+
PART 1: | Introduction and Centers X(1) - X(1000) | PART 2: | Centers X(1001) - X(3000) | PART 3: | Centers X(3001) - X(5000) |
PART 4: | Centers X(5001) - X(7000) | PART 5: | Centers X(7001) - X(10000) | PART 6: | Centers X(10001) - X(12000) |
PART 7: | Centers X(12001) - X(14000) | PART 8: | Centers X(14001) - X(16000) | PART 9: | Centers X(16001) - X(18000) |
PART 10: | Centers X(18001) - X(20000) | PART 11: | Centers X(20001) - X(22000) | PART 12: | Centers X(22001) - X(24000) |
PART 13: | Centers X(24001) - X(26000) | PART 14: | Centers X(26001) - X(28000) | PART 15: | Centers X(28001) - X(30000) |
PART 16: | Centers X(30001) - X(32000) | PART 17: | Centers X(32001) - X(34000) | PART 18: | Centers X(34001) - X(36000) |
PART 19: | Centers X(36001) - X(38000) | PART 20: | Centers X(38001) - X(40000) | PART 21: | Centers X(40001) - X(42000) |
PART 22: | Centers X(42001) - X(44000) | PART 23: | Centers X(44001) - X(46000) | PART 24: | Centers X(46001) - X(48000) |
PART 25: | Centers X(48001) - X(50000) | PART 26: | Centers X(50001) - X(52000) | PART 27: | Centers X(52001) - X(54000) |
PART 28: | Centers X(54001) - X(56000) | PART 29: | Centers X(56001) - X(58000) | PART 30: | Centers X(58001) - X(60000) |
PART 31: | Centers X(60001) - X(62000) | PART 32: | Centers X(62001) - X(64000) | PART 33: | Centers X(64001) - X(66000) |
PART 34: | Centers X(66001) - X(68000) | PART 35: | Centers X(68001) - X(70000) | PART 36: | Centers X(70001) - X(72000) |
X(12001) lies on these lines: {1,3}, {5,10529}, {11,11929}, {30,10806}, {104,5734}, {140,10587}, {145,6911}, {381,10532}, {405,10283}, {474,5844}, {956,5901}, {1056,6842}, {1058,7491}, {1478,10949}, {1483,3149}, {1537,10941}, {1598,11401}, {1616,5398}, {1656,10527}, {3244,11499}, {3560,10595}, {3621,6946}, {3622,6883}, {3623,6905}, {3843,10742}, {4317,5840}, {5070,9711}, {5093,9026}, {5288,9624}, {5434,10525}, {5790,10916}, {6959,10530}, {6985,7967}, {7517,10835}, {9301,10879}, {9654,10957}, {9655,10738}, {9669,10959}, {10804,11842}, {10931,11916}, {10932,11917}, {11911,11915}, {11949,11957}, {11950,11958}
X(12001) = X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,10680,3), (1,10966,3295), (3,10247,12000), (56,10679,3), (999,1482,3), (3304,3338,999), (10529,10597,5), (10532,10943,381)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25355.
X(12002) lies on these lines:
{4,52}, {51,1657}, {140,6688}, {511,3850}, {550,5462}, {1216,3851}, {1656,5447}, {3522,5892}, {3523,11465}, {3854,5891}, {3858,10263}, {5056,10625}, {5059,9730}, {5068,10170}, {10219,11592}, {10575,11002}
X(12002) =
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25355.
X(12003) lies on this line: {6000, 10295}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25358.
X(12004) lies on these lines:
{3,49} et al
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25365.
X(12005) lies on these lines: {1,104}, {3,3874}, {4,5557}, {5,2801}, {10,10202}, {12,10265}, {30,6583}, {40,3873}, {48,1729}, {57,6796}, {65,4311}, {72,10165}, {84,11020}, {140,3678}, {354,946}, {355,5883}, {515,942}, {517,548}, {518,5771}, {551,5887}, {581,982}, {631,5904}, {758,1385}, {912,1125}, {938,6256}, {944,4317}, {950,5570}, {952,3754}, {1006,6763}, {1064,3953}, {1210,10958}, {1482,3892}, {1483,2802}, {1490,10980}, {2771,5901}, {3149,4860}, {3218,10902}, {3333,6261}, {3336,11491}, {3337,6905}, {3555,11362}, {3576,3868}, {3577,9845}, {3616,5693}, {3651,5536}, {3742,5777}, {3833,9956}, {3878,10246}, {3889,7982}, {3894,7987}, {4015,11231}, {5045,6001}, {5253,6326}, {5439,10175}, {5542,6245}, {5708,11500}, {5728,6260}, {5770,10198}, {6705,11018}, {6952,11219}, {9948,10569}, {10573,10805}, {11025,11372}
X(12005) = midpoint of X(i) and X(j) for these {i,j}: {1,5884}, {3,3874}, {65,5882}, {3555,11362}, {11570,11715}
X(12005) = reflection of X(i) in X(j) for these (i,j): (3678,140), (3754,5885), (6684,9940)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25365.
X(12006) lies on these lines: {2,6102}, {3,143}, {5,113}, {30,5462}, {51,550}, {52,549}, {54,1511}, {140,389}, {156,6642}, {182,1658}, {186,6152}, {381,10574}, {382,5640}, {511,3530}, {546,5943}, {547,5907}, {548,5446}, {568,631}, {632,5562}, {1112,3520}, {1199,1493}, {1539,3521}, {1656,5876}, {1657,9781}, {1986,6143}, {3523,6243}, {3526,5889}, {3528,11002}, {3628,10219}, {3845,10575}, {3850,6000}, {3851,6241}, {3858,11381}, {5012,5944}, {5054,11412}, {5055,11465}, {5070,11459}, {6146,9827}, {7514,9786}, {7526,10601}, {9703,11423}, {10272,11806}, {11245,11264}
X(12006) = midpoint of X(i) and X(j) for these {i,j}: {3,143}, {52,10627}, {125,11561}, {140,389}, {548,5446}, {5462,9729}, {6102,11591}, {8254,11802}, {10272,11806}
X(12006) = reflection of X(i) in X(j) for these (i,j): (3628,11695), (10095,5462), (10627,11592)
X(12006) = complement of X(11591)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25365.
X(12007) lies on these lines: {3,3629}, {4,6}, {5,6329}, {20,5102}, {30,5097}, {69,10303}, {98,9300}, {125,11245}, {140,3631}, {141,3526}, {182,524}, {193,5085}, {511,548}, {542,5066}, {575,3564}, {578,6696}, {597,1352}, {1350,1992}, {1351,3534}, {2854,9826}, {3398,7789}, {3523,11008}, {3567,9973}, {3618,7486}, {3815,9755}, {3818,3857}, {5306,9744}, {6144,10519}, {6247,11426}, {6279,11314}, {6280,11313}, {6676,11225}, {10168,11540}, {10192,11433}, {11064,11422}
X(12007) = midpoint of X(i) and X(j) for these {i,j}: {3,3629}, {6,8550}, {182,1353}, {5480,6776}, {8584,11179}
X(12007) = reflection of X(i) in X(j) for these (i,j): (5,6329), (3589,575), (3631,140)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25373.
X(12008) lies on the cubic K040 and this line: {1,1030}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25379.
X(12009) lies on these lines: {1,3}, {3988,10124}, {5550,5694}
As a point on the Euler line, X(12010) has Shinagawa coefficients [3*E+40*F, -9*E+8*F].
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25379.
X(12010) lies on these lines: {2,3}, {11557,11591}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25380.
X(12011) lies on these lines: {186,1291}, {550,1263}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25381.
X(12012) lies on these lines: {2,10184}, {3,275}, {418,10003}, {549,1154}
X(12012) = reflection of X(10184) in X(2)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25381.
X(12013) lies on these lines: {547,11197}, {1656,3462}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25389.
X(12014) lies on these lines:
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25394.
X(12015) lies on this line: {7,2475}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25395.
X(12016) lies on these lines:
{1,104}, {7,151}, {56,11713}, {57,102}, {65,1359}, {117,226}, {124,1210}, {354,1361}, {518,3040}, {928,11028}, {942,2818}, {974,2779}, {1845,5902}, {2807,3664}, {3042,3812}, {3340,10696}, {3586,10732}, {3738,10015}, {3911,6711}, {4654,10709}, {5722,10747}, {9579,10726}
X(12016) = midpoint of X(65) and X(1364)
X(12016) = reflection of X(3042) in X(3812)
X(12016) = incircle-inverse-of-X(104)
X(12016) = X(131)-of-intouch-triangle
The Schoute circle is here defined as the radical circle of the Schoute coaxal system; that is, the circle with diameter X(15)X(16) and center X(187).
X(12017) lies on these lines:
X(12017) = reflection of X(1351) in X(11482)
X(12017) = Brocard-circle-inverse of X(33878)
X(12017) = Schoute-circle-inverse of X(5013)
X(12017) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,182,5050), (3,5050,1351), (3,5093,1350), (6,5085,5092), (6,5092,3), (15,16,5013), (182,5085,3), (182,5092,6), (575,1350,5093), (1353,3530,10519), (5012,7484,3167), (5085,10541,182), (6200,8375,6221), (6221,6398,5024), (6396,8376,6398), (11485,11486,9605).
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25401.
X(12018) lies on this line: {2475,2802}
See Tran Quang Hung and César Lozada, Hyacinthos 25418.
X(12019) lies on these lines: {1,5}, {2,10609}, {4,653}, {8,4767}, {10,528}, {30,1155}, {44,5179}, {46,3627}, {65,546}, {100,405}, {104,3149}, {140,10572}, {149,1145}, {153,6835}, {214,6667}, {381,1159}, {382,1788}, {429,1862}, {497,5790}, {515,5126}, {517,11545}, {519,5087}, {632,3612}, {938,9654}, {942,2801}, {950,9956}, {960,2802}, {1086,6788}, {1320,3621}, {1478,4860}, {1479,5690}, {1482,10591}, {1656,3486}, {1698,6174}, {1728,5128}, {1770,3853}, {1836,3845}, {1985,3240}, {2646,3628}, {2771,7687}, {2800,6797}, {2829,6245}, {3035,3634}, {3245,3583}, {3295,5818}, {3419,3820}, {3474,3830}, {3485,3851}, {3526,4305}, {3579,5840}, {3586,10993}, {3622,10031}, {3625,5854}, {3654,9580}, {3679,4679}, {3843,4295}, {4187,5086}, {4304,11231}, {4663,5848}, {4870,11737}, {4997,6790}, {5204,10090}, {5217,10058}, {5220,5856}, {5225,6928}, {5229,5708}, {5550,6224}, {5560,10483}, {5657,9668}, {5691,11219}, {5714,9803}, {5855,11813}, {6147,10895}, {6914,11502}, {9779,11041}, {10246,10589}, {10573,10896}, {11604,11684}
X(12019) = midpoint of X(i) and X(j) for these {i,j}: {11,80}, {149,1145}, {1317,9897}
X(12019) = reflection of X(i) in X(j) for these (i,j): (214,6667), (1387,11), (3035,6702), (9945,3035)
X(12019) = complement of X(10609)
X(12019) = Fuhrmann circle-inverse-of-X(5722)
X(12019) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (355,9581,496), (1837,10826,5), (5587,5722,495), (7741,10950,5901)
See Angel Montesdeoca, Hechos Geométricos en el Triángulo (2015) and Circunferencias de Apolonio. See also X(8160) and X(12021).
X(12020) lies on these lines: {3,6}, {76,2546}, {1428,3238}, {1503,5403}, {1676,3934}, {2330,3237}, {3589,5404}
X(12020) = reflection of X(12021) in X(182)
X(12020) = {X(2030),X(3094)}-harmonic conjugate of X(12021)
X(12020) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (39,1343,8160), (1343,1671,39)
See Angel Montesdeoca, Hechos Geométricos en el Triángulo (2015) and Circunferencias de Apolonio. See also X(8160) and X(12020).
X(12021) lies on these lines: {3,6}, {76,2547}, {1428,3237}, {1503,5404}, {1677,3934}, {2330,3238}, {3589,5403}
X(12021) = reflection of X(12020) in X(182)
X(12021) = {X(2030),X(3094)}-harmonic conjugate of X(12020)
X(12021) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (39,1342,8161), (12020,12021,2030), (1342,1670,39)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25420 and Hyacinthos 25493 .
X(12022) lies on these lines:
{3,3580}, {4,6}, {5,49}, {30,568}, {51,7576}, {68,7503}, {125,11430}, {141,7550}, {184,403}, {185,1986}, {235,1614}, {378,1899}, {381,11402}, {389,6240}, {436,6761}, {468,11464}, {511,11660}, {539,5891}, {546,11423}, {550,3581}, {569,9927}, {578,1594}, {1593,11457}, {1885,6241}, {1994,3153}, {3448,7527}, {3542,9707}, {3564,11459}, {3567,3575}, {3628,11704}, {5446,11750}, {5562,5965}, {5876,11264}, {6193,6816}, {6756,9781}, {7507,11426}, {9545,9820}, {9818,11442}, {9833,10594}, {10018,10182}, {10127,11451}, {10282,10619}, {10295,11438}, {10297,11422}
X(12022) = reflection of X(i) in X(j) for these (i,j): (5890,11245), (7576,51)
X(12022) = X(5692)-of-orthic-triangle if ABC is acute
X(12022) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,6776,11456), (265,567,5)
See X(7688) and Antreas Hatzipolakis and César Lozada, Hyacinthos 25420 and Hyacinthos 25493 . See also Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25511 .
X(12023) lies on the Jerabek hyperbola.
X(12023) = isogonal conjugate of X(13620)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25420 and Hyacinthos 25493 .
X(12024) lies on these lines: {4,6}, {30,11225}, {1899,11410}, {3628,5972}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25422.
X(12024) lies on this line: {1,5}
See Tran Quang Hung and César Lozada, Hyacinthos 25424.
X(12026) lies on these lines: {3,1263}, {5,49}, {30,137}, {128,3628}, {140,6592}, {549,930}
X(12026) = midpoint of X(i) and X(j) for these {i,j}: {3,1263}, {5,1141}
X(12026) = reflection of X(i) in X(j) for these (i,j): (128,3628), (6592,140)
The intriangle of a point given by trilinears x : y : z is the central triangle having A-vertex 0 : y + z cos A : z + y cos A. (See TCCT, p. 196). Thus, the A-vertex of the intriangle of X(6) is 0 : b + c cos A : c + b cos A. Contributed by César Lozada, February 11, 2017.
X(12027) lies on these lines: {3,5913}, {1296,9465}, {1995,5512}, {6776,7464}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25429.
X(12028) lies on these lines: {2, 5627}, {30, 50}, {94, 2071}, {186, 476}, {265, 2072}, {1141, 3153}
X(12028) = isogonal conjugate of X(1986)
See Tran Quang Hung and César Lozada, Hyacinthos 25436.
X(12029) lies on the circumncircle and these lines: {1,6079}, {100,1149}, {901,3915}, {995,2748} , {7292,9059}
See Tran Quang Hung and César Lozada, Hyacinthos 25436.
X(12030) lies on the circumncircle and these lines: {12,2222}, {21,1290}, {23,9070}, {28,2766}, {30,6011}, {74,6003}, {100,1325}, {101,4053}, {108,2074}, {109,5127}, {110,758}, {476,6757}, {523,759}, {842,7427}, {2651,4588}, {2691,4221}, {2701,4653}, {4227,10100}, {6012,7481}, {7469,9058}
X(12030) = trilinear pole of X(6)X(2610)
X(12030) = Λ(X(1), X(110))
See Tran Quang Hung and César Lozada, Hyacinthos 25436.
X(12031) lies on the circumncircle and these lines: {58,2702}, {98,6002}, {99,740}, {100,1931}, {101,1326}, {110,3747}, {511,6010}, {512,741}, {789,5209}, {813,1500}, {825,5006}, {2703,3736}
See Tran Quang Hung and César Lozada, Hyacinthos 25436.
X(12032) lies on the circumncircle and these lines: {1,927}, {3,813}, {41,919}, {100,2340}, {101,7193}, {103,9320}, {105,663}, {108,1429}, {109,2223}, {112,5009}, {741,7254}, {929,990}, {934,1458}, {991,1308}, {1305,3100}, {2222,5091}, {2704,11012}, {2737,5732}
X(12032) = reflection of X(813) in X(3)
X(12032) = circumcircle-antipode of X(813)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25437.
X(12033) lies on these lines: {55,2316}, {3196,6600}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25437.
X(12034) lies on these lines:
{3,3196}, {6,10247}, {9,48}, {44,517}, {45,10246}, {165,2246}, {952,4370}, {1635,2827}, {1743,2170}, {1766,3973}, {2291,2348}, {2792,10175}
X(12034) = midpoint of X(165) and X(9355)
X(12034) = X(3163)-of-excentral-triangle
For P on the circumcircle of a triangle ABC, let G(P) denote then centroid of the pedal triangle of P. The locus of G(P) is an ellipse, E, with center G = X(2), and the following pass-through points as shown here:
P | G(P) |
---|---|
X(74) | X(125) |
X(106) | X(3756) |
X(110) | X(5642) |
X(98) | X(6784) |
X(99) | X(6786) |
X(111) | X(6791) |
X(112) | X(6793) |
The ellipse E, described at X(6784), also passes through the vertices of the (pedal triangle of X(376)) = X(2)-of-antipedal-triangle-of-X(2), as well as the the following reflections:
X(5642) = reflection of X(125) in X(2)
X(6786) = reflection of X(6784) in X(2)
X(12035) = reflection of X(3756) in X(2)
X(12036) = reflection of X(6791) in X(2)
X(12037) = reflection of X(6793) in X(2)
See César Lozada, Hyacinthos 25463.
X(12035) lies on these lines:
{2,1280}, {121,519}, {524,5205}, {900,1635}, {952,10713}, {1086,9458}, {1213,6791}, {1647,4152}, {3679,5854}
X(12035) = midpoint of X(2) and X(3699)
X(12035) = reflection of X(3756) in X(2)
X(12035) = tripolar centroid of X(2415)
X(12035) = centroid of (degenerate) pedal triangle of X(1293)
See X(12035) and César Lozada, Hyacinthos 25463.
X(12036) lies on these lines:
{2,5503}, {125,599}, {126,524}, {351,690}, {538,9127}, {542,10717}, {543,5108}, {1992,4563}, {5477,8030}, {5650,6784}, {5969,9172}, {6786,9023}
X(12036) = midpoint of X(2) and X(9146)
X(12036) = reflection of X(6791) in X(2)
X(12036) = tripolar centroid of X(2418)
X(12036) = centroid of (degenerate) pedal triangle of X(1296)
See X(12035) and César Lozada, Hyacinthos 25463.
X(12037) lies on these lines:
{2,6793}, {122,125}, {127,525}, {599,5642}, {2777,10718}, {2871,3917}, {6054,10519}
X(12037) = reflection of X(6793) in X(2)
X(12037) = tripolar centroid of X(2419)
X(12037) = centroid of (degenerate) pedal triangle of X(1297)
See Antreas Hatzipolakis and Angel Montesdeoca, and César Lozada, Hyacinthos 25470 and Hyacinthos 25471 .
Let NANBNC be the reflection triangle of X(5). Let OA be the circumcenter of ANBNC, and define OB and OC cyclically. Triangle OAOBOC is orthologic to the orthic triangle at X(12038). (Randy Hutson, June 7, 2019)
X(12038) lies on these lines:
{2, 9927}, {3, 49}, {4, 11449}, {5, 1511}, {20, 5654}, {24, 5446}, {26, 11202}, {30, 5448}, {52, 186}, {54, 5504}, {68, 631}, {74, 9705}, {110, 3520}, {140, 5449}, {156, 6000}, {182, 8548}, {378, 10539}, {382, 1495}, {511, 1658}, {539, 549}, {541, 5894}, {550, 5944}, {567, 2931}, {569, 5892}, {578, 5462}, {1069, 5217}, {1152, 8909}, {1614, 2071}, {3043, 11562}, {3157, 5204}, {3523, 6193}, {3524, 11411}, {3530, 3564}, {3576, 9928}, {3855, 10546}, {5010, 6238}, {5646, 7393}, {5657, 9933}, {5663, 10226}, {5890, 9545}, {6146, 10257}, {6200, 10666}, {6241, 9544}, {6396, 10665}, {6418,8912}, {6642, 11425}, {6689, 7399}, {6699, 10116}, {7280, 7352}, {7488, 10625}, {7503, 10170}, {7506, 11424}, {7514, 9938}, {7526, 9306}, {7575, 10263}, {8546, 8681}, {9707, 11413}, {10020, 10182}, {10298, 11412}, {10540, 11381}, {10645, 10662}, {10646, 10661}
X(12038) = midpoint of X(i) and X(j) for these {i,j}: {3,1147}, {155,7689}, {156,11250}
X(12038) = reflection of X(i) in X(j) for these {i,j}: {5448,9820}, {5449,140}
X(12038) = complement of X(9927)
X(12038) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,49,185), (3,155,7689), (3,1092,1216), (578,6644,5462), (1147,7689,155), (1614,2071,10575)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25471 .
X(12039) lies on these lines:
{6,373}, {39,9145}, {182,2393}, {193,7605}, {523,7804}, {524,547}, {575,2854}, {576,10170}, {597,5972}, {1843,2916}, {3618,5486}, {5092,8705}, {5650,10510}, {9730,11579}, {11003,11188}
X(12039) = midpoint of X(6) and X(8542)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25471 .
X(12040) lies on these lines:
{2,2418}, {3,9770}, {5,543}, {30,7618}, {39,9167}, {83,5503}, {99,3363}, {140,7610}, {182,524}, {538,7619}, {547,7615}, {550,7775}, {597,620}, {631,9740}, {1007,5077}, {2482,3815}, {2549,8355}, {3845,8176}, {3849,8703}, {5013,8360}, {5055,7620}, {5215,5306}, {7763,8359}, {7769,9166}, {7777,8598}, {7870,8362}, {8182,9766}, {8667,11812}
X(12040) = midpoint of X(i) and X(j) for these {i,j}: {2,11165}, {3,9770}, {7615,8716}, {7618,11184}, {8182,9766}
X(12040) = reflection of X(i) in X(j) for these (i,j): (5,9771), (549,7622), (3845,8176), (7610,140), (7615,547)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25471 . Also see Tran Quang Hung and Angel Montesdeoca, Hyacinthos 25680.
X(12041) lies on these lines:
{2,7728}, {3,74}, {5,1539}, {20,265}, {30,125}, {35,3028}, {55,10081}, {56,10065}, {64,9934}, {113,140}, {146,631}, {182,2781}, {185,10226}, {376,3448}, {378,1112}, {381,10721}, {511,11806}, {517,11709}, {541,549}, {542,8703}, {550,10264}, {567,1986}, {974,1204}, {1154,2071}, {1350,5621}, {1351,5622}, {1657,10733}, {2420,3269}, {2771,9943}, {2780,9208}, {2854,3098}, {2935,7526}, {3521,6143}, {3524,5655}, {3530,10272}, {3532,5504}, {3534,9140}, {3576,9904}, {3581,7464}, {3627,7687}, {3818,6698}, {5050,10752}, {5054,10706}, {5085,9970}, {5092,6593}, {5204,10091}, {5217,10088}, {5462,11807}, {5544,9818}, {6101,7689}, {6409,10819}, {6410,10820}, {6642,9919}, {6644,10117}, {6689,11805}, {7280,7727}, {7502,8717}, {7583,8994}, {7722,11003}, {7731,10574}, {7978,10246}, {8718,11559}, {9729,11557}, {10610,10628}, {11438,11746}
X(12041) = complement of X(7728)
X(12041) = circumcircle-inverse of X(10620)
X(12041) = X(11)-of-Trinh-triangle if ABC is acute
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25471 .
X(12042) lies on these lines:
{2,5191}, {3,76}, {5,2794}, {20,6321}, {30,115}, {32,2023}, {35,3027}, {36,3023}, {55,10069}, {56,10053}, {114,140}, {141,542}, {147,631}, {148,376}, {157,1605}, {182,10007}, {262,11842}, {378,5186}, {381,3972}, {404,5985}, {517,11710}, {543,8703}, {550,11623}, {632,6721}, {671,3534}, {1657,10723}, {1916,7793}, {2080,5999}, {2784,6684}, {3095,7766}, {3098,5969}, {3111,5663}, {3329,3398}, {3523,5984}, {3524,8289}, {3576,9860}, {3830,9166}, {3845,5461}, {4027,7824}, {5027,11176}, {5050,10753}, {5054,6054}, {5149,7815}, {5182,12017}, {5204,10089}, {5217,10086}, {5569,9830}, {5961,7502}, {5986,7485}, {5987,7496}, {6642,9861}, {6671,6771}, {6672,6774}, {7583,8980}, {7776,8781}, {7798,9737}, {7857,9873}, {7970,10246}, {8667,9888}, {8725,11606}, {9167,11812}, {10352,11285}
X(12042) = midpoint of X(i) and X(j) for these {i,j}: {3,98}, {20,6321}, {114,10991}, {376,11632}, {671,3534}, {1657,10723}, {1916,9821}, {2080,5999}, {6033,9862}, {6295,6582}, {8667,9888}, {8724,11177}, {8725,11606}
X(12042) = reflection of X(i) in X(j) for these (i,j): (5,6036), (114,140), (3845,5461), (5026,5092)
X(12042) = complement of X(6033)
X(12042) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,9862,6033), (1078,5152,5976), (3524,11177,8724)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25476 .
X(12043) lies on these lines:
{2,3} et al
X(12043) = {X(140),X(2072)}-harmonic conjugate of X(3530)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25472 .
X(12044) lies on this line: {252,5449}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25490 .
X(12045) lies on these lines:
{2,51}, {575,6090}, {576,5544}, {3589,9027}, {3848,9026}, {5663,6723}, {6102,10170}, {8705,9822}
X(12045) = midpoint of X(i) and X(j) for these {i,j}: {3819,5640}, {5650,5943}
X(12045) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,10219,6688), (373,5650,11002), (373,11002,5943)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25490 .
X(12046) lies on these lines:
{2,11592}, {5,113}, {143,3090}, {156,11484}, {1216,10095}, {2979,9781}, {3567,11591}, {5447,10110}, {5876,11451}
X(12046) = midpoint of X(11017) and X(12006)
X(12046) = complement of X(11592)
X(12046) = {X(5),X(12006)}-harmonic conjugate of X(11017)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25491 .
X(12047) lies on these lines:
{1,4}, {2,46}, {3,1770}, {5,65}, {7,90}, {8,6871}, {10,908}, {11,113}, {12,517}, {19,5747}, {20,3612}, {21,36}, {30,2646}, {35,411}, {40,498}, {55,6985}, {56,3560}, {57,499}, {72,2886}, {80,7548}, {115,2653}, {124,1845}, {140,1155}, {142,3624}, {165,6988}, {191,5745}, {235,1905}, {238,1780}, {284,1839}, {354,496}, {355,2099}, {376,4333}, {377,997}, {381,1837}, {386,3914}, {431,1829}, {442,960}, {474,5880}, {484,6684}, {486,2362}, {495,3057}, {519,5086}, {527,6763}, {551,4311}, {553,1776}, {595,3011}, {631,3474}, {758,6734}, {938,6870}, {952,11011}, {962,3085}, {999,10404}, {1001,7742}, {1111,3674}, {1156,5557}, {1158,6833}, {1159,3851}, {1193,3120}, {1210,3671}, {1319,5901}, {1329,3753}, {1385,7354}, {1388,9657}, {1420,4317}, {1452,3542}, {1454,6862}, {1470,7702}, {1482,5252}, {1532,7686}, {1538,5806}, {1565,4059}, {1697,10056}, {1698,2093}, {1708,6832}, {1709,6847}, {1717,3100}, {1723,5746}, {1727,6888}, {1728,6846}, {1738,3216}, {1756,4357}, {1768,6705}, {1788,3090}, {1892,11399}, {1940,7551}, {2051,4424}, {2098,3656}, {2475,4511}, {2800,8068}, {3091,10826}, {3136,10974}, {3146,4305}, {3149,11507}, {3179,5243}, {3304,11373}, {3306,10200}, {3333,4654}, {3336,3911}, {3339,6855}, {3340,5587}, {3428,5812}, {3434,3811}, {3555,3813}, {3576,4299}, {3579,5432}, {3584,11010}, {3601,4302}, {3614,9956}, {3616,4293}, {3634,5445}, {3635,7972}, {3670,8229}, {3683,6675}, {3687,4647}, {3697,9710}, {3698,3820}, {3702,3936}, {3720,4303}, {3746,10624}, {3754,3814}, {3755,5312}, {3812,4187}, {3816,5439}, {3822,3878}, {3841,10176}, {3850,12019}, {3868,10916}, {3899,5837}, {3916,4999}, {3925,5044}, {3931,5718}, {3947,4301}, {4002,9711}, {4047,5742}, {4294,5703}, {4297,10483}, {4298,5563}, {4309,9580}, {4640,7483}, {4679,11108}, {4847,5904}, {4848,6874}, {4867,6737}, {5010,6876}, {5045,7743}, {5083,5533}, {5123,10107}, {5173,5777}, {5218,6361}, {5250,10198}, {5274,11036}, {5328,11024}, {5398,7299}, {5425,6738}, {5433,11230}, {5506,6666}, {5542,10394}, {5657,10588}, {5690,10592}, {5722,10896}, {5726,11531}, {5730,5794}, {5763,7957}, {5905,10527}, {6001,6831}, {6866,9581}, {6875,7280}, {6911,11509}, {6982,7982}, {6990,10395}, {7284,10586}, {7680,10523}, {7965,11018}, {8069,11496}, {9596,9620}, {9597,9619}, {9655,10246}, {10042,11372}, {10057,10698}, {10264,11670}, {10265,11571}, {10679,11501}, {10883,11019}
X(12047) = midpoint of X(1) and X(3585)
X(12047) = reflection of X(i) in X(j) for these (i,j): (3916,4999), (5267,1125), (10039,12)
X(12047) = X(49)-of-intouch-triangle
X(12047) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,4,10572), (1,1699,1479), (1,3583,950), (1,5270,10106), (1,9612,1478), (4,3485,1), (4,3487,10393), (226,946,1), (497,3487,1), (1058,3475,1), (5290,11522,1)
See Angel Montedeoca, Hechos Geométricos en el Triángulo (2015) and Circunferencias de Apolonio .
X(12048) lies on these lines: {3,6}, {237,8881}
X(12048) = {X(3),X(32)}-harmonic conjugate of X(12049)
X(12048) = {X(32),X(39)}-harmonic conjugate of X(1343)
See Angel Montedeoca, Hechos Geométricos en el Triángulo (2015) and Circunferencias de Apolonio .
X(12049) lies on these lines: {3,6}, {237,8880}
X(12049) = {X(3),X(32)}-harmonic conjugate of X(12048)
X(12049) = {X(32),X(39)}-harmonic conjugate of X(1342)
See Angel Montedeoca, Hechos Geométricos en el Triángulo (2015) and Circunferencias de Apolonio .
X(12050) lies on these lines:
{3,6}, {1501,8880}, {1676,3767}, {1677,2548}, {1701,9593}, {2546,5286}
X(12050) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,182,12051), (6,1691,1343), (32,2035,1342), (182,12020,1343)
See Angel Montedeoca, Hechos Geométricos en el Triángulo (2015) and Circunferencias de Apolonio .
X(12051) lies on these lines: {3, 6}, {1501, 8881}, {1673, 16502}, {1676, 2548}, {1677, 3767}, {1700, 9593}, {2547, 5286}, {8880, 20965}
X(12051) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): ): (6,182,12050), (6,1691,1342), (32,2036,1343), (182,12021,1342)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25498 .
X(12052) lies on these lines:
{30,9826}, {51,3258}, {476,1316}, {477,9781}, {523,11746}, {1112,3154}
X(12052) = midpoint of X(1112) and X(3154)
See Antreas Hatzipolakis and Angel Montedeoca, Hyacinthos 25502 .
The line AX(8) meets the incircle in two points, A' and A'', where A' is the point closer to A. Let σ be the affine transformation that carries A'B'C' onto A''B''C''. The finite fixed point of σ is X(12053). (Angel Montesdeoca, July 5, 2021)
X(12053) lies on these lines: {1, 4}, {2, 1697}, {3, 10624}, {5, 7743}, {7, 738}, {8, 3452}, {10, 11}, {12, 3817}, {20, 1420}, {21, 3254}, {30, 4311}, {35, 6940}, {40, 3086}, {46, 10072}, {55, 474}, {56, 516}, {57, 962}, {63, 10529}, {65, 4301}, {78, 5853}, {102, 1067}, {142, 390}, {145, 908}, {165, 7288}, {329, 6762}, {354, 3671}, {355, 9669}, {411, 2078}, {495, 9955}, {496, 517}, {498, 6983}, {499, 5119}, {518, 10392}, {519, 1837}, {527, 11240}, {550, 5126}, {551, 2646}, {553, 3333}, {595, 1936}, {758, 10959}, {936, 5082}, {938, 3340}, {960, 3813}, {993, 10966}, {999, 4292}, {1000, 5818}, {1071, 1537}, {1108, 8804}, {1155, 5493}, {1193, 3755}, {1201, 3914}, {1319, 4297}, {1329, 3880}, {1385, 1387}, {1388, 9670}, {1482, 5722}, {1616, 3772}, {1698, 9819}, {1737, 5697}, {1770, 5563}, {1776, 6763}, {1788, 7991}, {1836, 3304}, {1858, 3874}, {1864, 3555}, {1898, 2801}, {2066, 8983}, {2099, 6738}, {2136, 7080}, {2269, 5257}, {2321, 3702}, {2478, 3872}, {2550, 8583}, {2551, 4853}, {3023, 11599}, {3085, 6964}, {3091, 9578}, {3146, 4308}, {3243, 5809}, {3244, 5048}, {3295, 5886}, {3303, 11375}, {3306, 10586}, {3338, 4031}, {3361, 3474}, {3478, 10570}, {3501, 8568}, {3576, 4294}, {3577, 5804}, {3582, 11010}, {3600, 9579}, {3612, 4309}, {3622, 4313}, {3624, 5218}, {3649, 4890}, {3660, 9943}, {3663, 3665}, {3687, 4673}, {3741, 10480}, {3746, 6946}, {3753, 9843}, {3814, 10915}, {3816, 5836}, {3847, 5123}, {3877, 5837}, {3878, 10916}, {3885, 4193}, {3889, 10394}, {3895, 5552}, {3913, 6745}, {3953, 7004}, {4035, 4742}, {4310, 4907}, {4315, 7354}, {4425, 8240}, {4654, 11037}, {4668, 8275}, {4863, 6743}, {5045, 10391}, {5049, 6147}, {5068, 7320}, {5084, 9623}, {5086, 10707}, {5128, 5435}, {5250, 5745}, {5252, 10863}, {5261, 9779}, {5265, 9778}, {5281, 5550}, {5289, 6737}, {5433, 10164}, {5533, 10265}, {5536, 7098}, {5570, 5884}, {5587, 10591}, {5687, 6700}, {5703, 10389}, {5758, 10396}, {5768, 7971}, {5794, 11235}, {6705, 10785}, {6767, 11374}, {6796, 11508}, {6975, 7741}, {7988, 10588}, {8715, 11502}, {8808, 10373}, {9956, 10593}, {10043, 10051}, {10543, 11263}, {10580, 11518}
X(12053) = midpoint of X(i) and X(j) for these {i,j}: {1,1479}, {1837,2098}
X(12053) = reflection of X(i) in X(j) for these {i,j}: {10,3825}, {1210,496}, {4848,1210}, {5687,6700}, {6736,1329}
X(12053) = inner-Johnson-to-ABC similarity image of X(10)
X(12053) = Ursa-minor-to-Ursa-major similarity image of X(10)
See Angel Montedeoca, Hechos Geométricos en el Triángulo (2015) , where circles Oa, Ob, Oc are defined. Let A' be the point, other than A, in which the circles Ob and Oc intersect. Define B' and C' cyclically. Then X(12054) = X(3)-of-A'B'C'. (Peter Moses, February 25, 2017)
X(12054) lies on these lines:
{2,10131}, {3,6}, {5,7859}, {20,10359}, {30,83}, {36,10799}, {98,140}, {376,7787}, {378,11380}, {381,7808}, {382,10358}, {524,6308}, {538,8150}, {542,6292}, {549,1078}, {631,7836}, {1176,9407}, {1503,6287}, {2782,8290}, {3329,7470}, {3406,7709}, {3522,10788}, {3524,7793}, {3526,7915}, {4027,7824}, {4299,10797}, {4302,10798}, {5054,7815}, {5182,8359}, {5217,10801}, {5999,11272}, {6033,6656}, {6054,7944}, {6309,8177}, {7779,10357}, {7789,8724}, {7791,10349}, {7800,11179}, {7876,9996}, {7889,10168}, {8356,10350}, {9862,10333}
X(12054) = inverse-in-Brocard-circle of X(9821)
X(12054) = inverse-in-circle-{{X(1687),X(1688),PU(1),PU(2)}} of X(5007)
X(12054) = center of inverse-in-circle-{{X(1687),X(1688),PU(1),PU(2)}}-of-Moses-circle
X(12054) = harmonic center of Gallatly circle and circle {{X(1687),X(1688),PU(1),PU(2)}}
X(12054) = midpoint of centers of circles {{X(1379),PU(1)}} and {{X(1380),PU(1)}}
X(12054) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,9821), (3,182,3398), (3,3398,2080), (3,11842,5171), (20,10359,10796), (39,5092,3), (182,5092,1691), (1342,1343,5092), (1687,1688,5007), (5085,5116,5092)
See Angel Montedeoca, Hechos Geométricos en el Triángulo (2015) , where circles Oa, Ob, Oc are defined. Let A' be the point, other than A, in which the circles Ob and Oc intersect. Define B' and C' cyclically. Then X(12055) = X(6)-of-A'B'C'. (Peter Moses, February 25, 2017)
X(12055) lies on these lines:
{3,6}, {99,3589}, {141,7799}, {323,8041}, {732,7824}, {1495,10329}, {2023,8290}, {2502,7711}, {3231,5888}, {3619,7836}, {3763,7880}, {4048,7786}, {5103,7847}, {5254,7859}, {7757,8177}
X(12055) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,5092,1691), (6,5116,5092), (39,5092,6), (39,5116,1691), (3094,5038,5111).
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25504 .
See another construction: Antreas Hatzipolakis and Peter Moses, Euclid 102 .
X(12056) lies on this line: (2,3}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25504 .
X(12057) lies on this line: (2,3}
X(12057) = midpoint of X(140) and X(10289)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25506 .
X(12058) lies on these lines: {20,2979}, {22,1495}, {51,858}, {161,1350}, {185,1993}, {394,1619}, {511,1370}, {1216,11414}, {1843,7391}, {2071,5012}, {3060,7396}, {3819,7493}, {5447,9715}, {7667,9967}, {7998,10565}, {10625,11750}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25506 .
X(12059) lies on these lines: {63,3678}, {72,515}, {78,2801}, {144,3648}, {200,7992}, {329,1479}, {518,10392}, {758,3436}, {908,3825}, {1898,5853}, {2802,3632}, {2975,10176}, {3421,5693}, {3585,5176}, {3680,9951}, {3681,4882}, {3868,11678}, {3927,11499}, {4847,5777}, {5442,5744}, {5883,11681}, {6001,6736}, {6763,10090}
X(12059) = midpoint of X(1479) and X(5904)
X(12059) = reflection of X(3874) in X(3825)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25510 .
X(12060) lies on this line: {3,54}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25510 .
X(12061) lies on this lines:
{3,8705}, {5,11649}, {6,3518}, {52,2854}, {143,8584}, {156,576}, {235,1843}, {389,2393}, {511,3627}, {524,6243}, {575,5944}, {1192,8549}, {1503,6240}, {2781,11381}, {3517,11216}, {5449,8262}, {9019,10625}, {9781,9971}, {11188,11444}, {11441,11477}
X(12061) = midpoint of X(i) and X(j) for these {i,j}: {3,11663}, {6403,9973}
X(12061) = reflection of X(5480) in X(1843)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25510 .
X(12062) lies on these lines:
{3518,11935}, {3627,6243}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25510 .
X(12063) lies on these lines: {24,3431}, {7530,9716}
X-parabola and related centers: X(12064)-X(12079)
This preamble and centers X(12064)-X(12079) were contributed by César Eliud Lozada, February 27, 2017.
Let A*B*C* be the side triangle of the medial and orthic triangles of ABC, and let A'B'C' be the medial triangle of A*B*C*. Then A, B, C, A', B', C' lie on a parabola here named the X-parabola of ABC. Some properties of this parabola are:
Let ta, tb, tc be the tangents to the X-parabola at A, B, C, respectively; the triangle AtBtCt bounded by these tangents is here named the X-parabola-tangential triangle of ABC. Barycentric coordinates of A-vertex are:
At = -(b^2-c^2)^2 : (a^2-c^2)^2 : (a^2-b^2)^2
The appearance of (T,i) in the following list means that triangles T and X-parabola-tangential are perspective with perspector X(i): (ABC, 115), (extouch, 12069), (2nd Hatzipolakis, 12070), (incentral, 12071), (intouch, 12072), (Lemoine, 12073), (Macbeath, 12075), (medial, 523), (orthic, 512), (Steiner, 12076), (symmedial, 12077), (Yff contact, 12078).
The X-parabola is the isogonal conjugate of line X(110)X(351) (the tangent to circumcircle at X(110)), and the isotomic conjugate of line X(99)X(110) (the tangent to Steiner circumellipse at X(99)). (Randy Hutson, March 9, 2017)
The X-parabola-tangential triangle is the anticevian triangle of X(115). (Randy Hutson, June 27, 2018)
X(12064) lies on the curve Q077 and these lines: {110,8029}, {125,10278}, {523,5972}, {1112,2501}, {3448,5466}, {5663,10279}, {6723,10189}
X(12065) lies on these lines: {523,5972}, {3233,8029}
X(12066) is the trilinear pole of X(523)X(5972) which is the locus of radical centers of the circles centered at the vertices of ABC and tangent to lines through X(30) (i.e., parallel to Euler line). (Randy Hutson, March 9, 2017)
X(12066) lies on the Kiepert hyperbola and these lines: {98,10733}, {5466,12065}
X(12066) = Trilinear pole of the line {523,5972}
X(12067) = isogonal conjugate of {6,647}∩{3292,11063}
X(12067) = trilinear pole of the line {30,10279}
X(12068) lies on these lines: {2,3}, {125,3233}, {523,5972}, {5642,6070}, {11064,11657}
X(12068) = midpoint of X(i) and X(j) for these {i,j}: {125,3233}, {3154,7471}, {11064,11657}
X(12068) = complement of X(3154)
X(12068) = orthogonal projection of X(5972) on the Euler line
X(12068) = {X(2), X(7471)}-harmonic conjugate of X(3154)
X(12069) lies on these lines: {523,8045}, {4041,8029}, {4770,6367}
X(12070) lies on no lines {X(i), X(j)} for i, j ≤ 12069
X(12071) lies on these lines: {512,12069}, {523,8043}, {4041,4838}, {4705,8029}
X(12072) lies on these lines: {512,12069}, {523,2487}, {661,8029}
X(12072) = reflection of X(12069) in X(12071)
X(12073) lies on these lines: {30,511}, {83,5466}, {1637,3288}, {1649,3005}, {4108,9189}, {4808,4822}, {5027,9185}, {8371,11183}, {8723,9751}, {9123,9208}, {9180,11606}, {9485,9889}, {10183,10278}
X(12073) = crossdifference of every pair of points on line X(6)X(5888)
X(12073) = isogonal conjugate of X(12074)
X(12074) lies on the circumcircle and these lines: {39,111}, {98,549}, {662,2748}, {691,1634}, {827,5467}, {843,2076}, {2396,9069}, {9145,11636}
X(12074) = reflection of X(11638) in X(7711)
X(12074) = isogonal conjugate of X(12073)
X(12074) = trilinear pole of the line {6,5888}
X(12075) lies on these lines: {83,5466}, {460,512}, {523,4885}, {669,1637}, {826,850}, {2525,9148}, {3005,8029}, {6562,9209}
X(12075) = radical center of {nine-point circle, nine-point circle of medial triangle, orthosymmedial circle}
X(12076) lies on these lines: {115,8029}, {148,690}, {523,620}, {2079,7669}, {6036,10279}, {6721,8151}, {6722,10278}
X(12076) = reflection of X(i) in X(j) for these (i,j): (6036,10279), (8151,6721)
Let A'B'C' be the anticevian triangle of X(4). Let A"B"C" be the tangential triangle, wrt A'B'C', of the bianticevian conic of X(4) and X(6). The lines A'A", B'B", C'C" concur in X(12077). (Randy Hutson, March 9, 2017)
X(12077) lies on these lines: {6,2623}, {230,231}, {251,2395}, {648,9514}, {661,2171}, {826,3569}, {850,2525}, {1640,12073}, {2081,2600}, {3005,8029}, {3288,7927}, {5466,7608}
X(12077) = reflection of X(i) in X(j) for these (i,j): (647,2501), (2525,850), (3005,12075)
X(12077) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (647,2501,1637), (3005,8029,12075)
X(12077) = intersection of trilinear polars of X(4) and X(5)
X(12077) = perspector of hyperbola {A,B,C,X(4),X(5)} (circumconic centered at X(137))
X(12077) = crossdifference of every pair of points on line X(3)X(54)
X(12077) = center of circumconic that is locus of trilinear poles of lines passing through X(137)
X(12077) = X(2)-Ceva conjugate of X(137)
X(12077) = polar conjugate of isotomic conjugate of X(6368)
X(12077) = X(63)-isoconjugate of X(933)
X(12077) = X(95)-isoconjugate of X(163)
X(12077) = perspector of ABC and orthocevian triangle of X(930)
X(12077) = barycentric product X(5)*X(523)
X(12077) = intersection of orthic axes of ABC and reflection triangle
X(12078) lies on these lines: {148,690}, {3120,8029}
Let MaMbMc = medial triangle. Let (𝒫a) be the parabola, tangent to Euler line, to NMa, and to the line BC at its vertex, so that its directrix, da, is parallel to BC. Define the lines db and dc cyclically. Let T be the triangle bounded by the lines da, db, dc. Then T is homothetic to ABC, and the center of homothety is X(12079). For a construction, see Paris Pamfilos, A Gallery of Conics by Five Elements, Forum Geometricorum 14 (2014) 295-348, paragraph 13.3, page 346: construct a conic tangent to the line at infinity, i.e. a parabola, tangent to three lines a, b, c and passing through [D], i.e. with given axis-direction. (Angel Montesdeoca, March 1, 2022)
X(12079) lies on the X-parabola, Gibert's cubics K217, K741, Gibert's curve Q078 and these lines: {2,9717}, {30,74}, {98,468}, {110,12068}, {115,2501}, {125,523}, {325,892}, {339,850}, {542,3233}, {868,2394}, {1503,11657}, {1552,10151}, {1648,2395}, {2452,5094}, {3448,7471}, {3470,3628}, {7473,9862}, {8749,8791}, {10257,10419}
X(12079) = midpoint of X(i) and X(j) for these {i,j}: {125,6070}, {3448,7471}
X(12079) = reflection of X(i) in X(j) for these (i,j): (110,12068), (3154,125)
X(12079) = reflection of X(476) in the axis of the X-parabola
X(12079) = vertex of inscribed parabola with focus X(74) (and perspector X(1494), axis X(30)X(74) and directrix X(4)X(523))
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25539.
X(12080) lies on these lines: {1109,1962}, {2650,3635}, {3957 ,6758}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25539.
X(12081) lies on these lines: {1,21}, {517,3724}, {523,663}, {740,4511}, {5844,10459}
As a point on the Euler line, X(12082) has Shinagawa coefficients (2*E+2*F, -5*E-2*F).
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25532.
X(12082) lies on these lines: {2,3}, {159,5656}, {316,9723}, {511,11456}, {575,10984}, {576,7592}, {944,9911}, {1181,8718}, {1199,11482}, {1350,11459}, {1498,2781}, {1633,6361}, {3068,9695}, {3284,8743}, {3292,6759}, {4293,10833}, {4296,9645}, {8717,9730}, {10625,11441}
X(12082) = reflection of X(378) in X(22)
X(12082) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,23,24), (3,1598,11284), (3,5198,3090), (3,7387,23), (3,7530,1995), (3,11284,631), (4,10323,7509), (4,11414,10323), (20,23,3), (20,7387,24), (26,1657,11413), (1995,7530,10594), (3146,7492,7527), (3529,7556,7464), (7464,7556,3), (7492,7527,3)
As a point on the Euler line, X(12083) has Shinagawa coefficients (3*E+4*F, -7*E-4*F).
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25532.
X(12083) lies on these lines: {2,3}, {35,9658}, {36,9673}, {115,8553}, {159,399}, {161,6000}, {195,11577}, {265,5621}, {394,10540}, {567,3796}, {999,4351}, {1154,11456}, {1181,6243}, {1351,8547}, {1482,9911}, {2917,5895}, {3070,9683}, {3098,5891}, {3295,4354}, {3579,8185}, {3581,10605}, {5446,10984}, {5889,8718}, {6101,11441}, {6449,8276}, {6450,8277}, {6759,10625}, {7592,10263}, {7737,9609}, {8148,8192}, {9655,10831}, {9659,10483}, {9668,10832}, {9914,9920}, {10564,11202}, {10620,11820}
X(12083) = reflection of X(i) in X(j) for these (i,j): (3,22), (7391,5)
X(12083) = Stammler-circle-inverse-of-X(7574)
X(12083) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,1598,1656), (3,3843,7395), (3,5073,1593), (3,5899,25), (3,7387,7517), (3,7517,7506), (3,9909,2070), (4,6636,7514), (20,26,3), (22,378,7502), (23,376,6644), (25,5899,7517), (378,7502,3), (1657,2937,3), (3146,7512,7526), (3627,7525,7503), (5198,7393,3851), (7387,11414,3), (7503,7525,3), (7512,7526,3), (7556,11001,2071)
As a point on the Euler line, X(12084) has Shinagawa coefficients (E-4*F, -3*E+4*F).
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25532.
Let La be the polar of X(3) wrt the A-power circle, and define Lb, Lc cyclically. Let A' = Lb∩Lc, B' = Lc∩La, C' = La∩Lb. Triangle A'B'C' is homothetic to ABC at X(5094) and to the anticomplementary triangle at X(22). X(4)-of-A'B'C' = X(1657), and X(5)-of-A'B'C' = X(12084). (Randy Hutson, March 9, 2017)
X(12084) lies on these lines: {2,3}, {49,11456}, {52,1204}, {56,8144}, {64,155}, {74,5889}, {143,9786}, {156,1498}, {184,10575}, {394,5876}, {511,7689}, {542,9925}, {1069,10060}, {1092,10564}, {1147,6000}, {1151,11265}, {1152,11266}, {1154,10606}, {1236,1975}, {1288,1294}, {2883,9820}, {3157,10076}, {3357,9938}, {3796,10610}, {4299,9672}, {4302,9659}, {4550,11793}, {5204,9645}, {5446,11438}, {5584,8141}, {5621,11255}, {5654,5878}, {5946,10982}, {6102,10605}, {6759,12038}, {7747,9608}, {7756,9609}, {9730,11424}, {10263,12041}, {10539,11381}, {11267,11480}, {11268,11481}, {11412,11440}
X(12084) = midpoint of X(64) and X(155)
X(12084) = reflection of X(i) in X(j) for these (i,j): (3,11250), (26,3), (1498,156), (1658,10226), (2883,9820), (6759,12038), (7387,1658), (11477,11255)
X(12084) = 1st-Droz-Farny-circle-inverse-of-X(403)
X(12084) = midpoint of X(3) and X(12085)
X(12084) = harmonic center of circumcircle and first Droz-Farny circle
X(12084) = harmonic center of tangential circle and Trinh circle
X(12084) = center of inverse-in-first-Droz-Farny-circle-of-nine-point-circle
X(12084) = reflection in X(5) of [center of inverse-in-second-Droz-Farny-circle-of-nine-point-circle]
X(12084) = center of circle that is the circumperp conjugate of the nine-point circle
X(12084) = circumperp conjugate of X(2072)
X(12084) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,4,6644), (3,382,24), (3,1593,5), (3,1597,6642), (3,5073,2070), (3,7387,1658), (3,7395,549), (3,7503,7516), (3,7517,186), (3,7526,7514), (4,2071,3), (4,3548,5), (24,382,7530), (186,3146,7517), (1597,6642,546), (1658,7387,26), (1658,10226,3), (2041,2042,11799), (7503,7516,7514), (7516,7526,7503), (7529,11403,3845)
As a point on the Euler line, X(12085) has Shinagawa coefficients (E-2*F, -3*E+2*F).
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25532.
X(12085) lies on these lines: {2,3}, {36,9645}, {52,10605}, {56,9629}, {68,6247}, {154,12038}, {155,6000}, {511,3357}, {999,8144}, {1069,6285}, {1092,11381}, {1147,1498}, {1181,10575}, {1350,9973}, {1351,6102}, {1619,5878}, {1853,9927}, {1993,6241}, {2777,9914}, {2883,5654}, {2935,9937}, {3157,7355}, {3260,3964}, {3527,5946}, {4299,10832}, {4302,10831}, {4550,5447}, {5446,9786}, {5907,11472}, {6001,9928}, {6221,11265}, {6238,10060}, {6398,11266}, {6800,8718}, {7352,10076}, {7689,10606}, {8778,10317}, {9730,10982}, {9908,9938}, {10539,10564}
X(12085) = reflection of X(i) in X(j) for these (i,j): (3,12084), (26,11250), (68,6247), (1498,1147), (7387,3), (9908,9938)
X(12085) = exsimilicenter of tangential circle and Trinh circle; the insimilicenter is X(3)
X(12085) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,4,6642), (3,382,25), (3,1597,5), (3,1598,6644), (3,3830,7506), (3,5073,7517), (3,7517,3515), (3,9714,186), (3,9909,1658), (4,3546,5), (4,7464,11413), (4,11413,3), (22,3520,3), (26,11250,3), (376,7503,3), (550,7526,3), (2071,3146,24), (3522,7527,7509), (3627,6644,1598), (3830,7506,5198), (9715,11410,3)
As a point on the Euler line, X(12086) has Shinagawa coefficients (E-4*F, -4*E+4*F).
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25532.
X(12086) lies on these lines: {2,3}, {52,74}, {54,10575}, {56,9539}, {64,1993}, {110,11381}, {185,1994}, {324,1105}, {511,11440}, {1204,3060}, {1498,9544}, {2935,3448}, {3357,5889}, {3580,6696}, {4550,7999}, {5584,9536}, {5866,7773}, {7355,9637}, {9306,11439}, {9545,11456}, {9786,11002}, {10539,11455}, {10574,11424}, {11003,11425}
X(12086) = reflection of X(7488) in X(3520)
X(12086) = 1st-Droz-Farny-circle-inverse-of-X(11563)
X(12086) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,3146,23), (3,3627,3518), (3,11403,1995), (382,11250,186), (1593,11413,2)
As a point on the Euler line, X(12087) has Shinagawa coefficients (3*E+4*F, -8*E-4*F).
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25532.
X(12087) lies on these lines: {2,3}, {52,8718}, {145,9911}, {161,6225}, {323,6759}, {3600,10833}, {7691,11381}, {8185,9778}
X(12087) = reflection of X(3520) in X(2937)
X(12087) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (20,7387,23), (26,3529,2071), (382,7512,7527), (2937,3520,7488), (5198,7485,5068)
As a point on the Euler line, X(12088) has Shinagawa coefficients (2*E+4*F, -5*E-4*F).
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25532.
X(12088) lies on these lines: {2,3}, {110,10625}, {156,323}, {182,9781}, {185,8718}, {511,1614}, {515,9591}, {516,9626}, {575,1173}, {576,11423}, {1058,10833}, {1199,3060}, {1994,10263}, {2883,2917}, {2916,5480}, {2979,10539}, {3068,9683}, {3085,9658}, {3086,9673}, {3098,7999}, {3567,10984}, {3746,4354}, {4297,9625}, {4351,5563}, {5012,5446}, {5657,8185}, {6101,10540}, {6759,11412}, {7712,9545}, {7737,9700}, {8744,10316}, {9934,10628}
X(12088) = reflection of X(7488) in X(2937)
X(12088) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,23,3518), (3,1995,3525), (3,3091,7550), (3,3627,7527), (3,3628,7496), (3,7530,3091), (3,7545,3628), (3,10594,3090), (4,22,7512), (20,26,186), (22,7387,4), (24,11414,376), (25,10323,631), (1598,7509,3545), (3091,7492,3), (3529,7556,3), (3547,7500,4), (3627,7555,3), (7485,7529,5067), (7492,7530,7550), (9909,11414,24)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25540.
Let ABC be a triangle with incenter X(1)=I and let a' be perpendicular line to AI through I. Denote as A'b the intersection of a' and the perpendicular line to AB through B and denote as A'c the intersection of a' and the perpendicular line through C to AC. Perpendicular lines to a' through A'b and A'c cut BC at Ab and Ac, respectively. Points Bc, Ba, Ca, Cb are built cyclically. Then these six points lie on a conic here named the Ashrafov-Montesdeoca conic. (See: Angel Montesdeoca, HGT-Feb 17, 2017).
An alternative construction of Ab and Ac: Let ABC be a triangle with incenter I=X(1) and let A'B'C' be the antipedal triangle of I (excentral triangle). The parallel lines to AI through C', B' cut BC at Ab and Ac, respectively. (Antreas Hatzipolakis, Hyacinthos 25529).
X(12089) lies on these lines: {65, 603}, {73, 2292}, {1071, 3931}, {1254, 1400}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25540.
Let ABC be a triangle, P = X(20) = De Longchamps point of ABC and let A'B'C' be the antipedal triangle of P. The parallel lines to AP through C', B' cut BC at Ab and Ac, respectively. Build Bc, Ba, Ca, Cb cyclically. Then these six points lie on a conic where named the Hatzipolakis-Montesdeoca-De Longchamps conic. (Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25540).
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25543.
X(12091) lies on these lines: {3,476}, {30,1986}, {131,2072}, {523,7723}, {1368,11749}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25543.
X(12092) lies on the circumcircle and this line: {74,11250}
X(12092) = Ψ(X(4), X(49))
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25550.
X(12093) lies on these lines: {2,2854}, {114,325}, {183,9775}, {526,9185}, {1995,9145}, {2871,7998} , {5640,11163}, {5663,6054}, {5968,9155}, {9770,11002}, {9872,11580}, {10748,11185}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25550.
X(12094) lies on this line: {543,3629}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25553.
X(12095) lies on the cubic K038 and these lines: {2,5962}, {3,49}, {30,136}, {186,1299}
X(12095) = midpoint of X(186)) and X(10420)
X(12095) = complement of X(5962)
X(12095) = circumcircle-inverse-of-X(155)
X(12095) = inverse-in-complement-of-polar-circle of X(1216)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25553.
X(12096) lies on the cubic K038 and these lines: {3,64}, {30,122}, {131,10257}, {520,4091}, {631,6761}, {1304,2071}, {2060,3346}
X(12096) = midpoint of X(i) and X(j) for these {i,j}: {3,6760}, {1304,2071}
X(12096) = reflection of X(11589) in X(3)
X(12096) = complement of X(34170)
X(12096) = circumcircle-inverse-of-X(1498)
See Tran Quang Hung and César Lozada, Hyacinthos 25555.
X(12097) lies on these lines: {2, 17}, {6671, 8014}
See Tran Quang Hung and César Lozada, Hyacinthos 25555.
X(12098) lies on these lines: {2, 18}, {6672, 8015}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25559.
X(12099) lies on the Hutson centroidal ellipse and these lines: {4,10293}, {6,5505}, {25,5622}, {51,125}, {54,5643}, {74,1597}, {373,597}, {381,5640}, {526,1637}, {542,5943} et al.
X(12099) = midpoint of X(51) and X(125)
X(12099) = centroid of pedal triangle of X(125)
X(12099) = intersection of tangents to Walsmith rectangular hyperbola at X(6) and X(125)
As a point on the Euler line, X(12100) has Shinagawa coefficients: (11, -9).
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25561.
Let A' be the circumcenter of BCX(2), and define B' and C' cyclically. The centroid of A'B'C'X(2) is X(12100). (Randy Hutson, March 9, 2017)
Let Oa be the circle centered at A with radius equal to the distance between X(2) and the midpoint of BC, and define Ob and Oc cyclically. X(12100) is the radical center of Oa, Ob, Oc. (Randy Hutson, March 9, 2017)
X(12100) lies on these lines:
{2,3}, {35,5298}, {36,4995}, {40,3653}, {165,3656}, {182,8584}, {187,9300}, {230,8589}, {395,10645}, {396,10646}, {524,5092}, {539,10213}, {541,10272}, {551,3579}, {553,5122}, {574,5306}, {597,3098}, {952,4669}, {1216,11592}, {1327,8253}, {1328,8252}, {1503,10193}, {1587,6497}, {1588,6496}, {1992,12017}, {2482,12042}, {3055,6781}, {3058,5010}, {3068,6452}, {3069,6451}, {3576,3654}, {3655,4677}, {3793,7837}, {3815,8588}, {3819,5663}, {4316,5326}, {4324,7294}, {4745,6684}, {5204,10056}, {5217,10072}, {5434,7280}, {5442,10543}, {5585,7737}, {5609,11693}, {5642,12041}, {6390,7771}, {6410,8981}, {6445,7586}, {6446,7585}, {6456,9540}, {7288,10386}, {7618,8667}, {7767,7799}, {7811,7871}, {8182,9766}, {9729,10627}, {9774,11149}, {10192,11204}
X(12100) =midpoint of X(i) and X(j) for these {i,j}: {2,8703}, {3,549}, {5,376}, {381,550}, {547,548}, {551,3579}, {597,3098}, {2482,12042}, {3534,3845}, {3655,5690}, {5642,12041}, {8182,12040}, {10192,11204}, {10304,11539}
X(12100) = reflection of X(i) in X(j) for these (i,j): (2,11812), (4,11737), (5,10124), (140,549), (381,3628), (546,547), (547,140), (549,3530), (3543,3861), (3830,3860), (3845,10109), (3853,381), (5066,2), (10109,11540)
X(12100) = complement of X(3845)
X(12100) = anticomplement of X(10109)
X(12100) = X(140)-Gibert-Moses centroid; see the preamble just before X(21153)
X(12100) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,3,8703), (2,3830,5), (2,3845,10109), (2,5066,547), (3,381,10304), (5,3830,3860), (5,3860,5066), (140,3853,3628), (140,5066,2), (376,3839,1657), (381,631,11539), (381,5055,3544), (381,10304,550), (381,11539,3628), (3146,3523,631), (3146,10304,376), (3830,5054,2), (3845,8703,3534), (3845,10109,5066), (3853,11539,547), (3860,11812,10124), (5067,5073,3857)
As a point on the Euler line, X(12101) has Shinagawa coefficients: (1, -27).
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25561.
X(12101) lies on these lines: {2,3}, {1327,6441}, {1328,6442}
X(12101) =midpoint of X(i) and X(j) for these {i,j}: {5,3543}, {381,3627}, {382,549}, {3830,3845}
X(12101) = reflection of X(i) in X(j) for these (i,j): (3,11737), (140,381), (376,3628), (381,3861), (547,546), (549,3850), (550,10124), (3534,11812), (5066,3845), (8703,10109), (10124,3856)
X(12101) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,3845,3860), (4,3627,3861), (4,3830,3845), (4,3853,546), (4,5076,5), (5,3627,5073), (140,3853,3627), (140,3861,546), (381,5073,3524), (382,3839,549), (3146,3858,3530), (3524,3543,5073), (3534,3830,3543), (3534,5076,3830), (3543,3839,3522), (3543,3845,11812), (3627,3845,8703), (3627,3861,140), (3845,5066,546), (3856,11541,140), (5070,11541,550)
As a point on the Euler line, X(12102) has Shinagawa coefficients: (1, -19).
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25561.
X(12102) lies on these lines: {2,3}, {517,4536}, {5447,11017}, {11565,11645}
X(12102) = midpoint of X(i) and X(j) for these {i,j}: {4,3853}, {140,382}, {546,3627}, {3543,5066}
X(12102) = reflection of X(i) in X(j) for these (i,j): (140,3856), (3530,3850), (3628,546), (3850,3861), (3861,4), (5447,11017), (11737,3845), (11812,381)
X(12102) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,382,11541), (4,382,3845), (4,3543,3843), (4,3627,546), (4,3830,5), (4,5076,3627), (5,3627,3146), (382,3845,140), (382,5055,5059), (546,3853,3627), (3091,3146,376), (3091,11541,3), (3146,3523,3529), (3146,3525,1657), (3146,3830,3627), (3146,3839,3525), (3543,3843,550), (3627,5076,3853), (3628,3861,546), (3830,5054,3543), (3832,5073,549)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25562.
X(12103) lies on these lines: {2,3} et al
X(12103) =midpoint of X(20) and X(550)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25562.
X(12104) lies on these lines: {2,3} et al
X(12104) =midpoint of X(21) and X(5428)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25562.
X(12105) lies on these lines: {2,3} et al
X(12105) =midpoint of X(23) and X(7575)
X(12105) = {X(3),X(23)}-harmonic conjugate of X(37967)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25562.
X(12106) lies on these lines: {2,3} et al
X(12106) =midpoint of X(25) and X(6644)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25562.
X(12107) lies on these lines: {2,3} et al
X(12107) =midpoint of X(26) and X(1658)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25562.
X(12108) lies on these lines: {2,3} et al
X(12108) =midpoint of X(140) and X(3530)
Let A'B'C' be the orthic triangle of a triangle ABC. Let Ia be the incircle of B'C'A, and define Ib and Ic cyclically. Let U be the smallest circle tangent to each of the three circles Ia, Ib, Ic. Then X(12109) = center of U. Let A'' be the touch point of U and Ia. Barycentrics are given by
A'' = -a (a+b-c) (a-b+c) (a^3 b^2-a b^4-2 a b^3 c-2 b^4 c+a^3 c^2-2 a b c^3-a c^4-2 b c^4) : b^2 (a+b-c) (a+c)^2 (-a+b+c) (-a^2+b^2+c^2) : (a+b)^2 (a-b-c) c^2 (a-b+c) (a^2-b^2-c^2) .
Contributed by Thanh Oai Dao and Peter Moses, March 4, 2017.
X(12109) lies on these lines: {1,181}, {4,150}, {10,9052}, {51,3868}, {72,5943}, {373,3876}, {511,942}, {517,6738}, {518,9822}, {576,3157}, {674,3812}, {912,10110}, {916,5806}, {938,5933}, {1046,3271}, {1722,3779}, {2810,3874}, {2841,4757}, {3690,5047}, {3819,5439}, {4662,9049}, {5044,6688}
Orthologic centers: X(12110)-X(12269)
Centers X(12210)-X(12269) were contributed by César Eliud Lozada, March 10, 2017.
The reciprocal orthologic center of these triangles is X(4).
X(12110) lies on these lines: {2,5171}, {3,83}, {4,32}, {5,316}, {6,11257}, {20,182}, {30,3398}, {39,11676}, {40,10791}, {51,401}, {55,10797}, {56,10798}, {99,3095}, {114,7785}, {194,576}, {211,11674}, {263,287}, {376,10359}, {381,10104}, {382,11842}, {384,511}, {385,6248}, {550,12054}, {631,7808}, {944,10800}, {946,11364}, {1003,10349}, {1351,1975}, {1478,10801}, {1479,10802}, {1513,7745}, {1614,3203}, {1632,9971}, {1656,7934}, {1691,5480}, {2782,7760}, {3090,7815}, {3091,7793}, {3098,10345}, {3146,9748}, {3552,9737}, {3575,6530}, {3818,9863}, {4027,6658}, {5034,7738}, {5039,6776}, {5097,7839}, {5188,7804}, {5476,7833}, {5691,10789}, {5870,10793}, {5871,10792}, {6054,7812}, {6284,10799}, {6785,10684}, {7608,11170}, {7709,7772}, {8541,11596}, {9821,10347}, {9838,11840}, {9939,11178}, {10795,11490}
X(12110) = X(4)-of-5th-anti-Brocard-triangle
X(12110) = 5th-anti-Brocard-to-ABC similarity image of X(4)
X(12110) = radical center of polar circles of ABC, 5th Brocard triangle, and 5th anti-Brocard triangle
X(12110) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,10796,83), (4,32,98), (4,10788,32), (5,2080,1078), (20,7787,182), (5171,10358,2), (7737,9993,10722), (7808,8722,631)
The reciprocal orthologic center of these triangles is X(3).
X(12111) lies on these lines: {1,11446}, {2,185}, {3,74}, {4,52}, {5,5890}, {8,2807}, {15,11452}, {16,11453}, {20,2979}, {22,1498}, {30,11412}, {40,11445}, {51,3832}, {54,7526}, {64,394}, {69,6225}, {113,5449}, {143,3843}, {146,2888}, {155,378}, {186,7689}, {193,11469}, {235,3580}, {323,12086}, {343,2883}, {371,11447}, {372,11448}, {376,1216}, {381,3567}, {382,1154}, {389,3091}, {511,3146}, {546,568}, {567,11423}, {569,4550}, {576,11443}, {578,7527}, {631,5891}, {850,9242}, {858,6247}, {916,3868}, {930,6069}, {1092,2071}, {1147,3520}, {1181,5012}, {1204,9306}, {1351,11403}, {1593,1993}, {1594,7703}, {1657,6101}, {1658,10540}, {1870,6238}, {1885,3564}, {1994,11424}, {1995,9786}, {2060,5910}, {2779,5693}, {2781,5895}, {3090,9730}, {3100,6285}, {3101,6254}, {3167,3516}, {3193,4219}, {3522,3917}, {3523,11793}, {3525,10170}, {3528,5447}, {3529,10625}, {3534,10627}, {3545,5462}, {3574,5169}, {3627,6243}, {3830,10263}, {3839,10110}, {3851,5946}, {4296,7355}, {5055,11465}, {5067,5892}, {5068,5943}, {5422,11479}, {5448,7577}, {6198,7352}, {6696,7729}, {6759,7488}, {6895,10441}, {7486,11695}, {7592,9818}, {7728,7731}, {8549,11416}, {8718,8907}, {9545,11430}, {10282,10298}, {10546,11438}, {10675,11420}, {10676,11421}, {11220,11573}
X(12111) = reflection of X(i) in X(j) for these (i,j): (3,5876), (20,5562), (74,7723), (185,5907), (1657,6101), (3146,11381), (3529,10625), (5889,4), (6241,3), (6243,3627), (6293,2883), (7722,113), (7731,7728), (10575,1216)
X(12111) = anticomplement of X(185)
X(12111) = X(8)-of-1st-anti-circumperp-triangle if ABC is acute
X(12111) = X(4)-of-X(3)-Fuhrmann-triangle
X(12111) = pedal-isogonal conjugate of X(20)
X(12111) = X(20)-of-X(4)-anti-altimedial-triangle
X(12111) = X(20)-of-X(20)-anti-altimedial-triangle
X(12111) = X(20)-of-X(2)-adjunct-anti-altimedial-triangle
X(12111) = X(3)-of-X(4)-adjunct-anti-altimedial-triangle
X(12111) = homothetic center of Ehrmann side-triangle and 4th anti-Euler triangle
X(12111) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,185,10574), (3,110,11449), (3,156,11464), (3,399,156), (3,5876,11459), (3,11440,11454), (3,11441,110), (3,11444,7998), (3,11459,11444), (3,11591,7999), (4,5889,3060), (110,11440,3), (185,5907,2), (3060,11439,4), (5876,6241,11444), (6241,11459,3), (7999,11459,11591), (7999,11591,11444), (11440,11441,11449), (11449,11454,3), (12276,12277,12272)
The reciprocal orthologic center of these triangles is X(74).
X(12112) lies on these lines: {3,7712}, {4,6}, {23,3581}, {30,146}, {74,186}, {110,841}, {156,12086}, {184,11455}, {352,1499}, {378,3426}, {394,11001}, {542,1533}, {1511,2071}, {1513,11580}, {1531,10706}, {1545,10658}, {1546,10657}, {1614,11381}, {1994,3830}, {2393,10752}, {3098,11459}, {3448,11799}, {3518,6241}, {3520,6759}, {3529,11441}, {3543,11004}, {5092,7550}, {5655,10989}, {5888,10170}, {5907,8718}, {6090,11820}, {6800,11472}, {7575,10620}, {7687,10821}, {7725,10814}, {7726,10815}, {7728,10296}, {7998,8717}, {8614,10308}, {9730,10545}, {12088,12111}
X(12112) = reflection of X(i) in X(j) for these (i,j): (74,1495), (323,399), (2071,10540), (3448,11799), (7464,110), (10296,7728), (10620,7575), (10989,5655)
X(12112) = {X(74), X(1495)}-harmonic conjugate of X(186)
X(12112) = X(74)-of-anti-orthocentroidal-triangle
X(12112) = 4th-Brocard-to-circumsymmedial similarity image of X(74)
The reciprocal orthologic center of these triangles is X(4).
X(12113) lies on these lines: {2,3}, {40,11900}, {55,11905}, {56,11906}, {944,11910}, {946,11831}, {1478,11912}, {1479,11913}, {2777,7740}, {3184,9033}, {5691,11852}, {5870,11902}, {5871,11901}, {6284,11909}, {9838,11907}, {9839,11908}, {9873,11885}, {11500,11848}, {11839,12110}
X(12113) = midpoint of X(20) and X(4240)
X(12113) = reflection of X(i) in X(j) for these (i,j): (4,402), (1650,3), (11897,11845)
X(12113) = X(4)-of-Gossard-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12114) lies on these lines: {1,84}, {3,10}, {4,11}, {5,6256}, {8,6909}, {12,6833}, {20,2894}, {21,3427}, {28,963}, {30,10525}, {36,3149}, {40,956}, {48,5776}, {55,944}, {57,7686}, {119,6958}, {153,6972}, {165,5258}, {219,1765}, {280,1295}, {281,1436}, {376,5584}, {381,10199}, {382,11928}, {388,6847}, {405,1490}, {474,5587}, {499,1532}, {513,945}, {516,8666}, {517,1158}, {518,3358}, {519,10306}, {550,11495}, {601,5710}, {946,999}, {952,3913}, {960,7330}, {971,1001}, {997,5777}, {1006,8273}, {1125,6260}, {1191,3073}, {1317,10965}, {1329,6891}, {1468,5706}, {1470,1837}, {1476,10309}, {1478,6831}, {1479,10948}, {1482,2800}, {1519,11376}, {1537,10052}, {1593,5101}, {1617,4311}, {1699,5563}, {1706,10270}, {2077,5687}, {2096,4295}, {2551,6926}, {2716,2765}, {2886,6850}, {2950,6264}, {3035,6961}, {3058,10806}, {3072,4252}, {3085,6935}, {3091,5253}, {3295,5882}, {3303,7967}, {3304,3649}, {3339,3577}, {3359,5836}, {3436,6890}, {3486,5768}, {3523,5260}, {3575,11390}, {3614,6879}, {3632,5537}, {3655,4428}, {3656,12001}, {3816,6893}, {3897,11220}, {3925,6897}, {4018,7982}, {4321,11372}, {4413,5818}, {4423,5658}, {4999,6825}, {5080,6943}, {5120,10445}, {5204,6905}, {5217,6950}, {5229,6844}, {5231,7580}, {5251,7987}, {5288,7991}, {5289,5887}, {5432,6977}, {5433,6834}, {5434,10532}, {5538,5904}, {5542,7373}, {5552,6966}, {5693,5730}, {5870,10920}, {5871,10919}, {5886,6259}, {6244,11362}, {6253,6934}, {6257,11371}, {6258,11370}, {6284,6938}, {6667,6981}, {6690,6892}, {6691,6944}, {6713,6959}, {6762,6769}, {6830,10895}, {6836,10522}, {6845,9657}, {6848,7288}, {6914,10267}, {6925,10527}, {6956,10590}, {6968,7173}, {6971,10742}, {7171,9943}, {7966,7990}, {8071,10572}, {9838,10945}, {9839,10946}, {9873,10871}, {9910,11365}, {10043,10058}, {10165,11108}, {10609,11517}, {10794,12110}, {10950,11509}, {11903,12113}
X(12114) = midpoint of X(i) and X(j) for these {i,j}: {1,84}, {1490,10864}, {2950,6264}, {5882,9948}, {6762,6769}, {7971,7992}
X(12114) = reflection of X(i) in X(j) for these (i,j): (3,5450), (10,6705), (3913,11248), (6256,5), (6260,1125), (6261,1385), (10525,10943), (11500,3)
X(12114) = X(4)-of-inner-Johnson-triangle
X(12114) = inverse-in-Feuerbach-hyperbola of X(56)
X(12114) = Ursa-minor-to-Ursa-major similarity image of X(4)
X(12114) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,1012,11496), (1,7992,7971), (3,355,1376), (3,9708,6684), (4,11,10893), (4,104,56), (4,3086,7681), (4,10785,11), (8,6909,10310), (20,2975,3428), (20,3434,11826), (36,5691,3149), (84,7971,7992), (944,6906,55), (993,4297,3), (1385,3560,1001), (1478,6831,10894), (2077,5881,5687), (3576,10864,1490), (10525,10943,11235)
The reciprocal orthologic center of these triangles is X(4).
X(12115) lies on these lines: {1,4}, {2,104}, {3,3436}, {5,10584}, {8,912}, {10,6897}, {11,6968}, {12,6833}, {30,10679}, {36,6880}, {40,10915}, {55,2829}, {56,6834}, {57,1512}, {63,2096}, {84,9578}, {100,6948}, {355,377}, {376,535}, {382,12000}, {390,10728}, {443,5818}, {495,1012}, {496,10598}, {498,5450}, {517,5905}, {529,3428}, {631,993}, {952,3434}, {956,6907}, {958,6889}, {999,1532}, {1001,6976}, {1125,6898}, {1158,10039}, {1181,9370}, {1317,10947}, {1329,6967}, {1376,6955}, {1385,2478}, {1389,5555}, {1470,4293}, {1621,6930}, {1837,11047}, {2550,2801}, {2975,6825}, {3085,6906}, {3086,6941}, {3090,3822}, {3091,10586}, {3304,7681}, {3575,11400}, {3576,6947}, {3577,4654}, {3600,6848}, {3616,6893}, {3913,11826}, {4190,11499}, {4297,6899}, {4299,6796}, {5080,5731}, {5193,6969}, {5218,6950}, {5251,6878}, {5252,6001}, {5253,6944}, {5260,6989}, {5261,6847}, {5437,5587}, {5768,6826}, {5804,11037}, {5870,10930}, {5871,10929}, {5884,10573}, {5886,6957}, {6259,10935}, {6284,10965}, {6830,10590}, {6831,9654}, {6836,10526}, {6838,10530}, {6842,10527}, {6862,10585}, {6872,10267}, {6879,7951}, {6891,11681}, {6929,10246}, {6934,7354}, {6935,8164}, {6949,7288}, {6952,10588}, {6982,11680}, {7680,11237}, {7686,10404}, {7966,9580}, {7992,10970}, {9838,11955}, {9839,11956}, {9873,10878}, {10085,10827}, {10803,12110}, {11914,12113}
X(12115) = reflection of X(i) in X(j) for these (i,j): (4,1478), (956,6907), (1012,495), (3434,6923), (6938,55)
X(12115) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,4,10531), (1,1519,5603), (1,6256,4), (3,10942,5552), (4,388,10532), (4,1056,5603), (4,7967,497), (4,10597,946), (4,10805,1), (4,10806,1479), (119,10269,2), (498,5450,6977), (1479,5882,10806), (3359,6735,5657), (3421,6916,5657), (5080,5731,6827), (6831,9654,10599), (7354,10955,11509), (7354,11500,6934), (10246,10742,6929)
The reciprocal orthologic center of these triangles is X(4).
X(12116) lies on these lines: {1,4}, {2,10267}, {3,3434}, {5,10585}, {8,6827}, {10,6947}, {11,6834}, {20,104}, {30,10680}, {35,6977}, {40,6899}, {55,6833}, {56,5842}, {84,9580}, {100,6891}, {119,5187}, {145,6840}, {355,392}, {376,11012}, {377,1385}, {382,12001}, {390,6847}, {411,6585}, {495,10599}, {496,3149}, {498,6879}, {499,6796}, {517,6836}, {528,10310}, {631,2550}, {908,5534}, {912,11415}, {952,3436}, {958,6936}, {962,5768}, {1001,6832}, {1125,6854}, {1191,5721}, {1376,6967}, {1512,9581}, {1532,9669}, {1621,6824}, {1836,11048}, {2078,6927}, {2551,6902}, {2802,6903}, {2886,6889}, {2975,6868}, {3058,11496}, {3072,11269}, {3085,6830}, {3086,6905}, {3090,3825}, {3091,10587}, {3254,10305}, {3295,6831}, {3303,7680}, {3421,3984}, {3428,3813}, {3555,5812}, {3575,11401}, {3576,6897}, {3616,6826}, {3622,6839}, {3816,6983}, {3871,6943}, {4190,10269}, {4294,6906}, {4302,5450}, {5082,5657}, {5084,5818}, {5218,6952}, {5231,10268}, {5253,6885}, {5274,6848}, {5284,6887}, {5552,6882}, {5587,6898}, {5687,6922}, {5709,6361}, {5731,6850}, {5759,6601}, {5787,10936}, {5870,10932}, {5871,10931}, {5886,6835}, {6245,10624}, {6284,6938}, {6825,11680}, {6890,10530}, {6896,8227}, {6917,10246}, {6925,10525}, {6941,10591}, {6942,7288}, {6949,10589}, {6959,10584}, {6968,10896}, {7681,11238}, {7966,9578}, {7992,10971}, {9838,11957}, {9839,11958}, {9873,10879}, {10804,12110}, {10944,10953}, {11915,12113}
X(12116) = reflection of X(i) in X(j) for these (i,j): (4,1479), (3149,496), (3436,6928), (5687,6922), (6934,56)
X(12116) = anticomplement of X(11499)
X(12116) = X(4)-of-outer-Yff-tangents-triangle
X(12116) = inner-Yff-to-outer-Yff similarity image of X(4)
X(12116) = 1st-Johnson-Yff-to-2nd-Johnson-Yff similarity image of X(4)
X(12116) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,4,10532), (3,10943,10527), (4,497,10531), (4,944,12115), (4,1058,5603), (4,7967,388), (4,10596,946), (4,10805,1478), (4,10806,1), (20,10529,11249), (499,6796,6880), (1478,5882,10805), (1532,9669,10598), (3583,6256,4), (5082,6865,5657), (6284,10949,10966), (6284,12114,6938)
The reciprocal orthologic center of these triangles is X(9855).
X(12117) lies on these lines: {2,9734}, {3,671}, {4,2482}, {20,542}, {30,99}, {35,10054}, {36,10070}, {98,376}, {114,3543}, {115,3524}, {148,6055}, {165,9875}, {262,11159}, {381,10723}, {511,8593}, {515,9881}, {517,9884}, {530,5474}, {531,5473}, {549,6321}, {620,3545}, {631,5461}, {1350,9830}, {1632,5648}, {2782,3534}, {2794,11001}, {2796,4297}, {2936,12082}, {3098,9878}, {3522,8596}, {3528,11623}, {3655,7983}, {4558,9214}, {5071,9167}, {5182,12110}, {5503,9744}, {5969,11257}, {7417,10717}, {8703,11632}, {8787,11477}, {9876,11414}, {9882,11824}, {9883,11825}, {10754,11179}
X(12117) = midpoint of X(20) and X(8591)
X(12117) = reflection of X(i) in X(j) for these (i,j): (4,2482), (98,376), (148,6055), (671,3), (3543,114), (6054,99), (6321,549), (7983,3655), (8591,10992), (10722,6054), (10723,381), (10754,11179), (11477,8787), (11632,8703)
X(12117) = anticomplement of X(9880)
X(12117) = orthologic center of these triangles: ABC-X3 reflections to McCay.
X(12117) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (148,10304,6055), (549,6321,9166)
The reciprocal orthologic center of these triangles is X(9833).
X(12118) lies on these lines: {2,9927}, {3,68}, {4,110}, {5,11425}, {20,6193}, {30,155}, {35,10055}, {36,10071}, {165,9896}, {265,6640}, {376,539}, {381,9820}, {382,3167}, {515,9928}, {517,9933}, {542,3357}, {550,1350}, {569,6815}, {631,5449}, {912,3962}, {1060,9931}, {1069,6284}, {1181,4846}, {1216,11821}, {1352,7526}, {1370,11750}, {1503,12085}, {1657,11820}, {1993,6240}, {2071,11457}, {2929,2931}, {3070,8909}, {3098,9923}, {3157,7354}, {3520,11442}, {4299,7352}, {4302,6238}, {4549,5562}, {5446,7487}, {6560,10665}, {6561,10666}, {7505,11449}, {7528,11424}, {8548,11179}, {9908,11414}, {9929,11824}, {9930,11825}, {10112,11438}, {10619,10984}
X(12118) = midpoint of X(20) and X(6193)
X(12118) = reflection of X(i) in X(j) for these (i,j): (4,1147), (68,3), (9927,12038), (9936,6193), (11411,7689)
X(12118) = anticomplement of X(9927)
X(12118) = orthologic center of these triangles: ABC-X3 reflections to 2nd Hyacinth.
X(12118) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,1147,5654), (376,11411,7689), (9927,12038,2)
The reciprocal orthologic center of these triangles is X(3).
X(12119) lies on these lines: {1,5840}, {3,80}, {4,214}, {11,3576}, {20,2800}, {30,6265}, {35,10057}, {36,10073}, {40,550}, {100,515}, {104,3651}, {119,5691}, {149,5731}, {165,9897}, {516,10698}, {517,4316}, {528,5732}, {631,6702}, {944,2802}, {946,10724}, {1145,5881}, {1317,7982}, {1320,5882}, {1385,4857}, {1490,2829}, {1699,11729}, {2801,5759}, {2932,11500}, {3035,5587}, {3612,8068}, {4293,5083}, {4299,11570}, {4996,5450}, {5444,6980}, {5531,6282}, {5660,10742}, {6262,11825}, {6263,11824}, {6713,7987}, {6869,9946}, {8988,9540}, {9613,10956}, {9912,11414}, {10058,10902}, {10090,10572}, {10768,11711}, {10769,11710}, {10770,11714}, {10771,11700}, {10772,11712}, {10777,11713}, {10778,11709}, {11014,11826}
X(12119) = midpoint of X(20) and X(6224)
X(12119) = reflection of X(i) in X(j) for these (i,j): (4,214), (80,3), (104,4297), (149,11715), (1320,5882), (5541,10993), (5691,119), (5881,1145), (6326,10609), (7982,1317), (10724,946), (10738,1385), (10768,11711), (10769,11710), (10770,11714), (10771,11700), (10772,11712), (10777,11713), (10778,11709)
X(12119) = anticomplement of X(6246)
X(12119) = {X(149), X(5731)}-harmonic conjugate of X(11715)
The reciprocal orthologic center of these triangles is X(40).
X(12120) lies on these lines: {1,5759}, {3,7091}, {35,10059}, {36,10075}, {40,3555}, {165,9898}, {517,8000}, {944,11519}, {956,10864}, {1490,3428}, {4326,6766}, {5584,9850}, {5732,6762}, {8726,11037}
X(12120) = midpoint of X(20) and X(9874)
X(12120) = reflection of X(7160) in X(3)
The reciprocal orthologic center of these triangles is X(6102).
Let La, Lb, Lc be the lines through A, B, C, resp. parallel to the Euler line. Let Ma, Mb, Mc be the reflections of BC, CA, AB in La, Lb, Lc, resp. Let A' = Mb∩Mc, and define B' and C' cyclically. Triangle A'B'C' is inversely similar to, and 3 times the size of, ABC. Let A"B"C" be the reflection of A'B'C' in the Euler line. The triangle A"B"C" is homothetic to ABC, with center of homothety X(125) and circumcenter X(12121). (See Hyacinthos #16741/16782, Sep 2008.) (Randy Hutson, July 21, 2017)
X(12121) lies on these lines: {74,550}, {113,382}, {146,3529}, {376,3448}, {381,5972}, {399,1498}, {511,11562}, {541,11820}, {542,1350}, {548,10264}, {549,11801}, {1154,7722}, {1539,3146}, {1656,7687}, {1986,6243}, {2771,12119}, {3028,4299}, {3070,10819}, {3071,10820}, {3520,6288}, {3581,10295}, {3627,10272}, {3830,5642}, {4324,7727}, {4549,7723}, {5054,6723}, {5648,11645}, {6146,10816}, {6240,11597}, {6284,10091}, {6449,8994}, {6759,11744}, {7354,10088}, {7574,10564}, {8703,9140}, {9143,11001}, {9730,11800}, {10117,12083}, {10263,11561}, {10625,10628}
X(12121) = midpoint of X(i) and X(j) for these {i,j}: {146,3529}, {399,1657}, {9143,11001}
X(12121) = reflection of X(i) in X(j) for these (i,j): (4,1511), (67,3098), (74,550), (146,5609), (265,3), (382,113), (3146,1539), (3448,12041), (3581,10295), (3627,10272), (3830,5642), (6243,1986), (7574,10564), (7728,110), (9140,8703), (10263,11561), (10264,548), (10733,5), (11744,6759)
X(12121) = anticomplement of X(10113)
X(12121) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (110,7728,5655), (376,3448,12041)
The reciprocal orthologic center of these triangles is X(3).
X(12122) lies on these lines: {2,6249}, {3,83}, {4,6292}, {20,1352}, {30,6287}, {35,10064}, {36,10080}, {98,5188}, {99,550}, {165,9903}, {376,754}, {382,7910}, {511,7839}, {517,7977}, {574,3528}, {631,6704}, {732,1350}, {3522,9737}, {3529,3734}, {6274,11825}, {6275,11824}, {8150,8722}, {8993,9540}, {9918,11414}
X(12122) = midpoint of X(20) and X(2896)
X(12122) = reflection of X(i) in X(j) for these (i,j): (4,6292), (83,3), (8725,550)
X(12122) = anticomplement of X(6249)
X(12122) = X(83)-of-ABC-X3-reflections-triangle
X(12122) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,83,9751), (5188,7470,98)
The reciprocal orthologic center of these triangles is X(3).
X(12123) lies on these lines: {2,6251}, {3,486}, {4,642}, {20,487}, {30,6290}, {35,10067}, {36,10083}, {99,489}, {165,9906}, {371,7738}, {376,5860}, {485,8997}, {517,7980}, {550,1350}, {631,6119}, {1151,2549}, {2043,5473}, {2044,5474}, {3098,9986}, {6399,8182}, {6560,9732}, {9921,11414}
X(12123) = midpoint of X(20) and X(487)
X(12123) = reflection of X(i) in X(j) for these (i,j): (4,642), (486,3), (6281,487)
X(12123) = anticomplement of X(6251)
The reciprocal orthologic center of these triangles is X(3).
X(12124) lies on these lines: {2,6250}, {3,485}, {4,641}, {20,488}, {30,6289}, {35,10068}, {36,10084}, {99,490}, {165,9907}, {372,7738}, {376,5861}, {486,9739}, {517,7981}, {550,1350}, {631,6118}, {1152,2549}, {2043,5474}, {2044,5473}, {3098,9987}, {6222,8182}, {6561,9733}, {9922,11414}
X(12124) = midpoint of X(20) and X(488)
X(12124) = reflection of X(i) in X(j) for these (i,j): (4,641), (485,3), (6278,488)
X(12124) = anticomplement of X(6250)
The reciprocal orthologic center of these triangles is X(1).
X(12125) lies on these lines: {1,11678}, {2,9850}, {8,971}, {9,9846}, {63,4882}, {78,9845}, {100,9841}, {145,9848}, {200,9851}, {329,9797}, {377,5176}, {452,3890}, {519,3869}, {936,2975}, {938,3436}, {3877,12059}, {5744,9858}, {5815,6865}, {5828,9940}, {6736,11220}, {9842,11680}, {9843,11681}, {9849,11686}, {9852,11688}, {9853,11690}
X(12125) = reflection of X(i) in X(j) for these (i,j): (145,9848), (9797,9844), (9846,9), (9859,4882)
X(12125) = anticomplement of X(9850)
X(12125) = excentral-to-inner-Conway similarity image of X(4882)
The reciprocal orthologic center of these triangles is X(1).
X(12126) lies on these lines: {1,971}, {936,10882}, {938,11021}, {1764,4882}, {9797,10446}, {9841,10434}, {9842,10886}, {9843,10887}, {9844,10888}, {9846,10889}, {9849,11893}, {9852,10892}, {9853,11894}, {9858,10856}, {9859,10444}, {11679,12125}
X(12126) = excentral-to-3rd-Conway similarity image of X(4882)
The reciprocal orthologic center of these triangles is X(1).
X(12127) lies on these lines: {1,2}, {269,4460}, {517,9845}, {944,2951}, {971,7982}, {1317,1467}, {2136,3361}, {3339,3880}, {3340,9850}, {3555,9851}, {3813,5726}, {3875,7271}, {3879,7274}, {4900,5836}, {5045,11525}, {5223,9957}, {6762,9819}, {7962,9848}, {7991,9841}, {9842,11522}, {9844,11523}, {9846,11526}, {9849,11528}, {9852,11533}, {9858,11518}, {9859,11520}, {10914,10980}, {11521,12126}, {11682,12125}
X(12127) = midpoint of X(i) and X(j) for these {i,j}: {145,9797}, {9851,11531}
X(12127) = reflection of X(i) in X(j) for these (i,j): (4882,1), (7991,9841)
X(12127) = excentral-to-excenters-reflections similarity image of X(4882)
X(12127) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,3632,8580), (1,11519,4915), (3241,4853,1), (3635,9623,1)
The reciprocal orthologic center of these triangles is X(1).
X(12128) lies on these lines: {1,971}, {145,10569}, {355,938}, {495,9843}, {496,3817}, {517,3600}, {519,942}, {936,999}, {3295,9841}, {3333,4882}, {3487,9844}, {3616,12125}, {3655,4313}, {4297,9957}, {4321,8158}, {4853,10855}, {5082,9797}, {6244,7091}, {9581,11237}, {9846,11038}, {9849,11040}, {9852,11043}, {11529,12127}
X(12128) = midpoint of X(1) and X(9850)
X(12128) = reflection of X(938) in X(5045)
X(12128) = excentral-to-incircle-circles similarity image of X(4882)
The reciprocal orthologic center of these triangles is X(1).
X(12129) lies on these lines: {1,10867}, {519,9808}, {936,8225}, {938,11030}, {971,7596}, {4882,8231}, {8224,9841}, {8228,9842}, {8230,9843}, {8233,9844}, {8234,9845}, {8237,9846}, {8239,9848}, {8243,9850}, {8244,9851}, {8246,9852}, {8247,9853}, {8248,9854}, {9789,9797}, {9849,11925}, {9858,10858}, {9859,10885}, {10891,12126}, {11042,12128}, {11532,12127}, {11687,12125}
X(12129) = excentral-to-2nd-Pamfilos-Zhou similarity image of X(4882)
The reciprocal orthologic center of these triangles is X(1).
X(12130) lies on these lines: {1,11860}, {174,9850}, {936,7587}, {938,8083}, {971,8351}, {8126,12125}, {8382,9843}, {8389,9846}, {8423,9851}, {8425,9852}, {8729,9858}, {9797,11891}, {9848,11924}, {9859,11890}, {11535,12127}, {11896,12126}, {11996,12129}
X(12130) = excentral-to-Yff-central similarity image of X(4882)
The reciprocal orthologic center of these triangles is X(5999).
X(12131) lies on these lines: {4,147}, {24,12042}, {25,98}, {33,3027}, {34,3023}, {99,1593}, {114,136}, {115,235}, {132,8754}, {232,2023}, {264,5976}, {428,542}, {458,10352}, {468,6036}, {1785,5988}, {1862,2783}, {2784,5185}, {2794,3575}, {5064,6054}, {5090,9864}, {5984,6995}, {6226,11389}, {6227,11388}, {7487,9862}, {7713,9860}, {7714,11177}, {7970,11396}, {10053,11398}, {10069,11399}, {11363,11710}
X(12131) = reflection of X(5186) in X(4)
X(12131) = polar circle-inverse-of-X(147)
X(12131) = orthologic center of these triangles: anti-Ara to6th anti-Brocard, anti-Ara and 1st Brocard, anti-Ara to 6th Brocard
The reciprocal orthologic center of these triangles is X(9855).
X(12132) lies on these lines: {4,8591}, {25,671}, {30,12131}, {99,5064}, {148,7714}, {235,9880}, {427,2482}, {428,543}, {468,5461}, {542,3575}, {1593,12117}, {1843,9830}, {1907,10992}, {2782,7576}, {5090,9881}, {6995,8596}, {7713,9875}, {8541,8787}, {9878,11386}, {9882,11388}, {9883,11389}, {9884,11396}, {10054,11398}, {10070,11399}
X(12132) = reflection of X(5186) in X(428)
X(12132) = orthologic center of these triangles: anti-Ara to 2nd Hyacinth
The reciprocal orthologic center of these triangles is X(12112).
Let A'B'C' be the orthocentroidal triangle. Let A" be the orthogonal projection of A on line B'C', and define B" and C" cyclically. Triangle A"B"C" is perspective to the orthic triangle at X(12133). (Randy Hutson, July 21, 2017)X(12133) lies on these lines: {4,94}, {24,12041}, {25,74}, {33,3028}, {66,11744}, {110,1593}, {113,427}, {125,235}, {185,11746}, {378,1511}, {381,9826}, {382,7723}, {399,1597}, {428,541}, {468,6699}, {542,5186}, {690,12131}, {974,1514}, {1596,10264}, {1598,10620}, {1843,2781}, {1862,2771}, {1900,2779}, {2772,5185}, {2777,3575}, {2931,11472}, {5064,10706}, {6143,11017}, {7713,9904}, {7725,11388}, {7726,11389}, {7978,11396}, {9984,11386}, {10065,11398}, {10081,11399}, {10628,11576}, {10721,11387}, {11363,11709}
X(12133) = midpoint of X(i) and X(j) for these {i,j}: {125,11381}, {382,7723}
X(12133) = reflection of X(i) in X(j) for these (i,j): (185,11746), (974,7687), (1112,4)
X(12133) = polar circle-inverse-of-X(146)
X(12133) = intersection of tangents to Walsmith rectangular hyperbola at X(74) and X(113)
X(12133) = orthologic center of these triangles: anti-Ara to orthocentroidal
X(12133) = {X(974), X(7687)}-harmonic conjugate of X(12099)
The reciprocal orthologic center of these triangles is X(9833).
X(12134) lies on these lines: {2,9707}, {3,66}, {4,155}, {5,156}, {6,7528}, {23,2888}, {24,11442}, {25,68}, {26,343}, {30,5562}, {49,5576}, {52,1843}, {54,5133}, {110,1594}, {113,137}, {140,5944}, {154,3549}, {182,7405}, {235,9927}, {381,11426}, {389,542}, {427,1147}, {428,539}, {468,5449}, {511,7553}, {524,6243}, {568,11745}, {578,3818}, {1069,11393}, {1092,11550}, {1154,11819}, {1209,6676}, {1568,11572}, {1593,12118}, {1625,7745}, {1656,8780}, {1853,3548}, {1885,12133}, {1899,6642}, {3091,12022}, {3157,11392}, {3410,7488}, {3518,3580}, {3547,11206}, {5072,12024}, {5090,9928}, {5169,9545}, {5447,7667}, {5462,10116}, {5654,7507}, {5889,7576}, {5891,11750}, {5921,7487}, {6240,12111}, {6288,10024}, {6639,10192}, {6776,7401}, {6800,7558}, {7491,10454}, {7542,10282}, {7544,7592}, {7565,9143}, {7713,9896}, {9306,11585}, {9730,9825}, {9923,11386}, {9929,11388}, {9930,11389}, {9933,11396}, {10055,11398}, {10071,11399}, {10095,11264}, {10110,10112}, {10111,11746}, {10295,11440}
X(12134) = midpoint of X(6240) and X(12111)
X(12134) = reflection of X(i) in X(j) for these (i,j): (52,6756), (6146,5), (10111,11746), (10112,10110), (10116,5462), (11264,10095)
X(12134) = complement of X(34224)
X(12134) = crosspoint, wrt excentral or tangential triangle, of X(155) and X(2918)
X(12134) = orthologic center of these triangles: anti-Ara to 2nd Hyacinth
X(12134) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (110,1594,9820), (578,3818,7403), (1352,9833,3), (5462,10116,11245), (5921,7487,11411), (6288,10540,10024)
The reciprocal orthologic center of these triangles is X(10).
X(12135) lies on these lines: {1,427}, {4,145}, {8,25}, {10,468}, {24,5690}, {27,6542}, {28,4720}, {29,7140}, {33,1904}, {34,5101}, {235,355}, {407,5174}, {428,519}, {429,6198}, {431,5086}, {469,4393}, {515,1885}, {517,3575}, {594,1474}, {944,1593}, {1398,3476}, {1483,1595}, {1594,5901}, {1824,1891}, {1826,1990}, {1843,5846}, {1870,1883}, {1876,10106}, {1892,3340}, {1906,5881}, {1973,4390}, {2098,11393}, {2099,11392}, {2204,5291}, {2356,10459}, {3088,7967}, {3189,11406}, {3241,5064}, {3486,7071}, {3515,5657}, {3516,5731}, {3541,10246}, {3542,5790}, {3616,5094}, {3617,6353}, {3621,6995}, {3622,8889}, {3623,7378}, {3632,7713}, {3913,11383}, {4232,4678}, {5603,7507}, {5844,6756}, {10573,11399}, {10912,11390}
X(12135) = reflection of X(1885) in X(1902)
X(12135) = orthologic center of these triangles: anti-Ara to 2nd Schiffler
X(12135) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,5090,427), (4,145,11396), (8,7718,25), (10,11363,468), (33,5130,1904), (5174,7009,407)
The reciprocal orthologic center of these triangles is X(40).
X(12136) lies on these lines: {4,7}, {25,84}, {34,1854}, {185,1829}, {235,6245}, {406,10167}, {427,6260}, {429,9942}, {451,11227}, {468,6705}, {475,5927}, {515,1885}, {1490,1593}, {1709,11398}, {1870,9856}, {3088,5658}, {4194,11220}, {6257,11389}, {6258,11388}, {7713,7992}, {7971,11396}, {10085,11399}, {11363,12114}
The reciprocal orthologic center of these triangles is X(3).
X(12137) lies on these lines: {4,6224}, {11,11363}, {25,80}, {100,5090}, {149,7718}, {214,427}, {468,6702}, {515,1878}, {952,1829}, {1593,12119}, {1862,1900}, {1902,5840}, {2800,3575}, {2802,12135}, {2829,12136}, {6262,11389}, {6263,11388}, {7713,9897}, {7972,11396}, {10057,11398}, {10073,11399}
The reciprocal orthologic center of these triangles is X(40).
X(12138) lies on these lines: {4,145}, {11,34}, {25,104}, {33,1317}, {80,1041}, {100,1593}, {119,427}, {468,6713}, {515,1878}, {1112,2771}, {1387,1870}, {1484,1596}, {1595,11698}, {1768,7713}, {1828,2829}, {1829,2800}, {1861,3036}, {1885,5840}, {1890,5851}, {1902,2802}, {1904,6265}, {1905,11570}, {1907,5130}, {2783,5186}, {2787,12131}, {2801,5185}, {4219,9945}, {5064,10711}, {5155,6326}, {6154,11471}, {10058,11398}, {10074,11399}, {11363,11715}
X(12138) = reflection of X(1862) in X(4)
X(12138) = polar circle-inverse-of-X(153)
The reciprocal orthologic center of these triangles is X(40).
X(12139) lies on these lines: {4,9874}, {25,7160}, {1593,12120}, {1824,12136}, {7713,9898}, {8000,11396}, {10059,11398}, {10075,11399}
The reciprocal orthologic center of these triangles is X(6102).
X(12140) lies on these lines: {4,110}, {24,125}, {25,265}, {30,12133}, {66,74}, {186,6699}, {235,10113}, {378,3818}, {403,1495}, {427,1511}, {542,1843}, {974,1503}, {1112,6756}, {1593,12121}, {1594,5972}, {2771,12137}, {2777,6240}, {3448,7487}, {3575,5663}, {6146,11746}, {6403,7731}, {6723,10018}, {7505,11750}, {7577,10546}, {7722,11387}, {10088,11392}, {10091,11393}
X(12140) = reflection of X(i) in X(j) for these (i,j): (1112,6756), (6146,11746)
X(12140) = polar-circle inverse of X(39118)
The reciprocal orthologic center of these triangles is X(3).
X(12141) lies on these lines: {4,617}, {14,25}, {24,6774}, {115,10641}, {235,5479}, {427,619}, {428,531}, {462,6110}, {468,6670}, {530,12132}, {542,1843}, {1593,5474}, {3439,3456}, {5064,5464}, {5471,10642}, {6269,11389}, {6271,11388}, {6773,7487}, {7713,9900}, {7974,11396}, {9113,11409}, {9981,11386}, {10061,11398}, {10077,11399}, {11363,11706}
X(12141) = {X(1843),X(7576)}-harmonic conjugate of X(12142)
The reciprocal orthologic center of these triangles is X(3).
X(12142) lies on these lines: {4,616}, {13,25}, {24,6771}, {115,10642}, {235,5478}, {427,618}, {428,530}, {463,6111}, {468,6669}, {531,12132}, {542,1843}, {1593,5473}, {3438,3456}, {5064,5463}, {5472,10641}, {6268,11389}, {6270,11388}, {6770,7487}, {7713,9901}, {7975,11396}, {9112,11408}, {9982,11386}, {10062,11398}, {10078,11399}, {11363,11705}
X(12142) = {X(1843),X(7576)}-harmonic conjugate of X(12141)
The reciprocal orthologic center of these triangles is X(3).
X(12143) lies on these lines: {4,147}, {25,76}, {39,427}, {235,6248}, {262,7507}, {264,11325}, {384,11380}, {428,538}, {468,3934}, {511,3575}, {730,1829}, {732,1843}, {1593,11257}, {1594,11272}, {2790,9873}, {3088,7709}, {3186,9983}, {3541,11171}, {3542,7697}, {5064,7757}, {5094,7786}, {5969,12132}, {6272,11389}, {6273,11388}, {7713,9902}, {7976,11396}, {10063,11398}, {10079,11399}
X(12143) = polar-circle-inverse of X(32528)
X(12143) = X(76)-of-anti-Ara-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12144) lies on these lines: {4,2896}, {25,83}, {235,6249}, {427,6292}, {428,754}, {468,6704}, {732,1843}, {1593,12122}, {3199,10301}, {3515,9751}, {6274,11389}, {6275,11388}, {6756,12131}, {7713,9903}, {7977,11396}, {10064,11398}, {10080,11399}
X(12144) = X(83)-of-anti-Ara-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12145) lies on these lines: {4,339}, {25,1073}, {33,3320}, {34,6020}, {51,125}, {112,1593}, {127,235}, {428,9530}, {511,1529}, {1862,2831}, {1885,2794}, {2799,12131}, {2806,12138}, {2825,5185}, {9517,12133}, {10734,10735}
The reciprocal orthologic center of these triangles is X(79).
X(12146) lies on the line {25,10266}
The reciprocal orthologic center of these triangles is X(3).
X(12147) lies on these lines: {4,487}, {25,486}, {30,6406}, {52,1843}, {235,6251}, {371,8967}, {427,642}, {468,6119}, {1593,12123}, {6280,11389}, {6281,11388}, {6995,8948}, {7713,9906}, {7980,11396}, {9986,11386}, {10067,11398}, {10083,11399}
X(12147) = {X(1843),X(6756)}-harmonic conjugate of X(12148)
The reciprocal orthologic center of these triangles is X(3).
X(12148) lies on these lines: {4,488}, {25,485}, {30,6291}, {52,1843}, {235,6250}, {427,641}, {468,6118}, {1593,12124}, {6278,11389}, {6279,11388}, {6995,8946}, {7713,9907}, {7981,11396}, {9987,11386}, {10068,11398}, {10084,11399}
X(12148) = {X(1843),X(6756)}-harmonic conjugate of X(12147)
The reciprocal orthologic center of these triangles is X(9870).
X(12149) lies on these lines: {2,9869}, {110,1296}, {512,9146}, {2854,2979}, {5077,7998}
X(12149) = 1st-tri-squares-to-anti-Artzt similarity image of X(13641)
The reciprocal orthologic center of these triangles is X(2).
X(12150) lies on these lines: {2,32}, {3,7878}, {4,7856}, {6,99}, {30,3398}, {76,11286}, {98,381}, {148,5355}, {182,376}, {187,3329}, {316,7792}, {325,8368}, {384,538}, {385,5008}, {428,11380}, {524,6661}, {530,11299}, {531,11300}, {543,4027}, {549,2080}, {551,11364}, {597,1691}, {671,3407}, {1186,3224}, {1384,7771}, {1651,11839}, {1975,7894}, {1992,5039}, {3053,7786}, {3058,10799}, {3241,10800}, {3524,5171}, {3545,10358}, {3552,7772}, {3589,7831}, {3679,10789}, {3734,7766}, {3788,7921}, {3849,7924}, {4234,4279}, {4421,11490}, {5038,8598}, {5041,7783}, {5055,10104}, {5304,11185}, {5306,8370}, {5475,7806}, {5860,10793}, {5861,10792}, {6179,7770}, {6573,6579}, {6655,7829}, {6658,7765}, {7669,11327}, {7737,7790}, {7745,7828}, {7747,7797}, {7748,7920}, {7750,7859}, {7759,7892}, {7761,7875}, {7762,7832}, {7768,7819}, {7773,7942}, {7774,7835}, {7776,7930}, {7778,7926}, {7779,7820}, {7782,9605}, {7784,7943}, {7789,7905}, {7795,7877}, {7799,8369}, {7801,7837}, {7802,7803}, {7807,7858}, {7816,7839}, {7822,7893}, {7823,7834}, {7825,7932}, {7836,7838}, {7840,7880}, {7841,7884}, {7842,7923}, {7843,7901}, {7845,7931}, {7847,8353}, {7850,7868}, {7852,7885}, {7854,10159}, {7860,7866}, {7869,7946}, {7870,9766}, {7873,7948}, {7874,7941}, {7881,7949}, {7898,7913}, {7903,7945}, {7915,7939}, {8703,12054}, {9909,10790}, {10056,10801}, {10072,10802}, {10794,11235}, {10795,11236}, {10797,11237}, {10798,11238}, {10803,11239}, {10804,11240}, {11057,11287}, {11163,11288}, {11207,11837}, {11208,11838}
X(12150) = reflection of X(7883) in X(2)
X(12150) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,7812,7809), (2,9939,7865), (6,1003,7757), (6,3972,99), (32,83,1078), (32,7787,83), (32,7808,7793), (32,10348,10347), (315,7846,7944), (316,7792,7919), (384,5007,7760), (1003,7757,99), (1384,11174,7771), (3972,7757,1003), (5008,7804,385), (5309,11361,671), (6680,7785,7899), (7759,7892,7909), (7762,7832,7917), (10796,11842,98)
X(12150) = X(2)-of-5th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(8593).
X(12151) lies on these lines: {2,2056}, {6,538}, {83,11054}, {99,8586}, {182,599}, {183,10485}, {249,524}, {542,2456}, {575,9466}, {2080,2482}, {3398,7801}, {4027,7840}, {5026,5104}, {5111,5969}, {7809,8593}, {7810,12054}, {7839,9887}, {8584,12150}, {9939,10131}
X(12151) = midpoint of X(7809) and X(8593)
X(12151) = reflection of X(1691) in X(5182)
The reciprocal orthologic center of these triangles is X(2).
X(12152) lies on these lines: {2,493}, {30,9838}, {376,11828}, {381,8212}, {428,11394}, {551,11377}, {1651,11907}, {3058,11947}, {3241,8210}, {3679,8188}, {4421,11503}, {5860,8218}, {5861,8216}, {6461,12153}, {7811,10875}, {8194,9909}, {8201,11207}, {8208,11208}, {10056,11951}, {10072,11953}, {10945,11235}, {10951,11236}, {11237,11930}, {11238,11932}, {11239,11955}, {11240,11957}, {11840,12150}
The reciprocal orthologic center of these triangles is X(2).
X(12153) lies on these lines: {2,494}, {30,9839}, {376,11829}, {381,8213}, {428,11395}, {551,11378}, {1505,8222}, {1651,11908}, {3058,11948}, {3241,8211}, {3679,8189}, {4421,11504}, {5860,8219}, {5861,8217}, {6461,12152}, {7811,10876}, {8195,9909}, {8202,11207}, {8209,11208}, {10056,11952}, {10072,11954}, {10946,11235}, {10952,11236}, {11237,11931}, {11238,11933}, {11239,11956}, {11240,11958}, {11841,12150}
The reciprocal orthologic center of these triangles is X(9761).
X(12154) lies on these lines: {2,14}, {6,543}, {13,11317}, {16,8598}, {17,10809}, {61,8370}, {99,9113}, {395,9886}, {396,3363}, {398,8369}, {530,8593}, {542,11295}, {597,6775}, {1003,9114}, {2482,5471}, {5339,11318}, {5475,9117}, {5476,11296}, {6772,9830}, {8595,9116}
X(12154) = reflection of X(6775) in X(597)
X(12154) = Napoleon-outer circle-inverse-of-X(9760)
X(12154) = {X(6), X(11159)}-harmonic conjugate of X(12155)
The reciprocal orthologic center of these triangles is X(9763).
X(12155) lies on these lines: {2,13}, {6,543}, {14,11317}, {15,8598}, {18,10808}, {62,8370}, {99,9112}, {395,3363}, {396,9885}, {397,8369}, {531,8593}, {542,11296}, {597,6772}, {1003,9116}, {2482,5472}, {5340,11318}, {5475,9115}, {5476,11295}, {6775,9830}, {8594,9114}
X(12155) = reflection of X(6772) in X(597)
X(12155) = Napoleon-inner circle-inverse-of-X(9762)
X(12155) = {X(6), X(11159)}-harmonic conjugate of X(12154)
The reciprocal orthologic center of these triangles is X(9766).
X(12156) lies on these lines: {2,32}, {3845,11632}, {3972,9766}, {4677,9903}, {5066,6287}, {5097,10723}, {5306,9166}, {7760,11361}, {7878,11287}, {8584,8593}, {8703,12122}, {9300,11155}, {9751,12100}, {11055,11159}, {11149,11163}
X(12156) = {X(7812), X(12150)}-harmonic conjugate of X(7809)
The reciprocal orthologic center of these triangles is X(2).
X(12157) lies on the anti-Artzt circle and these lines: {99,511}, {110,5104}, {512,11161}, {805,2770}, {6787,11178}, {10717,12149}
X(12157) = circumsymmedial-to-anti-Artzt similarity image of X(2698)
The reciprocal orthologic center of these triangles is X(591).
X(12158) lies on these lines: {2,371}, {8584,11159}
X(12158) = X(1328)-of-anti-Artzt-triangle
X(12158) = {X(8584),X(11159)}-harmonic conjugate of X(12159)
The reciprocal orthologic center of these triangles is X(1991).
X(12159) lies on these lines: {2,372}, {1991,6390}, {8584,11159}
X(12159) = X(1327)-of-anti-Artzt-triangle
X(12159) = {X(8584),X(11159)}-harmonic conjugate of X(12158)
The reciprocal orthologic center of these triangles is X(11412).
X(12160) lies on these lines: {2,11432}, {3,54}, {4,193}, {5,6515}, {6,5562}, {24,3167}, {25,52}, {68,7507}, {69,7399}, {110,3517}, {143,7529}, {156,9714}, {184,9715}, {389,394}, {427,11411}, {511,1181}, {568,6090}, {576,5907}, {912,11396}, {1092,9786}, {1147,3515}, {1199,5050}, {1216,7484}, {1350,10984}, {1398,7352}, {1498,2393}, {1597,12111}, {1598,3060}, {1614,9909}, {1656,3580}, {1994,7503}, {3091,3527}, {3410,7566}, {3518,8780}, {3567,5020}, {3575,6193}, {5059,11820}, {5093,11459}, {5198,5446}, {5410,10665}, {5411,10666}, {5422,11444}, {5462,11284}, {5640,11484}, {6146,10602}, {6237,11406}, {6238,7071}, {6243,7387}, {6643,11245}, {7689,11410}, {8548,11405}, {9936,12134}, {10601,11793}, {10661,11408}, {10662,11409}
X(12160) = reflection of X(11414) in X(1181)
X(12160) = orthologic center of anti-Ascella triangle to these triangles: anti-Conway, 2nd anti-Conway, 3rd anti-Euler, 3rd anti-Euler, anti-excenters-reflections, anti-Hutson intouch, anti-incircle-circles, anti-inverse-in-incircle, 6th anti-mixtilinear, circumorthic, 2nd Ehrmann, 2nd Euler, extangents, intangents, 1st Kenmotu diagonals, 2nd Kenmotu diagonals, Kosnita, orthic, submedial, tangential, inner tri-equilateral, outer tri-equilateral, Trinh.
X(12160) = X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,5562,7395), (52,155,25), (576,5907,10982), (1199,7509,5050), (1993,5889,3), (1994,7503,11426), (3060,11441,1598), (7592,11412,3)
The reciprocal orthologic center of these triangles is X(12160).
X(12161) lies on these lines: {2,1199}, {3,54}, {4,1994}, {5,6}, {20,11004}, {22,6243}, {24,49}, {25,143}, {26,52}, {30,1181}, {51,10539}, {81,6862}, {110,3567}, {140,394}, {182,1216}, {185,12084}, {186,9545}, {193,3547}, {265,7547}, {323,631}, {381,11441}, {382,11456}, {389,1147}, {399,3843}, {546,10982}, {567,7503}, {569,5562}, {575,11793}, {576,2393}, {578,7526}, {895,3527}, {1092,9730}, {1184,10011}, {1351,7387}, {1498,3627}, {1593,5663}, {1598,5093}, {1614,3060}, {1656,5422}, {2070,9704}, {2914,3448}, {2937,6800}, {3167,5946}, {3193,6928}, {3518,9544}, {3549,6515}, {3574,7564}, {3580,6639}, {3618,11487}, {3628,10601}, {3796,7525}, {5050,7393}, {5097,10110}, {5462,9306}, {5576,11442}, {5876,9818}, {6237,11428}, {6238,11429}, {7395,11591}, {7507,11264}, {7512,11003}, {7529,9777}, {7689,11430}, {9587,9625}, {9590,9622}, {9706,11464}, {9833,11819}, {9927,10112}, {10115,10274}, {10540,10594}, {10602,11255}, {10605,11250}, {10625,10984}, {11245,11585}, {11411,11427}, {11438,12038}, {11818,12134}
X(12161) = midpoint of X(3) and X(12160)
X(12161) = reflection of X(7526) in X(578)
X(12161) = X(3)-of-2nd-anti-extouch-triangle
X(12161) = X(4)-of-anti-Conway-triangle
X(12161) = X(5)-of-anti-Ascella-triangle
X(12161) = anti-Conway-isogonal conjugate of X(32046)
X(12161) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,195,1993), (6,155,5), (49,568,24), (52,184,26), (54,5889,3), (110,3567,7506), (143,156,25), (182,1216,7516), (389,1147,6644), (569,5562,7514), (576,6759,5446), (1351,7387,10263), (1614,3060,7517), (1993,7592,3), (2070,9704,9707), (5012,11412,3), (5446,6759,7530), (5889,11422,54), (11402,12160,3), (11412,11423,5012)
The reciprocal orthologic center of these triangles is X(12160).
Let T be the triangle whose vertices are the orthocenters of the altimedial triangles; then X(12162) = X(20)-of-T. (Randy Hutson, July 21, 2017)
X(12162) lies on these lines: {2,6241}, {3,64}, {4,52}, {5,113}, {20,1216}, {24,7689}, {30,5562}, {33,7352}, {34,6238}, {39,1625}, {49,399}, {51,546}, {54,7527}, {67,3521}, {110,3520}, {143,3845}, {155,1593}, {184,7526}, {186,11440}, {355,2807}, {376,5447}, {378,1147}, {381,389}, {382,511}, {394,12085}, {403,5449}, {517,6253}, {550,3917}, {568,3843}, {569,1181}, {631,10170}, {912,1902}, {1060,7355}, {1062,6285}, {1092,10564}, {1154,3627}, {1204,6644}, {1209,2883}, {1352,5878}, {1495,1658}, {1503,9967}, {1511,10226}, {1531,11572}, {1594,5448}, {1656,9729}, {2772,5884}, {2777,7723}, {2979,3529}, {3090,5892}, {3091,5462}, {3146,11412}, {3522,7999}, {3528,7998}, {3530,5650}, {3541,5654}, {3544,11451}, {3547,5656}, {3567,3832}, {3830,6243}, {3839,9781}, {3850,5946}, {3851,5943}, {3853,10263}, {3855,5640}, {3858,10095}, {4550,7503}, {4846,6815}, {5055,11695}, {5079,6688}, {5498,10272}, {6193,11469}, {6237,11471}, {6247,11585}, {6254,8251}, {6288,7728}, {6636,8718}, {6642,10605}, {6696,10257}, {7506,11438}, {7512,12112}, {7514,10984}, {7529,9786}, {7544,7706}, {7691,12088}, {7722,11557}, {8538,8549}, {8548,11470}, {10116,12022}, {10634,10675}, {10635,10676}, {10661,11475}, {10662,11476}, {10665,11473}, {10666,11474}, {10996,11487}, {11403,12160}, {11424,12161}
X(12162) = midpoint of X(i) and X(j) for these {i,j}: {4,12111}, {3146,11412}, {5562,11381}
X(12162) = reflection of X(i) in X(j) for these (i,j): (3,5907), (20,1216), (52,4), (185,5), (550,11591), (5562,5876), (5889,5446), (6102,546), (7722,11557), (10263,3853), (10575,3), (10625,5562), (11562,113)
X(12162) = complement of X(6241)
X(12162) = X(4)-of-X(4)-Brocard-triangle
X(12162) = X(10)-of-Ehrmann-side-triangle if ABC is acute" to X(12162)
X(12162) = X(10)-of-Ehrmann-side-triangle if ABC is acute
X(12162) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,5907,5891), (3,10540,10282), (4,5889,5446), (4,11442,9927), (5,185,9730), (5,12006,373), (20,11459,1216), (110,3520,12038), (155,11472,1593), (376,11444,5447), (378,11441,1147), (546,6102,51), (550,11591,3917), (568,3843,10110), (3357,9306,3), (5446,5889,52), (5876,11381,10625), (5889,11439,4), (5891,10575,3), (11439,12111,5889)
The reciprocal orthologic center of these triangles is X(12160).
X(12163) lies on these lines: {3,49}, {4,3580}, {5,9786}, {6,6102}, {20,11411}, {22,6241}, {24,12111}, {25,12162}, {26,1498}, {30,64}, {35,3157}, {36,1069}, {40,912}, {52,1593}, {55,7352}, {56,6238}, {74,9938}, {140,5646}, {154,1658}, {186,11441}, {376,6193}, {378,5889}, {381,5449}, {382,9927}, {389,9818}, {511,3357}, {539,3534}, {548,9936}, {550,1350}, {568,10982}, {631,9820}, {1151,10665}, {1152,10666}, {1154,10606}, {1192,5876}, {1597,5446}, {1656,5448}, {1657,10620}, {1993,3520}, {3066,3851}, {3515,10539}, {3516,12160}, {3532,5504}, {3579,9928}, {3581,7517}, {4550,5462}, {4846,6823}, {5584,6237}, {5890,7503}, {5907,6642}, {6000,7387}, {6200,8909}, {6240,11442}, {6284,10071}, {6285,9645}, {6445,8912}, {7354,10055}, {7393,9729}, {7488,7712}, {7509,10574}, {7691,10323}, {8548,11477}, {8567,11250}, {9707,10298}, {9937,10575}, {10661,11480}, {10662,11481}, {11425,12161}
X(12163) = midpoint of X(20) and X(11411)
X(12163) = reflection of X(i) in X(j) for these (i,j): (3,7689), (155,3), (382,9927), (1498,26), (5504,12041), (9928,3579), (11477,8548), (12085,3357), (12118,550)
X(12163) = ABC-X3-reflections-isogonal conjugate of X(33495)
X(12163) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,3167,12038), (74,11412,11413), (1204,5562,3), (4550,5462,11479), (5889,11440,378), (5907,11438,6642), (6102,7526,6)
Let A'B'C' be the orthic triangle. Let Oa be the A-power circle of triangle AB'C', and define Ob and Oc cyclically. X(12164) is the radical center of circles Oa, Ob, Oc. (Randy Hutson, July 31 2018)
The reciprocal orthologic center of these triangles is X(12160).
X(12164) lies on these lines: {3,49}, {4,193}, {5,11411}, {6,5907}, {24,8780}, {25,5889}, {30,6193}, {52,1598}, {68,381}, {69,6823}, {110,3515}, {235,6515}, {323,11413}, {382,9936}, {389,5020}, {399,7517}, {511,1498}, {524,2883}, {539,3830}, {568,7529}, {912,1482}, {916,2293}, {999,1069}, {1154,7387}, {1593,1993}, {1597,12162}, {1614,9715}, {1619,6293}, {1656,5544}, {1657,11820}, {2070,9932}, {2781,9914}, {3060,5198}, {3091,9777}, {3311,10665}, {3312,10666}, {3517,10539}, {3526,9820}, {3843,9927}, {3851,5448}, {5050,7395}, {5055,5449}, {5093,10982}, {5462,11484}, {5504,10620}, {5663,12085}, {5876,9818}, {6102,6642}, {6221,8909}, {6237,10306}, {6759,9909}, {6800,7691}, {6816,11245}, {7393,11591}, {7484,11444}, {7503,11402}, {7507,11442}, {7509,12017}, {8548,11482}, {8681,11477}, {8718,11412}, {9306,9786}, {9654,10055}, {9669,10071}, {9714,10540}, {9925,12082}, {10661,11485}, {10662,11486}, {11410,11440}
X(12164) = reflection of X(i) in X(j) for these (i,j): (3,155), (1657,12118), (6391,1351), (10620,5504), (11411,5), (12163,1147)
X(12164) = X(64)-Ceva conjugate of X(3)
X(12164) = X(10864)-of-orthic-triangle if ABC is acute
X(12164) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,155,3167), (4,12160,1351), (6,5907,11479), (155,12163,1147), (185,394,3), (1069,7352,999), (1092,10605,3), (1147,12163,3), (1181,5562,3), (1993,12111,1593), (3157,6238,3295), (5889,11441,25), (7395,7592,5050), (7592,11459,7395), (11412,11456,11414)
The reciprocal orthologic center of these triangles is X(3581).
X(12165) lies on these lines: {3,3043}, {4,11703}, {25,399}, {74,11410}, {110,3515}, {155,11562}, {378,2914}, {1112,5198}, {1181,10628}, {1351,10733}, {1593,5663}, {2771,11396}, {3448,7507}, {3516,10620}, {5094,10264}, {7071,7727}, {7395,7723}, {7687,9777}, {7724,11406}, {7731,9919}, {9826,11284}, {9976,11405}, {10657,11408}, {10658,11409}
X(12165) = orthologic center of these triangles: anti-Ascella to orthic
X(12165) = {X(399), X(1986)}-harmonic conjugate of X(25)
The reciprocal orthologic center of these triangles is X(7387).
X(12166) lies on these lines: {3,69}, {25,52}, {68,7395}, {578,8681}, {912,8192}, {1147,5892}, {1154,7387}, {3167,5946}, {3515,9932}, {6391,11426}, {7071,9931}, {9715,9908}, {9820,11284}, {9926,11405}, {9938,11410}, {10659,11408}, {10660,11409}
X(12166) = reflection of X(12160) in X(155)
X(12166) = orthologic center of these triangles: anti-Ascella to 2nd Hyacinth
X(12166) = {X(155), X(9937)}-harmonic conjugate of X(25)
The reciprocal orthologic center of these triangles is X(576).
X(12167) lies on these lines: {3,6403}, {4,193}, {6,25}, {24,5050}, {69,427}, {141,5094}, {182,3515}, {186,12017}, {399,2971}, {428,1992}, {458,3186}, {460,3087}, {468,3618}, {511,1593}, {518,11396}, {524,3867}, {542,12165}, {576,5198}, {895,1112}, {1154,1597}, {1350,3516}, {1352,7507}, {1353,6756}, {1398,1469}, {1598,5093}, {1829,3751}, {1862,10755}, {2207,5052}, {3056,7071}, {3089,3527}, {3098,11410}, {3575,6776}, {3620,8889}, {3779,11406}, {5017,8778}, {5020,11416}, {5032,7714}, {5039,11380}, {5090,5847}, {5102,11470}, {5107,5140}, {5185,10756}, {5186,10754}, {6090,11188}, {7395,9967}, {7484,9813}, {7487,11432}, {7529,11255}, {8593,12132}, {9307,12110}, {9732,11395}, {9733,11394}, {9737,10607}, {9822,11284}, {10594,11482}, {10752,12133}, {10753,12131}, {10759,12138}, {11382,11433}, {11403,11477}
X(12167) = reflection of X(12160) in X(1351)
X(12167) = homothetic center of orthic triangle and reflection of tangential triangle in X(6)
X(12167) = {X(12171),X(12172)}-harmonic conjugate of X(1593)
X(12167) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,1843,25), (6,7716,1974), (6,9924,184), (6,9973,159), (25,8541,11405), (1351,6391,193), (1843,1974,7716), (1843,8541,6), (1974,7716,25), (5410,11389,25), (5411,11388,25)
The reciprocal orthologic center of these triangles is X(10112).
X(12168) lies on these lines: {3,74}, {22,146}, {25,113}, {125,7395}, {159,2935}, {265,9818}, {1597,10733}, {1657,8907}, {2777,11414}, {3028,10832}, {3043,3167}, {3448,7503}, {6644,10272}, {6699,7484}, {7387,7728}, {7514,10264}, {9715,10117}, {9909,10706}, {10663,11408}, {10664,11409}, {10982,11800}, {11562,12163}, {12085,12121}
X(12168) = {X(113), X(2931)}-harmonic conjugate of X(25)
The reciprocal orthologic center of these triangles is X(3).
X(12169) lies on these lines: {25,487}, {486,7484}, {642,11284}, {3564,11414}, {5198,6290}
X(12169) = orthic-to-anti-Ascella similarity image of X(487)
The reciprocal orthologic center of these triangles is X(3).
X(12170) lies on these lines: {25,488}, {485,7484}, {641,11284}, {3564,11414}, {5198,6289}
X(12170) = orthic-to-anti-Ascella similarity image of X(488)
The reciprocal orthologic center of these triangles is X(3).
X(12171) lies on these lines: {3,6239}, {25,1151}, {511,1593}, {1398,7362}, {5023,5413}, {5411,8778}, {6200,8948}, {6252,11406}, {6283,7071}, {7690,11410}, {9732,11394}, {9823,11284}, {9974,11405}, {10667,11408}, {10668,11409}
X(12171) = {X(1593),X(12167)}-harmonic conjugate of X(12172)
X(12171) = X(176)-of-anti-Ascella-triangle if ABC is acute
X(12171) = orthic-to-anti-Ascella similarity image of X(6291)
The reciprocal orthologic center of these triangles is X(3).
X(12172) lies on these lines: {3,6400}, {25,1152}, {511,1593}, {1398,7353}, {5023,5412}, {5410,8778}, {6396,8946}, {6404,11406}, {6405,7071}, {7692,11410}, {9733,11395}, {9824,11284}, {9975,11405}, {10671,11408}, {10672,11409}
X(12172) = {X(1593),X(12167)}-harmonic conjugate of X(12171)
X(12172) = X(175)-of-anti-Ascella-triangle if ABC is acute
X(12172) = orthic-to-anti-Ascella similarity image of X(6406)
As a point on the Euler line, X(12173) has Shinagawa coefficients: (-F, E+5*F).
X(12173) lies on these lines: {2,3}, {33,4348}, {34,7221}, {64,6145}, {70,3426}, {125,1192}, {515,11396}, {516,5090}, {950,1892}, {962,12135}, {1112,10733}, {1204,1853}, {1398,7354}, {1503,12167}, {1699,11363}, {1829,5691}, {1843,5895}, {1862,10724}, {1870,9655}, {1876,9579}, {2207,7747}, {3070,5410}, {3071,5411}, {3172,7737}, {3574,11425}, {3583,11399}, {3585,11398}, {5185,10725}, {5186,10723}, {5318,11408}, {5321,11409}, {5339,8739}, {5340,8740}, {5890,6746}, {6198,9668}, {6241,7730}, {6253,11391}, {6256,11400}, {6284,7071}, {6403,12111}, {7718,9812}, {7728,12140}, {7823,9308}, {8550,11405}, {10721,11387}, {10722,12131}, {10728,12138}, {11432,12022}
X(12173) = reflection of X(i) in X(j) for these (i,j): (20,6823), (1593,4)
X(12173) = homothetic center of orthic triangle and reflection of tangential triangle in X(4)
X(12173) = X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,4,7507), (4,20,427), (4,24,381), (4,186,7547), (4,403,3843), (4,1593,5064), (4,1885,11403), (4,3089,10151), (4,3146,1885), (4,3542,546), (4,3575,25), (4,6240,3), (4,6353,3832), (4,6622,3839), (4,6756,5198), (4,6995,1906), (4,7487,235), (4,7576,1598), (1596,3853,4), (1598,3830,4), (3627,6756,4)
The reciprocal orthologic center of these triangles is X(389).
X(12174) lies on these lines: {3,74}, {4,3527}, {6,9968}, {20,12164}, {25,185}, {30,12160}, {64,184}, {154,1204}, {155,10575}, {221,3270}, {235,5656}, {381,11457}, {389,5198}, {569,11472}, {578,1181}, {1192,1495}, {1351,3146}, {1398,7355}, {1425,2192}, {1503,12167}, {1597,7592}, {1598,5890}, {1885,6225}, {1899,2883}, {1906,11433}, {2777,12165}, {2807,8192}, {3167,11413}, {3357,11410}, {3426,11426}, {3515,6759}, {3529,11820}, {4846,12134}, {5020,10574}, {5093,11458}, {5094,6247}, {5095,5895}, {5422,11439}, {5878,6146}, {5907,7484}, {6001,11396}, {6199,11462}, {6254,11406}, {6285,7071}, {6293,9914}, {6395,11463}, {6767,11461}, {7395,12162}, {7722,9919}, {8549,11405}, {9715,12163}, {9729,11284}, {10594,12112}, {10675,11408}, {10676,11409}, {11414,12166}
X(12174) = reflection of X(1593) in X(1181)
X(12174) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,11441,6090), (6,11381,11403), (74,9707,3), (185,1498,25), (1181,1593,11402), (6241,11456,3), (6759,10605,3515), (6800,11440,3)
The reciprocal orthologic center of these triangles is X(6243).
X(12175) lies on these lines: {3,6242}, {25,195}, {54,3515}, {539,12160}, {1154,1593}, {1351,5198}, {1398,7356}, {1614,9920}, {2888,7507}, {2914,10594}, {5965,12167}, {6255,11406}, {6286,7071}, {7691,11410}, {9827,11284}, {9977,11405}, {10677,11408}, {10678,11409}, {12165,12173}
X(12175) = {X(195), X(6152)}-harmonic conjugate of X(25)
The reciprocal orthologic center of these triangles is X(5999).
X(12176) lies on these lines: {3,1916}, {4,32}, {83,114}, {99,182}, {147,7787}, {384,2782}, {542,12150}, {1078,6036}, {1691,11676}, {2080,5999}, {2966,6784}, {3027,10799}, {3407,9755}, {5025,10104}, {5039,10753}, {6033,10796}, {6226,10793}, {6227,10792}, {7970,10800}, {9860,10789}, {9861,10790}, {9864,10791}, {10053,10801}, {10069,10802}, {10352,10359}, {11361,11632}, {11364,11710}, {11380,12131}
X(12176) = midpoint of X(98) and X(12110)
X(12176) = reflection of X(4027) in X(3398)
The reciprocal orthologic center of these triangles is X(147).
X(12177) lies on these lines: {2,98}, {3,5026}, {5,5038}, {6,2782}, {30,12151}, {32,5477}, {83,575}, {99,511}, {115,5034}, {194,576}, {381,9830}, {385,9772}, {524,2080}, {597,11632}, {611,3023}, {613,3027}, {671,5476}, {690,9970}, {1351,5969}, {1428,10069}, {1469,10089}, {1503,2456}, {1569,5028}, {1691,3564}, {1992,10788}, {2330,10053}, {2482,8722}, {2770,6233}, {2793,5652}, {3056,10086}, {3398,8550}, {3926,5171}, {5085,12042}, {5286,10358}, {5480,6321}, {5655,10748}, {5999,8289}, {7808,11623}, {8787,11842}, {9863,10131}, {10350,11257}
X(12177) = midpoint of X(i) and X(j) for these {i,j}: {99,10753}, {147,6776}, {6054,8593}
X(12177) = reflection of X(i) in X(j) for these (i,j): (3,5026), (98,182), (671,5476), (1352,114), (6321,5480), (10754,576), (11161,11178), (11632,597), (11646,5)
X(12177) = X(4)-of-6th-anti-Brocard triangle
X(12177) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (98,5182,182), (147,4027,98)
X(12177) = perspector of 6th anti-Brocard triangle and 1st Brocard-reflected triangle
The reciprocal orthologic center of these triangles is X(5999).
X(12178) lies on these lines: {3,11711}, {35,9860}, {55,98}, {56,7970}, {99,10310}, {100,147}, {114,1376}, {115,11496}, {197,9861}, {542,4421}, {1001,6036}, {2782,11248}, {2784,8715}, {2794,11500}, {3023,11509}, {3295,11710}, {4428,6055}, {5687,9864}, {6033,11499}, {6226,11498}, {6227,11497}, {9862,11491}, {10053,11507}, {10069,11508}, {10267,12042}, {11383,12131}, {11490,12176}
The reciprocal orthologic center of these triangles is X(5999).
X(12179) lies on these lines: {55,12180}, {98,5597}, {99,11822}, {114,5599}, {115,8196}, {147,5601}, {542,11207}, {2782,11252}, {3027,11873}, {5598,7970}, {6033,8200}, {6226,8199}, {6227,8198}, {8190,9861}, {8197,9864}, {9862,11843}, {10053,11877}, {10069,11879}, {11366,11710}, {11492,12178}, {11837,12176}
X(12179) = reflection of X(12180) in X(55)
The reciprocal orthologic center of these triangles is X(5999).
X(12180) lies on these lines: {55,12179}, {98,5598}, {99,11823}, {114,5600}, {115,8203}, {147,5602}, {542,11208}, {2782,11253}, {3027,11874}, {5597,7970}, {6033,8207}, {6226,8206}, {6227,8205}, {8187,9860}, {8191,9861}, {8204,9864}, {9862,11844}, {10053,11878}, {10069,11880}, {11367,11710}, {11493,12178}, {11838,12176}
X(12180) = reflection of X(12179) in X(55)
The reciprocal orthologic center of these triangles is X(5999).
X(12181) lies on these lines: {30,99}, {98,402}, {114,1650}, {115,11897}, {147,4240}, {542,1651}, {2782,11251}, {2794,12113}, {3027,11909}, {6226,11902}, {6227,11901}, {7970,11910}, {9860,11852}, {9861,11853}, {9862,11845}, {9864,11900}, {10053,11912}, {10069,11913}, {11710,11831}, {11832,12131}, {11839,12176}, {11848,12178}
X(12181) = midpoint of X(147) and X(4240)
X(12181) = reflection of X(i) in X(j) for these (i,j): (98,402), (1650,114)
The reciprocal orthologic center of these triangles is X(5999).
X(12182) lies on these lines: {11,98}, {99,11826}, {114,1376}, {115,10893}, {147,3434}, {355,6033}, {542,11235}, {2782,10525}, {2794,12114}, {3027,10947}, {6226,10920}, {6227,10919}, {7970,10944}, {9860,10826}, {9861,10829}, {9862,10785}, {9864,10914}, {10053,10523}, {10069,10948}, {10794,12176}, {11373,11710}, {11390,12131}, {11865,12179}, {11866,12180}, {11903,12181}
X(12182) = reflection of X(12178) in X(114)
X(12182) = X(98)-of-inner-Johnson-triangle
X(12182) = X(12189)-of-outer-Johnson-triangle
The reciprocal orthologic center of these triangles is X(5999).
X(12183) lies on these lines: {10,2792}, {12,98}, {72,9864}, {99,11827}, {114,958}, {115,10894}, {147,3436}, {355,6033}, {542,11236}, {2782,10526}, {2794,11500}, {3027,10953}, {6226,10922}, {6227,10921}, {6253,10722}, {7970,10950}, {9860,10827}, {9861,10830}, {9862,10786}, {10053,10954}, {10069,10523}, {10795,12176}, {11374,11710}, {11391,12131}, {11867,12179}, {11868,12180}, {11904,12181}
X(12183) = reflection of X(12182) in X(6033)
X(12183) = X(98)-of-outer-Johnson-triangle
X(12183) = X(12190)-of-inner-Johnson-triangle
The reciprocal orthologic center of these triangles is X(5999).
X(12184) lies on the inner-Johnson-Yff circle and these lines: {1,6033}, {4,3027}, {5,10069}, {12,98}, {55,2794}, {56,114}, {65,9864}, {99,7354}, {115,9650}, {147,388}, {148,5229}, {226,2784}, {495,10053}, {498,12042}, {542,611}, {620,5204}, {1317,10768}, {1388,11724}, {1478,2782}, {1569,9651}, {2023,9596}, {3028,11005}, {3029,9553}, {3044,9653}, {3085,9862}, {3585,6321}, {5261,5984}, {5434,6054}, {6226,10924}, {6227,10923}, {6284,10722}, {7970,10944}, {9578,9860}, {9861,10831}, {10797,12176}, {11375,11710}, {11392,12131}, {11501,12178}, {11869,12179}, {11870,12180}, {11905,12181}
X(12184) = reflection of X(10053) in X(495)
X(12184) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,6033,12185), (147,388,3023)
The reciprocal orthologic center of these triangles is X(5999).
X(12185) lies on the outer-Johnson-Yff circle and these lines: {1,6033}, {4,3023}, {5,10053}, {11,98}, {30,10089}, {55,114}, {56,2794}, {99,6284}, {115,9665}, {147,497}, {148,5225}, {496,10069}, {499,12042}, {542,613}, {620,5217}, {1479,2782}, {1569,9664}, {2023,9599}, {2784,12053}, {3029,9554}, {3044,9666}, {3057,9864}, {3058,6054}, {3086,9862}, {3583,6321}, {3845,10054}, {5274,5984}, {5985,11680}, {6226,10926}, {6227,10925}, {7354,10722}, {7970,10950}, {9581,9860}, {9861,10832}, {10798,12176}, {11376,11710}, {11393,12131}, {11502,12178}, {11871,12179}, {11872,12180}, {11906,12181}
X(12185) = reflection of X(10069) in X(496)
X(12185) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,6033,12184), (147,497,3027)
The reciprocal orthologic center of these triangles is X(5999).
X(12186) lies on these lines: {98,493}, {99,11828}, {114,8222}, {115,8212}, {147,6462}, {542,12152}, {2782,10669}, {2794,9838}, {3027,11947}, {6033,8220}, {6226,8218}, {6227,8216}, {6461,12187}, {7970,8210}, {8188,9860}, {8194,9861}, {8201,12179}, {8208,12180}, {8214,9864}, {9862,10875}, {10053,11951}, {10069,11953}, {10945,12182}, {10951,12183}, {11377,11710}, {11394,12131}, {11503,12178}, {11840,12176}, {11907,12181}, {11930,12184}, {11932,12185}
The reciprocal orthologic center of these triangles is X(5999).
X(12187) lies on these lines: {98,494}, {99,11829}, {114,8223}, {115,8213}, {147,6463}, {542,12153}, {2782,10673}, {2794,9839}, {3027,11948}, {6033,8221}, {6226,8219}, {6227,8217}, {6461,12186}, {7970,8211}, {8189,9860}, {8195,9861}, {8202,12179}, {8209,12180}, {8215,9864}, {9862,10876}, {10053,11952}, {10069,11954}, {10946,12182}, {10952,12183}, {11378,11710}, {11395,12131}, {11504,12178}, {11841,12176}, {11908,12181}, {11931,12184}, {11933,12185}
The reciprocal orthologic center of these triangles is X(5999).
X(12188) lies on the 2nd Neuberg circle, Stammler circle and these lines: {2,7711}, {3,76}, {4,5984}, {5,147}, {6,13}, {25,5986}, {30,148}, {114,1656}, {182,7697}, {355,2784}, {382,2794}, {405,5985}, {517,9860}, {538,8178}, {543,3534}, {620,5054}, {621,6770}, {622,6773}, {671,3830}, {690,10620}, {868,3448}, {999,3023}, {1281,4385}, {1569,5013}, {1597,5186}, {1598,12131}, {1657,10991}, {1916,7754}, {1995,5987}, {2023,9605}, {2070,5938}, {2407,9512}, {2482,8556}, {2793,11258}, {2925,2926}, {3027,3295}, {3029,9566}, {3044,9703}, {3095,7798}, {3398,6248}, {3407,9755}, {3526,6036}, {3564,5207}, {3673,7061}, {3934,12054}, {4027,7770}, {5026,12017}, {5050,12177}, {5055,6054}, {5070,7943}, {5073,10723}, {5092,9466}, {5093,10753}, {5790,9864}, {6226,11917}, {6227,11916}, {7470,8782}, {7517,9861}, {7751,9821}, {7790,9996}, {7803,9478}, {7902,10356}, {7913,11178}, {7970,10247}, {7983,8148}, {8591,8703}, {8596,11001}, {9418,10540}, {9654,12184}, {9669,12185}, {10246,11710}, {11849,12178}, {11875,12179}, {11876,12180}, {11911,12181}, {11928,12182}, {11929,12183}, {11949,12186}, {11950,12187}
X(12188) = midpoint of X(i) and X(j) for these {i,j}: {4,5984}, {148,9862}, {8596,11001}
X(12188) = reflection of X(i) in X(j) for these (i,j): (3,98), (99,12042), (114,11623), (147,5), (381,11632), (382,6321), (3830,671), (5073,10723), (5655,11656), (6033,115), (8148,7983), (8591,8703), (8724,6055), (9301,385)
X(12188) = circumcircle-inverse-of-X(12042)
X(12188) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (98,99,12042), (99,12042,3), (115,6033,381), (148,11177,9862), (3023,10069,999), (3027,10053,3295), (6033,11632,115), (6055,8724,5054), (10104,11257,3)
The reciprocal orthologic center of these triangles is X(5999).
X(12189) lies on these lines: {1,98}, {12,12182}, {99,11248}, {114,5552}, {115,10531}, {119,10768}, {147,10528}, {542,11239}, {2782,10679}, {2794,12115}, {3023,11509}, {3027,10965}, {6033,10942}, {6226,10930}, {6227,10929}, {6256,10722}, {9861,10834}, {9862,10805}, {9864,10915}, {10803,12176}, {10955,12183}, {10956,12184}, {10958,12185}, {11400,12131}, {11881,12179}, {11882,12180}, {11914,12181}, {11955,12186}, {11956,12187}, {12000,12188}
X(12189) = reflection of X(98) in X(10053)
X(12189) = {X(98),X(7970)}-harmonic conjugate of X(12190)
The reciprocal orthologic center of these triangles is X(5999).
X(12190) lies on these lines: {1,98}, {11,12183}, {99,11249}, {114,10527}, {115,10532}, {147,10529}, {542,11240}, {2782,10680}, {2792,12053}, {2794,12116}, {3027,10966}, {6033,10943}, {6226,10932}, {6227,10931}, {9861,10835}, {9862,10806}, {9864,10916}, {10804,12176}, {10949,12182}, {10957,12184}, {10959,12185}, {11401,12131}, {11510,12178}, {11883,12179}, {11884,12180}, {11915,12181}, {11957,12186}, {11958,12187}, {12001,12188}
X(12190) = reflection of X(98) in X(10069)
X(12190) = {X(98),X(7970)}-harmonic conjugate of X(12189)
The reciprocal orthologic center of these triangles is X(9855).
X(12191) lies on these lines: {6,11152}, {30,12176}, {32,671}, {83,2482}, {98,3543}, {148,5304}, {182,12117}, {384,5969}, {542,12110}, {543,4027}, {1003,1916}, {1078,5461}, {1691,9855}, {2080,8859}, {3407,11159}, {3552,9888}, {5032,12177}, {5039,8593}, {5182,7787}, {6034,7833}, {8724,10796}, {9875,10789}, {9876,10790}, {9881,10791}, {9882,10792}, {9883,10793}, {9884,10800}, {10054,10801}, {10070,10802}, {11380,12132}
X(12191) = reflection of X(4027) in X(12150)
X(12191) = orthologic center of these triangles: 5th anti-Brocard to McCay
X(12191) = X(671)-of-5th-anti-Brocard-triangle
X(12191) = {X(7787), X(8591)}-harmonic conjugate of X(5182)
The reciprocal orthologic center of these triangles is X(12112).
X(12192) lies on these lines: {2,98}, {32,74}, {83,113}, {146,7787}, {541,12150}, {690,12176}, {1078,6699}, {1511,12054}, {2080,12041}, {2777,12110}, {3028,10799}, {3043,3203}, {3398,5663}, {5039,10752}, {7725,10792}, {7728,10796}, {7978,10800}, {9904,10789}, {9919,10790}, {10065,10801}, {10081,10802}, {10620,11842}, {11364,11709}, {11380,12133}
X(12192) = orthologic center of these triangles: 5th anti-Brocard to orthocentroidal
X(12192) = X(74)-of-5th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(9833).
X(12193) lies on these lines: {32,68}, {83,1147}, {98,9927}, {155,10796}, {182,12118}, {539,12150}, {1069,10798}, {1078,5449}, {3157,10797}, {5654,10358}, {6193,7787}, {8548,12177}, {9896,10789}, {9908,10790}, {9928,10791}, {9929,10792}, {9930,10793}, {9933,10800}, {10055,10801}, {10071,10802}, {10788,11411}, {11380,12134}
X(12193) = orthologic center of these triangles: 5th anti-Brocard to 2nd Hyacinth
X(12193) = X(68)-of-5th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12194) lies on these lines: {1,32}, {3,11490}, {8,7787}, {10,82}, {31,239}, {40,182}, {55,11837}, {58,99}, {98,946}, {213,8300}, {291,5299}, {355,10794}, {384,730}, {515,12110}, {517,3398}, {519,12150}, {726,7760}, {731,904}, {944,10788}, {1078,1125}, {1385,2080}, {1386,1691}, {1428,3503}, {1482,11842}, {1582,2300}, {1698,7808}, {1829,11380}, {1837,10798}, {3057,10799}, {3097,7772}, {3576,5171}, {3579,12054}, {3616,7793}, {3624,7815}, {3640,10793}, {3641,10792}, {3734,9902}, {3751,5039}, {3795,8715}, {3972,7976}, {5034,9593}, {5182,9881}, {5252,10797}, {5315,8297}, {5587,10358}, {5657,10359}, {5886,10104}, {7987,8722}, {9798,10790}, {9857,10345}
X(12194) = orthologic center of triangle 5th anti-Brocard to these triangles: Atik, 1st circumperp, 2nd circumperp, inner-Conway, Conway, 2nd Conway, 3rd Conway, 1st Ehrmann, 3rd Euler, 4th Euler, excenters-reflections, excentral, 2nd extouch, hexyl, Honsberger, inner-Hutson, Hutson intouch, outer-Hutson, 2nd Hyacinth, intouch, inverse-in-incircle, 2nd Pamfilos-Zhou, 1st Sharygin, tangential-midarc, 2nd tangential-midarc, Yff central
X(12194) = X(1)-of-5th-anti-Brocard-triangle
X(12194) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,32,11364), (1,10789,32), (8,7787,10791), (32,10800,1), (32,10803,10801), (32,10804,10802), (10789,10800,11364), (10794,10795,10796)
The reciprocal orthologic center of these triangles is X(10).
X(12195) lies on these lines: {1,83}, {6,7976}, {8,32}, {10,1078}, {98,355}, {145,7787}, {182,944}, {517,12110}, {519,12150}, {730,7760}, {760,10350}, {952,3398}, {1482,10796}, {2080,5690}, {2098,10798}, {2099,10797}, {3616,7808}, {3617,7793}, {3632,10789}, {3913,11490}, {5171,5657}, {5603,10358}, {5790,10104}, {7815,9780}, {7967,10359}, {9941,10347}, {9997,10345}, {10573,10802}, {10794,10912}, {10799,10950}, {11380,12135}
X(12195) = orthologic center of these triangles: 5th anti-Brocard to 2nd Schiffler
X(12195) = X(8)-of-5th-anti-Brocard-triangle
X(12195) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,10791,83), (10,11364,1078), (145,7787,10800)
The reciprocal orthologic center of these triangles is X(40).
X(12196) lies on these lines: {32,84}, {83,6260}, {98,6245}, {182,1490}, {515,12195}, {971,3398}, {1078,6705}, {1709,10801}, {5658,10359}, {6001,12194}, {6257,10793}, {6258,10792}, {6259,10796}, {7971,10800}, {7992,10789}, {9910,10790}, {10085,10802}, {11364,12114}, {11380,12136}
X(12196) = X(84)-of-5th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12197) lies on these lines: {1,182}, {3,11364}, {4,10791}, {10,98}, {32,40}, {46,10802}, {65,10799}, {83,946}, {165,5171}, {172,8924}, {515,12195}, {516,12110}, {517,3398}, {962,7787}, {1078,6684}, {1385,12054}, {1699,10358}, {1836,10797}, {1902,11380}, {2080,3579}, {3097,9737}, {5034,9575}, {5119,10801}, {5603,10359}, {5812,10795}, {6361,10788}, {7808,8227}, {7982,10800}, {7991,10789}, {8669,9751}, {9911,10790}, {10306,11490}
X(12197) = reflection of X(12194) in X(3398)
X(12197) = X(40)-of-5th-anti-Brocard-triangle
X(12198) lies on these lines: {11,11364}, {32,80}, {83,214}, {100,10791}, {182,12119}, {952,12194}, {1078,6702}, {2800,12110}, {2802,12195}, {2829,12196}, {5840,12197}, {6224,7787}, {6262,10793}, {6263,10792}, {6265,10796}, {7972,10800}, {9897,10789}, {9912,10790}, {10057,10801}, {10073,10802}, {11380,12137}
X(12198) = X(80)-of-5th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12199) lies on these lines: {11,98}, {32,104}, {83,119}, {100,182}, {153,7787}, {515,12198}, {952,3398}, {1078,6713}, {1317,10799}, {1768,10789}, {2783,4027}, {2787,12176}, {2800,12194}, {2802,12197}, {2829,12110}, {5039,10759}, {9913,10790}, {10058,10801}, {10074,10802}, {10698,10800}, {10742,10796}, {11364,11715}, {11380,12138}
X(12199) = X(104)-of-5th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12200) lies on these lines: {32,7160}, {182,12120}, {7787,9874}, {8000,10800}, {9898,10789}, {10059,10801}, {10075,10802}, {11380,12139}
X(12200) = X(7160)-of-5th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(6102).
X(12201) lies on these lines: {30,12192}, {32,265}, {83,1511}, {98,10113}, {110,10796}, {125,2080}, {182,12121}, {2771,12198}, {3448,10788}, {5663,12110}, {10088,10797}, {10091,10798}, {11380,12140}
X(12201) = X(265)-of-5th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12202) lies on these lines: {30,12193}, {32,64}, {83,2883}, {98,6247}, {182,1498}, {1078,6696}, {1503,6656}, {2080,3357}, {2777,12201}, {3398,6000}, {5171,10606}, {5656,10359}, {5878,10796}, {6001,12197}, {6225,7787}, {6266,10793}, {6267,10792}, {6759,12054}, {7355,10799}, {7973,10800}, {8567,8722}, {9899,10789}, {9914,10790}, {10060,10801}, {10076,10802}, {11380,11381}
X(12202) = X(64)-of-5th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12203) lies on these lines: {2,8721}, {3,76}, {4,83}, {5,7859}, {20,32}, {30,3398}, {39,5999}, {114,7899}, {147,626}, {315,6776}, {316,2456}, {376,5171}, {382,10796}, {385,5188}, {458,1629}, {511,7470}, {515,12195}, {516,12194}, {542,7883}, {550,2080}, {631,7835}, {962,10800}, {1342,10999}, {1343,11000}, {1350,7754}, {1351,7894}, {1352,3096}, {1503,6656}, {1513,7828}, {1657,11842}, {1691,5254}, {1885,11380}, {2794,4027}, {2896,5984}, {3091,7808}, {3098,12251}, {3146,7787}, {3407,7864}, {3522,6392}, {3523,7815}, {3529,10788}, {3564,7768}, {3978,7467}, {4297,11364}, {4299,10802}, {4302,10801}, {5025,10131}, {5038,7745}, {5050,7878}, {5085,7770}, {5092,6248}, {5182,7841}, {5691,10791}, {5840,12199}, {6179,9755}, {6194,6308}, {7354,10799}, {7697,9751}, {7709,9737}, {7748,10723}, {7752,9744}, {7761,9863}, {7762,8550}, {7810,11177}, {7812,11179}, {7830,10991}, {7856,9753}, {7911,12177}, {7924,10333}, {7933,10334}, {8703,11054}, {9166,9774}, {9756,11285}, {9821,12122}, {9873,10347}, {12192,12193}
X(12203) = reflection of X(i) in X(j) for these (i,j): (12110,3398), (12195,12197)
X(12203) = X(20)-of-5th-anti-Brocard-triangle
X(12203) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,98,1078), (3,11257,99), (4,182,83), (4,10359,10358), (182,10358,10359), (3398,12110,12150), (3522,7793,8722), (4027,6655,10350), (5025,10131,10352), (10358,10359,83)
The reciprocal orthologic center of these triangles is X(3).
X(12204) lies on these lines: {14,32}, {61,384}, {83,619}, {98,5469}, {182,5474}, {530,12191}, {531,11300}, {542,12201}, {617,7787}, {1078,6670}, {2080,6774}, {5182,9114}, {5613,10796}, {6269,10793}, {6271,10792}, {6773,10788}, {7974,10800}, {9900,10789}, {9915,10790}, {10061,10801}, {10077,10802}, {11364,11706}, {11380,12141}
X(12204) = X(14)-of-5th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12205) lies on these lines: {13,32}, {62,384}, {83,618}, {98,5470}, {182,5473}, {530,11299}, {531,12191}, {542,12201}, {616,7787}, {1078,6669}, {2080,6771}, {5182,9116}, {5617,10796}, {6268,10793}, {6270,10792}, {6770,10788}, {7975,10800}, {9901,10789}, {9916,10790}, {10062,10801}, {11364,11705}, {11380,12142}
X(12205) = X(13)-of-5th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12206) lies on these lines: {2,32}, {6,10131}, {98,6249}, {182,12122}, {194,5039}, {384,732}, {3398,7470}, {3972,6309}, {4027,5007}, {5171,9751}, {5969,7839}, {6274,10793}, {6275,10792}, {6287,9863}, {7745,9478}, {7977,10800}, {9903,10789}, {9918,10790}, {10064,10801}, {10080,10802}, {11380,12144}
X(12206) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (83,1078,6704), (83,6308,2), (2896,7787,83), (10350,12150,7787)
X(12206) = X(83)-of-5th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12207) lies on these lines: {32,1297}, {83,132}, {98,127}, {112,182}, {2794,4027}, {2799,12176}, {2806,12199}, {3320,10799}, {9517,12192}, {9530,12150}, {11380,12145}
X(12207) = X(1297)-of-5th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12208) lies on these lines: {32,54}, {83,1209}, {98,3574}, {182,7691}, {195,11842}, {539,12150}, {1078,6689}, {1154,3398}, {2080,10610}, {2888,7787}, {6276,10793}, {6277,10792}, {6288,10796}, {7979,10800}, {9905,10789}, {9920,10790}, {10066,10801}, {10082,10802}, {10628,12192}, {11380,11576}
X(12208) = X(54)-of-5th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(79).
X(12209) lies on these lines: {32,10266}, {11380,12146}
X(12209) = X(10266)-of-5th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12210) lies on these lines: {32,486}, {83,642}, {98,6251}, {182,12123}, {487,7787}, {1078,6119}, {3564,12193}, {6280,10793}, {6281,10792}, {6290,10796}, {7980,10800}, {9906,10789}, {9921,10790}, {10067,10801}, {10083,10802}, {11380,12147}
X(12210) = X(486)-of-5th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12211) lies on these lines: {32,485}, {83,641}, {98,6250}, {182,12124}, {488,7787}, {1078,6118}, {3564,12193}, {6278,10793}, {6279,10792}, {6289,10796}, {7981,10800}, {9907,10789}, {9922,10790}, {10068,10801}, {10084,10802}, {11380,12148}
X(12211) = X(485)-of-5th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12212) lies on these lines: {3,6}, {31,7077}, {69,7787}, {83,141}, {98,5306}, {110,251}, {159,10790}, {384,732}, {518,12194}, {524,6661}, {542,12201}, {611,10801}, {613,10802}, {698,7760}, {729,12074}, {755,11636}, {1078,3589}, {1184,3066}, {1352,10796}, {1353,12177}, {1386,11364}, {1469,5332}, {1501,11003}, {1503,12110}, {1613,5651}, {1843,11380}, {1992,12151}, {2211,10312}, {2781,12192}, {3056,7296}, {3124,5354}, {3242,10800}, {3329,10007}, {3407,7766}, {3416,10791}, {3564,12193}, {3618,7793}, {3751,10789}, {3763,7776}, {3972,4048}, {3981,5359}, {4027,5969}, {5031,7785}, {5103,7828}, {5182,8584}, {5846,12195}, {6179,8177}, {6308,8362}, {6636,11205}, {6776,10788}, {7837,10334}, {7893,10345}, {9225,9463}, {9830,12191}, {10358,10516}, {10359,10519}
X(12212) = reflection of X(i) in X(j) for these (i,j): (6,5007), (7768,141)
X(12212) = X(6)-of-5th-anti-Brocard-triangle
X(12212) = inverse-in-circle-{{X(371),X(372),PU(1),PU(39)}} of X(9821)
X(12212) = inverse-in-circle-{{X(1687),X(1688),PU(1),PU(2)}} of X(5092)
X(12212) = X(23)-of-X(6)PU(1)
X(12212) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,32,1691), (6,1691,5038), (6,2076,39), (6,5017,3094), (32,5007,3398), (32,5039,6), (251,3051,1915), (371,372,9821), (1351,11842,182), (1687,1688,5092), (1915,3051,2056), (3094,5017,5104), (10792,10793,32)
The reciprocal orthologic center of these triangles is X(5617).
X(12213) lies on these lines: {30,12214}, {182,3642}, {298,619}, {530,12151}, {531,5182}, {533,1691}, {623,6777}, {4027,5978}, {6109,10352}, {9988,10131}
X(12213) = X(13)-of-6th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(5613).
X(12214) lies on these lines: {30,12213}, {182,3643}, {299,618}, {530,5182}, {531,12151}, {532,1691}, {624,6778}, {4027,5979}, {6108,10352}, {9989,10131}
X(12214) = X(14)-of-6th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(98).
X(12215) lies on these lines: {3,69}, {6,194}, {23,10330}, {32,6309}, {63,7019}, {76,182}, {99,511}, {110,2868}, {141,5116}, {147,325}, {183,5085}, {184,305}, {193,3552}, {315,7470}, {323,4576}, {350,1428}, {385,732}, {419,3978}, {450,6331}, {524,2076}, {525,3049}, {538,1692}, {542,5152}, {736,2458}, {1003,1992}, {1078,5092}, {1352,7763}, {1570,10754}, {1909,2330}, {2024,10352}, {2396,5967}, {2456,2782}, {3094,7783}, {3098,7782}, {3292,4563}, {3329,10334}, {3589,7797}, {3618,5286}, {3619,11285}, {3734,5034}, {3763,7945}, {3818,7752}, {3972,5039}, {5012,8024}, {5028,7781}, {5031,7925}, {5033,7751}, {5052,7816}, {5058,6318}, {5062,6314}, {5111,5969}, {5162,7813}, {5651,11059}, {6230,8294}, {6231,8293}, {7757,10000}, {7779,10997}, {7809,11645}, {9464,11003}, {9983,10131}, {10007,12055}
X(12215) = reflection of X(i) in X(j) for these (i,j): (69,6393), (385,1691), (1691,5026), (5207,325), (6393,6390), (10754,1570), (11646,5031)
X(12215) = X(1916)-of-6th-anti-Brocard-triangle
X(12215) = crosspoint of X(147) and X(194) wrt both the excentral and anticomplementary triangles
X(12215) = crossdifference of every pair of points of line X(882)X(1843)
X(12215) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,4048,384), (141,5116,7824), (193,3552,5017), (325,5989,5999), (3926,6776,69), (4027,9865,385)
The reciprocal orthologic center of these triangles is X(147).
X(12216) lies on these lines: {6,76}, {69,8150}, {182,2896}, {511,8290}, {754,2458}, {4027,9866}, {5039,10334}, {7779,10352}, {7905,12212}, {9990,10131}, {10722,12177}
X(12216) = X(11606)-of-6th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(6231).
X(12217) lies on these lines: {182,6229}, {642,7769}, {2462,5182}, {4027,9867}, {9991,10131}
The reciprocal orthologic center of these triangles is X(6230).
X(12218) lies on these lines: {182,6228}, {641,7769}, {2461,5182}, {4027,9868}, {9992,10131}
The reciprocal orthologic center of these triangles is X(3581).
X(12219) lies on these lines: {2,1986}, {3,3043}, {4,7723}, {20,5663}, {22,399}, {69,146}, {74,323}, {110,5562}, {113,7731}, {125,5889}, {155,3047}, {185,9706}, {265,1154}, {511,10296}, {858,10264}, {1112,3091}, {1216,11562}, {1511,10298}, {2777,12111}, {3060,7687}, {3100,7727}, {3101,7724}, {3448,11411}, {3543,12133}, {5876,7728}, {5890,6699}, {5891,11557}, {5972,11444}, {6243,10113}, {9976,11416}, {10117,11441}, {10620,11413}, {10657,11420}, {10658,11421}, {10721,12162}
X(12219) = anticomplement of X(1986)
X(12219) = orthologic center of these triangles: 1st anti-circumperp to orthocentroidal
X(12219) = X(80)-of-1st-anti-circumperp-triangle if ABC is acute
X(12219) = reflection of X(i) in X(j) for these (i,j): (4,7723), (110,5562), (5889,125), (6243,10113), (7722,3), (7728,5876), (7731,113), (10721,12162), (11562,1216), (12121,6101)
X(12219) = {X(7731), X(11459)}-harmonic conjugate of X(113)
The reciprocal orthologic center of these triangles is X(576).
X(12220) lies on these lines: {2,1843}, {3,6403}, {4,9967}, {6,22}, {20,185}, {23,1974}, {51,10565}, {66,69}, {74,3565}, {110,159}, {141,858}, {160,3001}, {182,7488}, {394,9924}, {542,12219}, {805,2697}, {1205,3448}, {1350,7691}, {1351,7592}, {1352,11444}, {1353,6243}, {1469,4296}, {1503,12111}, {1995,7716}, {2071,3098}, {2876,4329}, {3056,3100}, {3101,3779}, {3153,3818}, {3564,11412}, {3567,5050}, {3589,9971}, {3618,5640}, {3620,3917}, {3867,5133}, {4260,7520}, {5092,10298}, {5093,10263}, {5562,5921}, {6101,11898}, {6563,9009}, {6636,8541}, {7401,11387}, {8538,12088}, {8681,12058}, {10625,11411}, {11470,12087}
X(12220) = reflection of X(i) in X(j) for these (i,j): (4,9967), (69,3313), (193,6467), (1843,11574), (3448,1205), (5889,6776), (5921,5562), (6243,1353), (6403,3), (9973,141), (11898,6101)
X(12220) = anticomplement of X(1843)
X(12220) = X(7)-of-1st-anti-circumperp-triangle if ABC is acute
X(12220) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (69,3313,2979), (141,9973,11188), (1843,11574,2), (3618,9969,5640), (12223,12224,20)
The reciprocal orthologic center of these triangles is X(3).
X(12221) lies on these lines: {2,371}, {3,12169}, {4,193}, {8,9906}, {20,6463}, {23,9921}, {52,6239}, {69,3071}, {385,7000}, {488,6561}, {489,3053}, {490,5860}, {492,6337}, {1132,1271}, {1270,11294}, {1992,3070}, {1993,3092}, {3091,6290}, {3146,5870}, {3522,12123}, {3620,7388}, {3623,7980}, {3832,6202}, {5032,7581}, {6289,6462}, {6406,8681}, {6423,7586}, {6995,8948}, {7374,7774}, {7389,7582}, {7584,11291}
X(12221) = reflection of X(i) in X(j) for these (i,j): (8,9906), (487,486), (6281,6251), (12222,2996)
X(12221) = anticomplement of X(487)
X(12221) = {X(4),X(193)}-harmonic conjugate of X(12222)
X(12221) = orthic-to-1st-anti-circumperp similarity image of X(487)
The reciprocal orthologic center of these triangles is X(3).
X(12222) lies on these lines: {2,372}, {3,12170}, {4,193}, {8,9907}, {20,6462}, {23,9922}, {52,6400}, {69,3070}, {385,7374}, {487,6560}, {489,5861}, {490,3053}, {491,6337}, {1131,1270}, {1271,11293}, {1992,3071}, {1993,3093}, {3091,6289}, {3146,5871}, {3522,12124}, {3620,7389}, {3623,7981}, {3832,6201}, {5032,7582}, {6290,6463}, {6291,8681}, {6424,7585}, {6995,8946}, {7000,7774}, {7388,7581}, {7583,11292}
X(12222) = reflection of X(i) in X(j) for these (i,j): (8,9907), (488,485), (6278,6250), (12221,2996)
X(12222) = anticomplement of X(488)
X(12222) = {X(4),X(193)}-harmonic conjugate of X(12221)
X(12222) = orthic-to-1st-anti-circumperp similarity image of X(488)
The reciprocal orthologic center of these triangles is X(3).
X(12223) lies on these lines: {2,6291}, {3,6239}, {20,185}, {22,1151}, {489,2979}, {2071,7690}, {3060,6459}, {3100,6283}, {3101,6252}, {3565,9733}, {4296,7362}, {9974,11416}, {10667,11420}, {10668,11421}
X(12223) = reflection of X(6239) in X(3)
X(12223) = anticomplement of X(6291)
X(12223) = {X(20),X(12220)}-harmonic conjugate of X(12224)
X(12223) = X(176)-of-1st-anti-circumperp-triangle if ABC is acute
X(12223) = orthic-to-1st-anti-circumperp similarity image of X(6291)
The reciprocal orthologic center of these triangles is X(3).
X(12224) lies on these lines: {2,6406}, {3,6400}, {20,185}, {22,1152}, {490,2979}, {2071,7692}, {3060,6460}, {3100,6405}, {3101,6404}, {3565,9732}, {4296,7353}, {9975,11416}, {10671,11420}, {10672,11421}
X(12224) = reflection of X(6400) in X(3)
X(12224) = anticomplement of X(6406)
X(12224) = {X(20),X(12220)}-harmonic conjugate of X(12223)
X(12224) = X(175)-of-1st-anti-circumperp-triangle if ABC is acute
X(12224) = orthic-to-1st-anti-circumperp similarity image of X(6406)
The reciprocal orthologic center of these triangles is X(4). As a point of the Euler line, X(12225) has Shinagawa coefficients: (E+2*F, -2*E-6*F).
X(12225) lies on these lines: {2,3}, {52,12022}, {343,6145}, {1141,8800}, {1503,12111}, {1568,10282}, {2697,11635}, {3070,11417}, {3071,11418}, {3100,6284}, {3101,6253}, {3164,7823}, {4296,7354}, {5254,10313}, {5318,11420}, {5321,11421}, {5523,10316}, {5596,6225}, {5640,11745}, {5654,9707}, {5889,6146}, {6247,11440}, {6696,11454}, {8550,11416}, {9820,11464}, {9833,11441}, {11064,11449}, {11457,12163}, {11459,12134}
X(12225) = reflection of X(i) in X(j) for these (i,j): (3146,1885), (5889,6146), (6240,3)
X(12225) = anticomplement of X(3575)
X(12225) = X(65)-of-1st-anti-circumperp-triangle if ABC is acute
X(12225) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,7507,2), (4,20,22), (4,376,3547), (4,7404,7566), (4,7503,5133), (20,1370,11413), (20,2071,550), (20,3153,7488), (20,7396,3522), (22,858,7495), (2071,7574,858), (3153,7488,5), (3627,7403,4), (5094,7396,858), (6816,7487,1995), (7404,7566,5133), (7503,7566,7404)
The reciprocal orthologic center of these triangles is X(6243).
X(12226) lies on these lines: {2,6152}, {3,6242}, {20,1154}, {22,195}, {52,54}, {69,1225}, {74,10625}, {539,11412}, {1209,7999}, {1493,6243}, {2071,7691}, {2914,12088}, {3091,11576}, {3100,6286}, {3101,6255}, {3153,6288}, {3519,6101}, {4296,7356}, {5889,10619}, {5965,12220}, {6689,7730}, {9977,11416}, {10298,10610}, {10677,11420}, {10678,11421}, {12219,12225}
X(12226) = reflection of X(i) in X(j) for these (i,j): (3519,6101), (5889,10619), (6242,3), (6243,1493)
X(12226) = anticomplement of X(6152)
X(12226) = X(79)-of-1st-anti-circumperp-triangle if ABC is acute
The reciprocal orthologic center of these triangles is X(3581).
X(12227) lies on these lines: {6,13}, {54,74}, {110,389}, {125,7592}, {155,5972}, {184,1986}, {195,12121}, {569,7723}, {578,5663}, {1112,6759}, {1147,1511}, {1181,2777}, {1994,10733}, {2904,11456}, {3043,5890}, {5012,12219}, {5609,11746}, {6467,9934}, {7724,11428}, {7727,11429}, {9306,9826}, {10620,11425}, {11402,12165}
X(12227) = orthologic center of these triangles: anti-Conway to orthocentroidal
X(12227) = {X(6), X(399)}-harmonic conjugate of X(7687)
X(12227) = X(80)-of-anti-Conway-triangle if ABC is acute
The reciprocal orthologic center of these triangles is X(10112).
X(12228) lies on these lines: {2,3043}, {3,1986}, {5,49}, {6,1511}, {26,1112}, {74,5012}, {113,184}, {125,569}, {146,11003}, {182,6699}, {389,11536}, {399,9818}, {1147,5972}, {1176,10752}, {1181,5663}, {1539,9934}, {2914,12219}, {5622,10264}, {7503,7723}, {11402,12168}, {11818,12140}
X(12228) = X(104)-of-anti-Conway-triangle if ABC is acute
X(12228) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (49,567,12022), (265,11597,110), (567,11597,265)
The reciprocal orthologic center of these triangles is X(3).
X(12229) lies on these lines: {3,8908}, {182,486}, {184,487}, {642,9306}, {5012,12221}, {6290,6759}, {11402,12169}
X(12229) = orthic-to-anti-Conway similarity image of X(487)
The reciprocal orthologic center of these triangles is X(3).
X(12230) lies on these lines: {182,485}, {184,488}, {641,9306}, {3564,12229}, {5012,12222}, {6289,6759}, {11402,12170}
X(12230) = orthic-to-anti-Conway similarity image of X(488)
The reciprocal orthologic center of these triangles is X(3).
X(12231) = {3,6}, {54,6239}, {184,6291}, {485,8909}, {5012,12223}, {6252,11428}, {6283,11429}, {9306,9823}, {11402,12171}
X(12231) = {X(6),X(578)}-harmonic conjugate of X(12232)
X(12231) = X(176)-of-anti-Conway-triangle if ABC is acute
X(12231) = orthic-to-anti-Conway similarity image of X(6291)
The reciprocal orthologic center of these triangles is X(3).
X(12232) lies on these lines: {3,6}, {54,6400}, {184,6406}, {5012,12224}, {6404,11428}, {6405,11429}, {9306,9824}, {11402,12172}
X(12232) = {X(6),X(578)}-harmonic conjugate of X(12231)
X(12232) = X(175)-of-anti-Conway-triangle if ABC is acute
X(12232) = orthic-to-anti-Conway similarity image of X(6406)
The reciprocal orthologic center of these triangles is X(4).
X(12233) lies on these lines: {2,9786}, {4,6}, {5,389}, {12,11436}, {20,3796}, {24,10192}, {25,11745}, {30,578}, {51,235}, {54,6240}, {64,3088}, {113,11746}, {115,8799}, {140,11438}, {141,5562}, {154,7487}, {184,3575}, {185,427}, {343,5889}, {378,5894}, {381,11432}, {382,11426}, {394,6815}, {403,3567}, {511,6823}, {524,12160}, {550,10610}, {568,10024}, {590,6810}, {615,6809}, {631,1192}, {858,10574}, {946,5173}, {1147,7706}, {1350,7400}, {1352,12164}, {1353,10112}, {1368,9729}, {1594,5890}, {1595,6000}, {1596,10110}, {1597,5878}, {1614,7576}, {1620,3524}, {1885,11424}, {1899,7507}, {1907,11381}, {3091,11433}, {3541,6696}, {3589,7395}, {3855,11431}, {3858,7687}, {4846,12085}, {5012,12225}, {5020,9815}, {5064,12174}, {5133,12111}, {5654,6642}, {5891,7405}, {6253,11428}, {6284,11429}, {6644,9820}, {6756,6759}, {6816,10601}, {6831,10478}, {7403,12162}, {7495,7691}, {7544,11441}, {9306,9825}, {9730,11585}, {11402,12173}, {11412,11660}
X(12233) = midpoint of X(4) and X(1181)
X(12233) = reflection of X(3867) in X(5480)
X(12233) = X(958)-of-orthic-triangle if ABC is acute
X(12233) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,1199,12022), (4,7592,6146), (20,11427,11425), (185,427,6247), (185,3574,427), (2883,5480,4), (3541,10605,6696), (5448,5462,5), (5562,7399,141), (6146,7592,8550)
The reciprocal orthologic center of these triangles is X(6243).
X(12234) lies on these lines: {5,11536}, {6,17}, {54,186}, {184,6152}, {539,12161}, {578,1154}, {973,10274}, {1147,1493}, {1181,12173}, {1843,11808}, {1994,5562}, {2904,3574}, {5012,12226}, {6255,11428}, {6286,11429}, {6759,11576}, {7592,10619}, {7691,11430}, {8681,9972}, {9306,9827}, {10610,11438}, {11402,12175}, {11702,11746}, {12227,12233}
X(12234) = X(79)-of-anti-Conway-triangle if ABC is acute
The reciprocal orthologic center of these triangles is X(7387).
X(12235) lies on these lines: {4,52}, {6,1147}, {26,2393}, {51,155}, {143,3564}, {343,1216}, {389,10112}, {539,973}, {569,5892}, {578,9932}, {974,6146}, {1209,10170}, {1843,9908}, {3003,3133}, {3546,5447}, {3567,6193}, {5907,7687}, {5943,9820}, {6217,9930}, {6218,9929}, {7689,10606}, {9730,12118}, {9777,12166}, {9931,11436}, {9938,11438}, {10297,11692}
X(12235) = midpoint of X(52) and X(68)
X(12235) = reflection of X(i) in X(j) for these (i,j): (1147,5462), (1216,5449)
X(12235) = orthologic center of these triangles: 2nd anti-Conway to 2nd Hyacinth
X(12235) = {X(6), X(9937)}-harmonic conjugate of X(1147)
X(12235) = X(84)-of-2nd-anti-Conway-triangle if ABC is acute
The reciprocal orthologic center of these triangles is X(10112).
X(12236) lies on these lines: {4,94}, {5,11746}, {6,1511}, {30,974}, {51,113}, {52,125}, {74,3060}, {110,3567}, {389,11800}, {511,6699}, {541,11807}, {542,9969}, {567,12006}, {1154,2072}, {1216,6723}, {1353,2854}, {1493,11597}, {1994,3043}, {2071,3581}, {2777,5446}, {2781,10264}, {3047,3518}, {3548,6101}, {5462,5972}, {5889,7723}, {5890,10733}, {7530,9934}, {7731,9140}, {9777,12168}, {10111,12140}, {10114,11225}, {10263,12041}, {11262,11804}
X(12236) = midpoint of X(i) and X(j) for these {i,j}: {52,125}, {265,1986}, {389,11800}, {5446,11806}, {5889,7723}, {6102,10113}, {10111,12140}, {10263,12041}
X(12236) = reflection of X(i) in X(j) for these (i,j): (5,11746), (1112,143), (1216,6723), (1511,9826), (5972,5462)
X(12236) = 1st Droz-Farny circle-inverse-of-X(3448)
X(12236) = X(119)-of-orthic-triangle if ABC is acute
X(12236) = X(104)-of-2nd-anti-Conway-triangle if ABC is acute
X(12236) = anticenter of the cyclic quadrilateral consisting of the vertices of the orthic triangle and X(125)
X(12236) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (265,568,1986), (5504,6644,1511)
The reciprocal orthologic center of these triangles is X(3).
X(12237) lies on these lines: {6,12229}, {51,487}, {486,511}, {642,5943}, {3060,12221}, {3564,5446}, {3819,6119}, {5907,6251}, {6290,10110}, {9729,12123}, {9777,12169}
X(12237) = reflection of X(i) in X(j) for these (i,j): (5907,6251), (6290,10110), (12123,9729)
X(12237) = orthic-to-2nd-anti-Conway similarity image of X(487)
The reciprocal orthologic center of these triangles is X(3).
X(12238) lies on these lines: {6,12230}, {51,488}, {485,511}, {641,5943}, {3060,12222}, {3564,5446}, {3819,6118}, {5907,6250}, {6289,10110}, {9729,12124}, {9777,12170}
X(12238) = reflection of X(i) in X(j) for these (i,j): (5907,6250), (6289,10110), (12124,9729)
X(12238) = orthic-to-2nd-anti-Conway similarity image of X(488)
The reciprocal orthologic center of these triangles is X(3).
X(12239) lies on these lines: {3,6}, {51,3071}, {155,8276}, {185,3070}, {486,5462}, {590,5562}, {1147,9682}, {1154,8981}, {1216,5418}, {1587,5890}, {1588,3567}, {2781,8991}, {3060,6459}, {3068,5889}, {5420,5892}, {5446,6561}, {5891,10576}, {5943,9823}, {5946,7584}, {6102,7583}, {6252,11435}, {6283,11436}, {6457,8577}, {6460,10574}, {6564,12162}, {8252,11695}, {8253,11793}, {9540,11412}, {9683,9687}, {9777,12171}
X(12239) = {X(6),X(389)}-harmonic conjugate of X(12240)
X(12239) = X(176)-of-2nd-anti-Conway-triangle if ABC is acute
X(12239) = orthic-to-2nd-anti-Conway similarity image of X(6291)
The reciprocal orthologic center of these triangles is X(3).
X(12240) lies on these lines: {3,6}, {51,3070}, {155,8277}, {185,3071}, {485,5462}, {615,5562}, {1216,5420}, {1587,3567}, {1588,5890}, {3060,6460}, {3069,5889}, {5418,5892}, {5446,6560}, {5891,10577}, {5943,9824}, {5946,7583}, {6102,7584}, {6404,11435}, {6405,11436}, {6458,8576}, {6459,10574}, {6565,12162}, {8252,11793}, {8253,11695}, {8981,12006}, {8998,9826}, {9777,12172}
X(12240) = {X(6),X(389)}-harmonic conjugate of X(12239)
X(12240) = X(175)-of-2nd-anti-Conway-triangle if ABC is acute
X(12240) = orthic-to-2nd-anti-Conway similarity image of X(6406)
The reciprocal orthologic center of these triangles is X(4).
Let A'B'C' be the midheight triangle. Let AB, AC be the orthogonal projections of A' on CA, AB, resp. Define BC, BA, CA, CB cyclically. Let A" = CAAC∩ABBA, and define B" nad C" cyclically. Triangle A"B"C" is homothetic to ABC at X(6). X(12241) = X(4)-of-A"B"C". (Randy Hutson, March 29, 2020)
X(12241) lies on these lines: {2,11425}, {4,6}, {5,578}, {12,11429}, {20,9786}, {30,143}, {51,3575}, {54,403}, {68,9818}, {140,11430}, {141,7395}, {154,3089}, {182,6823}, {184,235}, {185,1885}, {230,1970}, {265,5576}, {343,7503}, {376,1192}, {378,6696}, {381,11426}, {382,11432}, {394,6816}, {427,11424}, {524,5562}, {550,11438}, {567,10024}, {590,6809}, {615,6810}, {1211,7549}, {1352,11479}, {1495,10619}, {1593,1899}, {1596,6759}, {1598,9833}, {1620,3528}, {1746,6831}, {1853,3088}, {1907,11550}, {3060,12225}, {3091,11427}, {3542,10192}, {3564,5907}, {3567,6240}, {3589,7399}, {3629,12160}, {3850,7687}, {5085,7400}, {5462,9826}, {5894,10605}, {5943,9825}, {6253,11435}, {6284,11436}, {6523,6618}, {6642,12118}, {6756,10110}, {6815,10601}, {7553,11750}, {7576,9781}, {9777,12173}
X(12241) = midpoint of X(i) and X(j) for these {i,j}: {4,6146}, {185,1885}, {5907,10112}, {7553,11750}
X(12241) = reflection of X(i) in X(j) for these (i,j): (3575,11745), (6756,10110), (12024,12022)
X(12241) = X(960)-of-orthic-triangle if ABC is acute
X(12241) = X(65)-of-2nd-anti-Conway-triangle if ABC is acute
X(12241) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,6,12233), (4,1181,2883), (4,6776,1498), (4,10982,5480), (4,12022,6146), (20,11433,9786), (51,3575,11745), (397,398,1990), (1587,1588,1249), (1593,1899,6247), (1885,11245,185), (2883,8550,1181), (3070,3071,53)
The reciprocal orthologic center of these triangles is X(6243).
Let A'B'C' be the reflection triangle. Let Oa be the circle centered at A' and tangent to BC, and define Ob, Oc cyclically. X(12242) is the radical center of circles Oa, Ob, Oc. (Randy Hutson, July 21, 2017)
Let A'B'C' be the medial triangle. Let Ba and Ca be the orthogonal projections of B' and C' on line BC, resp. Let (Oa) be the circle with segment BaCa as diameter. Define (Ob) and (Oc) cyclically. X(12242) is the radical center of circles (Oa), (Ob), (Oc). (Randy Hutson, November 2, 2017)
X(12242) lies on these lines: {2,11431}, {4,54}, {5,539}, {6,17}, {51,6152}, {125,1199}, {140,389}, {397,6116}, {398,6117}, {468,973}, {542,5576}, {550,10610}, {575,11585}, {576,3549}, {974,10628}, {1487,7604}, {1657,11425}, {2888,5056}, {2917,3517}, {3060,12226}, {3090,11271}, {3523,7691}, {3567,6242}, {3628,10275}, {3850,7687}, {3851,6288}, {4857,11429}, {5449,11225}, {5462,5972}, {5476,7529}, {5943,9820}, {6217,6276}, {6218,6277}, {6255,11435}, {6286,11436}, {9777,12175}, {9813,9972}, {9905,11522}, {9969,11808}, {10110,11576}, {10114,11702}, {11064,11695}
X(12242) = midpoint of X(i) and X(j) for these {i,j}: {4,10619}, {5,1493}, {54,3574}, {125,2914}, {140,11803}, {195,1209}, {11576,11577}, {11702,11804}
X(12242) = reflection of X(i) in X(j) for these (i,j): (6689,8254), (11576,10110)
X(12242) = trilinear pole, wrt half-altitude triangle, of orthic axis
X(12242) = X(3647)-of-orthic-triangle if ABC is acute
X(12242) = X(79)-of-2nd-anti-Conway-triangle if ABC is acute
X(12242) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,54,10619), (6,195,12234), (17,18,233), (195,1656,3519), (1656,3519,1209), (3574,10619,4), (8254,11803,140)
The reciprocal orthologic center of these triangles is X(9855).
X(12243) lies on these lines: {2,2782}, {3,7616}, {4,542}, {20,8596}, {24,9876}, {30,148}, {40,2796}, {76,9302}, {98,376}, {99,3524}, {110,11656}, {114,5071}, {115,3545}, {147,381}, {338,5648}, {388,10054}, {497,10070}, {511,11054}, {515,9875}, {530,6773}, {531,6770}, {631,2482}, {3090,5461}, {3455,7556}, {3528,10992}, {3529,10991}, {3543,5984}, {3564,8352}, {3839,6033}, {5182,10359}, {5286,6034}, {5523,6761}, {5657,9881}, {6248,7827}, {6776,7620}, {7487,12132}, {7615,9744}, {7790,11178}, {7967,9884}, {8550,10488}, {9755,11159}, {9882,10783}, {9883,10784}, {9890,11257}, {10053,10385}, {10304,12042}, {10788,12191}, {11179,11185}, {11180,11646}
X(12243) = midpoint of X(i) and X(j) for these {i,j}: {20,8596}, {148,11177}, {3543,5984}
X(12243) = reflection of X(i) in X(j) for these (i,j): (2,11632), (4,671), (99,6055), (110,11656), (147,381), (376,98), (2482,11623), (3543,6321), (6054,115), (8591,3), (9862,11177), (10488,8550), (11177,12188), (11180,11646)
X(12243) = anticomplement of X(8724)
X(12243) = orthologic center of these triangles: anti-Euler to McCay
X(12243) = X(671)-of-anti-Euler-triangle
X(12243) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (99,6055,3524), (114,9166,5071), (115,6054,3545), (148,12188,9862)
The reciprocal orthologic center of these triangles is X(12112).
X(12244) lies on these lines: {2,7728}, {3,146}, {4,74}, {20,5663}, {24,9919}, {30,3448}, {67,11738}, {110,376}, {113,631}, {185,7731}, {186,10117}, {265,3146}, {382,10264}, {388,10065}, {399,550}, {477,1138}, {497,10081}, {515,9904}, {542,11001}, {690,9862}, {974,11431}, {1181,2914}, {1511,3522}, {1539,3091}, {2771,9961}, {2781,6776}, {2931,12088}, {2935,3520}, {3028,4294}, {3060,11806}, {3090,6699}, {3431,10293}, {3524,5972}, {3529,11411}, {3534,9143}, {3543,10113}, {3567,11807}, {3830,11801}, {4299,7727}, {5071,6723}, {5480,5621}, {5603,11709}, {5655,10304}, {6225,9934}, {6241,10628}, {7487,12133}, {7505,11270}, {7552,11454}, {7577,10606}, {7725,10783}, {7726,10784}, {7967,7978}, {10295,12112}, {10323,12168}, {10574,11557}, {10788,12192}
X(12244) = reflection of X(i) in X(j) for these (i,j): (4,74), (74,10990), (146,3), (382,10264), (399,550), (2935,5894), (3146,265), (3448,10620), (6225,9934), (7728,12041), (7731,185), (9143,3534), (10721,125), (12112,10295)
X(12244) = anticomplement of X(7728)
X(12244) = X(74)-of-anti-Euler-triangle
X(12244) = orthologic center of these triangles: anti-Euler to orthocentroidal
X(12244) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (74,10721,125), (125,10721,4), (7728,12041,2)
The reciprocal orthologic center of these triangles is X(10).
X(12245) lies on these lines: {1,631}, {2,1482}, {3,145}, {4,8}, {5,3617}, {7,7317}, {10,3090}, {20,952}, {21,10679}, {40,376}, {46,3476}, {55,6875}, {65,1056}, {78,6927}, {80,5225}, {100,6942}, {104,5854}, {140,3622}, {149,6928}, {165,3633}, {239,7397}, {390,5729}, {404,10680}, {443,10597}, {495,6937}, {496,6963}, {497,5697}, {498,11009}, {515,3529}, {516,3625}, {528,11827}, {529,11826}, {758,12115}, {920,3486}, {938,9957}, {946,3545}, {953,6079}, {956,6906}, {960,6898}, {999,6940}, {1006,3295}, {1058,3057}, {1075,3176}, {1125,3533}, {1145,5730}, {1159,11036}, {1210,7962}, {1317,5204}, {1320,6891}, {1350,9053}, {1385,3241}, {1389,6852}, {1512,6736}, {1697,3488}, {1698,11224}, {1699,4668}, {1766,5839}, {2077,8666}, {2093,10106}, {2095,6904}, {2098,3086}, {2099,3085}, {2550,6901}, {2551,3878}, {2800,5904}, {2802,6903}, {2886,6874}, {2975,6950}, {3088,11396}, {3091,4678}, {3149,8158}, {3242,10519}, {3244,3576}, {3245,4299}, {3296,5559}, {3340,3487}, {3428,3913}, {3485,8164}, {3523,3623}, {3525,3616}, {3526,10283}, {3528,3579}, {3544,9955}, {3600,6955}, {3626,3855}, {3634,9624}, {3635,10164}, {3656,5071}, {3661,7402}, {3817,4691}, {3820,6975}, {3868,6916}, {3876,6939}, {3877,5084}, {3880,6899}, {3885,6865}, {3889,10202}, {3893,7957}, {3940,6848}, {4004,9776}, {4007,10445}, {4189,11849}, {4293,10944}, {4294,10950}, {4295,5252}, {4311,5128}, {4323,11374}, {4345,5704}, {4511,6880}, {4677,5691}, {4816,9589}, {4853,6769}, {4861,6977}, {5044,5804}, {5067,5734}, {5087,7704}, {5126,6049}, {5288,5450}, {5289,8256}, {5550,11231}, {5552,6949}, {5601,11253}, {5602,11252}, {5604,10518}, {5605,10517}, {5656,7973}, {5658,7971}, {5687,6905}, {5714,9578}, {5722,9785}, {5727,10624}, {5759,5853}, {5761,6856}, {5763,6844}, {5768,6764}, {5789,6847}, {5836,6854}, {5837,9623}, {5846,6776}, {6734,6956}, {6735,6969}, {6743,6766}, {6825,10528}, {6873,7680}, {6883,12000}, {6896,7686}, {6920,9708}, {6932,10942}, {6943,10943}, {6946,9709}, {6952,10527}, {6989,10587}, {7487,12135}, {7512,8193}, {7709,7976}, {8128,11924}, {8192,10323}, {8715,11012}, {9669,11545}, {9798,12088}, {9997,10357}, {10175,11522}, {10359,10800}, {10588,11280}, {10785,10912}, {10788,12195}, {11822,11844}, {11823,11843}
X(12245) = midpoint of X(i) and X(j) for these {i,j}: {20,3621}, {3632,7991}, {3893,7957}
X(12245) = reflection of X(i) in X(j) for these (i,j): (1,11362), (4,8), (145,3), (944,40), (962,355), (1482,5690), (3241,3654), (3529,6361), (3633,5882), (4301,3626), (5881,3625), (6361,7991), (7982,10), (8148,5), (10698,1145), (11531,946)
X(12245) = anticomplement of X(1482)
X(12245) = orthologic center of these triangles: anti-Euler to 2nd Schiffler
X(12245) = X(8)-of-anti-Euler-triangle
X(12245) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,5657,631), (1,9588,10165), (1,11362,5657), (2,1482,10595), (3,145,7967), (8,962,355), (8,3869,3421), (8,11415,5176), (10,5603,3090), (10,7982,5603), (40,944,376), (100,11249,6942), (140,10247,3622), (165,3633,5882), (355,962,4), (1482,5690,2), (3419,5758,4), (5080,10525,4), (5175,5812,4), (5697,10573,497)
The reciprocal orthologic center of these triangles is X(40).
Let A'B'C' be the Hutson-extouch triangle. Let La be the tangent to the A-excircle at A', and define B' and C' cyclically. Let A" = Lb∩Lc, B" = Lc∩La, C" = La∩Lb. Triangle A"B"C" is homothetic to ABC at X(57), and X(12246) = X(4)-of-A"B"C". (Randy Hutson, July 21, 2017)
X(12246) lies on these lines: {1,7955}, {2,6259}, {3,5658}, {4,57}, {20,72}, {24,9910}, {30,9799}, {104,10309}, {376,1490}, {388,1709}, {443,3358}, {452,10167}, {497,10085}, {515,3529}, {516,6762}, {631,5316}, {944,3057}, {946,4355}, {1012,3487}, {1158,5657}, {1768,1788}, {2801,3189}, {2829,6253}, {3090,6705}, {3146,5787}, {3304,3649}, {3427,10308}, {3474,4848}, {3600,9856}, {3982,11522}, {4297,5698}, {4298,11372}, {5129,11227}, {5259,5450}, {5714,6847}, {5815,6244}, {5818,6256}, {5927,6904}, {6257,10784}, {6258,10783}, {6865,7171}, {6868,9960}, {6872,11220}, {6916,7330}, {6936,9942}, {7487,12136}, {7704,10785}, {7967,7971}, {10788,12196}, {10884,11111}
X(12246) = reflection of X(i) in X(j) for these (i,j): (4,84), (3146,5787), (5691,9948)
X(12246) = anticomplement of X(6259)
X(12246) = X(84)-of-anti-Euler-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12247) lies on these lines: {1,6952}, {2,6265}, {3,8}, {4,80}, {10,6326}, {11,2099}, {24,9912}, {119,2476}, {145,6972}, {149,517}, {153,355}, {214,631}, {376,12119}, {377,9964}, {388,10044}, {443,9946}, {484,515}, {497,10051}, {519,6264}, {528,5759}, {912,5176}, {938,1387}, {962,10738}, {1056,5083}, {1320,6943}, {1389,6831}, {1478,11571}, {1482,1484}, {1532,11545}, {1537,12019}, {1788,10090}, {2550,2801}, {2802,6903}, {2829,6253}, {2949,5541}, {3036,6937}, {3090,6702}, {3476,10074}, {3485,8068}, {3486,10058}, {3617,10786}, {3632,7993}, {3679,5531}, {3754,6901}, {3878,6902}, {4214,12138}, {5218,7967}, {5289,6963}, {5790,11698}, {5805,6797}, {5840,6361}, {6262,10784}, {6263,10783}, {6906,10950}, {7487,12137}, {9809,10742}, {9963,10993}, {10788,12198}
X(12247) = midpoint of X(i) and X(j) for these {i,j}: {8,9803}, {1768,9897}, {3632,7993}
X(12247) = reflection of X(i) in X(j) for these (i,j): (1,10265), (4,80), (153,355), (944,104), (962,10738), (1482,1484), (1532,11545), (1537,12019), (5541,11362), (6224,3), (6326,10), (7967,11219), (7972,11715), (9809,10742), (9963,10993), (10698,11)
X(12247) = anticomplement of X(6265)
X(12247) = X(80)-of-anti-Euler-triangle
X(12247) = X(6326)-of-outer-Garcia-triangle
X(12247) = inner-Garcia-to-outer-Garcia similarity image of X(4)
X(12247) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (11,10698,5603), (7972,11219,11715), (7972,11715,7967)
The reciprocal orthologic center of these triangles is X(40).
X(12248) lies on the cubic K542 and these lines: {2,10742}, {3,153}, {4,11}, {20,952}, {24,9913}, {30,149}, {80,1788}, {100,376}, {119,631}, {382,1484}, {388,10058}, {390,6938}, {484,515}, {495,6906}, {497,10074}, {516,6264}, {528,11001}, {944,2800}, {1317,4294}, {1387,3600}, {1537,6147}, {2096,11041}, {2771,3648}, {2787,9862}, {2801,5759}, {2802,6361}, {2828,5667}, {3035,3524}, {3090,6713}, {3146,10738}, {3486,11570}, {3488,5083}, {3529,5840}, {4297,6326}, {4996,6876}, {5071,6667}, {5218,6950}, {5225,5533}, {5229,8068}, {5450,6952}, {5603,11715}, {5691,10265}, {5731,6265}, {6256,6949}, {6845,9655}, {6930,11729}, {6965,10269}, {7487,12138}, {10788,12199}
X(12248) = reflection of X(i) in X(j) for these (i,j): (4,104), (153,3), (382,1484), (3146,10738), (5691,10265), (6326,4297), (9809,6265), (10728,11), (12247,1768)
X(12248) = anticomplement of X(10742)
X(12248) = X(104)-of-anti-Euler-triangle
X(12248) = Cundy-Parry Phi transform of X(3563)
X(12248) = Cundy-Parry Psi transform of X(3564)
X(12248) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (11,10728,4), (104,10728,11), (5731,9809,6265)
The reciprocal orthologic center of these triangles is X(40).
X(12249) lies on these lines: {3,9874}, {4,1697}, {376,12120}, {388,10059}, {497,10075}, {515,9898}, {944,7957}, {2951,6361}, {5759,7674}, {7487,12139}, {7967,8000}, {10788,12200}
X(12249) = reflection of X(i) in X(j) for these (i,j): (4,7160), (9874,3)
X(12249) = X(7160)-of-anti-Euler-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12250) lies on these lines: {2,3357}, {3,5656}, {4,64}, {20,2979}, {24,9914}, {30,11411}, {74,3542}, {154,3528}, {376,1498}, {388,10060}, {497,10076}, {515,9899}, {550,11206}, {631,2883}, {1204,3089}, {1294,3346}, {1503,3529}, {1515,6616}, {2777,3146}, {3088,3574}, {3090,6696}, {3091,7703}, {3426,6756}, {3522,6759}, {3524,8567}, {3545,5893}, {3566,5489}, {3962,6001}, {4293,6285}, {4294,7355}, {4846,7404}, {5663,6193}, {5890,11431}, {6145,11738}, {6241,6776}, {6266,10784}, {6267,10783}, {7401,11472}, {7487,11381}, {7967,7973}, {10192,10299}, {10282,10304}, {10788,12202}
X(12250) = reflection of X(i) in X(j) for these (i,j): (4,64), (1498,5894), (3529,5925), (5878,3357), (5895,6247), (6225,3)
X(12250) = anticomplement of X(5878)
X(12250) = X(64)-of-anti-Euler-triangle
X(12250) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6225,5656), (1498,5894,376), (2883,10606,631), (3357,5878,2), (5895,6247,4)
The reciprocal orthologic center of these triangles is X(3).
X(12251) lies on these lines: {2,3095}, {3,194}, {4,69}, {5,3314}, {6,10359}, {20,2782}, {24,9917}, {30,9863}, {39,631}, {40,726}, {83,576}, {98,7751}, {99,5171}, {114,7796}, {140,7806}, {182,7760}, {262,3090}, {343,5117}, {376,538}, {384,10788}, {388,10063}, {394,419}, {497,10079}, {515,9902}, {575,7894}, {698,1350}, {730,944}, {732,6776}, {1078,9737}, {1351,7770}, {1513,3933}, {1569,5206}, {1656,7931}, {1975,11676}, {2080,3552}, {2794,7826}, {3068,3103}, {3069,3102}, {3091,7697}, {3094,5286}, {3097,6684}, {3398,7766}, {3523,11171}, {3524,7757}, {3525,7786}, {3533,6683}, {3545,9466}, {3734,12110}, {3926,5976}, {5097,7878}, {5969,12243}, {6272,10784}, {6273,10783}, {7487,12143}, {7758,8149}, {7781,8722}, {7795,9753}, {7802,9991}, {7967,7976}, {10333,10796}, {10983,11285}
X(12251) = reflection of X(i) in X(j) for these (i,j): (4,76), (20,9821), (194,3), (7709,6194), (7758,8149), (11257,5188)
X(12251) = anticomplement of X(3095)
X(12251) = X(76)-of-anti-Euler-triangle
X(12251) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,194,7709), (194,6194,3), (262,3934,3090), (5188,11257,376), (9821,9983,9862)
The reciprocal orthologic center of these triangles is X(3).
X(12252) lies on these lines: {2,6287}, {3,147}, {4,83}, {20,3095}, {24,9918}, {98,8150}, {376,754}, {382,7864}, {388,10064}, {497,10080}, {515,9903}, {546,7923}, {550,7762}, {631,6292}, {732,6776}, {3090,6704}, {3528,6337}, {3529,7737}, {3796,5117}, {5569,9774}, {6274,10784}, {6275,10783}, {6655,10131}, {7487,12144}, {7791,10334}, {7869,10299}, {7967,7977}, {10788,12206}, {11001,12156}
X(12252) = reflection of X(i) in X(j) for these (i,j): (4,83), (20,8725), (2896,3)
X(12252) = anticomplement of X(6287)
X(12252) = X(83)-of-anti-Euler-triangle
X(12252) = X(6292), X(9751)}-harmonic conjugate of X(631)
The reciprocal orthologic center of these triangles is X(4).
X(12253) lies on these lines: {4,127}, {112,376}, {132,631}, {2781,5596}, {2794,3529}, {2799,9862}, {2806,12248}, {3146,10749}, {3320,4294}, {3524,6720}, {4293,6020}, {7487,12145}, {9517,12244}, {10788,12207}, {11641,12082}
X(12253) = reflection of X(i) in X(j) for these (i,j): (4,1297), (3146,10749)
X(12253) = X(1297)-of-anti-Euler-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12254) lies on these lines: {2,6288}, {3,2888}, {4,54}, {20,1154}, {24,9920}, {30,195}, {49,3153}, {156,11597}, {186,2917}, {265,5944}, {376,539}, {381,8254}, {388,10066}, {389,7730}, {497,10082}, {515,9905}, {631,1209}, {973,11431}, {1141,3459}, {1199,3575}, {1493,3146}, {1511,11565}, {1568,9705}, {1885,12112}, {2914,5895}, {3060,10115}, {3090,6689}, {3431,6145}, {3518,12022}, {3519,3522}, {3520,6247}, {3567,11808}, {3581,11264}, {4299,7356}, {4302,6286}, {5073,11803}, {6153,9730}, {6241,10628}, {6242,6776}, {6276,10784}, {6277,10783}, {7487,11576}, {7552,9927}, {7728,11702}, {7967,7979}, {9862,9985}, {9977,11179}, {10574,11802}, {10788,12208}, {11464,11704}, {11577,12250}
X(12254) = reflection of X(i) in X(j) for these (i,j): (4,54), (54,10619), (2888,3), (6288,10610), (7728,11702)
X(12254) = anticomplement of X(6288)
X(12254) = X(54)-of-anti-Euler-triangle
X(12254) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (54,1614,10274), (6288,10610,2)
The reciprocal orthologic center of these triangles is X(79).
