyl-triangle
X(1350) = exsimilicenter of circle centered at X(1151) through X(372) and circle centered at X(1152) through X(371); the insimilicenter is X(3053)


X(1351) = REFLECTION OF X(3) IN X(6)

Trilinears         a - R cot ω cos A : :
Trilinears       2 sin A - cos A cot ω : :
Trilinears        cos A - 2 sin A tan ω : :   (Peter J. C. Moses, 8/22/03)
Barycentrics    a^2[a^4 - 4a^2(b^2 + c^2) + 3b^4 - 2b^2c^2 + 3c^4] : :
Barycentrics    a^2(S^2 - SA^2 + SB SC) : :
X(1351) = X(3) - 2X(6)

Let T be a triangle inscribed in the circumcircle and circumscribing the orthic inconic. As T varies, its orthocenter traces a circle centered at X(1351) with segment X(4)X(193) as diameter. (Randy Hutson, August 29, 2018)

X(1351) lies on these lines: 3,6   4,193   5,69   25,110   30,1353   49,206   51,394   159,195   183,262   381,524   613,999

X(1351) = midpoint of X(4) and X(193)
X(1351) = reflection of X(i) in X(j) for these (i,j): (3,6), (6,576), (69,5), (1350,182)
X(1351) = isogonal conjugate of X(7612)
X(1351) = inverse-in-2nd-Lemoine-circle of X(1692)
X(1351) = radical center of Lucas(-4 tan ω) circles
X(1351) = intersection of tangents to 2nd Lemoine circle at intersections with circumcircle
X(1351) = inverse-in-{circle centered at X(3) with radius |OK|} of X(182)
X(1351) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,1350,182), (1687,1688,5033)
X(1351) = exsimilicenter of circle centered at X(371) through X(1152) and circle centered at X(372) through X(1151); the insimilicenter is X(3053)


X(1352) = REFLECTION OF X(6) IN X(5)

Trilinears    a - 2R cos(B-C) cot ω : :
Trilinears    sin A - cos(B - C) cot ω : :
Barycentrics    S^2 SA + SB SC SW : :
Barycentrics    (cot A + cot B + cot C) tan A + (tan A + tan B + tan C) cot A : :
Barycentrics    a^6 - a^4 (b^2 + c^2) + a^2 (b^2 + c^2)^2 - (b^2 + c^2) (b^2 - c^2)^2 : :

X(1352) lies on these lines: 2,98   3,66   4,69   5,6   11,613   12,611   25,343   30,599   70,1176   193,576   206,1209   298,383   299,1080   355,518   381,524   394,426   2794,3734

X(1352) = midpoint of X(4) and X(69)
X(1352) = reflection of X(i) in X(j) for these (i,j): (3,141), (6,5), (193,576)
X(1352) = isogonal conjugate of X(3425)
X(1352) = complement of X(6776)
X(1352) = anticomplement of X(182)
X(1352) = X(327)-Ceva conjugate of X(2)
X(1352) = X(4)-of-1st-Brocard-triangle
X(1352) = X(3)-of-X(2)-Fuhrmann-triangle
X(1352) = center of the perspeconic of these triangles: Ehrmann side and Johnson
X(1352) = insimilicenter of X(13)- and X(14)-Fuhrmann circles (aka -Hagge circles
X(1352) = 1st-Brocard-isogonal conjugate of X(182)
X(1352) = 1st-Brocard-isotomic conjugate of X(2549)
X(1352) = X(3)-of-obverse-triangle-of-X(69)


X(1353) = REFLECTION OF X(5) IN X(6)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2a - R cos(B-C) cot ω
Trilinears       g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = 4 sin A - cos(B - C) cot ω
Barycentrics    4 a^6 - 7 a^4 (b^2 + c^2) + 4 a^2 (b^4 - b^2 c^2 + c^4) - (b^2 - c^2)^2 (b^2 + c^2) : :

X(1353) lies on these lines: 3,193   5,6   30,1351   69,140   141,575   182,524   511,550   542,3845

X(1353) = midpoint of X(3) and X(193)
X(1353) = reflection of X(i) in X(j) for these (i,j): (5,6), (69,140), (141,575)

leftri

Brisse Transforms 1354-1367

rightri

Suppose that P is a point on the circumcircle Γ of triangle ABC. Let U and V be the lines through P tangent to the incircle. Line U meets Γ in a point U' other than P, and line V meets Γ in a point V' other than P. The line U'V' is tangent to the incircle. The touchpoint, denoted by T(P), is the Brisse transform of P. Suppose P is given by barycentrics u : v : w. Barycentrics for T(P) are found in

Edward Brisse, Perspective Poristic Triangles: a4/[(b + c - a)u2] : b4/[(c + a - b)v2] : c4/[(a + b - c)w2].

If X is given by trilinears x : y : z, then T(X) has trilinears a/[(b + c - a)x2] : b/[(c + a - b)y2] : c/[(a + b - c)z2].

Examples: X(11) = Feuerbach point = T(X(109))
X(1317) = incircle-antipode of X(11) = T(X(106))

Still open is the question posed in Hyacinthos #6832: to list all polynomial centers on the incircle having low degree and to prove that there are no others. Here, "degree" of X = p(a,b,c) : p(b,c,a) : p(c,a,b) [barycentrics] refers to the degree of homogeneity of p(a,b,c), and "low" means less than 6. (The Feuerbach point, X(11), has degree 3.)

In Hyacinthos #6835, Paul Yiu gives two methods for constructing polynomial centers on the incircle:

(1) If X is a polynomial center on the incircle and W is any other polynomial center, then the line XW meets the incircle in another point that is a polynomial center.

(2) If W is on the line at infinity, then the barycentric square W2 is on the Steiner inscribed ellipse, and the barycentric product X(7)*W2 is on the incircle.


X(1354) = BRISSE TRANSFORM OF X(74)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as above X(1354), using X = X(74)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

The following ten points lie on a circle: X(i) for i = 11, 36, 65, 80, 108, 759, 1354, 1845, 2588, 2589. (Chris Van Tienhoven, Hyacinthos, January 4, 2011)

X(1354) lies on the incircle and these lines: 7,1367   56,759   942,1364


X(1355) = BRISSE TRANSFORM OF X(98)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as above X(1354), using X = X(98)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1355) lies on the incircle and these lines: 56,741   222,1363


X(1356) = BRISSE TRANSFORM OF X(99)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as above X(1354), using X = X(99)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1356) lies on the incircle and this line: 56,741

X(1356) = anticomplement of X(3037)
X(1356) = trilinear product X(57)*X(1084)
X(1356) = barycentric product X(7)*X(1084)


X(1357) = BRISSE TRANSFORM OF X(100)

Trilinears    a (b + c - a) (b - c)^2 (a^2 - (b - c)^2)^2 : :

X(1357) lies on the incircle and these lines: 12,121   43,57   55,1293   56,106   65,1317   1086,1365

X(1357) = isogonal conjugate of X(4076)
X(1357) = anticomplement of X(3038)
X(1357) = crosssum of X(i) and X(j) for these (i,j): (55,644), (100,145), (190,344)
X(1357) = X(107)-of-intouch triangle
X(1357) = X(1293)-of-Mandart-incircle-triangle
X(1357) = homothetic center of intangents triangle and reflection of extangents triangle in X(1293)
X(1357) = trilinear pole wrt intouch triangle of line X(7)X(8)
X(1357) = trilinear product of vertices of Mandart-excircles triangle
X(1357) = trilinear product X(57)*X(1015)
X(1357) = barycentric product X(7)*X(1015)


X(1358) = BRISSE TRANSFORM OF X(101)

Trilinears    tan^2(A/2) sin^2(B/2 - C/2) : :

X(1358) lies on the incircle and these lines: 7,528   11,1111   12,85   55,1292   56,105   65,1362   269,1359   553,1366   1120,1125   1122,1361   1319,1323

X(1358) = isotomic conjugate of X(4076)
X(1358) = anticomplement of X(3039)
X(1358) = X(244)-cross conjugate of X(1086)
X(1358) = crosspoint of X(277) and X(514)
X(1358) = crosssum of X(101) and X(218)
X(1358) = X(112)-of-intouch triangle
X(1358) = X(1292)-of-Mandart-incircle-triangle
X(1358) = homothetic center of intangents triangle and reflection of extangents triangle in X(1292)
X(1358) = trilinear pole wrt intouch triangle of line X(2)X(7)
X(1358) = trilinear product X(57)*X(1086)
X(1358) = barycentric product X(7)*X(1086)


X(1359) = BRISSE TRANSFORM OF X(102)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as above X(1354), using X = X(102)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1359) lies on the incircle and these lines: 1,3318   4,11   12,123   55,1295   65,1364   269,1358

X(1359) = X(1299)-of-intouch triangle
X(1359) = X(1295)-of-Mandart-incircle-triangle
X(1359) = homothetic center of intangents triangle and reflection of extangents triangle in X(1295)


X(1360) = BRISSE TRANSFORM OF X(103)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) where f(a,b,c) is as above X(1354), using X = X(103)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1360) lies on the incircle and these lines: 11,57   12,208   55,108   56,105   354,1364

X(1360) = X(3563)-of-intouch triangle (Chris van Tienhoven, Hyacinthos #21096, Jul 14, 2012)


X(1361) = BRISSE TRANSFORM OF X(104)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as above X(1354), using X = X(104)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1361) lies on the incircle and these lines: 1,1364   11,65   12,124   55,102   56,106   151,497   181,994   928,1362   962,1118   1122,1358

X(1361) = reflection of X(1364) in X(3)
X(1361) = anticomplement of X(3040)
X(1361) = crosspoint of X(7) and X(1465)
X(1361) = X(1300)-of-intouch triangle
X(1361) = X(102)-of-Mandart-incircle-triangle
X(1361) = homothetic center of intangents triangle and reflection of extangents triangle in X(102)


X(1362) = BRISSE TRANSFORM OF X(105)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as above X(1354), using X = X(105)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1362) lies on the incircle and these lines: 7,1002   11,118   12,116   43,57   55,103   56,101   59,840   65,1358   105,651   150,388   152,497   928,1361

X(1362) = anticomplement of X(3041)
X(1362) = X(i)-Ceva conjugate of X(j) for these (i,j): (7,241), (651,665)
X(1362) = crosspoint of X(7) and X(241)
X(1362) = crosssum of X(i) and X(j) for (i,j) = (11,885), (55,294)
X(1362) = crossdifference of every pair of points on line X(294)X(885)
X(1362) = X(672)-Hirst inverse of X(1458)
X(1362) = X(98)-of-intouch triangle
X(1362) = X(103)-of-Mandart-incircle-triangle
X(1362) = homothetic center of intangents triangle and reflection of extangents triangle in X(103)


X(1363) = BRISSE TRANSFORM OF X(107)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as above X(1354), using X = X(107)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1363) lies on the incircle and this line:
222,1355


X(1364) = BRISSE TRANSFORM OF X(108)

Trilinears    csc A tan(A/2) / (sec B - sec C) : :
Trilinears    a(b + c - a)[(b - c)(b^2 + c^2 - a^2)]^2 : :

X(1364) lies on the incircle and these lines: 1,1361   11,124   12,117   55,103   56,102   65,1359   77,296   151,388   185,603   354,1360   942,1354

X(1364) = reflection of X(1361) in X(1)
X(1364) = anticomplement of X(3042)
X(1364) = X(i)-Ceva conjugate of X(j) for these (i,j): (7,905), (189,650), (222,652), (255,520)
X(1364) = crosspoint of X(i) and X(j) for these (i,j): (3,521), (7,905)
X(1364) = crosssum of X(4) and X(108)
X(1364) = X(925)-of-intouch-triangle
X(1364) = X(109)-of-Mandart-incircle-triangle
X(1364) = homothetic center of intangents triangle and reflection of extangents triangle in X(109)
X(1364) = trilinear pole wrt intouch triangle of line X(4)X(7)
X(1364) = intersection, other than X(11), of incircle and Mandart circle
X(1364) = extouch isogonal conjugate of X(522)
X(1364) = crossdifference of every pair of points on line X(1783)X(4559)


X(1365) = BRISSE TRANSFORM OF X(110)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as above X(1354), using X = X(110)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1365) lies on the incircle and these lines: 7,1366   56,759   125,1109   1086,1357   1283,1284

X(1365) = crosssum of X(643) and X(1098)
X(1365) = X(933)-of-intouch-triangle
X(1365) = trilinear pole wrt intouch triangle of line X(7)X(21)
X(1365) = X(8)-isoconjugate of X(1101)
X(1365) = trilinear product X(57)*X(115)
X(1365) = barycentric product X(7)*X(115)


X(1366) = BRISSE TRANSFORM OF X(111)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as above X(1354), using X = X(111)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1366) lies on the incircle and these lines: 7,1365   222,1367   553,1358


X(1367) = BRISSE TRANSFORM OF X(112)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as above X(1354), using X = X(112)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1367) lies on the incircle and these lines: 7,1354   222,1366


X(1368) = COMPLEMENTARY CONJUGATE OF X(6)

Trilinears    bc[b2/(a2 - b2 + c2) + c2/(a2 + b2 - c2)] : :
Barycentrics    b2/(a2 - b2 + c2) + c2/(a2 + b2 - c2) : :
Barycentrics    (b^2 + c^2 - a^2)[a^2(b^2 + c^2) + (b^2 - c^2)^2] : :

As a point on the Euler line, X(1368) has Shinagawa coefficients (E - F, -E - F).

X(1368) lies on these lines: 2,3   11,1040   12,1038   98,801   114,122   120,123   125,343   126,127   230,577   495,612   496,614

X(1368) = midpoint of X(25) and X(1370)
X(1368) = reflection of X(1596) in X(5)
X(1368) = complement of X(25)
X(1368) = complementary conjugate of X(6)
X(1368) = isotomic conjugate of isogonal conjugate of X(6467)
X(1368) = polar conjugate of isogonal conjugate of X(22401)
X(1368) = circumcircle-inverse of X(37928)
X(1368) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,1196), (670,525), (222,652), (255,520)
X(1368) = crosspoint of X(2) and X(305)
X(1368) = perspector of circumconic centered at X(1196)
X(1368) = center of circumconic that is locus of trilinear poles of lines passing through X(1196)
X(1368) = X(2)-Ceva conjugate of X(1196)
X(1368) = homothetic center of the medial triangle and the 3rd pedal triangle of X(3)
X(1368) = X(6244)-of-orthic-triangle if ABC is acute


X(1369) = ANTICOMPLEMENTARY CONJUGATE OF X(6)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[b2/(a2 + c2) + c2/(a2 + b2) - a2/(b2 + c2)]
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = b2/(a2 + c2) + c2/(a2 + b2) - a2/(b2 + c2)

X(1369) lies on these lines: 2,32   69,3410

X(1369) = anticomplement of X(251)
X(1369) = anticomplementary conjugate of X(6)
X(1369) = isotomic conjugate of isogonal conjugate of X(2916)
X(1369) = isotomic conjugate of cyclocevian conjugate of X(76)
X(1369) = polar conjugate of isogonal conjugate of X(23133)


X(1370) = ANTICOMPLEMENT OF X(25)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[b2/(a2 - b2 + c2) + c2/(a2 + b2 - c2) - a2/(- a2 + b2 + c2)]
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = b2/(a2 - b2 + c2) + c2/(a2 + b2 - c2) - a2/(- a2 + b2 + c2)
Barycentrics    tan B + tan C - tan A - tan ω : :

As a point on the Euler line, X(1370) has Shinagawa coefficients (E, -2E - 2F).

X(1370) lies on these lines: 2,3   66,69   305,315   343,1350   925,1297

X(1370) = reflection of X(25) in X(1368)
X(1370) = isogonal conjugate of X(34207)
X(1370) = isotomic conjugate of X(13575)
X(1370) = complement of X(7500)
X(1370) = anticomplement of X(25)
X(1370) = crosspoint of X(670) and X(23582)
X(1370) = circumcircle-inverse of X(37929)
X(1370) = cevapoint of X(i) and X(j) for these (i,j): {159, 23115}, {455, 3162}
X(1370) = crosssum of X(669) and X(3269)
X(1370) = anticomplementary conjugate of X(193)
X(1370) = X(i)-Ceva conjugate of X(j) for these (i,j): (305,2), (315,69)
X(1370) = homothetic center of anticomplementary triangle and 3rd antipedal triangle of X(4) (or polar triangle of anticomplementary circle)
X(1370) = pole, wrt polar circle, of the radical axis of any pair of {1st, 2nd and 3rd pedal circles of X(4)}
X(1370) = pole of de Longchamps line wrt anticomplementary circle
X(1370) = inverse-in-de-Longchamps-circle of X(23)


X(1371) = 1st RIGBY POINT

Trilinears    1 + 8(area ABC)/[3a(b + c - a)] : :
X(1371) = 3s*X(1) + (2r + 8R)*X(7)

Adrian Oldknow, "The Euler-Gergonne-Soddy Triangle of a Triangle," American Mathematical Monthly 103 (1996) 319-329. See page 326.

See also MathWorld, Rigby Points.

X(1371) lies on this line: 1,7

X(1371) = {X(1),X(7)}-harmonic conjugate of X(1372)
X(1371) = {X(176),X(482)}-harmonic conjugate of X(1)

X(1372) = 2nd RIGBY POINT

Trilinears     1 - 8(area ABC)/[3a(b + c - a)] : :
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)
X(1372) = 3s*X(1) - (2r + 8R)*X(7)

Adrian Oldknow, "The Euler-Gergonne-Soddy Triangle of a Triangle," American Mathematical Monthly 103 (1996) 319-329. See page 326.

X(1372) lies on this line: 1,7

X(1372) = {X(1),X(7)}-harmonic conjugate of X(1371)
X(1372) = {X(175),X(481)}-harmonic conjugate of X(1)

X(1373) = 1st GRIFFITHS POINT

Trilinears    1 + 8(area ABC)/[a(b + c - a)] : :
Trilinears    1 + 4 sec A/2 cos B/2 cos C/2 : :
X(1373) = 2s*X(1) + (2r + 8R)*X(7)

Adrian Oldknow, "The Euler-Gergonne-Soddy Triangle of a Triangle," American Mathematical Monthly 103 (1996) 319-329. See page 327.

See also MathWorld, Griffiths Points.

X(1373) lies on these lines: {1,7}, {226,3317}

X(1373) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,7,1374), (7,176,481), (7,482,1), (175,482,1), (176,481,1), (481,482,176)
X(1373) = perspector of inner Soddy triangle and cross-triangle of inner and outer Soddy triangles
X(1373) = perspector of inner Soddy tangential triangle and cross-triangle of inner and outer Soddy tangential triangles


X(1374) = 2nd GRIFFITHS POINT

Trilinears    1 - 8(area ABC)/[a(b + c - a)] : :
Trilinears    1 - 4 sec A/2 cos B/2 cos C/2 : :
X(1374) = 2s*X(1) - (2r + 8R)*X(7)

Adrian Oldknow, "The Euler-Gergonne-Soddy Triangle of a Triangle," American Mathematical Monthly 103 (1996) 319-329. See page 327.

X(1374) lies on these lines: {1,7}, {226,3316}

X(1374) = {X(1),X(7)}-harmonic conjugate of X(1373)
X(1374) = {X(7),X(175)}-harmonic conjugate of X(482)
X(1374) = {X(7),X(481)}-harmonic conjugate of X(1)
X(1374) = {X(481),X(482)}-harmonic conjugate of X(175)
X(1374) = perspector of outer Soddy triangle and cross-triangle of inner and outer Soddy triangles
X(1374) = perspector of outer Soddy tangential triangle and cross-triangle of inner and outer Soddy tangential triangles


X(1375) = EVANS POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[- 2a2cos A + b(a - b + c)cos B + c(a + b - c)cos C]
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = - 2a2cos A + b(a - b + c)cos B + c(a + b - c)cos C

As a point on the Euler line, X(1375) has Shinagawa coefficients (2$aSBSC$ - $a$S2, $a$S2). Adrian Oldknow, "The Euler-Gergonne-Soddy Triangle of a Triangle," American Mathematical Monthly 103 (1996) 319-329. See page 328.

See also MathWorld, Evans Point.

X(1375) lies on these lines: 2,3   241,514

X(1375) = complement of X(857)
X(1375) = crossdifference of every pair of points on line X(55)X(647)


X(1376) = EXSIMILICENTER(CIRCUMCIRCLE, SPIEKER CIRCLE)

Trilinears    a2 - ab - ac + 2bc : :
Barycentrics    b + c - a cos A : :
X(1376) = X(1) - 3X(2) + (r/R)X(3) = r*X(3) - 2R*X(10) = R*X(1) - r*X(3) + R*X(8)

X(1376) lies on these lines: 1,474   2,11   3,10   4,1329   6,43   7,480   8,56   9,165   12,377   31,899   35,405   36,956   40,936   42,750   45,846   46,72   57,200   63,210   65,78   71,965   75,183   226,1260   227,1038   371,1377   372,1378   442,498   517,997   519,999   748,902   851,1211   978,1191   982,1054

X(1376) = midpoint of X(i) and X(j) for these (i,j): (8,3476), (57,200), (329,3474)
X(1376) = isogonal conjugate of X(9309)
X(1376) = homothetic center of inner-Conway triangle and cross-triangle of Ursa-major and Ursa-minor triangles
X(1376) = complement of X(497)
X(1376) = X(294)-Ceva conjugate of X(518)
X(1376) = cevapoint of X(43) and X(165)
X(1376) = anticomplement of X(3816)
X(1376) = crosssum of PU(46)
X(1376) = crosspoint of PU(112)
X(1376) = crossdifference of every pair of points on line X(665)X(4083)
X(1376) = homothetic center of ABC and cross-triangle of ABC and inner Johnson triangle


X(1377) = INSIMILICENTER(2nd LEMOINE CIRCLE, SPIEKER CIRCLE)

Trilinears    bc(b + c + a sin A) : :
X(1377) = r*X(6) + (2R tan ω)*X(10) = R*X(1) + (r cot ω)*X(6) + R*X(8)

X(1377) lies on these lines: 2,1335   6,10   8,1124   371,1376   372,958   485,1329   993,1152

X(1377) = {X(6),X(10)}-harmonic conjugate of X(1378)


X(1378) = EXSIMILICENTER(2nd LEMOINE CIRCLE, SPIEKER CIRCLE)

Trilinears    bc(b + c - a sin A) : :
X(1378) = r*X(6) - (2R tan ω)*X(10) = R*X(1) - (r cot ω)*X(6) + R*X(8)

X(1378) lies on these lines: 2,1124   6,10   8,1335   371,958   372,1376   486,1329   993,1151

X(1378) = {X(6),X(10)}-harmonic conjugate of X(1377)


X(1379) = 1st BROCARD-AXIS INTERCEPT OF CIRCUMCIRCLE

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a + 2(|OK| - R)cot ω cos A
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = e cos A - cos(A + ω), e = (1 - 4 sin2ω)1/2
Trilinears        h(a,b,c) : h(b,c,a) : h(c,a,b), where h(a,b,c) = a(a4 - b2c2 + a2T), where T = (a4 + b4 + c4 - b2c2 - c2a2 - a2 b2)1/2

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1379) = (-1 + |OK|/R)*X(3) + X(6)

The Brocard axis, OK, is the line of the circumcenter, O [= X(3)], and the symmedian point, K [= X(6)]. This line meets the circumcircle in two points, X(1379) and X(1380); the closer to X(6) is X(1379.

X(1379) lies on these lines: {2,2039}, {3,6}, {4,2040}, {20,35913}, {23,6141}, {30,31863}, {83,14633}, {98,3414}, {99,3413}, {110,5638}, {111,5639}, {141,19660}, {230,31862}, {316,1348}, {352,6142}, {476,13722}, {513,36735}, {517,36736}, {620,14502}, {667,11651}, {1113,35607}, {1114,14899}, {1349,38227}

X(1379) = isogonal conjugate of X(3413)
X(1379) = reflection of X(i) in X(j) for these (i,j): (4,2040), (1380,3), (3557,2029)
X(1379) = anticomplement of X(2039)
X(1379) = inverse-in-Brocard-circle of X(1341)
X(1379) = X(249)-Ceva conjugate of X(1380)
X(1379) = Ψ(X(2), X(1340))
X(1379) = trilinear pole of line X(6)X(5639)
X(1379) = {X(371),X(372)}-harmonic conjugate of X(3558)
X(1379) = {X(1687),X(1688)}-harmonic conjugate of X(1380)
X(1379) = circumcircle intercept, other than A, B, C, of hyperbola {A,B,C,X(6),PU(118)}
X(1379) = perspector of triangles AiBiCi and (AaBbCc)*, and of triangles AaBbCc and (AiBiCi)*; see preamble before X(11752)
X(1379) = perspector of ABC and (degenerate) cross-triangle of 1st and 2nd anti-circummedial triangles
X(1379) = barycentric product of circumcircle intercepts of line X(2)X(1340)


X(1380) = 2nd BROCARD-AXIS INTERCEPT OF CIRCUMCIRCLE

Trilinears    a - 2(|OK| + R)cot ω cos A : :
Trilinears    e cos A + cos(A + ω) : : , where e = (1 - 4 sin2ω)1/2
Trilinears    a(a4 - b2c2 - a2T) : : , where T = (a4 + b4 + c4 - b2c2 - c2a2 - a2 b2)1/2

X(1380) = (1 + |OK|/R)*X(3) - X(6)

Let A' be the incenter of BCX(15), and define B' and C' cyclically. Let A" be the incenter of BCX(16), and define B" and C" cyclically. The lines A'A", B'B", C'C" concur in X(1380). (Randy Hutson, February 10, 2016)

X(1380) lies on these lines: {2,2040}, {3,6}, {4,2039}, {20,35914}, {23,6142}, {30,31862}, {83,14632}, {98,3413}, {99,3414}, {110,5639}, {111,5638}, {141,19659}, {230,31863}, {316,1349}, {352,6141}, {476,13636}, {513,36736}, {517,36735}, {620,14501}, {667,11652}, {1113,35608}, {1114,35609}, {1348,38227}

In the plane of a triangle ABC, let
F1 = X(39162) and F2 = X(39163); these points are the foci of the Steiner inellipse;
L1 = trilinear polar of F1
L2 = trilinear polar of F1
A1 = L1∩BC, and define B1 and C1 cyclically
A2 = L2∩BC, and define B2 and C2 cyclically
The seven circle (ABC), (AB1C1), (BC1A1), (CA1B1), (AB2C2), (BC2A2), (CA1B2) concur in X(1380). See X(1380) (Angel Montesdeoca, February 18, 2023)

X(1380) = isogonal conjugate of X(3414)
X(1380) = reflection of X(i) in X(j) for these (i,j): (4,2039), (1379,3), (3558,2028)
X(1380) = anticomplement of X(2040)
X(1380) = inverse-in-Brocard-circle of X(1340)
X(1380) = X(249)-Ceva conjugate of X(1379)
X(1380) = Ψ(X(2), X(1341))
X(1380) = {X(371),X(372)}-harmonic conjugate of X(3557)
X(1380) = {X(1687),X(1688)}-harmonic conjugate of X(1379)
X(1380) = trilinear pole of line X(6)X(5638) (tangent to hyperbola {{A,B,C,X(6),PU(118)}} at X(6))
X(1380) = barycentric product of circumcircle intercepts of line X(2)X(1341)


X(1381) = 1st INTERCEPT OF LINE X(1)X(3) AND CIRCUMCIRCLE

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = r + (|OI| - R) cos A
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

The line IO, where I = X(1) = incenter and O = X(3) = circumcenter, meets the circumcircle in two points, X(1381) and X(1382), where X(1381) is the nearer of the two to X(1).

X(1381) lies on the circumcircle and this line: 1,3

X(1381) = reflection of X(1382) in X(3)
X(1381) = isogonal conjugate of X(3307)
X(1381) = X(59)-Ceva conjugate of X(1382)
X(1381) = X(513)-cross conjugate of X(1382)


X(1382) = 2nd INTERCEPT OF LINE X(1)X(3) AND CIRCUMCIRCLE

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = r - (|OI| + R) cos A
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1382) lies on the circumcircle and this line: 1,3

X(1382) = reflection of X(1381) in X(3)
X(1382) = isogonal conjugate of X(3308)
X(1382) = X(59)-Ceva conjugate of X(1381)
X(1382) = X(513)-cross conjugate of X(1381)


X(1383) = 1st GRINBERG HOMOTHETIC CENTER

Trilinears    a/(2b2 + 2c2 - a2) : :
Barycentrics    area(A'BC) : : , where A'B'C' is the circummedial triangle
Barycentrics    area(A'BC) : :, where A'B'C' is the circumsymmedial triangle
Barycentrics    area(A'BC) : :, where A'B'C' is the 4th Brocard triangle

Let A'B'C' be the circumcevian triangle of X(2), and let P(A) be the line through A' parallel to line BC. Define P(B) and P(C) cyclically. Let A" = P(B)∩P(C), and define B" and C" cyclically. Triangle A"B"C" is homothetic to ABC, and X(1383) is the center of the homothety.

The center of the homothety is also X(1383) if "circumcevian triangle of X(6) (circumsymmedial triangle)" or "4th Brocard triangle" is substituted for "circumcevian triangle of X(2)". (Randy Hutson, March 21, 2019)

X(1383) lies on these lines: 2,187   6,23   32,111

X(1383) = isogonal conjugate of X(599)
X(1383) = isotomic conjugate of X(9464)
X(1383) = vertex conjugate of X(2) and X(6)
X(1383) = cevapoint of X(6) and X(1384)


X(1384) = 2nd GRINBERG HOMOTHETIC CENTER

Trilinears    a(b2 + c2 - 5a2) : :
Trilinears    sin(A + ω) - 5 sin(A - ω) : :

Let GA be the circumcenter of triangle BCG, where G - centroid(ABC). Define GB and GC cyclically. Triangle GAGBGC is homothetic to the pedal triangle of X(6), and X(1384) is the center of the homothety.

Let DEF be the circumsymmedial triangle and let (Oa) be the circle tangent at D to circumcircle and with center Oa=AH∩ OD. Define (Ob) and (Oc) cyclically. The radical center of the circles (Oa), (Ob), (Oc) is X(1384). (Angel Montesdeoca, October 2, 2018)

X(1384) lies on these lines: 3,6   25,111   55,609   230,381   385,1003

X(1384) = X(1383)-Ceva conjugate of X(6)
X(1384) = isogonal conjugate of X(5485)
X(1384) = intersection of tangents at PU(2) to hyperbola {X(6),PU(1),PU(2)}
X(1384) = {X(3),X(6)}-harmonic conjugate of X(5024)
X(1384) = inverse-in-1st-Brocard-circle of X(5024)


X(1385) = MIDPOINT OF INCENTER AND CIRCUMCENTER

Barycentrics    a*(2*a^3 - a^2*b - 2*a*b^2 + b^3 - a^2*c + 2*a*b*c - b^2*c - 2*a*c^2 - b*c^2 + c^3) : :
Trilinears    16(area ABC)2 + a(a + b + c)(b2 + c2 - a2) : :
Trilinears    2 cos A + cos B + cos C - 1 : :
Trilinears    r + R cos A : :
X(1385) = X(1) + X(3) =3 X[1] + X[40], 5 X[1] + 3 X[165], 3 X[1] - X[1482], X[1] + 3 X[3576], 2 X[1] + X[3579], 5 X[1] - X[7982], 3 X[1] + 5 X[7987], 7 X[1] + X[7991], 7 X[1] - X[8148], X[1] - 3 X[10246], 5 X[1] - 3 X[10247], 11 X[1] - 3 X[11224], 4 X[1] - X[11278], 9 X[1] - X[11531], 5 X[1] + X[12702], X[1] + 2 X[13624], 13 X[1] - 5 X[16189], 25 X[1] - 9 X[16191], 9 X[1] + 7 X[16192], 7 X[1] - 3 X[16200], 2 X[1] + 3 X[17502], X[1] + 7 X[30389], X[1] - 9 X[30392], X[1] + 6 X[31662], 3 X[1] + 2 X[31663], 2 X[1] + 5 X[31666], 3 X[1] - 2 X[33179], 7 X[1] + 5 X[35242], 3 X[1] - 5 X[37624], 3 X[3] - X[40], 5 X[3] - 3 X[165], 3 X[3] + X[1482], X[3] - 3 X[3576], 5 X[3] + X[7982], 3 X[3] - 5 X[7987], 7 X[3] - X[7991], 7 X[3] + X[8148], 2 X[3] + X[10222], X[3] + 3 X[10246], 5 X[3] + 3 X[10247], 11 X[3] + 3 X[11224], 4 X[3] + X[11278], 9 X[3] + X[11531], 5 X[3] - X[12702], X[3] + 2 X[15178], 13 X[3] + 5 X[16189], 25 X[3] + 9 X[16191], 9 X[3] - 7 X[16192], 7 X[3] + 3 X[16200], 2 X[3] - 3 X[17502], X[3] - 7 X[30389], X[3] + 9 X[30392], X[3] - 6 X[31662], 3 X[3] - 2 X[31663], and many others

Let Na = X(5)-of-BCX(1), Nb = X(5)-of-CAX(1), Nc = X(5)-of-ABX(1). X(1385) is the antigonal image of X(5) wrt NaNbNc. Also, X(1385) = X(265)-of-NaNbNc. (Randy Hutson, December 10, 2016)

Let A'B'C' be the medial triangle. X(1385) is the radical center of the incircles of AB'C', BC'A', CA'B'. (Randy Hutson, December 10, 2016)

In the plane of a triangle ABC, let
D = the point on line AC such that angle CAB = angle DAB and |AD| = |AB|
E = the point on line AB such that angle CAB = angle CAE and |AE| = |AC|
F = the point on line BC such that angle CBA = angle FBA and |BF| = |AB|
G = the point on line AB such that angle CBA = angle CBG and |BG| = |BC|
H = the point on line BC such that angle ACB = angle ACH and |CH| = |AC|
I = the point on line AC such that angle ACB = angle ICB and |CI| = |BC|
The circumcenters of AGI, BEH, CDF, ABHI, ACFG, and BCDE lie on a conic section centered at X(1385). (Benjamin Warren, December 7, 2024)

X(1385) lies on the cubics K798 and K981 and these lines: {1, 3}, {2, 355}, {4, 1538}, {5, 515}, {6, 9619}, {7, 38030}, {8, 631}, {9, 20818}, {10, 140}, {11, 6842}, {12, 6882}, {20, 3622}, {21, 104}, {24, 1829}, {28, 1871}, {29, 39529}, {30, 551}, {37, 572}, {41, 43065}, {48, 40937}, {54, 72}, {63, 5730}, {71, 17438}, {73, 34586}, {74, 5606}, {77, 945}, {78, 956}, {79, 4325}, {80, 17606}, {92, 7531}, {98, 29299}, {100, 4861}, {101, 1212}, {102, 7100}, {106, 6011}, {119, 4187}, {142, 37281}, {145, 3523}, {149, 11015}, {150, 17095}, {153, 37162}, {169, 3207}, {182, 518}, {186, 41722}, {191, 28443}, {210, 5258}, {215, 17660}, {224, 41559}, {226, 4311}, {238, 7609}, {284, 1108}, {371, 7968}, {372, 7969}, {376, 962}, {377, 12116}, {378, 1902}, {381, 5691}, {382, 1699}, {386, 37698}, {388, 6827}, {390, 12700}, {399, 33535}, {404, 3753}, {405, 5777}, {442, 24541}, {452, 24558}, {474, 11499}, {495, 6922}, {496, 950}, {497, 4305}, {498, 5252}, {499, 1837}, {500, 1064}, {501, 759}, {511, 1386}, {512, 44811}, {513, 35050}, {516, 550}, {519, 549}, {528, 49600}, {529, 21077}, {537, 51045}, {542, 32238}, {546, 3817}, {547, 19883}, {548, 4301}, {573, 1100}, {574, 31430}, {575, 4663}, {578, 44547}, {581, 995}, {590, 49601}, {595, 37469}, {601, 3915}, {602, 1468}, {612, 16434}, {614, 19544}, {615, 49602}, {632, 3634}, {692, 48694}, {726, 32448}, {730, 49111}, {758, 5428}, {760, 13335}, {891, 44805}, {912, 960}, {936, 5534}, {938, 6988}, {943, 1476}, {947, 1807}, {953, 1290}, {954, 51489}, {958, 997}, {971, 1001}, {978, 37699}, {991, 1279}, {1012, 9856}, {1055, 17451}, {1056, 4308}, {1058, 4313}, {1066, 4322}, {1072, 23675}, {1145, 38760}, {1149, 4300}, {1151, 31439}, {1152, 35774}, {1154, 12266}, {1160, 11371}, {1161, 11370}, {1191, 36746}, {1193, 5396}, {1203, 36750}, {1210, 15325}, {1317, 21154}, {1320, 34474}, {1329, 10942}, {1334, 17439}, {1350, 38315}, {1351, 16475}, {1353, 34379}, {1375, 25935}, {1376, 10156}, {1387, 4304}, {1389, 27003}, {1400, 17440}, {1426, 1870}, {1441, 17221}, {1455, 10571}, {1457, 4303}, {1478, 6928}, {1479, 6923}, {1480, 16486}, {1484, 5499}, {1490, 5436}, {1511, 38612}, {1537, 38761}, {1571, 15815}, {1572, 3053}, {1587, 13902}, {1588, 13959}, {1595, 49542}, {1616, 37501}, {1621, 6906}, {1656, 3624}, {1657, 11522}, {1698, 3526}, {1702, 6221}, {1703, 6398}, {1706, 7966}, {1709, 28444}, {1710, 28445}, {1737, 5433}, {1742, 24661}, {1762, 28446}, {1766, 5356}, {1768, 48667}, {1770, 15326}, {1790, 37227}, {1798, 25713}, {1824, 37117}, {1836, 4299}, {1838, 7510}, {1848, 7511}, {1872, 6198}, {1939, 2649}, {1953, 22054}, {1960, 2826}, {2070, 9626}, {2080, 12194}, {2096, 17576}, {2100, 28447}, {2101, 28448}, {2102, 38708}, {2103, 38709}, {2173, 22357}, {2260, 5755}, {2278, 8609}, {2329, 25066}, {2346, 15179}, {2360, 36011}, {2478, 12115}, {2550, 38122}, {2687, 6584}, {2704, 14665}, {2716, 34921}, {2777, 11723}, {2778, 13293}, {2782, 11710}, {2783, 49484}, {2794, 11724}, {2800, 3884}, {2801, 15254}, {2802, 33814}, {2807, 40647}, {2808, 11712}, {2809, 38599}, {2817, 38600}, {2818, 11700}, {2829, 11729}, {2836, 12584}, {2886, 10943}, {2937, 9625}, {2941, 28449}, {2948, 32609}, {2960, 28450}, {3058, 11826}, {3073, 8235}, {3083, 16433}, {3084, 16432}, {3085, 3476}, {3086, 3486}, {3088, 7718}, {3090, 5550}, {3091, 46934}, {3100, 37404}, {3157, 34046}, {3158, 12629}, {3185, 15654}, {3189, 34625}, {3218, 4018}, {3241, 3524}, {3242, 5085}, {3243, 21153}, {3244, 3530}, {3309, 24286}, {3311, 9583}, {3312, 18991}, {3398, 11364}, {3419, 6889}, {3421, 27383}, {3434, 6897}, {3436, 6947}, {3467, 11279}, {3475, 5761}, {3485, 4293}, {3487, 3600}, {3488, 6908}, {3515, 11396}, {3517, 7713}, {3522, 6361}, {3525, 9780}, {3528, 5734}, {3529, 9812}, {3533, 19877}, {3534, 28202}, {3541, 5090}, {3553, 5120}, {3554, 4254}, {3555, 6986}, {3564, 39870}, {3582, 37702}, {3583, 37735}, {3585, 5443}, {3586, 9669}, {3589, 38167}, {3615, 7424}, {3617, 10303}, {3623, 15717}, {3625, 12108}, {3626, 14869}, {3627, 18483}, {3628, 10175}, {3632, 3689}, {3633, 9588}, {3635, 15712}, {3640, 26348}, {3641, 26341}, {3646, 9845}, {3647, 12104}, {3649, 30264}, {3651, 45977}, {3671, 24470}, {3679, 5054}, {3683, 5693}, {3720, 4192}, {3730, 6603}, {3742, 7686}, {3751, 5050}, {3754, 34353}, {3811, 12513}, {3812, 6796}, {3813, 32214}, {3820, 5795}, {3824, 6917}, {3827, 15577}, {3828, 11539}, {3830, 34628}, {3845, 12571}, {3851, 7988}, {3853, 28190}, {3868, 37106}, {3869, 3916}, {3871, 38460}, {3872, 4855}, {3874, 31806}, {3877, 4189}, {3878, 4640}, {3880, 8715}, {3890, 6950}, {3893, 48696}, {3911, 37728}, {3920, 19649}, {3928, 4930}, {3929, 28451}, {3955, 17625}, {3962, 4867}, {4004, 48363}, {4083, 39227}, {4084, 4973}, {4132, 39210}, {4145, 44812}, {4188, 35271}, {4190, 37000}, {4199, 24550}, {4220, 7191}, {4225, 18180}, {4251, 40133}, {4256, 4646}, {4276, 18178}, {4292, 39542}, {4294, 6948}, {4298, 6147}, {4302, 12701}, {4314, 15172}, {4315, 5719}, {4317, 10404}, {4357, 29287}, {4421, 10912}, {4423, 10157}, {4512, 17571}, {4564, 14887}, {4649, 37510}, {4652, 11682}, {4653, 8143}, {4666, 7580}, {4668, 51515}, {4669, 11812}, {4670, 29069}, {4677, 15701}, {4745, 15713}, {4849, 46822}, {4857, 5441}, {4911, 17084}, {4920, 15903}, {4995, 45081}, {5013, 9620}, {5024, 9593}, {5055, 7989}, {5066, 34648}, {5070, 34595}, {5071, 50864}, {5080, 6902}, {5086, 6224}, {5092, 49465}, {5124, 21853}, {5171, 10800}, {5176, 27529}, {5184, 38225}, {5218, 6961}, {5219, 9613}, {5239, 6192}, {5240, 6191}, {5248, 5450}, {5249, 37468}, {5250, 16370}, {5251, 5506}, {5253, 5439}, {5259, 7489}, {5260, 12738}, {5270, 37701}, {5284, 5927}, {5287, 16435}, {5289, 12514}, {5302, 10176}, {5303, 26877}, {5308, 7397}, {5315, 51340}, {5330, 17549}, {5399, 22350}, {5418, 13911}, {5420, 13973}, {5424, 5557}, {5426, 12688}, {5432, 10039}, {5434, 11827}, {5438, 9623}, {5444, 37710}, {5445, 41684}, {5493, 28212}, {5496, 20718}, {5533, 12743}, {5542, 5762}, {5552, 6967}, {5554, 6921}, {5559, 39781}, {5604, 45553}, {5605, 45552}, {5663, 11699}, {5692, 11935}, {5720, 8583}, {5728, 7677}, {5732, 38316}, {5754, 21363}, {5758, 11037}, {5759, 11038}, {5763, 12577}, {5768, 6857}, {5771, 24391}, {5779, 16866}, {5780, 7308}, {5787, 6824}, {5791, 30478}, {5794, 26363}, {5797, 29833}, {5805, 6869}, {5806, 6985}, {5836, 15813}, {5842, 12609}, {5843, 51090}, {5847, 48876}, {5854, 32157}, {5876, 31751}, {5918, 26088}, {5946, 31760}, {6000, 12262}, {6051, 10448}, {6181, 9374}, {6200, 35642}, {6210, 48908}, {6246, 32557}, {6253, 28452}, {6256, 6929}, {6259, 6930}, {6264, 12331}, {6284, 30384}, {6321, 38220}, {6366, 44819}, {6396, 35641}, {6417, 19003}, {6418, 19004}, {6449, 9616}, {6455, 9582}, {6642, 9798}, {6644, 44662}, {6666, 38179}, {6667, 38182}, {6668, 38183}, {6690, 12616}, {6702, 20107}, {6705, 33899}, {6739, 27687}, {6740, 37158}, {6744, 15935}, {6797, 10090}, {6826, 18517}, {6836, 10532}, {6838, 10586}, {6862, 10198}, {6872, 37002}, {6879, 10585}, {6885, 28629}, {6890, 10587}, {6893, 12667}, {6899, 10597}, {6909, 26200}, {6911, 11500}, {6918, 12650}, {6925, 10531}, {6937, 11680}, {6954, 7288}, {6959, 10200}, {6963, 11681}, {6965, 26127}, {6971, 7951}, {6978, 10588}, {6980, 7741}, {6982, 10591}, {6989, 19843}, {6992, 20076}, {6996, 16826}, {6998, 16823}, {6999, 29586}, {7171, 12705}, {7330, 16418}, {7354, 7491}, {7377, 17397}, {7384, 29592}, {7387, 11365}, {7411, 29817}, {7483, 24987}, {7506, 8185}, {7583, 8983}, {7584, 13971}, {7587, 12491}, {7588, 8100}, {7675, 42884}, {7680, 37356}, {7681, 37406}, {7690, 48740}, {7692, 48741}, {7701, 28453}, {7970, 34473}, {7972, 17663}, {7973, 10606}, {7974, 21157}, {7975, 21156}, {7976, 22712}, {7977, 9751}, {7978, 15055}, {7983, 21166}, {7984, 12778}, {8012, 48263}, {8021, 23204}, {8068, 18976}, {8077, 8099}, {8092, 8130}, {8109, 12488}, {8110, 12489}, {8129, 8351}, {8141, 28454}, {8225, 12490}, {8229, 26230}, {8236, 35514}, {8543, 18450}, {8572, 17054}, {8677, 44807}, {8703, 12512}, {8717, 9943}, {8731, 25941}, {8760, 11247}, {8907, 18732}, {8981, 13883}, {9041, 50983}, {9310, 16601}, {9317, 24774}, {9519, 51531}, {9540, 19066}, {9548, 9567}, {9549, 9566}, {9572, 28455}, {9573, 28456}, {9575, 30435}, {9578, 31479}, {9589, 15696}, {9590, 45735}, {9591, 13564}, {9592, 9605}, {9610, 9642}, {9611, 9641}, {9612, 9655}, {9614, 9668}, {9617, 9691}, {9618, 9690}, {9621, 9704}, {9622, 9703}, {9643, 36984}, {9678, 30556}, {9732, 45399}, {9733, 45398}, {9738, 45501}, {9739, 45500}, {9821, 11368}, {9864, 15561}, {9899, 35450}, {9904, 15041}, {9911, 35243}, {9928, 47391}, {9941, 26316}, {10058, 12740}, {10074, 12739}, {10087, 20586}, {10109, 38076}, {10124, 51082}, {10172, 19878}, {10248, 15682}, {10251, 28457}, {10256, 50772}, {10263, 31757}, {10271, 11719}, {10282, 40660}, {10297, 47469}, {10299, 20057}, {10304, 20070}, {10386, 12575}, {10446, 17394}, {10459, 19514}, {10478, 37869}, {10483, 18393}, {10519, 51192}, {10528, 36977}, {10529, 37112}, {10543, 15908}, {10573, 24914}, {10582, 19541}, {10609, 24390}, {10627, 31737}, {10647, 18469}, {10648, 18471}, {10669, 11377}, {10673, 11378}, {10695, 38690}, {10696, 38691}, {10697, 38692}, {10698, 12515}, {10699, 38694}, {10700, 38695}, {10701, 23239}, {10702, 38696}, {10703, 38697}, {10704, 38698}, {10705, 38699}, {10864, 18540}, {10895, 37692}, {10896, 23708}, {10915, 38455}, {10916, 44669}, {10956, 32554}, {11019, 12433}, {11101, 51420}, {11109, 45766}, {11113, 41012}, {11171, 12782}, {11179, 47358}, {11194, 12635}, {11237, 11929}, {11238, 11928}, {11251, 11831}, {11496, 12520}, {11552, 39782}, {11570, 45288}, {11695, 23841}, {11705, 11739}, {11706, 11740}, {11716, 28915}, {11721, 33962}, {11722, 12265}, {11725, 23698}, {11735, 12261}, {12017, 16496}, {12054, 12197}, {12100, 51071}, {12103, 28178}, {12247, 37291}, {12248, 16128}, {12259, 44665}, {12264, 22475}, {12368, 14643}, {12407, 38724}, {12438, 26451}, {12440, 45623}, {12441, 45624}, {12497, 35248}, {12528, 16865}, {12558, 16160}, {12607, 32213}, {12610, 17045}, {12617, 16617}, {12647, 37738}, {12696, 35241}, {12697, 35246}, {12698, 35247}, {12735, 41554}, {12747, 37718}, {12751, 38752}, {12877, 16159}, {12898, 13211}, {12908, 31791}, {13099, 38717}, {13178, 38224}, {13329, 49478}, {13334, 14839}, {13349, 44660}, {13350, 44659}, {13405, 37364}, {13532, 38776}, {13605, 32423}, {13630, 31728}, {13729, 17618}, {13747, 24982}, {13912, 35255}, {13935, 19065}, {13936, 13966}, {13975, 35256}, {14074, 38451}, {14269, 30308}, {14636, 48882}, {14666, 50926}, {14830, 50881}, {14891, 51077}, {14893, 50862}, {15017, 38755}, {15067, 31752}, {15071, 18515}, {15122, 47476}, {15170, 31777}, {15462, 32278}, {15489, 45955}, {15623, 16374}, {15677, 16116}, {15681, 50865}, {15683, 50819}, {15684, 50806}, {15686, 50815}, {15687, 50802}, {15690, 34638}, {15692, 50810}, {15693, 34718}, {15694, 19875}, {15698, 34631}, {15700, 50805}, {15702, 50818}, {15704, 28150}, {15707, 34747}, {15708, 31145}, {15711, 51107}, {15718, 50817}, {15721, 50804}, {15723, 50871}, {15733, 42842}, {15735, 38668}, {15759, 51104}, {15829, 31424}, {15842, 15843}, {16058, 23168}, {16113, 28460}, {16138, 28461}, {16139, 21161}, {16174, 22938}, {16239, 31399}, {16309, 28462}, {16466, 36742}, {16472, 36749}, {16473, 36753}, {16491, 33878}, {16517, 31468}, {16583, 21008}, {16604, 34460}, {16830, 21554}, {16884, 37499}, {17022, 19517}, {17043, 18589}, {17044, 34847}, {17073, 26130}, {17136, 20880}, {17566, 25005}, {17654, 18861}, {17696, 35274}, {17728, 37724}, {17757, 27385}, {18395, 37706}, {18400, 32331}, {18458, 30385}, {18460, 30386}, {18524, 45976}, {18583, 38049}, {18650, 41007}, {18654, 20895}, {19262, 37482}, {19512, 29571}, {19516, 29821}, {19522, 21352}, {19535, 35258}, {19540, 26102}, {19546, 30950}, {19548, 28082}, {19550, 30116}, {19708, 34632}, {19710, 41150}, {19711, 51091}, {19919, 28463}, {20104, 38114}, {20423, 38023}, {21147, 37697}, {21155, 37734}, {21167, 51147}, {21375, 28464}, {21511, 26639}, {21677, 28465}, {21850, 38040}, {21872, 24047}, {22082, 25416}, {22115, 44782}, {22769, 34381}, {23156, 31825}, {23242, 23243}, {24036, 30618}, {24220, 28639}, {24257, 32941}, {24325, 29010}, {24331, 36477}, {24559, 37086}, {24581, 48381}, {25082, 41391}, {25406, 39898}, {25485, 46684}, {25498, 29109}, {25525, 45630}, {25681, 37713}, {26006, 30810}, {26140, 27006}, {26202, 31649}, {26367, 49378}, {26368, 49377}, {26369, 49038}, {26370, 49039}, {26498, 45718}, {26507, 45717}, {26516, 45719}, {26521, 45720}, {26626, 36698}, {26725, 37230}, {28083, 34461}, {28216, 44245}, {28228, 46853}, {28473, 48328}, {28537, 48344}, {28538, 50977}, {28609, 34740}, {28850, 48932}, {29057, 49482}, {29207, 50290}, {29309, 41430}, {29311, 48886}, {29331, 50023}, {29369, 33682}, {29570, 37416}, {29660, 36530}, {29814, 37400}, {31434, 37709}, {31443, 37512}, {31670, 38035}, {31671, 38036}, {31672, 38037}, {31747, 32424}, {31790, 32183}, {31811, 32046}, {31822, 37411}, {32049, 45701}, {32486, 46362}, {32515, 50775}, {32905, 33812}, {33668, 49113}, {34200, 50808}, {34380, 51196}, {34789, 38753}, {35404, 51080}, {35610, 35811}, {35611, 35810}, {36505, 36561}, {36745, 44414}, {36754, 39523}, {37246, 38396}, {37251, 44425}, {37298, 50843}, {37365, 43223}, {37425, 48903}, {37712, 46219}, {37732, 49997}, {37806, 45272}, {37829, 38762}, {38064, 47359}, {38081, 51069}, {38116, 49688}, {38118, 49529}, {38144, 47355}, {38764, 50903}, {39582, 44545}, {40091, 45219}, {40998, 50241}, {43118, 45714}, {43119, 45713}, {43151, 43179}, {44214, 47321}, {44220, 44661}, {44580, 51096}, {44903, 51075}, {45410, 45427}, {45411, 45426}, {47033, 49176}, {47333, 47593}, {48877, 50420}, {48883, 48907}, {48887, 50418}, {51114, 51117}, {51115, 51116}

X(1385) = midpoint of X(i) and X(j) for these {i,j}: {1, 3}, {2, 3655}, {4, 18481}, {5, 34773}, {8, 37727}, {10, 5882}, {20, 12699}, {21, 33858}, {40, 1482}, {100, 12737}, {104, 6265}, {142, 43175}, {165, 10247}, {214, 11715}, {355, 944}, {376, 3656}, {381, 50811}, {399, 33535}, {500, 9840}, {549, 50824}, {550, 22791}, {942, 31786}, {946, 4297}, {960, 12675}, {991, 31394}, {999, 37611}, {1071, 5887}, {1483, 5690}, {1537, 38761}, {1657, 41869}, {1768, 48667}, {2975, 37733}, {3057, 37562}, {3058, 28458}, {3241, 3654}, {3244, 11362}, {3428, 37533}, {3534, 31162}, {3576, 10246}, {3579, 10222}, {3635, 43174}, {3811, 12513}, {3830, 34628}, {3874, 31806}, {3878, 5884}, {3928, 4930}, {4301, 31730}, {4677, 34748}, {5434, 28459}, {5441, 47032}, {5450, 40257}, {5453, 48930}, {5535, 35457}, {5697, 25413}, {5720, 30283}, {5731, 5886}, {5805, 43161}, {5881, 18526}, {6210, 48908}, {6261, 12114}, {6264, 12331}, {6326, 12773}, {6684, 13607}, {6767, 30503}, {6769, 8158}, {7354, 7491}, {7966, 40587}, {7967, 26446}, {7972, 19914}, {7982, 12702}, {7984, 12778}, {7987, 37624}, {7991, 8148}, {8666, 22836}, {8715, 22837}, {9943, 45776}, {9957, 31788}, {10265, 33337}, {10297, 47469}, {10543, 37401}, {10609, 37726}, {10698, 12515}, {10738, 12119}, {11014, 11849}, {11179, 47358}, {11496, 12520}, {11700, 11713}, {11709, 11720}, {11710, 11711}, {11712, 11714}, {11722, 12265}, {12248, 16128}, {12262, 40658}, {12680, 40263}, {12696, 35241}, {12738, 38669}, {12898, 13211}, {12908, 31791}, {13600, 31798}, {13624, 15178}, {13743, 16132}, {14110, 24474}, {14666, 50926}, {14830, 50881}, {15071, 40266}, {15122, 47476}, {15171, 31775}, {15681, 50865}, {16139, 34195}, {18446, 22758}, {18990, 31789}, {19907, 38602}, {22770, 37531}, {23156, 31825}, {24257, 32941}, {25485, 46684}, {26086, 26087}, {26286, 46920}, {28609, 34740}, {31663, 33179}, {31732, 31738}, {31787, 31792}, {31790, 32183}, {33281, 33862}, {34718, 51093}, {34789, 38753}, {37425, 48903}, {37474, 46475}, {39870, 49511}, {43151, 43179}, {45715, 45716}, {47333, 47593}, {48882, 48909}, {48883, 48907}, {48893, 48894}
X(1385) = reflection of X(i) in X(j) for these {i,j}: {1, 15178}, {3, 13624}, {4, 9955}, {5, 1125}, {10, 140}, {40, 31663}, {65, 5885}, {355, 9956}, {549, 50828}, {942, 13373}, {946, 5901}, {960, 31838}, {1071, 26201}, {1482, 33179}, {1483, 13607}, {3576, 31662}, {3579, 3}, {3627, 18483}, {3647, 12104}, {4640, 7508}, {4663, 575}, {5690, 6684}, {5694, 960}, {5876, 31751}, {6917, 3824}, {10222, 1}, {10225, 23961}, {10263, 31757}, {10284, 9957}, {11230, 38028}, {11231, 10165}, {11278, 10222}, {11500, 40262}, {11567, 33657}, {11699, 11720}, {12261, 11735}, {12611, 11729}, {12619, 6713}, {13464, 3636}, {15686, 50815}, {15687, 50802}, {17502, 3576}, {18357, 3628}, {18480, 5}, {22791, 13464}, {22792, 12608}, {22793, 946}, {22798, 16617}, {22935, 214}, {22936, 21}, {22937, 5428}, {22938, 16174}, {23841, 11695}, {23961, 18857}, {24474, 6583}, {24475, 12005}, {26202, 31649}, {31673, 546}, {31728, 13630}, {31730, 548}, {31737, 10627}, {31788, 40296}, {31811, 32046}, {31828, 31937}, {33592, 11281}, {33697, 4}, {33899, 6705}, {34339, 9940}, {34638, 15690}, {34648, 5066}, {34862, 5450}, {35004, 34339}, {37562, 13145}, {37623, 26286}, {37727, 32900}, {38138, 10172}, {38140, 11230}, {38176, 11231}, {40660, 10282}, {41347, 36}, {48887, 50418}, {48926, 48893}, {50796, 547}, {50808, 34200}, {50821, 549}, {50862, 14893}, {51118, 40273}
X(1385) = isogonal conjugate of X(1389)
X(1385) = complement of X(355)
X(1385) = anticomplement of X(9956)
X(1385) = reflection of X(1385) in the X(1)X(3)
X(1385) = circumcircle-inverse of X(22765)
X(1385) = complement of the isogonal conjugate of X(3417)
X(1385) = X(3417)-complementary conjugate of X(10)
X(1385) = X(i)-Ceva conjugate of X(j) for these (i,j): {27003, 16669}, {33637, 513}
X(1385) = X(1)-isoconjugate of X(1389)
X(1385) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 1389}, {355, 1385}
X(1385) = crosspoint of X(i) and X(j) for these (i,j): {1, 15446}, {59, 43345}
X(1385) = crosssum of X(1) and X(5903)
X(1385) = barycentric product X(75)*X(2317)
X(1385) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 1389}, {2317, 1}
X(1385) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 35, 3057}, {1, 36, 65}, {1, 40, 1482}, {1, 46, 2099}, {1, 55, 9957}, {1, 56, 942}, {1, 65, 50194}, {1, 165, 7982}, {1, 484, 11009}, {1, 999, 5045}, {1, 1319, 24928}, {1, 1388, 25405}, {1, 1420, 999}, {1, 1482, 33179}, {1, 2077, 23340}, {1, 2646, 24929}, {1, 3295, 31792}, {1, 3304, 5049}, {1, 3333, 15934}, {1, 3337, 5425}, {1, 3361, 11529}, {1, 3576, 3}, {1, 3579, 11278}, {1, 3601, 3295}, {1, 3612, 55}, {1, 3746, 5919}, {1, 5010, 5697}, {1, 5119, 2098}, {1, 5204, 50193}, {1, 5563, 354}, {1, 5697, 5048}, {1, 5903, 11011}, {1, 7280, 5903}, {1, 7982, 10247}, {1, 7987, 40}, {1, 7991, 16200}, {1, 8273, 31793}, {1, 10246, 15178}, {1, 10269, 34339}, {1, 10310, 13600}, {1, 10882, 10441}, {1, 11012, 24474}, {1, 13462, 3333}, {1, 13624, 3579}, {1, 15803, 3340}, {1, 15931, 14110}, {1, 16192, 11531}, {1, 16203, 13373}, {1, 18398, 44840}, {1, 21842, 1319}, {1, 22765, 6583}, {1, 22766, 50195}, {1, 22767, 50196}, {1, 26285, 10284}, {1, 30282, 1697}, {1, 30389, 3576}, {1, 31662, 31666}, {1, 32612, 35004}, {1, 35202, 7957}, {1, 35242, 8148}, {1, 37525, 2646}, {1, 37535, 5885}, {1, 37561, 37562}, {1, 37571, 37080}, {1, 37587, 18398}, {1, 37605, 37582}, {1, 37616, 35}, {1, 37617, 37592}, {1, 37618, 56}, {1, 37620, 35631}, {1, 40293, 13601}, {2, 355, 9956}, {2, 944, 355}, {3, 35, 26086}, {3, 40, 31663}, {3, 55, 26285}, {3, 56, 26286}, {3, 942, 37623}, {3, 999, 11249}, {3, 1482, 40}, {3, 3295, 11248}, {3, 3576, 13624}, {3, 5885, 41347}, {3, 6767, 10306}, {3, 7373, 22770}, {3, 10202, 37582}, {3, 10246, 1}, {3, 10247, 12702}, {3, 10267, 32613}, {3, 10269, 32612}, {3, 10306, 35238}, {3, 10679, 10310}, {3, 10680, 3428}, {3, 11849, 2077}, {3, 12000, 35448}, {3, 12702, 165}, {3, 13624, 17502}, {3, 15178, 10222}, {3, 15934, 5709}, {3, 16202, 55}, {3, 16203, 56}, {3, 18443, 9940}, {3, 22765, 11012}, {3, 22770, 35239}, {3, 24299, 24929}, {3, 24926, 11567}, {3, 24927, 24928}, {3, 32612, 23961}, {3, 32613, 33862}, {3, 34471, 46920}, {3, 35004, 10225}, {3, 37525, 26287}, {3, 37533, 31793}, {3, 37535, 36}, {3, 37612, 5122}, {3, 37615, 942}, {3, 37621, 35}, {3, 37624, 1482}, {3, 45923, 46623}, {3, 50317, 37536}, {4, 3616, 5886}, {4, 5731, 18481}, {4, 5886, 9955}, {5, 1125, 11230}, {5, 18480, 38140}, {5, 38028, 1125}, {8, 631, 26446}, {8, 7967, 37727}, {10, 140, 11231}, {10, 10165, 140}, {20, 3622, 5603}, {20, 5603, 12699}, {21, 18444, 1071}, {21, 21740, 5887}, {21, 30285, 9959}, {35, 36, 14792}, {35, 13145, 3579}, {35, 34486, 37621}, {35, 37561, 3}, {35, 37616, 37600}, {36, 65, 37582}, {36, 10902, 3}, {36, 24926, 1}, {36, 33657, 10222}, {40, 3338, 37532}, {40, 3576, 7987}, {40, 7987, 3}, {40, 31663, 3579}, {40, 37571, 33596}, {40, 37624, 33179}, {46, 2099, 50193}, {46, 5204, 5122}, {55, 56, 8071}, {55, 1388, 1}, {55, 40296, 3579}, {56, 2098, 17437}, {56, 31786, 37623}, {56, 34471, 1}, {56, 37615, 13373}, {56, 37618, 5126}, {65, 10202, 5885}, {65, 11567, 10222}, {65, 37605, 36}, {78, 956, 34790}, {100, 4861, 10914}, {104, 21740, 1071}, {104, 33858, 26201}, {145, 3523, 5657}, {165, 7982, 12702}, {214, 51111, 10}, {226, 4311, 18990}, {354, 14110, 24474}, {354, 24474, 6583}, {355, 3655, 944}, {371, 35762, 7968}, {372, 35763, 7969}, {376, 10595, 962}, {376, 38314, 3656}, {377, 12116, 37820}, {382, 18493, 1699}, {388, 6827, 10526}, {392, 1071, 5887}, {405, 18446, 5777}, {496, 950, 18527}, {497, 6850, 10525}, {549, 1483, 5690}, {549, 5690, 6684}, {550, 10283, 22791}, {551, 946, 5901}, {551, 4297, 946}, {602, 1468, 5398}, {631, 7967, 8}, {632, 37705, 38042}, {632, 38042, 3634}, {942, 5126, 56}, {942, 46920, 10222}, {946, 51118, 40273}, {950, 44675, 496}, {958, 997, 5044}, {960, 993, 31445}, {962, 10595, 3656}, {962, 38314, 10595}, {993, 30144, 960}, {1001, 12114, 3560}, {1125, 34773, 18480}, {1151, 35775, 31439}, {1151, 44636, 35775}, {1152, 44635, 35774}, {1155, 11011, 5903}, {1159, 37545, 3339}, {1319, 2646, 1}, {1319, 24299, 15178}, {1319, 26287, 10222}, {1319, 37080, 20323}, {1319, 37525, 24929}, {1381, 1382, 22765}, {1387, 15171, 12053}, {1388, 3576, 31788}, {1388, 3612, 9957}, {1420, 13384, 1}, {1420, 37611, 11249}, {1479, 11376, 7743}, {1482, 7987, 31663}, {1482, 10246, 37624}, {1482, 33179, 10222}, {1482, 37624, 1}, {1483, 50824, 13607}, {1490, 5436, 6913}, {1656, 18525, 5587}, {1697, 37526, 3359}, {1698, 5881, 5790}, {1699, 9624, 18493}, {1702, 9615, 6221}, {2077, 3746, 11849}, {2098, 5217, 5119}, {2099, 5204, 46}, {2478, 12115, 37821}, {2646, 13151, 13624}, {2646, 20323, 37080}, {2646, 21842, 24928}, {2646, 24927, 15178}, {2646, 37080, 37571}, {2975, 4511, 72}, {3057, 26087, 10222}, {3057, 37600, 35}, {3086, 3486, 5722}, {3207, 34522, 169}, {3241, 3524, 3654}, {3244, 10164, 11362}, {3295, 8726, 31787}, {3295, 37606, 3601}, {3303, 10310, 10679}, {3304, 3428, 10680}, {3304, 8273, 3428}, {3333, 15934, 50192}, {3340, 15803, 36279}, {3361, 11529, 5708}, {3428, 8273, 3}, {3487, 6987, 5812}, {3526, 5790, 1698}, {3526, 18526, 5790}, {3530, 11362, 31447}, {3560, 6261, 31937}, {3576, 10269, 18857}, {3576, 13384, 37611}, {3576, 13624, 31666}, {3576, 15178, 3579}, {3576, 18443, 10269}, {3576, 30392, 10246}, {3576, 34471, 31786}, {3576, 34486, 37600}, {3576, 37615, 26286}, {3576, 37624, 31663}, {3579, 17502, 3}, {3579, 31666, 17502}, {3585, 5443, 17605}, {3586, 50443, 9669}, {3601, 8726, 3}, {3616, 5731, 4}, {3616, 18481, 9955}, {3624, 5587, 1656}, {3627, 38034, 18483}, {3628, 18357, 10175}, {3636, 13464, 10283}, {3653, 3655, 2}, {3746, 11014, 23340}, {3816, 18242, 5}, {3817, 31673, 546}, {3872, 4855, 5687}, {3878, 5267, 4640}, {4256, 15955, 4646}, {4297, 5901, 22793}, {4304, 12053, 15171}, {4305, 11373, 31795}, {4308, 5703, 1056}, {4867, 6763, 3962}, {5010, 5697, 37568}, {5048, 37568, 5697}, {5122, 50193, 46}, {5126, 25405, 3660}, {5126, 31786, 26286}, {5219, 9613, 9654}, {5248, 5450, 6914}, {5396, 13731, 34466}, {5426, 16132, 13743}, {5432, 10944, 10039}, {5433, 10950, 1737}, {5438, 9623, 9709}, {5441, 16173, 4857}, {5443, 36975, 3585}, {5563, 11012, 22765}, {5563, 15931, 11012}, {5563, 34890, 36}, {5563, 35597, 10222}, {5690, 6684, 50821}, {5690, 50824, 1483}, {5691, 8227, 381}, {5691, 25055, 8227}, {5790, 18526, 5881}, {5795, 6700, 3820}, {5882, 10165, 10}, {5885, 10902, 3579}, {5885, 11567, 50194}, {5885, 33657, 1}, {5886, 18481, 4}, {5903, 7280, 1155}, {6198, 37305, 1872}, {6200, 35642, 49226}, {6264, 15015, 12331}, {6265, 33858, 21740}, {6396, 35641, 49227}, {6583, 15931, 3579}, {6713, 31659, 140}, {6767, 10306, 37622}, {6883, 37700, 5044}, {6893, 12667, 18516}, {6897, 10806, 3434}, {6914, 13369, 34862}, {6917, 48482, 18407}, {6947, 10805, 3436}, {7354, 15950, 12047}, {7587, 18454, 12491}, {7588, 18456, 8100}, {7677, 30284, 5728}, {7688, 35202, 3}, {7967, 37727, 32900}, {7984, 15035, 12778}, {7987, 10246, 33179}, {7987, 11531, 16192}, {7987, 33179, 3579}, {7987, 37571, 50371}, {7988, 18492, 3851}, {7991, 16200, 8148}, {8071, 31788, 37623}, {8071, 46920, 10284}, {8077, 18448, 8099}, {8227, 50811, 5691}, {8583, 30283, 9947}, {9583, 18992, 3311}, {9940, 10267, 3579}, {9940, 13624, 32612}, {9940, 40296, 18856}, {9943, 10179, 45776}, {9955, 18481, 33697}, {9957, 11227, 31788}, {9957, 18856, 35004}, {9957, 25405, 1}, {10106, 13411, 495}, {10175, 19862, 3628}, {10222, 17502, 3579}, {10222, 31666, 3}, {10246, 10902, 11567}, {10246, 13624, 10222}, {10246, 16203, 37615}, {10246, 30389, 13624}, {10246, 31662, 17502}, {10246, 31666, 11278}, {10246, 32612, 33281}, {10246, 37561, 26087}, {10246, 37618, 13373}, {10247, 12702, 7982}, {10267, 10269, 3}, {10267, 18443, 34339}, {10267, 32612, 33862}, {10269, 32613, 23961}, {10283, 22791, 13464}, {10389, 10857, 6244}, {10698, 38693, 12515}, {10943, 37438, 2886}, {11012, 15931, 3}, {11108, 35272, 8583}, {11227, 31788, 40296}, {11230, 18480, 5}, {11248, 31787, 3579}, {11500, 25524, 6911}, {11510, 22768, 8069}, {11531, 16192, 40}, {11567, 37605, 41347}, {11567, 41347, 11278}, {11707, 11708, 1386}, {12047, 21578, 7354}, {12119, 16173, 10738}, {12667, 26105, 6893}, {12675, 31838, 5694}, {12898, 15061, 13211}, {13145, 15178, 26087}, {13151, 24299, 3}, {13151, 26287, 31666}, {13373, 13624, 26286}, {13607, 50828, 6684}, {13624, 33179, 31663}, {13624, 33281, 10225}, {13624, 34339, 23961}, {14636, 48909, 48882}, {15178, 17502, 11278}, {15178, 18857, 35004}, {15178, 26287, 24929}, {15178, 30389, 31666}, {15178, 31662, 13624}, {15178, 31663, 33179}, {15178, 34339, 33281}, {15325, 37730, 1210}, {15694, 50798, 19875}, {15701, 34748, 38066}, {16200, 35242, 7991}, {17437, 46920, 23960}, {17502, 31666, 13624}, {18444, 21740, 33858}, {18446, 19861, 45770}, {18857, 32613, 17502}, {18857, 34339, 32612}, {18990, 37737, 226}, {19860, 35262, 474}, {19883, 50796, 547}, {20323, 33596, 33179}, {20323, 37080, 1}, {20323, 50371, 1482}, {21161, 34195, 16139}, {21842, 37525, 1}, {22758, 45770, 5777}, {22938, 38044, 16174}, {23961, 33281, 35004}, {23961, 33862, 3}, {24299, 24927, 10246}, {24914, 37740, 10573}, {24926, 37605, 50194}, {24928, 24929, 1}, {25055, 50811, 381}, {25405, 26285, 10222}, {25935, 35290, 1375}, {26086, 37562, 3579}, {26285, 31788, 3579}, {26286, 31786, 3579}, {26365, 26366, 3576}, {26446, 37727, 8}, {26487, 26492, 2}, {30144, 32153, 5694}, {30282, 37526, 3}, {30283, 35272, 5720}, {30389, 30392, 1}, {31393, 37560, 49163}, {31663, 37624, 10222}, {31792, 33574, 31787}, {31838, 32153, 31445}, {32612, 32613, 3}, {32613, 34339, 3579}, {33862, 34339, 10225}, {33862, 35004, 3579}, {34471, 37615, 15178}, {34471, 37618, 942}, {34486, 37561, 35}, {34556, 34557, 17502}, {34628, 38021, 3830}, {34628, 51110, 38021}, {34748, 38066, 4677}, {34773, 38028, 5}, {35238, 37622, 10306}, {37080, 37571, 24929}, {37080, 50371, 33596}, {37561, 37621, 26086}, {37562, 37600, 26086}, {37582, 50194, 65}, {38013, 38014, 24929}, {38053, 43161, 5805}, {38155, 51073, 31399}, {40273, 51118, 22793}, {45620, 45621, 55}, {48460, 48461, 18443}, {50821, 50824, 51087}, {50821, 50828, 51084}, {50821, 51084, 51088}, {50823, 50829, 50821}, {50823, 50833, 50829}, {50824, 50825, 50831}, {50824, 50828, 50821}, {50824, 50832, 50828}, {50824, 50833, 50823}, {50825, 50827, 50821}, {50825, 50831, 50827}, {50827, 50828, 51086}, {50827, 51086, 50825}, {50828, 50829, 50833}, {50828, 51085, 50824}, {50828, 51087, 51088}, {50831, 51086, 50821}, {50832, 51085, 50821}, {51084, 51087, 50821}
X(1385) = {X(1),X(40)}-harmonic conjugate of X(1483)
X(1385) = X(5)-of-2nd circumperp-triangle
X(1385) = X(3)-of-X(1)-Brocard-triangle
X(1385) = X(140)-of-hexyl-triangle
X(1385) = X(26)-of-incircle-circles-triangle
X(1385) = X(3)-of-anti-Aquila-triangle
X(1385) = endo-homothetic center of Ehrmann side-triangle and circumorthic triangle; the homothetic center is X(5)
X(1385) = X(546)-of-excentral-triangle


X(1386) = MIDPOINT OF INCENTER AND SYMMEDIAN POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a + b + c) + (a2 + b2 + c2)
Trilinears       as + Sω : bs + Sω : cs + Sω
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1386) lies on these lines: 1,6   7,1456   56,77   65,82   81,105   141,1125   171,1054   182,517   206,942   241,1471   511,1385   519,597   524,551   614,940   751,1319

X(1386) = midpoint of X(1) and X(6)
X(1386) = reflection of X(141) in X(1125)
X(1386) = isogonal conjugate of X(1390)
X(1386) = complement of X(3416)
X(1386) = crosspoint of X(1) and X(985)
X(1386) = crosssum of X(1) and X(984)


X(1387) = MIDPOINT OF INCENTER AND FEUERBACH POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = bc[2a4 - 2(b + c)a3 + (8bc - 3b2 - 3c2)a2
                        + 2(b + c)(b - c)2a + (b2 - c2)2]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1387) lies on these lines: 1,5   2,1000   7,104   30,1319   100,474   106,1086   142,214   149,377   153,1056

X(1387) = midpoint of X(i) and X(j) for these (i,j): (1,11), (80,1317), (1145,1320)
X(1387) = isogonal conjugate of X(1391)
X(1387) = inverse-in-incircle of X(80)
X(1387) = complement of X(1145)
X(1387) = crosssum of X(202) and X(203)
X(1387) = inverse-in-Feuerbach-hyperbola of X(1317)
X(1387) = {X(1),X(80)}-harmonic conjugate of X(1317)


X(1388) = POINT ANCHA

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (3a - 2b -2c)/(a - b - c)      (M. Iliev, 5/13/07)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1388) lies on these lines: 1,3   8,1317   11,944   45,1404   73,1149   499,952   603,1339

X(1388) = isogonal conjugate of X(1392)


X(1389) = ISOGONAL CONJUGATE OF X(1385)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[16(area ABC)2 + a(a + b + c)(b2 + c2 - a2)]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1389) lies on these lines: 1,1393   5,8   7,944   21,517   65,104   79,515   80,946   942,1476

X(1389) = isogonal conjugate of X(1385)


X(1390) = ISOGONAL CONJUGATE OF X(1386)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[a(a + b + c) + (a2 + b2 + c2)]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1390) lies on these lines: 37,105   38,57   81,518   278,427   279,388   984,985

X(1390) = isogonal conjugate of X(1386)
X(1390) = cevapoint of X(1) and X(984)


X(1391) = ISOGONAL CONJUGATE OF X(1387)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = a/[2a4 - 2(b + c)a3 + (8bc - 3b2 - 3c2)a2 + 2(b + c)(b - c)2a + (b2 - c2)2]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1391) lies on this line: 517,1443

X(1391) = isogonal conjugate of X(1387)
X(1391) = cevapoint of X(202) and X(203)


X(1392) = ISOGONAL CONJUGATE OF X(1388)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a - b -c)/(3a - 2b - 2c)      (M. Iliev, 5/13/07)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1392) lies on this line: 80,145

X(1392) = isogonal conjugate of X(1388)

leftri

Beth Conjugates 1393-1477

rightri
If X is a triangle center then X = P-beth conjugate of P for some triangle center P. Using the definition of beth conjugate (in the Glossary), it is easy to prove that the P-beth conjugate of P is the trilinear product P*X(56),
so that P = X*X(8). In trilinears,

if P = p : q : r, then (P-beth conjugate of P) = up : vq : wr, where

u : v : w = a/(b + c - a) : b/(c + a - b) : c/(a + b - c), or equivalently,
u : v : w = 1 - cos A : 1 - cos B : 1 - cos C.

Following is a list of pairs (i,j) for which X(i) = X(j)-beth conjugate of X(j):

1,8 2,312 3,78 4,318 6,9 7,75 8,341
9,346 12,1089 19,281 21,1043 25,33 28,29 31,55
32,41 34,4 41,220 42,210 48,219 55,200 56,1
57,2 58,21 59,765 60,1098 63,345 65,10 73,72
77,69 78,1265 81,333 84,280 85,76 86,314 101,644
109,100 110,643 142,1229 174,556 181,756 184,212 190,646
212,1260 220,728 221,40 222,63 223,329 226,321 244,11
255,1259266,188269,7273,264278,92279,85 326,1264
347,322348,304479,1088513,522552,873603,3 604,6
604,6608,19614,497649,650651,190662,645 664,668
667,663738,279757,261849,60934,664951,1257 961,1220
1014,861027,8851042,651104,950  1106,56 1118,158  1119,273
1193,960  1214,306  1253,480   1254,121284,740  


X(1393) = X(5)-BETH CONJUGATE OF X(5)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(5)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1393) lies on these lines: 1,1389   2,201   11,774   12,38   28,34   31,1454   46,602   56,244   65,1193   73,942   225,1210   227,354   278,1148   388,982   595,1421

X(1393) = crosspoint of X(57) and X(273)
X(1393) = crosssum of X(9) and X(212)


X(1394) = X(20)-BETH CONJUGATE OF X(20)

Trilinears    (3 a^4 - b^4 - c^4 - 2 a^2 b^2 - 2 a^2 c^2 + 2 b^2 c^2)/(a - b - c) : :

X(1394) lies on these lines: 1,84   3,223   9,478   21,77   28,34   40,109   56,269   73,991   78,651   165,227   614,1106   1104,1407   1398,1473   1420,1457

X(1394) = isogonal conjugate of the isotomic conjugate of X(33673)
X(1394) = X(i)-Ceva conjugate of X(j) for these (i,j): (21,56), (77,57)
X(1394) = X(154)-cross conjugate of X(610)
X(1394) = cevapoint of X(221) and X(1035)
X(1394) = crossdifference of every pair of points on line X(4130)X(8611)


X(1395) = X(25)-BETH CONJUGATE OF X(25)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(25)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = sin A tan A sin2(A/2)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1395) lies on these lines: 4,171   24,602   25,31   28,34   32,1402   56,1472   108,727   212,573   238,459   278,985   427,750   468,748   607,1200   1106,1398   1416,1435

X(1395) = isogonal conjugate of X(3718)
X(1395) = X(34)-Ceva conjugate of X(604)
X(1395) = crosspoint of X(608) and X(1398)
X(1395) = crosssum of X(345) and X(1265)


X(1396) = X(27)-BETH CONJUGATE OF X(27)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(27)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1396) lies on these lines: 4,940   7,27   21,1214   28,34   108,741   223,284   269,1412   593,1014   1119,1407   1333,1427

X(1396) = X(i)-cross conjugate of X(j) for these (i,j): (1407,1412), (1408,1414), (1474,28)
X(1396) = cevapoint of X(i) and X(j) for these (i,j): (34,608), (1407,1435)


X(1397) = X(31)-BETH CONJUGATE OF X(31)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(31)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = [sin A sin A/2]2
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1397) is the vertex conjugate of the foci of the inellipse that is the isogonal conjugate of the isotomic conjugate of the incircle. (Randy Hutson, October 15, 2018)

X(1397) lies on these lines: 1,987   6,181   31,184   42,1404   55,572   56,58   57,985   60,959   109,727   171,182   278,1365   392,993   602,1092   603,1472   1257,1407

X(1397) = X(i)-Ceva conjugate of X(j) for these (i,j): (59,1415), (604,32), (1408,604)
X(1397) = anticomplement of complementary conjugate of X(17053)
X(1397) = X(560)-cross conjugate of X(32)
X(1397) = crosspoint of X(i) and X(j) for these (i,j): (56,608), (59,1415), (604,1106)
X(1397) = crosssum of X(i) and X(j) for these (i,j): (8,345), (75,322), (312,341)
X(1397) = isogonal conjugate of X(3596)
X(1397) = X(8)-isoconjugate of X(75)
X(1397) = trilinear product of extraversions of X(55)


X(1398) = X(34)-BETH CONJUGATE OF X(34)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(34)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = sec A sin4(A/2)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1398) lies on these lines: 1,1037   4,496   6,1425   25,34   28,279   184,221   278,961   388,427   475,956   604,608   607,1475   1106,1395   1254,1460   1394,1473   1407,1408

X(1398) = isogonal conjugate of X(1265)
X(1398) = anticomplement of complementary conjugate of X(17054)
X(1398) = X(i)-Ceva conjugate of X(j) for these (i,j): (1119,1407), (1435,608)
X(1398) = X(1395)-cross conjugate of X(608)
X(1398) = homothetic center of anti-Ascella triangle and anti-tangential midarc triangle


X(1399) = X(35)-BETH CONJUGATE OF X(35)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(35)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = cos A - cos 2A
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1399) lies on these lines: 3,47   6,1195   12,171   31,56   34,1454   35,500   55,255   58,65   201,896   213,1415   580,1155   595,1319   920,1060   1333,1409   1402,1408


X(1400) = X(37)-BETH CONJUGATE OF X(37)

Trilinears    (1 - cos A)(b + c) : :
Trilinears    a(cos B + cos C) : :
Barycentrics a^2 (b + c)/(a - b - c) : :

X(1400) lies on these lines: 1,573   2,7   6,41   12,1213   19,208   25,31   36,572   37,65   42,181   44,583   58,1169   85,1218   108,1172   109,111   171,256   213,1042   222,967   292,694   308,349   388,966   478,603   651,1014   910,1200   1100,1319   1122,1418   1171,1412   1254,1426   1258,1432   1333,1415   1420,1449

X(1400) = isogonal conjugate of X(333)
X(1400) = isotomic conjugate of X(28660)
X(1400) = complement of X(20245)
X(1400) = anticomplement of X(21246)
X(1400) = X(i)-Ceva conjugate of X(j) for these (i,j): (6,1409), (56,1402), (57,65), (65,42), (108,663), (226,73), (951,55), (1415,649), (1427,1042)
X(1400) = X(i)-cross conjugate of X(j) for these (i,j): (181,65), (213,42), (1402,1402)
X(1400) = cevapoint of X(213) and X(1402)
X(1400) = crosspoint of X(i) and X(j) for these (i,j): (6,19), (56,57), (65,1427), (225,226)
X(1400) = crosssum of X(i) and X(j) for these (i,j): (1,573), (2,63), (8,9), (283,284)
X(1400) = crossdifference of every pair of points on line X(522)X(663)
X(1400) = X(65)-Hirst inverse of X(1284)
X(1400) = bicentric sum of PU(18)
X(1400) = PU(18)-harmonic conjugate of X(663)
X(1400) = barycentric product of PU(81)
X(1400) = trilinear pole of line X(512)X(810)
X(1400) = X(92)-isoconjugate of X(283)
X(1400) = perspector of ABC and unary cofactor triangle of Gemini triangle 1


X(1401) = X(38)-BETH CONJUGATE OF X(38)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(38)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1401) lies on these lines: 7,310   43,57   51,244   56,58   65,519   226,1463   354,1122   511,982   1106,1425   1355,1365   1356,1366   1402,1458   1407,1460

X(1401) = anticomplement of complementary conjugate of X(17055)
X(1401) = crosspoint of X(7) and X(56)
X(1401) = crosssum of X(8) and X(55)


X(1402) = X(42)-BETH CONJUGATE OF X(42)

Trilinears    (1 - cos A)u(a,b,c) : : , where u : v : w = X(42)

Trilinears    (sin^2 A) (cos B + cos C) : :
Trilinears    a^2 (b + c)/(a - b - c) : :

X(1402) lies on these lines: 1,3   21,961   25,1096   31,184   32,1395   42,181   73,1245   98,108   109,741   172,893   226,1284   923,1415   968,1011   1042,1410   1399,1408   1401,1458   1441,1447

X(1402) = isogonal conjugate of X(314)
X(1402) = X(i)-Ceva conjugate of X(j) for these (i,j): (56,1400), (65,1409), (961,6), (1037,73), (1400,213)
X(1402) = crosspoint of X(i) and X(j) for these (i,j): (25,31), (56,604), (1042, 1400)
X(1402) = crosssum of X(i) and X(j) for these (i,j): (8,312),. (69,75), (333,1043)
X(1402) = X(21)-isoconjugate of X(75)
X(1402) = X(92)-isoconjugate of X(1812)


X(1403) = X(43)-BETH CONJUGATE OF X(43)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(43)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1403) lies on these lines: 1,3   2,1284   6,893   31,1428   42,1469   43,1423   75,183   109,727   1326,1412

X(1403) = isogonal conjugate of X(7155)
X(1403) = complement of X(20557)
X(1403) = anticomplement of X(20545)
X(1403) = X(604)-Ceva conjugate of X(56)
X(1403) = X(1423)-cross conjugate of X(56)
X(1403) = X(31)-Hirst inverse of X(1428)
X(1403) = {X(13388),X(13389)}-harmonic conjugate of X(37596)


X(1404) = X(44)-BETH CONJUGATE OF X(44)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(44)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1404) lies on these lines: 6,41   35,572   42,1397   44,1319   57,89   59,672   217,1409   649,854   651,1429

X(1404) = X(1319)-Ceva conjugate of X(902)
X(1404) = crosspoint of X(i) and X(j) for these (i,j): (6,909), (57,1411)
X(1404) = crosssum of X(2) and X(908)
X(1404) = crossdifference of every pair of points on line X(8)X(522)


X(1405) = X(45)-BETH CONJUGATE OF X(45)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(45)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1405) lies on these lines: 6,41   31,51   35,573   44,65   57,88   169,1046

X(1405) = isogonal conjugate of X(30608)

X(1406) = X(46)-BETH CONJUGATE OF X(46)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(46)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1406) lies on these lines: 3,1464   31,56   55,1066   57,1203   65,222   1411,1413   1427,1454

X(1406) = isogonal conjugate of X(36626)
X(1406) = crossdifference of every pair of points on line X(3239)X(35057)
X(1406) = X(34)-Ceva conjugate of X(56)


X(1407) = X(57)-BETH CONJUGATE OF X(57)

Trilinears    (1 - cos A)(1 - cos A + cos B + cos C) : :
Trilinears    a/(b + c - a)^2 : :

X(1407) is the vertex conjugate of the foci of the inellipse that is the barycentric square of the Gergonne line (with center X(4000) and perspector X(279)). (Randy Hutson, October 15, 2018)

X(1407) lies on these lines: 3,951   6,57   7,940   31,56   34,1413   55,1458   63,220   73,1466   81,279   109,1477   189,1146   278,1086   478,1122   479,1462   534,553   608,1435   614,1456   739,934   942,1448   1104,1394   1119,1396   1333,1412   1357,1397   1398,1408   1401,1460   1464,1470

X(1407) = isogonal conjugate of X(346)
X(1407) = complement of isotomic conjugate of X(34546)
X(1407) = X(i)-Ceva conjugate of X(j) for these (i,j): (269,56), (1119,1398), (1262,1461), (1275,934), (1396,1435)
X(1407) = X(i)-cross conjugate of X(j) for these (i,j): (604,56), (608,1413), (1042,269)
X(1407) = cevapoint of X(604) and X(1106)
X(1407) = crosspoint of X(i) and X(j) for these (i,j): (57,1422), (269,738), (279,1119), (934,1275), (1262, 1461), (1396,1412)
X(1407) = crosssum of X(i) and X(j) for these (i,j): (200,728), (220,1260)
X(1407) = trilinear product X(56)*X(57)
X(1407) = X(92)-isoconjugate of X(1260)
X(1407) = perspector of ABC and unary cofactor triangle of Ayme triangle
X(1407) = barycentric square of X(57)


X(1408) = X(58)-BETH CONJUGATE OF X(58)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(58)
Trilinears    a^2/((b + c) (a - b - c)) : :

X(1408) lies on these lines: 21,1319   56,58   60,757   65,81   283,1037   284,1466   603,604   1398,1407   1399,1402   1413,1474

X(1408) = X(1412)-Ceva conjugate of X(1333)
X(1408) = X(604)-cross conjugate of X(1412)
X(1408) = cevapoint of X(604) and X(1397)
X(1408) = crosspoint of X(1014) and X(1396)
X(1408) = X(2)-isoconjugate of X(2321)


X(1409) = X(71)-BETH CONJUGATE OF X(71)

Trilinears    a(sec B + sec C) : :
Trilinears    (sin 2A)(cos B + cos C) : :

Let V = isotomic conjugate of polar conjugate of line X(1)X(3) and W = polar conjugate of isotomic conjugate of line X(1)X(3); then X(1409) = V∩W. (Randy Hutson, December 26, 2015)

X(1409) lies on these lines: 6,19   31,184   48,577   63,77   71,73   109,284   213,1042   217,1404   287,651   800,1195   1333,1399

X(1409) = isogonal conjugate of X(31623)
X(1409) = complement of anticomplementary conjugate of X(18667)
X(1409) = anticomplement of complementary conjugate of X(18592)
X(1409) = X(63)-isoconjugate of X(1896)
X(1409) = crossdifference of every pair of points on line X(521)X(1948)
X(1409) = X(i)-Ceva conjugate of X(j) for these (i,j): (6,1400), (65,1402), (73,228), (222,73)
X(1409) = crosspoint of X(i) and X(j) for these (i,j): (6,48), (65,1214), (222,603)
X(1409) = crosssum of X(i) and X(j) for these (i,j): (2,92), (21,1172), (281,318)
X(1409) = X(92)-isoconjugate of X(21)
X(1409) = bicentric sum of PU(19)
X(1409) = PU(19)-harmonic conjugate of X(1946)
X(1409) = barycentric product of PU(83)
X(1409) = polar conjugate of isotomic conjugate of X(22341)


X(1410) = X(73)-BETH CONJUGATE OF X(73)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(73)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1410) lies on these lines: 3,77   25,34   32,604   58,1461   73,228   98,934   184,603   1042,1402

X(1410) = X(56)-Ceva conjugate of X(1042)
X(1410) = crosspoint of X(i) and X(j) for these (i,j): (56,603), (1427,1439)
X(1410) = crosssum of X(8) and X(318)


X(1411) = X(80)-BETH CONJUGATE OF X(80)

Trilinears    (1 - cos A)u(a,b,c) : : , where u : v : w = X(80)
Trilinears    (1 - cos A)/(1 - 2 cos A) : :

X(1411) lies on these lines: 1,5   56,244   58,65   86,664   106,1168   269,1358   388,977   996,1215   1406,1413

X(1411) = X(i)-cross conjugate of X(j) for these (i,j): (1404,57), (1457,56)
X(1411) = cevapoint of X(65) and X(1319)
X(1411) = isogonal conjugate of X(4511)
X(1411) = inverse-in-Feuerbach-hyperbola of X(1807)
X(1411) = {X(1),X(80)}-harmonic conjugate of X(1807)


X(1412) = X(81)-BETH CONJUGATE OF X(81)

Trilinears    a/((b + c) (a - b - c)) : :
Trilinears    (1 - cos A)u(a,b,c), where u : v : w = X(81)
Trilinears    cot(angle BAACA) : : , where BA and CA are the touchpoints of the B- and C-excircles with line BC, resp.

X(1412) lies on these lines: 21,1420   28,1422   56,58   57,77   86,226   109,741   110,1477   269,1396   283,951   394,579   552,553   572,940   580,1092   1171,1400   1326,1402   1333,1407   1427,1461

X(1412) = isogonal conjugate of X(2321)
X(1412) = isotomic conjugate of X(30713)
X(1412) = X(1014)-Ceva conjugate of X(58)
X(1412) = X(i)-cross conjugate of X(j) for these (i,j): (56,1014), (604,1408), (1333,58), (1407,1396)
X(1412) = cevapoint of X(i) and X(j) for these (i,j): (56,604), (1333,1408)


X(1413) = X(84)-BETH CONJUGATE OF X(84)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(84)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1413) lies on these lines: 1,84   3,1167   6,603   34,1407   57,937   64,1364   73,939   86,285   189,1220   280,1222   998,1448   1406,1411   1408,1474

X(1413) = isogonal conjugate of X(7080)
X(1413) = X(i)-Ceva conjugate of X(j) for these (i,j): (84,56), (1422,1436)
X(1413) = X(i)-cross conjugate of X(j) for these (i,j): (608,1407), (1106,56)
X(1413) = crosspoint of X(84) and X(1256)
X(1413) = crosssum of X(40) and X(1103)


X(1414) = X(99)-BETH CONJUGATE OF X(99)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(99)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1414) lies on these lines: 7,757   58,1416   85,603   99,109   110,934   162,658   163,1019   348,1098   651,662   1014,1122

X(1414) = X(i)-cross conjugate of X(j) for these (i,j): (110,662), (1019,1434)
X(1414) = cevapoint of X(i) and X(j) for these (i,j): (58,1019), (109,651)
X(1414) = isogonal conjugate of X(4041)
X(1414) = isotomic conjugate of X(4086)
X(1414) = trilinear pole of line X(57)X(77)


X(1415) = X(101)-BETH CONJUGATE OF X(101)

Trilinears    a^2/(cos B - cos C) : :
Trilinears    a^2/((a - b - c) (b - c)) : :

X(1415) lies on these lines: 6,909   32,56   41,609   57,609   65,172   101,109   108,112   198,478   213,1399   571,608   604,1417   651,662   910,1455   919,934   923,1402   1055,1457   1333,1400

X(1415) = X(i)-Ceva conjugate of X(j) for these (i,j): (59,1397), (109,692), (1262,56)
X(1415) = X(i)-cross conjugate of X(j) for these (i,j): (649,1333), (667,56), (1397,59)
X(1415) = cevapoint of X(i) and X(j) for these (i,j): (32,667), (649,1400)
X(1415) = crosspoint of X(i) and X(j) for these (i,j): (108,651), (109,1461), (112,163)
X(1415) = crosssum of X(521) and X(650)
X(1415) = crossdifference of every pair of points on line X(11)X(123)
X(1415) = barycentric product of X(1381) and X(1382)
X(1415) = isogonal conjugate of X(4391)
X(1415) = trilinear pole of line X(31)X(184)
X(1415) = X(92)-isoconjugate of X(521)
X(1415) = barycentric product of PU(102)
X(1415) = polar conjugate of isotomic conjugate of X(36059)
X(1415) = perspector of unary cofactor triangles of outer and inner Garcia triangles
X(1415) = barycentric product X(1)*X(109)
X(1415) = barycentric product X(3)*X(108)
X(1415) = trilinear product X(6)*X(109)
X(1415) = trilinear product of circumcircle intercepts of line X(6)X(41) (or of circle {{X(1),X(15),X(16)}} (V(X(1)))


X(1416) = X(105)-BETH CONJUGATE OF X(105)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(105)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1416) lies on these lines: 6,1362   31,57   32,56   58,1414   294,1468   727,927   738,1106   919,1458   951,1193   1357,1397   1395,1435

X(1416) = isogonal conjugate of X(3717)
X(1416) = X(1462)-Ceva conjugate of X(1438)
X(1416) = cevapoint of X(56) and X(1428)
X(1416) = X(56)-Hirst inverse of X(1438)


X(1417) = X(106)-BETH CONJUGATE OF X(106)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(106)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1417) lies on these lines: 56,106   65,1320   88,961   604,1415   901,1319   1014,1122   1037,1470

X(1417) = isogonal conjugate of X(4723)

X(1418) = X(142)-BETH CONJUGATE OF X(142)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(142)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1418) lies on these lines: 6,57   7,37   44,1445   56,1279   65,1458   77,1100   142,1212   354,2293   553,1214   603,1456   942,991   1014,1333   1086,1108   1104,1448   1122,1400   1155,1253

X(1418) = X(57)-Ceva conjugate of X(1475)
X(1418) = X(1475)-cross conjugate of X(354)
X(1418) = crosspoint of X(57) and X(279)
X(1418) = crosssum of X(9) and X(220)


X(1419) = X(144)-BETH CONJUGATE OF X(144)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(144)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1419) lies on these lines: 1,971   6,57   7,1449   9,77   41,738   48,1461   73,991   109,1253   347,527   1201,1420   1443,1445

X(1419) = isogonal conjugate of X(19605)
X(1419) = X(1)-Ceva conjugate of X(57)
X(1419) = crosspoint of X(1) and X(165)
X(1419) = X(57)-Hirst inverse of X(910)


X(1420) = X(145)-BETH CONJUGATE OF X(145)

Trilinears    (1 - cos A) u(a,b,c), where u :v : w = X(145)
Trilinears    3 cos A + cos B + cos C - 3 : cos A + 3 cos B + cos C - 3 : cos A + cos B + 3 cos C - 3 (Peter Moses, March 12, 2011)
Trilinears    -1 + sin(A/2)csc(B/2)csc(C/2) (Randy Hutson, August 23, 2011)
Trilinears    (3a - b - c)/(a - b - c) : : (Randy Hutson, July 31, 2018)

Let Ja, Jb, Jc be the excenters and I the incenter. Let A' be the centroid of JbJcI, and define B' and C' cyclically; A'B'C' is also the cross-triangle of the excentral and 2nd circumperp triangles. The triangle A'B'C' is homothetic to the Hutson intouch triangle at X(1420). (Randy Hutson, July 31 2018)

X(1420) lies on these lines: 1,3   9,604   21,1412   34,106   73,995   84,104   109,1106   222,1191   223,1104   226,452   269,1279   386,1450   388,1125   595,603   610,1108   738,934   936,956   944,1210   1042,1149   1201,1419   1394,1457   1400,1449

X(1420) = isogonal conjugate of X(3680)
X(1420) = X(i)-Ceva conjugate of X(j) for these (i,j): (269,57), (765,109)
X(1420) = {X(1),X(56)}-harmonic conjugate of X(57)
X(1420) = {X(3513),X(3514)}-harmonic conjugate of X(165)
X(1420) = homothetic center of 1st Johnson-Yff triangle and cross-triangle of Aquila and anti-Aquila triangles
X(1420) = {X(1),X(55)}-harmonic conjugate of X(37556)


X(1421) = X(149)-BETH CONJUGATE OF X(149)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(149)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1421) lies on these lines: 1,5   31,57   34,106   595,1393   1279,1465


X(1422) = X(189)-BETH CONJUGATE OF X(189)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(189)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1422) lies on these lines: 1,84   2,77   28,1412   34,1256   35,1079   57,1436   268,1214   269,278   271,1257   280,1219

X(1422) = isogonal conjugate of X(2324)
X(1422) = X(i)-Ceva conjugate of X(j) for these (i,j): (189,57), (1440,84)
X(1422) = X(i)-cross conjugate of X(j) for these (i,j): (34,269), (1407,57), (1436,84)
X(1422) = cevapoint of X(1413) and X(1436)


X(1423) = X(192)-BETH CONJUGATE OF X(192)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (ab + ac - bc)/(b + c - a)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1423) lies on these lines: 1,256   2,7   6,1429   43,1403   56,87   65,984   85,1221   241,1122   269,292   604,651   1201,1419

X(1423) = isogonal conjugate of X(2319)
X(1423) = isotomic conjugate of X(27424)
X(1423) = complement of X(20348)
X(1423) = anticomplement of X(20258)
X(1423) = X(56)-Ceva conjugate of X(57)
X(1423) = crosspoint of X(56) and X(1403)
X(1423) = X(6)-Hirst inverse of X(1429)


X(1424) = X(194)-BETH CONJUGATE OF X(194)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(194)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1424) lies on these lines: 56,87   57,85   222,1429

X(1424) = X(604)-Ceva conjugate of X(57)


X(1425) = X(201)-BETH CONJUGATE OF X(201)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(201)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1425) lies on these lines: 1,185   6,1398   12,125   25,221   34,51   55,1204   56,184   65,225   72,307   73,228   181,1254   213,1042   217,1015   999,1181   1093,1148   1106,1401

X(1425) = X(i)-Ceva conjugate of X(j) for these (i,j): (65,1254), (1020,647)
X(1425) = crosspoint of X(65) and X(73)
X(1425) = crosssum of X(21) and X(29)


X(1426) = X(225)-BETH CONJUGATE OF X(225)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(225)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1426) lies on these lines: 4,7   25,34   65,225   72,860   226,429   227,228   278,959   517,1068   1254,1400

X(1426) = isogonal conjugate of X(1792)
X(1426) = X(34)-Ceva conjugate of X(1042)
X(1426) = crosspoint of X(i) and X(j) for these (i,j): (34,1118), (1119,1435)
X(1426) = crosssum of X(78) and X(1259)


X(1427) = X(226)-BETH CONJUGATE OF X(226)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(226)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1427) lies on these lines: 2,85   3,1448   6,57   7,941   25,34   31,1456   37,226   42,65   77,940   111,934   212,1155   278,393   307,1211   354,1458   581,942   1014,1169   1106,1451   1333,1396   1406,1454   1412,1461

X(1427) = isogonal conjugate of X(2287)
X(1427) = complement of X(18750)
X(1427) = X(i)-Ceva conjugate of X(j) for these (i,j): (269,1042), (1446,1439)
X(1427) = X(i)-cross conjugate of X(j) for these (i,j): (1400,65), (1410,1439)
X(1427) = cevapoint of X(1042) and X(1400)
X(1427) = crosspoint of X(i) and X(j) for these (i,j): (57,278), (269, 279)
X(1427) = crosssum of X(i) and X(j) for these (i,j): (6,610), (9,219), (200,220)


X(1428) = X(238)-BETH CONJUGATE OF X(238)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(238)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1428) lies on these lines: 1,182   3,613   6,41   31,1403   36,511   57,985   58,1178   59,518   60,757   65,82   184,614   238,1284   499,1352   611,999   651,1463   692,1279   961,1258   1456,1462

X(1428) = X(1416)-Ceva conjugate of X(56)
X(1428) = crosspoint of X(1014) and X(1462)
X(1428) = X(i)-Hirst inverse of X(j) for these (i,j): (31,1403), (56,604)


X(1429) = X(239)-BETH CONJUGATE OF X(239)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(239)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1429) lies on these lines: 1,3   6,1423   7,604   73,1244   81,1432   83,226   222,1424   238,1284   239,385   552,553   651,1404   1458,1462

X(1429) = isogonal conjugate of X(4876)
X(1429) = X(i)-Ceva conjugate of X(j) for these (i,j): (1447,238), (1462,57)
X(1429) = X(1284)-cross conjugate of X(1447)
X(1429) = crossdifference of every pair of points on line X(210)X(650)
X(1429) = X(i)-Hirst inverse of X(j) for these (i,j): (6,1423), (56,57)


X(1430) = X(243)-BETH CONJUGATE OF X(243)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(243)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1430) lies on these lines: 1,1013   4,1468   25,34   27,58   31,278   57,1096   92,171   108,1458   162,238   281,750   603,1118

X(1430) = X(34)-Hirst inverse of X(56)


X(1431) = X(256)-BETH CONJUGATE OF X(256)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(256)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1431) lies on these lines: 1,256   6,893   7,870   56,904   57,87   58,1178   65,257   86,1447   292,694   518,1222   758,996   979,1046

X(1431) = X(904)-cross conjugate of X(893)


X(1432) = X(257)-BETH CONJUGATE OF X(257)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(257)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1432) lies on these lines: 1,256   2,257   7,330   28,1178   56,985   57,893   65,291   81,1429   105,904   961,1042   1258,1400

X(1432) = isogonal conjugate of X(2329)
X(1432) = X(893)-cross conjugate of X(256)
X(1432) = cevapoint of X(893) and X(1431)
X(1432) = anticomplement of complementary conjugate of X(17062)


X(1433) = X(271)-BETH CONJUGATE OF X(271)

Trilinears (cos A)/(cos B + cos C - cos A - 1) : :

X(1433) lies on these lines: 1,84   6,282   29,81   55,947   56,102   78,271   145,280   219,255   284,1436   945,999

X(1433) = isogonal conjugate of X(7952)
X(1433) = X(i)-Ceva conjugate of X(j) for these (i,j): (189,1436), (271,3), (285,84)
X(1433) = X(i)-cross conjugate of X(j) for these (i,j): (6,222), (603,3)
X(1433) = cevapoint of X(1364) and X(1459)
X(1433) = X(92)-isoconjugate of X(198)


X(1434) = X(274)-BETH CONJUGATE OF X(274)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(274)
Barycentrics    1/((b + c) (a - b - c)) : :

X(1434) lies on these lines: 7,21   27,1088   57,85   58,1414   65,664   81,279   99,1477   270,757   310,349   332,951   552,553   658,1446   576,1475\

X(1434) = isogonal conjugate of X(1334)
X(1434) = isotomic conjugate of X(2321)
X(1434) = anticomplement of X(38930)
X(1434) = anticomplementary conjugate of anticomplement of X(38811)
X(1434) = X(552)-Ceva conjugate of X(1014)
X(1434) = X(i)-cross conjugate of X(j) for these (i,j): (57,1014), (81,86), (553,7), (1019,1414)
X(1434) = cevapoint of X(i) and X(j) for these (i,j): (7,57), (81,1014)


X(1435) = X(278)-BETH CONJUGATE OF X(278)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(278)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = tan A tan2(A/2)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1435) lies on these lines: 1,951   19,57   25,34   27,1088   33,354   48,223   108,1477   154,1456   244,1096   269,1396   608,1407   913,1461   1395,1416

X(1435) = isogonal conjugate of X(3692)
X(1435) = polar conjugate of X(341)
X(1435) = X(i)-Ceva conjugate of X(j) for these (i,j): (1119,34), (1396,1407)
X(1435) = X(i)-cross conjugate of X(j) for these (i,j): (608,34), (1106,269), (1426,1119)
X(1435) = cevapoint of X(608) and X(1398)


X(1436) = X(282)-BETH CONJUGATE OF X(282)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(282)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1436) lies on these lines: 3,9   6,603   19,56   48,55   57,1422   189,333   284,1433   673,1440

X(1436) = isogonal conjugate of X(329)
X(1436) = X(i)-Ceva conjugate of X(j) for these (i,j): (189,1433), (282,6), (1422,1413)
X(1436) = X(i)-cross conjugate of X(j) for these (i,j): (25,56), (604,6)
X(1436) = crosspoint of X(84) and X(1422)
X(1436) = crosssum of X(9) and X(1490)


X(1437) = X(283)-BETH CONJUGATE OF X(283)

Trilinears    (cos A) (1 - cos A)/(cos B + cos C) : :
Trilinears    a^2 (a^2 - b^2 - c^2)/(b + c) : :

X(1437) lies on these lines: 3,49   21,104   28,60   35,692   48,255   56,58   163,911   182,474   215,1364   284,1433   849,1333   1014,1175

X(1437) = X(i)-Ceva conjugate of X(j) for these (i,j): (60,58), (81,1333)
X(1437) = X(603)-cross conjugate of X(58)
X(1437) = cevapoint of X(48) and X(184)
X(1437) = crosspoint of X(81) and X(1444)
X(1437) = crosssum of X(4) and X(451)
X(1437) = X(4)-isoconjugate of X(10)
X(1437) = crosspoint of X(1805) and X(1806)


X(1438) = X(294)-BETH CONJUGATE OF X(294)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(294)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1438) lies on these lines: 1,41   6,692   32,56   58,163   86,142   87,572   106,919   269,604   665,911   909,1024   950,1220

X(1438) = X(1462)-Ceva conjugate of X(1416)
X(1438) = crosspoint of X(105) and X(1462)
X(1438) = X(i)-Hirst inverse of X(j) for these (i,j): (56,1416)
X(1438) = isogonal conjugate of X(3912)
X(1438) = trilinear pole of PU(48) (line X(31)X(649))
X(1438) = barycentric product of PU(96)
X(1438) = barycentric product X(1)*X(105)
X(1438) = trilinear product X(6)*X(105)
X(1438) = crossdifference of every pair of points on line X(918)X(2254)
X(1438) = polar conjugate of isotomic conjugate of X(36057)
X(1438) = X(63)-isoconjugate of X(1861)


X(1439) = X(307)-BETH CONJUGATE OF X(307)

Trilinears   (1 - cos A)u(a,b,c) : : , where u : v : w = X(307)
Trilinears    (b + c)(b^2 + c^2 - a^2)/(b + c - a)^2 : :

Let A' be the homothetic center of the orthic triangles of the intouch and A-extouch triangles, and define B' and C' cyclically. The triangle A'B'C' is perspective to the intouch triangle at X(1439). (Randy Hutson, September 14, 2016)

X(1439) lies on these lines: 1,64   3,77   4,7   6,57   37,1020   54,1443   71,1214   72,307   74,934   86,658   241,579   284,1461   347,517   1014,1175   1042,1245   1088,1246

X(1439) = X(i)-Ceva conjugate of X(j) for these (i,j): (658,905), (1446,1427)
X(1439) = X(i)-cross conjugate of X(j) for these (i,j): (73,1214), (656,1020), (1410,1427)
X(1439) = crosspoint of X(7) and X(77)
X(1439) = crosssum of X(i) and X(j) for these (i,j): (24,204), (33,55)
X(1439) = isogonal conjugate of X(4183)
X(1439) = perspector of intouch triangle and 3rd extouch triangle
X(1439) = perspector of ABC and cross-triangle of ABC and 3rd extouch triangle
X(1439) = trilinear product of Jerabek hyperbola intercepts of Soddy line


X(1440) = X(309)-BETH CONJUGATE OF X(309)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(309)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1440) lies on these lines: 2,77   7,84   27,1014   75,280   86,285   269,1256   271,307   273,279   673,1436

X(1440) = isogonal conjugate of X(7074)
X(1440) = isotomic conjugate of X(7080)
X(1440) = polar conjugate of isotomic conjugate of X(34400)
X(1440) = X(i)-cross conjugate of X(j) for these (i,j): (84,189), (269,7), (278,279)
X(1440) = cevapoint of X(84) and X(1422)


X(1441) = X(313)-BETH CONJUGATE OF X(313)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(313)
Barycentrics    (csc A) (cos B + cos C) : :
Barycentrics    b c (b + c)/(a - b - c) : :

In the plane of a triangle ABC, let
I = incenter = X(1)
O = circumcenter = X(3)
DEF = cevian triangle of I
Lb = line through B perpendicular to AI
Lc = line through C perpendicular to AI
Ab = Lb∩AO
Ac = Lc∩AO)
Oa = circumcircle of DAbAc
A' = the point of intersection, other than D of Oa and AI, and define B' and C' cyclically. Then X(1441) = finite fixed point of the affine transformation that carries ABC onto A'B'C". (Angel Montesdeoca, May 30, 2023)

X(1441) lies on these lines: 2,92   7,8   10,307   12,313   19,379   21,286   34,964   57,1150   86,664   95,404   226,306   253,318   269,996   274,961   287,651   305,561   443,1119   1074,1111   1402,1447

X(1441) = isogonal conjugate of X(2194)
X(1441) = isotomic conjugate of X(21)
X(1441) = complement of polar conjugate of isogonal conjugate of X(23171)
X(1441) = X(i)-Ceva conjugate of X(j) for these (i,j): (75,307), (85,226), (349,321), (664,693)
X(1441) = X(i)-cross conjugate of X(j) for these (i,j): (10,321), (12,226), (226,1446), (442,2), (121,76), (1214,1231)
X(1441) = cevapoint of X(i) and X(j) for these (i,j): (10,226), (65,1214)
X(1441) = crosspoint of X(75) and X(264)
X(1441) = crosssum of X(31) and X(184)
X(1441) = polar conjugate of X(1172)


X(1442) = X(319)-BETH CONJUGATE OF X(319)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(319)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = (1 + 2 cos A)/(1 + cos A)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1442) lies on these lines: 1,7   2,914   8,326   37,651   65,1014   74,934   81,1214   86,664   226,1029   241,1100   319,1273   1082,1250   1445,1449


X(1443) = X(320)-BETH CONJUGATE OF X(320)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(320)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = (1 - 2 cos A)/(1 + cos A)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1443) lies on these lines: 1,7   44,241   54,1439   57,89   59,1155   60,757   88,1465   320,1464   679,1318   934,953   1419,1445

X(1443) = anticomplement of X(1489)
X(1443) = cevapoint of X(1319) and X(1465)
X(1443) = crossdifference of every pair of points on line X(657)X(1334)


X(1444) = X(332)-BETH CONJUGATE OF X(332)

Trilinears       (cot A)/(b + c) : (cot B)/(c + a) : (cot C)/(a + b)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1444) lies on these lines: 1,969   3,69   7,21   28,242   48,63   58,988   71,1332   77,283   81,593   99,104   100,319   189,333   524,1030   662,911   963,1043

X(1444) = isogonal conjugate of X(1824)
X(1444) = X(i)-Ceva conjugate of X(j) for these (i,j): (261,86), (274,81)
X(1444) = X(i)-cross conjugate of X(j) for these (i,j): (77,86), (1437,58), (1459,1332), (1473,58)
X(1444) = cevapoint of X(3) and X(63)
X(1444) = X(92)-isoconjugate of X(213)


X(1445) = X(344)-BETH CONJUGATE OF X(344)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(344)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1445) lies on these lines: 1,1170   2,7   6,77   19,273   40,390   44,1418   46,516   56,78   65,1001   169,1446   269,651   942,954   1038,1451   1419,1443   1442,1449

X(1445) = X(i)-Ceva conjugate of X(j) for these (i,j): (765,651), (1088,1)
X(1445) = {X(9),X(57)}-harmonic conjugate of X(7)


X(1446) = X(349)-BETH CONJUGATE OF X(349)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(349)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1446) lies on these lines: 2,85   4,7   10,307   57,379   76,1229   98,934   169,1445   226,857   294,1170   321,349   658,1434   1111,1210

X(1446) = isotomic conjugate of X(2287)
X(1446) = X(226)-cross conjugate of X(1441)
X(1446) = cevapoint of X(1427) and X(1439)
X(1446) = crosspoint of X(85) and X(331)
X(1446) = polar conjugate of X(4183)


X(1447) = X(350)-BETH CONJUGATE OF X(350)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(350)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1447) lies on these lines: 2,7   25,273   36,1111   56,85   75,183   77,614   86,1431   87,269   105,927   230,1086   239,385   241,292   261,552   320,325   350,1281   459,1119   664,1319   673,910   1402,1441

X(1447) = isogonal conjugate of X(7077)
X(1447) = isotomic conjugate of X(4518)
X(1447) = X(i)-cross conjugate of X(j) for these (i,j): (238,239), (1284,1429)
X(1447) = cevapoint of X(i) and X(j) for these (i,j): (238,1429), (241,1463)
X(1447) = crossdifference of every pair of points on line X(663)X(1334)
X(1447) = X(7)-Hirst inverse of X(57)


X(1448) = X(377)-BETH CONJUGATE OF X(377)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(377)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1448) lies on these lines: 1,7   3,1427   28,34   46,255   65,222   85,1010   223,386   226,975   241,405   443,948   942,1407   998,1413   1104,1418   1465,1466


X(1449) = {X(1),X(6)}-HARMONIC CONJUGATE OF X(9)

Trilinears       3a + b + c : 3b + c + a : 3c + a + b
Trilinears       a + s : b + s : c + s
Barycentrics  a(3a + b + c) : b(3b + c + a) : c(3c + a + b)

X(1449) lies on these lines: 1,6   7,1419   32,988   34,1172   40,572   43,1051   57,77   65,380   87,1045   198,999   579,1475   610,942   894,1278   966,1125   1400,1420   1442,1445

X(1449) = isogonal conjugate of X(25430)
X(1449) = anticomplement of X(32099)
X(1449) = {X(1),X(6)}-harmonic conjugate of X(9)
X(1449) = X(391)-beth conjugate of X(391)
X(1449) = {X(1),X(9)}-harmonic conjugate of X(3247)


X(1450) = X(392)-BETH CONJUGATE OF X(392)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(392)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1450) lies on these lines: 1,631   3,1057   6,41   31,1470   36,1064   42,1319   57,957   65,244   386,1420   388,978   1191,1466


X(1451) = X(405)-BETH CONJUGATE OF X(405)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(405)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1451) lies on these lines: 1,201   6,41   28,34   31,65   36,581   46,601   255,942   270,273   1038,1445   1106,1427


X(1452) = X(406)-BETH CONJUGATE OF X(406)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(406)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1452) lies on these lines: 1,24   4,46   19,208   25,65   28,34   33,40   227,607   1038,1039


X(1453) = X(452)-BETH CONJUGATE OF X(452)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3a3 + b3 + c3 + 3a2b + 3a2c + ab2 + ac2 - b2c - bc2 + 2abc
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1453) lies on these lines: 1,6   4,204   28,34   31,40   43,1009   56,223   73,995   84,1039   212,595   222,1467   387,950   581,1193   614,1468


X(1454) = X(498)-BETH CONJUGATE OF X(498)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(498)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1454) lies on these lines: 1,3   5,920   12,63   31,1393   34,1399   90,381   201,750   208,407   453,1014   603,1254   1406,1427


X(1455) = X(515)-BETH CONJUGATE OF X(515)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(515)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1455) lies on these lines: 1,84   3,227   25,34   36,1465   37,478   65,603   73,820   109,517   117,515   513,663   608,1108   910,1415   958,1038   993,1214

X(1455) = X(104)-Ceva conjugate of X(56)
X(1455) = crosspoint of X(1) and X(1295)


X(1456) = X(516)-BETH CONJUGATE OF X(516)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(516)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1456) lies on these lines: 1,971   6,19   7,1386   31,1427   55,223   56,269   77,1001   109,1155   154,1435   222,354   227,1253   238,241   513,663   518,651   603,1418   614,1407   1042,1104   1428,1462

X(1456) = X(105)-Ceva conjugate of X(56)
X(1456) = crosspoint of X(i) and X(j) for these (i,j): (1,972), (269,1462)
X(1456) = crosssum of X(1) and X(971)
X(1456) = crossdifference of every pair of points on line X(9)X(521)


X(1457) = X(517)-BETH CONJUGATE OF X(517)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(517)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1457) lies on these lines: 1,4   3,945   31,56   36,109   48,608   57,957   65,1193   201,960   222,999   350,664   392,1214   478,604   513,663   517,1465   1055,1415   1394,1420

X(1457) = X(106)-Ceva conjugate of X(56)
X(1457) = crosspoint of X(i) and X(j) for these (i,j): (1,102), (56,1411)
X(1457) = crosssum of X(1) and X(515)
X(1457) = crossdifference of every pair of points on line X(9)X(652)
X(1457) = intersection of tangents at X(1) and X(102) to hyperbola {{A,B,C,X(1),X(3),X(29),X(102)}}


X(1458) = X(518)-BETH CONJUGATE OF X(518)

Trilinears    (1 - cos A)u(a,b,c) : : , where u : v : w = X(518)
Barycentrics    a^2 (b^2 + c^2 - a b - a c)/(a - b - c) : :

Let A'B'C' and A"B"C" be the circumcevian triangles of X(3513) and X(3514), resp. Let A* be the trilinear product A'*A", and define B* and C* cyclically. The lines AA*, BB*, CC* concur in X(1458). (Randy Hutson, June 7, 2019)

X(1458) lies on these lines: 1,7   3,1037   6,41   31,222   36,59   38,1214   42,57   55,1407   64,963   65,1418   108,1430   109,840   185,1208   223,614   238,651   241,518   244,1465   256,1476   354,1427   513,663   672,1362   919,1416   942,1254   976,1038   999,1064   1201,1419   1401,1402   1429,1462

X(1458) = isogonal conjugate of X(14942)
X(1458) = X(i)-Ceva conjugate of X(j) for these (i,j): (241,672), (1477,56)
X(1458) = crosspoint of X(i) and X(j) for these (i,j): (1,103)
X(1458) = crosssum of X(1) and X(516)
X(1458) = crossdifference of every pair of points on line X(9)X(522)
X(1458) = X(i)-Hirst inverse of X(j) for these (i,j): (6,56), (6,72)
X(1458) = perspector of conic {A,B,C,X(109),PU(48)}
X(1458) = crossdifference of the isogonal conjugates of PU(48)


X(1459) = X(521)-BETH CONJUGATE OF X(521)

Trilinears        (b - c)cos A: (c - a)cos B: (a - b)cos C
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1459) lies on these lines: 1,522   6,657   106,953   242,514   513,663   520,647   521,656   649,834

X(1459) = reflection of X(656) in X(905)
X(1459) = isogonal conjugate of X(1897)
X(1459) = complement of X(20293)
X(1459) = perspector of hyperbola {{A,B,C,X(3),X(57),X(103)})
X(1459) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,39006), (101,1473), (109,603), (514,649), (905,652), (1331,3), (1332,71), (1433,1364), (1461,6)
X(1459) = X(647)-cross conjugate of X(905)
X(1459) = cevapoint of X(647) and X(810)
X(1459) = crosspoint of X(i) and X(j) for these (i,j): (1,109), (3,1331), (81,934), (1332,1444)
X(1459) = crosssum of X(1) and X(522)
X(1459) = crossdifference of every pair of points on line X(4)X(9)
X(1459) = X(92)-isoconjugate of X(101)
X(1459) = orthojoin of X(1146)


X(1460) = X(612)-BETH CONJUGATE OF X(612)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(612)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1460) lies on these lines: 1,3   6,181   8,961   25,31   42,604   222,1469   332,1014   388,1010   959,1036   1254,1398   1401,1407

X(1460) = isogonal conjugate of X(30479)
X(1460) = crossdifference of every pair of points on line X(650)X(3910)


X(1461) = X(651)-BETH CONJUGATE OF X(651)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(651)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1461) lies on these lines: 6,911   48,1419   57,909   58,1410   77,572   101,651   109,692   269,604   284,1439   514,653   658,662   913,1435   923,1042   1025,1332   1412,1427

X(1461) = isogonal conjugate of X(3239)
X(1461) = X(i)-Ceva conjugate of X(j) for these (i,j): (934,109), (1262,1407)
X(1461) = X(i)-cross conjugate of X(j) for these (i,j): (649,56), (1407,1262), (1415,109)
X(1461) = cevapoint of X(i) and X(j) for these (i,j): (6,1459), (56,649)
X(1461) = crossdifference of every pair of points on line X(1146)X(2310)
X(1461) = barycentric product of circumcircle intercepts of the Soddy line
X(1461) = trilinear pole of line X(31)X(56) (the isogonal conjugate of the isotomic conjugate of the Soddy line)


X(1462) = X(673)-BETH CONJUGATE OF X(673)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(673)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1462) lies on these lines: 6,7   31,57   213,1170   241,1279   269,604   479,1407   608,1119   739,927   919,1465   934,1015   1014,1333   1428,1456   1429,1458

X(1462) = isogonal conjugate of X(3693)
X(1462) = X(i)-cross conjugate of X(j) for these (i,j): (1428,1014), (1438,105), (1456,269)
X(1462) = cevapoint of X(i) and X(j) for these (i,j): (6,1279), (57,1429), (1416,1438)
X(1462) = X(i)-Hirst inverse of X(j) for these (i,j): (57,105)
X(1462) = trilinear pole of line X(56)X(667)
X(1462) = barycentric product of circumcircle intercepts of line X(7)X(513)


X(1463) = X(726)-BETH CONJUGATE OF X(726)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(726)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1463) lies on these lines: 7,8   44,583   56,87   181,553   226,1401   513,663   651,1428

X(1463) = isogonal conjugate of X(8851)
X(1463) = X(1447)-Ceva conjugate of X(241)
X(1463) = {P,Q}-harmonic conjugate of X(65), where P and Q are the incircle intercepts of line X(7)X(8)


X(1464) = X(758)-BETH CONJUGATE OF X(758)

Trilinears    (1 - cos A)(b + c)(b^2 + c^2 - a^2 - bc) : :

X(1464) lies on these lines: 1,30   3,1406   42,65   56,58   320,1443   354,1064   513,663   1407,1470

X(1464) = crosspoint of X(1) and X(74)
X(1464) = crosssum of X(1) and X(30)
X(1464) = crossdifference of every pair of points on line X(9)X(1021)
X(1464) = PU(86)-harmonic conjugate of X(9404)
X(1464) = isogonal conjugate of X(6740)


X(1465) = X(908)-BETH CONJUGATE OF X(908)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(908)
Barycentrics    (1 - cos A) ((a - c) cos B + (a - b) cos C) : :

X(1465) lies on these lines: 1,227   2,92   3,34   5,225   6,57   36,1455   46,221   56,998   65,386   73,942   88,1443   106,1168   109,1155   241,514   244,1458   474,1038   517,1457   919,1462   1193,1254   1279,1421   1448,1466

X(1465) = isogonal conjugate of complement of X(36918)
X(1465) = isotomic conjugate of X(36795)
X(1465) = X(i)-Ceva conjugate of X(j) for these (i,j): (7,1361), (88,57), (1443,1319)
X(1465) = X(1361)-cross conjugate of X(7)
X(1465) = trilinear pole of line X(1361)X(1769)
X(1465) = pole wrt Stevanovic circle of line X(4)X(9)


X(1466) = X(936)-BETH CONJUGATE OF X(936)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(936)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1466) lies on these lines: 1,3   6,603   7,404   12,443   42,1106   73,1407   221,1193   222,386   226,474   284,1408   388,1376   1012,1210   1191,1450   1448,1465

X(1466) = {X(1),X(57)}-harmonic conjugate of X(37566)
X(1466) = {X(3),X(57)}-harmonic conjugate of X(56)


X(1467) = X(938)-BETH CONJUGATE OF X(938)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(938)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1467) lies on these lines: 1,3   7,452   28,1412   34,269   142,388   207,278   222,1453   604,610   614,1042   1066,1103   1104,1394

X(1467) = {X(57),X(1420)}-harmonic conjugate of X(3)


X(1468) = X(958)-BETH CONJUGATE OF X(958)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(958)
Trilinears       a(as + bc) : b(bs + ca) : c(cs + ab)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

Let Oa be the A-extraversion of the Conway circle (the circle centered at the A-excenter and passing through A, with radius sqrt(r_a^2 + s^2), where r_a is the A-exradius). Let Pa be the perspector of Oa, and La the polar of Pa wrt Oa. Define Lb and Lc cyclically. Let A' = Lb ∩ Lc, B' = Lc ∩ La, C' = La ∩ Lb. The lines AA', BB', CC' concur in X(1468). (Randy Hutson, April 9, 2016)

X(1468) lies on these lines: 1,21   3,42   4,1430   6,41   8,171   10,750   36,386   43,404   57,961   65,603   75,757   222,1042   294,1416   330,985   354,1104   474,899   517,601   518,976   602,1385   614,1453   748,1125   756,975   940,958   995,1203   999,1201   1149,1191

X(1468) = isogonal conjugate of X(31359)
X(1468) = crosssum of X(9) and X(612)
X(1468) = crossdifference of every pair of points on line X(522)X(661)


X(1469) = X(984)-BETH CONJUGATE OF X(984)

Trilinears    a (b^2 + b c + c^2)/(a - b - c) : :

X(1469) lies on these lines: 1,256   3,611   6,41   7,8   12,141   36,182   42,1403   43,57   51,614   55,1350   109,753   193,330   222,1460   613,999   751,1319   970,888

X(1469) = reflection of X(3056) in X(1)
X(1469) = X(1350)-of-Mandart-incircle-triangle
X(1469) = homothetic center of intangents triangle and reflection of extangents triangle in X(1350)


X(1470) = X(997)-BETH CONJUGATE OF X(997)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(997)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1470) lies on these lines: 1,3   6,909   11,1012   12,474   31,1450   73,1106   108,378   109,995   388,404   603,1193   1037,1417   1407,1464

X(1470) = {X(55),X(56)}-harmonic conjugate of X(1319)


X(1471) = X(1001)-BETH CONJUGATE OF X(1001)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(1001)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

Let A1B1C1 and A2B2C2 be the 1st and 2nd Auriga triangles. Let A' be the trilinear product A1*A2, and define B', C' cyclically. The lines AA', BB', CC' concur in X(1471). (Randy Hutson, March 21, 2019)

X(1471) lies on these lines: 1,1170   6,41   7,238   31,57   36,991   58,269   65,1279   212,354   226,748   241,1386   307,1125   602,942   603,1418


X(1472) = X(1036)-BETH CONJUGATE OF X(1036)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(1036)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1472) lies on these lines: 3,31   28,614   32,48   56,1395   58,988   104,1039   238,987   595,997   603,1397   727,1310

X(1472) = isogonal conjugate of X(4385)


X(1473) = X(1040)-BETH CONJUGATE OF X(1040)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(1040)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1473) lies on these lines: 3,63   25,57   31,56   38,55   184,222   197,1155   198,672   988,1036   1394,1398

X(1473) = X(101)-Ceva conjugate of X(1459)
X(1473) = crosspoint of X(58) and X(1444)


X(1474) = X(1172)-BETH CONJUGATE OF X(1172)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(1172)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1474) lies on these lines: 1,19   4,572   6,25   24,573   27,86   29,1220   34,604   56,608   106,112   163,913   198,939   269,1396   281,996   286,870   459,966   468,1213   1408,1413

X(1474) = isogonal conjugate of X(306)
X(1474) = X(27)-Ceva conjugate of X(58)
X(1474) = X(604)-cross conjugate of X(608)
X(1474) = cevapoint of X(604) and X(608)
X(1474) = crosspoint of X(28) and X(1396)
X(1474) = crossdifference of every pair of points on line X(525)X(656)
X(1474) = polar conjugate of X(313)


X(1475) = X(1212)-BETH CONJUGATE OF X(1212)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(1212)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1475) lies on these lines: 1,672   6,41   39,42   57,279   58,163   71,583   213,1015   218,999   354,1212   579,1449   607,1398   649,764   673,1434   934,1170

X(1475) = isogonal conjugate of X(32008)
X(1475) = X(i)-Ceva conjugate of X(j) for these (i,j): (57,1418), (692,649), (934,663)
X(1475) = crosspoint of X(i) and X(j) for these (i,j): (6,57), (354,1418)
X(1475) = crosssum of X(2) and X(9)
X(1475) = crossdifference of every pair of points on line X(522)X(3935)
X(1475) = polar conjugate of isotomic conjugate of X(22053)


X(1476) = X(1222)-BETH CONJUGATE OF X(1222)

Trilinears    1/(a^2 (sin^2(B/2) + sin^2(C/2))) : :
Trilinears    1/[(sin B) tan(B/2) + (sin C) tan(C/2)] : :
Trilinears    1/[(b + c - a)(b2 + c2 - 2bc + ab + ac)] : :

X(1476) lies on these lines: 1,1106   3,1000   4,496   8,56   9,604   21,1319   65,1320   80,1210   172,294   256,1458   314,1014   651,1201   942,1389   943,1385

X(1476) = isogonal conjugate of X(3057)
X(1476) = isotomic conjugate of X(20895)
X(1476) = X(i)-cross conjugate of X(j) for these (i,j): (15,1222), (649,651)
X(1476) = cevapoint of X(1) and X(56)


X(1477) = X(1280)-BETH CONJUGATE OF X(1280)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(1280)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1477) lies on the circumcircle and these lines: 1,1292   55,1293   56,101   57,100   99,1434   108,1435   109,1407   110,1412   738,934   919,1416   1308,1319

X(1477) = isogonal conjugate of X(5853)
X(1477) = Λ(X(8), X(9))
X(1477) = Ψ(X(190), X(7))
X(1477) = X(672)-cross conjugate of X(57)
X(1477) = cevapoint of X(56) and X(1458)
X(1477) = trilinear product of circumcircle intercepts of line X(1)X(3309)


X(1478) = CENTER OF JOHNSON-YFF CIRCLE

Trilinears    1 + 2 cos B cos C : :
Barycentrics    a^4 + 2 a^2 b c - (b^2 - c^2)^2 : :
X(1478) = (R/r)*X(1) + 3X(2) - 2X(3)
X(1478) = R*X(1) - r*X(3) + 2r*X(5)

The Johnson Circle Theorem is the fact that if three congruent circles intersect in a point, then the circle passing through the other three intersections is congruent to them. This fourth circle is the Johnson circle of the three given circles. There are three congruent circles each tangent to two sides of triangle ABC. Peter Yff proved that their Johnson circle has center X(1478). The circle is here named the Johnson-Yff circle of the triangle.

Roger A. Johnson, Advanced Euclidean Geometry, Dover, New York, 1960, page 75.

Peter Yff, "Three concurrent congruent circles 'inscribed' in a triangle," manuscript, 1998; X(1478) is the point C on page 5. See also X(495)-X(499).

X(1478) lies on these lines: 1,4   2,36   3,12   5,56   7,80   8,79   10,46   11,381   13,203   14,202   30,55   65,68   119,1470   148,192   442,958   474,1329   496,546   529,956   612,1370   908,997   975,1076   990,1074   1352,1469

X(1478) = reflection of X(i) in X(j) for these (i,j): (1,226), (55,495), (63,10)
X(1478) = isogonal conjugate of X(3422)
X(1478) = anticomplement of X(993)
X(1478) = X(1065)-Ceva conjugate of X(1)
X(1478) = homothetic center of 2nd isogonal triangle of X(1) and anticomplementary triangle; see X(36)
X(1478) = homothetic center of anticomplementary triangle and cross-triangle of ABC and 2nd isogonal triangle of X(1)
X(1478) = homothetic center of 2nd isogonal triangle of X(1) and cross-triangle of ABC and 2nd isogonal triangle of X(1)
X(1478) = homothetic center of Johnson triangle and cross-triangle of ABC and 1st Johnson-Yff triangle
X(1478) = homothetic center of Ehrmann mid-triangle and 2nd Johnson-Yff triangle


X(1479) = {X(1),X(4)}-HARMONIC CONJUGATE OF X(1478)

Trilinears    1 - 2 cos B cos C : :
Barycentrics    a^4 - 2a^2bc - (b^2 - c^2)^2 : :
X(1479) = (R/r)*X(1) - 3X(2) + 2X(3)
X(1479) = R*X(1) + r*X(3) - 2r*X(5)

Peter Yff, "Three concurrent congruent circles 'inscribed' in a triangle," manuscript, 1998; X(1479) is the point C' on page 5. See also X(495)-X(499).

X(1479) lies on these lines: 1,4   2,35   3,11   5,55   7,79   8,80   12,381   20,36   30,56   46,516   63,90   148,330   156,215   315,350   377,1125   382,999   387,1203   442,1001   495,546   528,1329   614,1370   1387,1388

X(1479) = reflection of X(i) in X(j) for these (i,j): (46,1210), (56,496)
X(1479) = X(1067)-Ceva conjugate of X(1)
X(1479) = homothetic center of intangents triangle and reflection of tangential triangle in X(5)
X(1479) = homothetic center of Johnson triangle and cross-triangle of ABC and 2nd Johnson-Yff triangle
X(1479) = homothetic center of Ehrmann mid-triangle and 1st Johnson-Yff triangle
X(1479) = Ursa-major-to-Ursa-minor similarity image of X(3)
X(1479) = homothetic center of 2nd isogonal triangle of X(1) and the reflection of the anticomplementary triangle in X(4); see X(36)


X(1480) = 1st SHADOW POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (2 - cos A)(2 + cos A - cos B - cos C)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Antreas P. Hatzipolakis and Paul Yiu, Pedal Triangles and Their Shadows, Forum Geometricorum 1 (2001) 81-90. (X(1480) is point M on page 88. See X(6580) for the 2nd Shadow Point.

X(1480) lies on these lines: 1,1406   3,902   6,517   651,1000

X(1480) = X(1)-Ceva conjugate of X(999)


X(1481) = POINT ASTEROPE

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (2 - cos A)/(2 + cos A - cos B - cos C)

(For the 2nd Shadow Point, see X(6580).

X(1481) lies on these lines: {1,1406}, {2316,4253}


X(1482) = REFLECTION OF CIRCUMCENTER IN INCENTER

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2r - R cos A (where r = inradius, R = circumradius)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1482) lies on these lines: 1,3   4,145   5,8   30,944   104,1392   355,381   382,515   518,1351

X(1482) = midpoint of X(i) and X(j) for these (i,j): (4,145), (944,962)
X(1482) = reflection of X(i) in X(j) for these (i,j): (3,1), (8,5), (40,1385), (355,946), (944,1483)
X(1482) = {X(1),X(3)}-harmonic conjugate of X(10246)
X(1482) = {X(1),X(40)}-harmonic conjugate of X(1385)
X(1482) = center of circle that is the poristic locus of X(4)
X(1482) = Johnson-isogonal conjugate of X(37821)


X(1483) = REFLECTION OF X(5) IN X(1)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 4r - R cos(B - C)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1483) lies on these lines: 1,5   3,145   8,140   10,632   30,944   40,548   517,550   518,1353   519,549

X(1483) = midpoint of X(i) and X(j) for these (i,j): (3,145), (944,1482)
X(1483) = reflection of X(i) in X(j) for these (i,j): (5,1), (8,140)
X(1483) = X(5)-of-5th-mixtilinear-triangle


X(1484) = REFLECTION OF X(5) IN X(11)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 4r - (2r + R)cos(B - C)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1484) lies on these lines: 1,5   3,149   30,104   100,140   153,381   528,549

X(1484) = midpoint of X(3) and X(149)
X(1484) = reflection of X(i) in X(j) for these (i,j): (5,11), (100,140)


X(1485) = PERSPECTOR OF ABC AND TANGENTIAL-OF-TANGENTIAL TRIANGLE

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/(b3cos B + c3cos C - a3cos A)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1485) = X(1486)-of-tangential triangle if ABC is acute. (Darij Grinberg, 5/24/03)

Let A'B'C' be the orthic triangle. Let La be the reflection of line B'C' in the perpedicular bisector of BC, and define Lb and Lc cyclically. Let A" = Lb∩Lc, B" = Lc∩La, C" = La∩Lb. The lines AA", BB", CC" concur in X(1485). (Randy Hutson, July 31 2018)

X(1485) lies on these lines: 22,160   26,206   157,264   232,571

X(1486) = PERSPECTOR OF TANGENTIAL AND INTOUCH TRIANGLES

Trilinears    a[ - a2(b + c - a) + b2(c + a - b) + c2(a + b - c)] : :

Let A'B'C' be the intouch triangle. Let A" be the crosspoint of the circumcircle intercepts of line B'C', and define B" and C" cyclically. The lines A'A", B'B", C'C" concur in X(1486).

X(1486) lies on these lines: 1,159   3,142   6,692   19,25   56,1279   100,344   219,674   354,1473   513,1037

X(1486) = isogonal conjugate of X(13577)
X(1486) = complement of X(11677)
X(1486) = anticomplement of X(23305)
X(1486) = X(7)-Ceva conjugate of X(6)
X(1486) = crosssum of X(116) and X(522)
X(1486) = crossdifference of every pair of points on line X(905)X(918)
X(1486) = X(173)-of-the-tangential-triangle if ABC is acute; see note at X(1485)
X(1486) = pole, with respect to circumcircle, of the Gergonne line


X(1487) = NAPOLEON CEVAPOINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (csc A)/[(3 - cot B cot C)(3 - cot2A)]
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Let N denote the nine-point center, X(5). Let NA = N-of-triangle NBC, and define NB and NC cyclically. Triangle NANBNC is perspective to ABC, and X(1487) is the perspector. X(1487) is the cevapoint of the Napoleon points, X(17) and X(18). (Coordinates found by Paul Yiu.)