X(12255) lies on these lines: {4,5885}, {5330,12248}, {7487,12146}, {10788,12209}
X(12255) = reflection of X(4) in X(10266)
X(12255) = X(10266)-of-anti-Euler-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12256) lies on these lines: {2,6290}, {3,69}, {4,372}, {20,6463}, {24,9921}, {98,638}, {147,8317}, {182,11292}, {184,1589}, {193,9732}, {376,5860}, {388,10067}, {485,7612}, {497,10083}, {515,9906}, {615,8406}, {631,642}, {637,9991}, {1151,8550}, {1152,1503}, {1181,1578}, {1352,11291}, {1587,6423}, {1588,6421}, {1590,1899}, {3090,6119}, {3102,6459}, {3155,11433}, {3156,11206}, {3592,12007}, {3594,5480}, {5408,7386}, {5871,6813}, {5965,7692}, {6215,11316}, {7374,9748}, {7487,12147}, {7494,11090}, {7967,7980}, {9862,9986}, {9863,11293}, {10788,12210}, {10984,12229}
X(12256) = midpoint of X(i) and X(j) for these {i,j}: {20,12221}, {6280,12123}
X(12256) = reflection of X(i) in X(j) for these (i,j): (4,486), (487,3), (6281,642)
X(12256) = anticomplement of X(6290)
X(12256) = X(486)-of-anti-Euler-triangle
X(12256) = {X(3),X(6776)}-harmonic conjugate of X(12257)
The reciprocal orthologic center of these triangles is X(3).
X(12257) lies on these lines: {2,6222}, {3,69}, {4,371}, {20,6462}, {24,9922}, {98,637}, {147,8316}, {182,11291}, {184,1590}, {193,9733}, {376,5861}, {388,10068}, {486,7612}, {497,10084}, {515,9907}, {590,8414}, {631,641}, {638,9992}, {1151,1503}, {1152,8550}, {1181,1579}, {1352,11292}, {1587,6422}, {1588,6424}, {1589,1899}, {3069,8911}, {3090,6118}, {3103,6460}, {3155,11206}, {3156,11433}, {3592,5480}, {3594,12007}, {5409,7386}, {5870,6811}, {5871,9541}, {5965,7690}, {6214,11315}, {7000,9748}, {7487,12148}, {7494,11091}, {7967,7981}, {9862,9987}, {9863,11294}, {10788,12211}, {10984,12230}
X(12257) = midpoint of X(i) and X(j) for these {i,j}: {20,12222}, {6279,12124}
X(12257) = reflection of X(i) in X(j) for these (i,j): (4,485), (488,3), (6278,641)
X(12257) = anticomplement of X(6289)
X(12257) = X(485)-of-anti-Euler-triangle
X(12257) = {X(3),X(6776)}-harmonic conjugate of X(12256)
The reciprocal orthologic center of these triangles is X(9855).
X(12258) lies on these lines: {1,671}, {2,9881}, {10,5461}, {30,11710}, {115,519}, {350,1111}, {515,9880}, {530,11706}, {531,11705}, {542,946}, {543,551}, {1086,1125}, {1386,9830}, {3027,4870}, {3545,9864}, {3576,12117}, {3616,8591}, {3622,8596}, {3655,6321}, {3656,11632}, {3679,7983}, {4301,11623}, {5184,8859}, {5603,12243}, {5886,8724}, {9876,11365}, {9878,11368}, {9882,11370}, {9883,11371}, {11363,12132}, {11364,12191}
X(12258) = midpoint of X(i) and X(j) for these {i,j}: {1,671}, {551,11599}, {3655,6321}, {3656,11632}, {3679,7983}, {9875,9884}
X(12258) = reflection of X(i) in X(j) for these (i,j): (10,5461), (551,11725), (2482,1125), (11711,551)
X(12258) = complement of X(9881)
X(12258) = X(671)-of-anti-Aquila-triangle
X(12258) = orthologic center of these triangles: anti-Aquila to McCay
X(12258) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,9875,9884), (671,9884,9875), (7983,9166,3679), (11599,11725,11711)
The reciprocal orthologic center of these triangles is X(9833).
X(12259) lies on these lines: {1,68}, {2,9928}, {5,226}, {10,5449}, {155,5886}, {515,9927}, {516,7689}, {539,551}, {1069,11376}, {1125,1147}, {1386,3564}, {3157,11375}, {3576,12118}, {3616,6193}, {3817,5448}, {4297,11709}, {5603,11411}, {5654,8227}, {7352,12047}, {9624,9936}, {9820,11230}, {9908,11365}, {9923,11368}, {9929,11370}, {9930,11371}, {10165,12038}, {11363,12134}, {11364,12193}
X(12259) = midpoint of X(i) and X(j) for these {i,j}: {1,68}, {9896,9933}
X(12259) = reflection of X(i) in X(j) for these (i,j): (10,5449), (1147,1125)
X(12259) = complement of X(9928)
X(12259) = X(68)-of-anti-Aquila-triangle
X(12259) = orthologic center of these triangles: anti-Aquila to 2nd Hyacinth
The reciprocal orthologic center of these triangles is X(40).
X(12260) lies on these lines: {1,5920}, {3,5542}, {10,6767}, {11,1058}, {55,3487}, {200,3646}, {405,4533}, {946,3295}, {954,1490}, {1001,3811}, {1125,6600}, {3576,12120}, {3616,9874}, {3913,10198}, {5603,12249}, {5763,10267}, {6147,11495}, {6743,11108}, {11363,12139}, {11364,12200}
X(12260) = midpoint of X(i) and X(j) for these {i,j}: {1,7160}, {8000,9898}
X(12260) = X(7160)-of-anti-Aquila-triangle
X(12260) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,9898,8000), (7160,8000,9898)
The reciprocal orthologic center of these triangles is X(6102).
X(12261) lies on these lines: {1,265}, {11,113}, {30,11709}, {110,5886}, {125,517}, {355,7984}, {515,10113}, {516,12041}, {542,1386}, {946,5663}, {952,11801}, {1125,1511}, {1385,11735}, {1699,7728}, {1836,10081}, {2807,11806}, {2948,8227}, {3448,5603}, {3576,12121}, {3579,6699}, {3656,7978}, {5901,11720}, {5972,11230}, {6265,10778}, {6723,11231}, {9812,12244}, {10088,11375}, {10091,11376}, {11363,12140}, {11364,12201}
X(12261) = midpoint of X(i) and X(j) for these {i,j}: {1,265}, {355,7984}, {3656,9140}, {6265,10778}
X(12261) = reflection of X(i) in X(j) for these (i,j): (113,9955), (1385,11735), (1511,1125), (3579,6699), (11699,11723), (11720,5901)
X(12261) = X(265)-of-anti-Aquila-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12262) lies on these lines: {1,64}, {3,960}, {10,6696}, {30,12259}, {40,10606}, {57,1854}, {65,4219}, {154,7987}, {165,8567}, {221,3601}, {515,6247}, {516,5894}, {517,3357}, {912,12084}, {1125,2883}, {1192,7713}, {1204,1829}, {1319,6285}, {1385,6000}, {1420,2192}, {1498,3576}, {1503,4297}, {1699,5895}, {1853,5691}, {2646,7355}, {2777,12261}, {3616,6225}, {3817,5893}, {5603,12250}, {5878,5886}, {6266,11371}, {6267,11370}, {7520,9961}, {9914,11365}, {11363,11381}, {11364,12202}
X(12262) = midpoint of X(i) and X(j) for these {i,j}: {1,64}, {7973,9899}
X(12262) = reflection of X(i) in X(j) for these (i,j): (10,6696), (2883,1125
X(12262) = X(64)-of-anti-Aquila-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12263) lies on these lines: {1,76}, {10,3934}, {37,39}, {194,3616}, {262,8227}, {355,7697}, {384,11364}, {385,12194}, {511,946}, {515,6248}, {516,5188}, {519,9466}, {538,551}, {731,9063}, {732,1386}, {962,6194}, {1269,1964}, {1385,2782}, {2140,3836}, {3095,5886}, {3097,3624}, {3576,11257}, {4093,4647}, {5603,12251}, {5969,12258}, {6179,10789}, {6272,11371}, {6273,11370}, {7751,10800}, {7770,10791}, {9917,11365}, {9983,11368}, {11230,11272}, {11363,12143}
X(12263) = midpoint of X(i) and X(j) for these {i,j}: {1,76}, {7976,9902}
X(12263) = reflection of X(i) in X(j) for these (i,j): (10,3934), (39,1125)
X(12263) = X(76)-of-anti-Aquila-triangle
X(12263) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,9902,7976), (76,7976,9902), (3097,3624,7786)
The reciprocal orthologic center of these triangles is X(3).
X(12264) lies on these lines: {1,83}, {10,6704}, {40,9751}, {515,6249}, {551,754}, {732,1386}, {1125,1279}, {2896,3616}, {3576,12122}, {5603,12252}, {5886,6287}, {5901,11710}, {6274,11371}, {6275,11370}, {8150,10800}, {9918,11365}, {11363,12144}, {11364,12206}
X(12264) = midpoint of X(i) and X(j) for these {i,j}: {1,83}, {7977,9903}
X(12264) = reflection of X(i) in X(j) for these (i,j): (10,6704), (6292,1125)
X(12264) = X(83)-of-anti-Aquila-triangle
X(12264) = X(3)-of-1st-Hyacinth-triangle
X(12264) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,9903,7977), (83,7977,9903)
The reciprocal orthologic center of these triangles is X(4).
X(12265) lies on these lines: {1,1297}, {40,10705}, {112,3576}, {127,515}, {132,1125}, {214,2831}, {551,9530}, {1319,6020}, {1385,11722}, {2646,3320}, {2781,11720}, {2794,4297}, {2799,11710}, {2806,11715}, {2825,11712}, {2853,11713}, {5603,12253}, {6720,10165}, {9517,11709}, {9518,11714}, {9523,11716}, {9527,11717}, {9532,11700}, {10780,12119}, {11363,12145}, {11364,12207}
X(12265) = midpoint of X(i) and X(j) for these {i,j}: {1,1297}, {40,10705}, {10780,12119}
X(12265) = reflection of X(i) in X(j) for these (i,j): (132,1125), (11722,1385)
X(12265) = X(1297)-of-anti-Aquila-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12266) lies on these lines: {1,54}, {10,6689}, {195,10246}, {515,3574}, {517,10610}, {539,551}, {952,8254}, {960,1493}, {1125,1209}, {1154,1385}, {2888,3616}, {3576,7691}, {5603,12254}, {5882,12242}, {5886,6288}, {5901,11720}, {6276,11371}, {6277,11370}, {9920,11365}, {9985,11368}, {10628,11709}, {11363,11576}, {11364,12208}
X(12266) = midpoint of X(i) and X(j) for these {i,j}: {1,54}, {7979,9905}
X(12266) = reflection of X(i) in X(j) for these (i,j): (10,6689), (1209,1125)
X(12266) = X(54)-of-anti-Aquila-triangle
The reciprocal orthologic center of these triangles is X(79).
X(12267) lies on these lines: {1,5180}, {11,11263}, {5603,12255}, {11363,12146}, {11364,12209}
X(12267) = midpoint of X(1) and X(10266)
X(12267) = X(10266)-of-anti-Aquila-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12268) lies on these lines: {1,486}, {10,6119}, {56,481}, {487,3616}, {515,6251}, {642,1125}, {1386,3564}, {3576,12123}, {3622,12221}, {5603,12256}, {5886,6290}, {6280,11371}, {6281,9624}, {9921,11365}, {9986,11368}, {11363,12147}, {11364,12210}
X(12268) = midpoint of X(1) and X(486)
X(12268) = reflection of X(642) in X(1125)
X(12268) = X(486)-of-anti-Aquila-triangle
X(12268) = {X(1386),X(5901)}-harmonic conjugate of X(12269)
The reciprocal orthologic center of these triangles is X(3).
X(12269) lies on these lines: {1,485}, {10,6118}, {56,482}, {488,3616}, {515,6250}, {641,1125}, {1386,3564}, {3576,12124}, {3622,12222}, {5603,12257}, {5886,6289}, {6278,9624}, {6279,11370}, {9922,11365}, {9987,11368}, {11363,12148}, {11364,12211}
X(12269) = midpoint of X(1) and X(485)
X(12269) = reflection of X(641) in X(1125)
X(12269) = X(485)-of-anti-Aquila-triangle
X(12269) = {X(1386),X(5901)}-harmonic conjugate of X(12268)
Orthologic centers: X(12270)-X(12431)
Centers X(12270)-X(12431) were contributed by César Eliud Lozada, March 16, 2017.
The reciprocal orthologic center of these triangles is X(3581).
X(12270) lies on these lines: {3,74}, {4,11557}, {20,10628}, {30,7731}, {113,7577}, {125,10574}, {146,1531}, {185,3448}, {265,5890}, {381,11561}, {974,9140}, {1176,5621}, {1539,11455}, {1986,3060}, {1993,12165}, {2781,12220}, {2979,12219}, {3543,11807}, {3567,10113}, {4846,11442}, {5640,7687}, {5889,7722}, {6143,12162}, {7547,11439}, {7724,11445}, {7727,11446}, {9826,11451}, {9976,11443}, {10575,12244}, {10657,11452}, {10658,11453}, {11412,12121}, {11422,12227}
X(12270) = reflection of X(i) in X(j) for these (i,j): (4,11562), (3448,185), (5889,7722), (10733,1986), (11412,12121), (12111,110), (12244,10575)
X(12270) = orthologic center of these triangles: 3rd anti-Euler to orthocentroidal
X(12270) = X(80)-of-3rd-anti-Euler-triangle if ABC is acute
X(12270) = {X(1986), X(10733)}-harmonic conjugate of X(3060)
The reciprocal orthologic center of these triangles is X(7387).
X(12271) lies on these lines: {68,11444}, {110,9937}, {155,3060}, {1147,1199}, {1993,12166}, {2979,11411}, {3167,3567}, {3564,11412}, {5562,8681}, {5640,12235}, {5889,6193}, {6391,7395}, {6403,12160}, {9820,11451}, {9926,11443}, {9931,11446}, {9932,11449}, {9938,11454}, {10659,11452}, {10660,11453}
X(12271) = reflection of X(5889) in X(6193)
X(12271) = X(84)-of-3rd-anti-Euler-triangle if ABC is acute
X(12271) = orthologic center of these triangles: 3rd anti-Euler to 2nd Hyacinth
The reciprocal orthologic center of these triangles is X(576).
X(12272) lies on these lines: {2,6467}, {4,12271}, {6,110}, {22,9924}, {25,6391}, {52,11387}, {66,69}, {157,4558}, {182,11449}, {193,1843}, {489,12224}, {490,12223}, {511,3146}, {524,9973}, {542,12270}, {1350,11440}, {1351,5198}, {1353,3567}, {1992,9969}, {1993,12167}, {3056,11446}, {3098,11454}, {3564,3575}, {3620,7998}, {3629,9971}, {3630,8705}, {3779,11445}, {5093,9781}, {5157,8542}, {5181,6697}, {6515,11382}, {6776,10574}, {9027,11008}, {9822,11451}, {9967,11444}, {10733,12133}, {11412,11898}
X(12272) = reflection of X(i) in X(j) for these (i,j): (193,1843), (5889,6403), (11412,11898), (12111,5921), (12220,69)
X(12272) = anticomplement of X(6467)
X(12272) = X(7)-of-3rd-anti-Euler-triangle if ABC is acute
X(12272) = {X(12276),X(12277)}-harmonic conjugate of X(12111)
X(12272) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (69,12220,2979), (193,1843,3060), (3620,11574,7998)
The reciprocal orthologic center of these triangles is X(10112).
X(12273) lies on these lines: {24,110}, {74,2979}, {113,3060}, {125,11444}, {146,511}, {265,11459}, {399,1154}, {542,12219}, {568,10272}, {631,11806}, {1511,5890}, {1657,5663}, {1993,12168}, {2781,9924}, {3091,11800}, {3448,5562}, {5640,12236}, {6101,10620}, {6241,12121}, {6699,7998}, {9833,10628}, {10625,12244}, {10663,11452}, {10664,11453}, {10733,12133}, {11422,12228}
X(12273) = reflection of X(i) in X(j) for these (i,j): (3448,5562), (5889,110), (6241,12121), (7731,399), (10620,6101), (12244,10625)
X(12273) = X(104)-of-3rd-anti-Euler-triangle if ABC is acute
The reciprocal orthologic center of these triangles is X(3).
X(12274) lies on these lines: {486,7998}, {487,3060}, {642,11451}, {2979,12221}, {3564,12275}, {5640,12237}, {11422,12229}
X(12274) = orthic-to-3rd-anti-Euler similarity image of X(487)
The reciprocal orthologic center of these triangles is X(3).
X(12275) lies on these lines: {485,7998}, {488,3060}, {641,11451}, {1993,12170}, {2979,12222}, {3564,12274}, {5640,12238}, {11422,12230}
X(12275) = orthic-to-3rd-anti-Euler similarity image of X(488)
The reciprocal orthologic center of these triangles is X(3).
X(12276) lies on these lines: {110,1151}, {489,2979}, {511,3146}, {1993,12171}, {3060,6291}, {5640,12239}, {5889,6239}, {6252,11445}, {6283,11446}, {7690,11454}, {9823,11451}, {9974,11443}, {10667,11452}, {10668,11453}, {11422,12231}
X(12276) = reflection of X(5889) in X(6239)
X(12276) = {X(12111),X(12272)}-harmonic conjugate of X(12277)
X(12276) = X(176)-of-3rd-anti-Euler-triangle if ABC is acute
X(12276) = orthic-to-3rd-anti-Euler similarity image of X(6291)
The reciprocal orthologic center of these triangles is X(3).
X(12277) lies on these lines: {110,1152}, {490,2979}, {511,3146}, {1993,12172}, {3060,6406}, {5640,12240}, {5889,6400}, {6404,11445}, {6405,11446}, {7692,11454}, {9824,11451}, {9975,11443}, {10671,11452}, {10672,11453}, {11422,12232}
X(12277) = reflection of X(5889) in X(6400)
X(12277) = {X(12111),X(12272)}-harmonic conjugate of X(12276)
X(12277) = X(175)-of-3rd-anti-Euler-triangle if ABC is acute
X(12277) = orthic-to-3rd-anti-Euler similarity image of X(6406)
The reciprocal orthologic center of these triangles is X(4).
X(12278) lies on these lines: {4,110}, {5,11449}, {20,2888}, {24,9938}, {30,11412}, {186,9927}, {376,11750}, {382,11441}, {550,11454}, {1092,3153}, {1199,7706}, {1204,3448}, {1503,12272}, {1511,10255}, {1885,11439}, {1993,12173}, {2979,12225}, {3060,3575}, {3070,11447}, {3071,11448}, {5059,5921}, {5318,11452}, {5321,11453}, {5640,12241}, {5889,6240}, {6146,10574}, {6253,11445}, {6284,11446}, {7526,8907}, {7577,12038}, {8550,11443}, {9825,11451}, {10024,11464}, {10619,11003}, {11250,12121}, {11422,12233}, {11550,12086}
X(12278) = reflection of X(5889) in X(6240)
X(12278) = X(65)-of-3rd-anti-Euler-triangle if ABC is acute
X(12278) = {X(20), X(11442)}-harmonic conjugate of X(11440)
The reciprocal orthologic center of these triangles is X(389).
X(12279) lies on these lines: {30,5889}, {110,1498}, {143,382}, {184,12086}, {185,3060}, {373,3854}, {376,5447}, {389,3543}, {511,5059}, {548,7999}, {550,11459}, {858,2883}, {1147,7464}, {1181,11422}, {1370,6225}, {1425,9539}, {1499,11450}, {1503,12272}, {1593,5012}, {1614,12084}, {1657,5663}, {1658,11468}, {1993,12174}, {2071,6759}, {2777,12270}, {2918,10323}, {3091,11695}, {3100,7355}, {3357,7488}, {3426,7395}, {3516,6800}, {3522,5907}, {3528,5891}, {3529,12271}, {3534,5876}, {3567,3627}, {3830,9781}, {3832,9729}, {3850,11465}, {3855,5892}, {4296,6285}, {5073,6102}, {5076,5946}, {5422,11403}, {6254,11445}, {7509,11472}, {7527,10984}, {7689,12088}, {7691,9920}, {8549,11443}, {10170,10299}, {10304,11793}, {10539,12112}, {10625,11001}, {10675,11452}, {10676,11453}, {11250,11464}, {11456,12085}, {12082,12163}
X(12279) = reflection of X(i) in X(j) for these (i,j): (4,10575), (3146,185), (5073,6102), (5889,6241), (11412,1657), (12111,20)
X(12279) = anticomplement of X(11381)
X(12279) = X(8)-of-3rd-anti-Euler-triangle if ABC is acute
X(12279) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,11381,11439), (4,10574,5640), (20,12111,2979), (185,3146,3060), (376,12162,11444), (1498,11413,110), (2071,6759,11449), (3357,7488,11454), (3522,5907,7998), (3832,9729,11451)
The reciprocal orthologic center of these triangles is X(6243).
X(12280) lies on these lines: {4,12273}, {52,11271}, {54,6644}, {110,143}, {155,3060}, {382,1154}, {539,5889}, {1350,7691}, {1493,3567}, {1595,11664}, {1993,12175}, {2888,3153}, {2914,10539}, {2979,12226}, {3519,11412}, {5640,12242}, {5965,12272}, {6255,11445}, {6286,11446}, {9827,11451}, {9977,11443}, {10574,10619}, {10677,11452}, {10678,11453}, {11422,12234}, {12270,12278}
X(12280) = reflection of X(i) in X(j) for these (i,j): (5889,6242), (11271,52), (11412,3519)
X(12280) = X(79)-of-3rd-anti-Euler-triangle if ABC is acute
X(12281) lies on these lines: {2,11562}, {3,74}, {4,7730}, {125,5890}, {146,12162}, {185,6143}, {265,5889}, {568,11801}, {578,2914}, {1539,11439}, {1656,11561}, {1986,3567}, {2781,6403}, {2918,8718}, {2979,12121}, {3060,10113}, {3091,11557}, {3153,3448}, {6000,12244}, {7592,12165}, {7687,9781}, {7724,11460}, {7727,11461}, {9826,11465}, {9976,11458}, {10224,10264}, {10657,11466}, {10658,11467}, {11412,12219}, {11423,12227}
X(12281) = reflection of X(i) in X(j) for these (i,j): (110,7723), (146,12162), (399,5876), (5889,265), (6241,74), (7722,125), (7731,4), (11412,12219), (12270,3)
X(12281) = anticomplement of X(11562)
X(12281) = X(80)-of-4th-anti-Euler-triangle if ABC is acute
X(12281) = orthologic center of these triangles: 4th anti-Euler to orthocentroidal
X(12281) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (110,7723,11459), (125,7722,5890), (6241,11459,11464)
The reciprocal orthologic center of these triangles is X(7387).
X(12282) lies on these lines: {3,12271}, {52,6995}, {68,11459}, {155,1995}, {185,8681}, {1147,11423}, {1370,11411}, {1593,6391}, {1614,9937}, {3060,5198}, {3564,3575}, {5890,6193}, {7592,12166}, {9781,12235}, {9820,11465}, {9926,11458}, {9931,11461}, {9932,11464}, {9938,11468}, {10659,11466}, {10660,11467}
X(12282) = reflection of X(i) in X(j) for these (i,j): (11412,11411), (12271,3)
X(12282) = orthologic center of these triangles: 4th anti-Euler to 2nd Hyacinth
X(12282) = X(84)-of-4th-anti-Euler-triangle if ABC is acute
X(12282) = {X(5889), X(12272)}-harmonic conjugate of X(3575)
The reciprocal orthologic center of these triangles is X(576).
X(12283) lies on these lines: {3,12272}, {4,6467}, {6,1173}, {20,2013}, {24,9924}, {69,11457}, {74,1296}, {154,11746}, {182,11188}, {511,3529}, {542,12281}, {1351,11456}, {1353,3060}, {1843,3567}, {2393,5890}, {2979,11898}, {3056,11461}, {3098,11468}, {3564,11412}, {3779,11460}, {5050,9707}, {5921,9967}, {6391,11414}, {7592,12167}, {7998,10300}, {7999,11574}, {8550,9973}, {9822,11465}, {9971,12007}, {11387,11432}
X(12283) = reflection of X(i) in X(j) for these (i,j): (4,6467), (5921,9967), (6403,6776), (9973,8550), (11412,12220), (12272,3)
X(12283) = X(7)-of-4th-anti-Euler-triangle if ABC is acute
X(12283) = {X(12287),X(12288)}-harmonic conjugate of X(6241)
X(12283) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5921,9967,11459), (6403,6776,5890)
The reciprocal orthologic center of these triangles is X(10112).
X(12284) lies on these lines: {2,11806}, {3,12273}, {4,11800}, {52,146}, {74,9938}, {110,5890}, {113,3567}, {125,11459}, {265,12111}, {382,5663}, {399,6102}, {511,12244}, {542,6403}, {1112,10706}, {1154,10620}, {1511,9704}, {1614,2931}, {1986,10594}, {2979,12041}, {3047,11464}, {3060,7728}, {3153,3448}, {6699,7999}, {7592,12168}, {7723,9140}, {9781,12236}, {10663,11466}, {10664,11467}, {11423,12228}, {12270,12278}
X(12284) = reflection of X(i) in X(j) for these (i,j): (146,52), (399,6102), (7731,5889), (11412,74), (12111,265), (12273,3), (12281,3448)
X(12284) = X(104)-of-4th-anti-Euler-triangle if ABC is acute
The reciprocal orthologic center of these triangles is X(3).
X(12285) lies on these lines: {3,12274}, {486,7999}, {487,3567}, {642,11465}, {3564,12286}, {7592,12169}, {9781,12237}, {11412,12221}, {11423,12229}
X(12285) = orthic-to-4th-anti-Euler similarity image of X(487)
The reciprocal orthologic center of these triangles is X(3).
X(12286) lies on these lines: {3,12275}, {485,7999}, {488,3567}, {641,11465}, {3564,12285}, {7592,12170}, {9781,12238}, {11412,12222}, {11423,12230}
X(12286) = orthic-to-4th-anti-Euler similarity image of X(488)
The reciprocal orthologic center of these triangles is X(3).
X(12287) lies on these lines: {3,12276}, {511,3529}, {1151,1614}, {3567,6291}, {5890,6239}, {6252,11460}, {6283,11461}, {7592,12171}, {7690,11468}, {9781,12239}, {9823,11465}, {9974,11458}, {10667,11466}, {10668,11467}, {11412,12223}, {11423,12231}
X(12287) = {X(6241),X(12283)}-harmonic conjugate of X(12288)
X(12287) = X(176)-of-4th-anti-Euler-triangle if ABC is acute
X(12287) = orthic-to-4th-anti-Euler similarity image of X(6291)
The reciprocal orthologic center of these triangles is X(3).
X(12288) lies on these lines: {3,12277}, {511,3529}, {1152,1614}, {3567,6406}, {5890,6400}, {6404,11460}, {6405,11461}, {7592,12172}, {7692,11468}, {9781,12240}, {9824,11465}, {9975,11458}, {10671,11466}, {10672,11467}, {11412,12224}, {11423,12232}
X(12288) = {X(6241),X(12283)}-harmonic conjugate of X(12287)
X(12288) = X(175)-of-4th-anti-Euler-triangle if ABC is acute
X(12288) = orthic-to-4th-anti-Euler similarity image of X(6406)
The reciprocal orthologic center of these triangles is X(4).
X(12289) lies on these lines: {3,12278}, {4,54}, {5,10546}, {20,68}, {30,5889}, {185,12063}, {265,1658}, {381,9707}, {382,11456}, {550,11468}, {1147,3153}, {1503,12283}, {1885,11455}, {2072,11449}, {3070,11462}, {3071,11463}, {3567,3575}, {3583,9638}, {3627,11422}, {5073,12174}, {5318,11466}, {5321,11467}, {5448,9544}, {5449,10298}, {5654,9705}, {5878,10721}, {5890,6146}, {5944,10254}, {6253,11460}, {6284,11461}, {6293,7731}, {6776,8537}, {7488,9927}, {7576,9781}, {7592,12173}, {8550,11458}, {9825,11465}, {9932,11413}, {10018,11704}, {11270,11564}, {11412,12225}, {11423,12233}, {11430,11572}, {12273,12281}
X(12289) = reflection of X(i) in X(j) for these (i,j): (20,11750), (6240,6146), (11412,12225), (12278,3)
X(12289) = X(65)-of-4th-anti-Euler-triangle if ABC is acute
The reciprocal orthologic center of these triangles is X(389).
X(12290) lies on these lines: {30,11412}, {52,3543}, {54,1593}, {110,12084}, {143,5076}, {186,3357}, {376,5907}, {378,1498}, {381,10574}, {382,5663}, {403,6247}, {477,6080}, {548,7998}, {550,11444}, {568,3853}, {1092,7464}, {1147,12086}, {1154,5073}, {1181,11423}, {1204,3518}, {1503,12283}, {1514,7729}, {1594,2883}, {1597,7592}, {1656,11017}, {1657,2979}, {1658,11454}, {1870,6285}, {1907,10938}, {2013,3146}, {2071,10539}, {2777,12281}, {3060,3627}, {3090,10219}, {3516,9707}, {3520,6759}, {3522,5891}, {3528,11793}, {3529,5562}, {3534,11591}, {3541,5656}, {3544,11695}, {3545,9729}, {3830,6102}, {3832,9730}, {3839,5462}, {3843,5640}, {3850,11451}, {4846,7544}, {5059,10625}, {5068,5892}, {5072,12046}, {5870,12288}, {5871,12287}, {5894,10295}, {5895,6152}, {6198,7355}, {6254,11460}, {6696,10018}, {7503,11472}, {7691,12083}, {7728,12270}, {8549,11458}, {10540,11250}, {10594,10605}, {10675,11466}, {10676,11467}, {11270,11738}, {11441,12085}
X(12290) = reflection of X(i) in X(j) for these (i,j): (4,11381), (20,12162), (1657,5876), (3529,5562), (5059,10625), (5889,382), (5890,11455), (6241,4), (7731,10721), (11412,12111), (12270,7728), (12279,3), (12284,10733)
X(12290) = anticomplement of X(10575)
X(12290) = X(8)-of-4th-anti-Euler-triangle if ABC is acute
X(12290) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,185,3567), (4,5890,9781), (4,6241,5890), (4,11381,11455), (20,12162,11459), (185,3567,5890), (186,3357,11468), (376,5907,7999), (378,1498,1614), (1593,11456,54), (1597,12174,7592), (1657,5876,2979), (1870,6285,11461), (3520,6759,11464), (3520,12112,6759), (3545,9729,11465), (3567,6241,185), (6241,11455,4), (10540,11250,11449)
The reciprocal orthologic center of these triangles is X(6243).
X(12291) lies on these lines: {3,12280}, {6,24}, {20,12284}, {185,12254}, {195,1614}, {511,11271}, {539,11412}, {1154,1657}, {1205,11457}, {1216,2888}, {1493,3060}, {2013,12163}, {2914,6759}, {2979,3519}, {5890,6242}, {5965,12283}, {6255,11460}, {6286,11461}, {7592,12175}, {7691,11468}, {9781,12242}, {9827,11465}, {9977,11458}, {10677,11466}, {10678,11467}, {11423,12234}, {12273,12281}
X(12291) = reflection of X(i) in X(j) for these (i,j): (6152,11577), (6242,10619), (11412,12226), (12280,3)
X(12291) = X(79)-of-4th-anti-Euler-triangle if ABC is acute
X(12291) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (54,6152,3567), (3567,6152,7730), (6152,11577,54)
X(12292) lies on these lines: {4,94}, {24,64}, {25,10620}, {30,7723}, {34,7727}, {70,11744}, {110,378}, {113,1594}, {125,403}, {185,7687}, {186,12041}, {235,10264}, {399,1593}, {541,7576}, {974,6241}, {1511,3520}, {1902,2771}, {1905,11670}, {2777,6240}, {2781,6403}, {3028,6198}, {3043,5609}, {3091,9826}, {3146,12219}, {5504,11441}, {5890,11746}, {6152,10628}, {6699,10018}, {7547,11439}, {7724,11471}, {9976,11470}, {10151,11801}, {10657,11475}, {10658,11476}, {10733,12111}, {11403,12165}, {11424,12227}
X(12292) = midpoint of X(i) and X(j) for these {i,j}: {74,12290}, {3146,12219}, {10721,12281}, {10733,12111}
X(12292) = reflection of X(i) in X(j) for these (i,j): (4,12133), (185,7687), (1986,4), (6240,12140), (6241,974), (7722,1112), (10575,6699)
X(12292) = polar circle-inverse-of-X(7728)
X(12292) = orthologic center of these triangles: anti-excenters-reflections to orthocentroidal
X(12292) = X(80)-of-anti-excenters-reflections-triangle if ABC is acute
X(12292) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,7722,1112), (1112,7722,1986), (11455,12281,10721)
The reciprocal orthologic center of these triangles is X(7387).
X(12293) lies on these lines: {3,125}, {4,155}, {5,11425}, {22,12289}, {24,9938}, {30,64}, {34,9931}, {52,12173}, {70,12225}, {185,12235}, {378,9932}, {381,1147}, {382,6243}, {539,3830}, {546,5654}, {912,3901}, {1069,3583}, {1593,9937}, {1656,12038}, {1657,7689}, {1853,12084}, {1885,11472}, {2013,11455}, {3091,9820}, {3146,11411}, {3157,3585}, {3167,3843}, {3564,3627}, {3853,9936}, {5504,10113}, {5663,5895}, {6284,10055}, {6564,8909}, {6800,12254}, {7354,10071}, {7706,11432}, {9926,11470}, {10659,11475}, {10660,11476}, {10733,12111}, {11403,12166}, {11414,11750}, {11439,12271}
X(12293) = midpoint of X(3146) and X(11411)
X(12293) = reflection of X(i) in X(j) for these (i,j): (3,9927), (155,4), (185,12235), (1657,7689), (5504,10113), (12118,5), (12163,68)
X(12293) = orthologic center of these triangles: anti-excenters-reflections to 2nd Hyacinth
X(12293) = X(84)-of-anti-excenters-reflections-triangle if ABC is acute
X(12293) = {X(3167), X(3843)}-harmonic conjugate of X(5448)
The reciprocal orthologic center of these triangles is X(576).
X(12294) lies on these lines: {2,12058}, {3,1974}, {4,69}, {6,64}, {20,11574}, {24,3098}, {25,1350}, {30,9967}, {33,1469}, {34,3056}, {39,2211}, {51,125}, {52,1595}, {141,235}, {182,378}, {184,1619}, {193,11469}, {232,3094}, {373,5094}, {389,3088}, {468,5650}, {518,1902}, {542,12292}, {1205,2777}, {1216,1598}, {1351,1597}, {1353,5095}, {1503,1885}, {1596,5891}, {1907,3867}, {2063,9306}, {2807,3751}, {2854,12133}, {2979,6995}, {3060,7378}, {3089,10519}, {3091,9822}, {3146,12220}, {3313,3575}, {3516,5085}, {3517,5447}, {3520,5092}, {3564,12162}, {3618,9729}, {3619,6622}, {3779,11471}, {3819,6353}, {4219,4260}, {4232,7998}, {5017,10311}, {5097,7722}, {5104,10985}, {5198,7716}, {5921,8681}, {5943,8889}, {5969,12131}, {6000,6776}, {6756,10625}, {7507,9969}, {7715,10627}, {9024,12138}, {10628,10752}, {11403,11477}, {11439,12272}, {11455,12283}
X(12294) = midpoint of X(i) and X(j) for these {i,j}: {193,12111}, {3146,12220}, {6467,11381}
X(12294) = reflection of X(i) in X(j) for these (i,j): (20,11574), (69,5907), (185,6), (1843,4)
X(12294) = X(7)-of-anti-excenters-reflections-triangle if ABC is acute
X(12294) = X(20)-of-1st-orthosymmedial-triangle
X(12294) = {X(12298),X(12299)}-harmonic conjugate of X(4)
The reciprocal orthologic center of these triangles is X(10112).
X(12295) lies on these lines: {3,6723}, {4,110}, {20,6699}, {30,125}, {52,3627}, {64,265}, {74,3146}, {115,2420}, {185,12236}, {381,5972}, {399,5076}, {511,7723}, {541,3448}, {542,1351}, {546,1511}, {974,10575}, {1112,11562}, {1539,3853}, {1593,2931}, {1699,11723}, {1986,5446}, {3060,7722}, {3818,5181}, {3839,11693}, {3845,5642}, {3861,10272}, {5449,11454}, {5609,12102}, {6000,11800}, {6564,8998}, {7978,9812}, {9140,12244}, {9730,11746}, {9880,11656}, {10264,10990}, {10297,10564}, {10663,11475}, {10664,11476}, {10723,11005}, {10728,10778}, {11403,12168}, {11424,12228}, {11439,12273}, {11455,12284}, {12133,12162}
X(12295) = midpoint of X(i) and X(j) for these {i,j}: {4,10733}, {74,3146}, {265,382}, {3448,10721}, {10723,11005}, {10728,10778}
X(12295) = reflection of X(i) in X(j) for these (i,j): (3,7687), (20,6699), (113,4), (125,10113), (185,12236), (1511,546), (1539,3853), (1986,5446), (5181,3818), (5642,3845), (10272,3861), (10564,10297), (10575,974), (10990,10264), (11562,1112), (11656,9880), (11693,3839), (12041,11801), (12121,5972), (12162,12133)
X(12295) = anticomplement of X(38726)
X(12295) = X(10698)-of-orthic-triangle if ABC is acute
X(12295) = X(104)-of-anti-excenters-reflections-triangle if ABC is acute
X(12295) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (381,12121,5972), (3448,3543,10721), (10113,12041,11801), (11801,12041,125)
The reciprocal orthologic center of these triangles is X(3).
X(12296) lies on these lines: {2,6251}, {4,487}, {20,486}, {30,12256}, {148,5871}, {185,12237}, {382,3564}, {488,6231}, {516,9906}, {642,3091}, {3071,8406}, {3146,5870}, {3523,6119}, {4293,10083}, {4294,10067}, {5731,12268}, {6459,8375}, {11403,12169}, {11424,12229}, {11439,12274}, {11455,12285}
X(12296) = midpoint of X(3146) and X(12221)
X(12296) = reflection of X(i) in X(j) for these (i,j): (20,486), (185,12237), (487,4), (12123,6251)
X(12296) = anticomplement of X(12123)
X(12296) = orthic-to-anti-excenters-reflections similarity image of X(487)
The reciprocal orthologic center of these triangles is X(3).
X(12297) lies on these lines: {2,6250}, {4,488}, {20,485}, {30,12257}, {148,5870}, {185,12238}, {382,3564}, {487,6230}, {516,9907}, {641,3091}, {671,8982}, {3070,8414}, {3146,5871}, {3523,6118}, {4293,10084}, {4294,10068}, {5731,12269}, {6460,8376}, {11403,12170}, {11424,12230}, {11439,12275}, {11455,12286}
X(12297) = midpoint of X(3146) and X(12222)
X(12297) = reflection of X(i) in X(j) for these (i,j): (20,485), (185,12238), (488,4), (12124,6250)
X(12297) = anticomplement of X(12124)
X(12297) = orthic-to-anti-excenters-reflections similarity image of X(488)
The reciprocal orthologic center of these triangles is X(3).
X(12298) lies on these lines: {4,69}, {24,7690}, {33,7362}, {34,6283}, {185,3070}, {1151,1593}, {1160,8948}, {3091,9823}, {3092,9974}, {3146,12223}, {6252,11471}, {10311,11474}, {10667,11475}, {10668,11476}, {11403,12171}, {11424,12231}, {11439,12276}, {11455,12287}
X(12298) = midpoint of X(3146) and X(12223)
X(12298) = reflection of X(i) in X(j) for these (i,j): (185,12239), (6291,4)
X(12298) = {X(4),X(12294)}-harmonic conjugate of X(12299)
X(12298) = X(176)-of-anti-excenters-reflections-triangle if ABC is acute
X(12298) = orthic-to-anti-excenters-reflections similarity image of X(6291)
The reciprocal orthologic center of these triangles is X(3).
X(12299) lies on these lines: {4,69}, {24,7692}, {33,7353}, {34,6405}, {185,3071}, {1152,1593}, {1161,8946}, {3091,9824}, {3093,9975}, {3146,12224}, {6404,11471}, {10311,11473}, {10671,11475}, {10672,11476}, {11403,12172}, {11424,12232}, {11439,12277}, {11455,12288}
X(12299) = midpoint of X(3146) and X(12224)
X(12299) = reflection of X(i) in X(j) for these (i,j): (185,12240), (6406,4)
X(12299) = {X(4),X(12294)}-harmonic conjugate of X(12298)
X(12299) = X(175)-of-anti-excenters-reflections-triangle if ABC is acute
X(12299) = orthic-to-anti-excenters-reflections similarity image of X(6406)
The reciprocal orthologic center of these triangles is X(6243).
X(12300) lies on these lines: {4,93}, {24,7691}, {33,7356}, {34,6286}, {54,64}, {125,389}, {185,12242}, {195,1593}, {403,1209}, {539,12162}, {546,7723}, {973,7547}, {1493,2914}, {1885,12292}, {2904,11426}, {3091,9827}, {3146,12226}, {3518,11591}, {3520,10610}, {3541,10937}, {5562,7576}, {5965,12294}, {6000,10619}, {6240,10625}, {6255,11471}, {7730,11743}, {9977,11470}, {10594,11459}, {10677,11475}, {10678,11476}, {11271,11469}, {11403,12175}, {11424,12234}, {11439,12280}, {11455,12291}, {11472,12111}, {11577,12290}
X(12300) = midpoint of X(3146) and X(12226)
X(12300) = reflection of X(i) in X(j) for these (i,j): (185,12242), (6152,4), (6242,11576)
X(12300) = X(79)-of-anti-excenters-reflections-triangle if ABC is acute
X(12300) = {X(4), X(6242)}-harmonic conjugate of X(11576)
The reciprocal orthologic center of these triangles is X(7387).
X(12301) lies on these lines: {3,68}, {25,12293}, {30,9908}, {56,9931}, {64,12085}, {74,2013}, {155,1593}, {378,6193}, {1147,9818}, {1350,7689}, {3516,12166}, {3564,12084}, {5646,7393}, {6642,9927}, {7387,10117}, {7503,11487}, {9786,12235}, {9820,11479}, {9926,11477}, {10625,12163}, {10659,11480}, {10660,11481}, {11411,11413}, {11440,12271}
X(12301) = reflection of X(i) in X(j) for these (i,j): (3,9938), (9937,3), (11477,9926)
X(12301) = X(84)-of-anti-Hutson-intouch-triangle if ABC is acute
X(12301) = orthologic center of these triangles: anti-Hutson intouch to 2nd Hyacinth
The reciprocal orthologic center of these triangles is X(10112).
X(12302) lies on these lines: {3,125}, {24,10733}, {25,12295}, {30,10117}, {64,155}, {68,10264}, {74,9938}, {110,378}, {113,1593}, {146,12086}, {394,7723}, {399,1147}, {1069,7727}, {1350,5621}, {1511,7526}, {1993,7722}, {2071,3448}, {2771,9928}, {2777,9914}, {3047,11456}, {3516,12168}, {5646,7514}, {5972,9818}, {6642,7687}, {6644,10113}, {7464,12244}, {9786,12236}, {9908,10990}, {10663,11480}, {10664,11481}, {11250,12118}, {11425,12228}, {11438,11800}, {11440,12273}
X(12302) = reflection of X(i) in X(j) for these (i,j): (68,10264), (155,5504), (399,1147), (2931,3), (2935,12084), (12163,74), (12293,265)
X(12302) = X(104)-of-anti-Hutson-intouch-triangle if ABC is acute
The reciprocal orthologic center of these triangles is X(3).
X(12303) lies on these lines: {3,486}, {25,12296}, {74,12285}, {487,1593}, {642,11479}, {1597,6290}, {3516,12169}, {3564,12085}, {5020,6251}, {9786,12237}, {11413,12221}, {11425,12229}, {11440,12274}
X(12303) = orthic-to-anti-Hutson-intouch similarity image of X(487)
The reciprocal orthologic center of these triangles is X(3).
X(12304) lies on these lines: {3,485}, {25,12297}, {74,12286}, {488,1593}, {641,11479}, {1597,6289}, {3516,12170}, {3564,12085}, {5020,6250}, {9786,12238}, {11413,12222}, {11425,12230}, {11440,12275}
X(12304) = orthic-to-anti-Hutson-intouch similarity image of X(488)
The reciprocal orthologic center of these triangles is X(3).
X(12305) lies on these lines: {3,6}, {20,492}, {22,5406}, {25,12298}, {30,6289}, {55,7362}, {56,6283}, {74,12287}, {154,5408}, {325,490}, {378,6239}, {488,1503}, {524,12257}, {548,12123}, {1593,6291}, {1853,11090}, {2979,5407}, {3516,12171}, {5480,11292}, {5584,6252}, {6312,6399}, {6813,7778}, {8982,9766}, {9823,11479}, {11413,12223}, {11440,12276}
X(12305) = {X(3),X(1350)}-harmonic conjugate of X(12306)
X(12305) = X(176)-of-anti-Hutson-intouch-triangle if ABC is acute
X(12305) = orthic-to-anti-Hutson-intouch similarity image of X(6291)
X(12305) = reflection of X(i) in X(j) for these (i,j): (3,7690), (1151,3), (11477,9974)
The reciprocal orthologic center of these triangles is X(3).
X(12306) lies on these lines: {3,6}, {20,491}, {22,5407}, {25,12299}, {30,6290}, {55,7353}, {56,6405}, {74,12288}, {154,5409}, {325,489}, {376,1991}, {378,6400}, {487,1503}, {524,12256}, {548,12124}, {1593,6406}, {1853,11091}, {2979,5406}, {3516,12172}, {5480,11291}, {5584,6404}, {6222,6316}, {6811,7778}, {9824,11479}, {11413,12224}, {11440,12277}
X(12306) = reflection of X(i) in X(j) for these (i,j): (3,7692), (1152,3)
X(12306) = {X(3),X(1350)}-harmonic conjugate of X(12305)
X(12306) = X(175)-of-anti-Hutson-intouch-triangle if ABC is acute
X(12306) = orthic-to-anti-Hutson-intouch similarity image of X(6406)
The reciprocal orthologic center of these triangles is X(6243).
X(12307) lies on these lines: {3,54}, {5,7693}, {20,10620}, {25,12300}, {30,2888}, {55,7356}, {56,6286}, {64,1657}, {74,12291}, {378,6242}, {381,1209}, {382,6288}, {399,2917}, {539,3534}, {548,11271}, {550,12254}, {568,11802}, {631,8254}, {973,3527}, {1092,11597}, {1216,3581}, {1350,5965}, {1593,6152}, {1597,11576}, {1656,3574}, {2070,5562}, {3516,12175}, {3523,11803}, {3526,5646}, {3579,9905}, {5054,6689}, {5584,6255}, {5663,5898}, {5876,5899}, {6243,11424}, {7666,10274}, {7689,12302}, {7730,10263}, {7979,8148}, {9786,12242}, {9827,11479}, {9914,9920}, {9977,11477}, {10605,10619}, {10677,11480}, {10678,11481}, {11413,12226}, {11425,12234}, {11440,12280}
X(12307) = reflection of X(i) in X(j) for these (i,j): (3,7691), (195,3), (382,6288), (8148,7979), (9905,3579), (11477,9977), (12254,550)
X(12307) = X(79)-of-anti-Hutson-intouch-triangle if ABC is acute
The reciprocal orthologic center of these triangles is X(3581).
X(12308) lies on these lines: {3,74}, {4,11703}, {25,7722}, {113,3851}, {125,5055}, {146,382}, {265,3527}, {378,11935}, {381,3448}, {541,11820}, {542,1351}, {567,12162}, {1482,2771}, {1498,5898}, {1597,12292}, {1598,1986}, {1656,10264}, {3028,7373}, {3043,3516}, {3066,11806}, {3167,12302}, {3295,7727}, {3303,6126}, {3304,7343}, {3526,10272}, {3534,9143}, {5070,6053}, {5073,12164}, {5093,9970}, {5169,11804}, {6407,10819}, {6408,10820}, {7687,11432}, {7724,10306}, {9704,11559}, {9826,11484}, {9976,11482}, {10113,10706}, {10145,10817}, {10146,10818}, {10246,11699}, {10657,11485}, {10658,11486}, {10733,12160}, {11414,12219}, {11426,12227}
X(12308) = reflection of X(i) in X(j) for these (i,j): (3,399), (74,5609), (382,146), (3534,9143), (9919,1498), (10620,110)
X(12308) = Stammler circle-inverse-of-X(110)
X(12308) = orthologic center of these triangles: anti-incircle-circles to orthocentroidal
X(12308) = X(80)-of-anti-incircle-circles-triangle if ABC is acute
X(12308) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (110,10620,3), (399,10620,110)
The reciprocal orthologic center of these triangles is X(7387).
X(12309) lies on these lines: {3,68}, {4,12166}, {25,6193}, {155,1351}, {159,10243}, {539,9908}, {567,5544}, {1147,5020}, {1597,12293}, {2013,11456}, {3167,3527}, {3295,9931}, {3564,5596}, {6243,12164}, {6759,8681}, {8193,9896}, {9820,11484}, {9926,11482}, {9927,11479}, {10659,11485}, {10660,11486}, {11411,11414}, {11432,12235}, {11441,12271}
X(12309) = reflection of X(i) in X(j) for these (i,j): (3,9937), (12301,9932)
X(12309) = orthologic center of these triangles: anti-incircle-circles to 2nd Hyacinth
X(12309) = X(84)-of-anti-incircle-circles-triangle if ABC is acute
The reciprocal orthologic center of these triangles is X(10112).
X(12310) lies on these lines: {3,125}, {4,12168}, {6,11800}, {22,3448}, {23,3564}, {25,110}, {26,9920}, {68,2937}, {74,11414}, {113,1598}, {155,5898}, {159,1177}, {161,542}, {373,12038}, {382,9932}, {399,7517}, {1511,6642}, {1593,10733}, {1597,12295}, {1995,7693}, {2079,6388}, {2771,9913}, {2930,6144}, {2948,8185}, {3527,5504}, {5020,5972}, {5594,7733}, {5595,7732}, {5609,12166}, {5654,7545}, {5663,7387}, {5889,12165}, {5899,12308}, {6800,8548}, {7514,11801}, {7687,11479}, {7984,8192}, {8276,8912}, {8277,10820}, {9517,11641}, {9714,12309}, {9818,10113}, {10037,10088}, {10046,10091}, {10620,11820}, {10663,11485}, {10664,11486}, {11365,11720}, {11426,12228}, {11432,12236}, {11441,12273}, {11456,12284}, {12082,12244}
X(12310) = reflection of X(i) in X(j) for these (i,j): (3,2931), (9919,7387), (12164,399)
X(12310) = X(104)-of-anti-incircle-circles-triangle if ABC is acute
The reciprocal orthologic center of these triangles is X(3).
X(12311) lies on these lines: {3,486}, {4,12169}, {487,1598}, {642,11484}, {1597,12296}, {3564,12312}, {11414,12221}, {11426,12229}, {11432,12237}, {11441,12274}, {11456,12285}
X(12311) = orthic-to-anti-incircle-circles similarity image of X(487)
The reciprocal orthologic center of these triangles is X(3).
X(12312) lies on these lines: {3,485}, {4,12170}, {488,1598}, {641,11484}, {1597,12297}, {3564,12311}, {11414,12222}, {11426,12230}, {11432,12238}, {11441,12275}, {11456,12286}
X(12312) = orthic-to-anti-incircle-circles similarity image of X(488)
The reciprocal orthologic center of these triangles is X(3).
X(12313) lies on these lines: {3,6}, {4,12171}, {5,487}, {25,6239}, {30,12257}, {51,5407}, {999,7362}, {1353,12256}, {1597,12298}, {1598,6291}, {1600,9777}, {3155,3167}, {3295,6283}, {3564,6462}, {5020,5409}, {6252,10306}, {8964,11427}, {9823,11484}, {9909,10132}, {11414,12223}, {11441,12276}, {11456,12287}, {11949,12311}
X(12313) = reflection of X(3) in X(1151)
X(12313) = {X(3),X(1351)}-harmonic conjugate of X(12314)
X(12313) = X(176)-of-anti-incircle-circles-triangle if ABC is acute
X(12313) = orthic-to-anti-incircle-circles similarity image of X(6291)
X(12313) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,3311,5050), (3,5093,372), (6,9738,3)
The reciprocal orthologic center of these triangles is X(3).
X(12314) lies on these lines: {3,6}, {4,12172}, {5,488}, {25,6400}, {30,12256}, {51,5406}, {999,7353}, {1353,12257}, {1597,12299}, {1598,6406}, {1599,9777}, {3156,3167}, {3295,6405}, {3564,6463}, {5020,5408}, {6404,10306}, {9824,11484}, {9909,10133}, {11414,12224}, {11441,12277}, {11456,12288}, {11950,12312}
X(12314) = reflection of X(3) in X(1152)
X(12314) = {X(3),X(1351)}-harmonic conjugate of X(12313)
X(12314) = X(175)-of-anti-incircle-circles-triangle if ABC is acute
X(12314) = orthic-to-anti-incircle-circles similarity image of X(6406)
X(12314) = {X(6), X(9739)}-harmonic conjugate of X(3)
The reciprocal orthologic center of these triangles is X(389).
X(12315) lies on these lines: {3,64}, {4,3527}, {5,5544}, {20,11820}, {24,12112}, {25,6241}, {30,6193}, {54,1593}, {185,1598}, {221,6767}, {381,2883}, {382,1351}, {550,11206}, {999,7355}, {1181,1597}, {1482,6001}, {1614,3516}, {1656,6247}, {1657,9833}, {1853,3851}, {2192,7373}, {2777,12308}, {3146,12160}, {3167,12085}, {3295,6285}, {3517,10605}, {3579,9899}, {5054,6696}, {5073,5895}, {5198,5890}, {5663,7387}, {6254,10306}, {6449,10533}, {6450,10534}, {7592,11403}, {7973,8148}, {8549,9968}, {9707,11410}, {9729,11484}, {9909,12163}, {9914,9920}, {9934,10620}, {10076,10535}, {10675,11485}, {10676,11486}, {10721,12165}, {11414,12111}, {11441,12279}
X(12315) = reflection of X(i) in X(j) for these (i,j): (3,1498), (64,6759), (382,5878), (1657,9833), (5073,5895), (8148,7973), (8549,9968), (9899,3579), (10620,9934), (12250,550)
X(12315) = Stammler circle-inverse-of-X(6760)
X(12315) = X(8)-of-anti-incircle-circles-triangle if ABC is acute
X(12315) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (154,3357,3), (1181,1597,11426), (1181,11381,1597), (1593,12290,3426), (7592,11455,11403), (8567,11202,3), (10282,10606,3), (11206,12250,550), (11456,12290,1593)
The reciprocal orthologic center of these triangles is X(6243).
X(12316) lies on these lines: {3,54}, {4,12175}, {24,2914}, {25,6242}, {64,10628}, {146,382}, {155,5898}, {381,2888}, {394,10115}, {399,10263}, {539,3830}, {999,7356}, {1209,5055}, {1351,3818}, {1482,5693}, {1597,12300}, {1598,6152}, {1656,11803}, {1657,12254}, {2937,7712}, {3295,6286}, {3519,3527}, {3526,8254}, {4550,11424}, {5070,5544}, {5073,5895}, {5899,6243}, {6255,10306}, {6515,10255}, {9703,10274}, {9827,11484}, {9977,11482}, {10677,11485}, {10678,11486}, {11414,12226}, {11426,12234}, {11432,12242}, {11441,12280}, {11456,12291}
X(12316) = reflection of X(i) in X(j) for these (i,j): (3,195), (1657,12254), (3519,3574), (7691,1493), (12307,54)
X(12316) = Stammler circle-inverse-of-X(1157)
X(12316) = X(79)-of-anti-incircle-circles-triangle if ABC is acute
X(12316) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (54,12307,3), (195,12307,54)
The reciprocal orthologic center of these triangles is X(3581).
X(12317) lies on these lines: {2,399}, {3,5900}, {4,94}, {5,12308}, {8,2771}, {20,10620}, {69,74}, {110,631}, {113,3545}, {125,3090}, {427,12165}, {497,7727}, {541,6515}, {1056,3028}, {1370,12219}, {1511,3524}, {1553,5627}, {1992,9976}, {2550,7724}, {2930,10519}, {2931,7556}, {2948,5657}, {3525,5609}, {3528,12041}, {3529,11411}, {3533,5972}, {3564,7464}, {3580,12112}, {3616,11699}, {3818,5890}, {3832,11801}, {4295,11670}, {4846,11442}, {5071,5655}, {5422,10821}, {5946,7693}, {5984,7422}, {6126,10056}, {6193,12302}, {6361,9904}, {6643,7723}, {6776,8546}, {7343,10072}, {7392,9826}, {7408,11566}, {7552,11456}, {7687,10706}, {10628,12284}, {10657,11488}, {10658,11489}, {11003,11597}, {11061,11579}, {11382,12140}, {11427,12227}, {11440,12254}, {11457,12281}, {12088,12310}
X(12317) = reflection of X(i) in X(j) for these (i,j): (4,3448), (20,10620), (146,265), (399,10264), (3529,12244), (6193,12302), (6361,9904), (11061,11579), (12112,3580), (12308,5)
X(12317) = anticomplement of X(399)
X(12317) = X(80)-of-anti-inverse-in-incircle-triangle if ABC is acute
X(12317) = antipode of X(4) in rectangular hyperbola passing through X(4), X(8), and the extraversions of X(8)
X(12317) = anticomplementary circle-inverse-of-X(265)
X(12317) = orthologic center of these triangles: anti-inverse-in-incircle to orthocentroidal
X(12317) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (146,265,4), (146,3448,265), (399,10264,2)
The reciprocal orthologic center of these triangles is X(7387).
X(12318) lies on these lines: {2,9937}, {4,155}, {5,12309}, {20,12301}, {54,6815}, {68,69}, {376,9938}, {427,12166}, {497,9931}, {631,9932}, {1147,7401}, {1370,2013}, {1992,9926}, {3147,8907}, {3167,7528}, {6403,11382}, {6816,11487}, {7392,9820}, {10659,11488}, {10660,11489}, {11433,12235}, {11442,12271}
X(12318) = reflection of X(i) in X(j) for these (i,j): (20,12301), (12309,5)
X(12318) = anticomplement of X(9937)
X(12318) = X(84)-of-anti-inverse-in-incircle-triangle if ABC is acute
X(12318) = orthologic center of these triangles: anti-inverse-in-incircle to 2nd Hyacinth
The reciprocal orthologic center of these triangles is X(10112).
X(12319) lies on these lines: {2,2931}, {4,110}, {5,12310}, {20,12302}, {30,9919}, {69,265}, {74,1370}, {125,6643}, {146,7391}, {323,3153}, {427,12168}, {3448,11411}, {3564,7574}, {5972,7401}, {6699,7386}, {9927,11444}, {10272,11818}, {10663,11488}, {10664,11489}, {11427,12228}, {11433,12236}, {11442,12273}, {11457,12284}
X(12319) = reflection of X(i) in X(j) for these (i,j): (20,12302), (11411,3448), (12310,5)
X(12319) = anticomplement of X(2931)
X(12319) = X(104)-of-anti-inverse-in-incircle-triangle if ABC is acute
X(12319) = anticomplementary-circle-inverse-of-X(1300)
X(12319) = {X(110), X(10733)}-harmonic conjugate of X(12140)
The reciprocal orthologic center of these triangles is X(3).
X(12320) lies on these lines: {4,487}, {5,12311}, {20,12303}, {427,12169}, {486,7386}, {642,7392}, {1370,12221}, {3564,12321}, {10996,12123}, {11427,12229}, {11433,12237}, {11442,12274}, {11457,12285}
X(12320) = orthic-to-anti-inverse-in-incircle similarity image of X(487)
The reciprocal orthologic center of these triangles is X(3).
X(12321) lies on these lines: {4,488}, {5,12312}, {20,12304}, {427,12170}, {485,7386}, {641,7392}, {1370,12222}, {3564,12320}, {10996,12124}, {11427,12230}, {11433,12238}, {11442,12275}, {11457,12286}
X(12321) = orthic-to-anti-inverse-in-incircle similarity image of X(488)
The reciprocal orthologic center of these triangles is X(3).
X(12322) lies on these lines: {2,489}, {4,69}, {5,487}, {6,12221}, {20,492}, {30,488}, {183,7000}, {193,3070}, {325,7374}, {376,7690}, {388,7362}, {427,12171}, {486,11291}, {490,1270}, {491,3091}, {497,6283}, {524,12222}, {615,5023}, {639,6561}, {641,11147}, {1007,6811}, {1271,3832}, {1370,12223}, {1587,1992}, {1588,3618}, {2550,6252}, {3069,11293}, {3522,3593}, {3595,5068}, {3619,7388}, {5491,6251}, {5590,11294}, {6214,12296}, {6289,6337}, {6460,7823}, {7392,9823}, {8979,9306}, {10667,11488}, {10668,11489}, {11427,12231}, {11433,12239}, {11442,12276}, {11457,12287}
X(12322) = reflection of X(i) in X(j) for these (i,j): (20,12305), (12313,5)
X(12322) = anticomplement of X(1151)
X(12322) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,69,12323), (4,637,69)
X(12322) = X(176)-of-anti-inverse-in-incircle-triangle if ABC is acute
X(12322) = orthic-to-anti-inverse-in-incircle similarity image of X(6291)
The reciprocal orthologic center of these triangles is X(3).
X(12323) lies on these lines: {2,490}, {4,69}, {5,488}, {6,12222}, {20,491}, {30,487}, {183,7374}, {193,3071}, {325,7000}, {376,7692}, {388,7353}, {427,12172}, {485,11292}, {489,1271}, {492,3091}, {497,6405}, {524,12221}, {590,5023}, {640,6560}, {642,11147}, {1007,6813}, {1270,3832}, {1370,12224}, {1587,3618}, {1588,1992}, {2550,6404}, {3068,11294}, {3522,3595}, {3593,5068}, {3619,7389}, {5490,6250}, {5591,11293}, {6215,12297}, {6290,6337}, {6459,7823}, {7392,9824}, {10671,11488}, {10672,11489}, {11427,12232}, {11433,12240}, {11442,12277}, {11457,12288}
X(12323) = reflection of X(i) in X(j) for these (i,j): (20,12306), (12314,5)
X(12323) = anticomplement of X(1152)
X(12323) = X(175)-of-anti-inverse-in-incircle-triangle if ABC is acute
X(12323) = orthic-to-anti-inverse-in-incircle similarity image of X(6406)
X(12323) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,69,12322), (4,638,69)
The reciprocal orthologic center of these triangles is X(389).
X(12324) lies on these lines: {2,1498}, {3,11206}, {4,51}, {5,5544}, {8,6001}, {20,64}, {30,11411}, {66,6815}, {125,6622}, {154,3523}, {376,3357}, {388,7355}, {427,12174}, {497,6285}, {511,2013}, {516,9899}, {631,5651}, {1158,6350}, {1181,3088}, {1352,10996}, {1370,12111}, {1559,6526}, {1593,6776}, {1853,2883}, {1895,10365}, {1992,8549}, {2550,6254}, {2777,12317}, {2917,7492}, {3146,6515}, {3332,7513}, {3522,10606}, {3524,10282}, {3527,11431}, {3538,11793}, {3541,11456}, {3543,5895}, {3575,11382}, {3839,5893}, {4293,10076}, {4294,10060}, {4295,7282}, {5059,5925}, {5596,7503}, {5663,12319}, {5731,12262}, {5907,7386}, {6193,12085}, {6643,12162}, {6995,9786}, {6997,10574}, {7288,10535}, {7378,12233}, {7392,9729}, {7408,11745}, {7487,10605}, {7505,12112}, {7544,7729}, {7667,11821}, {8567,10304}, {10192,10303}, {10299,11202}, {10675,11488}, {10676,11489}, {11245,11403}, {11442,12279}
X(12324) = reflection of X(i) in X(j) for these (i,j): (20,64), (1498,6247), (5059,5925), (6193,12085), (6225,4), (9833,3357), (12315,5)
X(12324) = anticomplement of X(1498)
X(12324) = anticomplementary-circle-inverse of X(34170)
X(12324) = X(8)-of-anti-inverse-in-incircle-triangle if ABC is acute
X(12324) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5,12315,5656), (154,6696,3523), (1181,3088,11427), (1498,6247,2), (1853,2883,3091), (1899,11381,4), (3357,9833,376), (11457,12290,4)
The reciprocal orthologic center of these triangles is X(6243).
X(12325) lies on these lines: {2,195}, {4,93}, {5,12316}, {8,6951}, {20,10620}, {24,11898}, {54,69}, {68,12319}, {155,7552}, {184,10203}, {323,6143}, {376,539}, {388,7356}, {427,12175}, {497,6286}, {1205,11457}, {1209,3090}, {1352,7730}, {1370,12226}, {1493,3525}, {1992,9977}, {2550,6255}, {2895,6853}, {2914,7505}, {2917,2930}, {2937,5898}, {3060,6153}, {3448,6101}, {3524,10610}, {3529,12324}, {3533,6689}, {3545,3574}, {3564,7512}, {5056,11803}, {5067,5645}, {5657,9905}, {5878,10628}, {5889,7706}, {7392,9827}, {9920,12088}, {10677,11488}, {10678,11489}, {11427,12234}, {11433,12242}, {11442,12280}
X(12325) = reflection of X(i) in X(j) for these (i,j): (4,2888), (20,12307), (2888,3519), (11271,54), (12254,7691), (12316,5)
X(12325) = anticomplement of X(195)
X(12325) = X(79)-of-anti-inverse-in-incircle-triangle if ABC is acute
X(12325) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3410,6243,4), (7691,12254,376)
The reciprocal orthologic center of these triangles is X(9855).
X(12326) lies on these lines: {30,12178}, {35,9875}, {55,671}, {56,9884}, {100,8591}, {115,4428}, {197,9876}, {542,11500}, {543,4421}, {1001,5461}, {1376,2482}, {2796,8715}, {3295,12258}, {5687,9881}, {8724,11499}, {9878,11494}, {9880,11496}, {9882,11497}, {9883,11498}, {10054,11507}, {10070,11508}, {10310,12117}, {11383,12132}, {11490,12191}, {11491,12243}
X(12326) = orthologic center of these triangles: anti-Mandart-incircle to McCay
X(12326) = X(671)-of-anti-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(12112).
X(12327) lies on these lines: {3,11720}, {35,9904}, {40,2778}, {55,74}, {56,7978}, {100,146}, {110,10310}, {113,1376}, {125,11496}, {197,9919}, {541,4421}, {690,12178}, {1001,6699}, {2771,3811}, {2777,11500}, {2779,10620}, {2948,5537}, {3295,11709}, {5663,11248}, {7725,11497}, {7726,11498}, {7728,11499}, {9984,11494}, {10065,11507}, {10081,11508}, {10267,12041}, {11383,12133}, {11490,12192}, {11491,12244}
X(12327) = orthologic center of these triangles: anti-Mandart-incircle to orthocentroidal
X(12327) = X(74)-of-anti-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(9833).
X(12328) lies on these lines: {3,914}, {35,9896}, {40,912}, {55,68}, {56,9933}, {100,6193}, {155,11499}, {197,9908}, {539,4421}, {1001,5449}, {1069,11502}, {1147,1376}, {3157,11501}, {3295,12259}, {5687,9928}, {9923,11494}, {9927,11496}, {9929,11497}, {9930,11498}, {10055,11507}, {10071,11508}, {10310,12118}, {11383,12134}, {11411,11491}, {11490,12193}
X(12328) = orthologic center of these triangles: anti-Mandart-incircle to 2nd Hyacinth
X(12328) = X(68)-of-anti-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12329) lies on these lines: {3,518}, {6,31}, {9,1486}, {10,7535}, {22,3681}, {25,210}, {35,3751}, {40,3827}, {41,4878}, {44,7083}, {48,2340}, {56,976}, {69,100}, {72,3556}, {141,1376}, {144,1633}, {159,197}, {165,7289}, {182,9052}, {198,480}, {206,219}, {220,1973}, {241,1037}, {354,7484}, {511,11248}, {517,9818}, {524,4421}, {573,2876}, {597,4428}, {611,4259}, {613,11508}, {1001,3589}, {1260,3185}, {1350,8679}, {1351,9047}, {1352,11499}, {1386,3295}, {1428,11510}, {1469,11509}, {1503,11500}, {1593,7957}, {1621,3618}, {1757,7295}, {1804,2283}, {1843,11383}, {1974,3690}, {2164,7077}, {2175,2911}, {2182,3059}, {2187,2318}, {2781,12327}, {2810,3098}, {3085,5800}, {3094,11494}, {3220,5223}, {3416,5687}, {3564,12328}, {3740,5020}, {3763,4413}, {3844,9709}, {3870,5314}, {3873,7485}, {3913,5846}, {3941,5120}, {3961,5329}, {4097,5847}, {4265,5217}, {4420,11337}, {4661,6636}, {5044,11365}, {5085,9049}, {5480,11496}, {5777,9911}, {5845,11495}, {5849,6776}, {6601,7397}, {8177,9055}, {9041,11194}, {9830,12326}, {10477,11517}, {11490,12212}
X(12329) = X(6)-of-anti-Mandart-incircle-triangle
X(12329) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (72,8193,3556), (198,480,4557), (200,5285,197), (1631,4557,198), (2330,3779,6), (3242,5096,56), (5227,5285,159)
The reciprocal orthologic center of these triangles is X(40).
X(12330) lies on these lines: {3,960}, {35,7992}, {55,84}, {56,7971}, {109,1498}, {197,9910}, {268,3197}, {515,3913}, {516,8730}, {971,6600}, {999,5884}, {1001,6705}, {1012,3486}, {1035,2956}, {1260,1490}, {1376,6260}, {1657,2829}, {1709,11507}, {1768,7742}, {3149,3474}, {3295,5882}, {5658,10309}, {5880,6918}, {6244,11500}, {6245,11496}, {6257,11498}, {6258,11497}, {6259,11499}, {6796,11495}, {10085,11508}, {11383,12136}, {11490,12196}, {11491,12246}
X(12330) = X(84)-of-anti-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12331) lies on the Stammler circle and these lines: {1,6797}, {2,1484}, {3,8}, {4,11698}, {5,149}, {11,498}, {30,153}, {35,9897}, {40,2771}, {55,80}, {56,7972}, {119,381}, {145,6924}, {197,9912}, {214,1376}, {355,8715}, {382,5840}, {404,1483}, {517,3689}, {550,12248}, {971,2950}, {999,1317}, {1001,6702}, {1012,9963}, {1320,6911}, {1351,9024}, {1385,6264}, {1387,6767}, {1482,2802}, {1597,12138}, {1598,1862}, {1657,2829}, {1768,3579}, {2095,8730}, {2346,6881}, {2783,12188}, {2800,11500}, {2801,11495}, {2805,11258}, {3032,9567}, {3035,3526}, {3036,9708}, {3045,9704}, {3149,8148}, {3158,3577}, {3434,6980}, {3534,6244}, {3576,7993}, {3621,6942}, {3746,9956}, {3830,10711}, {4678,6875}, {5054,6174}, {5055,10707}, {5073,10728}, {5082,6863}, {5083,5708}, {5093,10755}, {5552,6971}, {5603,9802}, {5694,11010}, {5844,6905}, {5848,11898}, {5854,10680}, {6262,11498}, {6263,11497}, {6361,9809}, {6917,10528}, {6918,11729}, {6928,7080}, {6946,10283}, {9913,12083}, {10057,11507}, {10073,11508}, {10310,12119}, {11383,12137}, {11490,12198}
X(12331) = midpoint of X(i) and X(j) for these {i,j}: {40,5531}, {5541,6326}, {6361,9809}
X(12331) = reflection of X(i) in X(j) for these (i,j): (3,100), (4,11698), (149,5), (382,10742), (1482,6265), (1768,3579), (3830,10711), (5073,10728), (6264,1385), (8148,10698), (10738,119), (12247,5690), (12248,550)
X(12331) = X(80)-of-anti-Mandart-incircle-triangle
X(12331) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (11,10087,3295), (55,5790,7489), (100,6224,2932), (119,10738,381), (355,8715,11849), (1317,10090,999), (3913,11499,1482), (5690,11491,3)
X(12331) = anticomplement of X(1484)
The reciprocal orthologic center of these triangles is X(40).
X(12332) lies on these lines: {3,214}, {11,6833}, {20,100}, {55,104}, {56,10698}, {80,1012}, {84,5531}, {119,1376}, {197,9913}, {515,12331}, {528,8730}, {952,3913}, {1001,6713}, {1158,2771}, {1537,10090}, {2077,2932}, {2787,12178}, {2801,6600}, {2802,10306}, {3035,6825}, {3295,11715}, {3428,4996}, {5450,11849}, {5537,5541}, {5722,10265}, {6224,6909}, {6256,11698}, {6259,6796}, {6702,6913}, {6906,10950}, {8069,11570}, {10058,11507}, {10074,11508}, {10742,11499}, {11383,12138}, {11490,12199}, {11491,12248}
X(12332) = midpoint of X(i) and X(j) for these {i,j}: {84,5531}, {2950,6326}
X(12332) = reflection of X(i) in X(j) for these (i,j): (6256,11698), (11500,100)
X(12332) = X(104)-of-anti-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12333) lies on these lines: {35,9898}, {55,84}, {56,8000}, {100,9874}, {946,3295}, {1750,3746}, {3035,3526}, {3913,6684}, {6600,10267}, {8715,8730}, {10059,11507}, {10075,11508}, {10306,11495}, {10310,12120}, {11383,12139}, {11490,12200}, {11491,12249}
X(12333) = X(7160)-of-anti-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(6102).
X(12334) lies on these lines: {30,12327}, {40,2771}, {55,265}, {110,11499}, {125,10267}, {542,12329}, {1376,1511}, {3295,12261}, {3448,11491}, {5663,11500}, {6911,11720}, {10088,11501}, {10091,11502}, {10113,11496}, {10310,12121}, {11383,12140}, {11490,12201}
X(12334) = X(265)-of-anti-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12335) lies on these lines: {30,12328}, {35,9899}, {40,197}, {55,64}, {56,7973}, {100,6225}, {199,5584}, {204,11471}, {1001,6696}, {1376,2883}, {1466,2192}, {1498,3682}, {1802,3197}, {2777,12334}, {3295,12262}, {3357,10267}, {3811,6001}, {3827,6769}, {5878,11499}, {6000,11248}, {6247,11496}, {6266,11498}, {6267,11497}, {6285,11509}, {8273,8567}, {10060,11507}, {10076,11508}, {11381,11383}, {11490,12202}, {11491,12250}
X(12335) = X(64)-of-anti-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12336) lies on these lines: {14,55}, {35,9900}, {56,7974}, {100,617}, {197,9915}, {530,12326}, {531,4421}, {542,12329}, {619,1376}, {1001,6670}, {3295,11706}, {4428,5460}, {5474,10310}, {5479,11496}, {5613,11499}, {6269,11498}, {6271,11497}, {6773,11491}, {6774,10267}, {9981,11494}, {10061,11507}, {10077,11508}, {11383,12141}, {11490,12204}
X(12336) = X(14)-of-anti-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12337) lies on these lines: {13,55}, {35,9901}, {56,7975}, {100,616}, {197,9916}, {530,4421}, {531,12326}, {542,12329}, {618,1376}, {1001,6669}, {3295,11705}, {4428,5459}, {5473,10310}, {5478,11496}, {5617,11499}, {6268,11498}, {6270,11497}, {6770,11491}, {6771,10267}, {9982,11494}, {10062,11507}, {10078,11508}, {11383,12142}, {11490,12205}
X(12337) = X(13)-of-anti-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12338) lies on these lines: {3,730}, {35,9902}, {39,1376}, {55,76}, {56,7976}, {100,194}, {197,9917}, {384,11490}, {511,11500}, {538,4421}, {726,8715}, {732,12329}, {1001,3934}, {2782,11248}, {3095,11499}, {3295,12263}, {4413,7786}, {4428,9466}, {5969,12326}, {6248,11496}, {6272,11498}, {6273,11497}, {9983,11494}, {10063,11507}, {10079,11508}, {10310,11257}, {11383,12143}, {11491,12251}
X(12338) = X(76)-of-anti-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12339) lies on these lines: {35,9903}, {55,83}, {56,7977}, {100,2896}, {197,9918}, {732,12329}, {754,4421}, {1001,6704}, {1376,6292}, {3295,12264}, {6249,11496}, {6274,11498}, {6275,11497}, {6287,11499}, {10064,11507}, {10080,11508}, {10310,12122}, {11383,12144}, {11490,12206}, {11491,12252}
X(12339) = X(83)-of-anti-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12340) lies on these lines: {3,11722}, {55,1297}, {112,10310}, {127,11496}, {132,1376}, {2799,12178}, {2806,12332}, {3295,12265}, {4421,9530}, {6020,11509}, {9517,12327}, {11383,12145}, {11490,12207}, {11491,12253}
X(12340) = X(1297)-of-anti-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12341) lies on these lines: {35,9905}, {54,55}, {56,7979}, {100,2888}, {195,11849}, {197,9920}, {539,4421}, {692,10274}, {1001,6689}, {1154,11248}, {1209,1376}, {3295,12266}, {3574,11496}, {6276,11498}, {6277,11497}, {6288,11499}, {7691,10310}, {9985,11494}, {10066,11507}, {10082,11508}, {10267,10610}, {10628,12327}, {11383,11576}, {11490,12208}, {11491,12254}
X(12341) = X(54)-of-anti-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(79).
X(12342) lies on these lines: {55,10266}, {149,2975}, {3295,12267}, {3913,5904}, {11383,12146}, {11490,12209}, {11491,12255}
X(12342) = X(10266)-of-anti-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12343) lies on these lines: {35,9906}, {55,486}, {56,7980}, {100,487}, {197,9921}, {642,1376}, {1001,6119}, {3295,12268}, {3564,12328}, {6251,11496}, {6280,11498}, {6281,11497}, {6290,11499}, {9986,11494}, {10067,11507}, {10083,11508}, {10310,12123}, {11383,12147}, {11490,12210}, {11491,12256}
X(12343) = X(486)-of-anti-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12344) lies on these lines: {35,9907}, {55,485}, {56,7981}, {100,488}, {197,9922}, {641,1376}, {1001,6118}, {3295,12269}, {3564,12328}, {6250,11496}, {6278,11498}, {6279,11497}, {6289,11499}, {9987,11494}, {10068,11507}, {10084,11508}, {10310,12124}, {11383,12148}, {11490,12211}, {11491,12257}
X(12344) = X(485)-of-anti-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(9855).
X(12345) lies on these lines: {30,12179}, {543,11207}, {671,5597}, {2482,5599}, {5598,9884}, {5601,8591}, {8190,9876}, {8196,9880}, {8197,9881}, {8198,9882}, {8199,9883}, {8200,8724}, {9878,11861}, {10054,11877}, {10070,11879}, {11366,12258}, {11384,12132}, {11492,12326}, {11822,12117}, {11837,12191}, {11843,12243}
X(12345) = X(671)-of-1st-Auriga-triangle
X(12345) = X(9884)-of-2nd-Auriga-triangle
The reciprocal orthologic center of these triangles is X(9855).
X(12346) lies on these lines: {30,12180}, {55,12345}, {543,11208}, {671,5598}, {2482,5600}, {5597,9884}, {5602,8591}, {8187,9875}, {8191,9876}, {8203,9880}, {8204,9881}, {8205,9882}, {8206,9883}, {8207,8724}, {9878,11862}, {10054,11878}, {10070,11880}, {11367,12258}, {11385,12132}, {11493,12326}, {11823,12117}, {11838,12191}, {11844,12243}
X(12346) = X(671)-of-2nd-Auriga-triangle
X(12346) = X(9884)-of-1st-Auriga-triangle
The reciprocal orthologic center of these triangles is X(9855).
X(12347) lies on these lines: {30,99}, {402,671}, {542,12113}, {543,1651}, {1650,2482}, {4240,8591}, {9875,11852}, {9876,11853}, {9878,11885}, {9880,11897}, {9881,11900}, {9882,11901}, {9883,11902}, {9884,11910}, {10054,11912}, {10070,11913}, {11831,12258}, {11832,12132}, {11839,12191}, {11845,12243}, {11848,12326}, {11863,12345}, {11864,12346}
X(12347) = midpoint of X(4240) and X(8591)
X(12347) = reflection of X(i) in X(j) for these (i,j): (671,402), (1650,2482)
X(12347) = X(671)-of-Gossard-triangle
The reciprocal orthologic center of these triangles is X(9855).
X(12348) lies on these lines: {11,671}, {30,12182}, {355,8724}, {542,12114}, {543,11235}, {1376,2482}, {3434,8591}, {9875,10826}, {9876,10829}, {9878,10871}, {9880,10893}, {9881,10914}, {9882,10919}, {9883,10920}, {9884,10944}, {10054,10523}, {10070,10948}, {10785,12243}, {10794,12191}, {11373,12258}, {11390,12132}, {11826,12117}, {11865,12345}, {11866,12346}, {11903,12347}
X(12348) = reflection of X(12326) in X(2482)
X(12348) = reflection of X(12349) in X(8724)
X(12348) = X(671)-of-inner-Johnson-triangle
The reciprocal orthologic center of these triangles is X(9855).
X(12349) lies on these lines: {12,671}, {30,12183}, {72,9881}, {355,8724}, {542,11500}, {543,11236}, {958,2482}, {3436,8591}, {9875,10827}, {9876,10830}, {9878,10872}, {9880,10894}, {9882,10921}, {9883,10922}, {9884,10950}, {10054,10954}, {10070,10523}, {10786,12243}, {10795,12191}, {11374,12258}, {11391,12132}, {11827,12117}, {11867,12345}, {11868,12346}, {11904,12347}
X(12349) = reflection of X(12348) in X(8724)
X(12349) = X(671)-of-outer-Johnson-triangle
The reciprocal orthologic center of these triangles is X(9855).
X(12350) lies on these lines: {1,8724}, {2,3027}, {5,10070}, {12,671}, {55,542}, {56,2482}, {65,9881}, {98,4995}, {99,5434}, {114,11238}, {147,10385}, {226,2796}, {388,8591}, {495,10054}, {543,11237}, {2276,6034}, {2782,10056}, {3028,11006}, {3058,6054}, {3085,12243}, {3584,11632}, {5261,8596}, {7354,12117}, {9578,9875}, {9657,10992}, {9876,10831}, {9878,10873}, {9880,10895}, {9882,10923}, {9883,10924}, {9884,10944}, {10797,12191}, {11375,12258}, {11392,12132}, {11501,12326}, {11869,12345}, {11870,12346}, {11905,12347}
X(12350) = reflection of X(10054) in X(495)
X(12350) = X(671)-of-1st-Johnson-Yff-triangle
X(12350) = {X(1), X(8724)}-harmonic conjugate of X(12351)
X(12350) = {X(3058), X(6054)}-harmonic conjugate of X(12185)
The reciprocal orthologic center of these triangles is X(9855).
X(12351) lies on these lines: {1,8724}, {2,3023}, {5,10054}, {11,671}, {30,10089}, {55,2482}, {56,542}, {98,5298}, {99,3058}, {114,11237}, {496,10070}, {497,8591}, {543,11238}, {549,10053}, {2275,6034}, {2782,10072}, {2796,12053}, {3057,9881}, {3086,12243}, {3582,11632}, {5182,10799}, {5274,8596}, {5434,6054}, {6284,12117}, {9581,9875}, {9670,10992}, {9876,10832}, {9878,10874}, {9880,10896}, {9882,10925}, {9883,10926}, {9884,10950}, {10798,12191}, {11376,12258}, {11393,12132}, {11502,12326}, {11871,12345}, {11872,12346}, {11906,12347}
X(12351) = reflection of X(10070) in X(496)
X(12351) = X(671)-of-2nd-Johnson-Yff-triangle
X(12351) = {X(1), X(8724)}-harmonic conjugate of X(12350)
The reciprocal orthologic center of these triangles is X(9855).
X(12352) lies on these lines: {30,12186}, {493,671}, {542,9838}, {543,12152}, {2482,8222}, {6461,12353}, {6462,8591}, {8188,9875}, {8194,9876}, {8201,12345}, {8208,12346}, {8210,9884}, {8212,9880}, {8214,9881}, {8216,9882}, {8218,9883}, {8220,8724}, {9878,10875}, {10054,11951}, {10070,11953}, {10945,12348}, {10951,12349}, {11377,12258}, {11394,12132}, {11503,12326}, {11828,12117}, {11840,12191}, {11846,12243}, {11907,12347}, {11930,12350}, {11932,12351}
X(12352) = X(671)-of-Lucas-homothetic-triangle
The reciprocal orthologic center of these triangles is X(9855).
X(12353) lies on these lines: {30,12187}, {494,671}, {542,9839}, {543,12153}, {2482,8223}, {6461,12352}, {6463,8591}, {8189,9875}, {8195,9876}, {8202,12345}, {8209,12346}, {8211,9884}, {8213,9880}, {8215,9881}, {8217,9882}, {8219,9883}, {8221,8724}, {9878,10876}, {10054,11952}, {10070,11954}, {10946,12348}, {10952,12349}, {11378,12258}, {11395,12132}, {11504,12326}, {11829,12117}, {11841,12191}, {11847,12243}, {11908,12347}, {11931,12350}, {11933,12351}
X(12353) = X(671)-of-Lucas(-1)-homothetic-triangle
The reciprocal orthologic center of these triangles is X(9855).
X(12354) lies on these lines: {3,10070}, {4,12350}, {11,2482}, {12,9880}, {33,12132}, {55,671}, {56,12117}, {99,11238}, {115,4995}, {148,10385}, {390,8596}, {497,8591}, {542,6284}, {543,3023}, {950,2796}, {1479,8724}, {1697,9875}, {1837,9881}, {2098,9884}, {2646,12258}, {3056,9830}, {3295,10054}, {4294,12243}, {5182,10798}, {5432,5461}, {6034,9598}, {6321,10056}, {9876,10833}, {9878,10877}, {9882,10927}, {9883,10928}, {10799,12191}, {10947,12348}, {10953,12349}, {11873,12345}, {11874,12346}, {11909,12347}, {11947,12352}, {11948,12353}
X(12354) = reflection of X(3023) in X(3058)
X(12354) = X(671)-of-Mandart-incircle-triangle
X(12354) = {X(497), X(8591)}-harmonic conjugate of X(12351)
The reciprocal orthologic center of these triangles is X(9855).
X(12355) lies on these lines: {3,671}, {4,8596}, {5,8591}, {30,148}, {99,5055}, {114,381}, {115,5054}, {355,2796}, {382,542}, {517,9875}, {576,10488}, {999,10070}, {1351,9830}, {1598,12132}, {1656,2482}, {2782,3830}, {2936,7545}, {3295,10054}, {3526,5461}, {3534,11632}, {3655,11599}, {5093,8593}, {5790,9881}, {7517,9876}, {8787,11482}, {9654,12350}, {9669,12351}, {9882,11916}, {9883,11917}, {9884,10247}, {10246,12258}, {11152,11317}, {11656,12121}, {11842,12191}, {11849,12326}, {11875,12345}, {11876,12346}, {11911,12347}, {11928,12348}, {11929,12349}, {11949,12352}, {11950,12353}
X(12355) = midpoint of X(4) and X(8596)
X(12355) = reflection of X(i) in X(j) for these (i,j): (3,671), (381,6321), (3534,11632), (3655,11599), (8591,5), (8724,9880), (10488,576), (10992,5461), (12121,11656)
X(12355) = X(671)-of-X3-ABC-reflections-triangle
X(12355) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6321,8724,9880), (8724,9880,381), (10054,12354,3295)
The reciprocal orthologic center of these triangles is X(9855).
X(12356) lies on these lines: {1,671}, {12,12348}, {30,12189}, {542,12115}, {543,11239}, {2482,5552}, {8591,10528}, {8724,10942}, {9876,10834}, {9878,10878}, {9880,10531}, {9881,10915}, {9882,10929}, {9883,10930}, {10803,12191}, {10805,12243}, {10955,12349}, {10956,12350}, {10958,12351}, {10965,12354}, {11248,12117}, {11400,12132}, {11509,12326}, {11881,12345}, {11882,12346}, {11914,12347}, {11955,12352}, {11956,12353}, {12000,12355}
X(12356) = reflection of X(671) in X(10054)
X(12356) = X(671)-of-inner-Yff-tangents-triangle
The reciprocal orthologic center of these triangles is X(9855).
X(12357) lies on these lines: {1,671}, {11,12349}, {30,12190}, {542,12116}, {543,11240}, {2482,10527}, {8591,10529}, {8724,10943}, {9876,10835}, {9878,10879}, {9880,10532}, {9881,10916}, {9882,10931}, {9883,10932}, {10804,12191}, {10806,12243}, {10949,12348}, {10957,12350}, {10959,12351}, {10966,12354}, {11249,12117}, {11401,12132}, {11510,12326}, {11883,12345}, {11884,12346}, {11915,12347}, {11957,12352}, {11958,12353}, {12001,12355}
X(12357) = reflection of X(671) in X(10070)
X(12357) = X(671)-of-outer-Yff-tangents-triangle
The reciprocal orthologic center of these triangles is X(3581).
X(12358) lies on these lines: {2,1986}, {3,74}, {5,1112}, {20,12292}, {30,12133}, {52,11746}, {69,265}, {113,127}, {125,5562}, {143,10255}, {182,12227}, {389,6723}, {394,5504}, {511,7687}, {526,6334}, {542,11574}, {631,7722}, {974,6699}, {1040,7727}, {1060,3028}, {1154,2072}, {1368,10264}, {2777,5907}, {2854,9967}, {2914,7550}, {2979,10733}, {3448,6643}, {3564,10111}, {5076,11387}, {5894,12162}, {5972,7542}, {6101,10113}, {6102,6640}, {6676,10272}, {6746,10224}, {7386,12317}, {7484,12165}, {7514,12228}, {7724,10319}, {7728,11487}, {9140,12273}, {9976,11511}, {10170,11557}, {10625,12295}, {10657,11515}, {10658,11516}, {11821,12121}
X(12358) = midpoint of X(i) and X(j) for these {i,j}: {3,7723}, {20,12292}, {125,5562}, {1986,12219}, {5876,12041}, {6101,10113}, {10625,12295}
X(12358) = reflection of X(i) in X(j) for these (i,j): (52,11746), (389,6723), (974,6699), (1112,5), (1986,9826), (5972,11793)
X(12358) = anticomplement of X(9826)
X(12358) = complement of X(1986)
X(12358) = orthologic center of these triangles: 6th anti-mixtilinear to orthocentroidal
X(12358) = X(80)-of-6th-anti-mixtilinear-triangle if ABC is acute
X(12358) = {X(2), X(12219)}-harmonic conjugate of X(1986)
The reciprocal orthologic center of these triangles is X(7387).
Let A'B'C' be as described at X(11585). Then X(12359) = X(4)-of-A'B'C'. (Randy Hutson, July 21, 2017)
X(12359) lies on these lines: {2,155}, {3,68}, {4,3580}, {5,389}, {10,912}, {11,6238}, {12,7352}, {20,12293}, {22,11457}, {24,11442}, {26,1503}, {30,3357}, {51,7403}, {52,427}, {55,10071}, {56,10055}, {69,3546}, {110,10018}, {125,5562}, {135,432}, {140,141}, {143,5480}, {156,10020}, {184,7542}, {235,12162}, {394,3548}, {403,12111}, {468,10539}, {498,3157}, {499,1069}, {511,12235}, {517,12259}, {524,8548}, {525,10279}, {539,549}, {542,10282}, {550,10264}, {568,5576}, {569,11245}, {590,10665}, {615,10666}, {631,6193}, {858,11412}, {1040,9931}, {1092,10257}, {1181,3549}, {1209,7399}, {1216,1368}, {1352,6642}, {1594,5889}, {1595,5446}, {1656,5544}, {2013,7999}, {2080,12193}, {2883,5663}, {2918,2931}, {3167,3526}, {3519,5504}, {3541,6515}, {3567,5133}, {3576,9896}, {3925,6237}, {5094,12160}, {5392,8800}, {5418,8909}, {5447,11574}, {6640,11064}, {6643,11821}, {6696,12084}, {7386,12318}, {7404,11433}, {7484,12166}, {7505,11441}, {7526,12241}, {7553,11550}, {7691,9140}, {7998,12271}, {8546,9925}, {9926,11511}, {9933,10246}, {10112,11430}, {10267,12328}, {10295,12278}, {10659,11515}, {10660,11516}, {11745,11818}
X(12359) = midpoint of X(i) and X(j) for these {i,j}: {3,68}, {4,12163}, {20,12293}, {155,11411}, {2931,3448}, {7689,9927}
X(12359) = reflection of X(i) in X(j) for these (i,j): (5,5449), (155,9820), (156,10020), (1147,140), (12084,6696)
X(12359) = anticomplement of X(9820)
X(12359) = complement of X(155)
X(12359) = X(68)-of-6th-anti-mixtilinear-triangle if ABC is acute
X(12359) = orthologic center of these triangles: 6th anti-mixtilinear to 2nd Hyacinth
X(12359) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,155,9820), (2,11411,155), (5,6102,12233), (24,11442,12134), (125,5562,11585), (156,10020,10192), (1209,9730,7399), (1656,12164,5654)
The reciprocal orthologic center of these triangles is X(3).
X(12360) lies on these lines: {2,6291}, {3,6}, {20,12298}, {488,8681}, {631,6239}, {1038,7362}, {1040,6283}, {6252,10319}, {7386,12322}, {7484,12171}, {7998,12276}, {7999,12287}, {8909,12230}, {9822,11292}
X(12360) = midpoint of X(i) and X(j) for these {i,j}: {20,12298}, {6291,12223}
X(12360) = reflection of X(6291) in X(9823)
X(12360) = anticomplement of X(9823)
X(12360) = complement of X(6291)
X(12360) = {X(3),X(11574)}-harmonic conjugate of X(12361)
X(12360) = X(176)-of-6th-anti-mixtilinear-triangle if ABC is acute
X(12360) = orthic-to-6th-anti-mixtilinear similarity image of X(6291)
The reciprocal orthologic center of these triangles is X(3).
X(12361) lies on these lines: {2,6406}, {3,6}, {20,12299}, {487,8681}, {631,6400}, {1038,7353}, {1040,6405}, {5943,8964}, {6404,10319}, {7386,12323}, {7484,12172}, {7998,12277}, {7999,12288}, {9822,11291}
X(12361) = midpoint of X(i) and X(j) for these {i,j}: {20,12299}, {6406,12224}
X(12361) = reflection of X(6406) in X(9824)
X(12361) = anticomplement of X(9824)
X(12361) = complement of X(6406)
X(12361) = {X(3),X(11574)}-harmonic conjugate of X(12360)
X(12361) = X(175)-of-6th-anti-mixtilinear-triangle if ABC is acute
X(12361) = orthic-to-6th-anti-mixtilinear similarity image of X(6406)
The reciprocal orthologic center of these triangles is X(4).
As a point on the Euler line, X(12362) has Shinagawa coefficients: (E+F, -E-3*F).
X(12362) lies on these lines: {2,3}, {69,11821}, {182,12233}, {206,2883}, {216,7745}, {511,12241}, {524,10112}, {577,5254}, {1038,7354}, {1040,6284}, {1060,4320}, {1062,4319}, {1352,9924}, {1353,12160}, {1503,5907}, {1578,6560}, {1579,6561}, {2968,5015}, {3070,11513}, {3071,11514}, {3292,10619}, {3564,4173}, {3580,7691}, {4549,12163}, {4911,6356}, {5305,10316}, {5318,11515}, {5321,11516}, {5889,11245}, {5891,11750}, {5943,11745}, {5965,12024}, {6253,10319}, {6389,7784}, {6776,12164}, {7583,10897}, {7584,10898}, {7998,12278}, {7999,12289}, {8550,11511}, {10634,11542}, {10635,11543}, {11412,12022}
X(12362) = midpoint of X(i) and X(j) for these {i,j}: {20,1885}, {3575,12225}, {5562,6146}, {11750,12134}
X(12362) = reflection of X(i) in X(j) for these (i,j): (3575,9825), (6756,5), (7576,10128)
X(12362) = anticomplement of X(9825)
X(12362) = complement of X(3575)
X(12362) = X(65)-of-6th-anti-mixtilinear-triangle if ABC is acute
X(12362) = X(4)-of-3rd-pedal-triangle-of-X(3)
X(12362) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,12225,3575), (3,4,6823), (3,5,6676), (3,381,3547), (3,2072,7542), (4,7395,5), (4,7509,7399), (5,550,26), (5,3627,11818), (5,7715,7529), (5,10154,3542), (20,6816,25), (25,6816,5), (376,3542,9715), (1885,7667,20), (2043,2044,9909), (2072,7542,3628), (3091,7539,5), (3542,9715,10154), (6804,7487,5020), (10024,10297,3850)
The reciprocal orthologic center of these triangles is X(6243).
X(12363) lies on these lines: {2,6152}, {3,54}, {5,11576}, {20,12300}, {69,3519}, {140,6746}, {141,1209}, {182,12234}, {511,12242}, {539,1216}, {631,6242}, {973,5462}, {1038,7356}, {1040,6286}, {1656,6403}, {2888,6643}, {3917,12359}, {5447,6699}, {5562,10619}, {5894,10575}, {5907,12134}, {5965,11574}, {6193,11821}, {6243,11427}, {6255,10319}, {6288,11487}, {6676,8254}, {7386,12325}, {7484,12175}, {7730,11465}, {7998,12280}, {7999,12291}, {9977,11511}, {10625,12233}, {10677,11515}, {10678,11516}, {12358,12362}
X(12363) = midpoint of X(i) and X(j) for these {i,j}: {20,12300}, {1493,6101}, {5562,10619}, {6152,12226}
X(12363) = reflection of X(i) in X(j) for these (i,j): (973,6689), (6152,9827), (11576,5)
X(12363) = anticomplement of X(9827)
X(12363) = complement of X(6152)
X(12363) = X(79)-of-6th-anti-mixtilinear-triangle if ABC is acute
X(12363) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,12226,6152), (54,1993,1493)
The reciprocal orthologic center of these triangles is X(9934).
X(12364) lies on these lines: {5,6}, {74,323}, {113,539}, {186,12273}, {399,1514}, {974,10816}, {1147,10574}, {9938,12164}, {11456,12118}
X(12364) = orthologic center of these triangles: anti-orthocentroidal to 2nd Hyacinth
X(12364) = X(5504)-of-anti-orthocentroidal-triangle
The reciprocal orthologic center of these triangles is X(12112).
X(12365) lies on these lines: {55,12366}, {74,5597}, {110,11822}, {113,5599}, {125,8196}, {146,5601}, {541,11207}, {690,12179}, {3028,11873}, {5598,7978}, {5663,11252}, {7725,8198}, {7726,8199}, {7728,8200}, {10065,11877}, {10081,11879}, {10620,11875}, {11366,11709}, {11492,12327}, {11837,12192}, {11843,12244}
X(12365) = reflection of X(12366) in X(55)
X(12365) = X(74)-of-1st-Auriga-triangle
X(12365) = X(7978)-of-2nd-Auriga-triangle
The reciprocal orthologic center of these triangles is X(12112).
X(12366) lies on these lines: {55,12365}, {74,5598}, {110,11823}, {113,5600}, {125,8203}, {146,5602}, {541,11208}, {690,12180}, {3028,11874}, {5597,7978}, {5663,11253}, {7725,8205}, {7726,8206}, {7728,8207}, {8187,9904}, {10065,11878}, {10081,11880}, {10620,11876}, {11367,11709}, {11493,12327}, {11838,12192}, {11844,12244}
X(12366) = reflection of X(12365) in X(55)
X(12366) = X(74)-of-2nd-Auriga-triangle
X(12366) = X(7978)-of-1st-Auriga-triangle
The reciprocal orthologic center of these triangles is X(9970).
X(12367) lies on these lines: {6,25}, {23,2854}, {30,5648}, {50,5191}, {67,74}, {110,8705}, {156,11663}, {187,5938}, {237,9142}, {323,9019}, {399,511}, {512,5104}, {542,3581}, {597,10545}, {599,3098}, {1614,12061}, {1995,8547}, {2781,12112}, {3448,8262}, {5640,8546}, {7575,11579}, {10540,11649}
X(12367) = reflection of X(i) in X(j) for these (i,j): (6,1495), (3448,8262), (10510,110), (11579,7575)
X(12367) = X(67)-of-anti-orthocentroidal-triangle
The reciprocal orthologic center of these triangles is X(12112).
X(12368) lies on these lines: {1,113}, {2,11709}, {8,146}, {10,74}, {40,2777}, {65,79}, {72,2778}, {110,515}, {125,5587}, {355,5663}, {381,12261}, {516,10721}, {517,7728}, {519,7978}, {541,3679}, {542,3751}, {690,9864}, {944,11720}, {946,7984}, {1698,6699}, {1737,10081}, {1837,3028}, {2779,5086}, {2781,3416}, {2931,8185}, {2948,5691}, {3465,4551}, {3576,5972}, {3822,5494}, {5090,12133}, {5655,11699}, {5657,12244}, {5687,12327}, {5688,7726}, {5689,7725}, {5777,10693}, {5790,10620}, {5847,10752}, {8193,9919}, {8197,12365}, {8204,12366}, {8227,11735}, {8998,9583}, {9798,12168}, {9857,9984}, {10039,10065}, {10088,10572}, {10791,12192}
X(12368) = midpoint of X(i) and X(j) for these {i,j}: {8,146}, {2948,5691}
X(12368) = reflection of X(i) in X(j) for these (i,j): (1,113), (74,10), (944,11720), (7984,946), (10693,5777)
X(12368) = anticomplement of X(11709)
X(12368) = X(74)-of-outer-Garcia-triangle
X(12368) = X(1)-of-X(30)-Fuhrmann-triangle
The reciprocal orthologic center of these triangles is X(12112).
X(12369) lies on these lines: {30,110}, {74,402}, {113,1650}, {125,11897}, {146,4240}, {541,1651}, {690,12181}, {2777,7740}, {3028,11909}, {5663,11251}, {7725,11901}, {7726,11902}, {7978,11910}, {9904,11852}, {9919,11853}, {9984,11885}, {10065,11912}, {10081,11913}, {10620,11911}, {11709,11831}, {11832,12133}, {11839,12192}, {11845,12244}, {11848,12327}, {11900,12368}
X(12369) = midpoint of X(146) and X(4240)
X(12369) = reflection of X(i) in X(j) for these (i,j): (74,402), (1650,113)
X(12369) = X(74)-of-Gossard-triangle
The reciprocal orthologic center of these triangles is X(399).
X(12370) lies on these lines: {3,3580}, {4,1994}, {5,578}, {6,12293}, {23,12254}, {30,52}, {49,403}, {54,10024}, {68,7526}, {113,137}, {143,3575}, {156,235}, {265,1594}, {382,12174}, {389,11800}, {539,5907}, {568,6240}, {576,1353}, {1352,9925}, {1614,11799}, {1885,5663}, {1899,12084}, {2777,11232}, {3060,12289}, {3564,5876}, {3567,12278}, {5133,6288}, {5446,10115}, {5449,11430}, {6000,10116}, {6101,12362}, {6243,12225}, {6644,12118}, {6676,10610}, {6696,10264}, {7530,9833}, {9818,12166}, {10274,11563}, {10982,11818}, {11536,12227}
X(12370) = midpoint of X(6243) and X(12225)
X(12370) = reflection of X(i) in X(j) for these (i,j): (5,12241), (3575,143), (6101,12362), (11819,5446), (12134,546)
X(12370) = X(1)-of-1st-Hyacinth-triangle if ABC is acute
X(12370) = {X(578), X(9927)}-harmonic conjugate of X(5)
The reciprocal orthologic center of these triangles is X(12112).
X(12371) lies on these lines: {11,74}, {110,11826}, {113,1376}, {125,10893}, {146,3434}, {355,7728}, {541,11235}, {690,12182}, {2777,12114}, {3028,10947}, {5663,10525}, {7725,10919}, {7726,10920}, {7978,10944}, {9904,10826}, {9919,10829}, {9984,10871}, {10065,10523}, {10081,10948}, {10620,11928}, {10785,12244}, {10794,12192}, {10914,12368}, {11373,11709}, {11390,12133}, {11865,12365}, {11866,12366}, {11903,12369}
X(12371) = reflection of X(12327) in X(113)
X(12371) = reflection of X(12372) in X(7728)
X(12371) = X(74)-of-inner-Johnson-triangle
X(12371) = X(12381)-of-outer-Johnson-triangle
The reciprocal orthologic center of these triangles is X(12112).
X(12372) lies on these lines: {12,74}, {72,2778}, {110,11827}, {113,958}, {125,10894}, {146,3436}, {265,2779}, {355,7728}, {541,11236}, {690,12183}, {2777,11500}, {3028,10953}, {5663,10526}, {6253,10721}, {7725,10921}, {7726,10922}, {7978,10950}, {9904,10827}, {9919,10830}, {9984,10872}, {10065,10954}, {10081,10523}, {10620,11929}, {10786,12244}, {10795,12192}, {11374,11709}, {11391,12133}, {11867,12365}, {11868,12366}, {11904,12369}
X(12372) = reflection of X(12371) in X(7728)
X(12372) = X(74)-of-outer-Johnson-triangle
X(12372) = X(12382)-of-inner-Johnson-triangle
The reciprocal orthologic center of these triangles is X(12112).
X(12373) lies on the inner-Johnson-Yff-circle and these lines: {1,7728}, {4,3028}, {5,10081}, {12,74}, {30,10088}, {55,2777}, {56,113}, {65,79}, {73,9627}, {110,7354}, {125,10895}, {146,388}, {495,10065}, {498,12041}, {541,11237}, {690,12184}, {1388,11723}, {1478,5663}, {1479,1539}, {1511,4299}, {2931,9658}, {2948,9579}, {3031,9553}, {3043,9652}, {3047,9653}, {3085,12244}, {3448,5229}, {5204,5972}, {5270,7727}, {5434,10706}, {6284,10721}, {7725,10923}, {7726,10924}, {7978,10944}, {9578,9904}, {9647,10819}, {9648,10817}, {9654,10620}, {9659,10117}, {9919,10831}, {9984,10873}, {10082,11805}, {10483,12121}, {10797,12192}, {11375,11709}, {11392,12133}, {11501,12327}, {11905,12369}
X(12373) = reflection of X(10065) in X(495)
X(12373) = X(74)-of-1st-Johnson-Yff-triangle
X(12373) = {X(1),X(7728)}-harmonic conjugate of X(12374)
The reciprocal orthologic center of these triangles is X(12112).
X(12374) lies on the outer-Johnson-Yff-circle and these lines: {1,7728}, {5,10065}, {11,74}, {30,10091}, {55,113}, {56,2777}, {110,6284}, {125,10896}, {146,497}, {265,3583}, {399,9668}, {496,10081}, {499,12041}, {541,11238}, {690,12185}, {1478,1539}, {1479,5663}, {1511,4302}, {2931,9673}, {2948,9580}, {3031,9554}, {3043,9667}, {3047,9666}, {3057,12368}, {3058,10706}, {3086,12244}, {3448,5225}, {5217,5972}, {7354,10721}, {7725,10925}, {7726,10926}, {7978,10950}, {9581,9904}, {9630,10118}, {9660,10819}, {9663,10817}, {9669,10620}, {9672,10117}, {9919,10832}, {9984,10874}, {10066,11805}, {10798,12192}, {10833,12168}, {11376,11709}, {11393,12133}, {11502,12327}, {11871,12365}, {11872,12366}, {11906,12369}
X(12374) = reflection of X(10081) in X(496)
X(12374) = X(74)-of-2nd-Johnson-Yff-triangle
X(12374) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,7728,12373), (3583,7727,265)
Let Ka, Kb, Kc be the free vertices of the Kenmotu squares. Triangle KaKbKc is here named the 1st Kenmotu free vertices triangle. KaKbKc is the anti-Kosnita triangle of the 1st Kenmotu diagonals triangle. KaKbKc is homothetic to ABC at X(372). X(12375) is the perspector of the 1st Kenmotu diagonals triangle and the reflection of KaKbKc in X(371). (Randy Hutson, July 21, 2017)
The reciprocal orthologic center of these triangles is X(3581).
X(12375) lies on these lines: {6,13}, {74,6200}, {110,372}, {125,10576}, {146,6561}, {371,5663}, {485,3448}, {590,10264}, {615,10272}, {1151,10620}, {1511,6396}, {1986,5412}, {2066,7727}, {2771,7969}, {3068,12317}, {3311,12308}, {5410,12165}, {5415,7724}, {5609,6420}, {6453,10817}, {7722,10880}, {7723,10897}, {7968,11699}, {8909,12302}, {9826,10961}, {11417,12219}, {11447,12270}, {11462,12281}, {11473,12292}, {11513,12358}
X(12375) = {X(6),X(399)}-harmonic conjugate of X(12376)
X(12375) = X(80)-of-1st-Kenmotu-diagonals-triangle if ABC is acute
X(12375) = X(110)-of-1st-Kenmotu-free-vertices-triangle
The reciprocal orthologic center of these triangles is X(3581).
Let Ka', Kb', Kc' be the free vertices of the 2nd Kenmotu squares. Triangle Ka'Kb'Kc' is here named the 2nd Kenmotu free vertices triangle. Ka'Kb'Kc' is the anti-Kosnita triangle of the 2nd Kenmotu diagonals triangle. Ka'Kb'Kc' is homothetic to ABC at X(371). X(12376) is the perspector of the 2nd Kenmotu diagonals triangle and the reflection of Ka'Kb'Kc' in X(372). (Randy Hutson, July 21, 2017)
X(12376) lies on these lines: {6,13}, {74,6396}, {110,371}, {125,10577}, {146,6560}, {372,5663}, {486,3448}, {590,10272}, {615,10264}, {1152,10620}, {1511,6200}, {1986,5413}, {2771,7968}, {3069,12317}, {3312,12308}, {5411,12165}, {5414,7727}, {5416,7724}, {5609,6419}, {5642,8994}, {6126,8973}, {6454,10818}, {7722,10881}, {7723,10898}, {7969,11699}, {9826,10963}, {11418,12219}, {11448,12270}, {11463,12281}, {11474,12292}, {11514,12358}
X(12376) = {X(6),X(399)}-harmonic conjugate of X(12375)
X(12376) = X(80)-of-2nd-Kenmotu-diagonals-triangle if ABC is acute
X(12376) = X(110)-of-2nd-Kenmotu-free-vertices-triangle
The reciprocal orthologic center of these triangles is X(12112).
X(12377) lies on these lines: {74,493}, {110,11828}, {113,8222}, {125,8212}, {146,6462}, {541,12152}, {690,12186}, {2777,9838}, {3028,11947}, {5663,10669}, {6461,12378}, {7725,8216}, {7726,8218}, {7728,8220}, {7978,8210}, {8188,9904}, {8194,9919}, {8214,12368}, {9984,10875}, {10065,11951}, {10081,11953}, {10620,11949}, {10945,12371}, {10951,12372}, {11377,11709}, {11394,12133}, {11503,12327}, {11840,12192}, {11846,12244}, {11907,12369}, {11930,12373}, {11932,12374}
X(12377) = X(74)-of-Lucas-homothetic-triangle
The reciprocal orthologic center of these triangles is X(12112).
X(12378) lies on these lines: {74,494}, {110,11829}, {113,8223}, {125,8213}, {146,6463}, {541,12153}, {690,12187}, {2777,9839}, {3028,11948}, {5663,10673}, {6461,12377}, {7725,8217}, {7726,8219}, {7728,8221}, {7978,8211}, {8189,9904}, {8195,9919}, {8215,12368}, {9984,10876}, {10065,11952}, {10081,11954}, {10620,11950}, {10946,12371}, {10952,12372}, {11378,11709}, {11395,12133}, {11504,12327}, {11841,12192}, {11847,12244}, {11908,12369}, {11931,12373}, {11933,12374}
X(12378) = X(74)-of-Lucas(-1)-homothetic-triangle
The reciprocal orthologic center of these triangles is X(974).
X(12379) lies on these lines: {6,64}, {74,403}, {399,2935}, {974,10821}, {1656,3357}, {2777,3581}, {4550,10606}, {5663,12364}, {5895,11438}, {7687,10816}
The reciprocal orthologic center of these triangles is X(7731).
X(12380) lies on these lines: {6,24}, {23,12364}, {26,12280}, {74,10421}, {186,10821}, {399,1154}, {1495,2914}, {1614,6242}, {1657,7691}, {9707,12175}, {9920,11456}, {10628,12112}, {11438,12254}, {12290,12307}
X(12380) = reflection of X(2914) in X(1495)
X(12380) = {X(24), X(12291)}-harmonic conjugate of X(54)
The reciprocal orthologic center of these triangles is X(12112).
X(12381) lies on these lines: {1,74}, {12,12371}, {110,11248}, {113,5552}, {125,10531}, {146,10528}, {541,11239}, {690,12189}, {2777,12115}, {3028,10965}, {5663,10679}, {6256,10721}, {7725,10929}, {7726,10930}, {7728,10942}, {9919,10834}, {9984,10878}, {10620,12000}, {10803,12192}, {10805,12244}, {10915,12368}, {10955,12372}, {10956,12373}, {10958,12374}, {11400,12133}, {11509,12327}, {11881,12365}, {11882,12366}, {11914,12369}, {11955,12377}, {11956,12378}
X(12381) = reflection of X(74) in X(10065)
X(12381) = {X(74),X(7978)}-harmonic conjugate of X(12382)
X(12381) = X(74)-of-inner-Yff-tangents-triangle
The reciprocal orthologic center of these triangles is X(12112).
X(12382) lies on these lines: {1,74}, {11,12372}, {110,11249}, {113,10527}, {125,10532}, {146,10529}, {541,11240}, {690,12190}, {2777,12116}, {2779,10091}, {3028,10966}, {5663,10680}, {7725,10931}, {7726,10932}, {7728,10943}, {9919,10835}, {9984,10879}, {10620,12001}, {10804,12192}, {10806,12244}, {10916,12368}, {10949,12371}, {10957,12373}, {10959,12374}, {11401,12133}, {11510,12327}, {11883,12365}, {11884,12366}, {11915,12369}, {11957,12377}, {11958,12378}
X(12382) = reflection of X(74) in X(10081)
X(12382) = {X(74),X(7978)}-harmonic conjugate of X(12381)
X(12382) = X(74)-of-outer-Yff-tangents-triangle
Let A'B'C' be the dual of orthic triangle (a.k.a 1st anti-circumperp triangle). Let L, M, N be lines through A', B', C', respectively, parallel to the Euler line. Let L' be the reflection of L in sideline BC, and define M' and N' cyclically. The lines L', M', N' concur in X(12383). (cf. X(74), X(113), X(399), X(1511), X(5504), X(10692), X(14094), X(30714)) (Randy Hutson, March 21, 2019)
The reciprocal orthologic center of these triangles is X(6102).
X(12383) lies on the cubics K544, K611, K753 and these lines: {2,265}, {3,2888}, {4,110}, {20,5663}, {24,12310}, {30,146}, {67,10519}, {68,5963}, {69,74}, {100,12334}, {125,631}, {147,7422}, {185,12284}, {186,2931}, {193,1986}, {378,12168}, {381,10272}, {388,10088}, {497,10091}, {511,7731}, {515,2948}, {541,11001}, {550,2889}, {568,11561}, {974,2854}, {1092,12289}, {1112,7487}, {1503,2892}, {1539,3543}, {1656,11801}, {1657,12308}, {1993,2914}, {2771,3648}, {2777,3529}, {2781,5596}, {3028,4293}, {3060,11557}, {3068,10819}, {3069,10820}, {3090,5972}, {3091,10113}, {3146,5609}, {3520,12302}, {3522,12041}, {3524,6699}, {3533,6723}, {3545,5642}, {3564,10295}, {3567,11800}, {3616,12261}, {4302,7727}, {5055,11694}, {5157,5622}, {5562,12281}, {5603,11720}, {5648,11180}, {5656,11744}, {5667,9033}, {5889,11271}, {6053,10706}, {6143,12038}, {6193,7722}, {6560,12375}, {6561,12376}, {7552,11464}, {7706,11422}, {7732,10783}, {7733,10784}, {7787,12201}, {7967,7984}, {8907,9938}, {9919,12082}, {9927,11449}, {9934,11206}, {9976,11179}, {10114,11438}, {10117,12088}, {10574,11806}, {10628,11412}, {11469,12292}, {12270,12273}
X(12383) = midpoint of X(i) and X(j) for these {i,j}: {1657,12308}, {12270,12273}
X(12383) = reflection of X(i) in X(j) for these (i,j): (4,110), (20,12121), (146,399), (265,1511), (3146,7728), (3448,3), (3543,5655), (5889,11562), (7728,5609), (10620,550), (10733,113), (11180,5648), (12244,20), (12281,5562), (12284,185), (12317,74), (12319,5504)
X(12383) = isogonal conjugate of X(35372)
X(12383) = anticomplementary-circle-inverse of X(39118)
X(12383) = cevapoint of X(399) and X(2931)
X(12383) = crossdifference of every pair of points on line X(686)X(14398)
X(12383) = anticomplement of X(265)
X(12383) = X(265)-of-anticomplementary-triangle
X(12383) = X(110)-of-anti-Euler-triangle
X(12383) = crosspoint, wrt excentral or tangential triangle, of X(399) and X(2931)
X(12383) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (110,5504,3043), (110,10733,113), (113,10733,4), (146,9143,399), (265,1511,2), (376,12317,74), (1147,12278,4)
The reciprocal orthologic center of these triangles is X(4).
X(12384) lies on the anticomplementary circle and these lines: {2,107}, {3,12253}, {4,339}, {20,112}, {100,12340}, {127,3091}, {146,9517}, {147,2799}, {148,2794}, {149,2831}, {150,2825}, {151,2853}, {152,9518}, {153,2806}, {388,6020}, {497,3320}, {2781,3448}, {3523,6720}, {3543,10735}, {3616,12265}, {3839,10718}, {5731,11722}, {7787,12207}
X(12384) = reflection of X(i) in X(j) for these (i,j): (20,112), (1297,132), (12253,3)
X(12384) = anticomplement of X(1297)
X(12384) = orthoptic circle of Steiner inellipse-inverse-of-X(6716)
X(12384) = polar circle-inverse-of-X(12145)
X(12384) = X(1297)-of-anticomplementary-triangle
X(12384) = X(12918)-of-anti-Euler-triangle
X(12384) = de-Longchamps-circle-inverse of X(34168)
X(12384) = {X(132), X(1297)}-harmonic conjugate of X(2)
The reciprocal orthologic center of these triangles is X(1).
X(12385) lies on these lines: {3,1279}, {10855,12386}
The reciprocal orthologic center of these triangles is X(1).
X(12386) lies on these lines: {10855,12385}, {10860,12387}
The reciprocal orthologic center of these triangles is X(1).
X(12387) lies on these lines: {3,1279}, {10860,12386}
The reciprocal orthologic center of these triangles is X(1).
X(12388) lies on these lines: {1,7056}, {3,1279}, {2961,7084}, {8583,12386}
X(12388) = reflection of X(12387) in X(3)
The reciprocal orthologic center of these triangles is X(1).
X(12389) lies on these lines: {100,12387}, {2975,12388}, {5744,12385}, {11678,12386}
The reciprocal orthologic center of these triangles is X(1).
X(12390) lies on these lines: {2,12385}, {21,12388}, {63,12389}, {7411,12387}, {10861,12386}
The reciprocal orthologic center of these triangles is X(1).
X(12391) lies on these lines: {7,12390}, {8,12386}, {329,12389}, {962,4645}, {3616,12388}, {9776,12385}, {9778,12387}
The reciprocal orthologic center of these triangles is X(1).
X(12392) lies on these lines: {1,5575}, {10434,12387}, {10444,12390}, {10446,12391}, {10856,12385}, {10862,12386}, {10882,12388}, {11679,12389}
The reciprocal orthologic center of these triangles is X(1).
X(12393) lies on these lines: {2,12387}, {4,12388}, {5,3823}, {8727,12385}, {9779,12391}, {10863,12386}, {10883,12390}, {10886,12392}, {11680,12389}
X(12393) = midpoint of X(4) and X(12388)
X(12393) = complement of X(12387)
The reciprocal orthologic center of these triangles is X(1).
X(12394) lies on these lines: {2,12388}, {4,12387}, {5,3823}, {10,1541}, {4197,12390}, {8582,12386}, {8728,12385}, {9780,12391}, {10887,12392}, {11681,12389}
X(12394) = midpoint of X(4) and X(12387)
X(12394) = reflection of X(12393) in X(5)
X(12394) = complement of X(12388)
The reciprocal orthologic center of these triangles is X(1).
X(12395) lies on these lines: {1,7056}, {145,12391}, {1721,7982}, {3679,12394}, {7991,12387}, {11518,12385}, {11519,12386}, {11520,12390}, {11521,12392}, {11522,12393}, {11682,12389}
X(12395) = midpoint of X(145) and X(12391)
X(12395) = reflection of X(7991) in X(12387)
The reciprocal orthologic center of these triangles is X(1).
X(12396) lies on these lines: {1,7056}, {2,12391}, {40,238}, {57,12385}, {63,12389}, {165,12387}, {1698,12394}, {1699,12393}, {1764,12392}, {8580,12386}
X(12396) = midpoint of X(12389) and X(12390)
X(12396) = reflection of X(i) in X(j) for these (i,j): (1,12388), (12395,1)
X(12396) = complement of X(12391)
X(12396) = Ursa-minor-to-excentral similarity image of X(17633)
The reciprocal orthologic center of these triangles is X(1).
X(12397) lies on these lines: {2,12385}, {4,341}, {9,12396}, {329,12389}, {405,12388}, {442,12394}, {5927,12386}, {7580,12387}, {8226,12393}, {10888,12392}, {11523,12395}
X(12397) = midpoint of X(12389) and X(12391)
X(12397) = reflection of X(12390) in X(12385)
X(12397) = anticomplement of X(12385)
X(12397) = complement of X(12390)
The reciprocal orthologic center of these triangles is X(1).
X(12398) lies on these lines: {1,5575}, {3,12396}, {20,12391}, {40,12387}, {78,12389}, {517,12395}, {1490,12397}, {3576,12388}, {5587,12394}, {8227,12393}, {8726,12385}, {10864,12386}, {10884,12390}
X(12398) = midpoint of X(20) and X(12391)
X(12398) = reflection of X(i) in X(j) for these (i,j): (40,12387), (12396,3)
The reciprocal orthologic center of these triangles is X(1).
X(12399) lies on these lines: {7,12390}, {9,12389}, {1445,12396}, {7675,12398}, {7676,12387}, {7677,12388}, {7678,12393}, {7679,12394}, {8232,12397}, {8732,12385}, {10865,12386}, {10889,12392}, {11526,12395}
X(12399) = reflection of X(12389) in X(9)
The reciprocal orthologic center of these triangles is X(1).
X(12400) lies on these lines: {1,5575}, {11,12394}, {12,12393}, {55,12388}, {56,12387}, {145,12389}, {950,12397}, {1697,12396}, {3601,12385}, {4313,12390}, {7962,12395}, {8236,12399}, {9785,12391}, {10866,12386}
X(12400) = midpoint of X(145) and X(12389)
The reciprocal orthologic center of these triangles is X(1).
X(12401) lies on these lines: {1,5575}, {495,12394}, {496,12393}, {942,12385}, {999,12388}, {3295,12387}, {3333,12396}, {3487,12397}, {3616,12389}, {11035,12386}, {11036,12390}, {11037,12391}, {11038,12399}, {11529,12395}
The reciprocal orthologic center of these triangles is X(1).
X(12402) lies on these lines: {1,5575}, {2,12389}, {7,12390}, {11,12393}, {12,12394}, {55,12387}, {56,12388}, {57,12385}, {226,12397}, {3340,12395}, {8581,12386}
X(12402) = midpoint of X(i) and X(j) for these {i,j}: {7,12399}, {12390,12391}
X(12402) = reflection of X(i) in X(j) for these (i,j): (1,12401), (12396,12385), (12400,1)
X(12402) = complement of X(12389)
The reciprocal orthologic center of these triangles is X(1).
X(12403) lies on these lines: {1,7056}, {57,12387}, {65,12400}, {226,12393}, {354,12402}, {1210,12394}, {3333,12398}, {3873,12389}, {5045,12401}, {5728,12397}, {10580,12391}, {11018,12385}, {11019,12386}, {11020,12390}, {11021,12392}, {11025,12399}
X(12403) = midpoint of X(65) and X(12400)
X(12403) = reflection of X(12401) in X(5045)
The reciprocal orthologic center of these triangles is X(1).
X(12404) lies on these lines: {1,5575}, {165,12387}, {200,12389}, {516,12391}, {1750,12397}, {3062,12386}, {4326,12399}, {5732,12390}, {7987,12388}, {7988,12393}, {7989,12394}, {10857,12385}, {10980,12403}, {11531,12395}
X(12404) = reflection of X(i) in X(j) for these (i,j): (1,12398), (11531,12395), (12396,12387)
The reciprocal orthologic center of these triangles is X(1).
X(12405) lies on these lines: {21,12388}, {846,12396}, {1284,12402}, {4199,12397}, {4220,12387}, {5051,12394}, {8229,12393}, {8235,12398}, {8238,12399}, {8240,12400}, {8245,12404}, {8246,12405}, {8731,12385}, {9791,12391}, {10868,12386}, {10892,12392}, {11031,12403}, {11043,12401}, {11533,12395}, {11688,12389}
X(12405) = 2nd-Sharygin-to-1st-Sharygin similarity image of X(13220)
The reciprocal orthologic center of these triangles is X(1).
X(12406) lies on these lines: {174,12402}, {7587,12388}, {8126,12389}, {8382,12394}, {8389,12399}, {8423,12404}, {8425,12405}, {8729,12385}, {11535,12395}, {11860,12386}, {11890,12390}, {11891,12391}, {11924,12400}
The reciprocal orthologic center of these triangles is X(6102).
X(12407) lies on these lines: {1,265}, {10,12383}, {30,9904}, {35,12334}, {110,5587}, {125,3576}, {165,12121}, {355,2948}, {381,11699}, {515,3448}, {542,3751}, {1511,1698}, {1699,10113}, {2777,9899}, {3028,9613}, {5663,5691}, {5886,11801}, {6264,10778}, {7713,12140}, {7724,8274}, {8227,11720}, {9140,11709}, {9578,10088}, {9581,10091}, {10789,12201}
X(12407) = reflection of X(i) in X(j) for these (i,j): (1,265), (2948,355), (6264,10778), (12383,10)
X(12407) = X(265)-of-Aquila-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12408) lies on the Bevan circle and these lines: {1,1297}, {10,12384}, {35,12340}, {57,6020}, {112,165}, {127,1699}, {132,1698}, {515,12253}, {1054,9527}, {1282,2825}, {1697,3320}, {1768,2806}, {2781,2948}, {2799,9860}, {2831,5541}, {3679,9530}, {5540,9523}, {7713,12145}, {7987,11722}, {9517,9904}, {10705,11531}, {10789,12207}
X(12408) = reflection of X(i) in X(j) for these (i,j): (1,1297), (11531,10705), (12384,10)
X(12408) = X(1297)-of-Aquila-triangle
The reciprocal orthologic center of these triangles is X(79).
X(12409) lies on these lines: {1,5180}, {5,1768}, {35,12342}, {515,12255}, {7713,12146}, {10789,12209}
X(12409) = reflection of X(1) in X(10266)
X(12409) = X(10266)-of-Aquila-triangle
The reciprocal orthologic center of these triangles is X(10).
X(12410) lies on these lines: {1,3}, {8,25}, {10,5020}, {22,145}, {23,3621}, {24,12245}, {26,5844}, {28,5082}, {42,1036}, {159,5846}, {197,3913}, {219,1973}, {355,1598}, {515,9910}, {518,3556}, {519,9798}, {859,1792}, {944,11414}, {946,11479}, {952,7387}, {958,1486}, {960,12329}, {961,4339}, {962,1593}, {970,7074}, {1037,1042}, {1398,4318}, {1610,3189}, {1616,5096}, {1995,3617}, {2802,9912}, {3220,6762}, {3421,4222}, {3434,4185}, {3435,8668}, {3436,4186}, {3616,7484}, {3622,7485}, {3623,6636}, {3632,8185}, {3633,9591}, {3871,11337}, {5247,7083}, {5250,7085}, {5603,7395}, {5690,6642}, {5790,7529}, {5901,7393}, {7465,10587}, {7509,10595}, {7516,10283}, {7967,10323}, {7978,12168}, {8132,11924}, {9780,11284}, {9812,11403}, {9956,11484}, {10046,10573}, {10790,12195}, {10829,10912}, {10833,10950}
X(12410) = X(8)-of-Ara-triangle
X(12410) = X(1)-of-3rd-antipedal-triangle-of-X(3)
X(12410) = orthologic center of these triangles: Ara to 2nd Schiffler
X(12410) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,8193,3), (10,11365,5020), (22,145,8192)
The reciprocal orthologic center of these triangles is X(40).
X(12411) lies on these lines: {22,9874}, {24,12249}, {25,7160}, {197,12333}, {8000,8192}, {8185,9898}, {10037,10059}, {10046,10075}, {10790,12200}, {11365,12260}, {11414,12120}
X(12411) = X(7160)-of-Ara-triangle
The reciprocal orthologic center of these triangles is X(6102).
X(12412) lies on these lines: {3,74}, {6,11557}, {22,12383}, {24,3448}, {25,265}, {26,9920}, {30,9919}, {69,7502}, {113,9818}, {125,6642}, {146,378}, {155,10628}, {159,542}, {186,12317}, {197,12334}, {541,2935}, {1181,11562}, {1539,1597}, {1593,7728}, {1598,10113}, {1619,9934}, {1993,7731}, {2070,3580}, {2771,3556}, {2777,9914}, {2781,5504}, {3763,5621}, {5622,9826}, {5961,7669}, {5972,7393}, {6644,10264}, {7387,10117}, {7514,10272}, {8185,12407}, {9786,11806}, {10088,10831}, {10091,10832}, {10790,12201}, {11365,12261}, {11413,12244}, {11414,12121}, {12167,12236}
X(12412) = reflection of X(i) in X(j) for these (i,j): (7387,10117), (12085,12302), (12310,26)
X(12412) = circumcircle-inverse-of-X(12358)
X(12412) = X(265)-of-Ara-triangle
X(12412) = {X(74), X(110)}-harmonic conjugate of X(12358)
The reciprocal orthologic center of these triangles is X(4).
X(12413) lies on these lines: {3,132}, {22,12384}, {24,12253}, {25,1073}, {112,11414}, {127,1598}, {197,12340}, {1661,9530}, {2781,12310}, {2799,9861}, {2806,9913}, {3320,10833}, {7387,11641}, {8185,12408}, {9517,9919}, {10790,12207}, {11365,12265}
X(12413) = reflection of X(11641) in X(7387)
X(12413) = X(1297)-of-Ara-triangle
The reciprocal orthologic center of these triangles is X(79).
X(12414) lies on these lines: {3,7701}, {24,12255}, {25,10266}, {197,12342}, {8185,12409}, {10790,12209}, {11365,12267}
X(12414) = X(10266)-of-Ara-triangle
The reciprocal orthologic center of these triangles is X(9833).
X(12415) lies on these lines: {55,12416}, {68,5597}, {155,8200}, {539,11207}, {1147,5599}, {3157,11869}, {5598,9933}, {5601,6193}, {8190,9908}, {8196,9927}, {8197,9928}, {10055,11877}, {10071,11879}, {11366,12259}, {11411,11843}, {11822,12118}, {11837,12193}
X(12415) = reflection of X(12416) in X(55)
X(12415) = X(68)-of-1st-Auriga-triangle
X(12415) = X(9933)-of-2nd-Auriga-triangle
The reciprocal orthologic center of these triangles is X(9833).
X(12416) lies on these lines: {55,12415}, {68,5598}, {155,8207}, {539,11208}, {1147,5600}, {3157,11870}, {5597,9933}, {5602,6193}, {8187,9896}, {8191,9908}, {8203,9927}, {8204,9928}, {10055,11878}, {11367,12259}, {11411,11844}, {11823,12118}, {11838,12193}
X(12416) = reflection of X(12415) in X(55)
X(12416) = X(68)-of-2nd-Auriga-triangle
X(12416) = X(9933)-of-1st-Auriga-triangle
The reciprocal orthologic center of these triangles is X(7387).
X(12417) lies on these lines: {19,155}, {40,9896}, {55,9931}, {65,921}, {68,71}, {1147,11428}, {2013,11460}, {2550,12318}, {3101,11411}, {3564,8141}, {5584,12301}, {6193,6197}, {7688,9938}, {8539,9926}, {9816,9820}, {9932,10902}, {10306,12309}, {10319,12359}, {10636,10659}, {10637,10660}, {11406,12166}, {11435,12235}, {11445,12271}, {11471,12293}
X(12417) = reflection of X(9931) in X(9937)
X(12417) = X(84)-of-extangents-triangle if ABC is acute
The reciprocal orthologic center of these triangles is X(9833).
X(12418) lies on the Jerabek hyperbola and these lines: {30,155}, {68,402}, {539,1651}, {1069,11906}, {1147,1650}, {3157,11905}, {4240,6193}, {9896,11852}, {9908,11853}, {9923,11885}, {9927,11897}, {9928,11900}, {9929,11901}, {9930,11902}, {9933,11910}, {10055,11912}, {10071,11913}, {11411,11845}, {11831,12259}, {11832,12134}, {11839,12193}, {11848,12328}, {11863,12415}, {11864,12416}
X(12418) = midpoint of X(4240) and X(6193)
X(12418) = reflection of X(i) in X(j) for these (i,j): (68,402), (1650,1147)
X(12418) = isogonal conjugate of X(13621)
X(12418) = X(68)-of-Gossard-triangle
The reciprocal orthologic center of these triangles is X(1147).
X(12419) lies on these lines: {20,5663}, {25,10111}, {110,11585}, {159,542}, {265,403}, {1353,11566}, {1498,11744}, {1503,5504}, {3147,3448}, {6776,9826}
The reciprocal orthologic center of these triangles is X(12421).
X(12420) lies on these lines: {20,6193}, {26,159}, {68,3542}, {155,6146}, {186,11411}, {1147,3546}, {6623,9927}
X(12420) = X(4)-of-Aries-triangle
X(12420) = Aries-isogonal conjugate of X(32048)
The reciprocal orthologic center of these triangles is X(12420).
X(12421) lies on these lines: {5,6}, {378,11411}, {539,11802}, {1092,10257}, {1147,11245}, {5878,12293}, {6515,9908}, {9927,10151}, {12134,12235}
X(12421) = reflection of X(12134) in X(12235)
X(12421) = X(4)-of-2nd-Hyacinth-triangle
The reciprocal orthologic center of these triangles is X(9833).
X(12422) lies on these lines: {11,68}, {155,355}, {539,11235}, {912,1482}, {1147,1376}, {3157,9933}, {3434,6193}, {3564,10943}, {9896,10826}, {9908,10829}, {9923,10871}, {9927,10893}, {9928,10914}, {9929,10919}, {9930,10920}, {10055,10523}, {10071,10948}, {10785,11411}, {10794,12193}, {11373,12259}, {11390,12134}, {11826,12118}, {11865,12415}, {11866,12416}, {11903,12418}
X(12422) = reflection of X(12328) in X(1147)
X(12422) = reflection of X(12423) in X(155)
X(12422) = X(68)-of-inner-Johnson-triangle
X(12422) = X(12430)-of-outer-Johnson-triangle
The reciprocal orthologic center of these triangles is X(9833).
X(12423) lies on these lines: {3,63}, {12,68}, {155,355}, {539,11236}, {958,1147}, {1069,9933}, {3436,6193}, {9896,10827}, {9908,10830}, {9923,10872}, {9927,10894}, {9929,10921}, {9930,10922}, {10055,10954}, {10071,10523}, {10786,11411}, {10795,12193}, {11374,12259}, {11391,12134}, {11500,12328}, {11827,12118}, {11867,12415}, {11868,12416}, {11904,12418}
X(12423) = reflection of X(12422) in X(155)
X(12423) = X(68)-of-outer-Johnson-triangle
X(12423) = X(12431)-of-inner-Johnson-triangle
The reciprocal orthologic center of these triangles is X(7387).
X(12424) lies on these lines: {6,1147}, {68,6413}, {155,5412}, {372,9932}, {1151,12301}, {2013,11462}, {2066,9931}, {3068,12318}, {3311,12309}, {3564,11265}, {5410,12166}, {5415,12417}, {6193,10880}, {6200,9938}, {9820,10961}, {11411,11417}, {11447,12271}, {11473,12293}, {11513,12359}
X(12424) = X(84)-of-1st-Kenmotu-diagonals-triangle if ABC is acute
X(12424) = {X(6),X(9937)}-harmonic conjugate of X(12425)
The reciprocal orthologic center of these triangles is X(7387).
X(12425) lies on these lines: {6,1147}, {68,6414}, {155,5413}, {371,9932}, {1152,12301}, {2013,11463}, {3069,12318}, {3312,12309}, {3564,11266}, {5411,12166}, {5414,9931}, {5416,12417}, {6193,10881}, {6396,9938}, {9820,10963}, {11411,11418}, {11448,12271}, {11474,12293}, {11514,12359}
X(12425) = X(84)-of-2nd-Kenmotu-diagonals-triangle if ABC is acute
X(12425) = {X(6),X(9937)}-harmonic conjugate of X(12424)
The reciprocal orthologic center of these triangles is X(9833).
X(12426) lies on these lines: {68,493}, {155,8220}, {539,12152}, {1147,8222}, {3157,11930}, {6193,6462}, {6461,12427}, {8188,9896}, {8194,9908}, {8210,9933}, {8212,9927}, {8214,9928}, {8216,9929}, {8218,9930}, {8408,9936}, {9923,10875}, {10055,11951}, {10071,11953}, {10945,12422}, {10951,12423}, {11377,12259}, {11394,12134}, {11411,11846}, {11503,12328}, {11828,12118}, {11840,12193}, {11907,12418}
X(12426) = X(68)-of-Lucas-homothetic-triangle
The reciprocal orthologic center of these triangles is X(9833).
X(12427) lies on these lines: {68,494}, {155,8221}, {539,12153}, {1147,8223}, {3157,11931}, {6193,6463}, {6461,12426}, {8189,9896}, {8195,9908}, {8211,9933}, {8213,9927}, {8215,9928}, {8217,9929}, {8219,9930}, {8420,9936}, {9923,10876}, {10055,11952}, {10071,11954}, {10946,12422}, {10952,12423}, {11378,12259}, {11395,12134}, {11411,11847}, {11504,12328}, {11829,12118}, {11841,12193}, {11908,12418}
X(12427) = X(68)-of-Lucas(-1)-homothetic-triangle
The reciprocal orthologic center of these triangles is X(9833).
X(12428) lies on these lines: {1,9931}, {3,10071}, {4,651}, {5,11429}, {11,1147}, {12,9927}, {30,7352}, {33,12134}, {35,12359}, {55,68}, {56,12118}, {155,1479}, {497,1069}, {539,3058}, {912,10572}, {1062,6146}, {1478,12293}, {1594,9637}, {1697,9896}, {1837,9928}, {2098,9933}, {2646,12259}, {3028,7354}, {3056,3564}, {3167,9669}, {3295,10055}, {4294,11411}, {4302,12163}, {5432,5449}, {5433,12038}, {5654,10896}, {7741,9820}, {9645,9833}, {9668,12164}, {9670,9936}, {9908,10833}, {9923,10877}, {9929,10927}, {9930,10928}, {10799,12193}, {10947,12422}, {10953,12423}, {11909,12418}, {11947,12426}, {11948,12427}
X(12428) = X(68)-of-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(9833).
X(12429) lies on these lines: {3,68}, {4,193}, {5,3167}, {6,10112}, {26,9920}, {30,11411}, {69,11821}, {155,195}, {382,6243}, {517,9896}, {542,1498}, {567,1147}, {568,12235}, {912,4018}, {999,10071}, {1069,9669}, {1216,11850}, {1352,11479}, {1503,9914}, {1593,11442}, {1598,12134}, {1657,10620}, {1993,7507}, {2013,12111}, {2888,7503}, {3060,11576}, {3157,9654}, {3295,10055}, {3448,11413}, {3515,3580}, {3526,5449}, {3527,7528}, {3534,7689}, {3542,8780}, {3575,6515}, {3843,9936}, {3851,5654}, {5050,7399}, {5054,12038}, {5055,9820}, {5489,8057}, {5562,11898}, {5790,9928}, {5889,12173}, {5907,8681}, {6238,9668}, {6776,6823}, {6815,11245}, {7352,9655}, {7383,12017}, {7395,12022}, {7517,9908}, {7544,9777}, {7592,8548}, {8909,8976}, {8912,8981}, {9301,9923}, {9818,12166}, {9825,11433}, {9833,9909}, {9929,11916}, {9930,11917}, {9933,10247}, {10246,12259}, {11459,12271}, {11842,12193}, {11849,12328}, {11875,12415}, {11876,12416}, {11911,12418}, {11928,12422}, {11929,12423}, {11949,12426}, {11950,12427}
X(12429) = midpoint of X(2013) and X(12111)
X(12429) = reflection of X(i) in X(j) for these (i,j): (3,68), (155,9927), (382,12293), (1657,12163), (6193,5), (12118,12359), (12164,4)
X(12429) = homothetic center of Ehrmann side-triangle and X3-ABC reflections triangle
X(12429) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (68,12118,12359), (155,9927,381), (1352,12241,11479), (10055,12428,3295), (12118,12359,3)
The reciprocal orthologic center of these triangles is X(9833).
X(12430) lies on these lines: {1,68}, {12,12422}, {119,5654}, {155,10942}, {539,11239}, {952,1854}, {1069,10958}, {1147,5552}, {3157,10956}, {6193,10528}, {9908,10834}, {9923,10878}, {9927,10531}, {9928,10915}, {9929,10929}, {9930,10930}, {10803,12193}, {10805,11411}, {10955,12423}, {10965,12428}, {11248,12118}, {11400,12134}, {11509,12328}, {11881,12415}, {11882,12416}, {11914,12418}, {11955,12426}, {11956,12427}, {12000,12429}
X(12430) = reflection of X(68) in X(10055)
X(12430) = X(68)-of-inner-Yff-tangents-triangle
X(12430) = {X(68),X(9933)}-harmonic conjugate of X(12431)
The reciprocal orthologic center of these triangles is X(9833).
X(12431) lies on these lines: {1,68}, {11,12423}, {155,10943}, {539,11240}, {912,1479}, {1069,10959}, {1147,10527}, {3157,10957}, {6193,10529}, {9908,10835}, {9923,10879}, {9927,10532}, {9928,10916}, {9929,10931}, {9930,10932}, {10804,12193}, {10806,11411}, {10949,12422}, {10966,12428}, {11249,12118}, {11401,12134}, {11510,12328}, {11883,12415}, {11884,12416}, {11915,12418}, {11957,12426}, {11958,12427}, {12001,12429}
X(12431) = reflection of X(68) in X(10071)
X(12431) = X(68)-of-outer-Yff-tangents-triangle
X(12431) = {X(68),X(9933)}-harmonic conjugate of X(12430)
Let A'B'C' be the orthic triangle of a triangle ABC. Let (Oa) be the incircle of AB'C', and define (Ob) and (Oc) cyclically. Then X(12432) = radical center of (Oa), (Ob), (Oc); see figure 1 and figure 2 . (Contributed by Thanh Oai Dao, March 4, 2017)
X(12432) lies on these lines: {1,1170}, {6,4347}, {7,5904}, {10,12}, {35,10122}, {46,10884}, {56,3881}, {57,3811}, {200,3339}, {201,3743}, {517,6738}, {518,4298}, {653,1844}, {942,6684}, {960,6666}, {962,1479}, {1125,5173}, {1203,4318}, {1254,3293}, {1400,3970}, {1420,3892}, {1448,3751}, {1708,5248}, {1724,4332}, {1788,5883}, {1825,1873}, {1902,5185}, {2099,3884}, {2171,3294}, {2800,6797}, {2801,4292}, {3085,5902}, {3256,7098}, {3305,3869}, {3340,3878}, {3361,3873}, {3485,10176}, {3555,4315}, {3681,5290}, {4294,10399}, {4314,5728}, {5435,5442}, {5884,11500}, {5905,12059}
X(12432) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (65,72,3671), (65,4848,3754), (3678,3754,3841), (5728,7957,4314).
Let A'B'C' be the orthic triangle of a triangle ABC. Let (Oa) be the incircle of AB'C', and define (Ob) and (Oc) cyclically. Then X(12433) = center of the circle that is externally tangent to (Oa), (Ob), (Oc); i.e., the outer Apollonian circle of (Oa), (Ob), (Oc), which passes through X(12019). See figure 1 and figure 2 , (Contributed by Thanh Oai Dao, March 4, 2017)
Let A'B'C' be the orthic triangle. Let Oa be the circle centered at A' and tangent to the internal angle bisector of angle A, and define Ob and Oc cyclically. Then X(12433) is the radical center of circles Oa, Ob, Oc. (Angel Montesdeoca, August 31, 2019)
X(12433) lies on these lines: {1,5}, {3,938}, {4,6147}, {7,382}, {8,5284}, {20,5708}, {30,553}, {36,10543}, {40,10386}, {57,550}, {140,1210}, {145,3940}, {226,546}, {354,10572}, {381,3487}, {404,9945}, {452,3927}, {515,5045}, {517,6738}, {519,4015}, {528,3754}, {529,3881}, {548,4304}, {549,3601}, {944,5804}, {962,1159}, {999,3486}, {1056,6849}, {1058,1482}, {1385,11019}, {1656,5703}, {1844,1852}, {1895,7510}, {2095,6868}, {2310,5492}, {2829,12005}, {3058,5903}, {3189,9709}, {3244,3452}, {3295,5690}, {3303,10573}, {3337,5441}, {3419,8728}, {3475,9654}, {3485,9669}, {3526,5704}, {3530,3911}, {3579,4314}, {3583,3649}, {3586,3627}, {3622,6856}, {3623,6919}, {3626,6666}, {3632,7308}, {3748,10039}, {3811,3820}, {3843,5714}, {3845,9612}, {3851,5226}, {3868,11113}, {3884,5855}, {4295,9668}, {4299,4860}, {4302,5221}, {4342,11278}, {4857,5425}, {4995,5445}, {5049,10106}, {5253,10609}, {5274,6866}, {5436,5791}, {5572,7686}, {5728,5762}, {5761,10247}, {5790,6887}, {5818,10578}, {5840,5885}, {5841,6583}, {5844,9957}, {5882,7682}, {5902,6284}, {6261,7956}, {6675,6734}, {6825,10246}, {6844,10595}, {6848,7967}, {8148,9785}, {10051,11510}, {11544,11551}
X(12433) = midpoint of X(942) and X(950)
X(12433) = reflection of X(5045) in X(6744)
X(12433) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,5,5719), (1,11,37737), (1,496,5901), (1,1837,495), (1,5722,5), (1,9581,11374), (1,11373,10283), (145,5084,3940), (938,3488,3), (944,10580,7373), (1482,6827,5763), (5722,11374,9581), (9581,11374,5), (9785,11041,8148)
Orthologic centers: X(12434)-X(12624)
Centers X(12434)-X(12624) were contributed by César Eliud Lozada, March, 22, 2017.
The reciprocal orthologic center of these triangles is X(2).
X(12434) lies on the Artzt circle and these lines: {2,12157}, {98,512}, {111,9831}, {263,2679}, {511,9877}
X(12434) = circumsymmedial-to-Artzt similarity image of X(2698)
The reciprocal orthologic center of these triangles is X(942).
X(12435) lies on these lines: {1,3}, {8,10435}, {10,10478}, {63,10451}, {72,10888}, {145,10465}, {511,5691}, {516,10454}, {518,10442}, {519,12126}, {946,10479}, {962,10449}, {970,1698}, {975,994}, {2292,10892}, {3216,9549}, {3632,10825}, {3741,4301}, {3868,10444}, {3869,11679}, {5587,5752}, {5836,10456}, {7672,10889}, {8093,11894}, {9780,10440}, {9808,10891}
X(12435) = reflection of X(1) in X(10441)
X(12435) = Conway circle-inverse-of-X(1319)
X(12435) = X(4)-of-3rd-Conway-triangle
X(12435) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,40,10434), (1,165,10470), (1,1764,10882), (1,10441,10439), (10,10478,10887), (55,10474,1), (65,10480,1), (946,10479,10886), (1764,11521,1), (2098,10475,1), (3057,10473,1), (7982,10476,1), (10446,10447,10435)
The reciprocal orthologic center of these triangles is X(1).
X(12436) lies on these lines: {1,6904}, {2,4292}, {3,142}, {4,5437}, {5,6692}, {7,936}, {10,57}, {20,10857}, {58,3008}, {72,553}, {84,6864}, {140,3824}, {226,474}, {376,5436}, {377,1210}, {386,3664}, {404,5249}, {442,3911}, {515,3812}, {519,942}, {527,5044}, {535,11575}, {551,3601}, {758,10855}, {950,5439}, {975,3663}, {997,3671}, {1054,5530}, {1056,1706}, {1329,3634}, {1467,4315}, {1478,8582}, {1698,5744}, {1770,3624}, {2095,11362}, {2550,3333}, {2999,4340}, {3243,3296}, {3244,11518}, {3338,4847}, {3361,8732}, {3487,5438}, {3600,9623}, {3616,10624}, {3626,5708}, {3646,5698}, {3678,5850}, {3698,5434}, {3752,5717}, {3753,10106}, {3811,5542}, {3817,6847}, {3825,8727}, {3828,5791}, {3833,11227}, {3838,6691}, {3874,6743}, {3922,10944}, {4190,4304}, {4208,5435}, {4255,4675}, {4294,10582}, {4295,8583}, {4297,8726}, {4301,6282}, {4355,8580}, {4413,10404}, {4511,9782}, {5045,5853}, {5084,9579}, {5087,5122}, {5691,11407}, {5715,6926}, {5883,6738}, {5902,6737}, {6245,6256}, {6259,9842}, {6260,6918}, {6678,6693}, {6744,11018}, {6765,11037}, {6824,10171}, {6849,7171}, {6850,7682}, {6935,8227}, {7330,8257}, {10164,10198}
X(12436) = midpoint of X(i) and X(j) for these {i,j}: {10,4298}, {3874,6743}
X(12436) = X(389)-of-Ascella-triangle
X(12436) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,142,1125), (4,5437,9843), (57,443,10), (226,474,6700), (377,3306,1210), (3600,11024,9623), (4208,5435,5705), (5438,6173,3487), (5439,11112,950), (5745,8728,3634), (6904,9776,1)
The reciprocal orthologic center of these triangles is X(1).
X(12437) lies on these lines: {1,142}, {3,519}, {8,3158}, {9,4313}, {10,6675}, {20,527}, {21,5325}, {55,5837}, {57,145}, {72,4304}, {78,950}, {100,4848}, {200,3486}, {210,10543}, {226,2475}, {284,1043}, {515,3811}, {517,9942}, {518,4297}, {522,5592}, {528,4301}, {551,3813}, {553,4190}, {579,3169}, {936,3488}, {938,5438}, {942,3244}, {944,6282}, {952,6245}, {958,6600}, {960,4314}, {1210,5440}, {1265,2325}, {1376,6738}, {1483,9940}, {1837,6745}, {2646,4847}, {2802,9946}, {3241,3680}, {3243,3600}, {3522,3928}, {3555,4311}, {3621,5744}, {3626,5791}, {3679,6857}, {3689,6736}, {3870,10106}, {3879,7176}, {3911,4855}, {3939,5247}, {3984,6872}, {4035,7270}, {4320,8271}, {4511,12053}, {4685,8731}, {5175,5219}, {5436,6666}, {5720,9842}, {5722,6700}, {5727,7080}, {5730,10624}, {5731,6762}, {5836,11018}, {5854,9945}, {5881,6847}, {6049,8732}, {7967,8726}, {9843,12433}, {10165,10916}, {10857,11519}
X(12437) = midpoint of X(i) and X(j) for these {i,j}: {1,3189}, {20,11523}, {145,2136}, {944,6765}, {3243,7674}
X(12437) = reflection of X(i) in X(j) for these (i,j): (10912,3635), (11362,8715)
X(12437) = orthologic center of these triangles: Ascella to 2nd Schiffler
X(12437) = X(64)-of-Ascella-triangle
X(12437) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (8,3601,5745), (55,6737,5837), (78,950,3452), (200,3486,5795), (938,5438,6692), (3241,6904,11518), (3555,10609,4311), (3689,10950,6736), (4190,11520,553)
The reciprocal orthologic center of these triangles is X(3).
X(12438) lies on these lines: {1,402}, {3,11848}, {8,4240}, {10,1650}, {30,40}, {55,11863}, {515,12113}, {517,11251}, {519,1651}, {944,11845}, {946,11897}, {1482,11911}, {1829,11832}, {1837,11906}, {3057,11909}, {3081,4669}, {3640,11902}, {3641,11901}, {5252,11905}, {9798,11853}, {9941,11885}, {11839,12194}
X(12438) = midpoint of X(i) and X(j) for these {i,j}: {8,4240}, {11903,11904}
X(12438) = reflection of X(i) in X(j) for these (i,j): (1,402), (1650,10), (11831,11852)
X(12438) = X(1)-of-Gossard-triangle
The reciprocal orthologic center of these triangles is X(3555).
X(12439) lies on these lines: {3,12333}, {142,5045}, {518,12260}, {3555,7160}, {3601,5920}, {3889,9874}, {8001,10857}, {9776,9804}, {9953,10855}
X(12439) = midpoint of X(3555) and X(7160)
The reciprocal orthologic center of these triangles is X(3).
X(12440) lies on these lines: {1,493}, {3,11503}, {8,6462}, {40,11828}, {55,8201}, {355,8220}, {515,9838}, {517,10669}, {519,12152}, {944,11846}, {946,8212}, {1482,11949}, {1829,11394}, {1837,11932}, {2292,8393}, {3057,11947}, {3640,8218}, {3641,8216}, {5252,11930}, {6339,8215}, {6461,12441}, {8194,9798}, {9941,10875}, {11840,12194}, {11907,12438}
X(12440) = X(1)-of-Lucas-homothetic-triangle
X(12440) = {X(8201),X(8208)}-harmonic conjugate of X(55)
The reciprocal orthologic center of these triangles is X(3).
X(12441) lies on these lines: {1,494}, {3,11504}, {8,6463}, {10,8223}, {40,11829}, {55,8202}, {355,8221}, {515,9839}, {517,10673}, {519,12153}, {944,11847}, {946,8213}, {1482,11950}, {1829,11395}, {1837,11933}, {2292,8394}, {3057,11948}, {3640,8219}, {3641,8217}, {5252,11931}, {6339,8214}, {6461,12440}, {8195,9798}, {9941,10876}, {11841,12194}, {11908,12438}
X(12441) = X(1)-of-Lucas(-1)-homothetic-triangle
X(12441) = {X(8202),X(8209)}-harmonic conjugate of X(55)
The reciprocal orthologic center of these triangles is X(3555).
X(12442) lies on these lines: {2,12538}, {3,12517}, {5744,12534}, {8727,12613}, {8728,12621}, {9776,12542}, {10855,12449}, {10856,12553}
The reciprocal orthologic center of these triangles is X(1).
X(12443) lies on these lines: {1,8733}, {57,164}, {167,10857}, {3601,8422}, {5571,11018}, {5744,11691}, {7670,8732}, {9776,9807}
X(12443) = orthologic center of these triangles: Ascella to 2nd midarc
X(12443) = X(1)-of-Ascella-triangle
X(12443) = {X(8733),X(8734)}-harmonic conjugate of X(1)
The reciprocal orthologic center of these triangles is X(21).
X(12444) lies on these lines: {3,12342}, {226,2475}, {942,3838}, {6841,9946}
The reciprocal orthologic center of these triangles is X(942).
X(12445) lies on these lines: {10,8382}, {57,7588}, {65,174}, {258,3339}, {517,8130}, {519,12130}, {2292,8425}, {3057,10502}, {3868,11890}, {3869,8126}, {5902,11217}, {7672,8389}, {7991,8423}, {9808,11996}, {11896,12435}
X(12445) = {X(3057), X(10502)}-harmonic conjugate of X(11924)
The reciprocal orthologic center of these triangles is X(1).
X(12446) lies on these lines: {1,9859}, {8,79}, {10,5927}, {516,960}, {1125,10855}, {3062,5234}, {3555,3671}, {3841,6702}, {3878,9589}, {3884,10624}, {4301,5784}, {4314,10609}, {5248,8583}, {6001,9947}
X(12446) = X(578)-of-Atik-triangle
The reciprocal orthologic center of these triangles is X(1).
X(12447) lies on these lines: {1,2}, {3,9948}, {9,4297}, {20,3062}, {72,4298}, {210,10106}, {220,5783}, {392,10866}, {405,10392}, {443,3671}, {515,5044}, {516,960}, {518,11035}, {553,3962}, {758,10855}, {993,8273}, {1001,12437}, {1376,5837}, {1706,6766}, {1837,5316}, {2550,4301}, {3035,9952}, {3160,5232}, {3452,5794}, {3488,3646}, {3600,5223}, {3678,9954}, {3740,5795}, {3874,10569}, {3876,11678}, {3878,7957}, {3923,9950}, {3983,10944}, {4005,5434}, {4292,5692}, {4308,5686}, {4314,10384}, {4342,5082}, {4413,4848}, {5234,5731}, {5273,7987}, {5328,7989}, {5438,10164}, {5542,11523}, {5791,10165}, {5833,11036}, {5882,9708}, {5927,10176}, {8158,9709}, {9858,9943}, {9949,10860}
X(12447) = midpoint of X(i) and X(j) for these {i,j}: {1,6743}, {72,4298}, {6737,6738}
X(12447) = reflection of X(6744) in X(1125)
X(12447) = complement of X(6738)
X(12447) = X(389)-of-Atik-triangle
X(12447) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,3632,9797), (2,6737,6738), (8,8580,10), (8,8583,11019), (10,997,1125), (10,3244,9623), (10,6700,3634), (1125,3626,10916), (8583,11019,1125)
The reciprocal orthologic center of these triangles is X(1).
X(12448) lies on these lines: {8,210}, {145,8581}, {517,9948}, {518,3062}, {519,9856}, {2136,8580}, {2802,9952}, {3244,11035}, {3340,10912}, {3621,11678}, {3813,8582}, {3878,9953}, {3913,8583}, {4853,10384}, {5836,11019}, {5854,9951}, {9957,12447}, {10178,11260}, {10855,12437}
X(12448) = orthologic center of these triangles: Atik to 2nd Schiffler
X(12448) = X(64)-of-Atik-triangle
The reciprocal orthologic center of these triangles is X(3555).
X(12449) lies on these lines: {8,12542}, {8582,12621}, {8583,12522}, {10855,12442}, {10860,12517}, {10861,12538}, {10862,12553}, {10863,12613}, {11678,12534}
The reciprocal orthologic center of these triangles is X(1).
X(12450) lies on these lines: {1,9853}, {8,9807}, {164,8580}, {167,3062}, {177,8581}, {5571,11019}, {7670,10865}, {8422,10866}, {10855,12443}, {11678,11691}
X(12450) = orthologic center of these triangles: Atik to 2nd midarc
X(12450) = X(1)-of-Atik-triangle
X(12450) = {X(11858),X(11859)}-harmonic conjugate of X(1)
The reciprocal orthologic center of these triangles is X(21).
X(12451) lies on these lines: {8,10266}, {3062,6597}, {10855,12444}
The reciprocal orthologic center of these triangles is X(3).
X(12452) lies on these lines: {6,5597}, {55,63}, {69,5601}, {141,5599}, {159,8190}, {511,11252}, {524,11207}, {611,11877}, {613,11879}, {1350,11822}, {1351,11875}, {1352,8200}, {1386,11366}, {1843,11384}, {2781,12365}, {3056,11873}, {3094,11861}, {3242,5598}, {3416,8197}, {3564,12415}, {5480,8196}, {6776,11843}, {9041,11208}, {9830,12345}, {11492,12329}, {11837,12212}
X(12452) = reflection of X(12453) in X(55)
X(12452) = {X(8198),X(8199)}-harmonic conjugate of X(5597)
X(12452) = X(6)-of-1st-Auriga-triangle
X(12452) = X(3242)-of-2nd-Auriga-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12453) lies on these lines: {6,5598}, {55,63}, {69,5602}, {141,5600}, {159,8191}, {511,11253}, {524,11208}, {611,11878}, {613,11880}, {1350,11823}, {1351,11876}, {1352,8207}, {1386,11367}, {1843,11385}, {3056,11874}, {3094,11862}, {3242,5597}, {3416,8204}, {3564,12416}, {3751,8187}, {5480,8203}, {6776,11844}, {9041,11207}, {9830,12346}, {11493,12329}, {11838,12212}
X(12453) = reflection of X(12452) in X(55)
X(12453) = {X(8205),X(8206)}-harmonic conjugate of X(5598)
X(12453) = X(6)-of-2nd-Auriga-triangle
X(12453) = X(3242)-of-1st-Auriga-triangle
The reciprocal orthologic center of these triangles is X(10).
X(12454) lies on these lines: {1,5599}, {8,5597}, {10,11366}, {55,519}, {145,5598}, {355,8196}, {944,11822}, {1482,8200}, {2098,11871}, {2099,11869}, {3244,11367}, {3621,5602}, {3633,8187}, {3913,11492}, {5844,11253}, {5846,12452}, {8190,12410}, {8207,11875}, {9053,12453}, {10573,11879}, {10912,11865}, {10950,11873}, {11384,12135}, {11823,11843}, {11837,12195}
X(12454) = X(12454) = reflection of X(i) in X(j) for these (i,j): (11208,11207), (12455,55)
X(12454) = X(8)-of-1st-Auriga-triangle
X(12454) = X(145)-of-2nd-Auriga-triangle
The reciprocal orthologic center of these triangles is X(10).
X(12455) lies on these lines: {1,5600}, {8,5598}, {10,11367}, {55,519}, {145,5597}, {355,8203}, {944,11823}, {1482,8196}, {2098,11872}, {2099,11870}, {3244,11366}, {3621,5601}, {3632,8187}, {3913,11493}, {5844,11252}, {5846,12453}, {8191,12410}, {8200,11876}, {9053,12452}, {10573,11880}, {10912,11866}, {10950,11874}, {11385,12135}, {11822,11844}, {11838,12195}
X(12455) = reflection of X(i) in X(j) for these (i,j): (11207,11208), (12454,55)
X(12455) = X(8)-of-2nd-Auriga-triangle
X(12455) = X(145)-of-1st-Auriga-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12456) lies on these lines: {55,6001}, {84,5597}, {515,12454}, {971,11252}, {1490,11822}, {1709,11877}, {5598,7971}, {5599,6260}, {6245,8196}, {6257,8199}, {6258,8198}, {6259,8200}, {8190,9910}, {10085,11879}, {11366,12114}, {11492,12330}, {11837,12196}, {11843,12246}
X(12456) = reflection of X(12457) in X(55)
X(12456) = X(84)-of-1st-Auriga-triangle
X(12456) = X(7971)-of-2nd-Auriga-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12457) lies on these lines: {55,6001}, {84,5598}, {515,12455}, {971,11253}, {1490,11823}, {1709,11878}, {5597,7971}, {5600,6260}, {6245,8203}, {6257,8206}, {6258,8205}, {6259,8207}, {7992,8187}, {8191,9910}, {10085,11880}, {11367,12114}, {11493,12330}, {11838,12196}, {11844,12246}
X(12457) = reflection of X(12456) in X(55)
X(12457) = X(84)-of-2nd-Auriga-triangle
X(12457) = X(7971)-of-1st-Auriga-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12458) lies on these lines: {1,3}, {4,8197}, {10,8196}, {515,12454}, {946,5599}, {962,5601}, {1836,11869}, {2800,12457}, {4301,8203}, {5600,11362}, {5812,11867}, {6361,11843}, {8190,9911}, {8204,12245}, {11837,12197}
X(12458) = reflection of X(i) in X(j) for these (i,j): (55,11252), (12459,55)
X(12458) = X(40)-of-1st-Auriga-triangle
X(12458) = X(7982)-of-2nd-Auriga-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12459) lies on these lines: {1,3}, {4,8204}, {10,8203}, {515,12455}, {946,5600}, {962,5602}, {1836,11870}, {2800,12456}, {4301,8196}, {5599,11362}, {5812,11868}, {6361,11844}, {8191,9911}, {8197,12245}, {11838,12197}
X(12459) = reflection of X(i) in X(j) for these (i,j): (55,11253), (12458,55)
X(12459) = X(40)-of-2nd-Auriga-triangle
X(12459) = X(7982)-of-1st-Auriga-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12460) lies on these lines: {11,11366}, {55,952}, {80,5597}, {100,8197}, {214,5599}, {1317,11367}, {2802,12454}, {2829,12456}, {5598,7972}, {5601,6224}, {5840,12458}, {6262,8199}, {6263,8198}, {6265,8200}, {8190,9912}, {10057,11877}, {10073,11879}, {11384,12137}, {11492,12331}, {11822,12119}, {11837,12198}, {11843,12247}
X(12460) = reflection of X(12461) in X(55)
X(12460) = X(80)-of-1st-Auriga-triangle
X(12460) = X(7972)-of-2nd-Auriga-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12461) lies on these lines: {11,11367}, {55,952}, {80,5598}, {100,8204}, {214,5600}, {1317,11366}, {2802,12455}, {2829,12457}, {5597,7972}, {5602,6224}, {5840,12459}, {6262,8206}, {6263,8205}, {6265,8207}, {8187,9897}, {8191,9912}, {10057,11878}, {10073,11880}, {11385,12137}, {11493,12331}, {11823,12119}, {11838,12198}, {11844,12247}
X(12461) = reflection of X(12460) in X(55)
X(12461) = X(80)-of-2nd-Auriga-triangle
X(12461) = X(7972)-of-1st-Auriga-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12462) lies on these lines: {11,8196}, {55,2800}, {100,11822}, {104,5597}, {119,5599}, {153,5601}, {515,12460}, {1317,11873}, {1537,8203}, {2787,12179}, {2802,12458}, {5598,10698}, {8190,9913}, {10058,11877}, {10074,11879}, {11366,11715}, {11492,12332}, {11837,12199}, {11843,12248}
X(12462) = reflection of X(12463) in X(55)
X(12462) = X(104)-of-1st-Auriga-triangle
X(12462) = X(10698)-of-2nd-Auriga-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12463) lies on these lines: {11,8203}, {55,2800}, {100,11823}, {104,5598}, {119,5600}, {153,5602}, {515,12461}, {1317,11874}, {1537,8196}, {1768,8187}, {2787,12180}, {2802,12459}, {5597,10698}, {8191,9913}, {10058,11878}, {10074,11880}, {11367,11715}, {11493,12332}, {11838,12199}, {11844,12248}
X(12463) = reflection of X(12462) in X(55)
X(12463) = X(104)-of-2nd-Auriga-triangle
X(12463) = X(10698)-of-1st-Auriga-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12464) lies on these lines: {55,12465}, {5597,7160}, {5598,8000}, {5601,9874}, {8190,12411}, {10059,11877}, {10075,11879}, {11366,12260}, {11492,12333}, {11822,12120}, {11837,12200}, {11843,12249}
X(12464) = reflection of X(12465) in X(55)
X(12464) = X(7160)-of-1st-Auriga-triangle
X(12464) = X(8000)-of-2nd-Auriga-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12465) lies on these lines: {55,12464}, {5597,8000}, {5598,7160}, {5602,9874}, {8187,9898}, {8191,12411}, {10059,11878}, {10075,11880}, {11367,12260}, {11493,12333}, {11823,12120}, {11838,12200}, {11844,12249}
X(12465) = reflection of X(12464) in X(55)
X(12465) = X(7160)-of-2nd-Auriga-triangle
X(12465) = X(8000)-of-1st-Auriga-triangle
The reciprocal orthologic center of these triangles is X(6102).
X(12466) lies on these lines: {30,12365}, {55,12467}, {110,8200}, {542,12452}, {1511,5599}, {3448,11843}, {5601,12383}, {11822,12121}
X(12466) = reflection of X(12467) in X(55)
X(12466) = X(265)-of-1st-Auriga-triangle
X(12466) = X(12898)-of-2nd-Auriga-triangle
The reciprocal orthologic center of these triangles is X(6102).
X(12467) lies on these lines: {30,12366}, {55,12466}, {110,8207}, {542,12453}, {1511,5600}, {2771,12461}, {3448,11844}, {5602,12383}, {8187,12407}, {8191,12412}, {10091,11872}, {11367,12261}, {11493,12334}, {11823,12121}, {11838,12201}
X(12467) = reflection of X(12466) in X(55)
X(12467) = X(265)-of-2nd-Auriga-triangle
X(12467) = X(12898)-of-1st-Auriga-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12468) lies on these lines: {30,12415}, {55,12469}, {64,5597}, {1498,11822}, {2777,12466}, {2883,5599}, {5598,7973}, {5601,6225}, {5878,8200}, {6000,11252}, {6001,12458}, {6247,8196}, {6266,8199}, {6267,8198}, {7355,11873}, {8190,9914}, {10060,11877}, {10076,11879}, {11366,12262}, {11381,11384}, {11492,12335}, {11837,12202}, {11843,12250}
X(12468) = reflection of X(12469) in X(55)
X(12468) = X(64)-of-1st-Auriga-triangle
X(12468) = X(7973)-of-2nd-Auriga-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12469) lies on these lines: {30,12416}, {55,12468}, {64,5598}, {1498,11823}, {2777,12467}, {2883,5600}, {5597,7973}, {5602,6225}, {5878,8207}, {6000,11253}, {6001,12459}, {6247,8203}, {6266,8206}, {6267,8205}, {7355,11874}, {8187,9899}, {8191,9914}, {10060,11878}, {10076,11880}, {11367,12262}, {11381,11385}, {11493,12335}, {11838,12202}, {11844,12250}
X(12469) = reflection of X(12468) in X(55)
X(12469) = X(64)-of-2nd-Auriga-triangle
X(12469) = X(7973)-of-1st-Auriga-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12470) lies on these lines: {14,5597}, {55,12471}, {530,12345}, {531,11207}, {542,12452}, {617,5601}, {619,5599}, {5474,11822}, {5479,8196}, {5598,7974}, {5613,8200}, {6269,8199}, {6271,8198}, {6773,11843}, {9981,11861}, {10061,11877}, {10077,11879}, {11366,11706}, {11492,12336}, {11837,12204}
X(12470) = reflection of X(12471) in X(55)
X(12470) = X(14)-of-1st-Auriga-triangle
X(12470) = X(7974)-of-2nd-Auriga-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12471) lies on these lines: {14,5598}, {55,12470}, {530,12346}, {531,11208}, {542,12453}, {617,5602}, {619,5600}, {5474,11823}, {5479,8203}, {5597,7974}, {5613,8207}, {6269,8206}, {6271,8205}, {6773,11844}, {8187,9900}, {9981,11862}, {10061,11878}, {10077,11880}, {11367,11706}, {11493,12336}, {11838,12204}
X(12471) = reflection of X(12470) in X(55)
X(12471) = X(14)-of-2nd-Auriga-triangle
X(12471) = X(7974)-of-1st-Auriga-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12472) lies on these lines: {13,5597}, {55,12473}, {530,11207}, {531,12345}, {542,12452}, {616,5601}, {618,5599}, {5473,11822}, {5478,8196}, {5598,7975}, {5617,8200}, {6268,8199}, {6270,8198}, {6770,11843}, {9982,11861}, {10062,11877}, {10078,11879}, {11366,11705}, {11492,12337}, {11837,12205}
X(12472) = reflection of X(12473) in X(55)
X(12472) = X(13)-of-1st-Auriga-triangle
X(12472) = X(7975)-of-2nd-Auriga-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12473) lies on these lines: {13,5598}, {55,12472}, {530,11208}, {531,12346}, {542,12453}, {616,5602}, {618,5600}, {5473,11823}, {5478,8203}, {5597,7975}, {5617,8207}, {6268,8206}, {6270,8205}, {6770,11844}, {8187,9901}, {9982,11862}, {10062,11878}, {10078,11880}, {11367,11705}, {11493,12337}, {11838,12205}
X(12473) = reflection of X(12472) in X(55)
X(12473) = X(13)-of-2nd-Auriga-triangle
X(12473) = X(7975)-of-1st-Auriga-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12474) lies on these lines: {39,5599}, {55,730}, {76,5597}, {194,5601}, {384,11837}, {538,11207}, {732,12452}, {2782,11252}, {3095,8200}, {5598,7976}, {5969,12345}, {6248,8196}, {6272,8199}, {6273,8198}, {8190,9917}, {9983,11861}, {10063,11877}, {10079,11879}, {11257,11822}, {11366,12263}, {11384,12143}, {11492,12338}, {11843,12251}
X(12474) = reflection of X(12475) in X(55)
X(12474) = X(76)-of-1st-Auriga-triangle
X(12474) = X(7976)-of-2nd-Auriga-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12475) lies on these lines: {39,5600}, {55,730}, {76,5598}, {194,5602}, {384,11838}, {538,11208}, {732,12453}, {2782,11253}, {3095,8207}, {5597,7976}, {5969,12346}, {6248,8203}, {6272,8206}, {6273,8205}, {8187,9902}, {8191,9917}, {9983,11862}, {10063,11878}, {10079,11880}, {11257,11823}, {11367,12263}, {11385,12143}, {11493,12338}, {11844,12251}
X(12475) = reflection of X(12474) in X(55)
X(12475) = X(76)-of-2nd-Auriga-triangle
X(12475) = X(7976)-of-1st-Auriga-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12476) lies on these lines: {55,12477}, {83,5597}, {732,12452}, {754,11207}, {2896,5601}, {5598,7977}, {5599,6292}, {6249,8196}, {6274,8199}, {6275,8198}, {6287,8200}, {8190,9918}, {10064,11877}, {10080,11879}, {11366,12264}, {11384,12144}, {11492,12339}, {11822,12122}, {11837,12206}, {11843,12252}
X(12476) = reflection of X(12477) in X(55)
X(12476) = X(83)-of-1st-Auriga-triangle
X(12476) = X(7977)-of-2nd-Auriga-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12477) lies on these lines: {55,12476}, {83,5598}, {732,12453}, {754,11208}, {2896,5602}, {5597,7977}, {5600,6292}, {6249,8203}, {6274,8206}, {6275,8205}, {6287,8207}, {8187,9903}, {8191,9918}, {10064,11878}, {10080,11880}, {11367,12264}, {11385,12144}, {11493,12339}, {11823,12122}, {11838,12206}, {11844,12252}
X(12477) = reflection of X(12476) in X(55)
X(12477) = X(83)-of-2nd-Auriga-triangle
X(12477) = X(7977)-of-1st-Auriga-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12478) lies on these lines: {55,12479}, {112,11822}, {127,8196}, {2799,12179}, {2806,12462}, {3320,11873}, {5601,12384}, {9517,12365}, {9530,11207}, {11366,12265}, {11492,12340}, {11837,12207}
X(12478) = reflection of X(12479) in X(55)
X(12478) = X(1297)-of-1st-Auriga-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12479) lies on these lines: {55,12478}, {112,11823}, {127,8203}, {2799,12180}, {2806,12463}, {3320,11874}, {5602,12384}, {8187,12408}, {9517,12366}, {9530,11208}, {11367,12265}, {11493,12340}, {11838,12207}
X(12479) = reflection of X(12478) in X(55)
X(12479) = X(1297)-of-2nd-Auriga-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12480) lies on these lines: {54,5597}, {55,12481}, {195,11875}, {539,11207}, {1154,11252}, {1209,5599}, {2888,5601}, {3574,8196}, {5598,7979}, {7691,11822}, {10066,11877}, {10082,11879}, {10628,12365}, {11366,12266}, {11492,12341}, {11837,12208}, {11843,12254}
X(12480) = reflection of X(12481) in X(55)
X(12480) = X(54)-of-1st-Auriga-triangle
X(12480) = X(7979)-of-2nd-Auriga-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12481) lies on these lines: {54,5598}, {55,12480}, {195,11876}, {539,11208}, {1154,11253}, {1209,5600}, {2888,5602}, {3574,8203}, {5597,7979}, {7691,11823}, {8187,9905}, {10066,11878}, {10082,11880}, {10628,12366}, {11367,12266}, {11493,12341}, {11838,12208}, {11844,12254}
X(12481) = reflection of X(12480) in X(55)
X(12481) = X(54)-of-2nd-Auriga-triangle
X(12481) = X(7979)-of-1st-Auriga-triangle
The reciprocal orthologic center of these triangles is X(79).
X(12482) lies on these lines: {55,12483}, {5597,10266}, {8190,12414}, {11366,12267}, {11492,12342}, {11837,12209}, {11843,12255}
X(12482) = reflection of X(12483) in X(55)
X(12482) = X(10266)-of-1st-Auriga-triangle
The reciprocal orthologic center of these triangles is X(79).
X(12483) lies on these lines: {55,12482}, {5598,10266}, {8187,12409}, {8191,12414}, {11367,12267}, {11493,12342}, {11838,12209}, {11844,12255}
X(12483) = reflection of X(12482) in X(55)
X(12483) = X(10266)-of-2nd-Auriga-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12484) lies on these lines: {55,12485}, {486,5597}, {487,5601}, {642,5599}, {3564,12415}, {5598,7980}, {6251,8196}, {6280,8199}, {6281,8198}, {6290,8200}, {9986,11861}, {10067,11877}, {10083,11879}, {11366,12268}, {11492,12343}, {11822,12123}, {11837,12210}, {11843,12256}
X(12484) = reflection of X(12485) in X(55)
X(12484) = X(486)-of-inner-Vecten-triangle
X(12484) = X(7980)-of-outer-Vecten-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12485) lies on these lines: {55,12484}, {486,5598}, {487,5602}, {642,5600}, {3564,12416}, {5597,7980}, {6251,8203}, {6280,8206}, {6281,8205}, {6290,8207}, {8187,9906}, {9986,11862}, {10067,11878}, {10083,11880}, {11367,12268}, {11493,12343}, {11823,12123}, {11838,12210}, {11844,12256}
X(12485) = reflection of X(12484) in X(55)
X(12485) = X(486)-of-outer-Vecten-triangle
X(12485) = X(7980)-of-inner-Vecten-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12486) lies on these lines: {55,12487}, {485,5597}, {488,5601}, {641,5599}, {3564,12415}, {5598,7981}, {6250,8196}, {6278,8199}, {6279,8198}, {6289,8200}, {9987,11861}, {10068,11877}, {10084,11879}, {11366,12269}, {11492,12344}, {11822,12124}, {11837,12211}, {11843,12257}
X(12486) = reflection of X(12487) in X(55)
X(12486) = X(485)-of-inner-Vecten-triangle
X(12486) = X(7981)-of-outer-Vecten-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12487) lies on these lines: {55,12486}, {485,5598}, {488,5602}, {641,5600}, {3564,12416}, {5597,7981}, {6250,8203}, {6278,8206}, {6279,8205}, {6289,8207}, {8187,9907}, {9987,11862}, {10068,11878}, {10084,11880}, {11367,12269}, {11493,12344}, {11823,12124}, {11838,12211}, {11844,12257}
X(12487) = reflection of X(12486) in X(55)
X(12487) = X(485)-of-outer-Vecten-triangle
X(12487) = X(7981)-of-inner-Vecten-triangle
The reciprocal orthologic center of these triangles is X(10).
X(12488) lies on these lines: {3,363}, {4,9783}, {40,8140}, {72,11685}, {517,9805}, {942,8113}, {1071,11886}, {1385,8109}, {1482,11527}, {3579,8107}, {5045,11026}, {5728,8385}, {5777,5934}, {6732,8100}, {8099,8133}, {8377,9955}, {8380,9956}, {8390,9957}, {8391,9959}, {9940,11854}, {9947,11856}, {10441,11892}
X(12488) = midpoint of X(9805) and X(9836)
X(12488) = reflection of X(12489) in X(40)
X(12488) = X(5)-of-inner-Hutson-triangle
The reciprocal orthologic center of these triangles is X(10).
X(12489) lies on these lines: {3,168}, {4,9787}, {40,8140}, {72,11686}, {178,946}, {517,9806}, {942,8114}, {1071,11887}, {1385,8110}, {1482,11528}, {3579,8108}, {5045,11027}, {5728,8386}, {5777,5935}, {8099,8135}, {8100,8138}, {8378,9955}, {8381,9956}, {8392,9957}, {9940,11855}, {9947,11857}, {9959,11926}, {10441,11893}
X(12489) = midpoint of X(9806) and X(9837)
X(12489) = reflection of X(12488) in X(40)
X(12489) = X(5)-of-outer-Hutson-triangle
The reciprocal orthologic center of these triangles is X(10).
X(12490) lies on these lines: {3,8231}, {4,9789}, {5,3739}, {40,8244}, {72,11687}, {517,7596}, {942,8243}, {1335,7133}, {1385,8225}, {1482,11532}, {3579,8224}, {5045,11030}, {5728,8237}, {5777,8233}, {8099,8247}, {8100,8248}, {8228,9955}, {8230,9956}, {8239,9957}, {8246,9959}, {9940,10858}, {9947,10867}, {10441,10891}
X(12490) = midpoint of X(7596) and X(9808)
X(12490) = X(5)-of-2nd-Pamfilos-Zhou-triangle
The reciprocal orthologic center of these triangles is X(10).
X(12491) lies on these lines: {1,10502}, {4,11891}, {40,8423}, {72,8126}, {174,942}, {258,5708}, {517,8130}, {1159,11899}, {1385,7587}, {1482,11535}, {5045,8083}, {5439,8125}, {5728,8389}, {8129,8729}, {8382,9956}, {8425,9959}, {9947,11860}, {9957,11924}, {10441,11896}, {11996,12490}
X(12491) = midpoint of X(8351) and X(12445)
X(12491) = X(5)-of-Yff-central-triangle
X(12491) = {X(11195), X(12445)}-harmonic conjugate of X(8351)
The reciprocal orthologic center of these triangles is X(1).
X(12492) lies on these lines: {1,483}, {177,481}, {8083,8093}
X(12492) = reflection of X(12493) in X(1)
X(12492) = X(485)-of-mid-arc-triangle
X(12492) = X(12124)-of-2nd-mid-arc-triangle
The reciprocal orthologic center of these triangles is X(1).
X(12493) lies on these lines: {1,483}, {8094,10968}
X(12493) = reflection of X(12492) in X(1)
X(12493) = X(485)-of-2nd-mid-arc-triangle
X(12493) = X(12124)-of-mid-arc-triangle
The reciprocal orthologic center of these triangles is X(6232).
X(12494) lies on the nine-points circle and these lines: {2,6233}, {4,6323}, {114,9771}, {543,11569}
X(12494) = midpoint of X(4) and X(6323)
X(12494) = complement of X(6233)
X(12494) = reflection of X(13234) in X(5)
X(12494) = 2nd-Brocard-to-5th-Euler similarity image of X(6232)
The reciprocal orthologic center of these triangles is X(10).
X(12495) lies on these lines: {1,3096}, {8,32}, {10,7846}, {145,2896}, {355,9993}, {517,9873}, {519,7811}, {944,3098}, {952,9821}, {1482,9996}, {2098,10874}, {2099,10873}, {3094,5846}, {3099,3632}, {3241,7865}, {3616,7914}, {3617,10583}, {3913,11494}, {5603,10356}, {7967,10357}, {9862,12245}, {10047,10573}, {10345,10800}, {10348,12194}, {10828,12410}, {10871,10912}, {10877,10950}, {11386,12135}, {11861,12454}, {11862,12455}
X(12495) = orthologic center of these triangles: 5th Brocard to 2nd Schiffler
a
X(12495) = X(8)-of-5th-Brocard-triangle
X(12495) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,9857,3096), (10,11368,7846), (145,2896,9997)
The reciprocal orthologic center of these triangles is X(40).
X(12496) lies on these lines: {32,84}, {515,12495}, {971,9821}, {1490,3098}, {1709,10038}, {3096,6260}, {3099,7992}, {5658,10357}, {6001,9941}, {6245,9993}, {6257,9995}, {6258,9994}, {6259,9996}, {6705,7846}, {7971,9997}, {9862,12246}, {9910,10828}, {10047,10085}, {11368,12114}, {11386,12136}, {11494,12330}, {11861,12456}, {11862,12457}
X(12496) = X(84)-of-5th-Brocard-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12497) lies on these lines: {1,3098}, {3,11368}, {4,9857}, {10,9993}, {32,40}, {46,10047}, {65,10877}, {484,7132}, {515,12495}, {516,9873}, {517,9821}, {946,3096}, {962,2896}, {1699,10356}, {1836,10873}, {1902,11386}, {3099,7991}, {5119,10038}, {5184,9301}, {5603,10357}, {5812,10872}, {6361,9862}, {6684,7846}, {7914,8227}, {7982,9997}, {9911,10828}, {10306,11494}, {11861,12458}, {11862,12459}
X(12497) = reflection of X(9941) in X(9821)
X(12497) = X(40)-of-5th-Brocard-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12498) lies on these lines: {11,11368}, {32,80}, {100,9857}, {214,3096}, {952,9941}, {2800,9873}, {2802,12495}, {2829,12496}, {2896,6224}, {3098,12119}, {3099,9897}, {5840,12497}, {6262,9995}, {6263,9994}, {6265,9996}, {6702,7846}, {7972,9997}, {9862,12247}, {9912,10828}, {10038,10057}, {10047,10073}, {11386,12137}, {11494,12331}, {11861,12460}, {11862,12461}
X(12498) = X(80)-of-5th-Brocard-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12499) lies on these lines: {11,9993}, {32,104}, {100,3098}, {119,3096}, {153,2896}, {214,3061}, {515,12498}, {952,9821}, {1317,10877}, {1768,3099}, {2783,8782}, {2787,9862}, {2800,9941}, {2802,12497}, {2829,9873}, {6713,7846}, {7865,10711}, {9913,10828}, {9978,9999}, {9980,9998}, {9996,10742}, {9997,10698}, {10038,10058}, {10047,10074}, {11368,11715}, {11386,12138}, {11494,12332}, {11861,12462}, {11862,12463}
X(12499) = X(104)-of-5th-Brocard-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12500) lies on these lines: {32,7160}, {2896,9874}, {3098,12120}, {3099,9898}, {8000,9997}, {9862,12249}, {10038,10059}, {10047,10075}, {10828,12411}, {11368,12260}, {11386,12139}, {11494,12333}, {11861,12464}, {11862,12465}
X(12500) = X(7160)-of-5th-Brocard-triangle
The reciprocal orthologic center of these triangles is X(6102).
X(12501) lies on these lines: {32,265}, {67,3098}, {110,9996}, {542,1569}, {1511,3096}, {2771,12498}, {2896,12383}, {3099,12407}, {3448,9862}, {5663,9873}, {9993,10113}, {10088,10873}, {10091,10874}, {10828,12412}, {11368,12261}, {11386,12140}, {11494,12334}, {11861,12466}, {11862,12467}
X(12501) = X(265)-of-5th-Brocard-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12502) lies on these lines: {30,9923}, {32,64}, {1498,3098}, {2777,12501}, {2883,3096}, {2896,6225}, {3099,9899}, {5656,10357}, {5878,9996}, {6000,9821}, {6001,12497}, {6247,9993}, {6266,9995}, {6267,9994}, {6696,7846}, {7355,10877}, {7973,9997}, {9862,12250}, {9914,10828}, {10038,10060}, {10047,10076}, {11368,12262}, {11381,11386}, {11494,12335}, {11861,12468}, {11862,12469}
X(12502) = X(64)-of-5th-Brocard-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12503) lies on these lines: {32,1297}, {112,3098}, {127,9993}, {132,3096}, {2794,8782}, {2799,9862}, {2806,12499}, {2896,12384}, {3099,12408}, {3320,10877}, {7811,9530}, {9157,9999}, {9517,9984}, {10828,12413}, {11368,12265}, {11386,12145}, {11494,12340}, {11861,12478}, {11862,12479}
X(12503) = X(1297)-of-5th-Brocard-triangle
The reciprocal orthologic center of these triangles is X(79).
X(12504) lies on these lines: {32,10266}, {3099,12409}, {9862,12255}, {10828,12414}, {11368,12267}, {11386,12146}, {11494,12342}, {11861,12482}, {11862,12483}
X(12504) = X(10266)-of-5th-Brocard-triangle
The reciprocal orthologic center of these triangles is X(12506).
X(12505) lies on these lines: {3,9829}, {4,3849}, {5,5913}, {20,6031}, {631,10163}, {3090,10162}, {5067,10173}, {6232,7770}
X(12505) = X(4)-of-circummedial-triangle
The reciprocal orthologic center of these triangles is X(12505).
X(12506) lies on these lines: {2,12505}, {3,3849}, {4,6032}, {5,9172}, {140,10163}, {631,9829}, {1656,10173}, {3523,6031}
X(12506) = complement of X(12505)
X(12506) = orthoptic-circle-of-Steiner-inellipse-inverse of X(39157)
The reciprocal orthologic center of these triangles is X(12508).
X(12507) lies on the circumcircle and these lines: {2697,8705}, {2781,6325}, {6236,9517}
The reciprocal orthologic center of these triangles is X(12507).
X(12508) lies on the line {1316,6232}
X(12508) = X(12507)-of-1st-orthosymmedial-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12509) lies on these lines: {3,12169}, {4,487}, {20,3564}, {25,12311}, {54,12229}, {69,9991}, {376,5860}, {378,12303}, {486,631}, {637,6337}, {642,3090}, {3533,6119}, {3545,6251}, {3567,12237}, {5657,9906}, {5889,12274}, {5890,12285}, {7582,12210}, {7612,10851}, {9738,12322}, {9921,12088}, {10625,12223}
X(12509) = midpoint of X(5889) and X(12274)
X(12509) = reflection of X(i) in X(j) for these (i,j): (4,487), (12221,3), (12256,12123), (12296,6290)
X(12509) = orthic-to-circumorthic similarity image of X(487)
The reciprocal orthologic center of these triangles is X(3).
X(12510) lies on these lines: {3,12170}, {4,488}, {20,3564}, {25,12312}, {54,12230}, {69,9992}, {376,5861}, {378,12304}, {485,631}, {638,6337}, {641,3090}, {3533,6118}, {3545,6250}, {3567,12238}, {5210,9540}, {5657,9907}, {5889,12275}, {5890,12286}, {7581,12211}, {7612,10852}, {9739,12323}, {9922,12088}, {10625,12224}
X(12510) = midpoint of X(5889) and X(12275)
X(12510) = reflection of X(i) in X(j) for these (i,j): (4,488), (12222,3), (12257,12124), (12297,6289)
X(12510) = orthic-to-circumorthic similarity image of X(488)
The reciprocal orthologic center of these triangles is X(1).
X(12511) lies on these lines: {1,7411}, {3,142}, {4,3841}, {10,5584}, {20,993}, {35,4295}, {36,3522}, {40,758}, {55,3671}, {56,4314}, {58,1742}, {72,7964}, {100,3984}, {165,411}, {191,9961}, {376,11012}, {386,9441}, {404,4512}, {550,5450}, {551,8273}, {1490,3678}, {1621,9589}, {1699,6986}, {1709,3647}, {1754,4300}, {2077,6876}, {3146,5251}, {3149,10164}, {3357,3579}, {3361,4326}, {3428,4297}, {3528,10596}, {3587,6261}, {3635,8158}, {3814,6838}, {3822,6908}, {3825,6865}, {3874,10884}, {3916,5918}, {4229,4278}, {5259,9812}, {5715,6701}, {6361,10902}, {6681,6926}, {6684,6985}, {6763,11220}, {7742,10624}, {10393,12432}, {10860,12446}
X(12511) = midpoint of X(3671) and X(5493)
X(12511) = reflection of X(i) in X(j) for these (i,j): (4,3841), (5248,3)
X(12511) = X(578)-of-1st-circumperp-triangle
X(12511) = complement, wrt 1st circumperp triangle, of X(12514)
X(12511) = complement, wrt excentral triangle, of X(12514)
X(12511) = excentral-to-1st-circumperp similarity image of X(12514)
X(12511) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3428,4297,8666), (5584,7580,10)
The reciprocal orthologic center of these triangles is X(1).
As a point P moves on the circumcircle, the centroid of the 12 excenters of triangles ABC, BCP, CAP, ABP traces a curvilinear triangle, T. Let A', B', C' be the vertices of T, and (Oa), (Ob), (Oc) the circles whose arcs form the sides of T; the triangle A'B'C' is also the orthic triangle of the anticomplementary triangle of OaObOc, and OaObOc the medial triangle of the excentral triangle of A'B'C'. Then A'B'C' is homothetic to the medial triangle at X(12512). Let A" be the intersection, other than A', of circles (Ob) and (Oc), and define B" and C" cyclically. Then A"B"C" is the excentral triangle of A'B'C', and the anticomplementary triangle of OaObOc. Also, A"B"C" is homothetic to the extraversion triangle of X(10) (i.e. the complement of the excentral triangle) at X(12512). (Randy Hutson, July 21, 2017)
X(12512) lies on these lines: {1,3522}, {2,10248}, {3,142}, {4,3634}, {10,20}, {30,3828}, {35,4292}, {36,10624}, {40,376}, {46,4304}, {55,4298}, {57,4314}, {58,4229}, {63,6743}, {72,5918}, {140,10171}, {226,5217}, {355,3534}, {382,10175}, {386,1742}, {390,3361}, {411,6700}, {498,4333}, {515,550}, {517,548}, {546,10172}, {551,962}, {631,3817}, {726,5188}, {758,9943}, {936,2951}, {942,10178}, {950,1155}, {960,9858}, {971,3678}, {975,1721}, {993,5584}, {1040,4347}, {1158,3587}, {1210,4302}, {1385,8703}, {1420,4342}, {1587,9582}, {1697,4315}, {1698,3146}, {1699,3523}, {1703,9541}, {1737,4324}, {1770,5010}, {2077,3651}, {2093,4305}, {3244,5731}, {3339,4313}, {3474,3601}, {3486,5128}, {3524,8227}, {3528,3576}, {3529,5587}, {3530,9955}, {3543,7989}, {3616,9589}, {3624,9812}, {3627,11231}, {3755,4252}, {3811,5732}, {3833,5806}, {3841,8727}, {3874,7957}, {3911,6284}, {3916,7964}, {3947,5218}, {3956,9947}, {4192,6686}, {4294,11019}, {4308,9819}, {4311,5119}, {4312,5703}, {4316,10039}, {4330,5131}, {4353,5266}, {4355,10578}, {4512,6904}, {4652,4847}, {4691,5657}, {4701,11362}, {4746,5881}, {5059,9780}, {5204,12053}, {5267,6909}, {5281,5290}, {5438,5698}, {5692,9961}, {5818,11001}, {5842,6705}, {5904,11220}, {6244,8715}, {6409,8983}, {6460,9616}, {6872,8582}, {6906,7688}, {6987,10270}, {7288,9580}, {7988,10303}, {9899,11206}, {9949,10860}, {10391,12432}
X(12512) = midpoint of X(i) and X(j) for these {i,j}: {1,5493}, {10,20}, {40,4297}, {550,3579}, {3244,7991}, {3874,7957}, {4301,6361}
X(12512) = reflection of X(i) in X(j) for these (i,j): (4,3634), (1125,3), (4301,3636), (4701,11362), (5881,4746), (9955,3530)
X(12512) = X(389)-of-1st-circumperp-triangle
X(12512) = X(10110)-of-hexyl-triangle
X(12512) = X(11793)-of-excentral-triangle
X(12512) = excentral-to-1st-circumperp similarity image of X(10)
X(12512) = excentral-to-2nd-Conway similarity image of X(12571)
X(12512) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,9778,5493), (3,11495,12511), (4,10164,3634), (20,165,10), (40,376,4297), (46,4304,6738), (57,4314,6744), (962,7987,551), (962,10304,7987), (3474,3601,3671), (3522,9778,1), (3528,6361,3576), (3576,4301,3636), (3576,6361,4301), (5218,9579,3947), (5248,12436,1125), (5731,7991,3244), (7957,10167,3874)
The reciprocal orthologic center of these triangles is X(1).
X(12513) lies on these lines: {1,6}, {2,3304}, {3,519}, {4,529}, {5,11236}, {8,56}, {10,999}, {11,3436}, {12,6933}, {20,528}, {21,3241}, {35,3633}, {36,3632}, {40,3880}, {46,10914}, {55,145}, {57,4853}, {63,3057}, {75,7176}, {78,1319}, {100,3621}, {104,5854}, {105,6553}, {106,8688}, {144,8163}, {165,2136}, {198,5839}, {200,1420}, {241,6167}, {312,9369}, {355,10680}, {377,5434}, {382,535}, {388,2886}, {391,1696}, {443,9710}, {474,3679}, {480,6049}, {516,8158}, {517,1158}, {524,9840}, {527,4301}, {604,3713}, {672,4513}, {758,1482}, {908,11376}, {936,4662}, {940,10459}, {944,3428}, {952,11249}, {961,1219}, {988,4646}, {993,3244}, {1005,3486}, {1012,7982}, {1043,3286}, {1125,7373}, {1145,10074}, {1155,3893}, {1201,4383}, {1259,1317}, {1329,3086}, {1385,3811}, {1388,4511}, {1398,1861}, {1407,9363}, {1457,9370}, {1468,5710}, {1475,4390}, {1483,5428}, {1610,8301}, {1617,6737}, {1621,3623}, {1697,4640}, {1706,3361}, {1727,5697}, {1776,2098}, {1818,4322}, {2099,3868}, {2319,11051}, {2321,5120}, {2475,9657}, {2476,11237}, {2478,11240}, {2550,3600}, {2551,3816}, {2646,3870}, {2802,11256}, {3035,7080}, {3058,6872}, {3085,4999}, {3091,3829}, {3149,5881}, {3158,7987}, {3189,5584}, {3207,3684}, {3219,3890}, {3306,3698}, {3333,3812}, {3338,3753}, {3339,10107}, {3434,7354}, {3475,11281}, {3501,5022}, {3509,4051}, {3576,6765}, {3616,8167}, {3617,4413}, {3622,4423}, {3626,9709}, {3635,5248}, {3680,3928}, {3689,4855}, {3740,8583}, {3741,5793}, {3754,5708}, {3820,10200}, {3838,5290}, {3871,5217}, {3878,3927}, {3895,4652}, {3901,11009}, {3911,6736}, {3916,5119}, {3962,5048}, {4187,10072}, {4252,5255}, {4293,5082}, {4297,5853}, {4298,5880}, {4313,9797}, {4317,11112}, {4361,6647}, {4673,5695}, {4847,5794}, {4882,5438}, {4921,7419}, {4930,7489}, {5046,11238}, {5080,10896}, {5130,11401}, {5231,9578}, {5250,5919}, {5252,6734}, {5298,6921}, {5432,10528}, {5433,5552}, {5450,10306}, {5690,10269}, {5698,9785}, {5732,9845}, {5734,6912}, {5784,9850}, {5795,11019}, {5844,11248}, {5886,12001}, {6668,8164}, {6910,11239}, {7483,10056}, {7966,10268}, {8240,8424}, {9053,12329}, {9670,11114}, {9671,10707}, {10475,11679}, {10522,10949}, {10526,10943}, {10530,10955}, {10860,12448}, {10895,11680}, {10950,10966}, {10953,10959}, {11492,12455}, {11493,12454}, {11827,12116}
X(12513) = midpoint of X(i) and X(j) for these {i,j}: {1,6762}, {2136,11519}, {3189,6764}, {3680,7991}
X(12513) = reflection of X(i) in X(j) for these (i,j): (1,11260), (3,8666), (4,3813), (355,10916), (3811,1385), (3913,3), (4421,11194), (10306,5450), (10526,10943), (11500,11249)
X(12513) = orthologic center of these triangles: 1st circumperp to 2nd Schiffler
X(12513) = X(64)-of-1st-circumperp-triangle
X(12513) = X(1498)-of-2nd-circumperp-triangle
X(12513) = X(2883)-of-excentral-triangle
X(12513) = X(6247)-of-hexyl-triangle
X(12513) = excentral-to-1st-circumperp similarity image of X(2136)
X(12513) = excentral-to-2nd-circumperp similarity image of X(6762)
X(12513) = excentral-to-hexyl similarity image of X(3913)
X(12513) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,72,5289), (1,238,1616), (1,956,958), (1,958,1001), (1,5247,1191), (1,5258,405), (1,5288,956), (1,5904,5730), (3,3913,4421), (3,8666,11194), (4,3813,11235), (8,56,1376), (8,1788,8256), (21,3241,3303), (21,3303,4428), (405,956,5258), (405,5258,958), (1476,5435,56), (3436,10529,11), (3913,11194,3)
The reciprocal orthologic center of these triangles is X(65).
X(12514) lies on these lines: {1,21}, {2,46}, {3,960}, {4,9}, {6,3931}, {8,90}, {20,1709}, {29,1748}, {30,5794}, {35,78}, {36,4652}, {37,5711}, {44,4646}, {55,72}, {56,392}, {57,1125}, {65,405}, {84,4297}, {92,3559}, {100,3876}, {109,1038}, {165,411}, {171,975}, {190,4385}, {200,1005}, {201,1395}, {210,1898}, {214,1768}, {221,1214}, {226,10198}, {238,986}, {329,3085}, {355,5842}, {377,1770}, {386,1245}, {387,1723}, {406,1452}, {442,1836}, {443,3474}, {452,1728}, {474,1155}, {484,1698}, {495,5857}, {497,10916}, {498,908}, {515,5837}, {517,958}, {518,3295}, {519,1697}, {535,9613}, {551,3333}, {560,6042}, {612,5264}, {614,3670}, {902,976}, {912,10267}, {940,6051}, {942,1001}, {946,5709}, {956,3057}, {962,5273}, {984,5255}, {988,995}, {1107,1572}, {1150,3702}, {1156,4606}, {1193,4414}, {1203,5256}, {1329,6842}, {1334,5282}, {1376,3579}, {1385,5289}, {1445,3339}, {1454,7483}, {1479,6734}, {1490,10268}, {1571,1575}, {1610,4221}, {1656,5087}, {1699,5705}, {1714,3914}, {1724,4424}, {1727,3612}, {1737,2478}, {1741,5706}, {1743,4868}, {1759,2198}, {1760,5263}, {1761,5327}, {1782,10319}, {1788,5084}, {1837,7082}, {2093,3754}, {2136,3625}, {2245,4205}, {2257,4356}, {2646,5730}, {2802,4853}, {2886,5791}, {2950,10270}, {2951,5785}, {3052,5266}, {3086,5744}, {3158,4134}, {3218,3338}, {3244,6762}, {3303,3555}, {3306,3336}, {3358,9948}, {3359,3452}, {3361,4973}, {3416,3695}, {3419,6284}, {3421,10915}, {3436,10039}, {3550,5293}, {3576,5267}, {3587,6869}, {3632,3895}, {3634,5128}, {3646,5437}, {3650,10404}, {3654,8256}, {3679,5086}, {3681,3871}, {3682,4300}, {3685,10449}, {3689,4005}, {3697,3715}, {3698,5183}, {3704,5814}, {3711,4533}, {3714,5774}, {3740,9709}, {3742,5708}, {3746,3870}, {3812,8257}, {3817,6855}, {3822,9612}, {3831,4011}, {3911,10200}, {3913,5220}, {4008,11683}, {4067,11523}, {4084,5436}, {4187,4679}, {4197,4338}, {4199,10974}, {4304,6737}, {4307,5279}, {4326,5223}, {4423,5221}, {4426,9620}, {4450,5300}, {4647,5271}, {4666,4880}, {4668,5541}, {4847,10624}, {4855,5010}, {4999,5886}, {5046,10826}, {5080,10827}, {5217,5440}, {5227,5847}, {5231,9614}, {5234,6912}, {5247,7262}, {5259,5902}, {5290,8545}, {5295,5695}, {5302,5836}, {5438,6876}, {5506,10129}, {5535,6852}, {5536,11522}, {5693,10902}, {5720,6796}, {5731,10085}, {5732,7992}, {5743,5955}, {5755,5799}, {5777,11500}, {5795,6930}, {5812,7680}, {5815,6172}, {5880,8728}, {6690,11374}, {6700,6988}, {6867,10175}, {6870,9812}, {6871,9780}, {6913,7686}, {6932,9588}, {7085,8193}, {7162,10528}, {7373,10179}, {7411,9961}, {7548,7989}, {7969,9678}, {8273,10167}, {8424,9959}, {8580,12446}, {9589,10883}, {9778,9800}, {9949,10860}, {9957,12513}, {11344,11507}
X(12514) = midpoint of X(i) and X(j) for these {i,j}: {8,4294}, {3295,3927}, {4326,5223}
X(12514) = reflection of X(i) in X(j) for these (i,j): (1,5248), (3671,1125)
X(12514) = complement of X(4295)
X(12514) = X(578)-of-excentral-triangle
X(12514) = complement, wrt excentral triangle, of X(12565)
X(12514) = anticomplement, wrt 1st circumperp triangle, of X(12511)
X(12514) = anticomplement, wrt excentral triangle, of X(12511)
X(12514) = 1st-circumperp-to-excentral similarity image of X(12511)
X(12514) = 2nd-circumperp-to-excentral similarity image of X(5248)
X(12514) = intouch-to-excentral similarity image of X(3671)
X(12514) = inner-Conway-to-excentral similarity image of X(12526)
X(12514) = orthologic center of these triangles: excentral to 4th Conway
X(12514) = Ursa-major-to-excentral similarity image of X(17646)
X(12514) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,191,63), (1,1707,58), (1,3899,11682), (1,3901,11520), (1,4512,5248), (2,11415,12047), (3,960,997), (3,5887,6261), (9,3496,169), (21,3869,1), (31,2292,1), (38,3915,1), (63,5250,1), (71,2354,573), (960,4640,3), (993,3878,1), (1621,3868,1), (1621,11684,3868), (2975,3877,1), (3647,3878,993), (3884,8666,1), (6212,6213,573)
The reciprocal orthologic center of these triangles is X(3869).
X(12515) lies on these lines: {3,214}, {8,12248}, {9,119}, {10,3652}, {11,46}, {20,12247}, {30,80}, {35,11571}, {40,550}, {55,11570}, {57,1387}, {63,1145}, {65,10058}, {72,74}, {104,517}, {149,6361}, {153,5657}, {165,6326}, {191,11698}, {355,1158}, {376,6224}, {381,6702}, {516,10265}, {912,3689}, {1155,10090}, {1317,3655}, {1385,10698}, {1482,4757}, {1484,5535}, {1537,3306}, {1728,5128}, {1782,2828}, {1836,8068}, {2077,4867}, {2320,6950}, {2801,11495}, {2802,11256}, {3035,12514}, {3057,10074}, {3219,10711}, {3295,5083}, {3587,9945}, {5884,11849}, {6001,6100}, {6264,7991}, {6284,10073}, {6797,7098}, {6905,10225}, {7354,10057}, {7411,9964}, {7972,11010}, {9778,9803}, {9952,10860}
X(12515) = midpoint of X(i) and X(j) for these {i,j}: {8,12248}, {20,12247}, {40,1768}, {149,6361}, {6264,7991}
X(12515) = reflection of X(i) in X(j) for these (i,j): (100,3579), (1482,11715), (1537,6713), (6265,3), (6905,10225), (10698,1385), (10738,10265), (10742,10), (12119,550)
X(12515) = X(265)-of-1st-circumperp-triangle
X(12515) = X(12121)-of-2nd-circumperp-triangle
X(12515) = X(1511)-of-excentral-triangle
X(12515) = X(10113)-of-hexyl-triangle
X(12515) = X(1387)-of-tangential-of-excentral-triangle
X(12515) = excentral-to-1st-circumperp similarity image of X(6326)
The reciprocal orthologic center of these triangles is X(3555).
X(12516) lies on these lines: {3,12333}, {9,946}, {40,6764}, {56,5920}, {165,8001}, {1158,5493}, {3333,3523}, {3361,9898}, {3651,12120}, {5045,12260}, {9778,9804}, {9953,10860}
X(12516) = reflection of X(12521) in X(3)
The reciprocal orthologic center of these triangles is X(3555).
X(12517) lies on these lines: {3,12442}, {19,1598}, {522,8668}, {946,6911}, {10860,12449}
X(12517) = reflection of X(12522) in X(3)
The reciprocal orthologic center of these triangles is X(1).
X(12518) lies on these lines: {3,12443}, {55,177}, {56,8422}, {57,5571}, {100,11691}, {164,165}, {7670,7676}, {9778,9807}, {10860,12450}
X(12518) = midpoint of X(164) and X(167)
X(12518) = orthologic center of these triangles: 1st circumperp to 2nd midarc
X(12518) = reflection of X(12523) in X(3)
X(12518) = X(1)-of-1st-circumperp-triangle
X(12518) = X(40)-of-2nd-circumperp-triangle
X(12518) = X(10)-of-excentral-triangle
X(12518) = X(946)-of-hexyl-triangle
X(12518) = {X(165), X(167)}-harmonic conjugate of X(164)
The reciprocal orthologic center of these triangles is X(21).
X(12519) lies on these lines: {3,12342}, {2475,3925}, {10860,12451}
X(12519) = reflection of X(12524) in X(3)
The reciprocal orthologic center of these triangles is X(65).
X(12520) lies on these lines: {1,7}, {3,960}, {10,1490}, {21,1709}, {40,758}, {46,411}, {56,10167}, {65,7580}, {72,480}, {78,165}, {84,993}, {103,1310}, {224,3869}, {355,9710}, {392,8273}, {515,6850}, {572,1973}, {936,10164}, {946,6851}, {958,971}, {1001,9856}, {1040,10571}, {1125,6847}, {1214,1854}, {1319,10866}, {1385,11496}, {1467,11019}, {1699,6895}, {1708,1858}, {1737,6838}, {1750,5177}, {1768,4652}, {2475,5691}, {2551,5658}, {2646,5918}, {2886,5787}, {2975,10085}, {3243,6766}, {3359,6796}, {3522,4511}, {3576,5248}, {3601,10860}, {3612,6909}, {3616,9800}, {3624,6888}, {3841,5587}, {3870,7991}, {3878,7971}, {3962,7964}, {4189,4512}, {4666,11522}, {5302,5779}, {5436,11372}, {5450,7171}, {5493,6769}, {5534,11362}, {5693,7688}, {5709,5884}, {5715,11263}, {5720,6684}, {5745,9948}, {5768,10916}, {6282,12512}, {6836,12047}, {6845,8227}, {6892,10165}, {6925,10572}, {6932,10826}, {8583,9949}, {10864,12446}
X(12520) = midpoint of X(20) and X(4295)
X(12520) = reflection of X(i) in X(j) for these (i,j): (40,12511), (11496,1385), (12514,3)
X(12520) = complement, wrt hexyl triangle, of X(12705)
X(12520) = anticomplement, wrt 2nd circumperp triangle, of X(5248)
X(12520) = excentral-to-2nd-circumperp similarity image of X(12565)
X(12520) = excentral-to-1st-circumperp similarity image of X(12526)
X(12520) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,1044,1448), (1,5732,4297), (3,6261,997), (21,9961,1709), (2975,11220,10085)
The reciprocal orthologic center of these triangles is X(3555).
X(12521) lies on these lines: {3,12333}, {21,3870}, {55,5920}, {100,3333}, {224,11036}, {1001,3811}, {3528,12120}, {3616,9804}, {3913,5045}, {3957,9874}, {4301,6261}, {5732,6769}, {7987,8001}, {8583,9953}, {10385,10393}
X(12521) = reflection of X(12516) in X(3)
The reciprocal orthologic center of these triangles is X(3555).
X(12522) lies on these lines: {3,12442}, {8583,12449}
X(12522) = reflection of X(12517) in X(3)
The reciprocal orthologic center of the 2nd circumperp and midarc triangles is X(1).
X(12523) lies on the cubics K838 and K1271 and these lines: {1, 164}, {2, 12622}, {3, 12443}, {4, 12614}, {21, 12539}, {55, 8422}, {56, 177}, {57, 31768}, {167, 7987}, {188, 3659}, {260, 8241}, {363, 10233}, {388, 31734}, {405, 12694}, {497, 31769}, {503, 21214}, {504, 7707}, {958, 18258}, {999, 12908}, {1125, 21633}, {1385, 53810}, {1697, 31767}, {2646, 17641}, {2975, 11691}, {3295, 32183}, {3303, 11234}, {3304, 11191}, {3576, 12844}, {3616, 9807}, {4293, 31735}, {4294, 31770}, {5666, 52999}, {6244, 31800}, {7587, 13092}, {7670, 7677}, {7991, 8108}, {8091, 10496}, {8109, 12879}, {8110, 12884}, {8225, 13090}, {8583, 12450}, {10215, 42614}, {10882, 12554}, {12513, 47303}, {17614, 17657}
X(12523) = midpoint of X(i) and X(j) for these {i,j}: {1, 164}, {7991, 11528}, {12656, 55169}, {55168, 55175}, {55170, 55173}, {55171, 55172}
X(12523) = reflection of X(i) in X(j) for these {i,j}: {1, 55172}, {4, 12614}, {164, 55171}, {12518, 3}, {21633, 1125}, {55170, 164}, {55173, 1}, {55176, 55175}
X(12523) = anticomplement of X(12622)
X(12523) = orthologic center of these triangles: 2nd circumperp to 2nd midarc
X(12523) = X(1)-of-2nd-circumperp-triangle
X(12523) = X(40)-of-1st-circumperp-triangle
X(12523) = X(10)-of-hexyl-triangle
X(12523) = X(946)-of-excentral-triangle
X(12523) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 55168, 164}, {1, 55169, 12656}, {1, 55171, 55170}, {1, 55172, 55176}, {1, 55175, 55172}, {164, 12656, 55169}, {164, 55168, 55171}, {164, 55172, 55173}, {164, 55175, 1}, {7588, 8077, 1}, {55168, 55172, 55170}, {55170, 55176, 55173}, {55171, 55175, 55173}, {55173, 55176, 1}
The reciprocal orthologic center of these triangles is X(21).
X(12524) lies on these lines: {1,6597}, {3,12342}, {12,100}, {21,10266}, {1001,12267}, {5443,6599}, {8583,12451}
X(12524) = reflection of X(12519) in X(3)
The reciprocal orthologic center of these triangles is X(99).
X(12525) lies on the McCay circumcircle and these lines: {2,9879}, {3,5106}, {183,6787}, {263,3363}, {381,511}, {512,7610}, {1656,6310}, {5650,11287}, {7841,7998}, {11317,11673}
X(12525) = X(6323)-of-McCay-triangle
X(12525) = circumsymmedial-to-McCay similarity image of X(99)
X(12525) = anti-McCay-to-McCay similarity image of X(9879)
The reciprocal orthologic center of these triangles is X(1).
X(12526) lies on these lines: {1,21}, {2,3339}, {8,144}, {9,65}, {10,329}, {19,3958}, {20,6737}, {40,64}, {46,936}, {55,3962}, {56,3928}, {57,960}, {78,165}, {92,4647}, {100,3984}, {145,4314}, {201,2324}, {210,1706}, {219,221}, {377,4312}, {388,527}, {392,3333}, {405,4018}, {452,6738}, {517,3927}, {518,1697}, {519,4294}, {610,1761}, {899,8951}, {908,1698}, {942,10582}, {946,5231}, {950,5698}, {956,7982}, {958,3340}, {962,4847}, {986,2999}, {1001,11518}, {1125,5744}, {1155,5438}, {1158,6282}, {1191,3677}, {1260,5584}, {1376,5128}, {1420,5289}, {1695,3687}, {1699,6734}, {1788,3452}, {1854,7070}, {2263,5279}, {2551,4848}, {2951,9961}, {3057,6762}, {3091,5775}, {3190,4300}, {3218,3361}, {3219,5234}, {3243,3303}, {3338,4880}, {3421,6256}, {3428,7971}, {3434,9589}, {3436,3585}, {3485,5745}, {3556,5285}, {3576,3916}, {3579,3940}, {3601,4640}, {3612,4867}, {3616,10980}, {3617,4866}, {3634,5748}, {3646,5439}, {3680,7285}, {3681,4882}, {3683,5436}, {3698,3715}, {3811,4067}, {3812,7308}, {3827,5227}, {3841,11681}, {3876,8580}, {3885,11519}, {4005,5183}, {4127,8715}, {4298,9965}, {4511,4652}, {4643,5835}, {4668,5176}, {4861,11224}, {5119,5904}, {5219,6668}, {5220,5836}, {5221,5437}, {5252,5857}, {5290,5905}, {5493,6743}, {5552,9588}, {5694,5720}, {5697,10050}, {5705,12047}, {5709,5887}, {5710,7174}, {5794,9579}, {5815,6736}, {5842,5881}, {5884,8726}, {6180,7273}, {6904,12447}, {7688,11517}, {7962,12513}, {9614,10916}, {10527,11522}, {11678,12446}
X(12526) = reflection of X(i) in X(j) for these (i,j): (1,12514), (145,4314), (388,5837), (3340,958), (4295,10), (7982,11496), (9579,5794), (9800,9949)
X(12526) = anticomplement of X(3671)
X(12526) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,12514,4512), (8,3951,5223), (40,72,200), (40,5693,1490), (46,5692,936), (55,3962,11523), (57,960,8583), (63,3869,1), (63,11682,2975), (405,4018,11529), (968,2650,1), (1621,11520,1), (2975,3869,11682), (2975,11682,1), (3340,3929,958), (3868,5250,1), (3869,11684,63), (3899,6763,1), (5223,7991,8), (6734,11415,1699)
X(12526) = X(578)-of-inner-Conway-triangle
X(12546) = Conway-circle-inverse of X(37743)
X(12526) = Conway-to-inner-Conway similarity image of X(1)
X(12526) = excentral-to-inner-Conway similarity image of X(12514)
X(12526) = 1st-circumperp-to-excentral similarity image of X(12520)
X(12526) = complement, wrt inner-Conway triangle, of X(12529)
The reciprocal orthologic center of these triangles is X(1).
X(12527) lies on these lines: {1,329}, {2,3361}, {3,6745}, {4,4847}, {8,144}, {9,388}, {10,46}, {12,5745}, {20,200}, {36,6700}, {40,2123}, {56,3452}, {57,2551}, {65,527}, {72,515}, {78,4297}, {100,12512}, {142,10404}, {165,7080}, {191,10039}, {210,7354}, {219,5930}, {226,958}, {355,3927}, {497,6762}, {518,950}, {519,3869}, {529,960}, {535,3678}, {553,3812}, {908,1125}, {936,4293}, {946,956}, {962,4853}, {997,4311}, {1145,3650}, {1210,10629}, {1220,4357}, {1329,3911}, {1697,5698}, {1698,5744}, {1706,3474}, {1737,6763}, {1759,8074}, {1770,3679}, {1788,3928}, {2321,10371}, {2478,11019}, {2550,9579}, {3091,5231}, {3244,11682}, {3245,3626}, {3304,4679}, {3333,5084}, {3338,9843}, {3339,9965}, {3428,6260}, {3475,5436}, {3486,11523}, {3555,11113}, {3600,8583}, {3624,5748}, {3634,11681}, {3671,5905}, {3681,6743}, {3687,6999}, {3697,11112}, {3698,11246}, {3715,9657}, {3717,7270}, {3811,4304}, {3817,10527}, {3868,5850}, {3870,4314}, {3873,6744}, {3876,11678}, {3916,6684}, {3929,9578}, {3962,10950}, {4294,6765}, {4295,9623}, {4353,5262}, {4355,9776}, {4388,9369}, {4643,5793}, {4652,5552}, {4915,9589}, {5022,8568}, {5080,5536}, {5129,10582}, {5220,5794}, {5227,8804}, {5249,5260}, {5252,5837}, {5258,12047}, {5261,5273}, {5265,5328}, {5325,11237}, {5435,8165}, {5534,6868}, {5705,10590}, {5716,7174}, {5730,5882}, {5791,9654}, {5853,6284}, {6904,8580}, {7406,11679}, {10578,11106}, {10860,12246}, {12053,12513}
X(12527) = midpoint of X(i) and X(j) for these {i,j}: {3962,10950}, {5904,10572}
X(12527) = reflection of X(i) in X(j) for these (i,j): (65,5795), (3868,6738), (4292,10), (6737,72), (10106,960)
X(12527) = anticomplement of X(4298)
X(12527) = X(329)-of-inner-Conway-triangle
X(12527) = excentral-to-inner-Conway similarity image of X(10)
X(12527) = Conway-to-inner-Conway similarity image of X(4292)
X(12527) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (8,144,12526), (20,5815,200), (40,3421,6736), (57,2551,8582), (63,3436,10), (908,2975,1125), (3870,6872,4314), (4652,5552,10164), (5129,11037,10582), (5223,5691,8), (5234,5290,2)
The reciprocal orthologic center of these triangles is X(72).
X(12528) lies on these lines: {1,651}, {3,3219}, {4,912}, {5,9964}, {7,6835}, {8,6001}, {9,6986}, {20,72}, {21,7330}, {33,3562}, {40,3681}, {57,6915}, {63,411}, {65,5229}, {78,84}, {100,1158}, {110,11107}, {119,7705}, {153,355}, {165,3678}, {185,2808}, {200,7992}, {210,9943}, {226,6828}, {255,3465}, {329,6836}, {388,1858}, {392,11106}, {404,5720}, {405,5779}, {443,10861}, {497,1898}, {515,3869}, {516,5904}, {517,3146}, {518,962}, {758,5691}, {908,6245}, {916,5889}, {938,1864}, {942,3091}, {944,3877}, {946,3873}, {952,3885}, {960,5731}, {984,4300}, {997,10085}, {1210,6945}, {1699,3874}, {1709,3811}, {1736,4306}, {1837,9803}, {1854,9370}, {1870,8757}, {1871,6994}, {1902,5921}, {2096,4190}, {2478,5768}, {2800,5881}, {2975,6261}, {3090,10202}, {3100,7078}, {3149,3218}, {3157,6198}, {3305,8726}, {3419,6259}, {3487,6837}, {3523,5044}, {3555,9856}, {3753,9947}, {3839,5806}, {3871,5534}, {3881,11522}, {3889,5603}, {3890,5882}, {3927,7580}, {3935,10306}, {3984,6282}, {4005,5918}, {4015,9588}, {4134,12512}, {4295,7672}, {4297,5692}, {4312,12432}, {4420,10310}, {4511,12114}, {5056,5439}, {5086,6256}, {5174,5906}, {5220,5584}, {5226,6860}, {5249,6991}, {5279,5776}, {5450,6326}, {5531,8715}, {5570,10591}, {5587,5884}, {5658,6838}, {5696,6743}, {5703,6974}, {5728,11036}, {5744,6962}, {5758,10431}, {5770,6834}, {5787,6840}, {5812,6895}, {5817,6886}, {5883,7989}, {6147,8226}, {6260,6734}, {6888,11374}, {6938,11015}, {7282,7331}, {7414,9928}, {7548,9612}, {7987,10176}, {8095,11690}, {8227,12005}, {8581,11037}, {9948,11678}, {10303,11227}, {10826,11570}, {11444,11573}
X(12528) = reflection of X(i) in X(j) for these (i,j): (20,72), (944,5887), (3555,9856), (3868,4), (3869,5693), (9960,1490), (9961,40)
X(12528) = X(68)-of-inner-Conway-triangle
X(12528) = excentral-to-inner-Conway similarity image of X(1490)
X(12528) = Conway-to-inner-Conway similarity image of X(9960)
X(12528) = inner-Conway-isotomic conjugate of X(12530)
X(12528) = X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (9,10884,6986), (63,1490,411), (78,84,6909), (329,9799,6836), (908,6245,6943), (942,5927,3091), (944,5887,3877), (3681,9961,40), (3876,11220,3), (5044,10167,3523), (5439,10157,5056)
The reciprocal orthologic center of these triangles is X(65).
X(12529) lies on these lines: {8,6001}, {63,7992}, {65,5175}, {72,6361}, {100,3876}, {224,1621}, {329,9800}, {516,3869}, {758,3632}, {912,5082}, {1858,2550}, {1898,2551}, {2801,4853}, {2975,10085}, {3434,3868}, {3671,3873}, {3681,4882}, {3877,4294}, {3890,4314}, {4511,11496}, {4512,4855}, {5086,10573}, {5174,6327}, {5744,9943}, {5777,7080}, {9949,11678}
X(12529) = reflection of X(3868) in X(4295)
X(12529) = anticomplement, wrt inner-Conway triangle, of X(12526)
X(12529) = {X(4882), X(12059)}-harmonic conjugate of X(3681)
The reciprocal orthologic center of these triangles is X(65).
X(12530) lies on these lines: {63,1721}, {100,1766}, {200,7996}, {329,9801}, {516,3869}, {990,2975}, {1633,1760}, {1742,1959}, {3663,3873}, {3681,3729}, {3876,3923}, {5744,9944}, {9950,11678}
X(12530) = reflection of X(9962) in X(1721)
X(12530) = X(317)-of-inner-Conway-triangle
X(12530) = excentral-to-inner-Conway similarity image of X(1721)
X(12530) = inner-Conway-isotomic conjugate of X(12528)
X(12530) = anticomplement, wrt inner-Conway triangle, of X(3729)
The reciprocal orthologic center of these triangles is X(8).
X(12531) lies on these lines: {1,6702}, {2,1317}, {3,8}, {10,7972}, {11,145}, {21,10087}, {63,4677}, {78,6264}, {80,519}, {119,11680}, {144,528}, {149,3436}, {153,3434}, {200,7993}, {214,3679}, {329,9802}, {355,10698}, {404,10074}, {517,10724}, {1156,5853}, {1387,3241}, {2771,10914}, {2800,5881}, {2802,3632}, {3035,3617}, {3555,6797}, {3622,6667}, {3625,11684}, {3871,10058}, {4193,5533}, {4853,5531}, {4861,6265}, {5080,5844}, {5253,10944}, {5818,11729}, {5840,12245}, {5846,10755}, {6713,7967}, {6735,10265}, {8097,11690}, {8197,12461}, {8204,12460}, {9951,11678}, {11362,12119}
X(12531) = midpoint of X(i) and X(j) for these {i,j}: {149,3621}, {3632,9897}
X(12531) = reflection of X(i) in X(j) for these (i,j): (100,8), (145,11), (1317,3036), (1320,80), (3555,6797), (6224,1145), (7972,10), (9963,5541), (10031,3679), (10698,355), (12119,11362)
X(12531) = anticomplement of X(1317)
X(12531) = X(74)-of-inner-Conway-triangle
X(12531) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (8,6224,1145), (80,1320,10707), (956,12331,4996), (1145,6224,100), (1317,3036,2), (4996,12331,100)
The reciprocal orthologic center of these triangles is X(3869).
X(12532) lies on these lines: {2,11570}, {8,153}, {10,11571}, {11,3868}, {63,4996}, {72,74}, {78,1768}, {80,758}, {104,912}, {144,2801}, {149,11415}, {214,5692}, {329,9803}, {517,10724}, {518,1156}, {908,10265}, {952,3869}, {1145,3681}, {1317,3877}, {1387,3873}, {2802,3621}, {2829,12528}, {2932,3940}, {2975,5694}, {3035,3876}, {3218,10090}, {3436,12247}, {3616,5083}, {3648,4127}, {3878,7972}, {4018,6797}, {4861,5887}, {5046,10073}, {5057,10738}, {5086,10742}, {5531,12526}, {5744,9946}, {5902,6702}, {6264,11682}, {9952,11678}
X(12532) = reflection of X(i) in X(j) for these (i,j): (100,72), (3868,11), (4018,6797), (6265,5694), (7972,3878), (9964,6326), (10698,5887), (11571,10)
X(12532) = anticomplement of X(11570)
X(12532) = {X(63), X(6326)}-harmonic conjugate of X(4996)
X(12532) = X(265)-of-inner-Conway-triangle
X(12532) = excentral-to-inner-Conway similarity image of X(6326)
The reciprocal orthologic center of these triangles is X(3555).
X(12533) lies on these lines: {8,6835}, {100,12516}, {145,5920}, {200,8001}, {329,9804}, {2975,12521}, {5744,12439}, {9953,11678}
X(12533) = reflection of X(145) in X(5920)
X(12533) = excentral-to-inner-Conway similarity image of X(12658)
The reciprocal orthologic center of these triangles is X(3555).
X(12534) lies on these lines: {4,6735}, {100,12517}, {2975,12522}, {3729,5082}, {5744,12442}, {11678,12449}
The reciprocal orthologic center of these triangles is X(21).
X(12535) lies on these lines: {2,10044}, {100,12519}, {191,7161}, {2975,12524}, {3648,4127}, {5744,12444}, {11678,12451}
X(12535) = reflection of X(10266) in X(191)
The reciprocal orthologic center of these triangles is X(1).
X(12536) lies on these lines: {1,4208}, {2,12437}, {7,145}, {8,21}, {20,519}, {35,5775}, {63,2136}, {78,5328}, {80,5828}, {377,3241}, {390,6737}, {474,938}, {517,9960}, {527,5059}, {944,6764}, {952,9799}, {1004,4308}, {2802,9964}, {2900,5175}, {3146,11523}, {3158,3617}, {3244,11036}, {3419,5703}, {3434,4323}, {3476,9797}, {3488,11108}, {3623,5249}, {3632,4304}, {3633,4292}, {3813,4197}, {3868,3880}, {3893,10391}, {4188,5435}, {4853,7675}, {4866,6743}, {5260,6600}, {5440,5704}, {5731,8666}, {5732,11519}, {5734,6839}, {5794,10578}, {5815,10572}, {5836,11020}, {5854,9963}, {6172,6872}, {7411,12513}, {10861,12448}
X(12536) = reflection of X(i) in X(j) for these (i,j): (8,3189), (3146,11523), (3621,2136), (6764,944)
X(12536) = X(64)-of-Conway-triangle
X(12536) = X(6293)-of-2nd-Conway-triangle
X(12536) = excentral-to-Conway similarity image of X(2136)
X(12536) = excentral-to-2nd-Conway similarity image of X(12625)
X(12536) = orthologic center of these triangles: Conway to 2nd Schiffler
X(12536) = {X(8), X(4313)}-harmonic conjugate of X(5273)
The reciprocal orthologic center of these triangles is X(3555).
X(12537) lies on these lines: {2,12439}, {7,3555}, {21,3870}, {63,12533}, {3681,12260}, {4313,5920}, {5732,8001}, {7411,12516}, {9953,10861}
X(12537) = reflection of X(9874) in X(3555)
The reciprocal orthologic center of these triangles is X(3555).
X(12538) lies on these lines: {2,12442}, {21,12522}, {63,12534}, {1266,6361}, {7411,12517}, {10861,12449}
The reciprocal orthologic center of these triangles is X(1).
X(12539) lies on these lines: {1,11888}, {2,12443}, {7,177}, {21,12523}, {63,164}, {167,5732}, {4313,8422}, {5571,11020}, {7411,12518}, {8080,8733}, {10861,12450}
X(12539) = reflection of X(i) in X(j) for these (i,j): (9807,177), (11691,164)
X(12539) = orthologic center of these triangles: Conway to 2nd midarc
X(12539) = X(1)-of-Conway-triangle
X(12539) = {X(11888), X(11889)}-harmonic conjugate of X(1)
The reciprocal orthologic center of these triangles is X(21).
X(12540) lies on these lines: {2,12444}, {7,6597}, {20,5538}, {21,10266}, {63,12535}, {1836,3868}, {5905,12536}, {7411,12519}, {10861,12451}
The reciprocal orthologic center of these triangles is X(1).
X(12541) lies on these lines: {1,11024}, {2,2136}, {7,145}, {8,210}, {65,9797}, {72,9804}, {78,4345}, {329,3621}, {390,4853}, {516,11519}, {517,6764}, {519,962}, {938,10914}, {1697,5273}, {2802,9803}, {3158,3622}, {3169,5296}, {3189,3241}, {3244,11037}, {3616,3913}, {3632,5815}, {3633,4295}, {3811,5734}, {3813,9780}, {3870,4323}, {4298,12127}, {4342,4882}, {4513,5838}, {5176,7319}, {5274,6736}, {5328,12053}, {5758,5844}, {5828,10591}, {5836,10580}, {5854,9802}, {6601,7320}, {7674,8236}, {9778,12513}, {10578,11281}
X(12541) = reflection of X(i) in X(j) for these (i,j): (145,3680), (3057,12448), (3189,10912), (12536,145)
X(12541) = anticomplement of X(2136)
X(12541) = orthologic center of these triangles: 2nd Conway to 2nd Schiffler
X(12541) = X(64)-of-2nd-Conway-triangle
X(12541) = excentral-to-2nd-Conway similarity image of X(2136)
X(12541) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (497,3893,8), (3189,10912,3241)
The reciprocal orthologic center of these triangles is X(3555).
X(12542) lies on these lines: {7,12538}, {8,12449}, {329,12534}, {3616,12522}, {3935,5758}, {9776,12442}, {9778,12517}
X(12542) = anticomplement of X(12659)
The reciprocal orthologic center of these triangles is X(21).
X(12543) lies on these lines: {7,6597}, {8,10266}, {329,12535}, {2476,9782}, {3616,12524}, {5046,6599}, {9776,12444}, {9778,12519}, {9799,10525}, {9802,10912}
X(12543) = anticomplement of X(12660)
The reciprocal orthologic center of these triangles is X(1).
X(12544) lies on these lines: {1,7}, {10,10888}, {40,7413}, {758,12435}, {1125,10856}, {1330,5691}, {1695,4384}, {1709,10461}, {1722,9535}, {1764,12514}, {3841,10887}, {5208,9961}, {5248,10882}, {6001,10441}, {9800,10453}, {10434,12511}, {10862,12446}, {11679,12526}
X(12544) = X(578)-of-3rd-Conway-triangle
X(12544) = excentral-to-3rd-Conway similarity image of X(12514)
The reciprocal orthologic center of these triangles is X(1).
X(12545) lies on these lines: {1,7}, {4,3741}, {10,1764}, {40,3980}, {515,10441}, {519,12126}, {894,2944}, {946,4425}, {950,10473}, {978,9535}, {1125,10478}, {3146,10453}, {3244,11521}, {3634,10887}, {5247,6996}, {5691,10449}, {6744,11021}, {7406,11679}, {10106,10480}, {10434,12512}, {10439,10454}, {10452,10464}, {10475,12053}, {10856,12436}, {10862,12447}
X(12545) = Conway circle-inverse-of-X(5018)
X(12545) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,10442,12544), (4,10476,3741), (10446,10465,1), (10478,10882,1125)
X(12545) = X(389)-of-3rd-Conway-triangle
The reciprocal orthologic center of these triangles is X(1).
X(12546) lies on these lines: {1,2}, {740,11531}, {1764,2136}, {3680,10435}, {3813,10887}, {3880,12435}, {3893,10473}, {3913,10882}, {5836,11021}, {5853,10442}, {10434,12513}, {10444,12536}, {10446,12541}, {10856,12437}, {10862,12448}, {10912,11369}
X(12546) = orthologic center of these triangles: 3rd Conway to 2nd Schiffler
X(12546) = X(64)-of-3rd-Conway-triangle
X(12546) = excentral-to-3rd-Conway similarity image of X(2136)
The reciprocal orthologic center of these triangles is X(72).
X(12547) lies on these lines: {1,84}, {4,10435}, {515,12435}, {517,12546}, {944,10890}, {946,11021}, {971,10441}, {1158,10434}, {1490,1764}, {5691,10825}, {6245,10478}, {6260,10479}, {6261,10882}, {9799,10446}, {9942,10856}, {9948,10862}, {9960,10444}, {11679,12528}
X(12547) = X(68)-of-3rd-Conway-triangle
X(12547) = excentral-to-3rd-Conway similarity image of X(1490)
X(12547) = 3rd-Conway-isotomic conjugate of X(12549)
The reciprocal orthologic center of these triangles is X(65).
X(12548) lies on these lines: {1,84}, {516,10454}, {3671,11021}, {4512,10470}, {9800,10446}, {9943,10856}, {9949,10862}, {9961,10444}, {10434,12514}, {10439,12544}, {10882,12520}, {11679,12529}
X(12548) = excentral-to-3rd-Conway similarity image of X(12565)
The reciprocal orthologic center of these triangles is X(65).
X(12549) lies on these lines: {1,7175}, {516,10454}, {968,1766}, {990,10882}, {1721,1764}, {3663,11021}, {3729,3869}, {4061,10445}, {5208,9962}, {9801,10446}, {9944,10856}, {9950,10862}, {11679,12530}
X(12549) = X(317)-of-3rd-Conway-triangle
X(12549) = excentral-to-3rd-Conway similarity image of X(1721)
X(12549) = 3rd-Conway-isotomic conjugate of X(12547)
X(12549) = anticomplement, wrt 3rd Conway triangle, of X(10444)
The reciprocal orthologic center of these triangles is X(8).
X(12550) lies on these lines: {1,5}, {100,10882}, {104,10434}, {528,10442}, {1320,10435}, {1764,5541}, {2800,12547}, {2802,12435}, {5854,12546}, {8097,11894}, {9802,10446}, {9945,10856}, {9951,10862}, {9963,10444}, {10825,11521}, {11679,12531}
X(12550) = Conway circle-inverse-of-X(1317)
X(12550) = X(74)-of-3rd-Conway-triangle
X(12550) = excentral-to-3rd-Conway similarity image of X(5541)
The reciprocal orthologic center of these triangles is X(3869).
X(12551) lies on these lines: {1,104}, {11,11369}, {80,10435}, {517,12550}, {952,12435}, {1387,11021}, {1764,6326}, {2771,10441}, {2801,10442}, {2802,12546}, {2829,12547}, {6264,11521}, {6265,10882}, {7972,10890}, {9803,10446}, {9809,10449}, {9897,10825}, {9946,10856}, {9952,10862}, {9964,10444}, {10265,10478}, {10434,12515}, {11679,12532}
X(12551) = Conway circle-inverse-of-X(11700)
X(12551) = X(265)-of-3rd-Conway-triangle
X(12551) = excentral-to-3rd-Conway similarity image of X(6326)
The reciprocal orthologic center of these triangles is X(3555).
X(12552) lies on these lines: {1,5920}, {9804,10446}, {9953,10862}, {10434,12516}, {10444,12537}, {10856,12439}, {10882,12521}, {11679,12533}
The reciprocal orthologic center of these triangles is X(3555).
X(12553) lies on these lines: {1266,6361}, {10434,12517}, {10446,12542}, {10856,12442}, {10862,12449}, {10882,12522}, {11679,12534}
The reciprocal orthologic center of these triangles is X(1).
X(12554) lies on these lines: {1,167}, {164,1764}, {5571,11021}, {7670,10889}, {9807,10446}, {10434,12518}, {10444,12539}, {10856,12443}, {10862,12450}, {10882,12523}, {11679,11691}
X(12554) = orthologic center of these triangles: 3rd Conway to 2nd midarc
X(12554) = X(1)-of-3rd-Conway-triangle
X(12554) = {X(11894),X(11895)}-harmonic conjugate of X(1)
The reciprocal orthologic center of these triangles is X(1).
X(12555) lies on these lines: {1,3}, {329,4416}, {511,1750}, {527,10442}, {966,3452}, {1396,1753}, {1999,9965}, {3781,8580}, {3820,10887}, {7682,10479}, {7956,10886}, {8101,11894}, {9954,10862}
X(12555) = Conway circle-inverse-of-X(3660)
X(12555) = X(25)-of-3rd-Conway-triangle
X(12555) = excentral-to-3rd-Conway similarity image of X(57)
X(12555) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,1764,10856), (10446,11679,10888)
The reciprocal orthologic center of these triangles is X(79)
X(12556) lies on these lines: {2,12600}, {3,10266}, {4,13089}, {20,5694}, {30,12798}, {35,13128}, {36,13129}, {40,12660}, {56,13080}, {100,3648}, {165,12409}, {182,12209}, {376,12255}, {515,12786}, {517,13100}, {1593,12146}, {2771,12535}, {3098,12504}, {3576,12267}, {3651,12519}, {5732,12845}, {5840,6595}, {6284,12957}, {7354,12947}, {10310,12342}, {11248,13130}, {11249,13131}, {11414,12414}, {11822,12482}, {11823,12483}, {11824,12807}, {11825,12808}, {11826,12927}, {11827,12937}, {11829,13001}
X(12556) = reflection of X(i) in X(j) for these (i,j): (4,13089), (10266,3)
X(12556) = anticomplement of X(12600)
X(12556) = X(10266)-of-ABC-X3-reflections-triangle
The reciprocal orthologic center of these triangles is X(21).
X(12557) lies on these lines: {1,5180}, {6597,10435}, {10434,12519}, {10444,12540}, {10446,12543}, {10856,12444}, {10862,12451}, {10882,12524}, {11679,12535}
The reciprocal orthologic center of these triangles is X(1).
X(12558) lies on these lines: {1,10883}, {2,12511}, {4,3822}, {5,516}, {10,7957}, {11,3671}, {12,4314}, {35,6894}, {40,6990}, {165,6991}, {226,1898}, {758,946}, {1699,5705}, {3814,5537}, {3817,3825}, {3925,5493}, {4294,7951}, {4295,5704}, {4421,11496}, {5885,6001}, {8227,12520}, {10395,12432}, {11680,12526}
X(12558) = midpoint of X(4) and X(5248)
X(12558) = reflection of X(3841) in X(5)
X(12558) = complement of X(12511)
X(12558) = X(578)-of-3rd-Euler-triangle
X(12558) = excentral-to-3rd-Euler similarity image of X(12514)
X(12558) = {X(3817), X(6831)}-harmonic conjugate of X(3825)
The reciprocal orthologic center of these triangles is X(1).
X(12559) lies on these lines: {1,21}, {9,4067}, {10,3487}, {40,4084}, {55,4018}, {65,3689}, {72,3715}, {78,5902}, {145,4295}, {200,3754}, {214,3361}, {354,5730}, {377,11551}, {388,519}, {405,3962}, {516,944}, {517,12520}, {936,5883}, {942,997}, {1125,11518}, {1159,5836}, {1482,6001}, {1698,3984}, {1706,3919}, {2093,4757}, {2099,3555}, {3158,4744}, {3218,3612}, {3241,4294}, {3336,4855}, {3338,4511}, {3419,3649}, {3485,10916}, {3635,4314}, {3679,3841}, {3711,4002}, {3812,3940}, {3928,5267}, {3951,5251}, {4301,7971}, {4305,9965}, {4333,11015}, {4430,4861}, {4652,4880}, {4917,5541}, {4930,7373}, {4973,7987}, {5045,5289}, {5221,5440}, {5425,5904}, {5791,11281}, {5794,6147}, {5905,10572}, {6668,11374}, {7991,12511}, {9851,11224}, {11519,12446}, {11521,12544}, {11522,12558}
X(12559) = X(578)-of-excenters-reflections-triangle
X(12559) = excentral-to-excenters-reflections similarity image of X(12514)
X(12559) = midpoint of X(145) and X(4295)
X(12559) = reflection of X(i) in X(j) for these (i,j): (4314,3635), (5794,6147), (7991,12511), (12514,1), (12526,5248)
X(12559) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,3901,63), (1,12526,5248), (3243,7982,3244), (4757,8715,2093), (5248,12526,12514), (11523,11529,10)
The reciprocal orthologic center of these triangles is X(1).
X(12560) lies on these lines: {1,7}, {9,65}, {10,8232}, {40,954}, {57,1001}, {85,3886}, {142,3485}, {200,226}, {388,5853}, {480,1706}, {518,3340}, {528,4654}, {673,2258}, {758,5223}, {942,3358}, {948,3755}, {1125,8732}, {1159,5779}, {1445,3339}, {1449,1456}, {1768,10980}, {1788,6666}, {2099,3243}, {3059,11523}, {3062,10394}, {3333,11496}, {3361,5248}, {3475,10388}, {3487,6769}, {3601,11495}, {3826,5219}, {3841,7679}, {3883,6604}, {4882,5261}, {5045,7171}, {5226,8580}, {5228,7290}, {5290,6765}, {5572,10384}, {5728,6001}, {5809,6738}, {7091,10390}, {7673,9819}, {7676,12511}, {7678,12558}, {10860,11018}, {10865,12446}, {11520,12529}, {11526,12559}
X(12560) = reflection of X(i) in X(j) for these (i,j): (7,3671), (2951,12520), (4326,1), (12526,9)
X(12560) = X(578)-of-Honsberger-triangle
X(12560) = excentral-to-Honsberger similarity image of X(12514)
X(12560) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,7,4321), (1,2951,7675), (1,4312,5732), (1,7271,1458), (1,7274,4327), (7,4323,11038), (7,8236,3600), (2099,8581,3243), (4318,7190,1), (7672,8545,5223), (10384,11518,5572), (11372,11529,5728)
The reciprocal orthologic center of these triangles is X(1).
X(12561) lies on these lines: {1,11886}, {10,5934}, {363,12514}, {516,9836}, {758,9805}, {1125,11854}, {3671,8113}, {3841,8380}, {4295,9783}, {4314,8390}, {5248,8109}, {8107,12511}, {8111,12520}, {8385,12560}, {11527,12559}, {11685,12526}, {11856,12446}, {11892,12544}
X(12561) = X(578)-of-inner-Hutson-triangle
X(12561) = excentral-to-inner-Hutson similarity image of X(12514)
The reciprocal orthologic center of these triangles is X(1).
X(12562) lies on these lines: {1,11887}, {10,5935}, {516,9837}, {758,9806}, {1125,11855}, {3671,8114}, {3841,8381}, {4295,9787}, {4314,8392}, {5248,8110}, {8108,12511}, {8112,12520}, {8140,12561}, {8378,12558}, {8386,12560}, {11528,12559}, {11686,12526}, {11857,12446}, {11893,12544}
X(12562) = X(578)-of-outer-Hutson-triangle
X(12562) = excentral-to-outer-Hutson similarity image of X(12514)
The reciprocal orthologic center of these triangles is X(1).
X(12563) lies on these lines: {1,7}, {10,3487}, {142,12447}, {226,1837}, {495,3626}, {496,12558}, {515,6147}, {519,5794}, {551,3333}, {553,2646}, {758,942}, {938,3817}, {946,5787}, {950,3649}, {958,5850}, {999,3636}, {1056,3244}, {1159,11362}, {1210,10171}, {3295,12511}, {3339,5703}, {3340,3475}, {3485,11019}, {3486,4654}, {3616,10980}, {3622,4512}, {3625,11041}, {3634,11374}, {3982,7354}, {4031,5204}, {4847,11520}, {5045,6001}, {5249,6737}, {5572,9856}, {5708,10165}, {5719,6684}, {5789,5886}, {5880,12437}, {5883,6700}, {6598,11263}, {7373,11496}, {7991,10578}, {10569,10866}, {10580,11522}, {11035,12446}, {11039,12561}, {11040,12562}
X(12563) = midpoint of X(i) and X(j) for these {i,j}: {1,3671}, {10,12559}, {4295,4314}, {4301,12520}
X(12563) = reflection of X(i) in X(j) for these (i,j): (3626,3841), (5248,3636)
X(12563) = X(578)-of-incircle-circles-triangle
X(12563) = excentral-to-incircle-circles similarity image of X(12514)
X(12563) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,7,4297), (1,4295,4314), (1,4312,4313), (1,4355,5731), (1,11036,5542), (1,11551,4292), (3339,5703,10164), (3485,11518,11019), (3487,11529,10), (3671,4314,4295), (4323,11038,1), (5745,11281,1125)
The reciprocal orthologic center of these triangles is X(1).
X(12564) lies on these lines: {1,21}, {10,3059}, {55,12432}, {57,12511}, {65,4314}, {226,1898}, {354,3671}, {516,942}, {938,5883}, {1125,11018}, {1210,3833}, {1864,3947}, {3085,4015}, {3333,12520}, {3339,4326}, {3754,6738}, {4208,5696}, {4294,5902}, {4295,10580}, {4298,10391}, {4355,11220}, {5045,6001}, {5290,10394}, {5703,10176}, {5842,12433}, {5884,11496}, {5904,10578}, {8255,8728}, {9949,10569}, {11019,12446}, {11021,12544}, {11025,12560}, {11026,12561}, {11027,12562}
X(12564) = midpoint of X(i) and X(j) for these {i,j}: {65,4314}, {3874,12514}, {5884,11496}
X(12564) = reflection of X(12563) in X(5045)
X(12564) = X(578)-of-inverse-in-incircle-triangle
X(12564) = excentral-to-inverse-in-incircle similarity image of X(12514)
X(12564) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,774,3743), (942,5572,6744)
The reciprocal orthologic center of these triangles is X(1).
Let A' be the trilinear product of the circumcircle intercepts of the A-excircle. Define B' and C' cyclically. Triangle A'B'C' is perspective to the excentral triangle at X(12565). (Randy Hutson, July 31 2018)
X(12565) lies on these lines: {1,7}, {2,9800}, {3,4512}, {9,5584}, {10,1750}, {40,64}, {56,5918}, {57,9943}, {63,7992}, {78,9778}, {84,3428}, {165,411}, {221,7070}, {255,2956}, {497,1467}, {515,4853}, {610,3556}, {758,6765}, {946,8726}, {956,10864}, {960,11495}, {997,12512}, {1103,1745}, {1125,10857}, {1245,2999}, {1764,12548}, {2093,12432}, {3062,5234}, {3174,7957}, {3333,10167}, {3555,6766}, {3576,11496}, {3579,5720}, {3587,5887}, {3811,5493}, {4847,9799}, {5223,12528}, {5231,6245}, {5248,7987}, {5691,9623}, {6261,6282}, {6361,6769}, {7171,11249}, {8580,9949}, {10980,12564}, {11531,12559}
X(12565) = midpoint of X(i) and X(j) for these {i,j}: {9961,12529}, {12561,12562}
X(12565) = reflection of X(i) in X(j) for these (i,j): (1,12520), (962,3671), (4294,4297), (4326,5732), (11531,12559), (12514,12511), (12526,40)
X(12565) = complement of X(9800)
X(12565) = X(578)-of-6th-mixtilinear-triangle
X(12565) = excentral-to-6th-mixtilinear similarity image of X(12514)
X(12565) = 2nd-extouch-to-hexyl similarity image of X(40)
X(12565) = 2nd-circumperp-to-excentral similarity image of X(12520)
X(12565) = anticomplement, wrt excentral triangle, of X(12514)
X(12565) = orthologic center of these triangles: excentral to 4th extouch
X(12565) = Ursa-minor-to-excentral similarity image of X(17634)
X(12565) = Ursa-major-to-excentral similarity image of X(17650)
X(12565) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,1044,269), (1,2951,20), (1,4295,12560), (40,1490,200), (56,5918,9841), (63,9961,7992), (946,8726,10582), (962,10884,1), (1042,4319,1), (3811,5493,7994), (12511,12514,165)
The reciprocal orthologic center of these triangles is X(1).
X(12566) lies on these lines: {1,10885}, {3,142}, {10,8233}, {758,9808}, {3671,8243}, {3841,8230}, {4295,9789}, {4314,8239}, {6001,12490}, {8228,12558}, {8231,12514}, {8234,12520}, {8237,12560}, {10867,12446}, {10891,12544}, {11030,12564}, {11042,12563}, {11532,12559}, {11687,12526}
X(12566) = X(578)-of-2nd-Pamfilos-Zhou-triangle
X(12566) = excentral-to-2nd-Pamfilos-Zhou similarity image of X(12514)
The reciprocal orthologic center of these triangles is X(1).
X(12567) lies on these lines: {1,21}, {10,4199}, {56,10180}, {740,958}, {1284,3671}, {4068,12513}, {4295,9791}, {4314,8240}, {4647,5251}, {6001,9959}, {8235,12520}, {8238,12560}, {11043,12563}, {11926,12562}
X(12567) = X(578)-of-1st-Sharygin-triangle
X(12567) = excentral-to-1st-Sharygin similarity image of X(12514)
X(12567) = 2nd-Sharygin-to-1st-Sharygin similarity image of X(13245)
The reciprocal orthologic center of these triangles is X(1).
X(12568) lies on these lines: {1,11888}, {10,8079}, {516,8091}, {758,8093}, {1125,8733}, {2089,3671}, {3841,8087}, {4295,9793}, {4314,8241}, {5248,8077}, {6001,8099}, {8075,12511}, {8078,12514}, {8081,12520}, {8085,12558}, {8089,12565}, {8133,12561}, {8135,12562}, {8249,12567}, {8387,12560}, {11032,12564}, {11690,12526}, {11894,12544}
X(12568) = X(578)-of-tangential-midarc-triangle
X(12568) = excentral-to-tangential-midarc similarity image of X(12514)
X(12568) = reflection of X(12569) in X(1)
The reciprocal orthologic center of these triangles is X(1).
X(12569) lies on these lines: {1,11888}, {10,8080}, {516,8092}, {758,8094}, {3841,8088}, {4295,9795}, {4314,8242}, {6001,8100}, {8076,12511}, {8082,12520}, {8086,12558}, {8090,12565}, {8138,12562}, {8248,12566}, {8250,12567}, {8388,12560}, {11033,12564}, {11895,12544}
X(12569) = reflection of X(12568) in X(1)
X(12569) = X(578)-of-2nd-tangential-midarc-triangle
X(12569) = excentral-to-2nd-tangential-midarc similarity image of X(12514)
The reciprocal orthologic center of these triangles is X(1).
X(12570) lies on these lines: {1,11890}, {174,3671}, {516,8351}, {758,12445}, {1125,8729}, {3841,8382}, {4295,11891}, {4314,11924}, {5248,7587}, {6001,12491}, {8083,12564}, {8126,12526}, {8423,12565}, {8425,12567}, {11535,12559}, {11860,12446}, {11896,12544}, {11996,12566}
X(12570) = X(578)-of-Yff-central-triangle
X(12570) = excentral-to-Yff-central similarity image of X(12514)
The reciprocal orthologic center of these triangles is X(1).
X(12571) lies on these lines: {1,3832}, {2,10248}, {3,10171}, {4,1125}, {5,516}, {8,3854}, {10,962}, {11,4298}, {20,7988}, {40,3545}, {165,5056}, {226,6744}, {355,519}, {497,3947}, {515,3636}, {517,4015}, {551,5691}, {758,5806}, {908,5178}, {1698,5493}, {3244,11522}, {3626,4301}, {3635,5603}, {3671,9581}, {3678,10157}, {3825,12436}, {3833,9943}, {3874,5927}, {3911,7173}, {4292,7741}, {4312,5704}, {4314,5219}, {4315,5229}, {4342,9578}, {4347,9817}, {4669,11531}, {4701,7982}, {4745,5818}, {5274,5290}, {5425,6738}, {5542,5714}, {5715,5811}, {5722,12563}, {5726,9785}, {5789,5805}, {7951,10624}, {9579,10589}, {9580,10588}, {9589,9780}, {9612,10591}, {9614,10590}, {10895,12053}, {11680,12527}
X(12571) = midpoint of X(i) and X(j) for these {i,j}: {4,1125}, {546,9955}, {3626,4301}, {3754,9856}, {4701,7982}
X(12571) = reflection of X(3634) in X(5)
X(12571) = complement of X(12512)
X(12571) = X(389)-of-3rd-Euler-triangle
X(12571) = 2nd-Conway-to-excentral similarity image of X(12512)
X(12571) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,3817,1125), (4,8227,4297), (5,3579,10172), (962,3091,7989), (962,7989,10), (1698,9812,5493), (1699,3091,10), (1699,7989,962), (3817,4297,8227), (3832,9779,1), (4297,8227,1125), (4301,5587,3626), (5068,9812,1698), (5219,5225,4314), (9612,10591,11019)
The reciprocal orthologic center of these triangles is X(1).
X(12572) lies on these lines: {1,329}, {2,4292}, {3,3452}, {4,9}, {5,5745}, {7,5129}, {8,3586}, {12,3683}, {20,936}, {21,908}, {30,5044}, {35,1005}, {37,5717}, {44,1834}, {46,8582}, {56,226}, {57,5084}, {63,1210}, {72,519}, {78,4304}, {84,6865}, {142,11108}, {144,938}, {191,1737}, {200,4294}, {201,1877}, {204,7952}, {210,6284}, {355,5837}, {376,5438}, {377,3305}, {381,5325}, {387,1743}, {390,5815}, {392,10106}, {440,3454}, {442,1155}, {443,7308}, {474,5316}, {515,960}, {517,5795}, {522,11247}, {527,942}, {528,4662}, {551,3487}, {553,5439}, {758,6738}, {846,5530}, {946,958}, {956,12053}, {962,9623}, {997,1490}, {1006,5267}, {1058,6762}, {1104,4415}, {1167,1785}, {1260,8715}, {1329,4640}, {1330,3912}, {1479,4847}, {1697,3421}, {1698,1770}, {1699,5234}, {1901,4205}, {2049,5257}, {2321,5814}, {2325,3695}, {2816,3042}, {2886,5302}, {3085,4512}, {3091,5273}, {3219,5046}, {3244,3488}, {3419,3626}, {3436,5250}, {3523,5328}, {3579,3820}, {3601,11111}, {3678,6743}, {3679,5175}, {3686,5295}, {3687,7283}, {3710,5016}, {3717,5015}, {3811,4314}, {3817,5715}, {3868,10399}, {3874,5728}, {3876,11114}, {3883,4385}, {3911,3916}, {3927,5722}, {3929,9581}, {3940,12437}, {3947,10198}, {4186,7085}, {4199,6685}, {4222,5285}, {4293,8583}, {4301,5758}, {4357,4911}, {4387,10371}, {4416,10449}, {4703,5928}, {4863,9670}, {4999,5087}, {5047,5249}, {5051,5294}, {5057,5260}, {5082,9580}, {5119,6736}, {5219,6857}, {5223,5809}, {5231,10591}, {5251,12047}, {5289,5882}, {5290,8232}, {5692,6737}, {5703,11106}, {5709,6893}, {5720,6868}, {5744,6919}, {5762,5806}, {5779,5787}, {5927,10176}, {6245,6827}, {6666,8728}, {6705,6922}, {6832,10171}, {6908,10164}, {6920,11813}, {6992,10884}, {7007,8806}, {7082,10953}, {7580,12512}, {8226,12571}, {8983,9678}, {9841,12246}, {10888,12545}
X(12572) = midpoint of X(i) and X(j) for these {i,j}: {1,12527}, {8,10624}, {72,950}, {6737,10572}
X(12572) = reflection of X(i) in X(j) for these (i,j): (3874,6744), (4292,12436), (4298,1125), (6743,3678)
X(12572) = anticomplement of X(12436)
X(12572) = complement of X(4292)
X(12572) = X(389)-of-2nd-extouch-triangle
X(12572) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,4292,12436), (3,3452,6700), (4,9,10), (40,2551,10), (57,5084,9843), (63,2478,1210), (72,11113,950), (78,6872,4304), (226,405,1125), (329,452,1), (390,5815,6765), (1329,4640,6684), (1490,6987,4297), (2551,5698,40), (3091,5273,5705), (3219,5046,6734), (3487,5436,551), (3488,11523,3244), (5812,6913,946), (7308,9579,443)
The reciprocal orthologic center of these triangles is X(1).
X(12573) lies on these lines: {1,7}, {9,388}, {10,1445}, {12,6666}, {56,142}, {57,2550}, {65,5853}, {85,3883}, {226,1001}, {278,1890}, {515,5728}, {518,4032}, {519,7672}, {527,5434}, {528,553}, {673,1416}, {948,7290}, {950,5572}, {999,5805}, {1056,5759}, {1125,7677}, {1471,3008}, {2257,5819}, {3243,3476}, {3244,11526}, {3361,8732}, {3634,7679}, {3755,5228}, {3826,3911}, {3886,6604}, {4067,5850}, {4989,5723}, {5263,9436}, {5269,7365}, {5290,8232}, {5691,5809}, {5716,7273}, {6594,10956}, {6601,7091}, {6744,11025}, {7676,12512}, {7678,12571}, {9579,10384}, {9613,10398}, {10865,12447}
X(12573) = reflection of X(i) in X(j) for these (i,j): (7,4298), (950,5572), (12527,9)
X(12573) = X(389)-of-Honsberger-triangle
X(12573) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (7,390,12560), (7,3600,4321), (7,4308,11038), (4327,4331,3663)
The reciprocal orthologic center of these triangles is X(1).
X(12574) lies on these lines: {1,9783}, {10,363}, {20,8140}, {3244,11527}, {4292,11886}, {4297,8111}, {4298,8113}, {5934,12572}, {6744,11026}, {8107,12512}, {8385,12573}, {11685,12527}, {11856,12447}, {11892,12545}
X(12574) = X(389)-of-inner-Hutson-triangle
The reciprocal orthologic center of these triangles is X(1).
X(12575) lies on these lines: {1,7}, {8,4082}, {10,497}, {11,3634}, {12,12571}, {30,10105}, {40,1058}, {55,474}, {56,12512}, {57,5493}, {65,6744}, {72,519}, {144,9797}, {145,12527}, {226,3303}, {388,9580}, {392,10866}, {452,4853}, {496,6684}, {498,10171}, {515,9856}, {517,6738}, {551,3601}, {726,11997}, {938,7991}, {946,3295}, {960,5853}, {1000,5881}, {1191,3755}, {1210,5119}, {1385,10386}, {1479,6957}, {1617,12511}, {1698,5274}, {1699,3947}, {1837,3626}, {2098,3635}, {2136,2551}, {2269,3294}, {2478,3895}, {2646,3636}, {3085,3817}, {3086,10164}, {3244,3486}, {3333,6361}, {3339,10580}, {3361,9778}, {3452,3913}, {3485,10389}, {3488,7982}, {3555,5850}, {3621,8275}, {3624,5281}, {3625,5727}, {3718,3883}, {3746,5443}, {3811,10388}, {3813,5745}, {3828,11238}, {3832,5726}, {3871,6745}, {3877,6737}, {3880,5795}, {3881,10391}, {4652,11240}, {4656,5813}, {4847,5250}, {4857,10039}, {4915,12541}, {5048,10543}, {5173,12564}, {5223,6764}, {5225,9578}, {5252,9670}, {5289,12437}, {5290,9812}, {5698,6762}, {5703,11522}, {5704,9588}, {5722,11362}, {5759,6766}, {5919,6284}, {6666,9710}, {6700,8715}, {8162,10404}, {8390,12574}, {9669,10175}, {9799,9949}, {9804,9898}, {9845,12246}, {10165,11373}, {10172,10593}
X(12575) = midpoint of X(i) and X(j) for these {i,j}: {1,10624}, {145,12527}, {950,3057}, {6284,10106}
X(12575) = reflection of X(i) in X(j) for these (i,j): (65,6744), (4298,1), (6743,960)
X(12575) = X(389)-of-Hutson-intouch-triangle
The reciprocal orthologic center of these triangles is X(1).
X(12576) lies on these lines: {20,8140}, {1125,8110}, {3244,11528}, {4292,11887}, {4297,8112}, {4298,8114}, {5935,12572}, {6744,11027}, {8108,12512}, {8386,12573}, {8392,12575}, {9837,12562}, {11686,12527}, {11855,12436}, {11857,12447}, {11893,12545}
X(12576) = reflection of X(12574) in X(20)
X(12576) = X(389)-of-outer-Hutson-triangle
The reciprocal orthologic center of these triangles is X(1).
X(12577) lies on these lines: {1,7}, {4,9845}, {8,10980}, {10,1056}, {65,10569}, {85,10520}, {142,12513}, {226,3304}, {354,6738}, {388,9581}, {495,3634}, {496,12571}, {515,5045}, {518,11035}, {519,942}, {551,3487}, {553,3057}, {946,6259}, {950,5434}, {958,999}, {960,5850}, {1210,10827}, {1385,5763}, {1420,3475}, {3086,3947}, {3189,3244}, {3295,12512}, {3306,6736}, {3361,10164}, {3476,11518}, {3555,6743}, {3616,12527}, {3742,5795}, {3817,5290}, {3873,6737}, {4848,4860}, {4853,9776}, {4915,11024}, {5253,6745}, {5444,5563}, {5691,10580}, {5704,5726}, {5708,11362}, {5728,9850}, {7987,10578}, {10404,12053}, {11039,12574}, {11040,12576}
X(12577) = midpoint of X(i) and X(j) for these {i,j}: {1,4298}, {3555,6743}, {4292,12575}, {6738,10106}
X(12577) = reflection of X(6744) in X(5045)
X(12577) = X(389)-of-incircle-circles-triangle
X(12577) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,7,4301), (1,3600,4297), (1,4292,12575), (1,4293,4314), (1,4295,4342), (1,4312,9785), (1,4317,4304), (1,4321,12520), (1,4355,962), (1,5542,12563), (1,11037,5542), (354,10106,6738), (1056,3333,10), (4298,12575,4292), (4308,11038,1)
The reciprocal orthologic center of these triangles is X(1).
X(12578) lies on these lines: {1,9789}, {3,142}, {10,8231}, {20,8244}, {515,12490}, {519,9808}, {3244,11532}, {3634,8230}, {4292,10885}, {4297,8234}, {4298,8243}, {6744,11030}, {8228,12571}, {8233,12572}, {8237,12573}, {8239,12575}, {10867,12447}, {10891,12545}, {11042,12577}, {11687,12527}, {11922,12574}
X(12578) = X(389)-of-2nd-Pamfilos-Zhou-triangle
The reciprocal orthologic center of these triangles is X(1).
X(12579) lies on these lines: {1,6646}, {10,846}, {20,8245}, {21,36}, {405,3821}, {515,9959}, {516,9840}, {519,2292}, {1284,4298}, {2392,3884}, {3244,11533}, {3634,5051}, {3647,8258}, {4085,5302}, {4297,8235}, {4656,8669}, {6685,12572}, {6744,11031}, {8238,12573}, {8240,12575}, {11043,12577}, {11688,12527}
X(12579) = X(389)-of-1st-Sharygin-triangle
X(12579) = 2nd-Sharygin-to-1st-Sharygin similarity image of X(13246)
X(12579) = {X(21), X(4425)}-harmonic conjugate of X(1125)
The reciprocal orthologic center of these triangles is X(1).
X(12580) lies on these lines: {1,9793}, {10,8078}, {20,8089}, {515,8099}, {516,8091}, {519,8093}, {950,10503}, {1125,8077}, {2089,4298}, {3244,11534}, {3634,8087}, {4292,11888}, {4297,8081}, {6744,11032}, {10106,10506}
X(12580) = reflection of X(12581) in X(1)
X(12580) = X(389)-of-tangential-midarc-triangle
The reciprocal orthologic center of these triangles is X(1).
X(12581) lies on these lines: {1,9793}, {10,258}, {20,8090}, {174,4298}, {515,8100}, {516,8092}, {519,8094}, {942,5571}, {950,10501}, {1125,7588}, {3244,11899}, {3634,8088}, {4292,11889}, {4297,8082}, {4355,11891}, {5542,7590}, {6744,11033}, {8423,11037}
X(12581) = reflection of X(12580) in X(1)
X(12581) = X(389)-of-2nd-tangential-midarc-triangle
The reciprocal orthologic center of these triangles is X(1).
X(12582) lies on these lines: {1,11891}, {20,8423}, {174,4298}, {515,12491}, {519,12130}, {950,10502}, {1125,7587}, {3244,11535}, {3634,8382}, {6744,8083}, {8126,12527}, {8425,12579}, {8729,12436}, {11860,12447}, {11996,12578}
The reciprocal orthologic center of these triangles is X(3).
X(12583) lies on these lines: {6,402}, {30,599}, {69,4240}, {141,1650}, {159,11853}, {511,11251}, {518,12438}, {524,1651}, {611,11912}, {613,11913}, {1351,11911}, {1386,11831}, {1503,12113}, {1843,11832}, {2781,12369}, {3056,11909}, {3094,11885}, {3242,11910}, {3416,11900}, {3564,12418}, {3751,11852}, {5181,9033}, {5480,11897}, {6776,11845}, {9830,12347}, {11839,12212}, {11848,12329}, {11863,12452}
X(12583) = midpoint of X(69) and X(4240)
X(12583) = reflection of X(i) in X(j) for these (i,j): (6,402), (1650,141)
X(12583) = X(6)-of-Gossard-triangle
X(12583) = {X(11901),X(11902)}-harmonic conjugate of X(402)
The reciprocal orthologic center of these triangles is X(12585).
X(12584) lies on these lines: {3,67}, {6,11935}, {23,110}, {24,5095}, {54,575}, {74,12074}, {143,576}, {159,2777}, {182,1511}, {399,1350}, {524,7575}, {526,8723}, {597,11694}, {690,11616}, {1177,10282}, {1352,12383}, {1385,2836}, {1995,5476}, {2781,5609}, {2892,9833}, {3043,6403}, {3098,5663}, {5092,11579}, {5480,10272}, {5562,8718}, {5972,11284}, {7464,11645}, {7492,9143}, {7496,9140}, {7556,11061}, {9925,9932}, {10510,11649}
X(12584) = midpoint of X(i) and X(j) for these {i,j}: {3,2930}, {399,1350}, {1352,12383}, {2892,9833}
X(12584) = reflection of X(i) in X(j) for these (i,j): (182,1511), (576,6593), (597,11694), (895,575), (1177,10282), (5476,5642), (5480,10272), (9976,182), (11579,5092)
X(12584) = circumcircle-inverse-of-X(8724)
X(12584) = circummedial-to-1st-Ehrmann similarity image of X(14682)
The reciprocal orthologic center of these triangles is X(12584).
X(12585) lies on these lines: {6,5449}, {69,569}, {141,575}, {193,8538}, {389,3564}, {511,12370}, {524,1216}, {542,6102}, {1147,5181}, {2393,10116}
X(12585) = {X(141), X(575)}-harmonic conjugate of X(6689)
X(12585) = X(1156)-of-1st-Hyacinth-triangle if ABC is acute
X(12585) = orthic-to-1st-Hyacinth similarity image of X(5095)
The reciprocal orthologic center of these triangles is X(3).
X(12586) lies on these lines: {1,5820}, {4,8679}, {6,11}, {12,12594}, {66,1439}, {69,674}, {141,1376}, {159,10829}, {354,1899}, {355,518}, {375,7392}, {511,10525}, {524,11235}, {611,10523}, {613,10948}, {1350,11826}, {1351,11928}, {1386,11373}, {1503,12114}, {1709,7289}, {1843,11390}, {2781,12371}, {2810,3818}, {3056,10947}, {3094,10871}, {3242,10944}, {3410,4430}, {3416,10914}, {3564,10943}, {3618,10584}, {3751,10826}, {3873,11442}, {5480,10893}, {5810,10916}, {5846,10912}, {5927,9004}, {6776,10785}, {7595,9043}, {9018,10446}, {9830,12348}, {10794,12212}, {10945,12590}, {10946,12591}, {10949,12595}, {11865,12452}, {11866,12453}, {11903,12583}
X(12586) = reflection of X(i) in X(j) for these (i,j): (12329,141), (12587,1352)
X(12586) = X(6)-of-inner-Johnson-triangle
X(12586) = Ursa-minor-to-Ursa-major similarity image of X(6)
X(12586) = {X(10919),X(10920)}-harmonic conjugate of X(11)
X(12586) = {X(12928),X(12929)}-harmonic conjugate of X(10943)
The reciprocal orthologic center of these triangles is X(3).
X(12587) lies on these lines: {4,674}, {6,12}, {10,9028}, {11,12595}, {66,72}, {69,313}, {141,958}, {159,10830}, {210,1899}, {355,518}, {375,11433}, {498,5135}, {511,10526}, {524,11236}, {611,10954}, {613,10523}, {1350,11827}, {1351,11929}, {1386,11374}, {1478,4259}, {1503,11500}, {1843,11391}, {2321,2385}, {2781,12372}, {3056,10953}, {3094,10872}, {3242,10950}, {3410,4661}, {3618,10585}, {3681,11442}, {3751,5820}, {3818,9052}, {3844,5791}, {5220,5845}, {5480,10894}, {5810,5847}, {6776,10786}, {9830,12349}, {10795,12212}, {10951,12590}, {10952,12591}, {10955,12594}, {11867,12452}, {11868,12453}, {11904,12583}
X(12587) = reflection of X(12586) in X(1352)
X(12587) = X(6)-of-outer-Johnson-triangle
X(12587) = {X(10921),X(10922)}-harmonic conjugate of X(12)
X(12587) = {X(12938),X(12939)}-harmonic conjugate of X(10942)
The reciprocal orthologic center of these triangles is X(3).
X(12588) lies on these lines: {1,1352}, {2,1428}, {4,3056}, {5,613}, {6,12}, {7,8}, {11,10516}, {55,1503}, {56,141}, {66,73}, {67,3028}, {159,10831}, {182,498}, {193,5261}, {226,4362}, {495,611}, {511,1478}, {524,11237}, {542,10053}, {599,5434}, {612,1899}, {1330,1431}, {1350,7354}, {1351,9654}, {1386,11375}, {1460,11358}, {1479,3818}, {1843,11392}, {2099,5846}, {2330,3085}, {2781,12373}, {3027,11646}, {3094,9597}, {3098,4299}, {3242,10944}, {3600,3620}, {3618,10588}, {3619,7288}, {3745,5712}, {3751,9578}, {3763,5433}, {3961,5018}, {4260,9552}, {4293,10519}, {5052,9650}, {5085,5432}, {5480,10895}, {5848,10956}, {6284,10387}, {8540,10590}, {9830,12350}, {10072,11178}, {10797,12212}, {10957,12595}, {11501,12329}, {11869,12452}, {11870,12453}, {11905,12583}, {11930,12590}, {11931,12591}
X(12588) = reflection of X(611) in X(495)
X(12588) = X(6)-of-1st-Johnson-Yff-triangle
X(12588) = outer-Johnson-to-ABC similarity image of X(6)
X(12588) = {X(10923),X(10924)}-harmonic conjugate of X(12)
X(12588) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,1352,12589), (69,388,1469), (3085,6776,2330), (12941,12942,10056)
The reciprocal orthologic center of these triangles is X(3).
X(12589) lies on these lines: {1,1352}, {2,2330}, {4,1469}, {5,611}, {6,11}, {7,4459}, {12,10516}, {55,141}, {56,1503}, {69,350}, {159,10832}, {182,499}, {193,5274}, {354,5738}, {390,3620}, {496,613}, {511,1479}, {518,1837}, {524,11238}, {542,10069}, {599,3058}, {614,1899}, {1350,6284}, {1351,9669}, {1386,5820}, {1428,3086}, {1478,3818}, {1843,11393}, {2098,5846}, {2781,12374}, {2892,10118}, {3023,11646}, {3057,3416}, {3094,9598}, {3098,4302}, {3242,10950}, {3486,5484}, {3582,11179}, {3618,10589}, {3619,5218}, {3751,9581}, {3763,5432}, {4260,9555}, {4294,10519}, {5052,9665}, {5085,5433}, {5480,10896}, {5596,10535}, {5716,10372}, {5847,12053}, {5849,10959}, {7191,11442}, {7194,7281}, {9830,12351}, {10056,11178}, {10798,12212}, {10958,12594}, {11502,12329}, {11871,12452}, {11872,12453}, {11906,12583}, {11932,12590}, {11933,12591}
X(12589) = reflection of X(613) in X(496)
X(12589) = X(6)-of-2nd-Johnson-Yff-triangle
X(12589) = inner-Johnson-to-ABC similarity image of X(6)
X(12589) = {X(10925),X(10926)}-harmonic conjugate of X(11)
X(12589) = Ursa-major-to-Ursa-minor similarity image of X(6)
X(12589) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,1352,12588), (69,497,3056), (3086,6776,1428), (12951,12952,10072)
The reciprocal orthologic center of these triangles is X(3).
X(12590) lies on these lines: {6,493}, {69,6462}, {141,8222}, {159,8194}, {511,10669}, {518,12440}, {524,12152}, {611,11951}, {613,11953}, {1350,11828}, {1351,11949}, {1352,8220}, {1386,11377}, {1503,9838}, {1843,11394}, {2781,12377}, {3056,11947}, {3094,10875}, {3242,8210}, {3416,8214}, {3564,12426}, {3751,8188}, {5013,6461}, {5480,8212}, {6776,11846}, {8201,12452}, {8208,12453}, {9830,12352}, {10945,12586}, {10951,12587}, {11503,12329}, {11840,12212}, {11907,12583}, {11930,12588}, {11932,12589}, {11955,12594}, {11957,12595}
X(12590) = X(6)-of-Lucas-homothetic-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12591) lies on these lines: {6,494}, {69,6463}, {141,8223}, {159,8195}, {511,10673}, {518,12441}, {524,12153}, {611,11952}, {613,11954}, {1350,11829}, {1351,11950}, {1352,8221}, {1386,11378}, {1503,9839}, {1843,11395}, {2781,12378}, {3056,11948}, {3094,10876}, {3242,8211}, {3416,8215}, {3564,12427}, {3751,8189}, {5013,6461}, {5480,8213}, {6776,11847}, {8202,12452}, {8209,12453}, {9830,12353}, {10946,12586}, {10952,12587}, {11504,12329}, {11841,12212}, {11908,12583}, {11931,12588}, {11933,12589}, {11956,12594}, {11958,12595}
X(12591) = X(6)-of-Lucas(-1)-homothetic-triangle
The reciprocal orthologic center of these triangles is X(3779).
X(12592) lies on these lines: {}
The reciprocal orthologic center of these triangles is X(6).
X(12593) lies on the line {576,2781}
The reciprocal orthologic center of these triangles is X(3).
X(12594) lies on these lines: {1,6}, {12,12586}, {55,8679}, {69,10528}, {119,10516}, {141,5552}, {159,10834}, {221,5252}, {495,5820}, {511,10679}, {524,11239}, {1350,11248}, {1351,12000}, {1352,10942}, {1469,11509}, {1470,5096}, {1503,12115}, {1843,11400}, {2097,3359}, {2781,12381}, {3056,10965}, {3094,10878}, {3416,10915}, {3564,12430}, {3618,10586}, {5085,10269}, {5480,10531}, {5848,10956}, {6776,10805}, {9830,12356}, {10803,12212}, {10955,12587}, {10958,12589}, {11881,12452}, {11882,12453}, {11914,12583}, {11955,12590}, {11956,12591}
X(12594) = reflection of X(i) in X(j) for these (i,j): (6,611), (5820,495)
X(12594) = X(6)-of-inner-Yff-tangents-triangle
X(12594) = outer-Yff-to-inner-Yff similarity image of X(6)
X(12594) = {X(10929),X(10930)}-harmonic conjugate of X(1)
X(12594) = {X(6), X(3242)}-harmonic conjugate of X(12595)
The reciprocal orthologic center of these triangles is X(3).
X(12595) lies on these lines: {1,6}, {11,12587}, {56,674}, {69,10529}, {141,10527}, {159,10835}, {511,10680}, {524,11240}, {999,4259}, {1350,11249}, {1351,12001}, {1352,10943}, {1428,11510}, {1503,12116}, {1843,11401}, {3056,10966}, {3094,10879}, {3295,5135}, {3416,10916}, {3564,12431}, {3618,10587}, {4265,10387}, {5085,10267}, {5480,10532}, {5849,10959}, {6776,10806}, {9028,12053}, {9830,12357}, {10804,12212}, {10949,12586}, {10957,12588}, {11883,12452}, {11915,12583}, {11957,12590}, {11958,12591}
X(12595) = reflection of X(6) in X(613)
X(12595) = X(6)-of-outer-Yff-tangents-triangle
X(12595) = inner-Yff-to-outer-Yff similarity image of X(6)
X(12595) = {X(10931),X(10932)}-harmonic conjugate of X(1)
X(12595) = {X(6), X(3242)}-harmonic conjugate of X(12594)
The reciprocal orthologic center of these triangles is X(10112).
X(12596) lies on these lines: {6,1511}, {74,11416}, {110,8537}, {113,8541}, {125,8538}, {265,895}, {1351,1986}, {1539,9970}, {1992,12319}, {5663,8549}, {6699,11511}, {11405,12168}, {11443,12273}, {11458,12284}, {11470,12295}, {11477,12302}, {11482,12310}
X(12596) = midpoint of X(11477) and X(12302)
The reciprocal orthologic center of these triangles is X(3).
X(12597) lies on these lines: {6,12229}, {486,11511}, {487,8541}, {642,9813}, {1992,12320}, {3564,12598}, {8537,12509}, {8538,12601}, {11405,12169}, {11416,12221}, {11443,12274}, {11458,12285}, {11470,12296}, {11477,12303}, {11482,12311}
X(12597) = orthic-to-2nd-Ehrmann similarity image of X(487)
The reciprocal orthologic center of these triangles is X(3).
X(12598) lies on these lines: {6,12230}, {485,11511}, {488,8541}, {641,9813}, {1992,12321}, {3564,12597}, {8537,12510}, {8538,12602}, {11405,12170}, {11416,12222}, {11443,12275}, {11458,12286}, {11470,12297}, {11477,12304}, {11482,12312}
X(12598) = orthic-to-2nd-Ehrmann similarity image of X(488)
The reciprocal orthologic center of these triangles is X(40).
X(12599) lies on these lines: {2,12120}, {4,1697}, {10,5805}, {98,12200}, {235,12139}, {515,12260}, {946,10157}, {1478,10075}, {1479,10059}, {1598,12411}, {1699,9898}, {3091,9874}, {3851,12620}, {4866,7682}, {5290,7992}, {5534,12521}, {5603,8000}, {6245,7680}, {6841,12612}, {8196,12464}, {8203,12465}, {9993,12500}, {11496,12333}
X(12599) = midpoint of X(4) and X(7160)
X(12599) = complement of X(12120)
X(12599) = X(7160)-of-Euler-triangle
The reciprocal orthologic center of these triangles is X(79).
X(12600) lies on these lines: {4,5885}, {11,79}, {98,12209}, {235,12146}, {515,12267}, {1598,12414}, {1699,12409}, {6265,6599}, {6841,12615}, {8196,12482}, {8203,12483}, {9993,12504}, {11496,12342}
X(12600) = midpoint of X(4) and X(10266)
X(12600) = X(10266)-of-Euler-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12601) lies on these lines: {2,12509}, {3,486}, {4,193}, {5,487}, {30,12256}, {52,12237}, {355,7596}, {381,1991}, {494,8036}, {517,9906}, {569,12229}, {642,1656}, {999,10083}, {1587,11482}, {1588,5050}, {1598,12147}, {3070,5093}, {3295,10067}, {3526,6119}, {3830,6280}, {3843,6281}, {5139,8946}, {5446,6291}, {6565,9732}, {6643,12320}, {7395,12169}, {7517,9921}, {7980,10247}, {8538,12597}, {9301,9986}, {10246,12268}, {11444,12274}, {11459,12285}, {11842,12210}, {11849,12343}, {11875,12484}, {11876,12485}
X(12601) = midpoint of X(i) and X(j) for these {i,j}: {4,12221}, {12256,12296}
X(12601) = reflection of X(i) in X(j) for these (i,j): (3,486), (52,12237), (487,5), (6290,6251)
X(12601) = complement of X(12509)
X(12601) = orthic-to-2nd-Euler similarity image of X(487)
X(12601) = {X(4),X(1351)}-harmonic conjugate of X(12602)
The reciprocal orthologic center of these triangles is X(3).
X(12602) lies on these lines: {2,12510}, {3,485}, {4,193}, {5,488}, {30,12257}, {52,12238}, {493,8035}, {517,9907}, {569,12230}, {641,1656}, {999,10084}, {1587,5050}, {1588,11482}, {1598,12148}, {3071,5093}, {3295,10068}, {3526,6118}, {3830,6279}, {3843,6278}, {5139,8948}, {5200,8780}, {5446,6406}, {6564,9733}, {6643,12321}, {7395,12170}, {7517,9922}, {7981,10247}, {8538,12598}, {8982,10846}, {9301,9987}, {10246,12269}, {11444,12275}, {11459,12286}, {11842,12211}, {11849,12344}, {11875,12486}, {11876,12487}
X(12602) = midpoint of X(i) and X(j) for these {i,j}: {4,12222}, {12257,12297}
X(12602) = reflection of X(i) in X(j) for these (i,j): (3,485), (52,12238), (488,5), (6289,6250)
X(12602) = complement of X(12510)
X(12602) = orthic-to-2nd-Euler similarity image of X(488)
X(12602) = {X(4),X(1351)}-harmonic conjugate of X(12601)
The reciprocal orthologic center of these triangles is X(3).
X(12603) lies on these lines: {2,6239}, {3,6}, {4,12223}, {5,6291}, {30,12298}, {487,1216}, {1060,7362}, {1062,6283}, {1656,9823}, {6252,8251}, {6413,10670}, {6643,12322}, {7395,12171}, {11444,12276}, {11459,12287}
X(12603) = midpoint of X(4) and X(12223)
X(12603) = reflection of X(i) in X(j) for these (i,j): (3,12360), (52,12239), (6291,5)
X(12603) = complement of X(6239)
X(12603) = X(176)-of-2nd-Euler-triangle if ABC is acute
X(12603) = orthic-to-2nd-Euler similarity image of X(6291)
X(12603) = {X(3),X(9967)}-harmonic conjugate of X(12604)
The reciprocal orthologic center of these triangles is X(3).
X(12604) lies on these lines: {2,6400}, {3,6}, {4,12224}, {5,6406}, {30,12299}, {51,8964}, {488,1216}, {1060,7353}, {1062,6405}, {1656,9824}, {6404,8251}, {6414,10674}, {6643,12323}, {7395,12172}, {11444,12277}, {11459,12288}
X(12604) = midpoint of X(4) and X(12224)
X(12604) = reflection of X(i) in X(j) for these (i,j): (3,12361), (52,12240), (6406,5)
X(12604) = complement of X(6400)
X(12604) = X(175)-of-2nd-Euler-triangle if ABC is acute
X(12604) = orthic-to-2nd-Euler similarity image of X(6406)
X(12604) = {X(3),X(9967)}-harmonic conjugate of X(12603)
The reciprocal orthologic center of these triangles is X(4).
X(12605) lies on these lines: {2,3}, {52,12241}, {68,4549}, {131,10600}, {216,7747}, {339,7767}, {343,9927}, {394,12118}, {569,12233}, {577,7748}, {973,5446}, {1038,10483}, {1060,7354}, {1062,6284}, {1154,12370}, {1176,3521}, {1216,12358}, {1503,9967}, {1568,9820}, {1899,12163}, {3070,10897}, {3071,10898}, {3284,7765}, {5254,10316}, {5305,10317}, {5318,10634}, {5321,10635}, {5596,12315}, {5889,12022}, {5907,12134}, {6102,11245}, {6146,10116}, {6253,8251}, {7723,12606}, {8538,8550}, {11064,12038}, {11444,12278}, {11459,12289}
X(12605) = midpoint of X(i) and X(j) for these {i,j}: {4,12225}, {11750,12162}
X(12605) = reflection of X(i) in X(j) for these (i,j): (3,12362), (52,12241), (3575,5), (7553,4), (11819,546), (12134,5907)
X(12605) = complement of X(6240)
X(12605) = anticomplement of X(31833)
X(12605) = X(65)-of-2nd-Euler-triangle if ABC is acute
X(12605) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,7547,5), (3,5,7542), (3,381,3549), (3,2072,140), (3,10024,6676), (3,11585,10257), (4,20,7387), (4,3529,7500), (4,5133,546), (4,7404,381), (4,7503,5), (4,7566,3845), (5,550,1658), (5,1658,468), (381,3534,10245), (381,9714,3089), (546,6676,10024), (546,11819,428), (1556,6656,546), (3091,7569,5), (7542,10297,5)
The reciprocal orthologic center of these triangles is X(6243).
X(12606) lies on these lines: {2,6242}, {3,54}, {4,12226}, {5,6152}, {30,12300}, {52,12242}, {68,3519}, {125,1216}, {381,11576}, {539,5562}, {569,12234}, {973,6639}, {1060,7356}, {1062,6286}, {1209,2072}, {1352,6288}, {1656,9827}, {2914,7512}, {3574,5446}, {4549,9936}, {5876,12289}, {5965,9967}, {6255,8251}, {6643,12325}, {7395,12175}, {7542,8254}, {7723,12605}, {8538,9977}, {10634,10677}, {10635,10678}, {11444,12280}, {11459,12291}
X(12606) = midpoint of X(4) and X(12226)
X(12606) = reflection of X(i) in X(j) for these (i,j): (3,12363), (52,12242), (6152,5)
X(12606) = X(79)-of-2nd-Euler-triangle if ABC is acute
X(12606) = complement of X(6242)
The reciprocal orthologic center of these triangles is X(1).
X(12607) lies on these lines: {1,1329}, {2,3304}, {3,529}, {4,528}, {5,519}, {8,12}, {10,141}, {11,145}, {20,4421}, {30,8715}, {55,3436}, {56,3035}, {65,6735}, {72,10039}, {78,5252}, {100,7354}, {119,1482}, {120,6552}, {140,8666}, {200,5794}, {226,5836}, {341,3932}, {355,3811}, {377,11237}, {388,1376}, {404,5434}, {405,10056}, {442,3679}, {452,4428}, {496,3244}, {498,956}, {517,10915}, {535,550}, {631,11194}, {758,5499}, {908,3057}, {938,5828}, {946,3880}, {958,3085}, {976,5724}, {999,6691}, {1001,2551}, {1125,3820}, {1210,5123}, {1215,5835}, {1259,11501}, {1478,5687}, {1532,7982}, {1698,6762}, {1699,2136}, {1706,5290}, {1737,3555}, {1837,3870}, {1904,3175}, {2098,10958}, {2478,3303}, {2550,5261}, {2802,11698}, {2829,11248}, {2975,5432}, {3036,10573}, {3058,5046}, {3086,6667}, {3091,11235}, {3158,5691}, {3241,4193}, {3419,10827}, {3428,10786}, {3434,10895}, {3584,5258}, {3614,3621}, {3617,3925}, {3625,10592}, {3626,3822}, {3632,7951}, {3633,7741}, {3635,3825}, {3671,10107}, {3680,11522}, {3698,5249}, {3703,4696}, {3704,4385}, {3742,8582}, {3746,11113}, {3754,6147}, {3782,4642}, {3838,3947}, {3841,4691}, {3871,5080}, {3928,9588}, {3935,5086}, {3991,5179}, {4004,11551}, {4030,5016}, {4188,6174}, {4189,4995}, {4190,9657}, {4423,10587}, {4511,10944}, {4640,12527}, {4853,5219}, {4882,5726}, {4930,6980}, {5082,8168}, {5087,12053}, {5176,10950}, {5187,11238}, {5220,5815}, {5270,11112}, {5587,6765}, {5603,10912}, {5657,5852}, {5718,10459}, {5734,6945}, {5842,10526}, {5881,6831}, {5882,6922}, {6067,7679}, {6256,10306}, {6675,10197}, {6692,12577}, {6745,10106}, {6764,7958}, {6869,11500}, {6907,11362}, {6931,11240}, {7373,10200}, {7988,11519}, {8668,11496}, {8727,12437}, {9565,10408}, {9708,10198}, {9712,10037}, {9713,10831}, {9779,12541}, {9947,12617}, {9956,10916}, {10310,12115}, {10863,12448}, {10883,12536}, {10886,12546}, {10914,12047}, {11491,11827}
X(12607) = midpoint of X(i) and X(j) for these {i,j}: {4,3913}, {355,3811}, {6256,10306}
X(12607) = reflection of X(i) in X(j) for these (i,j): (3813,5), (8666,140), (10916,9956), (11260,1125)
X(12607) = complement of X(12513)
X(12607) = X(64)-of-3rd-Euler-triangle
X(12607) = excentral-to-3rd-Euler similarity image of X(2136)
X(12607) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,1329,3816), (5,3813,3829), (8,12,2886), (56,5552,3035), (65,6735,8256), (119,1482,7681), (145,11681,11), (200,9578,5794), (226,6736,5836), (388,7080,1376), (442,3679,9710), (498,956,4999), (958,3085,6690), (1706,5290,5880), (2478,11239,3303), (3085,3421,958), (3244,3814,496), (3436,10528,55), (3584,5258,7483), (3913,11236,4)
The reciprocal orthologic center of these triangles is X(72).
Let Na be the nine-point center of BCI, and define Nb and Nc cyclically. Triangle NaNbNc is perspective to the 3rd Euler triangle at X(12608). (Randy Hutson, July 21, 2017)
X(12608) lies on these lines: {1,4}, {2,1158}, {5,3812}, {10,119}, {21,10165}, {40,908}, {46,6834}, {65,1532}, {84,5249}, {90,499}, {142,3358}, {153,4861}, {411,2077}, {516,6796}, {517,10915}, {912,10916}, {920,3911}, {942,1538}, {960,6907}, {962,10528}, {971,9955}, {997,6850}, {1012,11375}, {1125,3560}, {1210,1858}, {1385,2829}, {1470,4292}, {1537,3057}, {1709,6833}, {1737,6941}, {1770,6905}, {1788,6969}, {1836,3149}, {2096,7288}, {2360,3559}, {2476,7705}, {2886,5777}, {2950,5316}, {3359,3452}, {3474,6927}, {3576,6872}, {3612,6938}, {3657,6003}, {3671,7682}, {3816,9940}, {3817,6245}, {3869,6735}, {4295,6848}, {4297,7491}, {5086,12531}, {5087,6922}, {5119,10786}, {5261,10935}, {5440,11826}, {5554,5587}, {5693,6734}, {5698,6988}, {5722,10893}, {5768,10591}, {5880,6918}, {5886,6259}, {5905,10530}, {6147,7956}, {6247,6708}, {6827,12520}, {6828,9948}, {6856,10172}, {6867,9842}, {6943,9961}, {6968,10826}, {7680,9856}, {7988,7992}, {8085,8095}, {8086,8096}, {8727,9942}, {9779,9799}, {9960,10883}, {10085,10785}, {10679,11500}, {10724,11015}, {10886,12547}, {11019,12005}, {11372,11919}, {11374,11496}, {11680,12528}
X(12608) = midpoint of X(i) and X(j) for these {i,j}: {1,6256}, {4,6261}, {946,6260}, {6259,12114}
X(12608) = reflection of X(i) in X(j) for these (i,j): (5450,1125), (10915,10942), (12616,5)
X(12608) = complement of X(1158)
X(12608) = X(68)-of-3rd-Euler-triangle
X(12608) = excentral-to-3rd-Euler similarity image of X(1490)
X(12608) = 3rd-Euler-isotomic conjugate of X(12610)
X(12608) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,1519,946), (1,1699,10531), (4,12047,946), (942,1538,7681), (946,5882,12053), (5087,9943,6922), (5603,10805,1), (5886,6259,12114), (5887,6842,10), (6825,12514,6684), (6838,11415,40)
The reciprocal orthologic center of these triangles is X(65).
Let (Oa), (Ob), (Oc) be the Odehnal tritangent circles. Let La be the polar of A wrt (Oa), and define Lb, Lc cyclically. La is also the line through the touchpoints of (Oa) and CA and AB, and cyclically for Lb and Lc. Let A' = Lb∩Lc, B' = Lc∩La, C' = La∩Lb. Triangle A'B'C' is homothetic to the extraversion triangle of X(10) at X(12609). (Randy Hutson, July 21, 2017)
X(12609) lies on these lines: {1,224}, {2,46}, {3,142}, {4,12520}, {5,3812}, {8,12559}, {10,12}, {11,5439}, {21,1770}, {40,6889}, {79,5251}, {191,11552}, {306,4647}, {386,1738}, {405,1836}, {443,997}, {474,11375}, {495,5836}, {496,3742}, {499,3306}, {515,6917}, {517,3824}, {518,6147}, {519,5794}, {551,2646}, {908,1698}, {936,12560}, {942,2886}, {956,10404}, {960,8728}, {993,4292}, {1004,10624}, {1089,4054}, {1155,6681}, {1158,6824}, {1159,3626}, {1210,5883}, {1213,4047}, {1376,11374}, {1385,5842}, {1454,3911}, {1519,5437}, {1699,6836}, {1709,6837}, {1737,2476}, {1788,6856}, {1858,10395}, {2245,5257}, {2475,10572}, {2550,3487}, {2551,5714}, {3011,5264}, {3086,9776}, {3159,4078}, {3333,6173}, {3338,10044}, {3339,5705}, {3452,3634}, {3474,6857}, {3475,5082}, {3556,7535}, {3576,6934}, {3579,6690}, {3612,3616}, {3624,4512}, {3772,5711}, {3813,5045}, {3814,8582}, {3816,9955}, {3817,3825}, {3826,5044}, {3827,9895}, {3868,11551}, {3869,4197}, {3874,4847}, {3881,5542}, {3884,4301}, {3916,11246}, {4298,8666}, {4324,5426}, {4425,12567}, {4640,6675}, {5047,5057}, {5086,6175}, {5123,10592}, {5226,11024}, {5290,9623}, {5302,11544}, {5554,10827}, {5587,6984}, {5603,6897}, {5690,10107}, {5887,6881}, {5902,6734}, {6261,6826}, {6667,12611}, {6668,11231}, {6691,11230}, {6692,6862}, {6860,7988}, {6871,10826}, {6887,8257}, {6907,7686}, {6955,9624}, {8727,9943}, {9614,10582}, {9779,9800}, {9949,10863}, {9961,10883}, {10478,12544}, {10886,12548}, {11019,12446}, {11680,12529}
X(12609) = midpoint of X(i) and X(j) for these {i,j}: {4,12520}, {8,12559}, {10,3671}, {4295,12514}, {12446,12564}
X(12609) = reflection of X(i) in X(j) for these (i,j): (10,3841), (5248,1125), (12617,5)
X(12609) = complement of X(12514)
X(12609) = excentral-to-3rd-Euler similarity image of X(12565)
X(12609) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,4295,12514), (10,3919,4848), (10,4138,3454), (10,11263,226), (12,3753,10), (65,442,10), (72,3925,10), (142,946,1125), (443,3485,997), (495,5836,10915), (942,2886,10916), (2550,3487,3811), (3616,4190,3612), (3649,3925,72), (3754,3822,10), (3754,6701,3822), (3812,3838,5), (3817,9843,3825), (3825,3833,9843), (5437,8227,10200)
The reciprocal orthologic center of these triangles is X(65).
X(12610) lies on these lines: {2,1766}, {3,142}, {4,990}, {5,3739}, {8,11532}, {10,8230}, {57,1848}, {75,7377}, {116,2823}, {141,517}, {226,1465}, {355,4361}, {497,10383}, {515,3946}, {573,4357}, {908,3729}, {942,5799}, {952,4852}, {971,5480}, {1418,1565}, {1482,4851}, {1699,1721}, {1826,4858}, {1890,3220}, {2050,3772}, {2345,7402}, {3662,10446}, {3817,8228}, {4104,10440}, {4353,11042}, {4384,5816}, {4425,8246}, {4648,5603}, {5249,10444}, {5393,7133}, {5405,7595}, {6003,10099}, {6245,7683}, {6707,11230}, {7988,7996}, {8239,12053}, {8727,9944}, {9779,9801}, {9950,10863}, {9962,10883}, {10867,11019}, {10886,12549}, {11680,12530}
X(12610) = midpoint of X(i) and X(j) for these {i,j}: {4,990}, {3663,10445}
X(12610) = reflection of X(12618) in X(5)
X(12610) = complement of X(1766)
X(12610) = X(317)-of-3rd-Euler-triangle
X(12610) = excentral-to-3rd-Euler similarity image of X(1721)
X(12610) = 3rd-Euler-isotomic conjugate of X(12608)
The reciprocal orthologic center of these triangles is X(3869).
X(12611) lies on these lines: {1,10742}, {2,12515}, {4,6224}, {5,2800}, {11,113}, {30,214}, {80,381}, {104,5886}, {119,517}, {142,6713}, {153,5603}, {226,1387}, {355,10698}, {382,12119}, {496,5083}, {546,946}, {1320,3656}, {1385,2829}, {1484,2801}, {1699,6326}, {1768,8227}, {1836,10090}, {2802,11698}, {3035,3579}, {3091,12247}, {3616,12248}, {3817,10265}, {4996,5057}, {5316,11231}, {5660,12331}, {5840,9945}, {5854,11278}, {5901,11715}, {6264,11522}, {6667,12609}, {6911,12332}, {7704,12528}, {8727,9946}, {9779,9803}, {9818,9912}, {9952,10863}, {9957,10956}, {9964,10883}, {10057,10895}, {10058,11375}, {10073,10896}, {10074,11376}, {10284,10942}, {10886,12551}, {11680,12532}
X(12611) = midpoint of X(i) and X(j) for these {i,j}: {1,10742}, {4,6265}, {119,1537}, {355,10698}, {382,12119}, {3656,10711}, {6326,10738}
X(12611) = reflection of X(i) in X(j) for these (i,j): (11,9955), (1385,11729), (3579,3035), (11715,5901), (12619,5)
X(12611) = complement of X(12515)
X(12611) = X(265)-of-3rd-Euler-triangle
X(12611) = X(12121)-of-4th-Euler-triangle
X(12611) = excentral-to-3rd-Euler similarity image of X(6326)
X(12611) = {X(1699), X(6326)}-harmonic conjugate of X(10738)
The reciprocal orthologic center of these triangles is X(3555).
X(12612) lies on these lines: {2,12516}, {4,12521}, {5,4662}, {12,5920}, {142,5709}, {226,9589}, {946,6765}, {6838,7160}, {6841,12599}, {7988,8001}, {8727,12439}, {9779,9804}, {9953,10863}, {10883,12537}, {10886,12552}, {11680,12533}
X(12612) = midpoint of X(4) and X(12521)
X(12612) = reflection of X(12620) in X(5)
X(12612) = complement of X(12516)
The reciprocal orthologic center of these triangles is X(3555).
X(12613) lies on these lines: {2,12517}, {4,12522}, {5,12621}, {3825,6684}, {8727,12442}, {9779,12542}, {10863,12449}, {10883,12538}, {10886,12553}, {11680,12534}
X(12613) = midpoint of X(4) and X(12522)
X(12613) = reflection of X(12621) in X(5)
X(12613) = complement of X(12517)
The reciprocal orthologic center of these triangles is X(1).
X(12614) lies on these lines: {1,8085}, {5,12622}, {11,177}, {12,8422}, {164,1699}, {167,7988}, {226,5571}, {3679,8381}, {7670,7678}, {9779,9807}, {11680,11691}
X(12614) = midpoint of X(4) and X(12523)
X(12614) = reflection of X(12622) in X(5)
X(12614) = complement of X(12518)
X(12614) = X(1)-of-3rd-Euler-triangle
The reciprocal orthologic center of these triangles is X(21).
X(12615) lies on these lines: {2,12519}, {4,12524}, {5,12623}, {6841,12600}, {6949,12342}, {8727,12444}, {9779,12543}, {10863,12451}, {10883,12540}, {10886,12557}, {11680,12535}
X(12615) = midpoint of X(4) and X(12524)
X(12615) = reflection of X(12623) in X(5)
X(12615) = complement of X(12519)
The reciprocal orthologic center of these triangles is X(72).
Let (Oa), (Ob), (Oc) be the Odehnal tritangent circles. Let La be the polar of A wrt (Oa), and define Lb and Lc cyclically. La is also the line through the touchpoints of (Oa) and CA and AB, and cyclically for Lb, Lc. Let A' = Lb∩Lc, B' = Lc∩La, C' = La∩Lb. Let Ma be the polar of I wrt (Oa), and define Mb, Mc cyclically. Let A" = Mb∩Mc, B" = Mc∩Ma, C" = Ma∩Mb. Triangles A'B'C' and A"B"C" are homothetic at X(12616). (Randy Hutson, July 21, 2017)
Let A'B'C' be the excentral triangle. X(12616) is the radical center of the 1st Droz-Farny circles of triangles A'BC, B'CA, C'AB. (Randy Hutson, June 27, 2018)
X(12616) lies on these lines: {1,6833}, {2,6261}, {3,10}, {4,46}, {5,3812}, {8,6890}, {11,65}, {40,3434}, {63,10522}, {84,377}, {104,10057}, {224,5552}, {225,1735}, {226,5884}, {442,5927}, {516,10525}, {517,3813}, {581,5530}, {908,5693}, {942,7680}, {944,3612}, {950,11507}, {952,10915}, {960,6922}, {971,3826}, {997,6891}, {1012,1837}, {1072,3670}, {1125,6862}, {1329,5777}, {1385,6690}, {1454,4292}, {1490,1698}, {1512,4316}, {1519,7741}, {1699,10598}, {1715,1869}, {1765,1826}, {1768,3585}, {1771,3215}, {1777,1877}, {1898,10958}, {2096,5229}, {2245,10445}, {2646,5882}, {2829,12619}, {3057,10949}, {3085,5768}, {3338,10532}, {3339,5715}, {3419,10310}, {3485,6956}, {3486,6935}, {3576,6910}, {3579,5842}, {3869,6943}, {3916,11827}, {4197,9960}, {4295,6844}, {4511,6972}, {4847,10914}, {5086,6909}, {5119,12116}, {5563,11219}, {5657,6899}, {5722,11496}, {5761,12559}, {5818,6897}, {5881,6735}, {5887,6882}, {5905,10524}, {6825,12520}, {6827,12514}, {6830,12047}, {6860,7971}, {6906,10572}, {6907,9943}, {6913,12330}, {6932,9961}, {6984,7989}, {7483,10165}, {7681,9856}, {7682,10893}, {7686,8727}, {8087,8095}, {8088,8096}, {9780,9799}, {10044,10599}, {10085,10827}, {10624,10947}, {10887,12547}, {10948,12053}, {11019,11373}, {11681,12528}
X(12616) = midpoint of X(i) and X(j) for these {i,j}: {4,1158}, {10,6245}, {84,6256}, {355,12114}, {5787,11500}, {6260,9948}
X(12616) = reflection of X(i) in X(j) for these (i,j): (5450,6705), (6796,6684), (12608,5)
X(12616) = complement of X(6261)
X(12616) = X(68)-of-4th-Euler-triangle
X(12616) = excentral-to-4th-Euler similarity image of X(1490)
X(12616) = 4th-Euler-isotomic conjugate of X(12618)
X(12616) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (65,6831,946), (84,5587,6256), (944,6977,3612), (946,10265,1210), (1709,10826,4), (9948,10175,6260), (10085,10827,12115)
The reciprocal orthologic center of these triangles is X(65).
X(12617) lies on these lines: {1,6837}, {2,12520}, {4,9}, {5,3812}, {12,1898}, {21,4297}, {46,6835}, {65,8226}, {90,1478}, {118,5517}, {142,9948}, {226,1858}, {355,3913}, {377,1709}, {411,10164}, {515,3560}, {758,946}, {920,4292}, {960,8727}, {997,6847}, {1001,5787}, {1125,6245}, {1158,6826}, {1210,3671}, {1329,10157}, {1490,10198}, {1698,6838}, {1699,6734}, {1737,3091}, {1770,6839}, {2476,8582}, {2801,12564}, {2886,9856}, {3485,11019}, {3486,10389}, {3612,6974}, {3634,6825}, {3746,4314}, {3822,6260}, {3841,6842}, {3869,4301}, {4197,9961}, {4294,10039}, {4512,5691}, {5086,6736}, {5439,7958}, {5603,12559}, {5777,7680}, {6678,12262}, {6684,6985}, {6855,9843}, {6866,7682}, {6869,12512}, {6871,7989}, {6957,10826}, {8728,9943}, {9780,9800}, {9947,12607}, {10394,10865}, {10479,12544}, {10887,12548}, {11681,12529}
X(12617) = midpoint of X(i) and X(j) for these {i,j}: {4,12514}, {355,11496}
X(12617) = reflection of X(i) in X(j) for these (i,j): (946,12558), (12511,6684), (12609,5)
X(12617) = complement of X(12520)
X(12617) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5887,6841,946), (6261,6824,1125), (6828,12047,3817), (6870,11415,1699)
ORTHOLOGIC CENTER OF THESE TRIANGLES: 4th EULER TO 5th EXTOUCH
X(12618) lies on these lines: {1,5807}, {2,990}, {4,9}, {5,3739}, {118,123}, {141,971}, {307,1210}, {321,4712}, {517,5480}, {726,10916}, {962,5772}, {991,3912}, {1041,4347}, {1211,5927}, {1698,1721}, {1754,5294}, {2298,4349}, {3332,5749}, {3454,6260}, {3677,4353}, {3729,6734}, {4197,9962}, {4220,10164}, {4363,5805}, {4643,5779}, {5016,6736}, {5051,8582}, {5101,7085}, {5743,10157}, {7989,7996}, {8728,9944}, {9780,9801}, {10444,10479}, {10887,12549}, {11681,12530}
X(12618) = midpoint of X(4) and X(1766)
X(12618) = reflection of X(12610) in X(5)
X(12618) = complement of X(990)
X(12618) = X(317)-of-4th-Euler-triangle
X(12618) = excentral-to-4th-Euler similarity image of X(1721)
X(12618) = 4th-Euler-isotomic conjugate of X(12616)
X(12618) = {X(9), X(1861)}-harmonic conjugate of X(10)
The reciprocal orthologic center of these triangles is X(3869).
X(12619) lies on these lines: {2,6265}, {3,80}, {4,12515}, {5,2800}, {10,140}, {11,517}, {12,5885}, {24,12137}, {40,10738}, {55,10073}, {56,10057}, {65,8068}, {100,1006}, {104,355}, {119,125}, {149,5657}, {153,5818}, {495,5083}, {496,10284}, {631,6224}, {912,5123}, {1145,6734}, {1210,1387}, {1317,10039}, {1329,5694}, {1484,2802}, {1537,9955}, {1698,6326}, {1768,5587}, {1788,10526}, {1837,10058}, {2080,12198}, {2801,3826}, {2829,12616}, {3057,5533}, {3560,12332}, {3576,9897}, {3579,5840}, {3653,10031}, {3654,10707}, {3679,6264}, {4197,9964}, {4413,5790}, {5221,11929}, {5252,10074}, {5428,6684}, {5444,7972}, {5499,12623}, {5854,10916}, {5886,10698}, {6642,9912}, {6667,11230}, {6958,10573}, {7583,8988}, {7951,11571}, {8256,10943}, {8582,9952}, {8728,9946}, {9780,9803}, {10267,12331}, {10887,12551}, {11681,12532}
X(12619) = midpoint of X(i) and X(j) for these {i,j}: {3,80}, {4,12515}, {10,10265}, {40,10738}, {104,355}, {1484,5690}, {1768,10742}, {3654,10707}, {5790,11219}, {6265,12247}
X(12619) = reflection of X(i) in X(j) for these (i,j): (5,6702), (119,9956), (214,140), (1385,6713), (1537,9955), (11570,5885), (11729,6667), (12611,5)
X(12619) = complement of X(6265)
X(12619) = K798i-isogonal conjugate of X(3)
X(12619) = X(265)-of-4th-Euler-triangle
X(12619) = X(12121)-of-3rd-Euler-triangle
X(12619) = excentral-to-4th-Euler similarity image of X(6326)
X(12619) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,12247,6265), (1768,5587,10742), (6667,11729,11230)
The reciprocal orthologic center of these triangles is X(3555).
X(12620) lies on these lines: {2,12521}, {4,12516}, {5,4662}, {10,6767}, {11,3983}, {442,3555}, {497,10395}, {3826,10916}, {3851,12599}, {4197,12537}, {5187,9874}, {5220,5812}, {7989,8001}, {8582,9953}, {8728,12439}, {9780,9804}, {10887,12552}, {11681,12533}
X(12620) = midpoint of X(4) and X(12516)
X(12620) = reflection of X(12612) in X(5)
X(12620) = complement of X(12521)
The reciprocal orthologic center of these triangles is X(3555).
X(12621) lies on these lines: {2,12522}, {4,12517}, {5,12613}, {4197,12538}, {5521,5687}, {8582,12449}, {8728,12442}, {9780,12542}, {10887,12553}, {11681,12534}
X(12621) = midpoint of X(4) and X(12517)
X(12621) = reflection of X(12613) in X(5)
X(12621) = complement of X(12522)
The reciprocal orthologic center of these triangles is X(1).
X(12622) lies on these lines: {1,8087}, {2,12523}, {4,12518}, {5,12614}, {11,8422}, {12,177}, {164,1698}, {167,7989}, {1210,5571}, {7670,7679}, {9780,9807}, {11681,11691}
X(12622) = midpoint of X(4) and X(12518)
X(12622) = orthologic center of these triangles: 4th Euler to 2nd midarc
X(12622) = reflection of X(12614) in X(5)
X(12622) = X(1)-of-4th-Euler-triangle
X(12622) = {X(8087), X(8088)}-harmonic conjugate of X(1)
The reciprocal orthologic center of these triangles is X(21).
X(12623) lies on these lines: {2,12524}, {4,12519}, {5,12615}, {10,12267}, {11,21}, {442,1749}, {4197,12540}, {5046,12342}, {5499,12619}, {6599,7161}, {8582,12451}, {8728,12444}, {9780,12543}, {10887,12557}, {11681,12535}
X(12623) = midpoint of X(4) and X(12519)
X(12623) = reflection of X(12615) in X(5)
X(12623) = complement of X(12524)
The reciprocal orthologic center of these triangles is X(12508).
X(12624) lies on the nine-points circle and the line {2,12507}
X(12624) = complement of X(12507)
Orthologic centers: X(12625)-X(12808)
Centers X(12625)-X(12808) were contributed by César Eliud Lozada, March, 26, 2017.
The reciprocal orthologic center of these triangles is X(1).
X(12625) lies on these lines: {1,442}, {2,12437}, {4,519}, {8,9}, {10,3158}, {20,3928}, {57,4190}, {72,3586}, {78,4193}, {145,226}, {149,11682}, {200,1837}, {329,3621}, {355,6765}, {377,6173}, {388,3243}, {405,3679}, {497,6737}, {515,6762}, {517,5924}, {518,5691}, {527,3146}, {528,7991}, {674,12435}, {936,5722}, {938,5437}, {952,1490}, {1006,8715}, {1210,5438}, {1266,11851}, {1449,5716}, {1482,5715}, {1699,12635}, {1750,11519}, {1864,3893}, {2475,4654}, {2550,6738}, {2551,6743}, {2646,5231}, {2654,3190}, {2802,12691}, {2893,3875}, {3244,3487}, {3340,3434}, {3486,4847}, {3555,9613}, {3576,10916}, {3601,6734}, {3633,9612}, {3651,8666}, {3811,5587}, {3868,9579}, {3869,9580}, {3870,5086}, {3929,6872}, {3951,11114}, {3984,5046}, {4199,12642}, {4313,5745}, {4333,4880}, {4421,9588}, {4652,11015}, {4677,11113}, {4853,4863}, {5141,5219}, {5325,11106}, {5728,5836}, {5730,9614}, {5768,9841}, {5777,12645}, {5812,5844}, {5839,8804}, {5854,9897}, {5855,11531}, {5882,6908}, {5927,12448}, {5934,12633}, {5935,12634}, {6284,12526}, {6735,10395}, {6829,9624}, {6987,11362}, {7580,12513}, {8226,12607}, {8232,12630}, {8233,12638}, {8668,11517}, {10888,12546}, {11235,11522}
X(12625) = midpoint of X(3621) and X(12541)
X(12625) = reflection of X(i) in X(j) for these (i,j): (2136,8), (2900,3419), (3189,10), (3243,6601), (3633,10912), (6765,355), (11523,4), (12536,12437), (12632,12640)
X(12625) = anticomplement of X(12437)
X(12625) = complement of X(12536)
X(12625) = X(64)-of-2nd-extouch-triangle
X(12625) = X(6293)-of-excentral-triangle
X(12625) = excentral-to-2nd-extouch similarity image of X(2136)
X(12625) = 2nd-Conway-to-excentral similarity image of X(12536)
X(12625) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,12536,12437), (8,390,5837), (8,950,9), (8,12632,12640), (10,3189,3158), (10,3488,5436), (145,5175,226), (377,11518,6173), (2321,5802,9), (2475,11520,4654), (3586,3632,72), (3870,5086,9578), (4863,10950,4853), (12632,12640,2136)
The reciprocal orthologic center of these triangles is X(10).
X(12626) lies on these lines: {1,1650}, {8,402}, {10,11831}, {30,944}, {145,4240}, {355,11897}, {515,12668}, {517,12113}, {519,1651}, {952,11251}, {2098,11906}, {2099,11905}, {2802,12729}, {3632,11852}, {3913,11848}, {5846,12583}, {10573,11913}, {10912,11903}, {10950,11909}, {11832,12135}, {11839,12195}, {11845,12245}, {11853,12410}, {11863,12454}, {11864,12455}, {11885,12495}, {11901,12627}, {11902,12628}, {11904,12635}, {11907,12636}, {11908,12637}, {11911,12645}, {11912,12647}, {11914,12648}, {11915,12649}
X(12626) = midpoint of X(145) and X(4240)
X(12626) = reflection of X(i) in X(j) for these (i,j): (8,402), (1650,1)
X(12626) = X(8)-of-Gossard-triangle
The reciprocal orthologic center of these triangles is X(10).
X(12627) lies on these lines: {1,5591}, {6,8}, {10,11370}, {145,1271}, {355,6202}, {515,6258}, {517,5871}, {519,3641}, {944,11824}, {952,1161}, {1482,6215}, {2098,10925}, {2099,10923}, {2802,6263}, {3632,5589}, {3913,11497}, {5595,12410}, {5603,10514}, {5604,10513}, {5844,5875}, {7967,10517}, {8198,12454}, {8205,12455}, {8216,12636}, {8217,12637}, {9994,12495}, {10040,12647}, {10048,10573}, {10783,12245}, {10792,12195}, {10912,10919}, {10921,12635}, {10927,10950}, {10929,12648}, {10931,12649}, {11388,12135}, {11901,12626}, {11916,12645}
X(12627) = reflection of X(12628) in X(8)
X(12627) = X(8)-of-inner-Grebe-triangle
X(12627) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,5689,5591), (145,1271,5605)
The reciprocal orthologic center of these triangles is X(10).
X(12628) lies on these lines: {1,5590}, {6,8}, {10,11371}, {145,1270}, {355,6201}, {515,6257}, {517,5870}, {519,3640}, {944,11825}, {952,1160}, {1482,6214}, {2098,10926}, {2099,10924}, {2802,6262}, {3632,5588}, {3913,11498}, {5594,12410}, {5603,10515}, {5605,10513}, {5844,5874}, {7967,10518}, {8199,12454}, {8206,12455}, {8218,12636}, {8219,12637}, {9995,12495}, {10041,12647}, {10049,10573}, {10784,12245}, {10793,12195}, {10912,10920}, {10922,12635}, {10928,10950}, {10930,12648}, {10932,12649}, {11389,12135}, {11902,12626}, {11917,12645}
X(12628) = reflection of X(12627) in X(8)
X(12628) = X(8)-of-outer-Grebe-triangle
X(12628) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,5688,5590), (145,1270,5604)
The reciprocal orthologic center of these triangles is X(1).
X(12629) lies on these lines: {1,2}, {3,2136}, {9,9957}, {20,12541}, {40,3880}, {56,3893}, {57,10914}, {63,3885}, {72,7962}, {84,517}, {165,8666}, {355,7956}, {518,5693}, {726,12652}, {937,1222}, {944,5732}, {952,1490}, {956,1697}, {999,1706}, {1000,5837}, {1058,5795}, {1320,11682}, {1385,3158}, {1388,3689}, {1420,5687}, {1449,5782}, {1476,3361}, {1482,5777}, {1768,2802}, {2077,8668}, {2324,5839}, {2975,3895}, {3189,5882}, {3243,5784}, {3333,5836}, {3340,3555}, {3421,12053}, {3434,9613}, {3436,9614}, {3576,3913}, {3646,10179}, {3754,10980}, {3813,5587}, {3878,5223}, {3928,12702}, {3984,5330}, {4298,9874}, {4512,5258}, {4863,10944}, {4866,10176}, {5082,10106}, {5119,5288}, {5436,6767}, {5437,7373}, {5657,12640}, {5697,10050}, {5720,12645}, {5731,12632}, {5780,10247}, {5854,6264}, {6282,12245}, {7675,12630}, {7967,8726}, {7987,8715}, {7997,11224}, {8111,12633}, {8112,12634}, {8227,12607}, {8234,12638}, {8235,12642}, {8951,10700}, {9785,12572}, {9819,12514}, {9845,9943}, {10864,12448}, {10884,12536}, {11526,12559}
X(12629) = midpoint of X(i) and X(j) for these {i,j}: {1,11519}, {20,12541}, {145,6764}, {3680,6762}
X(12629) = reflection of X(i) in X(j) for these (i,j): (40,12513), (2136,3), (3189,5882), (3913,11260), (6264,11256), (6765,1), (7982,10912), (11523,1482)
X(12629) = X(64)-of-hexyl-triangle
X(12629) = excentral-to-hexyl similarity image of X(2136)
X(12629) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,8,936), (1,3632,200), (1,3679,8583), (1,4853,9623), (1,4882,997), (1,4915,10), (1,12127,3244), (997,3625,4882), (3333,11525,5836), (3870,4861,1), (3913,11260,3576)
The reciprocal orthologic center of these triangles is X(1).
X(12630) lies on these lines: {7,145}, {8,344}, {9,3621}, {100,1617}, {142,3623}, {390,519}, {516,3633}, {517,12669}, {518,3644}, {956,4313}, {1445,2136}, {2550,3241}, {2802,12755}, {3189,4308}, {3244,11038}, {3632,5686}, {3813,7679}, {3870,5226}, {3880,7672}, {3893,5572}, {3913,7677}, {3935,5328}, {4321,12127}, {4326,11519}, {4344,4649}, {4413,10580}, {4678,6666}, {4779,4899}, {4863,10578}, {5759,5844}, {5817,12645}, {5836,11025}, {5854,12730}, {6049,8732}, {6737,7320}, {7675,12629}, {7676,12513}, {7678,12607}, {8232,12625}, {8237,12638}, {8238,12642}, {8385,12633}, {8386,12634}, {8389,12646}, {10865,12448}, {10889,12546}
X(12630) = reflection of X(i) in X(j) for these (i,j): (7,145), (3621,9), (3893,5572)
X(12630) = X(64)-of-Honsberger-triangle
X(12630) = excentral-to-Honsberger similarity image of X(2136)
X(12630) = {X(3189), X(9797)}-harmonic conjugate of X(4308)
The reciprocal orthologic center of these triangles is X(12632).
X(12631) lies on these lines: {3,12333}, {9,3295}, {10,6767}, {55,9898}, {100,5558}, {119,3851}, {142,3913}, {214,7373}, {442,5082}, {938,1145}, {999,8000}, {3303,3983}, {3870,5920}, {5687,9874}, {6184,9605}, {6244,12120}, {6260,12699}, {6744,12640}, {8001,8273}, {10679,12684}, {11530,12654}
X(12631) = midpoint of X(7160) and X(12658)
X(12631) = reflection of X(3) in X(12333)
The reciprocal orthologic center of these triangles is X(12631).
X(12632) lies on these lines: {1,11024}, {2,3303}, {8,9}, {20,519}, {40,6764}, {57,9797}, {65,145}, {100,5265}, {144,12125}, {200,9785}, {442,5082}, {497,8165}, {518,9961}, {528,3146}, {529,5059}, {952,12684}, {962,1750}, {1706,10580}, {2551,8168}, {2899,6552}, {3158,3616}, {3174,11038}, {3241,3680}, {3244,11034}, {3434,5261}, {3486,3893}, {3522,12513}, {3523,8715}, {3621,11684}, {3623,10912}, {3632,4294}, {3633,4293}, {3832,12607}, {3871,5281}, {4193,5274}, {4297,11519}, {4309,4677}, {4313,4853}, {4314,4915}, {4315,12127}, {4452,7195}, {4673,7172}, {4882,12575}, {5068,11235}, {5141,10528}, {5177,11239}, {5731,12629}, {5815,10624}, {5919,12448}, {6743,9819}, {6762,9778}, {8666,10304}, {10385,11106}, {10465,12546}
X(12632) = reflection of X(i) in X(j) for these (i,j): (8,2136), (145,3189), (390,7674), (962,6765), (3680,12437), (6764,40), (11519,4297), (12541,1), (12625,12640)
X(12632) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (8,5250,5686), (2136,12625,12640), (3680,12437,3241), (12625,12640,8)
The reciprocal orthologic center of these triangles is X(1).
X(12633) lies on these lines: {8,8390}, {145,8113}, {363,2136}, {519,9836}, {2802,12759}, {3244,11039}, {3621,11685}, {3680,11527}, {3813,8380}, {3913,8109}, {5836,11026}, {5854,12733}, {5934,12625}, {8107,12513}, {8111,12629}, {8140,11519}, {8377,12607}, {8385,12630}, {8391,12642}, {9783,12541}, {11854,12437}, {11856,12448}, {11886,12536}, {11892,12546}, {11922,12638}
X(12633) = reflection of X(12634) in X(11519)
X(12633) = X(64)-of-inner-Hutson-triangle
X(12633) = excentral-to-inner-Hutson similarity image of X(2136)
The reciprocal orthologic center of these triangles is X(1).
X(12634) lies on these lines: {145,8114}, {519,9837}, {2802,12760}, {3244,11040}, {3621,11686}, {3813,8381}, {3913,8110}, {5836,11027}, {5854,12734}, {5935,12625}, {8108,12513}, {8112,12629}, {8140,11519}, {8378,12607}, {8386,12630}, {11855,12437}, {11857,12448}, {11887,12536}, {11893,12546}, {11925,12638}, {11926,12642}
X(12634) = reflection of X(12633) in X(11519)
X(12634) = X(64)-of-outer-Hutson-triangle
X(12634) = excentral-to-outer-Hutson similarity image of X(2136)
The reciprocal orthologic center of these triangles is X(10).
X(12635) lies on these lines: {1,6}, {2,11281}, {3,758}, {8,12}, {10,3940}, {11,12649}, {36,3901}, {40,4421}, {46,4018}, {55,3869}, {56,1259}, {63,2646}, {65,78}, {142,12447}, {145,497}, {200,3340}, {210,3984}, {226,5794}, {320,7185}, {329,3486}, {354,11520}, {355,381}, {377,3649}, {404,5221}, {474,5902}, {480,7672}, {515,5812}, {516,12437}, {517,3811}, {527,4297}, {528,962}, {529,944}, {908,1837}, {912,12114}, {936,3812}, {938,3816}, {940,2650}, {942,997}, {952,10526}, {959,1257}, {965,2294}, {976,5710}, {986,4255}, {993,3927}, {999,3874}, {1012,5693}, {1042,1818}, {1043,5327}, {1046,4252}, {1125,5791}, {1155,4855}, {1159,3754}, {1215,5793}, {1265,3932}, {1320,7319}, {1385,11194}, {1389,10599}, {1698,5425}, {1699,12625}, {1706,10107}, {1788,3035}, {1848,5130}, {2136,11531}, {2171,3713}, {2271,3735}, {2800,10306}, {2802,8148}, {2932,11571}, {3057,3870}, {3149,6326}, {3158,7991}, {3190,10571}, {3207,3509}, {3218,5204}, {3241,5330}, {3295,3878}, {3303,3877}, {3304,3873}, {3339,5438}, {3419,12047}, {3452,6738}, {3496,4258}, {3560,5694}, {3601,4640}, {3612,3916}, {3617,3711}, {3632,10827}, {3633,9614}, {3671,5880}, {3678,9708}, {3680,11224}, {3715,5260}, {3742,8583}, {3746,3899}, {3813,5603}, {3880,6765}, {3881,7373}, {3884,6767}, {3890,3957}, {3894,5563}, {3924,4383}, {3928,7987}, {3930,4513}, {4101,10371}, {4189,11684}, {4190,11246}, {4299,10609}, {4301,5853}, {4313,5698}, {4345,9797}, {4428,5250}, {4662,9623}, {4848,6745}, {4860,5253}, {4880,7280}, {5086,10895}, {5087,9581}, {5703,6690}, {5704,6667}, {5719,10198}, {5720,7686}, {5731,5852}, {5734,6764}, {5761,7680}, {5780,10175}, {5844,10942}, {5846,12587}, {5851,12246}, {5854,10698}, {5886,10916}, {5887,11496}, {5905,7354}, {6049,6068}, {6265,10680}, {6282,9943}, {6284,11415}, {6734,11375}, {6769,7971}, {6872,10543}, {6943,9803}, {7080,8256}, {8168,10914}, {8666,10246}, {8715,12702}, {8834,10699}, {9669,11813}, {9812,12536}, {10176,11108}, {10474,11679}, {10522,10944}, {10523,10573}, {10786,12245}, {10795,12195}, {10830,12410}, {10872,12495}, {10921,12627}, {10922,12628}, {10951,12636}, {10952,12637}, {10954,12647}, {10955,12648}, {11391,12135}, {11495,12520}, {11868,12455}, {11904,12626}
X(12635) = midpoint of X(i) and X(j) for these {i,j}: {1,11523}, {962,3189}, {2136,11531}, {6765,7982}, {6769,7971}
X(12635) = reflection of X(i) in X(j) for these (i,j): (8,12607), (3913,3811), (6762,11260), (10912,1482), (12513,1), (12702,8715)
X(12635) = X(8)-of-outer-Johnson-triangle
X(12635) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,72,958), (1,960,1001), (1,4867,5730), (1,5692,405), (1,5730,5289), (1,5904,956), (1,6762,11260), (8,3485,2886), (65,78,1376), (72,958,5220), (145,3436,10950), (200,3340,5836), (226,6737,5794), (936,11529,3812), (2646,3962,63), (3868,4511,56), (4018,5440,46), (6762,11260,12513), (11929,12645,355), (12447,12563,142)
The reciprocal orthologic center of these triangles is X(10).
X(12636) lies on these lines: {1,8214}, {8,493}, {10,11377}, {145,6462}, {355,8212}, {517,9838}, {519,12152}, {944,11828}, {952,10669}, {1482,8220}, {2098,11932}, {2099,11930}, {2802,12741}, {3632,8188}, {3913,11503}, {5846,12590}, {6339,8211}, {6461,12637}, {8194,12410}, {8201,12454}, {8208,12455}, {8216,12627}, {8218,12628}, {10573,11953}, {10875,12495}, {10912,10945}, {10950,11947}, {10951,12635}, {11394,12135}, {11840,12195}, {11846,12245}, {11907,12626}, {11949,12645}, {11951,12647}, {11955,12648}, {11957,12649}
X(12636) = X(8)-of-Lucas-homothetic-triangle
The reciprocal orthologic center of these triangles is X(10).
X(12637) lies on these lines: {1,8215}, {8,494}, {10,11378}, {145,6463}, {355,8213}, {517,9839}, {519,12153}, {944,11829}, {952,10673}, {1482,8221}, {2098,11933}, {2099,11931}, {2802,12742}, {3632,8189}, {3913,11504}, {5846,12591}, {6339,8210}, {6461,12636}, {8195,12410}, {8202,12454}, {8209,12455}, {8217,12627}, {8219,12628}, {10573,11954}, {10876,12495}, {10912,10946}, {10950,11948}, {10952,12635}, {11395,12135}, {11841,12195}, {11847,12245}, {11908,12626}, {11950,12645}, {11952,12647}, {11956,12648}, {11958,12649}
X(12637) = X(8)-of-Lucas(-1)-homothetic-triangle
The reciprocal orthologic center of these triangles is X(1).
X(12638) lies on these lines: {8,7090}, {145,8243}, {517,12681}, {519,7596}, {2136,8231}, {2802,12768}, {3244,11042}, {3621,11687}, {3680,7595}, {3813,8230}, {3880,9808}, {3913,8225}, {5836,11030}, {5854,12744}, {8224,12513}, {8228,12607}, {8233,12625}, {8234,12629}, {8237,12630}, {8244,11519}, {8246,12642}, {9789,12541}, {10858,12437}, {10867,12448}, {10885,12536}, {10891,12546}, {11922,12633}, {11925,12634}, {11996,12646}
X(12638) = X(64)-of-2nd-Pamfilos-Zhou-triangle
X(12638) = excentral-to-2nd-Pamfilos-Zhou similarity image of X(2136)
The reciprocal orthologic center of these triangles is X(6598).
X(12639) lies on these lines: {2,6597}, {3,12342}, {9,10266}, {10,12267}, {100,6599}, {214,11263}, {11530,12657}
X(12639) = midpoint of X(i) and X(j) for these {i,j}: {100,6599}, {10266,12660}
X(12639) = complement of X(6597)
The reciprocal orthologic center of these triangles is X(12641).
X(12640) lies on these lines: {1,6692}, {2,3680}, {3,519}, {8,9}, {10,496}, {65,10427}, {100,1476}, {119,946}, {142,5836}, {145,1420}, {214,3244}, {442,10914}, {517,6260}, {527,7991}, {529,5493}, {936,1000}, {993,8668}, {1125,10912}, {1145,1210}, {1329,4342}, {2098,6745}, {2551,9819}, {3057,3452}, {3189,3632}, {3617,12541}, {3625,3647}, {3679,5084}, {3740,12448}, {3885,4193}, {3890,5316}, {3893,4847}, {4190,10106}, {4301,12607}, {4677,11111}, {4853,5745}, {5542,10107}, {5657,12629}, {5919,8582}, {6556,8055}, {6600,6738}, {6743,8168}, {6744,12631}, {6765,12245}, {6848,7982}, {7080,7962}, {8256,11019}, {10164,11260}
X(12640) = midpoint of X(i) and X(j) for these {i,j}: {8,2136}, {100,12641}, {3189,3632}, {6765,12245}, {12625,12632}
X(12640) = reflection of X(i) in X(j) for these (i,j): (946,10915), (4301,12607), (5882,8715), (10912,1125), (12437,3913)
X(12640) = complement of X(3680)
X(12640) = X(4)-of-excenters-midpoints-triangle
X(12640) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (8,1697,5795), (8,3895,950), (8,12632,12625), (2136,12625,12632), (3057,6736,3452), (3885,6735,12053)
The reciprocal orthologic center of these triangles is X(12640).
X(12641) lies on the Feuerbach hyperbola and these lines: {1,1145}, {4,2802}, {7,12648}, {8,4939}, {9,4534}, {11,3680}, {79,12749}, {80,3880}, {84,952}, {90,3632}, {100,1476}, {104,519}, {119,3577}, {149,7319}, {392,5559}, {528,3062}, {1000,3898}, {1156,5853}, {1317,3158}, {1320,6735}, {1389,10915}, {1392,5552}, {2320,5281}, {2800,10309}, {2801,10307}, {2932,3913}, {3036,4900}, {3893,6598}, {5541,7284}, {5554,7320}, {5665,10956}, {10305,12245}, {11219,11256}
X(12641) = reflection of X(i) in X(j) for these (i,j): (100,12640), (3680,11), (7972,3913)
X(12641) = isogonal conjugate of X(5193)
X(12641) = antigonal conjugate of X(3680)
X(12641) = X(4)-of-2nd-Schiffler-triangle
X(12641) = antipode of X(3680) in Feuerbach hyperbola
The reciprocal orthologic center of these triangles is X(1).
X(12642) lies on these lines: {8,21}, {145,1284}, {256,3680}, {517,12683}, {519,9840}, {846,2136}, {1469,11520}, {2292,3880}, {2802,12770}, {3244,11043}, {3621,11688}, {3813,5051}, {4199,12625}, {4220,12513}, {4685,8731}, {5836,11031}, {5854,12746}, {8229,12607}, {8235,12629}, {8238,12630}, {8245,11519}, {8246,12638}, {8391,12633}, {8425,12646}, {9791,12541}, {10868,12448}, {10892,12546}, {11926,12634}
X(12642) = X(64)-of-1st-Sharygin-triangle
X(12642) = 2nd-Sharygin-to-1st-Sharygin similarity image of X(13252)
X(12642) = excentral-to-1st-Sharygin similarity image of X(2136)
The reciprocal orthologic center of these triangles is X(1).
X(12643) lies on the cubic K201 and these lines: {1,236}, {8,188}, {145,2089}, {177,3680}, {517,8095}, {519,8091}, {2136,8078}, {3244,11044}, {3621,11690}, {3813,8087}, {3880,8093}, {3893,10503}, {3913,8077}, {5836,11032}, {5854,8097}, {5881,9836}, {6553,10490}, {7028,8422}, {8075,12513}, {8085,12607}, {8089,11519}, {8733,12437}, {9793,12541}, {11858,12448}, {11888,12536}, {11894,12546}
X(12643) = reflection of X(12644) in X(1)
X(12643) = X(64)-of-tangential-midarc-triangle
X(12643) = excentral-to-tangential-midarc similarity image of X(2136)
X(12643) = {X(8), X(8241)}-harmonic conjugate of X(188)
The reciprocal orthologic center of these triangles is X(1).
X(12644) lies on the cubic K201 and these lines: {1,236}, {145,174}, {1483,8130}, {2802,12772}, {3241,11924}, {3243,11535}, {3244,8351}, {3621,8125}, {3623,8126}, {3680,11899}, {3913,7588}, {5836,11033}, {5844,8129}, {8734,12437}, {11859,12448}, {11895,12546}
X(12644) = reflection of X(12643) in X(1)
X(12644) = X(64)-of-2nd-tangential-midarc-triangle
X(12644) = excentral-to-2nd-tangential-midarc similarity image of X(2136)
X(12644) = {X(145), X(174)}-harmonic conjugate of X(12646)
The reciprocal orthologic center of these triangles is X(10).
X(12645) lies on the cubic K201 and these lines: {1,1656}, {2,1483}, {3,8}, {4,3621}, {5,145}, {10,3526}, {30,12245}, {40,3534}, {80,2098}, {119,3813}, {140,3617}, {355,381}, {382,517}, {388,1159}, {499,1317}, {515,1657}, {518,11898}, {631,4678}, {912,10914}, {962,3830}, {999,10573}, {1351,5846}, {1352,9053}, {1385,3679}, {1388,7972}, {1484,4193}, {1598,12135}, {1699,11278}, {2099,9654}, {2136,7330}, {2802,12747}, {2937,9798}, {3086,11545}, {3090,3623}, {3167,9933}, {3241,5055}, {3244,5079}, {3295,7489}, {3421,6928}, {3445,6788}, {3576,4668}, {3579,4816}, {3616,5070}, {3622,3628}, {3626,5882}, {3633,5072}, {3635,10175}, {3653,4745}, {3654,4297}, {3655,4669}, {3851,5603}, {3871,6914}, {3880,5887}, {3913,11849}, {4691,10165}, {4701,11362}, {4853,5534}, {5048,10826}, {5076,12699}, {5082,6923}, {5176,5730}, {5531,11014}, {5694,5697}, {5708,10106}, {5720,12629}, {5722,5780}, {5727,9957}, {5777,12625}, {5779,5853}, {5811,12541}, {5817,12630}, {5854,10738}, {6147,11041}, {6265,11256}, {6862,10528}, {6913,12000}, {6918,12001}, {6941,11698}, {6958,7080}, {6959,10529}, {6971,10943}, {6980,10942}, {7517,12410}, {8168,12114}, {8200,11876}, {8207,11875}, {9301,12495}, {9858,10202}, {10525,10742}, {10827,11011}, {10895,11009}, {11499,12513}, {11842,12195}, {11911,12626}, {11916,12627}, {11917,12628}, {11949,12636}, {11950,12637}
X(12645) = midpoint of X(i) and X(j) for these {i,j}: {4,3621}, {3632,5881}
X(12645) = reflection of X(i) in X(j) for these (i,j): (3,8), (145,5), (944,5690), (1482,355), (1657,12702), (3655,4669), (5697,5694), (5882,3626), (8148,4), (11362,4701)
X(12645) = anticomplement of X(1483)
X(12645) = X(8)-of-X3-ABC-reflections-triangle
X(12645) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,5790,1656), (5,145,10247), (8,944,5690), (10,10246,3526), (80,2098,9669), (355,1482,381), (355,10912,11928), (355,12635,11929), (944,5690,3), (3090,3623,10283), (3241,5818,5901), (3617,7967,140), (5818,5901,5055), (10573,10944,999), (10950,12647,3295)
The reciprocal orthologic center of these triangles is X(1).
X(12646) lies on the cubic K201 and these lines: {1,188}, {8,178}, {145,174}, {173,2136}, {177,3680}, {517,12685}, {519,8351}, {1483,8129}, {2802,12774}, {3621,8126}, {3623,8125}, {3813,8382}, {3880,12445}, {3893,10502}, {3913,7587}, {5836,8083}, {5844,8130}, {5854,12748}, {7593,12625}, {8389,12630}, {8423,11519}, {8425,12642}, {8729,12437}, {11860,12448}, {11890,12536}, {11891,12541}, {11896,12546}, {11996,12638}
X(12646) = X(64)-of-Yff-central-triangle
X(12646) = excentral-to-Yff-central similarity image of X(2136)
X(12646) = {X(483),X(3082)}-harmonic conjugate of X(236)
X(12646) = {X(145), X(174)}-harmonic conjugate of X(12644)
The reciprocal orthologic center of these triangles is X(10).
X(12647) lies on these lines: {1,2}, {3,10944}, {4,5559}, {5,2098}, {11,5790}, {12,1482}, {20,11010}, {35,944}, {36,3476}, {40,4299}, {46,4317}, {47,5255}, {55,952}, {56,5690}, {65,10044}, {79,7317}, {80,497}, {140,1388}, {329,3899}, {355,1479}, {390,9897}, {474,8256}, {484,4293}, {495,2099}, {515,1709}, {517,1478}, {611,5846}, {912,12430}, {942,11045}, {946,6968}, {950,6976}, {956,8069}, {958,11508}, {962,3585}, {982,1772}, {1056,5902}, {1145,1376}, {1155,3654}, {1317,5432}, {1320,11680}, {1621,12531}, {1697,4309}, {1699,8275}, {1734,2401}, {1770,7991}, {1788,5563}, {1837,9957}, {2478,3884}, {2800,12115}, {2802,3434}, {2886,5854}, {3036,3816}, {3245,3474}, {3295,7489}, {3336,3600}, {3338,4848}, {3419,3880}, {3421,5692}, {3436,3878}, {3475,5425}, {3485,11009}, {3486,3746}, {3586,9819}, {3612,5882}, {3753,5570}, {3877,5176}, {3885,5086}, {3898,10073}, {4295,5270}, {4316,9778}, {4333,5493}, {4351,8270}, {4421,10609}, {4857,9785}, {5010,5731}, {5048,5886}, {5082,10629}, {5218,7967}, {5261,11280}, {5281,9803}, {5330,8070}, {5443,10588}, {5445,7288}, {5587,6973}, {5599,11880}, {5600,11879}, {5603,7951}, {5687,8071}, {5691,9898}, {5722,5919}, {5726,11224}, {5730,12607}, {5794,10914}, {5818,7741}, {5884,10805}, {6361,10483}, {6702,10584}, {6825,11014}, {6982,7982}, {7354,12702}, {8148,9654}, {8200,11874}, {8207,11873}, {9612,11531}, {9956,11376}, {10037,12410}, {10038,12495}, {10040,12627}, {10041,12628}, {10074,10269}, {10801,12195}, {10826,12053}, {10954,12635}, {10966,11499}, {11011,11374}, {11238,12019}, {11249,11501}, {11252,11870}, {11253,11869}, {11398,12135}, {11877,12454}, {11878,12455}, {11912,12626}, {11951,12636}, {11952,12637}, {12751,12758}
X(12647) = midpoint of X(8) and X(12648)
X(12647) = reflection of X(i) in X(j) for these (i,j): (1478,5252), (2099,495), (4302,5119)
X(12647) = X(8)-of-inner-Yff-triangle
X(12647) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,8,10573), (1,10,499), (1,1737,10072), (1,3679,1737), (1,10039,498), (46,10106,4317), (145,3085,1), (355,3057,1479), (1317,5432,10246), (1697,5881,10572), (1697,10572,4309), (3085,10527,10320), (3295,12645,10950), (3475,11041,5425), (3476,5657,36), (3632,3679,4915), (6929,10947,1479), (7991,9613,1770), (10106,11362,46), (10320,10527,499)
The reciprocal orthologic center of these triangles is X(10).
X(12648) lies on these lines: {1,2}, {4,3885}, {7,12641}, {12,10912}, {40,11919}, {65,10940}, {100,1470}, {119,1320}, {355,6957}, {377,10914}, {388,7702}, {497,5176}, {515,3895}, {517,5905}, {908,7962}, {942,11047}, {944,3871}, {952,1012}, {962,6256}, {999,1145}, {1000,3421}, {1478,2802}, {1482,1532}, {1697,6872}, {2077,5731}, {2098,10958}, {2099,5854}, {2478,9957}, {2551,3890}, {3057,3436}, {3218,3359}, {3304,8256}, {3434,3880}, {3680,6871}, {3868,6916}, {3893,5794}, {3913,10944}, {4188,4308}, {4190,10106}, {4345,5748}, {4917,12437}, {5046,9785}, {5123,10584}, {5175,12541}, {5187,12053}, {5193,5435}, {5559,5904}, {5657,10269}, {5697,11415}, {5844,6907}, {5846,12594}, {5853,8545}, {5902,11046}, {6913,12000}, {6931,11373}, {6939,10596}, {7982,12608}, {7991,10970}, {10247,11729}, {10524,10827}, {10803,12195}, {10834,12410}, {10878,12495}, {10929,12627}, {10930,12628}, {10950,10965}, {10955,12635}, {11400,12135}, {11881,12454}, {11882,12455}, {11914,12626}, {11955,12636}, {11956,12637}
X(12648) = reflection of X(i) in X(j) for these (i,j): (8,12647), (145,3870), (3434,5252)
X(12648) = X(8)-of-inner-Yff-tangents-triangle
X(12648) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,8,5554), (1,6735,2), (1,10915,5552), (8,145,12649), (145,10528,1), (1000,3421,3877), (10528,10530,5552)
The reciprocal orthologic center of these triangles is X(10).
X(12649) lies on these lines: {1,2}, {4,912}, {7,2475}, {11,12635}, {20,3218}, {21,3488}, {29,1069}, {40,11920}, {57,4190}, {63,950}, {65,3434}, {69,5016}, {72,2478}, {75,5738}, {81,5716}, {100,1788}, {144,5809}, {149,151}, {224,2900}, {225,11851}, {226,6871}, {273,5174}, {307,3875}, {329,5046}, {346,8557}, {354,5794}, {355,3555}, {376,11015}, {377,942}, {382,12690}, {388,3873}, {405,12433}, {411,944}, {452,3219}, {496,5730}, {497,3869}, {515,12687}, {517,6836}, {518,1837}, {758,1479}, {894,5807}, {908,5187}, {946,6870}, {952,3149}, {956,11344}, {1056,3889}, {1058,3877}, {1068,1897}, {1229,4696}, {1265,4358}, {1320,6943}, {1331,1724}, {1445,4848}, {1446,6604}, {1478,3874}, {1482,6831}, {1512,5534}, {1895,5081}, {1936,7538}, {1993,3562}, {2098,5855}, {2099,3813}, {2287,5839}, {2476,3487}, {2550,5178}, {2551,3681}, {2802,12750}, {2899,3952}, {2975,3486}, {3057,10936}, {3091,5804}, {3146,9799}, {3152,3210}, {3243,9578}, {3254,7319}, {3452,3984}, {3485,11680}, {3583,3901}, {3585,3894}, {3711,9711}, {3832,5715}, {3871,5657}, {3876,5084}, {3885,6865}, {3895,11362}, {3911,4855}, {3913,11510}, {3927,11113}, {3940,4187}, {3951,12572}, {4018,12699}, {4188,5435}, {4189,4313}, {4304,4652}, {4430,6894}, {4452,5932}, {4661,5815}, {4863,5836}, {4881,5265}, {5057,5225}, {5059,10430}, {5141,5226}, {5154,5748}, {5177,11036}, {5249,11518}, {5279,5802}, {5440,6921}, {5603,6828}, {5698,11684}, {5708,11112}, {5720,6953}, {5727,6762}, {5731,11012}, {5758,6840}, {5761,6830}, {5770,6906}, {5777,6957}, {5787,10431}, {5818,6991}, {5844,6922}, {5846,12595}, {5887,10531}, {6224,10074}, {6585,11491}, {6601,7672}, {6855,10595}, {6864,10597}, {6897,10202}, {6918,12001}, {6933,11374}, {6988,7967}, {7466,7718}, {7991,10971}, {10524,10826}, {10804,12195}, {10835,12410}, {10879,12495}, {10912,10949}, {10931,12627}, {10932,12628}, {10950,10966}, {11401,12135}, {11682,12053}, {11883,12454}, {11884,12455}, {11915,12626}, {11957,12636}, {11958,12637}, {12047,12559}
X(12649) = reflection of X(i) in X(j) for these (i,j): (8,10573), (78,1210), (3436,1837), (5730,496), (6224,10074), (11415,1479), (11682,12053)
X(12649) = isogonal conjugate of X(34430)
X(12649) = complement of X(20013)
X(12649) = anticomplement of X(78)
X(12649) = X(8)-of-outer-Yff-tangents-triangle
X(12649) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,6734,2), (1,10916,10527), (4,3868,5905), (7,5175,2475), (8,145,12648), (8,938,2), (8,6764,3621), (10,3870,10528), (63,950,6872), (72,5722,2478), (78,1210,2), (145,10528,3870), (145,10529,1), (908,9581,5187), (942,3419,377), (1737,3811,5552), (1788,3189,100), (3873,5086,388), (9581,11523,908), (10529,10530,10527)
The reciprocal orthologic center of these triangles is X(72).
X(12650) lies on these lines: {1,4}, {3,1706}, {8,6245}, {10,6926}, {30,12700}, {40,956}, {84,517}, {145,9799}, {165,5450}, {200,5881}, {355,936}, {474,3576}, {519,6769}, {942,3577}, {952,5787}, {971,1482}, {993,10268}, {1012,1697}, {1125,6964}, {1158,6763}, {1385,6918}, {1420,3149}, {1467,4311}, {1512,10785}, {1698,6967}, {1709,5697}, {2057,5176}, {2098,12688}, {2099,12680}, {2136,10306}, {2800,3901}, {2802,2950}, {2829,6264}, {3057,12705}, {3062,12666}, {3295,7966}, {3333,7686}, {3427,6737}, {3555,6001}, {3624,6983}, {3679,12616}, {4187,5587}, {4915,11362}, {5657,6705}, {5731,6904}, {5732,5832}, {5758,5924}, {5795,6865}, {5806,7373}, {5842,12565}, {6735,6890}, {6796,6940}, {6831,9578}, {6975,7989}, {7962,12672}, {7994,12245}, {8148,12684}, {9845,11529}, {9942,11518}, {9948,11519}, {9960,11520}, {11521,12547}, {11523,12664}, {11526,12669}, {11532,12681}, {11533,12683}, {11535,12685}, {11682,12528}
X(12650) = midpoint of X(i) and X(j) for these {i,j}: {145,9799}, {7982,10864}, {7992,11531}, {8148,12684}
X(12650) = reflection of X(i) in X(j) for these (i,j): (8,6245), (40,12114), (1490,1), (2136,10306), (7971,1482), (7991,1158), (12667,946)
X(12650) = X(68)-of-excenters-reflections-triangle
X(12650) = excentral-to-excenters-reflections similarity image of X(1490)
X(12650) = excenters-reflections-isotomic conjugate of X(12652)
X(12650) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,944,10106), (5691,9614,4), (9845,11529,12675)
The reciprocal orthologic center of these triangles is X(65).
X(12651) lies on these lines: {1,7}, {3,10582}, {4,200}, {9,7957}, {10,7994}, {40,405}, {72,11372}, {78,9812}, {145,9800}, {165,3833}, {354,9841}, {382,5534}, {388,10388}, {443,946}, {517,3927}, {936,1699}, {942,10860}, {956,6766}, {1467,3474}, {1490,5842}, {1698,6886}, {1750,3811}, {1998,6895}, {2098,9850}, {2999,6996}, {3062,12528}, {3091,8580}, {3146,3870}, {3174,6253}, {3243,12680}, {3340,12711}, {3361,6909}, {3522,4666}, {3555,6001}, {3679,12617}, {3841,7988}, {3868,7992}, {3957,5059}, {4420,10248}, {5231,6847}, {5234,6912}, {5268,7385}, {5290,6925}, {5436,5584}, {5531,10724}, {5691,6765}, {5806,6244}, {7962,12709}, {7987,12511}, {7989,12558}, {9851,11224}, {9943,11518}, {9949,11519}, {9961,11520}, {10398,12432}, {10857,12512}, {11521,12548}, {11522,12609}, {11523,12688}, {11526,12706}, {11527,12707}, {11528,12708}, {11529,12710}, {11532,12712}, {11533,12713}, {11535,12716}, {11682,12529}, {11899,12715}
X(12651) = midpoint of X(145) and X(9800)
X(12651) = reflection of X(i) in X(j) for these (i,j): (20,4314), (40,11496), (4295,4301), (7991,12514), (12526,12705), (12565,1)
X(12651) = excentral-to-excenters-reflections similarity image of X(12565)
X(12651) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,2951,10884), (1,4292,4321), (1,4294,4326), (4,6769,200), (40,11496,4512), (946,6282,8583), (4319,4332,1), (4336,4348,1), (7982,10864,3555)
The reciprocal orthologic center of these triangles is X(65).
X(12652) lies on these lines: {1,7}, {40,238}, {43,7994}, {105,165}, {145,9801}, {200,4388}, {517,1351}, {612,9812}, {614,9778}, {651,7673}, {726,12629}, {936,4660}, {982,10860}, {984,11372}, {1038,12701}, {1279,11495}, {1697,9440}, {1699,5268}, {1743,1766}, {1750,3961}, {3057,6180}, {3177,3729}, {3339,8915}, {3340,12723}, {3679,12618}, {3749,7580}, {3923,9623}, {3976,9841}, {5223,9355}, {7290,9441}, {7962,12721}, {7996,11531}, {8270,9580}, {9944,11518}, {9950,11519}, {9962,11520}, {11521,12549}, {11522,12610}, {11523,12689}, {11526,12718}, {11527,12719}, {11528,12720}, {11529,12722}, {11532,12724}, {11533,12725}, {11535,12728}, {11682,12530}, {11899,12727}
X(12652) = midpoint of X(i) and X(j) for these {i,j}: {145,9801}, {7996,11531}
X(12652) = reflection of X(i) in X(j) for these (i,j): (1721,1), (7991,1766)
X(12652) = X(317)-of-excenters-reflections-triangle
X(12652) = excentral-to-excenters-reflections similarity image of X(1721)
X(12652) = excenters-reflections-isotomic conjugate of X(12650)
X(12652) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (390,2263,1), (1448,12575,1), (4318,4319,1), (4320,9785,1)
The reciprocal orthologic center of these triangles is X(8).
X(12653) lies on these lines: {1,88}, {8,11524}, {11,3679}, {40,12737}, {80,3632}, {104,7991}, {119,11522}, {145,9802}, {149,519}, {153,4301}, {165,11715}, {191,956}, {517,1768}, {528,3243}, {952,3627}, {1023,4919}, {1145,1698}, {1317,3340}, {1387,3624}, {1482,6326}, {1699,12751}, {2093,10074}, {2170,4752}, {2771,8148}, {2800,3901}, {2829,9589}, {2932,5563}, {3057,5251}, {3244,6224}, {3577,5660}, {3656,11698}, {3884,5506}, {3894,11571}, {3899,5223}, {4413,6797}, {4677,10707}, {4816,12019}, {5531,10698}, {5881,10738}, {6154,11034}, {6713,9588}, {6762,11256}, {9612,12749}, {9898,12654}, {9945,11518}, {9951,11519}, {9963,11520}, {10265,12245}, {10825,11521}, {11523,12690}, {11526,12730}, {11527,12733}, {11528,12734}, {11532,12744}, {11533,12746}, {11535,12748}, {11682,12531}, {12409,12657}
X(12653) = midpoint of X(i) and X(j) for these {i,j}: {145,9802}, {7993,11531}
X(12653) = reflection of X(i) in X(j) for these (i,j): (1,1320), (40,12737), (153,4301), (1768,6264), (3632,80), (4677,10707), (5531,10698), (5541,1), (5881,10738), (6154,12735), (6224,3244), (6326,1482), (6762,11256), (7991,104), (9897,149), (12245,10265)
X(12653) = X(74)-of-excenters-reflections-triangle
X(12653) = excentral-to-excenters-reflections similarity image of X(5541)
X(12653) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (244,10700,1), (4792,10700,244), (5531,11224,10698)
The reciprocal orthologic center of these triangles is X(3555).
X(12654) lies on these lines: {1,12521}, {72,4853}, {145,9804}, {200,9624}, {936,1387}, {1482,12670}, {3090,4882}, {3243,5784}, {3679,12620}, {3680,7160}, {4002,10582}, {5920,7962}, {6264,10609}, {6765,11374}, {7991,12516}, {8001,11531}, {9898,12653}, {9953,11519}, {11224,12756}, {11518,12439}, {11520,12537}, {11521,12552}, {11522,12612}, {11523,12692}, {11525,12260}, {11530,12631}, {11682,12533}
X(12654) = midpoint of X(i) and X(j) for these {i,j}: {145,9804}, {8001,11531}
X(12654) = reflection of X(i) in X(j) for these (i,j): (7991,12516), (12658,1)
The reciprocal orthologic center of these triangles is X(3555).
X(12655) lies on these lines: {1,12522}, {145,12542}, {3679,12621}, {7991,12517}, {11518,12442}, {11519,12449}, {11520,12538}, {11521,12553}, {11522,12613}, {11523,12693}, {11682,12534}
X(12655) = midpoint of X(145) and X(12542)
X(12655) = reflection of X(i) in X(j) for these (i,j): (7991,12517), (12659,1)
The reciprocal orthologic center of these triangles is X(1).
X(12656) lies on these lines: {1,164}, {145,9807}, {167,11531}, {177,3340}, {3679,12622}, {7670,11526}, {7962,8422}, {7991,12518}, {11519,12450}, {11520,12539}, {11521,12554}, {11682,11691}
X(12656) = midpoint of X(i) and X(j) for these {i,j}: {145,9807}, {167,11531}
X(12656) = reflection of X(i) in X(j) for these (i,j): (164,1), (7991,12518)
X(12656) = X(1)-of-excenters-reflections-triangle
X(12656) = excentral-to-excenters-reflections similarity image of X(164)
X(12656) = orthologic center of these triangles: excenters-reflections to 2nd midarc
The reciprocal orthologic center of these triangles is X(21).
X(12657) lies on these lines: {1,6597}, {145,12543}, {3679,12623}, {3680,10266}, {6599,10950}, {7991,12519}, {11518,12444}, {11519,12451}, {11520,12540}, {11521,12557}, {11522,12615}, {11523,12695}, {11525,12267}, {11530,12639}, {11682,12535}, {12409,12653}
X(12657) = midpoint of X(145) and X(12543)
X(12657) = reflection of X(i) in X(j) for these (i,j): (7991,12519), (12660,1)
The reciprocal orthologic center of these triangles is X(3555).
X(12658) lies on these lines: {1,12521}, {2,9804}, {9,3295}, {40,3555}, {57,12439}, {63,12533}, {145,8726}, {165,8001}, {191,9898}, {200,3646}, {942,2136}, {962,1490}, {1697,5920}, {1698,12620}, {1699,12612}, {1764,12552}, {2951,6361}, {3174,5542}, {3339,5083}, {5531,11379}, {8580,9953}, {9776,9874}
X(12658) = midpoint of X(12533) and X(12537)
X(12658) = reflection of X(i) in X(j) for these (i,j): (1,12521), (7160,12631), (8001,12516), (12654,1)
X(12658) = complement of X(9804)
X(12658) = Ursa-minor-to-excentral similarity image of X(17639)
The reciprocal orthologic center of these triangles is X(3555).
X(12659) lies on these lines: {1,12522}, {2,12542}, {9,12693}, {40,1739}, {57,12442}, {63,12534}, {165,12517}, {1698,12621}, {1699,12613}, {1731,1766}, {1764,12553}, {5709,6361}, {8580,12449}
X(12659) = midpoint of X(12534) and X(12538)
X(12659) = reflection of X(i) in X(j) for these (i,j): (1,12522), (12655,1)
X(12659) = complement of X(12542)
The reciprocal orthologic center of these triangles is X(21).
X(12660) lies on these lines: {1,6597}, {2,12543}, {5,6599}, {9,10266}, {57,12444}, {63,12535}, {165,12519}, {191,12409}, {1698,12623}, {1699,12615}, {1764,12557}, {2949,6907}, {2950,10942}, {3646,12267}, {3871,6595}, {5506,7483}, {6326,6906}, {8580,12451}
X(12660) = midpoint of X(12535) and X(12540)
X(12660) = reflection of X(i) in X(j) for these (i,j): (1,12524), (10266,12639), (12657,1)
X(12660) = complement of X(12543)
The reciprocal orthologic center of these triangles is X(10112).
X(12661) lies on the extangents circle and these lines: {19,113}, {40,12407}, {55,2931}, {65,5504}, {71,265}, {74,3101}, {110,6197}, {125,8251}, {146,9536}, {2550,12319}, {2948,9572}, {3448,9537}, {5584,12302}, {5663,6254}, {6699,10319}, {8539,12596}, {9573,9904}, {10306,12310}, {10636,10663}, {10637,10664}, {11406,12168}, {11428,12228}, {11445,12273}, {11460,12284}, {11471,12295}
X(12661) = reflection of X(10119) in X(8141)
X(12661) = antipode of X(10119) in extangents circle
X(12661) = X(104)-of-extangents-triangle if ABC is acute
X(12661) = orthic-to-extangents similarity image of X(113)
The reciprocal orthologic center of these triangles is X(3).
X(12662) lies on these lines: {19,487}, {40,9906}, {486,10319}, {642,9816}, {2550,12320}, {3101,12221}, {3564,12663}, {5584,12303}, {8251,12601}, {8539,12597}, {10306,12311}, {11406,12169}, {11428,12229}, {11435,12237}, {11445,12274}, {11460,12285}, {11471,12296}
X(12662) = reflection of X(12910) in X(12978)
X(12662) = orthic-to-extangents similarity image of X(487)
The reciprocal orthologic center of these triangles is X(3).
X(12663) lies on these lines: {19,488}, {40,9907}, {485,10319}, {641,9816}, {2550,12321}, {3101,12222}, {3564,12662}, {5584,12304}, {8251,12602}, {8539,12598}, {10306,12312}, {11406,12170}, {11428,12230}, {11435,12238}, {11445,12275}, {11460,12286}, {11471,12297}
X(12663) = reflection of X(12911) in X(12979)
X(12663) = orthic-to-extangents similarity image of X(488)
Let A'B'C' be the orthic triangle. X(12664) is the radical center of the Bevan circles of triangles AB'C', BC'A', CA'B'. (Randy Hutson, July 31 2018)
The reciprocal orthologic center of these triangles is X(72).
X(12664) lies on these lines: {2,9942}, {3,9}, {4,65}, {19,9786}, {33,1498}, {46,1750}, {64,1753}, {72,515}, {185,1824}, {210,11500}, {329,6836}, {388,3427}, {389,1871}, {405,6261}, {442,5927}, {517,5924}, {518,5758}, {912,5787}, {942,5715}, {946,5728}, {950,12672}, {960,6987}, {999,12687}, {1012,10393}, {1064,10396}, {1158,7580}, {1478,12677}, {1532,10395}, {1699,10399}, {1708,3149}, {1709,11507}, {1848,12233}, {1861,6247}, {1872,6000}, {1890,11745}, {2261,11425}, {2646,12114}, {2800,12690}, {2829,12691}, {2900,10306}, {3059,5759}, {3487,8581}, {3488,9848}, {3651,5918}, {3812,6843}, {4185,12136}, {4199,12683}, {5658,6889}, {5794,12667}, {5811,12666}, {5842,7957}, {6259,6917}, {6705,7483}, {6847,10391}, {6908,9943}, {6910,11220}, {6934,12246}, {7971,9856}, {8079,8095}, {8080,8096}, {8226,12608}, {8232,12669}, {8233,12681}, {10445,10974}, {10888,12547}, {11523,12650}
X(12664) = midpoint of X(9799) and X(12528)
X(12664) = reflection of X(i) in X(j) for these (i,j): (1490,5777), (7971,9856), (9960,9942), (12671,3), (12680,12114)
X(12664) = anticomplement of X(9942)
X(12664) = complement of X(9960)
X(12664) = X(68)-of-2nd-extouch-triangle
X(12664) = excentral-to-2nd-extouch similarity image of X(1490)
X(12664) = 2nd-extouch-isotomic conjugate of X(12689)
X(12664) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (389,1871,2262), (1864,12688,4), (6260,12616,442)
The reciprocal orthologic center of these triangles is X(12666).
X(12665) lies on the Mandart hyperbola and these lines: {8,153}, {9,48}, {11,5777}, {40,12059}, {72,2829}, {100,1158}, {119,912}, {200,2950}, {518,1537}, {952,1898}, {971,6068}, {1145,6001}, {1388,6265}, {1768,10270}, {1858,10956}, {2802,5881}, {3086,5083}, {3419,12761}, {3711,12515}, {3811,12775}, {5217,12738}, {5534,10087}, {5587,12736}, {5660,5770}, {5720,10090}, {5854,12672}, {6797,9947}, {7330,10058}
X(12665) = midpoint of X(i) and X(j) for these {i,j}: {100,12528}, {153,12532}, {5693,12751}
X(12665) = reflection of X(i) in X(j) for these (i,j): (40,14740), (11,5777), (6797,9947), (11570,119), (12757,6326), (12758,5887)
X(12665) = antipode of X(40) in the Mandart hyperbola
The reciprocal orthologic center of these triangles is X(12665).
X(12666) lies on the Feuerbach hyperbola of the inner Garcia triangle and on these lines: {8,6001}, {40,12059}, {84,997}, {90,104}, {165,191}, {515,5697}, {971,5698}, {1737,6260}, {1898,5768}, {2771,6259}, {2800,3632}, {2801,7971}, {2829,3869}, {3062,12650}, {3419,12676}, {3811,12686}, {5693,6737}, {5811,12664}, {6256,10573}, {9961,11500}, {12688,12701}
X(12666) = reflection of X(9961) in X(11500)
X(12665) = antipode of X(9) in the Mandart hyperbola
X(12665) = extouch-isogonal conjugate of X(13528)
The reciprocal orthologic center of these triangles is X(40).
X(12667) lies on these lines: {1,4}, {2,12114}, {3,1603}, {7,7686}, {8,6001}, {10,84}, {12,6847}, {20,100}, {30,10306}, {36,6927}, {40,2123}, {46,2096}, {56,6848}, {65,12678}, {72,12677}, {80,10305}, {104,6834}, {119,6891}, {149,12761}, {354,5804}, {355,971}, {376,6796}, {377,9799}, {443,5587}, {498,6935}, {499,6969}, {517,6259}, {519,7971}, {631,5251}, {938,12675}, {958,6908}, {960,5811}, {962,3885}, {993,6988}, {1012,3085}, {1125,6939}, {1158,5657}, {1329,6926}, {1385,6893}, {1466,7354}, {1498,9370}, {1512,1788}, {1532,3086}, {1538,11373}, {1698,6705}, {1709,10039}, {1737,10085}, {1837,5768}, {2478,5731}, {2800,5904}, {2975,6838}, {3057,12679}, {3146,5842}, {3149,4293}, {3189,5534}, {3333,7682}, {3419,12777}, {3529,5537}, {3576,5084}, {3577,3671}, {3616,6957}, {3679,7992}, {3822,6855}, {4297,6700}, {5080,6836}, {5082,5881}, {5086,9960}, {5090,12136}, {5176,9961}, {5218,6906}, {5223,11362}, {5234,6684}, {5252,12688}, {5253,6953}, {5261,7680}, {5274,10893}, {5552,6909}, {5660,6903}, {5687,12330}, {5688,6257}, {5689,6258}, {5787,6826}, {5790,12684}, {5794,12664}, {5818,6897}, {6831,10590}, {6833,10588}, {6844,10895}, {6845,10599}, {6851,10526}, {6864,9843}, {6888,10585}, {6890,11681}, {6928,10742}, {6930,10267}, {6932,10527}, {6938,11491}, {6941,10589}, {6942,12248}, {6944,10269}, {6948,11499}, {6956,7951}, {7373,7956}, {7501,8185}, {7966,12575}, {8193,9910}, {8197,12456}, {8204,12457}, {8727,9654}, {9857,12496}, {10431,11015}, {10791,12196}, {10902,11111}, {10914,12676}, {10915,12686}, {10916,12687}, {11900,12668}
X(12667) = reflection of X(i) in X(j) for these (i,j): (1,6260), (4,6256), (20,11500), (84,10), (149,12761), (944,6261), (3189,5534), (6851,10526), (10864,6245), (12246,1158), (12650,946), (12680,9942)
X(12667) = anticomplement of X(12114)
X(12667) = X(84)-of-outer-Garcia-triangle
X(12667) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,944,497), (4,1056,946), (4,7967,10531), (4,10805,5603), (4,12115,388), (4,12116,5225), (20,153,3436), (20,7080,10310), (104,6834,7288), (355,6850,2550), (944,5658,6261), (1478,5691,4), (1478,10572,10629), (1837,12680,5768), (5587,10864,6245), (5657,12246,1158), (6906,10786,5218), (6941,10785,10589), (10572,10629,497)
The reciprocal orthologic center of these triangles is X(40).
X(12668) lies on these lines: {30,1490}, {84,402}, {515,12626}, {971,11251}, {1650,6260}, {1709,11912}, {2829,12729}, {6001,12438}, {6245,11897}, {6257,11902}, {6258,11901}, {7971,11910}, {7992,11852}, {9910,11853}, {10085,11913}, {11831,12114}, {11832,12136}, {11839,12196}, {11845,12246}, {11848,12330}, {11885,12496}, {11900,12667}, {11903,12676}, {11904,12677}, {11905,12678}, {11906,12679}, {11909,12680}, {11911,12684}, {11914,12686}, {11915,12687}
X(12668) = reflection of X(i) in X(j) for these (i,j): (84,402), (1650,6260)
X(12668) = X(84)-of-Gossard-triangle
The reciprocal orthologic center of these triangles is X(72).
X(12669) lies on these lines: {4,7}, {9,6986}, {20,518}, {21,10085}, {63,100}, {84,1803}, {142,6991}, {390,6001}, {515,7672}, {516,3868}, {517,12630}, {912,5759}, {946,11025}, {1158,7676}, {1445,1490}, {2800,7673}, {2829,12755}, {3059,9943}, {3475,8581}, {3873,10431}, {4197,7705}, {4326,7992}, {5273,10167}, {5542,11020}, {5572,11036}, {5779,6883}, {5817,6887}, {5851,9964}, {6261,7677}, {6839,12678}, {7671,11372}, {7678,12608}, {7679,12616}, {8095,8387}, {8096,8388}, {8232,12664}, {8236,12672}, {8237,12681}, {8238,12683}, {8389,12685}, {8732,9942}, {9948,10865}, {10429,11037}, {10889,12547}, {11038,12675}, {11526,12650}
X(12669) = reflection of X(i) in X(j) for these (i,j): (3059,9943), (12528,9), (12688,5572)
X(12669) = X(68)-of-Honsberger-triangle
X(12669) = excentral-to-Honsberger similarity image of X(1490)
X(12669) = Honsberger-isotomic conjugate of X(12718)
he reciprocal orthologic center of these triangles is X(12671).
X(12670) lies on these lines: {8,6835}, {9,3295}, {40,12671}, {1482,12654}, {3057,5920}, {3870,12260}, {8000,9623}
X(12670) = midpoint of X(i) and X(j) for these {i,j}: {9874,12533}, {12756,12777}
The reciprocal orthologic center of these triangles is X(12670).
X(12671) lies on these lines: {1,10045}, {3,9}, {4,9942}, {7,12675}, {20,3869}, {40,12670}, {63,11500}, {65,515}, {210,6796}, {377,9799}, {442,6245}, {1012,2646}, {1158,5918}, {1864,3149}, {2096,6934}, {4304,12672}, {5658,6833}, {5715,11018}, {5787,6917}, {5794,6916}, {5882,9850}, {5927,7483}, {6260,6831}, {7675,11496}, {7682,9844}, {10884,12114}
X(12671) = midpoint of X(20) and X(9960)
X(12671) = reflection of X(i) in X(j) for these (i,j): (4,9942), (12664,3), (12688,6261)
The reciprocal orthologic center of these triangles is X(72).
X(12672) lies on these lines: {1,84}, {3,392}, {4,8}, {5,1519}, {10,1532}, {11,65}, {12,12608}, {20,3877}, {40,936}, {55,6261}, {56,1158}, {78,10306}, {104,1476}, {145,12528}, {210,11362}, {354,5884}, {388,12676}, {390,944}, {474,3359}, {515,3057}, {516,3878}, {518,5693}, {758,4301}, {912,1482}, {942,5603}, {950,12664}, {956,7330}, {997,10310}, {1058,5768}, {1064,3931}, {1108,1765}, {1156,1389}, {1319,5450}, {1385,1621}, {1478,10043}, {1479,10051}, {1490,1697}, {1512,3697}, {1538,4002}, {1737,7681}, {1766,5782}, {1768,5563}, {1858,2099}, {1898,10950}, {2057,5687}, {2096,3600}, {2771,7984}, {2778,12371}, {2801,3244}, {2829,12758}, {2943,5293}, {3337,12767}, {3428,12514}, {3556,10829}, {3576,9943}, {3579,6905}, {3585,10057}, {3601,9942}, {3616,6935}, {3656,11240}, {3698,10175}, {3742,9624}, {3754,3817}, {3812,8227}, {3827,12586}, {3873,5734}, {3880,5881}, {3884,4297}, {3890,5731}, {3899,9589}, {3913,12703}, {3916,11249}, {3927,8158}, {3987,5400}, {4004,6830}, {4018,8727}, {4304,12671}, {4313,9960}, {4342,9949}, {4640,11012}, {4848,7682}, {5044,5657}, {5045,10595}, {5119,11500}, {5252,6256}, {5439,5886}, {5440,11248}, {5554,6957}, {5587,5836}, {5691,5697}, {5692,7991}, {5722,10531}, {5780,12702}, {5787,10936}, {5806,6844}, {5818,10157}, {5854,12665}, {5882,5919}, {5901,10202}, {5902,11522}, {5904,11531}, {6245,12053}, {6259,10935}, {6265,12775}, {6949,11231}, {6952,11230}, {6956,10584}, {6969,9780}, {7373,10569}, {7680,10523}, {7701,11260}, {7962,12650}, {8095,8241}, {8096,8242}, {8236,12669}, {8239,12681}, {8240,12683}, {9785,9799}, {9948,10866}, {10366,11254}, {10947,12701}, {11924,12685}
X(12672) = midpoint of X(i) and X(j) for these {i,j}: {145,12528}, {962,3869}, {3057,12688}, {5691,5697}, {5693,7982}, {5904,11531}
X(12672) = reflection of X(i) in X(j) for these (i,j): (4,9856), (8,5777), (40,960), (65,946), (72,5887), (944,9957), (3555,1482), (4297,3884), (10914,355), (12680,5882), (12711,11496)
X(12672) = anticomplement of X(31788)
X(12672) = X(68)-of-Hutson-intouch-triangle
X(12672) = X(12118)-of-intouch-triangle
X(12672) = excentral-to-Hutson-intouch similarity image of X(1490)
X(12672) = Hutson-intouch-isotomic conjugate of X(12721)
X(12672) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,1709,12114), (1,1777,1455), (1,12705,1012), (355,12699,10525), (355,12700,3434), (946,12616,11), (962,3434,12700), (1538,9956,6941), (3890,9961,5731), (5603,10785,11373), (5919,12680,5882), (5927,10914,355)
The reciprocal orthologic center of these triangles is X(72).
X(12673) lies on these lines: {84,266}, {363,1490}, {515,9805}, {946,11026}, {971,12488}, {1071,8113}, {1158,8107}, {6001,9836}, {6261,8109}, {6732,8096}, {7992,8140}, {8377,12608}, {8380,12616}, {9783,9799}, {9942,11854}, {9948,11856}, {9960,11886}, {11685,12528}, {11892,12547}
X(12673) = reflection of X(12674) in X(7992)
X(12673) = X(68)-of-inner-Hutson-triangle
X(12673) = excentral-to-inner-Hutson similarity image of X(1490)
X(12673) = inner-Hutson-isotomic conjugate of X(12719)
The reciprocal orthologic center of these triangles is X(72).
X(12674) lies on these lines: {4,8372}, {84,7590}, {168,1490}, {515,9806}, {946,11027}, {971,12489}, {1071,8114}, {1158,8108}, {6001,9837}, {6261,8110}, {7992,8140}, {8378,12608}, {8381,12616}, {9787,9799}, {9942,11855}, {9948,11857}, {9960,11887}, {11686,12528}, {11893,12547}
X(12674) = reflection of X(12673) in X(7992)
X(12674) = X(68)-of-outer-Hutson-triangle
X(12674) = excentral-to-outer-Hutson similarity image of X(1490)
X(12674) = outer-Hutson-isotomic conjugate of X(12720)
The reciprocal orthologic center of these triangles is X(72).
X(12675) lies on these lines: {1,84}, {3,518}, {4,354}, {5,3742}, {7,12671}, {10,9940}, {20,3873}, {40,3555}, {48,9119}, {52,9037}, {57,11500}, {65,944}, {72,3576}, {104,943}, {140,3740}, {210,631}, {355,3812}, {375,11695}, {376,7957}, {388,5768}, {389,8679}, {392,5693}, {442,12757}, {495,12616}, {496,12608}, {515,942}, {516,3881}, {517,550}, {601,3744}, {602,4641}, {774,4322}, {912,960}, {938,12667}, {946,971}, {950,2829}, {952,5836}, {962,3889}, {999,6261}, {1001,7330}, {1056,9850}, {1125,2801}, {1155,11491}, {1158,3295}, {1279,3073}, {1319,1858}, {1376,5534}, {1458,7138}, {1478,11045}, {1479,11046}, {1490,3333}, {1656,3848}, {1768,3746}, {1836,11048}, {1837,11047}, {1864,3086}, {1898,11376}, {2096,4294}, {2771,5609}, {2800,9957}, {2810,9729}, {3057,4305}, {3149,3338}, {3158,10270}, {3243,6769}, {3359,3913}, {3428,10884}, {3475,6847}, {3487,8581}, {3522,4430}, {3523,3681}, {3579,10178}, {3616,12528}, {3753,5881}, {3868,5731}, {3870,10310}, {3892,4301}, {3916,10902}, {3928,10268}, {4292,5173}, {4640,10267}, {4719,5396}, {5044,10165}, {5049,9856}, {5123,10942}, {5252,10805}, {5290,10894}, {5302,6883}, {5439,5587}, {5570,10572}, {5603,12688}, {5691,11034}, {5722,6256}, {5887,10246}, {5904,7987}, {5918,6361}, {5927,8227}, {6245,7680}, {6260,7681}, {6684,11227}, {6907,10916}, {7580,12704}, {7966,7991}, {8550,9004}, {9047,10625}, {9799,11020}, {9844,10893}, {9845,11529}, {9947,10175}, {9948,11035}, {9956,10265}, {9960,11036}, {10531,12679}, {10569,10864}, {10785,11375}, {10806,12701}, {11038,12669}, {11042,12681}, {11043,12683}, {12564,12577}
X(12675) = midpoint of X(i) and X(j) for these {i,j}: {4,12680}, {40,3555}, {65,944}, {3874,4297}, {5882,5884}
X(12675) = reflection of X(i) in X(j) for these (i,j): (10,9940), (355,3812), (942,12005), (946,5045), (960,1385), (5777,1125), (7680,11018), (7686,942)
X(12675) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,84,11496), (1,10085,1012), (1,10391,12710), (354,12680,4), (355,10202,3812), (3243,9841,6769), (3555,10167,40), (3889,11220,962), (6260,11019,7681), (9845,11529,12650)
X(12675) = X(68)-of-incircle-circles-triangle
X(12675) = excentral-to-incircle-circles similarity image of X(1490)
X(12675) = incircle-circles-isotomic conjugate of X(12722)
The reciprocal orthologic center of these triangles is X(40).
X(12676) lies on these lines: {4,10309}, {11,84}, {12,12686}, {355,5836}, {388,12672}, {515,10912}, {946,999}, {971,10525}, {1158,1329}, {1376,6260}, {1490,11826}, {1709,9612}, {2829,12699}, {3419,12666}, {5880,12616}, {6245,10893}, {6257,10920}, {6258,10919}, {7704,10785}, {7971,10944}, {7992,10826}, {9910,10829}, {10085,10948}, {10794,12196}, {10871,12496}, {10914,12667}, {10947,12680}, {10949,12687}, {11390,12136}, {11865,12456}, {11866,12457}, {11903,12668}, {11928,12684}
X(12676) = midpoint of X(4) and X(10309)
X(12676) = X(84)-of-inner-Johnson-triangle
X(12676) = reflection of X(i) in X(j) for these (i,j): (12330,6260), (12677,6259)
The reciprocal orthologic center of these triangles is X(40).
X(12677) lies on these lines: {4,5173}, {11,12687}, {12,84}, {72,12667}, {355,5836}, {515,5812}, {958,6260}, {971,10526}, {1478,12664}, {1490,11827}, {1709,10954}, {2829,12738}, {5080,9960}, {6244,11500}, {6245,10894}, {6257,10922}, {6258,10921}, {7971,10950}, {7992,10827}, {9910,10830}, {10085,10523}, {10786,12246}, {10795,12196}, {10872,12496}, {10953,12680}, {10955,12686}, {11374,12114}, {11391,12136}, {11867,12456}, {11868,12457}, {11904,12668}, {11929,12684}
X(12677) = reflection of X(12676) in X(6259)
X(12677) = X(84)-of-outer-Johnson-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12678) lies on these lines: {1,6259}, {4,354}, {5,10085}, {12,84}, {56,6260}, {65,12667}, {210,6916}, {495,1709}, {515,1836}, {518,6925}, {944,5048}, {971,1478}, {1155,2096}, {1483,12699}, {1490,7354}, {1538,10072}, {1768,11698}, {2801,3419}, {2829,12739}, {3085,12246}, {3436,9943}, {3576,4679}, {3585,5787}, {3742,6957}, {3877,9809}, {4293,5658}, {4860,7682}, {5080,11220}, {5229,9799}, {5252,6001}, {5534,11826}, {5584,12527}, {5691,11529}, {5794,12528}, {6245,10895}, {6253,9579}, {6257,10924}, {6258,10923}, {6839,12669}, {7971,10944}, {7992,9578}, {8273,12572}, {9612,10864}, {9614,9845}, {9654,12684}, {9910,10831}, {10797,12196}, {10873,12496}, {10956,12686}, {10957,12687}, {11375,12114}, {11376,12608}, {11392,12136}, {11501,12330}, {11869,12456}, {11870,12457}, {11905,12668}
X(12678) = reflection of X(i) in X(j) for these (i,j): (1709,495), (5252,12115)
X(12678) = {X(1), X(6259)}-harmonic conjugate of X(12679)
X(12678) = X(84)-of-1st-Johnson-Yff-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12679) lies on these lines: {1,6259}, {3,4679}, {4,65}, {5,1709}, {11,84}, {12,12705}, {55,6260}, {64,1842}, {79,3062}, {210,5811}, {329,7957}, {480,516}, {496,1699}, {499,1538}, {515,2098}, {946,3304}, {952,3627}, {960,6925}, {962,3880}, {971,1479}, {1012,11375}, {1155,6848}, {1158,1532}, {1456,7952}, {1478,9856}, {1490,6284}, {1519,11376}, {1547,1892}, {1750,5812}, {1854,1877}, {2478,9943}, {2829,12740}, {3057,12667}, {3086,12246}, {3091,5880}, {3146,5057}, {3338,7956}, {3583,5787}, {3683,6908}, {3812,6957}, {3838,6837}, {3868,9809}, {4294,5658}, {4640,6838}, {5046,9961}, {5087,6890}, {5221,7682}, {5225,9799}, {5252,6256}, {5556,10429}, {5584,12572}, {5715,7965}, {5720,11826}, {5881,12700}, {5918,6865}, {6245,7702}, {6257,10926}, {6258,10925}, {7971,10950}, {7992,9581}, {9612,11372}, {9614,10864}, {9669,12684}, {9797,9812}, {9910,10832}, {10531,12675}, {10798,12196}, {10863,12436}, {10874,12496}, {10958,12686}, {10959,12687}, {11113,12520}, {11393,12136}, {11502,12330}, {11871,12456}, {11872,12457}, {11906,12668}
X(12679) = reflection of X(i) in X(j) for these (i,j): (1837,4), (10085,496)
X(12679) = X(84)-of-2nd-Johnson-Yff-triangle
X(12679) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,6259,12678), (1699,10085,496)
The reciprocal orthologic center of these triangles is X(40).
X(12680) lies on these lines: {1,971}, {3,210}, {4,354}, {8,9859}, {9,8273}, {10,10167}, {11,6260}, {12,6245}, {20,518}, {33,12136}, {40,5918}, {48,1903}, {55,84}, {56,1490}, {65,515}, {72,2801}, {145,9961}, {185,8679}, {198,963}, {200,9841}, {227,7004}, {355,3698}, {388,9799}, {516,3555}, {517,1657}, {912,3962}, {942,4355}, {944,3057}, {952,3893}, {956,12520}, {958,5784}, {960,5731}, {1040,9370}, {1056,12710}, {1125,5927}, {1155,11500}, {1208,2183}, {1319,1898}, {1385,5259}, {1478,5787}, {1479,6259}, {1697,7992}, {1698,5789}, {1699,5045}, {1709,3295}, {1750,3333}, {1768,3579}, {1837,5768}, {2098,7971}, {2099,12650}, {2310,4322}, {2646,12114}, {2829,12743}, {2951,8001}, {3059,5584}, {3086,5658}, {3091,3742}, {3146,3873}, {3243,12651}, {3303,12705}, {3486,9960}, {3522,3681}, {3523,3740}, {3576,5777}, {3600,10394}, {3624,10157}, {3683,7330}, {3689,5534}, {3697,10164}, {3748,11496}, {3848,5056}, {3889,9812}, {3983,6684}, {4298,5728}, {4430,5059}, {4662,10178}, {4679,5811}, {5044,7987}, {5049,11522}, {5173,9579}, {5290,11018}, {5302,6986}, {5432,6705}, {5572,11037}, {5587,9940}, {5882,5919}, {5889,9037}, {6257,10928}, {6258,10927}, {6744,10569}, {6762,12565}, {6765,10860}, {8580,9858}, {9844,11019}, {9910,10833}, {10106,12711}, {10443,10823}, {10480,12547}, {10544,12721}, {10799,12196}, {10877,12496}, {10947,12676}, {10953,12677}, {10965,12686}, {10966,12687}, {11873,12456}, {11874,12457}, {11909,12668}
X(12680) = midpoint of X(145) and X(9961)
X(12680) = reflection of X(i) in X(j) for these (i,j): (4,12675), (8,9943), (72,4297), (3057,944), (3059,5732), (5691,942), (6253,4292), (7957,20), (9848,9845), (12528,960), (12664,12114), (12667,9942), (12672,5882), (12688,1)
X(12680) = X(84)-of-Mandart-incircle-triangle
X(12680) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,12675,354), (8,11220,9943), (944,12246,4294), (3295,12684,1709), (5534,7171,10310), (5534,10310,3689), (5731,12528,960), (5882,12672,5919), (9947,11227,1698)
The reciprocal orthologic center of these triangles is X(72).
X(12681) lies on these lines: {4,7595}, {84,2067}, {515,9808}, {517,12638}, {946,11030}, {971,12490}, {1158,8224}, {1490,8231}, {2800,12744}, {2829,12768}, {6001,7596}, {6245,7683}, {6261,8225}, {7992,8244}, {8095,8247}, {8096,8248}, {8228,12608}, {8230,12616}, {8233,12664}, {8237,12669}, {8239,12672}, {8246,12683}, {9789,9799}, {9942,10858}, {9948,10867}, {9960,10885}, {10891,12547}, {11042,12675}, {11532,12650}, {11687,12528}, {11996,12685}
X(12681) = X(68)-of-2nd-Pamfilos-Zhou-triangle
X(12681) = excentral-to-2nd-Pamfilos-Zhou similarity image of X(1490)
X(12681) = 2nd-Pamfilos-Zhou-isotomic conjugate of X(12724)
The reciprocal orthologic center of these triangles is X(10308).
X(12682) lies on these lines: {8,12535}, {9,10266}, {72,3648}, {1145,11684}, {3337,11263}
X(12682) = midpoint of X(12769) and X(12786)
The reciprocal orthologic center of these triangles is X(72).
X(12683) lies on these lines: {4,240}, {21,84}, {40,12530}, {515,2292}, {517,12642}, {846,1490}, {946,11031}, {971,9959}, {1158,4220}, {2800,12746}, {2829,12770}, {4199,12664}, {4425,6245}, {5051,12616}, {6001,9840}, {7992,8245}, {8095,8249}, {8096,8250}, {8229,12608}, {8238,12669}, {8240,12672}, {8246,12681}, {8425,12685}, {8731,9942}, {9791,9799}, {9948,10868}, {10892,12547}, {11043,12675}, {11533,12650},
X(12683) = X(68)-of-1st-Sharygin-triangle
X(12683) = excentral-to-1st-Sharygin similarity image of X(1490)
X(12683) = 2nd-Sharygin-to-1st-Sharygin similarity image of X(13256)
X(12683) = 1st-Sharygin-isotomic conjugate of X(12725)
{11688,12528}
The reciprocal orthologic center of these triangles is X(40).
X(12684) lies on these lines: {3,9}, {4,5708}, {20,3927}, {30,9799}, {140,5658}, {355,9948}, {381,6245}, {382,2095}, {405,11220}, {515,1657}, {517,7992}, {944,10386}, {952,12632}, {956,9961}, {999,10085}, {1156,5265}, {1482,6001}, {1598,12136}, {1656,6260}, {1709,3295}, {2829,12747}, {3062,3333}, {3146,12690}, {3526,6705}, {3560,9960}, {3940,12528}, {5045,11372}, {5220,12512}, {5558,5603}, {5758,5843}, {5789,6907}, {5790,12667}, {6257,11917}, {6258,11916}, {6767,12705}, {7373,9856}, {7517,9910}, {7971,10247}, {8148,12650}, {9301,12496}, {9654,12678}, {9669,12679}, {9708,9943}, {10167,11108}, {10246,12114}, {10679,12631}, {11842,12196}, {11849,12330}, {11875,12456}, {11876,12457}, {11911,12668}, {11928,12676}, {11929,12677}, {12000,12686}, {12001,12687}
X(12684) = midpoint of X(i) and X(j) for these {i,j}: {7992,10864}, {9799,12246}
X(12684) = reflection of X(i) in X(j) for these (i,j): (3,84), (355,9948), (382,5787), (6259,6245), (8148,12650)
X(12684) = X(84)-of-X3-ABC-reflections-triangle
X(12684) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1709,12680,3295), (5044,9841,3), (5777,7171,3), (6245,6259,381), (10085,12688,999)
The reciprocal orthologic center of these triangles is X(72).
X(12685) lies on these lines: {515,12445}, {517,12646}, {912,8130}, {946,8083}, {971,12491}, {2800,12748}, {2829,12774}, {6001,8351}, {6261,7587}, {7992,8423}, {8126,12528}, {8382,12616}, {8389,12669}, {8425,12683}, {8729,9942}, {9799,11891}, {9948,11860}, {9960,11890}, {10502,12688}, {11033,12005}, {11535,12650}, {11896,12547}, {11924,12672}, {11996,12681}
X(12685) = X(68)-of-Yff-central-triangle
X(12685) = excentral-to-Yff-central similarity image of X(1490)
X(12685) = Yff-central-isotomic conjugate of X(12728)
The reciprocal orthologic center of these triangles is X(40).
X(12686) lies on these lines: {1,84}, {2,1158}, {9,119}, {12,12676}, {40,3436}, {46,1532}, {57,1519}, {515,3895}, {971,10679}, {1490,11248}, {1697,6938}, {1706,6923}, {2077,10860}, {2829,5119}, {3085,10309}, {3358,10202}, {3811,12666}, {4640,10270}, {5552,6260}, {6245,10531}, {6257,10930}, {6258,10929}, {6259,10942}, {6261,6909}, {6916,12514}, {6957,12616}, {7330,9623}, {9910,10834}, {10803,12196}, {10805,12246}, {10878,12496}, {10915,12667}, {10955,12677}, {10956,12678}, {10958,12679}, {10965,12680}, {11400,12136}, {11509,12330}, {11881,12456}, {11882,12457}, {11914,12668}, {12000,12684}
X(12686) = reflection of X(84) in X(1709)
X(12686) = X(84)-of-inner-Yff-tangents-triangle
X(12686) = {X(84),X(7971)}-harmonic conjugate of X(12687)
The reciprocal orthologic center of these triangles is X(40).
X(12687) lies on these lines: {1,84}, {11,12677}, {496,5715}, {515,12649}, {952,5709}, {956,9942}, {971,10680}, {999,12664}, {1158,5731}, {1490,11249}, {2829,12750}, {2975,6261}, {6245,10532}, {6257,10932}, {6258,10931}, {6259,10943}, {6260,10527}, {9910,10835}, {10804,12196}, {10806,12246}, {10879,12496}, {10916,12667}, {10949,12676}, {10957,12678}, {10959,12679}, {10966,12680}, {11401,12136}, {11510,12330}, {11883,12456}, {11884,12457}, {11915,12668}, {12001,12684}
X(12687) = reflection of X(84) in X(10085)
X(12687) = X(84)-of-outer-Yff-tangents-triangle
X(12687) = {X(84),X(7971)}-harmonic conjugate of X(12686)
The reciprocal orthologic center of these triangles is X(65).
X(12688) lies on these lines: {1,971}, {2,9943}, {3,1709}, {4,65}, {7,10429}, {9,5584}, {10,5927}, {11,6245}, {12,6260}, {19,64}, {20,960}, {28,12262}, {30,5887}, {33,221}, {34,1854}, {37,4300}, {40,210}, {55,1490}, {56,84}, {57,7992}, {72,516}, {104,10308}, {142,7958}, {165,5044}, {185,1839}, {207,7008}, {226,12711}, {227,2635}, {241,1044}, {329,9800}, {354,946}, {382,517}, {392,4297}, {405,12520}, {411,4640}, {442,12617}, {497,9799}, {515,3057}, {518,962}, {774,1427}, {912,12699}, {936,10860}, {942,1699}, {944,5919}, {950,12709}, {991,6051}, {999,10085}, {1001,10884}, {1012,2646}, {1042,2310}, {1125,10167}, {1155,1158}, {1192,5338}, {1204,2355}, {1210,9948}, {1319,12114}, {1385,5426}, {1425,1547}, {1478,6259}, {1479,5787}, {1532,12616}, {1538,7741}, {1593,2182}, {1698,10157}, {1824,11381}, {1829,5895}, {1848,2883}, {1871,6000}, {1872,2818}, {1902,3827}, {2098,12650}, {2099,7971}, {2264,5776}, {2771,7728}, {2777,10693}, {2778,10721}, {2801,3555}, {3085,5658}, {3091,3812}, {3146,3869}, {3427,10309}, {3428,7330}, {3485,9960}, {3487,12710}, {3523,10178}, {3616,11220}, {3624,11227}, {3646,10857}, {3671,5728}, {3678,5493}, {3679,9947}, {3689,10306}, {3698,5587}, {3817,5439}, {3838,6828}, {3868,9812}, {3876,9778}, {3983,5657}, {4005,6361}, {4199,12713}, {4293,12246}, {4423,8726}, {4679,6865}, {4731,5818}, {4882,9954}, {5045,11522}, {5057,6895}, {5087,6943}, {5247,9355}, {5252,12667}, {5433,6705}, {5572,11036}, {5603,12675}, {5720,10310}, {5732,8273}, {5794,6925}, {5806,5902}, {5880,6835}, {5883,12571}, {5934,12707}, {5935,12708}, {6738,9844}, {6831,12608}, {6847,9942}, {7580,12514}, {7701,11012}, {8079,12714}, {8226,12609}, {8227,9940}, {8232,12706}, {8233,12712}, {8582,9842}, {8583,9841}, {8727,12047}, {9843,10863}, {9955,10202}, {10176,12512}, {10431,11415}, {10445,10822}, {10473,12547}, {10477,12544}, {10502,12685}, {10888,12548}, {11263,12558}, {11406,12335}, {11509,12330}, {11523,12651}, {12666,12701}
X(12688) = midpoint of X(i) and X(j) for these {i,j}: {962,12528}, {3146,3869}, {5904,9589}, {9800,12529}
X(12688) = reflection of X(i) in X(j) for these (i,j): (1,9856), (20,960), (40,5777), (65,4), (3057,12672), (3555,4301), (3893,5881), (3962,5693), (5493,3678), (7957,72), (9961,9943), (12669,5572), (12671,6261), (12680,1)
X(12688) = anticomplement of X(9943)
X(12688) = complement of X(9961)
X(12688) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,9961,9943), (9,12565,5584), (40,5777,210), (65,1898,1864), (999,12684,10085), (1012,6261,2646), (1158,3149,1155), (1490,12705,55), (1836,1858,65), (3649,7965,946), (8581,9848,1), (9850,10866,1)
X(12688) = excentral-to-2nd-extouch similarity image of X(12565)
The reciprocal orthologic center of these triangles is X(65).
X(12689) lies on these lines: {2,9944}, {4,75}, {9,1721}, {72,516}, {226,12723}, {307,1827}, {329,9801}, {405,990}, {442,12618}, {950,12721}, {971,10444}, {1490,12717}, {1750,7996}, {1766,3693}, {3487,12722}, {3663,5728}, {4199,12725}, {5927,9950}, {5934,12719}, {5935,12720}, {8079,12726}, {8226,12610}, {8232,12718}, {8233,12724}, {10888,12549}, {11523,12652}
X(12689) = midpoint of X(9801) and X(12530)
X(12689) = reflection of X(9962) in X(9944)
X(12689) = anticomplement of X(9944)
X(12689) = complement of X(9962)
X(12689) = X(317)-of-2nd-extouch-triangle
X(12689) = excentral-to-2nd-extouch similarity image of X(1721)
X(12689) = 2nd-extouch-isogonal conjugate of X(5928)
X(12689) = 2nd-extouch-isotomic conjugate of X(12664)
X(12689) = anticomplement, wrt 2nd extouch triangle, of X(10445)
X(12689) = {X(2), X(9962)}-harmonic conjugate of X(9944)
The reciprocal orthologic center of these triangles is X(8).
X(12690) lies on these lines: {2,9945}, {4,145}, {8,4756}, {9,80}, {10,6154}, {11,214}, {30,3218}, {72,2802}, {100,405}, {104,7580}, {119,8226}, {140,11015}, {226,1317}, {329,9802}, {355,3895}, {382,12649}, {517,12691}, {900,4707}, {1387,3488}, {1479,5289}, {1484,6907}, {1490,6264}, {1750,7993}, {2320,11680}, {2475,12433}, {2800,12664}, {2829,10864}, {3065,6598}, {3146,12684}, {3306,5722}, {3487,12735}, {3583,4867}, {3627,3868}, {3830,5905}, {4199,12746}, {4746,12572}, {4999,5441}, {5225,5730}, {5436,6667}, {5728,12736}, {5790,6976}, {5840,12515}, {5854,9897}, {5927,9951}, {5934,12733}, {5935,12734}, {6174,6702}, {6913,12331}, {7972,9612}, {8079,8097}, {8080,8098}, {8232,12730}, {8233,12744}, {9024,10477}, {9803,10724}, {10888,12550}, {10993,12619}, {11523,12653}
X(12690) = midpoint of X(i) and X(j) for these {i,j}: {9802,12531}, {9803,10724}
X(12690) = reflection of X(i) in X(j) for these (i,j): (100,12019), (1145,80), (1537,10738), (5541,3036), (6154,10), (6224,1387), (9963,9945), (10609,11), (10993,12619), (12732,1145)
X(12690) = anticomplement of X(9945)
X(12690) = complement of X(9963)
X(12690) = X(74)-of-2nd-extouch-triangle
X(12690) = excentral-to-2nd-extouch similarity image of X(5541)
X(12690) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,9963,9945), (80,5541,3036), (3036,5541,1145), (3419,3586,11113), (6224,10707,1387)
The reciprocal orthologic center of these triangles is X(3869).
X(12691) lies on these lines: {2,9946}, {4,80}, {9,48}, {72,952}, {119,125}, {149,5758}, {226,8068}, {329,9803}, {404,5720}, {405,6265}, {517,12690}, {908,912}, {944,5692}, {950,12758}, {1387,5728}, {1490,1768}, {1512,6001}, {1708,10090}, {1750,12767}, {2802,12625}, {2829,12664}, {3487,5083}, {3651,12695}, {3678,11491}, {3754,5587}, {4199,12770}, {5884,7951}, {5904,12116}, {5927,9952}, {5934,12759}, {5935,12760}, {6224,6987}, {6264,11523}, {6702,6829}, {7580,12515}, {8000,10698}, {8079,12771}, {8226,12611}, {8232,12755}, {8233,12768}, {9612,11571}, {10058,10393}, {10888,12551}
X(12691) = midpoint of X(9803) and X(12532)
X(12691) = reflection of X(i) in X(j) for these (i,j): (9964,9946), (11570,10265), (12757,214)
X(12691) = anticomplement of X(9946)
X(12691) = complement of X(9964)
The reciprocal orthologic center of these triangles is X(3555).
X(12692) lies on these lines: {2,12439}, {4,4863}, {9,3295}, {210,12260}, {329,9804}, {405,12521}, {442,3555}, {518,12777}, {950,5920}, {1750,8001}, {3085,3983}, {5927,9953}, {7580,12516}, {8226,12612}, {10888,12552}, {11523,12654}
X(12692) = midpoint of X(9804) and X(12533)
X(12692) = reflection of X(12537) in X(12439)
X(12692) = anticomplement of X(12439)
X(12692) = complement of X(12537)
The reciprocal orthologic center of these triangles is X(3555).
X(12693) lies on these lines: {2,12442}, {4,4723}, {9,12659}, {329,12534}, {405,12522}, {442,12621}, {2325,10445}, {5927,12449}, {7580,12517}, {8226,12613}, {10888,12553}, {11523,12655}
X(12693) = midpoint of X(12534) and X(12542)
X(12693) = reflection of X(12538) in X(12442)
X(12693) = anticomplement of X(12442)
X(12693) = complement of X(12538)
The reciprocal orthologic center of these triangles is X(1).
X(12694) lies on these lines: {1,8079}, {2,12443}, {9,164}, {167,1750}, {177,226}, {329,9807}, {405,12523}, {442,12622}, {950,8422}, {5571,5728}, {5927,12450}, {7670,8232}, {10888,12554}
X(12694) = midpoint of X(9807) and X(11691)
X(12694) = orthologic center of these triangles: 2nd extouch to 2nd midarc
X(12694) = X(1)-of-2nd-extouch-triangle
X(12694) = excentral-to-2nd-extouch similarity image of X(164)
X(12694) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,12539,12443), (8079,8080,1)
The reciprocal orthologic center of these triangles is X(21).
X(12695) lies on these lines: {2,12444}, {4,5535}, {9,10266}, {35,72}, {329,12535}, {405,12524}, {442,1749}, {3065,6598}, {3651,12691}, {3652,12600}, {5927,12451}, {7580,12519}, {8226,12615}, {10888,12557}, {11523,12657}
X(12695) = midpoint of X(12535) and X(12543)
X(12695) = reflection of X(12540) in X(12444)
X(12695) = anticomplement of X(12444)
X(12695) = complement of X(12540)
The reciprocal orthologic center of these triangles is X(4).
X(12696) lies on these lines: {1,30}, {3,11831}, {4,11900}, {10,11897}, {40,402}, {46,11913}, {65,11909}, {515,12626}, {516,12113}, {517,11251}, {946,1650}, {962,4240}, {1902,11832}, {2802,12752}, {5119,11912}, {5812,11904}, {5840,12729}, {6001,12791}, {6361,11845}, {7982,11910}, {7991,11852}, {9911,11853}, {10306,11848}, {11839,12197}, {11863,12458}, {11864,12459}, {11885,12497}, {11901,12697}, {11902,12698}, {11903,12700}, {11911,12702}, {11914,12703}, {11915,12704}
X(12696) = midpoint of X(962) and X(4240)
X(12696) = X(40)-of-Gossard-triangle
X(12696) = reflection of X(i) in X(j) for these (i,j): (40,402), (1650,946), (12438,11251)
The reciprocal orthologic center of these triangles is X(4).
X(12697) lies on these lines: {1,11824}, {3,11370}, {4,5689}, {6,40}, {10,6202}, {46,10048}, {65,10927}, {515,6258}, {516,5871}, {517,1161}, {946,5591}, {962,1271}, {1699,10514}, {1836,10923}, {1902,11388}, {2802,12753}, {5119,10040}, {5589,7991}, {5595,9911}, {5603,10517}, {5605,7982}, {5812,10921}, {5840,6263}, {6001,6267}, {6215,12699}, {6281,9589}, {6361,10783}, {8198,12458}, {8205,12459}, {9994,12497}, {10306,11497}, {10792,12197}, {10919,12700}, {10925,12701}, {10929,12703}, {10931,12704}, {11901,12696}, {11916,12702}
X(12697) = reflection of X(i) in X(j) for these (i,j): (3641,1161), (12698,40)
X(12697) = X(40)-of-inner-Grebe-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12698) lies on these lines: {1,11825}, {3,11371}, {4,5688}, {6,40}, {10,6201}, {46,10049}, {65,10928}, {515,6257}, {516,5870}, {517,1160}, {946,5590}, {962,1270}, {1699,10515}, {1836,10924}, {1902,11389}, {2802,12754}, {5119,10041}, {5588,7991}, {5594,9911}, {5603,10518}, {5604,7982}, {5812,10922}, {5840,6262}, {6001,6266}, {6214,12699}, {6278,9589}, {6361,10784}, {8199,12458}, {8206,12459}, {9995,12497}, {10306,11498}, {10793,12197}, {10920,12700}, {10926,12701}, {10930,12703}, {10932,12704}, {11902,12696}, {11917,12702}
X(12698) = reflection of X(i) in X(j) for these (i,j): (3640,1160), (12697,40)
X(12698) = X(40)-of-outer-Grebe-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12699) lies on these lines: {1,30}, {2,3579}, {3,142}, {4,8}, {5,40}, {7,1058}, {10,381}, {11,46}, {12,5119}, {19,7359}, {20,1385}, {35,11375}, {36,11376}, {52,2807}, {55,6985}, {56,1770}, {57,496}, {63,3650}, {65,1479}, {74,12261}, {80,5560}, {84,3254}, {85,5195}, {100,12611}, {113,12778}, {140,165}, {145,3543}, {146,149}, {219,1839}, {224,1537}, {226,3295}, {238,582}, {320,10446}, {347,10400}, {376,3616}, {377,392}, {382,515}, {388,9957}, {390,3487}, {442,5250}, {484,7741}, {495,1697}, {497,942}, {499,1155}, {519,3830}, {528,3811}, {546,5587}, {548,7987}, {549,3624}, {550,3576}, {551,3534}, {595,3772}, {631,9778}, {908,5687}, {912,12688}, {943,8543}, {944,3146}, {950,9668}, {952,3627}, {999,4292}, {1012,11249}, {1056,9785}, {1159,6738}, {1210,9669}, {1319,4299}, {1320,10728}, {1330,4673}, {1387,1420}, {1478,3057}, {1480,5710}, {1483,12678}, {1484,1768}, {1519,3149}, {1538,6848}, {1539,12368}, {1571,3815}, {1572,5254}, {1596,7713}, {1597,12410}, {1621,3651}, {1656,3817}, {1657,4297}, {1658,9625}, {1702,7583}, {1703,7584}, {1706,3820}, {1709,10943}, {1737,10896}, {1745,5399}, {1750,5534}, {1788,10591}, {1837,3583}, {1892,4318}, {2077,6924}, {2093,9581}, {2095,6245}, {2099,10572}, {2102,10737}, {2103,10736}, {2325,10445}, {2475,3877}, {2478,3753}, {2550,5044}, {2646,4302}, {2775,4010}, {2800,10738}, {2802,10742}, {2809,10741}, {2817,10747}, {2829,12676}, {2886,5791}, {3062,5843}, {3073,5398}, {3086,3474}, {3090,9779}, {3091,5657}, {3120,3915}, {3333,4312}, {3338,4338}, {3340,3586}, {3359,6922}, {3416,3818}, {3428,3560}, {3452,9709}, {3485,4294}, {3524,5550}, {3526,10164}, {3529,5731}, {3545,9780}, {3555,5905}, {3585,5252}, {3587,8728}, {3617,3839}, {3628,7988}, {3634,5055}, {3679,3845}, {3702,6327}, {3832,5818}, {3838,10198}, {3843,4691}, {3847,5955}, {3850,7989}, {3851,10175}, {3853,5844}, {3878,5794}, {3897,12600}, {3916,10527}, {3927,4847}, {3944,5255}, {3966,4647}, {4018,12649}, {4298,7373}, {4512,6675}, {4677,12101}, {4857,5902}, {4863,5904}, {5010,5443}, {5046,7693}, {5070,10171}, {5073,5882}, {5076,12645}, {5079,10172}, {5122,7288}, {5128,10593}, {5221,11238}, {5231,5709}, {5259,7688}, {5271,9958}, {5303,6906}, {5439,6899}, {5530,9554}, {5541,11698}, {5584,6883}, {5708,11019}, {5715,6907}, {5719,10386}, {5720,5763}, {5734,7967}, {5759,6846}, {5762,7330}, {5768,9800}, {5787,5878}, {5806,6827}, {5842,6261}, {6214,12698}, {6215,12697}, {6221,8983}, {6244,6918}, {6260,12631}, {6560,7968}, {6561,7969}, {6583,9961}, {6745,10306}, {6763,7701}, {6767,12575}, {6796,11849}, {6836,10531}, {6842,7680}, {6845,11680}, {6882,7681}, {6911,10310}, {6914,11012}, {6925,10532}, {6928,7686}, {6972,7704}, {7502,9591}, {7530,8185}, {7580,10267}, {7745,9620}, {7951,11010}, {7962,9613}, {7970,10723}, {7978,10733}, {7983,10722}, {7984,10721}, {8193,9818}, {8200,12458}, {8207,12459}, {8725,12264}, {8981,9616}, {9655,10106}, {9708,12572}, {9821,12263}, {9904,10264}, {9943,10202}, {9996,12497}, {10039,10895}, {10167,10596}, {10679,11500}, {10680,12114}, {10695,10727}, {10696,10732}, {10697,10725}, {10698,10724}, {10703,10726}, {10796,12197}, {10915,11236}, {10916,11235}, {10942,12703}, {11529,12433}, {11599,12188}, {11699,12383}, {11720,12121}, {11928,12616}, {12163,12259}
X(12699) = midpoint of X(i) and X(j) for these {i,j}: {4,962}, {40,9589}, {382,1482}, {944,3146}, {1320,10728}, {2102,10737}, {2103,10736}, {5691,7982}, {5812,12700}, {5881,11531}, {7970,10723}, {7978,10733}, {7983,10722}, {7984,10721}, {10695,10727}, {10696,10732}, {10697,10725}, {10698,10724}, {10703,10726}
X(12699) = reflection of X(i) in X(j) for these (i,j): (3,946), (20,1385), (40,5), (74,12261), (100,12611), (145,11278), (355,4), (550,5901), (1482,4301), (1657,4297), (1768,1484), (3359,7956), (3416,3818), (3534,551), (3579,9955), (3654,381), (3655,3656), (3679,3845), (5493,6684), (5541,11698), (5690,546), (5691,3627), (5887,9856), (6265,1537), (6361,3579), (6769,5763), (7991,5690), (8725,12264), (9778,11230), (9821,12263), (9904,10264), (11500,12608), (12121,11720), (12163,12259), (12188,11599), (12368,1539), (12383,11699), (12515,11), (12702,10), (12778,113)
X(12699) = isogonal conjugate of X(10623)
X(12699) = anticomplement of X(3579)
X(12699) = complement of X(6361)
X(12699) = X(40)-of-Johnson-triangle
X(12699) = homothetic center of Ehrmann mid-triangle and outer Garcia triangle
X(12699) = X(12702)-of-Ehrmann-mid-triangle
X(12699) = X(12702)-of-outer-Garcia-triangle
X(12699) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,79,10404), (2,6361,3579), (3,946,5886), (4,5758,5777), (7,1058,5045), (10,12702,3654), (20,5603,1385), (40,1699,5), (55,12047,11374), (57,9614,496), (381,12702,10), (962,9812,4), (962,10248,12245), (1699,9589,40), (1836,10404,79), (1836,12701,1), (3058,3649,1), (3434,11415,72), (3579,9955,2), (10165,12512,3)
The reciprocal orthologic center of these triangles is X(4).