The construction just given for X(1487) shows that it is a solution X of the "four-triangle problem" posed in

C. Kimberling, "Triangle centers as functions," Rocky Mountain Journal of Mathematics 23 (1993) 1269-1286. See Section 5; a complete solution to the problem remains to be found.

X(1487) lies on these lines: 4,252   5,1173   140,930

X(1487) = isogonal conjugate of X(1493)
X(1487) = cevapoint of X(17) and X(18)
X(1487) = X(523)-cross conjugate of X(930)
X(1487) = Kosnita(X(5),X(5)) point


X(1488) = 2nd STEVANOVIC POINT

Trilinears    1/[1 + sin(A/2)] : :
Trilinears    sec^2(A'/2) : : , where A'B'C' is the excentral triangle

Let U be the A-excenter of triangle ABC; let A' be the incenter of triangle UBC, and define B', C' cyclically. Let A" = IA'∩BC, and define B", C" cyclically. The lines AA", BB", CC" concur in X(1488). (Milorad R. Stevanovic, Hyacinthos #7185, 5/21/03. See also X(1130) and X(1489).)

X(1488) lies on these lines: 1,166   7,2089   57,173   145,188   557,1274   558,1143

X(1488) = X(1)-cross conjugate of X(174)
X(1488) = SS(A→A') of X(7), where A'B'C' is the excentral triangle
X(1488) = trilinear pole of Monge line of incircles of BCI, CAI, ABI
X(1488) = trilinear pole of Monge line of I-excircles of BCI, CAI, ABI


X(1489) = 3rd STEVANOVIC POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (csc A)[1 - cos(A/2) - sin(A/2)]
Barycentrics  1 - cos(A/2) - sin(A/2) : 1 - cos(B/2) - sin(B/2) : 1 - cos(C/2) - sin(C/2)

Let U be the A-excenter of triangle ABC; let A' be the incenter of triangle UBC, and define B', C' cyclically. Let I be the incenter of ABC, let A'' be the incenter of triangle IBC, and define B'', C'' cyclically. Let X = A'A''∩BC, and define Y, Z cyclically. Then AX, BY, CZ concur in X(1489). (Milorad R. Stevanovic, Hyacinthos #7185, 5/21/03. See also X(1130) and X(1489).)

X(1489) lies on these lines: 1,188   2,1143   174,558   258,483

X(1489) = complement of X(1143)
X(1489) = cevapoint of X(1) and X(258)
X(1489) = crosspoint of X(2) and X(1274)


X(1490) = X(1)X(4)∩X(3)X(9)

Trilinears    1 + sec A - sec B - sec C : :

X(1490) is X(68)-of-the-excentral triangle and the reflection of X(84) in X(3). These and other properties itemized here were reported by Darij Grinberg, May 19, 2003.

Let U(A) be the circle with center A having the radius of the A-excircle, and define U(B) and U(C) cyclically. Then X(1490) is the radical center of the three circles. (Hauke Reddmann, Hyacinthos, Jan. 8, 2009)

Let Oa be the circle centered at A and passing through the A-excenter, and define Ob and Oc cyclically. The radical center of Oa, Ob, Oc = X(1490). (Randy Hutson, September 14, 2016)

Let A'B'C' be the cevian triangle of X(1034). Let A" be the orthocenter of AB'C', and define B" and C" cyclically. The lines AA", BB", CC" concur in X(1490). (Randy Hutson, September 14, 2016)

X(1490) lies on the Darboux cubic and these lines: 1,4   3,9   20,78   40,64   63,411   165,191   224,908   386,990   910,1192   975,991   1045,1047   1210,1467   1498,3347   2130,3473   2131,3353   3182,3348   3183,3354

X(1490) = isogonal conjugate of X(3345)
X(1490) = reflection of X(84) in X(3)
X(1490) = X(i)-Ceva conjugate of X(j) for these (i,j): (20,40), (78,1), (329,9)
X(1490) = X(207)-cross conjugate of X(1)
X(1490) = homothetic center of hexyl and 2nd extouch triangles
X(1490) = X(155)-of-hexyl-triangle
X(1490) = X(155)-of-2nd-extouch-triangle
X(1490) = perspector of hexyl triangle and cevian triangle of X(20)
X(1490) = perspector of hexyl triangle and anticevian triangle of X(40)
X(1490) = perspector of ABC and the reflection in X(282) of the antipedal triangle of X(282)
X(1490) = {X(1),X(1745)}-harmonic conjugate of X(223)
X(1490) = excentral-isogonal conjugate of X(46)
X(1490) = excentral-isotomic conjugate of X(1721)
X(1490) = pedal antipodal perspector of X(1) wrt excentral triangle
X(1490) = ABC-to-excentral barycentric image of X(4)


X(1491) = CROSSDIFFERENCE OF X(1) AND X(32)

Trilinears    b3 - c3 : :

Let L be the line PU(10) = X(10)X(514); let M be the trilinear polar of the cevapoint of PU(10), so that M = X(522)X(1491). Let V = P(10)-Ceva conjugate of U(10) and let W = U(10)-Ceva conjugate of P(10). The lines L, M, and VW concur in X(1491). (Randy Hutson, December 26, 2015)

X(1491) lies on these lines: 10,514   44,513   325,523   663,1193   667,830

X(1491) = reflection of X(659) in X(650)
X(1491) = isogonal conjugate of X(1492)
X(1491) = isotomic conjugate of X(789)
X(1491) = X(i)-Ceva conjugate of X(j) for these (i,j): (262,11), (1492,1)
X(1491) = cevapoint of X(1) and X(1492)
X(1491) = crosspoint of X(i) and X(j) for these (i,j): (1,1492)
X(1491) = crosssum of X(i) and X(j) for these (i,j): (1,1491), (100,1390)
X(1491) = crossdifference of every pair of points on line X(1)X(32)


X(1492) = COLUMBUS POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/(b3 - c3)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1492) lies on these lines: 88,985   100,825   101,660   110,789   190,692

X(1492) = isogonal conjugate of X(1491)
X(1492) = cevapoint of X(513) and X(1386)
X(1492) = X(i)-cross conjugate of X(j) for these (i,j): (182,59), (1491,1)
X(1492) = trilinear pole of line X(1)X(32)
X(1492) = trilinear product of circumcircle intercepts of line X(2)X(31)


X(1493) = NAPOLEON CROSSSUM

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = csc(B + π/6)csc(C - π/6) + csc(C + π/6)csc(B - π/6)
                        = g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (3 sin2A - cos2A)(3 sin B sin C - cos B cos C)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

A construction of X(1493) is given by Antreas Hatipolakis and Angel Montesdeoca at 24179.

X(1493) lies on these lines: 3,54   5,539   49,143   110,1173   113,137   141,575   206,576

X(1493) = midpoint of X(54) and X(195)
X(1493) = isogonal conjugate of X(1487)
X(1493) = complement of X(3519)
X(1493) = X(110)-Ceva conjugate of X(1510)
X(1493) = crosspoint of X(61) and X(62)
X(1493) = crosssum of X(17) and X(18)
X(1493) = orthocenter of pedal triangle of X(54)


X(1494) = ISOTOMIC CONJUGATE OF X(30)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc/[(b2 - c2)2 + a2(b2 + c2 - 2a2)]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1494) lies on the Steiner circumellipse and these lines: 2,648   30,340   69,74   95,549   190,306   253,317   264,339   287,524   305,670   307,319   325,892

X(1494) = reflection of X(648) in X(2)
X(1494) = isogonal conjugate of X(1495)
X(1494) = isotomic conjugate of X(30)
X(1494) = complement of X(39358)
X(1494) = anticomplement of X(3163)
X(1494) = cevapoint of X(i) and X(j) for these (i,j): (2,30), (3,323), (298,299)
X(1494) = X(i)-cross conjugate of X(j) for these (i,j): (30,2), (340,95)
X(1494) = antipode of X(2) in hyperbola {A,B,C,X(2),X(69)}
X(1494) = trilinear pole of line X(2)X(525)
X(1494) = crossdifference of PU(87)
X(1494) = pole wrt polar circle of trilinear polar of x(1990)
X(1494) = X(48)-isoconjugate (polar conjugate) of X(1990)


X(1495) = CROSSSUM OF X(2) AND X(30)

Trilinears    a[(b2 - c2)2 + a2(b2 + c2 - 2a2)] : :

Let La be the line through A parallel to the de Longchamps line, and define Lb and Lc cyclically. Let Ma be the reflection of BC in La, and define Mb and Mc cyclically. Let A' = Mb∩Mc, and define B', C' cyclically. The triangle A'B'C' is inversely similar to, and 3 times the size of, ABC. Let A"B"C" be the reflection of A'B'C' in the de Longchamps line. The triangle A"B"C" is homothetic to ABC, with center of homothety X(1495). (See Hyacinthos #16741/16782, Sep 2008.) (Randy Hutson, December 26, 2015)

X(1495) lies on the Walsmith rectangular hyperbola and these lines: 3,3426   6,25   23,110   24,185   30,113   52,156   74,186   125,468   182,373   187,237   263,1383   1204,1498

X(1495) = midpoint of X(23) and X(110)
X(1495) = reflection of X(i) in X(j) for these (i,j): (125,468), (1531,113)
X(1495) = isogonal conjugate of X(1494)
X(1495) = isotomic conjugate of isogonal conjugate of X(9407)
X(1495) = X(i)-Ceva conjugate of X(j) for these (i,j): (4,39176), (78,1), (329,9)
X(1495) = crosspoint of X(6) and X(74)
X(1495) = crosssum of X(i) and X(j) for these (i,j): (74,6), (1304,647)
X(1495) = crossdifference of every pair of points on line X(2)X(525)
X(1495) = inverse-in-Moses-radical-circle of X(187)
X(1495) = intersection of tangents to Moses-Jerabek conic at X(6) and X(74)
X(1495) = pole of Brocard axis wrt Moses radical circle
X(1495) = {X(3),X(5651)}-harmonic conjugate of X(5650)
X(1495) = trilinear pole of PU(87)
X(1495) = inverse-in-Parry-isodynamic-circle of X(3569); see X(2)
X(1495) = X(3218)-of-orthic-triangle if ABC is acute
X(1495) = antipode of X(125) in Walsmith rectangular hyperbola
X(1495) = orthocenter of X(110)X(1495)X(3569)
X(1495) = orthocenter of X(125)X(3569)X(3580)
X(1495) = orthic-isogonal conjugate of X(39176)


X(1496) = POINT BETELGEUSE I

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1 + cos2A
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1496) lies on these lines:    1,21   3,1037   48,820   55,603   56,212   75,775   354,1451   580,1471   602,999

X(1496) = {X(1),X(63)}-harmonic conjugate of X(774)


X(1497) = POINT BETELGEUSE II

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1 + sin2A
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1497) lies on these lines: 1,21   3,1057   46,1471   55,602   56,601   82,158   498,748   499,750   517,1451   603,999   605,1335   606,1124

X(1497) = {X(1),X(31)}-harmonic conjugate of X(255)


X(1498) = REFLECTION OF X(64) IN X(3)

Trilinears    (sin A)(tan2B + tan2C - tan2A) : :
Trilinears    a*[S^2 - 2*(4*R^2 - SA)*SA] : :
Barycentrics    a^2 (a^8 - 4 a^6 (b^2 + c^2) + a^4 (6 b^4 - 4 b^2 c^2 + 6 c^4) - 4 a^2 (b^2 - c^2)^2 (b^2 + c^2) + (b^2 - c^2)^2 (b^4 + 6 b^2 c^2 + c^4)) : :

Let A'B'C' be the cevian triangle of X(1032). Let A" be the orthocenter of AB'C', and define B" and C" cyclically. The lines AA", BB", CC" concur in X(1498). (Randy Hutson, December 10, 2016)

X(1498) is the perspector of the tangential triangle and the reflection of triangle ABC in X(3); also, X(1498) is X(8)-of tangential triangle if ABC is acute. (Darij Grinberg, 6/2/03)

Let (Ba, Ca) be the points where BC is cut by the parallels through A to the b- and c- altitudes, respectively, and define (Cb, Ab), (Ac, Bc) cyclically. Then the perpendicular bisectors of (Ba, Ca), (Cb, Ac) and (Ac, Bc) concur at X(1498). (Hyacinthos #62, #72, #73)

Let OA be the circle centered at the A-vertex of the anticevian triangle of X(3) and passing through A; define OB and OC cyclically. X(1498) is the radical center of OA, OB, OC. (Randy Hutson, August 28, 2020)

X(1498) lies on the Darboux cubic and these lines: 1,84   3,64   4,6   20,394   24,1192   25,185   30,155   40,219   159,1350   195,382   1158,1214   1490,3347   2131,3183   3182,3354   3353,3473

X(1498) = reflection of X(i) in X(j) for these (i,j): (64,3), (1350,159)
X(1498) = isogonal conjugate of X(3346)
X(1498) = X(i)-Ceva conjugate of X(j) for these (i,j): (20,3), (394,6)
X(1498) = crosssum of X(122) and X(523)
X(1498) = tangential isogonal conjugate of X(24)
X(1498) = tangential isotomic conjugate of X(6
X(1498) = antipedal isogonal conjugate of X(64
X(1498) = Nagel point of tangential triangle if ABC is acute
X(1498) = perspector of antipedal triangle of X(64) and cevian triangle of X(20)
X(1498) = intouch-to-ABC functional image of X(8)
X(1498) = {X(12964),X(12970)}-harmonic conjugate of X(6)
X(1498) = isogonal conjugate, wrt tangential triangle of MacBeath circumconic (or anticevian triangle of X(3)), of X(64)
X(1498) = perspector of ABC and the reflection in X(1073) of the antipedal triangle of X(1073)
X(1498) = perspector of excentral triangle and cross-triangle of ABC and hexyl triangle


X(1499) = POINT BIHAM

Trilinears    bc(b2 - c2)(b2 + c2 - 5a2) : :

X(1499) lies on these (parallel) lines: 3,669   4,1550   30,511   74,2770   98,843

X(1499) = isogonal conjugate of X(1296)
X(1499) = isotomic conjugate of X(35179)
X(1499) = X(2)-Ceva conjugate of X(35133)
X(1499) = crosspoint of X(99) and X(598)
X(1499) = crosssum of X(512) and X(574)
X(1499) = crossdifference of every pair of points on line X(6)X(373)
X(1499) = bicentric difference of PU(7)
X(1499) = ideal point of PU(7)
X(1499) = X(2780) of 4th Brocard triangle
X(1499) = X(2780) of orthocentroidal triangle
X(1499) = X(2780) of X(4)-Brocard triangle
X(1499) = Thomson-isogonal conjugate of X(111)
X(1499) = Lucas-isogonal conjugate of X(111)
X(1499) = Cundy-Parry Psi transform of X(14263)


X(1500) = INSIMILICENTER OF MOSES CIRCLE AND INCIRCLE

Trilinears    a(b + c)2 : b(c + a)2 : c(a + b)2
Barycentrics    a2(b + c)2 : b2(c + a)2 : c2(a + b)2
X(1500) = (tan ω sin 2ω)R*X(1) + r*X(39)

The circle having center X(39) and radius R tan ω sin 2ω, where R denotes the circumradius of triangle ABC, is here introduced as the Moses circle. It is tangent to the nine-point circle at X(115), and its internal and external centers of similitude with the incircle are X(1500) and X(1015), respectively. (Peter J. C. Moses, 5/29/03)

X(1500) lies on these lines: 1,39   6,595   10,37   11,1508   12,115   32,55   35,172   41,1017   42,213   56,574   76,192   216,1062   346,941   519,1107   612,1196   756,762   1124,1505   1335,1504

X(1500) = isogonal conjugate of X(1509)
X(1500) = X(i)-Ceva conjugate of X(j) for these (i,j): (37,756), (42,872), (1018,512)
X(1500) = X(872)-cross conjugate of X(181)
X(1500) = crosspoint of X(37) and X(42)
X(1500) = crosssum of X(81) and X(86)
X(1500) = barycentric square of X(37)


X(1501) = TRILINEAR 5th POWER POINT

Trilinears    a5: b5 : c5
Barycentrics    a6 : b6 : c6

X(1501) is the vertex conjugate of the foci of the inellipse that is the barycentric square of the Lemoine axis. The center of this inellipse is X(8265) and its perspector is X(32). (Randy Hutson, October 15, 2018)

X(1501) lies on these lines: 6,22   32,184   101,697   110,699   154,1184   701,825   703,827   1196,1495

X(1501) = isogonal conjugate of X(1502)
X(1501) = isotomic conjugate of isogonal conjugate of X(9233)
X(1501) = antigonal conjugate of X(37845)
X(1501) = complement of X(33796)
X(1501) = anticomplement of isogonal conjugate of X(38829)
X(1501) = anticomplementary conjugate of anticomplement of X(38829)
X(1501) = crosssum of X(i) and X(j) for these (i,j): (2,315), (76,305), (115,850)
X(1501) = crossdifference of every pair of points on line X(826)X(850)
X(1501) = trilinear product of PU(12)
X(1501) = X(92)-isoconjugate of X(305)
X(1501) = barycentric product of vertices of circumsymmedial triangle


X(1502) = ISOGONAL CONJUGATE OF X(1501)

Trilinears    a-5 : b- 5 : c- 5
Barycentrics  a- 4 : b- 4 : c- 4

X(1502) is the Brianchon point (perspector) of the inellipse that is the barycentric square of the de Longchamps line. The center of this inellipse is X(626). (Randy Hutson, October 15, 2018)

X(1502) lies on these lines: 1,704   2,308   6,706   31,708   32,710   66,315   69,290   75,700   76,141   99,160   264,305   311,327   313,561

X(1502) = isogonal conjugate of X(1501)
X(1502) = isotomic conjugate of X(32)
X(1502) = anticomplement of X(8265)
X(1502) = cevapoint of X(i) and X(j) for these (i,j): (2,315), (76,305), (115,850)
X(1502) = X(i)-cross conjugate of X(j) for these (i,j): (115,850), (626,2)
X(1502) = barycentric product of PU(14)
X(1502) = trilinear pole of line X(826)X(850)
X(1502) = pole wrt polar circle of trilinear polar of X(1974)
X(1502) = X(48)-isoconjugate (polar conjugate) of X(1974)
X(1502) = barycentric square of X(76)


X(1503) = POINT ARKAB

Trilinears    sin A tan ω - 2 cos B cos C : :
Trilinears    bc(b6 + c6 - 2a6 + a4b2 +a4c2 - b4c2 - c4b2) : :
Barycentrics    S^2 a^2 - 2 SB SC SW : :
X(1503) = X(4) - X(6)

As the isogonal conjugate of a point on the circumcircle, X(1503) lies on the line at infinity.

X(1503) lies on these (parallel) lines: 2,154   3,66   4,6   5,182   11,1428   20,64   22,161   30,511   51,428   67,74   98,230   110,858   125,468   147,325   184,427   221,388   242,1146   265,1177   287,297   376,599   381,597   382,1351   383,395   394,1370   396,1080   546,575   576,1353   611,1478   613,1479   946,1386

X(1503) = isogonal conjugate of X(1297)
X(1503) = isotomic conjugate of X(35140)
X(1503) = complementary conjugate of X(132)
X(1503) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,23976), (4,132), (287,6), (297,230), (685,523)
X(1503) = cevapoint of X(20) and X(147)
X(1503) = crosspoint of X(4) and X(98)
X(1503) = crosssum of X(3) and X(511)
X(1503) = crossdifference of every pair of points on line X(6)X(520)
X(1503) = X(4)-Hirst inverse of X(1249)
X(1503) = intercept of the van Aubel line and the line at infinity
X(1503) = Cundy-Parry Phi transform of X(14376)
X(1503) = Cundy-Parry Psi transform of X(8743)
X(1503) = crosspoint of X(20) and X(147) wrt both the excentral and anticomplementary triangles
X(1503) = infinite point of tangents at X(4) and X(20) to Darboux cubic K004


X(1504) = INSIMILICENTER OF MOSES AND 2nd LEMOINE CIRCLES

Trilinears    a[b2 + c2 + 4(area ABC)]
Trilinears    2 sin A sin ω + sin(A + ω) : : (Peter J. C. Moses, 9/12/03)
Trilinears    cos A + (sin A)(2 + cot ω) : : (Peter J. C. Moses, 9/12/03)
X(1504) = sin(2ω)*X(6) + X(39)

X(1504) = internal center of similitude of the Moses circle and the 2nd Lemoine circle. [See X(1500); Peter J. C. Moses, 6/2/03]

X(1504) lies on these lines: 2,588   3,6   115,485   394,493   486,1508   491,626   590,639   1015,1124   1335,1500

X(1504) = X(1306)-Ceva conjugate of X(512)
X(1504) = crosspoint of X(6) and X(493)
X(1504) = isogonal conjugate of the polar conjugate of X(32588)
X(1504) = {X(6),X(39)}-harmonic conjugate of X(1505)
X(1504) = intersection of tangents to hyperbola {A,B,C,X(2),X(6)} at X(6) and X(493)


X(1505) = EXSIMILICENTER OF MOSES AND 2nd LEMOINE CIRCLES

Trilinears    a[b2 + c2 - 4(area ABC)]
Trilinears    2 sin A sin ω - sin(A + ω) (Peter J. C. Moses, 9/12/03)
Trilinears    cos A + (sin A)(- 2 + cot ω) (Peter J. C. Moses, 9/12/03)
X(1505) = sin(2ω)*X(6) - X(39)

X(1505) = external center of similitude of the Moses circle and the 2nd Lemoine circle. [See X(1500); Peter J. C. Moses, 6/2/03]

X(1505) lies on these lines: 2,589   3,6   115,486   394,494   485,1508   492,626   615,640   1015,1335   1124,1500

X(1505) = X(1307)-Ceva conjugate of X(512)
X(1505) = crosspoint of X(6) and X(494)
X(1505) = isogonal conjugate of the polar conjugate of X(32587)
X(1505) = {X(6),X(39)}-harmonic conjugate of X(1504)
X(1505) = intersection of tangents to hyperbola {{A,B,C,X(2),X(6)}} at X(6) and X(494)


X(1506) = INSIMILICENTER OF MOSES AND NINE-POINT CIRCLES

Trilinears    bc[(b2 - c2)2 - 2a2(b2 + c2)] : :
X(1506) = 2(tan ω sin 2ω)*X(5) + X(39)

X(1506) = internal center of similitude of the Moses circle and the nine-point circle. [The external center is X(115); see X(1500); Peter J. C. Moses, 6/2/03.]

X(1506) lies on these lines: 2,32   4,574   5,39   6,17   11,1500   12,1015   51,211   125,217   140,187   384,620   485,1505   486,1504

X(1506) = complement of X(1078)
X(1506) = {X(6),X(1656)}-harmonic conjugate of X(7746)
X(1506) = {X(5),X(39)}-harmonic conjugate of X(115)


X(1507) = 1st MORLEY-GIBERT POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1 + 2(cos B/3 + cos C/3 - cos A/3)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1507) and X(1508) are centers on Morley cubic, which also passes through X(356), X(357), X(358); see Bernard Gibert's site.

X(1507) lies on this line: 1,358

X(1507) = SS(A→A/3) of X(3336)
X(1507) = perspector of excentral and 1st Morley triangles

X(1508) = 2nd MORLEY-GIBERT POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 2 - sec A/3 + sec B/3 + sec C/3
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

See the notes at X(1507) and X(356).

X(1508) is the perspector of the excentral tiangle and the 1st Morley adjunct triangle. (César Lozada, January 18, 2015)

X(1508) lies on this line: 1,357

X(1508) = SS(A → A/3) of X(3468)
X(1508) = perspector of excentral and 1st Morley adjunct triangles


X(1509) = ISOGONAL CONJUGATE OF X(1500)

Trilinears       1/[a(b + c)2] : 1/[b(c + a)2] : 1/[c(a + b)2]
Barycentrics  1/(b + c)2 : 1/(c + a)2 : 1/(a + b)2

Let A'B'C' be the anticomplement of the Feuerbach triangle. Let A" be the trilinear pole of the tangent to the circumcircle at A', and define B" and C" cyclically. The lines AA", BB", CC" concur at X(1509). (Randy Hutson, June 27, 2018)

X(1509) lies on these lines: 1,99   2,1171   58,86   76,940   81,239   552,553   593,763

X(1509) = isogonal conjugate of X(1500)
X(1509) = isotomic conjugate of X(594)
X(1509) = X(873)-Ceva conjugate of X(261)
X(1509) = cevapoint of X(81) and X(86)
X(1509) = X(i)-cross conjugate of X(j) for these (i,j): (81,757), (86,873), (757,552), (1019,99)
X(1509) = barycentric square of X(86)


X(1510) = NAPOLEON CROSSDIFFERENCE

Trilinears    csc(B + π/6)csc(C - π/6) - csc(C + π/6)csc(B - π/6) : :
Trilinears    (3 sin2A - cos2A)(cos B sin C - sin B cos C) : :
Barycentrics    a^2 (b^2 - c^2) (a^4 + b^4 + c^4 - 2 a^2 b^2 - 2 a^2 c^2 - b^2 c^2) : :

X(1510) lies on these lines: 30,511   110,1291

X(1510) = isogonal conjugate of X(930)
X(1510) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,39018), (4,137), (110,1493)
X(1510) = X(137)-cross conjugate of X(143)
X(1510) = crosspoint of X(i) and X(j) for these (i,j): (4,933), (110,1173)
X(1510) = crosssum of X(i) and X(j) for these (i,j): (140,523), (512,570)
X(1510) = crossdifference of every pair of points on line X(6)X(17)
X(1510) = X(523)-of-orthic-triangle
X(1510) = perspector of hyperbola {{A,B,C,X(2),X(61),X(62)}}
X(1510) = infinite point of normal to hyperbola {{A,B,C,X(4),X(15)}} at X(15) and normal to hyperbola {{A,B,C,X(4),X(16)}} at X(16)
X(1510) = barycentric square root of X(39018)


X(1511) = FERMAT CROSSSUM

Trilinears    csc(B + π/3)csc(C - π/3) + csc(C + π/3)csc(B - π/3)
Trilinears    (sin2A - 3 cos2A)(sin B sin C - 3 cos B cos C)
Barycentrics    a^2[(a^2 - b^2 - c^2)^2 - b^2c^2][2a^4 - a^2(b^2 + c^2) - (b^2 - c^2)^2] : :

Let A'B'C' be the cevian triangle of X(30). Let A", B", C" be the inverse-in-circumcircle of A', B', C'. The lines AA", BB", CC" concur in X(1511). Let NA be the reflection of X(5) in the perpendicular bisector of segment BC, and define NB and NC cyclically; then X(1511) = X(186)-of-NANBNC. (Randy Hutson, August 26, 2014)

Let A'B'C' be the medial triangle. Let L be the line through A' parallel to the Euler line, and define M and N cyclically. Let L' be the reflection of L in sideline BC, and define M' and N' cyclically. The lines L',M',N' concur in X(1511). Let (O') be the circle passing through the points X(3), X(4), X(399), X(6069), let Q be the radical axis (O') and the circumcircle; then X(1511) = Q∩X(3)X(74). (Randy Hutson, August 26, 2014)

Let U be the Simson line of X(110), which is the line X(30)X(113). Let V be the line normal to the circumcircle at X(110), which is the line X(3)X(74). Then X(1511) = U∩V. (Randy Hutson, January 29, 2015)

X(1511) lies on (Johnson circumconic of medial triangle), the bicevian conic of X(2) and X(110), and on these lines: 2,265   3,74   24,1112   30,113   36,1464   125,128   141,542   146,376   184,974   186,323   214,960   249,842   389,1493

X(1511) = midpoint of X(i) and X(j) for these (i,j): (3,110), (74,399)
X(1511) = reflection of X(i) in X(j) for these (i,j): (125,140), (1539,113)
X(1511) = complement of X(265)
X(1511) = complementary conjugate of X(2072)
X(1511) = isotomic conjugate of polar conjugate of X(39176)
X(1511) = crosssum of circumcircle-intercepts of line PU(174) (line X(4)X(523))
X(1511) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,3284), (3,1154), (110,526)
X(1511) = crosspoint of X(i) and X(j) for these (i,j): (2,340), (15,16)
X(1511) = crosssum of X(13) and X(14)
X(1511) = crossdifference of every pair of points on the line X(1637)X(1989)
X(1511) = inverse-in-circumcircle of X(399)
X(1511) = perspector of the circumconic centered at X(3284)
X(1511) = {X(3),X(399)}-harmonic conjugate of X(74)
X(1511) = orthocentroidal-to-ABC similarity image of X(5)
X(1511) = 4th-Brocard-to-circumsymmedial similarity image of X(5)
X(1511) = reflection of X(5) in X(5972)
X(1511) = antipode of X(5) in the bicevian conic of X(2) and X(110)
X(1511) = X(12515)-of-orthic-triangle if ABC is acute

leftri

Orthojoins: X(1512)-X(1568)

rightri

The orthojoin of a point X = x : y : z other than X(6) is defined in the Glossary algebraically in terms of variables a,b,c. When these are sidelengths of a triangle, orthojoin(X) is the orthopole of the trilinear polar of the isogonal conjugate of X. (Added to ETC 6/18/03.) Let

D(a,b,c) = bc[2abcx + c3y + b3z - bc(by + cz) - a2(cy + bz)],
E(a,b,c) = [(a4 - (b2 - c2)2]x - 4a2bc(y cos B + z cos C),
f(a,b,c) = D(a,b,c)E(a,b,c).

Then orthojoin(X) = f(a,b,c) : f(b,c,a) : f(c,a,b). Below, orthojoin(X) is written as H(X).

Suppose X is not X(2) and does not lie on a sideline of triangle ABC. The crossdifference of X and X(2) has first trilinear
a(b-c)x', where x' = (by - cz)/(b-c).

Let X -1 denote the isogonal conjugate of X. Then
H(X -1) = (by - cz) cos A : (cz - ax) cos B : (ax - by) cos C.

In other words, if X lies on a line PG through the centroid G, then H(X -1) lies on the line HQ, where H denotes the orthocenter and Q is a point that can be determined from the above formula. Examples:

If X is on the Euler line, L(2,3), then H(X -1) is on the line L(4,6);
If X is on L(2,6,), then H(X -1) is on the Euler line;
If X is on L(1,2), then H(X -1) is on L(4,9);
If X is on L(2,7), then H(X -1) is on L(1,4).

Suppose P is not X(6), and let

S = crossdifference(P, X(6))   (S lies on the line at infinity)
S' = orthopoint(S) (S' lies on the line at infinity)
S" = complementary conjugate of S'    (S" lies on the nine-point circle)

Let X be a point on line PX(6) and not on a sideline of ABC. Then H(X -1) is on line S"S'. Examples:

If X is a center on L(1,6) and X is not X(6), then H(X -1) is on L(119,517).
If X is a center on L(2,6) and X is not X(6), then H(X -1) is on L(114,511).
If X is a center on L(3,6) and X is not X(6), then H(X -1) is on L(113,30).
If X is a center on L(6,31) and X is not X(6), then H(X -1) is on L(118,516).
If X is a center on L(6,44) and X is not X(6), then H(X -1) is on L(117,515).

Further,

H(X(11)) = L(117,515)∩L(118,516)
H(X(37)) = L(117,515)∩L(119,517)
H(X(244)) = L(118,516)∩L(119,517)

If X lies on the line L(230,231), then H(X) lies on the nine-point circle. Examples:

H(X(230)) = X(114)    H(X(231)) = X(128)    H(X(232)) = X(132)   
H(X(468)) = X(1560)    H(X(523)) = X(115)    H(X(647)) = X(125)   
H(X(650)) = X(11)

X(1512) = ORTHOJOIN OF X(1)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1512) lies on these lines: 4,9   5,392   6,80   119,517   355,956   944,1210

X(1512) = reflection of X(i) in X(j) for these (i,j): (908,119), (1519,1532), (1537,1538)
X(1512) = orthpole of antiorthic axis


X(1513) = ORTHOJOIN OF X(2)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = bc(b4 + c4 - a2b2 - a2c2)[3a4 + (b2 - c2)2]

As a point on the Euler line, X(1513) has Shinagawa coefficients (S2, -(E + F)2).

X(1513) lies on these lines: 2,3   98,230   114,325   132,232   147,385   183,1352   1181,1184

X(1513) = reflection of X(i) in X(j) for these (i,j): (98,230), (325,114)
X(1513) = circumcircle-inverse of X(37930)
X(1513) = {X(2),X(3)}-harmonic conjugate of X(37450)
X(1513) = orthopole of Lemoine axis
X(1513) = X(114)-of-1st-anti-Brocard-triangle


X(1514) = ORTHOJOIN OF X(3)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1514) lies on these lines: 4,6   30,113   74,403   187,1516

X(1514) = orthopole of orthic axis


X(1515) = ORTHOJOIN OF X(4)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1515) lies on the Simson quartic (Q101) and these lines: 4,6   30,1294   133,1559   297,1533

X(1515) = intersection of Simson line of X(107) (line X(133)X(1515)) and trilinear polar of X(107) (line X(4)X(6))


X(1516) = ORTHOJOIN OF X(5)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1516) lies on these lines: 4,96   187,1514


X(1517) = ORTHOJOIN OF X(7)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1517) lies on this line: 4,218


X(1518) = ORTHOJOIN OF X(8)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1518) lies on this line: 4,608


X(1519) = ORTHOJOIN OF X(9)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1519) lies on these lines: 1,4   119,517   499,1158

X(1519) = reflection of X(i) in X(j) for these (i,j): (1512,1532), (1532,1538)
X(1519) = orthopole of PU(96)


X(1520) = ORTHOJOIN OF X(10)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1520) lies on this line: 4,572


X(1521) = ORTHOJOIN OF X(11)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1521) lies on these lines: 117,515   118,516


X(1522) = ORTHOJOIN OF X(13)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1522) lies on these lines: 4,14   1523,1553


X(1523) = ORTHOJOIN OF X(14)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1523) lies on this line: 4,13   1522,1553


X(1524) = ORTHOJOIN OF X(15)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1524) lies on these lines: 4,13   30,113

X(1524) = reflection of X(i) in X(j) for these (i,j): (1525,1514), (1546,1525)


X(1525) = ORTHOJOIN OF X(16)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1525) lies on these lines: 4,14   30,113

X(1525) = reflection of X(i) in X(j) for these (i,j): (1524,1514), (1545,1524)


X(1526) = ORTHOJOIN OF X(17)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1526) lies on these lines: 4,16   128,1154


X(1527) = ORTHOJOIN OF X(18)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1527) lies on these lines: 4,15   128,1154


X(1528) = ORTHOJOIN OF X(19)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1528) lies on this line: 1,4


X(1529) = ORTHOJOIN OF X(25)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

As a point on the Euler line, X(1529) has Shinagawa coefficients (FS2, -(E + F)[4(E + F)F - S2]).

X(1529) lies on these lines: 2,3   132,1503


X(1530) = ORTHOJOIN OF X(31)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1530) lies on these lines: 4,8   118,516   152,971   908, 1543

X(1530) = reflection of X(i) in X(j) for these (i,j): (910,118), (1536,1541)


X(1531) = ORTHOJOIN OF X(32)

Trilinears    [2a^4 - a^2(b^2 + c^2) - b^4 - c^4 + 2b^2c^2][a^5 - a(b^2 - c^2)^2 - 4bc(b^3 cos B + c^3 cos C)] : :

Let MaMbMc be the Ehrmann mid-triangle. Let A' be the crosspoint of Mb and Mc, and define B' and C' cyclically. The lines AA', BB', CC' concur in X(1531). (Randy Hutson, July 31 2018)

X(1531) lies on these lines: 4,69   30,113   382,1092

X(1531) = reflection of X(i) in X(j) for these (i,j): (1495,113), (1533,1514)
X(1531) = orthopole of de Longchamps line


X(1532) = ORTHOJOIN OF X(37)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = bc[2abc - (b + c)(a - b + c)(a + b - c)][a(b + c)(a + b - c)(a - b + c) - (a + b + c)(a - b - c)(b - c)2]

As a point on the Euler line, X(1532) has Shinagawa coefficients ($a$S2, $a$S2 + 2abc(E + F) + 2$a(SA)2$).

X(1532) lies on these lines: 2,3   11,515   12,946   40,1329   119,517   496,944

X(1532) = reflection of X(i) in X(j) for these (i,j): (1519,1538), (1537,1519)


X(1533) = ORTHOJOIN OF X(39)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1533) lies on these lines: 4,83   30,113   297,1515

X(1533) = reflection of X(1531) in X(1514)


X(1534) = ORTHOJOIN OF X(40)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1534) lies on this line: 4,937


X(1535) = ORTHOJOIN OF X(41)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1535) lies on these lines: 4,7   117,515   151,517


X(1536) = ORTHOJOIN OF X(42)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

As a point on the Euler line, X(1536) has Shinagawa coefficients (S2, -2(E + F)2 + 2$bcSA$ - S2).

X(1536) lies on these lines: 2,3   118,516

X(1536) = reflection of X(1530) in X(1541)


X(1537) = ORTHOJOIN OF X(44)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1537) lies on these lines: 4,145   7,104   11,65   100,962   119,517   214,516   515,1317

X(1537) = reflection of X(i) in X(j) for these (i,j): (11,946), (104,1387), (1145,119), (1512,1538), (1532,1519)
X(1537) = orthopole of PU(55)


X(1538) = ORTHOJOIN OF X(45)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1538) lies on these lines: 4,1385   11,971   119,517   495,946   515,1387


X(1539) = ORTHOJOIN OF X(50)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1539) lies on these lines: 4,94   5,2777   30,113   74,381   110,382   125,546

X(1539) = reflection of X(i) in X(j) for these (i,j): (125,546), (1511,113)
X(1539) = orthopole of PU(5)


X(1540) = ORTHOJOIN OF X(54)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1540) lies on this line: 4,6


X(1541) = ORTHOJOIN OF X(55)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1541) lies on these lines: 1,4   118,516

X(1541) = orthopole of Gergonne line


X(1542) = ORTHOJOIN OF X(56)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1542) lies on these lines: 4,9   117,515


X(1543) = ORTHOJOIN OF X(57)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1543) lies on these lines: 1,4   516,972   908,1530


X(1544) = ORTHOJOIN OF X(58)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1544) lies on these lines: 4,9   30,113


X(1545) = ORTHOJOIN OF X(61)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1545) lies on these lines: 4,15   30,113

X(1545) = reflection of X(i) in X(j) for these (i,j): (1525,1524), (1546,1514)


X(1546) = ORTHOJOIN OF X(62)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1546) lies on these lines: 4,16   30,113

X(1546) = reflection of X(i) in X(j) for these (i,j): (1524,1525), (1545,1514)


X(1547) = ORTHOJOIN OF X(71)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1547) lies on this line: 4,6   118,516


X(1548) = ORTHOJOIN OF X(72)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1548) lies on these lines: 4,6   119,517


X(1549) = ORTHOJOIN OF X(73)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1549) lies on these lines: 4,6   117,515

X(1539) = orthopole of PU(173)


X(1550) = ORTHOJOIN OF X(110)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1550) lies on these lines: 4,1499   30,74   98,230   542,1551

X(1550) = orthopole of line X(115)X(125)


X(1551) = ORTHOJOIN OF X(111)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

As a point on the Euler line, X(1551) has Shinagawa coefficients (2(E + F)3 - 9(E - 2F)S2, -3(E + F)[(E +10F)(E + F) - 6S2]).

X(1551) lies on this line: 2,3   542,1550


X(1552) = ORTHOJOIN OF X(112)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1552) lies on these lines: 4,523   30,1294   74,403


X(1553) = ORTHOJOIN OF X(115)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1553) lies on these lines: 4,250   30,113   146,476   1522,1523


X(1554) = ORTHOJOIN OF X(125)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1554) lies on these lines: 30,113   132,1503


X(1555) = ORTHOJOIN OF X(182)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1555) lies on these lines: 4,39   30,113

X(1555) = reflection of X(1561) in X(1514)


X(1556) = ORTHOJOIN OF X(251)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

As a point on the Euler line, X(1556) has Shinagawa coefficients (2(E + F)3 + (E + 2F)S2, -(E + F)[5(E + 6F)(E + F) - 2S2]).

X(1556) lies on this line: 2,3


X(1557) = ORTHOJOIN OF X(263)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

As a point on the Euler line, X(1557) has Shinagawa coefficients ([(E + F)3F + 2(E + F)2S2 + S4] S2, -4(E + F)3F + (E - 11F)(E + F)3S2 - (E + 10F)(E + F)S4 - 3S6).

X(1557) lies on this line: 2,3


X(1558) = ORTHOJOIN OF X(284)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1558) lies on these lines: 1,4   30,113


X(1559) = ORTHOJOIN OF X(393)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

As a point on the Euler line, X(1559) has Shinagawa coefficients (F2, -2(2E - F)F + S2).

X(1559) lies on these lines: 2,3   133,1515

X(1559) = inverse-in-circumconic-centered-at-X(4) of X(20)


X(1560) = ORTHOJOIN OF X(468)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1560) lies on the nine-point circle and these lines: 2,112   4,111   6,67   53,136   115,427   122,216   135,571   187,468

X(1560) lies on hyperbola {{X(2),X(6),X(216),X(233),X(1249),X(1560),X(3162)}}. This hyperbola is a circumconic of the medial triangle, and the locus of perspectors of circumconics centered at a point on the Euler line. The hyperbola is tangent to Euler line at X(2). (Randy Hutson, June 7, 2019)

X(1560) = complement of X(2373)
X(1560) = X(2)-Ceva conjugate of X(468)
X(1560) = crosspoint of X(2) and X(858)
X(1560) = crosssum of X(6) and X(1177)
X(1560) = perspector of circumconic centered at X(468)
X(1560) = center of circumconic that is locus of trilinear poles of lines passing through X(468)
X(1560) = inverse-in-polar-circle of X(111)
X(1560) = inverse-in-orthoptic-circle-of-Steiner-inellipse of X(112)


X(1561) = ORTHOJOIN OF X(511)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1561) lies on these lines: 4,32   30,113

X(1561) = reflection of X(1555) in X(1514)
X(1561) = orthopole of PU(45)


X(1562) = ORTHOJOIN OF X(520)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1562) lies on these lines: 115,125   127,525   148,287

X(1562) = X(393)-Ceva conjugate of X(647)
X(1562) = crosspoint of X(4) and X(525)
X(1562) = crosssum of X(393) and X(647)
X(1562) = orthopole of van Aubel line
X(1562) = crossdifference of every pair of points on line X(110)X(1301)


X(1563) = ORTHOJOIN OF X(588)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

As a point on the Euler line, X(1563) has Shinagawa coefficients ([2(E + F)2 + (9E + 8F)S+10S2]S, -(E + F)2E - 2(5E - F)(E + F)S - 4(7E - 2F)S2 - 22S3).

X(1563) lies on this line: 2,3


X(1564) = ORTHOJOIN OF X(589)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

As a point on the Euler line, X(1564) has Shinagawa coefficients ([2(E + F)2 - (9E + 8F)S+10S2]S, (E + F)2E - 2(5E - F)(E + F)S + 4(7E - 2F)S2 - 22S3).

X(1564) lies on this line: 2,3


X(1565) = ORTHOJOIN OF X(657)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b - c)2(b2 + c2 - a2)      (M. Iliev, 5/13/07)

X(1565) lies on these lines: 3,348   4,279   5,85   7,104   11,1111   77,1060   84,738   116,514   150,664   304,337   515,1323   812,1015   1119,1440   1364,1367

X(1565) = midpoint of X(150) and X(664)
X(1565) = reflection of X(1146) in X(116)
X(1565) = X(i)-Ceva conjugate of X(j) for these (i,j): (279,514), (304,525), (348,905)
X(1565) = crosspoint of X(7) and X(693)
X(1565) = crosssum of X(55) and X(692)
X(1565) = orthopole of Soddy line


X(1566) = ORTHOJOIN OF X(676)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1566) lies on the nine-point circle and these lines: 2,927   11,650   116,514   118,516   125,661   132,242

X(1566) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,676), (4,926)
X(1566) = crosspoint of X(514) and X(516)
X(1566) = crosssum of X(i) and X(j) for these (i,j): (101,103), (651,1814)
X(1566) = perspector of circumconic centered at X(676)
X(1566) = Stevanovic-circle-inverse of X(11)
X(1566) = center of circumconic that is locus of trilinear poles of lines passing through X(676)


X(1567) = ORTHOJOIN OF X(694)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

As a point on the Euler line, X(1567) has Shinagawa coefficients ((E + F)6 - (5E - 3F)(E + F)3S2 + 3(E + F)2S4 + S6, -(E + 3F)(E + F)5 + 3(E - 3F)(E + F)3S2 + 9(E - F)(E + F)S4 - 3S6).

X(1567) lies on the nine-point circle and this line: 2,3

X(1567) = perspector of circumconic centered at X(694)
X(1567) = center of circumconic that is locus of trilinear poles of lines passing through X(694)
X(1567) = X(2)-Ceva conjugate of X(694)


X(1568) = ORTHOJOIN OF X(800)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1512))

X(1568) lies on these lines: 4,801   5,51   30,113   265,539   381,394   403,511

X(1568) = reflection of X(125) in X(2072)


X(1569) = MOSES-CIRCLE ANTIPODE OF X(115)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[2a2(b2 + c2)(1 - 4 sin2ω) - (b2 - c2)2]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1569) lies on this line: 5,39   32,99   76,620   98,574   543,598

X(1569) = midpoint of X(99) and X(194)
X(1569) = reflection of X(i) in X(j) for these (i,j): (76,620), (115,39)
X(1569) = inverse-in-circle-{{X(3102),X(3103),PU(1)}} of X(5)


X(1570) = MOSES-CIRCLE INVERSE OF X(3)

Trilinears     a(cot A + cot ω - 4 tan ω) : :
Trilinears    a(2a4 + 3b4 + 3c4 - 2b2c2 -3a2b2 - 3a2c2) : :

X(1570) lies on these lines: 3,6   193,625

X(1570) = reflection of X(i) in X(j) for these (i,j): (39,2025), (187,1692), (1692,6)
X(1570) = isogonal conjugate of antigonal conjugate of X(38259)
X(1570) = inverse-in-2nd-Lemoine-circle of X(3)
X(1570) = crosssum of X(2) and X(230)
X(1570) = 2nd-Lemoine-circle inverse of X(3)
X(1570) = radical trace of the Brocard and 2nd Lemoine circles
X(1570) = radical trace of 1st Lemoine circle and Ehrmann circle


X(1571) = INSIMILICENTER OF EXCENTRAL AND MOSES CIRCLES

Trilinears    a[bcr + (a2 - 2b2 - 2c2)R] : :, where R = circumradius, r = inradius

X(1571) = 2*X(39) + (tan ω sin 2ω)*X(40) = X(1) - 2*X(3) - (2 cot ω csc 2ω)*X(39)

X(1571) lies on these lines: 1,574   9,1574   32,165   39,40   57,1500


X(1572) = EXSIMILICENTER OF EXCENTRAL AND MOSES CIRCLES

Trilinears    a(bcr + a2R) : :
Trilinears    a3 + 4(area)r : :, where r =inradius
Trilinears    sa3 + S2 : sb3 + S2 : sc3 + S2
X(1572) = 2*X(39) - (tan ω sin 2ω)*X(40) = X(1) - 2*X(3) + (2 cot ω csc 2ω)*X(39)

X(1572) lies on these lines: 1,32   6,517   9,1573   39,40   57,1015   165,574


X(1573) = INSIMILICENTER OF SPIEKER AND MOSES CIRCLES

Trilinears    a(b2 + c2) + 2bc(b + c) : :
X(1573) = (2R tan ω sin 2ω)*X(10) + r*X(39) = R*X(1) + R*X(8) + (r cot ω csc 2ω)*X(39)

X(1573) lies on these lines: 2,668   8,1500   10,39   32,958   37,519   75,538   187,993   574,1376   1329,1508   1377,1505   1378, 1504


X(1574) = EXSIMILICENTER OF SPIEKER AND MOSES CIRCLES

Trilinears    a(b2 + c2) - 2bc(b + c) : :
X(1574) = (2R tan ω sin 2ω)*X(10) - r*X(39) = R*X(1) + R*X(8) - (r cot ω csc 2ω)*X(39)

X(1574) lies on these lines: 2,1500   8,1015   10,39   32,1376   38,762   115,1329   213,899   574,993   1377,1504   1378,1505


X(1575) = EXSIMILICENTER OF SPIEKER AND (1/2)-MOSES CIRCLES

Trilinears    a(b2 + c2) - bc(b + c)
X(1575) = (R tan ω sin 2ω)*X(10) - r*X(39) = R*X(1) + R*X(8) - (2r cot ω csc 2ω)*X(39)

The Moses circle, M, is introduced at X(1015); the (1/2)-Moses circle is concentric to M with half the radius of M. The insimilicenter of the Spieker and (1/2)-Moses circles is X(1107).

X(1575) lies on these lines: 2,37   6,43   10,39   42,1100   44,513   71,992   172,404   239,292   291,518   519,1015   574,993   1009,1104   1125,1500

X(1575) = isotomic conjugate of X(32020)
X(1575) = complement of X(350)
X(1575) = anticomplement of X(20530)
X(1575) = complementary conjugate of X(20542)
X(1575) = X(i)-Ceva conjugate of X(j) for these (i,j): (239,518), (292,37)
X(1575) = cevapoint of X(43) and X(2108)
X(1575) = crosspoint of X(2) and X(291)
X(1575) = crosssum of X(i) and X(j) for these (i,j): (1,1575), (6,238)
X(1575) = crossdifference of every pair of points on line X(1)X(667)
X(1575) = {X(10),X(39)}-harmonic conjugate of X(1107)


X(1576) = ISOGONAL CONJUGATE OF X(850)

Trilinears    a3/(b2 - c2) : b3/(c2 - a2) : c3/(a2 - b2)
Barycentrics  a4/(b2 - c2) : b4/(c2 - a2) : c4/(a2 - b2)

X(1576) is the center of the conic transform of the Stammler quartic (Q066 in Bernard Gibert' catalogue) by X(31)-isoconjugation. This conic is given by the barycentric equation b^4c^4(b^2-c^2)x^2+c^4a^4(c^2-a^2)y^2+a^4b^4(a^2-b^2)z^2 = 0, and it passes through the following triangle centers: X(6), X(31), X(48), X(154), X(1613), X(2578), X(2579), X(5638), X(5639). (Angel Montesdeoca, May 7, 2016)

Let A'B'C' be the circumcevian triangle of X(512). Let A" be the barycentric product B'*C', and define B" and C" cyclically. A", B", C" are collinear on line X(669)X(688). The lines AA", BB", CC" concur in X(1576). (Randy Hutson, August 19, 2019)

X(1576) lies on these lines: 3,1177   6,157   32,1084   50,237   99,827   107,933   110,351   160,206   163,692   250,523   338,1316   662,1492

X(1576) = midpoint of X(648) and X(1632)
X(1576) = isogonal conjugate of X(850)
X(1576) = X(i)-Ceva conjugate of X(j) for these (i,j): (249,1501), (250,6), (827,110), (933,112)
X(1576) = cevapoint of X(i) and X(j) for these (i,j): (32,669), (39,647), (51,512)
X(1576) = X(i)-cross conjugate of X(j) for these (i,j): (669,32), (1501,249)
X(1576) = crosspoint of X(110) and X(112)
X(1576) = crosssum of X(523) and X(525)
X(1576) = crossdifference of every pair of points on line X(115)X(127)
X(1576) = barycentric product of PU(2)
X(1576) = barycentric product of vertices of circumtangential triangle
X(1576) = trilinear pole of line X(32)X(184)
X(1576) = X(92)-isoconjugate of X(525)
X(1576) = X(1577)-isoconjugate of X(2)
X(1576) = barycentric product X(1379)*X(1380)
X(1576) = barycentric product X(3)*X(112)
X(1576) = barycentric product X(6)*X(110)
X(1576) = polar conjugate of isotomic conjugate of X(32661)
X(1576) = vertex conjugate of X(36839) and X(36840)
X(1576) = X(63)-isoconjugate of X(14618)


X(1577) = ISOGONAL CONJUGATE OF X(163)

Trilinears    b2c2(b2 - c2) : c2a2(c2 - a2) : a2b2(a2 - b2)
Trilinears    (csc 2A)(sin 2B - sin 2C) : :
Trilinears    d(a,b,c) : : , where d(a,b,c) = directed distance from A to Brocard axis
Trilinears    |AP(1)|^2 - |AU(1)|^2 : :
Barycentrics    bc(b2 - c2) : ca(c2 - a2) : ab(a2 - b2)
Barycentrics    sin(B - C) : sin(C - A) : sin(A - B)

Let A'B'C' be the excentral triangle, and let U be the bianticevian conic of X(1) and X(4). Let T be the tangential triangle, wrt the anticevian triangle of X(19), of U. Then A'B'C' and T are perspective, and their perspector is X(1577). (Randy Hutson, December 26, 2015)

X(1577) is the trilinear multiplier for the Kiepert hyperbola. (The trilinear product of X(1577) and the circumcircle is the Kiepert hyperbola.) (Randy Hutson, August 19, 2019)

X(1577) lies on these lines: 1,810   115,1111   163,811   240,522   514,661   667,814   784,149   798,812   826,1089

X(1577) = isogonal conjugate of X(163)
X(1577) = isotomic conjugate of X(662)
X(1577) = X(i)-Ceva conjugate of X(j) for these (i,j): (75,1109), (76,1111), (693,523), (799,75), (811,1), (823,92)
X(1577) = cevapoint of X(656) and X(661)
X(1577) = X(i)-cross conjugate of X(j) for these (i,j): (115,1089), (1109,75)
X(1577) = crosspoint of X(i) and X(j) for these (i,j): (75,799), (82,162), (92,823), (662,2167), (811,1969), (1240,1978)
X(1577) = crosssum of X(i) and X(j) for these (i,j): (31,798), (38,656), (48,822), (649,2260), (652,2269), (661,1953), (1923,1924)
X(1577) = crossdifference of every pair of points on line X(31)X(48)
X(1577) = X(i)-aleph conjugate of X(j) for these (i,j): (648,656), (811,1969)
X(1577) = complement of X(4560)
X(1577) = bicentric difference of PU(14)
X(1577) = PU(14)-harmonic conjugate of X(1930)
X(1577) = trilinear product of PU(40)
X(1577) = perspector of hyperbola {{A,B,C,X(75),X(92)}} (centered at X(4858))
X(1577) = center of circumconic that is locus of trilinear poles of lines passing through X(4858)
X(1577) = X(2)-Ceva conjugate of X(4858)
X(1577) = X(6)-isoconjugate of X(110)
X(1577) = pole wrt polar circle of trilinear polar of X(162) (line X(1)X(19))
X(1577) = X(48)-isoconjugate (polar conjugate) of X(162)
X(1577) = X(52)-isoconjugate of X(32692)
X(1577) = trilinear pole of line X(1109)X(2632)


X(1578) = POINT ALTERF I

Trilinears       sin A + sec B sec C : sin B + sec C sec B : sin C + sec A sec B
Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)(sin A + sec B sec C)

X(1578) lies on these lines: 3,6   394,488   485,1368   1038,1335   1040,1124

X(1578) = inverse-in-Brocard-circle of X(1579)


X(1579) = POINT ALTERF II

Trilinears       sin A - sec B sec C : sin B - sec C sec B : sin C - sec A sec B
Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)(sin A - sec B sec C)

X(1579) lies on these lines: 3,6   394,487   486,1368   1038,1124   1040,1335

X(1579) = inverse-in-Brocard-circle of X(1578)


X(1580) = POINT ALUDRA

Trilinears    a4 - b2c2 : :

X(1580) lies on these lines: 1,21   6,256   41,43   75,560   87,604   171,172   238,1284   239,1281   284,1045   661,830   662,922

X(1580) = isogonal conjugate of X(1581)
X(1580) = isotomic conjugate of X(1934)
X(1580) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,39043), (1755,1955), (1910,1), (1967,1582)
X(1580) = X(2236)-cross conjugate of X(1966)
X(1580) = crosssum of X(i) and X(j) for these (i,j): (1755,1964), (1965,1966)
X(1580) = crossdifference of every pair of points on line X(38)X(661)
X(1580) = X(98)-aleph conjugate of X(1755)
X(1580) = perspector of conic {A,B,C,PU(36)}
X(1580) = trilinear product X(171)*X(238)
X(1580) = perspector of unary cofactor triangles of Gemini triangles 32 and 34


X(1581) = ISOGONAL CONJUGATE OF X(1580)

Trilinears    1/(a4 - b2c2) : :

X(1581) lies on these lines: 10,257   37,256   65,291   82,662   171,292   733,831   759,805   876,882

Let DEF and D'E'F' be the 1st and 2nd Sharygin triangles. Let A' be the trilinear product D*D', and define B' and C' cyclically. The lines AA', BB', CC' concur in X(1581). (Randy Hutson, December 26, 2015)

X(1581) = isogonal conjugate of X(1580)
X(1581) = isotomic conjugate of X(1966)
X(1581) = cevapoint of X(i) and X(j) for these (i,j): (1755,1964), (1965,1966)
X(1581) = X(i)-cross conjugate of X(j) for these (i,j): (1821,1956), (1959,1), (2227,75)
X(1581) = trilinear pole of PU(35) (line X(38)X(661))
X(1581) = trilinear product of circumcircle intercepts of line PU(11)
X(1581) = trilinear product X(256)*X(291)
X(1581) = trilinear product of Steiner circumellipse intercepts of line PU(1)
X(1581) = areal center of cevian triangles of PU(8)


X(1582) = POINT CANOPUS

Trilinears    a4 + b2c2 : :

X(1582) lies on these lines: 1,19   6,291   75,560   82,662   238,992   978,1472

X(1582) = isotomic conjugate of X(9239)
X(1582) = X(1967)-Ceva conjugate of X(1580)
X(1582) = crosssum of PU(35)
X(1582) = crosspoint of PU(36)
X(1582) = intersection of tangents at PU(36) to conic {{A,B,C,PU(36)}}


X(1583) = POINT CAPELLA I

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = csc A + cos A
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)
X(1583) = 6R2X(2) + S*X(3)

As a point on the Euler line, X(1583) has Shinagawa coefficients (E + S, -S).

X(1583) lies on these lines: 2,3   6,493   371,394

X(1583) = inverse-in-orthocentroidal-circle of X(1591)


X(1584) = POINT CAPELLA II

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = csc A - cos A
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)
X(1584) = 6R2X(2) - S*X(3)

As a point on the Euler line, X(1584) has Shinagawa coefficients (E - S, S).

X(1584) lies on these lines: 2,3   6,494   372,394

X(1584) = inverse-in-orthocentroidal-circle of X(1592)


X(1585) = POINT CAPH I

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = csc A + sec A
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(1585) has Shinagawa coefficients (F, S).

X(1585) lies on these lines: 2,3   53,590   264,491   275,486   317,492   343,638   393,493   394,637   490,1321

X(1585) = inverse-in-orthocentroidal-circle of X(1586)
X(1585) = cevapoint of X(1599) and X(1993)
X(1585) = X(i)-cross conjugate of X(j) for these (i,j): (371,492), (1993,1586)
X(1585) = polar conjugate of X(485)


X(1586) = POINT CAPH II

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = csc A - sec A
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(1586) has Shinagawa coefficients (F, -S).

X(1586) lies on these lines: 2,3   53,615   264,494   317,491   343,637   393,494   394,638   489,1322

X(1586) = polar conjugate of X(486)
X(1586) = inverse-in-orthocentroidal-circle of X(1585)
X(1586) = cevapoint of X(1600) and X(1993)
X(1586) = X(i)-cross conjugate of X(j) for these (i,j): (372,491), (1993,1585)


X(1587) = POINT CASTOR I

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin A + cos B cos C
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1587) lies on these lines: 2,372   4,6   20,371   193,637   194,487   376,1151   388,1335   394,1587   486,1131   497,1124   590,631   639,1270   1132,1327


X(1588) = POINT CASTOR II

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin A - cos B cos C
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1588) lies on these lines: 2,371   4,6   20,372   193,638   194,488   376,1152   388,1124   394,1588   485,1132   497,1335   615,631   640,1271   1131,1328


X(1589) = POINT CHARA I

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = csc A + sec B sec C
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(1589) has Shinagawa coefficients (F + S, -S).

X(1589) lies on these lines: 2,3   343,487   394,488


X(1590) = POINT CHARA II

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = csc A - sec B sec C
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(1590) has Shinagawa coefficients (F - S, S).

X(1590) lies on these lines: 2,3   343,488   394,487


X(1591) = POINT CHARA III

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = csc A + cos(B - C)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(1591) has Shinagawa coefficients (E + S, S).

X(1591) lies on these lines: 2,3   343,639   394,485

X(1591) = complement of X(1599)
X(1591) = inverse-in-orthocentroidal-circle of X(1583)
X(1591) = X(1306)-Ceva conjugate of X(523)


X(1592) = POINT CHARA IV

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = csc A - cos(B - C)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(1592) has Shinagawa coefficients (E - S, -S).

X(1592) lies on these lines: 2,3   343,640   394,486

X(1592) = complement of X(1600)
X(1592) = inverse-in-orthocentroidal-circle of X(1584)
X(1592) = X(1307)-Ceva conjugate of X(523)


X(1593) = POINT CEBALRAI

Trilinears    = cos A + sec A : :
Barycentrics    a^2 (a^4 + b^4 + c^4 - 2 a^2 b^2 - 2 a^2 c^2 + 6 b^2 c^2)/(a^2 - b^2 - c^2) : :

As a point on the Euler line, X(1593) has Shinagawa coefficients (F, E - F).

In the plane of a triangle ABC, let
Γ = circumcircle
DEF = medial triangle
E' = Γ-antipode of E
(A) = circle that passes through E,F,E'
A' = center of (A), and define B' and C' cyclically.
Then the triangles ABC and A'B'C' are homothetic, and their homothetic center is X(1593). (Angel Montesdeoca, February 14, 2023)

X(1593) lies on these lines: 1,1037   2,3   6,64   19,1212   33,56   34,55   51,1204   74,1112   84,1473   184,1498   208,1466   264,1105   578,1181   607,672   1155,1452   1208, 1471

X(1593) = reflection of X(i) in X(j) for these (i,j): (4,1595), (1181,578)
X(1593) = complement of X(37201)
X(1593) = anticomplement of X(6823)
X(1593) = circumcircle-inverse of X(37931)
X(1593) = orthocentroidal-circle-inverse of X(235)
X(1593) = crosspoint of X(4) and X(1595)
X(1593) = crosssum of X(3) and X(1181)
X(1593) = polar conjugate of X(37874)
X(1593) = polar-circle-inverse of complement of X(37944)
X(1593) = homothetic center of orthic triangle and reflection of tangential triangle in X(3)
X(1593) = homothetic center of tangential triangle and reflection of orthic triangle in X(4)
X(1593) = exsimilicenter of circumcircle and incircle of orthic triangle if ABC is acute; the insimilicenter is X(25)
X(1593) = X(1697)-of-orthic-triangle if ABC is acute
X(1593) = {X(3),X(4)}-harmonic conjugate of X(25)
X(1593) = {X(12171),X(12172)}-harmonic conjugate of X(12167)


X(1594) = RIGBY-LALESCU ORTHOPOLE

Trilinears    sec A + 2 cos(B - C) : :
Trilinears    cos(2B-C) cos(A-C) + cos(2C-B) cos(A-B) : :
Trilinears    (sec A) (1 - cos 2B - cos 2C) : :

As a point on the Euler line, X(1594) has Shinagawa coefficients (2F, E + 2F).

Traian Lalescu (Trajan Lalesco) proved in "A Class of Remarcable Triangles," Gazeta Matematica 20 (1915) 213 [in Romanian], that if triangles DEF and D'E'F' are inscribed in a circle and directed arclengths satisfyarc DD' + arc EE' + arc FF' = 0 mod 2π, then the Simson lines of D,E,F with respect to D',E',F' and the Simson lines of D',E',F' with respect to D,E,F concur in the midpoint X of the segment of the orthocenters of DEF and D'E'F'. Daniel Vacaretu considered triangles DEF and D'E'F' associated with left and right isoscelizers and inscribed in the sine-triple-angle circle. He obtained the second set of trilinears shown above for the midpoint X. (See also the bicentric pair PU(61).)

In Episodes in Nineteenth and Twentieth Century Euclidean Geometry,, page 132, Ross Honsberger presents X(1594) as the orthopole of the six sides of two triangles and as the point common to six Simson lines. Honsberger calls this orthopole the Rigby Point. (Notes on Lalescu and Honsberger received from D. Vacaretu, 19/16/03)

X(1594) lies on these lines: 2,3   6,70   50,252   53,566   67,1173   96,275   125,389   128,136   232,1508   264,847   325,1235   933,1166   1209,1216   1225,1238

X(1594) = inverse-in-nine-point-circle of X(186)
X(1594) = circumcircle-inverse of X(37932)
X(1594) = orthocentroidal-circle-inverse of X(24)
X(1594) = complementary conjugate of X(32391)
X(1594) = X(933)-Ceva conjugate of X(523)
X(1594) = crosspoint of X(i) and X(j) for these (i,j): (4,93), (264,275)
X(1594) = crosssum of X(i) and X(j) for these (i,j): (3,49), (184,216)
X(1594) = X(35)-of-orthic-triangle if ABC is acute
X(1594) = excentral-to-ABC functional image of X(35)
X(1594) = polar conjugate of isotomic conjugate of X(37636)
X(1594) = {X(4),X(5)}-harmonic conjugate of X(403)


X(1595) = POINT CHELEB I

Trilinears    2 sec A + cos(B - C) : :

As a point on the Euler line, X(1595) has Shinagawa coefficients (F, 2E + F).

X(1595) lies on these lines: 2,3   33,496   34,495   39,53   578,1503

X(1595) = midpoint of X(4) and X(1593)
X(1595) = inverse-in-orthocentroidal-circle of X(1598)
X(1595) = {X(4),X(5)}-harmonic conjugate of X(1596)
X(1595) = X(3295)-of-orthic-triangle if ABC is acute


X(1596) = POINT CHELEB II

Trilinears    2 sec A - cos(B - C) : :

As a point on the Euler line, X(1596) has Shinagawa coefficients (F, -2E + F).

X(1596) lies on these lines: 2,3   33,495   34,496   53,115

X(1596) = midpoint of X(4) and X(25)
X(1596) = reflection of X(1368) in X(5)
X(1596) = circumcircle-inverse of X(37933)
X(1596) = nine-point-circle-inverse of X(37984)
X(1596) = orthocentroidal-circle-inverse of X(1597)
X(1596) = complementary conjugate of complement of X(35512)
X(1596) = {X(4),X(5)}-harmonic conjugate of X(1595)
X(1596) = X(999)-of-orthic-triangle if ABC is acute
X(1596) = center of inverse-in-polar-circle-of-de-Longchamps-line
X(1596) = polar conjugate of isotomic conjugate of X(37648)
X(1596) = homothetic center of Ehrmann mid-triangle and 3rd pedal triangle of X(4)
X(1596) = Ehrmann-side-to-orthic similarity image of X(18531)


X(1597) = POINT CHERTAN I

Trilinears    cos A + 2 sec A : :

As a point on the Euler line, X(1597) has Shinagawa coefficients (F, 2E - F).

X(1597) lies on these lines: 2,3   33,999   64,389   578,1498

X(1597) = complement of X(35513)
X(1597) = circumcircle-inverse of X(37934)
X(1597) = orthocentroidal-circle-inverse of X(1596)
X(1597) = {X(3),X(4)}-harmonic conjugate of X(1598)
X(1597) = polar conjugate of isogonal conjugate of X(33871)
X(1597) = center of conic that is locus of {X(4),P}-harmonic conjugate of Q, where P and Q lie on the circumcircle and are collinear with X(4)


X(1598) = POINT CHERTAN II

Trilinears    cos A - 2 sec A : :

As a point on the Euler line, X(1598) has Shinagawa coefficients (F, -2E - F).

X(1598) lies on these lines: 1,1057   2,3   34,999   51,1181   154,578   155,1351   389,1498   399,1112

X(1598) = circumcircle-inverse of X(37935)
X(1598) = orthocentroidal-circle-inverse of X(1595)
X(1598) = {X(3),X(4)}-harmonic conjugate of X(1597)
X(1598) = X(3333)-of-orthic-triangle if ABC is acute
X(1598) = homothetic center of 3rd pedal triangle of X(4) and 3rd antipedal triangle of X(3)


X(1599) = POINT CHORT I

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = csc A + 2 cos A
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(1599) has Shinagawa coefficients (E + 2S, -2S).

X(1599) lies on these lines: 2,3   6,588   394,1151

X(1599) = anticomplement of X(1591)
X(1599) = X(1585)-Ceva conjugate of X(1993)


X(1600) = POINT CHORT II

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = csc A - 2 cos A
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(1600) has Shinagawa coefficients (E - 2S, 2S).

X(1600) lies on these lines: 2,3   6,589   394,1152

X(1600) = anticomplement of X(1592)
X(1600) = X(i)-Ceva conjugate of X(j) for these (i,j): (346,6), (1586,1993)

leftri

TCC Perspectors 1601-1634

rightri

Suppose P is a point. As noted in TCCT, p. 201, the tangential triangle is perspective to the circumcevian triangle of P. (The tangential triangle is also perspector to the circum-anticevian triangle of P, with the same perspector as for the circumcevian triangle of P.) In August 2003, Jean-Pierre Ehrmann noted that if P = x : y : z (barycentrics), then the perspector is given by

a2(b4/y2 + c4/z2 - a4/x2) : b2(c4/z2 + a4/x2 - b4/y2) : c2(a4/x2 + b4/y2 - c4/z2) .

Denote this perspector by T(P), and call it the TCC-perspector of P. If P = x : y : z (trilinears), then

T(P) = a(b2/y2 + c2/z2 - a2/x2) : b(c2/z2 + a2/x2 - b2/y2) : c(a2/x2 + b2/y2 - c2/z2).

The transformation T carries triangle centers to triangle centers. The appearance of i → j in the following list means that T(X(i)) = X(j):
1 → 3, 2 → 22, 3 → 1498, 4 → 24, 5 → 1601, 6 → 6, 7 → 1602, 8 → 1603, 9 → 1604, 13 → 1605, 14 → 1606, 15 → 24303, 17 → 1607, 18 → 1608, 19 → 1609, 21 → 1610, 25 → 1611, 28 → 1612, 31 → 1613, 32 → 33786, 35 → 33669, 54 → 1614, 55 → 1615, 56 → 1616, 57 → 1617, 58 → 595, 59 → 1618, 63 → 1619, 64 → 1620, 75 → 33801, 76 → 33802, 81 → 1621, 83 → 1078, 84 → 1622, 86 → 23374, 88 → 1623, 162 → 1624, 163 → 1625, 174 → 1626, 188 → 2933, 249 → 33803, 251 → 1627, 254 → 1628, 259 → 198, 266, → 56, 275 → 1629, 284 → 1630, 365 → 55, 366 → 1631, 508 → 23852, 509 → 1486, 512 → 33704, 523 → 30715, 648 → 1632, 651 → 1633, 662 → 1634, 1126 → 33771, 1171 → 33774, 2153 → 11142, 2154 → 11141, 3445 → 33804, 5374 → 159, 6727 → 23846, 6733 → 23845, 14085 → 101, 14086 → 30715, 14089 → 99, 14090 → 33704, 18297 → 23849, 18753 → 2176, 20034 → 25

For further properties of TCC perpsectors, published some 14 years after their introdcution here, see I. Minevich and P. Morton, International Journal of Geometry 2017, "Synthetic foundations of cevian geometry, IV"


X(1601) = TCC-PERSPECTOR OF X(5)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1601) lies on these lines: 3,128   6,1166

X(1601) = X(60)-of-tangential-triangle if ABC is acute
X(1601) = tangential isogonal conjugate of X(1614)

X(1602) = TCC-PERSPECTOR OF X(7)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1602) lies on these lines: 7,1486   22,1626   24,242


X(1603) = TCC-PERSPECTOR OF X(8)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1603) lies on this line: 8,197   24,1324


X(1604) = TCC-PERSPECTOR OF X(9)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1604) lies on these lines: 3,9   25,1863

X(1604) = isogonal conjugate of X(34546)
X(1604) = circumcircle-inverse-of X(17112)
X(1604) = X(346)-Ceva conjugate of X(6)


X(1605) = TCC-PERSPECTOR OF X(13)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1605) lies on this line: 3,618   26,1607

X(1605) = circumcircle-inverse of X(33499)

X(1606) = TCC-PERSPECTOR OF X(14)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1606) lies on this line: 3,619   26,1608

X(1606) = circumcircle-inverse of X(33501)

X(1607) = TCC-PERSPECTOR OF X(17)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1607) lies on this line: 3,619   26,1605


X(1608) = TCC-PERSPECTOR OF X(18)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1608) lies on this line: 3,618   26,1606


X(1609) = TCC-PERSPECTOR OF X(19)

Trilinears    f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))
Trilinears    a(cos^2 B + cos^2 C - cos^2 A) : :

X(1609) lies on these lines: 3,6   24,254   25,53   48,1195   112,1299   159,237   186,1249   590,1583   615,1584

X(1609) = X(i)-Ceva conjugate of X(j) for these (i,j): (24,25), (393,6)
X(1609) = crosspoint of X(107) and X(249)
X(1609) = crosssum of X(115) and X(520)
X(1609) = circle-{X(371),X(372),PU(1),PU(39)}-inverse of X(36747)
X(1609) = {X(371),X(372)}-harmonic conjugate of X(36747)


X(1610) = TCC-PERSPECTOR OF X(21)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1610) lies on these lines: 1,19   6,959   8,197   20,1633   24,944   172,910   198,958   315,1310


X(1611) = TCC-PERSPECTOR OF X(25)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[(a2 + b2 + c2)2 - 8b2c2]      (M. Iliev, 5/13/07)

X(1611) lies on these lines: 2,6   3,1196   232,1033   1498,1513

X(1611) = X(i)-Ceva conjugate of X(j) for these (i,j): (459,25), (2207,6)
X(1611) = crosssum of X(520) and X(1084)
X(1611) = center of bicevian conic of PU(4)


X(1612) = TCC-PERSPECTOR OF X(28)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1612) lies on these lines: 1,21   6,943   55,387   681,1924   1006,1104

X(1612) = crosspoint of X(107) and X(765)
X(1612) = crosssum of X(244) and X(520)


X(1613) = TCC-PERSPECTOR OF X(31)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2c2 - c2a2 - a2b2)      (M. Iliev, 5/13/07)

X(1613) lies on these lines: 1,1197   2,6   3,695   25,694   110,699   154,237   305,732   511,1196

X(1613) = isogonal conjugate of X(2998)
X(1613) = isogonal conjugate of the complement of X(32747)
X(1613) = X(i)-Ceva conjugate of X(j) for these (i,j): (32,6)
X(1613) = X(194)-cross conjugate of X(6)
X(1613) = crosspoint of X(i) and X(j) for these (i,j): (1424,1740)
X(1613) = crosssum of X(523) and X(1084)
X(1613) = crossdifference of every pair of points on line X(512)X(625) (complement of Lemoine axis)
X(1613) = X(92)-isoconjugate of X(3504)
X(1613) = trilinear pole of polar wrt 2nd Brocard circle of perspector of 2nd Brocard circle
X(1613) = vertex conjugate of PU(148)


X(1614) = TCC-PERSPECTOR OF X(54)

Trilinears    a[b^2 cos^2(C - A) + c^2 cos^2(A - B) - a^2 cos^2(B - C)] : :
Barycentrics    a^2 (a^8 - 3 a^6 (b^2 + c^2) + a^4 (3 b^4 + b^2 c^2 + 3 c^4) - a^2 (b^2 - c^2)^2 (b^2 + c^2) + b^2 c^2 (b^2 - c^2)^2) : :

Let P1 and P2 be the two points on the circumcircle whose Steiner lines are tangent to the circumcircle. X(1614) is the crosspoint of P1 and P2. (Randy Hutson, August 29, 2018)

Let A'B'C' be the triangle described in ADGEOM #2697 (8/26/2015, Tran Quang Hung). A'B'C' is homothetic to the anti-Euler triangle at X(1614). Also, X(1614) is the exsimilicenter of the circumcircle of ABC and nine-point circle of A'B'C'. (Randy Hutson, August 29, 2018)

> X(1614) lies on these lines: 3,74   4,184   6,1173   20,1147   22,155   23,52   24,154   30,49   51,1199   70,1176   185,186   376,1092   378,1498   389,1495   546,567   1503,1594

X(1614) = isogonal conjugate of X(6662)
X(1614) = Vu tangential transform of X(3)
X(1614) = X(12)-of-tangential-triangle if ABC is acute
X(1614) = tangential isogonal conjugate of X(1601)
X(1614) = {X(3),X(156)}-harmonic conjugate of X(110)
X(1614) = exsimilicenter of circumcircle and nine-point circle of tangential triangle
X(1614) = intouch-to-ABC functional image of X(12)


X(1615) = TCC-PERSPECTOR OF X(55)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1615) lies on these lines: 6,57   56,1200   165,220

X(1615) = X(i)-Ceva conjugate of X(j) for these (i,j): (165,55), (200,6)


X(1616) = TCC-PERSPECTOR OF X(56)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[(a + b + c)2 - 8bc]      (M. Iliev, 5/13/07)

X(1616) lies on these lines: 1,6   42,1293   55,1201   221,1319   595,999   614,3057   902,1392   962,1086   1035,1457   1407,1420

X(1616) = isogonal conjugate of X(6553)
X(1616) = polar conjugate of isotomic conjugate of X(23089)
X(1616) = X(i)-Ceva conjugate of X(j) for these (i,j): (1407,6), (1420,56)
X(1616) = crosspoint of X(934) and X(1016)


X(1617) = TCC-PERSPECTOR OF X(57)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1617) lies on these lines: 1,3   6,1174   7,1621   22,347   25,105   31,222   41,1202   42,1471   109,1407   219,604   221,595   226,1001   388,405   479,934   518,1260   602,1066   614,1465   910,1108   1006,1056   1055,1200   1279,1427   1362,1397   1384,1415

X(1617) = isogonal conjugate of X(6601)
X(1617) = X(i)-Ceva conjugate of X(j) for these (i,j): (279,6), (1252,109), (1445,218)
X(1617) = crosspoint of X(59) and X(934)
X(1617) = pole wrt circumcircle of line X(513)X(676) (the trilinear polar of X(279))
X(1617) = polar conjugate of isotomic conjugate of X(23144)
X(1617) = {X(55),X(56)}-harmonic conjugate of X(57)
X(1617) = {X(3513),X(3514)}-harmonic conjugate of X(3)
X(1617) = inverse-in-circumcircle of X(3660)
X(1617) = {X(13388),X(13389)}-harmonic conjugate of X(37597)


X(1618) = TCC-PERSPECTOR OF X(59)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1618) lies on these lines: 109,1459   110,901   513,651

X(1618) = reflection of X(59) in X(692)


X(1619) = TCC-PERSPECTOR OF X(63)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1619) lies on these lines: 3,64   22,69   25,1503   161,542

X(1619) = crosssum of (122,512)


X(1620) = TCC-PERSPECTOR OF X(64)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1620) lies on these lines: 3,6   154,1204   186,1498


X(1621) = TCC-PERSPECTOR OF X(81)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2 - bc - ca - ab      (M. Iliev, 5/13/07)
X(1621) = 2X(1) + 3X(2) + 2(r/R)X(3)

X(1621) lies on these lines: 1,21   2,11   3,962   7,1617   8,405   9,1174   22,1486   35,404   36,551   37,82   42,238   43,748   99,873   145,958   171,902   213,1206   226,1005   278,1013   329,954   411,946   517,1006   739,932   985,1255

X(1621) = complement of X(33110)
X(1621) = X(i)-Ceva conjugate of X(j) for these (i,j): (1252,100), (1509,6)
X(1621) = crosspoint of X(99) and X(765)
X(1621) = crosssum of (244,512)
X(1621) = tangential-isogonal conjugate of X(35212)
X(1621) = {X(1),X(31)}-harmonic conjugate of X(81)


X(1622) = TCC-PERSPECTOR OF X(84)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1622) lies on these lines: 1,3   6,947   84,963


X(1623) = TCC-PERSPECTOR OF X(88)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1623) lies on these lines: 3,8   23,105   36,1168


X(1624) = TCC-PERSPECTOR OF X(162)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1624) lies on these lines: 3,113   25,132   110,351   112,1301   852,1503   925,1302   933,1304


X(1625) = TCC-PERSPECTOR OF X(163)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))
Barycentrics    a^2 (a^2 (b^2 + c^2) - (b^2 - c^2)^2) / (b^2 - c^2) : :

X(1625) lies on the Johnson circumconic and these lines: 5,217   6,13   110,112

X(1625) = midpoint of X(3289) and X(3331)
X(1625) = isogonal conjugate of X(15412)
X(1625) = X(75)-Ceva conjugate of X(6)
X(1625) = crosspoint of X(i) and X(j) for these (i,j): (110,648), (107,110)
X(1625) = crosssum of (523,647), (520,523)
X(1625) = crossdifference of every pair of points on line X(125)X(526)
X(1625) = barycentric product X(112)*X(343)


X(1626) = TCC-PERSPECTOR OF X(174)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1626) lies on these lines: 3,10   22,1602   38,55   982,1283

X(1626) = X(85)-Ceva conjugate of X(6)
X(1626) = isogonal conjugate of isotomic conjugate of X(21285)
X(1626) = polar conjugate of isotomic conjugate of X(22125)


X(1627) = TCC-PERSPECTOR OF X(251)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))
Barycentrics    a^2 (a^4 + a^2 b^2 + a^2 c^2 - b^2 c^2) : :

X(1627) lies on these lines: 2,32   3,1180   22,1184   23,1196   25,111   110,699   187,1194   571,1370   609,612

X(1627) = isogonal conjugate of X(6664)
X(1627) = Vu tangential transform of X(6)


X(1628) = TCC-PERSPECTOR OF X(254)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

As a point on the Euler line, X(1628) has Shinagawa coefficients (2(E + F)2E2F - 2(E + 2F)EFS2 + 4FS4, [(E2 + 6EF + 4F2)E - 4(E + F)S2]S2).

X(1628) lies on this line: 2,3


X(1629) = TCC-PERSPECTOR OF X(275)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1629) lies on these lines: 4,54   22,264   23,324   25,98   251,393   436,1495   1093,1179

X(1629) = polar conjugate of X(36952)
X(1629) = pole wrt polar circle of trilinear polar of X(36952) (line X(684)X(2525))


X(1630) = TCC-PERSPECTOR OF X(284)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1630) lies on these lines: 1,19   101,102   109,577   1055,1195


X(1631) = TCC-PERSPECTOR OF X(366)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a3 - b3 - c3)      (M. Iliev, 5/13/07)

X(1631) lies on these lines: 3,142   6,560   22,1602   25,1826   48,674   55,199   198,480   573,692   789,1502

X(1631) = isogonal conjugate of X(7357)
X(1631) = X(75)-Ceva conjugate of X(6)
X(1631) = crossum of X(116) and X(513)

X(1631) = tangential isogonal conjugate of X(55)

X(1632) = TCC-PERSPECTOR OF X(648)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1601))

X(1632) lies on these lines: 98,338   99,670   110,925   112,1289   157,264   250,523   476,1302   827,1286   933,1288

X(1632) = reflection of X(648) in X(1576)
X(1632) = cevapoint of X(157) and X(523)
X(1632) = crosspoint of X(99) and X(107)
X(1632) = crosssum of X(512) and X(520)
X(1632) = perspector of ABC and side triangle of circumanticevian triangles of X(2) and X(4)


X(1633) = TCC-PERSPECTOR OF X(651)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2 + b2 + c2 - 2bc)/(b - c)      (M. Iliev, 5/13/07)

X(1633) lies on these lines: 7,1486   19,1721   20,1610   28,1770   48,1742   59,1310   99,1310   100,190   101,1292   105,1086   108,109   497,1473

X(1633) = reflection of X(651) in X(692)
X(1633) = X(1275)-Ceva conjugate of X(6)
X(1633) = cevapoint of X(513) and X(1486)
X(1633) = crosspoint of X(i) and X(j) for these (i,j): (99,162), (100,934)
X(1633) = crosssum of X(512) and X(656)
X(1633) = X(i)-aleph conjugate of X(j) for these (i,j): (100,610), (1783,1707), (1897,19)


X(1634) = TCC-PERSPECTOR OF X(662)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 + c2)/(b2 - c2)      (M. Iliev, 5/13/07)

X(1634) lies on these lines: 3,67   6,694   69,160   99,670   110,351   112,907   237,524   660,765   1306,1307

X(1634) = complement of X(25051)
X(1634) = isogonal conjugate of anticomplementary conjugate of X(39346)
X(1634) = crossdifference of every pair of points on line X(115)X(804) (the tangent to the nine-point circle at X(115))
X(1634) = X(19)-isoconjugate of X(4580)
X(1634) = isotomic conjugate of polar conjugate of X(35325)
X(1634) = X(688)-cross conjugate of X(6)
X(1634) = crosspoint of X(99) and X(110)
X(1634) = crosssum of X(512) and X(523)

leftri

Tripolar Centroids 1635-1651

rightri
Suppose P, Q, R are collinear points not on the line at infinity. Let M = midpoint{Q, R}. The segment PM has two trisectors. The trisector closer to M here defines the centroid of {P, Q, R}.

Suppose X = x : y : z (trilinears) is a point other than X(2), and define the tripolar centroid of X as the point TG(X) given by

TG(X) = x(by - cz)(by + cz - 2ax) : y(cz - ax)(cz + ax - 2by) : z(ax - by)(ax + by - 2cz).

TG(X) is the centroid of the points BC∩B'C', CA∩C'A', AB∩A'B', where A'B'C' denotes the cevian triangle of X. The notions of centroid and tripolar centroid were contributed by Darij Grinberg, August 24, 2003.

The appearance of (i,j) in the following list means that TG(X(i)) = X(j):

(1,1635), (3,1636), (4,1637), (5,14391), (6,351), (7,1638), (8,1639), (9,14392), (10,4120), (11,14393), (12,14394), (13,9200), (14,9201), (17,14446), (18,14447), (21,14395), (22,14396), (24,14397), (25,14398), (27,11125), (28,14399), (29,14400), (30,14401), (31,14402), (32,14403), (37,14404), (38,14405), (39,14406), (42,14407), (43,14408), (44,14409), (45,14410), (55,14411), (56,14412), (57,14413), (63,14414), (65,14415), (66,14417), (69,14417), (75,4728), (76,9148), (78,14418), (81,14419), (83,14420), (86,4750), (88,14421), (89,14422), (98,1640), (99,1641}, {100,1642), (105,1643), (111,9171), (115,14423), (141,14424), (145,14425), (190,1644), (192,14426), (200,14427), (239,4448), (251,14428), (262,3569), (263,2491), (298,9204), (299,9205), (306,14429), (312,14430), (321,14431), (333,14432), (350,14433), (385,11183), (512,1645), (513,1646), (514,1647}, {519,6544), (523,1648), (524,1649), (525,1650), (536,14434), (551,14435), (648,1651), (671,8371), (869,14436), (899,14437), (957,3310), (985,14438), (1002,665), (1022,244), (1125,4984), (1026,14439), (1267,14440), (1646,14441), (1647,14442), (1648,14443), (1649,14444), (1698,4958), (1916,11182), (1976,6041}, {1992,9125), (2394,125), (2395,6784), (2396,6786), (2403,3756), (2407,5642), (2408,6791), (2409,6793), (2418,12036), (2419,12037), (2421,9155), (3413,13636}, {3414,13722), (3616,4773), (4049,3120), (4240,3163), (5391,14445), (5466,115), (5468,2482), (6548,1086), (9178,3124), (9213,2088), (9221,2081), (13582,1116), (14223,868)


X(1635) = TRIPOLAR CENTROID OF X(1)

Trilinears    (b - c)(b + c - 2a) : :      (M. Iliev, 5/13/07)

X(1635) lies on these lines: 2,812   44,513   88,1022   100,101   105,1024   244,665   900,1644

X(1635) = reflection of X(1962) in X(351)
X(1635) = isogonal conjugate of X(3257)
X(1635) = complement of X(21297)
X(1635) = anticomplement of X(4928)
X(1635) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,38979), (44,2087), (88,244), (104,2310), (662,214), (1022,513), (1023,44), (2161,2170)
X(1635) = X(2087)-cross conjugate of X(44)
X(1635) = crosspoint of X(i) and X(j) for these (i,j): (44,1023), (57,2222), (88,100), (101,909), (190,1120), (513,1022), (662,759)
X(1635) = crosssum of X(i) and X(j) for these (i,j): (1,1635), (44,513), (88,1022), (100,1023), (514,908), (649,1149), (661,758)
X(1635) = bicentric sum of PU(34)
X(1635) = perspector of hyperbola {{A,B,C,X(1),X(44)}}
X(1635) = PU(34)-harmonic conjugate of X(244)
X(1635) = trilinear pole of line X(2087)X(3251)
X(1635) = centroid of antiorthic axis intercepts with sidelines of ABC
X(1635) = X(647)-of-2nd-extouch-triangle


X(1636) = TRIPOLAR CENTROID OF X(3)

Trilinears    (cos A)(tan B - tan C)(tan B + tan C - 2 tan A) : :
Trilinears    cos A [sec B csc(A - C) + sec C csc(A - B)] : :
Barycentrics    (sin 2A)(sin 2B - sin 2C)(sin 2B + sin 2C - 2 sin 2A) : :

X(1636) lies on these lines: 110,112   520,647   525,3268   1637,1651

X(1636) = crosspoint of X(648) and X(1294)
X(1636) = crosssum of X(i) and X(j) for these (i,j): (4,1637), (523,1990)
X(1636) = X(2)-Ceva conjugate of X(38999)
X(1636) = perspector of hyperbola {{A,B,C,X(3),X(30)}}
X(1636) = intersection of perspectrix of ABC and orthocentroidal triangle (line X(1636)X(1637)) and perspectrix of ABC and anti-orthocentroidal triangle (line X(520)X(647))


X(1637) = TRIPOLAR CENTROID OF X(4)

Barycentrics    tan A (tan B - tan C)(tan B + tan C - 2 tan A) : :
Barycentrics    (b^2 - c^2)(2a^4 - b^4 - c^4 - a^2b^2 - a^2c^2 + 2b^2c^2) : :
Barycentrics    (cot B - cot C)(tan B + tan C - 2 tan A) : :

Let A'B'C' and A"B"C" be the cevian and anticevian triangles of X(4), resp. Let OA be the cevian circle of A". Let A* be the intersection, other than A', of OA and line BC. Define B* and C* cyclically. X(1637) is the centroid of triangle A*B*C*. (Randy Hutson, August 28, 2020)

X(1637) lies on these lines: 2,3268   98,111   107,112   115,125   132,1560   230,231   1499,1514   1636,1651

X(1637) = complement of X(3268)
X(1637) = X(1989)-Ceva conjugate of X(115)
X(1637) = crosspoint of X(2) and X(476)
X(1637) = crosssum of X(i) and X(j) for these (i,j): (3,1636), (6,526)
X(1637) = crossdifference of every pair of points on line X(3)X(74)
X(1637) = PU(4)-harmonic conjugate of X(6103)
X(1637) = midpoint of circumcenters of X(13)X(14)X(15) and X(13)X(14)X(16)
X(1637) = perspector of circumconic centered at X(3258)
X(1637) = center of circumconic that is locus of trilinear poles of lines passing through X(3258)
X(1637) = X(2)-Ceva conjugate of X(3258)
X(1637) = centroid of orthic axis intercepts with sidelines of ABC
X(1637) = tripolar centroid of X(4) wrt orthic triangle
X(1637) = center of Dao-Moses-Telv circle
X(1637) = X(115) of 2nd Parry triangle
X(1637) = insimilicenter of circles {{X(98),X(107),X(125),X(132)}} and {{X(6),X(111),X(112),X(115),X(187),X(1560)}}; the exsimilicenter is X(6103)
X(1637) = radical center of orthocentroidal circles of ABC, orthocentroidal triangle, anti-orthocentroidal triangle
X(1637) = inverse-in-Hutson-Parry-circle of X(1640)
X(1637) = {X(13636),X(13722)}-harmonic conjugate of X(1640)
X(1637) = centroid of (degenerate) side triangle of 3rd and 4th isodynamic-Dao triangles


X(1638) = TRIPOLAR CENTROID OF X(7)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1635))
Barycentrics    (b - c) (2 a^2 - b^2 - c^2 - a b - a c + 2 b c) : :

Let Oa be the circle centered at A with radius k(b + c -a) (for some constant k>0), and define Ob and Oc cyclically. Let A' be the exsimilicenter of Ob and Oc, and define B' and C' cyclically. The centroid of (degenerate) triangle A'B'C' = X(1638). This is independent of the choice of k. (Randy Hutson, January 29, 2018)

X(1638) lies on these lines: 2,918   11,244   57,654   88,673   241,514   354,926   651,658

X(1638) = reflection of X(1639) in X(2)
X(1638) = centroid of Gergonne line intercepts with sidelines of ABC
X(1638) = X(351)-of-intouch-triangle
X(1638) = complement of X(30565)


X(1639) = TRIPOLAR CENTROID OF X(8)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b - c)(b + c - a)(b + c - 2a)      (M. Iliev, 5/13/07)

X(1639) lies on these lines: 2,918   9,654   11,1146   210,926   522,650

X(1639) = reflection of X(1638) in X(2)
X(1639) = centroid of (degenerate) side-triangle of ABC and Gemini triangle 15


X(1640) = TRIPOLAR CENTROID OF X(98)

Trilinears    bc(b2 - c2)(2a6 - b6 - c6 - 2a4b2 - 2a4c2 + a2b4 + a2c4 + b4c2 + b2c4) : :     (M. Iliev, 5/25/07)

X(1640) lies on these lines: 2,525   4,1499   6,523   39,647   51,512   115,125

X(1640) = radical center of Brocard circle, orthocentroidal circle, and orthosymmedial circle
X(1640) = radical center of orthocentroidal circle, orthosymmedial circle, and circle O(2,6)
X(1640) = X(3268)-of-1st-Brocard-triangle
X(1640) = orthocenter of X(2)X(4)X(6)
X(1640) = orthoptic-circle-of-Steiner-inellipse-inverse of X(34366)
X(1640) = inverse-in-Hutson-Parry-circle of X(1637)
X(1640) = {X(13636),X(13722)}-harmonic conjugate of X(1637)

X(1641) = TRIPOLAR CENTROID OF X(99)

Trilinears    f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1635))

X(1641) lies on these lines: 2,6   351,690

X(1641) = reflection of X(1648) in X(2)
X(1641) = centroid of line X(2)X(6) intercepts with sidelines of ABC
X(1641) = intersection of tangents to circle {X(2),X(110),X(2770),X(5463),X(5464)} at X(5463) and X(5464)
X(1641) = centroid of degenerate cross-triangle of anticomplementary and Schroeter triangles


X(1642) = TRIPOLAR CENTROID OF X(100)

Trilinears    (a b + a c - b^2 - c^2) (2 a^3 - 2 a^2 (b + c) + a (b^2 + c^2) - (b - c)^2 (b + c)) : :

X(1642) lies on these lines: 1,6   241,1025


X(1643) = TRIPOLAR CENTROID OF X(105)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1635))

X(1643) lies on these lines: 1,650   6,513   42,663   57,1022   244,665   649,764


X(1644) = TRIPOLAR CENTROID OF X(190)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1635))

X(1644) lies on these lines: {1,2}, {900,1635}

X(1644) = reflection of X(1647) in X(2)
X(1644) = centroid of Nagel line intercepts with sidelines of ABC


X(1645) = TRIPOLAR CENTROID OF X(512)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1635))

X(1645) lies on these lines: 2,39   351,865

X(1645) = X(i)-Ceva conjugate of X(j) for these (i,j): (538,888), (728,888)
X(1645) = crosspoint of X(i) and X(j) for these (i,j): (538,888), (728,888)


X(1646) = TRIPOLAR CENTROID OF X(513)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b - c)2(2bc - ab - ac)      (M. Iliev, 5/13/07)

X(1646) lies on these lines: 2,37   88,292   244,665

X(1646) = isogonal conjugate of X(5381)
X(1646) = X(i)-Ceva conjugate of X(j) for these (i,j): (536,891), (738,891)
X(1646) = crosspoint of X(i) and X(j) for these (i,j): (536,891), (738,891)
X(1646) = crosssum of X(739) and X(898)


X(1647) = TRIPOLAR CENTROID OF X(514)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b - c)2(2a - b - c)      (M. Iliev, 5/13/07)

X(1647) lies on these lines: 1,2   11,244   80,106   149,1054

X(1647) = reflection of X(1644) in X(2)
X(1647) = X(i)-Ceva conjugate of X(j) for these (i,j): (80,513), (519,900), (903,514), (1120,522)
X(1647) = crosspoint of X(i) and X(j) for these (i,j): (514,903), (519,900)
X(1647) = crosssum of X(i) and X(j) for these (i,j): (101,902), (106,901)


X(1648) = TRIPOLAR CENTROID OF X(523)

Trilinears    bc(b2 - c2)2(b2 + c2 - 2a2) : :

X(1648) lies on these lines: 2,6   115,125   669,865

X(1648) = reflection of X(1641) in X(2)
X(1648) = isotomic conjugate of isogonal conjugate of X(21906)
X(1648) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,1649), (67,512), (468,351), (524,690), (671,523)
X(1648) = crosspoint of X(i) and X(j) for these (i,j): (523,671), (524,690)
X(1648) = crosssum of X(i) and X(j) for these (i,j): (110, 187), (111,691)
X(1648) = intersection of tangents to Hutson-Parry circle at X(13) and X(14)
X(1648) = pole wrt Hutson-Parry circle of Fermat axis
X(1648) = inverse-in-Hutson-Parry-circle of X(115)
X(1648) = perspector of circumconic centered at X(1649)
X(1648) = center of circumconic that is locus of trilinear poles of lines passing through X(1649)
X(1648) = intersection of line PU(40) (X(115)X(125)) and trilinear polar of cevapoint of PU(40)
X(1648) = X(2502)-of-4th-Brocard-triangle
X(1648) = X(2502)-of-orthocentroidal-triangle
X(1648) = centroid of (degenerate) cross-triangle of 4th Brocard and orthocentroidal triangle
X(1648) = trilinear pole of line X(2682)X(14443)
X(1648) = {X(13636),X(13722)}-harmonic conjugate of X(115)


X(1649) = TRIPOLAR CENTROID OF X(524)

Barycentrics    (2a^2 - b^2 - c^2)^2 (b^2 - c^2) : :

X(1649) lies on the Kiepert parabola and these lines: 2,523   3,669   39,647   114,126   351,690

X(1649) = isogonal conjugate of X(34574)
X(1649) = crossdifference of every pair of points on line X(23)X(111)
X(1649) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,1648), (99,524), (523,690)
X(1649) = crosspoint of X(i) and X(j) for these (i,j): (99,524), (523,690)
X(1649) = crosssum of X(i) and X(j) for these (i,j): (110, 691), (111,512)
X(1649) = perspector of circumconic centered at X(1648)
X(1649) = center of circumconic that is locus of trilinear poles of lines passing through X(1648)
X(1649) = center of circle {{X(2),X(110),X(2770),X(5463),X(5464)}}
X(1649) = trilinear pole of line X(14444)X(23992)
X(1649) = harmonic center of circles {{X(13),X(15),X(5463),X(5464)}} and {{X(14),X(16),X(5463),X(5464)}}


X(1650) = TRIPOLAR CENTROID OF X(525)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1635))

As a point on the Euler line, X(1650) has Shinagawa coefficients ((4E - 5F)F - S2, -3(E + F)F + S2).

Let W be the circumconic with center X(1650). One of the asymptotes of W is the Euler line. The other is in the direction of X(9033). For a sketch, click X(9033). (Angel Montesdeoca, April 19, 2016)

X(1650) lies on these lines: 2,3   122,125

X(1650) = reflection of X(1651) in X(2)
X(1650) = anticomplement of X(402)
X(1650) = nine-point-circle-inverse of X(37985)
X(1650) = X(i)-Ceva conjugate of X(j) for these (i,j): (265,520), (1294,523), (1494,525)
X(1650) = crosspoint of X(525) and X(1494)
X(1650) = crosssum of X(i) and X(j) for these (i,j): (74,1304), (110,2071), (112,1495)
X(1650) = complement of X(4240)
X(1650) = homothetic center of Gossard and medial triangles


X(1651) = TRIPOLAR CENTROID OF X(648)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b)  (see note above X(1635))

As a point on the Euler line, X(1651) has Shinagawa coefficients (3(2E - 7F)F - S2,9(E + F)F - 3S2).

X(1651) lies on these lines: 2,3   1636,1637

X(1651) = reflection of X(i) in X(j) for these (i,j): (2,402), (1650,2)
X(1651) = Euler line intercept of trilinear polar of X(30)
X(1651) = centroid of Euler line intercepts with sidelines of ABC
X(1651) = X(2)-of-Gossard triangle


X(1652) = 4th EVANS PERSPECTOR

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sqrt(3/4) - sin(A + π/3) + sin(B + π/3) + sin(C + π/3)
                         = sqrt(3/4) - cos(A - π/6) + cos(B - π/6) + cos(C - π/6)
Trilinears        sqrt(3) tan(A/2) + tan(B/2) tan(C/2) : sqrt(3) tan(B/2) + tan(C/2) tan(A/2) : sqrt(3) tan(C/2) + tan(A/2) tan(B/2)
                         = sqrt(3) tan(A/2) + (b + c - a)/(a + b + c) : sqrt(3) tan(B/2) + (c + a - b)/(a + b + c) : sqrt(3) tan(C/2) + (a + b - c)/(a + b + c)     (M. Iliev, 5/13/07)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

See also X(1276) and X(1277) for the 2nd and 3rd Evans perspectors.

X(1652) lies on these lines: {1,15}, {2,7}, {13,3464}, {17,3336}, {46,1277}, {56,5240}, {61,3468}, {65,5239}, {396,554}, {559,1100}, {3638,5011}, {4848,5245}

X(1652) = X(i)-Ceva conjugate of X(j) for these (i,j): (554,1), (2160,1653)
X(1652) = X(554)-aleph conjugate of X(1652)
X(1652) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,3179,1276), (9,57,1653), (1400,3218,1653), (2285,3306,1653)


X(1653) = 5th EVANS PERSPECTOR

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sqrt(3/4) + sin(A - π/3) - sin(B - π/3) - sin(C - π/3)
                         = - sqrt(3/4) + cos(A + π/6) - cos(B + π/6) - cos(C + π/6)
Trilinears        sqrt(3) tan(A/2) - tan(B/2) tan(C/2) : sqrt(3) tan(B/2) - tan(C/2) tan(A/2) : sqrt(3) tan(C/2) - tan(A/2) tan(B/2)
                         = sqrt(3) tan(A/2) - (b + c - a)/(a + b + c) : sqrt(3) tan(B/2) - (c + a - b)/(a + b + c) : sqrt(3) tan(C/2) - (a + b - c)/(a + b + c)     (M. Iliev, 5/13/07)


Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1653) lies on these lines: 1,16   2,7   46,1276   395,1081   1082,1100

X(1653) = X(i)-Ceva conjugate of X(j) for these (i,j): (1081,1), (2160,1652)
X(1653) = X(1081)-aleph conjugate of X(1653)


X(1654) = 1st HATZIPOLAKIS PARALLELIAN POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(-a2 + b2 + c2 + bc + ca + ab)
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = -a2 + b2 + c2 + bc + ca + ab

Let P be a point in the plane of, but not on a sideline of, triangle ABC. Let BA be the point where the line through P parallel to line BC meets line BA, and let CA be the point where the line through P parallel to line BC meets line CA. Define CB, AB, AC, and BC cyclically. If P = X(1654), then

|ABA| + |ACA| = |BCB| + |BAB| = |CAC| + |CBC|

(Antreas Hatzipolakis, Anopolis #20, 1/20/02)

X(1654) lies on these lines: 2,6   8,192   10,894   37,319   71,1762   190,594

X(1654) = reflection of X(86) in X(1213)
X(1654) = isotomic conjugate of X(6625)
X(1654) = crosspoint of X(2) and X(8) wrt 2nd Conway triangle
X(1654) = anticomplement of X(86)
X(1654) = X(i)-Ceva conjugate of X(j) for these (i,j): (10,2), (894,192)
X(1654) = anticomplementary isotomic conjugate of X(1)
X(1654) = complement of X(20090)
X(1654) = polar conjugate of isogonal conjugate of X(22139)
X(1654) = {X(2),X(2895)}-harmonic conjugate of X(17778)
X(1654) = perspector of Gemini triangle 39 and cross-triangle of Gemini triangles 39 and 40
X(1654) = {X(2),X(69)}-harmonic conjugate of X(17300)


X(1655) = 2nd HATZIPOLAKIS PARALLELIAN POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[-1/a2 + 1/b2 + 1/c2 + 1/(bc) + 1/(ca) + 1/(ab)]
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = -1/a2 + 1/b2 + 1/c2 + 1/(bc) + 1/(ca) + 1/(ab)

Continuing from the description of X(1654), let h(B,A) be the distance from the point BA to the line CA, and define five other distances cyclically. If P = X(1655), then

h(B,A) + h(C,A) = h(C,B) + h(A,B) = h(A,C) + h(B,C)

(Antreas Hatzipolakis, Anopolis #20, 1/20/02)

X(1655) lies on these lines: 2,39   8,192   21,385   193,452   350,1107   668,1500

X(1655) = anticomplement of X(274)
X(1655) = isotomic conjugate of isogonal conjugate of X(21779)
X(1655) = polar conjugate of isogonal conjugate of X(23079)
X(1655) = X(i)-Ceva conjugate of X(j) for these (i,j): (37,2), (1909,8)


X(1656) = INTERSECTION OF EULER LINE AND LINEX(17)X(18)

Trilinears    3 cos A + 4 cos B cos C : :
Barycentrics   3 + cot B cot C : :
Barycentrics   3 S^2 + SB SC : :
Barycentrics   a^4 - 3a^2(b^2 + c^2) + 2(b^2 - c^2)^2 : :
X(1656) = 6*X(381) - X(382)

As a point on the Euler line, X(1656) has Shinagawa coefficients (3,1).

Let A' be the reflection of X(3) in A, and define B' and C' cyclically. The triangle A'B'C' is homothetic to the medial triangle, and the center of homothety is X(1656).

X(1656) lies on these lines: 2,3   6,17   10,1482   11,498   12,499   49,569   51,1216   125,399   141,1351   302,634   303,633   355,1125   373,568   485,615   486,590   517,1698   567,1147   576,599

X(1656) = midpoint of X(5) and X(632)
X(1656) = reflection of X(i) in X(j) for these (i,j): (3,631), (631,632)
X(1656) = complement of X(631)
X(1656) = anticomplement of X(632)
X(1656) = circumcircle-inverse of X(37936)
X(1656) = orthocentroidal-circle-inverse of X(140)
X(1656) = {X(3),X(5)}-harmonic conjugate of X(381)
X(1656) = {X(17),X(18)}-harmonic conjugate of X(6)
X(1656) = {X(1506),X(7746)}-harmonic conjugate of X(6)
X(1656) = homothetic center of 2nd Euler triangle and mid-triangle of orthic and circumorthic triangles
X(1656) = homothetic center of submedial triangle and mid-triangle of orthic and circumorthic triangles
X(1656) = X(5)-of-cross-triangle-of-Euler-and-anti-Euler-triangles
X(1656) = X(1385)-of-cross-triangle-of Aquila-and-anti-Aquila-triangles
X(1656) = homothetic center of X(5)-altimedial and X(3)-anti-altimedial triangles
X(1656) = homothetic center of X(140)-altimedial and X(140)-anti-altimedial triangles
X(1656) = endo-homothetic center of Ehrmann mid-triangle and X3-ABC reflections triangle; the homothetic center is X(3843)
X(1656) = radical center of de Longchamps circles of ABC and 1st and 2nd Ehrmann circumscribing triangles


X(1657) = {X(3),X(4)}-HARMONIC CONJUGATE OF X(1656)

Trilinears    3 cos A - 4 cos B cos C : :
Barycentrics   5a^4 - 2b^4 - 2c^4 - 3a^2b^2 - 3a^2c^2 + 4b^2c^2 : :
X(1657) = 3*X(381) - 2*X(382)

As a point on the Euler line, X(1657) has Shinagawa coefficients (3, -7).

Let La be the polar of X(3) wrt the A-power circle, and define Lb and Lc cyclically. Let A' = Lb∩Lc, B' = Lc∩La, C' = La∩Lb. Triangle A'B'C' is homothetic to ABC, and the orthocenter of A'B'C' is X(1657). (Randy Hutson, December 2, 2017)

Let OA be the circle centered at the A-vertex of the Ehrmann mid-triangle and passing through A; define OB and OC cyclically. X(1657) is the radical center of OA, OB, OC. (Randy Hutson, August 28, 2020)

X(1657) lies on these lines: 2,3   195,1181   399,1498   516,1482

X(1657) = reflection of X(i) in X(j) for these (i,j): (3,20), (4,550), (382,3)
X(1657) = complement of X(33703)
X(1657) = {X(381),X(382)}-harmonic conjugate of X(5076)
X(1657) = Ehrmann-mid-to-ABC similarity image of X(382)
X(1657) = circumcircle inverse of X(34152)
X(1657) = endo-homothetic center of Ehrmann mid-triangle and ABC-X3 reflections triangle; the homothetic center is X(382)


X(1658) = CIRCUMCENTER OF KOSNITA TRIANGLE

Trilinears    cos(B - C) + 4 cos 2A cos B cosC : : (Nikolaos Dergiades, Hyacinthos 7752)

As a point on the Euler line, X(1658) has Shinagawa coefficients (E + 8F, -3E - 8F).

The vertices of the Kosnita triangle are the circumcenters of the triangles BOC, COA, AOB, where O is the circumcenter, X(3). (Darij Grinberg, 8/24/03)

Let La be the polar of X(4) wrt the circle centered at A and passing through X(3), and define Lb, Lc cyclically. (Note: X(4) is the perspector of any circle centered at a vertex of ABC.) Let A" = Lb∩Lc, and define B" and C" cyclically. Triangle A"B"C" is homothetic to ABC, and its nine-point center is X(1658). (Randy Hutson, July 20, 2016)

X(1658) lies on these lines: 2,3   54,568   143,578   569,973   1092,1511   1147,1154

X(1658) = midpoint of X(3) and X(26)


X(1659) = YIU-PAASCHE POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/(1 + sin A + cos A)
Barycentrics    sin A + cos B + cos C : :

For a discussion of this point, see Paul Yiu, Introduction to the Geometry of the Triangle, 2002, Article 3.5.4 Exercise 4d.
(The preceding Exercise 4c presents the Paasche point, X(1123),) (Contributed by Darij Grinberg, 8/24/03)

See Francisco Javier García Capitán, Hyacinthos #21541, 2/14/2013.

X(1659) lies on these lines: 1,4   2,176   57,482   75,491   92,1585   553,1373

X(1659) = isogonal conjugate of X(2066)
X(1659) = X(482)-cross conjugate of X(7)
X(1659) = crosssum of X(48) and X(605)


X(1660) = 1st GRINBERG MIDPOINTS PERSPECTOR

Trilinears  a3[b8 + c8 - a8 - 2a2(b6 + c6) + 2b2c2(b4 + c4 - 5a4 + 3a2b2 + 3a2c2 - 3b2c2) + 2a6(b2 + c2)]

Let AB be the point in which the line through A perpendicular to CA meets line BC, and define points AC, BC, BA, CA, CB functionally. Let

XA = midpoint{AB, AC},
YA = midpoint{BA, CA},
ZA = midpoint{BC, CB},

and define XB, XC, YB, YC, ZB, ZC functionally.

The lines AXA, BXB, CXC concur in X(20).
The lines AYA, BYB, CYC concur in X(393).
The lines AZA, BZB, CZC concur in X(6).
The lines XAYA, XBYB, XCYC concur in X(1660).
The lines YAZA, YBZB, YCZC concur in X(3).
The lines ZAXA, ZBXB, ZCXC concur in X(1661).

Contributed by Darij Grinberg, August 24, 2003; see Hyacinthos #7225.

X(1660) lies on these lines: 6,25   30,156   110,1370   394,1619   578,1596   1092,1498   1368,1503

X(1660) = midpoint of X(394) and X(1619)
X(1660) = X(20)-Ceva conjugate of X(577)
X(1660) = X(25)-of-A'B'C', as described by Tran Quang Huyng, ADGEOM #2697 (8/26/2015)


X(1661) = 2nd GRINBERG MIDPOINTS PERSPECTOR

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b/v + c/w - a/u), where
                         (u,v,w) = (cos A - cos B cos C, cos B - cos C cos A, cos C - cos A cos B).

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1661) is described at X(1660).

X(1661) lies on these lines: 25,393   154,577   1619,1624

X(1661) = isogonal conjugate of cyclocevian conjugate of X(35510)
X(1661) = X(20)-Ceva conjugate of X(6)
X(1661) = tangential-isogonal conjugate of X(33582)

leftri

Circle-related Points 1662-1706

rightri

The next cluster of points were contributed by Peter J. C. Moses during August, 2003. Symbols used to represent functions of a,b,c (or A,B,C) include

σ = area of triangle ABC
ω = arccot(cot A + cot B + cot C) = arccot[(a2 + b2 +c2)/(4σ)]; ω is the Brocard angle of ABC
e = sqrt(1 - 4 sin2ω) (as in Gallatly, p. 96, along with other formulas involving ω)
s = (a + b + c)/2 = semiperimeter of ABC
r = σ/s = inradius of ABC

Circles mentioned in this section are the following:

Name Center Radius
circumcircle X(3) R
incircle X(1) r
nine-point circle X(5) R/2
Brocard circle X(182) eR/(2 cos ω)
1st Lemoine circle X(182) (1/2)(R sec ω)
2nd Lemoine circle (cosine circle) X(6) abc/(a2 + b2 + c2)
Spieker circle X(10) r/2
Apollonius circle X(970) (r2 + s2)/4r
Bevan circle X(40) 2R

For further information on many circles, click MathWorld and scroll down to links to various specific circles.


X(1662) = 1st INTERSECTION OF BROCARD AXIS AND 1st LEMOINE CIRCLE

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = e cos(A - ω) + cos(A + ω)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1662) lies on these lines: 3,6   1676,2040   1677,2039

X(1662) = reflection of X(1663) in X(182)
X(1662) = inverse-in-Brocard-circle of X(1664)
X(1662) = {X(1687),X(1688)}-harmonic conjugate of X(1663)


X(1663) = 2nd INTERSECTION OF BROCARD AXIS AND 1st LEMOINE CIRCLE

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = e cos(A - ω) - cos(A + ω)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1663) lies on these lines: 3,6   1676,2039   1677,2040

X(1663) = reflection of X(1662) in X(182)
X(1663) = inverse-in-Brocard-circle of X(1665)
X(1663) = {X(1687),X(1688)}-harmonic conjugate of X(1662)


X(1664) = INVERSE-IN-BROCARD-CIRCLE OF X(1662)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = e cos(A + ω) + cos(A - ω)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1664) lies on this line: 3,6

X(1664) = reflection of X(1665) in X(182)
X(1664) = inverse-in-Brocard-circle of X(1662)


X(1665) = INVERSE-IN-BROCARD-CIRCLE OF X(1663)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = e cos(A + ω) - cos(A - ω)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1665) lies on this line: 3,6

X(1665) = reflection of X(1664) in X(182)
X(1665) = inverse-in-Brocard-circle of X(1663)


X(1666) = 1st INTERSECTION OF BROCARD AXIS AND 2nd LEMOINE CIRCLE

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos(A + ω) + e sin A
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1666) lies on these lines: 3,6   485,2040   486,2039

X(1666) = reflection of X(1667) in X(6)
X(1666) = inverse-in-Brocard-circle of X(1668)

X(1666) = inverse-in-2nd-Brocard-circle of X(2563)

X(1667) = 2nd INTERSECTION OF BROCARD AXIS AND 2nd LEMOINE CIRCLE

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos(A + ω) - e sin A
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1667) lies on these lines: 3,6   485,2039   486,2040

X(1667) = reflection of X(1666) in X(6)
X(1667) = inverse-in-Brocard-circle of X(1669)
X(1667) = inverse-in-2nd-Brocard-circle of X(2562)


X(1668) = EXSIMILICENTER(BROCARD CIRCLE, 2nd LEMOINE CIRCLE)

Trilinears    cos(A - ω) - e sin A : :
X(1668) = |OK|*X(6) + 2R tan ω*X(182)
X(1668) = e*X(6) + 2 sin ω*X(182) X(1668) = sin ω*X(3) + (sin ω + e)*X(6)

X(1668) lies on these lines: 3,6   485,1348   486,1349   1124,1674   1335,1675   1377,1678   1378,1679   1702,1704   1703,1705

X(1668) = inverse-in-Brocard-circle of X(1666)
X(1668) = {X(6),X(182)}-harmonic conjugate of X(1669)


X(1669) = INSIMILICENTER(BROCARD CIRCLE, 2nd LEMOINE CIRCLE)

Trilinears    cos(A - ω) + e sin A
X(1669) = |OK|*X(6) - 2R tan ω*X(182)
X(1669) = e*X(6) - 2 sin ω*X(182)
X(1669) = sin ω*X(3) + (sin ω - e)*X(6)

X(1669) lies on these lines: 3,6   485,1349   486,1348   1124,1675   1335,1674   1377,1679   1378,1678   1702,1705   1703,1704

X(1669) = inverse-in-Brocard-circle of X(1667)

X(1669) = {X(6),X(182)}-harmonic conjugate of X(1668)


X(1670) = INVERSE-IN-BROCARD-CIRCLE OF X(1342)

Trilinears    sin A - cos A cot(ω/2) : sin B - cos B cot(ω/2) : sin C - cos C cot(ω/2)
Trilinears    sin A - sin(A + ω) : sin B - sin(B + ω) : sin C - sin(C + ω)
Trilinears    cos A + cos(A + ω) : cos B + cos(B + ω) : cos C + cos(C + ω)
Trilinears    cos(A + ω/2) : cos(B + ω/2) : cos(C + ω/2)
Trilinears    (csc ω + cot ω) cos A - sin A : :
Trilinears    cos A - (csc ω - cot ω) sin A : :

X(1670) is the external center of similitude of the Gallatly circle and the 2nd Lemoine circle. (Peter J. C. Moses, 9/03; cf. X(1342))

X(1670) and X(1671) are the Brocard axis intercepts of the 2nd Brocard circle. (Randy Hutson, August 29, 2018)

X(1670) lies on these lines: 3,6   76,1677   262,1676   485,2009   486,2010   1124,2007   1335,2008   1377,2013   1378,2014   1702,2017   1703,2018

X(1670) = reflection of X(1671) in X(3)
X(1670) = isogonal conjugate of X(1677)
X(1670) = circumcircle-inverse of X(38720)
X(1670) = Brocard-circle-inverse of X(1342)
X(1670) = X(76)-Ceva conjugate of X(1671)
X(1670) = Thomson-isogonal conjugate of X(33707)
X(1670) = {X(6),X(39)}-harmonic conjugate of X(1671)
X(1670) = {X(32),X(3094)}-harmonic conjugate of X(1671)
X(1670) = {X(182),X(3095)}-harmonic conjugate of X(1671)
X(1670) = {X(1379),X(1380)}-harmonic conjugate of X(38720)


X(1671) = INVERSE-IN-BROCARD-CIRCLE OF X(1343)

Trilinears    sin A + cos A tan(ω/2) : :
Trilinears    sin A + sin(A + ω) : :
Trilinears    cos A - cos(A + ω) : :
Trilinears    sin(A + ω/2) : :
Trilinears    (sec ω + tan ω) cos A + sin A : :
Trilinears    (csc ω - cot ω) cos A + sin A : :
Trilinears    cos A + (csc ω + cot ω) sin A : :

X(1671) is the internal center of similitude of the Gallatly circle and the 2nd Lemoine circle. (Peter J. C. Moses, 9/03)

X(1671) lies on these lines: 3,6   76,1676   262,1677   485,2010   486,2009   1124,2008   1335,2007   1377,2014   1378,2013   1702,2018   1703,2017

X(1671) = reflection of X(1670) in X(3)
X(1671) = isogonal conjugate of X(1676)
X(1671) = X(76)-Ceva conjugate of X(1670)
X(1671) = circumcircle-inverse of X(38721)
X(1671) = Brocard-circle-inverse of X(1343)
X(1671) = Thomson-isogonal conjugate of X(33708)
X(1671) = X(1)-of-X(6)PU(1)
X(1671) = {X(6),X(39)}-harmonic conjugate of X(1670)
X(1671) = {X(32),X(3094)}-harmonic conjugate of X(1670)
X(1671) = {X(182),X(3095)}-harmonic conjugate of X(1670)
X(1671) = {X(1379),X(1380)}-harmonic conjugate of X(38721)


X(1672) = INSIMILICENTER(INCIRCLE, 1st LEMOINE CIRCLE)

Trilinears    1 + cos(A - ω) : :
X(1672) = (R sec ω)*X(1) + 2r*X(182)
X(1672) = (R sec ω)*X(1) + r*X(3) + r*X(6)

X(1672) lies on these lines: 1,182   2,1681   8,1680   11,1676   12,1677   55,1343   56,1342   57,1700   181,1683   371,2008   372,2007   1015,2035   1124,1688   1335,1687   1682,1684   1697,1701


X(1673) = EXSIMILICENTER(INCIRCLE, 1st LEMOINE CIRCLE)

Trilinears    1 - cos(A - ω) : :

X(1673) = (R sec ω)*X(1) - 2r*X(182)
X(1673) = (R sec ω)*X(1) - r*X(3) - r*X(6)

X(1673) lies on these lines: 1,182   2,1680   8,1681   11,1677   12,1676   55,1342   56,1343   57,1701   181,1684   371,2007   372,2008   1015,2036   1124,1687   1335,1688   1500,2035   1682,1683   1697,1700


X(1674) = INSIMILICENTER(INCIRCLE, BROCARD CIRCLE)

Trilinears    e + cos(A - ω) : :
X(1674) = |OK|*X(1) + 2r*X(182)
X(1674) = (R e sec ω)*X(1) + 2r*X(182)
X(1674) = (R e sec ω)*X(1) + r*X(3) + r*X(6)

X(1674) lies on these lines: 1,182   2,1679   8,1678   11,1348   12,1349   55,1341   56,1340   57,1704   181,1693   1015,2033   1124,1668   1335,1669   1500,2034   1682,1694   1697,1705   2007,2012   2008,2011


X(1675) = EXSIMILICENTER(INCIRCLE, BROCARD CIRCLE)

Trilinears    e - cos(A - ω) : :
X(1675) = |OK|*X(1) - 2r*X(182)
X(1675) = (R e sec ω)*X(1) - 2r*X(182)
X(1675) = (R e sec ω)*X(1) - r*X(3) - r*X(6)

X(1675) lies on these lines: 1,182   2,1678   8,1679   11,1349   12,1348   55,1340   56,1341   57,1705   181,1694   1015,2034   1124,1669   1335,1668   1500,2033   1682,1693   1697,1704   2007,2011   2008,2012


X(1676) = INSIMILICENTER(1st LEMOINE CIRCLE, NINE-POINT CIRCLE)

Trilinears   csc(A + ω/2) : csc(B + ω/2) : csc(C + ω/2)
Trilinears    cos(B - C) + cos(A - ω) : :
X(1676) = (sec ω)*X(5) + X(182)
X(1676) = X(3) + (2 sec ω)*X(5) + X(6)

Let Lab and Lac be the lines obtained by rotating line BC through B and C resp., by an angle of ω/2 away from A. Let A' be Lab∩Lac. Define B' and C'cyclically. The lines AA', BB', CC' concur in X(1676). (Randy Hutson, September 14, 2016)

X(1676) lies on the Kiepert hyperbola and these lines: 2,1343   4,1342   5,182   10,1684   11,1672   12,1673   76,1671   115,2035   262,1670   371,2010   372,2009   485,1688   486,1687   1329,1680   1506,2036   1662,2040   1663,2039   1698,1701   1699,1700

X(1676) = isogonal conjugate of X(1671)
X(1676) = X(32)-Ceva conjugate of X(1677)


X(1677) = EXSIMILICENTER(1st LEMOINE CIRCLE, NINE-POINT CIRCLE)

Trilinears    sec(A + ω/2) : :
Trilinears    cos(B - C) - cos(A - ω) : :
X(1677) = (sec ω)*X(5) - X(182) = X(3) - (2 sec ω)*X(5) + X(6)

Let A' be the apex of the isosceles triangle BA'C constructed inward on BC such that ∠A'BC = ∠A'CB = ω/2. Define B' and C' cyclically. Let Ha be the orthocenter of BA'C, and define Hb and Hc cyclically. The lines AHa, BHb, CHc concur in X(1677). (Randy Hutson, July 20, 2016)

X(1677) lies on the Kiepert hyperbola and these lines: 2,1342   4,1343   5,182   10,1683   11,1673   12,1672   76,1670   115,2036   262,1671   371,2009   372,2010   485,1687   486,1688   1329,1681   1506,2035   1662,2039   1663,2040   1698,1700   1699,1701

X(1677) = isogonal conjugate of X(1670)
X(1677) = X(32)-Ceva conjugate of X(1676)


X(1678) = INSIMILICENTER(BROCARD CIRCLE, SPIEKER CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[e(b + c) + a cos(A - ω)]
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = e(b + c) + a cos(A - ω)

X(1678) lies on these lines: 2,1675   8,1674   9,1705   10,182   958,1341   1329,1348   1340,1376   1377,1668   1378,1669   1573,2034   1574,2033   1704,1706   2011,2014   2012,2013


X(1679) = EXSIMILICENTER(BROCARD CIRCLE, SPIEKER CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[e(b + c) - a cos(A - ω)]
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = e(b + c) - a cos(A - ω)

X(1679) lies on these lines: 2,1674   8,1675   9,1704   10,182   958,1340   1329,1349   1341,1376   1377,1669   1378,1668   1573,2033   1574,2034   1705,1706   2011,2013   2012,2014


X(1680) = INSIMILICENTER(1st LEMOINE CIRCLE, SPIEKER CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[b + c + a cos(A - ω)]
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = b + c + a cos(A - ω)

X(1680) lies on these lines: 2,1673   8,1672   9,1701   10,182   371,2014   372,2013   958,1343   1329,1676   1342,1376   1377,1688   1378,1687   1573,2036   1574,2035   1700,1706


X(1681) = EXSIMILICENTER(1st LEMOINE CIRCLE, SPIEKER CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[b + c - a cos(A - ω)]
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = b + c - a cos(A -ω)

X(1681) lies on these lines: 2,1672   8,1673   9,1700   10,182   371,2013   372,2014   958,1342   1329,1677   1343,1376   1377,1687   1378,1688   1573,2035   1574,2036   1701,1706


X(1682) = INSIMILICENTER(INCIRCLE, APOLLONIUS CIRCLE)

Trilinears    [s cos(A/2) - r sin(A/2)]2 : :
Trilinears    a(b + c - a)(b2 + c2 + ab + ac)2 : :      (M. Iliev, 5/13/07)

The exsimilicenter of the incircle and Apollonius circle is X(181). Also, the triangle A'B'C' formed (as at X(2092) by the intersections of the Apollonius circle and the excircles is perspective to the cevian triangle of X(1), and the perspector is X(1682). (Paul Yiu, Hyacinthos #8076, 10/01/03)

Let JaJbJc be the excentral triangle and PaPbPc be the Apollonius triangle. Let Pa' = {X(970),Ja}-harmonic conjugate of Pa, and define Pb' and Pc' cyclically. The lines APa', BPb', CPc' concur in X(1682); see also X(11). (Randy Hutson, December 10, 2016)

X(1682) lies on these lines: 1,181   3,1397   10,11   43,1697   55,386   56,573   57,1695   73,1362   212,1472   215,501   988,1401   1124,1686   1335,1685   1672,1684   1673,1683   1674,1694   1675,1693   2007,2020   2008,2019

X(1682) = {X(1),X(970)}-harmonic conjugate of X(181)
X(1682) = perspector of ABC and cross-triangle of ABC and Apollonius triangle
X(1682) = centroid of curvatures of Apollonius circle and excircles


X(1683) = INSIMILICENTER(1st LEMOINE CIRCLE, APOLLONIUS CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = s cos(A -ω/2) - r sin(A - ω/2)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1683) lies on these lines: 3,6   10,1677   43,1700   181,1672   1673,1682   1695,1701


X(1684) = EXSIMILICENTER(1st LEMOINE CIRCLE, APOLLONIUS CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = r cos(A -ω/2) + s sin(A - ω/2)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1684) lies on these lines: 3,6   10,1676   43,1701   181,1673   1672,1682   1695,1700


X(1685) = INSIMILICENTER(2nd LEMOINE CIRCLE, APOLLONIUS CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (r - s)sin A - (r + s)cos A
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1685) lies on these lines: 3,6   10,486   43,1702   181,1124   1335,1682   1695,1703


X(1686) = EXSIMILICENTER(2nd LEMOINE CIRCLE, APOLLONIUS CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (r + s)sin A + (r - s)cos A
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1686) lies on these lines: 3,6   10,485   43,1703   181,1335   1124,1682   1695,1702


X(1687) = INSIMILICENTER(1st LEMOINE CIRCLE, 2nd LEMOINE CIRCLE)

Trilinears    sin(A - ω/2 + π/4) : : (M. Iliev, 5/13/07)
Trilinears    cos(A - ω/2 - π/4) : :
Trilinears    cos(A - ω) + sin A : :
Trilinears    cos A + (sec ω + tan ω) sin A : :
Trilinears    cos A + sin(A - ω) : :
Tripolars    b c Sqrt[b^2 + c^2] : :

X(1687) lies on these lines: 3,6   83,2010   98,2009   485,1677   486,1676   1124,1672   1335,1672   1377,1681   1378,1680   1700,1703   1701,1702

X(1687) = reflection of X(1688) in X(1691)
X(1687) = isogonal conjugate of X(2009)
X(1687) = circumcircle-inverse of X(1688)
X(1687) = Brocard-circle-inverse of X(1690)
X(1687) = 1st Lemoine-circle-inverse of X(1688)
X(1687) = X(98)-Ceva conjugate of X(1688)
X(1687) = {X(371),X(372)}-harmonic conjugate of X(1690)
X(1687) = insimilicenter of 2nd Brocard circle and circle{{X(371),X(372),PU(1),PU(39)}}; the exsimilicenter is X(1688)


X(1688) = EXSIMILICENTER(1st LEMOINE CIRCLE, 2nd LEMOINE CIRCLE)

Trilinears    cos(A - ω) - sin A : :
Trilinears    cos A - (sec ω - tan ω) sin A
Trilinears    cos(A - ω/2 + π/4) : :
Trilinears    sin(A - ω/2 - π/4) : :
Trilinears    cos A - sin(A - ω) : :
Tripolars    b c Sqrt[b^2 + c^2] : :

X(1688) lies on these lines: 3,6   83,2009   98,2010   485,1676   486,1677   1124,1672   1335,1673   1377,1680   1378,1681   1700,1702   1701,1703

X(1688) = reflection of X(1687) in X(1691)
X(1688) = isogonal conjugate of X(2010)
X(1688) = circumcircle-inverse of X(1687)
X(1688) = Brocard-circle-inverse of X(1689)
X(1688) = 1st-Lemoine-circle-inverse of X(1687)
X(1688) = X(98)-Ceva conjugate of X(1687)
X(1688) = {X(371),X(372)}-harmonic conjugate of X(1689)
X(1688) = exsimilicenter of 2nd Brocard circle and circle {{X(371),X(372),PU(1),PU(39)}}; the insimilicenter is X(1687)


X(1689) = INVERSE-IN-BROCARD-CIRCLE OF X(1687)

Trilinears       cos(A + ω/2 + π/4) : cos(B + ω/2 + π/4) : cos(C + ω/2 + π/4)
Trilinears       sin(A + ω/2 - π/4) : sin(B + ω/2 - π/4) : sin(C + ω/2 - π/4)
Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos(A + ω) - sin A
                         = sin(A + ω) - cos A;

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1689) is the external center of similitude of the Gallatly circle and the circumcircle. (Peter J. C. Moses, 9/03)

X(1689) lies on these lines: 1,2018   2,2009   3,6   4,2010   55,2007,   56,2008   165,2017   958,2013   1344,2015   1345,2016   1376,2014

X(1689) = reflection of X(1690) in X(6)
X(1689) = inverse-in-Brocard-circle of X(1687)
X(1689) = X(262)-Ceva conjugate of X(1690)
X(1689) = {X(371),X(372)}-harmonic conjugate of X(1688)


X(1690) = INVERSE-IN-BROCARD-CIRCLE OF X(1688)

Trilinears    cos(A + ω/2 - π/4) : cos(B + ω/2 - π/4) : cos(C + ω/2 - π/4)
Trilinears    sin(A + ω/2 + π/4) : sin(B + ω/2 + π/4) : sin(C + ω/2 + π/4)
Trilinears    cos(A + ω) + sin A : :
Trilinears    sin(A + ω) + cos A : :
Trilinears    cos A - (sec ω + tan ω) sin A : :

X(1690) is the internal center of similitude of the Gallatly circle and the circumcircle. (Peter J. C. Moses, 9/03)

X(1690) lies on these lines: 1,2017   2,2010   3,6   4,2009   55,2008   56,2007   165,2018   958,2014   1344,2016   1345,2015   1376,2013

X(1690) = reflection of X(1689) in X(6)
X(1690) = inverse-in-Brocard-circle of X(1688)
X(1690) = X(262)-Ceva conjugate of X(1689)
X(1690) = {X(371),X(372)}-harmonic conjugate of X(1687)
X(1690) = X(1)-of-X(3)PU(1)


X(1691) = RADICAL TRACE OF CIRCUMCIRCLE AND 1st LEMOINE CIRCLE

Trilinears    sin(A - 2ω) : :
Trilinears    e^2 cos(A - ω) - cos(A + ω) : :       (c.f. X(2456))
Barycentrics    a2(a4 - b2c2) : :

X(1691) is the perspector of ABC and the reflection of the tangential triangle in the Lemoine axis (i.e., the reflection of the anticevian triangle of X(6) in the trilinear polar of X(6)). (Randy Hutson, September 5, 2015)

Let A'B'C' be the 1st anti-Brocard triangle. X(1691) is the radical center of the circumcircles of A'BC, B'CA, C'AB. (Randy Hutson, July 20, 2016)

Let A' be the circumcircle intercept, other than A, of the A-Montesdeoca-Lemoine circle. Define B' and C' cyclically. Triangle A'B'C' is perspective to the symmedial triangle at X(1691). (Randy Hutson, July 11, 2019)

X(1691) lies on these lines: 2,1501   3,6   31,893   83,316   98,230   99,698   141,1078   154,1611   184,1613   237,694   249,524   385,732   691,729   695,1176   699,805   1428,1914   1968,1974

X(1691) = midpoint of X(i) and X(j) for these (i,j): (6,2076), (187,1692), (1687,1688)
X(1691) = reflection of X(i) in X(j) for these (i,j): (6,1692), (1692,2030), (2076,187)
X(1691) = isogonal conjugate of X(1916)
X(1691) = isotomic conjugate of X(18896)
X(1691) = complement of X(5207)
X(1691) = inverse-in-circumcircle of X(32)
X(1691) = inverse-in-Brocard circle of X(3094)
X(1691) = inverse-in-1st-Lemoine-circle of X(6)
X(1691) = inverse-in-2nd-Lemoine-circle of X(576)
X(1691) = X(i)-Ceva conjugate of X(j) for these (i,j): (237,1971), (699,32), (1976,6)
X(1691) = crosspoint of X(i) and X(j) for these (i,j): (83,98), (385,419)
X(1691) = crosssum of X(39) and X(511)
X(1691) = reflection of X(2076) in the Lemoine axis
X(1691) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (32,182,6), (371, 372, 3095), (1342,1343,39)
X(1691) = crossdifference of every pair of points on the line PU(11)
X(1691) = center of the circle {{X(1687),X(1688),PU(1),PU(2)}} (the circle orthogonal to the circumcircle and passing through the 1st and 2nd Brocard points)
X(1691) = intersection of tangents to 1st Lemoine circle at intersections with 2nd Lemoine circle
X(1691) = centroid of X(6)X(15)X(16)
X(1691) = X(1691) of circumsymmedial triangle
X(1691) = harmonic center of 1st and 2nd Lemoine circles
X(1691) = harmonic center of 2nd Brocard circle and the circle {{X(371),X(372),PU(1),PU(39)}}
X(1691) = perspector of ABC and the reflection of the 2nd Ehrmann triangle in line X(6)X(512) (the perspectrix of ABC and 2nd Ehrmann triangle)


X(1692) = RADICAL TRACE OF CIRCUMCIRCLE AND 2nd LEMOINE CIRCLE

Trilinears    2 sin(A - 2ω) + sin(A + 2ω) - sin A : :
Barycentrics    a^2(2a^4 + b^4 + c^4 - a^2b^2 - a^2c^2 - 2b^2c^2) : :
X(1692) = 2 X(6) + X(187)

X(1692) lies on these lines: 3,6   51,1501   114,230   115,1503   184,1196   698,1569   1015,1428   1627,1994

X(1692) = midpoint of X(i) and X(j) for these (i,j): (6,1691), (187,1570)
X(1692) = reflection of X(i) in X(j) for these (i,j): (39,2024), (187,1570), (1570,6), (1691,2030)
X(1692) = isogonal conjugate of X(8781)
X(1692) = circumcircle-inverse of X(3053)
X(1692) = 1st-Lemoine-circle-inverse of X(32)
X(1692) = 2nd-Lemoine-circle-inverse of X(1351)
X(1692) = circle-{{X(371),X(372),PU(1),PU(39)}}-inverse of X(9737)
X(1692) = crosspoint of X(i) and X(j) for these (i,j): (6,1976), (230,460)
X(1692) = crosssum of X(2) and X(325)
X(1692) = center of inverse-in-Moses-circle-of-Brocard-circle
X(1692) = radical trace of circumcircle and circle {{X(371),X(372),PU(1),PU(39)}}
X(1692) = radical trace of 2nd Lemoine circle and circle {{X(371),X(372),PU(1),PU(39)}}
X(1692) = radical trace of circles {{P(1),U(2),P(39)}} and {{U(1),P(2),U(39)}}
X(1692) = anticenter of cyclic quadrilateral PU(2)PU(39)
X(1692) = crossdifference of every pair of points on line X(69)X(523)
X(1692) = {X(1687),X(1688)}-harmonic conjugate of X(2456)
X(1692) = X(2)-Ceva conjugate of X(39072)
X(1692) = perspector of conic {{A,B,C,X(25),X(110)}}
X(1692) = {X(371),X(372)}-harmonic conjugate of X(9737)


X(1693) = INSIMILICENTER(BROCARD CIRCLE,APOLLONIUS CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = e[2rs sin A + (r2 - s2)cos A] - (r2 + s2)cos(A - ω)

X(1693) lies on these lines: 3,6   10,1349   43,1704   181,1674   1675,1682   1695,1705


X(1694) = EXSIMILICENTER(BROCARD CIRCLE,APOLLONIUS CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = e[2rs sin A + (r2 - s2)cos A] + (r2 + s2)cos(A - ω)

X(1694) lies on these lines: 3,6   10,1348   43,1705   181,1675   1674,1682   1695,1704


X(1695) = INSIMILICENTER(BEVAN CIRCLE, APOLLONIUS CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = r(r2 + s2) + 4Rs(r sin A - s cos A)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

The exsimilicenter of the Bevan and Apollonius circles is X(43).

X(1695) lies on these lines: 1,573   10,962   40,43   57,1682   165,386   181,1697   978,1764   1683,1701   1684,1700   1685,1703   1686,1702   1693,1705   1694,1704   2017,2020   2018,2019

X(1695) = X(939)-Ceva conjugate of X(55)


X(1696) = POINT ELECTRA

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b + c - a cos A + r sin A
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1696) is the trilinear product X(6)*X(1706)

X(1696) lies on these lines: 6,1201   9,56   19,25   220,1400   346,1376   999,1743


X(1697) = INSIMILICENTER(BEVAN CIRCLE, INCIRCLE)

Trilinears    f(A,B,C) = 3 + cos A - cos B - cos C : :
Trilinears    -1 + sin A/2 cos B/2 cos C/2 : :

The exsimilicenter of the Bevan circle and incircle is X(57).

Randy Hutson (January 29, 2015) gives 3 constructions:
(1) Let A'B'C' be the mixtilinear incentral triangle. Let A" be the cevapoint of B' and C', and define B" and C" cyclically. The lines AA", BB", CC" concur in X(1697).
(2) Let A'B'C' be the mixtilinear incentral triangle. Let A" be the trilinear product B'*C', and define B" and C" cyclically. The lines A'A", B'B", C'C" concur in X(1697).
Let A'B'C' be the intouch triangle, A"B"C" the extouch triangle, and A*B*C* the excentral triangle. Let OA be the circle through A'A"A*, and define OB and OCc cyclically. X(1697) is the radical center of circles OA, OB, OC.