X(12700) lies on these lines: {1,11826}, {3,10624}, {4,8}, {5,1706}, {10,10893}, {11,40}, {12,12703}, {30,12650}, {46,10948}, {65,10947}, {78,1537}, {79,11224}, {390,1385}, {474,5886}, {496,3359}, {515,10912}, {516,8666}, {528,6261}, {550,3254}, {946,1376}, {952,3680}, {1058,9940}, {1158,3813}, {1482,10106}, {1519,5687}, {1621,6940}, {1697,6907}, {1709,6763}, {1836,7982}, {2077,11376}, {2802,12761}, {3579,6926}, {3656,11112}, {3753,10531}, {3880,6256}, {3913,12608}, {4002,6898}, {4187,5250}, {4863,5693}, {5048,7702}, {5119,10523}, {5439,10596}, {5603,6904}, {5657,6919}, {5709,10943}, {5840,12737}, {5881,12679}, {6361,10785}, {6850,9957}, {6891,7743}, {6916,9785}, {6964,9955}, {7991,10826}, {9911,10829}, {10167,10806}, {10679,11374}, {10794,12197}, {10871,12497}, {10919,12697}, {10920,12698}, {10949,12704}, {11235,12616}, {11865,12458}, {11866,12459}, {11903,12696}, {11928,12702}
X(12700) = reflection of X(i) in X(j) for these (i,j): (355,10525), (1158,3813), (3913,12608), (5812,12699), (10306,946)
X(12700) = X(40)-of-inner-Johnson-triangle
X(12700) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,10914,355), (40,9614,6922), (962,3434,12672), (3434,12672,355)
The reciprocal orthologic center of these triangles is X(4).
X(12701) lies on these lines: {1,30}, {3,11376}, {4,1000}, {5,5119}, {7,5558}, {8,3967}, {10,4679}, {11,40}, {12,1697}, {20,1319}, {21,5832}, {35,5886}, {36,11373}, {46,496}, {55,946}, {56,516}, {57,9589}, {63,3813}, {65,497}, {72,4863}, {78,528}, {145,5057}, {149,3869}, {165,5433}, {210,5082}, {226,3303}, {354,1058}, {355,3583}, {381,10039}, {388,5919}, {390,3485}, {498,9955}, {499,3579}, {515,2098}, {517,1479}, {518,1898}, {546,10827}, {550,1387}, {908,3913}, {944,5048}, {950,2099}, {960,3434}, {999,1770}, {1012,10966}, {1038,12652}, {1125,5217}, {1155,3086}, {1191,3914}, {1210,11238}, {1317,6259}, {1385,4302}, {1388,4297}, {1478,9957}, {1482,9668}, {1512,10893}, {1519,11500}, {1537,6261}, {1698,7173}, {1709,10949}, {1737,9669}, {1788,5183}, {1839,2256}, {1864,5758}, {1902,11393}, {2475,3890}, {2478,5836}, {2646,4294}, {2802,12764}, {2886,5250}, {3146,3476}, {3295,12047}, {3296,5551}, {3304,4292}, {3305,9710}, {3333,11246}, {3416,3702}, {3419,3878}, {3421,3893}, {3436,3880}, {3486,11011}, {3487,3748}, {3586,5812}, {3601,5805}, {3612,5901}, {3616,5880}, {3673,5195}, {3698,5084}, {3746,11374}, {3772,3915}, {3868,5180}, {3876,7673}, {3877,5794}, {3885,5080}, {3895,12607}, {3911,5493}, {4305,10595}, {4342,10106}, {4388,4673}, {4640,10527}, {4857,5722}, {4861,11114}, {4870,5703}, {5087,5552}, {5123,5187}, {5221,11019}, {5432,8227}, {5533,12515}, {5657,10591}, {5690,10826}, {5691,7962}, {5727,11531}, {5840,12740}, {6001,12116}, {6734,11235}, {6949,7704}, {6985,11508}, {7288,9778}, {7580,11510}, {7686,10531}, {7741,11010}, {7991,9581}, {8715,11813}, {8727,10957}, {9578,9819}, {9671,11362}, {9779,10588}, {9911,10832}, {10065,12261}, {10087,12611}, {10306,11502}, {10366,10373}, {10698,12743}, {10738,12758}, {10798,12197}, {10806,12675}, {10874,12497}, {10925,12697}, {10926,12698}, {10947,12672}, {10958,12703}, {10959,12704}, {10965,12608}, {11871,12458}, {11872,12459}, {12666,12688}
X(12701) = midpoint of X(962) and X(6836)
X(12701) = reflection of X(i) in X(j) for these (i,j): (40,6922), (46,496), (56,12053), (1837,1479), (3149,946)
X(12701) = X(40)-of-2nd-Johnson-Yff-triangle
X(12701) = inner-Johnson-to-ABC similarity image of X(40)
X(12701) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,1836,10404), (1,9579,5434), (1,9580,6284), (1,12699,1836), (4,3057,5252), (40,9614,11), (55,946,11375), (226,12575,3303), (388,9785,5919), (497,962,65), (946,10624,55), (950,4301,2099), (1058,4295,354), (1482,9668,10572), (1697,1699,12), (2099,9670,950), (3086,6361,1155), (3579,7743,499), (3583,5697,355), (9785,9812,388)
The reciprocal orthologic center of these triangles is X(4).
X(12702) lies on these lines: {1,3}, {4,3617}, {5,962}, {8,30}, {10,381}, {20,952}, {44,1766}, {45,573}, {63,10914}, {72,3426}, {79,11237}, {100,5730}, {140,5550}, {145,376}, {149,6903}, {219,2173}, {220,5011}, {355,382}, {378,11396}, {390,12433}, {399,12778}, {474,3877}, {495,4295}, {496,1788}, {515,1657}, {519,3534}, {546,5818}, {548,1483}, {549,3616}, {550,944}, {582,595}, {631,5901}, {758,3913}, {946,1656}, {958,3647}, {960,9709}, {984,5492}, {1000,3600}, {1001,3754}, {1125,3656}, {1145,3436}, {1254,7086}, {1351,4663}, {1376,3878}, {1386,12017}, {1387,7288}, {1389,7508}, {1480,4642}, {1511,7978}, {1537,6834}, {1571,5024}, {1572,9605}, {1597,1829}, {1598,1902}, {1698,5055}, {1699,3851}, {1702,6417}, {1703,6418}, {1706,5044}, {1737,9669}, {1759,4513}, {1770,5252}, {1836,9654}, {1837,9668}, {1871,11471}, {2771,5541}, {2775,4730}, {2778,3556}, {2800,11500}, {2802,11256}, {2948,12308}, {3098,3242}, {3218,3885}, {3240,4192}, {3241,8703}, {3244,3655}, {3305,4002}, {3488,10386}, {3522,7967}, {3523,10595}, {3524,3622}, {3526,4301}, {3530,5734}, {3543,4678}, {3555,3895}, {3614,6980}, {3623,10304}, {3633,4880}, {3636,3653}, {3649,10056}, {3651,3871}, {3679,3830}, {3753,5250}, {3817,5079}, {3843,5587}, {3861,10248}, {3869,3940}, {3870,4018}, {3911,11373}, {3928,12629}, {3935,7580}, {3987,4383}, {4188,5330}, {4299,10944}, {4302,10950}, {4313,11041}, {4388,5827}, {4421,4930}, {4816,5881}, {4848,5722}, {5070,8227}, {5072,10175}, {5073,5691}, {5082,6851}, {5180,11681}, {5184,9301}, {5225,6928}, {5229,6923}, {5302,5836}, {5440,11682}, {5534,12565}, {5554,11113}, {5704,6922}, {5714,5758}, {5729,5759}, {5762,6850}, {5763,6825}, {5771,6847}, {5780,12672}, {5812,11929}, {5840,11827}, {5882,12512}, {5884,11495}, {5899,8185}, {6197,7497}, {6221,7969}, {6284,10573}, {6398,7968}, {6407,9583}, {6445,9582}, {6472,9618}, {6759,7973}, {6762,7171}, {6842,10592}, {6882,10593}, {6942,10698}, {6971,7173}, {7354,12647}, {7489,11496}, {7517,9911}, {7983,12042}, {7984,12041}, {8666,10912}, {8715,12635}, {9584,10145}, {9798,12083}, {9905,12316}, {9928,12164}, {10800,12054}, {11230,11522}, {11842,12197}, {11911,12696}, {11916,12697}, {11917,12698}, {11928,12700}
X(12702) = midpoint of X(i) and X(j) for these {i,j}: {8,6361}, {20,12245}, {40,7991}, {1657,12645}
X(12702) = reflection of X(i) in X(j) for these (i,j): (1,3579), (3,40), (4,5690), (355,11362), (381,3654), (382,355), (399,12778), (944,550), (962,5), (1482,3), (1483,548), (3241,8703), (3242,3098), (3830,3679), (4301,6684), (4930,4421), (5073,5691), (5882,12512), (6767,3587), (7973,6759), (7978,1511), (7982,1385), (7983,12042), (7984,12041), (8148,1), (8158,5709), (9301,5184), (10247,165), (10742,1145), (10912,8666), (12164,9928), (12308,2948), (12316,9905), (12635,8715), (12699,10), (12773,12515)
X(12702) = X(40)-of-X3-ABC-reflections-triangle
X(12702) = X(382)-of-1st-circumperp-triangle
X(12702) = X(1657)-of-2nd-circumperp-triangle
X(12702) = Stammler isogonal conjugate of X(3913)
X(12702) = center of circle that is the poristic locus of X(20)
X(12702) = endo-homothetic center of Ehrmann mid-triangle and outer Garcia triangle; the homothetic center is X(12699)
X(12702) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,40,3579), (1,3579,3), (1,8148,1482), (3,1482,10246), (3,8148,1), (3,10247,1385), (3,10306,11849), (40,1697,3587), (40,7982,165), (46,3057,999), (57,9957,7373), (65,5119,3295), (165,7982,1385), (484,5697,56), (942,1697,6767), (942,3587,3), (1385,7982,10247), (1697,2093,942), (3057,5183,46), (3428,11248,3), (7982,10247,1482)
The reciprocal orthologic center of these triangles is X(4).
X(12703) lies on these lines: {1,3}, {4,10915}, {9,6976}, {10,6898}, {12,12700}, {119,1699}, {145,1158}, {515,3895}, {516,12115}, {528,11372}, {946,5552}, {952,1709}, {962,10528}, {1012,3880}, {1706,6983}, {1836,10956}, {1902,11400}, {2136,5881}, {2800,3870}, {2802,12775}, {3158,6326}, {3434,5587}, {3632,7330}, {3656,6174}, {3871,6261}, {3913,12672}, {5250,5554}, {5555,7160}, {5657,10596}, {5693,6765}, {5812,10955}, {5840,12749}, {6361,10805}, {7966,10860}, {9911,10834}, {10525,10827}, {10803,12197}, {10878,12497}, {10914,11496}, {10929,12697}, {10930,12698}, {10942,12699}, {10958,12701}, {11914,12696}, {12245,12514}
X(12703) = reflection of X(i) in X(j) for these (i,j): (1,10679), (40,5119)
X(12703) = X(40)-of-inner-Yff-tangents-triangle
X(12703) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,165,10269), (1,2077,3576), (40,7982,12704), (65,10965,1), (962,10528,12608), (2136,12705,5881), (3057,11509,1), (5709,11010,40), (11010,11531,5709)
The reciprocal orthologic center of these triangles is X(4).
X(12704) lies on these lines: {1,3}, {4,10916}, {9,6832}, {10,6854}, {11,1728}, {30,10085}, {63,946}, {84,10431}, {191,11522}, {210,6918}, {283,4228}, {411,3873}, {496,5762}, {515,12649}, {516,12116}, {518,3149}, {580,614}, {583,8557}, {956,7686}, {962,1158}, {1068,1435}, {1072,5292}, {1125,6878}, {1329,5705}, {1473,9911}, {1699,6763}, {1708,3086}, {1709,10943}, {1766,2260}, {1768,9589}, {1836,10957}, {1902,11401}, {2270,2323}, {2360,3193}, {2802,12776}, {2829,10864}, {2949,3646}, {2990,10692}, {3306,6684}, {3436,5587}, {3475,6988}, {3555,11500}, {3681,6915}, {3811,6905}, {3868,6261}, {3870,6796}, {3916,11496}, {3928,12705}, {4005,5780}, {4333,5840}, {5231,5715}, {5437,10198}, {5603,12514}, {5657,10597}, {5720,5904}, {5722,11827}, {5735,7701}, {5805,6067}, {5881,6762}, {5905,10530}, {6326,11523}, {6361,10806}, {6907,10404}, {7580,12675}, {7682,12527}, {10526,10826}, {10804,12197}, {10879,12497}, {10884,12005}, {10931,12697}, {10932,12698}, {10949,12700}, {10959,12701}, {11915,12696}
X(12704) = reflection of X(i) in X(j) for these (i,j): (1,10680), (40,46), (11415,946)
X(12704) = X(40)-of-outer-Yff-tangents-triangle
X(12704) = X(46)-of-tangential-of-excentral-triangle
X(12704) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,165,10267), (1,5536,5709), (1,5709,40), (1,11012,3576), (40,3333,3576), (40,7982,12703), (65,10966,1), (354,3338,3333), (962,3218,1158), (1699,6763,7330), (3336,7991,3359), (3359,7991,40), (4860,5584,9940), (5535,7982,40)
The reciprocal orthologic center of these triangles is X(65).
X(12705) lies on these lines: {1,84}, {3,4512}, {4,9}, {5,3359}, {11,2950}, {12,12679}, {20,5250}, {46,1699}, {55,1490}, {57,946}, {63,962}, {72,6769}, {78,12529}, {90,3577}, {104,7091}, {165,3149}, {191,9589}, {196,1712}, {200,5777}, {226,8803}, {380,5776}, {390,9799}, {495,6259}, {497,6245}, {515,1697}, {517,3927}, {595,990}, {758,6762}, {774,2263}, {936,10310}, {942,3358}, {944,4314}, {960,6282}, {968,4300}, {971,3295}, {1001,8726}, {1056,12246}, {1181,1449}, {1385,7171}, {1389,7285}, {1420,5450}, {1453,3073}, {1486,9914}, {1519,5437}, {1537,1768}, {1621,9961}, {1728,2093}, {1750,11500}, {1765,2257}, {1788,7682}, {1836,5715}, {2077,5438}, {2096,4298}, {2136,5881}, {2800,3340}, {2829,9613}, {3057,12650}, {3062,7160}, {3085,6260}, {3176,7008}, {3303,12680}, {3333,3671}, {3576,5248}, {3601,6261}, {3683,5584}, {3731,8915}, {3870,12528}, {3928,12704}, {5044,6244}, {5119,5691}, {5219,12608}, {5231,5709}, {5285,9911}, {5441,7966}, {5534,10679}, {5687,5927}, {5693,11523}, {5720,11248}, {5768,9948}, {5884,11518}, {5918,8273}, {6256,9578}, {6326,12775}, {6684,7308}, {6767,12684}, {7675,9960}, {7680,9612}, {7967,9845}, {8081,12714}, {8111,12707}, {8112,12708}, {8234,12712}, {8235,12713}, {9581,12616}, {9709,10157}, {9940,10582}, {10042,10058}, {10476,12544}, {10595,12563}
X(12705) = midpoint of X(i) and X(j) for these {i,j}: {20,9800}, {4314,9949}, {12526,12651}
X(12705) = reflection of X(i) in X(j) for these (i,j): (1,11496), (40,12514), (944,4314), (4295,946), (12520,5248), (12565,3)
X(12705) = excentral-to-hexyl similarity image of X(12565)
X(12705) = anticomplement, wrt hexyl triangle, of X(12520)
X(12705) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,1709,84), (1,1777,1394), (1,2956,222), (40,5587,1706), (40,11372,4), (55,12688,1490), (946,1158,57), (946,6705,3086), (1001,9943,8726), (1012,12672,1), (1519,6833,8227), (1621,9961,10884), (1768,11522,3338), (4512,12565,3), (5248,12520,3576), (5777,10306,200), (5881,12703,2136), (6212,6213,2270)
The reciprocal orthologic center of these triangles is X(65).
X(12706) lies on these lines: {7,9800}, {9,12529}, {390,6001}, {758,7673}, {1445,12565}, {3671,11025}, {7671,12560}, {7675,9960}, {7676,12514}, {7677,12520}, {7678,12609}, {7679,12617}, {8232,12688}, {8236,12709}, {8237,12712}, {8238,12713}, {8385,12707}, {8386,12708}, {8387,12714}, {8389,12716}, {8732,9943}, {9949,10865}, {10889,12548}, {11038,12710}, {11526,12651}
X(12706) = reflection of X(i) in X(j) for these (i,j): (7,12711), (12529,9)
X(12706) = excentral-to-Honsberger similarity image of X(12565)
The reciprocal orthologic center of these triangles is X(65).
X(12707) lies on these lines: {363,12565}, {3671,11026}, {5934,12688}, {6001,9836}, {8107,12514}, {8109,12520}, {8111,12705}, {8113,12711}, {8133,12714}, {8377,12609}, {8380,12617}, {8385,12706}, {8390,12709}, {8391,12713}, {9783,9800}, {9943,11854}, {9949,11856}, {9961,11886}, {11039,12710}, {11527,12651}, {11685,12529}, {11892,12548}, {11922,12712}
X(12707) = excentral-to-inner-Hutson similarity image of X(12565)
The reciprocal orthologic center of these triangles is X(65).
X(12708) lies on these lines: {3671,11027}, {5935,12688}, {6001,9837}, {8108,12514}, {8110,12520}, {8112,12705}, {8114,12711}, {8135,12714}, {8378,12609}, {8381,12617}, {8386,12706}, {8392,12709}, {9943,11855}, {9949,11857}, {9961,11887}, {11040,12710}, {11528,12651}, {11686,12529}, {11893,12548}, {11925,12712}, {11926,12713}
X(12708) = excentral-to-outer-Hutson similarity image of X(12565)
The reciprocal orthologic center of these triangles is X(65).
X(12709) lies on these lines: {1,84}, {7,3869}, {10,12}, {11,12617}, {55,12520}, {56,392}, {57,960}, {73,3931}, {145,12529}, {227,4424}, {281,2358}, {354,12563}, {388,517}, {497,5787}, {516,3057}, {518,3340}, {942,3086}, {950,12688}, {971,3486}, {986,1465}, {997,1466}, {1042,1214}, {1062,7986}, {1319,5248}, {1400,4047}, {1420,4512}, {1617,5250}, {1697,12565}, {1788,5044}, {1837,5927}, {1858,5728}, {1864,6738}, {1898,9844}, {2099,3555}, {2646,10167}, {3304,10569}, {3339,5692}, {3476,4294}, {3600,3877}, {3601,9943}, {3666,10571}, {3812,5219}, {3868,5173}, {3873,4323}, {3878,4298}, {3884,4315}, {3890,4308}, {3893,12446}, {3899,4355}, {4313,9961}, {4314,5919}, {4551,4646}, {4870,10199}, {5018,11533}, {5083,12564}, {5252,10914}, {5439,10200}, {5440,11509}, {5693,11529}, {5694,6858}, {5784,6737}, {5836,9578}, {5884,6705}, {7681,12047}, {7686,9612}, {7962,12651}, {8236,12706}, {8239,12712}, {8240,12713}, {8390,12707}, {8392,12708}, {8543,10177}, {9785,9800}, {9949,10866}, {10480,12544}
X(12709) = midpoint of X(145) and X(12529)
X(12709) = reflection of X(i) in X(j) for these (i,j): (65,3671), (3555,12559), (4294,9957), (12526,960), (12711,1)
X(12709) = excentral-to-Hutson-intouch similarity image of X(12565)
X(12709) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (12,65,3753), (65,210,4848), (1042,2292,1214), (3057,8581,10106)
The reciprocal orthologic center of these triangles is X(65).
X(12710) lies on these lines: {1,84}, {40,4326}, {65,3488}, {72,4512}, {354,1058}, {495,12617}, {496,3742}, {516,942}, {517,4314}, {518,3295}, {758,3635}, {774,2293}, {938,7671}, {943,3683}, {946,9942}, {950,5842}, {960,5248}, {962,11020}, {999,12520}, {1056,12680}, {1062,1386}, {1864,3085}, {3333,10167}, {3487,12688}, {3555,12526}, {3616,12529}, {3671,5045}, {3745,6198}, {3812,5722}, {4319,5706}, {5049,12563}, {5173,10122}, {5223,7160}, {5587,9844}, {5603,9848}, {8351,12715}, {9800,11037}, {9940,11019}, {9949,11035}, {9961,11036}, {10178,12511}, {10578,12528}, {10595,10866}, {11038,12706}, {11039,12707}, {11042,12712}, {11043,12713}, {11529,12651}
X(12710) = midpoint of X(i) and X(j) for these {i,j}: {1,12711}, {65,4294}, {3555,12526}, {4326,5728}
X(12710) = reflection of X(i) in X(j) for these (i,j): (942,12564), (960,5248), (3671,5045)
X(12710) = excentral-to-incircle-circles similarity image of X(12565)
X(12710) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,10391,12675), (5572,9943,942), (10122,10624,5173)
The reciprocal orthologic center of these triangles is X(65).
X(12711) lies on these lines: {1,84}, {2,12529}, {7,9800}, {8,10394}, {10,1864}, {11,5439}, {12,1898}, {33,5711}, {40,9786}, {55,72}, {56,10167}, {57,9943}, {65,516}, {174,12715}, {226,12688}, {243,1871}, {354,3671}, {380,9119}, {386,9371}, {388,971}, {390,3868}, {392,2646}, {496,10202}, {497,942}, {517,3486}, {518,1697}, {758,3057}, {774,1214}, {912,3295}, {960,3601}, {962,5173}, {1155,12511}, {1284,12713}, {1617,10884}, {1708,5584}, {1837,3753}, {2089,12714}, {2093,10399}, {2098,12559}, {2269,4047}, {2292,2293}, {3085,5777}, {3086,9940}, {3340,12651}, {3485,9856}, {3586,7686}, {3600,11220}, {3812,9581}, {3869,4313}, {3873,9785}, {3874,12575}, {3876,5281}, {3881,4342}, {3925,10395}, {5044,5218}, {5225,5806}, {5250,7675}, {5493,12432}, {5572,10384}, {5722,10525}, {5727,5836}, {5842,10572}, {7288,11227}, {8113,12707}, {8114,12708}, {8243,12712}, {8581,9949}, {10106,12680}, {10157,10588}, {10473,12544}, {10480,11997}, {10502,12570}, {10503,12568}, {10569,10866}, {10914,10950}
X(12711) = midpoint of X(i) and X(j) for these {i,j}: {7,12706}, {9800,9961}
X(12711) = reflection of X(i) in X(j) for these (i,j): (1,12710), (72,12514), (3057,4314), (3671,12564), (4295,942), (12560,5572), (12565,9943), (12672,11496), (12709,1)
X(12711) = complement of X(12529)
X(12711) = excentral-to-intouch similarity image of X(12565)
X(12711) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (12,1898,5927), (55,1858,72), (354,9848,12053), (774,4300,1214), (3671,12564,354), (3753,9844,1837), (4326,12526,1697), (9856,11018,3485), (12715,12716,174)
The reciprocal orthologic center of these triangles is X(65).
X(12712) lies on these lines: {516,9808}, {3671,11030}, {6001,7596}, {8224,12514}, {8225,12520}, {8228,12609}, {8230,12617}, {8231,12565}, {8233,12688}, {8234,12705}, {8237,12706}, {8239,12709}, {8243,12711}, {8246,12713}, {9789,9800}, {9943,10858}, {9949,10867}, {9961,10885}, {10891,12548}, {11042,12710}, {11211,12566}, {11532,12651}, {11687,12529}, {11996,12716}
X(12712) = excentral-to-2nd-Pamfilos-Zhou similarity image of X(12565)
The reciprocal orthologic center of these triangles is X(65).
X(12713) lies on these lines: {21,1709}, {516,2292}, {846,12565}, {1284,12711}, {3671,11031}, {4199,12688}, {4220,12514}, {5051,12617}, {6001,9840}, {8229,12609}, {8235,12705}, {8238,12706}, {8240,12709}, {8246,12712}, {8249,12714}, {8391,12707}, {8425,12716}, {8731,9943}, {9791,9800}, {9949,10868}, {10892,12548}, {11043,12710}, {11203,12567}, {11533,12651}, {11688,12529}, {11926,12708}
X(12713) = 2nd-Sharygin-to-1st-Sharygin similarity image of X(13258)
X(12713) = excentral-to-1st-Sharygin similarity image of X(12565)
The reciprocal orthologic center of these triangles is X(65).
X(12714) lies on these lines: {1,12715},{516,8093}, {2089,12711}, {3671,11032}, {6001,8091}, {8075,12514}, {8077,12520}, {8078,12565}, {8079,12688}, {8081,12705}, {8084,12569}, {8085,12609}, {8087,12617}, {8133,12707}, {8135,12708}, {8241,12709}, {8247,12712}, {8249,12713}, {8387,12706}, {8733,9943}, {9793,9800}, {9961,11888}, {11192,12568}, {11690,12529}, {11894,12548}
X(12714) = reflection of X(8084) in X(12569)
X(12714) = excentral-to-tangential-midarc similarity image of X(12565)
X(12714) = reflection of X(12715) in X(1)
The reciprocal orthologic center of these triangles is X(65).
X(12715) lies on these lines: {1,12714}, {174,12711}, {258,12565}, {3671,11033}, {7588,12520}, {8083,12564}, {8125,12529}, {8351,12710}, {8734,9943}, {9949,11859}, {11895,12548}, {11899,12651}
X(12715) = excentral-to-2nd-tangential-midarc similarity image of X(12565)
X(12715) = reflection of X(12714) in X(1)
The reciprocal orthologic center of these triangles is X(65).
X(12716) lies on these lines: {174,12711}, {516,12445}, {3671,8083}, {6001,8351}, {7587,12520}, {8126,12529}, {8382,12617}, {8389,12706}, {8425,12713}, {8729,9943}, {9800,11891}, {9949,11860}, {9961,11890}, {11033,12564}, {11195,12570}, {11535,12651}, {11896,12548}, {11996,12712}
X(12716) = excentral-to-Yff-central similarity image of X(12565)
The reciprocal orthologic center of these triangles is X(65).
Let A'B'C' be the hexyl triangle. Let A" be the trilinear pole, wrt A'B'C', of line BC, and define B" and C" cyclically. Let A* be the trilinear pole, wrt A'B'C', of line B"C", and define B* and C* cyclically. The lines A'A*, B'B*, C'C* concur in X(12717). (Randy Hutson, July 21, 2017)
X(12717) lies on these lines: {1,7175}, {3,1721}, {4,9}, {20,2128}, {78,12530}, {84,309}, {515,3886}, {517,1351}, {726,6762}, {894,962}, {946,10436}, {990,3576}, {1490,12689}, {1699,2941}, {1709,1764}, {1757,7991}, {1836,10319}, {2796,3928}, {2961,5709}, {3333,3663}, {3683,9816}, {3821,5437}, {5227,5695}, {6001,10477}, {7675,12718}, {8081,12726}, {8111,12719}, {8112,12720}, {8227,12610}, {8234,12724}, {8235,12725}, {8726,9944}, {9950,10864}, {9962,10884}
X(12717) = midpoint of X(i) and X(j) for these {i,j}: {1,7996}, {20,9801}
X(12717) = reflection of X(i) in X(j) for these (i,j): (40,1766), (1721,3)
X(12717) = X(317)-of-hexyl-triangle
X(12717) = excentral-to-hexyl similarity image of X(1721)
X(12717) = hexyl-isotomic conjugate of X(84)
X(12717) = anticomplement, wrt hexyl triangle, of X(990)
X(12717) = {X(40), X(11372)}-harmonic conjugate of X(6210)
The reciprocal orthologic center of these triangles is X(65).
X(12718) lies on these lines: {7,9801}, {9,12530}, {990,7677}, {1445,1721}, {1766,7676}, {3663,11025}, {4326,7996}, {7675,12717}, {7678,12610}, {7679,12618}, {8232,12689}, {8236,12721}, {8237,12724}, {8238,12725}, {8385,12719}, {8386,12720}, {8387,12726}, {8389,12728}, {8732,9944}, {9950,10865}, {10889,12549}, {11038,12722}, {11526,12652}
X(12718) = reflection of X(i) in X(j) for these (i,j): (7,12723), (12530,9)
X(12718) = X(317)-of-Honsberger-triangle
X(12718) = excentral-to-Honsberger similarity image of X(1721)
X(12718) = Honsberger-isotomic conjugate of X(12669)
The reciprocal orthologic center of these triangles is X(65).
X(12719) lies on these lines: {363,1721}, {990,8109}, {1766,8107}, {3663,11026}, {5934,12689}, {7996,8140}, {8111,12717}, {8113,12723}, {8133,12726}, {8377,12610}, {8380,12618}, {8385,12718}, {8390,12721}, {8391,12725}, {9783,9801}, {9944,11854}, {9950,11856}, {9962,11886}, {11039,12722}, {11527,12652}, {11685,12530}, {11892,12549}, {11922,12724}
X(12719) = reflection of X(12720) in X(7996)
X(12719) = X(317)-of-inner-Hutson-triangle
X(12719) = excentral-to-inner-Hutson similarity image of X(1721)
X(12719) = inner-Hutson-isotomic conjugate of X(12673)
The reciprocal orthologic center of these triangles is X(65).
X(12720) lies on these lines: {990,8110}, {1766,8108}, {3663,11027}, {5935,12689}, {7996,8140}, {8112,12717}, {8114,12723}, {8135,12726}, {8378,12610}, {8381,12618}, {8386,12718}, {8392,12721}, {9944,11855}, {9950,11857}, {9962,11887}, {11040,12722}, {11528,12652}, {11686,12530}, {11893,12549}, {11925,12724}, {11926,12725}
X(12720) = reflection of X(12719) in X(7996)
X(12720) = X(317)-of-outer-Hutson-triangle
X(12720) = excentral-to-outer-Hutson similarity image of X(1721)
X(12720) = outer-Hutson-isotomic conjugate of X(12674)
The reciprocal orthologic center of these triangles is X(65).
X(12721) lies on these lines: {1,7175}, {11,12618}, {12,12610}, {38,1824}, {55,990}, {56,1766}, {65,3663}, {72,726}, {145,12530}, {210,3030}, {354,4353}, {392,3923}, {516,3057}, {517,1469}, {518,3875}, {537,4523}, {950,12689}, {960,3729}, {971,3056}, {1362,2823}, {1682,10445}, {1697,1721}, {3601,9944}, {3688,5784}, {3753,3821}, {4313,9962}, {4660,10914}, {7962,12652}, {8236,12718}, {8239,12724}, {8240,12725}, {8241,12726}, {8390,12719}, {8392,12720}, {9785,9801}, {9950,10866}, {10444,10480}, {10544,12680}, {11924,12728}
X(12721) = midpoint of X(145) and X(12530)
X(12721) = reflection of X(i) in X(j) for these (i,j): (65,3663), (3729,960), (10914,4660), (12723,1)
X(12721) = X(317)-of-Hutson-intouch-triangle
X(12721) = excentral-to-Hutson-intouch similarity image of X(1721)
X(12721) = Hutson-intouch-isotomic conjugate of X(12672)
The reciprocal orthologic center of these triangles is X(65).
X(12722) lies on these lines: {1,7175}, {495,12618}, {496,12610}, {516,942}, {518,3923}, {990,999}, {1721,3333}, {1766,3295}, {3487,12689}, {3555,3729}, {3663,5045}, {3742,3821}, {3812,4660}, {4353,5049}, {5255,6211}, {8351,12727}, {9801,11037}, {9950,11035}, {9962,11036}, {11038,12718}, {11039,12719}, {11040,12720}, {11042,12724}, {11043,12725}, {11529,12652}
X(12722) = midpoint of X(i) and X(j) for these {i,j}: {1,12723}, {3555,3729}
X(12722) = reflection of X(i) in X(j) for these (i,j): (3663,5045), (4660,3812)
X(12722) = X(317)-of-incircle-circles-triangle
X(12722) = excentral-to-incircle-circles similarity image of X(1721)
X(12722) = incircle-circles-isotomic conjugate of X(12675)
X(12722) = anticomplement, wrt incircle-circles triangle, of X(4353)
The reciprocal orthologic center of these triangles is X(65).
X(12723) lies on these lines: {1,7175}, {2,12530}, {4,4008}, {7,9801}, {11,12610}, {12,12618}, {19,6059}, {31,1824}, {33,1460}, {37,2223}, {55,1766}, {56,990}, {57,1721}, {65,516}, {72,3923}, {174,12727}, {181,1864}, {226,12689}, {354,3663}, {517,3056}, {518,3729}, {604,4336}, {726,3555}, {971,1469}, {1108,4516}, {1122,4014}, {1284,12725}, {1359,2823}, {1400,1827}, {1418,3675}, {1742,7146}, {1871,3073}, {1872,3072}, {1876,4331}, {1900,5230}, {2089,12726}, {2171,2293}, {2175,2182}, {2262,3271}, {2285,4319}, {2309,3010}, {2356,8898}, {2805,4852}, {3340,12652}, {3501,4073}, {3753,4660}, {3821,5439}, {3941,8609}, {4523,4672}, {8113,12719}, {8114,12720}, {8243,12724}, {8581,9950}, {10391,10444}
X(12723) = midpoint of X(i) and X(j) for these {i,j}: {7,12718}, {9801,9962}
X(12723) = reflection of X(i) in X(j) for these (i,j): (1,12722), (72,3923), (1721,9944), (4523,4672), (12721,1)
X(12723) = complement of X(12530)
X(12723) = {X(12727), X(12728)}-harmonic conjugate of X(174)
X(12723) = X(317)-of-intouch-triangle
X(12723) = excentral-to-intouch similarity image of X(1721)
X(12723) = intouch-isogonal conjugate of X(222)
X(12723) = intouch-isotomic conjugate of X(1071)
X(12723) = anticomplement, wrt intouch triangle, of X(3663)
The reciprocal orthologic center of these triangles is X(65).
X(12724) lies on these lines: {516,9808}, {990,8225}, {1721,8231}, {1766,8224}, {3663,11030}, {3817,8228}, {7996,8244}, {8230,12618}, {8233,12689}, {8234,12717}, {8237,12718}, {8239,12721}, {8243,12723}, {8246,12725}, {8247,12726}, {9789,9801}, {9944,10858}, {9950,10867}, {9962,10885}, {10891,12549}, {11042,12722}, {11532,12652}, {11687,12530}, {11922,12719}, {11925,12720}, {11996,12728}
X(12724) = X(317)-of-2nd-Pamfilos-Zhou-triangle
X(12724) = excentral-to-2nd-Pamfilos-Zhou similarity image of X(1721)
X(12724) = 2nd-Pamfilos-Zhou-isotomic conjugate of X(12681)
The reciprocal orthologic center of these triangles is X(65).
X(12725) lies on these lines: {4,240}, {21,990}, {165,846}, {516,2292}, {1284,12723}, {3663,11031}, {4199,12689}, {5051,8582}, {8229,12610}, {8235,12717}, {8238,12718}, {8240,12721}, {8246,12724}, {8249,12726}, {8391,12719}, {8425,12728}, {8731,9944}, {9791,9801}, {10892,12549}, {11043,12722}, {11533,12652}, {11688,12530}, {11926,12720}
X(12725) = X(317)-of-1st-Sharygin-triangle
X(12725) = 2nd-Sharygin-to-1st-Sharygin similarity image of X(13259)
X(12725) = excentral-to-1st-Sharygin similarity image of X(1721)
X(12725) = hexyl-to-1st-Sharygin similarity image of X(12717)
X(12725) = 1st-Sharygin-isotomic conjugate of X(12682)
The reciprocal orthologic center of these triangles is X(65).
X(12726) lies on these lines: {1,12727}, {516,8093}, {990,8077}, {1721,8078}, {1766,8075}, {2089,12723}, {3663,11032}, {7996,8089}, {8079,12689}, {8081,12717}, {8085,12610}, {8087,12618}, {8133,12719}, {8135,12720}, {8241,12721}, {8247,12724}, {8249,12725}, {8387,12718}, {8733,9944}, {9793,9801}, {9962,11888}, {11690,12530}, {11894,12549}
X(12726) = reflection of X(12727) in X(1)
X(12726) = X(317)-of-tangential-midarc-triangle
X(12726) = excentral-to-tangential-midarc similarity image of X(1721)
X(12726) = tangential-midarc-isotomic conjugate of X(8095)
The reciprocal orthologic center of these triangles is X(65).
X(12727) lies on these lines: {1,12726}, {174,12723}, {258,1721}, {990,7588}, {3663,11033}, {8125,12530}, {8351,12722}, {8734,9944}, {9950,11859}, {11895,12549}, {11899,12652}
X(12727) = reflection of X(12726) in X(1)
X(12727) = X(317)-of-2nd-tangential-midarc-triangle
X(12727) = excentral-to-2nd-tangential-midarc similarity image of X(1721)
X(12727) = 2nd-tangential-midarc-isotomic conjugate of X(8096)
X(12727) = {X(174), X(12723)}-harmonic conjugate of X(12728)
The reciprocal orthologic center of these triangles is X(65).
X(12728) lies on these lines: {174,12723}, {516,12445}, {990,7587}, {3663,8083}, {8126,12530}, {8382,12618}, {8389,12718}, {8425,12725}, {8729,9944}, {9801,11891}, {9950,11860}, {9962,11890}, {11535,12652}, {11924,12721}, {11996,12724}
X(12728) = {X(174), X(12723)}-harmonic conjugate of X(12727)
X(12728) = X(317)-of-Yff-central-triangle
X(12728) = excentral-to-Yff-central similarity image of X(1721)
X(12728) = Yff-central-isotomic conjugate of X(12685)
The reciprocal orthologic center of these triangles is X(3).
X(12729) lies on these lines: {11,11831}, {30,6265}, {80,402}, {100,11900}, {214,1650}, {515,12752}, {952,12438}, {2771,12790}, {2800,12113}, {2802,12626}, {2829,12668}, {4240,6224}, {5840,12696}, {6262,11902}, {6263,11901}, {7972,11910}, {9897,11852}, {9912,11853}, {10057,11912}, {10073,11913}, {11832,12137}, {11839,12198}, {11845,12247}, {11848,12331}, {11863,12460}, {11864,12461}, {11885,12498}, {11903,12737}, {11904,12738}, {11905,12739}, {11906,12740}, {11907,12741}, {11908,12742}, {11909,12743}, {11911,12747}, {11914,12749}, {11915,12750}
X(12729) = midpoint of X(4240) and X(6224)
X(12729) = reflection of X(i) in X(j) for these (i,j): (80,402), (1650,214)
X(12729) = X(80)-of-Gossard-triangle
The reciprocal orthologic center of these triangles is X(8).
X(12730) lies on these lines: {7,528}, {9,12531}, {11,7679}, {80,2346}, {100,2078}, {119,7678}, {145,5856}, {390,952}, {516,7972}, {517,12755}, {1387,6854}, {1445,5541}, {2800,7673}, {2802,7672}, {4326,7993}, {5219,10707}, {5252,8543}, {5854,12630}, {6264,7675}, {8097,8387}, {8098,8388}, {8232,12690}, {8237,12744}, {8238,12746}, {8385,12733}, {8386,12734}, {8389,12748}, {8732,9945}, {9951,10865}, {10889,12550}, {11025,12736}, {11038,12735}, {11526,12653}
X(12730) = reflection of X(i) in X(j) for these (i,j): (7,1317), (1156,390), (12531,9)
X(12730) = X(74)-of-Honsberger-triangle
X(12730) = excentral-to-Honsberger similarity image of X(5541)
The reciprocal orthologic center of these triangles is X(12732).
X(12731) lies on these lines: {1,12521}, {1158,5493}, {2475,9874}, {3625,6849}, {5082,9953}, {7160,12620}, {9782,9804}
X(12731) = reflection of X(7160) in X(12620)
X(12731) lies on the Jerabek hyperbola of the Fuhrmann triangle.
The reciprocal orthologic center of these triangles is X(12731).
X(12732) lies on these lines: {9,80}, {11,3634}, {20,952}, {65,1317}, {100,474}, {149,5084}, {214,3748}, {392,9951}, {1320,9945}, {1537,12331}, {1617,2932}, {2094,6224}, {3871,5719}, {3895,11112}, {4304,10914}, {6957,10738}
X(12732) = reflection of X(i) in X(j) for these (i,j): (1145,5541), (1320,9945), (1537,12331), (9802,1387), (10609,6154), (12690,1145)
X(12732) = {X(100), X(9802)}-harmonic conjugate of X(1387)
The reciprocal orthologic center of these triangles is X(8).
X(12733) lies on these lines: {11,8380}, {100,8109}, {104,8107}, {119,8377}, {363,5541}, {517,12759}, {952,9836}, {1317,8113}, {5854,12633}, {5934,12690}, {6264,8111}, {7993,8140}, {8097,8133}, {8385,12730}, {8391,12746}, {9783,9802}, {9945,11854}, {9951,11856}, {9963,11886}, {11026,12736}, {11039,12735}, {11527,12653}, {11685,12531}, {11892,12550}, {11922,12744}
X(12733) = reflection of X(12734) in X(7993)
X(12733) = X(74)-of-inner-Hutson-triangle
X(12733) = excentral-to-inner-Hutson similarity image of X(5541)
The reciprocal orthologic center of these triangles is X(8).
X(12734) lies on these lines: {11,8381}, {100,8110}, {104,8108}, {119,8378}, {517,12760}, {952,9837}, {1317,8114}, {5854,12634}, {5935,12690}, {6264,8112}, {7993,8140}, {8097,8135}, {8098,8138}, {8386,12730}, {9945,11855}, {9951,11857}, {9963,11887}, {11027,12736}, {11040,12735}, {11528,12653}, {11686,12531}, {11893,12550}, {11925,12744}, {11926,12746}
X(12734) = reflection of X(12733) in X(7993)
X(12734) = X(74)-of-outer-Hutson-triangle
X(12734) = excentral-to-outer-Hutson similarity image of X(5541)
The reciprocal orthologic center of these triangles is X(8).
X(12735) lies on these lines: {1,5}, {30,5048}, {55,10074}, {56,10087}, {100,999}, {104,3295}, {145,1145}, {149,1056}, {153,1058}, {214,3244}, {388,10738}, {390,6938}, {497,10742}, {517,5083}, {519,3035}, {528,5542}, {551,6667}, {631,7317}, {942,2802}, {944,1537}, {1125,3036}, {1319,5844}, {1320,3296}, {1388,5690}, {1479,12763}, {1482,4293}, {1862,1870}, {2098,4302}, {2099,11046}, {2800,9957}, {2829,4342}, {3057,11570}, {3303,10058}, {3304,10090}, {3333,5541}, {3340,10993}, {3476,10247}, {3487,12690}, {3576,8275}, {3616,12531}, {3636,6702}, {3655,7962}, {3890,12532}, {4311,11278}, {4312,12119}, {5045,12736}, {5049,6797}, {5218,10246}, {5556,5734}, {5919,12758}, {6154,11034}, {6198,12138}, {6767,12773}, {7373,12331}, {9802,11037}, {9951,11035}, {9963,11036}, {11011,11551}, {11038,12730}, {11039,12733}, {11040,12734}, {11042,12744}, {11043,12746}, {12053,12611}
X(12735) = midpoint of X(i) and X(j) for these {i,j}: {1,1317}, {11,7972}, {145,1145}, {214,3244}, {944,1537}, {1320,10609}, {3057,11570}, {6154,12653}
X(12735) = reflection of X(i) in X(j) for these (i,j): (1387,1), (3036,1125), (6702,3636), (12019,1387), (12736,5045)
X(12735) = incircle-inverse-of-X(7972)
X(12735) = X(74)-of-incircle-circles-triangle
X(12735) = excentral-to-incircle-circles similarity image of X(5541)
X(12735) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,5252,10283), (1,7972,11), (1,10944,5901), (11,1317,7972), (944,4345,9668)
The reciprocal orthologic center of these triangles is X(8).
X(12736) lies on these lines: {1,88}, {7,80}, {8,11023}, {11,65}, {46,10058}, {56,11715}, {57,104}, {119,226}, {142,1145}, {149,938}, {354,1317}, {388,12751}, {499,3878}, {517,1387}, {518,3036}, {519,5570}, {528,5572}, {653,1845}, {758,908}, {942,952}, {950,5840}, {954,6594}, {960,6667}, {999,12737}, {1155,5427}, {1156,10398}, {1411,11700}, {1445,2093}, {1768,3339}, {1771,3924}, {1836,12764}, {1837,5884}, {1876,12138}, {1938,10006}, {2099,12740}, {2771,7687}, {2829,4292}, {2840,3937}, {3035,3812}, {3057,10165}, {3333,6264}, {3338,10074}, {3340,10698}, {3486,12119}, {3586,10724}, {3738,10015}, {3873,12531}, {3874,10057}, {3887,11028}, {3918,10039}, {3919,9951}, {4345,5697}, {4654,10711}, {5045,12735}, {5328,5692}, {5587,12665}, {5708,12773}, {5722,10738}, {5728,12690}, {5836,5854}, {6147,11698}, {6326,11529}, {6738,10122}, {7993,10980}, {8083,12748}, {8097,11032}, {9579,10728}, {9802,10580}, {9945,11018}, {9963,11020}, {10404,12763}, {10532,12247}, {10950,12005}, {11021,12550}, {11025,12730}, {11026,12733}, {11027,12734}, {11030,12744}, {11031,12746}
X(12736) = midpoint of X(i) and X(j) for these {i,j}: {11,65}, {80,11570}, {942,6797}
X(12736) = reflection of X(i) in X(j) for these (i,j): (960,6667), (3035,3812), (5083,942), (12735,5045)
X(12736) = incircle-inverse-of-X(106)
X(12736) = X(74)-of-inverse-in-incircle-triangle
X(12736) = X(113)-of-intouch-triangle
X(12736) = complement, wrt intouch triangle, of X(1317)
X(12736) = excentral-to-inverse-in-incircle similarity image of X(5541)
X(12736) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,10090,214), (80,5902,11570), (1320,3306,214), (1737,8068,6702)
The reciprocal orthologic center of these triangles is X(3).
X(12737) lies on these lines: {1,5}, {3,2802}, {8,12619}, {40,12653}, {65,10074}, {100,1385}, {104,517}, {145,6972}, {149,944}, {153,5603}, {214,1376}, {515,10738}, {519,10265}, {528,3655}, {912,5048}, {946,10742}, {962,12248}, {997,3036}, {999,12736}, {1319,10090}, {1389,6583}, {1482,2800}, {1537,3656}, {1538,10707}, {1768,7982}, {2098,12758}, {2099,11570}, {2646,10087}, {2771,7984}, {2801,10247}, {2827,6095}, {2829,12676}, {2932,10269}, {3057,10058}, {3241,9803}, {3244,12616}, {3434,6224}, {3576,5541}, {3653,6174}, {3898,7489}, {4511,12531}, {5330,5694}, {5731,9802}, {5734,9809}, {5790,6702}, {5840,12700}, {5844,11219}, {6175,10031}, {6262,10920}, {6263,10919}, {6906,10284}, {9912,10829}, {10522,10806}, {10679,12332}, {10794,12198}, {10871,12498}, {10945,12741}, {10946,12742}, {10947,12743}, {11009,11571}, {11014,11826}, {11224,12767}, {11390,12137}, {11865,12460}, {11866,12461}, {11903,12729}, {11928,12747}, {12047,12763}
X(12737) = midpoint of X(i) and X(j) for these {i,j}: {1,6264}, {40,12653}, {104,1320}, {145,12247}, {149,944}, {962,12248}, {1482,12773}, {1768,7982}, {6326,7993}
X(12737) = reflection of X(i) in X(j) for these (i,j): (3,11715), (8,12619), (80,1484), (100,1385), (119,1387), (153,12611), (355,11), (1145,6713), (5660,10283), (6265,1), (7972,1483), (10742,946), (11698,5901), (12331,214), (12515,104), (12738,6265), (12751,5)
X(12737) = hexyl circle-inverse-of-X(7993)
X(12737) = X(80)-of-inner-Johnson-triangle
X(12737) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,80,12740), (1,7972,12739), (1,7993,6326), (11,10944,10057), (119,1387,5886), (153,5603,12611), (7972,10057,10944), (10246,12331,214)
The reciprocal orthologic center of these triangles is X(3).
X(12738) lies on these lines: {1,5}, {3,2801}, {35,3652}, {72,74}, {78,10609}, {104,6986}, {140,11219}, {149,12611}, {153,6895}, {200,3654}, {214,958}, {500,5293}, {515,12762}, {517,3935}, {528,3811}, {912,1155}, {943,1156}, {997,3655}, {1259,2932}, {1385,5260}, {1490,5528}, {2800,11500}, {2802,8148}, {2829,12677}, {3035,5791}, {3436,6224}, {3617,10786}, {3634,10265}, {3656,3870}, {4860,6911}, {5204,12757}, {5217,12665}, {5221,11570}, {5694,11491}, {5708,9946}, {5812,5840}, {6262,10922}, {6263,10921}, {6583,6915}, {8167,10246}, {9780,9803}, {9912,10830}, {9955,10707}, {9963,10728}, {10698,11278}, {10742,12437}, {10795,12198}, {10872,12498}, {10951,12741}, {10952,12742}, {10953,12743}, {11391,12137}, {11827,12119}, {11867,12460}, {11868,12461}, {11904,12729}, {11929,12747}
X(12738) = midpoint of X(i) and X(j) for these {i,j}: {5531,6326}, {9963,10728}
X(12738) = reflection of X(i) in X(j) for these (i,j): (80,11698), (149,12611), (6265,6326), (9803,12619), (12515,100), (12737,6265), (12773,214)
X(12738) = X(80)-of-outer-Johnson-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12739) lies on these lines: {1,5}, {3,10093}, {4,12743}, {21,12532}, {35,11571}, {55,2800}, {56,214}, {59,518}, {65,100}, {78,3035}, {104,943}, {149,3485}, {153,3486}, {388,6224}, {498,12619}, {515,12763}, {517,10087}, {758,5172}, {942,10090}, {950,12764}, {954,2801}, {956,1388}, {1145,3811}, {1320,11011}, {1385,10074}, {1454,12559}, {1464,5018}, {1479,12611}, {1537,6261}, {1768,3601}, {1836,5840}, {2078,4867}, {2099,2802}, {2771,10058}, {2829,12678}, {2932,11509}, {3057,10698}, {3085,12247}, {3295,12758}, {3340,5541}, {3868,4996}, {3870,5854}, {4305,12248}, {4313,9809}, {4321,5856}, {4323,9802}, {4861,11256}, {4870,10707}, {5528,12560}, {5538,5762}, {5703,9803}, {5730,11510}, {5851,7675}, {6001,12775}, {6262,10924}, {6263,10923}, {7354,12119}, {9654,12747}, {9912,10831}, {10404,10609}, {10572,10742}, {10738,12047}, {10797,12198}, {10873,12498}, {11392,12137}, {11501,12331}, {11870,12461}, {11905,12729}, {11930,12741}, {11931,12742}
X(12739) = midpoint of X(i) and X(j) for these {i,j}: {1317,10956}, {7972,10057}
X(12739) = reflection of X(i) in X(j) for these (i,j): (5252,10956), (10057,495)
X(12739) = X(80)-of-1st-Johnson-Yff-triangle
X(12739) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,4551,1411), (1,6265,12740), (1,6326,11), (1,7972,12737), (35,11571,12515), (214,5083,56), (495,10944,5252), (1317,10944,7972)
The reciprocal orthologic center of these triangles is X(3).
X(12740) lies on these lines: {1,5}, {3,10094}, {33,5151}, {36,12515}, {55,214}, {56,2800}, {65,10698}, {78,5854}, {100,3057}, {104,1319}, {106,10703}, {153,3476}, {497,6224}, {499,12619}, {515,12764}, {517,10090}, {997,1145}, {999,11570}, {1318,1320}, {1385,10058}, {1388,11715}, {1420,1768}, {1470,12332}, {1478,12611}, {1519,12761}, {1537,1836}, {1964,4336}, {2098,2802}, {2099,12736}, {2646,10179}, {2771,10074}, {2829,12679}, {3086,12247}, {3254,6596}, {3304,5083}, {3877,4996}, {4308,9809}, {4345,9802}, {5433,11014}, {5541,7962}, {5563,11571}, {5840,12701}, {6262,10926}, {6263,10925}, {6284,12119}, {6958,10043}, {9669,12747}, {9912,10832}, {9957,10087}, {10106,12763}, {10798,12198}, {10874,12498}, {11256,12531}, {11393,12137}, {11502,12331}, {11871,12460}, {11872,12461}, {11906,12729}, {11932,12741}, {11933,12742}
X(12740) = reflection of X(i) in X(j) for these (i,j): (1837,11), (2932,214), (10073,496)
X(12740) = X(80)-of-2nd-Johnson-Yff-triangle
X(12740) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,80,12737), (1,6265,12739), (1,6326,1317), (497,6224,12743)
The reciprocal orthologic center of these triangles is X(3).
X(12741) lies on these lines: {11,11377}, {80,493}, {100,8214}, {214,8222}, {515,12765}, {952,12440}, {2800,9838}, {2802,12636}, {6224,6462}, {6262,8218}, {6263,8216}, {6265,8220}, {6461,12742}, {7972,8210}, {8188,9897}, {8194,9912}, {10057,11951}, {10073,11953}, {10875,12498}, {10945,12737}, {10951,12738}, {11394,12137}, {11503,12331}, {11828,12119}, {11840,12198}, {11846,12247}, {11907,12729}, {11930,12739}, {11932,12740}, {11947,12743}, {11949,12747}, {11955,12749}, {11957,12750}
X(12741) = X(80)-of-Lucas-homothetic-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12742) lies on these lines: {11,11378}, {80,494}, {100,8215}, {214,8223}, {515,12766}, {952,12441}, {2800,9839}, {2802,12637}, {6224,6463}, {6262,8219}, {6263,8217}, {6265,8221}, {6461,12741}, {7972,8211}, {8189,9897}, {8195,9912}, {10057,11952}, {10073,11954}, {10876,12498}, {10946,12737}, {10952,12738}, {11395,12137}, {11504,12331}, {11829,12119}, {11841,12198}, {11847,12247}, {11908,12729}, {11931,12739}, {11933,12740}, {11948,12743}, {11950,12747}, {11956,12749}, {11958,12750}
X(12742) = X(80)-of-Lucas(-1)-homothetic-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12743) lies on these lines: {1,10738}, {3,10073}, {4,12739}, {11,214}, {30,11570}, {33,12137}, {35,12619}, {55,80}, {56,12119}, {65,5840}, {100,1837}, {149,3486}, {355,10087}, {497,6224}, {515,1317}, {952,1898}, {1385,5533}, {1479,6265}, {1697,9897}, {1836,10724}, {2098,7972}, {2800,6284}, {2802,10950}, {2829,12680}, {2932,11502}, {3295,10057}, {3583,12611}, {3586,6326}, {4294,12247}, {4302,12515}, {4304,10265}, {4542,5853}, {5083,7354}, {5432,6702}, {5541,5727}, {5691,12763}, {5722,10090}, {6262,10928}, {6263,10927}, {9912,10833}, {10698,12701}, {10799,12198}, {10877,12498}, {10947,12737}, {10953,12738}, {10965,12749}, {10966,12750}, {11114,12532}, {11873,12460}, {11909,12729}, {11947,12741}, {11948,12742}
X(12743) = reflection of X(i) in X(j) for these (i,j): (11,950), (7354,5083)
X(12743) = X(80)-of-Mandart-incircle-triangle
X(12743) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (497,6224,12740), (3295,12747,10057), (3586,6326,12764)
The reciprocal orthologic center of these triangles is X(8).
X(12744) lies on these lines: {11,8230}, {80,7133}, {100,8225}, {104,8224}, {119,8228}, {517,12768}, {952,7596}, {1317,8243}, {1320,7595}, {2800,12681}, {2802,9808}, {5541,8231}, {5854,12638}, {6264,8234}, {7993,8244}, {8097,8247}, {8098,8248}, {8233,12690}, {8237,12730}, {8246,12746}, {9789,9802}, {9945,10858}, {9951,10867}, {9963,10885}, {10891,12550}, {11030,12736}, {11042,12735}, {11532,12653}, {11687,12531}, {11922,12733}, {11925,12734}, {11996,12748}
X(12744) = X(74)-of-2nd-Pamfilos-Zhou-triangle
X(12744) = excentral-to-2nd-Pamfilos-Zhou similarity image of X(5541)
The reciprocal orthologic center of these triangles is X(11604).
X(12745) lies on the Jerabek hyperbola of trhe Furhmann triangle and these lines: {1,6597}, {8,6595}, {191,12342}, {1158,12519}, {2476,9782}, {10266,12623}
X(12745) = midpoint of X(6597) and X(12786)
X(12745) = reflection of X(i) in X(j) for these (i,j): (10266,12623), (12342,191)
The reciprocal orthologic center of these triangles is X(8).
X(12746) lies on these lines: {1,3909}, {10,21}, {11,5051}, {104,4220}, {119,8229}, {256,1320}, {517,12770}, {846,5541}, {855,1145}, {952,9840}, {1281,2787}, {1284,1317}, {2292,2802}, {2800,12683}, {4199,12690}, {5854,12642}, {6264,8235}, {7993,8245}, {8097,8249}, {8098,8250}, {8238,12730}, {8246,12744}, {8391,12733}, {8425,12748}, {8731,9945}, {9791,9802}, {9951,10868}, {10892,12550}, {11031,12736}, {11043,12735}, {11533,12653}, {11688,12531}, {11926,12734}
X(12746) = X(74)-of-1st-Sharygin-triangle
X(12746) = 2nd-Sharygin-to-1st-Sharygin similarity image of X(13266)
X(12746) = excentral-to-1st-Sharygin similarity image of X(5541)
The reciprocal orthologic center of these triangles is X(3).
X(12747) lies on these lines: {3,80}, {4,145}, {5,6224}, {11,6980}, {30,12247}, {40,3065}, {100,5790}, {214,1656}, {355,8715}, {382,2800}, {515,12773}, {517,9897}, {528,5779}, {944,1484}, {999,10073}, {1598,12137}, {1657,12515}, {2771,5691}, {2802,12645}, {2829,12684}, {3036,10993}, {3295,10057}, {3526,6702}, {3843,12611}, {5180,5844}, {5727,6797}, {5840,11827}, {6262,11917}, {6263,11916}, {6862,10609}, {6863,12019}, {6892,9945}, {7517,9912}, {7972,10247}, {9301,12498}, {9654,12739}, {9655,11570}, {9668,12758}, {9669,12740}, {10679,12751}, {11842,12198}, {11875,12460}, {11876,12461}, {11911,12729}, {11928,12737}, {11929,12738}, {11949,12741}, {11950,12742}, {12000,12749}, {12001,12750}
X(12747) = reflection of X(i) in X(j) for these (i,j): (3,80), (944,1484), (1482,10738), (1657,12515), (6224,5), (10993,3036), (12119,12619), (12331,355)
X(12747) = X(80)-of-X3-ABC-reflections-triangle
X(12747) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (80,12119,12619), (10057,12743,3295)
The reciprocal orthologic center of these triangles is X(8).
X(12748) lies on these lines: {11,8382}, {100,7587}, {174,1317}, {517,12774}, {952,8351}, {2800,12685}, {2802,12445}, {5854,12646}, {7993,8423}, {8083,12736}, {8126,12531}, {8389,12730}, {8425,12746}, {8729,9945}, {9802,11891}, {9951,11860}, {9963,11890}, {11535,12653}, {11896,12550}, {11996,12744}
X(12748) = X(74)-of-Yff-central-triangle
X(12748) = excentral-to-Yff-central similarity image of X(5541)
The reciprocal orthologic center of these triangles is X(3).
X(12749) lies on these lines: {1,5}, {8,10940}, {10,10074}, {36,6735}, {46,1145}, {79,12641}, {100,10915}, {104,10039}, {153,10935}, {214,5552}, {498,11715}, {515,10087}, {517,12763}, {956,5445}, {1320,12047}, {1478,2802}, {1768,11919}, {2098,12611}, {2800,12115}, {2829,5119}, {3057,10742}, {5083,10573}, {5541,9613}, {5697,6256}, {5840,12703}, {5856,9814}, {6224,10528}, {6262,10930}, {6263,10929}, {9612,12653}, {9912,10834}, {9957,12764}, {10090,10106}, {10698,12608}, {10803,12198}, {10805,12247}, {10878,12498}, {10965,12743}, {10970,12767}, {11248,12119}, {11400,12137}, {11509,12331}, {11881,12460}, {11882,12461}, {11914,12729}, {11955,12741}, {11956,12742}, {12000,12747}
X(12749) = reflection of X(i) in X(j) for these (i,j): (1,10956), (80,10057), (10057,5252)
X(12749) = X(80)-of-inner-Yff-tangents-triangle
X(12749) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,12751,80), (80,7972,12750), (355,10073,80), (1317,11729,1), (10942,10944,1)
The reciprocal orthologic center of these triangles is X(3).
X(12750) lies on these lines: {1,5}, {35,11219}, {46,528}, {79,3254}, {100,10916}, {149,4295}, {214,10527}, {515,12776}, {1478,3892}, {1479,2801}, {1768,11920}, {1898,4857}, {2771,12374}, {2800,12116}, {2802,12649}, {2829,12687}, {4311,10074}, {4314,10058}, {4333,5840}, {5083,11048}, {5086,10031}, {5445,5687}, {6224,10529}, {6262,10932}, {6263,10931}, {9785,9803}, {9912,10835}, {10087,10265}, {10707,12047}, {10804,12198}, {10806,12247}, {10879,12498}, {10966,12743}, {10971,12767}, {11249,12119}, {11401,12137}, {11510,12331}, {11883,12460}, {11884,12461}, {11915,12729}, {11957,12741}, {11958,12742}, {12001,12747}
X(12750) = reflection of X(80) in X(10073)
X(12750) = X(80)-of-outer-Yff-tangents-triangle
X(12750) = {X(80), X(7972)}-harmonic conjugate of X(12749)
The reciprocal orthologic center of these triangles is X(40).
X(12751) lies on the cubic K684 and these lines: {1,5}, {2,11715}, {4,2802}, {8,153}, {10,104}, {40,1145}, {65,12763}, {72,12762}, {100,515}, {214,944}, {388,12736}, {516,10728}, {517,10742}, {519,1519}, {528,11372}, {529,5535}, {912,11571}, {946,1320}, {1482,12611}, {1537,5854}, {1698,6713}, {1699,12653}, {1737,5193}, {1768,3359}, {2550,2801}, {2787,9864}, {2806,12784}, {2827,4768}, {2932,12114}, {3035,3576}, {3036,5794}, {3057,12764}, {3419,11525}, {3813,11256}, {3898,6965}, {4413,5790}, {4668,12767}, {4996,6796}, {5086,12531}, {5090,12138}, {5541,5691}, {5552,6224}, {5554,9803}, {5657,12248}, {5687,12332}, {5688,12754}, {5689,12753}, {5690,12515}, {5787,9945}, {5818,6702}, {5847,10759}, {6797,8581}, {8193,9913}, {8197,12462}, {8204,12463}, {8214,12765}, {8215,12766}, {9857,12499}, {10039,10058}, {10087,10572}, {10573,11570}, {10679,12747}, {10707,10863}, {10791,12199}, {10914,12761}, {10915,12775}, {10916,12776}, {11248,12331}, {11362,11684}, {11900,12752}, {12647,12758}
X(12751) = midpoint of X(i) and X(j) for these {i,j}: {8,153}, {5531,9897}, {5541,5691}, {5881,6326}
X(12751) = reflection of X(i) in X(j) for these (i,j): (1,119), (40,1145), (80,355), (104,10), (944,214), (1320,946), (1482,12611), (2077,6735), (5693,12665), (6264,11), (6265,11698), (7972,6265), (7982,1537), (11219,5790), (11256,3813), (12119,100), (12515,5690), (12737,5), (12773,12619)
X(12751) = anticomplement of X(11715)
X(12751) = Fuhrmann circle-inverse-of-X(5881)
X(12751) = X(104)-of-outer-Garcia-triangle
X(12751) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (80,7972,10073), (80,12749,1), (355,5252,5587), (5587,6264,11), (5660,7972,6265), (5790,12773,12619)
The reciprocal orthologic center of these triangles is X(40).
X(12752) lies on these lines: {11,11897}, {30,100}, {104,402}, {119,1650}, {153,4240}, {515,12729}, {952,11251}, {1317,11909}, {1768,11852}, {2787,12181}, {2800,12438}, {2802,12696}, {2806,12796}, {2829,12113}, {9913,11853}, {10058,11912}, {10074,11913}, {10698,11910}, {11715,11831}, {11832,12138}, {11839,12199}, {11845,12248}, {11848,12332}, {11885,12499}, {11900,12751}, {11901,12753}, {11902,12754}, {11903,12761}, {11904,12762}, {11905,12763}, {11906,12764}, {11907,12765}, {11908,12766}, {11911,12773}, {11914,12775}, {11915,12776}
X(12752) = midpoint of X(153) and X(4240)
X(12752) = X(104)-of-Gossard-triangle
X(12752) = reflection of X(i) in X(j) for these (i,j): (104,402), (1650,119)
The reciprocal orthologic center of these triangles is X(40).
X(12753) lies on these lines: {6,104}, {11,6202}, {100,11824}, {119,5591}, {153,1271}, {515,6263}, {952,1161}, {1317,10927}, {1768,5589}, {2771,7732}, {2783,6319}, {2787,6227}, {2800,3641}, {2802,12697}, {2806,12805}, {2829,5871}, {5595,9913}, {5605,10698}, {5689,12751}, {6215,10742}, {8198,12462}, {8205,12463}, {8216,12765}, {8217,12766}, {9994,12499}, {10040,10058}, {10048,10074}, {10783,12248}, {10792,12199}, {10919,12761}, {10921,12762}, {10923,12763}, {10925,12764}, {10929,12775}, {10931,12776}, {11370,11715}, {11388,12138}, {11497,12332}, {11901,12752}, {11916,12773}
X(12753) = reflection of X(12754) in X(104)
X(12753) = X(104)-of-inner-Grebe-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12754) lies on these lines: {6,104}, {11,6201}, {100,11825}, {119,5590}, {153,1270}, {515,6262}, {952,1160}, {1317,10928}, {1768,5588}, {2771,7733}, {2783,6320}, {2787,6226}, {2800,3640}, {2802,12698}, {2806,12806}, {2829,5870}, {5594,9913}, {5604,10698}, {5688,12751}, {6214,10742}, {8199,12462}, {8206,12463}, {8218,12765}, {8219,12766}, {9995,12499}, {10041,10058}, {10049,10074}, {10784,12248}, {10793,12199}, {10920,12761}, {10922,12762}, {10924,12763}, {10926,12764}, {10930,12775}, {10932,12776}, {11371,11715}, {11389,12138}, {11498,12332}, {11902,12752}, {11917,12773}
X(12754) = reflection of X(12753) in X(104)
X(12754) = X(104)-of-outer-Grebe-triangle
The reciprocal orthologic center of these triangles is X(3869).
X(12755) lies on these lines: {7,80}, {9,12532}, {100,518}, {104,2346}, {390,2800}, {516,11571}, {517,12730}, {952,7672}, {971,10728}, {1156,2771}, {1387,11025}, {1445,6326}, {1768,7675}, {2802,12630}, {2829,12669}, {3868,5856}, {4326,12767}, {5083,11038}, {5809,9809}, {5851,10394}, {6224,7674}, {6264,11526}, {6265,7677}, {7676,12515}, {7678,12611}, {7679,12619}, {8232,12691}, {8236,12758}, {8237,12768}, {8238,12770}, {8385,12759}, {8386,12760}, {8387,12771}, {8389,12774}, {8732,9946}, {9952,10865}, {10889,12551}
X(12755) = reflection of X(i) in X(j) for these (i,j): (7,11570), (1156,5728), (12532,9)
X(12755) = X(265)-of-Honsberger-triangle
X(12755) = excentral-to-Honsberger similarity image of X(6326)
The reciprocal orthologic center of these triangles is X(12757).
X(12756) lies on these lines: {8,6835}, {40,12757}, {191,9898}, {1728,10059}, {3957,12260}, {11224,12654}
X(12756) = reflection of X(12777) in X(12670)
The reciprocal orthologic center of these triangles is X(12756).
X(12757) lies on these lines: {9,48}, {20,2800}, {40,12756}, {65,952}, {80,6826}, {442,12675}, {1768,10268}, {3560,6265}, {3754,5881}, {5204,12738}, {5445,5770}, {5554,9803}, {5693,5731}, {6897,12247}, {9940,12619}
X(12757) = midpoint of X(6224) and X(9964)
X(12757) = reflection of X(i) in X(j) for these (i,j): (80,9946), (12665,6326), (12691,214)
The reciprocal orthologic center of these triangles is X(3869).
X(12758) lies on these lines: {1,104}, {3,10094}, {4,10043}, {8,80}, {11,517}, {12,12611}, {35,214}, {40,10090}, {55,6265}, {56,12515}, {65,1387}, {72,5854}, {90,1320}, {100,997}, {119,10039}, {145,12532}, {153,10935}, {355,12764}, {390,2801}, {392,3035}, {497,10051}, {758,2611}, {946,8068}, {950,12691}, {952,1898}, {960,1145}, {1317,2771}, {1537,12047}, {1697,6326}, {2098,12737}, {2829,12672}, {3036,10914}, {3295,12739}, {3476,12248}, {3586,8275}, {3601,9946}, {3612,3890}, {3753,6667}, {3885,12531}, {3899,5223}, {4294,6224}, {4302,12119}, {4313,9964}, {5252,10742}, {5531,9819}, {5533,10265}, {5730,8668}, {5919,12735}, {6264,7962}, {6702,7741}, {8071,12332}, {8236,12755}, {8239,12768}, {8240,12770}, {8241,12771}, {8390,12759}, {8392,12760}, {9668,12747}, {9785,9803}, {9952,10866}, {10284,10950}, {10738,12701}, {11924,12774}, {12647,12751}
X(12758) = midpoint of X(i) and X(j) for these {i,j}: {80,5697}, {145,12532}, {1320,3869}, {3885,12531}
X(12758) = reflection of X(i) in X(j) for these (i,j): (65,1387), (214,3884), (1145,960), (1317,9957), (10914,3036), (11570,1), (11571,5083), (12665,5887)
X(12758) = X(265)-of-Hutson-intouch-triangle
X(12758) = X(12121)-of-intouch-triangle
X(12758) = excentral-to-Hutson-intouch similarity image of X(6326)
X(12758) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,1768,10074), (1,11571,5083), (497,12247,10073), (1697,6326,10087), (5083,11571,11570), (10265,12053,5533)
The reciprocal orthologic center of these triangles is X(3869).
X(12759) lies on these lines: {363,6326}, {517,12733}, {1387,11026}, {1768,8111}, {2800,9836}, {2802,12633}, {5083,11039}, {5934,12691}, {6264,11527}, {6265,8109}, {8107,12515}, {8113,11570}, {8133,12771}, {8140,12760}, {8377,12611}, {8380,12619}, {8385,12755}, {8390,12758}, {8391,12770}, {9783,9803}, {9946,11854}, {9952,11856}, {9964,11886}, {11685,12532}, {11892,12551}, {11922,12768}
X(12759) = reflection of X(12760) in X(12767)
X(12759) = X(265)-of-inner-Hutson-triangle
X(12759) = excentral-to-inner-Hutson similarity image of X(6326)
The reciprocal orthologic center of these triangles is X(3869).
X(12760) lies on these lines: {517,12734}, {1387,11027}, {1768,8112}, {2800,9837}, {2802,12634}, {5083,11040}, {5935,12691}, {6264,11528}, {6265,8110}, {8108,12515}, {8114,11570}, {8135,12771}, {8140,12759}, {8378,12611}, {8381,12619}, {8386,12755}, {8392,12758}, {9946,11855}, {9952,11857}, {9964,11887}, {11686,12532}, {11893,12551}, {11925,12768}, {11926,12770}
X(12760) = reflection of X(12759) in X(12767)
X(12760) = X(265)-of-outer-Hutson-triangle
X(12760) = excentral-to-outer-Hutson similarity image of X(6326)
The reciprocal orthologic center of these triangles is X(40).
X(12761) lies on these lines: {4,11}, {12,12775}, {80,6001}, {100,11826}, {119,1376}, {149,12667}, {153,3434}, {355,2800}, {515,10738}, {952,6256}, {1012,8068}, {1158,12619}, {1317,10947}, {1478,1537}, {1519,12740}, {1532,10090}, {1768,10826}, {2787,12182}, {2802,12700}, {2950,5587}, {3035,6850}, {3419,12665}, {3585,10057}, {4996,6932}, {5840,11500}, {5842,10724}, {6265,12608}, {6667,6893}, {6713,6929}, {7971,9897}, {9913,10829}, {10058,10523}, {10074,10948}, {10698,10944}, {10794,12199}, {10871,12499}, {10914,12751}, {10919,12753}, {10920,12754}, {10945,12765}, {10946,12766}, {10949,12776}, {11373,11715}, {11390,12138}, {11865,12462}, {11866,12463}, {11903,12752}, {11928,12773}
X(12761) = midpoint of X(i) and X(j) for these {i,j}: {149,12667}, {7971,9897}
X(12761) = reflection of X(i) in X(j) for these (i,j): (1158,12619), (6265,12608), (12114,11), (12332,119), (12762,10742)
X(12761) = X(104)-of-inner-Johnson-triangle
X(12761) = {X(4), X(104)}-harmonic conjugate of X(12764)
The reciprocal orthologic center of these triangles is X(40).
X(12762) lies on these lines: {11,10532}, {12,104}, {20,100}, {72,12751}, {80,7686}, {119,958}, {355,2800}, {515,12738}, {952,10526}, {1317,10806}, {1768,10827}, {2787,12183}, {2802,5812}, {2886,6982}, {4295,12247}, {4298,10265}, {4301,10738}, {5220,5690}, {5270,11219}, {5432,12115}, {6253,10728}, {9913,10830}, {10058,10954}, {10074,10523}, {10698,10950}, {10786,12248}, {10795,12199}, {10872,12499}, {10921,12753}, {10922,12754}, {10951,12765}, {10952,12766}, {10955,12775}, {11236,12114}, {11374,11715}, {11391,12138}, {11867,12462}, {11868,12463}, {11904,12752}, {11929,12773}
X(12762) = reflection of X(12761) in X(10742)
X(12762) = X(104)-of-outer-Johnson-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12763) lies on the Johnson-Yff-inner circle and these lines: {1,10742}, {4,1317}, {5,10074}, {11,153}, {12,104}, {30,10087}, {55,2829}, {56,119}, {65,12751}, {80,942}, {100,7354}, {149,5229}, {355,11570}, {495,10058}, {515,12739}, {952,1478}, {1388,11729}, {1466,9657}, {1479,12735}, {1537,2098}, {1768,9578}, {1836,2802}, {1837,5083}, {2771,10057}, {2800,5252}, {3032,9553}, {3035,3436}, {3045,9653}, {3085,12248}, {3585,7972}, {5434,10711}, {5541,9579}, {5691,12743}, {6264,9612}, {6284,10728}, {6326,9613}, {8068,9654}, {9655,12331}, {9913,10831}, {10039,12515}, {10090,11698}, {10106,12740}, {10404,12736}, {10698,10944}, {10797,12199}, {10827,12619}, {10873,12499}, {10923,12753}, {10924,12754}, {10957,12776}, {11375,11715}, {11392,12138}, {11501,12332}, {11869,12462}, {11870,12463}, {11905,12752}, {11930,12765}, {11931,12766}, {12047,12737}
X(12763) = reflection of X(i) in X(j) for these (i,j): (55,10956), (10058,495)
X(12763) = X(104)-of-1st-Johnson-Yff-triangle
X(12763) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,10742,12764), (153,388,11), (3585,7972,10738), (9654,12773,8068)
The reciprocal orthologic center of these triangles is X(40).
X(12764) lies on the Johnson-Yff-outer circle and these lines: {1,10742}, {4,11}, {5,10058}, {30,10090}, {55,119}, {80,517}, {100,1329}, {149,3436}, {153,497}, {355,12758}, {377,6667}, {381,8068}, {480,528}, {496,10074}, {515,12740}, {529,10707}, {950,12739}, {952,1479}, {1156,11604}, {1319,1538}, {1320,5080}, {1387,1478}, {1388,6256}, {1532,5172}, {1537,2099}, {1737,12515}, {1768,9581}, {1836,12736}, {1837,2800}, {1898,2771}, {2475,6691}, {2478,3035}, {2787,12185}, {2802,12701}, {2841,10774}, {3032,9554}, {3036,3434}, {3045,9666}, {3057,12751}, {3058,10711}, {3303,10956}, {3586,6326}, {4186,9672}, {4857,7972}, {4996,11114}, {5432,6965}, {5533,9669}, {5541,9580}, {5722,11570}, {5840,6928}, {6264,9614}, {6265,10572}, {6713,6923}, {6840,10724}, {9668,12331}, {9670,10953}, {9913,10832}, {9957,12749}, {10087,11698}, {10698,10950}, {10798,12199}, {10826,12619}, {10874,12499}, {10925,12753}, {10926,12754}, {10958,12775}, {10959,12776}, {11376,11715}, {11393,12138}, {11502,12332}, {11871,12462}, {11872,12463}, {11906,12752}, {11932,12765}, {11933,12766}
X(12764) = midpoint of X(149) and X(3436)
X(12764) = reflection of X(i) in X(j) for these (i,j): (56,11), (100,1329), (10074,496)
X(12764) = X(104)-of-2nd-Johnson-Yff-triangle
X(12764) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,10742,12763), (80,3583,10738), (153,497,1317), (9669,12773,5533)
The reciprocal orthologic center of these triangles is X(40).
X(12765) lies on these lines: {11,8212}, {100,11828}, {104,493}, {119,8222}, {153,6462}, {515,12741}, {952,10669}, {1317,11947}, {1768,8188}, {2787,12186}, {2800,12440}, {2829,9838}, {6461,12766}, {8194,9913}, {8201,12462}, {8208,12463}, {8210,10698}, {8214,12751}, {8216,12753}, {8218,12754}, {8220,10742}, {10058,11951}, {10074,11953}, {10875,12499}, {11377,11715}, {11394,12138}, {11503,12332}, {11840,12199}, {11846,12248}, {11930,12763}, {11932,12764}, {11949,12773}, {11955,12775}, {11957,12776}
X(12765) = X(104)-of-Lucas-homothetic-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12766) lies on these lines: {11,8213}, {100,11829}, {104,494}, {119,8223}, {153,6463}, {515,12742}, {952,10673}, {1317,11948}, {1768,8189}, {2787,12187}, {2800,12441}, {2829,9839}, {6461,12765}, {8195,9913}, {8202,12462}, {8209,12463}, {8211,10698}, {8215,12751}, {8217,12753}, {8219,12754}, {8221,10742}, {10058,11952}, {10074,11954}, {10876,12499}, {11378,11715}, {11395,12138}, {11504,12332}, {11841,12199}, {11847,12248}, {11931,12763}, {11933,12764}, {11950,12773}, {11956,12775}, {11958,12776}
X(12766) = X(104)-of-Lucas(-1)-homothetic-triangle
The reciprocal orthologic center of these triangles is X(3869).
X(12767) lies on these lines: {1,104}, {10,9809}, {11,3339}, {40,2771}, {80,2093}, {100,3984}, {149,9589}, {153,3679}, {165,6326}, {200,12532}, {484,6001}, {516,9803}, {517,7993}, {952,7991}, {971,3245}, {1145,5223}, {1317,9819}, {1387,10980}, {1537,11219}, {1699,10265}, {1709,3065}, {1750,12691}, {2717,2958}, {2801,2951}, {2802,11519}, {2829,7992}, {3337,12672}, {4326,12755}, {4668,12751}, {4674,9355}, {5010,12332}, {5691,12247}, {5732,9964}, {6264,11531}, {6265,7987}, {7280,7971}, {7972,7990}, {7982,12773}, {7988,12611}, {7989,12619}, {8089,12771}, {8140,12759}, {8244,12768}, {8245,12770}, {8423,12774}, {9946,10857}, {10045,10057}, {10073,10092}, {10970,12749}, {10971,12750}, {11224,12737}, {11280,12114}
X(12767) = midpoint of X(12759) and X(12760)
X(12767) = reflection of X(i) in X(j) for these (i,j): (1,1768), (5531,40), (5691,12247), (6326,12515), (7982,12773), (9589,149), (9809,10), (11531,6264)
X(12767) = X(265)-of-6th-mixtilinear-triangle
X(12767) = excentral-to-6th-mixtilinear similarity image of X(6326)
X(12767) = {X(6326), X(12515)}-harmonic conjugate of X(165)
The reciprocal orthologic center of these triangles is X(3869).
X(12768) lies on these lines: {80,7595}, {104,7133}, {517,12744}, {952,9808}, {1387,11030}, {1768,8234}, {2771,12490}, {2800,7596}, {2802,12638}, {2829,12681}, {5083,11042}, {6264,11532}, {6265,8225}, {6326,8231}, {8224,12515}, {8228,12611}, {8230,12619}, {8233,12691}, {8237,12755}, {8239,12758}, {8243,11570}, {8244,12767}, {8246,12770}, {9789,9803}, {9946,10858}, {9952,10867}, {9964,10885}, {10265,12610}, {10891,12551}, {11687,12532}, {11996,12774}
X(12768) = X(265)-of-2nd-Pamfilos-Zhou-triangle
X(12768) = excentral-to-2nd-Pamfilos-Zhou similarity image of X(6326)
The reciprocal orthologic center of these triangles is X(3065).
X(12769) lies on these lines: {8,12535}, {90,6599}, {191,12409}, {1657,5693}, {1836,6763}, {2476,3336}
X(12769) = reflection of X(i) in X(j) for these (i,j): (12409,191), (12786,12682)
X(12769) = X(6595)-of-inner-Garcia-triangle
The reciprocal orthologic center of these triangles is X(3869).
X(12770) lies on these lines: {5,3120}, {21,104}, {80,256}, {517,12746}, {846,6326}, {952,2292}, {1284,11570}, {1387,11031}, {1768,8235}, {2800,9840}, {2802,12642}, {2829,12683}, {4199,12691}, {4220,12515}, {4425,10265}, {5051,12619}, {5083,11043}, {6264,11533}, {8229,12611}, {8238,12755}, {8240,12758}, {8245,12767}, {8246,12768}, {8249,12771}, {8391,12759}, {8425,12774}, {8731,9946}, {9791,9803}, {9952,10868}, {10892,12551}, {11688,12532}, {11926,12760}
X(12770) = X(265)-of-1st-Sharygin-triangle
X(12770) = 2nd-Sharygin-to-1st-Sharygin similarity image of X(13277)
X(12770) = excentral-to-1st-Sharygin similarity image of X(6326)
X(12770) = hexyl-to-1st-Sharygin similarity image of X(1768)
The reciprocal orthologic center of these triangles is X(3869).
X(12771) lies on these lines: {1,12772}, {517,8097}, {952,8093}, {1387,11032}, {1768,8081}, {2089,11570}, {2771,8099}, {2800,8091}, {2829,8095}, {6265,8077}, {6326,8078}, {8075,12515}, {8079,12691}, {8085,12611}, {8087,12619}, {8089,12767}, {8133,12759}, {8135,12760}, {8241,12758}, {8247,12768}, {8249,12770}, {8387,12755}, {8733,9946}, {9793,9803}, {9964,11888}, {11690,12532}, {11894,12551}
X(12771) = reflection of X(12772) in X(1)
X(12771) = X(265)-of-tangential-midarc-triangle
X(12771) = X(12898)-of-2nd-tangential-midarc-triangle
X(12771) = excentral-to-tangential-midarc similarity image of X(6326)
The reciprocal orthologic center of these triangles is X(3869).
X(12772) lies on these lines: {1,12771}, {174,11570}, {258,6326}, {1387,11033}, {2802,12644}, {5083,8351}, {6264,11899}, {6265,7588}, {8125,12532}, {8734,9946}, {9952,11859}, {11895,12551}
X(12772) = reflection of X(12771) in X(1)
X(12772) = X(265)-of-2nd-tangential-midarc-triangle
X(12772) = X(12898)-of-tangential-midarc-triangle
X(12772) = excentral-to-2nd-tangential-midarc similarity image of X(6326)
The reciprocal orthologic center of these triangles is X(40).
X(12773) lies on the Stammler circle and these lines: {1,399}, {2,11698}, {3,8}, {4,1484}, {5,153}, {11,381}, {30,149}, {36,9897}, {40,7993}, {55,7972}, {56,80}, {57,6797}, {119,1656}, {214,958}, {355,10265}, {382,2829}, {515,12747}, {517,1768}, {528,3534}, {993,3655}, {1001,2801}, {1012,10247}, {1317,3295}, {1320,8148}, {1385,5251}, {1387,3485}, {1482,2800}, {1483,6906}, {1537,10941}, {1597,1862}, {1598,12138}, {1657,5840}, {2099,11571}, {2787,12188}, {2802,11256}, {2830,11258}, {3032,9566}, {3035,5054}, {3036,9709}, {3045,9703}, {3243,3358}, {3304,12611}, {3359,11525}, {3428,12119}, {3526,6713}, {3576,5531}, {3579,3893}, {3652,3884}, {3830,10707}, {4413,5790}, {4428,11274}, {5055,10711}, {5073,10724}, {5093,10759}, {5450,11849}, {5533,9669}, {5603,9809}, {5708,12736}, {5730,12532}, {5844,6909}, {6361,9802}, {6767,12735}, {6862,10805}, {6912,10283}, {6913,11729}, {6914,7967}, {6971,10785}, {6980,12115}, {7517,9913}, {7982,12767}, {8068,9654}, {9301,12499}, {10966,12743}, {11492,12461}, {11493,12460}, {11842,12199}, {11875,12462}, {11876,12463}, {11911,12752}, {11916,12753}, {11917,12754}, {11928,12761}, {11929,12762}, {11949,12765}, {11950,12766}, {12000,12775}
X(12773) = midpoint of X(i) and X(j) for these {i,j}: {40,7993}, {149,12248}, {944,9803}, {1768,6264}, {6361,9802}, {7982,12767}
X(12773) = reflection of X(i) in X(j) for these (i,j): (3,104), (4,1484), (153,5), (355,10265), (382,10738), (1482,12737), (3830,10707), (5073,10724), (5541,3579), (5790,11219), (6265,11715), (6326,1385), (8148,1320), (10742,11), (12331,3), (12332,5450), (12702,12515), (12738,214), (12751,12619)
X(12773) = anticomplement of X(11698)
X(12773) = antipode of X(12331) in Stammler circle
X(12773) = X(104)-of-X3-ABC-reflections-triangle
X(12773) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (11,10074,999), (11,10742,381), (1317,10058,3295), (5533,12764,9669), (6265,11715,10246), (8068,12763,9654)
The reciprocal orthologic center of these triangles is X(3869).
X(12774) lies on these lines: {174,11570}, {517,12748}, {952,12445}, {1387,8083}, {2771,12491}, {2800,8351}, {2802,12646}, {2829,12685}, {6264,11535}, {6265,7587}, {8126,12532}, {8382,12619}, {8423,12767}, {8425,12770}, {8729,9946}, {9803,11891}, {9952,11860}, {9964,11890}, {11896,12551}, {11924,12758}, {11996,12768}
X(12774) = X(265)-of-Yff-central-triangle
X(12774) = excentral-to-Yff-central similarity image of X(6326)
The reciprocal orthologic center of these triangles is X(40).
X(12775) lies on these lines: {1,104}, {3,1537}, {4,100}, {11,6833}, {12,12761}, {35,12608}, {55,2829}, {56,11047}, {149,6847}, {153,10528}, {515,10087}, {516,1519}, {946,10090}, {952,1012}, {962,4996}, {1006,3359}, {1145,10306}, {1317,10965}, {1376,6968}, {1470,5603}, {1512,5537}, {1621,6950}, {2787,12189}, {2802,12703}, {3035,6834}, {3295,10935}, {3560,5554}, {3601,11919}, {3811,12665}, {4302,6256}, {5528,11372}, {6001,12739}, {6265,12672}, {6326,12705}, {6713,6977}, {6831,10738}, {6935,10596}, {9913,10834}, {10073,12616}, {10742,10942}, {10803,12199}, {10805,12248}, {10878,12499}, {10915,12751}, {10929,12753}, {10930,12754}, {10955,12762}, {10958,12764}, {11400,12138}, {11881,12462}, {11882,12463}, {11914,12752}, {11955,12765}, {11956,12766}, {12000,12773}
X(12775) = reflection of X(i) in X(j) for these (i,j): (104,10058), (12115,10956)
X(12775) = X(104)-of-inner-Yff-tangents-triangle
X(12775) = {X(104),X(10698)}-harmonic conjugate of X(12776)
X(12775) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (119,11248,100), (5450,10074,104), (6906,10698,104)
The reciprocal orthologic center of these triangles is X(40).
X(12776) lies on these lines: {1,104}, {4,10707}, {11,10532}, {72,6265}, {100,6942}, {119,10527}, {153,10529}, {411,10031}, {515,12750}, {519,6905}, {528,6934}, {952,3149}, {1317,10966}, {1537,10941}, {2787,12190}, {2802,12704}, {2829,12116}, {3058,6938}, {3304,6833}, {3829,6968}, {4848,10090}, {4996,6585}, {5288,5660}, {6326,6762}, {6830,10072}, {6834,12513}, {6941,10711}, {6956,10597}, {9851,10971}, {9913,10835}, {10742,10943}, {10804,12199}, {10806,12248}, {10879,12499}, {10916,12751}, {10931,12753}, {10932,12754}, {10949,12761}, {10957,12763}, {10959,12764}, {11401,12138}, {11510,12332}, {11883,12462}, {11884,12463}, {11915,12752}, {11957,12765}, {11958,12766}
X(12776) = reflection of X(104) in X(10074)
X(12776) = X(104)-of-outer-Yff-tangents-triangle
X(12776) = {X(104),X(10698)}-harmonic conjugate of X(12775)
The reciprocal orthologic center of these triangles is X(40).
X(12777) lies on these lines: {1,12521}, {2,12260}, {4,5223}, {8,6835}, {10,6601}, {40,4847}, {100,3523}, {354,12439}, {497,10395}, {515,12120}, {518,12692}, {519,8000}, {942,2550}, {1737,10075}, {2551,12019}, {3295,6675}, {3419,12667}, {3434,11684}, {3679,9898}, {3873,12537}, {5090,12139}, {5587,12599}, {5657,12249}, {5687,12333}, {5688,12802}, {5689,12801}, {6737,11525}, {6743,6864}, {8193,12411}, {8197,12464}, {8204,12465}, {9804,11024}, {9857,12500}, {10039,10059}, {10791,12200}, {11900,12789}
X(12777) = midpoint of X(8) and X(9874)
X(12777) = reflection of X(i) in X(j) for these (i,j): (7160,10), (12756,12670)
X(12777) = anticomplement of X(12260)
X(12777) = X(7160)-of-outer-Garcia-triangle
The reciprocal orthologic center of these triangles is X(6102).
X(12778) lies on these lines: {1,1511}, {2,12261}, {3,11709}, {8,12383}, {10,265}, {30,12368}, {35,1807}, {40,2940}, {46,3028}, {65,5504}, {72,74}, {110,517}, {113,12699}, {146,6361}, {165,12041}, {399,12702}, {484,4551}, {515,12121}, {516,7728}, {542,3416}, {1155,10081}, {1385,7984}, {1482,11720}, {1770,12373}, {2777,12779}, {2778,9934}, {2836,11579}, {3057,10091}, {3448,5657}, {3656,5642}, {3679,12407}, {5090,12140}, {5183,11670}, {5587,10113}, {5609,7991}, {5687,12334}, {5688,12804}, {5689,12803}, {5690,12785}, {5886,5972}, {7727,11010}, {7968,10820}, {7969,10819}, {8193,12412}, {8197,12466}, {8204,12467}, {9778,12244}, {9857,12501}, {10778,12619}, {10791,12201}, {11900,12790}
X(12778) = midpoint of X(i) and X(j) for these {i,j}: {8,12383}, {40,2948}, {146,6361}, {399,12702}
X(12778) = reflection of X(i) in X(j) for these (i,j): (1,1511), (74,3579), (265,10), (1482,11720), (3656,5642), (7978,11699), (7984,1385), (10778,12619), (12699,113)
X(12778) = anticomplement of X(12261)
X(12778) = X(265)-of-outer-Garcia-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12779) lies on these lines: {1,2883}, {2,12262}, {4,65}, {8,6225}, {10,64}, {30,9928}, {154,4297}, {165,5894}, {221,950}, {226,1854}, {355,6000}, {440,12520}, {515,1498}, {516,5895}, {517,5878}, {519,7973}, {607,5776}, {944,5656}, {1103,1490}, {1503,3751}, {1698,6696}, {1699,5893}, {1712,8899}, {1737,10076}, {2192,10106}, {2777,12778}, {3197,8804}, {3556,7580}, {3679,9899}, {5090,11381}, {5252,6285}, {5587,6247}, {5657,12250}, {5687,12335}, {5688,6266}, {5689,6267}, {6684,10606}, {7522,12617}, {7987,10192}, {8193,9914}, {8197,12468}, {8204,12469}, {8567,10164}, {9857,12502}, {10039,10060}, {10791,12202}, {11900,12791}
X(12779) = midpoint of X(8) and X(6225)
X(12779) = reflection of X(i) in X(j) for these (i,j): (1,2883), (64,10)
X(12779) = anticomplement of X(12262)
X(12779) = X(64)-of-outer-Garcia-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12780) lies on these lines: {1,619}, {2,11706}, {8,617}, {10,14}, {40,2946}, {515,5474}, {517,5613}, {519,5464}, {530,9881}, {531,3679}, {542,3416}, {1018,1276}, {1698,6670}, {1737,10077}, {5090,12141}, {5470,11599}, {5479,5587}, {5657,6773}, {5687,12336}, {5688,6269}, {5689,6271}, {7975,11711}, {7983,11705}, {8193,9915}, {8197,12470}, {8204,12471}, {9857,9981}, {10039,10061}, {10791,12204}, {11900,12792}
X(12780) = midpoint of X(8) and X(617)
X(12780) = reflection of X(i) in X(j) for these (i,j): (1,619), (14,10), (7975,11711), (7983,11705)
X(12780) = X(14)-of-outer-Garcia-triangle
X(12780) = {X(3416),X(3654)}-harmonic conjugate of X(12781)
The reciprocal orthologic center of these triangles is X(3).
X(12781) lies on these lines: {1,618}, {2,11705}, {8,616}, {10,13}, {40,2945}, {515,5473}, {517,5617}, {519,5463}, {530,3679}, {531,9881}, {542,3416}, {1018,1277}, {1698,6669}, {1737,10078}, {5090,12142}, {5469,11599}, {5478,5587}, {5657,6770}, {5687,12337}, {5688,6268}, {5689,6270}, {7974,11711}, {7983,11706}, {8193,9916}, {8197,12472}, {8204,12473}, {9857,9982}, {10039,10062}, {10791,12205}, {11900,12793}
X(12781) = midpoint of X(8) and X(616)
X(12781) = reflection of X(i) in X(j) for these (i,j): (1,618), (13,10), (7974,11711), (7983,11706)
X(12781) = X(13)-of-outer-Garcia-triangle
X(12781) = {X(3416),X(3654)}-harmonic conjugate of X(12780)
The reciprocal orthologic center of these triangles is X(3).
X(12782) lies on these lines: {1,39}, {2,12263}, {3,11364}, {6,12194}, {8,194}, {10,75}, {37,4446}, {38,3661}, {40,511}, {99,12195}, {165,5188}, {190,3764}, {192,3778}, {238,3730}, {256,3729}, {262,946}, {274,4476}, {355,2782}, {384,10791}, {515,11257}, {517,3095}, {518,3094}, {519,7757}, {536,4443}, {538,3679}, {712,4424}, {732,3416}, {734,4680}, {736,4769}, {944,7709}, {982,3912}, {985,5280}, {1125,7786}, {1385,11171}, {1469,3503}, {1582,2273}, {1698,3934}, {1700,12021}, {1701,12020}, {1737,10079}, {1740,3688}, {1757,3496}, {2664,4517}, {3122,4664}, {3579,9821}, {3624,6683}, {4642,4712}, {4649,5145}, {4669,11055}, {5007,10789}, {5090,12143}, {5587,6248}, {5657,12251}, {5687,12338}, {5688,6272}, {5689,6273}, {5886,11272}, {5969,9881}, {7697,9956}, {7772,10800}, {8193,9917}, {8197,12474}, {8204,12475}, {8298,8715}, {9857,9983}, {10039,10063}, {11900,12794}
X(12782) = midpoint of X(8) and X(194)
X(12782) = reflection of X(i) in X(j) for these (i,j): (1,39), (76,10), (4443,4735), (9821,3579)
X(12782) = anticomplement of X(12263)
X(12782) = X(76)-of-outer-Garcia-triangle
X(12782) = {X(1), X(3097)}-harmonic conjugate of X(39)
The reciprocal orthologic center of these triangles is X(3).
X(12783) lies on these lines: {1,6292}, {2,12264}, {8,2896}, {10,82}, {515,12122}, {517,6287}, {519,7977}, {732,3416}, {754,3679}, {1018,3496}, {1698,6704}, {1737,10080}, {3579,8725}, {4745,12156}, {5090,12144}, {5587,6249}, {5657,12252}, {5687,12339}, {5688,6274}, {5689,6275}, {5690,9864}, {6308,11364}, {6684,9751}, {8193,9918}, {8197,12476}, {8204,12477}, {10039,10064}, {10791,12206}, {11900,12795}
X(12783) = midpoint of X(8) and X(2896)
X(12783) = reflection of X(i) in X(j) for these (i,j): (1,6292), (83,10), (8725,3579)
X(12783) = anticomplement of X(12264)
X(12783) = X(83)-of-outer-Garcia-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12784) lies on these lines: {1,132}, {2,12265}, {8,12384}, {10,1297}, {80,2831}, {112,515}, {127,5587}, {944,11722}, {946,10705}, {1837,3320}, {2794,5691}, {2799,9864}, {2806,12751}, {3576,6720}, {3679,9530}, {5090,12145}, {5252,6020}, {5657,12253}, {5687,12340}, {5688,12806}, {5689,12805}, {8193,12413}, {8197,12478}, {8204,12479}, {9517,12368}, {9857,12503}, {10791,12207}, {11900,12796}
X(12784) = midpoint of X(8) and X(12384)
X(12784) = reflection of X(i) in X(j) for these (i,j): (1,132), (944,11722), (1297,10), (10705,946)
X(12784) = anticomplement of X(12265)
X(12784) = X(1297)-of-outer-Garcia-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12785) lies on these lines: {1,1209}, {2,12266}, {8,2888}, {10,54}, {65,2962}, {72,6145}, {80,6286}, {195,5790}, {355,1154}, {515,7691}, {517,6288}, {519,7979}, {539,3679}, {1698,6689}, {1737,10082}, {3468,4551}, {3574,5587}, {3751,5965}, {5090,11576}, {5657,12254}, {5687,12341}, {5688,6276}, {5689,6277}, {5690,12778}, {8193,9920}, {8197,12480}, {8204,12481}, {9857,9985}, {10039,10066}, {10628,12368}, {10791,12208}, {11900,12797}
X(12785) = midpoint of X(8) and X(2888)
X(12785) = reflection of X(i) in X(j) for these (i,j): (1,1209), (54,10)
X(12785) = anticomplement of X(12266)
X(12785) = X(54)-of-outer-Garcia-triangle
The reciprocal orthologic center of these triangles is X(79).
X(12786) lies on these lines: {1,6597}, {2,12267}, {8,12535}, {10,10266}, {100,191}, {2802,6595}, {3679,12409}, {5090,12146}, {5538,5694}, {5587,12600}, {5657,12255}, {5687,12342}, {5688,12808}, {5689,12807}, {8193,12414}, {8197,12482}, {8204,12483}, {9857,12504}, {10791,12209}, {11024,12543}, {11900,12798}
X(12786) = reflection of X(i) in X(j) for these (i,j): (6597,12745), (10266,10), (12769,12682)
X(12786) = anticomplement of X(12267)
X(12786) = X(10266)-of-outer-Garcia-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12787) lies on these lines: {1,642}, {2,12268}, {8,487}, {10,486}, {515,12123}, {517,6290}, {519,7980}, {1018,6212}, {1698,6119}, {1737,10083}, {3416,3564}, {3617,12221}, {3679,9906}, {5090,12147}, {5587,6251}, {5657,12256}, {5687,12343}, {5688,6280}, {5689,6281}, {5790,12601}, {8193,9921}, {8197,12484}, {8204,12485}, {9857,9986}, {10039,10067}, {10791,12210}, {11900,12799}
X(12787) = midpoint of X(8) and X(487)
X(12787) = reflection of X(i) in X(j) for these (i,j): (1,642), (486,10)
X(12787) = anticomplement of X(12268)
X(12787) = X(486)-of-outer-Garcia-triangle
X(12787) = {X(3416),X(5690)}-harmonic conjugate of X(12788)
The reciprocal orthologic center of these triangles is X(3).
X(12788) lies on these lines: {1,641}, {2,12269}, {8,488}, {10,485}, {515,12124}, {517,6289}, {519,7981}, {1018,6213}, {1698,6118}, {1737,10084}, {3416,3564}, {3617,12222}, {3679,9907}, {5090,12148}, {5587,6250}, {5657,12257}, {5687,12344}, {5688,6278}, {5689,6279}, {5790,12602}, {8193,9922}, {8197,12486}, {8204,12487}, {9857,9987}, {10039,10068}, {10791,12211}, {11900,12800}
X(12788) = midpoint of X(8) and X(488)
X(12788) = reflection of X(i) in X(j) for these (i,j): (1,641), (485,10)
X(12788) = anticomplement of X(12269)
X(12788) = X(485)-of-outer-Garcia-triangle
X(12788) = {X(3416),X(5690)}-harmonic conjugate of X(12787)
The reciprocal orthologic center of these triangles is X(40).
X(12789) lies on these lines: {30,12120}, {402,7160}, {4240,9874}, {8000,11910}, {9898,11852}, {10059,11912}, {10075,11913}, {11831,12260}, {11832,12139}, {11839,12200}, {11845,12249}, {11848,12333}, {11853,12411}, {11885,12500}, {11897,12599}, {11900,12777}, {11901,12801}, {11902,12802}
X(12789) = midpoint of X(4240) and X(9874)
X(12789) = reflection of X(7160) in X(402)
X(12789) = X(10266)-of-Gossard-triangle
The reciprocal orthologic center of these triangles is X(6102).
X(12790) lies on these lines: {30,110}, {265,402}, {542,12583}, {1511,1650}, {2771,12729}, {2777,12791}, {3448,11845}, {4240,12383}, {5663,12113}, {10088,11905}, {10091,11906}, {10113,11897}, {11831,12261}, {11832,12140}, {11839,12201}, {11848,12334}, {11852,12407}, {11853,12412}, {11885,12501}, {11900,12778}, {11901,12803}, {11902,12804}
X(12790) = midpoint of X(4240) and X(12383)
X(12790) = X(265)-of-Gossard-triangle
X(12790) = reflection of X(i) in X(j) for these (i,j): (265,402), (1650,1511)
The reciprocal orthologic center of these triangles is X(4).
X(12791) lies on these lines: {30,155}, {64,402}, {1650,2883}, {2777,12790}, {4240,6225}, {5502,12113}, {6000,11251}, {6001,12696}, {6247,11897}, {6266,11902}, {6267,11901}, {7355,11909}, {7973,11910}, {9899,11852}, {9914,11853}, {10060,11912}, {10076,11913}, {11381,11832}, {11831,12262}, {11839,12202}, {11845,12250}, {11848,12335}, {11885,12502}, {11900,12779}
X(12791) = midpoint of X(4240) and X(6225)
X(12791) = reflection of X(i) in X(j) for these (i,j): (64,402), (1650,2883)
X(12791) = X(64)-of-Gossard-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12792) lies on these lines: {30,5464}, {530,12347}, {531,1651}, {542,12583}, {617,4240}, {619,1650}, {5479,11897}, {6269,11902}, {6271,11901}, {6773,11845}, {7974,11910}, {9900,11852}, {9915,11853}, {9981,11885}, {10061,11912}, {10077,11913}, {11706,11831}, {11832,12141}, {11839,12204}, {11848,12336}, {11900,12780}
X(12792) = X(14)-of-Gossard-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12793) lies on these lines: {30,5463}, {530,1651}, {531,12347}, {542,12583}, {616,4240}, {618,1650}, {5478,11897}, {6268,11902}, {6270,11901}, {6770,11845}, {7975,11910}, {9901,11852}, {9916,11853}, {9982,11885}, {10062,11912}, {10078,11913}, {11705,11831}, {11832,12142}, {11839,12205}, {11848,12337}, {11900,12781}
X(12793) = X(13)-of-Gossard-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12794) lies on these lines: {30,3095}, {39,1650}, {76,402}, {194,4240}, {384,11839}, {511,12113}, {538,1651}, {730,12438}, {732,12583}, {2782,11251}, {5969,12347}, {6248,11897}, {6272,11902}, {6273,11901}, {7976,11910}, {9902,11852}, {9917,11853}, {9983,11885}, {10063,11912}, {10079,11913}, {11831,12263}, {11832,12143}, {11845,12251}, {11848,12338}, {11863,12474}, {11864,12475}, {11900,12782}
X(12794) = midpoint of X(194) and X(4240)
X(12794) = X(76)-of-Gossard-triangle
X(12794) = reflection of X(i) in X(j) for these (i,j): (76,402), (1650,39)
The reciprocal orthologic center of these triangles is X(3).
X(12795) lies on these lines: {30,6287}, {83,402}, {732,12583}, {754,1651}, {1650,6292}, {2896,4240}, {6249,11897}, {6274,11902}, {6275,11901}, {7977,11910}, {9903,11852}, {9918,11853}, {10064,11912}, {10080,11913}, {11831,12264}, {11832,12144}, {11839,12206}, {11845,12252}, {11848,12339}, {11863,12476}, {11864,12477}, {11900,12783}
X(12795) = midpoint of X(2896) and X(4240)
X(12795) = reflection of X(i) in X(j) for these (i,j): (83,402), (1650,6292)
X(12795) = X(83)-of-Gossard-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12796) lies on these lines: {30,112}, {127,11897}, {132,1650}, {402,1297}, {1651,9530}, {2799,12181}, {2806,12752}, {3320,11909}, {4240,12384}, {9517,12369}, {11831,12265}, {11832,12145}, {11839,12207}, {11845,12253}, {11848,12340}, {11852,12408}, {11853,12413}, {11885,12503}, {11900,12784}, {11901,12805}, {11902,12806}
X(12796) = midpoint of X(4240) and X(12384)
X(12796) = reflection of X(i) in X(j) for these (i,j): (1297,402), (1650,132)
X(12796) = X(1297)-of-Gossard-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12797) lies on these lines: {30,6288}, {54,402}, {195,11911}, {539,1651}, {1154,11251}, {1209,1650}, {2888,4240}, {3574,11897}, {6276,11902}, {6277,11901}, {7979,11910}, {9905,11852}, {9920,11853}, {9985,11885}, {10066,11912}, {10082,11913}, {10628,12369}, {11576,11832}, {11831,12266}, {11839,12208}, {11845,12254}, {11848,12341}, {11900,12785}
X(12797) = midpoint of X(2888) and X(4240)
X(12797) = reflection of X(i) in X(j) for these (i,j): (54,402), (1650,1209)
X(12797) = X(54)-of-Gossard-triangle
The reciprocal orthologic center of these triangles is X(79).
X(12798) lies on these lines: {402,10266}, {11831,12267}, {11832,12146}, {11839,12209}, {11845,12255}, {11848,12342}, {11852,12409}, {11853,12414}, {11885,12504}, {11897,12600}, {11900,12786}, {11901,12807}, {11902,12808}
X(12798) = reflection of X(10266) in X(402)
The reciprocal orthologic center of these triangles is X(3).
X(12799) lies on these lines: {30,6290}, {402,486}, {487,4240}, {642,1650}, {3564,12418}, {6251,11897}, {6280,11902}, {6281,11901}, {7980,11910}, {9906,11852}, {9921,11853}, {9986,11885}, {10067,11912}, {10083,11913}, {11831,12268}, {11832,12147}, {11839,12210}, {11845,12256}, {11848,12343}, {11863,12484}, {11864,12485}, {11900,12787}, {11911,12601}
X(12799) = X(486)-of-Gossard-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12800) lies on these lines: {30,6289}, {402,485}, {488,4240}, {641,1650}, {3564,12418}, {6250,11897}, {6278,11902}, {6279,11901}, {7981,11910}, {9907,11852}, {9922,11853}, {9987,11885}, {10068,11912}, {10084,11913}, {11831,12269}, {11832,12148}, {11845,12257}, {11848,12344}, {11863,12486}, {11864,12487}, {11900,12788}, {11911,12602}
X(12800) = X(485)-of-Gossard-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12801) lies on these lines: {6,7160}, {1271,9874}, {5589,9898}, {5595,12411}, {5605,8000}, {5689,12777}, {6202,12599}, {8198,12464}, {8205,12465}, {9994,12500}, {10040,10059}, {10048,10075}, {10783,12249}, {10792,12200}, {11370,12260}, {11388,12139}, {11497,12333}, {11824,12120}, {11901,12789}
X(12801) = reflection of X(12802) in X(7160)
X(12801) = X(7160)-of-inner-Grebe-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12802) lies on these lines: {6,7160}, {1270,9874}, {5588,9898}, {5594,12411}, {5604,8000}, {5688,12777}, {6201,12599}, {8199,12464}, {8206,12465}, {9995,12500}, {10041,10059}, {10049,10075}, {10784,12249}, {10793,12200}, {11371,12260}, {11389,12139}, {11498,12333}, {11825,12120}, {11902,12789}
X(12802) = reflection of X(12801) in X(7160)
X(12802) = X(7160)-of-outer-Grebe-triangle
The reciprocal orthologic center of these triangles is X(6102).
X(12803) lies on these lines: {6,13}, {30,7725}, {110,6215}, {568,7720}, {1163,1986}, {1271,12383}, {1511,5591}, {2771,6263}, {2777,6267}, {2931,8903}, {3448,10783}, {3581,10814}, {5589,12407}, {5595,12412}, {5663,5871}, {5689,12778}, {5875,6277}, {6202,10113}, {6218,12236}, {8198,12466}, {8205,12467}, {9994,12501}, {10088,10923}, {10091,10925}, {10792,12201}, {11370,12261}, {11388,12140}, {11497,12334}, {11824,12121}, {11901,12790}
X(12803) = reflection of X(12804) in X(265)
X(12803) = X(265)-of-inner-Grebe-triangle
The reciprocal orthologic center of these triangles is X(6102).
X(12804) lies on these lines: {6,13}, {30,7726}, {110,6214}, {568,7721}, {1162,1986}, {1270,12383}, {1511,5590}, {2771,6262}, {2777,6266}, {2931,8904}, {3448,10784}, {3581,10815}, {5588,12407}, {5594,12412}, {5663,5870}, {5688,12778}, {5874,6276}, {6201,10113}, {6217,12236}, {8199,12466}, {8206,12467}, {9995,12501}, {10088,10924}, {10091,10926}, {10793,12201}, {11371,12261}, {11389,12140}, {11498,12334}, {11825,12121}, {11902,12790}
X(12804) = reflection of X(12803) in X(265)
X(12804) = X(265)-of-outer-Grebe-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12805) lies on these lines: {6,1297}, {112,11824}, {127,6202}, {132,5591}, {1271,12384}, {2781,7732}, {2794,6319}, {2799,6227}, {2806,12753}, {3320,10927}, {5589,12408}, {5595,12413}, {5689,12784}, {5861,9530}, {7725,9517}, {8198,12478}, {8205,12479}, {9994,12503}, {10783,12253}, {10792,12207}, {11370,12265}, {11388,12145}, {11497,12340}, {11901,12796}
X(12805) = X(1297)-of-inner-Grebe-triangle
X(12805) = reflection of X(12806) in X(1297)
The reciprocal orthologic center of these triangles is X(4).
X(12806) lies on these lines: {6,1297}, {112,11825}, {127,6201}, {132,5590}, {1270,12384}, {2781,7733}, {2794,6320}, {2799,6226}, {2806,12754}, {3320,10928}, {5588,12408}, {5594,12413}, {5688,12784}, {5860,9530}, {7726,9517}, {8199,12478}, {8206,12479}, {9995,12503}, {10784,12253}, {10793,12207}, {11371,12265}, {11389,12145}, {11498,12340}, {11902,12796}
X(12806) = X(1297)-of-outer-Grebe-triangle
X(12806) = reflection of X(12805) in X(1297)
The reciprocal orthologic center of these triangles is X(79).
X(12807) lies on these lines: {6,10266}, {5589,12409}, {5595,12414}, {5689,12786}, {6202,12600}, {8198,12482}, {8205,12483}, {9994,12504}, {10783,12255}, {10792,12209}, {11370,12267}, {11388,12146}, {11497,12342}, {11901,12798}
X(12807) = reflection of X(12808) in X(10266)
X(12807) = X(10266)-of-inner-Grebe-triangle
The reciprocal orthologic center of these triangles is X(79).
X(12808) lies on these lines: {6,10266}, {5588,12409}, {5594,12414}, {5688,12786}, {6201,12600}, {8199,12482}, {8206,12483}, {9995,12504}, {10784,12255}, {10793,12209}, {11371,12267}, {11389,12146}, {11498,12342}, {11902,12798}
X(12808) = reflection of X(12807) in X(10266)
X(12808) = X(10266)-of-outer-Grebe-triangle
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25581.
X(12809) lies on the incircle and these lines: {1,12810}, {65,2089}, {177,10505}, {1122,7 371}, {6018,10508}
X(12809) = X(7371)-Ceva conjugate of X(3669)
X(12809) = X(108)-of-intouch-triangle
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25582.
X(12810) lies on these lines: {1,12809}, {3,6585}
As a point of the Euler line, X(12811) has Shinagawa coefficients (7,11).
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25590.
X(12811) lies on these lines: {2,3}, {517,4540}, {3303,10592}, {3304,10593}, {3614,3746}, {4701,5844}, {5418,10147}, {5420,10148}, {5563,7173}, {5609,11801}, {6488,8253}, {6489,8252}, {11695,12046}
X(12811) = midpoint of X(i) and X(j) for these {i,j}: {3,12102}, {4,3530}, {5,3850}, {140,3861}, {381,10109}, {546,3628}, {547,3860}, {3845,10124}, {5066,11737}
X(12811) = reflection of X(i) in X(j) for these (i,j): (3856,3850), (11540,547), (11695,12046), (12108,3628)
X(12811) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,5,547), (4,547,3530), (4,632,12103), (4,3859,3860), (4,5070,8703), (4,5079,632), (5,3627,3090), (5,3845,1656), (140,12101,20), (381,3627,546), (546,3627,3861), (632,3627,8703), (1656,3845,548), (3090,3091,381), (3090,3627,140), (3091,3146,3855), (3525,5076,550), (3628,12102,3), (3843,5056,549), (3850,3861,381), (3861,10109,140), (5055,5076,3525)
As a point of the Euler line, X(12812) has Shinagawa coefficients (11,7).
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25590.
X(12812) lies on these lines: {2,3}, {373,5876}, {576,3630}, {3303,10593}, {3304,10592}, {3614,5563}, {3625,10175}, {3633,5886}, {3635,5901}, {3746,7173}, {4668,5844}, {4691,9956}, {5305,7603}, {5690,7988}, {5943,12046}, {6560,10148}, {6561,10147}, {10095,10170}
X(12812) = midpoint of X(i) and X(j) for these {i,j}: {5,1656}, {140,3859}, {631,3858}, {632,3091}
X(12812) = reflection of X(i) in X(j) for these (i,j): (546,3091), (632,3628), (3522,3530), (3843,3850), (5071,10109)
X(12812) = complement of X(15712)
X(12812) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,3627,12108), (3,11541,550), (4,5,11737), (5,3627,5072), (5,3845,5068), (140,546,12103), (546,547,3628), (546,548,3627), (546,3091,3859), (546,3628,140), (546,12103,3853), (1656,3843,2), (3091,5076,3858), (3627,3850,546), (3627,5072,3850), (3627,12108,548), (3628,3856,10303), (3843,5072,3091), (3857,12102,546), (5070,12101,140), (10303,11541,3)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25592.
X(12813) lies on these lines: {1,10502}, {164,5708}, {177,942}, {5049, 8422}, {5439,11691}, {8083,8091} ,{9957,11191}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25592.
X(12814) lies on these lines: {1,7597}, {57,3659}, {65,2089}, {174,354}, {177,942}
X(12814) = X(11)-of-intouch triangle
See Tran Quang Hung and César Lozada, Hyacinthos 25601.
X(12815) lies on these lines: {2,7765}, {4,5206}, {6,17}, {32,5056}, {115,140}, {187,3850}, {532,8260}, {533,8259}, {547,5007}, {550,3054}, {574,3533}, {629,6674}, {630,6673}, {1504,10195}, {1505,10194}, {3090,7753}, {3523,7756}, {3525,11648}, {3628,9698}, {3851,7747}, {5059,8588}, {5067,7772}, {5070,5309}, {5461,7824}, {6292,6722}
X(12815) = midpoint of X(17) and X(18)
X(12815) = reflection of X(i) in X(j) for these (i,j): (629,6674), (630,6673)
See Tran Quang Hung and César Lozada, Hyacinthos 25606.
X(12816) = outer Hung-Lozada two-hexagons point, and X(12817) = inner Hung-Lozada two-hexagons point. See Tran Quang Hung and César Lozada, Hyacinthos 25607.
Let A' be the orthocenter of BCX(17), and define B', C' cyclically. X(12816) is the centroid of A'B'C'. (Randy Hutson, July 21, 2017)
X(12816) lies on the Kiepert hyperbola and these lines: {2,10646}, {3,10188}, {5,10187}, {6,12817}, {13,3830}, {14,3845}, {16,5066}, {17,30}, {18,381}, {62,3839}, {98,5470}, {383,7608}, {395,3860}, {531,11122}, {532,5487}, {542,11602}, {671,6778}, {1080,7607}, {2043,10195}, {2044,10194}, {3412,3627}, {5071,5237}, {5485,5863}, {8781,9116}, {10159,11303}
X(12816) = isogonal conjugate of X(10645)
See Tran Quang Hung and César Lozada, Hyacinthos 25606.
X(12816) = outer Hung-Lozada two-hexagons point, and X(12817) = inner Hung-Lozada two-hexagons point. See Tran Quang Hung and César Lozada, Hyacinthos 25607.
Let A' be the orthocenter of BCX(18), and define B', C' cyclically. X(12817) is the centroid of A'B'C'. (Randy Hutson, July 21, 2017)
X(12817) lies on the Kiepert hyperbola and these lines: {2,10645}, {3,10187}, {5,10188}, {6,12816}, {13,3845}, {14,3830}, {15,5066}, {17,381}, {18,30}, {61,3839}, {98,5469}, {383,7607}, {396,3860}, {530,11121}, {533,5488}, {542,11603}, {671,6777}, {1080,7608}, {2043,10194}, {2044,10195}, {3411,3627}, {5071,5238}, {5485,5862}, {8781,9114}, {10159,11304}
X(12817) = isogonal conjugate of X(10646)
See Tran Quang Hung and César Lozada, Hyacinthos 25607.
X(12818) lies on the Kiepert hyperbola and these lines: {5,6434}, {6,12819}, {372,3591}, {382,485}, {486,546}, {550,10195}, {1131,6561}, {1132,6436}, {1152,11737}, {1327,6470}, {1328,3070} et al
See Tran Quang Hung and César Lozada, Hyacinthos 25607.
X(12819) lies on the Kiepert hyperbola and these lines: {5,6433}, {6,12818}, {371,3590}, {382,486}, {485,546}, {550,10194}, {1131,6435}, {1132,6560}, {1151,11737}, {1327,3071}, {1328,6471}
See Tran Quang Hung and César Lozada, Hyacinthos 25607.
X(12820) lies on the Kiepert hyperbola and these lines: {6,12821}, {17,382}, {18,546}, {383,11669}, {550,10188} et al
See Tran Quang Hung and César Lozada, Hyacinthos 25607.
X(12821) is the radical center of the de Longchamps circles of the adjunct anti-altimedial triangles. (Randy Hutson, November 2, 2017)
X(12821) lies on the Kiepert hyperbola and these lines: {6,12820}, {17,546}, {18,382}, {550,10187}, {1080,11669 et al
See Tran Quang Hung and César Lozada, Hyacinthos 25607.
X(12822) lies on the Kiepert hyperbola and these lines: {6,12823}, {30,3373}, {381,3388} et al
See Tran Quang Hung and César Lozada, Hyacinthos 25607.
X(12823) lies on the Kiepert hyperbola and these lines: {6,12822}, {30,3388}, {381,3373} et al
Let P = p : q : r be barycentrics for a point P in the plane of a triangle ABC. Let
A' = reflection of A in P, and define B' and C' cyclically
Ab = orthogonal projection of A' on AC, and define Bc and Ca cyclically
Ac = orthogonal projection of A' on AB, and define Ba and Cb cyclically
(Na) = nine-point circle of AAbAC, and define (Nb) and (Nc) cyclically
The circles concur in the point Q given by
Q = a^2 (2 a^2 b^2 c^2 p+a^4 c^2 q+b^4 c^2 q-2 a^2 c^4 q-2 b^2 c^4 q+c^6 q+a^4 b^2 r-2 a^2 b^4 r+b^6 r-2 b^4 c^2 r+b^2 c^4 r) (b^2 c^2 p^2+a^2 c^2 p q-c^4 p q+a^2 b^2 p r-b^4 p r+a^4 q r-a^2 b^2 q r-a^2 c^2 q r) : : The point Q = HM(P) is here named the Hatzipolakis-Moses nine-point image of P. The appearance of (i,j) in the following list means that X(j) = HM(X(i)): {1,11570}, {2,12824}, {4,1986}, {5,11557}, {6,5477}, {15,6783}, {16,6782}, {20,12825}, {21,12826}, {22,12827}, {23,3580}, {25,12828}, {32,12829}, {36,1737}, {39,12830}, {55,12831}, {56,12832}, {99,12833}, {110,7471}, {186,403}, {187,230}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25609 and Antreas Hatzipolakis and César Lozada, Hyacinthos 25623
X(12824) lies on these lines:
{2,2781}, {23,6593}, {25,110}, {51,542}, {52,10294}, {74,9818}, {113,403}, {125,5133}, {143,5609}, {146,974}, {265,11818}, {381,5640}, {399,12236}, {511,5642}, {541,9730}, {568,5655}, {1495,11649}, {1511,2070}, {1539,11561}, {1550,11751}, {1992,2854}, {1995,9970}, {3448,7394}, {3796,10117}, {3917,5972}, {5095,8681}, {5422,5622}, {5621,10601}, {5643,12006}, {9517,9979}, {9729,10990}
X(12824) = midpoint of X(i) and X(j) for these {i,j}: {110,3060}, {568,5655}, {5890,10706}
X(12824) = reflection of X(i) in X(j) for these (i,j): (125,5943), (3060,1112), (3917,5972), (9140,12099)
X(12824) = isoconjugate of X(2157) and X(2986)
X(12824) = barycentric product X(i)*X(j) for these {i,j}: {23, 3580}, {316, 3003}
X(12824) = barycentric quotient X(i)/X(j) for these (i,j): (23, 2986), (3003, 67), (8744, 1300), (10317, 5504)
X(12824) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (113,1986,12825), (113,11557,1986), (113,12828,12827), (5640,9140,12099), (12827,12828,3580)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25609.
X(12825) is the radical center of the polar circles of the adjunct anti-altimedial triangles. (Randy Hutson, November 2, 2017)
X(12825) lies on these lines: {2,974}, {3,74}, {22,9934}, {69, 146}, {113,403}, {125,5907} et al
X(12825) = {X(113),X(1986)}-harmonic conjugate of X(12824)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25609.
X(12826) lies on these lines: {21,2778}, {28,110}, {113,403} et all
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25609.
X(12827) lies on these lines: {2,98}, {5,12099}, {113,403} et al
X(12827) = {X(113),X(12828)}-harmonic conjugate of X(12824)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25609.
X(12828) lies on these lines: {4,541}, {25,542}, {51,125}, {107,11005}, {110,6353}, {112,6792} ,{113,403} et al
X(12828) = {X(12824),X(12827)}-harmonic conjugate of X(113)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25609.
X(12829) lies on these lines: {6,98}, {32,2782}, {39,12042}, {99,3053}, {114,230}, {115,546} et al
X(12829) = {X(114),X(5477)}-harmonic conjugate of X(12830)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25609.
X(12830) lies on these lines: {6,147}, {30,1569}, {98,3815}, {99,7762}, {114,230}, {115,3850} et al
X(12830) = {X(114),X(5477)}-harmonic conjugate of X(12829)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25609.
X(12831) lies on these lines: {11,118}, {12,5884}, {57,5660}, {63,3035}, {80,11529}, {100,3474}, {119,912} et al
X(12831) = {X(119),X(11570)}-harmonic conjugate of X(12832)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25609.
X(12832) lies on these lines: {1,6713}, {10,5083}, {11,65}, {12,5883}, {46,5840}, {56,952}, {57 ,80}, {78,3035}, {100,1788}, {104 ,1470}, {109,6788}, {119,912} et al
X(12832) = {X(119),X(11570)}-harmonic conjugate of X(12831)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25609. See also Antreas Hatzipolakis and César Lozada, Hyacinthos 25623.
X(12833) lies on these lines: {4,69}, {99,512}, {112,249}, {526,9182}, {924,4590}, {2715,4611}, {2855,9160}, {9181,10411}
X(12833) = reflection of X(99) in its Simson line (line X(114)X(325))
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25612.
X(12834) lies on these lines: {2,576}, {6,11451}, {22,10541}, {25,5012}, {51,5092}, {110,5943}, {140,1173}, {182,5645}, {184,10545}, {186,5462}, {323,6688}, {373,1994}, {589,8956}, {597,11416}, {694,3108}, {1350,3060}, {1597,10574}, {2979,5644}, {3567,7514}, {3580,11548}, {5020,11422}, {5133,9140}, {5899,10095}, {9781,12083}, {9815,20009}, {10546,11402}
X(12834) = {X(5422), X(5640)}-harmonic conjugate of X(5012)
CENTERS ASSOCIATED WITH THE ELLIPSE IE59: X(12835)-X(12841)
This preamble and centers X(12835)-X(12841) were contributed by Peter Moses, March 29, 2017.
Let IE59 denote the inellipse with perspector X(59). The center of IE59 is X(13006), and IE59 passes through X(i) for these i:
55, 56, 181, 202, 203, 215, 1124, 1335, 1362, 1397, 1672, 1673, 1682, 2007, 2008, 3235, 3236, 3237, 3238, 6056, 7005, 7006, 7066, 10799, 12835, 12836, 12837, 12838, 12839, 12840, 12841
This ellipse IE59 is the locus of the centers of similtude (insimilicenter and exsimilicenter) of the incircle with Tucker circles. Also, IE59 intersects the incircle in X(1362) and three other points, so that the corresponding four Tucker circles are tangent to the incircle. The Tucker circle through X(1362) has the following parameter:
arccos[(t2 - s2)/(t2 + s2)], where t = r + 4R.
The centers of the other three Tucker circles are the extraversions of X(970), and they lie on the Brocard axis. Not only are these circle internally tangent to the incircle, but they are also externally tangent to the two corresponding excircles. In this section, the names for centers X(12835) to X(12841), the notation "Tucker (X,p)-circle" represents the Tucker circle with center X and parameter p.
Let f(a,b,c,x,y,z) = b4c4(a - b - c)2(b - c)4x2 - 2a4b2c2(a - b)2 (a - b + c)(c - a)2(a + b - c)yz. The ellipse IE59 is given by the barycentric equation f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,z,x,y) = 0.
Possibly the earliest mention of IE59 occurs in TCCT, page 238, in a list of inscribed ellipses; in that list, this ellipse is denoted by W(X11).
The insimilicenter of the incircle and Tucker (X(3398),2ω) circle is X(10799).
X(12835) lies the inellipse IE(59) on these lines: {1, 3398}, {3, 10801}, {4, 10798}, {11, 98}, {12, 83}, {32, 56}, {34, 11380}, {35, 12054}, {36, 2080}, {55, 182}, {57, 10789}, {65, 12194}, {109, 727}, {181, 4279}, {388, 7787}, {499, 10104}, {999, 11842}, {1078, 5433}, {1319, 11364}, {1342, 3237}, {1343, 3238}, {1357, 1412}, {1428, 1691}, {1469, 5332}, {1478, 10796}, {1687, 2007}, {1688, 2008}, {2099, 10800}, {2276, 5038}, {2477, 3203}, {3023, 12176}, {3024, 12192}, {3027, 4027}, {3057, 12197}, {3085, 10359}, {3271, 8852}, {4293, 10788}, {5171, 5204}, {5182, 12350}, {5252, 10791}, {5434, 12150}, {6020, 12207}, {6285, 12202}, {7288, 7793}, {7354, 12110}, {10345, 10873}, {10358, 10895}, {10803, 11490}, {10944, 12195}
X(12835) = isoconjugate of X(j) and X(j) for these (i,j): {291,4518}, {334,7077}, {335,4876}
X(12835) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,3398,10799), (388,7787,10797)
X(12835) = barycentric product X(i) X(j) for these {i,j}: {56,4366}, {57,8300}, {109,4375}, {238,1429}, {239,1428}, {593,3027}, {1412,4368}, {1447,1914}, {2210,10030}
X(12835) = barycentric quotient X(i)/X(j) for these (i,j): (1428,335), (1429,334), (1914,4518), (2210,4876), (4366,3596), (6652,4087), (8300,312)
X(12836) lies the inellipse IE(59) on these lines: {1, 3095}, {3, 10801}, {5, 10063}, {6,10799}, {11, 76}, {12, 262}, {35, 11171}, {36, 9821}, {39, 55}, {56, 511}, {172, 8540}, {194, 497}, {202, 3105}, {203, 3104}, {215, 3202}, {330, 1916}, {384, 10798}, {496, 10079}, {498, 11272}, {538, 11238}, {726, 12053}, {730, 1837}, {982, 3865}, {1124, 3103}, {1335, 3102}, {1362, 10571}, {1479, 2782}, {1670, 1673}, {1671, 1672}, {1689, 3235}, {1690, 3236}, {1697, 3097}, {2053, 3271}, {2275, 3056}, {3058, 7757}, {3086, 12251}, {3106, 7006}, {3107, 7005}, {4294, 7709}, {5188, 5204}, {5432, 7786}, {5969, 12351}, {6194, 7288}, {6248, 10896}, {6272, 10926}, {6273, 10925}, {6284, 11257}, {7697, 7741}, {7976, 10950}, {9581, 9902}, {9917, 10832}, {9983, 10874}, {11152, 12354}, {11376, 12263}, {11393, 12143}, {11502, 12338}
X(12836) = reflection of X(10079) in X(496)
X(12836) = barycentric product X(i) X(j) for these {i,j}: {982,3061}, {1252,3020}, {2275,3705}, {3056,3662}, {3721,3794}
X(12836) = barycentric quotient X(i)/X(j) for these (i,j): (3061,7033), (7032,7132)
X(12836) = orthologic center of these triangles: 2nd Johnson-Yff to 1st Neuberg
X(12836) = X(76)-of-2nd-Johnson-Yff-triangle
X(12836) = {X(1),X(3095)}-harmonic conjugate of X(12837)
X(12837) lies the inellipse IE(59) on these lines: {1,3095}, {3,10799}, {5,10079}, {6,12835}, {11,262}, {12,76}, {35,9821}, {36,11171}, {39,56}, {55,511}, {57,3097}, {65,12782}, {181,1403}, {192,1916}, {194,388}, {202,3106}, {203,3107}, {226,726}, {371,12839}, {372,12838}, {384,10797}, {495,10063}, {499,11272}, {538,11237}, {730,5252}, {732,12588}, {1124,3102}, {1335,3103}, {1397,5145}, {1469,2276}, {1478,2782}, {1670,1672}, {1671,1673}, {1689,3236}, {1690,3235}, {2175,8852}, {2477,3202}, {3085,12251}, {3104,7005}, {3105,7006}, {3790,7179}, {3864,7146}, {4293,7709}, {5188,5217}, {5218,6194}, {5433,7786}, {5434,7757}, {5969,12350}, {6248,10895}, {6272,10924}, {6273,10923}, {7354,11257}, {7697,7951}, {7976,10944}, {9578,9902}, {9917,10831}, {9983,10873}, {11375,12263}, {11392,12143}, {11501,12338}, {11869,12474}, {11870,12475}, {11905,12794}, {11930,12992}, {11931,12993}
X(12837) = reflection of X(10063) in X(495)
X(12837) = barycentric product X(i) X(j) for these {i,j}: {65,4469}, {226,4476}, {593,7142}, {984,7146}, {1469,3661}, {2276,7179}
X(12837) = barycentric quotient X(i)/X(j) for these (i,j): (869,2344), (4469,314), (4476,333),. (7146,870)
X(12837) = orthologic center of these triangles: 1st Johnson-Yff to 1st Neuberg
X(12837) = X(76)-of-1st-Johnson-Yff-triangle
X(12837) = {X(1),X(3095)}-harmonic conjugate of X(12836)
X(12838) lies the inellipse IE(59) on these lines: {1, 1691}, {32, 1124}, {182, 1335}, {1342, 2008}, {1343, 2007}, {1687, 3237}, {1688, 3238}, {3299, 12212}, {3301, 5038}
X(12838) = {X(1),X(1691)}-harmonic conjugate of X(12839)
X(12839) lies the inellipse IE(59) on these lines: {1, 1691}, {32, 1335}, {182, 1124}, {1342, 2007}, {1343, 2008}, {1687, 3238}, {1688, 3237}, {3299, 5038}, {3301, 12212}
X(12839) = {X(1),X(1691)}-harmonic conjugate of X(12838)
X(12840) lies the inellipse IE(59) on these lines: {1, 3094}, {39, 1124}, {55, 3102}, {56, 3103}, {371, 10799}, {511, 1335}, {1670, 3236}, {1671, 3235}, {1672, 1690}, {1673, 1689}
X(12840) = {X(1),X(3094)}-harmonic conjugate of X(12841)
X(12841) lies the inellipse IE(59) on these lines: {1, 3094}, {39, 1335}, {55, 3103}, {56, 3102}, {372, 10799}, {511, 1124}, {1670, 3235}, {1671, 3236}, {1672, 1689}, {1673, 1690}
X(12841) = {X(1),X(3094)}-harmonic conjugate of X(12840)
Orthologic centers: X(12842)-X(13005)
Centers X(12842)-X(13005) were contributed by César Eliud Lozada, April 1, 2017.
The reciprocal orthologic center of these triangles is X(3555).
X(12842) lies on these lines: {1,5920}, {3,12658}, {20,9804}, {40,6764}, {78,12533}, {84,6361}, {144,962}, {517,12654}, {1490,12692}, {3333,12855}, {3576,12521}, {5587,12620}, {5732,6762}, {5777,8158}, {7675,12846}, {7966,12245}, {8227,12612}, {8273,12333}, {8726,12439}, {9953,10864}, {10884,12537}
X(12842) = midpoint of X(i) and X(j) for these {i,j}: {1,8001}, {20,9804}
X(12842) = reflection of X(i) in X(j) for these (i,j): (40,12516), (12658,3)
The reciprocal orthologic center of these triangles is X(3555).
X(12843) lies on these lines: {1,12553}, {3,12659}, {20,12542}, {40,12517}, {78,12534}, {517,12655}, {962,4511}, {1490,12693}, {3576,12522}, {5587,12621}, {7675,12847}, {8227,12613}, {8726,12442}, {10864,12449}, {10884,12538}
X(12843) = midpoint of X(20) and X(12542)
X(12843) = reflection of X(i) in X(j) for these (i,j): (40,12517), (12659,3)
The reciprocal orthologic center of these triangles is X(1).
X(12844) lies on these lines: {1,167}, {3,164}, {20,9807}, {40,12518}, {78,11691}, {188,1490}, {517,12656}, {1482,11528}, {3333,5571}, {3576,12523}, {5587,12622}, {5732,9836}, {6765,9837}, {7587,11032}, {7588,8084}, {7670,7675}, {8075,8094}, {8076,8093}, {8227,12614}, {8726,12443}, {10864,12450}, {10884,12539}
X(12844) = midpoint of X(i) and X(j) for these {i,j}: {1,167}, {20,9807}
X(12844) = reflection of X(i) in X(j) for these (i,j): (40,12518), (164,3), (11528,1482)
X(12844) = orthologic center of these triangles: hexyl to 2nd midarc
X(12844) = {X(8081), X(8082)}-harmonic conjugate of X(1)
X(12844) = X(1)-of-hexyl-triangle
X(12844) = X(8)-of-2nd-circumperp-triangle
X(12844) = X(355)-of-excentral-triangle
X(12844) = X(944)-of-1st-circumperp-triangle
X(12844) = excentral-to-hexyl similarity image of X(164)
The reciprocal orthologic center of these triangles is X(21).
X(12845) lies on these lines: {1,5180}, {3,12660}, {20,12543}, {40,12519}, {78,12535}, {84,6597}, {411,1768}, {517,12657}, {1490,12695}, {3576,12524}, {5587,12623}, {6599,7491}, {7675,12850}, {8227,12615}, {8726,12444}, {10864,12451}, {10884,12540}
X(12845) = midpoint of X(20) and X(12543)
X(12845) = reflection of X(i) in X(j) for these (i,j): (40,12519), (12660,3)
The reciprocal orthologic center of these triangles is X(3555).
X(12846) lies on these lines: {7,3555}, {9,12533}, {1445,12658}, {2346,7160}, {4326,8001}, {5920,8236}, {7675,12842}, {7676,12516}, {7677,12521}, {7678,12612}, {7679,12620}, {8232,12692}, {8732,12439}, {9953,10865}, {10889,12552}, {11025,12855}, {11038,12853}, {11526,12654}
X(12846) = reflection of X(i) in X(j) for these (i,j): (7,12854), (12533,9)
X(12847) lies on these lines: {7,12538}, {9,12534}, {1445,12659}, {7675,12843}, {7676,12517}, {7677,12522}, {7678,12613}, {7679,12621}, {8232,12693}, {8732,12442}, {10865,12449}, {10889,12553}, {11526,12655}
X(12847) = reflection of X(12534) in X(9)
The reciprocal orthologic center of these triangles is X(1).
X(12848) lies on the cubic K295 and these lines: {1,5766}, {2,7}, {4,653}, {6,347}, {20,10394}, {44,948}, {56,6068}, {65,452}, {72,3600}, {145,4552}, {190,6604}, {218,279}, {241,4644}, {348,3758}, {388,5220}, {390,517}, {391,1441}, {405,8543}, {516,2093}, {518,3476}, {664,1992}, {954,999}, {971,2096}, {997,4321}, {1020,4253}, {1210,5735}, {1471,4310}, {1490,8544}, {1728,4295}, {1736,3332}, {1737,4312}, {1743,3668}, {1788,5177}, {1864,3474}, {2095,5762}, {2097,5845}, {2182,10402}, {2801,4293}, {3339,12572}, {3421,5686}, {3487,5265}, {3522,10393}, {3672,7961}, {3820,7679}, {3832,10395}, {4294,10399}, {4308,11523}, {4323,5436}, {4326,7994}, {4419,5228}, {4641,7365}, {4848,5175}, {5173,10177}, {5218,8255}, {5223,12573}, {5704,5715}, {5740,5798}, {5779,6826}, {5784,6904}, {5805,6844}, {5812,11662}, {5817,6843}, {5843,6911}, {5924,7682}, {6244,7676}, {6282,7675}, {7678,7956}, {7962,8236}, {8101,8387}, {8102,8388}, {9954,10865}, {10889,12555}
X(12848) = midpoint of X(144) and X(9965)
X(12848) = reflection of X(i) in X(j) for these (i,j): (7,57), (329,9), (5809,10398)
X(12848) = X(25)-of-Honsberger-triangle
X(12848) = excentral-to-Honsberger similarity image of X(57)
X(12848) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (7,9,8232), (7,1445,8732), (7,6172,8545), (390,7672,12849), (5728,5759,390)
The reciprocal orthologic center of these triangles is X(79)
X(12849) lies on these lines: {2,3467}, {3,12255}, {4,12146}, {5,13126}, {7,6597}, {8,12535}, {10,12409}, {20,5694}, {22,12414}, {100,12342}, {145,13100}, {149,6595}, {153,5690}, {388,12947}, {497,12957}, {1270,12808}, {1271,12807}, {2475,12745}, {2896,12504}, {3085,13128}, {3086,13129}, {3091,12600}, {3434,12927}, {3436,12937}, {3616,12267}, {3648,3988}, {3878,6224}, {4240,12798}, {4309,12877}, {5601,12482}, {5602,12483}, {6462,13000}, {6463,13001}, {7787,12209}, {10528,13130}, {10529,13131}
X(12849) = reflection of X(i) in X(j) for these (i,j): (4,12919), (8,12786), (20,12556), (145,13100), (149,6595), (4240,12798), (10266,13089), (12255,3), (12409,10), (12535,12682), (12543,6597), (13126,5)
X(12849) = anticomplement of X(10266)
X(12849) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (10266,13089,2), (12957,13080,497)
The reciprocal orthologic center of these triangles is X(21).
X(12850) lies on these lines: {7,6597}, {9,12535}, {1445,12660}, {2346,10266}, {3889,12701}, {7675,12845}, {7676,12519}, {7677,12524}, {7678,12615}, {7679,12623}, {8232,12695}, {8732,12444}, {10865,12451}, {10889,12557}, {11526,12657}
X(12850) = reflection of X(12535) in X(9)
The reciprocal orthologic center of these triangles is X(3555).
X(12851) lies on these lines: {363,12658}, {5920,8390}, {5934,12692}, {8001,8140}, {8107,12516}, {8109,12521}, {8377,12612}, {8380,12620}, {9783,9804}, {9953,11856}, {11527,12654}, {11685,12533}, {11854,12439}, {11886,12537}, {11892,12552}
X(12851) = reflection of X(12852) in X(8001)
The reciprocal orthologic center of these triangles is X(3555).
X(12852) lies on these lines: {168,12658}, {5920,8392}, {5935,12692}, {7160,7707}, {8001,8140}, {8108,12516}, {8110,12521}, {8378,12612}, {8381,12620}, {9787,9804}, {9953,11857}, {11528,12654}, {11686,12533}, {11855,12439}, {11887,12537}, {11893,12552}
X(12852) = reflection of X(12851) in X(8001)
The reciprocal orthologic center of these triangles is X(3555).
X(12853) lies on these lines: {1,5920}, {495,12620}, {496,12612}, {942,12439}, {999,12521}, {3295,12516}, {3333,12658}, {3487,12692}, {3616,12533}, {4295,12680}, {4326,6766}, {5045,12855}, {5542,9953}, {6764,12777}, {8351,12871}, {9797,9874}, {9804,11037}, {11036,12537}, {11038,12846}, {11042,12865}, {11043,12869}, {11529,12654}
X(12853) = midpoint of X(1) and X(12854)
X(12853) = reflection of X(12855) in X(5045)
X(12853) = {X(1), X(8001)}-harmonic conjugate of X(7160)
The reciprocal orthologic center of these triangles is X(3555).
X(12854) lies on these lines: {1,5920}, {2,12533}, {11,12612}, {12,12620}, {55,12516}, {56,12521}, {57,12439}, {72,11526}, {174,12871}, {226,12692}, {354,12855}, {1284,12869}, {2089,12870}, {3340,12654}, {3555,5082}, {5173,12777}, {8243,12865}, {8581,9953}, {12670,12864}, {12731,12859}
X(12854) = midpoint of X(i) and X(j) for these {i,j}: {7,12846}, {9804,12537}
X(12854) = reflection of X(i) in X(j) for these (i,j): (1,12853), (5920,1), (12658,12439), (12670,12864)
X(12854) = complement of X(12533)
The reciprocal orthologic center of these triangles is X(3555).
X(12855) lies on these lines: {1,12521}, {7,40}, {10,5572}, {57,12516}, {65,5920}, {142,3913}, {226,9589}, {354,12854}, {495,12599}, {942,11362}, {946,3295}, {1056,12120}, {1210,12620}, {3085,7308}, {3303,12859}, {3333,12842}, {3339,9898}, {3873,12533}, {3922,12736}, {4866,10398}, {5045,12853}, {5703,9624}, {5728,12692}, {6767,12856}, {8001,10980}, {8083,12873}, {9804,10580}, {9874,11024}, {9953,11019}, {10056,10075}, {10122,12670}, {11018,12439}, {11020,12537}, {11021,12552}, {11025,12846}, {11030,12865}, {11031,12869}, {11032,12870}, {11033,12871}
X(12855) = midpoint of X(i) and X(j) for these {i,j}: {65,5920}, {12658,12777}
X(12855) = reflection of X(12853) in X(5045)
The reciprocal orthologic center of these triangles is X(40).
X(12856) lies on these lines: {1,12859}, {2,12249}, {3,12411}, {4,9874}, {5,7160}, {11,10075}, {12,10059}, {30,12120}, {355,12731}, {381,12599}, {517,12777}, {952,5665}, {1479,12863}, {3652,12516}, {5587,9898}, {5779,12699}, {5805,6601}, {5886,12260}, {6214,12802}, {6215,12801}, {6265,12521}, {6767,12855}, {6864,9957}, {8200,12464}, {8207,12465}, {8220,12861}, {8221,12862}, {9996,12500}, {10796,12200}, {10942,12874}, {10943,12875}, {11499,12333}
X(12856) = midpoint of X(i) and X(j) for these {i,j}: {4,9874}, {12857,12858}
X(12856) = reflection of X(i) in X(j) for these (i,j): (3,12864), (7160,5), (12872,12599)
X(12856) = complement of X(12249)
X(12856) = X(7160)-of-Johnson-triangle
X(12856) = {X(12859),X(12860)}-harmonic conjugate of X(1)
The reciprocal orthologic center of these triangles is X(40).
X(12857) lies on these lines: {11,7160}, {12,12874}, {355,12731}, {1376,12333}, {8000,10944}, {9898,10826}, {10059,10523}, {10075,10948}, {10785,12249}, {10794,12200}, {10829,12411}, {10871,12500}, {10893,12599}, {10914,12777}, {10919,12801}, {10920,12802}, {10945,12861}, {10946,12862}, {10947,12863}, {10949,12875}, {11373,12260}, {11390,12139}, {11826,12120}, {11865,12464}, {11866,12465}, {11903,12789}, {11928,12872}
X(12857) = reflection of X(i) in X(j) for these (i,j): (12333,12864), (12858,12856)
X(12857) = X(7160)-of-inner-Johnson-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12858) lies on these lines: {4,5173}, {11,12875}, {12,7160}, {72,12777}, {355,12731}, {946,3295}, {958,12864}, {2886,5791}, {3436,9874}, {5220,5812}, {5572,5805}, {8000,10950}, {9898,10827}, {10059,10954}, {10075,10523}, {10786,12249}, {10795,12200}, {10830,12411}, {10872,12500}, {10894,12599}, {10921,12801}, {10922,12802}, {10951,12861}, {10952,12862}, {10953,12863}, {10955,12874}, {11391,12139}, {11827,12120}, {11867,12464}, {11868,12465}, {11904,12789}, {11929,12872}
X(12858) = reflection of X(12857) in X(12856)
X(12858) = X(7160)-of-outer-Johnson-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12859) lies on these lines: {1,12856}, {4,12863}, {5,10075}, {12,7160}, {56,12864}, {65,12777}, {354,11023}, {388,9874}, {495,10059}, {3085,12249}, {3303,12855}, {4863,5173}, {7354,12120}, {8000,10944}, {9654,12872}, {10797,12200}, {10831,12411}, {10873,12500}, {10895,12599}, {10923,12801}, {10924,12802}, {10956,12874}, {10957,12875}, {11375,12260}, {11392,12139}, {11501,12333}, {11905,12789}, {11930,12861}, {11931,12862}, {12731,12854}
X(12859) = reflection of X(10059) in X(495)
X(12859) = X(7160)-of-1st-Johnson-Yff-triangle
X(12859) = {X(1),X(12856)}-harmonic conjugate of X(12860)
The reciprocal orthologic center of these triangles is X(40).
X(12860) lies on these lines: {1,12856}, {5,10059}, {11,7160}, {55,12864}, {480,12053}, {496,10075}, {497,9874}, {3057,12777}, {3086,12249}, {3601,6154}, {5920,12731}, {6284,12120}, {8000,10950}, {9581,9898}, {9669,12872}, {10798,12200}, {10832,12411}, {10874,12500}, {10896,12599}, {10925,12801}, {10926,12802}, {10958,12874}, {10959,12875}, {11376,12260}, {11393,12139}, {11502,12333}, {11871,12464}, {11872,12465}, {11906,12789}, {11932,12861}, {11933,12862}
X(12860) = reflection of X(10075) in X(496)
X(12860) = X(7160)-of-2nd-Johnson-Yff-triangle
X(12860) = {X(1),X(12856)}-harmonic conjugate of X(12859)
The reciprocal orthologic center of these triangles is X(40).
X(12861) lies on these lines: {493,7160}, {6461,12862}, {6462,9874}, {8000,8210}, {8188,9898}, {8194,12411}, {8201,12464}, {8208,12465}, {8212,12599}, {8214,12777}, {8216,12801}, {8218,12802}, {8220,12856}, {8222,12864}, {10059,11951}, {10875,12500}, {11377,12260}, {11394,12139}, {11503,12333}, {11828,12120}, {11840,12200}, {11846,12249}, {11930,12859}, {11932,12860}, {11947,12863}, {11949,12872}, {11955,12874}, {11957,12875}
X(12861) = X(7160)-of-Lucas-homothetic-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12862) lies on these lines: {494,7160}, {6461,12861}, {6463,9874}, {8000,8211}, {8189,9898}, {8195,12411}, {8202,12464}, {8209,12465}, {8213,12599}, {8215,12777}, {8217,12801}, {8219,12802}, {8221,12856}, {8223,12864}, {10059,11952}, {10075,11954}, {10876,12500}, {11378,12260}, {11395,12139}, {11504,12333}, {11829,12120}, {11841,12200}, {11847,12249}, {11931,12859}, {11933,12860}, {11948,12863}, {11950,12872}, {11956,12874}, {11958,12875}
X(12862) = X(7160)-of-Lucas(-1)-homothetic-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12863) lies on these lines: {3,10075}, {4,12859}, {11,12864}, {12,12599}, {33,12139}, {55,84}, {56,12120}, {497,9874}, {1479,12856}, {1697,5223}, {1837,12777}, {2098,8000}, {2646,12260}, {3057,3488}, {3295,10059}, {3601,9850}, {4294,12249}, {5920,10543}, {10799,12200}, {10833,12411}, {10877,12500}, {10927,12801}, {10928,12802}, {10947,12857}, {10953,12858}, {10965,12874}, {10966,12875}, {11873,12464}, {11874,12465}, {11909,12789}, {11947,12861}, {11948,12862}
X(12863) = X(7160)-of-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(40).
X(12864) lies on these lines: {1,12521}, {2,7160}, {3,12411}, {4,12120}, {5,12599}, {8,8000}, {9,946}, {11,12863}, {55,12860}, {56,12859}, {83,12200}, {142,5045}, {427,12139}, {442,3555}, {498,10059}, {499,10075}, {631,12249}, {958,12858}, {1125,6600}, {1145,4002}, {1376,12333}, {1650,12789}, {1656,12872}, {1698,9898}, {2886,6260}, {3090,12612}, {3096,12500}, {3333,9776}, {3889,12537}, {5552,12874}, {5590,12802}, {5591,12801}, {5599,12464}, {5600,12465}, {5795,6849}, {6864,9623}, {8222,12861}, {8223,12862}, {9709,12631}, {10527,12875}, {12670,12854}
X(12864) = midpoint of X(i) and X(j) for these {i,j}: {1,12777}, {3,12856}, {4,12120}, {8,8000}, {1650,12789}, {3555,12692}, {7160,9874}, {12333,12857}, {12521,12731}, {12670,12854}
X(12864) = reflection of X(i) in X(j) for these (i,j): (12260,1125), (12439,5045), (12599,5)
X(12864) = complement of X(7160)
X(12864) = {X(2), X(9874)}-harmonic conjugate of X(7160)
The reciprocal orthologic center of these triangles is X(3555).
X(12865) lies on these lines: {5920,8239}, {8001,8244}, {8224,12516}, {8225,12521}, {8228,12612}, {8230,12620}, {8231,12658}, {8233,12692}, {8234,12842}, {8237,12846}, {8243,12854}, {8246,12869}, {9789,9804}, {9953,10867}, {10858,12439}, {10885,12537}, {10891,12552}, {11030,12855}, {11042,12853}, {11532,12654}, {11687,12533}, {11996,12873}
The reciprocal orthologic center of these triangles is X(12867).
X(12866) lies on these lines: {9,10266}, {20,5538}, {65,2475}, {6597,12444}, {11024,12543}
X(12866) = reflection of X(i) in X(j) for these (i,j): (6597,12444), (12682,12660), (12695,12639)
The reciprocal orthologic center of these triangles is X(12866).
X(12867) lies on the Feuerbach hyperbola and these lines: {7,442}, {30,10429}, {84,3651}, {191,3062}, {210,943}, {758,5665}, {3647,7285}, {4900,9898}, {5556,11684}
The reciprocal orthologic center of these triangles is X(12632).
X(12868) lies on the Feuerbach hyperbola and these lines: {7,12732}, {90,12756}, {100,5558}, {952,10429}, {1000,4423}, {2802,5665}, {6601,8168}
X(12868) = reflection of X(100) in X(12631)
The reciprocal orthologic center of these triangles is X(3555).
X(12869) lies on these lines: {21,3870}, {846,12658}, {1284,12854}, {4199,12692}, {4220,12516}, {5051,12620}, {5920,8240}, {8001,8245}, {8229,12612}, {8235,12842}, {8238,12846}, {8246,12865}, {8249,12870}, {8425,12873}, {8731,12439}, {9953,10868}, {10892,12552}, {11031,12855}, {11043,12853}, {11533,12654}, {11688,12533}
X(12869) = 2nd-Sharygin-to-1st-Sharygin similarity image of X(13286)
X(12869) = excentral-to-1st-Sharygin similarity image of X(12658)
X(12869) = hexyl-to-1st-Sharygin similarity image of X(12842)
X(12869) = Hutson-intouch-to-1st-Sharygin similarity image of X(5920)
The reciprocal orthologic center of these triangles is X(3555).
X(12870) lies on these lines: {1,12871}, {2089,12854}, {5920,8241}, {8001,8089}, {8075,12516}, {8077,12521}, {8078,12658}, {8079,12692}, {8081,12842}, {8085,12612}, {8087,12620}, {8247,12865}, {8249,12869}, {8387,12846}, {8733,12439}, {9793,9804}, {11032,12855}, {11690,12533}, {11888,12537}, {11894,12552}
X(12870) = reflection of X(12871) in X(1)
The reciprocal orthologic center of these triangles is X(3555).
X(12871) lies on these lines: {1,12870}, {174,12854}, {258,12658}, {7588,12521}, {8125,12533}, {8351,12853}, {8734,12439}, {9953,11859}, {11033,12855}, {11895,12552}, {11899,12654}
X(12871) = reflection of X(12870) in X(1)
The reciprocal orthologic center of these triangles is X(40).
X(12872) lies on these lines: {3,7091}, {5,9874}, {30,12249}, {381,12599}, {517,9898}, {960,1482}, {999,10075}, {1598,12139}, {1656,12864}, {3295,10059}, {5790,12777}, {7517,12411}, {8000,10247}, {9301,12500}, {9654,12859}, {9669,12860}, {10246,12260}, {10679,12631}, {11842,12200}, {11849,12333}, {11875,12464}, {11876,12465}, {11911,12789}, {11916,12801}, {11917,12802}, {11928,12857}, {11929,12858}, {11949,12861}, {11950,12862}, {12000,12874}, {12001,12875}
X(12872) = reflection of X(i) in X(j) for these (i,j): (3,7160), (9874,5), (12856,12599)
X(12872) = X(7160)-of-X3-ABC-reflections-triangle
The reciprocal orthologic center of these triangles is X(3555).
X(12873) lies on these lines: {174,12854}, {5920,11924}, {7587,12521}, {8001,8423}, {8083,12855}, {8126,12533}, {8382,12620}, {8389,12846}, {8425,12869}, {8729,12439}, {9804,11891}, {9953,11860}, {11535,12654}, {11890,12537}, {11896,12552}, {11996,12865}
The reciprocal orthologic center of these triangles is X(40).
X(12874) lies on these lines: {1,5920}, {12,12857}, {5552,12864}, {9874,10528}, {10531,12599}, {10803,12200}, {10805,12249}, {10834,12411}, {10878,12500}, {10915,12777}, {10929,12801}, {10930,12802}, {10942,12856}, {10955,12858}, {10956,12859}, {10958,12860}, {10965,12863}, {11248,12120}, {11400,12139}, {11509,12333}, {11881,12464}, {11882,12465}, {11914,12789}, {11955,12861}, {11956,12862}, {12000,12872}
X(12874) = reflection of X(7160) in X(10059)
X(12874) = X(7160)-of-inner-Yff-tangents-triangle
X(12874) = {X(7160),X(8000)}-harmonic conjugate of X(12875)
The reciprocal orthologic center of these triangles is X(40).
X(12875) lies on these lines: {1,5920}, {2,10941}, {9,6675}, {11,12858}, {56,12687}, {57,6833}, {938,10936}, {1210,12116}, {1445,12704}, {6734,12620}, {6878,11048}, {9874,10529}, {10527,12864}, {10532,12599}, {10804,12200}, {10806,12249}, {10835,12411}, {10879,12500}, {10916,12777}, {10931,12801}, {10932,12802}, {10943,12856}, {10949,12857}, {10957,12859}, {10959,12860}, {10966,12863}, {11249,12120}, {11401,12139}, {11510,12333}, {11883,12464}, {11884,12465}, {11915,12789}, {11957,12861}, {11958,12862}, {12001,12872}
X(12875) = reflection of X(7160) in X(10075)
X(12875) = X(7160)-of-outer-Yff-tangents-triangle
X(12875) = {X(7160),X(8000)}-harmonic conjugate of X(12874)
The reciprocal orthologic center of these triangles is X(3555).
X(12876) lies on these lines: {1,12553}, {11,12621}, {12,12613}, {34,517}, {55,12522}, {56,12517}, {145,12534}, {522,10912}, {950,12693}, {1482,4292}, {1697,12659}, {3601,12442}, {4313,12538}, {7962,12655}, {8236,12847}, {8390,12878}, {8392,12883}, {9785,12542}, {10866,12449}
X(12876) = midpoint of X(145) and X(12534)
X(12876) = reflection of X(12912) in X(1)
The reciprocal orthologic center of these triangles is X(21).
X(12877) lies on these lines: {1,5180}, {8,6597}, {11,21}, {12,12615}, {35,2475}, {55,12524}, {145,12535}, {950,12695}, {1697,12660}, {3057,12682}, {3601,12444}, {3648,4018}, {4294,10043}, {4313,12540}, {5441,12758}, {6872,10051}, {7962,12657}, {8236,12850}, {8390,12882}, {8392,12887}, {9785,12543}, {10866,12451}
X(12877) = midpoint of X(145) and X(12535)
X(12877) = reflection of X(12913) in X(1)
The reciprocal orthologic center of these triangles is X(3555).
X(12878) lies on these lines: {363,12659}, {5934,12693}, {8107,12517}, {8109,12522}, {8111,12843}, {8140,12883}, {8377,12613}, {8380,12621}, {8385,12847}, {8390,12876}, {9783,12542}, {11527,12655}, {11685,12534}, {11854,12442}, {11856,12449}, {11886,12538}, {11892,12553}
The reciprocal orthologic center of these triangles is X(1).
X(12879) lies on these lines: {1,6724}, {40,164}, {167,8140}, {177,8113}, {1130,11923}, {3577,11528}, {5571,11026}, {5934,11523}, {7670,8385}, {8107,12518}, {8390,8422}, {9783,9807}, {11685,11691}, {11856,12450}, {11886,12539}, {11892,12554}
X(12879) = reflection of X(i) in X(j) for these (i,j): (164,188), (12884,167)
X(12879) = orthologic center of these triangles: inner-Hutson to 2nd midarc
X(12879) = X(1)-of-inner-Hutson-triangle
X(12879) = excentral-to-inner-Hutson similarity image of X(164)
X(12879) = {X(6732),X(8133)}-harmonic conjugate of X(1)
The reciprocal orthologic center of these triangles is X(1).
X(12880) lies on these lines: {57,363}, {329,5934}, {999,8109}, {3820,8380}, {6244,8107}, {6282,8111}, {7956,8377}, {7962,8390}, {7994,8140}, {8101,8133}, {8385,12848}, {9954,11856}, {9965,11886}, {11892,12555}
X(12880) = reflection of X(12885) in X(7994)
X(12880) = X(25)-of-inner-Hutson-triangle
X(12880) = excentral-to-inner-Hutson similarity image of X(57)
The reciprocal orthologic center of these triangles is X(1)
X(12881) lies on these lines: {168,12396}, {5935,12397}, {7707,12406}, {8108,12387}, {8110,12388}, {8112,12398}, {8114,12402}, {8140,12404}, {8378,12393}, {8381,12394}, {8386,12399}, {8392,12400}, {9787,12391}, {11027,12403}, {11040,12401}, {11528,12395}, {11686,12389}, {11855,12385}, {11857,12386}, {11887,12390}, {11893,12392}, {11926,12405}
The reciprocal orthologic center of these triangles is X(21).
X(12882) lies on these lines: {363,12660}, {5934,12695}, {8107,12519}, {8109,12524}, {8111,12845}, {8140,12887}, {8377,12615}, {8380,12623}, {8385,12850}, {8390,12877}, {9783,12543}, {11527,12657}, {11685,12535}, {11854,12444}, {11856,12451}, {11886,12540}, {11892,12557}
The reciprocal orthologic center of these triangles is X(3555).
X(12883) lies on these lines: {5935,12693}, {8108,12517}, {8110,12522}, {8112,12843}, {8140,12878}, {8378,12613}, {8381,12621}, {8386,12847}, {8392,12876}, {11528,12655}, {11686,12534}, {11855,12442}, {11857,12449}, {11887,12538}, {11893,12553}
The reciprocal orthologic center of these triangles is X(1).
X(12884) lies on these lines: {1,8135}, {9,164}, {177,8114}, {5571,11027}, {7670,8386}, {7982,9837}, {8108,12518}, {8110,12523}, {8140,10233}, {8378,12614}, {8381,12622}, {8392,8422}, {9787,9807}, {11686,11691}, {11855,12443}, {11857,12450}, {11887,12539}, {11893,12554}
X(12884) = reflection of X(i) in X(j) for these (i,j): (11528,9837), (12879,167)
X(12884) = orthologic center of these triangles: outer-Hutson to 2nd midarc
X(12884) = X(1)-of-outer-Hutson-triangle
X(12884) = excentral-to-outer-Hutson similarity image of X(164)
X(12884) = {X(8135),X(8138)}-harmonic conjugate of X(1)
The reciprocal orthologic center of these triangles is X(1).
X(12885) lies on these lines: {329,5935}, {999,8110}, {3820,8381}, {6244,8108}, {6282,8112}, {7956,8378}, {7994,8140}, {8101,8135}, {8102,8138}, {8386,12848}, {9954,11857}, {9965,11887}, {11893,12555}
X(12885) = reflection of X(12880) in X(7994)
X(12885) = X(25)-of-outer-Hutson-triangle
X(12885) = excentral-to-outer-Hutson similarity image of X(57)
The reciprocal orthologic center of these triangles is X(1)
X(12886) lies on these lines: {363,12396}, {5934,12397}, {8107,12387}, {8109,12388}, {8111,12398}, {8113,12402}, {8140,12404}, {8377,12393}, {8380,12394}, {8385,12399}, {8390,12400}, {8391,12405}, {9783,12391}, {11026,12403}, {11039,12401}, {11527,12395}, {11685,12389}, {11854,12385}, {11856,12386}, {11886,12390}, {11892,12392}, {11923,12406}
The reciprocal orthologic center of these triangles is X(21).
X(12887) lies on these lines: {5935,12695}, {8108,12519}, {8110,12524}, {8112,12845}, {8140,12882}, {8378,12615}, {8381,12623}, {8386,12850}, {8392,12877}, {11528,12657}, {11686,12535}, {11855,12444}, {11857,12451}, {11887,12540}, {11893,12557}
The reciprocal orthologic center of these triangles is X(10112).
X(12888) lies on the intangents circle and these lines: {1,12896}, {33,113}, {34,12295}, {35,12893}, {36,12901}, {55,2931}, {56,12302}, {74,3100}, {110,6198}, {125,1062}, {146,9539}, {399,3157}, {497,12319}, {1040,6699}, {1250,10664}, {1870,10733}, {2066,12891}, {2948,9577}, {3031,9551}, {3043,9637}, {3047,9638}, {3295,12310}, {3448,9538}, {4354,10065}, {5414,12892}, {5504,10091}, {5663,6285}, {7071,12168}, {8540,12596}, {9576,9904}, {9627,12903}, {9628,12373}, {9629,12374}, {9630,12904}, {9632,10819}, {9633,10817}, {9641,10620}, {9645,10117}, {9817,12900}, {10638,10663}, {11429,12228}, {11436,12236}, {11446,12273}, {11461,12284}
X(12888) = reflection of X(i) in X(j) for these (i,j): (10118,8144), (12661,2931)
X(12888) = antipode of X(10118) in intangents circle
The reciprocal orthologic center of these triangles is X(6102).
X(12889) lies on these lines: {11,265}, {12,12905}, {30,12371}, {110,355}, {542,12586}, {1376,1511}, {2771,7984}, {3434,12383}, {3448,10785}, {5663,12114}, {10088,10944}, {10113,10893}, {10523,12903}, {10794,12201}, {10826,12407}, {10829,12412}, {10871,12501}, {10914,12778}, {10919,12803}, {10920,12804}, {10945,12894}, {10946,12895}, {10947,12896}, {10948,12904}, {10949,12906}, {11373,12261}, {11390,12140}, {11826,12121}, {11903,12790}, {11928,12902}
X(12889) = reflection of X(i) in X(j) for these (i,j): (12334,1511), (12890,110)
The reciprocal orthologic center of these triangles is X(6102).
X(12890) lies on these lines: {11,12906}, {12,265}, {30,12372}, {72,74}, {110,355}, {542,12587}, {958,1511}, {3436,12383}, {3448,10786}, {5663,11500}, {6253,7728}, {10091,10950}, {10113,10894}, {10523,12904}, {10795,12201}, {10827,12407}, {10830,12412}, {10872,12501}, {10921,12803}, {10922,12804}, {10951,12894}, {10952,12895}, {10953,12896}, {10954,12903}, {10955,12905}, {11374,12261}, {11391,12140}, {11827,12121}, {11904,12790}, {11929,12902}
X(12890) = reflection of X(12889) in X(110)
X(12890) = X(265)-of-outer-Johnson-triangle
The reciprocal orthologic center of these triangles is X(10112).
X(12891) lies on these lines: {6,1511}, {74,11417}, {110,10666}, {113,5412}, {125,10897}, {265,6413}, {372,12893}, {1151,12302}, {2066,12888}, {3068,12319}, {3311,12310}, {5410,12168}, {5415,12661}, {5663,11265}, {6699,11513}, {10961,12900}, {11447,12273}, {11462,12284}, {11473,12295}
X(12891) = {X(6),X(2931)}-harmonic conjugate of X(12892)
The reciprocal orthologic center of these triangles is X(10112).
X(12892) lies on these lines: {6,1511}, {74,11418}, {110,10665}, {113,5413}, {125,10898}, {265,6414}, {371,12893}, {1152,12302}, {3069,12319}, {3312,12310}, {5411,12168}, {5414,12888}, {5416,12661}, {5663,11266}, {6396,12901}, {6699,11514}, {10963,12900}, {11448,12273}, {11463,12284}, {11474,12295}
X(12892) = {X(6),X(2931)}-harmonic conjugate of X(12891)
The reciprocal orthologic center of these triangles is X(10112).
X(12893) lies on these lines: {3,125}, {15,10664}, {16,10663}, {23,10721}, {24,113}, {26,2777}, {35,12888}, {54,5504}, {68,5963}, {74,7488}, {110,186}, {371,12892}, {372,12891}, {378,12295}, {389,11536}, {399,12163}, {541,10117}, {549,11804}, {575,12596}, {578,12236}, {631,12319}, {1147,1511}, {1658,5663}, {2070,7728}, {2935,7387}, {3043,5889}, {3047,11464}, {3448,10298}, {3515,12168}, {3520,10733}, {3564,12584}, {5972,6644}, {6642,12900}, {6723,7514}, {7502,8717}, {7526,7687}, {7556,12244}, {8723,9517}, {8998,9682}, {9590,12368}, {9932,10114}, {10821,12235}, {10902,12661}, {11430,11800}, {11449,12273}
X(12893) = midpoint of X(i) and X(j) for these {i,j}: {3,2931}, {68,12383}, {399,12163}, {2935,7387}, {12302,12310}
X(12893) = reflection of X(i) in X(j) for these (i,j): (265,5449), (1147,1511), (5504,12038), (12596,575), (12901,3)
X(12893) = anticomplement of X(33547)
X(12893) = {X(3), X(12310)}-harmonic conjugate of X(12302)
The reciprocal orthologic center of these triangles is X(6102).
X(12894) lies on these lines: {30,12377}, {110,8220}, {265,493}, {542,12590}, {1511,8222}, {2771,12741}, {3448,11846}, {5663,9838}, {6461,12895}, {6462,12383}, {8188,12407}, {8194,12412}, {8210,12898}, {8212,10113}, {8214,12778}, {8216,12803}, {8218,12804}, {10088,11930}, {10091,11932}, {10875,12501}, {10945,12889}, {11377,12261}, {11394,12140}, {11503,12334}, {11828,12121}, {11840,12201}, {11907,12790}, {11947,12896}, {11949,12902}, {11951,12903}, {11953,12904}, {11955,12905}, {11957,12906}
X(12894) = X(265)-of-Lucas-homothetic-triangle
The reciprocal orthologic center of these triangles is X(6102).
X(12895) lies on these lines: {30,12378}, {110,8221}, {265,494}, {542,12591}, {1511,8223}, {2771,12742}, {3448,11847}, {5663,9839}, {6461,12894}, {6463,12383}, {8189,12407}, {8195,12412}, {8211,12898}, {8213,10113}, {8215,12778}, {8217,12803}, {8219,12804}, {10088,11931}, {10091,11933}, {10946,12889}, {11378,12261}, {11395,12140}, {11504,12334}, {11829,12121}, {11841,12201}, {11908,12790}, {11948,12896}, {11950,12902}, {11952,12903}, {11954,12904}, {11956,12905}, {11958,12906}
X(12895) = X(265)-of-Lucas(-1)-homothetic-triangle
The reciprocal orthologic center of these triangles is X(6102).
X(12896) lies on these lines: {1,12888}, {3,12904}, {4,10088}, {11,1511}, {12,10113}, {20,10081}, {30,3028}, {33,12140}, {35,125}, {55,265}, {56,12121}, {74,4302}, {79,6062}, {80,4092}, {110,1479}, {113,3583}, {382,12373}, {399,9668}, {497,10091}, {542,3056}, {1478,10733}, {1697,12407}, {1837,12778}, {2098,12898}, {2646,12261}, {2771,12743}, {2777,7355}, {2948,3586}, {3295,12902}, {3448,4294}, {3585,12295}, {5010,6699}, {5663,6284}, {5972,7741}, {7687,7951}, {10058,10778}, {10086,11005}, {10799,12201}, {10833,12412}, {10877,12501}, {10927,12803}, {10928,12804}, {10947,12889}, {10953,12890}, {10965,12905}, {10966,12906}, {11874,12467}, {11909,12790}, {11947,12894}, {11948,12895}
X(12896) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (399,9668,12374), (497,12383,10091), (3295,12902,12903), (3448,4294,10065)
X(12896) = X(265)-of-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(7687).
X(12897) lies on these lines: {4,110}, {30,143}, {195,7728}, {235,12038}, {378,5449}, {382,1181}, {539,12162}, {568,10937}, {1209,7527}, {1493,2883}, {1533,10619}, {1593,9927}, {1597,12293}, {1885,12421}, {2777,6102}, {2781,12585}, {3146,11750}, {3543,12289}, {5073,11820}, {5097,8550}, {5663,10112}, {6000,10116}, {6699,11250}, {7687,10224}, {7706,10982}, {10575,12022}, {10628,12899}, {11472,12429}
X(12897) = midpoint of X(3146) and X(11750)
X(12897) = reflection of X(10116) in X(12370)
X(12897) = X(1320)-of-1st-Hyacinth-triangle if ABC is acute
The reciprocal orthologic center of these triangles is X(6102).
X(12898) lies on these lines: {1,265}, {8,1511}, {30,6742}, {56,12334}, {110,952}, {125,10246}, {145,12383}, {355,11720}, {381,11723}, {515,7728}, {517,12121}, {519,12778}, {542,3242}, {944,5663}, {1483,7979}, {2098,12896}, {2771,3057}, {2777,7973}, {3448,7967}, {3655,11709}, {5597,12467}, {5598,12466}, {5603,10113}, {5604,12804}, {5605,12803}, {5655,11699}, {5790,5972}, {8192,12412}, {8210,12894}, {8211,12895}, {9997,12501}, {10088,10944}, {10091,10950}, {10247,12902}, {10283,11801}, {10800,12201}, {11396,12140}, {11910,12790}
X(12898) = midpoint of X(145) and X(12383)
X(12898) = reflection of X(i) in X(j) for these (i,j): (8,1511), (265,1), (355,11720), (7984,1483), (12368,11699), (12407,12261)
X(12898) = X(265)-of-5th-mixtilinear-triangle
X(12898) = {X(12905),X(12906)}-harmonic conjugate of X(265)
The reciprocal orthologic center of these triangles is X(399).
X(12899) lies on these lines: {5,11536}, {195,10255}, {389,539}, {567,3519}, {1154,12370}, {1209,1493}, {1353,9977}, {2888,12161}, {6102,11562}, {10115,12236}, {10628,12897}, {11801,11803}
The reciprocal orthologic center of these triangles is X(10112).
X(12900) lies on these lines: {2,74}, {5,1511}, {10,11723}, {110,569}, {125,399}, {140,2777}, {265,5642}, {486,8998}, {542,3589}, {690,6721}, {974,5892}, {1112,1216}, {1209,2914}, {1568,3581}, {1986,5891}, {2771,6667}, {3619,10752}, {3624,12368}, {3819,11807}, {5448,11438}, {5449,12227}, {5663,9729}, {5943,12236}, {6053,10264}, {7978,9780}, {8253,8994}, {9306,12228}, {9813,12596}, {9817,12888}, {9827,11746}, {10170,11557}, {10546,12140}, {10643,10663}, {10644,10664}, {10961,12891}, {10963,12892}, {11230,11735}, {11451,12273}, {11465,12284}
X(12900) = midpoint of X(i) and X(j) for these {i,j}: {5,5972}, {10,11723}, {113,6699}, {1112,1216}, {1511,7687}, {6053,10264}, {11557,12358}
X(12900) = reflection of X(6723) in X(3628)
X(12900) = complement of X(6699)
X(12900) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,113,6699), (5,1511,7687), (5972,7687,1511)
The reciprocal orthologic center of these triangles is X(10112).
X(12901) lies on these lines: {3,125}, {24,12295}, {36,12888}, {74,323}, {110,3520}, {113,378}, {146,5654}, {155,10620}, {186,10733}, {376,12319}, {511,12596}, {541,2935}, {1092,7723}, {1147,3357}, {1511,4550}, {2777,12084}, {3043,12270}, {3047,6241}, {3098,9976}, {3448,12118}, {5448,7728}, {5972,7526}, {6101,7689}, {6396,12892}, {6644,7687}, {7688,12661}, {9818,12900}, {10117,12085}, {10539,12292}, {10645,10663}, {10646,10664}, {10721,12086}, {11410,12168}, {11430,12228}, {11438,12236}, {11442,12383}, {11454,12273}, {11468,12284}, {11999,12163}
X(12901) = midpoint of X(i) and X(j) for these {i,j}: {3,12302}, {74,5504}, {155,10620}, {2935,12412}, {3448,12118}, {10117,12085}
X(12901) = reflection of X(i) in X(j) for these (i,j): (110,12038), (7689,12041), (7728,5448), (9927,125), (12893,3)
X(12901) = X(104)-of-Trinh-triangle if ABC is acute
The reciprocal orthologic center of these triangles is X(6102).
X(12902) lies on these lines: {2,11801}, {3,125}, {4,195}, {5,12383}, {20,10264}, {30,3448}, {68,11559}, {74,1657}, {110,381}, {113,3843}, {146,3627}, {382,5663}, {517,12407}, {542,1351}, {568,11562}, {578,11597}, {999,12904}, {1154,12281}, {1511,1656}, {1539,5076}, {1598,12140}, {1699,11699}, {1986,12173}, {2079,10413}, {2771,5691}, {2777,5073}, {2930,3818}, {2937,12289}, {3028,9655}, {3043,7547}, {3091,10272}, {3146,12317}, {3295,12896}, {3521,10116}, {3534,9140}, {3567,11561}, {3845,9143}, {3851,7687}, {5055,5972}, {5071,11694}, {5790,12778}, {5876,12273}, {5898,6288}, {5899,10117}, {6102,12270}, {6243,10628}, {6407,8994}, {7517,12412}, {7723,11898}, {8976,10819}, {9301,12501}, {9654,10088}, {9669,10091}, {10246,12261}, {10247,12898}, {10255,12118}, {10516,12584}, {10778,12773}, {11744,12315}, {11842,12201}, {11849,12334}, {11850,12358}, {11875,12466}, {11876,12467}, {11911,12790}, {11916,12803}, {11917,12804}, {11928,12889}, {11929,12890}, {11949,12894}, {11950,12895}, {12000,12905}, {12001,12906}
X(12902) = midpoint of X(3146) and X(12317)
X(12902) = reflection of X(i) in X(j) for these (i,j): (3,265), (20,10264), (110,10113), (146,3627), (382,10733), (399,4), (1657,74), (2930,3818), (2931,9927), (3534,9140), (5898,6288), (7728,12295), (7731,10263), (9143,3845), (10620,3448), (11562,11800), (12121,125), (12270,6102), (12273,5876), (12308,7728), (12315,11744), (12383,5), (12773,10778)
X(12902) = anticomplement of X(34153)
X(12902) = X(265)-of-X3-ABC-reflections-triangle
X(12902) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (110,10113,381), (125,12121,3), (265,12121,125), (3830,12308,7728), (7728,12295,3830), (11562,11800,568), (12896,12903,3295)
The reciprocal orthologic center of these triangles is X(6102).
X(12903) lies on the Johnson-Yff-inner-circle and these lines: {1,265}, {5,10091}, {12,110}, {30,10065}, {35,12121}, {56,125}, {67,1469}, {74,7354}, {113,10895}, {146,5229}, {388,3028}, {399,9654}, {495,10066}, {496,11801}, {498,1511}, {542,611}, {1112,11392}, {1317,10778}, {1388,11735}, {1478,5663}, {1479,10113}, {2771,10057}, {2777,10060}, {2854,12588}, {2931,9659}, {2948,9578}, {3023,11005}, {3031,9552}, {3043,9653}, {3047,9652}, {3085,12383}, {3295,12896}, {3585,7727}, {5204,6699}, {5434,9140}, {6284,10733}, {6285,11744}, {7687,10896}, {7732,10923}, {7733,10924}, {7984,10944}, {9579,9904}, {9627,12888}, {9628,10118}, {9646,10819}, {9649,10817}, {9655,10620}, {9658,10117}, {10037,12412}, {10039,12778}, {10040,12803}, {10041,12804}, {10081,10264}, {10082,11804}, {10272,10592}, {10523,12889}, {10801,12201}, {10831,12310}, {10954,12890}, {11375,11720}, {11398,12140}, {11507,12334}, {11912,12790}, {11951,12894}, {11952,12895}
X(12903) = midpoint of X(265) and X(12905)
X(12903) = reflection of X(i) in X(j) for these (i,j): (10088,495), (12373,1478)
X(12903) = antipode of X(12373) in Johnson-Yff-inner-circle
X(12903) = X(265)-of-inner-Yff-triangle
X(12903) = {X(1), X(265)}-harmonic conjugate of X(12904)
The reciprocal orthologic center of these triangles is X(6102).
X(12904) lies on the Johnson-Yff-outer-circle and these lines: {1,265}, {3,12896}, {4,3028}, {5,10088}, {11,110}, {30,10081}, {36,12121}, {55,125}, {67,3056}, {74,6284}, {113,10896}, {146,5225}, {399,9669}, {495,11801}, {496,10082}, {499,1511}, {542,613}, {999,12902}, {1112,11393}, {1478,10113}, {1479,5663}, {1737,12778}, {1898,2771}, {2777,10076}, {2854,12589}, {2931,9672}, {2948,9581}, {3027,11005}, {3031,9555}, {3043,9666}, {3047,9667}, {3058,9140}, {3086,12383}, {3583,7728}, {4857,7727}, {5217,6699}, {5504,12428}, {7354,10733}, {7355,11744}, {7687,10895}, {7732,10925}, {7733,10926}, {7743,11699}, {7984,10950}, {9580,9904}, {9629,10118}, {9630,12888}, {9661,10819}, {9662,10817}, {9668,10620}, {9673,10117}, {10046,12412}, {10047,12501}, {10048,12803}, {10049,12804}, {10065,10264}, {10066,11804}, {10272,10593}, {10523,12890}, {10802,12201}, {10832,12310}, {10948,12889}, {11006,12354}, {11376,11720}, {11399,12140}, {11508,12334}, {11879,12466}, {11880,12467}, {11913,12790}, {11953,12894}, {11954,12895}
X(12904) = midpoint of X(265) and X(12906)
X(12904) = reflection of X(i) in X(j) for these (i,j): (10091,496), (12374,1479)
X(12904) = antipode of X(12374) in Johnson-Yff-outer-circle
X(12904) = X(265)-of-outer-Yff-triangle
X(12904) = {X(1), X(265)}-harmonic conjugate of X(12903)
The reciprocal orthologic center of these triangles is X(6102).
X(12905) lies on these lines: {1,265}, {12,12889}, {30,12381}, {110,10942}, {542,12594}, {1511,5552}, {2771,12749}, {3448,10805}, {5663,12115}, {6256,7728}, {10088,10956}, {10091,10958}, {10113,10531}, {10528,12383}, {10803,12201}, {10834,12412}, {10878,12501}, {10915,12778}, {10929,12803}, {10930,12804}, {10955,12890}, {10965,12896}, {11248,12121}, {11400,12140}, {11509,12334}, {11882,12467}, {11914,12790}, {11955,12894}, {11956,12895}, {12000,12902}
X(12905) = reflection of X(265) in X(12903)
X(12905) = X(265)-of-inner-Yff-tangents-triangle
X(12905) = {X(265),X(12898)}-harmonic conjugate of X(12906)
The reciprocal orthologic center of these triangles is X(6102).
X(12906) lies on these lines: {1,265}, {11,12890}, {30,12382}, {110,10943}, {542,12595}, {1511,10527}, {2771,12374}, {3448,10806}, {5663,12116}, {10088,10957}, {10091,10959}, {10113,10532}, {10529,12383}, {10804,12201}, {10835,12412}, {10879,12501}, {10916,12778}, {10931,12803}, {10932,12804}, {10949,12889}, {10966,12896}, {11249,12121}, {11401,12140}, {11510,12334}, {11883,12466}, {11884,12467}, {11915,12790}, {11957,12894}, {11958,12895}, {12001,12902}
X(12906) = reflection of X(265) in X(12904)
X(12906) = X(265)-of-outer-Yff-tangents-triangle
X(12906) = {X(265),X(12898)}-harmonic conjugate of X(12905)
The reciprocal orthologic center of these triangles is X(3555).
X(12907) lies on these lines: {1,12553}, {3,4319}, {495,12621}, {496,12613}, {522,3159}, {942,12442}, {999,12522}, {1385,10386}, {3295,12517}, {3333,12659}, {3487,12693}, {3616,12534}, {5045,12914}, {11035,12449}, {11036,12538}, {11037,12542}, {11038,12847}, {11039,12878}, {11040,12883}, {11529,12655}
X(12907) = midpoint of X(1) and X(12912)
X(12907) = reflection of X(12914) in X(5045)
The reciprocal orthologic center of these triangles is X(1).
X(12908) lies on these lines: {1,167}, {164,3333}, {495,12622}, {942,12443}, {3295,12518}, {3487,12694}, {3616,11691}, {5045,5571}, {11035,12450}, {11529,12656}
X(12908) = midpoint of X(1) and X(177)
X(12908) = reflection of X(5571) in X(5045)
X(12908) = X(1)-of-incircle-circles-triangle
X(12908) = X(5)-of-mid-arc-triangle
X(12908) = X(550)-of-2nd-mid-arc-triangle
X(12908) = excentral-to-incircle-circles similarity image of X(164)
X(12908) = orthologic center of these triangles: incircle-circles to 2nd midarc
The reciprocal orthologic center of these triangles is X(21).
X(12909) lies on these lines: {1,5180}, {495,12623}, {496,12615}, {942,3838}, {999,12524}, {3295,12519}, {3296,6597}, {3487,12695}, {3616,12535}, {3649,5083}, {5045,12917}, {11035,12451}, {11036,12540}, {11037,12543}, {11038,12850}, {11039,12882}, {11040,12887}, {11529,12657}, {11551,11604}
X(12909) = midpoint of X(1) and X(12913)
X(12909) = reflection of X(12917) in X(5045)
The reciprocal orthologic center of these triangles is X(3).
X(12910) lies on these lines: {33,487}, {34,12296}, {55,12662}, {56,12303}, {486,1040}, {497,12320}, {642,9817}, {1038,12123}, {1062,12601}, {3100,12221}, {3295,12311}, {3564,12911}, {6198,12509}, {7071,12169}, {8540,12597}, {11429,12229}, {11436,12237}, {11446,12274}, {11461,12285}
X(12910) = reflection of X(12662) in X(12978)
X(12910) = orthic-to-intangents similarity image of X(487)
The reciprocal orthologic center of these triangles is X(3).
X(12911) lies on these lines: {33,488}, {34,12297}, {55,12663}, {56,12304}, {485,1040}, {497,12321}, {641,9817}, {1038,12124}, {1062,12602}, {3100,12222}, {3295,12312}, {3564,12910}, {6198,12510}, {7071,12170}, {8540,12598}, {11429,12230}, {11436,12238}, {11446,12275}, {11461,12286}
X(12911) = reflection of X(12663) in X(12979)
X(12911) = orthic-to-intangents similarity image of X(488)
The reciprocal orthologic center of these triangles is X(3555).
X(12912) lies on these lines: {1,12553}, {2,12534}, {3,10624}, {7,12538}, {11,12613}, {12,12621}, {40,1736}, {55,12517}, {56,12522}, {57,12442}, {226,12693}, {354,12914}, {522,3913}, {3295,3663}, {3340,12655}, {4329,6361}, {4890,5711}, {4941,5255}, {8113,12878}, {8114,12883}, {8581,12449}
X(12912) = midpoint of X(i) and X(j) for these {i,j}: {7,12847}, {12538,12542}
X(12912) = reflection of X(i) in X(j) for these (i,j): (1,12907), (12659,12442), (12876,1)
X(12912) = complement of X(12534)
The reciprocal orthologic center of these triangles is X(21).
X(12913) lies on these lines: {1,5180}, {2,10044}, {7,6597}, {11,12615}, {12,12623}, {55,12519}, {56,12524}, {57,12444}, {65,2475}, {79,11570}, {226,12695}, {354,12917}, {1484,6595}, {2771,12600}, {3337,11263}, {3340,12657}, {8113,12882}, {8114,12887}, {8581,12451}, {12745,12947}
X(12913) = midpoint of X(i) and X(j) for these {i,j}: {7,12850}, {12540,12543}
X(12913) = reflection of X(i) in X(j) for these (i,j): (1,12909), (12660,12444), (12877,1)
X(12913) = complement of X(12535)
The reciprocal orthologic center of these triangles is X(3555).
X(12914) lies on these lines: {1,12522}, {57,12517}, {65,12876}, {226,12613}, {354,12912}, {1210,12621}, {3333,12843}, {3873,12534}, {5045,12907}, {5728,12693}, {10580,12542}, {11018,12442}, {11019,12449}, {11020,12538}, {11021,12553}, {11025,12847}, {11026,12878}, {11027,12883}
X(12914) = midpoint of X(65) and X(12876)
X(12914) = reflection of X(12907) in X(5045)
The reciprocal orthologic center of these triangles is X(1).
X(12915) lies on these lines: {1,3}, {7,10569}, {11,10157}, {226,1538}, {329,3873}, {388,5806}, {392,5273}, {496,5777}, {497,971}, {518,3452}, {527,5572}, {938,3421}, {954,4666}, {1210,3820}, {1699,8581}, {2550,10855}, {2810,11028}, {2823,10271}, {3035,3742}, {3086,5044}, {3697,5704}, {3881,6744}, {5083,10391}, {5218,10156}, {5274,5927}, {5691,9850}, {8101,11032}, {9581,9947}, {9856,12053}, {9965,11020}, {10106,12128}, {11025,12848}, {11026,12880}, {11027,12885}, {12005,12710}
X(12915) = midpoint of X(i) and X(j) for these {i,j}: {65,7962}, {3421,3555}
X(12915) = reflection of X(i) in X(j) for these (i,j): (999,5045), (3359,9940), (9954,3452)
X(12915) = complement of X(17658)
X(12915) = incircle-inverse-of-X(5537)
X(12915) = X(25)-of-inverse-in-incircle-triangle
X(12915) = excentral-to-inverse-in-incircle similarity image of X(57)
X(12915) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,354,11018), (1,942,12916), (57,7962,7994), (57,10388,6244), (65,354,10980), (354,5173,942), (3873,10580,5728), (5806,11035,388), (7994,10980,57), (9957,11227,55)
The reciprocal orthologic center of these triangles is X(1)
X(12916) lies on these lines: {177,12406}, {2089,12402}, {8078,12396}, {8079,12397}, {8081,12398}, {8085,12393}, {8087,12394}, {8089,12404}, {8241,12400}, {8249,12405}, {8387,12399}, {8733,12385}, {9793,12391}, {11032,12403}, {11044,12401}, {11534,12395}, {11690,12389}, {11858,12386}, {11888,12390}, {11894,12392}
X(12916) = reflection of X(12475) in X(1)The reciprocal orthologic center of these triangles is X(21).
X(12917) lies on these lines: {1,6597}, {7,10266}, {57,12519}, {65,12877}, {142,12639}, {226,12615}, {354,12913}, {946,12267}, {1210,12623}, {3333,12845}, {3873,12535}, {5045,12909}, {5728,12695}, {8261,12736}, {10580,12543}, {11018,12444}, {11019,12451}, {11020,12540}, {11021,12557}, {11025,12850}, {11026,12882}, {11027,12887}
X(12917) = midpoint of X(65) and X(12877)
X(12917) = reflection of X(12909) in X(5045)
The reciprocal orthologic center of these triangles is X(4).
X(12918) lies on these lines: {1,12945}, {2,12253}, {3,132}, {4,339}, {5,1297}, {30,112}, {66,265}, {127,133}, {355,12925}, {382,2794}, {517,12784}, {1478,6020}, {1479,3320}, {2799,6033}, {2806,10742}, {2825,10739}, {2831,10738}, {2853,10740}, {3627,10735}, {3845,10718}, {5587,12408}, {5886,12265}, {6214,12806}, {6215,12805}, {7728,9517}, {8200,12478}, {8207,12479}, {9518,10741}, {9523,10743}, {9527,10744}, {9532,10747}, {9996,12503}, {10796,12207}, {11499,12340}
X(12918) = midpoint of X(i) and X(j) for these {i,j}: {4,12384}, {12925,12935}
X(12918) = reflection of X(i) in X(j) for these (i,j): (3,132), (1297,5), (10718,3845), (10735,3627), (10749,4)
X(12918) = complement of X(12253)
X(12918) = X(1297)-of-Johnson-triangle
X(12918) = {X(12945),X(12955)}-harmonic conjugate of X(1)
The reciprocal orthologic center of these triangles is X(79).
X(12919) lies on these lines: {1,12947}, {2,12255}, {3,7701}, {4,12146}, {5,10266}, {30,12798}, {355,12745}, {381,12600}, {517,12786}, {952,6595}, {2475,10742}, {3652,12519}, {5587,12409}, {5886,12267}, {6214,12808}, {6215,12807}, {6265,12524}, {8200,12482}, {8207,12483}, {9996,12504}, {10796,12209}, {11499,12342}, {11849,12660}
X(12919) = midpoint of X(12927) and X(12937)
X(12919) = reflection of X(10266) in X(5)
X(12919) = complement of X(12255)
X(12919) = X(10266)-of-Johnson-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12920) lies on these lines: {11,64}, {30,12422}, {355,5878}, {1376,2883}, {1498,11826}, {2777,12889}, {3434,6225}, {6000,10525}, {6001,12700}, {6247,10893}, {6266,10920}, {6267,10919}, {7355,10947}, {7973,10944}, {9899,10826}, {9914,10829}, {10060,10523}, {10076,10948}, {10785,12250}, {10794,12202}, {10871,12502}, {10914,12779}, {11373,12262}, {11381,11390}, {11865,12468}, {11866,12469}, {11903,12791}
X(12920) = reflection of X(i) in X(j) for these (i,j): (12335,2883), (12930,5878)
X(12920) = X(64)-of-inner-Johnson-triangle
X(12920) = X(13094)-of-outer-Johnson-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12921) lies on these lines: {11,14}, {355,5613}, {530,12348}, {531,11235}, {542,12586}, {617,3434}, {619,1376}, {5474,11826}, {5479,10893}, {6269,10920}, {6271,10919}, {6773,10785}, {7974,10944}, {9900,10826}, {9915,10829}, {9981,10871}, {10061,10523}, {10077,10948}, {10794,12204}, {10914,12780}, {11373,11706}, {11390,12141}, {11865,12470}, {11866,12471}, {11903,12792}
X(12921) = reflection of X(12931) in X(5613)
X(12921) = X(14)-of-inner-Johnson-triangle
X(12921) = X(13104)-of-outer-Johnson-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12922) lies on these lines: {11,13}, {355,5617}, {530,11235}, {531,12348}, {542,12586}, {616,3434}, {618,1376}, {5473,11826}, {5478,10893}, {6268,10920}, {6270,10919}, {6770,10785}, {7975,10944}, {9901,10826}, {9916,10829}, {9982,10871}, {10062,10523}, {10078,10948}, {10794,12205}, {10914,12781}, {11373,11705}, {11390,12142}, {11865,12472}, {11866,12473}, {11903,12793}
X(12922) = reflection of X(12932) in X(5617)
X(12922) = X(13)-of-inner-Johnson-triangle
X(12922) = X(13105)-of-outer-Johnson-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12923) lies on these lines: {11,76}, {39,1376}, {194,3434}, {355,730}, {384,10794}, {511,12114}, {538,11235}, {732,12586}, {2782,10525}, {5969,12348}, {6248,10893}, {6272,10920}, {6273,10919}, {7976,10944}, {9902,10826}, {9917,10829}, {9983,10871}, {10063,10523}, {10079,10948}, {10785,12251}, {10914,12782}, {11257,11826}, {11373,12263}, {11390,12143}, {11865,12474}, {11866,12475}, {11903,12794}
X(12923) = reflection of X(i) in X(j) for these (i,j): (12338,39), (12933,3095)
X(12923) = X(76)-of-inner-Johnson-triangle
X(12923) = X(13109)-of-outer-Johnson-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12924) lies on these lines: {11,83}, {355,6287}, {732,12586}, {754,11235}, {1376,6292}, {2896,3434}, {6249,10893}, {6274,10920}, {6275,10919}, {7977,10944}, {9903,10826}, {9918,10829}, {10064,10523}, {10080,10948}, {10785,12252}, {10794,12206}, {10914,12783}, {10943,12182}, {11373,12264}, {11390,12144}, {11826,12122}, {11865,12476}, {11866,12477}, {11903,12795}
X(12924) = reflection of X(i) in X(j) for these (i,j): (12339,6292), (12934,6287)
X(12924) = X(83)-of-inner-Johnson-triangle
X(12924) = X(13112)-of-outer-Johnson-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12925) lies on these lines: {11,1297}, {112,11826}, {127,10893}, {132,1376}, {355,12918}, {2799,12182}, {2806,12761}, {3320,10947}, {3434,12384}, {9517,12371}, {9530,11235}, {10785,12253}, {10794,12207}, {10826,12408}, {10829,12413}, {10871,12503}, {10914,12784}, {10919,12805}, {10920,12806}, {10944,12945}, {11373,12265}, {11390,12145}, {11865,12478}, {11866,12479}, {11903,12796}
X(12925) = reflection of X(i) in X(j) for these (i,j): (12340,132), (12935,12918)
X(12925) = X(1297)-of-inner-Johnson-triangle
X(12925) = X(13118)-of-outer-Johnson-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12926) lies on these lines: {11,54}, {195,11928}, {355,6288}, {539,11235}, {1154,10525}, {1209,1376}, {2888,3434}, {3574,10893}, {6276,10920}, {6277,10919}, {7691,11826}, {7979,10944}, {9905,10826}, {9920,10829}, {9985,10871}, {10066,10523}, {10082,10948}, {10628,12371}, {10785,12254}, {10794,12208}, {10914,12785}, {10943,12889}, {11373,12266}, {11390,11576}, {11865,12480}, {11866,12481}, {11903,12797}
X(12926) = reflection of X(i) in X(j) for these (i,j): (12341,1209), (12936,6288)
X(12926) = X(54)-of-inner-Johnson-triangle
X(12926) = X(13121)-of-outer-Johnson-triangle
The reciprocal orthologic center of these triangles is X(79).
X(12927) lies on these lines: {11,6595}, {355,12745}, {1376,12342}, {3149,7701}, {10785,12255}, {10794,12209}, {10826,12409}, {10829,12414}, {10871,12504}, {10893,12600}, {10912,11280}, {10914,12786}, {10919,12807}, {10920,12808}, {10944,12947}, {11373,12267}, {11390,12146}, {11865,12482}, {11866,12483}, {11903,12798}
X(12927) = reflection of X(12937) in X(12919)
X(12927) = X(10266)-of-inner-Johnson-triangle
X(12927) = X(13130)-of-outer-Johnson-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12928) lies on these lines: {11,486}, {355,6290}, {487,3434}, {642,1376}, {3564,10943}, {6251,10893}, {6280,10920}, {6281,10919}, {7980,10944}, {9906,10826}, {9921,10829}, {9986,10871}, {10067,10523}, {10083,10948}, {10785,12256}, {10794,12210}, {10914,12787}, {11373,12268}, {11390,12147}, {11826,12123}, {11865,12484}, {11866,12485}, {11903,12799}, {11928,12601}
X(12928) = X(486)-of-inner-Johnson-triangle
X(12928) = X(13132)-of-outer-Johnson-triangle
X(12928) = {X(10943),X(12586)}-harmonic conjugate of X(12929)
The reciprocal orthologic center of these triangles is X(3).
X(12929) lies on these lines: {11,485}, {355,6289}, {488,3434}, {641,1376}, {3564,10943}, {6250,10893}, {6278,10920}, {6279,10919}, {7981,10944}, {9907,10826}, {9922,10829}, {9987,10871}, {10068,10523}, {10084,10948}, {10785,12257}, {10794,12211}, {10914,12788}, {11373,12269}, {11390,12148}, {11826,12124}, {11865,12486}, {11866,12487}, {11903,12800}, {11928,12602}
X(12929) = X(485)-of-inner-Johnson-triangle
X(12929) = X(13134)-of-outer-Johnson-triangle
X(12929) = {X(10943),X(12586)}-harmonic conjugate of X(12928)
The reciprocal orthologic center of these triangles is X(4).
X(12930) lies on these lines: {12,64}, {30,12423}, {72,12779}, {355,5878}, {958,2883}, {1498,11827}, {2777,12890}, {3436,6225}, {5812,6001}, {5895,6253}, {6000,10526}, {6247,10894}, {6266,10922}, {6267,10921}, {7355,10953}, {7973,10950}, {9899,10827}, {9914,10830}, {10060,10954}, {10076,10523}, {10786,12250}, {10795,12202}, {10872,12502}, {11374,12262}, {11381,11391}, {11500,12335}, {11867,12468}, {11868,12469}, {11904,12791}
X(12930) = reflection of X(12920) in X(5878)
X(12930) = X(64)-of-outer-Johnson-triangle
X(12930) = X(13095)-of-inner-Johnson-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12931) lies on these lines: {12,14}, {72,12780}, {355,5613}, {530,12349}, {531,11236}, {542,12587}, {617,3436}, {619,958}, {5474,11827}, {5479,10894}, {6269,10922}, {6271,10921}, {6773,10786}, {7974,10950}, {9900,10827}, {9915,10830}, {9981,10872}, {10061,10954}, {10077,10523}, {10795,12204}, {11374,11706}, {11391,12141}, {11500,12336}, {11867,12470}, {11868,12471}, {11904,12792}
X(12931) = reflection of X(12921) in X(5613)
X(12931) = X(14)-of-outer-Johnson-triangle
X(12931) = X(13106)-of-inner-Johnson-triangle
The reciprocal orthologic center of these triangles is X(3)
X(12932) lies on these lines: {12,13}, {72,12781}, {355,5617}, {530,11236}, {531,12349}, {542,12587}, {616,3436}, {618,958}, {5473,11827}, {5478,10894}, {6268,10922}, {6270,10921}, {6770,10786}, {7975,10950}, {9901,10827}, {9916,10830}, {9982,10872}, {10062,10954}, {10078,10523}, {10795,12205}, {11374,11705}, {11391,12142}, {11500,12337}, {11867,12472}, {11868,12473}, {11904,12793}
X(12932) = reflection of X(12922) in X(5617)
X(12932) = X(13)-of-outer-Johnson-triangle
X(12932) = X(13107)-of-inner-Johnson-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12933) lies on these lines: {12,76}, {39,958}, {72,12782}, {194,3436}, {355,730}, {384,10795}, {511,11500}, {538,11236}, {726,12610}, {732,12587}, {2782,10526}, {5969,12349}, {6248,10894}, {6272,10922}, {6273,10921}, {7976,10950}, {9902,10827}, {9917,10830}, {9983,10872}, {10063,10954}, {10079,10523}, {10786,12251}, {11257,11827}, {11374,12263}, {11391,12143}, {11867,12474}, {11868,12475}, {11904,12794}
X(12933) = reflection of X(12923) in X(3095)
X(12933) = X(76)-of-outer-Johnson-triangle
X(12933) = X(13110)-of-inner-Johnson-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12934) lies on these lines: {12,83}, {72,12783}, {355,6287}, {732,12587}, {754,11236}, {958,6292}, {2896,3436}, {6249,10894}, {6274,10922}, {6275,10921}, {7977,10950}, {9903,10827}, {9918,10830}, {10064,10954}, {10080,10523}, {10786,12252}, {10795,12206}, {10942,12183}, {11374,12264}, {11391,12144}, {11500,12339}, {11827,12122}, {11867,12476}, {11868,12477}, {11904,12795}
X(12934) = reflection of X(12924) in X(6287)
X(12934) = X(83)-of-outer-Johnson-triangle
X(12934) = X(13113)-of-inner-Johnson-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12935) lies on these lines: {12,1297}, {72,12784}, {112,11827}, {127,10894}, {132,958}, {355,12918}, {2799,12183}, {2806,12762}, {3320,10953}, {3436,12384}, {9517,12372}, {9530,11236}, {10786,12253}, {10795,12207}, {10827,12408}, {10830,12413}, {10872,12503}, {10921,12805}, {10922,12806}, {10950,12955}, {11374,12265}, {11391,12145}, {11500,12340}, {11867,12478}, {11868,12479}, {11904,12796}
X(12935) = reflection of X(12925) in X(12918)
X(12935) = X(1297)-of-outer-Johnson-triangle
X(12935) = X(13119)-of-inner-Johnson-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12936) lies on these lines: {12,54}, {72,6145}, {195,11929}, {355,6288}, {539,11236}, {958,1209}, {1154,10526}, {2888,3436}, {3574,10894}, {6276,10922}, {6277,10921}, {7691,11827}, {7979,10950}, {9905,10827}, {9920,10830}, {9985,10872}, {10066,10954}, {10082,10523}, {10628,12372}, {10786,12254}, {10795,12208}, {10942,12890}, {11374,12266}, {11391,11576}, {11500,12341}, {11867,12480}, {11868,12481}, {11904,12797}
X(12936) = reflection of X(12926) in X(6288)
X(12936) = X(54)-of-outer-Johnson-triangle
X(12936) = X(13122)-of-inner-Johnson-triangle
The reciprocal orthologic center of these triangles is X(79).