X(1697) lies on these lines: 1,3   2,1706   8,9   10,497   11,1698   12,1699   33,1831   43,1682   63,145   71,1732   84,944   109,1496   181,1695   200,960   212,595   219,380   221,1419   226,962   388,516   392,936   519,1776   580,1497   1015,1571   1058,1210   1124,1703   1317,1768   1335,1702   1500,1572   1672,1701   1673,1700   1674,1705   1675,1704   2007,2018   2008,2017

X(1697) = reflection of X(3340) in X(1)
X(1697) = isogonal conjugate of X(7091)
X(1697) = X(2339)-Ceva conjugate of X(9)
X(1697) = 2nd-extouch-to-excentral similarity image of X(8)
X(1697) = extangents-to-intangents similarity image of X(1)
X(1697) = {X(1),X(40)}-harmonic conjugate of X(57)
X(1697) = homothetic center of excentral and Hutson-intouch triangles
X(1697) = X(1593)-of-excentral triangle
X(1697) = X(1593)-of-Hutson-intouch triangle
X(1697) = X(11414)-of-intouch triangle
X(1697) = centroid of curvatures of Bevan circle and excircles


X(1698) = INSIMILICENTER(BEVAN CIRCLE, NINE-POINTCIRCLE)

Trilinears    2 cos(B - C) + cos A - cos B - cos C + 1 : :
Trilinears    bc(a + 2b + 2c) : ca(b + 2c + 2a) : ab(c + 2a + 2b)     (M. Iliev, 5/13/2007)
Trilinears    bc - rR : ca - rR : ab - rR     (C. Lozada, 9/07/2013)
Trilinears    r - 4 R sin B sin C : :
X(1698) = X(1) - 6 X(2) = X(8) - 6 X(10)

Let A'B'C' be the Aquila triangle. Let A" be the trilinear product B'*C', and define B" and C" cyclically. Then A"B"C" is homothetic to ABC at X(1698) and to A'B'C' at X(10). (Randy Hutson, December 10, 2016)

X(1698) lies on these lines: 1,2   4,165   5,40   9,46   11,1697   12,57   33,451   35,405   36,474   58,750   75,1089   115,1571   116,1282   119,1768   121,1054   140,355   171,1724   210,942   226,1788   281,1838   318,1784   320,1757   404,993   406,1861   443,1478   485,1703   486,1702   515,631   517,1656   595,748   632,952   966,1743   986,1739   1348,1705   1349,1704   1506,1572   1676,1701   1677,1700   2009,2018   2010,2017

X(1698) = isotomic conjugate of X(30598)
X(1698) = {X(2),X(10)}-harmonic conjugate of X(1)
X(1698) = homothetic center of excentral and 4th Euler triangles
X(1698) = crossdifference of every pair of points on line X(649)X(2605)
X(1698) = trilinear product of vertices of Aquila triangle
X(1698) = homothetic center of ABC and cross-triangle of ABC and Aquila triangle
X(1698) = {X(1),X(2)}-harmonic conjugate of X(3624)
X(1698) = perspector of Gemini triangle 26 and cross-triangle of ABC and Gemini triangle 26
X(1698) = isogonal conjugate of isotomic conjugate of X(30596)
X(1698) = homothetic center of Ai (aka K798i) triangle and cross-triangle of Fuhrmann and Ai triangles


X(1699) = EXSIMILICENTER(BEVAN CIRCLE, NINE-POINT CIRCLE)

Trilinears    2 cos(B - C) - cos A + cos B + cos C - 1 : :
Trilinears    r + 4 R cos B cos C : :
Barycentrics    a^3 + a(b - c)^2 - 2 (b - c)^2 (b + c) : :
X(1699) = X(1) + 2 X(4)

Let A' be the pole of the Gergonne line wrt the circle with BC as diameter, and define B', C' cyclically. X(1699) is the centroid of A'B'C'. (Randy Hutson, June 27, 2018)

Let A' be the orthocenter of BCX(1), and define B' and C' cyclically. A'B'C' is also the anticevian triangle, wrt intouch triangle, of X(1), and X(1699) is the centroid of A'B'C'; see also X(3680). (Randy Hutson, June 27, 2018)

X(1699) is the centroid of triangle formed by reflecting vertices of 1st circumperp triangle in corresponding side of ABC. (If 2nd circumperp triangle is substituted, for 1st, the resulting triangle is the Fuhrmann triangle.) (Randy Hutson, June 27, 2018)

Let A'B'C' be the orthic triangle. Let A" be the A-excenter of AB'C', and define B" and C" cyclically. The centroid of triangle A"B"C" is X(1699). (Randy Hutson, July 31 2018)

X(1699) lies on these lines: 1,4   2,165   5,40   10,962   11,57   12,1697   20,1125   36,1012   55,1538   79,84   80,1537   115,1572   118,1282   200,908   210,381   238,1754   354,971   355,546   382,1385   485,1702   486,1703   499,1770   610,1839   614,990   1329,1706   1348,1704   1506,1571   1676,1700   1677,1701   1730,1985   2009,2017   2010,2018

X(1699) = reflection of X(165) in X(2)
X(1699) = crosspoint of X(92) and X(1088)
X(1699) = crosssum of X(48) and X(1253)
X(1699) = centroid of the six touchpoints of the Johnson circles and the sidelines of the inner Johnson triangle
X(1699) = homothetic center of excentral and 3rd Euler triangles
X(1699) = centroid of triangle formed by reflecting excenters in corresponding vertex of ABC
X(1699) = centroid of anticevian triangle, wrt intouch triangle, of X(1)
X(1699) = homothetic center of circumcevian triangle of X(3) and cross-triangle of Aquila and anti-Aquila triangles
X(1699) = centroid of Garcia reflection triangle (aka Gemini triangle 8)
X(1699) = {X(1),X(4)}-harmonic conjugate of X(5691)


X(1700) = INSIMILICENTER(BEVAN CIRCLE, 1st LEMOINE CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 2 cos(A - ω) + cos A - cos B - cos C + 1
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1700) lies on these lines: 1,1342   9,1681   40,182   43,1683   57,1672   165,1343   371,2018   372,2017   1571,2036   1572,2035   1673,1697   1676,1699   1677,1698   1680,1706   1684,1695   1687,1703   1688,1702


X(1701) = EXSIMILICENTER(BEVAN CIRCLE, 1st LEMOINE CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 2 cos(A - ω) - cos A + cos B + cos C - 1
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1701) lies on these lines: 1,1343   9,1680   40,182   43,1684   57,1673   165,1342   371,2017   372,2018   1571,2035   1572,2036   1672,1697   1676,1698   1677,1699   1681,1706   1683,1695   1687,1702   1688,1703


X(1702) = INSIMILICENTER(BEVAN CIRCLE, 2nd LEMOINE CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 2 sin A + cos A - cos B - cos C + 1
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1702) lies on these lines: 1,371   6,40   9,1378   10,1588   43,1685   57,1124   165,372   485,1699   486,1698   516,1587   580,605   1335,1697   1377,1706   1504,1572   1505,1571   1668,1704   1669,1705   1670,2017   1671,2018   1686,1695   1687,1701   1688,1700


X(1703) = EXSIMILICENTER(BEVAN CIRCLE, 2nd LEMOINE CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 2 sin A - cos A + cos B + cos C - 1
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1703) lies on these lines: 1,372   6,40   9,1377   10,1587   43,1686   57,1335   165,371   485,1698   486,1699   516,1588   580,606   1124,1697   1378,1706   1504,1571   1505,1572   1668,1705   1669,1704   1670,2018   1671,2017   1685,1695   1687,1700   1688,1701


X(1704) = INSIMILICENTER(BEVAN CIRCLE, BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 2 cos(A - ω) + e(1 + cos A - cos B - cos C)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1704) lies on these lines: 1,1340   9,1679   40,182   43,1693   57,1674   165,1341   1348,1699   1349,1698   1571,2034   1572,2033   1668,1702   1669,1703   1675,1697   1678,1706   1694,1695   2011,2018   2012,2017


X(1705) = EXSIMILICENTER(BEVAN CIRCLE, BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 2 cos(A - ω) - e(1 + cos A - cos B - cos C)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1705) lies on these lines: 1,1341   9,1678   40,182   43,1694   57,1675   165,1340   1348,1698   1349,1699   1571,2033   1572,2034   1668,1703   1669,1702   1674,1697   1679,1706   1693,1695   2011,2017   2012,2018


X(1706) = EXSIMILICENTER(BEVAN CIRCLE, SPIEKER CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[2(b + c) - a(cos A - cos B - cos C + 1)]
Trilinears       g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a3 + a2(b + c) - a(b + c)2 - (b + c)(b2 - 6bc + c2)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

The insimilicenter of the Bevan and Spieker circles is X(9).

X(1706) lies on these lines: 1,474   2,1697   4,9   8,57   46,529   65,200   84,355   165,958   404,1420   517,936   1329,1699   1377,1702   1378,1703   1571,1573   1572,1574   1678,1704   1679,1705   1680,1700   1681,1701

X(1706) = {X(10),X(40)}-harmonic conjugate of X(9)

leftri

Mimosa Transforms 1707-1788

rightri
The Mimosa transform M(X) of a point X = x : y : z is defined (9/15/03) by

M(X) = - yz cos A + zx cos B + xy cos C : - zx cos B + xy cos C + yz cos A : - xy cos C + yz cos A + xy cos C

and the inverse Mimosa transform M -1(X), by

M -1(X) = (cos A)/(y + z) : (cos B)/(z + x) : (cos C)/(x + y).

As with other names in ETC, the name Mimosa is that of a star. M(X) is the X*X(4)-Ceva conjugate of X(1), where * denotes trilinear product, and M -1(X) is the trilinear quotient X(3)/P(X), where P(X) is the crosssum of X(1) and X.

Let g(P,X) denote the P-gimel conjugate of X. The Mimosa transform M(X) arises in connection with the equation g(P,X) = X. Referring to the definition of gimel conjugate in the Glossary, if

P = p : q : r and X = x : y : z

are triangle centers, then the equation g(P,X) = X is equivalent to the ratio-equation

(2absvS - 8yσ2)/(2abswS - 8zσ2) = y/z,

where v = (cos A)/p - (cos B)/q + (cos C)/r and w = (cos A)/p + (cos B)/q - (cos C)/r.

If S = 0, then the ratio-equation holds. As S = x(bq + cr) + y(cr + ap) + z(ap + bq), it follows that if P is given, then g(P,X) = X if X is on the line S = 0 (regarding x : y : z as variable); and that if X is given, then g(P,X) = P if P is on the line S = 0 (regarding p : q : r as variable). There are too many such cases of gimel conjugates for all to be itemized in ETC. For example, if X = X(1), then g(P,X) = X for every P on the line at infinity; if X = X(513), then g(P,X) = X for every P on the line X(1)X(2); and if X = X(656), then g(P,X) = X for every P on the Euler line, X(2)X(3).

If S ≠ 0, the ratio-equation lends itself to easy simplifications and two Tables conclusions: (1) if P is given then X = M(P) is a solution of g(P,X) = X, and (2) if X is given then P = M*(X) is a solution of g(P,X) = X.

Here is a list of pairs (i,j) for which X(j) = M(X(i)):
1,46   2,19   3,1   4,920   8,1158   21,4   48,43   54,47   59,109   60,580   63,9   69,63   71,846   72,191   73,1046   77,57   78,40   81,579   90,90   95,92   96,91   97,48   99,1577   110,656   219,165   228,1045   248,1580   249,163   250,162   252,564   254,921   271,84   283,3   348,169   394,610   603,978   648,822   651,652   662,1021   895,896   1105,158   1176,31   1259,1490   1297,240   1332,649   1444,2   1459,1054

Of course, reversing the pairs gives a list of (J,I) for which X(i) = M*(X(j)).


X(1707) = MIMOSA TRANSFORM OF X(6)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(6)
Trilinears       3a2 - b2 - c2 : 3b2 - c2 - a2 : 3c2 - a2 - b2     (M. Iliev, 5/13/2007)
Trilinears       cot B + cot C - cot A : cot C + cot A - cot B : cot A + cot B - cot C      (Randy Hutson, 9/23/2011)
Trilinears       a2 - SA : b2 - SB : c2 - SC      (C. Lozada, 9/07/2013)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1707) lies on these lines: 1,21   9,171   19,1719   33,1776   36,1473   43,165   44,1376   46,1722   57,238   92,1733   109,1395   162,1096   200,1757   204,240   223,1758   326,560   380,1045   484,1774   579,1716   580,1158   610,1740   978,1044   986,1453   1038,1399   1633,1732   1709,1711   1714,1770   1728,1771   1788,1877

X(1707) = isogonal conjugate of X(8769)
X(1707) = {X(31),X(63)}-harmonic conjugate of X(1)
X(1707) = {X(6),X(9)}-harmonic conjugate of X(1)
X(1707) = X(i)-Ceva conjugate of X(j) for these (i,j): (19,1),(1778,1724)
X(1707) = X(i)-aleph conjugate of X(j) for these (i,j): (1,610), (4,19), (19,1707), (108,1783), (162,163), (365,1745), (366,1763), (509,223), (1778,1724), (1783,1633)


X(1708) = MIMOSA TRANSFORM OF X(7)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(7)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1708) lies on these lines: 1,201   2,7   4,46   6,1214   19,1713   33,1736   34,1724   38,1471   40,950   43,1758   44,1427   56,72   58,1038   65,405   109,1395   169,1762   208,860   218,222   223,1743   225,1714   278,1723   354,954   442,1454   518,1260   582,1062   653,1748   1020,1435   115,1864   1396,1778   1412,1812   1711,1738   1712,1715   1750,1768

X(1708) = X(273)-Ceva conjugate of X(1)
X(1708) = cevapoint of X(46) in X(1723)
X(1708) = crosssum of X(652) and X(2170)
X(1708) = {X(9),X(57)}-harmonic conjugate of X(226)
X(1708) = X(i)-aleph conjugate of X(j) for these (i,j): (2,1490), (4,1721), (7,223), (27,580), (92,1158), (174,1745), (273,1708), (278,1722), (286,1746), (508,610), (653,109)


X(1709) = MIMOSA TRANSFORM OF X(9)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(9)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1709) lies on these lines: 1,84   4,46   9,165   11,57   30,40   31,990   33,109   35,1490   55,971   63,516   553,946   774,1448   846,1742   968,991   1707,1711   1719,1744   1730,1889

X(1709) = reflection of X(1) in X(1012)
X(1709) = X(281)-Ceva conjugate of X(1)
X(1709) = X(i)-aleph conjugate of X(j) for these (i,j): (4,1723), (92,1729), (188,610), (281,1709), (366,223)
X(1709) = excentral-isotomic conjugate of X(2947)
X(1709) = antipode of X(1) in circle {{X(1),X(1709),PU(4)}}


X(1710) = MIMOSA TRANSFORM OF X(10)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(10)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1710) lies on these lines: 1,1437   19,91   28,1725   30,40   35,228   46,407   109,1825   1046,1777   1720,1781   1770,1782

X(1710) = X(i)-aleph conjugate of X(j) for these (i,j): (4,1724), (92,1730)


X(1711) = MIMOSA TRANSFORM OF X(19)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(19)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1711) lies on these lines: 1,394   9,43   46,407   90,1039   238,1040   920,1714   1707,1709   1708,1738   1720,1722   1756,1763

X(1711) = X(393)-Ceva conjugate of X(1)
X(1711) = X(i)-aleph conjugate of X(j) for these (i,j): (4,9), (19,43), (33,170), (92,1759), (393,1711), (1897,1018)


X(1712) = MIMOSA TRANSFORM OF (20)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(20)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1712) lies on these lines: 1,204   4,57   9,1249   19,158   63,1895   108,1490   412,1445   774,1096   811,1102   920,1784   1103,1783   1158,1767   1708,1715   1713,1741   1714,1728

X(1712) = X(i)-Ceva conjugate of X(j) for these (i,j): (63,19), (1895,1)
X(1712) = X(i)-aleph conjugate of X(j) for these (i,j): (2,2184), (1895,1712)
X(1712) = eigencenter of cevian triangle of X(63)
X(1712) = eigencenter of anticevian triangle of X(19)


X(1713) = MIMOSA TRANSFORM OF X(27)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(27)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1713) lies on these lines: 1,6   4,579   19,1708   71,950   284,1006   379,1445   393,1714   580,1172   583,1901   1712,1741

X(1713) = crosspoint of X(765) and X(823)
X(1713) = crosssum of X(244) and X(822)
X(1713) = X(i)-aleph conjugate of X(j) for these (i,j): (4,846), (27,6), (92,1761)


X(1714) = MIMOSA TRANSFORM OF X(28)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(28)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1714) lies on these lines: 1,2   4,580   6,442   19,46   58,377   100,1612   219,1329   225,1708   238,1479   278,1739   393,1713   405,1834   920,1711   1498,1532   1707,1770   1712,1728   1715,1779

X(1714) = X(i)-aleph conjugate of X(j) for these (i,j): (4,191), (19,1045), (27,2), 29,20)


X(1715) = MIMOSA TRANSFORM OF X(29)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(29)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1715) lies on these lines: 1,3   4,1730   19,1158   185,851   412,1896  579,1249   1020,1068   1708,1712   1714,1779   1736,1872

X(1715) = X(i)-Ceva conjugate of X(j) for these (i,j): (412,4), (1896,1)
X(1715) = crosssum of X(822) and X(2310)
X(1715) = X(i)-aleph conjugate of X(j) for these (i,j): (4,1046), (29,3), (92,1762), (1896,1715)


X(1716) = MIMOSA TRANSFORM OF X(31)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(31)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1716) lies on these lines: 1,69   3,238   4,1721   9,43   579,1707   1402,1423   1745,1756

X(1716) = X(25)-Ceva conjugate of X(1)
X(1716) = X(i)-aleph conjugate of X(j) for these (i,j): (1,1763), (4,1726), (6,1745), (19,46), (25,1716), (108,1020), (259,1490), (266,223), (365,610)


X(1717) = MIMOSA TRANSFORM OF X(35)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(35)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1717) lies on these lines: 1,30   4,1718   33,46   35,37   90,1172   429,1722   1047,1048

X(1717) = X(1770)-Ceva conjugate of X(46)


X(1718) = MIMOSA TRANSFORM OF X(36)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(36)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1718) lies on these lines: 1,5   4,1717   6,1781   34,46   36,1455   90,1720   106,614   244,1468   1723,1783   1727,1735   1737,1870

X(1718) = X(i)-Ceva conjugate of X(j) for these (i,j): (1737,46), (1870,1)
X(1718) = X(i)-aleph conjugate of X(j) for these (i,j): (4,1727), (1870,1718)


X(1719) = MIMOSA TRANSFORM OF X(37)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(37)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1719) lies on these lines: 1,1790   10,191   19,1707   27,1733   46,407   165,846   1709,1744

X(1719) = X(1826)-Ceva conjugate of X(1)
X(1719) = X(i)-aleph conjugate of X(j) for these (i,j): (4,579), (1826,1719)


X(1720) = MIMOSA TRANSFORM OF X(40)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(40)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1720) lies on these lines: 1,84   46,208   90,1718   846,1047   920,1249   1710,1781   1711,1722   1721,1771

X(1720) = X(1158)-Ceva conjugate of X(46)
X(1720) = X(i)-aleph conjugate of X(j) for these (i,j): (4,1728), (366,282)
X(1720) = trilinear product X(2)*X(22)


X(1721) = MIMOSA TRANSFORM OF X(55)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(55)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1721) lies on these lines: 1,7   4,1716   19,1633   40,984   43,1750   46,1736   165,846   294,1743   1039,1885   1040,1836   1045,1047   1707,1709   1720,1771

X(1721) = reflection of X(1) in X(990)
X(1721) = X(33)-Ceva conjugate of X(1)
X(1721) = X(317)-of-excentral-triangle
X(1721) = excentral isotomic conjugate of X(1490)
X(1721) = {X(8947),X(8949)}-harmonic conjugate of X(1722)
X(1721) = X(i)-aleph conjugate of X(j) for these (i,j): (1,223), (4,1708), (9,1490), (19,1722), (29,1746), (33,1721), (188,1763), (259,1745), (281,1158), (1172,580), (1783,109)


X(1722) = MIMOSA TRANSFORM OF X(56)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(56)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1722) lies on these lines: 1,2   4,1716   9,986   34,1788   40,238   46,1707   57,1773   87,937   169,1046   171,1453   223,1047   269,979   427,1039   429,1717   920,1772   958,988   1040,1837   1104,1376   1254,1445   1711,1720   1723,1880

X(1722) = X(i)-Ceva conjugate of X(j) for these (i,j): (34,1), (1788,46)
X(1722) = {X(8947),X(8949)}-harmonic conjugate of X(1721)
X(1722) = X(i)-aleph conjugate of X(j) for these (i,j): (1,1490), (4,1158), (19,1721), (27,1746), (28,580), (34,1722), (57,223), (108,109), (174,1763), (266,1745), (278,1708), (509, 610)


X(1723) = MIMOSA TRANSFORM OF X(57)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(57)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1723) lies on these lines: 1,6   19,46   35,380   36,610   57,1762   90,1172   169,1400   278,1708   281,1737   672,1766   920,1249   928,1047   1707,1709   1718,1783   1722,1880   1729,1744

X(1723) = X(i)-Ceva conjugate of X(j) for these (i,j): (278,1), (1708,46)
X(1723) = crosspoint of X(653) and X(765)
X(1723) = crosssum of X(244) and X(652)
X(1723) = X(i)-aleph conjugate of X(j) for these (i,j): (4,1709), (174,610), (273,1729), (278,1723), (366,1490), (508,1763), (509,1745)


X(1724) = MIMOSA TRANSFORM OF X(58)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(58)
Trilinears       a2(a + b + c) - bc(b + c) : b2(a + b + c) - ca(c + a) : c2(a + b + c) - ab(a + b)     (M. Iliev, 5/13/07)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1724) lies on these lines: 1,6   2,58   4,580   8,595   10,31   21,286   28,579   30,582   32,1009   34,1708   35,43   36,978   46,1707   47,1737   83,1008   90,1039   109,1788   171,1698   191,986   212,950   226,1451   255,1210   270,469   387,452   515,602   581,1006   748,1125   920,1735   985,1224   993,1193   1020,1398   1445,1448   1726,1829   1738,1770

X(1724) = X(i)-Ceva conjugate of X(j) for these (i,j): (28,1), (579,1754), (1778,1707)
X(1724) = crosspoint of X(162) and X(765)
X(1724) = crosssum of X(244) and X(656)
X(1724) = X(i)-aleph conjugate of X(j) for these (i,j): (4,1710), (27,1730), (28,1724), (266,1047)
X(1724) = intercept, other than X(1), of line X(1)X(6) and conic {{X(1),X(13),X(14),X(15),X(16)}}


X(1725) = MIMOSA TRANSFORM OF X(74)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(74)
Trilinears       1 + cos(2B) + cos(2C) : 1 + cos(2C) + cos(2A) : 1 + cos(2A) + cos(2B)     (Randy Hutson, 9/23/2011)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

Let L denote the line having trilinears of X(1725) as coefficients. Then L is the line passing through X(3) perpendicular to the Euler line.

X(1725) lies on these lines: {1, 21}, {12, 35194}, {28, 1710}, {33, 46}, {34, 90}, {35, 201}, {36, 5494}, {40, 1775}, {57, 1774}, {79, 45924}, {80, 38945}, {91, 158}, {109, 1727}, {240, 522}, {244, 3582}, {484, 40577}, {495, 24431}, {499, 17063}, {500, 17637}, {564, 45225}, {612, 17699}, {756, 3584}, {912, 8758}, {942, 8143}, {982, 10072}, {984, 10056}, {1172, 1744}, {1210, 36250}, {1214, 4337}, {1254, 3585}, {1393, 7741}, {1399, 18447}, {1406, 7072}, {1454, 37696}, {1464, 2771}, {1478, 24430}, {1479, 37591}, {1755, 3708}, {1758, 3465}, {1776, 1870}, {1779, 5902}, {1807, 5172}, {1858, 37565}, {1973, 21374}, {2083, 2172}, {2159, 2173}, {2166, 18486}, {2181, 17890}, {2247, 9406}, {2310, 3583}, {2312, 16562}, {2349, 36083}, {2361, 18455}, {3649, 5492}, {3670, 24210}, {3911, 16869}, {5348, 37729}, {5497, 32760}, {6198, 7098}, {7069, 7951}, {7073, 45923}, {7082, 37697}, {7100, 8614}, {17757, 24433}, {17879, 18694}, {17881, 40703}, {18180, 42440}, {23580, 26013}, {24028, 41684}, {36034, 36053}, {38336, 41697}

X(1725) = reflection of X(23580) in X(26013)
X(1725) = isogonal conjugate of X(36053)
X(1725) = polar conjugate of the isogonal conjugate of X(2315)
X(1725) = X(i)-Ceva conjugate of X(j) for these (i,j): {18609, 3003}, {32680, 661}, {36034, 656}, {36119, 1}
X(1725) = X(i)-isoconjugate of X(j) for these (i,j): {1, 36053}, {2, 14910}, {3, 1300}, {4, 5504}, {6, 2986}, {30, 10419}, {32, 40832}, {50, 40427}, {74, 15454}, {110, 15328}, {112, 15421}, {113, 39379}, {115, 18879}, {186, 12028}, {254, 15478}, {265, 38936}, {476, 15470}, {477, 39986}, {512, 18878}, {523, 10420}, {525, 32708}, {647, 687}, {656, 36114}, {1495, 40423}, {2501, 43755}, {5627, 39371}, {10733, 39372}, {11064, 40388}, {12383, 35373}, {14385, 39375}, {14911, 34178}, {18315, 35361}
X(1725) = crosspoint of X(i) and X(j) for these (i,j): {1, 2166}, {75, 2349}
X(1725) = crosssum of X(i) and X(j) for these (i,j): {1, 6149}, {31, 2173}, {758, 25440}, {2631, 2643}
X(1725) = crossdifference of every pair of points on line {48, 661}
X(1725) = barycentric product X(i)*X(j) for these {i,j}: {1, 3580}, {10, 18609}, {48, 44138}, {63, 403}, {75, 3003}, {92, 13754}, {113, 2349}, {162, 6334}, {264, 2315}, {304, 44084}, {656, 16237}, {686, 811}, {799, 21731}, {1577, 15329}, {2166, 34834}, {14206, 14264}, {32679, 41512}
X(1725) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 2986}, {6, 36053}, {19, 1300}, {31, 14910}, {48, 5504}, {75, 40832}, {112, 36114}, {113, 14206}, {162, 687}, {163, 10420}, {403, 92}, {656, 15421}, {661, 15328}, {662, 18878}, {686, 656}, {1101, 18879}, {2159, 10419}, {2166, 40427}, {2173, 15454}, {2315, 3}, {2349, 40423}, {2624, 15470}, {3003, 1}, {3580, 75}, {4575, 43755}, {6334, 14208}, {12824, 16568}, {12827, 20884}, {13754, 63}, {14264, 2349}, {15329, 662}, {16237, 811}, {18609, 86}, {21731, 661}, {32676, 32708}, {39985, 36102}, {41512, 32680}, {44084, 19}, {44138, 1969}
X(1725) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 920, 47}, {1, 1749, 6149}, {31, 18477, 1}, {774, 44706, 1}, {942, 8143, 11553}, {1406, 7072, 18451}, {1735, 1736, 1737}, {1735, 1737, 1772}, {1749, 6149, 896}, {1755, 3708, 18669}, {1822, 1823, 47}, {3743, 10122, 1}


X(1726) = MIMOSA TRANSFORM OF X(75)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(75)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1726) lies on these lines: 1,184   4,1782   9,440   19,1708   25,1736   46,407   57,1020   63,321   92,1746   1158,1753   1724,1829   1754,1824

X(1726) = isogonal conjugate of X(7094)
X(1726) = X(264)-Ceva conjugate of X(1)
X(1726) = polar conjugate of isogonal conjugate of X(36033)
X(1726) = X(i)-aleph conjugate of X(j) for these (i,j): (2,1745), (4,1716), (75,1763), (92,46), (264,1726), (556,1490)


X(1727) = MIMOSA TRANSFORM OF X(80)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(80)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1727) lies on these lines: 1,1399   4,46   30,80   35,72   36,1768   63,519   109,1725   1718,1735

X(1727) = X(4)-aleph conjugate of X(1718)


X(1728) = MIMOSA TRANSFORM OF X(84)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(84)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1728) lies on these lines: 1,6   3,1864   4,46   5,57   33,580   36,1490   40,1837   63,1210   84,1750   226,499   1707,1771   1711,1720   1712,1714

X(1728) = X(4)-aleph conjugate of X(1720)


X(1729) = MIMOSA TRANSFORM OF X(85)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(85)
arycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1729) lies on these lines: 5,9   19,1158   57,1375   63,169   607,1735   920,1752   1723,1744

X(1729) = X(331)-Ceva conjugate of X(1)
X(1729) = X(i)-aleph conjugate of X(j) for these (i,j): (92,1709), (273,1723), (331,1729), (508,1745)


X(1730) = MIMOSA TRANSFORM OF X(86)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(86)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1730) lies on these lines: 1,228   2,573   4,1715   6,57   19,1708   25,1754   27,1746   28,580   40,405   46,1707   51,851   63,169   165,1011   278,1020   572,1817   1709,1889   1735,1905   1736,1824   1786,1787

X(1730) = X(286)-Ceva conjugate of X(1)
X(1730) = X(i)-aleph conjugate of X(j) for these (i,j): (27,1724), (92,1710), (174,1047), (286,1730)


X(1731) = MIMOSA TRANSFORM OF X(88)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(88)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1731) lies on these lines: 8,9   19,46   44,517   63,1266   92,1751   243,522   580,1871

X(1731) = crosspoint of X(21) and X(88)
X(1731) = crosssum of X(44) and X(65)


X(1732) = MIMOSA TRANSFORM OF X(89)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(89)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1732) lies on these lines: 9,1125   19,46   44,56   45,354   48,1743   71,1697   1020,1435   1474,1778   1633,1707

X(1731) = crosspoint of X(75) and X(1821)
X(1731) = crosssum of X(31) and X(1755)
X(1731) = X(98)-aleph conjugate of X(1955)


X(1733) = MIMOSA TRANSFORM OF X(98)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(98)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1733) lies on these lines: 1,75   19,91   27,1719   92,1707   240,522   896,1109   1580,1821

X(1733) = isogonal conjugate of X(36051)
X(1733) = isotomic conjugate of X(8773)
X(1733) = crosspoint of X(75) and X(1821)
X(1733) = crosssum of X(31) and X(1755)
X(1733) = X(98)-aleph conjugate of X(1955)


X(1734) = MIMOSA TRANSFORM OF X(101)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(101)
Trilinears       g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = (b - c)(b2 + c2 + bc - ab - ac)     (M. Iliev, 5/13/07)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1734) lies on these lines: 1,905   100,1110   240,522   484,513   512,1491   649,830

X(1734) = reflection of X(1) in X(905)
X(1734) = X(1783)-Ceva conjugate of X(1)
X(1734) = crosspoint of X(75) in X(100)
X(1734) = crosssum of X(i) and X(j) for these (i,j): (31,513), (652,2293), (656,1962)
X(1734) = X(1783)-aleph conjugate of X(1734)


X(1735) = MIMOSA TRANSFORM OF X(102)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(102)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1735) lies on these lines: 1,3   10,1074   34,1158   109,1870   240,522   607,1729   774,1210   920,1724   946,1393   1711,1720   1718,1727   1730,1905   1765,1880

X(1735) = crosssum of X(31) and X(2182)


X(1736) = MIMOSA TRANSFORM OF X(103)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(103)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1736) lies on these lines: 1,6   10,774   25,1726   33,1708   46,1721   90,1041   109,1776   201,950   240,522   241,971   307,1210   920,1771   990,1445   1020,1876   1214,1864   1715,1872   1730,1824

X(1736) = crosssum of X(31) and X(910)


X(1737) = MIMOSA TRANSFORM OF X(104)

Trilinears    - (cos A)/x + (cos B)/y + (cos C)/z : :,   where x : y : z = X(104)
Barycentrics    a^3 (b + c) - a^2 (b^2 + c^2) - a (b - c)^2 (b + c) + (b^2 - c^2)^2 : :
Barycentrics    sin B (cos A + cos B - 1) + sin C (cos A + cos C - 1) : :

X(1737) lies on these lines: 1,2   3,1837   4,46   5,65   11,517   12,942   29,1780   30,1155   35,950   36,80   40,1479   47,1724   56,355   57,1478   72,1329   91,225   109,1877   117,1845   119,912   150,1447   240,522   281,1723   354,495   381,1836   427,1905   484,516   579,1826   758,908   952,1319   1718,1870   1747,1890   1782,1842

X(1737) = midpoint of X(36) and X(80)
X(1737) = isogonal conjugate of X(36052)
X(1737) = complement of X(4511)
X(1737) = cevapoint of X(46) and X(1718)
X(1737) = X(2252)-cross conjugate of X(914)
X(1737) = crosssum of X(i) and X(j) for these (i,j): (6,2316), (31,2183)
X(1737) = polar conjugate of X(37203)
X(1737) = pole wrt polar circle of trilinear polar of X(37203) (line X(1)X(7649))


X(1738) = MIMOSA TRANSFORM OF X(105)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(105)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = 2abc - (b + c)[a2 - (b - c)2]

X(1738) lies on these lines: 1,142   2,968   4,1716   10,75   19,46   43,226   225,1788   238,516   240,522   518,1086   527,1757   528,1279   899,908   946,978   1054,1758   1708,1711   1724,1770

X(1738) = crosspoint of X(75) and X(673)
X(1738) = crosssum of X(31) and X(672)


X(1739) = MIMOSA TRANSFORM OF X(106)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(106)
Trilinears       g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = b3 + c3 + ab2 + ac2 - 2bc2 - 2b2c     (M. Iliev, 5/13/07)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1739) lies on these lines: 1,474   10,38   36,1054   46,1707   238,484   240,522   244,519   278,1714   758,899   986,1698

X(1739) = crosspoint of X(75) and X(88)
X(1739) = crosssum of X(31) and X(44)


X(1740) = MIMOSA TRANSFORM OF X(184)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2b2 + a2c2 - b2c2     (M. Iliev, 5/13/07)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1740) lies on these lines: 1,75   3,238   6,43   19,1581   31,1582   48,1580   560,662   610,1707   869,894

X(1740) = isogonal conjugate of X(3223)
X(1740) = complement of X(21299)
X(1740) = anticomplement of X(21257)
X(1740) = X(i)-Ceva conjugate of X(j) for these (i,j): (31,1), (1958,610)
X(1740) = X(1613)-cross conjugate of X(1424)
X(1740) = X(i)-aleph conjugate of X(j) for these (i,j): (1,63), (2,1760), (4,1748), (6,1), (19,920), (31,1740), (57,1445), (74,2349), (98,1821), (99,799), (100,190), (101,100), (105,673), (106,88), (107,823), (108,653), (109,651), (110,662), (111,897), (112,162), (259,40), (266,57), (284,411), (365,9), (366,1759), (509,169), (649,1052), (813,660), (825, 1492), (934,658), (1172,412), (2222, 655), (2291,1156)


X(1741) = MIMOSA TRANSFORM OF X(189)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(189)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1741) lies on these lines: 2,7   19,1158   46,281   920,1249   1712,1713

X(1741) = X(189)-aleph conjugate of X(63)


X(1742) = MIMOSA TRANSFORM OF X(212)

Trilinears    - (cos A)/x + (cos B)/y + (cos C)/z : : ,    where x : y : z = X(212)
Trilinears    sec2(B/2) + sec2(C/2) - sec2(A/2) : :    ; (Randy Hutson, September 23, 2011)
Barycentrics   a*(a^3*b - 2*a^2*b^2 + a*b^3 + a^3*c + a^2*b*c - a*b^2*c - b^3*c - 2*a^2*c^2 - a*b*c^2 + 2*b^2*c^2 + a*c^3 - b*c^3)    ; (Peter Moses, April 3, 2020)
3 X[165] - 2 X[573], 3 X[1699] - 4 X[24220], 3 X[3576] - 2 X[31394]

X(1742) lies on these lines: {{1, 7}, {3, 238}, {6, 9441}, {9, 6184}, {10, 26059}, {31, 7411}, {35, 1745}, {37, 15726}, {38, 11220}, {40, 511}, {42, 9778}, {43, 165}, {45, 16112}, {46, 37409}, {48, 1633}, {55, 6180}, {57, 2942}, {58, 12511}, {75, 28850}, {87, 572}, {103, 7220}, {144, 2340}, {171, 7580}, {200, 4416}, {241, 14100}, {259, 503}, {266, 844}, {371, 31544}, {372, 31545}, {376, 1064}, {386, 12512}, {411, 37603}, {497, 22053}, {500, 37529}, {513, 15624}, {581, 31730}, {601, 3651}, {651, 1253}, {750, 36002}, {846, 1709}, {971, 984}, {982, 10167}, {986, 9943}, {988, 9841}, {1026, 25728}, {1193, 3522}, {1212, 15587}, {1250, 30300}, {1385, 24661}, {1418, 5572}, {1423, 2223}, {1490, 5293}, {1697, 2943}, {1699, 24220}, {1750, 5268}, {1766, 18788}, {1818, 5698}, {1935, 37601}, {1959, 12530}, {2066, 30297}, {2292, 9961}, {2309, 37416}, {2635, 5218}, {2792, 9862}, {2807, 5119}, {2808, 3688}, {2876, 7289}, {3056, 34253}, {3061, 18252}, {3062, 3731}, {3169, 9025}, {3177, 21084}, {3216, 16192}, {3474, 14547}, {3501, 17792}, {3510, 37619}, {3576, 16528}, {3579, 37699}, {3666, 5918}, {3720, 9812}, {3736, 4229}, {3752, 10178}, {3811, 17770}, {3817, 25502}, {3836, 36652}, {3870, 17364}, {3875, 7976}, {3879, 28849}, {3886, 34282}, {3888, 22370}, {3912, 21629}, {3950, 9950}, {4073, 25083}, {4192, 20368}, {4221, 30269}, {4512, 37175}, {4551, 35445}, {4641, 7964}, {5010, 6127}, {5217, 37694}, {5222, 20978}, {5247, 5584}, {5272, 10857}, {5414, 30296}, {5539, 34196}, {5691, 15971}, {5759, 24695}, {5851, 17334}, {5942, 28118}, {6284, 37523}, {6610, 30621}, {6765, 34379}, {7146, 12723}, {7175, 37580}, {7671, 17092}, {7963, 7987}, {7982, 29309}, {7991, 29311}, {8616, 15931}, {8727, 33111}, {8844, 16557}, {9779, 30950}, {9801, 17316}, {10164, 16569}, {10186, 17321}, {10638, 30301}, {10860, 17594}, {10868, 35269}, {11227, 17063}, {12618, 29674}, {13243, 36263}, {13329, 16468}, {15717, 27627}, {16132, 29097}, {17122, 19541}, {17126, 35986}, {17377, 28870}, {17378, 28854}, {17601, 17613}, {17668, 24341}, {17717, 37374}, {20556, 30035}, {20793, 34497}, {20995, 21856}, {21173, 23696}, {22836, 28508}, {24440, 31787}, {24635, 25722}, {26669, 35293}, {28164, 30116}, {29057, 30273}, {30503, 33781}, {31151, 36721}, {31805, 37592}, {35242, 37732}, {35658, 37552}, {37426, 37570}, {37501, 37607}

X(1742) = reflection of X(i) in X(j) for these (i,j): (1,991), (6210,3)
X(1742) = isogonal conjugate of the isotomic conjugate of X(20935)
X(1742) = X(i)-Ceva conjugate of X(j) for these (i,j): (55, 1), (6180, 1743), (31526, 34497)
X(1742) = X(i)-cross conjugate of X(j) for these (i,j): (20995, 34497), (21856, 3177), (31526, 1)
X(1742) = crosspoint of X(i) and X(j) for these (i,j): {1, 36601}, {651, 24011}, {3177, 31526}
X(1742) = crosssum of X(650) and X(24012)
X(1742) = crossdifference of every pair of points on line {657, 4449}
X(1742) = excentral-isogonal conjugate of X(63)
X(1742) = excentral-isotomic conjugate of X(40)
X(1742) = X(264)-of-excentral triangle
X(1742) = Brianchon point of the MacBeacth inconic of the excentral triangle
X(1742) = X(i)-aleph conjugate of X(j) for these (i,j): (1,57), (6,978), (9,40), (55,1742), (174,1445), (188,63), (259,1), (365,1743), (366,169)
X(1742) = barycentric product X(i)*X(j) for these {i,j}: {1, 3177}, {6, 20935}, {8, 34497}, {9, 31526}, {75, 20995}, {81, 21084}, {86, 21856}, {92, 20793}, {100, 21195}
X(1742) = barycentric quotient X(i)/X(j) for these {i,j}: {3177, 75}, {20793, 63}, {20935, 76}, {20995, 1}, {21084, 321}, {21195, 693}, {21856, 10}, {31526, 85}, {34497, 7}
X(1742) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2951, 1721}, {6, 11495, 9441}, {7, 2293, 1}, {20, 4300, 1}, {55, 6180, 9440}, {77, 4319, 1}, {170, 4335, 1721}, {269, 4326, 1}, {390, 1458, 1}, {651, 7676, 1253}, {1042, 4313, 1}, {1442, 4336, 1}, {1716, 1740, 978}, {2263, 7675, 1}, {2293, 3000, 7}, {3945, 4343, 1}, {4294, 4303, 1}, {4302, 4337, 1}, {4306, 4314, 1}, {4322, 9785, 1}, {7671, 17092, 21346}, {9943, 15852, 986}, {30354, 30355, 4326}, {31573, 31574, 12565}


X(1743) = MIMOSA TRANSFORM OF X(222)

Trilinears    3a - b - c : :     (M. Iliev, 5/13/2007)
Trilinears    cot(B/2) + cot(C/2) - cot(A/2) : :      (Randy Hutson, 9/23/2011)
Trilinears    aS - rs2 : :    (César Lozada, 9/07/2013)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

Let A' be the center of the conic through the contact points of the B- and C-excircles with the sidelines of ABC. Define B' and C' cyclically. The triangle A'B'C' is perspective to the excentral triangle at X(1743). See also X(6), X(25), X(218), X(222), X(940). (Randy Hutson, July 23, 2015)

In the plane of ABC, let a' be the external bisector of A and a" its reflection in BC; define b" and c" cyclically. Then ABC and the triangle bounded by a", b" and c" are perspective with perspector X(15446). (César Lozada, October 10, 2018)

X(1743) lies on these lines: 1,6   10,391   19,1783   31,200   36,198   41,572   43,165   48,1732   57,1122   58,936   71,380   101,604   169,1046   173,266   223,1708   239,1278   241,1419   258,259   269,651   282,1795   284,1778   294,1721   346,519   579,610   580,1490   966,1698   978,1400   999,1696   1249,1785   1750,1754\

X(1743) = isogonal conjugate of X(8056)
X(1743) = X(i)-Ceva conjugate of X(j) for these (i,j): (57,1), (1476,55)
X(1743) = crosspoint of X(i) and X(j) for these (i,j): (57,1420), (651,765)
X(1743) = crosssum of X(244) and X(650)
X(1743) = {X(6),X(9)}-harmonic conjugate of X(1)
X(1743) = trilinear pole wrt excentral triangle of Gergonne line
X(1743) = perspector of ABC and unary cofactor triangle of Triangle T(-1,3)
X(1743) = excentral-isogonal conjugate of X(10860)
X(1743) = X(393)-of-excentral-triangle
X(1743) = X(i)-aleph conjugate of X(j) for these (i,j): (1,165), (2,1766), (7,169), (57,1743), (81,572), (174,9), (259,170), (266,43), (365,1742), (366,40), (507,164), (508,63), (509,1), (513,1053), (651,101)
X(1743) = perspector of excentral triangle and unary cofactor triangle of intangents triangle


X(1744) = MIMOSA TRANSFORM OF X(226)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(226)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1744) lies on these lines: 9,46   19,91   846,1754   1046,1409   1172,1725   1709,1719   1723,1729   1770,1826

X(1744) = X(i)-aleph conjugate of X(j) for these (i,j): (4,1754), (92,1765)


X(1745) = MIMOSA TRANSFORM OF X(255)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sec B + sec C - sec A    (D. Grinberg, 2/25/04)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1745) lies on the McCay cubic and these lines: 1,4   35,1742   36,978   43,46   78,1330   255,411   579,610   908,1076   920,1758   1464,1836   1716,1756

X(1745) = isogonal conjugate of X(3362)
X(1745) = X(i)-Ceva conjugate of X(j) for these (i,j): (3,1), (1935,1046)
X(1745) = X(1148)-cross conjugate of X(1)
X(1745) = {X(4),X(73)}-harmonic conjugate of X(1)
X(1745) = {X(223),X(1490)}-harmonic conjugate of X(1)
X(1745) = excentral isogonal conjugate of X(1158)
X(1745) = X(i)-aleph conjugate of X(j) for these (i,j): (1,46), (2,1726), (3,1745), (6,1716), (63,1763), (174,1708), (188,1158), (259,1721), (266,1722), (365,1707), (366,19), (508,1729), (509,1723), (651,1020)


X(1746) = MIMOSA TRANSFORM OF X(261)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(261)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1746) lies on these lines: 2,572   4,580   27,1730   57,1111   92,1726   333,1764   515,1006   946,1203

X(1746) = X(i)-aleph conjugate of X(j) for these (i,j): (27,1722), (29,1721), (86,223), (286,1708), (333,1490), (648,109)


X(1747) = MIMOSA TRANSFORM OF X(262)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(262)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1747) lies on these lines: 1,82   19,91   47,240   162,1096   1737,1890


X(1748) = MIMOSA TRANSFORM OF X(264)

Trilinears    cot A - tan A : :
Trilinears    (1 + 2 cos A)/(1 + cos A) : :
Trilinears    cot 2A : cot 2B : cot 2C
Trilinears    cot A' : :, where A'B'C' is the orthic triangle

X(1748) lies on these lines: 19,27   31,240   158,920   162,1096   412,1158   653,1708   1013,1859   1445,1767   1776,1857

X(1748) = isogonal conjugate of X(1820)
X(1748) = complement of X(18664)
X(1748) = anticomplement of X(18588)
X(1748) = cevapoint of X(19) and X(920)
X(1748) = X(i)-cross conjugate of X(j) for these (i,j): (563,1), (2180,47)
X(1748) = X(i)-aleph conjugate of X(j) for these (i,j): (4,1740), (92,1), (264,63), (331,1445), (811,662), (823,162), (1969,1760)
X(1748) = SS(A → A') of X(63), where A'B'C' is the orthic triangle
X(1748) = {X(19),X(63)}-harmonic conjugate of X(92)
X(1748) = pole wrt polar circle of trilinear polar of X(91) (line X(661)X(2618))
X(1748) = polar conjugate of X(91)
X(1748) = trilinear product X(2)*X(24)


X(1749) = MIMOSA TRANSFORM OF X(265)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(265)
Trilinears    a^6 - 3 a^4 (b^2 + c^2) + a^2 (3 b^4 - b^2 c^2 + 3 c^4) - (b^2 - c^2)^2 (b^2 + c^2) : :
Barycentrics    a*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - 3*a^4*c^2 - a^2*b^2*c^2 + b^4*c^2 + 3*a^2*c^4 + b^2*c^4 - c^6) : :
X(1749) = (2r + R) X[1] - 4 r X[21]

X(1749) lies on these lines: {1, 21}, {2, 16763}, {3, 16767}, {5, 79}, {30, 80}, {35, 17637}, {36, 2771}, {46, 7701}, {56, 13465}, {65, 22936}, {90, 18514}, {442, 12623}, {499, 14450}, {1087, 2962}, {1733, 16568}, {1755, 16546}, {1768, 5131}, {1776, 3583}, {1858, 14794}, {2099, 28453}, {2475, 18395}, {3086, 31888}, {3218, 3582}, {3219, 3584}, {3337, 3649}, {3375, 3376}, {3383, 3384}, {3585, 7098}, {3648, 5046}, {3820, 16152}, {3929, 17699}, {5427, 6265}, {5441, 10950}, {5444, 31650}, {5445, 5499}, {5692, 19525}, {5694, 14804}, {5844, 10543}, {5902, 7489}, {5903, 13743}, {6701, 7504}, {6949, 16116}, {7161, 13995}, {7280, 16132}, {7308, 17700}, {7491, 16113}, {7741, 16159}, {10266, 23016}, {10573, 15680}, {11263, 27003}, {12535, 13129}, {14526, 18244}, {14527, 17768}, {15079, 16150}, {15950, 16140}, {16155, 26475}, {17757, 18253}

X(1749) = midpoint of X(484) and X(3065)
X(1749) = reflection of X(i) in X(j) for these {i,j}: {3649, 15325}, {17757, 18253}
X(1749) = X(2166)-Ceva conjugate of X(1)
X(1749) = crosspoint of X(24041) and X(32680)
X(1749) = crosssum of X(2624) and X(2643)
X(1749) = crossdifference of every pair of points on line {661, 17438}
X(1749) = barycentric product X(i)*X(j) for these {i,j}: {75, 11063}, {311, 19306}, {799, 6140}, {1157, 14213}, {2349, 10272}, {3470, 14206}, {8562, 32680}, {10413, 24041}
X(1749) = X(i)-isoconjugate of X(j) for these (i,j): {2, 14579}, {6, 13582}, {54, 1263}, {74, 3471}, {186, 15392}, {323, 11071}, {523, 1291}, {3459, 14367}, {15109, 30526}
X(1749) = barycentric quotient X(i)/X(j) for these {i,j}: {{1, 13582}, {31, 14579}, {163, 1291}, {1157, 2167}, {1953, 1263}, {2173, 3471}, {3470, 2349}, {6140, 661}, {8562, 32679}, {10272, 14206}, {10413, 1109}, {11063, 1}, {19306, 54}}
X(1749) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21, 11684, 3878}, {46, 7701, 16118}, {191, 6763, 11684}, {896, 1725, 6149}, {1725, 6149, 1}, {1755, 16562, 16546}, {1822, 1823, 2964}, {3336, 3467, 5}, {3649, 10021, 5443}, {5441, 16139, 11010}, {16139, 16141, 5441}, {17637, 22937, 35}


X(1750) = MIMOSA TRANSFORM OF X(268)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(268)
Trilinears    (1 + cos A - cos B - cos C) (tan A/2) - (1 + cos B - cos C - cos A) (tan B/2) - (1 + cos C - cos A - cos B) (tan C/2) : :

X(1750) lies on these lines: 1,4   9,165   20,936   40,210   43,1721   57,971   84,1728   200,329   1708,1768   1743,1754

X(1750) = X(282)-Ceva conjugate of X(1)
X(1750) = X(282)-aleph conjugate of X(1750)


X(1751) = MIMOSA TRANSFORM OF X(272)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(272)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1751) lies on these lines: 2,272   4,580   6,226   9,321   10,55   19,1708   27,579   57,379   76,333   92,1731   1479,1794

X(1751) = isogonal conjugate of X(579)
X(1751) = cevapoint of X(11) and X(652)
X(1751) = X(71)-cross conjugate of X(1)
X(1751) = crosssum of X(1724) and X(1754)
X(1751) = trilinear pole of line X(523)X(663) (the polar of X(5125) wrt the polar circle)
X(1751) = polar conjugate of X(5125)


X(1752) = MIMOSA TRANSFORM OF X(277)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,   x : y : z = X(277)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1752) lies on these lines: 1,41   9,1479   19,46   920,1729


X(1753) = MIMOSA TRANSFORM OF X(280)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(280)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1753) lies on these lines: 1,947   3,33   4,9   34,517   46,208   55,1887   63,318   204,580   225,1217   475,946   1068,1435   1158,1726   1445,1895   1593,1824   1597,1871   1708,1712

X(1753) = X(92)-aleph conjugate of X(1767)
X(1753) = homothetic center of orthic triangle and reflection of intangents triangle in X(3)


X(1754) = MIMOSA TRANSFORM OF X(284)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(284)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1754) lies on these lines: 1,3   4,580   5,582   20,58   25,1730   31,516   33,1708   47,1770   63,990   81,991   109,278   184,851   209,916   212,226   219,1376   238,1699   255,1074   283,377   386,411   394,1004   498,1794   579,1172   595,962   602,946   846,1744   950,1451   1707,1709   1726,1824   1743,1750

X(1754) = X(i)-Ceva conjugate of X(j) for these (i,j): (579,1724), (1172,1)
X(1754) = X(i)-aleph conjugate of X(j) for these (i,j): (4,1744), (29,1765), (365,1047), (1172,1754)


X(1755) = MIMOSA TRANSFORM OF X(287)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(287)
Trilinears    a cos(A + ω) : :
Trilinears    (cot A + cot B + cot C) tan A - (tan A + tan B + tan C) cot A : :
Trilinears    a^2 (a^2 b^2 + a^2 c^2 - b^4 - c^4) : :
Barycentrics    a^2 (a^2 cos B cos C - b c cos^2 A) : :

X(1755) lies on these lines: 6,893   19,27   31,48   44,513   610,1707   1580,1581

X(1755) = isogonal conjugate of X(1821)
X(1755) = X(i)-Ceva conjugate of X(j) for these (i,j): (1581,1964), (1821,1)
X(1755) = cevapoint of X(1580) and X(1955)
X(1755) = crosspoint of X(i) and X(j) for these (i,j): (1,1821), (31,1967), (57,741), (240,1959)
X(1755) = crosssum of X(i) and X(j) for these (i,j): (1,1755), (9,740), (75,1966), (293,1910)
X(1755) = X(i)-aleph conjugate of X(j) for these (i,j): (98,1580), (1821,1755)
X(1755) = X(6)-isoconjugate of X(290)
X(1755) = X(92)-isoconjugate of X(293)
X(1755) = trilinear product X(2)*X(237)
X(1755) = barycentric square root of X(9419)


X(1756) = MIMOSA TRANSFORM OF X(293)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(293)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1756) lies on these lines: 1,256   9,46   36,238   1711,1763   1716,1745

X(1756) = reflection of X(1) in X(1284)
X(1756) = isogonal conjugate of X(7095)
X(1756) = X(98)-Ceva conjugate of X(1)
X(1756) = crosspoint of X(86) and X(1821)
X(1756) = crosssum of X(42) and X(1755)
X(1756) = X(98)-aleph conjugate of X(1756)


X(1757) = MIMOSA TRANSFORM OF X(295)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c)2 - (a + b)(a + c)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1757) lies on these lines: 1,6   10,894   42,846   43,63   57,1463   81,756   100,896   171,210   190,740   191,1045   200,1707   209,1762   239,726   240,1783   314,1089   320,1698   333,1215   484,513   527,1738   672,1282   765,1110   899,1054

X(1757) = reflection of X(i) in X(j) for these (i,j): (1,238), (238,44)
X(1757) = isogonal conjugate of X(1929)
X(1758) = X(2)-Ceva conjugate of X(39055)
X(1757) = X(291)-Ceva conjugate of X(1)
X(1757) = crosspoint of X(660) and X(765)
X(1757) = crosssum of X(i) and X(j) for these (i,j): (244,659), (1931, 1963)
X(1757) = X(i)-aleph conjugate of X(j) for these (i,j): (291,1757), (660,1026)
X(1757) = crossdifference of PU(31)
X(1757) = perspector of conic {A,B,C,X(100),PU(32)}
X(1757) = intersection of trilinear polars of X(100), P(32), and U(32)
X(1757) = inverse-in-circumconic-centered-at-X(9) of X(37)


X(1758) = MIMOSA TRANSFORM OF X(296)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(296)
Trilinears    (a^3 + b^3 + c^3 - 2a^2b - 2a^2c + abc)/(b + c - a) : :
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1758) lies on these lines: 1,3   21,1254   43,1708   73,1046   108,240   223,1707   225,1247   226,846   238,1465   411,774   651,896   920,1745   1044,1158   1054,1738

X(1758) = isogonal conjugate of X(2648)
X(1758) = X(1937)-Ceva conjugate of X(1)
X(1758) = X(1937)-aleph conjugate of X(1758)
X(1758) = crossdifference of PU(80)
X(1758) = perspector of conic {{A,B,C,PU(81)}}


X(1759) = MIMOSA TRANSFORM OF X(304)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3 - b3 - c3     (M. Iliev, 5/13/07)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1759) lies on these lines: 1,32   9,46   40,728   41,758   63,169   72,910

X(1759) = X(76)-Ceva conjugate of X(1)
X(1759) = excentral-isogonal conjugate of X(32462)
X(1759) = X(i)-aleph conjugate of X(j) for these (i,j): (2,43), (8,170), (75,9), (76,1759), (92,1711), (366,1740), (508,978), (556,165), (668,1018)


X(1760) = MIMOSA TRANSFORM OF X(305)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4 - b4 - c4     (M. Iliev, 5/13/07)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1760) lies on these lines: 1,82   19,27   190,1766   240,255   326,610   1820,1821

X(1760) = isogonal conjugate of X(2156)
X(1760) = isotomic conjugate of isogonal conjugate of X(2172)
X(1760) = isotomic conjugate of complement of X(21215)
X(1760) = isotomic conjugate of anticomplement of X(16582)
X(1760) = isotomic conjugate of X(6)-isoconjugate of X(22)
X(1760) = complement of X(17481)
X(1760) = anticomplement of X(16580)
X(1760) = X(561)-Ceva conjugate of X(1)
X(1760) = X(i)-aleph conjugate of X(j) for these (i,j): (2,1740), (75,1), (76,63), (264,920), (314,411), (556,1742), (561,1760), (668,100), (693,1052), (789,1492), (799,662), (811,162), (1969,1748), (1978,190)


X(1761) = MIMOSA TRANSFORM OF X(306)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(306)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1761) lies on these lines: 1,1333   6,986   9,46   19,27   37,171   40,1503   284,758   896,1778   1158,1766

X(1761) = X(321)-Ceva conjugate of X(1)
X(1761) = X(i)-aleph conjugate of X(j) for these (i,j): (10,846), (92,1713), (321,1761), (556,573)
X(1761) = trilinear product X(2)*X(199)


X(1762) = MIMOSA TRANSFORM OF X(307)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(307)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1762) lies on these lines: 9,440   10,1782   19,27   30,40   55,846   57,1723   65,1046   71,1654   169,1708   209,1757   1812,1959

X(1762) = anticomplement of X(25361)
X(1762) = X(1441)-Ceva conjugate of X(1)
X(1762) = X(i)-aleph conjugate of X(j) for these (i,j): (2,3), (75,1764), (92,1715), (226,1046), (508,6), (556,20), (1441,1762)


X(1763) = MIMOSA TRANSFORM OF X(326)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(326)
Trilinears       g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin B)(tan B) + (sin C)(tan C) - (sin A)(tan A)     (Randy Hutson, 9/23/2011)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1763) lies on these lines: 1,25   2,169   6,57   9,440   19,226   40,64   43,46   63,573   73,1452   198,1214   329,1766   1711,1756

X(1763) = isogonal conjugate of X(7097)
X(1763) = isotomic conjugate of polar conjugate of X(36103)
X(1763) = anticomplement of X(36850)
X(1763) = crossdifference of every pair of points on line X(2522)X(3900)
X(1763) = X(69)-Ceva conjugate of X(1)
X(1763) = X(i)-aleph conjugate of X(j) for these (i,j): (1,1716), (2,46), (63,1745), (69,1763), (75,1726), (174,1722), (188,1721), (366,1707), (508,1723), (556,1158), (664,1020)


X(1764) = MIMOSA TRANSFORM OF X(332)

Trilinears    - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(332)
Trilinears    a^4(b + c) + a^3(b^2 + c^2) - a^2(b^3 + c^3) - a(b^2 + c^2)^2 - bc(b - c)^2(b + c) : :

X(1764) lies on these lines: 1,3   2,573   63,321   81,572   333,1746   345,1018   978,1695

X(1764) = X(314)-Ceva conjugate of X(1)
X(1764) = X(i)-aleph conjugate of X(j) for these (i,j): (2,1046), (75,1762), (188,1045), (314,1764), (333,3), (556,191)
X(1764) = anticomplement of X(2051)
X(1764) = excentral-isogonal conjugate of X(1045)
X(1764) = X(418)-of-excentral-triangle
X(1764) = homothetic center of excentral triangle and 3rd Conway triangle
X(1764) = perspector of 3rd Conway triangle and (cross-triangle of ABC and 4th Conway triangle)
X(1764) = perspector of 3rd Conway triangle and (cross-triangle of ABC and 5th Conway triangle)


X(1765) = MIMOSA TRANSFORM OF X(333)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(333)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1765) lies on these lines: 1,1409   3,9   6,1012   7,1020   19,1158   20,391   21,572   63,321   71,515   580,1778   608,1777   1707,1709   1735,1880   1768,1781

X(1765) = X(i)-aleph conjugate of X(j) for these (i,j): (29,1754), (92,1744), (366,1047)


X(1766) = MIMOSA TRANSFORM OF X(345)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(345)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1766) lies on these lines: 1,572   3,37   4,9   6,517   20,346   46,1400   63,321   101,610   165,846   190,1760   329,1763   355,594   672,1723   971,1350   1100,1482   1158,1761

X(1766) = reflection of X(990) in X(3)
X(1766) = X(312)-Ceva conjugate of X(1)
X(1766) = X(i)-aleph conjugate of X(j) for these (i,j): (2,1743), (8,165), (75,169), (188,43), (190,101), (312,1766), (333,572), (366,978), (522,1053), (556,9)
X(1766) = excentral-isogonal conjugate of X(43)
X(1766) = excentral-isotomic conjugate of X(32462)


X(1767) = MIMOSA TRANSFORM OF X(347)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(347)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1767) lies on these lines: 3,207   19,57   46,208   63,653   65,1498   108,165   109,204   1158,1712   1445,1748

X(1767) = X(522)-Ceva conjugate of X(1)
X(1767) = X(i)-aleph conjugate of X(j) for these (i,j): (92,1753), (342,1767), (508,282), (653,108), (522,1768)


X(1768) = MIMOSA TRANSFORM OF X(521)

Trilinears    a^5 - a^4 (b + c) - a^3 (2 b^2 - 5 b c + 2 c^2) + 2 a^2 (b - c)^2 (b + c) + a (b - c)^2 (b^2 - b c + c^2) - b^5 + b^4 c + b c^4 - c^5 : :

X(1768) lies on the Bevan circle, the excentral-hexyl ellipse, and these lines: 1,104   3,191   10,153   11,57   36,1727   40,550   46,80   63,100   119,1698   149,516   484,515   971,1155   1156,1445   1317,1697   1708,1750   1765,1781

X(1768) = reflection of X(34464) in line X(1)X(3)
X(1768) = isogonal conjugate of X(29374)
X(1768) = reflection of X(i) in X(j) for these (i,j): (1,104), (153,10)
X(1768) = X(i)-aleph conjugate of X(j) for these (i,j): (2,514), (174,905), (366,650), (508,657), (522,1768)
X(1768) = trilinear pole wrt excentral triangle of line X(4)X(9)
X(1768) = excentral-isogonal conjugate of X(513)
X(1768) = X(110)-of-excentral-triangle
X(1768) = intouch-to-excentral similarity image of X(11)


X(1769) = MIMOSA TRANSFORM OF X(901)

Trilinears    - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(901)

Trilinears    (b - c) (a^2 (b + c) - 2 a b c - (b - c)^2 (b + c)) : :

X(1769) lies on these lines: 11,244   104,106   108,109   240,522   513,663

X(1769) = isogonal conjugate of X(36037)
X(1769) = X(162)-Ceva conjugate of X(1845)
X(1769) = crosspoint of X(i) and X(j) for these (i,j): (88,934), (162,759)
X(1769) = crosssum of X(i) and X(j) for these (i,j): (31,1635), (522,1737), (656,758)
X(1769) = trilinear product of circumcircle intercepts of Sherman line
X(1769) = crossdifference of every pair of points on line X(9)X(48) (the Fermat axis of the excentral triangle and of the 2nd extouch triangle)


X(1770) = MIMOSA TRANSFORM OF X(943)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(943)

Let IaIbIc be the reflection triangle of X(1). Let A' be the cevapoint of Ib and Ic, and define B' and C' cyclically. The lines AA', BB', CC' concur in X(1770). (Randy Hutson, July 20, 2016)

X(1770) lies on these lines: 1,7   3,1836   4,46   5,1155   10,191   27,1780   28,1633   30,65   35,79   36,946   40,1478   47,1754   57,1479   109,225   165,498   382,1837   1707,1714   1710,1782   1724,1738   1744,1826   1771,1785   1885,1905

X(1770) = cevapoint of X(46) and X(1717)


X(1771) = MIMOSA TRANSFORM OF X(947)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(947)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1771) lies on these lines: 1,3   4,109   10,255   31,1210   515,603   516,1076   580,1788   601,950   920,1736   1399,1837   1707,1728   1720,1721   1770,1785


X(1772) = MIMOSA TRANSFORM OF X(953)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(953)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1772) lies on these lines: 1,88   3,1411   34,46   40,1421   240,522   498,986   920,1722   1068,1788


X(1773) = MIMOSA TRANSFORM OF X(1038)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(1038)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1773) lies on these lines: 1,25   10,46   40,984   57,1722   169,1400   244,1468   388,1452

X(1773) = X(i)-Ceva conjugate of X(j) for these (i,j): (388,1), (1452,46)


X(1774) = MIMOSA TRANSFORM OF X(1061)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(1061)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1774) lies on these lines: 4,46   40,47   57,1725   378,1061   484,1707


X(1775) = MIMOSA TRANSFORM OF X(1063)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(1063)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1775) lies on these lines: 4,46   24,1063   40,1725   47,57


X(1776) = MIMOSA TRANSFORM OF X(1156)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(1156)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1776) lies on these lines: 4,46   21,60   33,1707   63,497   109,1736   191,950   243,522   411,1898   519,1697   1005,1864   1155,1156   1725,1870   1748,1857

X(1776) = crosspoint of X(21) and X(1156)
X(1776) = crosssum of X(65) and X(1155)


X(1777) = MIMOSA TRANSFORM OF X(1167)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(1167)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1777) lies on these lines: 1,84   4,109   34,1158   35,1742   36,1044   46,1707   47,1754   90,1041   226,601   255,516   603,946   608,1765   1046,1710   1399,1836


X(1778) = MIMOSA TRANSFORM OF X(1171)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(1171)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1778) lies on these lines: 6,21   9,58   19,1707   28,579   37,81   44,1333   90,1172   284,1743   580,1765   896,1761   966,1010   1396,1708   1474,1732

X(1778) = cevapoint of X(1707) and (1724)


X(1779) = MIMOSA TRANSFORM OF X(1172)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(1172)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1779) lies on these lines: 3,1780   4,46   35,47   43,165   378,580   579,1172   1714,1715

X(1779) = X(i)-aleph conjugate of X(j) for these (i,j): (4,1781), (29,573)


X(1780) = MIMOSA TRANSFORM OF X(1175)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(1175)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1780) lies on these lines: 1,21   3,1779   4,580   27,1770   28,46   29,1737   35,71   90,1172   219,1333   579,1474   1010,1098   1214,1399   1408,1617

X(1780) = X(27)-Ceva conjugate of X(284)


X(1781) = MIMOSA TRANSFORM OF X(1214)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(1214)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1781) lies on these lines: 1,19   6,1718   9,46   35,37   57,1723   71,484   165,846   169,1046   281,1478   1710,1720   1765,1768

X(1781) = X(226)-Ceva conjugate of X(1)
X(1781) = X(i)-aleph conjugate of X(j) for these (i,j): (2,573), (4,1779), (174,6), (226,1781), (366,3), (508,2)


X(1782) = MIMOSA TRANSFORM OF X(1257)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(1257)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1782) lies on these lines: 4,1726   8,20   10,1762   19,46   58,65   71,191   580,1829   1710,1770   1737,1842


X(1783) = MIMOSA TRANSFORM OF X(1262)

Trilinears        (tan A)/(b - c) : (tan B)/(c - a) : (tan C)/(a - b)
Barycentrics   a(tan A)/(b - c) : b(tan B)/(c - a) : c(tan C)/(a - b)

X(1783) lies on these lines: 4,218   6,281   19,1743   28,291   80,1172   100,112   101,108   150,1814   200,204   219,1249   240,1757   644,648   650,1415   651,653   899,1430   905,934   1103,1712   1718,1723   1785,1886

X(1783) = isogonal conjugate of X(905)
X(1783) = isotomic conjugate of X(15413)
X(1783) = trilinear pole of line X(19)X(25) (the tangent to hyperbola {{A,B,C,X(4),X(19)}} at X(19))
X(1783) = pole wrt polar circle of trilinear polar of X(693) (line X(918)X(1086))
X(1783) = polar conjugate of X(693)
X(1783) = crossdifference of every pair of points on line X(1364)X(3270)
X(1783) = perspector of anticevian triangle of X(108) and unary cofactor triangle of intangents triangle
X(1783) = barycentric product of circumcircle intercepts of line X(4)X(8)
X(1783) = barycentric product X(4)*X(100)
X(1783) = X(i)-Ceva conjugate of X(j) for these (i,j): (648,1897), (653,108)
X(1783) = cevapoint of X(i) and X(j) for these (i,j): (1,1734), (6,650), (513,614)
X(1783) = crosspoint of X(i) and X(j) for these (i,j): (162,648), (653,1897)
X(1783) = crosssum of X(i) and X(j) for these (i,j): (647,656), (652,1459), (513,614)
X(1783) = X(i)-aleph conjugate of X(j) for these (i,j): (108,1707), (651,610), (653,19)
X(1783) = X(92)-isoconjugate of X(23224)
X(1783) = trilinear product X(4)*X(101)
X(1783) = trilinear product of circumcircle intercepts of line X(4)X(9)


X(1784) = MIMOSA TRANSFORM OF X(1294)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(1294)

X(1784) lies on these lines: 1,29   4,79   36,243   240,522   318,1698   451,498   484,653   920,1712   1118,1479   1478,1857

X(1784) = isogonal conjugate of X(35200)
X(1784) = crossdifference of every pair of points on line X(48)X(822)
X(1784) = circle-{{X(11),X(36),X(65)}}-inverse of X(36063)
X(1784) = pole wrt polar circle of trilinear polar of X(2349) (line X(1)X(656))
X(1784) = polar conjugate of X(2349)
X(1784) = X(63)-isoconjugate of X(2159)


X(1785) = MIMOSA TRANSFORM OF X(1295)

Trilinears    (sec A) (cos B + cos C - 1) : :

X(1785) lies on these lines: 1,4   2,1074   9,393   10,158   20,1076   25,1324   36,108   37,53   40,1118   46,208   65,1872   106,1309   240,522   406,498   407,1844   475,499   517,1361   519,1897   942,1887   1210,1895   1249,1743   1465,1532   1712,1714   1770,1771   1783,1886   1824,1894   1830,1835   1867,1904

X(1785) = reflection of X(1845) in X(1875)
X(1785) = isogonal conjugate of X(1795)
X(1785) = inverse-in-incircle of X(946)
X(1785) = X(4)-Ceva conjugate of X(1845)
X(1785) = Conway-circle-inverse of X(35635)
X(1785) = crossdifference of every pair of points on line X(48)X(652)
X(1785) = inverse-in-polar-circle of X(1)
X(1785) = trilinear product X(8072)*X(8073)
X(1785) = polar conjugate of X(34234)


X(1786) = MIMOSA TRANSFORM OF X(1442)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(1442)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1786) lies on these lines: 33,46   57,77   1730,1787


X(1787) = MIMOSA TRANSFORM OF X(1443)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(1443)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1787) lies on these lines: 34,46   57,88   1020,1435   1730,1786


X(1788) = MIMOSA TRANSFORM OF X(1476)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,  x : y : z = X(1476)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1788) lies on these lines: 1,631   2,65   4,46   7,12   8,56   10,57   11,962   20,1155   34,1722   36,944   40,497   43,73   55,938   109,1724   145,1319   165,950   171,1451   200,1467   201,986   208,1861   225,1738   226,1698   227,241   278,1714   281,579   329,1329   344,1284   345,1403   377,1454   387,1214   412,1857   484,1479   519,1420   580,1771   651,1406   653,1118   899,1042   958,1466   961,1150   978,1457   1068,1772   1707,1877

X(1788) = anticomplement of X(25681)
X(1788) = cevapoint of X(46) and X(1722)


X(1789) = INVERSE MIMOSA TRANSFORM OF X(5)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(5)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1789) lies on these lines: 3,125   21,36

X(1789) = isogonal conjugate of X(1825)
X(1789) = X(19)-isoconjugate of X(16577)
X(1789) = X(92)-isoconjugate of X(21741)


X(1790) = INVERSE MIMOSA TRANSFORM OF X(6)

Trilinears    a(b2 + c2 - a2)/(b + c) : :     (M. Iliev, 5/13/07)
Trilinears    (cot A) (1 - cos A)/(cos B + cos C) : :

X(1790) lies on these lines: 1,1719   2,572   3,49   6,967   21,84   22,991   27,86   36,58   48,63   57,77   71,1796   73,1798   103,110   199,511   222,1804   228,295   306,332   333,662   1214,1813   1408,1470

X(1790) = isogonal conjugate of X(1826)
X(1790) = X(i)-Ceva conjugate of X(j) for these (i,j): (86,58), (1444,283)
X(1790) = cevapoint of X(3) and X(48)
X(1790) = X(222)-cross conjugate of X(81)
X(1790) = crosssum of X(1) and X(1719)
X(1790) = X(92)-isoconjugate of X(42)


X(1791) = INVERSE MIMOSA TRANSFORM OF X(10)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z);x : y : z = X(10)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1791) lies on these lines: 1,1472   2,12   3,345   8,197   21,37   48,78   63,201   72,1437   228,1792   280,1436   975,993

X(1791) = isogonal conjugate of X(1829)
X(1791) = cevapoint of X(i) and X(j) for these (i,j): (3,72), (37,197), (219,228)


X(1792) = INVERSE MIMOSA TRANSFORM OF X(20)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(20)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1792) lies on these lines: 3,69   8,21   78,212   81,1257   86,939   99,972   228,1791   271,1819   314,943   1260,1265

X(1792) = isogonal conjugate of X(1426)
X(1792) = X(332)-Ceva conjugate of X(1812)
X(1792) = cevapoint of X(i) and X(j) for these (i,j): (78,1259), (283,1819)


X(1793) = INVERSE MIMOSA TRANSFORM OF X(30)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(30)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1793) lies on these lines: 3,125   10,21   72,283   307,1444

X(1793) = isogonal conjugate of X(1835)
X(1793) = isotomic conjugate of polar conjugate of X(2341)
X(1793) = X(19)-isoconjugate of X(18593)


X(1794) = INVERSE MIMOSA TRANSFORM OF X(35)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(35)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1794) lies on these lines: 1,201   10,29   35,71   36,951   77,255   498,1754   1059,1617   1479,1751

X(1794) = isogonal conjugate of X(1838)
X(1794) = cevapoint of X(71) and X(212)
X(1794) = crosssum of X(1841) and X(1859)


X(1795) = INVERSE MIMOSA TRANSFORM OF X(36)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(36)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1795) lies on these lines: 1,104   3,1364   29,58   35,947   36,102   56,945   57,1845   78,255   117,1478   124,499   163,284   171,1065   219,577   282,1743   912,1807   999,1361

X(1795) = isogonal conjugate of X(1785)
X(1795) = trilinear pole of line X(48)X(652)


X(1796) = INVERSE MIMOSA TRANSFORM OF X(37)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(37)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1796) lies on these lines: 27,1268   35,42   57,1255   71,1790

X(1796) = isogonal conjugate of X(1839)
X(1796) = X(1268)-Ceva conjugate of X(1126)
X(1796) = cevapoint of X(3) and X(71)
X(1796) = X(92)-isoconjugate of X(2308)


X(1797) = INVERSE MIMOSA TRANSFORM OF X(44)

Trilinears    (cos A)/(2 a - b - c) : :

X(1797) lies on these lines: 3,1331   27,648   57,88   58,106   63,1332   84,1320   103,677   222,1813   320,908

X(1797) = X(903)-Ceva conjugate of X(106)
X(1797) = isogonal conjugate of X(8756)
X(1797) = X(92)-isoconjugate of X(902)
X(1797) = isotomic conjugate of polar conjugate of X(106)
X(1797) = X(19)-isoconjugate of X(519)
X(1797) = crossdifference of every pair of points on line X(4120)X(4895)


X(1798) = INVERSE MIMOSA TRANSFORM OF X(58)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(58)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1798) lies on these lines: 6,60   54,970   58,1245   65,81   71,283   72,1437   73,1790   110,960   285,1903

X(1798) = isogonal conjugate of X(429)
X(1798) = cevapoint of X(3) and X(1437)


X(1799) = INVERSE MIMOSA TRANSFORM OF X(75)

Trilinears    (cos A)/(y + z),  x : y : z = X(75)
Trilinears    cot A csc(A + ω) : :
Barycentrics    (b^2 + c^2 - a^2)/(b^2 + c^2) : :

Let A'B'C' be the circummedial triangle (the circumcevian triangle of X(2)). Let A" be the cevapoint of B' and C', and define B" and C" cyclically. AA", BB", and CC" concur in X(1799). (Randy Hutson, December 10, 2016)

X(1799) lies on these lines: 2,32   3,305   22,76   25,183   69,184   95,325   98,689   287,343   385,1194   1402,1441

X(1799) = isogonal conjugate of X(1843)
X(1799) = isotomic conjugate of X(427)
X(1799) = X(308)-Ceva conjugate of X(83)
X(1799) = cevapoint of X(i) and X(j) for these (i,j): (2,22), (3,69)
X(1799) = complement of X(8878)
X(1799) = crosspoint of X(2) and X(22) wrt both the anticomplementary and tangential triangles
X(1799) = X(92)-isoconjugate of X(3051)
X(1799) = perspector of circummedial triangle and cross-triangle of ABC and circummedial triangle


X(1800) = INVERSE MIMOSA TRANSFORM OF X(155)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(155)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1800) lies on these lines: 1,921   3,49   21,90   29,662   46,453   65,1813

X(1800) = X(21)-Ceva conjugate of X(283)


X(1801) = INVERSE MIMOSA TRANSFORM OF X(159)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(159)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1801) lies on these lines: 3,49   58,78   171,306


X(1802) = INVERSE MIMOSA TRANSFORM OF X(170)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(170)
Trilinears        (1 + cos A)2 cot A : (1 + cos B)2 cot B : (1 + cos C)2 cot C     (M. Iliev, 4/12/07)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = cos A cot(A/2) cos2(A/2) (P. Moses, 12/6/11)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1802) lies on these lines: 3,48   6,939   9,943   40,101   41,55   63,1803   255,906

X(1802) = isogonal conjugate of X(1847)
X(1802) = X(i)-Ceva conjugate of X(j) for these (i,j): (200,1253), (219,212)
X(1802) = crosspoint of X(i) and X(j) for these (i,j): (219,1260), (906,1110)
X(1802) = crosssum of X(i) and X(j) for these (i,j): (269,1435), (278,1119)
X(1802) = X(92)-isoconjugate of X(269)


X(1803) = INVERSE MIMOSA TRANSFORM OF X(218)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(218)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1803) lies on these lines: 35,103   41,57   58,1458   63,1802

X(1803) = isogonal conjugate of X(1855)
X(1803) cevapoint of X(48) and X(222)


X(1804) = INVERSE MIMOSA TRANSFORM OF X(223)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(223)
Trilinears        (1 + cos 2A)/(1 + cos A) : (1 + cos 2B)/(1 + cos B) : (1 + cos 2C)/(1 + cos C)     (M. Iliev, 4/12/07)
Trilinears        [cos A sec(A/2)]2 : [cos B sec(B/2)]2 : [cos C sec(C/2)]2     (M. Iliev, 4/12/07)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1804) lies on these lines: 3,77   7,21   20,1440   36,269   55,1442   63,268   69,1809   198,651   219,1813   222,1790   326,1259   347,934   573,1461

X(1804) = isogonal conjugate of X(1857)
X(1804) = X(i)-Ceva conjugate of X(j) for these (i,j): (348,222), (1444,77)
X(1804) = X(92)-isoconjugate of X(607)


X(1805) = INVERSE MIMOSA TRANSFORM OF X(371)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[1 - cot(A/2)]/(b + c)     (M. Iliev, 5/13/07)
Trilinears       g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = sec[(B - C)/2)][sin(A/2) - cos(A/2)]     (M. Iliev, 5/13/07)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1805) lies on this line: 3,6

X(1805) = X(21)-Ceva conjugate of X(1806)
X(1805) = {X(3),X(2193)}-harmonic conjugate of X(1806)
X(1805) = X(1437)-cross conjugate of X(1806)


X(1806) = INVERSE MIMOSA TRANSFORM OF X(372)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[1 + cot(A/2)]/(b + c)     (M. Iliev, 5/13/07)
Trilinears       g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = sec[(B - C)/2)][sin(A/2) + cos(A/2)]     (M. Iliev, 5/13/07)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1806) lies on this line: 3,6

X(1806) = X(21)-Ceva conjugate of X(1805)
X(1806) = {X(3),X(2193)}-harmonic conjugate of X(1805)
X(1806) = X(1437)-cross conjugate of X(1805)


X(1807) = INVERSE MIMOSA TRANSFORM OF X(484)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(484)

Trilinears       1/(2 - sec A) : 1/(2 - sec B) : 1/(2 - sec C)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1807) lies on these lines: 1,5   3,201   29,1897   37,101   72,283   73,265   77,1060   78,1062   102,517   296,916   912,1795   942,951   945,1482   947,1385   976,1036   999,1037

X(1807) = isogonal conjugate of X(1870)
X(1807) = crosssum of X(i) and X(j) for these (i,j): (1,1718), (1464,1835)
X(1807) = inverse-in-Feuerbach-hyperbola of X(1411)
X(1807) = {X(1),X(80)}-harmonic conjugate of X(1411)
X(1807) = inverse-in-circumconic-centered-at-X(1) of X(80)


X(1808) = INVERSE MIMOSA TRANSFORM OF X(511)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(511)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1808) lies on these lines: 41,60   42,81   228,295

X(1808) = isogonal conjugate of X(1874)
X(1808) = isotomic conjugate of polar conjugate of X(2311)
X(1808) = X(19)-isoconjugate of X(16609)


X(1809) = INVERSE MIMOSA TRANSFORM OF X(515)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(515)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1809) lies on these lines: 3,8   69,1804   78,255   1259,1265   1295,1309

X(1809) = isogonal conjugate of X(1875)


X(1810) = INVERSE MIMOSA TRANSFORM OF X(518)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(518)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1810) lies on these lines: 57,100   222,1331

X(1810) = cevapoint of X(3) and X(1818)
X(1810) = isogonal conjugate of polar conjugate of X(36807)


X(1811) = INVERSE MIMOSA TRANSFORM OF X(519)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(519)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1811) lies on these lines: 56,100   603,1331

X(1811) = isogonal conjugate of X(1878)


X(1812) = INVERSE MIMOSA TRANSFORM OF X(573)

Trilinears    cot A cot(A/2)/(b + c) : :
Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(573)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1812) lies on these lines: 2,6   21,60   48,63   58,997   72,1437   78,212   219,332   222,348   274,1231   280,285   306,1332   314,1172   662,1817   860,1330   1006,1092   1412,1708   1762,1959

X(1812) = isogonal conjugate of X(1880)
X(1812) = X(i)-Ceva conjugate of X(j) for these (i,j): (314,21), (332,1792)
X(1812) = cevapoint of X(i) and X(j) for these (i,j): (63,394), (78,219)
X(1812) = X(92)-isoconjugate of X(1402)


X(1813) = INVERSE MIMOSA TRANSFORM OF X(650)

Trilinears        (cos A)/(cos B - cos C) : (cos B)/(cos C - cos A) : (cos C)/(cos A - cos B)
Barycentrics   (sin 2A)/(cos B - cos C) : (sin 2B)/(cos C - cos A) : (sin 2C)/(cos A - cos B)

X(1813) lies on the MacBeath circumconic and on these lines: 48,77   59,677   65,1800   73,895   101,651   109,110   219,1804   222,1797   224,1420   283,296   284,1442   287,307   347,1630   604,1445   648,653   1214,1790

X(1813) = isogonal conjugate of X(3064)
X(1813) = X(i)-Ceva conjugate of X(j) for these (i,j): (662,651), (664,109)
X(1813) = cevapoint of X(i) and X(j) for these (i,j): (3,652), (48,1459), (905,1214)
X(1813) = X(219)-cross conjugate of X(59)
X(1813) = trilinear pole of line X(3)X(73)
X(1813) = crossdifference of every pair of points on line X(2310)X(8735)
X(1813) = X(92)-isoconjugate of X(663)


X(1814) = INVERSE MIMOSA TRANSFORM OF X(672)

Trilinears    1/(b + c - a sec A) : :
Trilinears    (b^2 + c^2 - a^2)/(b^2 + c^2 - a b - a c) : :

X(1814) lies on these lines: 6,7   48,77   63,212   69,219   81,105   150,1783   286,648   518,677   1438,1449

X(1814) = reflection of X(651) in X(6)
X(1814) = isogonal conjugate of X(5089)
X(1814) = X(92)-isoconjugate of X(2223)
X(1814) = MacBeath circumconic antipode of X(651)


X(1815) = INVERSE MIMOSA TRANSFORM OF X(910)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(910)
Trilinears    (cot A)/(a^2 - b^2 cos C - c^2 cos B) : :

X(1815) lies on these lines: 9,77   86,648   103,110   219,1804   326,1332   394,1260

X(1815) = isogonal conjugate of X(1886)
X(1815) = cevapoint of X(219) and X(1818)


X(1816) = INVERSE MIMOSA TRANSFORM OF X(1075)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(1075)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

As a point on the Euler line, X(1816) has Shinagawa coefficients (4EF3abc - $aSA$[S2 - (2E + 3F)F][S2 - (2E + F)F] + 2$aSBSC$[S2 - (2E + F)F]F + 4$a(SA)3$F2, [S4 - (2E - F)FS2 + F4]abc + $aSA$[S2 - (2E + 3F)F][S2 - (2E + F)F] - 2$aSBSC$[S2 - (2E + F)F]F - 4$a(SA)3$F2).

X(1816) lies on this line: 2,3
X(1816) = X(283)-Ceva conjugate of X(21)


X(1817) = INVERSE MIMOSA TRANSFORM OF X(1249)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(1249)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

As a point on the Euler line, X(1817) has Shinagawa coefficients (4EF2S2 - $aSA$(S2 - 4F2)S2 + 3$bcSBSC$S2 + 4$abSC$FS2 - 2$bc(SB)2(SC)2$, [S2 - 4(E + F)F]ES2 + $bc$(S2 - 4F2)S2 - 3$bcSBSC$S2 - 4$abSC$FS2 + 2$bc(SB)2(SC)2$).

X(1817) lies on these lines: 2,3   40,1819   57,77   58,937   63,610   100,306   110,972   189,333   196,347   198,329   572,1730   662,1812   1172,1214   1396,1465

X(1817) = isogonal conjugate of X(1903)
X(1817) = X(i)-Ceva conjugate of X(j) for these (i,j): (333,81), (1444,21)
X(1817) = cevapoint of X(i) and X(j) for these (i,j): (3,610), (40,198)


X(1818) = INVERSE MIMOSA TRANSFORM OF X(1282)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(1282)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1818) lies on these lines: 1,142   3,48   9,991   42,750   69,73   198,1350   212,394   222,1260   241,518   386,1449   521,656   581,936   603,1259   997,1064   1193,1386

X(1818) = isogonal conjugate of X(36124)
X(1818) = X(i)-Ceva conjugate of X(j) for these (i,j): (1810,3), (1815,219)
X(1818) = crosspoint of X(3) and X(295)
X(1818) = crosssum of X(i) and X(j) for these (i,j): (1,1738), (4,242)


X(1819) = INVERSE MIMOSA TRANSFORM OF X(1498)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),  x : y : z = X(1498)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1819) lies on these lines: 3,49   9,21   40,1817   58,1167   271,1792

X(1819) = X(1792)-Ceva conjugate of X(283)


X(1820) = ISOGONAL CONJUGATE OF MIMOSA TRANSFORM OF X(264)

Trilinears       f(a,b,c): f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[- (cos A)/x + (cos B)/y + (cos C)/z],  x : y : z = X(264)
Trilinears       tan 2A : tan 2B : tan 2C
Trilinears    tan A' : :, where A'B'C' is the orthic triangle
Trilinears    (1 + cos A)/(1 + 2 cos A) : :
Barycentrics   (sec A)/(sec^2 A - csc^2 A) : :

X(1820) lies on these lines: 1,563   19,91   68,71   1400,1454   1760,1821

X(1820) = isogonal conjugate of X(1748)
X(1820) = complement of anticomplementary conjugate of X(18664)
X(1820) = crosspoint of X(63) and X(921)
X(1820) = crosssum of X(19) and X(920)
X(1820) = SS(A→A') of X(19), where A'B'C' is the orthic triangle
X(1820) = X(47)-isoconjugate of X(92)


X(1821) = ISOGONAL CONJUGATE OF MIMOSA TRANSFORM OF X(287)

Trilinears    1/[a^2(a^2b^2 + a^2c^2 - b^4 - c^4) : :
Barycentrics    sec(A + ω) : :
Barycentrics    1/(a^2 cos B cos C - bc cos^2 A) : :

X(1821) lies on these lines: 19,823   31,92   48,75   63,561   71,190   98,100   287,651   653,1400   1580,1733   1760,1820   1934,1959

X(1821) = isogonal conjugate of X(1755)
X(1821) = isotomic conjugate of X(1959)
X(1821) = cevapoint of X(i) and X(j) for these (i,j): (1,1755), (9,740), (75,1966), (293,1910)
X(1821) = crosspoint of X(1581) and X(1956)
X(1821) = crosssum of X(1580) and X(1955)
X(1821) = X(i)-aleph conjugate of X(j) for these (i,j): (98,1740), (290,73), (1821,1)
X(1821) = trilinear pole of line X(1)X(810)
X(1821) = pole wrt polar circle of trilinear polar of X(240)
X(1821) = X(48)-isoconjugate (polar conjugate) of X(240)
X(1821) = X(6)-isoconjugate of X(511)


X(1822) =  ISOGONAL CONJUGATE OF X(2588)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[- (cos A)/x + (cos B)/y + (cos C)/z],  x : y : z = X(1113)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1822) lies on these lines: 1,21   109,1113

X(1822) = isogonal conjugate of X(2588)
X(1822) = X(1101)-Ceva conjugate of X(1823)
X(1822) = X(i)-aleph conjugate of X(j) for these (i,j): (162,1823), (1113,1)
X(1822) = trilinear quotient X(110)/X(1114)


X(1823) = ISOGONAL CONJUGATE OF X(2589)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[- (cos A)/x + (cos B)/y + (cos C)/z],  x : y : z = X(1114)

X(1823) lies on these lines: 1,21   109,1114

X(1823) = isogonal conjugate of X(2589)
X(1823) = X(1101)-Ceva conjugate of X(1822)
X(1823) = X(i)-aleph conjugate of X(j) for these (i,j): (162,1822), (1114,1)
X(1823) = trilinear quotient X(110)/X(1113)

leftri

Zosma Transforms 1824-1907

rightri

The Zosma transform of a point X = x : y : z is the isogonal conjugate of the inverse Mimosa transform of X, given by trilinears
(y + z) sec A : (z + x) sec B : (x + y)sec C.

(Zosma is another star name.)


X(1824) = ZOSMA TRANSFORM OF X(2)

Trilinears    (b + c)tan A : (c + a) tan B : (a + b) tan C
Barycentrics    a(b + c) tan A : b(c + a) tan B : c(a + b) tan C

X(1824) lies on these lines: 4,8   10,429  12,431   19,25   27,295   28,1255   34,1887   42,1880   51,1864   65,225   209,1865   210,430   213,607   240,444   278,1002   427,1848   428,528   518,1889   674,1839   756,862   851,1214   942,1068   989,1039   990,1473   1593,1753   1726,1754   1730,1736   1785,1894\

X(1824) = isogonal conjugate of X(1444)
X(1824) = complement of X(20243)
X(1824) = X(i)-Ceva conjugate of X(j) for these (i,j): (4,1826), (33,42), (225,1826)
X(1824) = X(i)-cross conjugate of X(j) for these (i,j): (181,42), (213,37)
X(1824) = crosspoint of X(i) and X(j) for these (i,j): (4,19), (33,1857), (65, 1903), (225,1826)
X(1824) = crosssum of X(i) and X(j) for these (i,j): (3,63), (21,1817), (77,1804), (283,1790)
X(1824) = intersection of tangents to hyperbola {{A,B,C,X(4),X(19)}} at X(4) and X(19)
X(1824) = pole wrt polar circle of trilinear polar of X(274) (line X(320)X(350))
X(1824) = polar conjugate of X(274)
X(1824) = barycentric product of vertices of 2nd extouch triangle
X(1824) = X(174)-of-orthic-triangle if ABC is acute


X(1825) = ZOSMA TRANSFORM OF X(5)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(5)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(5)

X(1825) lies on these lines: 4,80   19,41   33,40   34,1126   35,186   65,225   109,1710   250,270   319,340   1829,1877   1859,1902   1872,1905   1875,1900

X(1825) = isogonal conjugate of X(1789)
X(1825) = polar conjugate of isogonal conjugate of X(21741)


X(1826) = ZOSMA TRANSFORM OF X(6)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(6)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(6)

X(1826) lies on these lines: 4,9   6,1837   11,1108   12,37   25,1631   27,1268   28,1224   29,1220   33,42   48,515   53,1904   65,1868   80,1172   92,264   101,1300   209,1859   210,430   219,355   286,334   407,1213   427,1841   579,1737   608,1877   857,1441   1744,1770   1836,1853

X(1826) = isogonal conjugate of X(1790)
X(1826) = X(i)-Ceva conjugate of X(j) for these (i,j): (4,1824), (281,37)
X(1826) = cevapoint of X(1) and X(1719)
X(1826) = X(42)-cross conjugate of X(10)
X(1826) = crosspoint of X(4) and X(92)
X(1826) = crosssum of X(3) and X(48)
X(1826) = pole wrt polar circle of trilinear polar of X(86) (line X(239)X(514))
X(1826) = polar conjugate of X(86)


X(1827) = ZOSMA TRANSFORM OF X(7)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(7)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(7)

X(1827) lies on these lines: 4,7   19,25   46,1721   208,1887   294,1172   430,1856   1425,1547   1828,1843   1845,1905

X(1827) = crosspoint of X(4) and X(33)
X(1827) = crosssum of X(3) and X(77)
X(1827) = polar conjugate of X(31618)
X(1827) = {X(1849),X(1850)}-harmonic conjugate of X(4)


X(1828) = ZOSMA TRANSFORM OF X(8)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(8)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(8)

X(1828) lies on these lines: 4,8   10,1883   19,44   25,34   28,88   46,1707   51,65   225,1846   427,1329   428,529   1827,1843   1838,1894   1844,1884   1848,1904

X(1828) = crosspoint of X(4) and X(34)
X(1828) = crosssum of X(3) and X(78)
X(1828) = inverse-in-Fuhrmann-circle of X(5101)
X(1828) = polar conjugate of X(32017)


X(1829) = ZOSMA TRANSFORM OF X(10)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(10)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(10)

X(1829) lies on these lines: 1,25   4,8   6,19   10,427   24,1385   27,239   28,60   29,242   40,1593   52,912   56,1452   57,1398   209,1869   225,1866   235,946   278,959   388,1892   392,406   407,1838   428,519   429,960   444,1193   468,1125   516,1885   518,1843   580,1782   1100,1474   1395,1468   1482,1598   1724,1726   1825,1877   1831,1842   1852,1858   1861,1883

X(1829) = reflection of X(1902) in X(4)
X(1829) = isogonal conjugate of X(1791)
X(1829) = anticomplement of X(37613)
X(1829) = X(i)-Ceva conjugate of X(j) for these (i,j): (4,429), (19,444)
X(1829) = crosspoint of X(i) and X(j) for these (i,j): (4,28), (278,286))
X(1829) = crosssum of X(i) and X(j) for these (i,j): (3,72), (37,197), (219,228)
X(1829) = inverse-in-Fuhrmann-circle of X(5090)
X(1829) = X(177)-of-orthic triangle if ABC is acute
X(1829) = polar conjugate of X(30710)
X(1829) = X(1)-of-anti-Ara-triangle


X(1830) = ZOSMA TRANSFORM OF X(11)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(11)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(11)

X(1830) lies on these lines: 4,80   33,57   65,1846   225,1872   517,1877   900,1862   908,1861   1785,1835   1887,1902   1888,1900

X(1830) = polar conjugate of isogonal conjugate of X(21742)

X(1831) = ZOSMA TRANSFORM OF X(12)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(12)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(12)

X(1831) lies on these lines: 4,80   28,501   33,1697   225,1871   1829,1842   1835,1838   1839,1858   1844,1870

X(1831) = crosspoint of X(4) and X(270)
X(1831) = crosssum of X(3) and X(201)


X(1832) = ZOSMA TRANSFORM OF X(15)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(15)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(15)

X(1832) lies on these lines: 4,1251   12,37


X(1833) = ZOSMA TRANSFORM OF X(16)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(16)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(16)

X(1833) lies on this line: 12,37


X(1834) = ZOSMA TRANSFORM OF X(28)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(28)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(28)

X(1834) lies on these lines: 1,442   2,1043   4,6   5,386   8,1211   10,37   11,1193   12,42   30,58   33,429   43,1329   56,851   65,225   115,118   377,940   405,1714   440,950   496,995   497,1191   524,1330   942,1086   1058,1616

X(1834) = complement of X(1043)
X(1834) = X(i)-Ceva conjugate of X(j) for these (i,j): (4,1842), (1897,523)
X(1834) = crosspoint of X(4) and X(10)
X(1834) = crosssum of X(i) and X(j) for these (i,j): (3,58), (21,404)
X(1834) = crossdifference of every pair of points on line X(520)X(3733)


X(1835) = ZOSMA TRANSFORM OF X(30)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(30)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(30)

X(1835) lies on these lines: 4,79   28,34   36,186   65,225   320,340   513,1874   758,860   1398,1470   1785,1830   1831,1838

X(1835) = isogonal conjugate of X(1793)
X(1835) = X(1870)-Ceva conjugate of X(1464)
X(1835) = polar conjugate of isotomic conjugate of X(18593)
X(1835) = X(63)-isoconjugate of X(2341)


X(1836) = ZOSMA TRANSFORM OF X(33)

Trilinears    cos B + cos C + 2 cos B cos C : :
Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(33)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(33)

Let A'B'C' be the intangents triangle. Let A" be the reflection of A' in BC, and define B" and C" cyclically. A"B"C" is perspective to ABC at X(1836). (Randy Hutson, June 7, 2019)

X(1836) lies on these lines: 1,30   2,1155   3,1770   4,65   5,46   6,1839   7,354   11,57   12,40   19,1901   33,1892   34,1852   55,226   56,946   210,329   221,225   235,1452   278,1456   377,960   381,1737   388,962   517,1478   614,1086   908,1376   942,1479   1040,1721   1158,1454   1399,1777   1470,1519   1826,1853

X(1836) = reflection of X(i) in X(j) for these (i,j): (55,226), (1012,946)
X(1836) = isogonal conjugate of X(37741)
X(1836) = isotomic conjugate of X(34409)
X(1836) = anticomplement of X(4640)
X(1836) = crosspoint of X(4) and X(7)
X(1836) = crosssum of X(i) and X(j) for these {i,j}: {3, 55}, {500, 23207}
X(1836) = pole of orthic axis wrt the incircle
X(1836) = crossdifference of every pair of points on line X(9404)X(34975)
X(1836) = {X(4),X(65)}-harmonic conjugate of X(1837)
X(1836) = orthologic center of these triangles: 1st Johnson-Yff to 3rd extouch
X(1836) = X(40)-of-1st-Johnson-Yff-triangle
X(1836) = outer-Johnson-to-ABC similarity image of X(40)


X(1837) = ZOSMA TRANSFORM OF X(34)

Trilinears    (y + z) sec A : (z + x) sec B : (x + y) sec C, where x : y : z = X(34)
Trilinears    cos B + cos C - 2 cos B cos C : :
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C, where x : y : z = X(34)

X(1837) lies on these lines: 1,5   3,1737   4,65   6,1826   8,210   10,55   19,1852   20,1155   30,46   33,429   40,1728   56,515   78,1329   221,1877   354,388   382,1770   499,1385   517,1479   942,1478   944,1319   1040,1722   1399,1771   1464,1745   1853,1854

X(1837) = midpoint of X(65) and X(1898)
X(1837) = reflection of X(i) in X(j) for these (i,j): (1,496), (56,1210), (78,1329)
X(1837) = isotomic conjugate of X(34399)
X(1837) = inverse-in-Fuhrmann-circle of X(11)
X(1837) = crosspoint of X(4) and X(8)
X(1837) = crosssum of X(3) and X(56)
X(1837) = X(24)-of-Fuhrmann-triangle
X(1837) = inverse-in-Feuerbach-hyperbola of X(355)
X(1837) = {X(1),X(80)}-harmonic conjugate of X(355)
X(1837) = {X(4),X(65)}-harmonic conjugate of X(1836)
X(1837) = Ursa-major-to-Ursa-minor similarity image of X(1)


X(1838) = ZOSMA TRANSFORM OF X(35)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(35)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(35)

X(1838) lies on these lines: 1,4   2,1076   5,1214   10,92   11,133   19,46   20,1074   27,58   28,36   29,1125   30,1852   47,1754   53,1108   57,1118   65,1243   79,1172   158,273   235,1893   281,1698   403,1873   407,1829   412,516   427,1867   442,1841   517,1888   942,1844   1426,1905   1598,1617   1828,1894   1831,1835

X(1838) = isogonal conjugate of X(1794)
X(1838) = X(4)-Ceva conjugate of X(1844)
X(1838) = cevapoint of X(1841) and X(1859)
X(1838) = crosspoint of X(27) and X(273)
X(1838) = crosssum of X(71) and X(212)


X(1839) = ZOSMA TRANSFORM OF X(37)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(37)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(37)

X(1839) lies on these lines: 4,9   6,1836   27,86   48,946   52,916   79,1172   193,3187   225,608   278,1419   430,1213   534,1441   579,1770   610,1699   674,1824   1831,1858   1840,1900   1841,1852   1877,1880

X(1839) = isogonal conjugate of X(1796)
X(1839) = X(4)-Ceva conjugate of X(430)
X(1839) = crosspoint of X(4) and X(27)
X(1839) = crosssum of X(3) and X(71)
X(1839) = polar conjugate of X(1268)


X(1840) = ZOSMA TRANSFORM OF X(39)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(39)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(39)

X(1840) lies on these lines: 12,37   19,318   419,1215   1839,1900

X(1840) = polar conjugate of X(32010)

X(1841) = ZOSMA TRANSFORM OF X(71)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(71)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(71)

X(1841) lies on these lines: 4,37   6,19   28,1104   53,225   71,1888   216,1465   241,273   278,393   281,475   427,1826   442,1838   581,1871   594,1861   1100,1172   1119,1418   1400,1875   1839,1852

X(1841) = X(1838)-Ceva conjugate of X(1859)
X(1841) = crosspoint of X(28) and X(278)
X(1841) = crosssum of X(72) and X(219)


X(1842) = ZOSMA TRANSFORM OF X(72)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(72)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(72)

X(1842) lies on these lines: 4,9   25,225   28,36   29,1848   33,976   34,207   51,65   92,1891   278,1420   1737,1782   1829,1831   1878,1888

X(1842) = X(4)-Ceva conjugate of X(1834)
X(1842) = crosspoint of X(27) and X(1119)
X(1842) = crosssum of X(71) and X(1260)


X(1843) = ZOSMA TRANSFORM OF X(75)

Trilinears    (y + z) sec A : (z + x) sec B : (x + y) sec C,    where x : y : z = X(75)
Trilinears    tan A sin(A + ω) : :
Barycentrics    a^2(b^2 + c^2)/(b^2 + c^2 - a^2) : :

Let E = Euler line of ABC. Let g = isogonal conjugate, and t = isotomic conjugate. Then X(1843) = g(t(E))∩t(g(E)). (Randy Hutson, December 2, 2017)

X(1843) lies on these lines: 4,69   6,25   24,182   34,1469   112,755   113,1596   125,1205   141,427   143,1353   155,1351   157,571   160,570   181,1395   185,1503   216,237   263,393   373,468   428,524   518,1829   674,1824   1350,1593   1827,1828

X(1843) = reflection of X(i) in X(j) for these (i,j): (1205,125), (1289,647)
X(1843) = isogonal conjugate of X(1799)
X(1843) = X(i)-Ceva conjugate for these (i,j): (4,427), (427,39), (1289,647)
X(1843) = crosspoint of X(i) and X(j) for these (i,j): (4,25), (6,66)
X(1843) = crosssum of X(i) and X(j) for these (i,j): (2,22), (3,69)
X(1843) = orthic isotomic conjugate of X(185)
X(1843) = X(7)-of-orthic-triangle if ABC is acute
X(1843) = orthic-isogonal conjugate of X(427)
X(1843) = anticomplement of X(6) wrt orthic triangle
X(1843) = pole wrt polar circle of trilinear polar of X(308) (line X(316)X(512))
X(1843) = X(48)-isoconjugate (polar conjugate) of X(308)
X(1843) = inverse-in-polar-circle of X(316)
X(1843) = excentral-to-ABC functional image of X(7)
X(1843) = Ehrmann-vertex-to-orthic similarity image of X(3818)
X(1843) = perspector of [reflection of symmedial triangle in X(6)] and tangential triangle, wrt symmedial triangle, of circumconic of symmedial triangle centered at X(6) (bicevian conic of X(6) and X(25))


X(1844) = ZOSMA TRANSFORM OF X(79)

Trilinears    (y + z) sec A : (z + x) sec B : (x + y) sec C, where x : y : z = X(79)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C, where x : y : z = X(79)

Let A'B'C' be the orthic triangle. Let A" be the incenter of AB'C', and define B" and C" cyclically. The lines A'A", B'B", C'C" concur in X(1844). (Randy Hutson, January 29, 2018)

X(1844) lies on these lines: 1,19   4,79   29,758   33,46   35,186   354,1871   407,1785   942,1838   1828,1884   1831,1870   1846,1887

X(1844) = X(4)-Ceva conjugate of X(1838)
X(1844) = polar circle inverse of X(34301)


X(1845) = ZOSMA TRANSFORM OF X(80)

Trilinears    (y + z) sec A : (z + x) sec B : (x + y) sec C, where x : y : z = X(80)
Barycentrics   (y + z) tan A : (z + x) tan B : (x + y) tan C, where x : y : z = X(80)

The following ten points lie on a circle: X(i) for i = 11, 36, 65, 80, 108, 759, 1354, 1845, 2588, 2589. (Chris Van Tienhoven, Hyacinthos, January 4, 2011)

Let A'B'C' be the orthic triangle. Let A" be the A-excenter of AB'C', and define B" and C" cyclically. The lines A'A", B'B", C'C" concur in X(1845). (Randy Hutson, January 29, 2018)

X(1845) lies on these lines: 1,102   4,80   19,1743   34,46   36,186   57,1795   65,389   92,994   117,1737   162,759   407,1829   517,1361   942,1354   1146,1901   1827,1905

X(1845) = reflection of X(i) in X(j) for these (i,j): (1364,942), (1785,1875)
X(1845) = X(i)-Ceva conjugate of X(j) for these (i,j): (4,1785), (162,1769)
X(1845) = crosspoint of X(4) and X(1870)
X(1845) = crosssum of X(3) and X(1807)


X(1846) = ZOSMA TRANSFORM OF X(104)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(104)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(104)

X(1846) lies on these lines: 4,11   19,53   65,1830   225,1828   517,1361   1319,1877   1844,1887

X(1846) = X(4)-Ceva conjugate of X(1877)
X(1846) = crosspoint of X(4) and X(1785)
X(1846) = crosssum of X(3) and X(1795)


X(1847) = ZOSMA TRANSFORM OF X(170)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(170)
Trilinears        (tan A)/(1 + cos A)2 : (tan B)/(1 + cos B)2 : (tan C)/(1 + cos C)2     (M. Iliev, 4/12/07)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(170)

X(1847) lies on these lines: 4,7   27,1088   85,92   158,1111   224,664   278,279   917,934

X(1847) = isogonal conjugate of X(1802)
X(1847) = cevapoint of X(i) and X(j) for these (i,j): (269,1435), (278,1119)
X(1847) = isotomic conjugate of X(3692)
X(1847) = polar conjugate of X(200)


X(1848) = ZOSMA TRANSFORM OF X(171)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(171)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(171)

X(1848) lies on these lines: 1,4   2,19   5,1871   7,1435   11,132   25,1001   27,86   28,1125   29,1842   92,264   286,350   427,1824   429,960   608,940   1595,1872   1828,1904   1883,1900

X(1848) = isogonal conjugate of X(2359)
X(1848) = crosspoint of X(27) and X(92)
X(1848) = crosssum of X(i) and X(j) for these (i,j): (42,205), (48,71)
X(1848) = pole wrt polar circle of trilinear polar of X(1220) (line X(522)X(649))
X(1848) = polar conjugate of X(1220)
X(1848) = perspector of Gemini triangle 38 and cross-triangle of Gemini triangles 37 and 38


X(1849) = ZOSMA TRANSFORM OF X(175)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(175)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(175)

X(1849) lies on this line: 4,7


X(1850) = ZOSMA TRANSFORM OF X(176)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(176)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(176)

X(1850) lies on this line: 4,7


X(1851) = ZOSMA TRANSFORM OF X(200)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(200)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(200)

X(1851) lies on these lines: 2,242   4,8   19,672   25,105   34,207   196,1876   281,427   286,310   479,1119   497,1863   1146,1853   1395,1430

X(1851) = X(4)-Ceva conjugate of X(1863)
X(1851) = crosspoint of X(4) and X(1119)
X(1851) = crosssum of X(3) and X(1260)
X(1851) = polar conjugate of X(30701)


X(1852) = ZOSMA TRANSFORM OF X(201)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(201)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(201)

X(1852) lies on these lines: 4,12   11,28   19,1837   30,1838   34,1836   516,1888   950,1859   1829,1858   1839,1841


X(1853) = ZOSMA TRANSFORM OF X(204)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(204)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(204)

Let A' be the orthocenter of BCX(3), and define B' and C' cyclically; then X(1853) is the centroid of A'B'C'.

X(1853) lies on these lines: 2,154   3,161   4,64   5,1498   6,66   12,221   25,125   122,1073   157,426   343,1350   394,858   1146,1851   1181,1594   1352,1368   1826,1836   1837,1854

X(1853) = reflection of X(154) in X(2)
X(1853) = isotomic conjugate of X(34412)
X(1853) = complement of X(11206)
X(1853) = crosspoint of X(4) and X(253)
X(1853) = crosssum of X(i) and X(j) for these (i,j): (3,154), (206,577)
X(1853) = centroid of pedal triangle of X(64)


X(1854) = ZOSMA TRANSFORM OF X(208)

Trilinears    (y + z) sec A : (z + x) sec B : (x + y) sec C, where x : y : z = X(208)
Trilinears    (b + c - a)[a^5 + 2a^2 (b - c)^2 (b + c) - a(b^2 - c^2)^2 - 2(b - c)^2 (b + c) (b^2 + c^2)] : :
Barycentrics    (y + z) tan A : (z + x) tan B : (x + y) tan C, where x : y : z = X(208)

X(1854) lies on these lines: 1,84   6,1858   33,64   55,976   56,774   154,968   227,1490   960,1040   1192,1452   1837,1853

X(1854) = reflection of X(221) in X(1)
X(1854) = crosspoint of X(4) and X(280)
X(1854) = crosssum of X(i) and X(j) for these (i,j): (1,1394), (3,221), (55,478)


X(1855) = ZOSMA TRANSFORM OF X(218)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(218)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(218)

X(1855) lies on these lines: 1,1886   4,9   55,1856   65,1146   85,92

X(1855) = isogonal conjugate of X(1803)
X(1855) = crosspoint of X(92) and X(281)
X(1855) = crosssum of X(48) and X(222)


X(1856) = ZOSMA TRANSFORM OF X(222)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(222)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(222)

X(1856) lies on these lines: 4,57   11,1427   33,42   55,1855   225,235   430,1827


X(1857) = ZOSMA TRANSFORM OF X(223)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(223)
Trilinears        [cos(A/2) sec A]2 : [cos(B/2) sec B]2 : [cos(C/2) sec C]2 ( M. Iliev, 4/12/07)
Trilinears        (1 + cos A)/(1 + cos 2A) : (1 + cos B)/(1 + cos 2B) : (1 + cos C)/(1 + cos 2C)     (M. Iliev, 4/12/07)

Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(223)

X(1857) lies on these lines: 2,243   4,65   8,1896   11,278   33,42   55,281   92,497   189,1364   388,1895   403,1068   412,1788   1478,1784   1748,1776

X(1857) = isogonal conjugate of X(1804)
X(1857) = isotomic conjugate of X(7055)
X(1857) = X(158)-Ceva conjugate of X(393)
X(1857) = pole wrt polar circle of trilinear polar of X(348) (line X(4025)X(4131))
X(1857) = polar conjugate of X(348)


X(1858) = ZOSMA TRANSFORM OF X(225)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(225)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(225)

X(1858) lies on these lines: 1,90   3,920   4,65   6,1854   11,113   21,60   52,517   55,72   73,774   144,145   411,1155   758,950   1829,1852   1831,1839

X(1858) = X(i)-Ceva conjugate of X(j) for these (i,j): (4,431), (648,650)
X(1858) = crosspoint of X(4) and X(21)
X(1858) = crosssum of X(i) and X(j) for these (i,j): (1,1935), (3,65), (478,1402)
X(1858) = polar-circle-inverse of X(38949)


X(1859) = ZOSMA TRANSFORM OF X(226)

Trilinears    (y + z) sec A : (z + x) sec B : (x + y) sec C, where x : y : z = X(226)
Trilinears    tan A [(b + c) cos A + b cos B + c cos C] : :
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C, where x : y : z = X(226)

X(1859) lies on these lines: 1,1871   4,65   6,1096   11,132   19,25   27,243   29,960   40,1872   92,518   209,1826   210,281   278,354   942,1838   950,1852   1013,1748   1825,1902   1829,1831   1869,1894

X(1859) = X(i)-Ceva conjugate of X(j) for these (i,j): (4,1865), (107,650), 1838,1841)
X(1859) = crosspoint of X(i) and X(j) for these (i,j): (4,1172), (281,1896)
X(1859) = crosssum of X(3) and X(1214)


X(1860) = ZOSMA TRANSFORM OF X(228)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(228)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(228)

X(1860) lies on these lines: 4,42   6,1836   25,225   27,58   92,984   278,1458


X(1861) = ZOSMA TRANSFORM OF X(238)

Trilinears    (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(238)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(238)

Barycentrics    (b^2 + c^2 - a (b + c))/(a^2 - b^2 - c^2) : :

The trilinear polar of X(1861) passes through X(4088).

X(1861) lies on these lines: 1,475   2,33   4,9   5,1872   8,34   12,1887   25,1376   75,225   208,1788   232,1575   235,1329   240,522   378,993   406,1698   427,1824   429,1900   468,1862   518,1876   519,1870   594,1841   765,1877   908,1830   958,1593   960,1902   1528,1532   1595,1871   1829,1883

X(1861) = isogonal conjugate of X(36057)
X(1861) = isotomic conjugate of X(31637)
X(1861) = complement of X(3100)
X(1861) = crossdifference of every pair of points on line X(48)X(1459)
X(1861) = inverse-in-circumconic-centered-at-X(9) of X(19)
X(1861) = pole wrt polar circle of trilinear polar of X(673) (line X(1)X(514))
X(1861) = X(48)-isoconjugate (polar conjugate) of X(673)
X(1861) = perspector of circumconic through the polar conjugates of PU(47) and PU(51)
X(1861) = X(8076)-of-orthic-triangle if ABC is acute
X(1861) = X(63)-isoconjugate of X(1438)


X(1862) = ZOSMA TRANSFORM OF X(244)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(244)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(244)

X(1862) lies on these lines: 4,145   11,33   25,100   34,1317   80,1039   104,1593   119,235   428,528   468,1861   519,1878   900,1830   1387,1883   1484,1595


X(1863) = ZOSMA TRANSFORM OF X(269)

Trilinears    (y + z) sec A : : , where x : y : z = X(269)
Barycentrics    (a^2 + b^2 + c^2 - 2 a b - 2 a c)/(b^2 + c^2 - a^2) : :

X(1863) lies on these lines: 4,7   25,1604   33,42   242,390   497,1851

X(1863) = X(4)-Ceva conjugate of X(1851)
X(1863) = polar conjugate of X(30705)


X(1864) = ZOSMA TRANSFORM OF X(278)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(278)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(278)

X(1864) lies on these lines: 3,1728   4,65   6,33   9,55   11,118   44,212   51,1824   56,1490   57,971   72,519   84,1466   227,774   329,497   381,942   389,1872   405,997   430,1827   452,960   1005,1776   1155,1708   1210,1532   1214,1736

X(1864) = X(i)-Ceva conjugate of X(j) for these (i,j): (1210,1108), (1897,650)
X(1864) = crosspoint of X(i) and X(j) for these (i,j): (4,9), (8,282)
X(1864) = crosssum of X(i) and X(j) for these (i,j): (3,57), (56,223)


X(1865) = ZOSMA TRANSFORM OF X(284)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(284)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(284)

X(1865) lies on these lines: 4,6   12,37   19,407   33,430   92,1211   209,1824   281,860   286,297   442,1838   1474,1884

X(1865) = X(4)-Ceva conjugate of X(1859)
X(1865) = crosssum of X(577) and X(1437)


X(1866) = ZOSMA TRANSFORM OF X(355)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(355)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(355)

X(1866) lies on these lines: 4,80   19,1405   28,34   51,65   52,1905   225,1829   1878,1887


X(1867) = ZOSMA TRANSFORM OF X(386)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(386)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(386)

X(1867) lies on these lines: 4,8   10,407   12,37   427,1838   1118,1892   1785,1904   1884,1891

X(1867) = polar conjugate of X(37870)
X(1867) = pole wrt polar circle of trilinear polar of X(37870) (line X(513)X(4560))

X(1868) = ZOSMA TRANSFORM OF X(387)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(387)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(387)

X(1868) lies on these lines: 4,8   29,894   34,37   65,1826   210,1869   226,429   228,1593


X(1869) = ZOSMA TRANSFORM OF X(405)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(405)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(405)

X(1869) lies on these lines: 4,9   27,306   28,35   34,42   65,225   209,1829   210,1868   1710,1770   1859,1894


X(1870) = ZOSMA TRANSFORM OF X(484)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(484)
Trilinears       2 - sec A : 2 - sec B : 2 - sec C
Trilinears    (a^2 - b^2 + b c - c^2)/(a^2 - b^2 - c^2) : :
Trilinears    (2 - 2 cos A + cos B + cos C) sec A : :

Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(484)

X(1870) lies on these lines: 1,4   2,1060   3,1398   7,1061   8,475   11,403   12,1594   19,1449   20,1062   24,56   25,999   28,60   36,186   54,65   55,378   59,517   77,1119   104,1455   108,953   109,1735   208,1420   221,1181   232,1015   235,496   242,514   273,1442   354,1905   376,1040   389,1425   427,495   451,1125   459,614   519,1861   631,1038   651,912   982,1395   1000,1041   1006,1214   1100,1172   1318,1878   1385,1426   1718,1737   1725,1776   1831,1844

X(1870) = isogonal conjugate of X(1807)
X(1870) = cevapoint of X(i) and X(j) for these (i,j): (1,1718), (1464,1835)
X(1870) = polar conjugate of X(18359)
X(1870) = pole wrt polar circle of trilinear polar of X(18359) (line X(10)X(522))
X(1870) = homothetic center of circumorthic triangle and anti-tangential midarc triangle


X(1871) = ZOSMA TRANSFORM OF X(498)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(498)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(498)

X(1871) lies on these lines: 1,1859   3,19   4,8   5,1848   28,1385   29,392   33,1598   52,916   65,1243   225,1831   273,1148   278,942   354,1844   580,1731   581,1841   952,1891   1595,1861   1597,1753


X(1872) = ZOSMA TRANSFORM OF X(499)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(499)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(499)

X(1872) lies on these lines: 1,1887   3,33   4,8   5,1861   19,1598   34,1482   40,1859   65,1785   225,1830   389,1864   1068,1876   1595,1848   1715,1736   1825,1905


X(1873) = ZOSMA TRANSFORM OF X(500)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(500)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(500)

X(1873) lies on these lines: 4,79   12,37   403,1838


X(1874) = ZOSMA TRANSFORM OF X(511)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(511)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(511)

X(1874) lies on these lines: 4,240   12,37   29,34   238,242   513,1835   862,1284

X(1874) = isogonal conjugate of X(1808)
X(1874) = X(242)-Ceva conjugate of X(1284)
X(1874) = polar conjugate of X(36800)
X(1874) = X(63)-isoconjugate of X(2311)
X(1874) = pole wrt polar circle of trilinear polar of X(36800) (line X(8)X(3907))


X(1875) = ZOSMA TRANSFORM OF X(515)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(515)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(515)

X(1875) lies on these lines: 1,945   4,65   25,34   108,953   225,1829   278,957   513,1835   517,1361   859,1465   1119,1122   1400,1841   1452,1454   1825,1900

X(1875) = midpoint of X(1785) and X(1845)
X(1875) = isogonal conjugate of X(1809)
X(1875) = polar conjugate of X(36795)
X(1875) = pole wrt polar circle of trilinear polar of X(36795) (line X(8)X(521))


X(1876) = ZOSMA TRANSFORM OF X(516)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(516)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(516)

X(1876) lies on these lines: 1,1037   4,7   6,19   25,57   28,1170   33,354   59,517   72,475   108,840   196,1851   225,1887   226,427   235,1210   242,653   278,1002   428,553   513,1835   518,1861   614,3195   851,1465   950,1885   1011,1214   1020,1736   1068,1872   1458,2356   1471,2212

X(1876) = midpoint of X(65) and X(1456)
X(1876) = polar conjugate of X(36796)
X(1876) = pole wrt polar circle of trilinear polar of X(36796) (line X(8)X(885))


X(1877) = ZOSMA TRANSFORM OF X(517)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(517)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(517)

X(1877) lies on these lines: 1,4   11,1455   12,1883   25,1470   30,1465   51,65   109,1737   221,1837   513,1835   517,1830   603,1210   608,1826   751,1890   765,1861   1319,1846   1707,1788   1825,1829   1839,1880

X(1877) = X(4)-Ceva conjugate of X(1846)
X(1877) = pole wrt polar circle of trilinear polar of X(4997) (line X(8)X(522))
X(1877) = polar conjugate of X(4997)


X(1878) = ZOSMA TRANSFORM OF X(519)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(519)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(519)

X(1878) lies on these lines: 4,8   25,36   34,1319   428,535   513,1835   519,1862   855,1465   1318,1870   1842,1888   1866,1887

X(1878) = isogonal conjugate of X(1811)
X(1878) = inverse-in-polar-circle of X(8)
X(1878) = polar conjugate of X(36805)
X(1878) = pole wrt polar circle of trilinear polar of X(36805) (line X(8)X(513))


X(1879) = ZOSMA TRANSFORM OF X(563)

Trilinears    (y + z) sec A : (z + x) sec B : (x + y) sec C, where x : y : z = X(563)
Trilinears    sin A cos(2B - 2C) : :
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C, where x : y : z = X(563)

X(1879) lies on these lines: 4,96   5,570   6,13   53,235   230,428   233,566   1598,1609

X(1879) = crosssum of X(6) and X(156)

X(1879) = X(48)-of-orthic-triangle if ABC is acute

X(1880) = ZOSMA TRANSFORM OF X(573)

Trilinears    (y + z) sec A : : , where x : y : z = X(573)

Trilinears    tan A tan(A/2)(b + c) : :

X(1880) lies on these lines: 2,92   4,941   6,19   12,37   25,1096   28,961   42,1824   57,967   108,111   331,1218   1171,1396   1254,1400   1411,1474   1722,1723   1735,1765   1839,1877

X(1880) = isogonal conjugate of X(1812)
X(1880) = X(i)-Ceva conjugate of X(j) for these (i,j): (19,1400), (225,1824), (278,225)
X(1880) = crosspoint of X(i) and X(j) for these (i,j): (19,393), (34,278)
X(1880) = crosssum of X(i) and X(j) for these (i,j): (63,394), (78,219)
X(1880) = polar conjugate of X(314)


X(1881) = ZOSMA TRANSFORM OF X(577)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(577)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(577)

X(1881) lies on these lines: 4,48   12,37   71,860


X(1882) = ZOSMA TRANSFORM OF X(581)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(581)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(581)

X(1882) lies on these lines: 4,65   5,1214   12,37   92,960


X(1883) = ZOSMA TRANSFORM OF X(595)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(595)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(595)

As a point on the Euler line, X(1883) has Shinagawa coefficients ($a$F, $a$(E + F) - 2abc).

X(1883) lies on these lines: 2,3   10,1828   12,1877   1387,1862   1829,1861   1848,1900


X(1884) = ZOSMA TRANSFORM OF X(758)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z =X(758)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(758)

As a point on the Euler line, X(1884) has Shinagawa coefficients ($a$F, -(E + F)3 + $aSA$ + 3ES2).

X(1884) lies on these lines: 2,3   34,1464   513,1835   1474,1865   1828,1844   1829,1831   1867,1891

X(1884) = polar conjugate of isotomic conjugate of X(35466)


X(1885) = ZOSMA TRANSFORM OF X(774)

Trilinears    (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(774)
Barycentrics    (2 a^6 - 3 a^4 (b^2 + c^2) + 8 a^2 b^2 c^2 + (b^2 - c^2)^2 (b^2 + c^2)) / (b^2 + c^2 - a^2) : :

As a point on the Euler line, X(1885) has Shinagawa coefficients (F, E - 3F).

Let A'B'C' be the orthic triangle. X(1885) is the radical center of the 2nd Droz-Farny circles of triangles AB'C', BC'A', CA'B'. (Randy Hutson, July 31 2018)

X(1885) lies on these lines: 2,3   64,1899   389,974   497,1398   515,1902   516,1829   950,1876   1039,1721   1770,1905

X(1885) = anticomplement of X(31829)
X(1885) = crosspoint of X(4) and X(1105)
X(1885) = crosssum of X(3) and X(185)
X(1885) = intersection of tangents to Hatzipolakis-Lozada hyperbola at X(4) and X(185)
X(1885) = crosspoint, wrt orthic triangle, of X(4) and X(185)
X(1885) = X(20)-of-anti-Ara-triangle
X(1885) = X(3057)-of-orthic-triangle if ABC is acute


X(1886) = ZOSMA TRANSFORM OF X(910)

Trilinears    (tan A)(a^2 - b^2 cos C - c^2 cos B) : :
Trilinears    (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(910)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(910)

X(1886) lies on these lines: 1,1855   6,1836   19,57   33,42   225,607   230,231   910,1360   1783,1785

X(1886) = isogonal conjugate of X(1815)
X(1886) = X(917)-Ceva conjugate of X(25)
X(1886) = crosssum of X(219) and X(1818)


X(1887) = ZOSMA TRANSFORM OF X(946)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(946)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(946)

X(1887) lies on these lines: 1,1872   4,65   12,1861   33,56   34,1824   55,1753   208,1827   225,1876   318,518   942,1785   1825,1829   1830,1902   1844,1846   1866,1878


X(1888) = ZOSMA TRANSFORM OF X(950)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(950)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(950)

X(1888) lies on these lines: 4,65   19,44   28,1155   33,1426   34,55   71,1841   209,1829   225,1902   516,1852   517,1838   1830,1900   1842,1878


X(1889) = ZOSMA TRANSFORM OF X(968)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(968)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(968)

As a point on the Euler line, X(1889) has Shinagawa coefficients (F, -E - F - 2$bc$).

X(1889) lies on these lines: 2,3   6,1836   57,1893   518,1824   1709,1730

X(1889) = inverse-in-orthocentroidal-circle of X(430)


X(1890) = ZOSMA TRANSFORM OF X(984)

Trilinears    (y + z) sec A : (z + x) sec B : (x + y) sec C, where x : y : z = X(984)

X(1890) lies on these lines: 4,9   7,34   25,1001   27,162   28,142   33,390   82,225   428,528   518,1829   751,1877   1445,1452   1724,1738   1737,1747

X(1890) = X(29)-beth conjugate of X(1826)
X(1890) = polar conjugate of isogonal conjugate of X(21764)


X(1891) = ZOSMA TRANSFORM OF X(986)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(986)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(986)

X(1891) lies on these lines: 1,4   8,19   10,28   25,958   27,306   29,1220   65,1503   92,1842   428,529   518,1829   952,1871   1867,1884

X(1891) = polar conjugate of isotomic conjugate of complement of X(27184)

X(1892) = ZOSMA TRANSFORM OF X(990)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(990)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(990)

X(1892) lies on these lines: 4,7   12,1452   25,226   33,1836   57,427   65,66   79,1041   208,429   225,608   388,1829   1118,1867   1478,1905

X(1892) = X(4)-beth conjugate of X(608)


X(1893) = ZOSMA TRANSFORM OF X(991)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(991)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(991)

X(1893) lies on these lines: 4,7   11,1427   12,37   57,1889   226,430   235,1838

X(1893) = X(4)-beth conjugate of X(1880)


X(1894) = ZOSMA TRANSFORM OF X(993)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(993)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(993)

As a point on the Euler line, X(1894) has Shinagawa coefficients ($a$F, -2$aSA$ - $a$(E + F)).

X(1894) lies on these lines: 2,3   19,53   225,1829   1785,1824   1828,1838   1859,1869


X(1895) = ZOSMA TRANSFORM OF X(1044)

Trilinears    (y + z) sec A : : , where x : y : z = X(1044)
Trilinears    (cos A - cos B cos C) sec A : :
Trilinears    (sec A - sec B sec C) sec A : :

X(1895) lies on these lines: 1,29   2,280   4,7   8,1054   40,653   48,821   56,243   57,412   63,1712   78,1897   108,411   162,255   196,962   204,1097   240,774   304,811   388,1857   497,1118   517,1148   1210,1785   1445,1753

X(1895) = isogonal conjugate of X(19614)
X(1895) = isotomic conjugate of X(19611)
X(1895) = crosspoint of X(75) and X(18750)
X(1895) = crosssum of X(31) and X(2155)
X(1895) = trilinear pole of line X(14331)X(17898)
X(1895) = X(75)-Ceva conjugate of X(92)
X(1895) = cevapoint of X(i) and X(j) for these (i,j): (1,1712), (204,610), (3176, 7952)
X(1895) = polar conjugate of X(2184)


X(1896) = ZOSMA TRANSFORM OF X(1047)

Trilinears        (sec A)/(sec B + sec C) : (sec B)/(sec C + sec A) : (sec C)/(sec A + sec B)
                        = (sec2A)(b + c - a)/(b + c) : (sec2B)(c + a - b)/(c + a) : (sec2C)(a + b - c)/(a + b)
Barycentrics  (tan A)/(sec B + sec C) : (tan B)/(sec C + sec A) : (tan C)/(sec A + sec B)

X(1896) lies on these lines: 1,29   4,51   7,286   8,1857   9,318   21,243   27,84   28,104   393,941   412,1715   823,1156

X(1896) = cevapoint of X(i) and X(j) for these (i,j): (1,1715), (4,158)
X(1896) = X(4)-cross conjugate of X(29)
X(1896) = isogonal conjugate of X(22341)
X(1896) = pole wrt polar circle of trilinear polar of X(1214) (line X(520)X(656))
X(1896) = polar conjugate of X(1214)
X(1896) = X(63)-isoconjugate of X(1409)


X(1897) = ZOSMA TRANSFORM OF X(1054)

Trilinears        (sec A)/(b - c) : (sec B)/(c - a) : (sec C)/(a - b)
Barycentrics   (tan A)/(b - c) : (tan B)/(c - a) : (tan C)/(a - b)

X(1897) lies on these lines: 1,318   4,145   27,295   29,1807   33,92   34,1120   78,1895   100,108   101,107   109,522   112,835   162,190   192,1013   243,518   278,1280   346,1249   519,1785   644,1783   726,1430

X(1897) = isogonal conjugate of X(1459)
X(1897) = anticomplement of X(2968)
X(1897) = X(648)-Ceva conjugate of X(1783)
X(1897) = cevapoint of X(i) and X(j) for these (i,j): (1,522), (523,1834), (650,1864)
X(1897) = X(101)-cross conjugate of X(190)
X(1897) = crosspoint of X(648) and X(811)
X(1897) = crosssum of X(647) and X(810)
X(1897) = isotomic conjugate of X(4025)
X(1897) = trilinear pole of line X(4)X(9) (complement of Soddy line, and Brocard axis of excentral triangle)
X(1897) = pole wrt polar circle of trilinear polar of X(514) (line X(11)X(244), the Feuerbach tangent line)
X(1897) = polar conjugate of X(514)
X(1897) = trilinear product X(4)*X(100)
X(1897) = trilinear product of circumcircle intercepts of line X(4)X(8)


X(1898) = ZOSMA TRANSFORM OF X(1068)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(1068)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(1068)

X(1898) lies on these lines: 3,90   4,65   21,662   56,971   84,1470   354,496   411,1776   912,1479   920,1155

X(1898) = reflection of X(65) in X(1837)
X(1898) = crosspoint of X(4) and X(90)
X(1898) = crosssum of X(3) and X(46)


X(1899) = ZOSMA TRANSFORM OF X(1096)

Trilinears    (y + z) sec A : : , where x : y : z = X(1096)
Trilinears    2 b c - a b sec B - a c sec C : :
Barycentrics    (-a^2+b^2+c^2) (a^4+b^4-2 b^2 c^2+c^4) : :

X(1899) lies on these lines: {2,98}, {3,68}, {4,51}, {5,1181}, {6,66}, {20,1204}, {22,3580}, {25,1503}, {54,70}, {64,1885}, {65,5130}, {67,5486}, {69,305}, {154,468}, {217,2548}, {235,1498}, {265,974}, {315,3978}, {388,1425}, {394,1368}, {407,5786}, {429,5706}, {442,5810}, {462,5869}, {463,5868}, {497,3270}, {511,1370}, {578,3541}, {686,804}, {858,1993}, {860,5767}, {940,5820}, {1092,3546}, {1147,3548}, {1321,3070}, {1322,3071}, {1495,6353}, {1587,3127}, {1588,3128}, {1591,6289}, {1592,6290}, {1593,6247}, {1824,5928}, {1864,5101}, {1974,5596}, {2072,5654}, {2450,3767}, {2549,3269}, {2550,3611}, {2888,3523}, {2892,5095}, {2992,2993}, {3134,5877}, {3136,5816}, {3142,5713}, {3332,4207}, {3549,5449}, {3818,5943}, {3851,5644}, {3926,4121}, {5064,5480}, {5133,5422}, {5200,5870}

X(1899) = reflection of X(394) in X(1368)
X(1899) = isotomic conjugate of X(34405)
X(1899) = crosspoint of X(4) and X(69)
X(1899) = crosssum of X(i) and X(j) for these (i,j): (3,25), (52,418), (206,571)
X(1899) = anticomplement of X(9306)
X(1899) = crossdifference of every pair of points on line X(3569)X(6753)
X(1899) = X(1370)-of-1st-Brocard-triangle
X(1899) = X(200)-of-orthic-triangle if ABC is acute


X(1900) = ZOSMA TRANSFORM OF X(1125)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(1125)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(1125)

X(1900) lies on these lines: 4,8   10,1904   19,45   25,35   225,1876   407,1785   429,1861   1825,1875   1830,1888   1839,1840   1848,1883   1859,1869


X(1901) = ZOSMA TRANSFORM OF X(1172)

Trilinears    (y + z) sec A : : , where x : y : z =X(1172)
Barycentrics    (b + c) (2 a^4 + a^3 (b + c) - a^2 (b - c)^2 - a (b - c)^2 (b + c) - (b^2 - c^2)^2) : :

X(1901) lies on these lines: 4,6   5,579   7,857   9,46   12,71   19,1836   30,284   37,226   65,1826   72,594   115,117   198,851   208,429   219,1478   329,1211   377,965   430,1827   583,1713   946,1108   950,1100   1146,1845

X(1901) = X(653)-Ceva conjugate of X(523)
X(1901) = crosspoint of X(4) and X(226)
X(1901) = crosssum of X(3) and X(284)
X(1901) = complement of X(8822)


X(1902) = ZOSMA TRANSFORM OF X(1210)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(1210)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(1210)

X(1902) lies on these lines: 1,1037   4,8   10,235   19,220   25,40   33,64   125,429   225,1888   378,1385   392,475   427,946   515,1885   960,1861   1482,1597   1825,1859   1830,1887

X(1902) = reflection of X(1829) in X(4)


X(1903) = ZOSMA TRANSFORM OF X(1249)

Trilinears    (y + z) sec A : : , where x : y : z = X(1249)
Barycentrics    a (b + c)/(a^3 + a^2 (b + c) - a (b + c)^2 - (b - c)^2 (b + c)) : :

Let Ab, Ac be the points where the A-excircle touches lines CA and AB resp., and define Bc, Ba, Ca, Cb cyclically. Let Ta be the intersection of the tangents to the Yiu conic (defined at X(478)) at Bc and Ca, and define Tb, Tc cyclically. Let Ta' be the intersection of the tangents to the Yiu conic at Ba and Cb, and define Tb', Tc' cyclically. Let Va = TbTb'∩TcTc', Vb = TcTc'∩TaTa', Vc = TaTa'∩TbTb'. The lines AVa, BVb, CVc concur in X(1903). (See also X(65).) (Randy Hutson, July 20, 2016)

X(1903) lies on these lines: 3,9   6,33   19,64   37,73   65,1826   69,189   71,210   226,1439   285,1798   478,1413   1419,1422

X(1903) = isogonal conjugate of X(1817)
X(1903) = crosspoint of X(84) and X(189)
X(1903) = crosssum of X(i) and X(j) for these (i,j): (3,610), (40,198)


X(1904) = ZOSMA TRANSFORM OF X(1468)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(1468)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(1468)

As a point on the Euler line, X(1904) has Shinagawa coefficients (FS2, -(E - F)S2 - 2$bc$S2 + 2$bcSBSC$).

X(1904) lies on these lines: 2,3   10,1900   12,968   53,1826   80,1039   1785,1867   1828,1848


X(1905) = ZOSMA TRANSFORM OF X(1478)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(1478)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(1478)

X(1905) lies on these lines: 1,25   3,1452   4,65   33,517   34,222   46,1593   52,1866   169,607   225,1831   354,1870   378,1155   406,960   427,1737   1426,1838   1478,1892   1730,1735   1770,1885   1785,1824   1825,1872   1827,1845   1828,1844

X(1905) = reflection of X(222) in X(942)
X(1905) = crosspoint of X(4) and X(1061)
X(1905) = crosssum of X(3) and X(1060)


X(1906) = ZOSMA TRANSFORM OF X(1496)

Trilinears       (y + z) sec A : (z + x) sec B : (x + y) sec C,  x : y : z = X(1496)
Barycentrics  (y + z) tan A : (z + x) tan B : (x + y) tan C,  x : y : z = X(1496)

As a point on the Euler line, X(1906) has Shinagawa coefficients (F, -2E + F).

X(1906) lies on this line: 2,3


X(1907) = ZOSMA TRANSFORM OF X(1497)

Trilinears    (y + z) sec A : :, where x : y : z = X(1497)
Trilinears    (sec A) (2 + sin^2 B + sin^2 C) : :
Barycentrics    (tan A) (2 + sin^2 B + sin^2 C) : :

As a point on the Euler line, X(1907) has Shinagawa coefficients (F, 2E + F).

X(1907) lies on this line: 2,3

X(1907) = complement of X(33524)

leftri

Centers from Bicentric Pairs, 1908-1982

rightri

For a definition of a bicentric pair (e.g., the 1st and 2nd Brocard points) click Tables at the top of this page. Suppose P and U are a bicentric pair. Many operations on P and U result in triangle centers. Among these are trilinear and barycentric product, bicentric sum, bicentric difference, crosssum, and crossdifference. For definitions of these, click Tables. At the time this section is added to ETC (September 15, 2003), bicentric pairs

P(1),U(1); P(2),U(2); ...; P(42),U(42)

are defined in Tables. In this present section, the abbreviation PU(n) means the bicentric pair P(n),U(n).


X(1908) = MIDPOINT OF PU(8)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b3 + c3) + 2abc(a2 + bc)     (Wimalasiri Perera, August 29, 2011)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1908) lies on these lines: 39,1155   42,649   43,2235   171,292   551,2666   2243,2276


X(1909) = CROSSSUM OF PU(9)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1 + bc/a2
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1909) lies on these lines: 1,76   2,330   7,8   10,274   12,325   34,264   35,99   36,1078   37,1655   42,310   56,183   73,290   86,313   172,385   190,1334   226,1432   256,1221   257,335   286,1891   305,612   315,1478   538,1500   732,894   1215,1237   1235,1870

X(1909) = isogonal conjugate of X(904)
X(1909) = isotomic conjugate of X(256)
X(1909) = complement of X(21226)
X(1909) = anticomplement of X(1107)
X(1909) = X(i)-Ceva conjugate of X(j) for these (i,j): (335,350), (1221,2)
X(1909) = cevapoint of X(8) and X(1655)
X(1909) = crosspoint of PU(10)
X(1909) = intersection of tangents at PU(10) to hyperbola {{A,B,C,PU(10)}}


X(1910) = TRILINEAR POLE OF PU(23)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/(a2cos B cos C - bc cos2A)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1910) lies on these lines: 1,163   10,98   19,560   37,692   48,75   65,172   1580,1581

X(1910) = isogonal conjugate of X(1959)
X(1910) = X(1821)-Ceva conjugate of X(293)
X(1910) = cevapoint of X(i) and X(j) for these (i,j): (1,1580), (240,1957)
X(1910) = barycentric product of PU(88)
X(1910) = trilinear product X(6)*X(98)


X(1911) = TRILINEAR POLE OF PU(9)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2/(a2 - bc)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1911) lies on these lines: 1,335   6,292   42,81   86,334   172,694   238,660   692,1333   739,813   875,890   1403,1407   1429,1458

X(1911) = isogonal conjugate of X(350)
X(1911) = isotomic conjugate of X(18891)
X(1911) = complement of X(20554)
X(1911) = anticomplement of X(20542)
X(1911) = X(741)-Ceva conjugate of X(292)
X(1911) = cevapoint of X(172) and X(1914)
X(1911) = crosspoint of X(727) and X(1438)
X(1911) = trilinear pole of line X(213)X(667)


X(1912) = IDEAL POINT OF PU(9)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b - c - a(b/c + c/b)(b/c - c/b)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

As the isogonal conjugate of a point on the circumcircle, X(1912) lies on the line at infinity.

X(1912) lies on these (parallel) lines: 30,511   213,667   1166,1203

X(1912) = crossdifference of every pair of points on line X(6)X(350)


X(1913) = MIDPOINT OF PU(9)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2[2a3bc + ab4 + ac4 + b2c2(b + c)]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1913) lies on this line: 213,667


X(1914) = CROSSDIFFERENCE OF PU(10)

Trilinears    1 - a2/(bc) : :
Trilinears    a^3 - abc : :

X(1914) is the perspector of triangle ABC and the tangential triangle of the conic that passes through A, B, C, and the pair P(9) and U(9) of bicentric points (see the notes just before X(1908). (Randy Hutson, 9/23/2011)

X(1914) lies on these lines: 1,32   6,31   9,983   11,230   21,1107   35,39   36,187   37,82   44,765   48,1613   81,593   100,1575   105,910   112,1870   213,595   284,893   292,1438   350,385   577,1040   584,1185   604,1403   649,834   727,813   739,901   741,1326   999,1384   1055,1149   1319,1415   1428,1691

X(1914) = isogonal conjugate of X(335)
X(1914) = isotomic conjugate of X(18895)
X(1914) = complement of X(20553)
X(1914) = anticomplement of X(20541)
X(1914) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,39029), (727,31), (1429,1428), (1438,6), (1911,172)
X(1914) = crosspoint of X(i) and X(j) for these (i,j): (81,105), (238,1429), (239,242), (904,1911), (919,1252)
X(1914) = crosssum of X(i) and X(j) for these (i,j): (37,518), (292,295), (350,1909), (918,1086)
X(1914) = {X(1),X(32)}-harmonic conjugate of X(172)
X(1914) = intersection of trilinear polars of P(9) and U(9)
X(1914) = X(92)-isoconjugate of X(295)
X(1914) = perspector of hyperbola {{A,B,C,X(58),X(101),PU(9)}}
X(1914) = barycentric product of PU(134)
X(1914) = homothetic center of intangents triangle and mid-triangle of 1st and 2nd Kenmotu diagonals triangles


X(1915) = CROSSSUM OF PU(11)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a4 + b2c2)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1915) lies on these lines: 2,1501   6,25   31,292   32,1613   110,251   141,1799  

X(1915) = polar conjugate of isotomic conjugate of X(37893)
X(1915) = X(63)-isoconjugate of X(37892)

X(1916) = TRILINEAR POLE OF PU(11)

Trilinears    bc/(a4 - b2c2) : :
Trilinears    csc(A - 2ω) : :

Let A'B'C' be the 1st Brocard triangle. Let A" be the reflection of A' in BC, and define B" and C" cyclically; then X(1916) is the radical center of the circumcircles of A"BC, B"CA, C"AB. Let A* be the reflection of A in B'C', and define B* and C* cyclically; then X(1916) is the radical center of the circumcircles of A*BC, B*CA, C*AB. The first set of circles equals the second set. (Randy Hutson, February 10, 2016)

X(1916) lies on these lines: 2,694   4,147   10,257   39,83   76,115   98,385   114,262   226,335   256,291   316,736   325,698   538,671   543,598   690,882   804,881

X(1916) = midpoint of X(148) and X(194)
X(1916) = reflection of X(i) in X(j) for these (i,j): (76,115), (99,39)
X(1916) = isogonal conjugate of X(1691)
X(1916) = isotomic conjugate of X(385)
X(1916) = cevapoint of X(39) and X(511)
X(1916) = complement of X(8782)
X(1916) = trilinear pole of line X(141)X(523)
X(1916) = pole wrt polar circle of trilinear polar of X(419)
X(1916) = polar conjugate of isogonal conjugate of X(36214)
X(1916) = X(48)-isoconjugate (polar conjugate) of X(419)
X(1916) = antigonal image of X(76)
X(1916) = X(76) of 1st anti-Brocard triangle
X(1916) = intersection, other than A, B, C, of the 1st and 2nd isobarycs of the circumcircle
X(1916) = perspector of ABC and 1st anti-Brocard triangle


X(1917) = TRILINEAR 6th POWER POINT

Trilinears    a6 : :

Let A'B'C' and A"B"C" be the 5th Brocard and 5th anti-Brocard triangles, resp. Let A* be the trilinear product A'*A", and define B* and C* cyclically. The lines AA*, BB*, CC* concur in X(1917). (Randy Hutson, November 30, 2018)

X(1917) lies on these lines: 1,3409 31,2085 560,9247 922,4020 1501,9448

X(1917) = barycentric product of PU(12)
X(1917) = isogonal conjugate of X(1928)
X(1917) = trilinear product of PU(13)
X(1917) = trilinear square of X(32)
X(1917) = trilinear cube of X(31)


X(1918) = BICENTRIC SUM OF PU(12)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3(b + c)

X(1918) lies on these lines: 6,31   9,981   10,82   32,560   86,171   100,715   101,729   213,872   313,983   393,465   692,1333

X(1918) = isogonal conjugate of X(310)
X(1918) = anticomplement of X(17138)
X(1918) = X(i)-Ceva conjugate of X(j) for these (i,j): (31,213), (692,1919), (983,37)
X(1918) = crosspoint of X(i) and X(j) for these (i,j): (31,32), (213,1402)
X(1918) = crosssum of X(i) and X(j) for these (i,j): (75,76), (274,314)
X(1918) = PU(12)-harmonic conjugate of X(1919)


X(1919) = BICENTRIC DIFFERENCE OF PU(12)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3(b - c)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1919) lies on these lines: 101,765   649,834   667,788   669,688

X(1919) = isogonal conjugate of X(1978)
X(1919) = complement of X(21304)
X(1919) = anticomplement of X(21262)
X(1919) = X(i)-Ceva conjugate of X(j) for these (i,j): (32,1977), (692,1333)
X(1919) = cevapoint of X(669) and X(1924)
X(1919) = crosspoint of X(i) and X(j) for these (i,j): (31,101), (81,932), (692,1333)
X(1919) = crosssum of X(i) and X(j) for these (i,j): (75,514), (321,693), (646,668), (850,1230)
X(1919) = PU(12)-harmonic conjugate of X(1918)
X(1919) = barycentric product of PU(25)
X(1919) = trilinear product of PU(42)


X(1920) = CROSSSUM OF PU(12)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b3c3(a2 + bc)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1920) lies on these lines: 2,561   37,1221   75,982   76,85   210,668   310,321   334,1581   1002,1611   1215,1237   1240,1441

X(1920) = isotomic conjugate of X(893)
X(1920) = complement of polar conjugate of isogonal conjugate of X(23192)
X(1920) = perspector of Gemini triangle 31 and cross-triangle of ABC and Gemini triangle 31
X(1920) = trilinear pole of perspectrix of ABC and Gemini triangle 32
X(1920) = X(i)-Ceva conjugaute of X(j) for these (i,j): (334,1921), (1240,76)


X(1921) = CROSSDIFFERENCE OF PU(12)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b3c3(a2 - bc)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1921) lies on these lines: 2,561   10,75   37,308   274,1107   350,740   518,668

X(1921) = isogonal conjugate of X(1922)
X(1921) = isotomic conjugate of X(292)
X(1921) = X(334)-Ceva conjugate of X(1920)
X(1921) = anticomplement of polar conjugate of isogonal conjugate of X(23223)
X(1921) = perspector of Gemini triangle 32 and cross-triangle of ABC and Gemini triangle 32
X(1921) = trilinear pole of perspectrix of ABC and Gemini triangle 31


X(1922) = TRILINEAR POLE OF PU(12)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3/(a2 - bc)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1922) lies on these lines: 6,291   58,101   81,335   727,813   1416,1428

X(1922) = isogonal conjugate of X(1921)
X(1922) = isotomic conjugate of isogonal conjugate of X(18897)
X(1922) = perspector of ABC and unary cofactor triangle of Gemini triangle 31


X(1923) = BICENTRIC SUM OF PU(13)

Trilinears    a4(b2 + c2) : :
Trilinears    1 - sec^2 ω cos^2 A : :

X(1923) lies on these lines: 1,21   110,719

X(1923) = isogonal conjugate of X(18833)
X(1923) = crossdifference of every pair of points on line X(661)X(786)
X(1923) = X(i)-Ceva conjugate of X(j) for these (i,j): (31,1964), (163,1924)
X(1923) = crosspoint of X(31) and X(560)
X(1923) = crosssum of X(75) and X(561)
X(1923) = PU(13)-harmonic conjugate of X(1924)
X(1923) = trilinear product X(i)*X(j) for these {i,j}: {1, 1923}, {6, 3051}, {31, 1964}, {32, 39}, {38, 560}, {99, 9494}, {110, 688}, {141, 1501}, {163, 2084}, {184, 1843}, {427, 14575}, {669, 1634}, {732, 8789}, {826, 14574}, {827, 2531}, {1397, 3688}, {1401, 2175}, {1576, 3005}, {1917, 1930}, {1918, 17187}, {1927, 2236}, {1973, 4020}, {1974, 3917}, {1980, 4553}, {2205, 16696}, {3404, 9417}, {3665, 9448}, {4576, 9426}, {8024, 9233}, {8623, 9468}, {9247, 17442}


X(1924) = BICENTRIC DIFFERENCE OF PU(13)

Trilinears       a4(b2 - c2) : b4(c2 - a2) : c4(a2 - b2)
Barycentrics  a5(b2 - c2) : b5(c2 - a2) : c5(a2 - b2)

X(1924) lies on these lines: 661,830   667,788   681,1612

X(1924) = X(i)-Ceva conjugate of X(j) for these (i,j): (163,1923), (662,31), (1919,669)
X(1924) = crosspoint of X(i) and X(j) for these (i,j): (31,662), (1919, 1980)
X(1924) = crosssum of X(i) and X(j) for these (i,j): (75,661), (1577,1930)
X(1924) = isogonal conjugate of X(4602)
X(1924) = PU(13)-harmonic conjugate of X(1923)
X(1924) = trilinear product of PU(91)


X(1925) = CROSSSUM OF PU(13)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1 + b2c2/a4
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1925) lies on these lines: 76,335   92,304   469,1601

X(1924) = complement of X(21305)
X(1924) = anticomplement of X(21263)
X(1925) = X(1934)-Ceva conjugate of X(1926)
X(1925) = crosspoint of PU(14)
X(1925) = intersection of tangents at PU(14) to conic {{A,B,C,PU(14)}}


X(1926) = CROSSDIFFERENCE OF PU(13)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1 - b2c2/a4
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1926) lies on these lines: 38,75   76,257   661,786   799,1755   1590,1636

X(1926) = isogonal conjugate of X(1927)
X(1926) = isotomic conjugate of X(1967)
X(1926) = X(2)-Ceva conjugate of X(39030)
X(1926) = X(1934)-Ceva conjugate of X(1925)
X(1926) = crosssum of X(1932) and X(1933)
X(1926) = perspector of conic {A,B,C,PU(14)}
X(1926) = intersection of trilinear polars of P(14) and U(14)


X(1927) = TRILINEAR POLE OF PU(13)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4/(a4 - b2c2)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1927) lies on these lines: 82,662   172,694   715,805   733,787

X(1927) = isogonal conjugate of X(1926)
X(1927) = cevapoint of X(1932) and X(1933)


X(1928) = ISOGONAL CONJUGATE OF X(1917)

Trilinears       1/a6 : 1/b6 : 1/c6
Barycentrics  1/a5 : 1/b5 : 1/c5

X(1928) is the Brianchon point (perspector) of the inellipse that is the trilinear square of the de Longchamps line. This inellipse has center X(21235). (Randy Hutson, October 15, 2018)

X(1928) = isogonal conjugate of X(1917)
X(1928) = isotomic conjugate of X(560)
X(1928) = anticomplement of isogonal conjugate of X(38812)
X(1928) = anticomplementary conjugate of anticomplement of X(38812)
X(1928) = trilinear product of PU(14)
X(1928) = trilinear product of vertices of Gemini triangle 31
X(1928) = trilinear product of vertices of Gemini triangle 32


X(1929) = ISOGONAL CONJUGATE OF X(1757)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[-(cos A)/x + (cos B)/y + (cos C)/z], where x : y : z = X(295)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1929) lies on ths line: 1,3125   2,846   105,2702   1758,2006   2640,3122

X(1929) = isogonal conjugate of X(1757)
X(1929) = cevapoint of X(i) and X(j) for these (i,j): (244,659), (1966,1909)
X(1929) = X(238)-cross conjugate of X(1)
X(1929) = trilinear pole of PU(31) (line X(513)X(1100))


X(1930) = BICENTRIC SUM OF PU(14)

Trilinears    b2c2(b2 + c2) : :
Trilinears    |AP(1)|^2 + |AU(1)|^2 : :

X(1930) lies on these lines: 1,75   8,150   76,334   213,742

X(1930) = isotomic conjugate of X(82)
X(1930) = isogonal conjugate of complement of anticomplementary conjugate of X(17489)
X(1930) = complement of X(17489)
X(1930) = anticomplement of X(16600)
X(1930) = X(75)-Ceva conjugate of X(38)
X(1930) = X(1194)-cross conjugate of X(251)
X(1930) = crosspoint of X(75) and X(561)
X(1930) = crosssum of X(31) and X(560)


X(1931) = CROSSDIFFERENCE OF PU(32)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = [(b + c)2 - (a + b)(a + c)]/(b + c)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1931) lies on these lines: 1,21   37,757   44,662   99,239   172,593   241,1414   261,894   661,1019   1014,1423   1326,1757   1444,1778   2641,2642

X(1931) = isogonal conjugate of X(9278)
X(1931) = complement of X(20349)
X(1931) = anticomplement of X(20337)
X(1931) = X(2)-Ceva conjugate of X(39042)
X(1931) = X(1929)-Ceva conjugate of X(1963)
X(1931) = crosssum of X(1757) and X(1961)
X(1931) = perspector of conic {{A,B,C,PU(31)}}
X(1931) = intersection of trilinear polars of P(31) and U(31)


X(1932) = CROSSSUM OF PU(14)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a4 + b2c2)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1932) lies on this line: 293,774

X(1932) = isogonal conjugate of X(9239)
X(1932) = X(1927)-Ceva conjugate of X(1933)
X(1932) = intersection of tangents at PU(13) to conic {A,B,C,PU(13)}
X(1932) = crosspoint of PU(13)


X(1933) = CROSSDIFFERENCE OF PU(14)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a4 - b2c2)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1933) lies on these lines: 31,48   32,904   887,1737   896,1101

X(1933) = isogonal conjugate of X(1934)
X(1933) = X(2)-Ceva conjugate of X(39031)
X(1933) = X(1927)-Ceva conjugate of X(1932)
X(1933) = crosspoint of X(82) and X(1910)
X(1933) = crosssum of X(i) and X(j) for these (i,j): (38,1959), (1925,1926)
X(1933) = perspector of conic {A,B,C,PU(13)}
X(1933) = intersection of trilinear polars of P(13) and U(13)


X(1934) = TRILINEAR POLE OF PU(14)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b2c2/(a4 - b2c2)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1934) lies on these lines: 38,799   75,1581   257,335   334,1441   561,1109   764,1244   1821,1959

X(1934) = isogonal conjugate of X(1933)
X(1934) = isotomic conjugate of X(1580)
X(1934) = cevapoint of X(i) and X(j) for these (i,j): (38,1959), (1925,1926)


X(1935) = CROSSSUM OF PU(15)

Trilinears    cos2A + cos B cos C : :
Trilinears    (a^4 - a^2 (b^2 + b c + c^2) + b c (b + c)^2)/(a - b - c) : :

X(1935) lies on these lines: 1,90   2,603   3,1745   4,255   7,1451   9,478   10,109   12,171   20,212   21,73   31,388   34,63   40,1777   47,1478   56,87   57,1724   58,226   65,1046   84,1040   221,958   222,405   225,283   415,1098   497,1496   748,1106   774,1776   896,1254   940,1806   960,1455   978,1470   1056,1497   1400,1778   1448,1708   1761,1880

X(1935) = X(296)-Ceva conjugate of X(1936)
X(1935) = cevapoint of X(1046) and X(1745)
X(1935) = crosspoint of PU(16)
X(1935) = intersection of tangents at PU(16) to conic {A,B,C,PU(16)}
X(1935) = perspector of ABC and the side-triangle of the 1st and 2nd bicentrics of the orthic triangle
X(1935) = {X(34),X(63)}-harmonic conjugate of X(37591)


X(1936) = CROSSDIFFERENCE OF PU(15)

Trilinears    cos2A - cos B cosC : :
Trilinears    (a - b - c) (a^4 - a^2 (b^2 - b c + c^2) - b c (b - c)^2) : :
X(1936) is the perspector of triangle ABC and the tangential triangle of the conic that passes through A, B, C, and the pair P(16) and U(16) of bicentric points; This conic also passes through X(21) and X(651); see the notes just before X(1908). (Randy Hutson, 9/23/2011)

Let L be the line X(1)X(3) = trilinear polar of X(651). Let V be the trilinear polar of the cevapoint of X(1) and X(3), so that V = X(521)X(650); let M = X(3157) = X(1)-Ceva conjugate of X(3), and let N = X(1745) = X(3)-Ceva conjugate of X(1). The lines L, V, MN concur in X(1936). (Randy Hutson, December 26, 2015)

Let A1B1C1 and A2B2C2 be the 1st and 2nd bicentrics of the orthic triangle. The six vertices A1, B1, C1, A2, B2, C2 lie on a conic, denoted here by H. Let A' be the intersection of the tangents to H at A1 and A2. Define B' and C' cyclically. The lines AA', BB', CC' concur in X(1936). Let A" be the intersection of the tangents to H at B2 and C1. Define B' and C' cyclically. The lines AA", BB", CC" concur in X(1936). (Randy Hutson, March 25, 2016)

X(1936) lies on these lines: 1,3   2,212   4,255   11,238   20,603   29,270   31,497   33,63   47,1479   58,950   73,411   100,1818   109,516   225,412   243,1430   388,1496   495,738   511,1364   521,650   580,1210   750,1253   896,1776   908,1331   938,1451   1044,1406   1046,1858   1058,1497   1762,1859

X(1936) = isogonal conjugate of X(1937)
X(1936) = X(2)-Ceva conjugate of X(39032)
X(1936) = perspector of hyperbola {{A,B,C,X(21),X(651),PU(16)}}
X(1936) = X(296)-Ceva conjugate of X(1935)
X(1936) = crosssum of X(i) and X(j) for these (i,j): (1,1758), (243,1940)
X(1936) = intersection of trilinear polars of P(16) and U(16) (the 1st and 2nd bicentrics of the orthic axis)
X(1936) = crossdifference of every pair of points on line X(65)X(650)
X(1936) = inverse-in-circumconic-centered-at-X(1) of X(55)
X(1936) = X(92)-isoconjugate of X(1949)
X(1936) = perspector of orthic triangle and the side-triangle of the 1st and 2nd bicentrics of the orthic triangle


X(1937) = TRILINEAR POLE OF PU(15)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/(cos2A - cos B cos C)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1937) lies on these lines: 1,185   4,774   8,201   21,73   80,1736   90,1745   104,1458   108,1172   225,1896   307,314   515,1694   851,1758   885,1769

X(1937) = isogonal conjugate of X(1936)
X(1937) = cevapoint of X(i) and X(j) for these (i,j): (1,1758), (243,1940)
X(1937) = trilinear pole of line X(65)X(650)
X(1937) = pole wrt polar circle of trilinear polar of X(1948)
X(1937) = X(48)-isoconjugate (polar conjugate) of X(1948)
X(1937) = point of intersection, other than A, B, C, of 1st and 2nd bicentrics of the MacBeath circumconic


X(1938) = IDEAL POINT OF PU(15)

Trilinears    (cos A cos B - cos2C) sin B - (cos A cos C - cos2B) sin C

As the isogonal conjugate of a point on the circumcircle, X(1938) lies on the line at infinity.

X(1938) lies on these lines: 30,511   65,650

X(1938) = crossdifference of every pair of points on line X(6)X(1936)
X(1938) = ideal point of PU(i) for these i: 15, 110


X(1939) = MIDPOINT OF PU(15)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b),
                         where f(a,b,c) = (a cos B + b cos C + c cos A) cos C + (a cos C + b cos A + c cos B) cos B
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1939) lies on these lines: 65,650   169,1575   1385,2649


X(1940) = CROSSSUM OF PU(16)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = sec2A + sec B sec C
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1940) lies on these lines: 1,1075   2,1118   3,158   4,46   20,1857   27,1882   29,65   34,87   35,1784   55,1895   56,92   73,1047   162,1399   201,240   225,1247   281,388   318,1376   331,1447   412,1155   425,1098   471,580   1038,1096   1816,1896

X(1940) = X(1937)-Ceva conjugate of X(243)
X(1940) = cevapoint of X(46) and X(1047)
X(1940) = crosspoint of PU(15)
X(1940) = intersection of tangents at PU(15) to conic {A,B,C,PU(15)}
X(1940) = pole wrt polar circle of trilinear polar of X(7108)
X(1940) = X(48)-isoconjugate (polar conjugate) of X(7108)


X(1941) = CROSSSUM OF PU(17)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = cos B cos C (cos4A + cos2B cos2C)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1941) lies on these lines: 3,1075   4,155   185,648   194,1593   450,1092

X(1941) = X(1942)-Ceva conjugate of X(450)
X(1941) = crosspoint of PU(17)
X(1941) = intersection of tangents at PU(17) to conic {A,B,C,PU(17)}


X(1942) = TRILINEAR POLE OF U(17)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(cos4A - cos2B cos2C)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1942) lies on these lines: 6,1624   852,895

X(1942) = isogonal conjugate of X(450)
X(1942) = cevapoint of X(450) and X(1941)
X(1942) = trilinear pole of line X(185)X(647)


X(1943) = CROSSSUM OF PU(18)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(cos2A + cos B cos C)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1943) lies on these lines: 2,914   57,239   69,278   75,222   81,1441   92,394   225,1330   321,651   333,664   637,1659   1231,1396


X(1944) = CROSSDIFFERENCE OF PU(18)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(cos2A - cos B cos C)
Barycentrics   cos2A - cos B cos C : cos2B - cos C cos A : cos2C - cos A cos B

X(1944) lies on these lines: {2, 7}, {69, 281}, {75, 219}, {92, 394}, {220, 4363}, {239, 2323}, {242, 511}, {314, 1172}, {448, 662}, {522, 663}, {524, 1146}, {534, 5195}, {666, 1814}, {960, 1010}, {990, 997}, {1212, 4670}, {1332, 3262}, {1737, 1757}, {1958, 2289}, {2324, 3729}, {2607, 3792}

X(1944) = isogonal conjugate of X(1945)
X(1944) = isotomic conjugate of X(1952)
X(1944) = X(i)-complementary conjugate of X(j) for these (i,j): (2648,141), (2701,4885)
X(1944) = X(i)-cross conjugate of X(j) for these (i,j): (1936,5088), (1951,243)
X(1944) = X(2)-Ceva conjugate of X(39035)
X(1944) = perspector of conic {{A,B,C,X(333),X(664)}}
X(1944) = X(i)-isoconjugate of X(j) for these (i,j): (1,1945), (4,1949), (6,1937), (19,296), (31,1952), (65,2249)
X(1944) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (92,394,1943), (2323,4858,239)


X(1945) = TRILINEAR POLE OF PU(18)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/(cos2A - cos B cos C)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1945) lies on these lines: 6,1949   19,800   37,1569   109,284   333,664   673,1465

X(1945) = isogonal conjugate of X(1944)
X(1945) = X(1952)-Ceva conjugate of X(296)


X(1946) = BICENTRIC DIFFERENCE OF PU(19)

Trilinears    (sin 2A)(cos B - cos C) : :

X(1946) lies on these lines: 3,905   35,1734   105,2724   110,2714   187,237   650,2202   810,822

X(1946) = isogonal conjugate of X(18026)
X(1946) = bicentric difference of PU(19)
X(1946) = PU(19)-harmonic conjugate of X(1409)
X(1946) = trilinear pole of PU(101)
X(1946) = polar conjugate of isotomic conjugate of X(36054)
X(1946) = crossdifference of every pair of points on line X(2)X(92)
X(1946) = X(92)-isoconjugate of X(651)
X(1946) = polar conjugate of isotomic conjugate of X(36054)
X(1946) = perspector of hyperbola {{A,B,C,X(6),X(48)}}
X(1946) = barycentric product of PU(77)


X(1947) = CROSSSUM OF PU(19)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos2A + cos B cos C) csc 2A
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1947) lies on these lines: 57,264   278,330   318,377

X(1947) = X(1952)-Ceva conjugate of X(1948)
X(1947) = crosspoint of PU(20)
X(1947) = intersection of tangents at PU(20) to conic {A,B,C,PU(20)}
X(1947) = pole wrt polar circle of trilinear polar of X(7105)
X(1947) = X(48)-isoconjugate (polar conjugate) of X(7105)


X(1948) = CROSSDIFFERENCE OF PU(19)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos2A - cos B cos C) csc 2A
Barycentrics    b c (a - b - c) (a^4 - a^2 (b^2 - b c + c^2) - b c (b - c)^2)/(a^2 - b^2 - c^2) : :

X(1948) lies on these lines: 2,92   9,264   24,547

X(1948) = isogonal conjugate of X(1949)
X(1948) = X(2)-Ceva conjugate of X(39036)
X(1948) = X(1952)-Ceva conjugate of X(1947)
X(1948) = crosssum of X(1950) and X(1951)
X(1948) = perspector of conic {A,B,C,PU(20)}
X(1948) = intersection of trilinear polars of P(20) and U(20)
X(1948) = pole wrt polar circle of line X(65)X(650), PU(15))
X(1948) = X(48)-isoconjugate (polar conjugate) of X(1937)


X(1949) = TRILINEAR POLE OF PU(19)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (sin 2A)/(cos2A - cos B cos C)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1949) lies on these lines: 6,1945   108,1172   219,296

X(1949) = isogonal conjugate of X(1948)
X(1949) = cevapoint of X(1950) and X(1951)
X(1949) = X(92)-isoconjugate of X(1936)


X(1950) = CROSSSUM OF PU(20)

Trilinears    a(cos2A + cos B cos C) : :

X(1950) lies on these lines: 3,608   6,1195   19,577   37,1415   65,1333   109,284   604,1403   1011,1395

X(1950) = X(1949)-Ceva conjugate of X(1951)
X(1950) = crosspoint of X(1940) and X(1943)
X(1950) = crosspoint of PU(19)
X(1950) = intersection of tangents at PU(19) to conic {A,B,C,X(109),PU(19)}


X(1951) = CROSSDIFFERENCE OF PU(20)

Trilinears    a(cos2A - cos B cos C) : :
Trilinears    a (a - b - c) (a^4 - a^2 (b^2 - b c + c^2) - b c (b - c)^2) : :

X(1951) lies on these lines: 1,1729   3,607   6,41   19,577   21,270   104, 294   517,906   652,663   851,1430   910,1415   1262,1465   1409,1630

X(1951) = isogonal conjugate of X(1952)
X(1951) = X(2)-Ceva conjugate of X(39037)
X(1951) = X(1949)-Ceva conjugate of X(1950)
X(1951) = crosspoint of X(243) and X(1944)
X(1951) = crosssum of X(i) and X(j) for these (i,j): (296,1945), (1947,1948)
X(1951) = perspector of conic {A,B,C,X(109),PU(19)}
X(1951) = intersection of trilinear polars of X(109), P(19), and U(19)
X(1951) = X(92)-isoconjugate of X(296)


X(1952) = TRILINEAR POLE OF PU(20)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc/(cos2A - cos B cos C)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1952) lies on these lines: 8,201   29,65   92,1146   232,1148   333,664

X(1952) = reflection of X(i) in X(j) for these (i,j): (92,1146), (664,1214)
X(1952) = isogonal conjugate of X(1951)
X(1952) = isotomic conjugate of X(1944)
X(1952) = cevapoint of X(i) and X(j) for these (i,j): (296,1945), (1947,1948)
X(1952) = polar conjugate of X(243)


X(1953) = BICENTRIC SUM OF PU(21)

Trilinears    sin 2B + sin 2C : :
Trilinears    sin A cos(B - C) : :
Trilinears    a^2(b^2 + c^2) - (b^2 - c^2)^2 : :
Trilinears    cot B cot C + 1 : :
Trilinears    SBSC + S2 : SCSA + S2 : :

X(1953) lies on these lines: 1,19   6,1411   9,1389   31,1820   37,2183   38,1755   65,1108   71,517   73,1841   216,1393   219,1482   515,1839   946,1826   991,1414   1457,1880

X(1953) = isogonal conjugate of X(2167)
X(1953) = complement of X(21271)
X(1953) = anticomplement of X(21231)
X(1953) = X(i)-Ceva conjugate of X(j) for these (i,j): (163,661), (823,656)
X(1953) = crosspoint of X(1) and X(92)
X(1953) = crosssum of X(1) and X(48)
X(1953) = crossdifference of every pair of points on line X(656)X(1955)
X(1953) = bicentric sum of PU(21)
X(1953) = PU(21)-harmonic conjugate of X(656)
X(1953) = barycentric product of PU(69)
X(1953) = {X(1),X(19)}-harmonic conjugate of X(48)


X(1954) = CROSSSUM OF PU(21)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = sin 2B sin 2C + sin22A
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1954) lies on these lines: 1,21   92,1955


X(1955) = CROSSDIFFERENCE OF PU(21)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = sin 2B sin 2C - sin22A
Trilinears    a^4 (a^2 - b^2 - c^2)^2 - b^2 c^2 (b^2 - c^2 - a^2) (c^2 - a^2 - b^2) : :

X(1955) lies on these lines: 1,19   47,1740   58,1047   92,1954   293,1755   1580,1733

X(1955) = isogonal conjugate of X(1956)
X(1955) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,39038), (293,1), (1755,1580)
X(1955) = X(i)-aleph conjugate of X(j) for these (i,j): (98,1733), (293,1955)
X(1955) = perspector of hyperbola {{A,B,C,X(162),X(2167)}}


X(1956) = TRILINEAR POLE OF PU(21)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/(sin 2B sin 2C - sin22A)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1956) lies on these lines: 293,1755

X(1956) = isogonal conjugate of X(1955)
X(1956) = X(240)-cross conjugate of X(1)


X(1957) = CROSSSUM OF PU(22)

Trilinears    tan2A + tan B tan C : :

X(1957) lies on these lines: 1,204   2,1430   19,1707   29,1468   31,92   42,1013   43,1783   63,240   158,255   171,281   212,243   238,278   242,1395   896,1748   1496,1895   1724,1838

X(1957) = X(1910)-Ceva conjugate of X(240)
X(1957) = crosspoint of PU(23)
X(1957) = intersection of tangents at PU(23) to conic {{A,B,C,PU(23)}}


X(1958) = CROSSSUM OF PU(23)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cot2A + cot B cot C
Trilinears       g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a4 - a2b2 - a2c2 + 2b2c2     (M. Iliev, 5/13/2007)
Trilinears       SASA + SBSC : SBSB + SCSA : SCSC + SASB      (C. Lozada, 9/07/2013)
Trilinears       a2SA - b2c2 : b2SB - c2a2 : c2SC - a2b2      (C. Lozada, 9/07/2013)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1958) lies on these lines: 19,326   31,1582   41,894   48,75   63,610   100,1253   239,604

X(1958) = X(i)-Ceva conjugate of X(j) for these (i,j): (293,1959), (775,63)
X(1958) = cevapoint of X(610) and X(1740)


X(1959) = CROSSDIFFERENCE OF PU(23)

Trilinears    cot2A - cot B cot C : :
Trilinears    b4 + c4 - a2b2 - a2c2 : :      (M. Iliev, 5/13/2007)
Trilinears    SASA - SBSC : :      (C. Lozada, 9/07/2013)
Barycentrics    cos(A + ω) : :
Barycentrics    a^2 cos B cos C - b c cos^2 A : :

X(1959) lies on these lines: 1,21   2,257   19,326   48,1760   92,304   329,1655   514,661   1444,1761   1762,1812   1821,1934

X(1959) = isogonal conjugate of X(1910)
X(1959) = isotomic conjugate of X(1821)
X(1959) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,39040), (293,1958), (1934,38)
X(1959) = X(i)-cross conjugate of X(j) for these (i,j): (6,2065), (114,2), (230,98), (1692,1976), (1733,1821)
X(1959) = crosspoint of X(1) and X(1581)
X(1959) = crosssum of X(i) and X(j) for these (i,j): (1,1580), 240,1957)
X(1959) = polar conjugate of X(36120)
X(1959) = pole wrt polar circle of trilinear polar of X(36120) (line X(19)X(798))
X(1959) = X(6)-isoconjugate of X(98)
X(1959) = perspector of hyperbola {{A,B,C,X(75),X(662),PU(22)}}


X(1960) = BICENTRIC SUM OF PU(25)

Trilinears    a(b - c)(2a - b - c) : :

X(1960) is the center of the circle V(X(101)) = {{15,16,101,106}}; see the preamble to X(6137). (Randy Hutson, December 26, 2015)

X(1960) lies on these lines: 1,659   101,692   187,237   214,900   292,875   660,898   678,1635   884,1438

X(1960) = midpoint of X(i) and X(j) for these (i,j): (1,659), (663,667), (1635,3251)
X(1960) = isogonal conjugate of X(4555)
X(1960) = complement of anticomplementary conjugate of X(39349)
X(1960) = X(i)-Ceva conjugate of X(j) for these (i,j): (101,1017), (106,1015), (901,6), (1319,2087)
X(1960) = crosspoint of X(i) and X(j) for these (i,j): (6,901), (101,106)
X(1960) = crosssum of X(i) and X(j) for these (i,j): (2,900), 514,519)
X(1960) = bicentric sum of PU(25)
X(1960) = PU(25)-harmonic conjugate of X(1015)
X(1960) = bicentric difference of PU(99)
X(1960) = PU(99)-harmonic conjugate of X(1017)
X(1960) = polar conjugate of isotomic conjugate of X(22086)
X(1960) = crossdifference of every pair of points on line X(2)X(45)


X(1961) = CROSSSUM OF PU(31)

Trilinears    (a + b)(a + c) + (b + c)2

X(1961) lies on these lines: 1,2   35,199   37,171   81,756   86,1215   100,1255   111,831   940,984   1051,1100

X(1961) = cevapoint of X(846) and X(1051)
X(1961) = crosspoint of PU(32)
X(1961) = intersection of tangents at PU(32) to conic {{A,B,C,X(100),PU(32)}}


X(1962) = BICENTRIC SUM OF PU(32)

Trilinears    (b + c)(2a + b + c) : :

X(1962) lies on these lines: 1,21   2,740   37,42   55,199   100,1255   351,1635

X(1962) = reflection of X(1635) in X(351)
X(1962) = isogonal conjugate of isotomic conjugate of X(4647)
X(1962) = crossdifference of every pair of points on line X(661)X(1019)
X(1962) = homothetic center of incentral triangle and n(Medial)*n(Incentral) triangle
X(1962) = X(2)-of-n(Medial)*n(Incentral)-triangle
X(1962) = X(i)-Ceva conjugate of X(j) for these (i,j): (1,1100), (100,661), (1125,1213)
X(1962) = crosspoint of X(i) and X(j) for these (i,j): (1,37), (1100,1125)
X(1962) = crosssum of X(i) and X(j) for these (i,j): (1,81), (1126,1255)
X(1962) = X(2)-of incentral triangle
X(1962) = bicentric sum of PU(32)
X(1962) = PU(32)-harmonic conjugate of X(661)
X(1962) = complement of X(17163)
X(1962) = homothetic center of Gemini triangle 17 and cross-triangle of Gemini triangles 15 and 17


X(1963) = CROSSSUM OF PU(32)

Trilinears    1/[(a + b)(a + c)] + 1/(b + c)2 : :

X(1963) lies on these lines: 1,1326   2,6   37,757   662,1100   894,1509

X(1963) = X(1929)-Ceva conjugate of X(1931)
X(1963) = crosspoint of PU(31)
X(1963) = intersection of tangents at PU(31) to conic {{A,B,C,PU(31)}}


X(1964) = BICENTRIC SUM OF PU(36)

Trilinears    a2(b2 + c2) : :
Trilinears    SASA - SωSω : SBSB - SωSω : SCSC - SωSω      (C. Lozada, 9/07/2013)
Trilinears    a2(SA + Sω) : :      (C. Lozada, 9/07/2013)
Trilinears    Area(BCP(1)) + Area(BCU(1)) : :

X(1964) lies on these lines: 1,75   6,292   31,48   42,1100   82,662   99,719   110,745   214,995   313,730   501,595   741,757   1042,1360   1193,1386   1201,1279

X(1964) = isogonal conjugate of X(3112)
X(1964) = isotomic conjugate of X(18833)
X(1964) = complement of X(21278)
X(1964) = anticomplement of X(21238)
X(1964) = X(i)-Ceva conjugate of X(j) for these (i,j): (1,38), (31,1923), (662,798), (1178,6), (1581,1755)
X(1964) = crosspoint of X(i) and X(j) for these (i,j): (1,31), (39,1401)
X(1964) = crosssum of X(1) and X(75)
X(1964) = PU(36)-harmonic conjugate of X(798)


X(1965) = CROSSSUM OF PU(36)

Trilinears    b2c2(a4 + b2c2) : :

X(1965) lies on these lines: 2,292   19,27   31,561   38,799   332,375

X(1965) = complement of X(17485)
X(1965) = X(1581)-Ceva conjugate of X(1966)
X(1965) = crosspoint of PU(35)
X(1965) = intersection of tangents at PU(35) to conic {A,B,C,PU(35)}


X(1966) = CROSSDIFFERENCE OF PU(36)

Trilinears    b2c2(a4 - b2c2) : :
Trilinears    directed distance of A to line PU(1) : :

Let A'B'C' be the 1st anti-Brocard triangle. Let A" be the trilinear product B'*C', and define B" and C" cyclically. The lines AA", BB", CC" concur in X(1966). (Randy Hutson, December 26, 2015)

X(1966) lies on these lines: 1,75   2,893   31,561   240,811   350,1281   668,1757   732,894   798,812   799,896   1821,1934

X(1966) = isogonal conjugate of X(1967)
X(1966) = isotomic conjugate of X(1581)
X(1966) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,39044), (874,804), (1581,1965), (1821,75)
X(1966) = X(i)-cross conjugate of X(j) for these (i,j): (698,1916), (1691,699)
X(1966) = crosssum of X(1580) and X(1582)
X(1966) = perspector of conic {{A,B,C,PU(35)}}
X(1966) = intersection of trilinear polars of P(35) and U(35)
X(1966) = trilinear product of PU(133)


X(1967) = TRILINEAR POLE OF PU(36)

Trilinears    a2/(a4 - b2c2)

X(1967) lies on these lines: 1,1581   38,799   42,694   213,904   256,291   733,813   741,805   875,881

X(1967) = isogonal conjugate of X(1966)
X(1967) = isotomic conjugate of X(1926)
X(1967) = complement of anticomplementary conjugate of X(17493)
X(1967) = cevapoint of X(1580) and X(1582)
X(1967) = X(i)-cross conjugate of X(j) for these (i,j): (32,699), (698,76)
X(1967) = trilinear product of circumcircle intercepts of line PU(1)
X(1967) = trilinear product X(292)*X(893)


X(1968) = CROSSSUM OF PU(37)

Trilinears    a(tan2A + tan B tan C) : :
Trilinears    2 cos A + sin A (tan A - cot ω) : :

X(1968) lies on these lines: 3,232   4,32   6,64   20,393   24,187   25,1611   33,172   39,378   53,571   194,648   217,578   230,235   264,384   1147,1625   1384,1598   1691,1974

X(1968) = X(1976)-Ceva conjugate of X(232)
X(1968) = crosspoint of PU(39)
X(1968) = intersection of tangents at PU(39) to hyperbola {A,B,C,X(4),X(112),PU(39)}
X(1968) = crossdifference of every pair of points on line X(684)X(8057)


X(1969) = TRILINEAR PRODUCT OF PU(38)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b2c2 sin 2B sin 2C
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = sec A csc3A
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1969) lies on these lines: 1,336   75,158   76,331   92,304   273,1240

X(1969) = isotomic conjugate of X(48)
X(1969) = cevapoint of X(75) and X(92)
X(1969) = trilinear pole of polar of X(31) wrt polar circle (line X(14208)X(20948))
X(1969) = pole wrt polar circle of trilinear polar of X(31) (line X(667)X(788))
X(1969) = polar conjugate of X(31)
X(1969) = trilinear product of vertices of Gemini triangle 37
X(1969) = trilinear product of vertices of Gemini triangle 38


X(1970) = CROSSSUM OF PU(38)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(sin22A + sin 2B sin 2C)
Trilinears    sin(A - ω') : :, where ω' = Brocard angle of orthic triangle

X(1970) lies on these lines: 3,6   49,1625   54,112  

X(1970) = perspector of ABC and 1st Brocard triangle of orthic triangle


X(1971) = CROSSDIFFERENCE OF PU(38)

Trilinears    a(sin22A - sin 2B sin 2C): :

X(1971) lies on these lines: 6,25   50,647   53,1629   98,230   217,1614   237,248   571,1613   1609,1619

X(1971) = isogonal conjugate of X(1972)
X(1971) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,39045), (237,1691), (248,6)
X(1971) = crosspoint of X(98) and X(275)
X(1971) = crosssum of X(216) and X(511)
X(1971) = perspector of conic {{A,B,C,X(54),X(112)}}
X(1971) = homothetic center of X(3)-Ehrmann triangle and mid-triangle of 1st and 2nd Kenmotu diagonals triangles


X(1972) = TRILINEAR POLE OF PU(38)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc/(sin22A - sin 2B sin 2C)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1972) lies on these lines: 95,216   287,401   925,1298

X(1972) = reflection of X(648) in X(216)
X(1972) = isogonal conjugate of X(1971)
X(1972) = isotomic conjugate of X(401)
X(1972) = cevapoint of X(216) and X(511)
X(1972) = antipode of X(264) in hyperbola {{A,B,C,X(2),X(69)}}


X(1973) = TRILINEAR PRODUCT OF PU(39)

Trilinears    a3cos B cos C : :
Trilinears    tan A sin2A : :

X(1973) lies on these lines: 1,19   6,1245   25,41   32,1395   34,1438   47,163   112,741   255,1755   278,1429   604,608   1148,1283   1842,1886

X(1973) = isogonal conjugate of X(304)
X(1973) = complement of anticomplementary conjugate of X(21216)
X(1973) = X(i)-Ceva conjugate of X(j) for these (i,j): (19,31), (608,1395), (1474,25)
X(1973) = X(i)-cross conjuguate of X(j) for these (i,j): (4,683), (682,3), (1196,2), (1368,305)
X(1973) = crosspoint of X(i) and X(j) for these (i,j): (19,1096), (25,608)
X(1973) = crosssum of X(i) and X(j) for these (i,j): (63,326), (69,345), (312,322), (525,1565)
X(1973) = barycentric product of PU(18)
X(1973) = trilinear product of intersections of circumcircle and 2nd Lemoine circle
X(1973) = pole wrt polar circle of trilinear polar of X(561)
X(1973) = X(48)-isoconjugate (polar conjugate) of X(561)
X(1973) = X(75)-isoconjugate of X(63)
X(1973) = X(92)-isoconjugate of X(326)


X(1974) = BARYCENTRIC PRODUCT OF PU(39)

Trilinears    a4cos B cos C : :
Trilinears    tan A sin3A : :
Trilinears    tan A sin(A - ω) : :

X(1974) is the X(i)-isoconjugate of X(j) for these (i,j): (48,1502), (92,3926); also X(1974) is the pole with respect to the polar cirle of the trilinear polar of X(1502).    Randy Hutson, August 15, 2013

X(1974) lies on these lines: 4,83   6,25   24,511   32,682   34,1428   53,460   66,125   69,459   110,193   112,729   141,468   156,1353   235,1503   237,577   264,419   428,597   571,1576   981,1172   1147,1351   1386,1829   1395,1397   1691,1968

X(1974) = isogonal conjugate of X(305)
X(1974) = X(25)-Ceva conjugate of X(32)
X(1974) = crosspoint of X(i) and X(j) for these {i,j}: {6, 34207}, {1395, 1973}
X(1974) = crosssum of X(i) and X(j) for these (i,j): (2,1370), (304,3718), (339,3267)
X(1974) = crossdifference of every pair of points on the line X(525)X(3267)
X(1974) = X(92)-isoconjugate of X(3926)
X(1974) = trilinear product of vertices of Ara triangle
X(1974) = polar conjugate of X(1502)
X(1974) = barycentric product of intersections of circumcircle and 2nd Lemoine circle


X(1975) = CROSSSUM OF PU(39)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = cos B cos C + (bc cos2A)/a2
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1975) lies on these lines: 3,76   4,325   6,194   20,64   25,305   30,315   32,538   56,350   75,958   190,220   221,664   264,1105   274,405   310,1011   316,382   378,1235   394,401   543,626   801,1073

X(1975) = midpoint of X(489) and X(490)
X(1975) = X(i)-Ceva conjugate of X(j) for these (i,j): (287,325), (801,69)
X(1975) = cevapoint of X(20) and X(194)
X(1975) = anticomplement of X(5254)
X(1975) = crosspoint of PU(37)
X(1975) = intersection of tangents at PU(37) to hyperbola {A,B,C,X(99),PU(37)}
X(1975) = crosspoint of X(20) and X(194) wrt excentral triangle
X(1975) = crosspoint of X(20) and X(194) wrt anticomplementary triangle
X(1975) = X(32) of 6th Brocard triangle
X(1975) = 5th-Brocard-to-6th-Brocard similarity image of X(32)


X(1976) = TRILINEAR POLE OF PU(39)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2/(a2cos B cos C - bc cos2A)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1976) lies on these lines: 2,98   6,157   25,1501   32,263   37,692   51,251   111,1495   237,694   290,308   351,878   419,685   879,1177   1492,1821

X(1976) = isogonal conjugate of X(325)
X(1976) = X(i)-Ceva conjugate of X(j) for these (i,j): (98,248), (2065,6)
X(1976) = cevapoint of X(i) and X(j) for these (i,j): (6,1691), (232,1968)
X(1976) = crosssum of X(2) and X(147)
X(1976) = trilinear pole of line X(32)X(512)
X(1976) = crossdifference of every pair of points on line X(2799)X(3569)
X(1976) = barycentric product X(6)*X(98)
X(1976) = barycentric product of circumcircle intercepts of line X(6)X(523)


X(1977) = BICENTRIC DIFFERENCE OF PU(42)

Trilinears    a3(b - c)2 : :

X(1977) lies on the Brocard inellipse and on these lines: 6,100   213,1017   291,1017   1397,1501

X(1977) = isogonal conjugate of X(31625)
X(1977) = X(i)-Ceva conjugate of X(j) for these (i,j): (6,667), (31,669), (32,1919), (739,890), (1397,1980)
X(1977) = crosspoint of X(i) and X(j) for these (i,j): (6,667), (32,1919), (87,1019)
X(1977) = crosssum of X(i) and X(j) for these (i,j): (2,668), (43,1018), (76,1978)
X(1977) = trilinear pole wrt symmedial triangle of line X(1)X(6)
X(1977) = polar conjugate of isotomic conjugate of X(22096)
X(1977) = crossdifference of every pair of points on line X(668)X(891) (the tangent to the Steiner circumellipse at X(668))
X(1977) = barycentric square of X(649)


X(1978) = TRILINEAR PRODUCT OF PU(41)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b3c3/(b - c)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

As the trilinear product of Steiner circumellipse antipodes, X(1978) lies on conic {{A,B,C,X(668),X(789)}} with center X(6376) and perspector X(75). (Randy Hutson, July 11, 2019)

X(1978) lies on these lines: 75,244   99,835   100,789   101,689   190,670   310,321   312,561   668,891   811,1897

X(1978) = isogonal conjugate of X(1919)
X(1978) = isotomic conjugate of X(649)
X(1978) = complement of X(21224)
X(1978) = anticomplement of X(6377)
X(1978) = X(670)-Ceva conjugate of X(668)
X(1978) = cevapoint of X(i) and X(j) for these (i,j): (75,514), (321,693), (646,668), (850,1230)
X(1978) = crosssum of X(669) and X(1924)
X(1978) = trilinear pole of line X(10)X(75) (the isotomic conjugate of the isogonal conjugate of the Nagel line)
X(1978) = trilinear product of intercepts of Steiner circumellipse and line X(2)X(37)


X(1979) = CROSSSUM OF PU(41)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3(b - c)2 - abc(a - b)(a - c)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1979) lies on this line: 6,100

X(1979) = isogonal conjugate of X(9295)
X(1979) = X(667)-Ceva conjugate of X(6)
X(1979) = crosspoint of PU(42)
X(1979) = polar conjugate of isotomic conjugate of X(22158)


X(1980) = BARYCENTRIC PRODUCT OF PU(42)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4(b - c)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1980) lies on these lines: 667,838   669,688   692,1252   813,929

X(1980) = X(i)-Ceva conjugate of X(j) for these (i,j): (692,32), (1397,1977)
X(1980) = crosspoint of X(32) and X(692)
X(1980) = crosssum of X(i) and X(j) for these (i,j): (76,693), (850,1228)
X(1980) = isogonal conjugate of X(6386)
X(1980) = crossdifference of every pair of points on line X(76)X(321)


X(1981) = VEGA TRANSFORM OF X(647)

Trilinears    [sin 2B sin(C - A) - sin 2C sin(A - B)]/[sin 2A sin(B - C)] : :

As a point on the Euler line, X(1981) has Shinagawa coefficients ($aSBSC$(E+F)F+$aSA$FS2 -$a$(E-2F)FS2, -$aSBSC$S2 -3$aSA$FS2-$a$[(E+F)F-S2]S2).

If X = x : y : z is a triangle center other than X(1), then the Vega transform of X is defined by trilinears

(y - z)/x : (z - x)/y : (x - y)/z,

which is the point of intersection of the line with coefficients x,y,z and the line with coefficients x2, y2, z2. (The first of these lines is the trilinear polar of the isogonal conjugate of X.) Thus, the Vega transform of X(647) lies on the Euler line.

X(1981) lies on these lines: 2,3   651,653   662,811

X(1981) = bicentric difference of PU(30)
X(1981) = PU(30)-harmonic conjugate of X(1982)
X(1981) = intersection of lines P(15)U(16) and U(15)P(16)


X(1982) = PU(22)-HARMONIC CONJUGATE OF X(1981)

Trilinears    (2x - y - z)/x : : , where x = x(a,b,c) = sin 2A sin(B - C)

As a point on the Euler line, X(1982) has Shinagawa coefficients (2$aSA2SB$F -2$aSCSA2$F +$aSC2SA$F -$aSASB2$F, $aSCSA$S2 -$aSASB$S2+3$aSB$FS2 -3$aSC$FS2).

X(1982) lies on these lines: 1,648   2,3   255,1098

X(1982) = bicentric sum of PU(30)
X(1982) = PU(30)-harmonic conjugate of X(1981)


X(1983) = VEGA TRANSFORM OF X(523)

Trilinears    [sin(C - A) - sin(A - B)]/sin(B - C) : :

X(1983) lies on these lines: 3,6   101,109   919,1027   1023,1252   1258,1497

X(1983) = X(i)-Ceva conjugate of X(j) for these (i,j): (59,215), (901,692)
X(1983) = X(215)-cross conjugate of X(110)
X(1983) = crosspoint of X(651) and X(1290)
X(1983) = crosssum of X(661) and X1769)
X(1983) = bicentric difference of PU(29)
X(1983) = PU(29)-harmonic conjugate of X(9275)


X(1984) = VEGA TRANSFORM OF X(1020)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (cos2A - cos B cos C)(cos B - cos C)2/(cos B + cos C)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(1984) has Shinagawa coefficients ($a(SA)3$ - $a(SA)2$E + $aSA$(E - F)F - 2abc(E - 2F)F, -$a(SA)3$ + $a(SA)2$E + $aSBSC$(E - 2F) - $aSA$(E + F)F - 2abc[(E + F)F - S2]).

X(1984) lies on this line: 2,3

X(1984) = crosssum of X(851) and X(1020)


X(1985) = EULER LINE INTERCEPT OF LINE X(6)X(11)

Trilinears    bc[bca4 + (b3 + c3)a3 - ua - v] : : , where u = u(a,b,c) = (b + c)(b - c)2(b2 + bc + c2) and v = v(a,b,c) = bc(b - c)2(b + c)2
Trilinears    (sec A + sec B + sec C) csc A + (csc A + csc B + csc C) sec A : :

As a point on the Euler line, X(1985) has Shinagawa coefficients ($bcSBSC$, $bc$S2).

X(1985) lies on these lines: 2,3   6,11   42,1837   184,1746   1465,1893   1699,1730

X(1985) = inverse-in-orthocentroidal-circle of X(851)


X(1986) = HATZIPOLAKIS REFLECTION POINT

Trilinears    (1 + cos 2B + cos 2C) sin 3A csc 2A : :

Let A'B'C' be the orthic triangle of triangle ABC. Let AB be the reflection of A in C', and define AC, BC, BA, CA, CB functionally. Then the nine-point circles of the triangles

AABAC,    BBCBA,    CCACB,   

concur in X(1986). (Antreas Hatzipolakis, Hyacinthos 7868, 9/12/03; coordinates by Barry Wolk, Hyacinthos 7876, 9/13/03)

Let A'B'C' = cevian triangle of X(186). Let A", B", C" be the inverse-in-circumcircle of A', B', C'. The lines AA", BB", CC" concur in X(1986). (Randy Hutson, December 2, 2017)

Let A'B'C' = orthic triangle. Let B'C'A" be the triangle similar to ABC such that segment A'A" crosses the line B'C'. Define B" and C" cyclically. Equivalently, A" is the reflection of A in B'C', and cyclically for B" and C". Equivalently, A" is the isogonal conjugate of A' wrt AB'C', and cyclically for B" and C". The lines A'A", B'B", C'C" concur in X(1986). (Randy Hutson, December 2, 2017)

Let Ha be the foot of the A-altitude. Let Ba, Ca be the feet of perpendiculars from Ha to CA, AB, resp. Let Na be the nine-point center of HaBaCa. Define Nb and Nc cyclically. The lines HaNa, HbNb, HcNc concur in X(1986). (Randy Hutson, December 2, 2017)

Let A'B'C' be the orthic triangle. Let Oa be the A-Johnson circle of triangle AB'C', and define Ob and Oc cyclically. The circles Oa, Ob, Oc concur in X(1986). (Randy Hutson, July 31 2018)

X(1986) lies on these lines: 4,94   6,74   24,110   25,399   113,403   125,389   186,323   542,1843   648,1300   1844,1845

X(1986) = reflection of X(i) in X(j) for these (i,j): (4,1112), (74,974), (125,389)
X(1986) = X(4)-Ceva conjugate of X(403)
X(1986) = crosspoint of X(4) and X(186)
X(1986) = crosssum of X(3) and X(265)
X(1986) = X(80)-of-orthic-triangle if ABC is acute
X(1986) = antigonal conjugate of X(4) wrt orthic triangle
X(1986) = antipode of X(4) in Hatzipolakis-Lozada hyperbola
X(1986) = perspector of orthic triangle and Hatzipolakis-Moses triangle
X(1986) = X(11)-of-circumorthic-triangle if ABC is acute


X(1987) = 1st LEMOINE ANTIPARALLELS POINT

Trilinears    (sin A)/(sin22A - sin 2B sin 2C) : :

X(1987) is discussed in Lemoine's paper cited at X(19). Contributed by Darij Grinberg.

X(1987) lies on these lines: 3,1625   54,112   69,1972   72,1956   237,248   290,297

X(1987) = isogonal conjugate of X(401)
X(1987) = cevapoint of X(217) and X(237)
X(1987) = antigonal conjugate of isogonal conjugate of X(37918)
X(1987) = X(232)-cross conjugate of X(6)
X(1987) = trilinear pole of line X(51)X(647)
X(1987) = trilinear pole of PU(157)
X(1987) = polar conjugate of X(16089)


X(1988) = 2nd LEMOINE ANTIPARALLELS POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (sin A)/(csc 2B + csc 2C - csc 2A)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1988) is discussed in Lemoine's paper cited at X(19). Contributed by Darij Grinberg.

X(1988) lies on these lines: 6,436   184,1968   394,401   577,1971

X(1988) = isogonal conjugate of X(3164)
X(1988) = X(4)-cross conjugate of X(6)


X(1989) = ISOGONAL CONJUGATE OF X(323)

Trilinears    sin2A csc 3A : :
Trilinears    a/(1 - 4 cos^2 A) : :
Trilinears    csc(A + π/3) + csc(A - π/3) : :
Barycentrics  sin3A csc 3A : sin3B csc 3B : sin3C csc 3C
Barycentrics   1/((a^2 - b^2 - c^2)^2 - b^2 c^2) : :

X(1989) plays a major role in the theory of special isocubics, as presented in Chapter 6 of Jean-Pierre Ehrmann and Bernard Gibert,, "Special Isocubics in the Triangle Plane," downloadable from Bernard Gibert, Cubics in the Triangle Plane.

X(1989) is the barycentric product X(13)*X(14) of the Fermat points. The line through X(50) parallel to the Eular line X(2)X(3) passes through X(1989).

Let A1B1C1 and A2B2C2 be the 1st and 2nd Ehrmann circumscribing triangles. X(1989) is the barycentric product A1*A2 = B1*B2 = C1*C2. (Randy Hutson, June 27, 2018)

Let VaVbVc be the Ehrmann vertex-triangle. Let A' be the barycentric product Vb*Vc, and define B', C' cyclically. The lines AA', BB', CC' concur in X(1989). (Randy Hutson, June 27, 2018)

Let VaVbVc and SaSbSc be the Ehrmann vertex-triangle and Ehrmann side-triangle, resp. Let A' be the barycentric product Va*Sa, and define B', C' cyclically. The lines AA', BB', CC' concur in X(1989). (Randy Hutson, June 27, 2018)

X(1989) lies on these lines: 2,94   6,13   30,50   53,112   67,868   111,230   403,1990   1427,2006

X(1989) = isogonal conjugate of X(323)
X(1989) = complement of X(1272)
X(1989) = X(94)-Ceva conjugate of X(265)
X(1989) = cevapoint of X(i) and X(j) for these (i,j): (53,1990), (115,1637), (395,396)
X(1989) = crosspoint of X(2) and X(1138)
X(1989) = crosssum of X(6) and X(399)
X(1989) = barycentric product of X(13) and X(14)
X(1989) = isotomic conjugate of X(7799)
X(1989) = inverse-in-Kiepert-hyperbola of X(265)
X(1989) = {X(13),X(14)}-harmonic conjugate of X(265)
X(1989) = trilinear pole of line X(51)X(512)
X(1989) = pole wrt polar circle of trilinear polar of X(340)
X(1989) = X(48)-isoconjugate (polar conjugate) of X(340)
X(1989) = X(50)-of-orthocentroidal-triangle
X(1989) = perspector of ABC and unary cofactor triangle of Trinh triangle
X(1989) = circumcircle-inverse of X(15550)
X(1989) = cevapoint of X(36298) and X(36299)
X(1989) = barycentric product X(79)*X(80)
X(1989) = barycentric product of circumcircle intercepts of Johnson circle (or line PU(5), X(5)X(523))
X(1989) = Dao-Moses-Telv-circle-inverse of X(34310)


X(1990) = ORTHIC-AXIS INTERCEPT OF LINE X(4)X(6)

Trilinears    bc[a2(b2 + c2 - 2a2) + (b2 - c2)2]/(b2 + c2 - a2) : :
Trilinears    (tan A)(cos A - 2 cos B cos C) : :
Trilinears    sin A - 2 tan A cos B cos C : :
Barycentrics    [a2(b2 + c2 - 2a2) + (b2 - c2)2]/(b2 + c2 - a2) : :

X(1990) is described in section 6.4.2 of the downloadable article cited at X(1989).

X(1990) lies on these lines: 4,6   44,1785   50,112   140,216   186,1138   230,231   297,340   395,471   396,470   403,1989   458,597   550,577   1033,1609

X(1990) = midpoint of X(297) and X(648)
X(1990) = isogonal conjugate of X(14919)
X(1990) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,133), (1300,25), (1989,53)
X(1990) = crosspoint of X(2) and X(1294)
X(1990) = perspector of circumconic centered at X(133)
X(1990) = center of circumconic that is locus of trilinear poles of lines passing through X(133)
X(1990) = pole wrt polar circle of trilinear polar of X(1494) (line X(2)X(525))
X(1990) = polar conjugate of X(1494)
X(1990) = X(44)-of-orthic-triangle if ABC is acute
X(1990) = inverse of X(4) in circumconic centered at X(1249)
X(1990) = PU(4)-harmonic conjugate of X(9209)
X(1990) = excentral-to-ABC functional image of X(44)


X(1991) = 2nd VAN LAMOEN PERPENDICULAR BISECTORS POINT

Trilinears    bc[b2 + c2 - 2a2 - 4*area(ABC)]

Erect squares inwardly on the sides of triangle ABC. Two edges emanate from A; let P and Q be their endpoints. Let a' be the perpendicular bisector of PQ, and define b' and c' cyclically. Then a', b', c' concur in X(1991). See X(591) for the 1st Van Lamoen perpendicular bisectors point, constructed from outwardly drawn squares.

If you have GeoGebra, you can view X(591) and X(1991); the label changes with the slider position..

If you have The Geometer's Sketchpad, you can view 2nd Van Lamoen Perpendicular Bisectors Point.

X(1991) lies on these lines: 2,6   371,754   487,3070   638,1151

X(1991) = reflection of X(591) in X(2)
X(1991) = centroid of AbAcBcBaCaCb used in construction of 3rd Lozada circle
X(1991) = perspector of outer Vecten triangle and outer Vecten of inner Vecten triangle




leftri

Orthocorrespondents, 1992-2006

rightri

Suppose P is a point in the plane of triangle ABC. The perpendiculars through P to the lines AP, BP, CP meet the lines BC, CA, AB, respectively, in collinear points. Let L denote their line. The trilinear pole of L is the orthocorrespondent of P. This definition is introduced in Bernard Gibert, Orthocorrespondence and Orthopivotal Cubics, Forum Geometricorum 3 (2003) pages 1-27.

If P is given in barycentrics by P = p : q : r, then the orthocorrespondent of P has barycentrics
f(a,b,c) : f(b,c,a) : f(c,a,b), where

f(a,b,c) = a2qr + (-pSA + qSB + rSC)p,


where SA = (b2 + c2 - a2)/2, and SB and SC are defined cyclically.

If follows that if X = x : y : z in trilinears, then the orthocorrespondent of X has trilinears
g(a,b,c) : g(b,c,a) : g(c,a,b), where

g(a,b,c) = yz + (-x cos A + y cos B + z cos C)x.


Pairs (i,j) for which the orthocorrespondent of X(i) is X(j) include the following:
(1,57), (4,2), (11,651), (13,13), (14,14), (15,62), (16,61), (30,2), (98,287), (100,1332), (101,1331), (103,1815), (105,1814), (106,1797), (107,648), (108,651), (109,1813), (111,895), (112,110), (115,110), (125,648), (132,287), (1560,895), (1566,677), (1785,57)

The orthocorrespondent of every point on the line at infinity is the centroid. Two orthoassociate points (i.e., an inverse pair in the polar circle, such as X(112) and X(115)) share the same orthocorrespondent.


X(1992) = ORTHOCORRESPONDENT OF X(2)

Trilinears    bc(b2 + c2 - 5a2) : :
Barycentrics    b2 + c2 - 5a2 : :

Let A'B'C' be the 1st Parry triangle. Let A" be the trilinear pole of line B'C', and define B" and C" cyclically. The lines AA", BB", CC" concur in X(1992). (Randy Hutson, February 10, 2016)

Let A'B'C' be the anti-Artzt triangle. Let A" be the barycentric product B'*C', and define B" and C" cyclically. The lines AA", BB", CC" concur in X(1992). (Randy Hutson, December 10, 2016)

Let A'B'C' be the orthic triangle. X(1992) is the radical center of the 2nd Lemoine circles of triangles AB'C', BC'A', CA'B'. (Randy Hutson, July 31 2018)

X(1992) lies on these lines: 2,6   4,542   30,1351   145,190   218,1332   317,1249   344,1743   376,511   575,631

X(1992) = midpoint of X(2) and X(193)
X(1992) = reflection of X(i) in X(j) for these (i,j): (2,6), (69,2), (599, 597)
X(1992) = isogonal conjugate of X(21448)
X(1992) = isotomic conjugate of X(5485)
X(1992) = anticomplement of X(599)
X(1992) = X(598)-Ceva conjugate of X(2)
X(1992) = perspector of ABC and unary cofactor triangle of 4th anti-Brocard triangle
X(1992) = X(4)-of-anti-Artzt-triangle
X(1992) = {X(597),X(599)}-harmonic conjugate of X(2)
X(1992) = {X(37785),X(37786)}-harmonic conjugate of X(2)
X(1992) = trilinear pole of line X(1499)X(8644) (the perspectrix of ABC and 1st Parry triangle, and the orthic axis of the Thomson triangle)


X(1993) = ORTHOCORRESPONDENT OF X(3)

Trilinears       csc A cos 2A : csc B cos 2B : csc C cos 2C
Barycentrics  cos 2A : cos 2B : cos 2C
Barycentrics    a^2 - 2 R^2 : :
Barycentrics    2 cos^2 A - 1 : :
Barycentrics    2 sin^2 A - 1 : :

X(1993) lies on these lines: 2,6   3,54   4,155   20,1181   22,184   23,154   24,52   25,110   26,49   51,576   63,2003   68,1594   194,401   219,3219   222,3218   264,275   278,651   283,581   317,467   371,1599   372,1600   389,1092   399,1539   458,1235   493,588   494,589   569,1216   573,1790   631,1199   858,1899   1196,1570   1353,1368

X(1993) = reflection of X(22) in X(184)
X(1993) = isogonal conjugate of X(2165)
X(1993) = isotomic conjugate of X(5392)
X(1993) = polar conjugate of X(847)
X(1993) = {X(2),X(6)}-harmonic conjugate of X(5422)
X(1993) = crosspoint of X(6) and X(155) wrt both the excentral and tangential triangles
X(1993) = X(6)-isoconjugate of X(91)
X(1993) = X(92)-isoconjugate of X(2351)
X(1993) = anticomplement of X(343)
X(1993) = X(i)-Ceva conjugate of X(j) for these (i,j): (264,3), (275,2), (317,24), (1585,1599), (1586,1600)
X(1993) = cevapoint of X(i) and X(j) for these (i,j): (6,155), (571,1147)
X(1993) = crosspoint of X(i) and X(j) for these (i,j): (249,648), (1585,1586)
X(1993) = crosssum of X(115) and X(647)


X(1994) = ORTHOCORRESPONDENT OF X(5)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[b2c2 - 16(area(ABC))2]
Trilinears        cos 3A csc 2A : cos 3B csc 2B : cos 3C csc 2C ( M. Iliev, 4/12/07)
Barycentrics    a^2 - R^2 : :

Let OAOBOC be the Kosnita triangle. Let A' be the trilinear pole of line OBOC, and define B' and C' cyclically. The lines AA', BB', CC' concur in X(1994). (Randy Hutson, March 21, 2019)

X(1994) lies on these lines: 2,6   3,1199   5,195   22,1351   23,184   49,143   51,110   52,54   94,275   97,216   186,568   427,1353   567,1154   1194,1570   1627,1692

X(1994) = isogonal conjugate of X(2963)
X(1994) = anticomplement of X(37636)
X(1994) = cevapoint of X(6) and X(195)
X(1994) = X(2965)-cross conjugate of X(3518)
X(1994) = crosspoint of X(588) and X(589)
X(1994) = crosssum of X(590) and X(615)
X(1994) = polar conjugate of X(93)
X(1994) = X(6)-isoconjugate of X(2962)


X(1995) = ORTHOCORRESPONDENT OF X(6)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b4 + c4 - a4 - 4b2c2)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

As a point on the Euler line, X(1995) has Shinagawa coefficients (E - 2F, 2E + 2F).

Let P be a point in the plane of ABC and not on the circumcircle. Let (OA) be the circle tangent to the circumcircle at A and passing through P. Let A' be the antipode of A in (OA). Let LA be the tangent to (OA) at A'. Define LB and LC cyclically. Let TA = LB∩LC, and define TB and TC cyclically. Triangle TATBTC is homothetic to the tangential triangle. When P = X(6), the center of homothety is X(1995). (Randy Hutson, June 7, 2019)

X(1995) lies on these lines: 2,3   6,110   51,576   98,1302   100,344   107,264   157,1624   169,2000   182,373   184,575   197,1621   251,1184   323,1351   1383,1384   1611,1627   1915,2001

X(1995) = isogonal conjugate of X(5486)
X(1995) = inverse-in-orthocentroidal-circle of X(858)
X(1995) = X(598)-Ceva conjugate of X(6)
X(1995) = crossdifference of every pair of points on line X(647)X(690)
X(1995) = harmonic center of circumcircle and {circumcircle, nine-point circle}-inverter
X(1995) = Euler line intercept, other than X(378), of circle {X(378),PU(4)}
X(1995) = {X(37775),X(37776)}-harmonic conjugate of X(6)


X(1996) = ORTHOCORRESPONDENT OF X(7)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = yz + (-x cos A + y cos B + z cos C)x, where x : y : z = X(7)

X(1996) lies on these lines: 2,85   7,11


X(1997) = ORTHOCORRESPONDENT OF X(8)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = yz + (-x cos A + y cos B + z cos C)x, where x : y : z = X(8)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1997) lies on these lines: 2,37   1210,1265


X(1998) = ORTHOCORRESPONDENT OF X(9)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = yz + (-x cos A + y cos B + z cos C)x, where x : y : z = X(9)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1998) lies on these lines: 1,2   57,1004   63,1005   100,1445   224,1467   273,1897   1331,1743


X(1999) = ORTHOCORRESPONDENT OF X(10)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = yz + (-x cos A + y cos B + z cos C)x, where x : y : z = X(10)
Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(a3 + a2b + a2c + abc - b2c - bc2)      (M. Iliev, 5/13/07)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1999) lies on these lines: 1,2   6,312   27,295   37,333   63,192   75,940   81,314   100,1402   171,740   193,329   226,1943   319,1211   350,1965   553,1266   664,1427

X(1999) = X(65)-Ceva conjugate of X(894)
X(1999) = {X(37794),X(37795)}-harmonic conjugate of X(10)


X(2000) = ORTHOCORRESPONDENT OF X(19)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = yz + (-x cos A + y cos B + z cos C)x, where x : y : z = X(19)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2000) lies on these lines: 1,2   9,1331   33,63   75,1897   169,1995   241,1004


X(2001) = ORTHOCORRESPONDENT OF X(32)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = yz + (-x cos A + y cos B + z cos C)x, where x : y : z = X(32)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2001) lies on these lines: 2,98   1915,1995


X(2002) = ORTHOCORRESPONDENT OF X(33)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = yz + (-x cos A + y cos B + z cos C)x, where x : y : z = X(33)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2002) lies on these lines: 1,1813   2,7   19,77   36,990   85,653   169,651   269,1781   1172,1790


X(2003) = ORTHOCORRESPONDENT OF X(36)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = yz + (-x cos A + y cos B + z cos C)x, where x : y : z = X(36)
Trilinears        sin(3A/2) sec(A/2) : sin(3B/2) sec(B/2) : sin(3C/2) sec(C/2)    (M. Iliev, 4/12/07)
Trilinears        (sin A + sin 2A)/(1 + cos A) : (sin B + sin 2B)/(1 + cos B) : (sin C + sin 2C)/(1 + cos C)    (M. Iliev, 4/12/07)
Trilinears        (1 + 2 cos A) tan(A/2) : (1 + 2 cos B) tan(B/2) : (1 + 2 cos C) tan(C/2)     (M. Iliev, 4/12/07)
Trilinears       g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a(b2 + c2 - a2 + bc)/(b + c - a)      (M. Iliev, 5/13/07)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2003) lies on these lines: 1,90   6,57   9,394   35,500   42,109   56,1203   58,73   63,1993   65,267   77,1708   81,226   84,1181   212,991   255,581   323,1442   354,1421   386,603   648,1947   894,1943   1171,1400   1397,1469   1401,1428

X(2003) = X(1442)-Ceva conjugate of X(35)

X(2003) = {X(58),X(73)}-harmonic conjugate of X(37583)

X(2004) = ORTHOCORRESPONDENT OF X(61)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = yz + (-x cos A + y cos B + z cos C)x, where x : y : z = X(61)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2004) lies on these lines: 2,13   32,2005   51,61


X(2005) = ORTHOCORRESPONDENT OF X(62)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = yz + (-x cos A + y cos B + z cos C)x, where x : y : z = X(62)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2005) lies on these lines: 2,14   32,2004   51,62


X(2006) = ORTHOCORRESPONDENT OF X(80)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = yz + (-x cos A + y cos B + z cos C)x, where x : y : z = X(80)
Trilinears       sin(A/2) sec(3A/2) : sin(B/2) sec(3B/2) : sin(C/2) sec(3C/2)    (M. Iliev, 4/12/07)
Trilinears       (tan A/2)/(1 - 2 cos A) : (tan B/2)/(1 - 2 cos B): (tan C/2)/(1 - 2 cos C)    (M. Iliev, 4/12/07)
Trilinears       g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = bc/[(b + c - a)(b2 + c2 - a2 - bc)]     (M. Iliev, 5/13/07)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2006) lies on these lines: 1,5   7,89   28,108   57,1020   79,1399   81,226   88,655   274,349   1427,1989   1758,1929

X(2006) = isogonal conjugate of X(2323)
X(2006) = isotomic conjugate of X(32851)
X(2006) = cevapoint of X(1400) and X(1457)
X(2006) = X(2)-beth conjugate of X(651)

leftri

Gallatly Circle, etc., 2007-2040

rightri

In his book The Modern Geometry of the Triangle, 2nd edition (Francis Hodgson, London, 1913), William Gallatly, on page 117, introduces the pedal cicle of the 1st and 2nd Brocard points. The circle is here named the Gallatly circle. Its center is the Brocard midpoint, X(39), and the radius, R sin ω, where ω denotes the Brocard angle, given by

tan ω = 4[area(ABC)]/(a2 + b2 + c2).

Other special symbols used in this section are identified just before X(1662).

Centers X(2007)-X(2040) were contributed with coordinates by Peter J. C. Moses during September, 2003. For centers of similitude of the Gallatly circle and the circumcircle, see X(1689) and X(1690); for those of the Gallatly circle and the 2nd Lemoine circle, see X(1671) and X(1670).


X(2007) = INSIMILICENTER(GALLATLY CIRCLE, INCIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1 + sin(A + ω)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2007) lies on these lines: 1,39   11,2009   12,2010   55,1689   56,1690   57,2017   181,2019   371,1673   372,1672   1124,1670   1335,1671   1682,2020   1697,2018


X(2008) = EXSIMILICENTER(GALLATLY CIRCLE, INCIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1 - sin(A + ω)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2008) lies on these lines: 1,39   11,2010   12,2009   55,1689   56,1690   57,2018   181,2020   371,1672   372,1673   1124,1671   1335,1670   1682,2019   1697,2017


X(2009) = INSIMILICENTER(GALLATLY CIRCLE, NINE-POINT CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos(B - C) + sin(A + ω)
Trilinears       h(A,B,C) : h(B,C,A): h(C,A,B), where h(A,B,C) = csc(A - ω/2 + π/4)     (M. Iliev, 5/13/07)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2009) lies on the Kiepert hyperbola and these lines: 2,1689   4,1690   5,39   10,2020   11,2007   12,2008   83,1688   98,1687   485,1670   486,1671   1346,2016   1347,2015   1348,2012   1349,2011   1698,2018   1699,2017   2026,2040   2027,2039

X(2009) = reflection of X(2010) in X(115)
X(2009) = isogonal conjugate of X(1687)
X(2009) = antigonal conjugate of X(2010)


X(2010) = EXSIMILICENTER(GALLATLY CIRCLE, NINE-POINT CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos(B - C) - sin(A + ω)
Trilinears       h(A,B,C) : h(B,C,A): h(C,A,B), where h(A,B,C) = csc(A - ω/2 - π/4)     (M. Iliev, 5/13/07)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2010) lies on the Kiepert hyperbola and these lines: 2,1690   4,1689   5,39   10,2019   11,2008   12,2007   83,1687   98,1688   485,1671   486,1670   1346,2015   1347,2016   1348,2011   1349,2012   1698,2017   1699,2018   2026,2039   2027,2040

X(2010) = reflection of X(2009) in X(115)
X(2010) = isogonal conjugate of X(1688)
X(2010) = antigonal conjugate of X(2009)


X(2011) = INSIMILICENTER(GALLATLY CIRCLE, BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos(A - ω) + e sin(A + ω)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2011) lies on these lines: 3,6   1348,2010   1349,2009


X(2012) = EXSIMILICENTER(GALLATLY CIRCLE, BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos(A - ω) - e sin(A + ω)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2012) lies on these lines: 3,6   1348,2009   1349,2010


X(2013) = INSIMILICENTER(GALLATLY CIRCLE, SPIEKER CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = [sin B + sin C + sin A sin(A + ω)](csc A)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2013) lies on this line:
2,2008   8,2007   9,2018   10,39   371,1681   372,1680   958,1689   1329,2009   1376,1690   1377,1670   1378,1671   1678,2012   1679,2011   1706,2017


X(2014) = EXSIMILICENTER(GALLATLY CIRCLE, SPIEKER CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = [sin B + sin C - sin A sin(A + ω)](csc A)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2014) lies on these lines: 2,2007   8,2008   9,2017   10,39   371,1680   372,1681   958,1690   1329,2010   1376,1689   1377,1671   1378,1670   1678,2011   1679,2012   1706,2018


X(2015) = INSIMILICENTER(GALLATLY CIRCLE, ORTHOCENTROIDAL CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = cos A + 4 cos B cos C + J sin(A + ω), J = |OH|/R; see X(1113)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2015) lies on these lines: 39,381   1344,1689   1345,1690   1346,2010   1347,2009


X(2016) = EXSIMILICENTER(GALLATLY CIRCLE, ORTHOCENTROIDAL CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = cos A + 4 cos B cos C - J sin(A + ω), J = |OH|/R; see X(1113)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2016) lies on these lines: 39,381   1344,1690   1345,1689   1346,2009   1347,2010


X(2017) = INSIMILICENTER(GALLATLY CIRCLE, BEVAN CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1 + cos A - cos B - cos C + 2 sin(A + ω)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2017) lies on these lines: 1,1690   9,2014   10,2545   39,40   43,2019   57,2007   165,1689   371,1701   372,1700   516,2544   1670,1702   1671,1703   1695,2020   1697,2008   1698,2010   1699,2009   1704,2012   1705,2011    1706,2013   2562,2573   2563,2572


X(2018) = EXSIMILICENTER(GALLATLY CIRCLE, BEVAN CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1 + cos A - cos B - cos C - 2 sin(A + ω)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2018) lies on these lines: 1,1689   9,2013   10,2544   39,40   43,2020   57,2008   165,1690   371,1700   372,1701   516,2545   1670,1703   1671,1702   1695,2019   1697,2007   1698,2009   1699,2010   1704,2011   1705,2012   1706,2014   2562,2572   2563,2573


X(2019) = INSIMILICENTER(GALLATLY CIRCLE, APOLLONIUS CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (s2 - r2) cos A - 2rs sin A + (s2 + r2) sin(A + ω),
                         where s = (a + b + c)/2 and r = inradius = [area(ABC)]/s

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2019) lies on these lines: 3,6   10,2010   43,2017   181,2007   1682,2008   1695,2018

X(2019) = reflection of X(2020) in X(2092)


X(2020) = EXSIMILICENTER(GALLATLY CIRCLE, APOLLONIUS CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (s2 - r2) cos A - 2rs sin A - (s2 + r2) sin(A + ω),
                         where s = (a + b + c)/2 and r = inradius = [area(ABC)]/s

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2020) lies on these lines: 3,6   10,2009   43,2018   181,2008   1682,2007   1695,2017

X(2020) = reflection of X(2019) in X(2092)


X(2021) = RADICAL TRACE OF GALLATLY CIRCLE AND CIRCUMCIRCLE

Trilinears    3 sin(A - ω) - 2 sin(A + ω) + sin(A + 3ω) : :
Trilinears    a(b6 + c6 + 3a4b2 + 3a4c2 - 2a2b4 - 2a2c4 - 2a2b2c2 - b2c4 - b4c2) : :     (M. Iliev, 5/13/07)

X(2021) lies on these lines: 3,6   30,2025   115,1513   538,1569   620,736   625,1506

X(2021) = midpoint of X(39) and X(187)
X(2021) = reflection of X(2025) in X(2024)
X(2021) = complement of X(39266)
X(2021) = centroid of PU(1)PU(2)
X(2021) = X(230)-of-X(3)PU(1)


X(2022) = RADICAL TRACE OF GALLATLY AND BROCARD CIRCLES

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) =
                         cos 5ω sin A + 3 sin(A - 3ω) + (cos A)(8 sin ω + sin 5ω)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2022) lies on this line: 3,6


X(2023) = RADICAL TRACE OF GALLATLY AND NINE-POINT CIRCLES

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin ω cos(B - C) - cos 2ω sin(A + ω)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Let A'B'C' be the 1st Brocard triangle. Let A" be the orthogonal projection of A on line B'C', and define B" and C" cyclically. Triangle A"B"C" is perpsective to the medial triangle at X(2023). (Note that the A-vertex of the medial triangle is the orthogonal projection of A' on line BC, and cyclically for B' and C'.) (Randy Hutson, July 11, 2019)

X(2023) lies on the half-Moses circle and these lines: 2,694   5,39   6,98   30,2021   194,1007   230,511   325,732   625,736   1503,2024   1575,1738

X(2023) = midpoint of X(39) and X(115)
X(2023) = crosssum of X(1662) and X(1663)
X(2023) = inverse-in-Kiepert-hyperbola of X(114)
X(2023) = {X(2009),X(2010)}-harmonic conjugate of X(114)


X(2024) = RADICAL TRACE OF GALLATLY AND 1st LEMOINE CIRCLES

Trilinears    sin A - 3 sin(A - 2ω) - 2 cos ω sin(A + 3ω) : :

X(2024) lies on these lines: 3,6   230,732   1503,2023

X(2024) = midpoint of X(i) and X(j) for these (i,j): (39,1692), (2021,2025)
X(2024) = radical trace of 1st Lemoine circle and circle {{X(371),X(372),PU(1),PU(39)}}
X(2024) = radical trace of Gallatly circle and circle {{X(371),X(372),PU(1),PU(39)}}
X(2024) = Gallatly-circle-inverse of X(35436)


X(2025) = RADICAL TRACE OF GALLATLY AND 2nd LEMOINE CIRCLES

Trilinears    cos 2ω sin(A + ω) - 2 sin ω tan ω sin A : :

X(2025) lies on this line: 3,6

X(2025) = midpoint of X(39) and X(1570)
X(2025) = reflection of X(2021) in X(2024)


X(2026) = 1st BROCARD-AXIS-GALLATLY-CIRCLE INTERSECTION

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = e sin(A + ω) + cos(A + ω)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Of the two points of intersection of the Brocard axis, X(3)X(6) with the Gallatly circle, X(2026) is the one nearer to X(3).

X(2026) lies on these lines: 3,6   2009,2040   2010,2039

X(2026) = reflection of X(2027) in X(39)


X(2027) = 2nd BROCARD-AXIS-GALLATLY-CIRCLE INTERSECTION

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = e sin(A + ω) - cos(A + ω)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2027) lies on these lines: 3,6   2009,2039   2010,2040

X(2027) = reflection of X(2026) in X(39)


X(2028) = 1st BROCARD-AXIS-MOSES-CIRCLE INTERSECTION

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin A - e sin(A + ω) - sin(A + 2ω)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Of the two points of intersection of the Brocard axis, X(3)X(6) with the Moses circle, X(2028) is the one nearer to X(3). Points X(2028) and X(2029) are the points of intersection of the Brocard axis and the asymptotes of the Kiepert hyperbola; see X(2039) and X(2040). For a description of the Moses circle and others, see the notes just above X(1662).

X(2028) lies on the Brocard inellipse and these lines: 3,6   115,2039   1506,2040

X(2028) = isogonal conjugate of isotomic conjugate of X(39023)
X(2028) = crosssum of the minor vertices of the Steiner circumellipse


X(2029) = 2nd BROCARD-AXIS-MOSES-CIRCLE INTERSECTION

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin A + e sin(A + ω) - sin(A + 2ω)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2029) lies on the Brocard inellipse and these lines: 3,6   115,2040   1506,2039

X(2029) = isogonal conjugate of isotomic conjugate of X(39022)
X(2029) = crosssum of the vertices of the Steiner circumellipse


X(2030) = RADICAL TRACE OF MOSES CIRCLE AND CIRCUMCIRCLE

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin A - 4 sin(A - 2ω) - sin(A + 2ω)
Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(4a4 + b4 + c4 - a2b2 - a2c2 - 4b2c2)     (M. Iliev, 5/13/07)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2030) lies on these lines: 3,6   111,1495   112,843   230,542   524,620

X(2030) = midpoint of X(6) and X(187)
X(2030) = midpoint of X(1691) and X(1692)


X(2031) = RADICAL TRACE OF MOSES AND BROCARD CIRCLES

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 2 sin(A - 3ω) + (sin ω)[5 cos A + cos(A + 2ω)]
Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(4a6 + b6 + c6 - 5a4b2 - 5a4c2 + 4a2b4 + 4a2c4 - 6a2b2c2 + b2c4 + b4c2)     (M. Iliev, 5/13/07)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2031) lies on these lines: 3,6   230,625


X(2032) = RADICAL TRACE OF MOSES AND 1st LEMOINE CIRCLES

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (3 + 5 cos 4ω)sin A + (2 sin 2ω - 3 sin 4ω)cos A
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2032) lies on this line: 3,6


X(2033) = INSIMILICENTER(MOSES CIRCLE, BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin A + e sin(A + ω) - sin(A - 2ω)
                        = 2 sin ω cos(A - ω) + e sin(A + ω)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2033) lies on these lines: 3,6   115,1348   1349,1506


X(2034) = EXSIMILICENTER(MOSES CIRCLE, BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin A - e sin(A + ω) - sin(A - 2ω)
                        = 2 sin ω cos(A - ω) - e sin(A + ω)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2034) lies on these lines: 3,6   115,1349   1348,1506


X(2035) = INSIMILICENTER(MOSES CIRCLE, 1st LEMOINE CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin A + sin(A + ω) - sin(A - 2ω)
                        = 2 sin ω cos(A - ω) + sin(A + ω)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2035) lies on these lines: 3,6   1015,1672   1500,1673   1571,1701   1572,1700   1573,1681   1574,1680


X(2036) = EXSIMILICENTER(MOSES CIRCLE, 1st LEMOINE CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin A - sin(A + ω) - sin(A - 2ω)
                        = 2 sin ω cos(A - ω) - sin(A + ω)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2036) lies on these lines: 3,6   1015,1673   1500,1672   1571,1700   1572,1701   1573,1680   1574,1681


X(2037) = 1st BROCARD-AXIS-APOLLONIUS-CIRCLE INTERSECTION

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = ea cot A - (2r' - es csc ω) cos(A + ω),
                         where r' = (r2 + s2)/(4r) = radius of Apollonius circle (where r = inradius)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

Of the two points of intersection of the Brocard axis and Apollonius circle, X(2037) is the one nearer to X(3) and also nearer to X(6).

X(2037) lies on these lines: 3,6   10,2039   2040,2051

X(2037) = reflection of X(2038) in X(970)


X(2038) = 2nd BROCARD-AXIS-APOLLONIUS-CIRCLE INTERSECTION

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = e cos(A + 2 arctan(r/s)) + cos(A + ω),
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2038) lies on these lines: 3,6   10,2040   2039,2051

X(2038) = reflection of X(2037) in X(970)


X(2039) = 1st NINE-POINT-CIRCLE-KIEPERT-ASYMPTOTES INTERSECTION

Trilinears    e cos A + 2e cos B cos C + cos(A + ω) : :
Barycentrics    (SB + SC)*(SA^2 - SB*SC) + (S^2 + SB*SC)*Sqrt[-S^2 + SA^2 + SB^2 + SC^2] : :
X(2039) = 3 X[381] + X[38596], 5 X[1656] - X[38597], X[14502] - 3 X[36519]

Of the points other than X(115) in which the nine-point circle meets the asymptotes of the Kiepert hyperbola, X(2039) is the one nearer to X(3).

The points X(2039) and X(2040) are endpoints of the diameter of the nine-point circle that is parallel to the line X(25)X(394). (M. Iliev, 5/13/07)

X(2039) lies on the nine-point circle and these lines: {2, 1379}, {3, 1349}, {4, 1380}, {5, 141}, {6, 1348}, {10, 2037}, {114, 3414}, {115, 2028}, {187, 19660}, {381, 38597}, {485, 1667}, {486, 1666}, {1341, 7790}, {1506, 2029}, {1656, 38596}, {1662, 1677}, {1663, 1676}, {1670, 2567}, {1671, 2566}, {2009, 2027}, {2010, 2026}, {2038, 2051}, {2542, 7797}, {2574, 13870}, {3557, 7752}, {5025, 13326}, {5996, 13636}, {6039, 31862}, {6189, 14568}, {13325, 37446}, {14501, 36519}, {18860, 19659}, {22242, 35913}

X(2039) = midpoint of X(4) and X(1380)
X(2039) = reflection of X(i) in X(j) for these {i,j}: {2029, 14633}, {2040, 5}
X(2039) = complement of X(1379)
X(2039) = complement of the isogonal conjugate of X(3413)
X(2039) = medial-isogonal conjugate of X(3413)
X(2039) = orthic-isogonal conjugate of X(3413)
X(2039) = X(4)-Ceva conjugate of X(3413)
X(2039) = crosspoint of X(3413) and X(14633)
X(2039) = crosssum of X(1379) and X(14631)
X(2039) = crossdifference of every pair of points on line {3050, 41881}
X(2039) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 3413}, {661, 39022}, {1380, 14838}, {1577, 2040}, {3413, 10}, {5638, 37}, {6189, 4369}, {13636, 8287}
X(2039) = barycentric quotient X(i)/X(j) for these {i,j}: {34981, 2040}, {39023, 6177}
X(2039) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {141, 625, 2040}, {623, 624, 2040}, {626, 5031, 2040}, {639, 32432, 2040}, {640, 32435, 2040}, {3454, 20546, 2040}, {3934, 5103, 2040}, {7684, 7685, 2040}, {11675, 39506, 2040}

X(2040) = 2nd NINE-POINT-CIRCLE-KIEPERT-ASYMPTOTES INTERSECTION

Trilinears    e cos A + 2e cos B cos C - cos(A + ω)
Barycentrics    (SB + SC)*(SA^2 - SB*SC) - (S^2 + SB*SC)*Sqrt[-S^2 + SA^2 + SB^2 + SC^2] : :
X(2040) = 3 X[381] + X[38596], 5 X[1656] - X[38597], X[14502] - 3 X[36519]

X(2040) lies on the nine-point circle and these lines: {2, 1380}, {3, 1348}, {4, 1379}, {5, 141}, {6, 1349}, {10, 2038}, {114, 3413}, {115, 2029}, {187, 19659}, {381, 38596}, {485, 1666}, {486, 1667}, {1340, 7790}, {1506, 2028}, {1656, 38597}, {1662, 1676}, {1663, 1677}, {1670, 2566}, {1671, 2567}, {2009, 2026}, {2010, 2027}, {2037, 2051}, {2543, 7797}, {2575, 13870}, {3558, 7752}, {5025, 13325}, {5996, 13722}, {6040, 31863}, {6190, 14568}, {13326, 37446}, {14502, 36519}, {18860, 19660}, {22243, 35914}

X(2040) = midpoint of X(i) and X(j) for these {i,j}: {4, 1379}, {115, 14501}, {6040, 31863}, {6190, 31862}
X(2040) = reflection of X(i) in X(j) for these {i,j}: {2028, 14632}, {2039, 5}
X(2040) = complement of X(1380)
X(2040) = complement of the isogonal conjugate of X(3414)
X(2040) = medial-isogonal conjugate of X(3414)
X(2040) = orthic-isogonal conjugate of X(3414)
X(2040) = X(4)-Ceva conjugate of X(3414)
X(2040) = crosspoint of X(3414) and X(14632)
X(2040) = crosssum of X(1380) and X(14630)
X(2040) = crossdifference of every pair of points on line {3050, 41880}
X(2040) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 3414}, {661, 39023}, {1379, 14838}, {1577, 2039}, {3414, 10}, {5639, 37}, {6190, 4369}, {13722, 8287}
X(2040) = barycentric quotient X(i)/X(j) for these {i,j}: {34981, 2039}, {39022, 6178}
X(2040) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {141, 625, 2039}, {623, 624, 2039}, {626, 5031, 2039}, {639, 32432, 2039}, {640, 32435, 2039}, {3454, 20546, 2039}, {3934, 5103, 2039}, {7684, 7685, 2039}, {11675, 39506, 2039}

leftri

Euler-Vecten-Gibert Points, 2041 -2046

rightri

On August 13, 2003, Bernard Gibert contributed six centers that lie on the Euler line and are related to the Vecten points, X(485) and X(486).


X(2041) = 1st EULER-VECTEN-GIBERT POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[(b2 - c2)2 - a2(b2 + c2) + 31/2a2(b2 + c2 - a2)]
Trilinears       g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = sin(B + π/4)sin(C + π/4) - cos(A - π/6)      (M. Iliev, 5/13/07)
Trilinears       h(A,B,C) : h(B,C,A) : h(C,A,B), where h(A,B,C) = sin A + cos(B - C) - 2 cos(A - π/6)      (M. Iliev, 5/13/07)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2041) = 3X(2) - (1 + sqrt(3))*X(3)

As a point on the Euler line, X(2041) has Shinagawa coefficients (31/2 - 1, -31/2 - 1).

X(2041) lies on these lines: 2,3   15,485   16,486   489,622   490,621   491,628   492,627

X(2041) = reflection of X(2042) in X(382)
X(2041) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 641, 2042), (3, 4, 2044), (3, 5, 2042), (4, 20, 2042), (376, 3832, 2042), (381, 548, 2042)


X(2042) = 2nd EULER-VECTEN-GIBERT POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[(b2 - c2)2 - a2(b2 + c2) - 31/2a2(b2 + c2 - a2)]
Trilinears       g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = sin(B + π/4)sin(C + π/4) + cos(A + π/6)      (M. Iliev, 5/13/07)
Trilinears       h(A,B,C) : h(B,C,A) : h(C,A,B), where h(A,B,C) = sin A + cos(B - C) + 2 cos(A + π/6)      (M. Iliev, 5/13/07)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2042) = 3X(2) + (-1 + sqrt(3))*X(3)

As a point on the Euler line, X(2042) has Shinagawa coefficients (31/2 + 1, -31/2 + 1).

X(2042) lies on these lines: 2,3   15,486   16,485   489,621   490,622   491,627   492,628

X(2042) = reflection of X(2041) in X(382)
X(2042) = complement of X(35732)
X(2042) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 641, 2041), (3, 4, 2043), (3, 5, 2041), (4, 20, 2041), (376, 3832, 2041), (381, 548, 2041)


X(2043) = 3rd EULER-VECTEN-GIBERT POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[- 2(b2 - c2)2 + a2(a2 + b2 + c2) + 31/2[(b2 - c2)2 - a2(b2 + c2)]]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)
X(2043) = 3X(2) - (3 + sqrt(3))*X(3)

As a point on the Euler line, X(2043) has Shinagawa coefficients (31/2 - 1, -3 + 31/2).

X(2043) lies on these lines: 2,3   13,485   14,486   17,1327   18,1328   298,637   299,638   489,616   490,617   491,622   492,621

X(2043) = reflection of X(2044) in X(3)
X(2043) = inverse-in-orthocentroidal-circle of X(2044)
X(2043) = {X(2),X(4)}-harmonic conjugate of X(2044)
X(2043) = {X(3),X(4)}-harmonic conjugate of X(2042)
X(2043) = {X(5),X(381)}-harmonic conjugate of X(2044)
X(2043) = {X(20),X(376)}-harmonic conjugate of X(2044)
X(2043) = {X(382),X(549)}-harmonic conjugate of X(2044)


X(2044) = 4th EULER-VECTEN-GIBERT POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[- 2(b2 - c2)2 + a2(a2 + b2 + c2) - 31/2[(b2 - c2)2 - a2(b2 + c2)]]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)
X(2044) = 3X(2) + (-3 + sqrt(3))*X(3)

As a point on the Euler line, X(2044) has Shinagawa coefficients (31/2 + 1,3 + 31/2).

X(2044) lies on these lines: 2,3   13,486   14,485   17,1328   18,1327   298,638   299,637   489,617   490,616   491,621   492,622

X(2044) = reflection of X(2043) in X(3)
X(2044) = inverse-in-orthocentroidal-circle of X(2043)
X(2044) = X(1) of X(381)PU(5)
X(2044) = {X(2),X(4)}-harmonic conjugate of X(2043)
X(2044) = {X(3),X(4)}-harmonic conjugate of X(2041)
X(2044) = {X(5),X(381)}-harmonic conjugate of X(2043)
X(2044) = {X(20),X(376)}-harmonic conjugate of X(2043)
X(2044) = {X(382),X(549)}-harmonic conjugate of X(2043)


X(2045) = 5th EULER-VECTEN-GIBERT POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[- 2(b2 - c2)2 + a2(3b2 + 3c2 - a2) + 31/2[(b2 - c2)2 - a2(b2 + c2)]]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)
X(2045) = 3X(2) + (1 + sqrt(3))*X(3)

As a point on the Euler line, X(2045) has Shinagawa coefficients (3 - 31/2,1 - 31/2).

X(2045) lies on these lines: 2,3   17,485   18,486   302,637   303,638   397,590   398,615   491,634   492,633

X(2045) = inverse-in-orthocentroidal-circle of X(2046)
X(2044) = X(1)-of-X(381)PU(5)
X(2044) = {X(2),X(4)}-harmonic conjugate of X(2043)
X(2044) = {X(3),X(4)}-harmonic conjugate of X(2041)
X(2044) = {X(5),X(381)}-harmonic conjugate of X(2043)
X(2044) = {X(20),X(376)}-harmonic conjugate of X(2043)
X(2044) = {X(382),X(549)}-harmonic conjugate of X(2043)


X(2046) = 6th EULER-VECTEN-GIBERT POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[- 2(b2 - c2)2 + a2(3b2 + 3c2 - a2) - 31/2[(b2 - c2)2 - a2(b2 + c2)]]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)
X(2046) = 3X(2) + (1 - sqrt(3))*X(3)

As a point on the Euler line, X(2046) has Shinagawa coefficients (3 + 31/2,1 + 31/2).

X(2046) lies on these lines: 2,3   17,486   18,485   302,638   303,637   397,615   398,590   491,633   492,634

X(2046) = inverse-in-orthocentroidal-circle of X(2045)


X(2047) = EULER LINE INTERCEPT OF LINE X(10)X(485)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (s - r)cos A + (s + r)cos(B -C),
                         where r = inradius, s = semiperimeter
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(2047) has Shinagawa coefficients (s,r).

X(2047) lies on these lines: 2,3   10,485   86,637   492,1330   590,1834   966,1587


X(2048) = {X(3),X(5)}-HARMONIC CONJUGATE OF X(2047)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (s - r)cos A - (s + r)cos(B - C),
                         where r = inradius, s = semiperimeter
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(2048) has Shinagawa coefficients (r, s).

X(2048) lies on these lines: 2,3   486,1686


X(2049) = EULER LINE INTERCEPT OF LINE X(6)X(10)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (s2 - r2)cos A + (s2 + r2)cos(B - C),
                         where r = inradius, s = semiperimeter
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(2049) has Shinagawa coefficients (s2,r2).

X(2049) lies on these lines: 2,3   6,10   12,1460   171,1698


X(2050) = {X(3),X(5)}-HARMONIC CONJUGATE OF X(2049)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (s2 - r2)cos A - (s2 + r2)cos(B - C),
                         where r = inradius, s = semiperimeter
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(2050) has Shinagawa coefficients (r2, s2).

X(2050) lies on these lines: 2,3   11,1460   171,1699   1482,1999


X(2051) = EXSIMILICENTER(NINE-POINT CIRCLE, APOLLONIUS CIRCLE)

Trilinears    (s2 - r2)cos A - (s2 + r2)cos(B - C) - 2rs sin A (Peter J. C. Moses)
Trilinears    sec(A - U) : :, U as at X(572)
Trilinears    1/(s cos A + r sin A) : :
Barycentrics    1/[a3 - a(b2 - bc + c2) - bc(b + c)] (Paul Yiu)
Barycentrics    1/(a^3 - a (b^2 - b c + c^2) - b c(b + c)) : :

X(2051) is the external center of similitude of the nine-point and Apollonius circles. Trilinears for the internal center, X(10), result from g(a,b,c) by changing the "-" just after "cos A" to "+". (The two circles are described just before X(1662).)

Let A' be the midpoint of BC, A" the midpoint of AX(1), and define B', C' and B", C" cyclically. Let A"'B"'C"' be the incentral triangle. Let A* be the orthocenter of A'A"A"', and define B* and C* cyclically. The lines AA*, BB*, CC* concur in X(2051). (Randy Hutson, March 21, 2019)

Let LA be the radical axis of the A-excircle and the excircles radical circle, and define LB and LC cyclically. Let A' = LB∩LC, and define B' and C' cyclically. The lines AA', BB', CC' concur in X(2051). (Randy Hutson, March 21, 2019)

Let A'B'C' be the tangential triangle of the Feuerbach triangle. Let A"B"C" be the tangential triangle of the Apollonius triangle. Let A* be the {A',A"}-harmonic conjugate of X(10), and define B* and C* cyclically. The lines AA*, BB*, CC* concur in X(2051). (Randy Hutson, March 21, 2019)

X(2051) lies on these lines: 2,573   4,386   5,10   6,2050   11,181   12,1682   27,275   43,1699   226,1465   321,908   469,2052   485,1685   486,1686   572,2185   1348,1693   1349,1694   1676,1683   1677,1684   1695,1698   1766,2339   2009,2019   2101,2020   2037,2040

X(2051) = isogonal conjugate of X(572)
X(2051) = complement of X(1764)
X(2051) = {X(5),X(970)}-harmonic conjugate of X(10)
X(2051) = perspector of exircles radical circle
X(2051) = Spieker-radical-circle-inverse of X(38472)
X(2051) = pole wrt excircles radical circle of antiorthic axis


X(2052) = ISOGONAL CONJUGATE OF X(577)

Trilinears    csc A sec2A : :
Trilinears    sec A csc 2A : :
Trilinears    sec(A - T) : : , T as at X(389)
Barycentrics    sec2A : :
Barycentrics    b^2c^2/(b^2 + c^2 - a^2)^2 : :

Let A'B'C' be the orthic triangle of a triangle ABC, and let
O(A) = circle with center A and radius AA', and define O(B) and O(C) cyclically
p(A) = polar of X(4) wrt O(A), and define p(B) and p(C) cyclically
A'' = p(B)∩p(C), and define B'' and C'' cyclically.
Then A''B''C'' is homothetic to ABC, and the center of homothety is X(2052). (Angel Montesdeoca, September 30, 2016)

X(2052) lies on these lines: 2,216   4,51   6,275   10,158   13,473   14,472   17,470   18,471   24,96   25,98   63,1947   76,297   83,458   92,226   184,436   262,427   331,1446   394,801   401,1968   485,1585   486,1586   648,1993

X(2052) = isogonal conjugate of X(577)
X(2052) = isotomic conjugate of X(394)
X(2052) = cevapoint of X(i) and X(j) for these (i,j): (4,393), (6,24), (324,467), (1585,1586)
X(2052) = X(i)-cross conjugate of X(j) for these (i,j): (4,264), (6,847), (53,4), (393,1093), (686,1304)
X(2052) = trilinear pole of line X(403)X(523) (polar of X(3) wrt polar circle)
X(2052) = pole wrt polar circle of trilinear polar of X(3) (line X(520)X(647))
X(2052) = polar conjugate of X(3)
X(2052) = X(43)-of-orthic-triangle if ABC is acute
X(2052) = complement of isotomic conjugate of X(34287)
X(2052) = barycentric product X(107)*X(850)


X(2053) = X(2)-ISOCONJUGATE OF X(1423)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b + c - a)/(ab + ac - bc)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2053) lies on these lines: 3,2108   6,904   31,172   41,2330   55,2319   56,87   105,330   1403,1580   2115,2144

X(2053) = isogonal conjugate of X(3212)
X(2053) = complement of X(20350)
X(2053) = anticomplement of X(20338)
X(2053) = X(9)-cross conjugate of X(55)
X(2053) = crosssum of X(43) and X(1423)


X(2054) = X(2)-ISOCONJUGATE OF X(1931)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b + c)/[(b + c)2 - (a + b)(a + c)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2054) lies on these lines: 2,846   110,1171   111,902   238,1931

X(2054) = complement of X(20351)
X(2054) = anticomplement of X(20339)

leftri

Orion Transforms, 2055 -2065

rightri

On September 24, 2003, Jean-Pierre Ehrmann suggested in Hyacinthos 7999 a transformation: suppose P = x : y : z (trilinears); the Orion transform of P is given by OT(P) = f(a,b,c) : f(b,c,a) : f(c,a,b), where

f(a,b,c) = x[- y2z2 + x2(y2 + z2 + 2yz cos A)].

Among pairs (i,j) for which OT(X(j)) = X(i) are these:

(1,35), (2,69), (4,24), (7,57), (99,249), (100,59), (110,250)

Ehrmann's construction of OT(P) is as the perspector of triangles ABC and A"B"C", where A" is the reflection of P in the sideline B'C' of the cevian triangle A'B'C' of P, and B" and C' are defined cyclically. Alternative and related constructions are given in other Hyacinthos messages prompted by #7999.

Extensions of results in this section were contributed by Ivan Pavlov, October 22, 2023.


X(2055) = ORION TRANSFORM OF X(3)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^12+b^2*c^2*(b^2-c^2)^4-4*a^10*(b^2+c^2)+a^4*(b^2-c^2)^2*(b^4+c^4)-4*a^6*(b^2+c^2)*(b^4+c^4)+a^8*(6*b^4+9*b^2*c^2+6*c^4)) : :

X(2055) is the perspector of triangle ABC and the orthic triangle of the cevian triangle of the circumcenter. (Randy Hutson, 9/23/2011)

X(2055) lies on these lines: {3, 6}, {4, 14152}, {5, 275}, {54, 418}, {97, 13434}, {140, 46760}, {185, 45842}, {250, 47304}, {394, 14059}, {417, 43574}, {648, 41481}, {1092, 6760}, {1147, 6638}, {1576, 34782}, {1971, 36433}, {1994, 42441}, {3463, 5562}, {5446, 37081}, {6321, 8800}, {7335, 20764}, {8613, 51888}, {8884, 13322}, {9306, 38281}, {10112, 10600}, {12134, 44231}, {13450, 41202}, {13557, 18404}, {14575, 18925}, {15033, 26897}, {19467, 52435}, {21651, 22143}, {31388, 35921}, {36245, 44076}, {37877, 46219}

X(2055) = reflection of X(i) in X(j) for these {i,j}: {43995, 5}
X(2055) = X(i)-isoconjugate-of-X(j) for these {i, j}: {92, 8612}
X(2055) = X(i)-Dao conjugate of X(j) for these {i, j}: {22391, 8612}, {38976, 14618}
X(2055)= pole of line {23286, 34983} with respect to the Johnson circumconic
X(2055)= pole of line {2, 1075} with respect to the Stammler hyperbola
X(2055) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(8613)}}, {{A, B, C, X(6), X(3463)}}, {{A, B, C, X(52), X(14941)}}, {{A, B, C, X(216), X(40448)}}, {{A, B, C, X(275), X(389)}}, {{A, B, C, X(288), X(578)}}, {{A, B, C, X(1073), X(11432)}}, {{A, B, C, X(19179), X(57686)}}, {{A, B, C, X(32590), X(32592)}}
X(2055) = barycentric product X(i)*X(j) for these (i, j): {3, 8613}, {394, 56298}, {51888, 97}
X(2055) = barycentric quotient X(i)/X(j) for these (i, j): {184, 8612}, {8613, 264}, {38976, 35442}, {51888, 324}, {56298, 2052}
X(2055) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 36749, 30258}, {3, 38292, 11432}, {4, 23606, 14152}, {275, 40448, 5}, {577, 578, 3}, {8613, 56298, 51888}


X(2056) = ORION TRANSFORM OF X(6)

Trilinears    a(a4 - 2a2b2 - 2a2c2+b2c2) : :      (M. Iliev, 5/13/07)
Barycentrics    a^6+a^2*b^2*c^2-2*a^4*(b^2+c^2) : :

X(2056) lies on these lines: {2, 5038}, {6, 1196}, {22, 5104}, {25, 13330}, {32, 36615}, {51, 20998}, {110, 251}, {111, 53863}, {141, 58761}, {154, 5017}, {182, 21001}, {184, 1613}, {323, 20859}, {352, 15246}, {394, 3094}, {427, 11646}, {524, 33651}, {576, 34481}, {692, 21792}, {732, 37894}, {1194, 3292}, {1397, 2176}, {1412, 33863}, {1501, 9463}, {1611, 17809}, {1625, 18373}, {1627, 14567}, {1660, 32445}, {1993, 3981}, {1994, 3124}, {2076, 3787}, {2162, 2175}, {2248, 4274}, {2502, 13595}, {3117, 34870}, {3229, 3398}, {3231, 5012}, {3291, 13366}, {3819, 5116}, {3917, 10329}, {3955, 16514}, {5114, 39967}, {5354, 39689}, {6090, 13331}, {6388, 11225}, {6676, 15993}, {6997, 53504}, {8550, 40326}, {8584, 32740}, {9259, 55086}, {10328, 46900}, {10799, 52655}, {11173, 20850}, {12055, 15066}, {12835, 20284}, {14575, 51336}, {17811, 50659}, {20854, 46321}, {20986, 21788}, {21448, 52719}, {21779, 44085}, {21849, 40350}, {23292, 53475}, {32449, 57216}, {35356, 35929}, {35901, 54384}, {36650, 39560}, {39024, 55038}

X(2056) = perspector of ABC and orthic triangle of symmedial triangle
X(2056) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 8601}
X(2056) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 8601}
X(2056) = X(i)-cross conjugate of X(j) for these {i, j}: {31989, 6}
X(2056)= pole of line {1368, 37688} with respect to the Kiepert hyperbola
X(2056)= pole of line {193, 732} with respect to the Stammler hyperbola
X(2056)= pole of line {7777, 35540} with respect to the Wallace hyperbola
X(2056) = intersection, other than A, B, C, of circumconics {{A, B, C, X(733), X(7783)}}, {{A, B, C, X(5943), X(8601)}}
X(2056) = barycentric product X(i)*X(j) for these (i, j): {6, 7783}, {31989, 45857}
X(2056) = barycentric quotient X(i)/X(j) for these (i, j): {32, 8601}, {7783, 76}
X(2056) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14153, 5038}, {110, 3051, 1915}, {184, 1613, 1691}, {1196, 34986, 6}, {1915, 3051, 12212}, {1993, 3981, 5111}, {9225, 14153, 2}, {9463, 9544, 1501}, {20998, 45843, 51}


X(2057) = ORION TRANSFORM OF X(8)

Barycentrics    a*(a-b-c)*(a^5-2*a^3*(b-c)^2-a^4*(b+c)-(b-c)^2*(b+c)^3+2*a^2*(b+c)*(b^2+c^2)+a*(b^4-4*b^3*c-2*b^2*c^2-4*b*c^3+c^4)) : :

X(2057) lies on these lines: {1, 2}, {3, 51380}, {40, 51379}, {56, 46677}, {63, 10270}, {72, 3359}, {84, 1259}, {100, 1490}, {280, 5423}, {282, 3692}, {474, 17658}, {480, 5784}, {908, 6769}, {944, 55302}, {1260, 5777}, {1320, 56096}, {1476, 35262}, {2956, 35281}, {3436, 6282}, {3681, 21164}, {3689, 26358}, {3699, 52346}, {3711, 22768}, {3940, 37562}, {3965, 5782}, {5176, 12650}, {5193, 6762}, {5223, 16209}, {5440, 5534}, {5587, 56101}, {5687, 5720}, {5780, 10679}, {6256, 21075}, {7994, 11415}, {10269, 34790}, {10310, 18239}, {10388, 41012}, {11010, 52050}, {11682, 39776}, {12751, 55016}, {17757, 37531}, {20588, 25440}, {37244, 58650}, {37561, 57279}, {38271, 45393}, {38901, 52027}

X(2057) = perspector of ABC and orthic triangle of extouch triangle
X(2057) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 10309}, {57, 8602}
X(2057) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 10309}, {268, 1422}, {5452, 8602}, {39026, 30239}
X(2057) = X(i)-cross conjugate of X(j) for these {i, j}: {18239, 8}
X(2057) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10310)}}, {{A, B, C, X(2), X(56545)}}, {{A, B, C, X(84), X(3086)}}, {{A, B, C, X(280), X(14986)}}, {{A, B, C, X(282), X(1210)}}, {{A, B, C, X(318), X(24982)}}, {{A, B, C, X(519), X(30201)}}, {{A, B, C, X(938), X(1034)}}, {{A, B, C, X(1156), X(5704)}}, {{A, B, C, X(1737), X(38271)}}, {{A, B, C, X(1767), X(40940)}}, {{A, B, C, X(2999), X(57418)}}, {{A, B, C, X(18391), X(44692)}}, {{A, B, C, X(27383), X(45393)}}, {{A, B, C, X(36846), X(51565)}}, {{A, B, C, X(41575), X(44693)}}
X(2057) = barycentric product X(i)*X(j) for these (i, j): {190, 30201}, {1265, 1767}, {4564, 52112}, {10310, 312}, {56545, 8}
X(2057) = barycentric quotient X(i)/X(j) for these (i, j): {9, 10309}, {55, 8602}, {101, 30239}, {1767, 1119}, {10310, 57}, {30201, 514}, {52112, 4858}, {56545, 7}
X(2057) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 27383, 14986}, {8, 4511, 36846}, {8, 5552, 24982}, {200, 6745, 1998}, {200, 936, 8}, {3811, 26364, 1}, {5687, 41389, 49163}


X(2058) = ORION TRANSFORM OF X(15)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is given just above X(2055), using X = X(15)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2058) lies on these lines: {15, 13391}, {8016, 57382}, {18403, 40682}, {37848, 40695}


X(2059) = ORION TRANSFORM OF X(16)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is given just above X(2055), using X = X(16)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2059) lies on these lines: {16, 13391}, {8017, 57383}, {18403, 40683}, {37850, 40696}


X(2060) = ORION TRANSFORM OF X(20)

Barycentrics    (a^2-b^2-c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(3*a^4-(b^2-c^2)^2-2*a^2*(b^2+c^2))*(5*a^12+(b^2-c^2)^6-10*a^10*(b^2+c^2)+36*a^6*(b^2-c^2)^2*(b^2+c^2)+2*a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(3*b^2+c^2)*(b^2+3*c^2)+a^8*(-9*b^4+34*b^2*c^2-9*c^4)-a^4*(b^2-c^2)^2*(29*b^4+54*b^2*c^2+29*c^4)) : :

As a point on the Euler line, X(2060) has Shinagawa coefficients (4(E - 2F)F - S2,8F2).

X(2060) lies on these lines: {2, 3}, {2131, 23608}, {3344, 35602}, {3346, 12096}, {3350, 31944}, {5895, 45844}, {5910, 12111}, {8778, 46346}, {14362, 28785}, {14365, 28781}, {23239, 34781}, {31377, 34286}, {34147, 58797}

X(2060) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2184, 31956}, {19614, 42465}
X(2060) = X(i)-Dao conjugate of X(j) for these {i, j}: {4, 42465}, {3350, 31943}, {45248, 3348}
X(2060) = X(i)-Ceva conjugate of X(j) for these {i, j}: {53050, 20}
X(2060) = X(i)-cross conjugate of X(j) for these {i, j}: {3183, 20}
X(2060)= pole of line {3, 2130} with respect to the Stammler hyperbola
X(2060)= pole of line {69, 14362} with respect to the Wallace hyperbola
X(2060) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(2131)}}, {{A, B, C, X(25), X(28781)}}, {{A, B, C, X(1249), X(6621)}}, {{A, B, C, X(3091), X(56593)}}, {{A, B, C, X(6616), X(36413)}}, {{A, B, C, X(6617), X(35602)}}
X(2060) = barycentric product X(i)*X(j) for these (i, j): {3183, 37669}, {14362, 36413}, {15905, 56593}, {31944, 47633}, {40839, 53050}
X(2060) = barycentric quotient X(i)/X(j) for these (i, j): {154, 31956}, {1249, 42465}, {3183, 459}, {3344, 31943}, {15905, 3348}, {31944, 3343}, {36413, 14365}, {37669, 56594}, {56593, 52581}
X(2060) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 3079, 20}, {20, 1559, 3146}


X(2061) = ORION TRANSFORM OF X(40)

Barycentrics    a^2*(a^3+a^2*(b+c)-(b-c)^2*(b+c)-a*(b+c)^2)*(a^14+2*a^13*(b+c)+2*a*(b-c)^6*(b+c)^7+a^12*(-5*b^2+3*b*c-5*c^2)-5*a^2*(b-c)^6*(b+c)^4*(b^2+c^2)-4*a^3*(b-c)^4*(b+c)^5*(3*b^2-2*b*c+3*c^2)-4*a^11*(3*b^3+b^2*c+b*c^2+3*c^3)+(b-c)^4*(b+c)^6*(b^4-3*b^3*c+8*b^2*c^2-3*b*c^3+c^4)+a^10*(9*b^4-6*b^3*c+26*b^2*c^2-6*b*c^3+9*c^4)+2*a^5*(b-c)^2*(b+c)^3*(15*b^4-16*b^3*c+18*b^2*c^2-16*b*c^3+15*c^4)-8*a^7*(b-c)^2*(5*b^5+9*b^4*c+10*b^3*c^2+10*b^2*c^3+9*b*c^4+5*c^5)+a^9*(30*b^5-2*b^4*c+4*b^3*c^2+4*b^2*c^3-2*b*c^4+30*c^5)-a^6*(b-c)^2*(5*b^6-18*b^5*c-101*b^4*c^2-60*b^3*c^3-101*b^2*c^4-18*b*c^5+5*c^6)-a^8*(5*b^6+7*b^5*c+55*b^4*c^2-70*b^3*c^3+55*b^2*c^4+7*b*c^5+5*c^6)+a^4*(b-c)^2*(9*b^8-9*b^7*c-62*b^6*c^2-39*b^5*c^3-54*b^4*c^4-39*b^3*c^5-62*b^2*c^6-9*b*c^7+9*c^8)) : :

X(2061) = R(4R2 - s2- S)(4R2 - s2 + S)*X(1) + 2(4rR + 4R2 - s2)(4R3 + rs2 - Rs2)*X(3)    (Peter Moses, April 2, 2012)

X(2061) lies on this line: 1,3


X(2062) = ORION TRANSFORM OF X(63)

Barycentrics    a^2*(a+b-c)*(a-b+c)*(a^2-b^2-c^2)*(a^8+5*a^4*b*c*(b+c)^2-a^6*(2*b^2+3*b*c+2*c^2)-(b^2-c^2)^2*(b^4+b^3*c+4*b^2*c^2+b*c^3+c^4)+a^2*(b+c)^2*(2*b^4-5*b^3*c+2*b^2*c^2-5*b*c^3+2*c^4)) : :

X(2062) lies on circumconic {{A, B, C, X(1439), X(40407)}} and on these lines: {3, 77}, {21, 307}, {63, 9119}, {284, 2003}, {1259, 19611}, {3964, 7111}, {5932, 6060}, {7282, 56374}, {7364, 41081}, {18655, 37258}

X(2062)= pole of line {4183, 40942} with respect to the Stammler hyperbola


X(2063) = ORION TRANSFORM OF X(69)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^8+10*a^4*b^2*c^2-2*a^6*(b^2+c^2)+2*a^2*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)-(b^2-c^2)^2*(b^4+4*b^2*c^2+c^4)) : :

X(2063) lies on these lines: {2, 6}, {64, 2071}, {110, 1619}, {155, 18913}, {264, 801}, {378, 1092}, {1073, 3964}, {1498, 53050}, {1568, 18418}, {1593, 57648}, {1660, 11413}, {4558, 6617}, {5409, 26936}, {5893, 44440}, {6509, 9723}, {6623, 37498}, {9306, 12294}, {9818, 14128}, {9909, 20772}, {11456, 51394}, {12322, 55444}, {12323, 55443}, {14390, 57483}, {18466, 22115}, {23291, 52077}, {30771, 34966}, {38282, 44492}, {40221, 46639}

X(2063) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 43695}, {661, 30249}
X(2063) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 43695}, {14379, 41489}, {35968, 2501}, {36830, 30249}, {46432, 37197}
X(2063) = X(i)-cross conjugate of X(j) for these {i, j}: {36982, 69}
X(2063)= pole of line {99, 30249} with respect to the Kiepert parabola
X(2063)= pole of line {525, 14939} with respect to the MacBeath circumconic
X(2063)= pole of line {6, 1885} with respect to the Stammler hyperbola
X(2063)= pole of line {2, 14091} with respect to the Wallace hyperbola
X(2063) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(11413)}}, {{A, B, C, X(3), X(53415)}}, {{A, B, C, X(6), X(1660)}}, {{A, B, C, X(64), X(10229)}}, {{A, B, C, X(287), X(40318)}}, {{A, B, C, X(524), X(30211)}}, {{A, B, C, X(1032), X(11433)}}, {{A, B, C, X(1073), X(13567)}}, {{A, B, C, X(2139), X(45302)}}, {{A, B, C, X(6515), X(14919)}}, {{A, B, C, X(18928), X(31371)}}
X(2063) = barycentric product X(i)*X(j) for these (i, j): {394, 46927}, {1660, 305}, {11413, 69}, {30211, 99}, {36982, 57800}, {37669, 57483}
X(2063) = barycentric quotient X(i)/X(j) for these (i, j): {3, 43695}, {110, 30249}, {1660, 25}, {11413, 4}, {14390, 41489}, {30211, 523}, {33583, 31942}, {35602, 51347}, {36982, 235}, {39268, 6526}, {46927, 2052}, {57483, 459}
X(2063) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {394, 11064, 1993}, {394, 17811, 69}, {394, 37669, 20806}


X(2064) = ORION TRANSFORM OF X(75)

Barycentrics    b*c*(-a^4+b^4-a^2*b*c+b^3*c+b*c^3+c^4) : :

X(2064) lies on these lines: {2, 20234}, {75, 40940}, {76, 85}, {81, 314}, {92, 3596}, {190, 22001}, {278, 345}, {286, 20336}, {305, 7112}, {306, 20929}, {322, 52406}, {329, 1264}, {346, 36428}, {1848, 18835}, {3687, 17788}, {3718, 18750}, {3926, 17076}, {3948, 46828}, {4417, 20444}, {4561, 27398}, {4568, 22020}, {4812, 29841}, {6358, 17787}, {7009, 7283}, {14206, 52369}, {14213, 19811}, {14615, 20928}, {17378, 42034}, {17861, 19806}, {18895, 36800}, {19786, 33940}, {20237, 40875}, {20896, 32779}, {20920, 30713}, {21595, 40071}, {25080, 33116}, {25527, 33930}, {27801, 44129}, {33941, 41258}, {46238, 52421}

X(2064) = perspector of circumconic {{A, B, C, X(4572), X(57976)}}
X(2064) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 8615}, {32, 15314}
X(2064) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 8615}, {6376, 15314}, {16612, 18210}, {34846, 649}, {46878, 2354}, {52355, 53560}
X(2064) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {56003, 5484}
X(2064) = X(i)-cross conjugate of X(j) for these {i, j}: {48890, 75}
X(2064)= pole of line {2300, 57657} with respect to the Stammler hyperbola
X(2064)= pole of line {832, 4581} with respect to the Steiner circumellipse
X(2064)= pole of line {832, 17072} with respect to the Steiner inellipse
X(2064)= pole of line {284, 3666} with respect to the Wallace hyperbola
X(2064) = intersection, other than A, B, C, of circumconics {{A, B, C, X(81), X(3674)}}, {{A, B, C, X(85), X(7270)}}, {{A, B, C, X(226), X(2298)}}, {{A, B, C, X(349), X(30710)}}, {{A, B, C, X(3912), X(57197)}}, {{A, B, C, X(5285), X(7146)}}, {{A, B, C, X(6063), X(58018)}}, {{A, B, C, X(16612), X(43040)}}, {{A, B, C, X(18033), X(57784)}}, {{A, B, C, X(18134), X(36800)}}, {{A, B, C, X(37445), X(56375)}}, {{A, B, C, X(40940), X(48890)}}
X(2064) = barycentric product X(i)*X(j) for these (i, j): {3596, 4296}, {4554, 57197}, {5279, 76}, {5285, 561}, {7270, 75}, {16612, 1978}, {57186, 6331}
X(2064) = barycentric quotient X(i)/X(j) for these (i, j): {1, 8615}, {75, 15314}, {4296, 56}, {5279, 6}, {5285, 31}, {7270, 1}, {16612, 649}, {34846, 18210}, {48890, 1104}, {56375, 2299}, {57186, 647}, {57197, 650}
X(2064) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {305, 20641, 7112}, {312, 17789, 226}, {20929, 42709, 306}


X(2065) = ORION TRANSFORM OF X(98)

Barycentrics    a^2*(a^4+b^4-a^2*c^2-b^2*c^2)*(a^4-a^2*b^2-b^2*c^2+c^4)*(a^4+b^4-b^2*c^2+2*c^4-a^2*(2*b^2+c^2))*(a^4+2*b^4-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(2065) lies on cubic K336 and on these lines: {3, 52091}, {98, 325}, {182, 34157}, {232, 1692}, {248, 1570}, {262, 40820}, {264, 14265}, {460, 685}, {511, 1976}, {523, 47388}, {576, 18873}, {1691, 32654}, {2030, 9474}, {2782, 46648}, {5050, 5968}, {5111, 51542}, {5622, 15407}, {5967, 14356}, {6776, 56572}, {9307, 32545}, {14253, 50684}, {14384, 56688}, {15630, 17974}, {23350, 35364}, {25406, 36891}, {40801, 57493}, {46142, 47385}, {51862, 53766}

X(2065) = reflection of X(i) in X(j) for these {i,j}: {2715, 39085}
X(2065) = isogonal conjugate of X(114)
X(2065) = trilinear pole of line {248, 2422}
X(2065) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 114}, {2, 17462}, {75, 51335}, {92, 47406}, {230, 1959}, {240, 3564}, {325, 8772}, {511, 1733}, {662, 55267}, {1692, 46238}, {1755, 51481}, {14265, 23996}, {40703, 52144}
X(2065) = X(i)-vertex conjugate of X(j) for these {i, j}: {4, 249}, {511, 2065}
X(2065) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 114}, {206, 51335}, {1084, 55267}, {22391, 47406}, {32664, 17462}, {34156, 2974}, {36899, 51481}, {39085, 3564}
X(2065) = X(i)-cross conjugate of X(j) for these {i, j}: {3, 98}, {6, 2987}, {512, 2715}, {34291, 53691}, {47421, 43665}
X(2065)= pole of line {2987, 17974} with respect to the Jerabek hyperbola
X(2065)= pole of line {32654, 44534} with respect to the Kiepert hyperbola
X(2065)= pole of line {114, 51335} with respect to the Stammler hyperbola
X(2065) = perspector of ABC and cross-triangle of ABC and circumcevian triangle of X(511)
X(2065) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3), X(460)}}, {{A, B, C, X(4), X(2710)}}, {{A, B, C, X(6), X(232)}}, {{A, B, C, X(25), X(56370)}}, {{A, B, C, X(32), X(2456)}}, {{A, B, C, X(54), X(83)}}, {{A, B, C, X(59), X(2298)}}, {{A, B, C, X(60), X(55018)}}, {{A, B, C, X(67), X(11071)}}, {{A, B, C, X(69), X(57638)}}, {{A, B, C, X(74), X(10630)}}, {{A, B, C, X(96), X(57644)}}, {{A, B, C, X(98), X(1976)}}, {{A, B, C, X(182), X(1691)}}, {{A, B, C, X(184), X(47741)}}, {{A, B, C, X(186), X(50712)}}, {{A, B, C, X(187), X(5050)}}, {{A, B, C, X(287), X(51776)}}, {{A, B, C, X(575), X(2076)}}, {{A, B, C, X(576), X(5111)}}, {{A, B, C, X(685), X(2715)}}, {{A, B, C, X(691), X(10419)}}, {{A, B, C, X(694), X(5966)}}, {{A, B, C, X(755), X(43532)}}, {{A, B, C, X(805), X(44768)}}, {{A, B, C, X(843), X(3431)}}, {{A, B, C, X(879), X(34175)}}, {{A, B, C, X(895), X(40388)}}, {{A, B, C, X(947), X(12031)}}, {{A, B, C, X(1126), X(2700)}}, {{A, B, C, X(1173), X(53894)}}, {{A, B, C, X(1176), X(44174)}}, {{A, B, C, X(1177), X(9161)}}, {{A, B, C, X(1297), X(38873)}}, {{A, B, C, X(1351), X(1570)}}, {{A, B, C, X(1799), X(41271)}}, {{A, B, C, X(1968), X(32545)}}, {{A, B, C, X(2021), X(35429)}}, {{A, B, C, X(2030), X(5085)}}, {{A, B, C, X(2080), X(5034)}}, {{A, B, C, X(2433), X(15398)}}, {{A, B, C, X(2458), X(3398)}}, {{A, B, C, X(2701), X(15379)}}, {{A, B, C, X(2702), X(15380)}}, {{A, B, C, X(2703), X(15381)}}, {{A, B, C, X(2704), X(15382)}}, {{A, B, C, X(2705), X(15383)}}, {{A, B, C, X(2706), X(15384)}}, {{A, B, C, X(2707), X(15385)}}, {{A, B, C, X(2708), X(15386)}}, {{A, B, C, X(2709), X(15387)}}, {{A, B, C, X(2711), X(15402)}}, {{A, B, C, X(2712), X(15403)}}, {{A, B, C, X(2713), X(15404)}}, {{A, B, C, X(2714), X(15405)}}, {{A, B, C, X(2987), X(3563)}}, {{A, B, C, X(3094), X(35377)}}, {{A, B, C, X(3095), X(35388)}}, {{A, B, C, X(3406), X(53966)}}, {{A, B, C, X(3455), X(54998)}}, {{A, B, C, X(5007), X(35458)}}, {{A, B, C, X(5092), X(35006)}}, {{A, B, C, X(5093), X(5107)}}, {{A, B, C, X(5097), X(15514)}}, {{A, B, C, X(5102), X(44496)}}, {{A, B, C, X(5104), X(39561)}}, {{A, B, C, X(5481), X(5970)}}, {{A, B, C, X(5967), X(14355)}}, {{A, B, C, X(7612), X(14659)}}, {{A, B, C, X(8586), X(15520)}}, {{A, B, C, X(9154), X(57742)}}, {{A, B, C, X(9160), X(15396)}}, {{A, B, C, X(9217), X(14528)}}, {{A, B, C, X(13137), X(43665)}}, {{A, B, C, X(14483), X(53973)}}, {{A, B, C, X(14561), X(57268)}}, {{A, B, C, X(14906), X(54869)}}, {{A, B, C, X(14965), X(31850)}}, {{A, B, C, X(15389), X(53059)}}, {{A, B, C, X(15391), X(46237)}}, {{A, B, C, X(18333), X(46427)}}, {{A, B, C, X(19131), X(58312)}}, {{A, B, C, X(29011), X(43702)}}, {{A, B, C, X(30648), X(53873)}}, {{A, B, C, X(34157), X(47736)}}, {{A, B, C, X(35383), X(39764)}}, {{A, B, C, X(38010), X(55703)}}, {{A, B, C, X(44823), X(51456)}}, {{A, B, C, X(46199), X(57771)}}, {{A, B, C, X(52076), X(52451)}}
X(2065) = barycentric product X(i)*X(j) for these (i, j): {248, 35142}, {287, 3563}, {290, 32654}, {512, 55266}, {1821, 36051}, {1910, 8773}, {1976, 8781}, {2966, 35364}, {2987, 98}, {10425, 2395}, {15391, 47736}, {16081, 42065}, {32697, 879}, {34157, 34536}, {40428, 6}, {41932, 52091}, {43705, 6531}, {47388, 57493}, {57260, 57872}
X(2065) = barycentric quotient X(i)/X(j) for these (i, j): {6, 114}, {31, 17462}, {32, 51335}, {98, 51481}, {184, 47406}, {248, 3564}, {512, 55267}, {1910, 1733}, {1976, 230}, {2422, 55122}, {2715, 4226}, {2987, 325}, {3563, 297}, {6531, 44145}, {8773, 46238}, {10425, 2396}, {14600, 52144}, {14601, 1692}, {20975, 41181}, {32654, 511}, {32697, 877}, {34157, 36790}, {34238, 47734}, {35142, 44132}, {35364, 2799}, {36051, 1959}, {40428, 76}, {41932, 14265}, {42065, 36212}, {43705, 6393}, {52091, 32458}, {55266, 670}, {57260, 460}
X(2065) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1692, 46237, 2715}, {42065, 51455, 10425}


X(2066) = POINT CAROLI I

Trilinears    1 + sin A + cos A
Barycentrics    a^2*(b*c+SA+S): :

X(2066) lies on cubic K1273 and on these lines: {1, 371}, {2, 44624}, {3, 1124}, {4, 31472}, {5, 9646}, {6, 31}, {8, 31453}, {9, 7133}, {11, 590}, {12, 3071}, {20, 31408}, {29, 14121}, {30, 9660}, {32, 31471}, {33, 5412}, {34, 11473}, {35, 372}, {36, 6200}, {37, 8576}, {39, 45571}, {40, 2362}, {48, 10132}, {56, 1151}, {57, 9616}, {63, 8393}, {65, 49226}, {77, 13389}, {78, 30556}, {80, 35788}, {102, 54016}, {140, 31499}, {165, 8831}, {172, 6405}, {198, 48308}, {200, 31438}, {203, 51728}, {219, 53065}, {220, 30335}, {221, 19088}, {222, 46376}, {283, 1806}, {332, 56385}, {388, 6459}, {390, 7585}, {405, 1378}, {474, 9679}, {485, 1479}, {486, 498}, {495, 42215}, {496, 8981}, {497, 3068}, {499, 5418}, {601, 3076}, {609, 41410}, {610, 46379}, {613, 19145}, {615, 5432}, {942, 31439}, {950, 13883}, {956, 9678}, {999, 6221}, {1040, 11513}, {1062, 10897}, {1067, 8957}, {1069, 8909}, {1152, 5217}, {1210, 13912}, {1317, 48700}, {1335, 3295}, {1376, 31473}, {1377, 5687}, {1420, 9615}, {1445, 13388}, {1478, 6561}, {1500, 5058}, {1504, 2241}, {1505, 31451}, {1583, 55409}, {1587, 4294}, {1588, 3085}, {1697, 18991}, {1742, 30297}, {1837, 13911}, {2098, 44635}, {2183, 34121}, {2192, 17819}, {2242, 9675}, {2270, 46378}, {2646, 7968}, {2961, 8938}, {3023, 49266}, {3024, 49268}, {3027, 49212}, {3028, 49216}, {3057, 7969}, {3058, 19030}, {3069, 5218}, {3070, 6284}, {3083, 5409}, {3086, 9540}, {3092, 11398}, {3100, 11417}, {3270, 21640}, {3298, 3303}, {3301, 3746}, {3304, 6425}, {3320, 49218}, {3362, 32590}, {3364, 7006}, {3389, 7005}, {3434, 31484}, {3486, 19066}, {3583, 6564}, {3584, 35823}, {3585, 35800}, {3600, 43512}, {3601, 18992}, {3614, 42270}, {4254, 53066}, {4293, 9541}, {4299, 42260}, {4302, 6560}, {4314, 49548}, {4317, 9681}, {4324, 42267}, {4857, 8960}, {4995, 13958}, {5010, 6396}, {5062, 45570}, {5119, 35774}, {5204, 6409}, {5225, 31412}, {5250, 30557}, {5268, 8855}, {5274, 8972}, {5281, 7586}, {5298, 31500}, {5299, 45512}, {5326, 32790}, {5410, 7071}, {5413, 52427}, {5420, 13962}, {5434, 41945}, {5563, 6453}, {5697, 35641}, {5903, 35610}, {6020, 49270}, {6198, 10880}, {6199, 6767}, {6238, 10665}, {6283, 12962}, {6285, 12964}, {6286, 12965}, {6413, 26949}, {6421, 31448}, {6422, 16502}, {6424, 54416}, {6480, 37587}, {6565, 7951}, {6567, 45507}, {7173, 42582}, {7354, 42258}, {7355, 49250}, {7583, 15171}, {7727, 12375}, {7741, 10576}, {7972, 35856}, {8144, 11265}, {8164, 23273}, {8252, 13955}, {8276, 10046}, {8976, 9669}, {8983, 12053}, {9441, 30296}, {9581, 13893}, {9582, 15803}, {9599, 31463}, {9647, 18990}, {9648, 41963}, {9665, 31481}, {9668, 13665}, {9689, 40726}, {9817, 10961}, {9931, 12424}, {10039, 49602}, {10091, 10819}, {10118, 13287}, {10385, 19054}, {10386, 19117}, {10483, 42266}, {10533, 10535}, {10572, 49601}, {10588, 42561}, {10589, 32785}, {10590, 23259}, {10799, 44586}, {10833, 44598}, {10877, 44604}, {10895, 23261}, {10896, 13897}, {10947, 44618}, {10950, 49232}, {10953, 44620}, {10965, 44643}, {10966, 44606}, {11010, 35611}, {11189, 11241}, {11238, 13846}, {11446, 11447}, {11461, 11462}, {11873, 44600}, {11874, 44602}, {11909, 44610}, {11947, 44627}, {11948, 44629}, {12354, 49214}, {12428, 49224}, {12680, 49234}, {12702, 38235}, {12743, 49240}, {12863, 49248}, {12888, 12891}, {12896, 49222}, {12910, 12960}, {12911, 12961}, {12943, 42263}, {12953, 23251}, {12959, 13882}, {12970, 26888}, {12971, 47378}, {13043, 13045}, {13044, 13046}, {13075, 49210}, {13076, 49208}, {13077, 49252}, {13078, 49254}, {13079, 49256}, {13080, 49258}, {13081, 49220}, {13082, 44647}, {13699, 49260}, {13785, 31479}, {13819, 49262}, {13888, 51785}, {13963, 31452}, {15325, 35255}, {15338, 42259}, {15452, 49267}, {16142, 49242}, {17784, 31413}, {18455, 18457}, {18514, 35786}, {18922, 18923}, {18965, 31454}, {18966, 52793}, {19004, 53053}, {19048, 26358}, {19050, 26357}, {19182, 19183}, {19354, 19355}, {19434, 19436}, {19435, 19438}, {19470, 35826}, {22711, 49230}, {22768, 44607}, {22865, 49236}, {22910, 49238}, {22954, 22960}, {22965, 49246}, {26351, 44582}, {26352, 44584}, {26353, 45597}, {26354, 45595}, {26355, 44594}, {26356, 44596}, {30325, 52808}, {30333, 30413}, {31440, 37723}, {32168, 32169}, {32286, 32291}, {32297, 49264}, {32378, 32384}, {32390, 49244}, {34471, 44636}, {35762, 37525}, {35801, 37719}, {35812, 37720}, {35842, 37706}, {36443, 52217}, {36461, 52214}, {37568, 49227}, {39648, 45493}, {39822, 39823}, {39851, 39852}, {39897, 49228}, {46687, 46688}, {55441, 55579}, {55566, 56384}

X(2066) = isogonal conjugate of X(1659)
X(2066) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 1659}, {2, 2362}, {4, 13388}, {7, 7133}, {34, 56386}, {57, 7090}, {92, 2067}, {108, 54017}, {264, 53063}, {273, 5414}, {278, 30557}, {331, 53066}, {651, 58840}, {693, 54018}, {1123, 13389}, {1805, 40149}, {6213, 13390}, {13387, 16232}, {13437, 30556}, {13438, 56385}
X(2066) = X(i)-vertex conjugate of X(j) for these {i, j}: {2066, 48308}
X(2066) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 1659}, {5452, 7090}, {11517, 56386}, {13388, 85}, {22391, 2067}, {32664, 2362}, {36033, 13388}, {38983, 54017}, {38991, 58840}
X(2066) = X(i)-Ceva conjugate of X(j) for these {i, j}: {9, 5414}, {1806, 53065}, {13389, 6502}
X(2066) = X(i)-cross conjugate of X(j) for these {i, j}: {48, 5414}, {53065, 6502}
X(2066)= pole of line {37, 5414} with respect to the Feuerbach hyperbola
X(2066)= pole of line {86, 1659} with respect to the Stammler hyperbola
X(2066)= pole of line {310, 1659} with respect to the Wallace hyperbola
X(2066) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3)}}, {{A, B, C, X(6), X(6502)}}, {{A, B, C, X(9), X(1124)}}, {{A, B, C, X(31), X(8576)}}, {{A, B, C, X(42), X(56385)}}, {{A, B, C, X(48), X(606)}}, {{A, B, C, X(55), X(13389)}}, {{A, B, C, X(63), X(493)}}, {{A, B, C, X(71), X(14121)}}, {{A, B, C, X(222), X(6415)}}, {{A, B, C, X(268), X(32556)}}, {{A, B, C, X(371), X(2193)}}, {{A, B, C, X(674), X(54019)}}, {{A, B, C, X(1336), X(2335)}}, {{A, B, C, X(1436), X(2362)}}, {{A, B, C, X(3302), X(56232)}}, {{A, B, C, X(6414), X(52431)}}, {{A, B, C, X(13390), X(14547)}}
X(2066) = barycentric product X(i)*X(j) for these (i, j): {1, 30556}, {10, 1806}, {101, 54019}, {312, 53064}, {1124, 7090}, {1331, 58838}, {3083, 7133}, {6502, 8}, {13386, 5414}, {13389, 9}, {13390, 219}, {14121, 3}, {16232, 78}, {30336, 31547}, {30413, 46376}, {30557, 6212}, {32555, 34908}, {34125, 56386}, {42013, 63}, {46744, 53066}, {53065, 75}, {54016, 6332}, {56385, 6}
X(2066) = barycentric quotient X(i)/X(j) for these (i, j): {6, 1659}, {31, 2362}, {41, 7133}, {48, 13388}, {55, 7090}, {184, 2067}, {212, 30557}, {219, 56386}, {605, 13389}, {652, 54017}, {663, 58840}, {1806, 86}, {5414, 13387}, {6502, 7}, {9247, 53063}, {13389, 85}, {13390, 331}, {14121, 264}, {16232, 273}, {30556, 75}, {30557, 46745}, {32739, 54018}, {34125, 13390}, {42013, 92}, {52425, 5414}, {53064, 57}, {53065, 1}, {53066, 6213}, {53069, 6204}, {54016, 653}, {54019, 3261}, {56385, 76}, {58838, 46107}
X(2066) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1702, 16232}, {1, 371, 2067}, {3, 1124, 6502}, {3, 31474, 1124}, {6, 44591, 5416}, {11, 13901, 590}, {35, 3299, 372}, {55, 10927, 10387}, {55, 19038, 6}, {371, 35808, 1}, {371, 35817, 45641}, {371, 45643, 35775}, {497, 3068, 44623}, {1151, 3297, 56}, {1250, 7127, 5414}, {1479, 13905, 485}, {1588, 3085, 44622}, {3298, 3592, 18996}, {3301, 3746, 35809}, {5217, 18995, 1152}, {5432, 19029, 615}, {6200, 35769, 36}, {6284, 19028, 3070}, {6419, 35809, 3301}, {10576, 35803, 7741}, {10896, 13897, 42265}, {35800, 35821, 3585}


X(2067) = POINT CAROLI II

Trilinears - 1 + sin A + cos A : :
Trilinears (cos A) (cos B + cos C + sin A) : :
Trilinears 2 (cos A) (cos B + cos C) + sin 2A : :
Barycentrics    a^2*(-b*c+SA+S) : :

X(2067) lies on cubic K632 and on these lines: {1, 371}, {2, 31453}, {3, 1335}, {4, 44623}, {5, 9661}, {6, 41}, {11, 3071}, {12, 590}, {27, 1659}, {30, 9647}, {31, 10132}, {33, 11473}, {34, 5412}, {35, 6200}, {36, 372}, {39, 45507}, {46, 35774}, {55, 1151}, {57, 2362}, {63, 3084}, {65, 5415}, {80, 35856}, {84, 7133}, {103, 54018}, {202, 3364}, {203, 3389}, {221, 17819}, {222, 53066}, {226, 8983}, {238, 30385}, {266, 53117}, {377, 31484}, {388, 3068}, {390, 43512}, {405, 9678}, {474, 1377}, {482, 14377}, {484, 35611}, {485, 1478}, {486, 499}, {495, 8981}, {496, 42215}, {497, 6459}, {498, 5418}, {602, 3077}, {603, 606}, {611, 19145}, {615, 5433}, {956, 1378}, {999, 1124}, {1015, 5058}, {1038, 11513}, {1060, 10897}, {1152, 5204}, {1155, 49227}, {1317, 48714}, {1319, 7968}, {1388, 44636}, {1398, 5410}, {1420, 18992}, {1425, 21640}, {1466, 19000}, {1470, 19048}, {1479, 6561}, {1504, 2242}, {1583, 55410}, {1587, 4293}, {1588, 3086}, {1617, 53065}, {1697, 9616}, {1703, 15803}, {1737, 49602}, {1745, 32590}, {1773, 8938}, {1788, 19065}, {1790, 1805}, {1870, 10880}, {1914, 7353}, {2099, 44635}, {2192, 19088}, {2241, 9675}, {3023, 49212}, {3024, 49216}, {3027, 49266}, {3028, 49268}, {3057, 49226}, {3058, 41945}, {3069, 7288}, {3070, 7354}, {3085, 9540}, {3092, 11399}, {3157, 8909}, {3295, 6221}, {3297, 3304}, {3299, 5563}, {3303, 6425}, {3320, 49270}, {3361, 19004}, {3476, 19066}, {3485, 13902}, {3582, 35823}, {3583, 35802}, {3585, 6564}, {3600, 7585}, {3601, 9615}, {3614, 42582}, {3746, 6453}, {3911, 13936}, {3920, 9634}, {4294, 9541}, {4296, 11417}, {4299, 6560}, {4302, 42260}, {4309, 9681}, {4315, 49548}, {4316, 42267}, {4354, 9631}, {4428, 9688}, {4995, 52045}, {5062, 45506}, {5193, 26459}, {5217, 6409}, {5229, 31412}, {5252, 13911}, {5256, 13389}, {5261, 8972}, {5265, 7586}, {5270, 8960}, {5272, 8855}, {5275, 31464}, {5280, 45512}, {5290, 13888}, {5298, 18966}, {5393, 13478}, {5416, 19049}, {5420, 13963}, {5434, 19028}, {5687, 9679}, {5697, 35610}, {5903, 35641}, {6020, 49218}, {6199, 7373}, {6284, 42258}, {6285, 49250}, {6396, 7280}, {6422, 54416}, {6424, 16502}, {6457, 38487}, {6486, 51817}, {6565, 7741}, {6567, 45571}, {6904, 31413}, {7005, 51728}, {7031, 41410}, {7090, 34234}, {7173, 42270}, {7294, 32790}, {7352, 10665}, {7355, 12964}, {7356, 12965}, {7362, 12962}, {7583, 18990}, {7584, 15325}, {7727, 35826}, {7951, 10576}, {7972, 35882}, {8252, 13954}, {8276, 10037}, {8583, 31438}, {8976, 9654}, {9578, 13893}, {9596, 31463}, {9600, 31448}, {9650, 31481}, {9655, 13665}, {9660, 15171}, {9663, 41963}, {9674, 31451}, {9680, 31452}, {9957, 31439}, {10088, 10819}, {10106, 13883}, {10253, 39795}, {10483, 35820}, {10533, 26888}, {10535, 12970}, {10588, 32785}, {10589, 42561}, {10591, 23259}, {10895, 13898}, {10896, 23261}, {10944, 49232}, {10956, 13922}, {10961, 19372}, {10982, 41479}, {11009, 35810}, {11237, 13846}, {11241, 32065}, {11265, 32047}, {11447, 19367}, {11462, 19368}, {11509, 44590}, {11510, 44591}, {12375, 19470}, {12424, 19471}, {12688, 49234}, {12835, 44586}, {12891, 19469}, {12943, 23251}, {12949, 13882}, {12953, 42263}, {12960, 19473}, {12961, 19474}, {13045, 19475}, {13046, 19476}, {13287, 19505}, {13462, 19003}, {13901, 15888}, {13912, 31397}, {13947, 31231}, {13973, 24914}, {15170, 52047}, {15326, 42259}, {16408, 31485}, {16466, 53064}, {18244, 35871}, {18395, 35789}, {18447, 18457}, {18513, 35786}, {18915, 18923}, {18954, 44598}, {18955, 44600}, {18956, 44602}, {18957, 44604}, {18958, 44610}, {18961, 44618}, {18962, 44620}, {18963, 44627}, {18964, 44629}, {18967, 44645}, {18968, 49222}, {18969, 49214}, {18970, 49224}, {18971, 49230}, {18972, 49236}, {18973, 49238}, {18974, 49208}, {18975, 49210}, {18976, 49240}, {18977, 49242}, {18978, 49246}, {18979, 49248}, {18982, 49252}, {18983, 49254}, {18984, 49256}, {18985, 49258}, {18986, 49260}, {18987, 49262}, {18988, 44647}, {18989, 49220}, {19050, 26437}, {19175, 19183}, {19216, 54320}, {19349, 19355}, {19370, 19436}, {19371, 19438}, {19472, 22960}, {19861, 30556}, {20118, 49241}, {21842, 35762}, {23273, 47743}, {25524, 31473}, {26380, 44582}, {26404, 44584}, {26433, 45597}, {26434, 45595}, {26435, 44594}, {26436, 44596}, {26458, 37583}, {31499, 35255}, {32143, 32169}, {32243, 49264}, {32259, 32291}, {32336, 49244}, {32350, 32384}, {35765, 54428}, {35771, 37587}, {35788, 37710}, {35803, 37720}, {35812, 37719}, {35842, 37707}, {35843, 41684}, {35853, 53616}, {36279, 38235}, {36442, 52217}, {36460, 52214}, {39648, 45491}, {39815, 39823}, {39844, 39852}, {39873, 49228}, {40663, 49233}, {45287, 49601}, {46683, 46688}, {49618, 51782}, {55442, 55579}, {55566, 56427}

X(2067) = isogonal conjugate of X(14121)
X(2067) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 14121}, {2, 42013}, {4, 30556}, {8, 16232}, {9, 13390}, {19, 56385}, {92, 2066}, {100, 58838}, {264, 53065}, {281, 13389}, {318, 6502}, {1336, 30557}, {1783, 54019}, {1806, 41013}, {4391, 54016}, {6136, 54017}, {6212, 7090}, {7017, 53064}, {7133, 13386}, {13388, 13426}, {34910, 46434}, {40700, 46379}
X(2067) = X(i)-vertex conjugate of X(j) for these {i, j}: {2067, 30336}
X(2067) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 14121}, {6, 56385}, {478, 13390}, {8054, 58838}, {13388, 46744}, {13389, 75}, {22391, 2066}, {32664, 42013}, {36033, 30556}, {39006, 54019}
X(2067) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1, 6502}, {2066, 8831}, {13388, 5414}, {51841, 8833}
X(2067) = X(i)-cross conjugate of X(j) for these {i, j}: {603, 6502}, {34121, 46377}, {53066, 5414}
X(2067)= pole of line {6458, 6502} with respect to the Feuerbach hyperbola
X(2067)= pole of line {333, 14121} with respect to the Stammler hyperbola
X(2067)= pole of line {14121, 28660} with respect to the Wallace hyperbola
X(2067) = homothetic center of 1st Kenmotu diagonals triangle and anti-tangential midarc triangle
X(2067) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(493)}}, {{A, B, C, X(3), X(27)}}, {{A, B, C, X(6), X(2362)}}, {{A, B, C, X(41), X(53066)}}, {{A, B, C, X(48), X(606)}}, {{A, B, C, X(56), X(13388)}}, {{A, B, C, X(73), X(1659)}}, {{A, B, C, X(102), X(46434)}}, {{A, B, C, X(198), X(7133)}}, {{A, B, C, X(219), X(6415)}}, {{A, B, C, X(604), X(53063)}}, {{A, B, C, X(947), X(32556)}}, {{A, B, C, X(959), X(13387)}}, {{A, B, C, X(998), X(55505)}}, {{A, B, C, X(1036), X(7347)}}, {{A, B, C, X(1037), X(6204)}}, {{A, B, C, X(1124), X(1795)}}, {{A, B, C, X(1193), X(56386)}}, {{A, B, C, X(1437), X(5409)}}, {{A, B, C, X(2183), X(7090)}}, {{A, B, C, X(3207), X(30335)}}, {{A, B, C, X(8576), X(38252)}}, {{A, B, C, X(8679), X(54017)}}
X(2067) = barycentric product X(i)*X(j) for these (i, j): {1, 13388}, {56, 56386}, {109, 54017}, {176, 46377}, {222, 7090}, {1335, 13390}, {1659, 3}, {1805, 226}, {1813, 58840}, {2362, 63}, {4025, 54018}, {5414, 7}, {7133, 77}, {13387, 6502}, {13389, 6213}, {16232, 3084}, {30557, 57}, {42013, 52420}, {46745, 53064}, {53063, 75}, {53066, 85}
X(2067) = barycentric quotient X(i)/X(j) for these (i, j): {3, 56385}, {6, 14121}, {31, 42013}, {48, 30556}, {56, 13390}, {184, 2066}, {603, 13389}, {604, 16232}, {606, 30557}, {649, 58838}, {1335, 56386}, {1459, 54019}, {1659, 264}, {1805, 333}, {2362, 92}, {5414, 8}, {6502, 13386}, {7090, 7017}, {7133, 318}, {9247, 53065}, {13388, 75}, {13389, 46744}, {30557, 312}, {34121, 7090}, {46377, 40700}, {52411, 6502}, {53063, 1}, {53064, 6212}, {53066, 9}, {54017, 35519}, {54018, 1897}, {56386, 3596}, {58840, 46110}
X(2067) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 32556, 42013}, {1, 371, 2066}, {1, 51841, 16232}, {3, 1335, 5414}, {12, 18965, 590}, {36, 3301, 372}, {56, 18996, 6}, {57, 18991, 2362}, {371, 35768, 1}, {371, 35819, 45643}, {371, 45641, 35775}, {388, 3068, 31472}, {495, 8981, 9646}, {999, 3311, 1124}, {1151, 3298, 55}, {1400, 1468, 6502}, {1478, 13904, 485}, {1588, 3086, 44624}, {3297, 3592, 19038}, {3299, 5563, 35769}, {3304, 19038, 3297}, {3361, 19004, 51842}, {3600, 7585, 31408}, {5204, 19037, 1152}, {5433, 19027, 615}, {6199, 7373, 31474}, {6200, 35809, 35}, {6419, 35769, 3299}, {7354, 19030, 3070}, {10576, 35801, 7951}, {10895, 13898, 42265}, {35802, 35821, 3583}


X(2068) = POINT CURSA I

Barycentrics    a*(a+sqrt(b*c)) : :

X(2068) lies on cubic K673 and on these lines: {1, 4166}, {6, 366}, {43, 365}, {291, 20458}, {364, 1743}, {4497, 20469}, {17350, 40383}

X(2068) = X(i)-isoconjugate-of-X(j) for these {i, j}: {291, 2069}
X(2068) = X(i)-Dao conjugate of X(j) for these {i, j}: {39029, 2069}
X(2068) = intersection, other than A, B, C, of circumconics {{A, B, C, X(291), X(366)}}, {{A, B, C, X(294), X(4166)}}, {{A, B, C, X(365), X(20332)}}
X(2068) = barycentric quotient X(i)/X(j) for these (i, j): {1914, 2069}
X(2068) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 366, 2069}


X(2069) = POINT CURSA II

Barycentrics    a*(-a+sqrt(b*c)) : :

X(2069) lies on cubic K673 and on these lines: {1, 364}, {6, 366}, {43, 4166}, {81, 40378}, {256, 20458}, {4393, 40383}, {4471, 20469}

X(2069) = X(i)-isoconjugate-of-X(j) for these {i, j}: {291, 2068}
X(2069) = X(i)-Dao conjugate of X(j) for these {i, j}: {39029, 2068}
X(2069) = intersection, other than A, B, C, of circumconics {{A, B, C, X(81), X(365)}}, {{A, B, C, X(256), X(366)}}
X(2069) = barycentric quotient X(i)/X(j) for these (i, j): {1914, 2068}
X(2069) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 366, 2068}


leftri

Inverses in Circumcircle, 2070 -2080

rightri

Suppose X is a point in the plane of triangle ABC, other than the circumcenter O and not on the line at infinity. The inverse-in-circumcircle of X is the point X' on ray OX whose distance from O is R2/|OX|2. In normalized trilinears, if

X = (x, y, z)     O = (x3, y3, z3),    R = circumradius,

then X' is given as (f(a,b,c), f(b,c,a), f(c,a,b)) by f(a,b,c) = x3 + (x - x3)(R/|OX|)2.