X(12937) lies on these lines: {12,10266}, {72,12786}, {191,12519}, {355,12745}, {1012,5693}, {2771,12524}, {10786,12255}, {10795,12209}, {10827,12409}, {10830,12414}, {10872,12504}, {10894,12600}, {10921,12807}, {10922,12808}, {10950,12957}, {11374,12267}, {11391,12146}, {11500,12342}, {11867,12482}, {11868,12483}, {11904,12798}
X(12937) = reflection of X(i) in X(j) for these (i,j): (12519,191), (12927,12919)
X(12937) = X(10266)-of-outer-Johnson-triangle
X(12937) = X(13131)-of-inner-Johnson-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12938) lies on these lines: {12,486}, {72,12787}, {355,6290}, {487,3436}, {642,958}, {3564,10942}, {6251,10894}, {6280,10922}, {6281,10921}, {7980,10950}, {9906,10827}, {9921,10830}, {9986,10872}, {10067,10954}, {10083,10523}, {10786,12256}, {10795,12210}, {11374,12268}, {11391,12147}, {11500,12343}, {11827,12123}, {11867,12484}, {11868,12485}, {11904,12799}, {11929,12601}
X(12938) = X(486)-of-outer-Johnson-triangle
X(12938) = X(13133)-of-inner-Johnson-triangle
X(12938) = {X(10942),X(12587)}-harmonic conjugate of X(12939)
The reciprocal orthologic center of these triangles is X(3).
X(12939) lies on these lines: {12,485}, {72,12788}, {355,6289}, {488,3436}, {641,958}, {3564,10942}, {6250,10894}, {6278,10922}, {6279,10921}, {7981,10950}, {9907,10827}, {9922,10830}, {9987,10872}, {10068,10954}, {10084,10523}, {10786,12257}, {10795,12211}, {11374,12269}, {11391,12148}, {11500,12344}, {11827,12124}, {11867,12486}, {11868,12487}, {11904,12800}, {11929,12602}
X(12939) = X(485)-of-outer-Johnson-triangle
X(12939) = X(13135)-of-inner-Johnson-triangle
X(12939) = {X(10942),X(12587)}-harmonic conjugate of X(12938)
The reciprocal orthologic center of these triangles is X(4).
X(12940) lies on these lines: {1,5878}, {4,65}, {5,10076}, {12,64}, {30,3157}, {56,2883}, {221,5895}, {388,6225}, {495,10060}, {498,3357}, {607,3330}, {851,3556}, {1056,11189}, {1478,6000}, {1498,7354}, {1854,3649}, {2192,5434}, {2777,4302}, {3028,11744}, {3085,12250}, {4293,5656}, {4299,6759}, {5217,5894}, {5229,12324}, {5432,10606}, {5663,10055}, {5893,10896}, {6247,10895}, {6266,10924}, {6267,10923}, {7973,10944}, {9578,9899}, {9655,12315}, {9833,10483}, {9914,10831}, {10797,12202}, {10873,12502}, {11375,12262}, {11381,11392}, {11501,12335}, {11905,12791}
X(12940) = reflection of X(10060) in X(495)
X(12940) = X(64)-of-1st-Johnson-Yff-triangle
X(12940) = {X(1), X(5878)}-harmonic conjugate of X(12950)
The reciprocal orthologic center of these triangles is X(3).
X(12941) lies on these lines: {1,5613}, {5,10077}, {12,14}, {13,3027}, {56,619}, {65,12780}, {114,12952}, {388,617}, {495,10061}, {498,6774}, {531,11237}, {542,10053}, {2782,10062}, {3085,6773}, {5434,5464}, {5474,7354}, {5479,10895}, {6269,10924}, {6271,10923}, {7974,10944}, {9578,9900}, {9915,10831}, {9981,10873}, {10797,12204}, {11375,11706}, {11392,12141}, {11501,12336}, {11869,12470}, {11870,12471}, {11905,12792}
X(12941) = reflection of X(10061) in X(495)
X(12941) = X(14)-of-1st-Johnson-Yff-triangle
X(12941) = {X(10056),X(12588)}-harmonic conjugate of X(12942)
The reciprocal orthologic center of these triangles is X(3).
X(12942) lies on these lines: {1,5617}, {5,10078}, {12,13}, {14,3027}, {56,618}, {65,12781}, {114,12951}, {388,616}, {495,10062}, {498,6771}, {530,11237}, {531,12350}, {542,10053}, {2782,10061}, {3085,6770}, {5434,5463}, {5473,7354}, {5478,10895}, {6268,10924}, {6270,10923}, {6774,10069}, {7975,10944}, {9578,9901}, {9916,10831}, {10797,12205}, {11375,11705}, {11392,12142}, {11501,12337}, {11869,12472}, {11870,12473}, {11905,12793}
X(12942) = reflection of X(10062) in X(495)
X(12942) = X(13)-of-1st-Johnson-Yff-triangle
X(12942) = {X(10056),X(12588)}-harmonic conjugate of X(12941)
The reciprocal orthologic center of these triangles is X(4).
X(12943) lies on these lines: {1,382}, {3,3585}, {4,11}, {5,4299}, {12,20}, {30,55}, {34,7221}, {35,1657}, {36,381}, {65,971}, {84,1454}, {100,11236}, {354,3586}, {355,1770}, {376,5432}, {377,3826}, {388,390}, {484,5790}, {485,9647}, {496,3853}, {497,3543}, {498,550}, {499,546}, {515,1836}, {516,5252}, {529,3434}, {535,956}, {548,10592}, {631,3614}, {946,1388}, {950,5542}, {958,2475}, {962,10944}, {999,3583}, {1001,11114}, {1012,5172}, {1056,3058}, {1155,5587}, {1159,11552}, {1317,10724}, {1319,1699}, {1329,4190}, {1357,10730}, {1358,10729}, {1361,10732}, {1362,10725}, {1364,10726}, {1376,5080}, {1479,3304}, {1482,7972}, {1503,12940}, {1539,10091}, {1593,9672}, {1597,10832}, {1614,9653}, {1656,7280}, {1837,4292}, {1885,11392}, {2098,12699}, {2307,5340}, {2477,6759}, {2646,9612}, {2777,10060}, {2794,12945}, {3022,10727}, {3023,10722}, {3027,10723}, {3028,10733}, {3057,9613}, {3085,3529}, {3091,5433}, {3157,12373}, {3295,5073}, {3320,10735}, {3324,10152}, {3325,10734}, {3476,4345}, {3486,3649}, {3487,10543}, {3522,10588}, {3524,5326}, {3534,5010}, {3579,4333}, {3600,5225}, {3679,5183}, {3790,7270}, {3832,7173}, {3839,5298}, {3843,4325}, {3861,10593}, {4056,4089}, {4295,10950}, {4297,11375}, {4305,5714}, {4308,10248}, {4311,11376}, {4323,5556}, {4342,10106}, {4413,11112}, {4423,11113}, {4857,7373}, {4860,5722}, {4872,7223}, {4995,8164}, {4999,6871}, {5056,7294}, {5057,5289}, {5059,5261}, {5064,5322}, {5076,5563}, {5141,5303}, {5187,6691}, {5584,6850}, {5840,12763}, {5842,12115}, {5895,6285}, {5919,9580}, {6240,11398}, {6253,12667}, {6256,11509}, {6851,10953}, {6906,10894}, {6925,12943}, {6938,7680}, {7286,10296}, {7352,12293}, {7387,9659}, {7745,9597}, {7747,9651}, {7756,9650}, {8275,9589}, {8972,9663}, {9539,10149}, {10037,12085}, {10081,10113}, {10310,10526}, {10572,11551}, {11194,11680}, {11499,11698}, {11571,12747}, {12295,12904}
X(12943) = reflection of X(i) in X(j) for these (i,j): (55,1478), (2099,1836), (3428,6923), (4302,495), (6938,7680)
X(12943) = X(20)-of-1st-Johnson-Yff-triangle
X(12943) = outer-Johnson-to-ABC similarity image of X(20)
X(12943) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,9655,9657), (3,3585,10895), (4,56,10896), (4,4293,11), (4,7354,56), (5,4299,5204), (11,4293,56), (11,7354,4293), (12,20,5217), (12,5229,9656), (20,5229,12), (55,1478,11237), (382,9655,1), (382,9657,9670), (495,4302,55), (1478,4302,495), (3585,4316,7951), (3585,10483,3), (4316,7951,3), (5217,9656,12), (7951,10483,4316)
The reciprocal orthologic center of these triangles is X(3).
X(12944) lies on these lines: {1,6287}, {5,10080}, {12,83}, {35,8725}, {56,6292}, {388,2896}, {495,10053}, {732,12588}, {754,11237}, {3027,11606}, {3085,12252}, {5432,9751}, {6249,10895}, {6274,10924}, {6275,10923}, {7354,12122}, {7977,10944}, {9918,10831}, {10797,12206}, {11375,12264}, {11392,12144}, {11501,12339}, {11869,12476}, {11870,12477}, {11905,12795}
X(12944) = reflection of X(10064) in X(495)
The reciprocal orthologic center of these triangles is X(4).
X(12945) lies on the Johnson-Yff-inner-circle and these lines: {1,12918}, {4,3320}, {12,1297}, {56,132}, {65,12784}, {112,7354}, {127,10895}, {388,6020}, {2781,12903}, {2799,12184}, {2806,12763}, {3085,12253}, {3585,10749}, {5204,6720}, {9517,12373}, {9530,11237}, {9578,12408}, {10797,12207}, {10831,12413}, {10873,12503}, {10923,12805}, {10924,12806}, {10944,12925}, {11375,12265}, {11392,12145}, {11501,12340}, {11905,12796}
X(12945) = X(1297)-of-1st-Johnson-Yff-triangle
X(12945) = {X(1),X(12918)}-harmonic conjugate of X(12955)
The reciprocal orthologic center of these triangles is X(4).
X(12946) lies on these lines: {1,6288}, {5,10082}, {12,54}, {56,1209}, {65,2962}, {73,6145}, {195,9654}, {388,2888}, {495,10066}, {498,10610}, {539,3157}, {1154,1478}, {2917,9659}, {3085,12254}, {3574,10895}, {3585,6286}, {6276,10924}, {6277,10923}, {7354,7691}, {7979,10944}, {8254,10592}, {9578,9905}, {9655,12307}, {9920,10831}, {9985,10873}, {10628,12373}, {10797,12208}, {11375,12266}, {11392,11576}, {11501,12341}, {11905,12797}
X(12946) = reflection of X(10066) in X(495)
X(12946) = X(54)-of-1st-Johnson-Yff-triangle
X(12946) = {X(1),X(6288)}-harmonic conjugate of X(12956)
The reciprocal orthologic center of these triangles is X(79).
X(12947) lies on these lines: {1,12919}, {12,10266}, {65,12786}, {1317,6595}, {3085,12255}, {9578,12409}, {10797,12209}, {10831,12414}, {10873,12504}, {10895,12600}, {10923,12807}, {10924,12808}, {10944,12927}, {11375,12267}, {11392,12146}, {11501,12342}, {11869,12482}, {11870,12483}, {11905,12798}, {12745,12913}
X(12947) = X(10266)-of-1st-Johnson-Yff-triangle
X(12947) = {X(1),X(12919)}-harmonic conjugate of X(12957)
The reciprocal orthologic center of these triangles is X(3).
X(12948) lies on these lines: {1,6290}, {5,10083}, {12,486}, {56,642}, {65,12787}, {388,487}, {495,611}, {3085,12256}, {5229,12296}, {6251,10895}, {6280,10924}, {6281,10923}, {7354,12123}, {7980,10944}, {9578,9906}, {9654,12601}, {9921,10831}, {9986,10873}, {10037,12972}, {10797,12210}, {11375,12268}, {11392,12147}, {11501,12343}, {11869,12484}, {11870,12485}, {11905,12799}
X(12948) = reflection of X(10067) in X(495)
X(12948) = X(486)-of-1st-Johnson-Yff-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12949) lies on these lines: {1,6289}, {5,10084}, {12,485}, {56,641}, {65,12788}, {388,488}, {495,611}, {3085,12257}, {5229,12297}, {5261,12222}, {6250,10895}, {6278,10924}, {6279,10923}, {7354,12124}, {7981,10944}, {9578,9907}, {9654,12602}, {9922,10831}, {9987,10873}, {10037,12973}, {10797,12211}, {11375,12269}, {11392,12148}, {11501,12344}, {11869,12486}, {11870,12487}, {11905,12800}
X(12949) = reflection of X(10068) in X(495)
X(12949) = X(485)-of-1st-Johnson-Yff-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12950) lies on these lines: {1,5878}, {4,6285}, {5,10060}, {11,64}, {20,10535}, {30,1069}, {55,2883}, {146,9538}, {221,3058}, {388,11189}, {496,10076}, {497,6225}, {499,3357}, {1479,6000}, {1498,6284}, {2192,5895}, {2777,4299}, {3057,12779}, {3086,12250}, {4294,5656}, {4302,6759}, {5204,5894}, {5225,12324}, {5433,10606}, {5663,10071}, {5893,10895}, {6001,12116}, {6247,10896}, {6266,10926}, {6267,10925}, {7973,10950}, {9581,9899}, {9668,12315}, {9914,10832}, {10798,12202}, {10874,12502}, {11376,12262}, {11381,11393}, {11502,12335}, {11871,12468}, {11872,12469}, {11906,12791}
X(12950) = reflection of X(10076) in X(496)
X(12950) = X(64)-of-2nd-Johnson-Yff-triangle
X(12950) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,5878,12940), (2192,5895,7354)
The reciprocal orthologic center of these triangles is X(3).
X(12951) lies on these lines: {1,5613}, {5,10061}, {11,14}, {13,3023}, {55,619}, {114,12942}, {496,10077}, {497,617}, {499,6774}, {530,12351}, {531,11238}, {542,10069}, {2782,10078}, {3057,12780}, {3058,5464}, {3086,6773}, {5474,6284}, {5479,10896}, {6269,10926}, {6271,10925}, {6771,10053}, {7974,10950}, {9114,12354}, {9581,9900}, {9915,10832}, {9981,10874}, {10798,12204}, {11376,11706}, {11393,12141}, {11502,12336}, {11871,12470}, {11872,12471}, {11906,12792}
X(12951) = reflection of X(10077) in X(496)
X(12951) = X(14)-of-2nd-Johnson-Yff-triangle
X(12951) = {X(10072),X(12589)}-harmonic conjugate of X(12952)
The reciprocal orthologic center of these triangles is X(3).
X(12952) lies on these lines: {1,5617}, {5,10062}, {11,13}, {14,3023}, {55,618}, {114,12941}, {496,10078}, {497,616}, {499,6771}, {530,11238}, {531,12351}, {542,10069}, {2782,10077}, {3057,12781}, {3058,5463}, {3086,6770}, {5473,6284}, {5478,10896}, {6268,10926}, {6270,10925}, {6774,10053}, {7975,10950}, {9581,9901}, {9916,10832}, {9982,10874}, {10798,12205}, {11376,11705}, {11393,12142}, {11502,12337}, {11871,12472}, {11872,12473}, {11906,12793}
X(12952) = reflection of X(10078) in X(496)
X(12952) = X(13)-of-2nd-Johnson-Yff-triangle
X(12952) = {X(10072),X(12589)}-harmonic conjugate of X(12951)
The reciprocal orthologic center of these triangles is X(4).
X(12953) lies on these lines: {1,382}, {3,3583}, {4,12}, {5,4302}, {11,20}, {30,56}, {33,4348}, {34,9627}, {35,381}, {36,1657}, {40,7082}, {65,3586}, {80,12702}, {149,12513}, {215,6759}, {218,5134}, {354,4355}, {376,5433}, {377,4423}, {388,3058}, {390,5229}, {405,3841}, {452,3925}, {485,9660}, {495,3853}, {497,3146}, {498,546}, {499,550}, {515,2098}, {516,1837}, {517,1898}, {528,3436}, {548,10593}, {631,7173}, {938,11246}, {950,1836}, {958,11114}, {962,10950}, {999,4857}, {1001,2475}, {1058,5434}, {1069,12374}, {1155,9581}, {1317,10728}, {1319,9614}, {1361,10726}, {1362,10727}, {1364,10732}, {1376,5046}, {1466,6851}, {1478,3303}, {1486,4214}, {1503,12950}, {1539,10088}, {1593,9659}, {1597,10831}, {1614,9666}, {1656,5010}, {1699,2646}, {1770,5221}, {1885,11393}, {2099,10572}, {2478,4413}, {2777,10076}, {2794,12955}, {2829,12116}, {2886,6872}, {2975,11235}, {3021,10729}, {3022,10725}, {3023,10723}, {3027,10722}, {3028,10721}, {3035,5187}, {3057,5691}, {3086,3529}, {3091,5432}, {3295,3585}, {3318,10731}, {3428,7491}, {3485,10543}, {3486,4323}, {3488,3649}, {3522,10589}, {3524,7294}, {3534,7280}, {3579,10826}, {3612,9955}, {3614,3832}, {3715,12572}, {3746,5076}, {3748,5290}, {3816,4190}, {3839,4995}, {3843,4330}, {3861,10592}, {3871,11236}, {3913,5080}, {3962,12625}, {4292,4860}, {4297,11376}, {4304,11375}, {4313,10248}, {4387,7270}, {4421,11681}, {4680,7206}, {4854,5716}, {4855,5087}, {4863,12527}, {4872,7185}, {5016,5695}, {5056,5326}, {5057,12635}, {5059,5274}, {5064,5310}, {5160,9538}, {5172,6985}, {5175,5698}, {5178,5220}, {5252,10624}, {5261,10385}, {5270,6767}, {5298,11001}, {5339,7127}, {5727,9589}, {5790,11010}, {5840,6928}, {5895,7355}, {5919,9613}, {6018,10730}, {6019,10734}, {6020,10735}, {6154,7080}, {6238,12293}, {6240,11399}, {6256,10965}, {6690,6871}, {6827,11826}, {6840,11502}, {6850,8273}, {6905,10893}, {6934,7681}, {7158,10152}, {7387,9672}, {7727,12902}, {7728,12896}, {7745,9598}, {7747,9664}, {7756,9665}, {8972,9648}, {10046,12085}, {10056,10386}, {10065,10113}, {10738,11249}, {12295,12903}, {12667,12763}
X(12953) = reflection of X(i) in X(j) for these (i,j): (56,1479), (2098,12701), (4299,496), (6934,7681), (10310,6928)
X(12953) = X(20)-of-2nd-Johnson-Yff-triangle
X(12953) = inner-Johnson-to-ABC similarity image of X(20)
X(12953) = homothetic center of intangents triangle and reflection of tangential triangle in X(4)
X(12953) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,382,12943), (1,9668,9670), (1,12943,9657), (3,3583,10896), (4,55,10895), (4,4294,12), (4,6284,55), (5,4302,5217), (11,20,5204), (11,5225,9671), (12,4294,55), (12,6284,4294), (20,5225,11), (56,1479,11238), (382,9668,1), (382,9670,9657), (1479,4299,496), (3583,4324,7741), (4324,7741,3), (5204,9671,11), (9670,12943,1)
The reciprocal orthologic center of these triangles is X(3).
X(12954) lies on these lines: {1,6287}, {5,10064}, {11,83}, {36,8725}, {55,6292}, {496,10069}, {497,2896}, {732,12589}, {754,11238}, {3023,11606}, {3057,12783}, {3086,12252}, {5433,9751}, {6249,10896}, {6274,10926}, {6275,10925}, {6284,12122}, {7977,10950}, {9581,9903}, {9918,10832}, {10798,12206}, {11376,12264}, {11393,12144}, {11502,12339}, {11871,12476}, {11872,12477}, {11906,12795}
X(12954) = reflection of X(10080) in X(496)
X(12954) = X(83)-of-2nd-Johnson-Yff-triangle
X(12954) = {X(1), X(6287)}-harmonic conjugate of X(12944)
The reciprocal orthologic center of these triangles is X(4).
X(12955) lies on the Johnson-Yff-outer-circle and these lines: {1,12918}, {4,6020}, {11,1297}, {55,132}, {112,6284}, {127,10896}, {497,3320}, {2781,12904}, {2799,12185}, {2806,12764}, {3057,12784}, {3086,12253}, {3583,10749}, {5217,6720}, {9517,12374}, {9530,11238}, {9581,12408}, {10798,12207}, {10832,12413}, {10874,12503}, {10925,12805}, {10926,12806}, {10950,12935}, {11376,12265}, {11393,12145}, {11502,12340}, {11871,12478}, {11872,12479}, {11906,12796}
X(12955) = X(1297)-of-2nd-Johnson-Yff-triangle
X(12955) = {X(1),X(12918)}-harmonic conjugate of X(12945)
The reciprocal orthologic center of these triangles is X(4).
X(12956) lies on these lines: {1,6288}, {5,10066}, {11,54}, {55,1209}, {195,9669}, {496,10082}, {497,2888}, {499,10610}, {539,1069}, {1154,1479}, {2917,9672}, {3057,12785}, {3086,12254}, {3519,4857}, {3574,10896}, {3583,7356}, {6145,9630}, {6276,10926}, {6277,10925}, {6284,7691}, {7979,10950}, {8254,10593}, {9581,9905}, {9668,12307}, {9920,10832}, {9985,10874}, {10628,12374}, {10798,12208}, {11376,12266}, {11393,11576}, {11502,12341}, {11871,12480}, {11872,12481}, {11906,12797}
X(12956) = reflection of X(10082) in X(496)
X(12956) = X(54)-of-2nd-Johnson-Yff-triangle
X(12956) = {X(1),X(6288)}-harmonic conjugate of X(12946)
The reciprocal orthologic center of these triangles is X(79).
X(12957) lies on these lines: {1,12919}, {11,6595}, {3057,12786}, {3086,12255}, {9581,12409}, {10798,12209}, {10832,12414}, {10874,12504}, {10896,12600}, {10925,12807}, {10926,12808}, {10950,12937}, {11376,12267}, {11393,12146}, {11502,12342}, {11871,12482}, {11872,12483}, {11906,12798}, {12745,12877}
X(12957) = X(10266)-of-2nd-Johnson-Yff-triangle
X(12957) = {X(1),X(12919)}-harmonic conjugate of X(12947)
The reciprocal orthologic center of these triangles is X(3).
X(12958) lies on these lines: {1,6290}, {5,10067}, {11,486}, {55,642}, {487,497}, {496,613}, {3057,12787}, {3086,12256}, {5225,12296}, {5274,12221}, {6251,10896}, {6280,10926}, {6281,10925}, {6284,12123}, {7980,10950}, {9581,9906}, {9669,12601}, {9921,10832}, {9986,10874}, {10046,12972}, {10798,12210}, {11376,12268}, {11393,12147}, {11502,12343}, {11871,12484}, {11872,12485}, {11906,12799}
X(12958) = reflection of X(10083) in X(496)
X(12958) = X(486)-of-2nd-Johnson-Yff-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12959) lies on these lines: {1,6289}, {5,10068}, {11,485}, {55,641}, {488,497}, {496,613}, {3057,12788}, {3086,12257}, {5225,12297}, {5274,12222}, {6250,10896}, {6278,10926}, {6279,10925}, {6284,12124}, {7981,10950}, {9581,9907}, {9669,12602}, {9922,10832}, {9987,10874}, {10046,12973}, {10798,12211}, {11376,12269}, {11393,12148}, {11502,12344}, {11871,12486}, {11872,12487}, {11906,12800}
X(12959) = reflection of X(10084) in X(496)
X(12959) = X(485)-of-2nd-Johnson-Yff-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12960) lies on these lines: {6,12229}, {371,5254}, {372,12972}, {486,3547}, {487,5412}, {642,10961}, {1151,12303}, {2066,12910}, {3068,12320}, {3311,12311}, {3564,12961}, {5409,5491}, {5410,12169}, {5415,12662}, {10880,12509}, {10897,12601}, {11417,12221}, {11447,12274}, {11462,12285}, {11473,12296}
X(12960) = orthic-to-1st-Kenmotu-diagonals similarity image of X(487)
X(12960) = X(12972)-of-1st-Kenmotu-free-vertices-triangle
X(12960) = {X(6),X(12978)}-harmonic conjugate of X(12966)
The reciprocal orthologic center of these triangles is X(3).
X(12961) lies on these lines: {6,12230}, {372,12973}, {485,6643}, {488,5412}, {641,10961}, {1151,12304}, {2066,12911}, {3068,12321}, {3564,12960}, {5410,12170}, {5415,12663}, {10880,12510}, {10897,12602}, {11417,12222}, {11447,12275}, {11462,12286}, {11473,12297}
X(12961) = orthic-to-1st-Kenmotu-diagonals similarity image of X(488)
X(12961) = X(12973)-of-1st-Kenmotu-free-vertices-triangle
X(12961) = {X(6),X(12979)}-harmonic conjugate of X(12967)
The reciprocal orthologic center of these triangles is X(3).
X(12962) lies on these lines: {3,6}, {115,8960}, {315,1991}, {493,9225}, {590,637}, {639,8253}, {2066,6283}, {2067,7362}, {3068,12322}, {5410,12171}, {5412,6291}, {5415,6252}, {6239,10880}, {9823,10961}, {11417,12223}, {11447,12276}, {11462,12287}, {11473,12298}
X(12962) = reflection of X(1151) in X(371)
X(12962) = Kenmotu circle-inverse-of-X(2459)
X(12962) = X(176)-of-1st-Kenmotu-diagonals-triangle if ABC is acute
X(12962) = X(12974)-of-1st-Kenmotu-free-vertices-triangle
X(12962) = orthic-to-1st-Kenmotu-diagonals similarity image of X(6291)
X(12962) = center of inverse-in-1st-Kenmotu-circle-of-circumcircle
X(12962) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,371,12963), (6,1151,12968), (6,5013,12969), (6,6425,3053), (39,6419,6), (371,1504,6), (3311,6422,6), (6417,6421,6)
The reciprocal orthologic center of these triangles is X(3).
X(12963) lies on these lines: {3,6}, {112,6400}, {172,2066}, {230,3071}, {485,7737}, {590,7388}, {615,637}, {639,8252}, {1501,1599}, {1583,1915}, {1613,10132}, {1914,2067}, {1968,5412}, {2548,5418}, {3068,11294}, {3156,8576}, {3767,6561}, {5286,9541}, {5319,9681}, {5410,8778}, {5415,6404}, {5475,10576}, {6222,6251}, {6459,7735}, {6564,7747}, {6565,7746}, {7749,10577}, {8253,11314}, {9575,9615}, {9582,9593}, {9824,10961}, {10311,11473}, {11417,12224}, {11447,12277}, {11462,12288}
X(12963) = X(175)-of-1st-Kenmotu-diagonals-triangle if ABC is acute
X(12963) = X(12975)-of-1st-Kenmotu-free-vertices-triangle
X(12963) = orthic-to-1st-Kenmotu-diagonals similarity image of X(6406)
X(12963) = center of conic {X(371),PU(1),PU(2)}
X(12963) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,1691,12968), (3,6424,6), (6,371,12962), (6,1152,12969), (6,3053,12968), (6,5023,1152), (6,6409,5013), (32,371,6), (32,5017,12968), (372,5058,6), (1384,8375,6), (3311,6423,6), (5062,6419,6)
X(12964) lies on these lines: {3,10533}, {4,6}, {30,10665}, {64,1151}, {154,1152}, {184,11474}, {185,5412}, {221,3298}, {371,6000}, {372,6759}, {394,490}, {590,6247}, {1971,12968}, {2066,6285}, {2067,7355}, {2192,3297}, {2777,12375}, {3068,12324}, {3311,12315}, {3312,11242}, {3357,6200}, {5410,12174}, {5415,6254}, {5663,11265}, {5878,6561}, {5907,11513}, {6001,7969}, {6221,13093}, {6225,6459}, {6241,10880}, {6396,10282}, {6409,10606}, {6411,8567}, {6460,11206}, {6502,10535}, {6560,9833}, {8909,12085}, {9541,12250}, {9616,9899}, {9729,10961}, {9934,20124}, {10897,12162}, {11381,11473}, {11417,12111}, {11447,12279}, {11462,12290}, {12305,13055}
X(12964) = {X(4),X(17849)}-harmonic conjugate of X(12970)
X(12964) = {X(6),X(1498)}-harmonic conjugate of X(12970)
The reciprocal orthologic center of these triangles is X(6243).
X(12965) lies on these lines: {6,17}, {54,372}, {371,1154}, {485,2888}, {539,10665}, {615,8254}, {1151,12307}, {1493,6420}, {2066,6286}, {2067,7356}, {3068,12325}, {3070,12375}, {3311,12316}, {3574,6565}, {5410,12175}, {5412,6152}, {5415,6255}, {6200,7691}, {6242,10880}, {6288,6564}, {6396,10610}, {6560,12254}, {9827,10961}, {10897,12606}, {11417,12226}, {11447,12280}, {11462,12291}, {11473,12300}, {11513,12363}
X(12965) = X(79)-of-1st-Kenmotu-diagonals-triangle if ABC is acute
X(12965) = X(54)-of-1st-Kenmotu-free-vertices-triangle
X(12965) = perspector of 1st Kenmotu diagonals triangle and 1st Kenmotu free vertices triangle
X(12965) = {X(6),X(195)}-harmonic conjugate of X(12971)
The reciprocal orthologic center of these triangles is X(3).
X(12966) lies on these lines: {6,12229}, {371,12972}, {486,6643}, {487,5413}, {642,10963}, {1152,12303}, {3069,12320}, {3312,12311}, {3564,12967}, {5411,12169}, {5414,12910}, {5416,12662}, {10881,12509}, {10898,12601}, {11418,12221}, {11448,12274}, {11463,12285}, {11474,12296}
X(12966) = orthic-to-2nd-Kenmotu-diagonals similarity image of X(487)
X(12966) = X(12972)-of-2nd-Kenmotu-free-vertices-triangle
X(12966) = {X(6),X(12978)}-harmonic conjugate of X(12960)
The reciprocal orthologic center of these triangles is X(3).
X(12967) lies on these lines: {6,12230}, {371,12973}, {372,5254}, {485,3547}, {488,5413}, {641,10963}, {1152,12304}, {3069,12321}, {3312,12312}, {3564,12966}, {5408,5490}, {5411,12170}, {5414,12911}, {5416,12663}, {10881,12510}, {10898,12602}, {11418,12222}, {11448,12275}, {11463,12286}, {11474,12297}
X(12967) = orthic-to-2nd-Kenmotu-diagonals similarity image of X(488)
X(12967) = X(12973)-of-2nd-Kenmotu-free-vertices-triangle
X(12967) = {X(6),X(12979)}-harmonic conjugate of X(12961)
The reciprocal orthologic center of these triangles is X(3).
X(12968) lies on these lines: {3,6}, {112,6239}, {172,5414}, {230,3070}, {486,7737}, {590,638}, {615,7389}, {640,8253}, {1501,1600}, {1584,1915}, {1613,10133}, {1914,6502}, {1968,5413}, {2079,8989}, {2548,5420}, {3069,11293}, {3155,8577}, {3767,6560}, {5411,8778}, {5416,6252}, {5475,10577}, {6250,6399}, {6460,7735}, {6564,7746}, {6565,7747}, {7749,10576}, {8252,11313}, {9823,10963}, {10311,11474}, {11418,12223}, {11448,12276}, {11463,12287}
X(12968) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,1691,12963), (3,6423,6), (6,372,12969), (6,1151,12962), (6,3053,12963), (6,5023,1151), (6,6410,5013), (32,372,6), (32,5017,12963), (371,5062,6), (3312,6424,6), (5058,6420,6)
X(12968) = X(176)-of-2nd-Kenmotu-diagonals-triangle if ABC is acute
X(12968) = X(12974)-of-2nd-Kenmotu-free-vertices-triangle
X(12968) = orthic-to-2nd-Kenmotu-diagonals similarity image of X(6291)
X(12968) = center of conic {X(372),PU(1),PU(2)}
The reciprocal orthologic center of these triangles is X(3).
X(12969) lies on these lines: {3,6}, {494,9225}, {615,638}, {640,8252}, {3069,12323}, {3071,8982}, {5411,12172}, {5413,6406}, {5416,6404}, {6400,10881}, {6502,7353}, {9824,10963}, {11418,12224}, {11448,12277}, {11463,12288}, {11474,12299}
X(12969) = reflection of X(1152) in X(372)
X(12969) = X(175)-of-2nd-Kenmotu-diagonals-triangle if ABC is acute
X(12969) = X(12975)-of-2nd-Kenmotu-free-vertices-triangle
X(12969) = orthic-to-2nd-Kenmotu-diagonals similarity image of X(6406)
X(12969) = center of inverse-in-2nd-Kenmotu-circle-of-circumcircle
X(12969) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,372,12968), (6,1152,12963), (6,5013,12962), (6,6426,3053), (39,6420,6), (372,1505,6), (3312,6421,6), (5038,9605,12962), (6418,6422,6)
X(12970) lies on these lines: {3,10534}, {4,6}, {30,10666}, {64,1152}, {154,1151}, {184,11473}, {185,5413}, {221,3297}, {371,6759}, {372,6000}, {394,489}, {615,6247}, {1971,12963}, {2067,10535}, {2192,3298}, {2777,12376}, {3069,12324}, {3311,11241}, {3312,12315}, {3357,6396}, {5411,12174}, {5414,6285}, {5416,6254}, {5663,11266}, {5878,6560}, {5907,11514}, {6001,7968}, {6200,10282}, {6225,6460}, {6241,10881}, {6398,13093}, {6410,10606}, {6412,8567}, {6459,11206}, {6502,7355}, {6561,9833}, {8991,10192}, {9729,10963}, {9934,20123}, {10898,12162}, {11381,11474}, {11418,12111}, {11448,12279}, {11463,12290}, {12306,13056}
X(12970) = {X(4),X(17849)}-harmonic conjugate of X(12964)
X(12970) = {X(6),X(1498)}-harmonic conjugate of X(12964)
The reciprocal orthologic center of these triangles is X(6243).
X(12971) lies on these lines: {6,17}, {54,371}, {372,1154}, {486,2888}, {539,10666}, {590,8254}, {1152,12307}, {1493,6419}, {3069,12325}, {3071,12376}, {3299,8953}, {3312,12316}, {3574,6564}, {5411,12175}, {5413,6152}, {5414,6286}, {5416,6255}, {6200,10610}, {6242,10881}, {6288,6565}, {6396,7691}, {6502,7356}, {6561,12254}, {9827,10963}, {10898,12606}, {11418,12226}, {11448,12280}, {11463,12291}, {11474,12300}, {11514,12363}
X(12971) = X(79)-of-2nd-Kenmotu-diagonals-triangle if ABC is acute
X(12971) = X(54)-of-2nd-Kenmotu-free-vertices-triangle
X(12971) = perspector of 2nd Kenmotu diagonals triangle and 2nd Kenmotu free vertices triangle
X(12971) = {X(6),X(195)}-harmonic conjugate of X(12965)
The reciprocal orthologic center of these triangles is X(3).
X(12972) lies on these lines: {3,486}, {15,12981}, {16,12980}, {22,12256}, {24,487}, {25,6290}, {26,159}, {35,12910}, {186,12509}, {371,12966}, {372,12960}, {378,12296}, {389,12229}, {575,12597}, {578,12237}, {631,12320}, {642,6642}, {3155,6503}, {3515,12169}, {5413,9732}, {6119,7393}, {6251,9818}, {6281,9714}, {7488,12221}, {10037,12948}, {10046,12958}, {10067,10831}, {10083,10832}, {10902,12662}, {11449,12274}, {11464,12285}
X(12972) = midpoint of X(3) and X(12978)
X(12972) = orthic-to-Kosnita similarity image of X(487)
X(12972) = reflection of X(i) in X(j) for these (i,j): (9921,26), (12597,575), (12984,3)
The reciprocal orthologic center of these triangles is X(3).
X(12973) lies on these lines: {3,485}, {15,12983}, {16,12982}, {22,12257}, {24,488}, {25,6289}, {26,159}, {35,12911}, {186,12510}, {371,12967}, {372,12961}, {378,12297}, {389,12230}, {511,8909}, {575,12598}, {578,12238}, {631,12321}, {641,6642}, {3156,6503}, {3515,12170}, {5412,9733}, {6118,7393}, {6250,9818}, {6278,9714}, {7488,12222}, {10037,12949}, {10046,12959}, {10068,10831}, {10084,10832}, {10902,12663}, {11449,12275}, {11464,12286}
X(12973) = midpoint of X(3) and X(12979)
X(12973) = orthic-to-Kosnita similarity image of X(488)
X(12973) = reflection of X(i) in X(j) for these (i,j): (9922,26), (12598,575), (12985,3)
The reciprocal orthologic center of these triangles is X(3).
X(12974) lies on these lines: {3,6}, {24,6291}, {30,6250}, {35,6283}, {36,7362}, {186,6239}, {378,12298}, {488,5965}, {542,12257}, {631,12322}, {642,7761}, {1599,9306}, {3515,12171}, {3819,5407}, {6252,10902}, {6642,9823}, {6759,8155}, {7488,12223}, {11449,12276}, {11464,12287}
X(12974) = midpoint of X(i) and X(j) for these {i,j}: {3,1151}, {12305,12313}
X(12974) = reflection of X(i) in X(j) for these (i,j): (7690,3), (9974,575)
X(12974) = X(176)-of-Kosnita-triangle if ABC is acute
X(12974) = orthic-to-Kosnita similarity image of X(6291)
X(12974) = {X(3),X(182)}-harmonic conjugate of X(12975)
The reciprocal orthologic center of these triangles is X(3).
X(12975) lies on these lines: {3,6}, {24,6406}, {30,6251}, {35,6405}, {36,7353}, {186,6400}, {378,12299}, {487,5965}, {542,12256}, {631,12323}, {641,7761}, {1600,9306}, {3515,12172}, {3819,5406}, {6404,10902}, {6642,9824}, {6759,8156}, {7488,12224}, {11449,12277}, {11464,12288}
X(12975) = midpoint of X(i) and X(j) for these {i,j}: {3,1152}, {12306,12314}
X(12975) = reflection of X(i) in X(j) for these (i,j): (7692,3), (9975,575)
X(12975) = X(175)-of-Kosnita-triangle if ABC is acute
X(12975) = orthic-to-Kosnita similarity image of X(6406)
X(12975) = {X(3),X(182)}-harmonic conjugate of X(12974)
The reciprocal orthologic center of these triangles is X(12977).
X(12976) lies on the line {20,485}
The reciprocal orthologic center of these triangles is X(12976).
X(12977) lies on these lines: {371,3167}, {487,590}, {3564,12426}, {11949,12311}
The reciprocal orthologic center of these triangles is X(3).
X(12978) lies on these lines: {2,12320}, {3,486}, {6,12229}, {22,12221}, {24,12509}, {25,487}, {55,12662}, {110,12274}, {372,10673}, {642,5020}, {1593,12296}, {1598,6290}, {1614,12285}, {3564,5596}, {6251,11479}, {8193,9906}, {9909,9921}, {11414,12256}
X(12978) = midpoint of X(i) and X(j) for these {i,j}: {3,12311}, {12662,12910}
X(12978) = reflection of X(3) in X(12972)
X(12978) = complement of X(12320)
X(12978) = orthic-to-tangential similarity image of X(487)
X(12978) = {X(12960),X(12966)}-harmonic conjugate of X(6)
X(12978) = {X(12980),X(12981)}-harmonic conjugate of X(6)
The reciprocal orthologic center of these triangles is X(3).
X(12979) lies on these lines: {2,12321}, {3,485}, {6,12230}, {22,12222}, {24,12510}, {25,488}, {55,12663}, {110,12275}, {371,10669}, {641,5020}, {1593,12297}, {1598,6289}, {1614,12286}, {3564,5596}, {6250,11479}, {8193,9907}, {8996,9909}, {11414,12257}
X(12979) = midpoint of X(i) and X(j) for these {i,j}: {3,12312}, {12663,12911}
X(12979) = reflection of X(3) in X(12973)
X(12979) = complement of X(12321)
X(12979) = orthic-to-tangential similarity image of X(488)
X(12979) = {X(12961),X(12967)}-harmonic conjugate of X(6)
X(12979) = {X(12982),X(12983)}-harmonic conjugate of X(6)
The reciprocal orthologic center of these triangles is X(3).
X(12980) lies on these lines: {6,12229}, {16,12972}, {486,11515}, {487,10641}, {642,10643}, {3564,12982}, {10632,12509}, {10634,12601}, {10636,12662}, {10638,12910}, {10645,12984}, {11408,12169}, {11420,12221}, {11452,12274}, {11466,12285}, {11475,12296}, {11480,12303}, {11485,12311}, {11488,12320}
X(12980) = orthic-to-inner-tri-equilateral similarity image of X(487)
X(12980) = {X(6),X(12978)}-harmonic conjugate of X(12981)
The reciprocal orthologic center of these triangles is X(3).
X(12981) lies on these lines: {6,12229}, {15,12972}, {486,11516}, {487,10642}, {642,10644}, {1250,12910}, {3564,12983}, {10633,12509}, {10635,12601}, {10637,12662}, {10646,12984}, {11409,12169}, {11421,12221}, {11453,12274}, {11467,12285}, {11476,12296}, {11481,12303}, {11486,12311}, {11489,12320}
X(12981) = orthic-to-outer-tri-equilateral similarity image of X(487)
X(12981) = {X(6),X(12978)}-harmonic conjugate of X(12980)
The reciprocal orthologic center of these triangles is X(3).
X(12982) lies on these lines: {6,12230}, {16,12973}, {485,11515}, {488,10641}, {641,10643}, {3564,12980}, {10632,12510}, {10634,12602}, {10636,12663}, {10638,12911}, {10645,12985}, {11408,12170}, {11420,12222}, {11452,12275}, {11466,12286}, {11475,12297}, {11480,12304}, {11485,12312}, {11488,12321}
X(12982) = orthic-to-inner-tri-equilateral similarity image of X(488)
X(12982) = {X(6),X(12979)}-harmonic conjugate of X(12983)
The reciprocal orthologic center of these triangles is X(3).
X(12983) lies on these lines: {6,12230}, {15,12973}, {485,11516}, {488,10642}, {641,10644}, {1250,12911}, {3564,12981}, {10633,12510}, {10635,12602}, {10637,12663}, {10646,12985}, {11409,12170}, {11421,12222}, {11453,12275}, {11467,12286}, {11476,12297}, {11481,12304}, {11486,12312}, {11489,12321}
X(12983) = orthic-to-outer-tri-equilateral similarity image of X(488)
X(12983) = {X(6),X(12979)}-harmonic conjugate of X(12982)
The reciprocal orthologic center of these triangles is X(3).
X(12984) lies on these lines: {3,486}, {24,12296}, {30,9921}, {36,12910}, {376,12320}, {378,487}, {511,12597}, {642,9818}, {1593,6290}, {2071,12221}, {3520,12509}, {3564,12084}, {6200,12960}, {6251,6642}, {6396,12966}, {7688,12662}, {9732,11474}, {10645,12980}, {10646,12981}, {11410,12169}, {11413,12256}, {11430,12229}, {11438,12237}, {11454,12274}, {11468,12285}
X(12984) = reflection of X(12972) in X(3)
X(12984) = orthic-to-Trinh similarity image of X(487)
The reciprocal orthologic center of these triangles is X(3).
X(12985) lies on these lines: {3,485}, {24,12297}, {30,9922}, {36,12911}, {376,12321}, {378,488}, {511,12598}, {641,9818}, {1593,6289}, {2071,12222}, {3520,12510}, {3564,12084}, {6200,12961}, {6250,6642}, {6396,12967}, {7688,12663}, {9733,11473}, {10645,12982}, {10646,12983}, {11410,12170}, {11413,12257}, {11430,12230}, {11438,12238}, {11454,12275}, {11468,12286}
X(12985) = midpoint of X(3) and X(12304)
X(12985) = reflection of X(12973) in X(3)
X(12985) = orthic-to-Trinh similarity image of X(488)
The reciprocal orthologic center of these triangles is X(4).
X(12986) lies on these lines: {30,12426}, {64,493}, {1498,11828}, {2777,12894}, {2883,8222}, {5878,8220}, {6000,10669}, {6225,6462}, {6247,8212}, {6266,8218}, {6267,8216}, {6461,12987}, {7355,11947}, {7973,8210}, {8188,9899}, {8194,9914}, {8201,12468}, {8214,12779}, {10060,11951}, {10076,11953}, {10875,12502}, {10945,12920}, {10951,12930}, {11377,12262}, {11381,11394}, {11503,12335}, {11840,12202}, {11846,12250}, {11907,12791}, {11930,12940}, {11932,12950}
X(12986) = X(64)-of-Lucas-homothetic-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12987) lies on these lines: {30,12427}, {64,494}, {1498,11829}, {2777,12895}, {2883,8223}, {5878,8221}, {6000,10673}, {6225,6463}, {6247,8213}, {6266,8219}, {6267,8217}, {6461,12986}, {7355,11948}, {7973,8211}, {8189,9899}, {8195,9914}, {8202,12468}, {8209,12469}, {8215,12779}, {10060,11952}, {10076,11954}, {10876,12502}, {10946,12920}, {10952,12930}, {11378,12262}, {11381,11395}, {11504,12335}, {11841,12202}, {11847,12250}, {11908,12791}, {11931,12940}, {11933,12950}
X(12987) = X(64)-of-Lucas(-1)-homothetic-triangle
The reciprocal orthologic center of these triangles is X(3).
X(12988) lies on these lines: {14,493}, {530,12352}, {531,12152}, {542,12590}, {617,6462}, {619,8222}, {5474,11828}, {5479,8212}, {5613,8220}, {6269,8218}, {6271,8216}, {6461,12989}, {6773,11846}, {7974,8210}, {8188,9900}, {8194,9915}, {8214,12780}, {9981,10875}, {10061,11951}, {10077,11953}, {10945,12921}, {10951,12931}, {11377,11706}, {11394,12141}, {11503,12336}, {11840,12204}, {11907,12792}, {11930,12941}, {11932,12951}
The reciprocal orthologic center of these triangles is X(3).
X(12989) lies on these lines: {14,494}, {530,12353}, {531,12153}, {542,12591}, {617,6463}, {619,8223}, {5474,11829}, {5479,8213}, {5613,8221}, {6269,8219}, {6271,8217}, {6461,12988}, {6773,11847}, {7974,8211}, {8189,9900}, {8195,9915}, {8215,12780}, {9981,10876}, {10061,11952}, {10077,11954}, {10946,12921}, {10952,12931}, {11378,11706}, {11395,12141}, {11504,12336}, {11841,12204}, {11908,12792}, {11931,12941}, {11933,12951}
The reciprocal orthologic center of these triangles is X(3).
X(12990) lies on these lines: {13,493}, {530,12152}, {531,12352}, {542,12590}, {616,6462}, {618,8222}, {5473,11828}, {5478,8212}, {5617,8220}, {6268,8218}, {6270,8216}, {6461,12991}, {6770,11846}, {7975,8210}, {8188,9901}, {8194,9916}, {8214,12781}, {9982,10875}, {10062,11951}, {10078,11953}, {10945,12922}, {10951,12932}, {11377,11705}, {11394,12142}, {11503,12337}, {11840,12205}, {11907,12793}, {11930,12942}, {11932,12952}
The reciprocal orthologic center of these triangles is X(3).
X(12991) lies on these lines: {13,494}, {530,12153}, {531,12353}, {542,12591}, {616,6463}, {618,8223}, {5473,11829}, {5478,8213}, {5617,8221}, {6268,8219}, {6270,8217}, {6461,12990}, {6770,11847}, {7975,8211}, {8189,9901}, {8195,9916}, {8215,12781}, {9982,10876}, {10062,11952}, {10078,11954}, {10946,12922}, {10952,12932}, {11378,11705}, {11395,12142}, {11504,12337}, {11841,12205}, {11908,12793}, {11931,12942}, {11933,12952}
The reciprocal orthologic center of these triangles is X(3).
X(12992) lies on these lines: {39,8222}, {76,493}, {194,6462}, {384,11840}, {511,9838}, {538,12152}, {730,12440}, {732,12590}, {2782,10669}, {3095,8220}, {5969,12352}, {6248,8212}, {6272,8218}, {6273,8216}, {6461,12993}, {7976,8210}, {8188,9902}, {8194,9917}, {8201,12474}, {8208,12475}, {8214,12782}, {9983,10875}, {10063,11951}, {10079,11953}, {10945,12923}, {10951,12933}, {11257,11828}, {11377,12263}, {11394,12143}, {11503,12338}, {11846,12251}, {11907,12794}, {11930,12943}, {11932,12953}
The reciprocal orthologic center of these triangles is X(3).
X(12993) lies on these lines: {39,8223}, {76,494}, {194,6463}, {384,11841}, {511,9839}, {538,12153}, {730,12441}, {732,12591}, {2782,10673}, {3095,8221}, {5969,12353}, {6248,8213}, {6272,8219}, {6273,8217}, {6461,12992}, {7976,8211}, {8189,9902}, {8195,9917}, {8202,12474}, {8209,12475}, {8215,12782}, {9983,10876}, {10063,11952}, {10079,11954}, {10946,12923}, {10952,12933}, {11257,11829}, {11378,12263}, {11395,12143}, {11504,12338}, {11847,12251}, {11908,12794}, {11931,12943}, {11933,12953}
The reciprocal orthologic center of these triangles is X(3).
X(12994) lies on these lines: {83,493}, {732,12590}, {754,12152}, {1271,2896}, {6249,8212}, {6274,8218}, {6287,8220}, {6292,8222}, {6461,12995}, {7977,8210}, {8188,9903}, {8194,9918}, {8201,12476}, {8208,12477}, {8214,12783}, {10064,11951}, {10080,11953}, {10945,12924}, {10951,12934}, {11377,12264}, {11394,12144}, {11503,12339}, {11828,12122}, {11840,12206}, {11846,12252}, {11907,12795}, {11930,12944}, {11932,12954}
The reciprocal orthologic center of these triangles is X(3).
X(12995) lies on these lines: {83,494}, {732,12591}, {754,12153}, {1270,2896}, {6249,8213}, {6275,8217}, {6287,8221}, {6292,8223}, {6461,12994}, {7977,8211}, {8189,9903}, {8195,9918}, {8202,12476}, {8209,12477}, {8215,12783}, {10064,11952}, {10080,11954}, {10946,12924}, {10952,12934}, {11378,12264}, {11395,12144}, {11504,12339}, {11829,12122}, {11841,12206}, {11847,12252}, {11908,12795}, {11931,12944}, {11933,12954}
The reciprocal orthologic center of these triangles is X(4).
X(12996) lies on these lines: {112,11828}, {127,8212}, {132,8222}, {493,1297}, {2799,12186}, {2806,12765}, {3320,11947}, {6461,12997}, {6462,12384}, {8188,12408}, {8194,12413}, {8214,12784}, {8216,12805}, {8218,12806}, {8220,12918}, {9517,12377}, {9530,12152}, {10875,12503}, {11377,12265}, {11394,12145}, {11503,12340}, {11840,12207}, {11846,12253}, {11907,12796}, {11930,12945}, {11932,12955}
X(12996) = X(1297)-of-Lucas-homothetic-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12997) lies on these lines: {112,11829}, {127,8213}, {132,8223}, {494,1297}, {2799,12187}, {2806,12766}, {3320,11948}, {6461,12996}, {6463,12384}, {8189,12408}, {8195,12413}, {8215,12784}, {8217,12805}, {8219,12806}, {8221,12918}, {9517,12378}, {9530,12153}, {10876,12503}, {11378,12265}, {11395,12145}, {11504,12340}, {11841,12207}, {11847,12253}, {11908,12796}, {11931,12945}, {11933,12955}
X(12997) = X(1297)-of-Lucas(-1)-homothetic-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12998) lies on these lines: {54,493}, {195,11949}, {539,12152}, {1154,10669}, {1209,8222}, {2888,6462}, {3574,8212}, {6276,8218}, {6277,8216}, {6288,8220}, {6461,12999}, {7691,11828}, {7979,8210}, {8188,9905}, {8194,9920}, {8201,12480}, {8208,12481}, {8214,12785}, {9985,10875}, {10066,11951}, {10082,11953}, {10628,12377}, {10945,12926}, {10951,12936}, {11377,12266}, {11394,11576}, {11503,12341}, {11840,12208}, {11846,12254}, {11907,12797}, {11930,12946}, {11932,12956}
X(12998) = X(54)-of-Lucas-homothetic-triangle
The reciprocal orthologic center of these triangles is X(4).
X(12999) lies on these lines: {54,494}, {195,11950}, {539,12153}, {1154,10673}, {1209,8223}, {2888,6463}, {3574,8213}, {6276,8219}, {6277,8217}, {6288,8221}, {6461,12998}, {7691,11829}, {7979,8211}, {8189,9905}, {8195,9920}, {8202,12480}, {8209,12481}, {8215,12785}, {9985,10876}, {10066,11952}, {10082,11954}, {10628,12378}, {10946,12926}, {10952,12936}, {11378,12266}, {11395,11576}, {11504,12341}, {11841,12208}, {11847,12254}, {11908,12797}, {11931,12946}, {11933,12956}
X(12999) = X(54)-of-Lucas(-1)-homothetic-triangle
The reciprocal orthologic center of these triangles is X(79).
X(13000) lies on these lines: {493,10266}, {6461,13001}, {8188,12409}, {8194,12414}, {8212,12600}, {8214,12786}, {8216,12807}, {8218,12808}, {8220,12919}, {10875,12504}, {11377,12267}, {11394,12146}, {11840,12209}, {11846,12255}, {11930,12947}, {11932,12957}
X(13000) = X(10266)-of-Lucas-homothetic-triangle
The reciprocal orthologic center of these triangles is X(79).
X(13001) lies on these lines: {494,10266}, {6461,13000}, {8189,12409}, {8195,12414}, {8213,12600}, {8215,12786}, {8217,12807}, {8219,12808}, {8221,12919}, {10876,12504}, {11378,12267}, {11395,12146}, {11504,12342}, {11841,12209}, {11847,12255}, {11931,12947}, {11933,12957}
X(13001) = X(10266)-of-Lucas(-1)-homothetic-triangle
The reciprocal orthologic center of these triangles is X(3).
X(13002) lies on these lines: {485,487}, {486,493}, {642,8222}, {3564,12426}, {6251,8212}, {6280,8218}, {6281,8216}, {6290,8220}, {6461,13003}, {7980,8210}, {8188,9906}, {8194,9921}, {8201,12484}, {8208,12485}, {8214,12787}, {9838,12976}, {9986,10875}, {10067,11951}, {10083,11953}, {10945,12928}, {10951,12938}, {11377,12268}, {11394,12147}, {11503,12343}, {11828,12123}, {11840,12210}, {11846,12256}, {11907,12799}, {11930,12948}, {11932,12958}, {11949,12601}
The reciprocal orthologic center of these triangles is X(3).
X(13003) lies on these lines: {193,372}, {486,494}, {642,8223}, {3564,12427}, {6251,8213}, {6280,8219}, {6281,8217}, {6290,8221}, {6461,13002}, {7980,8211}, {8189,9906}, {8195,9921}, {8202,12484}, {8209,12485}, {8215,12787}, {9986,10876}, {10067,11952}, {10083,11954}, {10946,12928}, {10952,12938}, {11378,12268}, {11395,12147}, {11504,12343}, {11829,12123}, {11841,12210}, {11847,12256}, {11908,12799}, {11931,12948}, {11933,12958}, {11950,12601}
The reciprocal orthologic center of these triangles is X(3).
X(13004) lies on these lines: {193,371}, {485,493}, {641,8222}, {3564,12426}, {6250,8212}, {6278,8218}, {6279,8216}, {6289,8220}, {6461,13005}, {7981,8210}, {8188,9907}, {8194,9922}, {8201,12486}, {8208,12487}, {8214,12788}, {9987,10875}, {10068,11951}, {10084,11953}, {10945,12929}, {10951,12939}, {11377,12269}, {11394,12148}, {11503,12344}, {11828,12124}, {11840,12211}, {11846,12257}, {11907,12800}, {11930,12949}, {11932,12959}, {11949,12602}
The reciprocal orthologic center of these triangles is X(3).
X(13005) lies on these lines: {485,494}, {486,488}, {641,8223}, {3564,12427}, {6250,8213}, {6278,8219}, {6279,8217}, {6289,8221}, {6461,13004}, {7981,8211}, {8189,9907}, {8195,9922}, {8202,12486}, {8209,12487}, {8215,12788}, {9987,10876}, {10068,11952}, {10084,11954}, {10946,12929}, {10952,12939}, {11378,12269}, {11395,12148}, {11504,12344}, {11829,12124}, {11841,12211}, {11847,12257}, {11908,12800}, {11931,12949}, {11933,12959}, {11950,12602}
If you have The Geometer's Sketchpad, you can view X(13006) as the center of the ellipse IE59.
X(13006) lies on these lines: {1,39}, {3,1415}, {6,906}, {9,216}, {37,570}, {44,3003}, {45,566}, {101,7117}, {115,8068}, {232,1785}, {498,5283}, {572,2197}, {672,3002}, {800,1743}, {952,11998}, {1100,5421}, {1107,10039}, {1506,8070}, {1575,1737}, {1772,3125}, {3767,10320}, {5013,8071}, {5069,9456}, {5254,10523}, {5286,10321}, {5299,10315}, {5393,8962}, {7738,10629}
X(13006) = midpoint of X(2007) and X(2008)
X(13006) = complement of X(34387)
X(13006) = crosspoint of X(2) and X(59)
X(13006) = crosssum of X(6) and X(11)
X(13006) = polar conjugate of isogonal conjugate of X(23198)
X(13006) = center of the inscribed ellipse IE59; see the preamble just before X(12841)
X(13006) = {X(2275),X(2276)}-harmonic conjugate of X(9620)
X(13006) = harmonic center of incircle and Gallatly circle
X(13006) = X(i)-complementary conjugate of X(j) for these (i,j): (59, 2887), (692, 124), (1110, 1329), (1415, 116), (2149, 141), (4564, 626)
Orthologic centers: X(13007)-X(13135)
Centers X(13007)-X(13135) were contributed by César Eliud Lozada, April, 5, 2017.
The reciprocal orthologic center of these triangles is X(10670).
X(13007) lies on these lines: {3,13009}, {4,13023}, {25,13051}, {427,13025}, {1593,12170}, {1993,13015}, {3515,13049}, {3516,13021}, {5410,13045}, {5411,13047}, {7071,13043}, {7395,13039}, {7484,13027}, {7592,13017}, {9777,13013}, {11284,13053}, {11402,13011}, {11403,13019}, {11405,13037}, {11406,13041}, {11408,13057}, {11409,13059}, {11410,13061}
The reciprocal orthologic center of these triangles is X(10674).
X(13008) lies on these lines: {3,13010}, {4,13024}, {25,13052}, {427,13026}, {1593,12169}, {1993,13016}, {3515,13050}, {3516,13022}, {5410,13046}, {5411,13048}, {7071,13044}, {7395,13040}, {7484,13028}, {7592,13018}, {9777,13014}, {11284,13054}, {11402,13012}, {11403,13020}, {11405,13038}, {11406,13042}, {11408,13058}, {11409,13060}, {11410,13062}
The reciprocal orthologic center of these triangles is X(10670).
X(13009) lies on these lines: {2,13027}, {3,13007}, {4,13039}, {20,6462}, {22,13055}, {1370,13025}, {1975,13033}, {2071,13061}, {2979,13015}, {3060,13013}, {3100,13043}, {3101,13041}, {3146,13019}, {5012,13011}, {7488,13049}, {11412,13017}, {11413,13021}, {11414,13023}, {11416,13037}, {11417,13045}, {11418,13047}, {11420,13057}, {11421,13059}
X(13009) = midpoint of X(11412) and X(13017)
X(13009) = reflection of X(i) in X(j) for these (i,j): (4,13039), (3146,13019), (13035,3)
X(13009) = anticomplement of X(13051)
The reciprocal orthologic center of these triangles is X(10674).
X(13010) lies on these lines: {2,13028}, {3,13008}, {4,13040}, {20,6463}, {22,13056}, {1370,13026}, {1975,13034}, {2071,13062}, {2979,13016}, {3060,13014}, {3100,13044}, {3101,13042}, {3146,13020}, {5012,13012}, {7488,13050}, {11412,13018}, {11413,13022}, {11414,13024}, {11416,13038}, {11417,13046}, {11418,13048}, {11420,13058}, {11421,13060}
X(13010) = midpoint of X(11412) and X(13018)
X(13010) = reflection of X(i) in X(j) for these (i,j): (4,13040), (3146,13020)
X(13010) = anticomplement of X(13052)
The reciprocal orthologic center of these triangles is X(10670).
X(13011) lies on these lines: {6,13013}, {54,13035}, {182,13027}, {184,13051}, {389,13049}, {569,13039}, {578,12230}, {5012,13009}, {9306,13053}, {11402,13007}, {11422,13015}, {11423,13017}, {11424,13019}, {11425,13021}, {11426,13023}, {11427,13025}, {11428,13041}, {11429,13043}, {11430,13061}
The reciprocal orthologic center of these triangles is X(10674).
X(13012) lies on these lines: {6,13014}, {54,13036}, {182,13028}, {184,13052}, {389,13050}, {569,13040}, {578,12229}, {5012,13010}, {9306,13054}, {11402,13008}, {11422,13016}, {11423,13018}, {11424,13020}, {11425,13022}, {11426,13024}, {11427,13026}, {11428,13042}, {11429,13044}, {11430,13062}
The reciprocal orthologic center of these triangles is X(10670).
X(13013) lies on these lines: {6,13011}, {51,13051}, {52,13039}, {185,13019}, {389,12238}, {511,13027}, {578,13049}, {3060,13009}, {3567,13035}, {5640,13015}, {5943,13053}, {9777,13007}, {9781,13017}, {9786,13021}, {11432,13023}, {11433,13025}, {11435,13041}, {11436,13043}, {11438,13061}
The reciprocal orthologic center of these triangles is X(10674).
X(13014) lies on these lines: {6,13012}, {51,13052}, {52,13040}, {185,13020}, {389,12237}, {511,13028}, {578,13050}, {3060,13010}, {3567,13036}, {5640,13016}, {5943,13054}, {9777,13008}, {9781,13018}, {9786,13022}, {11432,13024}, {11433,13026}, {11435,13042}, {11436,13044}, {11438,13062}
The reciprocal orthologic center of these triangles is X(10670).
X(13015) lies on these lines: {3,13017}, {110,13055}, {1993,13007}, {2979,13009}, {3060,13051}, {5640,13013}, {5889,13035}, {7998,13027}, {11422,13011}, {11439,13019}, {11440,13021}, {11441,13023}, {11442,13025}, {11443,13037}, {11444,13039}, {11445,13041}, {11446,13043}, {11447,13045}, {11448,13047}, {11449,13049}, {11451,13053}, {11452,13057}, {11453,13059}, {11454,13061}, {12111,12275}
The reciprocal orthologic center of these triangles is X(10674).
X(13016) lies on these lines: {3,13018}, {110,13056}, {1993,13008}, {2979,13010}, {3060,13052}, {5640,13014}, {5889,13036}, {7998,13028}, {11422,13012}, {11439,13020}, {11440,13022}, {11441,13024}, {11442,13026}, {11443,13038}, {11444,13040}, {11445,13042}, {11446,13044}, {11447,13046}, {11448,13048}, {11449,13050}, {11451,13054}, {11452,13058}, {11453,13060}, {11454,13062}, {12111,12274}
The reciprocal orthologic center of these triangles is X(10670).
X(13017) lies on these lines: {3,13015}, {74,13021}, {1614,13055}, {3567,13051}, {5890,13035}, {6241,12286}, {7592,13007}, {7999,13027}, {9781,13013}, {11412,13009}, {11423,13011}, {11455,13019}, {11456,13023}, {11457,13025}, {11458,13037}, {11459,13039}, {11460,13041}, {11461,13043}, {11462,13045}, {11463,13047}, {11464,13049}, {11465,13053}, {11466,13057}, {11467,13059}, {11468,13061}
The reciprocal orthologic center of these triangles is X(10674).
X(13018) lies on these lines: {3,13016}, {74,13022}, {1614,13056}, {3567,13052}, {5890,13036}, {6241,12285}, {7592,13008}, {7999,13028}, {9781,13014}, {11412,13010}, {11423,13012}, {11455,13020}, {11456,13024}, {11457,13026}, {11458,13038}, {11459,13040}, {11460,13042}, {11461,13044}, {11462,13046}, {11463,13048}, {11464,13050}, {11465,13054}, {11466,13058}, {11467,13060}, {11468,13062}
The reciprocal orthologic center of these triangles is X(10670).
X(13019) lies on these lines: {4,488}, {20,13027}, {24,13061}, {25,13021}, {30,13039}, {34,13043}, {185,13013}, {378,13049}, {1593,13055}, {1597,13023}, {3070,12231}, {3091,13053}, {3146,13009}, {11403,13007}, {11424,13011}, {11439,13015}, {11455,13017}, {11470,13037}, {11471,13041}, {11473,13045}, {11474,13047}, {11475,13057}, {11476,13059}
X(13019) = midpoint of X(3146) and X(13009)
X(13019) = reflection of X(i) in X(j) for these (i,j): (20,13027), (185,13013), (13051,4)
The reciprocal orthologic center of these triangles is X(10674).
X(13020) lies on these lines: {4,487}, {20,13028}, {24,13062}, {25,13022}, {30,13040}, {34,13044}, {185,13014}, {378,13050}, {1593,13056}, {1597,13024}, {3071,12232}, {3091,13054}, {3146,13010}, {11403,13008}, {11424,13012}, {11439,13016}, {11455,13018}, {11470,13038}, {11471,13042}, {11473,13046}, {11474,13048}, {11475,13058}, {11476,13060}
X(13020) = midpoint of X(3146) and X(13010)
X(13020) = reflection of X(i) in X(j) for these (i,j): (20,13028), (185,13014), (13052,4)
The reciprocal orthologic center of these triangles is X(10670).
X(13021) lies on these lines: {3,485}, {20,13025}, {25,13019}, {56,13043}, {74,13017}, {311,1975}, {378,13035}, {1151,13045}, {1152,13047}, {1350,11828}, {1593,13051}, {3516,13007}, {5584,13041}, {9786,13013}, {11413,13009}, {11425,13011}, {11440,13015}, {11477,13037}, {11479,13053}, {11480,13057}, {11481,13059}
X(13021) = midpoint of X(20) and X(13025)
X(13021) = reflection of X(i) in X(j) for these (i,j): (3,13061), (11477,13037), (13055,3)
The reciprocal orthologic center of these triangles is X(10674).
X(13022) lies on these lines: {3,486}, {20,13026}, {25,13020}, {56,13044}, {74,13018}, {311,1975}, {378,13036}, {1151,13046}, {1152,13048}, {1350,11829}, {1593,13052}, {3516,13008}, {5584,13042}, {9786,13014}, {11413,13010}, {11425,13012}, {11440,13016}, {11477,13038}, {11479,13054}, {11480,13058}, {11481,13060}
X(13022) = midpoint of X(20) and X(13026)
X(13022) = reflection of X(i) in X(j) for these (i,j): (3,13062), (11477,13038), (13056,3)
The reciprocal orthologic center of these triangles is X(10670).
X(13023) lies on these lines: {3,485}, {4,13007}, {5,13025}, {25,13035}, {1597,13019}, {1598,13051}, {3295,13043}, {3311,13045}, {3312,13047}, {10306,13041}, {11414,13009}, {11426,13011}, {11432,13013}, {11441,13015}, {11456,13017}, {11482,13037}, {11484,13053}, {11485,13057}, {11486,13059}
X(13023) = reflection of X(i) in X(j) for these (i,j): (3,13055), (13025,5)
The reciprocal orthologic center of these triangles is X(10674).
X(13024) lies on these lines: {3,486}, {4,13008}, {5,13026}, {25,13036}, {1597,13020}, {1598,13052}, {3295,13044}, {3311,13046}, {3312,13048}, {10306,13042}, {11414,13010}, {11426,13012}, {11432,13014}, {11441,13016}, {11456,13018}, {11482,13038}, {11484,13054}, {11485,13058}, {11486,13060}
X(13024) = reflection of X(i) in X(j) for these (i,j): (3,13056), (13026,5)
The reciprocal orthologic center of these triangles is X(10670).
X(13025) lies on these lines: {2,13055}, {4,488}, {5,13023}, {20,13021}, {376,13061}, {427,13007}, {489,11828}, {497,13043}, {631,13049}, {1370,13009}, {1992,13037}, {2550,13041}, {3068,13045}, {3069,13047}, {6643,13039}, {7386,13027}, {7392,13053}, {11427,13011}, {11433,13013}, {11442,13015}, {11457,13017}, {11488,13057}, {11489,13059}
X(13025) = anticomplement of X(13055)
The reciprocal orthologic center of these triangles is X(10674).
X(13026) lies on these lines: {2,13056}, {4,487}, {5,13024}, {20,13022}, {376,13062}, {427,13008}, {490,11829}, {497,13044}, {631,13050}, {1370,13010}, {1992,13038}, {2550,13042}, {3068,13046}, {3069,13048}, {6643,13040}, {7386,13028}, {7392,13054}, {11427,13012}, {11433,13014}, {11442,13016}, {11457,13018}, {11488,13058}, {11489,13060}
X(13026) = anticomplement of X(13056)
The reciprocal orthologic center of these triangles is X(10670).
X(13027) lies on these lines: {2,13009}, {3,485}, {20,13019}, {182,13011}, {511,13013}, {631,13035}, {1040,13043}, {7386,13025}, {7484,13007}, {7998,13015}, {7999,13017}, {9306,13030}, {10319,13041}, {11511,13037}, {11513,13045}, {11514,13047}, {11515,13057}, {11516,13059}
X(13027) = midpoint of X(i) and X(j) for these {i,j}: {3,13039}, {20,13019}
X(13027) = anticomplement of X(13053)
X(13027) = complement of X(13051)
The reciprocal orthologic center of these triangles is X(10674).
X(13028) lies on these lines: {2,13010}, {3,486}, {20,13020}, {182,13012}, {511,13014}, {631,13036}, {1040,13044}, {7386,13026}, {7484,13008}, {7998,13016}, {7999,13018}, {8964,9306}, {10319,13042}, {11511,13038}, {11513,13046}, {11514,13048}, {11515,13058}, {11516,13060}
X(13028) = midpoint of X(i) and X(j) for these {i,j}: {3,13040}, {20,13020}
X(13028) = anticomplement of X(13054)
X(13028) = complement of X(13052)
The reciprocal orthologic center of these triangles is X(13030).
X(13029) lies on these lines: {2,98}, {511,13063}
The reciprocal orthologic center of these triangles is X(13029).
X(13030) lies on these lines: {2,13063}, {182,13065}, {384,13033}, {1152,8374}, {9306,13027}
The reciprocal orthologic center of these triangles is X(13032).
X(13031) lies on these lines: {2,98}, {511,13064}
The reciprocal orthologic center of these triangles is X(13031).
X(13032) lies on these lines: {2,13064}, {182,9687}, {384,13034}, {1151,8373}, {8964,9306}
The reciprocal orthologic center of these triangles is X(13029).
X(13033) lies on these lines: {3,13063}, {384,13030}, {1975,13009}, {10131,13065}
The reciprocal orthologic center of these triangles is X(13031).
X(13034) lies on these lines: {3,13064}, {384,13032}, {1975,13010}, {10131,13066}
The reciprocal orthologic center of these triangles is X(10670).
X(13035) lies on these lines: {2,13039}, {3,13007}, {4,488}, {24,13055}, {25,13023}, {54,13011}, {186,13049}, {378,13021}, {631,13027}, {3090,13053}, {3520,13061}, {3567,13013}, {5889,13015}, {5890,13017}, {6197,13041}, {6198,13043}, {8537,13037}, {10632,13057}, {10633,13059}, {10880,13045}, {10881,13047}
X(13035) = midpoint of X(5889) and X(13015)
X(13035) = reflection of X(i) in X(j) for these (i,j): (4,13051), (13009,3)
X(13035) = anticomplement of X(13039)
The reciprocal orthologic center of these triangles is X(10674).
X(13036) lies on these lines: {2,13040}, {3,13008}, {4,487}, {24,13056}, {25,13024}, {54,13012}, {186,13050}, {378,13022}, {631,13028}, {3090,13054}, {3520,13062}, {3567,13014}, {5889,13016}, {5890,13018}, {6197,13042}, {6198,13044}, {8537,13038}, {10632,13058}, {10633,13060}, {10880,13046}, {10881,13048}
X(13036) = midpoint of X(5889) and X(13016)
X(13036) = reflection of X(i) in X(j) for these (i,j): (4,13052), (13010,3)
X(13036) = anticomplement of X(13040)
The reciprocal orthologic center of these triangles is X(10670).
X(13037) lies on these lines: {6,13011}, {511,13061}, {575,13049}, {576,12598}, {1992,13025}, {8537,13035}, {8538,13039}, {8539,13041}, {8540,13043}, {8541,13051}, {9813,13053}, {11405,13007}, {11416,13009}, {11443,13015}, {11458,13017}, {11470,13019}, {11477,13021}, {11482,13023}, {11511,13027}
X(13037) = midpoint of X(11477) and X(13021)
X(13037) = reflection of X(13049) in X(575)
The reciprocal orthologic center of these triangles is X(10674).
X(13038) lies on these lines: {6,13012}, {511,13062}, {575,13050}, {576,12597}, {1992,13026}, {8537,13036}, {8538,13040}, {8539,13042}, {8540,13044}, {8541,13052}, {9813,13054}, {11405,13008}, {11416,13010}, {11443,13016}, {11458,13018}, {11470,13020}, {11477,13022}, {11482,13024}, {11511,13028}
X(13038) = midpoint of X(11477) and X(13022)
The reciprocal orthologic center of these triangles is X(10670).
X(13039) lies on these lines: {2,13035}, {3,485}, {4,13009}, {5,13051}, {30,13019}, {52,13013}, {569,13011}, {1062,13043}, {1656,13053}, {6643,13025}, {7395,13007}, {8251,13041}, {8538,13037}, {10634,13057}, {10635,13059}, {10897,13045}, {10898,13047}, {11444,13015}, {11459,13017}
X(13039) = reflection of X(52) in X(13013)
X(13039) = complement of X(13035)
The reciprocal orthologic center of these triangles is X(10674).
X(13040) lies on these lines: {2,13036}, {3,486}, {4,13010}, {5,13052}, {30,13020}, {52,13014}, {569,13012}, {1062,13044}, {1656,13054}, {5254,8961}, {6643,13026}, {7395,13008}, {8251,13042}, {8538,13038}, {10634,13058}, {10635,13060}, {10897,13046}, {10898,13048}, {11444,13016}, {11459,13018}
X(13040) = reflection of X(i) in X(j) for these (i,j): (52,13014), (13052,5)
X(13040) = complement of X(13036)
The reciprocal orthologic center of these triangles is X(10670).
X(13041) lies on these lines: {19,13051}, {40,9907}, {55,13043}, {2550,13025}, {3101,13009}, {5415,13045}, {5416,13047}, {5584,13021}, {6197,13035}, {7688,13061}, {8251,13039}, {8539,13037}, {9816,13053}, {10306,13023}, {10319,13027}, {10636,13057}, {10637,13059}, {10902,13049}, {11406,13007}, {11428,13011}, {11435,13013}, {11445,13015}, {11460,13017}, {11471,13019}
The reciprocal orthologic center of these triangles is X(10674).
X(13042) lies on these lines: {19,13052}, {40,9906}, {55,13044}, {2550,13026}, {3101,13010}, {5415,13046}, {5416,13048}, {5584,13022}, {6197,13036}, {7688,13062}, {8251,13040}, {8539,13038}, {9816,13054}, {10306,13024}, {10319,13028}, {10636,13058}, {10637,13060}, {10902,13050}, {11406,13008}, {11428,13012}, {11435,13014}, {11445,13016}, {11460,13018}, {11471,13020}
The reciprocal orthologic center of these triangles is X(10670).
X(13043) lies on these lines: {1,12911}, {33,13051}, {34,13019}, {35,13049}, {36,13061}, {55,13041}, {56,13021}, {497,13025}, {1040,13027}, {1062,13039}, {1250,13059}, {2066,13045}, {3100,13009}, {3295,13023}, {5414,13047}, {6198,13035}, {7071,13007}, {8540,13037}, {9817,13053}, {10638,13057}, {11429,13011}, {11436,13013}, {11446,13015}, {11461,13017}
The reciprocal orthologic center of these triangles is X(10674).
X(13044) lies on these lines: {1,12910}, {33,13052}, {34,13020}, {35,13050}, {36,13062}, {55,13042}, {56,13022}, {497,13026}, {1040,13028}, {1062,13040}, {1250,13060}, {2066,13046}, {3100,13010}, {3295,13024}, {5414,13048}, {6198,13036}, {7071,13008}, {8540,13038}, {9817,13054}, {10638,13058}, {11429,13012}, {11436,13014}, {11446,13016}, {11461,13018}
The reciprocal orthologic center of these triangles is X(10670).
X(13045) lies on these lines: {6,13011}, {371,12961}, {372,13049}, {1151,13021}, {2066,13043}, {3068,13025}, {3311,13023}, {5410,13007}, {5412,13051}, {5415,13041}, {6200,13061}, {6413,8408}, {10880,13035}, {10897,13039}, {10961,13053}, {11417,13009}, {11447,13015}, {11462,13017}, {11473,13019}, {11513,13027}
The reciprocal orthologic center of these triangles is X(10674).
X(13046) lies on these lines: {6,13012}, {371,5254}, {372,13050}, {1151,13022}, {2066,13044}, {3053,11829}, {3068,13026}, {3311,13024}, {5410,13008}, {5412,13052}, {5415,13042}, {6200,13062}, {10880,13036}, {10897,13040}, {10961,13054}, {11417,13010}, {11447,13016}, {11462,13018}, {11473,13020}, {11513,13028}
The reciprocal orthologic center of these triangles is X(10670).
X(13047) lies on these lines: {6,13011}, {371,13049}, {372,5254}, {1152,13021}, {3053,11828}, {3069,13025}, {3312,13023}, {5411,13007}, {5413,13051}, {5414,13043}, {5416,13041}, {6396,13061}, {10881,13035}, {10898,13039}, {10963,13053}, {11418,13009}, {11448,13015}, {11463,13017}, {11474,13019}, {11514,13027}
The reciprocal orthologic center of these triangles is X(10674).
X(13048) lies on these lines: {6,13012}, {371,13050}, {372,12966}, {1152,13022}, {3069,13026}, {3312,13024}, {5411,13008}, {5413,13052}, {5414,13044}, {5416,13042}, {6396,13062}, {6414,8420}, {10881,13036}, {10898,13040}, {10963,13054}, {11418,13010}, {11448,13016}, {11463,13018}, {11474,13020}, {11514,13028}
The reciprocal orthologic center of these triangles is X(10670).
X(13049) lies on these lines: {3,485}, {15,13059}, {16,13057}, {24,13051}, {35,13043}, {186,13035}, {371,13047}, {372,13045}, {378,13019}, {389,13011}, {575,13037}, {578,13013}, {631,13025}, {3515,13007}, {6642,13053}, {7488,13009}, {10902,13041}, {11449,13015}, {11464,13017}
X(13049) = midpoint of X(3) and X(13055)
X(13049) = reflection of X(13061) in X(3)
The reciprocal orthologic center of these triangles is X(10674).
X(13050) lies on these lines: {3,486}, {15,13060}, {16,13058}, {24,13052}, {35,13044}, {186,13036}, {371,13048}, {372,13046}, {378,13020}, {389,13012}, {575,13038}, {578,13014}, {631,13026}, {3515,13008}, {6642,13054}, {7488,13010}, {10902,13042}, {11449,13016}, {11464,13018}
X(13050) = midpoint of X(3) and X(13056)
X(13050) = reflection of X(13062) in X(3)
The reciprocal orthologic center of these triangles is X(10670).
X(13051) lies on these lines: {2,13009}, {4,488}, {5,13039}, {19,13041}, {24,13049}, {25,13007}, {33,13043}, {51,13013}, {184,13011}, {378,13061}, {1321,1899}, {1593,13021}, {1598,13023}, {1907,13052}, {3060,13015}, {3567,13017}, {5412,13045}, {5413,13047}, {8541,13037}, {10641,13057}, {10642,13059}
X(13051) = midpoint of X(4) and X(13035)
X(13051) = reflection of X(i) in X(j) for these (i,j): (13019,4), (13039,5)
X(13051) = anticomplement of X(13027)
X(13051) = complement of X(13009)
The reciprocal orthologic center of these triangles is X(10674).
X(13052) lies on these lines: {2,13010}, {4,487}, {5,13040}, {19,13042}, {24,13050}, {25,13008}, {33,13044}, {51,13014}, {184,13012}, {378,13062}, {1322,1899}, {1593,13022}, {1598,13024}, {1907,13051}, {3060,13016}, {3567,13018}, {5412,13046}, {5413,13048}, {8541,13038}, {10641,13058}, {10642,13060}
X(13052) = midpoint of X(4) and X(13036)
X(13052) = reflection of X(i) in X(j) for these (i,j): (13020,4), (13040,5)
X(13052) = anticomplement of X(13028)
X(13052) = complement of X(13010)
The reciprocal orthologic center of these triangles is X(10670).
X(13053) lies on these lines: {2,13009}, {5,641}, {1656,13039}, {3070,8944}, {3090,13035}, {3091,13019}, {5020,13055}, {5943,13013}, {6642,13049}, {7392,13025}, {9306,13011}, {9813,13037}, {9816,13041}, {9817,13043}, {9818,13061}, {10643,13057}, {10644,13059}, {10961,13045}, {10963,13047}, {11284,13007}, {11451,13015}, {11465,13017}, {11479,13021}, {11484,13023}
X(13053) = complement of X(13027)
The reciprocal orthologic center of these triangles is X(10674).
X(13054) lies on these lines: {2,13010}, {5,642}, {1656,13040}, {3071,8940}, {3090,13036}, {3091,13020}, {5020,13056}, {5943,13014}, {6642,13050}, {7392,13026}, {9306,13012}, {9813,13038}, {9816,13042}, {9817,13044}, {9818,13062}, {10643,13058}, {10644,13060}, {10961,13046}, {10963,13048}, {11284,13008}, {11451,13016}, {11465,13018}, {11479,13022}, {11484,13024}
X(13054) = complement of X(13028)
The reciprocal orthologic center of these triangles is X(10670).
X(13055) lies on these lines: {2,13025}, {3,485}, {6,13011}, {22,13009}, {24,13035}, {25,13007}, {55,13041}, {110,13015}, {511,10670}, {1151,11828}, {1152,8374}, {1593,13019}, {1614,13017}, {5020,13053}, {8266,10323}
X(13055) = midpoint of X(3) and X(13023)
X(13055) = reflection of X(i) in X(j) for these (i,j): (3,13049), (13021,3)
X(13055) = complement of X(13025)
The reciprocal orthologic center of these triangles is X(10674).
X(13056) lies on these lines: {2,13026}, {3,486}, {6,13012}, {22,13010}, {24,13036}, {25,13008}, {55,13042}, {110,13016}, {511,10674}, {1151,8373}, {1152,11829}, {1593,13020}, {1614,13018}, {5020,13054}, {8266,10323}
X(13056) = midpoint of X(3) and X(13024)
X(13056) = reflection of X(i) in X(j) for these (i,j): (3,13050), (13022,3)
X(13056) = complement of X(13026)
The reciprocal orthologic center of these triangles is X(10670).
X(13057) lies on these lines: {6,13011}, {15,12982}, {16,13049}, {10632,13035}, {10634,13039}, {10636,13041}, {10638,13043}, {10641,13051}, {10643,13053}, {10645,13061}, {11408,13007}, {11420,13009}, {11452,13015}, {11466,13017}, {11475,13019}, {11480,13021}, {11485,13023}, {11488,13025}, {11515,13027}
X(13058) lies on these lines: {6,13012}, {15,12980}, {16,13050}, {10632,13036}, {10634,13040}, {10636,13042}, {10638,13044}, {10641,13052}, {10643,13054}, {10645,13062}, {11408,13008}, {11420,13010}, {11452,13016}, {11466,13018}, {11475,13020}, {11480,13022}, {11485,13024}, {11488,13026}, {11515,13028}
X(13059) lies on these lines: {6,13011}, {15,13049}, {16,12983}, {1250,13043}, {10633,13035}, {10635,13039}, {10637,13041}, {10642,13051}, {10644,13053}, {10646,13061}, {11409,13007}, {11421,13009}, {11453,13015}, {11467,13017}, {11476,13019}, {11481,13021}, {11486,13023}, {11489,13025}, {11516,13027}
X(13060) lies on these lines: {6,13012}, {15,13050}, {16,12981}, {1250,13044}, {10633,13036}, {10635,13040}, {10637,13042}, {10642,13052}, {10644,13054}, {10646,13062}, {11409,13008}, {11421,13010}, {11453,13016}, {11467,13018}, {11476,13020}, {11481,13022}, {11486,13024}, {11489,13026}, {11516,13028}
The reciprocal orthologic center of these triangles is X(10670).
X(13061) lies on these lines: {3,485}, {24,13019}, {36,13043}, {376,13025}, {378,13051}, {511,13037}, {2071,13009}, {3520,13035}, {6200,13045}, {6396,13047}, {7688,13041}, {9818,13053}, {10645,13057}, {10646,13059}, {11410,13007}, {11430,13011}, {11438,13013}, {11454,13015}, {11468,13017}
X(13061) = midpoint of X(3) and X(13021)
X(13061) = reflection of X(13049) in X(3)
The reciprocal orthologic center of these triangles is X(10674).
X(13062) lies on these lines: {3,486}, {24,13020}, {36,13044}, {376,13026}, {378,13052}, {511,13038}, {2071,13010}, {3520,13036}, {6200,13046}, {6396,13048}, {7688,13042}, {9818,13054}, {10645,13058}, {10646,13060}, {11410,13008}, {11430,13012}, {11438,13014}, {11454,13016}, {11468,13018}
X(13062) = midpoint of X(3) and X(13022)
X(13062) = reflection of X(13050) in X(3)
The reciprocal orthologic center of these triangles is X(13029).
X(13063) lies on these lines: {2,13030}, {3,13033}, {22,13009}, {511,13029}, {4027,13065}
The reciprocal orthologic center of these triangles is X(13031).
X(13064) lies on these lines: {2,13032}, {3,13034}, {22,13010}, {511,13031}, {4027,13066}
The reciprocal orthologic center of these triangles is X(13029).
X(13065) lies on these lines: {182,13030}, {4027,13063}, {10131,13033}
The reciprocal orthologic center of these triangles is X(13031).
X(13066) lies on these lines: {182,9687}, {4027,13064}, {10131,13034}
The reciprocal orthologic center of these triangles is X(13068).
X(13067) lies on these lines: {20,486}, {9722,12976}, {9839,13005}
The reciprocal orthologic center of these triangles is X(13067).
X(13068) lies on these lines: {372,3167}, {488,615}, {3564,12427}, {9723,12977}, {11950,12312}
The reciprocal orthologic center of these triangles is X(3555).
X(13069) lies on these lines: {1,12553}, {165,12517}, {200,12534}, {516,12542}, {1750,12693}, {3062,12449}, {4326,12847}, {5732,12538}, {6769,9589}, {7987,12522}, {7988,12613}, {7989,12621}, {8089,13072}, {8140,12878}, {8244,13070}, {8245,13071}, {8423,13074}, {10857,12442}, {10980,12914}, {11531,12655}
X(13069) = midpoint of X(12878) and X(12883)
X(13069) = reflection of X(i) in X(j) for these (i,j): (1,12843), (11531,12655), (12659,12517)
The reciprocal orthologic center of these triangles is X(3555).
X(13070) lies on these lines: {8224,12517}, {8225,12522}, {8228,12613}, {8230,12621}, {8231,12659}, {8233,12693}, {8234,12843}, {8237,12847}, {8239,12876}, {8243,12912}, {8244,13069}, {8246,13071}, {9789,12542}, {10858,12442}, {10867,12449}, {10885,12538}, {10891,12553}, {11030,12914}, {11042,12907}, {11532,12655}, {11687,12534}, {11996,13074}
The reciprocal orthologic center of these triangles is X(3555).
X(13071) lies on these lines: {21,12522}, {846,12659}, {1284,12912}, {4199,12693}, {4220,12517}, {5051,12621}, {8229,12613}, {8235,12843}, {8238,12847}, {8240,12876}, {8245,13069}, {8246,13070}, {8249,13072}, {8391,12878}, {8425,13074}, {8731,12442}, {9791,12542}, {10868,12449}, {10892,12553}, {11031,12914}, {11043,12907}, {11533,12655}, {11688,12534}, {11926,12883}
X(13071) = 2nd-Sharygin-to-1st-Sharygin similarity image of X(13300)
X(13071) = excentral-to-1st-Sharygin similarity image of X(12659)
X(13071) = hexyl-to-1st-Sharygin similarity image of X(12843)
X(13071) = intouch-to-1st-Sharygin similarity image of X(12912)
The reciprocal orthologic center of these triangles is X(3555).
X(13072) lies on these lines: {1,13073}, {2089,12912}, {8075,12517}, {8077,12522}, {8078,12659}, {8079,12693}, {8081,12843}, {8085,12613}, {8087,12621}, {8089,13069}, {8241,12876}, {8247,13070}, {8249,13071}, {8387,12847}, {8733,12442}, {9793,12542}, {11032,12914}, {11690,12534}, {11888,12538}, {11894,12553}
X(13072) = reflection of X(13073) in X(1)
The reciprocal orthologic center of these triangles is X(3555).
X(13073) lies on these lines: {1,13072}, {174,12912}, {258,12659}, {7588,12522}, {8125,12534}, {8351,12907}, {8734,12442}, {11033,12914}, {11859,12449}, {11895,12553}, {11899,12655}
X(13073) = reflection of X(13072) in X(1)
The reciprocal orthologic center of these triangles is X(3555).
X(13074) lies on these lines: {174,12912}, {7587,12522}, {8083,12914}, {8126,12534}, {8382,12621}, {8389,12847}, {8423,13069}, {8425,13071}, {8729,12442}, {11535,12655}, {11860,12449}, {11890,12538}, {11891,12542}, {11896,12553}, {11924,12876}, {11996,13070}
The reciprocal orthologic center of these triangles is X(3).
X(13075) lies on these lines: {3,10077}, {4,12941}, {11,619}, {12,5479}, {14,55}, {33,12141}, {35,6774}, {56,5474}, {99,12952}, {115,10638}, {497,617}, {530,12354}, {531,3058}, {542,3056}, {1250,5471}, {1479,5613}, {1697,9900}, {1837,12780}, {2098,7974}, {2646,11706}, {3295,10061}, {4092,7043}, {4294,6773}, {4995,5460}, {5432,6670}, {5464,11238}, {6269,10928}, {6271,10927}, {6321,10062}, {9114,12351}, {9915,10833}, {9981,10877}, {10799,12204}, {10947,12921}, {10953,12931}, {10965,13104}, {10966,13106}, {11873,12470}, {11874,12471}, {11909,12792}, {11947,12988}, {11948,12989}
X(13075) = X(14)-of-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(3).
X(13076) lies on these lines: {3,10078}, {4,12942}, {11,618}, {12,5478}, {13,55}, {33,12142}, {35,6771}, {56,5473}, {99,12951}, {115,1250}, {497,616}, {530,3058}, {531,12354}, {542,3056}, {1479,5617}, {1697,9901}, {1837,12781}, {2098,7975}, {2646,11705}, {3295,10062}, {4092,7026}, {4294,6770}, {4995,5459}, {5432,6669}, {5463,11238}, {5472,10638}, {5613,10086}, {6268,10928}, {6270,10927}, {6321,10061}, {9116,12351}, {9982,10877}, {10799,12205}, {10947,12922}, {10953,12932}, {10965,13105}, {10966,13107}, {11873,12472}, {11874,12473}, {11909,12793}, {11947,12990}, {11948,12991}
X(13076) = X(13)-of-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(3).
X(13077) lies on these lines: {1,2782}, {3,10079}, {4,12837}, {6,10798}, {11,39}, {12,6248}, {33,12143}, {55,76}, {56,11257}, {194,497}, {262,10896}, {384,10799}, {498,7697}, {499,11171}, {511,6284}, {538,3058}, {726,950}, {730,3057}, {732,3056}, {1479,3095}, {1697,9902}, {1837,12782}, {2098,7976}, {2646,12263}, {3086,7709}, {3094,9598}, {3097,9581}, {3202,9667}, {3295,10063}, {3934,5432}, {4294,12251}, {4302,9821}, {4995,9466}, {5969,12354}, {6272,10928}, {6273,10927}, {7741,11272}, {7757,11238}, {9917,10833}, {9983,10877}, {10947,12923}, {10953,12933}, {10965,13109}, {10966,13110}, {11152,12351}, {11873,12474}, {11874,12475}, {11909,12794}, {11947,12992}, {11948,12993}
X(13077) = X(76)-of-Mandart-incircle-triangle
X(13077) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (194,497,12836), (3295,13108,10063)
The reciprocal orthologic center of these triangles is X(3).
X(13078) lies on these lines: {3,10080}, {4,12944}, {11,6292}, {12,6249}, {33,12144}, {55,83}, {56,12122}, {497,2896}, {732,3056}, {754,3058}, {1479,6287}, {1697,9903}, {1837,12783}, {2098,7977}, {2646,12264}, {3295,10064}, {4294,12252}, {4302,8725}, {5217,9751}, {5432,6704}, {6022,6026}, {6274,10928}, {6275,10927}, {9918,10833}, {10947,12924}, {10953,12934}, {10965,13112}, {10966,13113}, {11873,12476}, {11909,12795}, {11947,12994}, {11948,12995}
X(13078) = X(83)-of-Mandart-incircle-triangle
X(13078) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (497,2896,12954), (3295,13111,10064)
The reciprocal orthologic center of these triangles is X(4).
X(13079) lies on these lines: {1,1154}, {3,10082}, {4,12946}, {11,1209}, {12,3574}, {33,11576}, {35,10610}, {54,55}, {56,7691}, {195,3295}, {497,2888}, {539,3058}, {999,12307}, {1058,12325}, {1062,12363}, {1479,6288}, {1493,3746}, {1697,9905}, {1837,12785}, {1858,9957}, {1870,12300}, {2098,7979}, {2646,12266}, {3028,10628}, {3270,10619}, {4294,12254}, {5432,6689}, {6152,6198}, {6276,10928}, {6277,10927}, {6767,12316}, {7159,12896}, {9538,12226}, {9670,11446}, {9920,10833}, {9985,10877}, {10799,12208}, {10947,12926}, {10953,12936}, {10965,13121}, {10966,13122}, {11873,12480}, {11874,12481}, {11909,12797}, {11947,12998}, {11948,12999}
X(13079) = midpoint of X(1) and X(6286)
X(13079) = X(54)-of-Mandart-incircle-triangle
X(13079) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (195,3295,10066), (497,2888,12956)
The reciprocal orthologic center of these triangles is X(79).
X(13080) lies on these lines: {4,12947}, {11,13089}, {12,12600}, {33,12146}, {55,10266}, {1317,5441}, {1479,12919}, {1697,12409}, {1837,12786}, {2098,13100}, {2646,12267}, {4294,12255}, {10543,12877}, {10799,12209}, {10833,12414}, {10877,12504}, {10927,12807}, {10928,12808}, {10947,12927}, {10953,12937}, {11874,12483}, {11909,12798}, {11947,13000}, {11948,13001}
X(13080) = X(10266)-of-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(3).
X(13081) lies on these lines: {1,12910}, {3,10083}, {4,12948}, {11,642}, {12,6251}, {33,12147}, {55,486}, {56,12123}, {388,12296}, {390,12221}, {487,497}, {1058,12509}, {1479,6290}, {1697,9906}, {1837,12787}, {2098,7980}, {2646,12268}, {3056,3564}, {3295,10067}, {4294,12256}, {5432,6119}, {6280,10928}, {6281,9670}, {6337,12959}, {9921,10833}, {9986,10877}, {10799,12210}, {10947,12928}, {10953,12938}, {11873,12484}, {11874,12485}, {11909,12799}, {11947,13002}, {11948,13003}
X(13081) = X(486)-of-Mandart-incircle-triangle
X(13081) = {X(3056),X(15171)}-harmonic conjugate of X(13082)
The reciprocal orthologic center of these triangles is X(3).
X(13082) lies on these lines: {1,12911}, {3,10084}, {4,12949}, {11,641}, {12,6250}, {30,6283}, {33,12148}, {55,485}, {56,12124}, {388,12297}, {390,12222}, {488,497}, {1058,12510}, {1479,6289}, {1697,9907}, {1837,12788}, {2098,7981}, {2646,12269}, {3056,3564}, {3295,10068}, {4294,12257}, {5432,6118}, {6278,9670}, {6279,10927}, {6337,12958}, {9922,10833}, {9987,10877}, {10799,12211}, {10947,12929}, {10953,12939}, {11873,12486}, {11874,12487}, {11909,12800}, {11947,13004}, {11948,13005}
X(13082) = X(485)-of-Mandart-incircle-triangle
X(13082) = {X(3056),X(15171)}-harmonic conjugate of X(13081)
The reciprocal orthologic center of these triangles is X(9885).
X(13083) lies on these lines: {2,14}, {3,530}, {30,9735}, {182,524}, {299,5463}, {303,10645}, {396,574}, {532,3524}, {533,5054}, {543,6771}, {599,618}, {624,11295}, {630,11306}, {5215,10613}, {5238,11304}, {5459,6772}, {6672,11485}, {6774,7619}, {9762,9774}, {9886,11171}, {11151,12155}
X(13083) = midpoint of X(3) and X(9763)
X(13083) = reflection of X(13084) in X(549)
X(13083) = X(13)-of-McCay-triangle
The reciprocal orthologic center of these triangles is X(9886).
X(13084) lies on these lines: {2,13}, {3,531}, {30,9736}, {182,524}, {298,5464}, {302,10646}, {395,574}, {532,5054}, {533,3524}, {543,6774}, {599,619}, {623,11296}, {629,11305}, {5215,10614}, {5237,11303}, {5460,6775}, {6671,11486}, {6771,7619}, {9760,9774}, {9885,11171}, {11151,12154}
X(13084) = midpoint of X(3) and X(9761)
X(13084) = reflection of X(13083) in X(549)
X(13084) = X(14)-of-McCay-triangle
The reciprocal orthologic center of these triangles is X(9888).
X(13085) lies on these lines: {2,39}, {3,5969}, {262,736}, {524,3095}, {543,9774}, {698,11171}, {1916,7833}, {2023,11318}, {3094,8359}, {5188,8182}, {6248,7615}, {7840,9983}, {8667,10104}, {11184,11272}
X(13085) = {X(6294),X(6581)}-harmonic conjugate of X(76)
The reciprocal orthologic center of these triangles is X(9890).
X(13086) lies on these lines: {2,32}, {3,9890}, {732,11171}, {3523,8350}, {5569,9774}, {6287,8182}, {7615,12122}, {7841,9478}
The reciprocal orthologic center of these triangles is X(9892).
X(13087) lies on these lines: {2,371}, {3,9892}, {13088, 14645
The reciprocal orthologic center of these triangles is X(9894).
X(13088) lies on these lines: {2,372}, {3,9894}, {13087, 14645}
The reciprocal orthologic center of these triangles is X(79).
X(13089) lies on these lines: {1,6597}, {2,3467}, {3,7701}, {5,12600}, {8,13100}, {9,12519}, {10,191}, {11,13080}, {21,214}, {55,12957}, {56,12947}, {83,12209}, {100,6595}, {119,3652}, {142,12444}, {427,12146}, {442,1749}, {499,12543}, {631,12255}, {958,12937}, {1125,12267}, {1376,12342}, {1650,12798}, {1698,12409}, {1768,6853}, {2476,3336}, {3096,12504}, {3337,11263}, {5590,12808}, {5591,12807}, {5599,12482}, {5600,12483}, {5696,6600}, {6763,12535}, {7280,12845}, {8222,13000}, {8223,13001}
X(13089) = midpoint of X(i) and X(j) for these {i,j}: {1,12786}, {3,12919}, {8,13100}, {100,6595}, {1650,12798}, {6597,12660}, {12342,12927}, {12524,12745}, {12682,12913}
X(13089) = reflection of X(i) in X(j) for these (i,j): (12267,1125), (12600,5), (12913,11263)
X(13089) = complement of X(10266)
X(13089) = X(10266)-of-medial-triangle
X(13089) = {X(191), X(2475)}-harmonic conjugate of X(484)
The reciprocal orthologic center of these triangles is X(1).
X(13090) lies on these lines: {1,8247}, {164,8231}, {177,8243}, {5571,11030}, {7670,8237}, {8224,12518}, {8225,12523}, {8230,12622}, {8233,12694}, {8239,8422}, {8246,13091}, {9789,9807}, {10858,12443}, {10867,12450}, {10885,12539}, {10891,12554}, {11042,12908}, {11532,12656}, {11687,11691}
X(13090) = X(1)-of-2nd-Pamfilos-Zhou-triangle
X(13090) = excentral-to-2nd-Pamfilos-Zhou similarity image of X(164)
The reciprocal orthologic center of these triangles is X(1).
X(13091) lies on these lines: {1,8249}, {21,12523}, {164,846}, {167,8245}, {177,1284}, {5571,11031}, {7670,8238}, {8240,8422}, {9791,9807}, {11043,12908}, {11533,12656}, {11688,11691}
X(13091) = X(1)-of-1st-Sharygin-triangle
X(13091) = 2nd-Sharygin-to-1st-Sharygin similarity image of X(13301)
X(13091) = excentral-to-1st-Sharygin similarity image of X(164)
X(13091) = hexyl-to-1st-Sharygin similarity image of X(12844)
X(13091) = intouch-to-1st-Sharygin similarity image of X(177)
The reciprocal orthologic center of these triangles is X(1).
X(13092) lies on these lines: {1,167}, {7,10489}
X(13092) = X(1)-of-Yff-central-triangle
X(13092) = excentral-to-Yff-central similarity image of X(164)
The reciprocal orthologic center of these triangles is X(4).
X(13093) lies on these lines: {3,64}, {4,3426}, {5,6225}, {25,12290}, {30,11411}, {74,3515}, {140,5656}, {185,1597}, {378,12174}, {381,5878}, {517,9899}, {548,11206}, {999,6285}, {1159,1854}, {1204,3517}, {1351,8549}, {1503,1657}, {1593,6241}, {1598,10605}, {1614,11410}, {1656,2883}, {1853,3843}, {2070,11999}, {2777,5073}, {2935,12308}, {3167,12084}, {3295,7355}, {3516,11456}, {3526,6696}, {3527,5890}, {3534,5894}, {3830,5895}, {5198,11455}, {5643,10574}, {5663,12085}, {5790,12779}, {6001,12702}, {6266,11917}, {6267,11916}, {6447,11241}, {6448,11242}, {6455,10533}, {6456,10534}, {6804,11469}, {7517,9914}, {7689,9909}, {7691,9920}, {7973,10247}, {9301,12502}, {9654,12940}, {9669,12950}, {9715,11440}, {9935,12307}, {9968,10249}, {10246,12262}, {11472,11479}, {11842,12202}, {11849,12335}, {11875,12468}, {11876,12469}, {11911,12791}, {11928,12920}, {11929,12930}, {11949,12986}, {11950,12987}, {12000,13094}, {12001,13095}
X(13093) = midpoint of X(12250) and X(12324)
X(13093) = reflection of X(i) in X(j) for these (i,j): (3,64), (1498,3357), (5878,6247), (6225,5), (9833,5894), (9919,10620), (12164,12085), (12308,2935), (12315,3)
X(13093) = X(64)-of-X3-ABC-reflections-triangle
X(13093) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (185,1597,11432), (1498,3357,3), (1498,8567,10282), (3357,10282,8567), (5878,6247,381), (5890,11403,3527), (5894,9833,3534), (6285,10076,999), (6759,10606,3), (7355,10060,3295), (8567,10282,3), (10605,11381,1598), (11414,12279,11820)
The reciprocal orthologic center of these triangles is X(4).
X(13094) lies on these lines: {1,64}, {12,12920}, {30,12430}, {154,2077}, {1470,2192}, {1498,11248}, {2777,12905}, {2883,5552}, {5878,10942}, {5895,6256}, {6000,10679}, {6001,12703}, {6225,10528}, {6247,10531}, {6266,10930}, {6267,10929}, {6285,11509}, {7355,10965}, {9914,10834}, {10269,10606}, {10803,12202}, {10805,12250}, {10878,12502}, {10915,12779}, {10955,12930}, {10956,12940}, {10958,12950}, {11381,11400}, {11881,12468}, {11882,12469}, {11914,12791}, {11955,12986}, {11956,12987}, {12000,13093}
X(13094) = reflection of X(64) in X(10060)
X(13094) = X(64)-of-inner-Yff-tangents-triangle
X(13094) = {X(64),X(7973)}-harmonic conjugate of X(13095)
The reciprocal orthologic center of these triangles is X(4).
X(13095) lies on these lines: {1,64}, {11,12930}, {30,12431}, {154,11012}, {1498,11249}, {2777,12906}, {2883,10527}, {5878,10943}, {6000,10680}, {6001,12704}, {6225,10529}, {6247,10532}, {6266,10932}, {6267,10931}, {7355,10966}, {8567,10902}, {9914,10835}, {10267,10606}, {10804,12202}, {10806,12250}, {10879,12502}, {10916,12779}, {10949,12920}, {10957,12940}, {10959,12950}, {11381,11401}, {11510,12335}, {11883,12468}, {11884,12469}, {11915,12791}, {11957,12986}, {11958,12987}, {12001,13093}
X(13095) = reflection of X(64) in X(10076)
X(13095) = X(64)-of-outer-Yff-tangents-triangle
X(13095) = {X(64),X(7973)}-harmonic conjugate of X(13094)
The reciprocal orthologic center of these triangles is X(1).
X(13096) lies on these lines: {57,8231}, {329,8233}, {517,7596}, {527,1991}, {999,8225}, {3452,12610}, {3820,8230}, {6244,8224}, {6282,8234}, {7956,8228}, {7962,8239}, {7994,8244}, {8101,8247}, {8102,8248}, {8237,12848}, {8246,13097}, {9954,10867}, {9965,10885}, {10891,12555}, {11030,12915}, {11922,12880}, {11925,12885}, {11996,13098}
X(13096) = X(25)-of-2nd-Pamfilos-Zhou-triangle
X(13096) = excentral-to-2nd-Pamfilos-Zhou similarity image of X(57)
The reciprocal orthologic center of these triangles is X(1).
X(13097) lies on these lines: {1,8421}, {21,999}, {57,846}, {329,4199}, {517,2292}, {3452,4425}, {3820,5051}, {4220,6244}, {6282,8235}, {7956,8229}, {7962,8240}, {7994,8245}, {8101,8249}, {8102,8250}, {8238,12848}, {8246,13096}, {8391,12880}, {8425,13098}, {9954,10868}, {10892,12555}, {11031,12915}, {11926,12885}
X(13097) = X(25)-of-1st-Sharygin-triangle
X(13097) = excentral-to-1st-Sharygin similarity image of X(57)
X(13097) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (846,1284,8731), (9791,11688,4199)
The reciprocal orthologic center of these triangles is X(1).
X(13098) lies on these lines: {517,8130}, {999,7587}, {3820,8382}, {7962,11535}, {7994,8423}, {8083,12915}, {8389,12848}, {8425,13097}, {9954,11860}, {11896,12555}
X(13098) = X(25)-of-Yff-central-triangle
X(13098) = excentral-to-Yff-central similarity image of X(57)
The reciprocal orthologic center of these triangles is X(4).
X(13099) lies on these lines: {1,1297}, {8,132}, {40,11722}, {56,12340}, {112,517}, {127,5603}, {145,12384}, {519,12784}, {952,12918}, {962,2794}, {1320,2831}, {1482,10705}, {2098,3320}, {2099,6020}, {2781,7984}, {2799,7970}, {2806,10698}, {2825,10695}, {2853,10696}, {3241,9530}, {3656,10718}, {5604,12806}, {5605,12805}, {5657,6720}, {7967,12253}, {7978,9517}, {8192,12413}, {8210,12996}, {8211,12997}, {9518,10697}, {9523,10699}, {9527,10700}, {9532,10703}, {9997,12503}, {10247,13115}, {10735,12699}, {10800,12207}, {10944,12925}, {10950,12935}, {11396,12145}, {11910,12796}
X(13099) = midpoint of X(145) and X(12384)
X(13099) = X(1297)-of-5th-mixtilinear-triangle
X(13099) = {X(13118),X(13119)}-harmonic conjugate of X(1297)
X(13099) = reflection of X(i) in X(j) for these (i,j): (8,132), (40,11722), (1297,1), (10705,1482), (10718,3656), (10735,12699), (12408,12265)
The reciprocal orthologic center of these triangles is X(79).
X(13100) lies on these lines: {1,5180}, {8,13089}, {12,100}, {56,12342}, {519,12786}, {758,12535}, {952,6595}, {2098,13080}, {2136,12660}, {3243,12657}, {3648,4757}, {5597,12483}, {5598,12482}, {5603,12600}, {5604,12808}, {5605,12807}, {6872,12917}, {7701,9803}, {7967,12255}, {8192,12414}, {8210,13000}, {8211,13001}, {9997,12504}, {10800,12209}, {10944,12927}, {10950,12937}, {11396,12146}, {11910,12798}
X(13100) = reflection of X(i) in X(j) for these (i,j): (8,13089), (10266,1), (12409,12267)
The reciprocal orthologic center of these triangles is X(21).
X(13101) lies on these lines: {1,5180}, {165,12519}, {200,12535}, {516,12543}, {1750,12695}, {3062,6597}, {4326,12850}, {5732,12540}, {7987,12524}, {7988,12615}, {7989,12623}, {8089,13124}, {8140,12882}, {8244,13120}, {8245,13123}, {9961,12767}, {10857,12444}, {10980,12917}, {11531,12657}
X(13101) = midpoint of X(12882) and X(12887)
X(13101) = reflection of X(i) in X(j) for these (i,j): (1,12845), (11531,12657), (12660,12519)
The reciprocal orthologic center of these triangles is X(3).
X(13102) lies on these lines: {3,14}, {4,3180}, {5,617}, {30,5615}, {115,11485}, {381,531}, {382,5868}, {517,9900}, {530,12355}, {542,1351}, {619,1656}, {999,10077}, {1080,7777}, {1598,12141}, {3295,10061}, {3526,6670}, {5054,5460}, {5055,5464}, {5469,6771}, {5471,11486}, {5790,12780}, {6269,11917}, {6271,11916}, {7517,9915}, {7974,10247}, {9301,9981}, {9654,12941}, {9669,12951}, {10246,11706}, {10796,11296}, {11842,12204}, {11849,12336}, {11875,12470}, {11876,12471}, {11911,12792}, {11928,12921}, {11929,12931}, {11949,12988}, {11950,12989}, {12000,13104}, {12001,13106}
X(13102) = reflection of X(i) in X(j) for these (i,j): (3,14), (617,5), (5474,6774), (5613,5479), (13103,6321)
The reciprocal orthologic center of these triangles is X(3).
X(13103) lies on these lines: {3,13}, {4,3181}, {5,616}, {30,5611}, {115,11486}, {381,530}, {382,5869}, {383,7777}, {517,9901}, {531,12355}, {542,1351}, {618,1656}, {999,10078}, {1598,12142}, {3295,10062}, {3526,6669}, {5054,5459}, {5055,5463}, {5470,6774}, {5472,11485}, {5790,12781}, {6268,11917}, {6270,11916}, {7517,9916}, {7975,10247}, {9301,9982}, {9654,12942}, {9669,12952}, {10246,11705}, {10796,11295}, {11842,12205}, {11849,12337}, {11875,12472}, {11876,12473}, {11911,12793}, {11928,12922}, {11929,12932}, {11949,12990}, {11950,12991}, {12000,13105}, {12001,13107}
X(13103) = reflection of X(i) in X(j) for these (i,j): (3,13), (616,5), (5473,6771), (5617,5478), (13102,6321)
The reciprocal orthologic center of these triangles is X(3).
X(13104) lies on these lines: {1,14}, {12,12921}, {530,12356}, {531,11239}, {542,12594}, {617,10528}, {619,5552}, {5474,11248}, {5479,10531}, {5613,10942}, {6269,10930}, {6271,10929}, {6773,10805}, {9915,10834}, {9981,10878}, {10803,12204}, {10915,12780}, {10955,12931}, {10956,12941}, {10958,12951}, {10965,13075}, {11400,12141}, {11509,12336}, {11881,12470}, {11882,12471}, {11914,12792}, {11955,12988}, {11956,12989}, {12000,13102}
The reciprocal orthologic center of these triangles is X(3).
X(13105) lies on these lines: {1,13}, {12,12922}, {530,11239}, {531,12356}, {542,12594}, {616,10528}, {618,5552}, {5473,11248}, {5478,10531}, {5617,10942}, {6268,10930}, {6270,10929}, {6770,10805}, {9916,10834}, {9982,10878}, {10803,12205}, {10915,12781}, {10955,12932}, {10956,12942}, {10958,12952}, {10965,13076}, {11400,12142}, {11509,12337}, {11881,12472}, {11882,12473}, {11914,12793}, {11955,12990}, {11956,12991}, {12000,13103}
The reciprocal orthologic center of these triangles is X(3).
X(13106) lies on these lines: {1,14}, {11,12931}, {530,12357}, {531,11240}, {542,12595}, {617,10529}, {619,10527}, {5474,11249}, {5479,10532}, {5613,10943}, {6269,10932}, {6271,10931}, {6773,10806}, {9915,10835}, {9981,10879}, {10804,12204}, {10916,12780}, {10949,12921}, {10957,12941}, {10959,12951}, {10966,13075}, {11401,12141}, {11510,12336}, {11883,12470}, {11884,12471}, {11915,12792}, {11957,12988}, {11958,12989}, {12001,13102}
The reciprocal orthologic center of these triangles is X(3).
X(13107) lies on these lines: {1,13}, {11,12932}, {530,11240}, {531,12357}, {542,12595}, {616,10529}, {618,10527}, {5473,11249}, {5478,10532}, {5617,10943}, {6268,10932}, {6270,10931}, {6770,10806}, {9916,10835}, {9982,10879}, {10804,12205}, {10916,12781}, {10949,12922}, {10957,12942}, {10959,12952}, {10966,13076}, {11401,12142}, {11510,12337}, {11883,12472}, {11884,12473}, {11915,12793}, {11957,12990}, {11958,12991}, {12001,13103}
The reciprocal orthologic center of these triangles is X(3).
X(13108) lies on these lines: {3,76}, {4,7779}, {5,194}, {30,9863}, {39,1656}, {140,7709}, {262,3851}, {355,726}, {381,538}, {382,511}, {384,11842}, {517,9902}, {550,6194}, {698,1352}, {730,1482}, {732,1351}, {999,10079}, {1569,7746}, {1598,12143}, {1657,9821}, {2080,7751}, {2937,5938}, {3097,9956}, {3104,5339}, {3105,5340}, {3295,10063}, {3398,3734}, {3526,3934}, {3534,5188}, {5054,9466}, {5055,7757}, {5070,7786}, {5790,12782}, {5965,7747}, {5969,12355}, {6036,7863}, {6272,11917}, {6273,11916}, {6309,10983}, {7517,9917}, {7748,11646}, {7760,10796}, {7770,10334}, {7798,10358}, {7801,11632}, {7976,10247}, {9301,9983}, {9654,12837}, {9669,12836}, {10246,12263}, {11849,12338}, {11875,12474}, {11876,12475}, {11911,12794}, {11928,12923}, {11929,12933}, {11949,12992}, {11950,12993}, {12000,13109}, {12001,13110}
X(13108) = reflection of X(i) in X(j) for these (i,j): (3,76), (194,5), (1657,9821), (3095,6248)
X(13108) = anticomplement of X(32448)
X(13108) = X(76)-of-X3-ABC-reflections-triangle
X(13108) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (39,7697,1656), (99,10104,3), (3095,6248,381), (3934,11171,3526), (10063,13077,3295)
The reciprocal orthologic center of these triangles is X(3).
X(13109) lies on these lines: {1,76}, {12,12923}, {39,5552}, {119,262}, {194,10528}, {384,10803}, {511,12115}, {538,11239}, {732,12594}, {2782,10679}, {3095,10942}, {5969,12356}, {6248,10531}, {6272,10930}, {6273,10929}, {9917,10834}, {9983,10878}, {10805,12251}, {10915,12782}, {10955,12933}, {10956,12837}, {10958,12836}, {10965,13077}, {11248,11257}, {11400,12143}, {11509,12338}, {11881,12474}, {11882,12475}, {11914,12794}, {11955,12992}, {11956,12993}, {12000,13108}
X(13109) = reflection of X(76) in X(10063)
X(13109) = {X(76), X(7976)}-harmonic conjugate of X(13110)
X(13109) = X(76)-of-inner-Yff-tangents-triangle
The reciprocal orthologic center of these triangles is X(3).
X(13110) lies on these lines: {1,76}, {11,12933}, {39,10527}, {194,10529}, {384,10804}, {511,12116}, {538,11240}, {732,12595}, {2782,10680}, {3095,10943}, {5969,12357}, {6248,10532}, {6272,10932}, {6273,10931}, {9917,10835}, {9983,10879}, {10806,12251}, {10916,12782}, {10949,12923}, {10957,12837}, {10959,12836}, {10966,13077}, {11249,11257}, {11401,12143}, {11510,12338}, {11883,12474}, {11884,12475}, {11915,12794}, {11957,12992}, {11958,12993}, {12001,13108}
X(13110) = reflection of X(76) in X(10079)
X(13110) = X(76)-of-outer-Yff-tangents-triangle
X(13110) = {X(76), X(7976)}-harmonic conjugate of X(13109)
The reciprocal orthologic center of these triangles is X(3).
X(13111) lies on these lines: {3,83}, {4,5984}, {5,2896}, {6,382}, {30,12252}, {183,3851}, {381,754}, {385,546}, {517,9903}, {550,3329}, {732,1351}, {999,10080}, {1598,12144}, {1656,6292}, {1657,8725}, {2080,8150}, {3095,7781}, {3295,10064}, {3526,6704}, {3830,12156}, {5790,12783}, {6274,11917}, {6275,11916}, {7517,9918}, {7977,10247}, {9478,9753}, {9654,12944}, {9669,12954}, {9821,10358}, {10246,12264}, {11842,12206}, {11849,12339}, {11875,12476}, {11876,12477}, {11911,12795}, {11928,12924}, {11929,12934}, {11949,12994}, {11950,12995}, {12000,13112}, {12001,13113}
X(13111) = reflection of X(i) in X(j) for these (i,j): (3,83), (1657,8725), (2896,5), (6287,6249)
X(13111) = X(83)-of-X3-ABC-reflections-triangle
X(13111) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6249,6287,381), (10064,13078,3295)
The reciprocal orthologic center of these triangles is X(3).
X(13112) lies on these lines: {1,83}, {12,12924}, {732,12594}, {754,11239}, {2896,10528}, {5552,6292}, {6249,10531}, {6274,10930}, {6287,10942}, {9751,10269}, {9918,10834}, {10803,12206}, {10805,12252}, {10915,12783}, {10955,12934}, {10956,12944}, {10958,12954}, {10965,13078}, {11248,12122}, {11400,12144}, {11509,12339}, {11881,12476}, {11882,12477}, {11914,12795}, {11955,12994}, {11956,12995}, {12000,13111}
X(13112) = reflection of X(83) in X(10064)
X(13112) = X(83)-of-inner-Yff-tangents-triangle
X(13112) = {X(83),X(7977)}-harmonic conjugate of X(13113)
The reciprocal orthologic center of these triangles is X(3).
X(13113) lies on these lines: {1,83}, {11,12934}, {732,12595}, {754,11240}, {2896,10529}, {6249,10532}, {6274,10932}, {6275,10931}, {6287,10943}, {6292,10527}, {9751,10267}, {9918,10835}, {10804,12206}, {10806,12252}, {10916,12783}, {10949,12924}, {10957,12944}, {10959,12954}, {10966,13078}, {11249,12122}, {11401,12144}, {11510,12339}, {11883,12476}, {11884,12477}, {11915,12795}, {11957,12994}, {11958,12995}, {12001,13111}
X(13113) = reflection of X(83) in X(10080)
X(13113) = X(83)-of-outer-Yff-tangents-triangle
X(13113) = {X(83),X(7977)}-harmonic conjugate of X(13112)
The reciprocal orthologic center of these triangles is X(6).
X(13114) lies on the Parry circle and these lines: {2,1637}, {23,647}, {110,112}, {111,1297}, {351,2881}, {684,2492}, {686,10766}, {2781,9138}, {2794,9147}, {2806,9978}, {2831,9980}, {2848,9123}, {9210,11673}, {9998,12503}
X(13114) = reflection of X(9157) in X(351)
X(13114) = antipode of X(9157) in Parry circle
X(13114) = X(1297)-of-1st-Parry-triangle
X(13114) = X(112)-of-2nd-Parry-triangle
The reciprocal orthologic center of these triangles is X(4).
X(13115) lies on the Stammler circle and these lines: {3,112}, {5,12384}, {30,12253}, {127,133}, {132,1656}, {159,399}, {382,10749}, {517,12408}, {999,6020}, {1350,1625}, {1598,12145}, {1657,2794}, {2799,12188}, {2806,12773}, {2831,12331}, {2937,9821}, {3295,3320}, {3830,10718}, {5054,6720}, {5073,10735}, {5790,12784}, {7517,12413}, {8148,10705}, {9301,12503}, {9517,10620}, {9654,12945}, {9669,12955}, {10246,12265}, {10247,13099}, {11842,12207}, {11849,12340}, {11875,12478}, {11876,12479}, {11911,12796}, {11916,12805}, {11917,12806}, {11928,12925}, {11929,12935}, {11949,12996}, {11950,12997}, {12000,13118}, {12001,13119}
X(13115) = reflection of X(i) in X(j) for these (i,j): (3,1297), (382,10749), (3830,10718), (5073,10735), (8148,10705), (12384,5), (12918,127)
X(13115) = X(1297)-of-X3-ABC-reflections-triangle
X(13115) = {X(127), X(12918)}-harmonic conjugate of X(381)
The reciprocal orthologic center of these triangles is X(4).
X(13116) lies on these lines: {1,1297}, {3,6020}, {5,12955}, {12,12918}, {35,112}, {127,1479}, {132,498}, {388,12253}, {495,12945}, {2781,10088}, {2794,4302}, {2799,10053}, {2806,10058}, {2831,10087}, {3085,12384}, {3295,3320}, {3612,11722}, {5697,10705}, {6284,10749}, {7298,9157}, {9517,10065}, {9530,10056}, {10037,12413}, {10038,12503}, {10039,12784}, {10040,12805}, {10041,12806}, {10523,12925}, {10801,12207}, {10954,12935}, {11398,12145}, {11507,12340}, {11877,12478}, {11878,12479}, {11912,12796}, {11951,12996}, {11952,12997}
X(13116) = reflection of X(12945) in X(495)
X(13116) = X(1297)-of-inner-Yff-triangle
X(13116) = X(1),X(1297)}-harmonic conjugate of X(13117)
The reciprocal orthologic center of these triangles is X(4).
X(13117) lies on these lines: {1,1297}, {3,3320}, {5,12945}, {11,12918}, {36,112}, {127,1478}, {132,499}, {496,12955}, {497,12253}, {999,6020}, {1737,12784}, {1795,9532}, {2781,10091}, {2794,4299}, {2799,10069}, {2806,10074}, {2831,10090}, {3086,12384}, {5345,9157}, {7354,10749}, {9517,10081}, {9530,10072}, {10046,12413}, {10047,12503}, {10048,12805}, {10049,12806}, {10483,10735}, {10523,12935}, {10802,12207}, {10948,12925}, {11399,12145}, {11508,12340}, {11879,12478}, {11880,12479}, {11913,12796}, {11953,12996}, {11954,12997}
X(13117) = reflection of X(12955) in X(496)
X(13117) = X(1297)-of-outer-Yff-triangle
X(13117) = X(1),X(1297)}-harmonic conjugate of X(13116)
The reciprocal orthologic center of these triangles is X(4).
X(13118) lies on these lines: {1,1297}, {12,12925}, {112,11248}, {127,10531}, {132,5552}, {2799,12189}, {2806,12775}, {3320,10965}, {6020,11509}, {9517,12381}, {9530,11239}, {10528,12384}, {10803,12207}, {10805,12253}, {10834,12413}, {10878,12503}, {10915,12784}, {10929,12805}, {10930,12806}, {10942,12918}, {10955,12935}, {10956,12945}, {10958,12955}, {11400,12145}, {11881,12478}, {11882,12479}, {11914,12796}, {11955,12996}, {11956,12997}, {12000,13115}
X(13118) = reflection of X(1297) in X(13116)
X(13118) = X(1297)-of-inner-Yff-tangents-triangle
X(13118) = {X(1297),X(13099)}-harmonic conjugate of X(13119)
The reciprocal orthologic center of these triangles is X(4).
X(13119) lies on these lines: {1,1297}, {11,12935}, {112,11249}, {127,10532}, {132,10527}, {2799,12190}, {2806,12776}, {3320,10966}, {9517,12382}, {9530,11240}, {10529,12384}, {10804,12207}, {10806,12253}, {10835,12413}, {10879,12503}, {10916,12784}, {10931,12805}, {10932,12806}, {10943,12918}, {10949,12925}, {10957,12945}, {10959,12955}, {11401,12145}, {11510,12340}, {11883,12478}, {11884,12479}, {11915,12796}, {11957,12996}, {11958,12997}, {12001,13115}
X(13119) = reflection of X(1297) in X(13117)
X(13119) = X(1297)-of-outer-Yff-tangents-triangle
X(13119) = {X(1297),X(13099)}-harmonic conjugate of X(13118)
The reciprocal orthologic center of these triangles is X(21).
X(13120) lies on these lines: {8224,12519}, {8225,12524}, {8228,12615}, {8230,12623}, {8231,12660}, {8233,12695}, {8234,12845}, {8237,12850}, {8239,12877}, {8243,12913}, {8244,13101}, {8246,13123}, {9789,12543}, {10858,12444}, {10867,12451}, {10885,12540}, {10891,12557}, {11030,12917}, {11042,12909}, {11532,12657}, {11687,12535}, {11996,13127}
The reciprocal orthologic center of these triangles is X(4).
X(13121) lies on these lines: {1,54}, {12,12926}, {195,12000}, {539,11239}, {1154,10679}, {1209,5552}, {2888,10528}, {3574,10531}, {6276,10930}, {6277,10929}, {6288,10942}, {7691,11248}, {9920,10834}, {9985,10878}, {10628,12381}, {10803,12208}, {10805,12254}, {10915,12785}, {10955,12936}, {10956,12946}, {10958,12956}, {10965,13079}, {11400,11576}, {11509,12341}, {11881,12480}, {11882,12481}, {11914,12797}, {11955,12998}, {11956,12999}
X(13121) = reflection of X(54) in X(10066)
X(13121) = X(54)-of-inner-Yff-tangents-triangle
X(13121) = {X(54),X(7979)}-harmonic conjugate of X(13122)
The reciprocal orthologic center of these triangles is X(4).
X(13122) lies on these lines: {1,54}, {11,12936}, {195,12001}, {539,11240}, {1154,10680}, {1209,10527}, {2888,10529}, {3574,10532}, {6276,10932}, {6277,10931}, {6288,10943}, {7691,11249}, {9920,10835}, {9985,10879}, {10628,12382}, {10804,12208}, {10806,12254}, {10916,12785}, {10949,12926}, {10957,12946}, {10959,12956}, {10966,13079}, {11401,11576}, {11510,12341}, {11883,12480}, {11884,12481}, {11915,12797}, {11957,12998}, {11958,12999}
X(13122) = reflection of X(54) in X(10082)
X(13122) = X(54)-of-outer-Yff-tangents-triangle
X(13122) = {X(54),X(7979)}-harmonic conjugate of X(13121)
The reciprocal orthologic center of these triangles is X(21).
X(13123) lies on these lines: {21,10266}, {256,6597}, {846,12660}, {1284,12913}, {4199,12695}, {4220,12519}, {5051,12623}, {8229,12615}, {8235,12845}, {8238,12850}, {8240,12877}, {8245,13101}, {8246,13120}, {8249,13124}, {8391,12882}, {8425,13127}, {8731,12444}, {9791,12543}, {10868,12451}, {10892,12557}, {11043,12909}, {11533,12657}, {11688,12535}, {11926,12887}
The reciprocal orthologic center of these triangles is X(21).
X(13124) lies on these lines: {1,13125}, {2089,12913}, {8075,12519}, {8077,12524}, {8078,12660}, {8079,12695}, {8081,12845}, {8085,12615}, {8087,12623}, {8089,13101}, {8241,12877}, {8249,13123}, {8733,12444}, {9793,12543}, {11032,12917}, {11690,12535}, {11888,12540}, {11894,12557}
X(13124) = reflection of X(13125) in X(1)
The reciprocal orthologic center of these triangles is X(21).
X(13125) lies on these lines: {1,13124}, {174,12913}, {258,12660}, {7588,12524}, {8125,12535}, {8351,12909}, {8734,12444}, {11033,12917}, {11859,12451}, {11895,12557}, {11899,12657}
X(13125) = reflection of X(13124) in X(1)
The reciprocal orthologic center of these triangles is X(79).
X(13126) lies on these lines: {3,10266}, {30,12255}, {381,12600}, {517,12409}, {999,13129}, {1598,12146}, {1656,13089}, {3295,13080}, {5790,12786}, {7517,12414}, {9301,12504}, {9654,12947}, {9669,12957}, {10246,12267}, {10247,13100}, {11681,12682}, {11842,12209}, {11849,12342}, {11875,12482}, {11876,12483}, {11911,12798}, {11916,12807}, {11917,12808}, {11928,12927}, {11929,12937}, {11949,13000}, {11950,13001}, {12000,13130}, {12001,13131}
X(13126) = reflection of X(i) in X(j) for these (i,j): (3,10266), (12919,12600)
X(13126) = X(10266)-of-X3-ABC-reflections-triangle
The reciprocal orthologic center of these triangles is X(21).
X(13127) lies on these lines: {174,12913}, {7587,12524}, {8083,12917}, {8126,12535}, {8382,12623}, {8389,12850}, {8423,13101}, {8425,13123}, {8729,12444}, {11535,12657}, {11860,12451}, {11890,12540}, {11891,12543}, {11896,12557}, {11924,12877}, {11996,13120}
The reciprocal orthologic center of these triangles is X(79).
X(13128) lies on these lines: {1,5180}, {5,12957}, {12,12919}, {388,12255}, {495,12947}, {498,13089}, {1479,12600}, {5719,10058}, {6595,8068}, {10037,12414}, {10038,12504}, {10039,12786}, {10040,12807}, {10041,12808}, {10523,12927}, {10801,12209}, {10954,12937}, {11398,12146}, {11912,12798}, {11952,13001}
X(13128) = midpoint of X(10266) and X(13130)
X(13128) = reflection of X(12947) in X(495)
X(13128) = X(10266)-of-inner-Yff-triangle
X(13128) = {X(1),X(10266)}-harmonic conjugate of X(13129)
The reciprocal orthologic center of these triangles is X(79).
X(13129) lies on these lines: {1,5180}, {3,13080}, {5,12947}, {11,12919}, {496,12957}, {497,12255}, {499,12543}, {999,13126}, {1478,12600}, {1737,12786}, {1749,12535}, {5437,12660}, {5533,6595}, {10046,12414}, {10047,12504}, {10048,12807}, {10049,12808}, {10523,12937}, {10948,12927}, {11399,12146}, {11508,12342}, {11879,12482}, {11913,12798}, {11954,13001}
X(13129) = midpoint of X(10266) and X(13131)
X(13129) = reflection of X(12957) in X(496)
X(13129) = X(10266)-of-outer-Yff-triangle
X(13129) = {X(1),X(10266)}-harmonic conjugate of X(13128)
The reciprocal orthologic center of these triangles is X(79).
X(13130) lies on these lines: {1,5180}, {12,12927}, {119,6595}, {5552,13089}, {10531,12600}, {10803,12209}, {10805,12255}, {10834,12414}, {10878,12504}, {10915,12786}, {10929,12807}, {10930,12808}, {10942,12919}, {10955,12937}, {10956,12947}, {10958,12957}, {10965,13080}, {11400,12146}, {11509,12342}, {11881,12482}, {11882,12483}, {11914,12798}, {11955,13000}, {11956,13001}, {12000,13126}
X(13130) = reflection of X(10266) in X(13128)
X(13130) = X(10266)-of-inner-Yff-tangents-triangle
The reciprocal orthologic center of these triangles is X(79).
X(13131) lies on these lines: {1,5180}, {11,12937}, {3649,12524}, {10527,13089}, {10532,12600}, {10804,12209}, {10806,12255}, {10835,12414}, {10879,12504}, {10916,12786}, {10931,12807}, {10932,12808}, {10943,12919}, {10949,12927}, {10957,12947}, {10959,12957}, {10966,13080}, {11401,12146}, {11510,12342}, {11883,12482}, {11884,12483}, {11915,12798}, {11957,13000}, {11958,13001}, {12001,13126}
X(13131) = reflection of X(10266) in X(13129)
X(13131) = X(10266)-of-outer-Yff-tangents-triangle
The reciprocal orthologic center of these triangles is X(3).
X(13132) lies on these lines: {1,486}, {12,12928}, {487,10528}, {642,5552}, {3564,12430}, {6251,10531}, {6280,10930}, {6281,10929}, {6290,10942}, {9921,10834}, {9986,10878}, {10803,12210}, {10805,12256}, {10915,12787}, {10955,12938}, {10956,12948}, {10958,12958}, {10965,13081}, {11248,12123}, {11400,12147}, {11509,12343}, {11881,12484}, {11882,12485}, {11914,12799}, {11955,13002}, {11956,13003}, {12000,12601}
The reciprocal orthologic center of these triangles is X(3).
X(13133) lies on these lines: {1,486}, {11,12938}, {487,10529}, {642,10527}, {3564,12431}, {6251,10532}, {6280,10932}, {6281,10931}, {6290,10943}, {9921,10835}, {9986,10879}, {10804,12210}, {10806,12256}, {10916,12787}, {10949,12928}, {10957,12948}, {10959,12958}, {10966,13081}, {11249,12123}, {11401,12147}, {11510,12343}, {11883,12484}, {11884,12485}, {11915,12799}, {11957,13002}, {11958,13003}, {12001,12601}
The reciprocal orthologic center of these triangles is X(3).
X(13134) lies on these lines: {1,485}, {12,12929}, {488,10528}, {641,5552}, {3564,12430}, {6250,10531}, {6278,10930}, {6279,10929}, {6289,10942}, {9922,10834}, {9987,10878}, {10803,12211}, {10805,12257}, {10915,12788}, {10955,12939}, {10956,12949}, {10958,12959}, {10965,13082}, {11248,12124}, {11400,12148}, {11509,12344}, {11881,12486}, {11882,12487}, {11914,12800}, {11955,13004}, {11956,13005}, {12000,12602}
The reciprocal orthologic center of these triangles is X(3).
X(13135) lies on these lines: {1,485}, {11,12939}, {488,10529}, {641,10527}, {3564,12431}, {6250,10532}, {6278,10932}, {6279,10931}, {6289,10943}, {9922,10835}, {9987,10879}, {10804,12211}, {10806,12257}, {10916,12788}, {10949,12929}, {10957,12949}, {10959,12959}, {10966,13082}, {11249,12124}, {11510,12344}, {11883,12486}, {11884,12487}, {11915,12800}, {11957,13004}, {11958,13005}, {12001,12602}
X(13136) lies on the MacBeath circumconic and these lines: {104, 898}, {110, 1309}, {190, 1813}, {320, 908}, {645, 4558}, {646, 1016}, {651, 4391}, {655, 3904}, {666, 1814}, {765, 1331}, {895, 5380}, {1275, 4554}, {2250, 4584}, {2397, 2401}, {2399, 2406}, {2423, 5381}, {2720, 8707}, {4563, 4601}
X(13136) = isogonal conjugate of X(3310)
X(13136) = isotomic conjugate of X(10015)
X(13136) = X(i)-cross conjugate of X(j) for these (i,j): (2423, 104), (2427, 100), (4358, 1016), (4511, 4998), (5548, 6079)
X(13136) = isoconjugate of X(j) and X(j) for these (i,j): {1, 3310}, {6, 1769}, {19, 8677}, {31, 10015}, {92,23220}, {244, 2427}, {513, 2183}, {517, 649}, {604, 2804}, {650, 1457}, {652, 1875}, {661, 859}, {663, 1465}, {667, 908}, {1919, 3262}, {2397, 3248}
X(13136) = cevapoint of X(i) and X(j) for these (i,j): {2, 3904}, {6, 900}, {100, 2427}, {104, 2423}, {190, 4585}, {519, 3239}, {525, 3936}, {651, 2406}
X(13136) = X(645)-beth conjugate of X(4564)
X(13136) = X(i)-zayin conjugate of X(j) for these (i,j): (1, 3310), (1054, 2183)
X(13136) = barycentric product X(i)*X(j) for these {i,j}: {69, 1309}, {104, 668}, {799, 2250}, {909, 1978}, {1016, 2401}, {2342, 4572}, {2720, 3596}
X(13136) = barycentric quotient X(i)/X(j) for these {i,j}: (1,1769), (2,10015), (3,8677), (6,3310), (8,2804), (100,517), (101,2183), (104,513), (108,1875), (109,1457), (110,859), (190,908), (651,1465), (668,3262), (900,3259), (909,649), (1016,2397), (1252,2427), (1309,4), (1795,1459), (1809,521), (1897,1785), (2250,661), (2342,663), (2401,1086), (2423,1015), (2720,56), (2804,3326), (3699,6735), (4242,1845), (5379,4246)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25623.
X(13137) on the cubic K289 and these lines:
{4,512}, {23,1976}, {98,385}, {232,1692}, {895,11653}, {5640,5967}
X(13137) = reflection of X(98) in its Simson line, X(115)X(523)
The line X(3)X(9) is perpendicular to the trilinear polar of X(9).
X(13138) lies on the MacBeath circumconic and these lines: {1, 271}, {2, 7358}, {78, 3341}, {84, 1320}, {100, 1813}, {108, 521}, {145, 280}, {189, 1814}, {282, 1998}, {285, 3193}, {287, 1999}, {643, 4558}, {644, 1331}, {651, 1897}, {895, 1903}, {1120, 1413}, {1256, 6765}, {1259, 8886}, {1280, 1422}, {1332, 3699}, {1815, 3870}, {2208, 8851}, {2988, 7020}, {2989, 3187}, {2990, 12649}, {2991, 7151}, {3913, 9376}, {4025, 4617}, {4563, 7257}, {7003, 8759}
X(13138) = isogonal conjugate of X(6129)
X(13138) = isotomic conjugate of X(17896)
X(13138) = anticomplement X(7358)
X(13138) = cevapoint of X(i) and X(j) for these (i,j): {1, 521}, {6, 3900}, {109, 8059}, {522, 1210}
X(13138) = X(i)-cross conjugate of X(j) for these (i,j): {109, 100}, {521, 271}, {1783, 651}, {6765, 765}
X(13138) = trilinear pole of X(3)X(9)
X(13138) = isoconjugate of X(j) and X(j) for these (i,j): {1, 6129}, {40, 513}, {56, 8058}, {102, 6087}, {196, 652}, {198, 514}, {208, 521}, {221, 522}, {223, 650}, {227, 3737}, {278, 10397}, {322, 667}, {329, 649}, {342, 1946}, {347, 663}, {512, 8822}, {523, 2360}, {656, 3194}, {661, 1817}, {693, 2187}, {905, 2331}, {1459, 7952}, {1461, 5514}, {2199, 4391}, {2324, 3669}, {3064, 7011}, {3195, 4025}, {3209, 6332}, {3239, 6611}, {3318, 8059}, {3676, 7074}, {7078, 7649}, {7152, 8063}
X(13138) = barycentric product X(i)*(X(j) for these {i,j}: {84, 190}, {99, 1903}, {100, 189}, {101, 309}, {271, 653}, {280, 651}, {282, 664}, {285, 4552}, {312, 8059}, {643, 8808}, {644, 1440}, {646, 1413}, {668, 1436}, {799, 2357}, {1422, 3699}, {1433, 6335}, {1813, 7020}, {1978, 2208}, {2192, 4554}, {4561, 7129}, {4569, 7367}, {4572, 7118}, {6516, 7003}
X(13138) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 6129}, {9, 8058}, {84, 514}, {100, 329}, {101, 40}, {108, 196}, {109, 223}, {110, 1817}, {112, 3194}, {163, 2360}, {189, 693}, {190, 322}, {212, 10397}, {268, 521}, {271, 6332}, {280, 4391}, {282, 522}, {285, 4560}, {309, 3261}, {644, 7080}, {651, 347}, {653, 342}, {662, 8822}, {692, 198}, {906, 7078}, {1413, 3669}, {1415, 221}, {1422, 3676}, {1433, 905}, {1436, 513}, {1490, 8063}, {1783, 7952}, {1813, 7013}, {1903, 523}, {2182, 6087}, {2188, 652}, {2192, 650}, {2208, 649}, {2357, 661}, {3900, 5514}, {3939, 2324}, {4559, 227}, {7008, 3064}, {7118, 663}, {7129, 7649}, {7151, 6591}, {7367, 3900}, {8059, 57}, {8064, 3345}, {8750, 2331}, {8808, 4077}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25625.
X(13139) lies on this line: {6748,7577}
X(13139) = isogonal conjugate of X(13321)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25630.
X(13140) lies on these lines: {67,524} et al
X(13140) = complementary conjugate of X(111)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25650.
Let P=X(36). The nine-point circles of ABC, BCP, CAP, ABP concur in X(13141). (Randy Hutson, July 21, 2017)
X(13141) lies on the nine-point circle and this line: {137,8286}
X(13141) = crosssum of circumcircle intercepts of line X(3)X(80)
X(13141) = orthopole of line X(3)X(80)
X(13141) = Kirikami-six-circles image of X(36)
X(13141) = center of hyperbola {{A,B,C,X(4),X(36)}}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25658.
X(13142) lies on these lines: {3,11433}, {4,193}, {5,394}, {6,6823}, {20,11245}, {30,52}, {51,9825}, {68,1595}, {69,11479}, {155,1596}, {195,11799}, {235,1993}, {343,11424}, {382,6225}, {511,12241}, {524,5907}, {576,12233}, {578,6676}, {1092,6677}, {1181,1353}, {1503,10112}, {1593,6515}, {1597,11411}, {1598,6193}, {1885,5889}, {1906,11441}, {1907,11442}, {2883,3629}, {3060,3575}, {3089,3167}, {3527,7401}, {3547,11426}, {5050,7400}, {5446,6756}, {6815,9777}, {10095,10127}
X(13142) = midpoint of X(i) and X(j) for these {i,j}: {1885,5889}, {10263,12370}
X(13142) = reflection of X(i) in X(j) for these (i,j): (6756,5446), (12362,12241)
X(13142) = {X(4), X(193)}-harmonic conjugate of X(12164)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25666.
X(13143) lies on the Feuerbach hyperbola and these lines: {1,6797}, {3,11279}, {4,9897}, {8,11524}, {11,5559}, {21,2802}, {79,952}, {80,5844}, {104,484}, {498,7320}, {517,3065}, {519, 11604}, {528,3255}
X(13143) = reflection of X(5559) in X(11)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25666.
X(13144) lies on the Jerabek hyperbola of the excentral triangle and on these lines: {40,7993}, {191,2802}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25666.
X(13145) lies on these lines: {1,3}, {10,2771}, {30,3754}, {140,2800}, {355,6951}, {500, 4642}, {549,3878}
X(13145) = midpoint of X(i) and X(j) for these {i,j}: {{65, 3579}, {5690,5884}
X(13145) = reflection of X(i) in X(j) for these (i,j): (6583, 5885), (9955,3812)
X(13145) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,484,3579), (1385,3579,35)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25666.
X(13146) lies on the Jerabek hyperbola of the excentral triangle and these lines: {1,149}, {9,1030}, {21,5506}, {30,5538}, {40,2771}, {80,3925}, {100,191}, {214,5284}
X(13146) = reflection of X(i) in X(j) for these (i,j): (149, 11263), (191, 100), (1768,3651)
See Tran Quang Hung and Peter Moses, Hyacinthos 25668.
X(13147) lies on this line: {2,3}
X(13147) = orthocenter of cevian triangle of cyclocevian conjugate of X(3)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25674.
X(13148) lies on these lines: {4,94}, {24,5609}, {74,3516}, {110,3515}, {113,12359}, {125,12233}, {140,12358}, {185,1205}, {389,12099}, {399,3517}, {541,1885}, {542,3575}, {974,10628}, {1154,10295}, {1593,11482}, {1656,7723}, {2777,6146}, {2914,10610}, {3523,12219}, {3542,5655}, {5094,5890}, {7507,9140}, {10018,11561}, {10019,11557}, {10294,11591}
X(13148) = midpoint of X(1986) and X(7722)
X(13148) = reflection of X(i) in X(j) for these (i,j): (1112,1986), (7723,9826), (12133,1112)
X(13149) lies on the circumconic {{A,B,C,X(107), X(648)}} and these lines: {7, 1364}, {77, 8764}, {92, 1088}, {107, 934}, {108, 927}, {196, 7056}, {279, 331}, {281, 1996}, {286, 3668}, {648, 4569}, {653, 658}, {664, 1897}, {1847, 6336}, {1857, 2898}, {4554, 6335}
X(13149) = trilinear pole of X(4)X(7)
X(13149) = cevapoint of X(i) and X(j) for these (i,j): {7,905}, {92,693}, {514,3668}, {650,1836}, {1851,6591}
X(13149) = X(i)-cross conjugate of X(j) for these (i,j): {514,286}, {693,1088}, {905,7}, {934,4569}
X(13149) = polar conjugate of X(3900)
X(13149) = isoconjugate of X(j) and X(j) for these (i,j): {3,657}, {9,1946}, {41,521}, {48,3900}, {55,652}, {63,8641}, {78,3063}, {101,3270}, {184,3239}, {212,650}, {219,663},
{220,1459}, {222,4105}, {228,1021}, {283,3709}, {512,2327}, {513,1802}, {520,2332}, {603,4130}, {647,2328}, {649,1260}, {667,3692}, {798,1792}, {810,2287}, {822,4183}, {905,1253}, {906,2310}, {1043,3049}, {1265,1919}, {1437,4171}, {1783,2638}, {1790,4524}, {1803,6607}, {1813,3022}, {2175,6332}, {2192,10397}, {2193,4041}, {2194,8611}, {2200,7253}, {2318,7252}, {3064,6056}, {3271,4587}, {3939,7117}, {4091,7071}, {4397,9247}, {4477,7116}, {8606,9404}
X(13149) = barycentric product X(i)*X(j) for these {i,j}: {4,4569}, {34,4572}, {85,653}, {92,658}, {108,6063}, {190,1847}, {225,4625}, {264,934}, {273,664}, {278,4554}, {279,6335}, {286,4566}, {318,4626}, {331,651}, {648,1446}, {668,1119}, {670,1426}, {811,3668}, {1088,1897}, {1398,6386}, {1427,6331}, {1435,1978}, {1439,6528}, {1461,1969}, {1826,4635}, {3261,7128}, {4617,7017}
X(13149) = barycentric quotient X(i)/X(j) for these {i,j}: {4,3900}, {7,521}, {19,657}, {25,8641}, {27,1021}, {33,4105}, {34,663}, {56,1946}, {57,652}, {85,6332}, {92,3239}, {99,1792}, {100,1260}, {101,1802}, {107,4183}, {108,55}, {109,212}, {162,2328}, {190,3692}, {223,10397}, {225,4041}, {226,8611}, {264,4397}, {269,1459}, {273,522}, {278,650}, {279,905}, {281,4130}, {286,7253}, {318,4163}, {331,4391}, {342,8058}, {513,3270}, {608,3063}, {648,2287}, {651,219}, {653,9}, {658,63}, {662,2327}, {664,78}, {668,1265}, {693,2968}, {811,1043}, {823,2322}, {934,3}, {1020,71}, {1042,810}, {1088,4025}, {1119,513}, {1262,906}, {1275,1332}, {1396,7252}, {1398,667}, {1414,283}, {1426,512}, {1427,647}, {1435,649}, {1439,520}, {1446,525}, {1459,2638}, {1461,48}, {1783,220}, {1813,2289}, {1824,4524}, {1826,4171}, {1827,6607}, {1847,514}, {1876,926}, {1877,4895}, {1880,3709}, {1897,200}, {3064,3119}, {3668,656}, {3669,7117}, {3676,7004}, {4551,2318}, {4552,3694}, {4554,345}, {4564,4587}, {4565,2193}, {4566,72}, {4569,69}, {4572,3718}, {4573,1812}, {4605,3949}, {4616,1444}, {4617,222}, {4625,332}, {4626,77}, {4637,1790}, {4998,4571}, {6335,346}, {6516,1259},
{6614,603}, {7009,4477}, {7012,3939}, {7045,1331}, {7056,4131}, {7103,8678}, {7128,101}, {7177,4091}, {7365,2522}, {7649,2310}, {8059,2188}, {8750,1253}
See Tran Quang Hung and César Lozada, Hyacinthos 25683.
X(13150) lies on this line: {2,3}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25689.
X(13151) lies on these lines: {1,3}, {30,5249}, {214,5745}, {443,3897}, {500,1104}, {515,6881}, {549,5440}, {912,1006}, {944,6989}, {968,7986}, {971,7489}, {1125,6841}, {2320,9776}, {2771,3683}, {2772,11709}, {3305,6883}, {3534,6173}, {3560,10884}, {3616,6851}, {3740,12738}, {3916,5428}, {5226,6827}, {5731,6826}, {5787,6861}, {6914,10167}
X(13151) = midpoint of X(1) and X(7688)
X(13151) = {X(5709), X(7987)}-harmonic conjugate of X(3)
X(13151) = {X(1),X(3)}-harmonic conjugate of X(37585)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25690.
X(13152) is the infinite point of the orthic axes of the following homothetic triangles: polar triangle of nine-point circle, orthoanticevian triangle of X(2), orthic axes triangle (see X(2501)), Yiu tangents triangle (see X(7495)). (Randy Hutson, August 19, 2019)
X(13152) lies on this line: {30,511}
X(13152) = isogonal conjugate of X(33639)
X(13152) = complementary conjugate of complement of X(33639)
X(13152) = anticomplementary conjugate of anticomplement of X(33639)
X(13152) = crossdifference of every pair of points on line X(6)X(22462)
X(13152) = (ABC-X3 reflections)-isogonal conjugate of-X(33643)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25695.
X(13153) lies on the circumcircle and these lines: {}
See Tran Quang Hung and Angel Montesdeoca, Hyacinthos 25698.
X(13154) lies on these lines: {2,3}, {141,9925}, {156,5085}, {394,1493}, {569,5650}, {1173,2979}, {1350,10095}, {6101,10601}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25701.
X(13155) lies on this line: {2,3}
X(13155) = {X(20), X(6616)}-harmonic conjugate of X(3)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25701.
X(13156) lies on these lines: {2,77}, {84,516}
X(13156) = {X(189), X(1440)}-harmonic conjugate of X(282)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 25701.
X(13157) lies on the cubic K671 and these lines: {2,253}, {5,8798}, {30,64}, {381,6526}, {8703,11589}
X(13157) = polar conjugate of X(38808)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25724.
X(13158) lies on this line: {8674, 33593}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25724.
X(13159) lies on these lines: {7,79}, {9,6701}, {11,553}, {30, 5542}
X(13159) = midpoint of X(7) and X(79)
As a point of the Euler line, X(13160) hasw Shinagawa coefficients (E + 2F, 2F).
See Tran Quang Hung and César Lozada, Hyacinthos 25728.
In the plane of a triangle ABC, let
DEF = circummedial triangle,
HaHbHc = orthic triangle,
Γa = circumcircle of EFHa,
Γb = circumcircle of FDHb,
Γc = circumcircle of DEHb,
U = circle tangent to and encompassing Γa, Γb, Γc.
Then X(13160) = center of U. See X(13160) (Angel Montesdeoca, March 25, 2020)
X(13160) lies on these lines: {2,3}, {12,9630}, {68,7592}, {125,9729}, {141,11444}, {343,5889}, {389,3580}, {511,3574}, {567,12370}, {569,9927}, {1176,1503}, {1181,11442}, {1209,11802}, {1352,11441}, {1568,11793}, {1614,12134}, {2888,3564}, {4348,7741}, {5012,6146}, {5448,5891}, {5449,9730}, {5890,12359}, {6800,9833}, {7221,7951}, {7699,7999}, {9019,11743}, {11402,12429}
X(13160) = midpoint of X(4) and X(7512)
X(13160) = reflection of X(i) in X(j) for these (i,j): (3,7568), (5576,5)
X(13160) = nine-point-circle-inverse of X(3153)
X(13160) = orthocentroidal circle-inverse-of-X(7503)
X(13160) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,4,7503), (2,3091,6816), (3,4,12225), (4,5,5133), (4,3090,7404), (4,3091,7566), (4,3547,22), (4,7494,20), (4,7558,3), (4,12088,7553), (5,235,3091), (5,10024,403), (5,11563,3850), (381,7387,4), (546,7553,4), (1656,10254,5), (3146,5169,1595), (3542,7401,1995), (3575,6676,7488), (3832,7500,4), (5133,7495,858)
See Tran Quang Hung and César Lozada, Hyacinthos 25735.
Let A'B'C' be the Gergonne line extraversion triangle, as defined at X(10180). Let La be the reflection of line BC in line B'C', and define Lb and Lc cyclically. Let A" = Lb∩Lc, and define B" and C" cyclically. The lines A'A", B'B", C'C" concur in X(13161). (Randy Hutson, July 21, 2017)
For another construction see: Antreas Hatzipolakis and Peter Moses, Euclid 2531 .
X(13161) lies on these lines: {1,4}, {2,988}, {7,989}, {8,3914}, {9,5286}, {10,75}, {12,3666}, {19,1773}, {21,3011}, {30,5266}, {37,5254}, {38,6734}, {40,1423}, {63,5230}, {65,3782}, {141,3714}, {171,4292}, {238,12572}, {315,3879}, {377,612}, {387,3751}, {443,5268}, {495,3931}, {516,5255}, {518,1834}, {519,5015}, {527,1046}, {536,3704}, {611,5706}, {614,2478}, {908,1193}, {938,4310}, {940,10404}, {958,3772}, {960,4415}, {978,3452}, {982,1210}, {1074,3085}, {1076,4293}, {1086,3812}, {1100,7745}, {1329,3752}, {1330,5847}, {1469,10441}, {1722,2551}, {1737,3670}, {1770,5264}, {1836,5710}, {2475,3920}, {2782,5988}, {3120,10459}, {3146,4339}, {3339,4862}, {3361,7397}, {3664,4911}, {3672,5261}, {3674,4920}, {3677,9581}, {3701,4202}, {3744,6284}, {3749,4294}, {3891,5016}, {3912,6656}, {3947,7377}, {3976,11019}, {4104,9534}, {4187,5121}, {4201,7081}, {4298,6996}, {4352,7179}, {4416,7754}, {4642,6735}, {4646,12607}, {4696,4972}, {4850,11681}, {4851,7784}, {4902,5586}, {4968,5051}, {5080,5262}, {5084,5272}, {5247,12527}, {5269,9579}, {5393,7389}, {5405,7388}, {5725,9654}, {7383,10320}, {7395,8071}, {7399,10523}, {7613,11024}, {8069,11414}
X(13161) = isogonal conjugate, wrt the Gergonne line extraversion triangle, of X(1)
X(13161) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,3944,946), (10,3663,986), (12,3666,5530), (225,5307,1838), (341,4429,10), (2551,4000,1722)
See Tran Quang Hung and César Lozada, Hyacinthos 25737.
X(13162) lies on these lines: {2,99}, {5,5099}, {3580,10413}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25749.
X(13163) lies on these lines: {2,3}, {143,6153}, {3574,10272} ,{7693,12254}
X(13163) = midpoint of X(3628) and X(6756)
X(13163) = {X(5),X(2070)}-harmonic conjugate of X(140)
See Tran Quang Hung and Peter Moses, Hyacinthos 25750.
X(13164) lies on these lines: {2, 3}, {137, 11801}
Parallelogic centers: X(13165)-X(13320)
Centers X(13165)-X(13320) were contributed by César Eliud Lozada, April, 9, 2017.
The reciprocal parallelogic center of these triangles is X(1).
X(13165) lies on these lines: {659,3900}, {2254,3667}
X(13165) = 1st-Sharygin-to-2nd-Sharygin similarity image of X(9852)The reciprocal parallelogic center of these triangles is X(6).
X(13166) lies on these lines: {4,339}, {25,111}, {33,6020}, {34,3320}, {127,427}, {132,235}, {468,6720}, {1112,9517}, {1297,1593}, {1597,13115}, {1843,2781}, {1862,2806}, {2794,3575}, {2799,5186}, {2831,12138}, {5064,10718}, {5140,10151}, {5185,9518}, {7487,13200}, {10705,11396}, {10735,12173}, {10766,12167}, {11363,11722}, {11380,13195}, {11383,13206}
X(13166) = reflection of X(12145) in X(4)
X(13166) = X(112)-of-anti-Ara-triangle
The reciprocal parallelogic center of these triangles is X(13168).
X(13167) lies on these lines: {2,13191}, {6,110}, {183,9869}, {511,13168}, {599,12149}, {2780,13169}, {6088,11162}, {9027,9870}
X(13167) = reflection of X(12149) in X(599)
X(13167) = X(6236)-of-anti-Artzt-triangle
The reciprocal parallelogic center of these triangles is X(13167).
X(13168) lies on these lines: {2,3}, {511,13167}, {524,9871}, {1499,13192}, {2782,10787}, {9870,11258}, {10753,12112}
X(13168) = reflection of X(9870) in X(11258)
X(13168) = X(6236)-of-4th-anti-Brocard-triangle
The reciprocal parallelogic center of these triangles is X(4).
X(13169) lies on these lines: {2,9769}, {67,524}, {69,74}, {110,599}, {125,1992}, {183,9759}, {381,10752}, {541,11180}, {690,11161}, {1352,10706}, {2780,13167}, {2781,11188}, {2854,2979}, {3448,11160}, {5181,9143}, {5476,7577}, {5505,10989}, {5642,11061}, {5648,6030}, {9970,11178}
X(13169) = midpoint of X(3448) and X(11160)
X(13169) = reflection of X(i) in X(j) for these (i,j): (110,599), (895,9140), (1992,125), (9140,67), (9143,5181), (9970,11178), (10706,1352), (10752,381), (11061,5642)
X(13169) = X(1296)-of-anti-Artzt-triangle
X(13169) = 4th-Brocard-to-anti-Artzt similarity image of X(4)
The reciprocal parallelogic center of these triangles is X(9147).
X(13170) lies on the anti-Artzt circle and these lines: {99,512}, {110,11186}, {183,12434}, {511,8597}, {599,12157}
X(13170) = reflection of X(12157) in X(599)
X(13170) = circumsymmedial-to-anti-Artzt similarity image of X(805)
The reciprocal parallelogic center of these triangles is X(10116).
X(13171) lies on these lines: {3,74}, {4,9919}, {6,1205}, {22,3448}, {25,125}, {26,10264}, {67,159}, {113,7395}, {146,7503}, {265,7387}, {378,12244}, {427,13203}, {1112,5622}, {1181,10628}, {1204,7729}, {1593,2777}, {1597,10721}, {1993,13201}, {2781,11402}, {2931,9715}, {2935,3516}, {2937,11457}, {3028,10831}, {3047,3167}, {3556,10693}, {5198,7687}, {5504,9908}, {5972,7484}, {6723,11284}, {7071,10118}, {7512,12317}, {7516,10272}, {7530,11801}, {7592,7731}, {7728,9818}, {7984,12410}, {9140,9909}, {9861,11005}, {9876,11006}, {9914,11744}, {10119,11406}, {10323,12383}, {10681,11408}, {10682,11409}, {10833,12904}, {10982,11807}, {11403,13202}, {12083,12902}, {12164,12219}
X(13171) = reflection of X(i) in X(j) for these (i,j): (12165,1181), (12168,3)
X(13171) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (22,3448,12310), (125,10117,25), (5621,10117,125)
X(13171) = X(100)-of-anti-Ascella-triangle if ABC is acute
The reciprocal parallelogic center of these triangles is X(385).
X(13172) lies on these lines: {2,6321}, {3,148}, {4,99}, {20,2782}, {24,13175}, {30,147}, {98,376}, {115,631}, {388,10086}, {497,10089}, {515,13174}, {542,11001}, {549,12355}, {550,12188}, {620,3090}, {671,3524}, {690,12383}, {1569,7737}, {1916,7709}, {2482,3545}, {2783,12248}, {2787,13199}, {2794,3529}, {2797,5667}, {2799,13200}, {3023,4294}, {3027,4293}, {3085,13182}, {3086,13183}, {3095,6658}, {3146,6033}, {3522,12042}, {3533,6722}, {3534,11177}, {3543,8724}, {3576,11599}, {4027,10788}, {5071,6721}, {5186,7487}, {5473,6773}, {5474,6770}, {5603,11711}, {5657,13178}, {5969,6776}, {5989,11676}, {6319,10783}, {6320,10784}, {7738,10359}, {7756,10357}, {7967,7983}, {8596,10304}, {9861,12082}, {10353,10796}, {10519,11646}, {10785,13180}, {10786,13181}, {10805,13189}, {10806,13190}, {11257,12252}, {11491,13173}, {11843,13176}, {11844,13177}, {11845,13179}, {11846,13184}, {11847,13185}
X(13172) = reflection of X(i) in X(j) for these (i,j): (4,99), (99,10992), (147,13188), (148,3), (376,12117), (3146,6033), (3543,8724), (6770,5474), (6773,5473), (8596,11632), (9862,20), (10723,114), (11177,3534), (12188,550), (12243,376), (12355,549)
X(13172) = anticomplement of X(6321)
X(13172) = X(99)-of-anti-Euler-triangle
X(13172) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (99,10723,114), (114,10723,4), (147,8591,13188), (8596,10304,11632)
The reciprocal parallelogic center of these triangles is X(385).
X(13173) lies on these lines: {3,11710}, {35,13174}, {55,99}, {56,7983}, {98,10310}, {100,148}, {114,11496}, {115,1376}, {197,13175}, {542,12327}, {543,4421}, {620,1001}, {690,13204}, {1012,9864}, {2482,4428}, {2782,11248}, {2783,12332}, {2787,13205}, {2794,12340}, {2799,13206}, {3027,11509}, {3295,11711}, {4027,11490}, {5186,11383}, {5537,9860}, {5687,13178}, {5969,12329}, {6319,11497}, {6320,11498}, {6321,11499}, {8782,11494}, {10086,11507}, {10089,11508}, {11491,13172}, {11492,13176}, {11493,13177}, {11500,13181}, {11501,13182}, {11502,13183}, {11503,13184}, {11504,13185}, {11510,13190}, {11848,13179}, {11849,13188}
X(13173) = reflection of X(i) in X(j) for these (i,j): (12178,11248), (12326,4421), (13180,115)
X(13173) = X(99)-of-anti-Mandart-incircle-triangle
The reciprocal parallelogic center of these triangles is X(385).
X(13174) lies on the Bevan circle, and the bianticevian conic of X(1) and X(2), and on these lines: {1,99}, {2,846}, {10,148}, {20,2784}, {35,13173}, {40,2782}, {43,3029}, {57,3027}, {98,165}, {114,1699}, {115,1571}, {147,516}, {190,2640}, {191,2795}, {194,1046}, {291,3571}, {515,13172}, {517,13188}, {519,8591}, {538,5184}, {542,9904}, {543,3679}, {620,3624}, {690,2948}, {726,2959}, {1282,2786}, {1569,1572}, {1697,3023}, {1764,1768}, {1916,3097}, {2023,9574}, {2482,11725}, {2787,5541}, {2794,12408}, {2938,6194}, {3044,9587}, {3509,4037}, {3579,12188}, {3751,5969}, {4027,10789}, {4654,12350}, {5186,7713}, {5537,12178}, {5587,6321}, {5588,6320}, {5589,6319}, {5691,9864}, {5984,9778}, {7970,11531}, {7987,11710}, {8185,13175}, {8187,13177}, {8188,13184}, {8189,13185}, {9578,13182}, {9579,12184}, {9580,12185}, {9581,13183}, {9900,12781}, {9901,12780}, {9903,12782}, {10826,13180}, {10827,13181}, {11852,13179}
X(13174) = reflection of X(i) in X(j) for these (i,j): (1,99), (148,10), (3679,9881), (5691,9864), (7983,11711), (9860,40), (9875,3679), (9900,12781), (9901,12780), (11531,7970), (12188,3579)
X(13174) = anticomplement of X(11599)
X(13174) = anticomplementary conjugate of X(20558)
X(13174) = anticomplementary isotomic conjugate of X(20536)
X(13174) = antipode of X(9860) in Bevan circle
X(13174) = X(99)-of-Aquila-triangle
X(13174) = excentral isogonal conjugate of X(511)
X(13174) = X(188)-aleph conjugate of X(511)
X(13174) = intersection, other than excenters, of the Bevan circle and the bianticevian conic of X(1) and X(2)
X(13174) = antipode of X(1) in the bianticevian conic of X(1) and X(2)
X(13174) = Bevan circle antipode of X(9860)
X(13174) = X(3027) of tangential triangle of excentral triangle
X(13174) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (99,7983,11711), (7983,11711,1)
The reciprocal parallelogic center of these triangles is X(385).
X(13175) lies on these lines: {3,115}, {22,148}, {24,13172}, {25,99}, {98,11414}, {114,1598}, {159,5969}, {197,13173}, {542,9919}, {543,9876}, {620,5020}, {690,12310}, {1593,10723}, {2782,7387}, {2783,9913}, {2794,12413}, {2799,11641}, {2971,4558}, {3023,10833}, {3517,10992}, {4027,10790}, {5594,6320}, {5595,6319}, {5984,12087}, {6721,11484}, {7517,13188}, {7983,8192}, {8185,13174}, {8190,13176}, {8191,13177}, {8193,13178}, {8194,13184}, {8195,13185}, {8782,10828}, {9862,12082}, {10037,10086}, {10046,10089}, {10829,13180}, {10830,13181}, {10831,13182}, {10832,13183}, {10834,13189}, {10835,13190}, {11365,11711}, {11853,13179}, {12083,12188}
X(13175) = reflection of X(i) in X(j) for these (i,j): (9861,7387), (9876,9909)
X(13175) = X(99)-of-Ara-triangle
The reciprocal parallelogic center of these triangles is X(385).
X(13176) lies on these lines: {55,13177}, {98,11822}, {99,5597}, {114,8196}, {115,5599}, {148,5601}, {517,12180}, {519,12346}, {542,12365}, {543,11207}, {2782,11252}, {2783,12462}, {2794,12478}, {3023,11873}, {4027,11837}, {5186,11384}, {5598,7983}, {5969,12452}, {6319,8198}, {6320,8199}, {6321,8200}, {8190,13175}, {8197,13178}, {8201,13184}, {8202,13185}, {8782,11861}, {10086,11877}, {10089,11879}, {11366,11711}, {11492,13173}, {11843,13172}, {11865,13180}, {11867,13181}, {11869,13182}, {11871,13183}, {11875,13188}, {11881,13189}, {11883,13190}
X(13176) = X(99)-of-1st-Auriga-triangle
X(13176) = X(7983)-of-2nd-Auriga-triangle
The reciprocal parallelogic center of these triangles is X(385).
X(13177) lies on these lines: {55,13176}, {98,11823}, {99,5598}, {114,8203}, {115,5600}, {148,5602}, {517,12179}, {519,12345}, {542,12366}, {543,11208}, {2782,11253}, {2783,12463}, {2794,12479}, {3023,11874}, {4027,11838}, {5186,11385}, {5597,7983}, {5969,12453}, {6319,8205}, {6320,8206}, {6321,8207}, {8187,13174}, {8191,13175}, {8204,13178}, {8208,13184}, {8209,13185}, {8782,11862}, {10086,11878}, {10089,11880}, {11367,11711}, {11493,13173}, {11844,13172}, {11866,13180}, {11868,13181}, {11870,13182}, {11872,13183}, {11876,13188}, {11882,13189}, {11884,13190}
X(13177) = X(99)-of-2nd-Auriga-triangle
X(13177) = X(7983)-of-1st-Auriga-triangle
The reciprocal parallelogic center of these triangles is X(385).
X(13178) lies on these lines: {1,115}, {2,11711}, {8,148}, {10,99}, {30,5184}, {65,13182}, {72,13181}, {80,291}, {98,515}, {114,5587}, {355,2782}, {516,10723}, {517,6321}, {518,11646}, {519,671}, {542,3751}, {543,3679}, {551,9166}, {620,1698}, {730,1916}, {944,11710}, {946,7970}, {1012,12178}, {1386,6034}, {1569,3097}, {1737,10089}, {1837,3023}, {2640,4092}, {2783,12751}, {2794,5691}, {2796,4669}, {2802,10769}, {3027,5252}, {3057,13183}, {3241,12258}, {3416,5969}, {3576,6036}, {3624,6722}, {4027,10791}, {4769,9902}, {5090,5186}, {5469,7975}, {5470,7974}, {5657,13172}, {5687,13173}, {5688,6320}, {5689,6319}, {5790,13188}, {5847,10754}, {8193,13175}, {8197,13176}, {8204,13177}, {8214,13184}, {8215,13185}, {8227,11724}, {8782,9857}, {8980,9583}, {10039,10086}, {10053,10572}, {10914,13180}, {10915,13189}, {10916,13190}, {11900,13179}
X(13178) = midpoint of X(i) and X(j) for these {i,j}: {8,148}, {3679,9875}, {5691,9860}, {9900,9901}
X(13178) = reflection of X(i) in X(j) for these (i,j): (1,115), (99,10), (944,11710), (3241,12258), (7970,946), (7974,11705), (7975,11706), (7983,11599), (9864,355), (9881,3679), (9884,551)
X(13178) = anticomplement of X(11711)
X(13178) = X(99)-of-outer-Garcia-triangle
X(13178) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (671,7983,11599), (9166,9884,551)
The reciprocal parallelogic center of these triangles is X(385).
X(13179) lies on these lines: {30,98}, {99,402}, {114,11897}, {115,1650}, {148,4240}, {542,12369}, {543,1651}, {2782,11251}, {2783,12752}, {2794,12796}, {3023,11909}, {4027,11839}, {5186,11832}, {5969,12583}, {6319,11901}, {6320,11902}, {7983,11910}, {8782,11885}, {9166,11049}, {10086,11912}, {10089,11913}, {11711,11831}, {11845,13172}, {11848,13173}, {11852,13174}, {11853,13175}, {11863,13176}, {11864,13177}, {11900,13178}, {11903,13180}, {11904,13181}, {11905,13182}, {11906,13183}, {11907,13184}, {11908,13185}, {11911,13188}, {11914,13189}, {11915,13190}
X(13179) = midpoint of X(148) and X(4240)
X(13179) = X(99)-of-Gossard-triangle
X(13179) = reflection of X(i) in X(j) for these (i,j): (99,402), (1650,115), (12181,11251), (12347,1651)
The reciprocal parallelogic center of these triangles is X(385).
X(13180) lies on these lines: {11,99}, {12,13189}, {98,11826}, {114,10893}, {115,1376}, {148,3434}, {355,6321}, {542,12371}, {543,11235}, {2782,10525}, {2783,12761}, {2794,12925}, {3023,10947}, {4027,10794}, {5186,11390}, {5969,12586}, {6319,10919}, {6320,10920}, {7983,10944}, {8782,10871}, {10086,10523}, {10089,10948}, {10785,13172}, {10826,13174}, {10829,13175}, {10914,13178}, {10945,13184}, {10946,13185}, {10949,13190}, {11373,11711}, {11865,13176}, {11866,13177}, {11903,13179}, {11928,13188}
X(13180) = reflection of X(i) in X(j) for these (i,j): (12182,10525), (12348,11235), (13173,115), (13181,6321)
X(13180) = X(99)-of-inner-Johnson-triangle
X(13180) = {X(99), X(10769)}-harmonic conjugate of X(13183)
The reciprocal parallelogic center of these triangles is X(385).
X(13181) lies on these lines: {11,13190}, {12,99}, {72,13178}, {98,11827}, {114,10894}, {115,958}, {148,3436}, {355,6321}, {542,12372}, {543,11236}, {2782,10526}, {2783,12762}, {2794,12935}, {3023,10953}, {4027,10795}, {5186,11391}, {5969,12587}, {6253,10723}, {6319,10921}, {6320,10922}, {7983,10950}, {8782,10872}, {10086,10954}, {10089,10523}, {10786,13172}, {10827,13174}, {10830,13175}, {10951,13184}, {10952,13185}, {10955,13189}, {11374,11711}, {11500,13173}, {11608,12527}, {11867,13176}, {11868,13177}, {11904,13179}, {11929,13188}
X(13181) = reflection of X(i) in X(j) for these (i,j): (12183,10526), (12349,11236), (13180,6321)
X(13181) = X(99)-of-outer-Johnson-triangle
The reciprocal parallelogic center of these triangles is X(385).
X(13182) lies on the Johnson-Yff-inner-circle and these lines: {1,6321}, {4,3023}, {5,10089}, {12,99}, {30,10053}, {56,115}, {65,13178}, {98,7354}, {114,10895}, {147,5229}, {148,388}, {381,12351}, {495,10086}, {542,12373}, {543,11237}, {671,5434}, {690,12903}, {1317,10769}, {1388,11725}, {1428,6034}, {1469,11646}, {1478,2782}, {1569,9650}, {2023,9597}, {2783,12763}, {2794,12943}, {3029,9552}, {3044,9652}, {3085,13172}, {3585,6033}, {4027,10797}, {4299,12042}, {4654,9875}, {4995,12117}, {5186,11392}, {5204,6036}, {5298,9166}, {5478,12951}, {5479,12952}, {5969,12588}, {6284,10723}, {6319,10923}, {6320,10924}, {7983,10944}, {8782,10873}, {9578,13174}, {9579,9860}, {9654,13188}, {9655,12188}, {9880,11238}, {10106,11599}, {10831,13175}, {10956,13189}, {10957,13190}, {11375,11711}, {11501,13173}, {11869,13176}, {11870,13177}, {11905,13179}, {11930,13184}, {11931,13185}
X(13182) = reflection of X(i) in X(j) for these (i,j): (10086,495), (12184,1478), (12350,11237)
X(13182) = antipode of X(12184) in Johnson-Yff-inner-circle
X(13182) = X(99)-of-1st-Johnson-Yff-triangle
X(13182) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,6321,13183), (4,3023,12185), (148,388,3027)
The reciprocal parallelogic center of these triangles is X(385).
X(13183) lies on the Johnson-Yff-outer-circle and these lines: {1,6321}, {2,12354}, {4,3027}, {5,10086}, {11,99}, {13,13075}, {14,13076}, {30,10069}, {55,115}, {98,6284}, {114,10896}, {147,5225}, {148,497}, {496,10089}, {542,12374}, {543,11238}, {671,3058}, {690,12904}, {950,11599}, {1479,2782}, {1569,9665}, {1916,13077}, {2023,9598}, {2330,6034}, {2783,12764}, {2794,12953}, {3029,9555}, {3044,9667}, {3056,11646}, {3057,13178}, {3086,13172}, {3583,6033}, {4027,10798}, {4302,12042}, {4995,9166}, {5186,11393}, {5217,6036}, {5298,12117}, {5479,12942}, {5969,12589}, {6319,10925}, {6320,10926}, {7354,10723}, {7983,10950}, {8782,10874}, {9580,9860}, {9581,13174}, {9668,12188}, {9669,13188}, {10832,13175}, {10958,13189}, {10959,13190}, {11376,11711}, {11502,13173}, {11606,13078}, {11871,13176}, {11872,13177}, {11906,13179}, {11932,13184}, {11933,13185}
X(13183) = reflection of X(i) in X(j) for these (i,j): (10089,496), (12185,1479), (12351,11238)
X(13183) = antipode of X(12185) in Johnson-Yff-outer-circle
X(13183) = X(99)-of-2nd-Johnson-Yff-triangle
X(13183) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,6321,13182), (4,3027,12184), (148,497,3023)
The reciprocal parallelogic center of these triangles is X(385).
X(13184) lies on these lines: {98,11828}, {99,493}, {114,8212}, {115,8222}, {148,1131}, {542,12377}, {543,12152}, {2782,10669}, {2783,12765}, {2794,12996}, {3023,11947}, {4027,11840}, {5186,11394}, {5969,12590}, {6319,8216}, {6320,8218}, {6321,8220}, {6461,13185}, {7983,8210}, {8188,13174}, {8194,13175}, {8201,13176}, {8208,13177}, {8214,13178}, {8782,10875}, {10086,11951}, {10089,11953}, {10945,13180}, {10951,13181}, {10981,12187}, {11377,11711}, {11503,13173}, {11846,13172}, {11907,13179}, {11930,13182}, {11932,13183}, {11949,13188}, {11955,13189}, {11957,13190}
X(13184) = X(99)-of-Lucas-homothetic-triangle
The reciprocal parallelogic center of these triangles is X(385).
X(13185) lies on these lines: {98,11829}, {99,494}, {114,8213}, {115,8223}, {148,1132}, {542,12378}, {543,12153}, {690,13216}, {2782,10673}, {2783,12766}, {2794,12997}, {3023,11948}, {4027,11841}, {5186,11395}, {5969,12591}, {6319,8217}, {6320,8219}, {6321,8221}, {6461,13184}, {7983,8211}, {8189,13174}, {8195,13175}, {8202,13176}, {8209,13177}, {8215,13178}, {8782,10876}, {10086,11952}, {10089,11954}, {10946,13180}, {10952,13181}, {10981,12186}, {11378,11711}, {11504,13173}, {11847,13172}, {11908,13179}, {11931,13182}, {11933,13183}, {11950,13188}, {11956,13189}, {11958,13190}
X(13185) = X(99)-of-Lucas(-1)-homothetic-triangle
The reciprocal parallelogic center of these triangles is X(13187).
X(13186) lies on these lines: {2,13232}, {3,13237}, {230,231}, {690,7779}, {4027,13197}
X(13186) = X(9293)-of-1st-anti-Brocard-triangle
The reciprocal parallelogic center of these triangles is X(13186).
X(13187) lies on these lines: {99,523}, {115,9293}, {148,8029}, {543,12076}, {620,10190}
X(13187) = reflection of X(9293) in X(115)
X(13187) = {X(9293), X(10278)}-harmonic conjugate of X(115)
The reciprocal parallelogic center of these triangles is X(385
X(13188) lies on the Stammler circle and these lines: {3,76}, {5,148}, {6,1569}, {20,9990}, {22,5987}, {30,147}, {114,381}, {115,1656}, {194,10788}, {376,5984}, {382,6033}, {384,10353}, {399,690}, {517,13174}, {538,2080}, {542,1350}, {549,12243}, {550,9862}, {574,7697}, {620,3526}, {671,5055}, {999,3027}, {1003,4027}, {1351,5969}, {1384,12829}, {1597,12131}, {1598,5186}, {1634,2453}, {1657,2794}, {1916,11170}, {2023,5024}, {2070,2936}, {2482,5054}, {2783,12773}, {2787,12331}, {2796,3656}, {3023,3295}, {3029,9567}, {3044,9704}, {3095,7781}, {3398,7816}, {3545,8596}, {3579,9860}, {3734,11171}, {3830,6054}, {5026,5050}, {5073,10722}, {5093,10754}, {5613,13103}, {5617,13102}, {5790,13178}, {5886,11599}, {5965,6781}, {6248,8178}, {6319,11916}, {6320,11917}, {7517,13175}, {7709,8290}, {7737,12830}, {7757,10796}, {7970,8148}, {7983,10247}, {8289,9755}, {8703,11177}, {8782,9301}, {9654,13182}, {9655,12184}, {9668,12185}, {9669,13183}, {9861,12083}, {10246,11711}, {10352,11286}, {11005,12902}, {11849,13173}, {11875,13176}, {11876,13177}, {11911,13179}, {11928,13180}, {11929,13181}, {11949,13184}, {11950,13185}, {12000,13189}, {12001,13190}
X(13188) = midpoint of X(147) and X(13172)
X(13188) = reflection of X(i) in X(j) for these (i,j): (3,99), (148,5), (381,8724), (382,6033), (1351,12177), (3830,6054), (5073,10722), (6321,114), (8148,7970), (9301,11676), (9860,3579), (9862,550), (11177,8703), (11632,2482), (12188,3), (12243,549), (12355,381), (12902,11005), (13102,5617), (13103,5613)
X(13188) = antipode of X(12188) in Stammler circle
X(13188) = X(99)-of-X3-ABC-reflections-triangle
X(13188) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (114,6321,381), (147,8591,13172), (2482,11632,5054), (3023,10086,3295), (3027,10089,999), (6321,8724,114), (7782,10104,3)
The reciprocal parallelogic center of these triangles is X(385).
X(13189) lies on these lines: {1,99}, {12,13180}, {98,11248}, {114,10531}, {115,5552}, {119,10769}, {148,10528}, {542,12381}, {543,11239}, {690,13217}, {2782,10679}, {2783,12775}, {2794,13118}, {3023,10965}, {3027,11509}, {4027,10803}, {5186,11400}, {5969,12594}, {6256,10723}, {6319,10929}, {6320,10930}, {6321,10942}, {8782,10878}, {10805,13172}, {10834,13175}, {10915,13178}, {10955,13181}, {10956,13182}, {10958,13183}, {11881,13176}, {11882,13177}, {11914,13179}, {11955,13184}, {11956,13185}, {12000,13188}
X(13189) = reflection of X(i) in X(j) for these (i,j): (99,10086), (12189,10679), (12356,11239)
X(13189) = X(99)-of-inner-Yff-tangents-triangle
X(13189) = {X(99),X(7983)}-harmonic conjugate of X(13190)
The reciprocal parallelogic center of these triangles is X(385).
X(13190) lies on these lines: {1,99}, {11,13181}, {98,11249}, {114,10532}, {115,10527}, {148,10529}, {542,12382}, {543,11240}, {690,13218}, {2782,10680}, {2783,12776}, {2794,13119}, {3023,10966}, {4027,10804}, {5186,11401}, {5969,12595}, {6319,10931}, {6320,10932}, {6321,10943}, {8782,10879}, {10806,13172}, {10835,13175}, {10916,13178}, {10949,13180}, {10957,13182}, {10959,13183}, {11510,13173}, {11883,13176}, {11884,13177}, {11915,13179}, {11957,13184}, {11958,13185}, {12001,13188}
X(13190) = reflection of X(i) in X(j) for these (i,j): (99,10089), (12190,10680), (12357,11240)
X(13190) = X(99)-of-outer-Yff-tangents-triangle
X(13190) = {X(99),X(7983)}-harmonic conjugate of X(13189)
The reciprocal parallelogic center of these triangles is X(13168).
X(13191) lies on these lines: {2,13167}, {111,351}, {183,12149}, {2780,9769}, {2854,9759}, {7610,9869}
X(13191) = reflection of X(9869) in X(7610)
X(13191) = X(6236)-of-Artzt-triangle
The reciprocal parallelogic center of these triangles is X(111).
X(13192) lies on these lines: {3,7708}, {6,23}, {30,6792}, {110,5107}, {111,352}, {187,9218}, {237,5024}, {323,2502}, {524,9870}, {574,5640}, {1499,13168}, {1648,10989}, {2393,10765}, {3124,5104}, {3569,10561}, {3981,5354}, {5166,9019}, {5969,5971}, {6088,9212}, {6323,13233}, {6791,11647}, {7998,8585}, {8430,9138}, {9463,11173}, {9830,10787}, {9871,11258}
X(13192) = reflection of X(i) in X(j) for these (i,j): (352,111), (9871,11258)
X(13192) = X(110)-of-4th-anti-Brocard-triangle
X(13192) = X(323)-of-circumsymmedial-triangle
X(13192) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2502,8586,323), (3124,5104,11580)
The reciprocal parallelogic center of these triangles is X(323).
X(13193) lies on these lines: {32,110}, {74,182}, {83,125}, {98,113}, {265,10796}, {399,11842}, {542,12150}, {690,4027}, {895,5039}, {1078,5972}, {1112,11380}, {1511,2080}, {1691,6593}, {2771,12199}, {2781,12207}, {2854,12212}, {2948,10789}, {3028,12835}, {3031,4279}, {3047,3203}, {3398,5663}, {3448,7787}, {5182,11006}, {5640,11060}, {7732,10792}, {7733,10793}, {7984,10800}, {9517,13195}, {10088,10801}, {10091,10802}, {10788,12383}, {10790,12310}, {10791,13211}, {10794,13213}, {10795,13214}, {10797,12903}, {10798,12904}, {10803,13217}, {10804,13218}, {11364,11720}, {11490,13204}, {11837,13208}, {11838,13209}, {11839,13212}, {11840,13215}, {11841,13216}, {12041,12054}, {12201,12208}
X(13193) = reflection of X(12192) in X(3398)
X(13193) = X(110)-of-5th-anti-Brocard-triangle
X(13193) = orthologic center of these triangles: 5th anti-Brocard to orthocentroidal
The reciprocal parallelogic center of these triangles is X(1).
X(13194) lies on these lines: {11,83}, {32,100}, {80,10791}, {98,119}, {104,182}, {149,7787}, {214,11364}, {528,12150}, {952,3398}, {1078,3035}, {1317,12835}, {1320,10800}, {1862,11380}, {2771,12192}, {2783,12176}, {2787,4027}, {2800,12197}, {2802,12194}, {2806,13195}, {2831,12207}, {3032,4279}, {3045,3203}, {5039,10755}, {5541,10789}, {5840,12110}, {9024,12212}, {10087,10801}, {10090,10802}, {10738,10796}, {10788,13199}, {10790,13222}, {11490,13205}, {11837,13228}, {11838,13230}, {11842,12331}
X(13194) = reflection of X(12199) in X(3398)
X(13194) = X(100)-of-5th-anti-Brocard-triangle
The reciprocal parallelogic center of these triangles is X(6).
X(13195) lies on these lines: {4,32}, {83,127}, {125,251}, {182,1297}, {1078,6720}, {2781,12192}, {2799,4027}, {2806,13194}, {2831,12199}, {3320,12835}, {3398,12207}, {5039,10766}, {6020,10799}, {6793,10313}, {7787,13219}, {9517,13193}, {10705,10800}, {10749,10796}, {10789,13221}, {10790,11641}, {11364,11722}, {11380,13166}, {11490,13206}, {11837,13229}, {11838,13231}
X(13195) = reflection of X(12207) in X(3398)
X(13195) = X(112)-of-5th-anti-Brocard-triangle
X(13195) = {X(112), X(11610)}-harmonic conjugate of X(13236)
The reciprocal parallelogic center of these triangles is X(115).
X(13196) lies on these lines: {6,194}, {30,12213}, {32,3629}, {83,6329}, {99,5111}, {140,141}, {230,10352}, {249,524}, {325,4027}, {385,10353}, {511,5026}, {542,5031}, {597,5034}, {620,5965}, {732,1692}, {1078,3631}, {1503,2456}, {1570,5969}, {2482,10631}, {3398,7789}, {3589,5038}, {3630,5033}, {5039,8584}, {5097,7816}, {5102,10788}, {5254,10349}, {7750,10131}, {7792,10334}
X(13196) = midpoint of X(i) and X(j) for these {i,j}: {6,12215}, {99,5111}, {2456,12177}, {5182,12151}, {12213,12214}
X(13196) = orthologic center of these triangles: 6th anti-Brocard to Steiner
X(13196) = X(115)-of-6th-anti-Brocard-triangle
The reciprocal parallelogic center of these triangles is X(13187).
X(13197) lies on these lines: {182,13232}, {826,2451}, {4027,13186}, {10131,13237}
The reciprocal parallelogic center of these triangles is X(10116).
X(13198) lies on these lines: {2,98}, {3,974}, {4,9934}, {6,1112}, {25,11746}, {26,12236}, {54,74}, {68,10111}, {113,569}, {154,12099}, {155,12358}, {265,6146}, {567,7728}, {578,2777}, {895,1176}, {1147,6699}, {1181,5663}, {1498,12133}, {1885,11744}, {1986,7592}, {2781,11402}, {2935,11425}, {3516,11598}, {5157,5181}, {6759,7687}, {7503,12825}, {7731,11423}, {8547,10602}, {9833,12140}, {9919,11426}, {10118,11429}, {10119,11428}, {10605,12041}, {11422,13201}, {11424,13202}, {11427,13203}, {11456,12292}, {11806,12893}, {12134,12419}
X(13198) = Brocard circle-inverse-of-X(1899)
X(13198) = X(100)-of-anti-Conway-triangle if ABC is acute
X(13198) = X(11)-of-2nd-anti-extouch-triangle if ABC is acute
X(13198) = crosspoint of X(15460) and X(15461)
X(13198) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,3047,110), (6,10117,1112), (110,5622,125), (125,184,110), (5622,6776,11579), (6776,11003,184)
The reciprocal parallelogic center of these triangles is X(1).
X(13199) lies on these lines: {2,10738}, {3,149}, {4,100}, {11,631}, {20,952}, {24,13222}, {30,153}, {35,6853}, {40,12247}, {55,6951}, {80,4302}, {104,376}, {165,10265}, {214,5603}, {382,11698}, {388,10087}, {390,1387}, {497,10090}, {515,2950}, {516,5528}, {517,6224}, {550,12773}, {944,2802}, {962,6265}, {1006,7676}, {1145,6938}, {1317,4293}, {1320,6948}, {1376,6965}, {1537,9945}, {1788,10073}, {1862,7487}, {2475,11849}, {2771,9961}, {2783,9862}, {2787,13172}, {2800,6361}, {2803,5667}, {2806,13200}, {2829,3529}, {2831,12253}, {2932,6905}, {3035,3090}, {3146,10742}, {3434,4996}, {3474,11570}, {3488,12736}, {3524,6713}, {3533,6667}, {3545,6174}, {3600,12735}, {4190,10595}, {4295,12739}, {4297,6264}, {4299,7972}, {4324,9897}, {4330,6684}, {5218,8068}, {5533,7288}, {5690,12747}, {5731,9802}, {5759,12691}, {5817,6594}, {5842,12332}, {5882,12653}, {6284,6902}, {6776,9024}, {6875,10058}, {6885,11729}, {6900,11496}, {6903,10310}, {6934,10609}, {6936,12019}, {6949,10525}, {6963,9668}, {6987,12690}, {9778,9803}, {9809,12738}, {9812,12611}, {9913,12082}, {10788,13194}, {11491,11826}, {11843,13228}, {11844,13230}
X(13199) = reflection of X(i) in X(j) for these (i,j): (4,100), (100,10993), (149,3), (153,12331), (382,11698), (944,12119), (962,6265), (1537,9945), (3146,10742), (6264,4297), (9802,12737), (9803,12515), (9809,12738), (9897,11362), (10698,10609), (10724,119), (12247,40), (12248,20), (12653,5882), (12747,5690), (12773,550)
X(13199) = anticomplement of X(10738)
X(13199) = X(100)-of-anti-Euler-triangle
X(13199) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (100,10724,119), (119,10724,4), (5731,9802,12737), (9778,9803,12515)
The reciprocal parallelogic center of these triangles is X(6).
X(13200) lies on these lines: {2,10749}, {3,13219}, {4,32}, {20,12253}, {24,11641}, {30,12384}, {127,631}, {147,4235}, {376,1297}, {515,13221}, {550,13115}, {2781,6776}, {2799,13172}, {2806,13199}, {2831,12248}, {2848,5667}, {3090,6720}, {3146,12918}, {3320,4293}, {3524,10718}, {4294,6020}, {5603,11722}, {6353,9157}, {7487,13166}, {7967,10705}, {9517,12383}, {9530,11001}, {11491,13206}, {11843,13229}, {11844,13231}, {12082,12413}
X(13200) = reflection of X(i) in X(j) for these (i,j): (4,112), (3146,12918), (10735,132), (12253,20), (13115,550), (13219,3)
X(13200) = anticomplement of X(10749)
X(13200) = X(112)-of-anti-Euler-triangles
X(13200) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (112,10735,132), (132,10735,4)
The reciprocal parallelogic center of these triangles is X(10116).
X(13201) lies on these lines: {3,7731}, {20,10628}, {22,110}, {30,12281}, {74,5889}, {113,11444}, {125,3060}, {146,2889}, {193,1205}, {376,11562}, {399,6101}, {511,3448}, {631,11557}, {1112,5094}, {1154,10620}, {1657,5663}, {1986,10574}, {1993,13171}, {2777,12111}, {2935,11440}, {3091,11807}, {3313,11061}, {5890,12041}, {5972,7998}, {6243,10264}, {6723,11451}, {7525,11597}, {7723,10721}, {7728,11459}, {9919,11441}, {10118,11446}, {10119,11445}, {10625,12383}, {10681,11452}, {10682,11453}, {11422,13198}, {11439,13202}, {11442,13203}
X(13201) = reflection of X(i) in X(j) for these (i,j): (146,5562), (193,1205), (399,6101), (5889,74), (6243,10264), (7731,3), (10721,7723), (11061,3313), (12111,12219), (12270,20), (12273,11412), (12284,10620), (12383,10625)
X(13201) = X(100)-of-3rd-anti-Euler-triangle if ABC is acute
Let Oa be the circle centered at A and tangent to the Euler line; define Ob and Oc cyclically. Let La be the polar of X(4) wrt Oa, and define Lb and Lc cyclically. (Note: X(4) is the perspector of any circle centered at a vertex of ABC.) Let A' = Lb∩Lc, and define B' and C' cyclically. Triangle A'B'C' is the reflection of ABC in X(5972), which is the radical center of Oa, Ob, Oc. A'B'C' is homothetic to the medial triangle at X(125) and to the anticomplementary triangle at X(110). X(13202) = X(20)-of-A'B'C'. (Randy Hutson, July 21, 2017)
The reciprocal parallelogic center of these triangles is X(10116).
X(13202) lies on the curve Q107 and these lines: {3,12900}, {4,74}, {6,1562}, {20,5972}, {25,2935}, {30,113}, {34,10118}, {51,974}, {52,3627}, {110,3146}, {146,148}, {155,382}, {184,9934}, {185,1112}, {247,5191}, {265,541}, {381,6699}, {511,12825}, {546,12041}, {1146,1839}, {1162,7726}, {1163,7725}, {1503,5095}, {1593,10117}, {1597,9919}, {1650,3184}, {1699,11735}, {1829,2778}, {1843,2781}, {1885,3574}, {1986,6000}, {2771,12690}, {2904,11456}, {2914,12112}, {3091,6723}, {3531,10293}, {3853,10113}, {5073,12121}, {5076,10620}, {6053,10706}, {6103,9412}, {6126,12896}, {6152,10628}, {6564,8994}, {6793,9408}, {7517,12893}, {7722,12290}, {7731,11455}, {7984,9812}, {8972,10817}, {10119,11471}, {10151,11598}, {10681,11475}, {10682,11476}, {11403,13171}, {11424,13198}, {11439,13201}, {11801,12102}, {12373,12953}, {12374,12943}
X(13202) = midpoint of X(i) and X(j) for these {i,j}: {4,10721}, {110,3146}, {146,10733}, {382,7728}, {5073,12121}, {7722,12290}
X(13202) = reflection of X(i) in X(j) for these (i,j): (20,5972), (74,7687), (113,1539), (125,4), (185,1112), (1495,1514), (1986,11807), (10113,3853), (10990,125), (11801,12102), (12041,546), (12295,3627), (12383,6053)
X(13202) = polar circle-inverse-of-X(10152)
X(13202) = X(100)-of-anti-excenter-reflections-triangle if ABC is acute
X(13202) = crosssum of X(3) and X(74)
X(13202) = crosspoint of X(4) and X(30)
X(13202) = orthic-triangle-syngonal conjugate of X(4)
X(13202) = crossdifference of every pair of points on line X(1636)X(2433)
X(13202) = orthic-isogonal conjugate of X(10151)
X(13202) = X(1320)-of-orthic-triangle if ABC is acute
X(13202) = antipode of X(185) in Hatzipolakis-Lozada hyperbola
X(13202) = orthopole of line X(4)X(523)
X(13202) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,74,7687), (74,7687,125), (146,3543,10733)
The reciprocal parallelogic center of these triangles is X(10116).
X(13203) lies on these lines: {2,10117}, {4,74}, {5,9919}, {20,2917}, {30,12310}, {69,2892}, {110,1370}, {113,6643}, {146,6225}, {323,1503}, {427,13171}, {497,10118}, {962,2778}, {1112,11433}, {1177,3618}, {2550,10119}, {2781,3448}, {5621,7378}, {5663,12319}, {5972,7386}, {6403,11550}, {6699,7401}, {6723,7392}, {7731,11457}, {10628,12284}, {10681,11488}, {10682,11489}, {11427,13198}, {11442,13201}
X(13203) = reflection of X(i) in X(j) for these (i,j): (20,2935), (69,2892), (6225,146), (9919,5)
X(13203) = anticomplement of X(10117)
X(13203) = anticomplementary circle-inverse-of-X(107)
X(13203) = X(100)-of-anti-inverse-in-incircle-triangle if ABC is acute
The reciprocal parallelogic center of these triangles is X(323).
X(13204) lies on these lines: {3,11709}, {35,2948}, {55,110}, {56,7984}, {74,10310}, {78,10693}, {100,3448}, {113,11496}, {125,1376}, {165,2836}, {197,12310}, {265,11499}, {399,11849}, {542,4421}, {690,13173}, {1001,5972}, {1012,12368}, {1112,11383}, {1158,2771}, {1511,10267}, {2781,12340}, {2854,12329}, {3028,11509}, {3295,11720}, {4428,5642}, {5537,9904}, {5663,11248}, {5687,13211}, {6911,12261}, {7732,11497}, {7733,11498}, {9517,13206}, {10088,11507}, {10091,11508}, {11490,13193}, {11491,12383}, {11492,13208}, {11493,13209}, {11494,13210}, {11500,13214}, {11501,12903}, {11502,12904}, {11503,13215}, {11504,13216}, {11510,13218}, {11848,13212}, {12334,12341}
X(13204) = reflection of X(i) in X(j) for these (i,j): (12327,11248), (13213,125)
X(13204) = X(110)-of-anti-Mandart-incircle-triangle
X(13204) = orthologic center of these triangles: anti-Mandart-incircle to orthocentroidal
The reciprocal parallelogic center of these triangles is X(1).
X(13205) lies on these lines: {1,2932}, {2,11}, {3,2802}, {35,5541}, {36,12653}, {56,1320}, {80,5687}, {104,5854}, {119,11496}, {153,12607}, {197,13222}, {214,3295}, {355,8715}, {480,1156}, {518,1768}, {519,12773}, {529,12248}, {952,3913}, {958,1145}, {1012,12751}, {1317,11509}, {1709,3158}, {1862,11383}, {2077,3880}, {2136,7993}, {2771,3811}, {2783,12178}, {2787,13173}, {2800,10306}, {2806,13206}, {2831,12340}, {3189,9803}, {3746,10179}, {3871,6224}, {4996,5217}, {5289,12758}, {5840,11500}, {5851,10307}, {5856,11495}, {6265,10679}, {6326,12672}, {6702,9709}, {6796,12700}, {9024,12329}, {10087,10609}, {10090,11508}, {10738,10893}, {10742,11236}, {11490,13194}, {11491,11826}, {11492,13228}, {11493,13230}, {11494,13235}, {11517,12690}, {11523,12767}
X(13205) = midpoint of X(i) and X(j) for these {i,j}: {2136,7993}, {3189,9803}, {11523,12767}
X(13205) = reflection of X(i) in X(j) for these (i,j): (153,12607), (10912,12737), (12331,8715), (12332,11248), (12513,104)
X(13205) = X(100)-of-anti-Mandart-incircle-triangle
X(13205) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (11,100,1376), (1145,10058,958), (8668,10310,12513)
The reciprocal parallelogic center of these triangles is X(6).
X(13206) lies on these lines: {3,12265}, {35,13221}, {55,112}, {56,10705}, {100,13219}, {127,1376}, {132,11496}, {197,11641}, {1001,6720}, {1012,12784}, {1297,10310}, {2781,12327}, {2794,11500}, {2799,13173}, {2806,13205}, {2831,12332}, {3295,11722}, {3320,11509}, {5537,12408}, {9517,13204}, {10749,11499}, {11248,12340}, {11383,13166}, {11490,13195}, {11491,13200}, {11492,13229}, {11493,13231}, {11494,13236}
X(13206) = reflection of X(12340) in X(11248)
X(13206) = X(112)-of-anti-Mandart-incircle-triangle
The reciprocal parallelogic center of these triangles is X(98).
X(13207) lies on these lines: {6,23}, {98,385}, {323,9149}, {512,8597}, {671,9879}, {2387,6787}, {3329,5640}, {6784,8859}, {6786,7925}
X(13207) = reflection of X(i) in X(j) for these (i,j): (9879,671), (11673,6784)
X(13207) = X(6233)-of-anti-McCay-triangle
X(13207) = {X(6784), X(11673)}-harmonic conjugate of X(8859)
The reciprocal parallelogic center of these triangles is X(323).
X(13208) lies on these lines: {55,13209}, {74,11822}, {110,5597}, {113,8196}, {125,5599}, {265,8200}, {399,11875}, {517,12366}, {542,11207}, {690,13176}, {952,12467}, {1112,11384}, {2771,12462}, {2781,12478}, {2854,12452}, {3448,5601}, {5598,7984}, {5663,11252}, {7732,8198}, {7733,8199}, {8190,12310}, {8197,13211}, {8201,13215}, {8202,13216}, {9517,13229}, {10088,11877}, {10091,11879}, {11366,11720}, {11492,13204}, {11837,13193}, {11843,12383}, {11861,13210}, {11865,13213}, {11867,13214}, {11869,12903}, {11871,12904}, {11881,13217}, {11883,13218}
X(13208) = reflection of X(13209) in X(55)
X(13208) = X(110)-of-1st-Auriga-triangle
X(13208) = X(7984)-of-2nd-Auriga-triangle
The reciprocal parallelogic center of these triangles is X(323).
X(13209) lies on these lines: {55,13208}, {74,11823}, {110,5598}, {113,8203}, {125,5600}, {265,8207}, {399,11876}, {517,12365}, {542,11208}, {690,13177}, {952,12466}, {1112,11385}, {2771,12463}, {2781,12479}, {2854,12453}, {2948,8187}, {3448,5602}, {5597,7984}, {5663,11253}, {7732,8205}, {7733,8206}, {8191,12310}, {8204,13211}, {8208,13215}, {8209,13216}, {9517,13231}, {10088,11878}, {10091,11880}, {11367,11720}, {11493,13204}, {11838,13193}, {11844,12383}, {11862,13210}, {11866,13213}, {11868,13214}, {11870,12903}, {11872,12904}, {11882,13217}, {11884,13218}
X(13209) = reflection of X(13208) in X(55)
X(13209) = X(110)-of-2nd-Auriga-triangle
X(13209) = X(7984)-of-1st-Auriga-triangle
The reciprocal parallelogic center of these triangles is X(323).
X(13210) lies on these lines: {32,110}, {69,74}, {113,9993}, {125,3096}, {265,9996}, {323,2387}, {399,3511}, {526,887}, {690,8782}, {1112,11386}, {2076,2930}, {2771,12499}, {2781,12503}, {2854,3094}, {2896,3448}, {2948,3099}, {5027,9138}, {5663,9821}, {5972,7846}, {6787,9149}, {7732,9994}, {7733,9995}, {7753,10545}, {7865,9140}, {7984,9997}, {9517,13236}, {9857,13211}, {9985,12501}, {10038,10088}, {10047,10091}, {10828,12310}, {10871,13213}, {10872,13214}, {10873,12903}, {10874,12904}, {10875,13215}, {10876,13216}, {10878,13217}, {10879,13218}, {11368,11720}, {11494,13204}, {11861,13208}, {11862,13209}, {11885,13212}
X(13210) = reflection of X(9984) in X(9821)
X(13210) = X(110)-of-5th-Brocard-triangle
X(13210) = X(76)-of-anti-orthocentroidal-triangle
X(13210) = 4th-Brocard-to-circumsymmedial similarity image of X(76)
The reciprocal parallelogic center of these triangles is X(323).
X(13211) lies on these lines: {1,125}, {2,11720}, {3,12334}, {8,3448}, {10,110}, {40,12407}, {65,12903}, {67,518}, {72,13214}, {74,515}, {80,7727}, {113,5587}, {265,517}, {355,5663}, {399,5790}, {519,7984}, {542,2948}, {690,13178}, {895,5847}, {944,11709}, {946,7978}, {952,10264}, {1112,5090}, {1385,12898}, {1482,12261}, {1698,5972}, {1699,7687}, {1737,10091}, {2771,12751}, {2802,10778}, {2854,3416}, {3028,5252}, {3057,12904}, {3576,6699}, {3579,12121}, {5119,12896}, {5657,12383}, {5687,13204}, {5688,7733}, {5689,7732}, {5690,12778}, {5691,9904}, {8185,10117}, {8193,12310}, {8197,13208}, {8204,13209}, {8214,13215}, {8215,13216}, {8227,11723}, {8994,9583}, {9798,13171}, {9857,13210}, {9956,11699}, {10039,10088}, {10065,10572}, {10113,12699}, {10791,13193}, {10914,13213}, {10915,13217}, {10916,13218}, {11670,12373}, {11900,13212}, {12702,12902}
X(13211) = midpoint of X(i) and X(j) for these {i,j}: {8,3448}, {40,12407}, {5691,9904}, {12702,12902}
X(13211) = reflection of X(i) in X(j) for these (i,j): (1,125), (110,10), (944,11709), (1482,12261), (7978,946), (11699,9956), (12121,3579), (12368,355), (12699,10113), (12778,5690), (12898,1385)
X(13211) = anticomplement of X(11720)
X(13211) = X(110)-of-outer-Garcia-triangle
The reciprocal parallelogic center of these triangles is X(323).