In this section, representations using the circumradius R, inradius r, Brocard angle ω and J as defined at X(1113), were contributed by Peter J. C . Moses.


X(2070) = INVERSE-IN-CIRCUMCIRCLE OF X(5)

Trilinears    (J2 - 2) cos A + 4 cos B cos C, where J is as at X(1113)
X(2070) = X(3) + 2 X(23)

As a point on the Euler line, X(2070) has Shinagawa coefficients (J2 - 2, -J2 + 6).

X(2070) lies on these lines: 2,3   49,52   51,567   54,143   98,1287   110,1154   184,568   187,2079   231,1989   399,1495   476,1141   500,501   827,842

X(2070) = midpoint of X(23) and X(186)
X(2070) = reflection of X(i) in X(j) for these (i,j): (3,186), (2072,468), (18859,3)
X(2070) = isogonal conjugate of X(33565)
X(2070) = anticomplement of X(37938)
X(2070) = circumcircle-inverse of X(5)
X(2070) = X(94)-Ceva conjugate of X(6)
X(2070) = crosspoint of X(i) and X(j) for these (i,j): (250,476), (1141,1166)
X(2070) = crosssum of X(i) and X(j) for these (i,j): (125,526), (1154,1209)
X(2070) = center of circle {{X(23),X(186),PU(4)}}, which is the inverse-in-circumcircle-of-orthocentroidal-circle
X(2070) = inverse-in-tangential-circle of X(3)
X(2070) = pole wrt circumcircle of line PU(5) (line X(5)X(523))
X(2070) = tangential isogonal conjugate of X(399)
X(2070) = X(36)-of-tangential-triangle if ABC is acute
X(2070) = {X(3),X(26)}-harmonic conjugate of X(2937)
X(2070) = {X(3),X(23)}-harmonic conjugate of X(37924)
X(2070) = crossdifference of every pair of points on line X(570)X(647)


X(2071) = INVERSE-IN-CIRCUMCIRCLE OF X(20)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (J2 + 1) cos A - 2 cos B cos C, where J is as at X(1113)
X(2071) = 4X(3) - X(23)

As a point on the Euler line, X(2071) has Shinagawa coefficients (J2 + 1, -J2 - 3).

Let A'B'C' be the antipedal triangle of X(64). The circumcircles of AA'X(64), BB'X(64), CC'X(64) concur in two points: X(64) and X(2071). Also, let A'B'C' be the Trinh triangle. Let A" be the cevapoint of B' and C', and define B" and C" cyclically. The lines AA", BB", CC" concur in X(2071). (Randy Hutson, October 13, 2015)

Let P and Q be circumcircle antipodes. X(2071) is the Euler line intercept, other than X(4), of circle {{X(4),P,Q}} for all P, Q. (Randy Hutson, August 28, 2020)

X(2071) lies on these lines: 2,3   64,2063   74,323   99,1236   476,1294   477,925   691,1297   1290,1295

X(2071) = reflection of X(i) in X(j) for these (i,j): (4,2072), (23,186), (186,3)
X(2071) = anticomplement of X(403)
X(2071) = circumcircle-inverse of X(20)
X(2071) = anticomplementary-circle-inverse of X(37444)
X(2071) = {X(3),X(23)}-harmonic conjugate of X(37952)
X(2071) = {X(14807),X(14808)}-harmonic conjugate of X(37444)
X(2071) = crosspoint of X(3) and X(2935) wrt both the excentral and tangential triangles
X(2071) = crossdifference of every pair of points on line X647)X(800)
X(2071) = inverse-in-de-Longchamps-circle of X(4)
X(2071) = inverse-in-first-Droz-Farny-circle of X(5)
X(2071) = X(36) of Trinh triangle if ABC is acute
X(2071) = Trinh-isogonal conjugate of X(74)
X(2071) = antigonal conjugate of X(34170)
X(2071) = insimilicenter of circumcircle and Trinh circle (the exsimilicenter is X(3520))


X(2072) = INVERSE-IN-CIRCUMCIRCLE OF X(26)

Trilinears    (J2 + 1) cos A + 2(J2 - 1) cos B cos C : : , where J is as at X(1113)
Barycentrics    (a^2 - b^2 - c^2) (a^6 (b^2 + c^2) - a^4 (b^4 + c^4) - a^2 (b^2 - c^2)^2 (b^2 + c^2) + (b^2 - c^2)^4) : :

As a point on the Euler line, X(2072) has Shinagawa coefficients (J2 + 1, J2 - 3).

X(2072) lies on these lines: 2,3   125,1568   127,625   325,339   842,1286

X(2072) = midpoint of X(i) and X(j) for these (i,j): (4,2071), (125,1568), (403,858)
X(2072) = reflection of X(i) in X(j) for these (i,j): (403,5), (2070,468)
X(2072) = isogonal conjugate of X(38534)
X(2072) = complement of X(186)
X(2072) = complementary conjugate of X(1511)
X(2072) = crosssum of X(i) and X(j) for these {i,j}: {6, 34397}, {184, 3003}
X(2072) = crosspoint of X(i) and X(j) for these {i,j}: {2, 328}, {264, 2986}
X(2072) = circumcircle-inverse of X(26)
X(2072) = nine-point-circle-inverse of X(3)
X(2072) = crosspoint of X(2) and X(328)

X(2072) = center of inverse-in-nine-point-circle-of-orthocentroidal-circle
X(2072) = crossdifference of every pair of points on line X(571)X(647)
X(2072) = inverse-in-polar-circle of X(24)
X(2072) = inverse-in-complement-of-polar-circle of X(140)
X(2072) = inverse-in-{circumcircle, nine-point circle}-inverter of X(22)
X(2072) = inverse-in-first-Droz-Farny-circle of X(3)


X(2073) = INVERSE-IN-CIRCUMCIRCLE OF X(27)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as noted just above X(2070) using X = X(27)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

As a point on the Euler line, X(2073) has Shinagawa coefficients (EF(R/|OX|)2 - ($a$$bc$ - abc)F{1 - (R/|OX|)2}, -[(E + F) + $bc$]E(R/|OX|)2 + ($a$$bc$ - abc)F{1 - (R/|OX|)2}).

X(2073) lies on these lines: 2,3   35,270   103,1304   110,916   476,917   675,935

X(2073) = isogonal conjugate of X(38535)
X(2073) = circumcircle-inverse of X(27)
X(2073) = trilinear quotient X(i)/X(j) for these (i,j): (162, 2690), (2774, 656)


X(2074) = INVERSE-IN-CIRCUMCIRCLE OF X(28)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as noted just above X(2070) using X = X(28)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

As a point on the Euler line, X(2074) has Shinagawa coefficients (abc$a$F(R/|OX|)2 - [2$a$(E + F) - $a3$ + 2abc]FS{1 - (R/|OX|)2}, -[abc$a$(E+F) + ES2](R/|OX|)2 + [2$a$(E+F) - $a3$ + 2abc]FS{1 - (R/|OX|)2}).

X(2074) lies on these lines: 2,3   104,1304   105,935   110,912   162,1870   476,915

X(2074) = inverse-in-circumcircle of X(28)


X(2075) = INVERSE-IN-CIRCUMCIRCLE OF X(29)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as noted just above X(2070) using X = X(29)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

As a point on the Euler line, X(2075) has Shinagawa coefficients ([$a$S2 - $aSBSC$ - 2$aSA$F]FS2{1 - (R/|OX|)2} + abc[2F2S2 + (E - 2F)FS2](R/|OX|)2, -[$a$S2 + $aSBSC$ + 2$aSA$F]FS2{1 - (R/|OX|)2} + abc[2F2S2 + {(E - 2F)FS2 - E$bcSBSC$}](R/|OX|)2).

X(2075) lies on these lines: 2,3   36,162   102,1304   250,1101   935,1311

X(2075) = inverse-in-circumcircle of X(29)


X(2076) = INVERSE-IN-CIRCUMCIRCLE OF X(39)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin A - 2 cos A sin 2ω
Trilinears       g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a(a4 - b4 - c4 + a2b2 + a2c2 - b2c2)     (M. Iliev,5/13/07)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Let T1 be the circumcevian triangle of the 1st Brocard point, and let T2 be the circumcevian triangle of the 2nd Brocard point. Let VAVBVC be the vertex triangle of T1 and T2, and let SASBSC be the side triangle of T1 and T2. The lines VASA, VBSB, VCSC concur in X(2076).

Let T be the reflection of the symmedial triangle in the Lemoine axis; i.e., the reflection of the cevian triangle of X(6) in the trilinear polar of X(6). The triangle T is perspective to ABC, and the perspector is X(2076. (Randy Hutson, February 16, 2015)

X(2076) lies on these lines: 3,6   22,1613   99,732   141,384   385,698   599,1003   691,755   733,805   904,1964

X(2076) = reflection of X(i) in X(j) for these (i,j): (6,1691), (1691,187)
X(2076) = inverse-in-circumcircle of X(39)
X(2076) = X(694)-Ceva conjugate of X(6)
X(2076) = crosspoint of X(249) and X(805)
X(2076) = crosssum of X(115) and X(804)
X(2076) = reflection of X(1691) in the Lemoine axis
X(2076) = radical center of Lucas(-csc 2ω) circles
X(2076) = intersection of tangents to circumcircle at intersections with line X(39)X(512)
X(2076) = crossdifference of every pair of points on line X(523)X(3589)
X(2076) = {X(3),X(6)}-harmonic conjugate of X(5116)
X(2076) = perspector of tangential triangle and the vertex triangle of the anticevian triangles of PU(1)
X(2076) = Brocard axis intercept, other than X(3), of circle {X(3),PU(2)}


X(2077) = INVERSE-IN-CIRCUMCIRCLE OF X(40)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = r + 2(r - R) cos A
                        = g(A,B,C) : g(B,C,A) : g(C,A,B),
                         where g(A,B,C) = cos 2A + cos B + cos C + (2 cos B + 2 cos C - 3) cos A

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

Let P and Q be circumcircle antipodes. X(2077) is the line X(1)X(3) intercept, other than X(1), of circle {{X(1),P,Q}}. (Randy Hutson, August 28, 2020)

X(2077) lies on these lines: 1,3   24,1753   30,119   78,1158   84,1259   100,515   102,901   104,519   122,856   376,535   386,601   404,946   516,1519   912,1768   953,1293   972,1308   1012,1376   1593,1878   1618,1818

X(2077) = reflection of X(36) in X(3)
X(2077) = inverse-in-circumcircle of X(40)
X(2077) = X(186) of 1st circumperp triangle
X(2077) = crossdifference of every pair of points on line X(650)X(1108)
X(2077) = {X(1),X(3)}-harmonic conjugate of X(37561)


X(2078) = INVERSE-IN-CIRCUMCIRCLE OF X(57)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = r - 2R + 2(r + R) cos A
                        = g(A,B,C) : g(B,C,A) : g(C,A,B),
                         where g(A,B,C) = cos B + cos C - 3 + (1 + 2 cos A + 2 cos B + 2 cos C) cos A
Trilinears       g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a(a2 + b2 + c2 - 2ab - 2ac + bc)/(b+c-a)     (M. Iliev, 5/13/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2078) lies on these lines: 1,3   31,2003   59,672   73,595   105,2006   109,840   226,1005   388,535   581,1497   901,1477   1174,1202   1279,1421   1283,1284   1308,1323

X(2078) = isogonal conjugate of X(3254)
X(2078) = inverse-in-circumcircle of X(57)
X(2078) = crosssum of X(142) and X(527)
X(2078) = inverse-in-{circumcircle, incircle}-inverter of X(65)
X(2078) = {X(3513),X(3514)}-harmonic conjugate of X(36)


X(2079) = INVERSE-IN-CIRCUMCIRCLE OF X(115)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as noted just above X(2070) using X = X(115)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2079) lies on the tangential circle and these lines: 3,115   6,1511   22,111   24,112   25,1560   186,230   187,2070

X(2079) = inverse-in-circumcircle of X(115)
X(2079) = circumperp conjugate of X(38738)
X(2079) = Stammler-circle-inverse of X(38733)
X(2079) = center of bicevian conic of X(1113) and X(1114)


X(2080) = INVERSE-IN-CIRCUMCIRCLE OF X(182)

Trilinears    2 cos A - cos(A - 2ω) : :

The locus of X(23) in a Brocard porism (triangles sharing circumcircle and Brocard inellipse with ABC) is a circle with center X(2080) and passing through X(23), X(385) and X(11676). This circle is the reflection of the circumcircle in X(187). (Randy Hutson, August 29, 2018)

X(2080) lies on these lines: 3,6   5,316   30,98   83,140   110,237   114,754   625,1656

X(2080) = reflection of X(i) in X(j) for these (i,j): (3,187), (316,5)
X(2080) = isogonal conjugate of isotomic conjugate of X(39099)
X(2080) = inverse-in-circumcircle of X(182)
X(2080) = reflection of X(3) in the Lemoine axis
X(2080) = pole of line X(23)X(352) wrt Parry circle
X(2080) = crossdifference of every pair of points on line X(523)X(3815)
X(2080) = {X(1687),X(1688)}-harmonic conjugate of X(187)
X(2080) = harmonic center of circumcircle and Ehrmann circle
X(2080) = pole of Lemoine axis wrt circle {{X(1687),X(1688),PU(1),PU(2)}}
X(2080) = radical trace of circumcircle and 9th Lozada circle
X(2080) = intersection of Brocard axes of ABC and Artzt triangle
X(2080) = X(23)-of-X(3)PU(1)

leftri

PK and NK Transforms, 2081 - 2088

rightri

On October 1, 2003, Bernard Gibert described two transforms, given for X = u : v : w (barycentrics) by

PK(X) = a2(c2v2 - b2w2)u : b2(a2w2 - c2u2)v : c2(b2u2 - a2v2)w;

NK(X) = a2(c2v2 + b2w2)u : b2(a2w2 + c2u2)v : c2(b2u2 + a2v2)w.

Let X -1 denote the isogonal conjugate of X. Then PK(X) is the point of intersection of the trilinear polar of X and the trilinear polar of X -1, and NK(P) is the pole of the line XX -1 with respect to the conic that passes through points A, B, C, X, and X -1.

Also, PK(X) is the crossdifference, and NK(X) the crosssum, of X and X -1.

The transform PK carries any point on the cubic pK(X6,X) to the trilinear polar of X -1, and NK carries any point on the cubic nK0(X6,X) to the trilinear polar of X -1. (The notations for these cubics are given at Bernard Gibert's Cubics in the Triangle Plane.)

PK(X(i)) = X(j) for these (i,j):
(2,512), (3,647), (4,647), (6,512), (9,663), (19,810), (57,663), (63,810)

NK(X(i)) = X(j) for these (i,j):
(1,1), (2,30), (3,185), (4,185), (6,39), (98,446), (511,446)

In trilinears: suppose X = x : y : z; then

PK(X) = (y2 - z2)x : (z2 - x2)y : (x2 - y2)z;

NK(X) = (y2 + z2)x : (z2 + x2)y : (x2 + y2)z.


The self-isogonal cubic pK(X6,X) is denoted as Z(X) in TCCT (p. 240), and nK0(K6,X), as Z+(L). Extending examples on p. 240-241,

Z(X2) passes through X(i) for I = 1,2,3,4,6,9,57, 223, 282, 1073, 1249.
Z(X4) passes through X(i) for I = 1,3,4,46,90,155,254,371,372,485,486,487,488.
Z(X5) passes through X(i) for I = 1,3,4,5,17,18,54,61,62,195,627,628.
Z(X20) passes through X(i) for I = 1,3,4,20,40,64,84,1490,1498.
Z(X30) passes through X(i) for I = 1,3,4,13,14,15,16, 30, 74, 399, 484, 616,617,1138,1157,1263,1276,1277,1337,1338.
Z(X98) passes through X(i) for I = 1,98,511,1687,1688,1756,2009,2010.
Z(X99) passes through X(i) for I = 1,39,83,99,512,1018,1019,1379,1380.
Z(X100) passes through X(i) for I = 1,100,513,1381,1382.
Z(X110) passes through X(i) for I = 1,5,54,110,523,1113,1114.

Z+(X1X6) passes through X(i) for I = 1,44,88,239,241,292,294,1931.
Z+(X3X6) passes through X(i) for I = 2,6,13,14,15,16,111,524
Z+(X1X2) passes through X(i) for I = 1,238,291,899
Z+(X1X3) passes through X(i) for I = 1,105,243,296,518,1155,1156

Additional pass-through points for these and other cubics are given at Bernard Gibert's Cubics in the Triangle Plane.


X(2081) = PK-TRANSFORM OF X(5)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = [cos2(A - B) - cos2(A - C)]cos(B - C)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2081) lies on these lines: 50,647   115,125

X(2081) = X(50)-Ceva conjugate of X(2088)
X(2081) = crosspoint of X(94) and X(110)
X(2081) = crosssum of X(50) and X(523)


X(2082) = NK-TRANSFORM OF X(9)

Trilinears    (b + c - a)[a2 + (b - c)2] : :
Trilinears    SBSC - a2bc : :
Trilinears    [a^2 + (b - c)^2]/[a^2 - (b - c)^2] : :

X(2082) lies on these lines: 1,41   6,19   8,9   32,1951   40,672   55,1212   57,279   63,194   85,673   198,1108   213,1572   218,517   284,1800   354,1190   573,1723   579,1195   604,610   614,1184   1039,1172   1055,1420   1146,1837   1743,1766

X(2082) = isogonal conjugate of X(7131)
X(2082) = X(664)-Ceva conjugate of X(663)
X(2082) = crosspoint of X(i) and X(j) for these (i,j): (4,277), (9,57), (333,1172)
X(2082) = crosssum of X(i) and X(j) for these (i,j): (3,218), (9,57), (664,663)
X(2082) = bicentric sum of PU(115)
X(2082) = PU(115)-harmonic conjugate of X(663)
X(2082) = eigencenter of cevian triangle of X(664)
X(2082) = eigencenter of anticevian triangle of X(663)


X(2083) = NK-TRANSFORM OF X(19)

Trilinears    (tan2B + tan2C) tan A
Trilinears    tan B cot C + tan C cot B : :

X(2083) lies on these lines: 1,163   19,158   48,1820   63,304   774,1973   920,1755   1497,1953   1760,1966   1821,1969

X(2083) = X(811)-Ceva conjugate of X(810)
X(2083) = crosspoint of X(19) and X(63)
X(2083) = crosssum of X(19) and X(63)


X(2084) = PK-TRANSFORM OF X(31)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b4 - c4)

Let L be the isogonal conjugate of the isotomic conjugate of the antiorthic axis (i.e., line X(667)X(788)). Let M be the isotomic conjugate of the isogonal conjugate of the antiorthic axis (i.e., line X(514)X(661)). Then X(2084) = L∩M. (Randy Hutson, March 21, 2019)

X(2084) lies on these lines: 512,1500   514,661   667,788

X(2084) = isotomic conjugate of X(37204)
X(2084) = X(i)-cross conjugate of X(j) for these (i,j): (782,880), (881,783)
X(2084) = crosspoint of X(661) and X(798)
X(2084) = crosssum of X(i) and X(j) for these (i,j): (662,799), (2084,2085)
X(2084) = isogonal conjugate of X(4593)
X(2084) = crossdifference of every pair of points on line X(31)X(75)


X(2085) = NK-TRANSFORM OF X(31)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b4 + c4)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2085) lies on these lines: 1,1581   31,1917   75,1928   1755,1923

X(2085) = isogonal conjugate of X(38847)
X(2085) = complement of X(38844)
X(2085) = crosspoint of X(31) and X(75)
X(2085) = crosssum of X(31) and X(75)

X(2085) = trilinear product X(i)*X(j) for these {i,j}: {2, 8265}, {4, 4173}, {6, 20859}, {25, 20819}, {31, 4118}, {32, 626}, {37, 16717}, {83, 3118}, {213, 18167}, {264, 23209}, {560, 20627}, {710, 14946}, {1397, 4178}, {1502, 8023}, {1918, 16891}, {1974, 4121}, {2175, 7217}, {2206, 16894}, {3051, 16890}, {8039, 9233}, {21110, 32739}
X(2085) = trilinear quotient X(i)/X(j) for these (i,j): (1, 38847), (2, 38830), (32, 38826), (83, 3115), (626, 76), (3118, 39), (4118, 75), (4121, 305), (4173, 3), (4178, 3596), (7217, 6063), (8023, 1501), (8265, 6), (14946, 711), (16717, 81), (16890, 308), (16891, 310), (16894, 313), (18167, 274), (20627, 561), (20819, 69), (20859, 2), (21110, 3261), (23209, 184)
X(2085) = barycentric product X(i)*X(j) for these {i,j}: {1, 20859}, {6, 4118}, {10, 16717}, {19, 20819}, {31, 626}, {32, 20627}, {41, 7217}, {42, 18167}, {75, 8265}, {92, 4173}, {213, 16891}, {604, 4178}, {692, 21110}, {1333, 16894}, {1917, 8039}, {1928, 8023}, {1964, 16890}, {1969, 23209}, {1973, 4121}, {3112, 3118}
X(2085) = barycentric quotient X(i)/X(j) for these (i,j): (1, 38830), (6, 38847), (82, 3115), (560, 38826), (626, 561), (1964, 18833), (3118, 38), (4118, 76), (4173, 63), (4178, 28659), (7217, 20567), (8023, 560), (8265, 1), (16717, 86), (16891, 6385), (16894, 27801), (18167, 310), (20627, 1502), (20819, 304), (20859, 75), (23209, 48)


X(2086) = PK-TRANSFORM OF X(99)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 - c2)2(a4 - b2c2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2086) lies on these lines: 2,6   351,865   671,729

X(2086) = isogonal conjugate of X(39292)
X(2086) = crossdifference of every pair of points on line X(99)X(512)
X(2086) = X(i)-Ceva conjugate of X(j) for these (i,j): (98,669), (694,512)
X(2086) = crosspoint of X(i) and X(j) for these {i,j}: {6, 2422}, {512, 694}, {804, 3978}, {1691, 5027}, {2489, 6531}
X(2086) = crosssum of X(i) and X(j) for these {i,j}: {2, 2396}, {99, 385}, {805, 9468}, {1916, 18829}, {2086, 14824}, {4563, 36212}
X(2086) = trilinear product X(i)*X(j) for these {i,j}: {115, 1933}, {238, 21823}, {661, 5027}, {740, 21755}, {798, 804}, {1084, 1966}, {1109, 14602}, {1580, 3124}, {1691, 2643}, {1910, 2679}, {1914, 21725}, {1924, 14295}, {1926, 9427}, {1967, 35078}, {2238, 4128}, {3121, 4039}, {3747, 16592}, {3978, 4117}, {4079, 4164}, {4155, 20981}, {7234, 21832}, {18902, 23994}


X(2087) = PK-TRANSFORM OF X(100)

Trilinears    (b + c - 2a)(b - c)2 : :

X(2087) lies on these lines: 1,6   244,665   1914,1983

X(2087) = isogonal conjugate of X(5376)
X(2087) = X(i)-Ceva conjugate of X(j) for these (i,j): (44,1635), (88,513), (104,667), (1022,764), (1319,1960)
X(2087) = crosspoint of X(i) and X(j) for these (i,j): (1,1022), (44,1635), (88,513)
X(2087) = crosssum of X(i) and X(j) for these (i,j): (1,1023), (44,100)
X(2087) = bicentric difference of PU(114)
X(2087) = PU(114)-harmonic conjugate of X(6161)


X(2088) = PK-TRANSFORM OF X(110)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 - c2)2[(b2 + c2 - a2)2 - b2c2]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2088) lies on these lines: 3,6   115,125

X(2088) = isogonal conjugate of X(39295)
X(2088) = X(i)-Ceva conjugate of X(j) for these (i,j): (50,2081), (74,512), (94,523), (323,526)
X(2088) = crosspoint of X(i) and X(j) for these (i,j): (94,523), (323,526)
X(2088) = crosssum of X(i) and X(j) for these (i,j): (50,110), (112,403), (476,1989)
X(2088) = Brocard-circle-inverse of X(32761)


X(2089) = 3rd MID-ARC POINT

Trilinears    (cos B/2 + cos C/2 - cos A/2) sec A/2 : :
Trilinears    1/(1 - sin A/2) : :
Trilinears    csc^2(A'/2) : :, where A'B'C' = excentral triangle

Let A', B', C' be the first points of intersection of the angle bisectors of triangle ABC with its incircle. Let A" B" C" be the triangle formed by the lines tangent to the incircle at A', B', C'. Then A"B"C" is perspective to the intouch triangle of ABC, and the perspector is X(2089). (Darij Grinberg, Hyacinthos #8072, 10/01/03)

X(2089) lies on these lines: 1,167   2,178   7,1488

X(2089) = X(7)-Ceva conjugate of X(174)
X(2089) = X(173)-cross conjugate of X(174)
X(2089) = X(56)-of-intouch triangle
X(2089) = X(24)-of-mid-arc-triangle
X(2089) = intouch-isogonal conjugate of X(17641)
X(2089) = SS(A→A')-of-X(8), where A'B'C' is the excentral triangle
X(2089) = trilinear pole of perspectrix of ABC and Yff central triangle


X(2090) = 1st STEVANOVIC PERSPECTOR

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (sin B/2 + sin C/2) csc A
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

The bisector AX(1) of angle A meets the A-excircle in two points; let A' be the point closer to I, and define B' and C' cyclically. Then triangle A'B'C' is perspective to the medial triangle, and the perspector is X(2090). (Milorad Stevanovic, Hyacinthos #8088, 10/02/03)

X(2090) lies on these lines: 2,174   8,188   9,362   85,555   177,178   312,556

X(2090) = complement of X(174)
X(2090) = crosspoint of X(2) and X(556)


X(2091) = 2nd STEVANOVIC PERSPECTOR

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = [1/(b + c - a)](sin B/2 + sin C/2) sec A/2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

The bisector AX(1) of angle A meets the A-excircle in two points; let A' be the point closer to I, and define B' and C' cyclically. Then triangle A'B'C' is perspective to the intouch triangle, and the perspector is X(2091). (Milorad Stevanovic, Hyacinthos #8088, 10/02/03)

X(2091) lies on this line: {7,4146}, {57,173}

X(2091) = X(19)-of-intouch-triangle


X(2092) = DANNEELS-APOLLONIUS PERSPECTOR

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b + c)2 + a(b + c)(b2 + c2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

Let A' be the point common to Apollonius circle and the A-excircle, and define B' and C' cyclically. Then triangle A'B'C' is perspective to the cevian triangle of X(6), and the perspector is X(2092). (Eric Danneels, Hyacinthos, #8070, 10/01/03). (Triangle A'B'C' is also perspective to the cevian triangle of X(1); see X(1682).)

X(2092) lies on these lines: {1,2277}, {2,314}, {3,6}, {4,3597}, {9,43}, {10,37}, {41,2273}, {42,181}, {44,3647}, {69,980}, {71,213}, {100,2298}, {115,119}, {142,3752}, {192,3596}, {214,1015}, {232,1172}, {291,2663}, {407,1880}, {442,1738}, {538,3770}, {656,3126}, {665,2642}, {851,2285}, {869,3688}, {900,2511}, {966,5283}, {968,4204}, {992,3216}, {1017,3031}, {1107,3686}, {1193,1682}, {1194,5276}, {1196,5275}, {1211,3666}, {1449,2275}, {2171,4642}, {2178,2242}, {2183,2653}, {2240,5279}, {2294,3125}, {2303,5277}, {2309,3271}, {2610,3310}, {2667,3122}, {3030,3124}, {3136,3914}, {3247,4050}, {3454,3821}, {3662,3936}, {3728,4111}, {3949,3954}, {4016,4053}

X(2092) = midpoint of X(i) and X(j) for these (i,j): (256, 1045), (2019,2020)
X(2092) = isogonal conjugate of X(14534)
X(2092) = complement of X(314)
X(2092) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,960), (100,512), (1415,647)
X(2092) = crosspoint of X(i) and X(j) for these (i,j): (2,65), (6,37), (429,1211)
X(2092) = crosssum of X(i) and X(j) for these (i,j): (2,81), (6,21), (58,572), (1169,1798)
X(2092) = perspector of circumconic centered at X(960)
X(2092) = polar conjugate of isotomic conjugate of X(22076)
X(2092) = center of circumconic that is locus of trilinear poles of lines passing through X(960)
X(2092) = harmonic center of Apollonius and Gallatly circles

leftri

Reflections, 2093 - 2105

rightri
Suppose X = x : y : z and U = u : v : w (trilinears). Then the reflection of X in U is the point

(au - bv - cw)x + 2u(by + cz) : (bv - cw - au)y + 2v(cz + ax) : (cw - au - bv)z + 2w(ax + by).

Thus, if x = x(a,b,c), y = x(b,c,a), z = x(c,a,b) and u = u(a,b,c), v = u(b,c,a), w = u(c,a,b), then the reflection of X in U is given by f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (au - bv - cw)x + 2u(by + cz).

In this section, several coordinate representations were contributed by Peter J. C . Moses.


X(2093) = REFLECTION OF X(1) IN X(57)

Trilinears    a3 + 3(b + c)a2 - (b + c)2a - 3(b + c)(b - c)2
Trilinears    cos A - 3 cos B - 3 cos C + 1 : :

Let A'B'C' be the intouch triangle of the extangents triangle, if ABC is acute. Then A'B'C' is homothetic to the 2nd isogonal triangle of X(1) at X(2093). (Randy Hutson, December 2, 2017)

X(2093) lies on these lines: 1,3   10,329   19,1743   72,1706   196,1785   200,758   515,2096   518,2097   519,2094   527,1478   553,1056   946,1788   962,1210   1046,1719   1103,1254   1699,1737

X(2093) = reflection of X(i) in X(j) for these (i,j) : (1,57), (329,10)
X(2093) = X(25)- of-reflection-triangle-of-X(1)


X(2094) = REFLECTION OF X(2) IN X(57)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as noted just above X(2093)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2094) lies on these lines: 2,7   30,2095   189,1121   376,517   519,2093   524,2087   999,1621

X(2094) = reflection of X(i) in X(j) for these (i,j): (2,57), (329,2)
X(2094) = complement of X(31142)


X(2095) = REFLECTION OF X(3) IN X(57)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as noted just above X(2093)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2095) lies on these lines: 1,3   5,329   30,2094   381,527   511,2097

X(2095) = reflection of X(i) in X(j) for these (i,j) : (3,57), (329,5)


X(2096) = REFLECTION OF X(4) IN X(57)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as noted just above X(2093)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2096) lies on these lines: 3,329   4,57   7,104   20,145   30,2094   376,527   388,1158   515,2093   1478,1768   1503,2097

X(2096) = reflection of X(i) in X(j) for these (i,j): (4,57), (329,3)
X(2096) = anticomplement of X(37822)


X(2097) = REFLECTION OF X(6) IN X(57)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as noted just above X(2093)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2097) lies on these lines: 6,57   19,1122   141,329   511,2095   517,990   518,2093   524,2094   527,599   1503,2096

X(2097) = reflection of X(i) in X(j) for these (i,j): (6,57), (329,141)


X(2098) = REFLECTION OF X(56) IN X(1)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(a2 - 2b2 - 2c2 + 4bc - ab - ac)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2098) lies on these lines: 1,3   8,11   21,1392   33,1828   145,497   219,1731   499,1387   519,1837   944,1317   952,1479   1000,1389   1108,1732

X(2098) = reflection of X(i) in X(j) for these (i,j): (8,1329), (56,1)
X(2098) = crosssum of X(1) and X(1420)
X(2098) = {X(1),X(40)}-harmonic conjugate of X(1319)
X(2098) = homothetic center of intangents triangle and reflection of tangential triangle in X(1)
X(2098) = homothetic center of Mandart-incircle triangle and 5th mixtilinear triangle
X(2098) = X(56)-of-Mandart-incircle-triangle
X(2098) = X(56)-of-5th-mixtilinear-triangle
X(2098) = Ursa-major-to-Ursa-minor similarity image of X(8)


X(2099) = REFLECTION OF X(55) IN X(1)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a + b - c)(a - b + c)(a - 2b - 2c)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = 1 - cos A - 2 cos B - 2 cos C     (Randy Hutson, 9/23/2011)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2099) lies on these lines: 1,3   4,1389   6,1411   7,528   8,12   33,1875   34,1824   42,1457   45,1405   80,381   145,388   226,519   515,1836   674,1469   758,956   946,1837   952,1478   959,1255   1149,1450   1392,1476   1399,1468

X(2099) = reflection of X(55) in X(1)
X(2099) = isogonal conjugate of X(2320)
X(2099) = anticomplement of complementary conjugate of X(17057)
X(2099) = {X(1),X(1155)}-harmonic conjugate of X(3576)
X(2099) = {X(1),X(1159)}-harmonic conjugate of X(4860)


X(2100) = REFLECTION OF X(1) IN X(1113)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as noted just above X(2093)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2100) lies on the Bevan circle and these lines: 1,1113   30,40   165,1114   1312,1699   1313,1698

X(2100) = reflection of X(i) in X(j) for these (i,j): (1,1113), (2101,40)
X(2100) = X(188)-aleph conjugate of X(2575)


X(2101) = REFLECTION OF X(1) IN X(1114)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as noted just above X(2093)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2101) lies on the Bevan circle and these lines: 1,1114   30,40   165,1113   1312,1698   1313,1699

X(2101) = reflection of X(i) in X(j) for these (i,j): (1,1114), (2100,40)
X(2101) = X(188)-aleph conjugate of X(2574)


X(2102) = REFLECTION OF X(1113) IN X(1)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as noted just above X(2093)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2102) lies on these lines: 1,1113   8,1313   30,944   517,1114   518,2104

X(2102) = reflection of X(i) in X(j) for these (i,j): (8,1313), (1113,1), (2103,1482)


X(2103) = REFLECTION OF X(1114) IN X(1)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as noted just above X(2093)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2103) lies on these lines: 1,1114   8,1312   30,944   517,1113   518,2105

X(2103) = reflection of X(i) in X(j) for these (i,j): (8,1312), (1114,1), (2102,1482)


X(2104) = REFLECTION OF X(1113) IN X(6)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as noted just above X(2093)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2104) lies on these lines: 6,1113   30,1351   69,1313   511,1114   518,2102

X(2104) = reflection of X(i) in X(j) for these (i,j) : (69,1313), (1113,6), (2105,1351)


X(2105) = REFLECTION OF X(1114) IN X(6)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as noted just above X(2093)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2105) lies on these lines: 6,1114   30,1351   69,1312   511,1113   518,2103

X(2105) = reflection of X(i) in X(j) for these (i,j): (69,1312), (1114,6), (2104,1351)

leftri

Centers 2106 -2119

rightri
are on the 2nd equal-areas cubic, EAC2. (For the definition, click Tables and then Bicentric Pairs.)

For any point P on EAC2, the X(2)-isoconjugate of P is also on EAC2. In the following table, for each (i,j), the centers X(i) and X(j) are on EAC2 and are an X(2)-isoconjugate pair. Each pair are collinear with the pivot X(238).

IJ
16
231
105672
238292
365365
14232053
19312054
21062107
21082109
21102111
21122113
21142115
21162117
21182119
21442145
21462147
300920332

Triangle centers on a cubic yield non-central points on the cubic; e.g., if P and P' are on EAC2, then the line of PP' meets EAC2 in third point, L(P,P'), on EAC2. (Possibly L(P,P') is P or P'.) If A', B', C' are central triangle vertices and X is a triangle center, and all four points A', B', C', and X lie on EAC2, then the points

L(A',X),    L(B',X),    L(C',X)

are central triangle vertices on EAC2. (A definition of central triangle is given in the Glossary.) In the following table, column 1 indicates the A-vertex of such a triangle; column 2 two points collinear with that vertex; and column 3, the A-vertex of the X(2)-isoconjugate of the triangle. Taking row 1 as an example, - a : c : represents the point -a : c : b, which is the A-vertex of the central triangle with B-vertex c : - b : a and C-vertex b : a : - c. The A-vertex is collinear with A and X(2) (so that the B-vertex is collinear with B and X(2), etc.). Then, in column 3, - bc : a2b : represents the A-vertex of the X(2)-isoconjugate of - a : c : . The vertices - a : c : and - bc : a2b : are collinear with the pivot, X(238).

A-vertexLineA-vertex (iso-)
- a : c :A, X(2)- bc : b2 :
- a1/2 : b1/2 :A, X(365)- a1/2 : b1/2 :
- a(a + b + c) : bc + ca + ab :A, X(1)- 1/(a + b + c) : b/(bc + ca + ab) :
bc + ab + ac : - (a + b + c)b :A, X(6)a/(bc + ab + ac) : - 1/(a + b + c) :
- bc : b2 :A, X(31)- a : c :
a(a + b + c) : a2 + b2 - (a + b)c:X(6), - a : c : 1/(a + b + c) : b/[a2 + b2 - (a + b)c] :
2a(b2 + ca)(c2 + ab) :
(b2 + ca)(a3 + b3 - c3 - abc) :
X(31), - a : c : 1/[2a(b2 + ca)(c2 + ab)] :
b/[(b2 + ca)(a3 + b3 - c3 - abc)] :
(a+b)(a+c)(a2+b2+c2+bc+ca+ab) :
b(a+c)(a2+b2+ab-c(a+b+c)) :
X(1), - a : c : a/[(a+b)(a+c)(a2+b2+c2+bc+ca+ab)] :
1/[(a+c)(a2+b2+ab-c(a+b+c))] :
a(bc + ab + ac) : (c - b)a2 - b2a + b2c : X(1), - bc : b2 : 1/[(bc + ab + ac) : b/[(c - b)a2 - b2a + b2c] :
2a2bc(b2 + ca)(c2 + ba) :
(b2 + ca)(b3c3 + a3c3 - a3b3 - a2b2c2) :
X(2), - bc : b2 : 1/[2abc(b2 + ca)(c2 + ba)] :
b/[(b2 + ca)(b3c3 + a3c3 - a3b3 - a2b2c2)] :
(a+b)(a+c)[(b2+bc+c2)a2 + abc(b+c) + b2c2] :
b(a+c)[(c2-bc-b2)a2 + abc(c-b) + b2c2] :
X(6), - bc : b2 : 1/[(a+b)(a+c)[(b2+bc+c2)a2 + abc(b+c) + b2c2]] :
1/[(a+c)[(c2-bc-b2)a2 + abc(c-b) + b2c2]] :


X(2106) = POINT KEPLER I

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where
                         f(a,b,c) = (a + b)(a + c)(b2c2 - a2b2 - a2c2 + abc(b + c - a))
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2106) lies on these lines: 2,6   105,805   213,1509   238,741   292,1931   662,1914   873,894   1621,1964   2111,2112   2114,2117

X(2106) = X(i)-Ceva conjugate of X(j) for these (i,j): (238,1931), (741,81)
X(2106) = X(2664)-cross conjugate of X(2669)


X(2107) = X(2)-ISOCONJUGATE OF X(2106)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where
                         f(a,b,c) = a/[(a + b)(a + c)(b2c2 - a2b2 - a2c2 + abc(b + c - a))]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2107) lies on these lines: 1,1655   31,1979   238,741   672,1967   1423,2116

X(2107) = isogonal conjugate of X(2669)
X(2107) = cevapoint of X(2663) and X(2664)
X(2107) = X(i)-cross conjugate of X(j) for these (i,j): (292,2054), (2238,42)


X(2108) = POINT KEPLER I

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where
                         f(a,b,c) = (b + c)a3 - (b2 - bc + c2)a2 - (b + c)(b2 + c2)a + bc(b2 + bc + c2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2108) lies on these lines: 1,39   2,846   3,2053   31,43   42,1051   170,411   238,1575   672,1282   1011,1283

X(2108) = X(i)-Ceva conjugate of X(j) for these (i,j): (238,1), (1575,43)
X(2108) = X(i)-aleph conjugate of X(j) for these (i,j): (1,1757), (100,1026), (238,2108), (365,2664)

X(2108) = perspector of 2nd Sharygin triangle and unary cofactor triangle of 1st Sharygin triangle


X(2109) = X(2)-ISOCONJUGATE OF X(2108)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where
                         f(a,b,c) = a/[(b + c)a3 - (b2 - bc + c2)a2 - (b + c)(b2 + c2)a + bc(b2 + bc + c2)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2109) lies on these lines: 238,1575   1914,2112

X(2109) = isogonal conjugate of X(33888)
X(2109) = trilinear pole of line X(6373)X(8632)
X(2109) = X(i)-cross conjugate of X(j) for these (i,j): (292,6), (727,2162), (1929,2248)
X(2109) = X(92)-isoconjugate of X(20797)


X(2110) = POINT KEPLER III

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where
                         f(a,b,c) = a[(b2 + bc + c2)a3 - (b + c)(b2 + c2)a2 - bc(b2 - bc + c2)a + b2c2(b + c)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2110) lies on these lines: 2,11   6,292   31,1979   238,2111   365,2119   672,2117   1185,1977   1423,1740   1931,2113

X(2110) = isogonal conjugate of anticomplement of X(36906)
X(2110) = X(i)-Ceva conjugate of X(j) for these (i,j): (238,6), (2223,55)


X(2111) = X(2)-ISOCONJUGATE OF X(2110)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where
                         f(a,b,c) = 1/[(b2 + bc + c2)a3 - (b + c)(b2 + c2)a2 - bc(b2 - bc + c2)a + b2c2(b + c)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2111) lies on these lines: 238,2110   239,672   2106,2112

X(2111) = X(i)-cross conjugate of X(j) for these (i,j): (292,1), (673,57)


X(2112) = POINT KEPLER IV

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where
                         f(a,b,c) = a[a4 - bca2 - (b3 + c3)a + 2b2c2]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2112) lies on these lines: 1,41   6,2054   31,292   172,1201   238,2113   604,651   672,2115   1015,1468   1914,2109   2106,2111

X(2112) = complement of X(20353)
X(2112) = anticomplement of X(20341)
X(2112) = X(238)-Ceva conjugate of X(31)

X(2112) = eigencenter of extouch triangle
X(2112) = eigencenter of anticevian triangle of X(56)


X(2113) = X(2)-ISOCONJUGATE OF X(2112)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where
                         f(a,b,c) = 1/[a4 - bca2 - (b3 + c3)a + 2b2c2]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2113) lies on these lines: 238,2112   672,1282   1458,2114   1931,2110

X(2113) = X(292)-cross conjugate of X(2)
X(2113) = X(19)-isoconjugate of X(20742)


X(2114) = POINT KEPLER V

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where
                         f(a,b,c) = (c + a - b)(a + b - c)[a4 + (b + c)a3 - u(a,b,c)a2 + v(a,b,c)a - w(a,b,c)],
                         where u(a,b,c) = 2b2 + 3bc + 2c2,    v(a,b,c) = (b + c)(b2 + c2),    w(a,b,c) = (b - c)2(b2 + bc + c2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2114) lies on these lines: 9,77   31,57   238,241   269,292   1279,1429   1458,2113   2106,2117


X(2115) = X(2)-ISOCONJUGATE OF X(2114)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where
                         f(a,b,c) = (b + c - a)a/[a4 + (b + c)a3 - u(a,b,c)a2 + v(a,b,c)a - w(a,b,c)],
                         where u(a,b,c) = 2b2 + 3bc + 2c2,    v(a,b,c) = (b + c)(b2 + c2),    w(a,b,c) = (b - c)2(b2 + bc + c2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2115) lies on these lines: 238,241   672,2112   1931,2116


X(2116) = POINT KEPLER VI

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where
                         f(a,b,c) = u(b,c,a)u(c,a,b)(d1a5 - d2a4 - d3a3 - d4a2 - d5a - d6),
                         where u(a,b,c) = a2 - 2bc - ac - bc,
                         d1(a,b,c) = 2(b + c),
                         d2(a,b,c) = b2 - bc + c2,
                         d3(a,b,c) = 3bc(b + c),
                         d4(a,b,c) = b4 + b2c2 + c4 - b3c - c3b,
                         d5(a,b,c) = bc(b + c)(b2 - 4bc + c2),
                         d6(a,b,c) = b2c2(b - c)2

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2116) lies on these lines: 6,105   238,2117   1423,2107   1931,2115


X(2117) = X(2)-ISOCONJUGATE OF X(2116)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as at X(2116)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2117) lies on these lines: 238,2116   672,2110   2106,2114


X(2118) = POINT KEPLER VII

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b),
                         where f(a,b,c) = a(a + b + c)(bc)1/2 + (bc + ca + ab)[a - (ab)1/2 - (ac)1/2]     (M. Iliev, 5/13/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2118) lies on these lines: 6,365   238,2119   2108,2147   2111,2146


X(2119) = X(2)-ISOCONJUGATE OF X(2118)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b),
                         where f(a,b,c) = a1/2/[(a + b + c)(abc)1/2 + (bc + ca + ab)[a1/2 - b1/2 - c1/2)]     (M. Iliev, 5/13/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2119) lies on these lines: 1,2146   238,2118   365,2110

leftri

Eigencenters I, 2120 -2143

rightri

The eigencenter of a triangle is defined in the Glossary and in TCCT, p. 192. In case the triangle is the cevian triangle of a point U = u : v : w, the eigencenter is given by

f(u,v,w) : f(v,w,u) : f(w,u,v), where f(u,v,w) = vw(u2v2 + u2w2 - v2w2).

This point is now named the eigentransform of U, denoted by ET(U). Pairs (i,j) such that X(j) = ET(X(i)) include

(1,1), (2,3), (3,1075), (4,155), (6,194), (7,218), (13,62), (14,61), (63,1712), (88,1), (92,47), (94,49), (99,39), (100,1), (110,5), (162,1), (174,266), (190,1), (648,185), (651,1), (653,1), (655,1), (658,1), (660,1), (662,1), (664,2082), (673,1), (694,384), (771,1), (799,1), (811,2083), (823,1), (897,1), (1113,3), (1114,3), (1156,1), (1492,1), (1821,1), (1942,1941)

For any point P not on a sideline of triangle ABC, let P -1 denote the isogonal conjugate of P. Easily verified properties of eigentransforms include the following.

1.    ET(U) = U-Ceva conjugate of U -1.

2.    ET(U) = X(1) if and only if U = X(1) or U lies on the Steiner circumellipse: yz + zx + xy = 0.

3.    ET(U) = eigencenter of the anticevian triangle of U -1.

4.    ET(U) is on the self-isogonal cubic Z(U). That is, if x : y : z denotes a trilinear variable point, then ET(U) is on the cubic

ux(y2 - z2) + vy(z2 - x2) + wz(x2 - y2) = 0.


5.    The U-Ceva conjugate of every X on Z(U) is on Z(U); thus, the U-Ceva conjugate, V, of X(1), lies on Z(U); trilinears for V -1 are

1/(1/v + 1/w - 1/u) : 1/(1/w + 1/u - 1/v) : 1/(1/u + 1/v - 1/w);


ET(U) is the third point of intersection of the line X(1)-to-V -1 and the cubic Z(U).

6.    As U is the pivot of Z(U), the following points on Z(U) are collinear: U, ET(U), [ET(U)] -1 .

For discussions and generalizations using barycentric coordinates, see Section 1.4 of "Special Isocubics in the Triangle Plane," downloadable from Bernard Gibert's Cubics in the Triangle Plane. The cubic Z(U) is there denoted by pK(X6,U), and ET(U) is = (cevian quotient of U and U*) = (U-Ceva conjugate of U -1); ET(U) is the tangential of U* in pK(X6,U).

This section was added to ETC on 10/(14-17)/03.


X(2120) = EIGENTRANSFORM OF X(5)

Trilinears        f(u,v,w) : f(v,w,u) : f(w,u,v), where f is as given just before X(2120) and u : v : w = X(5)
Barycentrics   af(u,v,w) : bf(v,w,u) : cf(w,u,v)

X(2120) lies on the Napoleon cubic and these lines: 1,3461   3,3463   4,1157   5,2121   3467,3469

X(2120) = isogonal conjugate of X(2121)
X(2120) = X(5)-Ceva conjugate of X(54)


X(2121) = ISOGONAL CONJUGATE OF X(2120)

Trilinears        1/f(u,v,w) : 1/f(v,w,u) : 1/f(w,u,v), where f is as given just before X(2120) and u : v : w = X(5)
Barycentrics   a/f(u,v,w) : b/f(v,w,u) : c/f(w,u,v)

X(2121) lies on the Napoleon cubic and these lines: 5,2120   195,3462

X(2121) = isogonal conjugate of X(2120)
X(2121) = X(54)-cross conjugate of X(5)


X(2122) = EIGENTRANSFORM OF X(8)

Trilinears        f(u,v,w) : f(v,w,u) : f(w,u,v), where f is as given just before X(2120) and u : v : w = X(8)
Barycentrics   af(u,v,w) : bf(v,w,u) : cf(w,u,v)

X(2122) lies on the cubic K692 and these lines: 1,84   8,2123   34,1767   109,1035   603,1450   608,1249   1406,1456

X(2122) = isogonal conjugate of X(2123)
X(2122) = X(8)-Ceva conjugate of X(56)


X(2123) = ISOGONAL CONJUGATE OF X(2122)

Trilinears        1/f(u,v,w) : 1/f(v,w,u) : 1/f(w,u,v), where f is as given just before X(2120) and u : v : w = X(8)
Barycentrics   a/f(u,v,w) : b/f(v,w,u) : c/f(w,u,v)

X(2123) lies on the cubic K692 and this line: 8,2122

X(2123) = isogonal conjugate of X(2122)
X(2123) = X(56)-cross conjugate of X(89)


X(2124) = EIGENTRANSFORM OF X(9)

Trilinears        f(u,v,w) : f(v,w,u) : f(w,u,v), where f is as given just before X(2120) and u : v : w = X(9)
Barycentrics   af(u,v,w) : bf(v,w,u) : cf(w,u,v)

X(2124) lies on the cubic K351 and these lines: 1,971   8,2125   57,279   223,1212   664,728

X(2124) = isogonal conjugate of X(2125)
X(2124) = anticomplement of X(32446)
X(2124) = X(9)-Ceva conjugate of X(57)
X(2124) = perspector of 7th mixtilinear triangle and unary cofactor triangle of 4th mixtilinear triangle


X(2125) = ISOGONAL CONJUGATE OF X(2124)

Trilinears        1/f(u,v,w) : 1/f(v,w,u) : 1/f(w,u,v), where f is as given just before X(2120) and u : v : w = X(9)
Barycentrics   a/f(u,v,w) : b/f(v,w,u) : c/f(w,u,v)

X(2125) lies on the cubic K351 and these lines: 9,2124   165,220

X(2125) = isogonal conjugate of X(2124)
X(2125) = X(57)-cross conjugate of X(9)


X(2126) = EIGENTRANSFORM OF X(10)

Trilinears        f(u,v,w) : f(v,w,u) : f(w,u,v), where f is as given just before X(2120) and u : v : w = X(10)
Barycentrics   af(u,v,w) : bf(v,w,u) : cf(w,u,v)

X(2126) lies on these lines: 1,229   5,572   10,2127   49,970

X(2126) = isogonal conjugate of X(2127)
X(2126) = X(10)-Ceva conjugate of X(58)


X(2127) = ISOGONAL CONJUGATE OF X(2126)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2120)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2127) lies on this line: 10,2126

X(2127) = isogonal conjugate of X(2126)
X(2127) = X(58)-cross conjugate of X(10)


X(2128) = EIGENTRANSFORM OF X(19)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b2 + c2 - a2)[(a2 + b2 + c2)2 - 8b2c2]     (M. Iliev, 5/13/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2128) lies on the cubic Z(X(19)) and these lines: 1,1958   2,2082   19,2129   63,304

X(2128) = isogonal conjugate of X(2129)
X(2128) = X(19)-Ceva conjugate of X(63)


X(2129) = ISOGONAL CONJUGATE OF X(2128)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/{(b2 + c2 - a2)[(a2 + b2 + c2)2 - 8b2c2]}     (M. Iliev, 5/13/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2129) lies on the cubic Z(X(19)) and these lines: 19,2128   1707,1973

X(2129) = isogonal conjugate of X(2128)
X(2129) = X(63)-cross conjugate of X(19)


X(2130) = EIGENTRANSFORM OF X(20)

Trilinears        f(u,v,w) : f(v,w,u) : f(w,u,v), where f is as given just before X(2120) and u : v : w = X(20)
Barycentrics   af(u,v,w) : bf(v,w,u) : cf(w,u,v)

X(2130) lies on the Darboux cubic (K004) and these lines: 1,3347   3,3348   4,1073   20,2131   40,3354   84,3345   1490,3473

X(2130) = reflection of X(3348) in X(3)
X(2130) = isogonal conjugate of X(2131)
X(2130) = X(20)-Ceva conjugate of X(64)


X(2131) = ISOGONAL CONJUGATE OF X(2130)

Trilinears        1/f(u,v,w) : 1/f(v,w,u) : 1/f(w,u,v), where f is as given just before X(2120) and u : v : w = X(20)
Barycentrics   a/f(u,v,w) : b/f(v,w,u) : c/f(w,u,v)

X(2131) lies on the Darboux cubic (K004) and these lines: 3,3355   20,2130   40,3472   1490,3353   1498,3183

X(2131) = reflection of X(3355) in X(3)
X(2131) = isogonal conjugate of X(2130)
X(2131) = X(64)-cross conjugate of X(20)


X(2132) = EIGENTRANSFORM OF X(30)

Trilinears        f(u,v,w) : f(v,w,u) : f(w,u,v), where f is as given just before X(2120) and u : v : w = X(30)
Barycentrics   af(u,v,w) : bf(v,w,u) : cf(w,u,v)

X(2132) is the tangential of X(74) on the Neuberg cubic (K001).

X(2132) lies on the Neuberg cubic and these lines: 4,1138   30,2133   3065,3466   3440,3441

X(2132) = isogonal conjugate of X(2133)
X(2132) = X(30)-Ceva conjugate of X(74)
X(2132) = Miquel associate of X(30)


X(2133) = ISOGONAL CONJUGATE OF X(2132)

Trilinears        1/f(u,v,w) : 1/f(v,w,u) : 1/f(w,u,v), where f is as given just before X(2120) and u : v : w = X(30)
Barycentrics   a/f(u,v,w) : b/f(v,w,u) : c/f(w,u,v)

X(2133) lies on the Neuberg cubic (K001) and this line: 30,2132

X(2133) = isogonal conjugate of X(2132)
X(2133) = antigonal conjugate of X(34297)
X(2133) = X(74)-cross conjugate of X(30)


X(2134) = EIGENTRANSFORM OF X(37)

Trilinears        f(u,v,w) : f(v,w,u) : f(w,u,v), where f is as given just before X(2120) and u : v : w = X(37)
Barycentrics   af(u,v,w) : bf(v,w,u) : cf(w,u,v)

X(2134) lies on the these lines: 1,1326   37,2135   39,1931   81,763

X(2134) = isogonal conjugate of X(2135)
X(2134) = X(37)-Ceva conjugate of X(81)


X(2135) = ISOGONAL CONJUGATE OF X(2134)

Trilinears        1/f(u,v,w) : 1/f(v,w,u) : 1/f(w,u,v), where f is as given just before X(2120) and u : v : w = X(37)
Barycentrics   a/f(u,v,w) : b/f(v,w,u) : c/f(w,u,v)

X(2135) lies on the cubic Z(X(37)) and this line: 37,2134

X(2135) = isogonal conjugate of X(2134)
X(2135) = X(81)-cross conjugate of X(37)


X(2136) = EIGENTRANSFORM OF X(57)

Barycentrics    a*(a^2+2*(b+c)*a+b^2-6*b*c+c^2)*(-a+b+c) : :

X(2136) lies on the cubics K201 and K372, and on these lines: 1,474   8,9   10,1058   40,376   43,1050   57,145   84,952   100,1420   188,258   517,1490   664,738

X(2136) = isogonal conjugate of X(2137)
X(2136) = X(145)-Ceva conjugate of X(1)
X(2136) = X(145)-aleph conjugate of X(2136)
X(2136) = SS(a→s-a) of X(3)
X(2136) = X(64)-of-excentral-triangle
X(2136) = orthologic center of these triangles: excentral to excenters-midpoints
X(2136) = orthologic center of these triangles: excentral to 2nd Schiffler
X(2136) = intouch-to-ABC barycentric image of X(8)


X(2137) = ISOGONAL CONJUGATE OF X(2136)

Barycentrics    a*(a+b-c)*(a^2-2*(3*b-c)*a+(b+c)^2)*(a^2+2*(b-3*c)*a+(b+c)^2)*(a-b+c) : :

X(2137) lies on the cubic K830 and these lines: {56, 1743}, {57, 145}, {1407, 1420}

X(2137) = isogonal conjugate of X(2136)
X(2137) = X(9)-cross conjugate of X(57)


X(2138) = EIGENTRANSFORM OF X(69)

Trilinears        f(u,v,w) : f(v,w,u) : f(w,u,v), where f is as given just before X(2120) and u : v : w = X(69)
Barycentrics   af(u,v,w) : bf(v,w,u) : cf(w,u,v)

X(2138) lies on the cubic K169 and these lines: 6,64   69,2139   1249,1941

X(2138) = isogonal conjugate of X(2139)
X(2138) = X(69)-Ceva conjugate of X(25)


X(2139) = ISOGONAL CONJUGATE OF X(2138)

Trilinears        1/f(u,v,w) : 1/f(v,w,u) : 1/f(w,u,v), where f is as given just before X(2120) and u : v : w = X(69)
Barycentrics   a/f(u,v,w) : b/f(v,w,u) : c/f(w,u,v)

X(2139) lies on the cubic, K169 and these lines: 20,159   69,2138

X(2139) = isogonal conjugate of X(2138)
X(2139) = X(25)-cross conjugate of X(69)


X(2140) = EIGENTRANSFORM OF X(101)

Trilinears        f(u,v,w) : f(v,w,u) : f(w,u,v), where f is as given just before X(2120) and u : v : w = X(101)
Barycentrics   af(u,v,w) : bf(v,w,u) : cf(w,u,v)

X(2140) lies on the cubic K258 and these lines: 3,142   5,116   39,1086   85,514   101,2141   170,1699   218,226   244,2085

X(2140) = isogonal conjugate of X(2141)
X(2140) = X(101)-Ceva conjugate of X(514)


X(2141) = ISOGONAL CONJUGATE OF X(2140)

Trilinears        1/f(u,v,w) : 1/f(v,w,u) : 1/f(w,u,v), where f is as given just before X(2120) and u : v : w = X(101)
Barycentrics   a/f(u,v,w) : b/f(v,w,u) : c/f(w,u,v)

X(2141) lies on this line: 101, 2140

X(2141) = isogonal conjugate of X(2140)
X(2141) = X(514)-cross conjugate of X(101)


X(2142) = EIGENTRANSFORM OF X(512)

Trilinears        f(u,v,w) : f(v,w,u) : f(w,u,v), where f is as given just before X(2120) and u : v : w = X(512)
Barycentrics   af(u,v,w) : bf(v,w,u) : cf(w,u,v)

X(2142) lies on the 1st equal-areas cubic (K021) and this line: 512,2143

X(2142) = isogonal conjugate of X(2143)
X(2142) = X(512)-Ceva conjugate of X(99)


X(2143) = ISOGONAL CONJUGATE OF X(2142)

Trilinears        1/f(u,v,w) : 1/f(v,w,u) : 1/f(w,u,v), where f is as given just before X(2120) and u : v : w = X(512)
Barycentrics   a/f(u,v,w) : b/f(v,w,u) : c/f(w,u,v)

X(2143) lies on the 1st equal-areas cubic (K021) and this line: 512,2142

X(2143) = isogonal conjugate of X(2142)
X(2143) = X(99)-cross conjugate of X(512)


X(2144) = X(2)-EIGENTRANSFORM OF X(238)

Trilinears        f(u,v,w) : f(v,w,u) : f(w,u,v), where f is as given just before X(2120) and u : v : w = X(2382)
Barycentrics   af(u,v,w) : bf(v,w,u) : cf(w,u,v)

Suppose U = u : v : w and P = p : q : r are triangle centers. The P-eigentransform of U, denoted by ET(U,P), is the point given by first trilinear

qrvw(pqu2v2 + pru2w2 - qrv2w2).


Thus, ET(U) = ET(U,X(1)), and, extending the on-cubic property, ET(U,P) lies on the cubic Z(U,P) given by

upx(qy2 - rz2) + vqy(rz2 - pu2) + wrz(px2 - qv2) = 0.


X(2144) lies on the 2nd equal-areas cubic (K155) and these lines: 1,2111   2,2113   6,2109   238,2145   2053,2115   2054,2107

X(2144) = complement of X(20354)
X(2144) = anticomplement of X(20342)
X(2144) = X(238)-Ceva conjugate of X(292)


X(2145) = X(2)-ISOCONJUGATE OF X(2144)

Trilinears        1/f(u,v,w) : 1/f(v,w,u) : 1/f(w,u,v), where f is as given just before X(2120) and u : v : w = X(238)
Barycentrics   a/f(u,v,w) : b/f(v,w,u) : c/f(w,u,v)

X(2145) lies on the 2nd equal-areas cubic (K155): 238,2144   2108,2110

X(2145) = X(292)-cross conjugate of X(238)


X(2146) = X(238)-CEVA CONJUGATE OF X(365)

Trilinears        a1/2(b1/2/v + c1/2/w - a1/2/u) : b1/2(c1/2/w + a1/2/u - b1/2/v) : c1/2(a1/2/u + b1/2/v - c1/2/w),
                        where u : v : w = a2 - bc : b2 - ca : c2 - ab

Barycentrics   a3/2(b1/2/v + c1/2/w - a1/2/u) : b3/2(c1/2/w + a1/2/u - b1/2/v) : c3/2(a1/2/u + b1/2/v - c1/2/w)

X(2146) lies on the 2nd equal-areas cubic (K155) and these lines: 1,2119   238,2147   292,365   2111,2118

X(2146) = X(238)-Ceva conjugate of X(365)


X(2147) = X(2)-ISOCONJUGATE OF X(2146)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b),
                        where f(a,b,c) : f(b,c,a) : f(c,a,b) = X(2146)

Barycentrics   a2/f(a,b,c) : b2/f(b,c,a) : c2/f(c,a,b)

X(2147) lies on the 2nd equal-areas cubic (K155) and these lines: 238,2146   365,2144   2108,2118

X(2147) = X(292)-cross conjugate of X(365)


X(2148) = X(2)-ISOCONJUGATE OF X(5)

Trilinears        a sec(B - C) : b sec(C - A): c sec(A - B)
Barycentrics   a2sec(B - C) : b2sec(C - A): c2sec(A - B)

X(2148) lies on these lines: 1,563   19,2190   47,48   54,71   63,2167   163,1953   228,2361   933,2249   2083,2158

X(2148) = isogonal conjugate of X(14213)
X(2148) = complement of anticomplementary conjugate of X(17479)
X(2148) = anticomplement of complementary conjugate of X(16577)
X(2148) = X(2167)-Ceva conjugate of X(2169)
X(2148) = cevapoint of X(48) and X(563)
X(2148) = X(i)-cross conjugate of X(j) for these (i,j): (31,2190), (48,2168), (661,163)
X(2148) = crosspoint of X(2167) and X(2190)


X(2149) = X(2)-ISOCONJUGATE OF X(11)

Trilinears    (sin A)/[1 - cos(B - C)] : :

X(2149) lies on these lines: 59,672   101,652   109,649   163,1625   661,2222   1055,1262   1110,2223

X(2149) = isogonal conjugate of X(4858)
X(2149) = complement of anticomplementary conjugate of X(4552)
X(2149) = anticomplement of complementary conjugate of X(16578)
X(2149) = X(59)-Ceva conjugate of X(1110)
X(2149) = cevapoint of X(i) and X(j) for these (i,j): (41,692), (101,572), (604,1415)
X(2149) = X(i)-cross conjugate of X(j) for these (i,j): (6,163), (31,109), (41,692), (48,101), (604,1415), (1755,813), (2352,108)
X(2149) = crosspoint of X(59) and X(1262)
X(2149) = crosssum of X(11) and X(1146)


X(2150) = X(2)-ISOCONJUGATE OF X(12)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(12)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2150) lies on these lines: 6,163   9,1098   58,1474   60,283   593,1412   759,1953   849,1333   2193,2194

X(2150) = isogonal conjugate of X(6358)
X(2150) = complement of anticomplementary conjugate of X(18662)
X(2150) = anticomplement of complementary conjugate of X(16579)
X(2150) = crossdifference of every pair of points on line X(4036)X(4064)
X(2150) = X(593)-Ceva conjugate of X(849)
X(2150) = X(i)-cross conjugate of X(j) for these (i,j): (1333,2189), (2194,60)
X(2150) = crosspoint of X(i) and X(j) for these (i,j): (60,593), (270,2185)
X(2150) = crosssum of X(i) and X(j) for these (i,j): (12,594), (201,2171)


X(2151) = X(2)-ISOCONJUGATE OF X(13)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(13)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = sin A sin(A + π/3)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2151) lies on these lines: 1,1095   31,48   2153,2173  

X(2151) = X(2159)-cross conjugate of X(2152)


X(2152) = X(2)-ISOCONJUGATE OF X(14)

Trilinears    sin A sin(A - π/3) : :

X(2152) lies on these lines: 1,1094   31,48   2154,2173

X(2152) = X(2159)-cross conjugate of X(2151)


X(2153) = X(2)-ISOCONJUGATE OF X(15)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(15)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = sin A csc(A + π/3)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2153) lies on these lines: 1,1094   10,13   31,2154   37,1250   65,2306   2151,2173

X(2153) = X(2173)-cross conjugate of X(2154)
X(2153) = trilinear product of circumcircle intercepts of inner Napoleon circle


X(2154) = X(2)-ISOCONJUGATE OF X(16)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(16)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = sin A csc(A - π/3)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2154) lies on these lines: 1,1095   10,14   31,2153   2152,2173

X(2154) = X(2173)-cross conjugate of X(2153)
X(2154) = trilinear product of circumcircle intercepts of outer Napoleon circle


X(2155) = X(2)-ISOCONJUGATE OF X(20)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(20)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2155) lies on these lines: 19,774   25,2357   41,1409   48,820   63,610   64,71   228,1253   294,2270   607,1400   1301,2249   1820,2173

X(2155) = isogonal conjugate of X(18750)
X(2155) = X(1973)-cross conjugate of X(31)


X(2156) = X(2)-ISOCONJUGATE OF X(22)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(22)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2156) lies on these lines: 31,2083   38,48   63,1930   66,71   228,2353   561,1760   1289,2249   1409,2273   1748,1821   1755,1820

X(2156) = isogonal conjugate of X(1760)
X(2156) = complement of X(21288)
X(2156) = anticomplement of X(21247)
X(2156) = X(i)-cross conjugate of X(j) for these (i,j): (560,1), (2632,661)


X(2157) = X(2)-ISOCONJUGATE OF X(23)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(23)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2157) lies on these lines: 19,1109   38,163   48,2247   67,71   935,2249   2159,2312

X(2157) = cevapoint of X(38) and X(896)
X(2157) = complement of anticomplementary conjugate of X(17482)
X(2157) = anticomplement of complementary conjugate of X(16581)
X(2157) = X(922)-cross conjugate of X(1)


X(2158) = X(2)-ISOCONJUGATE OF X(26)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(26)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2158) lies on these lines: 70,71   1288,2249   2083,2148

X(2158) = isogonal conjugate of complement of X(18665)
X(2158) = isogonal conjugate of anticomplement of X(18590)
X(2158) = complement of anticomplementary conjugate of X(18665)
X(2158) = anticomplement of complementary conjugate of X(18590)


X(2159) = X(2)-ISOCONJUGATE OF X(30)

Trilinears         a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(30)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2159) lies on these lines: 48,163   63,662   71,74   228,692   610,1820   1304,2249   1409,1415   1461,2003   1725,2173   2157,2312

X(2159) = isogonal conjugate of X(14206)
X(2159) = cevapoint of X(i) and X(j) for these (i,j): (48,2315), (2151,2152)
X(2159) = X(2624)-cross conjugate of X(163)
X(2159) = polar conjugate of isotomic conjugate of X(35200)
X(2159) = barycentric product of PU(86)
X(2159) = trilinear product X(6)*X(74)
X(2159) = complement of anticomplementary conjugate of X(18668)
X(2159) = anticomplement of complementary conjugate of X(18593)
X(2159) = X(63)-isoconjugate of X(1784)


X(2160) = X(2)-ISOCONJUGATE OF X(35)

Trilinears    (sin A)/(1 + 2 cos A) : :
Barycentrics    (sin A)^2/(1 + 2 cos A) : :

A construction for X(2160) appears in Dasari Naga Vijay Krishna, On the Feuerbach Triangle.

X(2160) lies on these lines: 6,1406   9,46   19,1990   55,199   56,2164   65,2174   284,501   395,1081   396,554   909,2262   910,1174   1108,2291   1400,1989   1841,2299

X(2160) = isogonal conjugate of X(3219)
X(2160) = cevapoint of X(1652) and X(1653)
X(2160) = X(i)-cross conjugate of X(j) for these (i,j): (2260,6), (2308,1)
X(2160) = crosspoint of X(57) ane X(267)
X(2160) = crosssum of X(9) and X(191)
X(2160) = complement of anticomplementary conjugate of X(17483)
X(2160) = trilinear pole of line X(663)X(2520)


X(2161) = X(2)-ISOCONJUGATE OF X(36)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(36)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = (sin A)/(1 - 2 cos A)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2161) lies on these lines: 1,2364   6,1411   9,80   19,53   37,101   44,517   45,55   57,1020   63,545   190,321   198,2164   484,2245   654,900   655,673   909,1319   910,2222   1150,12237   1400,1989   1436,2178   1635,1769   1824,2299   2259,2264

X(2161) = isogonal conjugate of X(3218)
X(2161) = X(2006)-Ceva conjugate of X(1411)
X(2161) = cevapoint of X(i) and X(j) for these (i,j): (37,44), (649,2087), (1635,2170)
X(2161) = X(i)-cross conjugate of X(j) for these (i,j): (902,1), (2183,6)
X(2161) = crosspoint of X(i) and X(j) for these (i,j): (80,2006), (88,104)
X(2161) = crosssum of X(i) and X(j) for these (i,j): (36,2323), (44,517), (758,2245)
X(2161) = trilinear pole of line X(42)X(663)


X(2162) = X(2)-ISOCONJUGATE OF X(43)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(43)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2162) lies on these lines: 2,1977   6,43   31,172   55,1911   81,330   604,1403   608,2201   739,932   1397,1691   1407,1429   2056,2175

X(2162) = isogonal conjugate of X(192)
X(2162) = isotomic conjugate of X(6382)
X(2162) = anticomplement of X(21250)
X(2162) = X(87)-Ceva conjugate of X(2053)
X(2162) = cevapoint of X(i) and X(j) for these (i,j): (1,87), (649,1977)
X(2162) = X(i)-cross conjugate of X(j) for these (i,j): (1,6), (727,2109), (893,2248), (2309,58)
X(2162) = perspector of ABC and unary cofactor triangle of Gemini triangle 16
X(2162) = polar conjugate of isotomic conjugate of X(23086)
X(2162) = complement of polar conjugate of isogonal conjugate of X(23134)


X(2163) = X(2)-ISOCONJUGATE OF X(45)

Trilinears    a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(45)
Barycentrics   a2/f(a,b,c) : :

Let IaIbIc be the excentral triangle of a triangle ABC. Let A2 and A3 be the points where the perpendicular bisector of BC meets the internal angle bisector of angle ABC and the internal angle bisector of angle BCA, respectively. Let A'2 and A'3 be the points where the perpendicular bisector of BC meets the external angle bisector of angle ABC and the external angle bisector of angle BCA, respectively. Let Oab, Oac be the circumcenters of triangles IbA2A'3, IcA3A'2, respectively. Define Obc, Oba, Oca, Ocb cyclically. Then the triangle having sidelines OabOac, ObcOba, OcaOcb is perspective to ABC, and the perspector is X(2163). See Angel Montesdeoca, HG090218: El centro del triángulo X(2163).

Let A'B'C' be the circumsymedial triangle. Let (OA) be the circle centered at A' and tangent to line BC. Define (OB) and (OC) cyclically. X(2163) is the trilinear pole of the Monge line of (OA), (OB), (OC). (Randy Hutson, November 30, 2018)

X(2163) lies on these lines: 1,89   3,2334   6,36   31,106   57,1411   996,1150   1055,2279   1126,1468   1220,1698

X(2163) = complement of X(21291)
X(2163) = anticomplement of X(21251)
X(2163) = X(89)-Ceva conjugate of X(2364)
X(2163) = X(995)-cross conjugate of X(1)
X(2163) = isogonal conjugate of X(3679)
X(2163) = vertex conjugate of X(1) and X(6)


X(2164) = X(2)-ISOCONJUGATE OF X(46)

Trilinears     a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(46)
Barycentrics    a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2164) lies on these lines: 6,1195   9,35   19,1609   55,2174   56,2160   198,2161   284,1069   571,607   573,2316   1630,2291

X(2164) = isogonal conjugate of X(5905)
X(2164) = X(48)-cross conjugate of X(6)

X(2164) = X(19)-vertex conjugate of X(19)
X(2164) = barycentric product of PU(125)


X(2165) = X(2)-ISOCONJUGATE OF X(47)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(47)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = sin A sec 2A
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2165) lies on these lines: 2,311   4,96   5,6   25,53   37,91   111,925   115,577   206,1976   393,847   493,590   494,615   1263,2079   1321,1322   1400,1454

X(2165) = isogonal conjugate of X(1993)
X(2165) = isotomic conjugate of X(7763)
X(2165) = X(96)-Ceva conjugate of X(2351)
X(2165) = cevapoint of X(115) and X(647)
X(2165) = X(i)-cross conjugate of X(j) for these (i,j): (184,4), (216,6), (2351,68)
X(2165) = crosspoint of X(2) and X(254)
X(2165) = crosssum of X(i) and X(j) for these (i,j): (6,155), (571,1147)
X(2165) = barycentric product of X(485) and X(486)
X(2165) = complement of isogonal conjugate of X(39109)
X(2165) = orthic-isogonal conjugate of X(39111)
X(2165) = X(4)-Ceva conjugate of X(39111)
X(2165) = polar conjugate of X(317)
X(2165) = X(92)-isoconjugate of X(1147)
X(2165) = X(610)-of-orthic-triangle if ABC is acute


X(2166) = X(2)-ISOCONJUGATE OF X(50)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(50)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = sin A csc 3A
Trilinears        h(A,B,C) : h(B,C,A) : h(C,A,B), where h(A, B, C) = 1/(1 + 2 cos 2A)
Trilinears        h(A,B,C) : h(B,C,A) : h(C,A,B), where h(A, B, C) = 1/(1 - 4 cos2A)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

Let A1B1C1 and A2B2C2 be the 1st and 2nd Ehrmann circumscribing triangles. X(2166) is the trilinear product A1*A2 = B1*B2 = C1*C2. (Randy Hutson, June 27, 2018)

Let VaVbVc be the Ehrmann vertex-triangle. Let A' be the trilinear product Vb*Vc, and define B', C' cyclically. The lines AA', BB', CC' concur in X(2166). (Randy Hutson, June 27, 2018)

Let VaVbVc and SaSbSc be the Ehrmann vertex-triangle and Ehrmann side-triangle, resp. Let A' be the trilinear product Va*Sa, and define B', C' cyclically. The lines AA', BB', CC' concur in X(2166). (Randy Hutson, June 27, 2018)

X(2166) lies on these lines: 1,564   10,94   37,1989   65,79   162,2190   476,759   897,1733   1141,2222

X(2166) = isogonal conjugate of X(6149)
X(2166) = trilinear pole of line X(661)X(1953)
X(2166) = cevapoint of X(1) and X(1749)
X(2166) = X(i)-cross conjugate of X(j) for these (i,j): (1725,1), (2173,92)
X(2166) = trilinear product of X(13) and X(14)
X(2166) = trilinear product of circumcircle intercepts of Johnson circle (or line PU(5), X(5)X(523))


X(2167) = X(2)-ISOCONJUGATE OF X(51)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(51)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = 1/(sin(2B) + sin(2C))     (Randy Hutson, 9/23/2011)
Trilinears    1/(a^2 (b^2 + c^2) - (b^2 - c^2)^2) : :
Barycentrics    sec(B - C) : :

X(2167) lies on these lines: 1,1748   38,293   48,92   54,72   63,2148   75,2168   95,306   97,1214   162,1954   226,275

X(2167) = isogonal conjugate of X(1953)
X(2167) = isotomic conjugate of X(14213)
X(2167) = cevapoint of X(i) and X(j) for these (i,j): (1,48), (2148,2169)
X(2167) = X(i)-cross conjugate of X(j) for these (i,j): (48,2169), (822,162), (1577,662), (2148,2190)
X(2167) = X(5)-isoconjugate of X(6)
X(2167) = trilinear pole of line X(656)X(1955)
X(2167) = crosspoint of X(1) and X(48) wrt excentral triangle


X(2168) = X(2)-ISOCONJUGATE OF X(52)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(52)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2168) lies on these lines: 1,563   10,96   48,91   75,2167   921,2169   1953,2216

X(2168) = cevapoint of X(48) and X(1820)
X(2168) = X(48)-cross conjugate of X(2148)


X(2169) = X(2)-ISOCONJUGATE OF X(53)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(53)
Trilinears    cos A sec(B - C) : :
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

Let A'B'C' be the cevian triangle of I (incenter) and let A'' be the intersection of the perpendicular bisector of AA' and the line through A' perpendicular line to BC; note that A''(lies on AX(3)). Define B'' and C'' cyclically. The finite fixed point of the affine transformation that carries ABC onto A'B'C' is X(2197), and the finite fixed point of the affine transformation that carries A'B'C' onto A''B''C'' is X(2269). (Angel Montesdeoca, December 7, 2021)

X(2169) lies on these lines: 1,1748   36,54   47,48   336,1930   821,1784   921,2168

X(2169) = X(2167)-Ceva conjugate of X(2148)
X(2169) = X(48)-cross conjugate of X(2167)
X(2169) = crosssum of X(1953) and X(2181)
X(2169) = X(4)-isoconjugate of X(5)


X(2170) = X(2)-ISOCONJUGATE OF X(59)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(59)
Trilinears    (b + c - a) (b - c)^2 : :
Barycentrics    a^2 sin^2(B/2 - C/2) : :

X(2170) lies on these lines: 1,41   6,1411   9,644   11,1146   19,604   31,1572   37,374   57,934   65,1475   115,661   163,759   218,1482   220,2098   239,1959   244,665   354,1200   514,1111   517,672   664,673   756,1573   910,1055   926,2310   1086,1358   1100,2264   1107,2292   1108,1400   1195,2260   1212,1334   1404,2182   1731,2323   1870,2202   1914,1951

X(2170) = isogonal conjugate of X(4564)
X(2170) = complement of X(21272)
X(2170) = anticomplement of X(21232)
X(2170) = X(i)-Ceva conjugate of X(j) for these (i,j): (1,663), (6,661), (9,650), (11,2310), (19,649), (57,513), (312,522), (673,2254), (1086,244), (1751,656), (2006,1769), (2161,1635), (2217,667)
X(2170) = cevapoint of X(1) and X(1053)
X(2170) = crosspoint of X(i) and X(j) for these (i,j): (1,514), (9,650), (11,1086), (57,513), (312,522), (1022,1168), (2590,2591)
X(2170) = crosssum of X(i) and X(j) for these (i,j): (1,101), (9,100), (57,651), (59,1252), (63,1813), (78,644), (109,604), (214,1023), (1331,2289)
X(2170) = crossdifference of every pair of points on line X(100)X(3738) (the tangent at X(100) to the circumconic centered at X(1), conic {{A,B,C,X(100),X(664),X(1120),X(1320)}})
X(2170) = intersection of tangents to Steiner inellipse at X(1015) and X(1146)
X(2170) = crosspoint wrt medial triangle of X(1015) and X(1146)
X(2170) = barycentric square of X(6728)


X(2171) = X(2)-ISOCONJUGATE OF X(60)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(60)
Trilinears    (b + c)^2/(b + c - a) : :
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2171) lies on these lines: 1,572   6,1411   7,192   9,1405   12,594   19,41   37,65   42,1824   57,1255   101,1781   172,1950   181,756   226,306   312,1240   517,2269   894,1959   1100,1404   1108,1475   1254,1500   1402,1962   1841,1887   2173,2174   2262,2347

X(2171) = isogonal conjugate of X(2185)
X(2171) = complement of X(21273)
X(2171) = anticomplement of X(21233)
X(2171) = X(i)-Ceva conjugate of X(j) for these (i,j): (12,756), (37,2197), (65,181), (226,12)
X(2171) = cevapoint of X(181) and X(1500)
X(2171) = X(i)-cross conjugate of X(j) for these (i,j): (115,661), (181,1254), (1500,756)
X(2171) = crosspoint of X(i) and X(j) for these (i,j): (1,2051), (37,1826), (65,226)
X(2171) = crosssum of X(i) and X(j) for these (i,j): (1,572), (2,284), (81,1790)


X(2172) = X(2)-ISOCONJUGATE OF X(66)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(66)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2172) lies on these lines: 1,19   31,1917   41,386   47,1755   78,101   91,1910   163,255   304,662   379,2140   1479,2201   1725,2083   1930,1958

X(2172) = isogonal conjugate of isotomic conjugate of X(1760)
X(2172) = isogonal conjugate of complement of X(21215)
X(2172) = isogonal conjugate of anticomplement of X(16582)
X(2172) = complement of X(17492)
X(2172) = anticomplement of X(16607)
X(2172) = X(75)-Ceva conjugate of X(31)


X(2173) = X(2)-ISOCONJUGATE OF X(74)

Trilinears    a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(74)
Trilinears    a(cos A - 2 cos B cos C) : :
Trilinears    a(3 cos A - 2 sin B sin C) : :
Trilinears    3 sin 2A - 4 sin A sin B sin C : :
Trilinears    2a^4 - b^4 - c^4 - a^2b^2 - a^2c^2 + 2b^2c^2 : :

X(2173) lies on these lines: 1,19   6,1406   36,1731   44,513   45,198   169,2267   662,1959   897,1910   1405,1454   1725,2159   1760,1958   1761,2287   1762,1817   1820,2155   2151,2153   2152,2154   2171,2174   2260,2264   2261,2270   2262,2317

X(2173) = isogonal conjugate of X(2349)
X(2173) = X(i)-Ceva conjugate of X(j) for these (i,j): (2341,6), (2349,1)
X(2173) = crosspoint of X(i) and X(j) for these (i,j): (1,2349), (57,759), (92,2166), (2153,2154)
X(2173) = crosssum of X(i) and X(j) for these (i,j): (1,2173), (9,758)
X(2173) = X(2349)-aleph conjugate of X(2173)
X(2173) = crossdifference of every pair of points on line X(1)X(656)
X(2173) = isotomic conjugate of X(33805)
X(2173) = bicentric sum of PU(74)
X(2173) = PU(74)-harmonic conjugate of X(656)


X(2174) = X(2)-ISOCONJUGATE OF X(79)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(79)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = sin A + sin 2A
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2174) lies on these lines: 1,584   6,41   9,2278   36,583   37,101   44,572   45,2268   50,1399   53,2202   55,2164   65,2160   71,1030   199,209   213,1333   220,2289   228,2194   560,869   594,2329   662,894   872,922   910,1630   1409,1415   1964,2210   2171,2173   2176,2304   2220,2251   2264,2302

X(2174) = isogonal conjugate of X(30690)
X(2174) = complement of X(21276)
X(2174) = anticomplement of X(21236)
X(2174) = X(i)-Ceva conjugate of X(j) for these (i,j): (80,2361), (1126,31), (2003,1399), (2259,6)
X(2174) = crosspoint of X(35) and X(2003)
X(2174) = crossdifference of every pair of points on line X(522)X(4823) (the polar wrt polar circle of X(6198))


X(2175) = X(2)-ISOCONJUGATE OF X(85)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(85)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = cot(A/2) sin3A
Trilinears        a3(a - s) : b3(b - s) : c3(c - s)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2175) lies on these lines: 6,692   9,2330   25,181   31,184   32,560   41,1253   42,2273   48,2223   55,219   154,1460   182,238   213,1973   344,1083   601,1092   760,1760   1036,1682   1037,1362   1401,1473   1631,2245   1691,2176   2056,2162   2209,2210

X(2175) = isogonal conjugate of X(6063)
X(2175) = complement of X(21280)
X(2175) = anticomplement of X(17047)
X(2175) = X(i)-Ceva conjugate of X(j) for these (i,j): (31,6), (31,32), (2194,41)
X(2175) = X(1918)-cross conjugate of X(2212)
X(2175) = crosspoint of X(i) and X(j) for these (i,j): (31,41), (55,607)
X(2175) = crosssum of X(i) and X(j) for these (i,j): (7,348), (8,344), (74,85), (349,1441)
X(2175) = crossdifference of every pair of points on line X(918)X(3261)
X(2175) = X(7)-isoconjugate of X(75)
X(2175) = barycentric product of PU(93)
X(2175) = Lozada perspector of X(6)
X(2175) = perspector of tangential triangle and cross-triangle of intouch and tangential triangles
X(2175) = trilinear product of vertices of Apus triangle (the extraversions of X(56))


X(2176) = X(2)-ISOCONJUGATE OF X(87)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(87)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2176) lies on these lines: 1,6   2,1258   8,2238   31,172   32,101   39,995   41,1914   55,869   56,292   58,2242   71,2277   169,1572   190,194   239,312   304,742   386,1500   672,1201   978,1575   992,2345   1149,1475   1185,1621   1193,1334   1397,2056   1691,2175   2174,2304   2178,2305

X(2176) = isogonal conjugate of X(330)
X(2176) = isotomic conjugate of X(6383)
X(2176) = complement of X(21281)
X(2176) = anticomplement of X(20255)
X(2176) = X(i)-Ceva conjugate of X(j) for these (i,j): (31,6), (983,55), (1423,1403)
X(2176) = X(i)-cross conjugate of X(j) for these (i,j): (43,6), (2209,1403)
X(2176) = crosspoint of X(i) and X(j) for these (i,j): (31,2209), (43,1423), (101,1016)
X(2176) = crosssum of X(i) and X(j) for these (i,j): (2,1278), (87,2319), (514,1015)
X(2176) = X(92)-isoconjugate of X(23086)
X(2176) = {X(1),X(9)}-harmonic conjugate of X(1107)
X(2176) = crossdifference of every pair of points on line X(513)X(3716)
X(2176) = pole wrt circumcircle of line X(667)X(788)


X(2177) = X(2)-ISOCONJUGATE OF X(89)

Trilinears    a (2 b + 2 c - a) : :

X(2177) lies on these lines: 1,88   6,31   33,2181   35,1468   41,1017   43,748   200,756   519,1150   574,2223   612,1962   751,765   899,1001   1064,1480   1334,2271   1471,2078   1495,2187

X(2177) = complement of X(21283)
X(2177) = anticomplement of X(21242)
X(2177) = X(2099)-Ceva conjugate of X(1405)
X(2177) = crosspoint of X(45) and X(2099)
X(2177) = crosssum of X(89) and X(2320)


X(2178) = X(2)-ISOCONJUGATE OF X(90)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(90)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2178) lies on these lines: 3,37   6,41   9,36   19,1609   25,1841   45,1696   55,199   101,579   108,393   197,1402   218,583   219,2245   230,444   404,2345   571,608   594,1376   859,1333   910,1108   958,1213   999,1100   1182,1630   1319,2262   1420,2270   1436,2161   1457,2199   1470,2285   1486,2223   2092,2242   2176,2305

X(2178) = isogonal conjugate of X(2994)
X(2178) = X(19)-Ceva conjugate of X(6)
X(2178) = crosspoint of X(108) and X(1262)
X(2178) = X(92)-isoconjugate of X(1069)
X(2178) = crosssum of X(i) and X(j) for these (i,j): (521,1146), (1069,2164)


X(2179) = X(2)-ISOCONJUGATE OF X(95)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(95)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2179) lies on these lines: 1,1755   19,158   31,1932   48,1497   902,2198   1334,2225   1953,2180   1964,2085

X(2179) = X(19)-Ceva conjugate of X(2181)
X(2179) = crosspoint of X(i) and X(j) for these (i,j): (19,31), (1953,2181)
X(2179) = crosssum of X(63) and X(75)


X(2180) = X(2)-ISOCONJUGATE OF X(96)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(96)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2180) lies on these lines: 19,91   31,48   47,563   1195,2183   1953,2179   2253,2355

X(2180) = X(19)-Ceva conjugate of X(1953)
X(2180) = crosspoint of X(47) and X(1748)
X(2180) = crosssum of X(91) and X(1820)


X(2181) = X(2)-ISOCONJUGATE OF X(97)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(97)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2181) lies on these lines: 19,31   33,2177   38,92   42,1859   158,774   244,278   281,756   896,1748   1118,1254   1193,1871   1857,2310   1953,2313

X(2181) = X(19)-Ceva conjugate of X(2179)
X(2181) = X(2179)-cross conjugate of X(1953)
X(2181) = crosspoint of X(19) and X(158)
X(2181) = crosssum of X(63) and X(255)


X(2182) = X(2)-ISOCONJUGATE OF X(102)

Trilinears    a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(102)
Trilinears    a[(b + c)sec A - b sec B - c sec C] : :
Trilinears    (tan A + tan B + tan C) sin A - (sin A + sin B + sin C) tan A : :

X(2182) lies on these lines: 3,9   6,19   25,1864   33,154   37,48   44,513   46,1743   51,2355   169,374   184,1824   197,210   219,1766   407,1901   517,2323   572,1630   578,1871   604,1108   909,1319   960,1610   1100,1953   1212,2267   1214,1726   1404,2170   1498,1753   1503,1861

X(2182) = isogonal conjugate of X(36100)
X(2182) = X(i)-Ceva conjugate of X(j) for these (i,j): (1295,55), (1465,1319)
X(2182) = crosspoint of X(i) and X(j) for these (i,j): (4,2006, 57,104)
X(2182) = crosssum of X(i) and X(j) for these (i,j): (1,2182), (3,2323), (9,517)
X(2182) = {X(6),X(19)}-harmonic conjugate of X(2262)
X(2182) = crossdifference of every pair of points on line X(1)X(521)
X(2182) = bicentric sum of PU(100)
X(2182) = PU(100)-harmonic conjugate of X(6129)


X(2183) = X(2)-ISOCONJUGATE OF X(104)

Trilinears    (a - c) cos B + (a - b) cos C : :
Trilinears    (tan A + tan B + tan C) sec A - (sec A + sec B + sec C) tan A : :
Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(104)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2183) lies on these lines: 1,957   3,2267   4,9   6,41   25,212   31,197   36,909   37,1953   44,513   45,1334   51,228   101,953   201,1829   213,2288   219,945   226,1730   294,1937   374,1212   478,2199   511,1818   515,2250   579,610   674,2340   937,2215   1018,2325   1167,1474   1195,2180   1253,1486   1696,2256   1708,1763   1738,1756

X(2183) = isogonal conjugate of X(34234)
X(2183) = X(i)-Ceva conjugate of X(j) for these (i,j): (36,902), (80,42), (102,55), (1465,1457), (2222,663), (2316,6)
X(2183) = crosspoint of X(i) and X(j) for these (i,j): (6,2161), (19,913), (57,106), (517,1465), (901,1262), (908,1785)
X(2183) = crosssum of X(i) and X(j) for these (i,j): (1,2183), (2,3218), (9,519), (57,34050), (63,914), (649,1647), (900,1146), (909,1795), (4466,4707
X(2183) = polar conjugate of isotomic conjugate of X(22350)
X(2183) = crossdifference of every pair of points on line X(1)X(522)
X(2183) = X(92)-isoconjugate of X(1795)


X(2184) = X(2)-ISOCONJUGATE OF X(154)

Trilinears    a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(154)

X(2184) lies on these lines: 1,204   9,223   40,64   57,282   63,610   84,2130   196,226   253,306   293,1707   1748,2349

X(2184) = isogonal conjugate of X(610)
X(2184) = isotomic conjugate of X(18750)
X(2184) = anticomplement of X(36908)
X(2184) = cevapoint of X(661) and X(2632)
X(2184) = X(i)-cross conjugate of X(j) for these (i,j): (19,1), (774,75), (1427,2), (1903,4)
X(2184) = pole wrt polar circle of trilinear polar of X(1895)
X(2184) = X(48)-isoconjugate (polar conjugate) of X(1895)
X(2184) = X(6)-isoconjugate of X(20)
X(2184) = intersection of tangents at X(189) and X(329) to Lucas cubic K007


X(2185) = X(2)-ISOCONJUGATE OF X(181)

Trilinears    (a - b - c)/(b + c)^2 : :
Barycentrics    a2/f(a,b,c) : b2/f(b,c,a) : c2/f(c,a,b)

Let DEF be the cevian triangle of the incenter. Let OA be the circumcircle of AEF. Let T1 be the line tangent to OA at E, and let T2 be the line tangent to OA at F. Let AB = T1∩BC and AC = T2∩BC, and let A' be the radical center of the circumcircles of AEF, BFAB, CAAC.. Define B' and C' cyclically. The lines AA', BB', CC' concur in X(2185). (Angel Montesdeoca, January 4, 2021)

X(2185) lies on these lines: 1,849   2,662   21,60   27,86   55,643   81,593   110,1621   171,1326   222,1414   261,284   312,2268   501,1125   552,553

X(2185) = isogonal conjugate of X(2171)
X(2185) = isotomic conjugate of X(6358)
X(2185) = complement of anticomplementary conjugate of X(21273)
X(2185) = anticomplement of complementary conjugate of X(21233)
X(2185) = X(6)-isoconjugate of X(12)
X(2185) = X(i)-Ceva conjugate of X(j) for these (i,j): (249,662), (261,1098), (1509,757)
X(2185) = cevapoint of X(i) and X(j) for these (i,j): (1,572), (21,284), (81,1790)
X(2185) = X(i)-cross conjugate of X(j) for these (i,j): (21,261), (60,757), (284,60), (2150,270)
X(2185) = crosspoint of X(261) and X(1509)
X(2185) = crosssum of X(181) and X(1500)


X(2186) = X(2)-ISOCONJUGATE OF X(182)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(182)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2186) lies on these lines: 1,1755   10,262   19,1964   31,1910   37,263   48,82   65,2275   75,1953   1973,2190   2172,2216

X(2186) = isotomic conjugate of X(3403)


X(2187) = X(2)-ISOCONJUGATE OF X(189)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(189)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2187) lies on these lines: 25,41   31,184   40,1817   48,55   84,947   101,200   212,692   228,1253   601,1437   968,2268   1208,1622   1458,1473   1495,2177

X(2187) = isogonal conjugate of X(309)
X(2187) = X(i)-Ceva conjugate of X(j) for these (i,j): (48,41), (55,31), (221,2199), (947,6), (2360,198)
X(2187) = crosspoint of X(i) and X(j) for these (i,j): (6,963), (40,2331), (198,221)
X(2187) = crosssum of X(i) and X(j) for these (i,j): (2,962), (7,1440), (189,280)


X(2188) = X(2)-ISOCONJUGATE OF X(196)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(196)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2188) lies on these lines: 1,1767   3,1433   48,55   57,972   73,972   73,939   84,943   212,577   268,1260   271,1792   282,284   1903,2268

X(2188) = isogonal conjugate of X(342)
X(2188) = X(i)-cross conjugate of X(j) for these (i,j): (41,48), (184,212)
X(2188) = crosspoint of X(i) and X(j) for these (i,j): (268,1433), (271,282)
X(2188) = crosssum of X(i) and X(j) for these (i,j): (1,1767), (208,223)
X(2188) = X(92)-isoconjugate of X(223)


X(2189) = X(2)-ISOCONJUGATE OF X(201)

Trilinears    a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(201)

X(2189) lies on these lines: 6,1175   19,112   21,270   25,1169   27,272   28,1104   37,2074   58,1474   284,2299   359,2011   593,1014   2212,2311

X(2189) = cevapoint of X(i) and X(j) for these (i,j): (1333,1474), (2204,2299)
X(2189) = X(i)-cross conjugate of X(j) for these (i,j): (1333,2150), (2299,270)
X(2189) = polar conjugate of X(34388)


X(2190) = X(2)-ISOCONJUGATE OF X(216)

Trilinears    sec A sec(B - C) : :
Trilinears    1/(cos(2B) + cos(2C)) : :
Trilinears    1/(tan B tan C + 1) : :
Barycentrics   tan A sec(B - C) : :

Let A'B'C' be the circumorthic triangle. Let A" be the trilinear product B'*C', and define B" and C" cyclically. A", B", C" are collinear on line X(810)X(2616). The lines AA", BB", CC" concur in X(2190). (Randy Hutson, July 20, 2016)

Let P1 and P2 be the two points on the circumcircle whose Steiner lines are tangent to the circumcircle. Let Q1 and Q2 be the respective points of tangency. Q1 and Q2 are also the circumcircle intercepts of line X(186)X(523). X(2190) is the trilinear product of Q1 and Q2. See also X(8882). (Randy Hutson, July 20, 2016)

Let A' be the reflection of A in BC. Let AB, AC be the reflections of A' in CA and AB, resp. Let A" be the trilinear product AB*AC. Define B" and C" cyclically. The lines AA", BB", CC" concur in X(2190). (Randy Hutson, July 11, 2019)

X(2190) lies on these lines: 1,1748   10,275   19,2148   31,158   47,91   54,65   75,255   82,240   162,2166   270,759   1973,2186

X(2190) = isotomic conjugate of X(18695)
X(2190) = cevapoint of X(i) and X(j) for these (i,j): (1,47), (19,31)
X(2190) = X(i)-cross conjugate of X(j) for these (i,j): (31,2148), (1825,4), (2148,2167)
X(2190) = crosspoint of X(1) and X(47) wrt excentral triangle


X(2191) = X(2)-ISOCONJUGATE OF X(218)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(218)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2191) lies on these lines: 1,142   6,354   34,1458   48,1438   56,1279   106,1292   244,1253   1027,1459   1413,1456   1419,1421   2260,2279

X(2191) = isogonal conjugate of X(3870)
X(2191) = cevapoint of X(i) and X(j) for these (i,j): (244,663), (1015,2488)
X(2191) = X(i)-cross conjugate of X(j) for these (i,j): (41,57), (2293,6)


X(2192) = X(2)-ISOCONJUGATE OF X(223)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(223)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2192) lies on these lines: 1,84   6,33   11,1853   48,55   56,64   103,1617   189,1814   200,219   212,220   268,2193   280,285   497,1503   2194,2332

X(2192) = isogonal conjugate of X(347)
X(2192) = anticomplement of X(20307)
X(2192) = X(i)-Ceva conjugate of X(j) for these (i,j): (84,1436), (280,268), (285,282), (1433,6)
X(2192) = cevapoint of X(31) and X(2208)
X(2192) = X(i)-cross conjugate of X(j) for these (i,j): (31,55), (697,6)
X(2192) = crosspoint of X(84) and X(282)
X(2192) = crosssum of X(40) and X(223)


X(2193) = X(2)-ISOCONJUGATE OF X(225)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(225)
Trilinears    (sin 2A) (cos B + cos C) : :
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2193) lies on these lines: 1,1744   3,6   21,270   30,1865   48,255   71,906   81,1214   112,1295   212,2289   219,283   222,1790   268,2192   286,448   859,1474   1396,1465   1444,1814   1809,2287   1880,1950   2150,2194

X(2193) = complement of isotomic conjugate of X(18123)
X(2193) = X(i)-Ceva conjugate of X(j) for these (i,j): (21,2194), (1790,1437), (1798,184)
X(2193) = cevapoint of X(48) and X(577)
X(2193) = X(i)-cross conjugate of X(j) for these (i,j): (48,284), (652,906)
X(2193) = crosspoint of X(i) and X(j) for these (i,j): (21,1812), (283,1790)
X(2193) = crosssum of X(i) and X(j) for these (i,j): (1,1744), (65,1880), (225,1826)
X(2193) = X(92)-isoconjugate of X(65)
X(2193) = X(108)-isoconjugate of X(1577)
X(2193) = {X(1805),X(1806)}-harmonic conjugate of X(3)


X(2194) = X(2)-ISOCONJUGATE OF X(226)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(226)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2194) lies on these lines: 1,1762   3,1779   6,25   19,2219   21,60   27,1836   28,65   29,1837   31,48   41,212   42,692   55,219   56,58   81,105   199,2245   210,2287   228,2174   283,1036   904,2210   1011,2278   1155,1817   1172,1859   1185,1501   1396,1456   1415,1949   1834,1884   2150,2193   2192,2332   2260,2308

X(2194) = isogonal conjugate of X(1441)
X(2194) = X(i)-Ceva conjugate of X(j) for these (i,j): (21,2193), (1169,32), (1172,2204), (1175,6)
X(2194) = cevapoint of X(i) and X(j) for these (i,j): (31,184), (41,2175)
X(2194) = X(i)-cross conjugate of X(j) for these (i,j): (31,2299), (41,284), (663,692)
X(2194) = crosspoint of X(i) and X(j) for these (i,j): (21,1172), (58,284), (60,2150)
X(2194) = crosssum of X(i) and X(j) for these (i,j): (1,1762), (2,2475), (10,226), (65,1214)
X(2194) = X(92)-isoconjugate of X(1214)


X(2195) = X(2)-ISOCONJUGATE OF X(241)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(241)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2195) lies on these lines: 1,1814      6,692   9,294   19,2212   31,57   42,1174   55,5452   238,516   284,2293   333,643   902,919   1027,1769

X(2195) = isogonal conjugate of X(9436)
X(2195) = X(105)-Ceva conjugate of X(1438)
X(2195) = crosspoint of X(i) and X(j) for these (i,j): (55,2115), (105,294)
X(2195) = crosssum of X(241) and X(518)
X(2195) = trilinear pole of PU(93) (line X(41)X(663))


X(2196) = X(2)-ISOCONJUGATE OF X(242)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(242)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2196) lies on these lines: 3,295   28,291   56,292   63,337   71,1332   104,813   692,1333   906,1437   1472,1922

X(2196) = X(i)-Ceva conjugate of X(j) for these (i,j): (291,1911), (2311,292)
X(2196) = X(92)-isoconjugate of X(238)
X(2196) = crosssum of X(238) and X(2201)


X(2197) = X(2)-ISOCONJUGATE OF X(270)

Trilinears    Trilinears    (sin 2A) (1 + cos(B - C)) : :

Let A'B'C' be the cevian triangle of I (incenter) and let A'' be the intersection of the perpendicular bisector of AA' and the line through A' perpendicular line to BC; note that A''(lies on AX(3)). Define B'' and C'' cyclically. The finite fixed point of the affine transformation that carries ABC onto A'B'C' is X(2197), and the finite fixed point of the affine transformation that carries A'B'C' onto A''B''C'' is X(2269). (Angel Montesdeoca, December 7, 2021)

X(2197) lies on these lines: 3,2286   6,2259   9,1937   12,37   35,1950   39,604   41,800   42,181   48,216   55,608   71,73   198,607   222,1796   278,2335   306,307   1030,1415   1253,2199   1254,1500   2276,2285

X(2197) = X(i)-Ceva conjugate of X(j) for these (i,j): (12,181), (37,2171), (1214,201)
X(2197) = crosspoint of X(i) and X(j) for these (i,j): (37,71), (73,1214)
X(2197) = X(60)-isoconjugate of X(92)
X(2197) = trilinear product X(12)*X(48)
X(2197) = crosssum of X(i) and X(j) for these (i,j): (27,81), (29,1172), (20,2189), (270,2326)
>


X(2198) = X(2)-ISOCONJUGATE OF X(272)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(272)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2198) lies on these lines: 9,964      31,32   37,65   72,672   101,1780   902,2179

X(2198) = X(i)-Ceva conjugate of X(j) for these (i,j): (19,42), (579,209)
X(2198) = crosspoint of X(579) and X(2352)


X(2199) = X(2)-ISOCONJUGATE OF X(280)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(280)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2199) lies on these lines: 6,603   9,109   25,31   32,604   41,1409   48,1415   198,221   223,1817   255,573   478,2183   651,1958   966,1935   1253,2197   1394,2270   1455,2262   1457,2178   1496,2269   1950,2268   2285,2312

X(2199) = isogonal conjugate of X(34404)
X(2199) = crossdifference of every pair of points on line X(4397)X(6332)
X(2199) = X(i)-Ceva conjugate of X(j) for these (i,j): (6,604), (221,2187), (603,31)
X(2199) = crosspoint of X(i) and X(j) for these (i,j): (6,198), (208,223)
X(2199) = crosssum of X(i) and X(j) for these (i,j): (2,189), (271,283)


X(2200) = X(2)-ISOCONJUGATE OF X(286)

Trilinears    a^3 (b + c) (b^2 + c^2 - a^2) : :
Trilinears    (sin A) (sin 2A) (sin B + sin C) : :

X(2200) lies on these lines: 3,48   10,98   25,41   32,560   55,2304   213,1402   306,1799   906,1437   1409,1410   1474,2259   2327,2359

X(2200) = X(i)-Ceva conjugate of X(j) for these (i,j): (41,213), (42,1918), (48,228), (2259,31), (2359,212)
X(2200) = crosspoint of X(i) and X(j) for these (i,j): (42,71), (48,184), (228,1409)
X(2200) = crosssum of X(i) and X(j) for these (i,j): (27,86), (85,331), (92,264)
X(2200) = X(27)-isoconjugate of X(75)
X(2200) = X(86)-isoconjugate of X(92)


X(2201) = X(2)-ISOCONJUGATE OF X(295)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(295)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2201) lies on these lines: 4,1973   19,25   27,86   48,497   242,740   256,1172   513,1430   608,2162   855,1951   862,2238   1284,1914   1479,2172   1755,1936   1842,2332   1851,2280   1884,2202   2310,2312

X(2201) = X(i)-cross conjugate of X(j) for these (i,j): (862,242), (2210,238)
X(2201) = crosssum of X(71) and X(1818)
X(2201) = polar conjugate of X(334)


X(2202) = X(2)-ISOCONJUGATE OF X(296)

Trilinears    a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(296)
Trilinears    (tan A)(cos^2 A - cos B cos C) : :
Barycentrics    a2/f(a,b,c) : :

X(2202) lies on these lines: 4,41   6,19   29,284   48,393   53,2174   101,1785   108,1055   281,2268   318,2329   604,1249   672,1783   851,1430   910,1875   1870,2170   1884,2201

X(2202) = X(1948)-Ceva conjugate of X(1936)
X(2202) = crosssum of X(1943) and X(1944)
X(2202) = perspector of conic {{A,B,C,PU(18)}}
X(2202) = intersection of trilinear polars of P(18) and U(18)


X(2203) = X(2)-ISOCONJUGATE OF X(306)

Trilinears    a^2/((a^2 - b^2 - c^2) (b + c)) : :
Trilinears    (tan A) a^2/(b + c) : :

X(2203) lies on these lines: 6,25   19,2214   28,60   31,1932   58,1473   112,739   209,692   468,1211   604,1395   608,1397   1172,1824   1396,1462   1398,1407   2308,2354

X(2203) = X(i)-Ceva conjugate of X(j) for these (i,j): (28,1333), (1474,2204)
X(2203) = cevapoint of X(i) and X(j) for these (i,j): (1395,1397), (1973,1974)
X(2203) = X(i)-cross conjugate of X(j) for these (i,j): (1397,2206), (1973,1474)
X(2203) = X(75)-isoconjugate of X(72)


X(2204) = X(2)-ISOCONJUGATE OF X(307)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(307)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2204) lies on these lines: 19,2218   21,270   25,32   28,105   31,1932   41,2212   55,607   56,608   284,1036   1829,1914   2206,2208

X(2204) = isogonal conjugate of X(1231)
X(2204) = X(i)-Ceva conjugate of X(j) for these (i,j): (1172,2194), (1474,2203), (2189,2299)
X(2204) = X(2212)-cross conjugate of X(2299)
X(2204) = crosspoint of X(1474) and X(2299)
X(2204) = crosssum of X(306) and X(307)


X(2205) = X(2)-ISOCONJUGATE OF X(310)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(310)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2205) lies on these lines: 31,32   37,82   81,172   100,699   101,715   560,1501   1922,2206

X(2205) = isogonal conjugate of X(6385)
X(2205) = X(32)-Ceva conjugate of X(1918)
X(2205) = crosspoint of X(32) and X(560)
X(2205) = crosssum of X(76) and X(561)


X(2206) = X(2)-ISOCONJUGATE OF X(321)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(321)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2206) lies on these lines: 6,199   21,987   31,48   32,184   36,58   42,284   81,982   99,697   110,727   604,1395   902,2328   909,2299   1106,1408   1201,2360   1412,1416   1437,1472   1780,1801   1922,2205   2204,2208

X(2206) = isogonal conjugate of X(313)
X(2206) = X(849)-Ceva conjugate of X(1333)
X(2206) = cevapoint of X(32) and X(560)
X(2206) = X(1397)-cross conjugate of X(2203)
X(2206) = crosspoint of X(i) and X(j) for these (i,j): (58,1474), (1333,1408)
X(2206) = crosssum of X(i) and X(j) for these (i,j): (2,1330), (10,306)
X(2206) = X(10)-isoconjugate of X(75)
X(2206) = X(92)-isoconjugate of X(306)
X(2206) = barycentric product of vertices of 2nd circumperp triangle


X(2207) = X(2)-ISOCONJUGATE OF X(326)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(326)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = sin A tan2A
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2207) is the vertex conjugate of the foci of the inellipse that is the barycentric square of the orthic axis. This inellipse has center X(3767) and perspector X(393). (Randy Hutson, October 15, 2018)

X(2207) lies on these lines: 3,232   4,6   19,2281   24,112   25,32   39,1593   76,683   83,458   107,729   155,1625   213,607   235,2138   297,315   459,1611   608,1426   800,1033   981,1896   1015,1398   1572,1829   1918,2212   2271,2332

X(2207) = X(393)-Ceva conjugate of X(25)
X(2207) = cevapoint of X(6) and X(1611)
X(2207) = X(1974)-cross conjugate of X(25)
X(2207) = crosssum of X(6) and X(1619)
X(2207) = isogonal conjugate of X(3926)
X(2207) = pole wrt polar circle of trilinear polar of X(305) (line X(525)X(3267))
X(2207) = polar conjugate of X(305)
X(2207) = X(92)-isoconjugate of X(3964)
X(2207) = crossdifference of every pair of points on line X(520)X(3265)


X(2208) = X(2)-ISOCONJUGATE OF X(329)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(329)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2208) lies on these lines: 21,84   25,604   41,184   48,55   56,1413   105,1422   282,2359   1036,1433   1319,2218   1903,2267   2204,2206

X(2208) = isogonal conjugate of X(322)
X(2208) = X(2192)-Ceva conjugate of X(31)
X(2208) = X(i)-cross conjugate of X(j) for these (i,j): (1397,31), (1973,604)
X(2208) = crosspoint of X(1413) and X(1436)
X(2208) = barycentric product of vertices of hexyl triangle


X(2209) = X(2)-ISOCONJUGATE OF X(330)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(330)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2209) lies on these lines: 1,1258   6,31   8,238   41,904   69,2239   86,750   100,1740   560,692   604,1911   869,2300   941,2344   2175,2210

X(2209) = isogonal conjugate of X(6384)
X(2209) = X(32)-Ceva conjugate of X(31)
X(2209) = X(2176)-cross conjugate of X(31)
X(2209) = crosspoint of X(i) and X(j) for these (i,j): (692,765), (1403,2176)
X(2209) = crosssum of X(244) and X(693)


X(2210) = X(2)-ISOCONJUGATE OF X(335)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(335)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2210) lies on these lines: 6,650   31,32   36,58   42,251   239,1281   284,2309   667,838   894,1582   902,1110   904,2194   1918,2220   1964,2174   2175,2209

X(2210) = isogonal conjugate of X(334)
X(2210) = crosspoint of X(i) and X(j) for these (i,j): (58,1438), (238,2201), (1428,1914)
X(2210) = crosssum of X(1920) and X(1921)
X(2210) = perspector of conic {A,B,C,PU(12)}
X(2210) = intersection of trilinear polars of P(12) and U(12)


X(2211) = X(2)-ISOCONJUGATE OF X(336)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(336)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2211) lies on these lines: 4,6   25,263   32,682   112,1691   182,1968   186,2076   232,511   459,1613   512,1692

X(2211) = X(232)-Ceva conjugate of X(237)
X(2211) = isogonal conjugate of polar conjugate of X(34854)
X(2211) = X(92)-isoconjugate of X(6394)


X(2212) = X(2)-ISOCONJUGATE OF X(348)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(348)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = (sin A)(sin A + tan A)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2212) lies on these lines: 4,238   6,2356   9,33   19,2195   24,601   25,31   41,2204   108,1423   171,459   213,1973   427,748   468,750   607,1253   1041,1445   1471,1876   1474,2279   1918,2207   2189,2311

X(2212) = X(i)-Ceva conjugate of X(j) for these (i,j): (25,1973), (33,41), (2299,607)
X(2212) = X(1918)-cross conjugate of X(2175)
X(2212) = crosspoint of X(i) and X(j) for these (i,j): (25,607), (2204,2299)
X(2212) = crosssum of X(i) and X(j) for these (i,j): (69,348), (307,1231)


X(2213) = X(2)-ISOCONJUGATE OF X(380)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(380)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2213) lies on these lines: 3,1412   56,71   57,72   65,1435   69,1434   73,1407   221,1245   738,1439   1903,2285

X(2213) = isogonal conjugate of X(452)


X(2214) = X(2)-ISOCONJUGATE OF X(386)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(386)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2214) lies on these lines: 1,1333   6,10   19,2203   31,37   65,604   75,81   225,608   284,994   534,553   584,2304   739,835   940,2221   1953,2217   2218,2294

X(2214) = cevapoint of X(31) and X(2304)
X(2214) = trilinear pole of line X(661)X(667)


X(2215) = X(2)-ISOCONJUGATE OF X(405)

Trilinears         a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(405)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)
Barycentrics    a^2/(a^3 - a (b + c)^2 - 2 b c (b + c)) : :

X(2215) lies on these lines: 1,71   6,228   31,1474   34,1400   48,58   56,1409   63,86   937,2183   1220,1732

X(2215) = isogonal conjugate of X(5271)


X(2216) = X(2)-ISOCONJUGATE OF X(570)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(570)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2216) lies on these lines: 31,91   47,75   225,1179   1953,2168   2172,2186

X(2216) = cevapoint of X(31) and X(1953)
X(2216) = X(2618)-cross conjugate of X(162)


X(2217) = X(2)-ISOCONJUGATE OF X(573)

Trilinears         a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(573)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

Contribution by Angel Montesdeoa, September 10, 2017: (start)
In the plane of a triangle BAC, let
O = X(3) = circumcenter
U(O,q) = circle with center O and radius q
A'B'C' = excentral triangle
A*B*C* = polar triangle of A'B'C' with respect to U(O,q).
There exists a unique q such that the lines AA*, BB*, CC* concur, and the point of concurrence is X(2217). Moreover, the radius and a barycentric equation for U(O,q) are given as follows:

q^2 = (4 r R^2 s(r+R))/(a b c) = (a b c (2 a b c+(a+b-c) (a-b+c)(-a+b+c)))/(2 (a+b-c) (a-b+c) (-a+b+c) (a+b+c));

abc(x^2+y^2+z^2) + 2a (a+b) (a+c)y z + 2b(b+c)(b+a)z x + 2c(c+a)(c+b)x y = 0. (end)

X(2217) lies on these lines: 1,1437   3,10   19,1333   21,1610   28,158   37,48   56,225   58,994   65,603   75,1444   1104,1472   1953,2214

X(2217) = isogonal conjugate of X(3869)
X(2217) = cevapoint of X(667) and X(2170)
X(2217) = X(1402)-cross conjugate of X(6)
X(2217) = X(21)-vertex conjugate of X(21)


X(2218) = X(2)-ISOCONJUGATE OF X(579)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(579)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2218) lies on these lines: 1,1762   10,55   19,2204   21,75   25,225   28,1612   31,65   37,41   105,1305   209,1724   595,994   596,993   1001,1036   1319,2208   1953,2219   2214,2294

X(2218) = isogonal conjugate of X(3868)
X(2218) = X(272)-Ceva conjugate of X(1751)
X(2218) = X(228)-cross conjugate of X(6)


X(2219) = X(2)-ISOCONJUGATE OF X(581)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(581)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2219) lies on these lines: 1,1744   6,225   10,219   19,2194   37,212   48,65   75,1812   158,1172   994,1630   1953,2218


X(2220) = X(2)-ISOCONJUGATE OF X(596)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(596)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2220) lies on these lines: 3,6   31,872   37,82   172,1100   560,692   604,1415   609,1449   906,1743   1918,2210   2174,2251

X(2220) = X(i)-Ceva conjugate of X(j) for these (i,j): (765,692), (849,31)
X(2220) = crosspoint of X(163) and X(1252)
X(2220) = crosssum of X(1086) and X(1577)
X(2220) = crossdifference of every pair of points on line X(523)X(2530)
X(2220) = circle-{{X(371),X(372),PU(1),PU(39)}}-inverse of X(37482)
X(2220) = {X(371),X(372)}-harmonic conjugate of X(37482)


X(2221) = X(2)-ISOCONJUGATE OF X(612)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(612)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2221) lies on these lines: 2,2298   3,31   6,63   57,608   58,1473   84,1039   222,604   295,1911   394,2300   739,1310   940,2214   967,2260   1203,1707   1333,1790

X(2221) = isogonal conjugate of X(2345)
X(2221) = cevapoint of X(i) and X(j) for these (i,j): (6,1191), (1245,2281)
X(2221) = X(2281)-cross conjugate of X(1472)


X(2222) = X(2)-ISOCONJUGATE OF X(654)

Barycentrics   a(a - b)(a - c)(a - b + c)(a + b - c)(a2 - b2 + c2 - ac)(a2 - c2 + b2 - ab) : :

Let A'B'C' be the excentral triangle in the plane of a triangle ABC. Let
A'' = X(110)-of-A'BC, and define B'' and C'' cyclically
(Oa) = circle with diameter AA'', and define (Ob) and (Oc) cyclically

The circles (Oa), (Ob), (Oc), and the circumcircle concur in X(2222). See Hyacinthos 24369. (Antreas Hatzipolakis and Angel Montesdeoca, July 12, 2016)

X(2222) lies on the circumcircle, the cubic K230, and these lines: {1,953}, {3,2716}, {12,3109}, {35,2687}, {36,80}, {40,2745}, {55,2717}, {56,2718}, {57,840}, {59,110}, {74,484}, {98,5143}, {99,4998}, {100,522}, {101,650}, {102,517}, {103,1155}, {105,2006}, {106,1168}, {108,7649}, {109,513}, {112,7115}, {162,933}, {171,2699}, {200,2750}, {243,917}, {651,4588}, {661,2149}, {675,1447}, {741,5061}, {759,859}, {910,2161}, {915,1785}, {919,1024}, {934,3676}, {972,5537}, {1141,2166}, {1295,2077}, {1298,1956}, {1308,2283}, {1309,4242}, {1376,2751}, {1477,3660}, {1793,5080}, {2249,2341}, {2734,6796}, {2739,7580}, {2747,5285}, {2756,5687}, {4552,9070}, {5089,9085}, {5193,8686}

X(2222) = midpoint of X(484) and X(3465)
X(2222) = reflection of X(2716) in X(3)
X(2222) = isogonal conjugate of X(3738)
X(2222) = cevapoint of X(i) and X(j) for these (i,j): (6,8648), (513,1319), (661,3724), (663,2183)
X(2222) = X(i)-cross conjugate of X(j) for these (i,j): (513,1168), (1635,57), (1769,1), (2173,7128), (3724,2149), (5172,59), (8648,6)
X(2222) = inverse-in-Stevanovic-circle of X(101)
X(2222) = trilinear pole of the line X(6)X(1411)
X(2222) = {X(10016,X(10017)}-harmonic conjugate of X(2716)
X(2222) = concurrence of reflections in sides of ABC of line X(4)X(80)
X(2222) = Ψ(X(1), X(5))
X(2222) = Ψ(X(4), X(80))
X(2222) = Λ(X(80), X(3762))
X(2222) = reflection of X(109) in line X(1)X(3)
X(2222) = trilinear product of circumcircle intercepts of line X(1)X(5)
X(2222) = X(i)-isoconjugate of X(j) for these (i,j): {1,3738}, {2,654}, {6,3904}, {9,3960}, {36,522}, {54,6369}, {55,4453}, {60,6370}, {75,8648}, {284,4707}, {320,663}, {513,4511}, {514,2323}, {521,1870}, {526,3615}, {650,3218}, {693,2361}, {758,3737}, {1443,3900}, {1459,5081}, {1464,7253}, {1577,4282}, {1983,4858}, {2167,2600}, {2170,4585}, {2185,2610}, {2245,4560}, {3936,7252}, {3939,4089}, {4242,7004}, {4391,7113}


X(2223) = X(2)-ISOCONJUGATE OF X(673)

Trilinears    a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(673)
Trilinears    a2(as - Sω) : b2(bs - Sω) : c2(cs - Sω)   (César Lozada, 9/07/2013)

X(2223) lies on these lines: 1,3   6,2279   10,1009   31,32   39,42   48,2175   100,239   187,237   212,1397   238,2110   292,1438   516,1284   572,2330   574,2177   604,1253   612,2340   674,2245   760,1959   991,1469   1014,2346   1037,1804   1110,2149   1400,2293   1423,1742   1486,2178   1918,1964

X(2223) = isogonal conjugate of X(2481)
X(2223) = complement of X(20556)
X(2223) = anticomplement of X(20544)
X(2223) = X(92)-isoconjugate of X(1814)
X(2223) = trilinear pole of PU(97)
X(2223) = crossdifference of every pair of points on line X(2)X(650)
X(2223) = {X(1),X(3)}-harmonic conjugate of X(37575)
X(2223) = {X(55),X(56)}-harmonic conjugate of X(37580)


X(2224) = X(2)-ISOCONJUGATE OF X(674)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(674)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2224) lies on these lines: 1,692   2,101   36,291   57,609   81,163   274,662   279,1461   1429,2006

X(2224) = X(i)-Ceva conjugate of X(j) for these (i,j): (911,41), (1037,1362)
X(2224) = cevapoint of X(55,2110)
X(2224) = crosspoint of X(i) and X(j) for these (i,j): (6,105), (31,1911), (59,919), (672,1458)
X(2224) = crosssum of X(i) and X(j) for these (i,j): (2,518), (11,918), (75,350), (105,1814)
X(2224) = eigencenter of Gemini triangle 7


X(2225) = X(2)-ISOCONJUGATE OF X(675)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(675)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2225) lies on these lines: 31,32   38,1107   44,513   63,169   1334,2179   2333,2355

X(2225) = crosssum of X(1) and X(2225)
X(2225) = isogonal conjugate of X(37130)
X(2225) = crossdifference of every pair of points on line X(1)X(693)


X(2226) = X(2)-ISOCONJUGATE OF X(678)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(678)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2226) lies on these lines: 36,106   44,88

X(2226) = isogonal conjugate of X(4370)
X(2226) = isotomic conjugate of X(36791)
X(2226) = X(679)-Ceva conjugate of X(1318)
X(2226) = cevapoint of X(6) and X(106)
X(2226) = X(i)-cross conjugate of X(j) for these (i,j): (6,106), (649,901)
X(2226) = X(92)-isoconjugate of X(22371)
X(2226) = crossdifference of every pair of points on line X(3251)X(4543)
X(2226) = trilinear pole of line X(106)X(1960) (the tangent to circumcircle at X(106))


X(2227) = X(2)-ISOCONJUGATE OF X(699)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(699)
Trilinears    a^2 b^4 + a^2 c^4 - b^4 c^2 - b^2 c^4 : :

X(2227) lies on these lines: 2,256   31,1582   38,75   44,513   662,1933   1581,1959   1930,2085   1966,1967

X(2227) = X(i)-Ceva conjugate of X(j) for these (i,j): (1966,1959), (1967,38)
X(2227) = crosspoint of X(75) and X(1581)
X(2227) = crosssum of X(i) and X(j) for these (i,j): (1,2227), (31,1580)


X(2228) = X(2)-ISOCONJUGATE OF X(713)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(713)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2228) lies on these lines: 10,75     44,513   291,320   1193,1386

X(2228) = crosssum of X(1) and X(2228)


X(2229) = X(2)-ISOCONJUGATE OF X(715)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(715)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2229) lies on these lines: 2,39   42,2295   44,513


X(2230) = X(2)-ISOCONJUGATE OF X(717)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(717)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2230) lies on these lines: 1,76   42,536   44,513

X(2230) = crosssum of X(1) and X(2230)


X(2231) = X(2)-ISOCONJUGATE OF X(719)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(719)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2231) lies on these lines: 6,76   44,513


X(2232) = X(2)-ISOCONJUGATE OF X(721)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(721)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2232) lies on these lines: 31,76   44,513

X(2232) = crosssum of X(1) and X(2232)


X(2233) = X(2)-ISOCONJUGATE OF X(723)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(723)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2233) lies on these lines: 32,76   44,513

X(2233) = crosssum of X(1) and X(2233)


X(2234) = X(2)-ISOCONJUGATE OF X(729)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(729)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2234) lies on these lines: 1,75   44,513   560,1958   662,922   872,894   897,1581

X(2234) = isogonal conjugate of X(37132)
X(2234) = crossdifference of every pair of points on line X(1)X(798)
X(2234) = crosssum of X(1) and X(2234)


X(2235) = X(2)-ISOCONJUGATE OF X(731)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(731)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2235) lies on these lines: 6,75   9,1740   37,1964   44,513   312,1613   1197,1215

X(2235) = crosssum of X(1) and X(2235)


X(2236) = X(2)-ISOCONJUGATE OF X(733)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(733)
Trilinears    (a^4 - b^2 c^2) (b^2 + c^2) : :

X(2236) lies on these lines: 31,75   38,1964   44,513   63,1740   171,385   238,1281   1580,1933   1923,1930   1926,1966

X(2236) = crosspoint of X(1580) and X(1966)
X(2236) = crosssum of X(i) and X(j) for these (i,j): (1580,1966), (1581,1967)


X(2237) = X(2)-ISOCONJUGATE OF X(735)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(735)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2237) lies on these lines: 32,75   44,513   1740,1759

X(2237) = crosssum of X(1) and X(2237)


X(2238) = X(2)-ISOCONJUGATE OF X(741)

Trilinears    (a^2 - b c) (b + c) : :
Trilinears    (sin A + sin B + sin C) csc A - (csc A + csc B + csc C) sin A : :

X(2238) lies on these lines: 1,1573   2,6   8,2176   9,43   10,213   32,1009   37,42   44,513   218,442   220,1834   238,1914   239,350   291,1757   294,857   405,2271   429,607   748,2280   800,1713   860,1783   862,2201   978,2275   1107,1193   1778,2305

X(2238) = isogonal conjugate of X(37128)
X(2238) = complement of X(30941)
X(2238) = cevapoint of X(i) and X(j) for these {i,j}: {6, 9509}, {1757, 2664}, {20683, 21830}
X(2238) = crosssum of X(i) and X(j) for these {i,j}: {1, 2238}, {6, 3286}, {9, 35104}, {81, 1931}, {86, 2669}, {291, 292}, {659, 1015}, {741, 2311}, {17103, 33295}
X(2238) = trilinear pole of line X(4094)X(4155)
X(2238) = X(i)-Ceva conjugate conjugate of X(j) for these (i,j): (98,55), (660,512), (666,523), (1929,1962), (2665,2667)
X(2238) = crosspoint of X(i) and X(j) for these (i,j): (1,37128), (2,13576), (37,9278), (42,2107), (57, 35108), (238,239), (660,1016). (740,16609)
X(2238) = bicentric sum of PU(90)
X(2238) = PU(90)-harmonic conjugate of X(4367)
X(2238) = {X(10),X(213)}-harmonic conjugate of X(2295)


X(2239) = X(2)-ISOCONJUGATE OF X(743)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(743)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2239) lies on these lines: 2,31   38,42   43,63   44,513   69,2209   141,1918   239,730

X(2239) = crosssum of X(1) and X(2239)


X(2240) = X(2)-ISOCONJUGATE OF (745)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(745)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2240) lies on these lines: 2,32   43,1759   44,513

X(2240) = crosssum of X(1) and X(2240)


X(2241) = X(2)-ISOCONJUGATE OF X(749)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(749)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2241) lies on these lines: 1,32   3,1015   6,574   39,55   56,187   99,330   115,1479   213,2280   230,496   405,1573   498,1506   577,1062   613,1692   902,1475   1191,2271   1388,1415   1504,2066   1870,1968


X(2242) = X(2)-ISOCONJUGATE OF X(751)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(751)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2242) lies on these lines: 1,32   3,1500   6,101   36,574   37,993   39,56   42,1055   55,187   58,2176   89,1252   99,192   115,1478   213,1468   230,495   474,1574   499,1506   577,1060   611,1692   713,932   956,1573   1415,2099   1504,2067   2092,2178   2251,2280   2260,2273


X(2243) = X(2)-ISOCONJUGATE OF X(753)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(753)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2243) lies on these lines: 1,32   37,902   44,513

X(2243) = crosssum of X(1) and X(2243)


X(2244) = X(2)-ISOCONJUGATE OF X(755)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(755)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2244) lies on these lines: 1,82   44,513   922,1959

X(2244) = crosssum of X(1) and X(2244)


X(2245) = X(2)-ISOCONJUGATE OF X(759)

Trilinears    (sin A + sin B + sin C) cos A - (cos A + cos B + cos C) sin A : :
Trilinears    sin(A - B) + sin(A - C) : :
Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(759)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)
X(2245) = s*X(3) - (r + R)*cot(ω)*X(6)

Let L denote the line having trilinears of X(2245) as coefficients. Then L is the line passing through X(1) perpendicular to the Euler line.

X(2245) lies on these lines: 3,6   9,46   19,407   36,2323   37,65   40,1834   44,513   63,1211   199,2194   209,228   219,2178   377,966   429,1452   440,1708   484,2161   674,2223   1100,2260   1195,2264   1405,2267   1454,2285   1631,2175   1732,2082

X(2245) = isogonal conjugate of X(24624)
X(2245) = inverse-in-Brocard-circle of X(2278)
X(2245) = X(i)-Ceva conjugate conjugate of X(j) for these (i,j): (54,215), (901,512), (1983,654), (2250,37)
X(2245) = cevapoint of X(2088) and X(2624)
X(2245) = X(i)-cross conjugate conjugate of X(j) for these (i,j): (2088,2610), (2624,1983)
X(2245) = crosspoint of X(59) and X(655)
X(2245) = crosssum of X(i) and X(j) for these (i,j): (1,2245), (6,859), (11,654), (80,2161), (759,2341), (2610,2611)
X(2245) = crossdifference of every pair of points on line X(1)X(523) (the perspectrix of Gemini triangles 10 and 27)
X(2245) = perspector of unary cofactor triangles of Gemini triangles 10 and 27
X(2245) = {X(371),X(372)}-harmonic conjugate of X(5398)


X(2246) = X(2)-ISOCONJUGATE OF X(840)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(840)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2246) lies on these lines: 1,41   6,244   9,100   19,1830   44,513   45,55   57,88   1054,1743   1731,2078

X(2246) = isogonal conjugate of X(37131)
X(2246) = crossdifference of every pair of points on line X(1)X(2254)
X(2246) = crosssum of X(1) and X(2246)


X(2247) = X(2)-ISOCONJUGATE OF X(842)

Trilinears    2 a^6 - 2 a^4 (b^2 + c^2) + a^2 (b^4 + c^4) - (b^2 - c^2)^2 (b^2 + c^2) : :

X(2247) lies on these lines: 1,163   19,162   31,2153   44,513   48,2157   63,662

X(2247) = crosssum of X(1) and X(2247)


X(2248) = X(2)-ISOCONJUGATE OF X(846)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(846)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2248) lies on these lines: 2,1931   31,2054   37,171   42,172   694,741

X(2248) = X(58)-cross conjugate of X(6)
X(2248) = X(i)-cross conjugate of X(j) for these (i,j): (58,6), (893,2162), (1929,2109)


X(2249) = X(2)-ISOCONJUGATE OF X(851)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(851)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2249) lies on the circumcircle and these lines: 19,107   31,112   48,110   63,99   71,100   81,934   101,228   108,1172   109,284   925,1820   933,2148   935,2157   1288,2158   1289,2156   1301,2155   1304,2159   1305,1952   1309,2250   2222,2341

X(2249) = isogonal conjugate of X(8680)
X(2249) = Ψ(X(6), X(810))
X(2249) = Ψ(X(190), X(72))
X(2249) = trilinear pole of line X(6)X(810)
X(2249) = cevapoint of X(1945) and X(1949)


X(2250) = X(2)-ISOCONJUGATE OF X(859)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(859)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2250) lies on these lines: 9,48   31,33   37,1409   63,190   71,1018   210,228   226,1020   515,2183   654,900   1309,2249   1400,1826   1766,1820

X(2250) = crosspoint of X(37) and X(2245)
X(2250) = crosspoint of X(517) and X(2183)


X(2251) = X(2)-ISOCONJUGATE OF X(903)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(903)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2251) lies on these lines: 6,36   31,32   101,1914   187,672   667,788   758,2243   902,1017   1015,1055   1319,2087   2174,2220   2242,2280

X(2251) = isogonal conjugate of X(20568)
X(2251) = polar conjugate of isotomic conjugate of X(23202)
X(2251) = crosssum of X(i) and X(j) for these {i,j}: {2, 320}, {75, 4358}, {903, 4997}, {1086, 4927}, {1111, 3762}, {4049, 6549}
X(2251) = crosspoint of X(i) and X(j) for these {i,j}: {6, 6187}, {31, 9456}, {902, 1404}, {1110, 32665}
X(2251) = crossdifference of every pair of points on line X(75)X(693)
X(2251) = trilinear product of PU(99)
X(2251) = trilinear product X(i)*X(j) for these {i,j}: {2, 9459}, {6, 902}, {31, 44}, {32, 519}, {41, 1319}, {42, 3285}, {55, 1404}, {101, 1960}, {106, 1017}, {110, 14407}, {163, 4730}, {184, 8756}, {560, 4358}, {604, 3689}, {667, 1023}, {678, 9456}, {692, 1635}, {1110, 2087}, {1397, 2325}, {1415, 4895}, {1492, 14436}, {1501, 3264}, {1576, 4120}, {1918, 16704}, {1919, 17780}, {1922, 4432}, {1973, 5440}, {1974, 3977}, {2175, 3911}, {2206, 3943}, {2429, 8643}, {4434, 7104}, {6187, 17455}


X(2252) = X(2)-ISOCONJUGATE OF X(915)

Trilinears    b c ((a - c) sec B + (a - b) sec C) : :

X(2252) lies on these lines: 3,48   6,1195   19,46   35,2302   39,2288   44,513   65,1108   216,1409   563,2269   573,2261   583,2262   909,2077   1182,2285   1400,1454   1765,1826   2180,2354

X(2252) = isogonal conjugate of X(37203)
X(2252) = crossdifference of every pair of points on line X(1)X(7649)
X(2252) = X(i)-Ceva-conjugate of X(j) for these (i,j): (909,48), (2006,73)
X(2252) = crosspoint of X(i) and X(j) for these (i,j): (1,37203), (63,1795), (914,1737)
X(2252) = crosssum of X(i) and X(j) for these (i,j): (1,2252), (19,1785), (652, 35015), (913, 36052)


X(2253) = X(2)-ISOCONJUGATE OF X(917)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(917)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2253) lies on these lines: 19,1708   44,513   48,184   2180,2355

X(2253) = X(911)-Ceva conjugate of X(48)
X(2253) = crosssum of X(1) and X(2253)


X(2254) = X(2)-ISOCONJUGATE OF X(919)

Trilinears    (b - c) (a b + a c - b^2 - c^2) : :

The tangent to the nine-point circle at the point where it is tangent to the incircle (X(11), the Feuerbach point) is here named the Feuerbach tangent line. It is line X(11)X(244). The inverse of the incircle in the excircles radical circle is a circle tangent to the Apollonius circle at X(3030). The line tangent to the Apollonius circle at X(3030) is here named the Apollonius tangent line. It is line X(2254)X(3030). X(2254) is the intersection of the Feuerbach tangent line and the Apollonius tangent line. (Randy Hutson, January 15, 2019)

X(2254) lies on these lines: 11,244   44,513   88,1156   100,109   103,105   291,812   294,1027   514,1734   522,693   663,905   665,1642   690,2292   764,891   830,1019   926,1362   1054,1768   3030,6085

X(2254) = reflection of X(i) and X(j) for these (i,j): (661,1491), (663,905)
X(2254) = isogonal conjugate of X(36086)
X(2254) = anticomplement of X(3716)
X(2254) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,38980), (291,244), (673,2170), (813,38), (1025,672), (1026,518)
X(2254) = cevapoint of X(665) and X(926)
X(2254) = crosspoint of X(i) and X(j) for these (i,j): (100,1280), (513,876), (518,1026), (664,673)
X(2254) = crosssum of X(i) and X(j) for these (i,j): (1,2254), (105,1027), (513,1279), (663,672), (1024,2195)
X(2254) = X(666)-aleph conjugate of X(812)
X(2254) = radical center of {incircle, nine-point circle, Apollonius circle}
X(2254) = midpoint of Feuerbach hyperbola intercepts of antiorthic axis
X(2254) = perspector of hyperbola {{A,B,C,X(1),X(514)}}


X(2255) = X(2)-ISOCONJUGATE OF X(923)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(923)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2255) lies on these lines: 6,40   31,198   84,1108   208,608   221,604   1191,1333


X(2256) = X(2)-ISOCONJUGATE OF X(937)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(937)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2256) lies on these lines: 1,6   8,965   48,55   56,71   104,2335   145,2287   198,2269   221,2286   388,1901   579,999   584,1190   604,1334   610,1697   1000,1172   1214,1407   1333,2328   1604,1630   1696,2183   1953,2098   2099,2294

X(2256) = crosssum of X(1) and X(2257)
X(2256) = {X(1),X(9)}-harmonic conjugate of X(1108)


X(2257) = X(2)-ISOCONJUGATE OF X(939)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(939)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2257) lies on these lines: 1,6   3,380   19,57   40,387   48,1420   56,610   58,84   71,1697   198,1617   281,1210   347,1445   393,1838   604,1630   608,1394   800,2277   1400,2082   1475,2285   1696,2348   1699,1901   1778,2328

X(2257) = crosssum of X(i) and X(j) for these (i,j): (9,1706), (939,2343)


X(2258) = X(2)-ISOCONJUGATE OF X(940)

Trilinears    a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(940)
Barycentrics    a2/f(a,b,c) : :

Let A3B3C3 be the 3rd Conway triangle. Let La be the trilinear polar of A3, and define Lb and Lc cyclically. Let A' = Lb∩Lc, and define B' and C' cyclically. The lines AA', BB', CC' concur in X(2258). (Randy Hutson, December 10, 2016)

X(2258) lies on these lines: 1,333   6,1402   9,42   31,284   55,213   57,959   200,872   386,1245   741,931   869,2319   1973,2299   2308,2364

X(2258) = X(2484)-cross conjugate of X(101)
X(2258) = crosspoint of X(941) and X(959)
X(2258) = crosssum of X(940) and X(958)
X(2258) = perspector of ABC and unary cofactor triangle of 3rd Conway triangle


X(2259) = X(2)-ISOCONJUGATE OF X(942)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(942)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2259) lies on these lines: 6,2197   9,943   19,41   35,71   42,2299   48,57   55,584   65,2160   101,2294   306,319   572,2364   1474,2200   1826,2332   2161,2264

X(2259) = isogonal conjugate of X(5249)
X(2259) = cevapoint of X(i) and X(j) for these (i,j): (6,2174), (31,2200), (41,42)
X(2259) = X(661)-cross conjugate of X(101)
X(2259) = crosssum of X(442) and X(2294)


X(2260) = X(2)-ISOCONJUGATE OF X(943)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(943)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2260) lies on these lines: 1,71   6,41   9,1125   11,1901   19,57   31,1486   36,284   37,38   42,2352   58,1474   65,1108   219,999   226,1713   238,1778   573,1449   603,608   910,1202   942,2294   946,1765   967,2221   1015,2300   1100,2245   1195,2170   1203,2360   1210,1826   1393,1880   1409,1457   1617,2266   1731,1781   1914,2305   2173,2264   2191,2279   2194,2308   2242,2273

X(2260) = X(i)-Ceva conjugate of X(j) for these (i,j): (163,649), (1020,513)
X(2260) = crosspoint of X(i) and X(j) for these (i,j): (1,27), (6,2160), (57,58)
X(2260) = crosssum of X(i) and X(j) for these (i,j): (1,71), (9,10), (1794,2259)


X(2261) = X(2)-ISOCONJUGATE OF X(945)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(945)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2261) lies on these lines: 1,2317   6,19   9,48   33,184   44,198   154,1864   573,2252   579,610   1181,1753   1449,1953   1630,1723   1728,2360   1766,2323   2173,2270   2268,2302


X(2262) = X(2)-ISOCONJUGATE OF X(947)

Trilinears    (tan A + tan B + tan C) sin A + (sin A + sin B + sin C) tan A : :

X(2262) lies on these lines: 1,198   4,1903   6,19   9,374   37,1953   48,354   51,1824   57,1422   71,1212   169,219   184,2355   185,1839   389,1871   393,1875   583,2252   610,942   909,2160   960,966   999,1604   1012,1741   1086,1122   1108,1400   1146,1826   1172,1905   1202,2272   1214,1730   1319,2178   1455,2199   1503,1890   1696,2098   1828,1901   1836,1851   2171,2347   2173,2317

X(2262) = X(i)-Ceva conjugate of X(j) for these (i,j): (4,1856), (1461,513)
X(2262) = crosspoint of X(i) and X(j) for these (i,j): (1,189), (4,57)
X(2262) = crosssum of X(i) and X(j) for these (i,j): (1,198), (3,9)
X(2262) = {X(6),X(19)}-harmonic conjugate of X(2182)
X(2262) = intersection of tangents to hyperbola {{A,B,C,X(4),X(40),X(57)}} at X(4) and X(57)


X(2263) = X(2)-ISOCONJUGATE OF X(949)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(949)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2263) lies on these lines: 1,7   4,1041   6,19   31,57   33,1836   40,1253   42,223   55,1427   56,1279   196,1096   226,612   238,1445   241,1001   354,1407   968,1214   1394,1468


X(2264) = X(2)-ISOCONJUGATE OF X(951)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(951)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2264) lies on these lines: 3,1723   6,19   9,55   37,41   40,1743   44,71   48,1108   56,610   218,1766   281,1837   284,1731   294,2298   572,2301   579,1155   910,1200   942,1781   960,1183   1100,2170   1118,1249   1172,1859   1195,2245   1212,2268   1333,1951   1436,1470   1834,1842   1839,1901   1898,1903   2161,2259   2173,2260   2174,2302

X(2264) = crosspoint of X(i) and X(j) for these (i,j): (9,1172), (21,57)
X(2264) = crosssum of X(i) and X(j) for these (i,j): (9,65), (57,1214)


X(2265) = X(2)-ISOCONJUGATE OF X(953)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(953)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2265) lies on these lines: 6,1411   9,48   19,1743   37,2317   44,513   163,2341   692,2310

X(2265) = crosssum of X(1) and X(2265)


X(2266) = X(2)-ISOCONJUGATE OF X(955)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(955)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2266) lies on these lines: 1,1802   6,31   19,1174   41,65   48,57   165,284   1617,2260   2093,2301


X(2267) = X(2)-ISOCONJUGATE OF X(957)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(957)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2267) lies on these lines: 3,2183   6,31   9,48   37,604   41,44   169,2173   219,2317   284,1743   374,910   573,2077   1212,2182   1334,1404   1400,1470   1405,2245   1474,2297   1766,1953   1802,2302   1903,2208   2285,2294


X(2268) = X(2)-ISOCONJUGATE OF X(959)

Trilinears    a cos A + b + c : :

X(2268) lies on these lines: 1,572   2,1958   3,1400   6,31   9,21   19,1831   33,1474   35,573   37,48   44,584   45,2174   73,478   219,1334   281,2202   312,2185   346,2329   380,2082   608,1593   748,992   750,851   941,987   950,964   968,2187   1212,2264   1438,2297   1449,1697   1903,2188   1950,2199   2112,2310   2261,2302

X(2268) = X(i)-Ceva conjugate of X(j) for these (i,j): (940,1468), (987,31)
X(2268) = crosspoint of X(i) and X(j) for these (i,j): (1,2339), (940,958)
X(2268) = crosssum of X(i) and X(j) for these (i,j): (1,2285), (941,959)
X(2268) = {X(37),X(48)}-harmonic conjugate of X(9310)


X(2269) = X(2)-ISOCONJUGATE OF X(961)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(961)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2269) lies on these lines: 1,573   3,604   6,31   8,9   11,1213   35,572   37,1953   40,2285   41,219   48,836   60,283   63,193   185,1409   198,2256   497,966   517,2171   563,2252   579,1449   899,992   1100,2245   1193,1682   1201,2277   1496,2199   1829,2292   1936,2303

X(2269) = X(i)-Ceva conjugate of X(j) for these (i,j): (163,652), (643,663), (1018,650)
X(2269) = crosspoint of X(i) and X(j) for these (i,j): (1,333), (9,284)
X(2269) = crosssum of X(i) and X(j) for these (i,j): (1,1400), (2,1999), (57,226), (961,2298)


X(2270) = X(2)-ISOCONJUGATE OF X(963)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(963)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2270) lies on these lines: 1,198   4,9   6,57   37,1697   41,1630   46,1743   48,1449   56,1604   63,391   84,1741   165,374   208,1249   294,2155   517,2324   965,1764   1394,2199   1400,2082   1420,2178   1750,1903   2173,2261   2285,2347

X(2270) = X(189)-Ceva conjugate of X(1)
X(2270) = X(189)-aleph conjugate of X(2270)
X(2270) = pole of Gergonne line wrt Bevan circle
X(2270) = homothetic center of 3rd extouch triangle and polar triangle of the Bevan circle
X(2270) = perspector of any pair of these triangles: {Danneels-Bevan, tangential of excentral, unary cofactor of intangents}


X(2271) = X(2)-ISOCONJUGATE OF X(969)

Trilinears    cos A + sin A (csc A + csc B + csc C) : :

X(2271) lies on these lines: 3,6   25,41   55,213   218,2276   220,1500   405,2238   941,2287   1191,2241   1193,2280   1334,2177   1460,2304   2207,2332


X(2272) = X(2)-ISOCONJUGATE OF X(972)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(972)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2272) lies on these lines: 6,1200   19,57   44,513   48,55   71,165   101,2077   198,1615   354,1953   603,607   909,2291   1202,2262   2280,2317

X(2272) = X(2338)-Ceva conjugate of X(6)
X(2272) = crosspoint of X(57) and X(103)
X(2272) = crosssum of X(i) and X(j) for these (i,j): (1,2272), (9,516)


X(2273) = X(2)-ISOCONJUGATE OF X(977)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(977)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2273) lies on these lines: 1,6   32,71   39,48   41,2092   42,2175   101,2277   172,579   284,2276   609,2305   1409,2156   1974,2356   2242,2260


X(2274) = X(2)-ISOCONJUGATE OF X(981)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(981)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2274) lies on these lines: 1,75   3,1918   6,41   42,750   58,560   238,993   518,869   873,2296   1001,1201


X(2275) = X(2)-ISOCONJUGATE OF X(983)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(983)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2275) lies on these lines: 1,39   2,330   3,1914   6,41   8,1575   9,1050   32,36   34,232   35,574   46,1572   57,893   65,2186   87,256   194,350   213,995   216,1038   579,2300   614,1194   672,1201   978,2238   1149,1334   1449,2092   1573,1698

X(2275) = isogonal conjugate of X(17743)
X(2275) = crosspoint of X(i) and X(j) for these (i,j): (57,87), (58,274)
X(2275) = crosssum of X(i) and X(j) for these (i,j): (6,1376), (10,213)


X(2276) = X(2)-ISOCONJUGATE OF X(985)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(985)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2276) lies on these lines: 1,39   2,37   3,172   6,31   8,1107   9,43   32,35   33,232   36,574   44,751   45,899   46,1571   100,743   101,753   187,609   194,1909   213,386   216,1040   218,2271   284,2273   612,1194   749,1100   1193,1334   1400,1403   1574,1698   2197,2285

X(2276) = complement of X(4441)
X(2276) = anticomplement of X(21264)
X(2276) = crosspoint of X(2) and X(1002)
X(2276) = crosssum of X(6) and X(1001)


X(2277) = X(2)-ISOCONJUGATE OF X(987)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(987)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2277) lies on these lines: 1,2092   2,37   6,41   9,39   19,232   31,199   71,2176   101,2273   213,579   256,1740   404,2298   478,1470   573,995   800,2257   966,1107   1015,1449   1201,2269   1444,1778

X(2277) = crosspoint of X(2) and X(959)
X(2277) = crosssum of X(6) and X(958)


X(2278) = X(2)-ISOCONJUGATE OF X(994)

Trilinears    (sin A + sin B + sin C) cos A + (cos A + cos B + cos C) sin A : :
X(2278) = s*X(3) + (r + R)*cot(ω)*X(6)

X(2278) lies on these lines: 2,662   3,6   9,2174   35,2323   37,48   41,44   45,101   46,1449   55,184   65,604   560,2309   563,2252   940,1790   965,1800   1011,2194   1107,2304   1155,2280

X(2278) = inverse-in-Brocard-circle of X(2245)
X(2278) = {X(371),X(372)}-harmonic conjugate of X(5396)


X(2279) = X(2)-ISOCONJUGATE OF X(1001)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1001)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2279) lies on these lines: 1,672   6,2223   9,86   31,1438   34,2333   41,58   56,213   87,1743   269,1400   614,2350   649,1027   1055,2163   1474,2212   2191,2260

X(2279) = isogonal conjugate of X(4384)
X(2279) = isotomic conjugate of X(21615)
X(2279) = X(869)-cross conjugate of X(1)


X(2280) = X(2)-ISOCONJUGATE OF X(1002)

Trilinears    a (a^2 - a (b + c) - 2 b c) : :

X(2280) lies on these lines: 1,41   3,1475   6,31   9,1174   32,1468   34,2332   37,2348   48,354   57,77   145,2329   165,572   213,2241   218,1334   380,2285   748,2238   985,1002   999,1055   1155,2278   1185,2300   1193,2271   1212,1802   1400,1617   1405,2078   1829,1973   1851,2201   2242,2251   2272,2317   2291,2364

X(2280) = isogonal conjugate of X(27475)
X(2280) = X(985)-Ceva conjugate of X(31)


X(2281) = X(2)-ISOCONJUGATE OF X(1010)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1010)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2281) lies on these lines: 6,63   19,2207   31,1974   32,48   71,213   228,1918   729,1310   966,981

X(2281) = X(2221)-Ceva conjugate of X(1245)
X(2281) = crosspoint of X(1472) and X(2221)


X(2282) = X(2)-ISOCONJUGATE OF X(1011)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1011)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2282) lies on these lines: 1,228   2,71   28,31   48,81   57,1409   63,274   278,1400   959,1457   961,1451


X(2283) = X(2)-ISOCONJUGATE OF X(1024)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1024)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2283) lies on these lines: 1,3   100,658   101,109   108,1292   692,1813   1025,1026   1308,2222

X(2283) = isogonal conjugate of X(885)
X(2283) = X(i)-Ceva conjugate of X(j) for these (i,j): (59,1362), (927,651), (1025,2284)
X(2283) = cevapoint of X(i) and X(j) for these (i,j): (665,2223), (672,926)
X(2283) = X(i)-cross conjugate of X(j) for these (i,j): (665,241), (926,672), (1362,59)
X(2283) = crosspoint of X(i) and X(j) for these (i,j): (100,677), (651,927), (1025,1026)
X(2283) = crosssum of X(i) and X(j) for these (i,j): (513,676), (650,926)
X(2283) = trilinear pole of line X(672)X(1362)


X(2284) = X(2)-ISOCONJUGATE OF X(1027)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1027)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2284) lies on these lines: 1,6   101,692   190,644   813,875   874,1016

X(2284) = X(i)-Ceva conjugate of X(j) for these (i,j): (666,100), (1025,2283)
X(2284) = cevapoint of X(665) and X(672)
X(2284) = crosspoint of X(i) and X(j) for these (i,j): (100,666), (101,813), (1025,1026)
X(2284) = crosssum of X(i) and X(j) for these (i,j): (513,665), (514,812), (1042,1027)
X(2284) = trilinear pole of line X(672)X(2223)


X(2285) = X(2)-ISOCONJUGATE OF X(1036)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1036)
Trilinears        a2bc + SBSC : b2ca + SCSA : c2ab + SASB   (César Lozada, 9/07/2013)
Trilinears    (a^2 + (b + c)^2)/(a^2 - (b + c)^2) : :

X(2285) lies on these lines: 1,572   2,7   6,19   32,1950   37,56   40,2269   41,610   46,573   169,1046   194,2128   198,1466   208,429   380,2280   388,2345   583,1732   612,1460   851,2092   966,1788   968,1011   1038,2303   1041,1172   1100,2099   1182,2252   1404,1449   1454,2245   1470,2178   1475,2257   1903,2213   2197,2276   2199,2312   2267,2294   2270,2347

X(2285) = isogonal conjugate of X(2339)
X(2285) = X(i)-Ceva conjugate of X(j) for these (i,j): (388,612), (2303,2286)
X(2285) = crosssum of X(9) and X(1697)


X(2286) = X(2)-ISOCONJUGATE OF X(1039)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1039)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2286) lies on these lines: 1,608   3,2197   6,41   37,478   55,1950   63,77   71,603   221,2256   284,1037   388,2303   607,610   1413,2336   1496,2199

X(2286) = X(i)-Ceva conjugate of X(j) for these (i,j): (388,1460), (2303,2285)


X(2287) = X(2)-ISOCONJUGATE OF X(1042)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1042)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2287) lies on these lines: 2,6   8,29   9,21   27,329   28,72   44,1333   58,936   63,610   71,100   145,2256   200,1253   210,2194   213,2298   218,1010   220,346   271,282   274,1170   294,314   307,651   319,1332   332,949   404,579   411,573   644,2321   662,911   758,1781   941,2271   960,1183   997,1723   1014,1445   1098,1792   1761,2173   1809,2193

X(2287) = isogonal conjugate of X(1427)
X(2287) = isotomic conjugate of X(1446)
X(2287) = X(i)-Ceva conjugate of X(j) for these (i,j): (333,21), (1098,2328)
X(2287) = cevapoint of X(i) and X(j) for these (i,j): (6,610), (9,219), (200,220)
X(2287) = X(i)-cross conjugate of X(j) for these (i,j): (9,2322), (200,1043), (219,2327), (220,2328), (2328,21)
X(2287) = crosspoint of X(333) and X(1043)
X(2287) = crosssum of X(1042) and X(1400)
X(2287) = trilinear pole of line X(1021)X(3900)


X(2288) = X(2)-ISOCONJUGATE OF X(1065)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1065)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2288) lies on these lines: 6,19   32,48   39,2252   213,2183   216,1195   394,2339   893,909   1914,2302


X(2289) = X(2)-ISOCONJUGATE OF X(1118)

Trilinears    (sin 2A)/(1 - sec A) : :

X(2289) lies on these lines: 3,48   9,21   40,1630   101,610   212,2193   220,2174   255,577   268,1260   306,1150   394,1804   579,604   584,1212   1944,1958

X(2289) = X(394)-Ceva conjugate of X(255)
X(2289) = crosspoint of X(394) and X(1259)
X(2289) = X(34)-isoconjugate of X(92)


X(2290) = X(2)-ISOCONJUGATE OF X(1141)

Trilinears        sin 3A cos(B - C) : sin 3B cos(C - A) : sin 3C cos(A - B)
Barycentrics   sin A sin 3A cos(B - C) : sin B sin 3B cos(C - A) : sin C sin 3C cos(A - B)

X(2290) lies on these lines: 44,513   47,48   50,1399   1953,2179

X(2290) = crosssum of X(i) and X(j) for these (i,j): (1,2290), (1109,2624)


X(2291) = X(2)-ISOCONJUGATE OF X(1155)

Trilinears    a/(a (2 a - b - c) - (b - c)^2) : :

X(2291) lies on the circumcircle and these lines: 6,109   9,100   19,108   55,101   57,934   99,333   103,654   105,1024   106,665   110,284   112,2299   165,1292   573,1293   649,840   672,901   673,927   902,919   909,2272   910,2161   932,2319   1055,2078   1108,2160   1155,1308   1174,1200   1305,1751   1310,2339   1630,2164   2280,2364

X(2291) = isogonal conjugate of X(527)
X(2291) = anticomplement of X(31844)
X(2291) = circumcircle-antipode of X(28291)
X(2291) = cevapoint of X(6) and X(1055)
X(2291) = X(2078)-cross conjugate of X(1174)
X(2291) = trilinear pole of line X(6)X(663)
X(2291) = Ψ(X(1), X(650))
X(2291) = Ψ(X(6), X(663))
X(2291) = Ψ(X(190), X(8))


X(2292) = X(2)-ISOCONJUGATE OF X(1169)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1169)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

Let A' be the trilinear pole of the tangent to the Apollonius circle where it meets the A-excircle, and define B' and C' cyclically. The triangle A'B'C' is perspective to the incentral triangle at X(2292). (Randy Hutson, December 2, 2017)

Let FaFbFc be the Fuhrmann triangle, and AbBcCa and AcBaCb be the 1st and 2nd Montesdeoca bisector triangles. X(2292) is the radical center of the circumcircles of FaAbAc, FbBcBa, FcCaCb. (Randy Hutson, December 2, 2017)

X(2292) lies on these lines: 1,21   2,986   8,192   10,321   29,240   37,65   40,612   42,72   46,750   55,976   190,1220   221,2256   226,1254   244,1125   392,1201   690,2254   950,2310   960,1193   1042,1214   1107,2170   1717,1773   1761,2303   1829,2269   1868,1880

X(2292) = isogonal conjugate of X(2363)
X(2292) = reflection of X(2650) in X(1)
X(2292) = complement of X(17164)
X(2292) = X(i)-Ceva conjugate of X(j) for these (i,j): (1,1193), (109,656), (190,661)
X(2292) = crosspoint of X(i) and X(j) for these (i,j): (1,10), (75,226)
X(2292) = crosssum of X(i) and X(j) for these (i,j): (1,58), (31,284)
X(2292) = complement wrt incentral triangle of X(2650)
X(2292) = anticomplement wrt incentral triangle of X(1)
X(2292) = incentral isotomic conjugate of X(2667)


X(2293) = X(2)-ISOCONJUGATE OF X(1170)

Trilinears    a(b + c - a)[a(b + c) - (b - c)^2] : :
Trilinears     sec2(B/2) + sec2(C/2) : :      (Randy Hutson, 9/23/2011)
Barycentrics    a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2293) lies on these lines: 1,7   3,1471   6,31   9,2340   33,1839   37,2310   48,1486   73,1456   200,391   284,2195   354,1418   500,1066   608,2356   651,2346   692,2317   756,1864   1001,1818   1201,1279   1400,2223

X(2293) = X(i)-Ceva conjugate of X(j) for these (i,j): (1,354), (354,1475), (651,657), (1292,649)
X(2293) = crosspoint of X(i) and X(j) for these (i,j): (1,55), (6,2191), (354,1212)
X(2293) = crosssum of X(i) and X(j) for these (i,j): (1,7), (1170,2346)
X(2293) = {X(1),X(1742)}-harmonic Conjugate of X(7)
X(2293) = crossdifference of every pair of points on line X(514)X(657)
X(2293) = bicentric sum of PU(104)
X(2293) = PU(104)-harmonic conjugate of X(657)
X(2293) = isogonal conjugate of [intersection of tangents at X(1) and X(7) to hyperbola passing through X(1), X(7) and the excenters]
X(2293) = isogonal conjugate of [crosspoint of X(1) and X(7) wrt the excentral triangle]
X(2293) = perspector of ABC and unary cofactor triangle of Honsberger triangle


X(2294) = X(2)-ISOCONJUGATE OF X(1175)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1175)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2294) lies on these lines: 1,19   9,758   21,1761   37,65   55,199   73,1880   81,1762   86,1959   101,2259   209,756   226,1826   281,1148   354,1108   942,2260   950,1839   1046,1778   1100,2170   1841,1859   2099,2256   2214,2218   2267,2285

X(2294) = X(i)-Ceva conjugate of X(j) for these (i,j): (92,1838), (101,661), (653,656)
X(2294) = crosspoint of X(i) and X(j) for these (i,j): (1,226), (10,92)
X(2294) = crosssum of X(i) and X(j) for these (i,j): (1,284), (48,58), (943,2259)


X(2295) = X(2)-ISOCONJUGATE OF X(1178)

Trilinears    (a^2 + b c) (b + c) : :

X(2295) lies on these lines: 1,39   2,1258   6,8   10,213   37,65   42,2229   171,172   190,1655   345,940   672,1107   732,894   1016,1509   1193,1575

X(2295) = complement of X(17152)
X(2295) = crosspoint of X(i) and X(j) for these (i,j): (1,83), (171,894), (1016,1018)
X(2295) = crosssum of X(i) and X(j) for these (i,j): (1,39), (256,893), (1015,1019)
X(2295) = {X(10),X(213)}-harmonic conjugate of X(2238)


X(2296) = X(2)-ISOCONJUGATE OF X(1185)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1185)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2296) lies on these lines: 1,310   2,213   7,1402   27,1973   31,86   42,75   675,785   873,2274   1042,1088


X(2297) = X(2)-ISOCONJUGATE OF X(1191)

Trilinears    (a^2 + 2*a*b + b^2 - 2*a*c + 2*b*c + c^2)*(a^2 - 2*a*b + b^2 + 2*a*c + 2*b*c + c^2) : :
Barycentrics    a*(a^2 + 2*a*b + b^2 - 2*a*c + 2*b*c + c^2)*(a^2 - 2*a*b + b^2 + 2*a*c + 2*b*c + c^2) : :

Let Oa be the circle passing through B and C, and tangent to the A-excircle. Define Ob and Oc cyclically. Let A' be the point of tangency of Oa and the A-excircle, and define B' and C' cyclically. Then X(2297) is the radical center of circles Oa, Ob, Oc; for the incircle version, see X(57). Note that triangle A'B'C' is perspective to the extouch triangle at X(1). If you have GeoGebra, you can view X(2297) and Perspective2297. (Jianing Song, April 7, 2024)

The point A' in Song's construction is given by

4*a^2*(a + b - c)*(a - b + c) : -((a - b + c)^3*(a + b + c)) : -((a + b - c)^3*(a + b + c))

The radical center of circles Oa, Ob, Oc is X(2297). A'B'C' is perspective to ABC at X(5423), and the tangents at A', B', C' form a triangle that is perspective to ABC at X(51341). (Peter Moses, April 78, 2024)

X(2297) lies on the conic {{A,B,C,X(1),X(6)}} and these lines: {1, 346}, {2, 269}, {6, 200}, {9, 56}, {10, 937}, {34, 281}, {37, 3445}, {58, 936}, {75, 44797}, {86, 17022}, {87, 5268}, {106, 3731}, {282, 1413}, {292, 16517}, {391, 8580}, {610, 31521}, {672, 15479}, {894, 4328}, {939, 25066}, {966, 8568}, {998, 9623}, {1027, 17418}, {1126, 6765}, {1411, 36910}, {1431, 17754}, {1438, 2268}, {1449, 2334}, {1474, 2267}, {1593, 12565}, {2163, 3973}, {2191, 10582}, {2256, 4936}, {2257, 5782}, {2279, 59269}, {2324, 36916}, {2345, 4853}, {2999, 3618}, {3030, 9432}, {3247, 41436}, {3305, 24557}, {3554, 17369}, {4334, 5296}, {4512, 53085}, {5018, 5199}, {5272, 7194}, {5293, 39946}, {5294, 26668}, {5437, 56199}, {5783, 16572}, {7097, 56857}, {7110, 52372}, {7129, 57492}, {7175, 7308}, {7274, 35578}, {10436, 36796}, {16713, 18229}, {17352, 54390}, {17353, 58004}, {18594, 33950}, {19861, 56200}, {25887, 60937}, {31438, 60849}

X(2297) = isogonal conjugate of the complement of X(34255)
X(2297) = isotomic conjugate of the complement of X(27340)
X(2297) = X(i)-isoconjugate of X(j) for these (i,j): {1, 2999}, {2, 1191}, {6, 3672}, {56, 18228}, {57, 1697}, {58, 4656}, {81, 4646}, {100, 8712}, {104, 51413}, {668, 8662}, {934, 40137}, {999, 14556}, {58815, 58985}
X(2297) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 18228}, {3, 2999}, {9, 3672}, {10, 4656}, {5452, 1697}, {8054, 8712}, {14714, 40137}, {32664, 1191}, {40194, 6554}, {40586, 4646}, {40613, 51413}
X(2297) = X(i)-cross conguate of X(j) for these (i,j): (612,1), (7050,7091)
X(2297) = cevapoint of X(i) and X(j) for these (i,j): {1, 8580}, {2, 27340}, {6, 54322}, {9, 1449}, {2484, 3248}, {2522, 34591}
X(2297) = trilinear pole of line {649, 3900}
X(2297) = barycentric product X(i)*X(j) for these {i,j}: {1, 1219}, {8, 7091}, {75, 7050}, {78, 11546}, {514, 6574}, {4397, 58985}, {11051, 44797}, {30705, 40175}
X(2297) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3672}, {6, 2999}, {9, 18228}, {31, 1191}, {37, 4656}, {42, 4646}, {55, 1697}, {649, 8712}, {657, 40137}, {1219, 75}, {1919, 8662}, {2183, 51413}, {6574, 190}, {7050, 1}, {7091, 7}, {11546, 273}, {40137, 58815}, {40175, 6554}, {57279, 28616}, {58985, 934}
X(2297) = pole of line {3677, 4853} with respect to the ABCGI
X(2297) = pole of line {612, 2297} with respect to the ABCIK
X(2297) = pole of line {1191, 1697} with respect to the Kiepert circumhyperbola of the excentral triangle
X(2297) = pole of line {2999, 3672} with respect to the Jerabek circumhyperbola of the excentral triangle


X(2298) = X(2)-ISOCONJUGATE OF X(1193)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1193)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2298) lies on these lines: 1,572   2,2221   4,608   6,8   7,940   9,31   19,1039   21,37   55,941   81,314   100,2092   171,256   213,2287   294,2264   335,1963   388,478   404,2277   1011,2335   1100,1320   1172,1824   1911,2309

X(2298) = isogonal conjugate of X(3666)
X(2298) = isotomic conjugate of X(20911)
X(2298) = cevapoint of X(i) and X(j) for these (i,j): (1,171), (6,37), (55,213)
X(2298) = X(i)-cross conjugate of X(j) for these (i,j): (6,1169), (512,100)
X(2298) = crosssum of X(i) and X(j) for these (i,j): (1193,2269), (2092,2292)
X(2298) = X(92)-isoconjugate of X(22345)


X(2299) = X(2)-ISOCONJUGATE OF X(1214)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1214)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2299) lies on these lines: 4,580   6,25   9,33   19,31   21,1039   24,581   27,162   28,34   29,270   42,2259   55,607   73,2360   112,2291   238,1848   284,2189   909,2206   1104,1829   1174,2356   1333,1436   1402,1945   1435,1471   1824,2161   1841,2160   1859,2361   1973,2258

X(2299) = X(i)-Ceva conjugate of X(j) for these (i,j): (28,1474), (29,284), (270,1172), (1172,2332), (2189,2204)
X(2299) = cevapoint of X(i) and X(j) for these (i,j): (23,31), (607,2212)
X(2299) = X(i)-cross conjugate of X(j) for these (i,j): (31,2194), (607,1172), (2204,1474), (2212,2204)
X(2299) = crosspoint of X(i) and X(j) for these (i,j): (28,1172), (270,2189)
X(2299) = crosssum of X(72) and X(1214)
X(2299) = isogonal conjugate of X(307)
X(2299) = polar conjugate of X(349)
X(2299) = crossdifference of every pair of points on line X(525)X(8611)


X(2300) = X(2)-ISOCONJUGATE OF X(1220)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1220)
Trilinears        a2(as + SA) : b2(bs + SB) : c2(cs + SC)   (César Lozada, 9/07/2013)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2300) lies on these lines: 1,6   10,992   19,1572   31,184   32,48   36,2305   39,71   81,261   110,1169   239,314   284,893   394,2221   572,595   573,995   579,2275   849,1333   869,2209   1015,2260   1185,2280   1193,1682   1201,1400   1918,1964   2174,2220

X(2300) = X(i)-Ceva conjugate of X(j) for these (i,j): (6,2092), (110,667)
X(2300) = crosspoint of X(i) and X(j) for these (i,j): (6,1333), (31,904), (56,81)
X(2300) = crosssum of X(i) and X(j) for these (i,j): (2,321), (8,37), (75,1909), (1791,2298)
X(2300) = isogonal conjugate of X(30710)
X(2300) = polar conjugate of isotomic conjugate of X(22345)
X(2300) = perspector of unary cofactor triangles of Gemini triangles 39 and 40
X(2300) = crossdifference of every pair of points on line X(513)X(2517) (the perspectrix of Gemini triangles 39 and 40)


X(2301) = X(2)-ISOCONJUGATE OF X(1242)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1242)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2301) lies on these lines: 1,19   40,41   55,101   102,949   218,573   572,2264   581,607   2093,2266


X(2302) = X(2)-ISOCONJUGATE OF X(1243)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1243)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2302) lies on these lines: 1,19   6,2197   35,2252   54,71   55,184   198,584   1802,2267   1914,2288   2174,2264   2261,2268


X(2303) = X(2)-ISOCONJUGATE OF X(1245)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1245)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2303) lies on these lines: 1,19   2,6   9,58   21,37   71,171   226,1396   241,1014   388,2286   1010,2345   1038,2285   1761,2292   1936,2269


X(2304) = X(2)-ISOCONJUGATE OF X(1246)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1246)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2304) lies on these lines: 1,19   31,32   55,2200   274,1958   584,2214   1107,2278   1460,2271   2174,2176


X(2305) = X(2)-ISOCONJUGATE OF X(1247)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1247)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2305) lies on these lines: 3,6   31,199   36,2300   37,171   71,172   198,1755   230,1901   332,524   404,992   609,2273   1010,1213   1195,1951   1400,1950   1460,1486   1654,1931   1778,2238   1914,2260   2176,2178

X(2305) = X(1400)-Ceva conjugate of X(6)
X(2305) = crosspoint of X(109) and X(239)
X(2305) = crosssum of X(115) and X(522)


X(2306) = X(2)-ISOCONJUGATE OF X(1250)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1250)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = sin A sec(A/2) sec(A + π/6)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2306) lies on these lines: 1,15   2,1081   6,1406   13,79   65,2153   1082,1255

X(2306) = X(1081)-Ceva conjugate of X(1251)


X(2307) = X(2)-ISOCONJUGATE OF X(1251)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1251)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = (sin A/2) cos(A/2 + π/6)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2307) lies on these lines: 1,61   6,41   11,398   12,396   15,35   36,62   65,2153  

X(2307) = X(1082)-Ceva conjugate of X(1250)


X(2308) = X(2)-ISOCONJUGATE OF X(1255)

Trilinears    1 - cos 2A + (1 + cos A)(cos B + cos C) : :
Trilinears    a(ar + S) : : (César Lozada, 9/07/2013)

X(2308) lies on these lines: 6,31   36,58   38,1386   44,756   56,1392   81,238   110,1171   171,899   184,1475   222,1471   612,1743   748,940   968,1449   999,1201   1042,1451   1100,1962   1197,1977   1397,1400   1402,1404   1405,1460   1458,2003   2194,2260   2203,2354   2258,2364

X(2308) = isogonal conjugate of X(1268)
X(2308) = X(110)-Ceva conjugate of X(649)
X(2308) = crosspoint of X(i) and X(j) for these (i,j): (1,2160), (6,58), (1125,1839)
X(2308) = crosssum of X(i) and X(j) for these (i,j): (2,10), (1126,1796)
X(2308) = {X(31),X(42)}-harmonic conjugate of X(902)
X(2308) = X(92)-isoconjugate of X(1796)
X(2308) = polar conjugate of isotomic conjugate of X(22054)


X(2309) = X(2)-ISOCONJUGATE OF X(1258)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1258)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2309) lies on these lines: 1,87   2,1740   6,31   9,869   21,238   37,1964   44,872   86,310   239,1045   284,2210   560,2278   741,1963   1001,1201   1911,2298

X(2309) = X(99)-Ceva conjugate of X(649)
X(2309) = crosspoint of X(i) and X(j) for these (i,j): (1,893), (6,86), (58,2162)
X(2309) = crosssum of X(i) and X(j) for these (i,j): (1,894), (2,42), (10,192)
X(2309) = isogonal conjugate of isotomic conjugate of X(3741)
X(2309) = polar conjugate of isotomic conjugate of X(22065)


X(2310) = X(2)-ISOCONJUGATE OF X(1262)

Trilinears    (cos B - cos C)^2 : :

Let A'B'C' be the Mandart-incircle triangle. Let A" be the trilinear product B'*C', and define B" and C" cyclically. The lines AA", BB", CC" concur in X(2310).

X(2310) lies on the incentral inellipse (a.k.a. Hofstadter ellipse E(1/2)) and these lines: 1,651   4,774   9,294   11,244   31,33   37,2293   38,497   42,1864   45,55   73,1898   84,1106   90,255   390,984   516,1736   522,1090   692,2265   748,1040   896,1776   926,2170   950,2292   971,1458   990,1471   1400,1827   1445,1721   1857,2181   2112,2268   2201,2312

X(2310) = X(i)-Ceva conjugate of X(j) for these (i,j): (1,650), (4,661), (11,2170), (33,663), (84,649), ( 90,652), (104,1635), (1088,514, (1098,1021)
X(2310) = isogonal conjugate of X(7045)
X(2310) = crosspoint of X(i) and X(j) for these (i,j): (1,650, (9,522), (11,1146), (19,513), (514,1088), (1021,1098)
X(2310) = crosssum of X(i) and X(j) for these (i,j): (1,651), (57,109), (59,1262), (63,100), (101,1253), (255,1813), (269,934), (412,653), (1020,1254), (1106,1461)
X(2310) = polar conjugate of isotomic conjugate of X(34591)
X(2310) = trilinear square of X(650)
X(2310) = trilinear pole wrt incentral triangle of line X(1)X(3)
X(2310) = X(63)-isoconjugate of X(7128)


X(2311) = X(2)-ISOCONJUGATE OF X(1284)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1284)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2311) lies on these lines: 6,694   9,261   21,644   28,291   41,60   58,101   110,2112   272,335   284,2330   651,1014   672,1931   759,813   1580,1581   2189,2212

X(2311) = isogonal conjugate of X(16609)
X(2311) = polar conjugate of isotomic conjugate of X(1808)
X(2311) = X(63)-isoconjugate of X(1874)

X(2312) = X(2)-ISOCONJUGATE OF X(1297)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1297)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2312) lies on these lines: 19,31   38,48   44,513   63,610   198,199   240,293   444,1400   774,1973   1436,1473   1910,1933   2157,2159   2199,2285   2201,2310

X(2312) = X(293)-Ceva conjugate of X(31)
X(2312) = crosspoint of X(19) and X(1910)
X(2312) = crosssum of X(i) and X(j) for these (i,j): (1,2312), (63,1959)


X(2313) = X(2)-ISOCONJUGATE OF X(1298)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1298)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2313) lies on these lines: 44,513   48,92   1953,2181

X(2313) = crosssum of X(1) and X(2313)


X(2314) = X(2)-ISOCONJUGATE OF X(1299)

Trilinears &nbnbsp;      a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1299)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2314) lies on these lines: 19,47   44,513   48,1820   563,1953

X(2314) = crosssum of X(i) and X(j) for these (i,j): (1,2314), (19,1725)


X(2315) = X(2)-ISOCONJUGATE OF X(1300)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1300)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2315) lies on these lines: 19,91   44,513   48,255   774,1953

X(2315) = X(2159)-Ceva conjugate of X(48)
X(2315) = crosssum of X(i) and X(j) for these (i,j): (1,2315), (19,1784)


X(2316) = X(2)-ISOCONJUGATE OF X(1319)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1319)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2316) is the perspector of the anticevian triangle of X(106) and the unary cofactor triangle of the intangents triangle, and also the perspector of ABC and the unary cofactor triangle of Gemini triangle 9. (Randy Hutson, November 30, 2018)

X(2316) lies on these lines: 6,101   9,644   19,1743   36,909   41,2364   44,517   57,88   284,2347   294,1024   329,1751   333,645   527,666   573,2164   579,1436   672,901   1318,2323

X(2316) = isogonal conjugate of X(3911)
X(2316) = X(i)-Ceva conjugate of X(j) for these (i,j): (88,106), (1318,55)
X(2316) = cevapoint of X(i) and X(j) for these (i,j): (6,2183), (41,2361)
X(2316) = X(i)-cross conjugate of X(j) for these (i,j): (55,1318), (654,101), (2323,284), (2342,102)
X(2316) = crosssum of X(i) and X(j) for these (i,j): (44,1319), (1149,2183), (1635,1647)


X(2317) = X(2)-ISOCONJUGATE OF X(1389)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1389)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2317) lies on these lines: 1,2261   6,41   19,1449   37,2265   54,71   163,284   182,1818   219,2267   563,2252   692,2293   1100,1953   2173,2262   2272,2280


X(2318) = X(2)-ISOCONJUGATE OF X(1396)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1396)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2318) lies on these lines: 6,2336   9,2335   33,200   37,42   41,55   63,1818   71,228   72,73   78,345   209,1400   212,219   672,2352   997,1450   1808,1812

X(2318) = X(72)-Ceva conjugate of X(71)


X(2319) = X(2)-ISOCONJUGATE OF X(1403)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)/(ab + ac - bc)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2319) lies on these lines: 1,893   6,43   55,2053   57,239   385,1423   869,2258   932,2291

X(2319) = isogonal conjugate of X(1423)
X(2319) = complement of X(20537)
X(2319) = anticomplement of X(20528)
X(2319) = X(2053)-Ceva conjugate of X(87)
X(2319) = X(8)-cross conjugate of X(9)


X(2320) = X(2)-ISOCONJUGATE OF X(1405)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1405)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2320) lies on these lines: 1,89   2,80   3,1389   4,1385   7,1319   9,2364   55,1320   104,1621   941,1100   1001,1156   1388,1476

X(2320) = isogonal conjugate of X(2099)
X(2320) = X(7)-vertex conjugate of X(56)


X(2321) = X(2)-ISOCONJUGATE OF X(1408)

Trilinears    a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1408)
Trilinears    tan( angle BAACA) : :, where BA and CA are the touchpoints of the B- and C-excircles with line BC, resp.
Barycentrics   Barycentrics    (b + c) (a - b - c) : :

X(2321) lies on these lines: 1,2345   6,519   8,9   10,37   33,200   69,527   71,1018   72,1903   75,142   141,536   145,1449   190,319   226,306   284,1043   314,646   515,1766   644,2287   1089,1826   1266,1278

X(2321) = isogonal conjugate of X(1412)
X(2321) = isotomic conjugate of X(1434)
X(2321) = complement of X(3875)
X(2321) = anticomplement of X(3946)
X(2321) = anticomplementary conjugate of anticomplement of X(38825)
X(2321) = X(i)-Ceva conjugate of X(j) for (i,j )= (8,210), (321,10), (646,522)
X(2321) = cevapoint of X(1334) and X(2318)
X(2321) = X(210)-cross conjugate of X(10)
X(2321) = cevapoint of X(1334) and X(2318)
X(2321) = crosssum of X(i) and X(j) for these (i,j): (56,604), (1333,1408)
X(2321) = excentral-to-ABC barycentric image of X(6)
X(2321) = barycentric product X(8)*X(10)


X(2322) = X(2)-ISOCONJUGATE OF X(1410)

Trilinears    a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1410)
Barycentrics    (b + c - a)^2/((b + c) (b^2 + c^2 - a^2)) : :

X(2322) lies on these lines: 2,253   4,391   8,29   9,318   19,27   21,268   28,956   37,1897   86,648   297,1654   346,1260   393,966   653,1441   1043,2326   1213,1990   1222,1474

X(2322) = cevapoint of X(i) and X(j) for these (i,j): (9,281), (19,1249), (2328,2332)
X(2322) = X(9)-cross conjugate of X(2287)
X(2322) = crosssum of X(1409) and X(1410)
X(2322) = polar conjugate of X(3668)


X(2323) = X(2)-ISOCONJUGATE OF X(1411)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1411)
Trilinears        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A, B, C) = 2 sin A - cot(A/2)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2323) lies on these lines: 1,6   35,2278   36,2245   40,1181   48,573   54,71   55,2364   57,394   59,672   60,283   63,1993   101,953   155,610   239,1944   282,1069   323,1443   517,2182   521,650   527,651   579,604   644,2325   648,1948   674,692   677,2338   758,1870   908,2006   909,2077   1318,2316   1731,2170   1766,2261

X(2323) = isogonal conjugate of X(2006)
X(2323) = X(i)-Ceva conjugate of X(j) for these (i,j): (908,2077), (1320,55)
X(2323) = X(2361)-cross conjugate of X(36)
X(2323) = crosspoint of X(284) and X(2316)
X(2323) = crosssum of X(i) and X(j) for these (i,j): (73,2252), (1400,1457), (1411,2161), (1769,2170
X(2323) = inverse-in-MacBeath-circumconic of X(1)


X(2324) = X(2)-ISOCONJUGATE OF X(1413)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1413)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

Let A'B'C' be the mixtilinear incentral triangle. Let La be the trilinear polar of A', and define Lb and Lc cyclically. Let A" = Lb∩Lc, and define B" and C" cyclically. The lines AA", BB", CC" concur in X(2324). (Randy Hutson, January 15, 2019)

X(2324) lies on these lines: 1,6   19,1802   33,200   40,198   41,380   65,1696   77,144   78,280   101,610   190,326   223,329   269,527   394,1422   517,2270   579,1467   936,2345   1103,2331   1195,1334

X(2324) = isogonal conjugate of X(1422)
X(2324) = X(i)-Ceva conjugate of X(j) for these (i,j): (78,200), (329,40), (346,9)
X(2324) = X(198)-cross conjugate of X(9)
X(2324) = crosssum of X(1413) and X(1436)


X(2325) = X(2)-ISOCONJUGATE OF X(1417)

Barycentrics    (a - b - c) (2 a - b - c) : :

X(2325) lies on these lines: 2,1266   8,9   10,45   37,39   44,519   142,344   190,320   522,650   644,2323   1018,2183   1698,1738

X(2325) = complement of X(1266)
X(2325) = anticomplement of X(17067)
X(2325) = X(2415)-Ceva conjugate of X(900)
X(2325) = crosspoint of X(2) and X(1120)
X(2325) = crosssum of X(i) and X(j) for these (i,j): (6,1149), (56,1404)
X(2325) = inverse-in-Mandart-inellipse of X(8)
X(2325) = excentral-to-ABC barycentric image of X(44)


X(2326) = X(2)-ISOCONJUGATE OF X(1425)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1425)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2326) lies on these lines: 6,162   21,270   27,86   29,284   60,285   163,1765   412,572   1043,2322

X(2326) = cevapoint of X(284) and X(1172)
X(2326) = crosssum of X(1425) and X(2197)


X(2327) = X(2)-ISOCONJUGATE OF (1426)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1426)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2327) lies on these lines: 9,21   27,908   48,63   219,283   306,319   394,1073   758,1744   1043,2322   1333,1801   1789,1800   1792,1802   2200,2359

X(2327) = X(i)-Ceva conjugate of X(j) for these (i,j): (1043,2328), (1812,283)
X(2327) = cevapoint of X(i) and X(j) for these (i,j): (219,2289), (1260,1802)
X(2327) = X(i)-cross conjugate of X(j) for these (i,j): (219,2287), (1260,1792)
X(2327) = crosspoint of X(1792) and X(1812)
X(2327) = crosssum of X(1426) and X(1880)


X(2328) = X(2)-ISOCONJUGATE OF X(1427)

Trilinears    (1 + cos A)/(cos B + cos C) : :

X(2328) lies on these lines: 1,21   2,1754   3,64   9,33   10,29   25,573   27,516   28,40   35,1819   55,219   71,1474   101,228   103,110   109,1214   165,1817   184,572   199,1495   200,1253   210,2341   220,1260   268,2192   333,643   387,452   394,991   405,580   440,1503   461,966   501,1800   902,2206   963,1437   1043,1098   1167,1785   1333,2256   1412,1617   1778,2257

X(2328) = isogonal conjugate of X(3668)
X(2328) = X(i)-Ceva conjugate of X(j) for these (i,j): (21,284), (643,1021), (1043,2327), (1098,2287), (2322,2332)
X(2328) = X(220)-cross conjugate of X(2287)
X(2328) = crosspoint of X(i) and X(j) for these (i,j): (21,2287), (1043,2322)
X(2328) = crosssum of X(65) and X(1427)
X(2328) = {X(21),X(283)}-harmonic conjugate of X(58)


X(2329) = X(2)-ISOCONJUGATE OF X(1431)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1431)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2329) lies on these lines: 1,6   2,1429   8,41   10,98   21,644   35,1018   42,904   48,2345   55,2053   145,2280   171,172   281,1973   284,1043   318,2202   346,2268   404,1055   419,1215   594,2174   1222,1438

X(2329) = isogonal conjugate of X(1432)
X(2329) = X(894)-Ceva conjugate of X(171)
X(2329) = X(2330)-cross conjugate of X(171)
X(2329) = crosssum of X(893) and X(1431)
X(2329) = anticomplement of X(17062)


X(2330) = X(2)-ISOCONJUGATE OF X(1432)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1432)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2330) lies on these lines: 1,182   3,611   6,31   9,2175   12,1503   33,1974   35,511   37,692   41,2053   59,1442   172,1691   184,612   210,2194   284,2311   498,1352   572,2223   1376,1958   1500,1692

X(2330) = X(171)-Ceva conjugate of X(172)
X(2330) = crosspoint of X(171) and X(2329)
X(2330) = crosssum of X(256) and X(1432)


X(2331) = X(2)-ISOCONJUGATE OF X(1433)

Trilinears    (1 + sec A)(1 - sec A + sec B + sec C) : :

X(2331) lies on these lines: 1,281   6,19   9,1783   33,42   55,204   73,207   77,653   196,223   198,208   222,1767   614,1108   1103,2324   1436,1455   1735,1741   1854,1903

X(2331) = X(i)-Ceva conjugate of X(j) for these (i,j): (1,33), (196,208), (281,9)
X(2331) = X(2187)-cross conjugate of X(40)
X(2331) = crosspoint of X(1) and X(223)
X(2331) = crosssum of X(i) and X(j) for these (i,j): (1,282), (268,1433)
X(2331) = trilinear product X(33)*X(223)
X(2331) = polar conjugate of X(309)


X(2332) = X(2)-ISOCONJUGATE OF X(1439)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1439)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2332) lies on these lines: 1,19   6,64   27,1803   29,1855   33,41   34,2280   55,607   58,103   200,1802   963,1333   1043,2322   1826,2259   1842,2201   2192,2194   2207,2271

X(2332) = X(2322)-Ceva conjugate of X(2328)
X(2332) = cevapoint of X(41) and X(607)
X(2332) = crosssum of X(1214) and X(1439)


X(2333) = X(2)-ISOCONJUGATE OF X(1444)

Trilinears        (b + c) sec A : (c + a) sec B : (a + b) sec C
Barycentrics   (b + c) tan A : (c + a) tan B : (a + b) tan C

X(2333) lies on these lines: 4,9   25,41   28,291   34,2279   181,213   579,1722   608,1405   756,862   1126,1474   1254,1400   1918,2207   2225,2355

X(2333) = isogonal conjugate of X(17206)
X(2333) = X(i)-Ceva conjugate of X(j) for these (i,j): (19,1824), (607,213), (1826,42)
X(2333) = X(1918)-cross conjugate of X(42)
X(2333) = crosspoint of X(i) and X(j) for these (i,j): (19,25), (1400,2357), (1824,1880)
X(2333) = crosssum of X(i) and X(j) for these (i,j): (63,69), (1444,1812)
X(2333) = polar conjugate of X(310)
X(2333) = crossdifference of every pair of points on line X(1459)X(4025)


X(2334) = X(2)-ISOCONJUGATE OF X(1449)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1449)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

Let A'B'C' = circumcevian triangle of X(1), and let
Oa = center of A-mixtilinear incircle
Ta = touchpoint of A-mixtilinear incircle and circumcircle
A1 = circumcenter of A'OaTa, and define B1 and C1 cyclically. Then AA1, BB1, CC1 concur in X(2334). (Angel Montesdeoca, November 29, 2018)

Let DEF be the cevian triangle of X(8), and let A5 is the QA-P5 center (Isotomic Center) of AEFX(8) (see Chris van Tienhoven, Quadrangle points and other objects). Let B5 be the QA-P5 center of BFDX(8) and C5 the QA-P5 center of CDEX(8). Then the triangles ABC and A5B5C5 are perspective, and X(2334) is their perspector. (Angel Montesdeoca, March 20, 2019)

In the plane of a triangle ABFC, let
DEF = cevian triangle of X(1);
Γ = circumcircle;
Aa = pole of EF wrt Γ
T1 and T2 = lines through Aa tangent to BC;
Ab and Ac = T1∩BC and T2∩BC;
Define Bc and Ca cyclically, and define Ba and Cb cyclically.
The six points Ab, Ac, Bc, Ba, Ca, Cb lie on a conic, 𝒞, given by the barycentric equation
b^2 c^2x^2+a^2 c^2y^2+a^2 b^2z^2+a^2 (a^2+b^2+c^2+2 a (b+c))yz+b^2 (a^2+2 a b+(b+c)^2)zx+c^2 (a^2+2 a c+(b+c)^2)xy= 0.
The polars of Aa, Bb, Cc with respect to 𝒞 form a perspective triangle to ABC, and the perspector is X(2334). (Angel Montesdeoca, November 27, 2022)

X(2334) lies on these lines: 1,210   3,2163   6,1334   8,86   34,1824   42,56   55,58   65,269   106,386   145,1220   607,1474   998,2098   1413,2357   1449,2297

X(2334) = isogonal conjugate of X(3616)
X(2334) = X(1191)-cross conjugate of X(56)


X(2335) = X(2)-ISOCONJUGATE OF X(1451)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1451)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2335) lies on these lines: 1,71   4,37   6,943   7,464   9,2318   21,219   55,1172   84,991   104,2256   278,2197   281,1896   314,345   1000,1108   1011,2298

X(2335) = isogonal conjugate of X(37543)


X(2336) = X(2)-ISOCONJUGATE OF X(1453)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1453)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2336) lies on these lines: 6,2318   9,937   34,37   55,1474   56,71   58,219   86,345   269,1214   1413,2286

X(2336) = crosssum of X(380) and X(1453)


X(2337) = X(2)-ISOCONJUGATE OF X(1454)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1454)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2337) lies on these lines: 6,47   19,24


X(2338) = X(2)-ISOCONJUGATE OF X(1456)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1456)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2338) is the perspector of the anticevian triangle of X(103) and the unary cofactor triangle of the intangents triangle. (Randy Hutson, June 7, 2019)

X(2338) lies on these lines:
1,1783   3,101   9,77   78,644   218,1433   219,480   332,645   677,2323

X(2338) = cevapoint of X(i) and X(j) for these (i,j): (6,2272), (220,2340)
X(2338) = X(672)-cross conjugate of X(9)
X(2338) = crosssum of X(i) and X(j) for these (i,j): (910,1456), (1458,2272)


X(2339) = X(2)-ISOCONJUGATE OF X(1460)

Trilinears    (a^2 - (b + c)^2)/(a^2 + (b + c)^2) : :
Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1460)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2339) lies on these lines: 1,1472   2,19   6,63   9,345   21,1039   55,78   57,348   280,452   284,1812   333,2082   386,1245   394,2288   1310,2291

X(2339) = isogonal conjugate of X(2285)
X(2339) = cevapoint of X(9) and X(1697)
X(2339) = X(2268)-cross conjugate of X(1)


X(2340) = X(2)-ISOCONJUGATE OF X(1462)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1462)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2340) lies on these lines: 1,2   6,480   9,2293   31,218   33,1855   41,55   144,1742   210,1212   219,949   241,518   650,663   672,2223   674,2183   677,1815   902,1110   904,1261

X(2340) = reflection of X(1458) in X(1818)
X(2340) = isogonal conjugate of isotomic conjugate of X(3717)
X(2340) = crossdifference of every pair of points on line X(57)X(649)
X(2340) = X(2338)-Ceva conjugate of X(220)
X(2340) = crosspoint of X(677) and X(1252)
X(2340) = crosssum of X(i) and X(j) for these (i,j): (7,1447), (57,1458), (105,1462), (676,1086)


X(2341) = X(2)-ISOCONJUGATE OF X(1464)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1464)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2341) lies on these lines: 6,13   9,1793   37,101   80,1172   81,226   163,2265  210,2328   312,645   644,2287   1725,2159   2222,2249

X(2341) = isogonal conjugate of X(18593)
X(2341) = polar conjugate of isotomic conjugate of X(1793)
X(2341) = X(63)-isoconjugate of X(1835)
X(2341) = crosspoint of X(6) and X(2173)
X(2341) = crosssum of X(1464) and X(2245)


X(2342) = X(2)-ISOCONJUGATE OF X(1465)

Trilinears    a (a - b - c)/(a^2 (b + c) - 2 a b c - (b - c)^2 (b + c)) : :
Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1465)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2342) lies on these lines: 1,104   31,33   44,2361   55,184   103,2078   200,212   283,643   678,1253

X(2342) = isogonal conjugate of X(22464)
X(2342) = X(104)-Ceva conjugate of X(909)
X(2342) = cevapoint of X(55) and X(2361)
X(2342) = X(109)-cross conjugate of X(55)
X(2342) = crosspoint of X(102) and X(2316)
X(2342) = crosssum of X(517) and X(1465)


X(2343) = X(2)-ISOCONJUGATE OF X(1467)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1467)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2343) lies on these lines: 6,939   19,220   57,219   71,1436

X(2343) = crosssum of X(1467) and X(2257)


X(2344) = X(2)-ISOCONJUGATE OF X(1469)

Trilinears    (a - b - c)/(b^2 + b c + c^2) : :
Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1469)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2344) lies on these lines: 1,32   2,2112   4,1973   6,256   7,604   8,41   9,2175   37,983   104,825   284,314   870,1438   941,2209   1156,1492

X(2344) = crosssum of X(1469) and X(2276)


X(2345) = X(2)-ISOCONJUGATE OF X(1472)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1472)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)
Barycentrics    b c + SW : :
Barycentrics    a^2 + b^2 + c^2 + 2 b c : :

X(2345) lies on these lines: 1,2321   2,37   4,9   6,8   7,141   44,391   45,1213   48,2329   69,894   145,1100   193,319   198,1376   219,1065   220,965   318,393   329,1211   333,1778   388,2285   404,2178   498,1733   519,1449   572,944   936,2324   948,1441   992,2176   1010,2303   1400,1788   1698,1738

X(2345) = isogonal conjugate of X(2221)
X(2345) = complement of X(3672)
X(2345) = anticomplement of X(4657)
X(2345) = X(1010)-Ceva conjugate of X(612)
X(2345) = X(612)-cross conjugate of X(388)
X(2345) = crosspoint of X(2) and X(1219)
X(2345) = crosssum of X(i) and X(j) for these (i,j): (6,1191), (1245,2281)
X(2345) = {X(2),X(75)}-harmonic conjugate of X(4000)


X(2346) = X(2)-ISOCONJUGATE OF X(1475)

Trilinears    a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1475)
Trilinears    1/[(sin B) cot(B/2) + (sin C) cot(C/2)] : :      (Randy Hutson, 9/23/2011)
Barycentrics    a2/f(a,b,c) : :

X(2346) lies on these lines: 1,1170   4,390   7,55   8,344   9,1174   21,518   37,294   79,516   84,1803   100,142   523,885   651,2293   1014,2223

X(2346) = isogonal conjugate of X(354)
X(2346) = cevapoint of X(1) and X(55)
X(2346) = X(i)-cross conjugate of X(j) for these (i,j): (514,100), (657,651), (1174,1170)
X(2346) = crosssum of X(i) and X(j) for these (i,j): (2,57), (9,145)
X(2346) = perspector of ABC and triangle formed by orthic axes of BIC, CIA, AIB
X(2346) = perspector of ABC and cross-triangle of ABC and Honsberger triangle


X(2347) = X(2)-ISOCONJUGATE OF X(1476)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1476)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2347) lies on these lines: 6,41   8,9   19,1877   37,374   42,51   43,165   44,71   256,294   284,2316   607,2354   2171,2262   2270,2285

X(2347) = isogonal conjugate of isotomic conjugate of X(3452)
X(2347) = X(100)-Ceva conjugate of X(663)
X(2347) = crosspoint of X(6) and X(9)
X(2347) = crosssum of X(i) and X(j) for these (i,j): (2,57), (9,145)
X(2347) = polar conjugate of isotomic conjugate of X(22072)


X(2348) = X(2)-ISOCONJUGATE OF X(1477)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1477)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2348) lies on these lines: 6,354   9,55   37,2280   41,1212   44,513   57,1122   65,169   101,1319   105,518   220,2082   238,1282   1617,1723   1696,2257   1783,1875

X(2348) = X(105)-Ceva conjugate of X(55)
X(2348) = crosspoint of X(9) and X(294)
X(2348) = crosssum of X(i) and X(j) for these (i,j): (1,2348), (57,241), (665,1357)


X(2349) = X(2)-ISOCONJUGATE OF X(1495)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1495)
Barycentrics    1/(cos A - 2 cos B cos C) : :
Barycentrics    1/(3 cos A - 2 sin B sin C) : :

X(2349) lies on these lines: 1,162   63,662   72,74   92,823   190,306   226,653   293,896   304,799   651,1214   1748,2184

X(2349) = isogonal conjugate of X(2173)
X(2349) = isotomic conjugate of X(14206)
X(2349) = polar conjugate of X(1784)
X(2349) = trilinear pole of line X(1)X(656)
X(2349) = X(6)-isoconjugate of X(30)
X(2349) = cevapoint of X(i) and X(j) for these (i,j): (1,2173), (9,758), (2631,2632)
X(2349) = X(i)-cross conjugate of X(j) for these (i,j): (1725,75), (2173,1), (2631,162)
X(2349) = X(i)-aleph conjugate of X(j) for these (i,j): (74,1740), (1494,63), (2349,1)


X(2350) = X(2)-ISOCONJUGATE OF X(1621)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1621)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2350) lies on these lines: 37,38   39,42   58,251   308,310   579,941   614,2279   1400,1401


X(2351) = X(2)-ISOCONJUGATE OF X(1748)

Trilinears        a tan 2A : b tan 2B : c tan 2C
Barycentrics   a2tan 2A : b2tan 2B : c2tan 2C )

X(2351) lies on these lines: 3,68   22,98   24,96   25,53   32,51   91,1324   125,426   184,216   228,1820   237,2353

X(2351) = isogonal conjugate of X(317)
X(2351) = X(i)-Ceva conjugate of X(j) for these (i,j): (96,2165), (847,6)
X(2351) = X(418)-cross conjuate of X(184)
X(2351) = crosspoint of X(68) and X(2165)
X(2351) = crosssum of X(i) and X(j) for these (i,j): (24,1993), (52,467)
X(2351) = X(75)-isoconjugate of X(24)
X(2351) = X(92)-isoconjugate of X(1993)
X(2351) = vertex conjugate of polar conjugates of PU(37)


X(2352) = X(2)-ISOCONJUGATE OF X(1751)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1751)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2352) lies on these lines: 1,3   6,228   25,1841   28,1612   31,48   37,1011   42,2260   108,917   209,579   212,604   255,1408   595,2360   672,2318   916,1779   1284,1836   1395,1415   1397,2361

X(2352) = isogonal conjugate of X(2997)
X(2352) = X(28)-Ceva conjugate of X(6)
X(2352) = crosspoint of X(i) and X(j) for these (i,j): (59,112), (108,2149)
X(2352) = crosssum of X(11) and X(525)


X(2353) = X(2)-ISOCONJUGATE OF X(1760)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1760)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2353) lies on these lines: 3,66   22,76   24,98   32,1843   39,184   228,2156   237,2351

X(2353) = isogonal conjugate of X(315)
X(2353) = circumcircle-inverse of X(34138)
X(2353) = X(1501)-cross conjugate of X(6)
X(2353) = crosssum of X(69) and X(1370)
X(2353) = vertex conjugate of PU(37)
X(2353) = X(75)-isoconjugate of X(22)


X(2354) = X(2)-ISOCONJUGATE OF X(1791)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1791)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2354) lies on these lines: 4,9   6,1245   25,31   28,238   48,1064   58,1474   256,1172   278,1423   579,1707   607,2347   1756,1838   1828,1880   1829,2269   1843,2356   1851,1860   2180,2252   2203,2308

X(2354) = X(1848)-Ceva conjugate of X(1193)
X(2354) = crosspoint of X(i) and X(j) for these (i,j): (19,1474), (27,34)
X(2354) = crosssum of X(i) and X(j) for these (i,j): (63,306), (71,78)


X(2355) = X(2)-ISOCONJUGATE OF X(1796)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1796)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2355) lies on these lines: 19,25   24,1871   27,242   28,60   46,1707   51,2182   184,2262   407,1842   427,1890   428,1861   430,1213   468,1848   1395,1880   1426,1452   1841,2160   2180,2253   2225,2333

X(2355) = crosspoint of X(19) and X(28)
X(2355) = crosssum of X(63) and X(72)
X(2355) = polar conjugate of X(32018)


X(2356) = X(2)-ISOCONJUGATE OF X(1814)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1814)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2356) lies on these lines: 1,4   6,2212   25,41   43,459   55,1395   77,1041   108,1429   468,899   608,2293   661,663   1174,2299   1458,1876   1818,1861   1827,1880   1843,2354   1974,2273

X(2356) = isogonal conjugate of X(31637)
X(2356) = crossdifference of every pair of points on line X(63)X(652)
X(2356) = X(1861)-Ceva conjugate of X(672)
X(2356) = crosssum of X(63) and X(1818)


X(2357) = X(2)-ISOCONJUGATE OF X(1817)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1817)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2357) lies on these lines: 8,20   19,1857   25,2155   31,607   42,1409   48,55   71,210   228,1334   1002,1422   1400,1824   1413,2334

X(2357) = isogonal conjugate of X(8822)
X(2357) = trilinear pole of line X(810)X(3709)
X(2357) = X(84)-Ceva conjugate of X(1903)
X(2357) = X(i)-cross conjugate of X(j) for these (i,j): (1402,42), (2333,1400)
X(2357) = crosspoint of X(i) and X(j) for these (i,j): (19,64), (84,1436)
X(2357) = crosssum of X(i) and X(j) for these (i,j): (20,63), (40,329)


X(2358) = X(2)-ISOCONJUGATE OF X(1819)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1819)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2358) lies on these lines: 7,92   19,56   65,1826   608,1096   1042,1880   1400,1824


X(2359) = X(2)-ISOCONJUGATE OF X(1829)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1829)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2359) lies on these lines: 1,572   3,2197   6,1036   9,205   29,1220   42,284   48,78   71,283   184,219   282,2208   306,332   951,1458   2200,2327

X(2359) = isogonal conjugate of X(1848)
X(2359) = cevapoint of X(i) and X(j) for these (i,j): (42,205), (48,71), (212,2200)
X(2359) = X(810)-cross conjugate of X(1331)
X(2359) = crosssum of X(1193) and X(2354)
X(2359) = X(92)-isoconjugate of X(1193)


X(2360) = X(2)-ISOCONJUGATE OF X(1903)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1903)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

See Dasari Naga Vijay Krishna, On a Conic Through Twelve Notable Points, Int. J. Adv. Math. and Mech. 7(2) (2019) 1-15.

X(2360) lies on these lines: 1,19   3,64   21,84   25,581   27,946   29,515   36,1780   40,1817   56,58   72,101   73,2299   102,110   184,580   208,223   405,572   595,2352   604,1453   662,1043   1191,1333   1201,2206   1203,2260   1214,1782   1728,2261

X(2360) = isogonal conjugate of X(39130)
X(2360) = crossdifference of every pair of points on line X(656)X(3700)
X(2360) = X(21)-Ceva conjugate of X(58)
X(2360) = cevapoint of X(i) and X(j) for these (i,j): (221,7114), (48,154), (198,2187)
X(2360) = X(198)-cross conjugate of X(1817)
X(2360) = trilinear product X(i)*X(j) for these {i,j}: {3, 3194}, {6, 1817}, {21, 221}, {28, 7078}, {29, 7114}, {31, 8822}, {34, 1819}, {40, 58}, {60, 227}, {81, 198}, {86, 2187}, {110, 6129}, {163, 14837}, {196, 2193}, {208, 283}, {223, 284}, {322, 2206}, {329, 1333}, {333, 2199}, {347, 2194}, {593, 21871}, {604, 27398}, {849, 21075}, {859, 15501}, {1014, 7074}, {1172, 7011}, {1408, 7080}, {1412, 2324}, {1437, 7952}, {1444, 3195}, {1576, 17896}, {1790, 2331}, {1812, 3209}, {2287, 6611}, {2299, 7013}, {4565, 14298}


X(2361) = X(2)-ISOCONJUGATE OF X(2006)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(2006)
Trilinears        cos(A/2) cos(3A/2) : cos(B/2) cos(3B/2) : cos(C/2) cos(3C/2)     (M. Iliev, 4/12/07)
Trilinears        cos A + cos 2A : cos B + cos 2B : cos C + cos 2C     (M. Iliev, 4/12/07)
Trilinears    a^2 (a - b - c) (a^2 - b^2 - c^2 + b c) : :

X(2361) lies on these lines: 3,47   6,31   11,238   36,1464   44,2342   46,582   56,255   65,580   109,1155   162,243   228,2148   283,2148   283,960   484,1718   517,1411   518,1331   652,663   920,1062   1040,1707   1110,2149   1397,2352   1724,1837   1754,1836   1780,1858   1859,2299   2150,2193

X(2361) = X(i)-Ceva conjugate of X(j) for these (i,j): (80,2174), (102,48), (2316,41), (2342,55)
X(2361) = crosspoint of X(i) and X(j) for these (i,j): (36,2323), (915,1172)
X(2361) = crosssum of X(i) and X(j) for these (i,j): (36,2003), (65,1465), (80,2006), (912,1214)


X(2362) = X(2)-ISOCONJUGATE OF X(2066)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(2066)
Trilinears        1/[1 + cot(A/2)] : 1/[1 + cot(B/2)] : 1/[1 + cot(C/2)]     (M. Iliev, 4/12/07)

Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2362) lies on these lines: 1,372   2,176   4,1336   6,19   40,2066   46,371   57,2067   72,1377   81,1805   485,1737   517,1124   606,1451   942,1335   1151,1155   1702,2093

X(2362) = crosspoint of X(4) and X(1123)
X(2362) = crosssum of X(3) and X(1124)


X(2363) = X(2)-ISOCONJUGATE OF X(2092)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(2092)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2363) lies on these lines: 1,849   10,58   19,270   21,37   27,225   31,1098   60,1610   65,81   75,757   409,1104   662,1193   741,1581

X(2363) = isogonal conjugate of X(2292)
X(2363) = isotomic conjugate of X(18697)
X(2363) = cevapoint of X(i) and X(j) for these (i,j): (1,58), (1,1220)
X(2363) = X(i)-cross conjugate of X(j) for these (i,j): (1,1220), (522,162), (649,662)


X(2364) = X(2)-ISOCONJUGATE OF X(2099)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(2098)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2364) lies on these lines: 1,2161   6,36   9,2320   19,1449   41,2316   55,2323   57,89   572,2259   2258,2308   2280,2291

X(2364) = isogonal conjugate of X(5219)
X(2364) = trilinear pole of line X(654)X(663)
X(2364) = X(89)-Ceva conjugate of X(2163)
X(2364) = crosspoint of X(89) and X(2320)
X(2364) = crosssum of X(45) and X(2099)

leftri

More Points on the Circumcircle, 2365-2384

rightri

Suppose that U = u : v : w (trilinears) is a triangle center other than X(6), and let CIR(U) be the point given by trilinears

F(u,v,w) : F(v,w,u) : F(w,u,v) = avw/(av2 + aw2 - buv - cuw) : bwu/(bw2 + bu2 - cvw - avu) : cuv/(cu2 + cv2 - awu - bwv)

CIR(U) lies on the circumcircle. Pairs (i,j) such that X(j) = CIR(X(i)) include the following:

(1,106), (2,729), (3,1300), (4,1294), (9,1477), (31,767), (37,741), (41,767), (43,106), (44,106), (74,1294), (75,701), (110,99), (125,827), (194,729), (238,741), (265,1300), (1084,689), (1154,1141), (1279,(1477), (1499,1296), (1503,1297), (1510,930), (1634,689)

This section was added to ETC on 10/20/03; the preamble was revised on January 20, 2015, following suggestions by Viktor Kitaysky. Points with trilinears similar to those of CIR(U), called circum-eigentransforms, denoted by CET(U), are given in Section 4.


X(2365) = CIR(X(19))

Trilinears        F(u,v,w) : F(v,w,u) : F(w,u,v), where F is as indicated just before X(2365), and u : v : w = X(19).
Barycentrics   aF(u,v,w) : bF(v,w,u) : cF(w,u,v)

X(2365) lies on the circumcircle and these lines: 63,108   101,1259   107,333   109,394   112,283

X(2365) = isogonal conjugate of X(2385)


X(2366) = CIR(X(25))

Trilinears        F(u,v,w) : F(v,w,u) : F(w,u,v), where F is as indicated just before X(2365), and u : v : w = X(25).
Barycentrics   aF(u,v,w) : bF(v,w,u) : cF(w,u,v)

X(2366) lies on the circumcircle and these lines: 69,112   76,107   99,159   108,1231

X(2366) = isogonal conjugate of X(2386)


X(2367) = CIR(X(32))

Trilinears        F(u,v,w) : F(v,w,u) : F(w,u,v), where F is as indicated just before X(2365), and u : v : w = X(32).
Barycentrics   aF(u,v,w) : bF(v,w,u) : cF(w,u,v)

X(2367) lies on the circumcircle and these lines: 76,110   99,160   101,313   109,349   112,264   276,933   308,827   316,805

X(2367) = isogonal conjugate of X(2387)
X(2367) = isotomic conjugate of X(3001)


X(2368) = CIR(X(42))

Trilinears        F(u,v,w) : F(v,w,u) : F(w,u,v), where F is as indicated just before X(2365), and u : v : w = X(42).
Barycentrics   aF(u,v,w) : bF(v,w,u) : cF(w,u,v)

X(2368) lies on the circumcircle and these lines: 86,101   100,274   109,1434   110,1509

X(2368) = isogonal conjugate of X(2388)


X(2369) = CIR(X(55))

Trilinears        F(u,v,w) : F(v,w,u) : F(w,u,v), where F is as indicated just before X(2365), and u : v : w = X(55).
Barycentrics   aF(u,v,w) : bF(v,w,u) : cF(w,u,v)

X(2369) lies on the circumcircle and these lines: 7,101   85,100   108,1847   109,279   110,1434

X(2369) = isogonal conjugate of X(2389)


X(2370) = CIR(X(56))

Trilinears        F(u,v,w) : F(v,w,u) : F(w,u,v), where F is as indicated just before X(2365), and u : v : w = X(56).
Barycentrics   aF(u,v,w) : bF(v,w,u) : cF(w,u,v)

X(2370) lies on the circumcircle and these lines: 8,109   20,1293   75,934   100,341   101,346   108,318   110,1043   112,2322

X(2370) = isogonal conjugate of X(2390)
X(2370) = isotomic conjugate of X(3007)
X(2370) = cevapoint of X(3) and X(519)
X(2370) = circumcircle antipode of X(32704)
X(2370) = Thomson-isogonal conjugate of X(32475)
X(2370) = Lucas-isogonal conjugate of X(32475)
X(2370) = de-Longchamps-circle-inverse of X(21290)


X(2371) = CIR(X(57))

Trilinears        F(u,v,w) : F(v,w,u) : F(w,u,v), where F is as indicated just before X(2365), and u : v : w = X(57).
Barycentrics   aF(u,v,w) : bF(v,w,u) : cF(w,u,v)

X(2371) lies on the circumcircle and these lines: 9,934   101,480   109,220

X(2371) = isogonal conjugate of X(2391)


X(2372) = CIR(X(58))

Trilinears        F(u,v,w) : F(v,w,u) : F(w,u,v), where F is as indicated just before X(2365), and u : v : w = X(58).
Barycentrics   aF(u,v,w) : bF(v,w,u) : cF(w,u,v)

X(2372) lies on the circumcircle and these lines: 10,110   12,109   99,313   100,1089   101,594   112,1826

X(2372) = isogonal conjugate of X(2392)


X(2373) = CIR(X(67))

Trilinears        F(u,v,w) : F(v,w,u) : F(w,u,v), where F is as indicated just before X(2365), and u : v : w = X(67).
Barycentrics   aF(u,v,w) : bF(v,w,u) : cF(w,u,v)

X(2373) lies on the circumcircle and these lines: 2,112   20,1296   22,99   23,935   25,339   69,110   95,933   101,306   107,264   108,1441   109,307   183,1302   253,1301   316,691   328,476   827,1799   1304,1494

X(2373) = isogonal conjugate of X(2393)
X(2373) = isotomic conjugate of X(858)
X(2373) = anticomplement of X(1560)
X(2373) = cevapoint of X(i) and X(j) for these (i,j): (2,23), (3,524), (669,1648)
X(2373) = X(i)-cross conjugate of X(j) for these (i,j): (67,671), (468,2)
X(2373) = the point of intersection, other than A, B, and C, of the circumcircle and hyperbola {{A,B,C,X(2),X(69)}}
X(2373) = trilinear pole of line X(6)X(525)
X(2373) = trilinear pole, wrt circummedial triangle, of line X(22)X(183)
X(2373) = Ψ(X(6), X(525))
X(2373) = orthoptic-circle-of-Steiner-inellipse-inverse of X(127)
X(2373) = orthoptic-circle-of-Steiner-circumellipse-inverse of X(13219)


X(2374) = CIR(X(69))

Trilinears        F(u,v,w) : F(v,w,u) : F(w,u,v), where F is as indicated just before X(2365), and u : v : w = X(69).
Barycentrics   aF(u,v,w) : bF(v,w,u) : cF(w,u,v)

X(2374) lies on the circumcircle and these lines: 4,126   25,99   110,193   112,459   468,691   925,1995

X(2374) = cevapoint of X(25) and X(468)
X(2374) = X(524)-cross conjugate of X(4)
X(2374) = isogonal conjugate of X(8681)
X(2374) = Λ(X(6), X(1196))
X(2374) = Ψ(X(6), X(3566))
X(2374) = inverse-in-polar-circle of X(126)
X(2374) = trilinear pole of line X(6)X(3566)
X(2374) = polar conjugate of anticomplement of X(6390)
X(2374) = X(63)-isoconjugate of X(3291)


X(2375) = CIR(X(81))

Trilinears        F(u,v,w) : F(v,w,u) : F(w,u,v), where F is as indicated just before X(2365), and u : v : w = X(81).
Barycentrics   aF(u,v,w) : bF(v,w,u) : cF(w,u,v)

X(2375) lies on the circumcircle and these lines: 37,99   100,1500   101,872   110,213

X(2375) = isogonal conjugate of X(8682)


X(2376) = CIR(X(219))

Trilinears        F(u,v,w) : F(v,w,u) : F(w,u,v), where F is as indicated just before X(2365), and u : v : w = X(219).
Barycentrics   aF(u,v,w) : bF(v,w,u) : cF(w,u,v)

X(2376) lies on the circumcircle and these lines: 34,101   100,278   109,1435   110,1396


X(2377) = CIR(X(220))

Trilinears        F(u,v,w) : F(v,w,u) : F(w,u,v), where F is as indicated just before X(2365), and u : v : w = X(220).
Barycentrics   aF(u,v,w) : bF(v,w,u) : cF(w,u,v)

X(2377) lies on the circumcircle and these lines: 100,279   101,269


X(2378) = CIR(X(530))

Trilinears         F(u,v,w) : F(v,w,u) : F(w,u,v), where F is as indicated just before X(2365), and u : v : w = X(530)

X(2378) lies on the circumcircle and these lines: 14,476   15,110   16,691   99,298   512,2379

X(2378) = isogonal conjugate of X(530)
X(2378) = 2nd-Parry-to-ABC similarity image of X(15)
X(2378) = 3rd-Parry-to-circumsymmedial similarity image of X(16)


X(2379) = CIR(X(531))

Trilinears        F(u,v,w) : F(v,w,u) : F(w,u,v), where F is as indicated just before X(2365), and u : v : w = X(531).
Barycentrics   aF(u,v,w) : bF(v,w,u) : cF(w,u,v)

X(2379) lies on the circumcircle and these lines: 13,476   15,691   16,110   99,299   512,2378

X(2379) = 2nd-Parry-to-ABC similarity image of X(16)
X(2379) = 3rd-Parry-to-circumsymmedial similarity image of X(15)
X(2379) = isogonal conjugate of X(531)


X(2380) = CIR(X(532))

Trilinears        F(u,v,w) : F(v,w,u) : F(w,u,v), where F is as indicated just before X(2365), and u : v : w = X(532).
Barycentrics   aF(u,v,w) : bF(v,w,u) : cF(w,u,v)

X(2380) lies on the circumcircle and these lines: 14,99   16,1337   18,930   61,110

X(2380) = isogonal conjugate of X(532)


X(2381) = CIR(X(533))

Trilinears        F(u,v,w) : F(v,w,u) : F(w,u,v), where F is as indicated just before X(2365), and u : v : w = X(533).
Barycentrics   aF(u,v,w) : bF(v,w,u) : cF(w,u,v)

X(2381) lies on the circumcircle and these lines: 13,99   15,1338   17,930   62,110

X(2381) = isogonal conjugate of X(533)


X(2382) = CIR(X(537))

Trilinears        F(u,v,w) : F(v,w,u) : F(w,u,v), where F is as indicated just before X(2365), and u : v : w = X(537).
Barycentrics   aF(u,v,w) : bF(v,w,u) : cF(w,u,v)

X(2382) lies on the circumcircle and these lines: 1,898   6,813   31,901   100,238   101,1914   106,667   109,1428   649,739   805,1178

X(2382) = isogonal conjugate of X(537)
X(2382) = Ψ(X(190), X(44))


X(2383) = CIR(X(539))

Trilinears    (tan A)/((cos B) (4 sin^2 C - 1) (cos A sin B - sin A cos B) - (cos C) (4 sin^2 B - 1) (cos C sin A - sin C cos A)) : :

X(2383) lies on the circumcircle and these lines: 4,128   5,925   24,933   52,110   186,1291

X(2383) = X(1154)-cross conjugate of X(4)
X(2383) = isogonal conjugate of X(539)
X(2383) = the point of intersection, other than A, B, and C, of the circumcircle and hyperbola {{A,B,C,X(5),X(6)}}
X(2383) = inverse-in-polar-circle of X(128)


X(2384) = CIR(X(545))

Trilinears        F(u,v,w) : F(v,w,u) : F(w,u,v), where F is as indicated just before X(2365), and u : v : w = X(545).
Barycentrics   aF(u,v,w) : bF(v,w,u) : cF(w,u,v)

X(2384) lies on the circumcircle and these lines: 6,901   44,100   101,902   106,649   109,1404   813,2177   1015,2226   1017,1252

X(2384) = isogonal conjugate of X(545)


X(2385) = ISOGONAL CONJUGATE OF X(2365)

Trilinears        1/U : 1/V : 1/W, where U : V : W = X(2365)
Barycentrics   a/U : b/V : c/W

As the isogonal conjugate of a point on the circumcircle, X(2385) lies on the line at infinity.

X(2385) lies on these (parallel) lines: 19,208   30,511   774,1842   1886,2312

X(2385) = isogonal conjugate of X(2365)


X(2386) = ISOGONAL CONJUGATE OF X(2366)

Trilinears        1/U : 1/V : 1/W, where U : V : W = X(2366)
Barycentrics   a/U : b/V : c/W

As the isogonal conjugate of a point on the circumcircle, X(2386) lies on the line at infinity.

X(2386) lies on these (parallel) lines: 25,32   30,511   305,315   626,1368   1968,2353

X(2386) = isogonal conjugate of X(2366)


X(2387) = ISOGONAL CONJUGATE OF X(2367)

Trilinears        1/U : 1/V : 1/W, where U : V : W = X(2367)
Barycentrics   a/U : b/V : c/W

As the isogonal conjugate of a point on the circumcircle, X(2387) lies on the line at infinity.

X(2387) lies on these lines: 30,511   32,184

X(2387) = isogonal conjugate of X(2367)


X(2388) = ISOGONAL CONJUGATE OF X(2368)

Trilinears        1/U : 1/V : 1/W, where U : V : W = X(2368)
Barycentrics   a/U : b/V : c/W

As the isogonal conjugate of a point on the circumcircle, X(2388) lies on the line at infinity.

X(2388) lies on these lines: 30,511   42,213  

X(2388) = isogonal conjugate of X(2368)


X(2389) = ISOGONAL CONJUGATE OF X(2369)

Trilinears        1/U : 1/V : 1/W, where U : V : W = X(2369)
Barycentrics   a/U : b/V : c/W

As the isogonal conjugate of a point on the circumcircle, X(2389) lies on the line at infinity.

X(2389) lies on these lines: 30,511   41,55

X(2389) = isogonal conjugate of X(2369)


X(2390) = ISOGONAL CONJUGATE OF X(2370)

Trilinears        1/U : 1/V : 1/W, where U : V : W = X(2370)
Barycentrics   a/U : b/V : c/W

As the isogonal conjugate of a point on the circumcircle, X(2390) lies on the line at infinity.

X(2390) lies on these (parallel) lines: 30,511   31,56   51,65   1361,1455   1777,2217   1854,2098

X(2390) = isogonal conjugate of X(2370)
X(2390) = X(1797)-Ceva conjugate of X(6)
X(2390) = crosspoint of X(4) and X(106)
X(2390) = crosssum of X(3) and X(519)
X(2390) = 2nd-circumperp-isogonal conjugate of X(32704)
X(2390) = circumorthic-isogonal conjugate of X(32704) if ABC is acute


X(2391) = ISOGONAL CONJUGATE OF X(2371)

Trilinears        1/U : 1/V : 1/W, where U : V : W = X(2371)
Barycentrics   a/U : b/V : c/W

As the isogonal conjugate of a point on the circumcircle, X(2391) lies on the line at infinity.

X(2391) lies on these (parallel) lines: 30,511   57,279   910,1323

X(2391) = isogonal conjugate of X(2371)


X(2392) = ISOGONAL CONJUGATE OF X(2372)

Trilinears        1/U : 1/V : 1/W, where U : V : W = X(2372)
Barycentrics   a/U : b/V : c/W

As the isogonal conjugate of a point on the circumcircle, X(2392) lies on the line at infinity.

X(2392) lies on these (parallel) lines: 30,511   36,58   484,1046

X(2392) = isogonal conjugate of X(2372)


X(2393) = ISOGONAL CONJUGATE OF X(2373)

Trilinears        1/U : 1/V : 1/W, where U : V : W = X(2373)\
Barycentrics    a^2 (a^4 b^2 + a^4 c^2 - 2 a^2 b^2 c^2 - b^6 + b^4 c^2 + b^2 c^4 - c^6) : :

As the isogonal conjugate of a point on the circumcircle, X(2393) lies on the line at infinity.

Let A"B"C" be the 2nd Ehrmann triangle. Let Pa be the pole of line B"C" wrt the A-Ehrmann circle, and define Pb and Pc cyclically. The lines A"Pa, B"Pb, C"Pc concur in X(2393). (Randy Hutson, November 18, 2015)

X(2393) lies on these (parallel) lines: 6,25   23,895   30,511   66,69   67,1205   141,1368   157,577   160,216   401,1632   599,1853

X(2393) = isogonal conjugate of X(2373)
X(2393) = X(i)-Ceva conjugate of X(j) for these (i,j): (4,1560), (23,187), (895,6), (935,647)
X(2393) = crosspoint of X(i) and X(j) for these (i,j): (4,111), (6,67)
X(2393) = crosssum of X(i) and X(j) for these (i,j): (2,23), (3,524), (669,1648)
X(2393) = homothetic center of X(3)- and X(6)-Ehrmann triangles; see X(25)

leftri

GIBERT-SIMSON TRANSFORMS, X(2394) -X(2419)

rightri

On October 19, 2003, Bernard Gibert contributed points that lie on the Simson cubic. Indeed, this cubic is the image of the circumcircle under a mapping here named the Gibert-Simson transform. If U = u : v : w (barycentrics) and U is not X(3), then the transform is given by

GS(U) = (b2SB/v - c2SC/w)u/a2 : (c2SC/w - a2SA/u)v/b2 : (a2SA/u - b2SB/v)w/c2.

In case U lies on the circumcircle, these barycentrics are proportional to the respective directed distances from A, B, C, to the Simson line of U. If U* is the antipode of U, then GS(U*) is the isotomic conjugate of GS(U). In the Catalogue at Cubics in the Triangle Plane, the Simson cubic is discussed as K010, and its isogonal transform is the cubic K162. The isogonal conjugates of centers X(2365)-X(2419) are indexed as X(2420)-X(2445).

If U = u : v : w = u(a,b,c) : u(b,c,a) : u(c,a,b) (trilinears), then

GS(U) = f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (v cos C - w cos B)(u/a)2,
and the cubic K010 is given by trilinears

(cos A)x(b2y2 + c2z2) + (cos B)y(c2z2 + a2x2) + (cos C)z(a2x2 + b2x2) - (a2 + b2 + c2)xyz = 0,

and the cubic K162 by

(cos A)x(c2y2 + b2z2) + (cos B)y(a2z2 + c2x2) + (cos C)z(b2x2 + a2x2) - (a2 + b2 + c2)xyz = 0,

In the definition of eigentransform before X(2120), if cevian triangle is replaced by circumcevian triangle, the result is CET(U) as discussed before X(2365). Gibert observed that if cevian triangle is replaced by pedal triangle, for U on the circumcircle, the result is the isogonal conjugate of GS(U). That is, [GS(U)] -1 is the eigencenter of the pedal triangle of U (which is a degenerate triangle lying in the Simson line of U).

Regarding triangle centers that do not lie on the circumcircle, GS(X(i)) = X(j) for these (i,j): (32,669), (48,1459), (187,1649), (248,879), (485,850), (486,850).

This section was added to ETC on 10/23/03. For more Gibert-Simson transforms, see X(15411)-X(15423)


X(2394) = GIBERT-SIMSON TRANSFORM OF X(74)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)

X(2394) lies on the Kiepert hyperbola, the cubic K010, and these lines: 2,525   4,523   74,98   671,1494   935,1304   2407,2410

X(2394) = isogonal conjugate of X(2420)
X(2394) = isotomic conjugate of X(2407)
X(2394) = anticomplement of X(5664)
X(2394) = cevapoint of X(i) and X(j) for these (i,j): (523,1637), (526,647)
X(2394) = X(1637)-cross conjugate of X(523)
X(2394) = orthocenter of X(13)X(14)X(98)
X(2394) = trilinear pole of line X(125)X(523) (Simson line of X(74))
X(2394) = pole wrt polar circle of trilinear polar of X(4240) (line X(30)X(1990))
X(2394) = X(48)-isoconjugate (polar conjugate) of X(4240)
X(2394) = barycentric product X(74)*X(850)


X(2395) = GIBERT-SIMSON TRANSFORM OF X(98)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)
Barycentrics    (b^2 - c^2)/(b^4 + c^4 - a^2 b^2 - a^2 c^2) : :

X(2395) lies on the cubic K010 and these lines: 2,647   6,523   25,669   98,111   263,512   685,2409   694,804   880,2396   892,2407   1648,2433

X(2395) = isogonal conjugate of X(2421)
X(2395) = isotomic conjugate of X(2396)
X(2395) = anticomplement of isotomic conjugate of X(39291)
X(2395) = X(685)-Ceva conjugate of X(1976)
X(2395) = cevapoint of X(i) and X(j) for these (i,j): (512,2491), (523,804), (878,2422)
X(2395) = (X(i)-cross conjugate of X(j) for these (i,j): (878,879), (2491,512)
X(2395) = pole wrt polar circle of trilinear polar of X(877) (line X(232)X(297))
X(2395) = polar conjugate of X(877)
X(2395) = radical center of circumcircle and circles O(13,15) and O(14,16)
X(2395) = trilinear pole of line X(115)X(512) (the Simson line of X(98), and the polar of X(877) wrt the polar circle)


X(2396) = GIBERT-SIMSON TRANSFORM OF X(99)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)
Barycentrics    (b^4 + c^4 - a^2 b^2 - a^2 c^2)/(b^2 - c^2) : :

X(2396) lies on the cubic K010 and these lines: 2,39   99,110   325,868   880,2395   892,2408   1316,1975

X(2396) = isogonal conjugate of X(2422)
X(2396) = isotomic conjugate of X(2395)
X(2396) = anticomplement of isotomic conjugate of X(39292)
X(2396) = anticomplement of anticomplement of X(11052)
X(2396) = cevapoint of X(i) and X(j) for these (i,j): (230,804), (511,2491), (523,2023)
X(2396) = trilinear pole of line X(114)X(325) (the Simson line of X(99))
X(2396) = X(i)-cross conjugate of X(j) for these (i,j): (2421,877), (2491,511)


X(2397) = GIBERT-SIMSON TRANSFORM OF X(100)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2397) lies on the cubic K010 and these lines: 2,37   190,644   522,1026   666,2402   765,2398

X(2397) = isogonal conjugate of X(2423)
X(2397) = isotomic conjugate of X(2401)
X(2397) = trilinear pole of line X(119)X(517) (the Simson line of X(100))


X(2398) = GIBERT-SIMSON TRANSFORM OF X(101)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2398) lies on the cubic K010 and these lines: 1,2   59,2406   100,658   644,1783   666,885   677,883   765,2397   901,2403

X(2398) = isogonal conjugate of X(2424)
X(2398) = isotomic conjugate of X(2400)
X(2398) = anticomplement of isotomic conjugate of X(39293)
X(2398) = anticomplement of anticomplement of X(24980)
X(2398) = cevapoint of X(516) and X(676)
X(2398) = X(676)-cross conjugate of X(516)
X(2398) = crosspoint of X(664) and X(666)
X(2398) = crosssum of X(663) and X(665)
X(2398) = trilinear pole of line X(118)X(516) (the Simson line of X(101))


X(2399) = GIBERT-SIMSON TRANSFORM OF X(102)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2399) lies on the cubic K010 and these lines: 102,1311   189,514   333,2432

X(2399) = isogonal conjugate of X(2425)
X(2399) = isotomic conjugate of X(2406)

X(2399) = trilinear pole of line X(124)X(522) (the Simson line of X(102))

X(2400) = GIBERT-SIMSON TRANSFORM OF X(103)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2400) lies on the cubic K010 and these lines: 2,3239   7,522   86,2424   103,675   673,918   677,883   693,1088

X(2400) = isogonal conjugate of X(2426)
X(2400) = isotomic conjugate of X(2398)
X(2400) = X(676)-cross conjugate of X(514)
X(2400) = cevapoint of X(i) and X(j) for these (i,j): (514,676), (522,918)
X(2400) = trilinear pole of line X(116)X(514) (the Simson line of X(103))


X(2401) = GIBERT-SIMSON TRANSFORM OF X(104)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2401) lies on the cubic K010 and these lines: 1,522   2,905   57,514   81,2423   104,105   513,957   655,2406   909,2224

X(2401) = isogonal conjugate of X(2427)
X(2401) = isotomic conjugate of X(2397)
X(2401) = cevapoint of X(650) and X(900)
X(2401) = trilinear pole of line X(11)X(513) (the Simson line of X(104))


X(2402) = GIBERT-SIMSON TRANSFORM OF X(105)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2402) lies on the cubic K010 and these lines: 2,650   514,1024   522,1027   523,885   666,2397   918,1814

X(2402) = isogonal conjugate of X(2428)
X(2402) = isotomic conjugate of X(2414)
X(2402) = anticomplement of isotomic conjugate of X(39272)
X(2402) = trilinear pole of line X(3309)X(4904) (the Simson line of X(105))


X(2403) = GIBERT-SIMSON TRANSFORM OF X(106)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b - c)(3a - b - c)/(2a - b - c)     (M. Iliev, 5/13/07)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2403) lies on the cubic K010 and these lines: 2,514   523,1222   901,2398

X(2403) = isogonal conjugate of X(2429)
X(2403) = isotomic conjugate of X(2415)
X(2403) = trilinear pole of line X(3667)X(3756) (the Simson line of X(106))


X(2404) = GIBERT-SIMSON TRANSFORM OF X(107)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2404) lies on the cubic K010 and this line: 2,216

X(2404) = isogonal conjugate of X(2430)
X(2404) = isotomic conjugate of X(2416)
X(2404) = trilinear pole of line X(133)X(1515) (the Simson line of X(107))


X(2405) = GIBERT-SIMSON TRANSFORM OF X(108)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2405) lies on the cubic K010 and these lines: 2,92   653,934

X(2405) = isogonal conjugate of X(2431)
X(2405) = isotomic conjugate of X(2417)
X(2405) = trilinear pole of line X(1528)X(6001) (the Simson line of X(108))


X(2406) = GIBERT-SIMSON TRANSFORM OF X(109)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2406) lies on the cubic K010 and these lines: 2,7   59,2398   651,653   655,2401

X(2406) = isogonal conjugate of X(2432)
X(2406) = isotomic conjugate of X(2399)
X(2406) = anticomplement of isotomic conjugate of X(39294)
X(2406) = trilinear pole of line X(117)X(515) (the Simson line of X(109))


X(2407) = GIBERT-SIMSON TRANSFORM OF X(110)

Trilinears    (csc(C - A) cos C - csc(A - B) cos B)(csc(B - C)/a)^2 : :
Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics    (2 a^4 - b^4 - c^4 - a^2 b^2 - a^2 c^2 + 2 b^2 c^2)/(b^2 - c^2) : :

X(2407) lies on the cubic K010 and these lines: 2,6   98,895   99,112   110,1302   249,2411   250,2409   691,2408   892,2395   1723,2358   2394,2410

X(2407) = isogonal conjugate of X(2433)
X(2407) = isotomic conjugate of X(2394)
X(2407) = anticomplement of isotomic conjugate of X(39295)
X(2407) = anticomplement of anticomplement of X(24975)
X(2407) = cevapoint of X(i) and X(j) for these (i,j): (30,1637), (647,974)
X(2407) = X(1637)-cross conjugate of X(30)
X(2407) = crosspoint of X(648) and X(687)
X(2407) = crosssum of X(647) and X(686)
X(2407) = trilinear pole of line X(30)X(113) (the Simson line of X(110))


X(2408) = GIBERT-SIMSON TRANSFORM OF X(111)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b2 - c2)(5a2 - b2 - c2)/(2a2 - b2 - c2)     (M. Iliev, 5/13/07)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2408) lies on the cubic K010 and these lines: 2,523   690,895   691,2407   892,2396   1499,1992

X(2408) = isogonal conjugate of X(2434)
X(2408) = isotomic conjugate of X(2418)
X(2408) = anticomplement of isotomic conjugate of X(39296)
X(2408) = trilinear pole of line X(1499)X(2686) (the Simson line of X(111))


X(2409) = GIBERT-SIMSON TRANSFORM OF X(112)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

As a point on the Euler line, X(2409) has Shinagawa coefficients (6(E + F)F2 - 2FS2, -4F(E + F)2 + (E + 4F)S2).

X(2409) lies on the cubic K010 and these lines: 2,3   99,1301   107,112   110,1289   250,2407   685,2395   935,1304

X(2409) = isogonal conjugate of X(2435)
X(2409) = isotomic conjugate of X(2419)
X(2409) = anticomplement of isotomic conjugate of X(39297)
X(2409) = circumcircle-inverse of X(37937)
X(2409) = crosspoint of X(107) and X(685)
X(2409) = crosssum of X(520) and X(684)
X(2409) = polar conjugate of isotomic conjugate of X(34211)
X(2409) = trilinear pole of line X(132)X(1503) (the Simson line of X(112))


X(2410) = GIBERT-SIMSON TRANSFORM OF X(476)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2410) lies on the cubic K010 and these lines: 2,94   2394,2407

X(2410) = isogonal conjugate of X(2436)
X(2410) = isotomic conjugate of X(2411)
X(2410) = barycentric quotient X(476)/X(477)
X(2410) = trilinear pole of line X(1522)X(1523) (the Simson line of X(476))


X(2411) = GIBERT-SIMSON TRANSFORM OF X(477)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2411) lies on the cubic K010 and these lines: 249,2407   323,2436   477,842

X(2411) = isogonal conjugate of X(2437)
X(2411) = isotomic conjugate of X(2410)
X(2411) = barycentric quotient X(477)/X(476)
X(2411) = trilinear pole of line X(526)X(3258) (the Simson line of X(477))


X(2412) = GIBERT-SIMSON TRANSFORM OF X(675)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2412) lies on the cubic K010.

X(2412) = isogonal conjugate of X(2438)


X(2413) = GIBERT-SIMSON TRANSFORM OF X(1141)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2413) lies on the cubic K010.

X(2413) = isogonal conjugate of X(2439)
X(2413) = trilinear pole of line X(137)X(1510) (the Simson line of X(1141))


X(2414) = GIBERT-SIMSON TRANSFORM OF X(1292)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2414) lies on the cubic K010 and these lines: 2,277   100,1292

X(2414) = isogonal conjugate of X(2440)
X(2414) = isotomic conjugate of X(2402)
X(2414) = trilinear pole of line X(120)X(518) (the Simson line of X(1292))


X(2415) = GIBERT-SIMSON TRANSFORM OF X(1293)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(2a - b - c)/[(b - c)(3a - b - c)]     (M. Iliev, 5/13/07)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2415) lies on the cubic K010.

X(2415) = isogonal conjugate of X(2441)
X(2415) = isotomic conjugate of X(2403)
X(2415) = cevapoint of X(900) and X(2325)
X(2415) = trilinear pole of line X(121)X(519) (the Simson line of X(1293))


X(2416) = GIBERT-SIMSON TRANSFORM OF X(1294)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2416) lies on the cubic K010 and these lines: 394,2430   525,1073   1294,1297

X(2416) = isogonal conjugate of X(2442)
X(2416) = isotomic conjugate of X(2404)
X(2416) = trilinear pole of line X(122)X(520) (the Simson line of X(1294))


X(2417) = GIBERT-SIMSON TRANSFORM OF X(1295)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2417) lies on the cubic K010 and this line: 1812,2431

X(2417) = isogonal conjugate of X(2443)
X(2417) = isotomic conjugate of X(2405)
X(2417) = trilinear pole of line X(123)X(521) (the Simson line of X(1295))


X(2418) = GIBERT-SIMSON TRANSFORM OF X(1296)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(2a2 - b2 - c2)/[(5a2 - b2 - c2)(b2 - c2)]     (M. Iliev, 5/13/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2418) lies on the cubic K010 and these linea: 99,1296   2,5024

X(2418) = isogonal conjugate of X(2444)
X(2418) = isotomic conjugate of X(2408)
X(2418) = trilinear pole of line X(126)X(524) (the Simson line of X(1296))


X(2419) = GIBERT-SIMSON TRANSFORM OF X(1297)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2419) lies on the cubic K010 and these lines: 2,3265   69,2435   253,523   1297,2373

X(2419) = isogonal conjugate of X(2445)
X(2419) = isotomic conjugate of X(2409)
X(2419) = trilinear pole of line X(127)X(525) (the Simson line of X(1297))


X(2420) = ISOGONAL CONJUGATE OF X(2394)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

Centers X(2420) to X(2445), on the cubic K162, are isogonal conjugates of centers X(2394) to X(2419), which are on the Simson cubic, K010. For details, see the note just before X(2394).

X(2420) lies on the cubic K162 and these lines: 3,6   110,112   249,2421   691,2422   2433,2437

X(2420) = isogonal conjugate of X(2394)
X(2420) = crosspoint of X(476) and X(648)
X(2420) = crosssum of X(i) and X(j) for these (i,j): (523,1637), (526,647)
X(2420) = X(74)-isoconjugate of X(1577)
X(2420) = crossdifference of every pair of points on line X(125)X(523) (the Simson line of X(74))


X(2421) = ISOGONAL CONJUGATE OF X(2395)

Trilinears    (sin A) (sin 2B + sin 2C - 2 (cot A) (sin^2 B + sin^2 C))/(cot B - cot C) : :
Barycentrics    a^2 (b^4 + c^4 - a^2 b^2 - a^2 c^2)/(b^2 - c^2) : :
Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)

X(2421) lies on the cubic K162 and these lines: 2,6   99,1625   110,351   249,2420   250,2445   648,670   691,2444   805,881

X(2421) = isogonal conjugate of X(2395)
X(2421) = crosspoint of X(i) and X(j) for these (i,j): (110,805), (877,2396)
X(2421) = crosssum of X(i) and X(j) for these (i,j): (512,2491), (523,804), (878,2422)
X(2421) = X(92)-isoconjugate of X(878)
X(2421) = crossdifference of every pair of points on line X(115)X(512) (the Simson line of X(98))


X(2422) = ISOGONAL CONJUGATE OF X(2396)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics    a^2 (b^2 - c^2)/(b^4 + c^4 - a^2 b^2 - a^2 c^2) : :

X(2422) lies on the cubic K162 and these lines: 6,523   32,512   98,729   525,1975   691,2420   876,1910

X(2422) = isogonal conjugate of X(2396)
X(2422) = X(2086)-cross conjugate of X(6)
X(2422) = crosssum of X(i) and X(j) for these (i,j): (230,804), (511,2491), (523,2023)
X(2422) = crossdifference of every pair of points on line X(114)X(325) (the Simson line of X(99))


X(2423) = ISOGONAL CONJUGATE OF X(2397)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2423) lies on the cubic K162 and these lines: 6,650   31,663   81,2401   104,739   604,649

X(2423) = isogonal conjugate of X(2397)
X(2423) = X(2087)-cross conjugate of X(6)
X(2423) = crossdifference of every pair of points on line X(119)X(517) (the Simson line of X(100))


X(2424) = ISOGONAL CONJUGATE OF X(2398)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2424) lies on the cubic K162 and these lines: 1,905   6,657   56,663   86,2400   103,106   269,513   665,911   676,885   2283,2426

X(2424) = isogonal conjugate of X(2398)
X(2424) = X(677)-Ceva conjugate of X(103)
X(2424) = cevapoint of X(663) and X(665)
X(2424) = crosspoint of X(103) and X(677)
X(2424) = crosssum of X(516) and X(676)
X(2424) = crossdifference of every pair of points on line X(118)X(516) (the Simson line of X(101))


X(2425) = ISOGONAL CONJUGATE OF X(2399)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2425) lies on the cubic K162 and these lines: 6,41   2149,2427

X(2425) = isogonal conjugate of X(2399)
X(2425) = crossdifference of every pair of points on line X(124)X(522) (the Simson line of X(102))


X(2426) = ISOGONAL CONJUGATE OF X(2400)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2426) lies on the cubic K162 and these lines: 6,31   109,692   884,919   1110,2427   2283,2424

X(2426) = isogonal conjugate of X(2400)
X(2426) = X(677)-Ceva conjugate of X(101)
X(2426) = crosspoint of X(i) and X(j) for these (i,j): (101,677), (109,919)
X(2426) = crosssum of X(i) and X(j) for these (i,j): (514,676), (522,918)
X(2426) = crossdifference of every pair of points on line X(116)X(514) (the Simson line of X(103))


X(2427) = ISOGONAL CONJUGATE OF X(2401)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2427) lies on the cubic K162 and these lines: 1,6   101,109   644,1783   905,1025   919,2440   1110,2426   2149,2425

X(2427) = isogonal conjugate of X(2401)
X(2427) = crosspoint of X(651) and X(901)
X(2427) = crosssum of X(650) and X(900)
X(2427) = crossdifference of every pair of points on line X(11)X(513) (the Simson line of X(104))


X(2428) = ISOGONAL CONJUGATE OF X(2402)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2428) lies on the cubic K162 and this line: 6,354

X(2428) = isogonal conjugate of X(2402)
X(2428) = crossdifference of every pair of points on line X(3309)X(4904) (the Simson line of X(105))


X(2429) = ISOGONAL CONJUGATE OF X(2403)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2429) lies on the cubic K162 and these lines: 6,1201   101,1293

X(2429) = isogonal conjugate of X(2403)
X(2429) = crossdifference of every pair of points on line X(3667)X(3756) (the Simson line of X(106))


X(2430) = ISOGONAL CONJUGATE OF X(2404)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2430) lies on the cubic K162 and this line: 394,2416

X(2430) = isogonal conjugate of X(2404)
X(2430) = crossdifference of every pair of points on line X(133)X(1515) (the Simson line of X(107))


X(2431) = ISOGONAL CONJUGATE OF X(2405)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2431) lies on the cubic K162 and this line: 1812,2417

X(2431) = isogonal conjugate of X(2405)


X(2432) = ISOGONAL CONJUGATE OF X(2406)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2432) lies on the cubic K162 and these lines: 6,652   19,650   57,905   102,2291   333,2399   649,1436   654,909

X(2432) = isogonal conjugate of X(2406)


X(2433) = ISOGONAL CONJUGATE OF X(2407)

Trilinears    (sin(B - C) sin A)^2/(csc(C - A) cos C - csc(A - B) cos B) : :
Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)
Barycentrics    a^2 (b^2 - c^2)/(2 a^4 - b^4 - c^4 - a^2 b^2 - a^2 c^2 + 2 b^2 c^2) : :

X(2433) lies on the cubic K162 and these lines: 2,525   6,647   25,512   74,111   351,878   468,879   526,686   1637,1989   1648,2395   2420,2437

X(2433) = isogonal conjugate of X(2407)
X(2433) = cevapoint of X(647) and X(686)
X(2433) = crosssum of X(i) and X(j) for these (i,j): (30,1637), (647,974)
X(2433) = X(2088)-cross conjugate of X(6)
X(2433) = crossdifference of every pair of points on line X(30)X(113) (the Simson line of X(110))


X(2434) = ISOGONAL CONJUGATE OF X(2408)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2434) lies on the cubic K162 and these lines: 6,373   110,1296

X(2434) = isogonal conjugate of X(2408)
X(2434) = crossdifference of every pair of points on line X(1499)X(2686) (the Simson line of X(111))


X(2435) = ISOGONAL CONJUGATE OF X(2409)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)

X(2435) lies on the Jerabek hyperbola, the cubic K162, and these lines: 4,525   6,520   64,512   66,523   69,2419   74,1297   248,684   526,1177

X(2435) = isogonal conjugate of X(2409)
X(2435) = isotomic conjugate of polar conjugate of X(34212)
X(2435) = orthocenter of X(3)X(6)X(64)
X(2435) = orthocenter of X(3)X(4)X(66)
X(2435) = crossdifference of every pair of points on line X(132)X(1503) (the Simson line of X(112))
X(2435) = antigonal conjugate of isogonal conjugate of X(37937)


X(2436) = ISOGONAL CONJUGATE OF X(2410)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)

X(2436) lies on the cubic K162 and these lines: 6,1637   323,2411

X(2436) = isogonal conjugate of X(2410)
X(2436) = crossdifference of every pair of points on line X(1522)X(1523) (the Simson line of X(476))


X(2437) = ISOGONAL CONJUGATE OF X(2411)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2437) lies on the cubic K162 and these lines: 6,13   2420,2433

X(2437) = isogonal conjugate of X(2411)
X(2437) = crossdifference of every pair of points on line X(526)X(3258) (the Simson line of X(477))


X(2438) = ISOGONAL CONJUGATE OF X(2412)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2438) lies on the cubic K162.

X(2438) = isogonal conjugate of X(2412)


X(2439) = ISOGONAL CONJUGATE OF X(2413)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2439) lies on the cubic K162 and this line: 6,17

X(2439) = isogonal conjugate of X(2413)
X(2439) = crossdifference of every pair of points on line X(137)X(1510) (the Simson line of X(1141))


X(2440) = ISOGONAL CONJUGATE OF X(2414)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2440) lies on the cubic K162 and these lines: 6,513   512,884   919,2427

X(2440) = isogonal conjugate of X(2414)
X(2440) = crossdifference of every pair of points on line X(120)X(518) (the Simson line of X(1292))


X(2441) = ISOGONAL CONJUGATE OF X(2415)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2441) lies on the cubic K162 and this line: 6,649

X(2441) = isogonal conjugate of X(2415)
X(2441) = crosssum of X(900) and X(2325)
X(2441) = crossdifference of every pair of points on line X(121)X(519) (the Simson line of X(1293))


X(2442) = ISOGONAL CONJUGATE OF X(2416)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2442) lies on the cubic K162 and these lines: (4,6), (112,1301)

X(2442) = isogonal conjugate of X(2416)
X(2442) = crossdifference of every pair of points on line X(122)X(520) (the Simson line of X(1294))


X(2443) = ISOGONAL CONJUGATE OF X(2417)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2443) lies on the cubic K162 and this line: 6,19

X(2443) = isogonal conjugate of X(2417)
X(2443) = crossdifference of every pair of points on line X(123)X(521) (the Simson line of X(1295))


X(2444) = ISOGONAL CONJUGATE OF X(2418)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics    a^2 (5 a^2 - b^2 - c^2) (b^2 - c^2)/(2 a^2 - b^2 - c^2) : :

X(2444) lies on the cubic K162 and these lines: 6,512   691,2421   1499,1992

X(2444) = isogonal conjugate of X(2418)
X(2444) = crossdifference of every pair of points on line X(126)X(524) (the Simson line of X(1296))


X(2445) = ISOGONAL CONJUGATE OF X(2419)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as given just before X(2394)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2445) lies on the cubic K162 and these lines: 6,25   110,1301   250,2421

X(2445) = isogonal conjugate of X(2419)
X(2445) = crossdifference of every pair of points on line X(127)X(525) (the Simson line of X(1297))

leftri

(Mostly) Circle-related Points, X(2446) - X(2573)

rightri

Centers X(2446) to X(2573) were contributed by Peter J. C. Moses during October to November, 2003. See the notes just before X(1662) for an introduction and notation.

Included in this section are centers of similitude of several pairs of circles. However, for some pairs of central circles, the two centers of similitudes are not triangle centers but are instead a pair of bicentric points. Specifically, Moses found that the insimilicenter (i.e., internal center of similitude) and exsimilicenter of the following pairs are bicentric points; as such they are listed in the Bicentric Pairs section (accessed by the Tables button atop this page):

{Parry circle and 2nd Lemoine circle}; see P(62) in Bicentric Pairs
{Parry circle and circumcircle}; P(63)
{Parry circle and incircle}; P(64)
{Parry circle and nine-point circle}; P(65)
{Parry circle and Spieker circle}; P(66)
{Parry circle and Moses circle}; P(67)

The 2nd Brocard circle, defined in the aforementioned Bicentric Pairs, is mentioned several times [from X(2554) to X(2573)]. A summary of its properties follows.

Definition: The 2nd Brocard circle is the circle having center X(3) and radius eR, where e = (1 - 4 sin2ω)1/2 and R = circumradius. The 2nd Brocard circle and the Brocard circle meet in the 1st and 2nd Brocard points. Peter J. C. Moses found that the 2nd Brocard circle also passes through the points X(i) for I = 1670, 1671, 2554, 2555, 2556, 2557. The square of the radius of the 2nd Brocard circle can be written out as

a2b2c2(a4 + b4 + c 4 - b2c2 - c2a2 - a2b2)/[4(b2c2 + c2a2 + a2b2)(a2 + b2 + c2)]


X(i) is the inverse-in-the-2nd-Brocard-circle of X(j) for these (i,j): (6,39), (76,99), (1666,2563), (1667,2562), (1689,1690), (2026,2561), (2027,2560)

The power of the 2nd Brocard circle with respect to each of the vertices A, B, C is a2b2c2/(b2c2 + c2a2 + a2b2)


X(2446) = 1st INTERSECTION(LINE X(1)X(3), INCIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos B + cos C - 1 - D,
                        D = (3 - 2 cos A - 2 cos B - 2 cos C)1/2

Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Of the two points of intersection, X(2446) is the closer to X(3).

X(2446) lies on the incircle and these lines: 1,3   2170,2590

X(2446) = reflection of X(2447) in X(1)
X(2446) = X(i)-Ceva conjugate of X(j) for these (i,j): (57,2590), (1382,513)
X(2446) = crosssum of X(1) and X(1381)
X(2446) = X(1114)-of-intouch-triangle


X(2447) = 2nd INTERSECTION(LINE X(1)X(3), INCIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos B + cos C - 1 + D,
                        D = (3 - 2 cos A - 2 cos B - 2 cos C)1/2

Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Of the two points of intersection, X(2447) is the farther from to X(3).

X(2447) lies on the incircle and these lines: 1,3   2170,2591

X(2447) = reflection of X(2446) in X(1)
X(2447) = X(i)-Ceva conjugate of X(j) for these (i,j): (57,2591), (1381,513)
X(2447) = crosssum of X(1) and X(1382)
X(2447) = X(1113)-of-intouch-triangle


X(2448) = 1st INTERSECTION(LINE X(1)X(3), BEVAN CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = D cos A - (D - 2)(cos B + cos C - 1),
                        D = (3 - 2 cos A - 2 cos B - 2 cos C)1/2

Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Of the two points of intersection, X(2448) is the closer to X(1)..

X(2448) lies on the Bevan circle and this line: 1,3

X(2448) = reflection of X(i) in X(j) for these (i,j): (1,1381), (2449,40)
X(2448) = crosssum of X(2310) and X(2590)
X(2448) = X(366)-aleph conjugate of X(2591)


X(2449) = 2nd INTERSECTION(LINE X(1)X(3), BEVAN CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = D cos A - (D + 2)(cos B + cos C - 1),
                        D = (3 - 2 cos A - 2 cos B - 2 cos C)1/2

Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Of the two points of intersection, X(2449) is the farther from to X(1).

X(2449) lies on the Bevan circle and this line: 1,3

X(2449) = reflection of X(i) in X(j) for these (i,j): (1,1382), (2448,40)
X(2449) = crosssum of X(2310) and X(2591)
X(2449) = X(366)-aleph conjugate of X(2590)


X(2450) = INVERSE-IN-NINE-POINT-CIRCLE OF X(1316)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = bc[a4 + (b2 - c2)2](a2b2 + a2c2 - b4 - c4)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

As a point on the Euler line, X(2450) has Shinagawa coefficients ((E + F)F - S2,(E + F)2 - S2).

X(2450) lies on these lines: 2,3   66,2165   230,248   1503,1976   3566,3569

X(2450) = complement of X(37183)
X(2450) = inverse-in-nine-point-circle of X(1316)
X(2450) = inverse-in-orthocentroidal circle of X(3148)
X(2450) = crosspoint of X(98) and X(264)
X(2450) = crosssum of X(184) and X(511)


X(2451) = INVERSE-IN-2nd-LEMOINE-CIRCLE OF X(1316)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = a(b2 - c2)(a4 + 2b2c2 - a2b2- a2c2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2451) lies on these lines: 6,523   512,1570   520,2489   647,657

X(2451) = inverse-in-2nd-Lemoine-circle of X(1316)
X(2451) = crosspoint of X(6) and X(648)
X(2451) = crosssum of X(2) and X(647)
X(2451) = inverse-in-2nd-Lemoine-circle of X(1316)
X(2451) = isogonal conjugate of isotomic conjugate of X(30476)
X(2451) = polar conjugate of isotomic conjugate of X(22089)


X(2452) = REFLECTION OF X(1316) IN X(6)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = bc[a8 - b2c2(b2 - c2)2 - a6(b2 + c2) + 2a2(b2 - c2)2(b2 + c2) + a4(5b2c2 - 2b4 - 2c4)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2452) lies on these lines: 3,2407   6,523   30,1351   98,648

X(2452) = reflection of X(1316) in X(6)


X(2453) = REFLECTION OF X(6) IN X(1316)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b),
                        where f(a,b,c) = bc(a2 + b2 + c2)[a8 - a6(b2 + c2) + a4(b4 - b2c2 + c4) + a2(b4c2 + b2c4 - b6 - c6) + 2b2c2(b2 - c2)2]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2453) lies on these lines: 6,523   23,183   30,599   98,338   378,477   476,1995   691,1003

X(2453) = reflection of X(6) in X(1316)
X(2453) = reflection of X(6) in the Euler line


X(2454) = 1st INTERSECTION(EULER LINE, STEINERINELLIPSE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[3a2bc cos B cos C - 4(area of ABC)2 - 2K],
                         where K = (1/2)[a8 + b8 + c8 - S26 + a2b2c2(a2 + b2 + c2)]1/2,
                         S26 = a2(b6 + c6) + b2(c6 + a6) + c2(a6 + b6)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

As a point on the Euler line, X(2454) has Shinagawa coefficients (S2 + 2K, -3S2).

Of the two points of intersection, X(2454) is the closer to X(3).

X(2454) lies on the Steiner inscribed ellipse and this line: 2,3

X(2454) = midpoint of X(2) and X(2479)
X(2454) = reflection of X(2455) in X(2)
X(2454) = complement of X(2480)
X(2454) = projection from Steiner circumellipse to Steiner inellipse of X(2479)


X(2455) = 2nd INTERSECTION(EULER LINE, STEINERINELLIPSE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[3a2bc cos B cos C - 4(area of ABC)2 + 2K]     (see X(2454))
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

As a point on the Euler line, X(2455) has Shinagawa coefficients (S2 - 2K, -3S2).

Of the two points of intersection, X(2455) is the farther from to X(3).

X(2455) lies on the Steiner inscribed ellipse and this line: 2,3

X(2455) = midpoint of X(2) and X(2480)
X(2455) = reflection of X(2454) in X(2)
X(2455) = complement of X(2479)
X(2455) = projection from Steiner circumellipse to Steiner inellipse of X(2480)


X(2456) = INVERSE-IN-1st-LEMOINE CIRCLE OF X(3)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = e2cos(A - ω) + cos(A + ω), e = (1 - 4 sin2 ω)1/2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2456) lies on these lines: 3,6   98,325

X(2456) = reflection of X(i) in X(j) for these (i,j): (1351,1570), (1691,182), (2080,1691)
X(2456) = {X(1687),X(1688)}-harmonic conjugate of X(1692)
X(2456) = harmonic center of circumcircle and 8th Lozada circle


X(2457) = RADICAL CENTER OF {ORTHOCENTROIDAL, BEVAN, FUHRMANN} CIRCLES

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b2 - c2)[2a3 + a2(b + c) - (b + c)(b - c)2 - 2a(b2 - bc + c2)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2457) lies on these lines: 523,656   650,2529


X(2458) = INVERSE-IN-1st-LEMOINE CIRCLE OF X(39)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin A - sin 3ω cos(A - ω)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2458) lies on this line: 3,6

X(2458) = midpoint of X(2461) and X(2462)
X(2458) = reflection of X(32) in X(1691)
X(2458) = pole wrt 1st Lemoine circle of line X(39)X(512)


X(2459) = INVERSE-IN-CIRCUMCIRCLE OF X(371)


Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos(A + ω) - cos ω sin A + 3 cos A sin ω
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2459) lies on these lines: 3,6   485,490

X(2459) = reflection of X(2460) in X(187)
X(2459) = anticomplement of X(32432)
X(2459) = perspector of ABC and the reflection of the Lucas tangents triangle in the Lemoine axis
X(2459) = inverse-in-Lucas(-1)-radical-circle of X(372)
X(2459) = X(2459) of 2nd Brocard triangle
X(2459) = crossdifference of every pair of points on line X(523)X(590)
X(2459) = Brocard axis intercept, other than X(2460), of circle with segment PU(2) as diameter


X(2460) = INVERSE-IN-CIRCUMCIRCLE OF X(372)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos(A + ω) + cos ω sin A - 3 cos A sin ω
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2460) lies on these lines: 3,6   486,489

X(2460) = reflection of X(2459) in X(187)
X(2460) = anticomplement of X(32435)
X(2460) = crossdifference of every pair of points on line X(523)X(615)
X(2460) = perspector of ABC and the reflection of the Lucas(-1) tangents triangle in the Lemoine axis
X(2460) =Lucas-radical-circle-inverse of X(371)
X(2460) = X(2460)-of-2nd-Brocard-triangle
X(2460) = Brocard axis intercept, other than X(2459), of circle with segment PU(2) as diameter


X(2461) = INVERSE-IN-1st-LEMOINE-CIRCLE OF X(371)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos(A - 3ω) - cos(A - ω) + 2 cos(A + ω) - 2 cos ω sin(A - 2ω)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2461) lies on this line: 3,6

X(2461) = reflection of X(2462) in X(2458)
X(2461) = inverse-in-1st-Lemoine-circle of X(371)


X(2462) = INVERSE-IN-1st-LEMOINE-CIRCLE OF X(372)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos(A - 3ω) - cos(A - ω) + 2 cos(A + ω) + 2 cos ω sin(A - 2ω)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2462) lies on this line: 3,6

X(2462) = reflection of X(2461) in X(2458)
X(2462) = inverse-in-1st-Lemoine-circle of X(372)


X(2463) = INSIMILICENTER(ORTHOCENTROIDAL CIRCLE, INCIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = J + cos A + 4 cos B cos C,       J as at X(1113)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)
X(2463) = |OH|*X(1) + 3r*X(381)

X(2463) lies on these lines: 1,381   2,2468   8,2467   388,2553   497,2552   1124,2466   1335,2465   1672,2472   1673,2471   1634,2470   1675,2469


X(2464) = EXSIMILICENTER(ORTHOCENTROIDAL CIRCLE, INCIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = J - cos A - 4 cos B cos C,       J as at X(1113)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)
X(2464) = |OH|*X(1) - 3r*X(381)

X(2464) lies on these lines: 1,381   2,2467   8,2468   56,1345   388,2552   497,2553   1124,2465   1335,2466   1672,2471   1673,2472   1634,2469   1675,2470


X(2465) = INSIMILICENTER(ORTHOCENTROIDAL CIRCLE, 2nd LEMOINE CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos A + 4 cos B cos C + J sin A,       J as at X(1113)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2465) lies on these lines: 6,13   1124,2464   1335,2463   1377,2468   1378,2467   1587,2553   1588,2552   1668,2469   1669,2470   1687,2472   1688,2471

X(2465) = {X(6),X(381)}-harmonic conjugate of X(2466)


X(2466) = EXSIMILICENTER(ORTHOCENTROIDAL CIRCLE, 2nd LEMOINE CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos A + 4 cos B cos C - J sin A,       J as at X(1113)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2466) lies on these lines: 6,13   1124,2463   1335,2464   1377,2467   1378,2468   1587,2552   1588,2553   1668,2470   1669,2469   1687,2471   1688,2472

X(2466) = {X(6),X(381)}-harmonic conjugate of X(2465)


X(2467) = INSIMILICENTER(ORTHOCENTROIDAL CIRCLE, SPIEKER CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(a cos A + 4a cos B cos C + (b + c)J,       J as at X(1113)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2467) lies on these lines: 2,2464   8,2463   10,381   1377,2466   1378,2465   1678,2470   1679,2469   1680,2472   1681,2471   2550,2553   2551,2551


X(2468) = EXSIMILICENTER(ORTHOCENTROIDALCIRCLE, SPIEKER CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[a cos A + 4a cos B cos C - (b + c)J],       J as at X(1113)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2468) lies on these lines: 2,2463   8,2464   10,381   1377,2465   1378,2466   1678,2469   1679,2470   1680,2471   1681,2472   2550,2552   2551,2553


X(2469) = INSIMILICENTER(ORTHOCENTROIDALCIRCLE, BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = e[cos A + 4 cos B cos C) + J cos(A - ω)],        e = (1 - 4 sin2 ω)1/2, J as at X(1113)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2469) lies on these lines: 182,381   1668,2465   1669,2466   1674,2464   1675,2463   1678,2468   1679,2467   2542,2553   2543,2552


X(2470) = EXSIMILICENTER(ORTHOCENTROIDAL CIRCLE, BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = e(cos A + 4 cos B cos C) - J cos(A - ω),       e = (1 - 4 sin2 ω)1/2, J as at X(1113)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2470) lies on these lines: 182,381   1668,2466   1669,2465   1674,2463   1675,2464   1678,2467   1679,2468   2542,2552   2543,2553


X(2471) = INSIMILICENTER(ORTHOCENTROIDAL CIRCLE, 1st LEMOINE CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos A + 4 cos B cos C + J cos(A - ω),       J as at X(1113)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2471) lies on these lines: 182,381   1672,2464   1673,2463   1680,2468   1681,2467   1687,2466   1688,2465   2546,2553   2547,2552


X(2472) = EXSIMILICENTER(ORTHOCENTROIDAL CIRCLE, 1st LEMOINE CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos A + 4 cos B cos C - J cos(A - ω),       J as at X(1113)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2472) lies on these lines: 181,381   1672,2463   1673,2464   1680,2467   1681,2468   1687,2465   1688,2466   2546,2552   2547,2553


X(2473) = RADICAL CENTER OF {BROCARD CIRCLE, BEVAN CIRCLE, INCIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)[a4 - (b + c)a3 + 2bca2 - a(b + c)3 + (b2 + c2)(b - c)2]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2473 lies on these lines: 513,2487   649,2521   2488,2504  


X(2474) = RADICAL CENTER OF {BROCARD, 2nd LEMOINE, (X(4),2R)} CIRCLES

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b4 - c4)(a4 + b4 + c4 + 2a2b2 + 2a2c2 - 2b2c2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

The titular notation (X(4),2R) means the circle with center X(4) and radius 2R, where R denotes the circumradius of triangle ABC.