X(13212) lies on these lines: {30,74}, {110,402}, {113,11897}, {122,125}, {399,11911}, {542,1651}, {690,13179}, {1112,11832}, {2771,12752}, {2781,12796}, {2854,12583}, {2948,11852}, {3448,4240}, {5663,11251}, {7732,11901}, {7733,11902}, {7984,11910}, {10088,11912}, {10091,11913}, {11720,11831}, {11839,13193}, {11845,12383}, {11848,13204}, {11853,12310}, {11863,13208}, {11864,13209}, {11885,13210}, {11900,13211}, {11903,13213}, {11904,13214}, {11905,12903}, {11906,12904}, {11907,13215}, {11908,13216}, {11914,13217}, {11915,13218}, {12790,12797}
X(13212) = midpoint of X(3448) and X(4240)
X(13212) = reflection of X(i) in X(j) for these (i,j): (110,402), (1650,125), (12369,11251)
X(13212) = X(110)-of-Gossard-triangle
The reciprocal parallelogic center of these triangles is X(323).
X(13213) lies on these lines: {11,110}, {12,13217}, {74,11826}, {113,10893}, {125,1376}, {265,355}, {399,11928}, {542,11235}, {690,13180}, {1112,11390}, {2771,12761}, {2781,12925}, {2836,5927}, {2854,12586}, {2948,10826}, {3434,3448}, {5663,10525}, {7732,10919}, {7733,10920}, {7984,10944}, {10088,10523}, {10091,10948}, {10785,12383}, {10794,13193}, {10829,12310}, {10871,13210}, {10914,13211}, {10943,12889}, {10945,13215}, {10946,13216}, {10949,13218}, {11373,11720}, {11865,13208}, {11866,13209}, {11903,13212}, {12737,12898}
X(13213) = reflection of X(i) in X(j) for these (i,j): (12371,10525), (12889,10943), (13204,125), (13214,265)
X(13212) = X(110)-of-inner-Johnson-triangle
The reciprocal parallelogic center of these triangles is X(323).
X(13214) lies on these lines: {11,13218}, {12,110}, {72,13211}, {74,11827}, {113,10894}, {125,958}, {265,355}, {399,11929}, {542,11236}, {690,13181}, {1112,11391}, {2771,12762}, {2781,12935}, {2854,12587}, {2948,10827}, {3436,3448}, {5663,10526}, {6253,10733}, {7732,10921}, {7733,10922}, {7984,10950}, {10088,10954}, {10091,10523}, {10786,12383}, {10795,13193}, {10830,12310}, {10872,13210}, {10942,12890}, {10951,13215}, {10952,13216}, {10955,13217}, {11374,11720}, {11500,13204}, {11867,13208}, {11868,13209}, {11904,13212}
X(13214) = reflection of X(i) in X(j) for these (i,j): (12372,10526), (12890,10942), (13213,265)
X(13214) = X(110)-of-outer-Johnson-triangle
The reciprocal parallelogic center of these triangles is X(323).
X(13215) lies on these lines: {74,11828}, {110,493}, {113,8212}, {125,8222}, {265,8220}, {399,11949}, {542,12152}, {690,13184}, {1112,11394}, {2771,12765}, {2781,12996}, {2854,12590}, {2948,8188}, {3448,6462}, {5663,10669}, {6461,13216}, {7732,8216}, {7733,8218}, {7984,8210}, {8194,12310}, {8201,13208}, {8208,13209}, {8214,13211}, {10088,11951}, {10091,11953}, {10875,13210}, {10945,13213}, {10951,13214}, {10981,12378}, {11377,11720}, {11503,13204}, {11840,13193}, {11846,12383}, {11907,13212}, {11930,12903}, {11932,12904}, {11955,13217}, {11957,13218}, {12894,12998}
X(13215) = X(110)-of-Lucas-homothetic-triangle
The reciprocal parallelogic center of these triangles is X(323).
X(13216) lies on these lines: {74,11829}, {110,494}, {113,8213}, {125,8223}, {265,8221}, {399,11950}, {542,12153}, {690,13185}, {1112,11395}, {2771,12766}, {2781,12997}, {2854,12591}, {2948,8189}, {3448,6463}, {5663,10673}, {6461,13215}, {7732,8217}, {7733,8219}, {7984,8211}, {8195,12310}, {8202,13208}, {8209,13209}, {8215,13211}, {10088,11952}, {10091,11954}, {10876,13210}, {10946,13213}, {10952,13214}, {10981,12377}, {11378,11720}, {11504,13204}, {11841,13193}, {11847,12383}, {11908,13212}, {11931,12903}, {11933,12904}, {11956,13217}, {11958,13218}, {12895,12999}
X(13216) = X(110)-of-Lucas(-1)-homothetic-triangle
The reciprocal parallelogic center of these triangles is X(323).
X(13217) lies on these lines: {1,60}, {12,13213}, {74,11248}, {113,10531}, {119,10778}, {125,5552}, {265,10942}, {399,12000}, {542,11239}, {690,13189}, {1112,11400}, {2771,12775}, {2781,13118}, {2854,12594}, {3028,11509}, {3448,10528}, {5663,10679}, {6256,10733}, {7732,10929}, {7733,10930}, {10803,13193}, {10805,12383}, {10834,12310}, {10878,13210}, {10915,13211}, {10955,13214}, {10956,12903}, {10958,12904}, {11881,13208}, {11882,13209}, {11914,13212}, {11955,13215}, {11956,13216}, {12905,13121}
X(13217) = reflection of X(i) in X(j) for these (i,j): (110,10088), (12381,10679)
X(13217) = X(110)-of-inner-Yff-tangents-triangle
X(13217) = {X(110),X(7984)}-harmonic conjugate of X(13218)
The reciprocal parallelogic center of these triangles is X(323).
X(13218) lies on these lines: {1,60}, {11,13214}, {74,11249}, {113,10532}, {125,10527}, {265,10943}, {399,12001}, {542,11240}, {690,13190}, {1112,11401}, {2771,12776}, {2781,13119}, {2854,12595}, {3448,10529}, {5663,10680}, {7732,10931}, {7733,10932}, {10804,13193}, {10806,12383}, {10835,12310}, {10879,13210}, {10916,13211}, {10949,13213}, {10957,12903}, {10959,12904}, {11510,13204}, {11883,13208}, {11884,13209}, {11915,13212}, {11957,13215}, {11958,13216}, {12906,13122}
X(13218) = reflection of X(i) in X(j) for these (i,j): (110,10091), (12382,10680)
X(13218) = X(110)-of-outer-Yff-tangents-triangle
X(13218) = {X(110),X(7984)}-harmonic conjugate of X(13217)
The reciprocal parallelogic center of these triangles is X(6).
X(13219) lies on the anticomplementary circle and these lines: {2,112}, {3,13200}, {4,339}, {10,13221}, {20,99}, {22,1369}, {30,12253}, {69,146}, {100,13206}, {132,3091}, {145,10705}, {148,2799}, {149,2806}, {150,9518}, {151,2893}, {152,1330}, {153,322}, {193,10766}, {253,317}, {316,3153}, {325,2071}, {388,3320}, {497,6020}, {516,12408}, {754,10313}, {858,5971}, {2838,5300}, {2848,3268}, {2896,13236}, {3146,10735}, {3164,7898}, {3448,9517}, {3616,11722}, {4293,13117}, {4294,13116}, {5225,12955}, {5229,12945}, {5601,13229}, {5602,13231}, {5731,12265}, {6031,7493}, {7391,11605}, {7488,7750}, {7664,9157}, {7776,11413}, {7787,13195}
X(13219) = reflection of X(i) in X(j) for these (i,j): (2,10718), (4,10749), (20,1297), (112,127), (145,10705), (149,10780), (193,10766), (3146,10735), (7391,11605), (12253,13115), (12384,4), (13200,3), (13221,10)
X(13219) = isogonal conjugate of X(34190)
X(13219) = anticomplement of X(112)
X(13219) = antipode of X(12384) in anticomplementary circle
X(13219) = polar circle-inverse-of-X(13166)
X(13219) = X(112)-of-anticomplementary-triangle
X(13219) = inverse-in-de-Longchamps-circle of X(99)
X(13219) = orthoptic-circle-of-Steiner-circumellipse-inverse of X(2373)
X(13219) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (112,127,2), (112,10718,127)
The reciprocal parallelogic center of these triangles is X(1).
X(13220) lies on the line {659,905}
X(13220) = 1st-Sharygin-to-2nd-Sharygin similarity image of X(12405)
The reciprocal parallelogic center of these triangles is X(6).
X(13221) lies on the Bevan circle and these lines: {1,112}, {10,13219}, {35,13206}, {40,12408}, {57,3320}, {127,1698}, {132,1699}, {165,1297}, {515,13200}, {516,12384}, {1046,2825}, {1054,2844}, {1282,9518}, {1697,6020}, {1724,2838}, {1754,1768}, {2781,3751}, {2794,5691}, {2799,13174}, {2806,5541}, {2948,9517}, {3099,13236}, {3579,13115}, {3624,6720}, {5537,12340}, {5587,10749}, {7713,13166}, {7987,12265}, {8185,11641}, {8187,13231}, {9579,12945}, {9580,12955}, {10789,13195}, {11531,13099}
X(13221) = reflection of X(i) in X(j) for these (i,j): (1,112), (5691,12784), (10705,11722), (11531,13099), (12408,40), (13115,3579), (13219,10)
X(13221) = antipode of X(12408) in Bevan circle
X(13221) = X(112)-of-Aquila-triangle
The reciprocal parallelogic center of these triangles is X(1).
X(13222) lies on these lines: {3,11}, {22,149}, {24,13199}, {25,100}, {80,8193}, {104,11414}, {119,1598}, {159,9024}, {197,13205}, {214,11365}, {528,9909}, {659,2804}, {952,7387}, {1320,8192}, {1593,10724}, {2771,9919}, {2783,9861}, {2787,13175}, {2800,9911}, {2802,9798}, {2806,11641}, {2831,12413}, {3035,5020}, {3517,10993}, {5541,8185}, {7517,12331}, {7530,11698}, {8190,13228}, {8191,13230}, {10037,10087}, {10778,13171}, {10790,13194}, {10828,13235}, {12082,12248}, {12083,12773}
X(13222) = reflection of X(9913) in X(7387)
X(13222) = X(100)-of-Ara-triangle
The reciprocal parallelogic center of these triangles is X(9833).
X(13223) lies on these lines: {351,13224}, {924,9131}, {3566,9135}, {9138,9979}
X(13223) = reflection of X(13224) in X(351)
X(13223) = X(68)-of-1st-Parry-triangle
The reciprocal parallelogic center of these triangles is X(9833).
X(13224) lies on these lines: {110,925}, {351,13223}, {924,9979}, {1899,9134}, {2450,3566}
X(13224) = reflection of X(13223) in X(351)
X(13224) = X(68)-of-2nd-Parry-triangle
The reciprocal parallelogic center of these triangles is X(9147).
X(13225) lies on the Artzt circle and these lines: {2,13170}, {98,385}, {111,2080}, {183,12157}, {512,9877}, {2698,9080}, {7610,12434}
X(13225) = reflection of X(12434) in X(7610)
X(13225) = circumsymmedial-to-Artzt similarity image of X(805)
The reciprocal parallelogic center of these triangles is X(4).
X(13226) lies on these lines: {2,5779}, {3,8}, {5,3306}, {11,57}, {20,12690}, {28,12138}, {80,5787}, {119,8728}, {142,5851}, {153,443}, {165,4863}, {381,2096}, {496,1158}, {515,5122}, {658,1565}, {908,5843}, {942,1387}, {971,3911}, {1156,8732}, {1317,3601}, {1466,12832}, {1537,5708}, {1862,4219}, {2771,5972}, {2801,3035}, {2829,6245}, {3218,5762}, {3522,9963}, {3653,6265}, {3927,6926}, {5083,11018}, {5531,6174}, {5658,5825}, {5660,11407}, {5704,12246}, {5709,12515}, {5763,6890}, {6147,6833}, {6264,6282}, {6326,8726}, {6692,10157}, {6702,12436}, {6826,10742}, {6848,12684}, {6851,10738}, {6906,12433}, {6935,10698}, {7483,9964}, {8103,8733}, {8729,13267}, {8731,13265}, {9588,9845}, {9776,9809}, {10202,11729}, {10855,13227}, {10856,13244}, {10858,13262}, {11518,13253}, {11715,12735}, {11854,13260}, {11855,13261}
X(13226) = midpoint of X(i) and X(j) for these {i,j}: {11,1768}, {20,12690}, {9803,10609}, {13243,13257}
X(13226) = reflection of X(i) in X(j) for these (i,j): (9945,3), (9946,9940), (12019,10265), (12735,11715)
X(13226) = complement of X(13257)
X(13226) = X(110)-of-Ascella-triangle
X(13226) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,13243,13257), (1768,11219,11)
The reciprocal parallelogic center of these triangles is X(4).
X(13227) lies on these lines: {8,153}, {11,118}, {100,10860}, {104,8583}, {119,8582}, {952,9856}, {971,6745}, {1156,10865}, {1317,10866}, {1387,11035}, {1768,8580}, {2771,9947}, {3062,3174}, {3870,11372}, {5587,5884}, {6259,12059}, {6326,10864}, {10855,13226}, {10861,13243}, {10862,13244}, {10867,13262}, {10868,13265}, {11519,13253}, {11856,13260}, {11857,13261}, {11860,13267}
X(13227) = reflection of X(i) in X(j) for these (i,j): (9951,9856), (9952,9947)
X(13227) = X(110)-of-Atik-triangle
X(13227) = {X(5927), X(8581)}-harmonic conjugate of X(10863)
The reciprocal parallelogic center of these triangles is X(1).
X(13228) lies on these lines: {11,5599}, {55,2802}, {80,8197}, {100,5597}, {104,11822}, {119,8196}, {149,5601}, {214,11366}, {517,12463}, {519,12461}, {528,11207}, {1145,5600}, {1320,5598}, {1862,11384}, {2771,12365}, {2783,12179}, {2787,13176}, {2800,12457}, {2806,13229}, {2831,12478}, {5854,12455}, {8187,12653}, {8190,13222}, {8200,10738}, {9024,12452}, {10087,11877}, {10090,11879}, {11492,13205}, {11837,13194}, {11843,13199}, {11861,13235}, {11875,12331}
X(13228) = reflection of X(13230) in X(55)
X(13228) = X(100)-of-1st-Auriga-triangle
The reciprocal parallelogic center of these triangles is X(6).
X(13229) lies on these lines: {55,13231}, {112,5597}, {127,5599}, {132,8196}, {517,12479}, {1297,11822}, {2781,12365}, {2799,13176}, {2806,13228}, {2831,12462}, {5598,10705}, {5601,13219}, {6020,11873}, {8190,11641}, {8200,10749}, {9517,13208}, {11252,12478}, {11366,11722}, {11492,13206}, {11837,13195}, {11843,13200}, {11861,13236}
X(13229) = reflection of X(13231) in X(55)
X(13229) = X(112)-of-1st-Auriga-triangle
The reciprocal parallelogic center of these triangles is X(1).
X(13230) lies on these lines: {11,5600}, {55,2802}, {80,8204}, {100,5598}, {104,11823}, {119,8203}, {149,5602}, {214,11367}, {517,12462}, {519,12460}, {528,11208}, {1145,5599}, {1320,5597}, {1862,11385}, {2771,12366}, {2783,12180}, {2787,13177}, {2800,12456}, {2806,13231}, {2831,12479}, {5541,8187}, {5854,12454}, {8191,13222}, {8207,10738}, {9024,12453}, {10087,11878}, {10090,11880}, {11493,13205}, {11838,13194}, {11844,13199}, {11862,13235}, {11876,12331}
X(13230) = reflection of X(13228) in X(55)
X(13230) = X(100)-of-2nd-Auriga-triangle
The reciprocal parallelogic center of these triangles is X(6).
X(13231) lies on these lines: {55,13229}, {112,5598}, {127,5600}, {132,8203}, {517,12478}, {1297,11823}, {2781,12366}, {2799,13177}, {2806,13230}, {2831,12463}, {5597,10705}, {5602,13219}, {6020,11874}, {8187,13221}, {8191,11641}, {8207,10749}, {9517,13209}, {11253,12479}, {11367,11722}, {11493,13206}, {11838,13195}, {11844,13200}, {11862,13236}
X(13231) = reflection of X(13229) in X(55)
X(13231) = X(112)-of-2nd-Auriga-triangle
The reciprocal parallelogic center of these triangles is X(13187).
X(13232) lies on these lines: {2,13186}, {69,690}, {182,13197}, {384,13237}, {523,3589}
X(13232) = X(9293)-of-1st-Brocard-triangle
The reciprocal parallelogic center of these triangles is X(3).
X(13233) lies on these lines: {3,543}, {23,671}, {98,2696}, {99,7496}, {111,9176}, {115,1995}, {148,7492}, {2930,11646}, {2936,5461}, {6323,13192}, {8546,9830}
X(13233) = reflection of X(9966) in X(8546)
X(13233) = X(1380)-of-1st-Ehrmann-triangle
The reciprocal parallelogic center of these triangles is X(6322).
X(13234) lies on the nine-points circle and these lines: {2,6323}, {4,6233}, {5,12494}, {115,597}, {353,7790}, {2793,11569}, {4045,10166}, {5099,8705}
X(13234) = midpoint of X(4) and X(6233)
X(13234) = reflection of X(12494) in X(5)
X(13234) = complementary conjugate of X(3849)
X(13234) = complement of X(6323)
X(13234) = antipode of X(12494) in nine-points circle
X(13234) = orthoptic circle of Steiner inellipse-inverse-of-X(9100)
The reciprocal parallelogic center of these triangles is X(1).
X(13235) lies on these lines: {11,3096}, {32,100}, {80,9857}, {104,3098}, {119,9993}, {149,2896}, {214,995}, {528,7811}, {952,9821}, {1320,9997}, {1862,11386}, {2771,9984}, {2783,9862}, {2787,8782}, {2800,12497}, {2802,9941}, {2806,13236}, {2831,12503}, {3035,7846}, {3094,9024}, {3099,5541}, {5840,9873}, {7865,10707}, {9301,12331}, {9978,9998}, {9980,9999}, {9996,10738}, {10038,10087}, {10047,10090}, {10828,13222}, {11494,13205}, {11861,13228}, {11862,13230}
X(13235) = reflection of X(12499) in X(9821)
X(13235) = X(100)-of-5th-Brocard-triangle
The reciprocal parallelogic center of these triangles is X(6).
X(13236) lies on these lines: {4,32}, {127,3096}, {1297,3098}, {2781,3094}, {2799,8782}, {2806,13235}, {2831,12499}, {2881,9420}, {2896,13219}, {3099,13221}, {6020,10877}, {6720,7846}, {7865,10718}, {9157,9998}, {9517,13210}, {9821,12503}, {9996,10749}, {9997,10705}, {9999,13114}, {10828,11641}, {11368,11722}, {11386,13166}, {11494,13206}, {11861,13229}, {11862,13231}
X(13236) = reflection of X(12503) in X(9821)
X(13236) = X(112)-of-5th-Brocard-triangle
X(13236) = {X(112), X(11610)}-harmonic conjugate of X(13195)
The reciprocal parallelogic center of these triangles is X(13187).
X(13237) lies on these lines: {3,13186}, {384,13232}, {690,7893}, {882,7927}, {10131,13197}
X(13237) = X(9293)-of-6th-Brocard-triangle
The reciprocal parallelogic center of these triangles is X(13239).
X(13238) lies on the circumcircle and these lines: {2,13249}, {3,12507}, {4,12624}, {935,8705}, {2781,6236}, {6325,9517}
X(13238) = reflection of X(i) in X(j) for these (i,j): (4,12624), (12507,3)
X(13238) = anticomplement of X(13249)
X(13238) = antipode of X(12507) in circumcircle
X(13238) = 2nd-orthosymmedial-to-circummedial similarity image of X(13239)
The reciprocal parallelogic center of these triangles is X(13238).
X(13239) lies on the orthosymmedial circle and these lines: {1316,6322}, {5480,12508}
X(13239) = reflection of X(12508) in X(5480)
X(13239) = circummedial-to-2nd-orthosymmedial similarity image of X(13238)
The reciprocal parallelogic center of these triangles is X(98).
X(13240) lies on the McCay circles and these lines: {2,13207}, {6,6784}, {230,263}, {373,2393}, {381,512}, {511,7610}, {1624,3066}, {2387,5055}, {2871,5640}, {3111,11159}, {6324,7708}, {7606,8705}, {7617,12525}, {8859,11002}, {8860,11673}
X(13240) = reflection of X(12525) in X(7617)
X(13240) = antipode of X(12525) in McCay circles
X(13240) = X(6233)-of-McCay-triangle
The reciprocal parallelogic center of these triangles is X(13242).
X(13241) lies on the circumcircle and these lines: {3,9831}, {32,9136}, {98,3849}, {110,11186}, {111,2080}, {182,843}, {511,6323}, {512,6233}, {842,8722}, {2770,9829}, {5970,11842}
X(13241) = reflection of X(9831) in X(3)
X(13241) = antipode of X(9831) in circumcircle
X(13241) = X(98)-of-circummedial-triangle
X(13241) = X(2698)-of-circumsymmedial-triangle
X(13241) = reflection of X(6233) in the Brocard axis
The reciprocal parallelogic center of these triangles is X(13241).
X(13242) lies on the Parry circle and these lines: {23,9871}, {110,6233}, {111,6323}, {351,353}, {8705,9213}, {9135,9999}, {9147,9830}
X(13242) = reflection of X(353) in X(351)
X(13242) = antipode of X(353) in Parry circle
X(13242) = X(2698)-of-3rd-Parry-triangle
The reciprocal parallelogic center of these triangles is X(4).
X(13243) lies on these lines: {2,5779}, {7,11}, {20,952}, {21,104}, {63,100}, {80,4292}, {84,1320}, {88,5400}, {119,4197}, {149,9965}, {153,377}, {244,9355}, {404,5720}, {528,10430}, {651,7004}, {912,6909}, {971,3218}, {1012,10247}, {1158,3871}, {1317,4313}, {1387,11036}, {1709,3873}, {1776,7677}, {2095,3543}, {2096,12247}, {2802,11519}, {2808,3937}, {2829,9799}, {2950,12658}, {3035,5273}, {3065,10122}, {3146,12684}, {3219,10167}, {3522,3927}, {3748,10391}, {3832,5708}, {3869,10085}, {3889,12705}, {3951,9841}, {4198,12138}, {4297,11684}, {4304,7972}, {4661,6244}, {5047,7330}, {5083,11020}, {5249,10171}, {5768,11114}, {5770,6932}, {6154,9778}, {6326,10884}, {6839,10742}, {7701,12005}, {8103,11888}, {8104,11889}, {10444,13244}, {10711,12619}, {10861,13227}, {10885,13262}, {11520,13253}, {11886,13260}, {11887,13261}, {11890,13267}, {12246,12649}
X(13243) = reflection of X(i) in X(j) for these (i,j): (100,1768), (3146,12690), (9809,11), (9963,20), (10698,12773), (12528,12691), (13257,13226)
X(13243) = anticomplement of X(13257)
X(13243) = X(110)-of-Conway-triangle
X(13243) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (63,11220,7411), (13226,13257,2)
The reciprocal parallelogic center of these triangles is X(4).
X(13244) lies on these lines: {1,5}, {100,10434}, {104,10882}, {149,1999}, {1156,10889}, {1764,1768}, {2771,10441}, {2800,12435}, {2801,10439}, {5083,11021}, {5851,10442}, {8103,11894}, {9803,10449}, {9809,10446}, {10265,10479}, {10444,13243}, {10856,13226}, {10862,13227}, {10888,13257}, {10891,13262}, {10892,13265}, {11521,13253}, {11892,13260}, {11893,13261}, {11896,13267}
X(13244) = reflection of X(i) in X(j) for these (i,j): (12550,1), (12551,10441)
X(13244) = Conway circle-inverse-of-X(11)
X(13244) = X(110)-of-3rd-Conway-triangle
The reciprocal parallelogic center of these triangles is X(1).
X(13245) lies on these lines: {514,659}, {521,9508}, {1021,1635}, {2254,6003}
X(13245) = X(578)-of-2nd-Sharygin-triangle
X(13245) = 1st-Sharygin-to-2nd-Sharygin similarity image of X(12567)
The reciprocal parallelogic center of these triangles is X(1).
X(13246) lies on these lines: {514,659}, {522,4874}, {676,812}, {900,6667}, {1635,4765}, {1960,2785}, {2254,3667}, {2488,6003}, {2786,3716}, {2789,10015}, {4088,10196}, {4707,5592}
X(13246) = midpoint of X(i) and X(j) for these {i,j}: {659,4458}, {667,4142}, {4707,5592}
X(13246) = {X(659), X(4809)}-harmonic conjugate of X(4458)
X(13246) = X(389)-of-2nd-Sharygin-triangle
X(13246) = 1st-Sharygin-to-2nd-Sharygin similarity image of X(12579)
The reciprocal parallelogic center of these triangles is X(4).
X(13247) lies on the line {8546,12593}
X(13247) = reflection of X(12593) in X(8546)
X(13247) = 2nd-orthosymmedial-to-1st-Ehrmann similarity image of X(4)
X(13247) = circummedial-to-1st-Ehrmann similarity image of X(1297)
The reciprocal parallelogic center of these triangles is X(10116).
X(13248) lies on these lines: {6,1112}, {66,193}, {74,8537}, {110,2393}, {113,8538}, {125,8541}, {159,6593}, {576,2777}, {1351,2781}, {1503,7728}, {1992,13203}, {2935,11477}, {5663,8549}, {5972,11511}, {6723,9813}, {6776,10721}, {7722,10752}, {7731,11458}, {8539,10119}, {8540,10118}, {9919,11482}, {9976,10628}, {10249,12041}, {11405,13171}, {11443,13201}, {11470,13202}
X(13248) = midpoint of X(i) and X(j) for these {i,j}: {193,2892}, {2935,11477}
X(13248) = reflection of X(i) in X(j) for these (i,j): (159,6593), (1177,6), (12596,11255)
X(13248) = X(100)-of-2nd-Ehrmann-triangle if ABC is acute
X(13248) = orthic-to-2nd-Ehrmann similarity image of X(125)
The reciprocal parallelogic center of these triangles is X(13239).
X(13249) lies on the nine-points circle and these lines: {2,13238}, {4,12507}, {5,12624}, {115,9971}
X(13249) = midpoint of X(4) and X(12507)
X(13249) = reflection of X(12624) in X(5)
X(13249) = complement of X(13238)
X(13249) = antipode of X(12624) in nine-points circle
The reciprocal parallelogic center of these triangles is X(10).
X(13250) lies on these lines: {351,900}, {513,9131}, {522,9811}, {2827,13263}, {3667,9123}, {4926,9185}
X(13250) = reflection of X(i) in X(j) for these (i,j): (9979,9811), (13251,351)
X(13250) = X(8)-of-1st-Parry-triangle
X(13250) = X(944)-of-2nd-Parry-triangle
The reciprocal parallelogic center of these triangles is X(10).
X(13251) lies on these lines: {351,900}, {513,9979}, {522,9131}, {2827,13264}, {3667,9185}, {4926,9123}
X(13251) = reflection of X(i) in X(j) for these (i,j): (9131,9810), (13250,351)
X(13251) = X(8)-of-2nd-Parry-triangle
X(13251) = X(944)-of-1st-Parry-triangle
The reciprocal parallelogic center of these triangles is X(1).
X(13252) lies on these lines: {513,13256}, {659,3667}, {900,13205}, {3309,4498}
X(13252) = 1st-Sharygin-to-2nd-Sharygin similarity image of X(12642)
X(13252) = excentral-to-2nd-Sharygin similarity image of X(2136)
X(13252) = X(64)-of-2nd-Sharygin-triangle
The reciprocal parallelogic center of these triangles is X(4).
X(13253) lies on these lines: {1,104}, {4,9897}, {11,3340}, {36,12332}, {40,6265}, {57,12740}, {80,1537}, {100,7991}, {119,3679}, {145,9809}, {149,4301}, {153,519}, {165,214}, {191,11014}, {516,6224}, {517,3689}, {946,12247}, {952,3627}, {1145,5660}, {1156,11526}, {1317,7962}, {1320,2801}, {1387,11219}, {1482,2771}, {1484,3656}, {1697,12739}, {1709,12737}, {2093,10090}, {2783,12550}, {2802,5531}, {2827,4895}, {2829,7971}, {2932,5537}, {3035,9588}, {3243,5851}, {3576,12515}, {3624,11729}, {3632,12751}, {4677,10711}, {5587,12611}, {5603,10265}, {5727,12764}, {5840,9589}, {5854,11523}, {5881,10742}, {5882,12248}, {6282,9946}, {6702,7988}, {8187,12462}, {8227,12619}, {9580,12743}, {9612,10057}, {9614,10073}, {11009,12672}, {11278,12688}, {11518,13226}, {11519,13227}, {11520,13243}, {11521,13244}, {11524,12645}, {11527,13260}, {11528,13261}, {11532,13262}, {11533,13265}, {11535,13267}
X(13253) = midpoint of X(i) and X(j) for these {i,j}: {145,9809}, {5531,11531}
X(13253) = reflection of X(i) in X(j) for these (i,j): (1,10698), (40,6265), (80,1537), (149,4301), (1768,1), (3632,12751), (4677,10711), (5541,6326), (5881,10742), (6264,1482), (7991,100), (7993,1320), (9897,4), (12247,946), (12248,5882), (12653,7982), (12767,104)
X(13253) = X(110)-of-excenters-reflections-triangle
X(13253) = X(10733)-of-excentral-triangle
X(13253) = X(265)-of-hexyl-triangle
X(13253) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,12767,104), (80,1537,1699), (104,12767,1768), (7993,11224,1320)
The reciprocal parallelogic center of these triangles is X(40).
X(13254) lies on these lines: {351,3900}, {521,9810}, {522,9811}, {2804,13263}, {8058,9131}
X(13254) = reflection of X(13255) in X(351)
X(13254) = X(84)-of-1st-Parry-triangle
X(13254) = X(1490)-of-2nd-Parry-triangle
The reciprocal parallelogic center of these triangles is X(40).
X(13255) lies on these lines: {351,3900}, {521,9811}, {522,9131}, {2804,13264}, {8058,9979}
X(13255) = reflection of X(13254) in X(351)
X(13255) = X(84)-of-2nd-Parry-triangle
X(13255) = X(1490)-of-1st-Parry-triangle
The reciprocal parallelogic center of these triangles is X(72).
X(13256) lies on these lines: {513,13252}, {521,659}, {522,693}, {926,3033}, {2804,13277}, {3738,13266}, {3900,9508}, {3907,13259}
X(13256) = X(68)-of-2nd-Sharygin-triangle
X(13256) = 1st-Sharygin-to-2nd-Sharygin similarity image of X(12683)
The reciprocal parallelogic center of these triangles is X(4).
X(13257) lies on these lines: {2,5779}, {4,145}, {5,9964}, {9,1768}, {11,118}, {20,9945}, {72,1145}, {78,6259}, {80,5665}, {100,329}, {104,405}, {119,125}, {214,12572}, {355,7700}, {440,2972}, {516,3689}, {528,1750}, {908,971}, {912,1532}, {950,1317}, {997,12678}, {1086,5400}, {1156,8232}, {1387,3487}, {1490,2829}, {1699,3243}, {2826,4120}, {3091,6147}, {3146,5763}, {3218,5843}, {3419,11525}, {3452,10167}, {3488,12735}, {3586,7972}, {3655,6265}, {3811,12679}, {3873,7956}, {3927,6838}, {3940,6925}, {4199,13265}, {5175,12531}, {5177,9952}, {5249,10157}, {5536,5852}, {5708,6953}, {5714,9803}, {5719,6912}, {5720,11112}, {5730,12667}, {5758,12732}, {5780,6897}, {5789,6933}, {5812,5840}, {5854,11523}, {5934,13260}, {5935,13261}, {6667,11219}, {6890,12684}, {6907,11698}, {6913,11729}, {6976,10246}, {6987,12248}, {7330,7483}, {8079,8103}, {8080,8104}, {8233,13262}, {10393,12739}, {10711,12247}, {10888,13244}, {11517,12332}
X(13257) = midpoint of X(i) and X(j) for these {i,j}: {100,9809}, {3146,9963}, {9964,12528}
X(13257) = reflection of X(i) in X(j) for these (i,j): (20,9945), (1768,3035), (9803,12019), (10609,6326), (12690,4), (12691,5777), (12773,11729), (13243,13226)
X(13257) = anticomplement of X(13226)
X(13257) = complement of X(13243)
X(13257) = X(110)-of-2nd-extouch-triangle
X(13257) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,13243,13226), (226,5927,8226), (329,5658,7580), (1768,5660,3035)
The reciprocal parallelogic center of these triangles is X(65).
X(13258) lies on these lines: {514,1734}, {521,659}, {656,3776}, {1021,1635}
X(13258) = 1st-Sharygin-to-2nd-Sharygin similarity image of X(12713)
The reciprocal parallelogic center of these triangles is X(65).
X(13259) lies on these lines: {291,2401}, {514,1734}, {659,3803}, {984,1769}, {1027,3887}, {1282,2812}, {1635,4160}, {3738,3751}, {3907,13256}, {4147,4458}, {9373,9511}
X(13259) = X(317)-of-2nd-Sharygin-triangle
X(13259) = 1st-Sharygin-to-2nd-Sharygin similarity image of X(12725)
X(13259) = excentral-to-2nd-Sharygin similarity image of X(1721)
X(13259) = hexyl-to-2nd-Sharygin similarity image of X(12717)
The reciprocal parallelogic center of these triangles is X(4).
X(13260) lies on these lines: {11,8113}, {100,8107}, {104,8109}, {119,8380}, {363,1768}, {952,9836}, {1156,8385}, {1317,8390}, {1387,11039}, {2771,12488}, {2800,9805}, {2801,11222}, {5083,11026}, {5531,8140}, {5934,13257}, {6326,8111}, {6732,8104}, {8103,8133}, {8391,13265}, {9783,9809}, {11527,13253}, {11854,13226}, {11856,13227}, {11886,13243}, {11892,13244}, {11922,13262}, {11923,13267}
X(13260) = reflection of X(i) in X(j) for these (i,j): (12733,9836), (12759,12488), (13261,5531)
X(13260) = X(110)-of-inner-Hutson-triangle
The reciprocal parallelogic center of these triangles is X(4).
X(13261) lies on these lines: {11,8114}, {100,8108}, {104,8110}, {119,8381}, {168,1768}, {952,9837}, {1156,8386}, {1317,8392}, {1387,11040}, {2771,12489}, {2800,9806}, {2801,11223}, {5083,11027}, {5531,8140}, {5935,13257}, {6326,8112}, {7707,13267}, {8103,8135}, {8104,8138}, {9787,9809}, {11528,13253}, {11855,13226}, {11857,13227}, {11887,13243}, {11893,13244}, {11925,13262}, {11926,13265}
X(13261) = reflection of X(i) in X(j) for these (i,j): (12734,9837), (12760,12489), (13260,5531)
X(13261) = X(110)-of-outer-Hutson-triangle
The reciprocal parallelogic center of these triangles is X(4).
X(13262) lies on these lines: {11,8228}, {100,8224}, {104,8225}, {119,8230}, {952,7596}, {1156,8237}, {1317,8239}, {1387,11042}, {1768,8231}, {2771,12490}, {2800,9808}, {2801,11211}, {5083,11030}, {5531,8244}, {6326,8234}, {8103,8247}, {8104,8248}, {8233,13257}, {8246,13265}, {9789,9809}, {10858,13226}, {10867,13227}, {10885,13243}, {10891,13244}, {11532,13253}, {11922,13260}, {11925,13261}, {11996,13267}
X(13262) = reflection of X(12768) in X(12490)
X(13262) = X(110)-of-2nd-Pamfilos-Zhou-triangle
The reciprocal parallelogic center of these triangles is X(3).
X(13263) lies on these lines: {351,13264}, {522,9980}, {900,9810}, {2804,13254}, {2827,13250}, {3738,9131}
X(13263) = reflection of X(13264) in X(351)
X(13263) = X(80)-of-1st-Parry-triangle
X(13263) = X(12119)-of-2nd-Parry-triangle
The reciprocal parallelogic center of these triangles is X(3).
X(13264) lies on these lines: {351,13263}, {522,9978}, {900,9811}, {2804,13255}, {2827,13251}, {3035,3700}, {3738,9979}
X(13264) = reflection of X(13263) in X(351)
X(13264) = X(80)-of-2nd-Parry-triangle
X(13264) = X(12119)-of-1st-Parry-triangle
The reciprocal parallelogic center of these triangles is X(4).
X(13265) lies on these lines: {3,4427}, {11,1284}, {21,104}, {98,100}, {119,5051}, {846,1768}, {952,9840}, {1156,8238}, {1283,13266}, {1317,8240}, {1387,11043}, {2292,2800}, {2801,11203}, {2826,9147}, {2831,3744}, {4199,13257}, {5083,11031}, {5492,6906}, {5531,8245}, {6326,8235}, {8103,8249}, {8104,8250}, {8246,13262}, {8391,13260}, {8425,13267}, {8731,13226}, {9791,9809}, {10868,13227}, {10892,13244}, {11533,13253}, {11926,13261}
X(13265) = reflection of X(i) in X(j) for these (i,j): (12746,9840), (12770,9959)
X(13265) = X(110)-of-1st-Sharygin-triangle
X(13265) = 2nd-Sharygin-to-1st-Sharygin similarity image of X(100)
X(13265) = excentral-to-1st-Sharygin similarity image of X(1768)
X(13265) = hexyl-to-1st-Sharygin similarity image of X(6326)
The reciprocal parallelogic center of these triangles is X(8).
X(13266) lies on these lines: {9,1635}, {100,190}, {104,105}, {513,3218}, {812,9318}, {891,1320}, {1054,1768}, {1281,2787}, {1282,3887}, {1283,13265}, {3738,13256}, {11689,12531}
X(13266) = reflection of X(100) in X(659)
X(13266) = X(74)-of-2nd-Sharygin-triangle
X(13266) = 1st-Sharygin-to-2nd-Sharygin similarity image of X(12746)
X(13266) = excentral-to-2nd-Sharygin similarity image of X(5541)
X(13266) = hexyl-to-2nd-Sharygin similarity image of X(6264)
The reciprocal parallelogic center of these triangles is X(4).
X(13267) lies on these lines: {1,8097}, {11,174}, {100,7589}, {104,7587}, {119,8382}, {173,1768}, {177,8103}, {236,3035}, {942,12772}, {952,8351}, {1156,8389}, {1317,11924}, {1387,8092}, {2771,12491}, {2800,12445}, {2801,11195}, {3320,10758}, {3662,4735}, {3931,8817}, {4003,8728}, {5083,8083}, {5129,8380}, {5531,8423}, {5840,8130}, {6326,7590}, {6667,7028}, {6713,8129}, {7593,13257}, {7707,13261}, {8094,12736}, {8425,13265}, {8729,13226}, {9809,11891}, {11535,13253}, {11860,13227}, {11890,13243}, {11896,13244}, {11923,13260}, {11996,13262}
X(13267) = reflection of X(i) in X(j) for these (i,j): (12748,8351), (12774,12491)
X(13267) = {X(11), X(174)}-harmonic conjugate of X(8104)
X(13267) = X(110)-of-Yff-central-triangle
X(13267) = excentral-to-Yff-central similarity image of X(1768)
X(13267) = hexyl-to-Yff-central similarity image of X(6326)
The reciprocal parallelogic center of these triangles is X(1).
X(13268) lies on these lines: {11,1650}, {30,104}, {80,11900}, {100,402}, {119,11897}, {149,4240}, {214,11831}, {528,1651}, {952,11251}, {1320,11910}, {1862,11832}, {2771,12369}, {2783,12181}, {2787,13179}, {2800,12696}, {2802,12438}, {2806,13281}, {2831,12796}, {5541,11852}, {5840,12113}, {9024,12583}, {10087,11912}, {10090,11913}, {11839,13194}, {11845,13199}, {11848,13205}, {11853,13222}, {11863,13228}, {11864,13230}, {11885,13235}, {11901,13269}, {11902,13270}, {11903,13271}, {11904,13272}, {11905,13273}, {11906,13274}, {11907,13275}, {11908,13276}, {11911,12331}, {11914,13278}, {11915,13279}
X(13268) = midpoint of X(149) and X(4240)
X(13268) = reflection of X(i) in X(j) for these (i,j): (100,402), (1650,11), (12752,11251)
X(13268) = X(100)-of-Gossard-triangle
The reciprocal parallelogic center of these triangles is X(1).
X(13269) lies on these lines: {6,100}, {11,5591}, {80,5689}, {104,11824}, {119,6202}, {149,1271}, {214,11370}, {528,5861}, {952,1161}, {1320,5605}, {1862,11388}, {2771,7725}, {2783,6227}, {2787,6319}, {2800,12697}, {2802,3641}, {2806,13282}, {2831,12805}, {5541,5589}, {5595,13222}, {5840,5871}, {6215,10738}, {8198,13228}, {8205,13230}, {8216,13275}, {8217,13276}, {9994,13235}, {10040,10087}, {10048,10090}, {10783,13199}, {10792,13194}, {10919,13271}, {10921,13272}, {10923,13273}, {10925,13274}, {10929,13278}, {10931,13279}, {11497,13205}, {11901,13268}, {11916,12331}
X(13269) = reflection of X(i) in X(j) for these (i,j): (12753,1161), (13270,100)
X(13269) = X(100)-of-inner-Grebe-triangle
The reciprocal parallelogic center of these triangles is X(1).
X(13270) lies on these lines: {6,100}, {11,5590}, {80,5688}, {104,11825}, {119,6201}, {149,1270}, {214,11371}, {528,5860}, {952,1160}, {1320,5604}, {1862,11389}, {2771,7726}, {2783,6226}, {2787,6320}, {2800,12698}, {2802,3640}, {2806,13283}, {2831,12806}, {5541,5588}, {5594,13222}, {5840,5870}, {6214,10738}, {8199,13228}, {8206,13230}, {8218,13275}, {8219,13276}, {9995,13235}, {10041,10087}, {10049,10090}, {10784,13199}, {10793,13194}, {10920,13271}, {10922,13272}, {10924,13273}, {10926,13274}, {10930,13278}, {10932,13279}, {11498,13205}, {11902,13268}, {11917,12331}
X(13270) = reflection of X(i) in X(j) for these (i,j): (12754,1160), (13269,100)
X(13270) = X(100)-of-outer-Grebe-triangle
The reciprocal parallelogic center of these triangles is X(1).
X(13271) lies on these lines: {2,11}, {4,5854}, {8,12764}, {12,13278}, {80,10914}, {104,3813}, {119,3913}, {145,12763}, {214,11373}, {355,2802}, {519,10742}, {529,10728}, {952,6256}, {1145,1479}, {1320,10944}, {1537,12635}, {1862,11390}, {2771,12371}, {2783,12182}, {2787,13180}, {2800,12700}, {2806,13294}, {2829,12513}, {2831,12925}, {2932,5533}, {3036,5082}, {3419,12758}, {3811,12611}, {3880,12751}, {5541,10826}, {5840,12114}, {5851,6601}, {5882,12737}, {9024,12586}, {10087,10523}, {10090,10948}, {10785,13199}, {10794,13194}, {10829,13222}, {10871,13235}, {10916,12515}, {10919,13269}, {10920,13270}, {10945,13275}, {10946,13276}, {10949,13279}, {11865,13228}, {11866,13230}, {11903,13268}, {11928,12331}, {12625,13253}
X(13271) = midpoint of X(12625) and X(13253)
X(13271) = reflection of X(i) in X(j) for these (i,j): (104,3813), (3811,12611), (3913,119), (12515,10916), (12635,1537), (12761,10525), (13205,11), (13272,10738)
X(13271) = X(100)-of-inner-Johnson-triangle
X(13271) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (100,149,13274), (149,3434,11), (3434,10947,1376), (11235,13205,11)
The reciprocal parallelogic center of these triangles is X(1).
X(13272) lies on these lines: {4,528}, {11,958}, {12,100}, {72,80}, {104,6903}, {119,10894}, {149,3436}, {214,11374}, {355,2802}, {377,6174}, {443,3035}, {529,6840}, {952,10526}, {1320,10950}, {1478,10609}, {1479,10912}, {1862,11391}, {2551,6068}, {2771,12372}, {2783,12183}, {2787,13181}, {2800,5812}, {2801,5787}, {2806,13295}, {2829,6851}, {2831,12935}, {3555,12750}, {3583,3880}, {3813,5046}, {3829,6965}, {4421,6923}, {5220,5856}, {5541,10827}, {5791,6702}, {5840,11500}, {6224,12763}, {6253,10724}, {6827,11194}, {6928,12513}, {6929,11235}, {8668,12953}, {9024,12587}, {10087,10954}, {10090,10523}, {10742,12437}, {10786,13199}, {10795,13194}, {10830,13222}, {10872,13235}, {10921,13269}, {10922,13270}, {10951,13275}, {10952,13276}, {10955,13278}, {11867,13228}, {11868,13230}, {11904,13268}, {11929,12331}
X(13272) = reflection of X(i) in X(j) for these (i,j): (12762,10526), (13271,10738)
X(13272) = X(100)-of-outer-Johnson-triangle
The reciprocal parallelogic center of these triangles is X(1).
X(13273) lies on the Johnson-Yff-inner-circle and these lines: {1,10738}, {3,8068}, {4,11}, {5,10090}, {12,100}, {30,5172}, {46,12619}, {55,5840}, {65,79}, {115,1415}, {119,6917}, {149,388}, {153,5229}, {214,11375}, {226,12739}, {355,12665}, {377,3035}, {381,1470}, {495,10087}, {517,10057}, {528,10956}, {942,10073}, {946,12740}, {952,1478}, {999,5533}, {1319,3583}, {1320,10944}, {1357,10774}, {1358,10773}, {1361,10777}, {1362,10770}, {1364,10771}, {1387,1388}, {1411,3120}, {1454,1768}, {1484,10074}, {1617,3830}, {1770,12515}, {1836,2800}, {1837,5884}, {1862,11392}, {2098,10525}, {2476,4996}, {2478,6667}, {2550,6068}, {2646,12119}, {2783,12184}, {2787,13182}, {2802,5252}, {2806,13296}, {2831,12945}, {3022,10772}, {3023,10768}, {3027,10769}, {3028,10778}, {3032,9552}, {3036,3436}, {3045,9652}, {3085,13199}, {3254,8581}, {3303,10629}, {3320,10780}, {3324,10775}, {3325,10779}, {3340,9897}, {3434,5854}, {3485,6224}, {3614,6901}, {3649,11604}, {4185,9658}, {4292,10265}, {4295,12247}, {5046,5303}, {5083,10404}, {5204,6713}, {5217,6850}, {5221,12019}, {5270,7972}, {5432,6951}, {5434,10707}, {5541,9578}, {6264,9613}, {6265,12047}, {6284,10724}, {6326,9612}, {7680,12775}, {9024,12588}, {9654,12331}, {9655,12773}, {10797,13194}, {10831,13222}, {10873,13235}, {10894,12332}, {10923,13269}, {10924,13270}, {10957,13279}, {11501,13205}, {11510,12953}, {11869,13228}, {11870,13230}, {11905,13268}, {11930,13275}, {11931,13276}, {12699,12758}
X(13273) = reflection of X(i) in X(j) for these (i,j): (10087,495), (12739,226), (12763,1478), (12775,7680)
X(13273) = antipode of X(12763) in Johnson-Yff-inner-circle
X(13273) = X(100)-of-1st-Johnson-Yff-triangle
X(13273) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,10738,13274), (4,11,12764), (11,7354,104), (79,80,11571), (80,3585,10742), (149,388,1317)
The reciprocal parallelogic center of these triangles is X(1).
X(13274) lies on the Johnson-Yff-outer-circle and these lines: {1,10738}, {2,11}, {3,5533}, {4,1317}, {5,10087}, {30,10074}, {56,5840}, {80,3057}, {104,6284}, {119,10896}, {153,5225}, {214,11376}, {496,10090}, {517,10073}, {944,12761}, {946,12739}, {952,1479}, {1319,12119}, {1320,10950}, {1361,10771}, {1362,10772}, {1364,10777}, {1388,10525}, {1478,12735}, {1484,10058}, {1768,9580}, {1836,5083}, {1837,2802}, {1862,11393}, {2478,3036}, {2771,12374}, {2783,12185}, {2787,13183}, {2800,12701}, {2806,13297}, {2829,12116}, {2831,12955}, {3022,10770}, {3023,10769}, {3027,10768}, {3032,9555}, {3045,9667}, {3086,13199}, {3254,3255}, {3295,8068}, {3318,10776}, {3583,5048}, {3586,6264}, {5046,12531}, {5119,12619}, {5217,6713}, {5541,9581}, {5727,12653}, {6018,10774}, {6019,10779}, {6020,10780}, {6068,6601}, {6326,9614}, {6595,13080}, {7158,10775}, {7354,10724}, {7962,9897}, {9024,12589}, {9668,12773}, {9669,12331}, {9670,10966}, {9957,10057}, {10265,10624}, {10531,10895}, {10543,11604}, {10572,12737}, {10798,13194}, {10832,13222}, {10874,13235}, {10925,13269}, {10926,13270}, {10958,13278}, {10959,13279}, {11570,12699}, {11871,13228}, {11872,13230}, {11906,13268}, {11932,13275}, {11933,13276}, {12053,12740}
X(13274) = reflection of X(i) in X(j) for these (i,j): (10090,496), (12740,12053), (12764,1479)
X(13274) = antipode of X(12764) in Johnson-Yff-outer-circle
X(13274) = X(100)-of-2nd-Johnson-Yff-triangle
X(13274) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,10738,13273), (4,1317,12763), (100,149,13271), (149,497,11), (497,10947,55)
The reciprocal parallelogic center of these triangles is X(1).
X(13275) lies on these lines: {11,8222}, {80,8214}, {100,493}, {104,11828}, {119,8212}, {149,6462}, {214,11377}, {528,12152}, {952,10669}, {1320,8210}, {1862,11394}, {2771,12377}, {2783,12186}, {2787,13184}, {2802,12440}, {2806,13298}, {2831,12996}, {5541,8188}, {5840,9838}, {6461,13276}, {8194,13222}, {8201,13228}, {8208,13230}, {8216,13269}, {8218,13270}, {8220,10738}, {9024,12590}, {10087,11951}, {10090,11953}, {10875,13235}, {10945,13271}, {10951,13272}, {10981,12766}, {11503,13205}, {11840,13194}, {11846,13199}, {11907,13268}, {11930,13273}, {11932,13274}, {11949,12331}, {11955,13278}, {11957,13279}
X(13275) = X(100)-of-Lucas-homothetic-triangle
The reciprocal parallelogic center of these triangles is X(1).
X(13276) lies on these lines: {11,8223}, {80,8215}, {100,494}, {104,11829}, {119,8213}, {149,6463}, {214,11378}, {528,12153}, {952,10673}, {1320,8211}, {1862,11395}, {2771,12378}, {2783,12187}, {2787,13185}, {2802,12441}, {2806,13299}, {2831,12997}, {5541,8189}, {5840,9839}, {6461,13275}, {8195,13222}, {8202,13228}, {8209,13230}, {8217,13269}, {8219,13270}, {8221,10738}, {9024,12591}, {10087,11952}, {10090,11954}, {10876,13235}, {10946,13271}, {10952,13272}, {10981,12765}, {11504,13205}, {11841,13194}, {11847,13199}, {11908,13268}, {11931,13273}, {11933,13274}, {11950,12331}, {11956,13278}, {11958,13279}
X(13276) = X(100)-of-Lucas(-1)-homothetic-triangle
The reciprocal parallelogic center of these triangles is X(3869).
X(13277) lies on these lines: {11,244}, {80,291}, {100,110}, {214,3126}, {513,3218}, {659,3738}, {690,4736}, {952,4922}, {2775,12515}, {2802,4730}, {2804,13256}, {2827,13252}
X(13277) = reflection of X(i) in X(j) for these (i,j): (100,9508), (4010,11)
X(13277) = X(265)-of-2nd-Sharygin-triangle
X(13277) = 1st-Sharygin-to-2nd-Sharygin similarity image of X(12770)
X(13277) = excentral-to-2nd-Sharygin similarity image of X(6326)
X(13277) = hexyl-to-2nd-Sharygin similarity image of X(1768)
The reciprocal parallelogic center of these triangles is X(1).
X(13278) lies on these lines: {1,88}, {8,4571}, {11,3913}, {12,13271}, {21,12641}, {55,5854}, {80,10915}, {104,145}, {119,149}, {519,10058}, {528,10956}, {952,1012}, {1145,3295}, {1317,11509}, {1387,5687}, {1470,3241}, {1862,11400}, {2771,12381}, {2783,12189}, {2787,13189}, {2800,3870}, {2806,13313}, {2831,13118}, {2932,12735}, {2950,12658}, {3035,3303}, {3244,10074}, {3256,10031}, {3555,12515}, {3811,12758}, {5840,12115}, {5853,6735}, {6256,10724}, {6713,10529}, {6918,11729}, {9024,12594}, {10738,10942}, {10803,13194}, {10805,13199}, {10834,13222}, {10878,13235}, {10929,13269}, {10930,13270}, {10955,13272}, {10958,13274}, {11881,13228}, {11882,13230}, {11914,13268}, {11955,13275}, {11956,13276}, {12607,12764}
X(13278) = reflection of X(i) in X(j) for these (i,j): (100,10087), (12775,10679)
X(13278) = X(100)-of-inner-Yff-tangents-triangle
X(13278) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (100,1320,13279), (149,10528,119), (1320,3871,100), (3913,10965,5552), (8715,10090,100)
The reciprocal parallelogic center of these triangles is X(1).
X(13279) lies on these lines: {1,88}, {11,958}, {20,104}, {21,3254}, {56,528}, {80,5288}, {119,6953}, {145,11499}, {952,3149}, {956,12019}, {999,1004}, {1145,9709}, {1479,2975}, {1862,11401}, {2771,12382}, {2783,12190}, {2787,13190}, {2800,12704}, {2806,13314}, {2831,13119}, {3555,12738}, {3825,5260}, {4308,6224}, {4311,10074}, {4996,9785}, {5267,10058}, {6911,12648}, {9024,12595}, {10269,10993}, {10738,10943}, {10804,13194}, {10806,13199}, {10835,13222}, {10879,13235}, {10931,13269}, {10932,13270}, {10949,13271}, {10957,13273}, {10959,13274}, {11510,13205}, {11883,13228}, {11884,13230}, {11915,13268}, {11957,13275}, {11958,13276}, {12001,12331}, {12690,12773}
X(13279) = reflection of X(i) in X(j) for these (i,j): (100,10090), (12776,10680)
X(13279) = X(100)-of-outer-Yff-tangents-triangle
X(13279) = {X(100), X(1320)}-harmonic conjugate of X(13278)
The reciprocal parallelogic center of these triangles is X(6).
X(13280) lies on these lines: {1,127}, {2,11722}, {10,112}, {40,2794}, {65,13296}, {72,13295}, {80,2806}, {132,5587}, {355,12784}, {515,1297}, {516,10735}, {517,10749}, {519,10705}, {944,12265}, {946,13099}, {1012,12340}, {1698,6720}, {1737,13312}, {1837,6020}, {2781,3416}, {2799,13178}, {2802,10780}, {2831,12751}, {3057,13297}, {3320,5252}, {3679,13221}, {5090,13166}, {5657,13200}, {5687,13206}, {5688,13283}, {5689,13282}, {5691,12408}, {5790,13310}, {5847,10766}, {8193,11641}, {8197,13229}, {8204,13231}, {8214,13298}, {8215,13299}, {9517,13211}, {9857,13236}, {10039,13311}, {10572,13116}, {10791,13195}, {10914,13294}, {10915,13313}, {10916,13314}, {11900,13281}
X(13280) = midpoint of X(i) and X(j) for these {i,j}: {8,13219}, {5691,12408}
X(13280) = reflection of X(i) in X(j) for these (i,j): (1,127), (112,10), (944,12265), (12784,355), (13099,946)
X(13280) = anticomplement of X(11722)
X(13280) = X(112)-of-outer-Garcia-triangle
The reciprocal parallelogic center of these triangles is X(6).
X(13281) lies on these lines: {30,935}, {112,402}, {127,1650}, {132,11897}, {2781,12369}, {2794,12113}, {2799,13179}, {2806,13268}, {2831,12752}, {4240,13219}, {6020,11909}, {9517,13212}, {10705,11910}, {11251,12796}, {11641,11853}, {11722,11831}, {11832,13166}, {11839,13195}, {11845,13200}, {11848,13206}, {11852,13221}, {11863,13229}, {11864,13231}, {11885,13236}, {11900,13280}, {11901,13282}, {11902,13283}, {11903,13294}, {11904,13295}, {11905,13296}, {11906,13297}, {11907,13298}, {11908,13299}, {11911,13310}, {11912,13311}, {11913,13312}, {11914,13313}, {11915,13314}
X(13281) = midpoint of X(4240) and X(13219)
X(13281) = reflection of X(i) in X(j) for these (i,j): (112,402), (1650,127), (12796,11251)
X(13281) = X(112)-of-Gossard-triangle
The reciprocal parallelogic center of these triangles is X(6).
X(13282) lies on these lines: {6,74}, {127,5591}, {132,6202}, {1161,12805}, {1271,13219}, {1297,11824}, {2794,5871}, {2799,6319}, {2806,13269}, {2831,12753}, {5589,13221}, {5595,11641}, {5605,10705}, {5689,13280}, {6020,10927}, {6215,10749}, {7732,9517}, {8198,13229}, {8205,13231}, {8216,13298}, {8217,13299}, {9994,13236}, {10040,13311}, {10048,13312}, {10783,13200}, {10792,13195}, {10919,13294}, {10921,13295}, {10923,13296}, {10925,13297}, {10929,13313}, {10931,13314}, {11370,11722}, {11388,13166}, {11497,13206}, {11901,13281}, {11916,13310}
X(13282) = reflection of X(13283) in X(112)
X(13282) = X(112)-of-inner-Grebe-triangle
The reciprocal parallelogic center of these triangles is X(6).
X(13283) lies on these lines: {6,74}, {127,5590}, {132,6201}, {1160,12806}, {1270,13219}, {1297,11825}, {2794,5870}, {2799,6320}, {2806,13270}, {2831,12754}, {5588,13221}, {5594,11641}, {5604,10705}, {5688,13280}, {6020,10928}, {6214,10749}, {7733,9517}, {8199,13229}, {8206,13231}, {8218,13298}, {8219,13299}, {9995,13236}, {10041,13311}, {10049,13312}, {10793,13195}, {10920,13294}, {10922,13295}, {10924,13296}, {10926,13297}, {10930,13313}, {10932,13314}, {11371,11722}, {11389,13166}, {11498,13206}, {11902,13281}, {11917,13310}
X(13283) = reflection of X(13282) in X(112)
X(13283) = X(112)-of-outer-Grebe-triangle
The reciprocal parallelogic center of these triangles is X(40).
X(13284) lies on the line {351,13285}
X(13284) = reflection of X(13285) in X(351)
X(13284) = X(7160)-of-1st-Parry-triangle
X(13284) = X(12120)-of-2nd-Parry-triangle
The reciprocal parallelogic center of these triangles is X(40).
X(13285) lies on the line {351,13284}
X(13285) = reflection of X(13284) in X(351)
X(13285) = X(7160)-of-2nd-Parry-triangle
X(13285) = X(12120)-of-1st-Parry-triangle
The reciprocal parallelogic center of these triangles is X(3555).
X(13286) lies on these lines: {}
X(13286) = 1st-Sharygin-to-2nd-Sharygin similarity image of X(12869)
X(13286) = excentral-to-2nd-Sharygin similarity image of X(12658)
X(13286) = hexyl-to-2nd-Sharygin similarity image of X(12842)
The reciprocal parallelogic center of these triangles is X(10116).
X(13287) lies on these lines: {6,1112}, {26,12892}, {74,10880}, {110,10533}, {113,10897}, {125,5412}, {371,2777}, {372,13289}, {1151,2935}, {2066,10118}, {2781,11241}, {3068,13203}, {3311,9919}, {5415,10119}, {5663,11265}, {5972,11513}, {6200,13293}, {6723,10961}, {6759,12376}, {7731,11462}, {10628,12375}, {11447,13201}, {11473,13202}
X(13287) = X(100)-of-1st-Kenmotu-diagonals-triangle if ABC is acute
X(13287) = orthic-to-1st-Kenmotu-diagonals similarity image of X(125)
X(13287) = {X(6),X(10117)}-harmonic conjugate of X(13288)
The reciprocal parallelogic center of these triangles is X(10116).
X(13288) lies on these lines: {6,1112}, {26,12891}, {74,10881}, {110,10534}, {113,10898}, {125,5413}, {371,13289}, {372,2777}, {1152,2935}, {2781,11242}, {3069,13203}, {3312,9919}, {5411,13171}, {5414,10118}, {5416,10119}, {5663,11266}, {5972,11514}, {6396,13293}, {6723,10963}, {6759,12375}, {7731,11463}, {10628,12376}, {11448,13201}, {11474,13202}
X(13288) = X(100)-of-2nd-Kenmotu-diagonals-triangle if ABC is acute
X(13288) = orthic-to-2nd-Kenmotu-diagonals similarity image of X(125)
X(13288) = {X(6),X(10117)}-harmonic conjugate of X(13287)
The reciprocal parallelogic center of these triangles is X(10116).
X(13289) lies on these lines: {3,113}, {15,10682}, {16,10681}, {23,10733}, {24,125}, {25,7687}, {30,12901}, {35,10118}, {74,186}, {110,5562}, {146,10298}, {154,399}, {159,542}, {182,9826}, {184,1986}, {206,1511}, {265,2070}, {371,13288}, {372,13287}, {378,13202}, {389,13198}, {511,1177}, {575,13248}, {578,1112}, {631,13203}, {974,11438}, {1498,10620}, {1503,7575}, {1531,2071}, {1614,7722}, {1658,5663}, {1843,5622}, {2393,9976}, {2778,3579}, {2917,5898}, {2937,12121}, {3043,7731}, {3047,5889}, {3357,12041}, {3448,9833}, {3515,13171}, {3520,10721}, {3818,6644}, {4550,11204}, {5480,11566}, {5878,12244}, {5944,10274}, {6053,12168}, {6642,6723}, {7387,12302}, {7514,12900}, {7517,12295}, {7556,12383}, {7723,10539}, {7724,10536}, {7727,10535}, {8994,9682}, {9306,12358}, {9590,13211}, {10119,10902}, {10192,10272}, {10533,12375}, {10534,12376}, {11206,12317}, {11430,11807}, {11449,13201}, {11557,12228}
X(13289) = midpoint of X(i) and X(j) for these {i,j}: {3,10117}, {74,9934}, {1498,10620}, {2931,12412}, {2935,9919}, {3448,9833}, {5878,12244}, {7387,12302}
X(13289) = reflection of X(i) in X(j) for these (i,j): (110,10282), (3357,12041), (12893,1658), (13248,575), (13293,3)
X(13289) = anticomplement of X(32743)
X(13289) = circumcircle-inverse-of-X(10745)
X(13289) = X(100)-of-Kosnita-triangle if ABC is acute
X(13289) = orthic-to-Kosnita similarity image of X(125)
X(13289) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (184,1986,12227), (7731,11464,3043)
The reciprocal parallelogic center of these triangles is X(6102).
X(13290) lies on these lines: {110,930}, {351,13291}, {523,9138}, {526,9131}, {690,8030}, {9033,13302}, {11419,12219}
X(13290) = reflection of X(13291) in X(351)
X(13290) = X(265)-of-1st-Parry-triangle
X(13290) = X(12121)-of-2nd-Parry-triangle
The reciprocal parallelogic center of these triangles is X(6102).
Let A* be the intersection of the lies through X(110) perpendicular to BC, and define B* and C* cyclically. Then X(13291) is the centroid of the degenerate triangle A*B*C*. (Angel Montesdeoca, November 1, 2021). See X(13291).
See Antreas Hatzipolakis and Angel Montesdeoca, euclid 2948.
X(13291) lies on these lines: {110,476}, {115,125}, {351,13290}, {525,5653}, {526,9979}, {542,8029}, {1499,7728}, {1649,5972}, {3448,5466}, {5642,11123}, {9033,13303}, {9138,13318}, {9140,10278}
X(13291) = reflection of X(i) in X(j) for these (i,j): (9140,10278), (11123,5642), (13290,351)
X(13291) = X(265)-of-2nd-Parry-triangle
X(13291) = X(12121)-of-1st-Parry-triangle
The reciprocal parallelogic center of these triangles is X(125).
X(13292) lies on these lines: {3,6515}, {5,6}, {30,52}, {49,468}, {51,12134}, {54,3580}, {69,7393}, {140,343}, {143,6756}, {193,6643}, {195,2072}, {389,10112}, {524,1216}, {539,5462}, {542,10110}, {568,3575}, {578,12359}, {973,12236}, {1112,10111}, {1154,12362}, {1209,1493}, {1503,5446}, {1594,1994}, {1993,11585}, {2917,7575}, {3060,7553}, {3284,10600}, {3549,11402}, {3627,5878}, {3861,10113}, {5422,7405}, {5889,12022}, {5946,9825}, {5965,11793}, {6101,9967}, {6193,6642}, {6644,9937}, {6776,7387}, {7403,11442}, {7528,9777}, {7550,12325}, {8263,9925}, {9545,10018}, {9786,12118}, {9818,11411}, {9927,12233}, {10114,11800}, {10115,11262}, {10627,10691}, {11432,12429}, {11436,12428}
X(13292) = midpoint of X(i) and X(j) for these {i,j}: {52,6146}, {143,11264}, {155,12421}, {389,10112}, {1112,10111}, {1493,12899}, {5446,10116}, {5889,12605}, {6102,12370}, {10114,11800}
X(13292) = reflection of X(6756) in X(143)
X(13292) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5,1353,12161), (6,68,5), (54,3580,7542), (343,569,140), (5446,11232,10116), (5889,12022,12605), (10112,11225,389)
X(13292) = X(11)-of-1st-Hyacinth-triangle if ABC is acute
X(13292) = orthic-to-1st-Hyacinth similarity image of X(1112)
The reciprocal parallelogic center of these triangles is X(10116).
X(13293) lies on the Trihn circle and these lines: {3,113}, {24,13202}, {30,12893}, {36,10118}, {54,74}, {64,399}, {110,2071}, {125,378}, {182,2781}, {186,10721}, {376,13203}, {511,13248}, {542,12302}, {578,974}, {1092,12825}, {1112,11438}, {1147,3357}, {1177,5092}, {1204,1986}, {1385,2778}, {1503,12584}, {1511,6759}, {1593,7687}, {1853,12902}, {2771,12262}, {2883,10272}, {2931,12085}, {3043,6241}, {5894,10226}, {6200,13287}, {6396,13288}, {6696,10264}, {6699,7526}, {6723,9818}, {7688,10119}, {7731,11468}, {8717,11202}, {8718,9934}, {8907,11413}, {9932,12084}, {10606,10620}, {10645,10681}, {10646,10682}, {10733,12086}, {11410,13171}, {11440,12219}, {11454,13201}
X(13293) = midpoint of X(i) and X(j) for these {i,j}: {3,2935}, {64,399}, {2931,12085}
X(13293) = reflection of X(i) in X(j) for these (i,j): (1177,5092), (2883,10272), (3357,11598), (6759,1511), (9934,10282), (10264,6696), (12901,11250), (13289,3)
X(13293) = X(100)-of-Trinh-triangle if ABC is acute
The reciprocal parallelogic center of these triangles is X(6).
X(13294) lies on these lines: {11,112}, {12,13313}, {127,1376}, {132,10893}, {355,10749}, {1297,11826}, {2781,12371}, {2794,12114}, {2799,13180}, {2806,13271}, {2831,12761}, {3434,13219}, {6020,10947}, {9517,13213}, {10523,13311}, {10525,12925}, {10705,10944}, {10785,13200}, {10794,13195}, {10826,13221}, {10829,11641}, {10871,13236}, {10914,13280}, {10919,13282}, {10920,13283}, {10945,13298}, {10946,13299}, {10948,13312}, {10949,13314}, {11373,11722}, {11390,13166}, {11865,13229}, {11866,13231}, {11903,13281}, {11928,13310}
X(13294) = reflection of X(i) in X(j) for these (i,j): (12925,10525), (13206,127), (13295,10749)
X(13294) = X(112)-of-inner-Johnson-triangle
The reciprocal parallelogic center of these triangles is X(6).
X(13295) lies on these lines: {11,13314}, {12,112}, {72,13280}, {127,958}, {132,10894}, {355,10749}, {1297,11827}, {2781,12372}, {2794,11500}, {2799,13181}, {2806,13272}, {2831,12762}, {3436,13219}, {6020,10953}, {6253,10735}, {9517,13214}, {10523,13312}, {10526,12935}, {10705,10950}, {10786,13200}, {10795,13195}, {10827,13221}, {10830,11641}, {10872,13236}, {10921,13282}, {10922,13283}, {10951,13298}, {10952,13299}, {10954,13311}, {10955,13313}, {11374,11722}, {11391,13166}, {11867,13229}, {11868,13231}, {11904,13281}, {11929,13310}
X(13295) = reflection of X(i) in X(j) for these (i,j): (12935,10526), (13294,10749)
X(13295) = X(112)-of-outer-Johnson-triangle
The reciprocal parallelogic center of these triangles is X(6).
X(13296) lies on the Johnson-Yff-inner-circle and these lines: {1,10749}, {4,6020}, {5,13312}, {12,112}, {30,13116}, {55,2794}, {56,127}, {65,13280}, {132,10895}, {388,3320}, {495,13311}, {1297,7354}, {1478,12945}, {2781,12373}, {2799,13182}, {2806,13273}, {2831,12763}, {3085,13200}, {3585,12918}, {5229,12384}, {5434,10718}, {6284,10735}, {9517,12903}, {9578,13221}, {9579,12408}, {9654,13310}, {9655,13115}, {10705,10944}, {10797,13195}, {10831,11641}, {10873,13236}, {10923,13282}, {10924,13283}, {10956,13313}, {10957,13314}, {11375,11722}, {11392,13166}, {11501,13206}, {11905,13281}, {11930,13298}, {11931,13299}
X(13296) = reflection of X(i) in X(j) for these (i,j): (12945,1478), (13311,495)
X(13296) = Johnson-Yff-inner-circle-antipode of X(12945)
X(13296) = X(112)-of-1st-Johnson-Yff-triangle
X(13296) = {X(1),X(10749)}-harmonic conjugate of X(13297)
The reciprocal parallelogic center of these triangles is X(6).
X(13297) lies on the Johnson-Yff-outer-circle and these lines: {1,10749}, {4,3320}, {5,13311}, {11,112}, {30,13117}, {55,127}, {56,2794}, {132,10896}, {496,13312}, {497,6020}, {1297,6284}, {1479,12955}, {2781,12374}, {2799,13183}, {2806,13274}, {2831,12764}, {3057,13280}, {3058,10718}, {3086,13200}, {3583,12918}, {5225,12384}, {7354,10735}, {9517,12904}, {9580,12408}, {9581,13221}, {9668,13115}, {9669,13310}, {10705,10950}, {10798,13195}, {10832,11641}, {10874,13236}, {10925,13282}, {10926,13283}, {10958,13313}, {10959,13314}, {11376,11722}, {11393,13166}, {11502,13206}, {11871,13229}, {11872,13231}, {11906,13281}, {11932,13298}, {11933,13299}
X(13297) = reflection of X(i) in X(j) for these (i,j): (12955,1479), (13312,496)
X(13297) = Johnson-Yff-outer-circle-antipode of X(12955)
X(13297) = X(112)-of-2nd-Johnson-Yff-triangle
X(13297) = {X(1),X(10749)}-harmonic conjugate of X(13296)
The reciprocal parallelogic center of these triangles is X(6).
X(13298) lies on these lines: {112,493}, {127,8222}, {132,8212}, {1297,11828}, {2781,12377}, {2794,9838}, {2799,13184}, {2806,13275}, {2831,12765}, {6020,11947}, {6461,13299}, {6462,13219}, {8188,13221}, {8194,11641}, {8201,13229}, {8208,13231}, {8214,13280}, {8216,13282}, {8218,13283}, {8220,10749}, {9517,13215}, {10669,12996}, {10875,13236}, {10945,13294}, {10951,13295}, {10981,12997}, {11377,11722}, {11394,13166}, {11503,13206}, {11840,13195}, {11846,13200}, {11907,13281}, {11930,13296}, {11932,13297}, {11949,13310}, {11951,13311}, {11953,13312}, {11955,13313}, {11957,13314}
X(13298) = X(112)-of-Lucas-homothetic-triangle
The reciprocal parallelogic center of these triangles is X(6).
X(13299) lies on these lines: {112,494}, {127,8223}, {132,8213}, {1297,11829}, {2781,12378}, {2794,9839}, {2799,13185}, {2806,13276}, {2831,12766}, {6020,11948}, {6461,13298}, {6463,13219}, {8189,13221}, {8195,11641}, {8202,13229}, {8209,13231}, {8211,10705}, {8215,13280}, {8217,13282}, {8219,13283}, {8221,10749}, {9517,13216}, {10673,12997}, {10876,13236}, {10946,13294}, {10952,13295}, {10981,12996}, {11378,11722}, {11395,13166}, {11504,13206}, {11841,13195}, {11847,13200}, {11908,13281}, {11931,13296}, {11933,13297}, {11950,13310}, {11952,13311}, {11954,13312}, {11956,13313}, {11958,13314}
X(13299) = X(112)-of-Lucas(-1)-homothetic-triangle
The reciprocal parallelogic center of these triangles is X(3555).
X(13300) lies on these lines: {}
X(13300) = 1st-Sharygin-to-2nd-Sharygin similarity image of X(13071)
X(13300) = excentral-to-2nd-Sharygin similarity image of X(12659)
X(13300) = hexyl-to-2nd-Sharygin similarity image of X(12843)
The reciprocal parallelogic center of these triangles is X(1).
X(13301) lies on these lines: pending)
X(13301) = X(1)-of-2nd-Sharygin-triangle
X(13301) = 1st-Sharygin-to-2nd-Sharygin similarity image of X(13091)
X(13301) = excentral-to-2nd-Sharygin similarity image of X(164)
X(13301) = hexyl-to-2nd-Sharygin similarity image of X(12844)
X(13301) = intouch-to-2nd-Sharygin similarity image of X(177)
The reciprocal parallelogic center of these triangles is X(4).
X(13302) lies on these lines: {297,525}, {351,520}, {521,9811}, {523,13223}, {8057,9131}, {9033,13290}
X(13302) = reflection of X(13303) in X(351)
X(13302) = X(64)-of-1st-Parry-triangle
X(13302) = X(1498)-of-2nd-Parry-triangle
The reciprocal parallelogic center of these triangles is X(4).
X(13303) lies on these lines: {110,1301}, {351,520}, {521,9810}, {523,13224}, {525,9131}, {1636,3167}, {2444,9517}, {3569,6753}, {8057,9979}, {9033,13291}
X(13303) = reflection of X(i) in X(j) for these (i,j): (1636,3167), (13302,351)
X(13303) = X(64)-of-2nd-Parry-triangle
X(13303) = X(1498)-of-1st-Parry-triangle
The reciprocal parallelogic center of these triangles is X(3).
X(13304) lies on these lines: {351,9200}, {690,8030}, {804,9205}, {5917,9215}, {8595,9485}, {9158,9162}
X(13304) = reflection of X(9200) in X(351)
X(13304) = X(14)-of-1st-Parry-triangle
X(13304) = X(5474)-of-2nd-Parry-triangle
The reciprocal parallelogic center of these triangles is X(3).
X(13305) lies on these lines: {351,9201}, {690,8030}, {804,9204}, {5916,9215}, {8594,9485}, {9158,9163}
X(13305) = reflection of X(9201) in X(351)
X(13305) = X(13)-of-1st-Parry-triangle
X(13305) = X(5473)-of-2nd-Parry-triangle
The reciprocal parallelogic center of these triangles is X(3).
X(13306) lies on these lines: {2,351}, {512,9131}, {2780,7833}, {5025,11615}, {9135,13308}
X(13306) = reflection of X(13307) in X(351)
X(13306) = X(76)-of-1st-Parry-triangle
X(13306) = X(11257)-of-2nd-Parry-triangle
The reciprocal parallelogic center of these triangles is X(3).
X(13307) lies on these lines: {2,351}, {512,9979}, {850,5027}, {3569,13309}
X(13307) = reflection of X(13306) in X(351)
X(13307) = X(76)-of-2nd-Parry-triangle
X(13307) = X(11257)-of-1st-Parry-triangle
The reciprocal parallelogic center of these triangles is X(3).
X(13308) lies on these lines: {351,13309}, {826,5027}, {9135,13306}, {9147,9479}
X(13308) = reflection of X(13309) in X(351)
X(13308) = X(83)-of-1st-Parry-triangle
X(13308) = X(12122)-of-2nd-Parry-triangle
The reciprocal parallelogic center of these triangles is X(3).
X(13309) lies on these lines: {2,9479}, {351,13308}, {826,9208}, {3569,13307}, {5466,9302}
X(13309) = reflection of X(13308) in X(351)
X(13309) = X(83)-of-2nd-Parry-triangle
X(13309) = X(12122)-of-1st-Parry-triangle
The reciprocal parallelogic center of these triangles is X(6).
X(13310) lies on the Stammler circle and these lines: {3,112}, {5,13219}, {30,12384}, {127,1656}, {132,381}, {382,2794}, {399,9517}, {517,13221}, {550,12253}, {999,3320}, {1351,2781}, {1597,12145}, {1598,13166}, {2070,2080}, {2799,13188}, {2806,12331}, {2831,12773}, {3295,6020}, {3526,6720}, {3534,9530}, {3579,12408}, {3830,10735}, {5055,10718}, {5093,10766}, {5790,13280}, {7517,11641}, {8148,13099}, {9301,13236}, {9654,13296}, {9655,12945}, {9668,12955}, {9669,13297}, {10246,11722}, {10247,10705}, {11842,13195}, {11849,13206}, {11875,13229}, {11876,13231}, {11911,13281}, {11916,13282}, {11917,13283}, {11928,13294}, {11929,13295}, {11949,13298}, {11950,13299}, {12000,13313}, {12001,13314}, {12083,12413}
X(13310) = midpoint of X(12384) and X(13200)
X(13310) = reflection of X(i) in X(j) for these (i,j): (3,112), (382,12918), (8148,13099), (10749,132), (12253,550), (12408,3579), (13115,3), (13219,5)
X(13310) = antipode of X(13115) in Stammler circle
X(13310) = {X(132), X(10749)}-harmonic conjugate of X(381)
X(13310) = X(112)-of-X3-ABC-reflections-triangle
The reciprocal parallelogic center of these triangles is X(6).
X(13311) lies on these lines: {1,112}, {3,3320}, {5,13297}, {12,10749}, {30,12945}, {35,1297}, {55,13116}, {127,498}, {132,1479}, {388,13200}, {495,13296}, {499,6720}, {611,2781}, {1478,2794}, {2799,10086}, {2806,10087}, {2831,10058}, {3085,13219}, {3295,6020}, {3584,10718}, {3585,10735}, {3612,12265}, {4294,12384}, {5697,13099}, {6284,12918}, {8068,10780}, {9517,10088}, {10037,11641}, {10038,13236}, {10039,13280}, {10523,13294}, {10572,12784}, {10801,13195}, {10954,13295}, {11398,13166}, {11507,13206}, {11877,13229}, {11878,13231}, {11912,13281}, {11951,13298}, {11952,13299}
X(13311) = midpoint of X(112) and X(13313)
X(13311) = reflection of X(i) in X(j) for these (i,j): (13116,55), (13296,495)
X(13311) = X(112)-of-inner-Yff-triangle
X(13311) = {X(1), X(112)}-harmonic conjugate of X(13312)
The reciprocal parallelogic center of these triangles is X(6).
X(13312) lies on these lines: {1,112}, {3,6020}, {5,13296}, {11,10749}, {30,12955}, {36,1297}, {56,13117}, {127,499}, {132,1478}, {496,13297}, {497,13200}, {498,6720}, {613,2781}, {999,3320}, {1479,2794}, {1737,13280}, {1795,2853}, {2799,10089}, {2806,10090}, {2831,10074}, {3086,13219}, {3582,10718}, {3583,10735}, {4293,12384}, {5533,10780}, {7354,12918}, {9517,10091}, {10046,11641}, {10047,13236}, {10048,13282}, {10049,13283}, {10523,13295}, {10802,13195}, {10948,13294}, {11399,13166}, {11508,13206}, {11879,13229}, {11880,13231}, {11913,13281}, {11953,13298}, {11954,13299}
X(13312) = midpoint of X(112) and X(13314)
X(13312) = reflection of X(i) in X(j) for these (i,j): (13117,56), (13297,496)
X(13312) = X(112)-of-outer-Yff-triangle
X(13312) = {X(1), X(112)}-harmonic conjugate of X(13311)
The reciprocal parallelogic center of these triangles is X(6).
X(13313) lies on these lines: {1,112}, {12,13294}, {119,10780}, {127,5552}, {132,10531}, {1297,11248}, {2781,12381}, {2794,12115}, {2799,13189}, {2806,13278}, {2831,12775}, {3320,11509}, {6020,10965}, {6256,10735}, {9517,13217}, {10528,13219}, {10679,13118}, {10749,10942}, {10803,13195}, {10805,13200}, {10834,11641}, {10878,13236}, {10915,13280}, {10929,13282}, {10930,13283}, {10955,13295}, {10956,13296}, {10958,13297}, {11400,13166}, {11881,13229}, {11882,13231}, {11914,13281}, {11955,13298}, {11956,13299}, {12000,13310}
X(13313) = reflection of X(i) in X(j) for these (i,j): (112,13311), (13118,10679)
X(13313) = X(112)-of-inner-Yff-tangents-triangle
X(13313) = {X(112),X(10705)}-harmonic conjugte of X(13314)
The reciprocal parallelogic center of these triangles is X(6).
X(13314) lies on these lines: {1,112}, {11,13295}, {127,10527}, {132,10532}, {1297,11249}, {2794,12116}, {2799,13190}, {2806,13279}, {2831,12776}, {6020,10966}, {9517,13218}, {10529,13219}, {10680,13119}, {10749,10943}, {10804,13195}, {10806,13200}, {10835,11641}, {10879,13236}, {10916,13280}, {10931,13282}, {10932,13283}, {10949,13294}, {10957,13296}, {10959,13297}, {11401,13166}, {11510,13206}, {11883,13229}, {11884,13231}, {11915,13281}, {11957,13298}, {11958,13299}, {12001,13310}
X(13314) = reflection of X(i) in X(j) for these (i,j): (112,13312), (13119,10680)
X(13314) = X(112)-of-outer-Yff-tangents-triangle
X(13314) = {X(112),X(10705)}-harmonic conjugte of X(13313)
The reciprocal parallelogic center of these triangles is X(4).
X(13315) lies on these lines: {110,930}, {351,1510}, {6368,9131}, {9123,13223}
X(13315) = reflection of X(13318) in X(351)
X(13315) = X(54)-of-1st-Parry-triangle
X(13315) = X(7691)-of-2nd-Parry-triangle
The reciprocal parallelogic center of these triangles is X(3).
X(13316) lies on these lines: {351,13319}, {3566,9135}
X(13316) = reflection of X(13319) in X(351)
X(13316) = X(486)-of-1st-Parry-triangle
X(13316) = X(12123)-of-2nd-Parry-triangle
The reciprocal parallelogic center of these triangles is X(3).
X(13317) lies on these lines: {351,13320}, {3566,9135}
X(13317) = reflection of X(13320) in X(351)
X(13317) = X(485)-of-1st-Parry-triangle
X(13317) = X(12124)-of-2nd-Parry-triangle
The reciprocal parallelogic center of these triangles is X(4).
X(13318) lies on these lines: {110,933}, {351,1510}, {2081,5012}, {6368,9979}, {9138,13291}, {9185,13224}
X(13318) = reflection of X(13315) in X(351)
X(13318) = X(54)-of-2nd-Parry-triangle
X(13318) = X(7691)-of-1st-Parry-triangle
The reciprocal parallelogic center of these triangles is X(3).
X(13319) lies on these lines: {351,13316}, {2450,3566}
X(13319) = reflection of X(13316) in X(351)
X(13319) = X(486)-of-2nd-Parry-triangle
X(13319) = X(12123)-of-1st-Parry-triangle
The reciprocal parallelogic center of these triangles is X(3).
X(13320) lies on these lines: {351,13317}, {2450,3566}
X(13320) = reflection of X(13317) in X(351)
X(13320) = X(485)-of-2nd-Parry-triangle
X(13320) = X(12124)-of-1st-Parry-triangle
X(13321) lies on these lines: {3,143}, {6,2070}, {30,11002}, {51,381}, {52,1656}, {185,5076}, {195,973} et al
X(13321) = reflection of X(5050) in X(5640)
X(13321) = isogonal conjugate of X(13139)
X(13321) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (51,568,381), (143,3567,3), (143,5946,3060), (3060,3567,5946), (3060,5946,3)
Let P = X(68) in the construction given at X(3146); then P' = X(13322).
X(13322) lies on these lines: {2,3}, {52,6751}, {2055,8884}
X(13322) = X(10441)-of-orthic-triangle if ABC is acute
X(13322) = {X(4),X(418)}-harmonic conjugate of X(5)
Centers on X(3)X(6) represented by Tucker parameter: X(13323)-X(13357)
A Tucker parameter is a function p = p(a,b,c) symmetric and homogeneous of degree zero in a,b,c. A point P with barycentric coordinates (sin A)[cos(A - arccot(p))] lies on the Brocard axis, X(3)X(6) and has combo X(3) + ((cot ω)/p)*X(6). Contributed by Peter Moses, April 14, 2017.
X(13323) lies on these lines: {1,987}, {3,6}, {4,1798}, {5,6703}, {21,184}, {30,5799}, {51,11337}, {54,6875}, {60,5320}, {81,10441}, {84,2344}, {140,5743}, {283,1011}, {405,1437}, {411,11424}, {712,7781}, {912,960}, {940,1408}, {952,5835}, {988,1428}, {1006,1092}, {2049,5788}, {3560,6759}, {4189,5012}, {5047,5651}, {6906,10984}, {7489,10539}
X(13323) = isogonal conjugate of X(3597)
X(13323) = crosssum of X(1685) and X(1686)
X(13323) = inverse-in-Brocard-circle of X(970)
X(13323) = inverse-in-circle-{{X(371),X(372),PU(1),PU(39)}} of X(2092)
X(13323) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,970), (58,572,3), (371,372,2092), (405,1437,9306)
X(13324) lies on this line: {3,6}
X(13324) = inverse-in-Brocard-circle of X(2012)
X(13324) = {X(3),X(6)}-harmonic conjugate of X(2012)
X(13325) lies on these lines: {3,6}, {76,3414}, {1916,6178}, {2040,5025}, {2564,3238}, {2565,3237}, {2566,5403}, {2567,5404}, {3413,11257}
X(13325) = reflection X(3558) in X(39)
X(13325) = reflection of X(13326) in X(3)
X(13325) = inverse-in Brocard-circle of X(2558)
X(13325) = inverse-in-second-Brocard-circle of X(1380)
X(13325) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,2558), (1340,3558,39), (1670,1671,1380), (3102,3103,1341)
X(13326) lies on these lines: {3,6}, {76,3413}, {1916,6177}, {2039,5025}, {2564,3237}, {2565,3238}, {2566,5404}, {2567,5403}, {3414,11257}
X(13326) = reflection X(3557) in X(39)
X(13326) = reflection of X(13325) in X(3)
X(13326) = inverse-in Brocard-circle of X(2559)
X(13326) = inverse-in-second-Brocard-circle of X(1379)
X(13326) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,2559), (1341,3557,39), (1670,1671,1379), (3102,3103,1340)
X(13327) lies on these lines: {3,6}, {2564,3236}, {2565,3235}
X(13327) = inverse-in Brocard-circle of X(2563)
X(13327) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,2563), (3,32,13328), (1342,1343,1668)
X(13328) lies on these lines: {3,6}, {2564,3235}, {2565,3236}
X(13328) = inverse-in-Brocard-circle of X(2562)
X(13328) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,2562), (3,32,13327), (1342,1343,1669)
X(13329) lies on these lines: {1,1170}, {2,1754}, {3,6}, {9,990}, {20,1724}, {31,165}, {35,2293}, {36,59}, {40,595}, {44,971}, {46,2263}, {57,212}, {101,7193}, {103,672}, {106,2742}, {109,1155}, {140,3019}, {171,4349}, {184,4191}, {238,516}, {244,5536}, {255,269}, {283,404}, {411,1780}, {484,1772}, {517,1279}, {518,3939}, {603,1419}, {605,9616}, {631,4648}, {656,3737}, {748,1699}, {896,1768}, {902,5537}, {954,5228}, {995,3428}, {1006,4653}, {1040,1708}, {1064,7688}, {1086,5762}, {1203,4300}, {1284,5091}, {1293,2382}, {1331,3218}, {1428,2223}, {1451,3601}, {1468,7987}, {1496,3361}, {1616,8158}, {1617,7074}, {1714,6836}, {1730,4224}, {1736,3100}, {1743,5732}, {1757,2801}, {1790,4210}, {1818,2323}, {1936,3911}, {1955,2636}, {2051,7413}, {2183,3220}, {2191,12704}, {2299,4219}, {3052,6244}, {3072,6684}, {3074,4292}, {3523,3945}, {3550,7220}, {3796,11350}, {3915,7991}, {4000,5759}, {4297,5247}, {4306,7078}, {4344,5264}, {4383,7580}, {4641,10167}, {4859,5735}, {5122,6610}, {5131,6149}, {5292,6865}, {5542,9440}, {5713,6989}
X(13329) = midpoint of X(238) and X(9441)
X(13329) = crosssum of X(11) and X(2254)
X(13329) = crossdifference of every pair of points on line {523,2294}
X(13329) = inverse-in-Brocard-circle of X(991)
X(13329) = inverse-in-Schoute-circle of X(5030)
X(13329) = inverse-in-circle-{{X(371),X(372),PU(1),PU(39)}} of X(4253)
X(13329) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,991), (3,182,572), (3,580,58), (3,582,580), (3,970,3430), (15,16,5030), (40,602,595), (371,372,4253), (1155,2361,109), (1253,1471,1), (4210,5012,1790), (5132,5135,284)
X(13330) lies on the cubic K382 and these lines: {3,6}, {4,11646}, {25,2056}, {51,1613}, {69,7785}, {76,524}, {112,8537}, {141,7752}, {172,8540}, {181,2162}, {193,732}, {194,1992}, {230,262}, {263,694}, {538,11159}, {542,7747}, {597,7786}, {599,3934}, {698,3629}, {881,9005}, {1003,12151}, {1153,6683}, {1383,9716}, {1501,1994}, {1914,12837}, {1915,1993}, {1916,5939}, {1968,8541}, {1995,9225}, {2023,7735}, {2176,3271}, {2211,6403}, {2493,9419}, {2782,7737}, {3051,3060}, {3124,9463}, {3231,5640}, {3299,12841}, {3301,12840}, {3552,5026}, {3589,7857}, {3618,10007}, {3763,7862}, {3767,6034}, {3787,5943}, {4663,12782}, {5475,7697}, {5476,7746}, {5976,7774}, {6194,7736}, {7749,11261}, {7757,8584}, {7760,10754}, {7837,9865}, {7838,8149}, {8550,11257}, {8627,11003}, {8778,11405}, {10311,11470}, {10753,12110}
X(13330) = midpoint of X(j) and X(j) for these (i,j): {1,1742}, {20,10446}
X(13330) = reflection of X(i) in X(j) for these (i,j): (6, 5052), (3094, 6), (3095, 576), (7757, 8584), (11152, 8787), (11257, 8550), (12782, 4663)
X(13330) = inverse-in-Brocard-circle of X(5038)
X(13330) = inverse-in-second-Brocard-circle of X(574)
X(13330) = inverse-in-circle-{{X(4),X(194),X(3557),X(3558)}} of X(39)
X(13330) = inverse-in-circle-{{X(371),X(372),PU(1),PU(39)}} of X(2080)
X(13330) = 2nd-Lemoine-circle-inverse of X(35377)
X(13330) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,5038), (6,187,10485), (6,1351,5111), (6,2076,182), (6,3094,13331), (6,5017,1691), (6,5116,5034), (6,11173,5104), (32,576,6), (187,1692,8590), (371,372,2080), (1351,3311,9975), (1351,3312,9974), (1384,3311,6424), (1384,3312,6423), (1664,1665,5116), (1670,1671,574), (1689,1690,576), (1692,5097,6), (3051,3060,3981), (3094,10485,11171), (3098,5034,5116), (3104,3105,3095), (3557,3558,39), (5028,5039,6), (5038,5104,3), (5111,12212,6), (6423,9975,6), (6424,9974,6), (9463,11002,3124), (12963,12968,1384)
X(13331) lies on these lines: {2,732}, {3,6}, (6,3094,13330), {69,10007}, {76,3589}, {83,4048}, {141,7786}, {147,2023}, {194,3618}, {262,1503}, {373,1194}, {597,698}, {694,9155}, {1180,3981}, {1352,11272}, {1386,12782}, {1428,12837}, {1613,5650}, {1915,6800}, {1916,5026}, {2056,6090}, {2330,12836}, {2782,6034}, {3051,7998}, {3108,5012}, {3299,12840}, {3301,12841}, {3329,10334}, {3763,6683}, {5031,7777}, {5103,7790}, {5309,7697}, {5480,9607}, {5965,11261}, {6309,7819}, {7760,8177}, {7829,8149}, {7875,9865}, {10347,12216}
X(13331) = inverse-in-Brocard-circle of X(12212)
X(13331) = inverse-in-second-Brocard-circle of X(7772)
X(13331) = centroid of X(6)PU(1)
X(13331) = inverse-in-circle-{{X(371),X(372),PU(1),PU(39)}} of X(12054)
X(13331) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,12212), (6,39,3094), (6,2076,5039), (6,3094,13330), (6,5013,5017), (6,5024,5104), (6,5116,32), (39,2021,5024), (39,7772,3095), (182,7772,6), (371,372,12054), (574,5039,2076), (1670,1671,7772), (1689,1690,3098), (3106,3107,3095), (12055,12212,3)
X(13332) lies on these lines: {3,6}, {485,2048}, {486,2047}, {1124,1397}
X(13332) = inverse-in-Brocard-circle of X(1686)
X(13332) = inverse-in-circle-{{X(371),X(372),PU(1),PU(39)}} of X(1685)
X(13332) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,1686), (371,372,1685), (3371,3372,386), (3385,3386,573)
X(13333) lies on these lines: {3,6}, {1335,1397}
X(13333) = inverse-in-Brocard-circle of X(1685)
X(13333) = inverse-in-circle-{{X(371),X(372),PU(1),PU(39)}} of X(1686)
X(13333) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,1685), (371,372,1686), (3371,3372,573), (3385,3386,386)
X(13334) lies on these lines:
{2,6248}, {3,6}, {4,7786}, {5,4045}, {20,262}, {30,11272}, {76,631}, {83,11676}, {98,7824}, {114,6656}, {140,620}, {160,9822}, {194,3523}, {237,5943}, {538,549}, {542,8359}, {730,6684}, {1503,10007}, {1656,7913}, {3097,7987}, {3329,12110}, {3524,7757}, {3526,7697}, {3576,12782}, {3818,8721}, {3972,10359}, {5054,9466}, {5204,12837}, {5217,12836}, {5418,8992}, {5657,7976}, {5965,7767}, {6688,11328}, {6721,8361}, {7791,9744}, {7878,10788}, {8369,10168}, {10165,12263}, {10358,11174}
X(13334) = midpoint of X(i) and X(j) for these {i,j}: {3, 39}, {3095, 5188}, {6248, 11257}
X(13334) = reflection of X(i) in X(j) for these (i,j): (5,6683) (3934,140)
X(13334) = complement of X[6248]
X(13334) = inverse-in-Brocard-circle of X(5171)
X(13334) = inverse-in-second-Brocard-circle of X(1351)
X(13334) = inverse-in-circle-{{X(371),X(372),PU(1),PU(39)}} of X(5034)
X(13334) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,5171), (3,3095,5188), (3,3398,187), (3,5013,9737), (3,5050,3053), (3,10983,1350), (3,11171,39), (39,5188,3095), (371,372,5034), (1670,1671,1351), (1689,1690,5013), (8160,8161,182), (2,11257,6248), (631,7709,76)
X(13335) lies on these lines:
{3,6}, {4,3972}, {5,2794}, {20,7797}, {30,7817}, {98,384}, {114,7807}, {140,626}, {157,9822}, {262,7787}, {315,631}, {376,7827}, {542,8369}, {549,754}, {682,3491}, {736,7780}, {760,1385}, {1975,9755}, {2386,6644}, {2782,7816}, {3148,5943}, {3526,7867}, {3552,11257}, {3564,7789}, {3933,5965}, {3934,10104}, {5026,8550}, {5054,7818}, {5152,12176}, {5999,12110}, {6055,8370}, {6179,12251}, {7709,7782}, {7786,10359}, {7824,10350}, {7892,9863}, {8359,10168}, {11676,12203}
X(13335) = midpoint of X(3) and X(32)
X(13335) = complement of complement of X(36998)
X(13335) = inverse-in-Brocard-circle of X(9737)
X(13335) = inverse-in-circle-{{X(371),X(372),PU(1),PU(39)}} of X(5028)
X(13335) = harmonic center of circles {{X(3102),X(3103),PU(1)}} and {{X(2459),X(2460),PU(2)}}
X(13335) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,9737), (3,2080,5188), (3,3053,5171), (3,3398,39), (3,5013,9734), (3,5050,5013), (3,11842,3095), (39,3398,575), (371,372,5028), (1342,1343,2456), (3095,5007,5097), (3095,11842,5007), (5023,5085,3), (98,384,6248)
X(13336) lies on these lines:
{2, 1614}, {3, 6}, {5, 10984}, {22, 5462}, {24, 5892}, {49, 5054}, {54, 3523}, {68, 7383}, {110, 3525}, {113, 6816}, {140, 184}, {155, 7484}, {156, 632}, {185, 7514}, {323, 11423}, {549, 1092}, {550, 11424}, {631, 1147}, {1176, 7404}, {1181, 5891}, {1199, 2979}, {1209, 1899}, {1216, 7485}, {1503, 7405}, {1588, 9687}, {1595, 1974}, {1656, 1853}, {1993, 5447}, {3146, 8717}, {3526, 9306}, {3567, 6636}, {3589, 7403}, {3796, 6642}, {3832, 8718}, {3917, 12161}, {4550, 6241}, {5070, 10540}, {5326, 9652}, {5422, 5446}, {5449, 7558}, {5562, 7516}, {5640, 12088}, {5943, 7517}, {5946, 7525}, {7294, 9667}, {7387, 10601}, {7395, 12162}, {7496, 7999}, {7499, 12359}, {7502, 12006}, {7506, 11695}, {7550, 12111}, {7689, 10574}, {7706, 12225}, {9818, 10575}, {10110, 12083}, {10170, 11441}, {10303, 11003}, {10610, 11577}
}
X(13336) = inverse-in-Brocard-circle of X(10625)
X(13336) = inverse-in-circle-{{X(371),X(372),PU(1),PU(39)}} of X(5421)
X(13336) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,10625), (3,182,569), (3,6243,3098), (3,11425,10564), (156,632,5651), (371,372,5421), (389,5092,3), (631,5012,1147), (1181,7393,5891), (5422,10323,5446), (7485,7592,1216)
X(13337) lies on these lines:
{3, 6}, {231, 5355}, {1180, 9300}, {1989, 7739}, {2493, 7736}, {3815, 9465}, {5254, 9220}
X(13337) = crosssum of X(6) and X(5054)
X(13337) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,13338), (6,39,566), (5063,7772,6)
X(13338) lies on these lines:
{3, 6}, {51, 7669}, {112, 6749}, {251, 1989}, {1627, 9300}, {1990, 10312}, {2493, 5354}, {3767, 9220}, {4558, 8584}, {5304, 7519}
X(13338) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,13337), (6,32,50), (6,11063,39), (32,50,2965), (3003,5007,6)
X(13339) lies on these lines:
{2, 10540}, {3, 6}, {4, 7605}, {49, 631}, {54, 3530}, {110, 140}, {156, 3525}, {184, 5054}, {195, 5447}, {373, 7545}, {382, 8717}, {399, 10170}, {549, 5012}, {632, 1614}, {1092, 11935}, {1199, 10627}, {1493, 11592}, {1656, 10984}, {2070, 5892}, {3066, 7517}, {3526, 5651}, {3850, 8718}, {5070, 6759}, {5544, 7529}, {5663, 7550}, {5899, 5943}, {5907, 12308}, {5946, 6636}, {6699, 11597}, {7512, 12006}, {10601, 12083}, {11561, 12041}
X(13339) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,13340),. (3,182,567), (3,9730,3581), (5092,9730,3)
X(13340) lies on these lines:
{3, 6}, {4, 10627}, {5, 7998}, {20, 5663}, {30, 2979}, {49, 6800}, {51, 5054}, {140, 5640}, {143, 3523}, {195, 10984}, {373, 3526}, {376, 1154}, {381, 3917}, {382, 1216}, {394, 10540}, {546, 7999}, {548, 5889}, {549, 3060}, {550, 11412}, {631, 10263}, {632, 9781}, {1092, 2937}, {1511, 7556}, {1656, 5447}, {1657, 5562}, {3146, 11591}, {3522, 6102}, {3524, 5946}, {3525, 10095}, {3529, 5876}, {3530, 3567}, {3627, 11444}, {3819, 5055}, {3830, 5891}, {3843, 11793}, {5070, 10110}, {5073, 5907}, {5651, 7545}, {5890, 8703}, {5899, 9306}, {6090, 7387}, {6241, 12103}, {6759, 9919}, {7555, 11464}, {7689, 12302}, {7691, 11250}, {10303, 11592}, {11451, 11539}
X(13340) = reflection of X(i) in X(j) for these (i,j): (381,3917), (568,3), (3060,549), (3830,5891), (5890,8703), (6243,568)
X(13340) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,13339), (394,12083,13354)
X(13341) lies on these lines:
{3, 6}, {53, 7765}, {232, 7714}, {393, 7739}, {1015, 3553}, {1194, 7398}, {1196, 7736}, {1500, 3554}, {3087, 3199}, {6748, 7753}, {7586, 8962}, {7603, 9722}, {9300, 10128}
X(13341) = crosssum of X(i) and X(j) for these (i,j): {2,10601}, {6,3523}
X(13341) = barycentric product X(3)*X(1907)
X(13341) = barycentric quotient X(i)/X(j) for these (i,j): (1907,264), (3442,5312)
X(13341) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,13342), (6,39,800), (6,577,5007), (6,5421,216), (216,5421,39)
X(13342) lies on these lines:
{3, 6}, {53, 5309}, {393, 5319}, {1249, 7714}, {2241, 3553}, {2242, 3554}, {5304, 7398}, {5306, 10128}
X(13342) = barycentric product X(3)*X(5198)
X(13342) = barycentric quotient X(5198)/X(264)
X(13342) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,13341), (6,32,5065), (6,216,7772), (6,8573,39)
X(13343) lies on this line: {3, 6}
X(13343) = radical center of Lucas(2/e) circles
X(13343) = inverse-in-circle-{{X(371),X(372),PU(1),PU(39)}} of X(2560)
X(13343) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,13344), (371,372,2560), (1689,1690,2026)
X(13344) lies on this line: {3, 6}
X(13344) = radical center of Lucas(-2/e) circles
X(13344) = inverse-in-circle-{{X(371),X(372),PU(1),PU(39)}} of X(2561)
X(13344) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,13343), (371,372,2561), (1689,1690,2027)
X(13345) lies on these lines:
{3, 6}, {51, 157}, {53, 428}, {112, 3087}, {233, 7753}, {251, 2165}, {393, 1179}, {609, 3554}, {1249, 8882}, {1627, 7736}, {1879, 3767}, {1907, 1968}, {3553, 7031}, {5304, 7500}, {7745, 9722}
X(13345) = inverse-in-Brocard-circle of X(5421)
X(13345) = crosspoint of X(5422) and X(10594)
X(13345) = inverse-in-circle-{{X(371),X(372),PU(1),PU(39)}} of X(10625)
X(13345) = barycentric product X(i)X(j) for these {i,j}: {3,10594}, {6,5422}
X(13345) = barycentric quotient X(i)/X(j) for these (i,j): (5422,76), (10594,264)
X(13345) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,5421), (6,32,571), (6,50,5065), (6,571,5063), (6,1609,570), (6,2965,577), (6,8553,39), (6,8573,3003), (32,577,2965), (32,5007,10316), (216,5007,6), (371,372,10625), (577,2965,571), (1182,5037,6)
Let A'B'C' be the triangle described in ADGEOM #2697 (8/26/2015, Tran Quang Hung); then X(13347) = X(20)-of-A'B'C'. (Randy Hutson, July 21, 2017)
X(13346) lies on these lines:
{2, 11424}, {3, 6}, {4, 801}, {20, 184}, {23, 11449}, {26, 11202}, {30, 156}, {40, 3955}, {49, 1657}, {54, 376}, {64, 12164}, {84, 7193}, {110, 3146}, {155, 6000}, {185, 1993}, {235, 11064}, {323, 12086}, {378, 5562}, {382, 10539}, {394, 1593}, {517, 4347}, {524, 6696}, {542, 2892}, {1038, 11429}, {1154, 7689}, {1204, 2071}, {1216, 7526}, {1352, 3088}, {1368, 12241}, {1437, 7580}, {1498, 3167}, {1595, 3818}, {1614, 3529}, {1853, 12429}, {1899, 10112}, {1935, 6056}, {1936, 7335}, {1941, 2052}, {1968, 3289}, {1994, 10574}, {2777, 5504}, {3068, 9686}, {3091, 5651}, {3292, 11381}, {3357, 9938}, {3520, 11412}, {3522, 5012}, {3542, 5972}, {3564, 6247}, {3819, 7395}, {3917, 7503}, {4296, 9637}, {4550, 11591}, {5059, 9544}, {5073, 10540}, {5446, 6644}, {5447, 7514}, {5480, 9825}, {5943, 10982}, {5965, 11411}, {6090, 11403}, {6241, 7464}, {6642, 10110}, {7387, 10282}, {7527, 11444}, {8548, 10250}, {8549, 8681}, {8717, 12103}, {8718, 11001}, {9707, 12082}, {9818, 11793}, {10605, 12160}, {10628, 12302}, {10996, 11427}, {11464, 12088}, {12123, 12229}, {12124, 12230}
X(13346) = midpoint of X(i) and X(j) for these {i,j}: {64,12164}, {155,12085}, {32614, 32615}
X(13346) = reflection of X(i) in X(j) for these (i,j)}: (26,12038), (3357,12084), (6759,1147), (7387,10282), (7689,11250)
X(13346) = inverse-in-Brocard-circle of X(9729)
X(13346) = X(20)-of-Trinh-triangle
X(13346) = inverse-in-circle-{X(371),X(372),PU(1),PU(39)} of X(800)
X(13346) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,9729), (3,52,11438), (3,182,13347), (3,578,182), (3,1351,9786), (4,1092,9306), (26,12038,11202), (52,10564,3), (54,376,10984), (323,12086,12111), (371,372,800), (394,1593,5907), (1660,2883,6759), (1993,11413,185), (2071,5889,1204), (3292,11381,11441), (7689,11250,11204)
X(13347) lies on these lines:
{3,6}, {20,9815}, {54,10299}, {140,6247}, {156,12108}, {184,3523}, {185,7485}, {206,6696}, {546,8717}, {550,11745}, {631,1614} et al
X(13347) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,182,13346), (3,389,3098), (3,12017,11425), (631,10984,9306)
X(13348) lies on these lines:
{3, 6}, {4, 3819}, {20, 3917}, {30, 5447}, {40, 3784}, {51, 3523}, {84, 3781}, {140, 6688}, {143, 12100}, {185, 2979}, {373, 10303}, {376, 5562}, {517, 4298}, {548, 10627}, {549, 5446}, {550, 1216}, {631, 5943}, {632, 12045}, {1092, 9707}, {1657, 5891}, {2393, 6696}, {2807, 12512}, {3088, 11387}, {3091, 5650}, {3146, 7998}, {3526, 10219}, {3528, 11412}, {3529, 7999}, {3530, 5462}, {3534, 12162}, {3567, 10299}, {3627, 10170}, {3628, 11592}, {5889, 10304}, {5892, 10263}, {6101, 8703}, {6759, 9914}, {6916, 10441}, {7485, 11424}, {7492, 11449}, {7525, 12038}, {9052, 12675}, {9306, 11414}, {9940, 12109}, {10095, 12108}, {10295, 12300}, {10691, 12241}, {11591, 12103}, {11645, 12134}
X(13348) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,578,5092), (3,10625,389), (20,3917,5907), (20,11444,11381), (140,10110,6688), (549,5446,11695), (2979,3522,185), (3917,11381,11444), (11381,11444,5907)
X(13349) lies on these lines:
{3,6}, {5,6672}, {30,5460}, {110,11145}, {140,624}, {397,10616}, {517,11708}, {530,549}, {622,631}, {2381,9203}, {3131,5943}, {3292,11130}, {5617,11300}, {5650,11131}, {6036,6108}
X(13349) = midpoint of X(3) and X(16)
X(13349) = reflection of X(i) in X(j) for these (i,j): (5, 6672), (624, 140)
X(13349) = inverse-in-circumcircle of X(5611)
X(13349) = inverse-in-Brocard-circle of X(9735)
X(13349) = vertex conjugate of X(512) and X(5611)
X(13349) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,9735), (3,182,13350), (3,5050,11480), (3,11481,9736), (62,5611,5097), (1379,1380,5611)
X(13350) lies on these lines:
{3,6}, {5,6671}, {30,5459}, {110,11146}, {140,623}, {398,10617}, {517,11707}, {531,549}, {621,631}, {2380,9202}, {3132,5943}, {3292,11131}, {5613,11299}, {5650,11130}, {6036,6109}
X(13350) = midpoint of X(3) and X(15)
X(13350) = reflection of X(i) in X(j) for these (i,j): (5, 6671), (623, 140)
X(13350) = inverse-in-circumcircle of X(5615)
X(13350) = inverse-in-Brocard-circle of X(9736)
X(13350) = vertex conjugate of X(512) and X(5615)
X(13350) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,9736), (3,182,13349), (3,5050,11481), (3,11480,9735), (61,5615,5097), (1379,1380,5615)
In the plane of a triangle ABC, let
DEF = circum-orthic triangle;
Ab = center of circle (BFO), and define Bc and Ca cyclically;
Ac = center of circle (CEO), and define Ba and Cb cyclically;
A' = BAc∩CAb, and define B' and C' cyclically;
T = the affine transformation that carries ABC onto A'B'C'.
Then X(1335 1) = the finite fixed point of T. (Angel Montesdeoca, March 4, 2024)
X(13351) lies on these lines:
{2,1225}, {3,6}, {53,9606}, {141,1238}, {160,9971}, {230,1180}, {232,5064}, {233,7765}, {378,8746}, {1506,1879}, {2549,11818}, {3054,9465}, {3087,11062}, {3815,5133}, {6748,7576}, {7391,7736}, {7544,7738}, {8253,8962}
X(13351) = inverse-in-Brocard-circle of X(2965)
X(13351) = crosssum of X(6) and X(1656)
X(13351) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,2965), (6,570,566), (39,216,5421), (39,570,6), (216,5421,6), (570,5421,216), (1609,9605,6)
X(13352) lies on these lines:
{3,6}, {4,110}, {5,1092}, {20,54}, {23,11464}, {24,5446}, {30,184}, {49,382}, {51,6644}, {68,3541}, {74,11004}, {143,9826}, {155,1593}, {156,1514}, {185,12084}, {186,3060}, {195,2935}, {215,12943}, {235,9820}, {249,6785}, {323,4550}, {376,5012}, {378,1993}, {381,9306}, {394,5891}, {539,11442}, {550,10984}, {858,12022}, {974,1204}, {1060,11429}, {1181,10575}, {1199,10574}, {1216,7503}, {1437,6985}, {1495,7530}, {1511,12106}, {1594,9927}, {1595,12134}, {1597,3167}, {1614,3146}, {1658,10263}, {1870,9637}, {1986,12901}, {1992,5622}, {1994,2071}, {2070,11202}, {2477,12953}, {2914,12270}, {3044,10722}, {3045,10728}, {3046,10727}, {3047,10721}, {3066,6642}, {3088,5921}, {3093,8909}, {3431,7556}, {3516,12160}, {3518,11449}, {3520,5889}, {3543,9544}, {3830,9703}, {3917,7514}, {5059,8718}, {5073,9704}, {5422,5892}, {5447,7509}, {5562,7526}, {6241,12086}, {6284,9653}, {6564,9676}, {6640,6723}, {6689,7558}, {6800,12082}, {7354,9666}, {7464,11422}, {7506,10110}, {7507,12293}, {7517,10282}, {7525,10610}, {7550,7998}, {7592,11413}, {7752,10411}, {7760,12192}, {8981,9686}, {9541,9687}, {10116,11457}, {10224,11801}, {10661,11476}, {10662,11475}, {10665,11474}, {10666,11473}, {11562,12302}, {11585,12241}, {12111,12364}
X(13352) = midpoint of X(378) and X(1993)
X(13352) = reflection of X(3) in X(11430)
X(13352) = inverse-in-Brocard-circle of X(9730)
X(13352) = inverse-in-circle-{{X(371),X(372),PU(1),PU(39)}} of X(3003)
X(13352) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,9730), (3,567,182), (3,568,11438), (3,578,569), (4,1147,10539), (4,5654,113), (49,382,6759), (155,1593,12162), (182,567,569), (182,578,567), (323,7527,11459), (371,372,3003), (394,9818,5891), (576,11438,568), (1092,11424,5), (1181,12085,10575), (1994,2071,5890), (2935,7729,3357), (3146,9545,1614), (3516,12160,12163), (3520,5889,7689), (3830,9703,10540), (5446,12038,24), (5448,12897,4), (5504,5654,1147), (6102,11250,1204), (7527,11459,4550), (9730,10564,3), (12084,12161,185)
X(13353) lies on these lines:
{2,49}, {3,6}, {5,1614}, {17,11134}, {18,11137}, {23,10095}, {26,5422}, {51,2937}, {54,140}, {110,3628}, {125,6689}, {143,7512}, {156,3090}, {184,1656}, {186,6152}, {195,1216}, {323,1493}, {381,11572}, {382,10984}, {597,7540}, {1092,5054}, {1147,3526}, {1154,1199}, {1176,7553}, {1511,10821}, {1657,11424}, {1993,7516}, {1994,6101}, {2070,2918}, {2888,11264}, {3060,7525}, {3525,9545}, {3567,7502}, {3574,7574}, {3580,7568}, {3589,12134}, {3618,7528}, {3796,7517}, {3851,6759}, {3853,8718}, {5055,10539}, {5067,9544}, {5070,9306}, {5899,10110}, {5946,7488}, {6146,6288}, {6636,10263}, {7393,11402}, {7506,10601}, {7509,12161}, {7514,7592}, {7550,11591}, {7746,9604}, {7999,11422}, {9818,12174}, {10277,12026}, {10574,11468}, {10982,12083}, {11423,11444}
X(13353) = inverse-in-circumcircle of X(11811)
X(13353) = inverse-in-Brocard-circle of X(6243)
X(13353) = vertex conjugate of X(512) and X(11811)
X(13353) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,6243), (3,389,3581), (3,569,567), (182,569,3), (1379,1380,11811), (3090,11003,156), (5070,9704,9306), (5092,10625,3), (10610,12006,186), (11426,12017,3)
X(13354) lies on these lines:
{3,6}, {51,7467}, {69,9744}, {76,6776}, {114,141}, {193,6194}, {262,3618}, {538,11179}, {542,9466}, {732,8550}, {1352,3934}, {1503,6248}, {5149,12177}, {7763,10519}, {10352,10753}
X(13354) = midpoint of X(i) and X(j) for these {i,j}: {76, 6776}, {1351, 9821},
{5052, 5188}
X(13354) = reflection of X(i) in X(j) for these (i,j): (39, 182), (1352, 3934)
X(13354) = inverse-in-Moses-circle of X(2022)
X(13354) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2024,3094,39), (2028,2029,2022), (3098,5092,8589)
X(13355) lies on these lines:
{3,6}, {20,10350}, {69,98}, {184,7467}, {315,6776}, {376,5182}, {542,7818}, {626,1352}, {754,11179}, {895,12192}, {1078,10519}, {2794,12177}, {3618,9753}, {3751,12197}, {4027,10753}, {5480,10358}, {10754,12176}, {10755,12199}, {10766,12207}, {11257,12215}, {12216,12252}
X(13355) = midpoint of X(315) and X(6776)
X(13355) = reflection of X(i) in X(j) for these (i,j): (32, 182), (1352, 626)
X(13355) = inverse-in-circle-{{X(371),X(372),PU(1),PU(39)}} of X(13357)
X(13355) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,2456,182), (182,5039,3398), (182,5171,1691), (371,372,13357), (1350,1691,5171), (1350,5085,5023), (1351,3398,5039), (2458,5028,32), (3098,5092,8588), (5038,5085,182), (5050,12054,182)
X(13356) lies on these lines:
{3,6}, {83,7736}, {98,5286}, {114,2548}, {230,7815}, {1078,7735}, {1186,3289}, {1194,3148}, {2909,3203}, {3117,9306}, {3407,7783}, {3734,8149}, {3788,3815}, {5280,10802}, {5299,10801}, {5304,7793}, {5305,10104}, {5306,8359}, {7738,12203}, {7774,10350}, {7787,10352}, {7796,10347}, {7836,10345}, {7906,10333}, {8369,9300}, {9575,12194}, {9593,12197}, {9744,12110}, {10334,10346}
X(13356) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k):
(3,6,13357), (32,39,182), (32,5034,3398), (32,8722,3053), (3053,12212,32), (3398,9605,5034), (5039,5171,32), (12048,12049,6)
X(13357) lies on these lines:
{3,6}, {76,7735}, {194,5304}, {230,736}, {237,1194}, {315,7736}, {538,5306}, {626,3815}, {732,7789}, {754,8359}, {1196,11328}, {1569,5368}, {2023,2794}, {2782,5305}, {3329,10350}, {3767,6248}, {3819,8623}, {5286,9753}, {7892,9983}, {8569,8570}, {9475,11326}
X(13357) = midpoint of X(i) and X(j) for these {i,j}: {32,39}, {2021,2022}
X(13357) = reflection of X(i) in X(j) for these (i,j): (626,6683), (3934,6680)
X(13357) = crosssum of X(6) and X(7467)
X(13357) = centroid of PU(1)PU(39)
X(13357) = harmonic center of circles O(15,16) (Shoute circle) and O(61,62)
X(13357) = inverse-in-circle-{{X(371),X(372),PU(1),PU(39)}} of X(13355)
X(13357) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,13356), (371,372,13355)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25752.
X(13358) lies on these lines:
{4,94}, {30,11800}, {52,10264}, {54,1511}, {74,10263}, {110, 5946}, {113,10095}, {125,1154}, {182,12893}, {381,12284}, {389, 6153}, {399,3567}, {974,11565}, {1199,11597}, {1493,3043}
X(13358) = midpoint of X(i) and X(j) for these {i,j}: {52, 10264}, {74, 10263}, {265, 6102}, {11800, 11806}
X(13358) = reflection of X(i) in X(j) for these (i,j): (113,10095), (143,12236), ( 1511,12006), (10272,5462), ( 10627,6699), (11561,389)
See Tran Quang Hung and Angel Montesdeoca, Hyacinthos 25755.
X(13359) lies on these lines: {1, 6}, {4662, 7090}, {6212, 9943}
X(13359) = reflection of X(13360) in X(9)
See Tran Quang Hung and Angel Montesdeoca, Hyacinthos 25755.
X(13360) lies on these lines: {1, 6}, {3812, 7090}, {6213, 9943}
X(13360) = reflection of X(13359) in X(9)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25759.
X(13361) lies on these lines: {2,3}, {1503,10219}, {3564,6688}
X(13361) = midpoint of X(2) and X(10128)
See Tran Quang Hung and César Lozada, Hyacinthos 25762.
X(13362) lies on these lines: {2,3}, {137,10095}
X(13362) =
See Antreas Hatzipolakis and Randy Hutson, Hyacinthos 25769.
X(13363) lies on these lines:
{2,568}, {3,5640}, {4,7693}, {5,113}, {30,5892}, {51,549}, {52,632}, {140,143}, {381,11451}, {546,9729}, {547,6688}, {548,10110}, {631,10263}
X(13363) = midpoint of X(5) and X(9730)
X(13363) = complement of complement of X(568)
X(13363) = X(10272)-of-orthocentroidal-triangle
X(13363) = nine-point center of triangle formed by the centroids of the three altimedial triangles
X(13363) = centroid of triangle formed by the nine-point centers of the three altimedial triangles
See Antreas Hatzipolakis and Randy Hutson, Hyacinthos 25769.
X(13364) lies on these lines:
{3,11451}, {4,12006}, {5,51}, {30,5892}, {140,6688}, {381,5640}, {3526,11592}
X(13364) = midpoint of X(i) and X(j) for these ({i,j}: {5,51}, {381,5946}
X(13364) = X(140)-of-orthocentroidal-triangle
X(13364) = X(549)-of-orthic-triangle
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25773.
X(13365) lies on these lines: {5,51}, {195,5640}, {5943,6153} et al
X(13365) = midpoint of X(143) and X(1209)
X(13365) = complement of the complement of X(32196)
X(13365) = X(5)-of-pedal-triangle-of-X(5)
X(13366) lies on these lines: {2,575}, {4,11423}, {5,11264}, {6,25}, {22,576}, {49,5462}, {52,7502}, {54,186}, {61,3131}, {62,3132}, {110,5943}, {125,11245}, {140,1493}, {182,1993}, {185,378}, {195,1216}, {228,2317}, {237,5007}, {288,933}, {323,3819}, {343,1353}, {373,5422}, {394,5050}, {418,3284}, {427,8550}, {511,1994}, {524,7499}, {542,5133}, {569,5562}, {570,8603}, {1181,1597}, {1204,11410}, {1351,3796}, {1370,11179}, {1501,5052}, {1594,12242}, {1614,10110}, {1627,2030}, {1692,3051}, {1899,8889}, {1976,3108}, {1992,7494}, {2003,3937}, {2056,3291}, {2323,3690}, {2979,5092}, {3060,5097}, {3066,8780}, {3148,7772}, {3155,6419}, {3156,6420}, {3167,5544}, {3270,11429}, {3311,10133}, {3312,10132}, {3564,11548}, {3567,10282}, {3574,6146}, {3575,10619}, {3580,11225}, {3611,11428}, {5032,10565}, {5066,5609}, {5111,10329}, {5158,6641}, {5310,8540}, {5446,5899}, {5476,7394}, {5576,10116}, {5640,9544}, {5642,6677}, {5702,6618}, {5890,11430}, {6749,6755}, {6776,7378}, {7571,11178}, {8877,10558}, {9820,12421}, {9909,11482}, {10151,12241}
X(13366) = midpoint of X(1994) and X(5012)
X(13366) = isogonal conjugate of isotomic conjugate of X(140)
X(13366) = isogonal conjugate of polar conjugate of X(6748)
X(13366) = X(933)-Ceva conjugate of X(647)
X(13366) = X(75)-isoconjugate of X(1173)
X(13366) = X(92)-isoconjugate of X(31626)
X(13366) = crosssum of X(i) and X(j) for these (i,j): {2,5}, {3,1994}, {302,303}
X(13366) = crosspoint of X(i) and X(j) for these (i,j): {4,2963}, {6,54}, {140,6748}
X(13366) = polar conjugate of isotomic conjugate of X(22052)
X(13366) = crossdifference of every pair of points on line X(525)X(15340)
X(13366) = intersection of tangents to Moses-Jerabek conic at X(6) and X(185)
X(13366) = barycentric product X(i)*X(j) for these {i,j}: {3,6748}, {6,140}, {32,1232}, {54,233}, {1493,2963}
X(13366) = barycentric quotient X(i)/X(j) for these (i,j): (32,1173), (140,76), (233,311), (1232,1502), (1493,7769), (6748,264)
X(13366) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,154,9777), (6,184,51), (6,11402,184), (51,184,1495), (54,1199,389), (182,1993,3917), (569,12161,5562), (575,11422,3292), (578,7592,185), (1181,11424,11381), (1181,11426,11424), (3167,10601,5651), (3574,6146,11572), (5422,9306,373), (8603,8604,570)
X(13367) lies on these lines:
{2,11449}, {3,49}, {4,1495}, {6,3515}, {15,8839}, {16,8837}, {24,51}, {25,11424}, {30,5944}, {35,3270}, {36,1425}, {39,8779}, {52,1658}, {54,186}, {64,11410}, {110,5907}, {125,128}, {143,7575}, {154,1593}, {156,12162}, {182,6467}, {187,217}, {195,3581}, {206,12294}, {232,1970}, {235,10192}, {287,7824}, {323,7691}, {373,6642}, {378,6759}, {468,12241}, {511,7488}, {550,10564}, {567,5462}, {569,6644}, {631,1899}, {1498,3516}, {1531,5448}, {1568,9820}, {1594,11572}, {1614,3520}, {2070,5446}, {2931,12235}, {3043,10628}, {3357,11456}, {3517,10982}, {3518,10110}, {3523,3620}, {3541,9833}, {3549,12118}, {3574,3575}, {3580,10112}, {3611,10902}, {5012,9729}, {5059,7712}, {5068,10546}, {5622,12584}, {5650,7509}, {5651,7395}, {5889,9545}, {6143,12254}, {6457,8908}, {6639,9927}, {6800,11413}, {7464,8718}, {7502,10625}, {7503,9306}, {7526,10539}, {7577,12289}, {7592,11438}, {8542,10541}, {9544,12111}, {9786,11402}, {10018,10182}, {10020,12370}, {10263,12107}, {10533,11474}, {10534,11473}, {10574,11003}, {10575,11250}, {10606,12174}, {11064,12362}, {11577,12006}, {11799,12897}
X(13367) = midpoint of X(i) and X(j) for these {i,j}: {3, 49}, {1614, 3520}
X(13367) = reflection of X(11572) in X(1594)
X(13367) = crosssum of X(i) and X(j) for these (i,j): {3,5}, {4,5}
X(13367) = crosspoint of X(3) and X(54)
X(13367) = barycentric product X(i)*X(j) for these {i,j}: {97,3574}, {394,3575}, {3917,10548}
X(13367) = barycentric quotient X(i)/X(j) for these {(i,j): (3574,324), (3575,2052)
X(13367) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,184,185), (3,1092,3917), (3,1147,5562), (3,1181,1204), (4,10282,1495), (4,11464,10282), (24,578,51), (25,11425,11424), (54,186,389), (125,10619,6146), (140,6146,125), (184,1204,1181), (378,6759,11381), (378,9707,6759), (578,11202,24), (1147,5562,3292), (1181,1204,185), (1511,10610,140), (3431,11464,11430), (3541,9833,11550), (9545,10298,5889), (9820,12605,1568), (10282,11430,4), (11430,11464,1495)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25773.
X(13368) lies on these lines: {4, 93}, {5, 6153}, {54, 5946}, {110, 143}, {182, 9977}, {973, 1493}, {1209, 10224}, {1511, 6746}, {2917, 5944}, {2937, 10203}, {3060, 12316}, {5448, 11808}, {6102, 11562}, {6640, 12363}, {10255, 12606}, {12006, 12291}
X(13368) = X(4)-of-reflection-triangle-of-X(5)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25778.
X(13369) lies on these lines:
{1,1406}, {3,63}, {4,10202}, {5,142}, {7,6851}, {30,553}, {36,1858}, {40,4880}, {57,6985,10399}, {65,4299}, {84,3560}
X(13369) = midpoint of X(i) and X(j) for these {i,j}: {3,1071}, {355,12680}, {3555, 12702}, {4297,5884}, {5787, 12671}, {9943,12675}, {10202, 11220}
X(13369) = reflection of X(i) in X(j) for these (i,j): (5,9940), (3627,5806), (5777, 140), (7686,5885), (9856,5901)
See Tran Quang Hung and Angel Montesdeoca, Hyacinthos 25789.
X(13370) lies on these lines: {1,3} et al
X(13370) =
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25817.
Let A'B'C' be the complement of the tangential triangle, as at X(11585). Then X(13371) = X(3)-of-A'B'C'. (Randy Hutson, July 21, 2017)
Let A' be the reflection in BC of the A-vertex of the tangential triangle. Let Oa be the circumcenter of AB'C', and define Ob and Oc cyclically. Let Oa' be the circumcenter of A'BC, and define Ob' and Oc' cyclically. The lines OaOa', ObOb', OcOc' concur in X(13371). (Randy Hutson, July 21, 2017)
X(13371) lies on these lines:
{2, 3}, {11, 8144}, {50, 9722}, {52, 125}, {70, 1993}, {113, 11381}, {141, 12061}, {155, 1853}, {156, 1503}, {343, 6101}, {496, 9630}, {511, 5449}, {524, 11255}, {590, 11265}, {615, 11266}, {1154, 12359}, {1209, 3917}, {1236, 3933}, {1568, 12162}, {1899, 12161}, {3574, 9730}, {3580, 6243}, {3925, 8141}, {5448, 6000}, {5480, 10095}, {5504, 6145}, {5663, 6247}, {7703, 11444}, {10539, 11550}, {11064, 12134}
X(13371) = midpoint of X(4) and X(12084)
X(13371) = reflection of X(i) in X(j) for these (i,j): (5,10224), (26,10020), (156,9820), (550,10226), (1658,140), (12107,10125)
X(13371) = complement of X(26)
X(13371) = anticomplement of X(10020)
X(13371) = complementary conjugate of X(34116)
X(13371) = center of inverse-in-first-Droz-Farny-circle-of-circumcircle
X(13371) = inverse-in-first-Droz-Farny-circle of X(186)
X(13371) = X(5)-of-AAOA-triangle
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25824.
X(13372) lies on the nine-point circle of the medial triangle, and on these lines:
{2,137}, {3,128}, {140,6592}, {631,1141}, {632,1263}
X(13372) = midpoint of X(i) and X(j) for these {i,j}: {3, 128}, {137, 930}, {140, 6592}
X(13372) = complement of X(137)
X(13372) = {X(2),X(930)}-harmonic conjugate of X(137)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25830.
X(13373) lies on these lines:
{1,3}, {5,3742}, {72,6878}, {119,9947}, {140,518}, {143,9037}, {210,3526}, {355,5439}, {381,12680}, {496,10391}, {551,5884}, {575,9004} et al
X(13373) = midpoint of X(i) and X(j) for these {i,j}: {5,12675}, {942,1385}, {1125,12005}, {1483,5836}, {3881,6684}, {5045,9940}, {5083,6713}
X(13373) = excentral-to-incircle-circles similarity image of X(11249)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25831.
X(13374) lies on these lines:
{1,227}, {3,3742}, {4,354}, {5,518}, {7,10309}, {10,12864}, {11,12691}, {40,5439}, {57,11496}, {65,3086}, {72,5231,8227}, {84,10980}, {140,517}, {210,3090}, {226,7681}, {388,5804}, {392,9624}, {405,12704}, {496,942}, {497,12710}, et al
X(13374) = midpoint of X(i) and X(j) for these {i,j}: {1,7686}, {4,12675}, {942,946}, {1482,5836}, {3874,5777}, {5045,5806}, {5173,7680}, {5572,5805}, {5884,9856}, {6583,9955}, {7682,12915}, {9943,12699}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25833.
X(13375) lies on these lines: {1, 1389}, {7, 5559}, {8, 10941}, {65, 5844}, {145, 3881}, {388, 10052}, {517, 3649}, {758, 12913}, {942, 1317}, {999, 10094}, {1056, 10044}, {1537, 12047}, {1737, 10957}, {2800, 5270}, {3057, 5719}, {3754, 4861}, {5761, 10056}, {10106, 11570}
X(13375) = midpoint of X(5559) and X(5903)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25843.
X(13376) lies on these lines:
{5,6153}, {30,5462}, {51,3153}, {182,5899}, {186,5943}, {511, 2072} et al
X(13376) = midpoint of X(i) and X(j) for these {i,j}: {5,11692}, {1568,11800}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25862.
X(13377) lies on these lines:
{2,6322}, {381,8704}, {542,6232}, {599,3734}, {5094,10162}, {6032,11163}, {7840,9464}, {9829,10130}
X(13377) = reflection of X(6322) in X(2)
X(13377) = isogonal conjugate of X(353)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25862.
X(13378) lies on these lines:
{2,1495}, {125,3363}, {9830,10162}, {10166,10173}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25870.
X(13379) lies on the line {185,1986}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25871.
X(13380) lies on these lines:
{2, 185}, {3, 801}, {4, 800}, {76, 6823}, {83, 11479}, {96, 11456}, {98, 1498} et al
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25871.
X(13381) lies on these lines: {140,185}, {800,6748} et al
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25871.
X(13382) lies on these lines: {4,51}, {6,3357}, {30,11565}, {52,1657}, {64,11432}, {74,1199}, {140,9729}, {182,12163}, {511,550} et al
X(13382) = midpoint of X(185) and X(389)
X(13382) = reflection of X(i) in X(j) for these {i,j}: (5907,11695), (10110,389), (11793,9729)
See Tran Quang Hung, Antreas Hatzipolakis and Peter Moses, Hyacinthos 25879.
For another construction see David Nguyen, euclid 7490.
X(13383) lies on these lines: {2,3}, {68,154}, {156,206}, {343,10539}, {498,9645}, {511, 9820} et al
X(13383) = midpoint of X(i) and X(j) for these {i,j}: {5,26}, {2883,7689}, {6759, 12359}, {10154,10201}
X(13383) = reflection of X(i) in X(j) for these (i,j)}: (140,10020), (11250,3530)
X(13383) = anticomplement of X(32144)
See Tran Quang Hung and Peter Moses, Hyacinthos 25881.
X(13384) lies on these lines: {1,3}, {2,5727}, {9,2320}, {78, 3897}, {200,4711}, {226,5731}, {390,6173}, {392,10391}, {495, 3655}, {497,551}, {498,5881}, {515,5219}, {519,5218}, {944, 6956}, {946,4305}, {950,3616}, {991,1457}, {993,3929}, {997, 7308}, {1125,3486}, {1149,2293}, {1317,9952}, {1419,1455}, {1479, 9624}, {1698,5326}, {1706,4855}, {1837,3624}, {2136,4861}, {2268, 3247}, {2975,11523}, {3085,5882} ,{3158,3872}, {3241,5281}, {3306,4881}, {3475,4315}, {3485, 4297}, {3487,4311}, {3522,4323}, {3523,4848}, {3524,11041}, {3577,6905}, {3586,5886}, {3622, 4313}, {3636,4314}, {3679,5432}, {3680,3871}, {3689,4915}, {4189, 11682}, {4293,4654}, {4304,5603} ,{4342,10385}, {4512,5289}, {4845,11712}, {4853,8168}, {4870, 12943}, {5270,10953}, {5284, 5436}, {5332,9575}, {5424,7284}, {5440,9623}, {5587,6859}, {5691, 11375}, {5703,10106}, {5901, 9614}, {6284,11522}, {6738,7288} ,{6867,8227}, {6906,7971}, {7675,10384}, {8167,8583}, {9613, 11374}, {10527,12625}, {10543, 11376}, {10595,10624}
X(13384) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,3,3340), (1,35,7982), (1,36, 11529), (1,55,7962), (1,56,11518), (1,165,2099), (1,1385, 1420), (1,2646,3601), (1,3576, 57), (1,3601,1697), (1,3612,40), (1,7987,65), (1,7991,11011), (1, 9819,5048), (3,3340,5128), (36, 11529,57), (55,5048,9819), (55, 7962,1697), (1125,3486,9581), ( 3485,4297,9579), (3576,11529, 36), (3601,7962,55), (3622,4313, 12053), (4304,5603,9580), (5048, 9819,7962), (5217,11011,7991)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25925.
X(13385) lies on these lines: {1,167}, {517,12814}, {3616,7057}, {5571,10503}, {6728,10492}, {11033,11192}
X(13385) = X(10215)-Ceva conjugate of X(177)
X(13385) = incircle-inverse of X(177)
X(13385) = Conway-circle-inverse of X(12554)
X(13385) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,2089,177), (1,8091,8422), (1, 8241,11234), (1,11044,11191)
The appearance of (i,j) in the following list means that X(j) = {X(13386),X(13387)}-harmonic conjugate of X(i): (4,92), (8,329), (321,3436), (3869,5739).
See Tran Quang Hung and Peter Moses, AdvGeom 3776.
X(13386) lies on the cubics K170 and K200 and these lines: {2,175}, {4,8}, {63,488}, {77,3083}, {81,1124}, {242,5200}, {278,1585}, {281,1586}, {1267,1444}
X(13386) = isogonal conjugate of X(34121)
X(13386) = isotomic conjugate of X(13387)
X(13386) = X(1124)-cross conjugate of X(1267)
X(13386) = anticomplement of X(13388)
X(13386) = X(i)-anticomplementary conjugate of X(j) for these (i,j): (6,175), (2066,20), (6502,347)
X(13386) = polar conjugate of X(1123)
X(13386) = isoconjugate of X(j) and X(j) for these (i,j): {4,606}, {6,6213}, {19,1335}, {25,3084}, {48,1123}, {1459,6135}, {1973,5391}, {2067,7133}, {2362,5414}, {6365,8750}
X(13386) = barycentric product X(i)*X(j) for these {i,j}: {4,1267}, {69,1336}, {75,6212}, {92,3083}, {264,1124}, {605,1969}, {6335,6364}
X(13386) = barycentric quotient X(i)/X(j) for these (i,j): (1,6213), (3,1335), (4,1123), (48,606), (63,3084), (69,5391), (605,48), (905,6365), (1124,3), (1267,69), (1336,4), (1783,6135), (1806,1805), (2066,5414), (3083,63), (6136,1783), (6212,1), (6364,905), (6502,2067)
The appearance of (i,j) in the following list means that X(j) = {X(13386),X(13387)}-harmonic conjugate of X(i): (4,92), (8,329), (321,3436), (3869,5739).
See Tran Quang Hung and Peter Moses, AdvGeom 3776.
X(13387) lies on the cubics K170, K200, and these lines: {2,176}, {4,8}, {63,487}, {77,3084}, {81,1123}, {193,7133}, {278,1586}, {281,1585}, {1444,5391}, {5200,7009}, {8048,9789}
X(13387) = isogonal conjugate of X(34125)
X(13387) = isotomic conjugate of X(13386)
X(13387) = cevapoint of X(1335) and X(34121)
X(13387) = X(1335)-cross conjugate of X(5391)
X(13387) = anticomplement of X(13389)
X(13387) = X(i)-anticomplementary conjugate of X(j) for these (i,j): (6,176), (1659,3434), (2067,347), (2362,7), (5414,20), (7090,69), (7133,8)
X(13387) = polar conjugate of X(1336)
X(13387) = isoconjugate of X(j) and X(j) for these (i,j): {4,605}, {6,6212}, {19,1124}, {25,3083}, {48,1336}, {1267,1973}, {1459,6136}, {6364,8750}
X(13387) = barycentric product X(i)*X(j) for these {i,j}: {4,5391}, {69,1123}, {75,6213}, {92,3084}, {264,1335}, {606,1969}, {6335,6365}
X(13387) = barycentric quotient X(i)/X(j) for these (i,j): (1,6212), (3,1124), (4,1336), (48,605), (63,3083), (69,1267), (606,48), (905,6364), (1123,4), (1335,3), (1783,6136), (1805,1806), (2067,6502), (3084,63), (5391,69), (5414,2066), (6135,1783), (6213,1), (6365,905)
See Tran Quang Hung and Peter Moses, AdvGeom 3776.
The appearance of (i,j) in the following list means that X(j) = {X(13388),X(13389)}-harmonic conjugate of X(i): {1,57}, {3,1214}, {55,241}, {56,3666}, {65,940}, {354,5228}, {980,1402}, {982,1429}, {1038,10319}. (Randy Hutson, July 21, 2017)
X(13388) lies on the cubic K168 and K363, and on these lines: {1,3}, {2,175}, {6,6203}, {7,1659}, {12,10911}, {37,6204}, {63,2067}, {69,5391}, {77,5414}, {81,1805}, {174,558}, {189,7090}, {200,3640}, {222,1335}, {226,481}, {371,1708}, {478,8231}, {482,553}, {914,11090}, {1211,10908}, {1372,5219}, {1374,4654}, {1407,3298}, {1445,2066}, {1589,6350}, {1590,6349}, {2003,3301}, {3083,3306}, {3751,8941}, {3752,7968}, {3911,5405}, {5256,6502}, {5408,6505}, {7248,7353}
X(13388) = complement of X(13386)
X(13388) = X(651)-Ceva conjugate of X(6365)
X(13388) = X(6365)-cross conjugate of X(651)
X(13388) = cevapoint of X(2067) and X(5414)
X(13388) = trilinear pole of line {905,6365}
X(13388) = X(i)-complementary conjugate of X(j) for these (i,j): (606, 3), (3084, 1368). (6213, 141). (8750, 6365)
X(13388) = isoconjugate of X(j) and X(j) for these (i,j): {4,2066}, {281,6502}, {1336,5414}, {1806,1826}, {6212,7133}
X(13388) = {X(481),X(5393)}-harmonic conjugate of X(226)
X(13388) = barycentric product X(i)*X(j) for these {i,j}: {63,1659}, {69,2362}, {75,2067}, {77,7090}, {85,5414}, {348,7133}, {1441,1805}
X(13388) = barycentric quotient X(i)/X(j) for these (i,j): (48,2066), (603,6502), (606,5414), (1437,1806), (1659,92), (1805,21), (2067,1), (2362,4), (5414,9), (6213,7090), (6502,6212), (7090,318), (7133,281)
See Tran Quang Hung and Peter Moses, AdvGeom 3776.
The appearance of (i,j) in the following list means that X(j) = {X(13388),X(13389)}-harmonic conjugate of X(i): {1,57}, {3,1214}, {55,241}, {56,3666}, {65,940}, {354,5228}, {980,1402}, {982,1429}, {1038,10319}. (Randy Hutson, July 21, 2017)
X(13389) lies on the cubics K168 and K363, and on these lines: {1,3}, {2,176}, {6,6204}, {12,10910}, {37,6203}, {63,3083}, {69,1267}, {77,2066}, {81,1806}, {174,557}, {200,3641}, {222,1124}, {226,482}, {371,8978}, {372,1708}, {481,553}, {914,11091}, {1211,10907}, {1371,5219}, {1373,4654}, {1407,3297}, {1445,5414}, {1587,8957}, {1589,6349}, {1590,6350}, {2003,3299}, {2067,5256}, {3084,3306}, {3751,8945}, {3752,7969}, {3911,5393}, {5409,6505}, {6200,8973}, {6213,8965}, {7248,7362}
X(13389) = isogonal conjugate of X(7133)
X(13389) = complement of X(13387)
X(13389) = X(651)-Ceva conjugate of X(6364)
X(13389) = X(6364)-cross conjugate of X(651)
X(13389) = X(i)-complementary conjugate of X(j) for these (i,j): (605,3), (3083,1368), (6212,141), (8750,6364)
X(13389) = cevapoint of X(2066) and X(6502)
X(13389) = trilinear pole of line {905,6364}
X(13389) = barycentric product X(i)*X(j) for these {i,j}: {75,6502}, {85,2066}, {1267,2362}, {1441,1806}, {1659,3083}
X(13389) = barycentric quotient X(i)/X(j) for these (i,j): {1,7090), (6,7133), (48,5414), (56,2362), (57,1659), (603,2067), (605,2066), (1437,1805), (1806,21), (2066,9), (2067,6213), (2362,1123), (6502,1)
X(13389) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,176,1659), (482,5405,226)
X(13389) = isoconjugate of X(j) and X(j) for these {i,j}: {1,7133}, {4,5414}, {6,7090}, {9,2362}, {55,1659}, {281,2067}, {1123,2066}, {1805,1826}
X(13390) lies on the cubics K070a, K332, the circumconic {{A,B,C(X(20, X(7)}}, and these lines: 1,4}, {2,175}, {19,3069}, {27,6502}, {56,10911}, {57,481}, {75,492}, {92,1586}, {281,3536}, {482,4654}, {553,1374}, {638,1943}, {908,3084}, {940,10908}, {1372,3911}, {1373,3982}, {1465,2048}, {1738,8945}, {1826,6351}, {1851,5200}, {3071,6354}, {3083,5249}, {3128,7102}, {3640,4847}, {3672,8243}, {3772,7968}, {5219,5393}, {6204,6352}, {10905,11347}
X(13390) = isogonal conjugate of (5414)
X(13390) = polar conjugate of X(7090)
X(13390) = X(92)-Ceva conjugate of X(1659)
X(13390) = X(i)-cross conjugate of X(j) for these (i,j): (57,1659), (481,7), (5405,2)
X(13390) = isoconjugate of X(j) and X(j) for these {i,j}: {1,5414}, {3,7133}, {9,2067}, {37,1805}, {48,7090}, {212,1659}, {219,2362}, {2066,6213}
X(13390) = cevapoint of X(1) and X(6203)
X(13390) = crosssum of X(i) and X(j) for these (i,j): {48,606}, {6502,8833}
X(13390) = {X(1),X(226)}-harmonic conjugate of X(1659)
X(13390) = {X(4),X(278)}-harmonic conjugate of X(1659)
X(13390) = X(481)-cross conjugate of X(7)
X(13390) = barycentric product X(i)*X(j) for these {i,j}: {264,6502}, {331,2066}
X(13390) = barycentric quotient X(i)/X(j) for these (i,j): (4,7090), (6,5414), (19,7133), (34,2362), (56,2067), (58,1805), (278,1659), (1806,283), (2066,219), (2067,1335), (2362,6213), (6502,3)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25820 and Angel Montesdeoca, Triángulos paralelógicos y cónicas asociadas
X(13391) lies on these lines: {3,143}, {4,2889}, {5,3917}, {15,2058}, {16,2059}, {20,6102}, {30,511}, {36,500}, {49,12088}, {51,549}, {52,550}, {54,6030}, {110,5899}, {128,11583}, {140,5446}, {156,3167}, {186,1112}, {265,5900}, {323,10540}, {373,11539}, {376,568}, {381,2979}, {382,5876}, {389,548}, {394,7530}, {546,1216}, {547,3819}, {567,6636}, {578,7525}, {1319,5453}, {1350,7514}, {1511,2070}, {1568,11563}, {1597,6403}, {1657,5889}, {1993,12083}, {2071,3581}, {2077,6097}, {2937,5944}, {3153,10113}, {3520,6746}, {3521,12226}, {3524,11002}, {3526,9781}, {3530,5462}, {3534,5890}, {3627,5562}, {3628,5447}, {3830,11459}, {3843,11444}, {3845,5891}, {3850,11793}, {3851,7999}, {3853,5907}, {5054,5640}, {5055,7998}, {5066,10170}, {5073,12111}, {5892,12100}, {5972,10096}, {6688,10124}, {6699,11692}, {7512,10610}, {7516,10982}, {8567,12084}, {8703,9730}, {9826,10564}, {10272,11807}, {11414,12161}, {11660,12225}, {11695,12108}, {12038,12107}
X(13391) = isogonal conjugate of X(13597)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25820 and Angel Montesdeoca, Triángulos paralelógicos y cónicas asociadas
X(13392) lies on these lines: {5,12383}, {30,113}, {74,12100}, {110,140}, {146,8703}, {265,547}, {399,549}, {468,3043}, {542,10124}, {546,10733}, {632,3448}, {3292,11702}, {3523,12308}, {3530,5663}, {3580,11597}, {3628,5972}, {3853,12121}, {4995,7343}, {5054,12317}, {5298,6126}, {5609,12108}, {5844,11720}, {6677,12228}, {6699,11812}, {7687,11737}, {7728,12103}, {9143,11539}, {10109,12900}, {10113,12811}
X(13392) = midpoint of X(i) and X(j) for these {i,j}: {{110, 140}, {1511, 10272}, {3853, 12121}, {5642, 11694}, {7728, 12103}
X(13392) = reflection of X(i) in X(j) for these (i,j): (3628, 5972), (10113, 12811)
X(13392) = X(3471)-Ceva conjugate of X(30)
X(13392) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1511,5642,10272), (10272,11694,1511)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25820 and Angel Montesdeoca, Triángulos paralelógicos y cónicas asociadas
X(13393) lies on these lines: {30,6070}, {110,140}, {541,12102}, {542,3530}, {546,9140}, {550,3448}, {1656,12317}, {3850,5462}, {3859,10706}, {5056,12308}, {5655,12812}
See Tran Quang Hung and Angel Montesdeoca, Hyacinthos 25910.
X(13394) lies on these lines: {2,154}, {3,4549}, {5,1495}, {6,7493}, {23,5480}, {51,10154}, {67,110}, {140,5651}, {156,7568}, {182,468}, {184,343}, {394,7494}, {549,5642}, {597,5640}, {631,11456}, {1995,3589}, {2502,3054}, {3066,3618}, {3233,11007}, {3549,6146}, {3580,8550}, {3629,11422}, {5092,5972}, {5169,7712}, {5647,12012}, {6353,10601}, {6689,7403}, {7399,10282}, {7488,12233}, {7499,9306}, {7552,12022}, {7558,9707}, {10565,11427}
X(13394) = midpoint of X(2) and X(6800)
X(13394) = X(22)-of-X(2)-Brocard-triangle
X(13394) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (110,7495,141), (184,6676,343), (3580,11003,8550), (3618,4232,3066)
Suppose that P = u : v : w (barycentrics). The point U(P) = a^2 (b^4 w (-u+w)+(a^2-c^2) v (c^2 (u-v)+a^2 w)+b^2 (a^2 (u-v-w) w+c^2 (u^2+2 v w-u (v+w)))) : : is constructed in Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25820 and Angel Montesdeoca, Triángulos paralelógicos y cónicas asociadas
The point U(P) is also the trilinear pole of the line X(6)X, where X = crossum of X(6) and P. (Peter Moses, May 14, 2017).
X(13395) = U(X(19)). See also X(13396-X(13398).
X(13395) lies on the circumcircle and these lines: {103,10884}, {105,3485}, {108,4566}, {110,6516}, {112,651}, {1305,1633}
X(13395) = trilinear pole of line X(6)X(1214)
X(13395) = trilinear pole, wrt circumtangential triangle, of line X(3)X(19)
X(13395) = Ψ(X(6), X(1214))
X(13395) = isoconjugate of X(j) and X(j) for these (i,j): {377, 663}, {1448, 3900}
X(13395) = barycentric quotient X(i)/X(j) for these (i,j): (651, 377), (1461, 1448)
X(13396) = U(X(45)); see X(13395 for the mapping U(P).
X(13396) lies on the circumcircle and these lines: {1,753}, {86,759}, {101,4585}, {664,2222}, {668,9059}, {743,1015}, {761,1001}
X(13396) = anticomplement of X(38963)
X(13396) = trilinear pole of line X(6)X(2243)
X(13396) = X(21)-beth conjugate of X(753)
X(13396) = Ψ(X(6), X(2243))
X(13396) = isoconjugate of X(663) and X(5252)
X(13396) = barycentric quotient X(651)/X(5252)br>
X(13397) = U(X(63)); see X(13395 for the mapping U(P).
X(13397) lies on the circumcircle and these lines: {2,5521}, {3,915}, {20,104}, {22,105}, {107,3658}, {110,1633}, {112,4236}, {513,6099}, {759,4278}, {840,3100}, {858,2752}, {917,7411}, {935,7475}, {1289,4238}, {1295,11413}, {1299,7414}, {1300,3651}, {1301,4246}, {1304,7477}, {1305,6516}, {2071,2687}, {2249,4269}, {2374,4239}, {2757,10538}, {3563,4220}, {7465,9085}, {7476,10423}, {7493,9061}
X(13397) = reflection of X(915) in X(3)
X(13397) = trilinear pole of line X(6)X(169)
X(13397) = anticomplement of X(5521)
X(13397) = cevapoint of X(3) and X(513)
X(13397) = X(i)-cross conjugate of X(j) for these (i,j): (906, 651), (6591, 2), (7742, 59)
X(13397) = DeLongchamps-circle-inverse of X(149)
X(13397) = reflection of X(6099) in the line X(1)X(3)
X(13397) = Ψ(X(6), X(169))
X(13397) = Λ(trilinear polar of X(7040))
X(13397) = isoconjugate of X(j) and X(j) for these (i,j): {513, 3811}, {514, 2911}, {523, 1780}, {650, 1708}, {1331, 5521}, {3064, 3173}, {3900, 4341}, {7649, 11517}
X(13397) = barycentric quotient X(i)/X(j) for these (i,j): (101, 3811), (109, 1708), (163, 1780), (692, 2911), (906, 11517), (1461, 4341), (6591, 5521)
X(13398) = U(X(68)); see X(13395 for the mapping U(P).
X(13398) lies on the circumcircle and these lines: {2,135}, {3,1299}, {20,254}, {22,3563}, {74,9938}, {98,1370}, {759,921}, {925,4558}, {1141,8800}, {1289,4226}, {2374,7493}, {2383,7488}, {2713,9218}, {7468,10423}
X(13398) = reflection of X(1299) in X(3)
X(13398) = trilinear pole of line X(6)X(1147)
X(13398) = anticomplement of X(135)
X(13398) = cevapoint of X(i) and X(j) for these {i, j}: {3, 924}, {512, 577}, {523, 11585}
X(13398) = X(i)-cross conjugate of X(j) for these (i,j): (6562, 251), (6753, 2), (7387, 250)
X(13398) = circumcircle-antipode of X(1299)
X(13398) = Λ(trilinear polar of X(6515))
X(13398) = X(108)-of-dual-of-orthic-triangle if ABC is acute
X(13398) = isoconjugate of X(j) and X(j) for these {i,j}: {523, 920}, {656, 3542}, {661, 6515}, {1577, 1609}, {2618, 8883}
X(13398) = barycentric product X(i)*X(j) for these {i,j}: {110, 6504}, {254, 4558}, {662, 921}
X(13398) = barycentric quotient X(i)/X(j) for these (i,j): (110, 6515), (112, 3542), (163, 920), (921, 1577), (1576, 1609), (6504, 850), (6753, 135)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25933.
X(13399) lies on these lines: {30,6070}, {74,10421}, {125,403}, {185,427}, {542,2071}, {1533,10264}, {1568,5663}, {1596,11381}, {3357,11457}, {3520,10619}, {5642,10257}, {6241,7577}, {6353,12324}, {6699,10540}, {10112,12086}, {10193,11464}, {10605,11550}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25939.
X(13400) lies on this line: {230,231}
X(13400) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2501,6753,6587)
X(13400) = barycentric product X(i)*X(j) for these {i,j}: {523, 3089}, {2501, 11433}
X(13400) = barycentric quotient X(i)/X(j) for these {i,j}: {3089, 99}, {8573, 4558}, {11433, 4563}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25945.
X(13401) lies on these lines: {44,513}, {521,4976}, {2488, 11934}, {3738,4765}, {4131,4762} ,{8774,11068}
X(13401) = reflection of X(11934) in X(2488)
X(13401) = X(42)-complementary conjugate of X(5522)
X(13401) = crosspoint of X(651) and X(3296)
X(13401) = crossdifference of every pair of points on line {1, 6883}
X(13401) = crosssum of X(650) and X(3295)
X(13401) = barycentric product X(i)*X(j) for these {i,j}: {513, 10527}, {522, 3338}, {3737, 12609}
X(13401) = barycentric quotient X(i)/X(j) for these {i,j}: {663, 7162}, {3338, 664}, {10527, 668}
X(13401) = {X(650),X(4790)}-harmonic conjugate of X(654)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25952.
X(13402) lies on these lines: {23, 110}, {389, 12308}, {5663, 12811}, {6723, 10219}, {9729, 10620}
X(13402) =
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25958.
Let A'B'C' be the midheight triangle. Let AB, AC be the orthogonal projections of A' on CA, AB, resp. Define BC, BA, CA, CB cyclically. Let A" = CAAC∩ABBA, and define B" and C" cyclically. Triangle A"B"C" is homothetic to ABC at X(6). X(13403) = X(382)-of-A"B"C". (Randy Hutson, March 29, 2020)
X(13403) lies on these lines: {3,2929}, {4,54}, {5,1511}, {6,382}, {20,11438}, {30,143}, {49,113}, {51,6240}, {115,1970}, {125,3520}
X(13403) = midpoint of X(i) and X(j) for these {i,j}: {382,11750}, {1885,6146}
X(13403) = reflection of X(i) in X(j) for these {i,j}: {389,12241}, {3575,10110}, {101 12,12370}
X(13403) = crosssum of X(3) and X(6102)
X(13403) = X(3878)-of-orthic-triangle if ABC is acute
X(13403) = {X(5),X(12038)}-harmonic conjugate of X(5972)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25964.
X(13404) lies on the hyperbola {{A,B,C,X(1),X(6)}} and these lines:
X(13404) = cevapoint of X(6) and X(2293)
X(13404) = X(2488)-cross conjugate of X(101)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25964.
X(13405) lies on these lines:
{1,2}, {3,4298}, {4,3947}, {7,165}, {11,3748}, {12,950}, {20,5290}, {21,12527}, {35,4292}, {37,800}, {40,3487}, {55,226}, {56,12577}, {57,3475}, {63,5850}, {65,12563}, {100,5249}, et al.
X(13405) = midpoint of X(i) and X(j) for these {i,j}: {55, 226}, {3870, 4847}, {4028, 4362}
X(13405) = complement X(4847)
X(13405) = X(6606)-Ceva conjugate of X(514)
X(13405) = crosssum of X(6) and X(2293)
X(13405) = complement of X(4847)
X(13405) = X(i)-complementary conjugate of X(j) for these (i,j): (1170, 141), (1174, 3452), (2346, 1329)
X(13405) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,2,11019), ( 1,10,6738), ( 1,498,1210), (1,1210,6744), (1,1698,938), (1,3085,10), (1,3584,1737), (2,200,10), (2,3870,4847), (2,10578,1), (7,5281,165), (10,3811,6743), (35,4292,12512), (40,3487,3671), (57,3475,5542), (57,5218,10164), (498,1210,3634), (3475,5218,57), (3616,11239,3872), (3634,6744,1210), (3811,10198,10), (3947,4314,4), (5542,10164,57)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 25967.
Let La be the polar of X(4) wrt the circle centered at A and passing through X(5). Define Lb and Lc cyclically. (Note: X(4) is the perspector of any circle centered at a vertex of ABC.) Let A' = Lb∩Lc, and define B' and C' cyclically. X(13406) = X(3)-of-A'B'C'. (Randy Hutson, July 21, 2017)
See Anopolis #436, Angel Montesdeoca, 6/18/2013.
X(13406) lies on these lines: {2,3}, {113,5876}, {156,9927}, {265,1614}, {1154,5448}, {1568,6101}, {5449,5663}, {5476,11255}, {5944,10113}, {6241,10264}, {6564,11266}, {6565,11265}, {7728,11440}, {7951,8144}, {11459,11805}, {11804,12254}
X(13406) = midpoint of X(i) and X(j) for these {i,j}: {4,1658}, {156,9927}
X(13406) = reflection of X(i) on X(j) for these {i,j}: {3,10125}, {10125,12010}, {10224,5}, {10226,140}, {11250,5498}
X(13406) = complement of X(11250)
X(13406) = X(26286)-of-orthic-triangle if ABC is acute
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25968.
X(13407) lies on these lines: {1,4}, {2,3338}, {3,10404}, {5, 354}, {7,46}, {8,12559}, {10, 3681}, {11,5045}, {12,942}, {35,4292}, {36,4298}, {40,4654}, {55, 1770}, {56,6883}, {57,498}, {58, 3011}, {63,10198}, {65,495}, {79, 516}, {80,6738}, {142,1698}, {191,527}, {210,8728}, {355, 11237}, {377,3811}, {442,518}, {484,3982}, {499,3333}, {517, 3649}, {519,5178}, {529,11281}, {551,3897}, {553,3336}, {726, 3178}, {908,1125}, {938,10590}, {999,11375}, {1071,7680}, {1089, 3912}, {1103,4328}, {1145,10107} ,{1210,3947}, {1329,5439}, {1330,3757}, {1385,5434}, {1714, 3751}, {1718,5262}, {1738,3293}, {1788,8164}, {1836,3295}, {1837, 9654}, {1892,11398}, {2476,3873} ,{2646,5719}, {2801,10122}, {2886,3555}, {3086,5226}, {3090, 3296}, {3091,11038}, {3303, 12699}, {3304,5886}, {3337,3911} ,{3340,12647}, {3452,3624}, {3576,4317}, {3579,11246}, {3600, 6992}, {3601,4299}, {3612,4293}, {3634,5557}, {3636,11813}, {3670,5530}, {3671,5903}, {3697, 3826}, {3742,4187}, {3753,12607} ,{3754,6735}, {3782,3931}, {3822,3874}, {3824,3925}, {3889, 11680}, {3916,6690}, {3936,4968} ,{4004,8256}, {4294,10578}, {4295,5119}, {4302,9579}, {4304, 10483}, {4309,10389}, {4338, 6361}, {4415,6051}, {4870,5901}, {5049,9955}, {5083,8068}, {5252, 12645}, {5259,12572}, {5261, 6993}, {5425,12563}, {5443, 12577}, {5586,9588}, {5587, 11518}, {5687,5880}, {5722, 10895}, {5745,6763}, {5905, 12514}, {6745,12436}, {6767, 12701}, {6825,12704}, {6831, 12675}, {6847,10085}, {6890, 7284}, {7373,11376}, {7741, 11019}, {7958,10157}, {8227, 10072}, {8727,12680}, {9578, 10573}, {10052,10075}, {10580, 10591}, {10587,11415}, {11010, 11552}, {12528,12617}
X(13407) = midpoint of X(i) and X(j) for these {i,j}: {1, 5270}, {79, 3746}
X(13407) = crosspoint of X(92) and X(1268)
X(13407) = crosssum of X(48) and X(2308)
X(13407) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,226,12047), (1,1478,10572), ( 1,3585,950), (1,5290,1478), (1, 9612,1479), (4,3475,1), (7,3085, 46), (12,942,1737), (65,495, 10039), (65,6147,11551), (388, 3487,1), (388,10629,1478), (495, 6147,65), (553,6684,3336), (938, 10590,10826), (1056,3485,1), ( 1125,12527,5251), (1210,3947, 7951), (2476,3873,10916), (3333, 5219,499), (3336,3584,6684), ( 3681,4197,10), (3822,3874,6734), (3947,5542,1210), (4293,5703, 3612), (5226,11037,3086), (9578, 11529,10573), (10039,11551,65)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25968.
X(13408) lies on these lines: {1,30}, {3,5713}, {4,81}, {5,1724}, {58,6841}, {155,5706}, {186,229}, {225,6357}, {283,442}, {323,2475}, {355,3564}, {381, 5292}, {382,5733}, {407,1437}, {540,10916}, {580,6881}, {582, 8728}, {942,1835}, {1478,3157}, {2003,3585}, {3109,11657}, {3332, 6850}, {4340,6851}, {5230,9958}, {5712,6869}, {9840,11249}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25977.
X(13409) lies on these lines: {2,1972}, {3,54}, {5,6662}, {6,426}, {51,852}, {216,3289}, {264,11197}, {389,417}, {394,6641}, {408,970}, {418,511}
X(13409) = crosspoint of X(3) and X(264)
X(13409) = crosssum of X(4) and X(184)
X(13409) = X(9251)-anticomplementary conjugate of X(2888)
X(13409) = barycentric product X(i)*X(j) for these {i,j}: {76,6752}, {394,6747}
X(13409) = {X(51),X(6509)}-harmonic conjugate of X(852)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 25977.
X(13410) lies on these lines: {6,110}, {23,5038}, {39,51}, {18 2,8627}, {251,12834}, {373,3231}
X(13410) = crosspoint of X(6) and X(598)
X(13410) = crosssum of X(2) and X(574)
X(13410) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6,5640,3124}, {373,5052,3231}
See Antreas Hatzipolakis, Angel Montesdeoca, and Peter Moses, Hyacinthos 25986.
X(13411) lies on these lines: {1,2}, {3,226}, {4,3601}, {5, 950}, {7,3523}, {9,6857}, {12, 515}, {20,5226}, {21,908}, {29, 1785}, {35,411}, {36,4298}, {37, 216}, {40,3485}, {46,3671}, {55, 946}, {56,10165}, {57,631}, {58, 3074}, {63,6910}, {65,5432}, {72, 5745}, {84,6935}, {86,1167}, {140,942}, {142,474}, {165,4295}, {255,307}, {354,5433}, {376, 5714}, {377,4855}, {388,3576}, {390,9614}, {404,5249}, {405, 3452}, {442,5440}, {443,5438}, {452,5748}, {495,1385}, {496, 11230}, {497,6864}, {518,4999}, {527,3916}, {549,553}, {750,1771} ,{940,7078}, {943,6905}, {944, 6956}, {960,6690}, {962,5281}, {965,5257}, {991,1745}, {993, 12527}, {1012,6260}, {1056,1420} ,{1058,10389}, {1071,6705}, {1150,4101}, {1155,3649}, {1323, 1446}, {1335,8983}, {1445,3338}, {1478,3612}, {1479,3817}, {1490, 6847}, {1656,5722}, {1697,5603}, {1699,4294}, {1728,3305}, {1735, 2292}, {1770,5010}, {1788,11529} ,{1836,5217}, {1837,10175}, {1838,7513}, {1892,3515}, {2099, 11362}, {3035,3812}, {3075,7572} ,{3090,3488}, {3091,3586}, {3158,5082}, {3295,5886}, {3303, 11376}, {3306,6921}, {3333,3475} ,{3336,11551}, {3340,5657}, {3419,12437}, {3486,5587}, {3524, 4654}, {3525,11518}, {3530,3982} ,{3583,6894}, {3585,6895}, {3614,10543}, {3628,12433}, {3686,5742}, {3742,6691}, {3746, 5443}, {3772,4255}, {3822,10523} ,{3940,5791}, {4293,5290}, {4301,5119}, {4305,5691}, {4652, 5905}, {4870,4995}, {4909,5740}, {5044,6675}, {5054,5708}, {5083, 6713}, {5084,5436}, {5129,5328}, {5135,9028}, {5204,10404}, {5248,8069}, {5252,5882}, {5261, 5731}, {5265,11037}, {5294, 11031}, {5316,11108}, {5425, 5445}, {5435,10303}, {5439,6692} ,{5444,5563}, {5482,11573}, {5570,6681}, {5709,5761}, {5717, 5718}, {5720,6824}, {5727,5818}, {5728,6666}, {5730,5837}, {5732, 8232}, {5735,5766}, {5747,8804}, {5750,5830}, {5777,10391}, {5850,6763}, {5901,9957}, {5902, 12563}, {6198,7537}, {6245,6833} ,{6282,6908}, {6710,11028}, {6718,12016}, {6767,11373}, {6828,7951}, {6834,7682}, {6837, 7675}, {6846,10382}, {6860, 10827}, {6861,10395}, {6878, 11048}, {6890,10884}, {6892, 7330}, {6926,8726}, {6966,8545}, {6991,7741}, {7308,10396}, {7498,7952}, {7742,12573}, {7962, 10595}, {7988,10591}, {10086, 11599}, {10265,12739}, {10399, 11020}, {10956,11715}, {11507, 12609}
X(13411) = midpoint of X(i) and X(j) for these {i,j}: {1, 10039}, {12, 2646}, {35, 12047}, {4870, 4995}
X(13411) = complement X(6734)
X(13411) = X(i)-complementary conjugate of X(j) for these (i,j): {943, 1329}, {1175, 960}, {2259, 3452}, {2982, 141}
X(13411) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,2,1210), (1,498,10), (1,499, 11019), (1,1737,6738), (1,3584, 10039), (1,3624,3086), (1,12647, 3244), (2,8,5705), (2,78,10), (2, 5703,1), (3,226,4292), (3,11374, 226), (4,3601,4304), (20,5226, 9612), (21,908,12572), (55,946, 10624), (55,11375,946), (65, 5432,6684), (72,7483,5745), ( 140,942,3911), (140,5719,942), ( 307,5736,3664), (376,5714,9579) ,(388,3576,4311), (404,5249, 12436), (495,1385,10106), (631, 3487,57), (944,8164,9578), ( 1125,6700,2), (1478,3612,4297), (1770,5010,12512), (3035,11281, 3812), (3090,3488,9581), (3091, 4313,3586), (3295,5886,12053), ( 3475,7288,3333), (3485,5218,40) ,(3486,10588,5587), (3601,5219, 4), (3634,6738,1737), (3671, 10164,46), (3817,4314,1479), ( 3947,4297,1478), (4305,10590, 5691), (5261,5731,9613), (5290, 7987,4293), (5761,6954,5709), ( 10303,11036,5435)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26001.
X(13412) lies on this line: {5,3629}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26006.
X(13413) lies on these lines: {2,3}, {1216,11808}, {5943,11557}, {6146,8254}, {10610,11572}, {11264,12242}
X(13413) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5,1594,140), (5,2072,547), (5,3 845,10254), (5,5133,5066), (5,55 76,546), (5,10224,3628), (140,54 6,3575), (546,547,10096), (5169, 10254,3845), (7574,7579,1594)
X(13414) and X(13415) were contributed by Peter Moses, May 22, 2017.
X(182) = midpoint of X(13414) and X(13415)
X(i) = {X(13414),X(13415)}-harmonic conjugate of X(j) for these {i,j}: {2,110}, {125,184}, {1899,13198}, {3448,5012}, {5622,6776}, {5642,5651}, {5972,9306}, {9140,11003}, {9744,11653}, {11179,11579}
X(13414) lies on the Brocard circle, the cubics K019, K048, K223, K417, K418, and these lines: {2,98}, {3,2575}, {6,1344}, {511,1113}, {1114,1495}, {1312,11064}, {1313,1503}, {1347,3818}, {3292,8115}, {10719,11645}
X(13414) = midpoint of X(1113) and X(8116)
X(13414) = X(1113)-of-1st-Brocard-triangle
X(13414) = X(9513)-Ceva conjugate of X(13415)
X(13414) = X(i)-line conjugate of X(j) for these (i,j): {3, 2575}, {6, 8105}, {1344, 8105}, {2574, 8105}, {9173, 8105}, {10287, 2575}
X(13414) = crossdifference of every pair of points on line X(2575)X(3569)
X(13414) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,110,13415), (125,184,13415), (1899,13198,13415), (3448,5012,13415), (5622,6776,13415), (5642,5651,13415), (5972,9306,13415), (9140,11003,13415), (9744,11653,13415), (11179,11579,13415)
See X(13414).
X(13415) lies on the Brocard circle, the cubics K019, K048, K223, K417, K418, and these lines: {2,98}, {3,2574}, {6,1345}, {511,1114}, {1113,1495}, {1312,1503}, {1313,11064}, {1346,3818}, {3292,8116}, {10720,11645}}
X(13415) = midpoint of X(1114) and X(8115)
X(13415) = X(1114)-of-1st-Brocard-triangle
X(13415) = X(9513)-Ceva conjugate of X(13414)
X(13415) = X(i)-line conjugate of X(j) for these (i,j): {3, 2574}, {6, 8106}, {1345, 8106}, {2575, 8106}, {9174, 8106}, {10288, 2574}
X(13415) = crossdifference of every pair of points on line X(2575)X(3569)
X(13415) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,110,13414), (125,184,13414), (1899,13198,13414), (3448,5012,13414), (5622,6776,13414), (5642,5651,13414), (5972,9306,13414), (9140,11003,13414), (9744,11653,13414), (11179,11579,13414)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26038.
X(13416) lies on these lines: {2,1112}, {3,74}, {20,12133}, {1 13,6823}, {125,343}, {140,9826}, {143,6640}, {146,10996}, {265,66 43}, {339,4576}, {376,12292}, {39 4,13198}, {511,5159}, {542,10691 }, {631,1986}
X(13416) = midpoint of X(i) and X(j) for these {i,j}: {3,12358}, {20,12133}, {974,556 2}, {1216,6699}, {2979,12099}, {6101,12236}, {12219,13148}
X(13416) = reflection of X(i) in X(j) for these {i,j}: {9826, 140}, {11746, 6723}
X(13416) = complement X(1112)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26039.
X(13417) lies on these lines: {2,13201}, {3,11557}, {4,7730}, {6,1205}, {23,110}, {30,11562}, {51,125}, {52,3627}, {67,9969}, {74,389}, {113,5562}, {143,10264} ,{146,5889}, {184,10117}, {185, 1986}, {265,5446}, {373,6723}, {399,6243}, {550,11561}, {568, 10620}, {974,10990}, {1181,9919} ,{1204,2935}, {1498,12165}
X(13417) = midpoint of X(i) and X(j) for these {i,j}: {4,7731}, {146,5889}, {399, 6243}, {3146,12270}, {7722, 10721}
X(13417) = reflection of X(i) in X(j) for these {i,j}: {3,11557}, {4,11807}, {67,9969} ,{74,389}, {125,1112}, {185, 1986}, {265,5446}, {550,11561}, {1205,6}, {3313,6593}, {3448,11800}, {3917,12824}, {5562,113} ,{6101,10272}, {6467,5095}, {10264,143}, {10620,11806}, {10625,1511}, {10990,974}, {11381,13202}, {12162,1539}, {12219,5907}
X(13417) = complement X(13201)
X(13417) = crosssum of X(3) and X(3448)
X(13417) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (125,1112,51), (568,10620, 11806)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26047.
X(13418) lies on the Jerabek hyperbola and these lines: {3, 12325}, {74, 12254}, {265, 2888}, {1154, 3521}, {1176, 5965}, {9706, 11271}
X(13418) = pedal antipodal perspector of X(5)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26047.
Let P be a point on the circumcircle and D a point on the line BC. Let U and V be the reflections of D in PB and PC, respectively. The envelope of lines UV when D moves on BC is a parabola. Let P be its focus and da its directrix. The envelope of da as P moves on circumcircle is a circle, Oa. Define (Ob) and (Oc) cyclically. The radical center of the circles (Oa), (Ob), (Oc) is X(13419); see Euclid #611. (Angel Montesdeoca, February 6, 2020)
X(13419) lies on these lines: {3,2916}, {4,54}, {24,11550}, {30,1216}, {52,542}, {125,3518}, {143,10116}, {182,7528}, {185, 7576}, {211,2794}, {235,7687}, {381,11750}, {389,1503}, {403, 11572}, {427,10282}, {428,6146}, {511,7553}, {539,10263}, {1092, 7391}, {1112,10114}, {1209,2937} ,{1495,1594}, {1539,3627}, {1595,11430}, {1598,1619}, {1853, 3517}, {2777,6240}, {3426,5925}, {3541,11202}, {3543,12278}, {3575,6000}, {3853,12897}, {5092, 7405}, {5446,10112}, {5899,6288} ,{5900,12244}, {5965,6243}, {5972,13371}, {6145,10117}, {6242,7731}, {6800,7566}, {7487, 11438}, {7530,9927}, {7544, 10984}, {9729,11645}, {13163, 13363}
X(13419) = midpoint of X(i) and X(j) for these {i,j}: {6240, 11381}, {7553, 12134}
X(13419) = reflection of X(i) in X(j) for these {i,j}: {389, 6756}, {6146, 10110}, {10112, 5446}, {10114, 1112}, {10116, 143}, {12897, 3853}, {13403, 4}
X(13419) = crosspoint of X(4) and X(11816)
X(13419) = crosssum of X(3) and X(6101)
X(13419) = X(3874)-of-orthic-triangle if ABC is acute
X(13419) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,1614,3574), (4,1629,6750), ( 4,9833,578), (143,10116,11225), (428,6146,10110)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26047.
X(13420) lies on the Feuerbach hyperbola of the orthic triangle and these lines: {4,12175}, {52,11271}, {185, 12254}, {1986,6242}, {3518,5898}
X(13420) = X(4)-Ceva conjugate of X(6143)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26047.
X(13421) lies on these lines: {4,93}, {26,11477}, {30,10112}, {52,550}, {140,143}, {546,12002} ,{568,3522}, {576,7525}, {1176, 1351}, {1216,13364}, {1493,2937} ,{1656,3060}, {1657,6102}, {3523,5946}, {3532,12084}, {3850, 5446}, {3851,11412}, {3858,5562} ,{5073,5889}, {10299,13340}, {10625,12006}
X(13421) = midpoint of X(6243) and X(10263)
X(13421) = reflection of X(i) in X(j) for these {i,j}: {6101, 10095}, {10625, 12006}, {10627, 143}, {11591, 5446}
X(13421) = 2{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (143,10627,13363), (3060,6101, 10095)
X(13421) =
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26047.
X(13422) lies on this line: {11558,12316}
X(13422) =
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26047.
Let A' be the inverse of A in the circumcircle of the A-adjunct anti-altimedial triangle, and define B', C' cyclically. Triangle A'B'C' is perspective to the reflection triangle at X(13423). (Randy Hutson, November 2, 2017)
X(13423) lies on these lines: {2,6153}, {3,13368}, {6,24}, {22,10203}, {143,9706}, {156,195} ,{382,1154}, {399,10263}, {511, 12325}, {1209,7999}, {1614,9920} ,{2888,11412}, {5640,8254}, {5890,12254}, {6241,6242}, {6288, 11459}, {6689,11465}, {7512, 11649}, {7691,12084}, {9512, 11816}, {9781,11808}, {10628, 12290}, {10938,12289}, {11061, 11271}, {11451,13365}
X(13423) = reflection of X(i) in X(j) for these {i,j}: {3, 13368}, {54, 6152}, {11412, 2888}, {12226, 1209}, {12291, 54}, {12316, 10263
X(13423) = X(4)-of-reflection-triangle
X(13423) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (54,2917,11464), (54,6152,7730) ,(54,7730,3567), (54,12380, 2917), (6152,12291,3567), (7730, 12291,54)
X(13424) lies on these lines: {2, 585}, {158, 7080}, {6136, 9098}, {13386, 13389}
X(13424) = barycentric square of X(13386)
X(13424) = X(606)-isoconjugate of X(1123)
X(13424) = barycentric product X(i)*X(j) for these {i,j}: {1267, 1336}, {13386, 13386}
X(13424) = barycentric quotient X(i)/X(j) for these {i,j}: {605, 606}, {1124, 1335}, {1267, 5391}, {1336, 1123}, {3083, 3084}, {6136, 6135}, {6212, 6213}, {6364, 6365}, {13386, 13387}
X(13425) lies on these lines: {8, 210}, {69, 13386}, {326, 1267}, {5391, 6348}
X(13425) = isoconjugate of X(j) and X(j) for these (i,j): {604, 1123}, {606, 1118}, {608, 6213}, {1395, 13387}, {3084, 7337}
X(13425) = barycentric product X(i)*X(j) for these {i,j}: {8, 1267}, {312, 3083}, {345, 13386}, {646, 6364}, {1124, 3596}, {1264, 1336}, {3718, 6212}
X(13425) = barycentric quotient X(i)/X(j) for these {i,j}: {8, 1123}, {78, 6213}, {345, 13387}, {605, 604}, {644, 6135}, {1124, 56}, {1259, 1335}, {1264, 5391}, {1267, 7}, {1336, 1118}, {2289, 606}, {3083, 57}, {3719, 3084}, {6212, 34}, {6364, 3669}, {13386, 278}
X(13426) lies on the Feuerbach hyperbola and these lines: {1, 1336}, {7, 13386}, {84, 6212}, {104, 6136}, {210, 1857}, {281, 7133}
X(13426) = isoconjugate of X(j) and X(j) for these (i,j): {7, 606}, {56, 3084}, {57, 1335}, {109, 6365}, {222, 6213}, {603, 13387}, {604, 5391}, {1123, 7125}, {2067, 13388}
X(13426) = barycentric product X(i)*X(j) for these {i,j}: {8, 1336}, {281, 13386}, {318, 6212}, {1267, 1857}, {4391, 6136}
X(13426) = barycentric quotient X(i)/X(j) for these {i,j}: {8, 5391}, {9, 3084}, {33, 6213}, {41, 606}, {55, 1335}, {281, 13387}, {605, 7125}, {650, 6365}, {1124, 1804}, {1267, 7055}, {1336, 7}, {1857, 1123}, {3083, 7183}, {6136, 651}, {6212, 77}, {13386, 348}
X(13427) lies on these lines: {6, 9043}, {19, 5200}, {57, 481}, {497, 7347}, {1334, 1857}, {1776, 7348}, {2291, 6136}
X(13427) = isoconjugate of X(j) and X(j) for these {i,j}: {7, 1335}, {56, 5391}, {57, 3084}, {77, 6213}, {85, 606}, {222, 13387}, {651, 6365}, {1123, 1804} 1336}, {281, 13386}, {318, 6212}, {1267, 1857}, {4391, 6136}
X(13427) = barycentric product X(i)*X(j) for these {i,j}: {9, 1336}, {33, 13386}, {281, 6212}, {522, 6136}, {1857, 3083}
X(13427) = barycentric quotient X(i)/X(j) for these {i,j}: {9, 5391}, {33, 13387}, {41, 1335}, {55, 3084}, {605, 1804}, {607, 6213}, {663, 6365}, {1124, 7183}, {1336, 85}, {2175, 606}, {3083, 7055}, {6136, 664}, {6212, 348}, {13386, 7182}
X(13428) lies on the cubics K170 and K267 and on these lines: {2, 371}, {4, 52}, {97, 1590}, {343, 3071}, {485, 5417}, {489, 1600}, {492, 1599}, {571, 3069}, {588, 2165}, {591, 5406}, {1585, 1993}, {1586, 3580}, {2994, 13387}, {5422, 7389}, {5870, 7500}, {5905, 13386}, {6414, 11418}, {6561, 11090}, {7386, 12603}, {11433, 12239}
X(13428) = anticomplement of X(5409)
X(13428) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {19, 487}, {486, 4329}, {8576, 6360}
X(13428) = X(5408)-cross conjugate of X(2)
X(13428) = {X(486),X11091)}-harmonic conjjugate of X(2)
X(13428) = isoconjugate of X(j) and X(j) for these {i,j}: {6, 3377}, {19, 10665}
X(13428) = barycentric product X(i)*X(j) for these {i,j}: {75, 3378}, {264, 10666}, {486, 492}, {1585, 11091}, {1599, 5392}
X(13427) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3377}, {3, 10665}, {371, 372}, {486, 485}, {492, 491}, {1585, 1586}, {1599, 1993}, {1993, 1600}, {3378, 1}, {5408, 5409}, {5413, 5412}, {6414, 6413}, {8576, 8577}, {8940, 8944}, {10666, 3}, {11091, 11090}
X(13429) lies on these lines: {2, 8961}, {4, 372}, {54, 1588}, {393, 847}, {1068, 1336}, {1123, 7040}, {1585, 1993}, {3535, 11091}, {8576, 10880}
X(13429) = isogonal conjugate of X(10665)
X(13429) = X(371)-cross conjugate of X(4)
X(13429) = X(1)-zayin conjugate of X(10665)
X(13429) = isoconjugate of X(j) and X(j) for these {i,j}: {1, 10665}, {3, 3377}, {1600, 1820}
X(13429) = barycentric product X(i)*X(j) for these {i,j}: {92, 3378}, {486, 1585}, {847, 1599}, {2052, 10666}
X(13429) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 10665}, {19, 3377}, {24, 1600}, {371, 5409}, {486, 11090}, {1585, 491}, {1599, 9723}, {3378, 63}, {5413, 372}, {8576, 6413}, {10666, 394}
X(13430) lies on these lines: {2,311}, {68, 488}, {69, 1590}, {486, 641}, {487, 1147}, {492, 1599}, {591, 10607}
X(13430) = isoconjugate of X(j) and X(j) for these {i,j}: {25, 3377}, {1096, 10665}
X(13430) = barycentric product X(i)*X(j) for these {i,j}: {76, 10666}, {304, 3378}, {492, 11091}
X(13430) = barycentric quotient X(i)/X(j) for these {i,j}: {63, 3377}, {371, 5412}, {394, 10665}, {492, 1586}, {1599, 24}, {3378, 19}, {5408, 372}, {6414, 8577}, {9723, 1600}, {10666, 6}, {11091, 485}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26050.
X(13431) lies on the Feuerbach hyperbola of the orthic triangle and on these lines: {4,539}, {6,17}, {54,3523}, {140,1493}, {185,550}, {193,10539}, {1858,9957}, {2888,5068}, {3533,6689}, {3574,3850}, {5073,5895}, {5446,11817}, {8550,12363}
X(13431) = reflection of X(i) in X(j) for these {i,j}: {1209, 195}, {3519, 12242}, {10625, 11577}, {12325, 6689}
X(13431) = X(4)-Ceva conjugate of X(140)
X(13431) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (195,3519,12242), (3519,12242,1209)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26050.
X(13432) lies on the cubic K119 and these lines: {3,2889}, {4,12175}, {6,17}, {140,12325}, {382,539}, {1154,1657}, {1493,3526}, {2888,3851}, {7517,11061}, {10605,10619}
X(13432) = reflection of X(3) in X(11271)
X(13432) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (195,3519,1656), (2888,11803,3851)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26050.
X(13433) lies on these lines: {51,12291}, {140,6153}, {389,6152}, {511,3519}, {539,11819}, {550,13368}, {5446,11803}, {6000,6242}, {6759,12175}, {9935,12234}, {9969,11808}, {11793,12226}, {12380,13367}
X(13433) = reflection of X(i) in X(j) for these {i,j}: {389, 6152}, {12226, 11793}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26069.
X(13434) lies on these lines: {1,59}, {2,578}, {3,143}, {4,569}, {5,49}, {6,5889}, {20,182}, {22,10982}, {23,10110}, {24,5640}, {26,9781}, {30,13353}, {51,7488}, {52,7691}, {60,2617}, {97,2055}, {155,11422}, {156,3851}, {184,3091}, {185,575}, {186,5462}, {195,11591}, {215,3614}, {323,11793}, {376,13336}, {378,10574}, {381,1614}, {548,13339}, {631,13352}, {1147,3090}, {1176,5480}, {1216,7550}, {1437,6915}, {1568,12242}, {1593,5050}, {1598,6800}, {1993,7395}, {1994,5562}, {2070,10095}, {2071,9729}, {2477,7173}, {2888,10112}, {2979,7509}, {3146,10984}, {3153,3574}, {3520,9730}, {3521,10721}, {3523,13346}, {3527,9715}, {3545,10539}, {3618,6815}, {3627,8718}, {3832,6759}, {3850,10540}, {5056,9306}, {5068,9544}, {5072,9704}, {5079,9703}, {5133,6146}, {5446,7512}, {5609,11017}, {5643,12038}, {5651,7486}, {5890,7526}, {5907,13366}, {5943,13367}, {5944,13364}, {6030,12088}, {6642,11449}, {6816,11427}, {7393,7998}, {7394,9833}, {7404,11442}, {7499,13142}, {7506,10545}, {7514,11412}, {7529,9707}, {7539,12429}, {7565,11572}, {7592,9818}, {8548,12282}, {10304,13347}, {10601,11425}, {10733,13403}, {11402,11441}, {11439,11456}, {11459,12161}, {12241,13160}
X(13434) = X(i)-aleph conjugate of X(j) for these (i,j): {21, 2940}, {6727, 1048}
X(13434) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,569,5012), (5,54,110), (5,567,54), (6,7503,5889), (54,110,9706), (182,11424,20), (1993,7395,11444), (3832,11003,6759), (5056,9545,9306), (5890,7526,11440), (7395,11426,1993), (7592,9818,12111), (10095,10610,2070), (11402,11479,11441), (11449,11451,6642)
X(13434) = SS(cos A → cos(B-C)) of X(2) (trilinear substitution)
X(13434) = barycentric product X(249)*X(8902)
X(13434) = barycentric quotient X(8902)/X(338)
X(13435) lies on these lines: {2,586}, {158,7080}, {6135,9099}, {13387,13388}
X(13435) = isotomic conjugate of X(13424)
X(13435) = isoconjugate of X(j) and X(j) for these (i,j): {31, 13424}, {605, 1336}
X(13435) = barycentric product X(i)*X(j) for these {i,j}: {1123, 5391}, {13387, 13387}
X(13435) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 13424}, {606, 605}, {1123, 1336}, {1335, 1124}, {3084, 3083}, {5391, 1267}, {6135, 6136}, {6213, 6212}, {6365, 6364}, {13387, 13386}
X(13436) lies on these lines: {7,8}, {175,490}, {226,5490}, {481,9312}, {5391,7183}, {6203,7131}, {7056,13387}
X(13436) = isotomic conjugate of X(13426)
X(13436) = X(99)-beth conjugate of X(175)
X(13436) = X(3084)-cross conjugate of X(5391)
X(13436) = isoconjugate of X(j) and X(j) for these (i,j): {6, 13427}, {31, 13426}, {41, 1336}, {605, 1857}, {607, 6212}, {663, 6136}, {2212, 13386}, {3083, 6059}
X(13436) = barycentric product X(i)*X(j) for these {i,j}: {7, 5391}, {85, 3084}, {348, 13387}, {1123, 7055}, {1335, 6063}, {4554, 6365}, {6213, 7182}
X(13436) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 13427}, {2, 13426}, {7, 1336}, {77, 6212}, {348, 13386}, {606, 41}, {651, 6136}, {1123, 1857}, {1335, 55}, {1804, 1124}, {3084, 9}, {3926, 13425}, {5391, 8}, {6213, 33}, {6365, 650}, {7055, 1267}, {7125, 605}, {7183, 3083}, {13387, 281}
X(13436) = {X(7),X(85)}-harmonic conjugate of X(13453)
X(13437) lies on these lines: {4,65}, {7,13387}, {57,482}, {226,7090}, {278,2362}, {653,1585}
X(13437) = isotomic conjugate of X(13425)
X(13437) = isoconjugate of X(j) and X(j) for these (i,j): {8, 605}, {9, 1124}, {31, 13425}, {41, 1267}, {55, 3083}, {212, 13386}, {219, 6212}, {255, 13426}, {394, 13427}, {1336, 2289}, {3939, 6364}
X(13437) = barycentric product X(i)*X(j) for these {i,j}: {7, 1123}, {273, 6213}, {278, 13387}, {1118, 5391}, {1659, 1659}
X(13437) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 13425}, {7, 1267}, {34, 6212}, {56, 1124}, {57, 3083}, {278, 13386}, {393, 13426}, {604, 605}, {606, 2289}, {1096, 13427}, {1118, 1336}, {1123, 8}, {1335, 1259}, {3084, 3719}, {3669, 6364}, {5391, 1264}, {6135, 644}, {6213, 78}, {13387, 345}
X(13438) lies on these lines: {19,208}, {56,2362}, {57,482}, {65,7133}, {388,6203}, {1477,6135}, {6204,7098}
X(13438) = isoconjugate of X(j) and X(j) for these (i,j): {6, 13425}, {8, 1124}, {9, 3083}, {55, 1267}, {78, 6212}, {219, 13386}, {312, 605}, {326, 13427}, {394, 13426}, {644, 6364}, {1259, 1336}
X(13438) = barycentric product X(i)*X(j) for these {i,j}: {34, 13387}, {57, 1123}, {278, 6213}, {1118, 3084}, {1659, 2362}, {3676, 6135}
X(13438) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 13425}, {34, 13386}, {56, 3083}, {57, 1267}, {604, 1124}, {606, 1259}, {608, 6212}, {1096, 13426}, {1123, 312}, {1335, 3719}, {1397, 605}, {2207, 13427}, {3084, 1264}, {6135, 3699}, {6213, 345}, {13387, 3718}
X(13439) lies on the cubics on K170 and K267 and on these lines: {2,372}, {4,52}, {97,1589}, {343,3070}, {486,5419}, {490,1599}, {491,1600}, {571,3068}, {589,2165}, {1585,3580}, {1586,1993}, {1991,5407}, {2351,8982}, {2994,13386}, {5422,7388}, {5871,7500}, {5905,13387}, {6413,11417}, {6560,11091}, {7386,12604}, {11433,12240}
X(13439) = isotomic conjugate of X(13428)
X(13439) = anticomplement X(5408)
X(13439) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {19, 488}, {485, 4329}, {8577, 6360}
X(13439) = X(5409)-cross conjugate of X(2)
X(13439) = isoconjugate of X(j) and X(j) for these (i,j): {6, 3378}, {19, 10666}, {31, 13428}, {48, 13429}, {1973, 13430}
X(13439) = cevapoint of X(6) and X(8996)
{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,6515,13428), (68,5392,13428), (485,11090,2)
X(13439) = barycentric product X(i)*X(j) for these {i,j}: {75, 3377}, {264, 10665}, {485, 491}, {1586, 11090}, {1600, 5392}
X(13439) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3378}, {2, 13428}, {3, 10666}, {4, 13429}, {69, 13430}, {372, 371}, {485, 486}, {491, 492}, {1586, 1585}, {1600, 1993}, {1993, 1599}, {3377, 1}, {5409, 5408}, {5412, 5413}, {6413, 6414}, {8577, 8576}, {8944, 8940}, {10665, 3}, {11090, 11091}
X(13440) lies on these lines: {4,371}, {54,1587}, {393,847}, {1068,1123}, {1336,7040}, {1586,1993}, {3536,11090}, {8577,10881}
X(13440) = isogonal conjugate of X(10666)
X(13440) = isotomic conjugate of X(13430)
X(13440) = X(372)-cross conjugate of X(4)
X(13440) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (393,3542,13429), (847,2165,13429)
X(13440) = isoconjugate of X(j) and X(j) for these (i,j): {1, 10666}, {3, 3378}, {31, 13430}, {48, 13428}, {255, 13429}, {1599, 1820}
X(13440) = barycentric product X(i)*X(j) for these {i,j}: {92, 3377}, {485, 1586}, {847, 1600}, {2052, 10665}
X(13440) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 13430}, {4, 13428}, {6, 10666}, {19, 3378}, {24, 1599}, {372, 5408}, {393, 13429}, {485, 11091}, {1586, 492}, {1600, 9723}, {3377, 63}, {5412, 371}, {8577, 6414}, {10665, 394}
X(13441) lies on these lines: {2,311}, {68,487}, {69,1589}, {485,642}, {488,1147}, {491,1600}, {1991,10607}
X(13441) = isotomic conjugate of X(13429)
X(13441) = isoconjugate of X(j) and X(j) for these (i,j): {25, 3378}, {31, 13429}, {1096, 10666}, {1973, 13428}
X(13441) = barycentric product X(i)*X(j) for these {i,j}: {76, 10665}, {304, 3377}, {491, 11090}
X(13441) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 13429}, {63, 3378}, {69, 13428}, {372, 5413}, {394, 10666}, {491, 1585}, {1600, 24}, {3377, 19}, {3926, 13430}, {5409, 371}, {6413, 8576}, {9723, 1599}, {10665, 6}, {11090, 486}
Let I be the incenter of a triangle ABC. Let X = AI∩BC and let D be the midpoint of segment AX. Define E and F cyclically. Then X(13442) = X(4)-of-DEF. See Navneel Singhal, Tsihong Lau et al, AdvGeom3801 and AdvGeom3802, based on a problem stated in Art of Problem Solving, May 30, 2017..
X(13442) lies on these lines: {1,1503}, {2,3}, {72,511}, {226,3429}, {355,9958}, {524,11523}, {950,3666}, {1043,2893}, {1211,3430}, {1214,1891}, {1333,1901}, {1709,12779}, {1724,5480}, {1754,5799}, {1842,6708}, {2352,7354}, {2794,5988}, {4296,6356}, {4657,5436}, {5453,5483}, {5928,10393}, {6000,12672}
X(13442) = reflection of X(355) in X(9958)
X(13442) = X(4)-of-Gergonne-line-extraversion-triangle
X(13442) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,7413,442), (4,7567,1532), (20,7379,1010), (1314,1315,447)
Let A'B'C' be the intouch triangle of a triangle ABC. There exists a circle U, here named the 1st Dao-Apollonius circle, that is tangent to each of the four circles (AB'C'), (BC'A'), (CA'B'), (ABC). The center of U is X(13443), and the tangency point is X(13444). If, instead, A'B'C' is the orthic triangle, there exists a circle V, here named the 2nd Dao-Apollonius circle, tangents to each of the circles (AB'C'), (BC'A'), (CA'B'), (ABC); the center of V is X(7952) and the tangent point is X(108). (Dao Thanh Oai, Peter Moses, June 1, 2017).
X(13443) lies on the cubic K259 and these lines: {1,167}, {57,1130}
X(13443) = X(21)-beth conjugate of X(8082)
X(13443) = isoconjugate of X(260) and X(8372)
Let A'B'C' be the intouch triangle of a triangle ABC. There exists a circle U that is tangent to each of the four circles (AB'C'), (BC'A'), (CA'B'), (ABC). The center of U is X(13443), and the tangency point is X(13444); see A(13443).
X(13444) lies on the circumcircle and these lines: {1, 7597}, {56, 12809}, {101, 6733}, {104, 177}, {174, 10497}
X(13444) = trilinear pole of line X(6)X(266)
X(13444) = crosssum of X(3900) and X(6730)
X(13444) = incircle-inverse of X(12814)
X(13444) = X(21)-beth conjugate of X(7597)
X(13444) = X(164)-zayin conjugate of X(10495)
X(13444) = isoconjugate of X(j) and X(j) for these (i,j): {9, 10492}, {188, 10495}, {260, 522}
X(13444) = barycentric product X(i)*X(j) for these {i,j}: {177, 651}, {234, 6733}
X(13444) = barycentric quotient X(i)/X(j) for these {i,j}: {56, 10492}, {177, 4391}, {1415, 260}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26078.
X(13445) lies on these lines: {3,6030}, {20,2888}, {22,10606}, {26,11468}, {30,74}, {64,394}, {110,2071}, {146,1568}, {185,1994}, {378,5012}, {539,12317}, {1154,10620}, {1204,3146}, {1498,11449}, {1593,5422}, {1597,5640}, {1614,11250}, {2070,12041}, {2777,3153}, {2781,11416}, {2935,12270}, {3060,10605}, {3098,11180}, {3426,10546}, {3448,13399}, {3520,10575}, {3524,4550}, {3529,7689}, {3543,11438}, {3839,10545}, {5189,10990}, {5889,12085}, {5894,12225}, {5897,6080}, {6241,12084}, {6644,11455}, {6800,11410}, {9730,12834}, {10060,11446}, {10298,11204}, {11064,12379}, {11441,13093}
X(13445) = reflection of X(i) in X(j) for these {i,j}: {110,2071}, {146,1568}, {2070, 12041}, {3448,13399}
X(13445) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (20,3357,11440), (20,11440, 7691), (22,10606,11454), (64, 11413,12111)}
X(13445) = X(775)-anticomplementary conjugate of X(146)}
X(13445) = crosssum of X(1562) and X(9409)}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 26077.
X(13446) lies on these lines: {30, 5462}, {143, 11558}, {389, 3521}, {403, 511}, {569, 5899}, {2070, 11430}, {2071, 5943}, {5446, 11563}, {6000, 10113}, {6688, 10257}, {12900, 13391}
X(13446) = midpoint of X(i) and X(j) for these {i,j}: {143,11558}, {5446,11563}}
X(13446) = reflection of X(13376) in X(10110)}
Let A'B'C' be the orthic triangle and I the incenter of a triangle ABC, and let
Ma = midpoint of AA", and define Mb and Mc cyclically
M1 = orthogonal projection of Ma on AI, and define M2 and M3 cyclically
.
Then X(13447) is the A'B'C'-to-M1M2M3 orthology center, and X(9729) is the M1M2M-to-A'B'C' orthology center.
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 26077.
X(13447) lies on these lines: {}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26084.
X(13448) lies on this line: {2,3}
X(13448) = centroid of (degenerate) cross-triangle of medial and orthic triangles
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26086.
X(13449) lies on these lines: {3,625}, {4,69}, {5,187}, {30, 114}, {182,7841}, {297,5972}, {381,2080}, {524,9880}, {538, 6321}, {542,8352}, {547,5215}, {575,7790}, {598,8590}, {631, 7910}, {842,10296}, {1353,1570}, {1478,5194}, {1479,5148}, {1691, 10358}, {1692,7745}, {2021,5475} ,{2031,3767}, {2076,10356}, {2459,10577}, {2460,10576}, {3095,7843}, {3398,7861}, {3564, 5107}, {3843,9301}, {5025,13335} ,{5097,7812}, {5104,10516}, {5184,5587}, {5613,8594}, {5617, 8595}, {5999,10722}, {6033, 10242}, {6054,8597}, {6390, 10992}, {6655,13334}, {7574, 10748}, {7773,9737}, {7799, 13172}, {7809,10723}, {7817, 11842}, {7918,10359}, {9775, 10989}, {10104,10631}, {11178, 11317}, {11303,13349}, {11304, 13350}, {11645,12177}
X(13449) = midpoint of X(i) and X(j) for these {i,j}: {4, 316}, {842, 10296}, {5999, 10722}, {6054, 8597}
X(13449) = reflection of X(i) in X(j) for these {i,j}: {3, 625}, {187, 5}, {10992, 6390}
X(13449) = polar-circle-inverse of X(6403)
X(13449) = {X(33517), X(33518)}-harmonic conjugate of X(5107)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26090.
The trilinear polar of X(13450) passes through X(12077). (Randy Hutson, July 21, 2017)
X(13450) lies on the conic {{A, B, C, X(4), X(5)}} and these lines: {4,51}, {5,324}, {54,436}, {93, 1487}, {107,1141}, {235,2970}, {264,3090}, {327,1235}, {393,847} ,{467,8800}, {1173,4994}, {1594, 3613}, {1629,11816}
X(13450) = isogonal conjugate of X(19210)
X(13450) = polar conjugate of X(97)
X(13450) = X(2052)-Ceva conjugate of X(53)
X(13450) = X(i)-cross conjugate of X(j) for these (i,j): {53, 324}, {6750, 4}
X(13450) = trilinear product of vertices of Euler triangle
X(13450) = perspector of ABC and orthoanticevian triangle of X(324)
X(13450) = isoconjugate of X(j) and X(j) for these (i,j): {3, 2169}, {48, 97}, {54, 255}, {275, 4100}, {394, 2148}, {577, 2167}, {1092, 2190}, {6507, 8882}
X(13450) = barycentric product X(i)*X(j) for these {i,j}: {4, 324}, {5, 2052}, {53, 264}, {311, 393}, {343, 1093}, {467, 847}, {823, 2618}, {1969, 2181}, {6528, 12077}
X(13450) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 97}, {5, 394}, {19, 2169}, {51, 577}, {53, 3}, {158, 2167}, {216, 1092}, {311, 3926}, {324, 69}, {343, 3964}, {393, 54}, {467, 9723}, {1093, 275}, {1096, 2148}, {1393, 7125}, {1953, 255}, {2052, 95}, {2181, 48}, {3199, 184}, {6520, 2190}, {6524, 8882}, {6529, 933}, {7069, 2289}, {12077, 520}
X(13450) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,1075,5890), (4,3168,3567), ( 51,8887,4), (107,8884,3518), ( 1093,2052,4)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 26100.
X(13451) lies on these lines: {4, 13321}, {5, 3060}, {26, 3527}, {30, 51}, {52, 3850}, {140, 5446}, {143, 546}, {185, 12102}, {373, 10124}, {381, 11002}, {389, 3853}, {511, 547}, {548, 5462}, {549, 5640}, {568, 3845}, {1112, 11801}, {1154, 5066}, {1216, 12812}, {1658, 10982}, {1994, 7545}, {3567, 3627}, {3628, 3917}, {3856, 5876}, {3858, 5889}, {3859, 5907}, {3861, 6102}, {5447, 10219}, {5562, 12811}, {5891, 11737}, {6000, 12101}, {6030, 13353}, {7530, 9777}, {8254, 13383}, {9729, 12002}, {9969, 10272}, {11451, 11539}, {11793, 13421}, {12006, 12103}, {12100, 13363}, {12834, 13339}
X(13451) = midpoint of X(i) and X(j) for these {i,j}: {5,3060}, {568,3845}, {3917,10263}, {5446,5943}
X(13451) = reflection of X(i) in X(j) for these {i,j}: {140, 5943}, {547, 13364}, {3917, 3628}, {5447, 10219}, {5891, 11737}, {5943, 10095}, {12100, 13363}
=
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26104.
X(13452) lies on the Jerabek hyperbola and these lines: {20,3519}, {54,3357}, { 64,3518}, {68,3529}, {186,3532}, {265,3146}, {3090,4846}, {3091, 3521}, {3426,10594}, {3431,6241} ,{3531,11403}, {3542,10293}, { 5365,11138}, {5366,11139}, { 6000,11270}, {6415,6447}, {6416, 6448}, {8717,11440}, {10990, 11564}, {11381,11738}, {11744, 12250}
X(13452) = isogonal conjugate of X(1657)}
X(13452) = X(12290)-cross conjugate of X(4)}
X(13452) = X(i)-vertex conjugate of X(j) for these (i,j): {3, 11270}, {4, 3532}
X(13452) = barycentric quotient X(6)/X(1657)}
X(13453) lies on these lines: {7, 8}, {176, 489}, {226, 5491}, {482, 9312}, {1267, 7183}, {6204, 7131}, {7055, 13425}, {7056, 13386}
X(13453) = {X(7),X(85)}-harmonic conjugate of X(13436)
X(13453) = (3083)-cross conjugate of X(1267)
X(13453) = isoconjugate of X(j) and X(j) for these (i,j): {41, 1123}, {220, 13438}, {606, 1857}, {607, 6213}, {663, 6135}, {1253, 13437}, {2212, 13387}, {3084, 6059}
X(13453) = barycentric product X(i)X(j) for these {i,j}: {7, 1267}, {85, 3083}, {279, 13425}, {348, 13386}, {1124, 6063}, {1336, 7055}, {4554, 6364}, {6212, 7182}, {13424, 13436}
X(13453) = barycentric quotient X(i)/X(j) for these {i,j}: {7, 1123}, {77, 6213}, {269, 13438}, {279, 13437}, {348, 13387}, {605, 41}, {651, 6135}, {1124, 55}, {1267, 8}, {1336, 1857}, {1804, 1335}, {3083, 9}, {6212, 33}, {6364, 650}, {7055, 5391}, {7125, 606}, {7183, 3084}, {13386, 281}, {13389, 7133}, {13424, 13426}, {13425, 346}, {13436, 13435}
X(13453) = {X(7),X(85)}-harmonic conjugate of X(13436)
X(13454) lies on the Feuerbach hyperbola and these lines: {1, 1123}, {7, 13387}, {84, 6213}, {104, 6135}, {210, 1857}, {7091, 13438}
X(13455) lies on these lines: {37, 5414}, {41, 7069}, {226, 481}, {1826, 7133}, {1903, 6413}
X(13455) = isoconjugate of X(j) and X(j) for these (i,j): {7, 371}, {56, 492}, {222, 1585}, {278, 5408}, {331, 8911}, {348, 5413}
X(13455) = barycentric product X(i)X(j) for these {i,j}: {9, 485}, {33, 11090}, {312, 8577}, {318, 6413}
X(13455) = barycentric quotient X(i)/X(j) for these {i,j}: {9, 492}, {33, 1585}, {41, 371}, {212, 5408}, {485, 85}, {2212, 5413}, {6413, 77}, {8577, 57}, {11090, 7182}
X(13456) lies on these lines:
{6, 7133}, {57, 482}, {497, 7090}, {1334, 1857}, {1776, 7347}, {2291, 6135}
X(13456) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1123,6213,13438)
X(13456) = isoconjugate of X(j) and X(j) for these (i,j): {7, 1124}, {56, 1267}, {57, 3083}, {77, 6212}, {85, 605}, {222, 13386}, {651, 6364}, {1336, 1804}, {1407, 13425}
X(13456) = barycentric product X(i)X(j) for these {i,j}: {9, 1123}, {33, 13387}, {200, 13437}, {281, 6213}, {346, 13438}, {522, 6135}, {1857, 3084}, {7090, 7133}, {13427, 13435}
X(13456) = barycentric quotient X(i)/X(j) for these {i,j}: {9, 1267}, {33, 13386}, {41, 1124}, {55, 3083}, {200, 13425}, {606, 1804}, {607, 6212}, {663, 6364}, {1123, 85}, {1335, 7183}, {2175, 605}, {3084, 7055}, {6135, 664}, {6213, 348}, {13387, 7182}, {13427, 13424}, {13437, 1088}, {13438, 279}
X(13457) lies on these lines:
{2, 13437}, {63, 13438}, {81, 1123}, {92, 1586}, {1585, 1748}
X(13457) = isoconjugate of X(j) and X(j) for these (i,j): {485, 605}, {3083, 8577}, {6212, 6413}
X(13457) = barycentric product X(i)X(j) for these {i,j}: {492, 1123}, {1585, 13387}
X(13457) = barycentric quotient X(i)/X(j) for these {i,j}: {371, 1124}, {492, 1267}, {1123, 485}, {1585, 13386}, {13387, 11090}
X(13458) lies on these lines:
{8, 210}, {69, 13387}, {326, 3084}, {1267, 6347}, {7055, 13436}
X(13458) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (8,312,13425)
X(13458) = isoconjugate of X(j) and X(j) for these (i,j): {604, 1336}, {605, 1118}, {608, 6212}, {1106, 13426}, {1395, 13386}, {1407, 13427}, {3083, 7337}
X(13458) = barycentric product X(i)X(j) for these {i,j}: {8, 5391}, {312, 3084}, {345, 13387}, {346, 13436}, {646, 6365}, {1123, 1264}, {1335, 3596}, {3718, 6213}, {13425, 13435}
X(13458) = barycentric quotient X(i)/X(j) for these {i,j}: {8, 1336}, {78, 6212}, {200, 13427}, {345, 13386}, {346, 13426}, {606, 604}, {644, 6136}, {1123, 1118}, {1259, 1124}, {1264, 1267}, {1335, 56}, {2289, 605}, {3084, 57}, {3719, 3083}, {5391, 7}, {6213, 34}, {6365, 3669}, {13387, 278}, {13425, 13424}, {13435, 13437}, {13436, 279}
X(13459) lies on these lines:
{4, 65}, {7, 13386}, {57, 481}, {653, 1586}
X(13459) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,196,13437)
X(13459) = isoconjugate of X(j) and X(j) for these (i,j): {8, 606}, {9, 1335}, {41, 5391}, {55, 3084}, {212, 13387}, {219, 6213}, {1123, 2289}, {1253, 13436}, {3939, 6365}
X(13459) = barycentric product X(i)X(j) for these {i,j}: {7, 1336}, {273, 6212}, {278, 13386}, {279, 13426}, {1088, 13427}, {1118, 1267}, {13390, 13390}, {13424, 13437}
X(13459) = barycentric quotient X(i)/X(j) for these {i,j}: {7, 5391}, {34, 6213}, {56, 1335}, {57, 3084}, {278, 13387}, {279, 13436}, {604, 606}, {605, 2289}, {1118, 1123}, {1124, 1259}, {1267, 1264}, {1336, 8}, {3083, 3719}, {3669, 6365}, {6136, 644}, {6212, 78}, {13386, 345}, {13424, 13425}, {13426, 346}, {13427, 200}, {13437, 13435}
X(13460) lies on these lines:
{19, 208}, {56, 7968}, {57, 481}, {388, 6204}, {1477, 6136}, {1875, 2362}, {6203, 7098}, {7091, 13426}
X(13460) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (19,208,13438), (1336,6212,13427)
X(13460) = isoconjugate of X(j) and X(j) for these (i,j): {8, 1335}, {9, 3084}, {55, 5391}, {78, 6213}, {219, 13387}, {220, 13436}, {312, 606}, {644, 6365}, {1123, 1259}
X(13460) = barycentric product X(i)X(j) for these {i,j}: {34, 13386}, {57, 1336}, {269, 13426}, {278, 6212}, {279, 13427}, {1118, 3083}, {3676, 6136}, {13424, 13438}
X(13460) = barycentric quotient X(i)/X(j) for these {i,j}: {34, 13387}, {56, 3084}, {57, 5391}, {269, 13436}, {604, 1335}, {605, 1259}, {608, 6213}, {1124, 3719}, {1336, 312}, {1397, 606}, {3083, 1264}, {6136, 3699}, {6212, 345}, {13386, 3718}, {13426, 341}, {13427, 346}, {13438, 13435}
X(13461) lies on these lines:
{8, 21}, {190, 13386}, {312, 7090}, {346, 13425}, {4417, 13387}
X(13461) = isoconjugate of X(j) and X(j) for these (i,j): {34, 6414}, {57, 8576}, {486, 604}, {1395, 11091}
X(13461) = barycentric product X(i)X(j) for these {i,j}: {8, 491}, {345, 1586}, {372, 3596}, {5409, 7017}
X(13461) = barycentric quotient X(i)/X(j) for these {i,j}: {8, 486}, {55, 8576}, {219, 6414}, {345, 11091}, {372, 56}, {491, 7}, {1586, 278}, {5409, 222}, {5412, 608}
See Tran Quang Hung and Peter Moses, Hyacinthos 26107.
X(13462) lies on these lines:
{1,3}, {2,4315}, {7,551}, {9,11194}, {10,4308}, {101,604}, {104,3062}, {106,269}
X(13462) = isogonal conjugate of X(4900)
X(13462) = crosssum of X(i) and X(j) for these (i,j): {2170, 4814}
X(13462) = X(21)-beth conjugate of X(165)
X(13462) = isoconjugate of X(j) and X(j) for these (i,j): {1, 4900}, {522, 6014}
X(13462) = barycentric product X(i)X(j) for these {i,j}: {57, 3241}, {651, 6006}, {1014, 4029}, {4554, 8656}
X(13462) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 4900}, {1415, 6014}, {3241, 312}, {4029, 3701}, {4982, 3702}, {6006, 4391}, {8656, 650}
X(13462) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,36,165), (1,46,11531), (1,56, 3361), (1,165,9819), (1,2093, 11224), (1,3361,3339), (3,56, 13370), (56,1319,57), (56,1420, 1), (56,1617,36), (57,1319,1), ( 57,1420,1319), (354,13384,1), ( 999,3576,1), (999,5126,3576), ( 1385,3333,1), (1388,3340,1), ( 1470,2078,5010), (3304,3601,1), (4308,5265,10), (10246,11529,1)
See Alexander Skutin and Angel Montesdeoca, Hyacinthos 26115.
Let A' be the orthocenter of BCX(1), and define B' and C' cyclically. A'B'C' is also the anticevian triangle, wrt intouch triangle, of X(1), and also the reflection of the 2nd Schiffler triangle in X(11). X(13463) is the nine-point center of A'B'C'; see also X(1699) and X(3680). (Randy Hutson, July 21, 2017)
X(13463) lies on these lines:
{1, 528}, {4, 10912}, {5, 2802}, {8, 10896}, {10, 3829}, {11, 8256}, {12, 3885}, {145, 5229}, {149, 10950}, {355, 5854}, {392, 9710}, {404, 13205}, {496, 6797}, {516, 11260}, {517, 3813}, {518, 4301}, {519, 3845}, {529, 12699}, {908, 3893}, {946, 3880}, {962, 12513}, {1001, 9785}, {1145, 7741}, {1320, 10944,}, {1329, 10914}, {1537, 5881}, {1697, 6690}, {1699, 3680}
X(13463) = midpoint of X(i) and X(j) for these {i,j}: {4,10912}, {962,12513}, {1320,13271}, {3161,12512}
X(13463) = reflection of X(i) in X(j) for these {i,j}: {8715,5901}, {10915,9955}, {12607,946}
X(13463) = anticomplement of X(32157)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26117.
X(13464) lies on these lines:
{1,4}, {2,5734}, {3,551}, {5,519}, {8,5056}, {10,1482}, { 11,11011}, {12,5048}, {40,3306}, {84,5558}, {104,5557}, {140,517} ,{145,5068}, {165,10299}, {214, 10993}, {354,5884}, {355,3244}, { 376,9589}, {382,3655}, {495, 7681}, {496,6738}, {499,4848}, { 516,550}, {527,3560}, {547,4745} ,{553,5563}, {631,7991}
X(13464) = midpoint of X(i) and X(j) for these {i,j}: {1, 946}, {3, 4301}, {4, 5882}, {5, 10222}, {10, 1482}, {355, 3244}, {551, 3656}, {3817, 10247}, {5884, 12672}, {7982, 11362}
X(13464) = reflection of X(i) in X(j) for these {i,j}: {1125, 5901}, {1385, 3636}, {4745, 547}, {6684, 1125}, {10172, 5886}
X(13464) = complement X(11362)
X(13464) = crosssum of X(55) and X(2317)
X(13464) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,4,5882), (1,1699,944), (1, 5603,946), (1,5691,7967), (1, 9612,3476), (1,9614,3486), (1, 11522,4), (1,12047,10106), (2, 5734,7982), (2,7982,11362), (3, 3656,4301), (4,5603,11522), (4, 11522,946), (8,8227,10175), (40, 3616,10165), (354,12672,5884), ( 355,10247,3244), (551,4301,3), ( 946,5882,4), (1125,3754,6692), ( 1385,10283,3636), (1482,5886, 10), (3244,3817,355), (5603, 10595,1), (5734,9624,11362), ( 7982,9624,2), (10531,10597, 1478), (10532,10596,1479)
See Le Viet An and Angel Montesdeoca, Hyacinthos 26119.
X(13465) lies on these lines:
{3, 191}, {8, 30}, {21, 10246}, {40, 12786}, {56, 1749}, {79, 10895}, {153, 5690}, {355, 12745}, {499, 3649}, {517, 7701}, {758, 1482}, {1046, 5492}, {1656, 11263}, {2095, 5789}, {2475, 5790}, {3065, 5697}, {3467, 5902}, {3577, 6597}, {3579, 4005}, {3678, 12515}, {3811, 11849}, {3878, 12773}, {4880, 9955}, {5055, 5221}, {12331, 12342}
X(13465) = reflection of X(3) in X(191)
X(13465) = anticomplement of X(33668)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26123.
X(13466) lies on the Steiner inellipse and these lines:
{2,668}, {10,537}, {76, 4740}, {115,1211}, {536,6381}, { 599,2810}, {812,4370}, {891, 4728}, {1017,3570}, {1084,4755}, {1146,3452}, {1500,4033}, {2482, 2787}, {3679,3789}, {3762,6184}, {4482,8649}
X(13466) = midpoint of X(2) and X(668)
X(13466) = reflection X(1015) in X(2)
X(13466) = complement of X(3227)
X(13466) = X(8031)-cross conjugate of X(536)
X(13466) = crosspoint of X(2) and X(536)
X(13466) = crossdifference of every pair of points on line {739, 890}
X(13466) = crosssum of X(6) and X(739)
X(13466) = X(i)-complementary conjugate of X(j) for these (i,j): {6, 4871}, {31, 536}, {101, 891}, {536, 2887}, {692, 4763}, {890, 1086}, {891, 116}, {899, 141}, {1918, 2229}, {1919, 1646}, {3230, 10}, {3768, 11}, {4526, 124}, {6381, 626}
X(13466) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 536}, {536, 8031}, {668, 891}
X(13466) = Steiner-inellipse-antipode of X(1015)
X(13466) = barycentric product X(i)X(j) for these {i,j}: {536, 536}, {899, 6381}, {3227, 8031}
X(13466) = barycentric quotient X(i)/X(j) for these {i,j}: {536, 3227}, {3230, 739}, {8031, 536}
See Le Viet An and César Lozada, Hyacinthos 26128.
X(13467) lies on this line: {140,389}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26131.
X(13468) is the centroid of BaCaCbAbAcBc used in construction of the 9th Lozada circle; see X(9737). (Randy Hutson, July 21, 2017)
X(13468) lies on these lines:
{2,6}, {5,754}, {30,5171}, {140,7751}, {157,9909}, {523,11 633}, {538,549}, {543,8703}, {547 ,7775}, {632,7764}
X(13468) = complement of X(9766)
X(13468) = {X(591),X(1991)}-harmonic conjugate of X(69)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 26135.
X(13469) lies on these lines: {2,3}
X(13469) = midpoint of X(5501) and X(10289)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26141.
X(13470) lies on these lines: {3,12278}, {4,13353}, {5, 1495}, {20,3581}, {30,143}, {54,7574}, {265,7512}, {1154,6146}, {1594,10610}, {2072,5944}, {3521,10296}, {3575,12006}, {3850,13419 }, {5073,9777}, {5663,12605}, {6102,12225}, {6689,13413}, {6756,13364}, {7525,9927}, {10095,11819}, {10263,12022}, {11591,12362}, {12370,13391}
X(13470) = midpoint of X(i) and X(j) for these {i,j}: {5, 11750}, {6102, 12225}
X(13470) = reflection of X(i) in X(j) for these {i,j}: {3575, 12006}, {6146, 11565}, {11264, 6146}, {11591, 12362}, {11819, 10095}, {13419, 3850}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26145.
X(13471) lies on this line: {2,3}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26152.
X(13472) lies on the Jerabek hyperbola and these lines: {2,1493}, {3,1199}, {4,11423}, {6,3518}, {54,11202}, {64,7592}, {68,3090}, {69,575}, {70,11427}, {74,578}, {184,1173}, {248,7772}, {265,3091}, {323,13154}, {389, 3431}, {568,12226}, {576,1176}, {879,7950}, {3146,3521}, {3147, 5486}, {3426,11426}, {3520,3532} ,{3527,10594}, {3529,4846}, {3531,5198}, {3628,9716}, {5890, 11270}, {6241,11738}, {6391, 9925}, {6413,6420}, {6414,6419}, {6415,6428}, {6416,6427}, {10261,10783}, {10262,10784}, {11004,13353}
X(13472) = isogonal conjugate of X(1656)
X(13472) = cevapoint of X(i) and X(j) for these (i,j): {6, 11402}, {184, 13345}
X(13472) = X(i)-cross conjugate of X(j) for these (i,j): {3567, 4}, {13351, 2}
X(13472) = isoconjugate of X(j) and X(j) for these (i,j): {1, 1656}, {92, 10979}
X(13472) = trilinear pole of line {647, 1510}
X(13472) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 1656}, {184, 10979}, {8882, 4994}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26156.
X(13473) lies on these lines: {2,3}, {34,10149}, {1112, 6000}, {1552,10421}, {10152,12079}, {12828,13202}
X(13473) = midpoint of X(382) & X(2072)
X(13473) = reflection of X(i) in X(j) for these {i,j}: {468, 10151}, {10151, 4}
X(13473) = polar-circle-inverse of X(3146)
X(13473) = X(3535)-Hirst inverse of X(3536)
X(13473) = orthoptic-circle-of-Steiner-inellipse-inverse of X(38282)
X(13473) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,378,3845), (4,382,235), (4, 1594,3861), (4,3543,25), (4, 3627,3575), (4,10736,1313), (4, 10737,1312), (4,12173,1906), ( 3575,10297,468)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26156.
X(13474) lies on these lines: {4,51}, {6,12315}, {20,7998}, {25,3357}, {30,1216}, {52, 3830}, {54,12112}, {64,1598}, {140,11017}, {143,12102}, {373,3855}, {378,10282}, {381,9729}, {382,511}, {546,5943}, {548, 10170}, {550,3819}, {578,1498}, {1154,13433}, {1181,11403}, {1204,10594}, {1495,3520}, {1503, 13403}, {1593,6759}, {1595,2883} ,{1596,6247}, {1657,5891}, {1872,2818}, {1885,11577}, {2777, 3575}, {3091,11695}, {3146,5562}, {3515,11204}, {3516,11202}, {3517,10606}, {3528,5650}, {3529, 3917}, {3543,12111}, {3627, 10263}, {3839,10574}, {3843, 9730}, {3845,5462}, {3850,5892}, {3851,6688}, {3853,5446}, {3856, 13363}, {5059,11444}, {5066, 12046}, {5073,10625}, {5079, 10219}, {5198,10605}, {6152, 10628}, {6995,12250}, {7387, 11472}, {7516,8717}, {7530,7689} ,{7999,11001}, {9306,12085}, {9786,13093}, {10982,12174}, {11424,11456}, {11574,12605}, {11645,11750}
X(13474) = midpoint of X(i) and X(j) for these {i,j}: {4, 11381}, {185, 12290}, {382, 12162}, {3146, 5562}, {5073, 10625}, {12292, 13202}
X(13474) = reflection of X(i) in X(j) for these {i,j}: {20, 11793}, {143, 12102}, {185, 10110}, {389, 4}, {1657, 13348}, {5446, 3853}, {6241, 13382}, {10575, 9729}
X(13474) = crosssum of X(3) and X(550)
X(13474) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,185,10110), (4,6241,51), (4, 11455,11381), (4,12290,185), ( 51,6241,13382), (51,13382,389), (64,1598,11438), (185,10110, 389), (185,11381,12290), (381, 10575,9729), (1498,1597,578), ( 1593,6759,11430), (1598,3426, 64), (1657,5891,13348)
The reciprocal orthologic center of these triangles is X(1)
X(13475) lies on these lines: {1,12916}, {174,12402}, {258,12396}, {6732,12886}, {7588,12388}, {8076,12387}, {8080,12397}, {8082,12398}, {8086,12393}, {8088,12394}, {8090,12404}, {8125,12389}, {8138,12881}, {8242,12400}, {8250,12405}, {8351,12401}, {8388,12399}, {8734,12385}, {9795,12391}, {11033,12403}, {11859,12386}, {11889,12390}, {11895,12392}, {11899,12395}
X(13475) = reflection of X(12916) in X(1)
Wolfram´s triangle conics perspectors: X(13476)-X(13482)
This preamble and centers X(13476)-X(13482) were contributed by César Eliud Lozada, June 13, 2017.
The appearance of (ℭ, n) in the following list means that the perspector of the conic ℭ is X(n):(Brocard inellipse, 6), (De Longchamps ellipse, 13476), (dual of Yff parabola, 514), (Evans conic, 13477), (excentral-hexyl ellipse, 13478), (Feuerbach hyperbola, 650), (Jerabek hyperbola, 647), (Johnson circumconic, 216), (Kiepert hyperbola, 523), (Kiepert parabola, 99), (Lemoine inellipse, 598), (MacBeath circumconic, 3), (MacBeath inconic, 264), (Mandart inellipse, 8), (orthic inconic, 4), (Stammler hyperbola,*), (Steiner circumellipse, 2), (Steiner inellipse, 2), (Thomson-Gibert-Moses hyperbola, 13480), (Yff hyperbola, 13481), (Yff parabola, 190).
*: The polar triangle of ABC with respect to the Stammler hyperbola is ABC, i.e., ABC is self-polar with respect to the Stammler hyperbola.
For definitions of these conics, see Wolfram's Triangle Conics. For Thomson-Gibert-Moses hyperbola, see X(5642).
X(13476) lies on these lines: {10,141}, {37,38}, {65,1418}, {75,3873}, {81,82}, {225,1876}, {244,872}, {596,740}, {674,3664}, {692,3449}, {876,4132}, {1002,4000}, {1037,5228}, {1468,2218}, {1486,3423}, {3271,7277}, {3446,5091}, {3555,3696}, {3668,5173}, {3681,4751}, {3686,9038}, {3742,4698}, {3779,4675}, {4032,5083}, {4430,4699}, {4644,9309}, {4674,5902}, {6007,7228}, {6665,9055}
X(13476) = midpoint of X(3555) and X(3696)
X(13476) = isogonal conjugate of X(1621)
X(13476) = trilinear pole of the line {661,665}
X(13477) lies on the line {632,9730}
X(13477) = isogonal conjugate of X(13482)
X(13478) lies on the Kiepert hyperbola, cubic K321 and these lines: {2,572}, {3,10}, {4,58}, {5,6703}, {6,2050}, {11,1397}, {21,10454}, {27,2052}, {57,5307}, {63,321}, {76,6996}, {81,10478}, {83,7377}, {222,226}, {262,5145}, {275,469}, {295,2801}, {333,573}, {386,3597}, {485,2048}, {517,5769}, {527,4052}, {758,10441}, {867,11550}, {946,5707}, {991,7413}, {1446,7177}, {1503,5138}, {1719,1768}, {1796,6539}, {1797,4080}, {2067,5393}, {2792,11599}, {2996,7406}, {3452,5778}, {5397,6830}, {5405,6502}, {6504,7381}, {6625,7384}, {6994,8796}
X(13478) = isogonal conjugate of X(573)
X(13478) = isotomic conjugate of X(4417)
X(13478) = polar conjugate of X(17555)
X(13478) = trilinear pole of the line {523,1459}
X(13478) = Cundy-Parry Phi transform of X(10)
X(13478) = Cundy-Parry Psi transform of X(58)
X(13478) = perspector of ABC and tangential triangle wrt excentral triangle of the excentral-hexyl ellipse
X(13478) = pole of antiorthic axis wrt excentral-hexyl ellipse
X(13478) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,5788,10), (6,2050,2051)
X(13479) lies on these lines: {39,11169}, {98,648}, {99,895}, {107,8749}, {125,1494}, {523,9139}, {3269,10762}, {5095,9862}, {8541,10788}, {9166,9214}
X(13479) = isogonal conjugate of X(13480)
X(13479) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (98,2452,648), (98,11596,2452)
The Thomson-Gibert-Moses hyperbola is defined at X(5642) .
X(13480) = isogonal conjugate of X(13479)
X(13481) lies on these lines: {157,3447}, {250,2453}, {338,9307}, {382,511}, {1485,7669}
X(13481) = isogonal conjugate of X(9544)
X(13481) = isotomic conjugate of X(7782)
X(13482) lies on these lines: {2,13352}, {3,13421}, {4,9705}, {30,54}, {74,1994}, {110,3845}, {376,578}, {549,13434}, {567,8703}, {569,10304}, {1092,5071}, {1147,3839}, {1614,3543}, {3200,12817}, {3201,12816}, {3524,13346}, {3534,5012}, {3545,11424}, {3627,9706}, {5622,8584}, {7464,13366}, {10540,12101}, {11423,12085}
X(13482) = isogonal conjugate of X(13477)
X(13483) lies on the curves K129b and Q066, and on these lines: {13,8446}, {15,8172}, {61,8014}, {396,11063}
X(13483) = X(i)-cross conjugate of X(j) for these (i,j): {2981, 2}, {11139, 4}
X(13483) = X(463)-vertex conjugate of X(11146)
X(13483) = cyclocevian conjugate of X(13)
X(13483) = barycentric quotient X(i)/X(j) for these {i,j}: {3489, 8437}, {8495, 627}
X(13484) lies on the curves K129b and Q066, and on these lines: {14,8456}, {16,8173}, {62,8015}, {395,11063}
X(13484) = X(i)-cross conjugate of X(j) for these (i,j): {6151, 2}, {11138, 4}
X(13484) = X(462)-vertex conjugate of X(11145)
X(13484) = cyclocevian conjugate of X(14)
X(13484) = barycentric quotient X(i)/X(j) for these {i,j}: {3490, 8438}, {8496, 628}
X(13485) is the perspector of the conic through X(4), X(8), and the extraversions of X(8). This conic is a rectangular hyperbola centered at X(3448). (Randy Hutson, July 21, 2017)
X(13485) lies on these lines: {2,9514}, {23,325}, {297,323}, {315,6328}, {850,3448}, {5641,9143}, {6563,13219}
X(13485) = isogonal conjugate of X(7669)
X(13485) = isotomic conjugate of X(3448)
X(13485) = anticomplement of X(36830)
X(13485) = X(3447)-anticomplementary conjugate of X(4560)
X(13485) = X(110)-cross conjugate of X(2)
X(13485) = cyclocevian conjugate of X(99)
X(13485) = isoconjugate of X(j) and X(j) for these (i,j): {1, 7669}, {31, 3448}, {662, 8574}
X(13485) = cevapoint of X(i) and X(j) for these (i,j): {6, 11641}, {524, 5099}
X(13485) = barycentric product X(i)X(j) for these {i,j}: {76, 3447}, {4590, 6328}
X(13485) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 3448}, {6, 7669}, {512, 8574}, {3447, 6}, {6328, 115}
Suppose that P = p : q : r (barycentrics) is a point in the plane of a triangle ABC. The Kiepert image of P is introduced here as the point
K(P) = 1/(c^2 p^2 q^2+2 c^2 p q^3+2 c^2 p q^2 r+(a^2-b^2+c^2) q^3 r-b^2 p^2 r^2-2 b^2 p q r^2+(-b^2+c^2) q^2 r^2-2 b^2 p r^3+(-a^2-b^2+c^2) q r^3) : :
Let K be the Kiepert hyperbola of the cevian triangle A'B'C' of P. Let A'' be the point, other than A', in which K meets line BC, and define B'' and C'' cyclically. The lines AA'', BB'', CC'' concur in K(P). (Peter Moses, June 15, 2017; see also X(13610).)
X(13486) lies on these lines: {21,7100}, {58,79}, {81,7073}, {109,476}, {110,9811}
X(13486) = cevapoint of X(i) and X(j) for these (i,j): {58, 513}, {650, 7073}
X(13486) = X(i)-cross conjugate of X(j) for these (i,j): {513, 79}, {650, 81}
X(13486) = X(163)-vertex conjugate of X(6742)
X(13486) = X(13486) = trilinear pole of line X(284)X(501)
X(13486) = (i)-zayin conjugate of X(j) for these (i,j): {1717, 656}, {1781, 9404}, {2940, 513}
X(13486) = isoconjugate of X(j) and X(j) for these (i,j): {6, 7265}, {10, 2605}, {35, 523}, {42, 4467}, {80, 526}, {100, 2611}, {101, 8287}, {109, 6741}, {226, 9404}, {319, 512}, {513, 3678}, {521, 1825}, {522, 2594}, {649, 3969}, {656, 6198}, {661, 3219}, {1018, 7202}, {1399, 4086}, {1442, 4041}, {1577, 2174}, {2003, 3700}, {3268, 6187}, {3733, 7206}, {4017, 4420}
X(13486) = barycentric product X(i)X(j) for these {i,j}: {79, 662}, {81, 6742}, {99, 2160}, {476, 3218}, {648, 7100}, {651, 3615}, {653, 1789}, {799, 6186}, {1414, 7110}, {4556, 6757}, {4573, 7073}
X(13486) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 7265}, {79, 1577}, {81, 4467}, {100, 3969}, {101, 3678}, {110, 3219}, {112, 6198}, {163, 35}, {513, 8287}, {649, 2611}, {650, 6741}, {662, 319}, {1018, 7206}, {1333, 2605}, {1415, 2594}, {1576, 2174}, {1789, 6332}, {2160, 523}, {2194, 9404}, {3218, 3268}, {3615, 4391}, {3733, 7202}, {4565, 1442}, {5546, 4420}, {6186, 661}, {6742, 321}, {7073, 3700}, {7100, 525}, {7110, 4086}, {7113, 526}, {8606, 8611}, {8818, 4036}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26162.
X(13487) lies on this line: {2,3}
X(13487) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5,3845,12084), (381,7528,3858) , (546,5066,10224), (546,6677,4), (3091,7392,3851)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26162.
X(13488) lies on these lines: {2,3}, {6,5878}, {53,5065}, {68,11472}, {578,2883}, { 800,6748}, {952,1902}, {1503,13403}, {1876,12433}, {1968,5305}, {1990,7765}, {2777,10110}, {3426,12324}, {3564,12162}, {5663,13292}, {5894,11438}, {6000,12241}, {6146,11381}, {6241,11245}, {6776,12315}, {7583,11473}, {7584,11474}, { 8550,9968}, {11433,12250}, { 11475,11542}, {11476,11543}, { 12022,12290}
X(13488) = midpoint of X(i) and X(j) for these {i,j}: {4, 1885}, {382, 12605}, {6146, 11381}
X(13488) = reflection of X(6756) in X(4)
X(13488) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,4,1596), (4,20,1598), (4,24,1906), (4,378,235), (4,427,546), (4,1593,5), (4,1594,10151), (4,1597,1595), (4,3088,381), (4,3529,6995), (4,6240,428),
(4,7507,3845), (20,6804,3), (235,378,140), (381,3548,5), (468,3520,3530), (1594,10151,3850), (3516,3542,549), (7577,10019,12811)
See Antreas Hatzipolakis, Peter Moses, and César Lozada, Hyacinthos 26166 and Hyacinthos 26167.
X(13489) lies on these lines: {30, 18350}, {1990, 35491}, {2452, 22949}, {3260, 18354}, {5627, 20299}
X(13489) = isogonal conjugate of X(13491)
X(13489) = isogonal conjugate of the complement of X(18439)
As a point of the Euler line, X(13490) has Shinagawa coefficients (E - 4F, 9E + 12F)
See Antreas Hatzipolakis, Peter Moses, and César Lozada, Hyacinthos 26166 and Hyacinthos 26167.
X(13490) lies on these lines: {2, 3}, {143, 12134}, {206, 5476}, {524, 41714}, {539, 11808}, {542, 9969}, {1503, 5946}, {3564, 9971}, {3567, 43588}, {3654, 34657}, {5462, 13419}, {5892, 29012}, {6102, 11745}, {6146, 10095}, {10110, 12370}, {12824, 13451}, {13470, 18874}, {13491, 16621}, {13567, 34514}, {13630, 16655}, {14848, 19125}, {16657, 30522}, {16659, 37481}, {17814, 31815}, {18374, 18583}, {18474, 34417}, {18475, 19130}, {19139, 20423}
X(13490) = midpoint of X(i) and X(j) for these {i,j}: {2, 7540}, {3, 34603}, {4, 38321}, {381, 7576}, {3534, 34613}, {3654, 34657}, {3830, 38323}, {3845, 38322}, {7553, 7667}, {14269, 38320}
X(13490) = reflection of X(i) in X(j) for these {i,j}: {2, 23410}, {549, 10127}, {7667, 140}, {34614, 15690}, {34664, 5066}, {38321, 31830}
X(13490) = 1st- Droz-Farny circle-inverse of X(5189)
X(13490) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 7506, 13371}, {4, 13595, 2072}, {4, 13861, 5}, {5, 26, 7568}, {5, 6756, 11819}, {5, 7715, 37440}, {5, 37936, 6676}, {23, 37347, 25337}, {25, 381, 10201}, {25, 403, 21841}, {25, 11818, 5}, {26, 7528, 5}, {26, 13861, 7506}, {143, 12134, 32358}, {381, 7426, 547}, {381, 10201, 5}, {546, 10020, 5576}, {546, 10096, 13413}, {546, 21841, 5}, {2070, 5133, 140}, {3518, 5576, 10020}, {3542, 7564, 5}, {3830, 7529, 16072}, {3830, 16072, 18569}, {3845, 16532, 33332}, {6676, 21841, 10096}, {6756, 21841, 3575}, {6995, 18420, 7530}, {6997, 7514, 5}, {7516, 31305, 550}, {7528, 37122, 26}, {7529, 18569, 5}, {10201, 11818, 381}, {12362, 23411, 5}, {18586, 18587, 37444}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26167.
X(13491) lies on these lines: {3,74}, {4,3521}, {5,2883}, {20,1154}, {26,10605}, {30,52}, {49,2071}, {51,3853}, {54,13445}, {64,7526}, {125,13406}, {140,12162}, {143,382}, {182,9968}, {184,11250}, {373,12811}, {376,10627}, {381,10574}, {389,3627}, {546,1514}, {548,5562}, {549,5907}, {550,6101}, {568,3146}, {974,10113}, {1181,12084}, {1204,1658}, {1216,8703}, {1350,9925}, {1493,13352}, {1498,6644}, {1657,5889}, {1986,11565}, {2772,5694}, {2888,12317}, {2935,11702}, {2937,8718}, {3060,5073}, {3091,13363}, {3357,10274}, {3529,6243}, {3530,5891}, {3534,11412}, {3567,3830}, {3581,12088}, {3843,11455}, {3845,5462}, {3851,11439}, {3858,5943}, {4846,6145}, {5055,11017}, {5059,13421}, {5076,9781}, {5446,13382}, {5449,10264}, {6642,12315}, {7502,7689}, {7527,13353}, {7530,9786}, {7728,11561}, {9818,13093}, {10226,13367}, {10625,12103}, {10733,13358}, {11003,12300}, {11465,12046}, {12085,12161}
X(13491) = midpoint of X(i) and X(j) for these {i,j}: {3,6241}, {185,10575}, {382,12279}, {1657,5889}, {3529,6243}, {10620,12270}
X(13491) = reflection of X(i) in X(j) for these (i,j): (382,143), (3627,389), (5446,13382), (5562,548), (5876,3), (6101,550), (6102,185), (7728,11561), (10113,974), (10263,6102), (10625,12103), (10733,13358), (11381,546), (11455,13364), (12111,11591), (12162,140), (13474,5462)
X(13491) = isogonal conjugate of X(13489)
X(13491) = X(5)-of-X(4)-anti-altimedial-triangle
X(13491) = X(20)-of-A*B*C*, where A*B*C is defined at X(5694)
X(13491) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,156,1511), (3,7999,11592), (3,10620,11440), (3,11456,156), (3,12111,11591), (381,10574,12006), (382,5890,143), (5462,13474,3845), (5890,12279,382), (5944,12041,3), (9730,11381,546), (10574,12290,381), (11591,11592,7999), (11591,12111,5876)
Cyclologic centers: X(13492)-X(13560)
This preamble and centers X(13492)-X(13560) were contributed by César Eliud Lozada, June 15, 2017.
The reciprocal cyclologic center of these triangles is X(1296)
X(13492) lies on the cubics K273, K792 and these lines: {2,2418}, {6,9871}, {23,10355}, {187,1296}, {895,10630}, {10354,11580}, {11186,13192}
X(13492) = isogonal conjugate of X(34581)
X(13492) = antigonal conjugate of X(39157)
X(13492) = cevapoint of X(6) and X(10355)
X(13492) = trilinear pole of the line {6088,10354}
X(13492) = X(112)-of-4th-anti-Brocard-triangle
The reciprocal cyclologic center of these triangles is X(1296)
X(13493) lies on the cubic K108 and these lines: {6,10355}, {25,2930}, {6082,9084}, {8787,9966}
X(13493) = isogonal conjugate of X(39157)
X(13493) = isogonal conjugate of isotomic conjugate of X(34166)
X(13493) = circumcircle-inverse of X(34581)
X(13493) = circummedial-to-1st-Ehrmann similarity image of X(9084)
X(13493) = trilinear product X(31)*X(34166)
The reciprocal cyclologic center of these triangles is X(13495)
X(13494) lies on the circumcircle and these lines: {74,12113}, {402,13495}, {842,13202}, {2706,12825}
X(13494) = reflection of X(13495) in X(402)
X(13494) = X(13495)-of-Gossard-triangle
The reciprocal cyclologic center of these triangles is X(13494)
X(13495) lies on the cubic K025 and these lines: {4,12369}, {402,13494}
X(13495) = reflection of X(13494) in X(402)
X(13495) = antigonal conjugate of X(1650)
X(13495) = X(13494)-of-Gossard-triangle
The reciprocal cyclologic center of these triangles is X(74)
X(13496) lies on these lines: {3,125}, {93,930}, {136,378}, {477,925}
X(13496) = reflection of X(5961) in X(3)
X(13496) = circumcircle-inverse-of-X(12121)
X(13496) = X(109)-of-Trinh-triangle if ABC is acute
The reciprocal cyclologic center of these triangles is X(13498)
X(13497) lies on the line {1,13542}
The reciprocal cyclologic center of these triangles is X(13497)
X(13498) lies on the Fuhrmann circle and the line {8,1392}
The reciprocal cyclologic center of these triangles is X(13500)
X(13499) lies on the nine-points circle and these lines: {2,13510}, {83,115}
The reciprocal cyclologic center of these triangles is X(13499)
X(13500) lies on the line {2,13511}
The reciprocal cyclologic center of these triangles is X(13502)
X(13501) lies on the circumcircle of the 4th anti-Broard triangle and on these lines: (pending)
X(13501) = cyclologic center of these triangles: 4th anti-Brocard to outer-Grebe
The reciprocal cyclologic center of these triangles is X(13501)
X(13502) lies on the line {6,13503}
The reciprocal cyclologic center of these triangles is X(13501)
X(13503) lies on the line {6,13502}
The reciprocal cyclologic center of these triangles is X(13505)
X(13504) lies on these lines: {3,13505}, {128,11444}, {137,3060}, {511,11671}, {568,12026}, {930,1298}, {1141,5889}, {1263,6243}, {6101,13512}, {12273,12281}
X(13504) = reflection of X(i) in X(j) for these (i,j): (5889,1141), (6243,1263), (13505,3), (13512,6101)
X(13504) = X(110)-of-3rd-anti-Euler-triangle
X(13504) = X(265)-of-4th-anti-Euler-triangle
The reciprocal cyclologic center of these triangles is X(13504)
X(13505) lies on these lines: {3,13504}, {52,11671}, {128,11459}, {137,3567}, {568,1263}, {930,11412}, {1141,1303}, {1154,13512}, {12270,12278}
X(13505) = reflection of X(i) in X(j) for these (i,j): (11412,930), (11671,52), (13504,3)
X(13505) = X(265)-of-3rd-anti-Euler-triangle
X(13505) = X(110)-of-4th-anti-Euler-triangle
The reciprocal cyclologic center of these triangles is X(7731)
X(13506) lies on the reflection circle and these lines: {184,933}, {1614,8157}, {3567,10214}, {6241,10628}
X(13506) = X(5620)-of-4th-anti-Euler-triangle if ABC is acute
X(13506) = orthic-to-4th-anti-Euler similarity image of X(10214)
The reciprocal cyclologic center of these triangles is X(13508)
X(13507) lies on these lines: {5,13508}, {160,11641}, {1598,11792}, {11411,12310}
X(13507) = reflection of X(13508) in X(5)
X(13507) = X(8701)-of-anti-incircle-circles-triangle if ABC is acute
X(13507) = orthic-to-anti-incircle-circles similarity image of X(11792)
The reciprocal cyclologic center of these triangles is X(13507)
X(13508) lies on these lines: {4,11792}, {5,13507}, {12164,12319}
X(13508) = reflection of X(13507) in X(5)
X(13508) = X(8701)-of-anti-inverse-in-incircle-triangle if ABC is acute
X(13508) = orthic-to-anti-inverse-in-incircle similarity image of X(11792)
The reciprocal cyclologic center of these triangles is X(74)
Let L1 be the line that is the polar conjugate, wrt the 1st Ehrmann circumscribing triangle, of the Johnson circle. Let L2 be the line that is the polar conjugate, wrt the 2nd Ehrmann circumscribing triangle, of the Johnson circle. Then X(13509) = L1∩L2. (Randy Hutson, June 27, 2018)
X(13509) lies on the cubics K854, K890, the circle {{X(4),X(15),X(16),X(186),X(3484)}}, and on these lines: {4,6}, {32,6241}, {39,1614}, {74,187}, {112,6000}, {185,10312}, {186,1971}, {323,401}, {353,3148}, {574,11464}, {577,11459}, {1504,11462}, {1505,11463}, {1968,12290}, {2241,11461}, {2275,9638}, {2393,10766}, {3172,12315}, {3767,11457}, {5013,9707}, {5028,12283}, {5206,11468}, {5663,10317}, {5890,10311}, {7748,12289}, {8778,13093}, {10316,12111}, {10986,11438}
X(13509) = reflection of X(112) in X(8779)
X(13509) = isogonal conjugate of X(34579)
X(13509) = polar circle-inverse-of-X(53)
X(13509) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,3331,8744), (1971,3269,186), (8744,12112,3331)
X(13509) = crossdifference of every pair of points on line X(51)X(520)
X(13509) = intersection, other than X(4), of van Aubel line and circle {{X(4),X(15),X(16),X(186),X(3484)}}
The reciprocal cyclologic center of these triangles is X(13511)
X(13510) lies on the anticomplementary circle and the line {2,13499}
The reciprocal cyclologic center of these triangles is X(13510)
X(13511) lies on the Brocard circle, cubic K548 and these lines: {2,13500}, {6,6655}
X(13511) = anticomplement of X(33665)
The reciprocal cyclologic center of these triangles is X(11671)
X(13512) lies on the Stammler circle and these lines: {2,1263}, {3,252}, {5,11671}, {20,10620}, {128,381}, {137,1656}, {399,6069}, {631,12026}, {999,7159}, {1154,13505}, {2925,2926}, {3295,3327}, {6101,13504}
X(13512) = reflection of X(i) in X(j) for these (i,j): (3,930), (1263,6592), (11671,5), (13504,6101)
X(13512) = anticomplement of X(1263)
X(13512) = {X(1263), X(6592)}-harmonic conjugate of X(2)
The reciprocal cyclologic center of these triangles is X(13514)
X(13513) lies on the Bevan circle, cubic K800 and these lines: {1,5606}, {3,9904}, {5,1768}, {165,5951}, {267,3336}, {583,5540}, {1698,5952}, {1699,5950}, {5127,5131}
X(13513) = reflection of X(1) in X(5606)
The reciprocal cyclologic center of these triangles is X(13513)
X(13514) lies on the Fuhrmann circle and these lines: {1,502}, {8,12535}
X(13514) = reflection of X(1) in X(502)
The reciprocal cyclologic center of these triangles is X(737)
X(13515) lies on the Brocard circle and these lines: {}
The reciprocal cyclologic center of these triangles is X(13517)
X(13516) lies on the Brocard circle and the line {858,6795}
The reciprocal cyclologic center of these triangles is X(13516)
X(13517) lies on the nine-points circle and these lines: {115,182}, {127,9967}, {136,458}
The reciprocal cyclologic center of these triangles is X(3)
X(13518) lies on the cubics K509, K794 and these lines: {2,694}, {83,689}, {125,626}, {670,2086}, {858,5103}, {1316,5149}, {3231,4563}, {3978,4609}, {5652,6033}
X(13518) = complement of X(9998)
X(13518) = orthoptic circle of Steiner inellipse-inverse-of-X(5976)
The reciprocal cyclologic center of these triangles is X(3)
X(13519) lies on the Neuberg 2nd circle, cubics K509, K796 and these lines: {2,4048}, {76,689}
X(13519) = orthoptic circle of Steiner inellipse-inverse-of-X(9478)
The reciprocal cyclologic center of these triangles is X(3)
X(13520) lies on the Vecten-inner circle, cubic K509 and these lines: {2,7599}, {485,925}
X(13520) = anticomplement of X(32500)
The reciprocal cyclologic center of these triangles is X(3)
X(13521) lies on the Vecten-outer circle, cubic K509 and these lines: {2,7598}, {486,925}
X(13521) = anticomplement of X(32501)
X(13522) lies on the orthocentroidal circle and these lines: {}
The reciprocal cyclologic center of these triangles is X(13522)
X(13523) lies on these lines: {}
The reciprocal cyclologic center of these triangles is X(0)
X(13524) lies on the orthocentroidal circle and these lines: {}
The reciprocal cyclologic center of these triangles is X(13524)
X(13525) lies on these lines: {}
The reciprocal cyclologic center of these triangles is X(4)
X(13526) lies on the half-altitude circle and these lines: {6,1562}, {1593,10229}
The reciprocal cyclologic center of these triangles is X(4)
X(13527) lies on the reflection circle and the line {6,2914}
The reciprocal cyclologic center of these triangles is X(40)
X(13528) lies on these lines: {1,3}, {4,5123}, {10,11826}, {20,5176}, {100,2745}, {102,2743}, {104,3880}, {499,12700}, {515,1145}, {516,1532}, {601,4646}, {901,1295}, {912,3689}, {962,6921}, {972,2742}, {1158,5687}, {1293,2716}, {1519,3035}, {1753,4186}, {2800,5440}, {2829,6735}, {3560,3698}, {3683,6929}, {3871,12675}, {3916,11362}, {4187,6684}, {4640,5657}, {4863,5770}, {5057,6838}, {5080,6925}, {5087,6361}, {5180,6962}, {5252,6948}, {5450,10914}, {5493,11813}, {5836,6906}, {6681,10164}, {6891,12701}, {6959,12699}, {6961,11376}, {7701,9947}, {9943,11491}, {11499,12688}
X(13528) = midpoint of X(i) and X(j) for these {i,j}: {20,5176}, {40,2077}, {484,5537}, {3245,5538}, {5493,11813}
X(13528) = isogonal conjugate of X(34256)
X(13528) = reflection of X(i) in X(j) for these (i,j): (4,5123), (1319,3), (1519,3035)
X(13528) = circumcircle-inverse-of-X(10310)
X(13528) = extouch-isogonal conjugate of X(12665)
X(13528) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,10306,11508), (40,165,3428), (165,5119,3)
The reciprocal cyclologic center of these triangles is X(103)
X(13529) lies on the intangents circle and these lines: {1012,11700}, {6326,9611}
The reciprocal cyclologic center of these triangles is X(13531)
X(13530) lies on the circumcircle and these lines: {110,381}, {476,7575}, {925,10298}, {6325,7418}, {10296,10420}, {10788,11636}
X(13530) = orthocentroidal circle-inverse-of-X(7699)
The reciprocal cyclologic center of these triangles is X(13530)
X(13531) lies on the orthocentroidal circle and these lines: {187,6785}, {237,6324}, {11005,11564}
The reciprocal cyclologic center of these triangles is X(100)
X(13532) lies on these lines: {1,124}, {2,11700}, {4,2817}, {8,153}, {10,109}, {80,3738}, {102,515}, {117,5587}, {355,2818}, {516,10732}, {517,10747}, {519,10703}, {944,11713}, {946,10696}, {1361,5252}, {1364,1837}, {1478,1845}, {1698,6718}, {1737,1795}, {2349,2816}, {2773,13211}, {2779,5086}, {2785,13178}, {2792,3732}, {2802,10777}, {2807,3419}, {2829,2968}, {2835,3421}, {2849,4768}, {2853,13280}, {3042,5794}, {3153,5080}, {3576,6711}, {3699,7270}, {5847,10764}, {8227,11727}, {9532,12784}
X(13532) = reflection of X(i) in X(j) for these (i,j): (1,124), (109,10), (944,11713), (10696,946)
X(13532) = anticomplement of X(11700)
The reciprocal cyclologic center of these triangles is X(13534)
X(13533) lies on these lines: {}
The reciprocal cyclologic center of these triangles is X(13533)
X(13534) lies on these lines: {}
The reciprocal cyclologic center of these triangles is X(13536)
X(13535) lies on these lines: {}
The reciprocal cyclologic center of these triangles is X(13535)
X(13536) lies on these lines: {}
The reciprocal cyclologic center of these triangles is X(13538)
X(13537) lies on the line {575,13538}
X(13537) = reflection of X(13538) in X(575)
The reciprocal cyclologic center of these triangles is X(13537)
X(13538) lies on the line {575,13537}
X(13538) = reflection of X(13537) in X(575)
The reciprocal cyclologic center of these triangles is X(1145)
X(13539) lies on the cubic K338 and the line {1,104}
The reciprocal cyclologic center of these triangles is X(3021)
X(13540) lies on these lines: {9,644}, {1477,2137}
The reciprocal cyclologic center of these triangles is X(1054)
X(13541) lies on these lines: {1,88}, {6,4919}, {8,11814}, {121,3679}, {537,1120}, {644,3973}, {1293,7991}, {1357,3340}, {1721,9519}, {2163,6095}, {2170,3731}, {2796,3241}, {2810,3022}, {2827,4895}, {3624,11731}, {4677,10713}, {5510,11522}, {5881,10744}, {7993,9355}, {9897,10774}
X(13541) = reflection of X(i) in X(j) for these (i,j): (1,10700), (8,11814), (1054,1), (4677,10713), (5881,10744), (7991,1293), (9897,10774)
The reciprocal cyclologic center of these triangles is X(13498)
X(13542) lies on these lines: {1,13497}, {3,10700}, {5881,10698}
The reciprocal cyclologic center of these triangles is X(13544)
X(13543) lies on the Fuhrmann circle and these lines: {}
The reciprocal cyclologic center of these triangles is X(13543)
X(13544) lies on these lines: {}
The reciprocal cyclologic center of these triangles is X(13546)
X(13545) lies on the Fuhrmann circle and these lines: {}
The reciprocal cyclologic center of these triangles is X(13545)
X(13546) lies on these lines: {}
The reciprocal cyclologic center of these triangles is X(13548)
X(13547) lies on the Fuhrmann circle and these lines: {}
The reciprocal cyclologic center of these triangles is X(13547)
X(13548) lies on these lines: {}
The reciprocal cyclologic center of these triangles is X(13550)
X(13549) lies on the Fuhrmann circle and these lines: {}
The reciprocal cyclologic center of these triangles is X(13549)
X(13550) lies on these lines: {}
The reciprocal cyclologic center of these triangles is X(13552)
X(13551) lies on these lines: {}
The reciprocal cyclologic center of these triangles is X(13551)
X(13552) lies on these lines: {}
The reciprocal cyclologic center of these triangles is X(974)
X(13553) lies on these lines: {4,110}, {6000,12004}
The reciprocal cyclologic center of these triangles is X(13555)
X(13554) lies on the intangents circle and these lines: {}
The reciprocal cyclologic center of these triangles is X(13554)
X(13555) lies on the line {1768,7971}
The reciprocal cyclologic center of these triangles is X(13557)
X(13556) lies on these lines: {3,136}, {5,925}, {30,1300}, {131,381}, {155,382}, {2070,5961}, {7517,13558}, {11641,12918}
X(13556) = reflection of X(i) in X(j) for these (i,j): (3,136), (925,5)
The reciprocal cyclologic center of these triangles is X(13556)
X(13557) is the perspector of ABC and the reflection of the 2nd extouch triangle in line X(924)X(6753). Line X(924)X(6753) is the trilinear polar of X(24) and the perspectrix of ABC and the 2nd extouch triangle. (Randy Hutson, August 19, 2019)
X(13557) lies on the Yiu circle, cubic K725, and these lines: {3,49}, {5,5962}, {30,1300}, {131,539}, {924,10540}
X(13557) = reflection of X(i) in X(j) for these (i,j): (3,12095), (5962,5)
X(13557) = circumcircle-inverse-of-X(1147)
X(13557) = X(5962)-of-Johnson-triangle
X(13557) = Stammler circle-inverse-of-X(12164)
The reciprocal cyclologic center of these triangles is X(399)
X(13558) lies on the tangential circle and these lines: {3,125}, {4,11587}, {22,98}, {24,107}, {25,132}, {186,6761}, {1112,1576}, {1609,6103}, {1637,2079}, {2080,6660}, {3124,8429}, {3129,7684}, {3130,7685}, {6793,8573}, {7517,13556}, {7669,10117}
X(13558) = reflection of X(3) in X(5961)
X(13558) = circumcircle-inverse-of-X(125)
X(13558) = Dao-Moses-Telv circle-inverse-of-X(2079)
X(13558) = X(109)-of-tangential-triangle if ABC is acute
X(13558) = Stammler circle-inverse-of-X(12902)
The reciprocal cyclologic center of these triangles is X(13560)
X(13559) lies on these lines: {1,13560}, {2089,8084}, {3659,8075}, {5919,8241}, {7597,8077}, {8091,8094}, {11032,12814}, {11044,11217}
X(13559) = reflection of X(13560) in X(1)
The reciprocal cyclologic center of these triangles is X(13559)
X(13560) lies on these lines: {1,13559}, {174,354}, {3659,8076}, {7588,7597}, {8084,8092}, {8242,10506}
X(13560) = reflection of X(13559) in X(1)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26170.
X(13561) lies on these lines: {2,156}, {3,12278}, {5, 113}, {26,1853}, {30,5449} et al
X(13561) = midpoint of X(i) and X(j) for these {i,j}: {9927,11250}, {12359,13371}
X(13561) = reflection of X(i) in X(j) for these (i,j): (10282,10125), (12038, 5498)
X(13561) = complement of X(156)
X(13561) = circumcenter of nine-point centers of BCX(3), CAX(3), ABX(3)
X(13561) = X(5)-of-A'B'C' as defined at X(11585)
X(13561) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5,10264,185), (3448,6143,49)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26172.
X(13562) lies on these lines: {3,5596}, {5,6}, {25,69}, {30,3313}, {66,1368}, {140,5157}, {141,206}, {193,6997}, {311,460}, {343,1974}, {511,6756}, {524,9969}, {599,10154}, {1176,7499}, {1351,7528}, {1503,5907}, {3589,11548}, {3618,7539}, {3620,7493}, {3818,3867}, {5159,6697}, {5480,13142}, {5921,6816}, {5972,6698}, {6248,6748}, {6776,7395}, {7529,11898}, {7819,10547}, {9715,10519}, {9967,12134}
X(13562) = midpoint of X(9967) and X(12134)
X(13562) = reflection of X(13142) in X(5480)
X(13562) = {X(141), X(206)}-harmonic conjugate of X(6676)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26172.
X(13563) lies on these lines: {5572, 28850}, {8680, 29957}
As a point on the Euler line, X(13564) has Shinagawa coefficients (5E + 8F, -9E - 8*F).
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26172.
X(13564) lies on these lines: {2,3}, {49,10625}, {54,6030}, {110,10627}, {156,2979}, {195,511}, {399,2918}, {524,13432}, {542,3519}, {568,10984}, {1147,13340}, {1204,8717}, {1216,10540}, {1385,9591}, {1495,5447}, {1503,9920}, {1614,6101}, {2883,9919}, {2889,9143}, {2917,6000}, {3053,9700}, {3098,10539}, {3311,9683}, {3579,9626}, {5012,10263}, {5446,13353}, {5462,13339}, {5663,7691}, {6455,9682}, {6800,9704}, {7755,11063}, {8193,12645}, {10117,10282}, {10575,10620}, {11255,12220}, {12310,12359}
X(13564) = midpoint of X(7691) and X(8718)
X((13564) = anticomplement of X(33332)
X(13564) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,22,2937), (3,2937,2070), (3,3830,7503), (3,3843,7514), (3,5073,7526), (3,5899,5), (3,7387,381), (3,7517,1656), (3,9909,7506), (3,12083,382), (4,7492,7525), (4,7525,3), (5,12088,5899), (20,7502,3), (22,10323,26), (26,10323,3), (550,7555,7488), (1656,7517,7545), (6636,12088,5), (7509,7530,3851), (7526,12082,5073)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26172.
X(13565) lies on these lines: {2,6288}, {3,7703}, {5,51}, {54,1656}, {140,13470}, {195,5055}, {252,12060}, {381,7691}, {403,11017}, {498,12956}, {499,12946}, {539,547}, {858,11592}, {1216,11808}, {1493,2888}, {1594,11576}, {2072,12363}, {2917,7514}, {3519,5056}, {3628,5972}, {3851,12307}, {5071,12325}, {5449,13363}, {5576,13391}, {5663,13160}, {5790,7979}, {5886,12785}, {5907,11802}, {5943,10115}, {5965,12812}, {6145,9833}, {6152,7577}, {6153,10170}, {7393,9920}, {7579,7999}, {7730,11444}, {7741,13079}, {9777,12316}, {9977,11178}, {10255,12606}, {11230,12266}
X(13565) = midpoint of X(i) and X(j) for these {i,j}: {5,1209}, {1216,11808}, {1493,2888}, {5907,11802}, {6288,10610}, {12606,13368}
X(13565) = reflection of X(i) in X(j) for these (i,j): (973,13365), (6689,3628)
X(13565) = complement of X(10610)
X(13565) = {X(2), X(6288)}-harmonic conjugate of X(10610)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26172.
X(13566) lies on these lines: {4,12006}, {548,3589}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26172.
Let P be the trilinear pole of the tangent to the MacBeath circumconic at a point Q. (i.e., P = X(3)-cross conjugate of a point Q on the MacBeath circumconic.) The locus of the polar conjugate of P as Q varies is an inconic centered at X(13567), and passing through X(338), X(1146), and X(3269). The Brianchon point (perspector) of this inconic is X(2052). (Randy Hutson, November 2, 2017)
X(13567) lies on these lines: {2,6}, {3,12241}, {4,64}, {5,389}, {11,11436}, {15,465}, {16,466}, {19,5928}, {20,1192}, {24,161}, {25,1503}, {30,11438}, {32,441}, {34,10361}, {51,125}, {52,11585}, {53,2052}, {54,10018}, {68,6642}, {92,1146}, {140,578}, {143,13371}, {154,6353}, {182,6676}, {184,468}, {185,235}, {186,12022}, {189,7365}, {226,6708}, {275,6749}, {287,1915}, {297,3981}, {306,3965}, {324,338}, {329,6554}, {397,470}, {398,471}, {403,5890}, {406,5706}, {428,11550}, {429,5799}, {440,573}, {458,7745}, {461,3332}, {472,5321}, {473,5318}, {511,1368}, {541,1539}, {549,11430}, {550,13403}, {568,2072}, {569,7542}, {572,7536}, {576,5159}, {580,7515}, {631,11425}, {800,6509}, {858,3060}, {860,5721}, {1147,13292}, {1151,1589}, {1152,1590}, {1181,3542}, {1196,6388}, {1204,1885}, {1209,7405}, {1350,7386}, {1352,5020}, {1353,5972}, {1498,3089}, {1583,11090}, {1584,11091}, {1585,3070}, {1586,3071}, {1587,3535}, {1588,3536}, {1591,12239}, {1592,12240}, {1593,6696}, {1594,3567}, {1595,10110}, {1596,6000}, {1620,3522}, {1656,11432}, {1848,2262}, {1861,1864}, {1906,11381}, {1990,11547}, {1995,11442}, {3066,6997}, {3098,10691}, {3168,6530}, {3517,9833}, {3526,11426}, {3541,10982}, {3564,6677}, {3796,7493}, {3832,11469}, {3867,9969}, {3925,11435}, {4232,11206}, {5012,13394}, {5067,11431}, {5085,7494}, {5094,9777}, {5097,6723}, {5133,5640}, {5432,11429}, {5713,7532}, {5810,7535}, {5816,7522}, {6389,6617}, {6619,10002}, {6823,9729}, {7392,10516}, {7505,7592}, {7506,12134}, {7583,8968}, {7715,13419}, {8254,12234}, {8263,8681}, {8991,11473}, {9820,12161}, {10257,13352}, {10272,12227}, {10594,11457}, {11402,12007}, {13142,13346}
X(13567) = midpoint of X(i) and X(j) for these {i,j}: {4,10605}, {25,1899}, {125,12828}, {394,6515}
X(13567) = reflection of X(9306) in X(6677)
X(13567) = isotomic conjugate of X(801)
X(13567) = complement of X(394)
X(13567) = complementary conjugate of X(6389)
X(13567) = polar conjugate of X(1105)
X(13567) = pole wrt polar circle of trilinear polar of X(1105) (line X(450)X(2451))
X(13567) = crosssum of X(6) and X(577)
X(13567) = crosspoint of X(2) and X(2052)
X(13567) = crosspoint of X(6) and X(2929) wrt excentral triangle
X(13567) = crosspoint of X(6) and X(2929) wrt tangential triangle
X(13567) = inverse-in-Jerabek-hyperbola of X(12294)
X(13567) = midpoint of polar conjugates of PU(17)
X(13567) = trilinear pole of the polar, wrt circle O(3,4), of the perspector of circle O(3,4)
X(13567) = trilinear pole of the polar, wrt the second Droz-Farny circle, of the perspector of the second Droz-Farny circle
X(13567) = perspector of the midheight triangle and the polar triangle of the Yiu-Hutson conic
X(13567) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,343,141), (2,1993,11064), (2,3580,343), (2,6515,394), (2,10601,3589), (2,11433,6), (5,389,12233), (51,125,427), (51,427,5480), (184,468,10192), (184,11245,8550), (185,235,2883), (468,11245,184), (1146,6354,92), (1204,1885,5894), (5449,5462,5), (6353,6776,154), (8550,10192,184)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26172.
X(13568) lies on these lines: {2,1192}, {3,12233}, {4,64}, {5,4550}, {6,20}, {25,2883}, {30,143}, {51,1885}, {54,10295}, {141,6815}, {185,1503}, {235,5893}, {376,11425}, {427,1204}, {428,11381}, {516,12432}, {524,5889}, {548,11430}, {550,578}, {973,974}, {1350,10996}, {1498,7487}, {1593,5480}, {1595,3357}, {1598,5878}, {1620,3523}, {1657,11432}, {1890,12688}, {1899,12173}, {2777,10110}
X(13568) = midpoint of X(185) and X(3575)
X(13568) = reflection of X(12241) in X(389)
X(13568) = reflection of X(4) in X(11745)
X(13568) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,10605,6247), (427,1204,6696), (5480,5894,1593), (7689,7706,5)
>
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26172.
X(13569) lies on this line: {57,4008}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26172.
X(13570) lies on these lines: {3,10219}, {4,5943}, {5,13348}, {30,6688}, {51,3839}, {143,546}, {373,3543}, {381,511}, {389,3843}, {3060,5907}, {5480,8681}
X(13570) = midpoint of X(i) and X(j) for these {i,j}: {4,5943}, {3060,5907}
X(13570) = reflection of X(3) in X(10219)
X(13571) lies on these lines: {2,3108}, {3,7837}, {4,147}, {6,7836}, {32,10353}, {39,2896}, {61,618}, {62,619}, {69,10007}, {83,7813}, {99,7838}, {140,385}, {182,193}, {325,7797}, {524,7824}, {538,7858}, {550,7762}, {574,7877}, {633,3107}, {634,3106}, {1078,7890}, {1654,3216}, {1656,7754}, {1657,7823}, {1975,7921}, {2549,7900}, {3096,7916}, {3314,9605}, {3329,3933}, {3788,7894}, {3926,7787}, {4045,7917}, {5007,7799}, {5013,7893}, {5024,7904}, {5025,9766}, {5041,7832}, {5068,6392}, {5189,8878}, {5254,7941}, {5286,7912}, {5305,7925}, {5309,7814}, {5346,7940}, {5355,7899}, {6655,7757}, {6656,7840}, {6658,7781}, {7533,8267}, {7738,7898}, {7739,7933}, {7748,7926}, {7752,7798}, {7761,7949}, {7763,7766}, {7765,7809}, {7769,7805}, {7776,7864}, {7778,7920}, {7786,7855}, {7788,7876}, {7790,7903}, {7791,7946}, {7792,7947}, {7801,7878}, {7803,7897}, {7821,7827}, {7834,7871}, {7845,7847}, {7846,7908}, {7859,7895}, {7863,12150}, {7875,7881}, {7924,9607}, {9863,10983}
X(13571) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,7836,10583), (6,7906,7836), (39,7779,2896), (39,7882,7831), (39,7905,7779), (194,7774,7785), (194,7785,148), (325,7839,7797), (6658,7781,8591), (7757,7759,6655), (7760,7764,2), (7772,7796,2), (7781,7812,6658), (7829,7909,2), (7856,7888,2)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26172.
X(13572) lies on this line: {2809,12573}
The appearance of {i,j} in the following list means that X(i) and X(j) are a pair of cyclocevian conjugates:
{1,1029}, {2,4}, {6,1031}, {7,7}, {8,189}, {20,1032}, {66,2998}, {69,253}, {75,8044}, {80,8046}, {290,9473}, {329,1034}, {330,7357}, {648,13573}, {671,13574}, {668,8047}, {2113,6650}, {2994,7219}, {2996,13576}, {3346,6504}, {4373,8048}, {6625,8049}, {6630,8050}, {7319,8051}, {9510,13577}, {10405,13578}
X(13573) lies on these lines: {1503,2071}, {3267,13219}, {3448,8057}
X(13574) lies on the curves K008, K535, Q066, and these lines: {2,8877}, {23,524}, {316,3266}, {468,8744}, {523,10561}, {4062,5525}, {4232,10424}, {5099,10415}
X(13575) lies on the curves K169, Q066, and these lines: {2,2138}, {22,69}, {253,6995}, {264,6997}, {287,6515}, {305,315}, {306,1763}, {307,8270}, {858,6340}, {1799,7493}, {2373,6353}, {2419,6563}, {4329,4463}, {6330,11547}, {7391,11605}
X(13575) = isogonal conjugate of X(159)X(13576) lies on the Kiepert hyperbola, the cubic K299, and these lines: {1,2140}, {2,11}, {4,218}, {7,1002}, {8,76}, {10,1018}, {42,226}, {43,1699}, {65,1446}, {80,885}, {98,919}, {210,321}, {291,812}, {388,2334}, {516,672}, {544,1478}, {666,671}, {740,3930}, {962,10822}, {1111,2809}, {1282,9318}, {1416,11269}, {1462,6817}, {1751,2195}, {1754,13478}, {1814,5800}, {1824,1893}, {1857,2052}, {1916,5992}, {2357,8808}, {2475,6625}, {2486,4557}, {2551,6559}, {2996,3436}, {3030,3038}, {3416,4863}, {3421,5485}, {4049,4674}, {4052,4685}, {4080,4442}, {4419,4492}, {4516,4552}, {4589,4645}, {4648,10013}, {4733,6539}, {5091,5773}, {5377,11604}
X(13576) = anticomplement of X(8299)Let A29B29C29 and A30B30C30 be Gemini triangles 29 and 30, resp. Let A' be the intersection of the tangents to the {Gemini 29, Gemini 30}-circumconic at A29 and A30. Define B' and C' cyclically. The lines AA', BB', CC' concur in X(13577). (Randy Hutson, January 15, 2019)
X(13577 lies on these lines: {2,1814}, {63,3730}, {69,3263}, {77,3870}, {100,8817}, {497,693}, {1444,3433}, {3434,6063}, {3873,6604}
X(13577) = anticomplement X(5452)The Kiepert image of a point is defined at X(13486).
X(13578) lies on no line X(i)X(j) for 1 ≤ i < j ≤ 13577.The trilinear polar of X(13579) meets the line at infinity at X(523). (Randy Hutson, July 21, 2017)
X(13579) lies on the Kiepert hyperbola and these lines: {2,9609}, {4,1994}, {69,11140}, {94,6515}, {98,7391}, {262,7394}, {323,6504}, {1370,7612}, {7392,10155}, {7578,11427}
X(13579) = isogonal conjugate of X(8553)
X(13580) lies on the Kiepert hyperbola and this line: {262,2552}, {323,13581}
X(13581) lies on the Kiepert hyperbola and this line: {262,2553}, {323,13580}
X(13582) lies on the Kiepert hyperbola, the curve Q110, and these lines: {4,195}, {13,5612}, {14,5616}, {17,11130}, {18,11131}, {94,11071}, {98,1291}, {140,10277}, {262,7533}, {265,1117}, {338,11140}, {340,9381}, {1994,11538}, {5671,10264}, {11639,11669}
X(13582) = isogonal conjugate of X(11063)
X(13583) lies on the Kiepert hyperbola and these lines: {226,2475}, {1751,5046}, {2051,6894}, {6895,13478}
X(13584) lies on the Kiepert hyperbola and not on any line X(i)X(j) for 1 ≤ i < j ≤ 13583.
X(13585) lies on the Kiepert hyperbola and these lines:
{6,11538}, {96,1157}, {5189,7607}, {6997,10155}, {7391,7612}, {7533,7608}
X(13586) lies on these lines: {2,3}, {32,7757}, {35,6645}, {36,4366}, {39,12150}, {76,5206}, {99,187}, {148,230}, {183,5210}, {194,3053}, {262,9734}, {315,7891}, {316,620}, {511,5182}, {524,2076}, {532,8595}, {533,8594}, {543,5152}, {574,3329}, {597,5116}, {598,7622}, {599,4048}, {754,2482}, {1078,7816}, {1384,7766}, {1691,5969}, {1916,2021}, {1975,5023}, {1992,5017}, {2030,10754}, {2080,4027}, {2549,7806}, {2896,7789}, {3111,13207}, {3734,7771}, {3788,7802}, {3849,5149}, {3926,7893}, {5013,7787}, {5026,5104}, {5184,11711}, {5215,9166}, {5913,7665}, {5989,8591}, {6179,7781}, {6337,7906}, {6390,7779}, {6680,7847}, {7610,11164}, {7737,7777}, {7738,7920}, {7747,7769}, {7748,7857}, {7750,7836}, {7756,7828}, {7761,7835}, {7763,7823}, {7768,7863}, {7778,7898}, {7784,7945}, {7788,9939}, {7795,7904}, {7801,7811}, {7804,8589}, {7818,7870}, {7820,7831}, {7825,7940}, {7830,7832}, {7842,7899}, {7850,7908}, {7860,7888}, {7865,10000}, {7867,7910}, {7869,7936}, {7872,7942}, {7873,7909}, {7874,7911}, {7880,7883}, {7881,7929}, {7930,7935}, {8291,11153}, {8292,11154}, {9751,11155}, {9770,11147}
X(13586) = midpoint of X(2) and X(33265)X(13587) lies on these lines: {1,9352}, {2,3}, {8,5204}, {10,5303}, {35,551}, {36,100}, {40,5330}, {55,4345}, {56,3241}, {78,3928}, {81,4256}, {165,3877}, {214,484}, {517,4881}, {524,5096}, {528,5172}, {529,4996}, {574,5276}, {597,4265}, {644,1055}, {758,5131}, {896,5529}, {1155,4511}, {1210,11015}, {1319,1320}, {1420,3885}, {1470,11239}, {1621,5010}, {2078,13279}, {2975,3679}, {3035,5080}, {3218,5122}, {3361,3889}, {3582,10090}, {3583,6681}, {3616,4428}, {3655,11491}, {3814,4316}, {3825,4324}, {3828,5260}, {3829,5433}, {3833,5426}, {3868,4855}, {3876,3929}, {3895,13462}, {3897,7987}, {3911,9963}, {4299,11681}, {4677,8666}, {4745,5258}, {5193,13278}, {5251,9342}, {5362,10646}, {5367,10645}, {5691,7705}, {6265,10225}, {9782,11281}
X(13587) = reflection of X(10707) in X(3582)X(13588) lies on these lines: {2,3}, {10,4278}, {31,1582}, {36,3741}, {42,81}, {43,58}, {55,86}, {56,1043}, {57,5208}, {63,3786}, {75,2352}, {99,9082}, {108,1947}, {228,894}, {274,2223}, {314,1402}, {332,1014}, {333,1376}, {662,2194}, {672,2287}, {750,10458}, {1333,1575}, {1444,7224}, {1621,5333}, {1778,2238}, {1790,7350}, {1792,5323}, {1812,2651}, {2276,2303}, {3072,3193}, {3720,5253}, {3724,4418}, {3871,5711}, {4255,5331}, {4276,6685}, {4658,8715}, {6516,7196}, {10434,10455}
X(13588) = reflection of X(10707) in X(3582)X(13589) lies on these lines: {2,3}, {36,1647}, {99,9070}, {100,190}, {108,13397}, {110,6011}, {643,3909}, {675,2481}, {833,835}, {901,2222}, {1283,3120}, {1292,9058}, {1623,10707}, {1626,11680}, {1754,3060}, {2948,13146}, {3573,6161}, {3938,5697}, {3961,11010}, {4597,13396}, {6012,9059}
X(13589) =anticomplement of X(867)The reciprocal orthologic triangle of these triangles is X(356)
X(13590) lies on these lines: {3,3276}, {3278,3605}
X(13590) = reflection of X(3281) in X(3)
The reciprocal orthologic triangle of these triangles is X(3276)
X(13591) lies on these lines: {3,3277}, {3280,3606}
X(13591) = reflection of X(3283) in X(3)
The reciporcal orthologic center of these triangles is X(3277)
X(13592) lies on these lines: {3,356}, {3282,3607}
X(13592) = reflection of X(3279) in X(3)
The reciprocal orthologic center of these triangles is X(8011)
X(13593) lies on the circumcircle and the line {3,8008}
X(13593) = midpoint of X(3) and X(8008)
X(13593) = reflection of X(13594) in X(3)
X(13593) = antipode of X(13594) in circumcircle
X(13593) = parallelogic center of these triangles: circumnormal to inner-Napoleon
The reciprocal orthologic center of these triangles is X(8011)
X(13594) lies on the circumcircle and the line {3,8008}
X(13594) = midpoint of X(3) and X(8009)
X(13594) = reflection of X(13593) in X(3)
X(13594) = antipode of X(13593) in circumcircle
X(13594) = parallelogic center of these triangles: circumtangential to inner-Napoleon
X(13595) lies on these lines: {2,3}, {6,9544}, {49,10095}, {51,110}, {107,324}, {111,251}, {145,11365}, {148,2936}, {154,3066}, {156,1199}, {159,10169}, {182,11451}, {184,5640}, {305,5971}, {323,3060}, {567,13364}, {575,12834}, {669,10278}, {1141,1302}, {1147,9781}, {1173,9705}, {1194,5041}, {1204,11439}, {1287,2770}, {1383,8770}, {1495,5012}, {1614,5462}, {1627,3291}, {1843,11416}, {1915,3124}, {1974,9813}, {1993,5102}, {2056,2502}, {2930,8584}, {2979,5651}, {3047,11746}, {3167,11004}, {3410,3580}, {3455,9166}, {3567,10539}, {3616,8185}, {3622,9798}, {3634,9591}, {3796,7712}, {3817,9590}, {4678,12410}, {5092,6030}, {5218,9673}, {5281,10833}, {5297,5310}, {5322,7292}, {5946,10540}, {6800,10601}, {7288,9658}, {7605,13394}, {7693,10192}, {8780,9777}, {9625,10175}, {10282,13434}, {10313,10985}, {10643,11421}, {10644,11420}, {10961,11418}, {10963,11417}, {11424,11449}, {11465,13336}
X(13595) = orthoptic-circle-of-Steiner-inellipe inverse of X(11563)X(13596) lies on these lines: {2,3}, {6,11738}, {51,74}, {54,11381}, {112,5008}, {154,3431}, {184,11455}, {569,12279}, {578,12290}, {1147,11439}, {1192,11270}, {1199,6241}, {1204,9781}, {1614,13474}, {1993,11472}, {1994,5663}, {2979,4550}, {3043,12133}, {3357,3567}, {3426,11402}, {3455,10722}, {5097,7722}, {5412,6480}, {5413,6481}, {5446,11440}, {5480,5621}, {6000,13366}, {9730,12834}, {10575,13434}
X(13596) = Stammler-circles-radical-circle inverse of X(23)See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 26178 and Antreas Hatipolakis and Peter Moses, Hyacinthos 26850.
X(13597) lies on the circumcircle and these lines: {4,11792},{25,13507},{30, 11703},{99,1232},{110,140},{ 112,6748},{476,5899},{953, 5957},{2687,5959},{2699,5958} X(13597) = reflection of X(4) in X(11792)See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 26178.
X(13598) lies on the circumcircle and these lines: {2, 13348}, {3, 5943}, {4, 69}, {5, 3819}, {20, 51}, {22, 11424}, {23, 13367}, {25, 13346}, {26, 11430}, {30, 143}, {52, 382}, {182, 10790}, {185, 3060}, {186, 13446}, {343, 1907}, {373, 3523}, {376, 9781}, {381, 10625}, {394, 5198}, {517, 12527}, {546, 1216}, {548, 5892}, {550, 5462}, {568, 5073}, {569, 12083}, {575, 10984}, {576, 1181}, {578, 7387}, {631, 6688}, {970, 1012}, {1071, 12109}, {1092, 10594}, {1147, 7530}, {1154, 3853}, {1199, 8718}, {1350, 9822}, {1351, 1498}, {1503, 10112}, {1539, 13433}, {1598, 9306}, {1629, 1941}, {1657, 9730}, {2071, 13376}, {2393, 2883}, {2777, 11800}, {2979, 3832}, {3091, 3917}, {3098, 7395}, {3522, 5640}, {3525, 10219}, {3529, 3567}, {3530, 13364}, {3533, 12045}, {3543, 5889}, {3627, 10263}, {3830, 6243}, {3839, 11444}, {3843, 5891}, {3845, 6101}, {3850, 10170}, {3851, 13340}, {3855, 7999}, {3861, 11591}, {5012, 12087}, {5056, 5650}, {5059, 10574}, {5068, 7998}, {5092, 10323}, {5097, 7592}, {5480, 6823}, {5806, 11573}, {7517, 10282}, {8549, 9914}, {8681, 11477}, {9714, 11202}, {9815, 10996}, {9909, 11425}, {9969, 12362}, {10299, 11465}, {10601, 13347}, {10628, 12295}, {10733, 13417}, {11438, 12085}, {11807, 11819}, {12006, 12103} X(13598) = midpoint of X(i) and X(j) for these {i, j}: {52,382}, {185,3146}, {3627,10263}, {5073,10575}, {5889,11381}, {6243,12162}, {10733,13417}See Antreas Hatzipolakis and César Lozada, Hyacinthos 26181.
X(13599) lies on the Kiepert hyperbola and these lines: {2,389}, {3,275}, {4,216}, {5,2052}, {76,7399}, {83,7395}, {96,7592}, {98,1181}, {485,6810}, {486,6809}, {1751,7567}, {3091,8796}, {5392,13160}, {6504,6815} X(13599) = reflection of X(4) in X(8799)See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26194.
X(13600) lies on these lines: {1,3}, {5,6736}, {8,6939}, {145,12528}, {388,12700}, {392,12245}, {519,5777}, {946,3880}, {952,9856}, {1071,3241} X(13600) = midpoint of X(i) and X(j) for these {i,j}: {145, 12672}, {3057, 7982}, {10284, 11278}See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26194.
X(13601) lies on these lines: {1,3}, {8,12709}, {144,7672}, {226,5836}, {388,10914}, {392,1788}, {960,4848}, {971,10950} X(13601) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,13370,1319), (65,2099,942), ( 65,3057,57), (65,3340,5173), ( 1466,2099,1)See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26201.
X(13602) lies on the Feuerbach hyperbola and these lines: {1, 3530}, {8, 4540}, {21, 3635}, {79, 9957}, {80, 5919}, et al X(13602) = isoconjugate of X(58) and X(3968)See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26201.
X(13603) lies on the Jerabek hyperbola and these lines: {3,5888}, {6,11455}, {54, 12112}, {67,10721}, et al X(13603) = isogonal conjugate of X(8703)See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 26203.
X(13604) lies on these lines: {10,21}, {11,5620}See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 26203.
X(13605) lies on these lines:See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26206.
X(13606) lies on the Feuerbach hyperbola and these lines:See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26206.
X(13607) lies on these lines:See Antreas Hatzipolakis and César Lozada, Hyacinthos 26212.
Let P be a point in the plane of ABC. Let (Oa) be the circumcircle of BCP, and define (Ob) and (Oc) cyclically. Let A' be the intersection, other than P, of (Oa) and AP, and define B' and C' cyclically. Let A" be the antipode of A' in (Oa), and define B" and C" cyclically. The lines AA", BB" CC" concur for all P. When P = X(2), the lines AA", BB" CC" concur in X(13608). (Randy Hutson, July 21, 2017) X(13608) lies on the cubics K009, K043 and these lines: {2,12505}, {3,524}, {4,111}See Antreas Hatzipolakis and César Lozada, Hyacinthos 26212.
X(13609) lies on these lines:Suppose that P = p : q : r (barycentrics) is a point in the plane of a triangle ABC. The Steiner image of P is introduced here as the point
S(P) = p/(q2 + r2 - p2 + qr + rp + pq) : :
Let S be the Steiner circumellipse of the cevian triangle A'B'C' of P. Let A'' be the point, other than A', in which S meets line BC, and define B'' and C'' cyclically. The lines AA'', BB'', CC'' concur in S(P). (Contributed by Peter Moses, June 23, 2017; see also X(13486).
X(13610) lies on the cubics K132 and K328, and on these lines:
{1,1326}, {6,2640}, {10,894}, {37,171}, {58,1247}, {65,4649}, {75,8033}, {192,13174}, {757,2643}, {759,5429}, {1178,4128}, {3017,5620}, {4418,6535}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26214.
X(13611) lies on these lines: {3,6723}, {4,3184}, {122,125}, {136,3154}See Antreas Hatzipolakis and César Lozada, Hyacinthos 26214.
X(13612) lies on the nine-point circle and these lines: {117,6260}, {124,7358}, {7952,10271}See Antreas Hatzipolakis and César Lozada, Hyacinthos 26214.
X(13613) lies on the nine-point circle and these lines: {122,1562}, {132,2883}, {133,1249}X(13614) lies on these lines: {2,3}, {78,7070}, {271,282}, {936,2328}, {1034,1792}, {1035,5932}, {1259,8805}, {1819,3347}, {3176,8885}
X(13614) = isogonal conjugate of X(8811)X(13615) lies on these lines: {2,3}, {6,2328}, {9,55}, {35,8580}, {42,218}, {56,5436}, {63,5728}, {72,3295}, {154,572}, {169,3198}, {191,10399}, {197,8053}, {220,3190}, {226,1001}, {268,7008}, {329,954}, {950,958}, {956,3488}, {960,10393}, {993,11019}, {999,4666}, {1259,9844}, {1486,8804}, {1708,4640}, {1728,11507}, {2975,10580}, {3303,11523}, {3419,9708}, {3586,5251}, {3877,3957}, {3897,7373}, {5175,5260}, {5248,12572}, {5259,7742}, {5273,5809}, {5777,10267}, {8273,8583}
X(13615) = isogonal conjugate of X(8814)X(13616) lies on these lines: {2,3}, {589,8406}, {1161,1994}, {1993,11824}, {2979,10133}, {3796,12306}, {5012,9732}, {5409,6800}
X(13616) = isogonal conjugate of X(10261)X(13617) lies on these lines: {2,3}, {588,8414}, {1160,1994}, {1993,11825}, {2979,10132}, {3796,12305}, {5012,9733}, {5408,6800}
X(13617) = isogonal conjugate of X(10262)X(13619) lies on these lines: {2,3}, {74,10421}, {112,6781}, {146,10540}, {185,12254}, {340,1272}, {477,933}, {562,930}, {1154,7722}, {1199,13568}, {1204,12289}, {1291,1300}, {1870,4316}, {1986,13391}, {3521,5944}, {4294,10149}, {4324,6198}, {6000,12244}, {7689,12278}, {7756,10312}, {9076,10098}, {9730,11692}, {12270,12273}
X(13619) = midpoint of X(i) and X(j) for these {i,j}: {1657, 5899}X(13621) lies on these lines: {2,3}, {6,3205}, {49,51}, {52,12316}, {54,10095}, {110,143}, {156,3567}, {389,10540}, {399,6102}, {567,9920}, {568,10539}, {669,10279}, {827,5966}, {1141,11815}, {1147,12310}, {1157,10228}, {1173,9706}, {1493,9705}, {1495,5462}, {1614,5946}, {1624,3432}, {2079,7747}, {2929,7728}, {2931,5448}, {3357,9919}, {3581,5907}, {5943,13353}, {5944,13364}, {6199,8276}, {6243,9306}, {6395,8277}, {6767,10046}, {7373,10037}, {8185,10246}, {9590,9955}, {9591,11231}, {9625,9956}, {9626,11230}, {10247,11365}, {10546,11412}, {11591,12307}, {11597,11808}, {11695,13339}, {12121,12897}, {12161,13321}
X(13621) = inverse in the circumcircle of X(10096)X(13622) lies on the Jerabek hyperbola and these lines: {3,5965}, {4,9973}, {54,12007}, {67,6467}, {141,895}, {265,5891}, {511,3521}, {524,1176}, {542,11559}, {549,5504}, {599,6391}, {826,10097}, {1154,4846}, {3532,10619}, {3628,9972}, {6776,11270}, {7748,13481}, {10293,10628}, {12254,13452}
X(13622) = isogonal conjugate of X(13595)X(13623) lies on the Jerabek hyperbola and these lines: {2,11738}, {4,7693}, {6,3534}, {54,548}, {64,3526}, {74,549}, {895,12121}, {1531,3521}, {3426,5055}, {3431,10304}, {5066,13603}, {6699,11559}, {10303,13452}
X(13622) = isogonal conjugate of X(13596)See Antreas Hatzipolakis and César Lozada, Hyacinthos 26229.
Let DEF be the cevian triangle of I=X(1) and A"B"C" the 2nd circumperp triangle. Let Db and Dc be the circumcenters of ABD and ACD. The lines through X(3) parallel to DDb and DDc intersects the lines through I perpendicular to IB and IC at Ab and Ac respectively. Let (A") be the circle with center centered at A" and tangent to line AbAc, and define (B") and (C") cyclically. X(13624) is the radical center of (A"), (B"), (C"). (Angel Montesdeoca, November 7, 2019)
X(13624) lies on these lines: {1,3}, {4,5550}, {5,4297}, {8,3524}, {10,549}, {20,5886}, {21,4881}, {30,1125}, {44,572}, {72,3431}, {74,11699}, {79,4870}, {104,6986}, {140,515}, {145,3654}, {182,4663}, {186,1829}, {214,960}, {229,4221}, {355,631}, {376,3616}, {378,11363}, {381,3624}, {382,8227}, {392,4189}, {495,4311}, {496,4304}, {500,1193}, {518,5092}, {582,1468}, {912,12038}, {944,3617}, {952,3626}, {956,4855}, {993,5044}, {1000,6049}, {1480,1616}, {1483,11362}, {2975,4420}, {3488,5265}, {3585,5444}, {3621,5657}, {3622,3656}, {3625,5690}, {3689,5288}, {3811,11194}, {3916,4511}, {4004,9352}, {4292,11544}, {4293,11374}, {4298,5719}, {4299,11375}, {4301,10283}, {4302,11376}, {4316,5443}, {4652,5730}, {4816,9588}, {5219,9655}, {5258,12773}, {5298,10543}, {5433,10572}, {5438,9708}, {5844,13607}, {5887,10167}, {6051,8143}, {6284,7743}, {6713,12019}, {6734,10609}, {6759,12262}, {8546,9004}, {8715,11260}, {9778,10595}, {10610,12675}, {11711,12042}
X(13624 = midpoint of X(i) and X(j) for these {i,j}: {1,3579}, {3,1385}, {5,4297}, {74,11699}, {548,5901}, {550,946}, {551,8703}, {960,13369}, {1386,3098}, {1483,11362}, {1511,11709}, {5690,5882}, {5731,11231}, {6759,12262}, {8715,11260}, {11278,12702}, {11711,12042}, {11720,12041}, {12512,13464}
X(13624 = reflection of X(i) in X(j) for these (i,j): (3828,11812), (3853,12571), (5885,9940), (6583,13373), (6684,3530), (9955,1125), (9956,140)
X(13624) = X(140)-of-2nd-circumperp-triangle
X(13624) = X(3850)-of-excentral-triangle
X(13624) = X(548)-of-1st-circumperp-triangle
X(13624) = radical center of circles centered at A, B, C with respective radii 1/2*sqrt(bc), 1/2*sqrt(ca), 1/2*sqrt(ab)
X(13624) = QA-P32 (Centroid of the Circumcenter Quadrangle) of quadrangle ABCX(1)
X(13624 = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,3,3579), (1,40,8148), (1,12702,11278), (3,1482,165), (3,3576,1385), (3,10246,40), (3,10680,5584), (3,13151,942), (35,1319,9957), (36,2646,942), (36,3576,13151), (65,7280,5122), (214,5267,960), (355,631,11231), (631,5731,355), (1385,3579,1), (2646,13151,1385), (3576,7987,3), (3579,11278,12702), (4297,10165,5), (8148,10246,1), (37524,37525,1)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26234.
X(13625) lies on these lines: {3,519}, {952,11717}, {3244,3667}, {6789,13607}
X(13625) = reflection of X(6789) in X(13607)
As a point of the Euler line, X(13626) has Shinagawa coefficients (-3RS + 2K, 9RS).
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26240.
X(13626) lies on this line: {2,3}
X(13626) = midpoint of X(i) and X(j) for these {i,j}: {3,10720}, {381,1113}
X(13626) = reflection of X(i) in X(j) for these (i,j): (1313,547), (13627,2)
As a point of the Euler line, X(13626) has Shinagawa coefficients (-3RS - 2K, 9RS).
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26240.
X(13627) lies on this line: {2,3}
X(13627) = midpoint of X(i) and X(j) for these {i,j}: {3,10719}, {381,1114}
X(13627) = reflection of X(i) in X(j) for these (i,j): (1312,547), (13626,2)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26240.
X(13628) lies on this line: {2,3}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26240.
As a point of the Euler line, X(13629) has Shinagawa coefficients (11E + 128F, 27E).
X(13629) lies on this line: {2,3}
See Telv Cohl and Peter Moses, Hyacinthos 26257.
Let P be a point on the circumcircle. Let Pa be the orthogonal projection of P on the A-altitude, and define Pb and Pc cyclically. The locus of the nine-point center of PaPbPc as P varies is an ellipse centered at X(13630); see also X(185), X(5884), X(8550), X(9730). (Randy Hutson, July 21, 2017)
Let Ha, Hb, Hc be the orthocenters of the A-, B-, and C-altimedial triangles. Then X(13630) is the nine-point center of HaHbHc. (Randy Hutson, July 21, 2017)
Let Na, Nb, Nc be the nine-point centers of the A-, B-, and C-altimedial triangles. Then X(13630) is the orthocenter of NaNbNc. (Randy Hutson, July 21, 2017)
Let (A) be the circle centered at A that cuts off a segment of line BC equal to |BC|. Define (B) and (C) cyclically. X(13630) is the radical center of circles (A), (B), (C). (Randy Hutson, July 21, 2017)
X(13630) lies on these lines: {2,5876}, {3,54}, {4,3521}, {5, 113}, {6,12084}, {20,568}, {26, 9786}, {30,143}, {49,1511}, {51, 3627}, {52,550}, {74,13434}, { 140,9729}, {156,1181}, {182, 7689}, {186,5944}, {376,6243}, { 381,6241}, {382,3567}, {511,548} ,{546,5462}, {547,11695}, {549, 5562}, {567,1986}, {569,1204}, { 575,2781}, {578,11250}, {632, 5891}, {973,11750}, {1199,2071}, {1216,3530}, {1656,12111}, { 1657,3060}, {1658,11438}, {1853, 7564}, {2779,5885}, {2807,5901}, {3448,6288}, {3526,11459}, { 3528,13340}, {3581,7512}, {3628, 5892}, {3819,12108}, {3830,9781} ,{3843,5640}, {3845,11381}, { 3850,5943}, {3853,10110}, {3861, 13474}, {3917,11592}, {5054, 11444}, {5072,11451}, {5073, 13321}, {5079,11465}, {5447, 12100}, {5498,6699}, {5878,7729} ,{5899,8718}, {6143,7722}, { 6240,6746}, {6688,12812}, {6759, 12106}, {7502,10984}, {7506, 11456}, {7514,12163}, {7526, 10605}, {7529,12174}, {8254, 10628}, {8548,12301}, {8703, 10625}, {9704,11449}, {9705, 12284}, {10116,11802}, {10226, 11430}, {11245,12370}, {11432, 12085}, {12022,12236}, {12233, 13371}, {12254,13368}
X(13630) = midpoint of X(i) and X(j) for these {i,j}: {3, 6102}, {4, 13491}, {5, 185}, {20, 10263}, {52, 550}, {1986, 12041}, {3627, 10575}, {5889, 6101}, {9729, 13382}, {10264, 11562}, {12254, 13368}, {14374,14375}
X(13630) = reflection of X(i) in X(j) for these {i,j}: {4, 10095}, {5, 12006}, {140, 9729}, {143, 389}, {546, 5462}, {1216, 3530}, {3853, 10110}, {5907, 3628}, {10627, 3}, {11591, 140}, {13363, 9730}, {13421, 52}, {13474, 3861}
X(13630) = complement X(5876)
X(13630) = crosssum of X(3) and X(5448)
X(13630) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,5012,10610), (3,5889,6101), ( 3,5890,6102), (4,5946,10095), ( 5,373,12046), (5,9730,12006), ( 5,12006,13363), (20,568,10263), (51,10575,3627), (185,9730,5), ( 546,5462,13364), (1181,6644, 156), (5640,12290,3843), (5890, 10574,3), (5892,5907,3628), ( 5946,13491,4), (6101,6102,5889) ,(9781,12279,3830)
See Telv Cohl and Peter Moses, Hyacinthos 26257.
X(13631) lies on these lines: {2,3}, {143,1263}
X(13631) = reflection of X(5) in X(13362)
Steiner coordinates: (x,x), where x = (-a^2 + b^2)*(b^2 - c^2)*(-a^2 + c^2)*(a*b + a*c + b*c) / (a^2 + a*b + b^2 + a*c + b*c + c^2)
X(13632) lies on these lines: {2,3}, {39,3017}, {542,572}, {573,5476}, {2223,3584}, {10168,13329}
X(13632) lies on these lines: {2, 3}, {39, 3017}, {355, 48809}, {542, 572}, {573, 5476}, {597, 37510}, {599, 37474}, {991, 50977}, {1482, 48830}, {2223, 3584}, {3579, 29633}, {3582, 37575}, {3654, 50287}, {3655, 50311}, {3656, 48822}, {5337, 49744}, {9301, 37678}, {10056, 37590}, {10168, 13329}, {13624, 29637}, {17264, 51045}, {17399, 51044}, {17754, 37584}, {18480, 19856}, {19130, 37508}, {20423, 48875}, {20430, 41312}, {24512, 45923}, {26446, 28850}, {34718, 50282}, {37499, 38072}, {37676, 51340}, {48802, 50798}
X(13632) = reflection of X(13634) in X(549)
X(13632) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3, 13633}, {3, 36530, 36716}, {140, 36654, 36527}, {2043, 2044, 36685}, {15765, 18585, 6998}, {35303, 35304, 22351}, {37340, 37341, 16060}
Steiner coordinates: (x,x), where x = (a^2 - b^2)*(b^2 - c^2)*(c^2 - a^2)*(a*b + a*c + b*c) / (a^2 + a*b + b^2 + a*c + b*c + c^2)
X(13633) lies on these lines: {2, 3}, {524, 37510}, {542, 13329}, {572, 10168}, {573, 50977}, {991, 5476}, {2223, 3582}, {3579, 29637}, {3584, 37575}, {3653, 48822}, {3654, 50311}, {3655, 50287}, {8299, 35000}, {9301, 37686}, {10072, 37590}, {10246, 48830}, {13624, 29633}, {16569, 18528}, {17320, 51045}, {17342, 51044}, {18527, 37589}, {20423, 48908}, {20430, 41313}, {26446, 48809}, {29010, 37756}, {34718, 50316}, {37474, 47352}, {38066, 48802}, {38072, 50677}
X(13633) = reflection of X(13634) in X(549)
X(13633) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3, 13633}, {3, 36530, 36716}, {140, 36654, 36527}, {2043, 2044, 36685}, {15765, 18585, 6998}, {35303, 35304, 22351}, {37340, 37341, 16060}
Steiner coordinates: (x,x), where x = (-a^2 + b^2)*(b^2 - c^2)*(-a^2 + c^2)*(a^2 + b^2 + c^2) / (a^2 + a*b + b^2 + a*c + b*c + c^2)
X(13634) lies on these lines: {2, 3}, {40, 48854}, {86, 3098}, {165, 44430}, {511, 46922}, {542, 17271}, {551, 48932}, {944, 48849}, {990, 51044}, {1447, 24929}, {1654, 48906}, {3576, 9746}, {3579, 16830}, {3654, 50286}, {3655, 50310}, {3818, 17307}, {4297, 48853}, {4664, 46475}, {5092, 17277}, {5224, 46264}, {5232, 39874}, {5306, 18755}, {5337, 50182}, {5434, 17798}, {6210, 50300}, {6211, 50094}, {7788, 17206}, {9300, 33863}, {9441, 50291}, {10056, 37576}, {11179, 17346}, {12017, 17349}, {12512, 39605}, {13624, 16823}, {17238, 18440}, {17251, 43273}, {17297, 50977}, {17327, 48905}, {17343, 39899}, {17379, 33878}, {17381, 31670}, {17398, 48881}, {22712, 47040}, {24257, 50086}, {24808, 26446}, {31162, 48900}, {34638, 48925}, {35242, 39586}, {37677, 44456}, {48851, 50811}, {48856, 50810}
X(13634) = reflection of X(13632) in X(549).
X(13634) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3, 13635}, {2, 13635, 21554}, {3, 6998, 21554}, {3, 36477, 6996}, {6998, 13635, 2}, {21869, 21898, 16060}
Steiner coordinates: (x,x), where x = (-a^2 + b^2)*(b^2 - c^2)*(-a^2 + c^2)*(a^2 + b^2 + c^2)/(a^2 - a*b + b^2 - a*c - b*c + c^2)
+X(13635) lies on these lines: {2, 3}, {86, 5092}, {182, 46922}, {515, 24808}, {519, 19589}, {537, 6211}, {542, 17297}, {1447, 5122}, {1766, 51044}, {3098, 17277}, {3576, 44430}, {3579, 16823}, {3654, 50310}, {3655, 50286}, {3818, 17283}, {4869, 39874}, {5298, 17798}, {5306, 33863}, {5657, 48849}, {6361, 16020}, {9300, 18755}, {9441, 28194}, {10072, 37576}, {10164, 48853}, {11179, 17378}, {12017, 17379}, {13624, 16830}, {17206, 37671}, {17232, 18440}, {17234, 46264}, {17265, 48905}, {17271, 50977}, {17300, 48906}, {17313, 43273}, {17337, 48881}, {17349, 33878}, {17352, 31670}, {17375, 39899}, {18524, 31073}, {19883, 48932}, {22712, 47039}, {26241, 35238}, {37654, 50967}, {38021, 48900}, {46475, 51488}
X(13635) = reflection of X(13633) in X(549)
X(13635) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3, 13634}, {2, 13634, 6998}, {3, 21554, 6998}, {13634, 21554, 2}, {21869, 21898, 16061}
Let U be the circle through X(13) and X(14) with center on the minor axis of the Steiner inellipse. The center of U is X(13636).
See Benedetto Scimemi and César Lozada, Hyacinthos 26259.
X(13636) lies on the Hutson-Parry circle, the cubics K219 and K237, and these lines: {2, 1340}, {115, 125}, {476, 1380}, {892, 6189}, {2039, 5996}, {2395, 5638}, {3413, 5466}, {6142, 6795}
X(13636) = tripolar centroid of X(3413)
X(13636) = reflection of X(13722) in X(8371)
X(13636) = Hutson-Parry-circle antipode of X(13722)
X(13636) = {X(115),X(1648)}-harmonic conjugate of X(13722)
X(13636) = {X(125),X(868)}-harmonic conjugate of X(13722)
X(13636) = barycentric product X(115)*X(6189)
X(13636) = exsimilicenter of circles {{X(13),X(14),X(16)}} and {{X(13),X(14),X(15)}}; the insimilicenter is X(13722)
Tri-squares triangles and related centers: X(13637)-X(13721)
This preamble and centers X(13637) - X(13721) were contributed by César Eliud Lozada, July 1, 2017.
Corrected on July 7, 2017. Thanks to Peter Moses.
Inscribe three squares into a triangle ABC such that each square has two vertices on two distinct sides of ABC and the other vertices of the three squares coincide at the vertices of another triangle A'B'C'.
Let the squares be σa=B'C'AcAb, σb=C'A'BaBc and σc=A'B'CbCa with Ba, Ca on BC, Cb, Ab on CA, Ac, Bc on AB and centers Ao, Bo, Co, respectively. This construction has four solutions. For each case, the triangle A'B'C' will be named here the tri-squares triangle of ABC and the triangle AoBoCo will be referred here as tri-squares-central triangle of ABC.
Barycentric coordinates of the first points on each square are shown in the following table:
1st tri-squares | 2nd tri-squares | 3rd tri-squares | 4th tri-squares |
---|---|---|---|
A' = S : SA+2*SC+S : SA+2*SB+S Ab = SB+2*SC+3*S : 0 : 2*SA+SB Ac = 2*SB+SC+3*S : 2*SA+SC : 0 Ao = 3*(SB+SC)+4*S : 2*SA+SC+S : 2*SA+SB+S The squares are internal to ABC and outwards A'B'C' |
A' = -S : SA+2*SC-S : SA+2*SB-S Ab = SB+2*SC-3*S : 0 : 2*SA+SB Ac = 2*SB+SC-3*S : 2*SA+SC Ao = 3*(SB+SC)-4*S : 2*SA+SC-S : 2*SA+SB-S The squares are external to ABC and inwards A'B'C' |
A' = 2*(SB+SC+S) : SA+S : SA+S Ab = SB+2*SC+3*S : 0 : 2*SA+SB+S Ac = 2*SB+SC+3*S : 2*SA+SC+S : 0 Ao = SB+SC+2*S : SA+SC+S : SA+SB+S The squares are internal to ABC and inwards A'B'C' |
A' = 2*(SB+SC-S) : SA-S : SA-S Ab = SB+2*SC-3*S : 0 : 2*SA+SB-S Ac = 2*SB+SC-3*S : 2*SA+SC-S : 0 : 0 Ao = SB+SC-2*S : SA+SC-S : SA+SB-S The squares are external to ABC and outwards A'B'C' |
The following results correspond to the 1st tri-squares triangles only:
A'B'C' is:
directly homothetic to these triangles: anti-Artzt, Artzt
directly similar to the circumsymmedial triangle
inversely similar to these triangles: 4th anti-Brocard, anti-McCay, 4th Brocard, McCay, 3rd Parry
The appearance of (T, n) in the following list means that A'B'C' and triangle T are perspective with perspector X(n):
(anti-Artzt*, 13637), (Artzt*, 13638).
An asterisk means that both triangles are homothetic.
The appearance of (T, m, n) in the following list means that A'B'C' and triangle T are orthologic with centers X(m) and X(n):
(ABC, 3068, 2), (ABC-X3 reflections, 3068, 376), (anti-Aquila, 3068, 551), (anti-Ara, 3068, 428), (anti-Artzt, 13639, 1992), (1st anti-Brocard, 13640, 7840), (4th anti-Brocard, 13641, 9870), (5th anti-Brocard, 3068, 12150), (6th anti-Brocard, 13640, 12151), (anti-Euler, 3068, 376), (anti-Mandart-incircle, 3068, 4421), (anti-McCay, 13642, 385), (anticomplementary, 3068, 2), (Aquila, 3068, 3679), (Ara, 3068, 9909), (Artzt, 13639, 9770), (1st Auriga, 3068, 11207), (2nd Auriga, 3068, 11208), (1st Brocard, 13640, 599), (4th Brocard, 13643, 2), (5th Brocard, 3068, 7811), (6th Brocard, 13640, 9939), (circummedial, 13644, 2), (Euler, 3068, 381), (5th Euler, 13644, 2), (outer-Garcia, 3068, 3679), (Gossard, 3068, 1651), (inner-Grebe, 3068, 5861), (outer-Grebe, 3068, 5860), (Johnson, 3068, 381), (inner-Johnson, 3068, 11235), (outer-Johnson, 3068, 11236), (1st Johnson-Yff, 3068, 11237), (2nd Johnson-Yff, 3068, 11238), (Lucas homothetic, 3068, 12152), (Lucas(-1) homothetic, 3068, 12153), (Mandart-incircle, 3068, 3058), (McCay, 13642, 7610), (medial, 3068, 2), (5th mixtilinear, 3068, 3241), (inner-Napoleon, 13645, 9761), (outer-Napoleon, 13646, 9763), (1st Neuberg, 13647, 8667), (2nd Neuberg, 13648, 9766), (3rd Parry, 13649, 2), (inner-Vecten, 13650, 591), (outer-Vecten, 13651, 1991), (X3-ABC reflections, 3068, 381), (inner-Yff, 3068, 10056), (outer-Yff, 3068, 10072), (inner-Yff tangents, 3068, 11239), (outer-Yff tangents, 3068, 11240)
The appearance of (T, m, n) in the following list means that A'B'C' and triangle T are parallelogic with centers X(m) and X(n):
(4th anti-Brocard, 13652, 13168), (anti-McCay, 13653, 8597), (4th Brocard, 13654, 4), (McCay, 13653, 381), (1st Parry, 3068, 9123), (2nd Parry, 3068, 9185), (3rd Parry, 13655, 9147)
The appearance of (I, J) in the following list means that X(I)-of-A'B'C' = X(J) :
(2,3068), (3,13663), (4,13639), (5,13664), (6,13644), (13,13646), (14,13645), (98,13642), (99,13653), (111,13643), (376,2), (485,13662), (671,13640), (1296,13654), (1327,13651), (1328,13650), (5860,9541), (6236,13652), (6325,13641), (9741,7374), (9831,13655), (11001,1270)
AoBoCo and A'B'C' are perspective with perspector X(13662).
The appearance of (T, m, n) in the following list means that AoBoCo and triangle T are orthologic with centers X(m) and X(n):
(ABC, 13665, 1327), (ABC-X3 reflections, 13665, 13666), (anti-Aquila, 13665, 13667), (anti-Ara, 13665, 13668), (anti-Artzt, 13663, 13669), (1st anti-Brocard, 13670, 13671), (5th anti-Brocard, 13665, 13672), (6th anti-Brocard, 13670, 13673), (anti-Euler, 13665, 13674), (anti-Mandart-incircle, 13665, 13675), (anti-McCay, 13676, 13677), (anticomplementary, 13665, 13678), (Aquila, 13665, 13679), (Ara, 13665, 13680), (Artzt, 13663, 13681), (1st Auriga, 13665, 13682), (2nd Auriga, 13665, 13683), (1st Brocard, 13670, 13684), (5th Brocard, 13665, 13685), (6th Brocard, 13670, 13686), (Euler, 13665, 13687), (outer-Garcia, 13665, 13688), (Gossard, 13665, 13689), (inner-Grebe, 13665, 13690), (outer-Grebe, 13665, 13691), (Johnson, 13665, 13692), (inner-Johnson, 13665, 13693), (outer-Johnson, 13665, 13694), (1st Johnson-Yff, 13665, 13695), (2nd Johnson-Yff, 13665, 13696), (Lucas homothetic, 13665, 13697), (Lucas(-1) homothetic, 13665, 13698), (Mandart-incircle, 13665, 13699), (McCay, 13676, 13700), (medial, 13665, 13701), (5th mixtilinear, 13665, 13702), (inner-Napoleon, 13703, 13704), (outer-Napoleon, 13705, 13706), (1st Neuberg, 13707, 13708), (2nd Neuberg, 13709, 13710), (tri-squares, 13663, 13662), (inner-Vecten, 13711, 13712), (outer-Vecten, 3068, 2), (X3-ABC reflections, 13665, 13713), (inner-Yff, 13665, 13714), (outer-Yff, 13665, 13715), (inner-Yff tangents, 13665, 13716), (outer-Yff tangents, 13665, 13717)
The appearance of (T, m, n) in the following list means that AoBoCo and triangle T are parallelogic with centers X(m) and X(n): (1st Parry, 13665, 13718), (2nd Parry, 13665, 13719)
The appearance of (I, J) in the following list means that X(I)-of-AoBoCo = X(J) :
(2,3068), (3,13720), (4,13662), (5,13721), (13,13705), (14,13703), (486,13663), (487,13639), (642,13664), (1328,13665), (5861,13651)
X(13637) lies on these lines: {2,6}, {99,13642}, {110,13643}, {485,489}, {490,9540}, {542,6811}, {637,8976}, {638,8981}, {6222,10783}, {7388,7812}, {7389,8960}, {11055,13647}, {11159,13644}, {11161,13653}, {12149,13641}, {12154,13645}, {12155,13646}, {12156,13648}, {12157,13649}, {12158,13650}, {13167,13652}, {13169,13654}, {13170,13655}
X(13637) = reflection of X(i) in X(j) for these (i,j): (2,590), (492,2)
X(13637) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,5032,3069), (2,13639,1992), (1991,8667,5861)
X(13638) lies on these lines: {2,6}, {32,7388}, {98,485}, {371,6813}, {381,13644}, {490,12968}, {638,6423}, {1194,8963}, {1586,10311}, {3103,5418}, {3767,7389}, {5254,11293}, {5286,11291}, {6054,13640}, {6459,7000}, {6561,9993}, {8854,8969}, {9605,11316}, {9759,13643}, {9760,13645}, {9762,13646}, {9764,13647}, {9765,13648}, {9767,13650}, {9768,13651}, {9769,13654}, {9869,13641}, {9877,13642}, {12434,13649}, {13191,13652}, {13225,13655}
X(13638) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,385,492), (2,5304,3069), (2,7585,7736), (2,8974,3068), (2,13639,9770), (230,590,2)
The reciprocal orthologic center of these triangles is X(1992)
X(13639) lies on these lines: {2,6}, {542,7374}, {543,13640}, {671,1131}, {6462,8591}, {11148,13669}
X(13639) = reflection of X(i) in X(j) for these (i,j): (2,3068), (1270,2), (13663,13664)
X(13639) = orthologic center of these triangles: 1st tri-squares to Artzt
X(13639) = X(4)-of-1st-tri-squares-triangle
X(13639) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,5032,7586), (193,8972,3593), (1992,13637,2), (9770,13638,2)
The reciprocal orthologic center of these triangles is X(7840)
X(13640) lies on these lines: {2,5477}, {115,7585}, {147,8974}, {491,5182}, {524,13642}, {530,13645}, {531,13646}, {542,3068}, {543,13639}, {620,1271}, {1991,5026}, {2782,13644}, {5969,13647}, {6054,13638}, {6306,9113}, {6307,9112}, {6561,10722}
X(13640) = reflection of X(13653) in X(3068)
X(13640) = orthologic center of the 1st tri-squares triangle to these triangles: 6th anti-Brocard, 1st Brocard, 6th Brocard
X(13640) = X(671)-of-1st-tri-squares-triangle
X(13640) = Artzt-to-1st-tri-squares similarity image of X(6054)
X(13640) = anti-Artzt-to-1st-tri-squares similarity image of X(8593)
X(13640) = McCay-to-1st-tri-squares similarity image of X(3)
The reciprocal orthologic center of these triangles is X(9870)
X(13641) lies on these lines: {2,13167}, {2780,13643}, {2854,13654}, {9869,13638}, {12149,13637}, {13652,13663}
X(13641) = X(6325)-of-1st-tri-squares-triangle
X(13641) = 4th-anti-Brocard-to-1st-tri-squares similarity image of X(9870)
X(13641) = Artzt-to-1st-tri-squares similarity image of X(9869)
X(13641) = anti-Artzt-to-1st-tri-squares similarity image of X(12149)
The reciprocal orthologic center of these triangles is X(385)
X(13642) lies on these lines: {2,98}, {99,13637}, {511,13649}, {512,13655}, {524,13640}, {543,3068}, {690,13643}, {5591,9167}, {9830,13653}, {9877,13638}, {11159,13665}
X(13642) = reflection of X(13653) in X(13663)
X(13642) = orthologic center of these triangles: 1st tri-squares to McCay
X(13642) = X(98)-of-1st-tri-squares-triangle
The reciprocal orthologic center of these triangles is X(2)
X(13643) lies on these lines: {2,9769}, {110,13637}, {542,3068}, {690,13642}, {2780,13641}, {2854,13652}, {9759,13638}, {13654,13663}
X(13643) = X(111)-of-1st-tri-squares-triangle
The reciprocal orthologic center of these triangles is X(2)
X(13644) lies on these lines: {4,8974}, {30,3068}, {32,11313}, {381,13638}, {491,11286}, {543,13645}, {590,7737}, {1161,1587}, {1991,3734}, {2548,11316}, {2782,13640}, {3053,11315}, {3849,13663}, {7583,12313}, {7745,11314}, {9605,11293}, {11159,13637}, {13647,13648}, {13650,13651}, {13662,13664}
X(13644) = orthologic center of these triangles: 1st tri-squares to 5th euler
X(13644) = X(6)-of-1st-tri-squares-triangle
The reciprocal orthologic center of these triangles is X(9761)
X(13645) lies on these lines: {2,9113}, {530,13640}, {531,3068}, {543,13644}, {9760,13638}, {12154,13637}
X(13645) = X(14)-of-1st-tri-squares-triangle
The reciprocal orthologic center of these triangles is X(9763)
X(13646) lies on these lines: {2,9112}, {530,3068}, {531,13640}, {543,13644}, {9762,13638}, {12155,13637}
X(13646) = X(13)-of-1st-tri-squares-triangle
The reciprocal orthologic center of these triangles is X(8667)
X(13647) lies on these lines: {39,5591}, {491,7757}, {538,3068}, {5969,13640}, {9764,13638}, {11055,13637}, {13644,13648}
The reciprocal orthologic center of these triangles is X(9766)
X(13648) lies on these lines: {83,491}, {754,3068}, {9765,13638}, {13644,13647}
The reciprocal orthologic center of these triangles is X(2)
X(13649) lies on these lines: {2,13170}, {511,13642}, {512,13653}, {12157,13637}, {12434,13638}, {13655,13663}
X(13649) = 3rd-Parry-to-1st-tri-squares similarity image of X(2)
X(13649) = circumsymmedial-to-1st-tri-squares similarity image of X(2698)
X(13649) = X(13241)-of-1st-tri-squares-triangle
The reciprocal orthologic center of these triangles is X(591)
X(13650) lies on these lines: {371,6281}, {486,590}, {487,7585}, {491,7926}, {642,3069}, {6560,9732}, {9767,13638}, {12158,13637}, {13644,13651}
X(13650) = X(1328)-of-1st-tri-squares-triangle
X(13650) = 4th-anti-Brocard-to-1st-tri-squares similarity image of X(11836)
The reciprocal orthologic center of these triangles is X(1991)
X(13651) lies on these lines: {5,6}, {488,8972}, {524,13662}, {5490,11008}, {6199,12602}, {6200,12124}, {6304,11489}, {6305,11488}, {9768,13638}, {11149,12159}, {13644,13650}
X(13651) = X(1327)-of-1st-tri-squares-triangle
X(13651) = 4th-anti-Brocard-to-1st-tri-squares similarity image of X(11835)
The reciprocal parallelogic center of these triangles is X(13168)
X(13652) lies on these lines: {2,9869}, {2780,13654}, {2854,13643}, {13191,13638}, {13641,13663}
X(13652) = X(6236)-of-1st-tri-squares-triangle
The reciprocal parallelogic center of these triangles is X(8597)
X(13653) lies on these lines: {2,99}, {98,485}, {492,10754}, {511,13655}, {512,13649}, {542,3068}, {590,11646}, {615,6034}, {690,13654}, {2794,7374}, {5477,7585}, {6036,12975}, {8974,11177}, {9830,13642}, {11161,13637}
X(13653) = reflection of X(i) in X(j) for these (i,j): (13640,3068), (13642,13663)
X(13653) = parallelogic center of these triangles: 1st tri-squares to McCay
X(13653) = X(99)-of-1st-tri-squares-triangle
The reciprocal parallelogic center of these triangles is X(4)
X(13654) lies on these lines: {2,98}, {67,590}, {74,6811}, {492,895}, {690,13653}, {2780,13652}, {2854,13641}, {5095,7585}, {5181,5590}, {9769,13638}, {13169,13637}, {13643,13663}
X(13654) = X(2696)-of-1st-tri-squares-triangle
The reciprocal parallelogic center of these triangles is X(9147)
X(13655) lies on these lines: {2,12157}, {511,13653}, {512,13642}, {13170,13637}, {13225,13638}, {13649,13663}
X(13655) = X(9831)-of-1st-tri-squares-triangle
X(13656) lies on these lines: {}
X(13657) lies on these lines: {2,5062}, {148,3068}, {597,20221}
X(13658) lies on these lines: {}
X(13659) lies on the line {6200,7464}
X(13660) lies on the line {3068,7615}
X(13661) lies on these lines: {}
X(13662) lies on these lines: {99,13637}, {485,542}, {524,13651}, {13644,13664}
X(13662) = reflection of X(1327) in X(13665)
X(13662) = perspector of these triangles: 1st tri-squares and 1st tri-squares central
X(13662) = reflection of X(13720) in X(13721)
X(13662) = X(4)-of-1st-tri-squares-central-triangle
X(13662) = X(485)-of-1st-tri-squares-triangle
X(13662) = orthologic center of these triangles: 1st tri-squares to 1st tri-squares central
X(13663) lies on these lines: {2,6}, {371,5461}, {3311,6118}, {3849,13644}, {7817,11313}, {8180,13088}, {8960,11315}, {9830,13642}, {11157,13669}, {13641,13652}, {13643,13654}, {13649,13655}
X(13663) = midpoint of X(i) and X(j) for these {i,j}: {2,3068}, {13641,13652}, {13642,13653}, {13643,13654}, {13649,13655}
X(13663) = reflection of X(13639) in X(13664)
X(13663) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,13637,599), (2,13638,7610), (599,13637,1991)
X(13663) = orthologic center of 1st tri-squares central triangle to these triangles: {1st tri-squares, Artzt, anti-Artzt}
X(13664) lies on these lines: {2,6}, {13644,13662}
X(13664) = midpoint of X(13639) and X(13663)
The reciprocal orthologic center of these triangles is X(1327)
X(13665) lies on these lines: {2,6398}, {3,485}, {4,1131}, {5,1587}, {6,13}, {20,6449}, {30,3068}, {140,6450}, {262,6569}, {371,382}, {372,1656}, {376,6451}, {403,5411}, {486,3851}, {490,11315}, {546,1588}, {548,6496}, {549,6452}, {550,6455}, {615,5055}, {631,6456}, {632,6522}, {638,11313}, {1124,9669}, {1151,1657}, {1152,3526}, {1335,9654}, {1703,9956}, {2043,11542}, {2044,11543}, {2066,9668}, {2067,9655}, {3071,3843}, {3091,6428}, {3103,13108}, {3146,6447}, {3299,10896}, {3301,10895}, {3316,3523}, {3364,5339}, {3389,5340}, {3529,6519}, {3534,6200}, {3545,7586}, {3590,10299}, {3592,5076}, {3594,5079}, {3627,6459}, {3628,6448}, {3832,7582}, {3854,6499}, {3856,6498}, {5054,6396}, {5070,5420}, {5072,6420}, {5094,13654}, {6811,10846}, {8725,8993}, {8988,12515}, {8992,9821}, {8998,12121}, {9894,11165}, {10665,12429}, {10880,12173}, {11159,13642}
X(13665) = midpoint of X(1327) and X(13662)
X(13665) = reflection of X(6221) in X(3068)
X(13665) = X(1991)-of-1st-tri-squares-triangle
X(13665) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,7583,3311), (5,1587,3312), (6,6564,381), (485,3070,3), (550,9540,6455), (3091,7581,7584), (3843,6417,3071), (3851,6418,486), (7581,7584,6428)
The reciprocal orthologic center of these triangles is X(13665)
X(13666) lies on these lines: {3,1327}, {30,6289}, {182,13672}, {1328,9739}, {1593,13668}, {3534,12123}, {3576,13667}, {11001,11825}
X(13666) = reflection of X(1327) in X(3)
X(13666) = X(1327)-of-ABC-X3-reflections-triangle
The reciprocal orthologic center of these triangles is X(13665)
X(13667) lies on these lines: {1,1327}, {30,12269}, {3576,13666}, {11363,13668}, {11364,13672}
X(13667) = midpoint of X(1) and X(1327)
X(13667) = X(1327)-of-anti-Aquila-triangle
The reciprocal orthologic center of these triangles is X(13665)
X(13668) lies on these lines: {25,1327}, {30,6291}, {1593,13666}, {3543,8948}, {7576,12147}, {11363,13667}, {11380,13672}
X(13668) = X(1327)-of-anti-Ara-triangle
The reciprocal orthologic center of these triangles is X(13663)
X(13669) lies on these lines: {2,1327}, {6,12158}, {99,13637}, {524,12159}, {597,2549}, {11148,13639}, {11157,13663}
X(13669) = X(485)-of-anti-Artzt-triangle
The reciprocal orthologic center of these triangles is X(13671)
X(13670) lies on these lines: {115,6561}, {542,3068}, {3564,6231}, {6055,7735}, {6230,8980}
X(13670) = orthologic center of these triangles: 1st tri-squares-central to 1st Brocard
The reciprocal orthologic center of these triangles is X(13670)
X(13671) lies on these lines: {2,1327}, {542,9868}
The reciprocal orthologic center of these triangles is X(13665)
X(13672) lies on these lines: {30,12211}, {32,1327}, {182,13666}, {11364,13667}, {11380,13668}
X(13672) = X(1327)-of-5th-anti-Brocard-triangle
The reciprocal orthologic center of these triangles is X(13670)
X(13673) lies on these lines: {182,13684}, {542,12218}, {4027,13671}, {10131,13686}
The reciprocal orthologic center of these triangles is X(13665)
X(13674) lies on these lines: {2,6290}, {3,13678}, {4,1327}, {24,13680}, {30,12257}, {376,13666}, {381,6776}, {515,13679}, {3068,9862}, {3085,13695}, {3086,13696}, {3524,8982}, {3545,10783}, {5603,13667}, {5657,13688}, {5861,12251}, {7487,13668}, {10784,13691}, {10785,13693}, {10786,13694}, {10788,13672}, {11491,13675}, {11843,13682}, {11844,13683}, {11845,13689}
X(13674) = reflection of X(i) in X(j) for these (i,j): (4,1327), (13678,3)
X(13674) = anticomplement of X(13692)
X(13674) = X(1327)-of-anti-Euler-triangle
The reciprocal orthologic center of these triangles is X(13665)
X(13675) lies on these lines: {30,12344}, {35,13679}, {55,1327}, {100,13678}, {197,13680}, {1376,13693}, {3295,13667}, {5687,13688}, {10310,13666}, {11383,13668}, {11490,13672}, {11491,13674}, {11492,13682}, {11493,13683}, {11496,13687}, {11497,13690}, {11498,13691}, {11499,13692}, {11500,13694}, {11501,13695}, {11502,13696}, {11848,13689}
X(13675) = X(1327)-of-anti-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(13677)
X(13676) lies on these lines: {115,1992}, {543,3068}, {671,13640}
X(13676) = midpoint of X(671) and X(13640)
X(13676) = orthologic center of these triangles: 1st tri-squares to McCay
X(13676) = X(6230)-of-1st-tri-squares-triangle
The reciprocal orthologic center of these triangles is X(13676)
X(13677) lies on these lines: {2,1327}, {543,9893}
The reciprocal orthologic center of these triangles is X(13665)
X(13678) lies on these lines: {2,1327}, {3,13674}, {4,13668}, {8,13688}, {10,13679}, {20,13666}, {22,13680}, {30,488}, {69,3534}, {100,13675}, {376,487}, {388,13695}, {497,13696}, {549,12323}, {638,10304}, {1270,13691}, {1271,13690}, {2896,13685}, {3091,13687}, {3434,13693}, {3436,13694}, {3616,13667}, {4240,13689}, {5601,13682}, {5602,13683}, {7787,13672}
X(13678) = reflection of X(i) in X(j) for these (i,j): (4,13692), (8,13688), (20,13666), (4240,13689), (13674,3), (13679,10)
X(13678) = anticomplement of X(1327)
X(13678) = X(1327)-of-anticomplementary-triangle
The reciprocal orthologic center of these triangles is X(13665)
X(13679) lies on these lines: {1,1327}, {10,13678}, {30,9907}, {35,13675}, {165,13666}, {515,13674}, {1699,13687}, {3099,13685}, {3679,13688}, {5587,13692}, {7713,13668}, {10789,13672}
X(13679) = reflection of X(i) in X(j) for these (i,j): (1,1327), (13678,10)
X(13679) = X(1327)-of-Aquila-triangle
The reciprocal orthologic center of these triangles is X(13665)
X(13680) lies on these lines: {3,13692}, {22,13678}, {24,13674}, {25,1327}, {30,9922}, {197,13675}, {1598,13687}
X(13680) = X(1327)-of-Ara-triangle
The reciprocal orthologic center of these triangles is X(13663)
X(13681) lies on these lines: {2,1327}, {30,9757}, {381,7618}, {524,9768}, {7610,13692}, {9767,11184}, {13638,13662}
X(13681) = X(485)-of-Artzt-triangle
The reciprocal orthologic center of these triangles is X(13665)
X(13682) lies on these lines: {30,12486}, {55,13683}, {1327,5597}, {5598,13702}, {5599,13701}, {5601,13678}, {8186,13679}, {8190,13680}, {8196,13687}, {8197,13688}, {8198,13690}, {8199,13691}, {8200,13692}, {8201,13697}, {8202,13698}, {11366,13667}, {11384,13668}, {11492,13675}, {11822,13666}, {11837,13672}, {11843,13674}, {11861,13685}, {11863,13689}, {11865,13693}, {11867,13694}, {11869,13695}, {11871,13696}, {11873,13699}, {11875,13713}, {11877,13714}, {11879,13715}, {11881,13716}, {11883,13717}
X(13682) = reflection of X(13683) in X(55)
X(13682) = X(1327)-of-1st-Auriga-triangle
X(13682) = X(13702)-of-2nd-Auriga-triangle
The reciprocal orthologic center of these triangles is X(13665)
X(13683) lies on these lines: {30,12487}, {55,13682}, {1327,5598}, {5597,13702}, {5600,13701}, {5602,13678}, {8187,13679}, {8191,13680}, {8203,13687}, {8204,13688}, {8205,13690}, {8206,13691}, {8207,13692}, {8208,13697}, {8209,13698}, {11367,13667}, {11385,13668}, {11493,13675}, {11823,13666}, {11838,13672}, {11844,13674}, {11862,13685}, {11864,13689}, {11866,13693}, {11868,13694}, {11870,13695}, {11872,13696}, {11874,13699}, {11876,13713}, {11878,13714}, {11880,13715}, {11882,13716}, {11884,13717}
X(13683) = reflection of X(13682) in X(55)
X(13683) = X(1327)-of-2nd-Auriga-triangle
X(13683) = X(13702)-of-1st-Auriga-triangle
The reciprocal orthologic center of these triangles is X(13670)
X(13684) lies on these lines: {2,1327}, {182,13673}, {384,13686}, {542,6228}, {7697,13692}, {10000,13685}
The reciprocal orthologic center of these triangles is X(13665)
X(13685) lies on these lines: {30,9987}, {32,1327}, {2896,13678}, {3068,9862}, {3098,13666}, {3099,13679}, {9857,13688}, {9993,13687}, {9994,13690}, {9995,13691}, {9996,13692}, {10000,13684}, {10873,13695}, {10874,13696}, {11368,13667}, {11386,13668}
X(13685) = X(1327)-of-5th-Brocard-triangle
The reciprocal orthologic center of these triangles is X(13670)
X(13686) lies on these lines: {384,13684}, {2896,13678}
The reciprocal orthologic center of these triangles is X(13665)
X(13687) lies on these lines: {2,13666}, {4,1327}, {5,13701}, {12,13699}, {30,6250}, {98,13672}, {235,13668}, {381,13692}, {515,13667}, {1478,13715}, {1479,13714}, {1598,13680}, {1699,13679}, {3091,13678}, {3545,13712}, {3845,6251}, {5587,13688}, {5603,13702}, {6201,13691}, {6202,13690}, {9993,13685}, {10895,13695}, {10896,13696}
X(13687) = midpoint of X(i) and X(j) for these {i,j}: {4,1327}, {13692,13713}
X(13687) = reflection of X(13701) in X(5)
X(13687) = complement of X(13666)
X(13687) = X(1327)-of-Euler-triangle
X(13687) = {X(381), X(13713)}-harmonic conjugate of X(13692)
The reciprocal orthologic center of these triangles is X(13665)
X(13688) lies on these lines: {1,13701}, {2,13667}, {8,13678}, {10,1327}, {30,12788}, {65,13695}, {515,13666}, {517,13692}, {519,13702}, {1737,13715}, {1837,13699}, {3057,13696}, {3654,12787}, {3679,13679}, {5090,13668}, {5587,13687}, {5657,13674}, {5688,13691}, {5689,13690}, {5790,13713}, {9857,13685}, {10039,13714}, {10791,13672}
X(13688) = midpoint of X(8) and X(13678)
X(13688) = reflection of X(i) in X(j) for these (i,j): (1,13701), (1327,10)
X(13688) = anticomplement of X(13667)
X(13688) = X(1327)-of-outer-Garcia-triangle
The reciprocal orthologic center of these triangles is X(13665)
X(13689) lies on these lines: {30,6289}, {402,1327}, {1650,13701}, {4240,13678}, {11831,13667}, {11832,13668}, {11839,13672}, {11845,13674}, {11848,13675}, {11852,13679}, {11853,13680}, {11863,13682}, {11864,13683}, {11885,13685}, {11897,13687}, {11900,13688}, {11901,13690}, {11902,13691}, {11903,13693}, {11904,13694}, {11905,13695}, {11906,13696}, {11907,13697}, {11908,13698}, {11909,13699}, {11910,13702}, {11911,13713}, {11913,13715}, {11914,13716}, {11915,13717}
X(13689) = midpoint of X(4240) and X(13678)
X(13689) = reflection of X(i) in X(j) for these (i,j): (1327,402), (1650,13701)
X(13689) = X(1327)-of-Gossard-triangle
The reciprocal orthologic center of these triangles is X(13665)
X(13690) lies on these lines: {3,6281}, {6,1327}, {30,6279}, {547,10514}, {1271,13678}, {3543,5871}, {3545,10783}, {5589,13679}, {5591,13701}, {5605,13702}, {5689,13688}, {5861,11001}, {6215,11539}, {9994,13685}, {10792,13672}, {11370,13667}, {11388,13668}
X(13690) = reflection of X(13691) in X(1327)
X(13690) = X(1327)-of-inner-Grebe-triangle
The reciprocal orthologic center of these triangles is X(13665)
X(13691) lies on these lines: {2,5870}, {6,1327}, {30,6278}, {1270,13678}, {3534,13712}, {3830,6280}, {5590,13701}, {5688,13688}, {6214,8703}, {9995,13685}, {10793,13672}, {11001,11825}, {11371,13667}, {11389,13668}
X(13691) = reflection of X(13690) in X(1327)
X(13691) = X(1327)-of-outer-Grebe-triangle
The reciprocal orthologic center of these triangles is X(13665)
X(13692) lies on these lines: {1,13695}, {2,6290}, {4,13668}, {5,1327}, {11,13715}, {12,13714}, {30,6289}, {381,13687}, {517,13688}, {549,1352}, {952,13702}, {1479,13699}, {5587,13679}, {5886,13667}, {6214,8703}, {6215,11539}, {6287,13708}, {7610,13681}, {9996,13685}, {10796,13672}
X(13692) = midpoint of X(i) and X(j) for these {i,j}: {4,13678}, {13693,13694}
X(13692) = reflection of X(i) in X(j) for these (i,j): (3,13701), (1327,5), (13713,13687)
X(13692) = complement of X(13674)
X(13692) = X(1327)-of-Johnson-triangle
X(13692) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (381,13713,13687), (13695,13696,1)
The reciprocal orthologic center of these triangles is X(13665)
X(13693) lies on these lines: {11,1327}, {12,13716}, {30,12929}, {355,13692}, {1376,13675}, {3434,13678}, {10523,13714}, {10785,13674}, {10794,13672}, {10826,13679}, {10829,13680}, {10871,13685}, {10893,13687}, {10914,13688}, {10919,13690}, {10920,13691}, {10944,13695}, {10945,13697}, {10946,13698}, {10947,13699}, {10948,13715}, {10949,13717}, {11373,13667}, {11390,13668}, {11826,13666}, {11865,13682}, {11866,13683}, {11903,13689}, {11928,13713}
X(13693) = reflection of X(i) in X(j) for these (i,j): (13675,13701), (13694,13692)
X(13693) = X(1327)-of-inner-Johnson-triangle
The reciprocal orthologic center of these triangles is X(13665)
X(13694) lies on these lines: {11,13717}, {12,1327}, {30,12939}, {72,13688}, {355,13692}, {958,13701}, {3436,13678}, {10523,13715}, {10786,13674}, {10795,13672}, {10827,13679}, {10830,13680}, {10872,13685}, {10894,13687}, {10921,13690}, {10922,13691}, {10950,13696}, {10951,13697}, {10952,13698}, {10953,13699}, {10954,13714}, {10955,13716}, {11374,13667}, {11391,13668}, {11500,13675}, {11827,13666}, {11867,13682}, {11868,13683}, {11904,13689}, {11929,13713}
X(13694) = reflection of X(13693) in X(13692)
X(13694) = X(1327)-of-outer-Johnson-triangle
The reciprocal orthologic center of these triangles is X(13665)
X(13695) lies on these lines: {1,13692}, {12,1327}, {56,13701}, {65,13688}, {388,13678}, {3085,13674}, {5434,13712}, {10873,13685}, {11375,13667}, {11392,13668}
X(13695) = reflection of X(13714) in X(495)
X(13695) = X(1327)-of-1st-Johnson-Yff-triangle
The reciprocal orthologic center of these triangles is X(13665)
X(13696) lies on these lines: {1,13692}, {5,13714}, {11,1327}, {30,12959}, {55,13701}, {496,13715}, {497,13678}, {3057,13688}, {3058,13712}, {3086,13674}, {6284,13666}, {9581,13679}, {9669,13713}, {10072,12958}, {10798,13672}, {10874,13685}, {10896,13687}, {11376,13667}, {11393,13668}
X(13696) = reflection of X(13715) in X(496)
X(13696) = X(1327)-of-2nd-Johnson-Yff-triangle
The reciprocal orthologic center of these triangles is X(13665)
X(13697) lies on these lines: {30,13004}, {493,1327}, {6461,13698}, {6462,13678}, {8188,13679}, {8194,13680}, {8201,13682}, {8208,13683}, {8210,13702}, {8212,13687}, {8214,13688}, {8216,13690}, {8218,13691}, {8220,13692}, {8222,13701}, {10875,13685}, {10945,13693}, {10951,13694}, {11377,13667}, {11394,13668}, {11503,13675}, {11828,13666}, {11840,13672}, {11846,13674}, {11907,13689}, {11930,13695}, {11932,13696}, {11947,13699}, {11949,13713}, {11951,13714}, {11953,13715}, {11955,13716}, {11957,13717}
X(13697) = X(1327)-of-Lucas-homothetic-triangle
The reciprocal orthologic center of these triangles is X(13665)
X(13698) lies on these lines: {30,13005}, {494,1327}, {6461,13697}, {6463,13678}, {8189,13679}, {8195,13680}, {8202,13682}, {8209,13683}, {8211,13702}, {8213,13687}, {8215,13688}, {8217,13690}, {8219,13691}, {8221,13692}, {8223,13701}, {10876,13685}, {10946,13693}, {10952,13694}, {11378,13667}, {11395,13668}, {11504,13675}, {11829,13666}, {11841,13672}, {11847,13674}, {11908,13689}, {11931,13695}, {11933,13696}, {11948,13699}, {11950,13713}, {11952,13714}, {11954,13715}, {11956,13716}, {11958,13717}
X(13698) = X(1327)-of-Lucas(-1)-homothetic-triangle
The reciprocal orthologic center of these triangles is X(13665)
X(13699) lies on these lines: {11,13701}, {30,6283}, {33,13668}, {55,1327}, {497,13678}, {1837,13688}, {2646,13667}, {4294,13674}, {10799,13672}, {10877,13685}
X(13699) = X(1327)-of-Mandart-incircle-triangle
The reciprocal orthologic center of these triangles is X(13676)
X(13700) lies on these lines: {2,1327}, {543,13088}, {5569,13087}
The reciprocal orthologic center of these triangles is X(13665)
X(13701) lies on these lines: {1,13688}, {2,1327}, {4,13666}, {5,13687}, {8,13702}, {11,13699}, {30,641}, {55,13696}, {56,13695}, {83,13672}, {141,12100}, {376,639}, {427,13668}, {498,13714}, {499,13715}, {549,642}, {631,13674}, {640,5054}, {1125,13667}, {1656,13713}, {1698,13679}, {3096,13685}, {5590,13691}, {5591,13690}
X(13701) = midpoint of X(i) and X(j) for these {i,j}: {1,13688}, {2,13712}, {3,13692}, {4,13666}, {8,13702}, {1327,13678}, {1650,13689}, {13675,13693}, {13704,13706}, {13708,13710}
X(13701) = reflection of X(i) in X(j) for these (i,j): (13667,1125), (13687,5)
X(13701) = complement of X(1327)
X(13701) = X(1327)-of-medial-triangle
X(13701) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,13678,1327), (1327,13712,13678), (13700,13710,13708)
The reciprocal orthologic center of these triangles is X(13665)
X(13702) lies on these lines: {1,1327}, {8,13701}, {30,7981}, {145,13678}, {517,13666}, {519,13688}, {952,13692}, {5603,13687}, {5604,13691}, {5605,13690}, {7967,13674}, {9997,13685}, {10247,13713}, {10800,13672}, {11396,13668}
X(13702) = midpoint of X(145) and X(13678)
X(13702) = reflection of X(i) in X(j) for these (i,j): (8,13701), (1327,1)
The reciprocal orthologic center of these triangles is X(13704)
X(13703) lies on these lines: {115,13705}, {395,6303}, {531,3068}
The reciprocal orthologic center of these triangles is X(13704)
X(13704) lies on these lines: {2,1327}, {531,6305}, {6301,13084}, {6302,9885}
X(13704) = reflection of X(13706) in X(13701)
X(13704) = anticomplement of X(33487)
The reciprocal orthologic center of these triangles is X(13706)
X(13705) lies on these lines: {115,13703}, {396,6302}, {530,3068}
The reciprocal orthologic center of these triangles is X(13705)
X(13706) lies on these lines: {2,1327}, {6300,13083}, {6303,9886}
X(13706) = reflection of X(13704) in X(13701)
X(13706) = anticomplement of X(33486)
The reciprocal orthologic center of these triangles is X(13708)
X(13707) lies on these lines: {69,5475}, {538,3068}, {3734,9675}, {3934,5590}, {6314,8992}
The reciprocal orthologic center of these triangles is X(13707)
X(13708) lies on these lines: {2,1327}, {30,13088}, {538,6312}, {6222,12305}, {6287,13692}
X(13708) = reflection of X(13710) in X(13701)
The reciprocal orthologic center of these triangles is X(13710)
X(13709) lies on these lines: {754,3068}, {3618,5355}, {6275,6704}, {6313,8993}
The reciprocal orthologic center of these triangles is X(13709)
X(13710) lies on these lines: {2,1327}, {754,6311}
X(13710) = reflection of X(13708) in X(13701)
The reciprocal orthologic center of these triangles is X(13712)
X(13711) lies on these lines: {5,6}, {115,6561}, {230,6560}, {487,8972}, {642,7375}, {3068,13650}, {3619,5491}, {5254,5418}, {5420,7746}, {6200,12123}, {6300,11488}, {6301,11489}, {6564,7735}
X(13711) = reflection of X(13650) in X(3068)
The reciprocal orthologic center of these triangles is X(13711)
X(13712) lies on these lines: {2,1327}, {3,6281}, {30,6289}, {490,5418}, {519,13688}, {599,8703}, {1991,8182}, {3058,13696}, {3102,7757}, {3534,13691}, {3545,13687}, {3582,13715}, {3584,13714}, {5055,13713}, {5064,13668}, {5434,13695}, {5860,9741}, {5861,6200}, {6279,12974}, {7865,13685}, {11238,13699}
X(13712) = midpoint of X(i) and X(j) for these {i,j}: {2,13678}, {13671,13677}
X(13712) = reflection of X(i) in X(j) for these (i,j): (2,13701), (1327,2), (6560,13669)
X(13712) = complement of X(33456)
The reciprocal orthologic center of these triangles is X(13665)
X(13713) lies on these lines: {3,1327}, {5,13678}, {30,12257}, {381,13687}, {517,13679}, {999,13715}, {1351,3543}, {1598,13668}, {1656,13701}, {3830,6280}, {3845,12314}, {5055,13712}, {5790,13688}, {9301,13685}, {9669,13696}, {10246,13667}, {10247,13702}, {11842,13672}
X(13713) = reflection of X(i) in X(j) for these (i,j): (3,1327), (13678,5), (13692,13687)
X(13713) = X(1327)-of-X3-ABC-reflections-triangle
The reciprocal orthologic center of these triangles is X(13665)
X(13714) lies on these lines: {1,1327}, {5,13696}, {12,13692}, {30,10068}, {35,13666}, {388,13674}, {498,13701}, {1479,13687}, {3085,13678}, {3584,13712}, {10039,13688}, {10067,11237}, {10801,13672}, {11398,13668}
X(13714) = midpoint of X(1327) and X(13716)
X(13714) = reflection of X(13695) in X(495)
X(13714) = X(1327)-of-inner-Yff-triangle
X(13714) = {X(1),X(1327)}-harmonic conjugate of X(13715)
The reciprocal orthologic center of these triangles is X(13665)
X(13715) lies on these lines: {1,1327}, {11,13692}, {30,10084}, {36,13666}, {496,13696}, {497,13674}, {499,13701}, {999,13713}, {1478,13687}, {1737,13688}, {3086,13678}, {3582,13712}, {10047,13685}, {10802,13672}, {11399,13668}
X(13715) = midpoint of X(1327) and X(13717)
X(13715) = reflection of X(13696) in X(496)
X(13715) = X(1327)-of-outer-Yff-triangle
X(13715) = {X(1),X(1327)}-harmonic conjugate of X(13714)
The reciprocal orthologic center of these triangles is X(13665)
X(13716) lies on these lines: {1,1327}, {12,13693}, {30,13134}, {5552,13701}, {10528,13678}, {10531,13687}, {10803,13672}, {10805,13674}, {10834,13680}, {10915,13688}, {10929,13690}, {10930,13691}, {10942,13692}, {10956,13695}, {10958,13696}, {11248,13666}, {11400,13668}, {11509,13675}, {11881,13682}, {11882,13683}, {11914,13689}, {11955,13697}, {11956,13698}, {12000,13713}
X(13716) = reflection of X(1327) in X(13714)
X(13716) = {X(1327), X(13702)}-Harmonic conjugate of X(13717)
X(13716) = X(1327)-of-inner-Yff-tangents-triangle
The reciprocal orthologic center of these triangles is X(13665)
X(13717) lies on these lines: {1,1327}, {11,13694}, {30,13135}, {10527,13701}, {10529,13678}, {10532,13687}, {10804,13672}, {10806,13674}, {10835,13680}, {10879,13685}, {10916,13688}, {10931,13690}, {10932,13691}, {10943,13692}, {10949,13693}, {10957,13695}, {10959,13696}, {10966,13699}, {11249,13666}, {11401,13668}, {11510,13675}, {11883,13682}, {11884,13683}, {11915,13689}, {11957,13697}, {11958,13698}, {12001,13713}
X(13717) = reflection of X(1327) in X(13715)
X(13717) = X(1327)-of-outer-Yff-tangents-triangle
X(13717) = {X(1327), X(13702)}-harmonic conjugate of X(13716)
The reciprocal parallelogic center of these triangles is X(13665)
X(13718) lies on these lines: {351,13719}, {523,13317}
X(13718) = reflection of X(13719) in X(351)
X(13718) = X(1327)-of-1st-Parry-triangle
X(13718) = X(13666)-of-2nd-Parry-triangle
The reciprocal parallelogic center of these triangles is X(13665)
X(13719) lies on these lines: {351,13718}, {523,13320}
X(13719) = reflection of X(13718) in X(351)
X(13719) = X(1327)-of-2nd-Parry-triangle
X(13719) = X(13666)-of-1st-Parry-triangle
X(13720) lies on these lines: {1327,6476}, {3068,13721}
X(13720) = midpoint of X(1327) and X(9541)
X(13720) = reflection of X(13662) in X(13721)
X(13720) = X(641)-of-1st-tri-squares-triangle
X(13721) lies on the line {3068,13720}
X(13721) = midpoint of X(13662) and X(13720)
X(13721) = X(6118)-of-1st-tri-squares-triangle
Contributed by Randy Hutson and Peter Moses, independently, July 2, 2017. See also X(13636), the tripolar centroid of X(3413).
Let V be the circle through X(13) and X(14) with center on the major axis of the Steiner inellipse. The center of V is X(13722). (Randy Hutson and Peter Moses, independently, July 2, 2017)
X(13722) lies on the Hutson-Parry circle, the circle {{X(2), X(13), X(14)}}, the cubics K219 and K237, and these lines: {2,1341}, {115,125}, {476,1379}, {892,6190}, {2040,5996}, {2395,5639}, {3414,5466}, {6141,6795}
X(13722) = reflection of X(13636) in X(8371)
X(13722) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 13636}, {2029, 8287}
X(13722) = crosspoint of X(i) and X(j) for these (i,j): {523, 3413}, {3414, 6190}
X(13722) = crossdifference of every pair of points on line {110, 1380}
X(13722) = crosssum of X(i) and X(j) for these (i,j): {110, 1379}, {1380, 5638}
X(13722) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 13636}, {3413, 523}, {6190, 3414}
X(13722) = crosspoint of X(i) and X(j) for these (i,j): {523, 3413}, {3414, 6190}
X(13722) = crossdifference of every pair of points on line {110, 1380}
X(13722) = crosssum of X(i) and X(j) for these (i,j): {110, 1379}, {1380, 5638}
X(13722) = X(8029)-cross conjugate of X(13636)
X(13722) = isoconjugate of X(j) and X(j) for these (i,j): {163, 6189}, {662, 1380}, {1101, 3413}
X(13722) = X(690)-Hirst inverse of X(13636)
X(13722) = X(2395)-line conjugate of X(5639)
X(13722) = tripolar centroid of X(3414)
X(13722) = Hutson-Parry-circle antipode of X(13636)
X(13722) = insimilicenter of circles {{X(13),X(14),X(16)}} and {{X(13),X(14),X(15)}}; the exsimilicenter is X(13636)
X(13722) = barycentric product X(i)*X(j) for these {i,j}: {115, 6190}, {338, 1379}, {523, 3414}, {850, 5639}
X(13722) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 3413}, {512, 1380}, {523, 6189}, {1379, 249}, {2029, 1379}, {3124, 5638}, {3414, 99}, {5639, 110}, {6190, 4590}, {8029, 13636}
X(13722) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (115,1648,13636), (125,868,13636), (1637,1640,13636), (9148,11182,13636), (9200,9201,13636)
X(13723) lies on these lines:
{1, 32}, {2, 3}, {10, 4112}, {39, 1724}, {41, 72}, {56, 5244}, {58, 980}, {63, 5320}, {238, 2277}, {284, 10477}, {518, 584}, {958, 1146}, {984, 1582}, {986, 1580}, {988, 1453}, {993, 4124}, {1001, 2178}, {1178, 5145}, {1214, 1395}, {1386, 4275}, {1468, 1472}, {1631, 4026}, {2223, 5248}, {5266, 5311}
X(13724) lies on these lines:
{1, 51}, {2, 3}, {37, 1953}, {73, 1104}, {184, 1724}, {205, 2112}, {228, 950}, {1145, 3695}, {1214, 1828}, {1284, 3924}, {1837, 3185}, {2218, 6187}, {3330, 4268}
X(13725) lies on these lines:
{1, 69}, {2, 3}, {8, 3896}, {10, 345}, {86, 4340}, {333, 387}, {348, 1448}, {388, 1402}, {958, 4026}, {960, 4259}, {966, 2092}, {1043, 5224}, {1056, 5484}, {1104, 4657}, {1125, 4138}, {1330, 5712}, {1724, 3618}, {1834, 5737}, {2339, 7713}, {2345, 7283}, {3616, 4388}, {3923, 12579}, {4252, 6703}, {4255, 5743}, {4292, 10436}, {4294, 5263}, {5955, 9780}
X(13726) lies on these lines:
{1, 71}, {2, 3}, {35, 1714}, {55, 387}, {284, 1724}, {345, 10449}, {386, 1453}, {943, 7085}, {1104, 4261}, {2267, 3074}, {2646, 11435}, {2947, 7987}, {3191, 3730}, {3286, 4340}, {4294, 8053}, {5248, 5285}, {5745, 10479}, {6254, 12262}
X(13727) lies on these lines:
{1, 85}, {2, 3}, {10, 9441}, {69, 3332}, {72, 10025}, {75, 990}, {76, 1043}, {86, 991}, {200, 4385}, {333, 1754}, {516, 4357}, {894, 971}, {1088, 1448}, {1220, 5691}, {1350, 10446}, {1441, 3100}, {1944, 5784}, {2271, 5286}, {3662, 5805}, {3693, 7283}, {4259, 5327}, {4292, 4911}, {4672, 9355}, {4847, 5015}, {5732, 10436}, {5762, 6646}, {13161, 13405}
X(13728) lies on these lines:
{1, 141}, {2, 3}, {10, 3666}, {72, 4260}, {386, 1211}, {1125, 2887}, {1213, 4261}, {1714, 5737}, {1724, 3589}, {1764, 5799}, {1834, 10479}, {2221, 5711}, {3216, 5743}, {3454, 5718}, {4292, 5750}, {4424, 5835}, {5224, 9534}, {5256, 5814}
X(13729) lies on these lines:
{1, 153}, {2, 3}, {12, 12764}, {145, 10531}, {149, 355}, {497, 10944}, {946, 4861}, {1478, 4308}, {1479, 9785}, {2551, 8256}, {2829, 5253}, {2975, 7681}, {3583, 10039}, {3585, 3817}, {3616, 6256}, {3622, 12115}, {3623, 10596}, {3648, 5535}, {5057, 7686}, {5225, 10953}, {5274, 10629}, {5722, 12528}, {5804, 5905}, {5811, 12649}, {5818, 10525}, {5884, 9809}, {5901, 10742}, {7173, 13273}, {7701, 10265}, {10893, 11680}, {11496, 11681}, {12433, 13257}
X(13730) lies on these lines:
{1, 159}, {2, 3}, {35, 197}, {55, 8190}, {56, 1448}, {154, 1437}, {345, 5687}, {387, 5324}, {942, 1473}, {956, 12410}, {958, 8193}, {991, 2360}, {1040, 7713}, {1060, 11363}, {1062, 1829}, {1074, 1842}, {1602, 4293}, {1610, 4305}, {1612, 1617}, {1626, 7742}, {1633, 4295}, {2204, 10316}, {3295, 7291}, {3428, 9911}, {5172, 9658}, {8069, 10037}, {8071, 10046}
X(13731) lies on these lines:
{1, 181}, {2, 3}, {56, 5718}, {198, 5742}, {228, 6734}, {501, 572}, {517, 6051}, {519, 9568}, {551, 9569}, {573, 10441}, {942, 1400}, {958, 5743}, {978, 3576}, {986, 1284}, {1001, 5799}, {1125, 2051}, {1193, 1385}, {1402, 5530}, {1698, 10434}, {1724, 13323}, {1834, 5132}, {2277, 5336}, {2975, 5741}, {3074, 3955}, {3216, 10470}, {3624, 10882}, {3831, 6684}, {5230, 10267}, {5400, 7987}, {5754, 10246}
X(13732) lies on these lines:
{1, 182}, {2, 3}, {40, 8616}, {511, 1724}, {517, 582}, {572, 5283}, {580, 10441}, {1935, 3784}, {2933, 3035}, {9041, 12513}
X(13733) lies on these lines:
{1, 184}, {2, 3}, {31, 65}, {37, 48}, {51, 1724}, {56, 6354}, {283, 10441}, {386, 759}, {498, 1324}, {672, 4426}, {958, 7085}, {1626, 7354}, {2285, 5019}, {2933, 5432}, {3465, 3612}
X(13734) lies on these lines: {1, 185}, {2, 3}, {65, 774}, {73, 820}, {228, 515}, {374, 1212}, {1724, 11424}, {1745, 3612}, {2278, 3330}
X(13734) = {X(3),X(4)}-harmonic conjugate of X(851)
X(13735) lies on these lines:
{1, 190}, {2, 3}, {519, 595}, {536, 1104}, {1043, 1724}, {1220, 5248}, {3749, 4737}, {4302, 4429}, {5251, 5263}
X(13736) lies on these lines: {1, 193}, {2, 3}, {8, 968}, {45, 1265}, {391, 941}, {966, 1043}, {4313, 5296}, {4357, 5436}, {6646, 11036}
X(13736) = anticomplement of X(37153)
X(13737) lies on these lines:
{1, 198}, {2, 3}, {6, 2360}, {34, 7011}, {56, 223}, {154, 580}, {208, 1465}, {228, 3295}, {515, 1622}, {610, 10396}, {963, 10864}, {1104, 2178}, {1214, 7713}, {1437, 5320}, {1439, 4350}, {1617, 5930}, {1724, 5120}, {1728, 2182}, {1730, 5706}, {2183, 7078}, {3182, 3220}, {5909, 11249}, {7742, 8185}, {9708, 10367}
X(13738) lies on these lines: {1, 228}, {2, 3}, {6, 41}, {36, 978}, {51, 581}, {55, 2654}, {58, 5320}, {65, 3185}, {78, 10477}, {184, 580}, {197, 5230}, {223, 1410}, {283, 9306}, {610, 1713}, {940, 4267}, {959, 2982}, {992, 3330}, {1104, 2352}, {1214, 1829}, {1398, 7011}, {1425, 10571}, {1426, 1465}, {1437, 5398}, {1617, 8192}, {1790, 13323}, {1867, 6708}, {2053, 8615}, {2176, 2198}, {2635, 5204}, {2933, 5172}, {2975, 5278}, {3556, 7355}, {3724, 3924}, {7742, 9798}, {8583, 10862}
X(13738) = complement of X(37191)
X(13739) lies on these lines:
{1, 270}, {2, 3}, {7, 229}, {19, 2326}, {34, 162}, {63, 1098}, {107, 158}, {110, 3868}, {163, 1729}, {224, 662}, {1001, 2905}, {1304, 12030}, {1474, 2327}, {2203, 5208}, {3869, 6061}, {9275, 10122}
X(13740) lies on these lines: {1, 312}, {2, 3}, {6, 10449}, {10, 82}, {76, 86}, {141, 1330}, {171, 3831}, {239, 5295}, {264, 8747}, {315, 5224}, {321, 5262}, {333, 1724}, {386, 1043}, {387, 3618}, {894, 942}, {938, 5749}, {986, 3923}, {996, 1222}, {1046, 4672}, {1125, 13161}, {1191, 5793}, {1213, 7745}, {1386, 3714}, {1453, 11679}, {1654, 7762}, {1698, 3550}, {1834, 3589}, {2322, 8743}, {2901, 4360}, {3293, 3996}, {3661, 5814}, {3666, 7283}, {3673, 10436}, {3685, 3931}, {3701, 3920}, {3741, 5247}, {3912, 5717}, {4357, 4911}, {4383, 9534}, {4658, 7760}, {4676, 12514}, {4968, 7191}, {5266, 7081}, {5294, 6734}
X(13740) = complement of X(4201)
X(13740) = orthocentroidal-circle-inverse of X(16062)
X(13740) = {X(2),X(4)}-harmonic conjugate of X(16062)
X(13741) lies on these lines:
{1, 341}, {2, 3}, {10, 4514}, {46, 4676}, {106, 1125}, {190, 3670}, {238, 3831}, {614, 4385}, {894, 5439}, {986, 4011}, {1043, 3216}, {1479, 4429}, {1698, 5263}, {3701, 7191}, {3752, 7283}, {3840, 5247}, {4358, 5262}, {4383, 10449}, {4968, 7292}, {5205, 5266}
X(13742) lies on these lines:
{1, 344}, {2, 3}, {10, 3749}, {69, 1724}, {1398, 8816}, {1453, 3912}, {4000, 7283}, {4294, 4429}, {4295, 4676}
X(13743) lies on these lines:
{1, 399}, {2, 3}, {12, 10058}, {36, 9955}, {55, 5441}, {56, 79}, {65, 1727}, {104, 5606}, {191, 517}, {265, 759}, {355, 8715}, {500, 4653}, {758, 1482}, {946, 12600}, {956, 8148}, {958, 3647}, {993, 12699}, {999, 3649}, {1158, 8261}, {1385, 5426}, {1437, 10540}, {1484, 13100}, {1749, 5903}, {1768, 5885}, {2077, 9956}, {2320, 10308}, {2795, 13188}, {2975, 3648}, {3295, 10043}, {3579, 3698}, {3585, 5172}, {3656, 8666}, {3754, 12515}, {3818, 4265}, {5259, 13624}, {5288, 11278}, {5436, 7171}, {5443, 12611}, {5450, 5886}, {5789, 6598}, {5790, 11248}, {6265, 12524}, {7173, 10090}, {7330, 11523}, {8069, 9654}, {8070, 12764}, {8071, 9669}, {8256, 9708}, {10246, 12114}, {10679, 12645}
X(13744) lies on these lines:
{1, 513}, {2, 3}, {1388, 1464}, {2098, 10544}, {4427, 12746}
X(13745) lies on these lines:
{1, 524}, {2, 3}, {10, 3712}, {392, 511}, {519, 3743}, {540, 551}, {597, 1724}, {952, 9978}, {1125, 4892}, {1211, 4653}, {2796, 12579}, {3241, 3578}, {3679, 3704}, {4026, 5251}, {4256, 5241}, {4277, 5283}, {4304, 5257}
X(13746) lies on these lines:
{1, 564}, {2, 3}, {60, 1837}, {110, 355}, {229, 1478}, {759, 7741}, {1789, 10483}, {1793, 7951}, {3580, 13408}
X(13747) lies on these lines: {1, 1145}, {2, 3}, {10, 1319}, {35, 3816}, {36, 1329}, {51, 5482}, {55, 10200}, {72, 3911}, {100, 496}, {191, 5442}, {214, 10950}, {355, 6713}, {392, 6684}, {495, 5253}, {499, 1376}, {946, 13528}, {956, 7288}, {999, 5552}, {1125, 3057}, {1210, 5440}, {1213, 4268}, {1698, 4999}, {1770, 5087}, {1788, 5730}, {1837, 10609}, {2077, 7681}, {2975, 3820}, {3086, 5687}, {3306, 11374}, {3419, 5438}, {3421, 5265}, {3452, 3916}, {3555, 6745}, {3582, 3813}, {3583, 3847}, {3624, 5119}, {3814, 7354}, {3815, 5277}, {3825, 6284}, {3913, 10072}, {3925, 7294}, {4317, 11236}, {4413, 11510}, {4855, 5722}, {5258, 9711}, {5298, 8666}, {5439, 6692}, {5554, 10246}, {5563, 12607}, {5927, 6705}, {6174, 8715}, {6667, 7741}, {6767, 10586}, {7373, 10528}, {8582, 10165}, {9581, 12690}, {9669, 10584}, {9709, 10527}, {10090, 10523}, {10198, 10966}, {12528, 13226}
X(13747) = {X(5),X(404)}-harmonic conjugate of X(11112)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26287.
Let BBaCaC be the external square on side BC, and define CCbAbA and AAcBcB cyclically, as at X(1327). Let Oa be the circumcenter of AAbAc, and define Ob and Oc cyclically. Triangle OaObOc is homothetic to ABC at X(6), and X(13748) is the orthocenter of OaObOc. (Randy Hutson, July 21, 2017)
X(13748) lies on these lines: {3,639}, {4,6}, {20,492}, {30,591}, {154,1585}, {185,6291}, {325, 489}, {372,2794}, {382,12601}, {4 85,7694}, {486,6399}, {590,8414} ,{637,1350}, {1132,3424}, {1151, 6811}, {1513,12963}, {1586,1853} ,{3535,10192}, {5085,7389}, { 5200,13567}, {5921,12323}, {6033 ,6230}, {6459,7374}, {6467,12298 }, {6561,8721}, {6813,9756}, { 7388,10516}, {11381,12299}
X(13748) = midpoint of X(4) and X(5870)
X(13748) = crosssum of X(3) and X(9733)
X(13748) = reflection of X(13749) in X(4)
X(13748) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,1588,5480), (4,6776,3070), (4 ,7582,6201), (4,10784,1587), (20 ,492,12305), (1587,10784,8550)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26287.
Let BBaCaC be the internal square on side BC, and define CCbAbA and AAcBcB cyclically, as at X(1328). Let Oa be the circumcenter of AAbAc, and define Ob and Oc cyclically. Triangle OaObOc is homothetic to ABC at X(6), and X(13749) is the orthocenter of OaObOc. (Randy Hutson, July 21, 2017)
X(13749) lies on these lines: {3,640}, {4,6}, {20,491}, {30,1991}, {154,1586}, {185,6406 }, {325,490}, {371,2794}, {382, 12602}, {485,6222}, {486,7694}, { 615,8406}, {638,1350}, {1131, 3424}, {1152,6813}, {1513,12968} ,{1585,1853}, {3536,10192}, { 5085,7388}, {5921,12322}, {6033, 6231}, {6460,7000}, {6467,12299} ,{6560,8721}, {6811,9756}, { 7374,13638}, {7389,10516}, { 11381,12298}
X(13749) = midpoint of X(4) and X(5871)
X(13749) = crosssum of X(3) and X(9732)
X(13749) = reflection of X(13748) in X(4)
X(13749) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,1587,5480), (4,6776,3071), (4 ,7581,6202), (4,10783,1588), (20 ,491,12306), (1588,10783,8550), (6813,8982,1152)
X(10023) = X(13750)-of-excentral-triangle
See Peter Moses, Hyacinthos 23283.
X(13750) lies on these lines: {1,3}, {5,1858}, {7,10629}, {10, 343}, {12,912}, {72,498}, {90, 6913}, {226,5884}, {377,5086}, { 381,1898}, {405,920}, {407,1785} ,{442,1737}, {499,5439}, {518, 10039}, {758,13411}, {960,7483}, {971,3585}, {974,2779}, {1006, 7098}, {1046,3074}, {1064,1393}, {1071,1478}, {1210,5883}, {1254, 4303}, {1479,12711}, {1770,9943} , {1776,6920}, {1781,2182}, { 1788,6889}, {1837,6917}, {1864, 10826}, {1905,4185}, {2252,2294} ,{2771,8068}, {3085,3868}, { 3485,6833}, {3486,6934}, {3487, 10321}, {3555,12647}, {3583, 5806}, {3753,5794}, {3827,5135}, {3869,6910}, {4295,6836}, {4299, 10167}, {4333,5918}, {5219,5693}, {5530,10974}, {5691,12671}, {5728,5880}, {5777,7951}, {5887, 6862}, {6001,6831}, {6738,10122}, {7354,13369}, {7686,10391}, { 9612,12664}, {10043,11045}, { 10106,12005}, {10107,10609}, {10320,11374}, {10590,12528}, {10948,11019}, {11013,11032}, {11015,11020}, {11570,13407}
X(13750) = midpoint of X(65) and X(2646)
X(13750) = X(10023)-of-orthic-triangle if ABC is acute
X(13750) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,46,11507),(1,57,8071),(1, 942,5570),(46,3612,165),(46, 5902,65),(942,9957,6583),( 7686,10391,10572),(10122, 12736,6738)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 23298.
X(13751) lies on these lines: {1,3}, {7,10266}, {11,12005}, {12,5083}, {244,2594}, {1317,3754}, {1421,8614}, {2801,7173}, {3678,7294}, {3874,5433}, {5253,12739}, {5883,10944}, {5901,11570}
X(13751) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (942,1319,65), (942,5045,5425), (5570,13373,2646)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 23298.
X(13752) lies on these lines:
{1,901}, {513,3754}, {517,548}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26298.
X(13753) lies on these lines:
{1,953}, {513,12005}, {517,1125}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 23787.
X(13754) lies on the curves K039, K114, K339, Q097 and these lines: {1,6238}, {2,5654}, {3,49}, {4,52}, {5,389}, {6,4550}, {20,6193}, {26,6759), (30,511}, {40,6237}, {51,381}, {55,500}, {56,1069}, {69,4846}, {74,323}, {110,186), (113,403}, {125,1568}, {131,1516}, {140,9729}, {143,546}, {146,7731}, {156,1658), (161,1498}, {182,7514}, {232,1625}, {265,1531}, {373,5055}, {376,2979}, {378,1993), (382,6243}, {399,1495}, {547,6688}, {549,3819}, {550,6101}, {569,7503}, {576,8548), (578,7526}, {944,9933}, {974,6699}, {1151,8909}, {1350,8717}, {1351,1597}, {1352,7706}, {1478,20019}, {1614,7488}, {1994,7527}, {3091,3567}, {3153,3448}, {3193,7414}, {3269,3289}, {3357,9938}, {3426,6391}, {3519,3521}, {3523,7999}, {3524,7998}, {3545,5640}, {3574,5576}, {3818,9969}, {3832,9781}, {4549,6776}, {5054,5650}, {5167,6033}, {5609,7575}, {5691,9896}, {5752,6985}, {5870,9930}, {5871,9929}, {5921,6403}, {5986,5999}, {6030,7512}, {6153,6288}, {6285,9931}, {6407,8912}, {6642,9786}, {6644,9306}, {8549,9926}, {9873,9923}
X(13754) = complementary conjugate of X(131)
X(13754) = isogonal conjugate of X(1300)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26299.
X(13755) lies on this line: {52,517}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26299.
For another constructions see: Antreas Hatzipolakis and César Lozada, Hyacinthos 28940.
Antreas Hatzipolakis and Peter Moses, Hyacinthos 29110.
X(13756) lies on the incircle and these lines: {1,3025}, {11,517}, {12,3259}, { 55,953}, {56,901}, {513,1317}, { 1155,5577}, {1319,1357}, {1364, 5048}, {3028,4017}, {3057,3326}, {3328,5919}, {3878,7144}
X(13756) = reflection of X(3025) in X(1)
X(13756) = reflection of X(1317) in the line X(1)X(3)
X(13756) = X(477)-of-intouch-triangle
X(13756) = X(953)-of-Mandart-incircle-triangle
X(13756) = intouch-anticomplement of X(33645)
Centers related to the 2nd tri-squares triangles: X(13757)-X(13850)
This preamble and centers X(13757)-X(13850) were contributed by César Eliud Lozada, July 10, 2017.
Tri-squares triangles were defined in the preamble of X(13637). In this section, A'B'C' is the 2nd tri-squares-triangle and AoBoCo is de the 2nd tri-squares-central triangle.
A'B'C' and the circumsymmedial triangle are directly similar with center X(13779).
The appearance of (T, n) in the following list means that triangles A'B'C and T are inversely similar with center X(n):
(4th anti-Brocard, 13776), (anti-McCay, 13777), (4th Brocard, 13778), (McCay, 13780), (3rd Parry, 13781)
The appearance of (T, n) in the following list means that A'B'C' and triangle T are perspective with perspector X(n):
(anti-Artzt*, 13757), (Artzt*, 13758), (2nd tri-squares-central, 13782), (1st tri-squares*, 2)
An asterisk means that both triangles are homothetic.
The appearance of (T, m, n) in the following list means that triangles A'B'C' and T are orthologic with centers X(m) and X(n):
(ABC, 3069, 2), (ABC-X3 reflections, 3069, 376), (anti-Aquila, 3069, 551), (anti-Ara, 3069, 428), (anti-Artzt, 13759, 1992), (1st anti-Brocard, 13760, 7840), (4th anti-Brocard, 13845, 9870), (5th anti-Brocard, 3069, 12150), (6th anti-Brocard, 13760, 12151), (anti-Euler, 3069, 376), (anti-Mandart-incircle, 3069, 4421), (anti-McCay, 13761, 385), (anticomplementary, 3069, 2), (Aquila, 3069, 3679), (Ara, 3069, 9909), (Artzt, 13759, 9770), (1st Auriga, 3069, 11207), (2nd Auriga, 3069, 11208), (1st Brocard, 13760, 599), (4th Brocard, 13762, 2), (5th Brocard, 3069, 7811), (6th Brocard, 13760, 9939), (circummedial, 13763, 2), (Euler, 3069, 381), (5th Euler, 13763, 2), (outer-Garcia, 3069, 3679), (Gossard, 3069, 1651), (inner-Grebe, 3069, 5861), (outer-Grebe, 3069, 5860), (Johnson, 3069, 381), (inner-Johnson, 3069, 11235), (outer-Johnson, 3069, 11236), (1st Johnson-Yff, 3069, 11237), (2nd Johnson-Yff, 3069, 11238), (Lucas homothetic, 3069, 12152), (Lucas(-1) homothetic, 3069, 12153), (Mandart-incircle, 3069, 3058), (McCay, 13761, 7610), (medial, 3069, 2), (5th mixtilinear, 3069, 3241), (inner-Napoleon, 13764, 9761), (outer-Napoleon, 13765, 9763), (1st Neuberg, 13766, 8667), (2nd Neuberg, 13767, 9766), (3rd Parry, 13768, 2), (1st tri-squares-central, 13769, 13663), (2nd tri-squares-central, 13782, 13783), (3rd tri-squares-central, 3069, 13846), (4th tri-squares-central, 3069, 13847), (1st tri-squares, 13759, 13639), (3rd tri-squares, 13771, 2), (4th tri-squares, 13770, 2), (inner-Vecten, 13770, 591), (outer-Vecten, 13771, 1991), (X3-ABC reflections, 3069, 381), (inner-Yff, 3069, 10056), (outer-Yff, 3069, 10072), (inner-Yff tangents, 3069, 11239), (outer-Yff tangents, 3069, 11240)
The appearance of (T, m, n) in the following list means that triangles A'B'C' and T are parallelogic with centers X(m) and X(n):
(4th anti-Brocard, 13772, 13168), (anti-McCay, 13773, 8597), (4th Brocard, 13774, 4), (McCay, 13773, 381), (1st Parry, 3069, 9123), (2nd Parry, 3069, 9185), (3rd Parry, 13775, 9147)
The appearance of (I, J) in the following list means that X(I)-of-A'B'C' = X(J) :
(2,3069),(3,13783),(4,13759),(5,13784),(6,13763),(13,13765),(14,13764),(98,13761),(99,13773),(111,13762),(376,2),(485,13769),(486,13782),(488,13831),(642,13843),(671,13760),(1296,13774),(1327,13771),(1328,13770),(1991,6398)
AoBoCo and the 2nd tri-squares triangle are perspective with perspector X(13782).
The appearance of (T, m, n) in the following list means that triangles AoBoCo and T are orthologic with centers X(m) and X(n):
(ABC, 13785, 1328), (ABC-X3 reflections, 13785, 13786), (anti-Aquila, 13785, 13787), (anti-Ara, 13785, 13788), (anti-Artzt, 13783, 13789), (1st anti-Brocard, 13790, 13791), (5th anti-Brocard, 13785, 13792), (6th anti-Brocard, 13790, 13793), (anti-Euler, 13785, 13794), (anti-Mandart-incircle, 13785, 13795), (anti-McCay, 13796, 13797), (anticomplementary, 13785, 13798), (Aquila, 13785, 13799), (Ara, 13785, 13800), (Artzt, 13783, 13801), (1st Auriga, 13785, 13802), (2nd Auriga, 13785, 13803), (1st Brocard, 13790, 13804), (5th Brocard, 13785, 13805), (6th Brocard, 13790, 13806), (Euler, 13785, 13807), (outer-Garcia, 13785, 13808), (Gossard, 13785, 13809), (inner-Grebe, 13785, 13810), (outer-Grebe, 13785, 13811), (Johnson, 13785, 13812), (inner-Johnson, 13785, 13813), (outer-Johnson, 13785, 13814), (1st Johnson-Yff, 13785, 13815), (2nd Johnson-Yff, 13785, 13816), (Lucas homothetic, 13785, 13817), (Lucas(-1) homothetic, 13785, 13818), (Mandart-incircle, 13785, 13819), (McCay, 13796, 13820), (medial, 13785, 13821), (5th mixtilinear, 13785, 13822), (inner-Napoleon, 13823, 13824), (outer-Napoleon, 13825, 13826), (1st Neuberg, 13827, 13828), (2nd Neuberg, 13829, 13830), (1st tri-squares-central, 13831, 13832), (3rd tri-squares-central, 13785, 13848), (4th tri-squares-central, 13785, 13849), (1st tri-squares, 13783, 13833), (2nd tri-squares, 13783, 13782), (3rd tri-squares, 13834, 13850), (4th tri-squares, 3069, 13847), (inner-Vecten, 3069, 2), (outer-Vecten, 13834, 13835), (X3-ABC reflections, 13785, 13836), (inner-Yff, 13785, 13837), (outer-Yff, 13785, 13838), (inner-Yff tangents, 13785, 13839), (outer-Yff tangents, 13785, 13840)
The appearance of (T, m, n) in the following list means that triangles AoBoCo and T are parallelogic with centers X(m) and X(n): (1st Parry, 13785, 13841), (2nd Parry, 13785, 13842)
The appearance of (I, J) in the following list means that X(I)-of-AoBoCo = X(J) :
(2,3069),(3,13843),(4,13782),(5,13844),(13,13823),(14,13825),(486,13783),(487,13759),(642,13784),(1132,13831),(1328,13785)
X(13757) lies on these lines: {2,6}, {99,13761}, {110,13762}, {486,490}, {542,6813}, {598,13669}, {1505,5461}, {6399,10784}, {7389,7812}, {8593,13760}, {11055,13766}, {11149,12158}, {11159,13763}, {11161,13773}, {12154,13764}, {12155,13765}, {12156,13767}, {12157,13768}, {12159,13771}, {13167,13772}, {13169,13774}, {13170,13775}
X(13757) = reflection of X(i) in X(j) for these (i,j): (2,615), (491,2), (13637,8860)
X(13757) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,1992,13637), (2,5032,3068), (2,13759,1992), (597,11163,13637), (599,13783,2)
X(13758) lies on these lines: {2,6}, {32,7389}, {98,486}, {372,6811}, {381,13763}, {489,12963}, {637,6424}, {1585,10311}, {3053,11293}, {3102,5420}, {3767,7388}, {5254,11294}, {5286,11292}, {6054,13760}, {6460,7374}, {6560,9993}, {7000,13748}, {9605,11315}, {9759,13762}, {9760,13764}, {9762,13765}, {9764,13766}, {9765,13767}, {9767,13770}, {9768,13771}, {9769,13774}, {9877,13761}, {12434,13768}, {13191,13772}, {13225,13775}, {13681,13769}
X(13758) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,385,491), (2,5304,3068), (2,7586,7736), (2,7735,13638), (2,13759,9770), (6,615,492), (183,230,13638), (230,615,2), (7610,13783,2)
The reciprocal orthologic center of these triangles is X(9770)
X(13759) lies on these lines: {2,6}, {542,7000}, {543,13760}, {671,1132}, {6463,8591}
X(13759) = reflection of X(i) in X(j) for these (i,j): (2,3069), (1271,2), (13783,13784)
X(13759) = orthologic center of these triangles: 2nd tri-squares to Artzt
X(13759) = orthologic center of these triangles: 2nd tri-squares to 1st tri-squares
X(13759) = X(4)-of-2nd-tri-squares-triangle
X(13759) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,1992,13639), (2,5032,7585), (1992,13757,2), (9770,13758,2), (13783,13784,3069)
The reciprocal orthologic center of these triangles is X(7840)
X(13760) lies on these lines: {2,5477}, {6,13653}, {115,7586}, {492,5182}, {524,13761}, {530,13764}, {531,13765}, {542,3069}, {543,13759}, {620,1270}, {2782,13763}, {5969,13766}, {6054,13758}, {6302,9113}, {6303,9112}, {6560,10722}, {8593,13757}, {8787,13642}
X(13760) = reflection of X(13773) in X(3069)
X(13760) = orthologic center of 2nd tri-squares triangle to these triangles: 6th anti-Brocard, 1st Brocard, 6th Brocard
X(13760) = {X(2), X(5477)}-harmonic conjugate of X(13640)
The reciprocal orthologic center of these triangles is X(385)
X(13761) lies on these lines: {2,98}, {99,13757}, {511,13768}, {512,13775}, {524,13760}, {543,3069}, {597,13653}, {690,13762}, {5590,9167}, {8787,13640}, {9830,13773}, {9877,13758}, {11159,13785}
X(13761) = reflection of X(13773) in X(13783)
X(13761) = orthologic center of these triangles: 2nd tri-squares to McCay
The reciprocal orthologic center of these triangles is X(2)
X(13762) lies on these lines: {2,9769}, {110,13757}, {542,3069}, {597,13654}, {690,13761}, {2854,13772}, {9759,13758}, {13774,13783}
X(13762) = reflection of X(13774) in X(13783)
The reciprocal orthologic center of these triangles is X(2)
X(13763) lies on these lines: {30,3069}, {32,11314}, {381,13758}, {492,11286}, {543,13764}, {615,7737}, {1160,1588}, {2548,11315}, {2782,13760}, {3053,11316}, {3849,13783}, {7584,12314}, {7745,11313}, {9605,11294}, {11159,13757}, {13766,13767}, {13769,13782}, {13770,13771}
X(13763) = orthologic center of these triangles: 2nd tri-squares to circummedial
X(13764) lies on these lines: {2,9113}, {530,13760}, {531,3069}, {543,13763}, {9760,13758}, {12154,13757}
X(13764) = The reciprocal orthologic center of these triangles is X(9761)
he reciprocal orthologic center of these triangles is X(9763)
X(13765) lies on these lines: {2,9112}, {530,3069}, {531,13760}, {543,13763}, {9762,13758}, {12155,13757}
The reciprocal orthologic center of these triangles is X(8667)
X(13766) lies on these lines: {2,13647}, {39,5590}, {492,7757}, {538,3069}, {5969,13760}, {9764,13758}, {11055,13757}, {13763,13767}
The reciprocal orthologic center of these triangles is X(9766)
X(13767) lies on these lines: {2,13648}, {83,492}, {754,3069}, {9765,13758}, {12156,13757}, {13763,13766}
The reciprocal orthologic center of these triangles is X(2)
X(13768) lies on these lines: {2,13170}, {511,13761}, {512,13773}, {597,13655}, {12157,13757}, {12434,13758}, {13775,13783}
X(13768) = reflection of X(13775) in X(13783)
The reciprocal orthologic center of these triangles is X(13663)
X(13769) lies on these lines: {2,13662}, {524,13771}, {598,13669}, {1327,5066}, {3069,13831}, {13681,13758}, {13763,13782}
The reciprocal orthologic center of these triangles is X(591)
X(13770) lies on these lines: {2,13650}, {5,6}, {524,13782}, {5420,9675}, {5491,11008}, {6300,11489}, {6301,11488}, {6395,12601}, {6396,12123}, {9767,13758}, {12158,13757}, {13763,13771}
X(13770) = {X(6), X(486)}-harmonic conjugate of X(13711)
The reciprocal orthologic center of these triangles is X(1991)
X(13771) lies on these lines: {2,13651}, {372,6278}, {485,615}, {488,7586}, {492,7926}, {524,13769}, {641,3068}, {3069,13834}, {6144,13650}, {6561,9733}, {9768,13758}, {12159,13757}, {13763,13770}
X(13771) = reflection of X(13834) in X(3069)
The reciprocal parallelogic center of these triangles is X(13168)
X(13772) lies on these lines: {2,9869}, {597,13641}, {2780,13774}, {2854,13762}, {13167,13757}, {13191,13758}
The reciprocal parallelogic center of these triangles is X(8597)
X(13773) lies on these lines: {2,99}, {6,13640}, {98,486}, {491,10754}, {511,13775}, {512,13768}, {542,3069}, {590,6034}, {597,13642}, {615,11646}, {690,13774}, {2794,7000}, {5477,7586}, {6036,12974}, {8997,9994}, {9830,13761}, {11161,13757}
X(13773) = reflection of X(i) in X(j) for these (i,j): (13760,3069), (13761,13783)
X(13773) = parallelogic center of these triangles: 2nd tri-squares to McCay
X(13773) = {X(2), X(115)}-harmonic conjugate of X(13653)
The reciprocal parallelogic center of these triangles is X(4)
X(13774) lies on these lines: {2,98}, {67,615}, {74,6813}, {491,895}, {597,13643}, {690,13773}, {2777,7000}, {2780,13772}, {5094,13785}, {5095,7586}, {5181,5591}, {7374,7687}, {9769,13758}, {13169,13757}, {13762,13783}
X(13774) = reflection of X(13762) in X(13783)
X(13774) = {X(2), X(125)}-harmonic conjugate of X(13654)
The reciprocal parallelogic center of these triangles is X(9147)
X(13775) lies on these lines: {2,12157}, {511,13773}, {512,13761}, {597,13649}, {13170,13757}, {13225,13758}, {13768,13783}
X(13775) = reflection of X(13768) in X(13783)
X(13776) lies on these lines: {}
X(13777) lies on these lines: {2,5058}, {148,3069}, {597,13657}
X(13778) lies on these lines: {}
X(13779) lies on the line {6396,7464}
X(13780) lies on these lines: {597,13660}, {3069,7615}
X(13781) lies on these lines: {}
X(13782) lies on these lines: {2,13833}, {99,13757}, {486,542}, {524,13770}, {1328,3830}, {3069,13843}, {13758,13801}, {13763,13769}
X(13782) = reflection of X(i) in X(j) for these (i,j): (1328,13785), (13843,13844)
X(13782) = perspector of these triangles: 2nd tri-squares and 2nd tri-squares-central
X(13783) lies on these lines: {2,6}, {372,5461}, {3363,13669}, {3849,13763}, {7817,11314}, {8184,13087}, {9830,13761}, {11158,13789}, {13762,13774}, {13768,13775}
X(13783) = midpoint of X(i) and X(j) for these {i,j}: {2,3069}, {13761,13773}, {13762,13774}, {13768,13775}
X(13783) = reflection of X(13759) in X(13784)
X(13783) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,597,13663), (2,13757,599), (2,13758,7610), (3069,13759,13784)
X(13784) lies on these lines: {2,6}, {13763,13769}
X(13784) = midpoint of X(13759) and X(13783)
X(13784) = {X(3069), X(13759)}-harmonic conjugate of X(13783)
The reciprocal parallelogic center of these triangles is X(1328)
X(13785) lies on these lines: {2,6221}, {3,486}, {4,1132}, {5,1588}, {6,13}, {20,6450}, {30,3069}, {140,6449}, {262,6568}, {371,1656}, {372,382}, {376,6452}, {403,5410}, {485,3851}, {489,11316}, {546,1587}, {548,6497}, {549,6451}, {550,6456}, {590,5055}, {631,6455}, {632,6519}, {637,11314}, {1124,9654}, {1151,3526}, {1152,1657}, {1328,3830}, {1335,9669}, {1702,9956}, {2043,11543}, {2044,11542}, {3070,3843}, {3090,8981}, {3091,6427}, {3102,13108}, {3146,6448}, {3299,10895}, {3301,10896}, {3317,3523}, {3365,5339}, {3390,5340}, {3529,6522}, {3534,6396}, {3545,7585}, {3591,10299}, {3592,5079}, {3594,5076}, {3627,6460}, {3628,6447}, {3832,7581}, {3854,6498}, {3856,6499}, {5054,6200}, {5070,5418}, {5071,8972}, {5072,6419}, {5094,13774}, {5414,9668}, {6251,13749}, {6431,8960}, {6502,9655}, {6813,10845}, {9583,11230}, {9616,11231}, {9680,9691}, {9892,11165}, {10666,12429}, {10881,12173}, {11159,13761}
X(13785) = midpoint of X(1328) and X(13782)
X(13785) = reflection of X(6398) in X(3069)
X(13785) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,7584,3312), (5,1588,3311), (6,381,13665), (6,6565,381), (486,3071,3), (549,9541,6451), (3091,7582,7583), (3843,6418,3070), (3851,6417,485), (7582,7583,6427)
The reciprocal orthologic center of these triangles is X(13785)
X(13786) lies on these lines: {2,13807}, {3,1328}, {4,13821}, {20,13798}, {30,6290}, {35,13837}, {36,13838}, {56,13819}, {165,13799}, {182,13792}, {376,13794}, {515,13808}, {517,13822}, {1327,9738}, {1350,13666}, {1593,13788}, {3098,13805}, {3534,12124}, {3576,13787}, {6284,13816}, {7354,13815}, {10310,13795}, {11001,11824}, {11248,13839}, {11249,13840}, {11414,13800}, {11825,13811}, {11826,13813}, {11827,13814}, {11828,13817}, {11829,13818}
X(13786) = midpoint of X(20) and X(13798)
X(13786) = reflection of X(i) in X(j) for these (i,j): (4,13821), (1328,3)
X(13786) = anticomplement of X(13807)
The reciprocal orthologic center of these triangles is X(13785)
X(13787) lies on these lines: {1,1328}, {2,13808}, {30,12268}, {515,13807}, {1125,13821}, {1386,13667}, {2646,13819}, {3295,13795}, {3576,13786}, {3616,13798}, {5603,13794}, {5886,13812}, {10246,13836}, {11363,13788}, {11364,13792}, {11365,13800}, {11368,13805}, {11370,13810}, {11371,13811}, {11373,13813}, {11374,13814}, {11375,13815}, {11376,13816}, {11377,13817}, {11378,13818}, {11831,13809}
X(13787) = midpoint of X(i) and X(j) for these {i,j}: {1,1328}, {13799,13822}
X(13787) = reflection of X(13821) in X(1125)
X(13787) = complement of X(13808)
X(13787) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,13799,13822), (1328,13822,13799)
The reciprocal orthologic center of these triangles is X(13785)
X(13788) lies on these lines: {4,13798}, {25,1328}, {30,6406}, {33,13819}, {235,13807}, {427,13821}, {1593,13786}, {1598,13836}, {1843,13668}, {3543,8946}, {5064,13835}, {5090,13808}, {7487,13794}, {7576,12148}, {7713,13799}, {11363,13787}, {11380,13792}, {11383,13795}, {11386,13805}, {11388,13810}, {11389,13811}, {11390,13813}, {11391,13814}, {11392,13815}, {11393,13816}, {11394,13817}, {11395,13818}, {11396,13822}, {11398,13837}, {11399,13838}, {11400,13839}, {11401,13840}, {11832,13809}
The reciprocal orthologic center of these triangles is X(13783)
X(13789) lies on these lines: {2,1328}, {6,12159}, {99,13757}, {524,12158}, {597,2549}, {598,13637}, {3363,13663}, {11148,13759}, {11158,13783}
X(13789) = midpoint of X(6561) and X(13835)
X(13789) = {X(597), X(11159)}-harmonic conjugate of X(13669)
The reciprocal orthologic center of these triangles is X(13791)
X(13790) lies on these lines: {115,6560}, {542,3069}, {3564,6230}, {6055,7735}
The reciprocal orthologic center of these triangles is X(13790)
X(13791) lies on these lines: {2,1328}, {3,13806}, {316,13671}, {542,9867}, {4027,13793}
X(13791) = reflection of X(13797) in X(13835)
10*S^4+(21*SA^2-33*SW*SA+22*SW^2)*S^2+3*(SB+SC)*(-SA*SW*(-2*S+3*SW)-S*(S^2+3*SW^2))
X(13792) lies on these lines: {30,12210}, {32,1328}, {83,13821}, {98,13807}, {182,13786}, {7787,13798}, {10788,13794}, {10789,13799}, {10790,13800}, {10791,13808}, {10792,13810}, {10793,13811}, {10794,13813}, {10795,13814}, {10796,13812}, {10797,13815}, {10798,13816}, {10799,13819}, {10800,13822}, {10801,13837}, {10802,13838}, {10803,13839}, {10804,13840}, {11364,13787}, {11380,13788}, {11490,13795}, {11839,13809}, {11840,13817}, {11841,13818}, {11842,13836}, {12212,13672}
The reciprocal orthologic center of these triangles is X(13790)
X(13793) lies on these lines: {182,13804}, {542,12217}, {4027,13791}, {10131,13806}
The reciprocal orthologic center of these triangles is X(13785)
X(13794) lies on these lines: {2,6222}, {3,13798}, {4,1328}, {24,13800}, {30,12256}, {376,13786}, {381,6776}, {388,13837}, {497,13838}, {515,13799}, {631,13821}, {3069,9862}, {3085,13815}, {3086,13816}, {3524,13835}, {3545,10784}, {4294,13819}, {5603,13787}, {5657,13808}, {5860,12251}, {7487,13788}, {7967,13822}, {10783,13810}, {10785,13813}, {10786,13814}, {10788,13792}, {10805,13839}, {10806,13840}, {11491,13795}, {11845,13809}, {11846,13817}, {11847,13818}
X(13794) = reflection of X(i) in X(j) for these (i,j): (4,1328), (13798,3)
X(13794) = anticomplement of X(13812)
X(13794) = {X(381), X(6776)}-harmonic conjugate of X(13674)
The reciprocal orthologic center of these triangles is X(13785)
X(13795) lies on these lines: {30,12343}, {35,13799}, {55,1328}, {56,13822}, {100,13798}, {197,13800}, {1376,13813}, {3295,13787}, {5687,13808}, {10310,13786}, {11383,13788}, {11490,13792}, {11491,13794}, {11494,13805}, {11496,13807}, {11497,13810}, {11498,13811}, {11499,13812}, {11500,13814}, {11501,13815}, {11502,13816}, {11503,13817}, {11504,13818}, {11507,13837}, {11508,13838}, {11509,13839}, {11510,13840}, {11848,13809}, {11849,13836}, {12329,13675}
X(13795) = reflection of X(13813) in X(13821)
The reciprocal orthologic center of these triangles is X(13797)
X(13796) lies on these lines: {115,1992}, {543,3069}, {671,13760}
X(13796) = midpoint of X(671) and X(13760)
The reciprocal orthologic center of these triangles is X(13796)
X(13797) lies on these lines: {2,1328}, {543,9891}, {6781,13677}
X(13797) = reflection of X(13791) in X(13835)
The reciprocal orthologic center of these triangles is X(13785)
X(13798) lies on these lines: {2,1328}, {3,13794}, {4,13788}, {5,13836}, {8,13808}, {10,13799}, {20,13786}, {22,13800}, {30,487}, {69,3534}, {100,13795}, {145,13822}, {376,488}, {388,13815}, {497,13816}, {549,12322}, {637,10304}, {1270,13811}, {1271,13810}, {2896,13805}, {3085,13837}, {3086,13838}, {3091,13807}, {3434,13813}, {3436,13814}, {3616,13787}, {4240,13809}, {6462,13817}, {6463,13818}, {7787,13792}, {10528,13839}, {10529,13840}
X(13798) = reflection of X(i) in X(j) for these (i,j): (2,13835), (4,13812), (8,13808), (20,13786), (145,13822), (1328,13821), (4240,13809), (13794,3), (13799,10), (13836,5)
X(13798) = anticomplement of X(1328)
X(13798) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (69,3534,13678), (1328,13821,2), (1328,13835,13821), (13816,13819,497)
The reciprocal orthologic center of these triangles is X(13785)
X(13799) lies on these lines: {1,1328}, {10,13798}, {30,9906}, {35,13795}, {165,13786}, {515,13794}, {517,13836}, {1697,13819}, {1698,13821}, {1699,13807}, {3099,13805}, {3679,13808}, {3751,13679}, {5587,13812}, {5588,13811}, {5589,13810}, {7713,13788}, {8185,13800}, {8188,13817}, {8189,13818}, {9578,13815}, {9581,13816}, {10789,13792}, {10826,13813}, {10827,13814}, {11852,13809}
X(13799) = reflection of X(i) in X(j) for these (i,j): (1,1328), (13798,10), (13822,13787)
X(13799) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1328,13822,13787), (13787,13822,1)
The reciprocal orthologic center of these triangles is X(13785)
X(13800) lies on these lines: {3,13812}, {22,13798}, {24,13794}, {25,1328}, {30,9921}, {159,13680}, {197,13795}, {1598,13807}, {5594,13811}, {5595,13810}, {7517,13836}, {8185,13799}, {8192,13822}, {8193,13808}, {8194,13817}, {8195,13818}, {10037,13837}, {10046,13838}, {10790,13792}, {10828,13805}, {10829,13813}, {10830,13814}, {10831,13815}, {10832,13816}, {10833,13819}, {10834,13839}, {10835,13840}, {11365,13787}, {11414,13786}, {11853,13809}
The reciprocal orthologic center of these triangles is X(13783)
X(13801) lies on these lines: {2,1328}, {30,9758}, {381,7618}, {524,9767}, {6054,6813}, {7610,13812}, {9768,11184}, {13638,13833}, {13758,13782}
X(13801) = {X(381), X(9771)}-harmonic conjugate of X(13681)
The reciprocal orthologic center of these triangles is X(13785)
X(13802) lies on these lines: {}
The reciprocal orthologic center of these triangles is X(13785)
X(13803) lies on these lines: {}
The reciprocal orthologic center of these triangles is X(13790)
X(13804) lies on these lines: {2,1328}, {182,13793}, {384,13806}, {542,6229}, {7697,13812}, {7761,13684}, {10000,13805}
The reciprocal orthologic center of these triangles is X(13785)
X(13805) lies on these lines: {30,9986}, {32,1328}, {2896,13798}, {3069,9862}, {3094,13685}, {3096,13821}, {3098,13786}, {3099,13799}, {7865,13835}, {9301,13836}, {9857,13808}, {9993,13807}, {9994,13810}, {9995,13811}, {9996,13812}, {9997,13822}, {10000,13804}, {10038,13837}, {10047,13838}, {10828,13800}, {10871,13813}, {10872,13814}, {10873,13815}, {10874,13816}, {10875,13817}, {10876,13818}, {10877,13819}, {10878,13839}, {10879,13840}, {11368,13787}, {11386,13788}, {11494,13795}, {11885,13809}
The reciprocal orthologic center of these triangles is X(13790)
X(13806) lies on these lines: {3,13791}, {384,13804}, {542,9991}, {2896,13798}, {7802,13686}, {10131,13793}
The reciprocal orthologic center of these triangles is X(13785)
X(13807) lies on these lines: {2,13786}, {4,1328}, {5,13821}, {12,13819}, {30,6251}, {98,13792}, {235,13788}, {381,13812}, {515,13787}, {1478,13838}, {1479,13837}, {1598,13800}, {1699,13799}, {3091,13798}, {3545,13835}, {3845,6250}, {5480,13687}, {5587,13808}, {5603,13822}, {6201,13811}, {6202,13810}, {8212,13817}, {8213,13818}, {9993,13805}, {10531,13839}, {10532,13840}, {10893,13813}, {10894,13814}, {10895,13815}, {10896,13816}, {11496,13795}, {11897,13809}
X(13807) = midpoint of X(i) and X(j) for these {i,j}: {4,1328}, {13812,13836}
X(13807) = reflection of X(13821) in X(5)
X(13807) = complement of X(13786)
X(13807) = {X(381), X(13836)}-harmonic conjugate of X(13812)
The reciprocal orthologic center of these triangles is X(13785)
X(13808) lies on these lines: {1,13821}, {2,13787}, {8,13798}, {10,1328}, {30,12787}, {65,13815}, {72,13814}, {515,13786}, {517,13812}, {519,13822}, {1737,13838}, {1837,13819}, {3057,13816}, {3416,13688}, {3654,12788}, {3679,13799}, {5090,13788}, {5587,13807}, {5657,13794}, {5687,13795}, {5688,13811}, {5689,13810}, {5790,13836}, {8193,13800}, {8214,13817}, {8215,13818}, {9857,13805}, {10039,13837}, {10791,13792}, {10914,13813}, {10915,13839}, {10916,13840}, {11900,13809}
X(13808) = midpoint of X(8) and X(13798)
X(13808) = reflection of X(i) in X(j) for these (i,j): (1,13821), (1328,10)
X(13808) = anticomplement of X(13787)
The reciprocal orthologic center of these triangles is X(13785)
X(13809) lies on these lines: {30,6290}, {402,1328}, {1650,13821}, {4240,13798}, {11831,13787}, {11832,13788}, {11839,13792}, {11845,13794}, {11848,13795}, {11852,13799}, {11853,13800}, {11885,13805}, {11897,13807}, {11900,13808}, {11901,13810}, {11902,13811}, {11903,13813}, {11904,13814}, {11905,13815}, {11906,13816}, {11907,13817}, {11908,13818}, {11909,13819}, {11910,13822}, {11911,13836}, {11912,13837}, {11913,13838}, {11914,13839}, {11915,13840}, {12583,13689}
X(13809) = midpoint of X(4240) and X(13798)
X(13809) = reflection of X(i) in X(j) for these (i,j): (1328,402), (1650,13821)
The reciprocal orthologic center of these triangles is X(13785)
X(13810) lies on these lines: {2,5871}, {6,1327}, {30,6281}, {1271,13798}, {3534,13835}, {3830,6279}, {5589,13799}, {5591,13821}, {5595,13800}, {5605,13822}, {5689,13808}, {6202,13807}, {6215,8703}, {8216,13817}, {8217,13818}, {9994,13805}, {10040,13837}, {10048,13838}, {10783,13794}, {10792,13792}, {10919,13813}, {10921,13814}, {10923,13815}, {10925,13816}, {10927,13819}, {10929,13839}, {10931,13840}, {11001,11824}, {11370,13787}, {11388,13788}, {11497,13795}, {11901,13809}
X(13810) = reflection of X(13811) in X(1328)
The reciprocal orthologic center of these triangles is X(13785)
X(13811) lies on these lines: {3,6278}, {6,1327}, {30,6280}, {547,10515}, {1270,13798}, {3543,5870}, {3545,10784}, {5588,13799}, {5590,13821}, {5594,13800}, {5604,13822}, {5688,13808}, {5860,11001}, {6201,13807}, {6214,11539}, {8218,13817}, {8219,13818}, {9995,13805}, {10041,13837}, {10049,13838}, {10793,13792}, {10920,13813}, {10922,13814}, {10924,13815}, {10926,13816}, {10928,13819}, {10930,13839}, {10932,13840}, {11371,13787}, {11389,13788}, {11498,13795}, {11825,13786}, {11902,13809}, {11917,13836}
X(13811) = reflection of X(13810) in X(1328)
The reciprocal orthologic center of these triangles is X(13785)
X(13812) lies on these lines: {1,13815}, {2,6222}, {3,13800}, {4,13788}, {5,1328}, {11,13838}, {12,13837}, {30,6290}, {355,13813}, {381,13807}, {517,13808}, {549,1352}, {952,13822}, {1479,13819}, {1991,3095}, {5587,13799}, {5613,13826}, {5617,13824}, {5886,13787}, {6214,11539}, {6215,8703}, {6230,8724}, {6287,13828}, {7610,13801}, {7697,13804}, {8220,13817}, {8221,13818}, {9996,13805}, {10796,13792}, {10942,13839}, {10943,13840}, {11499,13795}
X(13812) = midpoint of X(i) and X(j) for these {i,j}: {4,13798}, {13813,13814}
X(13812) = reflection of X(i) in X(j) for these (i,j): (3,13821), (1328,5), (13836,13807)
X(13812) = complement of X(13794)
X(13812) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (381,13836,13807), (549,1352,13692), (13815,13816,1)
The reciprocal orthologic center of these triangles is X(13785)
X(13813) lies on these lines: {11,1328}, {12,13839}, {30,12928}, {355,13812}, {1376,13795}, {3434,13798}, {10523,13837}, {10785,13794}, {10794,13792}, {10826,13799}, {10829,13800}, {10871,13805}, {10893,13807}, {10914,13808}, {10919,13810}, {10920,13811}, {10944,13815}, {10945,13817}, {10946,13818}, {10947,13819}, {10948,13838}, {10949,13840}, {11373,13787}, {11390,13788}, {11826,13786}, {11903,13809}, {11928,13836}, {12586,13693}
X(13813) = reflection of X(i) in X(j) for these (i,j): (13795,13821), (13814,13812)
The reciprocal orthologic center of these triangles is X(13785)
X(13814) lies on these lines: {11,13840}, {12,1328}, {30,12938}, {72,13808}, {355,13812}, {958,13821}, {3436,13798}, {10523,13838}, {10786,13794}, {10795,13792}, {10827,13799}, {10830,13800}, {10872,13805}, {10894,13807}, {10921,13810}, {10922,13811}, {10950,13816}, {10951,13817}, {10952,13818}, {10953,13819}, {10954,13837}, {10955,13839}, {11374,13787}, {11391,13788}, {11500,13795}, {11827,13786}, {11904,13809}, {11929,13836}, {12587,13694}
X(13814) = reflection of X(13813) in X(13812)
The reciprocal orthologic center of these triangles is X(13785)
X(13815) lies on these lines: {1,13812}, {4,13819}, {5,13838}, {12,1328}, {65,13808}, {388,13798}, {495,13837}, {3085,13794}, {5434,13835}, {7354,13786}, {9578,13799}, {9654,13836}, {10056,12949}, {10797,13792}, {10831,13800}, {10873,13805}, {10895,13807}, {10923,13810}, {10924,13811}, {10944,13813}, {10956,13839}, {10957,13840}, {11375,13787}, {11392,13788}, {11501,13795}, {11905,13809}, {11930,13817}, {11931,13818}, {12588,13695}
X(13815) = reflection of X(13837) in X(495)
X(13815) = {X(1), X(13812)}-harmonic conjugate of X(13816)
The reciprocal orthologic center of these triangles is X(13785)
X(13816) lies on these lines: {1,13812}, {5,13837}, {11,1328}, {30,12958}, {55,13821}, {496,13838}, {497,13798}, {3057,13808}, {3058,13835}, {3086,13794}, {6284,13786}, {9581,13799}, {9669,13836}, {10072,12959}, {10798,13792}, {10832,13800}, {10874,13805}, {10896,13807}, {10925,13810}, {10926,13811}, {10950,13814}, {10958,13839}, {10959,13840}, {11376,13787}, {11393,13788}, {11502,13795}, {11906,13809}, {11932,13817}, {11933,13818}, {12589,13696}
X(13816) = reflection of X(13838) in X(496)
X(13816) = {X(1), X(13812)}-harmonic conjugate of X(13815)
The reciprocal orthologic center of these triangles is X(13785)
X(13817) lies on these lines: {30,13002}, {493,1328}, {6461,13818}, {6462,13798}, {8188,13799}, {8194,13800}, {8210,13822}, {8212,13807}, {8214,13808}, {8216,13810}, {8218,13811}, {8220,13812}, {8222,13821}, {10875,13805}, {10945,13813}, {10951,13814}, {11377,13787}, {11394,13788}, {11503,13795}, {11828,13786}, {11840,13792}, {11846,13794}, {11907,13809}, {11930,13815}, {11932,13816}, {11947,13819}, {11949,13836}, {11951,13837}, {11953,13838}, {11955,13839}, {11957,13840}, {12590,13697}
The reciprocal orthologic center of these triangles is X(13785)
X(13818) lies on these lines: {30,13003}, {494,1328}, {6461,13817}, {6463,13798}, {8189,13799}, {8195,13800}, {8211,13822}, {8213,13807}, {8215,13808}, {8217,13810}, {8219,13811}, {8221,13812}, {8223,13821}, {10876,13805}, {10946,13813}, {10952,13814}, {11378,13787}, {11395,13788}, {11504,13795}, {11829,13786}, {11841,13792}, {11847,13794}, {11908,13809}, {11931,13815}, {11933,13816}, {11948,13819}, {11950,13836}, {11952,13837}, {11954,13838}, {11956,13839}, {11958,13840}, {12591,13698}
The reciprocal orthologic center of these triangles is X(13785)
X(13819) lies on these lines: {3,13838}, {4,13815}, {11,13821}, {12,13807}, {33,13788}, {55,1328}, {56,13786}, {497,13798}, {1479,13812}, {1697,13799}, {1837,13808}, {2098,13822}, {2646,13787}, {3056,13699}, {3295,13836}, {4294,13794}, {10799,13792}, {10833,13800}, {10877,13805}, {10927,13810}, {10928,13811}, {10947,13813}, {10953,13814}, {10965,13839}, {10966,13840}, {11238,13835}, {11909,13809}, {11947,13817}, {11948,13818}
X(13819) = {X(3295), X(13836)}-harmonic conjugate of X(13837)
The reciprocal orthologic center of these triangles is X(13796)
X(13820) lies on these lines: {2,1328}, {543,13087}, {5569,13088}
The reciprocal orthologic center of these triangles is X(13785)
X(13821) lies on these lines: {1,13808}, {2,1328}, {3,13800}, {4,13786}, {5,13807}, {8,13822}, {11,13819}, {30,642}, {55,13816}, {83,13792}, {141,12100}, {376,640}, {427,13788}, {498,13837}, {499,13838}, {549,641}, {631,13794}, {639,5054}, {958,13814}, {1125,13787}, {1376,13795}, {1650,13809}, {1656,13836}, {1698,13799}, {1991,11165}, {3096,13805}, {5552,13839}, {5590,13811}, {5591,13810}, {8222,13817}, {8223,13818}, {10527,13840}, {11147,13712}
X(13821) = midpoint of X(i) and X(j) for these {i,j}: {1,13808}, {2,13835}, {3,13812}, {4,13786}, {8,13822}, {1328,13798}, {1650,13809}, {13795,13813}, {13824,13826}, {13828,13830}
X(13821) = reflection of X(i) in X(j) for these (i,j): (13787,1125), (13807,5)
X(13821) = complement of X(1328)
X(13821) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,13798,1328), (141,12100,13701), (1328,13835,13798), (13820,13830,13828)
The reciprocal orthologic center of these triangles is X(13785)
X(13822) lies on these lines: {1,1328}, {8,13821}, {30,7980}, {56,13795}, {145,13798}, {517,13786}, {519,13808}, {952,13812}, {2098,13819}, {3242,13702}, {5603,13807}, {5604,13811}, {5605,13810}, {7967,13794}, {8192,13800}, {8210,13817}, {8211,13818}, {9997,13805}, {10247,13836}, {10800,13792}, {10944,13813}, {10950,13814}, {11396,13788}, {11910,13809}
X(13822) = midpoint of X(145) and X(13798)
X(13822) = reflection of X(i) in X(j) for these (i,j): (8,13821), (1328,1), (13799,13787)
X(13822) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,13799,13787), (13787,13799,1328), (13839,13840,1328)
The reciprocal orthologic center of these triangles is X(13824)
X(13823) lies on these lines: {115,13825}, {395,6307}, {531,3069}, {5460,13703}
The reciprocal orthologic center of these triangles is X(13823)
X(13824) lies on these lines: {2,1328}, {531,6301}, {3643,13704}, {6305,13084}, {6306,9885}
X(13824) = reflection of X(13826) in X(13821)
X(13824) = anticomplement of X(33489)
The reciprocal orthologic center of these triangles is X(13826)
X(13825) lies on these lines: {115,13823}, {396,6306}, {530,3069}, {5459,13705}
The reciprocal orthologic center of these triangles is X(13825)
X(13826) lies on these lines: {2,1328}, {530,6300}, {3642,13706}, {5613,13812}, {6304,13083}, {6307,9886}
X(13826) = reflection of X(13824) in X(13821)
X(13826) = anticomplement of X(33488)
The reciprocal orthologic center of these triangles is X(13828)
X(13827) lies on these lines: {69,5475}, {538,3069}, {3934,5591}
The reciprocal orthologic center of these triangles is X(13827)
X(13828) lies on these lines: {2,1328}, {30,13087}, {538,6316}, {1991,9892}, {3098,13708}, {6287,13812}, {6399,12306}
X(13828) = reflection of X(13830) in X(13821)
The reciprocal orthologic center of these triangles is X(13830)
X(13829) lies on these lines: {754,3069}, {3618,5355}, {6274,6704}
The reciprocal orthologic center of these triangles is X(13829)
X(13830) lies on these lines: {2,1328}, {754,6315}, {1991,3095}, {3818,13710}
X(13830) = reflection of X(13828) in X(13821)
The reciprocal orthologic center of these triangles is X(13832)
X(13831) lies on these lines: {2,9600}, {115,1992}, {1327,6436}, {3069,13769}
X(13831) = {X(115), X(1992)}-harmonic conjugate of X(13832)
The reciprocal orthologic center of these triangles is X(13831)
X(13832) lies on these lines: {115,1992}, {1328,6435}, {3068,13833}
X(13832) = {X(115), X(1992)}-harmonic conjugate of X(13831)
The reciprocal orthologic center of these triangles is X(13783)
X(13833) lies on these lines: {2,13782}, {524,13650}, {598,13637}, {1328,5066}, {3068,13832}, {13638,13801}, {13644,13662}
The reciprocal orthologic center of these triangles is X(13835)
X(13834) lies on these lines: {5,6}, {115,6560}, {230,6561}, {637,8972}, {641,7376}, {3054,9600}, {3069,13771}, {3619,5490}, {5254,5420}, {5286,10577}, {5418,7746}, {6304,11488}, {6305,11489}, {6395,12602}, {6396,12124}, {6565,7735}
X(13834) = reflection of X(13771) in X(3069)
X(13834) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,485,13651), (485,486,6278)
The reciprocal orthologic center of these triangles is X(13834)
X(13835) lies on these lines: {2,1328}, {3,6278}, {30,6290}, {489,5420}, {519,13808}, {599,8703}, {1991,6560}, {3058,13816}, {3103,7757}, {3524,13794}, {3534,13810}, {3545,13807}, {3582,13838}, {3584,13837}, {5055,13836}, {5064,13788}, {5434,13815}, {5860,6396}, {5861,9741}, {6280,12975}, {7389,9680}, {7865,13805}, {11147,13701}, {11238,13819}
X(13835) = midpoint of X(i) and X(j) for these {i,j}: {2,13798}, {13791,13797}
X(13835) = reflection of X(i) in X(j) for these (i,j): (2,13821), (1328,2), (6561,13789)
X(13835) = complement of X(33457)
X(13835) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (599,8703,13712), (13798,13821,1328), (13804,13828,2)
The reciprocal orthologic center of these triangles is X(13785)
X(13836) lies on these lines: {3,1328}, {5,13798}, {30,12256}, {381,13807}, {517,13799}, {999,13838}, {1351,3543}, {1598,13788}, {1656,13821}, {3295,13819}, {3830,6279}, {3845,12313}, {5055,13835}, {5790,13808}, {7517,13800}, {9301,13805}, {9654,13815}, {9669,13816}, {10246,13787}, {10247,13822}, {11842,13792}, {11849,13795}, {11911,13809}, {11917,13811}, {11928,13813}, {11929,13814}, {11949,13817}, {11950,13818}, {12000,13839}, {12001,13840}
X(13836) = reflection of X(i) in X(j) for these (i,j): (3,1328), (13798,5), (13812,13807)
X(13836) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1351,3543,13713), (13807,13812,381), (13819,13837,3295)
The reciprocal orthologic center of these triangles is X(13785)
X(13837) lies on these lines: {1,1328}, {5,13816}, {12,13812}, {30,10067}, {35,13786}, {388,13794}, {495,13815}, {498,13821}, {611,13714}, {1479,13807}, {3085,13798}, {3295,13819}, {3298,13715}, {3584,13835}, {10037,13800}, {10038,13805}, {10039,13808}, {10040,13810}, {10041,13811}, {10068,11237}, {10523,13813}, {10801,13792}, {10954,13814}, {11398,13788}, {11507,13795}, {11912,13809}, {11951,13817}, {11952,13818}
X(13837) = midpoint of X(1328) and X(13839)
X(13837) = reflection of X(13815) in X(495)
X(13837) = {X(3295), X(13836)}-harmonic conjugate of X(13819)
The reciprocal orthologic center of these triangles is X(13785)
X(13838) lies on these lines: {1,1328}, {3,13819}, {5,13815}, {11,13812}, {30,10083}, {36,13786}, {496,13816}, {497,13794}, {499,13821}, {613,13715}, {999,13836}, {1478,13807}, {1737,13808}, {3086,13798}, {3297,13714}, {3582,13835}, {10046,13800}, {10047,13805}, {10048,13810}, {10049,13811}, {10084,11238}, {10523,13814}, {10802,13792}, {10948,13813}, {11399,13788}, {11508,13795}, {11913,13809}, {11953,13817}, {11954,13818}
X(13838) = midpoint of X(1328) and X(13840)
X(13838) = reflection of X(13816) in X(496)
The reciprocal orthologic center of these triangles is X(13785)
X(13839) lies on these lines: {1,1328}, {12,13813}, {30,13132}, {5552,13821}, {10528,13798}, {10531,13807}, {10803,13792}, {10805,13794}, {10834,13800}, {10878,13805}, {10915,13808}, {10929,13810}, {10930,13811}, {10942,13812}, {10955,13814}, {10956,13815}, {10958,13816}, {10965,13819}, {11248,13786}, {11400,13788}, {11509,13795}, {11914,13809}, {11955,13817}, {11956,13818}, {12000,13836}, {12594,13716}
X(13839) = reflection of X(1328) in X(13837)
The reciprocal orthologic center of these triangles is X(13785)
X(13840) lies on these lines: {1,1328}, {11,13814}, {30,13133}, {10527,13821}, {10529,13798}, {10532,13807}, {10804,13792}, {10806,13794}, {10835,13800}, {10879,13805}, {10916,13808}, {10931,13810}, {10932,13811}, {10943,13812}, {10949,13813}, {10957,13815}, {10959,13816}, {10966,13819}, {11249,13786}, {11401,13788}, {11510,13795}, {11915,13809}, {11957,13817}, {11958,13818}, {12001,13836}, {12595,13717}
X(13840) = reflection of X(1328) in X(13838)
The reciprocal parallelogic center of these triangles is X(13785)
X(13841) lies on these lines: {351,13842}, {523,13316}, {9135,13718}
X(13841) = reflection of X(13842) in X(351)
The reciprocal parallelogic center of these triangles is X(13785)
X(13842) lies on these lines: {351,13841}, {523,13319}, {3569,13719}
X(13842) = reflection of X(13841) in X(351)
X(13843) lies on these lines: {597,13720}, {1328,6477}, {3069,13782}
X(13843) = reflection of X(13782) in X(13844)
X(13844) lies on the line {3069,13782}
X(13844) = midpoint of X(13782) and X(13843)
The reciprocal orthologic center of these triangles is X(9870)
X(13845) lies on these lines: {2,13167}, {597,13652}, {2780,13762}, {2854,13774}, {9869,13758}, {12149,13757}, {13772,13783}
X(13845) = reflection of X(13772) in X(13783)
The reciprocal orthologic center of these triangles is X(3069)
X(13846) lies on these lines: {2,6}, {3,8960}, {4,6425}, {5,3592}, {30,485}, {45,5393}, {140,3594}, {371,381}, {372,5054}, {376,3070}, {382,6453}, {486,547}, {493,1989}, {519,8983}, {530,10668}, {531,10667}, {532,6305}, {533,6304}, {538,8992}, {539,8909}, {541,8994}, {542,8980}, {543,8997}, {549,1152}, {550,9680}, {566,8962}, {631,6426}, {754,8993}, {1124,3582}, {1328,5066}, {1335,3584}, {1587,3524}, {1588,3316}, {1599,11063}, {1656,6419}, {1853,11241}, {1990,3535}, {2043,5340}, {2044,5339}, {2066,11238}, {2067,11237}, {2549,13835}, {3071,3545}, {3155,7669}, {3297,9661}, {3298,9646}, {3311,5055}, {3526,6420}, {3529,10147}, {3534,6200}, {3536,6749}, {3543,6429}, {3590,3832}, {3627,9681}, {3628,10195}, {3679,7969}, {3830,6221}, {3839,6459}, {3843,6447}, {3845,6437}, {5023,13678}, {5064,5412}, {5070,6427}, {5073,6519}, {5309,6422}, {5341,6204}, {5420,6432}, {5475,8375}, {6199,6565}, {6411,6560}, {6412,12100}, {6417,10577}, {6424,7753}, {6433,11001}, {6438,11812}, {6439,9542}, {6442,11540}, {6468,9541}, {7297,7347}, {8553,8939}, {8963,13351}, {8966,8969}, {12602,12974}, {12968,13701}, {13586,13657}, {13662,13712}, {13798,13832}
X(13846) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,1991,599), (2,13637,1991), (2,13639,5860), (6,590,8253), (6,8253,8252), (395,396,3068), (590,3068,6), (615,7585,6), (1991,13663,2), (3068,8972,590), (3070,9540,6409), (5418,7583,1152), (13637,13663,599)
The reciprocal orthologic center of these triangles is X(3069)
X(13847) lies on these lines: {2,6}, {4,6426}, {5,3594}, {30,486}, {45,5405}, {140,3592}, {371,5054}, {372,381}, {376,3071}, {382,6454}, {485,547}, {494,1989}, {530,10672}, {531,10671}, {532,6301}, {533,6300}, {549,1151}, {631,6425}, {1124,3584}, {1327,5066}, {1335,3582}, {1587,3317}, {1588,3524}, {1600,11063}, {1656,6420}, {1853,11242}, {1990,3536}, {2043,5339}, {2044,5340}, {2362,4870}, {2549,13712}, {3070,3545}, {3156,7669}, {3297,10056}, {3298,10072}, {3312,5055}, {3526,6419}, {3529,10148}, {3534,6396}, {3535,6749}, {3543,6430}, {3591,3832}, {3628,10194}, {3679,7968}, {3830,6398}, {3839,6460}, {3843,6448}, {3845,6438}, {5023,13798}, {5064,5413}, {5070,6428}, {5073,6522}, {5309,6421}, {5341,6203}, {5414,11238}, {5418,6431}, {5475,8376}, {6395,6564}, {6411,12100}, {6412,6561}, {6418,10576}, {6423,7753}, {6434,11001}, {6437,11812}, {6441,11540}, {6470,9540}, {6502,11237}, {7297,7348}, {8553,8943}, {8962,13337}, {8981,10124}, {12601,12975}, {12963,13821}, {13586,13777}, {13678,13831}, {13782,13835}
X(13847) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,6,13846), (2,13759,5861), (2,13846,8253), (6,615,8252), (6,8252,8253), (395,396,3069), (590,7586,6), (615,3069,6), (5420,7584,1151), (8252,13846,2), (13757,13783,599)
The reciprocal orthologic center of these triangles is X(13785)
X(13848) lies on these lines: {371,13807}, {590,13821}, {1328,3068}, {8972,13798}, {8974,13810}, {8975,13811}, {8976,13812}, {9540,13786}, {13720,13846}, {13832,13835}
The reciprocal orthologic center of these triangles is X(13785)
X(13849) lies on these lines: {2,13782}, {6,13848}, {115,13823}, {372,13807}, {615,13821}, {1328,3069}
The reciprocal orthologic center of these triangles is X(13834)
X(13850) lies on these lines: {2,13832}, {115,1991}, {381,485}, {590,13835}, {6222,6250}, {12969,13847}, {13720,13846}
X(13850) = reflection of X(13846) in X(13848)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26302.