X(2474) lies on these lines: 512,1570   525,2514   826,2518


X(2475) = ANTICOMPLEMENT OF X(21)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[a4 + a2bc + abc(b + c) - (b2 - c2)2]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)
X(2475) = 3X(2) - 2X(21)

As a point on the Euler line, X(2475) has Shinagawa coefficients (abc$a$, 4S2), and also Shinagawa coefficients (R, 2r)..

Let F be the Fuhrmann triangle. Then F is perspective to F-of-orthic-triangle-of-F, and the perspector is X(2475). (Randy Hutson, June 15, 2015)

X(2475) lies on these lines: {1, 149}, {2, 3}, {7, 2893}, {8, 79}, {10, 191}, {11, 5253}, {12, 100}, {35, 3822}, {65, 5086}, {75, 5016}, {80, 3754}, {81, 1834}, {115, 5277}, {144, 1654}, {145, 388}, {148, 1655}, {153, 355}, {193, 5800}, {214, 5443}, {225, 4296}, {274, 316}, {323, 3193}, {495, 3871}, {497, 3622}, {518, 5178}, {519, 5270}, {535, 5258}, {551, 4857}, {950, 5249}, {960, 5057}, {966, 5036}, {1030, 5949}, {1043, 3936}, {1056, 3623}, {1125, 3583}, {1158, 5587}, {1220, 4972}, {1441, 2897}, {1448, 2000}, {1479, 3616}, {1621, 6284}, {1698, 4333}, {1836, 3869}, {1837, 4459}, {1869, 3101}, {1901, 2287}, {1993, 5706}, {2646, 3838}, {2794, 5985}, {2886, 2975}, {2894, 3419}, {3035, 3614}, {3218, 4292}, {3294, 5134}, {3421, 4678}, {3621, 5082}, {3652, 5818}, {3679, 3951}, {3770, 4696}, {3813, 5434}, {3841, 5251}, {3870, 5290}, {3878, 5180}, {3909, 5252}, {3925, 5260}, {4316, 5267}, {4385, 5300}, {4652, 5705}, {4855, 5219}, {4968, 5015}, {4999, 5303}, {5176, 5836}, {5254, 5276}, {5318, 5362}, {5321, 5367}, {5554, 6223}

X(2475) = reflection of X(i) in X(j) for these (i,j): (21,442), (191,10)
X(2475) = isogonal conjugate of X(34435)
X(2475) = inverse-in-Fuhrmann circle of X(3448)
X(2475) = anticomplement of X(21)
X(2475) = X(1441)-Ceva conjugate of X(2)
X(2475) = X(54) of Fuhrmann triangle
X(2475) = {X(2),X(21)}-harmonic conjugate of X(15674)
X(2475) = crosspoint of X(4) and X(8) wrt extraversion triangle of X(8)


X(2476) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(21)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[abc(b + c) - (b2 - c2)2 + a2(b2 + bc + c2)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

As a point on the Euler line, X(2476) has Shinagawa coefficients (abc$a$ + 2S2, 2S2)

X(2476) lies on these lines: {1, 3822}, {2, 3}, {6, 5949}, {8, 12}, {10, 908}, {11, 3486}, {63, 5705}, {65, 3838}, {78, 5219}, {81, 5292}, {100, 498}, {115, 5283}, {119, 5554}, {145, 495}, {149, 3295}, {226, 3868}, {264, 1441}, {484, 1698}, {496, 3622}, {499, 5253}, {515, 3897}, {946, 3877}, {958, 5080}, {986, 3120}, {993, 3585}, {1150, 1330}, {1210, 5249}, {1213, 5036}, {1329, 3614}, {1478, 2975}, {1479, 1621}, {1699, 5250}, {1834, 5718}, {1858, 3812}, {1901, 5742}, {1993, 5707}, {2287, 5747}, {2292, 3944}, {2550, 5552}, {2651, 5278}, {2893, 5736}, {3006, 4385}, {3085, 3434}, {3193, 5713}, {3219, 5791}, {3241, 3813}, {3583, 5248}, {3624, 3825}, {3679, 3984}, {3695, 4671}, {3698, 5123}, {3705, 4968}, {3753, 5887}, {3767, 5276}, {3772, 5262}, {3811, 5178}, {3816, 5550}, {3824, 5439}, {3826, 5698}, {3914, 5530}, {3947, 4847}, {4299, 5303}, {4511, 5794}, {4853, 5726}, {4861, 5252}, {5175, 5703}, {5231, 5290}, {5330, 5603}, {5432, 6668}, {5587, 6261}, {5714, 5905}, {5883, 6701}, {5985, 6033}, {6284, 6690}

X(2476) = inverse-in-orthocentroidal-circle of X(21)


X(2477) = EXSIMILICENTER{INCIRCLE, SINE-TRIPLE-ANGLE CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3(a2 - b2 - c2 - bc)2/(b + c - a)
Trilinears        sin2(3A/2) : sin2(3B/2) : sin2(3C/2)     (M. Iliev, 4/12/07)
Trilinears        1 - cos 3A : 1 - cos 3B : 1 - cos 3C     (M. Iliev, 4/12/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2477) lies on these lines: 1,49   11,54   12,110   55,1069   56,184   156,1478   2595,2606

X(2477) = perspector of ABC and extraversion triangle of X(215)


X(2478) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(377)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[a4 - 2a2bc - 2abc(b + c) - (b2 - c2)2]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

As a point on the Euler line, X(2478) has Shinagawa coefficients (abc$a$, -2S2).

X(2478) lies on these lines: 1,908   2,3   8,210   10,1479   11,958   12,1001   55,1329   63,1210   78,950   145,1058   149,1145   264,1896   283,1724   329,938   355,392   388,1319   496,956   499,993   1038,1877   1125,1478   1441,1882   1714,2328

X(2478) = complement of X(4190)
X(2478) = anticomplement of X(474)


X(2479) = 1st INTERSECTION(EULER LINE, STEINERCIRCUMELLIPSE)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[K - 3a2bc cos B cos C + 4(area ABC)2],      K as at X(2454)
Barycentrics    K - 3 SB SC + S^2 : : ,      K as at X(2454)

As a point on the Euler line, X(2479) has Shinagawa coefficients (K + S2, -3S2).

Of the two points of intersection, X(2479) is the one closer to X(3).

X(2479) lies on these lines: 2,3   671,24008

X(2479) = anticomplement of X(2455)
X(2479) = reflection of X(i) in X(j) for these (i,j): (2,2454), (2480,2)
X(2479) = projection from Steiner inellipse to Steiner circumellipse of X(2454)
X(2479) = Steiner-circumellipse-X(3)-antipode of X(2480)
X(2479) = trilinear pole of line X(2)X(24008)


X(2480) = 2nd INTERSECTION(EULER LINE, STEINERCIRCUMELLIPSE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[K + 3a2bc cos B cos C - 4(area ABC)2],      K as at X(2454)
Barycentrics    K + 3 SB SC - S^2 : : ,      K as at X(2454)

As a point on the Euler line, X(2480) has Shinagawa coefficients (K - S2, 3S2).

Of the two points of intersection, X(2479) is the one farther from X(3).

X(2480) lies on this line: 2,3   671,24007

X(2480) = reflection of X(i) in X(j) for these (i,j): (2,2455), (2479,2)
X(2480) = anticomplement of X(2454)
X(2480) = projection from Steiner inellipse to Steiner circumellipse of X(2455)
X(2480) = Steiner-circumellipse-X(3)-antipode of X(2479)
X(2480) = trilinear pole of line X(2)X(24007)


X(2481) = INTERSECTION(FEUERBACH HYPERBOLA, STEINER CIRCUMELLIPSE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b2c2/(b2 + c2 - ab - ac)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

If you have The Geometer's Sketchpad, you can view X(2481).

X(2481) lies on these lines: 1,85   4,150   8,76   9,75   21,99   104,927   239,294   273,1041   286,648   314,670   334,350   767,919   870,1438   987,1416   1441,2346   1447,2223   1462,2298

X(2481) = isogonal conjugate of X(2223)
X(2481) = isotomic conjugate of X(518)
X(2481) = complement of X(39350)
X(2481) = X(19)-isoconjugate of X(20752)
X(2481) = Steiner-circumellipse-X(1)-antipode of X(664)
X(2481) = Steiner-circumellipse-X(4)-antipode of X(18026)
X(2481) = cevapoint of X(i) and X(j) these (i,j): (2,518), (11,918), (75,350), (105,1814)
X(2481) = X(i)-cross conjugate of X(j) for these (i,j): (239,274), (518,2), (885,666)
X(2481) = crosssum of X(55) and X(211)
X(2481) = trilinear pole of line X(2)X(650)
X(2481) = pole wrt polar circle of trilinear polar of X(5089)
X(2481) = X(48)-isoconjugate (polar conjugate) of X(5089)
X(2481) = crossdifference of PU(97)
X(2481) = areal center of cevian triangles of PU(47)


X(2482) = STEINER-INELLIPSE-ANTIPODE OF X(115)

Trilinears    bc(2a2 - b2 - c2)2 : :

X(2482) is the midpoint of the centers of the (equilateral) antipedal triangles of X(13) and X(14). (Randy Hutson, 9/23/2011)

Let A'B'C' be the orthic triangle. Then X(2482) is the radical center of the Schoute circles of triangles AB'C', BC'A', CA'B'. (Randy Hutson, July 31 2018)

X(2482) lies on the Steiner inscribed ellipse, the bicevian conic of X(2) and X(99), and these lines: 2,99   3,67   30,114   32,1992   39,597   187,524   230,5215   351,690   530,619   531,618   538,1569   1086,1125

X(2482) = midpoint of X(2) and X(99)
X(2482) = reflection of X(i) in X(j) for these (i,j): (2,620), (115,2)
X(2482) = isogonal conjugate of X(10630)
X(2482) = complement of X(671)
X(2482) = complementary conjugate of X(625)
X(2482) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,524), (88,690)
X(2482) = crosspoint of X(2) and X(524)
X(2482) = crosssum of X(6) and X(111)
X(2482) = crosssum of circumcircle intercepts of Schoute circle
X(2482) = projection from Steiner circumellipse to Steiner inellipse of X(99)
X(2482) = perspector of circumconic centered at X(524)
X(2482) = center of circumconic that is locus of trilinear poles of lines passing through X(524) (hyperbola {A,B,C,X(2),X(99)})
X(2482) = crossdifference of every pair of points on line X(111)X(351)
X(2482) = isogonal conjugate wrt medial triangle of X(625)
X(2482) = barycentric square of X(524)
X(2482) = midpoint of X(5463) and X(5464)
X(2482) = X(5) of anti-McCay triangle
X(2482) = antipode of X(2) in the bicevian conic of X(2) and X(99)
X(2482) = centroid of mid-triangle of antipedal triangles of X(13) and X(14)
X(2482) = X(2)-of-X(187)-adjunct-anti-altimedial-triangle
X(2482) = QA-P3 (Gergonne-Steiner Point) of quadrangle ABCX(2) (see http://www.chrisvantienhoven.nl/quadrangle-objects/10-mathematics/quadrangle-objects/18-qa-p3.html)


X(2483) = RADICAL CENTER OF {CIRCUMCIRCLE, 1st LEMOINE CIRCLE, BEVAN CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b - c)(a2 + b2 + c2 + bc)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2483) lies on these lines: 44,513   512,1691   918,1019   1919,2605

X(2483) = reflection of X(2484) in X(2515)
X(2483) = midpoint of X(649) and X(2484)
X(2483) = crosssum of X(1) and X(2483)


X(2484) = RADICAL CENTER OF {CIRCUMCIRCLE, 2nd LEMOINE CIRCLE, BEVAN CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b - c)(a2 + b2 + c2 + 2bc)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2484) lies on these lines: 6,834   44,513   512,1692   663,1919

X(2484) = reflection of X(i) in X(j) for these (i,j): (649,2483), (2483,2515)
X(2484) = isogonal conjugate of X(37215)
X(2484) = crosssum of X(i) and X(j) for these {i,j}: {1, 2484}, {514, 10436}, {649, 17017}, {2522, 17441}
X(2484) = crosspoint of X(i) and X(j) for these {i,j}: {1, 37215}, {101, 2258}
X(2484) = crossdifference of every pair of points on line X(1)X(69)


X(2485) = RADICAL CENTER OF {CIRCUMCIRCLE, 1ST LEMOINE CIRCLE, NINE-POINT CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 - c2)(b4 + c4 - a4)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2485) lies on these lines: 6,520   230,231   512,1691   525,2507   669,2514   2165,2395

X(2485) = midpoint of X(i) and X(j) for these (i,j): (647,2489), (669,2514)
X(2485) = reflection of X(i) in X(j) for these (i,j): (2489,2492), (2506,647)
X(2485) = isogonal conjugate of the isotomic conjugate of X(33294)
X(2485) = complement of X(3267)
X(2485) = X(2)-Ceva conjugate of X(127)
X(2485) = polar conjugate of isotomic conjugate of X(8673)
X(2485) = X(63)-isoconjugate of X(1289)
X(2485) = crosspoint of X(i) and X(j) for these (i,j): (2,112), (83,107)
X(2485) = crosssum of X(i) and X(j) for these (i,j): (6,525), (39,520)
X(2485) = perspector of circumconic centered at X(127) (hyperbola {{A,B,C,X(4),X(22)}})
X(2485) = center of circumconic that is locus of trilinear poles of lines passing through X(127)
X(2485) = intersection of trilinear polars of X(4) and X(22)
X(2485) = crossdifference of every pair of points on line X(3)X(66) (complement of van Aubel line)
X(2485) = PU(4)-harmonic conjugate of X(14580)


X(2486) = RADICAL CENTER OF {INCIRCLE, NINE-POINT CIRCLE, MOSES CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b - c)[(b2 - c2)(a2 - bc - ca - ab)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2486) lies on these lines: 5,2783   11,244   115,804

X(2486) = complement of X(4436)
X(2486) = intersection of tangents to nine-point circle at X(11) and X(115)
X(2486) = pole, wrt nine-point circle, of line X(11)X(115)
X(2486) = perspector of side- and vertex-triangles of tangential triangles of medial and Feuerbach triangles


X(2487) = RADICAL CENTER OF {INCIRCLE, SPIEKER CIRCLE, BEVAN CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b - c)[(b - c)2 + ab + ac - 4a2]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2487) lies on these lines: 514,2516   649,1638   918,2490   1125,1499   2496,2505

X(2487) = X(37)-Ceva conjugate of X(523)
X(2487) = crosspoint of X(10) and X(693)
X(2487) = crosssum of X(58) and X(692)


X(2488) = RADICAL CENTER OF {CIRCUMCIRCLE, INCIRCLE, BROCARD}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b + c - a)(b - c)[(b - c)2 - ab - ac]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2488) lies on these lines: 187,237   513,676   650,926   884,2194

X(2488) = reflection of X(2495) in X(2494)
X(2488) = crosspoint of X(513) and X(663)
X(2488) = crosssum of X(100) and X(664)


X(2489) = RADICAL CENTER OF {CIRCUMCIRCLE, NINE-POINT-CIRCLE, 2ND LEMOINE CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 - c2)/(b2 + c2 - a2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2489) lies on these lines: 6,924   19,876   112,250   230,231   393,2395   512,1692   520,2451   882,1843   1974,2422   2507,2524

X(2489) = reflection of X(i) in X(j) for these (i,j): (647,2485), (2485,2492), (2524,2507)
X(2489) = X(112)-Ceva conjugate of X(25)
X(2489) = cevapoint of X(647) and X(2519)
X(2489) = X(i)-cross conjugate of X(j) for these (i,j): (669,512), (1084,1974)
X(2489) = crosspoint of X(25) and X(112)
X(2489) = perspector of hyperbola {{A,B,C,X(4),X(25)}}
X(2489) = intersection of trilinear polars of X(4) and X(25)
X(2489) = isogonal conjugate of X(4563)
X(2489) = pole wrt polar circle of trilinear polar of X(670) (line X(2)X(39))
X(2489) = polar conjugate of X(670)
X(2489) = barycentric product X(8105)*X(8106)
X(2489) = PU(4)-harmonic conjugate of X(3291)


X(2490) = RADICAL CENTER OF {CIRCUMCIRCLE,NINE-POINT-CIRCLE, SPIEKER CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b - c)(4a2 - 3ab - 3ac + (b + c)2)

X(2490) lies on these lines: 230,231   513,2505   522,2496   649,1639   661,1213   918,2487


X(2491) = RADICAL CENTER OF {CIRCUMCIRCLE, NINE-POINT-CIRCLE, GALLATLY CIRCLE}

Trilinears    a3(b2 - c2)(b4 + c4 - a2b2 - a2c2) : :

Let A'B'C' and A"B"C" be the circumcevian triangles of X(511) and X(512). Let A* be the barycentric product A'*A", and define B* and C* cyclically. The lines AA*, BB*, CC* concur in X(2491). (Randy Hutson, October 8, 2019)

X(2491) lies on these lines: 39,690   230,231   351,865   512,2021   669,688   684,3569   804,2023   882,2422

X(2491) = X(i)-Ceva conjugate of X(j) for these (i,j): (882,688), (2395,512), (2396,511)
X(2491) = crosspoint of X(i) and X(j) for these (i,j): (2,805), (112,1976), (511,2396), (512,2395), (669,881)
X(2491) = crosssum of X(i) and X(j) for these (i,j): (6,804), (98,2422), (99,2421), (325,525), (645,874), (670,880)
X(2491) = perspector of circumconic centered at X(2679)
X(2491) = center of circumconic that is locus of trilinear poles of lines passing through X(2679)
X(2491) = X(2)-Ceva conjugate of X(2679)
X(2491) = center of bicevian conic of X(511) and X(512)
X(2491) = barycentric product X(511)*X(512)


X(2492) = RADICAL CENTER OF {CIRCUMCIRCLE,NINE-POINT-CIRCLE, MOSES CIRCLE}

Trilinears    a(b2 - c2)(a4 - b4 - c4 + b2c2) : :

X(2492) lies on these lines: 6,526   111,351   112,1576   115,804   230,231   512,2030   1989,2395

X(2492) = midpoint of X(2485) and X(2489)
X(2492) = isogonal conjugate of X(17708)
X(2492) = complement of X(35522)
X(2492) = crosspoint of X(i) and X(j) for these (i,j): (2,691), (111,112)
X(2492) = crosssum of X(i) and X(j) for these (i,j): (6,690), (524,525)
X(2492) = crossdifference of every pair of points on line X(3)X(67)
X(2492) = midpoint of X(8105) and X(8106)
X(2492) = center of circle Moses-Parry circle
X(2492) = intersection of tangents to circumcircle at X(111) and X(112), and to nine-point-circle at X(115) and X(1560)
X(2492) = pole of line X(25)X(111) wrt circumcircle
X(2492) = perspector of hyperbola {{A,B,C,X(4),X(23)}}
X(2492) = polar conjugate of isotomic conjugate of X(9517)
X(2492) = pole wrt polar circle of line X(2)X(339)
X(2492) = intersection of trilinear polars of X(4) and X(23)
X(2492) = X(63)-isoconjugate of X(935)


X(2493) = RADICAL CENTER OF {CIRCUMCIRCLE,NINE-POINT-CIRCLE, PARRY CIRCLE}

Trilinears    a[a^6(b^2 + c^2) - a^4(b^2 + c^2)^2 - a^2(b^6 + c^6 - 2b^4c^2 - 2b^2c^4) + (b^4 + c^4 - b^2c^2)(b^2 - c^2)^2] : :

X(2493) lies on these lines: 2,94   5,39   6,110   23,50   24,112   25,1576   53,136   216,3054   230,231   1084,1196

X(2493) = crosspoint of X(2) and X(842)
X(2493) = crosssum of X(6) and X(542)
X(2493) = PU(4)-harmonic conjugate of polar conjugate of X(35139)


X(2494) = RADICAL CENTER OF {CIRCUMCIRCLE, INCIRCLE, 1st LEMOINE CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = ab2(a2 + b2)(a + c - b)2 - ac2(a2 + c2)(a + b - c)2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2494) lies on these lines: 512,1691   513,676

X(2494) = midpoint of X(2488) and X(2495)
X(2494) = reflection of X(2495) in X(2498)


X(2495) = RADICAL CENTER OF {CIRCUMCIRCLE, INCIRCLE, 2nd LEMOINE CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = ab2(a2 + b2 - c2)(a + c - b)2 - ac2(a2 + c2 - b2)(a + b - c)2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2495) lies on these lines: 512,1692   513,676  

X(2495) = refection of X(i) and X(j) for these (i,j): (2488,2494), (2494,2498)


X(2496) = RADICAL CENTER OF {CIRCUMCIRCLE, INCIRCLE, SPIEKER CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b - c)[7a3 - 4a2(b + c) - 2(b + c)(b - c)2 + a(3b2 - 2bc + 3c2)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2496) lies on these lines: 513,676   522,2490   2487,2505


X(2497) = RADICAL CENTER OF {CIRCUMCIRCLE, INCIRCLE, GALLATLY CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b - c)[(b + c)(b2c2(b - c)2 + a4(b2 + c2) +a2(b2 - bc + c2)2) - 2a3(b4 + b2c2 + c4)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2497) lies on these lines: 512,2021   513,676


X(2498) = RADICAL CENTER OF {CIRCUMCIRCLE, INCIRCLE, MOSES CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[b2(2a2 + 2b2 - c2)(a + c - b)2 - c2(2a2 + 2c2 - b2)(a + b - c)2]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2498) lies on these lines: 512,2030   513,676

X(2498) = midpoint of X(2494) and X(2495)


X(2499) = RADICAL CENTER OF {CIRCUMCIRCLE, INCIRCLE, APOLLONIUS CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b - c)[(b + c)(a2 + b2 + c2 - 4bc) - 2a(b2 + bc + c2)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2499) lies on these lines: 512,650   513,676   661,926


X(2500) = RADICAL CENTER OF {CIRCUMCIRCLE, SPIEKER CIRCLE, APOLLONIUS CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)[4bc(b + c)2 - 2a2(b2 + c2) + a(b + c)(3b2 - 2bc + 3c2) - 5a3(b + c)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2500) lies on these lines: 512,650   513,2532   522,2490


X(2501) = RADICAL CENTER OF {CIRCUMCIRCLE, NINE-POINT CIRCLE, TAYLOR CIRCLE}

Trilinears    tan A sin(B - C) : :
Trilinears    (b2 - c2)sec A : (c2 - a2)sec B : (a2 - b2)sec C
Barycentrics    SBSC(SB - SC) : SCSA(SC - SA) : SASB(SA - SB)

If you have The Geometer's Sketchpad, you can view X(2501).

Let LA be the orthic axis of triangle BCX(4), and define LB, LC cyclically. Let A' = LB∩LC, B' = LC∩LA, C' = LA∩LB. Triangle A'B'C' is here named the orthic axes triangle. A'B'C' is also the cevian triangle of X(4) wrt the orthic triangle. A'B'C' is perspective to ABC at X(4), and homothetic to the polar triangle of the nine-point circle at X(427). The orthic axes of ABC, the orthic triangle, and the orthic axes triangle concur in X(2501). (Randy Hutson, August 19, 2019)

Let A"B"C" be the reflection triangle. Then A' is the polar-circle-inverse of A". (Randy Hutson, January 19, 2020)

X(2501) lies on the inscribed parabola having focus X(112) and on these lines: 4,1499   25,669   107,685   112,476   230,231   297,525   393,2433   419,3288   421,2623   450,2451   460,512   648,892

X(2501) = isogonal conjugate of X(4558)
X(2501) = isotomic conjugate of X(4563)
X(2501) = cevapoint of X(i) and X(j) for these (i,j): (6,2079), (512,2489)
X(2501) = crosspoint of X(i) and X(j) for these (i,j): (2,925), (4,648), (107,2052)
X(2501) = crosssum of X(i) and X(j) for these (i,j): (3,647), (6,924), (343,525), (520,577), (906,1331)
X(2501) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,136), (92,2969), (107,25), (112,53), (115,393), (264,2971), (393,115), (512,523), (648,4), (653,407), (685,460), (687,30), (1783,1865), (1897,430), (2052,2970), (2971,264)
X(2501) = perspector of circumconic centered at X(136)
X(2501) = center of circumconic that is locus of trilinear poles of lines passing through X(136)
X(2501) = X(2)-Ceva conjugate of X(136)
X(2501) = radical center of {circumcircle, nine-point circle, orthosymmedial circle}
X(2501) = radical center of {circumcircle, orthocentroidal circle, orthosymmedial circle}
X(2501) = radical center of {nine-point circle, orthocentroidal circle, orthosymmedial circle}
X(2501) = intersection of orthic axes of ABC and orthic triangle
X(2501) = trilinear pole of line X(115)X(2971) (polar of X(99) wrt polar circle)
X(2501) = pole wrt polar circle of trilinear polar of X(99) (line X(2)X(6))
X(2501) = polar conjugate of X(99)
X(2501) = perspector, wrt anticevian triangle of X(4), of bianticevian conic of X(1) and X(4)
X(2501) = crossdifference of every pair of points on line X(3)X(49)
X(2501) = X(650)-of-orthic-triangle if ABC is acute
X(2501) = excentral-to-ABC functional image of X(650)
X(2501) = PU(4)-harmonic conjugate of X(230)
X(2501) = excentral-to-ABC functional image of X(650)
X(2501) = barycentric product X(4)*X(523)
X(2501) = barycentric product X(24007)*X(24008) (the Kiepert hyperbola intercepts of the orthic axis)


X(2502) = RADICAL CENTER OF {CIRCUMCIRCLE, BROCARD CIRCLE, PARRY CIRCLE}

Trilinears    a(2a4 - b4 - c4 + 4b2c2 - 2a2b2 - 2a2c2)

Let L be the trilinear polar of X(6), i.e. the Lemoine axis. Let A' = L∩AX(6), and define B' and C' cyclically; then X(2502) is the centroid of A'B'C'. (Randy Hutson, February 10, 2016)

If you have The Geometer's Sketchpad, you can view X(2502).

X(2502) lies on these lines: 2,353   6,110   23,352   187,237   542,1648   543,1641   694,1383

X(2502) = X(583)-Ceva conjugate of X(6)
X(2502) = crosspoint of X(6) and X(843)
X(2502) = crosssum of X(2) and X(543)
X(2502) = crossdifference of every pair of points on line X(2)X(690)
X(2502) = intersection of tangents to Parry circle at X(15) and X(16)
X(2502) = pole of Brocard axis wrt Parry circle
X(2502) = inverse-in-Parry-circle of X(187)
X(2502) = {X(110),X(111)}-harmonic conjugate of (6)
X(2502) = X(1648)-of-4th-anti-Brocard-triangle
X(2502) = centroid of (degenerate) cross-triangle of ABC and circumsymmedial triangle
X(2502) = perspector of conic {{A,B,C,P,U}}, where P and U are the intersections of circles O(13,14) and O(15,16)


X(2503) = RADICAL CENTER OF {CIRCUMCIRCLE, PARRY CIRCLE, BEVAN CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b + c)[a4 - b4 - c4 + bc(b2 + bc + c2 - 2a2)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2503) lies on these lines: 6,110   37,2611,   44,513

X(2503) = X(842)-Ceva conjugate of X(55)


X(2504) = RADICAL CENTER OF {INCIRCLE, NINE-POINT CIRCLE, BROCARD CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b - c)(b2 + c2 - a2)[2a3 + (b + c)(b - c - a)(b - c + a)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2504) lies on these lines: 11,244   441,525   2473,2488


X(2505) = RADICAL CENTER OF {INCIRCLE, NINE-POINT CIRCLE, SPIEKER CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b - c)[2a3 - 5(b + c)a2 - (b + c)3 + 8a(b2 + c2)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2505) = complement of X(2976)

X(2505) lies on these lines: 11,244   513,2490   2487,2496


X(2506) = RADICAL CENTER OF {NINE-POINT CIRCLE, 1st LEMOINE CIRCLE, 2nd LEMOINE CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 - c2)[a6 + (b2 + c2)(a4 - b4 + 4b2c2 - c4) - a2(b4 + 4b2c2 + c4)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2506) lies on these lines: 6,512   525,2485   2489,2519

X(2506) = midpoint of X(2489) in X(2519)


X(2507) = RADICAL CENTER OF {NINE-POINT CIRCLE, 1st LEMOINE CIRCLE, GALLATLY CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[(b4 - c4)a6 - (b8 - c8)a2 + 2b4c4(b2 - c2)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2507) lies on these lines: 512,2024   525,2485   804,2023   1194,1637   2489,2524

X(2507) = midpoint of X(2489) and X(2524)


X(2508) = RADICAL CENTER OF {NINE-POINT CIRCLE, 1st LEMOINE CIRCLE, MOSES CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 - c2)[a8 - b8 - c8 + b2c2(b4 + c4 - a4)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2508) lies on these lines: 115,804   512,2032   525,2485


X(2509) = RADICAL CENTER OF {NINE-POINT CIRCLE, 1st LEMOINE CIRCLE, APOLLONIUS CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)[a3 - a2(b + c) + a(b + c)2 - (b + c)(b2 + c2)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2509) lies on these lines: 6,521   44,513   525,2485   905,918   926,2494

X(2509) = midpoint of X(661) and X(2484)
X(2509) = crosspoint of X(2) and X(1783)
X(2509) = crosssum of X(i) and X(j) for these (i,j): (1,2509), (6,905)


X(2510) = RADICAL CENTER OF {NINE-POINT, BROCARD, MOSES} CIRCLES

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 + c2 - a2)(b2 - c2)(a4 + b4 + c4 - 3b2c2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2510) lies on these lines: 115,804   248,878   441,525   512,2031


X(2511) = RADICAL CENTER OF {NINE-POINT, APOLLONIUS, MOSES} CIRCLES

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)(b + c)2[a4 - a2(b - c)2 - b2c2]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2511) lies on these lines: {44,513}, {115,804}, {665,1213}, {900,2092}, {4272,4435}


X(2512) = RADICAL CENTER OF {CIRCUMCIRCLE, APOLLONIUS CIRCLE, (X(4),2R)}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b2 - c2)[2a(b2 + c2) + bc(a + b + c)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

The circle (X(4),2R) is identified at X(2474).

X(2512) lies on these lines: 325,523   512,650

X(2512) = isotomic conjugate of X(35565)


X(2513) = RADICAL CENTER OF {CIRCUMCIRCLE, GALLATLY CIRCLE, (X(4),2R)}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 - c2)[a2(2b4 + 3b2c2 + 2c4) + b2c2(b2 + c2)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

The circle (X(4),2R) is identified at X(2474).

X(2513) lies on these lines: 325,523   512,2021   525,2531   647,688

X(2513) = isotomic conjugate of X(35566)


X(2514) = RADICAL CENTER OF {CIRCUMCIRCLE, 2nd LEMOINE CIRCLE, (X(4),2R)}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 - c2)[b4 + c4 + a2b2 + a2c2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

The circle (X(4),2R) is identified at X(2474).

X(2514) lies on these lines: 325,523   512,1692   525,2474   669,2485

X(2514) = reflection of X(669) in X(2485)
X(2514) = isotomic conjugate of X(35567)
X(2514) = crossdifference of every pair of points on line X(32)X(69)


X(2515) = RADICAL CENTER OF {CIRCUMCIRCLE, BEVAN CIRCLE, 2nd BROCARD CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b - c)(2a2 + 2b2 + 2c2 + 3bc)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2515) lies on these lines: 44,513   512,2030

X(2515) = midpoint of X(2483) and X(2484)
X(2515) = reflection of X(2529) in X(2527)


X(2516) = RADICAL CENTER OF {CIRCUMCIRCLE, SPIEKER CIRCLE, BEVAN CIRCLE}

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)(5a - 3b -3c)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2516) lies on these lines: 44,513   514,2487   522,2490

X(2516) = complement of X(23813)
X(2516) = anticomplementary isotomic conjugate of trilinear pole, wrt anticomplementary triangle, of Gergonne line
X(2516) = polar conjugate of isogonal conjugate of X(22147)


X(2517) = RADICAL CENTER OF {CIRCUMCIRCLE, FUHRMANN CIRCLE, (X(4),2R)}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b2c2(b - c)[a2 + (b + c)2]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2517) lies on these lines: 240,522   325,523   513,2533

X(2517) = isotomic conjugate of X(1310)


X(2518) = RADICAL CENTER OF {BROCARD, MOSES, (X(4),2R)} CIRCLES

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b4 - c4)(2a4 + 2b4 + 2c4 - 3b2c2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2518) lies on these lines: 211,688   512,2031   826,2474


X(2519) = RADICAL CENTER OF {NINE-POINT, 2nd LEMOINE, BROCARD} CIRCLES

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 - c2)(b2 + c2 - a2)(a4 + b4 + c4 + 2a2b2 + 2a2c2 - 6b2c2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2519) lies on these lines: 441,525   512,1570


X(2520) = RADICAL CENTER OF {CIRCUMCIRCLE, INCIRCLE, TAYLOR CIRCLE}

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)(b + c - a)[a3 - (b + c) (b - c)2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2520) lies on these lines: 460,512   513,676


X(2521) = RADICAL CENTER OF {BROCARD, BEVAN,MOSES} CIRCLES

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b - c)[2(a4 + b4 + c4) + 3bc(a2 + b2 + c2 + ab + ac)]

X(2521) lies on these lines: 512,2031   649,2523


X(2522) = RADICAL CENTER OF {NINE-POINT,BROCARD, APOLLONIUS} CIRCLES

Trilinears    (b - c)(b2 + c2 - a2)(a2 + (b + c)2)

X(2522) lies on these lines: 44,513   441,525   1021,1734

X(2522) = isogonal conjugate of X(36099)
X(2522) = crossdifference of every pair of points on line X(1)X(25)


X(2523) = RADICAL CENTER OF {NINE-POINT,BROCARD, BEVAN} CIRCLES

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)[b2 + c2 - a2)(a2 + a(b + c) + (b + c)2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2523) lies on these lines: 441,525   649,2521   650,2527


X(2524) = RADICAL CENTER OF {NINE-POINT, BROCARD, 2nd BROCARD} CIRCLES

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 - c2)(b2 + c2 - a2)(b2c2 - a2b2 - a2c2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2524) lies on these lines: 39,512   441,525   2489,2507

X(2524) = reflection of X(2489) in X(2507)
X(2524) = crosssum of X(2) and X(2451)


X(2525) = RADICAL CENTER OF {NINE-POINT, BROCARD, (X(4),2R)} CIRCLES

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b4 - c4)(b2 + c2 - a2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2525) lies on these lines: 441,525   523,2526   669,690   826,2474

X(2525) = X(305)-Ceva conjugate of X(125)
X(2525) = crosspoint of X(3) and X(1634)
X(2525) = perspector of hyperbola {{A,B,C,X(69),X(141)}}
X(2525) = intersection of trilinear polars of X(69) and X(141)


X(2526) = RADICAL CENTER OF {NINE-POINT, APOLLONIUS, (X(4),2R)} CIRCLES

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)(a2 + 3b2 + 2bc + 3c2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2526) lies on these lines: 44,513   523,2525   830,905

X(2526) = reflection of X(650) in X(1491)
X(2526) = crosssum of X(1) and X(2526)


X(2527) = RADICAL CENTER OF {NINE-POINT, SPIEKER, BEVAN} CIRCLES

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b - c)(6a2 - ab - ac + (b + c)2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2527) lies on these lines: 513,2490   514,2487   649,900   650,2523

X(2527) = midpoint of X(2516) and X(2529)


X(2528) = RADICAL CENTER OF {ORTHOCENTROIDAL, BROCARD, (X(4),2R)} CIRCLES

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b2 - c2)(b2 + c2)2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2528) lies on the Kiepert parabola and these lines: 39,647   525,669   826,2474

X(2528) = X(99)-Ceva conjugate of X(141)
X(2528) = crosspoint of X(99) and X(141)
X(2528) = crosssum of X(251) and X(512)


X(2529) = RADICAL CENTER OF {ORTHOCENTROIDAL, SPIEKER, BEVAN} CIRCLES

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b - c)(7a2 + ab + ac + 2(b + c)2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2529) lies on these lines: 514,2487   650,2457

X(2529) = reflection of X(2516) and X(2537)


X(2530) = RADICAL CENTER OF {BROCARD, BEVAN, (X(4),2R)} CIRCLES

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)(b2 + c2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2530) lies on these lines: 10,514   36,238   512,2254   649,2521   661,665   663,1201   693,784   826,2474   832,1459

X(2530) = reflection of X(667) and X(905)
X(2530) = crosspoint of X(513) and X(693)
X(2530) = crosssum of X(i) and X(j) for these (i,j): (308,850), (100,692), (650,2330)


X(2531) = RADICAL CENTER OF {BROCARD, (X(4),2R), 2nd BROCARD} CIRCLES

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3(b2 - c2)(b2 + c2)2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2531) lies on these lines: 39,512   99,783   525,2513   826,2474

X(2531) = bicentric difference of PU(156)


X(2532) = RADICAL CENTER OF {APOLLONIUS, SPIEKER, BEVAN} CIRCLES

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)[5(b + c)a3 + 2(b2 - bc + c2)a2 - 3(b + c)(b2 + c2)a - 4bc(b + c)2]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2532) lies on these lines: 513,2500   514,2487


X(2533) = RADICAL CENTER OF {BEVAN, FUHRMANN, (X(4),2R)} CIRCLES

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b2 - c2)(a2 + bc)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2533) lies on these lines: 10,514   65,879   512,1577   523,656   649,814   784,1734

X(2533) = crosspoint of X(10) and X(668)
X(2533) = isotomic conjugate of X(4594)


X(2534) = INSIMILICENTER(INCIRCLE, SPIEKER RADICAL CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[(b + c)r + ad], where d = (r2 + s2)1/2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

The Spieker radical circle, with center X(10) and radius d/2, is introduced in

Darij Grinberg and Paul Yiu, "The Apollonius Circle as a Tucker Circle," Forum Geometricorum 2 (2002) 175-182.

X(2534) lies on these lines: 1,2   11,2540   12,2541   55,2537   56,2536   181,2538   1682,2539


X(2535) = EXSIMILICENTER(INCIRCLE, SPIEKER RADICAL CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[(b + c)r - ad], where d = (r2 + s2)1/2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

See X(2534).

X(2535) lies on these lines: 1,2   11,2541   12,2540   55,2536   56,2537   181,2539   1682,2538


X(2536) = INSIMILICENTER(CIRCUMCIRCLE, SPIEKER RADICAL CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[(b + c)r + ad cos A], where d = (r2 + s2)1/2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

See X(2534).

X(2536) lies on these lines: 2,2541   3,10   4,2540   55,2535   56,2534   386,2538   573,2539

X(2536) = X(573)-Ceva conjugate of X(2537)


X(2537) = EXSIMILICENTER(CIRCUMCIRCLE, SPIEKER RADICAL CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[(b + c)r - ad cos A], where d = (r2 + s2)1/2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

See X(2534).

X(2537) lies on these lines: 2,2540   3,10   4,2541   55,2534   56,2535   386,2539   573,2538

X(2537) = X(573)-Ceva conjugate of X(2536)


X(2538) = INSIMILICENTER(APOLLONIUS CIRCLE, SPIEKER RADICAL CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b + c)r(r2 + s2)1/2 - a[4(area ABC)2 + bc(r2 - s2) cos A]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

See X(2534).

X(2538) lies on these lines: 5,10   181,2534   386,2536   573,2537   1682,2535


X(2539) = EXSIMILICENTER(APOLLONIUS CIRCLE, SPIEKER RADICAL CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b + c)r(r2 + s2)1/2 + a[4(area ABC)2 + bc(r2 - s2) cos A]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

See X(2534).

X(2539) lies on these lines: 5,10   181,2535   386,2537   573,2536   1682,2534


X(2540) = INSIMILICENTER(NINE-POINT CIRCLE, SPIEKER RADICAL CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[(b + c)r + ad(cos A + 2 cos B cos C)], where d = (r2 + s2)1/2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

See X(2534).

X(2540) lies on these lines: 2,2537   4,2536   5,10   11,2534   12,2535


X(2541) = EXSIMILICENTER(NINE-POINT CIRCLE, SPIEKER RADICAL CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[(b + c)r - ad(cos A + 2 cos B cos C)], where d = (r2 + s2)1/2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

See X(2534).

X(2541) lies on these lines: 2,2536   4,2537   5,10   11,2535   12,2534


X(2542) = INSIMILICENTER(BROCARD CIRCLE, (X(4),2R))

Trilinears    e cos B cos C + cos(A - ω), where e = (1 - 4 sin2 ω)1/2
Barycentrics    2*a^2*(a^4 - a^2*b^2 - a^2*c^2 - 2*b^2*c^2) + (-a^4 + b^4 - 2*b^2*c^2 + c^4)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4]::

The circle (X(4),2R) is identified at X(2474).

X(2542) lies on these lines: {2, 1341}, {4, 83}, {10, 1705}, {20, 1340}, {388, 1675}, {497, 1674}, {516, 1704}, {1349, 3091}, {1379, 14712}, {1587, 1668}, {1588, 1669}, {1678, 2551}, {1679, 2550}, {1693, 9535}, {1694, 9534}, {2011, 2545}, {2012, 2544}, {2033, 2549}, {2034, 2548}, {2039, 7797}, {2469, 2553}, {2470, 2552}, {2559, 6655}, {3557, 20088}, {6039, 7792}, {6190, 14929}

X(2542) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 182, 2543}, {1341, 1348, 2}, {3618, 7790, 2543}


X(2543) = EXSIMILICENTER(BROCARD CIRCLE, (X(4),2R))

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = e cos B cos C - cos(A - ω)    e = (1 - 4 sin2 ω)1/2
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

The circle (X(4),2R) is identified at X(2474).

X(2543) lies on these lines: 2,1340   4,83   10,1704   20,1341   388,1674   497,1675   516,1705   1587,1669   1588,1668   1678,2550   1679,2551   2011,2544   2012,2545   2033,2548   2034,2549   2469,2552   2470,2553


X(2544) = INSIMILICENTER(GALLATLY CIRCLE, (X(4),2R))

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos B cos C + sin(A + ω)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

The circle (X(4),2R) is identified at X(2474).

X(2544) lies on these lines: 2,1689   4,39   10,2018   20,1690   371,2547   372,2546   388,2008   497,2007   516,2017   1587,1670   1588,1671   2011,2543   2012,2542   2013,2551   2014,2550


X(2545) = EXSIMILICENTER(GALLATLY CIRCLE, (X(4),2R))

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos B cos C - sin(A + ω)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

The circle (X(4),2R) is identified at X(2474).

X(2545) lies on these lines: 2,1690   4,39   10,2017   20,1689   371,2546   372,2547   388,2007   497,2008   516,2018   1587,1671   1588,1670   2011,2542   2012,2543   2013,2550   2014,2551


X(2546) = INSIMILICENTER(1st LEMOINE CIRCLE, (X(4),2R))

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos B cos C + cos(A - ω)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

The circle (X(4),2R) is identified at X(2474).

X(2546) lies on these lines: 2,1343   4,83   10,1701   20,1342   194,1671   371,2545   372,2544   388,1673   497,1672   516,1700   1587,1688   1588,1687   1680,2551   1681,2550   2035,2549   2036,2548   2471,2553   2472,2552


X(2547) = EXSIMILICENTER(1st LEMOINE CIRCLE, (X(4),2R))

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos B cos C - cos(A - ω)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

The circle (X(4),2R) is identified at X(2474).

X(2547) lies on these lines: 2,1342   4,83   10,1700   20,1343   194,1670   371,2544   372,2545   388,1672   497,1673   516,1701   1587,1687   1588,1688   1680,2550   1681,2551   2035,2548   2036,2549   2471,2552   2472,2553


X(2548) = INSIMILICENTER(MOSES CIRCLE, (X(4),2R))

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 2 cos B cos C + sin(A + ω) csc ω
                        = g(a,b,c) : g(b,c,a): g(c,a,b), where g(a,b,c) = bc[a4 - b4 - c4 + 2(a2b2 + b2c2 + c2a2)]   (Eric Danneels, 11/11/2004)
                        = a3R + bcS : b3R + caS : c3R + abS    (C. Lozada, 9/07/2013)

Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

The circle (X(4),2R) is identified at X(2474).

X(2548) lies on these lines: 2,32   4,39   5,6   10,1572   20,574   115,147   148,1569   172,499   187,631   211,263   217,1899   230,1656   316,2021   388,1015   427,2207   497,1500   498,1914   516,1571   625,1692   1478,2275   1479,2276   1504,1588   1505,1587   1573,2551   1574,2550   2033,2543   2034,2542   2035,2547   2036,2546

X(2548) = complement of X(3785)
X(2548) = anticomplement of X(7815)
X(2548) = {X(5),X(6)}-harmonic conjugate of X(3767)


X(2549) = EXSIMILICENTER(MOSES CIRCLE, (X(4),2R))

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 2 cos B cos C - sin(A + ω) csc ω
                        = g(a,b,c) : g(b,c,a): g(c,a,b), where g(a,b,c) = bc(a4 - b4 - c4 - 2a2b2 - 2a2c2 + 2b2c2)   (Eric Danneels, Nov. 11, 2004)

Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

The circle (X(4),2R) is identified at X(2474).

X(2549) lies on these lines: 2,99   3,230   4,39   6,30   10,1571   20,32   53,1597   69,538   147,1569   184,1562   187,376   193,754   194,315   388,1500   497,1515   516,1572   625,1007   1194,1370   1478,2276   1479,2275   1504,1587   1505,1588   1573,2550   1574,2551   1885,2207   2033,2542   2034,2543   2035,2546   2036,2547

X(2549) = X(69)-of-1st-Brocard triangle
X(2549) = 1st-Brocard-isogonal conjugate of X(9306)
X(2549) = 1st-Brocard-isotomic conjugate of X(1352)
X(2549) = X(6)-of-obverse-triangle-of-X(69)
X(2549) = {X(10653),X(10654)}-harmonic conjugate of X(11179)


X(2550) = INSIMILICENTER(SPIEKER CIRCLE, (X(4),2R))

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b + c + a cos B cos C)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

The circle (X(4),2R) is identified at X(2474).

Let A'B'C' be the intangents-to-extangents similarity image of ABC. A'B'C' is homothetic to ABC at X(55) and to the medial triangle at X(2550). (Randy Hutson, December 2, 2017)

Let A'B'C' be the intouch triangle of the extangents triangle, if ABC is acute. Then A'B'C' is homothetic to the anticomplementary triangle at X(2550). (Randy Hutson, December 2, 2017)

X(2550) lies on these lines: 1,142   2,11   3,1602   4,9   7,8   12,480   20,958   144,1654   200,226   210,329   318,1118   355,971   376,993   442,954   519,1056   527,1478   740,2294   936,946   948,2263   960,962   1058,1125   1377,1588   1378,1587   1445,1788   1479,1698   1573,2549   1574,2548   1678,2543   1679,2542   1680,2547   1681,2546   2013,2545   2014,2544   2467,2553   2468,2552

X(2550) = midpoint of X(7) and X(8)
X(2550) = reflection of X(i) in X(j) for these (i,j): (1,142), (9,10), (390,1001)
X(2550) = isogonal conjugate of X(3423)
X(2550) = complement of X(390)
X(2550) = anticomplement of X(1001)
X(2550) = inverse-in-Feuerbach-hyperbola of X(497)
X(2550) = outer-Garcia-to-ABC similarity image of X(9)


X(2551) = EXSIMILICENTER(SPIEKER CIRCLE, (X(4),2R))

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b + c - a cos B cos C)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

The circle (X(4),2R) is identified at X(2474).

X(2551) lies on these lines: 2,12   3,1603   4,9   8,210   20,1376   55,452   63,1788   65,329   200,950   219,387   220,1834   318,1857   377,1155   390,480   443,1478   515,936   518,938   519,1058   631,993   944,997   1056,1125   1377,1587   1378,1588   1573,2548   1574,2549   1678,2542   1679,2543   1680,2546   1681,2547   2013,2544   2014,2545   2467,2552   2468,2553

X(2551) = reflection of X(1706) in X(10)
X(2551) = crosssum of X(56) and X(1466)


X(2552) = INSIMILICENTER(ORTHOCENTROIDAL CIRCLE, (X(4),2R))

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos A + (4 + J) cos B cos C,     J as at X(1113).
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(2552) has Shinagawa coefficients (1, J + 3).

The circle (X(4),2R) is identified at X(2474).

X(2552) lies on these lines: 2,3   388,2464   497,2463   1587,2466   1588,2465   2467,2551   2468,2550   2469,2543   2470,2542   2471,2547   2472,2546


X(2553) = EXSIMILICENTER(ORTHOCENTROIDAL CIRCLE, (X(4),2R))

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos A + (4 - J) cos B cos C,     J as at X(1113)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(2553) has Shinagawa coefficients (1, -J + 3).

The circle (X(4),2R) is identified at X(2474).

X(2553) lies on these lines: 2,3   388,2463   497,2464   1587,2465   1588,2466   2467,2550   2468,2551   2469,2542   2470,2543   2471,2546   2472,2547


X(2554) = 1st INTERSECTION(EULER LINE, 2nd BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (1 - J/e)cos A - 2 cos B cos C,     J as at X(1113).
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(2554) has Shinagawa coefficients (-J/e + 1, J/e - 3).

Of the two points of intersection, X(2554) is one closer to X(4).

X(2554) lies on this line: 2,3

X(2554) = reflection of X(2555) in X(3)


X(2555) = 2nd INTERSECTION(EULER LINE, 2nd BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (1 +J/e)cos A - 2 cos B cos C,     J as at X(1113).
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(2555) has Shinagawa coefficients (J/e + 1, -J/e - 3).

Of the two points of intersection, X(2555) is one farther from X(4).

X(2555) lies on this line: 2,3

X(2555) = reflection of X(2554) in X(3)


X(2556) = 1st INTERSECTION(LINE X(1)X(3), 2nd BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1 - cos B - cos C - (d/e) cos A,
                        where d = (3 - 2 cos A - 2 cos B - 2 cos C)1/2 = |IO|/R = 1 - 2r/R, where I = X(1), O = X(3).
                        e = (1 - 4 sin2ω)1/2

Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Of the two points of intersection, X(2556) is one closer to X(1).

X(2556) lies on this line: 1,3

X(2556) = reflection of X(2557) in X(3)


X(2557) = 2nd INTERSECTION(LINE X(1)X(3), 2nd BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1 - cos B - cos C + (d/e) cos A, where d, e are as at X(2556)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Of the two points of intersection, X(2557) is one farther from X(1).

X(2557) lies on this line: 1,3

X(2557) = reflection of X(2556) in X(3)


X(2558) = INSIMILICENTER(1st LEMOINE CIRCLE, 2nd BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos A + e cos(A - ω),        e as at X(2556)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2558) lies on these lines: 3,6   1672,2565   1673,2564   1676,2567   1677,2566   1680,2569   1681,2568   1700,2573   1701,2572

X(2558) = {X(1687),X(1688)}-harmonic conjugate of X(3557)
X(2558) = homothetic center of 6th anti-Brocard triangle and circumcevian triangle of X(3414)


X(2559) = EXSIMILICENTER(1st LEMOINE CIRCLE, 2nd BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos A - e cos(A - ω),        e as at X(2556)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2559) lies on these lines: 3,6   1672,2564   1673,2565   1676,2566   1677,2567   1680,2568   1681,2569   1700,2572   1701,2573

X(2559) = {X(1687),X(1688)}-harmonic conjugate of X(3558)
X(2559) = homothetic center of 6th anti-Brocard triangle and circumcevian triangle of X(3413)


X(2560) = INSIMILICENTER(2nd LEMOINE CIRCLE, 2nd BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos A + e sin A,        e as at X(2556)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2560) lies on these lines: 3,6   485,2567   486,2566   1124,2565   1335,2564   1337,2569   1378,2568   1702,2573   1703,2572

X(2560) = inverse-in-Brocard-circle of X(2561)
X(2560) = radical center of Lucas(2e) circles, e as at X(2556)


X(2561) = EXSIMILICENTER(2nd LEMOINE CIRCLE, 2nd BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos A - e sin A,        e as at X(2556)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2561) lies on these lines: 3,6   485,2566   486,2567   1124,2564   1335,2565   1337,2568   1378,2569   1702,2572   1703,2573

X(2561) = inverse-in-Brocard-circle of X(2560)
X(2561) = radical center of Lucas(-2e) circles, e as at X(2556)


X(2562) = INSIMILICENTER(GALLATLY CIRCLE, 2nd BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos A + e sin(A + ω),        e as at X(2556)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2562) lies on these lines: 3,6   2007,2565   2008,2564   2009,2567   2010,2566   2013,2569   2014,2568   2017,2573   2018,2572

X(2562) = inverse-in-2nd-Brocard-circle of X(1667)


X(2563) = EXSIMILICENTER(GALLATLY CIRCLE, 2nd BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos A - e sin(A + ω),        e as at X(2556)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2563) lies on these lines: 3,6   2007,2564   2008,2565   2009,2566   2010,2567   2013,2568   2014,2569   2017,2572   2018,2573

X(2563) = 2nd-Brocard-circle-inverse of X(1666)


X(2564) = INSIMILICENTER(INCIRCLE, 2nd BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = e + cos A, where e = (1 - 4 sin2ω)1/2
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2564) lies on these lines: 1,3   2,2569   8,2568   11,2566   12,2567   1124,2561   1335,2560   1342,1675   1343,1674   1672,2559   1673,2558   2007,2563   2008,2562


X(2565) = EXSIMILICENTER(INCIRCLE, 2nd BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = e - cos A, where e = (1 - 4 sin2ω)1/2
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2565) lies on these lines: 1,3   2,2568   8,2569   11,2567   12,2566   1124,2560   1335,2561   1342,1674   1343,1675   1672,2558   1673,2559   2007,2562   2008,2563


X(2566) = INSIMILICENTER(NINE-POINT CIRCLE, 2nd BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos A + e cos(B - C), where e = (1 - 4 sin2ω)1/2
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(2566) has Shinagawa coefficients (e + 1, e - 1).

X(2566) lies on these lines: 2,3   11,2564   12,2565   485,2561   486,2560   1329,2568   1342,1349   1343,1348   1670,2040   1671,2039   1676,2559   1677,2558   1698,2573   1699,2572   2009,2563   2010,2562


X(2567) = EXSIMILICENTER(NINE-POINT CIRCLE, 2nd BROCARD CIRCLE)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos A - e cos(B - C), where e = (1 - 4 sin2ω)1/2
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

As a point on the Euler line, X(2567) has Shinagawa coefficients (e - 1, e + 1).

X(2567) lies on these lines: 2,3   11,2565   12,2566   485,2560   486,2561   1329,2569   1342,1348   1343,1349   1670,2039   1671,2040   1676,2558   1677,2559   1698,2572   1699,2573   2009,2562   2010,2563


X(2568) = INSIMILICENTER(SPIEKER CIRCLE, 2ndBROCARD CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[(b + c)e + a cos A], where e = (1 - 4 sin2ω)1/2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2568) lies on these lines: 2,2565   3,10   8,2564   9,2573   1329,2566   1342,1679   1343,1678   1377,2561   1378,2560   1680,2559   1681,2558   1706,2572   2013,2563   2014,2562


X(2569) = EXSIMILICENTER(SPIEKER CIRCLE, 2nd BROCARD CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[(b + c)e - a cos A], where e = (1 - 4 sin2ω)1/2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2569) lies on these lines: 2,2564   3,10   8,2565   9,2572   1329,2567   1342,1678   1343,1679   1377,2560   1378,2561   1680,2558   1681,2559   1706,2573   2013,2562   2014,2563


X(2570) = INSIMILICENTER(ORTHOCENTROIDALCIRCLE, 2nd BROCARD CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 + J/e)cos A + 4 cos B cos C,    J as at X(1113), e = (1 - 4 sin2ω)1/2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

As a point on the Euler line, X(2570) has Shinagawa coefficients (J/e + 1, -J/e + 3).

X(2570) lies on this line: 2,3


X(2571) = EXSIMILICENTER(ORTHOCENTROIDALCIRCLE, 2nd BROCARD CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - J/e)cos A + 4 cos B cos C,    J as at X(1113), e = (1 - 4 sin2ω)1/2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

As a point on the Euler line, X(2571) has Shinagawa coefficients (-J/e + 1, J/e + 3).

X(2571) lies on this line: 2,3


X(2572) = INSIMILICENTER(BEVAN, 2nd BROCARD CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1 - cos B - cos C + (1 + 2/e)cos A, where e = (1 - 4 sin2ω)1/2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2572) lies on these lines: 1,3   9,2569   1342,1705   1343,1704   1698,2567   1699,2566   1700,2559   1701,2558   1702,2561   1703,2560   1706,2568   2017,2563   2018,2562


X(2573) = EXSIMILICENTER(BEVAN, 2nd BROCARD CIRCLE)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1 - cos B - cos C + (1 - 2/e)cos A, where e = (1 - 4 sin2ω)1/2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2573) lies on these lines: 1,3   9,2568   1342,1704   1343,1705   1698,2566   1699,2567   1700,2558   1701,2559   1702,2560   1703,2561   1706,2569   2017,2562   2018,2563


X(2574) = ISOGONAL CONJUGATE OF X(1113)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) = X(1113)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

As the isogonal conjugate of a point on the circumcircle, X(2574) lies on the line at infinity.

The asymptotes of the Jerabek hyperbola meet the infinity line in X(2574) and X(2575). In general, the infinite points on the right circumhyperbola {{A,B,C, X(4),P}}, where P = p : q : r (barycentrics) are given first barycentrcis u - v and u + v, where

u = p ((a^2-b^2+c^2) q+(-a^2-b^2+c^2) r) (c^2 (a^2-b^2-c^2) p q+b^2 (a^2-b^2-c^2) p r+(a^2 b^2-b^4+a^2 c^2+2 b^2 c^2-c^4) q r
v = (a^2-b^2-c^2) Sqrt[(a^4+b^4-2 a^2 c^2-2 b^2 c^2+c^4) p q r^2+q^2 ((a^4-2 a^2 b^2+b^4-2 b^2 c^2+c^4) p r+a^4 r^2)+p^2 (c^4 q^2+(a^4-2 a^2 b^2+b^4-2 a^2 c^2+c^4) q r+b^4 r^2)]).

The infinite points of the asymptotes of the Feuerbach hyperbola at X(3307) and X(3308), and for the Kiepert hyperbola, by X(3413) and X(3414). (Peter Moses, Ocober 8, 2018)

X(2574) lies on the Simson quartic (Q101) and these (parallel) lines: 4,2592   6,1344   30,511   65,2588   71,2578   72,2582   73,2584   74,1114   110,1113   113,1312   125,1313   895,2104

X(2574) = isogonal conjugate of X(1113)
X(2574) = isotomic conjugate of X(15164)
X(2574) = complementary conjugate of X(1313)
X(2574) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,15166), (4,1313), (110,2575), (1113,3)
X(2574) = X(125)-cross conjugate of X(2575)
X(2574) = crosspoint of X(4) and X(1113)
X(2574) = crosssum of X(i) and X(j) for these (i,j): (3,2574), (523,1312)
X(2574) = infinite point of minor axis of orthic inconic
X(2574) = 1st point of intersection of Jerabek hyperbola and line at infinity
X(2574) = Thomson-isogonal conjugate of X(1114)
X(2574) = Lucas-isogonal conjugate of X(1114)
X(2574) = infinite point of major axis of ellipse that is locus of centroids of (degenerate) pedal triangles of points on the circumcircle
X(2574) = infinite point of minor axis of ellipse that is locus of radical center of circles centered at vertices of ABC and tangent to lines through X(3)


X(2575) = ISOGONAL CONJUGATE OF X(1114)

Trilinears       1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) = X(1114)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

As the isogonal conjugate of a point on the circumcircle, X(2575) lies on the line at infinity.

X(2575) lies on the Simson quartic (Q101) and these (parallel) lines: 4,2593   6,1345   30,511   65,2589   71,2579   72,2583   73,2585   74,1113   110,1114   113,1313   125,1312   895,2105

X(2575) = isogonal conjugate of X(1114)
X(2575) = isotomic conjugate of X(15165)
X(2575) = complementary conjugate of X(1312)
X(2575) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,15167), (4,1312), (110,2574), (1114,3)
X(2575) = X(125)-cross conjugate of X(2574)
X(2575) = crosspoint of X(4) and X(1114)
X(2575) = crosssum of X(i) and X(j) for these (i,j): (3,2575), (523,1313)
X(2575) = infinite point of major axis of orthic inconic
X(2575) = 2nd point of intersection of Jerabek hyperbola and line at infinity
X(2575) = Thomson-isogonal conjugate of X(1113)
X(2575) = Lucas-isogonal conjugate of X(1113)
X(2575) = infinite point of minor axis of ellipse that is locus of centroids of (degenerate) pedal triangles of points on the circumcircle
X(2575) = infinite point of major axis of ellipse that is locus of radical center of circles centered at vertices of ABC and tangent to lines through X(3)


X(2576) = X(2)-ISOCONJUGATE OF X(2574)

Trilinears       af(a,b,c) : bf(b,c,a) : cf(c,a,b), where f(a,b,c) = X(1113)
Barycentrics   a2f(a,b,c) : b2f(b,c,a) : c2f(c,a,b)

X(2576) lies on these lines: 1,19   101,1113   163,1822   662,2580   1755,1823   2159,2579\

X(2576) = isogonal conjugate of X(2582)
X(2576) = X(2580)-Ceva conjugate of X(1822)
X(2576) = cevapoint of X(48) and X(2578)
X(2576) = X(i)-cross conjugate of X(j) for these (i,j): (661,2577), (810,1823), (2578,19)
X(2576) = crosspoint of X(2580) and X(2586)
X(2576) = crosssum of X(2578) and X(2584)
X(2576) = X(i)-aleph conjugate of X(j) for these (i,j): (662,2577), (1113,1707), (2580,19)


X(2577) = X(2)-ISOCONJUGATE OF X(2575)

Trilinears       af(a,b,c) : bf(b,c,a) : cf(c,a,b), where f(a,b,c) = X(1114)
Barycentrics   a2f(a,b,c) : b2f(b,c,a) : c2f(c,a,b)

X(2577) lies on these lines: 1,19   101,1114   163,1823   662,2581   1755,1822   2159,2578

X(2577) = isogonal conjugate of X(2583)
X(2577) = cevapoint of X(48) and X(2579)
X(2577) = crosspoint of X(2581) and X(2587)
X(2577) = X(2581)-Ceva conjugate of X(1823)
X(2577) = X(i)-cross conjugate of X(j) for these (i,j): (661,2576), (810,1822), (2579,19)
X(2577) = crosssum of X(2579) and X(2585)
X(2577) = X(i)-aleph conjugate of X(j) for these (i,j): (662,2576), (1114,1707), (2581,19)


X(2578) = X(2)-ISOCONJUGATE OF X(1113)

Trilinears       a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) = X(1113)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a) : c2/f(c,a,b)

X(2578) lies on these lines: 19,2588   44,513   48,2584   63,2582   71,2574   163,1822   1114,2249   1821,2581   2159,2577  

X(2578) = isogonal conjugate of X(2580)
X(2578) = X(i)-Ceva conjugate of X(j) for these (i,j): (163,2579), (662,2585), (1822,31), (2576,48), (2580,1)
X(2578) = crosspoint of X(i) and X(j) for these (i,j): (1,2580), (19,2576), (63,1822), (2582,2588)
X(2578) = crosssum of X(i) and X(j) for these (i,j): (1,2578), (19,2588), (63,2582), (1822,2576)
X(2578) = X(2580)-aleph conjugate of X(2578)


X(2579) = X(2)-ISOCONJUGATE OF X(1114)

Trilinears       a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) = X(1114)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a) : c2/f(c,a,b)

X(2579) lies on these lines: 19,2589   44,513   48,2585   63,2583   71,2575   163,1823   1113,2249   1821,2580   2159,2576  

X(2579) = isogonal conjugate of X(2581)
X(2579) = X(i)-Ceva conjugate of X(j) for these: (i,j): (163,2578), (662,2584), (1823,31), (2577,48), (2581,1), (2583,2585)
X(2579) = cevapoint of X(i) and X(j) for these {i,j}: {1577,2580}, {2577,2587}, {2589,75}
X(2579) = crosspoint of X(i) and X(j) for these (i,j): (1,2581), (19,2577), (63,1823), (2583,2589)
X(2579) = crosssum of X(i) and X(j) for these (i,j): (1,2579), (19,2589), (63,2583), (1823,2577)
X(2579) = X(2581)-aleph conjugate of X(2579)


X(2580) = X(6)-ISOCONJUGATE OF X(2574)

Trilinears       (1/a)f(a,b,c) : (1/b)f(b,c,a) : (1/c)/f(c,a,b), where f(a,b,c) is as at X(1113)
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b)

X(2580) lies on these lines: 19,27   100,1113   162,1822   240,2587   662,2576   897,2589   1821,2579   2349,2583

X(2580) = isogonal conjugate of X(2578)
X(2580) = isotomic conjugate of X(2582)
X(2580) = cevapoint of X(i) and X(j) for these (i,j): (1,2578), (19,2588), (63,2582), (1822,2576)
X(2580) = X(i)-cross conjugate of X(j) for these (i,j): (1577,2581), (2576,2586), (2578,1), (2582,92), (2588,75)
X(2580) = X(i)-aleph conjugate of X(j) for these (i,j): (1113,1740), (2580,1)


X(2581) = X(6)-ISOCONJUGATE OF X(2575)

Trilinears       (1/a)f(a,b,c) : (1/b)f(b,c,a) : (1/c)/f(c,a,b), where f(a,b,c) is as at X(1114)
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b)

X(2581) lies on these lines: 19,27   100,1114   162,1823   240,2586   662,2577   897,2588   1821,2578   2349,2582

X(2581) = isogonal conjugate of X(2579)
X(2581) = isotomic conjugate of X(2583)
X(2581) = cevapoint of X(i) and X(j) for these (i,j): (1,2579), (19,2589), (63,2583), (1823,2577)
X(2581) = crosssum of X(i) and X(j) for these (i,j): (1577,2580), (2577,2587), (2589,75)
X(2581) = X(i)-cross conjugate of X(j) for these (i,j): (2579,1), (2583,92)
X(2581) = X(1114)-aleph conjugate of X(1740)


X(2582) = X(6)-ISOCONJUGATE OF X(1113)

Trilinears       bc/f(a,b,c) : ca/f(b,c,a) : ab/f(c,a,b), where f(a,b,c) is as at X(1113)
Barycentrics   1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b)

X(2582) lies on these lines: 1,2584   63,2578   72,2574   226,2592   293,1823   514,661   662,2576   2349,2581

X(2582) = isogonal conjugate of X(2576)
X(2582) = isotomic conjugate of X(2580)


X(2583) = X(6)-ISOCONJUGATE OF X(1114)

Trilinears       bc/f(a,b,c) : ca/f(b,c,a) : ab/f(c,a,b), where f(a,b,c) is as at X(1114)
Barycentrics   1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b)

X(2583) lies on these lines: 1,2585   63,2579   72,2575   226,2593   293,1822   514,661   662,2577   2349,2580

X(2583) = isogonal conjugate of X(2577)
X(2583) = isotomic conjugate of X(2581)


X(2584) = X(4)-ISOCONJUGATE OF X(1113)

Trilinears        (cos A)/f(a,b,c) : (cos B)/f(b,c,a) : (cos C)/f(c,a,b), where f(a,b,c) is as at X(1113)
Barycentrics   (sin 2A)/f(a,b,c) : (sin 2B)/f(b,c,a) : (sin 2C)/f(c,a,b)

X(2584) lies on these lines: 1,2582   48,2578   73,2574   521,656

X(2584) = isogonal conjugate of X(2586)
X(2584) = crosspoint of X(1) and X(1822)
X(2584) = crosssum of X(1) and X(2588)


X(2585) = X(4)-ISOCONJUGATE OF X(1114)

Trilinears        (cos A)/f(a,b,c) : (cos B)/f(b,c,a) : (cos C)/f(c,a,b), where f(a,b,c) is as at X(1114)
Barycentrics    (sin 2A)/f(a,b,c) : (sin 2B)/f(b,c,a) : (sin 2C)/f(c,a,b)

X(2585) lies on these lines: 1,2583   48,2579   73,2575   521,656

X(2585) = isogonal conjugate of X(2587)
X(2585) = crosssum of X(1) and X(2589)
X(2585) = crosspoint of X(1) and X(1823)


X(2586) = X(3)-ISOCONJUGATE OF X(2574)

Trilinears        (sec A)f(a,b,c) : (sec B)f(b,c,a) : (sec C)f(c,a,b), where f(a,b,c) is as at X(1113)
Barycentrics   (tan A)f(a,b,c) : (tan B)f(b,c,a) : (tan C)f(c,a,b)

X(2586) lies on these lines: 1,29   108,1113   162,1822   240,2581

X(2586) = isogonal conjugate of X(2584)
X(2586) = cevapoint of X(1) and X(2588)


X(2587) = X(3)-ISOCONJUGATE OF X(2575)

Trilinears        (sec A)f(a,b,c) : (sec B)f(b,c,a) : (sec C)f(c,a,b), where f(a,b,c) is as at X(1114)
Barycentrics   (tan A)f(a,b,c) : (tan B)f(b,c,a) : (tan C)f(c,a,b)

X(2587) lies on these lines: 1,29   108,1114   162,1823   240,2580

X(2587) = isogonal conjugate of X(2585)


X(2588) = X(3)-ISOCONJUGATE OF X(1113)

Trilinears        (sec A)/f(a,b,c) : (sec B)/f(b,c,a) : (sec C)/f(c,a,b), where f(a,b,c) is as at X(1113)
Barycentrics   (tan A)/f(a,b,c) : (tan B)/f(b,c,a) : (tan C)/f(c,a,b)

The following ten points lie on a circle: X(i) for i = 11, 36, 65, 80, 108, 759, 1354, 1845, 2588, 2589. (Chris Van Tienhoven, Hyacinthos, January 4, 2011)

X(2588) lies on these lines: 1,2582   10,2592   11,1313   19,2578   65,2574   162,1822   240,522   759,1114   897,2581   1910,2577

X(2588) = isogonal conjugate of X(1822)
X(2588) = X(2586)-Ceva conjugate of X(1)
X(2588) = Mimosa transform of X(1113)


X(2589) = X(3)-ISOCONJUGATE OF X(1114)

Trilinears        (sec A)/f(a,b,c) : (sec B)/f(b,c,a) : (sec C)/f(c,a,b), where f(a,b,c) is as at X(1114)
Barycentrics   (tan A)/f(a,b,c) : (tan B)/f(b,c,a) : (tan C)/f(c,a,b)

X(2589) lies on these lines: 1,2583   10,2593   11,1312   19,2579   65,2575   162,1823   240,522   759,1113   897,2580   1910,2576

X(2589) = isogonal conjugate of X(1823)
X(2589) = Mimosa transform of X(1114)
X(2589) = X(2587)-Ceva conjugate of X(1)


X(2590) = X(2)-ISOCONJUGATE OF X(1381)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as at X(1381)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a) : c2/f(c,a,b)

X(2590) lies on these lines: 44,513   101,1381   1382,2291   2170,2446

X(2590) = X(i)-Ceva conjugate of X(j) for these (i,j): (57,2446), (101,2591), (1381,55)
X(2590) = X(2170)-cross conjugate of X(2591)
X(2590) = crosspoint of X(57) and X(1381)
X(2590) = crosssum of X(1) and X(2590)
X(2590) = crossdifference of every pair of points on line X(1)X(3308)


X(2591) = X(2)-ISOCONJUGATE OF X(1382)

Trilinears        a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as at X(1382)
Barycentrics   a2/f(a,b,c) : b2/f(b,c,a) : c2/f(c,a,b)

X(2591) lies on these lines: 44,513   101,1382   1381,2291   2170,2447

X(2591) = X(i)-Ceva conjugate of X(j) for these (i,j): (57,2447), (101,2590), (1382,55)
X(2591) = crosspoint of X(57) and X(1382)
X(2591) = crosssum of X(1) and X(2591)
X(2591) = X(2170)-cross conjugate of X(2590)
X(2591) = crossdifference of every pair of points on line X(1)X(3307)


X(2592) = X(6)-ISOCONJUGATE OF X(1822)

Trilinears        bc/f(a,b,c) : ca/f(b,c,a) : ab/f(c,a,b), where f(a,b,c) is as at X(1822)
Barycentrics   1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b)

X(2592) lies on the Kiepert hyperbola and these lines: 4,2574   10,2588   98,1114   226,2582   262,1346   297,525

X(2592) = isotomic conjugate of X(8115)
X(2592) = polar conjugate of X(1113)
X(2592) = trilinear pole of line X(523)X(1313)
X(2592) = pole wrt polar circle of trilinear polar of X(1113) (line X(6)X(1345))


X(2593) = X(6)-ISOCONJUGATE OF X(1823)

Trilinears        bc/f(a,b,c) : ca/f(b,c,a) : ab/f(c,a,b), where f(a,b,c) is as at X(1823)
Barycentrics   1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b)

X(2593) lies on the Kiepert hyperbola and these lines: 4,2575   10,2589   98,1113   226,2583   262,1347   297,525

X(2593) = isotomic conjugate of X(8116)
X(2593) = trilinear pole of line X(523)X(1312)
X(2593) = pole wrt polar circle of trilinear polar of X(1114) (line X(6)X(1344))
X(2593) = polar conjugate of X(1114)
X(2593) = {P*,U*}-harmonic conjugate of X(4), where P* and U* are the polar conjugates of the foci of the orthic inconic

leftri

Centers Related to Bicentric Pairs

rightri

Most of the centers X(2594) - X(2670) are defined in terms of bicentric pairs of points (e.g., the 1st and 2nd Brocard points).

For a list of bicentric pairs and associated terminology and properties, press the Tables button at the top of this page.


X(2594) = SUM OF PU(68)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos(C- A) + cos(B - A)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

The notation "PU(68)", as described in the Bicentric Pairs section accessible by the Tables button, abbreviates a bicentric pair of points P = p : q : r and U = u : v : w, where p, q, r have the form g(a,b,c), g(b,c,a), g(c,a,b) and u,v,w have the form h(a,b,c), h(b,c,a), h(c,a,b). "Sum of PU(68)" denotes the point

g(a,b,c) + h(a,b,c) : g(b,c,a) + h(b,c,a) : g(c,a,b) + h(c,a,b),


where (P, Q) are the bicentric pair (P(68),Q(68)) as listed in the Bicentric Pairs section.

X(2594) lies on these lines: 1,5   6,2197   35,500   42,65   55,581   56,181   59,60   319,1273   354,1066   523,2616   654,2598   692,3145   995,1388   1048,2595   1064,3057   1193,1319   1203,2078   1324,1437   1745,1836   1788,3240   2151,2307  2599,2611   2601,2603

X(2594) = isogonal conjugate of X(3615)
X(2594) = X(1)-Ceva conjugate of X(2599)
X(2594) = cevapoint of X(1) and X(1048)
X(2594) = crosspoint of X(1) and X(54)
X(2594) = crosssum of X(1) and X(5)
X(2594) = crossdifference of every pair of points on line X(654)X(1021)
X(2594) = PU(68)-harmonic conjugate of X(654)


X(2595) = CROSSSUM OF PU(68)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos(A - B) cos(A - C) + cos2(B - C)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2595) lies on these lines: 12,2607   54,1087   655,2597   1048,2594   2477,2606

X(2595) = isogonal conjugate of X(7134)
X(2595) = X(2603)-Ceva conjugate of X(2596)
X(2595) = {X(54),X(1087)}-harmonic conjugate of X(2596)
X(2595) = crosspoint of PU(69)


X(2596) = CROSSDIFFERENCE OF PU(68)

Trilinears    cos(A - B) cos(A - C) - cos2(B - C) : :
Barycentrics    (a - b - c) (a^8 - 2 a^6 (b^2 - b c + c^2) + a^4 (b^2 - b c + c^2)^2 - a^2 b c (b - c)^2 (b^2 + b c + c^2) + b c (b - c)^4 (b + c)^2) : :

Let L = X(1)X(5), the trilinear polar of X(655). Let M = X(654)X(1012), the trilinear polar of the cevapoint of X(1) and X(5). Let V = X(3615) = X(1)-Ceva conjugate of X(5) and W = X(3460) = X(5)-Ceva conjugate of X(1). The lines L, M, an VW concur in X(2596). (Randy Hutson, December 26, 2015)

X(2596) lies on these lines: 1,5   54,1087   215,2607   654,1021

X(2596) = isogonal conjugate of X(2597)
X(2596) = X(2603)-Ceva conjugate of X(2595)
X(2596) = crosssum of X(2601) and X(2602)

X(2596) = {X(54),X(1087)}-harmonic conjugate of X(2595)
X(2596) = perspector of conic {{A,B,C,PU(69),X(655),X(3615)}}

X(2597) = TRILINEAR POLE OF PU(68)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/[cos(A - B) cos(A - C) - cos2(B - C)]
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2597) lies on these lines: 1,2603   655,2595

X(2597) = isogonal conjugate of X(2596)
X(2597) = cevapoint of X(2601) and X(2602)


X(2598) = MIDPOINT OF PU(68)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = k(a,b,c) cos(C - A) + h(a,b,c) cos(B - A),
                        where h(a,b,c) = a cos(C - A) + b cos(A - B) + c cos(B - C),
                           and k(a,b,c) = a cos(B - A) + b cos(C - B) + c cos(A - C)

Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2598) lies on this line: 654,2594


X(2599) = SUM OF PU(69)

Trilinears    sec(C- A) + sec(B - A) : :

X(2599) lies on these lines: 1,54   5,1087   12,523   35,186   201,517   655,2595   2171,2260   2594,2611   2600,2604

X(2599) = X(1)-Ceva conjugate of X(2594)
X(2599) = crosspoint of X(1) and X(5)
X(2599) = crosssum of X(1) and X(54)
X(2599) = intersection of tangents at X(1) and X(5) to hyperbola {{A,B,C,X(1),X(5)}}
X(2599) = PU(69)-harmonic conjugate of X(2600)


X(2600) = DIFFERENCE OF PU(69)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sec(C- A) - sec(B - A)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2600) is the perspector of triangle ABC and the tangential triangle of the hyperbola that passes through the points A, B, C, X(1), and X(5). (Randy Hutson, 9/23/2011)

X(2600) lies on these lines: 44,513   2599,2604

X(2600) = crosssum of X(1) and X(2600)
X(2600) = intersection of antiorthic axis and line X(2081)X(2600) (trilinear polars of X(1) and X(5))
X(2600) = crossdifference of every pair of points on line X(1)X(54)
X(2600) = PU(69)-harmonic conjugate of X(2599)


X(2601) = CROSSSUM OF PU(69)

Trilinears    sec(A - B) sec(A - C) + sec2(B - C) : :

X(2601) lies on these lines: 1,2120   5,2602   2594,2603

X(2601) = X(2597)-Ceva conjugate of X(2602)
X(2601) = crosspoint of PU(68)


X(2602) = CROSSDIFFERENCE OF PU(69)

Trilinears    sec(A - B) sec(A - C) - sec2(B - C) : :

X(2602) lies on these lines: 1,54   5,2601

X(2602) = isogonal conjugate of X(2603)
X(2602) = X(2597)-Ceva conjugate of X(2601)
X(2602) = crosssum of X(2595) and X(2596)
X(2602) = perspector of conic {A,B,C,PU(68)}


X(2603) = TRILINEAR POLE OF PU(69)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/[sec(A - B) sec(A - C) - sec2(B - C)]
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2603) lies on these lines: 1,2597   2594,2601

X(2603) = isogonal conjugate of X(2602)
X(2603) = cevapoint of X(2595) and X(2596)


X(2604) = MIDPOINT OF PU(69)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = k(a,b,c) sec(C - A) + h(a,b,c) sec(B - A),
                        where h(a,b,c) = a sec(C - A) + b sec(A - B) + c sec(B - C),
                           and k(a,b,c) = a sec(B - A) + b sec(C - B) + c sec(A - C)

Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2604) lies on this line: 2599,2600


X(2605) = DIFFERENCE OF PU(71)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin(C- A) - sin(B - A)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2605) lies on these lines: 1,523   11,2616   110,1101   512,1326   513,663   667,834   1919,2483   2245,2609   2612,2614

X(2605) = midpoint of X(663) and X(1459)
X(2605) = isogonal conjugate of X(6742)
X(2605) = X(1)-Ceva conjugate of X(2611)
X(2605) = crosspoint of X(1) and X(110)
X(2605) = crosssum of X(1) and X(523)
X(2605) = crossdifference of every pair of points on line X(9)X(46)


X(2606) = CROSSSUM OF PU(70)

Trilinears    sin(A - B) sin(A - C) - sin2(B - C) : :

X(2606) lies on these lines: 1,5   110,1109   542,1365   2477,2595   2608,2611

X(2606) = crosspoint of PU(71)


X(2607) = CROSSDIFFERENCE OF PU(70)

Trilinears    sin(A - B) sin(A - C) + sin2(B - C) : :
Barycentrics    a^6 - a^4 (b^2 + c^2) + a^2 b^2 c^2 + b c (b^2 - c^2)^2 : :

X(2607) lies on these lines: 1,523   9,46   12,2595   110,1109   215,2596   229,409

X(2607) = isogonal conjugate of X(2608)
X(2607) = X(2)-Ceva conjugate of X(39051)
X(2607) = perspector of conic {{A,B,C,PU(71)}}
X(2607) = intersection of trilinear polars of PU(71)


X(2608) = TRILINEAR POLE OF PU(70)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/[sin(A - B) sin(A - C) + sin2(B - C)]
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2608) lies on these lines: 1,2614   2606,2611

X(2608) = isogonal conjugate of X(2607)
X(2608) = point of intersection, other than A, B, C, of 1st and 2nd bicentrics of the Kiepert hyperbola


X(2609) = MIDPOINT OF PU(70)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = k(a,b,c) sin(C - A) + h(a,b,c) sin(B - A),
                        where h(a,b,c) = a sin(C - A) + b sin(A - B) + c sin(B - C),
                           and k(a,b,c) = a sin(B - A) + b sin(C - B) + c sin(A - C)

Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2609) lies on this line: 2245,2605


X(2610) = SUM OF PU(71)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = csc(C - A) + csc(B - A),
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2610) is the perspector of triangle ABC and the tangential triangle of the hyperbola that passes through the points A, B, C, X(1), and X(12). (Randy Hutson, 9/23/2011)

X(2610) lies on this line: 44,513   115,125   918,1211   1213,1639   1983,2613   2611,2615

X(2610) = isogonal conjugate of X(37140)
X(2610) = cevapoint of X(523) and X(9276)
X(2610) = crossdifference of every pair of points on line X(1)X(60)
X(2610) = crosssum of X(i) and X(j) for these {i,j}: {1, 2610}, {110, 1983}, {2245, 2605}, {3737, 4282}
X(2610) = intersection of trilinear polars of X(1) and X(12)
X(2610) = X(2)-Ceva conjugate of X(38982)
X(2610) = perspector of hyperbola {{A,B,C,X(1),X(12)}}
X(2610) = PU(71)-harmonic conjugate of X(2611)


X(2611) = DIFFERENCE OF PU(71)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = csc(C - A) - csc(B - A),
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2611) lies on this line: 1,60   11,523   2310,2632   2594,2599   2606,2608   2610,2615

X(2611) = reflection of X(1109) in X(11)
X(2611) = isotomic conjugate of isogonal conjugate of X(17886)
X(2611) = X(1)-Ceva conjugate of X(2605)
X(2611) = crosspoint of X(1) and X(523)
X(2611) = crosssum of X(1) and X(110)
X(2611) = PU(71)-harmonic conjugate of X(2610)


X(2612) = CROSSSUM OF PU(71)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = csc(A - B) csc(A - C) - csc2(B - C)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2612) lies on these lines: 59,110   523,1101   2605,2614

X(2612) = crosspoint of PU(70)


X(2613) = CROSSDIFFERENCE OF PU(70)

Trilinears    csc(A - B) csc(A - C) + csc2(B - C) : :
Trilinears    (a^6 - a^4 (b^2 + c^2) + a^2 b^2 c^2 + b c (b^2 - c^2)^2)/(b^2 - c^2) : :

X(2613) lies on these lines: 1,60   523,1101   1983,2610

X(2613) = reflection of X(2612) in X(1101)
X(2613) = isogonal conjugate of X(2614)
X(2613) = X(2608)-Ceva conjugate of X(2612)
X(2613) = crosssum of X(2606) and X(2607)
X(2613) = perspector of conic {A,B,C,PU(70)}
X(2613) = intersection of trilinear polars of PU(70)


X(2614) = TRILINEAR POLE OF PU(71)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/[csc(A - B) csc(A - C) + csc2(B - C)]
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2614) lies on these lines: 1,2608   2605,2612

X(2614) = isogonal conjugate of X(2613)
X(2614) = cevapoint of X(2606) and X(2607)
X(2614) = X(245)-cross conjugate of X(1)


X(2615) = MIDPOINT OF PU(71)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = k(a,b,c) csc(C - A) + h(a,b,c) csc(B - A),
                        where h(a,b,c) = a csc(C - A) + b csc(A - B) + c csc(B - C),
                           and k(a,b,c) = a csc(B - A) + b csc(C - B) + c csc(A - C)

Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2615) lies on these lines: 11,115   2610,2611

X(2715) = anticomplement of X(36471)


X(2616) = POINT TANIA

Trilinears    tan(B - C) :

X(2616) lies on these lines: 1,2618   11,2605   523,2594   656,1955   1101,2617   2625,2626

X(2616) = isogonal conjugate of X(2617)
X(2616) = X(1109)-cross conjugate of X(1)
X(2616) = trilinear product of PU(73)


X(2617) = ISOGONAL CONJUGATE OF X(2616)

Trilinears    cot(B - C) : :

X(2617) lies on these lines: 1,564   59,110   63,1956   162,662   1101,2616   2619,2620

X(2617) = isogonal conjugate of X(2616)
X(2617) = X(1101)-Ceva conjugate of X(1)
X(2617) = X(2618)-cross conjugate of X(1)
X(2617) = X(110)-aleph conjugate of X(1)
X(2617) = trilinear product of PU(72)


X(2618) = DIFFERENCE OF PU(72)

Trilinears    tan(C - A) - tan(B - A) : :
Trilinears    sin(2B - 2C) : :
Trilinears    (csc 2A)(cot 2B - cot 2C) : :
Trilinears    (sec 2A)(tan 2B - tan 2C) : :

X(2618) lies on these lines: 1,2616   12,523   240,522   823,2633   1101,2625   2290,2622

X(2618) = isogonal conjugate of X(36134)
X(2618) = X(1)-Ceva conjugate of X(2616)
X(2618) = crosspoint of X(1) and X(2617)
X(2618) = crosssum of X(1) and X(2616)
X(2618) = crossdifference of every pair of points on line X(47)X(48)
X(2618) = perspector of anticevian triangle of X(48) and tangential triangle, wrt anticevian triangle of X(47), of bianticevian conic of X(1) and X(47)


X(2619) = CROSSSUM OF PU(72)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = tan(A - B) tan(A - C) - tan2(B - C)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2619) lies on these lines: 1109,2621   2617,2620

X(2619) = crosspoint of PU(73)


X(2620) = CROSSDIFFERENCE OF PU(72)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = tan(A - B) tan(A - C) + tan2(B - C)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2620) lies on these lines: 1,2616   47,48   2617,2619

X(2620) = isogonal conjugate of X(2621)
X(2620) = perspector of conic {{A,B,C,PU(73)}}


X(2621) = TRILINEAR POLE OF PU(72)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/[tan(A - B) tan(A - C) + tan2(B - C)]
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2621) lies on these lines: 1,2627   1109,2619

X(2621) = isogonal conjugate of X(2620)


X(2622) = MIDPOINT OF PU(72)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = k(a,b,c) tan(C - A) + h(a,b,c) tan(B - A),
                        where h(a,b,c) = a tan(C - A) + b tan(A - B) + c tan(B - C),
                           and k(a,b,c) = a tan(B - A) + b tan(C - B) + c tan(A - C)

Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2622) lies on this line: 2290,2618


X(2623) = BARYCENTRIC PRODUCT OF PU(73)

Trilinears    sin A tan(B - C) : :

X(2623) lies on these lines: 50,647   323,401

X(2623) = isogonal conjugate of X(14570)
X(2623) = crossdifference of every pair of points on line X(5)X(51)
X(2623) = X(115)-cross conjugate of X(6)
X(2623) = X(92)-isoconjugate of X(23181)


X(2624) = SUM OF PU(73)

Trilinears    cot(A - B) + cot(A - C) : :

Let A'B'C' be the excentral triangle, and let H be the hyperbola {{X(1),X(5),X(30),A',B',C'}}. Then X(2624) is the perspector wrt A'B'C' of H. (Randy Hutson, December 26, 2015)

Let H be the rectangular hyperbola passing through X(1), X(5), X(30) and the excenters (centered at X(476)); then X(2624) is the isogonal conjugate of the perspector of ABC and the tangential triangle, wrt excentral triangle, of H. (Randy Hutson, February 10, 2016)

X(2624) lies on these lines: 44,513   163,1983   1109,2628

X(2624) = isogonal conjugate of X(32680)
X(2624) = crosssum of X(1) and X(2624)
X(2624) = bicentric sum of PU(73)
X(2624) = crossdifference of every pair of points on line X(1)X(564)
X(2624) = polar conjugate of isotomic conjugate of isogonal conjugate of X(36129)
X(2624) = X(63)-isoconjugate of X(36129)
X(2624) = PU(73)-harmonic conjugate of X(1109)


X(2625) = CROSSSUM OF PU(73)

Trilinears    cot(A - B) cot(A - C) - cot2(B - C) : :

X(2625) lies on these lines: 1101,2618   2616,2626

X(2625) = X(2621)-Ceva conjugate of X(2626)
X(2625) = crosspoint of PU(72)


X(2626) = CROSSDIFFERENCE OF PU(73)

Trilinears    cot(A - B) cot(A - C) + cot2(B - C) : :

X(2626) lies on these lines: 1,564   163,1983   2616,2625

X(2626) = isogonal conjugate of X(2627)
X(2626) = X(2621)-Ceva conjugate of X(2625)

X(2626) = perspector of conic {{A,B,C,PU(72)}}

X(2627) = TRILINEAR POLE OF PU(73)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/[cot(A - B) cot(A - C) + cot2(B - C)]
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2627) lies on these lines: 1,2621   110,1296   1101,2618

X(2627) = isogonal conjugate of X(2626)


X(2628) = MIDPOINT OF PU(73)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = k(a,b,c) cot(C - A) + h(a,b,c) cot(B - A),
                        where h(a,b,c) = a cot(C - A) + b cot(A - B) + c cot(B - C),
                           and k(a,b,c) = a cot(B - A) + b cot(C - B) + c cot(A - C)

Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2628) lies on this line: 1109,2624


X(2629) = CROSSSUM PU(74)

Trilinears         f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (tan A - tan B)(tan A - tan C) - (tan B - tan C)2,
Barycentrics    a*(a^8 - a^6*b^2 - 2*a^4*b^4 + 3*a^2*b^6 - b^8 - a^6*c^2 + 5*a^4*b^2*c^2 - 3*a^2*b^4*c^2 - b^6*c^2 - 2*a^4*c^4 - 3*a^2*b^2*c^4 + 4*b^4*c^4 + 3*a^2*c^6 - b^2*c^6 - c^8) : :

X(2629) lies on the conic TCX(1054) and these lines: {1, 162}, {9, 2634}, {63, 1956}, {191, 1047}, {293, 1707}, {610, 2247}, {656, 9390}, {896, 1955}, {1046, 1771}, {1490, 5974}, {1768, 2636}, {1954, 6508}, {2631, 16562}, {2939, 9324}, {9355, 21381}, {9359, 16575}

X(2629) = isogonal conjugate of X(9390)
X(2629) = X(656)-Ceva conjugate of X(1)
X(2629) = X(2633)-cross conjugate of X(1)
X(2629) = X(i)-aleph conjugate of X(j) for these (i,j): (1,656), (2,1577)
X(2629) = crosspoint of PU(75)


X(2630) = MIDPOINT OF PU(74)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = k(a,b,c)(tan C - tan A) + h(a,b,c)(tan B - tan A),
                        where h(a,b,c) = a(tan C - tan A) + b(tan A - tan B) + c(tan B - tan C),
                           and k(a,b,c) = a(tan B - tan A) + b(tan C - tan B) + c(tan A - tan C)

Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2630) lies on this line: 44,513


X(2631) = SUM OF PU(75)

Trilinears    1/(tan C - tan A) + 1/(tan B - tan A) : :
Trilinears    (tan B - tan C) (tan B + tan C - 2 tan A) : :

X(2631) lies on these lines: 44,513   162,163   2632,2634

X(2631) = crosssum of X(1) and X(2631)
X(2631) = isogonal conjugate of polar conjugate of X(36035)
X(2631) = X(92)-isoconjugate of X(36034)
X(2631) = PU(75)-harmonic conjugate of X(2632)


X(2632) = DIFFERENCE OF PU(75)

Trilinears    1/(tan C - tan A) - 1/(tan B - tan A) : :
Trilinears    (b2 - c2)2(b2 + c2 - a2)2     (M. Iliev, 5/13/07)
Trilinears    (tan B - tan C)^2 : :
Trilinears    (sin 2B - sin 2C)^2 : :
Trilinears    cos^2 A sin^2(B - C) : :
Trilinears    [b cos(C - A) - c cos(B - A)]^2 : :
Trilinears    (distance from A to Euler line)2 : :

X(2632) lies on the incentral inellipse (i.e., Hofstadter ellipse E(1/2)) and these lines: 1,162   48,2157   63,293   92,1956   122,1367   336,799   520,1364   1096,2184   2292,2658   2310,2611   2631,2634

X(2632) = isogonal conjugate of X(24000)
X(2632) = isotomic conjugate of X(23999)
X(2632) = X(1)-Ceva conjugate of X(652)
X(2632) = crosspoint of X(i) and X(j) for these (i,j): (1,656), (2584,2585)
X(2632) = crosssum of X(1) and X(162)
X(2632) = trilinear pole wrt incentral triangle of line X(1)X(19)
X(2632) = crossdifference of every pair of points on line X(162)X(163)
X(2632) = trilinear square of X(656)
X(2632) = PU(75)-harmonic conjugate of X(2631)


X(2633) = CROSSSUM OF PU(75)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/[(tan A - tan B)(tan A - tan C)] - 1/(tan B - tan C)2
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2633) lies on these lines: 162,656   823,2618

X(2633) = isogonal conjugate of X(9392)
X(2633) = X(1)-Ceva conjugate of X(162)
X(2633) = crosspoint of X(1) and X(2629)
X(2633) = crosspoint of PU(74)


X(2634) = MIDPOINT OF PU(75)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = k(a,b,c)/(tan C - tan A) + h(a,b,c)/(tan B - tan A),
                        where h(a,b,c) = a/(tan C - tan A) + b/(tan A - tan B) + c/(tan B - tan C),
                           and k(a,b,c) = a/(tan B - tan A) + b/(tan C - tan B) + c/(tan A - tan C)

Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2634) lies on these lines: 9,2629   2631,2632


X(2635) = SUM OF PU(76)

Trilinears    sec B + sec C - 2 sec A : :
Trilinears    a^4 (b + c) - a^3 (b^2 + c^2) - a^2 (b - c)^2 (b + c) + a (b^2 - c^2)^2 - 2 b c (b - c)^2 (b + c) : :

X(2635) lies on these lines: 1,4   11,1458   42,1836   44,513   209,2390   329,2318   411,1935   651,1936   774,1898   823,2659   908,1818   971,1465   1042,1837   1044,1788   1156,1937   1254,1858   1427,1864   1758,1776

X(2635) = crosssum of X(i) and X(j) for these (i,j): (1,2635), (2637,2638)
X(2635) = bicentric sum of PU(76)
X(2635) = PU(76)-harmonic conjugate of X(652)


X(2636) = CROSSSUM OF PU(76)

Trilinears    (sec A - sec B)(sec A - sec C) - (sec B - sec C)2

X(2636) lies on these lines: 1,653   3,1047   46,296   282,1721   1155,2655   1768,2629

X(2636) = X(652)-Ceva conjugate of X(1)
X(2636) = X(1)-aleph conjugate of X(652)
X(2636) = crosspoint of PU(77)


X(2637) = SUM OF PU(77)

Trilinears    1/(sec C - sec A) + 1/(sec B - sec A): :

X(2637) lies on these lines: 44,513   653,1020

X(2637) = crosssum of X(1) and X(2637)
X(2637) = PU(77)-harmonic conjugate of X(2638)
X(2637) = isogonal conjugate of isotomic conjugate of isogonal conjugate of X(36140)


X(2638) = DIFFERENCE OF PU(77)

Trilinears    1/(sec C - sec A) - 1/(sec B - sec A) : :

X(2638) lies on the incentral inellipse (i.e., Hostadter ellipse E(1/2)) and these lines: 1,653   3,296   29,2656   31,2188   48,692   1984,2310   2646,2658

X(2638) = isogonal conjugate of X(24032)
X(2638) = X(1)-Ceva conjugate of X(652)
X(2638) = crosspoint of X(1) and X(652)
X(2638) = crosssum of X(1) and X(653)
X(2638) = trilinear pole wrt incentral triangle of line X(1)X(4)
X(2638) = PU(77)-harmonic conjugate of X(2637)


X(2639) = CROSSSUM OF PU(77)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/[(sec A - sec B)(sec A - sec C)] - 1/(sec B - sec C)2
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2639) lies on this line: 652,653

X(2639) = crosspoint of PU(76)


X(2640) = CROSSSUM OF PU(78)

Trilinears    (cot A - cot B)(cot A - cot C) - (cot B - cot C)2 : :
Trilinears    a4 - b4 - c4 + 3b2c2 -a2b2 - a2c2 : :      (M. Iliev, 5/13/07)

X(2640) lies on these lines: 1,662   3,1247   9,2645   19,1581   45,846   610,1910   1045,1781   1580,2173   1707,2247

X(2640) = crosspoint of PU(79)


X(2641) = MIDPOINT OF PU(78)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = k(a,b,c)(cot C - cot A) + h(a,b,c)(cot B - cot A),
                        where h(a,b,c) = a(cot C - cot A) + b(cot A - cot B) + c(cot B - cot C),
                           and k(a,b,c) = a(cot B - cot A) + b(cot C - cot B) + c(cot A - cot C)

Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2641) lies on these lines: 44,513   1914,2651   1931,2642


X(2642) = SUM OF PU(79)

Trilinears    1/(cot C - cot A) + 1/(cot B - cot A) : :
Trilinears    (b2 - c2)(2a2 - b2 - c2) : :      (M. Iliev, 5/13/07)
Trilinears    (cot B - cot C)(2 cot A - cot B - cot C) : :      (R. Hutson, 8/19/19)

X(2642) lies on these lines: 44,513   163,662   665,2092   900,1213   1910,2159   1931,2641

X(2642) = isogonal conjugate of X(36085)
X(2642) = PU(79)-harmonic conjugate of X(2643)


X(2643) = DIFFERENCE OF PU(79)

Trilinears    1/(cot C - cot A) - 1/(cot B - cot A) : :
Trilinears    (b2 - c2)2     (M. Iliev, 5/13/07)
Trilinears    (cot B - cot C)^2 : :
Trilinears    (cos 2B - cos 2C)^2 : :
Trilinears    (distance from A to line X(2)X(6))2 : :

X(2643) lies on the incentral inellipse (i.e., Hofstadter ellipse E(1/2)) and these lines: 1,662   19,560   31,2153   37,2054   65,2652   75,1581   244,2611   267,849   523,1086   678,1962   872,2171   922,2173   1098,1247   1109,2632   1580,2244   1953,1964   1959,2234   1931,2641

X(2643) = reflection of X(4094) in X(37)
X(2643) = complement of X(21295)
X(2643) = trilinear pole wrt incentral triangle of line X(1)X(21)
X(2643) = incentral isotomic conjugate of X(512)
X(2643) = crossdifference of every pair of points on line X(163)X(662)
X(2643) = antipode in the incentral inellipse of X(4094)
X(2643) = trilinear square of X(661)
X(2643) = PU(79)-harmonic conjugate of X(2642)


X(2644) = CROSSSUM OF PU(79)

Trilinears    1/[(cot A - cot B)(cot A - cot C)] - 1/(cot B - cot C)2 : :

X(2644) lies on these lines: 661,662   1776,2651   1931,2641

X(2644) = crosspoint of PU(78)


X(2645) = MIDPOINT OF PU(79)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = k(a,b,c)/(cot C - cot A) + h(a,b,c)/(cot B - cot A),
                        where h(a,b,c) = a/(cot C - cot A) + b/(cot A - cot B) + c/(cot B - cot C),
                           and k(a,b,c) = a/(cot B - cot A) + b/(cot C - cot B) + c/(cot A - cot C)

X(2645) lies on these lines: 9,2640   2642,2643


X(2646) = SUM OF PU(80)

Trilinears    2 cos A + cos B + cos C : :

In the place of a triangle ABC, let I = X(1) = incenter, and let
A'B'C' = intouch triangle;
Ma = midpoint of segment AI;
La = MaA', and define Lb and Lc cyclically;
Ra = reflection of La in AI, and define Bb and Rc cyclically.
The lines Ra, Rb, Rc concur in X(2646). (Angel Montesdeoca, October 9, 2021)

X(2646) lies on these lines: 1,3   2,1837   6,1732   8,2320   11,214   12,515   20,1836   21,60   24,1905   28,1859   29,243   33,1900   37,48   41,1212   58,2361   72,993   73,820   78,210   104,943   140,1737   154,968   212,1468   224,1001   284,1731   355,498   377,497   405,997   409,662   501,2360   518,2330   550,1770   650,2649   851,2654   991,1456   1100,2245   1104,1193   1152,2362   1201,1279   1476,2346   1831,2355   1848,1852   2638,2658  

X(2646) = midpoint of X(1) and X(35)
X(2646) = X(1)-Ceva conjugate of X(2650)
X(2646) = crosspoint of X(1) and X(21)
X(2646) = crosssum of X(1) and X(65)
X(2646) = {X(1),X(3)}-harmonic conjugate of X(65)
X(2646) = homothetic center of intouch triangle and medial triangle of 2nd circumperp triangle
X(2646) = PU(80)-harmonic conjugate of X(650)


X(2647) = CROSSSUM OF PU(80)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (cos A + cos B)(cos A + cos C) +(cos B + cos C)2
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2647) lies on these lines: 1,4   21,1254   65,1046   651,2648   894,2263

X(2647) = crosspoint of PU(81)


X(2648) = TRILINEAR POLE OF PU(80)

Trilinears    1/[(cos A + cos B)(cos A + cos C) - (cos B + cos C)2]
Trilinears    (a - b - c)/(a^3 + b^3 + c^3 - 2 a^2 (b + c) + a b c) : :

X(2648) lies on these lines: 1,2652   4,1046   21,2310   80,1757   651,2647   851,1758   896,1156

X(2648) = isogonal conjugate of X(1758)


X(2649) = MIDPOINT OF PU(80)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = k(a,b,c)(cos C + cos A) + h(a,b,c)(cos B + cos A),
                        where h(a,b,c) = a(cos C + cos A) + b(cos A + cos B) + c(cos B + cos C),
                           and k(a,b,c) = a(cos B + cos A) + b(cos C + cos B) + c(cos A + cos C)

Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2649) lies on this line: 650,2646


X(2650) = SUM OF PU(81)

Trilinears    1/(cos A + cos B) + 1/(cos A + cos C) : :

X(2650) lies on these lines: 1,21   6,2294   40,2177   42,65   72,756   78,750   145,740   221,2099   244,942   326,969   354,1201   500,517   512,764   526,1769   651,2647   661,2653   1002,1432   1104,2308   1409,2171   1419,2263   1480,1482   1858,2310

X(2650) = reflection of X(2292) in X(1)
X(2650) = X(1)-Ceva conjugate of X(2646)
X(2650) = crosspoint of X(1) and X(65)
X(2650) = crosssum of X(1) and X(21)
X(2650) = trilinear pole, wrt incentral triangle, of orthic axis
X(2650) = anticomplement, wrt incentral triangle, of X(2292)
X(2650) = bicentric sum of PU(81)
X(2650) = PU(81)-harmonic conjugate of X(661)


X(2651) = CROSSDIFFERENCE OF PU(81)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/[(cos A + cos B)(cos A + cos C)] - 1/(cos B + cos C)2
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2651) lies on these lines: 1,21   65,409   185,411   243,648   296,416   425,653   518,643   661,1021   662,1155

X(2651) = isogonal conjugate of X(2652)
X(2651) = perspector of conic {{A,B,C,PU(80)}}


X(2652) = TRILINEAR POLE OF PU(81)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos B + cos C)/(cos2B + cos2C - cos2A + cos B cos C - cos C cos A - cos A cos B)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2652) lies on these lines: 1,2648   3,1247   19,2305   243,415   409,662   759,1326   897,1155   1910,2182

X(2652) = isogonal conjugate of X(2651)


X(2653) = MIDPOINT OF PU(81)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = k(a,b,c)/(cos C + cos A) + h(a,b,c)/(cos B + cos A),
                        where h(a,b,c) = a/(cos C + cos A) + b/(cos A + cos B) + c/(cos B + cos C),
                           and k(a,b,c) = a/(cos B + cos A) + b/(cos C + cos B) + c/(cos A + cos C)

Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2653) lies on these lines: 661,2650   2092,2183


X(2654) = SUM OF PU(82)

Trilinears    2 sec A + sec B + sec C

X(2654) lies on these lines: 1,4   8,2318   11,1193   21,1936   37,1953   42,1837   65,774   201,517   212,405   410,823   603,1012   652,2657   851,2646   1042,1836   1046,1776   1065,1067   1858,2310

X(2654) = X(1)-Ceva conjugate of X(2658)
X(2654) = crosspoint of X(1) and X(29)
X(2654) = crosssum of X(1) and X(73)
X(2654) = bicentric sum of PU(82)
X(2654) = PU(82)-harmonic conjugate of X(652)
X(2654) = intersection of tangents at X(1) and X(29) to hyperbola {{A,B,C,X(1),X(3),X(29),X(102)}}


X(2655) = CROSSDIFFERENCE OF PU(82)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (sec A + sec B)(sec A + sec C) - (sec B + sec C)2
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2655) lies on these lines: 1,4   65,1047   109,1955   296,851   412,820   1155,2636   1248,1935

X(2655) = isogonal conjugate of X(2656)
X(2655) = X(296)-Ceva conjugate of X(1)
X(2655) = perspector of conic {{A,B,C,PU(83)}}}


X(2656) = TRILINEAR POLE OF PU(82)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/[(sec A + sec B)(sec A + sec C) - (sec B + sec C)2]
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2656) lies on these lines: 1,2660   3,1047   29,2638   296,851   653,2658   1795,1955

X(2656) = isogonal conjugate of X(2655)
X(2656) = X(243)-cross conjugate of X(1)


X(2657) = MIDPOINT OF PU(82)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = k(a,b,c)(sec C + sec A) + h(a,b,c)(sec B + sec A),
                        where h(a,b,c) = a(sec C + sec A) + b(sec A + sec B) + c(sec B + sec C),
                           and k(a,b,c) = a(sec B + sec A) + b(sec C + sec B) + c(sec A + sec C)

Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2657) lies on these lines: 37,2190   652,2654


X(2658) = SUM OF PU(83)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/(sec C + sec A) + 1/(sec B + sec A),
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2658) lies on these lines: 1,29   42,65   653,2656   822,2661   1108,1201   2292,2632   2638,2646

X(2658) = X(1)-Ceva conjugate of X(2654)
X(2658) = crosspoint of X(1) and X(73)
X(2658) = crosssum of X(1) and X(29)
X(2658) = PU(83)-harmonic conjugate of X(822)


X(2659) = CROSSDIFFERENCE OF PU(83)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/[(sec A + sec B)(sec A + sec C)] - 1/(sec B + sec C)2
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2659) lies on these lines: 1,29   73,410   185,412   415,1937   648,1936   822,1021   823,2635

X(2659) = isogonal conjugate of X(2660)
X(2659) = perspector of conic {{A,B,C,PU(82)}}


X(2660) = TRILINEAR POLE OF PU(83)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (sec B + sec C)/(sec2B + sec2C - sec2A + sec B sec C - sec A sec B - sec A sec C)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2660) lies on these lines: 1,2656   4,1248   410,823   416,1936

X(2660) = isogonal conjugate of X(2659)


X(2661) = MIDPOINT OF PU(83)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = k(a,b,c)/(sec C + sec A) + h(a,b,c)/(sec B + sec A),
                        where h(a,b,c) = a/(sec C + sec A) + b/(sec A + sec B) + c/(sec B + sec C),
                           and k(a,b,c) = a/(sec B + sec A) + b/(sec C + sec B) + c/(sec A + sec C)

Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2661) lies on this line: 822,2658


X(2662) = CROSSSUM OF PU(82)

Trilinears    (sec A + sec B)(sec A + sec C) + (sec B + sec C)2

X(2662) lies on these lines: 1,3   29,2655   73,1047   653,2656

X(2662) = crosspoint of PU(83)



X(2663) = CROSSSUM OF PU(84)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1/a + 1/b)(1/a + 1/c) + (1/b + 1/c)2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2663) lies on these lines: 1,6   42,894   86,872   190,2665   291,2092   314,1215

X(2663) = crosspoint of PU(85)


X(2664) = CROSSDIFFERENCE OF PU(84)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1/a + 1/b)(1/a + 1/c) - (1/b + 1/c)2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2664) lies on these lines: 1,2   9,1740   37,1045   86,872   87,1743   101,1580   171,213   190,2234   238,2110   274,1215   292,2238   660,1757   980,984   1376,2176

X(2664) = isogonal conjugate of X(2665)
X(2664) = X(2)-Ceva conjugate of X(39056)
X(2664) = perspector of conic {{A,B,C,PU(85)}}


X(2665) = TRILINEAR POLE OF PU(84)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[bc(a + b)(a + c) - a2(b + c)2]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2665) lies on these lines: 1,1655   6,1045   43,2279   190,2663   292,2238   1438,1580

X(2665) = isogonal conjugate of X(2664)


X(2666) = MIDPOINT OF PU(84)

Trilinears    k(a,b,c)(1/c + 1/a) + h(a,b,c)(1/b + 1/a) : : , where h(a,b,c) = 3 + b/a + c/b + a/c and k(a,b,c) = 3 + a/b + b/c + c/a

X(2666) lies on the line {649,3720}

X(2667) = SUM OF PU(85)

Trilinears     ca/(c + a) + ba/(b + a) : :

X(2667) lies on these lines: 1,75   37,42   55,2305   190,2663   192,714   284,922   518,2292   798,2670   1100,2309   2293,2650   2294,2643

X(2667) = trilinear pole, wrt incentral triangle, of Lemoine axis
X(2667) = incentral isotomic conjugate of X(2292)
X(2667) = complement, wrt incentral triangle, of X(3728)
X(2667) = anticomplement, wrt incentral triangle, of X(37)
X(2667) = bicentric sum of PU(85)
X(2667) = PU(85)-harmonic conjugate of X(798)


X(2668) = CROSSSUM OF PU(85)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2bc/[(a + b)(a + c)] + [bc/(b + c)]2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2668) lies on these lines: 2,6   42,873   171,1509   799,2107   1403,1434


X(2669) = CROSSDIFFERENCE OF PU(85)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2bc/[(a + b)(a + c)] - [bc/(b + c)]2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2669) lies on this line: 1,75   42,873   99,238   798,1019   799,899   1434,1469

X(2669) = isogonal conjugate of X(2107)
X(2669) = X(2)-Ceva conjugate of X(39057)
X(2669) = perspector of conic {A,B,C,PU(84)}


X(2670) = MIDPOINT OF PU(85)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = k(a,b,c)ca/(c + a) + h(a,b,c)ba/(b + a),
                        where h(a,b,c) = ca2/(c + a) + ab2/(a + b) + bc2/(b + c)
                            and k(a,b,c) = ba2/(b + a) + cb2/(c + b) + ac2/(a + c)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2670) lies on these lines: 511,2653   798,2667   1084,1100


X(2671) = 1st GOLDEN ARBELOS POINT

Trilinears    1/(2 cos A + τ2sin A) : :, where τ = (1 + sqrt(5))/2 = golden ratio
Trilinears    sec[A - arccot(3 - 51/2)] : :    (M. Iliev, 5/13/07)
Barycentrics   (S-(sqrt(5)-3)*SB)*(S-(sqrt(5)-3)*SC) : :   (C. Lozada, 7/13/19)

Suppose UV is a segment and 1/2 < s < 1. Let P be the point on UV satisfying |UP|/|VP| = s. Let O be a semicircle having diameter UV. Let H be the semicircle having diameter VP, on the same side of UV as O. Let K be the semicircle having diameter UP, on the same side of UP as O. The three circular arcs form an arbelos, R.

Let L be the line through P perpendicular to BC. The circle tangent to semicircles O and K and line L is the s-Archimedean circle of the arbelos R. Now continuing with the variable s, suppose ABC is an arbitrary triangle. Let A' be the center of the s-Archimedean circle of the outward arbelos on segment BC, and define B' and C' cyclically.

At the Eleventh International Conference on Fibonacci Numbers and Their Applications (TU Braunschweig, Germany, July 2004), Zvonko Cerin established that the lines AA', BB', CC' concur if and only if s = τ. The point of concurrence is X(2671).

Trilinears found by Peter J. C. Moses, July, 2004. For a general account of the arbelos, visit

MathWorld. If you have The Geometer's Sketchpad, you can view 1st Golden Arbelos Point.

X(2671) lies on the Kiepert hyperbola and these lines: 2,2674   6,2672

X(2671) = isogonal conjugate of X(2673)


X(2672) = 2nd GOLDEN ARBELOS POINT

Trilinears    1/(2 cos A - τ2sin A) : : , where τ = (1 + sqrt(5))/2 = golden ratio
Trilinears    sec[A + arccot(3 - 51/2)]     (M. Iliev, 5/13/07)
Barycentrics   (S+(sqrt(5)-3)*SB)*(S+(sqrt(5)-3)*SC) : :     (C. Lozada, 7/13/19)

In the construction of X(2671), if A' is the center of the s-Archimedean circle of the inward arbelos on segment BC, and B' and C' are defined cyclically, then A'A, B'B, C'C concur in X(2672).

X(2672) lies on the Kiepert hyperbola and these lines: 2,2673   6,2671

X(2672) = isogonal conjugate of X(2674)


X(2673) = ISOGONAL CONJUGATE OF X(2671)

Trilinears    2 cos A + τ2sin A : : , where τ = (1 + sqrt(5))/2 = golden ratio
Trilinears    cos[A - arccot(3 - 51/2)] : :    (M. Iliev, 5/13/07)

Barycentrics   (S-(sqrt(5)-3)*SA)*(SB+SC) : :    (C. Lozada, 7/13/19)

X(2673) lies on these lines: 2,2672   3,6

X(2673) = isogonal conjugate of X(2671)
X(2673) = inverse-in-Brocard-circle of X(2674)
X(2673) = radical center of Lucas(τ2) circles, where τ = (1 + sqrt(5))/2 = golden ratio


X(2674) = ISOGONAL CONJUGATE OF X(2672)

Trilinears    2 cos A -τ2sin A : :, where τ = (1 + sqrt(5))/2 = golden ratio
Trilinears    cos[A + arccot(3 - 51/2)] : :    (M. Iliev, 5/13/07)
Barycentrics   (S+(sqrt(5)-3)*SA)*(SB+SC)    (C. Lozada, 7/13/19)

X(2674) lies on these lines: 2,2671   3,6

X(2674) = isogonal conjugate of X(2672)
X(2674) = inverse-in-Brocard-circle of X(2673) X(2674) = radical center of Lucas(-τ2) circles, where τ = (1 + sqrt(5))/2 = golden ratio


X(2675) = X(2671)X(2673)∩X(2672)X(2674)

Trilinears    16R2(cos B cos C - cos A) + (3τ + 2)bc : : , where τ = (1 + sqrt(5))/2 = golden ratio
Trilinears    cos B cos C - h cos A, where h = [5 - 4(51/2]/15     (M. Iliev, 5/13/07)

Barycentrics   12*(S^2+SB*SC)*sqrt(5)+7*S^2+68*SB*SC : :    (C. Lozada, 7/13/19)

As a point on the Euler line, X(2675) has Shinagawa coefficients (h, -h - 1).

X(2675) lies on these lines: 2,3   2671,2673   2672,2674

This point of intersection and the fact that it lies on the Euler line were contributed by Peter J. C. Moses, August, 31, 2004.


X(2676) = (EULER LINE)∩X(2671)X(2672)

Trilinears    16R2cos B cos C + (3τ + 2)bc : : , where τ = (1 + sqrt(5))/2 = golden ratio
Trilinears    cos(B - C) - h cos A, where h = [5 - 4*51/2]/15 : :      (M. Iliev, 5/13/07)
Barycentrics   6*(S^2+SB*SC)*sqrt(5)+13*S^2+2*SB*SC : :    (C. Lozada, 7/13/19)

As a point on the Euler line, X(2676) has Shinagawa coefficients (h - 1, -h - 1).

X(2676) lies on these lines: 2,3   6,2671

Contributed by Peter J. C. Moses, August, 31, 2004.

leftri

RS Points and SR Points

rightri

Centers X(2677) to X(2770) are examples of Rigby-Simson points and Simson-Rigby points. These two types of points are discussed in

Ross Honsberger, Episodes in Nineteenth and Twentieth Century Euclidean Geometry, Mathematical Association of America, 1995. Chapter 11: The Orthopole, pages 124-136.

Specifically, on pages 132-136, Honsberger defines the "Rigby Point," in honor of John Rigby, as the orthopole of the six sides of two triangles, all of whose vertices lie on a circle, and he notes that this orthopole lies on the six Simson lines of the vertices.

Now suppose that P = p : q : r (trilinears) and U = u : v : w are distinct points on the circumcircle of a triangle ABC. Their Simson lines meet in a point X which is here called the Rigby-Simson point of P and U, denoted by RS(P,U). That is, RS(P,U) is the orthopole of line PU with respect to triangle ABC.

On the circumcircle, there is a unique point K whose Simson line is perpendicular to line PU, and whose Simson line also passes through RS(P,U). The point K is here called the Simson-Rigby point of P and U, denoted by SR(P,U). Note that SR(P,U) = Λ(P,U)

If you have The Geometer's Sketchpad, you can view RS(P,U) and SR(P,U).

Continuing with contributions of Peter Moses during October, 2004, trilinears for RS(P,U) are

f(a,b,c,p,q,r,u,v,w) : f(b,c,a,q,r,p,v,w,u) : f(c,a,b,r,p,q,w,u,v), where

f(a,b,c,p,q,r,u,v,w) = 1/[a2r2v2(q cos A - p cos B)(w cos A - u cos C)] - 1/[a2q2w2(r cos A - p cos C)(v cos A - u cos B)],


and trilinears for SR(P,U), reckoned as the point of intersection of lines P-to-U - 1 and U-to-P - 1, are

(rv - qw)/(qv - rw) : (pw - ru)/(rw - pu) : (qu - pv)/(pu - qv).


In the following list, the appearance of I, J, K means that RS(X(i),X(j)) = X(K):

74,98,691    74,99,842    74,110,477    74,1113,125    74,1114,125
98,1379,115    98,1380,115
99,110,691
100,101,1308    100,104,953    100,110,1290
101,109,1521    101,929,1521
104,1381    104,1382
110,112,1554    110,476,1553    110,935,1554
112,935,1554
1113,1114,125
1379,1380,115
1381,1382,11

In the next list (from P. Moses, Oct. 15, 2004), the appearance of I, J, K means that SR(X(i),X(j)) = X(K):

74,98,691    74,99,842    74,104,1290    74,110,477    74,841,1302    74,935,1297    74,1113,1114    74,1141,1291    74,1294,1304
98,110,842    98,843,1296    98,1379,1380
99,110,691    99,111,843    99,1379,1379   & 99,1380,1380    99,2378,2379
100,101,1308    100,104,953    100,105,840    100,109,2222    100,110,1290    100,1381,1381    100,1382,1382
101,109,929
102,103,929    102,104,2222    103,104,1308
104,840,1292    104,1381,1382
107,110,1304
110,112,935    110,827,1287    110,930,1291    110,1113,1113    110,1114,1114


X(2677) = RS(X(74), X(100))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(74), U = X(100)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2677) lies on these lines: 119,517   125,523   673,2481


X(2678) = RS(X(74), X(101))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(74), U = X(101)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2678) lies on these lines: 118,516   125,523

X(2678) = reflection of X(2685) in X(188)


X(2679) = RS(X(98), X(99))

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 - c2)2(a4 - b2c2)(b4 + c4 - a2b2 - a2c2)      (M. Iliev, 5/13/07)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2679) is the center of the rectangular hyperbola that passes through the points A, B, C, and X(32).