X(13851) lies on these lines: {4,51}, {5,13367}, {30,125}, {115,8779}, {184,381}, {265,1531}, {382,1204}, {403,1495}, {511,3153}, {546,6146}, {578,7547}, {1092,12293}, {1181,3843}, {1425,3585}, {1503,10151}, {1568,3292}, {1594,13403}, {1650,12096}, {2071,10733}, {3270,3583}, {3410,5907}, {3574,12241}, {3818,6467}, {3830,10605}, {3839,5476}, {3850,8254}, {5562,9927}, {5622,11645}, {7507,11424}, {7577,11430}, {10255,12038}, {10282,12289}, {11017,11577}, {12022,13366}, {12828,13202}
X(13851) = midpoint of X(i) and X(j) for these {i,j}: {2071,10733}, {13202,13399}
X(13851) = reflection of X(i) in X(j) for these (i,j): (403,7687), (1495,403), (1568,10297), (3292,1568), (13202,13473)
X(13851) = X(4511)-of-orthic-triangle if ABC is acute
X(13851) = Ehrmann-side-to-orthic similarity image of X(10540)
See Tran Quang Hung and Peter Moses, Hyacinthos 26315.
X(13852) lies on this line: {2,3}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26317.
X(13853) lies on these lines: {2,7367}, {4,6611}, {11,1435}, {84,5715}, {225,1427}, {226,1439}, {1422,2006}, {1436,7490}, {1440,6612}, {2184,5514}, {3772,7129}, {6356,6358}
X(13853) = {X(226), X(8808)}-harmonic conjugate of X(1903)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26317.
Let A'B'C' be the tangential triangle of the Kiepert hyperbola (i.e., the Schroeter triangle). Let A" be the intersection, other than X(127), of the nine-point circle and line A'X(127); define B" and C" cyclically. The lines AA", BB", CC" concur in X(13854). (Randy Hutson, July 21, 2017)
The trilinear polar of X(13854) meets the line at infinity at X(512). (Randy Hutson, July 21, 2017)
X(13854) lies on the cubic K701, the hyperbola {{A,B,C,X(2),X(6)}}, and these lines: {2,1235}, {4,251}, {6,66}, {22,5523}, {25,2353}, {111,1289}, {112,7391}, {127,13575}, {232,2165}, {468,8770}, {1383,6995}, {1400,2156}, {2395,6753}, {2987,6515}, {3172,5064}, {5133,8743}, {7735,8882}
X(13854) = isogonal conjugate of X(20806)
X(13854) = isotomic conjugate of X(34254)
X(13854) = polar conjugate of X(315)
X(13854) = X(22)-isoconjugate of X(63)
X(13854) = X(1974)-cross conjugate of X(4)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 26323.
X(13855) lies on the cubic K003 and these lines: {3,1075}, {577,6759}, {1092,2055}
X(13855) = isogonal conjugate of X(1075)
X(13855) = X(4)-cross conjugate of X(3)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26322.
X(13856) lies on and these lines:
{2,11016},{5,128},{140,389},{ 195,252},{930,7604},{1487, 1656}
Contributed by Peter Moses, July 11, 2017.
X(13857) lies on and these lines: {2, 51}, {30, 113}, {110, 10989}, {125, 524}, {323, 9140}, {381, 5651}, {401, 12117}, {542, 858}, {599, 5094}, {625, 5108}, {868, 1641}, {1092, 11572}, {1368, 13366}, {1648, 5107}, {1650, 3284}, {2393, 5648}, {3260, 9214}, {3291, 6034}, {3581, 5054}, {3849, 9181}, {3906, 4141}, {5461, 9127}, {5972, 7426}, {7464, 10706}, {8703, 13394}, {10719, 13415}, {10720, 13414}
X(13857) = midpoint of X(i) and X(j) for these {i,j}: {110, 10989}, {323, 9140}, {599, 10510}, {7464, 10706}
X(13857) = reflection of X(i) in X(j) for these {i,j}: {1495, 5642}, {5642, 11064}, {7426, 5972}
X(13857) = crossdifference of every pair of points on line {1383, 2433}
X(13857) = X(2),X(5476)}-harmonic conjugate of X(373)
X(13857) = isoconjugate of X(j) and X(j) for these {i,j}: {598, 2159}, {1383, 2349}
X(13857) = crossdifference of every pair of points on line {1383, 2433}
X(13857) = barycentric product X(i)*X(j) for these {i,j}: {30, 599}, {574, 3260}, {1495, 9464}, {1637, 9146}, {2407, 3906}, {5094, 11064}
X(13857) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 598}, {574, 74}, {599, 1494}, {1495, 1383}, {1637, 8599}, {2420, 11636}, {3906, 2394}, {8288, 12079}, {8541, 8749}
Contributed by César Eliud Lozada, July 13, 2017. See cubic K912.
X(13858) lies on the cubic K912 and these lines: {3,67}, {13,13233}, {14,1995}, {15,110}, {16,2854}, {23,531}, {61,6593}, {62,895}, {99,11612}, {617,7492}, {619,7496}, {5981,5987}
X(13858) = reflection of X(10658) in X(110)
X(13858) = circumcircle-inverse of X(5463)
X(13858) = Thomson-isogonal conjugate of X(34313)
Contributed by César Eliud Lozada, July 13, 2017. See cubic K912.
X(13859) lies on the cubic K912 and these lines: {3,67}, {13,1995}, {14,13233}, {15,2854}, {16,110}, {23,530}, {61,895}, {62,6593}, {99,11613}, {616,7492}, {618,7496}, {5980,5987}
X(13859) = reflection of X(10657) in X(110)
X(13859) = circumcircle-inverse of X(5464)
X(13859) = Thomson-isogonal conjugate of X(34314)
X(13860) lies on these lines: {2, 3}, {6, 98}, {114, 3818}, {147, 7777}, {157, 3425}, {182, 9418}, {183, 511}, {194, 10983}, {230, 5017}, {325, 1352}, {385, 1351}, {399, 5987}, {542, 11163}, {574, 10837}, {842, 2453}, {1007, 12215}, {1184, 10982}, {1384, 10788}, {1503, 3815}, {1975, 6248}, {2076, 9993}, {2794, 5475}, {2967, 9308}, {3053, 12110}, {3054, 9754}, {3095, 7754}, {3311, 10845}, {3312, 10846}, {3329, 5050}, {3564, 7774}, {5013, 11257}, {5024, 7709}, {5031, 7778}, {5093, 7766}, {5188, 7815}, {5309, 11623}, {5476, 6055}, {5939, 12177}, {6032, 6232}, {6054, 9830}, {6199, 10847}, {6221, 10839}, {6395, 10848}, {6398, 10840}, {6468, 10841}, {6469, 10842}, {6776, 7736}, {6785, 13240}, {7612, 9748}, {7753, 10991}, {7779, 11898}, {7785, 9863}, {7786, 12203}, {8550, 9300}, {8667, 11477}, {8719, 9743}, {9769, 10752}, {9770, 11180}, {9772, 13188}, {9865, 13108}, {10358, 13335}, {10796, 12042}
X(13860) = midpoint of X(10837) and X(10838)
X(13860) = reflection of X(i) in X(j) for these {i,j}: {9744, 3815}, {11317, 381}
X(13860) = complement of X(37182)
X(13860) = anticomplement of X(37451)
X(13860) = orthocentroidal-circle inverse of X(1513)
X(13860) = orthoptic-circle-of-Steiner-inellipse inverse of X(5112)
X(13860) = Thomson-isogonal conjugate of X(34099)
X(13860) = pole, wrt orthoptic circle of Steiner inellipse, of trilinear polar of X(262) (line X(523)X(3569))
X(13860) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,4,1513),(2,5999,3),(3,5,7770),(5,8361,3090),(6,98,9755),(6,9756,98),(20,7824,3),(98,262,6),(230,5480,9753),(262,9756,9755),(383,1080,381),(631,7470,3),(1344,1345,7418),(2043,2044,8370),(6039,6040,11676),(6248,9737,1975),(6811,6813,5),(6998,7380,2049),(7000,7374,3832)
X(13861) lies on these lines: {2, 3}, {6, 156}, {51, 10539}, {110, 9781}, {115, 9608}, {143, 155}, {154, 13364}, {206, 575}, {373, 13336}, {394, 10263}, {495, 10046}, {496, 10037}, {498, 9673}, {499, 9658}, {567, 9707}, {568, 11441}, {569, 1495}, {576, 9925}, {952, 11365}, {1147, 10110}, {1173, 11422}, {1181, 5946}, {1192, 11472}, {1498, 13630}, {1506, 9609}, {1614, 5640}, {1843, 8538}, {3167, 13451}, {3527, 8780}, {3814, 9712}, {3818, 5449}, {5446, 9306}, {5448, 9932}, {5462, 6759}, {5480, 9820}, {5609, 12236}, {5651, 10625}, {5663, 9786}, {5886, 8185}, {5901, 9798}, {6800, 13353}, {7592, 10540}, {7603, 9700}, {7988, 9626}, {7989, 9625}, {8192, 10283}, {8253, 9683}, {8254, 9920}, {10272, 12310}, {10316, 10985}, {10592, 10831}, {10593, 10832}, {11801, 12412}
X(13861) = midpoint of X(i) and X(j) for these {i,j}: {5, 7715}, {1598, 6642}
X(13861) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 12088, 3), (3, 3628, 13154), (3, 5198, 3627), (3, 7517, 12088), (3, 7545, 10594), (3, 10594, 7530), (3, 11284, 632), (4, 6644, 12084), (4, 7506, 6644), (4, 13595, 7506), (5, 25, 26), (5, 26, 7514), (5, 7502, 7395), (5, 10154, 140), (5, 11818, 7564), (5, 13490, 4), (22, 1656, 7516), (23, 3090, 3), (24, 381, 7526), (25, 1598, 7715), (25, 5020, 10154), (25, 7395, 9714), (25, 7529, 5), (51, 10539, 12161), (156, 10095, 6), (381, 13621, 24), (546, 12106, 3), (547, 7525, 7393), (1658, 3850, 9818), (1995, 7545, 7530), (1995, 10594, 3), (2070, 3851, 7503), (2937, 5055, 7509), (3091, 3518, 3), (3517, 9818, 1658), (3526, 5899, 10323), (3542, 7528, 5), (3549, 6997, 5), (3861, 11250, 1597), (5020, 7387, 140), (5070, 13564, 7485), (6642, 7715, 26), (7387, 10154, 26), (7393, 9909, 7525), (7393, 11484, 547), (7394, 7505, 5576), (7395, 9714, 7502), (7502, 9714, 26), (7506, 13490, 26), (9909, 11484, 7393)
X(13862) lies on these lines: {2, 3}, {6, 147}, {32, 9863}, {98, 3407}, {114, 262}, {132, 264}, {141, 6194}, {182, 7875}, {183, 5207}, {193, 9748}, {265, 5987}, {325, 5480}, {385, 1352}, {511, 3314}, {576, 7837}, {1350, 7868}, {1351, 7779}, {1503, 7792}, {2080, 9996}, {2456, 10334}, {2794, 3972}, {3095, 7906}, {3096, 5188}, {3106, 6115}, {3107, 6114}, {3329, 9744}, {3564, 7766}, {3618, 7710}, {5103, 7778}, {5171, 7904}, {5304, 5921}, {5359, 11441}, {5476, 6054}, {5984, 9755}, {6033, 10796}, {6055, 10033}, {6287, 10104}, {7616, 8556}, {7764, 9764}, {7788, 11477}, {7803, 8721}, {7823, 12110}, {7831, 8722}, {7834, 12203}, {7864, 11257}, {7891, 9737}, {8176, 9877}, {9478, 9756}, {9774, 10168}, {9866, 13111}, {9873, 13335}
X(13862) = orthocentroidal-circle inverse of X(5999)
X(13862) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,4,5999),(4,5,5025),(5,1513,2),(114,262,7777),(381,11317,3839),(1352,9753,385),(5025,7892,7876)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26330.
X(13863) lies on these lines: {1141,13619} et al
X(13863) = isoconjugate of X(656) and X(10096)
X(13863) = barycentric quotient X(112)/X(10096)
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 26332.
X(13864) lies on these lines: {6841, 11227}, {10124, 13865}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 26332.
X(13865) lies on these lines: {5,40}, {946,12680}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 26354.
X(13866) lies on this line: {1,5806}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 26354.
X(13867) lies on these lines:
{1,5806}, {8,3740}, {65,390}, {354,4297}, {950,8581}, {2136,3303}, {2951,11518}, {3057,6738}, {3488,12675}, {3698,10389}, {3893,4423}, {4321,5665}, {5836,8236}, {8275,9957}, {9848,12672}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26360.
X(13868) lies on these lines:
{104, 5663}, {109, 3028}, {513, 3109}, {6789, 10176}
X(13868) = reflection of X(3109) in the line X(1)X(3)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 26360.
X(13869) lies on these lines:
{1, 523}, {30, 944}, {265, 952}, {405, 2452}, {6741, 11735}
X(13869) = midpoint X(6742) and X(7984)
X(13869) = reflection of X(i) in X(j) for these (i,j): (3109, 1), (6741, 11735)
Theorem: If any conic C be inscribed in a given triangle and a
confocal to it pass through the circumcenter, then the Aiyar-circle-of-C through the intersections of these two confocals touches the nine-points circle of the triangle. Reference: Ramaswami Aiyar: A General Theorem on the Nine-points Circle, Proceedings of the Edinburgh Mathematical Society, Volume 15, February 1896, pp. 74-75.
Notes: The touchpoint of the nine-points circle and the Aiyar-circle-of-the-Steiner inellipse is X(1313). For the Brocard inellipse and the McBeath inconic, the confocal conics through X(3) are degenerated.
Centers X(13870) to X(13872) were contributed by César Eliud Lozada, July 17, 2017.
X(13870) lies on the nine-points circle and these lines: {5,542}, {1312,3414}, {1313,3413}, {1348,13414}, {1349,13415}, {2039,2574}, {2040,2575}
See X(13870).
X(13871) lies on the nine-points circle and the line {5,9}
See X(13870)
X(13872) lies on the nine-points circle and the line {5,6}
3rd & 4th tri-squares triangles and related centers: X(13873)-X(13993)
This preamble and centers X(13873)-X(13993) were contributed by César Eliud Lozada, July 15, 2017.
Tri-squares triangles were defined in the preamble of X(13637). Centers related to the 3rd and 4th tri-squares triangles are showed in the following tables:
3rd tri-squares triangle |
---|
In this cell, A'B'C' is the 3rd tri-squares triangle of ABC. A'B'C' is directly similar to the Lucas-tangents triangle. List of triangles perspective to A'B'C' and ETC index of perspector: (Note: An asterisk * means that both triangles are homothetic.) (ABC, 2), (anticomplementary, 2), (4th Brocard, 2), (circummedial, 2), (5th Euler, 2), (medial, 2), (3rd Parry, 2), (3rd tri-squares-central, 485), (4th tri-squares, 2), (outer-Vecten*, 590) List of triangles orthologic to A'B'C' with ETC indexes of orthologic centers: (ABC, 485, 485), (ABC-X3 reflections, 485, 12124), (anti-Aquila, 485, 12269), (anti-Ara, 485, 12148), (anti-Artzt, 2, 12159), (1st anti-Brocard, 13873, 9868), (5th anti-Brocard, 485, 12211), (6th anti-Brocard, 13873, 12218), (anti-Euler, 485, 12257), (anti-Mandart-incircle, 485, 12344), (anti-McCay, 13874, 9893), (anticomplementary, 485, 488), (Aquila, 485, 9907), (Ara, 485, 9922), (Artzt, 2, 9768), (1st Auriga, 485, 12486), (2nd Auriga, 485, 12487), (1st Brocard, 13873, 6228), (5th Brocard, 485, 9987), (6th Brocard, 13873, 9992), (Euler, 485, 6250), (outer-Garcia, 485, 12788), (Gossard, 485, 12800), (inner-Grebe, 485, 6279), (outer-Grebe, 485, 6278), (Johnson, 485, 6289), (inner-Johnson, 485, 12929), (outer-Johnson, 485, 12939), (1st Johnson-Yff, 485, 12949), (2nd Johnson-Yff, 485, 12959), (Lucas homothetic, 485, 13004), (Lucas(-1) homothetic, 485, 13005), (Mandart-incircle, 485, 13082), (McCay, 13874, 13088), (medial, 485, 641), (5th mixtilinear, 485, 7981), (inner-Napoleon, 13875, 6305), (outer-Napoleon, 13876, 6304), (1st Neuberg, 13877, 6312), (2nd Neuberg, 13878, 6311), (inner-squares, 1151, 485), (1st tri-squares-central, 13846, 3068), (2nd tri-squares-central, 13850, 13834), (3rd tri-squares-central, 485, 13879), (4th tri-squares-central, 485, 13880), (1st tri-squares, 2, 13651), (2nd tri-squares, 2, 13771), (4th tri-squares, 13881, 13881), (inner-Vecten, 13881, 488), (outer-Vecten, 13882, 485), (X3-ABC reflections, 485, 12602), (inner-Yff, 485, 10068), (outer-Yff, 485, 10084), (inner-Yff tangents, 485, 13134), (outer-Yff tangents, 485, 13135) List of triangles parallelogic to A'B'C' with ETC indexes of parallelogic centers: (ABC, 2), (anticomplementary, 2), (4th Brocard, 2), (circummedial, 2), (5th Euler, 2), (medial, 2), (3rd Parry, 2), ((1st Parry, 485, 13317), (2nd Parry, 485, 13320)
The appearance of (I, J) in the following list means that X(I)-of-A'B'C'=X(J):(1) (2, 13846), (3, 13879), (4, 13882), (5, 13924), (13, 13876), (14, 13875), (486, 485), (487, 1151), (642, 8981), (1132, 13881), (1328, 2) |
3rd tri-squares-central triangle |
---|
In this cell, A'B'C' is the 3rd tri-squares-central triangle of ABC. Triangles directly similar to A'B'C': 1st Parry, 2nd Parry Triangles inversely similar to A'B'C': 1st anti-Brocard, 6th anti-Brocard, anti-orthocentroidal, 1st Brocard, 6th Brocard, inner-Garcia, orthocentroidal, orthosymmedial List of triangles perspective to A'B'C' and ETC index of perspector: (Note: An asterisk * means that both triangles are homothetic.) (ABC*, 3068), (ABC-X3 reflections*, 9540), (anti-Aquila*, 13883), (anti-Ara*, 13884), (5th anti-Brocard*, 13885), (anti-Euler*, 13886), (anti-Mandart-incircle*, 13887), (anticomplementary*, 8972), (Aquila*, 13888), (Ara*, 13889), (1st Auriga*, 13890), (2nd Auriga*, 13891), (5th Brocard*, 13892), (Euler*, 371), (outer-Garcia*, 13893), (Gossard*, 13894), (inner-Grebe*, 8974), (outer-Grebe*, 8975), (Johnson*, 8976), (inner-Johnson*, 13895), (outer-Johnson*, 13896), (1st Johnson-Yff*, 13897), (2nd Johnson-Yff*, 13898), (Lucas homothetic*, 13899), (Lucas(-1) homothetic*, 13900), (Mandart-incircle*, 13901), (medial*, 590), (5th mixtilinear*, 13902), (inner-squares, 8966), (4th tri-squares-central*, 6), (3rd tri-squares, 485), (X3-ABC reflections*, 13903), (inner-Yff*, 13904), (outer-Yff*, 13905), (inner-Yff tangents*, 13906), (outer-Yff tangents*, 13907) List of triangles orthologic to A'B'C' with ETC indexes of orthologic centers: (ABC, 485, 4), (ABC-X3 reflections, 485, 20), (anti-Aquila, 485, 946), (anti-Ara, 485, 3575), (anti-Artzt, 13846, 2), (anti-Ascella, 8981, 1593), (1st anti-Brocard, 8980, 5999), (5th anti-Brocard, 485, 12110), (6th anti-Brocard, 8980, 2456), (1st anti-circumperp, 8981, 20), (anti-Conway, 8981, 578), (2nd anti-Conway, 8981, 389), (anti-Euler, 485, 4), (3rd anti-Euler, 8981, 12111), (4th anti-Euler, 8981, 6241), (anti-excenters-reflections, 8981, 4), (anti-Hutson intouch, 8981, 3), (anti-incircle-circles, 8981, 3), (anti-inverse-in-incircle, 8981, 4), (anti-Mandart-incircle, 485, 11500), (anti-McCay, 13908, 9855), (6th anti-mixtilinear, 8981, 3), (anti-orthocentroidal, 8994, 12112), (anticomplementary, 485, 20), (Aquila, 485, 5691), (Ara, 485, 3), (Aries, 13909, 9833), (Artzt, 13846, 2), (Ascella, 8983, 3), (Atik, 8983, 9856), (1st Auriga, 485, 9834), (2nd Auriga, 485, 9835), (1st Brocard, 8980, 3), (5th Brocard, 485, 9873), (6th Brocard, 8980, 20), (circumorthic, 8981, 4), (1st circumperp, 8983, 3), (2nd circumperp, 8983, 3), (inner-Conway, 8983, 8), (Conway, 8983, 20), (2nd Conway, 8983, 962), (3rd Conway, 8983, 1), (1st Ehrmann, 13910, 3), (2nd Ehrmann, 8981, 576), (Euler, 485, 4), (2nd Euler, 8981, 3), (3rd Euler, 8983, 5), (4th Euler, 8983, 5), (excenters-midpoints, 13911, 10), (excenters-reflections, 8983, 7982), (excentral, 8983, 40), (extangents, 8981, 40), (extouch, 8987, 40), (2nd extouch, 8983, 4), (3rd extouch, 13912, 4), (Fuhrmann, 8988, 3), (inner-Garcia, 13913, 40), (outer-Garcia, 485, 40), (Gossard, 485, 12113), (inner-Grebe, 485, 5871), (outer-Grebe, 485, 5870), (hexyl, 8983, 1), (Honsberger, 8983, 390), (Hutson extouch, 13914, 40), (inner-Hutson, 8983, 9836), (Hutson intouch, 8983, 1), (outer-Hutson, 8983, 9837), (1st Hyacinth, 13915, 6102), (2nd Hyacinth, 13909, 6146), (incircle-circles, 8983, 1), (intangents, 8981, 1), (intouch, 8983, 1), (inverse-in-incircle, 8983, 942), (Johnson, 485, 3), (inner-Johnson, 485, 12114), (outer-Johnson, 485, 11500), (1st Johnson-Yff, 485, 55), (2nd Johnson-Yff, 485, 56), (1st Kenmotu diagonals, 8981, 371), (2nd Kenmotu diagonals, 8981, 372), (Kosnita, 8981, 3), (Lucas homothetic, 485, 9838), (Lucas(-1) homothetic, 485, 9839), (Mandart-incircle, 485, 6284), (McCay, 13908, 3), (medial, 485, 3), (midheight, 8991, 4), (5th mixtilinear, 485, 944), (6th mixtilinear, 8983, 1), (inner-Napoleon, 13916, 3), (outer-Napoleon, 13917, 3), (1st Neuberg, 8992, 3), (2nd Neuberg, 8993, 3), (orthic, 8981, 4), (orthocentroidal, 8994, 4), (1st orthosymmedial, 13918, 4), (2nd Pamfilos-Zhou, 8983, 7596), (reflection, 8995, 4), (1st Schiffler, 13919, 79), (2nd Schiffler, 13911, 80), (1st Sharygin, 8983, 9840), (submedial, 8981, 5), (tangential, 8981, 3), (tangential-midarc, 8983, 8091), (2nd tangential-midarc, 8983, 8092), (inner tri-equilateral, 8981, 15), (outer tri-equilateral, 8981, 16), (1st tri-squares-central, 13920, 13665), (2nd tri-squares-central, 13848, 13785), (4th tri-squares-central, 485, 486), (1st tri-squares, 13846, 3068), (2nd tri-squares, 13846, 3069), (3rd tri-squares, 13879, 485), (4th tri-squares, 13921, 486), (Trinh, 8981, 3), (inner-Vecten, 13921, 3), (outer-Vecten, 13879, 3), (X3-ABC reflections, 485, 382), (Yff central, 8983, 8351), (inner-Yff, 485, 1478), (outer-Yff, 485, 1479), (inner-Yff tangents, 485, 12115), (outer-Yff tangents, 485, 12116) List of triangles parallelogic to A'B'C' with ETC indexes of parallelogic centers: (1st anti-Brocard, 8997, 385), (6th anti-Brocard, 8997, 1691), (anti-orthocentroidal, 8998, 323), (1st Brocard, 8997, 6), (6th Brocard, 8997, 194), (inner-Garcia, 13922, 1), (orthocentroidal, 8998, 2), (1st orthosymmedial, 13923, 6), (1st Parry, 485, 9131), (2nd Parry, 485, 9979), (2nd Sharygin, 8983, 659) The appearance of (I, J) in the following list means that X(I)-of-A'B'C'=X(J):(1) (1, 8983), (2, 13846), (3, 8981), (4, 485), (5, 13925), (6, 13910), (8, 13911), (13, 13917), (14, 13916), (20, 1151), (40, 13912), (54, 8995), (64, 8991), (68, 13909), (74, 8994), (76, 8992), (80, 8988), (83, 8993), (84, 8987), (98, 8980), (99, 8997), (100, 13922), (104, 13913), (110, 8998), (112, 13923), (193, 6), (265, 13915), (485, 13879), (486, 13921), (488, 13882), (492, 590), (641, 13924), (671, 13908), (1297, 13918), (1327, 13920), (1328, 13848) |
4th tri-squares triangle |
---|
In this cell, A'B'C' is the 4th tri-squares triangle of ABC. A'B'C' is directly similar to the Lucas(-1) tangents triangle List of triangles perspective to A'B'C' and ETC index of perspector: (Note: An asterisk * means that both triangles are homothetic.) (ABC*, 3068), (ABC-X3 reflections*, 9540), (anti-Aquila*, 13883), (anti-Ara*, 13884), (5th anti-Brocard*, 13885), (anti-Euler*, 13886), (anti-Mandart-incircle*, 13887), (anticomplementary*, 8972), (Aquila*, 13888), (Ara*, 13889), (1st Auriga*, 13890), (2nd Auriga*, 13891), (5th Brocard*, 13892), (Euler*, 371), (outer-Garcia*, 13893), (Gossard*, 13894), (inner-Grebe*, 8974), (outer-Grebe*, 8975), (Johnson*, 8976), (inner-Johnson*, 13895), (outer-Johnson*, 13896), (1st Johnson-Yff*, 13897), (2nd Johnson-Yff*, 13898), (Lucas homothetic*, 13899), (Lucas(-1) homothetic*, 13900), (Mandart-incircle*, 13901), (medial*, 590), (5th mixtilinear*, 13902), (inner-squares, 8966), (4th tri-squares-central*, 6), (3rd tri-squares, 485), (X3-ABC reflections*, 13903), (inner-Yff*, 13904), (outer-Yff*, 13905), (inner-Yff tangents*, 13906), (outer-Yff tangents*, 13907) List of triangles orthologic to A'B'C' with ETC indexes of orthologic centers: (ABC, 485, 4), (ABC-X3 reflections, 485, 20), (anti-Aquila, 485, 946), (anti-Ara, 485, 3575), (anti-Artzt, 13846, 2), (anti-Ascella, 8981, 1593), (1st anti-Brocard, 8980, 5999), (5th anti-Brocard, 485, 12110), (6th anti-Brocard, 8980, 2456), (1st anti-circumperp, 8981, 20), (anti-Conway, 8981, 578), (2nd anti-Conway, 8981, 389), (anti-Euler, 485, 4), (3rd anti-Euler, 8981, 12111), (4th anti-Euler, 8981, 6241), (anti-excenters-reflections, 8981, 4), (anti-Hutson intouch, 8981, 3), (anti-incircle-circles, 8981, 3), (anti-inverse-in-incircle, 8981, 4), (anti-Mandart-incircle, 485, 11500), (anti-McCay, 13908, 9855), (6th anti-mixtilinear, 8981, 3), (anti-orthocentroidal, 8994, 12112), (anticomplementary, 485, 20), (Aquila, 485, 5691), (Ara, 485, 3), (Aries, 13909, 9833), (Artzt, 13846, 2), (Ascella, 8983, 3), (Atik, 8983, 9856), (1st Auriga, 485, 9834), (2nd Auriga, 485, 9835), (1st Brocard, 8980, 3), (5th Brocard, 485, 9873), (6th Brocard, 8980, 20), (circumorthic, 8981, 4), (1st circumperp, 8983, 3), (2nd circumperp, 8983, 3), (inner-Conway, 8983, 8), (Conway, 8983, 20), (2nd Conway, 8983, 962), (3rd Conway, 8983, 1), (1st Ehrmann, 13910, 3), (2nd Ehrmann, 8981, 576), (Euler, 485, 4), (2nd Euler, 8981, 3), (3rd Euler, 8983, 5), (4th Euler, 8983, 5), (excenters-midpoints, 13911, 10), (excenters-reflections, 8983, 7982), (excentral, 8983, 40), (extangents, 8981, 40), (extouch, 8987, 40), (2nd extouch, 8983, 4), (3rd extouch, 13912, 4), (Fuhrmann, 8988, 3), (inner-Garcia, 13913, 40), (outer-Garcia, 485, 40), (Gossard, 485, 12113), (inner-Grebe, 485, 5871), (outer-Grebe, 485, 5870), (hexyl, 8983, 1), (Honsberger, 8983, 390), (Hutson extouch, 13914, 40), (inner-Hutson, 8983, 9836), (Hutson intouch, 8983, 1), (outer-Hutson, 8983, 9837), (1st Hyacinth, 13915, 6102), (2nd Hyacinth, 13909, 6146), (incircle-circles, 8983, 1), (intangents, 8981, 1), (intouch, 8983, 1), (inverse-in-incircle, 8983, 942), (Johnson, 485, 3), (inner-Johnson, 485, 12114), (outer-Johnson, 485, 11500), (1st Johnson-Yff, 485, 55), (2nd Johnson-Yff, 485, 56), (1st Kenmotu diagonals, 8981, 371), (2nd Kenmotu diagonals, 8981, 372), (Kosnita, 8981, 3), (Lucas homothetic, 485, 9838), (Lucas(-1) homothetic, 485, 9839), (Mandart-incircle, 485, 6284), (McCay, 13908, 3), (medial, 485, 3), (midheight, 8991, 4), (5th mixtilinear, 485, 944), (6th mixtilinear, 8983, 1), (inner-Napoleon, 13916, 3), (outer-Napoleon, 13917, 3), (1st Neuberg, 8992, 3), (2nd Neuberg, 8993, 3), (orthic, 8981, 4), (orthocentroidal, 8994, 4), (1st orthosymmedial, 13918, 4), (2nd Pamfilos-Zhou, 8983, 7596), (reflection, 8995, 4), (1st Schiffler, 13919, 79), (2nd Schiffler, 13911, 80), (1st Sharygin, 8983, 9840), (submedial, 8981, 5), (tangential, 8981, 3), (tangential-midarc, 8983, 8091), (2nd tangential-midarc, 8983, 8092), (inner tri-equilateral, 8981, 15), (outer tri-equilateral, 8981, 16), (1st tri-squares-central, 13920, 13665), (2nd tri-squares-central, 13848, 13785), (4th tri-squares-central, 485, 486), (1st tri-squares, 13846, 3068), (2nd tri-squares, 13846, 3069), (3rd tri-squares, 13879, 485), (4th tri-squares, 13921, 486), (Trinh, 8981, 3), (inner-Vecten, 13921, 3), (outer-Vecten, 13879, 3), (X3-ABC reflections, 485, 382), (Yff central, 8983, 8351), (inner-Yff, 485, 1478), (outer-Yff, 485, 1479), (inner-Yff tangents, 485, 12115), (outer-Yff tangents, 485, 12116) List of triangles parallelogic to A'B'C' with ETC indexes of parallelogic centers: (1st Parry, 486, 13316), (2nd Parry, 486, 13319) The appearance of (I, J) in the following list means that X(I)-of-A'B'C'=X(J):(1) (2, 13847), (3, 13933), (4, 13934), (13, 13928), (14, 13929), (486, 486), (487, 1152), (642, 13966), (1132, 13881), (1328, 2) |
4th tri-squares-central triangle |
---|
In this cell, A'B'C' is the 4th tri-squares-central triangle of ABC. Triangles directly similar to A'B'C': 1st Parry, 2nd Parry Triangles inversely similar to A'B'C': 1st anti-Brocard, 6th anti-Brocard, anti-orthocentroidal, 1st Brocard, 6th Brocard, inner-Garcia, orthocentroidal, orthosymmedial List of triangles perspective to A'B'C' and ETC index of perspector: (Note: An asterisk * means that both triangles are homothetic.) (ABC*, 3069), (ABC-X3 reflections*, 13935), (anti-Aquila*, 13936), (anti-Ara*, 13937), (5th anti-Brocard*, 13938), (anti-Euler*, 13939), (anti-Mandart-incircle*, 13940), (anticomplementary*, 13941), (Aquila*, 13942), (Ara*, 13943), (1st Auriga*, 13944), (2nd Auriga*, 13945), (5th Brocard*, 13946), (Euler*, 372), (outer-Garcia*, 13947), (Gossard*, 13948), (inner-Grebe*, 13949), (outer-Grebe*, 13950), (Johnson*, 13951), (inner-Johnson*, 13952), (outer-Johnson*, 13953), (1st Johnson-Yff*, 13954), (2nd Johnson-Yff*, 13955), (Lucas homothetic*, 13956), (Lucas(-1) homothetic*, 13957), (Mandart-incircle*, 13958), (medial*, 615), (5th mixtilinear*, 13959), (outer-squares, 13960), (3rd tri-squares-central*, 6), (4th tri-squares, 486), (X3-ABC reflections*, 13961), (inner-Yff*, 13962), (outer-Yff*, 13963), (inner-Yff tangents*, 13964), (outer-Yff tangents*, 13965) List of triangles orthologic to A'B'C' with ETC indexes of orthologic centers: (ABC, 486, 4), (ABC-X3 reflections, 486, 20), (anti-Aquila, 486, 946), (anti-Ara, 486, 3575), (anti-Artzt, 13847, 2), (anti-Ascella, 13966, 1593), (1st anti-Brocard, 13967, 5999), (5th anti-Brocard, 486, 12110), (6th anti-Brocard, 13967, 2456), (1st anti-circumperp, 13966, 20), (anti-Conway, 13966, 578), (2nd anti-Conway, 13966, 389), (anti-Euler, 486, 4), (3rd anti-Euler, 13966, 12111), (4th anti-Euler, 13966, 6241), (anti-excenters-reflections, 13966, 4), (anti-Hutson intouch, 13966, 3), (anti-incircle-circles, 13966, 3), (anti-inverse-in-incircle, 13966, 4), (anti-Mandart-incircle, 486, 11500), (anti-McCay, 13968, 9855), (6th anti-mixtilinear, 13966, 3), (anti-orthocentroidal, 13969, 12112), (anticomplementary, 486, 20), (Aquila, 486, 5691), (Ara, 486, 3), (Aries, 13970, 9833), (Artzt, 13847, 2), (Ascella, 13971, 3), (Atik, 13971, 9856), (1st Auriga, 486, 9834), (2nd Auriga, 486, 9835), (1st Brocard, 13967, 3), (5th Brocard, 486, 9873), (6th Brocard, 13967, 20), (circumorthic, 13966, 4), (1st circumperp, 13971, 3), (2nd circumperp, 13971, 3), (inner-Conway, 13971, 8), (Conway, 13971, 20), (2nd Conway, 13971, 962), (3rd Conway, 13971, 1), (1st Ehrmann, 13972, 3), (2nd Ehrmann, 13966, 576), (Euler, 486, 4), (2nd Euler, 13966, 3), (3rd Euler, 13971, 5), (4th Euler, 13971, 5), (excenters-midpoints, 13973, 10), (excenters-reflections, 13971, 7982), (excentral, 13971, 40), (extangents, 13966, 40), (extouch, 13974, 40), (2nd extouch, 13971, 4), (3rd extouch, 13975, 4), (Fuhrmann, 13976, 3), (inner-Garcia, 13977, 40), (outer-Garcia, 486, 40), (Gossard, 486, 12113), (inner-Grebe, 486, 5871), (outer-Grebe, 486, 5870), (hexyl, 13971, 1), (Honsberger, 13971, 390), (Hutson extouch, 13978, 40), (inner-Hutson, 13971, 9836), (Hutson intouch, 13971, 1), (outer-Hutson, 13971, 9837), (1st Hyacinth, 13979, 6102), (2nd Hyacinth, 13970, 6146), (incircle-circles, 13971, 1), (intangents, 13966, 1), (intouch, 13971, 1), (inverse-in-incircle, 13971, 942), (Johnson, 486, 3), (inner-Johnson, 486, 12114), (outer-Johnson, 486, 11500), (1st Johnson-Yff, 486, 55), (2nd Johnson-Yff, 486, 56), (1st Kenmotu diagonals, 13966, 371), (2nd Kenmotu diagonals, 13966, 372), (Kosnita, 13966, 3), (Lucas homothetic, 486, 9838), (Lucas(-1) homothetic, 486, 9839), (Mandart-incircle, 486, 6284), (McCay, 13968, 3), (medial, 486, 3), (midheight, 13980, 4), (5th mixtilinear, 486, 944), (6th mixtilinear, 13971, 1), (inner-Napoleon, 13981, 3), (outer-Napoleon, 13982, 3), (1st Neuberg, 13983, 3), (2nd Neuberg, 13984, 3), (orthic, 13966, 4), (orthocentroidal, 13969, 4), (1st orthosymmedial, 13985, 4), (2nd Pamfilos-Zhou, 13971, 7596), (reflection, 13986, 4), (1st Schiffler, 13987, 79), (2nd Schiffler, 13973, 80), (1st Sharygin, 13971, 9840), (submedial, 13966, 5), (tangential, 13966, 3), (tangential-midarc, 13971, 8091), (2nd tangential-midarc, 13971, 8092), (inner tri-equilateral, 13966, 15), (outer tri-equilateral, 13966, 16), (1st tri-squares-central, 13988, 13665), (2nd tri-squares-central, 13849, 13785), (3rd tri-squares-central, 486, 485), (1st tri-squares, 13847, 3068), (2nd tri-squares, 13847, 3069), (3rd tri-squares, 13880, 485), (4th tri-squares, 13933, 486), (Trinh, 13966, 3), (inner-Vecten, 13933, 3), (outer-Vecten, 13880, 3), (X3-ABC reflections, 486, 382), (Yff central, 13971, 8351), (inner-Yff, 486, 1478), (outer-Yff, 486, 1479), (inner-Yff tangents, 486, 12115), (outer-Yff tangents, 486, 12116) List of triangles parallelogic to A'B'C' with ETC indexes of parallelogic centers: (1st anti-Brocard, 13989, 385), (6th anti-Brocard, 13989, 1691), (anti-orthocentroidal, 13990, 323), (1st Brocard, 13989, 6), (6th Brocard, 13989, 194), (inner-Garcia, 13991, 1), (orthocentroidal, 13990, 2), (1st orthosymmedial, 13992, 6), (1st Parry, 486, 9131), (2nd Parry, 486, 9979), (2nd Sharygin, 13971, 659) The appearance of (I, J) in the following list means that X(I)-of-A'B'C'=X(J):(1) (1, 13971), (2, 13847), (3, 13966), (4, 486), (5, 13993), (6, 13972), (8, 13973), (13, 13982), (14, 13981), (20, 1152), (40, 13975), (54, 13986), (64, 13980), (68, 13970), (74, 13969), (76, 13983), (80, 13976), (83, 13984), (84, 13974), (98, 13967), (99, 13989), (100, 13991), (104, 13977), (110, 13990), (112, 13992), (193, 6), (265, 13979), (485, 13880), (486, 13933), (487, 13934), (491, 615), (671, 13968), (1297, 13985), (1327, 13988), (1328, 13849) |
(1): Centers calculated for 1 ≤ I ≤ 2000.
The reciprocal orthologic center of these triangles is X(9868)
X(13873) lies on these lines: {2,7598}, {3,115}, {98,485}, {114,371}, {183,6228}, {230,2459}, {385,9868}, {486,8781}, {542,8980}, {590,6230}, {620,11315}, {641,3102}, {1513,2460}, {2023,3103}, {3564,6231}, {6055,13850}, {6108,13875}, {6109,13876}, {6118,9478}, {6561,9757}, {6564,9756}, {6722,11313}, {7793,9992}, {7806,8317}, {8305,13088}, {12602,12968}
X(13873) = midpoint of X(385) and X(9868)
X(13873) = complement of X(33341)
X(13873) = orthoptic-circle-of-Steiner-inellipse-inverse-of-X(13521)
X(13873) = orthologic center of these triangles: 3rd tri-squares to 6th anti-Brocard
X(13873) = orthologic center of these triangles: 3rd tri-squares to 1st Brocard
X(13873) = {X(115), X(6036)}-harmonic conjugate of X(13926)
The reciprocal orthologic center of these triangles is X(9893)
X(13874) lies on these lines: {115,1991}, {485,489}, {543,8997}, {590,9894}, {599,626}, {2482,13663}, {6222,12602}, {8593,13651}, {8859,9893}, {8860,13088}, {9883,13640}, {9892,13676}
The reciprocal orthologic center of these triangles is X(6305)
X(13875) lies on these lines: {14,485}, {115,590}, {395,6303}, {531,10667}, {619,6304}, {3643,6301}, {5460,13850}, {6108,13873}, {9113,13651}
The reciprocal orthologic center of these triangles is X(6304)
X(13876) lies on these lines: {13,485}, {115,590}, {396,6302}, {530,10668}, {618,6305}, {3642,6300}, {5459,13850}, {6109,13873}, {9112,13651}
The reciprocal orthologic center of these triangles is X(6312)
X(13877) lies on these lines: {3,6222}, {39,13882}, {76,485}, {183,6312}, {488,6194}, {511,6289}, {538,8992}, {590,6314}, {639,6393}, {641,3102}, {3094,3763}, {6318,13707}
X(13877) = reflection of X(3102) in X(641)
The reciprocal orthologic center of these triangles is X(6311)
X(13878) lies on these lines: {83,485}, {590,6313}, {754,8993}, {6118,9478}, {6222,6287}, {6292,13882}, {6311,11174}, {6317,13709}, {6704,7834}
The reciprocal orthologic center of these triangles is X(485)
X(13879) lies on these lines: {4,371}, {6,6118}, {30,13920}, {488,8972}, {590,641}, {3564,13909}, {6278,8975}, {6279,8974}, {6289,8976}, {6329,13933}, {7583,9739}, {7981,13902}, {8970,11209}, {8981,12974}, {9540,12124}, {9907,13888}, {9922,13889}, {9987,13892}, {10068,13904}, {12148,13884}, {12211,13885}, {12344,13887}, {12602,13903}, {12788,13893}, {12800,13894}, {12929,13895}, {12939,13896}, {12949,13897}, {12959,13898}, {12968,13701}, {13005,13900}, {13082,13901}, {13134,13906}, {13135,13907}
X(13879) = reflection of X(i) in X(j) for these (i,j): (641,8180), (13882,13924)
X(13879) = {X(13910), X(13925)}-harmonic conjugate of X(13921)
The reciprocal orthologic center of these triangles is X(485)
X(13880) lies on these lines: {6,6118}, {30,13988}, {39,615}, {372,6250}, {485,3069}, {488,13834}, {524,7862}, {3564,13933}, {3767,6228}, {6278,13950}, {6279,13949}, {6289,13951}, {7981,13959}, {8252,13882}, {8253,13924}, {9907,13942}, {9922,13943}, {9987,13946}, {10068,13962}, {10084,13963}, {12124,13935}, {12148,13937}, {12211,13938}, {12222,13771}, {12257,13939}, {12269,13936}, {12344,13940}, {12602,13961}, {12788,13947}, {12800,13948}, {12929,13952}, {12939,13953}, {12949,13954}, {12959,13955}, {12969,13847}, {13004,13956}, {13005,13957}, {13082,13958}, {13134,13964}, {13135,13965}
X(13880) = {X(13972), X(13993)}-harmonic conjugate of X(13933)
The reciprocal orthologic center of these triangles is X(13881).
Let DEF be the orthic triangle. Let Ab be the point in which the line through B perpendicular to AB meets the perpendicular bisector of segment BD . Let Ac be the point in which the line through C perpendicular to AC meets the perpendicular bisector of segment CD. Define Bc, Ba, Ca, Cb cyclically. The six ponts Ab, Ac, Bc, Ba, Ca, Cb lie on a conic with center X(13881). A barycentric equation for this conic follows:
0 = cyclic sum of (b^2+c^2-a^2)(5 a^4-12 a^2 (b^2+c^2)+7 b^4+2 b^2 c^2+7 c^4)x^2 - 2 (11a^6-13 a^4 (b^2+c^2)+a^2 (b^2-c^2)^2+(b^2-c^2)^2 (b^2+c^2))y z. (Angel Montesdeoca, Decemberr 23, 2018)
X(13881) lies on these lines: {2,1975}, {3,115}, {4,230}, {5,6}, {20,5210}, {30,5023}, {32,381}, {39,1656}, {45,3634}, {53,3089}, {76,2023}, {140,2549}, {141,5490}, {148,7907}, {172,10895}, {183,2896}, {187,382}, {220,1329}, {315,8667}, {371,12601}, {372,12602}, {385,7773}, {393,6622}, {403,2207}, {427,1611}, {487,590}, {488,615}, {538,7862}, {546,7737}, {547,7739}, {548,5585}, {569,9604}, {574,3526}, {599,626}, {625,5111}, {631,3054}, {641,6119}, {642,6118}, {671,7782}, {1003,7857}, {1007,6392}, {1078,7610}, {1180,7571}, {1184,5133}, {1194,7539}, {1384,3843}, {1407,7363}, {1504,8976}, {1505,13951}, {1506,5055}, {1570,11898}, {1571,11231}, {1572,9955}, {1598,1609}, {1640,6587}, {1657,5206}, {1853,2450}, {1914,10896}, {1995,9608}, {2241,9669}, {2242,9654}, {2422,3224}, {2476,5275}, {2485,8574}, {2963,7393}, {3003,3199}, {3055,5067}, {3068,12221}, {3069,12222}, {3070,12256}, {3071,12257}, {3090,3815}, {3091,7735}, {3094,3763}, {3172,6103}, {3291,5094}, {3297,10068}, {3298,10067}, {3413,6177}, {3414,6178}, {3545,5306}, {3614,9596}, {3642,6300}, {3643,6301}, {3734,7886}, {3785,13468}, {3788,6722}, {3851,5475}, {5007,5072}, {5024,5070}, {5038,7617}, {5054,11648}, {5056,7736}, {5058,13785}, {5068,5304}, {5071,9300}, {5073,6781}, {5079,7603}, {5141,5276}, {5346,7753}, {5432,9598}, {5433,9597}, {5523,7505}, {6144,7759}, {6222,6251}, {6250,6399}, {6409,12123}, {6410,12124}, {6421,10577}, {6422,10576}, {6423,6564}, {6424,6565}, {6459,9602}, {6673,11311}, {6674,11312}, {6680,11286}, {6683,7902}, {6704,7834}, {7173,9599}, {7387,8553}, {7486,9606}, {7507,10311}, {7509,9609}, {7530,11063}, {7547,10312}, {7615,8369}, {7752,7754}, {7775,7805}, {7780,7825}, {7787,10807}, {7788,7912}, {7790,11285}, {7795,8361}, {7797,11174}, {7800,8556}, {7807,11185}, {7815,7861}, {7816,11288}, {7833,8860}, {7839,11163}, {7867,9466}, {7868,7901}, {7879,7934}, {7968,9907}, {7969,9906}, {7988,9575}, {8588,11742}, {8719,9754}, {9306,9603}, {9619,11230}, {9620,9956}, {9670,10987}, {9743,11257}, {11623,11646}, {12510,13935}, {12962,13846}, {12969,13847}, {13087,13804}, {13088,13684}
X(13881) = midpoint of X(i) and X(j) for these {i,j}: {485,486}, {2996,6337}, {22591,22592}
X(13881) = reflection of X(i) in X(j) for these (i,j): (641,6119), (642,6118), (10008,141)
X(13881) = complement of X(6337)
X(13881) = orthologic center of these triangles: 3rd tri-squares to inner-Vecten
X(13881) = harmonic center of nine-point and 2nd Lemoine circles
X(13881) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,2996,6337), (2,5254,5013), (4,230,3053), (5,3767,6), (5,5305,2548), (76,7887,7778), (76,7899,7881), (115,7746,3), (115,7749,7748), (183,5025,7784), (625,7751,7776), (1384,3843,7747), (2165,9722,6), (2548,3767,5305), (2548,5305,6), (5490,5491,10008), (7746,7748,7749), (7748,7749,3), (7881,7887,7899), (7881,7899,7778)
The reciprocal orthologic center of these triangles is X(485)
X(13882) lies on these lines: {2,493}, {3,485}, {6,641}, {39,13877}, {114,371}, {488,3068}, {618,6305}, {619,6304}, {642,6118}, {1504,7888}, {1691,6311}, {2066,12959}, {2067,12949}, {2459,8960}, {2482,13663}, {3094,11316}, {3564,8909}, {3589,6387}, {5870,6811}, {6292,13878}, {6421,7807}, {6503,9725}, {7389,9600}, {7969,12788}, {8252,13880}, {8299,9661}, {8854,12967}, {8972,12222}, {9646,10068}, {9757,10839}, {9907,13893}, {12510,13886}, {12968,13701}, {13821,13850}
X(13882) = midpoint of X(5490) and X(6462)
X(13882) = reflection of X(13879) in X(13924)
X(13882) = complement of X(5490)
X(13882) = {X(2), X(6462)}-harmonic conjugate of X(5490)
X(13883) lies on these lines: {1,1336}, {2,13893}, {3,13912}, {4,1702}, {6,10}, {8,7585}, {11,8988}, {20,9616}, {40,1587}, {81,6348}, {165,6460}, {214,13922}, {355,3311}, {371,515}, {372,6684}, {376,9582}, {485,946}, {486,10175}, {516,3070}, {517,7583}, {519,7969}, {551,13846}, {590,1125}, {605,1724}, {606,5264}, {615,3634}, {944,9583}, {950,2066}, {1124,1210}, {1131,9812}, {1151,4297}, {1152,10164}, {1385,8981}, {1386,13910}, {1588,5587}, {1698,3069}, {1703,5657}, {1737,3299}, {1743,7090}, {2067,10106}, {2362,4848}, {2646,13901}, {3295,13887}, {3297,11019}, {3301,10039}, {3312,13975}, {3452,5393}, {3576,9540}, {3616,8972}, {3624,13959}, {3911,6502}, {5090,5410}, {5418,10165}, {5603,13886}, {5691,6459}, {5731,9615}, {5790,6417}, {5818,7582}, {5886,8976}, {5901,13925}, {7584,9956}, {7586,9780}, {8960,13464}, {8974,11370}, {8975,11371}, {8980,11710}, {8987,12114}, {8991,12262}, {8992,12263}, {8993,12264}, {8994,11709}, {8995,12266}, {8997,11711}, {8998,11720}, {9646,13411}, {10172,10577}, {10246,13903}, {11108,13940}, {11231,13966}, {11363,13884}, {11364,13885}, {11365,13889}, {11366,13890}, {11368,13892}, {11373,13895}, {11374,13896}, {11375,13897}, {11376,13898}, {11377,13899}, {11378,13900}, {11705,13917}, {11706,13916}, {11715,13913}, {11722,13923}, {11831,13894}, {12258,13908}, {12259,13909}, {12260,13914}, {12261,13915}, {12265,13918}, {12267,13919}, {12268,13921}, {12699,13665}, {13667,13920}, {13787,13848}
X(13883) = reflection of X(5688) in X(10)
X(13883) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,3068,8983), (1,13888,13902), (6,10,13936), (6,13911,10), (590,7968,1125), (3068,13902,13888), (5657,7581,1703), (7586,9780,13947), (13888,13902,8983)
X(13884) lies on these lines: {2,5410}, {4,3590}, {5,10880}, {6,468}, {24,7583}, {25,3068}, {33,13901}, {235,371}, {427,590}, {428,13846}, {485,3575}, {1112,8998}, {1151,1885}, {1368,11417}, {1587,3515}, {1593,9540}, {1598,13903}, {1829,8983}, {1843,13910}, {1862,13922}, {1902,13912}, {1906,11473}, {3093,5418}, {3147,3312}, {3311,3542}, {3536,3595}, {3580,11447}, {5090,13893}, {5186,8997}, {5411,6353}, {6561,10151}, {6756,13925}, {7487,13886}, {7505,7584}, {7713,13888}, {8974,11388}, {8975,11389}, {8980,12131}, {8987,12136}, {8988,12137}, {8991,11381}, {8992,12143}, {8993,12144}, {8994,12133}, {8995,11576}, {10018,13966}, {10154,11418}, {11265,11585}, {11363,13883}, {11380,13885}, {11383,13887}, {11384,13890}, {11385,13891}, {11386,13892}, {11391,13896}, {11392,13897}, {11393,13898}, {11394,13899}, {11395,13900}, {11396,13902}, {11398,13904}, {11399,13905}, {11400,13906}, {11401,13907}, {11832,13894}, {12132,13908}, {12134,13909}, {12138,13913}, {12139,13914}, {12140,13915}, {12141,13916}, {12142,13917}, {12145,13918}, {12146,13919}, {12147,13921}, {12148,13879}, {13166,13923}, {13668,13920}, {13788,13848}
X(13885) lies on these lines: {6,1078}, {32,638}, {83,590}, {98,371}, {182,9540}, {384,8992}, {485,12110}, {1587,5171}, {2080,7583}, {3069,7815}, {3311,10104}, {3398,8981}, {4027,8997}, {6460,8722}, {7585,7793}, {7787,8972}, {8974,10792}, {8976,10796}, {8980,12176}, {8983,12194}, {8987,12196}, {8988,12198}, {8991,12202}, {8994,12192}, {8995,12208}, {8998,13193}, {10788,13886}, {10789,13888}, {10790,13889}, {10791,13893}, {10794,13895}, {10795,13896}, {10797,13897}, {10798,13898}, {10799,13901}, {10800,13902}, {10801,13904}, {10802,13905}, {10803,13906}, {10804,13907}, {11364,13883}, {11380,13884}, {11490,13887}, {11837,13890}, {11838,13891}, {11839,13894}, {11840,13899}, {11841,13900}, {11842,13903}, {12150,13846}, {12191,13908}, {12193,13909}, {12197,13912}, {12199,13913}, {12200,13914}, {12201,13915}, {12204,13916}, {12205,13917}, {12207,13918}, {12209,13919}, {12210,13921}, {12211,13879}, {12212,13910}, {13194,13922}, {13195,13923}, {13672,13920}, {13792,13848}
X(13885) = {X(6), X(1078)}-harmonic conjugate of X(13938)
X(13886) lies on these lines: {2,3312}, {3,8972}, {4,371}, {5,6417}, {6,3090}, {20,6449}, {24,13889}, {30,1131}, {186,8276}, {372,3525}, {376,3070}, {388,13904}, {486,5071}, {487,13637}, {491,7375}, {497,13905}, {515,13888}, {546,6199}, {590,631}, {632,6395}, {639,5861}, {944,8983}, {1132,3851}, {1151,3529}, {1271,11313}, {1335,8164}, {1588,3545}, {1656,3317}, {3069,5067}, {3071,3855}, {3085,13897}, {3086,13898}, {3091,3311}, {3146,6221}, {3299,10589}, {3301,10588}, {3365,11488}, {3390,11489}, {3448,13915}, {3522,6496}, {3523,6456}, {3524,5418}, {3528,6560}, {3533,8253}, {3544,6419}, {3628,6418}, {3854,6494}, {4294,13901}, {5056,7584}, {5059,9542}, {5068,13785}, {5073,6472}, {5079,6500}, {5603,13883}, {5657,13893}, {6361,13912}, {6392,7389}, {6398,10303}, {6429,9541}, {6446,12108}, {6453,11541}, {6478,9681}, {6484,11001}, {6770,13917}, {6773,13916}, {6776,13910}, {6811,8974}, {7486,13951}, {7487,13884}, {7967,13902}, {8854,10881}, {8975,10784}, {8980,9862}, {8987,12246}, {8988,12247}, {8991,12250}, {8992,12251}, {8993,12252}, {8994,12244}, {8995,12254}, {8997,13172}, {8998,12383}, {9694,12085}, {10138,11812}, {10785,13895}, {10786,13896}, {10788,13885}, {10805,13906}, {10806,13907}, {11411,13909}, {11491,13887}, {11843,13890}, {11844,13891}, {11845,13894}, {11846,13899}, {11847,13900}, {12124,13924}, {12243,13908}, {12245,13911}, {12248,13913}, {12249,13914}, {12253,13918}, {12255,13919}, {12256,13921}, {12510,13882}, {13199,13922}, {13200,13923}, {13674,13920}, {13794,13848}
X(13886) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,7583,7581), (6,3090,13939), (1656,6501,13993), (3070,9540,376), (3316,7581,2), (7583,8976,2)
X(13887) lies on these lines: {1,6}, {3,8983}, {35,13888}, {55,3068}, {56,13902}, {100,8972}, {197,13889}, {371,11496}, {485,11500}, {590,1376}, {606,940}, {615,8167}, {1012,9583}, {1621,7585}, {3069,4423}, {3295,13883}, {3913,13911}, {4421,13846}, {5120,8225}, {5284,7586}, {5687,13893}, {6460,8273}, {7583,10267}, {8974,11497}, {8975,11498}, {8976,11499}, {8980,12178}, {8981,11248}, {8987,12330}, {8988,12331}, {8991,12335}, {8992,12338}, {8993,12339}, {8994,12327}, {8995,12341}, {8997,13173}, {8998,13204}, {9540,10310}, {10306,13912}, {11108,13936}, {11383,13884}, {11490,13885}, {11491,13886}, {11492,13890}, {11493,13891}, {11494,13892}, {11501,13897}, {11502,13898}, {11504,13900}, {11507,13904}, {11508,13905}, {11509,13906}, {11510,13907}, {11848,13894}, {11849,13903}, {12326,13908}, {12328,13909}, {12329,13910}, {12332,13913}, {12334,13915}, {12336,13916}, {12337,13917}, {12340,13918}, {12342,13919}, {12343,13921}, {12344,13879}, {13205,13922}, {13206,13923}, {13795,13848}
X(13888) lies on these lines: {1,1336}, {6,3624}, {10,8972}, {35,13887}, {40,8981}, {165,9540}, {355,13925}, {371,1699}, {485,5691}, {515,13886}, {517,13903}, {590,1698}, {1125,7585}, {1587,7987}, {1588,7988}, {1697,13901}, {1702,11522}, {1703,5418}, {1768,13913}, {2067,5290}, {2948,8998}, {3070,9615}, {3311,8227}, {3316,10175}, {3576,7583}, {4347,9634}, {5273,5393}, {5541,13922}, {5587,8976}, {6199,9955}, {6417,11230}, {7581,10165}, {7713,13884}, {7992,8987}, {8185,13889}, {8186,13890}, {8187,13891}, {8189,13900}, {8276,9590}, {8980,9860}, {8988,9897}, {8991,9899}, {8992,9902}, {8994,9904}, {8995,9905}, {8997,13174}, {9541,9585}, {9578,13897}, {9581,13898}, {9589,9616}, {9875,13908}, {9896,13909}, {9898,13914}, {9900,13916}, {9901,13917}, {9906,13921}, {9907,13879}, {10789,13885}, {10827,13896}, {12407,13915}, {12408,13918}, {12409,13919}, {12788,13924}, {13679,13920}, {13799,13848}
X(13888) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,3624,13942), (485,9583,5691), (3068,8983,1), (3068,13902,13883), (8983,13883,13902), (13883,13902,1)
X(13889) lies on these lines: {3,485}, {6,1196}, {22,8972}, {24,13886}, {25,3068}, {26,13925}, {159,13910}, {197,13887}, {371,1598}, {486,11484}, {1131,11413}, {1584,9723}, {1597,6564}, {1995,7585}, {3069,11284}, {3146,9694}, {3311,7529}, {3316,7509}, {3517,8960}, {5198,6459}, {5594,8975}, {5595,8974}, {6422,10960}, {6642,7583}, {6767,9632}, {7387,8981}, {7517,13903}, {8185,13888}, {8190,13890}, {8191,13891}, {8192,13902}, {8193,13893}, {8194,13899}, {8195,13900}, {8253,8280}, {8909,12309}, {8980,9861}, {8983,9798}, {8987,9910}, {8988,9912}, {8991,9914}, {8992,9917}, {8993,9918}, {8994,9919}, {8995,9920}, {8997,13175}, {8998,12310}, {9540,11414}, {9876,13908}, {9908,13909}, {9909,13846}, {9911,13912}, {9913,13913}, {9915,13916}, {9916,13917}, {9921,13921}, {9922,13879}, {10046,13905}, {10790,13885}, {10828,13892}, {10829,13895}, {10830,13896}, {10831,13897}, {10832,13898}, {10833,13901}, {10834,13906}, {10835,13907}, {11365,13883}, {11513,12590}, {11641,13923}, {11853,13894}, {12164,12239}, {12410,13911}, {12411,13914}, {12412,13915}, {12413,13918}, {12414,13919}, {13222,13922}, {13680,13920}, {13800,13848}
X(13890) lies on these lines: {6,13944}, {55,8983}, {371,8196}, {485,9834}, {590,5599}, {1125,13945}, {3068,3361}, {5600,7969}, {5601,8972}, {8186,13888}, {8190,13889}, {8197,13893}, {8198,8974}, {8199,8975}, {8200,8976}, {8981,11252}, {8987,12456}, {8988,12460}, {8992,12474}, {8993,12476}, {8997,13176}, {9540,11822}, {11207,13846}, {11366,13883}, {11384,13884}, {11492,13887}, {11837,13885}, {11843,13886}, {11861,13892}, {11865,13895}, {11867,13896}, {11869,13897}, {11871,13898}, {11873,13901}, {11875,13903}, {11877,13904}, {11879,13905}, {11881,13906}, {11883,13907}, {12345,13908}, {12454,13911}, {12458,13912}, {12462,13913}, {13228,13922}
X(13891) lies on these lines: {6,13945}, {55,8983}, {371,8203}, {485,9835}, {590,5600}, {1125,13944}, {3068,5598}, {3361,13902}, {5599,7969}, {5602,8972}, {8187,13888}, {8191,13889}, {8204,13893}, {8205,8974}, {8206,8975}, {8207,8976}, {8981,11253}, {8987,12457}, {8988,12461}, {8992,12475}, {8993,12477}, {8997,13177}, {8998,13209}, {9540,11823}, {11208,13846}, {11385,13884}, {11493,13887}, {11838,13885}, {11844,13886}, {11862,13892}, {11866,13895}, {11868,13896}, {11870,13897}, {11872,13898}, {11876,13903}, {11878,13904}, {11882,13906}, {12346,13908}, {12455,13911}, {12459,13912}, {12463,13913}, {13230,13922}
X(13892) lies on these lines: {6,7796}, {32,638}, {371,9993}, {485,9873}, {590,3096}, {2896,8972}, {3098,9540}, {8782,8997}, {8976,9996}, {8980,9862}, {8981,9821}, {8987,12496}, {8988,12498}, {8991,12502}, {8992,9983}, {8994,9984}, {8995,9985}, {8998,13210}, {9301,13903}, {9878,13908}, {9923,13909}, {9981,13916}, {9982,13917}, {9986,13921}, {9987,13879}, {10828,13889}, {10871,13895}, {10873,13897}, {10874,13898}, {10876,13900}, {10877,13901}, {11386,13884}, {11494,13887}, {11861,13890}, {11862,13891}, {11885,13894}, {12497,13912}, {12499,13913}, {12500,13914}, {12501,13915}, {12503,13918}, {12504,13919}, {13235,13922}, {13685,13920}, {13805,13848}
X(13892) = {X(6), X(7846)}-harmonic conjugate of X(13946)
X(13893) lies on these lines: {1,590}, {2,13883}, {4,9616}, {5,1702}, {6,1698}, {8,8972}, {10,3068}, {30,9582}, {40,485}, {65,13897}, {72,13896}, {80,13922}, {100,8988}, {165,3070}, {355,8981}, {371,5587}, {515,9540}, {517,8976}, {519,13902}, {1131,9778}, {1151,5691}, {1378,5705}, {1587,6684}, {1588,10175}, {1703,7583}, {1737,13905}, {1837,13901}, {2066,9581}, {2067,9578}, {3057,13898}, {3069,3634}, {3071,7989}, {3311,9956}, {3312,11231}, {3416,13910}, {3579,13665}, {3624,7968}, {3679,7969}, {5090,13884}, {5657,13886}, {5687,13887}, {5688,8975}, {5689,8974}, {5690,13925}, {6460,10164}, {7581,13975}, {7585,9780}, {8193,13889}, {8197,13890}, {8204,13891}, {8214,13899}, {8215,13900}, {8227,10576}, {8252,13942}, {8909,9896}, {8980,9864}, {8987,12667}, {8991,12779}, {8993,12783}, {8994,12368}, {8995,12785}, {8997,13178}, {8998,13211}, {9618,9681}, {9857,13892}, {9881,13908}, {9907,13882}, {9928,13909}, {10039,13904}, {10791,13885}, {10914,13895}, {10915,13906}, {10916,13907}, {11900,13894}, {12751,13913}, {12777,13914}, {12778,13915}, {12780,13916}, {12781,13917}, {12784,13918}, {12786,13919}, {12787,13921}, {12788,13879}, {13280,13923}, {13688,13920}, {13808,13848}
X(13893) = reflection of X(9615) in X(9540)
X(13893) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,13912,9616), (6,1698,13947), (8,8972,8983), (590,13911,1), (3679,13888,7969), (7585,9780,13936), (7968,8253,3624)
X(13894) lies on these lines: {6,13948}, {30,6449}, {371,11897}, {402,3068}, {485,12113}, {590,1650}, {1651,13846}, {4240,8972}, {8974,11901}, {8975,11902}, {8980,12181}, {8981,11251}, {8983,12438}, {8987,12668}, {8988,12729}, {8991,12791}, {8992,12794}, {8993,12795}, {8994,12369}, {8995,12797}, {8997,13179}, {11831,13883}, {11832,13884}, {11839,13885}, {11845,13886}, {11848,13887}, {11853,13889}, {11885,13892}, {11900,13893}, {11903,13895}, {11904,13896}, {11905,13897}, {11906,13898}, {11907,13899}, {11908,13900}, {11909,13901}, {11910,13902}, {11911,13903}, {11912,13904}, {11913,13905}, {11914,13906}, {11915,13907}, {12347,13908}, {12418,13909}, {12583,13910}, {12626,13911}, {12696,13912}, {12752,13913}, {12789,13914}, {12790,13915}, {12792,13916}, {12793,13917}, {12796,13918}, {12798,13919}, {12799,13921}, {12800,13879}, {13268,13922}, {13281,13923}, {13689,13920}, {13809,13848}
X(13895) lies on these lines: {6,13952}, {11,3068}, {12,13906}, {355,8976}, {371,10893}, {485,12114}, {590,1376}, {3434,8972}, {7585,10584}, {8974,10919}, {8975,10920}, {8980,12182}, {8981,10525}, {8987,12676}, {8988,12737}, {8991,12920}, {8992,12923}, {8993,12924}, {8994,12371}, {8995,12926}, {8997,13180}, {8998,13213}, {9540,11826}, {10523,13904}, {10785,13886}, {10794,13885}, {10829,13889}, {10871,13892}, {10912,13911}, {10914,13893}, {10943,13925}, {10944,13897}, {10945,13899}, {10946,13900}, {10947,13901}, {10948,13905}, {10949,13907}, {11235,13846}, {11373,13883}, {11865,13890}, {11866,13891}, {11903,13894}, {11928,13903}, {12348,13908}, {12422,13909}, {12586,13910}, {12700,13912}, {12761,13913}, {12857,13914}, {12889,13915}, {12921,13916}, {12922,13917}, {12925,13918}, {12927,13919}, {12928,13921}, {12929,13879}, {13271,13922}, {13813,13848}
X(13896) lies on these lines: {6,13953}, {11,13907}, {12,3068}, {72,13893}, {355,8976}, {371,10894}, {485,11500}, {590,958}, {3436,8972}, {5812,13912}, {7585,10585}, {8974,10921}, {8975,10922}, {8980,12183}, {8981,10526}, {8987,12677}, {8988,12738}, {8991,12930}, {8992,12933}, {8994,12372}, {8995,12936}, {8997,13181}, {8998,13214}, {9540,11827}, {10523,13905}, {10786,13886}, {10795,13885}, {10827,13888}, {10830,13889}, {10942,13925}, {10950,13898}, {10951,13899}, {10952,13900}, {10953,13901}, {10955,13906}, {11236,13846}, {11374,13883}, {11391,13884}, {11867,13890}, {11868,13891}, {11904,13894}, {12349,13908}, {12423,13909}, {12587,13910}, {12635,13911}, {12762,13913}, {12890,13915}, {12931,13916}, {12932,13917}, {12935,13918}, {12937,13919}, {12938,13921}, {12939,13879}, {13272,13922}, {13295,13923}, {13814,13848}
X(13897) lies on these lines: {1,8976}, {4,13901}, {5,13905}, {6,13954}, {12,3068}, {35,13665}, {55,485}, {56,590}, {65,13893}, {371,10895}, {388,8972}, {498,7583}, {1124,10576}, {1151,12943}, {1335,8960}, {1478,8981}, {1587,5432}, {1588,3614}, {1656,3299}, {1836,13912}, {2066,10896}, {2067,11237}, {2099,13911}, {3070,5217}, {3085,13886}, {3086,3316}, {3304,9661}, {3311,7951}, {3585,6221}, {3628,13962}, {4316,6455}, {5204,5418}, {5252,8983}, {5326,13935}, {6449,10483}, {6502,8253}, {6564,12953}, {7354,9540}, {7581,13958}, {7585,10588}, {8276,9659}, {8974,10923}, {8975,10924}, {8980,12184}, {8987,12678}, {8988,12739}, {8991,12940}, {8992,12837}, {8993,12944}, {8994,12373}, {8995,12946}, {8997,13182}, {8998,12903}, {9541,9648}, {9578,13888}, {9654,13903}, {10088,13915}, {10797,13885}, {10831,13889}, {10873,13892}, {10944,13895}, {10956,13906}, {10957,13907}, {11375,13883}, {11392,13884}, {11501,13887}, {11869,13890}, {11870,13891}, {11905,13894}, {11930,13899}, {11931,13900}, {12350,13908}, {12588,13910}, {12763,13913}, {12859,13914}, {12941,13916}, {12942,13917}, {12945,13918}, {12947,13919}, {12948,13921}, {12949,13879}, {13273,13922}, {13296,13923}, {13695,13920}, {13815,13848}, {13904,13925}
X(13898) lies on these lines: {1,8976}, {2,13958}, {5,13904}, {6,13955}, {11,3068}, {36,13665}, {55,590}, {56,485}, {371,10896}, {496,13905}, {497,8972}, {499,7583}, {1069,13909}, {1124,8960}, {1151,12953}, {1335,10576}, {1479,8981}, {1587,5433}, {1588,7173}, {1656,3301}, {1837,8983}, {2066,11238}, {2067,10895}, {2098,13911}, {3057,13893}, {3070,5204}, {3085,3316}, {3086,13886}, {3303,9646}, {3311,7741}, {3583,6221}, {3628,13963}, {4324,6455}, {5217,5418}, {5414,8253}, {6284,9540}, {6564,12943}, {7294,13935}, {7585,10589}, {8276,9672}, {8974,10925}, {8975,10926}, {8980,12185}, {8987,12679}, {8988,12740}, {8991,12950}, {8992,12836}, {8993,12954}, {8994,12374}, {8995,12956}, {8997,13183}, {8998,12904}, {9541,9663}, {9581,13888}, {9669,13903}, {10091,13915}, {10798,13885}, {10832,13889}, {10874,13892}, {10950,13896}, {10958,13906}, {10959,13907}, {11376,13883}, {11393,13884}, {11502,13887}, {11871,13890}, {11872,13891}, {11906,13894}, {11932,13899}, {11933,13900}, {12351,13908}, {12589,13910}, {12701,13912}, {12764,13913}, {12860,13914}, {12951,13916}, {12952,13917}, {12955,13918}, {12957,13919}, {12958,13921}, {12959,13879}, {13274,13922}, {13297,13923}, {13696,13920}, {13816,13848}
X(13899) lies on these lines: {6,13956}, {371,8212}, {393,493}, {485,9838}, {590,8222}, {6461,13900}, {8194,13889}, {8220,8976}, {8980,12186}, {8981,10669}, {8988,12741}, {8991,12986}, {8992,12992}, {8994,12377}, {8995,12998}, {8997,13184}, {8998,13215}, {9540,11828}, {10945,13895}, {10951,13896}, {11394,13884}, {11840,13885}, {11846,13886}, {11907,13894}, {11930,13897}, {11932,13898}, {12352,13908}, {12426,13909}, {12765,13913}, {12988,13916}, {12990,13917}, {13002,13921}, {13275,13922}, {13697,13920}, {13817,13848}
X(13900) lies on these lines: {6,13957}, {371,8213}, {485,9839}, {494,3068}, {590,8223}, {6461,13899}, {6463,8972}, {8189,13888}, {8195,13889}, {8211,13902}, {8215,13893}, {8217,8974}, {8219,8975}, {8221,8976}, {8980,12187}, {8981,10673}, {8983,12441}, {8988,12742}, {8991,12987}, {8992,12993}, {8993,12995}, {8994,12378}, {8995,12999}, {8997,13185}, {8998,13216}, {9540,11829}, {10876,13892}, {10946,13895}, {10952,13896}, {11378,13883}, {11395,13884}, {11504,13887}, {11841,13885}, {11847,13886}, {11908,13894}, {11931,13897}, {11933,13898}, {11948,13901}, {11950,13903}, {11952,13904}, {11954,13905}, {11956,13906}, {11958,13907}, {12153,13846}, {12353,13908}, {12427,13909}, {12591,13910}, {12637,13911}, {12766,13913}, {12862,13914}, {12895,13915}, {12989,13916}, {12991,13917}, {12997,13918}, {13001,13919}, {13003,13921}, {13005,13879}, {13276,13922}, {13299,13923}, {13698,13920}, {13818,13848}
X(13901) lies on these lines: {1,8981}, {2,13955}, {3,13905}, {4,13897}, {6,5432}, {11,590}, {12,371}, {33,13884}, {35,7583}, {55,3068}, {56,9540}, {65,13912}, {140,3299}, {485,6284}, {497,8972}, {498,3311}, {615,5326}, {1124,5418}, {1151,7354}, {1317,13913}, {1478,6221}, {1479,8976}, {1587,5217}, {1697,13888}, {1702,11375}, {1836,9616}, {1837,13893}, {2098,13902}, {2646,13883}, {3023,8997}, {3027,8980}, {3028,8994}, {3056,13910}, {3057,8983}, {3058,13846}, {3071,3614}, {3295,13903}, {3316,10591}, {3320,13918}, {3526,13962}, {4294,13886}, {4299,6449}, {4302,13665}, {4995,5414}, {5218,7585}, {5252,9583}, {5434,9663}, {6020,13923}, {6407,9655}, {6417,13963}, {6453,9647}, {6459,10895}, {6564,9660}, {7173,10576}, {7355,8991}, {7582,13954}, {8974,10927}, {8975,10928}, {8987,12680}, {8992,13077}, {8993,13078}, {8995,13079}, {9541,12943}, {9632,10149}, {10799,13885}, {10833,13889}, {10877,13892}, {10947,13895}, {10950,13911}, {10953,13896}, {11909,13894}, {11948,13900}, {12354,13908}, {12428,13909}, {13075,13916}, {13076,13917}, {13081,13921}, {13699,13920}, {13819,13848}
X(13902) lies on these lines: {1,1336}, {2,7969}, {6,3616}, {8,590}, {56,13887}, {145,8972}, {371,5603}, {485,944}, {516,9615}, {517,9540}, {519,13893}, {615,5550}, {946,6459}, {952,8976}, {962,1151}, {1125,3069}, {1320,13922}, {1385,1587}, {1482,8981}, {1483,13925}, {1588,5886}, {1702,13464}, {1703,10165}, {2067,3485}, {2098,13901}, {2362,7288}, {3070,5731}, {3241,13846}, {3242,13910}, {3298,5703}, {3311,5901}, {3361,13891}, {3576,6460}, {3622,7585}, {3624,13936}, {4301,9616}, {5418,5657}, {5604,8975}, {5605,8974}, {5818,10576}, {6200,6361}, {6409,9778}, {7583,10246}, {7967,13886}, {7970,8980}, {7971,8987}, {7972,8988}, {7973,8991}, {7974,13916}, {7976,8992}, {7977,8993}, {7978,8994}, {7979,8995}, {7980,13921}, {7981,13879}, {7982,13912}, {7983,8997}, {7984,8998}, {8000,13914}, {8192,13889}, {8210,13899}, {8211,13900}, {8253,9780}, {9541,12699}, {9884,13908}, {9933,13909}, {9997,13892}, {10247,13903}, {10698,13913}, {10705,13923}, {10800,13885}, {10944,13895}, {10950,13896}, {11396,13884}, {11910,13894}, {12898,13915}, {13099,13918}, {13702,13920}, {13822,13848}
X(13902) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,8983,3068), (1,13888,13883), (6,3616,13959), (145,8972,13911), (3622,7585,7968), (8983,13883,13888), (13883,13888,3068), (13906,13907,3068)
X(13903) lies on these lines: {2,6417}, {3,1587}, {4,13925}, {5,1132}, {6,3411}, {20,6445}, {30,1131}, {140,6418}, {195,8995}, {371,381}, {382,485}, {399,8998}, {486,590}, {517,13888}, {549,7581}, {615,6427}, {631,6395}, {632,7586}, {639,13663}, {999,13905}, {1151,1657}, {1351,13910}, {1482,8983}, {1588,5055}, {1598,13884}, {2070,8276}, {3069,6500}, {3070,3534}, {3071,5072}, {3295,13901}, {3312,5054}, {3523,6408}, {3529,9542}, {3530,6446}, {3590,3858}, {3592,5079}, {3628,7582}, {3843,6459}, {5059,10137}, {5070,7584}, {5073,9541}, {5076,6425}, {5420,6428}, {5790,13893}, {6289,13924}, {6419,8253}, {6431,10577}, {6447,6561}, {6451,9680}, {6455,6560}, {6501,13966}, {7517,13889}, {7747,9602}, {7756,9601}, {8974,11916}, {8975,11917}, {8980,12188}, {8987,12684}, {8988,12747}, {8991,13093}, {8992,13108}, {8994,10620}, {8997,13188}, {9301,13892}, {9654,13897}, {9669,13898}, {9694,12084}, {10246,13883}, {10247,13902}, {11842,13885}, {11849,13887}, {11875,13890}, {11876,13891}, {11911,13894}, {11928,13895}, {11949,13899}, {11950,13900}, {12001,13907}, {12331,13922}, {12355,13908}, {12429,13909}, {12601,13921}, {12602,13879}, {12702,13912}, {12773,13913}, {12902,13915}, {13102,13916}, {13103,13917}, {13115,13918}, {13126,13919}, {13836,13848}
X(13903) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,3526,13961), (485,6221,382), (1151,13665,1657), (3068,8981,3), (3070,6449,3534), (3312,5418,5054), (5073,9691,9541), (7583,9540,3), (13901,13904,3295)
X(13904) lies on these lines: {1,1336}, {2,3301}, {5,13898}, {6,499}, {11,3311}, {12,8976}, {35,9540}, {36,1587}, {55,8981}, {56,7583}, {63,5393}, {89,3300}, {371,1479}, {388,13886}, {485,1478}, {495,13897}, {498,590}, {611,13910}, {1124,10072}, {1151,4302}, {1588,7741}, {1709,8987}, {3070,4299}, {3085,8972}, {3086,3299}, {3295,13901}, {3298,9646}, {3312,5433}, {3316,10588}, {3526,13958}, {3583,6459}, {3628,13954}, {5058,9599}, {5119,13912}, {5414,5418}, {6199,9669}, {6221,6284}, {6425,9660}, {6449,9663}, {6460,7280}, {7173,13785}, {7288,7581}, {7354,13665}, {7582,10589}, {7969,10573}, {8974,10040}, {8975,10041}, {8980,10053}, {8988,10057}, {8991,10060}, {8992,10063}, {8993,10064}, {8994,10065}, {8995,10066}, {8997,10086}, {8998,10088}, {9583,10572}, {10037,13889}, {10038,13892}, {10039,13893}, {10054,13908}, {10055,13909}, {10058,13913}, {10061,13916}, {10062,13917}, {10067,13921}, {10068,13879}, {10087,13922}, {10523,13895}, {10801,13885}, {10880,11393}, {11398,13884}, {11507,13887}, {11877,13890}, {11878,13891}, {11912,13894}, {11951,13899}, {11952,13900}, {12647,13911}, {13116,13918}, {13128,13919}, {13714,13920}, {13837,13848}
X(13904) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,3301,13963), (6,499,13962), (6,9661,499), (485,2067,1478), (3295,13903,13901), (3298,9646,10056)
X(13905) lies on these lines: {1,1336}, {2,3299}, {3,13901}, {5,13897}, {6,498}, {11,8976}, {12,3311}, {35,1587}, {36,9540}, {46,13912}, {55,7583}, {56,8981}, {371,1478}, {485,1479}, {496,13898}, {497,13886}, {499,590}, {613,13910}, {999,13903}, {1151,4299}, {1335,10056}, {1588,7951}, {1702,12047}, {1737,13893}, {1770,9616}, {3070,4302}, {3085,3301}, {3297,9661}, {3305,5393}, {3312,5432}, {3316,10589}, {3585,6459}, {3614,13785}, {3628,13955}, {5010,6460}, {5058,9596}, {5218,7581}, {5418,6502}, {6199,9654}, {6221,7354}, {6284,13665}, {6418,13958}, {6425,9647}, {6449,9648}, {7582,10588}, {8980,10069}, {8987,10085}, {8988,10073}, {8991,10076}, {8992,10079}, {8994,10081}, {8995,10082}, {8997,10089}, {8998,10091}, {9541,10483}, {10046,13889}, {10070,13908}, {10071,13909}, {10074,13913}, {10077,13916}, {10078,13917}, {10083,13921}, {10090,13922}, {10523,13896}, {10802,13885}, {10880,11392}, {10948,13895}, {11399,13884}, {11913,13894}, {11954,13900}, {13312,13923}
X(13906) lies on these lines: {1,1336}, {6,13964}, {12,13895}, {371,10531}, {485,12115}, {590,5552}, {1587,10269}, {8976,10942}, {8980,12189}, {8981,10679}, {8987,12686}, {8988,12749}, {8991,13094}, {8992,13109}, {8994,12381}, {8995,13121}, {8997,13189}, {8998,13217}, {9540,11248}, {10803,13885}, {10805,13886}, {10834,13889}, {10955,13896}, {10956,13897}, {10958,13898}, {10965,13901}, {11400,13884}, {11509,13887}, {11881,13890}, {11882,13891}, {11956,13900}, {12000,13903}, {12356,13908}, {12430,13909}, {12775,13913}, {12874,13914}, {12905,13915}, {13104,13916}, {13105,13917}, {13118,13918}, {13130,13919}, {13132,13921}, {13134,13879}, {13278,13922}, {13313,13923}, {13716,13920}, {13839,13848}
X(13907) lies on these lines: {1,1336}, {6,13965}, {11,13896}, {371,10532}, {485,12116}, {590,10527}, {6460,10902}, {8976,10943}, {8980,12190}, {8981,10680}, {8987,12687}, {8988,12750}, {8991,13095}, {8992,13110}, {8994,12382}, {8995,13122}, {8997,13190}, {8998,13218}, {9540,11249}, {10804,13885}, {10806,13886}, {10835,13889}, {10949,13895}, {10957,13897}, {10959,13898}, {10966,13901}, {11401,13884}, {11510,13887}, {11883,13890}, {11884,13891}, {11915,13894}, {11958,13900}, {12001,13903}, {12357,13908}, {12431,13909}, {12704,13912}, {12776,13913}, {12875,13914}, {12906,13915}, {13106,13916}, {13107,13917}, {13119,13918}, {13135,13879}, {13279,13922}, {13314,13923}, {13717,13920}, {13840,13848}
The reciprocal orthologic center of these triangles is X(9855)
X(13908) lies on these lines: {2,13989}, {6,5461}, {30,8980}, {115,13703}, {485,542}, {530,13916}, {531,13917}, {543,8997}, {590,2482}, {671,3068}, {5969,8992}, {6722,13847}, {8724,8976}, {8974,9882}, {8975,9883}, {9540,12117}, {9830,13910}, {9875,13888}, {9876,13889}, {9878,13892}, {9881,13893}, {9884,13902}, {9892,13669}, {9894,13676}, {10054,13904}, {10070,13905}, {12132,13884}, {12191,13885}, {12243,13886}, {12258,13883}, {12326,13887}, {12345,13890}, {12346,13891}, {12347,13894}, {12348,13895}, {12349,13896}, {12350,13897}, {12351,13898}, {12352,13899}, {12353,13900}, {12354,13901}, {12355,13903}, {12356,13906}, {12357,13907}
X(13908) = reflection of X(8997) in X(13846)
X(13908) = orthologic center of these triangles: 3rd tri-squares-central to Mccay
X(13908) = {X(6), X(5461)}-harmonic conjugate of X(13968)
The reciprocal orthologic center of these triangles is X(9833)
X(13909) lies on these lines: {5,8969}, {6,5449}, {30,8991}, {68,3068}, {155,8976}, {371,9927}, {485,12239}, {539,8909}, {590,1147}, {1069,13898}, {1151,8994}, {3070,7689}, {3448,11462}, {3564,13879}, {5418,12038}, {6193,8972}, {6221,12293}, {7583,12359}, {8960,10665}, {8974,9929}, {8975,9930}, {9540,12118}, {9896,13888}, {9908,13889}, {9923,13892}, {9928,13893}, {9933,13902}, {10055,13904}, {10071,13905}, {10576,10666}, {11411,13886}, {12134,13884}, {12163,13665}, {12193,13885}, {12259,13883}, {12328,13887}, {12418,13894}, {12422,13895}, {12423,13896}, {12426,13899}, {12427,13900}, {12428,13901}, {12429,13903}, {12430,13906}, {12431,13907}
X(13909) = orthologic center of these triangles: 3rd tri-squares-central to 2nd Hyacinth
X(13909) = {X(6), X(5449)}-harmonic conjugate of X(13970)
The reciprocal orthologic center of these triangles is X(3)
X(13910) lies on these lines: {2,6}, {159,13889}, {182,7583}, {206,8969}, {371,5480}, {485,1503}, {511,8981}, {518,8983}, {542,13915}, {611,13904}, {613,13905}, {732,8992}, {1350,9540}, {1351,13903}, {1352,8976}, {1386,13883}, {1587,5085}, {1843,13884}, {2781,8994}, {2854,8998}, {3056,13901}, {3242,13902}, {3416,13893}, {3564,13879}, {3751,13888}, {3867,5412}, {5846,13911}, {5969,8997}, {6561,13644}, {6776,13886}, {8180,13924}, {8550,8960}, {8854,10192}, {9024,13922}, {9830,13908}, {12212,13885}, {12329,13887}, {12583,13894}, {12586,13895}, {12587,13896}, {12588,13897}, {12589,13898}, {12590,13899}, {12591,13900}, {12594,13906}, {12595,13907}, {13848,13920}
X(13910) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,590,141), (6,3589,13972), (3068,13638,590), (3618,7585,6), (8974,8975,3068)
The reciprocal orthologic center of these triangles is X(10)
X(13911) lies on these lines: {1,590}, {2,7968}, {6,10}, {8,3068}, {40,3070}, {44,7090}, {145,8972}, {355,371}, {485,517}, {486,9956}, {515,1151}, {518,10068}, {519,8983}, {615,1698}, {940,6348}, {944,9540}, {952,8981}, {1124,1737}, {1125,8253}, {1152,6684}, {1210,3297}, {1335,10039}, {1385,5418}, {1482,8976}, {1587,5657}, {1588,5818}, {1702,3071}, {1837,2066}, {1904,7133}, {2067,5252}, {2098,13898}, {2099,13897}, {2802,8988}, {3311,5790}, {3316,10595}, {3579,6560}, {3594,13975}, {3913,13887}, {4297,6409}, {5090,5412}, {5420,11231}, {5690,7583}, {5691,9616}, {5844,13925}, {5881,9583}, {5886,10576}, {6410,10164}, {6564,12699}, {9620,12787}, {10912,13895}, {10950,13901}, {12245,13886}, {12410,13889}, {12454,13890}, {12455,13891}, {12626,13894}, {12635,13896}, {12637,13900}, {12647,13904}, {12702,13665}
X(13911) = reflection of X(1151) in X(13912)
X(13911) = orthologic center of these triangles: 3rd tri-squares-central to 2nd Schiffler
X(13911) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,13893,590), (6,10,13973), (8,3068,7969), (10,13883,6), (145,8972,13902), (1702,5587,3071)
The reciprocal orthologic center of these triangles is X(4)
X(13912) lies on these lines: {1,9540}, {2,1702}, {3,13883}, {4,9616}, {6,6684}, {8,9583}, {10,371}, {20,9582}, {40,3068}, {46,13905}, {65,13901}, {140,13971}, {165,1587}, {226,9646}, {355,6221}, {372,10164}, {485,516}, {486,3634}, {515,1151}, {517,8981}, {590,946}, {944,9615}, {962,8972}, {1124,3911}, {1125,5418}, {1210,2066}, {1378,5745}, {1588,1698}, {1685,6685}, {1703,7585}, {1836,13897}, {1902,13884}, {2800,13922}, {2802,13913}, {3071,10175}, {3311,13936}, {3579,7583}, {3592,13973}, {3817,10576}, {4297,6200}, {5119,13904}, {5393,6212}, {5493,8960}, {5587,6459}, {5691,9541}, {5795,9678}, {5812,13896}, {5840,8988}, {6001,8991}, {6361,13886}, {6560,12512}, {7582,13947}, {7584,11231}, {7968,10165}, {7969,11362}, {7982,13902}, {8974,12697}, {8975,12698}, {8976,12699}, {9648,10950}, {9661,12053}, {9663,10944}, {9911,13889}, {10306,13887}, {12197,13885}, {12458,13890}, {12459,13891}, {12497,13892}, {12696,13894}, {12700,13895}, {12701,13898}, {12702,13903}, {12704,13907}
X(13912) = midpoint of X(1151) and X(13911)
X(13912) = reflection of X(8983) in X(8981)
X(13912) = {X(6), X(6684)}-harmonic conjugate of X(13975)
The reciprocal orthologic center of these triangles is X(40)
X(13913) lies on these lines: {6,6713}, {11,371}, {80,9583}, {100,9540}, {104,3068}, {119,590}, {140,13991}, {153,8972}, {485,2829}, {486,6667}, {515,8988}, {952,8981}, {1151,5840}, {1317,13901}, {1377,3035}, {1768,13888}, {2771,8998}, {2783,8997}, {2787,8980}, {2800,8983}, {2802,13912}, {2806,13918}, {2831,13923}, {6221,10738}, {8974,12753}, {8975,12754}, {8976,10742}, {9541,10724}, {9646,10956}, {9913,13889}, {10058,13904}, {10074,13905}, {10698,13902}, {11715,13883}, {12138,13884}, {12199,13885}, {12248,13886}, {12332,13887}, {12463,13891}, {12499,13892}, {12751,13893}, {12752,13894}, {12761,13895}, {12762,13896}, {12763,13897}, {12764,13898}, {12765,13899}, {12766,13900}, {12773,13903}, {12775,13906}, {12776,13907}
X(13913) = reflection of X(13922) in X(8981)
The reciprocal orthologic center of these triangles is X(40)
X(13914) lies on these lines: {6,13978}, {371,12599}, {590,12864}, {3068,7160}, {8000,13902}, {8972,9874}, {8974,12801}, {8975,12802}, {8976,12856}, {9540,12120}, {9898,13888}, {10075,13905}, {12139,13884}, {12200,13885}, {12249,13886}, {12260,13883}, {12333,13887}, {12411,13889}, {12500,13892}, {12777,13893}, {12789,13894}, {12857,13895}, {12859,13897}, {12860,13898}, {12861,13899}, {12862,13900}, {12863,13901}, {12874,13906}, {12875,13907}
The reciprocal orthologic center of these triangles is X(6102)
X(13915) lies on these lines: {6,13979}, {30,8994}, {74,13665}, {110,8976}, {125,7583}, {265,3068}, {371,10113}, {485,5663}, {542,13910}, {590,1511}, {1131,12244}, {1539,6564}, {2771,8988}, {2777,8991}, {3070,12041}, {3448,13886}, {3628,13990}, {6221,10733}, {6723,13966}, {8253,10820}, {8972,12383}, {8974,12803}, {8975,12804}, {8995,8998}, {9540,12121}, {10088,13897}, {10091,13898}, {10819,13846}, {12140,13884}, {12201,13885}, {12261,13883}, {12334,13887}, {12407,13888}, {12412,13889}, {12501,13892}, {12778,13893}, {12790,13894}, {12889,13895}, {12890,13896}, {12894,13899}, {12895,13900}, {12896,13901}, {12898,13902}, {12902,13903}, {12903,13904}, {12905,13906}, {12906,13907}
X(13915) = reflection of X(8998) in X(13925)
The reciprocal orthologic center of these triangles is X(3)
X(13916) lies on these lines: {6,6670}, {14,3068}, {371,5479}, {530,13908}, {531,10667}, {542,13910}, {590,619}, {617,8972}, {5474,9540}, {5613,8976}, {6269,8975}, {6271,8974}, {6307,13703}, {6722,13982}, {6773,13886}, {6774,7583}, {7974,13902}, {9900,13888}, {9915,13889}, {9981,13892}, {10061,13904}, {10077,13905}, {11706,13883}, {12141,13884}, {12204,13885}, {12336,13887}, {12780,13893}, {12792,13894}, {12921,13895}, {12931,13896}, {12941,13897}, {12951,13898}, {12988,13899}, {12989,13900}, {13075,13901}, {13102,13903}, {13104,13906}, {13106,13907}
The reciprocal orthologic center of these triangles is X(3)
X(13917) lies on these lines: {6,6669}, {13,3068}, {371,5478}, {530,10668}, {531,13908}, {542,13910}, {590,618}, {616,8972}, {5473,9540}, {5617,8976}, {6270,8974}, {6306,13705}, {6722,13981}, {6770,13886}, {6771,7583}, {9901,13888}, {9916,13889}, {9982,13892}, {10062,13904}, {10078,13905}, {11705,13883}, {12142,13884}, {12205,13885}, {12337,13887}, {12781,13893}, {12793,13894}, {12922,13895}, {12932,13896}, {12942,13897}, {12952,13898}, {12991,13900}, {13076,13901}, {13103,13903}, {13105,13906}, {13107,13907}
The reciprocal orthologic center of these triangles is X(4)
X(13918) lies on these lines: {6,13985}, {112,9540}, {127,371}, {132,590}, {140,13992}, {1151,2794}, {1297,3068}, {2781,8998}, {2799,8980}, {2806,13913}, {3320,13901}, {5418,6720}, {8972,12384}, {8974,12805}, {8975,12806}, {8976,12918}, {8981,13923}, {9530,13846}, {9541,10735}, {9583,13280}, {12145,13884}, {12207,13885}, {12253,13886}, {12265,13883}, {12340,13887}, {12408,13888}, {12413,13889}, {12503,13892}, {12784,13893}, {12796,13894}, {12925,13895}, {12935,13896}, {12945,13897}, {12955,13898}, {12997,13900}, {13099,13902}, {13115,13903}, {13116,13904}, {13118,13906}, {13119,13907}
X(13918) = reflection of X(13923) in X(8981)
The reciprocal orthologic center of these triangles is X(79)
X(13919) lies on these lines: {6,13987}, {371,12600}, {590,13089}, {3068,10266}, {8972,12849}, {8975,12808}, {8976,12919}, {9540,12556}, {12146,13884}, {12255,13886}, {12267,13883}, {12342,13887}, {12409,13888}, {12414,13889}, {12504,13892}, {12786,13893}, {12798,13894}, {12927,13895}, {12937,13896}, {12947,13897}, {12957,13898}, {13001,13900}, {13130,13906}
The reciprocal orthologic center of these triangles is X(13665)
X(13920) lies on these lines: {2,13662}, {6,13988}, {30,13879}, {115,13703}, {371,13687}, {590,13701}, {1327,3068}, {6329,13849}, {8974,13690}, {8975,13691}, {8976,13692}, {9540,13666}, {13667,13883}, {13668,13884}, {13672,13885}, {13674,13886}, {13675,13887}, {13679,13888}, {13680,13889}, {13685,13892}, {13688,13893}, {13689,13894}, {13693,13895}, {13695,13897}, {13696,13898}, {13697,13899}, {13698,13900}, {13699,13901}, {13702,13902}, {13714,13904}, {13715,13905}, {13716,13906}, {13717,13907}, {13848,13910}
The reciprocal orthologic center of these triangles is X(486)
X(13921) lies on these lines: {6,6119}, {30,13848}, {39,590}, {486,3068}, {487,8972}, {524,7862}, {3564,13879}, {3767,6229}, {6280,8975}, {6281,8974}, {6290,8976}, {7980,13902}, {8253,13934}, {8960,13638}, {8967,8969}, {9540,12123}, {9906,13888}, {9921,13889}, {9986,13892}, {10067,13904}, {10083,13905}, {12147,13884}, {12210,13885}, {12221,13650}, {12256,13886}, {12268,13883}, {12343,13887}, {12601,13903}, {12787,13893}, {12799,13894}, {12928,13895}, {12938,13896}, {12948,13897}, {12958,13898}, {13002,13899}, {13003,13900}, {13081,13901}, {13132,13906}, {13846,13881}
X(13921) = orthologic center of these triangles: 3rd tri-squares-central to inner-Vecten
X(13921) = {X(13910), X(13925)}-harmonic conjugate of X(13879)
The reciprocal parallelogic center of these triangles is X(1)
X(13922) lies on these lines: {6,3035}, {11,590}, {80,13893}, {100,3068}, {104,9540}, {119,371}, {140,13977}, {149,8972}, {214,13883}, {485,5840}, {528,13846}, {952,8981}, {1145,7969}, {1151,2829}, {1320,13902}, {1862,13884}, {2067,10956}, {2771,8994}, {2783,8980}, {2787,8997}, {2800,13912}, {2802,8983}, {2806,13923}, {3634,13976}, {5418,6713}, {5541,13888}, {6221,10742}, {6667,8253}, {8960,10993}, {8974,13269}, {8975,13270}, {8976,10738}, {9024,13910}, {9541,10728}, {9583,12751}, {10087,13904}, {10090,13905}, {12331,13903}, {13194,13885}, {13199,13886}, {13205,13887}, {13222,13889}, {13228,13890}, {13230,13891}, {13235,13892}, {13268,13894}, {13271,13895}, {13272,13896}, {13273,13897}, {13274,13898}, {13275,13899}, {13276,13900}, {13278,13906}, {13279,13907}
X(13922) = reflection of X(13913) in X(8981)
X(13922) = {X(6), X(3035)}-harmonic conjugate of X(13991)
The reciprocal parallelogic center of these triangles is X(6)
X(13923) lies on these lines: {6,6720}, {112,3068}, {127,590}, {132,371}, {140,13985}, {485,2794}, {1297,9540}, {2781,8994}, {2799,8997}, {2806,13922}, {2831,13913}, {6020,13901}, {6221,12918}, {8972,13219}, {8974,13282}, {8976,10749}, {8981,13918}, {8998,9517}, {9583,12784}, {10705,13902}, {11641,13889}, {11722,13883}, {13166,13884}, {13195,13885}, {13200,13886}, {13206,13887}, {13280,13893}, {13281,13894}, {13294,13895}, {13295,13896}, {13296,13897}, {13297,13898}, {13299,13900}, {13312,13905}, {13313,13906}, {13314,13907}
X(13923) = reflection of X(13918) in X(8981)
X(13923) = {X(6), X(6720)}-harmonic conjugate of X(13992)
X(13924) lies on these lines: {20,485}, {590,639}, {641,3068}, {6250,8976}, {6289,13903}, {8180,13910}, {8253,13880}, {12124,13886}, {12788,13888}, {12968,13701}
X(13924) = midpoint of X(13879) and X(13882)
X(13925) lies on these lines: {2,6418}, {3,8972}, {4,13903}, {5,1588}, {6,3628}, {26,13889}, {30,485}, {140,372}, {355,13888}, {371,546}, {382,9691}, {395,3392}, {396,3367}, {495,13897}, {496,13898}, {524,6118}, {547,7584}, {548,3070}, {549,1587}, {550,6455}, {631,6408}, {632,3312}, {952,8983}, {1131,1657}, {1152,12108}, {1483,13902}, {1656,3316}, {1658,8276}, {3071,5066}, {3090,6417}, {3091,6199}, {3146,6407}, {3364,11543}, {3389,11542}, {3525,6395}, {3526,7581}, {3529,6445}, {3530,5418}, {3564,13879}, {3590,3851}, {3592,12811}, {3627,6221}, {3830,6474}, {3845,6459}, {3853,6564}, {3861,6561}, {5055,7582}, {5070,7586}, {5073,10145}, {5420,6471}, {5690,13893}, {5844,13911}, {5874,8975}, {5875,8974}, {5901,13883}, {6119,6329}, {6200,12103}, {6419,12812}, {6425,12102}, {6430,11812}, {6432,8253}, {6460,6497}, {6501,13941}, {6756,13884}, {8252,10195}, {8854,11266}, {8980,8993}, {8995,8998}, {9542,10137}, {9663,10483}, {10942,13896}, {10943,13895}, {11539,13935}
X(13925) = midpoint of X(i) and X(j) for these {i,j}: {485,8981}, {8998,13915}
X(13925) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,3628,13993), (1656,6500,13939), (3068,8976,5), (9540,13665,550), (13898,13905,496)
The reciprocal orthologic center of these triangles is X(9867)
X(13926) lies on these lines: {2,7599}, {3,115}, {98,486}, {114,372}, {183,6229}, {230,2460}, {385,9867}, {485,8781}, {542,13847}, {615,6231}, {620,11316}, {642,3103}, {1513,2459}, {2023,3102}, {3564,6230}, {6055,13932}, {6108,13928}, {6109,13929}, {6119,9478}, {6560,9758}, {6565,9756}, {6722,11314}, {7793,9991}, {7806,8316}, {8304,13087}, {12601,12963}
X(13926) = midpoint of X(385) and X(9867)
X(13926) = complement of X(33340)
X(13926) = orthoptic-circle-of-Steiner-inellipse-inverse-of-X(13520)
X(13926) = orthologic center of these triangles: 4th tri-squares to 1st Brocard
X(13926) = orthologic center of these triangles: 4th tri-squares to 6th Brocard
X(13926) = {X(115), X(6036)}-harmonic conjugate of X(13873)
The reciprocal orthologic center of these triangles is X(9891)
X(13927) lies on these lines: {486,490}, {543,13847}, {599,626}, {615,9892}, {2482,13783}, {6399,12601}, {8593,13770}, {8859,9891}, {8860,13087}, {9882,13760}, {9894,13796}
X(13927) = orthologic center of these triangles: 4th tri-squares to Mccay
The reciprocal orthologic center of these triangles is X(6301)
X(13928) lies on these lines: {14,486}, {115,615}, {395,6307}, {531,10671}, {619,6300}, {3643,6301}, {5460,13932}, {6108,13926}, {9113,13770}
The reciprocal orthologic center of these triangles is X(6300)
X(13929) lies on these lines: {13,486}, {115,615}, {396,6306}, {530,10672}, {618,6301}, {3642,6300}, {5459,13932}, {6109,13926}, {9112,13770}
The reciprocal orthologic center of these triangles is X(6316)
X(13930) lies on these lines: {3,6399}, {39,13934}, {76,486}, {183,6316}, {487,6194}, {511,6290}, {538,13847}, {615,6318}, {640,6393}, {642,3103}, {3094,3763}, {6314,13827}, {9466,13932}
X(13930) = reflection of X(3103) in X(642)
The reciprocal orthologic center of these triangles is X(6315)
X(13931) lies on these lines: {83,486}, {615,6317}, {754,13847}, {6119,9478}, {6287,6399}, {6292,13934}, {6313,13829}, {6315,11174}, {6704,7834}
The reciprocal orthologic center of these triangles is X(13711)
X(13932) lies on these lines: {2,9600}, {381,486}, {524,13850}, {615,13712}, {5459,13929}, {5460,13928}, {6055,13926}, {6251,6399}, {9466,13930}, {12962,13846}, {13701,13934}, {13843,13847}
X(13932) = reflection of X(13847) in X(13988)
The reciprocal orthologic center of these triangles is X(486)
X(13933) lies on these lines: {4,372}, {6,6119}, {30,13849}, {487,13770}, {615,642}, {3564,13880}, {6280,13950}, {6281,13949}, {6290,13951}, {6329,13879}, {7980,13959}, {9906,13942}, {9921,13943}, {9986,13946}, {10067,13962}, {10083,13963}, {12123,13935}, {12147,13937}, {12210,13938}, {12268,13936}, {12343,13940}, {12601,13961}, {12787,13947}, {12799,13948}, {12928,13952}, {12938,13953}, {12948,13954}, {12958,13955}, {13002,13956}, {13003,13957}, {13081,13958}, {13132,13964}, {13133,13965}, {13821,13847}
X(13933) = reflection of X(642) in X(8184)
X(13933) = {X(13972), X(13993)}-harmonic conjugate of X(13880)
The reciprocal orthologic center of these triangles is X(486)
X(13934) lies on these lines: {2,494}, {3,486}, {6,642}, {39,13930}, {114,372}, {487,3069}, {618,6301}, {619,6300}, {641,6119}, {1505,7888}, {1691,6315}, {2482,13783}, {3094,11315}, {3564,13966}, {3589,6387}, {5414,12958}, {5871,6813}, {6292,13931}, {6422,7807}, {6502,12948}, {6503,9726}, {7968,12787}, {8253,13921}, {8299,10083}, {8855,12960}, {8940,11210}, {9758,10840}, {9906,13947}, {12221,13941}, {12509,13939}, {12963,13821}, {13701,13932}
X(13934) = midpoint of X(5491) and X(6463)
X(13934) = complement of X(5491)
X(13934) = {X(2), X(6463)}-harmonic conjugate of X(5491)
X(13935) lies on these lines: {1,13975}, {2,372}, {3,1588}, {4,615}, {5,6398}, {6,631}, {20,486}, {22,8277}, {30,6450}, {35,13962}, {36,13963}, {40,13971}, {56,13958}, {74,13990}, {98,13989}, {99,13967}, {100,13977}, {104,13991}, {110,13969}, {112,13985}, {140,3068}, {165,13942}, {182,13938}, {371,3523}, {376,3071}, {381,6408}, {382,6446}, {487,7793}, {489,13757}, {492,3785}, {515,13947}, {517,13959}, {546,6522}, {548,6452}, {549,3311}, {550,6456}, {590,3525}, {632,8976}, {639,3593}, {642,1271}, {944,13973}, {1124,5218}, {1125,1703}, {1131,7486}, {1151,3524}, {1297,13992}, {1327,6479}, {1335,7288}, {1350,13972}, {1490,13974}, {1498,13980}, {1578,7494}, {1593,13937}, {1702,10164}, {2041,11489}, {2042,11488}, {2459,11293}, {3070,3090}, {3085,6502}, {3086,5414}, {3088,5413}, {3089,11474}, {3091,6454}, {3093,6353}, {3098,13946}, {3102,6194}, {3146,6565}, {3448,10820}, {3522,6561}, {3526,6395}, {3528,6412}, {3530,6221}, {3533,8253}, {3541,10881}, {3543,6485}, {3545,6430}, {3546,10898}, {3576,13936}, {3591,12819}, {3628,6448}, {3832,6481}, {3855,6469}, {5054,6418}, {5056,6564}, {5059,6487}, {5067,6438}, {5068,10194}, {5210,12509}, {5326,13897}, {5406,6806}, {5418,6420}, {5473,13982}, {5474,13981}, {5591,11316}, {5657,7968}, {5871,6813}, {6200,9543}, {6201,6811}, {6284,13955}, {6409,10299}, {6421,7735}, {6423,7736}, {6427,12108}, {6433,9693}, {6455,12100}, {6471,13846}, {6489,11541}, {6497,8703}, {7294,13898}, {7354,13954}, {7396,8281}, {7691,13986}, {8416,11315}, {8855,10565}, {9733,13758}, {10310,13940}, {11248,13964}, {11249,13965}, {11257,13983}, {11412,12240}, {11414,13943}, {11539,13925}, {11822,13944}, {11823,13945}, {11824,13949}, {11825,13950}, {11826,13952}, {11827,13953}, {11828,13956}, {11829,13957}, {12117,13968}, {12118,13970}, {12119,13976}, {12120,13978}, {12121,13979}, {12122,13984}, {12123,13933}, {12124,13880}, {12510,13881}, {12556,13987}, {13666,13988}, {13786,13849}
X(13935) = midpoint of X(6450) and X(13951)
X(13935) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,372,1587), (3,1588,9541), (3,13961,7584), (6,631,9540), (372,5420,2), (376,13939,3071), (486,6396,20), (550,13993,13785), (3071,6410,376), (6456,13785,550), (7584,13966,13961)
X(13936) lies on these lines: {1,1123}, {2,8983}, {3,13975}, {4,1703}, {6,10}, {8,7586}, {11,13976}, {40,1588}, {81,6347}, {165,6459}, {214,13991}, {226,2362}, {355,3312}, {371,6684}, {372,515}, {485,10175}, {486,946}, {516,3071}, {517,7584}, {519,7968}, {551,13847}, {590,3634}, {605,5264}, {606,1724}, {615,1125}, {631,9583}, {950,5414}, {1132,9812}, {1151,10164}, {1152,4297}, {1210,1335}, {1385,13966}, {1386,13972}, {1587,5587}, {1698,3068}, {1702,5657}, {1737,3301}, {1771,3077}, {2067,3911}, {2646,13958}, {3295,13940}, {3298,11019}, {3299,10039}, {3311,13912}, {3452,5405}, {3523,9615}, {3576,13935}, {3616,13941}, {3624,13902}, {5090,5411}, {5420,10165}, {5603,13939}, {5691,6460}, {5790,6418}, {5818,7581}, {5886,13951}, {5901,13993}, {6502,10106}, {7583,9956}, {7585,9780}, {8981,11231}, {10172,10576}, {10246,13961}, {11108,13887}, {11363,13937}, {11364,13938}, {11365,13943}, {11366,13944}, {11367,13945}, {11368,13946}, {11370,13949}, {11371,13950}, {11373,13952}, {11374,13953}, {11375,13954}, {11376,13955}, {11377,13956}, {11378,13957}, {11705,13982}, {11706,13981}, {11709,13969}, {11710,13967}, {11711,13989}, {11715,13977}, {11720,13990}, {11722,13992}, {11831,13948}, {12114,13974}, {12258,13968}, {12259,13970}, {12260,13978}, {12261,13979}, {12262,13980}, {12263,13983}, {12264,13984}, {12265,13985}, {12266,13986}, {12267,13987}, {12268,13933}, {12269,13880}, {12699,13785}, {13667,13988}, {13787,13849}
X(13936) = reflection of X(5689) in X(10)
X(13936) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,3069,13971), (1,13942,13959), (6,10,13883), (6,13973,10), (615,7969,1125), (3069,13959,13942), (5657,7582,1702), (7585,9780,13893), (13942,13959,13971)
X(13937) lies on these lines: {2,5411}, {4,3591}, {5,10881}, {6,468}, {24,7584}, {25,3069}, {33,13958}, {235,372}, {427,615}, {428,13847}, {486,3575}, {1112,13990}, {1152,1885}, {1368,11418}, {1588,3515}, {1593,13935}, {1598,13961}, {1829,13971}, {1843,13972}, {1862,13991}, {1902,13975}, {1906,11474}, {3092,5420}, {3147,3311}, {3312,3542}, {3535,3593}, {3580,11448}, {5090,13947}, {5186,13989}, {5410,6353}, {6560,10151}, {6756,13993}, {7487,13939}, {7505,7583}, {7713,13942}, {8981,10018}, {10154,11417}, {11266,11585}, {11363,13936}, {11380,13938}, {11381,13980}, {11383,13940}, {11384,13944}, {11385,13945}, {11386,13946}, {11388,13949}, {11389,13950}, {11390,13952}, {11391,13953}, {11392,13954}, {11393,13955}, {11394,13956}, {11395,13957}, {11396,13959}, {11398,13962}, {11399,13963}, {11400,13964}, {11401,13965}, {11576,13986}, {11832,13948}, {12131,13967}, {12132,13968}, {12133,13969}, {12134,13970}, {12135,13973}, {12136,13974}, {12137,13976}, {12138,13977}, {12139,13978}, {12140,13979}, {12141,13981}, {12142,13982}, {12143,13983}, {12144,13984}, {12145,13985}, {12146,13987}, {12147,13933}, {12148,13880}, {13166,13992}, {13668,13988}, {13788,13849}
X(13938) lies on these lines: {6,1078}, {32,637}, {83,615}, {98,372}, {182,13935}, {384,13983}, {486,12110}, {1588,5171}, {2080,7584}, {3068,7815}, {3312,10104}, {3398,13966}, {4027,13989}, {6459,8722}, {7787,13941}, {10788,13939}, {10789,13942}, {10790,13943}, {10791,13947}, {10792,13949}, {10793,13950}, {10794,13952}, {10795,13953}, {10796,13951}, {10797,13954}, {10798,13955}, {10799,13958}, {10800,13959}, {10801,13962}, {10802,13963}, {10803,13964}, {10804,13965}, {11364,13936}, {11380,13937}, {11490,13940}, {11837,13944}, {11838,13945}, {11839,13948}, {11840,13956}, {11841,13957}, {11842,13961}, {12150,13847}, {12176,13967}, {12191,13968}, {12192,13969}, {12193,13970}, {12194,13971}, {12195,13973}, {12196,13974}, {12197,13975}, {12198,13976}, {12199,13977}, {12200,13978}, {12201,13979}, {12202,13980}, {12204,13981}, {12205,13982}, {12206,13984}, {12207,13985}, {12208,13986}, {12209,13987}, {12210,13933}, {12211,13880}, {12212,13972}, {13193,13990}, {13194,13991}, {13195,13992}, {13672,13988}, {13792,13849}
X(13938) = {X(6), X(1078)}-harmonic conjugate of X(13885)
X(13939) lies on these lines: {2,3311}, {3,13941}, {4,372}, {5,6418}, {6,3090}, {20,6450}, {24,13943}, {30,1132}, {186,8277}, {371,3525}, {376,3071}, {388,13962}, {485,5071}, {488,13757}, {492,7376}, {497,13963}, {515,13942}, {546,6395}, {615,631}, {632,6199}, {640,5860}, {944,13971}, {1124,8164}, {1131,3851}, {1152,3529}, {1270,11314}, {1587,3545}, {1656,3316}, {3068,5067}, {3070,3855}, {3085,13954}, {3086,13955}, {3091,3312}, {3146,6398}, {3299,10588}, {3301,10589}, {3364,11488}, {3389,11489}, {3448,13979}, {3522,6497}, {3523,6455}, {3524,5420}, {3528,6561}, {3533,8252}, {3544,6420}, {3628,6417}, {3854,6495}, {4294,13958}, {5054,9691}, {5056,7583}, {5068,13665}, {5073,6473}, {5079,6501}, {5603,13936}, {5657,13947}, {6221,10303}, {6361,13975}, {6392,7388}, {6445,12108}, {6454,11541}, {6485,11001}, {6770,13982}, {6773,13981}, {6776,13972}, {6813,10784}, {7486,8976}, {7487,13937}, {7967,13959}, {8855,10880}, {9541,10299}, {9862,13946}, {10137,11812}, {10783,13949}, {10785,13952}, {10786,13953}, {10788,13938}, {10805,13964}, {10806,13965}, {11411,13970}, {11491,13940}, {11843,13944}, {11844,13945}, {11845,13948}, {11846,13956}, {11847,13957}, {12243,13968}, {12244,13969}, {12245,13973}, {12246,13974}, {12247,13976}, {12248,13977}, {12249,13978}, {12250,13980}, {12251,13983}, {12252,13984}, {12253,13985}, {12254,13986}, {12255,13987}, {12257,13880}, {12383,13990}, {12509,13934}, {13172,13989}, {13199,13991}, {13200,13992}, {13674,13988}, {13794,13849}
X(13939) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,7584,7582), (6,3090,13886), (1656,6500,13925), (3071,13935,376), (3317,7582,2), (7584,13951,2), (13785,13966,20)
X(13940) lies on these lines: {1,6}, {3,13971}, {35,13942}, {55,3069}, {56,13959}, {100,13941}, {197,13943}, {372,11496}, {486,11500}, {590,8167}, {605,940}, {615,1376}, {1621,7586}, {3068,4423}, {3295,13936}, {3913,13973}, {4254,8225}, {4421,13847}, {5284,7585}, {5687,13947}, {6459,8273}, {7584,10267}, {10306,13975}, {10310,13935}, {11108,13883}, {11248,13966}, {11383,13937}, {11490,13938}, {11491,13939}, {11492,13944}, {11493,13945}, {11494,13946}, {11497,13949}, {11498,13950}, {11499,13951}, {11501,13954}, {11502,13955}, {11503,13956}, {11504,13957}, {11507,13962}, {11508,13963}, {11509,13964}, {11510,13965}, {11848,13948}, {11849,13961}, {12178,13967}, {12326,13968}, {12327,13969}, {12328,13970}, {12329,13972}, {12330,13974}, {12331,13976}, {12332,13977}, {12333,13978}, {12334,13979}, {12335,13980}, {12336,13981}, {12337,13982}, {12338,13983}, {12339,13984}, {12340,13985}, {12341,13986}, {12342,13987}, {12343,13933}, {12344,13880}, {13173,13989}, {13204,13990}, {13205,13991}, {13206,13992}, {13675,13988}, {13795,13849}
X(13941) lies on these lines: {2,6}, {3,13939}, {4,3591}, {5,1131}, {8,13947}, {10,13942}, {20,486}, {22,13943}, {30,6446}, {100,13940}, {140,6199}, {145,13959}, {146,13969}, {147,13967}, {148,13989}, {149,13991}, {153,13977}, {194,13983}, {371,10303}, {372,3091}, {376,6452}, {388,13954}, {485,7486}, {487,13770}, {488,13834}, {497,13955}, {549,6445}, {616,13982}, {617,13981}, {631,6221}, {632,6417}, {638,13711}, {962,13975}, {1152,2672}, {1384,11291}, {1587,5056}, {1588,3523}, {1656,7581}, {2888,13986}, {2896,13946}, {3070,5068}, {3071,3522}, {3085,13962}, {3086,13963}, {3090,3312}, {3311,3525}, {3316,5070}, {3434,13952}, {3436,13953}, {3448,13990}, {3524,6451}, {3529,6450}, {3533,8981}, {3543,6481}, {3590,6436}, {3616,13936}, {3617,7968}, {3627,6408}, {3628,6418}, {3723,6351}, {3731,5405}, {3832,6438}, {3839,6560}, {4240,13948}, {5024,11292}, {5059,6434}, {5067,7583}, {5071,13665}, {5261,6502}, {5274,5414}, {5411,8889}, {5413,7378}, {5601,13944}, {5602,13945}, {6193,13970}, {6223,13974}, {6224,13976}, {6225,13980}, {6407,12108}, {6411,6459}, {6433,9543}, {6462,13956}, {6463,13957}, {6501,13925}, {6561,10304}, {6808,11456}, {7396,11418}, {7488,8277}, {7787,13938}, {8591,13968}, {8855,11417}, {9874,13978}, {10528,13964}, {10529,13965}, {10818,13202}, {12221,13934}, {12383,13979}, {12384,13985}, {12849,13987}, {13219,13992}, {13678,13988}, {13798,13849}
X(13941) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,6,8972), (2,193,3595), (2,3069,7586), (2,7586,7585), (6,8972,7585), (615,3069,2), (615,13847,3069), (3068,8252,2), (3069,13758,13949), (7586,8972,6), (11488,11489,615)
X(13942) lies on these lines: {1,1123}, {6,3624}, {10,13941}, {35,13940}, {40,13966}, {165,13935}, {355,13993}, {372,1699}, {486,5691}, {515,13939}, {517,13961}, {615,1698}, {1125,7586}, {1587,7988}, {1588,7987}, {1697,13958}, {1702,5420}, {1703,11522}, {1768,13977}, {2948,13990}, {3099,13946}, {3312,8227}, {3317,10175}, {3576,7584}, {3632,13973}, {3679,7968}, {3751,13972}, {5273,5405}, {5290,6502}, {5541,13991}, {5587,13951}, {5588,13950}, {5589,13949}, {6395,9955}, {6418,11230}, {7582,10165}, {7713,13937}, {7991,13975}, {7992,13974}, {8185,13943}, {8186,13944}, {8187,13945}, {8188,13956}, {8189,13957}, {8252,13893}, {8277,9590}, {9578,13954}, {9581,13955}, {9860,13967}, {9875,13968}, {9896,13970}, {9897,13976}, {9898,13978}, {9899,13980}, {9900,13981}, {9901,13982}, {9902,13983}, {9903,13984}, {9904,13969}, {9905,13986}, {9906,13933}, {9907,13880}, {10789,13938}, {10826,13952}, {10827,13953}, {11852,13948}, {12407,13979}, {12408,13985}, {12409,13987}, {13174,13989}, {13221,13992}, {13679,13988}, {13799,13849}
X(13942) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,3624,13888), (3069,13959,13936), (3069,13971,1), (7968,13947,3679), (13936,13959,1), (13936,13971,13959)
X(13943) lies on these lines: {3,486}, {6,1196}, {22,13941}, {24,13939}, {25,3069}, {26,13993}, {159,13972}, {197,13940}, {372,1598}, {485,11484}, {494,6414}, {631,9695}, {1132,11413}, {1583,9723}, {1597,6565}, {1995,7586}, {3068,11284}, {3312,7529}, {3317,7509}, {5198,6460}, {5594,13950}, {5595,13949}, {6421,10962}, {6642,7584}, {7387,13966}, {7517,13961}, {8185,13942}, {8190,13944}, {8191,13945}, {8192,13959}, {8193,13947}, {8194,13956}, {8195,13957}, {8252,8281}, {9798,13971}, {9861,13967}, {9876,13968}, {9908,13970}, {9909,13847}, {9910,13974}, {9911,13975}, {9912,13976}, {9913,13977}, {9914,13980}, {9915,13981}, {9916,13982}, {9917,13983}, {9918,13984}, {9919,13969}, {9920,13986}, {9921,13933}, {9922,13880}, {10037,13962}, {10046,13963}, {10790,13938}, {10828,13946}, {10829,13952}, {10830,13953}, {10831,13954}, {10832,13955}, {10833,13958}, {10834,13964}, {10835,13965}, {11365,13936}, {11414,13935}, {11514,12591}, {11641,13992}, {11853,13948}, {12164,12240}, {12310,13990}, {12410,13973}, {12411,13978}, {12412,13979}, {12413,13985}, {12414,13987}, {13175,13989}, {13222,13991}, {13680,13988}, {13800,13849}
X(13944) lies on these lines: {6,13890}, {55,13945}, {372,8196}, {486,9834}, {615,5599}, {1125,13891}, {3069,5597}, {5598,13959}, {5600,7968}, {5601,13941}, {8186,13942}, {8190,13943}, {8197,13947}, {8198,13949}, {8199,13950}, {8200,13951}, {11207,13847}, {11252,13966}, {11366,13936}, {11384,13937}, {11492,13940}, {11822,13935}, {11837,13938}, {11843,13939}, {11861,13946}, {11865,13952}, {11867,13953}, {11869,13954}, {11871,13955}, {11873,13958}, {11875,13961}, {11877,13962}, {11879,13963}, {11881,13964}, {11883,13965}, {12345,13968}, {12452,13972}, {12454,13973}, {12456,13974}, {12458,13975}, {12460,13976}, {12462,13977}, {12474,13983}, {12476,13984}, {13176,13989}, {13208,13990}, {13228,13991}
X(13945) lies on these lines: {6,13891}, {55,13944}, {372,8203}, {486,9835}, {615,5600}, {1125,13890}, {3069,5598}, {5597,13959}, {5599,7968}, {5602,13941}, {8187,13942}, {8191,13943}, {8204,13947}, {8205,13949}, {8206,13950}, {8207,13951}, {11208,13847}, {11253,13966}, {11367,13936}, {11385,13937}, {11493,13940}, {11823,13935}, {11838,13938}, {11844,13939}, {11862,13946}, {11866,13952}, {11868,13953}, {11870,13954}, {11872,13955}, {11874,13958}, {11876,13961}, {11878,13962}, {11880,13963}, {11882,13964}, {11884,13965}, {12346,13968}, {12453,13972}, {12455,13973}, {12457,13974}, {12459,13975}, {12461,13976}, {12463,13977}, {12475,13983}, {12477,13984}, {13177,13989}, {13209,13990}, {13230,13991}
X(13946) lies on these lines: {6,7796}, {32,637}, {372,9993}, {486,9873}, {615,3096}, {2896,13941}, {3094,13972}, {3098,13935}, {3099,13942}, {7586,10583}, {7811,13847}, {8782,13989}, {9301,13961}, {9821,13966}, {9857,13947}, {9862,13939}, {9878,13968}, {9923,13970}, {9941,13971}, {9981,13981}, {9982,13982}, {9983,13983}, {9984,13969}, {9985,13986}, {9986,13933}, {9987,13880}, {9994,13949}, {9995,13950}, {9996,13951}, {9997,13959}, {10038,13962}, {10047,13963}, {10828,13943}, {10871,13952}, {10872,13953}, {10873,13954}, {10874,13955}, {10875,13956}, {10876,13957}, {10877,13958}, {10878,13964}, {10879,13965}, {11368,13936}, {11386,13937}, {11494,13940}, {11861,13944}, {11862,13945}, {11885,13948}, {12495,13973}, {12496,13974}, {12497,13975}, {12498,13976}, {12499,13977}, {12500,13978}, {12501,13979}, {12502,13980}, {12503,13985}, {12504,13987}, {13210,13990}, {13235,13991}, {13236,13992}, {13685,13988}, {13805,13849}
X(13946) = {X(6), X(7846)}-harmonic conjugate of X(13892)
X(13947) lies on these lines: {1,615}, {2,8983}, {4,13975}, {5,1703}, {6,1698}, {8,13941}, {10,3069}, {40,486}, {65,13954}, {72,13953}, {80,13991}, {100,13976}, {140,9583}, {165,3071}, {355,13966}, {372,5587}, {515,13935}, {517,13951}, {519,13959}, {631,9615}, {1132,9778}, {1152,5691}, {1377,5705}, {1587,10175}, {1588,6684}, {1702,7584}, {1737,13963}, {1837,13958}, {2362,5219}, {3057,13955}, {3068,3634}, {3070,7989}, {3311,11231}, {3312,9956}, {3317,5603}, {3416,13972}, {3576,5420}, {3579,13785}, {3624,7969}, {3679,7968}, {5090,13937}, {5405,7090}, {5414,9581}, {5657,13939}, {5687,13940}, {5688,13950}, {5689,13949}, {5690,13993}, {5790,13961}, {6459,10164}, {6502,9578}, {7582,13912}, {7586,9780}, {8193,13943}, {8197,13944}, {8204,13945}, {8214,13956}, {8215,13957}, {8227,10577}, {8253,13888}, {9857,13946}, {9864,13967}, {9881,13968}, {9906,13934}, {9928,13970}, {10039,13962}, {10791,13938}, {10820,12407}, {10914,13952}, {10915,13964}, {10916,13965}, {11900,13948}, {12368,13969}, {12667,13974}, {12751,13977}, {12777,13978}, {12778,13979}, {12779,13980}, {12780,13981}, {12781,13982}, {12782,13983}, {12783,13984}, {12784,13985}, {12785,13986}, {12786,13987}, {12787,13933}, {12788,13880}, {13178,13989}, {13211,13990}, {13280,13992}, {13688,13988}, {13808,13849}
X(13947) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,1698,13893), (8,13941,13971), (615,13973,1), (1588,6684,9616), (3679,13942,7968), (7586,9780,13883), (7969,8252,3624)
X(13948) lies on these lines: {6,13894}, {30,6450}, {372,11897}, {402,3069}, {486,12113}, {615,1650}, {1651,13847}, {4240,13941}, {11251,13966}, {11831,13936}, {11832,13937}, {11839,13938}, {11845,13939}, {11848,13940}, {11852,13942}, {11853,13943}, {11885,13946}, {11900,13947}, {11901,13949}, {11902,13950}, {11903,13952}, {11904,13953}, {11905,13954}, {11906,13955}, {11907,13956}, {11908,13957}, {11909,13958}, {11910,13959}, {11911,13961}, {11912,13962}, {11913,13963}, {11914,13964}, {11915,13965}, {12181,13967}, {12347,13968}, {12369,13969}, {12418,13970}, {12438,13971}, {12583,13972}, {12626,13973}, {12668,13974}, {12696,13975}, {12729,13976}, {12752,13977}, {12789,13978}, {12790,13979}, {12791,13980}, {12792,13981}, {12793,13982}, {12794,13983}, {12795,13984}, {12796,13985}, {12797,13986}, {12798,13987}, {12799,13933}, {12800,13880}, {13179,13989}, {13212,13990}, {13268,13991}, {13281,13992}, {13689,13988}, {13809,13849}
X(13949) lies on these lines: {2,6}, {372,6202}, {486,5871}, {631,8396}, {1161,13966}, {3128,5411}, {3641,13971}, {5589,13942}, {5595,13943}, {5605,13959}, {5689,13947}, {5875,13993}, {6215,13951}, {6227,13967}, {6258,13974}, {6263,13976}, {6267,13980}, {6270,13982}, {6271,13981}, {6273,13983}, {6275,13984}, {6277,13986}, {6279,13880}, {6281,13933}, {6319,13989}, {7725,13969}, {7732,13990}, {8198,13944}, {8205,13945}, {8216,13956}, {8217,13957}, {9882,13968}, {9929,13970}, {9994,13946}, {10040,13962}, {10048,13963}, {10783,13939}, {10792,13938}, {10919,13952}, {10921,13953}, {10923,13954}, {10925,13955}, {10927,13958}, {10929,13964}, {10931,13965}, {11370,13936}, {11388,13937}, {11497,13940}, {11824,13935}, {11901,13948}, {11916,13961}, {12627,13973}, {12697,13975}, {12753,13977}, {12801,13978}, {12803,13979}, {12805,13985}, {12807,13987}, {13269,13991}, {13282,13992}, {13690,13988}, {13810,13849}
X(13949) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,615,5591), (3069,13758,13941), (3069,13972,13950)
X(13950) lies on these lines: {2,6}, {4,13763}, {25,1165}, {147,13760}, {372,6201}, {486,3424}, {1160,13966}, {3640,13971}, {5305,7376}, {5588,13942}, {5594,13943}, {5604,13959}, {5688,13947}, {5874,13993}, {6214,13951}, {6226,13967}, {6257,13974}, {6262,13976}, {6266,13980}, {6268,13982}, {6269,13981}, {6272,13983}, {6274,13984}, {6276,13986}, {6278,13880}, {6280,13933}, {6320,13989}, {6811,8416}, {6813,10784}, {7726,13969}, {7733,13990}, {8199,13944}, {8206,13945}, {8218,13956}, {8219,13957}, {9883,13968}, {9930,13970}, {9995,13946}, {10041,13962}, {10049,13963}, {10793,13938}, {10920,13952}, {10922,13953}, {10924,13954}, {10926,13955}, {10928,13958}, {10930,13964}, {10932,13965}, {11177,13773}, {11371,13936}, {11389,13937}, {11498,13940}, {11825,13935}, {11902,13948}, {11917,13961}, {12628,13973}, {12698,13975}, {12754,13977}, {12802,13978}, {12804,13979}, {12806,13985}, {12808,13987}, {13270,13991}, {13283,13992}, {13691,13988}, {13811,13849}
X(13950) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,5304,8974), (6,615,5590), (615,7735,2), (3069,13758,2), (3069,13972,13949)
X(13951) lies on these lines: {1,13954}, {2,3311}, {3,486}, {4,3591}, {5,1587}, {6,17}, {11,13963}, {12,13962}, {20,6456}, {30,6450}, {110,13979}, {140,1588}, {155,13970}, {265,13990}, {355,13952}, {371,3526}, {372,381}, {376,1132}, {382,1152}, {485,5055}, {492,11314}, {517,13947}, {546,6448}, {549,6455}, {550,6452}, {590,5070}, {631,6449}, {632,9540}, {637,11316}, {638,13757}, {641,11165}, {952,13959}, {1131,3544}, {1151,5054}, {1352,13972}, {1479,13958}, {1482,13973}, {1505,13881}, {1594,5411}, {1657,6396}, {1702,11231}, {1703,9955}, {2045,11543}, {2046,11542}, {3068,3628}, {3070,3851}, {3090,6428}, {3095,13983}, {3523,6451}, {3525,6447}, {3530,6496}, {3534,6410}, {3593,7376}, {3594,5072}, {3627,6522}, {3830,6408}, {3843,6560}, {5056,7581}, {5067,7585}, {5073,6446}, {5076,6454}, {5079,6420}, {5410,7505}, {5414,9669}, {5418,6199}, {5587,13942}, {5613,13981}, {5617,13982}, {5790,7968}, {5878,13980}, {5886,13936}, {6033,13967}, {6214,13950}, {6215,13949}, {6259,13974}, {6265,13976}, {6287,13984}, {6288,13986}, {6289,13880}, {6290,13933}, {6321,13989}, {6419,8253}, {6502,9654}, {6519,10303}, {6813,10846}, {7486,13886}, {7507,10881}, {7728,13969}, {8200,13944}, {8207,13945}, {8220,13956}, {8221,13957}, {8724,13968}, {8855,10897}, {9996,13946}, {10738,13991}, {10742,13977}, {10749,13992}, {10796,13938}, {10820,12902}, {10942,13964}, {10943,13965}, {11499,13940}, {12699,13975}, {12856,13978}, {12918,13985}, {12919,13987}, {13692,13988}, {13812,13849}
X(13951) = reflection of X(6450) in X(13935)
X(13951) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,7582,8981), (2,7584,3311), (2,13939,7584), (3,486,13785), (4,13966,6398), (5,3312,13665), (6,1656,8976), (486,5420,3071), (3071,5420,3), (3317,13939,2)
X(13952) lies on these lines: {6,13895}, {11,3069}, {12,13964}, {355,13951}, {372,10893}, {486,12114}, {615,1376}, {3434,13941}, {7586,10584}, {10523,13962}, {10525,13966}, {10785,13939}, {10794,13938}, {10826,13942}, {10829,13943}, {10871,13946}, {10912,13973}, {10914,13947}, {10919,13949}, {10920,13950}, {10943,13993}, {10944,13954}, {10945,13956}, {10946,13957}, {10947,13958}, {10948,13963}, {10949,13965}, {11235,13847}, {11373,13936}, {11390,13937}, {11826,13935}, {11865,13944}, {11866,13945}, {11903,13948}, {11928,13961}, {12182,13967}, {12348,13968}, {12371,13969}, {12422,13970}, {12586,13972}, {12676,13974}, {12700,13975}, {12737,13976}, {12761,13977}, {12857,13978}, {12889,13979}, {12920,13980}, {12921,13981}, {12922,13982}, {12923,13983}, {12924,13984}, {12925,13985}, {12926,13986}, {12927,13987}, {12928,13933}, {12929,13880}, {13180,13989}, {13213,13990}, {13271,13991}, {13294,13992}, {13693,13988}, {13813,13849}
X(13953) lies on these lines: {6,13896}, {11,13965}, {12,3069}, {72,13947}, {355,13951}, {372,10894}, {486,11500}, {615,958}, {3436,13941}, {5812,13975}, {7586,10585}, {10523,13963}, {10526,13966}, {10786,13939}, {10795,13938}, {10827,13942}, {10830,13943}, {10872,13946}, {10921,13949}, {10922,13950}, {10942,13993}, {10950,13955}, {10951,13956}, {10952,13957}, {10953,13958}, {10954,13962}, {10955,13964}, {11236,13847}, {11374,13936}, {11391,13937}, {11827,13935}, {11867,13944}, {11868,13945}, {11904,13948}, {11929,13961}, {12183,13967}, {12349,13968}, {12372,13969}, {12423,13970}, {12587,13972}, {12635,13973}, {12677,13974}, {12738,13976}, {12762,13977}, {12858,13978}, {12890,13979}, {12930,13980}, {12931,13981}, {12932,13982}, {12933,13983}, {12934,13984}, {12935,13985}, {12936,13986}, {12937,13987}, {12938,13933}, {12939,13880}, {13181,13989}, {13214,13990}, {13272,13991}, {13295,13992}, {13694,13988}, {13814,13849}
X(13954) lies on these lines: {1,13951}, {4,13958}, {5,13963}, {6,13897}, {12,3069}, {35,13785}, {55,486}, {56,615}, {65,13947}, {372,10895}, {388,13941}, {495,13962}, {498,7584}, {1152,12943}, {1335,10577}, {1478,13966}, {1587,3614}, {1588,5432}, {1656,3301}, {1836,13975}, {2067,8252}, {2099,13973}, {3071,5217}, {3085,13939}, {3086,3317}, {3157,13970}, {3312,7951}, {3585,6398}, {3628,13904}, {4316,6456}, {5204,5420}, {5252,13971}, {5326,9540}, {5414,10896}, {6450,10483}, {6502,11237}, {6565,12953}, {7354,13935}, {7582,13901}, {7586,10588}, {8277,9659}, {9578,13942}, {9654,13961}, {10088,13979}, {10797,13938}, {10831,13943}, {10873,13946}, {10923,13949}, {10924,13950}, {10944,13952}, {10956,13964}, {10957,13965}, {11375,13936}, {11392,13937}, {11501,13940}, {11869,13944}, {11870,13945}, {11905,13948}, {11930,13956}, {11931,13957}, {12184,13967}, {12350,13968}, {12373,13969}, {12588,13972}, {12678,13974}, {12739,13976}, {12763,13977}, {12837,13983}, {12859,13978}, {12903,13990}, {12940,13980}, {12941,13981}, {12942,13982}, {12944,13984}, {12945,13985}, {12946,13986}, {12947,13987}, {12948,13933}, {12949,13880}, {13182,13989}, {13273,13991}, {13296,13992}, {13695,13988}, {13815,13849}
X(13954) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (495,13993,13962), (1656,3301,13898)
X(13955) lies on these lines: {1,13951}, {2,13901}, {5,13962}, {6,13898}, {11,3069}, {36,13785}, {55,615}, {56,486}, {372,10896}, {496,13963}, {497,13941}, {499,7584}, {1069,13970}, {1124,10577}, {1152,12953}, {1479,13966}, {1587,7173}, {1588,5433}, {1656,3299}, {1837,13971}, {2066,8252}, {2098,13973}, {3057,13947}, {3071,5204}, {3085,3317}, {3086,13939}, {3312,7741}, {3583,6398}, {3628,13905}, {4324,6456}, {5217,5420}, {5405,8243}, {5414,11238}, {6284,13935}, {6502,10895}, {6565,12943}, {7294,9540}, {7586,10589}, {8277,9672}, {9581,13942}, {9669,13961}, {10091,13979}, {10798,13938}, {10832,13943}, {10874,13946}, {10925,13949}, {10926,13950}, {10950,13953}, {10958,13964}, {10959,13965}, {11376,13936}, {11393,13937}, {11502,13940}, {11871,13944}, {11872,13945}, {11906,13948}, {11932,13956}, {11933,13957}, {12185,13967}, {12351,13968}, {12374,13969}, {12589,13972}, {12679,13974}, {12701,13975}, {12740,13976}, {12764,13977}, {12836,13983}, {12860,13978}, {12904,13990}, {12950,13980}, {12951,13981}, {12952,13982}, {12954,13984}, {12955,13985}, {12956,13986}, {12957,13987}, {12958,13933}, {12959,13880}, {13183,13989}, {13274,13991}, {13297,13992}, {13696,13988}, {13816,13849}
X(13955) = {X(496), X(13993)}-harmonic conjugate of X(13963)
X(13956) lies on these lines: {6,13899}, {372,8212}, {486,9838}, {493,3069}, {615,8222}, {6461,13957}, {6462,13941}, {8188,13942}, {8194,13943}, {8210,13959}, {8214,13947}, {8216,13949}, {8218,13950}, {8220,13951}, {10669,13966}, {10875,13946}, {10945,13952}, {10951,13953}, {11377,13936}, {11394,13937}, {11503,13940}, {11828,13935}, {11840,13938}, {11846,13939}, {11907,13948}, {11930,13954}, {11932,13955}, {11947,13958}, {11949,13961}, {11951,13962}, {11953,13963}, {11955,13964}, {11957,13965}, {12152,13847}, {12186,13967}, {12352,13968}, {12377,13969}, {12426,13970}, {12440,13971}, {12590,13972}, {12636,13973}, {12741,13976}, {12765,13977}, {12861,13978}, {12894,13979}, {12986,13980}, {12988,13981}, {12990,13982}, {12992,13983}, {12994,13984}, {12996,13985}, {12998,13986}, {13000,13987}, {13002,13933}, {13004,13880}, {13184,13989}, {13215,13990}, {13275,13991}, {13298,13992}, {13697,13988}, {13817,13849}
X(13957) lies on these lines: {6,13900}, {372,8213}, {393,494}, {486,9839}, {615,8223}, {6461,13956}, {6463,13941}, {8189,13942}, {8195,13943}, {8211,13959}, {8215,13947}, {8217,13949}, {8219,13950}, {8221,13951}, {10673,13966}, {10876,13946}, {10946,13952}, {10952,13953}, {11378,13936}, {11395,13937}, {11504,13940}, {11829,13935}, {11841,13938}, {11847,13939}, {11908,13948}, {11931,13954}, {11933,13955}, {11948,13958}, {11950,13961}, {11952,13962}, {11954,13963}, {11956,13964}, {11958,13965}, {12153,13847}, {12187,13967}, {12353,13968}, {12378,13969}, {12427,13970}, {12441,13971}, {12591,13972}, {12637,13973}, {12742,13976}, {12766,13977}, {12862,13978}, {12895,13979}, {12987,13980}, {12989,13981}, {12991,13982}, {12993,13983}, {12995,13984}, {12997,13985}, {12999,13986}, {13001,13987}, {13003,13933}, {13005,13880}, {13185,13989}, {13216,13990}, {13276,13991}, {13299,13992}, {13698,13988}, {13818,13849}
X(13958) lies on these lines: {1,13966}, {2,13898}, {3,13963}, {4,13954}, {6,5432}, {11,615}, {12,372}, {33,13937}, {35,7584}, {55,3069}, {56,13935}, {65,13975}, {140,3301}, {486,6284}, {497,13941}, {498,3312}, {590,5326}, {1152,7354}, {1317,13977}, {1335,5420}, {1478,6398}, {1479,13951}, {1588,5217}, {1697,13942}, {1703,11375}, {1837,13947}, {2066,4995}, {2098,13959}, {2646,13936}, {3023,13989}, {3027,13967}, {3028,13969}, {3056,13972}, {3057,13971}, {3058,13847}, {3070,3614}, {3295,13961}, {3317,10591}, {3320,13985}, {3526,13904}, {3592,9648}, {4294,13939}, {4299,6450}, {4302,13785}, {5218,7586}, {6020,13992}, {6408,9655}, {6418,13905}, {6420,9646}, {6460,10895}, {7173,10577}, {7294,9661}, {7355,13980}, {7581,13897}, {10799,13938}, {10833,13943}, {10877,13946}, {10927,13949}, {10928,13950}, {10947,13952}, {10950,13973}, {10953,13953}, {10965,13964}, {10966,13965}, {11873,13944}, {11874,13945}, {11909,13948}, {11947,13956}, {11948,13957}, {12354,13968}, {12428,13970}, {12680,13974}, {12743,13976}, {12863,13978}, {12896,13979}, {13075,13981}, {13076,13982}, {13077,13983}, {13078,13984}, {13079,13986}, {13080,13987}, {13081,13933}, {13082,13880}, {13699,13988}, {13819,13849}
X(13958) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,5432,13901), (1335,5420,5433), (3295,13961,13962)
X(13959) lies on these lines: {1,1123}, {2,7968}, {6,3616}, {8,615}, {56,13940}, {145,13941}, {372,5603}, {486,944}, {517,13935}, {519,13947}, {590,5550}, {946,6460}, {952,13951}, {962,1152}, {1125,3068}, {1320,13991}, {1385,1588}, {1482,13966}, {1483,13993}, {1587,5886}, {1702,10165}, {1703,13464}, {2098,13958}, {3071,5731}, {3241,13847}, {3242,13972}, {3297,5703}, {3312,5901}, {3485,6502}, {3576,6459}, {3622,7586}, {3624,13883}, {5420,5657}, {5597,13945}, {5598,13944}, {5604,13950}, {5605,13949}, {5818,10577}, {6361,6396}, {6410,9778}, {7584,10246}, {7967,13939}, {7970,13967}, {7971,13974}, {7972,13976}, {7973,13980}, {7974,13981}, {7975,13982}, {7976,13983}, {7977,13984}, {7978,13969}, {7979,13986}, {7980,13933}, {7981,13880}, {7982,13975}, {7983,13989}, {7984,13990}, {8000,13978}, {8192,13943}, {8210,13956}, {8211,13957}, {8252,9780}, {9541,13624}, {9884,13968}, {9933,13970}, {9997,13946}, {10247,13961}, {10698,13977}, {10705,13992}, {10800,13938}, {10944,13952}, {10950,13953}, {11396,13937}, {11910,13948}, {12898,13979}, {13099,13985}, {13100,13987}, {13702,13988}, {13822,13849}
X(13959) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,13942,13936), (1,13971,3069), (6,3616,13902), (145,13941,13973), (3622,7586,7969), (13936,13942,3069), (13936,13971,13942), (13964,13965,3069)
X(13960) lies on these lines: {3,486}, {6,8969}, {372,6750}, {393,494}, {3156,5593}
X(13961) lies on these lines: {2,6418}, {3,1588}, {4,13993}, {5,1131}, {6,3411}, {20,6446}, {30,1132}, {140,6417}, {195,13986}, {372,381}, {382,486}, {399,13990}, {485,615}, {517,13942}, {549,7582}, {590,6428}, {631,6199}, {632,7585}, {640,13783}, {999,13963}, {1152,1657}, {1351,13972}, {1482,13971}, {1587,5055}, {1598,13937}, {2070,8277}, {3068,6501}, {3070,5072}, {3071,3534}, {3295,13958}, {3311,5054}, {3523,6407}, {3524,9543}, {3530,6445}, {3591,3858}, {3594,5079}, {3628,7581}, {3843,6460}, {5059,10138}, {5070,7583}, {5076,6426}, {5418,6427}, {5790,13947}, {6420,8252}, {6432,10576}, {6448,6560}, {6456,6561}, {6500,8981}, {7517,13943}, {9301,13946}, {9654,13954}, {9669,13955}, {10246,13936}, {10247,13959}, {10620,13969}, {11842,13938}, {11849,13940}, {11875,13944}, {11876,13945}, {11911,13948}, {11916,13949}, {11917,13950}, {11928,13952}, {11929,13953}, {11949,13956}, {11950,13957}, {12000,13964}, {12001,13965}, {12188,13967}, {12331,13991}, {12355,13968}, {12429,13970}, {12601,13933}, {12602,13880}, {12645,13973}, {12684,13974}, {12702,13975}, {12747,13976}, {12773,13977}, {12872,13978}, {12902,13979}, {13093,13980}, {13102,13981}, {13103,13982}, {13108,13983}, {13111,13984}, {13115,13985}, {13126,13987}, {13188,13989}, {13310,13992}, {13713,13988}, {13836,13849}
X(13961) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,3526,13903), (486,6398,382), (1152,13785,1657), (3071,6450,3534), (3311,5420,5054), (7584,13935,3), (7584,13966,13935), (13958,13962,3295)
X(13962) lies on these lines: {1,1123}, {2,3299}, {5,13955}, {6,499}, {11,3312}, {12,13951}, {35,13935}, {36,1588}, {55,13966}, {56,7584}, {63,5405}, {89,3302}, {372,1479}, {388,13939}, {486,1478}, {495,13954}, {498,615}, {611,13972}, {1152,4302}, {1335,10072}, {1587,7741}, {1709,13974}, {2066,5420}, {3071,4299}, {3085,13941}, {3086,3301}, {3295,13958}, {3297,10056}, {3317,10588}, {3526,13901}, {3583,6460}, {3628,13897}, {5062,9599}, {5119,13975}, {6284,6398}, {6395,9669}, {6410,9660}, {6451,9662}, {6459,7280}, {7173,13665}, {7288,7582}, {7354,13785}, {7581,10589}, {7968,10573}, {8252,9646}, {10037,13943}, {10038,13946}, {10039,13947}, {10040,13949}, {10041,13950}, {10053,13967}, {10054,13968}, {10055,13970}, {10057,13976}, {10058,13977}, {10059,13978}, {10060,13980}, {10061,13981}, {10062,13982}, {10063,13983}, {10064,13984}, {10065,13969}, {10066,13986}, {10067,13933}, {10068,13880}, {10086,13989}, {10087,13991}, {10088,13990}, {10523,13952}, {10801,13938}, {10881,11393}, {10954,13953}, {11398,13937}, {11507,13940}, {11877,13944}, {11878,13945}, {11912,13948}, {11951,13956}, {11952,13957}, {12647,13973}, {12903,13979}, {13116,13985}, {13128,13987}, {13311,13992}, {13714,13988}, {13837,13849}
X(13962) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,3299,13905), (6,499,13904), (486,6502,1478), (3295,13961,13958)
X(13963) lies on these lines: {1,1123}, {2,3301}, {3,13958}, {5,13954}, {6,498}, {11,13951}, {12,3312}, {35,1588}, {36,13935}, {46,13975}, {55,7584}, {56,13966}, {372,1478}, {486,1479}, {496,13955}, {497,13939}, {499,615}, {613,13972}, {999,13961}, {1124,10056}, {1152,4299}, {1587,7951}, {1703,12047}, {1737,13947}, {2067,5420}, {3071,4302}, {3085,3299}, {3086,13941}, {3298,10072}, {3305,5405}, {3311,5432}, {3317,10589}, {3585,6460}, {3614,13665}, {3628,13898}, {5010,6459}, {5062,9596}, {5218,7582}, {6284,13785}, {6395,9654}, {6398,7354}, {6410,9647}, {6417,13901}, {6451,9649}, {7581,10588}, {7968,12647}, {8252,9661}, {10046,13943}, {10047,13946}, {10048,13949}, {10049,13950}, {10069,13967}, {10070,13968}, {10071,13970}, {10073,13976}, {10074,13977}, {10075,13978}, {10076,13980}, {10077,13981}, {10078,13982}, {10079,13983}, {10080,13984}, {10081,13969}, {10082,13986}, {10083,13933}, {10084,13880}, {10085,13974}, {10089,13989}, {10090,13991}, {10091,13990}, {10523,13953}, {10573,13973}, {10802,13938}, {10881,11392}, {10948,13952}, {11399,13937}, {11508,13940}, {11879,13944}, {11880,13945}, {11913,13948}, {11953,13956}, {11954,13957}, {12904,13979}, {13117,13985}, {13129,13987}, {13312,13992}, {13715,13988}, {13838,13849}
X(13963) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 3301, 13904), (6, 498, 13905), (486, 5414, 1479), (496, 13993, 13955)
X(13964) lies on these lines: {1,1123}, {6,13906}, {12,13952}, {372,10531}, {486,12115}, {615,5552}, {1588,10269}, {3068,10200}, {5554,7968}, {7586,10586}, {10528,13941}, {10679,13966}, {10803,13938}, {10805,13939}, {10834,13943}, {10878,13946}, {10915,13947}, {10929,13949}, {10930,13950}, {10942,13951}, {10955,13953}, {10956,13954}, {10958,13955}, {10965,13958}, {11239,13847}, {11248,13935}, {11400,13937}, {11509,13940}, {11881,13944}, {11882,13945}, {11914,13948}, {11955,13956}, {11956,13957}, {12000,13961}, {12189,13967}, {12356,13968}, {12381,13969}, {12430,13970}, {12594,13972}, {12648,13973}, {12686,13974}, {12703,13975}, {12749,13976}, {12775,13977}, {12874,13978}, {12905,13979}, {13094,13980}, {13104,13981}, {13105,13982}, {13109,13983}, {13112,13984}, {13118,13985}, {13121,13986}, {13130,13987}, {13132,13933}, {13134,13880}, {13189,13989}, {13217,13990}, {13278,13991}, {13313,13992}, {13716,13988}, {13839,13849}
X(13965) lies on these lines: {1,1123}, {6,13907}, {11,13953}, {372,10532}, {486,12116}, {615,10527}, {1588,10267}, {3068,10198}, {6459,10902}, {7586,10587}, {10529,13941}, {10680,13966}, {10804,13938}, {10806,13939}, {10835,13943}, {10879,13946}, {10916,13947}, {10931,13949}, {10932,13950}, {10943,13951}, {10949,13952}, {10957,13954}, {10959,13955}, {10966,13958}, {11240,13847}, {11249,13935}, {11401,13937}, {11510,13940}, {11883,13944}, {11884,13945}, {11915,13948}, {11957,13956}, {11958,13957}, {12001,13961}, {12190,13967}, {12357,13968}, {12382,13969}, {12431,13970}, {12595,13972}, {12649,13973}, {12687,13974}, {12704,13975}, {12750,13976}, {12776,13977}, {12875,13978}, {12906,13979}, {13095,13980}, {13106,13981}, {13107,13982}, {13110,13983}, {13113,13984}, {13119,13985}, {13122,13986}, {13131,13987}, {13133,13933}, {13135,13880}, {13190,13989}, {13218,13990}, {13279,13991}, {13314,13992}, {13717,13988}, {13840,13849}
The reciprocal orthologic center of these triangles is X(1593)
X(13966) lies on these lines: {1,13958}, {2,3312}, {3,1588}, {4,3591}, {5,372}, {6,140}, {20,6450}, {26,8277}, {30,486}, {40,13942}, {55,13962}, {56,13963}, {69,11316}, {230,1505}, {355,13947}, {371,549}, {376,6456}, {381,6460}, {382,6408}, {395,3365}, {396,3390}, {427,10881}, {485,3594}, {488,11314}, {492,7767}, {495,6502}, {496,5414}, {511,13972}, {517,13971}, {524,642}, {546,6426}, {548,6410}, {550,3071}, {590,632}, {631,3311}, {637,13757}, {639,754}, {640,7886}, {641,3589}, {952,13973}, {971,13974}, {1131,5071}, {1132,3529}, {1151,3530}, {1154,12240}, {1160,13950}, {1161,13949}, {1327,11737}, {1368,10898}, {1385,13936}, {1478,13954}, {1479,13955}, {1482,13959}, {1587,1656}, {1595,5413}, {1596,11474}, {1657,6446}, {1703,5886}, {2045,11485}, {2046,11486}, {2782,13967}, {3068,3526}, {3090,13665}, {3091,3317}, {3146,6522}, {3147,5410}, {3299,5432}, {3301,5433}, {3398,13938}, {3522,6452}, {3523,6221}, {3524,6449}, {3525,6428}, {3528,6497}, {3533,8972}, {3541,5411}, {3564,13934}, {3592,12108}, {3593,7375}, {3618,11315}, {3627,6454}, {3815,5062}, {3850,6438}, {3853,6430}, {5054,6417}, {5305,6421}, {5663,13969}, {5690,7968}, {6000,13980}, {6409,12100}, {6427,10303}, {6431,11812}, {6432,8253}, {6442,10195}, {6451,10299}, {6501,13903}, {6723,13915}, {7387,13943}, {8855,10154}, {9687,13347}, {9821,13946}, {10018,13884}, {10124,13846}, {10525,13952}, {10526,13953}, {10669,13956}, {10673,13957}, {10679,13964}, {10680,13965}, {10721,10818}, {10734,11834}, {11231,13883}, {11248,13940}, {11251,13948}, {11252,13944}, {11253,13945}, {12006,12239}, {12975,13933}, {13985,13992}
X(13966) = midpoint of X(i) and X(j) for these {i,j}: {486,1152}, {13967,13989}, {13969,13990}, {13971,13975}, {13977,13991}, {13985,13992}
X(13966) = reflection of X(486) in X(13993)
X(13966) = orthologic center of the 4th tri-squares-central triangle to these triangles: 1st anti-circumperp, anti-Conway, 2nd anti-Conway, 3rd anti-Euler, 4th anti-Euler, anti-excenters-reflections, anti-Hutson intouch, anti-incircle-circles, anti-inverse-in-incircle, 6th anti-mixtilinear, circumorthic, 2nd Ehrmann, 2nd Euler, extangents, intangents, 1st Kenmotu diagonals, 2nd Kenmotu diagonals, Kosnita, orthic, submedial, tangential, inner tri-equilateral, outer tri-equilateral, Trinh
X(13966) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 3312, 7583), (2, 7581, 8976), (4, 13941, 13951), (6, 140, 8981), (6, 5420, 140), (20, 13939, 13785), (1656, 6395, 1587), (3071, 6396, 550), (6450, 13785, 20), (13935, 13961, 7584)
The reciprocal orthologic center of these triangles is X(5999)
X(13967) lies on these lines: {6,6036}, {30,13968}, {98,3069}, {99,13935}, {114,615}, {115,372}, {140,8997}, {147,13941}, {485,6722}, {486,2794}, {542,13847}, {620,5420}, {690,13969}, {2459,6781}, {2782,13966}, {2783,13991}, {2787,13977}, {2799,13985}, {3027,13958}, {6033,13951}, {6226,13950}, {6227,13949}, {6231,13790}, {6321,6398}, {6721,8252}, {7584,12042}, {7970,13959}, {9860,13942}, {9861,13943}, {9862,13939}, {9864,13947}, {10053,13962}, {10069,13963}, {11710,13936}, {12131,13937}, {12176,13938}, {12178,13940}, {12181,13948}, {12182,13952}, {12183,13953}, {12184,13954}, {12185,13955}, {12186,13956}, {12187,13957}, {12188,13961}, {12189,13964}, {12190,13965}, {13984,13993}
X(13967) = reflection of X(13989) in X(13966)
X(13967) = orthologic center of the 4th tri-squares-central triangle to these triangles: 6th anti-Brocard, 1st Brocard, 6th Brocard
X(13967) = {X(6), X(6036)}-harmonic conjugate of X(8980)
The reciprocal orthologic center of these triangles is X(9855)
X(13968) lies on these lines: {2,8997}, {6,5461}, {30,13967}, {115,13823}, {372,9880}, {486,542}, {530,13981}, {531,13982}, {543,13847}, {615,2482}, {671,3069}, {5969,13983}, {6722,13846}, {8591,13941}, {8724,13951}, {9830,13972}, {9875,13942}, {9876,13943}, {9878,13946}, {9881,13947}, {9882,13949}, {9883,13950}, {9884,13959}, {9892,13796}, {9894,13789}, {10054,13962}, {10070,13963}, {12117,13935}, {12132,13937}, {12191,13938}, {12243,13939}, {12258,13936}, {12326,13940}, {12345,13944}, {12346,13945}, {12347,13948}, {12348,13952}, {12349,13953}, {12350,13954}, {12351,13955}, {12352,13956}, {12353,13957}, {12354,13958}, {12355,13961}, {12356,13964}, {12357,13965}
X(13968) = reflection of X(13989) in X(13847)
X(13968) = orthologic center of these triangles: 4th tri-squares-central to Mccay
X(13968) = {X(6), X(5461)}-harmonic conjugate of X(13908)
The reciprocal orthologic center of these triangles is X(12112)
X(13969) lies on these lines: {6,6699}, {30,13979}, {74,3069}, {110,13935}, {113,615}, {125,372}, {140,8998}, {146,13941}, {265,6398}, {485,6723}, {486,2777}, {541,13847}, {542,10820}, {690,13967}, {1152,13970}, {2771,13991}, {2781,13972}, {3028,13958}, {5420,5972}, {5642,12375}, {5663,13966}, {6408,12902}, {6450,12121}, {6560,7687}, {6565,13202}, {7584,12041}, {7725,13949}, {7726,13950}, {7728,13951}, {7978,13959}, {8252,12900}, {8277,10117}, {9517,13985}, {9904,13942}, {9919,13943}, {9984,13946}, {10065,13962}, {10081,13963}, {10620,13961}, {10628,13986}, {10733,10818}, {11709,13936}, {12133,13937}, {12192,13938}, {12244,13939}, {12327,13940}, {12368,13947}, {12369,13948}, {12371,13952}, {12372,13953}, {12373,13954}, {12374,13955}, {12377,13956}, {12378,13957}, {12381,13964}, {12382,13965}
X(13969) = reflection of X(13990) in X(13966)
X(13969) = orthologic center of these triangles: 4th tri-squares-central to orthocentroidal
X(13969) = {X(6), X(6699)}-harmonic conjugate of X(8994)
The reciprocal orthologic center of these triangles is X(9833)
X(13970) lies on these lines: {6,5449}, {30,13980}, {68,3069}, {155,13951}, {372,9927}, {486,12240}, {539,13847}, {615,1147}, {1069,13955}, {1152,13969}, {3071,7689}, {3157,13954}, {3448,11463}, {3564,13880}, {5420,12038}, {6193,13941}, {6398,12293}, {7584,12359}, {8252,8909}, {9896,13942}, {9908,13943}, {9923,13946}, {9928,13947}, {9929,13949}, {9930,13950}, {9933,13959}, {10055,13962}, {10071,13963}, {10577,10665}, {11411,13939}, {12118,13935}, {12134,13937}, {12163,13785}, {12193,13938}, {12259,13936}, {12328,13940}, {12418,13948}, {12422,13952}, {12423,13953}, {12426,13956}, {12427,13957}, {12428,13958}, {12429,13961}, {12430,13964}, {12431,13965}
X(13970) = rthologic center of the 4th tri-squares-central triangle to these triangles: 2nd Hyacinth
X(13970) = {X(6), X(5449)}-harmonic conjugate of X(13909)
The reciprocal orthologic center of these triangles is X(3)
X(13971) lies on these lines: {1,1123}, {2,13883}, {3,13940}, {6,1125}, {8,13941}, {10,615}, {40,13935}, {55,13944}, {140,13912}, {226,6502}, {355,13951}, {371,10165}, {372,946}, {486,515}, {516,1152}, {517,13966}, {518,13972}, {519,13847}, {551,7969}, {631,1702}, {730,13983}, {944,13939}, {952,13976}, {1124,13411}, {1378,6700}, {1385,7584}, {1482,13961}, {1587,8227}, {1588,3576}, {1699,6460}, {1703,5603}, {1829,13937}, {1837,13955}, {2800,13977}, {2802,13991}, {3057,13958}, {3068,3624}, {3070,3817}, {3071,4297}, {3297,13405}, {3312,5886}, {3317,5818}, {3523,9616}, {3524,9582}, {3616,7586}, {3634,8252}, {3640,13950}, {3641,13949}, {5252,13954}, {5405,5745}, {5414,12053}, {5420,6684}, {5550,7585}, {6001,13974}, {6398,12699}, {6410,12512}, {6459,7987}, {6667,8988}, {7490,13390}, {7582,9583}, {7583,11230}, {9798,13943}, {9941,13946}, {10175,10577}, {12194,13938}, {12438,13948}, {12440,13956}, {12441,13957}
X(13971) = reflection of X(13975) in X(13966)
X(13971) = orthologic center of the 4th tri-squares-central triangle to these triangles: 1st circumperp, 2nd circumperp, inner-Conway, Conway, 2nd Conway, 3rd Conway, 3rd Euler, 4th Euler, excenters-reflections, excentral, 2nd extouch, hexyl, Honsberger, inner-Hutson, Hutson intouch, outer-Hutson, incircle-circles, intouch, inverse-in-incircle, 6th mixtilinear, 2nd Pamfilos-Zhou, 1st Sharygin, tangential-midarc, 2nd tangential-midarc, Yff central
X(13971) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 3069, 13936), (1, 13942, 3069), (6, 1125, 8983), (8, 13941, 13947), (615, 7968, 10), (3069, 13959, 1), (8252, 13911, 3634), (13942, 13959, 13936), (13952, 13953, 13951)
The reciprocal orthologic center of these triangles is X(3)
X(13972) lies on these lines: {2,6}, {159,13943}, {182,7584}, {372,5480}, {486,1503}, {511,13966}, {518,13971}, {542,13979}, {611,13962}, {613,13963}, {732,13983}, {1350,13935}, {1351,13961}, {1352,13951}, {1386,13936}, {1588,5085}, {1843,13937}, {2781,13969}, {2854,13990}, {3056,13958}, {3094,13946}, {3242,13959}, {3416,13947}, {3564,13880}, {3751,13942}, {3867,5413}, {5846,13973}, {5969,13989}, {6560,13763}, {6776,13939}, {8855,10192}, {9024,13991}, {9830,13968}, {12212,13938}, {12329,13940}, {12452,13944}, {12453,13945}, {12583,13948}, {12586,13952}, {12587,13953}, {12588,13954}, {12589,13955}, {12590,13956}, {12591,13957}, {12594,13964}, {12595,13965}, {13849,13988}
X(13972) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 615, 141), (6, 3589, 13910), (3618, 7586, 6), (13949, 13950, 3069)
The reciprocal orthologic center of these triangles is X(10)
X(13973) lies on these lines: {1,615}, {2,7969}, {6,10}, {8,3069}, {12,2362}, {37,7090}, {40,3071}, {145,13941}, {355,372}, {485,9956}, {486,517}, {515,1152}, {518,10067}, {519,13847}, {590,1698}, {940,6347}, {944,13935}, {952,13966}, {1124,10039}, {1125,8252}, {1151,6684}, {1210,3298}, {1335,1737}, {1385,5420}, {1482,13951}, {1587,5818}, {1588,5657}, {1703,3070}, {1837,5414}, {2098,13955}, {2099,13954}, {2802,13976}, {3068,9780}, {3312,5790}, {3317,10595}, {3579,6561}, {3592,13912}, {3617,7586}, {3632,13942}, {3634,8253}, {3828,13846}, {3913,13940}, {4297,6410}, {4383,6348}, {5090,5413}, {5252,6502}, {5418,11231}, {5690,7584}, {5844,13993}, {5846,13972}, {5886,10577}, {6409,10164}, {6565,12699}, {9588,9616}, {9620,12788}, {10573,13963}, {10912,13952}, {10950,13958}, {12135,13937}, {12195,13938}, {12245,13939}, {12410,13943}, {12454,13944}, {12455,13945}, {12495,13946}, {12626,13948}, {12627,13949}, {12628,13950}, {12635,13953}, {12636,13956}, {12637,13957}, {12645,13961}, {12647,13962}, {12648,13964}, {12649,13965}, {12702,13785}
X(13973) = reflection of X(1152) in X(13975)
X(13973) = orthologic center of these triangles: 4th tri-squares-central to 2nd Schiffler
X(13973) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 13947, 615), (6, 10, 13911), (8, 3069, 7968), (10, 13936, 6), (145, 13941, 13959), (1703, 5587, 3070), (3634, 8983, 8253)
The reciprocal orthologic center of these triangles is X(40)
X(13974) lies on these lines: {6,6705}, {84,3069}, {372,6245}, {515,1152}, {615,6260}, {971,13966}, {1490,13935}, {1709,13962}, {2829,13976}, {5787,6398}, {6001,13971}, {6223,13941}, {6257,13950}, {6258,13949}, {6259,13951}, {7971,13959}, {7992,13942}, {9910,13943}, {10085,13963}, {12114,13936}, {12136,13937}, {12196,13938}, {12246,13939}, {12330,13940}, {12456,13944}, {12457,13945}, {12496,13946}, {12667,13947}, {12668,13948}, {12676,13952}, {12677,13953}, {12678,13954}, {12679,13955}, {12680,13958}, {12684,13961}, {12686,13964}, {12687,13965}
The reciprocal orthologic center of these triangles is X(4)
X(13975) lies on these lines: {1,13935}, {2,1703}, {3,13936}, {4,13947}, {6,6684}, {10,372}, {40,3069}, {46,13963}, {65,13958}, {140,8983}, {165,1588}, {355,6398}, {371,10164}, {485,3634}, {486,516}, {515,1152}, {517,13966}, {615,946}, {962,13941}, {1125,5420}, {1210,5414}, {1335,3911}, {1377,5745}, {1587,1698}, {1686,6685}, {1702,7586}, {1836,13954}, {1902,13937}, {2362,13411}, {2800,13991}, {2802,13977}, {3070,10175}, {3312,13883}, {3523,9583}, {3524,9615}, {3579,7584}, {3594,13911}, {3817,10577}, {4297,6396}, {5119,13962}, {5405,6213}, {5587,6460}, {5812,13953}, {5840,13976}, {6001,13980}, {6361,13939}, {6561,12512}, {7581,13893}, {7582,9616}, {7583,11231}, {7968,11362}, {7969,10165}, {7982,13959}, {7991,13942}, {9911,13943}, {10306,13940}, {12197,13938}, {12458,13944}, {12459,13945}, {12497,13946}, {12696,13948}, {12697,13949}, {12698,13950}, {12699,13951}, {12700,13952}, {12701,13955}, {12702,13961}, {12703,13964}, {12704,13965}
X(13975) = midpoint of X(1152) and X(13973)
X(13975) = reflection of X(13971) in X(13966)
X(13975) = {X(6), X(6684)}-harmonic conjugate of X(13912)
The reciprocal orthologic center of these triangles is X(3)
X(13976) lies on these lines: {6,6702}, {11,13936}, {80,3069}, {100,13947}, {214,615}, {486,2800}, {515,13977}, {952,13971}, {2771,13979}, {2802,13973}, {2829,13974}, {3634,13922}, {5840,13975}, {6224,13941}, {6262,13950}, {6263,13949}, {6265,13951}, {6667,8983}, {7584,12619}, {7972,13959}, {9897,13942}, {9912,13943}, {10057,13962}, {10073,13963}, {12119,13935}, {12137,13937}, {12198,13938}, {12247,13939}, {12331,13940}, {12460,13944}, {12461,13945}, {12498,13946}, {12515,13785}, {12729,13948}, {12737,13952}, {12738,13953}, {12739,13954}, {12740,13955}, {12741,13956}, {12742,13957}, {12743,13958}, {12747,13961}, {12749,13964}, {12750,13965}
X(13976) = {X(6), X(6702)}-harmonic conjugate of X(8988)
The reciprocal orthologic center of these triangles is X(40)
X(13977) lies on these lines: {6,6713}, {11,372}, {100,13935}, {104,3069}, {119,615}, {140,13922}, {153,13941}, {485,6667}, {486,2829}, {515,13976}, {952,13966}, {1152,5840}, {1317,13958}, {1378,3035}, {1768,13942}, {2771,13990}, {2783,13989}, {2787,13967}, {2800,13971}, {2802,13975}, {2806,13985}, {2831,13992}, {6398,10738}, {9913,13943}, {10058,13962}, {10074,13963}, {10698,13959}, {10742,13951}, {11715,13936}, {12138,13937}, {12199,13938}, {12248,13939}, {12332,13940}, {12499,13946}, {12751,13947}, {12752,13948}, {12753,13949}, {12754,13950}, {12761,13952}, {12762,13953}, {12763,13954}, {12764,13955}, {12765,13956}, {12766,13957}, {12773,13961}, {12775,13964}, {12776,13965}
X(13977) = reflection of X(13991) in X(13966)
The reciprocal orthologic center of these triangles is X(40)
X(13978) lies on these lines: {6,13914}, {372,12599}, {615,12864}, {3069,7160}, {8000,13959}, {9874,13941}, {9898,13942}, {10059,13962}, {10075,13963}, {12120,13935}, {12139,13937}, {12200,13938}, {12249,13939}, {12260,13936}, {12333,13940}, {12411,13943}, {12500,13946}, {12777,13947}, {12789,13948}, {12801,13949}, {12802,13950}, {12856,13951}, {12857,13952}, {12858,13953}, {12859,13954}, {12860,13955}, {12861,13956}, {12862,13957}, {12863,13958}, {12872,13961}, {12874,13964}, {12875,13965}
The reciprocal orthologic center of these triangles is X(6102)
X(13979) lies on these lines: {6,13915}, {30,13969}, {74,13785}, {110,13951}, {125,7584}, {265,3069}, {372,10113}, {486,5663}, {542,13972}, {615,1511}, {1132,12244}, {1539,6565}, {2771,13976}, {2777,13980}, {3071,12041}, {3448,13939}, {3628,8998}, {6398,10733}, {6723,8981}, {8252,10819}, {10088,13954}, {10091,13955}, {10820,13847}, {12121,13935}, {12140,13937}, {12201,13938}, {12261,13936}, {12334,13940}, {12383,13941}, {12407,13942}, {12412,13943}, {12501,13946}, {12778,13947}, {12790,13948}, {12803,13949}, {12804,13950}, {12889,13952}, {12890,13953}, {12894,13956}, {12895,13957}, {12896,13958}, {12898,13959}, {12902,13961}, {12903,13962}, {12904,13963}, {12905,13964}, {12906,13965}, {13986,13990}
X(13979) = reflection of X(13990) in X(13993)
The reciprocal orthologic center of these triangles is X(4)
X(13980) lies on these lines: {6,6696}, {30,13970}, {64,3069}, {372,6247}, {615,2883}, {1152,1503}, {1498,13935}, {1588,10606}, {1853,6460}, {2777,13979}, {2781,12240}, {3071,5894}, {3357,7584}, {5878,13951}, {6000,13966}, {6001,13975}, {6225,13941}, {6266,13950}, {6267,13949}, {6450,9833}, {6459,8567}, {7355,13958}, {7973,13959}, {9899,13942}, {9914,13943}, {10060,13962}, {10076,13963}, {10192,12964}, {11381,13937}, {11474,13567}, {12202,13938}, {12250,13939}, {12262,13936}, {12335,13940}, {12502,13946}, {12779,13947}, {12791,13948}, {12920,13952}, {12930,13953}, {12940,13954}, {12950,13955}, {12986,13956}, {12987,13957}, {13093,13961}, {13094,13964}, {13095,13965}
The reciprocal orthologic center of these triangles is X(3)
X(13981) lies on these lines: {6,6670}, {14,3069}, {372,5479}, {530,13968}, {531,10671}, {542,13972}, {615,619}, {617,13941}, {5474,13935}, {5613,13951}, {6269,13950}, {6271,13949}, {6303,13823}, {6722,13917}, {6773,13939}, {6774,7584}, {7974,13959}, {9900,13942}, {9915,13943}, {9981,13946}, {10061,13962}, {10077,13963}, {11706,13936}, {12141,13937}, {12204,13938}, {12336,13940}, {12780,13947}, {12792,13948}, {12921,13952}, {12931,13953}, {12941,13954}, {12951,13955}, {12988,13956}, {12989,13957}, {13075,13958}, {13102,13961}, {13104,13964}, {13106,13965}
The reciprocal orthologic center of these triangles is X(3)
X(13982) lies on these lines: {6,6669}, {13,3069}, {372,5478}, {530,10672}, {531,13968}, {542,13972}, {615,618}, {616,13941}, {5473,13935}, {5617,13951}, {6268,13950}, {6270,13949}, {6302,13825}, {6722,13916}, {6770,13939}, {6771,7584}, {7975,13959}, {9901,13942}, {9916,13943}, {9982,13946}, {10062,13962}, {10078,13963}, {11705,13936}, {12142,13937}, {12205,13938}, {12337,13940}, {12781,13947}, {12793,13948}, {12922,13952}, {12932,13953}, {12942,13954}, {12952,13955}, {12990,13956}, {12991,13957}, {13076,13958}, {13103,13961}, {13105,13964}, {13107,13965}
The reciprocal orthologic center of these triangles is X(3)
X(13983) lies on these lines: {6,3934}, {39,615}, {76,3069}, {194,13941}, {372,6248}, {384,13938}, {486,511}, {538,13847}, {639,1506}, {730,13971}, {732,13972}, {2782,13966}, {3071,5188}, {3095,13951}, {3103,10577}, {3312,7697}, {5420,13334}, {5969,13968}, {6272,13950}, {6273,13949}, {6318,13827}, {6683,8252}, {7976,13959}, {9821,13785}, {9902,13942}, {9917,13943}, {9983,13946}, {10063,13962}, {10079,13963}, {11257,13935}, {12143,13937}, {12251,13939}, {12263,13936}, {12338,13940}, {12474,13944}, {12475,13945}, {12782,13947}, {12794,13948}, {12836,13955}, {12837,13954}, {12923,13952}, {12933,13953}, {12992,13956}, {12993,13957}, {13077,13958}, {13108,13961}, {13109,13964}, {13110,13965}
X(13983) = {X(6), X(3934)}-harmonic conjugate of X(8992)
The reciprocal orthologic center of these triangles is X(3)
X(13984) lies on these lines: {6,6704}, {83,3069}, {372,6249}, {615,6292}, {732,13972}, {754,13847}, {1588,9751}, {2896,13941}, {6274,13950}, {6275,13949}, {6287,13951}, {6317,13829}, {7977,13959}, {8725,13785}, {9903,13942}, {9918,13943}, {10064,13962}, {10080,13963}, {12122,13935}, {12144,13937}, {12206,13938}, {12252,13939}, {12264,13936}, {12339,13940}, {12476,13944}, {12477,13945}, {12783,13947}, {12795,13948}, {12924,13952}, {12934,13953}, {12944,13954}, {12954,13955}, {12994,13956}, {12995,13957}, {13078,13958}, {13111,13961}, {13112,13964}, {13113,13965}, {13967,13993}
X(13984) = {X(6), X(6704)}-harmonic conjugate of X(8993)
The reciprocal orthologic center of these triangles is X(4)
X(13985) lies on these lines: {6,13918}, {112,13935}, {127,372}, {132,615}, {140,13923}, {1152,2794}, {1297,3069}, {2781,13990}, {2799,13967}, {2806,13977}, {2831,13991}, {3320,13958}, {5420,6720}, {6398,10749}, {9517,13969}, {9530,13847}, {12145,13937}, {12207,13938}, {12253,13939}, {12265,13936}, {12340,13940}, {12384,13941}, {12408,13942}, {12413,13943}, {12503,13946}, {12784,13947}, {12796,13948}, {12805,13949}, {12806,13950}, {12918,13951}, {12925,13952}, {12935,13953}, {12945,13954}, {12955,13955}, {12996,13956}, {12997,13957}, {13099,13959}, {13115,13961}, {13116,13962}, {13117,13963}, {13118,13964}, {13119,13965}, {13966,13992}
X(13985) = reflection of X(13992) in X(13966)
The reciprocal orthologic center of these triangles is X(4)
X(13986) lies on these lines: {6,6689}, {54,3069}, {195,13961}, {372,3574}, {539,13847}, {615,1209}, {1154,12240}, {2888,13941}, {2917,8277}, {6276,13950}, {6277,13949}, {6288,13951}, {7584,10610}, {7691,13935}, {7979,13959}, {9905,13942}, {9920,13943}, {9985,13946}, {10066,13962}, {10082,13963}, {10628,13969}, {11576,13937}, {12208,13938}, {12254,13939}, {12266,13936}, {12341,13940}, {12785,13947}, {12797,13948}, {12926,13952}, {12936,13953}, {12946,13954}, {12956,13955}, {12998,13956}, {12999,13957}, {13079,13958}, {13121,13964}, {13122,13965}, {13979,13990}
X(13986) = {X(6), X(6689)}-harmonic conjugate of X(8995)
The reciprocal orthologic center of these triangles is X(79)
X(13987) lies on these lines: {6,13919}, {372,12600}, {615,13089}, {3069,10266}, {12146,13937}, {12209,13938}, {12255,13939}, {12267,13936}, {12342,13940}, {12409,13942}, {12414,13943}, {12504,13946}, {12556,13935}, {12786,13947}, {12798,13948}, {12807,13949}, {12808,13950}, {12849,13941}, {12919,13951}, {12927,13952}, {12937,13953}, {12947,13954}, {12957,13955}, {13000,13956}, {13001,13957}, {13080,13958}, {13100,13959}, {13126,13961}, {13128,13962}, {13129,13963}, {13130,13964}, {13131,13965}
The reciprocal orthologic center of these triangles is X(13665)
X(13988) lies on these lines: {6,13920}, {30,13880}, {372,13687}, {486,13794}, {524,13848}, {615,13701}, {1327,3069}, {13666,13935}, {13667,13936}, {13668,13937}, {13672,13938}, {13674,13939}, {13675,13940}, {13678,13941}, {13679,13942}, {13680,13943}, {13685,13946}, {13688,13947}, {13689,13948}, {13690,13949}, {13691,13950}, {13692,13951}, {13693,13952}, {13694,13953}, {13695,13954}, {13696,13955}, {13697,13956}, {13698,13957}, {13699,13958}, {13702,13959}, {13712,13831}, {13713,13961}, {13714,13962}, {13715,13963}, {13716,13964}, {13717,13965}, {13843,13847}, {13849,13972}
X(13988) = midpoint of X(13847) and X(13932)
The reciprocal parallelogic center of these triangles is X(385)
X(13989) lies on these lines: {2,13908}, {6,620}, {98,13935}, {99,3069}, {114,372}, {115,615}, {140,8980}, {148,13941}, {485,6721}, {486,9739}, {542,10820}, {543,13847}, {642,5062}, {690,13990}, {1152,2794}, {2782,13966}, {2783,13977}, {2787,13991}, {2799,13992}, {3023,13958}, {4027,13938}, {5186,13937}, {5420,6036}, {5969,13972}, {6033,6398}, {6319,13949}, {6320,13950}, {6321,13951}, {6722,8252}, {7983,13959}, {8782,13946}, {9995,13653}, {10086,13962}, {10089,13963}, {11711,13936}, {13172,13939}, {13173,13940}, {13174,13942}, {13175,13943}, {13176,13944}, {13177,13945}, {13178,13947}, {13179,13948}, {13180,13952}, {13181,13953}, {13182,13954}, {13183,13955}, {13184,13956}, {13185,13957}, {13188,13961}, {13189,13964}, {13190,13965}
X(13989) = reflection of X(i) in X(j) for these (i,j): (13967,13966), (13968,13847)
X(13989) = parallelogic center of the 4th tri-squares-central triangle these triangles: 6th anti-Brocard, 1st Brocard, 6th Brocard
X(13989) = {X(6), X(620)}-harmonic conjugate of X(8997)
The reciprocal parallelogic center of these triangles is X(323)
X(13990) lies on these lines: {6,5181}, {74,13935}, {110,3069}, {113,372}, {125,615}, {140,8994}, {265,13951}, {399,13961}, {485,12900}, {486,10820}, {542,13847}, {690,13989}, {1112,13937}, {1152,2777}, {1511,7584}, {2771,13977}, {2781,13985}, {2854,13972}, {2931,8277}, {2948,13942}, {3448,13941}, {3628,13915}, {5420,6699}, {5663,13966}, {6398,7728}, {6565,12295}, {6723,8252}, {7732,13949}, {7733,13950}, {7984,13959}, {9517,13992}, {9826,12239}, {10088,13962}, {10091,13963}, {11720,13936}, {12121,13785}, {12310,13943}, {12383,13939}, {12903,13954}, {12904,13955}, {13193,13938}, {13204,13940}, {13208,13944}, {13209,13945}, {13210,13946}, {13211,13947}, {13212,13948}, {13213,13952}, {13214,13953}, {13215,13956}, {13216,13957}, {13217,13964}, {13218,13965}, {13979,13986}
X(13990) = midpoint of X(486) and X(10820)
X(13990) = reflection of X(i) in X(j) for these (i,j): (13969,13966), (13979,13993)
X(13990) = parallelogic center of these triangles: 4th tri-squares-central to orthocentroidal
X(13990) = {X(6), X(5972)}-harmonic conjugate of X(8998)
The reciprocal parallelogic center of these triangles is X(1)
X(13991) lies on these lines: {6,3035}, {11,615}, {80,13947}, {100,3069}, {104,13935}, {119,372}, {140,13913}, {149,13941}, {214,13936}, {486,5840}, {528,13847}, {952,13966}, {1145,7968}, {1152,2829}, {1320,13959}, {1862,13937}, {2771,13969}, {2783,13967}, {2787,13989}, {2800,13975}, {2802,13971}, {2806,13992}, {2831,13985}, {3634,8988}, {5420,6713}, {5541,13942}, {6398,10742}, {6502,10956}, {6667,8252}, {9024,13972}, {10087,13962}, {10090,13963}, {10738,13951}, {12331,13961}, {13194,13938}, {13199,13939}, {13205,13940}, {13222,13943}, {13228,13944}, {13230,13945}, {13235,13946}, {13268,13948}, {13269,13949}, {13270,13950}, {13271,13952}, {13272,13953}, {13273,13954}, {13274,13955}, {13275,13956}, {13276,13957}, {13278,13964}, {13279,13965}
X(13991) = reflection of X(13977) in X(13966)
X(13991) = {X(6), X(3035)}-harmonic conjugate of X(13922)
The reciprocal parallelogic center of these triangles is X(6)
X(13992) lies on these lines: {6,6720}, {112,3069}, {127,615}, {132,372}, {140,13918}, {486,2794}, {1297,13935}, {2781,13969}, {2799,13989}, {2806,13991}, {2831,13977}, {6020,13958}, {6398,12918}, {9517,13990}, {10705,13959}, {10749,13951}, {11641,13943}, {11722,13936}, {13166,13937}, {13195,13938}, {13200,13939}, {13206,13940}, {13219,13941}, {13221,13942}, {13236,13946}, {13280,13947}, {13281,13948}, {13282,13949}, {13283,13950}, {13294,13952}, {13295,13953}, {13296,13954}, {13297,13955}, {13298,13956}, {13299,13957}, {13310,13961}, {13311,13962}, {13312,13963}, {13313,13964}, {13314,13965}, {13966,13985}
X(13992) = reflection of X(13985) in X(13966)
X(13992) = {X(6), X(6720)}-harmonic conjugate of X(13923)
X(13993) lies on these lines: {2,6417}, {3,13939}, {4,13961}, {5,1587}, {6,3628}, {26,13943}, {30,486}, {140,371}, {355,13942}, {372,546}, {395,3391}, {396,3366}, {495,13954}, {496,13955}, {524,6119}, {547,7583}, {548,3071}, {549,1588}, {550,6456}, {631,6407}, {632,3311}, {952,13971}, {1132,1657}, {1151,12108}, {1483,13959}, {1656,3317}, {1658,8277}, {3070,5066}, {3090,6418}, {3091,6395}, {3146,6408}, {3365,11543}, {3390,11542}, {3525,6199}, {3526,7582}, {3529,6446}, {3530,5420}, {3564,13880}, {3591,3851}, {3594,12811}, {3627,6398}, {3830,6475}, {3845,6460}, {3853,6565}, {3861,6560}, {5055,7581}, {5070,7585}, {5073,10146}, {5418,6470}, {5690,13947}, {5844,13973}, {5874,13950}, {5875,13949}, {5901,13936}, {6118,6329}, {6396,12103}, {6420,12812}, {6426,12102}, {6429,11812}, {6431,8252}, {6459,6496}, {6500,8972}, {6756,13937}, {8253,10194}, {8855,11265}, {9540,11539}, {10942,13953}, {10943,13952}, {13967,13984}, {13979,13986}
X(13993) = midpoint of X(i) and X(j) for these {i,j}: {486,13966}, {13979,13990}
X(13993) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 3628, 13925), (1656, 6501, 13886), (3069, 13951, 5), (13785, 13935, 550), (13955, 13963, 496)
See Le Viet An and César Lozada, Hyacinthos 26344.
X(13994) lies on the nine-point circle and these lines:
{4,11568}, {5,11569}, {114,6032}, {126,9771}, {543,13234}, {2793,12494}, {3849,9127}, {6094,13377}
X(13994) = midpoint of X(i) and X(j) for these {i,j}: {4,11568}, {6094,13377}
X(13994) = reflection of X(11569) in X(5)
X(13994) = nine-point-circle-antipode of X(11569)
See Le Viet An and Peter Moses, Hyacinthos 26346.
X(13995) lies on these lines:
{1, 30}, {442, 3833}, {758, 12267} et al
See Le Viet An and Angel Montesdeoca, Hyacinthos 26363.
X(13996) lies on these lines: {1, 6174}, {8, 190}, {10, 11}, {12, 10129}, {40, 550}, {56, 100}, {65, 10427}, {80, 4668}, {149, 2551}, {214, 3635}, {519, 1155}, {1000, 4413}, {1018, 4534}, {1320, 3035}, {1376, 13279}, {1387, 3624}, {2183, 3943}, {2254, 6366}, {2800, 3962}, {2829, 6361}, {3434, 13272}, {3617, 10707}, {3649, 10956}, {3679, 4679}, {3885, 8256}, {3893, 11362}, {3922, 12736}, {4701, 12732}, {4746, 12572}, {5082, 10953}, {5087, 6735}, {5252, 5856}, {5433, 10912}, {5434, 12648}, {5660, 11531}, {7091, 12641}, {7173, 13463}, {7972, 9945}, {7993, 13226}, {11500, 12245}, {12247, 12249}
X(13996) = reflection of X(i) in X(j) for these {i, j}: {11,1145}, {149,3036}, {1317,100}, {1320,3035}, {5183,4394}, {6154,5541}, {7972,9945}, {7993,13226}, {12653,1387}
See Le Viet An, César Lozada, and Peter Moses, Hyacinthos 26366 and Hyacinthos 26367.
X(13997) lies on these lines: {74, 186}, {520, 13293}
See Le Viet An and Peter Moses, Hyacinthos 26373.
X(13998) lies on these lines: {4,109}, {65,7649}
X(13998) =
See Le Viet An and Peter Moses, Hyacinthos 26373.
X(13999) lies on the nine-point circle and these lines:
{4, 2222}, {11, 7649}, {117, 1737}, {119, 1877}, {650, 5190}, {867, 10017}, {5089, 5513}
X(13999) = polar-circle-inverse of X(2222)
X(13999) = Stevanovic-circle-inverse of X(5190)
See Le Viet An, Angel Montesdeoca, and Peter Moses, Hyacinthos 26369 and Hyacinthos 26370
X(14000) lies on these lines: {1, 3}, {88, 12515}
X(14000) = center of the circumcircle of the cevian triangle of X(80)
PART 1: | Introduction and Centers X(1) - X(1000) | PART 2: | Centers X(1001) - X(3000) | PART 3: | Centers X(3001) - X(5000) |
PART 4: | Centers X(5001) - X(7000) | PART 5: | Centers X(7001) - X(10000) | PART 6: | Centers X(10001) - X(12000) |
PART 7: | Centers X(12001) - X(14000) | PART 8: | Centers X(14001) - X(16000) | PART 9: | Centers X(16001) - X(18000) |
PART 10: | Centers X(18001) - X(20000) | PART 11: | Centers X(20001) - X(22000) | PART 12: | Centers X(22001) - X(24000) |
PART 13: | Centers X(24001) - X(26000) | PART 14: | Centers X(26001) - X(28000) | PART 15: | Centers X(28001) - X(30000) |
PART 16: | Centers X(30001) - X(32000) | PART 17: | Centers X(32001) - X(34000) | PART 18: | Centers X(34001) - X(36000) |
PART 19: | Centers X(36001) - X(38000) | PART 20: | Centers X(38001) - X(40000) | PART 21: | Centers X(40001) - X(42000) |
PART 22: | Centers X(42001) - X(44000) | PART 23: | Centers X(44001) - X(46000) | PART 24: | Centers X(46001) - X(48000) |
PART 25: | Centers X(48001) - X(50000) | PART 26: | Centers X(50001) - X(52000) | PART 27: | Centers X(52001) - X(54000) |
PART 28: | Centers X(54001) - X(56000) | PART 29: | Centers X(56001) - X(58000) | PART 30: | Centers X(58001) - X(60000) |
PART 31: | Centers X(60001) - X(62000) | PART 32: | Centers X(62001) - X(64000) | PART 33: | Centers X(64001) - X(66000) |
PART 34: | Centers X(66001) - X(68000) | PART 35: | Centers X(68001) - X(70000) | PART 36: | Centers X(70001) - X(72000) |