X(2679) lies on the nine-point circle, the cevian circle of X(511), and on these lines: 2,805   4,2698   114,325   115,512

X(2679) = midpoint of X(4) and X(2698)
X(2679) = complement of X(805)
X(2679) = complementary conjugate of X(804)
X(2679) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,2491), (4,804)
X(2679) = crosspoint of X(511) and X(512)
X(2679) = crosssum of X(98) and X(99)
X(2679) = perspector of circumconic centered at X(2491)
X(2679) = center of circumconic that is locus of trilinear poles of lines passing through X(2491)
X(2679) = crossdifference of every pair of points on line X(2421)X(2422)


X(2680) = RS(X(98), X(100))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(98), U = X(100)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2680) lies on these lines: 115,512   119,517

X(2680) = reflection of X(2683) in X(119)


X(2681) = RS(X(98), X(101))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(98), U = X(101)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2681) lies on these lines: 115,512   118,516

X(2681) = reflection of X(2684) in X(118)


X(2682) = RS(X(98), X(110))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(98), U = X(110)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2682) lies on these lines: 30,113   115,512   125,1499

X(2682) = orthopole of line X(2)X(98)


X(2683) = RS(X(99), X(100))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(99), U = X(100)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2683) lies on these lines: 114,325   119,517

X(2683) = reflection of X(2680) in X(119)


X(2684) = RS(X(99), X(101))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(99), U = X(101)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2684) lies on these lines: 114,325   118,516

X(2684) = reflection of X(2681) in X(118)


X(2685) = RS(X(101), X(110))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(101), U = X(110)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2685) lies on these lines: 30,113   118,516

X(2685) = reflection of X(2678) in X(118)


X(2686) = RS(X(110), X(111))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(110), U = X(111)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2686) lies on this line: 30,113


X(2687) = SR(X(74), X(100))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(74), U = X(100)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2687) lies on the circumcircle and these lines: 3,1290   4,2766   21,476   28,1304   30,100   35,2222   65,2720   74,513   101,2173   104,523   107,2074   108,186   109,484   110,517   376,2691   1006,2690

X(2687) = reflection of X(1290) in X(3)
X(2687) = isogonal conjugate of X(2771)
X(2687) = X(2778)-cross conjugate of X(4)
X(2687) = reflection of X(104) in the Euler line
X(2687) = reflection of X(74) in line X(1)X(3)


X(2688) = SR(X(74), X(101))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(74), U = X(101)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2688) lies on the circumcircle and these lines: 3,2690   27,1304   30,101   74,514   103,523   107,2073   110,516   112,1886   1305,2071

X(2688) = reflection of X(2690) in X(3)
X(2688) = isogonal conjugate of X(2772)
X(2688) = reflection of X(103) in the Euler line


X(2689) = SR(X(74), X(102))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(74), U = X(102)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2689) lies on the circumcircle and these lines: 3,2695   23,1311   30,102   74,515   109,523   110,522   946,953   1324,2372

X(2689) = reflection of X(2695) in X(3)
X(2689) = isogonal conjugate of X(2773)
X(2689) = reflection of X(109) in the Euler line


X(2690) = SR(X(74), X(103))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(74), U = X(103)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2690) lies on the circumcircle and these lines: 3,2688   23,675   80,103   74,516   100,1577   101,523   110,514   186,917   551,953   1006,2687   2453,2758

X(2690) = reflection of X(2688) in X(3)
X(2690) = isogonal conjugate of X(2774)

X(2690) = reflection of X(101) in the Euler line
X(2690) = trilinear pole of line X(6)X(3120)
X(2690) = Ψ(X(6), X(3120))

X(2691) = SR(X(74), X(105))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(74), U = X(105)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2691) lies on the circumcircle and these lines: 3,2752   30,105   74,518   376,2687   523,1292

X(2691) = reflection of X(2752) in X(3)
X(2691) = isogonal conjugate of X(2775)


X(2692) = SR(X(74), X(106))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(74), U = X(106)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2692) lies on the circumcircle and these lines: 3,2758   30,106   74,519   523,1293   2071,2370

X(2692) = reflection of X(2758) in X(3)
X(2692) = isogonal conjugate of X(2776)


X(2693) = SR(X(74), X(107))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(74), U = X(107)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2693) lies on the circumcircle and these lines: 3,1304   20,476   30,107   74,520   110,2071   186,1301   376,935   523,1294   673,2481   858,1302

X(2693) = reflection of X(1304) in X(3)
X(2693) = isogonal conjugate of X(2777)
X(2693) = de-Longchamps-circle-inverse of X(34193)
X(2693) = trilinear pole, wrt circumcevian triangle of X(30), of line X(20)X(2407)
X(2693) = the point of intersection, other than A, B, and C, of the circumcircle and hyperbola {{A,B,C,X(3),X(30)}}


X(2694) = SR(X(74), X(108))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(74), U = X(108)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2694) lies on the circumcircle and these lines: 3,2766   20,1290   21,1304   30,108   74,521   100,2071   107,1325   523,1295   1301,2074

X(2694) = reflection of X(2766) in X(3)
X(2694) = isogonal conjugate of X(2778)
X(2694) = cevapoint of X(3) and X(2771)


X(2695) = SR(X(74), X(109))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(74), U = X(109)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2695) lies on the circumcircle and these lines: 3,2689   29,1304   30,109   74,522   102,523   107,2075   108,1784   110,515   411,1290

X(2695) = reflection of X(2689) in X(3)
X(2695) = isogonal conjugate of X(2779)
X(2695) = reflection of X(102) in the Euler line


X(2696) = SR(X(74), X(111))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(74), U = X(111)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2696) lies on the circumcircle and these lines: 3,2770   30,111   74,524   110,1499   186,2374   376,842   523,1296   691,2407   2071,2373

X(2696) = reflection of X(2770) in X(3)
X(2696) = isogonal conjugate of X(2780)
X(2696) = Λ(X(74), X(111))
X(2696) = reflection of X(1296) in the Euler line
X(2696) = X(74)-of-circummedial-triangle


X(2697) = SR(X(74), X(112))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(74), U = X(112)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2697) lies on the circumcircle and these lines: 2,1304   3,935   20,691   22,476   23,107   30,112   74,525   99,1236   110,858   186,1289   468,1301   523,1297   827,3153   850,2373

X(2697) = reflection of X(935) in X(3)
X(2697) = isogonal conjugate of X(2781)
X(2697) = cevapoint of X(3) and X(542)


X(2698) = SR(X(98), X(99))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(98), U = X(99)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2698) lies on the circumcircle and these lines: 3,805   4,2679   32,2715   98,512   99,511   107,419   110,237   112,1691   182,691   401,925   476,1316

X(2698) = reflection of X(i) in X(j) for these (i,j): (4,2679), (3,805)
X(2698) = isogonal conjugate of X(2782)
X(2698) = anticomplement of X(33330)
X(2698) = reflection of X(98) in the Brocard axis
X(2698) = Collings transform of X(2679)
X(2698) = Cundy-Parry Phi transform of X(14251)
X(2698) = Cundy-Parry Psi transform of X(14382)
X(2698) = the point of intersection, other than A, B, and C, of the circumcircle and hyperbola {{A,B,C,X(4),X(32)}}
X(2698) = inverse-in-circle-{X(1687),X(1688),PU(1),PU(2)} of X(112)
X(2698) = 3rd-Parry-to-circumsymmedial similarity image of X(2)


X(2699) = SR(X(98), X(100))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(98), U = X(100)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2699) lies on the circumcircle and these lines: 3,2703   98,513   99,517   100,511   101,1755   105,512   107,422   171,2222   572,2702   1309,1824   1333,2715   1402,2720

X(2699) = reflection of X(2703) in X(3)
X(2699) = isogonal conjugate of X(2783)
X(2699) = reflection of X(104) in the Brocard axis
X(2699) = reflection of X(98) in line X(1)X(3)
X(2699) = Schoute-circle-inverse of X(32722)


X(2700) = SR(X(98), X(101))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(98), U = X(101)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2700) lies on the circumcircle and these lines: 3,2702   58,2715   98,514   99,516   100,1959   101,511   103,512   107,423   112,1326   991,2701   1350,2705

X(2700) = reflection of X(2702) in X(3)
X(2700) = isogonal conjugate of X(2784)
X(2700) = reflection of X(103) in the Brocard axis


X(2701) = SR(X(98), X(102))

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/[(b - c)(a3 + b3 + c3 - 2a2b - 2a2c + abc)]      (M. Iliev, 5/13/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2701) lies on the circumcircle and these lines: 3,2708   98,515   99,522   102,511   104,2648   109,512   110,663   111,1055   187,2291   759,1326   953,1064   991,2700   1951,2249   1983,2702

X(2701) = reflection of X(2708) in X(3)
X(2701) = isogonal conjugate of X(2785)
X(2701) = cevapoint of X(663) and X(1951)
X(2701) = reflection of X(109) in the Brocard axis


X(2702) = SR(X(98), X(103))

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/[(b - c)(b2 + c2 - a2 + bc -ab - ac)]     (M. Iliev, 5/13/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2702) lies on the circumcircle and these lines: 3,2700   6,2712   98,516   99,514   100,661   101,512   103,511   105,1929   106,187   110,649   111,902   572,2699   573,2708   727,1691   741,1326   1983,2701

X(2702) = reflection of X(2700) in X(3)
X(2702) = isogonal conjugate of X(2786)
X(2702) = cevapoint of X(649) and X(1914)
X(2702) = reflection of X(101) in the Brocard axis


X(2703) = SR(X(98), X(104))

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/[(b - c)(a3 - b2c - bc2 + abc)]     (M. Iliev, 5/13/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2703) lies on the circumcircle and these lines: 3,2699   36,741   98,517   99,513   100,512   101,798   104,511   110,667   187,739   238,759   392,2726   713,1691   1083,2752

X(2703) = reflection of X(2699) in X(3)
X(2703) = isogonal conjugate of X(2787)
X(2703) = reflection of X(100) in the Brocard axis
X(2703) = reflection of X(99) in line X(1)X(3)


X(2704) = SR(X(98), X(105))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(98), U = X(105)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2704) lies on the circumcircle and these lines: 3,2711   98,518   105,511   512,1292

X(2704) = reflection of X(2711) in X(3)
X(2704) = isogonal conjugate of X(2788)


X(2705) = SR(X(98), X(106))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(98), U = X(106)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2705) lies on the circumcircle and these lines: > 3,2712   98,519   106,511   512,1293   727,2080   1350,2700

X(2705) = reflection of X(2712) in X(3)
X(2705) = isogonal conjugate of X(2789)


X(2706) = SR(X(98), X(107))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(98), U = X(107)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2706) lies on the circumcircle and these lines: 3,2713   98,520   107,450   512,1294   577,2715

X(2706) = reflection of X(2713) in X(3)
X(2706) = isogonal conjugate of X(2790)


X(2707) = SR(X(98), X(108))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(98), U = X(108)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2707) lies on the circumcircle and these lines: 3,2714   98,521   107,425   108,511   512,1295   2193,2715

X(2707) = reflection of X(2714) in X(3)
X(2707) = isogonal conjugate of X(2791)


X(2708) = SR(X(98), X(109))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(98), U = X(109)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2708) lies on the circumcircle and these lines: 3,2701   10,929   98,522   99,515   101,1324   102,512   107,415   108,240   109,511   284,2715   573,2702

X(2708) = reflection of X(2701) in X(3)
X(2708) = isogonal conjugate of X(2792)
X(2708) = reflection of X(102) in the Brocard axis


X(2709) = SR(X(98), X(111))

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/[(b2 - c2)(4a4 + b4 + c4 - a2b2 - a2c2 - 4b2c2)]     (M. Iliev, 5/13/07)

X(2709) lies on the circumcircle and these lines: 3,843   98,524   99,1499   111,352   512,1296   691,2421   729,2080   842,1350

X(2709) = reflection of X(843) in X(3)
X(2709) = isogonal conjugate of X(2793)
X(2709) = reflection of X(1296) in the Brocard axis
X(2709) = 1st-Parry-to-ABC similarity image of X(352)
X(2709) = X(842)-of-circumsymmedial-triangle


X(2710) = SR(X(98), X(112))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(98), U = X(112)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2710) lies on the circumcircle and these lines: 3,2715   98,525   99,1503   107,297   112,511   512,1297   691,1350   935,1352

X(2710) = reflection of X(2715) in X(3)
X(2710) = isogonal conjugate of X(2794)


X(2711) = SR(X(99), X(105))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(99), U = X(105)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2711) lies on the circumcircle and these lines: 3,2704   35,813   65,927   99,518   105,512   110,2223   213,919   511,1292

X(2711) = reflection of X(2704) in X(3)
X(2711) = isogonal conjugate of X(2795)
X(2711) = reflection of X(105) in the Brocard axis


X(2712) = SR(X(99), X(106))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(99), U = X(106)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2712) lies on the circumcircle and these lines: 3,2705   6,2702   42,901   58,691   99,519   100,896   101,187   106,512   110,902   111,649   511,1293

X(2712) = reflection of X(2705) in X(3)
X(2712) = isogonal conjugate of X(2796)
X(2712) = reflection of X(106) in the Brocard axis


X(2713) = SR(X(99), X(107))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(99), U = X(107)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2713) lies on the circumcircle and these lines: 3,2706   74,1942   99,520   107,512   477,2452   511,1294

X(2713) = reflection of X(2706) in X(3)
X(2713) = isogonal conjugate of X(2797)
X(2713) = reflection of X(107) in the Brocard axis


X(2714) = SR(X(99), X(108))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(99), U = X(108)

X(2714) lies on the circumcircle and these lines: 3,2707   99,521   108,512   109,810   511,1295

X(2714) = reflection of X(2707) in X(3)
X(2714) = isogonal conjugate of X(2798)
X(2714) = reflection of X(108) in the Brocard axis
X(2714) = Schoute-circle-inverse of X(32726)


X(2715) = SR(X(99), X(112))

Trilinears    a/[(b2 - c2)(b4 + c4 - a2b2 - a2c2)] : :      (M. Iliev, 5/13/07)

Let A' = BC∩(Brocard axis), and define CA and AB cyclically. The circumcircles of AB'C', BC'A', CA'B' concur in X(2715). (Randy Hutson, February 10, 2016)

X(2715) lies on the circumcircle and these lines: 2,2857   3,2710   6,842   32,2698   58,2700   74,187   81,2856   98,230   99,249   103,1326   107,685   110,647   111,1495   112,512   232,1692   284,2708   287,2373   290,2367   476,2395   477,2549   511,1297   577,2706   691,2420   759,1910   827,1625   843,1384   879,935   933,2623   1304,2433   1333,2699   2193,2707   2407,2855

X(2715) = reflection of X(2710) in X(3)
X(2715) = isogonal conjugate of X(2799)
X(2715) = cevapoint of X(i) and X(j) for these (i,j): (512,1692), (523,2450), (1976,2422)
X(2715) = X(i)-cross conjugate of X(j) for these (i,j): (512,2065), (989,98), (1691,249), (2422,1976)
X(2715) = reflection of X(112) in the Brocard axis
X(2715) = concurrence of reflections in sides of ABC of line X(4)X(32)
X(2715) = trilinear pole of line X(6)X(157)
X(2715) = X(92)-isoconjugate of X(684)
X(2715) = Λ(X(i),X(j)) for these (i,j): (2,1637), (99,112)
X(2715) = Ψ(X(i), X(j)) for these (i,j): (2,98), (4,32), (6,157), (76,3)
X(2715) = inverse-in-Moses-radical-circle of X(110)
X(2715) = inverse-in-circle-O(15,16) of X(74)
X(2715) = inverse-in-circle-{X(1687),X(1688),PU(1),PU(2)} of X(98)
X(2715) = polar-circle-inverse of X(38970)
X(2715) = orthoptic-circle-of-Steiner-inellipse-inverse of X(38975)
X(2715) = Brocard-circle-inverse of X(34235)
X(2715) = barycentric product X(98)*X(110) (circumcircle-X(2)-antipodes)
X(2715) = barycentric quotient X(98)/X(850)


X(2716) = SR(X(100), X(102))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(100), U = X(102)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2716) lies on the circumcircle and these lines: 1,2720   3,2222   36,108   40,901   100,515   101,2182   102,513   104,522   109,517   318,1309   476,1789   929,993   1012,2728

X(2716) = reflection of X(2222) in X(3)
X(2716) = isogonal conjugate of X(2800)
X(2716) = cevapoint of X(55) and X(2265)
X(2716) = reflection of X(102) in line X(1)X(3)


X(2717) = SR(X(100), X(103))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(100), U = X(103)

Let A'B'C' be the excentral triangle. Let La be the line X(115)X(125) of the triangle A'BC, and define Lb and Lc cyclically. Let A'' = Lb∩Lc, and define B'' and C'' cyclically. Then A''B''C'' is perspective to ABC, and the perspector is X(2717). (Randy Hutson, July 31 2018)

X(2717) lies on the circumcircle and these lines: 3,1308   36,934   40,2742   55,2222   57,2720   92,1309   100,516   101,517   103,513   104,514   108,2078   109,1155   165,901   573,813   650,2291   1292,2077

X(2717) = reflection of X(1308) in X(3)
X(2717) = isogonal conjugate of X(2801)
X(2717) = cevapoint of X(55) and X(2246)
X(2717) = reflection of X(103) in line X(1)X(3)


X(2718) = SR(X(100), X(106))

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/(b3 + c3 - a2b - a2c - 2b2c - 2bc2 + 4abc)     (M. Iliev, 5/13/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2718) lies on the circumcircle and these lines: 1,901   3,2743   36,100   44,101   56,2222   106,513   108,1877   109,1319   214,765   244,1168   517,1293   609,919   898,993   999,1308   1420,2720

X(2718) = reflection of X(2743) in X(3)
X(2718) = isogonal conjugate of X(2802)
X(2718) = X(2265)-cross conjugate of X(57)
X(2718) = reflection of X(106) in line X(1)X(3)
X(2718) = incircle-inverse of X(33645)
X(2718) = trilinear pole, wrt 2nd circumperp triangle, of line X(2)X(11)
X(2718) = trilinear pole of line X(6)X(1635)
X(2718) = Ψ(X(6), X(1635))
X(2718) = trilinear product of circumcircle intercepts of line X(1)X(900)


X(2719) = SR(X(100), X(107))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(100), U = X(107)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2719) lies on the circumcircle and these lines: 3,2744   100,520,   101,822   107,513   517,1294

X(2719) = reflection of X(2744) in X(3)
X(2719) = isogonal conjugate of X(2803)
X(2719) = reflection of X(107) in line X(1)X(3)


X(2720) = SR(X(100), X(108))

Trilinears    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(100), U = X(108)

Let A', B', C' be the intersections of line X(1)X(3) and lines BC, CA, AB, resp. The circumcircles of AB'C', BC'A', CA'B' concur in X(2720). (Randy Hutson, December 10, 2016)

The tangent lines from X(2720) to the incircle intersect the circumcircle in points on the Sherman Line, so forming a poristic triangle with ABC. (Peter Moses, December 3, 2019)

X(2720) lies on the circumcircle and these lines: 1,2716   3,2745   7,2861   36,102   56,953   57,2717   59,100   65,2687   101,652   103,2078   104,1319   106,1457   108,513   109,1459   497,2723   517,1395   840,1617   883,2865   909,2272   915,1870   919,2423   929,2401   944,2734   972,1155   1214,2747   1397,2726   1402,2699   1420,2718   2283,2742

X(2720) = reflection of X(2745) in X(3)
X(2720) = isogonal conjugate of X(2804)
X(2720) = cevapoint of X(663) and X(1404)
X(2720) = X(i)-cross conjugate of X(j) for these (i,j): (654,57), (1319,59)
X(2720) = concurrence of reflections in sides of ABC of line X(4)X(11)
X(2720) = trilinear pole of line X(6)X(909)
X(2720) = Ψ(X(4), X(11))
X(2720) = Ψ(X(6), X(909))
X(2720) = Ψ(X(9), X(101))
X(2720) = Ψ(X(650), X(6))
X(2720) = isotomic conjugate of polar conjugate of X(32702)
X(2720) = reflection of X(108) in line X(1)X(3)
X(2720) = inverse-in-circle-O(3513,3514)-of-X(105)
X(2720) = perspector of 3rd mixtilinear triangle and cross-triangle of ABC and circumcevian triangle of X(1319)


X(2721) = SR(X(100), X(111))

Trilinears         f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(100), U = X(111)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2721) lies on the circumcircle and these lines: 3,2746   81,691   100,524   101,896   104,1499   111,513   517,1296

X(2721) = reflection of X(2746) in X(3)
X(2721) = isogonal conjugate of X(2805)
X(2721) = reflection of X(111) in line X(1)X(3)


X(2722) = SR(X(100), X(112))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(100), U = X(112)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2722) lies on the circumcircle and these lines: 3,2747   100,525   101,656   104,1503   110,905   112,513   517,1297

X(2722) = reflection of X(2747) in X(3)
X(2722) = isogonal conjugate of X(2806)
X(2722) = reflection of X(112) in line X(1)X(3)


X(2723) = SR(X(101), X(102))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(101), U = X(102)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2723) lies on the circumcircle and these lines: 3,929   101,515   102,514   103,522   108,243   109,516   497,2720   813,1766   946,2727   1021, 2249

X(2723) = reflection of X(929) in X(3)
X(2723) = isogonal conjugate of X(2807)


X(2724) = SR(X(101), X(103))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(101), U = X(103)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2724) lies on the circumcircle and these lines: 3,927   4,1566   40,813   101,516   103,514   108,2223

X(2724) = reflection of X(i) in X(j) for these (i,j): (4,1566), (3,927)
X(2724) = isogonal conjugate of X(2808)
X(2724) = anticomplement of X(33331)


X(2725) = SR(X(101), X(105))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(101), U = X(105)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2725) lies on the circumcircle and these lines: 1,919   3,2736   85,927   101,518   105,514   109,241   516,1292   813,1083   1001,1308

X(2729) = reflection of X(2736) in X(3)
X(2725) = isogonal conjugate of X(2809)
X(2725) = Λ(X(1), X(101))


X(2726) = SR(X(101), X(106))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(101), U = X(106)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2726) lies on the circumcircle and these lines: 2,901   3,2737   9,813   25,1309   99,859   101,519   104,667   106,514   108,242   109,238   392,2703   516,1293   898,956   934,1447   1016,1145   1083,2742   1397,2720

X(2726) = reflection of X(2737) in X(3)
X(2726) = isogonal conjugate of X(2810)
X(2726) = Λ(X(6), X(101))


X(2727) = SR(X(101), X(107))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(101), U = X(107)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2727) lies on the circumcircle and these lines: 3,2738,   101,520   107,514   112,1459   516,1294   946,2723

X(2727) = reflection of X(2738) in X(3)
X(2727) = isogonal conjugate of X(2811)


X(2728) = SR(X(101), X(108))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(101), U = X(108)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2728) lies on the circumcircle and these lines: 3,2739   101,521   108,514   109,905   516,1295   997,2745   1012,2716

X(2728) = reflection of X(2739) in X(3)
X(2728) = isogonal conjugate of X(2812)


X(2729) = SR(X(101), X(111))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(101), U = X(111)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2729) lies on the circumcircle and these lines: 3,2740   86,691   101,524   103,1499   111,514   516,1296

X(2729) = reflection of X(2740) in X(3)
X(2729) = isogonal conjugate of X(2813)


X(2730) = SR(X(102), X(105))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(102), U = X(105)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2730) lies on the circumcircle and these lines: 3,2751   102,518   105,515   522,1292 1785,2376

X(2730) = reflection of X(2751) in X(3)
X(2730) = isogonal conjugate of X(2814)


X(2731) = SR(X(102), X(106))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(102), U = X(106)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2731) lies on the circumcircle and these lines: 3,2757   102,519   106,515   243,2376   522,1293   944,953

X(2731) = reflection of X(2757) in X(3)
X(2731) = isogonal conjugate of X(2815)


X(2732) = SR(X(102), X(107))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(102), U = X(107)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2732) lies on the circumcircle and these lines: 3,2762   102,520   107,515   522,1294   1304,2360

X(2732) = reflection of X(2762) in X(3)
X(2732) = isogonal conjugate of X(2816)


X(2733) = SR(X(102), X(108))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(102), U = X(108)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2733) lies on the circumcircle and these lines: 3,2765   102,521   108,515   522,1295

X(2733) = reflection of X(2765) in X(3)
X(2733) = isogonal conjugate of X(2817)


X(2734) = SR(X(102), X(109))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(102), U = X(109)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2734) lies on the circumcircle and these lines: 3,1309   20,901   102,522   107,859   109,515   944,2720

X(2734) = reflection of X(1309) in X(3)
X(2734) = isogonal conjugate of X(2818)
X(2734) = cevapoint of X(3) and X(952)


X(2735) = SR(X(102), X(111))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(102), U = X(111)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2735) lies on the circumcircle and these lines: 3,2768   102,524   109,1499   111,515   522,1296

X(2735) = reflection of X(2768) in X(3)
X(2735) = isogonal conjugate of X(2819)


X(2736) = SR(X(103), X(105))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(103), U = X(105)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2736) lies on the circumcircle and these lines: 3,2725   103,518   105,516   514,1292   1323,2377

X(2736) = reflection of X(2725) in X(3)
X(2736) = isogonal conjugate of X(2820)
X(2736) = cevapoint of X(55) and X(2254)


X(2737) = SR(X(103), X(106))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(103), U = X(106)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2737) lies on the circumcircle and these lines: 3,2726   103,519   106,516   376,953   514,1293   901,2398

X(2737) = reflection of X(2726) in X(3)
X(2737) = isogonal conjugate of X(2821)


X(2738) = SR(X(103), X(107))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(103), U = X(107)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2738) lies on the circumcircle and these lines: 3,2727   103,520   107,516   514,1294   1304,2328

X(2738) = reflection of X(2727) in X(3)
X(2738) = isogonal conjugate of X(2822)


X(2739) = SR(X(103), X(108))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(103), U = X(108)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2739) lies on the circumcircle and these lines: 3,2728   103,521   108,516   514,1295

X(2739) = reflection of X(2728) in X(3)
X(2739) = isogonal conjugate of X(2823)


X(2740) = SR(X(103), X(111))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(103), U = X(111)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2740) lies on the circumcircle and these lines: 3,2729   101,1499   103,524   111,516   514,1296

X(2740) = reflection of X(2729) in X(3)
X(2740) = isogonal conjugate of X(2824)


X(2741) = SR(X(103), X(112))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(103), U = X(112)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2741) lies on the circumcircle and these lines: 101,1503   103,525   112,516   514,1297

X(2741) = isogonal conjugate of X(2825)


X(2742) = SR(X(104), X(105))

Trilinears    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(103), U = X(112)

X(2742) lies on the circumcircle and these lines: 3,840   36,1477   40,2717   59,934   101,1618   103,2077   104,518   105,517   109,1110   513,1292   919,2427   1083,2726   2283,2720

X(2742) = reflection of X(840) in X(3)
X(2742) = isogonal conjugate of X(2826)
X(2742) = X(1155)-cross conjugate of X(59)
X(2742) = perspector of ABC and triangle formed by line X(2)X(11) reflected in sides of ABC
X(2742) = perspector of 4th mixtilinear triangle and cross-triangle of ABC and circumcevian triangle of X(1155)


X(2743) = SR(X(104), X(106))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(104), U = X(106)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2743) lies on the circumcircle and these lines: 3,2718   40,953   104,519   106,517   165,840   513,1293   1155,1477   2291,2348

X(2743) = reflection of X(2718) in X(3)
X(2743) = isogonal conjugate of X(2827)
X(2743) = cevapoint of X(55) and X(1635)


X(2744) = SR(X(104), X(107))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(104), U = X(107)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2744) lies on the circumcircle and these lines: 3,2719   72,1309   104,520   107,517   513,1294

X(2744) = reflection of X(2719) in X(3)
X(2744) = isogonal conjugate of X(2828)


X(2745) = SR(X(104), X(108))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(104), U = X(108)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2745) lies on the circumcircle and these lines: 3,2720   8,1309   40,2222   104,521   108,517   109,2077   513,1295   997,2728   1158,2765

X(2745) = reflection of X(2720) in X(3)
X(2745) = isogonal conjugate of X(2829)


X(2746) = SR(X(104), X(111))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(104), U = X(111)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2746) lies on the circumcircle and these lines: 3,2721   100,1499   104,525   111,517   513,1296

X(2746) = reflection of X(2721) in X(3)
X(2746) = isogonal conjugate of X(2830)
X(2746) = reflection of X(1296) in line X(1)X(3)


X(2747) = SR(X(104), X(112))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(104), U = X(112)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2747) lies on the circumcircle and these lines: 3,2722   100,1503   101,2312   104,525   112,517   321,1309   513,1297   1214,2720

X(2747) = reflection of X(2722) in X(3)
X(2747) = isogonal conjugate of X(2831)


X(2748) = SR(X(105), X(106))

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[(b - c)(a2 + b2 + c2 - 3bc)]     (M. Iliev, 5/13/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2748) lies on the circumcircle and these lines: 105,519   106,518   901,1026   919,1023   1083,2382

X(2748) = isogonal conjugate of X(2832)


X(2749) = SR(X(105), X(107))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(105), U = X(107)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2749) lies on the circumcircle and these lines: 105,520   107,518

X(2749) = isogonal conjugate of X(2833)


X(2750) = SR(X(105), X(108))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(105), U = X(108)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2750) lies on the circumcircle and these lines: 69,927   105,521   108,518   109,1818   200,2222   219,919

X(2750) = isogonal conjugate of X(2834)


X(2751) = SR(X(105), X(109))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(105), U = X(109)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2751) lies on the circumcircle and these lines: 3,2730   9,919   63,901   75,927   105,522   106,905   108,1861   109,518   515,1292   956,1308   1376,2222

X(2751) = reflection of X(2730) in X(3)
X(2751) = isogonal conjugate of X(2835)


X(2752) = SR(X(105), X(110))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(105), U = X(110)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2752) lies on the circumcircle and these lines: 2,1290   3,2691   21,691   23,100   25,2766   28,935   80,1292   37,919   99,1325   105,523   108,468   109,896   110,518   111,650   112,2074   927,1441   1083,2703

X(2752) = reflection of X(2691) in X(3)
X(2752) = isogonal conjugate of X(2836)
X(2752) = reflection of X(105) in the Euler line
X(2752) = inverse-in-{circumcircle, nine-point circle}-inverter of X(5520)


X(2753) = SR(X(105), X(111))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(105), U = X(111)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2753) lies on the circumcircle and these lines: 105,524   111,518   352,739   1292,1499

X(2753) = isogonal conjugate of X(2837)


X(2754) = SR(X(105), X(112))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(105), U = X(112)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2754) lies on these lines: 72,919   105,525   112,518   927,1231   1292,1503

X(2754) = isogonal conjugate of X(2838)


X(2755) = SR(X(106), X(107))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(106), U = X(107)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2755) lies on the circumcircle and these lines: 106,520   107,519

X(2755) = isogonal conjugate of X(2839)


X(2756) = SR(X(106), X(108))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(106), U = X(108)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2756) lies on the circumcircle and these lines: 78,901   106,521   108,519

X(2756) = isogonal conjugate of X(2840)


X(2757) = SR(X(106), X(109))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(106), U = X(109)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2757) lies on the circumcircle and these lines: 3,2731   8,901   101,2325   106,522   109,519   515,1293

X(2757) = reflection of X(2731) in X(3)
X(2757) = isogonal conjugate of X(2841)


X(2758) = SR(X(106), X(110))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(106), U = X(110)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2758) lies on the circumcircle and these lines: 3,2692   10,901   30,1293   106,523   110,519   404,1290   2453,2690

X(2768) = reflection of X(2692) in X(3)
X(2758) = isogonal conjugate of X(2842)
X(2758) = reflection of X(106) in the Euler line
X(2758) = trilinear pole of line X(6)X(4120)
X(2758) = Ψ(X(6), X(4120))
X(2758) = Stevanovic-circle-inverse of X(111)


X(2759) = SR(X(106), X(111))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(106), U = X(111)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2759) lies on the circumcircle and these lines: 106,524   111,519   1293,1499

X(2759) = isogonal conjugate of X(2843)


X(2760) = SR(X(106), X(112))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(106), U = X(112)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2760) lies on the circumcircle and these lines: 106,525   112,519   306,901   691,1043   1293,1503

X(2760) = isogonal conjugate of X(2844)


X(2761) = SR(X(107), X(108))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(107), U = X(108)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2761) lies on the circumcircle and these lines: 107,521   108,520

X(2761) = isogonal conjugate of X(2845)


X(2762) = SR(X(107), X(109))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(107), U = X(109)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2762) lies on the circumcircle and these lines: 3,2732   107,522   108,656   109,520   112,652   515,1294

X(2762) = reflection of X(2732) in X(3)
X(2762) = isogonal conjugate of X(2846)


X(2763) = SR(X(107), X(111))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(107), U = X(111)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2763) lies on the circumcircle and these lines: 107,524   111,520   394,691   1294,1499

X(2763) = isogonal conjugate of X(2847)


X(2764) = SR(X(107), X(112))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(107), U = X(112)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2764) lies on the circumcircle and these lines: 107,525   112,520   1294,1503   2435,2442

X(2764) = isogonal conjugate of X(2848)
X(2764) = Λ(X(107), X(112))


X(2765) = SR(X(108), X(109))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(108), U = X(109)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2765) lies on the circumcircle and these lines: 3,2733   108,522   109,521   112,1021   515,1295   1158,2745

X(2765) = reflection of X(2733) in X(3)
X(2765) = isogonal conjugate of X(2849)
X(2765) = Λ(X(108), X(109))


X(2766) = SR(X(108), X(110))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(108), U = X(110)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2766) lies on the circumcircle and these lines: 3,2694   4,2687   25,2752   30,1295   104,186   105,468   108,523   109,656   110,521   112,650   403,915    759,2074

X(2766) = reflection of X(2694) in X(3)
X(2766) = isogonal conjugate of X(2850)
X(2766) = reflection of X(108) in the Euler line
X(2766) = inverse-in-polar-circle of X(5520)
X(2766) = Stevanovic-circle-inverse of X(112)


X(2767) = SR(X(108), X(111))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(108), U = X(111)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2767) lies on the circumcircle and these lines: 108,524   111,521   691,1812   1295,1499

X(2767) = isogonal conjugate of X(2851)


X(2768) = SR(X(109), X(111))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(109), U = X(111)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2768) lies on the circumcircle and these lines: 3,2735   102,1499   109,524   111,522   333,691   515,1296

X(2768) = reflection of X(2735) in X(3)
X(2768) = isogonal conjugate of X(2852)


X(2769) = SR(X(109), X(112))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(109), U = X(112)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2769) lies on the circumcircle and these lines: 102,1503   108,1577   109,525   112,522   515,1297

X(2769) = isogonal conjugate of X(2853)


X(2770) = SR(X(110), X(111))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2677) using P = X(110), U = X(111)
Barycentrics    1/(b^6 + c^6 - a^4 b^2 - a^4 c^2 + 4 a^2 b^2 c^2 - 2 b^4 c^2 - 2 b^2 c^4) : :

X(2770) lies on the circumcircle and these lines: 2,691   3,2696   23,99   25,935   30,1296   74,1499   110,524   111,523   112,468   476,1995

X(2770) = reflection of X(2696) in X(3)
X(2770) = isogonal conjugate of X(2854)
X(2770) = trilinear pole wrt circummedial triangle of line X(3)X(76)
X(2770) = X(110)-of-circummedial-triangle
X(2770) = reflection of X(111) in the Euler line
X(2770) = inverse-in-{circumcircle, nine-point circle}-inverter of X(5099)


X(2771) = ISOGONAL CONJUGATE OF X(2687)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2687)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

As the isogonal conjugate of a point on the circumcircle, X(2771) lies on the line at infinity.

Let Ia be the reflection of X(1) in the perpendicular bisector of BC, and define Ib and Ic cyclically. Then X(2771) = X(30)-of-IaIbIc; IaIbIc is the inner Garcia triangle. (Randy Hutson, February 10, 2016)

Let AeBeCe and AiBiCi be the Ae and Ai triangles (aka K798e and K798i triangles). Let Ae' be the Ai-isogonal conjugate of Ae, and define Be' and Ce' cyclically. Let Ai' be the Ae-isogonal conjugate of Ai, and define Bi' and Ci' cyclically. Triangles Ae'Be'Ce' and Ai'Bi'Ci' are inversely congruent, with similitude center X(2771). Triangle Ai'Bi'Ci' is also the cross-triangle of the Ae and Ai triangles. (Randy Hutson, June 7, 2019)

X(2771) lies on these (parallel) lines: 1,399   3,191   11,113   21,104   30,511   36,1749   65,79   72,74   78,2932   109,1807   119,125   146,149   153,355   214,960   500,2292   946,1484   1464,1725   1829,1986

X(2771) = isogonal conjugate of X(2687)
X(2771) = X(2694)-Ceva conjugate of X(3)
X(2771) = X(1154)-of-Fuhrmann-triangle
X(2771) = X(30)-of-X(1)-Brocard-triangle
X(2771) = X(517)-of-orthocentroidal-triangle
X(2771) = X(517)-of-X(4)-Brocard triangle


X(2772) = ISOGONAL CONJUGATE OF X(2688)

Trilinears    1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2688)
Trilinears    a (a^5 (b^2 + c^2) - a^4 (b^3 + c^3) - 2 a^3 (b^4 - b^2 c^2 + c^4) + a^2 (2 b^5 - b^3 c^2 - b^2 c^3 + 2 c^5) + a (b^2 - c^2)^2 (b^2 + c^2) - (b - c)^2 (b^5 + 2 b^4 c + 4 b^3 c^2 + 4 b^2 c^3 + 2 b c^4 + c^5)) : :

As the isogonal conjugate of a point on the circumcircle, X(2772) lies on the line at infinity.

X(2772) lies on these (parallel) lines: 30,511   71,74   102,110   113,116   118,125   146,150   1839,1986   2938,2948

X(2772) = isogonal conjugate of X(2688)
X(2772) = X(516)-of-orthocentroidal-triangle
X(2772) = X(516)-of-X(4)-Brocard-triangle


X(2773) = ISOGONAL CONJUGATE OF X(2689)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2689)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

As the isogonal conjugate of a point on the circumcircle, X(2773) lies on the line at infinity.

X(2773) lies on these (parallel) lines: 30,511   74,102   109,110   113,117   124,125   146,151

X(2773) = isogonal conjugate of X(2689)
X(2773) = X(522)-of-orthocentroidal-triangle
X(2773) = X(522)-of X(4)-Brocard-triangle


X(2774) = ISOGONAL CONJUGATE OF X(2690)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2690)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

As the isogonal conjugate of a point on the circumcircle, X(2774) lies on the line at infinity.

X(2774) lies on these (parallel) lines: 30,511   74,103   101,110   113,118   116,125   146,152   1282,2948

X(2774) = isogonal conjugate of X(2690)
X(2774) = X(514)-of-orthocentroidal-triangle
X(2774) = X(514)-of-X(4)-Brocard-triangle
X(2774) = crossdifference of every pair of points on line X(6)X(3120)


X(2775) = ISOGONAL CONJUGATE OF X(2691)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2691)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

As the isogonal conjugate of a point on the circumcircle, X(2775) lies on the line at infinity.

X(2775) lies on these (parallel) lines: 30,511   74,105   110,1292   113,120

X(2775) = isogonal conjugate of X(2691)


X(2776) = ISOGONAL CONJUGATE OF X(2692)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2692)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

As the isogonal conjugate of a point on the circumcircle, X(2776) lies on the line at infinity.

X(2776) lies on these (parallel) lines: 30,511   74,106   110,1293   113,121

X(2776) = isogonal conjugate of X(2692)


X(2777) = ISOGONAL CONJUGATE OF X(2693)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2693)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

As the isogonal conjugate of a point on the circumcircle, X(2777) lies on the line at infinity.

X(2777) lies on these (parallel) lines: 3,113   4,74   5,1539   20,110   23,1533   30,511   64,265   112,1562   182,1177   185,1986   389,974   399,1498   468,1514   550,1511   858,1531   1316,1561   1352,2892   1568,2071

X(2777) = isogonal conjugate of X(2693)
X(2777) = crosspoint of X(4) and X(477)


X(2778) = ISOGONAL CONJUGATE OF X(2694)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2694)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

As the isogonal conjugate of a point on the circumcircle, X(2778) lies on the line at infinity.

X(2778) lies on these (parallel) lines: 1,2935   30,511   40,2915   65,74   110,1295   113,123   125,429   1498,2948   1717,1854   1858,1986

X(2778) = isogonal conjugate of X(2694)
X(2778) = crosspoint of X(4) and X(2687)
X(2778) = crosssum of X(3) and X(2771)


X(2779) = ISOGONAL CONJUGATE OF X(2695)

Trilinears    1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2695)

Trilinears    a (a^6 (b^2 + c^2) - a^5 b c (b + c) - a^4 (3 b^4 - b^3 c - 2 b^2 c^2 - b c^3 + 3 c^4) + a^3 b c (2 b^3 - b^2 c - b c^2 + 2 c^3) + a^2 (b - c)^2 (3 b^4 + 4 b^3 c + 3 b^2 c^2 + 4 b c^3 + 3 c^4) - a b c (b - c)^2 (b^3 + c^3) - (b^2 - c^2)^2 (b^4 - b^3 c + 3 b^2 c^2 - b c^3 + c^4)) : :

As the isogonal conjugate of a point on the circumcircle, X(2779) lies on the line at infinity.

X(2779) lies on these (parallel) lines: 30,511   35,73   102,110   113,124   117,125   1364,2646   1844,1845   2939,2948

X(2779) = isogonal conjugate of X(2695)
X(2779) = X(515)-of-orthocentroidal-triangle
X(2779) = X(515)-of-X(4)-Brocard-triangle


X(2780) = ISOGONAL CONJUGATE OF X(2696)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2696)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

As the isogonal conjugate of a point on the circumcircle, X(2780) lies on the line at infinity.

X(2780) lies on these (parallel) lines: 3,351   30,511   74,111   110,1296   113,126   895,2444

X(2780) = isogonal conjugate of X(2696)
X(2780) = X(1499)-of-orthocentroidal-triangle
X(2780) = X(1499)-of-X(4)-Brocard-triangle
X(2780) = circumsymmedial-isogonal conjugate of X(32425)
X(2780) = ideal point of PU(63)
X(2780) = X(1499)-of-4th-anti-Brocard-triangle


X(2781) = ISOGONAL CONJUGATE OF X(2697)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2697)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

As the isogonal conjugate of a point on the circumcircle, X(2781) lies on the line at infinity.

X(2781) lies on these (parallel) lines: 3,1177   4,67   6,74   22,110   30,511   51,125   64,895   66,265   69,146   113,127   159,399   185,1205   206,1511   1498,2930

X(2781) = isogonal conjugate of X(2697)
X(2781) = crosspoint of X(4) and X(842)
X(2781) = crosssum of X(3) and X(542)


X(2782) = ISOGONAL CONJUGATE OF X(2698)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2698)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

As the isogonal conjugate of a point on the circumcircle, X(2782) lies on the line at infinity.

X(2782) lies on these (parallel) lines: 3,76   4,147   5,39   30,511   68,1987   110,1316   140,620   230,2021   262,381   338,1634   385,2080   549,2482   895,2452   1352,2549   2453,2930

X(2782) = isogonal conjugate of X(2698)
X(2782) = X(511)-of-1st-Brocard-triangle
X(2782) = orthic-isogonal conjugate of X(33330)
X(2782) = 1st-Brocard-isogonal conjugate of X(3)
X(2782) = 1st-Brocard-isotomic conjugate of X(34359)
X(2782) = Cundy-Parry Phi transform of X(14382)
X(2782) = Cundy-Parry Psi transform of X(14251)


X(2783) = ISOGONAL CONJUGATE OF X(2699)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2699)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

Let Ia be the reflection of X(1) in the perpendicular bisector of BC, and define Ib and Ic cyclically; then X(2783) = X(511)-of-IaIbIc; "IaIbIc is the inner Garcia triangle. (Randy Hutson, February 10, 2016)

X(2783) lies on these (parallel) lines: 5,2486   11,114   30,511   80,256   98,100   99,104   115,119   147,149   148,153   1284,1733   1764,1768

X(2783) = isogonal conjugate of X(2699)
X(2783) = isotomic conjugate of X(35151)
X(2783) = X(2)-Ceva conjugate of X(35083)
X(2783) = X(517)-of-1st-Brocard-triangle


X(2784) = ISOGONAL CONJUGATE OF X(2700)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2700)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2784) lies on these (parallel) lines: 1,147   8,1281   10,98   30,511   99,103   114,116   115,118   148,152

X(2784) = isogonal conjugate of X(2700)
X(2784) = isotomic conjugate of X(35150)
X(2784) = X(2)-Ceva conjugate of X(35082)
X(2784) = X(516)-of-1st-Brocard-triangle


X(2785) = ISOGONAL CONJUGATE OF X(2701)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b - c)(a3 + b3 + c3 - 2a2b - 2a2c + abc)     (M. Iliev, 5/13/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2785) lies on these (parallel) lines: 30,511   98,102   99,109   114,117   115,124   147,151   671,1121

X(2785) = isogonal conjugate of X(2701)
X(2785) = isotomic conjugate of X(35154)
X(2785) = X(2)-Ceva conjugate of X(35086)
X(2785) = crosspoint of X(664) and X(1952)
X(2785) = crosssum of X(663) and X(1951)
X(2785) = X(522)-of-1st-Brocard-triangle
X(2785) = 1st-Brocard-isotomic conjugate of X(34361)


X(2786) = ISOGONAL CONJUGATE OF X(2702)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b - c)(b2 + c2 - a2 + bc- ab - ac)     (M. Iliev, 5/13/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2786) lies on these (parallel) lines: 30,511   98,103   99,101   114,118   115,116   147,152   148,150   671,903

X(2786) = isogonal conjugate of X(2702)
X(2786) = isotomic conjugate of X(35148)
X(2786) = X(2)-Ceva conjugate of X(35080)
X(2786) = X(514)-of-1st-Brocard-triangle
X(2786) = 1st-Brocard-isogonal conjugate of X(24279)
X(2786) = 1st-Brocard-isotomic conjugate of X(24281)


X(2787) = ISOGONAL CONJUGATE OF X(2703)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b - c)(a3 - b2c - bc2 + abc)     (M. Iliev, 5/13/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

Let Ia be the reflection of X(1) in the perpendicular bisector of BC, and define Ib and Ic cyclically; then X(2787) = X(512)-of-IaIbIc; IaIbIc is the inner Garcia triangle. (Randy Hutson, February 10, 2016)

X(2787) lies on these (parallel) lines: 11,115   30,511   80,291   98,104   99,100   114,119   147,153   148,149   1019,2533

X(2787) = isogonal conjugate of X(2703)
X(2787) = isotomic conjugate of X(35147)
X(2787) = X(2)-Ceva conjugate of X(35079)
X(2787) = X(513)-of-1st-Brocard-triangle
X(2787) = 1st-Brocard-isogonal conjugate of X(5091)
X(2787) = 1st-Brocard-isotomic conjugate of X(24289)


X(2788) = ISOGONAL CONJUGATE OF X(2704)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2704)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2788) lies on these (parallel) lines: 30,511   98,105   99,1292   114,120

X(2788) = isogonal conjugate of X(2704)


X(2789) = ISOGONAL CONJUGATE OF X(2705)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2705)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2789) lies on these (parallel) lines: 30,511   98,106   99,1293   114,121

X(2789) = isogonal conjugate of X(2705)


X(2790) = ISOGONAL CONJUGATE OF X(2706)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2706)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2790) lies on these (parallel) lines: 3,1632   4,1942   25,98   30,511   53,115   99,1294   114,122   147,1370   157,1605

X(2790) = isogonal conjugate of X(2706)


X(2791) = ISOGONAL CONJUGATE OF X(2707)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2707)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2791) lies on these (parallel) lines: 30,511   98,108   99,1295   114,123   115,1865

X(2791) = isogonal conjugate of X(2707)


X(2792) = ISOGONAL CONJUGATE OF X(2708)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2708)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2792) lies on these (parallel) lines: 4,1046   30,511   40,1330   58,946   63,147   98,109   99,102   114,124   115,117   148,151   573,1761

X(2792) = isogonal conjugate of X(2708)
X(2792) = isotomic conjugate of X(35149)
X(2792) = X(2)-Ceva conjugate of X(35081)
X(2792) = X(515)-of-1st-Brocard-triangle


X(2793) = ISOGONAL CONJUGATE OF X(2709)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b2 - c2)(4a4 + b4 + c4 - 4b2c2 - a2b2 - a2c2)     (M. Iliev, 5/13/07)

X(2793) lies on these (parallel) lines: 30,511   98,111   99,1296   114,126   671,2408

X(2793) = isogonal conjugate of X(2709)
X(2793) = X(523)-of-McCay-triangle
X(2793) = X(523)-of-anti-McCay-triangle
X(2793) = ideal point of PU(138)


X(2794) = ISOGONAL CONJUGATE OF X(2710)

Trilinears    1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2710)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2794) lies on these (parallel) lines: 3,114   4,32   20,99   30,511   67,2453   125,1316   187,1513   376,2482   1352,3734

X(2794) = isogonal conjugate of X(2710)


X(2795) = ISOGONAL CONJUGATE OF X(2711)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2711)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2795) lies on these (parallel) lines: 21,99   30,511   98,1292   115,120   148,1655   1358,3027   3021,3023   3029,3034

X(2795) = isogonal conjugate of X(2711)
X(2795) = isotomic conjugate of X(35152)
X(2795) = X(2)-Ceva conjugate of X(35084)
X(2795) = X(518)-of-1st-Brocard-triangle
X(2795) = 1st-Brocard-isogonal conjugate of X(1083)


X(2796) = ISOGONAL CONJUGATE OF X(2712)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(-2a3 + b3 + c3 + a2b + a2c + ab2 + ac2 - 2b2c - 2bc2)     (M. Iliev, 5/13/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2796) lies on these (parallel) lines: 2,846   10,190   30,511   86,99   98,1293   115,121   148,1654   553,1357   1086,1125   3029,3030

X(2796) = isogonal conjugate of X(2712)
X(2796) = isotomic conjugate of X(35153)
X(2796) = X(2)-Ceva conjugate of X(35085)
X(2796) = X(519)-of-1st-Brocard-triangle
X(2796) = 1st-Brocard-isotomic conjugate of X(34362)


X(2797) = ISOGONAL CONJUGATE OF X(2713)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2713)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2797) lies on these (parallel) lines: 4,684   30,511   98,1294   99,107   114,133   115,122

X(2797) = isogonal conjugate of X(2713)
X(2797) = X(520)-of-1st-Brocard-triangle


X(2798) = ISOGONAL CONJUGATE OF X(2714)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2714)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2798) lies on these (parallel) lines: 30,511   98,1295   99,108   115,123

X(2798) = isogonal conjugate of X(2714)
X(2798) = X(521)-of-1st-Brocard-triangle


X(2799) = ISOGONAL CONJUGATE OF X(2715)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b2 - c2)(b4 + c4 - a2b2 - a2c2)     (M. Iliev, 5/13/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2799) lies on these (parallel) lines: 2,1637   30,511   39,2507   98,1297   99,112   114,132   115,127   287,2395   620,2492   671,1494   850,2525   2514,2531

X(2799) = isogonal conjugate of X(2715)
X(2799) = X(i)-Ceva conjugate of X(j) for these (i,j): (2,35088), (99,114), (290,125), (325,868), (805,626), (877,511), (1916,115)
X(2799) = isotomic conjugate of X(2966)
X(2799) = pole wrt polar circle of line X(4)X(32) (trilinear polar of X(685)
X(2799) = X(48)-isoconjugate (polar conjugate) of X(685)
X(2799) = ideal point of PU(135)
X(2799) = X(525)-of-1st-Brocard-triangle
X(2799) = bicentric difference of PU(135)
X(2799) = complementary conjugate of X(36471)
X(2799) = X(4)-Ceva conjugate of X(36471)


X(2800) = ISOGONAL CONJUGATE OF X(2716)

Trilinears    1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2716)
Trilinears    a^5(b + c) - a^4(b + c)^2 - a^3(b - 2c)(2b - c)(b + c) + a^2(b - c)^2(2b + c)(b + 2c) + a(b - c)^2(b + c)(b^2 - 3bc + c^2) - (b^2 - c^2)^2(b^2 - bc + c^2) : :

Let Ia be the reflection of X(1) in the perpendicular bisector of BC, and define Ib and Ic cyclically; then X(2800) = X(515)-of-IaIbIc; IaIbIc is the inner Garcia triangle. (Randy Hutson, February 10, 2016)

X(2800) lies on these (parallel) lines: 1,104   3,214   4,80   8,153   10,119   11,65   30,511   40,78   72,1145   84,1320   149,151   942,1387   1012,2099   1317,1364   1457,1735   1519,1737   1765,1953   1862,1902

X(2800) = isogonal conjugate of X(2716)
X(2800) = crosssum of X(55) and X(2265)


X(2801) = ISOGONAL CONJUGATE OF X(2717)

Trilinears    1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2717)
Trilinears    a^4(b + c) - 2a^3(b^2 + c^2) + a^2bc(b + c) + 2a(b - c)^2(b^2 + bc + c^2) - b^5 + b^3c^2 + b^2c^3 - c^5 : :

Let Ia be the reflection of X(1) in the perpendicular bisector of BC, and define Ib and Ic cyclically. X(2801) = X(516)-of-IaIbIc; IaIbIc is the inner Garcia triangle. (Randy Hutson, February 10, 2016)

X(2801) lies on these (parallel) lines: 1,651   7,80   9,48   11,118   30,511   63,100   116,119   149,152   480,2932   984,991   990,1814   1458,1736   1776,2078

X(2801) = isogonal conjugate of X(2717)
X(2801) = isotomic conjugate of X(35164)
X(2801) = X(2)-Ceva conjugate of X(35116)
X(2801) = crosssum of X(55) and X(2246)
X(2801) = X(511)-of-Fuhrmann-triangle
X(2801) = endo-homothetic center of Ehrmann vertex-triangle and 2nd Ehrmann triangle; the homothetic center is X(542)


X(2802) = ISOGONAL CONJUGATE OF X(2718)

Trilinears    (b3 + c3 - a2b - a2c - 2b2c - 2bc2 + 4abc) : :      (M. Iliev, 5/13/07)

Let Ia be the reflection of X(1) in the perpendicular bisector of BC, and define Ib and Ic cyclically. X(2802) = X(519)-of-IaIbIc; IaIbIc is the inner Garcia triangle. (Randy Hutson, February 10, 2016)

X(2802) lies on these (parallel) lines: 1,88   8,80   10,11   30,511   40,104   56,2932   65,1317   119,946   153,962   643,759   765,1168   1000,2550   1018,2170   1023,2246   1125,1387   1149,1739   1829,1862   1845,1897

X(2802) = isogonal conjugate of X(2718)
X(2802) = isotomic conjugate of X(35175)
X(2802) = X(2)-Ceva conjugate of X(35129)
X(2802) = crossdifference of every pair of points on line X(6)X(1635)


X(2803) = ISOGONAL CONJUGATE OF X(2719)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2719)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

Let Ia be the reflection of X(1) in the perpendicular bisector of BC, and define Ib and Ic cyclically. X(2803) = X(520)-of-IaIbIc; IaIbIc is the inner Garcia triangle. (Randy Hutson, February 10, 2016)

X(2803) lies on these (parallel) lines: 11,122   30,511   100,107   104,1294   119,133

X(2803) = isogonal conjugate of X(2719)


X(2804) = ISOGONAL CONJUGATE OF X(2720)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2720)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2804) lies on these (parallel) lines: 11,123   30,511   100,108   104,1295   1145,1769   1317,1359

Let Ia be the reflection of X(1) in the perpendicular bisector of BC, and define Ib and Ic cyclically. X(2804) = X(521)-of-IaIbIc; IaIbIc is the inner Garcia triangle. (Randy Hutson, February 10, 2016)

X(2804) = isogonal conjugate of X(2720)
X(2804) = X(i)-Ceva conjugate of X(j) for these (i,j): (100,119), (655,9), (901,1329), (1295,123), (1320,11)


X(2805) = ISOGONAL CONJUGATE OF X(2721)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2721)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

Let Ia be the reflection of X(1) in the perpendicular bisector of BC, and define Ib and Ic cyclically. X(2805) = X(524)-of-IaIbIc; IaIbIc is the inner Garcia triangle. (Randy Hutson, February 10, 2016)

X(2805) lies on these (parallel) lines: 11,126   30,511   37,100   75,149   104,1296

X(2805) = isogonal conjugate of X(2721)


X(2806) = ISOGONAL CONJUGATE OF X(2722)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2722)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2806) lies on these (parallel) lines: 11,127   30,511   100,112   104,1297   119,132

Let Ia be the reflection of X(1) in the perpendicular bisector of BC, and define Ib and Ic cyclically. X(2806) = X(525)-of-IaIbIc; IaIbIc is the inner Garcia triangle. (Randy Hutson, February 10, 2016)

X(2806) = isogonal conjugate of X(2722)


X(2807) = ISOGONAL CONJUGATE OF X(2723)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2723)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2807) lies on these (parallel) lines: 1,185   3,692   30,511   51,1699   55,103   101,102   116,117   118,124   150,151   389,946   990,1469   1037,1795   1282,1763   1361,2099   1827,1845

X(2807) = isogonal conjugate of X(2723)


X(2808) = ISOGONAL CONJUGATE OF X(2724)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2724)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2808) lies on these (parallel) lines: 1,1362   3,101   4,150   5,116   30,511   40,170   84,295   970,1490

X(2808) = isogonal conjugate of X(2724)
X(2808) = isogonal conjugate of the anticomplement of X(33331)
X(2808) = orthic-isogonal conjugate of X(33331)
X(2908) = polar conjugate of isotomic conjugate of X(36033)


X(2809) = ISOGONAL CONJUGATE OF X(2725)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2725)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2809) lies on these (parallel) lines: 1,41   8,150   10,116   30,511   40,103   65,1358   118,946   152,962

X(2809) = isogonal conjugate of X(2725)


X(2810) = ISOGONAL CONJUGATE OF X(2726)

Trilinears         1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2726)
Trilinears    a (a^2 (b^2 + c^2) - 2 a b c (b + c) - b^4 + 2 b^3 c + 2 b c^3 - c^4) : :

X(2810) lies on these (parallel) lines: {1,3271}, {6,101}, {3,3939}, {8,3888}, {30,511}, {43,57}, {51,3873}, {100,3937}, {118,5480}, {200,3784}, {210,3819}, {375,3742}, {611,5138}, {1428,5193}, {1843,5185}, {2093,3779}, {2097,4259}, {2979,4661}, {3022,4907}, {3038,3041}, {3060,4430}, {3681,3917}, {3781,5223}

X(2810) = isogonal conjugate of X(2726)


X(2811) = ISOGONAL CONJUGATE OF X(2727)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2727)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2811) lies on these (parallel) lines: 30,511   101,107   103,1294   116,122   118,133

X(2811) = isogonal conjugate of X(2727)


X(2812) = ISOGONAL CONJUGATE OF X(2728)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2728)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2812) lies on these (parallel) lines: 30,511   101,108   103,1295   116,123   1359,1362

X(2812) = isogonal conjugate of X(2728)


X(2813) = ISOGONAL CONJUGATE OF X(2729)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2729)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2813) lies on these (parallel) lines: 30,511   42,101   103,1296   116,126

X(2813) = isogonal conjugate of X(2729)


X(2814) = ISOGONAL CONJUGATE OF X(2730)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2730)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2814) lies on these (parallel) lines: 30,511   40,2254   102,105   109,1292   117,120   1358,1364

X(2814) = isogonal conjugate of X(2730)


X(2815) = ISOGONAL CONJUGATE OF X(2731)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2731)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2815) lies on these (parallel) lines: 30,511   102,106   109,1293   117,121   573,665   1054,2636   1357,1364

X(2815) = isogonal conjugate of X(2731)


X(2816) = ISOGONAL CONJUGATE OF X(2732)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2732)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2816) lies on these (parallel) lines: 29,102   30,511   40,151   109,1294   117,122   124,133   950,1845

X(2816) = isogonal conjugate of X(2732)


X(2817) = ISOGONAL CONJUGATE OF X(2733)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2733)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2817) lies on these (parallel) lines: 1,102   8,151   10,117   30,511   40,109   46,1795   65,1359   124,946

X(2817) = isogonal conjugate of X(2733)


X(2818) = ISOGONAL CONJUGATE OF X(2734)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2734)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2818) lies on these (parallel) lines: 1,1361   3,102   4,151   5,117   30,511   40,1745   56,945   65,389   296,2263   1482,1854

X(2818) = isogonal conjugate of X(2734)
X(2818) = crosspoint of X(4) and X(953)
X(2818) = crosssum of X(3) and X(952)


X(2819) = ISOGONAL CONJUGATE OF X(2735)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2735)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2819) lies on these (parallel) lines: 30,511   102,111   109,1296   117,126

X(2819) = isogonal conjugate of X(2735)


X(2820) = ISOGONAL CONJUGATE OF X(2736)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2736)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2820) lies on these (parallel) lines: 30,511   101,1292   103,105   118,120   165,1635   657,1734

X(2820) = isogonal conjugate of X(2736)
X(2820) = crosssum of X(55) and X(2254)
X(2820) = ideal point of PU(142)


X(2821) = ISOGONAL CONJUGATE OF X(2737)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2737)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2821) lies on these (parallel) lines: 3,1960   30,511   40,659   101,1293   103,106   118,121

X(2821) = isogonal conjugate of X(2737)


X(2822) = ISOGONAL CONJUGATE OF X(2738)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2738)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2822) lies on these (parallel) lines: 20,2939   27,103   30,511   101,1294   116,133   118,122   152,2947

X(2822) = isogonal conjugate of X(2738)


X(2823) = ISOGONAL CONJUGATE OF X(2739)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2739)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2823) lies on these (parallel) lines: 1,1461   30,511   33,57   40,1633   101,610   118,123   152,329   1721,2093

X(2823) = isogonal conjugate of X(2739)


X(2824) = ISOGONAL CONJUGATE OF X(2740)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2740)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2824) lies on these (parallel) lines: 30,511   101,1296   103,111   118,126

X(2824) = isogonal conjugate of X(2740)


X(2825) = ISOGONAL CONJUGATE OF X(2741)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2741)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2825) lies on these (parallel) lines: 30,511   58,103   101,1297   116,132   118,127   152,1330

X(2825) = isogonal conjugate of X(2741)


X(2826) = ISOGONAL CONJUGATE OF X(2742)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2742)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2826) lies on these (parallel) lines: 3,659   11,1111   30,511   100,1292   104,105   119,120   654,1768   1320,2403   1385,1960

X(2826) = isogonal conjugate of X(2742)
X(2826) = X(1156)-Ceva conjugate of X(11)
X(2826) = X(525)-of-Fuhrmann-triangle


X(2827) = ISOGONAL CONJUGATE OF X(2743)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2743)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2827) lies on these (parallel) lines: 11,1357   30,511   100,1293   104,106   119,121   1054,1768

X(2827) = isogonal conjugate of X(2743)
X(2827) = X(520)-of-Fuhrmann-triangle


X(2828) = ISOGONAL CONJUGATE OF X(2744)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2744)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2828) lies on these (parallel) lines: 11,133   28,104   30,511   100,1294   119,122   1715,1768

X(2828) = isogonal conjugate of X(2744)


X(2829) = ISOGONAL CONJUGATE OF X(2745)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2745)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2829) lies on these (parallel) lines: 1,1537   3,119   4,11   20,100   30,511   36,1532   40,1145   46,80   355,1158   944,1317   946,1387   962,1320   990,998   1012,1478   1155,1512   1319,1519   1455,1785   1862,1885

X(2829) = isogonal conjugate of X(2745)


X(2830) = ISOGONAL CONJUGATE OF X(2746)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2746)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2830) lies on these (parallel) lines: 30,511   100,1296   104,111   119,126

X(2830) = isogonal conjugate of X(2746)


X(2831) = ISOGONAL CONJUGATE OF X(2747)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2747)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2831) lies on these (parallel) lines: 11,132   30,511   100,1297   104,112   119,127   153,322   1754,1768

X(2831) = isogonal conjugate of X(2747)


X(2832) = ISOGONAL CONJUGATE OF X(2748)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)(a2 + b2 + c2 - 3bc)     (M. Iliev, 5/13/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2832) lies on these (parallel) lines: 30,511   105,106   120,121   659,764   1054,1635   1292,1293   1357,1358

X(2832) = isogonal conjugate of X(2748)


X(2833) = ISOGONAL CONJUGATE OF X(2749)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2749)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2833) lies on these (parallel) lines: 30,511   105,107   120,122   1292,1294

X(2833) = isogonal conjugate of X(2749)


X(2834) = ISOGONAL CONJUGATE OF X(2750)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2750)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2834) lies on these (parallel) lines: 25,105   30,511   120,123   269,1358   1292,1295   1723,2270

X(2834) = isogonal conjugate of X(2750)


X(2835) = ISOGONAL CONJUGATE OF X(2751)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2751)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2835) lies on these (parallel) lines: 1,1633   19,1743   30,511   31,57   102,1292   120,124   999,1486   1122,1358

X(2835) = isogonal conjugate of X(2751)


X(2836) = ISOGONAL CONJUGATE OF X(2752)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2752)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2836) lies on these (parallel) lines: 1,2930   6,1718   30,511   65,651   67,72   74,1292   81,105   120,125

X(2836) = isogonal conjugate of X(2752)
X(2836) = X(518)-of-orthocentroidal-triangle
X(2836) = X(518)-of-X(4)-Brocard-triangle


X(2837) = ISOGONAL CONJUGATE OF X(2753)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2753)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2837) lies on these (parallel) lines: 30,511   105,111   120,126   1292,1296

X(2837) = isogonal conjugate of X(2753)


X(2838) = ISOGONAL CONJUGATE OF X(2754)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2754)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2838) lies on these (parallel) lines: 28,105   30,511   120,127   1292,1297

X(2838) = isogonal conjugate of X(2754)


X(2839) = ISOGONAL CONJUGATE OF X(2755)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2755)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2839) lies on these (parallel) lines: 30,511   106,107   121,122   1054,1714   1293,1294

X(2839) = isogonal conjugate of X(2755)


X(2840) = ISOGONAL CONJUGATE OF X(2756)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2756)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2840) lies on these (parallel) lines: 30,511   34,106   121,123   1054,1722   1293,1295   1357,1359

X(2840) = isogonal conjugate of X(2756)


X(2841) = ISOGONAL CONJUGATE OF X(2757)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2757)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2841) lies on these (parallel) lines: 30,511   46,978   56,106   102,1293   121,124   1364,2098   1828,1845

X(2841) = isogonal conjugate of X(2757)


X(2842) = ISOGONAL CONJUGATE OF X(2758)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2758)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2842) lies on these (parallel) lines: 30,511   58,106   74,1293   121,125   1046,1054

X(2842) = isogonal conjugate of X(2758)
X(2842) = X(519)-of-orthocentroidal-triangle
X(2842) = X(519)-of-X(4)-Brocard-triangle
X(2842) = crossdifference of every pair of points on line X(6)X(4120)


X(2843) = ISOGONAL CONJUGATE OF X(2759)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2759)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2843) lies on these (parallel) lines: 30,511   106,111   121,126   1293,1296

X(2843) = isogonal conjugate of X(2759)


X(2844) = ISOGONAL CONJUGATE OF X(2760)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2760)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2844) lies on these (parallel) lines: 30,511   106,112   121,127   923,1042   1293,1297

X(2844) = isogonal conjugate of X(2760)


X(2845) = ISOGONAL CONJUGATE OF X(2761)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2761)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2845) lies on these (parallel) lines: 30,511   107,108   122,123   1294,1295

X(2845) = isogonal conjugate of X(2761)


X(2846) = ISOGONAL CONJUGATE OF X(2762)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2762)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2846) lies on these (parallel) lines: 30,511   102,1294   107,109   117,133   122,124

X(2846) = isogonal conjugate of X(2762)


X(2847) = ISOGONAL CONJUGATE OF X(2763)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2763)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2847) lies on these (parallel) lines: 30,511   107,111   122,126   1294,1296

X(2847) = isogonal conjugate of X(2763)


X(2848) = ISOGONAL CONJUGATE OF X(2764)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2764)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2848) lies on these (parallel) lines: 30,511   107,112   122,127   132,133   1294,1297

X(2848) = isogonal conjugate of X(2764)


X(2849) = ISOGONAL CONJUGATE OF X(2765)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2765)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2849) lies on these (parallel) lines: 30,511   102,1295   108,109   123,124   1359,1361

X(2849) = isogonal conjugate of X(2765)


X(2850) = ISOGONAL CONJUGATE OF X(2766)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2766)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2850) lies on these (parallel) lines: 30,511   74,1295   108,110   123,125   895,1814

X(2850) = isogonal conjugate of X(2766)
X(2850) = X(1290)-Ceva conjugate of X(3)
X(2850) = X(521) of orthocentroidal triangle
X(2850) = X(521) of X(4)-Brocard triangle


X(2851) = ISOGONAL CONJUGATE OF X(2767)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2767)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2851) lies on these (parallel) lines: 30,511   108,111   123,126   1295,1296

X(2851) = isogonal conjugate of X(2767)


X(2852) = ISOGONAL CONJUGATE OF X(2768)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2768)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2852) lies on these (parallel) lines: 30,511   102,1296   109,111   124,126

X(2852) = isogonal conjugate of X(2768)


X(2853) = ISOGONAL CONJUGATE OF X(2769)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2769)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2853) lies on these (parallel) lines: 30,511   102,1297   109,112   117,132   124,127

X(2853) = isogonal conjugate of X(2769)


X(2854) = ISOGONAL CONJUGATE OF X(2770)

Trilinears     1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2770)
Barycentrics   a^2(b^6 + c^6 - a^4b^2 - a^4c^2 + 4a^2b^2c^2 - 2b^4c^2 - 2b^2c^4) : :

X(2854) lies on these (parallel) lines: 6,110   30,511   67,69   74,1296   125,126   159,1177   182,1511   265,1352   373,597   399,1351   1112,1843

X(2854) = isogonal conjugate of X(2770)
X(2854) = X(524)-of-orthocentroidal-triangle
X(2854) = X(524)-of-X(4)-Brocard-triangle
X(2854) = X(524)-of-4th-anti-Brocard-triangle

leftri

SM Points

rightri
Centers X(2855) to X(2868) are examples of Simson-Moses points, defined by changing "isogonal" to "isotomic" in the definition of Simson-Ribgy points (X(2687) to X(2770). That is, for points P and U on the circumcircle of triangle ABC, the point of intersection of the lines (P and isotomic conjugate of U) and (U and isotomic conjugate of P) defines the Simson-Moses point of P and U, denoted by SM(P,U). If P and U are given in barycentric coordinates p : q : r and u : v : w, then

(rv - qw)/(qv - rw) : (pw - ru)/(rw - pu) : (qu - pv)/(pu - qv)     (barycentrics)


If P and U are given in trilinear coordinates p : q : r and u : v : w, then

b2c2(rv - qw)/(b2qv - c2rw) : c2a2(pw - ru)/(c2rw - a2pu) : a2b2(qu - pv)/(a2pu - b2qv)     (trilinears)


On Oct. 23, 2004, Peter Moses described the point for which the designation SM(P,U) is here introduced, and he noted that SM(P,U), like SR(P,U), lies on the circumcircle.

In the following list, the appearance of I, J, K means that RS(X(i),X(j)) = X(K):

74,99,477
98,99,842    98,110,2879    98,111,2880    98,112,2881
99,100,1290     99,101,2690     99,102,2695     99,103,2688     99,104,2687    99,105,2752     99,106,2758     99,107,1304     99,108,2766    99,109,2689     99,110,476     99,111,2770     99,112,935

The definitions of SR and SM points depend on two kinds of isoconjugates (i.e., isogonal and isotomic). To generalize, suppose

X = x : y : z, P = p : q : r, U = u : v : w


are points, none on a sideline of triangle ABC. Then

(X-isoconjugate of P) = yzqr : zxrp : xypq     and     (X-isoconjugate of U) = yzvw : zxwu : xyuv,


Denote these points by P(X) and U(X), respectively. It is easy to show using determinants that PU(X) and UP(X) meet in the point. That point defines the X-Simson point of P and U, denoted by S(X;P,U):

S(X;P,U) = yz(qw - rv)/(qvy - rwz) : zx(ru - pw)/(rwz - pux) : xy(pv - qu)/(pux - qvy).


Theorem: If P and U are on the circumcircle, then S(X;P,U) is on the circumcircle. A "computer proof" is easy: solve the equations a/p + b/q + c/r = 0 and a/u + b/v + c/w = 0 for r and w, substitute for these in a/r + b/s + c/t, where r, s, t are trilinears for S(X;P,U), and find that a/r + b/s + c/t = 0.

To conclude, SR(P,U) = S(X(1);P,U) and SM(P,U) = S(X(2);P,U).


X(2855) = SM(X(74), X(98))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is given just before X(2855) using P = X(74) and U = X(98)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2855) lies on the circumcircle and these lines: 74,325   877,1304   2407,2715

X(2855) = isogonal conjugate of X(2869)


X(2856) = SM(X(98), X(100))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is given just before X(2855) using P = X(98) and U = X(100)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2856) lies on the circumcircle and these lines: 81,2715   98,693   100,325   101,1959

X(2856) = isogonal conjugate of X(2870)


X(2857) = SM(X(98), X(110))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is given just before X(2855) using P = X(98) and U = X(110)
Barycentrics    (a^6 (b^2 + c^2) - 2 a^4 (b^4 + c^4) + a^2 (b^6 + c^6) + b^2 c^2 (b^2 - c^2)^2) / (a^6 (b^2 + c^2) - a^4 (b^2 + c^2)^2 + a^2 (b^6 + c^6) - (b^2 - c^2)^2 (b^2 - b c + c^2) (b^2 + b c + c^2)) : :

X(2857) lies on the circumcircle and these lines: 2,2715   98,850   110,325   112,297   183,476

X(2857) = isogonal conjugate of X(2871)
X(2857) = anticomplement of X(38975)
X(2857) = orthoptic-circle-of-Steiner-inellipse-inverse of X(36471)


X(2858) = SM(X(98), X(111))

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc/[(b2 - c2)(a4 + b4 + c4 - 3b2c2)]     (M. Iliev, 5/13/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2858) lies on the circumcircle and these lines: 111,325   323,729   691,2396

X(2858) = isogonal conjugate of X(2872)


X(2859) = SM(X(100), X(112))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is given just before X(2855) using P = X(100) and U = X(112)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2859) lies on the circumcircle and these lines: {100,3267}, {112,693}

X(2859) = isogonal conjugate of X(2873)


X(2860) = SM(X(100), X(101))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is given just before X(2855) using P = X(100) and U = X(101)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2860) lies on the circumcircle and this line: 101,693

X(2860) = isogonal conjugate of X(2874)


X(2861) = SM(X(100), X(104))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is given just before X(2855) using P = X(100) and U = X(104)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2861) lies on the circumcircle and these lines: 7,2720   101,908   104,693   264,1309

X(2861) = isogonal conjugate of X(2875)


X(2862) = SM(X(100), X(105))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is given just before X(2855) using P = X(100) and U = X(105)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2862) lies on the circumcircle and these lines: 2,919   63,813   105,693   108,1447

X(2862) = isogonal conjugate of X(2876)


X(2863) = SM(X(100), X(106))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is given just before X(2855) using P = X(100) and U = X(106)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2863) lies on the circumcircle and these lines: 75,901   106,693   813,1150

X(2863) = isogonal conjugate of X(2877)


X(2864) = SM(X(100), X(110))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is given just before X(2855) using P = X(100) and U = X(110)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2864) lies on the circumcircle and these lines: 100,850   101,1577   110,693

X(2864) = isogonal conjugate of X(2878)


X(2865) = SM(X(104), X(105))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is given just before X(2855) using P = X(104) and U = X(105)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2865) lies on the circumcircle and these lines: 883,2720   919,2397

X(2865) = isogonal conjugate of X(2879)


X(2866) = SM(X(105), X(109))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is given just before X(2855) using P = X(105) and U = X(109)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2866) lies on the circumcircle and these lines: 312,919   561,927

X(2866) = isogonal conjugate of X(2880)


X(2867) = SM(X(107), X(110))

Trilinears         f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is given just before X(2855) using P = X(107) and U = X(110)
Barycentrics    af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2867) lies on the circumcircle and these lines: 107,850   112,525   1297,1503

X(2867) = isogonal conjugate of X(2881)
X(2867) = anticomplement of X(33504)
X(2867) = intersection of antipedal lines of X(112) and X(1297)


X(2868) = SM(X(110), X(111))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is given just before X(2855) using P = X(110) and U = X(111)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2868) lies on the circumcircle and these lines: 69,805   76,691   110,3266   111,850   112,385   669,2373

X(2868) = isogonal conjugate of X(2882)


X(2869) = ISOGONAL CONJUGATE OF X(2855)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2855)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2869) lies on these (parallel) lines: 6,2510   30,511   351,878

X(2869) = isogonal conjugate of X(2855)


X(2870) = ISOGONAL CONJUGATE OF X(2856)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2856)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2870) lies on these lines: 30,511   37,692

X(2870) = isogonal conjugate of X(2856)


X(2871) = ISOGONAL CONJUGATE OF X(2857)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2857)
Barycentrics    a^2 (a^6 (b^2 + c^2) - a^4 (b^2 + c^2)^2 + a^2 (b^6 + c^6) - (b^2 - c^2)^2 (b^2 - b c + c^2) (b^2 + b c + c^2)) / (a^6 (b^2 + c^2) - 2 a^4 (b^4 + c^4) + a^2 (b^6 + c^6) + b^2 c^2 (b^2 - c^2)^2) : :

X(2871) lies on these (parallel) lines: 6,157   30,511   53,1843   263,1989   287,1632

X(2871) = isogonal conjugate of X(2857)
X(2871) = complementary conjugate of X(38975)


X(2872) = ISOGONAL CONJUGATE OF X(2858)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 - c2)(a4 + b4 + c4 - 3b2c2)     (M. Iliev, 5/13/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2872) lies on these lines: 30,511   1976,2422

X(2872) = isogonal conjugate of X(2858)


X(2873) = ISOGONAL CONJUGATE OF X(2859)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2859)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2873) lies on this line: 30,511

X(2873) = isogonal conjugate of X(2859)


X(2874) = ISOGONAL CONJUGATE OF X(2860)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2860)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2874) lies on this line: 30,511

X(2874) = isogonal conjugate of X(2860)


X(2875) = ISOGONAL CONJUGATE OF X(2861)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2861)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2875) lies on these lines: 30,511   55,184

X(2875) = isogonal conjugate of X(2861)


X(2876) = ISOGONAL CONJUGATE OF X(2862)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2862)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2876) lies on these (parallel) lines: 6,692   19,1843   30,511   1469,2263   1633,1814

X(2876) = isogonal conjugate of X(2862)


X(2877) = ISOGONAL CONJUGATE OF X(2863)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2863)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2877) lies on these lines: 30,511   31,692

X(2877) = isogonal conjugate of X(2863)


X(2878) = ISOGONAL CONJUGATE OF X(2864)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2864)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2878) lies on these lines: 30,511   163,692

X(2878) = isogonal conjugate of X(2864)


X(2879) = ISOGONAL CONJUGATE OF X(2865)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2865)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2879) lies on these lines: 30,511   884,2423

X(2879) = isogonal conjugate of X(2865)


X(2880) = ISOGONAL CONJUGATE OF X(2866)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2866)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2880) lies on these lines: 30,511   560,604

X(2880) = isogonal conjugate of X(2866)


X(2881) = ISOGONAL CONJUGATE OF X(2867)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2867)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2881) lies on these (parallel) lines: 30,511   32,2508   112,1576   154,1636   684,1297   2501,2506

X(2881) = isogonal conjugate of X(2867)
X(2881) = orthic-isogonal conjugate of X(33504)


X(2882) = ISOGONAL CONJUGATE OF X(2868)

Trilinears        1/f(a,b,c) : 1/f(b,c,a) : 1/f(c,a,b), where f(a,b,c) is as at X(2868)
Barycentrics   a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b)

X(2882) lies on these (parallel) lines: 25,694   30,511   32,1084   315,670

X(2882) = isogonal conjugate of X(2868)

leftri

Isogonal Conjugates wrt Special Triangles

rightri

Suppose A'B'C' is the medial triangle of ABC and X is a triangle center wrt ABC. Let X' be the isogonal conjugate of X wrt A'B'C'. Then X' is a triangle center wrt ABC. In order to determine its center function g, the method of TCCT, p. 207 applies. Write X = x : y : z (wrt ABC). Then trilinears of X wrt A'B'C' are

(- ax + by + cz)/a : (ax - by + cz)/b : (ax + by - cz)/c,


so that the isogonal conjugate of X wrt A'B'C' is

a/(- ax + by + cz) : b/(ax - by + cz) : c/(ax + by - cz),


which, in trilinears wrt ABC, is g(a,b,c,x,y,z) : g(b,c,a,y,z,x) : g(c,a,b,z,x,y), where

g(a,b,c,x,y,z) = bc(ax - by - cz)[b2(ax + by - cz) + c2(ax - by + cz)]


This point is the isogonal conjugate of X wrt the medial triangle, or, more simply, the medial isogonal conjugate of X. In like manner, other conjugates of X wrt other triangles are defined. In this section, only isogonal conjugates are considered, and trilinears wrt to selected triangles are given by first trilinear wrt ABC, as follows:

MEDIAL ISOGONAL CONJUGATE OF X = x : y : z
bc(ax - by - cz)[b2(ax + by - cz) + c2(ax - by + cz)]

ANTICOMPLEMENTARY ISOGONAL CONJUGATE OF X = x : y : z
bc[- a2/(by + cz) + b2/(cz + ax) + c2/(ax + by)]

ORTHIC-ISOGONAL CONJUGATE OF X = x : y : z
x(x cos A - y cos B - z cos C)

TANGENTIAL-ISOGONAL CONJUGATE OF X = x : y : z
a[- a3/(cy + bz) + b3/(az + cx) + c3/(bx + ay)]

EXCENTRAL-ISOGONAL CONJUGATE OF X = x : y : z

- a/[(b + c - a)(y + z)] + b/[(c + a - b)(z + x)] + c/[(a + b - c)(x + y)]

In each of the above cases, x : y : z, as a triangle center, is given by trilinears h(a,b,c) : h(b,c,a) : h(c,a,b) for some function h. Accordingly, each of the first trilinears given above defines a triangle center f(a,b,c) : f(b,c,a) : f(c,a,b).

The term "complementary conjugate" already in use at the time of this writing (11/25/04) is a synonym for "medial isogonal conjugate", as is "anticomplementary conjugate" for "anticomplementary isogonal conjugate"; accordingly, the earlier terms will be used in the sequel. Also, "excentral isogonal conjugate" is "X(188)-aleph conjugate" and "orthic isogonal conjugate" is "X(4)-Ceva conjugate"; in these cases, the new terminology will be used.

The subject of isogonal conjugation with respect to a central triangle continues at the preamble just before X(6000).


X(2883) = COMPLEMENTARY CONJUGATE OF X(4)

Trilinears         f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics    [3a^4 - 2a^2(b^2 + c^2) - (b^2 - c^2)^2]*[a^4(b^2 + c^2) - 2a^2(b^2 - c^2)^2 + (b^2 - c^2)^2(b^2 + c^2)] : :

In the plane of a triangle ABC, let
H = X(4);
L = X(20);
Ab = AL∩BH;
Ac = AL∩CH;
U = line through Ab parallel to AC;
V = line through Ac parallel to AB;
A1 = U∩V;
A2 = U∩BC;
A3 = V∩BC;
O = circle {{A1, A2, A3}};
A' = pole of BC wrt O, and define B' and C' cyclically.
Then A'B'C' = reflection of ABC in X(2883). (Angel Montesdeoca, July 30, 2021)

X(2883) lies on these lines: 2,64   3,1661   4,6   20,154   30,156   51,1906   184,1885   185,235   221,497   388,2192   389,1596   417,1624   459,1192   468,1204   496,942   550,1511   1593,1619

X(2883) = midpoint of X(4) and X(1498)
X(2883) = reflection of X(3357) in X(140)
X(2883) = complement of X(64)
X(2883) = complementary conjugate of X(4)
X(2883) = X(2)-Ceva conjugate of X(800)
X(2883) = X(12513)-of-orthic-triangle if ABC is acute
X(2883) = perspector of circumconic centered at X(800)
X(2883) = center of circumconic that is locus of trilinear poles of lines passing through X(800)


X(2884) = COMPLEMENTARY CONJUGATE OF X(7)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2884) lies on these lines: 142,1538   857,948

X(2884) = complementary conjugate of X(7)


X(2885) = COMPLEMENTARY CONJUGATE OF X(8)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b + c - 3a)(b3 + c3 + ab2 + ac2 - 3b2c - 3bc2)     (M. Iliev, 5/13/07)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2885) lies on these lines: 2,1222   5,121   10,496   45,1213

X(2885) = complement of X(3445)
X(2885) = complementary conjugate of X(8)


X(2886) = COMPLEMENTARY CONJUGATE OF X(9)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b3 + c3 - ab2 - ac2 - b2c - bc2)     (M. Iliev, 5/13/07)

X(2886) is the center of the inellipse that is the isotomic conjugate of the isogonal conjugate of the incircle. (Randy Hutson, October 15, 2018)

X(2886) lies on these lines: 1,442   2,11   4,958   5,10   8,12   9,1699   30,993   56,377   63,1836   75,325   115,1573   118,124   141,674   210,908   214,1484   226,518   333,2651   348,2898   405,1479   427,1824   474,499   485,1378   486,1377   495,519   496,1125   529,956   982,1086   1348,1679   1349,1678   1506,1574   1676,1681   1677,1680   1698,1706   2009,2014   2010,2013   2566,2569   2567,2568

X(2886) = midpoint of X(i) and X(j) for these (i,j): (1,3416), (4,3428), (8,2099), (63,1836), (956,1478)
X(2886) = isogonal conjugate of X(3449)
X(2886) = isotomic conjugate of isogonal conjugate of X(21746)
X(2886) = polar conjugate of isogonal conjugate of X(22070)
X(2886) = complement of X(55)
X(2886) = complementary conjugate of X(9)
X(2886) = crosssum of X(6) and X(2175)


X(2887) = COMPLEMENTARY CONJUGATE OF X(37)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b + c)(b2 + c2 - bc)     (M. Iliev, 5/13/07)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2887) lies on these lines: 1,977   2,31   10,12   37,744   39,734   120,124   141,674   306,740   334,1581   626,766   1111,1233   1329,2390   2205,2240

X(2887) = isogonal conjugate of X(38813)
X(2887) = isotomic conjugate of isogonal conjugate of X(3778)
X(2887) = complement of X(31)
X(2887) = complementary conjugate of X(37)
X(2887) = crosspoint of X(2) and X(561)
X(2887) = crosssum of X(6) and X(560)
X(2887) = anticomplementary conjugate of anticomplement of X(38831)
X(2887) = crossdifference of every pair of points on line X(3250)X(7252)
X(2887) = X(i)-isoconjugate of X(j) for these {i,j}: {1, 38813}, {32, 38810}, {42, 7305}, {58, 983}, {284, 7132}, {692, 7255}, {788, 33514}, {1333, 17743}, {2206, 7033}
X(2887) = trilinear product X(i)*X(j) for these {i,j}: {2, 3721}, {6, 20234}, {9, 16888}, {10, 982}, {37, 3662}, {42, 33930}, {57, 4136}, {65, 3705}, {75, 3778}, {76, 16584}, {81, 16886}, {85, 20684}, {86, 7237}, {92, 20727}, {226, 3061}, {313, 7032}, {321, 2275}, {349, 20665}, {514, 7239}, {1441, 3056}, {4531, 6063}
X(2887) = trilinear quotient X(i)/X(j) for these (i,j): (1, 38813), (10, 983), (76, 38810), (86, 7305), (226, 7132), (313, 7033), (321, 17743), (693, 7255), (789, 33514), (982, 58), (2275, 1333), (3056, 2194), (3061, 284), (3662, 81), (3705, 21), (3721, 6), (3778, 31), (4136, 9), (4531, 2175), (7032, 2206), (7237, 42), (7239, 101), (16584, 32), (16886, 37), (16888, 57), (20234, 2), (20684, 41), (20727, 48), (33930, 86)
X(2887) = barycentric product X(i)*X(j) for these {i,j}: {1, 20234}, {7, 4136}, {8, 16888}, {10, 3662}, {37, 33930}, {75, 3721}, {76, 3778}, {86, 16886}, {226, 3705}, {264, 20727}, {274, 7237}, {313, 2275}, {321, 982}, {349, 3056}, {561, 16584}, {693, 7239}, {1441, 3061}, {4531, 20567}, {6063, 20684}, {7032, 27801}
X(2887) = barycentric quotient X(i)/X(j) for these (i,j): (6, 38813), (10, 17743), (37, 983), (65, 7132), (75, 38810), (81, 7305), (321, 7033), (514, 7255), (982, 81), (2275, 58), (3056, 284), (3061, 21), (3662, 86), (3705, 333), (3721, 1), (3778, 6), (4136, 8), (4531, 41), (7032, 1333), (7237, 37), (7239, 100), (16584, 31), (16886, 10), (16888, 7), (20234, 75), (20665, 2194), (20684, 55), (20727, 3), (27801, 7034), (33930, 274)


X(2888) = ANTICOMPLEMENTARY CONJUGATE OF X(3)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics    a^10 - 3 a^8 (b^2 + c^2) + a^6 (4 b^4 + 5 b^2 c^2 + 4 c^4) - 2 a^4 (2 b^6 + b^4 c^2 + b^2 c^4 + 2 c^6) + 3 a^2 (b^8 - b^6 c^2 - b^2 c^6 + c^8) - (b^2 - c^2)^4 (b^2 + c^2) : :

X(2888) lies on these lines: 2,54   4,93   5,195   69,1225   128,252   193,576   323,1594   343,1601   2904,2914

X(2888) = reflection of X(i) in X(j) for these (i,j): (54,1209), (195,5)
X(2888) = isogonal conjugate of X(3432)
X(2888) = anticomplement of X(54)
X(2888) = anticomplementary conjugate of X(3)
X(2888) = X(311)-Ceva conjuagte of X(2)
X(2888) = cevapoint of X(195) and X(2917)
X(2888) = crosspoint of X(195) and X(2917) wrt both the excentral and tangential triangles


X(2889) = ANTICOMPLEMENTARY CONJUGATE OF X(5)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2889) lies on these lines: 2,1173   182,193

X(2889) = anticomplement of X(1173)
X(2889) = anticomplementary conjugate of X(5))
X(2889) = X(1232)-Ceva conjugate of X(2)


X(2890) = ANTICOMPLEMENTARY CONJUGATE OF X(9)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2890) lies on this line: 2,1174

X(2890) = anticomplement of X(1174)
X(2890) = anticomplementary conjugate of X(9)
X(2890) = X(1233)-Ceva conjugate of X(2)


X(2891) = ANTICOMPLEMENTARY CONJUGATE OF X(10)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)

X(2891) lies on these lines: 1,1654   2,1126   1051,1125

X(2891) = anticomplement of X(1126)
X(2891) = anticomplementary conjugate of X(10)
X(2891) = X(1269)-Ceva conjugate of X(2)


X(2892) = ANTICOMPLEMENTARY CONJUGATE OF X(23)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2892) lies on these lines: 2,1177   4,67   20,1632   66,193   1352,2777   1503,2930

X(2892) = anticomplement of X(1177)
X(2892) = anticomplementary conjugate of X(23)
X(2892) = anticomplementary-circle-inverse of X(34163)
X(2892) = X(1236)-Ceva conjugate of X(2)


X(2893) = ANTICOMPLEMENTARY CONJUGATE OF X(63)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2893) lies on these lines: 2,272   4,69   7,2475   8,2897   9,1654   72,319   75,150   77,2000   86,442   226,1943   322,355   325,332   329,2895   333,440   524,1901   857,2287

X(2893) = anticomplement of X(284)
X(2893) = anticomplementary conjugate of X(63)
X(2893) = X(349)-Ceva conjugate of X(2)


X(2894) = ANTICOMPLEMENTARY CONJUGATE OF X(72)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2894) lies on these lines: 2,943   4,144   21,149   75,2897   145,377   673,2481

X(2894) = anticomplement of X(943)
X(2894) = anticomplementary conjugate of X(72)


X(2895) = ANTICOMPLEMENTARY CONJUGATE OF X(75)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2895) lies on these lines: 2,6   8,79   144,2897   314,1230   319,321   329,2893   445,2322   451,2906

X(2895) = reflection of X(81) in X(1211)
X(2895) = isogonal conjugate of X(3444)
X(2895) = isotomic conjugate of 1029
X(2895) = anticomplement of X(81)
X(2895) = anticomplementary conjugate of X(75)
X(2895) = X(i)-Ceva conjugate of X(j) for these (i,j): (319,8), (321,2)
X(2895) = X(1030-cross conjugate of X(451)
X(2895) = {X(1654),X(17778)}-harmonic conjugate of X(2)


X(2896) = ANTICOMPLEMENTARY CONJUGATE OF X(76)

Trilinears    bc(b4 + c4 - a4 + b2c2 + c2a2 + a2b2) : :      (M. Iliev, 5/13/07)

Let A'B'C' be the 1st Brocard triangle and A"B"C" the 1st Brocard-reflected triangle. Let A* be the isogonal conjugate of A", and define B* and C* cyclically. The lines A'A*, B'B*, C'C* concur in X(2896). (Randy Hutson, June 7, 2019)

Let OA be the circle centered at the A-vertex of the 2nd Neuberg triangle and passing through A; define OB and OC cyclically. X(2896) is the radical center of OA, OB, OC. (Randy Hutson, August 28, 2020)

X(2896) lies on these lines: 2,32   3,147   15,628   16,627   20,1352   69,194   76,148   141,384   599,1975

X(2896) = isogonal conjugate of X(14370)
X(2896) = isotomic conjugate of 1031
X(2896) = anticomplement of X(83)
X(2896) = anticomplementary conjugate of X(76)
X(2896) = X(i)-Ceva conjugate of X(j) for these (i,j): (141,2), (384,194)
X(2896) = anticomplementary isotomic conjugate of X(6)
X(2896) = radical center of reflected Neuberg circles
X(2896) = homothetic center of anticomplementary triangle and 5th Brocard triangle
X(2896) = perspector of 1st and 5th Brocard triangles
X(2896) = X(83) of 5th Brocard triangle
X(2896) = X(83)-of-6th-Brocard-triangle
X(2896) = center of inverse similitude of 5th and 6th Brocard triangles
X(2896) = homothetic center of anticomplementary triangle and cross-triangle of ABC and 5th Brocard triangle
X(2896) = homothetic center of 5th Brocard triangle and cross-triangle of ABC and 5th Brocard triangle


X(2897) = ANTICOMPLEMENTARY CONJUGATE OF X(92)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2897) lies on these lines: 2,1172   8,2893   20,64   75,2894   144,2895   145,347   153,322   857,2322   1441,2475   1444,2071

X(2897) = anticomplement of X(1172)
X(2897) = anticomplementary conjugate of X(92)
X(2897) = X(1231)-Ceva conjugate of X(2)


X(2898) = ORTHIC-ISOGONAL CONJUGATE OF X(7)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2898) lies on these lines: 7,354   55,1996   273,1851   348,2886   857,948

X(2898) = X(4)-Ceva conjugate of X(7)


X(2899) = ORTHIC-ISOGONAL CONJUGATE OF X(8)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2899) lies on these lines: 2,988   8,210   12,344   45,1213   56,1997   190,1788   318,1863   345,1329

X(2899) = X(4)-Ceva conjugate of X(8)


X(2900) = ORTHIC-ISOGONAL CONJUGATE OF X(9)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2900) lies on these lines: 1,442   9,55   57,1004   78,950   100,1708   517,1490   528,1750

X(2900) = X(4)-Ceva conjugate of X(9)


X(2901) = ORTHIC-ISOGONAL CONJUGATE OF X(10)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b + c)(a3 + a2b + a2c - b2c - bc2)     (M. Iliev, 5/13/07)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2901) lies on these lines: 1,321   10,37   42,1089   58,1999   72,519   312,386   346,387   354,596   430,1867   536,942   1018,2198

X(2901) = X(4)-Ceva conjugate of X(10)
X(2901) = X(1)-of-inverse(n(Medial)*n(Incentral))-triangle


X(2902) = ORTHIC-ISOGONAL CONJUGATE OF X(15)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2902) lies on these lines: 5,13   15,1154   16,184   52,2913   571,2903

X(2902) = X(4)-Ceva conjugate of X(15)


X(2903) = ORTHIC-ISOGONAL CONJUGATE OF X(16)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2903) lies on these lines: 5,14   15,184   16,1154   52,2912   571,2902

X(2903) = X(4)-Ceva conjugate of X(16)


X(2904) = ORTHIC-ISOGONAL CONJUGATE OF X(24)

Trilinears         f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics    a^2(a^4 + b^4 + c^4 - 2a^2b^2 - 2a^2c^2)[a^6 - 3a^4(b^2 + c^2) + 3a^2(b^4 + c^4) - (b^2 - c^2)^2(b^2 + c^2)]/(b^2 + c^2 - a^2) : :

Let O be the circumcircle of a triangle ABC. Let
A' = perpendicular bisector of segment OA, and define B' and C' cyclically
A'' = B'∩C', and define B'' and C'' cyclically
A* = reflection of A* in BC, and define B* and C* cyclically.
Then A*B*C* is perspective to the orthic triangle of ABC, and the perspector is X(2904). (Angel Montesdeoca, November 12, 2016).

Let P be an arbitrary point of the circumcircle , O, and let S(P) be the Simson-Wallace line of P, and P' the reflection of P in S(P). The locus of P' as P ranges through O is a bicircular circumquartic that meets the sidelines of ABC in 6 points other than A, B, C. The 6 points lie on a conic, here called the Montesdeoca conic, M. The center of M is X(2904), and the perspector of M is X(14111). Let u = SA, v = SB, w = SC, f(a,b,c) = u2(S2 - v2)(S2 - w2), g(a,b,c) = 2vw(u2 - S2)(S2 + vw). A barycentric equation for M is

f(a,b,c)x2 + f(b,c,a)y2 + (f,c,a,b)z2 + g(a,b,c)yz + g(b,c,a)zx + g(c,b,a)xy = 0.

See HG121017 and X(2904).

X(2904) lies on these lines: 3,1986   4,1994   6,70   24,52   25,195   155,403   156,1112   185,378   576,1843   648,847   2888,2914

X(2904) = X(4)-Ceva conjugate of X(24)
X(2904) = X(90)-of-orthic-triangle if ABC is acute


X(2905) = ORTHIC-ISOGONAL CONJUGATE OF X(27)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2905) lies on these lines: 6,469   19,423   27,86   29,242   238,270   429,2907   648,1826

X(2905) = X(4)-Ceva conjugate of X(27)


X(2906) = ORTHIC-ISOGONAL CONJUGATE OF X(28)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2906) lies on these lines: 1,2074   4,1029   28,60   79,1172   163,1782   193,406   451,2895   860,2907   1100,2189

X(2906) = X(4)-Ceva conjugate of X(28)
X(2906) = crosspoints of X(4) and X(451)


X(2907) = ORTHIC-ISOGONAL CONJUGATE OF X(29)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2907) lies on these lines: 1,415   4,2651   27,239   29,270   185,412   225,648   243,1858   429,2905   860,2906   1896,2648

X(2907) = X(4)-Ceva conjugate of X(29)


X(2908) = ORTHIC-ISOGONAL CONJUGATE OF X(31)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2908) lies on these lines: 37,48   41,2092   604,1015   1880,1973   2174,2276

X(2908) = X(4)-Ceva conjugate of X(31)


X(2909) = ORTHIC-ISOGONAL CONJUGATE OF X(32)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2909) lies on these lines:5,182   39,184   76,2001   211,571   512,1968   1692,1974

X(2909) = X(4)-Ceva conjugate of X(32)
X(2909) = isogonal conjugate of isotomic conjugate of X(157)
X(2909) = polar conjugate of isotomic conjugate of X(22391)


X(2910) = ORTHIC-ISOGONAL CONJUGATE OF X(40)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2910) lies on these lines: 1,1864   9,1181   40,198   101,1753

X(2910) = X(4)-Ceva conjugate of X(40)


X(2911) = ORTHIC-ISOGONAL CONJUGATE OF X(55)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2911) lies on these lines: 1,6   3,2174   25,209   31,2318   41,71   48,672   55,584   56,583   101,579   193,1332   198,2245   393,1783   571,906   607,1826   692,1974   1333,1801   2262,2348   2287,2345

X(2911) = isogonal conjugate of X(15474)
X(2911) = polar conjugate of isotomic conjugate of X(11517)
X(2911) = X(63)-isoconjugate of X(39267)
X(2911) = X(4)-Ceva conjugate of X(55)
X(2911) = crosspoint of X(1252) and X(1783)
X(2911) = crosssum of X(905) and X(1086)
X(2911) = crossdifference of every pair of points on line X(513)X(5570)


X(2912) = ORTHIC-ISOGONAL CONJUGATE OF X(61)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2912) lies on these lines: 5,16   17,2004   52,2903   61,143   62,184   571,2913

X(2912) = X(4)-Ceva conjugate of X(61)


X(2913) = ORTHIC-ISOGONAL CONJUGATE OF X(62)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2913) lies on these lines: 5,15   18,2005   52,2902   61,184   62,143   571,2912

X(2913) = X(4)-Ceva conjugate of X(62)


X(2914) = ORTHIC-ISOGONAL CONJUGATE OF X(186)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2914) lies on these lines: 4,195   52,110   54,74   113,539   125,1199   186,323   265,1994   2888,2904

X(2914) = X(4)-Ceva conjugate of X(186)
X(2914) = X(3065)-of-orthic-triangle if ABC is acute


X(2915) = TANGENTIAL-ISOGONAL CONJUGATE OF X(1)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

As a point on the Euler line, X(2915) has Shinagawa coefficients ($a$*(E + 2F) + abc, -2$a$*(E + F) - abc).

X(2915) lies on these lines: 2,3   35,37   36,1104   40,2778   500,1790   511,1437   1603,1604   1780,2245

X(2915) = midpoint of X(1717) and X(2960)
X(2915) = isogonal conjugate of cyclocevian conjugate of X(35058)
X(2915) = X(321)-Ceva conjugate of X(6)
X(2915) = crosspoint of X(100) and X(250)
X(2915) = crosssum of X(125) and X(513)
X(2915) = isogonal conjugate of isotomic conjugate of X(21287)
X(2915) = polar conjugate of isotomic conjugate of X(23130)


X(2916) = TANGENTIAL-ISOGONAL CONJUGATE OF X(2)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2916) lies on these lines: 6,22   69,2930   155,1350   159,599   182,2937   195,511   376,2935   1352,2918   1503,2917

X(2916) = reflection of X(6) in X(1176)
X(2916) = X(141)-Ceva conjugate of X(6)
X(2916) = isogonal conjugate of isotomic conjugate of X(1369)
X(2916) = isogonal conjugate of cyclocevian conjugate of X(76)
X(2916) = polar conjugate of isotomic conjugate of X(23133)


X(2917) = TANGENTIAL-ISOGONAL CONJUGATE OF X(4)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2917) lies on these lines: 3,161   6,24   20,2935   22,1498   26,154   49,52   68,1658   159,2934   186,2929   343,1601   399,2937   1503,2916

X(2917) = complement of X(32346)
X(2917) = anticomplement of X(32351)
X(2917) = X(i)-Ceva conjugate of X(j) for these (i,j): (343,6), (2888,195)
X(2917) = X(21)-of-tangential-triangle if ABC is acute


X(2918) = TANGENTIAL-ISOGONAL CONJUGATE OF X(5)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2918) lies on these lines: 6,26   22,155   184,195   550,2935   1351,2916   1658,2929


X(2919) = TANGENTIAL-ISOGONAL CONJUGATE OF X(7)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2919) lies on this line: 22,1615


X(2920) = TANGENTIAL-ISOGONAL CONJUGATE OF X(8)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2920) lies on this line: 22,1616


X(2921) = TANGENTIAL-ISOGONAL CONJUGATE OF X(9)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2921) lies on these lines: 3,1603   22,347   36,1104


X(2922) = TANGENTIAL-ISOGONAL CONJUGATE OF X(10)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2922) lies on this line: 22,595


X(2923) = TANGENTIAL-ISOGONAL CONJUGATE OF X(13)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2923) lies on this line: 15,2070


X(2924) = TANGENTIAL-ISOGONAL CONJUGATE OF X(14)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2924) lies on this line: 16,2070


X(2925) = TANGENTIAL-ISOGONAL CONJUGATE OF X(15)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2925) lies on these lines: 3,13   22,1605   99,1606

X(2925) = circumcircle-inverse of X(33500)


X(2926) = TANGENTIAL-ISOGONAL CONJUGATE OF X(16)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2926) lies on these lines: 3,14   22,1606   99,1605

X(2926) = circumcircle-inverse of X(33498)


X(2927) = TANGENTIAL-ISOGONAL CONJUGATE OF X(17)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2927) lies on this line: 15,2937


X(2928) = TANGENTIAL-ISOGONAL CONJUGATE OF X(18)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2928) lies on this line: 16,2937


X(2929) = TANGENTIAL-ISOGONAL CONJUGATE OF X(20)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2929) lies on these lines: 4,2935   22,1620   24,1192   186,2917   195,389   1658,2918

X(2929) = complement of X(22555)


X(2930) = TANGENTIAL-ISOGONAL CONJUGATE OF X(23)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2930) lies on these lines: 1,2836   3,67   6,110   23,524   49,575   69,2916   154,1177   195,576   399,511   518,2948   1498,2781   1503,2892   2453,2782

X(2930) = reflection of X(6) in X(110)
X(2930) = complement of X(32255)
X(2930) = circumcircle-inverse of X(2482)
X(2930) = X(i)-Ceva conjugate of X(j) for these (i,j): (23,3), (524,6)
X(2930) = inverse-in-MacBeath-circumconic of X(6593)
X(2930) = {X(110),X(895)}-harmonic conjugate of X(6593)


X(2931) = TANGENTIAL-ISOGONAL CONJUGATE OF X(30)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2931) lies on the tangential circle, the Walsmith rectangular hyperbola, and these lines: 3,125   6,1511   22,74   23,146   24,110   25,113   26,1498   30,2935   68,1658   110,895   159,542   186,3580   195,568   399,1495   912,2948

X(2931) = reflection of X(155) in X(110)
X(2931) = reflection of X(32123) in X(468)
X(2931) = antipode of X(32123) in Walsmith rectangular hyperbola
X(2931) = X(186)-Ceva conjugate of X(3)
X(2931) = inverse-in-circumcircle of X(131)
X(2931) = X(104)-of-tangential-triangle if ABC is acute


X(2932) = TANGENTIAL-ISOGONAL CONJUGATE OF X(36)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2932) lies on these lines: 3,8   9,1030   11,474   35,392   55,215   56,2802   72,1768   78,2771   80,1376   119,1012   149,404   480,2801   999,1320   1317,1470   2077,2950

X(2932) = reflection of X(149) in X(496)
X(2932) = crosssum of X(124) and X(513)
X(2932) = inverse-in-circumcircle of X(1145)


X(2933) = TANGENTIAL-ISOGONAL CONJUGATE OF X(56)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2933) lies on these lines: 3,10   22,1603   45,198   100,1610   157,1631

X(2933) = isogonal conjugate of isotomic conjugate of X(21286)
X(2933) = polar conjugate of isotomic conjugate of X(23129)
X(2933) = X(312)-Ceva conjugate of X(6)


X(2934) = TANGENTIAL-ISOGONAL CONJUGATE OF X(184)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2934) lies on these lines: 22,1225   26,157   159,2917

X(2934) = X(311)-Ceva conjugate of X(6)


X(2935) = TANGENTIAL-ISOGONAL CONJUGATE OF X(186)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2935) lies on these lines: 1,2778   3,113   4,2929   6,74   20,2917   30,2931   64,155   110,1498   125,1593   146,2071   154,1511   186,1514   265,1853   376,2916   550,2918   1294,1632   1503,2892

X(2935) = reflection of X(1498) in X(110)
X(2935) = inverse-in-circumcircle of X(3184)
X(2935) = X(i)-Ceva conjugate of X(j) for these (i,j): (146,399), (2071,3)
X(2935) = tangential-triangle symgonal of X(3)


X(2936) = TANGENTIAL-ISOGONAL CONJUGATE OF X(187)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2936) lies on these lines: 3,67   22,99   25,543   147,2071   671,1995


X(2937) = TANGENTIAL-ISOGONAL CONJUGATE OF X(195)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   a^2 (a^8 - 2 a^6 (b^2 + c^2) - a^4 b^2 c^2 + a^2 (2 b^6 + b^4 c^2 + b^2 c^4 + 2 c^6) - (b^2 - c^2)^2 (b^4 + c^4)) : :

As a point on the Euler line, X(2937) has Shinagawa coefficients (27E3 + 144E2F + 240EF2 + 128F3 - 48(3E + 8F)S2, -63E3 - 240E2F - 304EF2 - 128F3 + 48(7E + 8F)S2).

X(2937) lies on these lines: 2,3   15,2927   16,2928   49,511   182,2916   184,195   399,2917   1154,1614   1216,1495

X(2937) = crosspoint of X(250) and X(930)
X(2937) = crosssum of X(125) and X(1510)
X(2937) = circumcircle-inverse of X(37938)
X(2937) = X(35)-of-tangential-triangle if ABC is acute
X(2937) = {X(3),X(26)}-harmonic conjugate of X(2070)


X(2938) = EXCENTRAL-ISOGONAL CONJUGATE OF X(2)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2938) lies on these lines: 1,1014   40,511   165,846   170,2939   191,2951   1762,2942   2772,2948

X(2938) = X(210)-Ceva conjugate of X(1)
X(2938) = X(i)-aleph conjugate of X(j) for these (i,j): (8,1764), (9,3), (10,1762), (37,1046), (188,2, (366,579)
X(2938) = X(95)-of-excentral-triangle
X(2938) = excentral isotomic conjugate of X(3)
X(2938) = excentral polar conjugate of X(6)


X(2939) = EXCENTRAL-ISOGONAL CONJUGATE OF X(4)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2939) lies on these lines: 1,19   3,1762   20,2822   35,228   40,2947   43,46   72,1761   165,191   170,2938   2779,2948

X(2939) = reflection of X(1) in X(2360)
X(2939) = X(72)-Ceva conjugate of X(1)
X(2939) = X(i)-aleph conjugate of X(j) for these (i,j): (1,1724), (2,1730), (10,1710), (72,2939), (188,4), (366,579)
X(2939) = X(96)-of-excentral-triangle


X(2940) = EXCENTRAL-ISOGONAL CONJUGATE OF X(5)

Trilinears         f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

Let Oa be the A-extraversion of the Conway circle (the circle centered at the A-excenter and passing through A, with radius sqrt(r_a^2 + s^2), where r_a is the A-exradius). Let A" be the intersection, other than A, of the circumcircle and Oa; define B" and C" cyclically. The triangle A"B"C" is perspective to the excentral triangle at X(2940). (Randy Hutson, April 9, 2016)

X(2940) lies on these lines: 35,37   40,2948   191,210   484,1046

X(2940) = X(i)-aleph conjugate of X(j) for these (i,j): (100,110), (188,5), (188,6), (366,583)


X(2941) = EXCENTRAL-ISOGONAL CONJUGATE OF X(6)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2941) lies on these lines: 1,1412   30,40   165,846   1764,1768   1779,2955

X(2941) = X(2321)-Ceva conjugate of X(1)
X(2941) = X(i)-aleph conjugate of X(j) for these (i,j): (8,573), (10,1781), (188,6), (2321,2941)
X(2941) = X(97)-of-excentral-triangle


X(2942) = EXCENTRAL-ISOGONAL CONJUGATE OF X(7)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2942) lies on these lines: 57,1742   63,2951   165,169   1762,2938

X(2942) = X(i)-aleph conjugate of X(j) for these (i,j): (9,55), (188,7)
X(2942) = excentral isotomic conjugate of X(55)


X(2943) = EXCENTRAL-ISOGONAL CONJUGATE OF X(8)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2943) lies on these lines: 1,1106   40,978   517,1046   1697,1742   1743,1766

X(2943) = X(i)-aleph conjugate of X(j) for these (i,j): (1,56), (188,8)
X(2943) = X(1105) of excentral triangle


X(2944) = EXCENTRAL-ISOGONAL CONJUGATE OF X(10)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2944) lies on these lines: 2,572   3,846   40,43   72,1282   165,411   517,1051   1046,1764

X(2944) = X(960)-Ceva conjugate of X(1)
X(2944) = X(i)-aleph conjugate of X(j) for these (i,j): (188,10), (366,1400), (960,2944)


X(2945) = EXCENTRAL-ISOGONAL CONJUGATE OF X(15)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2945) lies on these lines: 16,846   40,2953   61,1046   573,1761

X(2945) = X(188)-alpha conjugate of X(15)


X(2946) = EXCENTRAL-ISOGONAL CONJUGATE OF X(16)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2946) lies on these lines: 15,846   40,2952   62,1046   573,1761

X(2946) = X(188)-alpha conjugate of X(16)


X(2947) = EXCENTRAL-ISOGONAL CONJUGATE OF X(19)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2947) lies on these lines: 1,4   9,2954   40,2939   43,1754   71,165   152,2822   846,1709   971,1214   1282,1763

X(2947) = X(219)-Ceva conjugate of X(1)
X(2947) = crosssum of X(513) and X(2638)
X(2947 = X(i)-alpha conjugate of X(j) for these (i,j): (1,1723), (2,1729), (9,1709), (188,19), (365,1722), (366,1708)
X(2947) = excentral isotomic conjugate of X(1709)


X(2948) = EXCENTRAL-ISOGONAL CONJUGATE OF X(30)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2948) lies on the Bevan circle and these lines: 1,60   3,191   6,1718   40,2940   74,165   80,2607   113,1699   125,1698   146,516   399,517   518,2930   758,1325   912,2931   1046,1054   1282,2774   1498,2778   2100,2574   2101,2575   2772,2938   2779,2939

X(2948) = reflection of X(1) in X(110)
X(2948) = X(i)-Ceva conjugate of X(j) for these (i,j): (758,1), (1325,3)
X(2948) = X(i)-alpha conjugate of X(j) for these (i,j): (366,2245), (758,2948)


X(2949) = EXCENTRAL-ISOGONAL CONJUGATE OF X(35)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2949) lies on these lines: 1,201   4,191   5,9   40,1726   63,411   1158,2951

X(2949) = X(i)-aleph conjugate of X(j) for these (i,j): (2,226), (188,75)


X(2950) = EXCENTRAL-ISOGONAL CONJUGATE OF X(36)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2950) lies on these lines: 1,104   9,119   40,1145   57,1537   80,1709   84,952   100,1490   484,1512   2077,2932

X(2950) = reflection of X(i) in X(j) for these (i,j): (1490,100), (1768,1158)
X(2950) = X(i)-aleph conjugate of X(j) for these (i,j): (8,515), (188,36)


X(2951) = EXCENTRAL-ISOGONAL CONJUGATE OF X(57)

Trilinears         f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Trilinears       g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = tan2(B/2) + tan2(C/2) - tan2(A/2)     (Randy Hutson, 9/23/2011)
X(2951) = Ra*Ja + Rb*Jb + Rc*Jc, where Ja, Jb, Jc are excenters, and Ra, Rb, Rc are the exradii

X(2951) lies on these lines: 1,7   9,165   40,971   63,2942   142,1699   144,200   166,167   191,2938   518,2136   610,1633   1050,1740   1158,2949   1292,2371

X(2951) = X(i)-Ceva conjugate of X(j) for these (i,j): (144,9), (200,1)
X(2951) = isogonal conjugate of X(8917)
X(2951) = X(69)-of-excentral-triangle
X(2951) = excentral isotomic conjugate of X(1)
X(2951) = perspector of the excentral inconic with center X(40)
X(2951) = antipedal isotomic conjugate of X(1)
X(2951) = X(7)-of-3rd-antipedal-triangle-of-X(1)
X(2951) = ABC-to-excentral barycentric image of X(7)
X(2951) = X(i)-aleph conjugate of X(j) for these (i,j): (2,1445), (9,1), (55,1740), (100,651), (188,57), (200,2951), (259,978), (281,920), (312,1760), (318,1748), (643,662), (644,100), (650,1052), (664,658), (1897,653), (2287,411), (2322,412)


X(2952) = EXCENTRAL-ISOGONAL CONJUGATE OF X(61)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2952) lies on these lines: 15,2959   40,2946   191,1276   1761,2321

X(2952) = X(188)-aleph conjugate of X(61)


X(2953) = EXCENTRAL-ISOGONAL CONJUGATE OF X(62)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2953) lies on these lines: 16,2959   40,2945   191,1277   1761,2321

X(2953) = X(188)-aleph conjugate of X(62)


X(2954) = EXCENTRAL-ISOGONAL CONJUGATE OF X(71)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2954) lies on these lines: 1,201   3,1762   9,2947   19,165   43,1723   170,1709   228,1282   846,1744

X(2954) = X(i)-aleph conjugate of X(j) for these (i,j): (188,71), (366,226)


X(2955) = EXCENTRAL-ISOGONAL CONJUGATE OF X(72)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2955) lies on these lines: 1,951   4,1781   35,1718   40,1723   165,1722   1779,2941

X(2955) = X(950)-Ceva conjugate of X(1)
X(2955) = X(i)-aleph conjugate of X(j) for these (i,j): (174,1427), (188,72), (950,2955)


X(2956) = EXCENTRAL-ISOGONAL CONJUGATE OF X(84)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2956) lies on these lines: 1,84   46,1743   109,1490   165,1745   223,1158   266,505   651,1103   978,1044   1046,1719   1249,1838   1750,1771

X(2956) = reflection of X(1) in X(1394)
X(2956) = X(40)-Ceva conjugate of X(1)
X(2956) = X(i)-aleph conjugate of X(j) for these (i,j): (40,2956), (188,84), (366,2270), (651,1461)


X(2957) = EXCENTRAL-ISOGONAL CONJUGATE OF X(100)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2957) lies on these lines: 1,59   5,2607   36,1736   238,517   484,516   655,1090

X(2957) = X(11)-Ceva conjugate of X(1)
X(2957) = X(i)-aleph conjugate of X(j) for these (i,j): (11,2957), (174,651), (188,100), (366,101), (513,978), (514,57), (522,40), (555,658), (556,190), (650,1742)


X(2958) = EXCENTRAL-ISOGONAL CONJUGATE OF X(101)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2958) lies on these lines: 1,1262   484,516   514,1768

X(2958) = X(1146)-Ceva conjugate of X(1)
X(2958) = X(188)-aleph conjugate of X(101)


X(2959) = EXCENTRAL-ISOGONAL CONJUGATE OF X(147)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)

Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2959) lies on these lines: 1,1326   15,2952   16,2953   19,1247   40,511   238,2640   612,846   1761,2076

X(2959) = reflection of X(1) in X(1326)
X(2959) = X(188)-aleph conjugate of X(147)


X(2960) = EXCENTRAL-ISOGONAL CONJUGATE OF X(155)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2960) lies on these lines: 1,1719   30,40   35,37   46,1834   429,1698   1498,2779

X(2960) = reflection of X(1717) in X(2915)
X(2960) = X(188)-aleph conjugate of X(155)


X(2961) = EXCENTRAL-ISOGONAL CONJUGATE OF X(200)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as described just before X(2883)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2961) lies on these lines: 1,1037   4,1773   40,238   46,516   57,1721   672,1723   990,1717   1253,1718   1699,1781

X(2961) = X(497)-Ceva conjugate of X(1)
X(2961) = X(i)-aleph conjugate of X(j) for these (i,j): (174,269), (188,200), (497,2961)


X(2962) = TRILINEAR PRODUCT X(17)*X(18)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = csc(A + π/6) csc(A - π/6)
Barycentrics   (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2962) lies on these lines: 19,2290   37,2963   82,1733   93,225   759,930   1087,1749   2216,2964

X(2962) = isogonal conjugate of X(2964)
X(2962) = X(2)-isoconjugate of X(2965)


X(2963) = BARYCENTRIC PRODUCT X(17)*X(18)

Trilinears    sin A csc(A + π/6) csc(A - π/6) : :
Barycentrics    1/(3 - cot^2 A) : :
Barycentrics    1/(a^4 + b^4 + c^4 - 2 a^2 b^2 - 2 a^2 c^2 - b^2 c^2) : :

Let Q be the pedal curve (a limaçon of Pascal) of the circle with center X(7728) and radius |OH|, with respect to X(265). Let A'B'C' be the triangle formed by the tangents at A,B,C to Q. Then the triangles ABC and A'B'C' are perspective, and their perspector is X(2963). Moreover, X(21975) is the only finite fixed point of the affine transformation that maps a triangle ABC onto A'B'C'. See X(21975). (Angel Montesdeoca, September 10, 2019)

In the plane of a triangle ABC, let
N= Nine point circle,
N'a, A' = reflection of N, A in BC, define N'b, B' and N'c, C' cyclically
Pa = polar of A' with respect to N'a, and define Pb and Pc cyclically;
A" = Pc∩Pb, and define B" and C" cyclically.
The triangle A"B"C" is perspective to ABC, and the perspector is X(2963). (Dasari Naga Vijay Krishna, June 8, 2021)

Generalization of Vijay's construction of X(2963). Let C(U) = the circle with powers u, v, w with respect to the vertices A, B, C, respectively;
C'(U) = reflection of C(U) in side BC;
A' = reflection of A in in side BC;
Pa = polar of A in C'(U), and define Pb and Pc cyclically;
A" = Pc∩Pb, and define B" and C" cyclically.
The triangle A"B"C" is perspective to ABC, and the perspector is
a^2 / (a^2*(a^2*b^2 - b^4 + a^2*c^2 + b^2*c^2 - c^4) + a^2*(b^2 + c^2 - u)*u - (a^4 + a^2*b^2 - b^4 + 2*b^2*c^2 - c^4)*v + (a^2 + b^2 - c^2)*v^2 - (a^4 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*w + (a^2 - b^2 + c^2)*w^2 - a^2*(u*v + u*w - v*w)) : : (Peter Moses, June 11, 2021)

,p> X(2963) lies on these lines: 2,1225   5,2965   6,17   25,2934   37,2962   50,252   53,1487   93,393   111,930   141,2987   216,1989   230,251   566,2165   588,590   589,615   1879,2937

X(2963) = isogonal conjugate of X(1994)
X(2963) = cevapoint of X(590) and X(615)
X(2963) = X(570)-cross conjugate of X(6)
X(2963) = crosssum of X(i) and X(j) for these (i,j): (6,195), (49,2965)
X(2963) = isotomic conjugate of X(7769)
X(2963) = {X(17),X(18)}-harmonic conjugate of X(3519)
X(2963) = X(2)-isoconjugate of X(2964)
X(2963) = X(92)-isoconjugate of X(49)
X(2963) = polar conjugate of X(32002)
X(2963) = perspector of ABC and unary cofactor triangle of Kosnita triangle
X(2963) = barycentric product of nine-point centers of 1st and 2nd Ehrmann inscribed triangles


X(2964) = TRILINEAR PRODUCT X(61)*X(62)

Trilinears    sin(A + π/6) sin(A - π/6) : :
Trilinears    a2 - R2 : : (C. Lozada, 9/07/2013)

Trilinears    cos^2 A - 3 sin^2 A : :
Trilinears    4 sin^2 A - 1 : :

Let A'B'C' be the Kosnita triangle. Let A" be the trilinear product of the circumcircle intercepts of line B'C'. Define B" and C" cyclically. The lines AA", BB", CC" concur in X(2964). (Randy Hutson, July 31 2018)

X(2964) lies on these lines: 1,21   35,2361   36,1399   109,1393   162,2166   163,2179   484,580   2148,2180   2216,2962

X(2964) = isogonal conjugate of X(2962)
X(2964) = X(2216)-Ceva conjugate of X(1)
X(2964) = X(2)-isoconjugate of X(2963)


X(2965) = BARYCENTRIC PRODUCT X(61)*X(62)

Trilinears    sin A sin(A + π/6) sin(A - π/6)
Trilinears    a(a2 - R2) : : (C. Lozada, 9/07/2013)

Let A'B'C' be the Kosnita triangle. Let A" be the barycentric product of the circumcircle intercepts of line B'C'. Define B" and C" cyclically. The lines AA", BB", CC" concur in X(2965). (Randy Hutson, July 31 2018)

X(2965) lies on these lines: 3,6   5,2963   53,112   230,1627   524,1238

X(2965) = X(i)-Ceva conjugate of X(j) for these (i,j): (1173,184), (1994,49)
X(2965) = crosssum of X(6) and X(2937)
X(2965) = X(2)-isoconjugate of X(2962)


X(2966) = BARYCENTRIC PRODUCT X(98)*X(99)

Trilinears    [sec(A + ω)]/(b2 - c2) : :

Let P(2) and U(2) be the 1st and 2nd Beltrami points (as indexed at Bicentric Pairs, accessible using the Tables button at the top of ETC), and let P(40) and U(40) be the isogonal conjugates of P(2) and U(2), respectively. Then X(2966) is the point of intersection of the lines P(2)U(40) and P(40)U(2). (Peter Moses, July 1, 2009). See also X(3568).

X(2966) lies on the Steiner circumellipse, the hyperbola {{A,B,C,X(2),X(476)}}, the conic {{A,B,C,X(112),X(248)}}, and on these lines: 30,98   99,249   230,297   248,290   250,523   287,524   325,441   448,2481   668,906   879,4266   892,2395   2421,2422

X(2966) = midpoint of X(385) and X(401)
X(2966) = reflection of X(i) and X(j) for these (i,j): (297,230), (325,441)
X(2966) = isogonal conjugate of X(3569)
X(2966) = isotomic conjugate of X(2799)
X(2966) = anticomplement of X(35088)
X(2966) = polar conjugate of X(16230)
X(2966) = complement of X(39359)
X(2966) = trilinear pole of line X(2)X(98)
X(2966) = antipode of X(2) in hyperbola {{A,B,C,X(2),X(476)}}
X(2966) = cevapoint of X(i) and X(j) for these (i,j): (2,2799), (98,2395), (112,2409), (230,523), (248,879), (441,525), (511,647)
X(2966) = X(i)-cross conjugate of X(j) for these (i,j): (879,290), (2395,98), (2715,685), (2799,2)
X(2966) = barycentric product of Steiner circumellipse intercepts of line X(2)X(98)

leftri

MacBeath Points

rightri
The MacBeath inconic is the conic inscribed in triangle ABC having center X(5) and foci X(3) and X(4). An equation for this conic in barycentric coordinates is

u2x2 + v2y2 + w2z2 - 2wvyz - 2wuzx - 2uvxy = 0,


where (u, v, w) = (sin 2A, sin 2B, sin 2C), i.e., u : v : w = X(3).

In the parlance of TCCT, page 238, the MacBeath inconic is W(X(184)), with trilinear equation

U2x2 + V2y2 + W2z2 - 2WVyz - 2WUzx - 2UVxy = 0,


where U : V : W = X(184) = a2cos A : b2cos B : c2cos C.

Points lying on the MacBeath inconic were contributed by Peter Moses (Hyacinthos, Nov. 12, 2004), and a selection of these are given here as X(2967) to X(2973). Comments written by Alexander Murray MacBeath are given in a Hyacinthos message of Dec. 12, 2004 from Antreas P. Hatzipolakis. See also MathWorld and more than a dozen Hyacinthos messages numbered between 10870 and 10923.

Macbeath authored articles entitled "The Deltoid I," The Deltoid II," and "The Deltoid III," in Eureka. In the second of these, 11 (1949) 26-29, he introduces the conic as follows:

Lemma 1: Let O, H be the common points of a coaxal system of circles. Let a variable circle of the system cut the line of centres at C. Let T be a point on the circumference such that TC=k*OC, where k is a fixed ratio. Then the locus of T is a conic with foci at O,H.
In Hyacinthos message 2009, dated Dec. 9, 2000, John Conway wrote
This I know as "the MacBeath ellipse", since Murray MacBeath wrote a nice article about it in "Eureka", the Cambridge University undergraduate mathematical journal.
Thus did the conic get its name. Points X(339), X(1312), and X(1313) lie on the MacBeath inconic. Peter Moses (Nov. 12, 2004) noted that if X is on this conic, then the reflection of X in X(5), and also the reflection of X in the Euler line, lie on the conic. He introduced the MacBeath circumconic, dual to the MacBeath inconic. The circumconic is given in barycentrics by

(sin 2A)yz + (sin 2B)zx + (sin 2C)xy = 0,


and in trilinears by

(cos A)yz + (cos B)zx + (cos C)xy = 0,


and it passes through X(i) for I = 110, 287, 648, 651, 677, 895, 1331, 1332, 1797, 1813, 1814, 1815.


X(2967) = 1st MACBEATH POINT

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2cos B cos C - bc cos2A)2(sec A)
Barycentrics    tan A cos^2(A + ω) : :
Barycentrics    a^2 (b^4 + c^4 - a^2 b^2 - a^2 c^2)^2 / (a^2 - b^2 - c^2) : :

X(2967) lies on these lines: 2,1972   3,112   4,147   5,339   25,110   98,648   114,132   186,2080   232,511   250,842   262,264   324,427   1312,2592   1313,2593

X(2967) = reflection of X(339) in X(5)
X(2967) = reflection of X(38553) in X(3)
X(2967) = reflection of X(38552) in the Euler line
X(2967) = X(274)-Ceva conjugate of X(297)
X(2967) = crosspoint of X(264) and X(297)
X(2967) = crosssum of X(i) and X(j) for these (i,j): (125,879), (184,248)
X(2967) = polar conjugate of X(34536)
X(2967) = pole wrt polar circle of trilinear polar of X(34536) (line X(98)X(804))


X(2968) = 2nd MACBEATH POINT

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = [bc(b - c)(b + c - a)]2cos A
Trilinears    directed distance of A to line X(108)X(109) : :
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2968) is the center of circumconic (hyperbola {{A,B,C,X(8),X(280)}}) that is the locus of trilinear poles of lines passing through X(3239). This hyperbola is the isotomic conjugate of the Soddy line. (Randy Hutson, October 15, 2018)

X(2968) lies on these lines: 2,1897   3,8   4,280   5,318   11,123   78,1062   116,122   124,522   189,972   200,1040   216,594   239,441   253,1119   345,1260   521,1364   525,2632   867,2969   1465,1861

X(2968) = reflection of X(38554) in X(3)
X(2968) = complement of X(1897)
X(2968) = anticomplement of X(15252)
X(2968) = X(i)-Ceva conjugate of X(j) for these (i,j): (8,521), (75,525), (253,514), (280,522), (2370,900)
X(2968) = crosspoint of X(189) and X(693)
X(2968) = crosssum of X(i) and X(j) for these (i,j): (184,1415), (198,692)
X(2968) = polar conjugate of X(23984)
X(2968) = perspector of circumconic centered at X(3239)
X(2968) = X(2)-Ceva conjugate of X(3239)


X(2969) = 3rd MACBEATH POINT

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)2cos B cos C
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2969) lies on the orthic inconic and these lines: 3,915   4,145   19,583   25,105   34,1411   92,427   124,136   125,1146   225,1828   242,468   407,1829   430,1848   867,2968   1118,1398   1565,2973   1785,1878   1824,1830   1870,1884

X(2969) = reflection of X(34332) in X(5)
X(2969) = MacBeath inconic antipode of X(34332)
X(2969) = X(i)-Ceva conjugate of X(j) for these (i,j): (917,676), (2973,1086)
X(2969) = X(1015)-cross conjugate of X(1086)
X(2969) = crosssum of X(i) and X(j) for these (i,j): (3,1331), (184,906), (692,2911)
X(2969) = trilinear pole wrt orthic triangle of line X(4)X(9)
X(2969) = pole wrt polar circle of trilinear polar of X(1016) (line X(100)X(190))
X(2969) = polar conjugate of X(1016)


X(2970) = 4th MACBEATH POINT

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = [bc(b2 - c2)]2cos B cos C
Barycentrics    (tan^2 A) (tan B - tan C)^2 ((tan A) (tan A + tan B + tan C) + tan B tan C)) : :
Barycentrics    b^2 c^2 (b^2 - c^2)^2/(a^2 - b^2 - c^2) : :

X(2970) lies on these lines: 2,2974   3,847   4,94   25,98   115,135   125,136   324,427   339,868

X(2970) = reflection of X(34333) in X(5)
X(2970) = MacBeath-inconic-antipode of X(34333)
X(2970) = X(847)-Ceva conjugate of X(523)
X(2970) = X(115)-cross conjugate of X(338)
X(2970) = crosssum of X(571) and X(1576)
X(2970) = pole wrt polar circle of trilinear polar of X(249) (line X(110)X(351))
X(2970) = polar conjugate of X(249)
X(2970) = X(3)-isoconjugate of X(1101)
X(2970) = {X(39240),X(39241)}-harmonic conjugate of X(35235)


X(2971) = 5th MACBEATH POINT

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = [a(b2 - c2)]2cos B cos C
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2971) lies on these lines: 4,147   5,2974   25,111   127,136

X(2971) = reflection of X(2974) in X(5)
X(2971) = X(25)-Ceva conjugate of X(2489)
X(2971) = crosspoint of X(25) and X(2489)
X(2971) = crosssum of X(110) and X(193)
X(2971) = polar conjugate of X(34537)
X(2971) = pole wrt polar circle of trilinear polar of X(34537) (line X(99)X(670))


X(2972) = 6th MACBEATH POINT

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = [bc(b2 - c2)]2cos3A
Barycentrics    (csc 2A) (sec^2 B - sec^2 C)^2 : :

X(2972) lies on these lines: 2,1972   3,74   25,1073   69,1942   122,125   127,136   394,426   511,852   1368,2974   1624,2781

X(2972) = reflection of X(34334) in X(5)
X(2972) = isogonal conjugate of X(32230)
X(2972) = complement of X(35360)
X(2972) = X(i)-Ceva conjugate of X(j) for these (i,j): (3,520), (264,525), (1073,647)
X(2972) = crosspoint of X(i) and X(j) for these (i,j): (3,520), (64,523), (264,525)
X(2972) = crosssum of X(i) and X(j) for these (i,j): (4,107), (20,110), (112,184)
X(2972) = crossdifference of every pair of points on line X(107)X(112)
X(2972) = polar conjugate of X(34538)
X(2972) = MacBeath-inconic-antipode of X(34334)
X(2972) = center of conic {{A,B,C,X(3),X(5)}}
X(2972) = X(92)-isoconjugate of X(23964)


X(2973) = 7th MACBEATH POINT

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = [bc(b - c)]2cos B cos C
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2973) lies on these lines: 3,917   4,150   25,675   1235,1969   1565,2969

X(2973) = reflection of X(34335) in X(5)
X(2973) = cevapoint of X(1986) and X(2969)
X(2973) = pole wrt polar circle of trilinear polar of X(1252) (line X(101)X(692))
X(2973) = polar conjugate of X(1252)
X(2973) = MacBeath-inconic-antipode of X(34335)


X(2974) = 8th MACBEATH POINT

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b2cos2C + c2cos2B - bc cos A)2cos A
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2974) lies on these lines: 2,2970   3,76   5,2971   25,925   131, 132   1368,2972

X(2974) = reflection of X(2971) in X(5)
X(2974) = polar conjugate of isogonal conjugate of X(35067)


X(2975) = INSIMILICENTER(CIRCUMCIRCLE, AC-INCIRCLE)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3 + a(bc - b2 - c2) - bc(b + c)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)
X(2975) = 2X(1) - 3X(2) - 2(r/R)X(3)

The term "AC-incircle" is introduced for "anticomplement of the incircle" by Peter Moses (Dec. 2, 2004). Thus, the AC-incircle is the incircle of the anticomplementary triangle; the circle has center X(8) and radius 2r. The exsimilicenter of the circumcircle and AC-incircle is X(100), their touchpoint, and the anticomplement of X(11).

X(2975) lies on these lines: 1,21   2,12   3,8   9,604   10,36   20,2894   28,92   35,519   48,2287   54,72   55,145   75,1444   78,947   105,330   110,1098   144,1001   172,1107   198,391   229,409   238,1201   329,405   333,1610   348,934   411,515   518,2330   593,2363   596,759   668,1078   672,2329   908,1125   943,2320   950,1005   960,1319   962,1012   966,2178   995,1724   1457,1935   1470,1788   1478,2476   1761,1953   2475,2886

X(2975) = isogonal conjugate of X(34434)
X(2975) = isotomic conjugate of isogonal conjugate of X(20986)
X(2975) = complement of X(20060)
X(2975) = anticomplement of X(12)
X(2975) = anticomplementary conjugate of isogonal conjugate of X(36903)
X(2975) = polar conjugate of isogonal conjugate of X(22118)
X(2975) = X(i)-Ceva conjugate of X(j) for these (i,j): (59,100), (261,2)
X(2975) = crosssum of X(512) and X(2170)
X(2975) = X(35)-of-inner-Garcia triangle


X(2976) = RADICAL CENTER OF {CIRCUMCIRCLE, INCIRCLE, AC-INCIRCLE}

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[(a - b)2(a + c - b)2 - (a - c)2(a + b - c)2]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

See X(2975) for "AC-incircle."

X(2976) lies on these lines: 2,2505   100,190   513,676

X(2976) = anticomplement of X(2505)


X(2977) = RADICAL CENTER OF {CIRCUMCIRCLE, NINE-POINT CIRCLE, AC-INCIRCLE}

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[(a - b)2(c2 + a2 - b2) - (a - c)2(a2 + b2 - c2)]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

See X(2975) for "AC-incircle."

X(2977) lies on these lines: 100,190   230,231

X(2977) = center of circle {{X(100),X(120),X(5521)}}


X(2978) = RADICAL CENTER OF {CIRCUMCIRCLE, BROCARD CIRCLE, CONWAY CIRCLE}

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[(a + c)b3 - (a + b)c3]
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2978) lies on these lines: 187,237   320,350   659,834   661,788

X(2978) = X(785)-Ceva conjugate of X(6)
X(2978) = crosspoint of X(6) and X(785)
X(2978) = crosssum of X(2) and X(784)

leftri

Dual triangles, DC and CD Points

rightri
Suppose DEF is a triangle in the plane of triangle ABC. Let D' be the isogonal conjugate of the point of intersection of line EF and the line at infinity. Define E' and F' cyclically. The triangle D'E'F' is here named the dual of DEF. The vertices of D'E'F' lie on the circumcircle, and D'E'F' is similar to DEF. The duality is between the sidelines EF, FD, DE and the points D', E', F', respectively. For example, if E and F remain fixed and D varies, then D' remains fixed, while E'F' varies. Actually D'E'F' is the dual of any triangle homothetic to DEF. Indeed, DEF need not be a triangle but can be the union of three concurrent lines. (Proof of similarity follows from Theorem 6E in TCCT, as the "gamma triangle" there is the dual of a triangle whose sidelines are respectively perpendicular to those of DEF.)

Suppose U is a point having cevian triangle DEF and dual triangle D'E'F'. Then there exists a point DC(U) whose circum-anticevian triangle (TCCT, p. 201) is D'E'F'. The mapping DC is given for U = u : v : w (trilinears) by

DC(U) = vw/(bv + cw) : wu/(cw + au) : uv/(au + bv).


To construct DC(U) from U, let A' = AD'∩BC, and let A" be the {B,C}-harmonic conjugate of A'. Define B" and C" cyclically. The lines AA", BB", CC" concur in DC(U). Also, DC(U) = U-isoconjugate of the crosssum of U and X(6).

If you have The Geometer's Sketchpad, you can view DUAL TRIANGLE.

The appearance of (i,j) in the following list means that X(j) = DC(X(i)):

1,81   2,6   3,275   4,2   5,288   6,83   7,1   8,57   9,1170   10,1171   20,1073   63,1172   64,801   66,76   67,671   68,2052   69,4   75,58   76,251   79,1255   80,88   81,2298   83,3108   85,1174   86,1126   92,284   95,1173   99,110   100,651   110,648   189,9   190,101   253,3   254,1993   255,829   256,1258   264,54   273,1167   280,222   286,943   290,98   309,947   311,1166   314,961   317,847   320,1168   321,1169   325,2065   329,282   330,31   335,1438   347,1433   485,588   486,589   513,1016   514,1252   519,2226   522,1262   523,249   596,593   648,112   651,1783   660,666   664,109   666,919   668,100   670,99   671,111   693,59   850,250   889,898   892,691   903,106   927,677   1000,89   1029,37   1031,39   1032,1249   1034,223   1121,2291   1131,493   1132,494   1138,323   1219,2221   1280,1462   1297,287   1305,1331   1441,1175   1494,74   1821,2311   1897,1461   1916,1976   1972,248   2113,239   2184,2287   2349,2341   2370,1797   2373,895   2481,105

The longest chain among the listed points is this one: 69 -→ 4 -→ 2 -→ 6 -→ 83 → 3108

Inversely, the circum-anticevian triangle of a point P is the dual of the cevian triangle of a point CD(P), given for P = p : q : r by the inverse of the DC-mapping; that is:

CD(P) = bc/(-a/p + b/q + c/r) : ca/(a/p - b/q + c/r) : ab/(a/p + b/q - c/r) = isogonal conjugate of X(6)-Ceva conjugate of P.


The appearance of (i,j) in the following list means that X(j) = CD(X(i)):

1,7   2,4   3,253   4,69   6,2   9,189   31,330   37,1029   39,1031   54,264   57,8   58,75   59,693   74,1494, etc. (Just transpose the pairs in the list for DC(U).)

The vertices of the dual D'E'F' of the cevian triangle of a point U = u : v : w are given by

D' = 1/(b/w - c/v) : -1/(c/u + a/w) : 1/(a/v + b/u)
E' = 1/(b/w + c/v) : 1/(c/u - a/w) : -1/(a/v + b/u)
F' = -1/(b/w + c/v) : 1/(c/u + a/w) : 1/(a/v - b/u).

Triangle D'E'F' can be obtained from DEF by translation, dilation, and rotation. First translate DEF by vector O'O, where O' = circumcenter of D'E'F' and O = circumcenter of ABC. Then dilate D'E'F' so that its circumradius is that of ABC. Then rotate D'E'F' so that angle AOD' is twice the angle between lines BC and EF.


X(2979) = CENTROID OF DUAL OF THE ORTHIC TRIANGLE

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b4 + c4 + b2c2 - a2b2 - a2c2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2979) lies on these lines: 2,51   3,54   4,1216   6,1627   22,110   52,631   66,69   182,1994   184,323   343,858   476,2706   549,568   805,2857   930,1298   991,1779   1160,1584   1161,1583   1501,2076   2888,2889

X(2979) = reflection of X(568) in X(549)
X(2979) = isogonal conjugate of X(2980)
X(2979) = isotomic conjugate of anticomplement of complementary conjugate of X(34845)
X(2979) = anticomplement of X(51)
X(2979) = crosspoint of X(249) and X(670)
X(2979) = crosssum of X(115) and X(669)
X(2979) = X(4)-of-Lucas-triangle (defined at X(95))
X(2979) = Lucas-isogonal conjugate of X(3)


X(2980) = ISOGONAL CONJUGATE OF X(2979)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc/(b4 + c4 + b2c2 - a2b2 - a2c2)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2980) lies on these lines: 5,182   22,157   53,428   95,160   1485,2353

X(2980) = isogonal conjugate of X(2979)
X(2980) = isotomic conjugate of X(7796)
X(2980) = cevapoint of X(2) and X(784)
X(2980) = X(784)-cross conjugate of X(2)


X(2981) = DC(X(13))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2979), using U = X(13)
Trilinears    1/(cos(B - C) + 2 cos(A - π/3)) : :

X(2981) lies on the hyperbola {{A,B,C,X(2),X(6)}} and these lines: 15,1337   61,110   396,1989

Let U be the line tangent to the Neuberg cubic (K001) at X(13), and let V be the line tangent to K001 at X(15). Then X(2981) = U∩V. Let U' be the line tangent to the Napoleon-Feuerbach cubic (K005) at X(17), and let V' be the line tangent to K005 are X(61). Then X(2981) = U'∩V'; see X(6151). Also, X(2981) = trilinear pole of the line X(16)X(512). (Randy Hutson, January 5, 2015)

X(2981) = isogonal conjugate of X(396)
X(2981) = cevapoint of X(i) and X(j) for these (i,j): (6,15), (203,2245)
X(2981) = perspector of ABC and unary cofactor triangle of outer Napoleon triangle


X(2982) = DC(X(21))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2979), using U = X(21)
Trilinears    1/((b + c) cos A + b cos B + c cos C) : :

X(2982) lies on these lines: 1,201   2,219   6,278   28,65   48,57   55,955   81,1214   222,279   274,1231   1002,1617   1396,1409   1630,1730

X(2282) = cevapoint of X(i) and X(j) for these (i,j): (6,65), (56,1409), (57,2003)
X(2982) = X(i)-cross conjugate of X(j) for these (i,j): (6,1175), (647,108), (2259,943), (2605,934)
X(2982) = crosssum of X(1) and X(2954)


X(2983) = DC(X(27))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2979), using U = X(27)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2983) lies on these lines: 1,1257   6,1260   9,34   10,2322   56,219   58,2327   63,269   71,1474   268,1413   937,1743   998,1723   1438,2269

X(2983) = cevapoint of X(i) and X(j) for these (i,j): (6,71), (42,220)
X(2983) = X(647)-cross conjugate of X(101)
X(2983) = crosssum of X(1104) and X(2264)


X(2984) = DC(X(53))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2979), using U = X(53)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2984) lies on this line: 97,3199

X(2984) = isogonal conjugate of complement of X(34386)
X(2984) = X(2485)-cross conjugate of X(933)


X(2985) = DC(X(56))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2979), using U = X(56)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2985) lies on these lines: 8,1397   519,595   1999,2300

X(2985) = isotomic conjugate of X(1029)
X(2985) = cevapoint of X(6) and X(8)
X(2985) = X(2605)-cross conjugate of X(99)
X(2985) = X(19)-isoconjugate of X(23154)
X(2985) = X(92)-isoconjugate of X(23196)


X(2986) = DC(X(74))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2979), using U = X(74)
Barycentrics   1/(1 + cos 2B + cos 2C) : :

Let A'B'C' be the circumcevian triangle of X(30). Let A" be the trilinear pole of line B'C', and define B", C" cyclically. The lines AA", BB", CC" concur in X(2986). (Randy Hutson, June 27, 2018)

X(2986) lies on the MacBeath circumconic and these lines: 4,110   10,1331   94,323   98,858   226,1813   262,1995   321,1332   338,394   340,687   648,1993

X(2986) = isogonal conjugate of X(3003)
X(2986) = isotomic conjugate of X(3580)
X(2986) = cevapoint of X(i) and X(j) for these (i,j): (2,323), (6,30)
X(2986) = X(i)-cross conjugate of X(j) for these (i,j): (265,1494), (529,99), (686,925), (2072,264), (2433,476)
X(2986) = trilinear pole of line X(3)X(523) (the line of the Ehrmann cross-triangle)
X(2986) = polar conjugate of X(403)


X(2987) = DC(X(98))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2979), using U = X(98)
Barycentrics    a^2/(a^2 (2 a^2 - b^2 - c^2) + (b^2 - c^2)^2) : :

X(2987) lies on the MacBeath circumconic and these lines: 25,110   37,1332   42,1331   69,2165   111,323   141,2963   193,317   251,1994   263,576   287,2395   511,1976   524,1989   526,895   651,1880   1400,1813

X(2987) = isogonal conjugate of X(230)
X(2987) = isotomic conjugate of anticomplement of the X(36212)
X(2987) = cevapoint of X(6) and X(511)
X(2987) = isotomic conjugate of isogonal conjugate of X(32654)
X(2987) = MacBeath circumconic antipode of X(4558)
X(2987) = reflection of X(4558) in X(6)
X(2987) = trilinear pole of line X(3)X(512)
X(2987) = X(i)-cross conjugate of X(j) for these (i,j): (6,2065), (248,1297), (1570,6), (2422,805)


X(2988) = DC(X(102))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2979), using U = X(102)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2988) lies on the MacBeath circumconic and these lines: 2,1813   8,1331   29,110   92,651   312,1332

X(2988) = isogonal conjugate of X(8607)
X(2988) = cevapoint of X(6) and X(515)
X(2988) = complement of anticomplementary conjugate of X(35516)
X(2988) = X(2432)-cross conjugate of X(1309)
X(2988) = trilinear pole of line X(3)X(522)


X(2989) = DC(X(103))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2979), using U = X(103)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2989) lies on the MacBeath circumconic and these lines: 2,1331   7,1813   27,110   75,1332   273,651   1815,2400

X(2989) = isogonal conjugate of X(8608)
X(2989) = isotomic conjugate of polar conjugate of X(917)
X(2989) = X(19)-isoconjugate of X(916)
X(2989) = complement of anticomplementary conjugate of X(35517)
X(2989) = cevapoint of X(6) and X(516)
X(2989) = X(2424)-cross conjugate of X(927)


X(2990) = DC(X(104))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2979), using U = X(104)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2990) lies on the MacBeath circumconic and these lines: 1,1331   2,1332   28,110   57,1813   278,651   394,1086   908,2006   1022,1797

X(2990) = isogonal conjugate of X(8609)
X(2990) = isotomic conjugate of isogonal conjugate of X(32655)
X(2990) = isotomic conjugate of polar conjugate of X(915)
X(2990) = X(19)-isoconjugate of X(912)
X(2990) = cevapoint of X(i) and X(j) for these (i,j): (1,2323), (6,517)
X(2990) = trilinear pole of line X(3)X(513)
X(2990) = X(i)-cross conjugate of X(j) for these (i,j): (654,100), (2423,901)


X(2991) = DC(X(105))

Trilinears    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2979), using U = X(105)

X(2991) lies on the MacBeath circumconic and these lines: 6,344   31,1331   110,2203   193,608   239,1462   294,335   604,1445   918,1814   1911,2340

X(2991) = reflection of X(1332) in X(6)
X(2991) = isogonal conjugate of X(3290)
X(2991) = cevapoint of X(6) and X(518)
X(2991) = X(665)-cross conjugate of X(100)
X(2991) = MacBeath circumconic antipode of X(1332)
X(2991) = trilinear pole of PU(44) (line X(3)X(667))


X(2992) = CD(X(13))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2979), using P = X(13)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2992) lies on these lines: 3,299   6,471   68,633   265,300   1899,2993

X(2992) = isogonal conjugate of X(3129)
X(2992) = isotomic conjugate of X(621)
X(2992) = X(i)-cross conjugate of X(j) for these (i,j): (15,2), (340,2993)
X(2992) = antigonal conjugate of the isogonal conjugate of X(32461)


X(2993) = CD(X(14))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2979), using P = X(14)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2993) lies on these lines: 3,298   6,470   68,634   265,301   1899,2992

X(2993) = isogonal conjugate of X(3130)
X(2993) = isotomic conjugate of X(622)
X(2993) = antigonal conjugate of the isogonal conjugate of X(32460)
X(2993) = X(i)-cross conjugate of X(j) for these (i,j): (16,2), (340,2992)


X(2994) = CD(X(19))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2979), using P = X(19)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2994) lies on these lines: 2,914   8,90   29,1069   92,1947   281,1993   312,319   333,2164   394,1146

X(2994) = isogonal conjugate of X(2178)
X(2994) = cevapoint of X(i) and X(j) for these (i,j): (521,1146), (1069,2164)
X(2994) = isotomic conjugate of X(5905)
X(2994) = X(i)-cross conjugate of X(j) for these (i,j): (63,2), (1479,7)
X(2994) = cyclocevian conjugate of X(7219)
X(2994) = pole wrt polar circle of trilinear polar of X(1068)
X(2994) = X(48)-isoconjugate (polar conjugate) of X(1068)
X(2994) = barycentric product of PU(129)


X(2995) = CD(X(21))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2979), using P = X(21)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2995) lies on these lines: 63,321   69,313   75,1444   77,1441   81,92

X(2995) = isogonal conjugate of X(3185)
X(2995) = isotomic conjugate of X(3869)
X(2995) = trilinear pole of line X(905)X(1577)
X(2995) = cevapoint of X(123) and X(525)
X(2995) = X(65)-cross conjugate of X(2)


X(2996) = CD(X(25))

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc/(3a2 - b2 - c2)     (M. Iliev, 5/13/07)

X(2996) is the trilinear pole of the line X(523)X(4885), this line being the complement of orthic axis; the line is also the polar of X(20) wrt {circumcircle, nine-point circle}-inverter). Also, let Ra be the radical trace of the A-McCay circle and A-Neuberg circle, and define Rb and Rc cyclically. Then the triangle RaRbRc is perspective to ABC at X(2996). (Randy Hutson, October 13, 2015)

X(2996) lies on these lines: 2,1975   4,193   20,98   194,262   230,439   315,671   485,487   486,488

X(2996) = reflection of X(i) in X(j) for these (i,j): (487,485), (488,486)
X(2996) = isogonal conjugate of X(3053)
X(2996) = isotomic conjugate of X(193)
X(2996) = cevapoint of X(115) and X(525)
X(2996) = X(i)-cross conjugate of X(j) for these (i,j): (69,2), (1368,264)
X(2996) = antigonal conjugate of X(8781)
X(2996) = Kiepert hyperbola antipode of X(8781)
X(2996) = reflection of X(8781) in X(115)


X(2997) = CD(X(28))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2979), using P = X(28)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2997) lies on the Feuerbach hyperbola these lines: 1,1441   2,2335   4,916   8,313   9,321   21,75   92,1172   104,1305   149,2897   314,561   322,1320

X(2997) = isogonal conjugate of X(2352)
X(2997) = isotomic conjugate of X(3868)
X(2997) = cevapoint of X(1) and X(525)
X(2997) = X(72)-cross conjugate of X(2)


X(2998) = CD(X(32))

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) is as given just before X(2979), using P = X(32)
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2998) lies on these lines: 6,194   25,385   42,192   69,694   193,263   941,1655   1084,1502

X(2998) = isogonal conjugate of X(1613)
X(2998) = isotomic conjugate of X(194)
X(2998) = complement of X(32747)
X(2998) = anticomplement of X(6374)
X(2998) = polar conjugate of X(3186)
X(2998) = trilinear pole of line X(512)X(625) (the complement of the Lemoine axis)
X(2998) = cyclocevian conjugate of X(66)
X(2998) = cevapoint of X(523) and X(1084)
X(2998) = X(76)-cross conjugate of X(2)
X(2998) = X(19)-isoconjugate of X(20794)


X(2999) = DANNEELS-BEVAN HOMOTHETIC CENTER

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a + b + c)2 - 4bc
                        = bc - s2 : ca - s2 : ab - s2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

Let RA be the radical axis of the Bevan circle and the A-excircle. Define RB and RC cyclically. The three radical axes form a triangle homothetic to triangle ABC, and X(2999) is the center of homothety. (Eric Danneels, Hyacinthos #10926, Dec. 5, 2004.

Let BA be the inverse-in-the-A-excircle of the B-excenter and CA the inverse-in-the-A-excircle of the C-excenter. Let LA be the line BACA, and define LB and LC cyclically. Let A' = LB∩LC, and define B' and C' cyclically. The triangle A'B'C' is homothetic to triangle ABC, and the center of homothety is X(2999). (Randy Hutson, 9/23/2011)

X(2999) lies on these lines: 1,2   3,1453   6,57   31,165   46,1203   58,937   63,1743   73,1467   244,1282   278,2331   440,1040   673,2258   748,968   940,1449   990,1750   1191,1697   1214,2257   1376,1386   1394,1466

X(2999) = isogonal conjugate of X(2297)
X(2999) = complement of X(34255)
X(2999) = crosssum of X(9) and X(1449)

leftri

Intersections of Central Lines

rightri

This section presents points X(3000) to X(3019) of intersection of lines listed in MathWorld's Central Line. Contributed by Eric Weisstein, December, 2004.


X(3000) = (ANTIORTHIC AXIS)∩(SODDY LINE)

Trilinears        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c)a3 + 2(bc - b2 - c2)a2 + (ab + ac - 2bc)(b - c)2
Barycentrics   af(a,b,c) : bf(b,c,a) : cf(c,a,b)

The antiorthic axis is line X(44)X(513), more simply represented as L(1), meaning the line whose coefficients in trilinear coordinates are 1 : 1 : 1, these also being trilinears for X(1). The Soddy line is X(1)X(7), alias L(657). For such identifications as these, use the MathWorld link just before X(3000).

X(3000) lies on these lines: 1,7   44,513   241,2310   527,2340

X(3000) = reflection of X(2310) in X(241)
X(3000) = crosssum of X(1) and X(3000)


This is the end of PART 2: Centers X(1001) - X(3000)

Introduction and Centers X(1) - X(1000) Centers X(1001) - X(3000) Centers X(3001) - X(5000)
Centers X(5001) - X(7000) Centers X(7001) - X(10000) Centers X(10001) - X(12000)
Centers X(12001) - X(14000) Centers X(14001) - X(16000) Centers X(16001) - X(18000)
Centers X(18001) - X(20000) Centers X(20001) - X(22000) Centers X(22001) - X(24000)
Centers X(24001) - X(26000) Centers X(26001) - X(28000) Centers X(28001) - X(30000)
Centers X(30001) - X(32000) Centers X(32001) - X(34000) Centers X(34001) - X(36000)
Centers X(36001) - X(38000) Centers X(38001) - X(40000) Centers X(40001) - X(42000)
Centers X(42001) - X(44000) Centers X(44001) - X(46000) Centers X(46001) - X(48000)
Centers X(48001) - X(50000) Centers X(50001) - X(52000) Centers X(52001) - X(54000)
Centers X(54001) - X(56000) Centers X(56001) - X(58000) Centers X(58001) - X(60000)
Centers X(60001) - X(62000) Centers X(62001) - X(64000) Centers X(64001) - X(66000)
Centers X(66001) - X(68000) Centers X(68001) - X(70000) Centers X(70001) - X(72000)